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Abstract 

We propose a new, discretized model for the study of (3 + 1 )-dimensional canonical quantum 
gravity, based on the classical SL(2, C)-connection formulation. The discretization takes place 
on a topological N 3 lattice with periodic boundary conditions. All operators and wave functions 
are constructed from one-dimensional link variables, which are regarded as the fundamental 
building blocks of the theory. The kinematical Hilbert space is spanned by polynomials of certain 
Wilson loops on the lattice and is manifestly gauge- and diffeomorphism-invariant. The discretized 
quantum Hamiltonian /~ maps this space into itself. We find a large sector of solutions to the 
discretized Wheeler-DeWitt equation/-'/~ = 0, which are labelled by single and multiple Polyakov 
loops. These states have a finite norm with respect to a natural scalar product on the space of 
holomorphic SL(2, C)-Wilson loops. We also investigate the existence of further solutions for the 
case of the 13 lattice. Our results provide for the first time a rigorous, regularized framework for 
studying non-perturbative canonical quantum gravity. 

1. Introduction 

All  attempts to define a lattice discretization of  four-dimensional quantum gravity, 

in analogy with the rather powerful methods employed in quantum chromodynam- 

ics, have been r iddled with difficulties. A major problem is that of  incorporating the 

diffeomorphism-invariance of  the theory. The discretization typically destroys this sym- 

metry already at the classical level, similar to the way in which a lattice discretization 

of  Yang-Mil l s  theory breaks its rotational symmetry. However, in the case of  gravity 

this is much more serious, since the diffeomorphism group is infinite-dimensional, and 

acts non-linearly on the underlying manifold. A number of  questions arise: ( i )  does the 

discretized quantum theory possess a residual diffeomorphism symmetry? ( i i )  how is 

the continuum limit  to be taken? and ( i i i )  what does the resulting theory look like? 
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(This should be a non-perturbative, diffeomorphism-invariant description for quantum 
gravity in an "unbroken" phase.) The answer to (i) is usually "no", whereas the other 
two questions are hard to address and have not yet found a satisfactory solution within 
either Lagrangian or Hamiltonian approaches. Using Euclidean path integral methods, 
a main problem is that of finding the correct measure, without over- or undercounting 
the physical configurations (currently the most active research programs are quantum 
Regge calculus and dynamically triangulated gravity; see Ref. [ 1 ] for a recent review). 
A central problem in the canonical approaches is that of finding a closing algebra of dif- 
feomorphism constraints on the phase space of the regularized theory (see, for example, 
the discussion in Ref. [2] ). The unresolved status of the closure problem is the reason 
for which many Hamiltonian discretized models have not advanced very far [3,2]. 

The starting point of this paper is a particular form of Hamiltonian lattice gravity. 
However, instead of implementing the action of the (three-dimensional) spatial diffeo- 
morphisms directly on the phase space of the theory, we will use a framework in which 
diffeomorphism invariance is manifest. This approach is inspired by the loop space for- 
mulation of canonical quantum gravity, based on the classical reformulation of Einstein 
gravity in terms of a pair (A/,/~a) of SL(2, C) Yang-Mills variables due to Ashtekar 
[4,5]. In the original paper by Rovelli and Smolin Ref. [6], the wave functions ~b(y) 
of the quantum theory are labelled by spatial loops y, and the diffeomorphism invari- 
ance is formally implemented by selecting those wave functions that are invariant when 
the loop argument y is moved by a diffeomorphism. Physical wave functions therefore 
depend on diffeomorphism equivalence classes [y] of closed loops. Using these ideas, 
solutions to all of the quantum constraints, including the Wheeler-DeWitt equation 
/¢/~/, = 0, have been found [6] (for an overview of this and other solutions, see Ref. 
[7] ). This involves the choice of a regularization and factor ordering for the quantum 
Hamiltonian constraint/~, and is rather formal, in the sense that there is no well-defined 
scalar product on the space of solutions, and little control over the influence of different 
regularizations and factor orderings on the structure of this space. As a result the status 
of these solutions has remained unclear and the issue of reality conditions could not 
be addressed. In the Ashtekar formulation in terms of complex canonical variable pairs 
( A / , / ~ ) ,  such conditions have to be implemented in the quantum theory to make sure 
that real, and not complex gravity is described. 

Recently, there have been proposals for defining continuum loop representations rig- 
orously, regarding them as non-linear analogues of the Fock representation based on 
quantum loop states (see Ref. [8] for a review and further references). Central to this 
line of research are the construction of suitable domains for wave functions depending 
on connections modulo gauge transformations and diffeomorphism-invariant measures 
on such spaces. However, so far these efforts have addressed only the kinematical struc- 
ture of the quantum theory, without incorporating any of the dynamical issues regarding 
the quantum Hamiltonian. A rigorous analysis of the structure of the solution space to 
the Wheeler-DeWitt equation and of physical operators on this space is therefore still 
lacking. In the present work we will suggest a discretized version of canonical quantum 
gravity that can deal with these issues. 
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The discretization will take place on a periodic cubic lattice, but this is not to be 
thought of as a fixed lattice embedded in physical, Euclidean three-space, but merely as 

a topological quantity, defined by those of its properties that would remain unaffected by 
a smooth diffeomorphism. It may thus be thought of as representing a diffeomorphism 
equivalence class of cubic lattices. All physical quantities are defined in terms of link 
variables, and the discretized Hamiltonian acts purely combinatorially on wave functions 
labelled by lattice loops. The formalism is manifestly diffeomorphism- and therefore 
also scale-invariant. The basic link variables of our formulation are a Kogut-Susskind 
pair of an SL(2,C)-valued link holonomy and a corresponding sl(2,C)-momentum 
variable. However, the corresponding basic operators in the quantum representation 
are no t  selfadjoint. This is acceptable, since they do not correspond to any physical 
observables. It comes about since we propose to implement the reality conditions, 
following the ideas of Refs. [5,3], as a holomorphicity condition on wave functions 
(this leads to the correct number of degrees of freedom in the quantum theory). Also 
the Hamiltonian operator turns out to be non-selfadjoint. This is no real reason for 
concern either, if one accepts the argument that the selfadjointness of the Hamiltonian in 
a generally covariant theory is not a strict physical requirement (for related discussions, 
see Ref. [ 9] ). 

On a cubic N 3 lattice with periodic boundary conditions, given a specific discretization 
of the Hamiltonian H together with a particular operator ordering f o r / t ,  we are able 
to find an infinite set of solutions to the Wheeler-DeWitt equation, that moreover have 
finite norm with respect to the inner product induced from the original kinematical 
Hilbert space. They are labelled by so-called Polyakov loops and multiple Polyakov 
loops, which are well known from their role as order parameters for the phase structure 
of lattice gauge theory (see, for example, Ref. [ 10] ). Their appearance in the context 
of lattice gravity is curious, although they play here a quite different role, namely, that 
of parametrizing the solution space to the Wheeler-DeWitt equation. These solutions 
are the lattice analogues of the non-intersecting, smooth-loop solutions found by Rovelli 
and Smolin [ 6]. This for the first time provides a regularized model for non-perturbative 
canonical quantum gravity that can be used to study physical observables. 

