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Light Waves at the Boundary of Nonlinear Media
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Solutions to Maxwell's equations in nonlinear dielectrics are presented which satisfy the boundary condi-
tions at a plane interface between a linear and nonlinear medium. Harmonic waves emanate from the
boundary. Generalizations of the well-known laws of reflection and refraction give the direction of the
boundary harmonic waves. Their intensity and polarization conditions are described by generalizations of
the Fresnel formulas. The equivalent Brewster angle for harmonic waves is derived. The various conditions
for total reflection and transmission of boundary harmonics are discussed. The solution of the nonlinear plane
parallel slab is presented which describes the harmonic generation in experimental situations. An integral
equation formulation for wave propagation in nonlinear media is sketched. Implications of the nonlinear
boundary theory for experimental systems and devices are pointed out.

I. INTRODUCTION

THE high power densities available in light beams
from coherent sources (lasers) have made

possible the experimental observation of nonlinear
effects, such as the doubling and tripling of the light
frequency of one laser beam and mixing of frequencies
between two laser beams.1-s The nonlinear properties
of matter have been incorporated into Maxwell's
equations and the solutions for the infinite nonlinear
medium have been discussed in a recent paper.6 The
effects at the boundary of a nonlinear medium are the
subject of the present paper. The use of the well-known
boundary conditions for the macroscopic field quanti-
ties, which must now include the nonlinear polarization,
leads to a generalization of the ancient laws of reflection
and refraction of light. The law of the equality of the
angles of incidence and reflection of light from a mirror
was known in Greek antiquity and precisely formulated
by Hero of Alexandria.7 SnelPs law for refraction8 dates
from 1621. Generalizations for the directions of light
harmonic waves and waves at the sum or difference
frequencies, if two light beams are incident on the
boundary of a nonlinear medium, are given in Sec. Ill
of this paper. The solution of Maxwell's equations with
the proper boundary conditions leads to harmonic
waves both in reflection and transmission.
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The intensity and polarization conditions of the
boundary harmonics are derived in Sec. IV. These
results can be regarded as a generalization of Fresnel's
laws,8 which were derived on the basis of an elastic
theory of light in 1823 for the linear case. There is an
equivalent of Brewster's angle, at which the intensity
of the reflected harmonic wave vanishes, if the E vector
lies in the plane of the normal and reflected wave vector.

The nonlinear counterparts of the case of total
reflection from a linear dielectric are discussed in Sec. V.
The variety of nonlinear phenomena involving eva-
nescent (exponentially decaying) waves is much wider
than in the linear case. It will be shown that a totally
reflected wave at the fundamental frequency may
create both reflected and transmitted harmonic waves.
Two normally refracted incident waves may give rise
to evanescent waves at the difference frequency.

The plane parallel nonlinear slab is treated in Sec. VI.
Expressions are given for the harmonic waves that
emerge from both sides of the slab. There is a funda-
mental asymmetry between the cases in which the light
waves approach the boundary from the linear or the
nonlinear side. This asymmetry does not occur in the
familiar linear case. In Sec. VII an integral equation
formulation of light propagation in nonlinear media is
sketched.

The results of this paper are discussed in the con-
clusion, Sec. VIII. The theoretical results have a direct
bearing on experiments reported to date. In particular,
the solutions presented here show in detail how the
harmonic wave commences to grow when a fundamental
wave enters a nonlinear crystal. Before the general
solutions in more complicated situations are discussed,
a simple example will be given in Sec. II to illustrate
the basic physical phenomena at the nonlinear bound-
ary.

II. HARMONIC WAVES EMANATING FROM A
BOUNDARY: AN EXAMPLE

An example that contains all essential physical
features is provided by the creation of second harmonic
waves when a monochromatic plane wave at frequency
o>i is incident on a plane boundary of a crystal which
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lacks inversion symmetry. The light wave will be
refracted into the crystal in the usual manner. In
general, there will be two refracted rays in birefringent
crystals. To avoid unnecessary complications, only one
refracted ray will be assumed. This would be true
experimentally in a cubic crystal such as ZnS, or for a
uniaxial crystal, such as potassium dihydrogen phos-
phate (KDP), when the plane of incidence contains the
optic axis and the incident light wave is, e.g., polarized
within this plane. Choose the coordinate system such
that the boundary is given by z=0, and the plane of
incidence by y=Q. The wave vector of the incident wave
is ki* and of the refracted ray, kir. The latter is deter-
mined by Snell's law. The amplitude of the refracted
ray, Eir is determined by Fresnel's laws for the linear
medium.

The nonlinear susceptibility of the medium will give
rise to a polarization at the harmonic frequencies, which
in turn will radiate energy at these frequencies. The
effective nonlinear source term at the second harmonic
frequency u>2 = 2coi is given by

(2.1)

The wave vector of the source term is twice the wave
vector of the refracted fundamental ray, ks = 2kir.
The nonlinear source was introduced by ABDP,6 who
showed how the susceptibility tensor can be related to
the nonlinear atomic properties of the medium. They
also showed that the effective nonlinear source term
can readily be incorporated into Maxwell's equations
for the nonlinear medium,

(2.2)

Consistent with the assumption of a cubic crystal or a
special geometry, will be taken as a scalar and /*=!.
Waves at the second harmonic frequency will obey the
wave equation

(2.4)

It is important to note that this is the usual linear wave
equation augmented by a source term on the right-hand
side. The general solution consists of the solution of
the homogeneous equation plus one particular solution
of the inhomogeneous equation,

In vacuum the usual plane wave solutions of the
homogeneous wave equation are

(2.6)

The direction of the wave vectors of the reflected wave
k2

E and the homogeneous transmitted wave(s) k2
r, as

well as the polarization vectors e? and êa and the
magnitude of the reflected and transmitted amplitudes
<§2

B and &£ have to be determined from the boundary
conditions. It turns out that the nonlinear polarization
radiates in one particular direction back into vacuum,
and in one direction into the medium (or, in the general
anisotropic case, in two directions). The problem is
very similar to the problem of linear reflection and
refraction, except for the fact that the role of the
incident wave has been taken over by the "inhomo-
geneous wave" with an amplitude proportional to PNLS.

The tangential components of E and H should be
continuous everywhere on the boundary at all times.
This requires that the individual frequency components,
at MI and 2coi, are separately continuous across the
boundary. To satisfy this condition for all points on
the boundary simultaneously, one requires for the
fundamental frequency

(2.3) The tangential dependence of the wave at 2ui is
determined by PNLS:

These relations reflect the general requirement of
conservation of the tangential component of momen-
tum. With our choice of coordinate system, all y
components of the wave vectors are zero. Since the
absolute values of the wave vectors are determined by
the dielectric constant, |£2

r| =[4(2co)]1/2(2o)/c), etc.,
the angles of reflection and refraction of the second
harmonic follow immediately,

(2.7)
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FIG. 1. The incident,
reflected, and refracted
rays at the fundamental
and second harmonic
frequencies near the
boundary between a
KDP crystal and vacu-
um. There is no match-
ing of the phase veloci-
ties between the extra-
ordinary fundamental
and ordinary second har-
monic ray.

