View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Utrecht University Repository

Pre-Processing Rules for Triangulation of
Probabilistic Networks

Hans L. Bodlaender

Arie M. C. A. Koster
Frank van den Eijkhof

institute of information and computing sciences,
utrecht university

technical report UU-CS-2003-001

WWW.cS.uu.nl


https://core.ac.uk/display/39718801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pre-Processing Rules for Triangulation of Probabilistic
Networks

Hans L. Bodlaendér Arie M.C.A. Kostef  Frank van den Eijkhdf

Abstract

The currently most efficient algorithm for inference with a probabilistic network builds
upon a triangulation of a network’s graph. In this paper, we show that pre-processing can
help in finding good triangulations for probabilistic networks, that is, triangulations with a
minimal maximum clique size. We provide a set of rules for stepwise reducing a graph,
without losing optimality. This reduction allows us to solve the triangulation problem on a
smaller graph. From the smaller graph’s triangulation, a triangulation of the original graph
is obtained by reversing the reduction steps. Our experimental results show that the graphs
of some well-known real-life probabilistic networks can be triangulated optimally just by
preprocessing; for other networks, huge reductions in their graph’s size are obtained.

1 Introduction

The currently most efficient algorithm for inference with a probabilistic network iguhetion-

tree propagatioralgorithm that builds upon tiangulationof a network’s moralised graph [10,

8]. The running time of this algorithm depends on the specific triangulation used. In general,
it is hard to find a triangulation for which this running time is minimal. As there is a strong
relationship between the running time of the algorithm and the maximum of the triangulation’s
clique sizes, for real-life networks triangulations are sought for which this maximum is minimal.
The minimum of the maximum clique size over all triangulations of a graph is a well-studied

*The first author was partially supported by EC contract IST-1999-14186: Project ALCOM-FT (Algorithms and
Complexity — Future Technologies). The work of the third author was done while he was working at the Institute of
Information and Computing Sciences, Utrecht University, with partial support by the Netherlands Computer Science
Research Foundation with financial support from the Netherlands Organisation for Scientific Research. This work
was partially carried out in the projeTteewidth and Combinatorial Optimizatiamith financial support from the
Netherlands Organisation for Scientific Research.

tInstitute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The
Netherlandshansb@cs.uu.nl

tKonrad-Zuse-Zentrumuf” Informationstechnik Berlin, Takustrasse 7, D-14195 Berlin-Dahlem, Germany.
koster@zib.de

$Department of Methodology and Statistics, Faculty of Social Sciences, Utrecht University, P.O. Box 80.0140,
3508 TC Utrecht, the Netherlandsvandeneijkhof@fss.uu.nl



notion, both by researchers in the field of probabilistic networks and by researchers in graph
theory and graph algorithms. In the latter field of research, the notidreedvidthis used to
denote this minimum minus one. Unfortunately, computing the treewidth of a given graph is an
NP-complete problem [1].

When solving hard combinatorial problenpse-processings often profitable. The basic idea
is to reduce the size of a problem under study, using relatively little computation time and without
losing optimality. The smaller, and presumably easier, problem is subsequently solved. In this
paper, we discuss pre-processing for triangulation of probabilistic networks. We provide a set
of rules for stepwise reducing the problem of finding a triangulation for a network’s moralised
graph with minimal maximum clique size to the same problem on a smaller graph. Various
algorithms can then be used to solve the smaller problem. Given a triangulation of the smaller
graph, a triangulation of the original graph is obtained by reversing the reduction steps. Our
reduction rules are guaranteed not to destroy optimality with respect to maximum clique size.
Experiments with pre-processing revealed that our rules can effectively reduce the problem size
for various real-life probabilistic networks. In fact, the graphs of some well-known networks are
triangulated optimally just by pre-processing.

In this paper, we do not address the second phase in the pre-processing approach outlined
above, that is, we do not address actually constructing triangulations with a minimal or close to
minimal maximum clique size. Recent research results indicate, however, that for small graphs
optimal triangulations can be feasibly computed. Building upon a variant of an algorithm by
Arnborg, Corneil, and Proskurowski [1], Shoikhet and Geiger performed various experiments on
randomly generated graphs [14]. Their results indicate that this algorithm allows for computing
optimal triangulations of graphs with up to 100 vertices.

The paper is organised as follows. In Section 2, we review some basic definitions. In Sec-
tion 3, we present our pre-processing rules. The computational model in which these rules are
employed, is discussed in Section 4. In Section 4, we report on our experiments with well-known
real-life probabilistic networks. The paper ends with some conclusions and directions for further
research in Section 6.

2 Definitions

The currently most efficient algorithm for probabilistic inference operates on a junction tree that
is derived from a triangulation of the moralisation of the digraph of a probabilistic network. We
review the basic definitions involved.

Let D = (V, A) be a directed acyclic graph. Theoralisationof D is the undirected graph
M (D) obtained fromD by adding edges between every pair of non-adjacent vertices that have
a common successor (verticesand w have a common successor if there is a vertexith
(v,z) € Aand(w,z) € A), and then dropping the directions of all edges.

Let G = (V, E) be an undirected graph. A set of vertidds C 1V is called acliquein
G if there is an edge between every pair of disjoint vertices fidm the cardinality ofiV/
is the clique’ssize For a set of vertice$’ C V, the subgraph inducedy W is the graph
GW] = (W, (W x W) nN E), for a single vertex, we writeG — v to denote&[V — {v}]. The



graphd is triangulatedif it does not contain an induced subgraph that is a simple cycle of length
at least four. Atriangulationof G is a triangulated grapH (G) that containg? as a subgraph.
Thetreewidth of the triangulatiod (G) of G is the maximum clique size iff (G) minus 1. The
treewidthof GG, denotedr(G), is the minimum treewidth over all triangulations@f

A graph H is aminor of a graphG if H can be obtained from¥ by zero or more vertex
deletions, edge deletions, and edge contractions (edge contraction is the operation that replaces
two adjacent vertices andw by a single vertex that is connected to all neighbours afdw).

