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Summary

This manuscript investigates the properties of the diophantine equationX2+
Y 3 = dZr. Here d is a given integer, r is one of 3,4, or 5 and the unknowns
X,Y ,Z are required to be integers with no common factor other than ±1.

These equations have many properties in common with the better known
(and in fact studied by the Babylonians since at least 1600 BC) Pythagoras
equation X2 + Y 2 = Z2.

There is an infinite number of solutions to the Pythagoras equation.
Many will remember the triples (3, 4, 5) and (5, 12, 13) from their high school
days. An infinite set of solutions can be obtained by assigning integer values
to (s, t) in the formulaX = s2−t2, Y = 2st, Z = s2+t2. In fact, all solutions
to the Pythagoras equation can be obtained if we also allowX to be swapped
with Y , and Z to be replaced by −Z.

A similar thing happens withX2+Y 3 = dZr. There is an infinite number
of solutions and these solutions can all be obtained by assigning integer
values to (s, t) in a finite set of formulae for (X,Y, Z). This thesis describes
this phenomenon as well as an algorithm to generate these formulae.

The methods and results in this thesis are an important addition to the
theory of diophantine equations. The method lends on several mathematical
techniques from Invariant Theory—an important branch of mathematics at
the end of 19th century. The title of the thesis is explained by the fact that
the 60 symmetries of the 20-sided platonic solid called the icosahedron play
a key role in producing solutions to the equation X2 + Y 3 = dZ5.

xi
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Reader’s Guide

Theorems, lemmas, propositions, and corollaries are numbered consecutively
in the form c.s.n where c is the chapter and s is the section. Displayed
equations are numbered consecutively within each chapter in the form (c.n).
References [n] are to books and papers listed beginning on page 101. The
end (or absence) of a proof is signalled by the symbol ‘2’.

Structure of the Thesis

The layout of the thesis is illustrated by the following reading scheme.

1. Introduction
2. Getting Started

3. Invariant Theory

4. Klein forms
5. General Properties

6. Lifting in Rings

7. Galois Cohomology 10. Hermite Reduction

8. Finite Fields 11. Rational Integers

9. p-adic Integers

Chapter 1 is an introduction.
Chapters 2–6 develop the theory of parameterizations in a general set-

ting. This requires Classical Invariant Theory and a knowledge of Klein
forms. A characterization of these forms is given that allows us to consider
parameterizations as an algebraic set of dimension 3 inside the space of all
binary forms of the correct degree.

The thesis then forks. Readers who are only interested in parameter-
izations for the rational integers, may skip chapters 7–9 and only need to
read chapters 10 and 11. Finite Field people and p-adic people, on the other
hand, can concentrate on chapters 7–9.

There are four appendices. Appendix A contains the explicit equations
that define the space of parameterizations C(r, d). Appendix B contains the

xiii
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proofs of various propositions that require special arguments when the field
has low non-zero characteristic. Appendix C describes the theory of Twisted
Conjugacy Classes. Appendix D lists full sets of parameterizations to the
equations X2 + Y 3 = ±Zr, r ∈ {3, 4, 5}, that specialize to all co-prime
rational integer solutions.



Chapter 1

Introduction

Numbers have fascinated mankind for thousands of years. The Babylonian
tablet in the G. A. Plimpton collection at Columbia University, known as
Plimpton 322, is an example of a mathematical tablet constructed by the
Babylonians. From the style of the script the era of construction of the
tablet is given as the Old Babylonian Period (ca. 1900 to 1600 B.C.). It
contains lists of integer solutions to the equation

X2 + Y 2 = Z2.

This thesis continues in this great tradition by showing how to generate
integer solutions to the equations

X2 + Y 3 = Z3,

X2 + Y 3 = Z4,

X2 + Y 3 = Z5.

In this chapter we review (some of) what is known about so called gen-
eralized Fermat equations. This will enable the reader to place the subject
matter of this thesis within the context of higher order diophantine equa-
tions.

The last section summarizes the new results in this thesis.

Generalized Fermat Equations

Generalized Fermat equations are equations of the form

AXp +BY q = CZr, gcd(X,Y, Z) = 1, (1.1)

where A,B,C are non-zero integers, and the exponents p, q, r are positive
integers greater than 1. The unknowns X,Y, Z are in Z.

The requirement that the unknowns be co-prime excludes the trivial
solution (0, 0, 0). Triples (X,Y, Z) that satisfy AXp + BY q = CZr but are

1



2 CHAPTER 1. INTRODUCTION

not necessarily co-prime are easy to construct. For instance, from a+ b = c
it would follow after multiplication by a33b44c54 that

(a17b22c27)2 + (a11b15c18)3 = (a3b4c5)11,

providing us with infinitely many non co-prime solutions to X2 +Y 3 = Z11.
It is conjectured that there are no co-prime solutions with XY Z 6= 0.

It is instructive to begin by examining what is known about the solutions
to these equations. The main characteristics of equation (1.1) can be shown
to be governed by the value of

1
p

+
1
q

+
1
r
.

The behavior of the equations varies most strikingly depending on whether
this values is less than, equal to, or greater than one. The equation is then
called hyperbolic, euclidean, or spherical respectively.

Hyperbolic Case: 1
p

+ 1
q

+ 1
r

< 1.

We are not able to solve these diophantine equations for general values
of p, q, r. However, we can get a feel for how these equations (probably)
behave via the ABC-Conjecture. (The name ABC has nothing to do with
the A,B,C of equation (1.1) ).

Noting that 1
p + 1

q + 1
r < 1 implies that

1
p

+
1
q

+
1
r
≤ 1

2
+

1
3

+
1
7

=
41
42
,

and applying the ABC-Conjecture produces the following.

Conjecture 1.0.1. Fix non-zero integers A,B,C. Then there is a constant
N0 depending only on ABC with the following property.

If X,Y, Z are co-prime integers and p, q, r > 1 are integers satisfying
equation (1.1) and 1

p + 1
q + 1

r < 1 then |XY Z| ≤ N0.

The case A = B = C = 1 is sufficiently difficult testing ground for this
conjecture. All known solutions of Xp + Y q = Zr, with X,Y, Z co-prime
positive integers and 1

p + 1
q + 1

r < 1 are
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1n + 23 = 32 (n > 6),

132 + 73 = 29,

27 + 173 = 712,

25 + 72 = 34,

35 + 114 = 1222,

177 + 762713 = 210639282,

14143 + 22134592 = 657,

92623 + 153122832 = 1137,

338 + 15490342 = 156133,

438 + 962223 = 300429072.

Is this all? Tijdeman and Zagier noticed that the exponent 2 always
occurs in the list.

Question 1.0.2. If p, q, r ≥ 3 are there any co-prime solutions to Xp+Y q =
Zr with XY Z 6= 0 ?

Unbeknown to Tijdeman and Zagier, in Texas, the bank owner and am-
ateur mathematician Andy Beal had asked the very same question. He
originally offered $5, 000 for anyone who could come up with an answer. See
[17]. The pot would increase by $5, 000 every year up to a maximum of
$50, 000. The question is now known as the Beal Prize Conjecture. Since
the AMS article the prize money has been further increased and at time of
writing stands at $100, 000.

The prize problem seems far from being answered. However, in 1995,
Darmon and Granville were able to use the recently proven Faltings’ Theo-
rem to prove the following folklore conjecture in [4].

Theorem 1.0.3 (Darmon and Granville (1995)). For given non-zero
A,B,C, and p, q, r ≥ 2 with 1

p + 1
q + 1

r < 1 the number of co-prime integer
solutions to equation (1.1) is finite.

Sketch of Proof. I shall sketch the ideas behind the proof. By the Rie-
mann Existence Theorem (see [21], Theorem 6.3.1) there is curve X/Q and
a branched Galois covering map

π : X → P1,

unramified over P1 − {0, 1,∞}, and with ramification indices over 0, 1 and
∞ of p, q and r respectively. Let g be the genus of X and n the degree of π.
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The Riemann-Hurwitz formula gives

2− 2g = n(2− 2.0)−
(
n− n

p

)
−
(
n− n

q

)
−
(
n− n

r

)
= n

(
1
p

+
1
q

+
1
r
− 1
)
.

Since 1
p + 1

q + 1
r < 1, the curve X has genus g > 1. We can find a number

field K so that X, π, and Gal(X/P1) are all defined over K. Let V denote a
finite set of primes of K, including all primes dividing ABC and all primes
for which the covering map π : X → P1 has bad reduction. For t ∈ P1(K),
let Lt denote the extension of K obtained by adjoining the points π−1(t). If
t 6= 0, 1,∞ this is a Galois extension of K of degree at most n.

For a place v of K and t ∈ P1(K) − {0, 1,∞}, we define the arithmetic
intersection numbers by

(t · 0)v := max(ordv(t), 0),
(t · 1)v := max(ordv(t− 1), 0),

(t · ∞)v := max(ordv(1/t), 0).

Proposition 1.0.4 (Beckmann). Suppose t ∈ P1(K)− {0, 1,∞} and v is
a place of K not in the set V . If

(t · 0)v ≡ 0 (mod p), (t · 1)v ≡ 0 (mod q), (t · ∞)v ≡ 0 (mod r),

then Lt is unramified above v.

Suppose that (X,Y, Z) is a solution to equation (1.1) with XY Z 6= 0.
Let t := AXp/CZr. Beckmann’s Proposition applies and we deduce that
Lt is unramified outside of V . By Hermite’s Theorem there are only a finite
number of possibilities for Lt, so they are all contained in a single larger
number field extension L.

An infinite number of co-prime solutions to equation (1.1) would imply
an infinite number of L-rational points on X. This is impossible by Faltings’
Theorem.

Euclidean Case: 1
p

+ 1
q

+ 1
r

= 1.

The only possibilities for (p, q, r) up to permutation are (2, 3, 6), (3, 3, 3) and
(2, 4, 4). The curve X has genus 1, and the covering π : X → P1 relates
co-prime solutions to rational points on an elliptic curve.

For instance, co-prime solutions to

X2 − Y 3 = Z6
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are related to Q-rational points on the elliptic curve

E : u2 = w3 + 1

by setting u = X/Z3, w = Y/Z.

Spherical Case: 1
p

+ 1
q

+ 1
r

> 1.

We are in the class of equations that I will be examining in this thesis. Up to
permutation the possibilities for (p, q, r) are: {p, q, r} = {2, 2, n}, {2, 3, 3},
{2, 3, 4} and {2, 3, 5}.

The genus of X is 0, so X ∼= P1. There is the possibility of an infi-
nite number of co-prime solutions to our headline equation (1.1). This was
studied by Beukers in [1].

It is useful to consider binary forms X̂, Ŷ , Ẑ ∈ Q[s, t] which satisfy

AX̂p +BŶ q = CẐr.

We call (X̂, Ŷ , Ẑ) a parameterized solution if X̂, Ŷ , Ẑ are in the ring Q[s, t]
but do not lie in the subring Q. It is called a co-prime parameterization if
X̂, Ŷ , Ẑ are co-prime in the ring Q[s, t]. By Mason’s Theorem ([16], page
194), co-prime parameterized solutions are only possible in the spherical
case. By specializing (s, t) to integer values we can hope to obtain solutions
to equation (1.1).

Theorem 1.0.5 (Beukers (1998)). There is a finite set of co-prime pa-
rameterized solutions (X̂, Ŷ , Ẑ) ∈ Q[s, t]3 to equation (1.1) such that their
integer specializations include all co-prime integer solutions to equation (1.1).

One way to appreciate these results is to realize that the well-known
Pythagoras equation

X2 + Y 2 = Z2

has certain easily verifiable properties that are typical of spherical Fermat
equations. There are an infinite number of co-prime solutions, and any
co-prime solution is the integer specialization of one of the following 4 pa-
rameterized solutions

(s2 − t2)2 + (2st)2 = (±(s2 + t2))2,

(2st)2 + (s2 − t2)2 = (±(s2 + t2))2.

The theory developed by Beukers does not give a feasible method for
actually calculating parameterizations. Other methods are needed. Again,
using Xp + Y q = ±Zr as a test case, we find the following lists of parame-
terized solutions in the literature.
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X2 + Y 3 = Z3, gcd(X,Y, Z) = 1.
This was solved by Mordell in his 1969 book Diophantine Equations [18].

Mordell achieved his result by specializing the parameters in a syzygy from
the Invariant Theory of binary quartic forms.

X2 + Y 3 = ±Z4, gcd(X,Y, Z) = 1.
This was solved by Zagier and the results are quoted in Beukers’ pa-

per [1]. The approach here was to take the parameterized solutions of the
{2, 3, 2} case and try to find specializations in which the value of Z is a
square.

New Results in this Thesis

The theory contained in this thesis is a new approach to solving the equations
of the type X2 + Y 3 = dZr where r is one of 3,4 or 5. It has its roots in a
quest to generalize Mordell’s method of solving the {2, 3, 3}-equation.

This is a unified approach to solving these equations. For the {2, 3, 3}-
equation it is simply another way of looking at Mordell’s Method. For the
{2, 3, 4}-equation it is an alternate method to that of Zagier for generating
complete sets of parameterizations. In the {2, 3, 5}-case my theory solves
the hitherto inaccessible equation X2 + Y 3 = Z5.

We have seen that solutions to generalized Fermat equations are inti-
mately linked to branched coverings of P1. For the exponent triples {2, 3, r}
these are given by

P1 → P1/Γ,

where Γ ∈ SL2(C) is the Binary Tetrahedral, Octahedral or Icosahedral
Group depending on which of r in {3, 4, 5} is currently under consideration.

The resulting solutions to our generalized Fermat equation take the form

(t(f)/2)2 + H(f)3 = df r, (1.2)

where f is a binary form with roots corresponding to the vertices of a tetra-
hedron, octahedron or icosahedron. The binary forms t(f) and H(f) are
up to a constant the Hessian and the Jacobian covariant of f . Up to scaling
factors these are the famous relations used by Klein to find the roots of
polynomials of degree r.

In fact, any parameterization is only a slight variation on that given
in equation (1.2). We show that we can assume that any parameteriza-
tion is obtainable by replacing f by an SL2(C) twist f ′ of f , and replacing
t(f),H(f) by t(f ′) and H(f ′) in (1.2).

We then use a gem of Paul Gordan from 1875 who characterized GL2(C)
twists of the ‘Klein form’ f as a 4-dimensional quasi-affine subspace of the
space of all binary form of the same degree. We prove a slight variation—the
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SL2(C) twists are a 3-dimensional affine subspace defined over Q(d) which
we call C(r, d).

We now have an explicit variety on which we can perform arithmetic.
The parameterizations correspond to points on C(r, d). There is an action of
SL2(C) on C(r, d). A set of SL2(Z) equivalent parameterizations is an SL2(Z)
orbit of C(r, d). We find that co-prime integer solutions to X2 + Y 3 = dZr

are the Z-specializations of forms f ∈ C(r, d) with integral coefficients. An
application of Hermite reduction theory to the integral binary forms lying
on this variety is our algorithm for solving X2 + Y 3 = dZr.

This result has also been published in [5].

There are a number of interesting open questions about the local/global
behavior of the spherical Fermat equations. For this it is important to know
how parameterizations behave in other rings than just the rational integers—
in particular in finite fields and the p-adic integers. Here we see another
attraction of the new method. Much of the theory consists of arithmetic on
the explicit affine variety C(r, d), and this can be performed for any ring R.

We therefore develop a general theory valid for any entire ring R. Much
of the theory carries through provided the characteristic of the quotient field
does not belong to a set of bad primes. This allows us to give results about
the parameterizations in finite fields and p-adic integers. In the algorithm
to produce parameterizations in these rings the use of Hermite reduction is
replaced by Galois cohomology.
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Chapter 2

Getting Started

The aim of this chapter is to introduce the mathematical objects we are
going to study in this thesis. These are defined here, and various notation
and conventions that I follow are explained.

2.1 Definitions

The first step is to introduce the diophantine equations we are going to study
and give the definition of a parameterization.

Definition 2.1.1 (D(r, d)). Let R be a ring. For any r ∈ {3, 4, 5} and any
d ∈ R we define D(r, d)(R) to be the set of triples (X,Y, Z) ∈ R3 that satisfy

X2 + Y 3 = dZr. (2.1)

Definition 2.1.2 (Parameterization). Suppose R is an entire ring and
r ∈ {3, 4, 5}. Let K be the quotient field of R and K̄ an algebraic closure
of K. We assume that x, y are algebraically independent and transcendental
over K̄.

A parameterization of D(r, d)(R) is a triple χ := (X̂, Ŷ , Ẑ) in D(r, d)(K[x, y])
such that the equation

X̂2 + Ŷ 3 = dẐr

is homogeneous in the x, y of some degree n > 0. The integer n is called
the order of the parameterization. If X̂, Ŷ , Ẑ are co-prime in K̄[x, y] we say
that the parameterization is co-prime.

Definition 2.1.3 (Specialization). Suppose that χ is a parameterization
of D(r, d)(R). We say that (X,Y, Z) ∈ D(r, d)(R) is obtained by an R-
specialization of χ if it can be obtained from χ by specializing the variables
x, y to values in R.

9
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2.2 G-spaces

Much of this thesis will involve analyzing the action of a group G on a space
X. We say that x, x′ ∈ X are G-equivalent if there is a g ∈ G so that
x′ = gx. We call the classes of G-equivalent elements of X the G-orbits. If
the whole space consists of a single G-orbit we say that X is a homogeneous
G-space.

For any x ∈ X, the set StabG(x) is defined to be those g ∈ G such that
gx = x. Maps between G-spaces that commute with the action of G are
called G-equivariant maps.

In most cases G will be a subgroup of GL2(K), where K is a field. The
group GL2(K) acts on elements of K2 and K[x, y] as follows.

Definition 2.2.1 (Actions of GL2(K)). Suppose that

g =
(
a b
c d

)
∈ GL2(K).

We let GL2(K) act on K2 by

(x, y) 7→ (ax+ by, cx+ dy).

We extend this to an action on K[x, y] by

f(x, y) 7→ g · f := f(g−1(x, y)).

This induces an action of GL2(K) on parameterizations by

χ := (X̂, Ŷ , Ẑ) 7→ g · χ := (g · X̂, g · Ŷ , g · Ẑ).

2.3 A First Lemma

Lemma 2.3.1. Fix a ring R. Then any λ ∈ R∗ induces a bijection:

D(r, d)(R) → D(r, λr−6d)(R),

(X,Y, Z) 7→ (λ3X,λ2Y, λZ).

We will be interested in looking at how many parameterizations are
needed to specialize to all co-prime (X,Y, Z) ∈ D(r, d)(R). If R is a do-
main, the map can also be applied to the ring Q(R)[x, y], where Q(R) is
the quotient field of R. As this map commutes with R-specialization, the
‘theory of parameterizations’ depends only on d modulo R∗(6−r).



2.4. RESERVED SYMBOLS 11

2.4 Reserved Symbols

Throughout this thesis the symbols r, k,N will have a special meaning. The
symbol r will always represent a number in the set {3, 4, 5}. This will be the
exponent of Z in the equation X2 + Y 3 = dZr. We associate k ∈ {4, 6, 12}
and N ∈ {12, 24, 60} to these equations depending on which of the r ∈
{3, 4, 5} is currently under consideration.

We will be associating a platonic solid to each of the r ∈ {3, 4, 5}. The
solid is the tetrahedron, the octahedron, and the icosahedron respectively.
To motivate these numbers I include the following table.

Symbol Values Interpretation
r {3, 4, 5} The exponent of Z in X2 + Y 3 = dZr.
k {4, 6, 12} The number of vertices of the

associated platonic solid.
N {12, 24, 60} The order of the group of rotational

symmetries of the Solid.
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Chapter 3

Invariant Theory

This chapter introduces the notation and results from Invariant Theory that
will be used in this thesis. This will be Invariant Theory as known at the
end of the 19th century and my main reference will be the notes from a
series of lectures given by David Hilbert in 1897 in Göttingen [12] on the
subject.

3.1 Definitions

In those days everything was done relative to the field C of complex numbers.
We do not want to be so restrictive and would like to consider more general
fields K inside a fixed algebraic closure K̄.

For historical reasons the order of a binary form is defined to be its
degree in the variables x, y. We start with a binary f form of order k. We
would like to follow Hilbert and write the generic form of order k (also called
the base form) as

f = a0x
k +

(
k
1

)
a1x

k−1y +
(
k
2

)
a2x

k−2y2 + · · ·+ aky
k.

This forces us to restrict the characteristic of the base field. To avoid
having to deviate too far from the Invariant Theory of Hilbert’s day, I assume
that

char(K) = 0 or char(K) > the order of the base form f .

(In section 3.4, I show how this assumption can be dropped).

If we consider a vector formed from the coefficients of f as a vector space
of dimension k+ 1, we see that the action of GL2(K) on the generic form f
is a k + 1 dimensional representation GL2(K) → Kk+1. One of the major
objects of study in the 19th century was:

13
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Definition 3.1.1 (Covariant). A binary form C(f) ∈ K[a0, . . . , ak][x, y]
is called a covariant if it is homogeneous in the variables x, y and there is a
p ∈ Z≥0 such that for all g ∈ GL2(K̄)

g ·C(f) = det(g)pC(g · f),

where C(g · f) denotes the form obtained by replacing all occurrences of ai
with the i-th coefficient of g · f . The integer p is called the weight of the
covariant.

3.2 Examples and Basic Properties

Although the covariance properties place severe restrictions on C, there are
several well-known algebraic constructions that are covariants:

H(f) :=
(

1
k(k − 1)

)2 ∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ , t(f) :=
1

k(k − 2)

∣∣∣∣ fx fy
Hx Hy

∣∣∣∣ .
These can be shown to be covariants of weight 2 and 3 respectively.

Many of the elementary properties of covariants can be established by
noting that (

κ 0
0 λ

)
,

(
0 1
−1 0

)
,

(
1 ν
0 1

)
,

generate GL2(K) and seeing what conditions this forces onto the covariants.

Definition 3.2.1 (Differential Operators for Invariant Theory ). Let
x′, y′ be variables. We define

D := a0
∂

∂a1
+ 2a1

∂

∂a2
+ · · ·+ kak−1

∂

∂ak
,

∆ := ka1
∂

∂a0
+ (k − 1)a2

∂

∂a1
+ · · ·+ ak

∂

∂ak−1
,

Ω :=
∂2

∂x∂y′
− ∂2

∂x′∂y
.

The first two operators are known as the Cayley Aronhold operators. The
last is simply referred to as the Omega operator.

Theorem 3.2.2. The expression

C =
m∑
i=0

Cix
m−i
i yi, with Ci ∈ K[a0, . . . , ak]
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is a covariant of the base form f if and only if C0 is a homogeneous isobaric
function of the ai of degree n and weight p such that m = kn − 2p, which
satisfies the differential equations

DC0 = 0, Ci =
1
i!

∆iC0 for all i > 0.

In particular, a covariant is determined by its leading coefficient C0.

Proof. See [12], lecture XIII.

There are various operations on covariants. We will need the transvec-
tant process which creates a form (C1,C2)i called the i-th transvectant from
2 forms C1,C2 (see [9], page 46) by the following formula:

(C1,C2)i :=
(

(k − i)!
k!

)2

ΩiC1(x, y)C2(x′, y′)
∣∣∣x,x′=x
y,y′=y

.

If C1,C2 are covariants of a base form then (C1,C2)i is a also a covari-
ant. Transvectants (also referred to as transvections in the literature) were
very important in 19-th century Invariant Theory. The H, t above are
τ 2(f), τ 3(f) in the series

τ 2m(f) :=
1
2
(f, f)2m, τ 2m+1(f) := (f, τ 2m(f))1.

Finally, the Catalecticant is the covariant j(f), whose leading term is
given by ∣∣∣∣∣∣

a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣ .
This is covariant of weight 6 ([18], Chapter 25, page 233).

