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Abstract

The subjet multiplicity has been measured in neutral currente+p interactions atQ2 > 125 GeV2 with the ZEUS detector
at HERA using an integrated luminosity of 38.6 pb−1. Jets were identified in the laboratory frame using the longitudinally
invariant kT cluster algorithm. The number of jet-like substructures within jets, known as the subjet multiplicity, is defined
as the number of clusters resolved in a jet by reapplying the jet algorithm at a smaller resolution scaleycut. Measurements
of the mean subjet multiplicity,〈nsbj〉, for jets with transverse energiesET,jet> 15 GeV are presented. Next-to-leading-order

perturbative QCD calculations describe the measurements well. The value ofαs(MZ), determined from〈nsbj〉 at ycut = 10−2

for jets with 25<ET,jet < 71 GeV, isαs(MZ)= 0.1187± 0.0017(stat.)+0.0024
−0.0009(syst.)+0.0093

−0.0076(th.).
 2003 Published by Elsevier Science B.V.
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1. Introduction

Jet production ine+p neutral current (NC) deep in-
elastic scattering (DIS) provides a rich testing ground
for perturbative QCD (pQCD) and allows a precise de-
termination of the strong coupling constant,αs [1–5].
In the analysis described here, a new method is used to
extractαs in DIS, which exploits the pQCD descrip-
tion of the internal structure of jets. The investigation
of such structure also gives information on the transi-
tion from a parton produced in a hard subprocess to the
experimentally observed jet of hadrons. The method
uses measurements of the mean subjet multiplicity for
an inclusive sample of jets, where the subjet multi-
plicity is defined as the number of clusters resolved
in a jet by reapplying the jet algorithm at a smaller
resolution scaleycut [6,7]. At high transverse energy,
ET,jet, and for values ofycut not too low, fragmenta-
tion effects become small and the subjet multiplicity is
calculable in pQCD. Furthermore, the pQCD calcula-
tions depend only weakly on the knowledge of the par-
ton distribution functions (PDFs) of the proton, since
the subjet multiplicity is determined by QCD radiation
processes in the final state. In zeroth order QCD a jet

41 Supported by the Japanese Ministry of Education, Science and
Culture (the Monbusho) and its grants for Scientific Research.

42 Supported by the Korean Ministry of Education and Korea
Science and Engineering Foundation.

43 Supported by the Netherlands Foundation for Research on
Matter (FOM).

44 Supported by the Polish State Committee for Scientific Re-
search, grant no. 620/E-77/SPUB-M/DESY/P-03/DZ 247/2000-
2002.

45 Partially supported by the German Federal Ministry for Educa-
tion and Research (BMBF).

46 Supported by the Fund for Fundamental Research of Russian
Ministry for Science and Education and by the German Federal
Ministry for Education and Research (BMBF).

47 Supported by the Spanish Ministry of Education and Science
through funds provided by CICYT.

48 Supported by the Particle Physics and Astronomy Research
Council, UK.

49 Supported by the US Department of Energy.
50 Supported by the US National Science Foundation.
51 Supported by the Polish State Committee for Scientific Re-

search, grant no. 112/E-356/SPUB-M/DESY/P-03/DZ 301/2000-
2002, 2 P03B 13922.

52 Supported by the Polish State Committee for Scientific Re-
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consists of only one parton and the subjet multiplic-
ity is trivially equal to unity. The first non-trivial con-
tribution to the subjet multiplicity is given byO(αs)
processes in which, e.g., a quark radiates a gluon at
a small angle. The deviation of the subjet multiplicity
from unity is proportional to the rate of parton emis-
sion and thus toαs . The next-to-leading-order (NLO)
QCD corrections are available, enablingαs to be de-
termined reliably. Measurements of subjet production
have been made ine+e− interactions [8],pp̄ colli-
sions [9] and NC DIS [10] and have been used to test
the QCD predictions on coherence effects, differences
between quarks and gluons and splitting of jets.

