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Perception of local shape from shading

RODERIK G. F. ERENS, ASTRID M. L. KAPPERS, and JAN J. KOENDERINK
Utrecht Biophysics Research Institute, Utrecht, The Netherlands

Theoretically, metric solid shape is not determined uniquely by shading. Consequently, hu-
man vision has difficulty incategorizing shape when shading is the only cue. In the present re-
search, subjects were required to categorize shaded quadric surfaces. We found that they were
rather poor at this task; they confused hyperbolic and elliptic (both convex and concave) shapes
easily. When a cast shadow visually indicated the direction of the illuminant, they were able
to notice the concavity or convexity of elliptic shapes. However, they still confused elliptic and
hyperbolic ones. Finally, when an animated sequence of eight intensity patterns belonging to
one quadric shape had been displayed, the subjects were able to categorize the quadrics. How-
ever, the results are still quite moderate. Our experiments indicate -that local shading structure
is only a weak shape cue when presented in the absence of other visual cues.

With the present generation of rendering algorithms,
it is apparently relatively easy to generate very “natu-
ral” images on a computer screen. The three-dimensional
impression created by these images is very compelling.
However, such an informal observation has to be quanti-
fied. Very little research has been done on the percep-
tion of solid shape on the basis of shading.

Computer images provide several visual cues that poten-
tially contribute to the perception of solid shape (Gibson,
1950). The role of shading in these images is complicated
because extracting shape from shading is not a trivial task.
The shading is determined by the surface orientation, the
illuminant direction, and the surface properties. This
means that the same luminance distribution can be gener-
ated by several different surfaces. For instance, the lu-
minance distribution of concave and convex spheres is ex-
actly the same. Thus, in order to find the local surface
structure on the basis of shading, one has to make assump-
tions about the illuminant direction and the surfaceprop-
erties (Horn, 1975, 1977; Pentland, 1984, 1989). Another
method toestimate the local surface structure from shad-
ing is tocombine the information given by several inten-
sity patterns of one shape (Woodham, 1980). Most com-
putational theories on shape from shading calculate the
surface shape locally (Horn, 1975, 1977; Pentland, 1984,
1989; Woodham, 1980). It is not clear whether human
observers are able to judge the local shape of an object
on the basis of shading.

Several psychophysical experiments report observers’
ability to estimate local surface structure from shading
(BUlthoff& Mallot, 1988; Mingolla & Todd, 1986; Todd
& Mingolla, 1983; Todd & Reichel, 1991). Theseexper-
iments indicated that human observers are very poor at

this. Other experiments have shown that observers can-
not distinguish local shapes such as concave and convex
spheres when they do not know the illuminant direction
(Berbaum, Bever, & Sup Chung, 1984; Ramachandran,
1988). In most of these studies, a very restricted set of
shapes such as spheres (Berbaum et al., 1984), cylinders
(Todd & Mingolla, 1983), or ellipsoids (Bulthoff & Mal-
lot, 1988; Mingolla &Todd, 1986) have beenused. Here,
we investigate whether human observers are able to
categorize a wide range of local shapes (elliptic, hyper-
bolic, and cylindric)on the basis of shading and the pos-
sible effect of information about the illuminant direction
on the responses. Furthermore, we investigate whether
human observers canestimate local shape from a sequence
of intensity patterns belonging to the same shape.

Describing Local Shape
Any solid shape can be approximated on a point-by-

point basis by a collection of local surface patches. The
shape of such a local surface patch can be described by
a Taylor expansion:
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The zeroth position and first-order attitude do not con-
tribute to the local surface shape, because they are de-
pendent on the observer-object geometry only. They can
be made to vanish by taking the point of interest at the
origin and the z direction parallel to the surface normal.
When the surface patch is taken small enough, the terms
higher than secondorder may be neglected. The only rel-
evant term to describe local shape in the Taylor expan-
sion is the second-order (quadric) term. Thus, every solid
shape can be approximated locally by a collection of quad-
ric surface patches. The expression of a quadricsurface is:
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S = — -~- arctan ‘(~+ ‘(~

where x~and X~are the so-called principal curvatures,
which are the minimumand maximum curvatures of the
surface patch, respectively (Aleksandrov, Kolmogorov,
& Lavrent’ev, 1963; Spivak, 1975). The directions of the
principal curvatures are called the principal directions and
are denoted by u, v in Equation 1. The principal direc-
tions are always perpendicular to each other.

For visual psychophysics of shape, one needs a con-
venient description of local shape that complies with our
intuitive notion of shape. For example, spheres of dif-
ferent sizes look the same and thus should be indicated
by the same “shape measure.” The principal curvatures
give complete control of the local surface geometry, but
are perceptually nonintuitive, because they will be dif-
ferent for shapes that “look alike.” It is obvious that one
quantity should definethe actualshape scale independently
and another one should define the scale of the shape.
Koenderink (1990) proposed such quantities (see also
Koendennk & van Doom, 1992), the shape index (S) and
the curvedness (C).

