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Abstract

Deep inelastic scattering and its diffractive component, ep → e′γ∗p → e′XN ,

have been studied at HERA with the ZEUS detector using an integrated lu-

minosity of 4.2 pb−1. The measurement covers a wide range in the γ∗p c.m.

energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass MX .

The diffractive cross section for MX > 2 GeV rises strongly with W ; the rise is

steeper with increasing Q2. The latter observation excludes the description of

diffractive deep inelastic scattering in terms of the exchange of a single Pomeron.

The ratio of diffractive to total cross section is constant as a function of W , in

contradiction to the expectation of Regge phenomenology combined with a naive

extension of the optical theorem to γ∗p scattering. Above MX of 8 GeV, the ra-

tio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross

section. The data are also presented in terms of the diffractive structure func-

tion, F
D(3)
2 (β, x

IP
, Q2), of the proton. For fixed β, the Q2 dependence of x

IP
F

D(3)
2

changes with x
IP

in violation of Regge factorisation. For fixed x
IP

, x
IP
F

D(3)
2 rises

as β → 0, the rise accelerating with increasing Q2. These positive scaling vio-

lations suggest substantial contributions of perturbative effects in the diffractive

DIS cross section.
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A. Kotański6, W. S lomiński
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C. Youngman, W. Zeuner

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

S. Schlenstedt

Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany

G. Barbagli, E. Gallo, C. Genta, P. G. Pelfer

University and INFN, Florence, Italy e

A. Bamberger, A. Benen, F. Karstens, D. Dobur, N.N. Vlasov14

Fakultät für Physik der Universität Freiburg i.Br., Freiburg i.Br., Germany b

P.J. Bussey, A.T. Doyle, J. Ferrando, J. Hamilton, S. Hanlon, D.H. Saxon, I.O. Skillicorn

Department of Physics and Astronomy, University of Glasgow, Glasgow, United King-

dom m

I. Gialas15

Department of Engineering in Management and Finance, Univ. of Aegean, Greece

T. Carli, T. Gosau, U. Holm, N. Krumnack16, E. Lohrmann, M. Milite, H. Salehi,

P. Schleper, T. Schörner-Sadenius, S. Stonjek17, K. Wichmann, K. Wick, A. Ziegler,

Ar. Ziegler

Hamburg University, Institute of Exp. Physics, Hamburg, Germany b

C. Collins-Tooth18, C. Foudas, C. Fry, R. Gonçalo19, K.R. Long, A.D. Tapper
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1 Introduction

Inclusive deep inelastic lepton-nucleon scattering (DIS) has been measured over a wide

kinematic range. This has allowed a precise description of the nucleon structure functions

obtained through QCD analyses using the DGLAP evolution equations [1,2]. It has been

established at HERA, that diffraction, where the proton or a low-mass nucleonic system

emerge from the interaction with almost the full energy of the incident proton, contributes

substantially to the DIS cross section [3]. Extensive measurements of diffractive DIS have

been made by both the ZEUS and H1 collaborations [4–7].

The diffractive component of DIS is analysed in terms of conditional parton distribution

functions (PDFs) [4,7]. According to the QCD factorisation theorem [8,9], these diffractive

PDFs will also undergo QCD evolution as a function of the photon virtuality Q2 in the

same way as the inclusive proton PDFs. The dipole model [10–13] provides an appealing

picture that can be applied in DIS to both inclusive and diffractive scattering. In this

model, the virtual photon dissociates into qq and qqg dipoles which then interact with

the proton target, predominantly through gluon exchange. The size of the dipole is given

by Q2 and, in the kinematic range of HERA, varies from a typical hadron size down to

much smaller values.

For hadron-hadron collisions, a large body of data on total, elastic and diffractive cross

sections [14] has been parameterised in Regge phenomenology by the exchange of the

Pomeron trajectory. An early seminal suggestion to combine Regge phenomenology with

QCD [15] in a t-channel picture introduced the idea of a Pomeron structure function.

Assuming that diffraction can be described by the exchange of the Pomeron, its partonic

structure can be determined in diffractive DIS. Such an approach depends on the validity

of Regge factorisation, which implies a Pomeron flux that is independent of Q2.

For scattering of on-shell particles, such as γp → γp, the optical theorem relates the

imaginary part of the forward elastic amplitude to the total γp cross section. Similarly,

diffractive scattering of virtual photons leading to a low-mass hadronic system should also

be closely related to the total virtual photon-proton cross section.

This paper reports high statistics results from the ZEUS experiment on e−p deep inelastic

scattering (Fig. 1),

ep → e + anything,

with the focus on diffractive production by virtual photon-proton scattering (Fig. 2),

γ∗p → XN,

(where N is a proton or a low-mass nucleonic state) and a comparison with the total γ∗p

cross section.
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In comparison to previous ZEUS measurements of diffraction [5], the detector configura-

tion was improved in the following way. The installation of a forward plug calorimeter

(FPC) in the beam hole of the forward uranium calorimeter extended the forward rapidity

coverage. As a result, the measurable range in the mass of the system X was increased

by a factor of 1.7. At the same time, the contribution of nucleon dissociation was limited

to masses MN ≤ 2.3 GeV. The rear beam hole in the detector was decreased in size by

moving the calorimeter modules above and below closer to the beams. This increased the

acceptance for low Q2 and large W events. These measures substantially improved the

precision and kinematic coverage in comparison to previous HERA measurements [4–6].

This paper is organized as follows. The experimental setup is described in Section 2.

Reconstruction of event kinematics and event selection are described in Section 3. Models

for inclusive and diffractive DIS are presented in Section 4. Extraction of the diffractive

contribution is discussed in Section 5. Evaluation of the total and diffractive cross sections

is described in Section 6. Section 7 presents the results on the proton structure function

and the total γ∗p cross section. The diffractive cross section is presented in terms of MX ,

W and Q2, and compared to the total cross section in Section 8. The diffractive structure

function of the proton is discussed in Section 9.

2 Experimental set-up

The data used for this measurement were taken at the HERA ep collider using the ZEUS

detector in 1998-1999 when electrons of 27.5 GeV collided with protons of 920 GeV. The

data correspond to an integrated luminosity of 4.2 pb−1.

A detailed description of the ZEUS detector can be found elsewhere [16, 17]. A brief

outline of the components that are most relevant for this analysis is given below.

Deep inelastic scattering events were identified using information from the uranium-

scintillator calorimeter (CAL), the forward plug calorimeter (FPC), the central tracking

detector (CTD), the small angle rear tracking detector (SRTD) and the rear part of the

hadron-electron separator (RHES).

Charged particles are tracked in the CTD [18]. The CTD consists of 72 cylindrical drift

chamber layers, organized in nine superlayers covering the polar-angle 1 region 150 < θ <

1640. The CTD operates in a magnetic field of 1.43 T provided by a thin solenoid. The

1 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

proton direction, referred to as the “forward direction”, and the X axis pointing left towards the

centre of HERA. The coordinate origin is at the nominal interaction point.
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transverse-momentum resolution for full-length tracks is σ(pT )/pT = 0.0058pT ⊕ 0.0065⊕
0.0014/pT , with pT in GeV.

The CAL [19] consists of three parts: the forward (FCAL), the barrel (BCAL) and the rear

(RCAL) calorimeters. Each part is subdivided transversely into towers and longitudinally

into one electromagnetic section (EMC) and either one (in RCAL) or two (in BCAL and

FCAL) hadronic sections (HAC). The smallest subdivision of the calorimeter is called a

cell. The CAL energy resolutions, as measured under test-beam conditions, are σ(E)/E =

0.18/
√
E for electrons and σ(E)/E = 0.35/

√
E for hadrons (E in GeV). The CAL covers

99.7% of the total solid angle. The beam hole in the RCAL was 20 × 8 cm2 [20].

The position of electrons scattered at small angles to the electron-beam direction was

determined including the information from the SRTD [20, 21]. The SRTD is attached to

the front face of the RCAL and consists of two planes of scintillator strips, 1 cm wide

and 0.5 cm thick, arranged in orthogonal orientations. Ambiguities in SRTD hits were

resolved with the help of the RHES [22], which consists of a layer of approximately 10,000

(2.96 × 3.32 cm2) silicon-pad detectors inserted in the RCAL at a depth of 3.3 radiation

lengths. Electrons scattered at higher Q2 were also measured in the CTD.

The FPC [23] was used to measure the energy of particles in the pseudorapidity range

η ≈ 4.0 − 5.0. It was a lead-scintillator sandwich calorimeter read out by wavelength-

shifter (WLS) fibers and photomultipliers (PMT). It was installed in the 20×20 cm2 beam

hole of FCAL. The FPC had outer dimensions of 192 × 192 × 1080 mm3 and a hole of 3.15

cm radius for the passage of the beams. The minimum angle for particle detection was 12

mrad which corresponds to a pseudorapidity of 5.1. In the FPC, 15 mm-thick lead plates

alternated with 2.6-mm thick scintillator layers. The WLS fibers of 1.2 mm diameter

passed through 1.4 mm holes located on a 12 mm grid in the lead and scintillator layers.

The FPC was subdivided longitudinally into an electromagnetic (10 layers) and a hadronic

section (50 layers) representing a total of 5.4 nuclear absorption lengths. The scintillator

layers consisted of tiles forming towers which are read out individually. The cell cross

sections were 24×24 mm2 in the electromagnetic and 48×48 mm2 in the hadronic section.

The FPC was tested and calibrated at CERN with electron, muon and hadron beams. The

measured energy resolution for electrons was σE/E = (0.41 ± 0.02)/
√
E ⊕ 0.062 ± 0.002,

(E in GeV). When installed in the FCAL, the energy resolution for pions was σE/E =

(0.65 ± 0.02)/
√
E ⊕ 0.06 ± 0.01 (E in GeV) and the e/h ratio was close to unity. The

relative calibration of the FPC cells was regularly adjusted using measurements from a
60Co source, resulting in an average energy scale uncertainty of 4% (3%) for the EMC
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(HAC) cells [24] as determined with DIS events at high Q2 2.

3 Reconstruction of kinematics and event selection

This section describes event reconstruction and selection common to DIS inclusive and

diffractive data samples.

The reaction e−(k) p(P ) → e−(k′) + anything at fixed squared centre-of-mass (c.m.)

energy, s = (k + P )2, is described in terms of Q2 ≡ −q2 = −(k − k′)2, Bjorken x =

Q2/(2P · q) and s ≈ 4EeEp, where Ee and Ep denote the electron and proton beam

energies, respectively. For this data set,
√
s = 318 GeV. The fractional energy transferred

to the proton in its rest system is y ≈ Q2/(sx). The c.m. energy of the total hadronic

system, W , is given by W 2 = [p+ (k− k′)]2 = m2
p +Q2(1/x− 1) ≈ Q2/x = ys, where mp

is the mass of the proton.

Diffraction, e−(k) p(P ) → e−(k′) + N(N) + X , is described in terms of the mass MX of

the system X , and the mass MN of the system N . Since t, the four-momentum transfer

squared, between the incoming proton and the outgoing system N , t = (p−N)2, was not

measured, the results presented are integrated over t.

The diffractive structure function was analyzed in terms of the momentum fraction of the

proton carried by the Pomeron, x
IP

= [(P−N)·q]/(P ·q) ≈ (M2
X +Q2)/(W 2+Q2), and the

fraction of the Pomeron momentum carried by the struck quark, β = Q2/[2(P −N) · q] ≈
Q2/(M2

X + Q2). The variables x
IP

and β are related to the Bjorken scaling variable, x,

via x = βx
IP

.

The events studied are of the type

ep → e′X + rest, (1)

where X denotes the hadronic system observed in the detector and ‘rest’ the particle

system escaping detection through the forward and/or rear beam holes.

Scattered electrons were identified with an algorithm based on a neural network [25].

The direction and energy of the scattered electron were determined from the combined

information given by CAL, SRTD, RHES and CTD. The impact point of the electron on

the face of the RCAL had to lie outside an area of 26.6 cm × 17 cm (box cut) centred on

2 Throughout the running period, DIS neutral current events, ep → eX , with Q2 > 80 GeV2, were

selected without using information from the FPC. The average energy deposited by the hadronic

system in the individual FPC cells was used to monitor the energy calibration of each cell during the

data-taking period.
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the beam axis. Further fiducial cuts on the impact point were imposed to ensure reliable

measurement of the electron energy.

The value of Q2 was reconstructed from the measured energy E ′

e and scattering angle θe,

of the electron, Q2 = 2EeE
′

e(1 + cos θe). The hadronic system was reconstructed from

energy-flow objects (EFO) [24, 26] which combine the information from CAL and FPC

clusters and from CTD tracks, and which were not assigned to the scattered electron

(hadronic EFOs).

The value of W was determined using the weighted average of the values given by the

electron and the hadron measurements (see Appendix A).

The mass of the system X was determined by summing over all hadronic EFOs,

M2
X

= (
∑

Ph)2,

where Ph is the four-momentum vector of each EFO h. All kinematic variables used to

describe inclusive and diffractive scattering were derived from MX , W and Q2.

The coordinates Xvtx, Yvtx, Zvtx of the event vertex were determined with tracks recon-

structed in the CTD. The average Xvtx, Yvtx values varied by ±0.1 cm and ±0.03 cm,

respectively, over the data-taking period. Since the variations were small, and the trans-

verse size of the beams were smaller than the resolution, the average Xvtx, Yvtx values were

used. The distribution of Zvtx was approximately Gaussian with an r.m.s. of ±11 cm.

The value of Zvtx was taken from the reconstructed event vertex. For events without a

measured primary vertex, the average Z vertex for each data run was used.

If a scattered-electron candidate was found, the following criteria were imposed to select

the DIS events:

• the scattered-electron energy E ′

e be at least 10 GeV;

• the total measured energy of the hadronic system be at least 400 MeV;

• yFBJB > 0.004, where yFBJB =
∑

h(Eh − PZh)/(2Ee), summed over all hadronic EFOs in

FCAL plus BCAL; or at least 400 MeV be deposited in the BCAL or in the RCAL

outside of the ring of towers closest to the beamline;

• −54 < Zvtx < 50 cm;

• 46 <
∑

i=e,h(Ei−PZi) < 64 GeV, where the sum runs over both the scattered electron

and all hadronic EFOs. This cut reduces the background from photoproduction and

beam-gas scattering and removes events with large initial-state QED radiation;

• candidates for QED-Compton events, consisting of a scattered electron candidate and

a photon candidate with mass Meγ less than 0.25 GeV and total transverse momentum

less than ≈ 1.5 GeV, were removed.
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The contamination from electron (proton) beam-gas scattering was measured using non-

colliding electron (proton) bunches and found to be negligible.

About 800,000 events passed the selection cuts. The kinematic range for inclusive and

diffractive events was chosen taking into account detector resolution and statistics. About

612,000 events were retained which satisfied 37 < W < 245 GeV and 2.2 < Q2 < 80 GeV2.

The resolutions of the reconstructed kinematic variables were estimated using Monte Carlo

(MC) simulation of diffractive events of the type γ∗p → XN (see Section 4). For the MX ,

W and Q2 bins considered in this analysis, the resolutions are approximately σ(W )
W

= 1
W 1/2 ,

σ(Q2)
Q2 = 0.25

(Q2)1/3
and σ(MX )

MX
= c

M
1/3
X

, where c = 0.6 GeV1/3 for MX < 1 GeV and c = 0.4

GeV1/3 for MX ≥ 1 GeV, with MX ,W in units of GeV and Q2 in GeV2.

Results are presented for seven bins in W , seven bins in Q2 and six bins in MX , as shown

in Table 1. The QED-Born-level cross sections and structure functions are determined

as averages over these intervals and transported (see Section 6) to the reference values

(MX ref ,Wref , Q
2
ref) listed in Table 1.

4 Monte Carlo simulations

The data were corrected for detector acceptance and resolution with suitable combina-

tions of several MC models. Events from inclusive DIS, including radiative effects, were

simulated using the HERACLES 4.6.1 [27] program with the DJANGOH 1.1 [28] interface

to the hadronisation programs and using the CTEQ4D next-to-leading-order PDFs [29].

In order to improve the description of the existing measurements at Q2 < 2 GeV2, a

parametrisation [30] of the measured F2 data was used to reweight the generated non-

diffractive events. In HERACLES, O(α) electroweak corrections are included. The colour-

dipole model of ARIADNE 4 [31], including boson-gluon fusion, was used to simulate the

O(αS) plus leading-logarithmic corrections to the quark-parton model. The Lund string

model as implemented in JETSET 7.4 [32] was used by ARIADNE for hadronisation.

Diffractive DIS in which the proton does not dissociate, ep → eXp (including the pro-

duction of ω and φ mesons via ep → eV 0p, V = ω, φ but excluding ρ0 production),

were simulated with SATRAP which is based on a saturation model [12] and is inter-

faced to the RAPGAP 2.08 framework [33]. The QED radiative effects were simulated

with HERACLES. The QCD parton showers were simulated with LEPTO 6.5 [34]. The

production of ρ0 mesons, ep → eρ0p, was simulated with JETSET 7.4 interfaced to the

module ZEUSVM [35] which uses a parametrisation of the measured ρ0 cross sections as

well as of the production and decay angular distributions [36, 37].
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The diffractive process in which the proton dissociates, ep → eXN , was simulated with

SATRAP interfaced to a module called SANG [38]. SANG includes the production of

ρ0 mesons. The mass spectrum of the system N was generated according to dσ/dM2
N ∝

(1/M2
N)n with n = 1. The fragmentation of the system N was simulated using JETSET

7.4. The reweighting procedure used to match the generated MN spectrum with that of

the data is described in Section 5.2.