Identifying these covariants by their leading term (which is reasonable
by Theorem 3.2.2), we have:

f = a0x
k + . . . ,

H(f) = (a0a2 − a2
1)x

2k−4 + . . . ,

t(f) = (a2
0a3 − 3a0a1a2 + 2a3

1)x
3k−6 + . . . ,

τ 4(f) = (a0a4 − 4a1a3 + 3a2
2)x

2k−8 + . . . ,

τ 6(f) = (a0a6 − 6a1a5 + 15a2a4 − 10a2
3)x

2k−12 + . . . ,

j(f) = (a0a2a4 + 2a1a2a3 − a3
2 − a0a

2
3 − a2

1a4)x3k−12 + . . . .
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3.3 Other Properties of Covariants

This section collects together some less mainstream properties of binary
forms and covariants that will be used in this thesis.

Definition 3.3.1 (Rationality). For r ∈ {3, 4, 5} we define the following
sets:

Ω3 := {a0, . . . , a4},
Ω4 := {a0, . . . , a6},
Ω5 := {a0, . . . a5, 7a6, a7 . . . a12}.

If k ∈ {4, 6, 12} and f is a binary form of order k we denote the specialization
of the set Ωr to the coefficients of f by Ωr(f).

Proposition 3.3.2. Fix a ring R, an integer k ∈ {4, 6, 12}, a form f of
order k and a matrix g ∈M2(R). Then

Ωr(f) ⊆ R =⇒ Ωr(f ◦ g) ⊆ R.

Proof. Let

g :=
(
a b
c d

)
, 0 =

(
b
∂

∂x
+ d

∂

∂y

)
.

Then f ′ = f ◦ g has coefficients given by

a′m =
(k −m)!

k!
0mf

∣∣∣
x=a,y=c

.

Taking a hint from symbolic notation [9], this implies that

a′m =
k∑
j=0

Dm,jaj ,

where Dm,j is a form given by the coefficient of xj in

(ax+ c)m(bx+ d)k−m.

The result follows if we can show that for k = 12,m 6= 6; Dm,6 ∈ 7Z[a, b, c, d].
By symmetry we can suppose that m < 6. We then get:

Dm,6 =
m∑
s=0

(
m
s

)(
k −m
6− s

)
ascm−sb6−sd6−m+s.

The claim is true since 7 divides
(
k −m
6− s

)
for every s = 0 . . .m in the

above equation for Dm,6.
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Proposition 3.3.3. Let R be a ring. Fix r ∈ {3, 4, 5} and k ∈ {4, 6, 12}
for the order of the base form. Let C =

∑m
i=0Cix

m−iyi be a covariant.
Suppose C0 ∈ R[a0...ak] and if r = 5 that the covariant has weight ≤ 5.
Then C(f) ∈ R[Ωr;x, y]. In particular

Ωr(f) ⊆ R =⇒ C(f) ∈ R[x, y].

Proof. By [12], section I.12, page 103, C(f) can be obtained by replacing
the ai in C0 by

fi :=
(k − i)!
k!

f (i)

=
∑
r

(
k − i
r

)
arx

k−r−iyr,

where f (i) denotes the i-th derivative of f with respect to x. This implies
the result for r = 3, 4. For r = 5 the extra assumption means that C0 is
isobaric of weight ≤ 5 in the ai. But f0, f1 . . . f5 ∈ Z[Ω5;x, y] and the result
for r = 5 follows too.

Lemma 3.3.4. Let C be a covariant of weight p, homogeneous of degree n
in the ai. If p > n then C(xk) = 0 and C(xk−1y) = 0.

Proof. By Theorem 3.2.2, we see that each coefficient of C(f) is isobaric of
weight at least p in the ai (in fact, the i-th coefficient has weight p+ i). For
f = xk, xk−1y the only non-zero ai have i = 0 or 1. Therefore C(f) = 0.

3.4 Covariants in Arbitrary Characteristic

In this section I give another way to interpret the covariance property that
can be used to define covariants in fields of arbitrary characteristic. The
covariants defined earlier in terms of generic binary forms will continue to
be formulae for covariants of arbitrary characteristic.

Lemma 3.4.1. Let K be any field. Then GL2(K) is generated by the set of
all matrices of the form(

κ 0
0 λ

)
,

(
1 −ν
0 1

)
, w :=

(
0 1
−1 0

)
with κ, λ ∈ K∗ and ν ∈ K. The group SL2(K) is generated by the same set,
but with the additional restriction that κλ = 1.

We find that the action of GL2(K) on the coefficients ai of a binary form
of order k agrees with the following action at the generators of GL2(K).
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Definition 3.4.2. Define an action of GL2(K) on [a0, . . . , ak] ∈ Ak+1(K)
by (

1 −ν
0 1

)
: ai 7→

i∑
j=0

(
i
j

)
ajν

i−j ,

(
κ 0
0 λ

)
: ai 7→ κi−kλ−iai,(

0 1
−1 0

)
: ai 7→ (−1)iak−i.

This extends to an action of GL2(K) on K[a0, . . . , ak] that does not place

any requirement on the characteristic ofK. In fact as 7 divides
(
i
6

)
when-

ever 6 < i ≤ 12 this also extends to an action on K[Ωr] in all characteristics.

Definition 3.4.3 (Covariant, Arbitrary Characteristic). A binary form
C(Ωr) ∈ K̄[Ωr][x, y] is a covariant if it is homogeneous in the variables x, y
and there is a p ∈ Z≥0 such that for all g ∈ GL2(K̄)

g ·C(Ωr) = det(g)pC(g · Ωr),

where the action of g on K[x, y] is that of Definition 2.2.1 and the action
of g on Ωr is given by Definition 3.4.2. The integer p is called the weight of
the covariant.

‘Old-Style’ covariants were defined in terms of the coefficients ai, so they
are certainly candidates to be covariants in this more general setting. In
fact, any covariant C(f) ∈ Z[Ωr][x, y] constructed via ‘generic forms’ is a
covariant in arbitrary characteristic. Indeed, the equation witnessing the
covariance property must vanish identically and so be valid for all K.



Chapter 4

Klein forms

In this chapter we introduce the Klein forms. These were well studied in
the 19th century, not least by Felix Klein who wrote a famous treatise [14]
on their connection with solutions to the quintic equation.

4.1 Definitions and Properties

In [14] Felix Klein inscribes the tetrahedron, octahedron, icosahedron in the
2-sphere which he then projects onto the extended complex plane. After a
suitable rotation of the sphere, forms whose roots correspond to the vertices
of the solid are given by the f̄r in the following table.

Definition 4.1.1.

r Solid The vertices

3 Tetrahedron f̄3 = 81
√

3 (y4 + 2
√

3x2y2 − x4)

4 Octahedron f̄4 = 2836 xy(x4 + y4)

5 Icosahedron f̄5 = 1728 xy(y10 + 11x5y5 − x10)

The constant factors in these forms have been chosen so that we get
Klein’s relations in the form

(
1
2
t(f̄r))2 + H(f̄r)3 = f̄ rr .

This confirms that k agrees with the number of vertices of the solid and
N with the order of the group of rotational symmetries of the solid.

Klein was interested in the complex numbers. However the forms make
sense in any algebraically closed field K̄. By calculating the discriminants
and resultants, we see that the forms (1

2t(f̄r),H(f̄r), f̄r) stay co-prime and
have no multiple roots if char(K̄) is zero or co-prime to N .

19
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Proposition 4.1.2. Suppose that f1 satisfies

(
1
2
t(f1))2 + H(f1)3 = df r1 (4.1)

for some d ∈ K∗. Let f2 := λg · f1 where λ ∈ K∗ and g ∈ GL2(K). Then

(
1
2
t(f2))2 + H(f2)3 = d′ f r2 ,

where d′ = λ6−r det(g)−6d.

Proof. In equation (4.1) we have that the LHS/RHS is a covariant of weight
6 and homogeneous of degree 6− r in the ai. The result follows.

Definition 4.1.3 (Twists). Define C0(r) to be the set of all forms f = g · f̄r
with g ∈ GL2(K̄) and f̄r the Klein form given in Definition 4.1.1. For
d ∈ K̄∗ we define C0(r, d) to be those twists with det(g)−6 = d.

The constraint on det(g) is equivalent to requiring that

(
1
2
t(f))2 + H(f)3 = df r.

Definition 4.1.4 (Rational Twists). If R is a ring inside K̄ we define
C0(r, d)(R) to be those f ∈ C0(r, d) for which Ωr(f) ⊆ R, where Ωr is given
in Definition 3.3.1.

Notation 4.1.5 (Klein forms). We call C0(3) ∪ C0(4) ∪ C0(5) the Klein
forms, C0(3) the tetrahedral Klein forms, C0(4) the octahedral Klein forms,
and C0(5) the icosahedral Klein forms.

Definition 4.1.6 (The Parameterization χ(f)). Given f ∈ C0(r, d)(K),
we define

χ(f) := (
1
2
t(f),H(f), f).

This is a parameterization of D(r, d)(K).

Proposition 4.1.7. Let R be an integral domain with N 6= 0 in R. Then
f ∈ C0(r, d)(R) implies that H(f), t(f) ∈ R[x, y]. If furthermore R is inte-
grally closed in its quotient ring then t(f)/2 ∈ R[x, y].

Proof. By definition Ωr(f) ⊂ R. Hence by Proposition 3.3.3, H(f), t(f) ∈
R[x, y]. Since R has no zero divisors, R being integrally closed implies that
R[x, y] is integrally closed. The second claim now follows since(

1
2
t(f)

)2

+ H(f)3 = df r.
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Lemma 4.1.8. Suppose f ∈ C0(r, d)(K̄). Then there is a g ∈ GL2(K̄) of
determinant a primitive 6-th root of unity such that g · f = f .

Proof. If g ∈ GL2(K̄) fixes f and f ′ = h · f for some h ∈ GL2(K̄) then
g′ = hgh−1 fixes f ′, so we only have to demonstrate the claim for a specific
form in each of the three classes C0(3), C0(4) and C0(5). The following table
(in which ξ12 is a primitive 12th root of unity) does this .

r Solid Form g

3 Tetrahedron x(x3 + y3)
(
ξ312 0
0 ξ712

)

4 Octahedron xy(x4 + y4)
(

0 ξ−2
12

ξ−2
12 0

)

5 Icosahedron Any
(
ξ12 0
0 ξ12

)

Corollary 4.1.9. If f1, f2 ∈ C0(r, d)(K̄) then f1, f2 are SL2(K̄)-equivalent.

Proof. From Definition 4.1.3 we see that there is a g ∈ GL2(K̄) with det(g)6 =
1 such that g · f1 = f2. By Lemma 4.1.8 we can assume det(g) = 1.

4.2 Classification of Klein forms

By their nature, the set of forms defined by the vanishing of a covariant
is a union of GL2(K̄)-equivalence classes of forms. Thus the set of forms
defined by the vanishing of a covariant can often be assigned a geometric
meaning. Clebsch wondered what the vanishing of the 4-th tranvectant of
the base form over itself implied about the base form. This was answered
by Gordan [8], page 204. The answer will turn out to have a great impact
on our equations.

Theorem 4.2.1 (Gordan 1887). Let K be a field and k an integer greater
than 3. Suppose that one of the following is true.

• char(K) = 0.

• k = 4, 6 or 12; and char(K) > k − 4.

• char(K) ≥ k2.

Then the 4th covariant τ 4(f) of a form f of order k is identically zero iff
one of the following is true.
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• f ∼ xk or f ∼ xk−1y (degenerate cases),

• k = 4 and f ∼ y(x3 + y3) (Tetrahedron),

• k = 6 and f ∼ xy(x4 + y4) (Octahedron),

• k = 12 and f ∼ xy(x10 − 11x5y5 − y10) (Icosahedron),

where ∼ denotes equivalence modulo GL2(K̄).

Proof. (Sufficiency) We verify that τ 4 vanishes on the Klein forms by di-
rect calculation. The covariant τ 4 vanishes on the degenerate forms by
Lemma 3.3.4.

(Necessity) For the necessity we assume that τ 4(f) = 0 and f is not in
one of the degenerate cases. From this we will deduce that f is one of the
Klein forms. We know that τ 4(f) has order 2k− 8 and so can be written as

τ 4(f) =
2k−8∑
j=0

Djx
2k−jyj ,

where theDj are isobaric of degree 2 and weight 4+j in the ai. A calculation
gives:

Dj =
∑
i+l=j

(
k − 4
i

)(
k − 4
l

)
[aial+4 − 4ai+1al+3 + 3ai+2al+2] .

We will make heavy use of these explicit equations to deduce the result.
These coefficients (up to a constant multiple) for the cases k = 4, 6, 12 are
given in the Appendix A.

Step I - Show that f has a root of multiplicity 1.

Suppose not. Since f is not degenerate, at least one of its roots has
multiplicity ≤ k

2 . Send such a root to infinity so that if as is the first non-
zero coefficient of f we have 1 < s ≤ k/2.

We have for 2 ≤ t ≤ k − 2 that:

D2t−4 = 3
(
k − 4
t− 2

)2

a2
t + . . .

where the omitted terms are all isobaric of weight 2t but contain an ai with
i < t. We have that a0, a1 = 0. Induction shows that a2 . . . ak−2 are also
zero. As k − 2 ≥ k/2 we get as = 0. This contradiction shows that f has a
root of multiplicity one.

Step II - Finish off.
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We send this simple root to infinity and assume that [a0, a1, a2 . . . ] =
[0, 1, 0 . . . ]. From the explicit expansion of τ 4

D0 = a0a4 − 4a1a3 + a2
2,

Dj = · · ·+ k

j

(
k − 4
j − 1

)[
j − 4 +

12
k

]
a1aj+3 + . . . when j ≥ 1, (4.2)

where the omitted terms all contain a0 or an ai out of the set {a2, . . . , aj+2}.
I claim that k = 4, 6 or 12. Indeed, if not an induction shows that f is
equivalent to the degenerate xk−1y. By scaling using a diagonal matrix we
can assume that we are in one of the following cases:

• k = 4 and f = y(x3 + y3), or

• k = 6 and f = x5y + xy5 + . . . , or

• k = 12 and f = x11y − 11x6y6 + . . . ,

where the omitted coefficients contain higher powers of y. Furthermore,
equation (4.2) shows that the omitted coefficients of f are uniquely deter-
mined. This means that f is one of the Klein forms given in the announce-
ment of the theorem.

We are in a position to give a complete classification of the sets C0(r, d).

Theorem 4.2.2 (Classification of Klein forms ). Suppose N, d ∈ K̄∗.
If char(K) = 0 or char(K) > k, then

C0(3, d) = {f ∈ K̄[x, y]4 | τ 4(f) = 0, j(f) = −4d},
C0(4, d) = {f ∈ K̄[x, y]6 | τ 4(f) = 0, τ 6(f) = −72d},
C0(5, d) = {f ∈ K̄[x, y]12 | τ 4(f) = 0,

7τ 6(f) = −360df, 7τ 12(f) = 3110400d2}.

Proof. Fix r ∈ {3, 4, 5}. Call the right hand sides of the claimed equalities
V (3, d), V (4, d), V (5, d).

The last relation in each V (r, d) prevents zero being in V (r, d). The
covariants j, τ 6, τ 12 all have weights that are higher than their degree in
the ai. By Lemma 3.3.4, this means that xk, xk−1y 6∈ V (r, d). By Theo-
rem 4.2.1, we can restrict attention to f which are GL2(K̄)-equivalent to a
Klein form. Using Lemma 3.1.1 and the fact that τ 6, j have weight 6 and
τ 12 has weight 12 we get that

f ∈ V (r, d) ⇐⇒ g · f ∈ V (r, det(g)−6d).

By Proposition 4.1.2 we only have to show that f̄r ∈ V (r, 1). This is verified
by direct calculation.
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Remark 4.2.3. If you are of the opinion that a binary form of degree 12 is
by definition non-zero, you can omit the last relation τ 12(f) = . . . from the
characterization of C0(5, d).

4.3 Their Symmetry Groups

In this chapter we introduce the symmetry groups of the Klein forms. These
are established as abstract groups. For future use, we work out the actual
representations of these groups for certain Klein forms.

4.3.1 Definitions

Definition 4.3.1. Let f ∈ K[x, y] and α ∈ K∗. Define

Γα(f)(K) := {g ∈ SL2(K) | g · f = αf},

Γ(f)(K) :=
⋃
α∈K∗

Γα(f)(K).

We denote the projective versions of these sets by Γ̃α(f)(K) and Γ̃(f)(K).
These are the subsets of PSL2(K) obtained by dividing out by ±I.

For any f ∈ K[x, y], the sets Γ(f)(K) and Γ1(f)(K) are clearly groups,
as are their quotients in PSL2(K). The groups {Γ(f̄3)(K̄),Γ(f̄4)(K̄),Γ(f̄5)(K̄)}
are known as the Binary Tetrahedral, Binary Octahedral, and Binary Icosa-
hedral Group respectively. They have order 2N .

The projective versions {Γ̃(f̄3), Γ̃(f̄4), Γ̃(f̄4)} ⊂ PSL2(K̄) are isomorphic
to the rotational symmetry group of the tetrahedron, octahedron, icosa-
hedron respectively. These groups have order N . The isomorphism arises
from our identification of the roots of the Klein form with the vertices of the
platonic solid. The projective group is isomorphic to PSL2(Z/rZ) which in
turn is isomorphic to {A4, S4, A5}.

In the next sections we will give explicit representations for these groups.
If g ∈ Γ(f)(K), then g ∈ Γα(f)(K) for some α = α(g) ∈ K̄∗. The map
g 7→ α(g) is a group character. The explicit representations will show that
we have the following exact sequence.

1 −−−−→ Γ1(f̄r) −−−−→ Γ(f̄r)
α−−−−→ µ6−r −−−−→ 1.

4.3.2 Tetrahedron

Consider the tetrahedral Klein form

f = −4y(x3 − dy3) ∈ C0(3, d).
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The form f has zeros at ∞, γ1, γ1, γ1, where γi are the 3 solutions to γ3 = d.
We have that

Γ1(f) =
〈
g1, g2, g3 | g2

i = g1g2g3 = −1
〉

is the Quaternion Group of order 8, with gi given by

gi =
1√
−3

(
1 2γi
γ−1
i −1

)
.

The full group Γ(f) has order 24 and is given by

Γ(f) =
〈

Γ1(f),
(
ω 0
0 ω−1

)〉
,

where ω is a primitive 3rd root of unity.

Permutations of the Vertices

If we look at the projective group we have that Γ̃(f) ' A4 via the permuta-
tion that rotations induce on the vertices. We have Γ̃1(f) = V4 (the Klein
4 Group). The permutations in Γ̃1(f) are the identity and the 180 degree
rotations around the axes connecting opposite edges.

4.3.3 Octahedron

Consider the octahedral Klein form

f = 36xy(x4 − dy4) ∈ C0(4,−3d).

It has roots 0,∞, βi where i = 0, . . . , 3 and the βi are the 4 solutions of
β4 = d. If we call f ′ := 6xy(x4 − y4), we see that up to a constant f is just(

1 0
0 β

)
.f ′ for some β satisfying β4 = d. This gives a bijection

Γ(f ′) ∼−→ Γ(f),
(
a b
c d

)
7→
(

a, β−2b
β2c, d

)
.

We have that

Γ̃1(f ′) =
〈(

i 0
0 −i

)
,

(
0 1
−1 0

)
,

1
2

(
1 + i −1 + i
1 + i 1− i

)〉
,

where i is a primitive 4-th root of unity. The full group Γ̃(f ′) is given by

Γ̃(f ′) =
〈

Γ̃1(f ′),
(
ζ8 0
0 ζ−1

8

)〉
,

where ζ8 is a primitive 8-th root of unity.



26 CHAPTER 4. KLEIN FORMS

Permutations of Pairs of Opposite Faces

There is another way of looking at the projective group. We have that
Γ̃(f) = S4 by the permutation that Γ(f) induces on the axes joining opposite
faces of the octahedron.

The mid-points of the faces are given by the covariant H(f). A calcula-
tion shows that these pairs of faces are given by:

hν(f) = x2 + iν(1 + i)βxy − (−1)νiβ2y2,

where i is a primitive 4-th root of unity, β is a fixed solution to β4 = d and
ν = 0, 1, 2, 3.

There are 2 embedded tetrahedrons whose vertices together correspond
to the faces of the octahedron. Rotations of the octahedron either preserve
the tetrahedra or swap them. We have Γ̃1(f) = A4. These are the rotations
that preserve the embedded tetrahedrons.

4.3.4 Icosahedron

Consider the icosahedral Klein form

f = 1728d xy(x10 + 11x5y5 − y10) ∈ C0(5, d).

The zeros of f are 0,∞, ζi(ζ + ζ4), ζi(ζ2 + ζ3), where i = 0, . . . , 4 and ζ is
a primitive 5th root of unity. Γ(f) equals Γ1(f) and is the group of order
120 given by

Γ1(f) =
〈
−I,

(
ζ3 0
0 ζ2

)
,

1√
5

(
ζ − ζ4, −ζ2 + ζ3

−ζ2 + ζ3, −ζ + ζ4

)〉
=: 〈−I, S, T 〉 .

Define U :=
(

0 1
−1 0

)
. Then

Si =
(
ζ3i 0
0 ζ2i

)
, USi =

(
0 −ζ2i

ζ3i 0

)
,

SiTSj =
1√
5

(
ζ3i+3j(ζ − ζ4), −ζ3i+2j(ζ2 − ζ3)
−ζ2i+3j(ζ2 − ζ3), −ζ2i+2j(ζ − ζ4)

)
,

USiTSj =
1√
5

(
ζ2i+3j(ζ2 − ζ3), ζ2i+2j(ζ − ζ4)
ζ3i+3j(ζ − ζ4), −ζ3i+2j(ζ2 − ζ3)

)
,

where i = 0, . . . , 4 and j = 0, . . . , 4 is an enumeration of the N = 60 elements
of the projective group Γ̃(f).
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Permutations of Embedded Octahedra

There is another way to consider the projective group Γ̃(f). The 30 edges
of the icosahedron define the vertices of 5 embedded octahedra. The group
Γ̃(f) is isomorphic to A5 by the permutation action it induces on these 5
embedded octahedra. The edges of the icosahedron are given by the covari-
ant t(f). The vertices of the octahedra can be calculated (see [7], page 62).
They are given by

tν = (ζ3νx6 + ζ2νy6) + 2xy(ζ2νx4 + ζ3νy4)− 5x2y2(ζνx2 + ζ4νy2),

where ν = 0, . . . , 4.
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Chapter 5

General Properties of
Parameterizations

The previous chapter has provided us with a set of binary forms C0(r, d).
Any f ∈ C0(r, d) gives a parameterization χ(f) and we have the following
situation.

C0(r, d) f

π

y y
D(r, d) π(f) := χ(f)(1, 0).

Our route via 19th century Invariant Theory forced us to assume that
our fields have char(K) = 0 or char(K) > k. We will start by showing how
such parameterizations can be defined in fields of arbitrary characteristic.
This is then taken as our definition of parameterizations for the rest of the
thesis.

We call this larger class of parameterizations C(r, d) and show that it is
indeed a generalization of the set C0(r, d). Various basic properties of pa-
rameterizations are then proven. We show that parameterizations continue
to behave well, provided that N ∈ K∗.

In this chapter R is a ring inside a field K whose characteristic is arbi-
trary unless otherwise specified. The algebraic closure of K is denoted by
K̄.

5.1 Definitions in Arbitrary Characteristic

We want to define parameterizations for more general fields as the set of
(k + 1)-tuples of values that can be assigned to the set Ωr so that relations
given in characterization of C0(r, d) in Theorem 4.2.2 are satisfied. Once
explicit equations with this property have been chosen, these cut out an
algebraic subset of Ak+1 that will become our definition of C(r, d).