The shape index describes the local surface geometry
scale independently and is given by:

(x1�x2). (2)

The shape index gives a one-dimensional continuous scale
on which local shape can be represented (see Figure 1).
On the shape index scale, the shapes are classified roughly
into threeclasses—the convex and concave elliptic shapes
and hyperbolic shapes. These classesare separated by the
cylinders (Figure 1). The shape index is between —1 and
—0.5 for concave elliptic surfaces and between 0.5 and
1 for the convex ones. Hyperbolic surfaces (saddles) have
a shape index between —0.5 and 0.5. The cylinders (S
= ±0.5)will be on the boundaries between elliptic and
hyperbolic shapes. Whenever a cylinder undergoes a
deformation, however slight, it will immediately become
elliptic or hyperbolic.

The amount of curvature of the local surface shape is
given by the curvedness:

C = ~[(xi ±x~)

In our study, the local shapes are defined in terms of
the shape index and curvedness and the responses of the
subjects are categorized on the shape index scale. Simi-
lar types of experiments on human visual perception of
shape (shape from stereo: de Vries, Kappers, & Koen-
derink, 1993; shape from motion: van Damme & van de
Grind, 1991) have shown that the shape index and curved-
ness are very suitable for psychophysical research on
shape perception.

GENERAL METHOD

Subjects
Four subjects (3 male and I female) participated in the experi-

ment. All had normal or corrected-to-normal vision and viewed the
screen with their dominant eye. All the subjects knew the purpose
of the investigation.

Apparatus
The shaded images were generated on an Apollo DN590 com-

puter using a graphical rendering package. The images were dis-
played in 8-bit gray tone on a high-resolution monitor screen, 39.0
x 29.0cm (22.1° x 16.50), with 1,280 x 1,024 pixels. The mean
luminance of the screen was 26 cd/m

2
. The subjects viewed the mon-

itor screen monocularly with a natural pupil at a distance of 100 cm.
The experiments were done in a totally dark room. A chinrest was
used to restrict head movements.

Stimulus
The stimuli were images of lambertian shaded quadric shapes,

which is defined in Equation 4. The principal curvatures x
1

and
x
2

can be calculated from the shape index andcurvedness by Equa-
tions 2 and 3. Here we stress again that the shape index and curved-
ness arepurely local shape measures; usually, they will change over
the surface of an arbitraiy object. This holds also for quadric shapes.
We define the quadric shape by its shape index and curvedness at
the origin. Farther away from the center, both quantities will be
slightly different (one can calculate from Equation 4 that at the stim-
ulus boundary a quadnc shape will be more cylinder-like and less
curved).

The normal distance from the tangent plane in the origin of the
quadric shape is given in Cartesian coordinates:

z = (x,x
2

+ x
2
y
2
).

-1.0 -0.5

A set of 501 quadric shapes (generated according to Equation 4)
(m~). (3) with varying shape indexes (from —1.000, —0.996 0.996,

1.000) was used in the study. For all shapes, the curvedness was

The curvedness varies from zero for a flat surface up to 30 m’. The positive z-axis pointed in the direction of the viewer;
infinity for an extremely curved surface. thus, the view of the quadric shape was frontoparallel. The imageswere lambertian shaded and projected perspectively for a viewing

distance of 100 cm. The images had a diameter of 7.5 cm (4~30)~

00 0 5 I 0 The perspective projection gives a specific outline (this is not anoccluding contour!) to the quadric shape (which is defined on a

I I square Cartesian coordinate patch), by which the displayed shape
can be easily recognized. Therefore, a randomly frayed gray mask
was superimposed on the stimulus to cover the outline (see Fig-
ures 2 and 3). The mask was identical during each series of mea-
surements and had a mean luminance of 26 cd/rn2. Another cue
that subjects may use to recognize the quadrics is the fixed direc-
tions of the principal curvatures, which are aligned with the x-y
frame (see Figures 2 and 3). Thus, the quadrics would be oriented
horizontally. To prevent the subjects from using this information,
thequadric shape was rotatedaround the z-axis over a random angle
for each trial.

0
Figure 1. Local shapes presented on the shape index scale. The

shape index is between —1 and —0.5 for concave elliptic surfaces,
between 0.5 and 1 forconvex, and between —0.5 and 0.5 for hyper-
bolic shapes. The cylinders will be on the boundaries betweenellip-
tic and hyperbolic shapes and the shape index is —0.5 or 0.5.
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Procedure
Images from the set of 501 quadrics were selected randomly and

displayed on the monitor screen and the subjects were required to
categorize the quadric shapes. The subjects’ responses are given
on the shape index scale,which, for simplicity, is divided into eight
equal parts. This gives eight “shape” categories (Table I).

