
On exact algorithms for treewidth

Hans L. Bodlaender

Fedor V. Fomin

Arie M. C. A. Koster

Dieter Kratsch

Dimitrios M. Thilikos

Department of Information and Computing Sciences,

Utrecht University

Technical Report UU-CS-2006-032

www.cs.uu.nl

ISSN: 0924-3275

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39718819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On exact algorithms for treewidth∗

Hans L. Bodlaender† Fedor V. Fomin‡ Arie M.C.A. Koster§

Dieter Kratsch¶ Dimitrios M. Thilikos‖

Abstract

We give experimental and theoretical results on the problem of computing the
treewidth of a graph by exact exponential time algorithms using exponential space
or using only polynomial space. We first report on an implementation of a dynamic
programming algorithm for computing the treewidth of a graph with running time
O∗(2n). This algorithm is based on the old dynamic programming method introduced
by Held and Karp for the Traveling Salesman problem. We use some optimiza-
tions that do not affect the worst case running time but improve on the running time
on actual instances and can be seen to be practical for small instances. However,
our experiments show that the space used by the algorithm is an important factor to
what input sizes the algorithm is effective. For this purpose, we settle the problem
of computing treewidth under the restriction that the space used is only polynomial.
In this direction we give a simple O∗(4n) algorithm that requires polynomial space.
We also show that with a more complicated algorithm, using balanced separators,
Treewidth can be computed in O∗(2.9512n) time and polynomial space.

1 Introduction

The use of treewidth in several application areas requires efficient algorithms for computing
the treewidth and optimal width tree decompositions of given graphs. In the past years,

∗This research was partially supported by the project Treewidth and Combinatorial Optimization with
a grant from the Netherlands Organization for Scientific Research NWO and by the Research Council
of Norway and by the DFG research group ”Algorithms, Structure, Randomness” (Grant number GR
883/9-3, GR 883/9-4). The research of the last author was supported by the Spanish CICYT project
TIN-2004-07925 (GRAMMARS).

†Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB
Utrecht, the Netherlands. hansb@cs.uu.nl

‡Department of Informatics, University of Bergen, N-5020 Bergen, Norway. fomin@ii.uib.no
§Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, D-14195 Berlin, Germany.

koster@zib.de
¶LITA, Université de Metz, F-507045 Metz Cedex 01, France. kratsch@sciences.univ-metz.fr
‖Department of Mathematics, National and Capodistrian University of Athens, Panepistimioupolis,

GR-15784, Athens, Greece. sedthilk@math.uoa.gr

1

a large number of papers appeared studying the problem to determine the treewidth of a
graph, including both theoretical and experimental results, see e.g., [4] for an overview.
Since the problem is NP complete [1], there is a little hope in finding an algorithm which
can determine the treewidth of a graph in polynomial time. There are several exponential
time (exact) algorithms known in the literature for the treewidth problem. (See the surveys
[11, 26] for an introduction to the area of exponential algorithms.) Arnborg et al. [1] gave
an algorithm that tests in O(nk+2) time if a given graph has treewidth at most k. It is
not hard to observe that the algorithm runs for variable k in O∗(2n) time1. See also [22].
In 2004, Fomin et al. [12] presented an O(1.9601n) algorithm to compute the treewidth
based on minimal separators and potential maximal cliques of graphs, using the paradigms
introduced by Bouchitté and Todinca [7, 6]. The analysis of the algorithm of Fomin et
al. from [12] was improved by Villanger [25], who showed that the treewidth of a graph
can be computed in O(1.8899n) time. While the algorithms from [12, 25] provide the best
known running time, they are based on computations of potential maximal cliques and are
difficult to implement.

In this paper we try another approach to compute the treewidth, which seems to be
much more suitable for implementations. While Treewidth is usually formulated as the
problem to find a tree decomposition of minimum width, it is possible to formulate it as
a problem to find a linear ordering of (the vertices of) the graph such that a specific cost
measure of the ordering is as small as possible. Several existing algorithms and heuristics for
treewidth are based on this linear ordering characterization of treewidth, see e.g., [2, 8, 15].
In this paper, we exploit this characterization again, and a lesser known property of the
characterization. Thus, we can show that an old dynamic programming method, introduced
by Held and Karp for the Traveling Salesman problem [18] in 1962 can be adapted
and used to compute the treewidth of given graphs. Suppressing polynomial factors, time
and space bounds of the algorithm for treewidth is the same as that of the algorithm of
Held and Karp for TSP: O∗(2n) running time and O∗(2n) space. The Held-Karp algorithm
tabulates some information for pairs (S, v), where S is a subset of the vertices, and v is
a vertex (from S); a small variation of the scheme allows us to save a factor O(n) on the
space for the problems considered in this paper: we tabulate information for all subsets
S ⊆ V of vertices.

We have carried out experiments that show that the method works well to compute
the treewidth of graphs of size up to around forty to fifty. For larger graphs, the space
requirements of the algorithm appear to be the bottleneck. Thus, this raises the question:
are there polynomially space algorithms to compute the treewidth having running time
of the form O∗(cn) for some constant c? In this paper we answer this question in the
affirmative. We show that there is an algorithm to compute the treewidth that uses O∗(4n)
time and only polynomial space. This algorithm uses a simple recursive divide-and-conquer
technique and is similar to the polynomial space algorithm of Gurevich and Shelah [17] for
Hamiltonian Path.

1We sometimes use O∗-notation which is a modified O-notation introduced by Woeginger [26] suppress-
ing all polynomially bounded factors.

2

Finally, we further provide theoretical results improving upon the running time for
the polynomial space algorithm for treewidth. Using balanced separators, we obtain an
algorithm for Treewidth that uses O∗(2.9512n) time and polynomial space. It should be
noted that this result is only theoretical: the algorithm must consider many subsets of a
specific size of the set of vertices. Thus, we did not carry out an experimental evaluation
of the polynomial space algorithms.

2 Preliminaries

2.1 Definitions

We assume the reader to be familiar with standard notions from graph theory. Throughout
this paper, n = |V | denotes the number of vertices of graph G = (V, E). A graph G =
(V, E) is chordal, if every cycle in G of length at least four has a chord, i.e., there is an edge
connecting two non-consecutive vertices in the cycle. A triangulation of a graph G = (V, E)
is a graph H = (V, F) that contains G as subgraph (F ⊆ E) and is chordal. H = (V, F)
is a minimal triangulation of G = (V, E) if H is a triangulation of G and there does not
exist a triangulation H ′ = (V, F ′) of G with H ′ a proper subgraph of H . For a graph
G = (V, E) and a set of vertices W ⊆ V , the subgraph of G induced by W is the graph
G[W] = (W, {{v, w} ∈ E | v, w ∈ W}).
Definition 1 A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈ I}, T =
(I, F)) with {Xi | i ∈ I} a collection of subsets of V , called bags, and T = (I, F) a tree,
such that

• For all v ∈ V , there exists an i ∈ I with v ∈ Xi.

• For all {v, w} ∈ E, there exists an i ∈ I with v, w ∈ Xi.

• For all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subgraph (subtree) of
T .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F)) equals maxi∈I |Xi| − 1. The
treewidth of a graph G, tw(G), is the minimum width of a tree decomposition of G.

The following alternative characterization of treewidth is well known, see e.g., [3].

Proposition 2 Let G = (V, E) be a graph, k an integer. The following are equivalent.

1. G has treewidth at most k.

2. G has a triangulation H = (V, F) with the maximum size of a clique in H at most
k + 1.

3. G has a minimal triangulation H = (V, F) with the maximum size of a clique in H
at most k + 1.

3

2.2 Treewidth as a Linear Ordering Problem

It is well known that treewidth can be formulated as a linear ordering problem, and this
is exploited in several algorithms for determining the treewidth, see e.g., [2, 8, 9, 15].

