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CHAPTER I.

INTRODUCTION.

1.1. Nuclear spin and moments.

The fundamental properties of a nucleus can be listed in the fol-
lowing way (Bl):

1. Mass.
2. Size.

Mechanical properties 3. Binding energy.
4. Spin.
5. Statistics.
6. Charge.

Electrical properties 7. Magnetic dipole moment.
8. Electric quadrupole moment.

In this thesis we shall only be concerned with properties 4, 7 and 8
of the list.

In 1924 P a u l i (P 2) suggested that the hyperfine structure in atomic
spectra might be explained by a small magnetic moment of the nucleus.
The interaction of this magnetic dipole with the motion of the electrons
would produce a hyperflne multiplet in a similar way as a multiplet is
produced by interaction of the intrinsic magnetic moment of the electron
with the orbital motion. The introduction of the electronic spin by U h l e n -
b e c k and G o u d s m i t in 1925 made it possible to explain many hitherto
mysterious details of the spectra. It appeared appropriate to connect
the magnetic moment of the nuclei also with rotating charges and to
attribute to the nucleus a mechanical spin. The evidence for the nuclear
spin and nuclear magnetic moment is now manifold, and the concept of
the spinning nucleus must be considered to be as a well founded as
that of the spinning electron. The nuclear spin can be determined from
the following phenomena:

1. Alternating intensities in band spectra.
2. Intensities, interval-rule and Zeeman-splitting in hyperflne multiplets.
3. Polarisation of resonance radiation.
4. Magnetic deflection in atomic and molecular beams (S t e r n, R a b i).
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5. Total intensity of resonance absorption in nuclear paramagnetism.
6. Specific heats of (ortho- and para-) hydrogen and deuterium,
7. Scattering of identical nuclei.
The magnitude of the magnetic moment can be determined from the

following experiments:
1. Splitting and Zeeman-splitting in hyperfine multiplets.
2. Magnetic deflection in molecular beams.
3. Magnetic resonance in molecular beams.
4. Nuclear paramagnetism.
5. Resonance absorbtion and dispersion in nuclear paramagnetism.
6. Ortho — para — conversion of hydrogen.
In 1935 S c h u l e r and S c h m i d t (S 2) observed deviations from the

interval rule in the hyperfine multiplets of Europium, which could be
explained by assuming another type of interaction between the nucleus
and the surrounding electrons, by means of a nuclear electric quadrupole
moment. The experimental evidence for the existence of these moments
has since grown, and is produced by:

1. Hyperfine spectroscopy.
2. Magnetic deflection of molecular beams (zero-moment method).
3. Fine structure of the magnetic resonance line in molecular beams.
4. Fine structure in microwave spectra.
5. Relaxation phenomena in nuclear paramagnetism,
6. Ortho — para — conversion of deuterium.
So far an influence of moments of higher order, the magnetic octu-

pole or electric sedecipole, has not been discovered. It is, of course,
outside the scope of the thesis to give even a short description of all
these methods. Only the effects of nuclear paramagnetism are our topic,
but we shall find opportunity to give a very brief discussion of the
molecular beam method in section 1.3 and 1.5 of this introductory
chapter, since these experiments are closely related to our subject. For
the other fields we let follow some references, which will introduce the
reader to the literature.

K o p f e r m a n n (K5) gives a discussion of all effects which were
known up to 1939 with complete references. Especially the hyperfine
spectra are discussed extensively. An account of the properties of ortho
— and para —, light and heavy hydrogen has been given by F a r k a s

(F 1), the influence of the quadrupole moment of the deuteron on the
ortho — para — conversion was treated by C a s i m i r (C 1).

A field which has only recently become accessible by the develop-
ment of radar techniques during the last war is microwave spectroscopy.
The influence of the existence of quadrupole moments on these spectra
is discussed by several authors (B 14, C 3, D l, T 1).
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The scattering of identical nuclei, especially the p—p and a—a scatte-

ring, has been discussed in numerous papers (B 3, G l, M 4).
The nuclear spins and moments are of great interest in the theory

of the constitution of the nuclei. The reader is referred to the detailed
theory of the deuteron, and of H3 and He8 (G 2, L 3, S 1, S 4). The
numerical values of the moments of these particles are explained in
terms of those of the elementary particles, the neutron and proton.
Some rather crude models have been built for heavier nuclei. Spin and
magnetic moment also play an important role in nuclear reactions, of
which we may mention the spin selection rule in -decay, the neutron-
proton scattering and the photo-magnetic desintegration of the deuteron.
However in general the situation is such that the most accurate infor-
mation about nuclear spins and moments is obtained from the methods
mentioned in the beginning, which usually are not considered to belong
to the field of nuclear physics. The results are useful to further develop-
ment of nuclear theory and understanding of nuclear reactions, rather
than that these latter processes yield the values of spin and moment.
The case of the triton (H3) offers an interesting illustration (A 3, B 5, S 1).

1.2. Mathematical introduction of the nuclear spin.
The spin is a purely quantummechanical concept. The spin angular

momentum has similar properties as the orbital angular momentum.
They behave in the same way under a rotation of the coordinate
system and have the same commutation rules. The rules for quanti-
sation and composition of these momenta are set forth in detail in
textbooks on quantummechanics (C 4, K 6). Here we shall briefly
summarize some results. The square of spin angular momentum has
the eigenvalues While an orbital quantumnumber can only
assume integer values, for the spin quantumnumber I also half integer
values are allowed. It has been found that the spin of neutrons and
protons is just as for the electron. The nuclear spin is generally
composed of the spins of these elementary particles and their angular
momenta in the nucleus. Therefore the nuclear spin / must be an integer
or half integer according to whether the number of these so called
nucleons is even or odd. On somewhat obscure grounds it is believed
that all nuclei possessing an even number of protons and an even num-
ber of neutrons have spin zero. Experimentally this is confirmed for
the lighter elements from band spectra. The experimental information
for heavier isotopes only indicates that the magnetic moment, if at all
present, is very small, and thus not in disagreement with a spin zero.

The nuclear spin I will, under all circumstances considered in this
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thesis, be a constant of the motion, since the energies involved in the
processes described will never be large enough to produce transitions
of the nucleus to an excited state. Only reorientations will occur. The
matrices of the three components of the spin angular momentum ope-
rator transformed to the representation, in which the z-component of
the operator is diagonalised, are:

(1.1)

(1.2)

(1.3)

All other elements vanish.
The z-component of the spin operator has 2 I + 1 eigenvalues

I, is called the magnetic spin quantumnumber.
Not only I, but also the total electronic quantumnumber J of the atom
or molecules under consideration in this book will be a constant of the
motion. Processes in which the electronic state might change, will not
occur. Now the angular momenta and combine to a resultant in

the same way, as in the case of Russell-Saun-
ders coupling the total electronic spin and total
electronic angular momentum combine to The
component of on any preferred axis, which is
usually taken in the z-direction, can assume the
values F, F — 1, . . . . , — F. With the angu-
lar momentum vector is connected the mag-
netic moment vector Since the two vectors be-
have in the same way under a rotation of the
coordinate system we must have

(1.4)

Figure 1. 1.

Coupling of the electro-
nic and nuclear momenta
in the absence of an ex-

ternal field.

where is the magnetogyric

ratio, which can be either positive or negative,
is the maximum eigenvalue of the z-compo-

nent of the magnetic moment operator and is often
called the nuclear magnetic moment. is the
maximum value of the z-component of the spin
momentum vector.
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For one free electron we have in analogy to (1.4)

The intrinsic magnetic moment of an electron (maximum z-component) is
one Bohr magneton and is twice the classical
ratio, which holds for the orbital motion. One must not confuse with

the dimensionless Landé-factor

. For one free electron we have experimentally g = 2, which
is also a result from Dirac's relativistic theory of the electron. For one
or more bound electrons the total magnetic moment has in general not
the same direction as the total angular momentum as the magneto-
gyric ratios for spin and orbital motion are different. But the low
frequency components of the magnetic moment operator, in which we
shall only be interestered, can still be represented by

If the proton obeyed the Dirac equations, as the electron does, the
magnetic moment of the proton would be one nuclear magneton

Experimentally one finds that this is not true. Nevertheless the nuclear
magneton gives the order of magnitude of the nuclear magnetic moments.

We list the values of spins and moments of the isotopes, used in the
experiments, described in this thesis, in the following

TABLE

The impulsmomentum is expressed in units = 1.054X10-27 erg sec.
The magnetic moment is expressed in units = 5.049 X 10-24

erg oersted-1 .
The magnetogyric ratio is expressed in oersted-1 sec-1 .
The quadrupole moment Q, defined in chapter 5, is expressed in cm2.



The spin of about 90 isotopes is known, the magnetic moment of about
50, the quadrupole moment of about 10. For the heavier isotopes
usually only spectroscopie data are available. From these the values of
the moments can be obtained only, when the magnetic field and the
gradient of the electric field at the nucleus are known.

Now just as a Paschen-Back effect can occur in the electronic Russell-

Saunders coupling, it will be possible to change the quantisation of
and by means of an external magnetic field. As a matter of fact it will

be much easier in the latter case to decouple and since the interaction
energy between nucleus and electron system is much smaller than be-
tween electron spin and electron orbit. In spectroscopie language one
would say: the hyperfine multiplets are narrower than the multiplets.
The general form of the Hamiltonian for an atom or molecule in a
constant magnetic field H0 is:

(1.5)

A represents the magnetic field at the position of the nucleus produced
by the electronic motion. If the second or third
term is large compared ot the first, a Paschen-Back
effect occurs. Instead of the set of quantumnumbers
I, J, F, we have then the set I, J, Since
the magnetic moment of the electrons is roughly
103 times larger than the nuclear moments, the se-
cond term is always larger than the third, unless
the atom or ion is in an S-state, for which J = 0.

The ground state of molecules is usually a state.
Then there is no contribution from the electron
orbits and spins to the magnetic moment, but
there is a small contribution from the rotation of
the whole molecule. We can use the same for-
mula (1.5). where now stands for the rotational
angular momentum of the molecule. In this case
the second and third term are of the same order
of magnitude.Figure 1.2.

Paschen-Back effect; de-
coupling of electronic and
nuclear momenta in a
strong external magnetic

field.
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of silver atoms pass through an inhomogeneous magnetic field.
A force acted on them. The beam split in two

parts. This could be explained by quantumtheory. The magnetic mo-
ment of the atoms with could only assume two positions with
respect to the direction of the field, either parallel or antiparallel. The
force acting in the cases would have opposite direction. The method is
usually referred to as the atomic beam method, because usually only
strong electronic moments produce a satisfactory deflection. But in 1933
Stern applied his method to hydrogen molecules (E 2, F 2). In para-
hydrogen the deflection is entirely caused by the rotational moment of
the molecule, but in ortho-hydrogen an additional effect of the nuclear
moments could be detected. It was then found that the proton moment
is roughly 2.5 times the nuclear magneton. R a b i has shown how one
can obtain information about the hyperfine splitting and nuclear spin
in atomic beams in spite of the presence of the large electronic moments.
The values of the magnetic field must be taken so low that the coupling
between and is not destroyed, and the first and second term in
(1.5) are of the same order. For a description of these beautiful ex-
periments the reader is referred to K o p f e r m a n n and the original
literature there mentioned.

1. 4. The resonance principle.

Any system possessing an angular momentum and a magnetic mo-
ment which is placed in a magnetic field rotating about the z-axis,
is able to reorient itself in this field. The theory was first given by
G ü t t i n g e r (G 7) and M a j o r a n a (M l) and later with more generality
by R a b i and S c h w i n g e r (R 1, S 3). A more detailed discussion of
this phenomenon will be given in chapter 2. Here we shall merely
indicate, in a rough manner, the nature of the process involved. For
this purpose we first make use of the classical picture. Let H0 be the
constant z-component of the field and H1 the components rotating in
the xy-plane.

(1.6)

We assume here Ignoring H1 for the moment, the
magneto-mechanic system will classically precess around H0 with the
Larmor frequency

(1.7)
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The field H1 will exert a torque

(1.8)

This torque tends to change the angle between and the z-axis. If,
however, H1 and the system rotate
in opposite directions, or if they do
not rotate with the same frequency,
the torque will soon get out of phase
and after a short time interval change
its sign, so that the average effect
over many Larmor periods will be
small. If the polar angle
will gradually increase; a reorien-
tation takes place at resonance. In
the first paragraph of chapter 2 the
classical description is continued in
more detail.

In quantummechanical language
(B 9) the effect can be described as
an „optical" transition between two
energy levels. We suppose that the
first two terms in the Hamiltonian
(1.5) can be omitted. For mole-
cules in a state in a sufficiently
strong magnetic field this is certainly
allowed, and it is rigorously correct
for atoms or ions in a -state.

The Hamiltonian for the problem
is

Figure 1. 3.

Simple vector representation of a magne-
tic gyroscope in a large fixed magnetic
field H and a small rotating field H1,
according to K e l l o g g and M i 11 m a n
(Rev. Mod. Phys. 18, 325, 1946).

