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Pre-Processing Rules for Triangulation of Probabilistic
Networks�

Hans L. Bodlaendery Arie M.C.A. Kosterz Frank van den Eijkhofx

Abstract

The currently most efficient algorithm for inference with a probabilistic network builds
upon a triangulation of a network’s graph. In this paper, we show that pre-processing can
help in finding good triangulations for probabilistic networks, that is, triangulations with a
minimal maximum clique size. We provide a set of rules for stepwise reducing a graph,
without losing optimality. This reduction allows us to solve the triangulation problem on a
smaller graph. From the smaller graph’s triangulation, a triangulation of the original graph
is obtained by reversing the reduction steps. Our experimental results show that the graphs
of some well-known real-life probabilistic networks can be triangulated optimally just by
preprocessing; for other networks, huge reductions in their graph’s size are obtained.

1 Introduction

The currently most efficient algorithm for inference with a probabilistic network is thejunction-
tree propagationalgorithm that builds upon atriangulationof a network’s moralised graph [10,
8]. The running time of this algorithm depends on the specific triangulation used. In general,
it is hard to find a triangulation for which this running time is minimal. As there is a strong
relationship between the running time of the algorithm and the maximum of the triangulation’s
clique sizes, for real-life networks triangulations are sought for which this maximum is minimal.
The minimum of the maximum clique size over all triangulations of a graph is a well-studied
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notion, both by researchers in the field of probabilistic networks and by researchers in graph
theory and graph algorithms. In the latter field of research, the notion oftreewidthis used to
denote this minimum minus one. Unfortunately, computing the treewidth of a given graph is an
NP-complete problem [1].

When solving hard combinatorial problems,pre-processingis often profitable. The basic idea
is to reduce the size of a problem under study, using relatively little computation time and without
losing optimality. The smaller, and presumably easier, problem is subsequently solved. In this
paper, we discuss pre-processing for triangulation of probabilistic networks. We provide a set
of rules for stepwise reducing the problem of finding a triangulation for a network’s moralised
graph with minimal maximum clique size to the same problem on a smaller graph. Various
algorithms can then be used to solve the smaller problem. Given a triangulation of the smaller
graph, a triangulation of the original graph is obtained by reversing the reduction steps. Our
reduction rules are guaranteed not to destroy optimality with respect to maximum clique size.
Experiments with pre-processing revealed that our rules can effectively reduce the problem size
for various real-life probabilistic networks. In fact, the graphs of some well-known networks are
triangulated optimally just by pre-processing.

In this paper, we do not address the second phase in the pre-processing approach outlined
above, that is, we do not address actually constructing triangulations with a minimal or close to
minimal maximum clique size. Recent research results indicate, however, that for small graphs
optimal triangulations can be feasibly computed. Building upon a variant of an algorithm by
Arnborg, Corneil, and Proskurowski [1], Shoikhet and Geiger performed various experiments on
randomly generated graphs [14]. Their results indicate that this algorithm allows for computing
optimal triangulations of graphs with up to 100 vertices.

The paper is organised as follows. In Section 2, we review some basic definitions. In Sec-
tion 3, we present our pre-processing rules. The computational model in which these rules are
employed, is discussed in Section 4. In Section 4, we report on our experiments with well-known
real-life probabilistic networks. The paper ends with some conclusions and directions for further
research in Section 6.

2 Definitions

The currently most efficient algorithm for probabilistic inference operates on a junction tree that
is derived from a triangulation of the moralisation of the digraph of a probabilistic network. We
review the basic definitions involved.

Let D = (V;A) be a directed acyclic graph. Themoralisationof D is the undirected graph
M(D) obtained fromD by adding edges between every pair of non-adjacent vertices that have
a common successor (verticesv andw have a common successor if there is a vertexx with
(v; x) 2 A and(w; x) 2 A), and then dropping the directions of all edges.

Let G = (V;E) be an undirected graph. A set of verticesW � V is called aclique in
G if there is an edge between every pair of disjoint vertices fromW ; the cardinality ofW
is the clique’ssize. For a set of verticesW � V , the subgraph inducedby W is the graph
G[W ] = (W; (W �W ) \ E); for a single vertexv, we writeG� v to denoteG[V � fvg]. The
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graphG is triangulatedif it does not contain an induced subgraph that is a simple cycle of length
at least four. Atriangulationof G is a triangulated graphH(G) that containsG as a subgraph.
Thetreewidth of the triangulationH(G) of G is the maximum clique size inH(G) minus 1. The
treewidthof G, denoted�(G), is the minimum treewidth over all triangulations ofG.

A graphH is a minor of a graphG if H can be obtained fromG by zero or more vertex
deletions, edge deletions, and edge contractions (edge contraction is the operation that replaces
two adjacent verticesv andw by a single vertex that is connected to all neighbours ofv andw).
It is well known (see for example [4]), that the treewidth of a minor ofG is never larger than the
treewidth ofG itself.

A linear ordering of an undirected graphG = (V;E) is a bijectionV $ f1; : : : ; jV jg.
For v 2 V and a linear orderingf of G � v, we denote by(v; f) the linear orderingf 0 of
G that is obtained by addingv at the beginning off , that is,f 0(v) = 1 and, for allw 6= v,
f 0(w) = f(w) + 1. For a linear orderf and verticesv, w, we use for(v; (w; f)) the shorthand
notation(v;w; f). A linear orderingf is aperfect elimination schemefor G if, for eachv 2 V ,
its higher ordered neighbours form a clique, that is, if every pair of distinct vertices in the set
fw 2 V j fv; wg 2 E andf(v) < f(w)g is adjacent. It is well known (see for example [6]), that
a graph is triangulated if and only if it allows a perfect elimination scheme.