A linear ordering of a graph G = (V, E) is a bijection π : V → {1, 2, . . . , |V |}. For a
linear ordering π and v ∈ V , we denote by π<,v the set of vertices that appear before
v in the ordering: π<,v = {w ∈ V | π(w) < π(v)}. Likewise, we define π≤,v, π>,v,
and π≥,v. A linear ordering π of G is a perfect elimination scheme, if for each vertex,
its higher numbered neighbors form a clique, i.e., for each i ∈ {1, 2, . . . , |V |}, the set
{π−1(j) | {π−1(i), π−1(j)} ∈ E ∧ j > i} is a clique. It is well-known that a graph has a
perfect elimination scheme, if and only if it is chordal, see [16, Chapter 4].

For arbitrary graphs G, a linear ordering π defines a triangulation H of G that has π
as perfect elimination scheme. The triangulation with respect to π of G is built as follows:
first, set G0 = G, and then for i = 1 to n, Gi is obtained from Gi−1 by adding an edge
between each pair of non adjacent higher numbered neighbors of π−1(i). One can observe
that the resulting graph H = Gn is chordal, has π as perfect elimination scheme, and
contains G as subgraph.

For our algorithms, we want to avoid working with the triangulation explicitly. The
following predicate allows us to ‘hide’ the triangulation. For a linear ordering π, and two
vertices v, w ∈ V , we say Pπ(v, w) holds, if and only if there is a path v, x1, x2, . . . , xr, w
from v to w in G, such that for each i, 1 ≤ i ≤ r, π(xi) < π(v), and π(xi) < π(w). In other
words, Pπ(v, w) is true, if and only if there is a path from v to w such that all internal
vertices are before v and w in the ordering π. Note that the definition implies that Pπ(v, w)
is always true when v = w or when {v, w} ∈ E.

With Rπ(v), we denote the number of higher numbered vertices w ∈ V for which
Pπ(v, w) holds, i.e., Rπ(v) = |{w ∈ V | π(w) > π(v) ∧ Pπ(v, w)}|. The proof of the
following proposition is an immediate consequence of a lemma of Rose et al. [21]. (See
also [3, 8, 9].)

Proposition 3 Let G = (V, E) be a graph, and k a non-negative integer. The treewidth of
G is at most k iff there is a linear ordering π of G, such that for each v ∈ V , Rπ(v) ≤ k.

Proof: We use the following result from [21]. For a given graph G = (V, E), and a linear
ordering π, we have for each pair of disjoint vertices v, w ∈ E: {v, w} is an edge in the
triangulation H = (V, EH) with respect to π, if and only if Pπ(v, w) is true. Also, we use
the result of Fulkerson and Gross [13] that if π is a perfect elimination scheme of chordal
graph H = (V, EH), then the maximum clique size of H is one larger than the maximum
over all v ∈ V of the number of higher numbered neighbors |{v, w} ∈ EH | π(w) > π(v)}|.

Now, the treewidth of G is at most k, if and only if there is a triangulation H = (V, EH)
of G with maximum clique size at most k (Proposition 3), if and only if for a perfect
elimination scheme π of triangulation H , we have that for each v ∈ V :

k + 1 ≤ |{v, w} ∈ EH | π(w) > π(v)}|
= |{w ∈ V | Pπ(v, w) ∧ π(w) > π(v)}|
= Rπ(v)

4

ut
Let Π(S) be the set of all permutations of a set S. So, Π(V) is the set of all linear

orderings of G. Write Π(S, R) for the collection of permutations of S, that end with vertices
in R, i.e., with the property that for each v ∈ R: π(v) ≥ |S| − |R| + 1.

For a graph G = (V, E), a set of vertices S ⊆ V and a vertex v ∈ V − S, we define

QG(S, v) =

|{w ∈ V − S − {v} | there is a path from v to w in G[S ∪ {v, w}]}|

If G is clear from the context, we drop the subscript G. Let us note that Q(S, v) can
be computed in O(n + m) time by checking for each w ∈ V − S − {v} whether w has a
neighbor in the component of G[S ∪{v}] containing v. Also note that Rπ(v) = |Q(π<,v, v)|
for any v ∈ V , and any linear ordering π ∈ Π(V).

3 A dynamic programming algorithm for treewidth

The results of this section are based on the observation that the value Rπ(v) only depends
on v, G, and the set of vertices left of v in π.

We define
TWG(S) = min

π∈Π(V)
max
v∈S

|QG(π<,v, v)|.

Again, usually G is clear from the context, and dropped as subscript. The main idea
of the algorithm in this section is that we compute TWG(S) for all subsets S ⊆ V using
dynamic programming. The next lemma shows that this solves the treewidth problem.

Lemma 4 For each graph G = (V, E), the treewidth of G equals TW (V).

Proof: Using Proposition 3, we have

tw(G) = min
π∈Π(V)

max
v∈V

Rπ(v)

= min
π∈Π(V)

max
v∈V

|Q(π<,v, v)|
= TW (V).

ut
The following lemma gives the recursive formulation that allows us to compute the

values TW (S) with dynamic programming.

Lemma 5 For any graph G = (V, E), and any set of vertices S ⊆ V , S 6= ∅,

TW (S) = min
v∈S

max {TW (S − {v}), |Q(S − {v}, v)|}

5

Proof: Let π ∈ Π(V) be a permutation with TW (S) = maxw∈S |Q(π<,w, w)|. Suppose v
is the vertex from S with the largest index in π, i.e., the vertex with S ⊆ π≤,v.

From the definition of TW , it directly follows that TW (S) ≥ TW (S − {v}). Also, as
S ⊆ π≤,v, we have |Q(S − {v}, v)| ≤ |Q(π<,v, v)|. Hence

TW (S) ≥ max

{
TW (S − {v}), max

w∈S
|Q(π<,w, w)|

}
≥ max {TW (S − {v}), |Q(π<,v, v)|}
≥ max {TW (S − {v}), |Q(S − {v}, v)|}

Thus,
TW (S) ≥ min

v∈S
max {TW (S − {v}), |Q(S − {v}, v)|}

For the other direction, let v be an arbitrary vertex from S. Suppose π ∈ Π(V) is a
permutation with TW (S − {v}) = maxw∈S |Q(π<,w, w)|. Let π′ ∈ Π(V) be a permutation,
obtained by first taking the vertex in S−{v} in the order as they appear in π, then taking
v, and then taking the vertices in V − S in an arbitrary order. Note that we have for all
w ∈ S − {v}, π′

<,w ⊆ π<,w, and that π′
<,v = S − {v}. Now

TW (S) ≤ max
w∈S

|Q(π′
<,w, w)|

= max

{
max

w∈S−{v}
|Q(π′

<,w, w)|, |Q(π′
<,v, v)|

}

≤ max

{
max

w∈S−{v}
|Q(π<,w, w)|, |Q(S − {v}, v)|

}
= max {TW (S − {v}), |Q(S − {v}, v)|}

ut
This gives us the following relatively simple algorithm for Treewidth with O∗(2n)

worst case running time and space.

Theorem 6 The treewidth of a graph on n vertices can be determined in O∗(2n) time and
O∗(2n) space.

Proof: By Lemma 5, we almost directly obtain a Held-Karp-like dynamic programming
algorithm for the problem. In order of increasing sizes, we compute for each S ⊆ V ,
TW (S) using Lemma 5. Below, we give pseudo-code for a simple form of the algorithm
Dynamic-Programming-Treewidth.

The algorithm uses O∗(2n) time, as we do polynomially many steps per subset of V .
The algorithm also keeps all subsets of V and thus uses O∗(2n) space. ut

6

Algorithm 1 Dynamic-Programming-Treewidth(Graph G = (V, E))

Set TW (∅) = −∞.
for i = 1 to n do

for all sets n ⊂ V with |S| = n do
Set TW (S) = minv∈S max {TW (S − {v}), |Q(S − {v}, v)|}

end for
end for
return TW (V)

4 A recursive algorithm for treewidth

For vertex subsets L, S ⊆ V, S ∩ L = ∅ of a graph G = (V, E) we define

TWR(L, S) = min
π∈Π(V)

max
v∈S

|Q(L ∪ π<,v, v)|

The intuition behind TWR(L, S) is as follows: we investigate the resulting cost of the
‘best’ ordering of the vertices in S, assuming that all vertices in L are left of all vertices in
S, and all vertices in V − (L∪S) are right of all vertices in S. We observe that if S = {v},
then TWR(L, S) = |Q(L, v)|. Also, by definition, TWR(∅, S) = TW (S) and therefore
tw(G) = TWR(∅, V).

