
For a proper evaluation of the performance of the visual
system one needs to analyze the stimuli. From such an
analysis it should become clear whether the information
required for a certain task is available and to what extent.
If we do not perform such an analysis we cannot decide
whether the limits reached by the visual system are set by
stimulus limitations or by limits of the visual system.
Koenderink and van Doorn (1987) performed a tolerance
analysis to measure the extent to which certain informa-
tion is available in velocity flow fields. Here we will do the
same for an important class of structure-from-motion
stimuli, using multiple frames. As an example the toler-
ance analysis will be applied to two widely known exper-
iments. In this introduction we will describe the structure-
from-motion problem and the role a tolerance analysis can
play in the investigation of it.

A tolerance analysis of a system consists of an analysis
of the degree to which the output of the system is resistant
against perturbations in the input. When the output fluc-
tuates a lot with small fluctuations in the input, it can be said
that the output is not well defined. To develop a model of
the visual system one can make use of an ideal detector
model. By ideal detector we mean a system that reaches the
optimal performance with respect to some criterion. Note
that what is an ideal detector heavily depends on the defi-
nition. By comparing the performance of the visual system
with an ideal detector model one can determine the extent
to which the visual system approaches ideal performance.

In this article we will show the use of a tolerance analy-
sis in structure-from-motion (SfM) experiments. In SfM
the input to the visual system consists of projections of the
3-D world on the retina (we discard input from other sen-

sory systems). The fact that 3-D properties have to be in-
ferred from projections highly limits performance in 3-D
tasks. We will consider a world consisting of a number of
landmarks. To obtain the 3-D structure of a number of land-
marks from its projections, assumptions have to be made
about the 3-D structure or the 3-D movement between the
projections. Like many others, we assume that the 3-D
movement is a rigid one. We assume that the projected lo-
cations of the landmarks will be available up to limited pre-
cision. More precisely, we assume that the locations avail-
able to the system are drawn from normal distributions
around the actual ones. No other assumptions about the 3-D
structure or the movement are being used. We will explain
a method to develop an ideal detector model for rigidly
moving objects given these assumptions. We will develop
such a model for a situation in which the object rotates
rigidly about an axis parallel to the image plane. By com-
paring performance of the visual system with that of the
ideal detector model we can find out the degree to which
it resembles the ideal detector model. Taking 2-D mea-
sures, which are more directly related to the stimulus, has
several advantages over taking 3-D measures of perfor-
mance in SfM tasks. As a measure of the performance of
the visual system we propose the amount of noise in the
input of the ideal detector model under which it reaches
the same level of performance as the visual system. This
supplies the means for comparing visual performance for
different circumstances and different tasks.

The SfM task requires deriving the 3-D structure of the
environment from the 2-D projections on the retina. When
one moves around in the environment, the projections of
objects at different distances from the eye move relative to
each other on the retina. Aspects of the 3-D layout of the en-
vironment can be derived from these relative movements.
Wallach and O’Connell (1953), among others, showed that
the visual system is capable of deriving SfM from stimuli
from which all cues about depth except motion parallax
have been removed. Typically stimuli are composed of a
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number of discrete markers. Here we will consider only
such point configurations.

The SfM problem can be split up into subproblems. The
first problem that arises is the so-called correspondence
problem. This means that the markers should retain their in-
dividuality over time. In this paper we ignore this problem,
although it is by no means a trivial one. Once the correspon-
dence problem has been solved we can investigate the ex-
tent to which relative 2-D movement leads to a 3-D solution.

A widely held assumption in the literature is the “rigid-
ity assumption”: It is assumed that from all possible 3-D
interpretations the visual system will choose a rigid one.
However, when small changes are made in the stimulus,
the available rigid interpretations can change consider-
ably. Moreover, the changes can be such that no rigid in-
terpretation remains. A reasonable assumption is that if
the changes are within certain tolerances, the interpreta-
tion of the visual system will not change significantly—
that is, whether a rigid object will be perceived is a matter
of tolerances.