For a graphG = (V;E) and a linear orderingf of G, there are one or more triangulations of
G that havef for its perfect elimination scheme. A trivial example of such a triangulation is the
complete graph with vertex setE. Of these triangulations ofG that havef as perfect elimination
scheme, there is a unique one that is minimal in the sense that it does not contain another such
triangulation as proper subgraph. This triangulation, which we term thefill-in graph givenf , can
be constructed by, fori = 1; : : : ; jV j, turning the set of higher numbered neighbours off�1(i)
into a clique. The maximum clique size minus 1 of this fill-in is called thetreewidth off . The
treewidth of a linear ordering of a triangulated graph equals the maximum number of higher
numbered neighbours of a vertex [6].

To conclude, ajunction treeof an undirected graphG = (V;E) is a treeT = (I; F ), where
every nodei 2 I has associated a vertex setVi, such that the following two properties hold:
the setfVi j i 2 Ig equals the set of maximal cliques inG and, for each vertexv, the set
Tv = fi j v 2 Vig constitutes a connected subtree ofT . It is well known (see for example [6]),
that a graph is triangulated if and only if it has a junction tree.

3 Safe reduction rules

3.1 Framework

In this paper, we consider reduction rules that work on a pair, consisting of a graph, and an integer
variable, calledlow. This variable will be used as a lower bound for the treewidth of the original
undirected graph. Formally, our reduction rules are binary relations between two pairs, each
consisting of an undirected graph and an integer. We use the notation:(G; low) !R (G0; low0).
We call a rule!R safe, if for all graphsG, G0, integerslow, low0, we have

(G; low)!R (G0; low0)) max(�(G); low) = max(�(G0); low0)
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A set of rulesR is safe, if each rule!R2 R is safe. The following straightforward lemma
shows why we want to use safe rules.

Lemma 1 LetR be a safe set of reduction rules. Supposelow � �(G), and suppose(G0; low0)
can be obtained from(G; low) by zero or more successive applications of rules inR. Then
�(G) = max(�(G0); low0).

Proof. As all rules that are applied are safe, we have thatmax(�(G); low) = max(�(G0); low0).
(This can be shown with induction to the number of reduction rules that are applied.) Using
low � �(G), the result follows. ut

The algorithmic technique used in this paper for pre-processing graphs for triangulation
builds upon a set ofreduction rules. These rules allow for stepwise reducing a graph to an-
other graph with fewer vertices. The steps applied during the reduction can be reversed, thereby
enabling us to compute a triangulation of the original graph from a triangulation of the smaller
graph.

In this section, we discuss the various rules; a discussion of the computational method in
which these rules are employed, is deferred to Section 4.

During a graph’s reduction, we maintain a stack of eliminated vertices. We maintain the
(reduced) graph, and the integer variablelow: as discussed above,low gives a lower bound for
the treewidth of the original graph at any step of the algorithm.

Application of a reduction rule serves to modify the current graphG to G0 and to possibly
updatelow to low0. By applying safe rules, we have as an invariant that the treewidth of the
original graph equals the maximum of the treewidth of the reduced graph and the valuelow. In
the sequel, we assume that the original moralised graphG has at least one edge and thatlow is
initialised at a number, at least 1 and at most�(G). (For instance, one can start with a heuristic
that computes a lower bound for�(G), and setslow to the value computed by the heuristic. As
G has at least one edge,�(G) � 1.)

3.2 A collection of safe reduction rules

In this subsection, we give several safe reduction rules. Our first reduction rule applies to sim-
plicial vertices. A vertexv is simplicial in an undirected graphG if the neighbours ofv form a
clique inG. The following proposition shows that whenv is a simplicial vertex in a graphG,
computing the treewidth ofG is equivalent to computing the treewidth ofG� v.

Proposition 2 LetG be an undirected graph and letv be a simplicial vertex inG with degree
d � 0. Then,

� �(G) = max(d; �(G� v));

� there is a linear ordering(v; f) of G of minimum treewidth, wheref is a linear ordering
ofG� v of treewidth at mostmax(d; �(G� v)).

4



Proof. SinceG contains a clique of sized+ 1, we have that�(G) � d. We further observe that
�(G) � �(G�v), becauseG�v is a minor ofG. We therefore have that�(G) � max(d; �(G�
v)). Now, letf be a linear ordering ofG� v of treewidthk � max(d; �(G� v)). LetH be the
fill-in of G�v givenf . Adding vertexv and its (formerly) incident edges toH yields a graphH 0

that is still triangulated: as every pair of neighbours ofv is adjacent,v cannot belong to a simple
(chordless) cycle of length at least four. The maximum clique size ofH 0 therefore equals the
maximum ofd + 1 andk + 1. Hence,�(G) � max(d; �(G� v)), from which we conclude the
first property stated in the proposition. To prove the second property, we observe that the linear
ordering(v; f) is a perfect elimination scheme forH 0, as removal ofv upon computing the fill-in
of H 0 does not create any additional edges. ut

Our first reduction rule, illustrated in Figure 1, now is:

Reduction Rule 1: Simplicial vertex rule
Let v be a simplicial vertex of degreed � 0.
Removev.
Setlow tomax(low; d).

The second property stated in Proposition 2 provides for the rule’s reversal when computing
a triangulation of the original graph from a triangulation of the reduced one. The first property
can be used to show that the rule is safe.

Lemma 3 Thesimplicial vertex ruleis safe.

