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Abstract 

An increasing number of seismological studies indicate that slabs of subducted lithosphere penetrate the Earth's 
lower mantle below some island arcs but are deflected, or, rather, laid down, in the transition zone below others. 
Recent numerical simulations of mantle flow also advocate a hybrid form of mantle convection, with intermittent 
layering. We present a multi-disciplinary analysis of slab morphology and mantle dynamics in which we account 
explicitly for the history of subduction below specific island arcs in an attempt to understand what controls lateral 
variations in slab morphology and penetration depth. Central in our discussion are the Izu-Bonin and Mariana 
subduction zones. We argue that the differences in the tectonic evolution of these subduction zones- - in  particular 
the amount and rate of trench migrat ion--can explain why the slab of subducted oceanic lithosphere seems to be (at 
least temporarily) stagnant in the Earth's transition zone below the Izu-Bonin arc but penetrates into the lower 
mantle below the Mariana arc. We briefly speculate on the applicability of our model of the temporal and spatial 
evolution of slab morphology to other subduction zones. Although further investigation is necessary, our tentative 
model shows the potential for interpreting seismic images of slab structure by accounting for the plate-tectonic 
history of the subduction zones involved. We therefore hope that the ideas outlined here will stimulate and direct 
new research initiatives. 

1. Introduct ion 

O n e  of  the  chal lenges  in ea r th  sciences is to 
u n d e r s t a n d  the  dynamic  behav iour  of  the  Ea r th ' s  
mant le ,  inc luding  the convective system re l a t ed  to 
the  mot ion  of  l i thospher ic  p la tes  at  the  Ea r th ' s  
surface.  Par t icu la r ly  en igmat ic  has been  the  scale 
length  of  convect ive flow: is convect ion  in the  
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u p p e r  man t l e  and  t rans i t ion  zone  s e p a r a t e  f rom 
tha t  in the  lower  man t l e  ( " l aye red  convec t ion" )  
or  do convect ion  cells encompass  the  ent i re  man-  
t le ( " w ho le  man t l e  convec t ion")?  Cen t ra l  in the  
discussion has b e e n  w he the r  or  not  slabs of  for- 
mer  oceanic  l i t hosphe re  p e n e t r a t e  the  b o u n d a r y  
be tween  the Ea r th ' s  t rans i t ion  zone  (410-660  km) 
and the  lower  mant le  (660-2900 km) [1-5].  

Invers ions  of  t ravel  t imes  of  seismic waves 
have p rov ided  images  of  subduc ted  slab be low 
nor thwes te rn  Pacific is land arcs that  are  inconsis-  
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tent with either layered convection or whole man- 
tle flow with unobstructed slab penetrat ion [6-9]. 
Tomographic  images suggest that subducted slabs 
continue to lower mantle depths below some is- 
land arcs but are laid down in the transition zone 
below others, and that the boundary between the 
transition zone and lower mantle acts as a strong 
though imperfect barrier for mantle flow. This is 
in accord with mounting evidence from numerical 
fluid dynamical modelling for a hybrid form of 
mantle convection, perhaps with a predominance 
of layering [10,11]. Despite an increasing concur- 
rence on the mode and large-scale structure of 
convection, rapid lateral variations in slab mor- 
phology and the behaviour of individual slabs are 
still poorly understood. Available tectonic recon- 
structions of individual subduction zones could 
provide independent  information about slab 
structure, but are, unfortunately, only rarely used 
to interpret seismic observations. 

Results of tomographic imaging by Van der 
Hilst and co-workers [7,8] indicate that subducted 
slab is t rapped in the Earth 's  transition zone 
below marginal basins in the back-arc realms of 
the (southern) Kuril, Japan, and Izu-Bonin  arcs. 
In contrast, slabs of subducted lithosphere seem 
to penetra te  into the lower mantle below the Sea 
of Okhotsk, and below the Mariana arc. Van der 
Hilst and co-workers [7,8] speculated that these 
lateral variations in slab morphology can be un- 
derstood by combining plate-tectonic reconstruc- 
tions with concepts from fluid dynamical mod- 
elling and petrochemistry. In the present paper  
we elaborate their suggestion. We reconcile infer- 
ences from several earth-scientific disciplines and 
show in a qualitative way how seismic and plate- 
motion data can be combined explicitly. 