The environment is projected on the retina. The actual
projection is often approximated by other projections,
such as orthographic projection. In orthographic projec-
tion the markers are projected along straight, parallel lines
that cross the projection plane orthogonally. A perspective
projection of motion in depth can be approximated using
orthographic projection by scaling each view according to
the distance of the object from the eye. This maintains the
dependence of overall size on overall distance across views,
yet the individual views are still orthographic projections
(Koenderinck & van Doorn, 1991). The nature of the infor-
mation that is lost differs for different projections. A nice
evaluation of the differences between the projections is sup-
plied by Ullman (1983). A tolerance analysis should be ap-
plied to reveal the importance of the information lost by
using a particular projection method.

A question recently raised in the literature on SfM ad-
dresses the nature of the perceived structure. This is closely
related to the problem of temporal order. Does the visual
system use only the velocity field, or can it use a higher
order temporal description of the flow (e.g., accelerations)?
Many authors have tried to address this question by relat-
ing the performance of the visual system to the theoreti-
cal minimal number of views necessary for a certain task.
Theoretically, three orthographic projections of four points
carry the information to recover the 3-D structure up to a
uniform scaling factor (Ullman, 1979). This means that the
relative lengths of 3-D line elements pointing in different
directions can be compared. Two orthographic projections
contain the information to recover the 3-D structure up to
a uniform scaling factor and a combination of a shear and
a stretch in depth (Bennett, Hoffman, Nicola, & Prakash,
1989; Huang & Lee, 1989; Koenderink & van Doorn,
1991). For many tasks a full description of the 3-D struc-
ture is not required. In fact, for many tasks it is sufficient
to have an affine representation of an object. Koenderink
and van Doorn (1991) showed that only affine methods are
required on two parallel projections to obtain such a repre-
sentation. When subjects are capable only of performing

tasks that require a theoretical minimum of two projections
and not tasks in which a minimum of three projections is
required, this supports the view that subjects use only two
projections.

A similar argument has been made by Todd and Bres-
san (1990) and Todd and Norman (1991). They argued that
performance in tasks in which three projections are re-
quired is relatively poor compared to performance in tasks
in which only two projections are required. In their experi-
ments, performance does not significantly improve with an
increase in the number of projections from two to eight.
By contrast, in Hildreth et al.’s (1990) experiments per-
formance does increase when the number of frames is in-
creased. This difference in behavior is probably related to
the fact that in Hildreth et al.’s experiments the stimulus du-
ration was coupled to the number of frames, whereas in
the experiments of Todd et al. it was not. In the experiments
of Todd et al., the objects rotated back and forth for some
time. Todd and Bressan (1990) concluded that the human
visual system does not use information about 3-D structure
over more than two frames in such a case. A tolerance analy-
sis can reveal the degree to which the information for a
certain task is better specified if the number of frames is
increased, or, more precisely, how the robustness against
noise increases with an increasing number of frames.

In this article we develop an ideal detector model that can
be applied to an important class of stimuli used in SfM.
We demonstrate the value of such an analysis by applying
it to the stimuli used in the experiments of Norman and
Todd (1993) and Hildreth et al. (1990). The results of these
experiments will be reevaluated.

Obtaining the Optimum Rigid Structure
The tolerance analysis we propose consists of an eval-

uation of the robustness against noise of an ideal detector
model. We explain how an ideal detector model can be de-
veloped for a situation in which (1) the rigidity assump-
tion holds, (2) the locations used as an input to the model
are assumed to be drawn from Gaussian distributions around
the actual projected positions the width of which is inde-
pendent of the location, and (3) there is no information about
the 3-D structure or 3-D movement. This means that there
is no a priori probability distribution about the possible so-
lutions; there is only a posteriori probability distribution.
The solution we search for obtains the solution with the
highest posteriori probability. We call this the optimum rigid
structure. In a realistic setting some structures and move-
ments are more likely to occur than other ones. Once the
a priori probabilities are known, they can be incorporated
in a Bayesian analysis. Freeman (1994) showed how this
can be done for several examples. The solution obtained
here resembles the solution that Freeman would call the
solution with the highest “fidelity.”

The method for obtaining this solution is to search for
the rigid structure that minimizes the sum of the squared
differences between the projected positions of this solu-
tion and the 2-D locations of the points in the projections.
This means that we try a rigid solution and move it until
the sum of the quadratic distances between the projections
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of its 3-D markers and the 2-D points in the frames is min-
imized. This requires a movement that differs from pro-
jection to projection. The method can be generally applied
to all kinds of movement and projections.