All DIS processes except for those simulated by ZEUSVM were generated starting at

Q2 = 0.5 GeV2; events from ZEUSVM were generated starting at Q2 = 0.7 GeV2, since

the contribution from lower values of Q2 was negligible. Since the diffractive events in

data and MC showed different W and β dependences, events generated by SATRAP,

which were the bulk of MC diffractive events, were reweighted to match the data.

In order to test for a possible contribution from Reggeon exchange to the final state

reaction γ∗p → XN , events were generated with RAPGAP in accordance with the analysis

of the Regge contribution given in Appendix C. The background from photoproduction

was estimated with events generated by PYTHIA 5.7 [32].

The ZEUS detector response was simulated using a program based on GEANT 3.13 [39].

The generated events were passed through the detector and trigger simulation and pro-

cessed by the same reconstruction and analysis programs as the data. The Zvtx distribu-

tion used in the MC was reweighted to agree with the data.

The simulation of the measured total hadronic energy was checked with the balance of

the measured transverse momenta of the scattered electron and that of the observed total

hadronic system. For both MC and data, an average transverse momentum balance was

achieved by increasing the measured hadronic energies by a factor of 1.065. The mass

MX reconstructed from the energy-corrected EFOs, in the MX region analyzed, required

an additional correction factor of 1.10 which was determined from MC simulation 3.

Good agreement between data and simulated event distributions was obtained for both

the inclusive and diffractive samples. More details on the event simulation can be found

elsewhere [24, 38].

3 The hadrons produced in diffractive events, on average, have lower momenta than those for hadrons

from non-peripheral events, and their fractional energy loss in the material in front of the calorimeter

is larger.
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5 Determination of the diffractive contribution

5.1 The MX method

The diffractive contribution was extracted from the data using the MX method [5, 40].

The virtual photon-proton collision can be described as (see Eq. (1)) γ∗p → X + rest,

where X represents all particles measured in the detector and ‘rest’ all particles that

escape through the beam holes. In the QCD picture of non-peripheral DIS, X is related

to the struck quark and ‘rest’ to the proton remnant, both of which are coloured states.

The final-state particles are expected to be uniformly emitted in rapidity along the γ∗p

collision axis leading to final-state particles which populate uniformly the rapidity gap

between the struck quark and the proton remnant [41]. In this case, it can be shown from

general arguments (see Appendix B) that the mass, MX , is distributed as

dN non−diff

d lnM2
X

= c · exp(b · lnM2
X

), (2)

where b and c are constants. DJANGOH predicts, for non-peripheral DIS, b ≈ 1.9.

The diffractive reaction, γ∗p → XN , on the other hand, has different characteristics. The

incoming proton undergoes a small perturbation and emerges either intact, or as a low-

mass nucleonic state, carrying a large fraction, xL, of the incoming proton momentum.

Diffractive scattering shows up as a peak near xL = 1, the mass of the system X being

limited by kinematics to M2
X/W

2 <∼ 1−xL. Moreover, the distance in rapidity between the

outgoing nucleon system N and the system X is ∆η ≈ ln(1/(1−xL)) [42], becoming large

when xL is close to one. Combined with the limited values of MX and the peaking of the

diffractive cross section near xL = 1, this leads to a large separation in rapidity between N

and any other hadronic activity in the event. For the vast majority of diffractive events,

the decay particles from the system N leave undetected through the forward beam hole.

For a wide range of MX values, the particles of the system X are emitted entirely within

the acceptance of the detector and the measured system X can be identified with X .

Monte Carlo studies show that X can be reliably reconstructed over the full MX range

of this analysis: Fig. 3 shows the distribution of the measured versus the generated value

of lnM2
X for the lowest and highest W bins at two different Q2 values. The horizontal

bars indicate the maximum values of lnM2
X up to which the diffractive contribution was

extracted. There is a close correlation between the measured and the generated lnM2
X

value. From this point on, the distinction between X and X will be omitted.

Regge phenomenology predicts the shape of the MX distribution for peripheral processes

(see Appendix B). Diffractive production by Pomeron exchange in the t-channel, which

dominates xL values close to unity, leads to an approximately constant lnM2
X distribution
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(b ≈ 0). Figure 4 shows the distribution of lnM2
X for the lowest and highest W bins at

low and high Q2 for the data together with the expectations from MC simulation for non-

peripheral DIS (DJANGOH) and for diffractive processes (SATRAP + ZEUSVM and

SANG). The observed distributions agree well with the expectation for a non-diffractive

component giving rise to an exponentially growing lnM2
X distribution, and for a diffractive

component producing an almost constant distribution in a large part of the lnM2
X range.

The recent ZEUS measurement of diffraction in DIS with the leading proton spectrometer

(LPS) [7] allows the Reggeon exchange contribution (Fig. 5) to be estimated, as discussed

in Appendix C. Figure 6 compares, for the same (W,Q2) bins as in Fig. 4, the lnM2
X

distributions for the data with those expected from Reggeon exchange. In this case, the

lnM2
X distribution increases exponentially with increasing lnM2

X with a slope value of

b ≈ 1.3.

The exponential rise of the lnM2
X distribution for non-diffractive processes permits the

subtraction of this component and, therefore, the extraction of the diffractive contribution

without assumptions about its exact MX dependence. The distribution is of the form:

dN

d lnM2
X

= D + c · exp(b lnM2
X), lnM2

X < lnW 2 − η0, (3)

where D is the diffractive contribution and the second term represents the non-diffractive

contributions. The quantity (lnW 2−η0) specifies the maximum value of lnM2
X up to which

the exponential behaviour of the non-diffractive contribution holds. A value of η0 = 2.2

was found from the data. Equation (3) was fitted to the data in the limited range lnW 2−
5.6 < lnM2

X < lnW 2 − η0 in order to determine the parameters b and c. The diffractive

contribution is expected to be a slowly varying function of lnM2
X when M2

X > Q2, and

to approach, for large M2
X , an approximately constant lnM2

X distribution [11, 43, 44].

Therefore, D was assumed to be constant over the fit range. However, the diffractive

contribution was not taken from the fit but was obtained from the observed number of

events after subtracting the non-diffractive contribution determined using the fitted values

of b and c.

The non-diffractive contribution in the (MX ,W,Q2) bins was measured in two steps. In

the first step, the slope b was determined as an average of the values obtained from the

fits to the data for the intervals with 134 < W < 245 GeV and 2.2 < Q2 < 10 GeV2. The

fits yielded bnom = 1.63 ± 0.07. In the second step, the fits were repeated for all (W,Q2)

intervals, using b = bnom as a fixed parameter and assuming D to be constant. Good fits

with χ2 per degree of freedom (dof) of about unity were obtained. The statistical error

of the diffractive contribution includes the uncertainty of bnom.

Figures 4 and 6 show the results from the fit according to Eq. (3) for the non-diffractive

and the sum of the non-diffractive and diffractive contributions. Figure 6 shows the MX
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distribution of the RAPGAP Reggeon simulation described in Section 4. As discussed

above, the Reggeon contribution to the MX spectra is similar in slope to the non-peripheral

contribution described by Eq. (2), and is always smaller than the nondiffractive contribu-

tions 4. The same conclusions hold for all other (W,Q2) bins considered in this analysis.

Finally, a MC event sample was prepared which consisted of the sum of the contributions

from diffraction (SATRAP+ZEUSVM+SANG) and non-peripheral scattering (DJAN-

GOH). The MC event sample was subjected to the same analysis procedure as the data

and the diffractive contribution was extracted for all (MX ,W,Q2) bins. For all bins, the

accuracy of the determination of the fraction of diffractive events in the MC sample was

better than the statistical precision of the data. The same test was repeated with the

RAPGAP Reggeon sample included in the summed MC event sample. The normalisation

of the Reggeon sample was increased by a factor of two - with respect to that found in

the study of Appendix C - in order to test the robustness of the MX-method extraction

of the diffractive component against the large uncertainties of the Reggeon contribution.

The result showed that the diffractive component was extracted with accuracy similar to

that of the extraction without the Reggeon component.

For the final analysis of the diffractive cross section and structure function, only (MX ,W,Q2)

bins where the non-diffractive background was less than 50% were kept.

5.2 Contribution from diffractive proton dissociation

In addition to single dissociation, γ∗p → Xp, processes where the proton also dissoci-

ates, γ∗p → XN , can contribute to the diffractive event sample. Events from double

dissociation can be grouped into those events where N has a low mass and disappears in

the forward beam hole without energy deposition in the calorimeters FPC or CAL, and

into those where decay particles deposit energy in the calorimeters. The probability of

depositing energy in the calorimeters depends on the mass MN . On average, in events

where N has a mass below 2.3 GeV, the system N disappears in the forward beam hole

without energy deposition in the FPC or the CAL, while for those events with MN > 2.3

GeV, the system N deposits energy in the calorimeters. In the latter case, the recon-

structed mass of the total hadronic system is larger than the mass of X . Such events lead

to a distortion of the lnM2
X distribution at high MX values. In order to study this effect,

double dissociative events were generated using SANG.

4 A recent determination of the diffractive contribution based on the presence of a leading proton [7] has

been limited to the region x
IP

< 0.01 to exclude contributions from Reggeon exchange. The fact that

the MX method excludes the Reggeon contribution allows the diffractive component to be extracted

also in the region x
IP

> 0.01.
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The parameters of SANG, in particular those determining the shape of the MN spectrum

and the overall normalization, were checked with the subset of the data dominated by

the contribution from double dissociation. Events in this subset were required to have a

minimum rapidity gap ∆η > ηmin between at least one EFO and its neighbours. Good

sensitivity for double dissociation was obtained with ηmin = 3.0 for W = 55−99 GeV and

ηmin = 4.0 for W = 99 − 245 GeV. The study was performed with four event samples for

the kinematic regions shown in Figs. 7 and 8.

The mass of the hadronic system reconstructed from the energy deposits in FPC+FCAL,

MFFCAL, depends approximately linearly on the mass Mgen
N of the generated system N .

The distribution of MFFCAL at low MFFCAL is dominated by double dissociation. After

reweighting the MN distribution generated for the process γ∗p → XN , good agreement

was obtained between the number of events measured and the number of events predicted

from the sum of the simulated Xp, ρ0p, XN and non-diffractive processes.

Figure 7 demonstrates the sensitivity of the MFFCAL distribution to the shape of the MN -

spectrum: it shows, for the four (Q2,W ) regions, the distribution of MFFCAL as predicted

by SANG, and after reweighting SANG for MN > MN0 = 2.3 GeV by ( MN

MN0
)+1, or by

( MN

MN0

)−1. In the first case, the event rate increases (e.g. near MFFCAL = 1 GeV by

roughly a factor of two); in the second case, the event rate decreases (near MFFCAL = 1

GeV by about a factor of 1.5). To achieve agreement with the data (see Fig. 8) SANG was

reweighted for MN ≤ 4 GeV by a factor of 0.89
√

MN/4 (MN in GeV), and for MN > 4

GeV by a factor of (2.5/MN)0.25. In this exercise, the diffractive contribution for MN > 2.3

GeV is assumed not to change with W . The good description of the data obtained from

this simulation supports this assumption (see below).

The data distributions of MFFCAL at low MFFCAL and the reweighted MC predictions are

compared in Fig. 8 for the four (Q2,W ) regions. The sum of the contributions calculated

for Xp, ρ0p and the non-diffractive component are shown, as well as the XN contribution

which dominates the region of low MFFCAL values. The sum of the four contributions

reproduces the data well. Double dissociation, (γ∗p → XN), accounts for more than 80%

of the events predicted by MC: for Fig. 8a when MFFCAL < 2.5 GeV, for Fig. 8b when

MFFCAL < 2 GeV, for Fig. 8c when MFFCAL < 5 GeV and for Fig. 8d when MFFCAL < 3

GeV.

This study showed that, approximately, events generated with MN < 2.3 GeV deposit less

than 1 GeV of energy in the FPC, while events with MN ≥ 2.3 GeV deposit more than

1 GeV. No information could be gained from the data on the contribution from double

dissociation with MN > 2.3 GeV. Figure 9 shows the lnM2
X spectra for the same W and

Q2 regions as in Fig. 4 together with the expected contribution from double dissociation,

γ∗p → XN , for those events with MN ≥ 2.3 GeV. This contribution is of the order of 6%

(18%, 36%) for MX/W < 0.05 (MX/W = 0.1,0.14). Since this contribution can affect the
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determination of the slope b for the non-diffractive contribution, it has been subtracted,

using the MC simulation, from the data as a function of MX , W and Q2. The systematic

error (see Section 6.1) allows for a 30% increase/decrease of the number of events removed.

The diffractive cross section presented later is therefore the sum of the contributions from

the Xp and XN (MN < 2.3 GeV) final states.

Also shown in Fig. 9 is the expected contribution from photoproduction which is negligible,

except at high W .

5.3 The lnM2
X distributions

The lnM2
X spectra for all (W,Q2) bins studied in this analysis are displayed in Fig. 10.

The data distributions, from which the contributions from double dissociation (MN < 2.3

GeV) and from photoproduction background have been subtracted, are shown. They

are compared with the MC predictions for the contributions from non-peripheral and

diffractive production. It can be seen that the events at low and medium values of

lnM2
X originate exclusively from diffractive production. The MC simulations are in good

agreement with the data.

6 Evaluation of cross sections and systematic uncer-

tainties

The total and diffractive cross sections for ep scattering in a given (W,Q2) bin were

determined from the number of observed events, corrected for background, acceptance

and smearing, and corrected to the QED Born level.

The cross sections and structure functions are presented at the reference values Wref ,

Q2
ref , and MXref . This was achieved as follows: first, the cross sections and structure

functions were determined at the weighted average of each (MX , W , Q2) bin. They were

then transported to the reference position using a parametrisation [30] in the case of the

proton structure function F2, and the result of the BEKW(mod) fit (see Section 9.3) for

the diffractive cross sections and structure functions. The resulting changes to the cross

section and structure function values from the average to those at the reference positions

were 5 - 15%.
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6.1 Systematic uncertainties

A study of the main sources contributing to the systematic uncertainties of the mea-

surements were performed. The systematic uncertainties were calculated by varying the

cuts or modifying the analysis procedure and repeating the full analysis for every varia-

tion. The size of the variations of cuts and the changes of the energy scales were chosen

commensurate with the resolutions or the uncertainties of the relevant variables:

• the acceptance at low values of Q2 depends critically on the position measurement of

the scattered electron. The vertical separation of the upper and lower halves of the

SRTD was increased (decreased) by 0.2 cm in the data (systematic uncertainties 1a,b)

while their positions in the MC were left unchanged. The resulting deviations of the

cross sections were typically 5 - 7 %;

• the box cut was changed from 26.6 cm× 17 cm to 27.6 cm× 18 cm (systematic uncer-

tainty 2). This affected the low-Q2 region. Changes of 5 - 15% were observed, mainly

for W < 100 GeV;

• the measured energy of the scattered electron was increased (decreased) by 2% in the

data, but not in the MC (systematic uncertainties 3a,b). In most cases the changes

were smaller than, or of the order of, the statistical error;

• the lower cut for the energy of the scattered electron was lowered to 8 GeV (raised to

12 GeV) (systematic uncertainties 4a,b). This produced changes of 0 - 2%;

• to estimate the systematic uncertainties due to the uncertainty in the hadronic energy,

the analysis was repeated after increasing (decreasing) the hadronic energy measured

by the CAL by 2% in the data but not in MC (systematic uncertainties 5a,b). The

typical changes were below 5%;

• the energies measured by the FPC were increased (decreased) by 10% in the data but

not in MC (systematic uncertainties 6a,b). The effect was negligible;

• the minimum hadronic energy cut of 400 MeV was increased by 50% (systematic

uncertainty 7). This led to changes at the 1-3% level;

• in order to check the simulation of the hadronic final state, the selection on
∑

i=e,h(Ei−
PZi) was changed from (46 to 64) to (43 to 64) GeV (systematic uncertainty 8),

leading to changes at the level of 20 to 30% of the statistical uncertainty except for

one measurement at low Q2 and high W . Also in this case, the change was small

compared to the total systematic uncertainty;

• the reconstructed mass MX of the system X was increased (decreased) by 5% in the

data but not in the MC (systematic uncertainties 9a,b). Changes of the order of 5 -
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10% were observed for the lowest MX bin while, for the higher MX bins, the changes

were much smaller;

• a substantial fraction of events at W > 164 GeV, low MX and low Q2 have no measured

primary vertex. The position of the vertex affects the measurement of the polar angle

of the scattered electron and so of Q2. For these events, the average vertex for each

data-taking run was used. The fraction of events with no vertex found in the data

agrees well with the MC predictions 5. The difference between the observed fraction

of events and that predicted by MC was used as a systematic uncertainty (systematic

error 10) which amounted to 5 - 10% for low MX and Q2, and to much smaller values

elsewhere;

• the contribution from double dissociation with MN > 2.3 GeV was determined with

the help of the reweighted SANG simulation and was subtracted from the data. The

diffractive cross section was redetermined by increasing (decreasing) the predicted con-

tribution from SANG by 30% (systematic uncertainties 11a,b). The resulting changes

in the diffractive cross section were well below the statistical uncertainty except for

four data points, where they were of similar magnitude.

