

Introduction

- Skin cancer is treatable if detected early.
- Computer aided diagnostic (CAD) systems help human experts decide diagnosis.
- Convolutional Neural Networks (CNNs) are one of the Artificial Intelligence techniques inspired by biological neural networks used widely in CADs.
- predict diagnosis based on images (dermoscopy or clinical) using training data.
 - A CNN can be trained by feeding it a set of lesion images and their diagnosis.
 - A trained CNN can predict the diagnosis of a new lesion image it has never seen before!
 - A CNN has a depth based on the number of convolutional filters applied.

Images may be preprocessed to improve CNN performance.

Figure 2: Applying a gaussian filter [2].

UNIVERSITY 01

Pre-trained CNNs are very popular. Transfer learning! GoogLeNet, VGGNet, ResNet, AlexNet, ...

CNN-based Machine Learning Approaches to Skin Lesion Classification for Skin Cancer Detection and Diagnosis Manawaduge Supun De Silva Advisor: Dr. Russell C. Hardie

Method 1: Dermatologist-level classification of skin cancer with deep neural networks

Maps individual diseases into training classes using a new disease taxonomy and a disease partitioning algorithm.

Skin lesion image Training classes (757) Acral-lentiginous melanoma Amelanotic melanoma Lentigo melanoma Deep CNN (Inception v3) Blue nevus Halo nevus Mongolian spot

Figure 4: Subset of the disease taxonomy and calculating inference class probabilities from training class probabilities [3].

Method 2: Attention Residual Learning for Skin Lesion Classification

- Preprocesses images.
- Pays more attention to semantically important regions.

Figure 6: Multi-scale patch extraction result [4].

DAYTON

Inference classes (varies by task)

🕀 🔵 92% malignant melanocytic lesion

🕀 🕘 8% benign melanocytic lesion

Figure 5: Skin cancer classification performance of the dermatologists and the CNN [3].

Figure 8: A set of dermoscopy images (top) and a qualitative evaluation of the ARL-CNN50's classification result using Class Activation Mapping (CAM) technique [5] (bottom); red areas are regions determined by the CNN to be most relevant to its classification result [4].

Discussion and Conclusion

Method 1

- More generalizable.
- Method 2
- decisions to patients.

[1] R. Seeja and A. Suresh, "Deep learning based skin lesion segmentation and classification of melanoma using support vector machine (svm)," Asian Pacific journal of cancer prevention: APJCP, vol. 20, no. 5, p. 1555, 2019. [2] J.-A. Almaraz-Damian, V. Ponomaryov, S. Sadovnychiy, and H. Castillejos-Fernandez, "Melanoma and nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information measures," Entropy, vol. 22, no. 4, p. 484, 2020.

[3] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, "Dermatologist-level classification of skin cancer with deep neural networks," nature, vol. 542, no. 7639, pp. 115–118, 2017. [4] J. Zhang, Y. Xie, Y. Xia, and C. Shen, "Attention residual learning for skin lesion classification," IEEE transactions on medical imaging, vol. 38, no. 9, pp. 2092–2103, 2019. [5] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, "Learning deep features for discriminative localization," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921–2929, 2016.

Outperforms dermatologists!

Works with small samples.

No high computational cost.

Automated approaches such as CNNs, aids human experts present fast and reliable

References