This Letter presents measurements of the mean
subjet multiplicity in NC DIS atQ2 > 125 GeV2,
whereQ2 is the virtuality of the exchanged boson, for
an inclusive sample of jets identified in the laboratory
frame with the longitudinally invariantkT cluster
algorithm [11,12]. The measurements are compared
to NLO QCD predictions [13] and are used to extract
αs(MZ).

2. Experimental conditions

The data sample was collected with the ZEUS de-
tector at HERA and corresponds to an integrated lumi-
nosity of 38.6± 0.6 pb−1. During 1996–1997, HERA
operated with protons of energyEp = 820 GeV and
positrons of energyEe = 27.5 GeV. The ZEUS de-
tector is described in detail elsewhere [14,15]. The
main components used in the present analysis are the
central tracking detector (CTD) [16], positioned in a
1.43 T solenoidal magnetic field, and the uranium-
scintillator sampling calorimeter (CAL) [17]. The
CTD was used to establish an interaction vertex with
a typical resolution along (transverse to) the beam di-
rection of 0.4 (0.1) cm.

The CAL covers 99.7% of the total solid angle. It
is divided into three parts with a corresponding di-
vision in the polar angle,53 θ , as viewed from the
nominal interaction point: forward (FCAL, 2.6◦ <
θ < 36.7◦), barrel (BCAL, 36.7◦ < θ < 129.1◦), and

53 The ZEUS coordinate system is a right-handed Cartesian
system, with theZ axis pointing in the proton beam direction,
referred to as the “forward direction”, and theX axis pointing left
towards the centre of HERA. The coordinate origin is at the nominal
interaction point. The pseudorapidity is defined asη= − ln(tan θ2 ).
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rear (RCAL, 129.1◦ < θ < 176.2◦). For normal in-
cidence, the depth of the CAL is seven interaction
lengths in FCAL, five in BCAL and four in RCAL.
Each of the calorimeter parts is subdivided into tow-
ers which in turn are segmented longitudinally into
one electromagnetic (EMC) and one (RCAL) or two
(FCAL, BCAL) hadronic (HAC) sections. The FCAL
and RCAL sections are further subdivided into cells
with inner-face sizes of 5× 20 cm2 (10 × 20 cm2

in the RCAL) for the EMC and 20× 20 cm2 for the
HAC sections. The BCAL EMC cells have a projec-
tive geometry as viewed from the nominal interaction
point; each is 23.3 cm long in the azimuthal direc-
tion and has a width of 4.9 cm along the beam di-
rection at its inner face, at a radius 123.2 cm from
the beam line. The BCAL HAC cells have a pro-
jective geometry in the azimuthal direction only; the
inner-face size of the inner (outer) HAC section is
24.4 × 27.1 cm2 (24.4 × 35.2 cm2). Each cell is
viewed by two photomultipliers. Atθ = 90◦, the size
of an EMC (HAC) cell in the pseudorapidity–azimuth
(η–φ) plane is approximately 0.04×11◦ (0.16×11◦).
Under test-beam conditions, the CAL energy resolu-
tion is σ(E)/E = 18%/

√
E(GeV) for electrons and

σ(E)/E = 35%/
√
E(GeV) for hadrons.

3. Data selection and jet reconstruction

A three-level trigger was used to select events on-
line [15,18]. The NC DIS events were selected offline
using criteria similar to those reported previously [3].
The main steps are outlined below.

The scattered-positron candidate was identified
from the pattern of energy deposits in the CAL [19].
The energy (E′

e) and polar angle (θe) of the positron
candidate were also determined from the CAL mea-
surements. The double angle method [20], which uses
θe and an angle (γ ) that corresponds, in the quark–
parton model, to the direction of the scattered quark,
was used to reconstructQ2 (Q2

DA). The angleγ was
reconstructed using the CAL measurements of the
hadronic final state [20]. The following requirements
were imposed on the data sample:

• a positron candidate of energyE′
e > 10 GeV.

This cut ensured a high and well understood
positron-finding efficiency and suppressed back-

ground from photoproduction, in which the scat-
tered positron escapes in the rear beampipe;

• ye < 0.95, whereye = 1−E′
e(1− cosθe)/(2Ee).