(1.9)

The rotating magnetic field can
be represented by

(1.10)

Consider the magnetic field H1 as a small perturbation. The unperturbed
Hamiltonian
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(1.11)

has 2 I + 1 eigenvalues, corresponding to the 2 I + 1 diagonal matrix
elements of in (1.3). The perturbation operator is

(1. 12)

has only non-diagonal elements, given by (1. 1) and (1.2). In this
problem one has to supply these two matrices with a Heisenberg time
factor and respectively. The only effect of is to
produce transitions between adjacent levels. One has the selection rule

Applying the usual first order perturbation theory one
obtains for the probability to find the system in the state m' at time t,
while at t = 0 it was in the state m:

(1.13)

where

Substituting (1. 12) and (1.2) into (1. 13) one finds:

(1. 14)

This expression is very small, unless Note that the resonance
condition must also be satisfied to the sign in the complex
phase factors If the magnetogyric ratio is positive, H1 must ro-
tate counter clockwise, looking in the direction of H0. Using the nu-
merical value = 1.4 X 10-23 E.M.U. for the moment of a proton,
one finds that the resonance in a field of 6800 oersted occurs at 29
Mc/sec, that is, in the radio frequency range. If the radio frequency
signal is spread out over a small frequency range containing the reso-
nance frequency, and if we denote the average energy density stored in the

rotating component of the magnetic field by we have to

integrate over in (1. 14) and obtain in the familiar way a time
proportional transition probability:

(1.15)
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If we assume that the chance to be in the initial state tn is equal for
all m's, we can average (1. 14) over m and obtain for the probability
that any transition = + 1 is made

and (1. 15) goes over into;

(1.16)

In the evaluation of the expression

m = 0 have been used. The pro-

bability for a transition = — 1 is, of course, given by the same
expression (1. 16), (1. 17). The probability per unit time for a transition
of a spin I = l/2 from the parallel to the anti-parallel state is according
to (1.15)

(1.17)

The resonance phenomenon is obviously just an „optical" magnetic
dipole transition. The frequency, however, lies in the broadcast rather
than the visible range.

1.5. The molecular beam magnetic resonance method.
G o r t e r (G 4) was the first to point out how the phenomenon, des-

cribed in the previous section, could be used to detect nuclear magne-
tism. The first successful experiment, however, was performed by R a b i
(R 2) with his marvellous molecular beam technique.

Molecules evaporated from the furnace O, pass through some dia-
phragms to define a beam. The beam is split in the inhomogeneous
field of magnet A, passed through a homogeneous field H0 in magnet
C, and is refocused onto a detector by an inhomogeneous field of
magnet B, which deflects in the opposite direction as A. The refocusing
condition is fulfilled only, if no reorientation of the nuclear spin occurs
in magnet C. If a radio frequency magnetic field is applied, perpendi-
cular to H0, and either the radio frequency or H0 is slowly changed,
the current reaching the detector will pass through a minimum, when
the resonance condition (1.7) is fulfilled. Magnetogyric ratio's of many



Figure 1.4.
Molecular beam magnetic resonance method, according to R a b i, M i l l m a n,

Kusch and Zachar ias , Phys. Rev. 55, 526, 1939.
Schematic representation of the paths of molecules in which the z-component
of the magnetic moment of one of the nuclei has increased, decreased or re-

mained unaltered in the region of magnet C.

nuclei have been measured in this way with great accuracy. The method
is usually called the molecular beam method, although it can also be
applied to atoms. A special and independent application to neutrons was
made by B l o c h and A l v a r e z (A 2). For further information and li-
terature the reader is referred to the review article by K e l l o g g and
M i l l m a n (K 2).

1,6. Nuclear Paramagnetism.

The permanent moments of the nuclei should be a source of para-
magnetism. The theory of electronic paramagnetism (V 1) can be readily
applied to nuclear moments, if one keeps in mind the similarity in the

vector diagrams of and and and The contribution of
the nuclei to the volume susceptibility is thus given by the well known
L a n g e v i n formula

where N is the number of nuclei per unit volume, and
the square of the absolute value of the magnetic moment

(1.18)

denotes

(1. 19)

Now it has to be borne in mind that the nuclear moments are about
103 times smaller than the electronic ones. Therefore nuclear suscepti-
bilities are roughly a million times smaller than electronic ones. At room
temperature the nuclear paramagnetic volume susceptibility of a solid would
be of the order 10-9 erg / oersted2, thus negligibly small compared to
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the ever present diamagnetic volume susceptibility of the order of
10-6 erg / oersted2.

Only at very low temperatures might an influence of nuclear para-
magnetism be detected. In the literature has been reported about one
experiment which gives an indication for this effect. S h u b n i k o f f (L 1)
showed that the diamagnetic susceptibility of solid hydrogen decreased
by 20%, when cooled down from 4.2° K to 1.7°K. This was attributed
by him to an increase of the paramagnetic susceptibility of ortho-hy-
drogen. The paramagnetic susceptibility arising from the rotational
magnetic moment of the molecules is only 3% of the nuclear para-
magnetism. The experiment yields a value for the proton moment
lying between 2.3 and 2.7 nuclear magnetons. It is to be noted that
hydrogen with its few electrons (small diamagnetic effect) and its high
density of protons with their relatively large nuclear moment is an ex-
ceptionally favorable case. For other substances still lower temperatures
would be required. It is almost superfluous to note that saturation ef-
fects in nuclear magnetism would occur only at extremely low tempe-
ratures. The decisive quantity is which at room temperature
is 7.10-6 for protons in a field of 104 oersted. Therefore the L a n g e v i n
formula (1. 18) should be valid down to about 0.01 °K.

1. 7. Nuclear magnetic resonance absorbtion and dispersion.

G o r t e r (G 5) remarked that, just as e.g. in Na-vapor an anomalous
electric dispersion occurs at the position of the yellow resonance line,
there must be an anomaly in the nuclear paramagnetic susceptibility in
the radio frequency range, if the substance is placed in a large magne-
tic field H0. The anomalous dispersion, accompanied by an absorption,
will occur at the frequency

The susceptibility will, roughly, increase by a factor
where is the width of the resonance line. We shall see later that
the line width is of the order of a few oersted or less. Therefore the
volume susceptibility given by (1, 18) can be increased by a factor 10-4

at resonance or more and would there suddenly jump from practically
zero to about 10-5. In 1942 G o r t e r (G 5) attempted in vain to detect
this change in susceptibility at low temperatures. The tank coil of an
oscillator, filled with KF or LiCl powder, was placed in a field H0. At
the resonance of F19 and Li7 a sudden change in the inductance of the
coil should have produced an observable change in the oscillator fre-
quency. Already six years earlier another unsuccesful attempt (G 4, G 6)
has been made by the same author to detect the absorption by a
resulting rise in temperature of the sample.
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The absorption can be described in the following way. In each tran-
sition from a level to the next higher one an energy is
absorbed by the nucleus, in the reverse process the nuclear spin system
looses the same amount. The transition probability for absorption and
stimulated emission is the same. But if the nuclear spin system is in
thermal equilibrium there will be more nuclei in the states with lower
energy. Thus there will be more transitions up than down, resulting
in a net absorption.

We make the table

Since . as we have seen in section 6, there is a
constant difference n in population between two adjacent levels, which
is small compared to the total number of nuclei N;

(1.20)

We have to multiply (1. 15) by (1.20) to get the net surplus number
of transitions up per second. If we then multiply by h v, we find for
the absorbed power

(1.21)

The first positive effect of nuclear magnetic resonance absorption was
obtained at the end of 1945 by Purce l l , Tor rey and Pound (P 7),
soon afterwards, independently, by Bloch, Hansen and Packa rd
(B6). The resonance effect in the paramagnetic susceptibility is able Is
give at least as accurate information on nuclear moments as the mole-
cular beam method. The most important new result for nuclear physics
so far obtained with this new method is the magnetic moment and spin
of H3 (A 3, B 5), and the redetermination of the ratio of the moments
of proton and neutron and proton and deuteron (A 4). The subject of
the present thesis, however, is not to find resonances in a series of iso-
topes, but to investigate the interaction of the nuclei with one another
and with other components of the surrounding substance.

For while in the beam method each particle can be considered as free,
in the case of solids, liquids and gases the interaction between the nu-
clei and their surroundings cannot be neglected. They are, in fact,
essential. If it were not for these interactions, the energy absorbed by
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the nuclei under the influence of a radio frequency magnetic field could
not be dissipated and the temperature of the nuclear spin system, en-
tirely isolated from the rest of the sample, would rise. The surplus
number in the lower state would decrease, and soon the absorption
and stimulated emission would be equal and in the stationary state no
net absorption would take place. In the case 1= the differential
equation for the surplus number n would be

with the solution

(1.22)

(1.23)

In this formula W is given by (1. 17). The factor two is inserted,
because in one transition the surplus number changes by two. With
the relation (1.20) we find immediately that the temperature of the
system of free spins would increase exponentially

(1.24)

To avoid this heating up of the nuclear spin system, a process of
energy dissipation must be taken into account. It will be shown in
chapter 2 how the interaction between nuclei provides such a process
by which thermal equilibrium is restored. The shape and the width of
the resonance line will be shown to depend also on these interaction
mechanisms, as one would expect. In chapter 3 the experimental method,
developed by P u r c e l l's group at Harvard University, will be described.
In chapters 4 and 5 the theory will be applied to various substances and
compared with experimental results obtained with nuclear resonances of H1,
H2, Li7 and F19 in these substances. It must be noted that actually a
considerable part of the theory was developed after the experiments
had been carried out, although sometimes the reverse was true. In order
to present a readable account it proved necessary to deviate from the
historical development in this thesis.



CHAPTER 2.

THEORY OF THE NUCLEAR MAGNETIC RESONANCE.

2. 1. Rigorous classical solution for free spins,
The description given in section 1. 4 of the transitions of a free spin

in a rotating magnetic field needs some rectification. It is clear that,
when in the classical picture the gyroscope has been turned over, the
resonating field will start to turn it back, aud the result will be an
oscillatory motion. The gyroscope will assume a nutation. The most
convenient expression for the equation of motion of this problem is that
the rate of change of angular momentum equals the torque exerted
by the magnetic field:

or with (1.4):

(2.1)

In a constant field the solution of these
equations is simply

(2.2)

with and Classically tg can have
any value. From quantummechanics we have the restriction that
cos If we have a large number of nuclei which combine
to a large total quantumnumber 7, the quantummechanical condition will
not be severe and the total magnetic moment of the system of nuclei
will be correctly described by (2. 1). T o r r e y showed that an exact
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solution can also be obtained for the rotating field (1.6) by transforming
to a coordinate system that rotates with the same angular velocity
as the magnetic field. The equations of motions in the new, primed
system are (J 2):

(2.3)

where denotes differentiation with respect to time in the moving

system. In the primed system the magnetic field is constant

So will precess about the fixed vector according to
equation (2. 1) with an angular velocity

(2.4)

In this formula the sign of is positive if points in the same
direction as At resonance

The precession becomes a nutation in the original system. We can
impose various initial conditions on the general solution of the differen-
tial equation. If at t = 0 the moment is parallel to the vector
there is no nutation. In this case we have a pure rotation in the resting
system with an angle given by

(2.5)

At resonance we have If we start with a constant field
Hz = H0 and aligned in the z-direction, and at t = 0 suddenly apply

a rotating component H1 the moment will start to precess with an
angular velocity and angle = arc tg Then it follows

from simple geometrical considerations, that the z-component of as a
function of time in the original system is given by

(2.6)
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2, 2. Rigorous quantummechanical solution for free spins.

The quantummechanical solution (1. 14) also needs some revision. The
application of perturbation theory is only valid for a short period of
time, at the end of which the probability of finding the system in the
original state is still of the order of unity. In other words (1. 14) holds
only as long as An exact solution valid for any time t has
been given by R a b i (R 1) in the case I = The problem is to solve
the time dependent Schrödinger equation

(2.7)

where the Hamiltonian is given by (1.9), and the wave function
(t) has two components

(2.8)

The normalised spin wave functions and belong to the
eigenvalues and and are the
probabilities to find the system at time t in the state or

respectively. Since the system must be in one state or
another, we have the normalisation condition

Equation (2. 7) can be written in matrix form

(2. 9)

(2. 10)

These two simultaneous differential equations can be solved with the
initial conditon =1 at t = 0.