29
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5.1.1 (The Defining Equations). Consider the coefficients of τ 4(f).
These are elements Di of Z[Ωr]. Divide out by any integer content to pro-
duce elements D′

i ∈ Z[Ωr]. We require that the polynomials D′
i vanish. Next

we take the auxiliary relations mentioned in Theorem 4.2.2. These are ele-
ments of Z[Ωr, d][x, y]. I consider these as binary forms in the variables x
and y. The coefficients are elements of Z[Ωr, d] that we require to vanish. 1

Finally, when r = 5, an equation labelled D∗
4 in Appendix A is required to

vanish (If char(K) 6= 5 the vanishing of D∗
4 is implied by the vanishing of

the D′
i). The resulting collections of polynomials defining C(r, d) are given

in Appendix A.

Definition 5.1.2 (C(r, d)). We define C(r, d) ⊂ Ak+1 to be the algebraic set
defined by the polynomials given in Appendix A.

I have chosen not to introduce a new symbol for (7a6). Instead I try to
always bracket this expression and leave it to the reader to note that when
char(K) = 7 and the icosahedral equations are being considered, care should
be taken. (7a6) is not zero but, as an element of Ω5, is transcendental over
K̄.

The class C(r, d) has been constructed to be a generalization of C0(r, d).
We make this explicit in the following proposition.

Proposition 5.1.3. Suppose K is a field with char(K) = 0 or char(K) > k.
We identify f ∈ K[x, y] of order k with Ωr(f) ∈ Ak+1(K). Then

f ∈ C0(r, d) ⇔ Ωr(f) ∈ C(r, d).

Proof. This follows from the classification of C0(r, d) given in Theorem 4.2.2.

To emphasize the difference between C(r, d) and C0(r, d) I will initially
use the symbol ϕ when referring to an element in C(r, d).

Definition 5.1.4 (f(ϕ)). We associate a binary form f(ϕ) with an element
ϕ ∈ Ak+1 by

f(ϕ) :=
k∑
i=0

ai

(
k
i

)
xk−iyi. (5.1)

This is a K-linear and GL2(K̄)-equivariant map. However, the map is
not injective if char(K) ≤ k.

1We explicitly do not divide out any integer content in the auxiliary equations.
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Definition 5.1.5 (χ, π). If char(K) 6= 2 we define χ(ϕ) and π(ϕ) for any
ϕ := [a0, . . . , ak] ∈ C(r, d) by

χ(ϕ) :=
(

1
2
t(ϕ),H(ϕ),f(ϕ)

)
,

π(ϕ) := χ(ϕ)(1, 0)

=
(

1
2
(a2

0a3 − 3a0a1a2 + 2a3
1), a0a2 − a2

1, a0

)
.

5.2 Properties of C(r, d)

Some properties of C(r, d) continue to hold in all characteristics. Other
properties only hold with some restriction the characteristic of K. In this
section we (re)establish various properties of C(r, d)(K). We will see that
C(r, d) is well behaved if N ∈ K∗. The proofs, which are often technical, are
given in Appendix B.

Definition 5.2.1 (Parabolic Subgroup). For a ring R, define the parabolic
subgroup of SL2(R) as

{
(

1 α
0 1

)
| α ∈ R}.

Elements of this group are called the parabolic elements.

Note that the parabolic elements can also be characterized as the ele-
ments of the stabilizer of the point (1, 0).

5.2.1 Properties for all K

Lemma 5.2.2. If K is a field and d ∈ K∗ then C(r, d)(K) 6= ∅.

Proof. See Appendix B, Lemma B.0.1.

Proposition 5.2.3. Suppose K a field and d ∈ K∗. If g ∈ GL2(K) and
λ ∈ K∗ then

ϕ ∈ C(r, d) ⇒ λg · ϕ ∈ C(r, d′),

where d′ = λ6−r det(g)−6d.

Proof. See Appendix B, Proposition B.0.3.

5.2.2 Properties whenever 2 ∈ K∗

Proposition 5.2.4. Suppose that 2, d ∈ K∗. If (X,Y, Z) ∈ D(r, d)−(0, 0, 0),
then there is a ϕ ∈ C(r, d)(K) with π(ϕ) = (X,Y, Z).

Proof. See Appendix B, Proposition B.0.2.
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5.2.3 Properties whenever N ∈ K∗

Proposition 5.2.5 (Canonical Lift). Suppose N, d ∈ K∗. If (X,Y, Z) ∈
D(r, d) − (0, 0, 0), then there is a canonical ϕ ∈ C(r, d)(K) with π(ϕ) =
(X,Y, Z). It is given by

ϕ :=
{

[Z, 0, YZ ,
2X
Z , . . . ] if Z 6= 0,

[0, −XY , 0, . . . ] if Z = 0,
(5.2)

where the omitted terms are uniquely determined by the defining equations
of C(r, d).

If ϕ′ ∈ C(r, d)(K) also satisfies π(ϕ′) = (X,Y, Z), then there is a unique
parabolic element g ∈ SL2(K) such that ϕ′ = g · ϕ.

Proof. See Appendix B, Proposition B.0.7.

Lemma 5.2.6. Suppose N, d ∈ K̄∗. Then C(r, d)(K̄) is a homogeneous
SL2(K̄)-space and C(r) :=

⋃
d∈K̄∗ C(r, d) is a homogeneous GL2(K̄)-space.

Proof. See Appendix B, Lemma B.0.5.

Definition 5.2.7. Let ϕ ∈ Ak+1 and α ∈ K∗. Define

Γα(ϕ)(K) := {g ∈ SL2(K) | g · ϕ = αϕ},

Γ(ϕ)(K) :=
⋃
α∈K∗

Γα(ϕ)(K).

Lemma 5.2.8. If N, d ∈ K∗ and ϕ ∈ C(r, d) then #Γ(ϕ)(K̄) = 2N . Fur-
thermore, if ϕ corresponds to the coefficients of one of the forms chosen in
§ 4.3, then the explicit description of the group called Γ(f) in § 4.3 is the
group Γ(ϕ)(K̄).

Proof. See Appendix B, Lemma B.0.8.

5.3 Properties of the map χ

The set of K-specializations of the parameterizations associated to ϕ,ϕ′ ∈
C(r, d)(K) will be equal if ϕ,ϕ′ lie in the same SL2(K)-orbit. In this section
we give a partial converse. IfN ∈ K∗ and ϕ,ϕ′ lie in different SL2(K)-orbits,
we show that (0, 0, 0) is the only common K-specialization.

Proposition 5.3.1. Suppose N ∈ K∗. If ϕ ∈ C(r, d)(K̄) and (X,Y, Z) ∈
D(r, d)(K̄), then there is an s ∈ K̄2 such that χ(ϕ)(s) = (X,Y, Z).

Proof. Let ϕ′ be the canonical lift of (X,Y, Z) given by Proposition 5.2.5.
By Lemma 5.2.6, C(r, d)(K̄) is a homogeneous SL2(K̄)-space. Therefore,
there is a g ∈ SL2(K̄) so that ϕ = g · ϕ′. Then s = g(1, 0) works.
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Lemma 5.3.2. Suppose Γ ⊂ SL2(K) is a finite group and the characteristic
of K is either zero or co-prime to the order of Γ. Then for any s ∈ K2

s 6= (0, 0) ⇒ StabΓ(s) = 1.

Proof. Suppose s 6= (0, 0). By replacing Γ by a conjugate group we can as-

sume that s = (1, 0). Suppose
(
a b
c d

)
=: g is in the stabilizer. Therefore

g =
(

1 b
0 d

)
.

Since det(g) = 1 we have d = 1. As the order of g divides the order of the
Γ, the conditions on the characteristic of K imply that b = 0.

Lemma 5.3.3. Suppose N, d ∈ K∗. Suppose that ϕ ∈ C(r, d)(K). Then

χ(ϕ)(s) = (0, 0, 0) ⇔ s = (0, 0).

Proof. This follows since the resultant of f(ϕ) and H(ϕ) is divisible only
by primes dividing Nd.

Proposition 5.3.4. Suppose N, d ∈ K∗ and (X,Y, Z) ∈ D(r, d)(K) is non-
zero. Suppose that ϕ1, ϕ2 ∈ C(r, d)(K) and s1, s2 ∈ K2 satisfy

χ(ϕ1)(s1) = χ(ϕ2)(s2) = (X,Y, Z).

Then there is a unique g ∈ SL2(K) such that

s1 = gs2, ϕ1 = g · ϕ2.

Proof. (1) Existence. Choose gi ∈ SL2(K) so that gisi = (1, 0). Then
π(gi ·ϕi) = (X,Y, Z). By Proposition 5.2.5, there is a parabolic h ∈ SL2(K)
so that g1.ϕ1 = hg2.ϕ2. Set g := g−1

1 hg2. The element g satisfies ϕ1 = g ·ϕ2.
Since h is parabolic s1 = gs2. (2) Uniqueness. If not, we could find a non-
trivial g ∈ Γ1(ϕ1)(K) such that gs2 = s2. This contradicts Lemma 5.3.2
with Γ = Γ1(ϕ1)(K).

Theorem 5.3.5. Suppose N, d ∈ K∗. Then

D(r, d)(K)− (0, 0, 0) =
⋃

ϕ∈C(r,d)(K)

π(ϕ).

Furthermore, for ϕ1, ϕ2 ∈ C(r, d)(K)

• χ(ϕ1)(K2) = χ(ϕ2)(K2) if ϕ1, ϕ2 are SL2(K)-equivalent,

• χ(ϕ1)(K2) ∧ χ(ϕ2)(K2) = {(0, 0, 0)} otherwise.

Proof. The first claim is just Proposition 5.2.5. The other claims are from
Lemma 5.3.3 and Proposition 5.3.4.
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5.4 All parameterizations are twists of each other

We have defined a family of parameterizations of D(r, d)(K) by taking χ(f)
and letting f range over C(r, d). One might worry that we are missing out
on many useful parameterizations by restricting ourselves in this way.

In this section I show that this is not so. Assuming that N ∈ K∗, we
show that any parameterization is derived from a Klein form. In this section
we follow Hartshorne, Algebraic Geometry [10], Chapter IV. In particular
a curve means a complete, non-singular curve over an algebraically closed
field.

Theorem 5.4.1 (Hurwitz). Let φ : C1 → C2 be a non-constant separable
map of curves. Then:

2g1 − 2 ≥ (deg φ)(2g2 − 2) +
∑
P∈C1

(eφ(P )− 1),

where gi is the genus of Ci and eφ(P ) are the ramification indices. Further,
equality holds iff either:

• char(K̄) = 0; or

• char(K̄) = p > 0 and p does not divide eφ(P ) for all P ∈ C1.

Proof. See [10], Chapter IV, Proposition 2.2 and Corollary 2.4.

Lemma 5.4.2. Suppose ψ : C1 → C2 is a non-constant map of curves of
degree n over a field K̄. If n ∈ K̄∗, then the map is separable.

Proof. Let K̄(Ci) be the function fields. If the map is not separable, then
char(K̄) = p > 0 and there is an intermediate field K̄ ′ so that K̄(C2) ⊂
K̄ ′ ⊂ K̄(C1), and [K̄ ′ : K̄(C2)] = pu for some u > 0. This means that n is
zero as an element of K̄.

Theorem 5.4.3. Suppose N, d ∈ K∗ and f ∈ C(r, d)(K). Suppose (X̂, Ŷ , Ẑ)
is a co-prime parameterization of D(r, d)(K) of order n > 0. Then N divides
n and there are co-prime binary forms u, v ∈ K̄[x, y] of order n/N so that

(X̂, Ŷ , Ẑ) = χ(f)(u, v).

Proof. (Step I - Reduce to a claim about a map between curves ).

Dehomogenize and rename the variables so that χ(f) ∈ K̄[t]3 and (X̂, Ŷ , Ẑ) ∈
K̄[x]3.

Consider the map of curves ψ : X → P1 corresponding to the finite field
extension of K̄(x) obtained by appending a root of the polynomial

p(t) := p(t, x) := t(f)2 − 4
X̂2

Ŷ 3
H(f)3
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to K̄(x). Call this field extension K̄(t, x).
We will show that
the map ψ is a non-constant separable, unramified map of curves.

Assuming this, we apply Hurwitz’ Theorem, and deduce that ψ is an
isomorphism X ' P1. Therefore K(t, x) = K(x) and t is in K(x). Going
back to homogeneous notation we can find co-prime binary forms u, v and
γ ∈ K̄∗ so that

χ(f)(u, v) = γ(X̂, Ŷ , Ẑ).

By scaling u, v, we can assume that γ = 1. The theorem is proven.

The map ψ is clearly non-constant. We are left to show that ψ is sepa-
rable and unramified.

(Step II - The map ψ is separable).

The group Γ(f) ⊂ GL2(K̄) acts transitively on the roots of p(t). There-
fore, the extension K̄(t, x) : K̄(x) is Galois of degree dividing N . In partic-
ular, it is separable by Lemma 5.4.2.

(Step III - The map ψ is unramified).

For any x0 ∈ K̄, the group Γ(f) acts freely on the roots of p(t, x0)
unless one of X̂(x0),Ŷ (x0),Ẑ(x0) is zero. Ramification is only possible
above points x0 where p(t, x0) has multiple roots. This means that ram-
ification is only possible above primes corresponding to x0 ∈ K̄ for which
X̂(x0)Ŷ (x0)Ẑ(x0) = 0.

Suppose that the prime ideal Q corresponds to a point x0 ∈ K̄ with
X̂(x0) = 0, and P is a prime ideal with ψ(P ) = Q. Then P must correspond
to a point (x0, t0) with t(t0) = 0. Let ϑ̂P and ϑ̂Q be the completions of the
local rings at P and Q. We apply a change of co-ordinates x 7→ x+ x0 and
t 7→ t+ t0 so that the ideals can be written P = (t, x), Q = (x).

Since t has distinct roots, the inclusion ϑ̂Q ⊂ ϑ̂P can be written

K̄[[x]] ⊂ K̄[[x, t]]

for some t satisfying α(t)t2 − β(x)x2s = 0 with s a positive integer, α(t) ∈
K̄[[t]]∗ and β(x) ∈ K̄[[x]]∗.

As K̄ is algebraically closed, we can can take n-th roots of α and β
and assume that α = β = 1. This shows that ϑ̂P = ϑ̂Q. Therefore, there
is no ramification above x0 satisfying X̂(x0) = 0. Similarly, there is no
ramification above x0 satisfying Ŷ (x0) = 0 or Ẑ(x0) = 0.

Conclusion: ψ is unramified.
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Corollary 5.4.4. Suppose N, d ∈ K̄∗ and χ is a co-prime parameterization
of D(r, d)(K) of order N . Then there is a λ ∈ K∗ and f ∈ C(r, λ−6d)(K)
so that

χ = (
1
2
λ3t(f), λ2H(f), f).

Proof. Let (X̂, Ŷ , Ẑ) := χ. Choose f ∈ C(r, d)(K). By Theorem 5.4.3 ,
there is a g ∈ GL2(K̄) so that g ·χ(f) = (X̂, Ŷ , Ẑ). Letting λ = det(g), this
expands to

Ẑ = g · f,
Ŷ = g ·H(f) = λ2H(g · f),

X̂ =
1
2
g · t(f) =

1
2
λ3t(g · f).

We have g · f ∈ C(r, λ−6d) by Proposition 5.2.3. Since all the binary forms
above are in K[x, y], we have λ ∈ K∗.



Chapter 6

Lifting from Rings R

In this chapter R is any ring (with 1) without zero divisors and K is its
quotient field, which we assume has char(K) 6= 2. The algebraic closure of
K is denoted by K̄.

We will show in this chapter that if (X,Y, Z) ∈ D(r, d)(R) is co-prime
in R, then there is a ϕ ∈ C(r, d)(R) with π(ϕ) = (X,Y, Z). Under mild
extra conditions on R we prove that any other ϕ′ ∈ C(r, d)(R) with π(ϕ′) =
(X,Y, Z) is SL2(R)-equivalent to ϕ.

6.1 Existence of Lifts

Theorem 6.1.1 ( Lifting Theorem). Suppose R is a ring inside a field
K with char(K) 6= 2 and d ∈ R is non-zero. If (X,Y, Z) ∈ D(r, d)(R) is
co-prime, then there exists a ϕ ∈ C(r, d)(R) with

π(ϕ) = (X,Y, Z).

Proof. Step I - Deal with the case Z = 0.

If Z = 0, set a := −X/Y and consider the following binary form ϕ.
Case ϕ

Tetrahedron [0, a, 0, 0, 4a−2d]
Octahedron [0, a, 0, 0, 0, 12a−1d, 0]
Icosahedron [0, a, 0, 0, 0, 0, 144d

7 , 0, 0, 0, 0,−a−1(144d)2, 0]
A calculation shows that ϕ ∈ C(r, d)(K) and π(ϕ) = (X,Y, Z). Since

gcd(X,Y ) = 1 we have X,Y ∈ R∗, so that a ∈ R∗. In particular ϕ ∈
C(r, d)(R).

Step II - Z 6= 0.

Since char(K) 6= 2, Proposition 5.2.5 gives us a ϕ ∈ C(r, d)(K) with
π(ϕ) = (X,Y, Z). We will show that this initial ϕ can be twisted so that it
has the properties in the announcement of the Theorem.

37
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Since π(ϕ) = (X,Y, Z) we have

a0 = Z, (a0a2 − a2
1) = Y, (a2

0a3 − 3a0a1a2 + 2a3
1) = 2X.

We let a matrix g :=
(

1 −α
0 1

)
act on ϕ for an appropriate α ∈ K̄.

The matrix g is a parabolic element of SL2(K̄), so π(g · ϕ) = π(ϕ). By
varying α we can ensure that a1 takes on any chosen value. Since Y, Z are
co-prime, Y is invertible modulo Zr and we choose α so that a1 ∈ R and
a1 ≡ −XY −1 modulo Zr. Replace ϕ by g · ϕ. I claim that ϕ ∈ C(r, d)(R).

Let S be the multiplicative set generated by Z, and RS the localization
of R by S. By the defining equations of C(r, d) we see that Ωr(ϕ) ⊂ RS .
Our task will be to show that Ωr(ϕ) ⊂ R. This is clearly true if Z ∈ R∗, so
we assume it is not.

Let ν : RS 7→ Z ∪ ∞ be the valuation coming from Z. I.e. ν(α) :=
max{n | Z−nα ∈ R}. From the formulae H(1, 0) = Y and t(1, 0) = 2X we
get

a0a2 ≡ Y + (
X

Y
)2 = −dZ

r

Y 2
,

a2
0a3 ≡ −XX2 + Y 3

Y 3
=
−dXZr

Y 3
,

where ≡ means equivalence modulo Zr.
This shows that a0, a1, a2, a3 ∈ R and that

ν(a0) = 1, ν(a1) = 0, ν(a2) ≥ r − 1, ν(a3) ≥ r − 2.

Step III - Finishing Off.

The remaining calculations used to show that Ωr(f) ⊂ R depend on the
r ∈ {3, 4, 5} under consideration.

Step IIIa - Tetrahedron, Z 6= 0.
We already have that a0, a1, a2, a3 ∈ R and that

ν(a0) = 1, ν(a1) = 0, ν(a2) ≥ 2, ν(a3) ≥ 1.

The equation τ 4(ϕ) = 0 expands to

0 = a0a4 − 4a1a3 + 3a2
2,

which implies that a4 ∈ R. We conclude that Ω3(ϕ) ⊂ R, as required.

Step IIIb - Octahedron, Z 6= 0.
We already have that a0, a1, a2, a3 ∈ R and that

ν(a0) = 1, ν(a1) = 0, ν(a2) ≥ 3, ν(a3) ≥ 2.
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The defining equations of C(4, d) derived from the initial coefficients of
τ 4(ϕ) =

∑4
i=0Dix

4−iyi are

D0/1 : 0 = a4a0 − 4a3a1 + 3a2
2,

D1/2 : 0 = a5a0 − 3a4a1 + 2a3a2,

D2/1 : 0 = a6a0 − 9a4a2 + 8a2
3.

Here the labelling D1/2 means that the equation was obtained by dividing
the coefficient D1 of τ 4(ϕ) by 2 and equating the resulting polynomial to
zero. Going through these equations we deduce

D0 = 0 =⇒ ν(a4) ≥ 1,
D1 = 0 =⇒ ν(a5) ≥ 0,
D2 = 0 =⇒ ν(a6) ≥ 3.

We conclude that Ω4(ϕ) ⊂ R, as required.

Step IIIc - Icosahedron, Z 6= 0.
We already have that a0, a1, a2, a3 ∈ R and that

ν(a0) = 1, ν(a1) = 0, ν(a2) ≥ 4, ν(a3) ≥ 3.

The defining equations of C(5, d) derived from the initial coefficients of
τ 4(ϕ) =

∑4
i=0Dix

4−iyi are

D0/1 : 0 = a0a4 − 4a1a3 + 3a2
2,

D1/8 : 0 = a0a5 − 3a1a4 + 2a2a3,

D2/4 : 0 = a0(7a6)− 12a1a5 − 15a2a4 + 20a2
3,

D3/56 : 0 = a0a7 − 6a2a5 + 5a3a4,

D4/14 : 0 = 5a0a8 + 12a1a7 − 6a2(7a6)− 20a3a5 + 45a2
4,

D5/56 : 0 = a0a9 + 6a1a8 − 6a2a7 − 4a3(7a6) + 27a4a5,

D6/28 : 0 = a0a10 + 12a1a9 + 12a2a8 − 76a3a7 − 3a4(7a6) + 72a2
5,

D7/8 : 0 = a0a11 + 24a1a10 + 90a2a9 − 130a3a8 − 405a4a7 + 60a5(7a6),
D8/1 : 0 = a0a12 + 60a1a11 + 534a2a10 + 380a3a9 − 3195a4a8

− 720a5a7 + 60(7a6)2,
D9/8 : 0 = a1a12 + 24a2a11 + 90a3a10 − 130a4a9 − 405a5a8 + 60(7a6)a7.

We also have the equation labelled D∗
4.

D∗
4 : a3

0a8 = 12a0a1a2a3 + 18a0a
2
2a4 − 24a0a2a

2
3 + 4a2

0a3a5 − 9a2
0a

2
4.

Going through the equations in the order D0,D1,D2,D3,D∗
4,D5,D6,D7

shows that:
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ν(a4) ≥ 2, ν(a5) ≥ 1, ν(7a6) ≥ 0, ν(a7) ≥ 4, ν(a8) ≥ 3,
ν(a9) ≥ 2, ν(a10) ≥ 1, ν(a11) ≥ 0.

We are assuming that Z 6∈ R∗. This means that a0, a1 are non-zero and
co-prime. Therefore from equation D9 we deduce that ν(a12) ≥ 4.

We have shown that the ai (respectively 7a6) are in R. I.e. we have
proven that Ω5(ϕ) ⊂ R, as required.

6.2 Uniqueness of Lifts

Definition 6.2.1. We say that a ring R is ‘2Nice’ if R is a domain, in-
tegrally closed in its quotient field, and either 2 ∈ R∗ or (2) is a prime
ideal.

Theorem 6.2.2 (Uniqueness Theorem). Suppose R is a ‘2Nice’ ring
inside a field K with N ∈ K∗ and d ∈ R is non-zero.

Suppose (X,Y, Z) ∈ D(r, d)(R) is co-prime and f, f ′ ∈ C(r, d)(R) satisfy

π(f) = π(f ′) = (X,Y, Z).

Then there is an α ∈ R so that

f ′ =
(

1 −α
0 1

)
· f .

Proof. We let [a0, . . . , ak] denote the coefficients of f and dashed versions
denote the coefficients of f ′. We will show that we can apply a map of the
form x 7→ x+ αy for some α ∈ R to f and a map of the form x 7→ x+ α′y
for some α′ ∈ R to f ′ so that the two forms become equal.