Since the vacuum has no dispersion, the reflected
second harmonic goes in the same direction as the
reflected fundamental wave. Whereas the inhomogene-
ous source wave goes in the same direction as the
transmitted fundamental, the homogeneous transmitted
harmonic will in general go in a somewhat different
direction. The two waves will be parallel in the limiting
case of exact phase matching, e(co) = e(2w), or normal
incidence. The solution of the wave equation, Eq.
(2.4), requires further scrutiny in this limiting case.
This will be postponed to Sec. IV. The important
question of mismatch of the phase velocities in the
direction normal to the propagation had to remain
unsolved in the discussion of the infinite medium.6 It
has now been resolved; this mismatch is determined
both by the orientation of the boundary and the
dispersion in the medium. The geometrical relationships
are sketched in Fig. 1.

The question of the intensity and polarization of the
harmonic waves will be treated here only for the case
that the nonlinear polarization is normal to the plane
of incidence, i.e., p — y. A more general discussion will
be postponed until Sec. IV. The example considered
here occurs in a KDP crystal when the fundamental
incident wave is E polarized in the plane of incidence.

which is the optic (c) axis of the crystal. This is shown
by considering the symmetry of jj. If the transmitted
fundamental wave is the extraordinary ray, the field
EIT will, in general, have x' and z' components. The
coordinate system (x',y',z') is fixed with respect to the
crystal. The z' direction coincides with the optic axis
and y' coincides with y. Since the only nonvanishing
elements in the nonlinear tensor susceptibility are
X-X'y'z', the nonlinear source term will be polarized in
y' = y direction according to Eq. (2.1).

The boundary conditions, which match the wave
solutions in Eqs. (2.5) and (2.6), can now be satisfied
by choosing harmonic waves with an electric field vector
normal to the plane of incidence, ly=£R=$. These are
the ordinary rays in the geometry of Fig. 1. The
continuity of the tangential components Ey at the
boundary 2 = 0 leads to the condition

The continuity of the x components of the magnetic
field requires

The electric field amplitudes of the reflected and trans-
mitted harmonic follow from the solution of Eqs. (2.8)
and (2.9).

eV follows immediately from Eq. (2.8). It should be
kept in mind that the total field in the dielectric
medium is, of course, given by the interference between
the homogeneous and the inhomogeneous wave [^accord-
ing to Eq. (2.5)]. At the boundary the total field in
the medium is of course equal to SB. Multiplication
of both numerator and denominator of Eq. (2.10) by
e1/2(2co)cos0r+e1/2(u>)cos0s, and use of the refraction
laws [Eq. (2.7)] lead to

The amplitude of the reflected wave is not sensitive to
matching of the phase velocities in the medium. In
fact, the ordinary harmonic and the extraordinary
fundamental cannot be matched in KDP. Crudely,
one may say that a layer of about one wavelength thick
contributes to the radiation of the reflected ray. Deeper
strata of the semi-infinite medium interfere destruc-

tively and together give no contribution to the reflected
ray. This statement will be made more precise in Sec.
VI, where a dielectric slab of finite thickness will be
considered explicitly. If £at~3X108 V/cm denotes the
typical intra-atomic field, the fraction of the incident
power that will appear in the reflected harmonic is
roughly (EiT/E,^. For a relatively modest flux density
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of 105 W/crn" this is about 4X10~'°. Since harmonic
power conversion ratios of less than 1:1012 have been
detected, the reflected harmonic should be readily
observable. Peak powers of TO7 W/cm2 in unfocused
laser beams have been obtained.

Any attempt to calculate the angular dependence of
the reflected harmonic from Eqs. (2.11a) and (2.lib)
should take proper account of the variation of PN^
itself with angle. The Fresnel equations for linear
media cause the fundamental waves to have certain
angular dependence and this is passed on to PNLS.

The transmitted wave starts with an intensity of
about the same magnitude. However, this wave will
grow, because the destructive interference between the
homogeneous and inhomogeneous solutions diminishes
as one moves away from the boundary. A detailed
analysis will again be postponed till Sec. IV, where this
wave will be matched to the solutions obtained previ-
ously for the infinite medium.

The total power flow is, of course, conserved because
the fundamental wave will have reflected and trans-
mitted intensities slightly less than in the case of a
strictly linear dielectric. Formally, this would follow
from the introduction of -/JNLS(WI) arising as the beat
between the second harmonic wave with the funda-
mental itself. Since the fractional conversion at the
boundary will always be small, it is justified to treat
the fundamental intensity as a fixed constant parameter
in deriving the harmonic waves. The depletion of the
fundamental power in the body of the nonlinear
dielectric has been discussed in detail by ABDP. That
generalization of the parametric theory is, fortunately,
not necessary in discussing boundary problems.

III. GENERAL LAWS OF REFLECTION
AND REFRACTION

Consider a boundary (z = 0) between a linear medium,
with incident and reflected waves characterized by
labels "i" and "jR," respectively, and a nonlinear
medium with the transmitted waves, labeled 'T."
Two incident plane waves, E1 exp(ïki'-r— MI/) and
£2 expfika'-r— 2W), approach the boundary from the
side of the linear medium.

In general, waves at all sum and differencies m\u\
±mx*)z will emanate from the boundary (mi and mz
are integers). The sum frequency co3=wi+w2 will be
considered explicitly. The extension of the procedure
to the difference frequency coi—W2, other harmonic
combinations, and to the situation when three or more
waves are incident, will be obvious.

The geometry is defined in Fig. 2. The angles of
incidence of the two waves are Oi! and 03% the planes of
incidence make an angle <f> with each other. Choose the
x and y direction of the coordinate system such that
*!*'=-V-

A necessary and sufficient condition for the require-
ment that the boundary conditions will be satisfied

FIG. 2. Two inci-
dent rays at fre-
quencies coi and u2
create a reflected
wave, a homogene-
ous and an inhomo-
geneous transmitted
wave at the sum
frequency 013=^1 +
ws, all emanating
from the boundary
between the linear
and nonlinear me-
dium.

simultaneously at all points in the plane z=0 is that
the x and y components of the momentum wave vector
remain conserved. For the sum wave, this leads to the
conditions,

This leads immediately to the following theorem.
The inhomogeneous source wave, the homogeneous
transmitted and reflected waves at the sum frequency
and the boundary normal all lie in the same plane.
With our choice of coordinate system this "plane of
sum reflection" is the xz plane. A similar theorem
holds for the difference frequency and other harmonic
waves, although their planes of reflection will in general
all be different.