The stimulus and the subject’s response are expressed in terms
of one ofthese categories on the shape index scale. All the subjects
were thoroughly familiar with the scale of the shape index and
curvedness. Three-dimensional sculpted examples of quadric sur-
faces were used to verify whether the subjects were able to handle
the eight categories on the shape index scale. Before the measure-
ment started, several training sessions were held in which the sub-

®

jects received feedback after each trial about the displayed and
responded category.

The stimuli were displayed during a 4-sec interval, then eight
menu buttons appeared on the screen representing the shape cate-
gories. The subjects could choose a category by moving the cursor
with the computer mouse to the appropriate menu button and con-
firmed their choice by pressing the mouse button. The response
time was not limited. During the measurements, no feedbackcon-
cerning the validity of the answers was given but after finishing
a session, the subjects were allowed to review their results. For
each experiment, three series of 200 measurements were
performed—each series on a different day.

Figure 3. illustration of the stimuli used In ExperIment 2. A cast
shadow visually indicates the azimuth ofIllimihiant direction. A con-
vex (a) elliptic (shape index 0.8) andconcave (b) elliptic surface (shape
index -0.8) are shown. The curvedness ofboth quadrics is 30 m’.
The illuminant direction is from the upper left corner (as Is indi-
cated by the cast shadow) and the shapes are orientated horizon-
tally (the largest principal curvature is inthe direction ofthe posi-
tive x-axis). Here we can see that, because of our definition that x,
~ XI, the convex “cylinder-like” shapes would be oriented horizon-
tally, whereas the concave ones would be oriented vertically. Topre-
vent the subjects from using this information, the quadric shape was
rotatedaround the z-axis over a random angle for each trial (seetext).

Figure 2. Illustration of the stimuli used in Experiment 1. The
quadric shapes are diffusely shaded and masked with a random
frayed aperture. The quadric shape (a) is convex elliptic, with shape
index 0.9 and curvedness 30 m’. This shape belongs to the “sym-
metric” group. An example of an “elongated” shape (b) shows a
cylinder-like saddle with shape index 0.4. The illuminant direction
in both images is from the upper left corner and both shapes are
orientated horizontally (the largest principal curvature is in the direc-
tion of the positive x-axis). The figure clearly shows that elongated
and symmetric shapes are distinguishable. In the experiment, the
orientation of the quadrics was randomized.
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Table 1
The Ranges of the Eight Shape Categories

Category Type Shape Index Range Mnemonic
(—1.00. . . —0.75) Concave spherical

2 (—0.75. . . —0.50) Concave
3 (—0.50. . . —0.25) Saddle rut
4 (—0.25... 0.00) Shallow saddle rut
5 ( 0.00... 0.25) Shallow saddle ridge
6 ( 0.25... 0.50) Saddle ridge
7 ( 0.50... 0.75) Convex
8 ( 0.75... 1.00) Convex spherical

EXPERIMENT 1
Local Shape Froma Single Image Without Information

About the Hiuminant Direction

Here, we investigated the ability of observers to catego-
rize quadric shapes on the shape index scale when no in-
formation about the illuminant direction was present in
the image.

Predictions
When the illuminant direction is unknown, several

quadric shapes will be represented by the same luminance
distribution. First of all, we wili predict analytically which
quadric shapes are indistinguishable on the basis of their
luminance distribution. The luminance I(x,y) at position
x,y of a diffusely shaded image is given by:

I(x,y) = pX(N~L), (5)

where p is the surface albedo, and X is the intensity of
the light source. N is the surface normal and L is the ii-
luminant direction pointing toward the light source. The
surface normal is calculated from Equation 4 by:

N = (—z~,—z~,l)

where z~and z~denote the first derivative of z to x and
y, respectively. Then, for a quadric surface, the normal
at point x,y is:

N = (—x
1

x,—x
2

y,l)
~[~2 +x~y2

+1

The illuminant direction is given by:

L = (cos~sinO, sin~sinO, cosO),

where ~ is the azimuth of the illuminant direction, which
is the angle between the positive x-axis and the projec-
tion of the illuminant direction on the x-y plane. 6 is the
inclination of the illuminant direction, which is the angle
between the positive z-axis and the illuminant direction.
For a quadric surface, the luminance at position x,y is
given by Equation 5:

—x1x cos4 sin6—x2y sin4 sin6+cosO
1(x,y) = pX— ____________ —. (8)

.,Jx~x2+x~y2+l

This is the expression for the luminance distribution at
the surface of the object. The luminance distribution on
the computer display is the perspective projection of Equa-
tion 8. Due to perspective effects, the isophotes, that is,
contours of equal luminance, for concave ellipsoids will
be somewhat wider than for convex ones.