It is well known (see for example [4]), that the treewidth of a mino6Gak never larger than the
treewidth ofG itself.

A linear orderingof an undirected graply = (V, E) is a bijectionV « {1,...,|V]|}.

Forv € V and a linear ordering of G — v, we denote by(v; f) the linear orderingf’ of

G that is obtained by adding at the beginning off, that is, f'(v) = 1 and, for allw # v,

f'(w) = f(w) + 1. For alinear ordeyf and vertices, w, we use for(v; (w; f)) the shorthand
notation(v; w; f). A linear orderingf is aperfect elimination schenfer G if, for eachv € V,

its higher ordered neighbours form a clique, that is, if every pair of distinct vertices in the set
{weV|{v,w} e Eandf(v) < f(w)} is adjacent. It is well known (see for example [6]), that

a graph is triangulated if and only if it allows a perfect elimination scheme.

For a graphG = (V, E) and a linear ordering of GG, there are one or more triangulations of
G that havef for its perfect elimination scheme. A trivial example of such a triangulation is the
complete graph with vertex sét. Of these triangulations @f that havef as perfect elimination
scheme, there is a unique one that is minimal in the sense that it does not contain another such
triangulation as proper subgraph. This triangulation, which we terrilkine graph givenf, can
be constructed by, far= 1, ..., |V], turning the set of higher numbered neighbourg of(i)
into a clique. The maximum clique size minus 1 of this fill-in is called tieewidth off. The
treewidth of a linear ordering of a triangulated graph equals the maximum number of higher
numbered neighbours of a vertex [6].

To conclude, gunction treeof an undirected grapty = (V, E) is a treel’ = (I, F'), where
every node; € [ has associated a vertex d9ét such that the following two properties hold:
the set{V; | ¢ € I} equals the set of maximal cliques % and, for each vertex, the set
T, = {i | v € V;} constitutes a connected subtre€loflt is well known (see for example [6]),
that a graph is triangulated if and only if it has a junction tree.

3 Safe reduction rules

3.1 Framework

In this paper, we consider reduction rules that work on a pair, consisting of a graph, and an integer
variable, calledow. This variable will be used as a lower bound for the treewidth of the original
undirected graph. Formally, our reduction rules are binary relations between two pairs, each
consisting of an undirected graph and an integer. We use the not&ioliw) —r (G', low').

We call a rule— ; safe if for all graphsG, G', integerdow, low’, we have

(G, low) =g (G, low") = max(7(G), low) = max(7(G"), low)

3



A set of rulesR is safe, if each ruleszc R is safe. The following straightforward lemma
shows why we want to use safe rules.

Lemma 1 LetR be a safe set of reduction rules. Suppéase < 7(G), and supposéG’, low')
can be obtained froniG, low) by zero or more successive applications of ruleskin Then
7(G) = max(7(G"), low').

Proof. As all rules that are applied are safe, we have that(7(G), low) = max(7(G’), low).
(This can be shown with induction to the number of reduction rules that are applied.) Using
low < 7(G), the result follows. O

The algorithmic technique used in this paper for pre-processing graphs for triangulation
builds upon a set ofeduction rules These rules allow for stepwise reducing a graph to an-
other graph with fewer vertices. The steps applied during the reduction can be reversed, thereby
enabling us to compute a triangulation of the original graph from a triangulation of the smaller
graph.

In this section, we discuss the various rules; a discussion of the computational method in
which these rules are employed, is deferred to Section 4.

During a graph’s reduction, we maintain a stack of eliminated vertices. We maintain the
(reduced) graph, and the integer varialol. as discussed aboview gives a lower bound for
the treewidth of the original graph at any step of the algorithm.

Application of a reduction rule serves to modify the current grépto G’ and to possibly
updatelow to low. By applying safe rules, we have as an invariant that the treewidth of the
original graph equals the maximum of the treewidth of the reduced graph and thdowlua
the sequel, we assume that the original moralised gfaplas at least one edge and thaw is
initialised at a number, at least 1 and at mog¥). (For instance, one can start with a heuristic
that computes a lower bound fofG), and setdow to the value computed by the heuristic. As
G has at least one edge(G) > 1.)

3.2 A collection of safe reduction rules

In this subsection, we give several safe reduction rules. Our first reduction rule applies to sim-
plicial vertices. A vertex is simplicialin an undirected grap¥ if the neighbours ob form a

clique inG. The following proposition shows that whenis a simplicial vertex in a grapty,
computing the treewidth af is equivalent to computing the treewidth@f— v.

Proposition 2 Let G be an undirected graph and letbe a simplicial vertex irG with degree
d > 0. Then,

e 7(G) = max(d, 7(G — v));

e there is a linear orderindv; f) of G of minimum treewidth, wherg is a linear ordering
of G — v of treewidth at moshax(d, 7(G — v)).



Proof. SinceG contains a clique of sizé + 1, we have that (G) > d. We further observe that

7(G) > 7(G —v), becaus& — v is a minor ofG. We therefore have tha{G) > max(d, 7(G —

v)). Now, let f be a linear ordering off — v of treewidthk < max(d, 7(G — v)). Let H be the

fill-in of G —v given f. Adding vertexv and its (formerly) incident edges #é yields a graphH’

that is still triangulated: as every pair of neighbours @ adjacenty cannot belong to a simple
(chordless) cycle of length at least four. The maximum clique sizH 'dherefore equals the
maximum ofd + 1 andk + 1. Hence,7(G) < max(d, 7(G — v)), from which we conclude the

first property stated in the proposition. To prove the second property, we observe that the linear
ordering(v; f) is a perfect elimination scheme f&F, as removal of upon computing the fill-in

of H' does not create any additional edges. 0

Our first reduction rule, illustrated in Figure 1, now is:

Reduction Rule 1: Simplicial vertex rule
Let v be a simplicial vertex of degreg> 0.
Removev.

Setlow to max(low, d).