The propagation of the inhomogeneous wave at the
sum frequency, proportional to PNL8(o>3), is given by
exp{-i(kiT+k2

T)-r— i(wi+a;2)/}. Its angle with the
normal into the nonlinear medium 8ss is determined by

The wave vectors kiT and k2
r are given by Snell's law

for refraction in the usual linear case. The convention
i s made that all angles with the normal are defined in
the interval 0 to ir/2. The angle $ between the planes
of incidence goes from 0 to x. From simple trigonometric
relationships, one finds

If the dielectric constants are introduced by means
of the relationship, e^k^fö/c2)*1, Eq. (3.2) can be
rewritten as
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Superscripts R and T refer to the linear and nonlinear
medium, respectively, subscripts refer to the fre-
quencies. It is advantageous to introduce an effective
dielectric constant es for the nonlinear source wave,
defined by

es sin203
s = e3ï' sin203r=E3K sin20sH. (3.4)

In the special case that the planes of incidence
coincide, a simple relationship is obtained which shows
a striking resemblance to Snell's law:

The + sign is to be used if the two incident rays are on
the same side of the normal, the — sign if they are on
opposite sides. If the linear medium is optically denser
than the nonlinear medium, tiR~t2K>e3T, the possi-
bility exists that sin#3

r>l. This case of total reflection
will be discussed in detail in Sec. V, after the question
of intensity and polarization has been taken up. If one
considers the difference frequency w_3=wi—02, the
counterparts of Eqs. (3.1)-(3.3) can readily be written
down. For the sake of brevity, only the analog of
Eq. (3.5) will be reproduced;

(3.6)

The -(- sign must now be used if the incident waves
approach from opposite sides of the normal. Since
wi/w_s>l, there is now ample opportunity for the case
sin0_3

B>l. There will be no reflected power at the
difference frequency. This situation has no counterpart
in the linear theory. When e_3

r>e_3R, even if sin0_s
ie

>1, there still exist the two possibilities, sin0__gT>l or
<1. The problems of total reflection and transmission
are clearly more varied in the nonlinear case and will
be discussed in Sec. V.

The example of second harmonic generation of the
previous section follows from Eq. (3.3) if one puts
0i£=02* and <£ = 0, and €iR = ezR = ^sR- In general, the
sum and difference frequencies will be reflected in the
same direction as o>i and w2, if the incident rays come
from the same direction in a dispersionless medium.

The conditions of conservation of the tangential
component of momentum, |~Eq. (3.1)], are general.
They can easily be used to derive the directional
relationships for higher harmonics. They hold regardless
of whether the harmonic radiation is of dipolar, electric
or magnetic, or quadrupolar origin. They also hold for
anisotropic media. In this case, there are usually two
directions of the wave vector with a given tangential
component. There will be, in general, four inhomo-
geneous waves at the sum frequency, corresponding to
mixing of two refracted waves at wi with two refracted
waves at w2- There will be two homogeneous transmitted
waves 03^, and two reflected directions 9S

R, if the linear
medium is also anisotropic.

IV. POLARIZATION AND INTENSITIES OF THE
HARMONIC WAVES

In this section the discussion will be restricted to
isotropic materials, although the example of Sec. II
showed that the discussion is also immediately appli-
cable to special geometries with anisotropic crystals.
There are no fundamental difficulties in extending the
calculations to the general anisotropic case, but the
resulting algebraic complexity does not make such an
effort worthwhile at the present time.

The starting point for the calculation of the polar-
ization and the intensity of the waves at the sum
frequency ws— coi+w2 is the nonlinear polarization
induced in the medium,

The refracted waves at wi and w? are known in terms of
the incident waves by means of the formulas of Snell
and Fresnel for the incident medium. Therefore; the
nonlinear source at w3 is known. The angular depend-
ence of PNLS itself is derived from the transmitted
linear waves given by the usual Fresnel equations.
One must take proper account of this in analyzing
the directional dependence of harmonic generation.
As in the linear case, waves at 013 with the electric field
vector normal to the plane of reflection (Ei), defined
in the preceding section, can be treated independently
from waves with the electric field vector in the plane of
reflection (En).

A. Perpendicular Polarization,
Ey=Eij EX=EZ=Q

This wave is created by 7\NLS = P1
NLS. The con-

tinuity of the tangential components of tbc solutions
Eq. (2.5) and Eq. (2.6) at the boundary requires in this
case, shown in Fig. 3,

The continuity of the normal components of D and
B follows automatically from the conditions [Eqs.
(4.2) and (4.3)] and the law of refraction [Eq. (3.3)].
The subscript 3 has been suppressed, since all waves
and source terms refer to the frequency ws. Henceforth
R, S, and T will be written as subscripts rather than
superscripts, as in Eq. (4.3), for neater appearance.

The solution of Eqs. (4.2) and (4.3) gives

After some manipulation which was already described
in Sec. II, the reflected sum wave amplitude may be

(4.4)

(4.2)

(4.3)
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FIG. 3. The harmonic
waves at the boundary
of a nonlinear medium,
polarized with the elec-
tric field vector normal
to the plane of reflection.

written as

The amplitude is 180° out of phase with the nonlinear
polarization.

The transmitted wave is given by

(4.5)

the nonlinear

(4.6)

(4.7)

Eq. (4.6) can be transformed to a single plane wave
with a propagation vector kr, but with an amplitude

varying with the distance z from the boundary.
For values of z which satisfy the condition

(4.7a)

the amplitude of the transmitted wave behaves as

(4.8a)

The wave starts off with a value EL
R given by Eq. (4.5),

but a 90° out-of-phase component starts growing
proportional to the distance z from the boundary. This

is precisely the effect of harmonic generation in the
volume of an infinite medium, discussed in ABDP.
For an appreciable phase mismatch, the condition
[Eq. (4.7a)] will be violated after some distance which
may be called the coherence length. Equation (4.6)
shows that the intensity of the transmitted wave will
then vary sinusoidally with the distance from the
boundary. In the case of perfect matching, Eq. (4.8a)
would indicate that the intensity increases proportional
to the square of the distance, beyond all limits. Actually,
the parametric approach breaks down in this case, and
the reaction of the harmonic wave on the incident
intensities should be taken into account. It is straight-
forward to match the solutions of ABDP so that they
give the proper expansion [Eq. (4.8a)] for small z.
This expression shows how the harmonic wave starts at
the boundary and gives the proper initial conditions
to be used for the coupled amplitude equations in
ABDP. The amplitudes at wi and o>2 initially have a
constant value and decrease only proportional to z2.

It should be noted that the transmitted wave is an
inhomogeneous plane wave, since the amplitude is not
constant in a plane of constant phase. An exception to
this occurs when the waves propagate normal to the
boundary. In this special case the amplitudes of the
reflected and transmitted waves are given by

(4.9)

The transmitted wave varies both in amplitude and
phase as the wave progresses into the nonlinear medium.

B. Parallel Polarization, Ev = Pa
NLS = 0

These harmonic waves are created by the x and z
components of the nonlinear polarization. It will be
advantageous to describe the nonlinear polarization in
the plane of reflection by its magnitude PnNLS and the
angle a between its direction and the direction of
propagation of the source ks. The continuity of the
tangential components at s=0 now requires, as will be
evident from Eqs. (2.5) and (2.6) and Fig. 4,

(4.10)

(4.11)

The last term in Eq. (4.10) arises from the longitudinal
component of E. There is, of course, no longitudinal
component of D or H. The continuity of the normal
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FIG. 4. The harmonic
wave at the boundary
of a nonlinear medium,
with the electric field
vector in the plane of
reflection. Both the non-
linear polarization and
the electric field may
have longitudinal com-
ponents.

components of these quantities at the boundary is
automatically satisfied by Eqs. (3.3), (4.10), and (4.11).
Elimination of enT between the last two equations
yields the amplitude of the reflected wave

This expression can be transformed by further use of
Eq. (3.3) into

There is no anomaly in the reflected intensity when the
condition of phase velocity matching is ap-
proached. In the limit of normal reflection, 6s=&T

Eq. (4.12) takes on the same form as Eq. (4.9),
except for a minus sign. This difference is trivial and a
consequence of the conventions made in Figs. 3 and 4.
In the case of normal reflection there is no distinction
between parallel and perpendicular polarization.