Consider another quadric surface (x, x~)and another
illuminant direction (6’, ~‘). The luminance at position
x,y of the quadric surface is then given by:

I’(x,y)

—x~xcos~’sinO’—xysin~’sinO’+cosO’
pX ___________ .(9)

V(x;)2x2+(x~)2y2+ 1

The different quadric surfaces will yield approximately
the same stimulus if I = I’ (perspective effects neglected).
For this condition, we obtain

and

cos4 sinO cosO’
= Xi

cos~’sin6’ cosO

sin~sinO cos6’
‘(2 = ‘(2

sinçt’ sinO’ cosO

In our setup, the inclination of the illuminant direction
was always 45°during the experiment. Therefore, both
inclinations 6 and 6’ of the illuminant directions areequal.
We find that identical luminance distributions may yield
different quadric shapes:

_____ sin4
‘(2 = ~(2 sinc&’ (10)

Equation 10 clearly shows that quadric shapes are in-
distinguishable on the basis of their luminance distribu-
tions when the azimuth of the illuminant direction is
unknown. Observers caneasily confuse convex and con-
cave if the azimuth of the illuminant direction is reversed
over 180°;this is the well-known crater illusion. By
reversing the azimuth over 90° or 270°, elliptic and
hyperbolic shapes also are indistinguishable. Thus, local
shape reconstruction from a single image in the absence
of information about the azimuth of the illuminant direc-
tion leads (at least) up to a fourfold ambiguity. This is
also reported by Blake and Brelstaff (1988). In terms of
the shape index scale, this means that Categories 1, 4,
5, and 8 cannot be distinguished from each other nor can
Categories 2, 3, 6, and 7 (see Table 1 for the meaning
of these categories). However, the two groups can be dis-
tinguished. The first group of categories represents the
so-called “symmetric” shapes, which are the symmetric,
concave and convex elliptic, and hyperbolic shapes. The
second group represents the so-called “elongated” shapes,
which are the elongated concave and convex cylinder-like
shapes. Examples of these shapes are shown in Figure 2.

In this discussion, we have neglected the perspective
effects. The perspective projection slightly alters the ac-
tual stimulus from the luminance distribution, as given
by Equation 8. There is a small difference (less than 5%)

cos4
Xi = ‘(j

(6)

(7)
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between the intensity distributions of concave, convex el-
liptic, and hyperbolic shapes. The perspective cue might
help subjects to allot ambiguous shapes to the right
category.

Method
Procedure. The subjects were required to categorize the shaded

quadric shapes on the shape index scale. In order to prevent the
subjects from using any information they may have acquired regard-
ing the azimuth of the illuminant direction, the latter was chosen
randomly for each trial from four possibilities: 45°, 135°, 225°,
or 3 15°.The inclination of the illuminant direction was always 45°.
Examples of the stimuli are given in Figure 2. In this first experi-
ment, the subjects could only categorize the quadric shape on the
basis of the shading cue and the perspective cue.

EXPERIMENT 2
Local Shape From a Single Image With Information

About the Illuminant Direction

Information about illuminant direction is needed in
order to remove some of the inherent ambiguity. In most
pictures and real scenes, theremay be numerous cues that
indicate this direction, such as interreflections between
objects, shadows, or the luminance profile near occlud-
ing contours. In Experiment 2, we placed a small stick
on a surface, which cast a shadow on that surface (see
Figure 3). The azimuth (4)) of the illuminant direction in
Equation 8 is visually indicated by the shadow. The in-
fluence that a cast shadow has on observers’ responses
to convex and concave ellipsoids has often been inves-
tigated (Berbaum et al., 1984; Ramachandran, 1988).
However, the influence of a cast shadow on the discrimi-
nation between elliptic and hyperbolic shapes is less clear
and has never been investigated.

Predictions
The cast shadow indicates the azimuth of the illuminant

direction, so this information is available in the image.
From Equation 10, one could conclude that quadric shapes
will be distinguishable. However, this is not true; even
when the illuminant direction is known, some ambiguities
in shape estimation remain. This can best be shown by
a series of graphs of the luminance distribution of the stim-
uli. In Figures 4 and 5, the luminance distributions of a
shaded elliptic (shape index 0.8) and a hyperbolic sur-
face (shape index —0.2) are plotted according to Equa-
tion 8 (the x, ‘(2 in Equation 8 are calculated from the
shape index and curvedness by Equations 2 and 3). In each
graph, the azimuth of the illuminant direction is known
and identical (from the upper left corner), but the quad-
nc surface is orientateddifferently. The orientation of the
quadric surface differs 45°for each graph.