The second property stated in Proposition 2 provides for the rule’s reversal when computing
a triangulation of the original graph from a triangulation of the reduced one. The first property
can be used to show that the rule is safe.

Lemma 3 Thesimplicial vertex rulds safe.

Proof. Suppose a reductioft, low) —r (G — v,low') is done by the simplicial vertex rule,
with v a simplicial vertex of degred. Now max(7(G),low) = max(d,7(G — v),low) =
max(7(G — v), low"). O

Figure 1. Thesimplicial vertex rule

Because the digrapP of a probabilistic network is moralised before it is triangulated, it
is likely to give rise to many simplicial vertices. We consider a vertexith outdegree zero
in D. Since all neighbours of have an arc pointing into, moralisation will connect every
two neighbours that are not yet adjacent, thereby effectively turmimgo a simplicial vertex.

5



The simplicial vertex rulewill thus remove at least all vertices that have outdegree zero in the
network’s original digraph. As every directed acyclic graph has at least one vertex of outdegree
zero, at least one reduction will be performed. As the reduced graph need not be the moralisation
of a directed acyclic graph, it is possible that no further reductions can be applied.

The digraphD of a probabilistic network may also include vertices with indegree zero and
outdegree one. These vertices will always be simplicial in the moralisatiéh ¥¥e consider a
vertexv with indegree zero and a single arc pointing into a verteXn the moralisation oD,

w and its (former) predecessors constitute a clique. As all neighbourbebng to this clique,
v is simplicial.

A special case of theimplicial vertex rulenow applies to vertices of degree 1; it is termed

thetwig rule, after [3].

Reduction Rule 1a: Twig rule
Let v be a vertex of degree 1.
Removev.

Thetwig ruleis based upon the observation that vertices of degree one are always simplicial.
Another special case is tietrule that serves to remove vertices of degree zero. As we assumed
that we started withow > 1, there is no need to upddtew in the twig or islet rule.

Reduction Rule 1b: Islet rule
Let v be a vertex of degree 0.
Removev.

Our second reduction rule applies to almost simplicial vertices. A vertexalmost simpli-
cial in an undirected grapt¥ if there is a neighbouw of v such that all other neighbours of
form a clique inG. Figure 2 illustrates the basic idea of an almost simplicial vertex. Note that
we allow other neighbours afto be adjacent taw. Simplicial vertices therefore are also almost
simplicial.

—— =edge
--.. = edge or non-edge

Figure 2. An almost simplicial vertex.

Proposition 4 Let G’ be an undirected graph and letbe an almost simplicial vertex i with
degreed > 0. LetG’ be the graph that is obtained fro64 by turning the neighbours afinto a
clique and then removing. Then,



e 7(G") < 7(G) and7(G) < max(d, 7(G"));

e thelinear orderingv; f) of G, with f alinear ordering ofG’ of treewidth at moshax(d, 7(G")),
has treewidth at moshax(d, 7(G")).

Proof. Letw be a neighbour of such that the other neighboursoform a clique. As we
can obtainG’ from G by contracting the edgév, w}, G’ is a minor of G. We therefore have
that7(G') < 7(G). Now, let f be a linear ordering of’ of treewidtht < max(d, 7(G")). Let
H be the fill-in of G’ given f. If we addv and its (formerly) adjacent edges b, thenv is
simplicial in the resulting grapl/’. Using Proposition 2, we find tha{ H') = max(k, d). The
two properties stated in the proposition follow. 0

Our second reduction rule, illustrated in Figure 3, now is:

Reduction Rule 2: Almost simplicial vertex rule

Let v be an almost simplicial vertex of degrée> 0.

If low > d, then
add an edge between every pair of non-adjacent neighbours of
removeu.

Lemma 5 Thealmost simplicial vertex rulés safe.

Proof. Suppos€G, low) —x (G',low’) by thealmost simplicial vertex ruleThen,(G")
(@), 7(G) < max(d,7(G")), andd < low = low. We conclude thamax(7(G),low)
max(7(G"), low').

O I IA

Figure 3. Thealmost simplicial vertex rule

Examples can be constructed, unfortunately, that show that the rule is not skde fard.
Let G be the graph in the left hand side of Figure 4, and suppose welhave- 2. G has
treewidth three (as it contains a clique with four vertices as a minor), while if we would apply the
almost simplicial vertex ruléo it, we would obtain the graph in the right hand side of Figure 4,
whose treewidth is two. It is also possible to construct more complicated similar examples to
which also no other reductions can be applied.

7



Figure 4: Thealmost simplicial vertex rules not safe folow < d.

If in the digraphD of a probabilistic network there is an afe, w), with the outdegree of
exactly one, and the indegreewokxactly one, then will be almost simplicial in the moralisation
M (D): note that, as has one child inD which has only as parent, no moralisation edges will
be added withy as endpoint. Thus, the neighbourssah M (D) are its parents il andw; due
to the moralisation, the parentsoform a clique inM (D). See Figure 5.

Figure 5: A case where an almost simplicial vertex is created when moralizing

A special case of thalmost simplicial vertex rulepplies to vertices of degree two. A vertex
of degree two is, by definition, almost simplicial and we can therefore replace it by an edge
between its neighbours, provided that the original graph has treewidth at least two. The resulting
rule, illustrated in Figure 6, is called tiseries rule after [3].

Reduction Rule 2a: Series rule
Let v be a vertex of degree 2.
If low > 2, then

add an edge between the neighbours,aof they are not already adjacent;
removeu.

Another special case is tleangle rule shown in Figure 7.

Reduction Rule 2b: Triangle rule
Let v be a vertex of degree 3 such that at least two of its neighbours are adjacent.

8



>
Figure 6: Theseries rule

If low > 3, then
add an edge between every pair of non-adjacent neighbours of
removeu.

Figure 7: Theriangle rule

As theseriesandtriangle rulesare special cases of thémost simplicial vertex ruléboth are
safe.