(Case I : Z = 0). We have that a0 = 0 and a1 = −Y/X ∈ R∗.
Since the leading term of τ 4(f) is a0a4 − 4a1a3 + 3a2

2, we have that
a2
2

2 ∈ R. Since R is ‘2Nice’ this implies a2 ∈ 2R. We replace x by x− a2
2a1
y,

so that a2 = 0. The remaining ai are completely determined by the equations
defining C(r, d).

(Case II : Z 6= 0). We have a0 = a′0 = Z. Combining the formulae
2X = t(f)(1, 0) and Y = H(f)(1, 0) gives

2(a1 − a′1)Y = Z2(a3 − a′3)− Z(a1a2 − a′1a
′
2). (6.1)

As R is ‘2Nice’ there are 3 possibilities (not mutually exclusive):

• 2 ∈ R∗,

• 2 is prime and divides Z(a3 − a′3)− (a1a2 − a′1a
′
2),

• 2 is prime and divides Z = a0 = a′0.
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If the last holds, then as the leading term of τ 4(f) is a0a4 − 4a1a3 + 3a2
2,

its vanishing implies that 2 divides a2. Similarly 2 divides a′2 . This shows
that one of first two possibilities always holds.

Using the fact that Y, Z are co-prime, we find an α′ ∈ R so that a1−a′1 =
αZ. Replacing x by x + α′y in f ′ makes a′1 = a1. Furthermore, a2 is
determined from H(f)(1, 0) = Y , and a3 from t(f)(1, 0) = 2X. This means
that a2 = a′2 and a3 = a′3. The remaining ai are completely determined by
the equations defining C(r, d). Conclusion: f = f ′.

Corollary 6.2.3. Suppose R is a ‘2Nice’ ring inside a field K with N ∈ K∗

and d ∈ R is non-zero.
Suppose (X,Y, Z) ∈ D(r, d)(R) is co-prime, ζ is an element of R satis-

fying ζ6 = 1, and that f, f ′ ∈ C(r, d)(R) satisfy

π(f) = (X,Y, Z), π(f ′) = (ζ3X, ζ2Y, Z).

Then there is an α ∈ R so that

f ′ =
(

1 −α
0 ζ−1

)
· f .

Proof. Replacing y by ζy in f produces a new form f ′′ with the coefficients
ai replaced by ζiai. Since t(f)(1, 0),H(f)(1, 0) and f(1, 0) are isobaric in
the ai of weight 3, 2, 0 respectively, we have

π(
(

1 0
0 ζ−1

)
· f) = (ζ3X, ζ2Y, Z).

This means that we can assume that ζ = 1. The result, therefore, follows
from Theorem 6.2.2.

Theorem 6.2.4 (Uniqueness Theorem, Version 2). Suppose R is a
‘2Nice’ ring inside a field K with N ∈ K∗ and d ∈ R is non-zero.

Suppose (X,Y, Z) ∈ D(r, d)(R) is co-prime, ζ is an element of R satis-
fying ζ6 = 1, and that f, f ′ ∈ C(r, d)(R) and s, s′ ∈ R2 satisfy

χ(f)(s) = (X,Y, Z), χ(f ′)(s′) = (ζ3X, ζ2Y, Z).

Then there is a g ∈ GL2(R) with det(g) = ζ−1 so that

f ′ = g · f .

Proof. As f,H(f) ∈ R[x, y] and χ(f)(s) is co-prime in R, we have that the
entries of s are co-prime in R. Therefore, there is a g ∈ SL2(R) so that
g(1, 0) = s. We replace f by g · f and assume that s = (1, 0). Similarly we
can assume that s′ = (1, 0). The result follows from Corollary 6.2.3.
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6.3 The Twisting Matrices

We know that if N ∈ K∗ and d ∈ R is non-zero, then C(r, d)(K̄) consists of a
single SL2(K̄) orbit. Assume that R is a domain and (X,Y, Z) ∈ D(r, d)(R)
is co-prime. In this section we take f ∈ C(r, d)(R) and investigate what
can be said about the entries of a matrix g ∈ SL2(K̄) such that π(g · f) =
(X,Y, Z). We establish conditions in which g can be assumed to be in
SL2(R̄), where R̄ is the integral closure of R in K̄.

Lemma 6.3.1 (General Integrality Criterion). Let R be an entire ring.
Let z1, . . . , zm be elements of some extension field of its quotient field K.
Assume that each zs (s = 1, . . . ,m) satisfies a polynomial relation

zds
s + gs(z1, . . . , zm) = 0

where gs(Z1, . . . , Zm) ∈ R[Z1, . . . , Zm] is a polynomial of total degree < ds.
Then z1, . . . , zm are integral over R.

Proof. See Theorem 3.7 of chapter VII in Lang’s Algebra [16].

Corollary 6.3.2. Let R be a domain with quotient field K, and let K̄ be
an algebraic closure of K. Let R̄ be the integral closure of R in K̄. Suppose
f1, f2 ∈ R[x, y] are forms with Res(f1, f2) ∈ R∗. Then for any u, v ∈ K̄

f1(u, v), f2(u, v) ∈ R =⇒ u, v ∈ R̄.

Proof. By the properties of resultants, there are forms h1, h2 ∈ R[x, y] such
that

h1f1 + h2f2 = Res(f1, f2)xn.

Therefore u, v satisfy the relation

Res(f1, f2)xn − f1(u, v)h1(x, y)− f2(u, v)h2(x, y) = 0,

where the hi have degree less than n. Similarly, there are h′1, h
′
2 ∈ R[x, y] of

degree less than n so that u, v satisfy the relation

Res(f1, f2)yn − f1(u, v)h′1(x, y)− f2(u, v)h′2(x, y) = 0.

By Lemma 6.3.1, u, v ∈ R̄.

Proposition 6.3.3. Let R be a domain, integrally closed in its quotient field
K, and K̄ be an algebraic closure of K. Let R̄ be the integral closure of R
in K̄.

Suppose N, d ∈ R∗. Suppose f ∈ C(r, d)(R) and (X,Y, Z) ∈ D(r, d)(R)
are co-prime in R. Then there is a g ∈ SL2(R̄) such that g · f ∈ C(r, d)(R)
and

π(g · f) = (X,Y, Z).
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Proof. Let H := H(f). By Proposition 5.3.1 there are u, v ∈ K̄ such that
χ(f)(u, v) = (X,Y, Z). Since f ∈ C(r, d) and N, d ∈ R∗, we have that
Res(f,H(f)) ∈ R∗. Hence, by Corollary 6.3.2, u, v ∈ R̄.

As Y, Z are co-prime in R and k, 2k − 4 ∈ R∗, we can find α, β ∈ R so
that

αkZ + (2k − 4)βY = 1. (6.2)

We substitute

Z = f(u, v) =
1
k

(
u
∂f

∂x
(u, v) + v

∂f

∂y
(u, v)

)
,

Y = H(u, v) =
1

2k − 4

(
u
∂H

∂x
(u, v) + v

∂H

∂y
(u, v)

)
into equation (6.2). Rearranging gives uv′ − vu′ = 1 where

v′ = α
∂f

∂x
(u, v) + β

∂H

∂x
(u, v), − u′ = α

∂f

∂y
(u, v) + β

∂H

∂y
(u, v).

Let g−1 :=
(
u u′

v v′

)
. We claim that g ∈ SL2(R̄) is the matrix we are

looking for.
Certainly g ∈ SL2(R̄) and f ′ := g · f ∈ C(r, d)(R̄). It remains to show

that f ′ ∈ C(r, d)(R). As R is integrally closed in its quotient field K, we
only need to show that the coefficients a′0, . . . , a

′
k of f ′ are in K.

We have a′0 = f(u, v) = Z, so that a′0 ∈ R. Furthermore

ka′1 =
∂

∂y
f(ux+ u′y, vx+ v′y)

∣∣∣∣
x=1,y=0

= u′
∂f

∂x
(u, v) + v′

∂f

∂y
(u, v)

∣∣∣∣
x=1,y=0

= −β

(
∂f
∂x

∂f
∂y

∂H
∂x

∂H
∂y

)
(u, v)

= −βk2(k − 1)2t(f)(u, v),

so that a′1 = −2Bk(k− 1)2X. Hence a′1 ∈ R. If Z 6= 0, the remaining a′i are
forced to be in Q(R) by the defining equations of C(r, d) and the fact that
X,Y, Z ∈ R.

If Z = 0, they are forced to be in Q(R) once we can show that a′2 ∈ Q(R).
We have X,Y ∈ R∗, so that a′1 ∈ R∗, a′2 ∈ R̄. We also have 2 ∈ R∗. We
further twist f by the matrix(

1 − a′2
2a′1

0 1

)
∈ SL2(R̄).

This leaves a′0, a
′
1 unchanged, but makes a′2 = 0. The result follows.
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Chapter 7

Galois Cohomology

In this chapter we will use Galois Cohomology to categorize the set C(r, d)(K)
modulo SL2(K)-equivalence. The main reference to Galois Cohomology is
Jean-Pierre Serre [22], especially Chapter X, §5. However, much can be
gained from Silverman’s 1st book on Elliptic curves [23], Chapter X, §2,
where similar methods are use to categorize twists of elliptic curves.

7.1 Definitions

Let K be any field and K̄ the algebraic closure. We know that GK̄/K :=
Gal(K̄/K) acts on the left on GL2(K̄) by

A :=
(
a b
c d

)
7→ σA :=

(
σ(a) σ(b)
σ(c) σ(d)

)
.

We also denote σA by σ(A).
We give GL2(K̄) the discrete topology, in which all sets are open, and

GK̄/K the profinite topology, in which a fundamental set of neighborhoods
of the identity is given by the subgroups of the form Gal(K̄/L) with L/K a
finite Galois field extension of K.

We assume that we have groups Γ1 ≤ Γ ≤ GL2(K̄) closed under this
action.

Definition 7.1.1 (1-cocycles). The set of 1-cocycles of GK̄/K into Γ is
the set of continuous maps

ξ : GK̄/K → Γ, σ 7→ ξσ,

that also satisfy

ξστ = ξσ
σξτ for all σ, τ ∈ GK̄/K .

We denote the set of 1-cocycles by Z1(K,Γ).

45
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Definition 7.1.2 (Equivalence via a coboundary from Γ1 ). We say
that two 1-cocycles ξ, ζ are equivalent via a coboundary from Γ1 if there is
an h ∈ Γ1 such that

ζσ = h−1ξσ
σh for all σ ∈ GK̄/K .

Definition 7.1.3 (1st Cohomology Set).

H1(GK̄/K ,Γ : Γ1) :=
1-cocycles from GK̄/K into Γ

equivalence via a coboundary from Γ1
.

As a notational convenience, we usually just write this as H1(K,Γ : Γ1).
Furthermore, if Γ1 = Γ we just write H1(K,Γ).

7.2 C(r, d) modulo SL2(K)-equivalence

This section contains our main application of Galois Cohomology. We as-
sume that K is a field with N ∈ K∗.

For each r ∈ {3, 4, 5} we choose a d0 ∈ K∗ and f̄ ∈ C(r, d0)(K). These
will be fixed for the rest of this section. Let Γ := Γ(f̄) and Γ1 := Γ1(f̄).

For each d ∈ K∗ choose a λ ∈ K̄∗ so that λ6−r = d/d0. By Corol-
lary 4.1.9, C(r, d)(K̄) can be categorized as

C(r, d)(K̄) = {λg · f̄ | g ∈ SL2(K̄)}. (7.1)

Theorem 7.2.1. Suppose N, d ∈ K∗ and we categorize C(r, d)(K̄) via (7.1).
Then the map

C(r, d)(K)
SL2(K) equivalence

↪→ H1(K,Γ(f̄) : Γ1(f̄)),

λg · f̄ 7→
(
σ 7→ g−1σ(g)

)
,

is well-defined and injective.
The image consists of exactly those ξ ∈ H1(K,Γ(f̄) : Γ1(f̄)) such that

ξσ ∈ Γλ/σ(λ) for all σ ∈ GK̄/K . (7.2)

Proof. (Step I - The map is well defined). The map σ 7→ g−1σ(g) is a
cocycle. A priori it has values in SL2(K̄). However, since λg · f̄ = σ(λg · f̄) =
σ(λ)σ(g)f̄ , it takes values in Γ(f̄).

If f1 = λg1f̄ is SL2(K)-equivalent to f2 = λg2f̄ , then

g2 = hg1δ for some h ∈ SL2(K) and δ ∈ Γ1(f̄).

This means that

g−1
2 σ(g2) = δ−1g−1

1 σ(g1)σ(δ) for all σ ∈ Gal(K̄/K).
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Hence f1, f2 map to cocycles that differ by a coboundary from Γ1. Therefore
the map is well-defined.

(Step II - the map is injective). Suppose, conversely, that two maps differ
only by a coboundary from Γ1. This means that there is a δ ∈ Γ1 with

g−1
2 σ(g2) = δ−1g−1

1 σ(g1)σ(δ) for all σ ∈ Gal(K̄/K),

so that

h := g2δ
−1g−1

1 ∈ SL2(K).

Therefore g2 = hg1δ. This means that λg1f̄ is SL2(K)-equivalent to λg2f̄ .
Therefore the map is injective.

(Step III - the image is as claimed ).
Suppose that λg · f̄ ∈ K[x, y]. Then

λgf̄ = σ(λg · f̄) = σ(λ)σ(g).f̄

for all σ ∈ GK̄/K , so that cocycles in the image satisfy (7.2). Conversely,
suppose that ξ is a cocycle in the image. Then it is certainly a cocycle in
the more standard H1(K,SL2(K̄)). By “Hilbert 90 for SL2(K̄)” (see [20]
Chapter X), this cohomology set is trivial. Therefore, there is a g ∈ SL2(K̄)
so that

ξσ = g−1σ(g) for all σ ∈ GK̄/K .

Since ξ satisfies (7.2), f ′ := λg · f̄ ∈ K[x, y]. By construction f ′ maps to
ξ.

7.3 Other Cohomology Sets

In section 7.2 we were able to classify C(r, d) modulo SL2(K)-equivalence
using the 1st Cohomology Set H1(K,Γ : Γ1). In this section we will catego-
rize C(r, d)(K) modulo GL2(K) matrices with determinant a sixth root of
unity. The reason for wanting to categorize such sets, is that we can then
apply Corollary 6.2.3 to shorten lists of parameterizations by

• Identifying ±X, and

• Identifying ζ3Y with Y if ζ3 is in the ground field.

We will continue to assume, as in section 7.2, that K is a field with
N ∈ K∗, and we have chosen d0 ∈ K∗ and a f̄ ∈ C(r, d0)(K). We give a
classification of C(r, d0) modulo g ∈ GL2(K) with det(g)6 = 1. We do not
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generalize to d 6= d0. This seems to make the theorems more complicated,
but not more illuminating.

In this section we identify K∗ with the diagonal matrices of GL2(K).

I.e. u ∈ K̄∗ is identified with
(
u 0
0 u

)
∈ GL2(K).

For any positive integer m let µm ⊂ K̄ be the m-th roots of unity.
Clearly µ2mΓ is the group of matrices g with det(g)m = 1 that permute the
roots of f̄ . We define

(µ2mΓ)1 := {g ∈ µ2mΓ(f̄) | g · f̄ = f̄}.

Lemma 7.3.1. Let m ∈ {1, 2, 3, 6}. Then the sequence

1 −−−−→ Γ1 −−−−→ (µ2mΓ)1
det−−−−→ µm −−−−→ 1

is exact.

Proof. Clearly Γ1 is the kernel of the det arrow, so we only have to prove
that det is onto. Suppose that ζ2 ∈ µm. Then ζ · f = αf for some α
satisfying α6−r = 1. Choose g ∈ Γ with g · f = α−1f . Then ζg is a member
of (µ2mΓ)1 of determinant ζ2. Hence the det arrow is onto.

This means that we can pass in cohomology to the exact sequence

H1(K,Γ1) −−−−→ H1(K, (µ2mΓ)1) −−−−→ H1(K,µm). (7.3)

By Lemma 4.1.8 and Corollary 4.1.9, for any given m ∈ {1, 2, 3, 6},
C(r, d0)(K̄) can be categorized as

C(r, d)(K̄) = {g · f̄ | g ∈ GL2(K),det(g)m = 1}. (7.4)

Theorem 7.3.2. Let m ∈ {1, 2, 3, 6}. We categorize C(r, d0)(K̄) via (7.4).
Then the map

C(r, d0)(K)
GL2(K) with det(g)m = 1

→ Im
(
H1(K,Γ1) → H1(K, (µ2mΓ)1)

)
,

λg · f̄ 7→
(
σ 7→ g−1σ(g)

)
,

is well-defined and bijective.

Proof. (Sketch) (Step I - the map is well defined and injective).
The map ξσ := g−1σ(g) is a cocycle taking values in µ2mΓ. This means

that we can write g = εh for h ∈ Γ, ε ∈ µ2m. Therefore ξσ becomes trivial
in H1(K,µm). By (7.3) the cocycle is the image of some ξ′ ∈ H1(K,Γ1).
The rest of the proof that the map is well-defined and injective is similar to
the proof of Theorem 7.2.1.
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(Step II - the map is onto). Conversely, if ξ is in the claimed image it
becomes trivial in H1(K,µm). Therefore, it can be written

ξσ =
σ(ε)
ε
ξ′σ for some ε ∈ µ2m, ξ

′ ∈ Z1(K,Γ).

By Hilbert 90 for SL2(K̄) we can find h ∈ SL2(K̄) so that

ξ′σ = h−1σ(h) for all σ ∈ GK̄/K .

One checks that f ′ := (εh) · f̄ ∈ C(r, d0)(K) and that f ′ maps to ξ.

An obvious next step in the quest to shorten the lists of parameteriza-
tions would be to identify Z with ζrZ, where ζr is a primitive r-th root of
unity whenever ζr is in the field K. The following proposition shows that
this is not usually necessary.

Proposition 7.3.3. Suppose χ(f)(s1, s2) = (X,Y, Z). Let ζ3, i, ζ5 be prim-
itive 3-rd, 4-th, and 5-th roots of unity. Then

Case ζ χ(f)(ζs1, ζs2) =
Tetrahedron ζ3 (X, ζ3Y, ζ3Z)
Octahedron

√
−i (−X,Y, iZ)

Icosahedron ζ3
5 (X,Y, ζ5Z)

7.4 The Splitting of the Forms

We can also use Cohomology Sets to deduce how a σ ∈ Gal(K̄/K) permutes
the roots of any covariant of f . For finite fields we can apply this to the
Frobenius element to deduce how such a form splits.

Proposition 7.4.1. Identify the SL2(K)-orbit of f = λg · f̄ ∈ C(r, d)(K),
using Theorem 7.2.1, with an image point in H1(K,Γ(f̄) : Γ1(f̄)). Let ξ be
a cocycle representing this image point.

Let C be a covariant and label the roots of C(f̄) as β1, . . . βm. Then for
any σ ∈ Gal(K̄/K) the natural action of σ on the roots of C(f) is the same
as the following action on the roots of C(f̄)

β 7→ ξσ σ(β).

Proof. As C(f̄) has roots β1, . . . βm; C(f) has roots g(β1), . . . g(βm). Fur-
thermore, the following diagram commutes.

z
g−−−−→ g(z)y σ

y
g−1σ(g)(σ(z))

g−−−−→ σ(g)(σ(z)) .
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This shows that the permutation on the roots agrees when we choose the
cocycle to be

ξσ := g−1σ(g).

We are left to show that the permutation is independent of the repre-
sentative cocycle. If we adjust ξ by a coboundary from Γ1, we replace ξ
by

ξ′σ := (gh)−1σ(gh), for some h ∈ Γ1(f̄).

However, f = λg · f̄ = λ(gh) · f̄ . As C is a covariant, hβ1, . . . , hβm is another
enumeration of the roots of C(f̄). The result follows as before.

7.5 Special Consideration for Finite Fields

In this section we assume that K = Fq is a finite field with q elements and F
is a Frobenius element of Gal(K̄/K). We give an alternative description of
the 1st Cohomology Set. This alternate description is considerably simpler
to apply in both theoretical and practical situations.

Definition 7.5.1. Let K = Fq be a finite field and F a Frobenius element
of Gal(K̄/K). Assume that Γ1 ≤ Γ are subgroups of SL2(K) that are closed
under the action of F . We define (F,Γ1)-conjugacy as the equivalence rela-
tion on Γ given by

γ ∼ γ′ ⇔ there exists δ ∈ Γ1 with γ′ = δ−1γ(F (δ)).

Theorem 7.5.2 (Lang’s Theorem ). Let K = Fq be a finite field and F
the Frobenius. Then the map SL2(K̄) → SL2(K̄):

g 7→ g−1F (g)

is surjective.

Proof. See [15].

We also need the following lemma, which makes use of the fact that F
generates Gal(K̄/K) topologically.

Lemma 7.5.3. Suppose ξ′, ξ ∈ Z1(K,GL2(K̄)) are 1-cocycles. Then

ξF = ξ′F ⇒ ξ = ξ′.
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Proof. Suppose that ξF = ξ′F . Let G := Gal(K̄/K) and define

Θ := {σ ∈ G | ξσ = ξ′σ}.

It is an easy exercise to show that Θ is a group. As 1-cocycles are continuous,
the group is closed in the pro-finite topology of G. As Θ contains the
Frobenius F and the cyclic group generated by F is dense in G, the group
Θ is dense in G. Since Θ is closed and dense in G, it equals G.

Proposition 7.5.4. Let K = Fq be a finite field and F a Frobenius element
of Gal(K̄/K). Assume that Γ1 ≤ Γ are subgroups of SL2(K) that are closed
under the action of Gal(K̄/K). Then the map

H1(K,Γ : Γ1) →
Γ

(F,Γ1)− conjugacy
,

ξ 7→ ξF

is well defined and bijective.

Proof. (Step I - The map is well defined).
Suppose that ξ, ξ′ ∈ Z1(K,Γ) are equivalent via a coboundary from Γ1.

This means that there is an h ∈ Γ1 such that

ξ′σ = h−1ξσσ(h) for all σ ∈ GK̄/K .

In particular ξ′F = h−1ξFF (h), so that ξF and ξ′F are (F,Γ1)-conjugate.
This shows that the map is well-defined.

(Step II - It is injective).
Conversely, if ξF and ξ′F are (F,Γ1)-conjugate then there is an h ∈ Γ1 so

that

ξ′F = h−1ξFF (h).

By Lemma 7.5.3, the cocycles ξ′σ and h−1ξσσ(h) agree everywhere. Hence
ξ, ξ′ are then equivalent via the coboundary h ∈ Γ1. This means that the
map is injective.

(Step III - It is surjective).
Finally if δ ∈ Γ, we can apply Lang’s Theorem and find a g ∈ SL2(K)

so that δ = g−1F (g). We define

ξσ := g−1σ(g).

This is a cocycle. Since ξF ∈ Γ, we have that ξσ ∈ Γ for all σ in the
cyclic group generated by F . As cocycles are continuous (by definition), Γ
is closed, and F generates Gal(K̄/K) topologically, we have that ξσ ∈ Γ for
all σ ∈ Gal(K̄/K).

Hence we have an ξ ∈ Z1(K,Γ) that maps to δ. Hence the map is
surjective.
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Theorem 7.5.5. Let K = Fq be a finite field and F the Frobenius. Let
f̄ ∈ C(r, d0) be the Klein form chosen in section 7.2 and Γ := Γ(f̄). Any
f ∈ C(r, d)(K̄) can be written f = λg · f̄ with g ∈ SL2(K̄). The map

C(r, d)(K)
SL2(K)-equivalence

↪→
Γλ/F (λ)

(F,Γ1)-conjugacy
,

λg · f̄ 7→ g−1F (g)

is well-defined and bijective.

Proof. The map is a combination of the maps given in Theorem 7.2.1 and
Proposition 7.5.4. It follows that the map is well-defined and injective.