The paper is organized as follows. In the next section we introduce all the necessary 
ingredients for setting up the Hamiltonian lattice theory, and explain some features of 
the holomorphic representation we will be using for constructing a scalar product on 
SL(2 ,C)  wave functions. We derive an important explicit formula for relating arbi- 
trary polynomials in the SU(2) and SL(2, C) theories. In Section 3 we establish a 
relation between the zero-eigenvalue solutions of our quantum Hamiltonian and another 
Hamiltonian, induced from the SU(2) theory. This suggests a close connection between 
the real and the complex, holomorphic theories. Next we demonstrate that there is a 
large subspace of the Hilbert space that is annihilated by the Hamiltonian constraint. 
In Section 4 we take a closer look at the special case of the 13 lattice and explore 
the possibility of finding solutions beyond the ones labelled by the Polyakov loops. We 
illustrate some of the technicalities involved, without being able to identify any solutions 
explicitly. The last section contains our conclusions and art outlook. 
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2. The general formalism 

We first recall the basic Hamiitonian variables for the SU(2) lattice gauge theory, 
before discussing the complexified framework for SL(2, C) = SU(2)c.  This is necessary 
for setting up a discretized version of the connection formulation of canonical gravity. 
With each lattice link we associate an element g E SU(2), parametrized by a matrix 
V(g) in the defining two-dimensional representation as 

( 0/0 + i0/1 0/2 + i0/3 
VAB = \ - - a 2 + i 0 / 3  0/0_,i0/1/t , (2.1) 

with ai E R, and subject to the condition ~-]~---0 0/2 = 1. The matrix Va B can be written 
as a (real) linear combination of the unit matrix II and the three ,r-matrices defined by 

( ;  0 )  ( ?  ; )  ( 0  i )  (2.2) 
,rl = - i  ' 7"2 = 1 ' 7"3 = 0 " 

The ,r-matrices satisfy [,ri, "rj ] = 2 eijk,rk. The differential operator 

c~ B l ( Oo - iO, - c 9 2 - i 0 3 )  (2.3) 
( - ~  ) a = -~ 02 ic93 c90 q- iOl 

acts on the representation matrices (2.1) and satisfies 

3 A8 1 (~-~) VC ° = ~6aO 6c B. (2.4) 

The operators corresponding to the classical momentum variables Pi (with a gauge 
algebra index i) are given by 

() a 
[)i ----- --i TTiABVB C t " ~  )C 

and satisfy 

Pi VA C = ---~ "riABVB C , 

lSi(V-1)a c = 2  (V J)aB,ri8 c. 

In terms of coordinates, we have 

f i l  = 2 ( O / 1 0 0  - -  0 /001 + 0 / 3 0 2  - -  0 / 2 0 3 )  

i 
P2 = ~ (0/2a0 - a3al - 0/0a2 + 0/t a3 ) ,  

i 
/)3 = 7 ( 0 / 3 0 0  + 0/201 - -  0/102 - -  0 /003)  • 

Defining 
mutation 

(2.5)  

(2.6) 

(2.7) 

the operator f,' as multiplication by the matrix V therefore leads to the com- 
relations 
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[f/a~, f,'c ~ ] =o, 

i TiAB~IBC [l~i, flaC ] =---~ 

[ f f i ,  f f  j ] = i e ij k i lk ,  

623 

(2.8) 

which are the quantum equivalents of the Poisson brackets of the corresponding classical 

quantities. These commutation relations are familiar from the Hamiltonian SU(2)-lattice 

gauge theory [ 11 ], where the /O i a r e  hermitian operators. Here, in contrast, we shall 
associate three complex (i.e. S L ( 2 , C ) )  degrees of freedom with each link of the 
hypercubic lattice. As usual, operators (17,/~) associated with different links commute. 

The entire construction (2.1)-(2.8)  makes sense also if we complexify the group to 
SU(2)c  = SL(2, C).  We will denote the corresponding group parameters by complex 

numbers u/c, i = 0 , . . .  ,3, again subject to a condition y'~,~__.0 ( a c )  2 i  = 1. The operators 

f '  and /~ are taken to act on a space of holomorphic wave functions on the group 

manifold of SL(2, C),  whose inner product will be specified below. Note that due to 
the non-compactness and non-abelianness of the group SL(2, C),  there is no analogue 

of the bi-invariant Haar measure dg, which exists on SU(2).  However, thanks to the 
work of Hall [ 12], we know there exist unitary holomorphic transforms from the space 
L2(SU(2) ,  dg) of square-integrable functions on SU(2) to spaces L2(SL(2, C) ,  dr )  7"t 

of holomorphic and v-square-integrable functions on SL(2, C).  (These are analogous to 
the Segal-Bargmann integral transform from L2(IR n) into the holomorphic functions on 

Cn.) This provides us with the desired scalar product on functions on a complex group 
manifold. Note that Hall's results have recently been used to construct a coherent state 

transform for spaces of connections in the continuum [ 13]. 
We now recall some details of Hall's construction insofar as they are relevant to 

the present discussion. For each real t > 0, there is a "coherent-state transform" Ct : 
L2(SU(2) ,dg)  --+ L2(SL(2, C) ,dv t )  ~ defined by 

[Ct(f)](gc) := i f (g)Pt(g-lgc)dg'  
su(2) 

(2.9) 

where f E L2(SU(2) ,dg) ,  g E SU(2),  gc E SL(2, C),  and pt is the heat kernel 

for the Casimir operator A = --4~iff2i on SU(2),  i.e. the fundamental solution at the 
identity of the heat equation dp/dt = ½AP. More precisely, since the argument of Pt 
in (2.9) is a complex group element, we are using its analytic continuation, which is 
well-defined (see Ref. [ 12] for details). In terms of the explicit parametrization (2.1) 
for the matrices V(g) and the normalized Haar measure dg, and using a series expansion 

for the heat kernel, one obtains 

[Ct(f) ] (go) 

' i i S l  ± = 7g doe 0 daq dc~2 dee 3 6( a/2 - 1) 
i=0 

f ( oli) 
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Z (2j  + 1) e -j(j+l)'/2 U2j(ao aft -4- ala~ + a2aC2 + a3a C) X 

j--o,½ .... 

I ~ x/1 2 2  --a 0 --a I 

' /  I I zr 2 da0 d0/l 

- ,  - - , / 1  2 2 - -ao--a  1 

× e - J ( J + l ) t / 2 [ (  f ( 0 /  x U . ,  
~ , ' , a ~ .  i) 2 j J l -  I1 _2 .2 ,,2 "~ " 3 = V  - " 0 - - 1 - - 2  ( f ( o l i ) U 2 j ) i a s = - x / l - a 2 - a ~ - a ~ )  

(2.10) 

1 Z (2j + 1) 
d0/22V/1 - a 2 -  a2-a22 j=0,½ .... 

(whenever the infinite sum over j on the right-hand side converges), where the U2j 
denote the Chebyshev polynomials of the second kind. The image of a square-integrable 

function f ( g )  on SU(2) is a holomorphic function on SL(2 ,C) ,  square-integrable 
with respect to dr ' t ,  which is essentially the heat kernel measure on the quotient space 

SL(2, C ) / S U ( 2 ) .  
Since our aim is a manifestly gauge-invariant description of lattice gravity in a holo- 

morphic loop representation, several issues have to be resolved. Firstly, we are not aware 

of a simple explicit expression for the measure d~'t in the holomorphic representation 
obtained via (2.9), and therefore have to look for functions f ( g )  with a simple transfor- 
mation behaviour, preferably elements of an orthonormal basis of LZ(su  (2),  dg), which 
will be mapped into orthonormal functions of L2(SL(2, C) ,  dr, t) 7-t, since Ct preserves 
scalar products. Secondly, we will work with functions that are gauge scalars and can 

be expressed as functions of Wilson loops, i.e. traced holonomies of closed loops on the 
lattice. The lattice Hamiltonian maps such functions into themselves. 