Proof. Suppose a reduction(G; low) !R (G � v; low0) is done by the simplicial vertex rule,
with v a simplicial vertex of degreed. Now max(�(G); low) = max(d; �(G � v); low) =
max(�(G� v); low0). ut

v

Figure 1: Thesimplicial vertex rule.

Because the digraphD of a probabilistic network is moralised before it is triangulated, it
is likely to give rise to many simplicial vertices. We consider a vertexv with outdegree zero
in D. Since all neighbours ofv have an arc pointing intov, moralisation will connect every
two neighbours that are not yet adjacent, thereby effectively turningv into a simplicial vertex.
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The simplicial vertex rulewill thus remove at least all vertices that have outdegree zero in the
network’s original digraph. As every directed acyclic graph has at least one vertex of outdegree
zero, at least one reduction will be performed. As the reduced graph need not be the moralisation
of a directed acyclic graph, it is possible that no further reductions can be applied.

The digraphD of a probabilistic network may also include vertices with indegree zero and
outdegree one. These vertices will always be simplicial in the moralisation ofD. We consider a
vertexv with indegree zero and a single arc pointing into a vertexw. In the moralisation ofD,
w and its (former) predecessors constitute a clique. As all neighbours ofv belong to this clique,
v is simplicial.

A special case of thesimplicial vertex rulenow applies to vertices of degree 1; it is termed
thetwig rule, after [3].

Reduction Rule 1a: Twig rule
Let v be a vertex of degree 1.
Removev.

Thetwig rule is based upon the observation that vertices of degree one are always simplicial.
Another special case is theislet rule that serves to remove vertices of degree zero. As we assumed
that we started withlow� 1, there is no need to updatelow in the twig or islet rule.

Reduction Rule 1b: Islet rule
Let v be a vertex of degree 0.
Removev.

Our second reduction rule applies to almost simplicial vertices. A vertexv is almost simpli-
cial in an undirected graphG if there is a neighbourw of v such that all other neighbours ofv
form a clique inG. Figure 2 illustrates the basic idea of an almost simplicial vertex. Note that
we allow other neighbours ofv to be adjacent tow. Simplicial vertices therefore are also almost
simplicial.

v

w

= edge

= edge or non-edge

Figure 2: An almost simplicial vertex.

Proposition 4 LetG be an undirected graph and letv be an almost simplicial vertex inG with
degreed � 0. LetG0 be the graph that is obtained fromG by turning the neighbours ofv into a
clique and then removingv. Then,
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� �(G0) � �(G) and�(G) � max(d; �(G0));

� the linear ordering(v; f) ofG, withf a linear ordering ofG0 of treewidth at mostmax(d; �(G0)),
has treewidth at mostmax(d; �(G0)).

Proof. Let w be a neighbour ofv such that the other neighbours ofv form a clique. As we
can obtainG0 from G by contracting the edgefv; wg, G0 is a minor ofG. We therefore have
that�(G0) � �(G). Now, letf be a linear ordering ofG0 of treewidthk � max(d; �(G0)). Let
H be the fill-in ofG0 given f . If we addv and its (formerly) adjacent edges toH, thenv is
simplicial in the resulting graphH 0. Using Proposition 2, we find that�(H 0) = max(k; d). The
two properties stated in the proposition follow. ut

Our second reduction rule, illustrated in Figure 3, now is:

Reduction Rule 2: Almost simplicial vertex rule
Let v be an almost simplicial vertex of degreed � 0.
If low� d, then

add an edge between every pair of non-adjacent neighbours ofv;
removev.

Lemma 5 Thealmost simplicial vertex ruleis safe.

Proof. Suppose(G; low) !R (G0; low0) by thealmost simplicial vertex rule. Then,�(G0) �
�(G), �(G) � max(d; �(G0)), andd � low = low0. We conclude thatmax(�(G);low) =
max(�(G0); low0). ut

v

Figure 3: Thealmost simplicial vertex rule.

Examples can be constructed, unfortunately, that show that the rule is not safe forlow < d.
Let G be the graph in the left hand side of Figure 4, and suppose we havelow = 2. G has
treewidth three (as it contains a clique with four vertices as a minor), while if we would apply the
almost simplicial vertex ruleto it, we would obtain the graph in the right hand side of Figure 4,
whose treewidth is two. It is also possible to construct more complicated similar examples to
which also no other reductions can be applied.
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v

?

Figure 4: Thealmost simplicial vertex ruleis not safe forlow < d.

If in the digraphD of a probabilistic network there is an arc(v; w), with the outdegree ofv
exactly one, and the indegree ofw exactly one, thenv will be almost simplicial in the moralisation
M(D): note that, asv has one child inD which has onlyv as parent, no moralisation edges will
be added withv as endpoint. Thus, the neighbours ofv in M(D) are its parents inD andw; due
to the moralisation, the parents ofv form a clique inM(D). See Figure 5.

v

w w

v

Figure 5: A case where an almost simplicial vertex is created when moralizing

A special case of thealmost simplicial vertex ruleapplies to vertices of degree two. A vertex
of degree two is, by definition, almost simplicial and we can therefore replace it by an edge
between its neighbours, provided that the original graph has treewidth at least two. The resulting
rule, illustrated in Figure 6, is called theseries rule, after [3].

Reduction Rule 2a: Series rule
Let v be a vertex of degree 2.
If low� 2, then

add an edge between the neighbours ofv, if they are not already adjacent;
removev.

Another special case is thetriangle rule, shown in Figure 7.

Reduction Rule 2b: Triangle rule
Let v be a vertex of degree 3 such that at least two of its neighbours are adjacent.
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v

Figure 6: Theseries rule.

If low� 3, then
add an edge between every pair of non-adjacent neighbours ofv;
removev.

v

Figure 7: Thetriangle rule.

