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The smallest supergroup g(K) containing among its generators those of a constraint group K, 
the BRST charge, and the corresponding ghost and antighost operators is constructed. The 
supergroup B(K) can be enlarged to include the ordinary dynamical variables of the 
unconstrained physical system. In a group approach to quantization 8(K) generalizes the 
ordinary U( 1) phase invariance of wave functions. In particular this mechanism reproduces 
the essential features of the BRST quantization. When K is ditfS ’ the critical values of string 
theory are those for which the space of polarized functions on the enlarged BRST supergroup 
is not irreducible. 

I. INTRODUCTION 

This paper is devoted to the general construction and 
study of a supergroup ‘8(K) introduced previously,’ con- 
taining among its generators those of a constraint subgroup 
K, the BRST charge and the corresponding ghost and an- 
tighost operators. This supergroup will constitute a crucial 
ingredient in the framework of a group approach to quanti- 
zation (GAQ) 24 to be considered. In fact, g(K) general- 
izes the ordinary U( 1) subgroup of the Heisenberg-Weyl- 
like quantum symmetry, i.e., the phase symmetry of the 
wave functions. From a mathematical point of view g(K) is 
the fiber of a bigger supergroup, including general coordi- 
nates and momenta, with a principal bundle structure. As a 
by-product we shall recover the well-known BRST quanti- 
zation.5-9 In particular, the group @(diff S ‘) will be en- 
larged to a group %3 (diff S ‘, diff S ‘@-J?W’*d- i ) which in- 
cludes the phase space operators a: for open strings,‘o i.e., 
the loop space group 3%‘*d- ‘. Since the condition 
Q2 = +{Q,Q> = 0 (Ref. 11) is trivially satisfied in the new 
superalgebra, the critical dimension of string theory will 
emerge in a nonconventional way. In Ref. 4 it was proved 
that the space of polarized functions on the Virasoro group is 
not, in general, irreducible. The irreducible Hilbert space 
was obtained by just taking the invariant subspace defined by 
the orbit of the enveloping algebra through the vacuum. This 
space is a proper subspace for those (critical) values of c and 
h for which the Kac determinant vanishes. In the present 
case, the critical values of string theory will arise in a com- 
pletely similar way. The nonirreducibility of the space of 
polarized functions is the group-theoretical translation of 
the Q * anomaly. 

tion theory of (infinite-dimensional) Lie groups” it has 
been successful in the treatment of nonlinear problems in 
general and in those usually analyzed by means of the inverse 
scattering method in particular. Yet for very special cases 
that should have been of trivial significance, but where the 
standard geometric quantization methodsI are fraught 
with difficulties, group approaches show up their skill. This 
is the case, for instance, for the quantization of a free-particle 
constrained to a circle that is required to describe the dy- 
namics of strings moving on a torus,‘4 or the quantization of 
identical particles.3 It has also succeeded in quantizing grav- 
itational models with basic coordinates obeying (nonstan- 
dard) affine Poisson brackets.‘* It is needless to reiterate the 
clarifying role of a group approach to quantization in relat- 
ing symmetry and quantization, dealing with the classical 
limit, position operators, etc2 

The use of a group as the essential structure in the quan- 
tization of a physical problem has found application in many 
areas. Apart from the natural application in the representa- 

The group theoretic approach to quantization repre- 
sents an improvement of the standard methods in many re- 
spects. Of particular significance is the fact that the prescrip- 
tion for quantizing physical quantities is neatly stated in 
algebraic terms irrespective of the actual form of the basic 
commutators of the theory, which is very important for non- 
linear problems. Another example is the algebraic formula- 
tion of the normal ordering. Once a particular subgroup (de- 
nominated polarization subgroup, see Sec. II) is chosen, the 
physical operators do automatically appear in normal or- 
dered form. This avoids additional regularization proce- 
dures and sometimes true infinities,‘6 i.e., infinities which 
seem to be unavoidable from the point of view of the stan- 
dard quantization techniques. Moreover, the group struc- 
ture provides an adequate framework for incorporating dif- 
ferent sorts of constraints which now appear as well-defined 
subgroups. Even when no truly symplectic form can be de- 
fined as a consequence of the constraints, the Lie product 
still provides us with a (generalized) Poisson bracket. 

*) Present address: IFIC, Centro Mixto Universidad de Valencia, C.S.I.C. Finally, it must be pointed out that the important struc- 
and the Departamento de Fisica Tekica de la Universidad de Granada, ture in this approach to quantization is the basic associative 
Granada, Spain. law supporting a Lie group, a Lie supergroup or, even more, 
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just an algebraic group, rather than the concrete differentia- 
ble Lie structure. Indeed the quantization techniques based 
on deformation theory of Lie algebras’7”8 finish with a non- 
Lie associative algebra.” In the case where the starting point 
is just an algebraic group there also appears the possibility of 
considering discrete symmetry transformations that play an 
essential role in the quantum dynamics’4*3 or, more general- 
ly, formal group laws in terms of noncontinuous functions or 
even distributions. 

This paper is organized as follows. In Sec. II we reexa- 
mine the essential ingredients of a specific group approach to 
quantization (GAQ) also particularly suited for incorporat- 
ing constraints. We show how the (irreducible) Fock space 
arises from the space of polarized functions on the group. 
Section III is devoted to illustrating the GAQ method by 
means of the very simple nontrivial example of the free-parti- 
cle constrained by the (non-Abelian) rotation group. In Sec. 
IV we seek a supergroup g(K) containing an arbitrary con- 
straint group K, the BRST fermionic operator Q, the ghost 
and antighost operators, as well as some additional bosonic 
operators that are needed to close the supergroup. The gen- 
eral set of representations of g(K), dim K < ,a , is given, 
although the mechanism equally well applies in dim K = 00. 
In Sec. V two examples, one for K = SU( 2) and another for 
K = diff S ‘, illustrate the previous section. The second ex- 
ample shows some subtleties arising in infinite dimensions 
and the capability of GAQ to handle such systems. Finally, 
in Sec. VI we account for the by now almost standard BRST 
construction’ from our group point of view. It requires en- 
larging ‘8 (K) so as to incorporate the ordinary coordinates 
and momenta of the particular physical system under study. 
Of course the structure of the enlarged supergroup depends 
upon the algebraic structure of the unconstrained system. 
The constrained Galilean particle and the bosonic string will 
be analyzed. The second example illustrates the connection 
between the nonirreducibility of the space of polarized wave 
functions (ford = 26, c’ = 24) and the presence of the (Vir- 
asoro) anomaly of the theory. 

II. DYNAMICS ON A GROUP AND CONSTRAINTS 
We shall be concerned here with a concrete group ap- 

proach to quantization (GAQ) which has been developed 
over the last few year&’ and which shares many basic fea- 
tures with other more or less recent group theoretic quanti- 
zation formalisms.‘4*‘8*‘9 The essential idea of GAQ is to 
replace the Poisson brackets (or a deformed version of 
them) for the basic quantities characterizing a concrete 
physical system, for example, xi, pj, and H, with the Lie 
bracket of a Lie algebra with as many additional parameters 
as needed to close the algebra. One notices at once that at 
least one new generator must be added to the pair xi,pj, since 
the Poisson bracket 

{x’,p,} = Sj, ij= l,..., n (2.1) 
can only be thought of as a Lie bracket of a Lie algebra if the 
additional generator 1 is included. This simple phenomenon 
leads to the theory of central extensions of Lie algebras. 

The next step in GAQ consists of finding a canonical 

association of group parameters with differential operators 
acting on complex functions defined on the group. This is 
accomplished with the help of the natural structure of right- 
invariant vector fields, i.e., vector fields XR on the group 
invariant under the right multiplication Rag = g*a. This is 
not the final step because the so-constructed operators usual- 
ly provide only a reducible representation of the Lie algebra 
(Lie group) and therefore of the original Poisson algebra. 
Let us look at an example before going farther into the for- 
malism. 

The fundamental Poisson brackets for the three-dimen- 
sional free-particle are 

{xi,pj> = 6; B, {xi,H) = pi/m, 

{pi,H) = 0, ij= 1,2,3, (2.2) 
and they must be mimicked by using a Lie group. The sim- 
plest group whose Lie algebra commutators are of the form 
(2.2) is a one-dimensional central extension e;, of the rota- 
tionless Galilei group G parametrized by the mass m. The 
central subgroup may be either the multiplicative group 
U( 1), parametrized by &C/l< 1’ = 1, or the additive group 
R, parametrized by the real number x. The group law is 
written as follows: 

B” =B’+B, Bdt, (2.3) 
A” = A’ + A + V’B, AdR3, 

V” = V’ + v, VER3, 

c w = c’s exp(i( m/fi) [ A’*V + B(V’*V + IV”) ] ). 