Lemma 7 Let G = (V, E) be a graph, let S ⊆ V , |S| ≥ 2, L ⊆ V , L∩S = ∅, 1 ≤ k < |S|.
Then

TWR(L, S) = min
S′⊆S,|S′|=k

max {TWR(L, S ′), TWR(L ∪ S ′, S − S ′)}

Proof: Suppose π ∈ Π(V) fulfills TWR(L, S) = maxv∈S |Q(L ∪ π<,v, v)|. Let S ′ be the
first k vertices in S that appear in π, i.e., all vertices in S − S ′ have a higher index in π
than any element in S ′. Now,

TWR(L, S) = max
v∈S

|Q(L ∪ π<,v, v)|

= max

{
max
v∈S′

|Q(L ∪ π<,v, v)|, max
v∈S−S′

|Q(L ∪ π<,v, v)|
}

≥ max

{
TWR(L, S ′), max

v∈S−S′
|Q(L ∪ S ′ ∪ π<,v, v)|

}
≥ max {TWR(L, S ′), TWR(L ∪ S ′, S − S ′)}

For the other direction, suppose that S ′ ⊆ S fulfills

max {TWR(L, S ′), TWR(L ∪ S ′, S − S ′)} =

min
S′′⊆S,|S′|=k

max {TWR(L, S ′′), TWR(L ∪ S ′, S − S ′′)}

7

Let π′ ∈ Π(V) be a permutation with TWR(L, S ′) = maxv∈S′ |Q(L ∪ π′
<,v, v)|. Let π′′ ∈

Π(V) be a permutation with TWR(L ∪ S ′, S − S ′) = maxv∈S−S′ |Q(L ∪ S ′ ∪ π′
<,v, v)|. We

now build a permutation π ∈ Π(V) in the following way. First, we take the elements in L,
in some arbitrary order. Then, we take the elements in S ′, in the order as they appear in
π′. I.e., for v, w ∈ S ′, we have that v has a smaller index than w in π, if and only if v has
a smaller index than w in π′. Then, we take the elements in S − S ′, in the order as they
appear in π′′. I.e., for v, w ∈ S − S ′, we have that v has a smaller index than w in π, if
and only if v has a smaller index than w in π′′. Also, for all v ∈ S ′, w ∈ S − S ′, v has a
smaller index than w in π. We end permutation π by taking the elements in V − S −L in
some arbitrary order. For this order π, we have

TWR(L, S) ≤ max
v∈S

|Q(L ∪ π<,v, v)|

= max

{
max
v∈S

|Q(L ∪ π<,v, v)|, max
v∈S−S′

|Q(L ∪ π<,v, v)|
}

≤ max

{
max
v∈S

|Q(L ∪ π′
<,v, v)|, max

v∈S−S′
|Q(L ∪ S ′ ∪ π′

<,v, v)|
}

= max {TWR(L, S ′), TWR(L ∪ S ′, S − S ′)}
This proves the result. ut

By making use of Lemma 7 with k = b|S|/2c, we obtain the following result.

Theorem 8 The treewidth of a graph on n vertices can be determined in O∗(4n) time and
polynomial space.

Proof: Lemma 7 is used to obtain Algorithm 2. This algorithm computes TWR(L, S)
recursively. Algorithm 2 computes the treewidth of the graph G when calling Recursive-
Treewidth(G,∅,V). Since tw(G) = TWR(∅, V), this gives the answer to the problem.

The algorithm clearly uses polynomial space: recursion depth is O(log n), and per
recursive step, only polynomial space is used. To estimate the running time, suppose
that Recursive-Treewidth(G,L,S) costs T (n, r) time with n the number of vertices of G and
r = |S|. All work, except the time of recursive calls, has its time bounded by a polynomial
in n, p(n). As we make less than 2r+1 recursive calls, each with a set S ′ with |S ′| ≤ d|S|/2e,
we have

T (n, r) ≤ 2r+1 · T (n, dr/2e) + p(n) (1)

From this, it follows that there is a polynomial p′(n), such that

T (n, r) ≤ 4r · p′(n) (2)

As the algorithm is called with |S| = n, it uses O∗(4n) time. ut
In Section 5, we report on an implementation of the O∗(2n) algorithm for Treewidth

(with additional improvements to decrease the time for actual instances). So, while the
O∗(2n) algorithm does not give a theoretical improvement, it can be seen to be of practical
use. In Section 6, we improve upon the running time for the case of polynomial space.

8

Algorithm 2 Recursive-Treewidth(Graph G, Vertex Set L, Vertex Set S)

if |S|=1 then
Suppose S = {v}.
return Q(L, v)

end if
Set Opt = ∞.
for all sets S ′ ⊆ S, |S ′| = b|S|/2c do

Compute v1 = Recursive-Treewidth(G, L, S ′);
Compute v2 = Recursive-Treewidth(G, L ∪ S ′, S − S ′);
Set Opt = min {Opt, max {v1, v2}};

end for
return Opt

5 Experimental results

In this section, we comment on the experiments we have carried out for the dynamic
programming algorithm for computing the treewidth of a given graph.

For practical considerations, we use a scheme that is slightly different than that of
Theorem 6. We can note that it is not useful to perform computations with sets S for
which TW (S) is larger than or equal to a known upper bound up on the treewidth of
G: these cannot lead to a smaller bound on the treewidth of G. Thus, in order to save
time and space in practice, we avoid handling some of such S. We compute collections
TW1, TW2, . . . , TWn. Each collection TWi (1 ≤ i ≤ n) contains pairs (S, TW (S)) with
|S| = i. The collection for sets of size i > 1 is built as follows: for each pair (S, r) ∈ TWi−1

and each x ∈ V − S, we compute r′ = max{r, |Q(S, x)|}. If r′ < up, then we check if
there is a pair (S ∪ {x}, t) in TWi for some t, and if so, replace it by (S ∪ {x}, min(t, r′)).
If r′ < up, but there is no such pair (S ∪ {x}, t) for some t is in TWi, then we insert
(S ∪ {x}, r′) in TWi.

The scheme is shown in Algorithm 3.
In our implementation, we use two additional optimizations that appeared to give

significant savings in time and space consumption. The following simple lemma gives the
first idea.

Lemma 9 Let G = (V, E) be a graph, and let S ⊆ V . The treewidth of G is at most
max {TW (S), n − |S| − 1}.
Proof: Take π ∈ Π(V) with TW (S) = maxv∈S |QG(π<,v, v)|. Now, take a linear ordering
π′ of G that starts with the vertices in S in the same order as these are in π, and then the
vertices in V − S in some arbitrary order. Now Now we claim that

tw(G) ≤ max
v∈V

|QG(π′
<,v, v)| ≤ max {TW (S), n − |S| − 1}

For v ∈ S, |QG(π′
<,v, v)| = |QG(π<,v, v)| ≤ TW (S). If v ∈ V − S, |QG(π′

<,v, v)| ≤ |V − S −
{v}| ≤ n − |S| − 1. ut

9

Algorithm 3 Algorithm TWDP (Graph G = (V, E))

n = |V |.
Compute some initial upper bound up on the treewidth of G. (E.g., set up = n − 1.)
Let TW0 be the set, containing the pair (∅,−∞).
for i = 1 to n do

Set TWi to be an empty set.
for each pair (S, r) in TWi−1 do

for each vertex x ∈ V − S do
Compute q = |{w ∈ V − S − {x} | w ∼S x}|.
Set r′ = min{r, q}.
if r′ < up then

if There is a pair (S ∪ {x}, t) in TWi for some t then
Replace the pair (S ∪ {x}, t) in TWi by (S ∪ {x}, min(t, r′)).

else
Insert the pair (S ∪ {x}, r′) in TWi.

end if
end if

end for
end for

end for
if TWn contains a pair (V, r) for some r then

return r
else

return up
end if

Lemma 9 shows correctness of the following rule that was used in the implementation:
we keep an upper bound up for the treewidth of G, initially set by the user or set to n− 1.
Each time, we get a pair (S, r) in a collection TWi, either by insertion, or by replacement of
an existing pair, we set the upper bound up to the minimum of up and n−|S|−1 = n−i−1.
Moreover, when handling a pair (S, r) from TWi−1, it is first checked if r is smaller than
up; if not, then this pair cannot contribute to an improvement of the upper bound, and
hence is skipped. Our second optimization is stated in Lemma 11. We use the following
basic fact on chordal graphs and cliques.