Equation (4.13) reveals the existence of a Brewster
angle for harmonic waves, when En

B = 0. For
—a—0s, the reflected harmonic is completely polarized
normal to the plane of reflection. This condition implies
that the nonlinear polarization is parallel to that
direction of propagation in the nonlinear medium,
which on refraction into the linear medium gives rise
to the reflected ray in the direction OK. The physical
interpretation of Brewster's angle is thus that the
nonlinear polarization cannot radiate inside the medium
in the direction which would otherwise yield a reflected
ray. This interpretation appears at first sight to conflict
with the simple explanation of Brewster's angle in the

FIG. 5. Brewster angle for linear and nonlinear reflection. The
total polarization cannot radiate in the direction of the reflected
ray in vacuum. The source polarization cannot radiate into the
direction k_T in the medium, which would lead to a reflected ray
in vacuum.

linear case. There one says that the polarization
cannot radiate in vacuum parallel to its own direction,
which leads to

It is shown in Fig. 5 that the two interpretations can
be reconciled. One may consider the polarization
induced by the incident vacuum wave as the linear
source, PLS. This source radiates inside the medium.
This takes care of the dipolar interaction in the lattice
and this is the way in which we have viewed the
nonlinear polarization. Conversely, we could have
calculated the total polarization of the lattice at the
sum frequency, including both the linear and nonlinear
part. This total polarization should be considered to
radiate in vacuum and this would lead to the usual
interpretation of Brewster's angle, that the total
polarization is parallel to the reflected direction. To
sum up, the dipolar interaction or Lorentz field should
be taken into account once, and this can either be done
in the calculation of the total polarization, which then
radiates into vacuum, or on the side of the radiation
field in the medium created by a polarization induced
by a wave in vacuum. The question raised here is
purely semantic in nature. Maxwell's equations, of
course, take correct account of the dipolar interactions
in the material.

The transmitted wave with polarization in the plane
of transmission can be obtained by substituting into
Eq. (2.5) the values of P„NI'sand(S1,ï>.Thislastquantity
is given by Eqs. (4.11) and (4.12). It is again possible,
by means of Eq. (4.7), to write the transmitted wave
as a single wave propagating in the direction kj-, but
with an amplitude that depends on the distance z from
the boundary. The electric-field amplitude of the
combined transmitted wave, Eur, will, in general, have
a longitudinal component, as well as a transverse
component. With the introduction of the angle P
between Et,T and the direction of propagation ky, the
transverse component of the total transmitted wave
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(4.14)

The first three terms give the constant value with
which this component starts at the boundary, the last
term displays the variation with z due to the interfer-
ence between the homogeneous and inhomogeneous
solution. For values of z which are small enough so
that no appreciable dephasing has occurred, the
intensity of the wave increases proportional to z2. The
amplitude has a component, 90° out of phase in the
time domain, given by

The longitudinal component of the electric field vector,
parallel to kr, can be written in the form

Because of the presence of this longitudinal component,
the energy flow in the transmitted ray will not be
exactly in the direction of kr. In the limit of perfect
phase matching, the longitudinal component is con-
stant. From Eqs. (4.14) and (4.15), the electric field
in the nonlinear medium is completely determined,
both for perfect phase matching , and for phase
mismatching. The solutions have, of course, assumed
that the amplitudes of the incident waves remain
unchanged by the nonlinearity. This is justified because
the amplitude of the harmonic sum wave is relatively
very small near the boundary. The solutions can be
matched to the more general solutions for the infinite
medium which allow for depletion of the power of the
incident waves.

It is interesting to note that even in the case of
purely longitudinal nonlinear polarization, a = 0, and
perfect phase matching , there is, nevertheless,
a wave propagating into the medium with a transverse

component. This wave does not increase with z; there
is no amplification. It has its origin in the partial
return at the boundary of the radiation from this
longitudinal component which also gives rise to the
reflected ray. One may also say that the nonlinear
polarization induces a linear polarization, which is not
purely longitudinal and may radiate. In the case of
normal incidence the radiation from the
longitudinal component of the nonlinear polarization
is completely absent.

C. Further Generalizations and an Example

The considerations of this section can, of course, be
generalized immediately to higher harmonics. One
simply determines PNLS at the desired frequency of
interest due to the presence of all waves incident on the
linear medium. The equations of this section remain
valid provided the angles 8T, and 8R are properly
determined in each situation with the method de-
scribed in Sec. III.

The equations also remain valid for an absorbing
medium. In this case, ÉT- and eg are complex quantities,
and the angles QT and are in general also complex.
The angle of reflection given by Eq. (3.3) remains real.
The fundamental and harmonic waves in the medium
will decay with a characteristic length K$~l and K-r"1

given by

The intensity of the reflected intensity will not change
in order of magnitude if the absorption per wavelength
in the nonlinear medium is small, K\<&1 or É"«É'. The
general expressions Eqs. (4.5) and (4.13) can be decom-
posed in real and imaginary parts in a straightforward
manner. There will be a phase shift, with respect to
PNLS, in the reflected harmonic amplitude from an
absorbing medium. JPNLS itself is determined by light
waves just inside the medium which are also phase
shifted with respect to the incident wave. Only the
expression for the reflected sum wave amplitude in
the case of normal incidence will be written down
explicitly as an example:

The harmonic generation near the surface of a metal
may be described by equations of this kind. The linear
conductivity of the plasma can be formulated in terms
of a complex dielectric constant and the nonlinear
properties of the plasma are incorporated in PNLS.
It is given by Eq. (2.1) in terms of the light fields just
inside the metal.

Another extension that can readily be made includes
the case where there is also a wave at w3 incident on
the nonlinear medium, besides the waves at wi and u)2.

may, after some manipulation, be written as
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FIG. 6. Idealized ge-
ometry for the creation
of second harmonics in
a calcite crystal. In the
absence of a dc electric
field (z<ff), the har-
monic is generated by
quadrupole matrix ele-
ments. In the presence
of Edo (z>0), dipole
radiation is dominant.
Interference effects oc-
cur at the boundary,
3 = 0.

tensors Q and % of interest in our geometry are the
x'x'x'x', x'x'z'z', and z'z'z'z' components. They will
create a nonlinear polarization in the xz plane. The
longitudinal component P2

NLS is of little interest in
the case of normal incidence, as shown by Eqs. (4.12),
(4.14), and (4.15). The x component of the nonlinear
polarization can be written as

The factor i takes account of the factor that the
gradient operation produces a 90° phase shift. The
polarization induced by the dc electric field is 90°
out-of-phase with that produced by the quadrupole
effect. This effect has already produced a second har-
monic wave between — d<z<0, which is also incident
on the boundary. If the condition of phase matching is
approximately satisfied over the distance d, this incident
amplitude is given by

This situation is of importance if one desires to amplify
further a signal at 013 rather than generate power in the
absence of an incident signal.