Since B, A, and V are supposed to carry the dimensions of 
time, length, and velocity, respectively, a constant fi with the 
dimensions of an action has to be introduced to render the 
exponent dimensionless. In (2.3) the group law for 6, 
g” = g’*g, has been extended by the modified law 
5” =l’<exp[im&g’,g)/fi]ofthe(central)subgroupU(l). 
The function {(g’,g) satisfies the so-called cocycle condi- 
tions: 

i’k’d?) + &g’g,g” ) - &‘,gg”) - {(g,g”) = 0, (2.4) 
l(v) = 0, 

required to turn e-, (g,<) =e-, (g) into a true group law. 
The set of the g’s that are not of coboundary form 
& (g’g) = S(g’*g) - S(g’) - S(g), for a real function S on 
6, constitutes an additive group H 2(G,U( 1)) of dimension 
one, parametrized by the mass m. A coboundary can always 
be eliminated by a redefinition of c, 8 = ce ~ is. 

Differentiating (2.3) from the left at the unity we get the 
right-invariant vector fields 

-R x a 
(B) = - 7 l3B 

-R x a 

( V’) 
=-.-++- a +mBF’+, 

c3Vi JA’ fi 

“R x (0 
= igL=z, 

J!T 
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from which the operators associated with the quantities B, 
A, V, and 5 must be derived. Their commutation relations 
are 

[ XPB,,qy)] =o, [2fBJp,,] =x;@,, 
[xyAcj,k$,] =Q [,“if,,,,8:,,] =O, (2.6a) 

[qvJ;A’) ] = (m/fi)S,Z. (2.6b) 

The fields in (2.5) act as derivatives on complex functions J, 
on c,,, satisfying the U(I)-equivariance condition: 

W = 4WNf *i?) = 5 *+@I, (2.7) 
which factors out the dependence on the added variable g. 

This completes the Bohr approximation to quantiza- 
tion. The procedure has to be continued because the repre- 
sentation of (2.2) by (2.5) acting on the rj’s of (2.7) is re- 
ducible. A proof of that is the existence of nontrivial 
operators commuting with the representation, i.e., with each 
one of the operators in (2.5). The vector fields 

d,d+V2-+-Lmj72~ 
dA dB dA 2fi 

(2.8) 

are examples of such operators and reducing the representa- 
tion requires to kill them on r,4. The true wave functions are 
complex functions on cm such that 

E-* = i$, 

(2.9) 

which means $= c@(B,V), with @ such that 
i?i d@/dB = ( mV2 /2)4>, i.e., the Schrijdinger equation in 
momentum space. 

The vector fields (2.8) turn out to be a subalgebra of the 
algebra of left-invariant vector fields pL( a, ), on c,,, : 

-L x d+v 
mV2 

(B) = aB - E, 
2fi 

Tf~j =A, Xfvj ==L+LmAZ, 
av fi 

(2.10) 

X&, = ic$EH. 

The vector fields (2.8) constitute the maximal left subalge- 
bra containing half the generators appearing in the left ana- 
log of the commutator (2.6b) and the kernel of the Lie alge- 
bra cocycle, i.e., the linear mapping C: $9 x 9 -t IR assigning 
m/fi to the pair (X pv,, ,X PA ‘) ) and 0 otherwise. This sort of 
subalgebra will be called in the sequel fullpolarization subal- 
gebra 9 and generalizes the concept of polarization in stan- 
dard geometric quantization13 in that it contains the kernel 
of Z to be referred to as the characteristic subalgebra. 

The Lie algebra cocycle C is the algebraic generalization 
of the symplectic form of the Car-tan formalism.20 In fact, C 
can be substituted by a differential two-form on e, taking 
the value Z at the unity. To do that we take the left-invariant 
canonical one-form 9 L on Gm, 

8=6 L(Bl~L 
(B) + 

8 L(A)jjL 
(A) + 9 L(“)z f”, + 8 L’c’k &, . 

(2.11) 

It satisfies 8 “(XL) = X “,‘r/F L~pL( c, ). Then we select 
the U( 1) component (vertical component) 9 ‘(C)E@ the 
quantization form, and dOle = 2. A trivial calculation 
shows that 

f3= -mA*dV- (mV*/2)dBf+id{/i~. (2.12) 
The one-form 0, which is invariant under the right-invar- 
iant vector fields (2.5), dO(kR) -I- d(6(XR)) 
t ( i2 .d + di* R ) 8 = L, R 8 = 0, generalizes the Cartan- 
Hilbert-Poincare one-form of the variational calculus and 
defines the Noether invariants 

- ikp,,O = mV2/2, i%R 0 = mV, ,A, 
- ixp,,9 = mA - mVB. 

Our generalized Poisson brackets 

(2.13) 

-Ci~po,~,i~~~,~~ = i[,, XR $3 co,, th, (2.14) 

reproduce the initial ones (2.2). 
The classical “limit” appears as the dynamical group 

c’, corresponding to a central extension of G by the additive 
group R. The replacement consists in substituting a real 
function S for Y, 

X”=X’+X+m[A*V4B(V’+‘+fV’*)], (2.15) 

for the last line in (2.3) and 

Ems = les(,y -I- 9) zz x f s(g), (2.16) 

for (2.7). Now the Iti constant is no longer needed as X may 
carry the dimensions of an action. The effect of (2.16) can be 
seen when writing down the “classical operator” x R acting 
on the “wave function” S. We get for instance xFAk, *S = mV 
instead of - i&PA) *r,f~ = mV$ and similar expressions for 
other generators. For the polarization conditions a differ- 
ence also appears: 

x:,+0*~+mv”=0, 
2 

(2.17) 

which is nothing other than the Hamilton-Jacobi equation 
in momentum space. More details about the free-particIe as 
well as other examples can be found in Refs. 2 1 and 3. 

The procedure so far followed can be repeated with gen- 
eral groups or starting with a genera1 set of (perhaps de- 
formed) Poisson brackets. In Ref. 22 general formulas are 
given to reconstruct a group law from a set of structure con- 
stants. Here, in Sec. IV we will have the opportunity of deal- 
ing with a nontrivial set of (super)Poisson brackets. 

Let us go brietIy to the general situation ofa Lie group B 
before discussing the constrained case which presents an ad- 
ditional generalization of GAQ. 

A quantum group is a Lie group 3 that in turn is a right 
principal bundle with structure group U( 1) or R, with a one- 
form 8 naturally selected among the left-invariant one- 
forms,‘*3~22 

The structure of right principal bundle23 of g means 
that its group law can be written in such a way that no un- 
primed U( 1) (or iI%) parameter appears in the group law 
equations except in the one for U( 1) (or R). That insures 
that U( 1 f (or R) only acts from the right on the remainder 
(remember that we write for the group law g” = g’*g). The 
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case of a central extension is only a particular situation cor- U( 1) group of phase invariance) requires a generalization of 
responding to a physical system with classical limit. (2.7) taking the general form, 

The one-form 0, dual to the fundamental vector field 
g :;, 6PL( 2) =: 9 [for the sake of brevity we will think of a 
structure group U( 1) parametrized by c; PL( G) is the Lie 
algebra of left-invariant vector fields and 3 E PL( e) is the 
usual Lie algebra], is the quantization form and plays the 
role of a left-invariant connection form on the principal bun- 
dle G-+ z? /U( 1). The curvature R = d0 is a presymplectic 
form (generalizing the symplectic form of the Cartan calcu- 
1~s’~ ). Unlike a proper symplectic form de has a kernel. We 
call do = kernel 8 n kernel de characteristic module of 0 
and it turns out to be generated by a basis of a subalgebra 
( the characteristicsubalgebra) Y c of PL( G). The quotient 
(G,B)/Ceo is a quantum manifold in the standard geomet- 
ric quantization sense l3 although we need not take any quo- 
tient at all. Indeed the trajectories of the vector fields in Ye 
are the generalized equations of motion.*‘*’ The Noether in- 
variants are given by the right-invariant vector fields 
PR( 6) through the expression i,,,@=U. 