This condition removed events in which fake
positron candidates from photoproduction back-
ground were found in the FCAL;

• the energy not associated with the positron can-
didate within a cone of radius 0.7 units in the
η–φ plane around the positron direction was re-
quired to be less than 10% of the positron energy.
This condition removed photoproduction and DIS
events in which part of a jet was incorrectly iden-
tified as the scattered positron;

• for positrons in the polar-angle range 30◦ < θe <
140◦, the fraction of the positron energy within a
cone of radius 0.3 units in theη–φ plane around
the positron direction was required to be larger
than 0.9; forθe < 30◦, the cut was raised to 0.98.
These requirements removed events in which a
jet was incorrectly identified as the scattered
positron;

• the vertex position along the beam axis, deter-
mined from the CTD tracks, was required to be in
the range−38<Z < 32 cm, symmetrical around
the mean interaction point for this running period;

• 38< (E − pZ) < 65 GeV, whereE is the total
energy measured in the CAL,E = ∑

i Ei , andpZ
is theZ component of the vectorp = ∑

i Eir i ;
in both cases the sum runs over all CAL cells,Ei
is the energy of the CAL celli and r i is a unit
vector along the line joining the reconstructed ver-
tex to the geometric centre of the celli. This cut
removed events with large initial-state radiation
and further reduced the background from photo-
production;

• /pT/
√
ET < 2.5 GeV1/2, where/pT is the missing

transverse momentum as measured with the CAL
(/pT ≡

√
p2
X + p2

Y ) andET is the total transverse
energy in the CAL. This cut removed cosmic rays
and beam-related background;

• events were rejected if a second positron candidate
with energy above 10 GeV was found and the to-
tal energy in the CAL after subtracting that of the
two positron candidates was below 4 GeV. This
requirement removed elastic Compton-scattering
events (ep→ eγp);

• Q2
DA > 125 GeV2.
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The longitudinally-invariantkT cluster algorithm
[11] was used in the inclusive mode [12] to reconstruct
jets in the hadronic final state both in data and in
Monte Carlo (MC) simulated events (see Section 4). In
data, the algorithm was applied in the laboratory frame
to the energy deposits measured in the CAL cells after
excluding those associated with the scattered-positron
candidate. The jet search was performed in theη–φ
plane. In the following discussion,ET,i denotes the
transverse energy,ηi the pseudorapidity andφi the
azimuthal angle of objecti. For each pair of objects
(where the initial objects are the energy deposits in the
CAL cells), the quantity

(1)dij = [
(ηi − ηj )

2 + (φi − φj )
2]min(ET,i ,ET,j )

2

was calculated. For each object, the quantitydi =
(ET,i)

2 was also calculated. If, of all the values
{dij , di}, dkl was the smallest, then objectsk and l
were combined into a single new object. If, however,
dk was the smallest, then objectk was considered a jet
and was removed from the sample. The procedure was
repeated until all objects were assigned to jets. The
jet variables were defined according to the Snowmass
convention [21]:

ET,jet =
∑
i

ET,i ,

ηjet =
∑

i ET,iηi

ET,jet
, φjet =

∑
i ET,iφi

ET,jet
.

This prescription was also used to determine the
variables of the intermediate objects.

Jet energies were corrected for all energy-loss
effects, principally in inactive material, typically about
one radiation length, in front of the CAL. The jet
transverse-energy resolution was 10% atET,jet =
25 GeV. The corrected jet variables were then used in
applying additional cuts on the selected sample:

• events with at least one jet satisfyingET,jet >

15 GeV and−1< ηjet< 2 were selected;
• events were removed from the sample if the

distance of any of the jets to the positron candidate
in theη–φ plane,

d =
√
(ηjet − ηe)2 + (φjet − φe)2,

was smaller than one unit. This requirement re-
moved photoproduction background.

With the above criteria, 37 933 one-jet, 821 two-jet
and 25 three-jet events were identified.

