
Discovering Treewidth

Hans L. Bodlaender

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

hansb@cs.uu.nl

Abstract. Treewidth is a graph parameter with several interesting the-
oretical and practical applications. This survey reviews algorithmic re-
sults on determining the treewidth of a given graph, and finding a tree
decomposition of small width. Both theoretical results, establishing the
asymptotic computational complexity of the problem, as experimental
work on heuristics (both for upper bounds as for lower bounds), prepro-
cessing, exact algorithms, and postprocessing are discussed.

1 Introduction

About a quarter of a century, the notion of treewidth has now played a role
in many investigations in algorithmic graph theory. While for a long time, the
use of treewidth was limited to theoretical investigations, and it sometimes was
believed that it could not play a role in practical applications, nowadays there
is a growing tendency to use it in an actual applied setting.

An interesting example of this practical use of treewidth can be found in the
work by Koster, van Hoesel, and Kolen [63], where tree decompositions are used
to solve frequency assignment instances from the CALMA project, and other
partial constraint satisfaction problems. The most frequent used algorithm to
solve the inference problem for probabilistic, or Bayesian belief networks (often
used in decision support systems) uses tree decompositions [67]. See e.g., also
[1, 39].

Graphs of bounded treewidth appear in many different contexts. For an
overview of graph theoretic notions that are equivalent to treewidth, or from
which bounded treewidth can be derived, see [12]. Many probabilistic networks
appear to have small treewidth in practice. Yamagucki, Aoki, and Mamitsuka
[91] have computed the treewidth of 9712 chemical compounds from the LIG-
AND database, and discovered that all but one had treewidth at most three;
the one exception had treewidth four. Thorup [86] showed that the control flow
graph of goto-free programs, written in one of a number of common impera-
tive programming languages (like C, Pascal) have treewidth bounded by small
constants. See also [45].

Many problems can be solved in linear or polynomial time when the treewidth
of the input graph is bounded. Usually, the first step of such an algorithm is to
find a tree decomposition of small width. In this paper, we give an overview of

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39718597?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hansb@cs.uu.nl

2 H.L. Bodlaender

algorithms for finding such tree decompositions. Nowadays, much work has been
done on this topic, and we now have a rich theory, and intriguing experimental
approaches.

After some preliminaries in Section 2, we survey exact algorithms (Sec-
tion 3), approximation algorithms and upper bound heuristics (Section 4), lower
bound heuristics (Section 5), and preprocessing and postprocessing methods
(Section 6).

2 Preliminaries

The notion of treewidth was introduced by Robertson and Seymour in their work
on graph minors [77]. Equivalent notions were invented independently, e.g., a
graph has treewidth at most k, if and only if it is a partial k-tree. See [12] for
an overview of notions equivalent to or related to treewidth. In this paper, we
assume graphs to be undirected and simple. Many results also hold for directed
graphs, and often they can be generalised to hypergraphs. n = |V | denotes the
number of vertices of graph G = (V, E), m = |E| its number of edges.

Definition 1. A tree decomposition of a graph G = (V, E) is a pair ({Xi, i ∈
I}, T = (I, F)), with {Xi, i ∈ I} a collection of subsets of V (called bags), and
T = (I, F) a tree, such that

1.
⋃

i∈I Xi = V .
2. For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.
3. For all v ∈ V , Tv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

The width of a tree decomposition ({Xi, i ∈ I}, T = (I, F)) is maxi∈I |Xi| − 1.
The treewidth of G is the minimum width over all tree decompositions of G.

b
c

c

d

d
f

c
e f

d
f g

a
b

a

b

c d

e f g

Fig. 1. A graph and a tree decomposition of width 2

Having a tree decomposition of small width in general implies that the graph
has many separators of small size. E.g., consider a tree decomposition ({Xi, i ∈
I}, T = (I, F)), and choose a node r ∈ I as root of T . Consider some node i ∈ I,
and let Gi be the subgraph of G induced by the set Vi of vertices in sets Xj with
j = i or j is a descendant of i. Then, the definition of tree decomposition implies
that all vertices in Gi that have a neighbour in G that does not belong to Gi

belong to Xi. Hence, Xi separates all vertices in Vi−Xi from all vertices in V −Vi.
This property amongst others enables many dynamic programming algorithms

Discovering Treewidth 3

on graphs of bounded treewidth. A useful lemma on tree decompositions (which
can be seen as a rephrasing of the Helly property for trees, see [44, 22] is the
following.

Lemma 1. Let ({Xi, i ∈ I}, T = (I, F)) be a tree decomposition of G. Let W
be a clique in G. Then there is an i ∈ I with W ⊆ Xi.

There are several equivalent definitions of the notion of treewidth. The various
algorithms for determining the treewidth and finding tree decompositions are
based upon different such notions. We review here those that we use later in this
paper.

A graph G = (V, E) is chordal, if and only if each cycle in G of length
at least four has a chord, i.e., an edge between non-successive vertices in the
cycle. There are two equivalent definitions of chordality that we will use. A
perfect elimination scheme of a graph G = (V, E) is an ordering of the vertices
v1, . . . , vn, such that for all vi ∈ V , its higher numbered neighbours form a clique,
i.e., for j1 > i, j2 > i, if {vi, vj1} ∈ E and {vi, vj2} ∈ E, then {vj1 , vj2} ∈ E.
A graph G = (V, E) is the intersection graph of subtrees of a tree, if and only if
there is a tree T = (I, F) and for each vertex v ∈ V a subtree Tv of T , such that
for all v, w ∈ V , v �= w: {v, w} ∈ E, if and only if the trees Tv and Tw have at
least one vertex in common.