In order to evaluate the uncertainties arising from the form of the lnM2
X distribution

assumed for the diffractive contribution (D = constant, see Eq. (3)), the fits were repeated

with the form D = d0(1−β)[β(1−β) + d1(1−β)κ], where d0, d1, κ are fit parameters [11,

43–45]. Negligible changes were found.

The total systematic error for each bin was determined by adding the individual contri-

butions in quadrature.

In the fits reported below, except for the BEKW(mod) fit, the fits were performed (a)

to the nominal values, (b) to every data set (j) obtained by shifting the measured values

by the amount given by the systematic uncertainty (j). The statistical uncertainties were

included in each fit. The fit parameters quoted are those given by the fit to the nominal

values; the systematic uncretainties were obtained as the square root of the sum of the

squares of the differences between the fit parameters obtained with the nominal set and

those obtained with the systematic shifts. In the case of conjugated uncertainties (labelled

as (a,b) above) the averages of the squares of the two uncertainties were taken. For the

BEKW(mod) fit, the statistical and systematic uncertainties of the measured values of

the diffractive structure function were added in quadrature.

5 For four (MX ,W,Q2) bins - all of which have MX = 1.2 GeV and W = 180 or 220 GeV, the fraction

of events in the data without a vertex is above 35%. The fraction of events predicted by the MC for

these bins is the same to within 7%.
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7 Proton structure function F2 and the total γ∗p cross

section

A prime goal of this analysis is the study of the W and Q2 dependences of the diffractive

cross section as a function of MX , and the comparison with the total cross section. As a

first step, the total cross section was determined for the same bins in W and Q2 as for

the diffractive cross section and using an identical analysis procedure. This minimises

systematic uncertainties and allows the most direct comparison of the two cross sections.

The differential cross section for inclusive ep scattering mediated by virtual photon ex-

change is given in terms of the structure functions Fi of the proton by

d2σe−p

dxdQ2
=

2πα2

xQ4
[Y F2(x,Q

2) − y2FL(x,Q2)](1 + δr(x,Q
2)), (4)

where Y = 1 + (1 − y)2, F2 is the main component of the cross section which in the DIS

factorisation scheme corresponds to the sum of the momentum densities of the quarks

and antiquarks weighted by the squares of their charges, FL is the longitudinal structure

function and δr is a term accounting for radiative corrections. In the Q2 range considered

in this analysis, Q2 < 80 GeV2, the contributions from Z0 exchange and Z0 - γ interference

are well below 1% and were ignored. The contribution of FL to the cross section relative to

that from F2 is given by (y2/Y )·(FL/F2). For the determination of F2, the FL contribution

was taken from the QCD fits to the structure function data obtained by ZEUS [2] and

H1 [46], which may be approximated by FL = 0.2F2. The contribution of FL to the

cross section in the highest y (= lowest x) bin of this analysis was 3.8%, decreasing to

1.5% for the next highest y-bin. For the other bins, the FL contribution is below 1%.

The uncertainties of the FL corrections were estimated to be below 20%; the resulting

uncertainties on F2 are below 1%.

The measured F2 values are listed in Table 2 and shown in Fig. 11. The data are com-

pared to the predictions of the ZEUS QCD fit [2] obtained from the previous ZEUS F2

measurements [20]. The fit describes the data well. The proton structure function, F2,

rises rapidly as x → 0 for all values of Q2, the slope increasing as Q2 increases.

The form:

F2 = c · x−λ, (5)

was fitted for every Q2 bin to the F2 data. Here λ is related to the intercept of the Pomeron

trajectory, λ = αIP (0) − 1. For later comparison with the diffractive results, these αIP

values will be referred to as αtot
IP . The resulting values for c and αtot

IP (0) are listed in Table 3.

Within errors, c is independent of Q2. Figure 12 shows that αtot
IP (0) lies above the ‘soft
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Pomeron’ value of 1.096+0.012
−0.009 deduced from hadron-hadron scattering data [47, 48] ; it

rises approximately linearly with lnQ2 from αtot
IP (0) = 1.155 ± 0.011(stat.)+0.007

−0.011(syst.) at

Q2 = 2.7 GeV2, to 1.307 ± 0.019(stat.)+0.027
−0.037(syst.) at Q2 = 55 GeV2, in agreement with

previous observations [49, 50]. A Pomeron intercept which changes with Q2 violates the

assumption of single Pomeron exchange plus Regge factorisation of the vertex functions.

The total cross section for virtual photon-proton scattering, σtot
γ∗p ≡ σT (x,Q2)+σL(x,Q2),

was extracted from the measurement of F2 using the relation

σtot
γ∗p =

4π2α

Q2(1 − x)
F2(x,Q

2), (6)

which is valid for 4m2
px

2 ≪ Q2 [51–53]. The total cross section values are listed in Table 4

for fixed Q2 as a function of W . The total cross section multiplied by Q2, shown in Fig. 13,

exhibits a strong rise with W , becoming steeper as Q2 increases. This behaviour of σtot
γ∗p

reflects the x dependence of F2 as x → 0, viz. σtot
γ∗p ∝ W 2(αtot

IP (0)−1).

8 Diffractive cross section

The cross section for diffractive scattering via ep → eXN can be expressed in terms of

the transverse (T) and longitudinal (L) cross sections, σdiff
T and σdiff

L , for γ∗p → XN as

dσdiff
γ∗p→XN(MX ,W,Q2)

dMX

≡ d(σdiff
T + σdiff

L )

dMX

≈ 2π

α

Q2

(1 − y)2 + 1

dσdiff
ep→eXN(MX ,W,Q2)

dMXd lnW 2dQ2
. (7)

Here, a term (1 − y2/[1 + (1 − y)2])σdiff
L /(σdiff

T + σdiff
L ) multiplying (σdiff

T + σdiff
L ) has been

neglected [51–53]. Since y ≈ W 2/s, this approximation reduces the cross section by less

than 4% for W < 200 GeV, and by less than 8% in the highest W bin, 200 - 245 GeV, if

σdiff
L ≤ σdiff

T
6.

6 The relative contribution to diffractive production by longitudinal photons is expected to be small [11,

45] except for the production of vector mesons, γ∗p → V N . The processes γ∗p → V N , V = ρ0, ω, φ,

contribute about 40 - 60% of the diffractive cross section measured in the lowestMX bin (0.28 < MX <

2 GeV) and are dominated by longitudinal photons. Assuming that these were the only contributions

from longitudinal photons, extrapolation of the cross sections for γ∗p → V p measured at W < 150

GeV [36, 37, 54] to higher W gives an effect of the order of 3% at 7 < Q2 < 27 GeV2 and W = 180

GeV. This estimate assumed the same fraction of nucleon dissociation for γ∗p → V N as for inclusive

diffraction. The measured data on J/Ψ production indicate that this process contributes less than

10% of the diffractive cross section in the bin MX = 2− 4 GeV and therefore even smaller corrections

are expected for this MX bin.
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The diffractive cross section dσdiff/dMX for γ∗p → XN , where MN < 2.3 GeV, is pre-

sented in Tables 5 - 10 and Fig. 14, after transporting the measured cross sections to the

reference values (MX ,W,Q2) using the BEKW(mod) fit (see Section 9.3).

These diffractive cross sections do not include contributions from deeply virtual Compton

scattering, γ∗p → γp (DVCS). The DVCS cross sections in the region 5 < Q2 < 30 GeV2,

40 < W < 140 GeV have been measured by the ZEUS collaboration [55] and are between

2 and 4% of σdiff
γ∗p→XN(0.28 < MX < 2 GeV).

8.1 W dependence of the diffractive cross section

As seen in Fig. 14, for the bin MX = 1.2 GeV, the diffractive cross section, dσdiff/dMX ,

shows only a modest increase with W . For higher MX values, a rise with W is observed

for Q2 ≥ 4 GeV2. The W dependence was quantified by fitting the form

dσdiff
γ∗p→XN

dMX
= h · (W/W0)

adiff , (8)

to the data for each (MX , Q
2) bin with MX < 15 GeV; here W0 = 1 GeV and h, adiff are

free parameters. Under the assumption that the diffractive cross section can be described

by the exchange of a single Pomeron, the parameter adiff is related to the Pomeron tra-

jectory averaged over t: αIP = 1 + adiff/4. In the framework of Regge phenomenology, the

cross section for diffractive scattering can be written as [56],

dσ/dt = f(t) · e2(αIP (t)−1)·ln(s/s0), (9)

where t is the four-momentum-transfer squared from γ∗ to X , f(t) characterises the t-

dependences of the (γ∗IPγ∗) and (pIPN) vertices, and s0 = 1 GeV2. In the present

measurement, the diffractive cross section is integrated over t, providing t-averaged values

αIP . Assuming dσ/dt ∝ eA·t and αIP (t) = αIP (0) + α′

IP · t, leads to αIP (0) = αIP + α′

IP/A.

Taking A = 7.9 ± 0.5(stat.)+0.9
−0.5(syst.) GeV−2, as measured by this experiment with the

leading proton spectrometer [7] 7, and α′

IP = 0.25 GeV−2 [47], gives αIP (0) ≈ αIP + 0.03 =

1.03 + adiff/4. The αIP (0) values deduced from diffractive cross sections are denoted as

αdiff
IP (0).

The resulting αdiff
IP (0) values are listed in Table 11 and shown in Fig. 15 as a function

of Q2 for different MX intervals. For MX below 2 GeV, αdiff
IP (0) is compatible with the

soft Pomeron. For larger MX , αdiff
IP (0) lies above the soft-Pomeron result, the difference

increasing with Q2.

7 This value of A has been determined for x
IP

< 0.01, where diffraction is dominant in the ZEUS

LPS data. It is assumed that A for the diffractive contribution remains the same in the region

0.01 < x
IP

< 0.022.
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Figure 12 compares the Q2 dependence of αtot
IP (0) with αdiff

IP (0) deduced from the diffractive

cross section for 2 < MX < 15 GeV. Both sets of results lie above the soft-Pomeron result

and show a rise with Q2. The αdiff
IP (0) values lie, however, consistently below those obtained

from σtot
γ∗p, or equivalently F2, with [αdiff

IP (0) − 1]/[αtot
IP (0) − 1] ≈ 0.5 − 0.7. Thus, the W

dependences of the total and diffractive cross sections yield different Pomeron trajectories.

8.2 Combined W and Q2 dependence of the diffractive cross sec-

tion

The assumption of Regge factorisation requires that the Pomeron trajectory be indepen-

dent of Q2 if diffractive scattering is to be described by the exchange of a single Pomeron.

As a consequence, the W dependence of the diffractive cross section should also be inde-

pendent of Q2. In order to test this hypothesis with the full body of data, the form

dσdiff
γ∗p

dMX

= c(MX , Q
2) · (

W

W0

)4(αIP (Q2)−1), (10)

was fitted to the diffractive cross section; here W0 = 1 GeV. The values αIP (Q2) and the

constants c(MX , Q
2) were determined from the fit. In this way, the Q2 dependence of the

W dependence of the diffractive cross section was tested independently of its (MX , Q
2)

dependence. Since the diffractive cross section for MX < 2 GeV receives a substantial

contribution from the process γ∗p → ρ0p, which is dominated by longitudinal photons,

and since the W range covered for MX > 15 GeV is rather limited, the fitting was done

for the data with 2 < MX < 15 GeV. In total, 126 diffractive cross section measurements

were included. There are 25 free parameters: four αIP values for four bins of Q2, and 21

constants c(MX , Q
2) for three MX bins (2 - 4, 4 - 8, 8 - 15 GeV) and the corresponding

seven Q2 bins.

The results obtained are presented in Table 12 and shown in Fig. 16. Within errors, αdiff
IP (0)

is constant for Q2 between 2.7 and 20 GeV2 (〈Q2〉 = 7.8 GeV2) but has a substantially

larger value for Q2 between 20 and 80 GeV2 (〈Q2〉 = 34.6 GeV2).

The statistical significance of the rise of αdiff
IP (0) with Q2 was determined by a fit with

the following free parameters: the normalisation constants for the four bins in Q2, a

single value of αdiff
IP (0) averaged over 2.7 < Q2 < 20 GeV2 and the difference ∆αIP ≡

αdiff
IP (0, 〈Q2〉 = 34.6 GeV2) − αdiff

IP (0, 〈Q2〉 = 7.8 GeV2). Considering all systematic uncer-

tainties and their correlations, the fit yielded:

αdiff
IP (0, 〈Q2〉 = 7.8 GeV2) = 1.1220 ± 0.0046(stat.)+0.0132

−0.0114(syst.) (11)

and

∆αdiff
IP = 0.0714 ± 0.0140(stat.)+0.0047

−0.0100(syst.). (12)
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The addition of the statistical and systematic uncertainties in quadrature gives

∆αdiff
IP = 0.0714+0.0147

−0.0172. (13)

The result establishes the rise of αdiff
IP (0) with Q2, with a significance of 4.2 standard

deviations. Assuming single Pomeron exchange, this observation contradicts Regge fac-

torisation.

This experiment, using the LPS [7], obtained for the kinematic region x
IP
< 0.01, 0.03 <

Q2 < 39 GeV2, the value αdiff
IP (0) = 1.16 ± 0.02(stat.) ± 0.02(syst.). Restricting the

data in the present analysis to x
IP

< 0.01 gives αdiff
IP (0, 〈Q2〉 = 7.8 GeV2) = 1.1209 ±

0.0051(stat.)+0.0136
−0.0122(syst.) and ∆αdiff

IP = 0.0578 ± 0.0178(stat.)+0.0081
−0.0118(syst.) (see Table 13

and Fig. 16). The results are consistent with the fit to the full data set and also in

agreement with the LPS result.

8.3 MX and Q2 dependences of the diffractive cross section at

fixed W

The MX and Q2 dependences of the diffractive cross section for W = 220 GeV are shown

in Fig. 17. The highest-W region is used since it covers the largest range in MX . The cross

section has been multiplied by a factor of Q2, since a leading-twist behaviour would give

approximate Q2 independence. For low and medium Q2, the MX spectrum is dominated

by the production of states with MX < 3 GeV (Fig. 17a). The cross section for these states

decreases rapidly for higher Q2, consistent with a predominantly higher-twist behaviour.

Above MX = 11 GeV, little dependence on Q2 is observed (Fig. 17b), corresponding to a

leading twist behaviour.

8.4 Diffractive contribution to the total cross section

The relationship between the total and diffractive cross sections can be derived under

certain assumptions. For instance, the imaginary part of the amplitude for elastic scat-

tering, Aγ∗p→γ∗p(t,W,Q2), at t = 0 can be assumed to be linked to the total cross section

by a generalisation of the optical theorem to virtual photon scattering. Assuming that

σtot
γ∗p ∝ W 2λ and that the elastic and inclusive diffractive amplitudes at t = 0 are purely

imaginary and have the same W and Q2 dependences, then Aγ∗p→γ∗p(t = 0,W,Q2) is

proportional to W 2λ. Neglecting the real part of the scattering amplitudes, the rise of the

diffractive cross section with W should then be proportional to W 4λ, so that the ratio of

the diffractive cross section to the total γ∗p cross section,

rdifftot ≡ σdiff

σtot
=

∫Mb

Ma
dMXdσ

diff
γ∗p→XN,MN<2.3GeV/dMX

σtot
γ∗p

(14)

19



should behave as rdifftot ∝ W 2λ.

The ratio rdifftot was determined for all Ma < MX < Mb bins, with the σtot
γ∗p values taken

from this analysis. The ratio rdifftot is shown in Tables 14 - 19 and in Fig. 18. The observed

near constancy with W is explained by the dipole saturation model [12, 57].

For MX < 2 GeV, rdifftot decreases with increasing Q2, while, for MX > 4 GeV, this decrease

becomes weaker, and almost no Q2 dependence is observed for MX > 8 GeV. Here, the

diffractive cross section has approximately the same W and Q2 dependences as the total

cross section, in agreement with the conclusion drawn from Fig. 12.

The ratio σdiff(0.28 < MX < 35 GeV,MN < 2.3 GeV)/σtot was evaluated as a function

of Q2 for the highest W bin (200 < W < 245 GeV) which provides the best coverage in

MX . The ratio is given in Table 20. At Q2 = 4 GeV2, σdiff/σtot reaches 15.8+1.2
−1.0 %. It

decreases slowly with Q2, reaching 9.6+0.7
−0.7 % at Q2 = 27 GeV2. Diffractive processes thus

account for a substantial part of the total deep inelastic cross section.

9 Diffractive structure function of the proton

The diffractive structure function of the proton, F
D(3)
2 (β, x

IP
, Q2), is related to the diffrac-

tive cross section for W 2 ≫ Q2 as follows:

1

2MX

dσdiff
γ∗p→XN(MX ,W,Q2)

dMX
=

4π2α

Q2(Q2 + M2
X)

x
IP
F

D(3)
2 (β, x

IP
, Q2). (15)

If F
D(3)
2 is interpreted in terms of quark densities, it specifies the probability to find, in

a proton undergoing a diffractive reaction, a quark carrying a fraction x = βx
IP

of the

proton momentum.