There need not be a discontinuity in the linear
dielectric constant at the boundary. The equations
remain valid if eR=tT- A discontinuity in PNLS alone
occurs, for example, if the part of a crystal for z > 0 is
subjected to a strong dc electric field Ede, while this
field is absent for 3<0. For simplicity, the light is
assumed to enter normal to the boundary. This situ-
ation, shown in Fig. 6, represents an idealized geometry
for a very interesting experiment on second harmonic
generation in calcite recently reported by Terhune
el a/.5

The fundamental wave at wi, polarized in the x
direction, creates a nonlinear polarization in the calcite
crystal which has inversion symmetry at the second
harmonic frequency by two terms

PNLs = Q:ElVEl+x:ElElEdc. (417)

The nonvanishing components of the fourth-order lead to a transmitted electric field,

It consists of the boundary wave created at z= — d and
the quadrupole amplified wave. The continuity condi-
tions for Ex and Hy at z=0, where there is a discon-
tinuity in PNLS,

(4.19)

This expression shows how the boundary wave induced
by the dc electric field may interfere with the wave
which was amplified by the quadrupole effect in the
region where the dc field is absent. This effect may
explain why Terhune et al. observed a minimum in
generated harmonic intensity5 for a finite value of E^c-
It is not warranted to ascribe this minimum to the
quadrupole effect and the balance to the E&0 effect.
This would be correct only if Ea0 could be applied
uniformly in the whole calcite crystal. In that ideal
geometry, the minimum in the generated harmonic
intensity would be expected to occur indeed at Eac=Q.
Our analysis applies only at the boundary with a
discontinuity in Edc, but similar interference effects
can be expected in regions where a gradient of the dc
electric field exists. A more detailed model consisting
of a stack of plane-parallel slabs with different nonlinear
(and linear) properties could be analyzed with the aid
of the theory in Sec. VI.

V. TOTAL REFLECTION AND TRANSMISSION

Exponentially decaying or evanescent waves may
occur even in nonabsorbing media. This phenomenon
is known as total reflection in linear dielectrics.8 It
occurs when the law of refraction would yield a value
of There is a wider variety of circumstances
in which one or more of the angles occurring in the
nonlinear case, , may assume a complex
value, even though the dielectric constants are real.
The various possibilities will be enumerated in this
section for waves at the sum frequency W3=wi+aj,
and the difference frequency 01-3^^1—^2-

Case A : 8ir and 6zT are real. The incident waves are
both transmitted into the nonlinear medium. The
nonlinear polarization in the medium will be generated
in the usual manner. The inhomogeneous wave has a
real propagation vector, sinos<l. Inspection of Eq.
(3.3) shows that in the case of normal dispersion,
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e32ï>eijï and e2
R, and e3

T>eir and e2
r, the angles 03

R

and 0sr will always be real. The situation is quite
different for the difference frequency. The general
expressions for the angles are

ing spatial dependence

(5.1)

The smaller the difference frequency o>_3, the larger
the probability that the waves at this frequency cannot
be radiated. This probability is especially large, if
cos0<0, i.e., if the two incident rays approach the
boundary from opposite sides of the normal, and if the
angles of incidence are close to 90°.

Whenever sin0R or sinor, as determined from Eq.
(5.1), is larger than unity, the wave will exhibit an
exponentially decaying characteristic in the linear or
nonlinear medium, respectively. The evanescent re-
flected or transmitted wave at w-s will have the follow-

There is no particular interest in the reflected amplitude
as such because it decays rapidly away from the
boundary. If Eq. (5.2) is combined with Eq. (4.8), it is
evident that the transmitted wave has a phase shift
with respect to the nonlinear polarization. The amplified
part of the transmitted wave is not affected by the
frustrated reflection.

Similar conclusions may be drawn for the transmitted
wave polarized in the plane of transmission. The
amplitudes are still given by Eqs. (4.14) and (4.15).
A substitution in the denominator of the first term on
the right-hand side of Eq. (4.14),

sin(0r+0B)cos(0T-0jO
= sin0Tcos0r+'isin0fi(siri20K-l)1/2 (5.3)

shows the phase shift of the transmitted amplitude
with respect to PH

NLS. The amplified part and the
longitudinal component [~Eq. (4.15)] are not affected
by the frustrated reflection.

A3. sin0s<lj sin0R<l, sin0r>l. This situation can
occur for the difference frequency, if e_3

R>e_3
T. In

this case cos0_sT—i(sin20_?
r—1)1/2 is pure imaginary.

The reflected amplitude for perpendicular polarization
is still given by Eqs. (4.5) and (4.13). These expressions
can readily be decomposed in their real and imaginary
parts, but the algebraic results will not be reproduced
here. There will be a phase shift, because the reflected
amplitude is now complex, Its order of magnitude is
not changed by the fact that the homogeneous wave is
not transmitted.

There will still be a transmitted intensity because
the inhomogeneous wave propagates. At a distance
more than a few wavelengths from the boundary the

The x and y dependence has still the same oscillatory
character, but the waves evanesce in the z direction
and are essentially confined to a region of a few wave-
lengths near the boundary. Four subcases may be
distinguished.

Al. sin0s<l, sinor<l, sin0R<l. This is the normal
situation, which was discussed extensively in the
preceding sections. All waves propagate.

Al. sin(?,s<l, sm0r<l, but sin0R>i. This case can
occur for the difference frequency w_3, if e_ss<e-3r.
There is no reflected wave at co_3. The difference
frequency is totally transmitted. The amplitude of the
transmitted wave is still given by Eqs. (4.8), (4.14),
and (4.15). Since sin2ÖB>l, cosÖfi = z(sin2Ö^— 1) is pure
imaginary. Equation (4.5) may be rewritten as

transmitted wave will be given by

A similar expression exists for the parallel polarization.
Matching of the phase velocities does not exist, since
one must have

There is no particular advantage to try and make
since for that limit one must restore to Eq.

(5.4) the inhomogeneous, evanescent solution that
decays slower and slower as es~> f-T for sin0s<l.

Ak. sin0,s<l, sinoR>l, and sin0r>l. Only the in-
homogeneous transmitted wave is not evanescent in
this case. The amplitude of the transmitted wave away
from the boundary is again given by Eq. (5.4).

Case B. Both incident waves are totally reflected,
sin0iT>l and sino2

r>l. In this case, which can occur
if the linear medium is optically more dense than the
nonlinear medium, the inhomogeneous wave is always
evanescent, sin0s>l. The nonlinear polarization de-
creases exponentially away from the boundary, but
the polarization at the sum or difference frequency,
restricted to a surface layer of about one wavelength
thick, may produce traveling waves both in reflection
and transmission. The following situations should be
distinguished.