3.1. Definition of the subjet multiplicity

Subjets were resolved within a jet using all CAL
cells associated with the jet and repeating the applica-
tion of thekT cluster algorithm described above, until,
for every pair of objectsi andj , the quantitydij was
greater thandcut = ycut(ET,jet)

2 [7]. All remaining ob-
jects were called subjets. The reconstruction of subjets
within a jet was performed using the uncorrected cell
and jet energies, since systematic effects largely can-
cel in the ratiodij /(ET,jet)

2 as seen in Eq. (1). The
subjet structure depends upon the value chosen for the
resolution parameterycut. The mean subjet multiplic-
ity, 〈nsbj〉, is defined as the average number of subjets
contained in a jet at a given value ofycut:

〈
nsbj(ycut)

〉 = 1

Njets

Njets∑
i=1

nisbj(ycut),

wherenisbj(ycut) is the number of subjets in jeti and
Njets is the total number of jets in the sample. By de-
finition, 〈nsbj〉 � 1. The mean subjet multiplicity was
measured forycut values in the range(5× 10−4)–0.1.

4. Monte Carlo simulation

Samples of events were generated to determine the
response of the detector to jets of hadrons and the
correction factors necessary to obtain the hadron-level
mean subjet multiplicities. The generated events were
passed through the GEANT 3.13-based [22] ZEUS
detector- and trigger-simulation programs [15]. They
were reconstructed and analysed by the same program
chain as the data.

Neutral current DIS events were generated using
the LEPTO 6.5 program [23] interfaced to HERA-
CLES 4.6.1 [24] via DJANGOH 1.1 [25]. The HER-
ACLES program includes photon andZ exchanges
and first-order electroweak radiative corrections. The
QCD cascade was modelled with the colour-dipole
model [26] by using the ARIADNE 4.08 program
[27] and including the boson–gluon-fusion process.
The colour-dipole model treats gluons emitted from
quark–antiquark (diquark) pairs as radiation from a
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colour dipole between two partons. This results in
partons that are not ordered in their transverse mo-
menta. Samples of events were also generated using
the model of LEPTO based on first-order QCD ma-
trix elements plus parton showers (MEPS). For the
generation of the samples with MEPS, the option for
soft-colour interactions was switched off [28]. In both
cases, fragmentation into hadrons was performed us-
ing the Lund [29] string model as implemented in JET-
SET 7.4 [30]. Events were also generated using the
HERWIG 6.3 [31] program, in which the fragmenta-
tion into hadrons is simulated by a cluster model [32].
The CTEQ4D [33] proton PDFs were used for all sim-
ulations.

The MC events were analysed with the same se-
lection cuts and jet-search methods as were used for
the data. A good description of the measured distribu-
tions for the kinematic and jet variables was given by
both ARIADNE and LEPTO-MEPS. The simulations
based on HERWIG provided a poor description of the
data at low values ofycut (ycut � 5×10−3) and, for this
reason, it was not used to correct the data. At relatively
large values ofycut (ycut � 3 × 10−2), HERWIG gave
a good description of the data. The identical jet algo-
rithm was also applied to the hadrons (partons) to ob-
tain predictions at the hadron (parton) level. The MC
programs were used to estimate QED radiative effects,
which were negligible for the measurements of〈nsbj〉.

5. NLO QCD calculations

Experimental studies of QCD using jet production
in NC DIS at HERA are often performed in the Breit
frame [34]. The analysis of the subjet multiplicity pre-
sented here was instead performed in the laboratory
frame, since calculations of the mean subjet multiplic-
ity for jets defined in the Breit frame can, at present,
only be performed toO(αs ), precluding a reliable de-
termination ofαs . However, calculations of the mean
subjet multiplicity can be performed up toO(α2

s ) for
jets defined in the laboratory frame.