First, we will discuss the luminance distribution on an
elliptical surface (S = 0.8) for different orientations of
the surface and fixed illuminant direction. Figure 3 shows
that the luminance distribution is more or less identical
for different orientations of an elliptic patch. On a con-

vex elliptic patch, as is shown in Figure 4, a luminance
gradient will always point away from the illuminant direc-
tion, but for a concave one, the luminance gradient will
always point toward the illuminant direction. Thus, a cast
shadow will directly solve the concave-convex ambiguity
in elliptic patches if one knows that they are elliptic.

On a hyperbolic surface, the luminance distribution
differs enormously for various orientations of the patch,
as can be seen in Figure 5. The luminance gradient may
have any possible direction with respect to the illuminant
direction. Therefore, luminance patterns like those on el-
liptic patchescan be obtained just as easily on hyperbolic
patches. Thus, even with information about the illuminant
direction in the image, elliptic and hyperbolic shapes can-
not be distinguished.

In terms of the shape index scale, this means that sub-
jects can be expected to respond in all eight categories
when a hyperbolic surface is shown. Also, an elliptic
shape can be interpreted as a hyperbolic one. However,
it is not possible to interpret the convex elliptic shapes
as being concave. On the shape index scale, this means
that concave elliptic shapes can end up in Categories 1—4
and the convex elliptic ones can end up inCategories 5-8
(see Table 1 for descriptions of these categories).

Method
Procedure. The subjects were required to allot quadric shapes

to one of the eight response categories. In the images, a cast shadow
provided information about the azimuth of the illuminant direction.
On each trial, the illuminant direction was chosen randomly from
the same range of possibilities as in Experiment I. Examples of
a concave and convex elliptical shape are given in Figure 3. Again,
due to the perspective projection, the stimulus contained a perspec-
tive cue that might help the subjects to allot ambiguous shapes to
the right category.

EXPERIMENT 3
Local Shape From an Animated Sequence of

Intensity Patterns

By varying the illuminant direction, one can obtain sev-
eral different luminance distributions belonging to the
same surface. From these luminance distributions, it is
theoretically possible to estimate the local surface struc-
ture uniquely (Woodham, 1980).

Predictions
Woodham (1980) showed theoretically that the local

surface structure can be reconstructed uniquely from at
least three different luminance distributions. The lu-
minance distributions that belong to the same shape will
be obtained by varying the illuminant direction. Actually,
one simply gets threeexpressions for the luminance value
at positions x,y (see Equation 8). From these three ex-
pressions, one can calculate relatively easily the principal
curvatures. Thereafter, by Equation 2, the shape index
at each position (x,y) can be found.

In terms of the shape index scale, this means that every
quadric surface canbe allotted to the right shape category.
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convex ellipsoid

shape index 0.8

O\

orientation 0 deg.

K2

Ki

orientation 45 deg.

K~ç

Figure 4. The variation of the luminance distribution on a convex elliptic patch due to different orientations
of the surface. The isophotes are drawn for an elliptic shape with shape index 0.8, and the illuminant direc-
tion is from the upper left corner. The series of figures in the far right column show several orientations of
the surface (shown in the middle column). Ki and K2 denote the maximum and minimum principal curva-
tures, respectively. The luminance distribution does not change dramatically for different orientations of the
convex elliptic shape. The maximum intensity value is always on the same side as the light source and the
luminance gradient is always more or less in the same direction, pointing away from the light source.

orientation 90 deg.

K2

K1~

orientation 1 35 deg.

O\

O\
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saddle shape

shape index -0.2

orientation 0 deg.

K2

Ki

orientation 45 deg.

K<~

orientation 90 deg.

K2

K1~

orientation 135 deg.

Figure 5. The variation of the luminance distribution on a concave hyperbolic patch, due to different orienta-
tions of the surface. The isophotes are drawn for a hyperbolic shape with shape index —0.2, and the illuminant
direction is from the upper left corner. The series of figures in the far right column show several orientations
of the surface (shown in the middle column). K! and K2 denote the maximum and minimum principal curva-
tures, respectively. The luminance changes dramatically for different orientations of the hyperbolic shape. The
maximum intensity can be anywhere on the surface and the direction of the luminance gradient also varies for
different orientations of the hyperbolic surface.

O\

O\
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Method
Procedure. In this experiment, the subjects were shown an ani-

mated sequence of eight different luminance distributions belong-
ing to a certain quadric shape and were required to categorize the
quadric into one of the eight “shape” categories. The orientation
of the quadric surface was fixed and the azimuth of the illuminant
direction changed over the surface from 45°to 135°in eight steps.
The different intensity patterns were presented for 0.5 sec, so the
total exposure time of the quadric shape was the same as in the pre-
vious experiments. The illuminant direction was again indicated
by the shadow cast by a small stick (as in Experiment 2). So, by
comparing the different shading patterns, it would be theoretically
possible to unambiguously categorize the shape. The question was
whether the human observers could do this.