Theorem 1 (See [42, 44]). Let G = (V, E) be a graph, The following state-
ments are equivalent.

1. G is a chordal graph.
2. G has a perfect elimination scheme.
3. G is the intersection graph of subtrees of a tree.

A triangulation of a graph G = (V, E) is a chordal graph H = (V, F) that
contains G as a subgraph: E ⊆ F . A triangulation H = (V, F) is a minimal
triangulation, when there does not exist a triangulation H ′ = (V, F ′) with E ⊆
F ′ ⊂ F (F ′ �= F).

Given a tree decomposition ({Xi, i ∈ I}, T = (I, F)) of G, we can build
corresponding triangulation H = (V, F): add to G an edge between each non-
adjacent pair of vertices {v, w} such that there is an i ∈ I with v, w ∈ Xi. I.e.,
each bag Xi is turned into a clique. The graph H thus obtained is the intersection
graph of subtrees Tv = T [{i ∈ I | v ∈ Xi}] of T , thus chordal. The maximum
cliquesize of H is exactly one larger than the width of the tree decomposition
(compare with Lemma 1.)

Lemma 2. The treewidth of a graph G equals the minimum over all triangula-
tions H of G of the maximum clique size of H minus one.

We can also build a tree decomposition from an ordering v1, . . . , vn of the
vertices of the graph G. We first construct a triangulation H of G by the fol-
lowing fill-in procedure: initially, H = G, and then for i = 1 to n, we add to H,
edges between yet non-adjacent higher numbered neighbours of vi. After having

4 H.L. Bodlaender

done this, v1, . . . , vn is a perfect elimination scheme of H; the model of H as
intersection graph of subtrees of a tree can be easily transformed to a tree de-
composition of H and of G. Its width equals the maximum over all vertices of
its higher numbered neighbours in the ordering in H.

3 Exact Algorithms

The Treewidth problem: given a graph G, and an integer k, decide if the
treewidth of G is at most k, is NP-complete [3]. This unsettling fact does not
prevent us from wanting to compute the treewidth of graphs, and fortunately,
in many cases, there are methods to effectively obtain the treewidth of given
graphs.

Special Graph Classes. There are many results on the complexity of treewidth
when restricted to special graph classes. We mention here a few of these. A highly
interesting recent result was obtained by Bouchitté and Todinca, who found an
algorithm to determine the treewidth of a graph in time, polynomial in the
number of its minimal separators [29, 28]. Many graph classes have the property
that each graph in the class has a polynomial number of minimal separators,
e.g., permutation graphs, weakly chordal graphs.

Other polynomial time algorithms for treewidth for special graph classes can
be found in e.g., [16, 23, 31, 32, 38, 59, 58, 60]. NP-completeness results appear
amongst others in [24, 46]. See also [72]. Other older results are surveyed in [9].

Exponential Time Algorithms. Based upon the results from Bouchitté and Tod-
inca [29, 28], Fomin et al. [41] found an exact algorithm for treewidth that runs
in time O∗(1.9601n) time. (See [90] for the O∗ notation and an introduction to
exponential time algorithms.)

Algorithms with a running time of O∗(2n) are easier to obtain: one can show
that the algorithm of [3] has this time, or build a dynamic programming algo-
rithm following a technique first established for TSP by Held and Karp [49].

For small graphs, the treewidth can be computed in practice using branch
and bound. Experiments have been published by Gogate and Dechter [43]. The
algorithm searches for an ordering of the vertices that corresponds to a tree
decomposition of small width, see Section 2, i.e., at each step, we select the
next vertex in the ordering. Gogate and Dechter establish several rules to cut
off branches during branch and bound. The algorithm can also be used as a
heuristic, by stopping the branch and bound algorithm at a specific time and
reporting the best solution found so far.

Fixed Parameter Cases. As we often want to use a tree decomposition for run-
ning a dynamic programming algorithm that is exponential in the width, we often
want to test if the treewidth is smaller than some given constant k. Much work

Discovering Treewidth 5

has been done of this fixed parameter case of treewidth. Here we let k denote
the constant for which we want to test if the treewidth is at most k.

The first polynomial time algorithm for the problem was given by Arnborg,
Corneil, and Proskurowski [3]. Their algorithm runs in O(nk+2) time. A mod-
ification of this algorithm has been proposed and successfully experimentally
evaluated by Shoikhet and Geiger [83].