To obtain the holomorphic transform for general SU(2) wave functions on the lattice, 

we need to take the product over all lattice links of the transform for a single link, 
formula (2.10). First however we will give an (overcomplete) set of functions of a 
single copy of SU(2),  i.e. on a single link, that have a simple transformation behaviour 
under the transform (2.10). They are given by appropriate sums of polynomials in the 
four real parameters 0/i (restricted to the submanifold SU(2) C ]I~ 4 )  and can be labelled 
by the exponents r/i in the polynomial 0/on°o/In1°/2n20/3n3 of highest order occurring in the 

sum. One finds 

p(no,nI ,n2,n3) := 

I no /2+ I I (-1)jo-1 agO-20o -1) 

Z.~ 2 2 U ° - l ) ( j o - 1 ) ! ( n o - 2 ( j o - 1 ) ) !  
jo=l 

[nt/24-11 

× Z  

(no)!(no-- jo + nl + n2 +n3 + 1)! 

(no + nl + n2 +n3) !  

(_1)./1-1 a~-2Ch -1) (nl)!(no - jo + nl - jl + n2 + n3 + 2 ) !  
2 2 0 ' - l ) ( j l - - l ) ! ( n l - - 2 ( j l - - 1 ) ) !  ( n o - J o + n l + n 2 + n 3 + l ) !  

X 

.h =1 
n2/2+ 1 I 

Z 
.i2=1 

( - 1 )j2 -1 a~2-2(J2-1 ) 

2 2 0 2 - 1 )  ( j 2  - 1) ! (n2- -2( j2  - 1))! 
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(n2) !(no - jo + nl - j l  + n2 - j2 + n3 + 3)! 
x 

(no - - jo  + nl - - j l  + n2 +n3 + 2 ) !  

[ n3/2+X__, 1 ] ( - 1 ) J3 - l a~3 - 2 ( j 3  - l ) 

Z.~ 2 z(j3-1) (j3 - 1)!(n3 - 2(j3 - 1))!  
j3=l 

( n 3 ) l ( n o - - j o + n l - - j l  + n 2 - - j 2 + n 3 - - j 3 + 4 ) !  
x 

(no - j o  + nl - j l  + n2 - j 2  +n3 + 3)! 

For the holomorphic transform of p (n0, nl, n2, n3) one obtains 

625 

(2.11) 

[Ct(p(no, nl, n2, n3) ) ] ( a  c~ i , = e--(no+nl+n2+n3)(no+nl+n2+n3+2)t/8p(no, n l ,  n2 ,  n3 ) c ,  

(2.12) 

where by p (n0, nl, n2, n3 ) c we denote the expression (2.11 ) with the real parameters 
t~i replaced by the corresponding complex quantities a c. That is, to find the (inverse) 
holomorphic transform of a polynomial function of the O( i ( O//c ), one first has to express 

it as a linear combination of the p(no,nl ,nz ,n3)  (p(no,nl ,n2,n3) c) and then use 
(2.12). Both (2.11) and (2.12) are crucial formulas for relating the SU(2) and the 

holomorphic SL(2, C) representation, and will be used in the following sections. The 
next step is the identification of gauge-invariant combinations of the p(n0, nl, n2, n3 ). If  
the configuration space consisted of just one link (with endpoints identified), our task 
would be straightforward: all gauge-invariant quantities one can construct in that case are 
functions of ½Tr V = a0, and a complete basis is given by the Chebyshev polynomials 

U,,o ( aO ) . 
The situation on the hypercubic lattice is more complicated since general gauge- 

invariant quantities are functions of traces of holonomies around arbitrary lattice loops, 
which do not necessarily factorize into products of link contributions. Moreover, there is 

the additional problem of finding a set of gauge-invariant functions on ×tSU(2) that is 
complete (i.e. spans the Hilbert space of square-integrable functions), but at the same 
time not overcomplete, i.e. free of redundant degrees of freedom. This is a well-known 
complication with intrinsically gauge-invariant formulations of lattice gauge theory, and 
there are various strategies of dealing with it. In Section 4 we will address some of 
these difficulties in the context of the 1 x 1 x 1 lattice. 

Formula (2.11) can be used to construct gauge-invariant functions with a sim- 
ple transformation behaviour that are labelled by lattice loops. This is important be- 
cause the (overcomplete) basis of gauge-invariant functions {TrV,-,V/2 ...V/,, y = 
li~ o Ii2 o . . .  o li,, a lattice loop} often appears in applications. Using the parametriza- 
tion (2.1) for the link matrices V/, Tr V/~ V/2 . . .  V/, is a homogeneous sum of polynomials 
in those parameters. Re-expressing in each summand the link contributions in terms of 
the functions p(no,nl ,n2,n3) ,  one obtains quantities that transform like (2.12) with 

t-dependent exponential factors. 
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3. Solutions to the Wheeler-DeWitt equation 

Next we study the action of a discretized form of the phase space Hamiltonian 

for canonical gravity. Let us label lattice sites by an integer n and the three positive 
directions emanating from each site by ~ = 1, 2 or 3. Thus the canonical variables are 

given by V(n,~) and p(n,~). We denote the holonomy of a plaquette loop based at 
the site n in the ~-b-plane by V(n, P~), that is, V(n, P~b) = V(n, ~)V(n + gz, b)V(n + 
b,~)- lV(n,b)  -] 

We require that in the limit as all link lengths go to zero the continuum Hamiltonian 
is recovered. Since our lattice was assumed to be purely topological, we define this limit 

with respect to an auxiliary Euclidean coordinate system (the three lattice directions 
coinciding with the three coordinate axes) in which all links have length a. As a --~ 0, 
one derives the usual expansion for the plaquette holonomy 

2,~k B V(n,P~b)A B ~ IIA B +a rabrkA + O ( a 3 ) ,  (3.1) 

where Fao is the a-b-component of the field strength associated with the selfdual con- 
nection A. For the momentum variable pi(n, ~) we require that 

pi(n,~t) a~O a 2 ~ ( n )  + O ( a  3) (3.2) 

in terms of the continuum momentum density/~, since p is like a momentum variable 
smeared in one (out of three) spatial directions. Therefore, if we associate with each 
lattice site n the lattice Hamiltonian 

He(n) = Z eijkpi(n' ~t)pj(n, b)Tr (V(n, P~b)rk), (3.3) 
~<~ 

this to lowest order leads, up to a power of a, to the correct continuum limit 

He(n) ~ o  a6-ijk~'a~'b~e ~i r-jrabk q- O(a7). (3.4) 

The total Hamiltonian is given by the sum ~ n  He(n ) .  As a result of the "dimensional 
transmutation", the discretized Hamiltonian is a topological quantity, in the sense that 
it depends only on link variables, with no reference to the link length a, and acts on 
loop wave functions in a combinatorial way. As long as we do not re-introduce a length 
scale, the formulation is therefore purely topological. 