We use the spatial and temporal  evolution of 
the morphology of the subducted Pacific plate 
below Izu-Bonin  and Mariana arcs as an exam- 
ple, but comment  on other subduction zones as 
well. By outlining differences in the tectonic evo- 
lution of these arcs we aim to understand why the 
slab is t rapped in the transition zone below the 
former but penetrates  the "660 km" discontinuity 
below the latter. We show that the term "deflec- 
tion", although often used, is not an adequate 
description of the predominant  physical process 

that leads to, e.g., the Izu-Bonin  type slab pro- 
file. 

We first discuss seismic evidence pertaining to 
the lateral variation in slab morphology below the 
Izu-Bonin  and Mariana arcs. Subsequently, we 
review briefly some relevant concepts from fluid 
dynamics and petrochemistry, and outline a model 
for the plate-tectonic reconstruction of the area 
under study. Finally, we combine this information 
into a hybrid model for the evolution of the 
morphology of the Izu-Bonin  and Mariana sub- 
duction zones. 

2. Lateral variations in shape of seismic zones 
and subducted slabs 

Old lithosphere of the Pacific plate subducts 
below the Philippine Sea (PHS) plate at the I z u -  
Bonin and Mariana trenches, with a rate of con- 
vergence that decreases towards the south [12] 
(Fig. 1). Both the shape of the seismic Wada t i -  
Benioff zones [13,14] and the nature of subduc- 
tion-related seismicity changes dramatically from 
north to south [15-17]. In Fig. 2 we delineate the 
seismic zones below the Izu-Bonin  and Mariana 
arcs in a simple way by projecting earthquake 
hypocentres to vertical section planes. We used 
hypocentres from Engdahl, Van der Hilst, and 
Buland (in prep.). As can be seen in Fig. 2, the 
Wadat i -Beniof f  zone has a shallow dip at 35°N 
(and below Japan); near  28°N it is distorted and 
its dip changes to sub-horizontal at a depth of 
about 500 km; between 25°N and 21°N very few 
earthquakes occur below a depth of 300 km; and 
south of 19°N the Mariana seismic zone is near- 
vertical with the deepest earthquakes significantly 
deeper  than below the Izu-Bonin  arc. Southward 
from Honshu, Japan, the seismic coupling be- 
tween subducting and overriding plates decreases 
and the Mariana subduction zone is almost "de- 
coupled" [15-17]. Below the Izu-Bonin  arc the 
complexity of deformation within the slab in- 
creases in the same direction [14,18]: events rep- 
resenting shear failure indicate the lateral, south- 
ward movement  of the deeper  part  of the slab. In 
contrast, focal mechanism solutions of deep 
earthquakes below the Mariana arc suggest the 
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Fig. 1. Seismo-tectonic map of the northwestern Pacific re- 
gion. Velocities of plate motion [12] are consistent with the 
NUVEL-1 model [50]. Epicentre locations for earthquakes 
larger than magni tude 4.5 on the Richter scale are from 
Engdahl,  Van der Hilst, and Buland (in prep.). The solid star 
in the upper  r ight-hand corner marks the location of the 
Euler pole for the clockwise rotation of the Philippine Sea 
plate relative to Eurasia; the open star in the lower left-hand 
corner marks the location of the Euler pole for the counter- 
clockwise Pacific Philippine Sea plate motion [12]. The lines 
across the plate boundaries (depicted as dashed line) mark 
the strike lines of the cross sections shown in Fig. 2 (thin) and 
Fig. 3 (thick). 

predominance of down-dip compression. To- 
gether with the variation in shape of the seismic 
zone (Fig. 2) this indicates that at large depths 
subducted lithosphere below the Izu-Bonin arc is 
not continuous in a simple way to the slab below 
the Mariana arc. The age of subducting litho- 
sphere is an important control in the subduction 
process [19], but the increase from about 135 Ma 
at the northern Izu-Bonin trench to over 150 Ma 
at the Mariana trench [20] is too small to explain 
the lateral variations in the Wadat i -Benioff  
zones. We note, however, that significant changes 
in the age of subducted lithosphere have oc- 
curred during the post-Eocene evolution of the 
Philippine Sea plate [20] (see also below). 