Lemma 10 Let H = (V, EH) be a chordal graph and let C ⊆ V induce a clique in G. Then
H has a perfect elimination scheme π that ends with C, i.e., such that for each v ∈ C:
π(v) ≥ |V | − |C| + 1.

Proof: Consider (for instance) the Maximum Cardinality Search (MCS) algorithm from
[23]. When given a chordal graph H , it produces a perfect elimination scheme of H . It
is easy to see that MCS can produce an ordering with the vertices of C at the highest
numbered positions. ut

10

Lemma 11 Let C ⊆ V induce a clique in graph G = (V, E). The treewidth of G equals
max{TW (V − C), |C| − 1}.

Proof: Using the proof method of Proposition 3 and Proposition 10, we obtain that the
treewidth of G is at most some non-negative integer k, if and only if there is a linear
ordering π ∈ Π(V, C) of G, (i.e., with π ending with the vertices in C), such that for each
v ∈ V , Rπ(v) ≤ k. In a similar, slightly more complicated way as for the proof of Lemma 4,
we have

tw(G) = min
π∈Π(V,C)

max
v∈V

Rπ(v)

= min
π∈Π(V,C)

max

{
max

v∈V −C
Rπ(v), max

v∈C
Rπ(v)

}

= min
π∈Π(V,C)

max

{
max

v∈V −C
Rπ(v), |C| − 1

}

= max

{
|C| − 1, min

π∈Π(V,C)
Rπ(v)

}
= max{|C| − 1, TW (V − C)}

ut
By Lemma 11, we can restrict the sets S to elements from V −C for some clique C; in

particular for the maximum clique. Although it is NP-hard to compute the maximum clique
in a graph, it can be computed extremely fast for the graphs considered. In our program,
we use a simple combinatorial branch-and-bound is used to compute all maximum cliques.
It recursively extends a clique by all candidate vertices once.

The algorithm was implemented in C++, using the Boost graph library, as part of
the Treewidth Optimization Library TOL, a package of algorithms for the treewidth of
graphs. The package includes preprocessing, upper bound, and lower bound algorithms for
treewidth. Experiments were carried out on a number of graphs taken from applications;
several were used in other experiments. See [24] for the used graphs, information on the
graphs, and other results of experiments to compute the treewidth. The experiments were
carried out on a Sun computer with 4 AMD Dualcore Opteron 875, 2.2 GHz processor and
at most 20 GB of internal memory available. The program did not use parallelism.

In Table 1 the results of our experiments on a number of graphs are reported. Besides
instance name, number of vertices, number of edges, and the computed treewidth, we
report on the CPU time in seconds and the maximum number of sets (S, r), considered at
once, max |TW | = maxi=0,...,n |TWi| in a number of cases. First, we report on the CPU
time and maximum number of sets for the case that no initial upper bound up is exploited.
Next, we report on the case where we use an initial upper bound, displayed in the column
up. The last two columns report on the experiments in which the algorithm is advanced
by both an initial upper bound up and a maximum clique C of size ω. In several instances
reported in [24], the best bound obtained from a few upper bound heuristics, and the

11

lower bound obtained by the LBP+(MMD+) heuristic match, and then we have obtained
in a relatively fast way an exact bound on the treewidth of the instance graph. In other
cases, these bounds do not match. Then, when the graph is not too large, the dynamic
programming algorithm can be of good use.

A nice example is the celar03 graph. This graph has 200 vertices and 721 edges. A
combination of different preprocessing techniques yield an equivalent instance celar03-pp-
001 which has 38 vertices and 238 edges. Existing upper bound heuristics gave a best
upper bound of 15, while the lower bound of the LBP+(MMD+) heuristic was 13. With
the dynamic programming algorithm with 15 as input for an upper bound, we obtained
the exact treewidth of 14 for this graph, and hence also for celar03.

no up, no C with up, no C with up, w C
instance |V | |E| tw CPU max |TW | up CPU max |TW | ω CPU max |TW |
myciel3 11 20 5 0.00 240 5 0.00 35 2 0.00 21
myciel4 23 71 10 7.64 296835 10 0.14 4422 2 0.12 4064
queen5-5 25 160 18 0.15 18220 18 0.02 944 5 0.02 392
queen6-6 36 290 25 36.43 2031716 26 1.16 18872 6 0.36 6994
queen7-7 49 476 35 - - 37 1012.12 96517095 7 248.03 24410915
pathfinder-pp 12 43 6 0.00 107 6 0.00 1 6 0.00 1
oesoca+-pp 14 75 11 0.00 48 11 0.00 5 9 0.00 5
fungiuk 15 36 4 0.07 4713 4 0.00 4 5 0.00 4
weeduk 15 49 7 0.02 2906 7 0.00 35 8 0.00 35
munin-kgo-pp 16 41 5 0.11 6892 5 0.00 2 4 0.00 2
wilson 21 27 3 14.44 350573 3 0.08 2412 3 0.06 2342
water-pp 22 96 9 1.60 77286 10 0.04 816 6 0.01 475
oow-trad-pp 23 54 6 42.91 1065120 6 0.09 2953 4 0.05 1895
barley-pp 26 78 7 349.31 6110572 7 0.61 13597 5 0.29 7971
oow-bas 27 54 4 1579.38 19937301 4 0.01 303 4 0.00 111
oow-solo-pp 27 63 6 1059.50 17048070 6 0.91 22484 4 0.30 9426
ship-ship-pp 30 77 8 - - 9 291.20 3062863 4 50.75 820910
water 32 123 9 - - 10 12.59 127545 6 1.53 25874
oow-trad 33 72 6 - - 6 129.55 1162650 4 14.55 178846
mildew 35 80 4 - - 4 2.98 33045 4 0.35 5431
mainuk 48 198 7 - - 8 - - 8 2251.97 11748147
celar03-pp-001 38 238 14 - - 15 121.29 911918 8 4.36 55504

Table 1: Experimental results for some DIMACS vertex coloring graphs, some probabilistic
networks and frequency assignment graph celar03-pp-001

The algorithm can also be used as a lower bound heuristic: give the algorithm as ‘upper
bound’ a conjectured lower bound `: when it terminates, it either has found the exact
treewidth, or we know that ` is indeed a lower bound for the treewidth of the input graph.
In a few cases, we could thus increase the lower bound for the treewidth of considered
instances, e.g., for the treewidth of the queen8-8 graph (the graph modeling the possible
moves of a queen on an 8 by 8 chessboard) the lower bound could be improved from 27 to
35.

For larger graphs, the above idea can be combined by an idea exploited earlier in various
papers. Given a graph G and a minor G′ of G, tw(G′) ≤ tw(G). In [5, 15, 20], a lower
bound on tw(G′) is computed to obtain a lower bound for G. With Algorithm 3, we
can compute tw(G′) exactly to obtain a lower bound for tw(G). For the 1024 vertices
graph pignet2-pp, we have generated a sequence of minors by repeatedly contracting a
minimum degree vertex with a neighbor with least number of common neighbors (see [5]).

12

Figure 1 shows the treewidth (right y-scale) for the minors with 70 to 79 vertices. Moreover,
the maximum number of sets for three different upper bounds is reported (left y-scale,
logarithmic). If the used upper bound is less than or equal to the treewidth, no feasible
solution is found in the end. The best known lower bound for pignet2-pp is increased from
48 to 59 by the treewidth of the 79 vertex-minor. Figure 1 shows one more time the impact
of the upper bound on the memory consumption (and time consumption) of the algorithm.