R a b i finds for the probability that the system is in the state
at time t

This correspondends exactly to the classical solution (2.6), if one re-
members that for spin

S c h w i n g e r (S 3) showed that tor obtaining the quantummechanical
solution it also has some advantage to transform to a rotating coordi-
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nate system. The results can be extended to the case of arbitrary spin
by the general M a j o r a n a formula, which one can find in R a b i's paper
(R l, B 8), We note that (2. 11) goes over into (1. 14) for very small
values of the perturbation field At resonance

becomes equal to unity for t= The system then oscil-
lates between the states with spin parallel and antiparallel to the mag-
netic field. If the system never attains the pure state with

and oscillates more rapidly than at resonance for the same
value of H1 We can define the width of the resonance curve as the
distance between the points, where the maximum chance to find the
system in the antiparallel state is one half. From (2. 11) we see that

for those points, or the width measured in oersted is
twice the amplitude of the radiofrequency field. The energy of the spin
system in the magnetic field H0 (at t = 0, all n spins are parallel to
the field) is given by

(2. 12)

and the time derivative of this expression yields the absorbed power,
which behaves as sin In the average no net ab-
sorption of energy takes place. Suppose now that we have an assembly
of free spins in a not perfectly homogeneous magnetic field. The distri-
bution function of the spins over the resonance frequencies be which
is normalised We assume that the distribution over the
inhomogeneous field is much wider than the width of the resonance,
which, expressed in oersted, is about H1. We assume that is prac-
tically constant near the resonance for
Then the energy absorbed by the system is

Take the time derivative, representing the power absorbed, of this
expression. The integral can then be evaluated in terms of the Bessel
function of zero order.

(2. 15)

For small t we find, substituting in (2. 15)
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(2. 16)

It is not surprising that this comes out to be the same as if we had
used a time proportional transition probability given by (1. 17) to cal-
culate the absorbed power.

In the derivation of that formula we had supposed a range of fre-
quencies in the radio frequency signal, over which we had to integrate,
as is usually done in optics. In the case of a single applied frequency,
but a distribution over H0, we have to integrate rather over a range
of resonance frequencies. Since and occur only in the combination

the result is the same. In r.f. spectra this last case is more
common, quite contrary to the situation usually encountered in optics.
From (2. 15) we see that in the stationary state here is again no net
absorption of energy as the Bessel function vanishes as for large
arguments. This means that the free spins, initially all oriented in one
direction, start oscillating under the influence of the applied signal, get
out of phase and for large t there are always as many pointing up as
down.

2. 3. Interaction with radiation.
In order to keep an absorption in the. stationary state, it is necessary

that there is some mechanism trying to restore thermal equilibrium so
that the population of the spin levels does not become equal. The time

it takes for the spin system to come back to thermal equilibrium,
after this has been disturbed some way or other, e.g. by a large radio
frequency signal at resonance, is called the relaxation time. The expe-
riments described in chapter 3 and 4 yield values for the relaxation
time, ranging from 10-4 to 102 seconds. We shall now discuss some
interaction mechanisms which tend to restore thermal equilibrium. Even
for the so called „free" particles one always has the interaction with
radiation. The spontaneous emission which usually limits the life time
for an atom in a electronically excited state to 10 - 8 sec, is negligibly
small for radio frequency transitions. The coefficient for spontaneous
emission A of dipole radiation (H 1) is proportional to the cube of the
frequency and the square of the dipole moment.

(2. 17)

where B is the coefficient of absorption or induced emission, i.e. in
(1. 15), is and t are taken to be unity. Substituting numerical va-
lues for protons in a field of 104 oersted one finds A = 10-25 sec - 1 ,
corresponding to a life time of 1019 years. This is not the relaxation
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time caused by the radiative interaction. For, in addition to the spon-
taneous emission, we have the transitions induced by the thermal radia-
tion field. Take I = and let and denote the number of spins
in the upper and lower level respectively, satisfies the differential
equation

Using = N we find

(2. 18)

(2. 19)

Thus the relaxation time T1 if radiation were the only interaction,
would be Here is the energy density of the electro-
magnetic field. As for the nuclear resonance we may use
R a y l e i g h's approximation

(2. 20)

With B = we find years. Although the influence
of the thermal radiation field is much larger than that of the sponta-
neous emission at these low frequencies, the effect of the radiation is
far too small to play any role in the explanation of the observed relaxa-
tion times. P u r c e 11 (P 4) pointed out that the energy density of black-
body radiation is not given by R a y l e i g h's formula, if the wave length
is large compared to the dimensions of the black body. This is exactly
the case at radio frequences in a tuned LC circuit. The energy density

at the resonance frequency is increased, be-
cause the energy k T of the circuit is stored
in a narrow frequency range.

The mean square voltage across a resistor
of temperature 7* is

At resonance the current is

Figure 2. 1.
Noise in a tuned circuit.

The energy stored in the coil is
Introduce Q = L/R and the volume of the
coil V, We find for the energy density of

the supposedly homogeneous magnetic field per unit frequency range

(2. 21)
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The increase over the energy density in a large black-body cavity is
given by the factor V. Substituting V= 1 cc, = 103 cm, Q =
100, we find that the relaxation time is decreased by a factor 109, but
is still 103 years, so several orders of magnitude above the experimen-
tal values.

2. 4. Dipole — dipole interaction.

Looking for other types of interaction besides the very small radia-
tion damping, the contact of the nuclear spin system with the outside
world appears to be very limited. Electric forces, which act during
atomic and electronic collisions and play e.g. an important role in the
mechanism of arcs, readily establish an equilibrium for electronic states.
But they do not perturb the nuclear spin. Only a gradient of an elec-
tric field can interact with a nuclear quadrupole moment, as will be
considered in chapter 5.

We shall neglect the possibility of interaction by exchange forces.
For electronic states with overlapping wave functions this exchange is
sometimes considerable (ferromagnetism or antiferromagnetism). But for
the nuclei in crystals and liquids at room temperature exchange is not
likely to occur.

So we come back to a magnetic type of interaction, by means of
the magnetic moment associated with the nuclear spin. This interaction
will of course, be much smaller than the corresponding magnetic inter-
action of electronic moments, as the nuclear magneton is so much smaller
than the Bohr magneton. So far the magnetic field acting on a nucleus
was taken to consist only of the externally applied field H0 + H1 and
the thermal radiation field. Every nucleus, however, also experiences
the field produced by the magnetic moments of its neighbours. If this
dipole — dipole interaction is taken into account, the Hamiltonian (1.9)
for an assembly of spins becomes

(2.24)

The sum over j in the right hand term represents the internal or

local field at the nucleus; is the radiusvector con-
necting the and the spin. The problem connected with (2.24) is
one of an extreme complexity. It is the equation of motion for N par-
ticles, where N is of the order of the number of A v o g a d r o. The
local field will, at any time, be of the order of few oersted. It is mainly
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determined by the nearest neighbours, since the magnitude of a dipole
field decreases as the inverse cube of the distance: where
a is the internuclear distance. For two protons, one apart,
we find Hloc 10 oersted, The problem (2.24) of an assembly of spins
also comes up in the theory of the absorption and dispersion of elec-
tronic magnetism in paramagnetic salts. Gor t e r (G 3) gives a survey
of experiment and theory in this field. The reader will find in this
book ample references to the existing literature. Using the classification
customary in electronic magnetism, the case which is of interest here is
that of no electric splitting and a strong transverse field. It must be
stressed that we are interested in a resonance absorption. Recently the
first experiments of electronic magnetic resonance at microwave frequen-
cies have been reported (C 6). Most of the work on absorption and disper-
sion in paramagnetic crystals, however, relates to the non-resonant
absorption. We shall here proceed on similar lines as Broer (B 12).

The energy levels of the unperturbed system, without dipole-dipole
interaction are (compare (2. 12))

(2. 25)

If is the difference between the number of
spins which are parallel or antiparallel to H0. Since n is even or odd,
depending on whether the total number is even or odd,
the spacing between the equidistant levels is . The degeneracy of
the levels is high, but is lifted by the interaction term
in (2. 24). Now the perturbation energy will be of the order
Although Hloc H0, the perturbation energy for an assembly of many

Figure 2.2.
The distribution D of energy levels of a spin system in a magnetic
field HO and the distribution of occupied states , obtained by
multiplying D with the Bolzmann factor e -Hop/kT . Both functions

are normalised.
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spins will be large compared to the spacing of the unper-
turbed levels. In view of the large number of non-degenerate levels
we can say that the energy levels belonging to (2, 24) are spread over
a continuum. The density D of the energy levels as a function of the
energy has sharp maximum, the width being of the order
The average occupation of the continuum is obtained by multiplying
D by the Bolzmann factor exp The regular spacing
has completely vanished from the picture. It seems as if the whole re-
sonance phenomenon disappeared, for one might expect transitions from
any level p to any level q in the continuous distribution, when a rotating
magnetic field H1 is applied with frequency The pro-
bability for such a process per unit time is

(2.26)

where Mpq is .the matrix element of the rotating component of the
total magnetic moment between the states p and q. The absorbed power
P is obtained by subtracting from (2. 26) the transitions from q to

p, multiplying by the involved energy and summing over a small
frequency interval 2 around For we can write

(2. 27)

Introducing the absorption coefficient A (v) = and the den-
sity function of the magnetic moment

(2. 28)

we find

(2. 29)

These last two equations are identical with those of B r o e r (Thesis,
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p. 63). The problem is reduced to determining The only exact way
for solving this problem is the diagonal sum method, developed by
Waller, Van Vleck and Broer (W l, V 2, B 13). Neglecting terms
in they find the relations

(2. 30)

Furthermore we have the general relation for the time derivative of
a quantummechanical operator

(2.31)

where is the Hamiltonian.
The mean square frequency of the absorption curve is the

quotient of the first two expressions (2. 30)

(2. 32)

The shape of the curve remains obscure. Strictly speaking, one does
not even know whether there is a resonance at all. Unfortunately the
the quantities etc. are hard to calculate, although in principle
they will give more information about the shape of the absorption
curve (V3).

Our knowledge is supplemented by the perturbation method. At first
it may seem strange that a perturbation theory can be applied, since
we have seen that the perturbation energy is larger than the spa
cing of the unperturbed levels. However, as Broer pointed out, the
matrix elements of the magnetic moment operator differ appreciably
from zero only when the energy difference between two states
p and q satisfies the relation
or

The schematic behaviour of is plotted in fig. 2. 3. The absorp-
tion can be obtained from (2. 29). The absorption at the Larmor fre-
quency is a first order effect, in which we are interested. The absorp-
tion near a frequency of zero or 2 is of the order and so
about 106 times smaller than at and unobservable in the case of
nuclear magnetism.

The use of the perturbation theory is justified by its results, which



33

Figure 2. 3.
The density function f (v) of the magnetic moment (cf.

Broer, B 12).

are in agreement with the experimental facts, one of which is the occur-
rence of a sharp resonance at the frequency v0. The perturbation method
gives more details than the diagonal sum method, but is less rigorous
and certain. Sometimes it is advantageous to combine them.

The unperturbed state of the system is specified by the quantum-
numbers mIj of all spins, the total z-component of the spins being

. We assume that these magnetic quantum numbers still

characterize a state after the introduction of the perturbation

Vfj is the magnetic interaction between the ith and jth spin; a1, a2

and as are the direction cosines of the radius vector with respect
to a system, of which the z-axis is parallel to H0. We shall now write the
operator (2. 33) in the m-representation, so that we can distinguish terms
which leave the total z-component m unchanged, m = 0, and terms
for which m = +l or —1 and those for which m =+2 or —2.
The elements with m = 0 leave the energy unchanged. With off-
diagonal elements is a change in energy connected. We
make use of the relations

3
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and introduce the polar and azimuthal angles and instead of
the direction cosines. We can then write (2. 33) in the form, adding the
Heisenberg time factors exp

The first two terms give rise to secular perturbations, the last four
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are periodical perturbations of very small amplitudes. K r a m e r s gives a
clear exposition of these two different types of perturbation in his book
on quantum mechanics (K6). That the terms C to F cannot give rise
to appreciable changes also follows from the principle of conservation
of energy. So we keep only the terms A and B. Classically A corres-
ponds to the change in the z-component of the magnetic field by the
z-component of the neighbouring nuclear moments. This local field will
vary from nucleus to nucleus, slightly changing the Larmor frequency
of each. Let us consider in somewhat more detail the situation at the

nucleus. Let us suppose for simplicity that the neighbouring nuclei
have spin I = Each of them can be parallel or antiparallel to H0.
For each configuration we have a definite value of the z-component of
the local field. Let us first consider only the nearest neighbours. Instead
of one value H0, we have e.g. ten possible values around H0, depen-
ding which neighbours are parallel and which antiparallel to H0.
Now all the configurations of the next nearest neighbours will split
each of the ten values into many more, and so on for the third nea-
rest, etc. The result will be a continuum of values of the z-component
of the local field and therefore a distribution over a range of Larmor
frequencies. In many cases this distribution, approximately will have
a Gaussian shape, as was pointed out by several authors (K 10, V 2).
But we want to stress that this is not necessarily so. Take for in-
stance the case of a substance in which the nuclei occur in pairs.
That is, each nucleus has one very close neighbour, while the
next nearest are relatively far away. The nearest neighbour will split
the H0 value into two discrete values, rather far apart. The next nea-
rest neighbours will produce a bell shaped distribution of the Larmor
frequency around each of these two discrete values. The nuclear reso-
nance line will show a fine structure in this case. This has been observed
experimentally in many crystals by Pake (P 1). It will be very diffi-
cult to obtain information about the fine structure with the diagonal
sum method.