Fig. 3 shows a result of tomographic imaging 
of northwestern Pacific mantle structure. The im- 
ages depict the velocity of compressional seismic 
waves relative to a radially stratified, global model 
of seismic velocities. The zones of higher-than- 
average seismic velocities in the direct vicinity of 
the inclined seismic zones depict slabs of sub- 
ducted Pacific plate [7,8]. The slab below the 
Izu-Bonin arc is apparently deflected in the tran- 
sition zone (Fig. 3a), which is in good agreement 
with results of other tomographic studies [6,9] 
and with observed seismicity [7,14,21] (Fig. 2). 
Van tier Hilst and co-workers [8] showed with a 
"checker board test" that the spatial resolution of 
lower mantle structure below the Izu-Bonin arc 
is good. For the specific "checker board" used 
this indicates that variations in seismic structure 
of wave lengths larger than about 200 km, for 
instance a continuation of the slab into the lower 
mantle, would have been recognised by the inver- 
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Fig. 2. Wadat i -Beniof f  zones below Izu-Bonin  and Mariana arcs. Hypocentre locations are from Engdahl,  Van der Hilst, and 
Buland (in prep.). The lines of cross section are given in Fig. 1. Above each cross section the approximate latitude of the centre of 
the section lines is given. 
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[7-9]. Second, the amplitude of the contrast in 
P-wave velocity is large (more than 6%) and a 
global velocity increase of that magnitude would 
have been detected unequivocally in other seis- 
mological studies. Below the Mariana arc the 
slab-like high-velocity zone coincides with the al- 
most vertical seismic zone in the upper mantle 
and transition zone (Fig. 2) and - - in  contrast to 
the Izu-Bonin s lab--seems to continue to lower 
mantle depths (Fig. 3b). This is in accord with 
previous Seismic studies [24,25]. Resolution tests 
indicate, however, that the seismic data used can 
not resolve the depth extent of the slab in the 
lower mantle [8]. 

3. Inferences from fluid dynamical modelling and 
petrochemical studies 

~m 

Fig. 3. Tomographic  images from the study of Van der Hilst 
and co-workers [7,8]. They applied a linearized inversion 
technique [51] to travel time data of the direct P- and the 
surface reflected pP-waves and solved for aspherical seismic 
structure of the Ear th 's  mantle.  The  images depict seismic 
P-wave velocity relative to iasp91, a radially stratified model 
of seismic velocity [52]: the dark (light) grey represents  regions 
where seismic velocity is higher (lower) than average. (a) 
Mantle section across the Izu-Bonin  arc (top); and (b) mantle 
section across the Mariana arc (bottom). For locations see 
Fig. 1. 

sion method used. It has been argued that a 
seismic discontinuity exists at an average depth of 
about 520 km [22]. This discontinuity is not pre- 
sent in the radially-stratified reference model. 
This could cause spurious structures in the im- 
ages [23] but there are at least two reasons to 
believe that it can not explain the horizontal 
anomaly in Fig. 3b. First, the sub-horizontal 
anomaly is laterally restricted to certain regions 

The flux across the Earth's transition zone 
depends in a complex way on buoyancy forces 
due to variations in density, on thermodynamic 
properties of iso-chemical phase changes, on the 
depth dependence of viscosity and rheology in 
the transition zone [1-5,26], an d - - a s  will be ar- 
gued be low--on  the relative motion of the litho- 
spheric plates. Numerical fluid-dynamical experi- 
ments revealed that slab penetration and deflec- 
tion, or, rather, deposition near the upper- lower  
mantle boundary, can coexist in the Earth's man- 
tle, although they may be transient phenomena 
[10,11,27,28]. These models do not (yet) account 
for temperature dependent viscosity to simulate 
lithospheric plates and do not assess the effects 
of all buoyancy forces and can not readily explain 
the variations in slab morphology as discussed in 
the previous section. 