Bl. sin0js>l, sin0r>l, sin0B<l. In this case the
waves at sum and difference frequencies are also totally
reflected. It will usually occur when a single funda-
mental wave is incident and totally reflected. The
second harmonic will, e.g., have an angle 6? with
sin0!r(2w) = [e3^(w)/£:r1/2(2w)]sin0s larger than unity,
unless an unusual dispersion is present. The intensity
of reflected harmonic is again given by Eq. (4.5) or
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Eq. (4.13), where now both cosös and cos0T are purely
imaginary. There will be phase shifts with respect to
PNLS, but the important point is that the intensity of
the reflected harmonic has the same order of magnitude,
if the incident wave is totally reflected or transmitted.
It may be possible to generate second and higher
harmonics by repeated total reflection from nonlinear
dielectric surfaces.

B2. sin0s>l, but sm0r<l and sin0fi<l. This case
could occur, for example, if the sum wave frequency is
created by two totally reflected incident waves, hitting
the boundary from opposite sides. Since the inhomo-
geneous wave dies out rapidly, the reflected and
transmitted field amplitudes are given by Eqs. (4.5)
and (4.2), respectively, with cos05 pure imaginary. The
waves polarized in the plane of reflection can be
treated in a similar manner.

BZ. sin05>l, sin0r<l, sin0B>l. Since the first con-
dition requires CB(UI and «2)>e r(wi and wa), and the
last two eR(w3)<ej>(w3), this situation would be ex-
tremely rare in an isotropic medium. It could occur by
special choice of ordinary and extraordinary rays in an
aniso tropic medium.

54. sm0s>l, sinOr>l, sm0«>l. This case is not of
much experimental interest since all harmonic waves
are evanescent.

Case C. sinos complex. Finally, the situations should
be considered in which one of the incident waves (at wi)
is transmitted, but the wave at w2 is totally reflected.
The nonlinear polarization created at the sum or.
difference frequency will again drop exponentially away
from the boundary. The spatial dependence of PNL8(u)3")
is. e.g., given by

A complex factor now multiplies z in the exponential
function. Again four subcases should be distinguished :

The discussion of the intensity of the reflected and
transmitted is quite analogous to the corresponding
cases B. The transmitted intensity is again determined
by the homogeneous wave, since the inhomogeneous
intensity drops exponentially. The generalized Fresnel
equations for ER and ST can again be used, in which
sinfls and cosOs are now complex quantities.

VI. THE NONLINEAR PLANE-PARALLEL PLATE

Consider an infinite slab M of a nonlinear dielectric
medium with boundaries at and z=d, embedded
between two linear dielectrics R and T. Two linear
waves at o>i and w2 are incident from the medium R
for z<0, as schematically shown in Fig. 7. They will
create forward moving waves EI,M and EZ,M and back-
ward moving waves £i,,u' and Ez.ia' m the nonlinear
medium. These waves can be calculated according to the
usual linear theory. They will produce a nonlinear
polarization at the sum frequency ws.

In general, four inhomogeneous waves will be associ-
ated with this nonlinear polarization.

Note that these inhomogeneous waves all have the
same x and y dependence. The boundary conditions at
s=0 and z=d can be met if one adds four waves which
satisfy the homogeneous wave equation at the frequency
o)3 with the same x and y dependence. These waves
which all lie in the same plane with the normal of the
slab are also shown in Fig. 7. It is again possible to
treat separately the case in which the E(wg) and the
nonlinear polarization are perpendicular to this plane,
and the case in which they are parallel to this plane.

It should be noted that the symmetry which exists in
the linear case between waves going from medium A to
B or from B to A is lost in the nonlinear case. If the
light approaches the boundary from inside the nonlinear
medium, one always must have both a homogeneous
and an inhomogeneous wave incident, whereas in the
linear medium there is only the homogeneous wave.
The problem of the nonlinear slab clearly presents itself
in many experimental situations. Harmonic generation
is usually accomplished in a slab of nonlinear material.
The creation of harmonic waves inside a laser crystal
or Fabry-Pérot interferometer involves the same situ-
ation. Although only the waves at the sum frequency
will be considered explicitly, the method is equally

No further computational details need to be supplied.

FIG. 7. Waves in the nonlinear plane parallel slab. Fundamental
waves EIM and EIM' at wi and RZ

M and E2
M' at o>2 give rise to

inhomogeneous waves at w3=«i+W2, The four homogeneous waves
at w3 include a reflected ray EK and transmitted ray ET from the
slab at the sum frequency w3.
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applicable to higher harmonies, the difference fre-
quency, etc. One only has to focus attention on the
components of the nonlinear polarization [Eq. (6.1)]
at the corresponding frequencies. The method presented
here is, however, restricted to "weak harmonic gener-
ation." The incident fields at wi and o>2 in the slab are
considered to be given as fixed parameters by the linear
theory. They are not appreciably attenuated by the
nonlinear processes. The interest will, of course, center
on the waves ES

B and EZ
T that emerge on either side

of the slab. In order to avoid nonessential algebraic
effort, only one inhomogeneous wave will be retained,
the first term on the right-hand side of Eq. (6.1). For
small linear reflectance of the dielectric, EI,M'<EI,M
and -Ë2,A/<-Ë2,M, this will approximate the correct
result closely. For high reflectance the equations can be
generalized without difficulty. The case where there is
an incident wave at ws in the medium R as well, could
also be included in a straightforward manner. The
propagation constant for the inhomogeneous wave is
again written as wsc^es1'2. The subscript 3 will hence-
forth be dropped, since all quantities will refer to the
sum frequency.

With these assumptions the boundary conditions in
the case of perpendicular polarization can be written as

(6.2)

(6.3)

(6.4)

(6.5)

where <j>s and 4>v are the phase shifts of the inhomo-
geneous and homogeneous waves, respectively,

<t>s = esl'2uc-ld cosfls, 4>M= e„if1/2wc~W cosÖ.u. (6.6)

This is a set of four simultaneous linear equations that
can be solved for the four homogeneous wave amplitudes
and phases.

The reflected and transmitted harmonic waves have
the following complex amplitudes,

The terms in the numerator of Eqs. (6.7) and (6.8) are grouped so that each has a finite limit as c,\r approaches
es- For the limiting case of perfect matching

Both the transmitted and reflected waves contain terms
proportional to the thickness of the nonlinear dielectric.
For the reflected wave this arises from the forward
amplified wave reflected from the discontinuity at the
second surface. When ey=t_u there is no discontinuity
and this term vanishes. In this case the amplitude of
the reflected wave depends on the thickness of the slab
as sin0.i/ and the phase is determined through the
denominator, D, given by Eq. (6.9). The reflected wave
varies between zero and twice the value given by Eq,
(4.5) for reflection from a semi-infinite medium. This
is reasonable since additional layers of dipoles interfere
either constructive!}' or destructively as the thickness
of the slab increases. The average amplitude for infinite

thickness is just one-half the amplitude for optimum
thickness.

The transmitted wave has the expected term propor-
tional to thickness, and in addition, there is the bound-
ary wave from the first surface. If es^f.u, this wave,
of course, vanishes.

In the limit that the layer is thin compared to a
wavelength, the general expressions [Eqs. (6.7) and
(6.8)] simplify to

(6.12)

The amplitudes of the waves radiated in the forward
(transmitted) and the backward (reflected) directions
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are equal for a thin layer. The intensities of the two
waves are proportional to the square of the thickness,
since all the atoms radiate coherently. One may also
say that the harmonic waves generated at the front and
back surfaces due to the discontinuity in the nonlinear
part of the dielectric constant x(c°s^wi+tu2) interfere
destructively. This is similar to the interference in very
thin linear film when the discontinuity is in t.