Here we explain a method for obtaining this optimum
solution for a restricted class of stimuli; specifically, stim-
uli that have parallel trajectories of the projected points due
to orthographic projections. It is assumed that the object
rotates rigidly about an axis parallel to the image plane.

Any rigid transformation of an object can be regarded
as a translation and a rotation about any 3-D point. For ob-
jects under orthographic projection it is convenient to de-
compose the rotation into a rotation about an axis perpen-
dicular to the image plane and a rotation about an axis in
the image plane (Whittaker, 1924). The only component
of the transformation that gives information about the 3-D
structure under orthographic projection is the rotation about
an axis in the image plane.

What characterizes such a rigid solution? Consider a
number of points rotating about an axis in the frontopar-
allel plane, which is referred to as the y-axis. The z-axis is
chosen parallel to the line of sight; the x-axis is parallel to
the trajectories of the projected points. The only relevant
variables are distances in the direction of the flow. This ef-
fectively reduces the dimensions to two. Because the in-
formation about the spatial 3-D structure is given by the
relative movement of the projected points, one of the
points can be taken as the origin of the coordinate system.

The n 3-D points rotate about the y-axis with radii (r1,
. . . , rn ), initial angles with the z-axis (φ1, . . . , φn ) and ro-
tational velocity ω. The projected distances (x1, . . . , xn )
can be described as a function of time (t):

One can construct a rigid object by fitting sinusoidal func-
tions to the projected positions if constant rotational ve-
locity is assumed.

When no assumption about the movement in time is
made, a better fit can generally be obtained. Therefore, one
should eliminate the time parameter. When no assumptions
are made about the movement in time, the information
about the structure is contained in the relative positions of
the projected points in the projections. If we plot the posi-
tions in n dimensional space on the axes (x1, . . . , xn ) we
will find an ellipse parametrized by the angle ωt. We will
call this somewhat abstract space the phase space. The re-
lation between such an ellipse and the 3-D solution is shown
for n � 2 in Figure 1. The relative movement of every two
points describes an ellipse—that is, every projection of the
trajectory in n dimensional space onto a plane results in an
ellipse. From this it follows that the trajectory in n dimen-
sional space will be also an ellipse, and thus a planar
curve. A rigid solution is characterized by an ellipse in
phase space and vice versa. The fitted values of (r1, . . . ,
rn ) and (φ1, . . . , φn ) describe the 3-D structure of the fit-
ted 3-D configuration of markers. The (x1, . . . , xn ) values
can be measured in the projections.

Given a set of 2-D points in a number of frames (with
Index j ) that move horizontally from frame to frame,
every Frame j results in a set of projected distances (x1,
. . . , xn )j , that is, a Point Xj in n-dimensional space. In case
the frames can be considered as orthographic projections
of a rigidly moving object rotating about a vertical axis, all
points Xj lie on the same ellipse in phase space. In case the
Points Xj describe some other trajectory in phase space,
the frames cannot be regarded as projections of a rigidly
moving configuration. One can obtain the optimum rigid
solution by performing a least squares fit of an ellipse to
the Points Xj in phase space. This is equivalent to mini-
mizing the function Ψ2 using the constraint that all ri ≥ 0:
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Figure 1. The projected length of Vector 1 versus projected length of Vector 2 with radii r1 and
r2 and angle �� together with a top view of the configuration at Point A. At Point A: (x1, x2) �
(r1, r2 cos ��). At Point B: (r1 cos���, r2).
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The deviation of the actual trajectory from the fitted ellipse
(Ψ2) can be regarded as a measure of nonrigidity.

For every system that measures the relative projected
positions with limited precision, there will be a range of
undiscriminable stimuli representing different 3-D objects.
In phase space this can be thought of as a band of indis-
criminable trajectories. All ellipses within this band repre-
sent rigidly moving objects that are indiscriminable from
each other. All nonelliptical trajectories represent non-
rigidly moving objects that are indiscriminable from these
rigidly moving objects. Under the rigidity assumption they
will be perceived as rigid.