Several investigators advocated that unob- 
structed slab penetration into the lower mantle is 
doubtful, because differential phase transforma- 
tions in a compositionally stratified slab and the 
stability of garnet to large depths (possibly even 
to 800 km [Irifune, pers. commun., 1993]) can 
cause parts of the slab to become buoyant in the 
transition zone and uppermost lower mantle 
[1,3,29,30]. Others opposed this view and argued 
that this chemical buoyancy is overwhelmed by 
the integrated negative thermal buoyancy and 
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does not prevent the penetration of slabs [4,31]. 
May the latter be correct for steep slabs [4,31], it 
does not necessarily hold for sub-horizontal slabs, 
or slabs with a small dip in the transition zone. 
Chemical buoyancy can then become significant 
for the dynamics [3,29] and trap the slab in a 
layer that is gravitationally stable on the time 
scales considered here ( < 50 Myr) [32]. We argue 
that there is not necessarily a causal relationship 
between chemical buoyancy and slab morphology. 
The initial deflection of a slab may well be caused 
by other factors such as an increase in viscosity 
a n d / o r  intrinsic density, perhaps in combination 
with the lateral displacement of downward flow 
in the upper mantle. 

Laboratory experiments indicate that the dy- 
namics and kinematics of lithospheric plates in- 
volved in the collision process can control the 
morphology of subducted slab [33, Griffiths and 
Hackney, pers. commun., 1993]. Kincaid and O1- 
son [33] showed that if the lateral migration of 
the trench is sufficiently fast, subducted slab can 
be laid down above a flow-impeding boundary. In 
contrast, when the trench is stationary with re- 
spect to the lower mantle, subducted slab is likely 
to buckle and eventually penetrate the "660 kin" 
discontinuity provided an increase in intrinsic 
density is not too large [27,33,34]. In the following 
discussion of a plate-tectonic reconstruction we 
are, therefore, particularly interested in the 
amount and rate of lateral migration of the 
trenches and island arcs in the Izu-Bonin and 
Mariana plate boundary zone. 

4. Plate-tectonic reconstruction and the history of 
subduction 

The plate-tectonic history of the northwestern 
Pacific marginal basins is still disputed. For the 
Philippine Sea plate, reconstructions are compli- 
cated because of the absence of spreading ridges. 
Various evolution models have been proposed 
which can be classified in two groups. In one 
group, investigators have advocated that the loca- 
tion of the triple junction of the Japan, Ryukyu, 
and I z u - B o n i n / M a r i a n a  trenches has been fixed 
relative to Japan and argued against a rotation of 

the Philippine Sea plate [35]. However, others 
advocated that the triple point of the Philippine, 
Pacific, and Eurasian plates migrated from the 
southwest to the northeast, accompanying a 
clockwise rotation of the Philippine Sea plate 
[36-38]. Results of a recent expedition of the 
Ocean Drilling Program (ODP) provides evi- 
dence in support of the latter group of models. 
Paleomagnetic data from islands and ODP sites 
in the Bonin-Mariana arc are indicative of a 
clockwise rotation by several tens of degrees since 
the Eocene, which can not be attributed to local 
deformation of the arc [39]. Models bearing on 
the clockwise rotation of the Philippine plate and 
the northeastward migration of the triple junction 
have in common that the trench retreat of the 
Izu-Bonin arc was larger than that of the Mari- 
ana arc during 30-17 Ma, although the amount 
of trench retreat may differ somewhat from model 
to model [36-39]. A detailed discussion of the 
plate reconstructions is beyond the scope of this 
paper. 

The present discussion is illustrated by the 
reconstruction by Seno and Maruyama [37] and 
Seno [20] which belongs to the latter group of 
models (Figs. 4 and 5). This reconstruction bears 
on two episodes of oceanward trench migration, 
accompanied by back-arc spreading in the over- 
riding PHS plate. After the change of Pacific 
plate motion in the Eocene and initiation of 
subduction the proto Izu-Bonin trench migrated 
northward until ca. 40 Ma (Late Eocene), result- 
ing in the back-arc opening of the West Philip- 
pine Sea basin (Figs. 4a,b). No significant further 
migration of the proto Izu-Bonin and Mariana 
trenches occurred between 40 and 30 Ma. Be- 
tween about 30 and 17 Ma (Late Oligocene-Mid- 
dle Miocene) the proto Izu-Bonin trench mi- 
grated nearly 1000 km (ca. 75 km Myr 1) but 
trench migration decreased southward to a maxi- 
mum of 400 km for the Marianas (ca. 30 km 
Myr -1) (Figs. 4c,d and 5). The component of 
concurrent absolute motion of the Pacific plate 
perpendicular to the trench axis is estimated to 
be 850 km [40]. The rapid migration of the Izu-  
Bonin trench was accompanied by the back-arc 
opening of the Shikoku basin; the Parece Vela 
basin opened behind the retreating Mariana 
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t rench.  The  age of  the  subduc ted  Pacific l i tho- 
sphere  inc reased  d ramat ica l ly  ( f rom about  50 M a  
to 110-130 Ma)  a r o u n d  25 Ma,  which increased  
the  nega t ive  buoyancy  and the the rmal  iner t ia  of  
the  slabs and may  have init ial ly e n h a n c e d  the  
t r ench  migra t ion  and  back  arc  sp read ing  [20] 
(Figs. 4c,d). 