The measurements of x
IP
F

D(3)
2 are given in Tables 21 - 24 as a function of β, x

IP
and Q2.

Figure 19 shows x
IP
F

D(3)
2 as a function of x

IP
for different values of β and Q2.

9.1 Comparison with other measurements

The measurements of x
IP
F

D(3)
2 obtained from this analysis for MN < 2.3 GeV are con-

sistent with those determined previously by this experiment with the MX method for

MN < 5.5 GeV [5].

The measurements of x
IP
F

D(3)
2 from this analysis (FPC) have been compared with those

from this experiment determined with the leading proton spectrometer (LPS) [7] and from

the H1 experiment [4]. Since the three analyses quote the values of x
IP
F

D(3)
2 at different

(β,Q2) points, the values of this analysis (FPC) were transported to the (β,Q2) points
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of the other measurements using the BEKW(mod) fit, provided that the (β,Q2) values

of the corresponding FPC measurement satisfied the conditions 0.8 < Q2
FPC/Q

2 < 1.2,

|βFPC − β|/β < 0.5. The LPS analysis measures the reaction γ∗p → Xp while the FPC

analysis includes the contribution from proton dissociation, γ∗p → XN , 1.08 < MN < 2.3

GeV. The LPS data for xIP < 0.005 - where Reggeon contributions to the LPS data

are negligible - were used to estimate the fractional contribution fpdissoc from proton

dissociation to the FPC results, assuming fpdissoc to be independent of β, xIP and Q2.

The relative normalisation of the two data sets was determined using the result of the

BEKW(mod) fit to the FPC data. This yielded 1 − fpdissoc = 0.70 ± 0.03, which shows

that about 30% of the diffractive cross section in the FPC analysis comes from nucleon

dissociation with masses MN between 1.08 and 2.3 GeV. Figure 20 shows the LPS data

together with the FPC data multiplied by a factor of 0.70. The LPS data for xIP < 0.01

agree well with those of the current analysis.

Figure 21 shows a comparison of the measurements of this analysis with that of the H1

collaboration [4] which includes the contribution from nucleon dissociation for MN < 1.6

GeV. No correction was applied to the FPC data to account for the possible difference in

x
IP
F

D(3)
2 for MN < 2.3 GeV (this analysis) and MN < 1.6 GeV (H1 analysis). Qualitative

agreement between the present data and the H1 measurements is observed, with the

possible exception of the region of x
IP

> 0.01, where the H1 data include contributions

from Reggeon exchange.

9.2 Discussion of the x
IP
F

D(3)
2 results from this analysis

The diffractive structure function presented in Fig. 19 is a function of x
IP

for fixed MX

(or, equivalently fixed β) and Q2. For the lowest MX region - which corresponds to large

β values - little dependence on x
IP

is observed. This is in contrast to the regions with

smaller β where x
IP
F

D(3)
2 rises strongly as x

IP
→ 0, reflecting the rapid increase of the

diffractive cross section dσdiff/dMX with W for MX > 2 GeV.

For the following study of x
IP
F

D(3)
2 as a function of x

IP
and β for fixed values of (x

IP
, Q2)

and (β,Q2), respectively, bin centering was done by using the BEKW(mod) fit (Sec-

tion 9.3).

The Q2 dependence of x
IP
F

D(3)
2 is displayed in Fig. 22 for different values of β and x

IP
.

Different regions in the β − x
IP

space show markedly different behaviours with Q2. For

β = 0.9, the region dominated by diffractive production of states with MX < 2 GeV,

x
IP
F

D(3)
2 is constant or slowly decreasing with Q2. For β ≤ 0.7, x

IP
F

D(3)
2 increases with

increasing Q2 provided βx
IP

< 2 · 10−3. This Q2 dependence is similar to the scaling

violations of the proton structure function F2. By noting that βx
IP

= x, it can be seen

from Fig. 22 that the behaviour of the scaling violations with Q2 depends primarily on
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x rather than on β and x
IP

separately. Disregarding the region β = 0.9, positive scaling

violations dominate at low x < 0.002. The fact that the Q2 dependence of x
IP
F

D(3)
2

for fixed β changes with x
IP

shows again that the data are inconsistent with the Regge-

factorisation hypothesis, a concept which implies that, for given β and Q2, the same

Pomeron structure is probed, independently of x
IP

.

Figure 23 shows x
IP
F

D(3)
2 as a function of β for fixed (x

IP
, Q2). For those (x

IP
, Q2) values

where the measurements cover a wide range in β, x
IP
F

D(3)
2 is observed to have a broad

maximum around β = 0.5, a dip near β = 0.1 and a rise as β → 0.

The data of Fig. 23 can be better visualized by plotting them for fixed x
IP

. Figure 24

shows the results obtained by using the x
IP
F

D(3)
2 measurements with 0.5x0 < x

IP
< 1.5x0,

where x0 = 0.01. For each measurement, the x
IP
F

D(3)
2 value measured at x

IP meas was

transported to x
IP

= x0 using the BEKW(mod) fit. On average, the difference between

measured and transported x0F
D(3)
2 (β, x0, Q

2) value was of the order of 5%. Finally, for

every (β,Q2) point, the weighted average of the selected measurements was made.

In a model where diffraction proceeds by the exchange of a Pomeron, the diffractive

structure function factorises into the flux of Pomerons and the structure function of the

Pomeron, x
IP
F

D(3)
2 (β, x

IP
, Q2) = Φ(x

IP
) · F IP

2 (β,Q2). Up to a normalisation constant,

x0F
D(3)
2 (β, x0, Q

2), would represent the structure function of the Pomeron, F IP
2 (β,Q2) =

x0F
D(3)
2 (β, x0, Q

2). In such a model, however, the flux is independent of Q2, which is at

variance with the data from this analysis, as shown in Fig. 22.

The resulting measurements of x0F
D(3)
2 (β, x0, Q

2) are presented in Table 25 and Fig. 24.

Several aspects are noteworthy. Firstly, x0F
D(3)
2 (β, x0, Q

2) has a maximum near β = 0.5,

consistent with a β(1− β) variation. Secondly, in the region of high β, x0F
D(3)
2 (β, x0, Q

2)

tends to decrease as Q2 increases from 14 to 27 GeV2. Finally, for β < 0.1, x0F
D(3)
2 rises

as β → 0, the rise increasing with increasing Q2.

The β(1 − β) dependence is explained in dipole models of diffraction by γ∗ → qq split-

ting [10–13] and two gluon exchange. The rise of x0F
D(3)
2 (β, x0, Q

2) as β → 0 and its

increase as Q2 increases is reminiscent of the logarithmic scaling violations of the proton

structure function F2 at low x, which are ascribed to the contribution from the sea.

The data are consistent with the idea that diffractive DIS probes the diffractive PDFs

of the proton; their dependence on β and Q2 is similar to the different Q2 dependence

of the proton inclusive PDFs at different values of x [58]. The positive scaling violations

observed for x = βx
IP

< 2 × 10−3 suggest substantial perturbative effects such as gluon

emission.
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9.3 Comparison with the BEKW model

The BEKW model [45] provides a general parametrisation for inclusive diffraction in DIS

and allows the identification of certain subprocesses by their characteristic behaviour in

β and Q2. In the model, the incoming virtual photon fluctuates into a qq or qqg dipole

which interacts with the target proton via two-gluon exchange. The β spectrum and the

scaling behaviour in Q2 are derived from the wave functions of the incoming transverse

(T) or longitudinal (L) photon on the light cone in the non-perturbative limit. The x
IP

dependence of the cross section is not predicted by the model but is to be determined by

experiment. Specifically

x
IP
F

D(3)
2 (β, x

IP
, Q2) = cT · F T

qq + cL · FL
qq + cg · F T

qqg, (16)

where

F T
qq = (

x0

x
IP

)nT (Q2) · β(1 − β), (17)

FL
qq = (

x0

x
IP

)nL(Q
2) · Q2

0

Q2 + Q2
0

· [ln(
7

4
+

Q2

4βQ2
0

)]2 · β3(1 − 2β)2, (18)

F T
qqg = (

x0

x
IP

)ng(Q2) · ln(1 +
Q2

Q2
0

) · (1 − β)γ. (19)

The contribution from longitudinal photons coupling to qq is limited to β values close to

unity. The qq contribution from transverse photons is expected to have a broad maximum

around β = 0.5, while the qqg contribution becomes important at small β, provided γ is

large. The original BEKW model also includes a higher-twist term for qq produced by

transverse photons. The present data are insensitive to this term, and therefore it has

been neglected.

For FL
qq, the term (

Q2
0

Q2 ) provided by BEKW was replaced by the factor (
Q2

0

Q2+Q2
0

) to avoid

problems as Q2 → 0. The powers nT,L,g(Q
2) were assumed by BEKW to be of the form

n(Q2) = n0 +n1 · ln[1+ ln(Q
2

Q2
0

)]. The rise of αIP (0) with lnQ2 observed in the present data

suggested using the form n(Q2) = n0 + n1 ln(1 + Q2

Q2
0

). The modified BEKW form will be

referred to as BEKW(mod). Taking x0 = 0.01 and Q2
0 = 0.4 GeV2, the BEKW(mod) form

gives a good description of the data, viz. χ2 = 112 for 188 dof. According to the fit, all the

coefficients n0 and n1 for the longitudinal component can be set to zero, and the powers

nT , ng are the same, within errors, for the qq and qqg components produced by transverse

photons. This leads to: cT = 0.112 ± 0.003, cL = 0.154 ± 0.012, cg = 0.0091 ± 0.0003,

nT,g
1 = 0.067 ± 0.004 and γ = 8.62 ± 0.55 with χ2 = 114 for 193 dof. The value of the

power γ is considerably larger than the value of about three expected by BEKW. Results

from a similar analysis of the LPS data can be found elsewhere [7].
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Figures 22, 23 and 25 compare the measurement of x
IP
F

D(3)
2 (β, x

IP
, Q2) as a function of

x
IP

, β and Q2 with the BEKW(mod) fit. The fit describes the data well. The weak rise of

x
IP
F

D(3)
2 as x

IP
→ 0 observed for MX = 1.2 GeV, and the strong rise for MX ≥ 3 GeV, are

explained by the BEKW fit as follows: the high β region (β > 0.9) receives substantial

contributions from longitudinal photons with a weak dependence on x
IP

, while transverse

photons dominate at lower β and lead to a strong rise as x
IP
→ 0. The observed increase

of the rise of x
IP
F

D(3)
2 as x

IP
→ 0 with increasing Q2 is accommodated in the model by

assuming that the power nT (Q2) increases with Q2. In the BEKW model8, the broad

maximum seen in the β distribution around β = 0.5 is a result of the dominance of

the qq configuration at medium β, and the rise towards small β is a result of the (qqg)

configuration. The good agreement of the BEKW fit with the data for MX > 2 GeV

lends strong support to the dipole picture.

10 Conclusions

A simultaneous measurement of the proton structure function F2, the diffractive γ∗p cross

section and the diffractive structure function has been made. The kinematic range of the

measurement was 2.2 < Q2 < 80 GeV2, 37 < W < 245 GeV and 0.28 < MX < 35 GeV.

The forward plug calorimeter (FPC) was used to extend the range of MX compared to

previous measurements. The MX method was used to extract the diffractive cross section;

the method is shown to exclude non-peripheral as well as Reggeon contributions to the

cross section.

The results for the proton structure function F2(x,Q
2) are in good agreement with previ-

ous measurements of the ZEUS collaboration. The F2 data were analysed in the framework

of Regge phenomenology. The intercept of the Pomeron trajectory of these data is signif-

icantly higher than that measured in hadron-hadron collisions (‘soft Pomeron’, αIP (0) =

1.096+0.012
−0.009) and is a strong function of Q2: αtot

IP (0) = 1.155 ± 0.011(stat.)+0.007
−0.011(syst.) at

Q2 = 2.7 GeV2 and αtot
IP (0) = 1.307 ± 0.019(stat.)+0.027

−0.037(syst.) at Q2 = 55 GeV2. The Q2

dependence of the Pomeron intercept corresponds to the rise of F2 towards low x, which

increases with Q2 and which has been observed previously at HERA. In a Regge approach,

this shows that F2, and the total γ∗p cross section, cannot be interpreted in terms of the

exchange of a single Pomeron combined with the assumption of Regge factorisation.

8 Although the BEKW(mod) fit gives an excellent description of the data from this analysis, its prediction

for the contribution from longitudinal photons at low MX and low Q2 is at variance with existing data

on vector meson production. For MX < 2 GeV, the contribution from longitudinal photons accounts

for at least ≈ 20% of xIPF
D(3)
2 . The BEKW(mod) fit curves for the longitudinal photon contribution

at MX < 2 GeV (dotted lines in Fig. 25) are in broad agreement with the data for Q2 ≥ 6 GeV2, but

are too low at lower Q2.
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The measured diffractive DIS cross section is in good agreement with previous ZEUS

measurements when proton dissociation is taken into account. The diffractive cross section

for 0.28 < MX < 2 GeV shows a weak dependence on W but a much stronger decrease

than 1/Q2, characteristic of a higher twist behaviour. For MX > 8 GeV, the cross section

decreases as 1/Q2, indicating a leading twist behaviour. The diffractive cross section

was also analysed in terms of Regge phenomenology. The excess of the intercept of the

Pomeron trajectory above unity is about half of that extracted from the F2 data, but

still significantly higher than that of the soft Pomeron. The Pomeron intercept rises

by ∆αdiff
IP = 0.0714 ± 0.0140(stat.)+0.0047

−0.0100(syst.) between Q2 of 7.8 and 27 GeV2. This

establishes a Q2 dependence of the Pomeron intercept and shows that the diffractive DIS

as well as the inclusive DIS cross sections cannot be interpreted as resulting from single

Pomeron exchange combined with the assumption of Regge factorisation.

The ratio of the diffractive to the total γ∗p cross section was studied. For fixed MX and

Q2, the ratio is flat as a function of W in the kinematic range of these measurements.

For 0.28 < MX < 35 GeV, W = 220 GeV, the ratio is 15.8+1.2
−1.0 % at Q2 = 4 GeV2 and

9.6+0.7
−0.7% at Q2 = 27 GeV2.

The diffractive cross section was also analysed in terms of the diffractive structure function

of the proton F
D(3)
2 (β, x

IP
, Q2). The β and Q2 dependences of x

IP
F

D(3)
2 are a function of

x
IP

; this is expected in view of the Regge factorisation breaking observed for the diffractive

cross section. The pattern of scaling violations depends primarily on the proton variables

x and Q2; for β < 0.9, positive scaling violations are observed when x < 0.002. The

analysis of x
IP
F

D(3)
2 (β, x

IP
, Q2) for x

IP
= x0 = 0.01 exhibits several remarkable properties:

x0F
D(3)
2 (β, x0, Q

2) shows a broad maximum near β = 0.5 consistent with a β(1 − β)

variation as expected by dipole models for γ∗ → qq splitting; for β < 0.1, x0F
D(3)
2

rises as β → 0, the rise increasing with increasing Q2. The positive scaling violations

observed for β < 0.1 suggest that diffraction in DIS receives substantial contributions

from perturbative effects.

The results of this paper show that Regge phenomenology cannot give a good description

of the diffractive and total DIS cross section without extensive modifications that would

undermine the simplicity of the Regge approach. The large fraction of the DIS cross

section that is diffractive even at high Q2, and the leading twist nature of the diffractive

cross section at higher MX may mean that some assumptions [58] inherent in the DGLAP

analysis of the structure function F2 need to be reexamined.
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Appendix

A Reconstruction of W with the weighting method

The value of W is reconstructed using the weighted average of the values determined from

the electron and the hadron measurements (the ‘weighting method’) denoted by WW . The

electron kinematics yields We:

W 2
e = (P + k − k′)2

= 2P (k − k′) + P 2 + (k − k′)2

= 2Ep[2Ee −E ′

e(1 − cos θe)] + m2
p −Q2,

where mp is the mass of the proton. The measurement accuracy of We, ∆We, depends on

the uncertainties with which E ′

e and θe are measured,

∆W 2
e = −[2Ep(1 − cos θe) + 2Ee(1 + cos θe)]∆E ′

e + 2(EpE
′

e −EeE
′

e)∆ cos θe .

Monte Carlo (MC) studies yielded for the resolutions ∆E ′

e ≈ 5/E ′

e ⊕ 0.08 and ∆θe ≈
0.007, where the energies are given in units of GeV and ∆θe in radians. The dominant

contribution to ∆We comes from the uncertainty in the measurement of the electron

energy. This can be serious for low values of W (W < 60 GeV) where E ′

e is close to Ee:

for instance, at low Q2 and when the measured E ′

e > Ee, W
2
e becomes negative.

The energies Eh and production angles θh of the EFOs provide the hadronic measurement

of W :

W 2
h ≈ 2Ep

∑

h

Eh(1 − cos θh),

with an uncertainty of

∆W 2
h = 2EP

∑

h

(1 − cos θh)∆Eh + 2EP

∑

h

Eh sin θh∆θh.

The summation is performed over all hadronic EFOs. For the hadronic measurement,

the MC simulation yields ∆Eh ≈ 0.8
√
Eh ⊕ 0.04Eh and ∆θh ≈ 0.07. The uncertainty

results largely from fluctuations of the energy loss in the material ahead of CAL, and

from neutrinos and muons produced in the final state.