As theseriesandtriangle rulesare special cases of thealmost simplicial vertex rule, both are
safe.

Using the fact that a non-empty graph of treewidth at mostk has a vertex with degree at most
k, the following well known observations easily follow. If thetwig and islet rulescannot be
applied to a non-empty undirected graph, then all its vertices have degree at least two, and hence
the graph has treewidth at least two. We can then setlow to max(low; 2). Note that from this
observation we have that theislet andtwig rulessuffice for reducing any graph of treewidth one
to the empty graph. Theislet, twig andseries rulessuffice for reducing any graph of treewidth
two to the empty graph. (A non-empty graph of treewidth at most two has a vertex of degree at
most two, to which one of these rules can be applied; possibly settinglow to max(low; 2) when
no islet or twig rule can be applied.) So, iflow� 2 for a given non-empty graph and theislet,
twig andseries rulescannot be applied, then we know that the graph has treewidth at least three.
We can then setlow to max(low; 3).

As for treewidths one and two, there is a set of rules that suffice for reducing any graph
of treewidth three to the empty graph. This set of rules was first identified by Arnborg and
Proskurowski [3]. Theislet, twig, seriesandtriangle rulesare among the set of six. The two other
rules are of interest to us, not just because they provide for computing optimal triangulations for
graphs of treewidth three, but also because they give new reduction rules for the purpose of
pre-processing.

Proposition 6 LetG be an undirected graph and letv; w be two vertices of degree three having
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the same set of neighbours. LetG0 be the graph that is obtained fromG by turning the set of
neighbours ofv into a clique and then removingv andw. Then,

� �(G0) � �(G) and�(G) � max(3; �(G0));

� the linear ordering(v;w; f), withf a linear ordering ofG0 of treewidth at mostmax(3; �(G0)),
has treewidth at mostmax(3; �(G0)).

Proof. Suppose thatx, y andz are the neighbours ofv andw. By contracting the edgesfv; xg
andfw; yg in G, we obtainG0. So,G0 is a minor ofG and we find that�(G0) � �(G). Now, let
f be a linear ordering ofG0 and letH be the fill-in ofG0 givenf . If we subsequently addv and
w with their (formerly) adjacent edges toH, then both are simplicial in the resulting graph. The
treewidth of the ordering(v;w; f) of G, therefore, equals the maximum of 3 and the treewidth
of f . The properties stated in the proposition now follow. ut

From Proposition 6, we obtain safeness of thebuddy rule, which is illustrated in Figure 8.

v w

Figure 8: Thebuddy rule.

Reduction Rule 3: Buddy rule
Let v, w be vertices of degree 3 having the same
set of neighbours.
If low� 3, then

add an edge between every pair of non-adjacent neighbours ofv;
removev;
removew.

Lemma 7 Thebuddy ruleis safe.

Proof. SupposeG0 is obtained fromG by applying the buddy rule, with verticesv andw re-
moved and their neighbours turned into a clique. We havemax(�(G); low) � max(3; �(G0); low) =
max(�(G0); low) � max(�(G); low). ut
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Thecube rule, which is presented schematically in Figure 10, is slightly more complicated.
The subgraph shown on the left is replaced by the subgraph on the right; in addition,low is set to
max(low; 3). Verticesv, w andx in the subgraph may be adjacent to other vertices in the rest of
the graph; the four non-labeled vertices occurring in the rule cannot have such ‘outside’ edges.
There is a slightly more general form of the cube rule, which we call theextended cube rule,
given in Figure 9, whose correctness we prove first.

Proposition 8 LetG = (V;E) be an undirected graph;a, b, c, d, v, w, x 2 V . Supposea, b, c,
have degree three inG, with edgesfa; dg, fa; vg, fa; wg, fb; dg, fb; vg, fb; xg, fc; dg, fc; wg,
fc; xg 2 E. LetG0 be obtained by makingv, w, x andd mutually adjacent, and removinga, b,
andc fromG. Then,

� �(G) = max(3; �(G0));

� there is a linear ordering(a; b; c; f) ofG of minimum treewidth, wheref is a linear order-
ing ofG0 of treewidth at mostmax(3; �(G0)).

Proof. As the subgraph ofG, induced bya, b, c, d, v, w, andx has treewidth three,�(G) � 3.
AsG0 is a minor ofG (contract edgesfa; vg, fb; xg andfc; wg), �(G) � �(G0). If f is a linear
ordering ofG0 with fill-in H, then note that the additional edges in the fill-in of the linear order
(a; b; c; f) all belong toH: the additional fill-in edges, created bya, b, andc all belong toG0 and
hence also toH. As the numbers of higher numbered neighbours ofa, b, andc in the new fill-in
all equal three, the treewidth of(a; b; c; f) equals the maximum of 3 and the treewidth off . The
lemma now follows. ut

v

w x

a b

c

d

w

v

x

d

Figure 9: Theextended cube rule.

Reduction Rule 4: Extended cube rule
Let a, b, c, d, v, w, x be as in Figure 9. Iflow� 3, then

add an edge between every pair of non-adjacent vertices infv; w; x; dg;
removec;
removeb;
removea.
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Lemma 9 The extended cube rule is safe.

Proof. If G0 is obtained fromG by applying the extended cube rule, then, by Proposition 8,
max(�(G); low) = max(�(G); 3; low) = max(�(G0); low). ut

The ‘standard’cube ruleis a variant of theextended cube rule. Thecube ruleis one of the
rules in a set that is sufficient to reduce graphs of treewidth three to the empty graph, and it has
an easier and faster implementation than theextended cube rule.