Since the  midd le  Miocene  no signif icant  
oceanward  t r ench  migra t ion  occurred .  In  the  La te  
M i o c e n e - P l i o c e n e ,  crust  under ly ing  the  west  
Ph i l ipp ine  bas in  had  b e c o m e  old enough  to cause  
subduc t ion  a long the Phi l ipp ine  t rench,  and  the  
mot ion  of  the  PHS p la te  re la t ive  to Euras i a  
changed  f rom nor thward  to nor th-wes tward .  Since 
this t ime,  the  loca t ion  of  the  Eu le r  pole  for the  
mot ion  be tween  the  PHS and Euras ian  p la tes  
no r theas t  of  J a p a n  (Fig. 1) resu l ted  in a clockwise 
ro ta t ion  of  the  PHS plate .  This  ro ta t ion  causes  
the  r e t r ea t  of  the  PHS pla te  at the  M a r i a n a  
t rench  to be la rger  than  at the  I z u - B o n i n  t rench.  
I t  has been  a rgued  [41,42] tha t  this ro ta t ion ,  
a d d e d  to the  pos t -Ol igocene  sou thward  increase  
in age of  subduc ted  l i t hosphe re  [20] (Fig. 4d,e), 
caused  the sou thward  s t eepen ing  of  the  I z u -  
B o n i n / M a r i a n a  slab ev ident  f rom seismici ty (Fig. 
2). U y e d a  and  K a n a m o r i  [15] and Le Pichon and 
H u c h o n  [41] a s sumed  tha t  the  M a r i a n a  slab was 
anchored  in the  lower man t l e  and  exp la ined  the 
recen t  ( <  6 Ma)  open ing  of  the  M a r i a n a  t rough 
by the l andward  r e t r ea t  of  the  PHS pla te .  The  
mechan i sm for back-a rc  sp read ing  beh ind  the 
p r e sen t -day  M a r i a n a  arc is thus  d i f fe ren t  f rom 
the  processes  that  led to the  open ing  of  the  o lde r  
Shikoku and  P a r e c e - V e l a  basins.  T h e r e  is evi- 
dence  for the  no r thward  p r o p a g a t i o n  of  back-a rc  
sp read ing  in the  M a r i a n a  t rough  [43]. The  small  
extens ion ( ~  2 - 5  km), the  age of  the  rift  ( ~  2 
Ma),  and  the acce le ra t ing  subs idence  in the  Bonin 
back-a rc  ind ica te  that  the  extens ion beh ind  the 
I z u - B o n i n  arc is in an ear ly s tage of  r if t ing [44]. 
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Fig. 5. Reconstruction of the Philippine Sea plate at 30 Ma to 
illustrate the difference in the amount and rate of migration 
of the Izu-Bonin and Mariana trenches (after [37]). The 
trench at 17 Ma is shown by the broken line. From the 
comparison of the trench lines at 30 and 17 Ma the amount of 
trench migration is estimated to be up to 1000 km for the 
northern lzu-Bonin and at most 400 km at the centre of the 
Mariana trench. These figures are, however, model dependent 
[36-39] (see text). 

5. Evolution of slab morphology 

W e  summar i se  seismic and tec tonic  fea tu res  
pe r t a in ing  to slab s t ruc ture  be low the PHS p la te  
in Figs. 5 and 6. In the  fol lowing we specula te  on 
how the  tec tonic  his tory reviewed above (sect ion 
4) could  have caused  a mass  d is t r ibu t ion  in the  