So we see that for each crystal a detailed investigation would be
required. But as in many cases the line will be a Gaussian anyway,
we can obtain an estimate of the line width by calculating the mean
square contribution of each nucleus separately, and taking the square
root of the sum of these contributions, as the orientation of each nu-
cleus is independent of the others. The mean square local field from
term A is given by

(2.35)
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and the mean square deviation in frequency by

To this we have to add the contribution of term B. To B corresponds
the simultaneous flopping of two antiparallel spins and

or vice versa). This process is energetically possible and
is caused by the precession of the nuclei around H0 with the Larmor
frequency. So they produce an oscillating field of resonance frequency
at the position of their neighbours, resulting in reciprocal transitions.
Classically one might say that this process limits the life time of the
spin in a given state and therefore broadens the spectrum. To (2, 35)
we have to add a numerical factor to take the effect of B into account.

The proper factor has been calculated by V a n V l e c k (V 3) in a
rigorous manner with the diagonal sum method, using formula (2. 32).
For we take the terms of type A and B of the perturbation

The component of the magnetic moment, rotating with the

applied radio frequency field, is proportional to We can

evaluate the commutator by making use of the commutation rules which
exist for the components of the angular momentum operator I. V a n
V l e c k's (V 3) result is

This formula, valid for a system of identical spins, holds for any
shape of the nuclear resonance line. We have no information what the
contribution to from the tails is. For a Gaussian
is the width between the points of maximum slope. The reason for this
notation we shall see later.

2. 5. The relaxation time.
So far we still have not found a relaxation process. For we argued

that only processes with can occur. To restore thermal equi-
librium it is essential that the energy of the spin system changes. We
have tacitly assumed that the position coordinates and are
constants, and we have seen that the dipole-dipole interaction of nu-
clei at fixed positions only gives a broadening of the levels. Now we
shall show that energy transfer is produced, if the position vectors
are functions of the time (B 11). This is the only new feature in the treatment
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of the spin system presented here. In practice the nuclei will always
move to some extent, if the system has not zero temperature. In a
crystal we have the lattice vibrations, while in a liquid or gas we have
the Brownian movement. As far as the Hamiltonian (2.24) for the nu-
clei is concerned, we can consider this motion of the molecules as to
be produced by external forces, since the atomic interactions are mainly
of electric nature. In doing so we neglect, of course, the reaction of
the magnetic moment of the nuclei on the Brownian motion. We ex-
pand the factors in (2. 34), which contain the position coordinates and
are thus functions of the time, into a series of Fourier or better a Fou-
rier integral. We want to distingiush in our complex notation between
positive and negative frequencies and we therefore define the intensity

of the Fourier spectra of the functions of the position coordinates

by the equations*):

(2. 37)

(2. 38)

(2. 39)

We shall first reconsider the terms C, D, E and F in the expression
(2. 34) for the perturbation. If , and are different from
zero, E and F become secular perturbation, because the time factor
cancels out. Similary C and D become secular perturbations, if

*) In section 4. 1 the reader will find a short discussion of the Fourier series and
spectral intensity of a random function.
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and do not vanish. The action of the terms C and D may classi-
cally be described as transitions induced by the Larmor frequency of the
spectrum of the local field. The thermal motion provides the energy neces-
sary for the change The interaction of the nuclei with the thermal
motion is the relaxation mechanism. From E and F we see, that, quantum-
mechanically the simultaneous transition of two nuclei is also a possible
process. Let us ask for the probability for a change in
the magnetic quantumnumber of the spin. We repeat the simple
perturbation calculation of chapter 1 with the terms C and E rather than
(1. 12): Taking the average over all values of the neighbours we
find for the transition probability,

It is simple to generalize (2. 40) to the case that the spins and magneto-
gyric ratio's of the nuclei are not all the same

(2.41)

where stands for the intensity of

The neighbouring moments may now also be caused by molecular
rotation or they may consist of electronic spins and orbital momenta.
In these cases not only the position coordinates may be a function
of the time, but also the quantisation of the spin (t) must be re-
garded as time dependent under the influence of external forces. Instead
of (2, 41) we should write

(2.42)

where is the intensity of the function

and is the intensity of
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These intensities represent the spectrum of the local magnetic field.
Identical expressions exist for transitions with In that

case the intensities have to be taken at positive frequencies in the
Fourier spectrum. We shall see later that is an even function.
This is plausible, since the negative frequencies have no specific physical
meaning and are merely a consequence of complex notation. One might
object that on this basis the thermal motion would produce as many
transitions upward as downward, and still the desired energy dissipation
would not occur. Since we have to do, however, with a thermal mecha-
nism, it is appropriate to weight the transition probabilities with the
Bolzmann factor of the final state. Dealing with the interaction with
radiation, E i n s t e i n did essentially the same thing by introducing the
spontaneous emission, so as to increase the number of downward tran-
sitions. This procedure can be justified by postulating that in the case
of equilibrium we have a Bolzmann distribution over the energy levels
and a detailed balance for each transition process (G 6).

(2.43)

In the case that I = we can write down the differential equation
for the population in the upper and lower state in the same way as
we did in dealing with the interaction with radiation (section 2. 3)

(2.44)

Expanding the exponentials and keeping only terms of the first order
in the solution becomes

(2. 45)

The constant C is determined by the initial conditions at t = 0. So
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approaches its equilibrium value asymptotically according to an ex-
ponential function with a characteristic time given by

(2.46)

The surplus number n = N — 2 N+ has the same characteristic re-
laxation time. For W we shall take the value given by the formulas
(2 .40) to (2. 42), although this is not quite correct for the processes with

nor for the case, that there are different magnetogyric
ratios.

Then we should solve a more complicated system of simultaneous
differential equations.

The case that is more complicated. If there are only two
possible orientations of the spin, a temperature of the spin system can
always be defined by the relation

If a temperature can only be defined if

(2.47)

We require that this condition is fulfilled at t = 0. It is easily checked
for the case 1= 1 by solving a set of three simultaneous differential
equations for that the relation (2. 47) is in general not
satisfied at all times. We shall prove, however, that for

a temperature and a relaxation time can always
be defined. There is hardly a loss of generality, since the condition

is fulfilled down to 0.1 °K. We start from the set of 2I+1
equations

etc. with
(2.49)

where W is the transition probability from the state m = to m =
if ƒ =

From (2. 49) we derive a set of linear combinations for

(2.48)
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The last three terms on the right hand side can be neglected com-
pared to the first three.

Next we derive a set of equations for Nm — N_m. We make use
of the relation the difference of the popu-
lation of the levels m and —m at thermal equilibrium. We obtain

Equations (2. 50) can be solved by anticipating that Nm + N_m is in-
dependent of the time, Nm + N_m = 2 N/2 I + 1. If I is an integer,
N0 = N/2 I+1 is constant in time. The solution of the equations (2. 51)
is obtained by making the supposition that the difference in population
between two adjacent levels n=Nm —N_m/2 m is independent of m.
We find that the set (2.51) reduces to a single equation

(2.52)

The result is that the relaxation time for a nucleus with spin I is
the same as for a nucleus with the same magnetogyric ratio, but spin 1/2.

Using (2. 40) we find for the relaxation time

(2.53)

and analogous expressions besides the equations (2.41) and (2.42).

2. 6. The line width.

We now return to the terms A and B in (2. 34) to see what happens to
the line width, when the nuclei are changing their positions as they take part
in the Brownian motion. These terms will still represent secular pertur-
bations, if we take the components near zero frequency in J0 (v), the
Fourier spectrum of The question is, which
frequencies must be considered to be „near zero". We may say that
the perturbation is secular up to that frequency, for which h v is of the
same order as the actual splitting of the energy levels by the pertur-
bation. The actual width expressed in cycles /sec may be called
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A combination of (2. 36) and (2. 37) yields
the relation for the width

(2.54)

If the nuclei do not all have the same magnetogyric ratio, we can
alter the treatment for term A in the same way as we did in the pre-
ceding section for T1. The term B, however, changes its character com-
pletely, because it now contains a time factor exp i The
components of at determine the transition
probability for a process in which to antiparallel nuclei with different
magnetogyric ratios jump together. We shall not discuss it further.

The observed line width is not determined by T2' only. There also
is a contribution arising from the finite life time of the nucleus in a given
state by the relaxation processes, represented by the terms C, D, E and
F. For / = the life time of both the upper andlower level is 1/W=2T1.
As W e i s s k o p f and W i g n e r (W 3) pointed out, we have to think
that each of these levels is broadened into a continuous distribution

The distribution in the intensity of a resonance transition between
the two levels is consequently

(2. 55)

This is the broadening caused by the finite relaxation time T1. The
distribution over the resonance frequencies, caused by the perturbation
A and B, will often have an approximately Gaussian shape,

Combining (2. 55) and (2. 56) we get for the line shape

(2. 56)

(2. 57)

or to a high degree of approximation
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Roughly we can say that the combination of two bell shaped curves
will yield another bell shaped curve, of which the width is about the
sum of the widths of the composing curves. We can express the total
line width by

(2.58)

Instead of the unwieldy distribution (2. 57), we shall assume that
can be well represented either by a Gaussian distribution like (2. 56)
or by a damped oscillator distribution like (2.55). This may seem

Figure 2. 4.

The behaviour of the real and imaginary part of the magnetic
susceptibility near resonance. The curves are drawn for the case

of a damped harmonic oscillator (compare section 2. 7).

arbitrary, but the choice of (2. 56) was already arbitrary, and the two
possibilities, which we admit, are good representatives for the case that
there are practically no tails (gaussian), and that the tails of the reso-
nance curve contribute considerably (damped oscillator). Note that 'in
the latter case 2/T2 is the total width between the half maximum points.
For the Gaussian 1/T2 denotes the root mean square deviation of the
frequency. This quantity diverges for the damped oscillator curve.

We have derived general expressions for the relaxation time and line
width in terms of the local field spectrum. In order to evaluate these
quantities for any given substance, we only have to compute the in-
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tensity of this spectrum. In chapter 4 applications are given for solids,
liquids and gases.

The meaning of the quantities T1, and T2' in terms of the density
function represented in fig. 2. 3 might be formulated in the follo-
wing manner. The time, which is required to restore the shape of
around the frequency after the equilibrium has been disturbed in some
way or other, is T2'. The time required to restore the area under the

curve around is T1. We shall now see how the introduction of
the quantities T1 and T2, which describe the interactions between the
spins, changes the results obtained in the beginning of this chapter for
free spins.

2. 7. Classical theory with interactions.
We shall first give a brief outline of B l o c h's phenomenological theory

(B 4). An assembly of spins is initially so oriented in a magnetic field

H0 as to give a resultant macroscopic magnetisation B l o c h notes
that the spreading of the energy levels makes the nuclei precess with
slightly different Larmor frequencies. Therefore the nuclei get out of
phase in a time t ~ T2 and the magnetisation in the x and y-direction
will be destroyed. The perpendicular components satisfy the equation

(2. 59)

The z-component, however, will change appreciably only in a time T1

and will reach for time its equilibrium value M0.
For Mz we have the differential equation

(2.60)

B l o c h mentions that We shall see in chapter 4 that this is
not always the case, and in the following no use of this inequality is
made. We can now write down the equations of motion in case of an
applied r.f. field by modifying the equations (2. 59) and (2.60) to

(2.61)

To solve these equations, for a magnetic field (1. 10)
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transform again to a rotating coordinate system

The — sign is used for negative Using the abbreviations

the equations of motion reduce to

(2. 62)

A time independent solution is possible with

we obtain:

(2.63)

The strength of the resonance effect we want to measure is — as will
be shown in more detail in the next chapter — proportional to the
components of the magnetisation perpendicular to H0, which vary with
the same frequency as the applied signal. We shall therefore maximize
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the expressions (2. 63) for u and v with respect to the frequency and
the applied field H1.

We see immediately that the out-of-phase component v of the magne-
tisation which is responsible for absorption, is maximal for = 0,

The optimal value

(2.64)

is then obtained if
The component u, which is in phase with the magnetic field H1 and

describes the dispersion, reaches asymptotically the same maximum va-
lue as v for and

If we introduce the complex magnetic susceptibility x = x' — i x" and
write then it follows that u = x'H1 , v = x" H1 and from (2.63)

where x0=M0/H0 is the static susceptibility (1. 18).
The susceptibility must be considered to have different values for the

three components of For the z-component of H and the component
rotating in the opposite direction around the z-axis, the susceptibility
has the static value x0; no resonance phenomenon occurs. We see from
(2.63), (2.65) that in strong radio-frequency fields of the resonating
component a saturation effect occurs. The susceptibilities decrease for

in proportion to H1
-2. The externally induced tran-

sitions then compete too succesfully with the transitions caused by the
relaxation mechanism. In the case , the magnetisation is zero.
This is the heating up (1. 24) in a system of free spins. In the limit
H1 0, when , the line shape (2.65) is identical
with a damped oscillator curve like (2. 55), as shown in fig. 2. 4. This is no
surprise, since we have rather arbitrarily assumed the exponential decay
of the perpendicular components in (2. 59). The reasoning in this section
cannot be considered as a proof that the line shape near resonance is the
same as that of a damped harmonic oscillator. In the preceding sections we
have already seen that this is in general not the case. Bloch's classical
equations (2.62) are especially useful to obtain solutions for non-stationary
phenomena and transient effects (B 7). For these the reader is referred
to the original literature.
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2. 8, Quantumtheory with interactions.
We shall now derive the saturation formulae for absorption and dis-

persion in the stationary state along quantummechanical lines (G 6, K 8).
We start with the absorption for I= 1/2. The situation to be described
is that of a competition between the applied signal and the local field
spectrum, the former tending to make the surplus number n = N+ — N -
zero, the latter to keep it at the value of temperature equilibrium

The surplus number n can formally be thought of as being distributed
over a frequency range according to a function , as was discussed
in section 2.6,

(2.67)

The frequency of the applied signal is so well defined,
that can be considered as constant over the region where H1 is
different from zero. In the radio frequency range such a pure sine wave
for H1 is practically realisable. According to (2. 16) this signal causes a
surplus number of transitions per second

(2. 68)

In the stationary state this must be equal and opposite to the num-
ber of transitions caused by the relaxation mechanism.