Just as in lattice gauge theory, the requirement of the correct continuum limit does 
not fix the discretized Hamiltonian uniquely. In the present work we do not investigate 
the question of whether a different choice of H e (n) leads to equivalent results. In going 
to the quantum theory, another ambiguity arises in the choice of the operator ordering 
of ~C(n) .  The most commonly used operator ordering for the Hamiltonian is the one 
with the operators /3i to the right, but also the opposite ordering with both of the fii 
to the left is sometimes used [ 14]. In our present investigation we will be using the 
former, i.e. 
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fflC = Z ~ eijkTr ( ( / (n ,  Phb)rk) fii(n, gl) ~j (n ,  b). ( 3 . 5 )  

n a<b 

Since the spatial diffeomorphisms have been taken care of, the only remaining task 
is to look for holomorphic wave functions ~pc E ×/L2(SL(2, C) ,dp t )  7"t that solve the 

analogue of the Wheeler-DeWitt equation, 

[/c~/,c = 0. (3.6) 

The existence of solutions depends on the spectral properties of the Hamiltonian oper- 
ator/~/c. Since the constituent operators f /and p are not selfadjoint in the holomorphic 
representation, we do not have any a-priori information about the spectrum of/e/c. There 

are three possibilities: 
(i) /~rc~/, c = 0 has non-trivial solutions in ×IL2(SL(2,C),dpt)7-t; 

(ii) /t/c~oc = 0 does not have solutions in xlL2(SL(2, C) ,dut )  7~, but can be solved 

"as a differential equation", i.e. there are non-square-integrable solutions; 
(iii) there are no solutions. 

In case (i) ,  the solution space inherits a scalar product from the original Hilbert 
space, whereas in case (ii) one still has to define a suitable inner product. A number 
of identities are useful in computing the action of the Hamiltonian on gauge-invariant 
wave functions (which all contain terms of the form TrV/, Vi2 . . . ) .  The first one is 

eijkTjABTkcD -~ TiAD~c B -- TicB~A D, (3.7) 

from which follow two identities for the traces of holonomies: 

eiJkTr (V~,rjV#~'k) =Tr V#Tr (VaTi) - -  Tr V,~Tr (V#zi), 

eiJkTr (V, Tj)Tr (V~zk) =Tr  (V,~riV~) - Tr (V,~V~I"i), (3.8) 

where a, fl are two lattice loops intersecting at n, and the product loop a o fl is obtained 
by the usual loop composition at n. Secondly, we have 

TiAB Tic D = •ABfc D -- 2 6AD6B C. (3.9) 

Lastly, there is the well-known identity relating a product of two Wilson loops of 

SL(2, C) holonomies to a sum of two Wilson loops, 

Tr V~Tr Vt~ = Tr V,~o/~ + Tr V, ot~-~ ~ TrV,~V/3 + Tr V,~V~ - l .  (3.10) 

By virtue of these identities, the action of the Hamiltonian on states of the form 
Tr Vi, V/2... may be interpreted as cutting and joining of the lattice loop arguments, 
as is typical for the loop representation. To what extent such a geometric interpretation 
is useful in finding solutions to the zero-eigenvalue equation depends to some extent on 
the type of basis chosen for the quantum states. As in the case of l-Iamiltonian lattice 
gauge theory, the Hamiltonian couples neighbouring links due to the occurrence of the 

plaquette holonomy operators f '(n, Pab) in/~/(n). 
Next we show that solutions to the zero-eigenvalue equation /e/cg, c = 0 are in one- 

to-one correspondence with solutions to /~ind~b c = 0, where /~/ind is the (selfadjoint) 
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Hamiltonian induced from the SU(2)-lattice theory. That is, we take/2/c as in (3.5), and 
substitute the operators by their real counterparts acting on ×tL2(SU(2),  dg) (i.e. take 
all parameters ai etc. to be real), before translating it to the holomorphic representation 
using the transform (2.10). 

Let us for the moment assume we are given a complete orthogonal basis of wave 
functions {x (n ) ,  n = (nj, n2 . . . .  na) }, d = d i m ( × t S U ( 2 ) / × s  SU(2)) ,  for the gauge- 
invariant (real) Hilbert space L2( × tSU(2) /  xs SU(2),  ~r(I-lt dg)),  where ~(I-[l dg) 
denotes the projection to the quotient space of the product of Haar measures, l is the 
number of links and s the number of sites. Its elements are labelled by integers ni and 
transform according to 

Ct(x(n) ) = e-f,(n) xC(n),  (3.11) 

and f t (n)  >~ O. Since the exponential factors are just real numbers rescaling the basis 
(which we did not assume to be orthonormal), we can write any square-integrable 
element of the holomorphic Hilbert space as a real linear combination of the xC(n) ,  
and have (xC(m),xC(n))  ~ 8 m ,  n. The action of the Hamiltonian ~ acting on a 
general vector ~ n  a(n) xC(n) ,  a(n) C 1I~, can be written as a matrix equation 

fflC Z a(n) xC(n) = ~ Z M(n,m) a(n) xC(m). 
n n m 

(3.12) 

The Wheeler-DeWitt equation (3.6) is therefore equivalent to an infinite tower of 
equations for the coefficients a(n), 

Z M(n,m) a(n) =O, Vm. (3.13) 
n 

The norm of a vector~"~na(n) xC(n)  can be calculated usingitsinverseimage under 
(3.11), and is given by 

II ~a(n). xC(n)llsL(2,c) = ¢~na(n)2e 2ft(n) Ilx(n)ll~w(2). (3.14) 

By contrast, the Hamiltonian/~i~d acts on holomorphic wave functions according to 

fl~ind Z b(n) xC(n) = ~ Z e-f'(m) M(n,m)e-f'(n) b(n) xC(m),  (3.15) 
n i i  m 

leading to the set of conditions 

Z M(n,m)ef'(n) b(n) =0, Vm (3.16) 
n 

on the coefficients b(n) of zero-eigenvectors. Clearly they are related to the solutions 
of (3.13) by a(n) = ef'(n)b(n). However, the norm of the solution vector is in general 
different, and we have 
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II Z b(n) xC(n)  [[SL,Z,C) t / Z  b(n)2e2f'(n) I[x(n) 2 = Itsu(:)  
n V - -  

~< II Z a ( n )  Xc(n)  IIsL(2,c). (3.17) 
n 

It may therefore happen that a zero-eigenvalue solution to l~ind ~-~.n a(n)xC(n) = 0 is 
square-integrable, while the corresponding solution to ~ ~ n  a(n)%C(n) = 0 is not. 