Fig. 4. Plate-tectonic reconstructions of the West Pacific region to illustrate the age of the Pacific plate at various times and the 
evolution in time and space of the Izu-Bonin and Mariana convergent margins (after [20]). Isochrons of the Pacific plate are from 
ref. 40. (a) Reconstruction at 48 Ma. (Middle Eocene); (b) 38 Ma. (Late Eocene-Early Oligocene). The West Philippine basin has 
stopped opening; (c) 25 Ma. (Late Oligocene). Opening of the Shikoku-Parece Vela basins, the South Kuril basin, and the Japan 
Sea. Old oceanic lithosphere of the Pacific plate started to subduct beneath the Izu-Bonin and Mariana trenches; (d) 18 Ma. (Early 
Miocene). Back-arc basins of the western Pacific (shaded) stopped opening; (e) Present-day situation. The Philippine Sea plate is 
subducting beneath east Asia, producing the opening of the Mariana trough. 
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Earth's transition zone that, with the inferences 
from petrochemical and fluid dynamical studies 
(section 3), can explain the seismic observations 
(section 2). We describe the evolution of the 
Izu-Bonin  and Mariana subduction zones sepa- 
rately, but stress that the temporal changes of 
slab morphology may gradually propagate in space 
from south to north. 

During the fast Oligocene-Middle Miocene 
(30-17 Ma) trench migration relatively young 
lithosphere subducted at the proto Izu-Bonin  arc 
(Figs. 4 and 5). The combination of rapid trench 
migration and the initially low age and thermal 
inertia of subducted lithosphere could have re- 
sulted in a shallow subduction angle [19] below 
the northern part of the PHS plate and the laying 
down of slab material above the more viscous and 
perhaps slightly denser lower mantle [29,33] (Fig. 
7a). In contrast, the smaller Oligocene migration 
of the Mariana trench (Figs. 4 and 5) may have 
caused subducted lithosphere to accumulate in 
the transition zone in a relatively small area, 
without much, if any, laying down of the Mariana 

slab in a horizontal layer below the southern part 
of the PHS plate. 

Since the Early Miocene, old Pacific litho- 
sphere has been subducting below the Mariana 
arc [20] (Fig. 4) along a trajectory with a dip that 
became larger with progressing time [19,41,42]. 
The continued accumulation of subducted litho- 
sphere with high thermal inertia in a laterally 
restricted area in the transition zone created con- 
ditions favourable for the penetration, or anchor- 
ing, of the slab in the lower mantle [33,34] (Fig. 
7b). When the slab became anchored in the lower 
mantle and the landward retreat of the PHS plate 
continued, the Mariana trough opened by post- 
Miocene back-arc spreading [37,41] (Fig. 7b). In 
the same time interval, the dip of the Izu-Bonin  
slab could have become larger because of the 
cessation of oceanward trench migration and the 
subsequent westward migration of the subduction 
hinge [42], more so in the south than in the north 
due to the clockwise rotation of the Philippine 
Sea plate and the southward increase in age of 
subducted lithosphere. Meanwhile, the horizontal 
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Fig. 6. Cartoon of the three-dimensional seismic structure below the Izu-Bonin and Mariana arcs and the Philippine Sea plate. 
This is an interpretation of the seismic images obtained for this region. Although slabs are presented as "plates" we assume that on 
geological time scales they do not behave as strong, elastic plates but as viscous fluids [28]. The lateral transition is represented as a 
tear but this is not resolved by the seismic data considered and--depending on rheology--can also be a flexural transition. The 
arrows indicate the clockwise rotation of the PHS plate and illustrate the difference in westward retreat of the overriding PHS 
plate between the Mariana and Bonin realms. 
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Fig. 7. Cartoon of the evolution of slab morphology below the Izu-Bonin and Mariana convergent boundaries. This diagram is 
based on the interpretation of the seismic evidence [7,8,14], a plate tectonic reconstruction of the Philippine Sea region [20,37], 
scenarios for the southward steepening of the subducted slab [15,41,42], and dynamical [10,11,33,34] and petrochemical models 
[3,29,30]. (a) Slab morphology after Late Oligocene to Middle Miocene trench migration (top). Below the northern part of the PHS 
plate subducted lithosphere is laid down in the transition zone as a result of the large oceanward migration of the Izu-Bonin 
trench. The amount and rate of trench migration decrease towards the south, and subducted lithosphere below the Mariana arc 
accumulated in a smaller region above the lower mantle. (b) Present-day slab morphology (middle). The Mariana trough opened 
when the slab became anchored in the lower mantle and the overriding PHS plate retreated westward, away from the trench. (c) 
Speculation on future slab morphology (bottom). The subduction below the future lzu-Bonin arc may be similar to the 
post-Miocene Mariana-type of subduction (middle). The continued westward retreat of the PHS plate may then result in more 
pronounced back-arc spreading behind the Izu-Bonin arc. 