To show that the map is surjective, pick any element of Γλ/F (λ). By
Lang’s Theorem (Theorem 7.5.2) this can be written g−1F (g) for some g ∈
SL2(K̄). Since

F (λg.f̄) = λg · f̄ ⇔ g−1F (g) ∈ Γλ/F (λ),

we have that f ′ := λg.f̄ ∈ C(r, d)(K). The binary form f ′ maps to g−1F (g),
so the map is surjective.



Chapter 8

Parameterizations in Finite
Fields

In this chapter we examine parameterizations of D(r, d)(Fq), where Fq is a
finite field with q elements and N, d ∈ F∗q . By Theorem 5.3.5, we can assume
that parameterizations are of the form χ(f) with f ∈ C(r, d)(Fq). Further-
more, giving a set of parameterizations specializing to all of D(r, d)(Fq) is
equivalent to giving a representative f from every SL2(Fq)-orbit of C(r, d)(Fq).

In sections 8.1–8.3 we state and prove formulae for the number of SL2(Fq)-
orbits of C(r, d)(Fq), along with the values of various attributes that can be
assigned to these orbits.

In sections 8.4–8.5 we analyze these results in terms of the automorphism
that the Frobenius F induces on the group Γ1(f̄), where f̄ is a chosen element
of C(r, d)(Fq). The Frobenius F determines an element in the group

Automorphisms of Γ1

Inner Automorphisms
.

We show that the number of SL2(Fq)-orbits of C(r, d)(Fq) depends only on
the value of F in this group.

In the last section we show how the number of SL2(Fq)-orbits can be
deduced from the action that F induces on the projective groups — i.e. the
automorphism induced on the Platonic Solid. This method is less compu-
tational than the method presented in section 8.3.

8.1 Results

We will prove the following theorems in this chapter.

Theorem 8.1.1 (Weak Version). Suppose Fq is a finite field with q ele-
ments and N, d ∈ F∗q. Then the number of SL2(Fq)-orbits of C(r, d)(Fq) is
given in the following table.

53
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r Condition # Orbits
3 q ≡ 1(3), d ∈ F∗3q 5

q ≡ 1(3), d 6∈ F∗3q 2
q ≡ 2(3) 3

4 −3d ∈ F∗2q 7
−3d 6∈ F∗2q 3

5 q ≡ ±1(5) 9
q ≡ ±2(5) 5

Definition 8.1.2. For a given f ∈ C(r, d)(Fq) we call the number #Γ1(f)(Fq)
the Fq-multiplicity of f , or just the multiplicity if this is clear from the con-
text.

The choice of name can be explained by the following proposition.

Proposition 8.1.3. Suppose K is a field and N, d ∈ K∗. Suppose that f ∈
C(r, d)(K), s ∈ F2

q−(0, 0) and that χ(f)(s) = (X,Y, Z). Then χ(f)−1(X,Y, Z)
is the Γ1(f)(K)-orbit of s.

Proof. This follows from Lemma 5.3.3 and Proposition 5.3.4.

Corollary 8.1.4. Suppose f ∈ C(r, d)(Fq) and N, d ∈ F∗q. Then χ(f) has

exactly q2−1
#Γ1(f)(Fq) non-zero Fq-specializations.

The multiplicity of f and how f splits in Fq[x, y] is the same for all forms
in an SL2(Fq)-orbit of C(r, d)(Fq).
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Theorem 8.1.5 (Strong Version ). The f ∈ C(r, d)(Fq) have multiplici-
ties and split into irreducible factors as given in tables 8.1, 8.2 and 8.3.

In the tables (e.g.) Splitting= f4
1 f2 + 4f6 + 2f3

2 means that Klein forms
in the 1st SL2(Fq)-orbit split into 4 linear factors and a quadratic factor,
the forms in the next 4 orbits are irreducible, and the last 2 orbits contain
Klein forms that are the product of 3 irreducible quadratic factors.

d ∈ F∗3q d 6∈ F∗3q
q ≡ 1(3) 5 Orbits 2 Orbits

Multiplicities=[4, 4, 4, 8, 8] Multiplicities=[2, 2]
q ≡ 2(3) 3 Orbits

Multiplicities=[2, 4, 4]
q ≡ 1(3) Splitting= 3f2

2 + 2f4
1 Splitting=2f1f3

q ≡ 2(3) Splitting= f2
1 f2 + 2f4

Table 8.1: The Tetrahedron

−3d ∈ F∗2q −3d 6∈ F∗2q
7 Orbits 3 Orbits
Multiplicities=[4, 6, 6, 6, 6, 24, 24] Multiplicities=[2, 4, 4]

q ≡ 1(4) Splitting=f2
1 f

2
2 + 4f2

3 + 2f6
1 Splitting= f3

2 + 2f2
1 f4

q ≡ 3(4) Splitting=f4
1 f2 + 4f6 + 2f3

2 Splitting= f2
1 f

2
2 + 2f2f4

Table 8.2: The Octahedron

q ≡ ±1(5) q ≡ ±2(5)
9 Orbits 5 Orbits
Multiplicities=[4, 6, 6, Multiplicities=[4, 4, 6, 6, 6]

10, 10, 10, 10, 120, 120]
Splitting=

q ≡ 1(5) f6
2 + 2f4

3 + 4f2
1 f

2
5 + 2f12

1

q ≡ ±2(5) 2f2
1 f2f

2
4 + f3

4 + 2f12

q ≡ 4(5) f4
1 f

4
2 + 2f2

6 + 4f2f10 + 2f6
2

Table 8.3: The Icosahedron
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8.2 Checking Particular Cases

It is possible to calculate the number of SL2(Fq)-orbits of C(r, d)(Fq), along
with the multiplicities and splitting behavior of the forms they contain, for
particular values of (r, q, d).

ALGORITHM( Gathering Information on C(r, d)(Fq) )
INPUT (r,q,d)
SET bag= All triples (X,Y, Z) ∈ F3

q − (0, 0, 0)
WHILE bag not empty DO

Get next triple (X,Y, Z)
IF X2 + Y 3 6= dZr THEN

Throw way triple
ELSE

Lift to an f ∈ C(r, d)(Fq) with π(f) = (X,Y, Z)
REMARK We have found a new specialization.
OUTPUT Its multiplicity := q2−1

#specializations

OUTPUT Its splitting := the splitting of f
Throw all specializations of χ(f) out of the bag

END-IF
END-WHILE
STOP

Proposition 8.2.1. The algorithm above identifies exactly one f in every
SL2(K)-orbit of C(r, d)(Fq). For each f the algorithm outputs the multiplic-
ity of f and splitting behavior of f .

Proof. The proposition is proven by the following 3 observations:

1. The program stops. Indeed, the bag is filled with a finite set of triples.
In each loop at least one triple is removed and the program stops when
the bag is empty.

2. Given any f ∈ SL2(Fq), an f ′ will be output whose χ(f ′) specializes
to χ(f)(1, 0). By Theorem 5.3.5, f ′ will be SL2(Fq)-equivalent to f .
Therefore at least one f in each SL2(Fq)-orbit gets output.

3. The algorithm prevents f, f ′ with a common non-zero specialization
being output. Therefore, by Theorem 5.3.5, at most one f from any
SL2(Fq)-orbit is output.

8.3 The Finiteness Argument

In this section we prove Theorem 8.1.5.
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Proposition 8.3.1 (Tetrahedron). Suppose N, d ∈ F∗q. The splitting of
C(3, d)(Fq) into SL2(Fq)-orbits and the multiplicities and the splitting behav-
ior of the f in these orbits depends only on:

1. Whether ω ∈ Fq,

2. Whether 3
√
d ∈ Fq,

where ω is a primitive 3rd root of unity. In particular the truth of Theo-
rem 8.1.5 for tetrahedral equations can be verified by checking it for some
C(3, d)(Fq) satisfying each possible combination of conditions.

Proof. By Theorem 7.5.5, the SL2(Fq)-orbits of C(3, d)(Fq) correspond to
the (F,Γ1)-conjugacy classes of Γα, where

• F is a Frobenius element generating Gal(F̄q/Fq),

• Γ = Γ(f̄), for f̄ = 4x(y3 − x3) ∈ C(3, 1)(Fq),

• α = λ/F (λ) for some λ satisfying λ3 = d.

In particular, choosing λ to be rational if possible, the coset Γα depends
only on whether or not 3

√
d ∈ Fq (up to an isomorphism of Gal(F̄q/Fq)).

Deciding whether 2 elements g1, g1 ∈ Γ are (F,Γ1)-conjugate involves taking
every h ∈ Γ1 and checking whether

g1 = h−1g2F (h)?

The elements of Γ are given in subsection 4.3.2. Since all the entries of
elements of Γ lie in the field Fq(ω), we have that the automorphism of
Γ induced by F depends only on whether ω ∈ Fq. This means that the
number and multiplicity of the SL2(Fq)-orbits of C(3, d)(Fq) depend only on
the variables in the statement of the proposition.

To deduce how the f ∈ C(3, d)(Fq) split, we apply Proposition 7.4.1 to
see what permutation the Frobenius induces on the roots of f . Since the
roots of f̄ also lie in Fq(ω) the splitting behavior also depends only on the
variables in the statement of the proposition.

Proposition 8.3.2 (Octahedron). Suppose N, d ∈ F∗q. The splitting of
C(4, d)(Fq) into SL2(Fq)-orbits and the multiplicities and the splitting be-
havior of the f in these orbits depends only on:

1. Whether i ∈ Fq,

2. Whether
√

2 ∈ Fq,

3. Whether
√
−3d ∈ Fq,
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where i is a primitive 4th root of unity. In particular the truth of Theo-
rem 8.1.5 for octahedral equations can be verified by checking it for some
C(4, d)(Fq) satisfying each possible combination of conditions.

Proof. By Theorem 7.5.5, the SL2(Fq)-orbits of C(4, d)(Fq) correspond to
the (F,Γ1)-conjugacy classes of Γα, where

• F is a Frobenius element generating Gal(F̄q/Fq),

• Γ = Γ(f̄), for f̄ = 36xy(x4 − y4) ∈ C(4,−3)(Fq),

• α = λ/F (λ) for some λ satisfying −3λ2 = d.

In particular, the coset Γα depends only whether or not
√
−3d ∈ Fq. De-

ciding whether 2 elements g1, g1 ∈ Γ are (F,Γ1)-conjugate involves taking
every h ∈ Γ1 and checking whether

g1 = h−1g2F (h)?

The elements of Γ were calculated in subsection 4.3.3. Since all the entries
of elements of Γ lie in the field Fq(i,

√
2), we have that the automorphism of

Γ induced by F only depends on which of i and
√

2 are contained in Fq. This
means that the number and multiplicity of the SL2(Fq)-orbits of C(4, d)(Fq)
depends only on the variables in the statement of the proposition.

To deduce how the f ∈ C(4, d)(Fq) split, we apply Proposition 7.4.1
to see what permutation the Frobenius induces on the roots of f . Since
the roots of f̄ lie in Fq(i) the splitting behavior also depends only on the
variables in the statement of the proposition.

Proposition 8.3.3 (Icosahedron). Suppose N, d ∈ F∗q. The splitting of
C(5, d)(Fq) into SL2(Fq)-orbits and the multiplicities and the splitting behav-
ior of the f in these orbits depends only on:

1. The degree of the field extension Fq(ζ5) : Fq.

In particular the truth of the Theorem 8.1.5 for icosahedral equations can
be verified by checking it for C(5, 1)(Fq) for an Fq with an extension of each
possible degree.

Proof. By Theorem 7.5.5, the SL2(Fq)-orbits of C(5, d)(Fq) correspond to
the (F,Γ1)-conjugacy classes of Γ1 where

• F is a Frobenius element generating Gal(F̄q/Fq)

• Γ = Γ(f̄), for f̄ = 1728 xy(x10 + 11x5y5 − y10) ∈ C(5, 1)(Fq).
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Deciding whether 2 elements g1, g1 ∈ Γ are (F,Γ1)-conjugate involves taking
every h ∈ Γ1 and checking whether

g1 = h−1g2F (h)?

The elements of Γ were calculated in subsection 4.3.4. Since all the entries of
elements of Γ lie in the field extension Fq(ζ5), we have that the permutation
of Γ induced by F only depends how F acts on ζ5 — i.e. on the degree of
the extension Fq(ζ5) : Fq.

Since the roots of f̄ also lie in Fq(ζ5), Proposition 7.4.1 shows that the
permutation the Frobenius induces on the roots of f is also determined by
the degree of this field extension.

Proof of Theorem 8.1.5. Using the computer program listed in § 8.2, we
verify that the claims of Theorem 8.1.5 are true in the examples listed in
Table 8.4.

r Condition Action of Frobenius Example
on certain elements of F̄q

3 q ≡ 1(3), d ∈ F3
q (ω, 3

√
d) 7→ (ω, 3

√
d) C(3, 1)(F13)

q ≡ 1(3), d 6∈ F3
q (ω, 3

√
d) 7→ (ω, ω 3

√
d) C(3, 2)(F13)

q ≡ 2(3) (ω, 3
√
d) 7→ (ω2, 3

√
d) C(3, 1)(F17)

4 (
√
−3d,

√
2, i) 7→

q ≡ 1(8), −3d ∈ F2
q (

√
−3d,

√
2, i) C(4, 1)(F17)

q ≡ 3(8), −3d ∈ F2
q (

√
−3d,−

√
2,−i) C(4, 1)(F19)

q ≡ 5(8), −3d ∈ F2
q (

√
−3d,−

√
2, i) C(4, 1)(F13)

q ≡ 7(8), −3d ∈ F2
q (

√
−3d,

√
2,−i) C(4, 1)(F23)

q ≡ 1(8), −3d 6∈ F2
q (−

√
−3d,

√
2, i) C(4, 3)(F17)

q ≡ 3(8), −3d 6∈ F2
q (−

√
−3d,−

√
2,−i) C(4, 2)(F19)

q ≡ 5(8), −3d 6∈ F2
q (−

√
−3d,−

√
2, i) C(4, 11)(F13)

q ≡ 7(8), −3d 6∈ F2
q (−

√
−3d,

√
2,−i) C(4, 5)(F23)

5 q ≡ 1(5) ζ5 7→ ζ5 C(5, 1)(F31)
q ≡ 4(5) ζ5 7→ ζ−1

5 C(5, 1)(F19)
q ≡ ±2(5) ζ5 7→ ζ±2

5 C(5, 1)(F17)

Table 8.4: Table of Examples

In the table, ω, ζ5 are primitive 3rd and 5th roots of unity. These ex-
amples allow us to imply Theorem 8.1.5 from Propositions 8.3.1, 8.3.2 and
8.3.3.
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8.4 Twisted Conjugacy Classes

In this section we develop the theory of twisted conjugacy classes. The
(F,Γ1)-conjugacy classes are examples of twisted conjugacy classes. Many
of the proofs are routine, but not very instructive. These have been placed
in Appendix C.

In this section we assume that H ≤ G are arbitrary finite groups. We
assume that ψ is an automorphism of G that induces an automorphism of
H.

Definition 8.4.1. (ψ,H)-conjugacy is the equivalence relation on G given
by

g ∼ g′ ⇔ there exists h ∈ H with g′ = h−1gψ(h).

If ψ is the identity we simply refer to H-conjugacy. If ψ is the identity and
G = H we simply refer to conjugacy.

Definition 8.4.2. For any g ∈ G we define the following objects:

[g](ψ,H) := {g′ ∈ G | g′ is (ψ,H)-conjugate to g},
C(ψ,H)(g) := {h ∈ H | g = h−1gψ(h)}.

If ψ is the identity we will also refer to these objects as [g]H and CH .

Lemma 8.4.3. Take any g ∈ G. Then C(ψ,H)(g) is a subgroup of H. We
have

#[g](ψ,H) #C(ψ,H)(g) = #H.

Proof. See Lemma C.0.1.

Proposition 8.4.4. Suppose that [G : H] = 2 and ψ is given by conjugation
by an element s ∈ G−H. Then there is a 1− 1 correspondence between H
and G−H that takes (ψ,H)-conjugacy classes of H to G-conjugacy classes
of G−H. Furthermore, if γ 7→ γ′, then

#C(ψ,H)(γ) =
1
2

#CG(γ′).

Proof. See Proposition C.0.2.

If H,G are subgroups of SL2(K) we further assume that −I ∈ H and
that ψ(−I) = −I. This means that ψ commutes with negation and so acts
as an automorphism of the projective versions of these groups. We denote
the projective versions of all objects with tildes. We have a quotient map

G/ conjugation → G̃/ conjugation , [γ](ψ,H) 7→ [γ]
(ψ,H̃)

.
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Lemma 8.4.5. Suppose that H is a subgroup of SL2(K) and ψ ∈ Aut(H).
Suppose that −I ∈ H and ψ(−I) = −I. Suppose that H̃ has no subgroup of
index 2.

Then ψ is an inner automorphism of H if and only if its image ψ̃ in
Aut(H̃) is an inner automorphism.

Proof. This follows from Proposition C.0.3.

Lemma 8.4.6. Suppose H ≤ G are subgroups of SL2(K). Assume that
−I ∈ H and that ψ(−I) = −I. Then

• C(ψ,H)(1) = {h ∈ H | h = ψ(h)},

• If H has a unique H-conjugacy class of trace zero, then there is an
h ∈ H with [h](ψ,H) = [−h](ψ,H) .

If g ∈ G then the following hold.

• #C(ψ,H)(g) is even,

• If [g](ψ,H) = [−g](ψ,H) then #C(ψ,H)(g) = #C
(ψ,H̃)

(g),

• If [g](ψ,H) 6= [−g](ψ,H) then #C(ψ,H)(g) = 2#C
(ψ,H̃)

(g).

Proof. See Lemma C.0.4.

Proposition 8.4.7. Suppose H is a group and ψi ∈ Aut(H) for i = 1, 2.
Suppose there is an s ∈ H so that ψ1 = s−1ψ2s. Then

H → H, g 7→ gs−1

is a bijection that maps (ψ1,H)-conjugacy classes to (ψ2,H)-conjugacy classes.

Proof. See Proposition C.0.6.

8.5 Geometric Approach

In this section we will use the machinery of twisted conjugacy classes to
interpret the results on the SL2(Fq)-orbits of C(r, d)(Fq) in a more geometric
fashion.

By Theorem 7.5.5, the SL2(Fq)-orbits of C(r, d)(Fq) correspond to (F,Γ1)-
conjugacy classes of Γ1. We show first that the multiplicities of the orbits
correspond to the orders of the groups C(Γ1,F )(g).

Proposition 8.5.1. Suppose f̄ ∈ C(r, d0)(Fq). Write f ∈ C(r, d)(Fq) as in
Theorem 7.5.5 as f = λg · f̄ . Let H := Γ1(f̄) and δ := g−1F (g). Then

Γ1(f)(Fq) = gC(H,F )(δ)g
−1.
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Proof.

Γ1(f)(Fq) = {m ∈ Γ1(f) | F (m) = m}
= {ghg−1 | h ∈ Γ1(f̄), F (ghg−1) = ghg−1}
= {ghg−1 | h ∈ Γ1(f̄), h−1δF (h) = δ}

Corollary 8.5.2. Suppose N, d ∈ F∗q, then #D(r, d)(Fq) = q2.

Proof. This follows from Proposition 8.5.1 and Corollary 8.1.4.

Theorem 8.5.3. Suppose N, d ∈ F∗q. Choose f ∈ C(r, d)(Fq) and set Γ1 :=
Γ1(f).

Then the number of SL2(Fq)-orbits of C(r, d)(Fq) as well as the multi-
plicity of the forms in these orbits depends only on the Frobenius F as an
element in the group

Automorphisms of Γ1

Inner Automorphisms
.

Proof. By Theorem 7.5.5, the SL2(Fq)-orbits of C(r, d)(Fq) correspond to
(F,Γ1)-conjugacy classes of Γ1. By Proposition 8.4.7, the conjugacy classes
have the same size if the automorphisms that F induce differ only by an
inner automorphism.

8.6 Automorphisms of the Platonic Solids

In chapter 4.3 we indicated how the projective groups Γ̃, Γ̃1 are related to
the rotational symmetries of the platonic solids. Each group is isomorphic
with the induced permutations on a certain orbit space. To wit:

r Solid Orbit
Space Σ Γ̃1 Γ̃

3 Tetrahedron The 4 V4 Even
Vertices Permutations

4 Octahedron 4 Pairs of Even All
Opposite Faces Permutations Permutations

5 Icosahedron 5 Embedded Even Even
Octahedra Permutations Permutations

The Frobenius F acts on the binary groups Γ and Γ1. Since F commutes
with±I, it also acts on the projective groups and hence on these orbit spaces.
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If we number the elements of the orbit space x, . . . , xn; where n = |Σ|,
then F permutes the xi. Therefore F can be seen as an element s ∈ Sn:
xi 7→ xs(i). Similarly we can define g(i) for g ∈ Γ̃1 by g : xi 7→ xg(i). Then

F (g) · xs(i) = F (g · xi) = F (xg(i)) = xsg(i),

so that F (g) = sgs−1. This means that when we identify Γ̃1 with a subgroup
of Sn, the action of F on Γ̃1 corresponds to conjugation using the element
s.

The permutation that F induces on the orbit space Σ can be calculated
for a particular f ∈ C(r, d)(Fq). This allows us to calculate the (F, Γ̃1)-
conjugacy classes of Γ̃1(f). These can then be lifted to (F,Γ1)-conjugacy
classes of Γ1(f). This gives an alternative (computer free) proof of some of
the results proven in section 8.3 using a finiteness argument.

8.6.1 Icosahedron

Let f = 1728d xy(x10 + 11x5y5 − y10) ∈ C(5, d)(Fq). This is the Klein form
that was analyzed in subsection 4.3.4 of this thesis. The group Γ1(f) is the
Binary Icosahedral Group. If we divide out by ±I we get the Icosahedral
Rotation Group of order 60. The embedded octahedra are given by tν and
the Frobenius F permutes the tν via

Permutation s =


s1 := (1), if ξ ∈ Fq;
s2 := (14)(23), if [Fq(ξ) : Fq] = 2;
s4 := (1243), if [Fq(ξ) : Fq] = 4.

Case I - p ≡ ±1(5)

We have that [Fq(ξ) : Fq] = 1 or 2, and F induces an inner automorphism of
Γ̃1. The group Γ̃1 = A5 has no subgroups of index 2, so by Lemma 8.4.5, F
induces an inner automorphism of Γ1. By Proposition 8.4.7, the number and
multiplicities of the parameterizations is the same as in the ξ ∈ Fq case when
everything is rational. We ‘only’ have to count the usual conjugacy classes
in the Binary Icosahedral Group. This can be read from the character table
of Γ1.

Case II - p ≡ ±2(5)

The Frobenius F induces an automorphism of Γ̃1 that corresponds to con-
jugation by the odd permutation s4 ∈ S5. I.e. F induces an outer auto-
morphism of Γ̃1. As Γ̃1

∼= A5, the (F, Γ̃1)-conjugacy classes of Γ̃1 can be
deduced from the S5-conjugacy classes of S5 using Proposition 8.4.4. The
conjugacy classes of S5 are well-known in terms of cycle shapes. We get
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(F, Γ̃1)-conjugacy class #C
(F,Γ̃1)

A 6
B 2
C 3

Each (F, Γ̃1)-conjugacy class of Γ̃1 lifts to either 1 or 2 (F,Γ1) conjugacy
classes of Γ1. We say that the class is inert, respectively splits.

Using Lemma 8.4.6, we deduce the following

• C splits into 2 classes of multiplicity 6. (Multiplicities are always
even).

• B splits into 2 classes of multiplicity 4. (#Γ1(Fq) = 4, so some multi-
plicity is 4).

• A remains 1 class with multiplicity 6. (Γ1 has a unique Γ1-conjugacy
class of trace zero. Therefore at least one class is inert).

Therefore the following table is an enumeration of the (F,Γ1)-conjugacy
classes of Γ1 along with the sizes of the groups C(F,Γ1).