Figure 1: Maximum number of subsets S during algorithm for different upper bounds.

6 Improved polynomial space algorithms for

treewidth

In this section, we give a faster exponential time algorithm with polynomial space for
Treewidth. The algorithm is based on results of earlier sections combined with tech-
niques based upon balanced separators. We now derive a number of necessary lemmas.

Lemma 12 Suppose π is a linear ordering of G = (V, E) with

tw(G) = max
v∈V

Rπ(v)

13

Let 0 ≤ i < |V |, and S = {v ∈ V | π(v) > i} be the set with the |V | − i highest numbered
vertices. Then

tw(G) = max {TW (V − S), TWR(V − S, S)}

Proof: Recall that TWR(∅, S) = TW (S), for all S ⊆ V . By Lemma 7,

tw(G) = TWR(∅, V) ≤ max {TWR(∅, V − S), TWR(V − S, S)}

Clearly TW (V − S) ≤ TW (V) ≤ tw(G). Observing that for v ∈ S: π<,v = V − S ∪ π<,v,
we have

TWR(V − S, S) ≤ max
v∈S

|Q(V − S ∪ π<,v, v)|
= max

v∈S
Rπ(v) ≤ tw(G)

ut

Lemma 13 Let G = (V, E) be a graph. Let S ⊆ V be a set of vertices, such that the
treewidth of G is equal to the treewidth of the graph G′ = (V, E∪{{v, w} | v, w ∈ S, v 6= w})
obtained from G by turning S into a clique. Then there is a linear ordering π ∈ Π(V, S)
(i.e., π ends with the vertices in S), such that tw(G) = maxv∈V Rπ(v).

Proof: Suppose H = (V, EH) is a triangulation of G′, such that the maximum clique size
of H equals tw(G′)+1 = tw(G)+1. H is also a triangulation of G, and S is a clique in H .
By Lemma 10, there is a perfect elimination scheme π of H that ends with the vertices in
S, i.e., with π ∈ Π(V, S). For this ordering π, we have that tw(G) = maxv∈V Rπ(v), as we
have for each v ∈ V that {v} ∪ Q(π<,v, v) is a clique in H , and hence Rπ(v) ≤ tw(G). ut

The following lemma is a small variant on a folklore result. Its proof follows mostly the
folklore proof.

Lemma 14 Let G = (V, E) be a graph with treewidth at most k. There is a set S ⊆ V
with

• |S| = k + 1.

• Each connected component of G[V − S] contains at most (|V | − k)/2 vertices.

• The graph G′ = (V, E ∪ {{v, w} | v, w ∈ S, v 6= w}) obtained from G by turning S
into a clique has treewidth at most k.

Proof: It is well known that if the treewidth of G is at most k, then G has a tree
decomposition ({Xi | i ∈ I}, T = (I, F)) such that

14

• For all i ∈ I: |Xi| = k + 1.

• For all (i, j) ∈ F : |Xi − Xj | ≤ 1.

Take such a tree decomposition. Now, for each i ∈ I, consider the trees obtained when
removing i from T . For each such tree, consider the union of the sets Xj − Xi with j in
this tree. Each connected component W of G[V − Xi] has all its vertices in one such set,
i.e., for one subtree of T − i. Suppose that for i ∈ I, there is at least one component of
G[V − Xi] that contains more than (|V | − k)/2 vertices. Let i′ be the neighbor of i that
belongs to the subtree that contains the vertices in W . Now, direct an arc from i to i′. In
this way, each node in I has at most one outgoing arc.

Suppose first that there are two neighboring nodes i1 and i2, with i1 having an arc to
i2, and i2 having an arc to i1. Let W1 be the connected component of G[V − Xi1] that
contains more than (|V |−k)/2 vertices. Let W2 be the connected component of G[V −Xi2]
that contains more than (|V | − k)/2 vertices.

i1

Xi1

i2

Xi2

W1W2

Figure 2: Illustration to the proof of Lemma 14

Now, W1 and W2 are disjoint sets. (See Figure 2. Note that if v ∈ W1∩W2, then v must
belong to a bag in the part of the tree, marked with W1, and a part of the tree marked
with W2. Then also w ∈ Xi1, and this is a contradiction as W is a connected component
of G[V − Xi1].)

Also, W1 ∩ Xi1 = ∅. As W2 ∩ Xi2 = ∅, W1 ∩ Xi2 ⊆ Xi1 − Xi2. Now, Xi1 , W1, and
W2 − (Xi1 −Xi2) are disjoint sets, which contain together at least (k + 1) + ((|V | − k)/2 +
1) + ((|V | − k)/2 + 1 − 1) > |V | vertices, contradiction.

Now, as there are no two neighboring nodes i1 and i2, with i1 having an arc to i2, and i2
having an arc to i1, there must be a there is a node i0 in T without outgoing arcs. (Start at
any tree node, and follow arcs. As the tree is finite and loopless, we end in a node i0 without
outgoing arcs.) Now taking S = Xi0 gives the required set: ({Xi | i ∈ I}, T = (I, F)) is
also a tree decomposition of G′, so G′ has treewidth k, and as i0 has no outgoing arcs, each
connected component of G[V − Xi0] has at most (|V | − k)/2 vertices. ut

Lemma 15 Let G = (V, E) be a graph with treewidth at most k. Let k+1 ≤ r ≤ n. There
is a set W ⊆ V , with

• |W | = r.

15

• Each connected component of G[V − W] contains at most (|V | − r + 1)/2 vertices.

• tw(G) = max{TWR(∅, V − W), TWR(V − W, W)}.

Proof: First, let S be the set, implied by Lemma 14. Let π ∈ Π(V, S) be the linear
ordering with tw(G) = maxv∈V Rπ(v), see Lemma 13. If k + 1 = r, then we can take
W = S, and we are done by Lemma 12.

If k + 1 < r, then we construct W and an ordering π as follows. We start by setting
W = S, but will add later more vertices to W . Repeat the following steps, until |W | = r:
compute the connected components of G[V − W]. Suppose Z is the set of vertices of the
connected component of G[V − W] with the largest number of vertices. Let z ∈ Z be the
vertex in Z with the largest index in π: π(z) = maxv∈Z π(v). Now, we do the following.

• Change the position of z in π as follows: move z to the first position before an element
in W , i.e., set π(z) = |V |− |Q|. All other elements keep their relative position. Now,
note that sets Q(π<,v, v) do not change, for all v ∈ V . So, for the new ordering π,
we still have that tw(G) = maxv∈V Rπ(v).

• Add z to W . Note that we still have that π ends with the vertices in W .

This procedure keeps as invariants that π ∈ Π(V, W), i.e., π ends with W , that tw(G) =
maxv∈V Rπ(v), and that each connected component of G[V − W] contains at most (|V | −
|W |+1)/2 vertices. (This can be seen as follows. The component that contained z became
one smaller, while the term (|V | − |W | − 1)/2 decreases with 1/2. All but the largest
component of G[V − W] contain at most (|V | − |W |)/2 vertices, which means that they
still are of sufficiently small size when |W | increases by one.)

By the Lemma 12, we known that the third condition holds for W , thus the set W
obtained by the procedure fulfills the conditions stated in the lemma. ut

For a graph G = (V, E), and a set W , let G+[W] be the fill-in graph, obtained by
eliminating the vertices in V −W , i.e., G+[W] = (W, F), with for all v, w ∈ W , v 6= w, we
have that {v, w} ∈ F , if and only if there is a path from v to w that uses only vertices in
V − W as internal vertices.

The next lemma formalizes the intuition behind TWR(V − W, W): when computing
TWR(V − W, W), we look for the best ordering of the vertices in W , after all vertices in
V − W are eliminated — i.e., in the graph G+[W]). We also give a formal proof.

Lemma 16 Let G = (V, E) be a graph, and W ⊆ V a set of vertices. Then tw(G+[W]) =
TWR(V − W, W).