slab in the  t rans i t ion  zone  be low the no r the rn  
par t  of  the  PHS p la te  could  have r e m a i n e d  s table  
(Fig. 7b) in accord  with pe t rochemica l  mode l s  
[1,29,30] and  e s t ima ted  survival t imes of  a gravita-  
t ional ly  s table  layer  [32], or  with dynamica l  mod-  
els if the  d i f fe rence  in viscosity be tween  u p p e r  
and lower  mant le  is large  enough  [33]. Below the 
I z u - B o n i n  arc, the  ongoing  fast subduc t ion  of  old 
l i t hosphe re  can cause  the  slab to buckle  in the  
t rans i t ion  zone,  which is a p p a r e n t  in the  cent ra l  
pa r t  of  the  p r e s e n t - d a y  l z u - B o n i n  suhduc t ion  
zone [14]. W e  specu la te  that  eventual ly  also the  
I z u - B o n i n  slab may  p e n e t r a t e  into the  lower 
mant le ,  s imilar  to the  pos t -Miocene  M a r i a n a  type 
of  subduct ion .  In  this scenar io ,  the  a rea  below 
which slab p e n e t r a t i o n  occurs  expands  to the  

north.  If  the  l andward  r e t r ea t  of  the  PHS p la te  
cont inues ,  the  p e n e t r a t i o n  into the  lower  man t l e  
of  the  I z u - B o n i n  slab is likely to be a c c o m p a n i e d  
by the con t inued  no r thward  p r o p a g a t i o n  of  r if t ing 
in the  M a r i a n a  t rough  and fu r the r  back-a rc  
sp read ing  in the  I z u - B o n i n  rea lm (Fig. 7c). 

6. Discussion and concluding remarks 

W e  used  resul ts  f rom pe t rochemica l  and  fluid 
dynamica l  s tudies  in combina t ion  with a p laus ib le  
p l a t e - t ec ton ic  recons t ruc t ion  for the  a rea  u n d e r  
s tudy to u n d e r s t a n d  be t t e r  the  seismic observa-  
t ions of  l a te ra l  var ia t ion  in slab morpho logy  be-  
low the  I z u - B o n i n  and M a r i a n a  arcs. Cen t ra l  in 
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our discussion is the relationship between the 
amount and rate of trench migration and the 
deep structure of the slab. We argue that differ- 
ences in migration of the Izu-Bonin and Mariana 
trenches could have caused the deposition of 
subducted slab in the transition zone below the 
former, but penetration into the lower mantle 
below the latter arc (Figs. 3, 6, and 7). In our 
explanation of the morphology of the Izu Bonin 
slab, "deflection" is not an adequate description 
of the p r e d o m i n a n t  physical processes that cause 
the deep part of the Izu-Bonin slab to be sub- 
horizontal, because we do not suggest a change of 
direction of flow from vertical to horizontal. In- 
stead, we prefer to describe the process in terms 
of a deposition, or a laying down, of subducted 
slab above a more viscous and perhaps slightly 
denser lower mantle as a result of the lateral 
displacement of the trench. 

Our discussion is illustrated with a particular 
plate-tectonic reconstruction, but our slab-evolu- 
tion model is consistent with other reconstruc- 
tions of the Philippine Sea region that are based 
on the northeastward migration of the triple junc- 
tion of the Japan, Izu-Bonin,  and Ryukyu 
trenches and the clock-wise rotation of the 
Philippine Sea plate, such as the model by Jolivet 
and co-workers [38] and those based on paleo- 
magnetic data [39]. 