The perturbative QCD prediction for〈nsbj〉 was
calculated as the ratio of the cross section for subjet
production to that for inclusive jet production (σjet):

(2)
〈
nsbj(ycut)

〉 = 1+ 1

σjet

∞∑
j=2

(j − 1)σsbj,j (ycut),

whereσsbj,j (ycut) is the cross section for producing
jets with j subjets at a resolution scale ofycut. The
NLO QCD predictions for the mean subjet multiplicity
were derived from Eq. (2) by computing the subjet
cross section toO(α2

s ) and the inclusive jet cross
section toO(αs ). As a result, theαs -dependence of
the mean subjet multiplicity up toO(α2

s ) is given
by 〈nsbj〉 = 1 + C1αs + C2α

2
s , whereC1 andC2 are

quantities whose values depend onycut and the jet and
kinematic variables.

The measurements of the mean subjet multiplicity
were performed in the kinematic region defined by
Q2 > 125 GeV2 since, at lower values ofQ2, the
sample of events with at least one jet withET,jet >

15 GeV is dominated by dijet events. The calculation
of the mean subjet multiplicity for dijet events can be
performed only up toO(αs), which would severely
restrict the accuracy of the predictions.

The measurements were compared with NLO QCD
calculations using the program DISENT [13]. The cal-
culations were performed in theMS renormalisation
and factorisation schemes using a generalised version
[13] of the subtraction method [35]. The number of
flavours was set to five and the renormalisation (µR)
and factorisation (µF) scales were chosen to beµR =
µF =Q. The strong coupling constant,αs , was calcu-
lated at two loops withΛ(5)

MS
= 202 MeV, correspond-

ing to αs(MZ) = 0.116. The calculations were per-
formed using the CTEQ4M parameterisations of the
proton PDFs. The jet algorithm described in Section 3
was also applied to the partons in the events generated
by DISENT in order to compute the parton-level pre-
dictions for the mean subjet multiplicity. The results
obtained with DISENT were cross-checked by using
the program DISASTER++ [36]. The differences were
smaller than 1% [37]. Although DISENT does not in-
cludeZ exchange, its effect in this analysis was negli-
gible.

Since the measurements involve jets of hadrons,
whereas the NLO QCD calculations refer to partons,
the predictions were corrected to the hadron level
using ARIADNE. The multiplicative correction fac-
tor, Chad, was defined as the ratio of〈nsbj〉 for jets
of hadrons over that for jets of partons. The value
of Chad increases asycut decreases due to the in-
creasing importance of non-perturbative effects. The
hadron-level prediction for〈nsbj〉 approaches

〈
n

jet
hadrons

〉
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as ycut approaches 0, where
〈
n

jet
hadrons

〉
is the mean

multiplicity of hadrons in a jet. However, the maxi-
mum number of partons that can be assigned to a jet
in the NLO calculation is three, so the parton-level
prediction for 〈nsbj〉 is restricted to〈nsbj〉 � 3. This
fundamental problem was avoided by selecting high
ET,jet and a relatively highycut value, i.e.,ET,jet >

25 GeV andycut � 10−2. In this region, the hadroni-
sation correction is small and the measured〈nsbj〉 is
much smaller than three, so that a reliable compari-
son of data and NLO QCD can be made andαs ex-
tracted.

The procedure for applying hadronisation correc-
tions to the NLO QCD calculations was validated
by verifying that the predicted dependence of the
mean subjet multiplicity onycut andET,jet predicted
by NLO QCD was well reproduced by both ARI-
ADNE and LEPTO-MEPS. The predictions based on
HERWIG exhibited a different dependence both at
low values ofycut and at highET,jet; for this rea-
son, the HERWIG model was not used in the evalu-
ation of the uncertainty on the hadronisation correc-
tion.

The following sources were considered in the
evaluation of the uncertainty affecting the theoretical
prediction of〈nsbj〉:

• the uncertainty in the NLO QCD calculations due
to terms beyond NLO, estimated by varyingµR
betweenQ/2 and 2Q, was∼ 3% atycut = 10−2.
The effects of varying the factorisation scale were
found to be negligible;

• the uncertainty in the NLO QCD calculations due
to that in the hadronisation correction was esti-
mated as half of the difference between the val-
ues ofChadobtained with LEPTO-MEPS and with
ARIADNE. It was smaller than 1.5% at ycut =
10−2 for ET,jet> 25 GeV;

• the uncertainty in the NLO QCD calculations due
to the uncertainties in the proton PDFs was es-
timated by repeating the calculations using three
additional sets of proton PDFs, MRST99,
MRST99-g↑ and MRST99-g↓ [38]. The differ-
ences were negligible;

• the NLO QCD calculations were carried out using
µR = ET,jet andµF = Q. The differences were
smaller than 0.3% atycut = 10−2.

