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Tomographic imaging indicates that slabs of subducted lithosphere can sink
deep into Earth’s lower mantle. The view that convective flow is stratified at
660-kilometer depth and preserves a relatively pristine lower mantle is there-
fore not tenable. However, a range of geophysical evidence indicates that
compositionally distinct, hence convectively isolated, mantle domains may
exist in the bottom 1000 kilometers of the mantle. Survival of these domains,
which are perhaps related to local iron enrichment and silicate-to-oxide trans-
formations, implies that mantle convection is more complex than envisaged by
conventional end-member flow models.

Despite recent progress in tomographic imag-
ing (1–3) and numerical flow modeling (4),
important aspects of convective stirring of
Earth’s mantle have remained enigmatic. Anal-
yses of trace elements and noble gas isotopes
suggest that distinct mantle reservoirs have sur-
vived for a large part of Earth’s 4.5 3 109 year
history (5–7). In some convection models a
reservoir boundary at 660-km depth separates a
depleted upper from an enriched lower mantle
(5, 6), but computer simulations demonstrate
that such layering of flow requires radial vari-
ations in intrinsic density and cannot be main-
tained on geological time scales by viscosity
stratification and effects of isochemical phase
transitions alone (8). There is, however, no
compelling evidence for a change in bulk
chemistry at 660-km depth (9, 10), and seismo-
logical evidence implies that slabs of subducted
oceanic lithosphere can sink deep into the lower
mantle (2, 3). Resolving the dilemma requires
new views on isotope and major element rela-
tionships (11) or on lower-mantle processes.
We explore the latter and propose that segrega-
tion of mantle domains does occur but at much
greater depth than the base of the upper-mantle
transition zone.

A recent tomographic study (2) revealed
two depth intervals, from ;400- to 1000-km
depth and from ;1700- to 2300-km depth,
where inferred mantle structure seems too com-
plex for undisturbed whole-mantle convection.
This complexity is borne out by the radial cor-
relation of mantle structure (12) (Fig. 1). The
shallow interval of reduced radial correlation
(Fig. 1) comprises the upper-mantle transition
region in a broad sense (13, 14). Analog (15)

and numerical (16) flow modeling demonstrate
that the complex flow trajectories revealed by
seismic imaging (17) may merely represent
local and transient layering (18) of a convective
system that is otherwise characterized by deep,
but not necessarily mantle-wide, circulation (2,
3). The persistence of structural complexity to
near 1000-km depth (Fig. 1) corroborates pre-
vious inferences (19–21) and is perhaps re-
lated to the stability of Al-rich phases and
silicate ilmenite into the topmost lower man-
tle (22). The base of this interval coincides
with mid-mantle discontinuities as inferred
from converted seismic waves and mantle
impedance profiles (23), but there is no con-
sensus on either the global significance or the
cause of these discontinuities, and it is not
obvious if and how they are related to the
complexity of mantle structure.

Seismologically observed complexity in the
lower mantle probably reaches a maximum in
its bottom 300 km, the D0 region (24, 25).
However, several lines of geophysical evidence
suggest that structural and chemical heteroge-
neity is not confined to this region but extends
up to at least 1000 km above the core-mantle
boundary (CMB). High-resolution tomography
has revealed a change in the spatial pattern of
heterogeneity in the middle of the lower mantle
(2, 3). To investigate the deep mantle in more
detail, we enhanced data coverage by including
high-quality differential travel-time residuals
from core-refracted (PKP) waves (26). The
new images confirm that at 1700 6 200 km
depth, the linear features of higher-than-average
P wavespeed that are so prominent in the mid-
mantle (Fig. 2A) begin to disintegrate (Fig. 2B),
with only some fragments of them connecting
to the D0 region (2). Beneath the depth interval
from 1700 to 2300 km, which is devoid of
spatially coherent structures (Fig. 3), a pattern
emerges of long-wavelength structures that be-
comes more pronounced toward the base of the

mantle (Fig. 2C). This shift to long-wavelength
structures is consistent with results of other
studies (27).

