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A Branch and Bound Algorithm for
Exact, Upper, and Lower Bounds on Treewidth*

Emgad H. Bachoore and Hans L. Bodlaender

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract. In this paper, a branch and bound algorithm for computing the treewidth of a graph is presented.
The method incorporates extensions of existing results, and uses new pruning and reduction rules, based upon
properties of the adopted branching strategy. We discuss how the algorithm can not only be used to obtain exact
bounds for the treewidth, but also to obtain upper and/or lower bounds. Computational results of the algorithm
are presented.

1 Introduction

The notions treewidth, pathwidth and branchwidth have received a growing interest in recent
years not only because of their theoretical significance in (algorithmic) graph theory, but also
because many problems that are intractable on graphs, including a large number of well-known
NP hard problems, have been shown to be polynomial-time and even linear-time solvable on
graphs that are given together with a tree decomposition of width at most some cén¢&ed

e.g., [2-4,11,13].)

Arnborg et al. [5] proved that computing the treewidth of a graph is an NP-hard problem. So,
in recent years, many different algorithms have been designed to compute the treewidth exactly,
approximately, or do preprocessing. Many of these algorithms have been designed for special
classes of graphs, but in this paper, we will focus on algorithms that work on general undirected
graphs.

A number of these algorithms were approximation algorithms. These are polynomial time ap-
proximation algorithms for treewidth, that have approximation rétjwg n) [9] or O(log k) [1],
wheref is the actual treewidth of the input graph. Other algorithms [1] have a constant approxi-
mation ratio, but their running time is exponential in the treewidth. On the other hand there were
several proposals for heuristic algorithms for upper and lower bound on the treewidth. Some of
these algorithms are based on the concept of graph triangulation. These are Maximum Cardinal-
ity Search, Lexicographic Breadth First search algorithms, Minimum Degree, Minimum Fill-in,
MFEO1, MFEO2, RATIO1 and RATIOZ2. Other heuristics are based on other ideas, e.g., the Min-
imum Separating Vertex Set algorithm. Some examples of lower bound methods are Maximum
Minimum Degree, MMD+, D-LB, and contraction and treewidth lower bounds algorithms. See
e.g.[6,9,11,14,16,18].

Using the above techniques may help to find a close value for the treewidth of a graph, but
in many cases, not the exact one. Therefore, there is a need for algorithms that produce the

* This work has been supported by the Netherlands Organization for Scientific Research NWO (project TACO: "Treewidth And
Combinatorial Optimization’).
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exact treewidth, at least for some graphs. Bodlaender [10] invented a linear-time algorithm to
decide whether the treewidth of a graph is at most a constauinfortunately, this algorithm is
exponential in a polynomial ik and hence appears to be impractical everkfer 4, see [20].

Well known techniques that we can use to design an algorithm for finding the exact treewidth
are for example Branch-and-Bound and Integer Linear Programming. In this paper we introduce
an algorithm for finding the treewidth of a graph using a Branch-and-Bound technique. The
results of this study may suggest further research into the effects of using branch and bound
technique to find the treewidth of graphs.

In 2003, Gogate and Dechter [17] reported on work on a branch and bound algorithm on
treewidth. Independently, part of the work reported in the current paper had been done before
publication of [17]. There are some significant differences in details and results between [17]
and this paper. We report here also on these differences.

A generalization of the algorithm can be used to compute the weighted treewidth of weighted
graphs. In this paper, we focus on the unweighted case. Furthermore, more than one variant of the
algorithm has been developed and implemented to test the effect of using different pruning rules
on the efficiency of the algorithm. Finally, it is interesting to note that, for some large graphs, itis
infeasible to find the exact treewidth of the graph in a reasonable time by using branch and bound.
Therefore, we developed our algorithm such that it yields better lower and/or upper bounds on
the treewidth in such cases.