Using the MC to estimate the errors shows that at low W , where We provides a poor

measurement of W , the value of Wh is rather precise, while the opposite is true for high
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values of W . The weighting method combines the two measurements for W by weighting

them with the inverse of the squares of their estimated errors, ge = W 2

∆W 2
e

and gh = W 2

∆W 2

h
:

W 2
W =

g2eW
2
e + g2hW

2
h

g2e + g2h
.

In order to arrive at reliable estimates for ge, gh, it is essential to have an estimate for W .

This is achieved with the double-angle (DA) measurement [59] which relies only on the

measurement of the angles of the scattered electron and of the hadronic system.

B Extraction of the diffractive contribution with the

MX method

In non-peripheral DIS, the incident proton is broken up and the remnant is a coloured ob-

ject. This gives rise to a substantial amount of initial- and final-state radiation, populating

the region between the incident proton and the current jet. The scaling of the position

of the maximum and the exponential fall-off of the lnM2
X distribution follow from the

assumption of uniform, uncorrelated particle emission in rapidity (Y = 1
2

ln E+PL

E−PL
, where

E, PL are the energy and longitudinal momentum of the particle) along the beam axis in

the γ∗p system [40,41]. For an (idealized) uniform Y distribution between maximum and

minimum rapidities of Ymax and Ymin, respectively, the total c.m. energy W is given by

W 2 ≈ c0 · exp(Ymax − Ymin),

assuming (Ymax −Ymin) ≫ 1. Here, co is a constant. The mass MX of the particle system

that can be observed in the detector is reduced by the loss of particles (mainly) through

the forward beam hole:

M2
X ≈ c0 · exp(Ydet

limit − Ymin) ≈ W 2 · exp(Ydet
limit −Ymax), (20)

where Ydet
limit denotes the limit of the calorimetric acceptance in the forward direction.

Equation (20) predicts scaling of the lnM2
X distribution when plotted as function of

ln(M2
X/W

2), in agreement with the behaviour of the data.

The value of MX will fluctuate due to a finite probability P (∆Y) that no particles are

emitted between Ydet
limit and Ydet

limit−∆Y . This generates a gap of size ∆Y . The assumption

of uncorrelated particle emission leads to a Poissonian rapidity gap distribution, P (∆Y) =

exp(−λ∆Y), resulting in an exponential fall-off of the lnM2
X distribution,

dN non−diff

d lnM2
X

= c · exp(b · lnM2
X), (21)
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where the slope b and the parameter c can be determined from the data. The exponential

fall-off of the lnM2
X distribution towards small values of lnM2

X is indeed found for models

which include QCD leading-order matrix elements, parton showers and fragmentation,

such as DJANGOH (see shaded area in Fig. 4). The exponential fall-off holds for lnM2
X ≤

lnW 2 − η0 over two units of rapidity, where η0 ≈ 2.

In the MX method, the diffractive contribution is identified as the excess of events towards

small MX above the exponential fall-off of the non-diffractive contribution. In a Triple

Regge model [60–62], the diffractive cross section is approximately of the form

dσdiff
γ∗p→XN

d lnM2
X

∝ exp[(1 + αk(0) − 2αj) · lnM2
X ].

Here, αj is the trajectory exchanged in the t channel between the incoming proton and

the outgoing system N , averaged over the t distribution, as seen in Fig. 5. The parameter

αk(0) is the intercept of the trajectory describing the production of the system X by

the scattering of γ∗ on a Regge-pole with t averaged intercept αj . For large MX , αk(0)

is expected to be 1. Pomeron exchange in the t-channel with αj ≈ 1 leads then to

1 + αk(0) − 2αj = 0 and to a constant lnM2
X spectrum:

dσdiff
γ∗p→XN

d lnM2
X

= constant.

If, instead of the Pomeron, the highest-lying Reggeon trajectory (αj ≈ 0.5) is exchanged

in the t-channel, then the lnM2
X spectrum for this contribution rises exponentially towards

large lnM2
X :

dσdiff
γ∗p→XN

d lnM2
X

∝ exp(bIR · lnM2
X),

with bIR = 1. Hence, Reggeon exchange in the t channel leads to an exponential rise of the

lnM2
X distribution. Note also that lower-lying Regge trajectories produce an even larger

exponential slope bIR. Therefore, identifying the diffractive contribution as the excess of

events above the exponential fall-off of the lnM2
X -distribution suppresses not only the

non-diffractive contribution arising from colour exchange but also the contributions from

Reggeon exchange.

C Reggeon contribution to the lnM 2
X spectrum

The recent ZEUS measurement of diffraction in DIS with the LPS [7] allows the Reggeon

exchange contribution to the reaction γ∗p → Xp to be estimated. In the LPS analysis,
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the diffractive structure function of the proton, x
IP
F

D(3)
2 (β, x

IP
, Q2), shows a rise towards

small x
IP

, and a rise towards large x
IP

, with a minimum near x
IP

= 0.01 − 0.02. The rise

towards large x
IP

is indicative of a Reggeon contribution. The LPS data were used to

estimate the size of the Reggeon contribution by fitting them to a sum of Pomeron and

Reggeon contributions, assuming Regge factorisation:

xIPF
D(3)
2 (β, xIP , Q

2) = cIP · xIPF
D(3)IP
2 (β, xIP , Q

2) + cIR · xIPF
D(3)IR
2 (β, xIP , Q

2). (22)

The Pomeron contribution (IP ) was taken to equal the result of the BEKW(mod) fit to

the FPC data multiplied by the factor cIP which accounts for the fact that the LPS data

do not include proton dissociation. The LPS data for x
IP
< 0.005 yielded cIP = 0.70±0.03.

For the Reggeon contribution (IR), the following ansatz was made :

x
IP
F

D(3)IR
2 (β, x

IP
, Q2, t) =

x
IP
· eBIRt

x
IP

2αIR(t)−1
F

D(2)IR
2 (β,Q2).

Defining

gIR(x
IP

) =

tmin
∫

tmax

dt
eBIRt

x
IP

2αIR(t)−2
,

taking tmin = 0, tmax = 1 GeV2 and αIR(t) = αIR(0) + α′

IR · t leads to

gIR(x
IP

) =
1

(BIR − 2α′

IR · ln x
IP

) · x
IP

(2αIR(0)−2)
.

and to

x
IP
F

D(3)IR
2 (β, x

IP
, Q2) = gIR(x

IP
) · FD(2)IR

2 (β,Q2).

Following H1 [4], the Reggeon parameters were assumed to be: αIR(0) = 0.55, α′

IR = 0.9

GeV−2 and BIR = 2 GeV−2. While the LPS data are the most precise information on the

Reggeon contribution available, the data are still too sparse to effectively constrain the

parameter cR in a fit to Eq. 22. In order to obtain a rough estimation needed for this

study, the assumption x
IP
F

D(3)IR
2 (at x

IP
= 0.06) ≈ xIPF

D(3)IP
2 (at x

IP
= 0.002) independent

of β and Q2 was made (see Fig. 20). This allowed the determination, cR = 0.39; the

χ2/dof of the resulting description of Eq. 22 to the LPS data was 89/78.

The Reggeon contribution extracted from the LPS data was multiplied by a factor of

1/cIP = 1.43. This factor accounts for the extra contribution from proton dissociation in

the present analysis. The contribution from charged isovector Reggeons, which cannot

contribute to the LPS data, was assumed to be negligible [63].
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The relation between F
D(3)IR
2 and the lnM2

X spectrum from the present analysis is given

by,

dσIR
γ∗p→XN

d lnM2
X

= 4π2α
M2

X

Q2(Q2 + M2
X)

· cIR/cIP · x
IP
FD(3)IR(β, x

IP
, Q2).

Figure 6 compares the distribution of lnM2
X for the lowest and highest W bins at low and

high Q2 for the data together with the expectations from Reggeon exchange which lies

below the total non-diffractive contribution predicted by the fit to the lnM2
X distributions.
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Q2 (GeV2) 2.2 - 3 3 - 5 5 - 7 7 - 10 10 - 20 20 - 40 40 - 80

Q2
ref (GeV2) 2.7 4 6 8 14 27 55

W (GeV) 37 - 55 55 - 74 74 - 99 99 - 134 134 - 164 164 - 200 200 - 245

Wref (GeV) 45 65 85 115 150 180 220

MX (GeV) 0.28 - 2 2 - 4 4 - 8 8 - 15 15 - 25 25 - 35

MXref (GeV) 1.2 3 6 11 20 30

Table 1: Binning and reference values for MX , W and Q2.
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Q2 (GeV2) x F2 ± stat.± syst. Q2 (GeV2) x F2 ± stat.± syst.

2.7 0.001332 0.574±0.017+0.044
−0.041 14.0 0.006869 0.656±0.008+0.015

−0.017

2.7 0.000639 0.668±0.022+0.046
−0.040 14.0 0.003303 0.802±0.011+0.027

−0.031

2.7 0.000374 0.706±0.021+0.038
−0.038 14.0 0.001934 0.887±0.011+0.075

−0.065

2.7 0.000204 0.747±0.019+0.047
−0.039 14.0 0.001058 1.026±0.013+0.028

−0.034

2.7 0.000120 0.827±0.023+0.045
−0.040 14.0 0.000622 1.151±0.017+0.012

−0.015

2.7 0.000083 0.888±0.024+0.041
−0.048 14.0 0.000432 1.257±0.019+0.018

−0.023

2.7 0.000056 0.965±0.028+0.042
−0.035 14.0 0.000289 1.398±0.023+0.020

−0.033

4.0 0.001972 0.624±0.009+0.036
−0.039 27.0 0.013160 0.597±0.011+0.019

−0.024

4.0 0.000946 0.700±0.012+0.042
−0.045 27.0 0.006351 0.781±0.016+0.030

−0.029

4.0 0.000553 0.775±0.012+0.070
−0.059 27.0 0.003724 0.888±0.017+0.080

−0.072

4.0 0.000302 0.843±0.013+0.043
−0.048 27.0 0.002038 1.060±0.020+0.046

−0.046

4.0 0.000178 0.913±0.016+0.047
−0.045 27.0 0.001199 1.190±0.026+0.012

−0.023

4.0 0.000123 1.018±0.017+0.042
−0.039 27.0 0.000833 1.293±0.028+0.015

−0.005

4.0 0.000083 1.091±0.018+0.041
−0.025 27.0 0.000557 1.460±0.033+0.017

−0.026

6.0 0.002956 0.633±0.011+0.030
−0.029 55.0 0.026450 0.609±0.017+0.014

−0.011

6.0 0.001418 0.743±0.014+0.044
−0.036 55.0 0.012850 0.720±0.021+0.024

−0.027

6.0 0.000830 0.820±0.014+0.053
−0.054 55.0 0.007556 0.826±0.022+0.061

−0.048

6.0 0.000453 0.910±0.015+0.033
−0.036 55.0 0.004142 0.927±0.023+0.056

−0.048

6.0 0.000267 1.021±0.019+0.029
−0.026 55.0 0.002439 1.083±0.033+0.019

−0.017

6.0 0.000185 1.100±0.019+0.024
−0.025 55.0 0.001695 1.274±0.036+0.017

−0.020

6.0 0.000124 1.231±0.023+0.025
−0.028 55.0 0.001135 1.462±0.043+0.025

−0.024

8.0 0.003937 0.665±0.011+0.010
−0.014

8.0 0.001890 0.771±0.013+0.024
−0.025

8.0 0.001106 0.868±0.014+0.070
−0.056

8.0 0.000605 0.959±0.015+0.017
−0.029

8.0 0.000355 1.085±0.020+0.016
−0.019

8.0 0.000247 1.196±0.020+0.025
−0.023

8.0 0.000165 1.305±0.025+0.025
−0.023

Table 2: Proton structure function F2.
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Q2 (GeV2) c± stat.± syst. αtot
IP (0) ± stat.± syst.

2.7 0.206 ± 0.019+0.025
−0.017 1.155 ± 0.011+0.007

−0.011

4.0 0.209 ± 0.010+0.027
−0.028 1.174 ± 0.006+0.014

−0.012

6.0 0.195 ± 0.009+0.022
−0.019 1.202 ± 0.006+0.010

−0.011

8.0 0.206 ± 0.009+0.016
−0.015 1.211 ± 0.006+0.009

−0.009

14.0 0.207 ± 0.007+0.019
−0.017 1.233 ± 0.005+0.010

−0.011

27.0 0.215 ± 0.014+0.037
−0.029 1.255 ± 0.010+0.020

−0.021

55.0 0.178 ± 0.020+0.049
−0.028 1.307 ± 0.019+0.027

−0.037

Table 3: The results of the fits of F2 data for x < 0.01 in bins of Q2 to F2(x,Q
2) =

c · x−λ, where αtot
IP (0) = 1 + λ.
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Q2 W σtot
γ∗p ± stat.± syst. Q2 W σtot

γ∗p ± stat.± syst.

(GeV2) (GeV) (µb) (GeV2) (GeV) (µb)

2.7 45.0 23.88±0.70+1.82
−1.73 14.0 45.0 5.29±0.07+0.12

−0.13

2.7 65.0 27.75±0.93+1.92
−1.67 14.0 65.0 6.45±0.09+0.22

−0.25

2.7 85.0 29.33±0.89+1.58
−1.56 14.0 85.0 7.12±0.09+0.60

−0.53

2.7 115.0 31.03±0.80+1.95
−1.64 14.0 115.0 8.23±0.10+0.22

−0.27

2.7 150.0 34.38±0.97+1.86
−1.67 14.0 150.0 9.23±0.14+0.09

−0.12

2.7 180.0 36.91±1.01+1.69
−1.98 14.0 180.0 10.08±0.15+0.14

−0.18

2.7 220.0 40.09±1.18+1.73
−1.46 14.0 220.0 11.20±0.18+0.16

−0.26

4.0 45.0 17.53±0.26+1.01
−1.11 27.0 45.0 2.51±0.05+0.08

−0.10

4.0 65.0 19.66±0.33+1.18
−1.27 27.0 65.0 3.26±0.07+0.13

−0.12

4.0 85.0 21.73±0.35+1.97
−1.65 27.0 85.0 3.70±0.07+0.33

−0.30

4.0 115.0 23.64±0.36+1.20
−1.34 27.0 115.0 4.41±0.08+0.19

−0.19

4.0 150.0 25.61±0.44+1.32
−1.27 27.0 150.0 4.95±0.11+0.05

−0.10

4.0 180.0 28.55±0.46+1.17
−1.10 27.0 180.0 5.38±0.12+0.06

−0.02

4.0 220.0 30.60±0.52+1.14
−0.71 27.0 220.0 6.07±0.14+0.07

−0.11

6.0 45.0 11.88±0.20+0.56
−0.55 55.0 45.0 1.28±0.04+0.03

−0.02

6.0 65.0 13.91±0.26+0.82
−0.68 55.0 65.0 1.49±0.04+0.05

−0.06

6.0 85.0 15.34±0.27+0.99
−1.01 55.0 85.0 1.70±0.05+0.13

−0.10

6.0 115.0 17.02±0.28+0.62
−0.67 55.0 115.0 1.90±0.05+0.11

−0.10

6.0 150.0 19.09±0.35+0.54
−0.49 55.0 150.0 2.21±0.07+0.04

−0.03

6.0 180.0 20.57±0.36+0.45
−0.47 55.0 180.0 2.60±0.07+0.03

−0.04

6.0 220.0 23.02±0.44+0.47
−0.52 55.0 220.0 2.99±0.09+0.05

−0.05

8.0 45.0 9.36±0.15+0.15
−0.20

8.0 65.0 10.84±0.19+0.33
−0.36

8.0 85.0 12.19±0.20+0.98
−0.79

8.0 115.0 13.45±0.21+0.24
−0.41

8.0 150.0 15.22±0.28+0.22
−0.26

8.0 180.0 16.77±0.29+0.35
−0.32

8.0 220.0 18.30±0.35+0.35
−0.32

Table 4: Total γ∗p cross section σtot
γ∗p.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff

γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

1.2 2.7 45.0 773.8±76.0+109.5
−79.8 1.2 14.0 45.0 31.6±2.3+4.3

−3.6

1.2 2.7 65.0 908.4±89.8+141.2
−112.6 1.2 14.0 65.0 30.4±2.4+3.9

−4.5

1.2 2.7 85.0 952.8±89.0+85.3
−79.8 1.2 14.0 85.0 40.3±2.7+5.6

−6.9

1.2 2.7 115.0 958.2±73.7+99.7
−86.0 1.2 14.0 115.0 39.0±2.8+4.1

−3.4

1.2 2.7 150.0 1010.0±86.6+113.0
−115.7 1.2 14.0 150.0 41.9±3.5+3.3

−4.7

1.2 2.7 180.0 872.3±85.1+145.2
−87.9 1.2 14.0 180.0 30.8±3.0+3.6

−3.4

1.2 14.0 220.0 52.9±5.0+6.0
−5.5

1.2 4.0 45.0 388.4±22.7+39.9
−54.2 1.2 27.0 45.0 6.3±1.0+0.5

−1.2

1.2 4.0 65.0 423.0±27.4+56.6
−63.0 1.2 27.0 65.0 5.4±1.1+1.0

−0.6

1.2 4.0 85.0 485.4±31.0+69.4
−64.8 1.2 27.0 85.0 8.8±1.3+1.4

−1.6

1.2 4.0 115.0 564.2±32.1+60.3
−56.1 1.2 27.0 115.0 4.7±1.1+0.9

−0.9

1.2 4.0 150.0 481.7±33.9+64.4
−48.5 1.2 27.0 150.0 12.0±2.2+0.9

−3.8

1.2 4.0 180.0 603.7±40.4+53.4
−63.2 1.2 27.0 180.0 7.9±1.8+1.4

−1.6

1.2 4.0 220.0 471.1±48.9+141.3
−72.5 1.2 27.0 220.0 9.6±2.0+2.0

−1.0

1.2 6.0 45.0 164.0±14.0+17.4
−20.9 1.2 55.0 45.0 1.1±0.4+0.3

−0.4

1.2 6.0 65.0 192.5±17.7+43.4
−19.7 1.2 55.0 65.0 1.3±0.6+0.2

−0.2

1.2 6.0 85.0 193.6±17.7+21.8
−22.5 1.2 55.0 85.0 0.5±0.3+0.5

−0.1

1.2 6.0 115.0 211.2±17.4+20.2
−28.8 1.2 55.0 115.0 1.2±0.4+0.1

−0.2

1.2 6.0 150.0 256.2±22.6+27.6
−24.8 1.2 55.0 150.0 1.5±0.9+1.0

−0.3

1.2 6.0 180.0 223.6±20.7+31.2
−19.5

1.2 6.0 220.0 254.3±27.7+46.8
−47.6 1.2 55.0 220.0 1.4±0.7+0.2

−0.9

1.2 8.0 45.0 106.0±8.2+11.1
−12.2

1.2 8.0 65.0 120.5±8.7+16.8
−15.4

1.2 8.0 85.0 125.7±9.3+19.6
−15.3

1.2 8.0 115.0 142.7±10.3+15.2
−14.2

1.2 8.0 150.0 151.7±12.6+12.9
−13.1

1.2 8.0 180.0 174.2±13.4+12.6
−24.0

1.2 8.0 220.0 141.2±14.2+27.2
−15.5

Table 5: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for
MX = 1.2 GeV in bins of W and Q2.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff

γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

3.0 2.7 45.0 502.7±50.8+52.8
−50.1 3.0 14.0 45.0 61.0±3.5+2.8

−4.2

3.0 2.7 65.0 476.5±57.8+30.7
−38.4 3.0 14.0 65.0 67.3±3.8+7.4

−5.0

3.0 2.7 85.0 501.7±58.9+63.1
−38.2 3.0 14.0 85.0 80.2±4.2+13.2

−9.1

3.0 2.7 115.0 555.6±58.0+45.3
−44.8 3.0 14.0 115.0 88.0±4.5+2.3

−5.7

3.0 2.7 150.0 772.0±72.4+40.4
−59.4 3.0 14.0 150.0 88.8±5.6+7.3

−3.6

3.0 2.7 180.0 802.8±68.8+81.8
−76.6 3.0 14.0 180.0 103.6±6.2+11.3

−9.4

3.0 14.0 220.0 114.1±7.4+9.9
−7.9

3.0 4.0 45.0 332.2±20.5+29.0
−16.3 3.0 27.0 45.0 10.4±1.4+1.6

−1.2

3.0 4.0 65.0 363.4±24.8+35.8
−39.2 3.0 27.0 65.0 16.4±1.9+4.2

−2.2

3.0 4.0 85.0 372.9±26.1+30.8
−37.7 3.0 27.0 85.0 19.8±2.0+3.3

−3.8

3.0 4.0 115.0 411.0±27.8+24.5
−28.5 3.0 27.0 115.0 23.4±2.2+2.3

−2.1

3.0 4.0 150.0 502.6±34.6+50.4
−30.3 3.0 27.0 150.0 28.0±3.1+2.5

−3.4

3.0 4.0 180.0 619.8±37.2+37.3
−39.5 3.0 27.0 180.0 28.5±3.3+4.5

−2.1

3.0 4.0 220.0 574.4±37.8+47.3
−47.3 3.0 27.0 220.0 34.4±3.4+3.8

−4.0

3.0 6.0 45.0 228.1±16.5+19.6
−25.9

3.0 6.0 65.0 249.4±20.4+24.9
−10.6 3.0 55.0 65.0 2.5±0.7+0.5

−0.1

3.0 6.0 85.0 297.6±24.0+22.7
−22.6 3.0 55.0 85.0 4.0±0.8+0.3

−0.5

3.0 6.0 115.0 276.5±20.0+12.0
−11.4 3.0 55.0 115.0 4.0±0.9+0.9

−0.4

3.0 6.0 150.0 389.4±29.5+10.1
−20.5 3.0 55.0 150.0 4.1±1.1+1.5

−0.8

3.0 6.0 180.0 423.0±30.5+21.0
−26.0 3.0 55.0 180.0 6.0±1.2+0.6

−1.5

3.0 6.0 220.0 389.1±30.7+18.0
−26.5 3.0 55.0 220.0 6.6±1.4+1.5

−1.0

3.0 8.0 45.0 160.4±9.8+3.4
−5.2

3.0 8.0 65.0 180.1±11.5+12.1
−22.2

3.0 8.0 85.0 205.8±12.5+25.1
−13.1

3.0 8.0 115.0 205.0±12.1+6.3
−8.2

3.0 8.0 150.0 246.4±16.0+17.6
−17.2

3.0 8.0 180.0 228.0±15.0+19.4
−6.4

3.0 8.0 220.0 265.3±17.5+19.2
−16.1

Table 6: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for
MX = 3.0 GeV in bins of W and Q2.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff

γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

6.0 2.7 65.0 221.5±26.2+11.1
−11.5 6.0 14.0 65.0 45.6±3.3+4.8

−4.8

6.0 2.7 85.0 262.7±28.4+17.5
−13.3 6.0 14.0 85.0 55.9±2.8+7.1

−5.5

6.0 2.7 115.0 278.8±27.8+35.3
−26.6 6.0 14.0 115.0 57.3±2.8+0.9

−5.4

6.0 2.7 150.0 270.8±30.3+23.5
−30.4 6.0 14.0 150.0 64.9±3.6+2.9

−1.8

6.0 2.7 180.0 313.3±30.1+24.0
−29.9 6.0 14.0 180.0 73.8±3.9+2.3

−2.0

6.0 14.0 220.0 73.9±4.2+4.5
−3.0

6.0 4.0 45.0 151.5±24.6+16.8
−11.3

6.0 4.0 65.0 155.3±13.0+16.5
−13.4 6.0 27.0 65.0 19.1±2.1+1.4

−2.1

6.0 4.0 85.0 182.8±13.6+28.1
−18.1 6.0 27.0 85.0 24.2±1.8+2.8

−3.3

6.0 4.0 115.0 182.1±13.3+9.6
−16.5 6.0 27.0 115.0 27.3±2.1+1.6

−3.3

6.0 4.0 150.0 217.5±16.7+10.4
−18.1 6.0 27.0 150.0 28.7±2.5+0.8

−1.0

6.0 4.0 180.0 239.1±16.4+17.6
−12.0 6.0 27.0 180.0 34.8±2.9+0.5

−2.2

6.0 4.0 220.0 265.0±17.0+11.9
−23.8 6.0 27.0 220.0 40.8±3.0+1.2

−2.7

6.0 6.0 45.0 93.1±17.4+13.4
−12.2

6.0 6.0 65.0 124.3±11.7+9.3
−10.5 6.0 55.0 65.0 4.2±1.0+0.7

−0.5

6.0 6.0 85.0 129.5±10.9+3.4
−12.3 6.0 55.0 85.0 5.9±0.9+1.7

−0.9

6.0 6.0 115.0 125.5±10.0+6.3
−2.9 6.0 55.0 115.0 8.0±0.9+0.4

−1.1

6.0 6.0 150.0 166.2±13.4+10.8
−11.4 6.0 55.0 150.0 6.7±1.1+1.8

−0.8

6.0 6.0 180.0 160.5±12.0+8.1
−10.5 6.0 55.0 180.0 12.4±1.4+0.4

−1.4

6.0 6.0 220.0 190.2±13.5+10.7
−4.7 6.0 55.0 220.0 10.4±1.4+0.7

−0.9

6.0 8.0 45.0 78.0±14.4+7.4
−5.5

6.0 8.0 65.0 85.8±6.9+6.3
−5.8

6.0 8.0 85.0 98.9±6.2+12.1
−7.6

6.0 8.0 115.0 108.3±6.4+2.3
−4.8

6.0 8.0 150.0 106.5±7.3+5.5
−6.2

6.0 8.0 180.0 128.0±7.9+8.9
−7.1

6.0 8.0 220.0 141.2±8.8+4.5
−7.7

Table 7: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for
MX = 6.0 GeV in bins of W and Q2.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff

γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

11.0 2.7 85.0 126.3±27.1+24.3
−8.3 11.0 14.0 85.0 30.5±5.7+5.5

−4.9

11.0 2.7 115.0 141.3±17.1+14.0
−12.3 11.0 14.0 115.0 32.0±2.8+1.2

−2.5

11.0 2.7 150.0 124.7±16.5+15.3
−8.3 11.0 14.0 150.0 34.2±2.4+0.6

−1.4

11.0 2.7 180.0 148.7±15.4+4.5
−17.9 11.0 14.0 180.0 37.7±2.3+2.0

−1.6

11.0 2.7 220.0 151.4±16.4+19.4
−3.4 11.0 14.0 220.0 43.1±2.7+1.5

−1.0

11.0 4.0 85.0 70.7±16.8+11.1
−11.4 11.0 27.0 85.0 11.9±3.2+3.1

−1.5

11.0 4.0 115.0 92.5±10.4+8.2
−6.0 11.0 27.0 115.0 12.6±1.8+1.8

−0.4

11.0 4.0 150.0 104.1±9.1+5.0
−10.8 11.0 27.0 150.0 14.0±1.6+0.9

−0.9

11.0 4.0 180.0 98.3±7.7+7.5
−4.0 11.0 27.0 180.0 15.6±1.6+1.7

−0.8

11.0 4.0 220.0 106.9±8.1+4.1
−7.4 11.0 27.0 220.0 22.4±1.7+0.6

−1.8

11.0 6.0 85.0 51.9±12.8+12.9
−6.0

11.0 6.0 115.0 72.2±7.4+1.2
−8.1 11.0 55.0 115.0 7.2±1.0+0.4

−0.7

11.0 6.0 150.0 68.0±6.8+4.4
−3.7 11.0 55.0 150.0 7.1±1.0+0.8

−0.6

11.0 6.0 180.0 79.1±6.8+3.0
−4.3 11.0 55.0 180.0 8.8±1.0+0.8

−0.1

11.0 6.0 220.0 97.9±7.8+2.9
−3.9 11.0 55.0 220.0 10.1±1.2+0.4

−0.6

11.0 8.0 85.0 49.2±9.9+4.5
−8.8

11.0 8.0 115.0 60.9±5.4+3.4
−1.2

11.0 8.0 150.0 58.2±4.7+2.6
−0.3

11.0 8.0 180.0 61.7±4.6+1.1
−3.2

11.0 8.0 220.0 69.6±5.0+5.3
−1.1

Table 8: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for
MX = 11.0 GeV in bins of W and Q2.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff

γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

20.0 2.7 150.0 81.8±24.0+8.6
−4.4 20.0 14.0 150.0 17.8±4.9+2.3

−1.9

20.0 2.7 180.0 68.1±13.3+8.3
−3.1 20.0 14.0 180.0 21.1±3.1+0.8

−1.2

20.0 2.7 220.0 107.1±13.4+8.8
−6.7 20.0 14.0 220.0 23.9±2.3+1.0

−0.9

20.0 4.0 150.0 48.0±15.2+3.7
−4.7

20.0 4.0 180.0 57.1±9.3+4.8
−3.5 20.0 27.0 180.0 10.2±1.9+0.5

−0.7

20.0 4.0 220.0 66.9±6.9+3.8
−2.6 20.0 27.0 220.0 10.7±1.4+1.0

−0.4

20.0 6.0 150.0 40.9±11.1+5.2
−4.0 20.0 55.0 150.0 4.2±1.4+0.9

−1.0

20.0 6.0 180.0 42.5±7.0+0.7
−6.0 20.0 55.0 180.0 3.7±1.0+0.4

−0.5

20.0 6.0 220.0 48.0±5.2+3.2
−4.2 20.0 55.0 220.0 4.7±0.9+1.1

−0.3

20.0 8.0 150.0 31.3±8.2+2.6
−2.5

20.0 8.0 180.0 41.1±5.5+0.9
−4.3

20.0 8.0 220.0 39.6±4.2+1.4
−4.7

Table 9: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for
MX = 20.0 GeV in bins of W and Q2.

MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff

γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

30.0 2.7 220.0 63.3±18.6+9.2
−6.1 30.0 14.0 220.0 16.9±4.5+1.7

−1.1

30.0 4.0 220.0 41.3±11.8+1.5
−5.0 30.0 27.0 220.0 6.8±2.4+0.7

−0.8

30.0 6.0 220.0 29.3±8.8+4.5
−3.4

30.0 8.0 220.0 23.2±7.4+4.6
−1.1

Table 10: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV,
for MX = 30.0 GeV in bins of W and Q2.
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MX (GeV) Q2 (GeV2) αdiff
IP (0) ± stat.± syst.

1.2 2.7 1.058 ± 0.019+0.017
−0.018

1.2 4.0 1.085 ± 0.012+0.024
−0.014

1.2 6.0 1.095 ± 0.016+0.015
−0.012

1.2 8.0 1.095 ± 0.014+0.015
−0.013

1.2 14.0 1.074 ± 0.015+0.016
−0.011

1.2 27.0 1.095 ± 0.038+0.024
−0.014

1.2 55.0 1.087 ± 0.113+0.042
−0.080

3.0 2.7 1.130 ± 0.024+0.021
−0.010

3.0 4.0 1.130 ± 0.012+0.015
−0.016

3.0 6.0 1.128 ± 0.014+0.013
−0.015

3.0 8.0 1.103 ± 0.011+0.012
−0.005

3.0 14.0 1.125 ± 0.011+0.015
−0.013

3.0 27.0 1.201 ± 0.019+0.017
−0.018

3.0 55.0 1.202 ± 0.057+0.013
−0.030

6.0 2.7 1.099 ± 0.032+0.008
−0.021

6.0 4.0 1.131 ± 0.017+0.015
−0.020

6.0 6.0 1.126 ± 0.019+0.017
−0.010

6.0 8.0 1.121 ± 0.016+0.015
−0.015

6.0 14.0 1.125 ± 0.014+0.026
−0.021

6.0 27.0 1.170 ± 0.021+0.020
−0.019

6.0 55.0 1.208 ± 0.038+0.022
−0.024

11.0 2.7 1.074 ± 0.049+0.019
−0.033

11.0 4.0 1.098 ± 0.041+0.019
−0.023

11.0 6.0 1.170 ± 0.046+0.022
−0.023

11.0 8.0 1.097 ± 0.038+0.026
−0.020

11.0 14.0 1.138 ± 0.036+0.030
−0.012

11.0 27.0 1.248 ± 0.058+0.023
−0.066

11.0 55.0 1.181 ± 0.070+0.021
−0.022

Table 11: The value of αdiff
IP (0) for MX and Q2 bins.
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Q2 range (GeV2) < Q2 > (GeV2) αdiff
IP (0) ± stat.± syst.

2.2 - 5 3.6 1.125 ± 0.009+0.013
−0.013

5 - 10 7.2 1.117 ± 0.007+0.013
−0.010

10 - 20 14.0 1.126 ± 0.009+0.016
−0.013

2.2 - 20 8.3 1.122 ± 0.005+0.013
−0.011

20 - 80 34.4 1.193 ± 0.013+0.016
−0.019

Table 12: The values of αdiff
IP (0) for 2 < MX < 15 GeV.

Q2 range (GeV2) < Q2 > (GeV2) αdiff
IP (0) ± stat.± syst.