Proof: Consider a linear ordering π ∈ Π(V) of the vertices in V . Let π′ be the linear
ordering of the vertices in W , obtained by restricting π to W , i.e., for v, w ∈ W : π(v) <
π(w) ⇔ π′(v) < π′(w). Now, for all v ∈ V

QG+[W](π
′
<,v, v) = QG(V − W ∪ π<,v, v)

16

This is because for each edge {v, w} in the graph G+[W], there is a path from v to w using
only vertices in V − W ∪ {v, w}.

Suppose that for linear ordering π′ of the vertices in W , we have

tw(G+[W]) = max
v∈W

QG+[W](π
′
<,v, v)

Take an arbitrary ordering π ∈ Π(V, W) such that π′ is the ordering obtained by restricting
π to W , i.e., we extend π′ by placing the vertices of V − W in some arbitrary ordering
before all vertices in W . Now

tw(G+[W]) = max
v∈W

QG+[W](π
′
<,v, v)

= max
v∈W

QG(V − W ∪ π<,v, v)

≥ TWR(V − W, W)

Suppose that for linear ordering π of the vertices in V , we have

TWR(V − W, W) = max
v∈W

QG(V − W ∪ π<,v, v)

Let π′ be the restriction of π to W . Now

TWR(V − W, W) = max
v∈W

QG(V − W ∪ π<,v, v)

= max
v∈W

QG+[W](π
′
<,v, v)

≥ tw(G+[W])

ut

Lemma 17 Let G = (V, E) be a graph, and let S = S1 ∪ S2 ⊆ V . Suppose S1 ∩ S2 = ∅,
and that there is no edge between a vertex in S1 and a vertex in S2. Then TW (S) =
max{TW (S1), TW (S2)}.

Proof: Suppose for i ∈ {1, 2}, πi ∈ Π(V) is a linear ordering of G with

TW (Si) = max
v∈Si

|Q(πi
<,v, v)|

Let π ∈ Π(V) be the linear ordering of G, constructed as follows: first, we take the
vertices in S1 in the order as they appear in π1, i.e., for all v, w ∈ S1, π(v) < π(w) ⇔
π1(v) < π1(w). Then, we take the vertices in S2 in the order as they appear in π2, and
then the vertices in V − S in some arbitrary order.

Now, for i ∈ {1, 2}, and all vertices v ∈ Si, we have that

Q(πi
<,v, v) = Q(π<,v, v)

17

and hence

TW (S) ≤ max
v∈S

|Q(π<,v, v)|

= max

{
max
v∈S1

|Q(π<,v, v)|, max
v∈S2

|Q(π<,v, v)|
}

= max

{
max
v∈S1

|Q(π1
<,v, v)|, max

v∈S2

|Q(π2
<,v, v)|

}
= max{TW (S1), TW (S2)}

The result follows as clearly, TW (S) ≥ max{TW (S1), TW (S2)}. ut
The lemmas above are summarized in the following result, which gives a main idea of

the improved recursive algorithm.

Corollary 18 Let G = (V, E) be a graph, and let k, r be integers, 0 ≤ k < r ≤ |V |. The
treewidth of G is at most k, if and only if there is a set of vertices S ⊆ V , with

• |S| = r.

• Each connected component of G[V − S] contains at most (|V | − r + 1)/2 vertices.

• For each connected component W of G[V − S], TWR(∅, W) ≤ k.

• The treewidth of G+[S] is at most k.

Proof: Let G = (V, E) be a graph, 0 ≤ k < r ≤ |V |.
First, suppose the treewidth of G is at most k. By Lemma 15, there is a set S, with

|S| = r, each connected component of G[V −S] contains at most (|V |−r+1)/2 vertices, and
tw(G) = max{TWR(∅, V − S), TWR(V − S, S). By Lemma 16, tw(G+[S]) = TWR(V −
S, S) ≤ tw(G) ≤ k. For each connected component W of G[V − S], TWR(∅, W) ≤
TWR(∅, V − S) ≤ tw(G) ≤ k. So, each of the conditions holds for S.

Suppose we have a set S ⊆ V , that fulfills each of the four conditions above. For
each connected component W of G[V − S], we have TW (W) = TWR(∅, W) ≤ k. By
Lemma 17, V − S, which is the disjoint union of these connected components, fulfills
TWR(∅, V − S) = TW (V − S) ≤ k. By Lemma 16, tw(G+[S]) = TWR(V − S, S). Now,
(cf. Lemma 7), tw(G) ≤ max{TWR(∅, V − S), TWR(V − S, S)} ≤ k. ut

We now present the main result of this section.

Theorem 19 The treewidth of a graph G on n vertices can be computed in polynomial
space and time O∗(2.9512n).

18

Proof: We describe a decision algorithm for treewidth: given a graph G, and an integer
k, it decides whether the treewidth of G is at most k. Of course, an algorithm that, given
a graph G, computes tw(G) can be constructed at the cost of an additional multiplicative
factor O(log n), suppressed by the O∗-notation. Let γ = 0.4203.

Algorithm 4 gives the pseudo-code of the algorithm. It works as follows. If |V | ≤ k +1,
then the treewidth of G is at most |V | − 1 ≤ k, so the algorithm returns true.

Otherwise, the algorithm checks if k ≤ 0.25 · |V | or k ≥ γ · |V |. If this is the case,
then we search for a set S, as implied by Corollary 18 when we take r = k + 1. I.e., we
enumerate all sets S of size k + 1. For each such S, we check if all connected components
of G = (V, E) have size at most (|V |− |S|+1)/2. If so, we use the algorithm of Theorem 8
(Algorithm 2 Recursive-Treewidth) to compute for each connected component W the value
TWR(W, ∅). If for each such component W , TWR(∅, W), then the algorithm returns true:
as G+(W) has k + 1 vertices, its treewidth is trivially at most k, and hence all conditions
of Corollary 18 are fulfilled, so G has treewidth at most k. If there is no set S of size k +1
that yields true, then the algorithm returns false; correctness is implied by Corollary 18.

The remaining case is that 0.25 · |V | < k < γ · |V |. Now, we search for a set S as
implied by Corollary 18 when taking r = dγ · |V |e. I.e., we enumerate all sets S of size
r = dγ · |V |e. For each we check if all connected components W of G[V − S] have size
at most (|V | − r + 1)/2. If so, we use Algorithm 2 Recursive-Treewidth for deciding if all
connected components W of G[V −S] fulfill TWR(∅, W) ≤ k. We also recursively call the
algorithm on G+(W) to decide if this graph has treewidth at most k. If all these checks
succeed, the algorithm returns true. If no S of size r made the algorithm return true, the
algorithm returns false. Correctness again follows from Corollary 18.

We now analyze the running time of the algorithm. Write α = k/|V |.
We start with analyzing the case where k ≤ 0.25 · |V | or γ · |V | ≤ k. We have α ≤ 0.25

or α ≥ γ. The number of subsets of size α · n of a set of size n is known to be of size

O∗((α−α · (1 − α)α−1)n)

Each connected component W of G[V −S] for which the algorithm calls Recursive-Treewidth
has size at most (|V |−α · |V |+1)/2, thus we use at most O∗(4(|V |−α·|V |+1)/2) = O∗(2(1−α)|V |

time for one such component. Thus, the total time in this case is bounded by

O∗ ((α−α · (1 − α)α−1 · 21−α
)n

Write f(α) = α−α · (1 − α)α−1 · 21−α. The function f monotonically increases in the
interval (0, 1

3
), and monotonically decreases in the interval (1

3
, 1). As f(0.25) < 2.9512,

and f(γ) < 2.9512, we have for all α with 0 < α ≤ 0.25 or γ ≤ α < 1, that f(α) < 2.9512,
and hence that the algorithm uses O∗(2.9512n) time.