2 Definitions and preliminary results

Throughout this pape = (V, E) denotes a finite, simple and undirected graph, whérie

the set of vertices of the graph ar¢lthe set of edges of the graph. A subgraph of a graph
G(V, E), induced by a set of verticdd C V/, is denoted by7[IW] = (W, {{v,w} € E|v,w €
W1). A graph H is aminor of graphG, if H can be obtained fron¥ by zero or more vertex
deletions, edge deletions, and edge contractiédge contractionis the operation that replaces
two adjacent vertices andw by a single vertex that is connected to all neighbors @ind

w. The neighbors of a vertexis denotedV(v) = {w € V|{v,w} € E}. The neighbors of

v plus v itself is denotedV[v] = N(v) U {v}. In the same manner we defidé’[v] = {v},
N[y = N[N[v]], Nt (v) = N1 o] \ N*[v]. We can extend the above definition to a set of
vertices instead of one vertex. Suppose tfia a set of vertices, theWN°[S] = S, N'*1[S] =
N[N'S]], N7*H(S) = NHHS]\ NY[S], N[S] = U,es N[vl, N(S) = N[S]\ S, i € N. A
vertexv in G is calledsimplicial, if all its neighborsV (v) forms a clique inG. A vertexv in G is
calledalmost simplicial if its neighbors except one form a cliquedh i.e., if v has a neighbow
such thatV(v) — {w} is a clique. A graplt- is calledtriangulated(or: chordal) if every cycle of
length four of more possesses a chorath®drdis an edge between two non consecutive vertices
of the cycle. A graptH = (V, F) is atriangulation of graph G = (V, E), if G is a subgraph of

H andH is a triangulated graph.

Definition 1. Let x be a vertex in a grapliz = (V, E). Thefill-in of z in a graphG, is the
number of edges that must be added between the neighpdigr), to maker simplicial, i.e.,

fill-in(z) = [{{v,w}|v,w € N(z),{v,w} & E}|
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Thefill-in-excluding-oneneighbor ofx in a graphG is the minimum number of edges that must
be added between vertices\(x) (minus one vertex), such thais almost simplicial, i.e.,

fill-in-excl-one@) = min.cy@)|{{v, w}v,w € N(z) — {z}, {v,w} & E}|

Definition 2. A tree decompositiorf the graphG = (V, E) is a pair (X,T") in whichT =
(I, F)atree,andX = {X,|i € I} acollection of subsets &f, one for each node df, such that

hd Uz‘el Xi=V.
e Forall {u,v} € F, there exists an € [ withu,v € X.
e Foralli,j, k€ I:if jis on path from to £ in 7', thenX,; N X, C X.

Thewidth of the tree decompositidii/, £), { X;|i € I}) is max;c;|X; — 1|. Thetreewidthof a
graphG is the minimum width over all tree decompositiong;of

3 The Branch and Bound Algorithm for Treewidth BB-tw

The main elements of the branch and bound algorithm for finding the treewidth of a graph, BB-
tw, are: The space of all feasible solutions, the upper and lower bounds on the treewidth, and the
rules for pruning the feasible solutions that do not contain optimal solution. These are described
in Sections 3.1 and 3.2. More details are discussed in Sections 3.3 — 3.6.

3.1 Problem description

Several algorithms for determining or approximating the treewidth of a graph are based on trian-
gulations formed from vertex orderings.

Definition 3. Alinear ordering of a graphG = (V, E) is a bijectionf : V' — {1,2,--- ||V},
also denoted asf(1),---, f(|V])]. A linear ordering of the vertices of a grapfi, 0 =
[v1,- -+, v,] is called aperfect elimination order (p.e.o.df G, if for everyl < i < n, v; is
a simplicial vertex inG[v;, - - - , v,], i.€., the higher numbered neighborsupform a clique.

Lemma 1. (See [11].) A grapl@ is triangulated, if and only i€z has a perfect elimination order
(p.e.0).

Definition 4. Let v be a vertex in a graphG. Eliminating a vertexv from a graphG,
eliminate(vg), is the procedure of adding an edge between every pair of non-adjacent neigh-
bors ofv in GG, and then removing and its incident edges fro@. We call the graphG’ ob-
tained from eliminating a vertex from a graphG, atemporary graphof G. l.e.,G'(W, F) =

GV —{v}, E— {{v,w}{v,w} € E,{v,w} & F}).

Lemma 2. Let G’ = (V’,E’) be a minor of graphG = (V| E). Thentreecwidth(G") <
treewidth(QG).
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Leto = [vy,---,v,] be alinear ordering off = (V, E),n = |V/|. Construct a grapli/ as
follows: SetH = G; for i = 1 ton, add toH an edge between each pair of non-adjacent higher
numbered neighbors (iff) of v;. H is the graph obtained fro@ by the fill-in procedure with
respect tar; o is a perfect elimination scheme féf, henceH is chordal. The following theorem
is well known.