Y(g,*g) = D(&)&f!ll, = dD(x)& &3-, 
(2.19) 

A full polarization (polarization) .Y is a maximal hori- 
zontal left subalgebra of G containing Ye, (a subalgebra of 
Yo ). The horizontality is naturally defined in terms of the 
connection form 8 and means that 8 is zero on any vector 
field in d. This prevents 6?’ from containing any co-ordi- 
nate-momentum pair. The nonexistence offull polarizations 
is related to the presence of an anomaly.24 

Wave functions are (complex) functions on G that satis- 
fy the U ( 1 )-equiuariance condition from the left (2.7) and 
the full polarization condition 

where D(dD) is a particular representation of T( 7) char- 
acterizing the quantization. Of course Ic, takes its values on 
the representation space of T. One condition in (2.19) corre- 
sponds to the U( 1) equivariance, and the others are related 
to constraints in the usual sense. In order to allow the theory 
for general representations D, in particular one-dimensional 
ones, (2.19) must be restricted to a particular subalgebra of 
7. As a subgroup of 5, T may contain some co-ordinate- 
momentum pair in addition to the To [ = U( 1) ] subgroup 
and a full polarization subgroup T, can be defined much in 
the same way we defined 9 (or its corresponding group) 
inside 3. The actual generalization of (2.7) then consists in 
replacing the group T in (2.19) by the minimalsubgroup 
containing To and TP. Once a polarization .Y? of G has been 
fixed we must select the subgroup TP in such a way that its 
algebra be contained in the (left) polarization 9’ whose 
right version define the vacuum. Otherwise a trivial result is, 
in general, obtained. More precisely, the algebra Y in 
(2.19) must be restricted to the subalgebra of 7, generated 
by 

( .P’fW,9-o ), (2.20) 

where Y. is the generator of To. 
To compare at this point with the Dirac theory of con- 

straints we have to restrict ourselves to the case of a group 
with the classical limit or, more precisely, to a central exten- 
sion. The unconstrained phase space can be recovered as the 
manifold M = G/( 9e)/To. The constraint surface of M 
would be defined by the equations i,,e = 0, xR~F/To. 
That submanifold could be in general nonsymplectic (corre- 
sponding to first class constraints) and a further quotient by 
the kernel of the presympletic form is called for. 

P”JI=o VYLE9. (2.18) 

Finally, the physical operators are the right-invariant 
vector fields z R~5?“R( G) acting on r,J as derivations. We will 
not be concerned here with scalar products nor similar de- 
tails that are found in Ref. 21. 

Note that the group representations obtained in this way 
are not necessarily irreducible, although reducing them is 
now very simple because we know the explicit form of the 
wave functions. For instance, in the infinite-dimensional 
case (also for noncompact finite-dimensional groups) one 
finds representations that are reducible but not a direct prod- 
uct of irreducible components. The full reduction requires 
defining a vacuum from which the right vectors (operators) 
generate automatically the (irreducible) Fock space X 
(Ref. 4). A vacuum is a polarized wave function that is anni- 
hilated by a right polarization (e.g., the right version of a 
polarization :P’= P’L). When this right polarization is the 
right version PR of the polarization defining the actual 
quantization, the vacuum turns out to be a Dirac-like vacu- 
um. We refer to Ref. 4 where it is shown that the space of 
polarized functions on the Virasoro group, although it does 
not contain any null vector, is bigger than the irreducible 
Fock space. 

The generalization of the present formalism allowing 
for constraints” is quite simple and consists in enlarging the 
structure subgroup of 6. Taking a subgroup T bigger than 
U( 1) (which for physically interesting cases will contain the 

It must be noted that the constraint (2.19), which is 
nothing other than a T-equivariance condition, is written in 
terms of right-invariant vector fields (remember that the2 
generated finite left translations) although the bundle G 
with structure group Tis a right principal bundle. Unlike the 
polarization condition it does not commute, in general, with 
the physical operators. Therefore, only a subalgebra of 
PR ( G), that of good operators, stabilizes the space of wave 
functions (see Ref. 3 for details). 

III. A SIMPLE EXAMPLE: NON-ABELIAN CONSTRAINTS 
ON THE FREE-PARTICLE 

We start again with the Galilei group but this time in- 
cluding rotations [parametrized by E such that 
]E] = 2 sin(p/2)]. The formula (2.3) is replaced by 
t”=t’+t, tdc, (3.1) 
X”=X’+R’(E)X+V’t, XER3, 

V” = v’ + R ‘( E)V, VER3, 

EM = J( 1 - e’*/4) E + JmEI - E’XE/2, EElR3, 
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5 ” = % ‘c exp(im [ x’R ‘v + t (v’R ‘v + v’*/2) ] /ti), 

wJ( 11, 
i.e., p g’( p) are the 21 + 1 components of the momentum 
wave function of the free-particle moving in l-wave. 

RiE)fj = (1 - e2/2)Sj + &i”G%T~!jk~~ + ~Eiej, IV. “BRST” SUPERGRQUP 

where a more physical notation has now been chosen. The 
application of the GAQ to E,,, -+c,/U( 1) [ U( 1) is the 
structure group], as in Sec. II, leads to the same results as 
before with the only modification that Yo (and therefore 
9 ) contains the whole subgroup SU (2). The added polar- 
ization condition equationsXf6, * $ = Ojust say $# $( E). In 
fact, the left-invariant vector fields associated with E are 

p,, = [base +Gg]s (3.2) 

and the matrix a$, has an inverse, so that 
2 $i ( c?$/&‘) = 0 implies dY /dr’ = 0. 

The right-invariant vector fields 2 PC,, , 

a a -- 
- ?7fjkXk axi ?tjkUk x 

have, however, a nontrivial action on @, since although 
$# $( E,X) a term in d /& still remains which gives the orbi- 
tal angular momentum operator. 

Let us now consider the right principal bundle structure 
(see the comment in the previous section) on c,, e,,, 
-+c,/[SU(2) @U(l)]. This means that the equivariance 
conditions are now different. They are 

X’pj) ykE*Y = i*, (3.4a) 

2:) -$ = dD(J)$, (3.4b) 
where dD(J’) is the representative of the abstract rotation 
generator along 6’. 

As in the unconstrained case the characteristic subalge- 
bra of the quantization form 9 L(s) is generated by 
(3 fC, 3 ;C, ) and the polarization one by (2 tt, ,% fX, 3 fC) ). 
Thus the full polarization condition (2.8) plus (3.4a) say 

@PC, * 1, SDGx,I;P,~) = ~W,~P,E),P = mv, 

cXfe, ,%) * ), wu,P,E) = $(GP), (3.5) 
(Ztt, a 1, &t,p) = exp-l - $fAmfihp(p), Vdrp(p), 
where the condition (3.4b) is still left. 

Radial motion: Take for dD in (3.4b) the trivial repre- 
sentation dD( J) = 0. The condition (3.4b) on the arbitrary 
function p(p) tell us 

PXZ = O=GqJ(P) = F( (PI). 

“1-wave”motion: Now dD will be the irreducible repre- 
sentation of SU( 2) with integer index Z, dD(“’ . The wave 
function is made out of 2/ + 1 identical copies of the until 
now arbitrary function q(p), p(‘“: c, -+C*‘+ ‘. Equation 
(3.4b) implies 

apg) 
PX-= ap $dD%4J)g,!,?, (3.7) 

The BRST transformation5 was introduced in gauge 
field theory as a powerful tool to derive the Ward identi- 
ties.26 It has the form of a generalized gauge transformation, 
(generated by a fermionic parameter) which leaves invar- 
iant the effective Lagrangian including the gauge fixing and 
the Faddeev-Popov ghost terms.*‘j 

Using the BRST transformation as an essential ingre- 
dient, Batalin, Fradkin, and Vilkovisky’ have developed in a 
series of papers a generalized quantization method for arbi- 
trary Hamiltonian constrained systems. In a path integral 
approach they construct a generalized BRST-invariant 
Hamiltonian (containing new bosonic and fermionic vari- 
ables) such that the resulting S-matrix is gauge invariant 
and unitary on the subspace of physical states. The impor- 
tant feature of this method is that it does not require the 
closure of the gauge algebra off-shell. The method has also 
been applied to (super )gravity and (super)string theory, 
where the Virasoro group plays (in a sense) the role of an 
infinite-dimensional gauge group. 

In a geometrical analysis of the Yang-Mills case, the 
ghost fields were interpreted as Maurer-Cartan forms on the 
infinite-dimensional group @ of gauge transformations and 
the BRST operator as exterior differential forms on 0 (Ref. 
27). 

A complete cohomological interpretation of the classi- 
cal BRST formalism for the case of a true gauge theory is due 
to McMullan.7 There, antighosts arise as part of the Koszul 
complex that encodes the fact that the dynamical system is 
restricted (by the constraint equations) to a submanifold of 
the phase space. Ghosts arise in the gauge group cohomo- 
logy to describe the fact that points along gauge orbits on the 
constrained submanifold are physically equivalent. The 
BRST operator is the differential operator of the resulting 
double complex. 

