Ben Wilson Least Squares Problems

The Moore-Penrose pseudo-inverse: theory, applications, and a generalization **Definition/Introduction** Dr. Catherine Kublik

The only matrices with inverses are square and nonsingular. It is however possible to generalize the notion of inverse to square-singular matrices and rectangular matrices. The Moore-Penrose pseudoinverse is the most common generalized inverse. For the sake of simplicity, we will use real valued matrices. Theorem 1: Let $A \in \mathcal{M}_{n,m}$, then there exists a unique matrix, $B \in \mathcal{M}_{mn}$, which satisfies the four Moore-Penrose conditions 1. ABA = A

2. BAB = B

3. $BA = (BA)^T$ 4. $AB = (AB)^T$

We define the Moore-Penrose pseudo-inverse denoted as A^{\dagger} , as the unique matrix B.

Properties

Prop 1: Let $A \in \mathcal{M}_{n,m}$, rank(A) = r, A can be written as A = FR, where $F \in \mathcal{M}_{n,r}$, $R \in \mathcal{M}_{r,m}$, and rank(F) = rank(R) = r.F is constructed using the r linearly independent columns of A. Then, $A^{\dagger} = R^T (RR^T)^{-1} (F^T F)^{-1} F^T$ Corollary 1: If A has full row rank then, $A^{\dagger} = A^T (A A^T)^{-1}$ Similarly, if A has full column rank then, $A^{\dagger} = (A^T A)^{-1} A^T$

Computation

The most standard method to compute the Moore-Penrose pseudo-inverse is the SVD decomposition. $A \in \mathcal{M}_{n,m}$, rank(A) = r, then there exist U, V unitary matrices and Σ diagonal, such that $A = U\Sigma V^T$. To calculate A^{\dagger} , one must calculate Σ^{\dagger} . Σ^{\dagger} is a diagonal matrix, where the diagonal is the reciprocal of the elements in the diagonal of Σ . Note that $\Sigma^{\dagger}\Sigma$ is a diagonal matrix with the first r diagonal values being I and the remaining are 0. So

 $A^{\dagger} = V \Sigma^{\dagger} U^T$

Left and Right Inverse

If there is a left inverse for a matrix, than $A \in \mathcal{M}_{n,m}$ must have full column rank and $null(A) = \{0\}, \text{ so } A^T A \text{ has full rank, and is}$ invertible. So $(A^T A)^{-1} A^T A = I$, thus one left The normal equations for standard inner inverse is

 $A_{left}^{-1} = (A^T A)^{-1} A^T = A^{\dagger}$ full row rank and $null(A^T) = \{0\}$. So one right inverse is

 $A_{riaht}^{-1} = (A^T)$ So if A has full column rank then A^{\dagger} is a left inverse, and if A has full row rank than A^{\dagger} is product. a right inverse. In general, A^{\dagger} is neither a left or right inverse. Figure 1 shows the four subspaces of A. We can create a linear bijective function

 $T: C(A^T) \longrightarrow C(A): x$ So then,

 $T^{-1}: C(A) \longrightarrow C(A^T):$ $\forall x \in$

$$(A)^{-1}A^T = A^\dagger$$

$$c \in C(A^T), T(x) = Ax$$

$$: T(Ax) = A^{\dagger}Ax = x,$$

$$C(A^{T})$$

Fig. 1: Subspaces of A

product on \mathbb{R}^n . product on \mathbb{R}^n is

 $A^T A x = A^T b$ Similarly, a right inverse occurs when A has The least-squares solution satisfies the normal equation.

Theorem 3: $\langle x, y \rangle$ is an inner product on \mathbb{R}^n if $A^T C A x = A^T C b$ $A^{\dagger} = (A^T C A)^{-1} A^T C$

and only if $\langle x, y \rangle = x^T C y$, where C is a symmetric positive definite matrix. A generalized normal equation can be found, The least-squares solution to our generalized least-squares problem now satisfies the generalized normal equations Note that when $C = I_n$ The generalized normal equations reduce to the normal equations for the standard least-square problem. From the generalized normal equations, we can see that if A has full column rank, then $A^T C A$ is invertible and thus the solution of the generalized least square is, $(A^T C A)^{-1} A^T C b$. Conjecture: When A has full column rank the generalized pseudo-inverse is, Note than when $C = I_n$, we recover the standard formula for A^{\dagger} in the case where A has full column rank.

We look for the best solution to Ax = b, using min || Ax - b ||, $A \in \mathcal{M}_{n,m}$, $x \in \mathbb{R}^n$, where || || is derived from the standard inner product on \mathbb{R}^n . Theorem 2: $x_0 = A^{\dagger}b$ is the best approximate solution of Ax = b. With the standard inner

A Generalization of Least Squares

We generalize the least square to a general norm on \mathbb{R}^n derived from a general inner