Theorem 1. LetG = (V, E) be a graphk = |V|. The following statements are equivalent.

— The treewidth o~ is at mostk.

— G has a triangulation with maximum clique size at mbst 1.

— There is a linear orderingr, such that the grapl#/ obtained from by thefill-in procedure
w.r.t. o has maximum clique size at mast 1, or, equivalently, fulfils that each € V' has at
mostk higher numbered neighbors (i, w.r.t. o).

Lemma 3. Let H be a triangulation obtained from applying tfi#-in procedureon a graphG
due to an orderings of the vertices of>. Then, the treewidth ofr is at least the size of the
maximum clique i minusl.

Thus, we take as the space of all feasible solutions for the computation of the treewdéith of
the set of all possible linear orderings of the verticeg:ofVe represent these bysaarch tree
of all possible solutiong;. by taking a root-, and having for each node a child for each possible
choice of the next vertex in the elimination ordering. Thus, a node in the search tree represents
a fixed initial part of the linear ordering. From this point, we look for the best ordering of the
vertices not in the initial part. This is equivalent to looking for a linear ordering for the graph,
obtained by eliminating all vertices in this initial part. Figure 1 shows an example for the space
of all feasible solution for a graph consisting of 4 vertices.

Fig. 1.

Initializing the space of all feasible solutionsOne of the interesting points in the initialization
phase of the algorithm is, how we should initialize or define the search tree of all feasible solu-
tions. Suppose that the given graph is as in Figure 2 and the initial value for the upper bound on
the treewidth of this graph equals 9. Furthermore, suppose we use the above method for building
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the search tree, and we use only one pruning rule in the branch and bound algorithm, that is, if
the degree of the current elimination vertex in the temporary graph is greater than the value of the
reported upper bound, then we skip the search operation from the current node in the search tree
to its next right sibling. Hence, the first elimination ordering that the algorithm will check is [1,
.,27]. This means that we have to visit maggles in the space of all feasible solutions than that
we have to visit if we have build this space in the following manner. Instead of arranging the avail-
able nodes in the tree in ascending order, due to their labels, from left to right in each level of each
subtree of the search tree, we arrange these nodes in each level due to their sequence in the perfect
elimination ordering for finding the best upper bound on the treewidth. Therefore, the initial val-
ues of the first elimination ordering for implementing BB-tw algorithm on the graph in Figure 2
will be [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,2,3,4,5,6,7,8,9,1] when we use
for example the elimination ordering obtained from finding the upper bound on the treewidth
by using the Minimum Fill-in Heuristic. Thus, the number of visited nodes in the tree becomes
smaller by using this method for building the search tree. As a result, the running time of the
branch and bound algorithm for finding the treewidth of a graph becomes also smaller.

Gint

Fig. 2.

3.2 Pruning Rules

In a branch and bound algorithm, we do not search the entire search tree, but speed up the
computation by omitting several parts of the search tree, of which we have established that we
do not need these parts for finding the optimal solution. We consider a number of pruning rules.

Pruning Rule 1: The upper bound equals to the lower bound Before starting the branch-
and-bound search, we compute the upper bounds on the treewidth of the given graph by using
the heuristics introduced in [6], and the lower bounds on the treewidth by using two heuristics,
namely, the Degeneracy heuristic and Ramachandramumplarameter of the graph [19]. We
report the best upper and lower bounds obtained from these heuristics. Then, we check whether
the best lower bound equals the best upper bound, and if so, then this value is returned as the
treewidth of the given graph; otherwise we start the branch and bound. This comparison is also
done when a new (better) upper or lower bound for the treewidth is found during the branch-and-
bound search.

Moreover, in nodes in the search tree, we compute the degeneracy lower bound, and prune
when this value is not smaller than the best known upper bound.
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Pruning Rule 2: Number of vertices in the temporary graph Let G’ = (V’, E’) be a tem-
porary graph of a grapty = (V, E), i.e., the graph obtained by eliminating a set of vertices
X C V from a given graplt:. Let max be the maximum degree of all vertices in the initial part
oY of the elimination ordering, as represented by the node the search currently is arbé dte
maximum degree of the verticesdfl at the moment of their elimination. As any linear ordering
that starts withs will yield a treewidth bound that is at mogt= maz(«, [V’| — 1), we prune
wheng < ub with ub the currently best known upper bound, and8eto (.