If the reflection coefficient for the fundamental waves
is large, as in a Fabry-Perot interferometer, one has to
take the other inhomogeneous solution of Eq. (6.1)
into account. Algebraically, this amounts to a sum-
mation over the index S in Eqs. (6.7) and (6.8) and
their limiting cases.

The case of parallel polarization can be treated in
the same manner. The boundary conditions are:

The numerators in Eqs. (6.17) and (6.18) are again grouped in terms that have finite limits as e M approaches es-
For the limiting case of perfect matching

The discussion for the perpendicular polarization,
following Eqs. (6.10), (6.11), and (6.12) can be carried
over to the parallel case. The symmetry between the
forward and backward radiated fields is spoiled in the
case of parallel polarization.

Note also the occurrence of a Brewster angle in the
case of perfect matching (es=*M)- If 20M+a = T, there
is no backward wave generated in the medium. If, in
addition, the reflection of the forward wave at the
second boundary is suppressed by taking er=«M, the
reflected intensity is zero. For a linear plane parallel
slab, complete transmission will occur simultaneously

at both the front and the back surface, if Brewster's
condition is satisfied. This symmetry does not exist in
the nonlinear slab.

The same physical explanation for Brewster's angle
may be given as in the case of the semi-infinite medium,
If the total polarization (linear+nonlinear) of the
medium is parallel to the direction of reflected ray, it
must have vanishing intensity. This will be illustrated
for the case of a very thin film in vacuum. If the
reflected wave is required to vanish, the continuity
conditions on D and E determine the total polarization
(D—E)/4r inside the medium. The components of
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this total polarization can be expressed in terms of
PXLS as follows:

(6.24)

Since PNLS makes an angle ös+o: with the boundary
normal from R into the nonlinear medium M, the total
polarization makes an angle f with the normal whose
tangent is a factor C.M larger. Brewster's condition is
T+ÖH — T ortan0jï=--tanf= — ejf"1 tan(og+a). (6.25)

For € ï -=e j ï= l , one has (er/e.w)1/2 sinÖM— e.i/^1 sinor.
Equation (6.25) is therefore equivalent to the condition
that the expression [Eq. (6.22)] vanishes.

VII. INTEGRAL EQUATION METHOD FOR WAVE
PROPAGATION IN A NONLINEAR MEDIUM

From a microscopic physical point of view there
exists only the incident radiation field in vacuum and
the dipolar microscopic radiation fields in vacuum
emanating from each atomic dipole. Ewald and Oseen
have shown for the linear dielectric that the properly
retarded atomic dipole fields lead, on integration, to
exactly the same results as the combination of Maxwell's
equations coupled witb tbe Lorentz treatment of
quasi-static local fields. In a similar manner the treat-
ment of ABDP, which extended the Maxwell-Lorentz
method to nonlinear dielectrics, can be justified by an
extension of the Ewald-Oseen integral equation method.
The account and notation employed by Born and Wolf
in the linear case will be followed closely." As in the
linear case, the reflected and refracted waves at the
boundary of a nonlinear medium also follow correctly
from the integral equation method.

A semi-infinite dielectric 3<0, in contact with vacuum
z>0, has a polarization density P(r,t) consisting of a
linear and nonlinear contribution. The nonlinear polar-
ization results from the nonlinear polarizability of a
unit cell as discussed by ABDP. The nonlinear polar-
ization of the ïth cell is (PNL(/,r,-). If there are N cells
per unit volume, the nonlinear polarization density is
PNL(r,t) = Ar(PNÏJ(t,r). In the most general case of an
incident field Ei(r,i) the total electric field at any point
r on the medium can be written as

where a is a small surface surrounding the point r and
is the outer surface of the dielectric. Consider the

component of Eq. (7.1) at some frequency w for which
PNL^Q_ -pake as a trial solution

where the fields on the right-hand side satisfy the
equations

(7.3)

The velocity of the source wave in the medium, which
defines es, can be determined from the solution of the
linear problem for the waves at incident frequencies,
different from o>. The linear dielectric constant at w is
given by e. The amplitude of the total polarization
per unit volume appearing in the integral of Eq. (7.1) is

(7.4)

where is the polarizability of a unit cell at frequency
w and N is the number of unit cells per cm3.

Substitution of Eqs. (7.2) and (7.4) into Eq. (7.1)
Leads, with the procedure of Born and Wolf, to

(7.5)

where G(R) = (1/.R) cxp[t(w/c)-R]. The third term on
the right of the equal sign is necessary since, in general,

are not zero.
Equation (7.5) has terms propagating with speeds

c, c(0~1/2i and c(es)~1/a. If the identity is to hold for all
points in the medium, these three types of terms must
vanish separately.

Terms propagating with speed c

(7.6a)

terms propagating with speed c(e)~1/2

3 See reference 8, pp. 97-107,
(7.6b)
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and terms propagating with c(es)~I/2

(7.6c)

Equation (7.6b) gives the usual solution to the homo-
geneous equation for the linear medium.

(7.7)

Equation (7.6c) is the solution to the inhomogeneous
equation. It can be shown that Q" is equivalent to the
local fields associated with the inhomogeneous part of
Eq. (2.5). This is most easily demonstrated by con-
sidering two separate cases, F parallel to kg and F
perpendicular to k,s. In the parallel case Eq. (7.6c)
reduces to

The inhomogeneous part of Eq. (7.4) can be written
in terms of the linear and nonlinear polarization and
the effective nonlinear source term, defined by ABDP,

(7.8)

This is in agreement with the macroscopic definition of
PNLS for j-ne longitudinal case, when D should vanish,

(7.9)

Similar agreement is found for the transverse compo-
nent.

Equation (7.6a) constitutes the boundary conditions
for the nonlinear medium. The amplitude of Q6 is
uniquely determined by Q", F, and Q\ It is thus seen
that the integral equations exactly parallel the differ-
ential equations. There is an inhomogeneous solution
and a homogeneous solution. The amplitude of the
latter is determined from the boundary conditions.

The reflected wave outside the medium is obtained
much more easily since one can take the differential
operators outside the integral

(7.10)

P(r',t) is known from the solution of Eqs. (7.4) and
(7.6). Integration of Eq. (7.10) is lengthy but straight-
forward and one gets agreement with the results of the
simpler macroscopic equations in Sec. IV.

VIII. DISCUSSION AND CONCLUSION

The theoretical results of Secs. Ill-VI are applicable
to many experimental situations. Harmonic generation
is usually accomplished in a slab of a nonlinear crystal.

The equations of Sec. VI give the harmonic intensity
in the forward and backward directions. Both the
general case of arbitrary thickness and mismatch of
the phase velocities and the limiting case of phase
matching in the thickness of the slab are treated in
detail. The situation of harmonic generation inside a
laser crystal is also described by those equations. Since
the fundamental is now a standing wave, one has to
sum over more than one inhomogeneous wave inside the
crystal. In general, the phase velocities will not be
matched. The harmonic intensity will be a periodic
function of the spacing of the reflecting ends of the
Fabry-Perot resonator. The intensity will not exceed
the harmonic intensity of a thin slab of thickness
/=coc-1(«.s1/2-^v1'2).