(2.69)

Equating expressions (2. 68) and (2. 69), we find for n in the statio-
nary state

The power absorbed in the stationary state is obtained by substitu-
ting (2.70) in the expression (2.68) and multiplying by the energy

absorbed in each transition. Here we assume that the shape
of the distribution of the surplus number is independent of H1.
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The absorbed power can be expressed in terms of the complex sus-
ceptibility, The energy of the system is

The power absorbed by it,

is made up from the contributions of v in the x- and y-component of
M, With the use of the result for the average absorbed
power is

(2. 73)

From (2. 71) and (2. 73) we find

(2.74)

Using the relation near resonance, and ta-
king for a distribution (2. 55) we get back to B l o c h's expression
(2.66), as it should be.

If we must have a detailed balance for transitions between
each pair of adjacent levels. The transitions probabilities for the applied
signal and the relaxation mechanism depend in the same way on
With the result of (2. 52) the difference in population between any two

adjacent levels is again given by (2. 70), where now

Already in (1. 16) we have seen that the result of summing over all
values of m leads to the result, that the power absorbed is proportional
to I (I + 1). So we find immediately

(2.75)

The spin I can be determined from the total line intensity.
The corresponding formulae for the dispersion can be derived by

a general theorem. Kramers (K 7, K 9) showed that the relation

(2. 76)
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exists between the real and imaginary part of an electric or magnetic
susceptibility. But if the absorption (2.74) is described by Bloch's
expression (2.65) for also the corresponding dispersion must be des-
cribed by the expression (2. 66) for The integration (2. 76) must give
this result (2.66).

We have not emphasized a very important assumption in the deri-
vation of the saturation formulae. The distribution function has
been taken independent of that is: the shape of the distribution of
the surplus nuclei is independent of the saturation. In fig. 2. 5. the ori-

Figure 2. 5.

The distribution of the surplus population over the resonance
frequencies.
a) No saturation
b) Saturation without change of shape
c) Partial saturation in inhomogeneous fields.

ginal distribution is represented by curve a, b is a saturated distribution
of the same shape, and will be realised, if Then
the rapid spin-spin interaction will be able to maintain the distribution
b, although the signal only induces transitions near the frequency v. The
assumption is still approximately true if and
For then the large applied field will produce transitions over the whole
width of the resonance curve. But in this case formula (2. 65) is not
quite correct as follows from the consideration, that in the limit of very
large we must get R a b i's formula (2.11) with a line width

while (2. 65) gives

One might infer from this that the saturation is still rather well des-

v.
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cribed by (2. 71), if is of the same order as In chapter 4 we
shall see that this is the case for liquids ands gases. For a special model
of He-gas the B l o c h formula will be derived in a independent way.
The assumption that the shape of the distribution function does not
change is definitely wrong, if the distribution is mainly determined by
inhomogeneities in the field H0. In this case the saturated distri-
bution will look like curve c in fig, 2. 5. The nuclei which are in another
part of the field are not at resonance and there the unsaturated
distribution remains. The line shape, determined by a point-by-
point measurement at various frequencies of the applied signal, is al-
ways independent of the degree of saturation. We have in
general:

(2. 77)

If varies only slowly in the region where transitions are appre-
ciable this becomes

(2. 78)

Finally it must be stressed that all formulae are derived for a rota-
ting magnetic field. Experimentally always an oscillating field is used.
This, however, can be decomposed into two fields rotating in opposite
directions. The field is equivalent to the set

(2. 79)

Now only one of these — the right or left circular polarised one for
a positive or negative magnetogyric ratio respectively — will be effec-
tive in producing transitions. The transition probability, the absorbed
power, the components of magnetisation u and v etc. in a linear oscil-
lating field with amplitude 2 are the same as in the rotating field
with a component perpendicular to H0, for which all discussions
were made. If one prefers to express the magnetisation u and v in
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terms of the linear field one must use a susceptibility which is
one half of that occuring in (2. 65). Note that in the saturation
term of that formula must be replaced by The maximum va-
lue of the magnetisation remains unchanged:

The reader can easily adapt the other formulae to the case of a linear
field B l o c h and S i e g e r t (B 9) have discussed the influence of the
other rotating component, which we neglected. The resonance frequency
is displaced by in order of magnitude. Under experimental
conditions one always has So this correction is comple-
tely negligible. The only disadvantage of a linear field is that the sign
of the magnetogyric ratio cannot be determined. Nevertheless this infor-
mation has been obtained from resonance experiments, for which we
must refer to the literature (M 3).



CHAPTER III.

THE EXPERIMENTAL METHOD.

3. 1. The experimental arrangement.
3. 1. 1. The original experiment, by Purcell, Torrey and Pound.

From the preceding chapters it should be clear that the problem is to
measure a small change of the magnetic susceptibility in the radio-
frequency range, caused by the resonance of the nuclei. The essential
part of the apparatus will therefore be a coil, placed in a constant
magnetic field H0 and filled with a material, which contains the nuclei
to be investigated. The coil is tuned by a condenser in parallel, and
a current in the coil is excited by coupling it to a generator. The position
of the coil is such, that the radio-frequency field in the coil is per-
pendicular to H0. On the other hand the circuit is coupled to the input
of a receiver, tuned to the same frequency. At the output of the receiver
we measure the transmission through the LC-circuit. We vary H0

slowly. On hitting the resonance of the nuclei at the value
a change in the output reading will be recorded, as the absorption by
the nuclei lowers the Q of the LC-circuit by a small amount. The
quality factor Q is defined by

(3. 1).

At resonance the power absorbed per unit time is increased by the
energy absorption of the system of nuclei. The real part of the nuclear
susceptibility causes a shift in phase of the radio-frequency signal, which
was not detected by the original arrangement. It is plausible, and will
be proved in section 2 of this chapter, that the relative decrease in
voltage across the coil is proportional to the change in the nuclear
susceptibility and the Q of the coil. In the original experiment by
Purce l l , Tor rey and Pound, the resonant circuit consisted of a
short length of coaxial line, tuned by a capacitance to 30 Mc/sec as
shown in fig. 3. 1. The power was inductively coupled in and out by
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Figure 3. 1.
Cavity, used in the first experiment of
nuclear magnetic resonance. The cavity

was filled with 850 cc. Paraffin.

small loops A and B. The inductive part of the cavity was filled with
850 cc. paraffin. The Q obtained was 670, Assuming a line width of
5 oersted in paraffin, a change in of the order of 3.10-6 could be ex-
pected, corresponding to a change
of less than 1 % in output power.

To increase the relative change a
bridge circuit was built, which ba-
lanced out the main part of the sig-
nal going into the receiver. By
means of an attenuator and pieces
of coaxial line of variable length the
signal going through one branch
could be adjusted so as to have
about the same amplitude and 180°
phase shift with respect to the sig-
nal going through the cavity in the
other branch of the bridge.

At the resonance of the protons
in the paraffin the output changed by 50 %. The change was positive
or negative depending on the way the bridge was balanced. The reso-
nance occurred at that value of the magnetic field H0, which could be
expected from R a b i's measurement of the proton moment and the re-
sonance frequency used. With the same circuit also the resonance of H1

and F19 nuclei were observed in a mixture of Ca F2 powder and mi-
neral oil. The amplitude of the radio-frequency field in the cavity was
kept as low as possible 10 - 4 oersted) in order to avoid saturation.
From (2. 65) we see that saturation occurs if
Assuming sec, corresponding to a width of the proton

line of about 3 oersted, we find that the relaxation time could be about
four hours without saturating the spin system. An upper limit for the
relaxation time in paraffin of 60 sec was established by observing the
resonance as quickly as possible after the magnetic field H0 is applied.
Immediately after the field is switched on, the relative population of
the protons in the upper and lower level will be given by the a-priori
probabilities of these levels, which are equal. Therefore a resonance can
only be observed after a time comparable to the relaxation time has
elapsed. This upper limit of 60 sec is historically important, since the
available information at that time, consisting of W a l l e r's theory and
G o r t e r's experiments, indicated very long relaxation times.

3. 1. 2. Further experimental development.
Already in their first papers P u r c e l l, T o r r e y and P o u n d (P 3)
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mentioned the advantage of modulating the magnetic field H0 with an
alternating field of small amplitude and low frequency,

(3.2)

The method of modulation had been applied in other fields on many
occasions (e.g. in photo-electric amplifiers (M2)). The advantage is not
an improvement in the essential signal-to-noise ratio, but a reduction
of the influence of external disturbances. Instead of measuring the d-c
output of the detector directly, in the modulation method the audio-
frequency signal is fed, after detection, into an audio-amplifier which
has a very narrow band around the frequency which was taken
equal to half the frequency of the mains, i.e. 30 cycles per second,
One could use an ordinary audio-amplifier with an a.c. galvanometer
at the output. Actually a phase-sensitive „lock-in" amplifier (D3) was
used, which will be described in the next section. The cavity was
replaced by a coil, of about 2 cm long and 0.7 cm in diameter, tuned
by a variable condensor. The quality factor was about 10 times smaller
for this circuit compared to the preceding one, corresponding to a
similar decrease in linear dimensions. This implies, of course, a loss
in signal strength. The cavity, however, 'required a large magnet,
which was not permanently available. Furthermore even in the large
magnet the field was not homogeneous over the region of the cavity,
so that the maximum signal from the nuclei was decreased according
to the lower value of in (2.78). In addition the cavity required
unwieldy and sometimes not available quantities of material. Also the
bridge circuit was improved as described in the next section.

Figure 3. 2.
Block diagram of the experimental arrangement, which is described in sections 3.1.3. and 3.1.4.
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With the apparatus represented schematically in fig. 3. 2 the nuclear
resonance could be observed either on the screen of the oscilloscope
or on the output L of the 30 ~ audio amplifier. In the first case the
amplitude of the 30 ~ modulation sweep is larger than the line width.
On passing through the line the detector current measured by M changes
proportional to the absorption by the nuclei, if the bridge is balanced
properly. The change in voltage across a resistor in the detector circuit
is put directly on the vertically deflecting plates of the cathode ray tube.
On the horizontal plates we put a synchronous 30 ~ sine sweep. On
the screen appear two absorption curves, because in each cycle the
sweep passes twice through resonance. The two curves can be made
to coincide by proper adjustment of the phase of the horizontal sweep
(see fig 3. 15). By changing the main field the absorption lines would
shift together and finally disappear from the screen. A section of the
magnetic field from to is plotted in the horizontal
direction on the oscilloscope. For observation on the meter L the sweep
amplitude was made small compared to the line width. As will be
shown later the deflection of this meter was then at any point
proportional to the derivative of the curve on the oscilloscope at the
corresponding field strength. By changing very slowly the entire
derivative function could be measured point by point. We shall now
describe the apparatus in the block diagram in more detail.

3. 1.3. The radio frequency bridge.

It is important to be able to balance the bridge independently in
amplitude and phase. To obtain these two orthogonal adjustments
first the circuit shown in fig. 3. 3. was used. The various parts are
linked together with coaxial lines, of which the outer conductors are

Figure 3. 3.

Radio-frequency bridge, described in the text.
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connected to the grounded terminals of the generator, resonant circuit
and receiver. The attenuator A was of the inductive type, used for 10
cm. waves. The inner conductors of the coaxial lines were terminated
in small loops, the distance between which could be varied. The attenuation
between the loops is characteristic for a wave guide (K 11) „beyond cut-
off". At 30 Mc/sec the impedance of the loops is practically zero. The
attenuation is large and not accompanied by a noticeable phase shift.
In order to obtain the same low transmission in the other branch a
very short closed stub S was inserted, which also acted practically like
a short circuit. To this voltage generator of very low internal impedance
the resonance circuit was loosely coupled by a small condenser C1, while
on the other side it was critically coupled to the receiver input by
another condenser C2. The non-resonant line between P and the carbon
resistor R, which is equal to the characteristic impedance of the coaxial
cable is of variable length and provides a pure phase adjustment. The
lines of one quarter wave length transform the short circuits into
open circuits. Looking from the generator into the bridge one „sees"
the resistance R. This expression means that the impedance between
the two terminals of the bridge at the side of the generator is R.
Between the terminals, which are connected to the input of the
receiver, is the impedance of the LC circuit, tranformed by C2. If this
coupling has the desired critical value, the maximum available power
from the resonance circuit will flow into the receiver. The disadvantages
of this bridge are its low transmission and its asymmetry. The minimum
attenuation is about 40 db, and the generator has to be unnecessarily
powerful. The power required for the nuclear experiments is essentially
low, but since the maximum output of the available generator was 2V.
into 75 it was desirable not to waste too much power.