Pruning Rule 2 (PR2)
letr = (G = (V, E), ub, b) be the give instance problem,
G’ = (W, F) be the graph obtained from eliminating a set of vertices
X = {z|z € V,z ¢ W} and their incident edges from the gragh
max be the maximum degree of all vertices of the Sebefore
they have been exactly eliminated fr@gM) mazx,c x (degree(x)),
y be the last vertex that has been eliminated from gr@ph
ub be the best upper bound reported for the treewidth of the grgph
if ([V(G")| < max)
ub «— max;
omit the subtree rooted by the parent of the vertdsom the space of all
feasible solutions;

Lemma 4. Let G’ = (W, F) be the graph obtained form eliminating vertgxfrom graph
G = (V,E), max = degree(y) before it has been eliminated fro6a. If |IW| < max, then
the treewidth of is at mostmnax.

Proof. Eliminating the vertices of the grajglf in any order and reporting the maximum of these
neighborhood seen during the process will not cause the treewidth of the graph to become greater
thanmax sincemax > |W|. O

Pruning Rule 3: The degree of the eliminated vertexIf the degree of a vertex in the tem-
porary graph is larger than or equal to the best upper bound known for the treewidth of the input
graph, then we know that eliminatingwill give an elimination ordering whose width is at least

the degree of, hence will not yield an improvement to the upper bound. Thus, the branch which
selectsy as next vertex to be eliminated can be pruned at this point.

Lemma5. Let H = (W, F') be a triangulation graph of a grap&&' = (V, E') andub be an upper
bound on the treewidth of the gragh If Jw € W, degree(w) > ub, andw is simplicial orw is
almost simplicial andlegree(w) is at most the treewidth @¥, thentw(G) < tw(H).
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Pruning Rule 3 (PR3)
letx = (G = (V, E), ub, lb) be the give instance problem,
v be the current vertex we have to eliminate from a gr&ph
ub, (b be the best upper and lower bounds on treewidty ,of
we have reported up to now;
if (degree(v) > ub)
omit the subtree rooted hyfrom the search tree;
let the next candidate vertex we have to eliminate be the next sibling
of the vertexv in the search tree.

Pruning Rule 4: Equivalent elimination orderings Gogate and Dechter [17] observed that in
some cases, swapping two successive vertices does not affect the width of a linear ordering. We
use a simpler but equivalent test. Suppossdw are successive vertices in a linear ordeng

andv andw are not adjacent ar andw are adjacent and each has a higher numbered neighbor
thatis not a neighbor of the other, then the ordesih@btained by swappingandw in o, has the

same width as. Thus, we prune the search tree as follows: for such a pair of vertiegsvhen

we have looked at a branch representing the elimination orderings starting;with , z;, v, w,

we prune the branch representing the orderings startingmith . | z;, w, v.

Definition 5. Let.S; and.S; be two elimination orderings for the vertices of a gragh= (V, E).

If the treewidth, the upper bound on the treewidth or the lower bound on the treewidth we obtain
from eliminating the vertices a& due to their orders inS; equals what we obtain from elim-
inating the vertices of the graph due to their ordersds then we callS; and S, equivalent
elimination orderings

Theorem 2. Let S; and S, be two elimination orderings for the vertices of a graph If S,
differs from.S, in the positions for one or more pair and w, such that for each such pair,

w we have that positions efandw in S; are: and: + 1 respectively, for somg whereas the
positions of these vertices # arei + 1 and: respectively, and one of the following properties
hold:

— v andw are not adjacent irtz, or
— v andw are adjacent inz, and each has at least one neighbor which is not a neighbor of the
other.

ThenS; and S; are equivalent.

Proof. The theorem is trivial in the case ofandw are not adjacent if/. However, ifv andw

are adjacent, and each has at least one neighbor, which is not neighbor of the otherthen let
denotes the number of common neighbors betweamdw, n,, (n,,) be the number of neighbors
of v (w) that are not neighbors af (v), see Figure 3.

Casel If we eliminatev beforew, namely, if we remove and turning its neighbors into a
clique@,, and then remove and turning its neighbors into a cliqdg,, then we get
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’Qv’ =Ny + Ny + 1,

’Qw’ = Ny + Ny + Ny

mazxy = maz(|Qy|, |Qul|), maz, = |Qyl, if n, > 0, otherwisemaz; = |Q,|.

