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Introduction
m oKin cancer is treatable if detected early.

m Computer aided diagnostic (CAD) systems help
human experts decide diagnosis.

m Convolutional Neural Networks (CNNs) are one
of the Artificial Intelligence techniques inspired
by biological neural networks used widely |

CADs.

m CNNs predict diagnosis based on images
(dermoscopy or clinical) using training data.

m A CNN can be frained by feeding it a set of
lesion images and their diagnosis.

m A trained CNN can predict the diagnosis of a
new lesion image it has never seen before!

m A CNN has a depth based on the number of
convolutional filters applied.

m |Images may be preprocessed to improve CNN
performance.
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Figure 2: Applying a gaussian filter [2].

m Pre-trained CNNs are very popular.
m Iransfer learning!
m GoogleNet, VGGNet ReSNet AlexNet, .
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Method 1: Dermatologist-level
classification of skin cancer with deep

neural networks

m Maps individual diseases into training classes
using a new disease taxonomy and a disease
partitioning algorithm.
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Figure 3: Classification example [3].
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Figure 5: Skin cancer classification
performance of the dermatologists
and the CNN [3].

Figure 4. Subset of the disease taxonomy
and calculating inference class probabilities
from training class probabilities [3].

Method 2: Attention Residual Learning
for Skin Lesion Classification
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Figure 6. Multi-scale patch extraction result [4].

m Pays more

attention
to semantically important regions.
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Figure 7: Proposed ARL block and the ARL-CNN architecture [4].
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Figure 8: A set of dermoscopy images (top) and a qualitative evaluation of the ARL-
CNN5O’s classification result using Class Activation Mapping (CAM) technique [5]
(bottom); red areas are regions determined by the CNN to be most relevant to its

classification result [4].

Discussion and Conclusion

m Method 1
m More generalizable.
m Outperforms dermatologists!

g Method 2
m Works with small samples.
m NoO high computational cost.

m Automated approaches such as CNNs, aids

human experts present fast and reliable
decisions to patients.
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