Equivalent Noise Level
Performance in SfM tasks is usually expressed in terms

of 3-D properties of the simulated objects. Because these
properties are available via the stimulus, it can be expected
that performance is highly stimulus dependent. Therefore,
it will be difficult to compare performance for different
tasks. To compare performance in different situations, we
therefore propose to compare performance of the visual
system with that of the ideal detector model. As a measure
of performance, we propose to take the equivalent noise
level referred to the input. This is the amount of noise under
which the ideal detector model reaches the same level of
performance as that of the visual system. The “equivalent
noise level” can be considered as a measure of the ability
of the visual system to extract certain information from
the stimulus. If the equivalent noise level is higher in a
given situation than in another one, this implies that the vi-
sual system is better at extracting the information from the
stimulus in the first case than in the second case. This is a
stimulus-related measure of performance and therefore has
advantages over expressing performance in 3-D measures.
Consider, for instance, a situation in which three ortho-
graphic projections of four points are available. Ullman
(1979) has shown that for this situation there is a unique
3-D interpretation (apart from a uniform scaling and an in-
version in the image plane). Let us consider a situation in
which the locations in the projections are subject to
Gaussian noise around the actual location. Depending on
the disturbance in the locations, the 3-D interpretation de-
viates from the original one in a different way. The trans-
formation from 2-D locations to the 3-D interpretation is
nonlinear. This means that averaging in 3-D introduces a
bias that depends on the magnitude of the noise.

EXAMPLE 1
Stretching Experiments of Norman and Todd

Norman and Todd (1993) used objects consisting of 12
line elements inside a cube with edges of 10 cm. Under
various conditions subjects indicated perceived rigidity
on a “rigidity scale.” From frame to frame the objects
stretched in a certain direction before they rotated around

an axis in the frontoparallel plane. In this way, the total
amount of deformation built up over frames. In their first
experiment, the objects stretched in the viewing direction.
In their second experiment, the objects stretched in the di-
rection perpendicular to the axis of rotation. Subjects per-
ceived a rigid structure when the objects stretched in the
viewing direction, whereas they perceived a nonrigid ob-
ject if it stretched in the other direction. Here tolerance
analysis is applied to the stimuli used in these experi-
ments. This will reveal the extent to which the information
for detecting nonrigidity is present in the stimuli. The pa-
rameters used are the same as those used in the experi-
ments of Norman and Todd.

Affine Transformation
The nonrigid transformation used in these experiments

is an affine transformation. If a 3-D object is subject to an
affine transformation we do not have to find the optimum
rigid solution for all 3-D points at the same time. In the
case of such transformations it is convenient to describe the
markers forming the object in terms of base vectors. All
the other vectors can be described by linear combinations
of the base vectors. An affine transformation involves a
combination of rigid transformations and stretching and
shearing transformations in all directions, that is, a general
linear transformation in 3-D. Once the transformation of
the base vectors is known, the transformation of the whole
object is known. In general, this means that it is sufficient
to consider the transformation of four points, which define
three base vectors. All the other markers forming the object
will transform in the same way. If this is a rigid transfor-
mation, all markers transform under the same rigid trans-
formation (i.e., the object transforms rigidly). If the trans-
formation is limited to two directions, as in the case of
parallel trajectories, the transformation of two base vectors
suffices to describe the transformation of the whole object.

We choose the same coordinate system as in the previ-
ous section: rotation about the y-axis, z-axis in the view-
ing direction, and the x-axis parallel to the trajectories of
the projected points. As base vectors we take a vector con-
necting the origin � to (x1, z1) = (0,10) and � to (x2 ,z2) �
(10,0). These vectors can be regarded as two edges of the
cube used by Norman and Todd (1993), which had edges
of 10 cm. The vectors associated with the elements in the
cube are enclosed by the base vectors. Any vector within
the cube can be thought of as a linear combination of the
base vectors. In the analysis we neglect pixel noise. There-
fore, deviations from the optimum rigid solution for the
vectors inside the cube are also linear combinations of the
deviations for the base vectors. They will be comparable
to deviations of the base vectors (with a maximum devia-
tion of the sum of the deviations of both base vectors).