Using the fact that a non-empty graph of treewidth at midsds a vertex with degree at most
k, the following well known observations easily follow. If thevig andislet rulescannot be
applied to a non-empty undirected graph, then all its vertices have degree at least two, and hence
the graph has treewidth at least two. We can theroseto max(low, 2). Note that from this
observation we have that tieet andtwig rulessuffice for reducing any graph of treewidth one
to the empty graph. Thislet, twig andseries rulessuffice for reducing any graph of treewidth
two to the empty graph. (A non-empty graph of treewidth at most two has a vertex of degree at
most two, to which one of these rules can be applied; possibly séttivmtp max(low, 2) when
no islet or twig rule can be applied.) So, ibw > 2 for a given non-empty graph and tiset,
twig andseries rulesannot be applied, then we know that the graph has treewidth at least three.
We can then sdbw to max(low, 3).

As for treewidths one and two, there is a set of rules that suffice for reducing any graph
of treewidth three to the empty graph. This set of rules was first identified by Arnborg and
Proskurowski [3]. Theslet, twig, seriesandtriangle rulesare among the set of six. The two other
rules are of interest to us, not just because they provide for computing optimal triangulations for
graphs of treewidth three, but also because they give new reduction rules for the purpose of
pre-processing.

Proposition 6 Let G be an undirected graph and letw be two vertices of degree three having

9



the same set of neighbours. L&t be the graph that is obtained frof by turning the set of
neighbours ot into a clique and then removingandw. Then,

e 7(G") < 7(G) and7(G) < max(3,7(G"));

e thelinear orderingv; w; f), with f a linear ordering ofG’ of treewidth at moshax(3, 7(G")),
has treewidth at moshax(3, 7(G")).

Proof. Suppose that, y andz are the neighbours ef andw. By contracting the edges, x}
and{w,y} in G, we obtainG’. So,G" is a minor ofG and we find that (G’") < 7(G). Now, let
f be alinear ordering of' and letH be the fill-in of G’ given f. If we subsequently addand
w with their (formerly) adjacent edges #, then both are simplicial in the resulting graph. The
treewidth of the orderingv; w; f) of G, therefore, equals the maximum of 3 and the treewidth
of f. The properties stated in the proposition now follow. O

From Proposition 6, we obtain safeness ofedy rule which is illustrated in Figure 8.

Figure 8: Thebuddy rule

Reduction Rule 3: Buddy rule

Let v, w be vertices of degree 3 having the same

set of neighbours.

If low > 3, then
add an edge between every pair of non-adjacent neighbours of
removev;
removew.

Lemma 7 Thebuddy ruleis safe.
Proof. Supposé&~’ is obtained fromG by applying the buddy rule, with verticesandw re-

moved and their neighbours turned into a clique. We haxe(7(G), low) < max(3, 7(G"), low) =
max(7(G), low) < max(7(G), low). O

10



Thecube rule which is presented schematically in Figure 10, is slightly more complicated.
The subgraph shown on the left is replaced by the subgraph on the right; in additiés set to
max(low, 3). Verticesv, w andz in the subgraph may be adjacent to other vertices in the rest of
the graph; the four non-labeled vertices occurring in the rule cannot have such ‘outside’ edges.
There is a slightly more general form of the cube rule, which we calettiended cube ruje
given in Figure 9, whose correctness we prove first.

Proposition 8 LetG = (V, E) be an undirected graphy, b, ¢, d, v, w, x € V. Suppose, b, ¢,
have degree three i@, with edges{a, d}, {a,v}, {a,w}, {b,d}, {b,v}, {b,z}, {c,d}, {c,w},
{¢,z} € E. LetG" be obtained by making, w,  andd mutually adjacent, and removing b,
andc fromdG. Then,

e 7(G) = max(3,7(G"));

e there is a linear orderinda; b; ¢; f) of G of minimum treewidth, whergis a linear order-
ing of G’ of treewidth at mostax(3, 7(G")).

Proof. As the subgraph of/, induced by, b, ¢, d, v, w, andx has treewidth three;(G) > 3.

As G’ is a minor ofG (contract edge$a, v}, {b, z} and{c,w}), 7(G) > 7(G"). If fis alinear
ordering ofG’ with fill-in H, then note that the additional edges in the fill-in of the linear order
(a; b; c; f) all belong toH': the additional fill-in edges, created byb, andc all belong toG' and
hence also td7. As the numbers of higher numbered neighbours, ®f andc in the new fill-in

all equal three, the treewidth ¢f; b; ¢; f) equals the maximum of 3 and the treewidthfofThe
lemma now follows. O

Figure 9: Theextended cube rule

Reduction Rule 4: Extended cube rule
Leta, b, ¢, d, v, w, x be as in Figure 9. llow > 3, then
add an edge between every pair of non-adjacent verticgs in, x, d};
removec;
removeb;
removea.

11



Lemma 9 The extended cube rule is safe.

Proof. If G’ is obtained fromG by applying the extended cube rule, then, by Proposition 8,
max(7(G), low) = max(7(G), 3, low) = max(7(G"), low). 0

The ‘standardtube ruleis a variant of theextended cube ruleThe cube ruleis one of the
rules in a set that is sufficient to reduce graphs of treewidth three to the empty graph, and it has
an easier and faster implementation thanektended cube rule

Reduction Rule 4: Cube rule
Leta, b, ¢, d, v, w, z be as in Figure 10. liow > 3, then
add an edge between every pair of non-adjacent verticgs in,  };
removed;
remove;
removeb;
removea.

Figure 10: Thecube rule

Lemma 10 The cube rule is safe.

Proof. The cube rule can be obtained by first applyingekiended cube ruj@and then applying
the simplicial vertex rule note that vertex/ becomes simplicial after the extended cube rule is
applied to the left hand side graph of Figure 10. O

The difference betweetube ruleandextended cube ruie that in thecube rule d has degree
three and is removed, while in tegtended cube rujéhe degree off may be larger than three.

