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Abstract

First measurements of cross sections for isolated prompt photon production in deep inelasticep scattering have been made
using the ZEUS detector at the HERA electron–proton collider using an integrated luminosity of 121 pb−1. A signal for isolated
photons in the transverse energy and rapidity ranges 5< E

γ
T < 10 GeV and−0.7 < ηγ < 0.9 was observed for virtualities of

the exchanged photon ofQ2 > 35 GeV2. Cross sections are presented for inclusive prompt photons and for those accompanied

by a single jet in the rangeEjet
T � 6 GeV and−1.5 � ηjet < 1.8. Calculations at orderα3αs describe the data reasonably well.

 2004 Elsevier B.V.

1. Introduction

Isolated photons in the final state with high trans-
verse momenta are a direct probe of the dynamics
of hard subprocesses in high energy collisions, since
these ‘prompt’ photons are largely insensitive to the
effects of hadronisation. Prompt photons have been
studied in a number of hadronic experiments. Early
evidence for such processes came from the R806 ex-
periment at the CERN ISR[1] and from WA70[2]
and E706[3]. More recently, the CDF and DØ ex-
periments at the Tevatron collider have performed a
number of QCD tests using prompt photons[4–9]. In
previous ZEUS publications, the production of prompt
photons in photoproduction has been studied[10–12].
In the present work, for the first time, prompt photon
measurements in deep inelastic scattering (DIS) are
reported, both inclusively and accompanied by jets.
These processes test QCD in a new way by studying
processes containing two different hard scales,Q2, the
exchanged photon virtuality, andEγ

T , the transverse
energy of the emitted prompt photon.

Prompt photons are produced in DIS at lowest order
in QCD, as shown inFig. 1. These processes have been
calculated to orderO(α3αs) by Gehrmann–DeRidder,
Kramer and Spiesberger[13], including interference
terms for initial- and final-state radiation from the
electron. In contrast, leading-logarithm parton-shower
Monte Carlo (MC) models do not naturally predict
events with two hard scales.

In this Letter, results are presented for the process
ep → eγX, whereX is anything, and forep → eγ +
jet + Y , whereY does not contain further jets within

the acceptance of the measurement. Comparisons
are made to MC predictions and also toO(α3αs)

calculations for the photon-jet final state.

2. Experimental set-up and event selection

A data sample corresponding to an integrated
luminosity of 121 pb−1 was used, taken between 1996
and 2000. This sample is the sum of 38 pb−1 of e+p

data taken at a centre-of-mass energy of 300 GeV
and 68 pb−1 taken at 318 GeV, plus 16 pb−1 of
e−p data taken at 318 GeV. A single set of results
is presented for this combined sample. The MC cross
sections (seeSection 3) differ by under 4% at the two
centre-of-mass energies, well within the precision of
these measurements. Differences between the cross-
sections fore+p ande−p collisions are expected to
be negligible[14].

A description of the ZEUS detector is given else-
where [15]. Of particular importance in the present
work are the uranium calorimeter (CAL) and the cen-
tral tracking detector (CTD).

The CAL [16] has an angular coverage of 99.7%
of 4π and is divided into three parts (FCAL, BCAL,
RCAL), covering the angular ranges 2.6◦–36.7◦,
36.7◦–129.1◦ and 129.1◦–176.2◦, respectively.44 Each

44 The ZEUS coordinate system is a right-handed Cartesian
system with theZ axis pointing in the proton beam direction,
referred to as the ‘forward direction’, and theX axis pointing left
towards the centre of HERA. The coordinate origin is at the nominal
interaction point.

Open access under CC BY license.

http://creativecommons.org/licenses/by/3.0/
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Fig. 1. The lowest-order tree-level diagrams for prompt photon production inep scattering. Vertex corrections enter at the same order.

part consists of towers longitudinally subdivided into
electromagnetic (EMC) and hadronic (HAC) cells.
The electromagnetic section of the BCAL (BEMC)
consists of cells of 23.3 cm length azimuthally, rep-
resenting 1/32 of the full 360◦, and width of 4.9 cm
in the Z direction at its inner face, at a radius of
123.2 cm from the beam line. These cells have a pro-
jective geometry as viewed from the interaction point.
The profile of the electromagnetic signals observed
in clusters of cells in the BEMC discriminates be-
tween those originating from photons or electrons45

and those originating from neutral-meson decays. The
CAL energy resolutions, as measured under test-beam
conditions, areσ(E)/E = 0.18/

√
E for electromag-

netic showers andσ(E)/E = 0.35/
√

E for hadrons,
with E in GeV.