Henneauxts has elaborated on the classical aspects of 
Hamiltonian BRST theory and shown that the existence of a 
BRST operator is related to the existence of a series of high- 
er-order structure functions (associated with a given set of 
constraint functions) satisfying certain identities of Jacobi 
type. 

Using homological algebra tools, the existence of a 
BRST operator can be shown for a large class of constrained 
systems,29 in particular, for reducible gauge theories, where 
the constraints are no longer independent and hence more 
than one generation of ghosts is needed.30 

For an operator based, but not necessarily standard 
quantization of these classical structures one would like to 
translate the BRST cohomological description into differen- 
tial geometric language. A geometric model for the extended 
phase space of the BRST approach for the Lie algebra case 
has been given in Ref. 8 in terms of a fiber bundle over the 
phase space S with fiber 9 ( G) &, -P ( G), the direct sum of 
the gauge Lie algebra and its dual. The structure group of 
this supermanifold is the orthosymplectic group which the 
BRST operator “breaks” down to the symplectic structure 
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group of the physical reduced phase space. A complete geo- 
metrical formulation is needed to get some control over what 
is happening off the constraint surface-a fact that is expect- 
ed to be of importance in any quantum theory-and to throw 
some light on the question of whether the case of an open 
“gauge algebra” is fundamentally different from the case of a 
true gauge algebra of constraints. 

Our approach here is rather different in that we will not 
attempt to explain the “naturality” of the fermionic vari- 
ables present in the formalism. On the contrary, our starting 
point is an associativeformalgroup law3’ (a straightforward 
generalization of a local group law) whose variables may 
easily be turned into fermionic ones. As far as this math- 
ematical structure is concerned, fermionic parameters re- 
quire no special motivation and our scheme is simpler in 
structure than those involving differential forms on a bialge- 
bra joined to the unconstrained solution manifold S, etc. 
Moreover, and this is perhaps the most important feature 
from the physical point of view, the treatment of general 
systems will be quite similar to that of the free-particle or the 
harmonic oscillator. In all these cases we look for a super- 
group from which the adequate (quantum) constrained dy- 
namics is obtained with the help of the GAQ formalism. 

First of all we will concentrate on that part of the super- 
group which is closely related to the constraint subgroup K, 
disregarding the ordinary variables of?, x, andp type. Hence, 
our results will apply to any physical system whose con- 
straint subgroup is known and we will express all formulas in 
terms of the group law for the bosonic subgroup K and the 
adjoint (and coadjoint ) representation of its Lie algebra X. 

The smallest supergroup B(K) containing K, the trans- 
formations generated by the BRST charge and the ghost and 
antighost operators contains additional boynk transforma- 
tions.’ In fact, although the operato_s%,, Q, ‘uj generate an 
algebra, 32 the one generated by ff;, Q, ‘u,, \Vek, i, j, k = l,..., 
dim K does not close as can be seen by using the standard 
formulas: 

[k,,k,] =Ajkkk, [ii,Gj] =J;,“c,, 
($,,@j*} =/zei, [L,,$*j] = -~mj$*m, (4.la) 

cis, 1 = ff;, 
where 

2 = $*4, + if,, ~$,~*m~*n, /ZER (4.2) 
[see the comment after (4.10) concerning the relative + 
sign 1. 

The Jacobi ideztities reveal the need for a new set of 
bF@c operators T’ to account for the anticommutators 
{Q,Y*‘}. These new operators were already considered in 
Ref. 33 as additional conceivable BRST invariant operators. 
They will play an important role in our theory (see later on 
in this section). Adding the new generators 

hTk {ij,$*l}, (4.lb) 
(4. la) is completed with the following commutators: 

[&?I =o, [+,+I =o, [?+,G*j] =o, 
[$,,T,] = -&i$*m, [,&,^T] = -j&JFm. (4’1c) 

A remarkable property of 8(K) is that no anomalous 

term (nontrivial central extension) is allowed for the subal- 
geb? XA as a consequence of the anticommutator 
{QY,} = ki. In fact, 8(K) is the simplest quantum super- 
group which forbids any possible central extensiznzf the 
pnstraint subgroup. The fermionic character of Q, ‘I’, and 
Y* is a consequence of this requirement. 12 sRite,Of these 
considerations the subgroup generated by K, Y, ** could 
admit a (negative) anomaly, for instance when K is diff S ‘. 
@rother interesting property concerns the new generators 
Ti. Although they do not have any dynamical content (in 
thz s\ense that no central term appears on the rhs of 
[ K.,?] ), the subgroup of these new generators affects the 
definition of the physical vacuum. Of course B(K) can be 
enlarged so as to contain the actual set of coordinate-mo- 
mentum pairs of the physical system under consideration 
(see Sec. VI). 

Our task now consists in finding a supergroup law on the 
set of variables k ‘, q, Yj, WY, T,,, , 5 in such a way that the 
relations (4.1) correspond to the commutators of the, say, 
right-invariant vector fields 2 rk,, , a;“,, , k&,’ , zf*;, , 
xfTm,, and z’p,, . Note that g(K) has the structure of a 
quantum supergroup, indeed, it is a central extension para- 
metrized by 2, with dynamical variables VI’, Y,+. 

We now give the supergroup law of g(K) for a general 
constraint group K with vector realization R fj: 

R r’.; = R f; R ;. - q’fmj ‘R r; R frR ,; ““YS, 
\y”j = v/‘j + R ;‘k yI/” _ ;qykfk,‘R r; R ‘“, Y”\I/“, 

,y” = ‘u? + R ;- Ik\I/; -AskR ;, ‘my’STm 

+ q’&“R I, ‘kY’r\VZ, 

TI’ = Tj’ + R r,- lkTk + q’R ;- IkY;, q” = q’ + q, 
6” = g’s exp i(n /2)(YT’R ‘tjYj - \I/TR ;- li\I/‘j 

+AkiR li- ImTmY’jR !,“Y.5 f ;q’fkiYjYkYT 

+ + q’JkiR !,“Y:YjYk + q’JkiY’jR rfYmR li- ‘W,* 

+ $q7;kIfmnrR Ii-‘sR’!rY’jYmYnTS). (4.3) 

From (4.3) the left- and right-invariant vector fields 

g-@ - Wb d, p, - wb d 

as” g=e agrb a&y sze cg” 
(4.4) 

are easily derived keeping an eye on the even or odd charac- 
ter of the variables. They are 

X&) =$, z!fk’) =xg --$, 
J 

-L X 
(Y’) 

=R!&-qX;$ -$-$R~iY*jE, 

-L X = R ,J~ li a 
w:, 

--qR,‘$qR,,‘y; 
dY;, J 
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x:,, = R,J~‘i-$R,Jy’~~,yl” a 
J sG$ 

(4.5) 

';k', 
=x;;;, a-fjkyd 

dk’ JYj 

-f;Y:$-f;Tk &> 
I J 

-R X 
cv> =$-f;Tk -& 

J 

-I- $ (f;TkY+ Y:)E, 

-R X 
1*:, 

(4.6) 

where X $, and X F,$ are the components of the left- and 
right-invariant vector fields of the subgroup K. 

The GAQ mechanism can now be applied just as a 
mathematical tool for working out the representations of 
8 (K) . Before going to the quantization mechanism let us 
compute the classical Noether invariants associated with the 
symmetries (4.6). Writing the one-form 6 as 
0 = g”‘“‘~& + @k$fk> + +jL”‘~L. (Y) 

+9 L(w*)2fy.) + 19L(%!f~T) + ?YL(ei$, (4.7) 
theconditions8(XfC, ) = 1, 6(Xfany other) ) = Olead to the 
very simple expression 

e=S(Y:Wi+I’~Y~)-3f,.Y~YndT,+~, 

(4.8) 
corresponding to some kind of multi “time” ( 7) dynamical 
system with Hamiltonians H i = (il/2)f& Y”Y n (note that 
the characteristic subalgebra is generated by +%fq, and 
F&, 1. 

The Noether invariants are obtained at once: 

igfq,6 = - (A /2)f&YmYnY~=Q, 

iXR 0 = - ACfkY”‘YX - TnY”Yi) SZ%~, 
(!.‘I 

iXR C3=A(YF +fzYkTm)zfi, (4.9) (9’) 

i2p,,0 = - (A /2)f’,,YmYk=Ei. 