2.2 - 5 3.6 1.127 ± 0.009+0.013
−0.013

5 - 10 7.2 1.115 ± 0.008+0.013
−0.010

10 - 20 14.0 1.124 ± 0.012+0.020
−0.019

2.2 - 20 8.3 1.121 ± 0.005+0.014
−0.012

20 - 80 33.9 1.179 ± 0.017+0.020
−0.022

Table 13: The values of αdiff
IP (0) for 2 < MX < 15 GeV and x

IP
< 0.01.
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Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

2.7 45 0.0557±0.0057+0.0079
−0.0057 14.0 45 0.0103±0.0008+0.0014

−0.0012

2.7 65 0.0563±0.0059+0.0088
−0.0070 14.0 65 0.0081±0.0006+0.0010

−0.0012

2.7 85 0.0559±0.0055+0.0050
−0.0047 14.0 85 0.0097±0.0007+0.0014

−0.0017

2.7 115 0.0531±0.0043+0.0055
−0.0048 14.0 115 0.0081±0.0006+0.0009

−0.0007

2.7 150 0.0505±0.0046+0.0057
−0.0058 14.0 150 0.0078±0.0007+0.0006

−0.0009

2.7 180 0.0406±0.0041+0.0068
−0.0041 14.0 180 0.0053±0.0005+0.0006

−0.0006

14.0 220 0.0081±0.0008+0.0009
−0.0008

4.0 45 0.0381±0.0023+0.0039
−0.0053 27.0 45 0.0043±0.0007+0.0004

−0.0008

4.0 65 0.0370±0.0025+0.0050
−0.0055 27.0 65 0.0028±0.0006+0.0005

−0.0003

4.0 85 0.0384±0.0025+0.0055
−0.0051 27.0 85 0.0041±0.0006+0.0006

−0.0007

4.0 115 0.0410±0.0024+0.0044
−0.0041 27.0 115 0.0018±0.0004+0.0004

−0.0003

4.0 150 0.0323±0.0023+0.0043
−0.0033 27.0 150 0.0042±0.0008+0.0003

−0.0013

4.0 180 0.0364±0.0025+0.0032
−0.0038 27.0 180 0.0025±0.0006+0.0005

−0.0005

4.0 220 0.0265±0.0028+0.0079
−0.0041 27.0 220 0.0027±0.0006+0.0006

−0.0003

6.0 45 0.0238±0.0021+0.0025
−0.0030 55.0 45 0.0014±0.0005+0.0005

−0.0005

6.0 65 0.0238±0.0022+0.0054
−0.0024 55.0 65 0.0015±0.0007+0.0003

−0.0003

6.0 85 0.0217±0.0020+0.0024
−0.0025 55.0 85 0.0005±0.0003+0.0005

−0.0001

6.0 115 0.0213±0.0018+0.0020
−0.0029 55.0 115 0.0011±0.0004+0.0001

−0.0002

6.0 150 0.0231±0.0021+0.0025
−0.0022 55.0 150 0.0012±0.0007+0.0008

−0.0002

6.0 180 0.0187±0.0018+0.0026
−0.0016

6.0 220 0.0190±0.0021+0.0035
−0.0036 55.0 220 0.0008±0.0004+0.0001

−0.0005

8.0 45 0.0195±0.0015+0.0020
−0.0022

8.0 65 0.0191±0.0014+0.0027
−0.0025

8.0 85 0.0177±0.0013+0.0028
−0.0022

8.0 115 0.0183±0.0013+0.0019
−0.0018

8.0 150 0.0171±0.0015+0.0015
−0.0015

8.0 180 0.0179±0.0014+0.0013
−0.0025

8.0 220 0.0133±0.0014+0.0026
−0.0015

Table 14: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 0.28 − 2 GeV, to the total cross section.
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Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

2.7 45 0.0421±0.0044+0.0044
−0.0042 14.0 45 0.0230±0.0014+0.0011

−0.0016

2.7 65 0.0343±0.0043+0.0022
−0.0028 14.0 65 0.0209±0.0012+0.0023

−0.0015

2.7 85 0.0342±0.0042+0.0043
−0.0026 14.0 85 0.0225±0.0012+0.0037

−0.0026

2.7 115 0.0358±0.0039+0.0029
−0.0029 14.0 115 0.0214±0.0011+0.0006

−0.0014

2.7 150 0.0449±0.0044+0.0023
−0.0035 14.0 150 0.0192±0.0012+0.0016

−0.0008

2.7 180 0.0435±0.0039+0.0044
−0.0042 14.0 180 0.0205±0.0013+0.0022

−0.0019

14.0 220 0.0204±0.0014+0.0018
−0.0014

4.0 45 0.0379±0.0024+0.0033
−0.0019 27.0 45 0.0083±0.0011+0.0013

−0.0010

4.0 65 0.0370±0.0026+0.0036
−0.0040 27.0 65 0.0100±0.0012+0.0026

−0.0014

4.0 85 0.0343±0.0025+0.0028
−0.0035 27.0 85 0.0107±0.0011+0.0018

−0.0021

4.0 115 0.0348±0.0024+0.0021
−0.0024 27.0 115 0.0106±0.0010+0.0010

−0.0010

4.0 150 0.0393±0.0028+0.0039
−0.0024 27.0 150 0.0113±0.0013+0.0010

−0.0014

4.0 180 0.0434±0.0027+0.0026
−0.0028 27.0 180 0.0106±0.0013+0.0017

−0.0008

4.0 220 0.0375±0.0026+0.0031
−0.0031 27.0 220 0.0114±0.0012+0.0012

−0.0013

6.0 45 0.0384±0.0029+0.0033
−0.0044

6.0 65 0.0358±0.0030+0.0036
−0.0015 55.0 65 0.0034±0.0010+0.0007

−0.0002

6.0 85 0.0388±0.0032+0.0030
−0.0029 55.0 85 0.0047±0.0010+0.0004

−0.0005

6.0 115 0.0325±0.0024+0.0014
−0.0013 55.0 115 0.0042±0.0009+0.0010

−0.0004

6.0 150 0.0408±0.0032+0.0011
−0.0021 55.0 150 0.0037±0.0010+0.0014

−0.0007

6.0 180 0.0411±0.0030+0.0020
−0.0025 55.0 180 0.0046±0.0009+0.0005

−0.0012

6.0 220 0.0338±0.0027+0.0016
−0.0023 55.0 220 0.0044±0.0010+0.0010

−0.0007

8.0 45 0.0343±0.0022+0.0007
−0.0011

8.0 65 0.0332±0.0022+0.0022
−0.0041

8.0 85 0.0338±0.0021+0.0041
−0.0022

8.0 115 0.0305±0.0019+0.0009
−0.0012

8.0 150 0.0324±0.0022+0.0023
−0.0023

8.0 180 0.0272±0.0018+0.0023
−0.0008

8.0 220 0.0290±0.0020+0.0021
−0.0018

Table 15: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 2 − 4 GeV, to the total cross section.
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Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

2.7 65 0.0319±0.0039+0.0016
−0.0017 14.0 65 0.0283±0.0021+0.0030

−0.0030

2.7 85 0.0358±0.0040+0.0024
−0.0018 14.0 85 0.0314±0.0016+0.0040

−0.0031

2.7 115 0.0359±0.0037+0.0046
−0.0034 14.0 115 0.0279±0.0014+0.0004

−0.0026

2.7 150 0.0315±0.0036+0.0027
−0.0035 14.0 150 0.0281±0.0016+0.0013

−0.0008

2.7 180 0.0340±0.0034+0.0026
−0.0032 14.0 180 0.0293±0.0016+0.0009

−0.0008

14.0 220 0.0264±0.0016+0.0016
−0.0011

4.0 45 0.0346±0.0056+0.0038
−0.0026

4.0 65 0.0316±0.0027+0.0034
−0.0027 27.0 65 0.0234±0.0026+0.0017

−0.0026

4.0 85 0.0336±0.0026+0.0052
−0.0033 27.0 85 0.0261±0.0021+0.0030

−0.0036

4.0 115 0.0308±0.0023+0.0016
−0.0028 27.0 115 0.0248±0.0019+0.0015

−0.0030

4.0 150 0.0340±0.0027+0.0016
−0.0028 27.0 150 0.0232±0.0020+0.0007

−0.0008

4.0 180 0.0335±0.0024+0.0025
−0.0017 27.0 180 0.0259±0.0022+0.0004

−0.0016

4.0 220 0.0346±0.0023+0.0016
−0.0031 27.0 220 0.0269±0.0021+0.0008

−0.0018

6.0 45 0.0314±0.0059+0.0045
−0.0041

6.0 65 0.0357±0.0034+0.0027
−0.0030 55.0 65 0.0112±0.0027+0.0018

−0.0014

6.0 85 0.0338±0.0029+0.0009
−0.0032 55.0 85 0.0138±0.0022+0.0041

−0.0021

6.0 115 0.0295±0.0024+0.0015
−0.0007 55.0 115 0.0168±0.0020+0.0008

−0.0023

6.0 150 0.0348±0.0029+0.0023
−0.0024 55.0 150 0.0120±0.0020+0.0032

−0.0014

6.0 180 0.0312±0.0024+0.0016
−0.0020 55.0 180 0.0190±0.0023+0.0006

−0.0022

6.0 220 0.0331±0.0024+0.0019
−0.0008 55.0 220 0.0140±0.0019+0.0009

−0.0013

8.0 45 0.0334±0.0062+0.0032
−0.0023

8.0 65 0.0317±0.0026+0.0023
−0.0021

8.0 85 0.0325±0.0021+0.0040
−0.0025

8.0 115 0.0322±0.0020+0.0007
−0.0014

8.0 150 0.0280±0.0020+0.0014
−0.0016

8.0 180 0.0305±0.0020+0.0021
−0.0017

8.0 220 0.0309±0.0020+0.0010
−0.0017

Table 16: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 4 − 8 GeV, to the total cross section.
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Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

2.7 85 0.0302±0.0065+0.0058
−0.0020 14.0 85 0.0300±0.0056+0.0054

−0.0048

2.7 115 0.0319±0.0039+0.0032
−0.0028 14.0 115 0.0272±0.0024+0.0010

−0.0021

2.7 150 0.0254±0.0034+0.0031
−0.0017 14.0 150 0.0260±0.0019+0.0004

−0.0011

2.7 180 0.0282±0.0030+0.0009
−0.0034 14.0 180 0.0262±0.0017+0.0014

−0.0011

2.7 220 0.0264±0.0030+0.0034
−0.0006 14.0 220 0.0269±0.0018+0.0009

−0.0006

4.0 85 0.0228±0.0054+0.0036
−0.0037 27.0 85 0.0226±0.0060+0.0058

−0.0029

4.0 115 0.0274±0.0031+0.0024
−0.0018 27.0 115 0.0200±0.0030+0.0029

−0.0006

4.0 150 0.0285±0.0025+0.0014
−0.0029 27.0 150 0.0198±0.0023+0.0013

−0.0012

4.0 180 0.0241±0.0019+0.0018
−0.0010 27.0 180 0.0203±0.0021+0.0022

−0.0011

4.0 220 0.0244±0.0019+0.0009
−0.0017 27.0 220 0.0258±0.0021+0.0007

−0.0021

6.0 85 0.0237±0.0059+0.0059
−0.0028

6.0 115 0.0297±0.0031+0.0005
−0.0033 55.0 115 0.0264±0.0037+0.0014

−0.0025

6.0 150 0.0249±0.0025+0.0016
−0.0013 55.0 150 0.0225±0.0031+0.0026

−0.0018

6.0 180 0.0269±0.0024+0.0010
−0.0015 55.0 180 0.0237±0.0028+0.0021

−0.0004

6.0 220 0.0298±0.0024+0.0009
−0.0012 55.0 220 0.0238±0.0028+0.0009

−0.0015

8.0 85 0.0283±0.0057+0.0026
−0.0051

8.0 115 0.0317±0.0029+0.0018
−0.0006

8.0 150 0.0268±0.0022+0.0012
−0.0001

8.0 180 0.0257±0.0020+0.0005
−0.0013

8.0 220 0.0266±0.0020+0.0020
−0.0004

Table 17: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 8 − 15 GeV, to the total cross section.
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Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

2.7 150 0.0238±0.0070+0.0025
−0.0013 14.0 150 0.0193±0.0054+0.0025

−0.0020

2.7 180 0.0184±0.0036+0.0023
−0.0008 14.0 180 0.0210±0.0031+0.0008

−0.0011

2.7 220 0.0267±0.0034+0.0022
−0.0017 14.0 220 0.0213±0.0021+0.0009

−0.0008

4.0 150 0.0187±0.0059+0.0015
−0.0018

4.0 180 0.0200±0.0033+0.0017
−0.0012 27.0 180 0.0190±0.0036+0.0010

−0.0014

4.0 220 0.0218±0.0023+0.0012
−0.0008 27.0 220 0.0176±0.0024+0.0016

−0.0007

6.0 150 0.0214±0.0058+0.0027
−0.0021 55.0 150 0.0188±0.0065+0.0039

−0.0047

6.0 180 0.0206±0.0034+0.0004
−0.0029 55.0 180 0.0142±0.0038+0.0016

−0.0019

6.0 220 0.0208±0.0023+0.0014
−0.0018 55.0 220 0.0157±0.0029+0.0036

−0.0011

8.0 150 0.0205±0.0054+0.0017
−0.0016

8.0 180 0.0245±0.0033+0.0005
−0.0026

8.0 220 0.0216±0.0023+0.0007
−0.0026

Table 18: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 15 − 25 GeV, to the total cross section.

Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot Q2 W

∫ Mb
Ma

dMXdσdiff

γ∗p→XN
/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

2.7 220 0.0158±0.0047+0.0023
−0.0015 14.0 220 0.0151±0.0040+0.0015

−0.0010

4.0 220 0.0135±0.0039+0.0005
−0.0016 27.0 220 0.0111±0.0039+0.0012

−0.0014

6.0 220 0.0127±0.0038+0.0020
−0.0015

8.0 220 0.0126±0.0040+0.0025
−0.0006

Table 19: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 25 − 35 GeV, to the total cross section.
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Q2 (GeV2) σdiff/σtot ± stat.± syst.

4.0 0.158 ± 0.007+0.009
−0.007

6.0 0.149 ± 0.007+0.005
−0.005

8.0 0.134 ± 0.006+0.005
−0.004

14.0 0.118 ± 0.005+0.003
−0.002

27.0 0.096 ± 0.006+0.003
−0.004

Table 20: Ratio of the total diffractive cross section observed to the total cross
section, σdiff(0.28 < MX < 35GeV,MN < 2.3GeV)/σtot, for 200 < W < 245 GeV,
at different values of Q2.
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β x
IP

Q2 x
IP
F

D(3)
2 β x

IP
Q2 x

IP
F

D(3)
2

± stat. ± syst. ± stat. ± syst.

(GeV2) (GeV2)

0.6522 0.00204 2.7 0.0321±0.0032+0.0045
−0.0033 0.7353 0.00268 4.0 0.0314±0.0018+0.0032

−0.0044

0.6522 0.00098 2.7 0.0377±0.0037+0.0059
−0.0047 0.7353 0.00129 4.0 0.0342±0.0022+0.0046

−0.0051

0.6522 0.00057 2.7 0.0396±0.0037+0.0035
−0.0033 0.7353 0.00075 4.0 0.0392±0.0025+0.0056

−0.0052

0.6522 0.00031 2.7 0.0398±0.0031+0.0041
−0.0036 0.7353 0.00041 4.0 0.0456±0.0026+0.0049

−0.0045

0.6522 0.00018 2.7 0.0419±0.0036+0.0047
−0.0048 0.7353 0.00024 4.0 0.0389±0.0027+0.0052

−0.0039

0.6522 0.00013 2.7 0.0362±0.0035+0.0060
−0.0037 0.7353 0.00017 4.0 0.0488±0.0033+0.0043

−0.0051

0.7353 0.00011 4.0 0.0381±0.0039+0.0114
−0.0059

0.2308 0.00577 2.7 0.0236±0.0024+0.0025
−0.0024 0.3077 0.00641 4.0 0.0257±0.0016+0.0022

−0.0013

0.2308 0.00277 2.7 0.0224±0.0027+0.0014
−0.0018 0.3077 0.00307 4.0 0.0281±0.0019+0.0028

−0.0030

0.2308 0.00162 2.7 0.0236±0.0028+0.0030
−0.0018 0.3077 0.00180 4.0 0.0288±0.0020+0.0024

−0.0029

0.2308 0.00088 2.7 0.0261±0.0027+0.0021
−0.0021 0.3077 0.00098 4.0 0.0318±0.0021+0.0019

−0.0022

0.2308 0.00052 2.7 0.0362±0.0034+0.0019
−0.0028 0.3077 0.00058 4.0 0.0388±0.0027+0.0039

−0.0023

0.2308 0.00036 2.7 0.0377±0.0032+0.0038
−0.0036 0.3077 0.00040 4.0 0.0479±0.0029+0.0029

−0.0030

0.3077 0.00027 4.0 0.0444±0.0029+0.0037
−0.0037

0.1000 0.01971 4.0 0.0180±0.0029+0.0020
−0.0013

0.0698 0.00915 2.7 0.0172±0.0020+0.0009
−0.0009 0.1000 0.00946 4.0 0.0185±0.0015+0.0020

−0.0016

0.0698 0.00535 2.7 0.0204±0.0022+0.0014
−0.0010 0.1000 0.00553 4.0 0.0217±0.0016+0.0033

−0.0022

0.0698 0.00293 2.7 0.0216±0.0022+0.0027
−0.0021 0.1000 0.00302 4.0 0.0216±0.0016+0.0011

−0.0020

0.0698 0.00172 2.7 0.0210±0.0024+0.0018
−0.0024 0.1000 0.00178 4.0 0.0258±0.0020+0.0012

−0.0022

0.0698 0.00119 2.7 0.0243±0.0023+0.0019
−0.0023 0.1000 0.00123 4.0 0.0284±0.0019+0.0021

−0.0014

0.1000 0.00083 4.0 0.0315±0.0020+0.0014
−0.0028

0.0218 0.01711 2.7 0.0171±0.0037+0.0033
−0.0011 0.0320 0.01729 4.0 0.0143±0.0034+0.0022

−0.0023

0.0218 0.00935 2.7 0.0191±0.0023+0.0019
−0.0017 0.0320 0.00945 4.0 0.0188±0.0021+0.0017

−0.0012

0.0218 0.00550 2.7 0.0169±0.0022+0.0021
−0.0011 0.0320 0.00556 4.0 0.0211±0.0019+0.0010

−0.0022

0.0218 0.00382 2.7 0.0201±0.0021+0.0006
−0.0024 0.0320 0.00386 4.0 0.0199±0.0016+0.0015

−0.0008

0.0218 0.00256 2.7 0.0205±0.0022+0.0026
−0.0005 0.0320 0.00258 4.0 0.0217±0.0016+0.0008

−0.0015

0.0067 0.01790 2.7 0.0198±0.0058+0.0021
−0.0011 0.0099 0.01795 4.0 0.0173±0.0055+0.0013

−0.0017

0.0067 0.01243 2.7 0.0165±0.0032+0.0020
−0.0008 0.0099 0.01247 4.0 0.0206±0.0033+0.0017

−0.0012

0.0067 0.00832 2.7 0.0260±0.0032+0.0021
−0.0016 0.0099 0.00835 4.0 0.0241±0.0025+0.0014

−0.0009

0.0030 0.01865 2.7 0.0229±0.0067+0.0033
−0.0022 0.0044 0.01868 4.0 0.0222±0.0063+0.0008

−0.0027

Table 21: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2)

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for Q2 = 2.7 and 4.0 GeV2,
in bins of β and x

IP
.
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β x
IP

Q2 x
IP
F

D(3)
2 β x

IP
Q2 x

IP
F

D(3)
2

± stat. ± syst. ± stat. ± syst.