RESULTS

For all the experiments, we show the results of Sub-
ject R.E., who is one of the authors, and Subject S.dV.,
who was not familiar with shape-from-shading experi-
ments, but was experienced in using the shape index scale.
The results of the other subjects are quite similar qualita-
tively, and are shown in Table 1.

The responses of SubjectsR.E. and S.dV. for the three
experiments are shown in Figures 6, 7, and 8, which show
a 3-D plot of the stimulus-response matrix. The axis on
the left gives the stimulus categories and the one on the
right gives the response categories. The z-axis shows the
responses as a percentage of the total number of stimuli
in a particular category. We call this the score (%) for
each stimulus—response combination. If the subjects
categorized the quadric surfaces perfectly, the scores
would be 100% and on a diagonal for which the stimulus
and response categories were identical. The results for
each series of measurements were reproducedwithin 10%
accuracy.

Experiment 1
Figure 6 shows that shading information alone is not

enough to categorize the quadric shape correctly. The
average percentage of correct responses (scores on the
diagonal) is 13.4% and 16.0% for Subjects R.E. and
S.dV., respectively. This is not significantly above the
12.5% that would be obtained if the observers simply
guessed the category. The perspective cue did not seem
to help the subjects categorize the quadrics. They catego-
rized most quadrics to the response Categories 4-8, which
indicates that most of the shapes were interpreted as be-
ing convex. This effect would possibly have been more
pronounced if the subjects had not known a priori that
all stimulus categories were equally likely.

We predicted theoretically that “elongated” and “sym-
metric” shapes were distinguishable on the basis of their
luminance distribution. The elongated and symmetric
stimulus categories are presented in Figure 6 by the rows
of blank and shaded score bars, respectively. Note that
the scores of Subject R.E. for the elongated (blank score
bars) shapes are primarily grouped around Category 6
(about 65 % of the scores), whereas the symmetric (shaded
score bars) shapes are found mainly in Categories 7 and
8 (about 53% of the scores). The distribution of the scores

Subject R.E.

Subject S.dV.

along the response categories is also quite specific for each
group of elongatedand symmetric shapes, as can be seen
in the figure. Analysis of variance (ANOVA) shows that
the effect for Subject R.E. is significant (p = .015). The
results for Subject S.dV. are less clear, because he tended
to allot most of the shapes to Category 7. However, his
scores for the elongated shapes are also grouped around

1 00~

1 00~

Figure 6. The responses of Subjects R.E. and S.dV. for Experi-
ment 1 with no information about the illuminant direction avail-
able. The stimulus categories and response categories are given on
the left and right axes, respectively. The z-axis shows the scores of
the subject at each stimulus—response combination. The percent-
ages of correct responses are given by the diagonal, for which the
category number of the stimulus and response are identical. The
shaded score bars indicate the results for the “symmetric” shapes
and the blank score bars refer to the scores for the “elongated”
shapes.
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Category 6 (about 73%) and can be found for the sym-
metric shapes in Categories 7 and 8 (about 60%). The
distribution of the scores along the response categories
is rather identical for the elongated shape group (blank
score bars), but not for the symmetric shapegroup (p =

.25). In conclusion, the results indicate that the subjects
were able to distinguish between elongated and symmet-
ric shapes purely on the basis of shading.

It might be that quadric shape is better categorized for
certain values of the azimuth of the illuminant direction.

Subject R.E.

Subject S.dV.

Subject R.E.

Subject S.dV.

For Subject R.E., we find that the average correct scores
(stimulus category = response category) depends signif-
icantly on the azimuth of the illuminant direction (45°=

19.9%, 135° = 21.5%, 225° = 6.3%, and 315° =

5.7%). He correctly categorized more shapes when the
illuminant shone from above on the shape. For Sub-
ject S.dV., we do not observe the influence of the azimuth
of the illuminant direction on the percentage of correct
responses (45°= 12.7%, 135°= 17.0%,225° = 17.0%,
and 315° = 17.7%).

1 00’~

t 0O~’

.~o0~

Figure 8. The responses of Subjects R.E. and S.dV. for Experi-
ment 3, in which an animated sequence of eight luminance patterns
of one shape was displayed. The scores of the subject at each
stimulus—response combination are given on the z-axis. The per-
centages of correct responses are given by the diagonal, for which
the category number of the stimulus and response are identical.