Reduction Rule 4: Cube rule
Let a, b, c, d, v, w, x be as in Figure 10. Iflow� 3, then

add an edge between every pair of non-adjacent vertices infv; w; xg;
removed;
removec;
removeb;
removea.

v

w
x w

v

x

a b

c

d

Figure 10: Thecube rule.

Lemma 10 The cube rule is safe.

Proof. The cube rule can be obtained by first applying theextended cube rule, and then applying
thesimplicial vertex rule: note that vertexd becomes simplicial after the extended cube rule is
applied to the left hand side graph of Figure 10. ut

The difference betweencube ruleandextended cube ruleis that in thecube rule, d has degree
three and is removed, while in theextended cube rule, the degree ofd may be larger than three.

The subgraph in the left hand side of thecube ruleis not very likely to occur in the moralisa-
tion of a probabilistic network’s digraph, although it is not impossible. The main reason of our
interest in the rule is that it is one of the six rules that suffice for reducing graphs of treewidth
three to the empty graph. So, iflow � 3 for a given non-empty graph and theislet, twig, se-
ries, triangle, buddyandcube rulescannot be applied, then we know by a result of Arnborg and
Proskurowski [3], that the graph has treewidth at least four; hence in this case,low can be set to
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max(low; 4). Matoušek and Thomas showed that special cases of the rules with additional de-
gree restrictions on some of the vertices can be used and still are sufficient for recognizing graphs
of treewidth three [11]; this can lead to a linear time algorithm for recognizing and triangulating
graphs of treewidth three.

To conclude this section, Figure 11 depicts a fragment of the well-knownALARM network,
along with its moralisation. The figure further shows how successive application of our reduction
rules serves to reduce the moralisation to a single vertex. In fact, the moralised graph of the entire
ALARM network is thus reduced to the empty graph. Our reduction rules provide for constructing
an optimal triangulation of this network.

Figure 11: A fragment of theALARM network and the reduction of its moralisation.

4 Computational method

The various reduction rules described in the previous section are employed within acomputa-
tional methodthat implements pre-processing of probabilistic networks for triangulation. We
argued that application of our rules may reduce a network’s moralised graph to the empty graph.
The computational method complements this reduction by its reversal, thereby providing for the
construction of a triangulation of minimal treewidth. For networks that cannot be triangulated
optimally just by pre-processing, our reduction rules are combined with an algorithm that serves
to find an optimal or close to optimal triangulation of a network’s reduced moralised graph.

The computational method takes for its input the directed acyclic graphD of a probabilistic
network; it outputs a triangulation of the moralisation ofD. The method uses a stackS to hold
the eliminated vertices in the order in which they were removed during the graph’s reduction.
Moreover, the valuelow maintains a lower bound for the treewidth of the original moralised
graph; it is initialised at 1, or possibly any larger value that gives a lower bound for the treewidth
of M(D). E.g.,low can be initialized at the maximum indegree of a node inD, as for every node
v, M(D) will contain a clique containv and its parents inD, and the treewidth of a graph is at
least its maximum clique size minus one. The method now amounts to the following sequence
of steps:

13



1. The moralisationM(D) of D is computed andG is initialised atM(D).

2. If a reduction rule can be applied toG, it is executed, modifyingG accordingly. Each
vertex thus removed is pushed onto the stackS; if prescribed by the rule, the lower bound
low is updated. In case of a reduction by thecube rule, the vertex markeddmust be pushed
last ontoS. This step is repeated until the reduction rules are no longer applicable.

3. If no reduction rule can be applied,G is not an empty graph, andlow < 4, then low is
increased by 1. The reduction is continued at step 2.

4. LetG be the graph that results after execution of the previous steps. Using an exact or
heuristic algorithm,G is triangulated.

5. LetH be the triangulation that results from step 4. ForH, a perfect elimination schemef
is constructed.

6. Until S is empty, the top elementv is popped fromS andf is replaced by(v; f).

7. Letf 0 be the linear ordering resulting from the previous step. The fill-in ofM(G) givenf 0

is constructed.

The steps 1 through 3 of our computational method describe the reduction of the graph of a
probabilistic network. In step 4, the graph that results after reduction is triangulated. For this
purpose, various different algorithms can be used. If the algorithm employed isexact, that is, if it
yields a triangulation of minimal treewidth, then our method yields an optimal triangulation for
the original moralised graph. An example of such an exact algorithm can be found in the work
of Shoikhet and Geiger [14], where an implementation is given of a variant of an algorithm of
Arnborg, Corneil, and Proskurowski [1], that appears practical for small size networks. For many
real-life networks, the combination of our reduction rules with an exact algorithm results in an
optimal triangulation in reasonable time. If after reduction a graph of considerable size remains
for which an optimal triangulation cannot be feasibly computed, aheuristictriangulation algo-
rithm can be used. The treewidth yielded for the original moralised graph then is not guaranteed
to be optimal. As we will argue in the next section, however, these heuristic algorithms tend to
result in better triangulations for the graphs that result from pre-processing than for the original
graphs. If, after executing the steps 1 through 3, the reduced graph is empty, we can construct a
triangulation of minimal treewidth for the moralised graph just by reversing the various reduction
steps, and further triangulation is not necessary. This situation occurs, for example, if the origi-
nal graph is already triangulated or has treewidth at most 3. TheALARM network gives another
example: its moralised graph has treewidth four and is reduced to the empty graph.