6. Data corrections and systematic uncertainties

The raw distribution ofnsbj in the data is compared
to the prediction of the ARIADNE simulation for sev-
eral values ofycut in Fig. 1. The simulation provides
a satisfactory description of the data, thus validating
the use of these MC samples to correct the measured
mean subjet multiplicity to the hadron level. Fig. 1 also
shows that the fraction of jets in the data with more
than three subjets atycut = 10−2 is small; this fraction
becomes negligible forET,jet > 25 GeV, thus allow-
ing a meaningful comparison with the NLO QCD cal-
culations. The mean subjet multiplicity corrected for
detector effects was determined bin-by-bin as〈nsbj〉 =
K〈nsbj〉CAL, where the correction factor was defined
asK = 〈nsbj〉MC

had

/〈nsbj〉MC
CAL . and was evaluated sepa-

rately for each value ofycut in each region ofET,jet;
the subscript CAL (had) indicates that the mean sub-
jet multiplicity was determined using the CAL cells
(hadrons). The deviation of the correction factorK
from unity was less than 10% forycut � 10−2 and de-
creased asycut increased.

The following sources of systematic uncertainty on
the measurement of〈nsbj〉 were considered [37]:

• the differences in the results obtained by using
either ARIADNE or LEPTO-MEPS to correct the
data for detector effects. This uncertainty was
typically smaller than 1%;

• the scattered-positron candidate identification.
The analysis was repeated by using an alternate
technique [39] to select the scattered-positron
candidate resulting in an uncertainty smaller than
0.5%;

• the 1% uncertainty in the absolute energy scale of
the jets [40] resulted in an uncertainty smaller than
0.5%;

• the 1% uncertainty in the absolute energy scale of
the positron candidate [41] resulted in a negligible
uncertainty;

• the uncertainty in the simulation of the trigger and
in the cuts used to select the data also resulted in
a negligible uncertainty.

7. Measurement of the mean subjet multiplicity

The mean subjet multiplicity was measured [42]
for events withQ2 > 125 GeV2, including every jet
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Fig. 1. Distribution of the number of subjets within a jet at different values ofycut for the inclusive sample of jets withET,jet> 15 GeV and

−1< ηjet < 2 in NC DIS atQ2 > 125 GeV2 (dots). The error bars show the statistical uncertainty. For comparison, the predictions of the
ARIADNE simulation, area normalised to the data, are also shown as the histograms.

of hadrons in the event withET,jet > 15 GeV and
−1< ηjet < 2, after correction for detector effects. It
is shown as a function ofycut in Fig. 2(a) and (b) as a
function ofET,jet at ycut = 10−2. The measured mean
subjet multiplicity decreases asET,jet increases. This
result is in agreement with that of a previous pub-

lication [43], in which the internal structure of jets
in NC DIS was studied using the jet shape and it
was observed that the jets become narrower asET,jet
increases. This tendency is also consistent with the
transverse-energy dependence of the mean subjet mul-
tiplicity for jets identified in the Breit frame [10].
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Fig. 2. The mean subjet multiplicity corrected to the hadron level,〈nsbj〉, as a function of (a)ycut and (b)ET,jet at ycut = 10−2 for inclusive

jet production in NC DIS withQ2 > 125 GeV2, −1 < ηjet < 2 and ET,jet > 15 GeV (dots). The inner error bars show the statistical
uncertainty. The outer error bars show the statistical and systematic uncertainties added in quadrature. For most of the points, the experimental
uncertainties are smaller than the size of the symbols. For comparison, the predictions at the hadron level of the ARIADNE (solid line) and
LEPTO-MEPS (dashed line) models are shown.