Stretching Along the Line of Sight
While the object rotates, it stretches along the line of

sight (the z-direction). From frame to frame this transfor-
mation consists of a stretch in z by a Factor f followed by
a rotation over an angle δα about the y-axis:

Ψ2 2= − +∑[ cos( )] .,
,

x ri j i i j
i j

θ α
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with

f � 1/(2A∗ sin(Nδα)).

N is the frame number and the stretching is done with
different amplitudes A.

Figure 2 shows how the lengths in 3-D of the two vectors
vary with frame number for an amplitude A of 0.6 (this is
the largest amplitude used by Norman & Todd, 1993).

Figure 3 shows the projected length of Vector 1 versus
the projected length of Vector 2 (i.e., x2 against x1) in phase
space. The best fit consists of the vectors with lengths of
5.2 cm (in the z-direction � r1) and 10.2 cm (in the
x-direction � r2). This means that the 3-D structure of the
best fit differs from the box used as initial input (rigid ro-
tation of the box would give a circle with a radius of 10 cm,
which is shown in Figure 3. The lengths in depth are com-
pressed. The angle between the 3-D base vectors remains
90º (� ∆φ). This solution represents a rectangular box
filled with line elements, width of 10.2 cm instead of 10 cm
and a depth of 5.2 cm instead of 10 cm. The fit represents
the data very well. The standard deviation of the points
from the ellipse is 0.7 mm, which is equivalent to 3′ of arc
at a distance of 76 cm. Considering these small deviations
it is perhaps not surprising that Norman and Todd (1993)
found that observers perceived the object as rigid.

The fit is made using all 100 data points (i.e., [x1,x2]
values in 100 frames). The data are integrated over a large
number of frames. If the integration takes place over a more
limited number of frames the deviations will become even
smaller. Note that the deviations are deviations in relative
positions.

The best fit describes a structure that rotates at a speed
that fluctuates over time. This is reflected by the fact that
in Figure 3 points are more closely spaced in some regions
than in others.

The increment angle between views is shown as a func-
tion of time in Figure 4. The increment angle of the fitted
structure fluctuates over time. Norman and Todd (1993)
reported that observers perceived a rigid object rotating
with an angular velocity that fluctuated in time. This is
consistent with the solution found here.

Figure 5 shows a view from above of the nonrigidly trans-
forming box (used as input) and the fitted box in Frames
1, 3, 5, and so on. The projections of the edges on the image
plane are very similar.

Stretching Perpendicular to the Line of Sight
While the object rotates, it stretches orthogonal to the

line of sight (the x-direction). From frame to frame, the
object stretches with a Factor f in the x-direction and then
rotates over an angle δα about the y-axis:

Figure 6 shows x2 against x1 for an amplitude of 0.6 (the
same as used above). Here the data fit an ellipse quite
poorly. There is no reasonable rigid interpretation of the
data. One should not be surprised therefore that Norman
and Todd (1993) reported that observers perceived the ob-
ject as nonrigid.

Perspective Projection
The algorithm for obtaining the optimum rigid solution

applies only to objects under orthographic projection. Under
perspective projection, distances in the direction of the axis
of rotation have to be taken into account. Also, distances or-
thogonal to the axis of rotation no longer describe an ellipse.
However, by using the graphical method of ellipse fitting,
one can still get an idea of the deviations introduced by using
orthographic projection instead of perspective projection.

In their experiments, Norman and Todd (1993) used a
viewing distance of 76 cm. Figure 7 shows the deviations in
the distances orthogonal to the axis of rotation that are in-
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Figure 2. The 3-D radii of the vectors starting at (x,z) � (0,10) and (10,0) as a func-
tion of frame number if the object stretches in the viewing direction with an ampli-
tude of 0.6 (see text).
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troduced by using orthographic instead of perspective pro-
jection. As expected, the data for the perspective projection
do not describe an ellipse. The standard deviation between
the differences in the projections of the perspectively pro-
jected and the orthographically projected points is 0.5 cm,
equivalent to 21′ of arc. This means that the deviations in-
troduced by using orthographic projection are larger than
those introduced by stretching along the line of sight.

EXAMPLE 2
Build-up Experiments of Hildreth et al.