In step 2 of our computational method, each of the reduction rules is investigated to establish
whether or not it can be applied to the current (reduced) graphG. As soon as an applicable rule is
found, it is executed. When analysing the computational complexity of our method, it is readily
seen that investigating applicability of the various reduction rules is the main bottleneck, as all
other steps (except for the triangulation in step 4) take linear time [6].
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Investigating applicability of theislet, twig andseries rulestakes a total amount of compu-
tation time that is linear in the number of vertices. To this end, we maintain for each vertex an
integer that indicates its degree; we further maintain lists of the vertices of degree zero, one, and
two. Thebuddy, triangle andcube rulescan also be implemented to take overall linear time,
for example using techniques from [2], see also [11]. More straightforward implementations,
however, will also be fast enough for moderately sized networks.

For thesimplicial vertexandalmost simplicial vertex rule, efficient implementation is less
straightforward. To investigate whether or not a vertex is simplicial, we must verify that each
pair of its neighbours are adjacent. For this purpose, we have to use a data structure that allows
for quickly checking adjacency, such as a two-dimensional array. For a vertex of degreed,
investigating simpliciality then takesO(d2) time. In a graph withn vertices, we may have to
check for simplicial verticesO(n) times. Each such check costsO(

P
v d(v)

2) = O(ne) time,
whered(v) is the degree of vertexv ande denotes the number of edges in the graph. The total
time spent on investigating applicability of thesimplicial vertex ruleis thereforeO(n2e). As the
treewidth of the moralised graph of a real-life probabilistic network is typically bounded, we can
refrain from checking simpliciality for vertices of large degree, giving a running time ofO(n2)
in practice. For thealmost simplicial vertex rule, similar observations apply. Theextended cube
rule can easily be implemented by first listing all pairs of vertices of degree three that have two
neighbours in common, and then checking for each such pair all vertices of degree three if these
three form a case where the extended cube rule can be applied. This gives anO(n3) check to see
if the extended cube rule can be applied; in practice, this simple implementation is in general fast
enough. With some additional efforts, the check can be done inO(n2) time.

5 Experimental results

The computational method outlined in the previous section implements our method of pre-
processing probabilistic networks for triangulation. We conducted some experiments with the
method to study the effect of pre-processing. The results of these experiments are reported in
this section.

The experiments were conducted on twenty-four real-life probabilistic networks in the fields
of medicine, agriculture, water purification, and maritime use. The sizes of the digraphs of these
networks and of their moralisations, expressed in terms of the number of vertices and the number
of arcs and edges, respectively, are given in Table 1.

The effects of employing various different sets of reduction rules on the twenty-four networks
under study are summarised in Table 2. The various sets employed are denoted:

simplicial = fsimplicial vertexg
� � 1 = fislet, twigg
� � 2 = (� � 1) [ fseriesg
� � 3 = (� � 2) [ ftriangle, buddy, cubeg
all = simplicial [ (� � 3) [ f almost simplicial vertex,

extended cubeg
With each of these sets of rules, the moralisations of the networks’ graphs were reduced until
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instance before after
moralisation moralisation
jV j jAj jV j jEj

ALARM 37 46 37 65
BARLEY 48 84 48 126
BOBLO 221 254 221 328
DIABETES 413 602 413 819
LINK 724 1125 724 1738
MILDEW 35 46 35 80
MUNIN 1 189 282 189 366
MUNIN 2 1003 1244 1003 1662
MUNIN 3 1044 1315 1044 1745
MUNIN 4 1041 1397 1041 1843
MUNIN -KGO 1066 1278 1066 1730
OESOCA+ 67 123 67 208
OESOCA 39 55 39 67
OESOCA42 42 59 42 72
OOW-BAS 27 36 27 54
OOW-SOLO 40 58 40 87
OOW-TRAD 33 47 33 72
PATHFINDER 109 192 109 211
PIGNET2 3032 5400 3032 7264
PIGS 441 592 441 806
SHIP-SHIP 50 75 50 114
VSD 38 52 38 62
WATER 32 66 32 123
WILSON 21 23 21 27

Table 1: Moralisation of probabilistic networks
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the rules were no longer applicable. The table reports the sizes of the resulting reduced graphs.
The computation times reported in the last column of the table are measured for the case that all
rules are applied. All computations have been carried out on a Linux-operated PC with a 1700
MHz Intel Pentium 4 processor. C++ was used as programming language.

Table 2 reveals, for example, that the set of rules� � 3 suffices for reducing the moralised
graphs of four of the networks to the empty graph; with the additionalsimplicial vertex ruleand
almost simplicial vertex rule, the moralised graphs of four other networks are also reduced to the
empty graph. These eight networks are therefore triangulated optimally just by pre-processing.

Application of thesimplicial vertex ruleonly reduces the number of vertices by 51% on aver-
age, whereas overall the average percentage is 77%. Even for the worst performing instances still
a reduction of 30% is achieved (e.g.,OOW-TRAD andWATER). With the exception ofPIGNET2
the computation time is marginal. Also forPIGNET2, the time is still justifiable taking into
account that more than 2000 vertices are removed.

Table 3 shows the differences of effectiveness of the various rules. This table was built by
checking all listed rules from left to right until one is applicable after every reduction of the
graph, so, e.g., theextended cube ruleis only checked when no other rule can be applied. We
see that thesimplicial vertex ruleandalmost simplicial vertex ruleand their special cases are
effective, but that thebuddy, cube, and extended cube ruleare never applied. The use of the latter
rules is that checking these can help to increase the value oflow to four, thus possibly enabling
an almost simplical rule for a vertex of degree four. The effectiveness of thesimplicial vertex
rule in comparison with thealmost simplicial vertex rulediffers from network to network. In
many cases thesimplicial vertex rule(and its specialisations) is responsable for the majority of
the removals. However, for some instances (e.g.,DIABETES, SHIP-SHIP) the almost simplicial
vertex rule, and in particular thetriangle rule, is very important.