The measurements in Fig. 2 are compared with
the predictions of the ARIADNE and LEPTO-MEPS.
The LEPTO-MEPS predictions overestimate the ob-
served mean subjet multiplicity; ARIADNE overesti-

mates the data at lowET,jet and approaches the data at
highET,jet.

Calculations of〈nsbj〉 in NLO QCD, corrected for
hadronisation effects, using the sets of proton PDFs
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Fig. 3. (a) The mean subjet multiplicity corrected to the hadron level,〈nsbj〉, as a function ofycut for inclusive jet production in NC DIS with

Q2 > 125 GeV2, −1< ηjet< 2 andET,jet> 15 GeV (dots). The experimental uncertainties are smaller than the size of the symbols. The NLO
QCD calculations, corrected for hadronisation effects and usingµR = µF =Q, are shown for the CTEQ4 sets of proton PDFs (CTEQ4A1,
lower solid line; CTEQ4M, central solid line; CTEQ4A5, upper solid line). The LO QCD calculations, corrected for hadronisation effects and
usingµR = µF =Q and the CTEQ4L set of proton PDFs, are also shown (dashed line). (b) The parton-to-hadron correction,Chad, used to
correct the QCD predictions and determined using ARIADNE (solid line) and LEPTO-MEPS (dashed line). (c) The relative uncertainty on the
NLO QCD calculation due to the variation of the renormalisation scale.

of the CTEQ4 “A-series” are compared to the data
in Figs. 3 and 4. The hadronisation correction is
small in the unshaded regions: as a function ofycut
and for jets withET,jet > 15 GeV,Chad differs from
unity by less than 25% forycut � 10−2 (see Fig. 3);

as a function ofET,jet at ycut = 10−2, Chad differs
from unity by less than 17% forET,jet > 25 GeV
(see Fig. 4). The measured〈nsbj〉 as a function of
ycut is well described by the NLO QCD predictions.
For very small ycut values, the agreement is also
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Fig. 4. (a) The mean subjet multiplicity corrected to the hadron level,〈nsbj〉, atycut = 10−2 as a function ofET,jet for inclusive jet production

in NC DIS withQ2 > 125 GeV2 and−1< ηjet< 2 (dots). The inner error bars show the statistical uncertainty. The outer error bars show the
statistical and systematic uncertainties added in quadrature. (b) The parton-to-hadron correction,Chad, used to correct the QCD predictions and
determined using ARIADNE (solid line) and LEPTO-MEPS (dashed line). (c) The relative uncertainty on the NLO QCD calculation due to the
variation of the renormalisation scale. Other details are as described in the caption to Fig. 3.

good. This is a priori not expected, since, in that
region, fixed-order QCD calculations are affected
by large uncertainties and a resummation of terms
enhanced by lnycut [7] would be required for a precise
comparison with the data. At relatively large values of
ycut, an NLO fixed-order calculation is expected [7]

to be a good approximation to such a resummed
calculation.

The sensitivity of the measurements to the value
of αs(MZ) is illustrated in Fig. 4 by the comparison
of the measured〈nsbj〉 at ycut = 10−2 as a function
of ET,jet with NLO QCD calculations for different
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values ofαs(MZ). The overall description of the data
by the NLO QCD calculations is good, so that the
measurements can be used to make a determination
of αs .

8. Determination of αs

The measurements of〈nsbj〉 for 25 < ET,jet <

71 GeV at ycut = 10−2 were used to determine
αs(MZ) [42]. Theycut value and the lowerET,jet limit
were justified in Section 5; the value ofChad differs
from unity by less than 17% and approaches unity as
ET,jet increases. The mean value ofQ2 was 〈Q2〉 =
1580 GeV2. The following procedure was used:

• NLO QCD calculations of〈nsbj〉 were performed
for the five sets of the CTEQ4 “A-series”. The
value of αs(MZ) used in each partonic cross-
section calculation was that associated with the
corresponding set of PDFs;

• for each bin,i, in ET,jet, the NLO QCD calcu-
lations, corrected for hadronisation effects, were
used to parameterise theαs(MZ) dependence of
〈nsbj〉 according to

[〈nsbj〉
(
αs(MZ)

)]
i

(3)= 1+Ci1αs(MZ)+Ci2α
2
s (MZ).