(F,Γ1)-conjugacy class #C(F,Γ1)

A 6
B,−B 4, 4
C,−C 6, 6

Conclusion

By Theorem 7.5.5, the (F,Γ1)-conjugacy classes of Γ1 can be identified with
SL2(Fq)-orbits of C(5, d)(Fq).

We have, therefore, given an alternative proof of the number and multi-
plicities of the SL2(Fq)-orbits of C(5, d)(Fq), proven by a finiteness argument
in section 8.3.

8.6.2 Octahedron

Let f = 36xy(x4− dy4) ∈ C(4,−3d). This is the octahedral Klein form that
was analyzed in subsection 4.3.3. It has roots 0,∞, βi where i = 0, . . . , 3
and the βi are the 4 solutions of β4 = d.

The group Γ(f) is the Binary Octahedral Group. If we divide out by ±I
we get the Octahedral Rotation Group Γ̃ of order 24. This is isomorphic to
S4 by the permutations it induces on pairs of opposite faces. Γ̃1 is isomorphic
to A4 and corresponds to even permutations. The faces are given by

hν(f) = x2 + iν(1 + i)βxy − (−1)νiβ2y2,

where i is a primitive 4-th root of unity, β is a fixed solution to β4 = d and
ν = 0, 1, 2, 3.
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The Frobenius acts on i, β by

F : i 7→ ±i, β 7→

{
±β if d ∈ F∗2q ,
±iβ otherwise.

From this we deduce that F corresponds to an even permutation of the faces
if d ∈ F∗2q and an odd permutation otherwise.

Case I - d ∈ F∗2q

We see that when d ∈ F∗2q , the Frobenius F induces an inner automorphism
of Γ̃1. The group Γ̃1 = A4 has no subgroups of index 2, so by Lemma 8.4.5,
F induces an inner automorphism of Γ1. Hence, by Proposition 8.4.7, the
number and multiplicity of the parameterizations is the same as the number
and multiplicity of the ‘usual’ conjugacy classes of Γ1. We ‘only’ have to
count the usual conjugacy classes in the Binary Octahedral Group. This
can be read from the character table of Γ1.

Case II - d 6∈ F∗2q

We see that when d 6∈ F∗2q , the Frobenius F induces an outer automorphism
of Γ̃1. As Γ̃1

∼= A4, the (F, Γ̃1)-conjugacy classes of Γ̃1 can be deduced
from the S4-conjugacy classes of S5 using Proposition 8.4.4. The conjugacy
classes of S4 are well-known in terms of cycle shapes. We get

(F, Γ̃1)-conjugacy class #C
(F,Γ̃1)

A 2
B 2

Each (F, Γ̃1)-conjugacy class of Γ̃1 lifts to either 1 or 2 (F,Γ1)-conjugacy
classes of Γ1. We say that the class is inert, respectively splits.

Using Lemma 8.4.6, we deduce the following

• One of the classesA (say) splits into 2 classes of multiplicity 4. (#Γ1(Fq) ≥
4, so some multiplicity is at least 4).

• B remains 1 class with multiplicity 2. (Γ1 has a unique Γ1-conjugacy
class of trace zero. Therefore at least one class is inert).

Therefore the following table is an enumeration of the (F,Γ1)-conjugacy
classes of Γ1 along with the sizes of the groups C(F,Γ1).

(F,Γ1)-conjugacy class #C(F,Γ1)

A,−A 4, 4
B 2
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Conclusion

By Theorem 7.5.5, the (F,Γ1)-conjugacy classes of Γ1 can be identified with
SL2(Fq)-orbits of C(4,−3d)(Fq).

We have, therefore, given an alternative proof of the number and multi-
plicities of the SL2(Fq)-orbits of C(4,−3d)(Fq), proven by a finiteness argu-
ment in section 8.3.

8.6.3 Tetrahedron

Let f = −4y(x3−dy3) ∈ C(3, d). This is the tetrahedral Klein form analyzed
in subsection 4.3.2. The group Γ̃(f) is isomorphic to A4 via the set of even
permutations of the roots of f . The roots of f are ∞, γ1, γ2, γ3 with γi the
roots of γ3 = d. This means that the Frobenius F permutes the roots via

Permutation s =


s3 := (∞)(γ1, γ2, γ3), if [Fq(ω, 3

√
d) : Fq] = 3;

s2 := (∞)(γ1)(γ2, γ3), if [Fq(ω, 3
√
d) : Fq] = 2;

s1 := identity , if [Fq(ω, 3
√
d) : Fq] = 1;

where ω is a primitive cube root of unity. We further identified Γ̃1 as the
subgroup V4 of S4. We have V4 ⊂ A4 ⊂ S4. We see that the number of
SL2(Fq)-orbits of C(3, d)(Fq) corresponds to whether F induces an automor-
phism of V4 that is conjugation by an element of V4, A4 or S4.

Conclusion

We have shown how the different sizes of the SL2(Fq)-orbit spaces of C(3, d)(Fq)
correspond to different values that F takes in the Outer Automorphism
Group of Γ̃1.



Chapter 9

Parameterizations in Zp

This chapter describes the parameterizations of D(r, d)(Zp). The most sim-
ple case is when parameterizations can be lifted from parameterizations of
D(r, d)(Fp) using Hensel’s Lemma. This is described in sections 9.1 and 9.3.

In particular if N, d ∈ Z∗p, then parameterizations can be assumed to be
of the form χ(f) with f ∈ C(r, d)(Zp). Reduction modulo p then gives a
bijection between the SL2(Zp)-orbits of C(r, d)(Zp) and the SL2(Fp)-orbits
of C(r, d)(Fp).

The last section (§ 9.4) describes what can be said about parameteriza-
tions if a direct lift of a parameterization of D(r, d)(Fp) is not possible.

9.1 Hensel’s Lemma

This section contains a many dimensional version of Hensel’s Lemma. This
can be used to deduce the existence of actual solutions to a system of equa-
tions in a complete local ring from the existence of an approximate solution.

Lemma 9.1.1 (Hensel’s Lemma). Suppose R is a ring, complete relative
to an ideal m . Fix f1, . . . , fn ∈ R[[x, . . . , xn]]. Define the jacobian matrix
by

J(x̄) := (∂fi/∂xj) .

Let ∆ := det(J(ā)) ∈ R . Suppose that (a1, . . . , an) ∈ Rn, that l is a positive
integer and that

fi(ā) ∈ ml∆2 for each i.

Then there is a (b1, . . . , bn) ∈ Rn such that

fi(b̄) = 0, ai − bi ∈ ml∆

for all i. The solution is unique if ∆ is not a zero divisor in the ring R.

Proof. See [6], Exercise 7.26, or [19], page 177. Or for a full proof [3],
section 4.6, Theorem 2.
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9.2 Some Jacobians

We want to lift the results proven about finite fields to Zp. This is done using
the many dimensional form of Hensel’s Lemma given in the last section. To
apply this lemma we need to calculate the jacobians of systems of equations.

Let f be a form of order k written generically as

f =
k∑
i=0

(
k
i

)
ai x

k−iyi.

Let g =
(
m1 m2

m3 m4

)
where, m1, . . . ,m4 are variables. Let f ′ = f ◦ g have

coefficients [a′0 . . . a
′
k].

Lemma 9.2.1. The first order changes in det(g) and the coefficients a′i at
the identity are summarized in the following (k + 2)× 4 matrix

M =



1 0 0 1
ka0 0 ka1 0

(k − 1)a1 a0 (k − 1)a2 a1

(k − 2)a2 2a1 (k − 2)a3 2a2
...

...
ak−1 (k − 1)ak−2 ak (k − 1)ak−1

0 kak−1 0 kak


,

where for 0 ≤ i ≤ k and 1 ≤ j ≤ 4 we have

M1,j =
∂

∂mj
det |g=I , M2+i,j =

∂

∂mj
a′i|g=I .

Proposition 9.2.2 (Covariant Minors). Specialize to k ∈ {4, 6, 12}. The
determinants of the 4× 4 minors of the above matrix are isobaric forms in
the ai. They are the leading terms of a covariant iff we choose either

• Rows 1 thru 4, or

• Rows 2 thru 5.

We call these determinants J1, J2 respectively.

Proof. By Theorem 3.2.2, such a C0 ∈ R[a0, . . . , ak] is the leading term of a
covariant if and only if it is isobaric in the ai and satisfies D(C0) = 0, where
D is the Cayley Aronhold Operator

D = a0
∂

∂a1
+ 2a1

∂

∂a2
+ · · ·+ kak−1

∂

∂ak
.

The proposition is therefore reduced to calculation for all 4 × 4 minors of
the matrix M .
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Proposition 9.2.3. Suppose f ∈ C(r, d)(Zp) and π(f) = (X,Y, Z). Then

J1 = −2k(k − 2)Y,

J2 = 12k(k − 2)dZr−2,

where Ji are the determinants referred to in Proposition 9.2.2.

Proof. We can calculate the covariants Ci whose leading term is Ji using
the algorithm of [12], page 64. This algorithm takes the leading term of a
covariant and outputs the covariant as a polynomial in the transvectants
f, τ 2, τ 3, . . . τ k divided by a power of f . This produces the following.

C1 = −k(k − 2)t(f),

C2 = 3k(k − 2)
t(f)2 + 4H(f)3

f2
− 2k(k − 3)H(f)τ 4(f).

As f ∈ C(r, d), we have τ4(f) = 0 and t(f)2 + 4H(f)3 = 4df r. Evaluating
these expressions at (1, 0) gives the result.

9.3 Lifting from Fp to Zp

Proposition 9.3.1. Suppose N, d ∈ Zp are non-zero and f1, f2 ∈ C(r, d)(Zp).
Suppose s ∈ Z2

p is co-prime. Let (X,Y, Z) := χ(f2)(s) and define ∆ :=
2k(k − 2)X. Then for any integer l > 0, if

Ωr(f1) ≡ Ωr(f2) mod pl∆2,

then there is a unique g ∈ SL2(Zp) with

f1 = g · f2, g ≡ I mod pl∆.

Proof. (Step I - Simplification).

As s is co-prime, there is a g ∈ SL2(Zp) with gs = (1, 0). Replacing f1

by g · f1 and f2 by g · f2 allows us to assume that s = (1, 0).

(Step II - Hensel’s Lemma).

Let f := f2 = [a0 . . . ak] and f ′ := f1 ◦ g = [a′0 . . . a
′
k]. We are looking for

a g which makes these 2 sequences of coefficients equal.
We use Hensel’s Lemma 9.1.1 to solve the following simultaneous system

of equations in the entries g:

a′0 = a0, a′1 = a1, a′2 = a2, det(g) = 1,

where a solution mod pl∆2 is given by g = I.
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By Proposition 9.2.3, the jacobian at the identity has determinant−2k(k−
2)X. Hensel’s Lemma implies a unique lift of the identity matrix to g ∈
SL2(Zp) such that

[a′0, a
′
1, a

′
2] = [a0, a1, a2], g ≡ I mod pl∆.

Let

(X,Y, Z) := π(f), and (X ′, Y ′, Z ′) := π(f ′).

By the definition of π and since (X,Y, Z) ∈ D(r, d) we have

Z = a0,

Y = a0a2 − a2
1,

2X = a2
0a3 − 3a0a1a2 + 2a2

1,

X2 = dZr − Y 3,

and a similar set of dashed equations. Therefore Z = Z ′, Y = Y ′, X = ±X ′.
If X = X ′ then [a0, a1, a2, a3, . . . ] equals [a′0, a

′
1, a

′
2, a

′
3, . . . ] and the defining

equations of C(r, d) show that f = f ′.
To finish we will assume that X ′ = −X 6= 0 and derive a contradiction.

Since Ωr(f1) ≡ Ωr(f2) and g ≡ I modulo pl∆ we have

t(f1 ◦ g) ≡ t(f2) mod pl∆,

so that after specialization at (1, 0)

4X ≡ 0 mod pl∆.

As 4X divides ∆ and l > 0, this implies that X = 0. Contradiction.

Proposition 9.3.2. Suppose N, d ∈ Zp are non-zero and f1, f2 ∈ C(r, d)(Zp).
Suppose s ∈ Z2

p is co-prime. Let (X,Y, Z) := χ(f2)(s) and define ∆ :=
12k(k − 2)Zr−2. Then for any integer l > 0, if

Ωr(f1) ≡ Ωr(f2) mod pl∆2,

then there is a unique g ∈ SL2(Zp) with

f1 ◦ g = f2, g ≡ I mod pl∆.

Proof. This is similar to the previous proposition, but we now use the
jacobian matrix from rows 2 through 5. Let f := f2 = [a0 . . . ak] and
f ′ := f1 ◦ g = [a′0 . . . a

′
k]. The identity matrix then lifts to a g ∈ GL2(Zp)

with

[a′0, a
′
1, a

′
2, a

′
3] = [a0, a1, a2, a3], g ≡ I mod pl∆
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By Proposition 5.2.5, this forces f1 ◦ g = f2. We only need to show that
det(g) = 1. Certainly det(g) ≡ 1 modulo pl∆, and the twist can only be in
C(r, d) again if det(g)6 = 1.

We find that det(g) ∈ Zp satisfies the following equations in the variable t

t6 = 1, t ≡ 1 mod 6pl.

A solution modulo 36pl is given by t = 1. Therefore, by the uniqueness
statement of Hensel’s Lemma we have det(g) = 1.

Theorem 9.3.3. Suppose N, d ∈ Zp are non-zero and d 6≡ 0 mod p2. Sup-
pose f1, f2 ∈ C(r, d)(Zp) and there is an s ∈ Z2

p so that χ(f1)(s) = (X,Y, Z)
is co-prime. Then for any integer l > 0, if

Ωr(f1) ≡ Ωr(f2) mod pl,

then there is a g ∈ SL2(Zp) with

f1 = g · f2, g ≡ I mod pl.

Proof. (X,Y, Z) being co-prime forces s to be co-prime. If νp(d) = 1, this
forces the relatively prime specialization (X,Y, Z) to have X ∈ Z∗p and the
result follows from Proposition 9.3.1. Otherwise d ∈ Z∗p so either X ∈ Z∗p
and we can apply Proposition 9.3.1, or Z ∈ Z∗p and we can apply Proposi-
tion 9.3.2.

Theorem 9.3.4. Suppose N ∈ Zp is non-zero and d ∈ Z∗p. Suppose that
f1, f2 ∈ C(r, d)(Zp) both have co-prime Zp-specializations.

Then f1, f2 are SL2(Zp)-equivalent iff their restrictions f ′1, f
′
2 to C(r, d)(Fp)

are SL2(Fp)-equivalent.

Proof. Clearly SL2(Zp)-equivalent implies SL2(Fp)-equivalent. We only have
to prove the converse. Assume g′.f ′1 = f ′2 for some g′ ∈ SL2(Fq). Using
Hensel’s Lemma we can lift g′ to some g ∈ SL2(Zp) so that g · f1 ≡ f2

modulo p. The result follows from Theorem 9.3.3.

Corollary 9.3.5. Suppose N, d ∈ Z∗p. Then the results of Theorem 8.1.1
hold with Fp replaced everywhere by Zp.

Proof. This follows by using Theorem 9.3.4 to lift the results about the finite
field Fp given in Theorem 8.1.1.
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9.4 Solutions in Zp - Part II

In this section we cover some cases that cannot be deduced by simply lifting
parameterizations over finite fields.

Proposition 9.4.1. [Allows d 6∈ Z∗p] Suppose N, d ∈ Zp are non-zero. Then
there is a finite number of f ∈ C(r, d)(Zp) such that the Zp specializations
of χ(f) include all co-prime (X,Y, Z) ∈ D(r, d)(Zp).

Proof. By Theorem 6.1.1 we can assume we are looking for parameteriza-
tions χ(f) derived from f ∈ C(r, d)(Zp). Take any such f and suppose
π(f) = (X,Y, Z). Let t := t(f). By the properties of resultants, there are
A,B ∈ Zp[x, y] so that

Af +Bt = Res(f, t)xn

for some n > 0. Specializing at (1, 0) gives

aZ + bX = 2Res(f, t), with a, b ∈ Zp.

However, since C(r, d)(Qp) is a homogeneous SL2(Qp)-space, Res(f, t) is in-
dependent of the f chosen. Therefore max(ν(X), ν(Z)) has an upper bound
that depends only on r and d. The result follows by applying Proposi-
tion 9.3.1 and Proposition 9.3.2.

Proposition 9.4.2. [Allows gcd(X,Y, Z) 6∈ Z∗p] Suppose N ∈ Z∗p. Fix non-
zero d ∈ Zp. There are a finite number of f ∈ C(r, d)(Qp) such that the Zp
specializations of χ(f) include all (X,Y, Z) ∈ D(r, d)(Zp) with gcd(X,Y, Z) =
1.

Proof. (Sketch) Using the techniques of section 11.7, we can reduce the
problem to a finite set of associated problems of the following type.

Problem 9.4.3. Fix a non-zero d′ ∈ Zp. Find a finite set of fα ∈ C(r, d′)(Qp)
so that their Zp-specializations include all co-prime (X,Y, Z) ∈ D(r, d′)(Zp)
as well as all (X,Y, Z) ∈ D(r, d′)(Zp) with νp(Z) = 1.

Finding a finite set of f that specialize to the co-prime (X,Y, Z) ∈
D(r, d′)(Zp) follows from Proposition 9.4.1. If νp(Z) = 1, consider the canon-
ical form f = [Z, 0,−Y

Z ,
2X
Z2 , . . . ]. Define f ′ := pkf ∈ C(r, d′pk(6−r))(Zp) and

(X ′, Y ′, Z ′) := π(f ′). By Proposition 9.3.2, there are only a finite number
of such f ′, modulo SL2(Fq)equivalence.



Chapter 10

Hermite Reduction Theory

Hermite reduction theory is a generalization of the reduction theory of pos-
itive definite real binary quadratic forms. In the latter theory, we say that
a form is reduced if the unique root z0 in H is in the usual fundamental
domain for SL2(Z) given by

D := {z = x+ iy | |z| ≥ 1, − 1
2
≤ x ≤ 1

2
}.

Every form is SL2(Z)-equivalent to some reduced form and there is a bound
on the coefficients of reduced forms in terms of the discriminant.

Hermite reduction theory applies to higher order forms. The Hermite
determinant takes the place of the discriminant. There is an associated
representative point z0 ∈ H — usually unique. A form is reduced if z0 in
H is in the usual fundamental domain for SL2(Z). Every form is SL2(Z)-
equivalent to some reduced form and there is a bound on the coefficients of
reduced forms in terms of the Hermite determinant.

10.1 Definition of the Hermite Determinant

Take a form f ∈ R[x1, x2] of order k with roots (µi : νi) ∈ P1(C). Then

f = A
∏
i

(νix1 − µix2)

for some A ∈ C∗. For ti ∈ R∗, define ϕ = ϕ(
−→
t ) by

ϕ =
k∑
i=1

t2i (νix1 − µix2)(ν̄ix1 − µ̄ix2).

This is a real quadratic form. Real values of x1, x2 with (x1, x2) 6= (0, 0) give
positive values of ϕ, so ϕ is a positive definite quadratic form for all ti. Let
δ be its determinant — i.e. if ϕ = Px2

1 − 2Qx1x2 +Rx2
2 then δ = PR−Q2.
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For a fixed set of representatives µi, νi for the roots of f define

Φ(
−→
t ) :=

|A|2δk/2

(
∏
ti)2

.

Definition 10.1.1 (Hermite covariant). For a form f ∈ R[x1, x2] and
z ∈ C define

Θ(f, z) :=

{
minΦ(

−→
t ) over all

−→
t such that ϕ(z, 1) = 0,

∞ if ϕ(z, 1) = 0 for all
−→
t .

The use of the minimum ensures that Θ(f, z) is independent of the rep-
resentatives for the roots and so is a well defined function of f and z. Since
the quadratic form ϕ is real and positive definite it is convenient to assume
z ∈ H.

Definition 10.1.2 (Hermite determinant). For any form f ∈ R[x1, x2]
define

Θ(f) := min
z∈H

Θ(f, z).

Definition 10.1.3 (Representative point). For any form f ∈ R[x1, x2],
a representative point is any z ∈ H such that Θ(f, z) = Θ(f).

Definition 10.1.4 (Hermite-reduced). A form f ∈ R[x1, x2] is called
Hermite-reduced if it has a representative point in the usual fundamental
domain for SL2(Z).

10.2 Basic Properties

Theorem 10.2.1 (Covariance). Let f ∈ R[x1, x2] be homogeneous of order
k. Let g ∈ GL2(R). Then

Θ(f ◦ g, z) = |det(g)|kΘ(f, gz).

In particular, Θ(f ◦ g) = |det(g)|kΘ(f).

For this chapter only, we attach another meaning to the letter r. Fol-
lowing tradition, we say that a real form f has signature (r, s) if it has r
real roots and s pairs of complex conjugates (counting multiplicities).

Proposition 10.2.2. Suppose f is a real form of order k and signature (r, s)
with distinct roots. If k > 2 or s > 0 then f has a unique representative
point in H.

Proof. By Theorem 10.2.1 we can assume the roots are finite. If the signa-
ture is (0, 1) we have a definite quadratic form and the representative point
is its root in H. Otherwise k > 2 and this is [24], Proposition 5.1.
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Proposition 10.2.3. Suppose f = A
∏
i(νix1 − µix2) is a real form of

order k ≥ 3 with k distinct roots. If Θ(f) is the Hermite Determinant and
z = x+ iy ∈ H is the representative point then

Θ(f) =
(
k

2y

)k
|A|2

k∏
j=1

(
|νjx− µjy|2 + |νjy|2

)
.

Proof. If the roots are all finite this is contained in [24], Proposition 5.1.
(Warning: the definition of the Hermite determinant in [24] differs from
our definition by a constant factor

(
2
k

)k ). When there is a root at ∞, use
Theorem 10.2.1 to move the zeroes away from infinity.

If the signature of a real form is (r, s) then it will have real roots α1, . . . αr
and pairs of complex conjugate roots β1, β̄1, . . . βs, β̄s. Using the AM/GM
inequality you can show that the weight factors (t2i ) at complex conjugate
roots causing the Hermite determinant to be attained can be assumed to be
equal. We therefore use the naming convention that the weights assigned
to the real roots are t21, . . . t

2
r , and those assigned to the complex roots are

u2
1, u

2
1, . . . u

2
s, u

2
s.

Proposition 10.2.4. Suppose f ∈ R[x1, x2]4, and that all its roots are
finite. Then weights which cause the Hermite determinant to be attained are
given by:

Signature Roots Weights
(4, 0) α1, . . . α4 t2i = 1

|f ′(αi,1)|
(2, 1) α1, α2 t21 = |β − β̄||α2 − β|2, t22 = |β − β̄||α1 − β|2

β, β̄ u2
1 = |α1 − α2||α1 − β||α2 − β|

(0, 2) β1, β̄1 u2
1 = |β2 − β̄2|

β2, β̄2 u2
2 = |β1 − β̄1|

where in the totally real case, f ′ denotes the derivative of f with respect
to x1.

Proof. See [13], pages 48, 57 and 59.

Theorem 10.2.5. Suppose

f =
k∑
i=1

(
k
i

)
aix

k−i
1 xi2
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is a real form of order k. If f is Hermite-reduced, then

|aiaj | ≤
(

4
3k2

) k
2

Θ(f) whenever i+ j ≤ k.

Proof. The special case i+j = k was proven by Hermite in [11]. The general
case is proven in section 10.3.

Lemma 10.2.6. Take f ∈ R[x1, x2] a form of order k > 2 and signature
(r, s). Suppose f has distinct roots and satisfies

f(x2,−x1) = ±f(x1, x2),

then the representative point of f is i.
Furthermore, if we factor f as f1f2, where f1, f2 are real forms of sig-

nature (r, 0) and (0, s) respectively, then:

• If r > 2, then i is also the representative point of f1.