We now look at the case where 0.25 · |V | < k < γ · |V |, i.e., where 0.25 < α < γ.
As in the previous case, the time for all computations of TWR(∅, W) for all connected
components of G[V − S] over all sets S ⊆ V of size r is bounded by

O∗((γ−γ · (1 − γ)γ−1 · 21−γ)n = O∗(f(γ)n)

19

Algorithm 4 Improved-Recursive-Treewidth(Graph G = (V, E), Integer k)

if |V | ≤ k + 1 then
return true

else if k ≤ 0.25 · |V | or k ≥ 0.4203 · |V | then
for all sets S ⊆ V of size k + 1 do

if each connected component of G[V −S] contains at most (|V | − |S| + 1)/2 vertices
then

tbool = true;
for all connected components W of G[V − S] do

tbool = tbool or (Recursive-Treewidth(G, ∅, W) ≤ k;
end for
if tbool then

return true
end if

end if
end for

else
for all sets S ⊆ V of size d0.4203 · |V |e do

if Each connected component of G[V −S] contains at most (|V | − |S| + 1)/2 vertices
then

Compute the graph G+[S].
tbool = Improved-Recursive-Treewidth(G+[S], k);
for all connected components W of G[V − S] do

tbool = tbool or Recursive-Treewidth(G, ∅, W) ≤ k;
end for
if tbool then

return true
end if

end if
end for

end if
return false

20

As f(γ) = f(0.4203) < 2.9512, the total time for these steps is bounded by O∗(2.9512n).
We have to add to this time the total time over all recursive calls to the algorithm with

graphs of the form G+(S). Note that the recursion depth is at most 1: in the recursion,
the value of k is unchanged, while we now have a graph with |S| = dγ · |V |e vertices. So, in
the recursive call, k > 0.25 · |V | > γ · |S|, and the algorithm executes the first case. From
the analysis above, it follows that each recursive call of Improved-Recursive-Treewidth on a
graph G+[S] costs

O∗(
(
β−β · (1 − β)β−1 · 21−β

)γ·n
)

time, with β = α/γ. (Note that k
|S| ∼ α|V |

γ|V | = β.) Write

g(α) = γγ · (1 − γ)γ−1 ·
((

α

γ

)−α
γ

·
(

1 − α

γ

)α
γ
−1

· 21−α
γ

)γ

As there are O∗((γγ · (1 − γ)γ−1)n) vertex sets S ⊆ V of size γn, the total time of all calls
of Improved-Recursive-Treewidth with graphs of the form G+[S] is bounded by O∗(g(α)n).
On the interval [0.25, γ], the function g is monotonically decreasing, with g(0.25) < 2.9511.
Thus, it follows that the total time over all calls of Improved-Recursive-Treewidth for graphs
G+[S] is bounded by O∗(2.9511n), and the total time of the algorithm is bounded by
O∗(2.9512n). ut

We conjecture that with a more detailed analysis and more levels of recursion, small
improvements to the running time are possible.

7 Other problems

In this section, we discuss a number of other problems that are related to treewidth, and
will show that in several cases, algorithms with running time O∗(2n) and space O∗(2n),
and with running time O∗(4n) and polynomial space are also possible, using techniques
very similar to the proofs of Theorem 6 and Theorem 8.

Theorem 20 Let f be a function, mapping 3-tuples, consisting of a graph G = (V, E), a
vertex set S ⊆ V , and a vertex v ∈ V to an integer. Then we can compute in O∗(2n) time
and O∗(2n) space, or in O∗(4n) time and polynomial space the following values for a given
graph G = (V, E):

min
π∈Π(V)

max
v∈V

f(G, π<,v, v)

or
min

π∈Π(V)

∑
v∈V

f(G, π<,v, v)

We omit the proof of this theorem here: it is a more or less straightforward generaliza-
tion of the proofs of Theorem 6 and Theorem 8. For many problems, we can see that they
can be written in the form of Theorem 20. We discuss several of these below.

21

A good overview paper, discussion several linear ordering problems is [10]. Relations
between treewidth, pathwidth, and other parameters can be found in [3].

Minimum fill-in A problem, related to treewidth, is the Minimum Fill-In problem.
Exact algorithms for Minimum Fill-In were obtained by Fomin et al. [12] and Vil-
langer [25]: the same time bounds (O(1.9601n) time and O(1.8899n) time) are given as
for treewidth; these algorithms use the same techniques as for treewidth; they use expo-
nential space. The Minimum Fill-In problem has important applications in Gaussian
elimination.

The minimum fill-in of a graph G = (V, E), mfi(G), is the minimum over all triangula-
tions H = (V, EH) of G of |EH −E|, i.e., the minimum number of edges that, when added
to G, make G chordal.

The following proposition is a variant of Proposition 3, but now targeted at the mini-
mum fill-in problem.

Proposition 21 Let G = (V, E) be a graph, and k a non-negative integer. The minimum
fill-in of G is at most k iff there is a linear ordering π of G, such that∑

v∈V

Rπ(v) ≤ k + |V |

This shows that Theorem 20 can be applied. It is probably harder to obtain a practical
version from the O∗(2n)-algorithm: as we sum here costs, working with an upper bound
probably causes much fewer dropped entries from tables. This seems an interesting topic
for an experimental study.

The techniques of Section 6 cannot directly be used to improve upon the polynomial
space bound. We leave it as an open problem to improve upon the O(4n) bound for
polynomial space algorithms for Minimum Fill-In; possibly a variant of the techniques
of Section 6 or the notion of potential maximal clique can be of use here.

Pathwidth The pathwidth of a graph is usually defined in terms of path decompositions,
but it has several equivalent characterizations, see e.g., [3] for an overview. Kinnersley
[19] showed that pathwidth can be defined as a vertex ordering problem. We use this
characterization to obtain the exact algorithms.

Definition 22 The vertex separation number of a linear ordering π of G = (V, E) is

max
v∈V

|{w ∈ V | ∃x ∈ V : {w, x} ∈ E ∧ π(w) < π(v) ≤ π(x)}|
The vertex separation number of a graph G is the minimum vertex separation number over
all linear orderings of G.

Theorem 23 (Kinnersley [19]) The vertex separation number of a graph equals its path-
width.

It is not hard to see that the Vertex Separation Number problem has the shape
of Theorem 20.

22

Sum Cut Replacing taking a maximum by taking a summation in the definition of vertex
separation gives us the Sum Cut problem. See for instance [10]. In the Sum Cut problem,
we look for a linear ordering π which minimizes∑

v∈V

|{w ∈ V | ∃x ∈ V : {w, x} ∈ E ∧ π(w) < π(v) ≤ π(x)}|

Minimum Interval Graph Completion Another problem, related to Pathwidth,
which can be solved with Theorem 20 is the Minimum Interval Graph Completion

problem. The Minimum Interval Graph Completion problem is the following: given
a graph G = (V, E), what is the minimum size of a set of edges, that, when added to
G yield an interval graph. In a similar way as pathwidth can be reformulated as vertex
separation number, this problem can be formulated as linear ordering problem too.

Lemma 24 Let G = (V, E) be a graph. There is an interval graph H = (V, F) that
contains G as a subgraph (E ⊆ F) with |F | ≤ k, if and only if there is a linear ordering π
of G with

|{v, w} | v 6= w ∧ x ∈ V : {w, x} ∈ E ∧ π(w) < π(v) ≤ π(x)}| ≤ k

Cutwidth and variants The cutwidth of a linear ordering π of a graph G = (V, E) is

max
v∈V

|{w, x} ∈ E ∧ π(w) ≤ π(v) < π(x)}|

The modified cutwidth of a linear ordering π of a graph G = (V, E) is

max
v∈V

|{w, x} ∈ E ∧ π(w) < π(v) < π(x)}|

The cutwidth (modified cutwidth) of a graph is the minimum cutwidth (modified cutwidth)
of a linear ordering of it. The parameters have variants for directed acyclic graphs. The
cutwidth (modified cutwidth) of a directed acyclic graph G = (V, A) is the minimum
cutwidth (modified cutwidth) of a topological ordering of G; the latter are defined similar
to the undirected counterparts. By setting f(G, S, v) to a very high value when there is an
arc (v, w) ∈ A with w ∈ S, we can force that the minimum is taken at a topological sort,
and thus fit the problem into the form of Theorem 20.