Among them there exist several relations and only fi and fl 
are independent. For instance, the classical BRST charge Q 
can be written for jl = 1 as 

Q = f:ai + 4 fin fif*y*“, (4.10) 

where it must be stressed that 3 is the fofal “angular momen- 

turn” invariant 2 + CZ, giving rise to the + sign in the 
expression for Qct. 32*33 

Applying our quantization method to the present (su- 
p_er)group, the wave functions are complex functions on 
%(K) which satisfy 

Xf,, -Y =i{$ Y = iY, (4.11a) 

ZL-Y = 0, v3?LEP. (4.11b) 
For the particular case of B(K) and irrespective of the di- 
mension of K (finite or infinite) there always exists a full 
polarization containing X f,r,!), Vj = 1, . . . . dim K, 

,Pff = {~t,,,w:,,,~~~:l~~~~~}, i&k = l.+.,dim K, 
(4.12) 

and this type of full polarization wiIl be called natural polar- 
ization. 34*22 

Solving Eqs. (4.11) for the full polarization CP N leads to 
the following set of Fock states: 

~r)~~W,~Y~}-~~~,...,~Yi~~~~Yi~} 

-~?PZ?‘***Y’“, ik = I,..., dimK, (4.13) 
where the weight function W is given by 

W=exp(A/2)i(Y;Y”--f:Y’YjT,). 

The action of the operators 2 R on the basic states 1 1 ), [Yi> is 

qq, 11) = 0, 27,) [Yi) = - ;‘;“ilYjYk), 

‘fk,, I11 = O, 

xpn,, [Yi) = -fjmi pm% qy,, 11) = 0, 

q&, jYi) = Sjll), 

.T$% 11) = i/2 [w’), Z$;) I’I”) = i/z [YjYi}, 

2;q, 11) = - (/2 /2)$m,,j[Y”Y”), 

zp,,, IY’) = - (A /2)ljr,“j~Y’Y”Y/“). (4.14) 

The expressions for arbitrary states IY ‘*. * * Y ‘“> follow from 
the factorization property of wave functions. Looking at 
(4.14) we can find relations among operators, for instance 
(A = 1): 

iZ&, =Xp,,,XF,., , + sfm~i~p,,,~;;R,*,xp,*,. (4.15) ,” n 

The group g(K) presents a special case since, unlike for 
most other groups, the weight function f 1 > cannot be consid- 
ered as the physical vacuum from which the creation opera- 
tors generate the state space. This is due to the fact that the 
state 11) is not annihilated by all the right-invariant vector 
fields associated with the algebra $o (of “nonstep” opera- 
tors) as is normally required, since X fT,T,) f 1) #O. Thus an 
appropriate vacuum IO) must be chosen from the polarized 
wave functions (satisfying2 & IO) = 0 if the corresponding 
Xta, lies in so ). When the constraint group K is finite 
dimensional we find the “Dirac sea:” 

dim K 

IO) = 5w lJ Yi (4.16) 
i= 1 
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V. EXAMPLES OF BRST SUPERGROUPS 

A. SU(S)-BRST supergroup 

The simplest non-Abelian example of a BRST super- 
group is %(SU( 2)) which will play (in Sec. VI) a central role 
in the study of the constrained quantum free-particle. The 
%(SU( 2)) group law can be derived at once from the general 
formulas (4.3) by simply specifying the matrix 
R j = R >(e) [see (3.1)] and substituting v>~ by fjk. It is 
however instructive to write down explicitly the group law 
for the parameter E itself. The first line in the expression 
(4.3) suggests the ansatz 

E” = E;&~) + q’M(d,e)(kYk, (5.1) 
where ~“s,,(~) is the composition law for the SU( 2) param- 
eter in (3.1) . In order to find M  we only have to compare the 
terms proportional to q’ and antisymmetric in i and j in both 
(R’*R): and R(e”)$. The solution fore” is 

Exi = gi s,,(z) +q’R -‘CG’[%z,/~ 

+ :l?fn&&*, ] yk* (5.2) 

We see in (5.2) (the situation in the general case is similar) 
how the ghosts, along with the pure BRST transformation q, 
generate ordinary rotations. A parallel phenomenon was 
found in the super-Poincare group law whose supertransla- 
tions generate ordinary translations.3’ 

The expressions for x L and xR are immediately ob- 
tained from the general formulas with the replacement 
fjk -+ $$. Even more, the entire quantization (representa- 
tion) process is obtained from the general one by the same 
replacement. Indeed, and as a consequence of the finite di- 
mensionality, there is only one (up to equivalence) polariza- 
tion which corresponds to the one described in the general 
case, i.e., the natural (full) polarization. 

6. Diff S’-BRST supergroup 

The infinite-dimensional case is in general more compli- 
cated because a full polarization leading to a physical repre- 
sentation may not exist. Fortunately, a nonfull polarization 
may provide the appropriate quantization. The nonexistence 
of an adequate full polarization is related to the nontrivial 
cohomology of the group K [although the anomalous term 
is, of course, forbidden by the structure of the whole group 
‘8 (K) 1. This is the situation for K = diff S ’ whose group 
law is (see Ref. 4 where the general cocycle is also given) : 
1”” = 1’” + 1” + iplpl’n-p+ (ip)*/2!lpI’ml’“-m-p 

. . . + + c (ipy//rllPyl...~‘mr+ . . . . 

m,+...+m,+p=n 
(5.3) 

Using (5.3) it is not difficult to integrate an algebra of the 
form 

[LJ,] = i(n - m)L+,, 

[Lr,] = i(n - m)rn+m, (5.4) 

[ r,,r,] = 0, 

irrespective of the explicit form of the generators I,, , to get 
an expression for the vector realization R T acting on the 

parameters y of In. We obtain y”” = f” + R ‘J (I ‘) f 
where 
Rfj(l) =Sy, + c B;,,,l”‘+ *** 

n,+m=k 

+-+ c 
B~,...,,I”‘~**lni+ .a-, 

. n,+...+ni+m=k 

Bi,,=i[ --n+m], (5.5) 

Bk n,n,,m-~2[2n,n, -m(n, +n,1 +m’], 

B:,...,p, E?[ ( - >‘I!n* -.-nj + (- )j--l(j- I)! 

x [n,n* “*nj-, +njn,n,--*nj-, + ..- 

+ n2n3 ***nj]m + *** + mq. 

A similar mechanism [raising the index m  of Tin ( 5.4) ] can 
be applied to determine R - ‘: 

R ,,lk(Z) =S; + c %:,,,I”’ + .** 
n,+m=k 

c 
n,+“.+nifm=k 

~~,,=i[2n+m], 

2ik .,,2,,=i2[2n,n2 +2m(n, +n,) +m*], 
hk B tl,...ll,P?l 

=jj[2( - k)j-2 

(5.6) 

X(n*n* + 121n3 + **’ + nlnj + n*n3 

+ “‘+n*nj+n,n,+“‘+nj-*nj) 

+2(-k)j-‘(f2, +fZ*+m**+nj)+(-k)j]. 

As already mentioned, the structure of 8(K) does not allow 
any anomalous term to appear in K. Thus for K = diff S ‘, 
the parameter c of the conformal anomaly (central exten- 
sion) in the commutator 

[.2,,2,] =i(n-m)Z,+, +&(cn3-c’n)S,-, 
(5.7) 

must vanish. On the other hand, there are no restrictions on 
c’, which parametrizes a family of pseudoextensions (trivial 
extensions behaving in the GAQ-like true extensions) .4 The 
commutation relations for @  (diff S ’ ) are (4.1) with fi,, 
=m(m--n)&+,,, (5.7) withc=O,and 

@,,c,} = 2, - (c’/24)S,,. 

For c’#O the characteristic subalgebra .!?e is 
(5.8) 

30 = cq,“,7%“, >* (5.9) 

The natural (full) polarization (zfq, ,zt,,, ,xt,,,:, ,zfTk, ) 
has to be discarded because the corresponding (Dirac) 
vacuum cWn,Y” (wedge product) is infinite and the 2, 
operator is divergent.36 The correct quantization of 
@ (diff S ’ ) follows from a new kind of polarizations of 
“standard” type** that are not full polarizations (they can- 
not contain all the generators ;k tT”, ,&!Z). Out of those, only 
the following two are not equivalent: 

.Ys = <a&) ,qqnc”) 3$“) ‘qTn,o) z:,,, ,a:,, )9 

9’s = cff,“<O) ,q+“<O) 3f** 9JqT”>o) ,qqo, ). 
(5.10a) 

“>O) 
(5.1Ob) 
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Taking (5.10a) as a polarization for the general space of 
wave functions one obtains a representation whose weight 
function (of the form 10) - f I%’ where W is a common fac- 
tor) behaves as a vacuum invariant under (the right-polar- 
ization generated by) aF,“dOj, kfqn 0), zFq:,ec,l, zfT,, Oj. 
This is the only choice of polarization leading to a “Q-coho- 
mology” of states in the more general scheme of the next 
section. We are not going to dwell on the explicit calculation 
of the above-mentioned representation of ‘% (diff S ’ ) , since 
the next section deals with a bigger supergroup having 
%( diff S ’ ) as its structure group and we will then have to 
reexamine the situation in a more physical context. 