Figure 7. The responses of Subjects R.E. and S.dV. for Experi-
ment 2, in which a cast shadow indicated the illuminant direction.
The 3-D bar plot presents the scores; correct responses are given
by the diagonal for which the category number of the stimulus and
response are identical. The shaded score bars indicate the results
for the concave elliptic shapes, the blank score bars give the scores
for the hyperbolic shapes, and the hatched score bars refer to the
scores for the convex elliptic shapes.
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Experiment 2
The scores for both subjects are presented in Figure 7:

the two rows of shaded score bars represent the responses
to concave elliptic stimuli, the four rows of blank score
bars show the responses to hyperbolic stimuli, and the
two rows of hatched score bars show the responses tocon-
vex elliptic stimuli. First, we concentrate on the results
for the concave and convex elliptic shapes (the shaded and
hatched score bars, respectively). The scores show that
when information about the illuminant direction was
present in the image, the subjects categorized concaveel-
liptic shapes to the concave side of the shape index scale
(Categories 1-4; p = .012 for R.E. andp = .0001 for
S.dV.) and the convex elliptic shapes were reported as
convex (Categories 5-8; p = .0006 for R.E. and p =

.022 for S.dV.). However, the subjects still seemed to
be unable to distinguish between elliptic and hyperbolic
shapes. The percentage of correct scores for the concave
elliptic shapes are significantly above chance level only
for Subject S.dV. (p = .11 for R.E. andp = .0003 for
S.dV.). The scoresfor the convex elliptic are much higher
(p = .003 for R.E. andp = 0.024 for S.dV.). In Table
2, the percentages of correct responses are shown for all
the subjects, grouped into concave elliptic, hyperbolic,
and convex elliptic shape categories. Here we can see that
only the scores for the convex elliptic shapes are signifi-
cantly above chance level.

For the hyperbolic stimuli, we found that all the sub-
jects chose any shape category when a “symmetric sad-
dle” (Categories 4 and 5) was presented. The elongated
saddles (Categories 3 and 6) are more or less grouped
around the correct category. However, for these saddles,
we also find responses in the other shape categories (see
Figure 7). An ANOVA indicated no significant increase
in the scores (p = .42forR.E. andp = .12 for S.dV.).
For the hyperbolic shapes, the percentage of correct re-
sponses was, for all the subjects, not significantly above
chance (see Table 2).

When comparing the results with the experimental pre-
dictions, we indeed find that the subjects reported con-
cave elliptic shapes as concave, and convexelliptic shapes
as convex. Hyperbolic shapes evoked responses on the
entire shape index scale, especially the symmetric sad-
dles. These findings imply that, when information about

Table 2
Percentages of Correct Responses in Experiments 2 and 3

Shape

Subject

S.dV AK. W.vD. RE.

Experiment 2

Concave elliptic
Hyperbolic
Convex elliptic

28
16
42

20
21
28

32
17
52

18
21
39

Experiment 3

Concave elliptic
Hyperbolic
Convex elliptic

26
14
53

40
26
64

39
38
61

42
43
83

illuminant direction is present in an image, human ob-
servers can distinguish between concave and convex el-
liptic shapes, but still will confuse hyperbolic shapes with
elliptic.

Experiment 3
Figure 8 shows that the categorization of quadrics is

improved when a sequence of eight intensity patterns of
the same shape is displayed. The scores of Subject R.E.
especially show a major improvement; his results are al-
ways grouped around the correct responses on the di-
agonal. The scores of Subject S.dV. are less drastically
increased in this experiment. The results for the convex
elliptic shapes were slightly better than in Experiment 2,
whereas the correct scores for hyperbolic and concaveel-
liptic shapes remained identical (see Table 2).

In this experiment, the subjects reported that the se-
quence of intensity patterns was sometimesconfusing. The
first image gave some impression of the shape, which
could be confirmed or not by the rest of the sequence.
For elliptic patches, the following patterns mainly con-
firmed the first impression of the shape, but for hyper-
bolic shapes the subjects had the impression that the se-
quence was internally inconsistent. Table 2 shows that the
convex elliptic shapes especially were categorized quite
well. The performance of all the subjects on categorizing
the hyperbolic and concave elliptic shapes was much
poorer. Furthermore, the subjects reported that they ob-
tained a response category by reasoningout the informa-
tion given by the animated sequence. This probably ex-
plains the differences in performance between the subjects
inExperiment 3. Subject R.E. shows the highest scores,
but he was also the experimenter and was very familiar
with the experimental conditions.

GENERAL DISCUSSION

First of all, we summarize the major experimental
findings.

1. On the basis of a single shaded image and in the ab-
sence of information about illuminant direction, the cate-
gorization of local shape was rather poor. The only local
shapes that the subjects seemed to be able to distinguish
were elongated (cylinder-like) shapes from symmetric
(sphere-like) shapes.

2. When the illuminant direction was made visually
available in the image (e.g., by a cast shadow), the sub-
jects could distinguish between concave and convex el-
liptic surfaces. However, elliptic and hyperbolic shapes
were still confused.

3. From an animated sequence of intensity patterns of
the same shape, the subjects could categorize the local
shape quite well. However, they reported that they ob-
tained their responses by reasoning out the information
given by the sequence.