Downey and Fellows introduced the theory of fixed parameter tractability. A
problem with input parameter k and input size n is fixed parameter tractable,
when there is a function f and a constant c, such that there is an algorithm that
solves the problem in f(k) · nc time, (in contrast to algorithms using Ω(ng(k))
time for some increasing function g). See [40]. The first result that showed that
treewidth is fixed parameter tractable, i.e., solvable in O(nc) time for some con-
stant c, for fixed treewidth k, was obtained by Robertson and Seymour [77, 78].
This result was fully non-constructive: from the deep results of their graph mi-
nor theory, one gets a non-constructive proof that there exists a characterisation
that can be tested in O(n2) time. Later results, by Lagergren [64], Reed [76],
Lagergren and Arnborg [65], Bodlaender and Kloks [15], and Bodlaender [10]
improved upon either the constructivity or the running time. Finally, in [11], a
linear time algorithm was given that checks if the treewidth is at most k, and
if so, outputs the corresponding tree decomposition. That algorithm uses about
O(k3) calls to the dynamic programming algorithm from [15], but the hidden
constant in the ‘O’-notation of this algorithm is horrendous, even for small values
of k. Röhrig [79] has experimentally evaluated the linear time algorithm from
[11]. Unfortunately, this evaluation shows that the algorithm uses too much time
even for very small values of k (e.g., when k = 4.) A parallel variant of the al-
gorithm from [11] was given by Bodlaender and Hagerup [14]. A variant with
O(k2) calls to the algorithm of [15] was given by Perković and Reed [73].

The linear time algorithm for fixed k is attractive from a theoretical point
of view: in many cases, an algorithm exploiting small treewidth would use the
algorithm as a first step. From a practical point of view, the algorithm is useless
however, and the quest remains for algorithms that are efficient from the imple-
mentation viewpoint. Fortunately, several heuristics appear to perform well in
practice, as we will see in the next section.

Also, for very small values of k, there are special algorithms. Testing if the
treewidth is one is trivially linear (the graph must be a forest), a graph has
treewidth at most two, if and only if each biconnected component is a series
parallel graph (see e.g., [25]), and testing if a graph is series parallel can be
done in linear time by the algorithm of Valdes, Tarjan, and Lawler [88]. Arnborg
and Proskurowski [4] give a set of six reduction rules, such that a graph has
treewidth at most three, if and only if it can be reduced to the empty graph by
means of these rules. These rules can be implemented such that the algorithm
runs in linear time, see also [70]. Experiments show that these algorithms run
very fast in practice. A more complicated linear time algorithm for testing if the
treewidth of a graph is at most 4 has been given by Sanders [81]. As far as I
know, this algorithm has not yet been tried out in practice.

6 H.L. Bodlaender

4 Approximation Algorithms and Upper Bound
Heuristics

There are many algorithms that approximate the treewidth. We can distinguish
a number of different types, depending on whether the algorithm is polynomial
for all values of k, and whether the algorithm has a guaranteed performance.

Polynomial Time Approximation Algorithms with a Performance Ratio. We first
look at algorithms that are polynomial, even when k is not bounded, and that
give a guarantee on the quality of the output. The first such approximation
algorithm for treewidth was given in [13]. This algorithm gives tree decomposi-
tions with width at most O(log n) times the optimal treewidth. (See also [57].)
It builds a tree decomposition by repeatedly finding balanced separators in the
graph and subgraphs of it. Bouchitté et al. [27] and Amir [2] recently improved
upon this result, giving polynomial time approximation algorithms with ratio
O(log k) , i.e., the algorithms output a tree decomposition of width O(k log k)
when the treewidth of the input graph is k. It is a long standing and apparently
very hard open problem whether there exist a polynomial time approximation
algorithm for treewidth with a constant performance ratio.

Fixed Parameter Approximation Algorithms. There are also several approxima-
tion algorithms for treewidth that run in time, exponential in k. They either
give a tree decomposition of width at most ck (for some constant c), or tell that
the treewidth is more than k. See [2, 6, 64, 76, 78].

Upper Bound Heuristics. Many of the heuristics that have been proposed and
are used to find tree decompositions of small width do not have a guarantee
on their performance. However, amongst these, there are many that appear to
perform very well in many cases.

A large class of these heuristics is based upon the same principle. As discussed
in Section 2, a tree decomposition can be build from a linear ordering of the
vertices. Thus, we can build in some way a linear ordering of the vertices, run
the fill-in procedure, and turn the triangulation into a tree decomposition. Often,
one already adds fill-in edges during the construction of the linear order.

A very simple heuristic of this type is the Minimum Degree heuristic: we re-
peatedly select the vertex v with the minimum number of unselected neighbours
as the next vertex in the ordering, and turn the set of its unselected neigh-
bours into a clique, then temporarily remove v. The Minimum Fill-in heuristic
is similar, but now we select a vertex which gives the minimum number of added
fill-in edges for the current step. More complicated rules for selecting next ver-
tices have been proposed by Bachoore and Bodlaender [5], and by Clautiaux et
al. [34, 33]. In some cases, improvements are thus made upon the simpler Mini-
mum Degree or Minimum Fill-in heuristics. Also, sometimes orderings generated
by algorithms originally invented for chordal graph recognition ([80, 85, 7] have
been used as linear ordering to generate the tree decomposition from. These

Discovering Treewidth 7

tend to give tree decompositions with larger width. See [62] for an experimental
evaluation of several of these heuristics.

These heuristics can also be described using tree decompositions only: Select
some vertex v (according to the criteria at hand, e.g., the vertex of minimum
degree). Build the graph G′, by turning the set of neighbours N(v) of v into a
clique, and then removing v. Recursively, compute a tree decomposition of G′.
By Lemma 1, there must be a bag i∗ with N(v) ⊆ Xi. Now, add a new node iv
to G, with Xiv = {v} ∪ N(v), and make iv adjacent to i∗ in the tree. One can
check that this gives a tree decomposition of G.