Hildreth et al. (1990) provided evidence for the plausi-
bility of the incremental rigidity scheme proposed by Ull-
man (1984) as a model for the visual system. In this scheme
an “internal model” of the 3-D structure of the object is
maintained. While the object moves around, the internal
model is adjusted so that the change in the 3-D distances
between the points (actually a function of these) from the
previous model to the current model is minimized. The
initial model consists of a flat frontoparallel object. To
what extent do the experiments support the idea that the
visual system uses such a model? Hildreth et al. investi-
gated the following two predictions (called “critical pre-

dictions” by Hildreth et al.) of the model: (1) The accuracy
of the 3-D structure will build up over an extended period
of time, and (2) the use of a current 3-D model will influ-
ence the model at a later stage.

The stimuli consist of three points rotating about a ver-
tical axis. The points rotate from frame to frame over an
angle of 1.5º in 33 msec. The points are orthographically
projected. In the final frame the points are evenly spaced
in depth. This is shown in Figure 8. The subject has to indi-
cate which of the three points is situated between the other
two, in depth. Over a number of frames performance in-
creases and reaches a plateau. The level of the plateau de-
pends on the separation in depth (γ) between the points in
the final frame. The build-up period varies roughly be-
tween 30º and 45º depending on the subject. In some of the
experiments, Gaussian noise was added to the positions.
The results showed a gradual degradation in performance
with increasing noise level. Unfortunately, because the ro-
tational speed was constant, the turn angle was coupled to
time, so it is impossible to judge whether the percept built
up over time or over turn angle.

Hildreth et al. (1990) modeled their results using Ull-
man’s (1984) incremental rigidity scheme. This scheme can
be implemented in different forms; the general behavior is

Figure 3. The projected length of Vector 1 versus projected length of Vector 2 if the object
stretches in the viewing direction with an amplitude of 0.6. The circle with radius 10 describes
the original input structure. The data points are fitted to an ellipse describing a configuration
with vectors with lengths of 5.2 and 10.2 cm and an angle of 90º. Average root-mean square
(RMS) deviation from the fit is 0.07 cm.
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explained above. In this scheme no time parameter is in-
corporated explicitly. The internal model converges to the
rigid interpretation with increasing number of frames. The
convergence depends on the number of frames (if with the
same turn angle more frames are used, performance will
be better).

Can we explain the results on the basis of a tolerance
analysis? The results can be fitted to any model that incor-
porates the following properties: (1) The positions are
measured with limited precision, and (2) the information
can be used over a limited, but extended amount of time
or angular extent. The two “critical predictions’’ can be
explained by these models as follows: (1) By integrating
information over many views, performance improves, and
(2) integrating information implies that a current fit will
rely on former views.

For example, the performance of the ellipse-fitting al-
gorithm is shown in Figure 9. The input to the algorithm

consists of the perturbed projections of a configuration of
three points rotating about the y-axis with an incremental
angle between the frames of 5º. In the first frame, the three
points form a configuration, as used by Hildreth et al.
(1990). The depth of the first point is set to zero. One of the
other points has a depth to the first point of +γ, the other
one of �γ. An additional constraint is that the points have
a minimum and a maximum distance of 0.5 and 2 times γ
to the axis of rotation. The input to the algorithm consists
of the perturbed x-values of the projected points in the
frames. The perturbations are drawn from a uniform prob-
ability function around zero. Figure 9 shows the perfor-
mance for different maximum deviations, indicated by the
term noise. Every data point in the figure is an average of
the performance over 1,000 trials. The performance is
plotted as a function of turn angle for (1) different dis-
placements (γ) with fixed noise of 1 and (2) for different
levels of noise and fixed displacement of 10 units. The
figure shows increasing performance with increasing turn
angle and decreasing performance with increasing noise
level. Performance increases to 100% for all levels of noise.
This is evident from the fact that the effect of the noise of
the output will gradually diminish with increasing number
of views. To explain human performance, one should limit
the integration over a limited amount of time or angular ex-
tent (corresponding to a limited amount of frames). In that
case performance reaches a plateau at the point at which
the full range is used for integration.