The coefficientsCi1 andCi2 were determined by
performing aχ2-fit of this form to the NLO
QCD predictions. The NLO QCD calculations
were performed with an accuracy such that the
statistical uncertainties of these coefficients were
negligible compared to any other uncertainty. This
simple parameterisation gives a good description
of theαs(MZ) dependence of〈nsbj〉 over the entire
range spanned by the CTEQ4 “A-series”;

• the value ofαs(MZ) was then determined by a
χ2-fit of Eq. (3) to the measurements of〈nsbj〉.
The resulting fit described the data well, giving
χ2 = 2.7 for four degrees of freedom.

This procedure correctly handles the completeαs -
dependence of the NLO calculations (the explicit
dependence coming from the partonic cross sections
and the implicit one coming from the PDFs) in the fit,

while preserving the correlation betweenαs and the
PDFs.

The uncertainty on the extracted value ofαs(MZ)

due to the experimental systematic uncertainties was
evaluated by repeating the analysis above for each sys-
tematic check. The largest contribution to the experi-
mental uncertainty was that due to the simulation of
the hadronic final state. A total systematic uncertainty
on αs(MZ) of $αs(MZ) = +0.0024

−0.0009 was obtained by
adding in quadrature the individual contributions.

The theoretical uncertainties onαs(MZ) arising
from terms beyond NLO and uncertainties in the
hadronisation correction, evaluated as described in
Section 5, were found to be$αs(MZ) = +0.0089

−0.0071 and
$αs(MZ)= ±0.0028, respectively. The total theoret-
ical uncertainty was obtained by adding these uncer-
tainties in quadrature. In addition, as a cross check, the
measurement was repeated using three of the MRST99
sets of proton PDFs: central,αs ↑↑ andαs ↓↓. The re-
sult agreed with that obtained by using CTEQ4 to bet-
ter than 0.3%. It was checked that the value ofαs is in
agreement with the central result for variations in the
choice ofycut in the range 5× 10−3 to 3× 10−2.

The value of αs(MZ) as determined from the
measurements of〈nsbj〉 for 25< ET,jet < 71 GeV at
ycut = 10−2 is

αs(MZ)= 0.1187

± 0.0017(stat.)+0.0024
−0.0009(syst.)+0.0093

−0.0076(th.).

This result is consistent with recent determinations by
the H1 [5,44] and ZEUS [2,3,45] Collaborations and
with the PDG value,αs(MZ)= 0.1172± 0.0020 [46].
This determination ofαs has experimental uncertain-
ties as small as those based on the measurements of jet
cross sections in DIS. However, the theoretical uncer-
tainty is larger and dominated by terms beyond NLO.
Further theoretical work on higher-order contributions
would allow an improved measurement.

9. Summary

Measurements of the mean subjet multiplicity for
jets produced in neutral current deep inelastice+p
scattering at a centre-of-mass energy of 300 GeV
have been made using every jet of hadrons with
ET,jet > 15 GeV and−1 < ηjet < 2 identified with
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the longitudinally invariantkT cluster algorithm in
the laboratory frame. The average number of subjets
within a jet decreases asET,jet increases.

Next-to-leading-order QCD calculations reproduce
the measured values well, demonstrating a good de-
scription of the internal structure of jets by QCD ra-
diation. The mean subjet multiplicity of an inclusive
sample of jets produced in NC DIS has the advantage
of being mostly sensitive to final-state parton-radiation
processes and of allowing an extraction ofαs with
very little dependence on the proton parton distribu-
tion functions.

A QCD fit of the measurements of the mean subjet
multiplicity for 25< ET,jet < 71 GeV atycut = 10−2

yields

αs(MZ)= 0.1187

± 0.0017(stat.)+0.0024
−0.0009(syst.)+0.0093

−0.0076(th.).
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