A different type of heuristic was proposed by Koster [61]. The main idea of
the heuristic is to start with any tree decomposition, e.g., the trivial one where all
vertices belong to the same bag, and then stepwise refine the heuristics, i.e., the
heuristic selects a bag and splits it into smaller bags, maintaining the properties
of tree decomposition.

There are several algorithms that, given a graph G, make a minimal trian-
gulation of G. While not targeted at treewidth, such algorithms can be used
as treewidth heuristic. Recently, Heggernes, Telle, and Villanger [47] found an
algorithm for this problem that uses o(n2.376) time; many other algorithms use
O(nm) time.

See [87] for an online database with some experimental results.

Heuristics with Local Search Methods. Some work has been done on using stochas-
tic local search methods to solve the treewidth problem or related problems.
Kjærulff [56] uses simulated annealing to solve a problem related to treewidth.
Genetic algorithms have been used by Larrañaga et al. [66]. Clautiaux et al. [33]
use tabu search for the treewidth problem. The running times of these meta
heuristics is significantly higher, but good results are often obtained.

Approximation Algorithms for Special Graph Classes. Also, approximation al-
gorithms have been invented with a guarantee on the performance for special
graph classes, e.g., a ratio of 2 can be obtained for AT-free graphs [30], and a
constant ratio can be obtained for graphs with bounded asteroidal number [27].

5 Lower Bound Heuristics

It is for several reasons interesting to have good lower bound heuristics for
treewidth. They can be used in a subroutines in a branch and bound algorithm
(as, e.g., is done in [43]), or in an upper bound heuristic (e.g., as part of the rule
to select the next vertex of the vertex ordering [33]), and inform us about the
quality of upper bound heuristics. Also, when a lower bound for the treewidth is
too high, it may tells us that it is not useful to aim at a dynamic programming
algorithm solving a problem with tree decompositions.

It is easy to see that the minimum degree of a vertex in G, and the maximum
clique size of G are lower bounds for the treewidth. These bounds are often not
very good, and the maximum clique size is NP-hard to compute. An improvement

8 H.L. Bodlaender

to these bounds is made with the degeneracy: the maximum over all subgraphs
G′ of G of the minimum vertex degree of G′ [84, 68]. The degeneracy can be
easily computed: repeatedly remove a vertex of minimum degree from the graph,
and then report the maximum over the degrees of the vertices when they were
removed.

An improvement to the degeneracy can be obtained by instead of removing a
vertex, contracting it to one of its neighbours. This idea was found independently
by Bodlaender, Koster, and Wolle [20], and by Gogate and Dechter [43]. The
MMD+ heuristic thus works as follows: set � = 0, then repeat until G is empty:
find a vertex v of minimum degree d in G; set � = max(�, d); contract v to a
neighbour (or remove v if v is isolated). In [20], different rules to select the vertex
to contract to are explored. The heuristic to select the neighbour of v of smallest
degree performs reasonably well, but the heuristic to select the neighbour w of
v such that v and w have the smallest number of common neighbours usually
gives better lower bounds. (When v and w have a common neighbour x, then
contracting v and w causes the two edges {v, x} and {w, x} to become the same
edge. The rule thus tries to keep the graph as dense as possible.)

In [20], the related graph parameter of contraction degeneracy: the maximum
over all minors G′ of G of the minimum vertex degree of G′ is introduced and
studied. Computing the contraction degeneracy is NP-hard [20], but it can be
computed in polynomial time on cographs [26].

A different lower bound rule, based on the Maximum Cardinality Search algo-
rithm has been invented by Lucena [69]. Maximum Cardinality Search (originally
invented as a chordal graph recognition algorithm by Tarjan and Yannakakis
[85]) works as follows. The vertices of the graph are visited one by one. MCS
starts at an arbitrary vertex, and then repeatedly visits an unvisited vertex which
has the maximum number of visited neighbours. Lucena showed that when MCS
visits a vertex that has at that point k visited neighbours, then the treewidth is
at least k.

So, we can get a treewidth lower bound by constructing an MCS ordering of
the vertices of G, and then reporting the maximum over all vertices of the number
of its visited neighbours when it was visited. This bound is always at least the
degeneracy (if G has a subgraph G′ with minimum vertex degree k, then when the
last vertex from G′ is visited, it has at least k visited neighbours). A theoretical
and experimental analysis of this lower bound was made by Bodlaender and
Koster [17]. E.g., it is NP-hard to find an MCS ordering that maximises the
yielded lower bound.

Other lower bounds based on the degree are also possible. Ramachandra-
murthi [74, 75] showed that for all graphs that are not complete, the minimum
over all non-adjacent pairs of vertex v and w of the maximum of the degree of
v and w is a lower bound for the treewidth of G. (This bound can be shown as
follows. Consider a tree decomposition of G, and repeatedly remove leaf nodes
i from T with neighbour j in T with Xi ⊆ Xj . If we remain with a tree decom-
position with one bag, the claim clearly holds. Otherwise, T has at least two
leaf nodes, and each bag of a leaf node contains a vertex whose neighbours are

Discovering Treewidth 9

all in the same leaf bag.) This lower bound usually is not very high, but when
combined with contraction, it can give small improvements to the MMD+ lower
bound. An investigation of this method, and other methods combining degree
based lower bounds with contraction is made in [21].