The CTD[17] is a cylindrical drift chamber situated
inside a superconducting solenoid. Using the tracking
information from the CTD, the vertex of an event can
be reconstructed with a resolution of 0.4 cm inZ and
0.1 cm inX,Y . In this analysis, the CTD tracks are
used to reconstruct the event vertex, and are also used
in the selection criteria for high-ET photons.

The luminosity was determined from the rate of the
bremsstrahlung processep → eγp, where the high-
energy photon was measured in a lead-scintillator
calorimeter[18] located atZ = −107 m.

The DIS events were selected online using a trigger
based on energy deposits in the CAL consistent with a
scattered electron. Offline, events which passed DIS
cuts similar to those used in previous analyses[19]
were selected. In addition, a photon candidate was
required. The value ofQ2, as reconstructed from the
final-state electron, was required to be above 35 GeV2.
The energy of the scattered electron was required to be

45 Hereafter ‘electron’ refersboth to electrons and positrons
unless specified.

above 10 GeV and its polar angle in the range 139.8◦
to 171.9◦, in order to be well measured in the RCAL
and well separated from the photon candidate. Events
were required to have a reconstructed vertex position
within the range|Z| < 40 cm and 35< δ < 65 GeV,
whereδ = ∑

i Ei(1 − cosθi), Ei is the energy of the
ith CAL cell, θi is its polar angle and the sum runs
over all cells.

For the subset of events used in the photon-jet
study, jets were reconstructed from CAL cells using
a cone algorithm with radius 0.7[20] in the laboratory
frame. Corrections for energy losses, principally due
to uninstrumented material in front of the CAL,
were evaluated using MC simulated events, and were
typically +(10–15)% for jets with measured energy
above 6 GeV[12].

3. Monte Carlo event simulation

The MC programs PYTHIA 6.206[21] and HER-
WIG 6.1 [22] were used to simulate prompt photon
emission for the study of event-reconstruction effi-
ciency. In both generators,the partonic processes are
simulated using leading-order matrix elements, with
the inclusion of initial- and final-state parton showers.
PYTHIA simulates the deep inelastic scattering process
at leading order, and radiates a photon from the struck
quark to simulate prompt photons. HERWIG also radi-
ates a photon from the struck quark, but the deep in-
elastic scattering is approximated with Compton scat-
tering between poin-like photons and quarks, using
the equivalent-photon approximation for the incoming
photon beam; this is not expected to be valid above a
few GeV2 in Q2. Neither PYTHIA nor HERWIG simu-
late large angle photon radiation from the electron.

The proton parton distribution CTEQ4L[23] was
used in the HERWIG simulation, whereas CTEQ3M
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[24] was used in PYTHIA . It was checked that the
quark distributions in the CTEQ3M set are within 10%
of the CTEQ4L set in the kinematic region of interest.
Fragmentation into hadrons is performed using the
Lund string model[25] in the case of PYTHIA , and a
cluster model[26] in the case of HERWIG. The events
generated using the PYTHIA and HERWIG programs
were used to correct for detector and acceptance
effects. The corrections provided by PYTHIA were
used as default and those given by HERWIG were
used to estimate the systematic uncertainties due to
the treatment of the event dynamics and of parton
showering and hadronisation. The detector response to
photons and neutral mesons (π0 andη) was simulated
by using single-particle MC generated events.

The generated events were passed through the
ZEUS detector and trigger simulation programs based
on GEANT 3.13 [27]. They were reconstructed and
analysed by the same programs as the data. The jet
search was performed using the energy measured in
the CAL cells in the same way as for the data. The
same jet algorithm was also applied to the final-state
particles. The comparisons between data and MC in
Section 6are made at the hadron level.

To study the effects of electron radiation, simula-
tions were made of deep inelastic scattering events us-
ing the HERACLES4.6.1[28] program with the DJAN-
GOH [29] interface to the MC generators that provide
the hadronisation. The collinear radiative corrections
were found to be small in the kinematic region of this
analysis and were neglected.

4. Photon candidate selection

The identification of events containing an isolated
prompt photon candidate follows closely the approach
used in previous analyses[10–12]. Events were se-
lected on the basis of an isolated photon candidate de-
tected in the BCAL. The algorithm selected predomi-
nantly electromagnetic clusters of cells within a small
angular cone. Initially, larger electromagnetic clusters
than are typical of a single photon were accepted to
estimate backgrounds. Use of shower shapes as a dis-
criminant, as described below, allowed subtraction of
the backgrounds due toπ0 andη production.