The sensitive dependence of harmonic generation on
the degree of phase matching, «AT — ts, and on the thick-
ness d, makes it difficult to obtain a precise quantitative
determination of the nonlinear susceptibility, by using
Eqs. (6.7) or (6.8) and (6.17) or (6.18) and the experi-
mentally observed harmonic generation from a slab.
This difficulty can be avoided by using the reflected
harmonic from a single boundary. One puts er=«Af in
the equations of Sec. VI, which corresponds to matching
the index of refraction of the nonlinear slab with a
linear medium. A simpler experimental solution to
achieve the equivalent of the reflection off a semi-
infinite medium is to make the other side of the slab
diffuse and absorbing, or have it make an angle with
the front surface. Alternatively, one may use a totally
reflected fundamental beam, which generates harmonics
in the penetration depth a few wavelengths X thick as
shown in Sec. V. In any case, one would still have to
know quite accurately the intensity distribution of the
incident laser beam in time and over the cross section.
After one absolute calibration has been made, the
nonlinearity of any specimen may be measured by
comparing its reflected harmonic with the harmonic
generated in a nonlinear reference standard, which is
traversed by the same laser beam.

In crystals with a center of inversion symmetry the
nonlinear polarization at the second harmonic frequency
is created only by electric quadrupole effects as shown
byEq. (4.18). Consequently, the nonlinear polarization
and also the amplitude of the second harmonic ema-
nating from the boundary is reduced by a factor
(ia/\rj)-1, where a is a characteristic atomic dimension.
The factor t\ < 1 takes account of the fact that the
electric dipole moment matrix element does not have
its full strength in crystals which lack inversion sym-
metry. The odd part of the crystalline potential is
smaller by a factor than the symmetric part. Obser-
vations of Terhune on second harmonic generation in
KDP and calcite show that j/^lQ-1 in KDP. All
conclusions in this paper are equally valid for crystals
with and without inversion symmetry. It has been
suggested that the surface layers of a symmetric crystal
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FIG. 8. Harmonic generation by multiple total reflection from
a nonlinear dielectric. The dense linear medium may be a fluid
contained between two nonlinear crystals or an optical fiber in a
nonlinear cladding.

lack inversion symmetry, and that extra second har-
monic radiation may originate from the first few
atomic layers. Equations (6.12), (6.22), and (6.23) are
directly applicable to such surface layers of thickness a.
The magnitude of the reflected amplitude from it would
be smaller by a factor than the reflected amplitude,
originating from quadrupole radiation in a boundary
layer of thickness It is, therefore, believed that
atomic surface layers play an insignificant role in
harmonic generation. In principle, their effect could be
measured by observing the transmitted and reflected
harmonics from slabs of varying thickness and crystallo-
graphic orientation.

The generation of harmonics in a boundary layer of
the order , even if the fundamental wave is totally
reflected, suggests a novel geometrical arrangement
shown in Fig. 8. A fundamental wave at travels in a
dense linear (fluid) medium between two nonlinear
dielectric walls. Repeated total reflections occur. On
each reflection second harmonic power is generated.
The distance between the plates and the dispersion in
the linear medium can be chosen such that on each
reflection second harmonic radiation is generated with
the correct phase to increase the harmonic intensity.
Due account should be taken of the phase shifts on
total reflection of fundamental and second harmonic
by the methods discussed in Sec. V. The problem of
phase matching is now transferred to a linear isotropic
medium. If the distance between the nonlinear walls is
made very small, the case of linear optical fibers with
a nonlinear cladding presents itself. It is clear that the
free space methods could be extended to the propagation
of fundamental and harmonic waves in optical wave
guides.10

The discussion has been restricted to plane waves
and plane boundaries of infinite extent. It is possible
to extend the considerations to beams of finite diameter
d, to prisms, and even to curved boundaries. Some
care should be exercised in extending the concept of
the homogeneous and inhomogeneous wave in the non-
linear medium to rays of finite diameter. One concludes
that a prism will separate these rays, as schematically
shown in Fig. 9. The inhomogeneous ray leaves the
prism in a direction intermediate between the funda-
mental ray and the homogeneous harmonic ray. One
should not conclude, however, that the destructive

FIG. 9. The fundamental ray, the homogeneous ray, and the
inhomogeneous harmonic ray are separated by a prism. The
degree of phase matching and the diffraction of the rays of finite
diameter limit the harmonic power in the separated beams to an
amount which is equal to or less than that obtainable in a plane
parallel slab.

10 E. Snitzer, Advances in Quantum Electronics, edited by J. R.
Singer (Columbia University Press, New York, 1961), p. 348.

interference which occurs between the two harmonic
waves can be eliminated and that much larger harmonic
power is obtainable in the separated beams. It is true
that the amplitude in each beam separately is propor-
tional to (e,\f— «s)^1 and becomes very large as phase
matching is approached. At the same time, however,
the angular dispersion by the prism becomes smaller.
The beams will not be separated if this dispersion is
less than the diffraction angle determined by the finite
diameter of the beam.

With the notation of Sec. VI and Fig. 9, one finds
for the angle of deflection of the homogeneous ray in
terms of the angle of incidence and the prism angle ^,

sin0r = sin#, sin^f- cot0.v—• cos^ sin0,-, (8.1)
with

tMl»sm0M = sm8i. (8.2)

Differentiation of Eqs. (8.1) and (8.2) leads to an
expression of the angular deviation between the homo-
geneous and inhomogeneous ray in terms of the small
phase velocity mismatch

cos0rA0r=sin0i singes—e.w)/(e.w sin20.v). (8.3)

For resolution of the rays, one requires

A0r>A/A (8.4)

where D is the diameter of the beam at the exit. The
minimum length / which the center of the ray of
diameter D has to travel through the prism is

l>D siraff/(2 cos8M cos6T). (8.5)
Combination of Eqs. (8.3), (8.4), and (8.5) yields

;>e.v1/2X/(««-«.v). (8.6)
The beam has to travel on the average at least the
"coherence length" in the nonlinear prism before the
homogeneous and inhomogeneous ray can be separated.
This is exactly what should be expected on the basis
of conservation of energy. After traversal of the
coherence length, the nonlinear medium has done the
maximum amount of work and created the maximum
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harmonie power. This power can then be found either
in the unseparated beam transmitted in a plane parallel
slab, one coherence length thick, or in separated beams
after passage through a prism. A similar state of affairs
applies if one tries to separate the homogeneous and
inhomogeneous rays in the focal points of a chromatic
lens.

The incorporation of the electromagnetic nonline-
arities of matter into Maxwell's equations has'led to

the solution of a number of simple boundary problems.
The reflection and refraction at the surfaces of non-
linear dielectrics makes it possible to analyze the
generation and degeneration of light harmonics and
mixing of light waves when nonlinear media occur in
the optical path. This is important for the under-
standing of the operation of optical instruments and
optical systems at very high power densities available
in laser beams.