The experiments cannot be regarded as a critical test for
investigating whether the visual system actually uses this
particular scheme. The experiments show that we should ex-
clude models of the visual system that use information only
in the last few frames of the sequence. This leaves a large
group of models that can explain the results satisfactorily.

DISCUSSION

The analysis of the stimuli used in the experiments of
Norman and Todd (1993) shows that a stimulus repre-
senting a nonrigidly rotating object stretching in the view-
ing direction is very similar to a stimulus representing a

Figure 4. Increment angle between frames as a function of
frame number as calculated from the best fit for stretching in the
viewing direction with an amplitude of 0.6.

Figure 5. View from above of the nonrigidly moving box used for generating the frames and the optimum rigid fit in Frames 1, 3, 5,
and so on.
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Figure 7. The projected length of Vector 1 versus projected length of Vector 2 for
perspective (solid line) and orthographic (dashed line) projection. The rotating vec-
tors have lengths of 5.2 and 10.2 cm and an angle of 90º (the fitted solution for stretch-
ing in the viewing direction); viewing distance is 76 cm (as used in the experiments of
Norman & Todd, 1993).

Figure 6. The projected length of Vector 1 versus projected length of Vector 2
if the object stretches perpendicular to the viewing direction with an amplitude
of 0.6. The circle with radius 10 describes the original input structure. No fit is
made to these data points.
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rigid object rotating with varying angular velocity. In Nor-
man and Todd’s experiments, subjects indicated that they
perceived a rigidly moving object in that case. This implies
that the visual system prefers a rigid interpretation and does
not deviate from such an interpretation if the differences
between the projections of a rigid interpretation and the
actual projections remain within certain limits. If the devi-
ations become larger, a nonrigid object is perceived, as in
the stimulus representing an object stretching in the image
plane.

Moreover, from the analysis it follows that—for stretch-
ing in the viewing direction—the differences between the
orthographic and the perspective projections of the rigid fit
are larger than the differences between the orthographic
projections of the rigid fit and those of the nonrigidly mov-
ing object. Although the differences are not of the same
nature, it is not surprising that the nonrigidity remains un-
noticed, since the deviations from perspective projection
also remain unnoticed.

Norman and Todd (1993) applied an algorithm that uses
three frames (Hoffman & Bennett, 1986) to prove that their
stimulus contained the information needed to perform the
task. Unfortunately, they did not include a tolerance analy-
sis. If the projected positions are available with great accu-
racy, it is indeed possible to discriminate rigid from non-
rigid. However, if some noise is added to the input, it is
much harder to discriminate nonrigid from rigid structures
on the basis of three successive frames. This becomes clear
if pixel positions are used as an input.

Figure 10a shows the real radius and the radius calcu-
lated by the algorithm as a function of frame number for
an object stretched in the viewing direction with an ampli-
tude of 0.6. The calculated radius has a phase lag because
the two former frames are used to calculate the structure
in the current frame. The algorithm does not introduce any
bias. Any algorithm using three frames in a correct way
should give this result. The algorithm is not unstable, but
the information is not well defined. Figure 10b shows the
calculated radius of a rigidly rotating object formed by the
vectors with initial (x,z)-values of (10.2,0) and (0,5.2) (the
optimum fit to the object stretched in viewing direction)
when the pixel positions are used (with same dimensions
as in the experiment). In cases where the lines go to infin-
ity, no solution is available. The deviations from the exact
positions are comparable to the deviations introduced by
stretching. Even the locations of regions with maximum devi-
ation are comparable. The depth calculated from only three
successive frames is very sensitive to noise in situations in
which the vector is parallel to the viewing direction.

Pollick (1993) also analyzed the stimuli used by Nor-
man and Todd (1993). He assumed that the total displace-
ment of the projection of a point is twice the distance (r)
to the axis of rotation. Given a projection of a point and
its radius, the phase (α) of the point can be computed

Figure 8. Top and frontal view of a configuration used by Hil-
dreth, Grzywacz, Adelson, and Inada (1990) containing 3 points
rotating about an axis in the frontoparallel plane. In the final
frame the points are evenly spaced in depth with displacement �.