• If s > 0, then i is also the representative point of f2. In particular, if
s = 1, then i is the unique root of f2 in H.

Proof. z 7→ −1/z is an SL2(R) map which permutes the roots of f1, f2 and f .
The only fixed points of this map are±i. As the map takes H into itself, i will
be the representative point of any of these forms provided the representative
point is unique. The result follows from Proposition 10.2.2.

10.3 Proving the Hermite Inequalities

This section is devoted to proving Theorem 10.2.5. I do this by proving
Theorem 10.3.1. Since y ≥

√
3

2 max{1, |z|} whenever z = x + iy is in the
fundamental domain for SL2(Z), Theorem 10.2.5 follows.

In this section we will be using S as a variable denoting a subset of the
integers {0, 1, 2, . . . , k}. Its compliment {0, 1, 2, . . . , k} \ S will be denoted
S′. For any b ∈ Ck+1 we define bS :=

∏
i∈S bi.

Theorem 10.3.1. Suppose

f =
k∑
i=0

(
k
i

)
aix

k−i
1 xi2

is a real form of order k. Let z ∈ H and write z = x+ iy. Then

|al|2 ≤
|z|2l

(ky)k
Θ(f, z) for all l.
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Proof. Set Θ = Θ(f, z). Choose (µi, νi) to represent the roots of f in such
a way that f =

∏
(νix1 − µix2). By the definition of Θ there is a δ > 0 and

ti > 0 such that

f =
√

Θ

δ
k
4

∏
(tiνix1 − tiµix2),

and a positive definite quadratic form ϕ := Px2
1 − 2Qx1x2 +Rx2

2 of deter-
minant δ = PR−Q2 which has (z : 1) as a root, and whose coefficients are
given by:

P =
∑

t2i |νi|2, 2Q =
∑

t2i (µiν̄i + µ̄iνi), R =
∑

t2i |µi|2.

Writing z = x+ iy this means:

Q = xP, R = P |z|2, δ = P 2y2.

Choose bi, ci ∈ C so that:
√
Pbi = νiti ,

√
Rci = −µiti. Then

∑
|bi|2 =∑

|ci|2 = 1 and

al =
√

Θ
(
|z|l

yk/2

) (
k
l

)−1
∑

#S=l

bS′cS

 .

The theorem follows from Lemma 10.3.2.

Lemma 10.3.2. Suppose bi, ci ∈ C and
∑k

1 |bi|2 =
∑k

1 |ci|2 = 1. Then

|
∑

#S=l

bS′cS | ≤
(
k
l

)(
1
k

) k
2

.

Proof. Clearly, the lemma holds if it holds for real non-negative bi, ci. By
the Cauchy Schwartz inequality [2], page 9,∑

#S=l

bS′cS

2

≤

∑
#S=l

b2S′

∑
#S=l

c2S

 .

By the generalized AM/GM Inequality [2], page 15, exercise 22,

∑
#S=l

b2S′ ≤
(
k
l

)(∑
i b

2
i

k

)k−l
,

∑
#S=l

c2S ≤
(
k
l

)(∑
i c

2
i

k

)l
.

Combining these inequalities gives the result.
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Chapter 11

Parameterizations in Z

This chapter describes an algorithm to construct a finite set of parameteri-
zations of D(r, d)(Z) for any non-zero integer d, with the property that their
Z-specializations include all co-prime (X,Y, Z) ∈ D(r, d)(Z).

By Theorem 6.1.1 we can assume that the parameterizations are of the
form χ(f) with f ∈ C(r, d)(Z). By Theorem 6.2.4 constructing a complete
set of parameterizations is now equivalent to giving a representative fα for
every SL2(Z)-orbit of C(r, d)(Z) that contains a binary form f whose pa-
rameterization χ(f) has a co-prime Z-specialization.

A main ingredient to this algorithm is the fact that C(r, d)(R) is a ho-
mogeneous SL2(R) space. This means that we can calculate the Hermite
Determinant and list all of the Hermite-reduced f ∈ C(r, d)(Z) via a finite
computer search.

The algorithm then takes this list and reduces it further so that to all
f in the list are SL2(Z)-distinct and have a co-prime specialization. This is
the output of the algorithm.

A variant on the algorithm reduces the list further to a list of GL2(Z)
distinct forms. By Theorem 6.2.4, reducing to a set of representatives of the
GL2(Z)-orbits is equivalent to identifying (±X,Y, Z) ∈ D(r, d)(Z) .

A final section 11.7 shows how the algorithm can be generalized to pro-
duce complete sets of parameterizations to diophantine equations of the type

AX2 +BY 3 = CZr, gcd(X,Y, Z) = 1,

where A,B,C ∈ Z and the unknowns X,Y, Z are required to be in Z.

11.1 Hermite Reduction Attributes

This section shows that C(r, d)(R) is a homogeneous SL2(R)-space. We can,
therefore, associate a Hermite Determinant Θ to C(r, d)(Z). Its value is

79
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calculated along with the associated bounds on the coefficients of Hermite-
reduced f ∈ C(r, d)(R). A method of calculating the Representative Point
of f ∈ C(r, d)(R) is presented.

Lemma 11.1.1. If f ∈ C(r, d)(R), then f has a real root.

Proof. The Klein forms f̄r were produced by taking the roots to be the image
of the vertices of the platonic solids under the 1-1 correspondence between
the Riemann Sphere S2(R) and the extended complex plane P(C), given by
stereographic projection.

As such the roots of f̄r inherit the following properties from the platonic
solid:

(Special Properties)
No circles on P(C) going through an even number of roots of f̄r

can go through more than 4 roots.
If a circle goes through 4 roots, the circle will split P(C) into 2

distinct regions. There will be roots in the interior of both regions.

Since the action of GL2(C) is continuous on P(C) and GL2(C) is con-
nected, topological properties are GL2(C) invariant. The action also sends
circles to circles.1 This means that these special properties of f̄r will be true
of all GL2(C) twists as well.

Suppose that f ∈ C(r, d)(R) has only complex roots. By shrinking a
large circle enclosing all its roots we can produce a circle witnessing the fact
that f cannot possibly have these special properties.

Therefore f has a real root.

Theorem 11.1.2. Let f ∈ C(r, d)(R) and f ′ ∈ C(r, d′)(R) be real Klein
forms.

• If dd′ > 0 then f, f ′ are GL2(R)+-equivalent

• If dd′ < 0 and r is odd, then f is GL2(R)+-equivalent to −f ′.

(Here GL2(R)+ is the set of GL2(R) matrices of positive determinant).

Proof. By Proposition 4.1.2, −f ∈ C(r, (−1)rd), so the second claim follows
from the first. We therefore assume that dd′ > 0. Another call to Proposi-
tion 4.1.2 shows that we can apply a GL2(R)+ transformation and assume
d = d′ = ±1.

By Lemma 11.1.1, f has a real root. Therefore we can apply an SL2(R)
transformation and assume that the root is ∞ and the initial coefficients
[a0, a1, a2 . . . ] of f are [0, 1, 0 . . . ]. The defining equations for C(r, d) deter-
mine f completely.

We can do the same to f ′. This means that f, f ′ are GL2(R)+-equivalent.

1where as usual we count straight lines through ∞ as circles in P(C)



11.1. HERMITE REDUCTION ATTRIBUTES 81

Corollary 11.1.3. If d ∈ R∗, then C(r, d)(R) is a homogeneous SL2(R)-
space.

Theorem 11.1.4. Suppose f ∈ C(r, d)(R). Write f = f1f2, where f1, f2

are real forms, and all roots of f1 are real and all roots of f2 are complex.
Then:

Class Signature Θ(f) A fast way to find
the Representative Point

C(3, d) (2, 1) 2633|d|2/3
C(4, d), d > 0 (4, 1) 2839|d| The unique root of f2 in H
C(4, d), d < 0 (2, 2) 2839|d| The representative point of f2

C(5, d) (4, 4) 22431855|d|2 The representative point of f1

In particular, the representative point of f can be found using at most
an application of Proposition 10.2.4 to find the representative point of a
biquadratic form.

Proof. We start by verifying the table for the special representatives of the
4 rows: f̄ = f̄3, f̄4, f̄

∗
4 , f̄5. Certainly the signature is correct.

Using Proposition 10.2.4, we find that i is the representative point of f̄3.
By Lemma 10.2.6, i is also the representative point of the other f̄ and the
suggested method in the last column is a way of finding the representative
point of these f̄ . Knowing that i is the representative point, we can use
Proposition 10.2.3 and verify that the table produces the correct value for
Θ(f̄). So the table is correct for f̄ .

By Theorem 11.1.2, a general f ∈ C(r, d) satisfies ±f = f̄ ◦ g for some
g ∈ GL2(R)+. Furthermore, by Proposition 4.1.2 and Theorem 10.2.1

det(g)6 = d, Θ(f) = |det(g)|kΘ(f̄).

This and the covariance of the representative point under GL2(R)+ trans-
formations show that the table is correct for all f ∈ C(r, d).

Theorem 11.1.5. Suppose f ∈ C(r, d)(R) is Hermite-reduced. Then the
|aiaj | satisfy

max{|aiaj | | i+ j ≤ k} ≤ B2,

where the bound B is given by
Class B

C(3, d) 2
√

3|d|1/3
C(4, d) 16

√
|d|

C(5, d) 1600
√

5|d| ∼ 3578|d|

.

In particular |ai| ≤ B for all i ≤ 1
2k.

Proof. The bounds are obtained applying Theorem 10.2.5 to the Hermite
determinant as listed in the table in Theorem 11.1.4
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11.2 Listing Hermite-reduced f ∈ C(r, d)(Z)

By Theorem 11.1.5, Hermite-reduced f ∈ C(r, d)(Z) have coefficients that
are bounded in terms of r and d. Furthermore, examining the defining
equations of C(r, d) shows that the form is known once a0, a1, a2, a3 is given.

The following pseudo-code shows how to produce a list of f ∈ C(r, d)(Z)
including all forms which are Hermite-reduced and have a0 6= 0.

ALGORITHM( Hermite-reduced Forms; a0 6= 0)
INPUT (r,d)
Calculate B from the table in Theorem 11.1.5
FOR a0, a1, a2 ∈ Z with |ai| ≤ B, a0 6= 0 DO

Z := a0, Y := a0a2 − a2
1

FOR the at most 2 integers X := ±
√
−Y 3 − dZr DO

Determine a3 from a2
0a3 − 3a0a1a2 + 2a3

1 = 2X
The remaining a4, . . . , ak are determined from

the equations defining C(r, d)

IF all of Ωr are integers
AND the ai satisfy the bounds of Theorem 11.1.5

OUTPUT the form f = [a0, a1 . . . ak]
END-IF

END-FOR
END-FOR
STOP

A slight variant on this pseudo-code allows us to list the Hermite-reduced
forms with a0 = 0. We use Theorem 11.1.4 to find the representative points
of the forms. We reduce our list to a set of Hermite-reduced f ∈ C(r, d)(Z)
by discarding any forms for which the representative point is not in the
fundamental domain.

Remark 11.2.1. This is the computationally expensive part of the algo-
rithm. My C program running in a 350 Mhz Pentium II took 6 hours to
produce the list associated with the icosahedral equation X2 + Y 3 = −Z5.

11.3 Listing GL2(Z)-orbits of C(r, d)(Z)

In this section, we show how to take the list of Hermite-reduced forms, and
reduce the list to a set of GL2(Z) inequivalent forms.

The group GL2(Z) acts on C−R. Conjugation acts freely on C−R and
commutes with the GL2(Z) action. Since H = (C − R)/ < conjugation >
it follows that GL2(Z) acts on H. The GL2(Z) map z 7→ −z becomes
x+ iy 7→ −x+ iy on H.
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A fundamental domain for GL2(Z) is given by

D− := {z = x+ iy | |z| ≥ 1,−1
2
≤ x ≤ 0}.

Every z ∈ H is GL2(Z)-equivalent to a unique z ∈ D−. We say that a form f
is GL2(Z) reduced if z(f) ∈ D−. We throw away all but the GL2(Z) reduced
forms.

Furthermore 2 reduced forms f1, f2 are GL2(Z)-equivalent if and only if
z(f1) = z(f2) =: z and f1 = f2◦g for some g ∈ Stab(z) := Stab(z,GL2(Z))/±
I. The following lemma gives us a definite test of which forms are equivalent.

Lemma 11.3.1. Let i =
√
−1 and ω = −1

2 + i
√

3
2 . Define

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
, U =

(
1 0
0 −1

)
.

Suppose z = x+ iy ∈ D−. The group Stab(z) is trivial on the interior of
D−. On the boundary of D− it is the finite group given in the following table.

z Stab(z) #Stab(z) z 6= i, w Stab(z) #Stab(z)
w < ST,US > 6 x = 0 < U > 2
i < S,U > 4 |z| = 1 < US > 2

x = −1
2 < U > 2

11.4 Listing SL2(Z)-orbits of C(r, d)(Z)

Only listing representatives of GL2(Z)-orbits keeps our lists as short as pos-
sible. However by Theorem 6.2.2, every f gives us potentially two param-
eterizations (±1

2t(f),H(f), f). These correspond to one or two distinct
parameterizations depending on whether the GL2(Z)-orbit of f splits into
one or two SL2(Z)-orbits. This section shows how to recognize when a
GL2(Z)-orbit splits using the representative point.

Proposition 11.4.1. Let a GL2(Z)-orbit be represented by f with represen-
tative point in D−. Let z = x+ iy be that point. The binary form f ∈ R[s, t]
remains the representative of a single SL2(Z)-orbit if and only if z is on the
boundary of D− and:

(z = ω) f(s+ t,−t) = f(s, t),f(−t, s+ t) or f(s+ t,−s).

(z = i) f(s, t) = f(t, s) or the odd index coefficients of f are zero.

(z 6= i, ω)

• x = 0 and the odd index coefficients of f are zero.
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• Or |z| = 1 and f(s, t) = f(t, s).
• Or x = −1

2 and f(s+ t,−t) = f(s, t).

Proof. If it is also an SL2(Z) class, there is a g ∈ SL2(Z) so that f ◦ g =
f(s,−t). This must map z = x+ iy 7→ −x+ iy. The proposition enumerates
the possibilities.

11.5 Ensuring Co-prime Specializations

This section shows how we can establish whether an f ∈ C(r, d)(Z) has any
co-prime Z-specializations.

Proposition 11.5.1. Fix f ∈ C(r, d)(Z) with d ∈ Z6=0. Either

• χ(f) has no co-prime integer specializations; or

• there are (s1, s2) ∈ Z2 with |si| ≤ N0 such that χ(f)(s1, s2) are co-
prime;

where N0 is the product of all odd primes dividing Nd.

Proof. (sketch) This is a standard application of resultant theory ( e.g. [16],
Chapter IX) to the forms f,H(f). These forms have integer coefficients,
and the primes that divide their resultant can be shown to be exactly the
primes dividing Nd.

11.6 The Algorithm for X2 + Y 3 = dZr

This section presents the explicit algorithm to construct a complete set of
parameterizations of D(r, d)(Z) whose Z-specializations include all co-prime
(X,Y, Z) ∈ D(r, d)(Z).

ALGORITHM (X2 + Y 3 = dZr)
INPUT (r,d)
Produce a complete list of Hermite-reduced f ∈ C(r, d)(Z) (section 11.2)
Reduce the list down to a set of GL2(Z) inequivalent forms (section 11.3)
Remove forms not specializing to co-prime integers (section 11.5)
OUTPUT(f1, f2, . . . , fn)
STOP

For every co-prime integer solution (X,Y, Z), at least one of (±X,Y, Z)
is an integer specialization of one of the parameterizations χ(f1), . . . χ(fn).
By Theorem 6.2.2, this list is minimal.

If you do not like the ± you should add fi(x1, s2)∗ := fi(x1,−x2) to
the list for every fi whose GL2(Z)-equivalence class splits into two SL2(Z)
classes. Section 11.4 shows how to identify such forms. The integer spe-
cializations of this larger list χ(f1), . . . χ(fm) includes all co-prime integer
solutions. By Theorem 6.2.2, this list is also minimal.
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11.7 Generalizing to AX2 + BY 3 = CZr

In this section we show how the algorithm can be generalized to some other
diophantine problems associated to the indices {2, 3, r}.

Proposition 11.7.1. Fix a non zero integer d and a finite set of primes S.
There is a finite set of solutions in ZS [x1, x2] to

X2 + Y 3 = dZr

such that

• their integer specializations include all integer solutions with gcd(X,Y, Z)
∈ Z∗S,

• their ZS specializations include all ZS solutions with gcd(X,Y, Z) ∈
Z∗S.

Proof. Suppose f ∈ C(r, d)(C), λ ∈ C∗ and s1, s2 ∈ C. If χ(f)(s1, s2) =
(X,Y, Z) then

χ(f)(λs1, λs2) = (λN/2X,λN/3Y, λN/r). (11.1)

The claim about ZS solutions follows from the claim about Z solutions.
We assume X,Y, Z are Z-integers. By (11.1) we can assume that the valu-
ation of gcd(X2, Y 3, Zr) at any prime p is less than N .

Take a prime p that divides gcd(X,Y ). If p5|dZr then :

X = p3X ′, Y = p2Y ′, dZ = d′(psZ ′)

for some s ≥ 0 and some integers X ′, Y ′, Z ′, d′ satisfying

X ′2 + Y ′3 = d′Z ′
r
.

In this way we can reduce to a finite set of equations in which we can assume
that if p divides gcd(X,Y ) then νp(Zr) is less than 5. For r = 5 this is
equivalent to assuming gcd(X,Y, Z) = 1. For r = 3, 4 it is that p| gcd(X,Y )
implies that νp(Z) = 0 or 1.

The proofs go through producing f ∈ ZS [x1, x2] with coefficients of both
bounded absolute value and bounded denominator. Hermite reduction can
therefore still be used to produce the parameterizations.

Theorem 11.7.2. Fix r ∈ {3, 4, 5}. Fix a finite set of primes S. Fix
A,B ∈ Z∗S and non zero C ∈ ZS. Then there is a finite set of solutions in
ZS [x1, x2] to

AX2 +BY 3 = CZr

such that
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• their integer specializations include all integer solutions with gcd(X,Y, Z) ∈
Z∗S,

• their ZS specializations include all ZS solutions with gcd(X,Y, Z) ∈
Z∗S.

Proof. Without loss of generality A,B,C ∈ Z. Multiply the diophantine
equation by A3B2 to give:

(A2BX)2 + (ABY )3 = (A3B2C)Zr.

Since A2B,AB ∈ Z∗S the theorem follows from Proposition 11.7.1.



Appendix A

Defining Equations of C(r, d)

This appendix contains a definition of the map π : C(r, d) → A3, along with
the explicit set of equations used to define the algebraic set C(r, d) ⊂ Ak+1.

For any f ∈ C(r, d), we have the map f 7→ 2∗π(f) := (2X, 2Y, 2Z). This
is defined by

Z = a0,

Y = a0a2 − a2
1,

2X = a2
0a3 − 3a0a1a2 + 2a3

1.

A.1 C(3, d) - The Tetrahedron

If d ∈ K̄∗ then C(3, d) ⊆ A5 is defined by

0 = a0a4 − 4a1a3 + 3a2
2,

−4d = a0a2a4 + 2a1a2a3 − a3
2 − a0a

2
3 − a2

1a4.

A.2 C(4, d) - The Octahedron

If d ∈ K̄∗ then C(4, d) ⊆ A7 is defined by

D0/1 : 0 = a0a4 − 4a1a3 + 3a2
2,

D1/2 : 0 = a0a5 − 3a1a4 + 2a2a3,

D2/1 : 0 = a0a6 − 9a2a4 + 8a2
3,

D3/2 : 0 = a1a6 − 3a2a5 + 2a3a4,

D4/1 : 0 = a2a6 − 4a3a5 + 3a2
4,

A : −72d = a0a6 − 6a1a5 + 15a2a4 − 10a2
3.

87
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A.3 C(5, d) - The Icosahedron

If d ∈ K̄∗ then C(5, d) ⊆ A13 is defined by

D0/1 : 0 = a0a4 − 4a1a3 + 3a2
2,

D1/8 : 0 = a0a5 − 3a1a4 + 2a2a3,

D2/4 : 0 = a0(7a6)− 12a1a5 − 15a2a4 + 20a2
3,

D3/56 : 0 = a0a7 − 6a2a5 + 5a3a4,

D4/14 : 0 = 5a0a8 + 12a1a7 − 6a2(7a6)− 20a3a5 + 45a2
4,

D5/56 : 0 = a0a9 + 6a1a8 − 6a2a7 − 4a3(7a6) + 27a4a5,

D6/28 : 0 = a0a10 + 12a1a9 + 12a2a8 − 76a3a7 − 3a4(7a6) + 72a2
5,

D7/8 : 0 = a0a11 + 24a1a10 + 90a2a9 − 130a3a8 − 405a4a7 + 60a5(7a6),
D8/1 : 0 = a0a12 + 60a1a11 + 534a2a10 + 380a3a9 − 3195a4a8

− 720a5a7 + 60(7a6)2,
D9/8 : 0 = a1a12 + 24a2a11 + 90a3a10 − 130a4a9 − 405a5a8 + 60(7a6)a7,

A0 : 0 = 360a0d+ a0(7a6)− 42a1a5 + 105a2a4 − 70a2
3,

A1 : 0 = 6(720a1d+ 7a0a7 − 5a1(7a6) + 63a2a5 − 35a3a4),

along with equations labelled D10, . . . , D16 and A2, . . . , A12 that have been
omitted. These omitted equations are not required in practical calculations.
If necessary, they may be obtained as follows.

D16−i(a0, . . . , a12) = Di(a12, . . . , a0),

Ai(a0 . . . a12) =
1
i!

∆iA0

(where ∆ is the Cayley Aronhold Operator of Definition 3.2.1).
Finally, we require that the following equations be satisfied.

D∗
4 : 0 = −a3

0a8 + 12a0a1a2a3 + 18a0a
2
2a4 − 24a0a2a

2
3 + 4a2

0a3a5 − 9a2
0a

2
4,

A′ : 0 = −293552d2 + 7a0a12 − 84a1a11 + 462a2a10 − 1540a3a9

+ 3465a4a8 − 5544a5a7 + 66(7a6)2.

(If char(K) 6= 5, the equation labelled D∗
4 is implied by D2 = D3 = D4 = 0).



Appendix B

Fields of Low Characteristic

Certain propositions about C(r, d) that are trivial when char(K) = 0 or
char(K) > k become false or, if true, need extra arguments in low non-zero
characteristics. This Appendix contains proofs of these properties.

Lemma B.0.1. Suppose d ∈ K∗ and a ∈ K∗. Then

ϕ̂(a) :=


[0, a, 0, 0, 4a−2d] Tetrahedron,
[0, a, 0, 0, 0, 12a−1d, 0] Octahedron,
[0, a, 0, 0, 0, 0, 144d

7 , 0, 0, 0, 0,−a−1(144d)2, 0] Icosahedron

is an element of C(r, d)(K). In particular C(r, d)(K) 6= ∅.

Proof. This is verified by calculation.

Proposition B.0.2. Suppose K is a field and 2, d ∈ K∗. If (X,Y, Z) ∈
D(r, d)− (0, 0, 0), there is a ϕ ∈ C(r, d)(K) so that π(ϕ) = (X,Y, Z).

Proof. If Z = 0, we let ϕ := ϕ̂(−X/Y ), where ϕ̂ is the function defined in
Lemma B.0.1. One checks that π(ϕ) = (X,Y, Z).