The subgraph in the left hand side of thge ruleis not very likely to occur in the moralisa-
tion of a probabilistic network’s digraph, although it is not impossible. The main reason of our
interest in the rule is that it is one of the six rules that suffice for reducing graphs of treewidth
three to the empty graph. So,ldw > 3 for a given non-empty graph and tisdet, twig, se-
ries, triangle, buddyandcube rulescannot be applied, then we know by a result of Arnborg and
Proskurowski [3], that the graph has treewidth at least four; hence in thisloasean be set to

12



max(low, 4). Matowsek and Thomas showed that special cases of the rules with additional de-
gree restrictions on some of the vertices can be used and still are sufficient for recognizing graphs
of treewidth three [11]; this can lead to a linear time algorithm for recognizing and triangulating
graphs of treewidth three.

To conclude this section, Figure 11 depicts a fragment of the well-kmawmrM network,
along with its moralisation. The figure further shows how successive application of our reduction
rules serves to reduce the moralisation to a single vertex. In fact, the moralised graph of the entire
ALARM network is thus reduced to the empty graph. Our reduction rules provide for constructing
an optimal triangulation of this network.

T

Figure 11: A fragment of theLARM network and the reduction of its moralisation.

4 Computational method

The various reduction rules described in the previous section are employed witbmputa-
tional methodthat implements pre-processing of probabilistic networks for triangulation. We
argued that application of our rules may reduce a network’s moralised graph to the empty graph.
The computational method complements this reduction by its reversal, thereby providing for the
construction of a triangulation of minimal treewidth. For networks that cannot be triangulated
optimally just by pre-processing, our reduction rules are combined with an algorithm that serves
to find an optimal or close to optimal triangulation of a network’s reduced moralised graph.

The computational method takes for its input the directed acyclic giapha probabilistic
network; it outputs a triangulation of the moralisation/of The method uses a stagkio hold
the eliminated vertices in the order in which they were removed during the graph’s reduction.
Moreover, the valuédow maintains a lower bound for the treewidth of the original moralised
graph; itis initialised at 1, or possibly any larger value that gives a lower bound for the treewidth
of M (D). E.g.,low can be initialized at the maximum indegree of a nod®jras for every node
v, M (D) will contain a clique contaim and its parents i, and the treewidth of a graph is at
least its maximum clique size minus one. The method now amounts to the following sequence
of steps:

13



1. The moralisatiod/ (D) of D is computed and- is initialised atM (D).

N

. If a reduction rule can be applied @, it is executed, modifying= accordingly. Each
vertex thus removed is pushed onto the stécK prescribed by the rule, the lower bound
lowis updated. In case of a reduction by thie rule the vertex marked must be pushed
last ontoS. This step is repeated until the reduction rules are no longer applicable.

3. If no reduction rule can be applied; is not an empty graph, arddw < 4, thenlow is
increased by 1. The reduction is continued at step 2.

4. Let G be the graph that results after execution of the previous steps. Using an exact or
heuristic algorithm( is triangulated.

5. Let H be the triangulation that results from step 4. Fora perfect elimination scheme
is constructed.

6. Until S is empty, the top elementis popped fromS and f is replaced byv; f).

7. Letf’ be the linear ordering resulting from the previous step. The fill-if/gt7) given f
is constructed.

The steps 1 through 3 of our computational method describe the reduction of the graph of a
probabilistic network. In step 4, the graph that results after reduction is triangulated. For this
purpose, various different algorithms can be used. If the algorithm emplog&ddsthat is, if it
yields a triangulation of minimal treewidth, then our method yields an optimal triangulation for
the original moralised graph. An example of such an exact algorithm can be found in the work
of Shoikhet and Geiger [14], where an implementation is given of a variant of an algorithm of
Arnborg, Corneil, and Proskurowski [1], that appears practical for small size networks. For many
real-life networks, the combination of our reduction rules with an exact algorithm results in an
optimal triangulation in reasonable time. If after reduction a graph of considerable size remains
for which an optimal triangulation cannot be feasibly computeldearistictriangulation algo-
rithm can be used. The treewidth yielded for the original moralised graph then is not guaranteed
to be optimal. As we will argue in the next section, however, these heuristic algorithms tend to
result in better triangulations for the graphs that result from pre-processing than for the original
graphs. If, after executing the steps 1 through 3, the reduced graph is empty, we can construct a
triangulation of minimal treewidth for the moralised graph just by reversing the various reduction
steps, and further triangulation is not necessary. This situation occurs, for example, if the origi-
nal graph is already triangulated or has treewidth at most 3.AThem network gives another
example: its moralised graph has treewidth four and is reduced to the empty graph.

In step 2 of our computational method, each of the reduction rules is investigated to establish
whether or not it can be applied to the current (reduced) gfaphs soon as an applicable rule is
found, it is executed. When analysing the computational complexity of our method, it is readily
seen that investigating applicability of the various reduction rules is the main bottleneck, as all
other steps (except for the triangulation in step 4) take linear time [6].

14



Investigating applicability of theslet, twig andseries rulegakes a total amount of compu-
tation time that is linear in the number of vertices. To this end, we maintain for each vertex an
integer that indicates its degree; we further maintain lists of the vertices of degree zero, one, and
two. Thebuddy triangle and cube rulescan also be implemented to take overall linear time,
for example using techniques from [2], see also [11]. More straightforward implementations,
however, will also be fast enough for moderately sized networks.

For thesimplicial vertexandalmost simplicial vertex ruleefficient implementation is less
straightforward. To investigate whether or not a vertex is simplicial, we must verify that each
pair of its neighbours are adjacent. For this purpose, we have to use a data structure that allows
for quickly checking adjacency, such as a two-dimensional array. For a vertex of dégree
investigating simpliciality then take®(d?) time. In a graph with: vertices, we may have to
check for simplicial vertice®)(n) times. Each such check cosigy", d(v)?) = O(ne) time,
whered(v) is the degree of vertex ande denotes the number of edges in the graph. The total
time spent on investigating applicability of teemplicial vertex rulds thereforeD (n?e). As the
treewidth of the moralised graph of a real-life probabilistic network is typically bounded, we can
refrain from checking simpliciality for vertices of large degree, giving a running time (af’)
in practice. For thalmost simplicial vertex rulesimilar observations apply. Thextended cube
rule can easily be implemented by first listing all pairs of vertices of degree three that have two
neighbours in common, and then checking for each such pair all vertices of degree three if these
three form a case where the extended cube rule can be applied. This giVés*aicheck to see
if the extended cube rule can be applied; in practice, this simple implementation is in general fast
enough. With some additional efforts, the check can be donH;iri) time.