(GeV2) (GeV2)

0.8065 0.00366 6.0 0.0272±0.0023+0.0029
−0.0035 0.8475 0.00464 8.0 0.0297±0.0023+0.0031

−0.0034

0.8065 0.00176 6.0 0.0319±0.0029+0.0072
−0.0033 0.8475 0.00223 8.0 0.0338±0.0025+0.0047

−0.0043

0.8065 0.00103 6.0 0.0321±0.0029+0.0036
−0.0037 0.8475 0.00131 8.0 0.0353±0.0026+0.0055

−0.0043

0.8065 0.00056 6.0 0.0350±0.0029+0.0034
−0.0048 0.8475 0.00071 8.0 0.0400±0.0029+0.0043

−0.0040

0.8065 0.00033 6.0 0.0425±0.0037+0.0046
−0.0041 0.8475 0.00042 8.0 0.0426±0.0035+0.0036

−0.0037

0.8065 0.00023 6.0 0.0371±0.0034+0.0052
−0.0032 0.8475 0.00029 8.0 0.0489±0.0037+0.0035

−0.0067

0.8065 0.00015 6.0 0.0422±0.0046+0.0078
−0.0079 0.8475 0.00020 8.0 0.0396±0.0040+0.0076

−0.0044

0.4000 0.00739 6.0 0.0305±0.0022+0.0026
−0.0035 0.4706 0.00836 8.0 0.0324±0.0020+0.0007

−0.0010

0.4000 0.00354 6.0 0.0333±0.0027+0.0033
−0.0014 0.4706 0.00402 8.0 0.0364±0.0023+0.0024

−0.0045

0.4000 0.00207 6.0 0.0398±0.0032+0.0030
−0.0030 0.4706 0.00235 8.0 0.0416±0.0025+0.0051

−0.0026

0.4000 0.00113 6.0 0.0370±0.0027+0.0016
−0.0015 0.4706 0.00129 8.0 0.0414±0.0025+0.0013

−0.0017

0.4000 0.00067 6.0 0.0521±0.0039+0.0013
−0.0027 0.4706 0.00076 8.0 0.0498±0.0032+0.0036

−0.0035

0.4000 0.00046 6.0 0.0566±0.0041+0.0028
−0.0035 0.4706 0.00052 8.0 0.0461±0.0030+0.0039

−0.0013

0.4000 0.00031 6.0 0.0520±0.0041+0.0024
−0.0035 0.4706 0.00035 8.0 0.0536±0.0035+0.0039

−0.0033

0.1429 0.02068 6.0 0.0174±0.0032+0.0025
−0.0023 0.1818 0.02164 8.0 0.0204±0.0038+0.0019

−0.0014

0.1429 0.00993 6.0 0.0233±0.0022+0.0017
−0.0020 0.1818 0.01039 8.0 0.0225±0.0018+0.0017

−0.0015

0.1429 0.00581 6.0 0.0242±0.0020+0.0006
−0.0023 0.1818 0.00608 8.0 0.0259±0.0016+0.0032

−0.0020

0.1429 0.00317 6.0 0.0235±0.0019+0.0012
−0.0005 0.1818 0.00332 8.0 0.0283±0.0017+0.0006

−0.0013

0.1429 0.00187 6.0 0.0311±0.0025+0.0020
−0.0021 0.1818 0.00195 8.0 0.0279±0.0019+0.0014

−0.0016

0.1429 0.00130 6.0 0.0301±0.0022+0.0015
−0.0020 0.1818 0.00136 8.0 0.0335±0.0021+0.0023

−0.0019

0.1429 0.00087 6.0 0.0356±0.0025+0.0020
−0.0009 0.1818 0.00091 8.0 0.0369±0.0023+0.0012

−0.0020

0.0472 0.01756 6.0 0.0160±0.0040+0.0040
−0.0019 0.0620 0.01783 8.0 0.0206±0.0042+0.0019

−0.0037

0.0472 0.00960 6.0 0.0223±0.0023+0.0004
−0.0025 0.0620 0.00975 8.0 0.0255±0.0023+0.0014

−0.0005

0.0472 0.00564 6.0 0.0210±0.0021+0.0014
−0.0011 0.0620 0.00573 8.0 0.0243±0.0019+0.0011

−0.0001

0.0472 0.00392 6.0 0.0244±0.0021+0.0009
−0.0013 0.0620 0.00398 8.0 0.0258±0.0019+0.0005

−0.0013

0.0472 0.00262 6.0 0.0302±0.0024+0.0009
−0.0012 0.0620 0.00267 8.0 0.0291±0.0021+0.0022

−0.0005

0.0148 0.01804 6.0 0.0222±0.0060+0.0028
−0.0022 0.0196 0.01813 8.0 0.0227±0.0059+0.0019

−0.0018

0.0148 0.01253 6.0 0.0231±0.0038+0.0004
−0.0033 0.0196 0.01259 8.0 0.0299±0.0040+0.0007

−0.0031

0.0148 0.00839 6.0 0.0260±0.0028+0.0017
−0.0023 0.0196 0.00843 8.0 0.0288±0.0030+0.0010

−0.0034

0.0066 0.01872 6.0 0.0237±0.0071+0.0036
−0.0027 0.0088 0.01876 8.0 0.0250±0.0080+0.0050

−0.0012

Table 22: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2)

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for Q2 = 6.0 and 8.0 GeV2,
in bins of β and x

IP
.
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β x
IP

Q2 x
IP
F

D(3)
2 β x

IP
Q2 x

IP
F

D(3)
2

± stat. ± syst. ± stat. ± syst.

(GeV2) (GeV2)

0.9067 0.00757 14.0 0.0253±0.0018+0.0034
−0.0029 0.9494 0.01386 27.0 0.0181±0.0029+0.0016

−0.0035

0.9067 0.00364 14.0 0.0244±0.0019+0.0031
−0.0036 0.9494 0.00669 27.0 0.0154±0.0031+0.0029

−0.0017

0.9067 0.00213 14.0 0.0324±0.0022+0.0045
−0.0055 0.9494 0.00392 27.0 0.0251±0.0037+0.0039

−0.0045

0.9067 0.00117 14.0 0.0313±0.0022+0.0033
−0.0027 0.9494 0.00215 27.0 0.0133±0.0032+0.0026

−0.0024

0.9067 0.00069 14.0 0.0336±0.0028+0.0026
−0.0038 0.9494 0.00126 27.0 0.0343±0.0062+0.0025

−0.0107

0.9067 0.00048 14.0 0.0248±0.0024+0.0029
−0.0027 0.9494 0.00088 27.0 0.0227±0.0052+0.0041

−0.0046

0.9067 0.00032 14.0 0.0425±0.0040+0.0048
−0.0044 0.9494 0.00059 27.0 0.0274±0.0056+0.0058

−0.0029

0.6087 0.01128 14.0 0.0292±0.0017+0.0013
−0.0020 0.7500 0.01754 27.0 0.0151±0.0020+0.0023

−0.0017

0.6087 0.00543 14.0 0.0322±0.0018+0.0035
−0.0024 0.7500 0.00847 27.0 0.0237±0.0027+0.0061

−0.0032

0.6087 0.00318 14.0 0.0384±0.0020+0.0063
−0.0043 0.7500 0.00496 27.0 0.0286±0.0029+0.0048

−0.0055

0.6087 0.00174 14.0 0.0421±0.0021+0.0011
−0.0027 0.7500 0.00272 27.0 0.0338±0.0032+0.0033

−0.0031

0.6087 0.00102 14.0 0.0425±0.0027+0.0035
−0.0017 0.7500 0.00160 27.0 0.0404±0.0045+0.0037

−0.0049

0.6087 0.00071 14.0 0.0495±0.0030+0.0054
−0.0045 0.7500 0.00111 27.0 0.0411±0.0048+0.0065

−0.0030

0.6087 0.00048 14.0 0.0546±0.0036+0.0047
−0.0038 0.7500 0.00074 27.0 0.0497±0.0050+0.0054

−0.0057

0.2800 0.01180 14.0 0.0237±0.0017+0.0025
−0.0025 0.4286 0.01482 27.0 0.0242±0.0027+0.0017

−0.0027

0.2800 0.00691 14.0 0.0291±0.0014+0.0037
−0.0028 0.4286 0.00869 27.0 0.0306±0.0023+0.0035

−0.0042

0.2800 0.00378 14.0 0.0298±0.0015+0.0005
−0.0028 0.4286 0.00475 27.0 0.0345±0.0026+0.0020

−0.0042

0.2800 0.00222 14.0 0.0337±0.0019+0.0015
−0.0010 0.4286 0.00280 27.0 0.0362±0.0031+0.0010

−0.0013

0.2800 0.00154 14.0 0.0384±0.0020+0.0012
−0.0010 0.4286 0.00194 27.0 0.0440±0.0036+0.0006

−0.0027

0.2800 0.00103 14.0 0.0384±0.0022+0.0023
−0.0016 0.4286 0.00130 27.0 0.0515±0.0038+0.0016

−0.0035

0.1037 0.01865 14.0 0.0234±0.0043+0.0042
−0.0038 0.1824 0.02041 27.0 0.0193±0.0052+0.0050

−0.0025

0.1037 0.01020 14.0 0.0245±0.0021+0.0009
−0.0019 0.1824 0.01117 27.0 0.0203±0.0030+0.0029

−0.0006

0.1037 0.00600 14.0 0.0262±0.0019+0.0004
−0.0011 0.1824 0.00657 27.0 0.0227±0.0025+0.0014

−0.0014

0.1037 0.00416 14.0 0.0289±0.0018+0.0015
−0.0012 0.1824 0.00456 27.0 0.0253±0.0025+0.0027

−0.0014

0.1037 0.00279 14.0 0.0330±0.0021+0.0011
−0.0008 0.1824 0.00306 27.0 0.0363±0.0028+0.0009

−0.0030

0.0338 0.01839 14.0 0.0230±0.0064+0.0030
−0.0024

0.0338 0.01277 14.0 0.0273±0.0040+0.0011
−0.0015 0.0632 0.01317 27.0 0.0262±0.0049+0.0014

−0.0019

0.0338 0.00855 14.0 0.0308±0.0029+0.0012
−0.0012 0.0632 0.00882 27.0 0.0275±0.0036+0.0025

−0.0011

0.0153 0.01888 14.0 0.0321±0.0085+0.0032
−0.0021 0.0291 0.01914 27.0 0.0252±0.0088+0.0027

−0.0031

Table 23: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2)

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for Q2 = 14.0 and 27.0
GeV2, in bins of β and x

IP
.
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β xIP Q2 xIPF
D(3)
2

± stat. ± syst.

(GeV2)

0.9745 0.02713 55.0 0.0121±0.0045+0.0040
−0.0046

0.9745 0.01319 55.0 0.0148±0.0067+0.0026
−0.0027

0.9745 0.00775 55.0 0.0062±0.0035+0.0058
−0.0016

0.9745 0.00425 55.0 0.0136±0.0047+0.0016
−0.0027

0.9745 0.00250 55.0 0.0171±0.0108+0.0111
−0.0032

0.9745 0.00117 55.0 0.0163±0.0086+0.0024
−0.0099

0.8594 0.01495 55.0 0.0131±0.0037+0.0026
−0.0007

0.8594 0.00879 55.0 0.0208±0.0042+0.0018
−0.0024

0.8594 0.00482 55.0 0.0211±0.0045+0.0050
−0.0019

0.8594 0.00284 55.0 0.0212±0.0060+0.0080
−0.0040

0.8594 0.00197 55.0 0.0313±0.0063+0.0031
−0.0080

0.8594 0.00132 55.0 0.0345±0.0075+0.0076
−0.0053

0.6044 0.02126 55.0 0.0155±0.0037+0.0025
−0.0019

0.6044 0.01250 55.0 0.0218±0.0034+0.0064
−0.0033

0.6044 0.00685 55.0 0.0296±0.0034+0.0015
−0.0040

0.6044 0.00404 55.0 0.0248±0.0041+0.0066
−0.0030

0.6044 0.00280 55.0 0.0459±0.0053+0.0016
−0.0054

0.6044 0.00188 55.0 0.0388±0.0051+0.0026
−0.0035

0.3125 0.01325 55.0 0.0281±0.0039+0.0015
−0.0027

0.3125 0.00780 55.0 0.0279±0.0038+0.0033
−0.0023

0.3125 0.00542 55.0 0.0345±0.0039+0.0031
−0.0005

0.3125 0.00363 55.0 0.0398±0.0045+0.0016
−0.0025

0.1209 0.02017 55.0 0.0232±0.0080+0.0049
−0.0058

0.1209 0.01402 55.0 0.0205±0.0054+0.0023
−0.0027

0.1209 0.00939 55.0 0.0261±0.0049+0.0060
−0.0018

Table 24: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2)

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for Q2 = 55.0 GeV2, in bins
of β and x

IP
.

55



Q2 (GeV2) β x0F
D(3)
2 ± stat.± syst.

2.7 0.2308 0.0219±0.0022+0.0023
−0.0022

2.7 0.0698 0.0178±0.0014+0.0010
−0.0009

2.7 0.0218 0.0171±0.0015+0.0019
−0.0013

2.7 0.0067 0.0214±0.0023+0.0021
−0.0012

4.0 0.3077 0.0239±0.0015+0.0021
−0.0012

4.0 0.1000 0.0190±0.0011+0.0025
−0.0018

4.0 0.0320 0.0189±0.0013+0.0012
−0.0017

4.0 0.0099 0.0227±0.0020+0.0015
−0.0010

6.0 0.4000 0.0288±0.0021+0.0025
−0.0033

6.0 0.1429 0.0225±0.0014+0.0011
−0.0020

6.0 0.0472 0.0202±0.0015+0.0009
−0.0016

6.0 0.0148 0.0248±0.0023+0.0013
−0.0026

8.0 0.4706 0.0312±0.0019+0.0007
−0.0010

8.0 0.1818 0.0231±0.0011+0.0024
−0.0017

8.0 0.0620 0.0231±0.0014+0.0011
−0.0002

8.0 0.0196 0.0290±0.0024+0.0009
−0.0033

14.0 0.9067 0.0246±0.0018+0.0033
−0.0028

14.0 0.6087 0.0288±0.0012+0.0023
−0.0021

14.0 0.2800 0.0259±0.0011+0.0031
−0.0026

14.0 0.1037 0.0237±0.0013+0.0006
−0.0013

14.0 0.0338 0.0295±0.0024+0.0012
−0.0013

27.0 0.9494 0.0167±0.0021+0.0022
−0.0026

27.0 0.7500 0.0227±0.0026+0.0058
−0.0031

27.0 0.4286 0.0285±0.0018+0.0029
−0.0037

27.0 0.1824 0.0205±0.0018+0.0019
−0.0011

27.0 0.0632 0.0270±0.0029+0.0021
−0.0014

55.0 0.9745 0.0080±0.0031+0.0051
−0.0018

55.0 0.8594 0.0173±0.0029+0.0023
−0.0015

55.0 0.6044 0.0250±0.0023+0.0036
−0.0036

55.0 0.3125 0.0279±0.0021+0.0025
−0.0016

55.0 0.1209 0.0246±0.0037+0.0046
−0.0022

Table 25: The diffractive structure function of the proton multiplied by x
IP
at the

point x
IP
≡ x0 = 0.01, x0F

D(3)
2 (β, x0, Q

2), in bins of Q2 and β.
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Figure 1: Non-peripheral deep inelastic scattering.
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Figure 2: Diffractive deep inelastic scattering, ep → eXN .
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Figure 11: The proton structure function F2 determined in this analysis for the
Q2 values indicated. The inner error bars show the statistical uncertainties and the
full bars the statistical and systematic systematic uncertainties added in quadrature.
The line shows the result of ZEUS QCD fit with its uncertainty band.
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bars show the statistical uncertainties and the full bars the statistical and systematic
systematic uncertainties added in quadrature. The curves show the result of the
BEKW fit for the contributions from (qq) for transverse (dashed) and longitudinal
photons (dotted) and for the (qqg) contribution for transverse photons (dashed-
dotted) together with the sum of all contributions (solid).
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