An interesting technique to obtain better lower bounds was introduced by
Clautiaux et al. in [34]. It uses the following result.

Lemma 3. Let v, w be two vertices in G, and let v and w have at least k + 2
disjoint neighbours (vertex disjoint paths between them). Then G has treewidth
at most k, if and only if G + {v, w} has treewidth at most k.

The neighbour or path improved graph of G is the graph obtained by adding
edges between all pairs of vertices with at least k + 2 common neighbours (or
vertex disjoint paths). The method of [34] now can be described as follows. Set �
to some lower bound on the treewidth of input graph G. Compute the (neighbour
or path) improved graph G′ of G (with k = �). Run some treewidth lower bound
algorithm on G′. If this algorithm gives a lower bound larger than �, then the
treewidth of G is at least �+1, and we add one to �, and repeat, until no increase
to � is obtained. In [34], the degeneracy is used as lower bound subroutine, but
any other lower bound can be used. Experimental results of this type can be
found in [20]. The method gives significant increases to the lower bounds for
many graphs, but also costs much time; the version where we use the neighbour
improved graph gives smaller bounds but uses also less time when compared to
the path improved graph. In [20], a heuristic is proposed, where edge contraction
steps are alternated with improvement steps. This algorithm works well for small
instances, but appears to use (too) much time on larger instances.

6 Preprocessing and Postprocessing

6.1 Preprocessing

There are several methods for preprocessing a graph before running an algorithm
for treewidth on it. With preprocessing, we hope to decrease the size of the input
graph. The algorithm for treewidth thus often runs on a smaller instance, and
hence can be much faster. E.g., we first preprocess the graph, and then run a
slow exact algorithm on the reduced instance.

Reduction Rules. Bodlaender et al. [19] give several reduction rules that are
safe for treewidth. Besides a graph (initially the input graph), we maintain an
integer variable low that is a lower bound for the treewidth of the input graph.
We have that initially low ≤ tw(G), (e.g., low= 0. Each reduction rule takes
G and low, and rewrites this to a smaller graph G′, with possibly an updated
value of low. A rule is safe, if, whenever we can rewrite a graph G with variable
low to G′ and low’, we have max(tw(G), low) = max(tw(G′), low′). It follows
that when G′′ and low” are obtained from G with a series of applications of
safe rules, then the treewidth of G equals max(tw(G′′), low′′). The rules in [19]

10 H.L. Bodlaender

are taken from the algorithm from [4] to recognise graphs of treewidth at most
three, or generalisations of these. Two of these rules are the simplicial rule:
remove a vertex of degree d whose neighbours form a clique, and set low to
max(d, low), and the almost simplicial rule: when v is a vertex of degree d ≤ low
whose neighbourhood contains a clique of size d − 1, then add edges between
non-adjacent neighbours of v and remove v. Experiments show that in many
instances from practical problems, significant reductions can be obtained with
these reduction rules [19]. Generalisations of the rules were given by van den
Eijkhof and Bodlaender [89].

Safe Separators. A set of vertices S ⊆ V is a separator in a graph G = (V, E), if
G[V −S] contains more than one connected component. A separator is inclusion
minimal, when it does not contain another separator of G as proper subset.
A separator S in G is safe for treewidth, when the treewidth of G equals the
maximum over all connected components W of G[V −S] of the treewidth of the
graph G[W ∪ S] + clique(S) (i.e., the graph obtained with vertices V ∪ S, and
edges between adjacent vertices in G, and each pair of vertices in S).

Thus, when we have a safe (for treewidth) separator S in G, we can split G
into the parts of the form G[W ∪S]+ clique(S) for all connected components W
of G[V − S], and compute for each such part the treewidth separately. Hence,
safe separators can be used for preprocessing for treewidth.

There are several types of safe separators that can be found quickly. For in-
stance, every separator that is a clique is safe (see [71]), and clique separators
can be found in O(nm) time. Other safe separators are given in [18], e.g., inclu-
sion minimal separators of size r that contain a clique of size r − 1; all inclusion
separators of size two; minimum size separators S of size three such that at least
two connected components of G[V − S] contain at least two vertices. See also
[18] for an experimental evaluation of the use of safe separators.

6.2 Postprocessing

Once we have found a tree decomposition of G, it sometimes is possible to modify
the tree decomposition slightly to obtain one with a smaller width. This can be
best explained by looking at the triangulation of G that corresponds to the tree
decomposition.

Many heuristics yield tree decompositions whose corresponding triangula-
tions are not always minimal triangulations, e.g., the minimum degree heuristic.
(A few heuristics guarantee that the triangulation is always minimal.)

There are several algorithms, that, given a graph G = (V, E), and a triangu-
lation H = (V, F) of G, find a minimal triangulation H ′ = (V, F ′) of G that is a
subgraph of H: E ⊆ F ′ ⊆ F [8, 37, 48]. So, we can use the following postprocess-
ing step when given a tree decomposition: build the corresponding triangulation,
find a minimal triangulation (e.g., with an algorithm from [8, 48]) and then turn
this minimal triangulation back into a tree decomposition.