It was required that the reconstructed transverse
energy of the cluster satisfiedEγ

T > 5 GeV and the

pseudorapidity satisfied−0.7 < ηγ < 0.9. The cut
E

γ
T < 10 GeV was imposed to ensure that theπ0 and

η subtraction method was effective.
The photon candidate was well separated from

the scattered electron. Monte Carlo simulations and
O(α3αs) calculations (seeSection 6.2) show that for
electrons in the range defined inSection 2, most pho-
tons radiated from the electron fall outside the prompt-
photon acceptance used in this analysis, though they
still give an important contribution to the cross section
in the kinematic region of the measurement.

To reduce backgrounds, the photon-candidate clus-
ter was required to be isolated by demanding�r >

0.2, where�r = √
�φ2 + �η2, the distance to the

nearest reconstructed track inη–φ space. It was fur-
ther required thatEγ

T /Econe
T > 0.9, whereEcone

T is the
energy within a cone inη–φ of radius 1.0 around
the photon candidate. This energy isolation require-
ment suppresses the contribution from photon candi-
dates produced within jets. Deeply virtual Compton
scattering (DVCS) events were removed by demand-
ing at least two tracks reconstructed in the CTD, since
in DVCS the final state seen in the detector consists
only of a photon and an electron which are well sepa-
rated[30,31].

The selected candidates were still dominated by
neutral mesons, such asπ0 and η, which decay
to photons. The single-photon signal was statisti-
cally extracted from the background using BEMC
energy-cluster shapes. The first distribution consid-
ered was that of〈δZ〉, where〈δZ〉 = ∑

(Ecell|Zcell −
Z̄|)/∑

Ecell. HereEcell is the energy deposited in a
BEMC cell,Zcell is the cell number measured in theZ

direction andZ̄ is the energy-weighted mean ofZcell.
Fig. 2(a)shows the〈δZ〉 distribution for data, together
with a fit based on photon shower shapes and a sim-
ulation of single particles in the detector (π0 andη).
Clear peaks are visible at〈δZ〉 � 0.15 due to single
photons and〈δZ〉 � 0.5 due toπ0 → γ γ , as well as
a tail due to the decays of heavier particles to two or
more photons.

The photon shower shapes used were derived in
two ways: from DVCS data[31], and from single-
photon MC simulation. InFig. 2, photons found
in DVCS data events are shown. The results of
the two shower-shape methods gave indistinguishable
background subtractions and differed only by an
overall scale factor of 5% on the acceptance of
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Fig. 2. (a) Distribution of〈δZ〉 for prompt photon candidates in selected events. (b) Distribution offmax after a cut on〈δZ〉 < 0.65. Also given
are fitted distributions for Monte Carloη mesons,π0 +η andπ0 +η +γ (where theγ is taken from DVCS data), with similar selection criteria
andE

γ
T

spectrum to the observed candidates.

the prompt-photon signal. The DVCS method gave
the higher acceptance, as the DVCS single-photon
showers are slightly narrower than those from the MC
showers. The MC method was used in this analysis,
because of the higher statistics available. This allows
rapidity and energy dependences of shower shapes
to be modelled; a scale correction of 5% was then
applied.

The η contribution was determined from a fit to
the 〈δZ〉 distribution above 0.65. After removing
candidates with〈δZ〉 > 0.65, the final background
subtraction was performed using the variablefmax,
defined as the ratio of the energy of the highest-energy
cell in an electromagnetic cluster to the total cluster
energy. When incident on the BEMC, single photons
form narrow clusters, with most of the energy going
into only one cell, giving anfmax distribution peaked
close to unity. Because of the projective geometry
of the BEMC, a photon entering at the boundary
between two cells typically hasfmax � 0.5. Thus the
fmax distribution for single photons peaks close to
1.0 and extends down to 0.5. In contrast, the neutral
mesons decay to more than one photon, forming larger
clusters in the BEMC. In each bin of a plotted physical
quantity, events were divided into two classes, with

high and low values offmax, respectively. From the
number of events in each class, as well as the ratios of
the corresponding numbers for thefmax distributions
of the single-particle samples, the number of events in
the given bin was evaluated[10].

A total of 1875 events with〈δZ〉 < 0.65 were
selected, of which 877 havefmax > 0.75, yielding a
signal of 572 and a background of 1303 events. The
fits and signal extraction procedure were repeated for
each bin of each distribution.