Figure 9. Performance of the ellipse-fitting algorithm in the experiments of Hildreth, Grzywacz, Adelson, and Inada (1990). Score
as a function of turn angle with increment angle between frames of 5º (a) for different displacements (gamma) and fixed noise of 1,
(b) for different levels of noise and fixed displacement of 10.
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[r cos(α) � x]. The sign of the displacement indicates
whether the phase is negative or positive. If there is a rigid
interpretation, all 3-D points should show the same incre-
mental angle between frames.

Figure 11 shows the incremental angles calculated by
this algorithm for two vectors if the object stretches in the
viewing direction with an amplitude of 0.6. The incre-
mental angles are very similar for both vectors. This algo-
rithm works quite well in this situation. Pollick (1993) in-
vestigated more points and found only 1% of nonrigidity
(measured as the variances of the interpoint distances).

Pollick’s (1993) algorithm appears to be rather ad hoc.
A structure is deduced by assuming constant distance from
the 3-D points to the axis of rotation. This distance or radius
is calculated using only two frames: the frames in which a
projected point reaches its maximum distance from the
axis of rotation. This means that an error in measuring these
extremes results in errors in the phase in all frames (these
frames are treated as special frames but should not be). If
these frames are not available, the radius should be calcu-
lated in a different way. A result of Pollick’s analysis is that
the errors in the phase depend on the phase. Given a con-
stant error in the projected position, the error in its phase
will be larger for larger projected radii. A more fundamen-
tal argument against such a method is that one assumes
that if the nonrigidity is detected, the visual system recon-
structs a 3-D interpretation that has changing phase differ-
ences of the 3-D points but that has no changing radii.
Whether this is the case is not yet clear. In our method, no
assumptions are made about the 3-D interpretation of non-
rigidly transforming objects.

The experiments of Hildreth et al. (1990) show that the
visual system combines information over an extended but

limited amount of time or angle of rotation. Any reason-
able model of the visual system should display the same
characteristic. Our analysis of their experiments suggests
that they do not offer a particularly critical test of the in-
cremental rigidity scheme as a model of the visual system
in SfM tasks. The evaluation shows that a tolerance analy-
sis is needed to determine whether any model of the visual
system is a reasonable one.

The tolerance analysis can be used to compare perfor-
mances in affine and metric tasks. The affine structure can
be deduced from the velocity field. To obtain metric struc-
ture, higher order temporal derivatives (e.g., acceleration)
have to be taken into account. Therefore, it can be expected
that deducing affine structure will be more robust than de-
ducing metric structure. Let us consider a representation
of a stimulus by a trajectory in phase space. The affine struc-
ture is determined when the tangent to the trajectory is de-
termined (first-order temporal description of the flow).
To deduce metric structure one needs to know the curva-
ture of the trajectory (second-order temporal description
of the flow). In general the determination of the tangent is
far more robust than the determination of the curvature.
This is in agreement with the fact that humans are better
at doing tasks needing affine structure than at tasks need-
ing metric structure (Todd & Bressan, 1990 and Todd &
Norman, 1991).

In conclusion, an analysis of the extent to which infor-
mation is specified in the stimulus is required for a proper
evaluation of the performance of the visual system. The
examples provided here show that the level of performance
can be determined largely by stimulus limitations, rather
than by mechanistic limits of the visual system. By com-
paring the performance of the visual system with that of an

Figure 10. (a) Real and calculated radius of vector starting at (x,z) � (10,0) as a function of frame number for stretching in the view-
ing direction with an amplitude of 0.6 as calculated by the Hoffman and Bennett (1986) algorithm using positions in three frames with
infinite precision. (b) Calculated radius of vector starting at (10.2,0) as a function of frame number for rigid rotation as calculated by
the Hoffman and Bennett (1986) algorithm using pixel positions in three successive frames (pixel dimensions as in the experiments of
Norman & Todd, 1993) for an object consisting of vectors (10.2,0) and (0,5.2) (the optimum fit for stretching in the viewing direction).
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ideal detector, we can find out the extent to which visual
performance is determined by limits of the system itself.
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Figure 11. The increment angle between frames in the reconstruction of Pollick
(1993) for two vectors of an object that stretches in the viewing direction with an am-
plitude of 0.6 and initial positions of (10,0) and (0,10).