Discovering Treewidth 11

7 Conclusions

There are several interesting notions that are related to treewidth, and that
obtained also much attention in the past years, e.g., pathwidth, cliquewidth
(see e.g. [36]). Very closely related to treewidth is the notion of branchwidth
(treewidth and branchwidth differ approximately by at most a factor of 1.5).
The branchwidth of planar graphs can be computed in polynomial time [82],
and thus it is intriguing that the corresponding problem for treewidth is still
open. Interesting experimental work on branchwidth has been done by Hicks
[53, 54, 55, 51, 52, 50]. Cook and Seymour [35] used branch decompositions for
solving the travelling salesman problem.

The many theoretic and experimental results on the treewidth problem show
that finding a tree decomposition of small width is far from hopeless, even while
the problem itself is NP-hard. Upper and lower bound heuristics appear to give
good results in many practical cases, which can be further improved by post-
processing; preprocessing combined with cleverly designed exact algorithms can
solve many small instances exactly. There still are several challenges. Two theo-
retical questions are open for a long time, and appear to be very hard: Is there an
approximation algorithm for treewidth with a constant performance ratio (as-
suming P �= NP)? Does there exist a polynomial time algorithm for computing
the treewidth of planar graphs, or is this problem NP-hard? Also, the quest for
better upper and lower bound heuristics, more effective preprocessing methods,
etc. remains.

Acknowledgement

I want to express my gratitude to the many colleagues who collaborated with me
on the research on treewidth and other topics, helped me with so many things,
and from who I learned so much in the past years. I apologise to all whose work
should have been included in this overview but was inadvertingly omitted by
me.

References

1. J. Alber, F. Dorn, and R. Niedermeier. Experimental evaluation of a tree decom-
position based algorithm for vertex cover on planar graphs. To appear in Discrete
Applied Mathematics, 2004.

2. E. Amir. Efficient approximations for triangulation of minimum treewidth. In
Proc. 17th Conference on Uncertainty in Artificial Intelligence, pages 7–15, 2001.

3. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

4. S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-
trees. SIAM J. Alg. Disc. Meth., 7:305–314, 1986.

5. E. Bachoore and H. L. Bodlaender. New upper bound heuristics for treewidth.
Technical Report UU-CS-2004-036, Institute for Information and Computing Sci-
ences, Utrecht University, Utrecht, the Netherlands, 2004.

12 H.L. Bodlaender

6. A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal
clique trees. Artificial Intelligence, 125:3–17, 2001.

7. A. Berry, J. Blair, P. Heggernes, and B. Peyton. Maximum cardinality search for
computing minimal triangulations of graphs. Algorithmica, 39:287–298, 2004.

8. J. R. S. Blair, P. Heggernes, and J. Telle. A practical algorithm for making filled
graphs minimal. Theor. Comp. Sc., 250:125–141, 2001.

9. H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23,
1993.

10. H. L. Bodlaender. Improved self-reduction algorithms for graphs with bounded
treewidth. Disc. Appl. Math., 54:101–115, 1994.

11. H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

12. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc., 209:1–45, 1998.

13. H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and minimum elimination tree height. J. Algo-
rithms, 18:238–255, 1995.

14. H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput., 27:1725–1746, 1998.

15. H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms, 21:358–402, 1996.

16. H. L. Bodlaender, T. Kloks, D. Kratsch, and H. Mueller. Treewidth and minimum
fill-in on d-trapezoid graphs. J. Graph Algorithms and Applications, 2(5):1–23,
1998.

17. H. L. Bodlaender and A. M. C. A. Koster. On the maximum cardinality search
lower bound for treewidth, 2004. Extended abstract to appear in proceedings WG
2004.

18. H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. In Pro-
ceedings 6th Workshop on Algorithm Engineering and Experiments ALENEX04,
pages 70–78, 2004.

19. H. L. Bodlaender, A. M. C. A. Koster, F. van den Eijkhof, and L. C. van der
Gaag. Pre-processing for triangulation of probabilistic networks. In J. Breese and
D. Koller, editors, Proceedings of the 17th Conference on Uncertainty in Artificial
Intelligence, pages 32–39, San Francisco, 2001. Morgan Kaufmann.

20. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth
lower bounds. In S. Albers and T. Radzik, editors, Proceedings 12th Annual Euro-
pean Symposium on Algorithms, ESA2004, pages 628–639. Springer, Lecture Notes
in Computer Science, vol. 3221, 2004.

21. H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Degree-based treewidth lower
bounds. Paper in preparation, 2004.

22. H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth of cographs.
SIAM J. Disc. Math., 6:181–188, 1993.

23. H. L. Bodlaender and U. Rotics. Computing the treewidth and the minimum fill-in
with the modular decomposition. Algorithmica, 36:375–408, 2003.

24. H. L. Bodlaender and D. M. Thilikos. Treewidth for graphs with small chordality.
Disc. Appl. Math., 79:45–61, 1997.

25. H. L. Bodlaender and B. van Antwerpen-de Fluiter. Parallel algorithms for series
parallel graphs and graphs with treewidth two. Algorithmica, 29:543–559, 2001.

26. H. L. Bodlaender and T. Wolle. Contraction degeneracy on cographs. Techni-
cal Report UU-CS-2004-031, Institute for Information and Computing Sciences,
Utrecht University, Utrecht, the Netherlands, 2004.