Studies based on single-particle MC samples
showed that the photon energy measured in the BCAL
was on average less than the true value, owing to en-
ergy loss in the uninstrumented material in front of
the BCAL. To compensate for this effect, a correc-
tion of typically 0.2 GeV was added to the photon en-
ergy[12].

5. Systematic uncertainties

The following sources of systematic uncertainty
were investigated: variations of the nominalfmax
spectra for the photon affecting the signal extraction;
change in the detector energy scale calibration by
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±3%, reflecting the overall energy scale uncertainty;
and a change in the energy cut in both MC events and
data by±10% for photons. This last uncertainty is mo-
tivated by the r.m.s. differences between hadron-level
generated and reconstructed energies. Also included
as a systematic uncertainty is the difference in cal-
culated acceptance corrections between HERWIG and
PYTHIA , which is mostly well below the statistical
uncertainty. A change of±20% in the hadronic en-
ergy cut for photon-jet events for both data and recon-
structed Monte Carlo events, representing the r.m.s.
difference between hadron-level and reconstructed jet
energies was considered as an additional systematic
uncertainty. The uncertainty of 2.2% on the luminos-
ity measurement was neglectedin the differential cross
sections but included in the total cross sections.

The method used for background subtraction is
more sensitive to the shape of thefmax distribution
of the background than to that of the signal. The
background shape is relatively insensitive to theπ0/η

ratio and hence the results using DVCS and MC
photons are very similar. A study was made of the
effect on the results of the fact that the fits fall below
the data at high〈δZ〉. This is due to events with large
E

γ
T , where the contribution of events with more than

one π0 with a multi-π0 invariant mass above theη
mass is likely to be important. A fit was made to the
high-Eγ

T data excluding the region〈δZ〉 > 1.0. The
change in the extracted signal was well below the
statistical uncertainty in the bin.

6. Results

6.1. Inclusive prompt photon production

The cross section for inclusive prompt photon
production,ep → eγX, has been measured in the
following kinematic region:Q2 > 35 GeV2, Ee >

10 GeV, 139.8◦ < θe < 171.8◦, −0.7 < ηγ < 0.9 and
5 < E

γ
T < 10 GeV, with photon isolation such that at

least 90% of the energy found in anη–φ cone of radius
1.0 around the photon is associated with the photon.
The measured cross section is

σ(ep → eγX) = 5.64± 0.58 (stat.)+0.47
−0.72 (syst.) pb.

The predicted cross sections from PYTHIA and HER-
WIG are lower than the data by factors of approxi-

mately 2 and 8, respectively.Fig. 3(a) and (b)show the
measured rapidity and transverse energy distributions,
compared to MC predictions normalised to the data.
Both PYTHIA and HERWIG describe theEγ

T spectrum
and HERWIG describes the rapidity well.Fig. 3(c)
shows theQ2 distribution of the data, again compared
to MC predictions. The agreement of PYTHIA with the
data is reasonable, but HERWIG fails to describe the
measuredQ2 spectrum, which is expected given the
limitations of this simulation (seeSection 3). As dis-
cussed inSection 6.2, theO(α3αs) calculations sug-
gest that the discrepancies between PYTHIA and the
data in the rate and photon rapidity distribution may
be due to the fact that wide-angle initial- and final-
state radiation from the electron are not included in
the MC calculations.

6.2. Prompt photon plus jet production

Owing to divergences in cross-section calculations
for prompt photons, a comparison toO(α3αs) QCD
predictions in DIS can be made only when there is a
jet accompanying an isolated prompt photon. Jets were
reconstructed as described inSection 2. For events
satisfying the criteria for isolated prompt photons
described above, jets were counted only if they had
E

jet
T > 6 GeV and−1.5 < ηjet < 1.8. The measured

total cross section for photon plus a single jet within
this kinematic region is

σ(ep → eγ + jet+ Y )

= 0.86± 0.14 (stat.)+0.44
−0.34 (syst.) pb.

Fig. 4shows the differential cross sections for ‘prompt
photon plus one jet’ events, together with MC predic-
tions. The transverse energies of the photon and the jet
are well described by the MC calculations. HERWIG

describes the photon rapidity well but the jet pseudo-
rapidity peaks at lower values. PYTHIA describes the
jet pseudorapidity well, but the photon rapidity peaks
too far forward, as was also the case for inclusive pho-
tons.