The asymmetry of the bridge allowed a balance of the bridge only
at one frequency. Since the generator showed some frequency modulation,
this was very undesirable. Moreover was the balance sensitive to very
slow drifts of the frequency. Therefore the circuit of fig. 3. 4 was adopted
for the final measurements. The generator power is fed into two coaxial
lines of equal length terminated in their characteristic impedance. The
condensers C1 and C2 provide a loose coupling to the resonance cir-
cuits, which are tuned at exactly the same frequency and have the same
Q. The output condensers C3 and C4 provide critical coupling between the
resonance circuits and the receiver, for which the two circuits appear
in parallel.

Since part of the change in power from the nuclear resonance now
flows into the dummy circuit instead of into the receiver, the available
signal-to-noise power ratio is only one half of the optimal value, obtained
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Figure 3.4.

Improved radio-frequency bridge, described in the text.

with the preceding diagram. A coaxial line of one half wave length
produces a phase shift of 180° degrees. For reasons to be discussed in
the next section, the balance was never made complete. When the
remaining unbalance is in amplitude, the imaginary part of the nuclear
susceptibility is measured; when the remainder is phase unbalance, the
phase shift of the signal and thus the real part is measured. The
unbalance used in the experiments varied from 0.1 to 0.001 in ampli-
tude of the original signal (20-60 db) and was stable at these values.
For short time intervals balance to one part in 30000 (90 db) could be
obtained. The ratio by which the signal is reduced in the bridge we
shall call b. The radiofrequency coil, which is placed in the magnetic
field, is shown in fig. 3. 8. The coil consists in a typical example of 11
turns of copper wire of 0.1 cm diameter. The length of the coil is 1.7
cm, and its inside diameter 0.6 cm. Samples, contained in thin walled
cylindrical glass vessels of approximately 0.5 cc, could easily be placed
in the coil and replaced. The brass box, which was below the magnet
gap, contained the other circuit elements of the nuclear resonance circuit
in fig. 3.4.

With the trimmer C7 minor adjustments in the phase could be made.
The dummy circuit contained essentially the same elements, although
no particular care was taken to make a geometrical copy. For the
dummy the resonance frequency was adjusted by selecting the tuning
capacitance C6 ; the coupling condenser C2 formed together with C8 a
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differential air trimmer. If C3 increased, C8 decreased by about the same
amount and this provided a phase-independent adjustment of the amplitude
for the balance of the bridge. The Q of the dummy was made equal
to that of the nuclear resonance circuit by putting a carbon resistor
R3 as a parallel load on the circuit. The analysis and trimming was
done by connecting the resonance circuits to a signal generator and
measuring the transmission as a function of the frequency with a syl-
vania crystal detector, shown in fig. 3.5. Resonance circuits were also

made for 14.4 Mc/sec and 4.85 Mc/sec
respectively. As a matter of fact, the
same size of coil was used and only
the condensers were adjusted. Of
course also the half wave length cable
had to be changed, which at the lowest
frequency had a length of about
twenty meters. The Amphenol cables
have a polythene dielectric and a

Figure 3.5. characteristic impedance of 50 It
Crystal detector with galvanometer. might be worth while to obtain the

180° phase shift by a radio frequen-
cy transformer with centre-grounded secondary instead of a difference
in line length, although the method used by us proved to be successful.

3. 1.4. Other apparatus.

The signal generator was of the type General Radio 805 C. The
frequency ranged from 16 kc to 50 Mc. The output could be varied
continuously from 0.1 V to 2 V. The characteristic, output impedance
was 75 So there was a mismatch of three to one with the bridge.
This was harmless and no attempt was made to eliminate it, as could
be done, e.g. by a quarter wave transformer, The receiver is a National
H R O 5. The narrow passband of this instrument (1500 cycles/second)
was of little use in the present experiment. It necessitated more frequent
adjustments of the tuning. Only for observation with the oscilloscope
it improved the signal to noise ratio. The H R O 5 was fed by an
electronically regulated power supply. In the experiments at 30 Mc/sec
the receiver was preceded by a pre- amplifier, developed at the Radia-
tion Laboratory, Cambridge (Mass.). Originally designed for use in
Radar equipment, it had a pass band from 25-35 Mc/sec. Its use for
our investigation was by virtue of its extremely low noise figure, at
least 10 db less than the commercial receiver. Thus it made possible
the detection of signals three times weaker in amplitude, and increased
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Figure 3. 6.
The phase sensitive, 30 ~ mixer-amplifier, according to D i c k e (D 3).

the accuracy of measurement of signals of the same size by a factor
three. The wiring diagram of the tuned phase sensitive audio-amplifier
is given in fig. 3.6. The twin T feed-back filter-stage tuned at 30~,
is to reduce the influence of harmonics and to prevent overload of
the later stages by spurious induction from power lines etc. In the
other 6 SJ 7 tubes the 30~ signals originating from the nuclei in the
modulated field is mixed with a 30~ signal of about 30 V put on the
suppressor grid. The last stage is a balanced amplifier for direct cur-
rent. If the output meter is fast, the time constant and the pass band
are essentially determined by the RC-circuits between the mixer and
final stage. These lead to a differential equation for the output-reading
which is similar to that of a critically damped galvanometer. The be-
haviour of the phase sensitive amplifier with respect to the signal-to-
noise ratio is the same as for a critically damped a.c. galvanometer
with time constant RC. The detection is sensitive both to frequency
and rphase. The generator providing the 30 ~ signal is represented in
fig, 3. 7, It consists of a multivibrator with subsequent filters to get a
30 ~ harmonic oscillation, a power amplifier to provide the current for
the modulation coils, a phase shift circuit and an amplification stage
for the beat voltage on the suppressor grids of the audio mixer, at the
same time serving for the horizontal sweep of the oscilloscope. Alter-
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natively to the multivibrator a synchronous motor was used to drive
a small 30 ~ generator (40 Volt, 1000 The use of 30 ~ excluded
any response of the audio-amplifier to spurious 60 ~ signals or harmo-
nics thereof. Because the multivibrator was locked to the frequency of
the mains, possible zero drifts, arising from slow changes in phase with
respect to the mains, were excluded.

The magnet was made by the Société Génévoise. The pole pieces
are schematically drawn in fig. 3. 8. The face of the pole pieces was
14 cm in diameter and
the width of the gap
was varied between 1.8
and 3 cm. For the first
width a field of 7000
oersted was obtained at
15 amp. and 10 Volt,
11.000 oersted at 30
amp. and 16.000 oer-
sted at 80 amp. The
strongest field used was
8700 oersted. The cur-
rent was supplied by

Figure 3.8.

The radiofrequency coil, in which the nuclear resonance
takes place, between the pole pieces of the magnet.

two heavy duty truck
batteries of 300 ampere
hours each. An unsuc-
cessful attempt had
been made to regulate
the magnetic field, if the power was supplied by a generator. Since the
time constant of both the magnet and the generator were of the order
of one second and at the same time and unusual large periodic pertur-
bation in the generator voltage occurred at about this frequency caused
by an imperfection in the generator, the system would break into os-
cillations before sufficient regulation was obtained. The batteries, how-
ever, supplied a current which was very stable over intervals of ten
minutes or more. Around the pole pieces two modulation coils were
placed consisting of about 50 turns each. At 0.5 amp. they could pro-
vide a 30 ~ sweep of about 3 oersted in amplitude (6 oersted total
width). The amplitude of this sweep was constant within 2 % over the
whole region of the gap. The main field was supposed to be made
more homogeneous by the rim of 0.04 cm high and 0.8 cm wide on
the edge of the pole pieces (R 8). A discussion of the actual homogeneity
will be made in section 3, 5. The current through the magnet coils was
measured by the voltage drop across a shunt of about 10 - 2 The
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E.M.F. was balanced by a Leeds and Northrup type K potentiometer.
The magnet current could be adjusted roughly by the number of 2 V
cells used. Then the current passed through a manganin band of 0.2
of which any part could be shorted by a sliding contact. The fine re-
gulation was achieved by a rheostat of 5 in parallel to a 0.05
manganin resistance in the magnet circuit.

3. 2. The radio signal caused by nuclear resonance.
We shall assume that the amplitude and frequency of the modulation

sweep are so small, that the solutions obtained in chapter 2 for a time
independent field remain valid. In section 3. 7 we shall indicate some

violations of the results, if the rate
of change of the magnetic field is
too fast. Since the condenser C1 in
fig. 3.4 provides a loose coupling,
we can consider the resonance cir-
cuit, which contains the nuclei, as
being driven by a constant current
generator where Vl
is the voltage on R1 (fig. 3. 4). The

Figure 3. 9.

The aequivalent diagram of the nuclear
resonance circuit, loosely coupled to the

signal generator.
admittance at resonance of the cir-

cuit consists only of the conductance At nuclear reso-
nance the value of L changes according to

(3.3)

since is negligibly small compared to and The susceptibilities
are given by (2. 75) and (2. 76), and q is a filling factor. If the field H1
in the coil were homogeneous, it would be the fraction of the volume
filled by the sample. The change in admittance produces a change in
voltage across the coil

Making use of (3. 3), of the expression for R0 and of the fact that
the change in admittance by the nuclear absorption and dispersion is
small, we obtain finally :
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We are allowed to consider the nuclei as a voltage
presented in fig. 3. 10. The diagram holds also for the
3. 3. The bridge of fig. 3. 4 behaves as a voltage gene-
rator with an internal resistance

By virtue of its dependance on the susceptibility is
a function of the Larmor frequency and so of the magnetic

field One can plot in the complex plane. If one
uses B l o c h's expressions (2. 65) with a factor for the li-
near and one finds that the locus of is a circle
in the case

On substitution of 2 we have in this case

(3.5)

(3.6)

(3. 4)

generator re-
bridge of fig.

Figure 3.10.
The nuclear
magnetic reso-
nance is aequi-
valent to a vol-
tage generator
with internal
impedance R0.

If the saturation term is taken into account, on elimination
of z the locus is found to be an ellipse the eccentricity of which de-
pends on Now it has to be remembered, that the receiver detects
only changes in amplitude of the input voltage. If the balance were
complete, the output of a square law detector would be proportional
to Under operation conditions the balance is never made com-
plete and the situation is represented by fig. 3. 11. OA is the unbalanced
signal, BO is the signal coming through the dummy circuit. If we go
through the nuclear resonance by varying A goes around the circle,
and the input signal of the receiver for a given value of is BC, and
on the screen of the oscilloscope we see the variation of during
the sweep of the magnetic field. It has to be borne in mind that the
course of C over the circle during the sweep is far from linear in
The entire lower half e.g. represents the narrow part between the maxi-
mum and minimum of the dispersion curve, and C will travel much
faster here than on the upper parts of the circle. On observation with
the phase sensitive audio amplifier the small modulation of the field
causes C to go back and forth over a small part of the circle. The
amplitude of BC is then a function with a period of 1/30 sec. The
amplifier is not sensitive to the harmonics and will record only the
30 ~ component in the signal. In principle this can be calculated from
fig. 3. 11 for any kind of balance, that is for any point B, and for any
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value of and Although fig. 3. 11 is drawn for the special case
that the locus of is a circle, this is not essential either and the
same reasoning holds for any distribution function and any value

of in (2. 75). Here we
shall discuss the limiting case,
very well approximated in
practice, that the change in
voltage produced by nuclear
resonance AC is small com-
pared to BA, the signal
which is left after the main
part of OA = has been
balanced by OB. The rela-
tion can be
written as

(3.7)

Assuming a square law de-
tector, the output will be
proportional to

Neglecting the last term,
the nuclear signal is propor-
tional to the real part of the
product If B there-
fore lies in line with A and
O, only the real part of
that is only contributes

to the signal. With unbalance in amplitude the absorption is measured.
If B is in the position B', only contributes. With unbalance in phase
the dispersion is measured. To obtain the reading of the meter L, we
have to look for the 30 ~ component in (3, 8). Assuming that the am-
plitude of the sweep is small compared to the line width
we can expand which via and is a function of

in a Taylor series.

Figure 3. 11.

Diagram of the voltages in two branches of the
bridge, OA and BO, and of the voltage AC,

generated by the nuclear resonance.
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The quadratic term has no components at We neglect terms in
and higher orders. It is readily seen from (3.4) and (3.9), that

the voltage from the bridge can be described by a 3 0 ~ modulated
wave

with
(3. 10)

(3. 11)

Formula (3. 11) holds for unbalance in amplitude. On the output meter
L we then measure the derivative of the absorption function. For phase
unbalance we measure the derivative of the dispersion function, and a
linear combination of these derivatives, if the balance is of an interme-
diate type.