VI. ENLARGED BRST DYNAMICAL SUPERGROUP 

In the last two sections we have been concerned with the 
supergroup B(K) associated with the constraint group K of 
some unspecified physical system. In this section we shall 
consider the whole dynamical supergroup &(K, z*) from 
which the GAQ formalism determines the quantum theory 
of the physical system. The notation @(K; g) stands for a 
supergroup enlarging @t(K) in such a wzyAthat it contains 
the usual dynamical operators of type P, p, H, etc. of a quan- 
tum group 7; of which K is a subgroup. The cases ?? = F,, 
K=S0(3)Ce, and ~=diffS@L?‘W’~d-‘, K=diffS’ 
are two examples of this type that will be studied in great 
detail. Indeed, only concrete cases can&e extensively ana- 
lyzed since the procedure of enlarging ‘8 (K) depends veJ;y 
much upon the basic commutators between 2, j, and H. 
Howev_er, a common feature of the enlarged supergroups 
%(K, G) is thakthey must contain a fermionic (bosonic) 
operator ri = [ Q,n ] associated with each bosonic (fer- 
mionic) coordinate-likz operator 2 and a fermionic (bo- 
sonic) operator ii = [ Q$] for each boso& (fermionic) 
momentum-like operatori. Fortunately, [ e,H] can be kept 
zero so no other new algebra element is needed. These new 
operctors are entirely analogou_s to the nondynamical opera- 
tors T alre?dy introduced in B(K) and, even more, to the 
operators k which might be thought of as the bosonic part- 
ners of the operators Y. 

‘@(K;@ is a right-principal bundle %( K,Z‘) 
+ 8 (K,G)/‘% (K) with iiber % (K) and will be regarded as a 
quantum group, replacing the standard U( 1) phase i_nvar- 
iance of quantum mechanics with the supersymmetry B(K) 
by means of the condition (2.19) of the general GAQ ap- 
proach. The continuity equation is therefore supplemented 
by extra Noether currents, one of which is the BRST charge. 
The advantage of using this quantum supergroup rather 
than 8 itself, like in Sec. III, is that it automatically gives the 
Q cohomology in the space of states, thus making easier the 
choice of a physical vacuum. 

We now apply the GAQ formalism to the two examples 
mentioned above, one of which is infinite dimensional. Al- 
though the full supergroup law can be given in both cases, its 
explicit form is not of interest to us here. Only the expres- 
sions for the left- and right-invariant vector gelds on 
@ (K$) will be given. A complete group law can be obtained 
by using the general formulas given in Ref. 22 for which the 
coefficients in the components of 2 R and 3 L serve as an 

input for fixing the “gauge” freedom of choosing different 
parametrizations of the group. 

A. BRST-Supergroup-quantization of the SO(3)- 
constrained free-particle 

In Sec. III A we considered the central extension 6, of 
the Galilei group G and in Sec. V A the BRST supergroup 
associated with the SO(3) subgroup of 6, B(SO(3)). We 
must now find a consistent way of mixing the Lie brackets of 
&SO( 3)) and cm. The following nonzero brackets can be 
added to (4.1) without violating the super-Jacobi identities: 

[ & i f i  ] = gi ;  [?i,%j] = qi i .  k%k; 

[2i, i j ]  = - mLCi’,P; [$,i”] = qifkDk; 

Cl;,,+‘] = YqikFk; [ j j$?j ]  = qjjfkk; 

[ki,Oj] = - y~i(~y*~; [>,,+I = q,jkck; 

[ P ,A j  ] = yq;.k $*k; [ g,i , ;q = p2j ;  

(6.1) 

where the constant y is forced to be equal to m/A. An indica- 
tion of how special the dynamical enlargement procedure 
leading to @(SU^( 2J;emX i% is the fact that the analog of the 
commutators [ H,Y 1, [ H,Y *] would be nonzero for a non- 
free system, for instance the harmonic oscillator. 

As already mentioned, we only give here the (exact) 
expressions for both left- and right-invariant vector fields 
from which the entire quantum dynamics are derived. The 
left generators are 

-L x a 
(WI =R:, -&-qxf:; --+Y~E, 

ad 

1 
- (,I /2)R - “,Y&, 

x4;.,, =R --I; 

a 
+A?-- 

a 

C?ul; 
77”,,“1/“fl- 

dY7 >I + mR - “; [x’ 

- ~rtfm,YmKn - tq?jmnYm(xn - 7fJsY’KF) ] z, 

3354 J. Math. Phys., Vol. 32, No. 12, December 1991 Aldaya, Loll, and Navarro-Salas 3354 



jE;,;, =R -‘: ~+~mn+] +yR -‘;[timn 
” 

a 
-+-+x--- 

a 
aw: Y’“T$,~ - 

n a\u; >I 
XL - a 

(1) - &  + s%+ 5 + LYV, 5 - j4/l;ikViYk - 
aw,* 

1 a - + m  + M Y %  vvi vJ aTk +v2 - -J~?*~v~Y~Y” E, 1 
-L X (5) 

= i{LzE, 

ac 
(6.2) 

where use has been made of the already known expressions 
R(r)> and X$, corresponding to the rotation subgroup 
[see (3.1-3.2) I. The right fields are given by 

?,I =a,x~~;Ys~-3~.ikYiYk~. 
a4 

+ Yy $ - xi-g- + + rjmnfYmYnY;z, (6.3) 
J 

-R X 
; 

Cd) = x ye:; -?l..l; yj- 

( a*” 
+X$+Kj-$ 

> 

( 

a -7#lifk YT--- a 
+q---- 

aq ark 

a 
+vj$+vj-, 

k avk > 

xp,,, =-&-&I; a 
avr: 

$ ??bfKi$ + r],fkVj $ 
k 

+ (/2 /2) (?,$Tkvli+ yT,z, 

xp,,, =a++Y,, ap,, =$, 
a\u: I 

-R X a a 
(xt) = 7 

axI 
- yviksvk ay,* --f-m vi-+im*Y”vk 

( > 
z, 

CL*,,, = 
a 

-+Jt&-yt~“rl;- 

t ay 

+ mS”t 
( 

vj - 3 rfjm fY”v, 
> 

E, 

Cd, 
a 

=$+mi!kvj~ 
k 

+ yvifkvj ---& - --) m~i,(YmvjZ, 
k 

Z",, = 2 + 6% -$ + ytg;vj 
a a 

- + yq5vj - 

I ay Kc 

- $ mt7&*“vjE, 

a 8” =- (1) at ’ 
Xi& = y%-E. 

The brackets (4.1)) (6.1) , and the omitted vanishing ones 
are automatically satisfied by (6.3) and the same brackets 
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but for a global minus sign by (6.2). Another crucial condi- 
tion that (6.2) and (6.3) must verify in order to be the left- 
and right-generators of a group law is [X L,X R ] = 0, which 
in fact holds. 

The quantization form 0 is calculated by using duality 
on (6.2) and obviously generalizes (2.12) and (4.8): 

0 = - m(x-YXK)dv - 1 m(v-vXY)2dt 

+ (;1/2)(‘I’**dY + Y*dY*) - $(YxY)*dT 

+ m[YXx + (Yw)Y]dv + AC- 
i[ * 

(6.4) 

The Noether invariants are the inner products i,,e where 
X R runs over the whole right algebra. They also generalize 
(2.13) and (4.9) forthecaseK=S0(3): 

i2pq,0 = - (il/2)(YXY)~Y* - m[YXx 

-TX (\YxK)]*V=a, 

i~fc,O = --A [Y*XY + (T*Y)Y] - m(x -YXK)XV 

- mvX wxx + yx (YXK) l-3, 
iFh,O=R(Y*-TxY) -mvX(x-YXlc)=f, 

ikR (**,e =AY-f*, i%x,@ = - (A /2)YXY-X, 

i*p,,O = m(v - vXY)=g, 

iFpv,e = - m(X - \vxK) + mt(V - VxY)=O, 

iypw,O = m(v - vxY)xY=t, 

iypV,O = - m(x - YXK)XY + mt(v - vXY)XY-n, 

iFF,,e = - {m(v - vxY)*=$. (6.5) 

All of them can be written in terms of the basic ones g, D, f, f*, 
and, in particular, Q assumes the standard form (4.10). 