We further studied the effect of pre-processing on the treewidths yielded by various heuristic
triangulation algorithms. Table 4 summarises the results obtained with two well known heuristics
for triangulation: the Greedy Fill-in heuristic, and the Minimum Degree Fill-In heuristic. In the
Greedy Fill-in heuristic a linear ordering of the vertices is constructed by repeatedly selecting a
vertex that causes the least fill-in in the triangulation (e.g., all simplicial vertices are ordered first).
In the Minimum Degree Fill-in heuristic, repeatedly a vertex of minimum degree is selected and
removed from the graph (e.g., for the unpreprocessed graph, vertices that are removed by the
islet, twig, andseries ruleare ordered first). We see that sometimes, but not always, the reduced
graphs give better bounds for the treewidth obtained with these heuristics. In addition, a lower
boundlow for the treewidth is obtained which allows for an estimation of the quality of the
heuristics. More precies, forDIABETES we can conclude that the treewidth is four by combining
the low with the Minimum Degree Fill-In heuristic. Therefore, a possible approach is to run the
heuristics both for the original and for the reduced graph, and take the best value. We would like
to note that, using integer linear programming techniques on the most reduced graph, we found
the exact treewidth of thePATHFINDER network to be 6.
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instance original simplicial � � 1 � � 2 � � 3 all CPU

jV j jEj jV j jEj low jV j jEj jV j jEj jV j jEj jV j jEj low time (s)

ALARM 37 65 11 19 4 31 59 13 28 5 10 0 0 4 0.00
BARLEY 48 126 35 92 4 48 126 39 112 31 91 26 78 4 0.00
BOBLO 221 328 71 132 2 117 224 70 131 0 0 0 0 3 0.09
DIABETES 413 819 335 665 2 413 819 332 662 212 492 116 276 4 0.67
LINK 724 1738 494 1349 3 641 1665 528 1439 472 1327 308 1158 4 1.58
MILDEW 35 80 20 40 3 34 79 32 75 12 27 0 0 4 0.00
MUNIN 1 189 366 108 241 3 161 338 104 243 66 188 66 188 4 0.08
MUNIN 2 1003 1662 449 826 2 819 1478 367 736 175 471 165 451 4 2.34
MUNIN 3 1044 1745 419 790 3 852 1553 344 717 142 429 96 313 4 2.48
MUNIN 4 1041 1843 436 920 3 863 1665 379 869 237 686 215 642 4 2.47
MUNIN -KGO 1066 1730 298 549 5 882 1546 207 470 104 298 0 0 5 2.46
OESOCA+ 67 208 30 141 9 48 189 34 162 30 150 14 75 9 0.01
OESOCA 39 67 5 7 3 24 52 12 29 0 0 0 0 3 0.00
OESOCA42 42 72 6 10 3 25 55 13 32 0 0 0 0 3 0.00
OOW-BAS 27 54 19 37 3 27 54 20 42 8 18 0 0 4 0.00
OOW-SOLO 40 87 31 68 3 39 86 33 76 29 66 27 63 4 0.01
OOW-TRAD 33 72 27 59 3 33 72 27 63 23 54 23 54 4 0.01
PATHFINDER 109 211 14 49 5 68 170 37 112 17 63 12 43 5 0.03
PIGNET2 3032 7264 1643 4556 3 3032 7264 1552 4464 1051 3835 1002 3730 4 27.20
PIGS 441 806 163 305 2 441 806 126 265 60 164 48 137 4 0.46
SHIP-SHIP 50 114 39 92 3 50 114 41 98 30 77 24 65 4 0.02
VSD 38 62 12 21 4 23 47 12 28 6 14 0 0 4 0.00
WATER 32 123 24 101 5 30 121 29 119 26 110 22 96 5 0.00
WILSON 21 27 6 8 2 11 17 4 6 0 0 0 0 3 0.00

Table 2: Preprocessing for treewidth
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instance number of vertices removed by rule total

jV j jEj IS TW SI SE TR AS BU CU EC

ALARM 37 70 1 11 21 1 3 0 0 0 0 37
BARLEY 48 139 0 1 13 3 2 3 0 0 0 22
BOBLO 221 373 1 105 80 11 24 0 0 0 0 221
DIABETES 413 1085 0 2 124 3 143 25 0 0 0 297
LINK 724 2257 10 73 147 12 10 164 0 0 0 416
MILDEW 35 99 1 2 18 1 8 5 0 0 0 35
MUNIN 1 189 431 0 40 42 7 34 0 0 0 0 123
MUNIN 2 1003 2065 0 272 300 74 182 10 0 0 0 838
MUNIN 3 1044 2178 0 298 368 76 180 26 0 0 0 948
MUNIN 4 1041 2183 0 290 324 60 136 16 0 0 0 826
MUNIN -KGO 1066 2042 1 365 476 96 78 50 0 0 0 1066
OESOCA+ 67 247 0 19 19 1 0 14 0 0 0 53
OESOCA 39 68 1 16 21 1 0 0 0 0 0 39
OESOCA42 42 73 1 18 22 1 0 0 0 0 0 42
OOW-BAS 27 69 1 2 13 1 8 2 0 0 0 27
OOW-SOLO 40 95 0 2 7 1 1 2 0 0 0 13
OOW-TRAD 33 77 0 1 5 2 2 0 0 0 0 10
PATHFINDER 109 213 0 47 48 0 0 2 0 0 0 97
PIGNET2 3032 8311 0 71 1341 89 481 48 0 0 0 2030
PIGS 441 948 0 57 236 34 55 11 0 0 0 393
SHIP-SHIP 50 132 0 2 11 0 11 2 0 0 0 26
VSD 38 69 1 16 15 3 3 0 0 0 0 38
WATER 32 127 0 2 6 0 0 2 0 0 0 10
WILSON 21 29 1 12 6 2 0 0 0 0 0 21
IS=Islet, TW=Twig, SI=Simplicial, SE=Series, TR=Triangle, AS=Almost-simplicial,
BU=Buddy, CU=Cube, EC=Extended-cube