Optimal Linear Arrangement The Optimal Linear Arrangement problem, of
which the decision variant was proved NP-complete in [14], asks for a given graph G =
(V, E) for the minimum over all linear orderings π of

∑
{v,w}∈E |π(v)−π(w)|. The following

simple lemma shows that we can write the problem again in a form such that Theorem 20
applies.

23

Lemma 25 For each graph G = (V, E), and for each linear ordering π of G,∑
{v,w}∈E

|π(v) − π(w)| =
∑
v∈V

|{{x, y} ∈ E | π(x) ≤ π(v) < π(w)}|

The directed variant, where we look for topological orderings π of G = (V, A) with∑
(v,w)∈A(f(w) − f(v)) can be handled in a similar way.

Directed Feedback Arc Set The Directed Feedback Arc Set is the following:
given a directed graph G = (V, A), find a set of arcs F ⊆ A with |F | as small as possible,
such that (V, A − F) is acyclic, i.e., each cycle in G contains at least one arc in F . It is a
variant of the well known Feedback Vertex Set and Directed Feedback Vertex

Set problems (which look for a set of vertices that break all cycles). (The problem to find
in an undirected graph a minimum size set of edges that breaks all cycles is trivial; its
weighted variant is a reformulation of the polynomial time solvable Minimum Spanning

Tree problem. The (Directed) Feedback Vertex Set problems are trivially solvable
in O∗(2n) time with linear space, and thus we have to focus only to Directed Feedback

Arc Set.) One can also look to a weighted variant: each arc has a weight, and we look
for a set of arcs that break all cycles of minimum total weight.

The following lemma shows that we can formulate (Weighted) Directed Feedback

Arc Set in a shape such that Theorem 20 can be applied. Recall that a graph is acyclic,
if and only if it has a topological ordering.

Lemma 26 Let G = (V, A) be a directed graph, and let w : A → N be a function that
assigns each arc a non-negative integer weight. Let K ∈ N be an integer. There exists a
set of arcs F ⊆ A with (V, A − F) acyclic and

∑
a∈F w(a) ≤ K, if and only if there is a

linear ordering π of G, such that
∑

(x,y)∈A, π(x)>π(y) w((x, y)) ≤ K.

Summary The following result summarizes the discussion in the paragraphs above.

Theorem 27 Each of the following problems: Minimum Fill-In, Pathwidth, Sum

Cut, Minimum Interval Graph Completion, Cutwidth, Directed Cutwidth,
Modified Cutwidth, Directed Modified Cutwidth, Optimal Linear Ar-

rangement, Directed Optimal Linear Arrangement and Directed Feedback

Arc Set

1. can be solved in O∗(2n) time and O∗(2n) space.

2. can be solved in O∗(4n) time and polynomial space.

In each case, the O∗(2n) algorithm resembles the classic Held-Karp algorithm for TSP
[18], and the O∗(4n) its variant by Gurevich and Shelah [17].

24

8 Conclusions

In this paper, we have given dynamic programming and recursive algorithms to compute
the treewidth of a given graph. The dynamic programming algorithm for the treewidth
problem has been implemented; for small instances (slightly below 50 vertices), the algo-
rithm appears to be practical. Also, it can be used to obtain better lower bounds (by
running the algorithm on a minor of the input graph), or upper bounds (by dropping table
entries when space or time does not permit us to compute the full tables). On a more the-
oretical side, we gave the first exponential time algorithms for Treewidth with a running
time of the type O∗(cn) for some constant c that use polynomial space and we reduced the
running time of the algorithm with polynomial space to O∗(2.9512n).

A comparison of the dynamic programming algorithm for Treewidth with other al-
gorithms, (e.g., a branch and bound algorithm as in [15] or the algorithm of Shoikhet and
Geiger [22]) would be very interesting.

We also have seen that several problems that can be formulated as a ’linear ordering
problem’ can be solved in O∗(2n) time and O∗(2n) space, or O∗(4n) time and polynomial
space. There are here several angles for interesting further work. It would be interesting to
carry out experiments with (variants of) the dynamic programming algorithm for several
of these problems. On the more theoretical side, it is interesting to try to improve the
time bounds. Some problems appear to be hard, e.g., to improve upon the O∗(2n) time for
Pathwidth.

References

[1] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

[2] E. H. Bachoore and H. L. Bodlaender. New upper bound heuristics for treewidth. In
S. E. Nikoletseas, editor, Proceedings of the 4th International Workshop on Experi-
mental and Efficient Algorithms WEA 2005, pages 217–227. Springer Verlag, Lecture
Notes in Computer Science, vol. 3503, 2005.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc., 209:1–45, 1998.

[4] H. L. Bodlaender. Discovering treewidth. In P. Vojtás̆, M. Bieliková, and B. Charron-
Bost, editors, SOFSEM 2005: Theory and Practive of Computer Science: 31st Con-
ference on Current Trends in Theory and Practive of Computer Science, pages 1–16.
Springer-Verlag, Lecture Notes in Computer Science 3381, 2005.

[5] H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth
lower bounds. In S. Albers and T. Radzik, editors, Proceedings 12th Annual Euro-
pean Symposium on Algorithms, ESA2004, pages 628–639. Springer, Lecture Notes in
Computer Science, vol. 3221, 2004.

25

[6] V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31:212–232, 2001.

[7] V. Bouchitté and I. Todinca. Listing all potential maximal cliques of a graph. Theor.
Comp. Sc., 276:17–32, 2002.

[8] F. Clautiaux, A. Moukrim, S. Négre, and J. Carlier. Heuristic and meta-heuristic
methods for computing graph treewidth. RAIRO Operations Research, 38:13–26, 2004.

[9] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos. Fugitive-search games on graphs
and related parameters. Theor. Comp. Sc., 172:233–254, 1997.

[10] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM Computing
Surveys, 34:313–356, 2002.

[11] F. V. Fomin, F. Grandoni, and D. Kratsch. Some new techniques in design and
analysis of exact (exponential) algorithms. Bulletin of the EATCS, 87:47–77, 2005.

[12] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth
and minimum fill-in. In Proceedings of the 31st International Colloquium on Automata,
Languages and Programming, ICALP 2004, pages 568–580, 2004.

[13] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J.
Math., 15:835–855, 1965.

[14] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theor. Comp. Sc., 1:237–267, 1976.

[15] V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In Proceedings
of the 20th Annual Conference on Uncertainty in Artificial Intelligence UAI-04, pages
201–208, Arlington, Virginia, USA, 2004. AUAI Press.

[16] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

[17] Y. Gurevich and S. Shelah. Expected computation time for Hamiltonian path problem.
SIAM J. Comput., 16:486–502, 1987.

[18] M. Held and R. Karp. A dynamic programming approach to sequencing problems. J.
SIAM, 10:196–210, 1962.

[19] N. G. Kinnersley. The vertex separation number of a graph equals its path width.
Information Processing Letters, 42:345–350, 1992.

[20] A. M. C. A. Koster, T. Wolle, and H. L. Bodlaender. Degree-based treewidth lower
bounds. In S. E. Nikoletseas, editor, Proceedings of the 4th International Workshop on
Experimental and Efficient Algorithms WEA 2005, pages 101–112. Springer Verlag,
Lecture Notes in Computer Science, vol. 3503, 2005.

26

[21] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput., 5:266–283, 1976.

[22] K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangulations.
In Proc. National Conference on Artificial Intelligence (AAAI ’97), pages 185–190.
Morgan Kaufmann, 1997.

[23] R. E. Tarjan and M. Yannakakis. Simple linear time algorithms to test chordiality of
graphs, test acyclicity of graphs, and selectively reduce acyclic hypergraphs. SIAM J.
Comput., 13:566–579, 1984.

[24] Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004.

[25] Y. Villanger. Improved exponential-time algorithms for treewidth and minimum fill-in.
In Proceedings of the 7th Latin American Theoretical Informatics Symposium (LATIN
2006), volume 3887 of LNCS, pages 800–811. Springer-Verlag, Berlin, 2006.

[26] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial
Optimization: ”Eureka, you shrink”, pages 185–207, Berlin, 2003. Springer Lecture
Notes in Computer Science, vol. 2570.

27