The form of the quantum Hamiltonian (3.5), like its counterpart in the continuum 
theory, is sufficiently complicated so as not to lead us to expect the eigenvalue problem 
could be soluble trivially. What comes to help in the analogous problem in the continuum 

is the existence of "algebraically special" solutions. For example, in the representation 
where Hcont '~ E(ikEaEbFabk is quantized by f/cont "~ ~:ijkFabk(a)02/OAiaOaJb, solutions 

are given by wave functions ¢(A,y) := T rP exp  J~rAa(y(t))~,~(t)dt, whenever y is 
a smooth, non-selfintersecting loop [ 15]. This happens because the derivatives O/aA 
bring down two factors of  the tangent vector, ~ , b ,  which vanish when multiplied by 

the antisymmetric tensor Fab. 
It turns out that there exist analogous solutions in the lattice formulation. Take any 

straight "Polyakov loop" a, i.e. a loop without corners that winds around the lattice 
once, and is therefore non-contractible. On a N 3 lattice this is a loop a made up of N 
consecutive links in a given direction h, b or P (Fig. 1). The contribution of f /C(n) to 
the Hamiltonian acting on a wave function ,-- Tr V,, vanishes at any given site n crossed 
by a, since i t  would need a wave function with support in at least two independent 

lattice directions to be non-zero. 
There are 3N 2 such Polyakov loops (which we will take to be positively oriented), 

N 2 in each direction. They will be denoted by a subscript p. The Polyakov loops can be 
parametrized by three integers, namely the coordinates of the point where they intersect 
one of the three planes fi = 0, b = 0 or k = 0. (Note that each lattice link is contained in 
exactly one Polyakov loop.) We denote the corresponding wave functions by qb(ap) =- 
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Tr V,~I,. It is easy to see that any wave function c,b(o/~,) of a multiple Polyakov loop 
O/p = O/o O/... o O/with winding number n is also annihilated by/2/c. The solution space 
to the Wheeler-DeWitt equation is therefore infinite-dimensional. However, because of 
the non-linearity of the Hamiltonian, it is in general not true that f4Cc~(o/~p)qb(fl~) 
vanishes too. This only occurs when (o/p, tip) are a pair of non-intersecting Polyakov 
loops. We have therefore found: any wave function that is a linear combination of terms 
in 

{~(o/pl)q~(/~p2).. .  q~(OApk), O/p,/~p . . . .  top k nonintersecting Polyakov loops} 

(3 .18 )  

is annihilated by the discretized Wheeler-DeWitt operator/2/c. The space of such func- 

tions is a rather large linear subspace of the original holomorphic Hilbert space. Charac- 

teristically, its elements are all highly non-local wave functions on the lattice. Note that 
we need not consider separately products of the form ~b(o/~' )~b(o/~ ) for multiples of the 
same Polyakov loop ap, since these can always be re-expressed via the trace identity 
(3.10) as sums of elements of (3.18). Whether there exist solutions that are not of this 
form remains to be explored (see also the discussion in the next section). 

From the point of view of non-perturbative quantum gravity, one is interested in the 
structure of the solution space to/_/c~c = 0, in particular its scalar product and natural 
selfadjoint operators acting on it. For the subsector of Polyakov wave functions described 
above, there is an induced scalar product from the original Hilbert space of holomorphic 
wave functions. In deriving this inner product, an ambiguity arises because the scalar 
product on the wave functions obtained through the holomorphic transform (2.10) is by 
construction invariant under right and left multiplication by SU(2) matrices, but not bi- 
invariant under SL(2, C).  However, on the explicitly (SL (2, C)-)  gauge-invariant space 
of Polyakov wave functions there is only a small remnant of this gauge covariance: it 
turns out that the norm of a complex wave function depends on the number of link 
variables that appear in the coordinate expression for q~(o/g). 

This is to be contrasted with the pure SU(2) case, say. There, in order to simplify the 
computation of scalar products, one often uses a gauge-fixing for a maximal number of 
link variables, which therefore do not any more appear in the calculation. The right- and 

left-invariance of the Haar measure ensures that no physical quantities are affected by 
this choice (see, for example, Ref. [ 16] ). In the present case of SL(2, C),  one may also 
introduce a gauge-fixing for some of the links, but one has to keep track of it. Different 
gauge-fixings result in a rescaling of the wave functions. The norm of a Polyakov wave 
function ~b(o/p ) on a N 3 lattice without any gauge-fixing can be computed using (2.11 ), 
(2.12), and is found to be 

114'(o/p)llsL~2,c) = e3Nt/8. (3.19) 

If  m of the N links occurring in ap are gauge-fixed, the norm changes accordingly 
to e 3(N-re)t~8. Scalar products between (multiple) Polyakov wave functions ~b(o/p') 

and ~b(fl~) vanish whenever the underlying Polyakov loops O/p and tip are different. 
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Furthermore one finds that for fixed Polyakov loop Crp, different multiples ~b(cr~') and 
~b(a~ ) generally have a non-zero scalar product, but do not form an orthogonal set, i.e. 

(qb(a"t;), ~b(a~ )) # t~mn. Their norms and scalar products can easily be computed using 
(2.11) and (2.12). 

The next step in the investigation is the search for selfadjoint operators, acting on the 
Hilbert space of the Polyakov wave functions. Natural candidates are the holomorphic 
transforms of selfadjoint operators in the SU(2) representation that map Polyakov wave 

functions into themselves. Of course one has to make sure that the final physical expec- 
tation values do not depend on a particular gauge-fixing or on the auxiliary parameter 
t. Our lattice formulation does for the first time permit rigorous questions about the 
physical observables and their operator spectra. A detailed study of these issues will 
appear elsewhere. 

4. Gravity on the 1 x 1 × 1 lattice 

To illustrate the technicalities involved in the search for solutions other than the 
Polyakov wave functions of the previous section, we now turn to the case of the 
1 x 1 x 1 lattice with periodic boundary conditions. There is a single site s and three 

(oriented) links emanating from it, which we call a,  fl and y (Fig. 2), to be identified 
with the 1-, 2- and 3-directions on the lattice. 

We first discuss the gauge-invariant Hilbert space for the SU(2) theory and then 
apply the holomorphic transform (2.9), (2.10). By virtue of the boundary conditions, 
ce, fl and y are themselves closed loops. The corresponding holonomy matrices are 
parametrized according to (2.1) by real parameters ai, fli and Yi, respectively. The 
gauge transformations take values in a single copy of the gauge group SU(2),  located at 
the site s. For this case we have complete control over the gauge-invariant functions, i.e. 
we can give a comPlete, non-redundant basis of the physical Hilbert space. Following 
[ 18], a good set of local coordinates on the six-dimensional physical configuration space 
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(SU(2),~ x SU(2)~ × SU(2)r) /SU(2)s  is given by 

1 
L l ( a )  = ~Tr V,~ = a0, 

1 
Ll (/3) = ~TrV# =/30, 

1 
LI(y)  = ~TrV r = 70, 

1 1 
Lz(a , /3 )  = ~(Tr V,,V~- - Tr V,,Va) = a . / ~ ,  

L2(ot, y) = 4(Tr V~Vr --1 - Tr V,~Vr) = a .  T , 

1 - 1  
t 2 ( / 3 , y )  = ~(TrV#V; - TrV#Vr) = # ' 7 ,  (4.1) 

where we have used a vectorial notation for the "spatial" parameters of the holonomy 
matrices, a := (a l ,  ot2,a3) etc. In order to obtain a good global parametrization, one 
needs to add a discrete parameter, which we take to be 

sign(L3(a, /3, ' ) , ) )  = sign(a × l{/" Y). (4.2) 

Also L3 may be written as a linear combination of traces of holonomies involving 
Va, V# and Vr [ 17]. The need for such discrete variables has been emphasized by 
Watson [ 18]. Roughly speaking, the gauge-invariant Hilbert space of square-integrable 
functions, L2(SU(2),, x SU(2)~ x SU(2)~)/SU(2)s, 7r(I-[t dg) ) of the quantum theory 
is spanned by polynomials in the six quantities (4.1) and the discrete variable by a copy 
of Z2. For making contact with the corresponding SL(2, C) representation, we have to 
form a Chebyshev basis from these polynomials, which is orthogonal and has a simple 
transformation behaviour under (2.10 ). 