The changes in the pattern or spectrum of
heterogeneity do not, by themselves, require
spatial variations in bulk chemistry. Sheetlike
downwellings may break up when they sink to
larger depth in a spherical medium (28), and the
bifurcated downwellings spread out when they
approach Earth’s dense core, which explains
the shift to long-wavelength structure. Radial
variations in viscosity (4, 29) can force this to
happen at shallower depths. Furthermore, seis-
mic images are a “snapshot” of time-dependent
processes (3), and the inferred change in the
planform of mantle structure may be a transient
feature related to past plate reorganization.
Some of the slabs that are detected in the mid-
mantle may not yet have reached 2000-km
depth, whereas others may no longer be detect-
able (2). The global extent of the disruption
(Fig. 3) can be explained if, with the exception
of the most thermally inert downwellings—for
example, beneath eastern Asia and central
America (2, 3)—slabs lose their excess nega-
tive (thermal) buoyancy and assimilate in the
middle of the lower mantle (9).
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Fig. 1. Depth variation of two global diagnos-
tics deduced from recent tomographic models
(2, 32). The radial correlation (solid line) (12) is
a measure of the continuity of structure in
radial direction. For our purposes the absolute
values are less important than the relative vari-
ations, which reveal a reduced correlation of
structure between 400 and 1000 km and be-
tween 1600 and 2500 km depth. The dashed
line depicts the radial variation of the root
mean square (RMS) amplitude of relative vari-
ations of bulk sound and shear wavespeed, z 5
dlnf/dlnb, after (32); see (30) for explanation
of symbols. The open (gray) symbols mark the
depth range where scattering of short-period
PKP waves may occur (35).
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Other observations are, however, more dif-
ficult to explain within the framework of purely
thermal convection. First, joint interpretations
of P and S data (30) have revealed radial chang-
es in z 5 dlnf/dlnb (the ratio between relative
variations in bulk sound, f 5 =k/r, and shear
wavespeed, b 5 =m/r) (31, 32). The depths
where the root mean square (rms) amplitude of
z changes most coincide with steep gradients in
the radial correlation profile (Fig. 1). This ob-
servation suggests that the mantle comprises
three dynamic regimes, and not two as suggest-
ed by conventional models of stratified flow. In
the bottom third z varies laterally, with positive
and negative values contributing to the en-
hanced rms values (32). A recent study (33)
revealed that the wavespeed ratio n 5 dlnb/
dlna, with a the compressional wavespeed,
reaches anomalous values in certain regions
only—for example, in the central Pacific man-
tle deeper than 1800 km. The lateral, and hence
isobaric, changes in sign and magnitude of z or
n are hard to explain solely by thermal varia-
tions at high ambient pressures and suggest
variations in composition (34). There is a cave-
at: Interference with core-refracted SKS waves
can degrade the quality of the direct S data for
epicentral distances between, roughly, 80° and
90°, that is, S wave turning points deeper than
about 2000 km. Further research is thus re-
quired to substantiate the inferred changes in z
and n in the deep mantle.

Second, analysis of high-frequency (1 Hz)
precursors to the core phase PKP has provided
compelling evidence for the presence of small
(approximately tens of kilometers) scatterers of
seismic energy in the bottom 1000 km or so of
the mantle (35). Both the sharpness of their

interface and their size are inconsistent with a
thermal origin. Short-period P-S phase conver-
sions at 1600-km depth have also been ex-
plained by compositional heterogeneity (36).
The geographical distribution of either type of
scatterer is, however, not yet established, so that
it is not currently known if and how these
observations relate to large-scale patterns of
mantle flow.

Third, the seismologically slow regions that
contribute to the long-wavelength pattern in the
deep mantle—for example, beneath the Pacific
and Africa—often extend far above the CMB
(2, 3, 27, 33, 37). Image resolution is an issue,
but the dimension and morphology of such
“mega-plumes” differ from those expected for
thermal events and, even with a range of bound-
ary conditions and viscosity profiles, they are
not easily reproduced by computer simulations
of thermal convection (4, 38). Convective insta-
bilities limit the temperature contrast across a

purely thermal boundary layer, whose collapse
can thus not produce sufficient temperature con-
trasts to explain the low wavespeeds (39, 40).

Finally, slight superadiabatic tempera-
tures in the bottom 1000 km of the mantle
have been proposed on the basis of (i) small
radial variations of the inhomogeneity param-
eter (41, 42), (ii) an increase with depth of
viscosity and, perhaps, density that is smaller
than expected from adiabatic compression
(43, 44), and (iii) numerical flow modeling
with maximum viscosity near 2000-km depth
(45). Fundamental uncertainties render these
inferences inconclusive (43, 46), but if true,
superadiabatic temperatures suggest ineffec-
tive removal of heat from the deep mantle.
The implied sluggish convection can tempo-
rarily be achieved with pressure- and temper-
ature-dependent rheology (45) but is difficult
to maintain on geological time scales without
gravitational stabilization if radiogenic heat

2000 kmB

2800 kmC

1250 kmA

FastSlow

Fig. 2. Lateral variation in compressional wavespeed at 1250 km (A),
2000 km (B), and 2800 km depth (C). Tomographic imaging suggests that
there is no gradual change in the pattern of heterogeneity in the mid-
mantle to that just above the CMB; see also Fig. 3. The wavespeed varies
between 60.6% relative to the reference values.