Discovering Treewidth 13

27. V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca. On treewidth approximations.
Disc. Appl. Math., 136:183–196, 2004.

28. V. Bouchitté and I. Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM J. Comput., 31:212–232, 2001.

29. V. Bouchitté and I. Todinca. Listing all potential maximal cliques of a graph.
Theor. Comp. Sc., 276:17–32, 2002.

30. V. Bouchitté and I. Todinca. Approximating the treewidth of at-free graphs. Disc.
Appl. Math., 131:11–37, 2003.

31. H. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for minimum fill
in and tree width for distance hereditary graphs. Disc. Appl. Math., 99:367–400,
2000.

32. H. Broersma, T. Kloks, D. Kratsch, and H. Müller. A generalization of AT-free
graphs and a generic algorithm for solving triangulation problems. Algorithmica,
32:594–610, 2002.

33. F. Clautiaux, S. N. A. Moukrim, and J. Carlier. Heuristic and meta-heuristic
methods for computing graph treewidth. RAIRO Oper. Res., 38:13–26, 2004.

34. F. Clautiaux, J. Carlier, A. Moukrim, and S. Négre. New lower and upper bounds
for graph treewidth. In J. D. P. Rolim, editor, Proceedings International Work-
shop on Experimental and Efficient Algorithms, WEA 2003, pages 70–80. Springer
Verlag, Lecture Notes in Computer Science, vol. 2647, 2003.

35. W. Cook and P. D. Seymour. Tour merging via branch-decomposition. Informs J.
on Computing, 15(3):233–248, 2003.

36. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique width. Theor. Comp. Sc., 33:125–150, 2000.

37. E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In Pro-
ceedings 23rd International Workshop on Graph-Theoretic Concepts in Computer
Science WG’97, pages 132–143. Springer Verlag, Lecture Notes in Computer Sci-
ence, vol. 1335, 1997.

38. E. Dahlhaus. Minimum fill-in and treewidth for graphs modularly decompos-
able into chordal graphs. In Proceedings 24th International Workshop on Graph-
Theoretic Concepts in Computer Science WG’98, pages 351–358. Springer Verlag,
Lecture Notes in Computer Science, vol. 1517, 1998.

39. R. Dechter. Bucket elimination: a unifying framework for reasoning. Acta Infor-
matica, 113:41–85, 1999.

40. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1998.
41. F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for

treewidth and minimum fill-in. In Proceedings of the 31st International Colloquium
on Automata, Languages and Programming, pages 568–580, 2004.

42. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Comb. Theory Series B, 16:47–56, 1974.

43. V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In
proceedings UAI’04, Uncertainty in Artificial Intelligence, 2004.

44. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

45. J. Gustedt, O. A. Mæhle, and J. A. Telle. The treewidth of Java programs. In
D. M. Mount and C. Stein, editors, Proceedings 4th International Workshop on
Algorithm Engineering and Experiments, pages 86–97. Springer Verlag, Lecture
Notes in Computer Science, vol. 2409, 2002.

46. M. Habib and R. H. Möhring. Treewidth of cocomparability graphs and a new
order-theoretic parameter. ORDER, 1:47–60, 1994.

14 H.L. Bodlaender

47. P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in
time O(nα log n) = o(n2.376). To appear in proceedings SODA’05, 2005.

48. P. Heggernes and Y. Villanger. Efficient implementation of a minimal triangulation
algorithm. In R. Möhring and R. Raman, editors, Proceedings of the 10th Annual
European Symposium on Algorithms, ESA’2002, pages 550–561. Springer Verlag,
Lecture Notes in Computer Science, vol. 2461, 2002.

49. M. Held and R. Karp. A dynamic programming approach to sequencing problems.
J. SIAM, 10:196–210, 1962.

50. I. V. Hicks. Graphs, branchwidth, and tangles! Oh my! Working paper.
http://ie.tamu.edu/People/faculty/Hicks/default.htm.

51. I. V. Hicks. Planar branch decompositions I: The ratcatcher. INFORMS Journal
on Computing (to appear).

52. I. V. Hicks. Planar branch decompositions II: The cycle method. INFORMS
Journal on Computing (to appear).

53. I. V. Hicks. Branch Decompositions and their Applications. Ph. d. thesis, Rice
University, Houston, Texas, 2000.

54. I. V. Hicks. Branchwidth heuristics. Congressus Numerantium, 159:31–50, 2002.
55. I. V. Hicks. Branch decompositions and minor containment. Networks, 43:1–9,

2004.
56. U. Kjærulff. Optimal decomposition of probabilistic networks by simulated an-

nealing. Statistics and Computing, 2:2–17, 1992.
57. T. Kloks. Treewidth. Computations and Approximations. Lecture Notes in Com-

puter Science, Vol. 842. Springer-Verlag, Berlin, 1994.
58. T. Kloks. Treewidth of circle graphs. Int. J. Found. Computer Science, 7:111–120,

1996.
59. T. Kloks and D. Kratsch. Treewidth of chordal bipartite graphs. J. Algorithms,

19:266–281, 1995.
60. T. Kloks, D. Kratsch, and J. Spinrad. On treewidth and minimum fill-in of aster-

oidal triple-free graphs. Theor. Comp. Sc., 175:309–335, 1997.
61. A. M. C. A. Koster. Frequency Assignment - Models and Algorithms. PhD thesis,

Univ. Maastricht, Maastricht, the Netherlands, 1999.
62. A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Com-

putational experiments. In H. Broersma, U. Faigle, J. Hurink, and S. Pickl, editors,
Electronic Notes in Discrete Mathematics, volume 8. Elsevier Science Publishers,
2001.