5 Experimental results

The computational method outlined in the previous section implements our method of pre-
processing probabilistic networks for triangulation. We conducted some experiments with the
method to study the effect of pre-processing. The results of these experiments are reported in
this section.

The experiments were conducted on twenty-four real-life probabilistic networks in the fields
of medicine, agriculture, water purification, and maritime use. The sizes of the digraphs of these
networks and of their moralisations, expressed in terms of the number of vertices and the number
of arcs and edges, respectively, are given in Table 1.

The effects of employing various different sets of reduction rules on the twenty-four networks
under study are summarised in Table 2. The various sets employed are denoted:

simplicial = {simplicial verte}

<1 = {islet, twig}

T <2 = (r <1)U {serieg

T<3 = (r <2) U {triangle, buddy, cubp

all = simplicialu (r < 3) U { almost simplicial vertex,

extended cubg
With each of these sets of rules, the moralisations of the networks’ graphs were reduced until

15



instance before after
moralisation moralisation
Vi 1AL VI |E|
ALARM 37 46 37 65
BARLEY 48 84 48 126
BOBLO 221 254 221 328
DIABETES 413 602 413 819
LINK 724 1125 724 1738
MILDEW 35 46 35 80
MUNIN 1 189 282 189 366
MUNIN 2 1003 1244 1003 1662
MUNIN 3 1044 1315 1044 1745
MUNIN4 1041 1397 1041 1843
MUNIN-KGO 1066 1278 1066 1730
OESOCA+ 67 123 67 208
OESOCA 39 55 39 67
OESOCM2 42 59 42 72
OOW-BAS 27 36 27 54
OOW-SOLO 40 58 40 87
OOW-TRAD 33 47 33 72
PATHFINDER 109 192 109 211
PIGNET2 3032 5400 3032 7264
PIGS 441 592 441 806
SHIP-SHIP 50 75 50 114
VSD 38 52 38 62
WATER 32 66 32 123
WILSON 21 23 21 27

Table 1: Moralisation of probabilistic networks

16



the rules were no longer applicable. The table reports the sizes of the resulting reduced graphs.
The computation times reported in the last column of the table are measured for the case that all
rules are applied. All computations have been carried out on a Linux-operated PC with a 1700
MHz Intel Pentium 4 processor. C++ was used as programming language.

Table 2 reveals, for example, that the set of rules 3 suffices for reducing the moralised
graphs of four of the networks to the empty graph; with the additismaplicial vertex ruleand
almost simplicial vertex ruleghe moralised graphs of four other networks are also reduced to the
empty graph. These eight networks are therefore triangulated optimally just by pre-processing.

Application of thesimplicial vertex ruleonly reduces the number of vertices by 51% on aver-
age, whereas overall the average percentage is 77%. Even for the worst performing instances still
a reduction of 30% is achieved (e.99WTRAD andWATER). With the exception oPIGNET2
the computation time is marginal. Also fe1GNET2, the time is still justifiable taking into
account that more than 2000 vertices are removed.

Table 3 shows the differences of effectiveness of the various rules. This table was built by
checking all listed rules from left to right until one is applicable after every reduction of the
graph, so, e.g., thextended cube ruls only checked when no other rule can be applied. We
see that thesimplicial vertex ruleand almost simplicial vertex ruland their special cases are
effective, but that theéuddy, cube, and extended cube raite never applied. The use of the latter
rules is that checking these can help to increase the valloevab four, thus possibly enabling
an almost simplical rule for a vertex of degree four. The effectiveness cfithglicial vertex
rule in comparison with th@almost simplicial vertex rul@liffers from network to network. In
many cases theimplicial vertex rulg(and its specialisations) is responsable for the majority of
the removals. However, for some instances (@RBETES, SHIP-SHIP) the almost simplicial
vertex rule and in particular thériangle rule, is very important.

We further studied the effect of pre-processing on the treewidths yielded by various heuristic
triangulation algorithms. Table 4 summarises the results obtained with two well known heuristics
for triangulation: the Greedy Fill-in heuristic, and the Minimum Degree Fill-In heuristic. In the
Greedy Fill-in heuristic a linear ordering of the vertices is constructed by repeatedly selecting a
vertex that causes the least fill-in in the triangulation (e.g., all simplicial vertices are ordered first).
In the Minimum Degree Fill-in heuristic, repeatedly a vertex of minimum degree is selected and
removed from the graph (e.g., for the unpreprocessed graph, vertices that are removed by the
islet, twig, andseries ruleare ordered first). We see that sometimes, but not always, the reduced
graphs give better bounds for the treewidth obtained with these heuristics. In addition, a lower
boundiow for the treewidth is obtained which allows for an estimation of the quality of the
heuristics. More precies, fanABETES we can conclude that the treewidth is four by combining
thelow with the Minimum Degree Fill-In heuristic. Therefore, a possible approach is to run the
heuristics both for the original and for the reduced graph, and take the best value. We would like
to note that, using integer linear programming techniques on the most reduced graph, we found
the exact treewidth of theATHFINDER network to be 6.