The characteristic subalgebra, which is generated by 
left-vector fields in the kernel of both 8 and de, is given by 

30 = <at,, ,q&T-,, 3&, ,Xfv, ,q, ) (6.6) 
and the following full polarization can be chosen: 

9 = c%,q**,,~:, ). (6.7) 
According to the general scheme of Sec. II the physical 

wave functions satisfy (2.18) with the polarization given in 
(6.7) and (2.19) with T= ‘@SU(2)). We first solve thepo- 
larization conditions and (2.19) for just the U( 1) generator 
of QSU(2)) (X’p,, *Y = PI’) and then the rest of (2.19) (in 
this way we can see what would have been the unconstrained 
wave functions associated with the fibration 
@ (SU(2);~~)--+‘%(SU(2);~~)/U( 1). Theseequations lead 
to 

*= C ci,...i,c@ (V - YXv)exp[ - i/2(v - YXv)2mt ] 

Xexp(i(/Z/2) [Y*.Y - (YxY)*T]) 

xY”~y’~. . .y’r, r = 1,2,3, (6.8) 
where @  is an arbitrary function of v - Y XV and Cili2.. .i, are 
arbitrary constants. The remaining equations force Ci,i,, ,i, 
to be zero, apart from C,,, which remains free. Developing $ 
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in a power series, only the leading term contributes since the 
“Dirac sea” Y’Y2Y3 in (6.8) does not allow for any addi- 
tional power of \I,. 

Therefore, the final wave functions are 

$= Gp(v)e- iW2H2ryly2y3, (6.9) 
where the function e, satisfies either (3.6) or (3.7) according 
to the particular representation of SU (2) chosen in (2.19). 

B. BRST supergroup quantization of the free-string 

In this example, %J (diff S ’ ) must be enlarged so as to 
incorporate the transformations generated by the operators 
of type i, j for the string. They are the generators of the loop 
group in I%‘**- ‘, ;YE, p = 0, . ..25. n&C. The energy operator 
L, EH is already contained in the constraint subgroup 
K=diff S ‘. An admissible Lie superalgebra for the complete 
supersymmetry has the following nonzero brackets: 

[&a;] = ngwn,-,is~;i; (6.10) 

[2,,2,] = (n-m)?,,, -c’/12n6,-, 

=f,, k& - d/12td, _ m, 

[Z,,&L] = m&c+ m sF,,~&; {$n,$*m} = A&, 

[2,,3,] = (n - m)G,+,=fnmk$,, 

[Z,,C$] = - (2n + m)9*n+ms -fnkm@*k, 

[&?f ] = +f; {&+,> = 2, - c’/24S,,i 

@,5;*,> = ^r,, 
[&,G$] = m;rf:,,eF,,k6$; 

[21,)hT] = - (2n + m)nTn+mz -fnkmhrk, 

[ ;rf,ti; ] = - ynmf%*n + ms - yIZ;;F,, k@*s, 

(Gf,i;;) = ynmg@v?n + mu yZZtkyFms “+, 

CS$,G,> = m&,:,,zF,,k&!; [$“,Pm] = -fnk4*k, 

where the constant yis again fixed to 1/;1 (the central exten- 
sion parameter for the b’s has been put equal to 1). 

The search for an exact expression for both left- and 
right invariant vector fields reproducing (6.10) and the 
same formulas but for a minus sign can be undertaken fol- 
lowing the general method of Ref. 22, as we have done in- 
deed for the subgroup diff S ’ whose exact formal group law 
can be found in Ref. 4. However, if we are only interested in 
the expressions for the left and right algebras, it is far easier 

to take advantage of the experience acquired in the previous 
example and the already known exact expressions for 
diff S *. We write directly the left fields (keeping the general 
constants f k,, F$, and ZE$; facilitates the calculations): 

22 tw =$-ybf:&-&+F:,+$- 
E /I 

+$Lf:T’,Y*+Y,)Z, 

+ (K/~)Z~;F&Y~~<E’, 

(6.11) 

where the components of the (unextended) diff S ’ left gen- 
erators are4 

X f;““; = 6; + i(m - n)Z”-“. (6.12) 

For the right-invariant vector fields we find: 

-R X a 
(4) = - 3 

a4 
2f& =xz,; - s,,, 1 z, 

-+(R -‘)‘J,,Y”‘Z, 

-, R x (r,,) = (R -I,;, $- 
m 
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-R X a 
(n,:) = - + a 

'an;: 
qF&,Y”-- a 

aa; 
+ $U;I;~F;,r; - 

a*; 

+fU;PKF;,q + +U;qZf;F;tF”,,Y”7i; --& 
r 

8G (af, - 3  F~,Y’n$ - $qF;pYraP,) - ~qZ~F$F&Y’Y”rr~ E, 1 
-R X (8") I' 

-: U’$E~F~tF”,,Y”n~ -?- + $XJ;(ZKF:,Y’a$ + B~~FfrF”,,Y’Yvn$)E, 
a*: 

%, a  = jC-=E, 
a4- 

which commute with (6.11) .37 (See Ref. 4 for expression of 
the matrix u.) 

We  shall bypass the explicit calculation of the quantiza- 
tion form 0 and guess the characteristic subalgebra 9, di- 
rectly from the structure constants. The form 0 could be 
exactly computed in a straightforward way and the Noether 
invariants derived, but nothing essentially new would ap- 
pear with respect to the former example. Hence, we give the 
characteristic subalgebra: 

Ye = <a&) ‘q,o) ,a&-m, 9q+ >* (6.14) 

As in the case of @(diff S ‘) no full polarization exists 
that leads to a vacuum for which the L, operator is finite. 
Hence, we must resort to a nonfull polarization containing 
only a subalgebra &’ of 9 8. This is related to the existence 
of anomalies and could in fact be used as their characteriza- 
tion rather than the appearance of central terms in the quan- 
tum commutators. Indeed a (super)group like ‘%(diff S I; 
diff S ‘@ Y W  ‘,d- ’ ) does not allow for such a central term in 
the Lie algebra of diff S ‘. However, the physical anomaly 
manifests itself when writing down the operators (XR), 
which turn out to be functions of more than the basic opera- 
tors, i.e., those involved in the commutators producing cen- 
tral terms (all operators are expressed in terms of the basic 
operators as well as those operators whose left counterparts 
are in Ye although not in &‘). Only for critical values of 
the constant parameters characterizing the whole algebra all 
operators 3” can be written in terms of the basic operators 
(in our case the b’s, $*‘s, and s’s; see later). 

The only (nonfull) polarization leading to the Q coho- 
mology (and to unitary representations) is the following 
one: 

.Ps= <q,, q,“d), % “>& ~~~;>o), 

2~w.<o), qp), 2fflq >. (6.15) v 
Equation (6.15) is of standard type and contains (5. lOa). 
The integration of the polarization equations 
2 LY = 0 V? Lops will be given to third order in the group 
parameters (of course all main results do appear at this lev- 
el). The wave functions are 
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(6.13) 

I 

IO) -(W, (q,l,W W, W,~*,T,vA =W, 

Iri>O)-gw 
1  

Ii- 2  klkli-k-qyi+ -me , 
k>O I 

IT<o)-CW T - Cfkil"Tk 
1  k<O 

+3yC~~~F:,~~?r”-qqP*+... , 
k<O I 

\7$‘“)-~w(?r, - kFoF:,l’“r; fqa; + -), 

[a;‘“)-tW(a; - kToF;,l”a; 

-20 
F”mkYmr; + *** , 

I 

IY’SO)--f-w Y’+ Cf;klmYk+ ... , 
i k>O I 

IY*i<o)-tW(Y~- C f~iZ”‘Y~- C fkiTkYm 
k<O k<O 

- 3  yC ZyzFf,,,,?rfiay 
k>O 

+$yC B:;F;,,,azrT + *.* , 
I L k>O 

I(I~‘)“~I(~~~)“Iz...(T~, )%.(~,)“h...) 

= <W{I 4 + . . . )“yl i2 + . . . )“Q.. . CT,, + -*I ,I “II.. . 