Further study is obviously required, but the 
relationship between oceanward trench migration 
and the lying of subducted slab near the bound- 
ary between the Earth's transition zone and the 
lower mantle seems to apply to other convergent 
plate boundary zones as well. The apparently 
deflected slabs in the northwest Pacific as in- 
ferred from tomographic imaging [7-9] are all 
located below marginal basins that formed by 
back-arc spreading in the Late Oligocene to Mid- 
dle Miocene [20,38,45] (Fig. 4e): the sub-horizon- 
tal Izu-Bonin  slab below the Shikoku basin, the 
Japan slab below the Japan Sea, and the southern 
part of the Kuril slab below the Kuril basin. The 
northern part of the Kuri[ slab seems to pene- 
trate below the Kamchatka trench [7], which con- 
firms the work by Jordan and co-workers [24]. 
This arc has a long history of subduction [46], but 
no evidence for oceanward migration of the Kam- 

chatka trench is reported. Preliminary results of 
tomographic imaging of southwestern Pacific 
mantle structure [Van der Hilst and Engdah[, in 
prep.] indicate that Pacific lithosphere subducted 
along the Tonga trench accumulates in a large, 
shallowly dipping body between 500 and 800 km 
in depth below the South Fiji basin. This basin 
formed by Oligocene [20, 38] back-arc spreading 
behind the clockwise migrating Tonga-Kermadec  
trench (Fig. 4e). The deep earthquakes (focal 
depth > 500 kin) below the Fiji basin [47] appear 
to be located in this apparently deflected slab. 

Our evolutionary model is consistent with a 
range of physical mechanisms that impede but do 
not bar radial flow across the boundary between 
the transition zone and the lower mantle. The 
model bears on the transient nature of slab mor- 
phology and the flux across the boundary be- 
tween transition zone and lower mantle. Appar- 
ent slab deflection and penetration can be juxta- 
posed in space and episodic in time (in accord 
with expectations from fluid dynamical experi- 
ments [Griffiths, personal commun., 1992]). From 
the tectonic reconstruction underlying our model 
[37] we infer that a transition to slab penetration 
can occur on a time scale of the order of 10 Myr, 
which is considerably faster than earlier estimates 
[29,33] but in good agreement with recent models 
involving catastrophic mantle overturn [48]. 

The transient time depends on the tectonic 
evolution and is likely to vary between geographic 
regions. On time scales of the order of the tran- 
sient time the flux between upper and lower 
mantle may be controlled in a complex, non-lin- 
ear way by the motion of plates in combination 
with the depth dependence of rheology, intrinsic 
density, and viscosity, and the thermo-dynamics 
of the relevant phases changes, including those 
occurring in the compositionally stratified slab. 
The relatively fast, catastrophic "flushes" of up- 
per mantle material into the lower mantle [48] 
may be related directly to plate-tectonic events. 
On time scales significantly larger than the tran- 
sient time, the flux across the boundary between 
transition zone and lower mantle, and thus the 
large scale structure of mantle convection, de- 
pends more directly on the depth dependence of 
intrinsic density, the thermo-dynamics of the iso- 
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chemical phase changes from upper to lower 
mantle mineral assemblages, and perhaps on rhe- 
ology [26]. Most numerical and petrochemical 
models relate to this long-time average flux. In 
contrast, high-resolution seismic images are 
"snap-shots" of the transient regime and should 
be interpreted in the light of the tectonic evolu- 
tion of a particular area. 

We do not claim that the proposed evolution- 
ary model is conclusive. The plate-tectonic his- 
tory of the northwestern Pacific marginal basins 
is still disputed, although recent models concur 
on the aspects that are most important for our 
discussion, i.e. the trench migration and rotation 
of the PHS plate. We can only speculate, not 
prove, that the differences in subduction history 
between the Izu-Bonin and Mariana realms are 
large enough to explain the observed lateral vari- 
ations in slab morphology. The relationships be- 
tween tectonic evolution, in particular trench mi- 
gration, and deep slab structure have to be quan- 
tified (see [49] and references therein for a 
promising approach) and established for other 
convergent margins as well. In addition, the time 
characteristics of the transients have to be inves- 
tigated, either numerically or experimentally. 
Nevertheless, we argue that an explicit multi-dis- 
ciplinary approach such as presented here can 
give insight into the complex processes involved 
in mantle dynamics. It can constrain the interpre- 
tation of seismic images and results of fluid dy- 
namical experiments and helps to understand, for 
instance, why some subducted slabs penetrate 
into the lower mantle and why others don't. We 
hope that the ideas outlined in this paper will 
direct new research initiatives. A further under- 
standing, and quantification, of the relationships 
between relative plate motions and deep slab 
behaviour could eventually enable us to use plate 
motion data explicitly to constrain the seismic 
inversions. 
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