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The only matrices with inverses are square and 

nonsingular. It is however possible to generalize the 

notion of inverse to square-singular matrices and 

rectangular matrices. The Moore-Penrose pseudo-

inverse is the most common generalized inverse. For 

the sake of simplicity, we will use real valued matrices. 

Theorem 1: 𝐿𝑒𝑡 𝐴 ∈ ℳ𝑛,𝑚, then there exists a unique 

matrix, 𝐵 ∈ ℳ𝑚𝑛, which satisfies the four Moore-

Penrose conditions

1. 𝐴𝐵𝐴 = 𝐴
2. 𝐵𝐴𝐵 = 𝐵
We define the Moore-Penrose pseudo-inverse 

denoted as 𝐴†, as the unique matrix 𝐵.

Properties
Prop 1: 𝐿𝑒𝑡 𝐴 ∈ ℳ𝑛,𝑚, 𝑟𝑎𝑛𝑘 𝐴 = 𝑟, 𝐴 can be 

written as 𝐴 = 𝐹𝑅, where 𝐹 ∈ ℳ𝑛,𝑟 , 𝑅 ∈ ℳ𝑟,𝑚, and 

𝑟𝑎𝑛𝑘 𝐹 = 𝑟𝑎𝑛𝑘 𝑅 = 𝑟. 𝐹 is constructed using 

the 𝑟 linearly independent columns of 𝐴. Then,

𝐴† = 𝑅𝑇 𝑅𝑅𝑇 −1 𝐹𝑇𝐹 −1𝐹𝑇

Corollary 1: If 𝐴 has full row rank then, 

𝐴† = 𝐴𝑇 𝐴𝐴𝑇 −1

Similarly, if 𝐴 has full column rank then, 

𝐴† = 𝐴𝑇𝐴 −1𝐴𝑇

Left and Right Inverse
If there is a left inverse for a matrix, than 

𝐴 ∈ ℳ𝑛,𝑚 must have full column rank and       

𝑛𝑢𝑙𝑙 𝐴 = 0 , so 𝐴𝑇𝐴 has full rank, and is 

invertible. So 𝐴𝑇𝐴 −1𝐴𝑇𝐴 = 𝐼, thus one left 

inverse is 

𝐴𝑙𝑒𝑓𝑡
−1 = 𝐴𝑇𝐴 −1𝐴𝑇 = 𝐴†

Similarly, a right inverse occurs when 𝐴 has 

full row rank and 𝑛𝑢𝑙𝑙 𝐴𝑇 = 0 . So one 

right inverse is 

𝐴𝑟𝑖𝑔ℎ𝑡
−1 = 𝐴𝑇𝐴 −1𝐴𝑇 = 𝐴†

So if 𝐴 has full column rank then 𝐴† is a left 

inverse, and if 𝐴 has full row rank than 𝐴† is 

a right inverse. In general, 𝐴† is neither a 

left or right inverse. Figure 1 shows the four 

subspaces of 𝐴. We can create a linear 

bijective function

𝑇: 𝐶 𝐴𝑇 ⟶ 𝐶 𝐴 : 𝑥 ∈ 𝐶 𝐴𝑇 , 𝑇 𝑥 = 𝐴𝑥
So then,

𝑇−1: 𝐶 𝐴 ⟶ 𝐶 𝐴𝑇 : 𝑇 𝐴𝑥 = 𝐴†𝐴𝑥 = 𝑥,
∀𝑥 ∈ 𝐶(𝐴𝑇)

Computation
The most standard method to compute the Moore-

Penrose pseudo-inverse is the SVD decomposition. 

𝐴 ∈ ℳ𝑛,𝑚, 𝑟𝑎𝑛𝑘 𝐴 = 𝑟, then there exist 𝑈, 𝑉 unitary 

matrices and Σ diagonal, such that 𝐴 = 𝑈Σ𝑉𝑇. To 

calculate 𝐴†, one must calculate Σ†. Σ† is a diagonal 

matrix, where the diagonal is the reciprocal of the 

elements in the diagonal of Σ. Note that Σ†Σ is a 

diagonal matrix with the first 𝑟 diagonal values being 

1 and the remaining are 0. So

𝐴† = 𝑉Σ†𝑈𝑇

Least Squares Problems
We look for the best solution to 𝐴𝑥 = 𝑏, using 

min ∥ 𝐴𝑥 − 𝑏 ∥, 𝐴 ∈ ℳ𝑛,𝑚, 𝑥 ∈ ℝ𝑛, where ∥ ∥ is 

derived from the standard inner product on ℝ𝑛.

Theorem 2: 𝑥0 = 𝐴†𝑏 is the best approximate 

solution of 𝐴𝑥 = 𝑏. With the standard inner 

product on ℝ𝑛. 

The normal equations for standard inner 

product on ℝ𝑛 is 

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏
The least-squares solution satisfies the normal 

equation. 
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Fig. 1: Subspaces of 𝐴

A Generalization of Least Squares
We generalize the least square to a general 

norm on ℝ𝑛 derived from a general inner 

product. 

Theorem 3: ⟨𝑥, 𝑦⟩ is an inner product on ℝ𝑛 if 

and only if 𝑥, 𝑦 = 𝑥𝑇𝐶𝑦, where 𝐶 is a 

symmetric positive definite matrix.

A generalized normal equation can be found,

𝐴𝑇𝐶𝐴𝑥 = 𝐴𝑇𝐶𝑏
The least-squares solution to our generalized 

least-squares problem now satisfies the 

generalized normal equations

Note that when 𝐶 = 𝐼𝑛 The generalized normal 

equations reduce to the normal equations for 

the standard least-square problem. 

From the generalized normal equations, we can 

see that if 𝐴 has full column rank, then 𝐴𝑇𝐶𝐴 is 

invertible and thus the solution of the 

generalized least square is, 𝐴𝑇𝐶𝐴 −1𝐴𝑇𝐶𝑏.
Conjecture: When A has full column rank the 

generalized pseudo-inverse is, 

𝐴† = 𝐴𝑇𝐶𝐴 −1𝐴𝑇𝐶
Note than when 𝐶 = 𝐼𝑛, we recover the standard 

formula for 𝐴† in the case where 𝐴 has full 

column rank. 

3. 𝐵𝐴 = 𝐵𝐴 𝑇

4. 𝐴𝐵 = 𝐴𝐵 𝑇