Fig. 5 shows the same data asFig. 4, compared to
theO(α3αs) parton-level calculations of Kramer and
Spiesberger[14]. These include all possible initial-
and final-state single photon and gluon radiation, to-
gether with appropriate vertex corrections, and their
interference terms. Higher-order effects, such as col-
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Fig. 3. Inclusive prompt-photon differential cross section (a) in rapidity, (b) in transverse energy, in the range−0.7 < ηγ < 0.9 and
5 < E

γ
T

< 10 GeV. The inner error bars are statistical while the outer represent systematic uncertainties added in quadrature. (c) Distribution

of Q2. In each case the histograms show MC predictions, normalised to data.

linear bremsstrahlung in the same event as a hard
non-collinear photon, estimated to be a 4% effect,
are omitted. These calculations use the phase-space-
slicing method to cancel the infrared and collinear sin-
gularities. The MRST parton distributions[32] were
used for the parametrisation of the proton structure.
Parton-to-photon fragmentation functions were taken
from Bourhis, Fontannaz and Guillet[33]. The renor-
malisation scale was chosen to be the transverse en-
ergy of the jet. The effect of changing this scale up
or down by a factor of two, to estimate the possi-

ble contribution of unknown higher-order terms, is
shown in Fig. 5. The predicted total cross section
for the mixture of energies and beam charges used
in this analysis is 1.33± 0.07 pb, where the uncer-
tainty corresponds to the change in the result when
the renormalisation scale is varied by a factor of two.
This parton-level calculation is compatible with the
data.

By definition, theO(α3αs) parton-level calculation
does not include the effects of hadronisation. Hadro-
nisation effects were investigated by comparing the
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Fig. 4. Cross section for prompt-photon-plus-jet production differential in (a) photon rapidity, (b) photon transverse energy, (c) jet
pseudorapidity, (d) jet transverse energy, for events with a photon in the range−0.7< ηγ < 0.9 and 5< E

γ
T

< 10 GeV and one jet in the range

−1.5 < ηjet < 1.8 andE
jet
T

> 6 GeV. The inner error bars are statistical and the outer represent systematic uncertainties added in quadrature.
The band around the data points shows the effect of calorimeter energy-scale uncertainty. The histograms show Monte Carlo predictions,
normalised to the data.

parton-level PYTHIA and HERWIG distributions with
the hadron level. The effect of hadronisation would be
to reduce the predictions by 30% to 40%. Because the
poor overall description of the data by the MC sim-
ulations makes the hadronisation corrections derived
from them unreliable, such corrections were not ap-
plied to theO(α3αs) calculation.

The O(α3αs) calculation shows that 65% of pho-
tons are emitted by the electron, concentrated at low

photon rapidities, and therest by quarks. The pho-
ton rapidity and jet pseudorapidity distributions for
the latter component resemble the PYTHIA predic-
tions, which include only such photons. Interference
between these processes contributes only 2% to the
total. The transverse-energy distributions of the two
processes are similar. TheO(α3αs) calculation pre-
dicts a higher jet cross section at forward pseudora-
pidity and at lowE

γ

T than is seen in the data.
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Fig. 5. Cross section for prompt-photon-plus-jet production differential in (a) photon rapidity, (b) photon transverse energy, (c) jet
pseudorapidity, (d) jet transverse energy, for events with a photon in the range−0.7 < ηγ < 0.9 and 5< E

γ
T

< 10 GeV and one jet in the

range−1.5 < ηjet < 1.8 andE
jet
T

> 6 GeV. The inner error bars are statistical while the outer represent systematic uncertainties added in
quadrature. The band around the data points shows the effect of calorimeter energy scale uncertainty. The boxed band shows the parton-level
predictions of Kramer and Spiesberger including the effect of renormalisation scale uncertainty. The single line indicates their prediction of the
contribution of photons radiated from the quark line.

7. Conclusions

The first observation of prompt photon produc-
tion in deep inelastic scattering has been presented,
together with distributions for accompanying jets.
Leading-logarithm parton-shower Monte Carlo mod-
els for photon emission by quarks (PYTHIA and HER-
WIG) are each able to describe some but not all of the

features of the data. Both describe the transverse en-
ergy distribution well and HERWIG describes the pho-
ton rapidity well. Both models predict too low a cross
section.

The results have been compared to anO(α3αs)

parton-level calculation forep → eγ + jet + Y in the
acceptance region of this measurement. The level of
agreement is satisfactory in photon rapidity and jet
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transverse energy but only fair for photon transverse
energy and jet pseudorapidity. The total predicted
cross section is consistent with the measured value.
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