Case 2 If we eliminatew beforewv, namely, if we removev and turning its neighbors into a
clique@®,,, and then remove and turning its neighbors int@,,, then we get

’Qw’ = Ny + Ny + 1,

’Qv’ = Ny + Ny + Ny

mazy = maz(|Qul, |Qu]), mazs = |Q,|, if n, > 0, otherwisemaxs = |Q.,|.

Hence, ifn, andn, > 0, thenmaz; = maxs, i.€., we obtain the same treewidth or up-
per bound on treewidth whether we eliminatbeforew or w beforewv. O

Corollary 1. Consider the same parameters we used in Theorem 2 anddat w are two
adjacent vertices in grapli;. Suppose that; and S, are two elimination orderings for the
vertices of(z, such that the order of the vertices in both eliminations are the same except for one
pair (v, w) such that the the positions ofandw in S; are andi + 1 respectively, and vice
versa inS,. Moreovern, = 0 andn,, > 0, then the upper bound on the treewidth we obtain from
eliminating the vertices afr due to their orders inS; is less than or equal to the upper bound
obtained from eliminating the vertices of the graph dué&'to

Pruning Rule 5: Simplicial and strongly almost simplicial vertices Given a lower boungs

for the treewidth (of the original graph), a vertex is strongly almost simplicial if it is almost
simplicial and its degree is at maost It is known (see [8]) that for each simplicial or strongly
almost simplicial vertex, there is always a linear ordering of minimum width that starts with

v. Thus, at each point in the search tree, we check if there is a simplicial or strongly almost
simplicial vertexv. If so, we have only one branch, selectin@s the vertex to be eliminated,
and we prune all sibling branches selecting a vegteax

Pruning Rule 5 (PR5)
let v be the current vertex we have to eliminate from a gréph
if v is simplicial orv is strongly almost simplicial
if degree(v) > ub
omit all subtrees rooted at the parentdifom the search tree,
else omitall subtrees rooted at the siblingofrom the search tree;
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Lemma 6. Let v be a simplicial vertex in a graply = (V, E). Then the treewidth of/ is at
least the degree af, degree(v).

Lemma 7. Let v be a strongly almost simplicial vertex in a gragh = (V, E). Then the
treewidth ofG is at least the degree of degree(v).

3.3 The edge addition rule

Definition 6. The improved grapl’ = (V, E’) of a graphG = (V, E) is the graph obtained by
adding an edgéwv, w} to E for all pairs v, w € V such thatp andw have at least + 1 common
neighbors of degree at mosin G.

Gogate and Dechter use another rule, based on the notion of improved graph. If two vertices
v andw have at least:b + 1 common neighbors, where is an upper bound for the treewidth,
then adding the edggv, w} does not increase the treewidth (see [12]). Thus, the algorithm of
[17] has at nodes a step that looks for such pairs of nonadjacent vertices with many common
neighbors, and if found, adds the edge. The hope is that this leads to larger degree vertices that
may be pruned by Rule 3.

Theorem 3. (See Gogate and Dechter [17].)

LetG = (V, E) be a graph. Ifub is an upper bound on the treewidth Gfand there exists two
verticesv; andwv, in G such that N (v1) N N(v2)| > ub+ 1, then there must be an edge between
vy andws in all possible perfect elimination orderings Gfthat have treewidth less than or equal
to ub.

However, a close analysis of the step shows that it will not help to prune the search tree, and
hence only unnecessary spends time: Suppa@s®lw have at least.b + 1 common neighbors,
but are not adjacent. As long as no common neighborarfdw has been eliminated, the degrees
of v andw are too large to have these vertices selected; after a common neighbor is eliminated,
v andw are anyhow adjacent. Thus, we save time, and do not use this edge addition rule.

3.4 Balancing the use of pruning rules

Using a pruning rule can have a positive or a negative effect on the running time: the time saved
by the reduction of the number of considered nodes in the search tree should be less than the time
used for testing the validity of the rules. Also, the gain obtained by using some pruning rule may
depend on what other rules are also used. Pruning rules 2 and 3 should always be used. For the
other rules, we have tested their effect on the running time when used separately and when used
in combination with other pruning rules on a large number of graphs.