^ ^ 

For simplicity, we will first describe the subtheory obtained by reduction to the 1-2 
plane, say. The relevant classical variables are then Ll (a ) ,  Ll(/3) and L2(a,/3). Since 
the real polynomials n~ n2 ot 0/3g (a./~)ns, regarded as elements of the physical Hilbert space, 
do not have a straightforward holomorphic transform, we use formula (2.11 ) to identify 
appropriate linear combinations of such polynomials, in order to establish the explicit 
relation between the SU(2) and the holomorphic SL(2,C) representations. For those, 
one finds 

t~-+llK.., ( -1)J°-I  nl!(nl  - j 0 + n 3 +  1)! 
eig(nl ,n2,n3 ) := 

22(j°-l) ( J 0 - - 1 ) ! ( n l + n 3 ) ! ( n l - 2 j 0 + 2 ) !  j0=l 

( - 1 )  ~°-I n2!(n2 - ko +n3 + 1)t 

x ~ 22(k°-l) ( k o - 1 ) ! ( n 2 T n 3 ) ! ( n z - 2 k 0 + 2 ) !  i~o k=o t=o ko=l 

× ( - 1 ) k ' ( k l ) ( - 1 ) l ' ( l l t ) a g ' - 2 j ° + 2 + 2 k ' b g 2 - 2 k ° + ' ~ + 2 t ' ( a ' ~ ) n 3 - z i  



2i-1 

X I I ( n 3 - - p )  
p=O 

x i - k - l  
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i - l - I  i - k - 1  
1 1 

I I  2(n2 - ko + n3 + 1 - q) ~ 2(nl - j0 + n3 + 1 - r) 

i -k- l - I  1 (--1) ~+1 

I I  ( 2 ( n 3 - i - n + - ~ ) ( k + n + l ) )  2 i ( i _ l ) ! ( i _ k ) ! ,  
n=O 

633 

(4.3) 

where ni >~ O. To give a few simple examples, one has 

eig(0, 0, 0) = 1, 

eig( 1,0, 0) = ao, 

1 
eig(2 ,0 ,0)  =a02 4 '  

eig(0,0,  1) = a .  b,  

ao 2 b~ 
eig(0, 0, 2) = ( a -  b) 2 + -~- + ~- - - -  

eig(1, 1, 1) =aoboa. b, 

. . b b° eig(2,1,1)=a~boa b - a  - -  
6 '  

16'  

(4.4) 

Again, by construction, the highest-order polynomial occurring in eig(nl,n2,n3) is 
/1 n 2 a 0 fl~ (a  fl)n3, and the remaining lower-order polynomials in the sum ensure a simple 

transformation behaviour, which in this case is given by 

Ct (eig(nl,  n2, n3 ) ) = e -(re+n3) (nl+n3+ 2)t/Se-(n2+n3) (n2+n3+2)t/Seig( nl , n2, n3 ) C. 

(4.5) 

It is computationally much simpler to determine the action of the Hamiltonian 
on the non-orthogonal basis of holomorphic, square-integrable wave functions 

{ e (nl, n2, n3 ) c - (a0 c ) n~ (1~0) n2 (o tc .  f ie) n3 }, look for zero-eigenvalue solutions and 

then use (4.3,5) for the computation of scalar products, rather than apply f /c  on the 
functions eig(ni,n2,n3) c directly. The quantum Hamiltonian for the 1 x 1 × 1 lattice 
consists of a single contribution f / c (n )  and is 

= ~ eijkTr (f,'(Pab)rk) Pi(n, fi) Pj (n, b). (4.6) 

The plaquette holonomies V(Pab ) are defined using the appropriate identifications of 
links, for example, V(Pii  ) = ViV~Vi-'V~-I. 

We now describe our method for finding solutions t o / / c  ~-~n re(n) e(n)  c = 0 for the 
special case that the wave functions have support only in the 1-2 plane. We first calcu- 
lated the action of the Hamiltonian on a basic holomorphic polynomial e(nl,  n2, n3) c, 
and obtained 
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[IC e ( n j , n 2 , n 3 )  c 

= nln2 ( e ( n l  -- 1,n2 -- 1,n3 + 3) c -  e(n~ -- 1,n2 -- 1,n3 + 1) c )  

+ ( n l n 2  + nln3 + n2n3 -- n3) ( e ( n l ,  n2, n3)C _ e ( n l ,  n2, n3 + 2) c ) 

+ ( n l n 2  - - n l n 3 )  e(n l  -- 1,n2 + 1,n3 + 1) c 

+ ( n l n 2  - - n 2 n 3 - - ) e ( n l  + 1,n2 -- l ,n3 + 1) c 

+ ( n l n 2  + nln3 + n2n3 -- n~) ( e (n i  + 2 ,  n2 + 2, n3) c 

- -e (n l  + 2, nz,n3) c -- e ( n l , n 2  + 2, n3) c ) 

- - (n ln2  -- nln3 -- n2n3 -- n~ -- 2n3) e(n l  + l ,n2  + 1,n3 + 1) c 

+nln3  ( e ( n l -  1,n2 + 1,n3 -- 1) c -  e(nl  -- l ,n2 + 3 , n 3 -  1) c )  

+nzn3 ( e(n l  + l ,n2  -- 1,n3 -- 1) c -- e(nl  + 3,n2 -- 1,n3 -- 1) c ) 

- - (2nln3 + 2n2n3 +n32 + 2 n 3 )  e(nl  + l ,n2 + 1,n3 -- 1) c 

+ ( n l n 3  + 2nzn3 + n~ + 2n3)e (n l  + 3,n2 + l ,n3 -- 1) c 

+ (2n ln3  +n2n3  + n~ + 2 n 3 )  e (n j  + 1,n2 + 3,n3 -- 1) c 

- - (n ln3  + n2n3 + n 2 3 + 2 n 3 )  e(nl  + 3 ,  n 2 + 3 ,  n 3 - - 1 ) C  

--n3 (n3 -- 1) ( e(n~ + 2, n2,n3 -- 2) c -- e(nl  + 4, nz,n3 -- 2) c 

+ e ( n l , n 2  + 2,n3 -- 2) c -- 3 e(nl  + 2, n2 + 2, n3 -- 2) c 

+2  e(n l  + 4, n2 + 2, n3 -- 2) c -- e ( n l ,  n2 + 4, n3 -- 2) c 

+2  e(nl  + 2, n2 + 4, n3 -- 2) c -- e(nl  + 4, n2 + 4, n3 -- 2) c ), (4.7) 

for n i ~ O. That is, independent of the values of the ni, the right-hand side of (4.7) 

is a linear combination of (at most) 26 terms, and the arguments of the e ( n l , n 2 , n 3 )  c 

occurring lie in the ranges - 1  ~< Anl ~< 4, --1 ~< An2 ~ 4 and - 2  ~< An3 ~< 3. 

