Definition/Introduction

The only matrices with inverses are square and nonsingular. It is however possible to generalize the notion of inverse to square-singular matrices and rectangular matrices. The Moore-Penrose pseudoinverse is the most common generalized inverse. For the sake of simplicity, we will use real valued matrices Theorem 1: Let $A \in \mathcal{M}_{n, m}$, then there exists a unique matrix, $B \in \mathcal{M}_{m n}$, which satisfies the four MoorePenrose conditions

1. $A B A=A$
2. $B A B=B$
3. $B A=(B A)^{T}$
4. $A B=(A B)^{T}$

We define the Moore-Penrose pseudo-inverse denoted as A^{\dagger}, as the unique matrix B

Properties

Prop 1: Let $A \in \mathcal{M}_{n, m}, \operatorname{rank}(A)=r, A$ can be written as $A=F R$, where $F \in \mathcal{M}_{n, r}, R \in \mathcal{M}_{r, m}$, and $\operatorname{rank}(F)=\operatorname{rank}(R)=r . F$ is constructed using the r linearly independent columns of A. Then,

$$
A^{\dagger}=R^{T}\left(R R^{T}\right)^{-1}\left(F^{T} F\right)^{-1} F^{T}
$$

Corollary 1: If A has full row rank then,

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

Similarly, if A has full column rank then,

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

Computation

The most standard method to compute the MoorePenrose pseudo-inverse is the SVD decomposition. $A \in \mathcal{M}_{n, m}, \operatorname{rank}(A)=r$, then there exist U, V unitary matrices and Σ diagonal, such that $A=U \Sigma V^{T}$. To calculate A^{\dagger}, one must calculate Σ^{\dagger}. Σ^{\dagger} is a diagonal matrix, where the diagonal is the reciprocal of the elements in the diagonal of Σ. Note that $\Sigma^{\dagger} \Sigma$ is a diagonal matrix with the first r diagonal values being 1 and the remaining are 0 . So

$$
A^{\dagger}=V \Sigma^{\dagger} U^{T}
$$

Least Squares Problems

We look for the best solution to $A x=b$, using $\min \|A x-b\|, A \in \mathcal{M}_{n, m}, x \in \mathbb{R}^{n}$, where $\|\|$ is derived from the standard inner product on \mathbb{R}^{n}. Theorem 2: $x_{0}=A^{\dagger} b$ is the best approximate solution of $A x=b$. With the standard inner product on \mathbb{R}^{n}.
The normal equations for standard inner product on \mathbb{R}^{n} is

$$
A^{T} A x=A^{T} b
$$

Similarly, a right inverse occurs when A has full row rank and null $\left(A^{T}\right)=\{0\}$. So one right inverse is

$$
A_{\text {right }}^{-1}=\left(A^{T} A\right)^{-1} A^{T}=A^{\dagger}
$$

So if A has full column rank then A^{\dagger} is a left inverse, and if A has full row rank than A^{\dagger} is a right inverse. In general, A^{\dagger} is neither a left or right inverse. Figure 1 shows the four subspaces of A. We can create a linear bijective function

$$
T: C\left(A^{T}\right) \rightarrow C(A): x \in C\left(A^{T}\right), T(x)=A x
$$

So then,

$$
\begin{gathered}
T^{-1}: C(A) \rightarrow C\left(A^{T}\right): T(A x)=A^{\dagger} A x=x \\
\forall x \in C\left(A^{T}\right)
\end{gathered}
$$

Fig. 1: Subspaces of A

The least-squares solution satisfies the normal equation.

A Generalization of Least Squares

We generalize the least square to a general norm on \mathbb{R}^{n} derived from a general inner product.
Theorem 3: $\langle x, y\rangle$ is an inner product on \mathbb{R}^{n} if and only if $\langle x, y\rangle=x^{T} C y$, where C is a symmetric positive definite matrix.
A generalized normal equation can be found,

$$
A^{T} C A x=A^{T} C b
$$

The least-squares solution to our generalized least-squares problem now satisfies the generalized normal equations
Note that when $C=I_{n}$ The generalized normal equations reduce to the normal equations for the standard least-square problem.
From the generalized normal equations, we can see that if A has full column rank, then $A^{T} C A$ is invertible and thus the solution of the generalized least square is, $\left(A^{T} C A\right)^{-1} A^{T} C b$. Conjecture: When A has full column rank the generalized pseudo-inverse is,

$$
A^{\dagger}=\left(A^{T} C A\right)^{-1} A^{T} C
$$

Note than when $C=I_{n}$, we recover the standard formula for A^{\dagger} in the case where A has full column rank.