If Z 6= 0, define

ϕ := [Z, 0,
Y

Z
,
2X
Z
, . . . ],

where the omitted terms are uniquely determined by the first k− 3 defining
equations of C(r, d). The coefficients of ϕ can be expressed as elements in the
ring Z[X,Y, Z, Z−1]. With the help of PARI we get the algebraic identities

τ 4(ϕ) = 0, 7τ 6(ϕ) = −360
(
X2 + Y 3

Z5

)
,

7τ 12(ϕ) = 3110400
(
X2 + Y 3

Z5

)2

,

when r = 5, and similar identities when r = 3, 4. This shows that ϕ is a
‘generic’ lift of the element (X,Y, Z). The result follows.
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Proposition B.0.3. Suppose K a field and d ∈ K∗. If g ∈ GL2(K) and
λ ∈ K∗ then

ϕ ∈ C(r, d) ⇒ λg · ϕ ∈ C(r, d′),

where d′ = λ6−r det(g)−6d.

Proof. The claim about multiplication by λ ∈ K∗ is clear by examining the
defining equations of C(r, d)(K). Furthermore, any g · f can be written as
g · f = λg′.f with g′ ∈ SL2(K) and λ ∈ K∗ satisfying λ6−r = det(g)6.
Therefore we can assume g ∈ SL2(K).

We are left to show that if g ∈ SL2(K) and ϕ ∈ C(r, d)(K) then g · ϕ ∈
C(r, d). The subsets of the equations defining C(r, d) that are equivalent to
the vanishing of a polynomial combination of covariants of ϕ, necessarily
remain valid by the definition of a covariant. This is true for all equations,
except the equations derived from the coefficients of the 4th covariant τ 4(ϕ),
and the icosahedral equation labelled D∗

4.
The equations obtained by requiring that τ 4 vanish remain valid after

an SL2(K) substitution because of the covariance of τ 4. However, there
is an added complication since the equations for C(r, d) are obtained from
the coefficients of τ 4(f) after dividing out by their content. Let V be the
algebraic set defined by these equations.

Note that (
κ 0
0 κ−1

)
,

(
0 1
−1 0

)
,

(
1 ν
0 1

)
, (B.1)

where κ ∈ K∗ and ν ∈ K, generate SL2(K). By inspection V is closed under
the action of the first two generators. A calculation (e.g. with the help of a
computer package) shows that it is also closed under the action of the last
generator.

Finally, we must check the equations remain closed under SL2(K)-substitutions
if we also require that D∗

4 is satisfied in the icosahedral case. This is also
done by checking the claim on the generators (B.1) of SL2(K).

Lemma B.0.4. Suppose d ∈ K∗ and ϕ ∈ C(r, d)(K̄). Then there is a
g ∈ SL2(K̄) so that a0(g · ϕ) = 0. If N ∈ K∗, there is a g ∈ SL2(K) so that
g · ϕ = [0, 1, 0, . . . ].

Proof. Let f := f(ϕ). We can find g ∈ SL2(K̄) so that the binary form g · f
has a zero at∞. Since ϕ 7→ f(ϕ) is SL2(K̄)-equivariant we have a0(g·ϕ) = 0.

If N ∈ K∗, f has no multiple roots, as the discriminant of f is non-zero.
Therefore, by equivariance, a1(g · ϕ) 6= 0. Twisting with an SL2(K) matrix

of the shape
(
∗ ∗
0 ∗

)
allows us to suppose g · ϕ = [0, 1, 0, . . . ].
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Lemma B.0.5. Suppose N, d ∈ K∗. Then C(r, d)(K̄) is a homogeneous
SL2(K̄)-space and C(r)(K̄) is a homogeneous GL2(K̄)-space.

Proof. Suppose ϕ ∈ C(r, d)(K̄). By Lemma B.0.4, we can assume that
ϕ = [0, 1, 0, . . . ]. However, as N ∈ K∗, the missing coefficients are deter-
mined by the defining equations of C(r, d). We have shown that there is a
single element of C(r, d) to which every ϕ ∈ C(r, d) is SL2(K̄)-equivalent.
This means that C(r, d)(K̄) is a homogeneous SL2(K̄)-space. As a corollary
C(r)(K̄) is a homogeneous GL2(K̄)-space.

Remark B.0.6. Lemma B.0.5 is not true without some restrictions on the
characteristic of K. For instance, if K has char(K) = 2 then [0, 1, 0, 0, 1]
and [0, 1, 0, 1, 0] are elements of C(3, 1)(K). These lie in distinct SL2(K̄)-
orbits, since being of the shape [0, ∗, 0, ∗, 0] is an SL2(K̄)-invariant property.

Proposition B.0.7. Suppose K is a field and N ∈ K∗. Suppose (X,Y, Z) ∈
D(r, d) − (0, 0, 0). If ϕ ∈ C(r, d)(K) and π(ϕ) = (X,Y, Z) then there is a
unique parabolic g ∈ SL2(K) so that

g · ϕ :=
{

[Z, 0, YZ ,
2X
Z , . . . ] if Z 6= 0,

[0,−X/Y, 0, . . . ] if Z = 0,

where the omitted terms are uniquely determined by the defining equations
of C(r, d).

Proof. (Existence) Since N ∈ K∗, there is a parabolic g ∈ SL2(K) so that
the ϕ has the shape [∗, 0, . . . ] if Z 6= 0, and [0, ∗, 0, . . . ] if Z = 0. Since
π(ϕ) = π(g · ϕ) = (X,Y, Z), the initial coefficients of ϕ agree with the
coefficients in the announcement of the proposition. The defining equations
of C(r, d) determine the rest of Ωr.

(Uniqueness) Suppose ϕ has the canonical form given. Since N ∈ K∗,
there is no non-zero parabolic g ∈ SL2(K) that fixes ϕ.

Lemma B.0.8. If N, d ∈ K∗ and ϕ ∈ C(r, d) then #Γ(ϕ) = 2N . Fur-
thermore, if ϕ corresponds to the coefficients of one of the forms chosen in
§ 4.3, then the explicit description of the group given in § 4.3 is the group
Γ(ϕ)(K̄).

Proof. Since N ∈ K∗, the space C(r)(K) is a homogeneous GL2(K)-space
by Lemma B.0.5. This means that we can assume that ϕ corresponds to one
of the Klein forms mentioned in § 4.3. Let Γ′ denote the group of symmetries
mentioned in § 4.3, and Γ := Γ(ϕ) the full group of symmetries. Clearly
Γ′ ⊂ Γ(ϕ). Indeed, the set of equations witnessing the truth of the statement
Γ′ ⊂ Γ(ϕ) in Q can be written as a set of polynomial equations in the ring
generated by Z and the entries of elements of Γ′. These identities remain
valid in the field K.
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Suppose that g ∈ Γ(ϕ). We will show that g ∈ Γ′. Let f := f(ϕ).
Calculating the discriminant we see that the roots of f are distinct if N, d ∈
K∗. Since Γ′ is transitive on the roots of f , we can multiply g by an element

of Γ′ and assume that g fixes the root at ∞. Therefore, g =
(
κ ν
0 κ−1

)
for

some κ ∈ K∗, ν ∈ K. Since ϕ = [0, ∗, 0, . . . ] and N ∈ K∗ we calculate that
ν = 0. The matrix g is diagonal and we deduce that g ∈ G′. Conclusion:
Γ(ϕ) = Γ′.

Finally, we must show that #Γ′ = 2N . I.e. that Γ′ has no kernel when
we reduce from SL2(Q) to SL2(K̄). Let f := f(ϕ). Suppose g ∈ Γ′(Q) is not
±I. Then g induces a non-trivial permutation of the roots of f ∈ Q[x, y].
As N, d ∈ K̄∗, we have disc(f) 6= 0, so the roots of f remain distinct in K̄.
Therefore the kernel is contained in {±I}. As 2 ∈ K̄∗, the matrix −I is not
in the kernel. Conclusion: #Γ(ϕ)(K) = #Γ(ϕ)(Q) = 2N .

Remark B.0.9. Consider ϕ = [0, 144, 0, 0, 0, 0, 144
7 , 0, 0, 0, 0,−144, 0]. We

have f := f(ϕ) = 1728d xy(x10 + 11x5y5 − y10)
Suppose K is a field with char(K) = 11. Then f has distinct roots, as

the discriminant is non-zero. However, Γ(f) contains the cyclic group of

order 11 generated by g :=
(

1 1
0 1

)
. This means that Γ(f) 6= Γ(ϕ). Set

ϕ′ := g · ϕ. Then ϕ,ϕ′ are distinct elements of C(5, d) with f(ϕ) = f(ϕ′).



Appendix C

Twisted Conjugacy Classes

This Appendix contains proofs of various claims about twisted conjugacy
classes. These objects act in many ways like the usual conjugacy classes of
Group Theory. The proofs have been placed in this appendix for complete-
ness.

In this appendix we assume that H ≤ G are arbitrary finite groups. We
assume that ψ is an automorphism of G that induces an automorphism of
H. See § 8.4 for the definitions of (ψ,H)-conjugacy, [g](ψ,H) and C(ψ,H)(g).

Lemma C.0.1. Take any g ∈ G. Then C(ψ,H)(g) is a subgroup of H. We
have

#[g](ψ,H) #C(ψ,H)(g) = #H.

Proof. C(ψ,H)(g) is clearly a subgroup of H. For h1, h2 ∈ H we have

h−1
1 gψ(h1) = h−1

2 gψ(h2) ⇔ g = (h1h
−1
2 )−1gψ(h2h

−1
1 )

⇔ h1h
−1
2 ∈ C(ψ,H)(g),

so that the distinct elements of [g](ψ,H) are in 1−1 correspondence with the
right cosets of C(ψ,H). The result follows.

Proposition C.0.2. Suppose H C G are groups and G/H is a cyclic group
of order n. Suppose ψ is the automorphism of H given by conjugation a 7→
sas−1 for some s ∈ G whose image in G/H generates this cyclic group.
Then

H → Hs, g 7→ gs

is a bijection that maps (ψ,H)-conjugacy classes of H to G-conjugacy classes
of the coset Hs of G. Furthermore

#C(ψ,H)(g) =
1
n

#CG(gs).
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Proof. Suppose g, g′ ∈ H. If h ∈ H then

g = h−1g′ψ(h) ⇔ gs = h−1g′sh.

Therefore [g](ψ,H) = [gs]H ⊂ [gs]G. The proof will be complete if we can
show that #CG(gs) = n#CH(gs), since Lemma C.0.1 then implies that
#[gs]H = #[gs]G. The element h ∈ CH(gs) if and only if (gs)h ∈ CG(gs).
Since gs generates G/H we have #CG(gs) = n#CH(gs).

Proposition C.0.3. Suppose −I ∈ H, that H ≤ G ≤ SL2(K) and that
ψ1, ψ2 ∈ Aut(G) satisfy ψi(−I) = −I. Denote projective versions of objects
by tilde and suppose that ψ̃1 = ψ̃2 ∈ Aut(G̃). Then either ψ1 = ψ2 or there
is a subgroup G′ ≤ G such that

[G : G′] = [G̃ : G̃′] = 2 and ψ1 = εψ2,

where ε is the unique non-trivial character G/G′ → {±1}.

Proof. Consider the map

ρ : G→ ±1, g 7→ ψ1(g)ψ2(g)−1.

This is a group character. Let G′ := ker(ρ). The two cases correspond to
whether ρ is trivial or not. Since ψi(−I) = −I, the mapping ρ takes the
same value on ±g. Therefore [G : G′] = 2 implies that [G̃ : G̃′] = 2.

Lemma C.0.4. Suppose −I ∈ H, that H ≤ G ≤ SL2(K) and that ψ ∈
Aut(G) satisfies ψ(−I) = −I. Then the following holds.

• For any g ∈ G, #C(ψ,H)(g) is even.

• C(ψ,H)(1) = {h ∈ H | h = ψ(h)}.

• Suppose that H has unique H-conjugacy class of trace 0 and that ψ
restricts to an automorphism of H. Then there is a g ∈ H such that
[−g](ψ,H) = [g](ψ,H).

Proof. For the first claim, note that if h ∈ CG(g) then so is −h. The second
is clear. For the third, take any h in the unique H-conjugacy class of trace
0. Then −ψ(h) also has trace 0, so −ψ(h) is H-conjugate to h. This means
that there is a g ∈ H with h = −gψ(h)g−1. The result follows.

Lemma C.0.5. Suppose G is a subgroup of SL2(K), that −I ∈ H and that
ψ ∈ Aut(G) satisfies ψ(−I) = −I. Denote projective versions of objects by
tilde. Fix g ∈ G. Then exactly one of the following two situations holds.

Situation 1 Situation 2
∃h ∈ H such that −g = h−1gψ(h)? YES NO
[g](ψ,H) = [−g](ψ,H)? YES NO
#C(ψ,H)(g) equals . . . #C

(ψ,H̃)
(g) 2#C

(ψ,H̃)
(g)
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Proof. An element h such that −g = h−1gψ(h) is exactly the witness needed
to show that [g]ψ,H = [−g]ψ,H . Since #H = 2#H̃, Lemma C.0.1 implies
that

#Cψ,H(g) = 2
#[g]

ψ,H̃

#[g]ψ,H
#C

ψ,H̃
(g).

Since

#[g]ψ,H =

{
2#[g]

ψ,H̃
if [g]ψ,H = [−g]ψ,H ,

#[g]
ψ,H̃

otherwise,

the result follows.

Proposition C.0.6. Suppose H is a group and ψi ∈ Aut(H) for i = 1, 2.
If there is an s ∈ H so that ψ1 = s−1ψ2s, then

H → H, g 7→ gs−1

is a bijection that maps (ψ1,H)-conjugacy classes to (ψ2,H)-conjugacy classes.

Proof. Suppose x, y, h ∈ H. Then

x = h−1yψ1(h) ⇔ x = h−1ys−1ψ2(h)s

⇔ xs−1 = h−1ys−1ψ2(h).
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Appendix D

Parameterizing
X2 + Y 3 = ±Zr

This appendix gives complete parameterizations to D(r,±1)(Z) whose Z-
specializations include all co-prime (X,Y, Z) ∈ D(r,±1)(Z).

To keep the lists as short as possible, we identify the parameterizations
by identifying ±X. If the corresponding GL2(Z) class of f breaks into two
SL2(Z) classes these are really 2 distinct parameterizations.

The case r = 3 was already done by Mordell in [18], Chapter 25 using
a syzygy from invariant theory. The cases r = 4 were done by Zagier and
quoted in [1], appendix A. The r = 5 case is new.

D.1 Complete Parameterization of X2 + Y 3 = −Z3

Using the algorithm, we get a complete list of parameterizations:

f RepresentativePoint

A1 [0, 1, 0, 0,−4]
√

2i
A2 [−1, 0, 0, 2, 0]

√
2i

B1 [−2,−1, 0,−1,−2] −0.268 + 0.963i
B2 [−1, 1, 1, 1,−1] −0.268 + 0.963i
C1 [−1, 0,−1, 0, 3] 4

√
3i

C2 [1, 0,−1, 0,−3] 4
√

3i

In Mordell’s book [18] he further shortens the list by assuming that Z
is odd. This means that A1, B1 can be omitted. However, Mordell gives 5
parameterizations: A2, B2, C1, C2 and f = [−1,−2,−4,−6, 0] According to
my theory the 5th should be superfluous. It is. I calculate its representative
point to be −2 +

√
2i. This means that f(x − 2y, y) must be A1 or A2. It

is A2!
Beukers [1], on page 78 omits parameterizations obtained by interchang-

ing Y and Z. For f ∈ C(3, 1) we have H2(f) = f , so that interchanging
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Y ↔ Z is the same as swapping between f ↔ H(f). The naming has been
chosen so that A2 = H(A1) etc. Therefore a full set of parameterizations in
this sense is given by A1, B1, C1—the same number as given in that paper.

D.2 Complete Parameterization of X2 + Y 3 = ±Z4

These two equations were solved by Zagier and quoted in Beukers. To keep
the lists short we identify ±X and ±Z. This means every parameterization
in the list is shorthand for ±f(x,±y). The first ± is the ±Z.

X2 + Y 3 = −Z4.

Applying the algorithm gives 4 parameterizations:

f Representative Point
f1 [0, 1, 0, 0, 0,−12, 0] 1.86i
f2 [0, 3, 0, 0, 0,−4, 0] 1.07i
f3 [−1, 0, 1, 0, 3, 0,−27]

√
3i

f4 [−3,−4,−1, 0, 1, 4, 3] −0.268 + 0.964i

In Beukers, we also have 4 parameterizations: f1, f2, f3 and a 4th one in-
volving denominators.

X2 + Y 3 = Z4.

Applying the algorithm gives 7 parameterizations:

f Representative Point
f1 [0, 1, 0, 0, 0, 12, 0] 1.86i
f2 [0, 3, 0, 0, 0, 4, 0] 1.07i
f3 [−1, 0, 0, 2, 0, 0, 32] 1.78i
f4 [−1, 0,−1, 0, 3, 0, 27]

√
3i

f5 [−1, 1, 1, 1,−1, 5, 17] −0.158 + 1.50i
f6 [−5,−1, 1, 3, 3, 3, 9] −0.436 + 1.01i
f7 [−7,−1, 2, 4, 4, 4, 8] ω

Zagier gives 6 parameterizations: f1, . . . , f6. This means that the list there
is incomplete in our sense, since the minimality property proven in section
11.6 shows that f7 cannot be dropped.

A possible explanation was given to me by Nils Bruin. He noticed that

f7(x, y) =
1
63
f4(3x, x+ 2y).

If χ(f7)(s1, s2) = (X,Y, Z) then

χ(f4)(3s1, s1 + 2s2) = (66X, 64Y, 63Z).
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In the language of Beukers [1], page 63: every f7 specialization is equivalent
to an f4 specialization. If Zagier was identifying equivalent integer solutions
he was justified in omitting the 7th parameterization!

D.3 Complete Parameterization of X2 + Y 3 = −Z5

The {2, 3, 5} case is new. Beukers was able to produce parameterizations,
though his method was unable to produce a complete set. If we identify
±X, the algorithm produces the following complete set:

f1 = [0, 1, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−20736, 0],
f2 = [−1, 0, 0,−2, 0, 0, 80/7, 0, 0, 640, 0, 0,−102400],
f3 = [−1, 0,−1, 0, 3, 0, 45/7, 0, 135, 0,−2025, 0,−91125],
f4 = [1, 0,−1, 0,−3, 0, 45/7, 0,−135, 0,−2025, 0, 91125],
f5 = [−1, 1, 1, 1,−1, 5,−25/7,−35,−65,−215, 1025,−7975,−57025],
f6 = [3, 1,−2, 0,−4,−4, 24/7, 16,−80,−48,−928,−2176, 27072],
f7 = [−10, 1, 4, 7, 2, 5, 80/7,−5,−50,−215,−100,−625,−10150],
f8 = [−19,−5,−8,−2, 8, 8, 80/7, 16, 64, 64,−256,−640,−5632],
f9 = [−7,−22,−13,−6,−3,−6,−207/7,−54,−63,−54, 27, 1242, 4293],
f10 = [−25, 0, 0,−10, 0, 0, 80/7, 0, 0, 128, 0, 0,−4096],
f11 = [6,−31,−32,−24,−16,−8,−144/7,−64,−128,−192,−256, 256, 3072],
f12 = [−64,−32,−32,−32,−16, 8, 248/7, 64, 124, 262, 374, 122,−2353],
f13 = [−64,−64,−32,−16,−16,−32,−424/7,−76,−68,−28, 134, 859, 2207],
f14 = [−25,−50,−25,−10,−5,−10,−235/7,−50,−49,−34, 31, 614, 1763],
f15 = [55, 29,−7,−3,−9,−15,−81/7, 9,−9,−27,−135,−459, 567],
f16 = [−81,−27,−27,−27,−9, 9, 171/7, 33, 63, 141, 149,−67,−1657],
f17 = [−125, 0,−25, 0, 15, 0, 45/7, 0, 27, 0,−81, 0,−729],
f18 = [125, 0,−25, 0,−15, 0, 45/7, 0,−27, 0,−81, 0, 729],
f19 = [−162,−27, 0, 27, 18, 9, 108/7, 15, 6,−51,−88,−93,−710],
f20 = [0, 81, 0, 0, 0, 0,−144/7, 0, 0, 0, 0,−256, 0],
f21 = [−185,−12, 31, 44, 27, 20, 157/7, 12,−17,−76,−105,−148,−701],
f22 = [100, 125, 50, 15, 0,−15,−270/7,−45,−36,−27,−54,−297,−648],
f23 = [192, 32,−32, 0,−16,−8, 24/7, 8,−20,−6,−58,−68, 423],
f24 = [−395,−153,−92,−26, 24, 40, 304/7, 48, 64, 64, 0,−128,−512],
f25 = [−537,−205,−133,−123,−89,−41, 45/7, 41, 71, 123, 187, 205,−57],
f26 = [359, 141,−1,−21,−33,−39,−207/7,−9,−9,−27,−81,−189,−81],
f27 = [295,−17,−55,−25,−25,−5, 31/7,−5,−25,−25,−55,−17, 295].

Just in case anyone was wondering, the associated representative points
z(f) are:
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z(f) z(f) z(f)
f1 2.701i f2 2.615i f3 2.590i
f4 2.590i f5 −0.06962 + 2.463i f6 −0.03610 + 2.141i
f7 −0.2189 + 1.752i f8 −0.2272 + 1.586i f9 −0.3756 + 1.483i
f10 1.529i f11 −0.4664 + 1.334i f12 −0.5000 + 1.295i
f13 −0.4652 + 1.231i f14 −0.3451 + 1.266i f15 −0.1409 + 1.291i
f16 −0.3560 + 1.245i f17 1.158i f18 1.158i
f19 −0.1915 + 1.119i f20 1.121i f21 −0.2856 + 1.073i
f22 −0.3119 + 1.061i f23 −0.01805 + 1.070i f24 −0.3479 + 0.9612i
f25 −0.4131 + 0.9106i f26 −0.2619 + 0.9650i f27 −0.1459 + 0.9893i

The GL2(Z) classes of the 27 forms split into 2 distinct SL2(Z) classes,
unless f = f3, f4, f17, f18, f27. This means that the above list becomes 49
parameterizations if we do not identify ±X.
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Samenvatting

In dit proefschrift worden de eigenschappen onderzocht van de diophantis-
che vergelijking X2 + Y 3 = dZr. Hier is d een gegeven geheel getal, r is
3,4 of 5 en X,Y, Z zijn de onbekende gehele getallen waarvan de grootste
gemeenschappelijke deler 1 moet zijn.

Deze vergelijkingen hebben veel gemeen met de welbekende vergelijking
van Pythagoras X2 + Y 2 = Z2 (reeds in 1600 v.Chr. door de Babyloniërs
bestudeerd).

Er zijn oneindig veel oplossingen voor de vergelijking van Pythagoras.
Twee daarvan, (3, 4, 5) en (5, 12, 13) zijn voor velen nog bekend uit de mid-
delbare schooltijd. Een oneindige verzameling oplossingen kan verkregen
worden door waarden van (s, t) in te vullen in X = s2 − t2, Y = 2st,
Z = s2 + t2. Door eventuele verwisseling van X,Y en −Z in plaats van Z
te nemen, krijgt men zelfs de volledige oplossingsverzameling.

Soortgelijke verschijnselen vinden plaats bij X2 + Y 3 = dZr. Er zijn
oneindig veel oplossingen en ze kunnen allemaal verkregen worden door
waarden van (s, t) in een eindig stel formules voor X,Y, Z in te vullen. In
dit proefschrift geven we hier een beschrijving van en een methode om de
formules te vinden.

De methoden en resultaten in dit proefschrift vormen een belangrijke bij-
drage tot de theorie van de diophantische vergelijkingen. De gebruikte meth-
ode vindt zijn oorsprong in de invariantentheorie, een belangrijke tak van
de wiskunde uit de 19e eeuw. De titel van dit proefschrift wordt verklaard
door het feit dat de 60 symmetrieën van het regelmatig 20-vlak (icosaeder)
een sleutelrol spelen in de oplossing van de vergelijking X2 + Y 3 = dZ5.
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