Since the functions e ( n l , n z , n 3 )  C form a (non-orthogonal) basis for the gauge- 

invariant Hilbert space, we can reformulate the zero-eigenvalue condition as an infi- 

nite set of equations for the m ( n l ,  n2, n3) obtained by setting the coefficient of each 

e ( n l ,  n2, n3) c on the right-hand side of ~ n ,  hrCm(nl ,  n2, n3) e ( n l ,  n2, n3) c to zero. The 

general condition can be labelled by three integers and is easily derived from (4.7), 

yielding 

C [ n l , n 2 , n 3 ]  

:= (nl + 1)(n2 -+- 1) (re(n1 + l ,n2 + 1,n3 - 3) - m ( n j  + 1,n2 + l ,n3 - 1) ) 

- ( n 2 n 3  - nln2 - nl + n3) m ( n l  - 1,n2 + 1,n3 - 1) + (nln2 + nln3 + n2n3 - n3) 

× m ( n j , n 2 , n 3 )  - ( (n j  - 2)n2 + (nl - 2)n3 + n2n3 - n23) m(n~ - 2, n2,n3) 

- ( n l  n2 + nl (n3 - 2) + n2(n3 - 2) - n3 + 2) m ( n l ,  n2, n3 - 2) 

- ( - n l n 2  + nln3 - n2 + n3) m ( n l  + 1,n2 - l ,n3 - 1) 

- ( n l  (n2 - 2) + nln3 + (n2 - 2)n3 - n~) m ( n l , n 2  - 2, n3) 
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- - (n ln2  -- nln3  -- n2n3 -- n~ + 2 n 3 )  m ( n l  -- l ,n2 -- l ,n3 -- 1) 

q-(nl + 1)(n3 + 1) ( m ( n l  + 1,n2 -- 1,n3 + 1) -- m ( n t  + 1,n2 -- 3,n3 -4- 1) ) 

+ ( ( n l  -- 2)(n2 -- 2) + (nl - 2)n3 + (n2 -- 2)n3 -- n 2) re(n1 -- 2, n2 -- 2 ,n3)  

- - ( 2 n l n 3 + 2 n 2 n 3 + n  2 + 2 n l + 2 n 2 - 1 ) m ( n l -  l , n 2 - - l , n 3 + l )  

q-(nl n3 + 2n2n3 + n32 + nl + 2n2 -- n3 -- 2) re(n1 -- 3, n2 -- 1, n3 + 1) 

+ ( 2 n l n 3  4- n2n3 -t- n~ + 2nl  + n2 -- n3 -- 2) m(nl  -- 1, n2 -- 3, n3 q- 1) 

- ( n l  n3 + n2n3 + n~ + n l + n2 -- 2n3 -- 3) m ( n l  -- 3, n2 -- 3, n3 + 1) 

+(n2  + 1)(n3 + I )  ( re(n1 -- 1,n2 + 1,n3 + 1) -- m ( n l  -- 3,n2 + 1,n3 + 1) ) 

--(n~ + 3n3 + 2) ( m ( n l  -- 2, n2, n3 + 2) -- rn (n l  -- 4, n2, n3 + 2) 

+ m ( n l , n 2  -- 2,  n3 + 2 )  -- 3 m ( n l  -- 2,  n 2 - -  2, n3 + 2 )  + 2 m ( n 1 - - 4 ,  n2 -- 2,  n3 + 2 )  

- m ( n l ,  n2 -- 4, n3 + 2) + 2 m ( n l  -- 2, n2 -- 4, n3 + 2) -- m ( n l  -- 4, n2 -- 4, n3 + 2) ) 

= 0 .  (4.8) 

Notice first that the two-dimensional wave functions e ( n l , n 2 , n 3 )  c fall into two 

sectors which are mapped into themselves under the action of  the Hamiltonian. These 

are ( i )  the even sector: either all ni are even or all ni are odd; ( i i )  the odd sector: two 

ni are even and one ni is odd or vice versa. Hence it suffices to investigate the two 

sectors separately. 

The special solutions discussed in the previous section correspond to all functions 

of  the form e ( n l , 0 , 0 )  c and e(0 ,  n2,0) c,  and (4.8) imposes no conditions on the 

corresponding coefficients m ( n l , 0 , 0 )  and m ( 0 , n 2 , 0 ) .  We will in the following set 

these coefficients to zero, because we are interested in the possible existence of  other 

solutions. In order to tackle the system of  equations in a well-defined manner, it is 

useful to define the order o rd (C  [nt ,  n2, n3 ] ) by 

o rd (C  [ nl ,  n2, n3 ] ) := max {nl + n3, n2 + n3 }, (4.9) 

and then try to solve simultaneously, order by order, the sets of  Eqs. (4.8) of  the 

same order, el iminating coefficients m ( n l ,  n2, n3) of  higher order (with 'order '  defined 

analogously to (4 .9 ) )  in terms of  the lower order ones. We have investigated the even 

sector and solved iteratively in this manner the order-0, 2, 4, 6, 8, 10 and 12 equations. 

There are 1 order-0 equation, 5 order-2, 13 order-4, 25 order-6, 41 order-8, 61 order-10 

and 85 order-12 equations. Taking into account equations up to this order, one finds 

that for any solution to the Wheeler -DeWit t  equation the coefficients have to satisfy 

simultaneously 
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order2 :  m(0 ,0 ,2 )  = m ( l , l , 1 ) = m ( 2 , 2 , 0 ) = 0  

o rder4 :  m ( l , 3 , 1 ) = m ( 3 , 1 , 1 ) = m ( 1 , 1 , 3 ) = m ( 2 , 0 , 2 )  

= m(0 ,2 ,2 )  = m(0 ,0 ,4 )  = 0  

m(2 ,4 ,0 )  = m ( 4 , 2 , 0 ) = l m ( 2 , 2 , 2 ) ,  m ( 3 , 3 , 1 ) =  38 ~ m(2 ,2 ,2 ) ,  

no conditions on m(2, 2, 2), m(4, 4, 0) 

o rder6 :  m ( 1 , 5 , 1 ) = m ( 5 , 1 , 1 ) = - 7 m ( 2 , 2 , 2 ) ,  m ( l , l , 5 ) = ~ m ( 2 , 2 , 2 ) ,  

m(4, 0, 2) = m(0, 4, 2) = - 7 m(2, 2, 2), 

13 m(2 ,2 ,2 ) ,  m(3 ,1 ,3 )  = m ( 1 , 3 , 3 )  = ~5 

m(0 ,0 ,6 )  = -~335 m(2 ,2 ,2 )  . . . . .  

(4.10) 

i.e. the coefficients m of order 0 and 2 are completely fixed, but at order 4 there appear 
two free parameters, m (2, 2, 2) and m (4, 4, 0). (Of course we could have solved in terms 

of other order-4 parameters.) Unfortunately we cannot be sure whether the conditions 
C [ n l , n 2 , n 3 ]  = 0 for ord(C) > 12 do not (through coupling among equations of 
different order) fix these parameters, although the behaviour of the conditions evaluated 
so far does not make it seem likely. We conjecture that there is an infinite number of free 
parameters (with an increasing number of free parameters at each order), corresponding 
to an infinite set of solutions to the discretized Wheeler-DeWitt equation (beyond those 
coming from the Polyakov loops). These would be of the form of (presumably infinite) 
linear combinations, parametrized by those free parameters. Clearly then the question 

arises of whether these solutions have a finite norm. Since we have not even found a 
single explicit solution of this type, we are unable to answer this question presently. 