3.5 The Algorithm

In Figure 4, we give one version of the BB-tw algorithm. In the first step of the algorithm, we
check if the best upper and lower bounds for the treewidth of the given graph, obtained form
the heuristics, are equal. If so, we return this value as the treewidth of the graph. Otherwise, we
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initialize the best upper bound found so far to the treewidth and the perfect elimination ordering
for the best upper bound to the elimination ordering for the treewidth. Next, we look for the
linear ordering with a better upper bound in the search tree. We prune any ordering from the
search tree, which does not yield a better upper bound than that we have reported yet.

We have developed several different versions of the algorithm depending on which pruning
rules we incorporate and how we incorporate them in the algorithm. This allows us to see which
of the different setups is most effective.

Note: We declarégr’ and /b in the algorithm as global parameters. The initial valuezof
equals the given grapi and the initial value of thé is (b,,. The values of the parameters of the
first call for the algorithm are BB-tMpeos, , [ ], ubr, 0), whereuby, andib,, are the best upper and
lower bounds obtained from the upper bound and lower bound heuristics for the the treewidth of
G, andpeo,, is the perfect elimination ordering corresponds to the best upper.

Algorithm BB-tw (S, o, ub, i)
1 if (n—14) < maz)/*PR2*

2 setub — mazx; mar — max’; o — o’ G — G;
3 if (ub = 1b) { returnfub); exit(); } /* PR1*/
4 else
5 foreachv in G’ do
6 if (degree(v) < ub) I* PR3 *
7 if (not((@ orderingO have been tested before the current
8 elimination orderingr such thatO[k] = o[k], k=1, - i — 2&
9 oli—1]=w&Oli — 1] = v & Ofi] = w) & (({v,w} & E(G"))
10 or({v,w} € E(G") & |[N(v)| = 0or |[N(w) = 0)) /* PR4*/
11 if (degeneracy(G') < ub)
12 setG” «— G’; eliminate v from G’;
13 setS’ — S; removev from S;
14 seto’ «— o; add v to positions in the orderings;
15 if (degree(v) > max)
16 setmaz’ «— max; mazx — degree(v);
17 BB-tw (S, o, ub,i + 1);
18 G — G"; max «— max’; S — S'; 0 «— o,
19 if(max > ub) return;
20 endif
end BB-tw;

Fig. 4. A general scheme for the BB-tw Algorithm.

Theorem 4. If the BB-tw algorithm terminates normally, then the upper bound obtained from
this algorithm equals the exact treewidth of the graph.
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Incorporating the Simplicial and Strongly Almost Simplicial Pruning rule in the BB-tw
algorithm

We have tested two methods for incorporating the Simplicial and Strongly Almost Simplicial
pruning rule in the branch and bound algorithm. In the first method, we check at each visited
nodew in the search tree, whether or notis simplicial or strongly almost simplicial in the
temporary grapltz’. In the case that is simplicial or strongly almost simplicial, we test if the
degree ob is less than the best upper bound reported up to néwf it satisfies this condition

too, then we prune the subtrees rooted at the siblings of this node from the search tree, eliminate
the vertex from the grapti’ and set the value of the parametetix to the maximum value of

its current value and the degree of the eliminated vertex. Howeveisisimplicial or strongly

almost simplicial and its degree (¥ is greater than or equal to thé, then we prune the subtree
rooted at the parent offrom the search tree.

In the second method, at each visited neda the search tree, we find all simplicial and
strongly almost simplicial vertices i@’. Then, if there is no vertex amongst these whose degree
is greater than or equal to the reported upper boubdhen we eliminate all these vertices from
the graph, set the value afax to the maximum value of its current value and the maximum
degree of these vertices, and prune all the subtrees rooted at the sibling of each of these vertices,
such that ifv, - - - , v, are simplicial vertices iz’ and they are siblings of the current visited
nodew in the search tree, then we eliminate the subtrees rooted at the siblingstbén we
eliminate the subtrees rooted at the children0éxcept the subtree rooted at the nedeand
so on until the subtree rooted at,. However, if there is a vertex amongst these simplicial or
strongly almost simplicial vertices its degree is greater than or equél tben we eliminate the
subtree rooted at the parent of the nedeom the search tree.

3.6 A memory friendly data structure

In order to save memory and time, we use an elegant data structure, which is a variant of the
adjacency matrix representation of graphs. Assume the vertices are nunmbgred, n. We

have am by n integer matrix4, with for ¢ < j, A;; = 1if {i,j} € E, andA;; = 0 otherwise.