3. 3. Limitation of the accuracy by noise.
In this experiment an essential limit for the obtainable accuracy is

set by the thermodynamically determined fluctuations in voltage across
the equivalent resistance of the generator of fig. 3. 10. To a resistance

of temperature T an effective noise voltage generator has to be
attributed. The mean square voltage of this generator in a frequency
range is

(3 12)

The precision of a measurement is limited by this fluctuating vol-
tage and the decisive quantity is the signal to noise ratio
We shall now see what becomes of this ratio with the various methods
of observation. We first suppose that the receiver has no sources of
noise in itself. The voltage from the bridge can be represented by

where is given by (3.4) or by (3. 10), and

(3. 13)

The problem consists in finding the low frequency part of the output
spectrum after detection. We shall give the results for a square law
detector in the case that the pass band of the receiver is a rectangle
(outside the frequency range the gain is zero). A
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detailed theory of the noise with special attention to the noise in non-
linear devices has been given by R i c e (R4). He also gives the results
for a linear detector, which are not essentially different from the follo-
wing ones. First we deal with the case that the signal is given by

(3. H)

and the observation is made on the screen of the oscilloscope, which
has a pass band larger than or with the meter M (see fig. 3. 2),
which we assume to have a rectangular pass band The time of
indication of the instrument is related to and approximately
If the balance of the bridge is complete and the signal power small
compared to the noise power: the
signal to noise ratio of the amplitude is for the oscil-
loscope and for the slow output meter. If
and these ratio's become and

respectively. If there is a large unbalance
and also if we find

(3. 15)

If the meter M has the characteristic pass band of a critically dam-
ped galvanometer, with a period of the free system equal to (3. 15)
goes over into

(3.16)

We see that the cases with a large unbalance are the most favo-
rable. If the observation is made with the phase sensitive audio ampli-
fier and is the time necessary to take a reading, equal to the RC-
value of the filter, we find for the case of large unbalance

(3. 17)

We now substitute the expression for the signal (3.4) into
(3. 16). A limit is set to the maximum value of the occurring products
u = and v = by the relaxation time The voltage across
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the coil is, of course, proportional to the amplitude of the radiofrequency
field If we assume the field to be uniform over the whole vo-
lume of the coil, we find

(3. 18)

In chapter 2 we already found that the maximum value for or
is Inserting this value and (3. 18) into (3. 16)

we find after elimination of and L

Using the modulation method we have to insert (3.11) and (3.18)
into (3. 17) and then to determine the maximum value of

(3. 20)

The sweep amplitude cannot be chosen larger than the line width
If we take this value, we already should take into account

higher order terms in the expansion (3. 9). So we introduce a. number
smaller than one, and put We obtain for the signal

to noise ratio with the modulation method

If we use the bridge of fig. 3. 4 instead of fig. 3. 3 we have to add
a factor to (3. 19) and (3. 21).

Furthermore we have already added a factor F is a number
larger than one and is called the noise figure of the receiver. Due to
the shot effect of the current in the tubes and the Brownian motion in
the resistors, the receiver itself is also a source of noise. The over-all
effect of this additional noise on the precision is described by the quan-
tity F, defined by

or F is the number, by which the absolute temperature of the internal



68

resistance of the generator has to be multiplied, if we want to ascribe
all the noise to that resistance. The factor in (3. 19) and
(3.21) must be split in two parts.

In the temperature T refers to the sample, and in
the effective noise temperature of the bridge is denoted by FT.

The noise figure is not a constant of the receiver, but depends on the
impedance across the receiver input, and may also be a function of the
frequency. It can be measured by the circuit of fig. 3. 12. The tube is a

Figure 3. 12.
The noise diode. The filament is heated by a variable current,
which passes through an r.f.filter. The plate current also passes
through an r.f.filter. The impedance of the LC circuit is
high compared to the various resistors R, parallel to it.

- With the switch A we can also put the bridge impedance in
parallel to the tuned plate impedance. Further explanation is

given in the text.

diode with tungsten filament, the temperature of which can be varied.
The diode current measured by the ma-meter, is always temperature
limited. We switch A into position 2 and measure the diode current
necessary to double the noise power output of the receiver for various
values of R. From this we obtain the noise figure as a function of R
according to

Usually we find that the function F(R) has a minimum. Then we
switch A into position 1 and measure the noise figure with the bridge
impedance. If the value of F so found is not close to the minimum value,
the impedance of the bridge should be transformed, e.g. by another choice
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of the coupling condensers. The condenser C1 is in every case adjusted
for resonance. The noise figure for the pre-amplifier in combination with
the bridge was found to be 2, for the National HRO 5 receiver about 12.

We now summarize the results of this section. The precision of the
method is limited by the general thermodynamical fluctuations in voltage
across a resistance. These could be reduced in our case by lowering the
temperature of the bridge impedance. At the same time, however, care
should be taken that the relative influence of noise sources in the receiver,
expressed by the noise figure F, remains low. Formulae for the signal to
noise ratio have been derived. It appears from (3. 16) that the radio-
frequency bridge must never be completely balanced; moreover, a stable
complete balance would be hard to attain experimentally. With sufficient
unbalance the signal to noise ratio is independent of the degree of balance
b. Then the nuclear signal is detected by mixing with the main carrier
rather than by a square law detector.

By observation on the audio output meter L the ratio is independent
of the band width of the receiver. Increasing the precision by narrowing
the pass band of the audio amplifier, is equivalent with an increase in
the time required to make one measurement. The main advantage of the
phase sensitive audio amplifier is not a better signal to noise ratio, for
according to (3.19) and (3.21) one looses a factor compared to
the reading on meter M in the detector circuit, having the same time of
indication. But the apparatus becomes less sensitive to external distur-
bances, as these usually do not have 30 ~ components. The effects
of drifts in generator output and detector current are eliminated to a great
extent. The zero reading is steadier. The balance of the bridge is ne-
cessary, as it is hard to find a detector, which can indicate changes of one
part in 105 and still has a good noise figure. The balance reduces
further the influence of drifts and frequency modulation in the output of
the signal generator. From (3. 21) we see that for the same coil the ac-
curacy increases as as H0 is proportional to the resonance frequency

and Q to Since Q is also proportional to the linear dimensions
of the coil, the accuracy increases proportional to when the coil
is enlarged.

For large coils, however, more current is needed to produce the same
field density, and therefore higher demands are put on the balance. Also
the field has to be homogeneous over a larger area. Finally we want
to stress the importance of having a good filling factor q and a high
density of nuclei N.



70

3. 4. Measurement of the line width and relaxation time.

In this section we assume that the magnetic field H0 is perfectly homo-
geneous. Suppose that we have adjusted the frequency of the signal
generator and the magnetic field H0 approximately to the gyromagnetic
ratio of the nuclei in the sample in the coil. On applying a modulation
of sufficient amplitude to the field we shall pass through the resonance
twice in each cycle. On page 71 an oscillogram of a resonance line at
29 Mc/sec of protons in 0.4 g glycerin is represented. Figure 3. 13 shows
the absorption, figure 3. 14 the dispersion. The pictures were taken with a
linear time base, while the field modulation was a 30 ~ sine function.
If we also put a 30 ~ sine sweep on the horizontally deflecting plates of
the oscilloscope in phase with the other sweep, we obtain a linear scale in
oersted. The oscillogram in fig. 3. 15 shows a resonance line in the forth
and back sweep. The curves do not coincide because a small phase
shift was left on purpose. The peculiar wiggles will be discussed at
the end of this chapter. We determine the amplitude of the sweep by
using a pick up coil of 1200 turns with an average area of 3 cm2. The
30 ~ voltage induced in this coil, when it is put in the magnet gap is
measured with a Ballantine vacuum tube voltmeter. Another way to
calibrate the horizontal scale on the oscilloscope in oersted is to change
the radio frequency, say, by 0.05 %. After rebalancing the bridge the
resonance line appears on the screen somewhat shifted with respect to its
original position. The displacement corresponds to 0.05 % of the total
magnetic field.

Thus we are able to express the distance between the points of half the
maximum value in oersted. The relation between this and T2 for a
damped oscillator curve is (compare section 2.6),

and for a Gaussian (3.22)

With the audio amplifier the line width can be measured too. A sweep
of a fraction of the line width is used and the total magnet current, deter-

mining is changed in small steps. The calibration can again be made
by the shift of the resonance with a small variation in the frequency.
For variations of the magnetic field of less than 0.05 % a linear relation
between the current and the field was found. The determination of the
line width in this way was less accurate, as slight hysteresis effects can
not be entirely excluded. It was only applied to wide and so usually very
weak lines, which were hardly visible on the oscilloscope because of the
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Figure 3. 13.

Oscillogram of the nuclear mag-
netic resonance absorption of
protons in glycerin at 29

Mc/sec.

Figure 3. 14.

Oscillogram of the nuclear magnetic reso-
nance dispersion of protons in glycerin at

29 Mc/sec.

Figure 3. 15.

Oscillogram of the nuclear magnetic reso-
nance absorption of protons in water at 29
Mc/sec. The peculiar wiggles are a transient
effect, which is discussed in section 3. 7.
Two resonances occur because a sinusoidal
sweep was used with a small phase shift,
so that the curves do not coincide. The
wiggles always appear after the sweep has

passed through resonance.

Figure 3. 16.

Oscillogram of the nuclear
magnetic resonance absorp-
tion of protons in water at
29 Mc/sec. The wiggles are
shown for a linear sweep.
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noise background. In fig. 3. 17 a typical derivative absorption curve is
plotted for the proton resonance in a 0.5 N solution of Fe (NO3)3.
It must not be confounded with a dispersion curve! The distance
between the maximum and minimum in these curves, that is between the
points of maximum slope in the original absorption curve, is related with
T2 for the damped oscillator by

and for the Gaussian by (3.23)

The actual shape of the resonance curves is discussed in detail by Pake
(P 1). It cannot be easily distinguished from the experimental curves,
which type of curve we have. Dispersion curves would give a better
criterium. A Gaussian distribution is the most likely.

Figure 3. 17.

The derivative of the magnetic resonance absorption of protons in a
Fe (NO3)3 solution, measured with the phase sensitive audiomixer.

If the width is measured in stronger radio frequency fields a broadening
of the line by saturation will set in according to (2. 63). The saturation
effect enables us to measure the relaxation time T1. The absorption curve
is measured at various values of the output of the signal generator. Off
resonance the detector current meter M reads proportional to this power,
that is proportional to V0

2. However, it the power of the generator has
been turned up, we turn the gain of the receiver down, so that M reads its
original value. In this way a direct influence of the change in the gene-
rator output on the reading of the meters M and L is eliminated. The



73_

modulation HS and the balance of the bridge are kept unchanged. From
(3. 8) we see that the deflection of the audio meter L will be proportional
to the 30 ~ modulation, and under the conditions mentioned will be

proportional only to

Usually we do not make use of the whole curve, but merely determine
the maximum deflection in either direction. A simple calculation *) shows
that the extreme values in the derivative of the absorption of the damped
oscillator type (2. 63) decrease with increasing H1 yielding a deflection
proportional to

(3.24)

The extreme in the derivative of the dispersion should decrease only as
So for higher degrees of saturation it becomes

more and more important to have pure balance, as the effect of
decreases more slowly than of For the Gaussian distribution it is not
possible to give the decrease in the meter reading in a closed form, but
the general behaviour is the same. The reading starts to decrease rapidly
with increasing power, when becomes of the order of unity.

In any case, for the same line shapes will be the same function of

and H1 is proportional to the output voltage of the gene-
rator. If we plot therefore the maximum deflection of meter L against the
reading of the output meter of the signal generator on a semi logarithmic
scale, we obtain a series of parallel curves, which decrease rather
suddenly around the value of H1 given by In fig. 3. 18
some typical curves are drawn, obtained for saturation of protons in ice
at various temperatures. For comparison the theoretical curve
is indicated. Now twice the horizontal distance between the curves for
different samples will give us the ratio of the products Tl T2 in these
samples. And if T2 has been measured in an independent way, we
obtain the ratio of the relaxation times T1. An absolute determination
would be possible if the value of H1 in the coil were known. Of course
we know its order of magnitude from the circuit constants, but it is hard
to make an estimate of the insertion and coupling losses. Therefore it was
decided to make an absolute determination of the relaxation time in one
substance along other lines.

*) Strictly speaking, formula (3.24) holds only for the case For
the saturation is described by a different expression, which falls off somewhat

slower than (3. 24) with increasing H1.
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Distilled water was taken, since it was known that its relaxation time
is of the order of a second, and so long enough to apply the following
method,

On the screen of the oscilloscope the proton resonance was observed
with a large amplitude of the sweep (about 5 oersted). The power of
the generator was chosen such that no saturation occurred but was about
to set in. Then the sweep amplitude was turned down to 0.5 oersted, but
still the whole line, which was narrower than that value, was covered.
Since the time spent at resonance was then 10 times longer, saturation
would occur. After that the sweep amplitude was suddenly turned up to
its original value. The height of the absorption peak immediately after
this would be small, since the surplus number of protons was reduced by
the preceding saturation. Exponentially the absorption peak would in-
crease to its unsaturated value.