(6.i6) 

where the factors W , and W , of the weight function asso- 
ciated with the vacuum are the following 
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w, = 1 -+(z \yz\yn- c y;yn- 
?t>O tZ<O nm4,0fim 1 * 

x\YnymTk + 2 c f;kqz\ynlk + --* 
n>o 

m,k<O 

K . -- 2 t c %a~a~ - C F$,,,Z$~a~<Yk 
Il.20 

m.k<O 

’ 

k,m>O 

w,=ii:cz,-~q~Y~[n(-l-“+2 c 
G-0 ‘?l>O 

xml”[-“-“-3 C mkl”lkl-“-“-k+ . . 
mk>O 

+ 2 ( -m-n)lLmwn( -ml” 
#>O 

+ j,zo jsljl” - C jsrIjl"I r -j- * - f , 
j&r> 0 

jcs=m j+s+r=m 

~,(z)=l+~[~ -n/n/-“+ c 
n>o l i.#>O 

Xnml”l”l-“-“- c 
n,m,k>O 

Xnmkl”lmlkl~“~m~k+~~~]. (6.17) 
Here, @‘, (I) is just the weight function of the Virasoro sub- 
group itselfand W, (Z,q,Y) is the weight function that would 
correspond to the Bowick-Giirsey subalgebra (here gen- 
erated by Xcr-, , X(;um,, X,,, ). 

The physical operators, the right-invariant vector fields, 
are well-defined differential operators acting on (6.16). We 
will not write the explicit action of all of them, limiting our- 
selves to those calculations that are strictly necessary for 
determining the critical values of c’ and d (the space-time 
dimension). The action of X pI k. <‘I , X :a;;, 0) and X $,* f on 
IO) and that of X$, on la,“) and x$, on IY”) ark” given 

XT,-,,.,,JO> =+ nil”> + $ F”- .,E$!Ja;aT) 

-iAf~~“~Y~Y’) + ‘** 

=+I,y +p 1 
o<m<n 

Xmtn - m)ja;-ma;) -i/2 2 
O-Z’< It 

x CT+ n)}Y:-“Y’) + .*-, 

X~&.O,IO) = -itLE~~la~) + *-I, 

xFp;.,,, IO> = - iA jYm) + s.1, 

(6.18) 

kFal.o, Ia;> = - zi&;$/a;a;) + r&;lrm-r) + . . ., 

X$-o, lYp) = - iA [YfYP) + (27+-pp)lz~-r) + . . . . 
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The representation obtained in this way is, in general, 
reducible. The reduction can then be achieved by choosing a 
vacuum according to the prescription of Sec. II (the weight 
function in the present case) from which the nontrivial ac- 
tion of the operators generate the (irreducible) Rock space. 
It must be stressed that this construction is rather different 
from the ordinary abstract one of the Lie algebra representa- 
tion. There, all the states are obtained from the vacuum 
through the action of the creation operators which are, by 
definition, linearly independent. On the contrary, our states, 
in particular the vacuum, are explicit functions on the (su- 
per) group whose linear dependence or independence is prior 
to the action of the operators. Even more, there is, in general, 
no guarantee that every polarized function can be reached 
from the vacuum through the action of the group. That 
would be true, for instance, for finite-dimensional compact 
semisimple groups and for Kac-Moody groups, as a conse- 
quence of the Borel-Weil-Bott theorem. A detailed discus- 
sion of that problem here associated with the Virasoro sub- 
group can be found in Ref. 4. In addition, instead of null 
vectors we find true null linear combinations of vector states 
and then the carrier space 

J-Jw~t”.‘,) ,“Yqa~,, ,rY2~~m4) )4m(2py,;qo) )rk-Io). 

(6.19) 
is irreducible. From (6.18) we deduce that the structure of 
the state .? rj - h r 0) IO) is identical with that of the state 

1 
- $ cfm- krx~~~~;3$,~,i 

rn.’ 

+ &&v~;aT-~ -,qq to>* 
I 

(6.20) 

although only for special values of d and C’ they are propor- 
tional: 

d = 26, c’ = 24. (6.21) 
In fact, the lowest orders of (6.20) are 

--~o~~<kk(m+k)(y~-kym} +$fv 2 c-m) 
II O>m> -k 

X(k+m)fai4ma;m > -I- o ,gG k(m + k) (m - 2k) 
L 

Xllk) -f~p~o,~-xt -mW”( -k-m)llk) 

= - [(+-+-)k’-(++)k][l*) -iA 

x x (m+ k)ly%-kym) 
O\mck 

For these values, the irreducible carrier space is made out of 
states created by just the operators k&,, , a$, , and 2 pGa, 
from the vacuum (similarly, the operators X prrl, 8 fn, and 
2 p,, also admit a Sugawara-like construction). The critical 
values thus appear as a singularity in the carrier space for the 
irreducible representations of the corresponding supergroup 
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@(diffS’,diffS’@L?R’Vd-l ). These results are illustrated 
in Fig. 1. 

According to our “non-Abelian” quantization mecha- 
nism the next step in determining the physical wave func- 
tions consists in imposing the T-equivariance conditions 
(2.19) with 7-g(diff S’) restricted to (2.20) which turns 
out to be 

(cx~,,,,x~,,.~,,a~:,,u,x~,,,~~,~.D,~R”.~~, 5. 
x - ~;“,<Jn5,z) = (~p,,,“,s~,,,,,~~~<*,~~~,~~~~~,~). 

They are (the E condition was already imposed) 

Z-,,Y = iaS,,,Y, (6.22) 

2$,,Y = 0, (6.23) 

3;;. ,,Y = 0, 

2;; ,,Y =o, (6.24) 

where a is a real number [integer if L, generate the compact 
U( 1) subgroup of diff S ‘1 characterizing the one-dimen- 
sional representation dD. Equation (6.23) simply says that 
the physical states are “proportional to the ghost vacuum 
(0)” (in the sense that there is no excited ghost state) and 
therefore (6.22) reproduces the ordinary string constraints 
for the already obtained critical values d = 26, c’ = 24. In 
fact, the Sugawara version of the operator TsaO [see the 
formula (6.20)] -:g,~~,,+,~~~~ +fL,$$X$ :, acting m 
on states proportional to 10) xghosts is restricted to 
:g,,/) x R ,,,, + ,,.%!E,- “:. Equation (6.24) then says nothing new 
since the operators x :n,, are of the form -2 &J $. . 

We must point out that the spurious states are generated 
by the operators (in the enveloping algebra) of the right 
polarization of F = g(diff S ‘) containing those operators 
absent from the equivariance conditions (6.22-6.24). They 
are eliminated by means of the quotient (in the sense of vec- 
tor spaces) given by 

zqh-0, (6.25a) 

Y;,.+o, B;...,$-0, x$oLG-o, x$Jb-0. 
(6.25b) 

When the real parameter a characterizing the quantiza- 
tion coincides with the critical value cl/24 = 1, conditions 
(6.22)-(6.24) are compatible with an extra condition 

3 d z 26, .C 1. b) d=26,a=l. 

FIG. 1. A is the set of polarized wave functions. B is the Verma module. 
AftB is the irreducible Fock space. In (a) all the polarized wave functions 
can be obtained from the vacuum by the group action. In (b) there are non- 
Fock states and the irreducible space is smaller. 

k,“$=O(&=O). E ven more, this condition along with 
(6.23 ) implies 2 :,” ?+0 = 6,,, + as a consequence of the com- 
mutation relations. The condition (6.25a) eliminates the 
spurious states and with the above-mentioned yfll, = 0 
gives rise to the Q-cohomology of physical states with ghost 
number - l/2 [due to (6.23) I. The remainder, (6.25b), 
does not impose any additional condition. 

We finally point out that the condition x,“$ = 0, unlike 
in the gauge theories (see Ref. 38 where the electromagnetic 
field is studied in a similar way), does not appear directly in 
the set ofequivariance conditions (6.22)-( 6.24) since the Q- 
cohomology structure is associated with the critical values 
(d=26,a= 1). 

To conclude we must remark that using additional 
BRST generators to describe a particular constrained system 
corresponds merely to a different choice of quantum and 
structure group and does not lead to essentially new features 
from the point of view of our general scheme. For the exam- 
ples treated in the present paper, the inclusion of ghost vari- 
ables is optional and only leads to a different characteriza- 
tion of the physical states in terms of the Q cohomology. 
Nevertheless, it does not exclude the possibility that the 
search for a quantum group associated with a given con- 
strained dynamical system leads to a BRST-like group as the 
only solution. That is the case for example of the free electro- 
magnetic field where the incorporation into the group law of 
the gauge transformation properties of A,(X), 
A,(x) +A, (x) + dP@(x) requires a nonconventional bo- 
sonic generator providing some sort of BRST structure.38 

However, the case of Yang-Mills theory might be quite 
different, since due to the non-Abelianness which introduces 
a nontrivial interaction among the fields of the gauge group, 
the use of anticommuting ghost generators may consider- 
ably simplify the search for a closing quantum group. The 
application of the GAQ approach to Yang-Mills theory is 
also expected to provide some answers to important ques- 
tions concerning renormalization and anomalies, and is mo- 
mentarily under investigation. 
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