The diagonal entriesl;; are used to denote ifis already eliminatedA;; = —1 if ¢ is not
eliminated, and4;; = k if 7 is thekth eliminated vertex. The lower half of the matrix is used to
give fill-in edges: forj < i, A;; is initially 0, and becomes if the edge{i, j} is created when
eliminating vertex:. We use this matrix as a global variable, and thus have very little parameters
to pass on when doing recursive calls in the search, thus giving a considerable gain in speed.

4 Using the Branch and Bound Algorithm for Finding Better Upper and
Lower Bounds for the Treewidth

If the branch and bound algorithm does not terminate within reasonable time, then it still often
can be used as an upper bound or lower bound heuristic. For this, we initialize the upper bound
for the treewidth in the BB-tw algorithm with the best upper bound value obtained from heuristic
algorithms. When we terminate the algorithm (e.g., after a pre-determined amount of time), we
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report the best upper bound found by the algorithm, with its corresponding linear ordering. Thus,
the algorithm either terminates normally, and yields the exact treewidth, or gives an upper bound.

To use the algorithm as a lower bound method, we give the algorithm as upper bound value
some integetr. o can be any value, and does not need to be a real upper bound on the treewidth.
Now, the algorithm may possibly find a solution of width less tharif it terminates without
having found such a solution, we know thats a lower bound to the treewidth 6f.

We have employed a scheme where we restart the branch and bound algorithm with several
different values for the upper bound; each restart is made after the algorithm has run for some
fixed amount of time (e.g., 10 minutes or an hour).

Branch and bound flexibility The branch and bound technique has a clear advantage over other
treewidth lower and upper bounds techniques: it is often known as the "any time’ property. When
given enough time, the algorithm can find the exact bound, but using more time allows to obtain
better bounds. Lower or upper bound heuristic give one lower or upper bound value, and when
this is not the exact value, giving the heuristic more time does not help to get closer or equal to
the exact value.

5 Experimental Results

In this section, we report on computational experiments for the branch and bound algorithm BB-
tw. Our experiments are conducted on a large number of graphs and networks. We will show, in
this report, some of these results in two tables.

Table 1 shows 15 instances of sizes between 21 and 50 vertices. Table 2 shows 12 instances
of sizes between 67 and 450 vertices. The Alarm, Oesoca, Vsd and Wilson are probabilistic net-
works taken from medical applications; several versions exist of the Myciel networks. The Barley
and Mildew networks are used for agricultural purposes, the Water network models a water pu-
rification process and Oow-trad, Oow-bas, Oow-solo, and Ship-ship networks are developed for
maritime use. The other graphs are obtained from the well-known DIMACS benchmarks for
vertex coloring?

The algorithm was implemented using C++ on Windows 2000 PC with Pentium 4, 2.8 GHz
processor. The tables shown in this section include besides the basic information for the graph,
also columns for the treewidth of the graph], the initial upper bound.(), the method used for
finding the initial upper boundup — heuristic), and the running time of the algorithrtifue).

We use the character "™*” in the colummme to indicate that the algorithm did not terminate
normally, namely, the algorithm ran out of time. We defined one hour as the maximum limit time
for running the algorithm on the input graph, i.e., if the algorithm did not find the exact treewidth
within one hour, then it was ended and returned an upper bound value for the treewidth.

All the instances we have chosen to show in Tables 1 and 2 have the following property.
The best known upper bound on treewidth of each instance does not equal the best known lower
bound on the treewidth of the same instance, obtained from upper and lower bound heuristics.
In other words, we have excluded each instance from Tables 1 and 2 whose known upper bound

! http://ww.cs.uu.nl/people/hansb/treewidthlib, 2004 - 2005.
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equals to its known lower bound. The BB-tw algorithm needs less than one second to determine
the exact treewidth of any graph when the upper bound on the treewidth equals the lower bound
on the treewidth of a graph.

We observe that BB-tw algorithm was able to determine the exact treewidth for all instances
of sizes less than 50 vertices except one, namely, Ship-ship, within one hour time. Whereas, the
algorithm was able to determine the exact treewidth of only 4 graphs of the large size given in
Table 2 within one hour time.

We confirm the observation of Gogate and Dechter [17], that graphs of small treewidth (close
to 1) and large (close ta) are easy for BB-tw algorithm also.