17



8T

instance original simplicial T<1 T<2 T<3 all CPU

Vi |E] VI B low Vi el Vi |E] Vi |E| VI |E] low time (s)
ALARM 37 65 11 19 4 31 59 13 28 5 10 0 0 4 0.00
BARLEY 48 126 35 92 4 48 126 39 112 31 91 26 78 4 0.00
BOBLO 221 328 71 132 2 117 224 70 131 0 0 0 0 3 0.09
DIABETES 413 819 335 665 2 413 819 332 662 212 492 116 276 4 0.67
LINK 724 1738 494 1349 3 641 1665 528 1439 472 1327 308 1158 4 1.58
MILDEW 35 80 20 40 3 34 79 32 75 12 27 0 0 4 0.00
MUNIN 1 189 366 108 241 3 161 338 104 243 66 188 66 188 4 0.08
MUNIN 2 1003 1662 449 826 2 819 1478 367 736 175 471 165 451 4 2.34
MUNIN 3 1044 1745 419 790 3 852 1553 344 717 142 429 96 313 4 2.48
MUNIN 4 1041 1843 436 920 3 863 1665 379 869 237 686 215 642 4 2.47
MUNIN-KGO 1066 1730 298 549 5 882 1546 207 470 104 298 0 0 5 2.46
OESOCA+ 67 208 30 141 9 48 189 34 162 30 150 14 75 9 0.01
OESOCA 39 67 5 7 3 24 52 12 29 0 0 0 0 3 0.00
OESOCM?2 42 72 6 10 3 25 55 13 32 0 0 0 0 3 0.00
OOW-BAS 27 54 19 37 3 27 54 20 42 8 18 0 0 4 0.00
OOW-SOLO 40 87 31 68 3 39 86 33 76 29 66 27 63 4 0.01
OOW-TRAD 33 72 27 59 3 33 72 27 63 23 54 23 54 4 0.01
PATHFINDER 109 211 14 49 5 68 170 37 112 17 63 12 43 5 0.03
PIGNET2 3032 7264 1643 4556 3 3032 7264 1552 4464 1051 3835 1002 3730 4 27.20
PIGS 441 806 163 305 2 441 806 126 265 60 164 48 137 4 0.46
SHIP-SHIP 50 114 39 92 3 50 114 41 98 30 77 24 65 4 0.02
VSD 38 62 12 21 4 23 47 12 28 6 14 0 0 4 0.00
WATER 32 123 24 101 5 30 121 29 119 26 110 22 96 5 0.00
WILSON 21 27 6 8 2 11 17 4 6 0 0 0 0 3 0.00

Table 2: Preprocessing for treewidth



6T

instance number of vertices removed by rule total
\4 |E|] IS TW SI SE TR AS BU CU EC

ALARM 37 70 1 11 21 1 3 0 0 0 0 37
BARLEY 48 139 O 1 13 3 2 3 0 0 0 22
BOBLO 221 373 1 105 80 11 24 0 0 0 0 221
DIABETES 413 1085 O 2 124 3 143 25 0 0 0 297
LINK 724 2257 10 73 147 12 10 164 0 0 0 416
MILDEW 35 99 1 2 18 1 8 5 0 0 0 35
MUNIN 1 189 431 0 40 42 7 34 0 0 0 0 123
MUNIN 2 1003 2065 O 272 300 74 182 10 0 0 0O 838
MUNIN 3 1044 2178 0 298 368 76 180 26 0 0 0 948
MUNIN 4 1041 2183 0 290 324 60 136 16 0 0 0 826
MUNIN-KGO 1066 2042 1 365 476 96 78 50 0 0 0 1066
OESOCA+ 67 247 O 19 19 1 0O 14 0 0 0 53
OESOCA 39 68 1 16 21 1 0 0 0 0 0 39
OEsSoCmM?2 42 73 1 18 22 1 0 0 0 0 0 42
OOW-BAS 27 69 1 2 13 1 8 2 0 0 0 27
OOW-SOLO 40 95 O 2 7 1 1 2 0 0 0 13
OOW-TRAD 33 77 O 1 5 2 2 0 0 0 0 10
PATHFINDER 109 213 0 47 48 0 0 2 0 0 0 97
PIGNET2 3032 8311 0 71 1341 89 481 48 0 0 0 2030
PIGS 441 948 0 57 236 34 55 11 0 0 0 393
SHIP-SHIP 50 132 O 2 11 0 11 2 0 0 0 26
VSD 38 69 1 16 15 3 3 0 0 0 0 38
WATER 32 127 O 2 6 0 0 2 0 0 0 10
WILSON 21 29 1 12 6 2 0 0 0 0 0 21

IS=lIslet, TW=Twig, SI=Simplicial, SE=Series, TR=Triangle, AS=Almost-simplicial,

BU=Buddy, CU=Cube, EC=Extended-cube

Table 3: Contribution of the various rules



instance original preprocessed Greedy Fill-In Min Degree Fill-In
V| |E| \4 |E| low before after before after
ALARM 37 65 0 0 4 4 - 4 -
BARLEY 48 126 26 78 4 9 7 7 7
BOBLO 221 328 0 0 3 4 - 3 -
DIABETES 413 819 116 276 4 10 7 4 5
LINK 724 1738 308 1158 4 21 21 19 19
MILDEW 35 80 0 0 4 5 - 4 -
MUNIN 1 189 366 66 188 4 12 12 11 11
MUNIN 2 1003 1662 165 451 4 8 8 7 7
MUNIN 3 1044 1745 96 313 4 8 7 7 7
MUNIN4 1041 1843 215 642 4 9 9 8 8
MUNIN-KGO 1066 1730 0 0 5 6 - 5 -
OESOCA+ 67 208 14 75 9 11 11 11 11
OESOCA 39 67 0 0 3 4 - 3 -
OESOCM2 42 72 0 0 3 3 - 3 -
OOW-BAS 27 54 0 0 4 5 - 4 -
OOW-SOLO 40 87 27 63 4 6 7 6 7
OOW-TRAD 33 72 23 54 4 7 6 6 6
PATHFINDER 109 211 12 43 5 7 7 7 7
PIGNET2 3032 7264 1002 3730 4 144 148 160 150
PIGS 441 806 48 137 4 12 11 10 10
SHIP-SHIP 50 114 24 65 4 9 8 8 8
VSD 38 62 0 0 4 5 - 4 -
WATER 32 123 22 96 5 12 10 11 11
WILSON 21 27 0 0 3 4 - 3 -

Table 4: Performance of heuristics without/with preprocessing

20



6 Conclusions and further research

When solving hard combinatorial problems, pre-processing is often profitable. Based upon this
general observation, we designed a computational method that provides for pre-processing of
probabilistic networks for triangulation. Our method exploits a set of rules for stepwise reducing
the problem of finding a triangulation of minimum treewidth for a network’s moralised graph

to the same problem on a smaller graph. The smaller graph is triangulated, using an exact or
heuristic algorithm, depending on the graph’s size. From the triangulation of the smaller graph,
a triangulation of the original graph is obtained by reversing the reduction steps. The reduction
rules are guaranteed not to destroy optimality with respect to maximum clique size.