Fig. 3. Iso-surface representation (Cartesian projection) of a smooth version of the model displayed
in Fig. 2. The regions of faster-than-average compressional wave propagation illustrate the
worldwide disruption of structure at about two-thirds of the depth to the CMB. Wavespeeds less
than 0.34% faster than the reference values are not shown; choosing a smaller amplitude cut-off
would reveal narrow fast structures protruding to the CMB beneath Central America and east Asia,
which seem isolated events.

R E P O R T S

19 MARCH 1999 VOL 283 SCIENCE www.sciencemag.org1886



production is significant. High-viscosity
blobs in the deep mantle have been proposed
to explain the survival of distinct, enriched-
isotope reservoirs (47), but the enhanced heat
production would rapidly destroy the viscos-
ity contrast unless it is somehow controlled
by compositional variations.

Each of these lines of evidence needs to be
substantiated, but together they suggest changes
in bulk composition in the bottom third of the
mantle. An exciting possibility is that the anom-
alous domains contain relatively undepleted
material that has remained isolated from the rest
of the mantle since the early stages of Earth’s
evolution. The presence of enriched material
implies enhanced heat production, and, analo-
gous to the stabilization of D0 material pro-
posed by others (40, 48), the positive buoyancy
must be compensated by increased intrinsic
density if the reservoirs are to remain dynami-
cally stable (7). The existence of dense but
seismologically slow (and presumably hot) re-
gions in the deep mantle has been confirmed by
studies of Earth’s free oscillations (49). The net
density increase may be small, which allows
substantial topography of the thermochemical
boundary layer (7, 38). Some downwellings
may depress the interface and sink to near the
CMB—for example, beneath eastern Asia and
central America. Elsewhere, the hot, dense ma-
terial may rise up to large distances above the
CMB, which can explain the “mega-plumes”
beneath Africa and the western Pacific (38) and
perhaps also the scatterers in the mid-mantle
(36). It may not be easy to detect the interface
by conventional seismic imaging on the basis of
waveform stacks.

Understanding the above inferences in terms
of high-pressure major element mineralogy and
phase chemistry remains a challenge. Of poten-
tial importance is the breakdown of mantle sili-
cates into dense oxides (14), along with, and
perhaps as a mechanism for, iron enrichment.
The thermodynamic stability of (Mgx,Fe12x)-
SiO3 perovskite is fiercely debated (9, 50), but
experimental (51) and theoretical (52) studies
suggest that, depending on the geotherm, it can
dissociate into magnesiowüstite, (Mgy,Fe12y)O,
and post-stishovite, SiO2 (53), at pressures ex-
ceeding 65 GPa (;1600-km depth). Enriched in
iron (x . y) compared with the bulk lower
mantle, magnesiowüstite will be denser and seis-
mically slower than perovskite (54). At these
high pressures, FeO-rich phases may separate
from the MgO-rich assemblage (55) and trans-
form to denser structures (56), thus enhancing
Fe enrichment and wavespeed reduction. Fur-
thermore, the changes in mineralogy can also
influence physical processes; for example, iron
may have leached out of the silicate mantle
while it has been retained in the oxide-rich do-
mains (57). In this provocative scenario, lateral
variations in bulk composition results from the
temperature dependence of both the silicate-to-
oxide and the FeO transformations. In the cold

downwellings of a convective system, the per-
ovskite may remain stable across the entire
depth range of the mantle, whereas the (Fe-rich)
oxides may be concentrated in and help stabilize
the seismically slow, isotopically enriched, and
presumably hot regions elsewhere.
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Dipping Low-Velocity Layer in
the Mid–Lower Mantle: Evidence
for Geochemical Heterogeneity

Satoshi Kaneshima1* and George Helffrich2

Data from western United States short-period seismic networks reveal a con-
version from an S to a P wave within a low seismic velocity layer (greater than
or equal to the 4 percent velocity difference compared to the surrounding
mantle) in the mid–lower mantle (1400 to 1600 kilometers deep) east of the
Mariana and Izu-Bonin subduction zones. The low-velocity layer (about 8 ki-
lometers thick) dips 30° to 40° southward and is at least 500 kilometers by 300
kilometers. Its steep dip, large velocity contrast, and sharpness imply a chemical
rather than a thermal origin. Ancient oceanic crust subducted into the lower
mantle is a plausible candidate for the low-velocity layer because of its broad
thin extent.

Planetary differentiation and convection cre-
ate heterogeneities in the mantle, which are
ultimately related to the cooling of Earth over
the age of the solar system. Seismically, these

heterogeneities express themselves in veloc-
ity heterogeneity due to variations in temper-
ature, bulk composition, and phase changes
in the mantle. In the upper mantle, all three
mechanisms act, accounting for the greater
velocity variations there (65%) in compari-
son to the lower mantle (60.5%) (1). In the
lower mantle, it is not clear which mecha-
nisms act, because the lower mantle seems
comparatively homogeneous except for the
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