An arbitrary solid shape can be described locally by
hyperbolic and elliptic (convex and concave) patches. For
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some reason, in most shape-from-shading experiments
only the elliptic shapes are actually used. Our research
shows that interesting observations can be made when
shape-from-shading experiments are extended to all pos-
sible local shapes, represented by quadric surfaces.

We found that observers are quite poor at categorizing
quadric shapes on the basis of shading alone. Other
psychophysical experiments have shown that observers
are unable to distinguish between concave and convex el-
liptic shapes (Berbaum et al., 1984; Ramachandran,
1988). In the present research, we have shown both the-
oretically and experimentally that only elongated from
symmetric shapes could be distinguished. Hyperbolic and
elliptic shapes were confused just as easily as were con-
cave and convex ones (see also Blake & Brelstaff, 1988).
The hyperbolic-elliptic ambiguity was even more pro-
nounced than the concave-convexambiguity. If the direc-
tion of the illuminant was visually indicated, it was directly
possible to distinguish between concave and convex el-
liptic shapes, but it was still impossible todistinguish be-
tween elliptic and hyperbolic ones.

This fmding implies that, even when the illuminant
direction is known, the local surface structure cannot be
estimated uniquely. Therefore, in computational models
on shape from shading, as proposed by Horn (1975, 1977)
and Pentland (1984, 1989), assumptions about the local
surface shape have to be made, even when the illuminant
direction is known. Generally, it is assumed in these
models that the surface shape is locally convex elliptic.
This assumption is true for objects with a convex smooth
occluding contour; such objects are at least convexellip-
tic at the boundary (Koenderink, 1984).

Several notable psychophysical experiments on estimat-
ing local shape from shading are reported by Todd and
Mingolla (Mingolla & Todd, 1986; Todd & Mingolla
1983; Todd & Reichel, 1991). In these experiments, sub-
jects had to judge the surface orientation of patches on
ellipsoids with different eccentricity in the viewing direc-
tion. The subjects were rather poor at estimating the lo-
cal surface orientation. Despite the fact that our experi-
ments were quite distinct, we also found that subjects were
very poor at categorizing the local shape on the basis of
shading. Only the scores for the animated sequence of im-
ages belonging to the same shape look promising. How-
ever, our subjects reported that they found the task rather
superficial. In addition, the results are only moderate com-
pared with the scores obtained in similar types of catego-
rization experimentsdone on shape from stereo (de Vries
et al., 1993) and shape from motion (van Damme &
van de Grind, 1991).

Mingolla and Todd (1986) conclude that human per-
ception of shape from shading is probably nota local pro-
cess, but involves “global” structures. The results ofour
research support this point of view. A global description
of shape has beenproposed by Koenderink and van Doom
(1980, 1982). They have theoretically shown that in the
illuminant distribution on a solid shape, several types of

singularities (local maxima, minima, and saddle points)
will appear (they call these the first, second, and third
types of singularity). The first type of singularity appears
in the illuminant distribution, in which the surface nor-
mal is aligned with the illuminant direction and shows an
intensity maximum. The second type of singularity ap-
pears only on the boundary curves between hyperbolic
and elliptic regions (the so-called parabolic curves). The
third type of singularity does not occur on diffusely shaded
objects. We know this third type as specular points; they
appear on the surfacewhere the surface normal coincides
with the bisector of the visual direction and the illuminant
direction. The topology of the field of isophotes is deter-
mined by the geometry of the solid shape and the il-
luminant direction. However, the illuminant direction is
not necessary for many aspects of a global description of
shape. In contradistinction to the local description, in
which the surface orientation is calculated from the sur-
face data, the global description is morphologically ex-
pressed in terms of the curvature landscape.

The local-global distinction is an important one. Our
research clearly shows that subjects cannot distinguish lo-
cal shapes in isolation. Our subjects also reported that the
stimuli looked rather flat. Apparently, they could not
judge the surface orientation or curvature correctly. This
conforms with the findings of Mingolla and Todd (1986;
Todd & Reichel, 1991).

Our research suggests that perception of solid shape
from shading is not a local process. However, it is prema-
ture to conclude that our findings point to a model of
global shapeperception. In our experiments, quadric sur-
faces were used. These surfaces were purely hyperbolic
or elliptic, and the luminance distribution did not contain
any ofthe singularities and topological features by which
the global shape of an object could be estimated.

Many psychophysical experiments will be needed to
resolve the question of local versus global shape percep-
tion. In conclusion, the present research shows that hu-
man observers are rather poor at categorizing local quadric
surfaces on the basis of shading. Even withexplicit visual
information about the illuminant direction, subjects can-
not distinguish elliptic and hyperbolic shapes. It will be
of interest to extend the shape-from-shadingexperiments
to more complicated (cubic and higher order) surfaces.
Perhaps it will be possible to find some psychophysical
indication for global processes in the perception of shape
from shading.
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