We will now have a brief look at the full 1 x 1 x 1 lattice theory. However, we will 

not attempt to solve the eigenvalue equation directly, since the analogues of (4.7) and 
(4.8) contain about ten times as many terms. The discussion is meant to serve as an 
illustration of how to set up the gauge-invariant Hilbert space in a symmetric way, and 

formulate the eigenvalue problem in principle. The problem is the incorporation of the 

classical discrete degree of freedom sign (L3 (or, fl, y) ) in the quantum theory. Although 
the functions 

{t~Egl~g2'yg3 (lfl¢" •)n4(£1¢" 7)ns(f l-  "y)n6(sign(a x f l . , y ) )z ,  ni =0,  1,2 . . . . .  z =0 ,  1} 

(4.11) 

could in principle serve as a basis for the gauge-invariant Hilbert space, it is difficult 
to incorporate s ign(a  x f l -  'y) in integrations, since it is not a smooth function on the 
classical group manifold. Another admissible choice is 

{~glflg2,yg3 (~lt,. fl)n4 (~1¢. '~) n5 (lOg X # "  ,~)n6, ni = 0, 1,2 . . . .  }, (4.12) 

but this is not symmetric with respect to the three lattice directions. A choice that solves 
both of these problems is 



R. Loll~Nuclear Physics B 444 (1995) 619-639 637 

{e(nl,n2,n3, n4,n5,n6, Z) := ~1 j~2"yg3 (~ll~- •)/14(•' ~)ns(#. r)B6({~ll~ X ~" ~)Z, 

ni =0 ,  1,2 . . . . .  Z --- 0, 1}. (4.13) 

It contains all gauge-invariant information about the original Hilbert space, without 
being overcomplete. There is a corresponding, non-orthogonal basis for the square- 
integrable, holomorphic wave functions, obtained by substituting as usual the real pa- 
rameters in (4.13) by their complex counterparts. Acting with the Hamiltonian/t/c on 
such a state may produce terms that contain higher-order powers ( a  c x tic .~tC)n, n > 1, 

which then have to be re-expressed as a sum of (complex) terms of the form (4.13) 
using the identity 

( ~ C  X ]¢2 . , y C ) 2 =  ( 1 _ ( ~ C ) 2 ) (  1 _ (I~C)2) (1 _ ( ,yC)2)  _ (1 -- ( a C ) 2 ) ( ~ .  ]¢C)2 

- - (1  -- ( ~ ) 2 )  (£1gC . ,yC)2 -- (1 -- ('yC)2)(£1gC . ] ~ ) 2  

+ 2 ( t i c .  ]~c) (a~c. yc )  (13c. I/c).  (4.14) 

This is an unambiguous prescription and leads to a Hamiltonian action that maps 

states of the form ~ m(nl ,  n2, n3, n4, ns, n6, z )e (nl ,  n2, n3, n4, ns, n6, z )c into them- 
selves. However, as already mentioned, the Hamiltonian is a lengthy expression and 
solving the zero-eigenvalue problem is certainly not a straightforward task. This is prob- 

ably just a reflection of the non-triviality of quantum gravity. Still we cannot rule out 
the existence of a basis for the gauge-invariant Hilbert space that leads to a simplifi- 
cation of the eigenvalue problem. However, this would presumably be an overcomplete 
basis, which then leads to problems of a different kind. Firstly, one cannot just set the 

coefficients of each "basis" wave function to zero, and secondly one has to eliminate 
spurious solutions by hand. By contrast, an advantage of our formulation is that the 

general condition on the wave function coefficients m(n) is known explicitly, so that 
one has full control over all the relevant physical parameters. This is important if one 
for instance decides to introduce a cut-off in the Hilbert space, in order to approximate 
the problem of finding zero-eigenvectors by a finite-dimensional one. 

5. Conclusions 

We have described above a regularized version of non-perturbative canonical quantum 
gravity on a cubic lattice with periodic boundary conditions. The quantum Hamiltonian 
on the lattice acts combinatorially on holomorphic wave functions labelled by lattice 
loops. The lattice represents an entire diffeomorphism equivalence class and the formal- 
ism is manifestly gauge- and diffeomorphism-invariant at the kinematical level. With a 
specific choice for the discretized Hamiltonian and a factor ordering in the quantum the- 
ory, we are able to identify an infinite-dimensional space of solutions to the discretized 
Wheeler-DeWitt equation, which moreover have finite norm with respect to a natural 
scalar product on the space of holomorphic SL(2, C) functions. The solution space is la- 
belled by global Polyakov loops and their multiples, and corresponds to ,-~ 3N 2 physical 
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degrees of freedom (compared to ~ 6N 3 before imposing the Hamiltonian constraint). 

Still, more research is needed to determine whether this exhausts the solution space. For 

the example of the 1 x 1 × 1 lattice, we illustrated how one may go about a systematic 

search for more solutions. Although we have not yet been able to find any, preliminary 

results suggest there may be an infinite set of solutions beyond the Polyakov ones. 

However, even if that is the case, it may still happen that they are not square-integrable. 
Since our lattice regularization is rather different from the point-split regularization 

used in the formal continuum approaches, it is remarkable that our solution space is 

reminiscent of the smooth, non-intersecting solutions of Ref. [6] (thus suggesting that 

these in fact are not "spurious"). We expect this feature to be fairly robust under a 

change of the classical discretized Hamiltonian, because the existence of the solutions 

depends only on the antisymmetric structure of eijkpjpk. However, we have not found 

straightforward analogues of the intersecting-loop solutions of Refs. [ 15,19]; this can 

be traced back to the non-locality of the lattice Hamiltonian. The great advantage 

of our regularization is the existence of a well-defined scalar product at every stage. 

This will be crucial in all further investigations of the solution space. For example, it 

would be interesting to understand how a different factor ordering of/ t /c  changes our 

results. 
In order to avoid confusion, it should be pointed out that we are proceeding some- 

what differently from the path outlined (for the continuum theory) by Ashtekar and 

collaborators [20,13]. They propose to solve the gauge and diffeomorphism constraints 

within a real framework, based on the spin connection F/, and then go to a holomorphic 

representation to solve the Hamiltonian constraint, whereas our formulation takes place 

entirely within the complex formulation based on A / = F / - i K i (where K~ is related 

to the extrinsic curvature via K~ = KabEbi). This does not exclude that a close relation 

may emerge at the level of dynamics. 

Finally, as already mentioned in the introduction, one has to face the question of 

the continuum limit (not to be confused with a weak-field limit) of the regularized 

theory. The diffeomorphism invariance of general relativity makes this a fundamentally 
different issue from that in lattice gauge theory. If one wants to avoid bringing back 

in an ultraviolet cutoff a, the only free parameter is the lattice size N, and one would 

expect that in the limit for growing N a prospective continuum theory is approximated 

ever better. Since (at least part of) the solution space is known for every finite N 

(and the N-dependence of our construction is rather explicit), one might investigate 
the limit as N --~ e~ of these spaces directly. This will probably become more mean- 
ingful once observables and possibly matter fields have been included, so that one 

can study their spectral properties as a function of N. Our construction suggests that 
in such a "continuum" limit some fundamental discrete structure is retained, although 

(as pointed out in Ref. [21]) this does not necessarily preclude the appearance of 
divergences. 
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