63. A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial
constraint satisfaction problems with tree decomposition. Networks, 40:170–180,
2002.

64. J. Lagergren. Efficient parallel algorithms for graphs of bounded tree-width. J.
Algorithms, 20:20–44, 1996.

65. J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a finite
congruence. In Proceedings of the 18th International Colloquium on Automata,
Languages and Programming, pages 532–543. Springer Verlag, Lecture Notes in
Computer Science, vol. 510, 1991.

66. P. Larrañaga, C. M. H. Kuijpers, M. Poza, and R. H. Murga. Decomposing
Bayesian networks: triangulation of the moral graph with genetic algorithms.
Statistics and Computing (UK), 7(1):19–34, 1997.

67. S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. The Journal of the
Royal Statistical Society. Series B (Methodological), 50:157–224, 1988.

Discovering Treewidth 15

68. D. R. Lick and A. T. White. k-degenerate graphs. Canadian Journal of Mathe-
matics, 22:1082–1096, 1970.

69. B. Lucena. A new lower bound for tree-width using maximum cardinality search.
SIAM J. Disc. Math., 16:345–353, 2003.

70. J. Matoušek and R. Thomas. Algorithms for finding tree-decompositions of graphs.
J. Algorithms, 12:1–22, 1991.

71. K. G. Olesen and A. L. Madsen. Maximal prime subgraph decomposition of
Bayesian networks. IEEE Trans. on Systems, Man, and Cybernetics, Part B,
32:21–31, 2002.

72. A. Parra and P. Scheffler. Characterizations and algorithmic applications of chordal
graph embeddings. Disc. Appl. Math., 79:171–188, 1997.

73. L. Perković and B. Reed. An improved algorithm for finding tree decompositions
of small width. In P. Widmayer, editor, Proceedings 25th Int. Workshop on Graph
Theoretic Concepts in Computer Science, WG’99, pages 148–154. Springer Verlag,
Lecture Notes in Computer Science, vol. 1665, 1999.

74. S. Ramachandramurthi. A lower bound for treewidth and its consequences. In
E. W. Mayr, G. Schmidt, and G. Tinhofer, editors, Proceedings 20th International
Workshop on Graph Theoretic Concepts in Computer Science WG’94, pages 14–25.
Springer Verlag, Lecture Notes in Computer Science, vol. 903, 1995.

75. S. Ramachandramurthi. The structure and number of obstructions to treewidth.
SIAM J. Disc. Math., 10:146–157, 1997.

76. B. Reed. Finding approximate separators and computing tree-width quickly. In
Proceedings of the 24th Annual Symposium on Theory of Computing, pages 221–
228, New York, 1992. ACM Press.

77. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms, 7:309–322, 1986.

78. N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.
J. Comb. Theory Series B, 63:65–110, 1995.

79. H. Röhrig. Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-
Institut für Informatik, Saarbrücken, Germany, 1998.

80. D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimi-
nation on graphs. SIAM J. Comput., 5:266–283, 1976.

81. D. P. Sanders. On linear recognition of tree-width at most four. SIAM J. Disc.
Math., 9(1):101–117, 1996.

82. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

83. K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangula-
tions. In Proc. National Conference on Artificial Intelligence (AAAI ’97), pages
185–190. Morgan Kaufmann, 1997.

84. G. Szekeres and H. S. Wilf. An inequality for the chromatic number of a graph.
J. Comb. Theory, 4:1–3, 1968.

85. R. E. Tarjan and M. Yannakakis. Simple linear time algorithms to test chordiality
of graphs, test acyclicity of graphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput., 13:566–579, 1984.

86. M. Thorup. Structured programs have small tree-width and good register alloca-
tion. Information and Computation, 142:159–181, 1998.

87. Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004-03-31.
88. J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel di-

graphs. SIAM J. Comput., 11:298–313, 1982.

16 H.L. Bodlaender

89. F. van den Eijkhof and H. L. Bodlaender. Safe reduction rules for weighted
treewidth. In L. Kuc̆era, editor, Proceedings 28th Int. Workshop on Graph The-
oretic Concepts in Computer Science, WG’02, pages 176–185. Springer Verlag,
Lecture Notes in Computer Science, vol. 2573, 2002.

90. G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combina-
torial Optimization: ”Eureka, you shrink”, pages 185–207, Berlin, 2003. Springer
Lecture Notes in Computer Science, vol. 2570.

91. A. Yamaguchi, K. F. Aoki, and H. Mamitsuka. Graph complexity of chemical
compounds in biological pathways. Genome Informatics, 14:376–377, 2003.

	Introduction
	Preliminaries
	Exact Algorithms
	Approximation Algorithms and Upper Bound Heuristics
	Lower Bound Heuristics
	Preprocessing and Postprocessing
	Preprocessing
	Postprocessing

	Conclusions