Table 3: Contribution of the various rules
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instance original preprocessed Greedy Fill-In Min Degree Fill-In
jV j jEj jV j jEj low before after before after

ALARM 37 65 0 0 4 4 - 4 -
BARLEY 48 126 26 78 4 9 7 7 7
BOBLO 221 328 0 0 3 4 - 3 -
DIABETES 413 819 116 276 4 10 7 4 5
LINK 724 1738 308 1158 4 21 21 19 19
MILDEW 35 80 0 0 4 5 - 4 -
MUNIN 1 189 366 66 188 4 12 12 11 11
MUNIN 2 1003 1662 165 451 4 8 8 7 7
MUNIN 3 1044 1745 96 313 4 8 7 7 7
MUNIN 4 1041 1843 215 642 4 9 9 8 8
MUNIN -KGO 1066 1730 0 0 5 6 - 5 -
OESOCA+ 67 208 14 75 9 11 11 11 11
OESOCA 39 67 0 0 3 4 - 3 -
OESOCA42 42 72 0 0 3 3 - 3 -
OOW-BAS 27 54 0 0 4 5 - 4 -
OOW-SOLO 40 87 27 63 4 6 7 6 7
OOW-TRAD 33 72 23 54 4 7 6 6 6
PATHFINDER 109 211 12 43 5 7 7 7 7
PIGNET2 3032 7264 1002 3730 4 144 148 160 150
PIGS 441 806 48 137 4 12 11 10 10
SHIP-SHIP 50 114 24 65 4 9 8 8 8
VSD 38 62 0 0 4 5 - 4 -
WATER 32 123 22 96 5 12 10 11 11
WILSON 21 27 0 0 3 4 - 3 -

Table 4: Performance of heuristics without/with preprocessing
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6 Conclusions and further research

When solving hard combinatorial problems, pre-processing is often profitable. Based upon this
general observation, we designed a computational method that provides for pre-processing of
probabilistic networks for triangulation. Our method exploits a set of rules for stepwise reducing
the problem of finding a triangulation of minimum treewidth for a network’s moralised graph
to the same problem on a smaller graph. The smaller graph is triangulated, using an exact or
heuristic algorithm, depending on the graph’s size. From the triangulation of the smaller graph,
a triangulation of the original graph is obtained by reversing the reduction steps. The reduction
rules are guaranteed not to destroy optimality with respect to maximum clique size.

Experiments with our pre-processing method revealed that the graphs of some well-known
real-life probabilistic networks can be triangulated optimally just by pre-processing. The ex-
periments further showed that heuristic triangulation algorithms tend to yield better results for
graphs that are pre-processed than for the original graphs. Moreover, the further reduced a graph,
the less computation time is spent by the triangulation algorithms. From these observations, we
conclude that pre-processing probabilistic networks for triangulation is profitable.

The preprocessing rules given in this paper can also applied succesfully for finding tree de-
compositions of networks, arising in applications from fields, different from probabilistic net-
works. For instance, in [7], experiments on determining the treewidth of networks are reported,
including a succesfull application of the reduction rules to instances arising from a frequency
assignment application.

It is possible to also apply other rules for pre-processing purposes. For example, Sanders
designed a set of rules for reducing any graph of treewidth at most four to the empty graph [13].
Although this set is comprised of a large number of complex rules and many of these rules do
not have the property that a linear ordering with minimum treewidth of the graph can be directly
obtained from a linear ordering with minimum treewidth of the reduced graph (see also [9]), it
may give rise to new reduction rules that can be employed for pre-processing.

So far, we considered the use of rules for reducing the graph of a probabilistic network.
The use of separators constitutes another approach to pre-processing that we are currently con-
sidering, building upon earlier work by Olesen and Madsen [12]. For example, if a network’s
moralised graph has a separator of size two, then the graph can be partitioned into smaller graphs
that can be triangulated separately without losing optimality.

As there is a strong relationship between the running time of the junction-tree propagation
algorithm and the treewidth of the triangulation used, most triangulation algorithms currently in
use aim at finding a triangulation of minimal treewidth. However, if the variables in a proba-
bilistic network have state spaces of diverging sizes, such a triangulation may not be optimal. A
triangulation with minimal state space over all cliques then is likely to perform better. Some of
our reduction rules are safe also with respect to minimum overall state space. Other rules, how-
ever, are safe only under additional constraints on their application. It is interesting investigate
pre-processing for finding triangulations with minimum overall state space. Recently, we have
studied a weighted variant of treewidth [5]; in this variant, vertices have a weight equal to the
number of values the corresponding variable can attain in the probabilistic network. In [5], we
generalize the rules given in this paper to the weighted variant, and show most of these rules can
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be obtained as a special case of one general rule, called theContraction Reduction Rule.
In our experiments, we have observed that applying rules in a different order never affected

the size of the finally resulting reduced network. We conjecture that the set of rules, given in
this paper is actuallyconfluent, i.e., changing the order in which the rules are applied does not
affect the final outcome, up to isomorphism of graphs. We were unable to prove or disprove this
conjecture, so leave it as an open problem.
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