Graphnamg V| |E| Ib ub ub-heuristic tw  time

Alarm 37 65 2 4 MFEO1 4 0
Barley 48 126 3 7 MFEO1 7 30.443
Mildew 35 80 2 4 MFEO1 4 0
myciel4 24 71 8 11 MF 10 0.2

myciel5 47 236 14 20 MFEO1 19 178.7
Oesoca+ 67 208 9 11 MFEO1 11 0.02
Oow-bas 27 54 2 4 MFEO1 4 0
Oow-solo 40 87 4 6 MFEO1 6 275.608
Oow-trad 33 72 4 6 MFEO1 6 86.772
Queens5 25 320 12 18 MFEO1 18 0.62

Queen66 36 580 15 26 MF 25 10.62
Ship-ship 50 114 4 8 MFEO1 8 *
VSD 38 62 2 4 MFEO1 4 0
Water 32 123 8 10 MF 9 0.07
Wilson 21 27 2 3 MFEO1 3 0

Table 1.

Graphname|V| |E| Ib ub ub-heuristic tw t

anna 138 986 11 12 MFEO1 12 0.911
david 87 812 11 13 MFEO1 13 56.72
dsjc1251 125 736 15 64 MFEO1 64 *
dsjc1255 125 3891 55 109 RATIO2 109 *
dsjc2501 250 3218 43 177 MFEO1 177 *
inithx.i.2 645 13980 31 35 MF 31 0.01
inithx.i.3 621 13969 31 35 MF 31 0.02
games120 120 1276 10 38 RATIO2 38 *
LE4505A 450 5714 53 304 RATIO2 304 *
myciel6 95 755 12 35 MFEO1 35 *

*

*

myciel7 191 2360 31 66 MFEO1 66
schooll 385 19095 80 209 RATIO2 209

Table 2.
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Conclusions

We can summarize the main results from implementing the BB-tw algorithm as follows:

1.

The branch and bound algorithm is efficient for finding the treewidth, namely, it gives the
treewidth of a graph in reasonable time, if the given graph has one or more of the following
properties:

e The graph consists of at most 20 vertices.

e The graph is triangulated or almost triangulated, namely, includes many cliques.

e The differences between the degrees of the vertices of the graph are relatively large. In

other words, the distribution of the degrees of the vertices is irregular.
e The treewidth of the graph is small (less than 7).
e The graph has a treewidth which is close to the graph cardinality.

. The branch and bound algorithm is not efficient for finding the treewidth, if the given graph

has one or more of the following specifications:
e The graph consists of a large number of vertices and a large number of edges.
e If the distribution of the degrees of the vertices of the graph is regular, namely, the degrees
of the vertices of the graph are close to each other.
It is difficult to predict the running time of the algorithm when the given graph has a large
number of vertices and edges.

. The ordering of the pruning rules in the BB-tw algorithm has a significant effect on the

running time of the algorithm. Two different ordering of the pruning rules in the algorithm
may guide, in many instances, to two different running times of the algorithm for the same
instance.

The efficiency of the algorithm depends critically on the effectiveness of the branching and
bounding rules used; bad choices could lead to repeated branching, without any pruning, until
the temporary graph becomes very small. In that case, the method would be reduced to an
exhaustive enumeration of the domain, which is often impractically large.

By using the branch and bound algorithm, we can evaluate the efficiency of any upper or
lower bound heuristic, i.e., how much these bounds are close to the exact treewidth of the
graph. For example the upper bounds obtained by using MFEOL1 [6] heuristic for many tested
graphs equal the exact treewidth obtained by using branch and bound algorithm.

. The branch and bound algorithm BB-tw can be improved in two directions. The first one

has to do with the data type we use for representing the graph in the memory. In the current
version of the algorithm, we have defined all the values of the adjacency matrix as integers,
whereas we believe that the values of the upper part can be defined as bits. The second direc-
tion has to do with incorporating more effective pruning and reduction rules in the algorithm.

A third approach is to look for a large clique in the input graph, and using the fact that there

Is an elimination ordering with optimal width that ends with the vertices on the clique.

A generalization of the algorithm can be used to compute the weighted treewidth of weighted
graphs. This will be reported elsewhere, with other results on weighted treewidth.

Acknowledgments. We would like to thank Gerard Tel for useful comments on earlier versions
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