Experiments with our pre-processing method revealed that the graphs of some well-known
real-life probabilistic networks can be triangulated optimally just by pre-processing. The ex-
periments further showed that heuristic triangulation algorithms tend to yield better results for
graphs that are pre-processed than for the original graphs. Moreover, the further reduced a graph,
the less computation time is spent by the triangulation algorithms. From these observations, we
conclude that pre-processing probabilistic networks for triangulation is profitable.

The preprocessing rules given in this paper can also applied succesfully for finding tree de-
compositions of networks, arising in applications from fields, different from probabilistic net-
works. For instance, in [7], experiments on determining the treewidth of networks are reported,
including a succesfull application of the reduction rules to instances arising from a frequency
assignment application.

It is possible to also apply other rules for pre-processing purposes. For example, Sanders
designed a set of rules for reducing any graph of treewidth at most four to the empty graph [13].
Although this set is comprised of a large number of complex rules and many of these rules do
not have the property that a linear ordering with minimum treewidth of the graph can be directly
obtained from a linear ordering with minimum treewidth of the reduced graph (see also [9]), it
may give rise to new reduction rules that can be employed for pre-processing.

So far, we considered the use of rules for reducing the graph of a probabilistic network.
The use of separators constitutes another approach to pre-processing that we are currently con-
sidering, building upon earlier work by Olesen and Madsen [12]. For example, if a network’s
moralised graph has a separator of size two, then the graph can be partitioned into smaller graphs
that can be triangulated separately without losing optimality.

As there is a strong relationship between the running time of the junction-tree propagation
algorithm and the treewidth of the triangulation used, most triangulation algorithms currently in
use aim at finding a triangulation of minimal treewidth. However, if the variables in a proba-
bilistic network have state spaces of diverging sizes, such a triangulation may not be optimal. A
triangulation with minimal state space over all cliques then is likely to perform better. Some of
our reduction rules are safe also with respect to minimum overall state space. Other rules, how-
ever, are safe only under additional constraints on their application. It is interesting investigate
pre-processing for finding triangulations with minimum overall state space. Recently, we have
studied a weighted variant of treewidth [5]; in this variant, vertices have a weight equal to the
number of values the corresponding variable can attain in the probabilistic network. In [5], we
generalize the rules given in this paper to the weighted variant, and show most of these rules can

21



be obtained as a special case of one general rule, call€ithteaction Reduction Rule

In our experiments, we have observed that applying rules in a different order never affected
the size of the finally resulting reduced network. We conjecture that the set of rules, given in
this paper is actuallgonfluenti.e., changing the order in which the rules are applied does not
affect the final outcome, up to isomorphism of graphs. We were unable to prove or disprove this
conjecture, so leave it as an open problem.

Acknowledgements

We thank Linda van der Gaag for many very usefull discussions, ideas, and comments on this
paper. We are gratefull to the members of the Decision Support Systems group of the Institute
of Information and Computing Sciences, Utrecht University, and in particular to Silja Renooij
for several usefull comments on this paper. We thank Kristian Kristensen, Anders L. Madsen,
Kristian G. Olesen, Claus Skaaning Jensen, and Linda van der Gaag for providing instances of
probabilistic networks.

References

[1] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a
k-tree. SIAM Journal on Algebraic and Discrete Methodsl. 8, pp. 277-284, 1987.

[2] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph
reduction.Journal of the ACMvol. 40, pp. 1134-1164, 1993.

[3] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-B&&s
Journal on Algebraic and Discrete Methqd®l. 7, pp. 305-314, 1986.

[4] H.L. Bodlaender. A partiak-arboretum of graphs with bounded treewidtfiheoretical
Computer Sciengeol. 209, pp. 1-45, 1998.

[5] F. van den Eijkhof, H.L. Bodlaender, and A.M.C.A. Koster. Safe reduction rules for
weighted treewidth. Technical Report UU-CS-2002-051, Institute of Information and Com-
puting Science, Utrecht University, the Netherlands, 2002.

[6] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graph#&cademic Press, New
York, 1980.

[7] A.M.C.A. Koster, H.L. Bodlaender, and C.P.M. van Hoesel. Treewidth: Computational
Experiments. Technical Report UU-CS-2001-049, Institute of Information and Computing
Science, Utrecht University, the Netherlands, 2001.

[8] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in causal probabilistic
networks by local computation€omputational Statistics Quarterlyol. 4, pp. 269-282,
1990.

22



[9] J. Lagergren. The nonexistence of reduction rules giving an embedding Antiea. Dis-
crete and Applied Mathematics§4:219-223, 1994.

[10] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systeri$ie Journal of the Royal Statistical
Society. Series,Bol. 50, pp. 157-224, 1988.

[11] J. Matowsek and R. Thomas. Algorithms finding tree-decompositions of grajolusnal of
Algorithms 12:1-22, 1991.

[12] K.G. Olesen and A.L. Madsen. Maximal prime subgraph decomposition of Bayesian net-
works. Technical report, Department of Computer Science, Aalborg University, Aalborg,
Denmark, 1999.

[13] D.P. Sanders. On linear recognition of tree-width at most f& M Journal on Discrete
Mathematicsvol. 9, pp. 101-117, 1996.

[14] K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangulations. In
Proceedings of the National Conference on Atrtificial Intelligence (AAAI97)185-190.
Morgan Kaufmann, 1997.

23