Figure 3. 18.
The saturation effect of the proton spin system in ice. The maximum
of the derivative of is plotted, essentially against the amplitude
of the alternating field The dotted curve, representing
is indicated for comparison with theory. Data like these, in combi'
nation with data on the line width, were used to construct fig. 4. 9.

This last process was filmed with a movie camera and yielded
2.3 ± 0.5 sec. for the relaxation time in water. The same experiment was
done for petroleum ether, giving 3.0 sec, and for a 0.002 N solution of
Cu SO4 in water we found 0.75 sec. All other relaxation times were
measured relative to these values.

3. 5. The inhomogeneity of the magnetic field.
It turned out that in many substances, especially in liquids and

gases, the measured line width was caused by the inhomogeneity of
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the field. The coil with sample was moved around in the magnet
gap until the narrowest line was obtained. The best spot in our magnet
appeared to be closer to the edge than to the centre, and there
is reason to believe that the inhomogeneity is not so much caused by
the geometrical conditions, as by inhomogeneities in the iron pole pieces.
The best condition obtained was an inhomogeneity over the region of
the sample of 0.12 oersted in a total field of 7000 oersted, and an inhomo-
geneity of 0.015 oersted in a field of 1100 oersted. This latter field was
used for proton resonances at 4.8 Mc/sec. All lines taken in this spot in
the gap, which are wider than these limits, show of course their real
width. There are reasons to believe that the line width, e.g. of water, is
still much narrower than 0.015 oersted.

The experimental results and the
theory of the line width will be fur-
ther discussed in the following chap-
ter. Here we must consider, what
happens to the saturation experi-
ment, when we are forced to measure
the resonance in an inhomogeneous
field which determines the line shape.
First we shall describe an experi-
ment, that was of „historical inte-
rest" in the discovery of the narrow
resonance lines. Suppose we have a
water sample in a rather inhomoge-
neous field, so that the line width is
two oersted. The sweep amplitude is
originally turned off and the system
of those nuclei, which are at reso-
nance, is saturated. If one then
suddenly turns on a sweep of 5 oer-
sted, one sees a "hole" in the reso-

Figure 3.19.
The absorption of protons in water in
an inhomogeneous field, as observed on
the screen of an oscilloscope,
a. Unsaturated.
b. Partial saturation. The dip disappears

in about the relaxation time,
c. Partial saturation over a larger region.

Where the residual sweep went slow
and reversed, the saturation is more
complete.

nance line, which disappears in
about 2.3 sec, the relaxation time

(fig. 3. 19 b). One can also leave a small residual sweep and saturate the
spin system over a somewhat broader range of the inhomogeneous field
(f ig. 3. 19c). The little dips indicate more saturation at the points where
the sweep goes slower and reverses, that is where the nuclei are longer
at resonance.

For the measurement of the relaxation time by the decrease of
we must distinguish three cases.
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a. Here is a measure for the inhomogeneity
of the field which is described by the distribution function In this
case we can consider as a function and the considerations of the
preceding section with formula (3. 24) are valid.
b. As here the total sweep is still less than the
natural line width, we can integrate the result for a single line derived
in the preceding section over the distribution in the field. The reading v
will be proportional to

Remembering that H — and we obtain by partial

integration for the deflection

If changes slowly over the region of the natural width we find:

(3.25)

So the signal should decrease more slowly with increasing H1 than
in case a.
c.

In this case the amplitude of the sweep is large compared to the natural
width. We assume for the moment, that the sweep comes back before the
nuclear system has had a chance to relax We can define
an average field density as the product of the actual density and the
fraction of the time, spent at resonance. We have something as is indi-
cated in fig. 3. 19c. We are going back and forth in the bottom of the
hole and have to determine the 30 ~ component. For the sake of sim-
plicity let us assume that the sweep has a constant velocity given by

and that the line shape is a rectangle with width

The fraction of the time spent at resonance is then given by
Repeating an argument similar to that leading to (2. 70) we find that

the surplus number of nuclei over the region of the sweep is reduced by
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a factor and the deflection of the meter is
proportional to

(3.26)

It has been observed experimentally that the value of H1 necessary
to produce saturation, depends on the amplitude of the sweep as must
be expected from (3. 26). If Hs is kept constant for various samples, we
obtain a set of parallel saturation curves, which should decrease as
(l+x2) - ' .

If we plot the curves again on semi logarithmic paper, twice the
horizontal distance between them gives immediately the ratio of the
relaxation times T 1 . If H0 is varied in order to go through the curve
h ( v ) in fig 3. 19, we meet unsaturated groups of nuclei and we must
"dig a hole" in the distribution h ( v ) , before we obtain the equilibrium
value *).

So far we have assumed that H0 +Hs sin t is slowly varying, so
that we could make use of the stationary solution of Bloch's equations.
For narrow lines this assumption is not justified. The modulation of the
field should be taken into acount by considering a frequency-modulated
spectrum of the radio-frequency signal.

To estimate the order of magnitude of the transient effects, which
will be discussed somewhat further in section 3. 7, we assume that we
have only one passage of the sweep with a velocity Hs The time,
spent at resonance is not, as was suggested, For if the
nuclei experience a signal only during a time t', the angular frequency
is not defined better than to 1/t', and if l/T2 < we should
write 1/t' = Substituting the experimental values
Hs = 0.02 oersted, we find for protons = 550 sec—1.

Since = 600 sec-', the nuclei are at resonance practically during the

*) This „hole" effect makes it necessary to be very careful in carrying out the
experiment.

If we go through the resonance too fast, in a time comparable to the relaxation time,
we are always operating on the right hand side of the hole with increasing H0 and on
the left hand side with decreasing Ha. So we get large readings on meter L in opposite
directions depending on the sign of the variation in H0. So we have to go very slowly,
but we cannot go too slow either, because shifts in the battery current will alter the
magnetic field by a few parts in a million over periods of about half a minute and so
cause jumps to other places in the line.
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whole sweep. The effective energy density of the field is

and the saturation should be described by a function

(3.27)

which displays the same dependence on H1 and T1 as (3. 26). We now
got rid of the restriction for T2 > 1/550 sec. If this condition
is not satisfied, we immediately come back to the cases a or b. The inter-
mediate case b should occur for values of 3. 10 -4 < T2 < 2.10 -3 but
experimentally it could not be distinguished from case a, which occurs
for T2 < 3. 10-4 sec.

The ratios of the relaxation times T1 were determined with formula
(3.24) for and with (3.26) for

This method gave very satisfactory results which are shown in the
graphs of chapter 4. But we cannot exclude with certainty a serious
systematic error in the determination of relative relaxation times in the
region of transition, for intermediate values of T2. The error, however,
is probably less than a factor 2. For in the preceding discussion we have
made some drastic simplifications, that the line shape is rectangular and
the sweep linear. In fact the sweep is sinusoidal and we do not have a
single passing through the resonance, so that the approximation of a
signal smeared out over a frequency range is rough. Neither did we
discuss the transitions from one case to another. Furthermore we have
assumed that the oscillating field H1 has a constant amplitude over the
region of the sample. At the ends of the coil, however, H1 will certainly
be smaller. For broad lines, where H0 can be considered as homogeneous,
this will tend to make the saturation curves less steep, since the systems
of nuclei in various parts of the sample are not saturated at the same
current in the coil. If both H0 and Hl are. inhomogeneous, the situation
is very complicated. Suppose that in the middle of the coil H0 has its
highest value, at the ends its lowest. Then the inhomogeneity of H1

will even influence the shape of the unsaturated line, and on saturation
we cannot expect to measure a curve given by e.g. (3. 25).

Experimentally we found that the saturation curves for small values
of 1/T2 (case c) were almost parallel to those for lines with real width in
case a. The small deviation would be to the other side than predicted by
(3.24) and (3.27). The curves would be steeper than
In fig. 3. 20 we give a typical example. The relaxation times, obtained
from these curves and many others, will be described and compared with
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theory in the next chapter. In fig. 3. 21 the roughest set of curves which
has been used in the evaluation of the data is represented, so that the
reader may form his own opinion on the obtained accuracy.

Figure 3.20.
Saturation of the magnetic resonance absorption of protons in mixtures

of water and glycerin.

Figure 3. 21.

Saturation of the magnetic resonance absorption of protons in solutions of
Fe (NO3)3 of various concentrations. Data like these were used to construct fig. 4.5.

Any systematic error could be eliminated if the field were made so
homogeneous, that always the real width would be measured. In the
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relative measurement within the group of lines wider than 0.3 oersted,
we do not expect systematic deviations. These are also eliminated in
comparing the lines, which are narrower than 0.01 oersted. In these
cases the error arises from the inaccuracy in the calibration of the radio
frequency power meter and in the decade system to reduce the output
of the signal generator. According to General Radio Co. this systematic
error can amount to about 20% in power at 30 Mc/sec. Slight drifts in
balance of the bridge and gain of the receiver in the time necessary to
plot a curve might affect the result by 15 %. For wide lines another 10 %
has to be added for inaccuracy in the determination of T2. In the mea-
surement of the line width we can also expect systematic errors, caused
by the line shape or the finite velocity of the sweep. The noise was always
less than 10 % and in most experiments less than 1 % of the reading,
Since each relaxation time is determined from an entire saturation curve,
accidental errors will average out to some extent. Several runs were
repeated on different days. The resulting relaxation times were repro-
ducible within 30 %.

3. 6. Comparison with the "nuclear induction" experiment.

There has been some confusion about the" question, how the method
of P u r c e l l, T o r r e y and P o u n d (P 7) compares to that of B l o c h,
H a n s e n and P a c k a r d (B 7), which is called the method of nuclear
induction by those authors. It may be pointed out here that there is no
essential difference, B l o c h c.s. pick up the nuclear signal in .a separate
coil, the axis of which is perpendicular to H0 and to H1. P u r c e 11 uses
the same radiofrequency coil for supplying the field and picking up the
signal. We have seen in chapter 2 that the nuclear resonance depends
only on one rotating component of H1. Therefore the signal picked, up
in any coil perpendicular to Ha will be the same. Nothing prevents us
from supposing a second coil to be present in the P u r c e 11 experiment,
just as in B l o c h 's arrangement. In this coil are flowing two equal and
opposite currents, providing a field and a field

Since the sum of the currents is zero, we can leave
the coil out. The only advantage to pick up the signal in a separate per-
pendicular coil is that one has automatically achieved a balance by the
geometrical arrangement. For very high values of H1 (> 1 oersted),
where B l o c h, H a n s e n and P a c k a r d carried out their experiments,
this is probably the only way of attaining the required balance. They
also operate, however, for the same reason as we do, with some residual
unbalance. On the type of unbalance it will depend again, whether the
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real or imaginary part of the susceptibility is measured. But at very
high values of H1 the absorption goes to zero, so that one can only
measure the dispersion anyhow (G 5, B 7). At these high field strenghts
information about the natural line width and relaxation time can then
only be obtained by making use of nonstationary conditions, in which
the frequency and amplitude of the sweep are varied. Once more it may
be asserted that exactly the same phenomena would occur in the
P u r c e l l experiment with the same values of the parameters,

3. 7. Transient effects.

The non-stationary conditions, caused by the finite speed of the sweep
and which are made use of in B l o c h 's method, cause some undesirable
transient effect in our arrangement. If the time spent at resonance in the
course of the sweep becomes short compared to T1 and (or) T2, it is
not permissible to solve B l o c h 's equations (2.59) under the assump-
tion, that Hz is independent of time. We shall not go into the theory,
but must point out that the picture of the observed proton resonance in
water (figs 3,15 and 3.16) can be explained by these non-stationary
conditions. The wiggles occur after having passed through resonance.
At resonance all nuclei are brought in phase by the applied radio-
frequency signal. When the sweep goes on, the Larmor frequency
of the nuclear precession changes and the nuclear signal will beat with
the applied signal, causing alternating minima and maxima. The phase
angle between the beating signal after passing the resonance at t = 0
is given by

For a linear sweep is a quadratic function of the time. The time lapse
between successive wiggles varies in the predicted way as a function of
the amplitude or frequency of the sweep. The amplitude of the wiggles
decays, as the nuclei get out of phase with one another. The decay time
is T2 or in an inhomogeneous field whichever is the shortest. The
decay is partly caused by the narrow pass band of the receiver, as was
checked by the use of a receiver with a broad band of 100 kc/sec. It was
even possible to tune the narrow band receiver to the Larmor frequency
in the wiggles, so that they become more pronounced relative to the main
absorption line. If H (t) is an increasing function, the wiggles, always
occurring after the resonance, arise from signals of higher frequency,
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with decreasing H (t) from signals with lower frequency than the applied
signal. To the observed width of the main absorption line on the oscil-
loscope is also set a lower limit by the time spent at resonance, as we
discussed already in section 3.5. If this time is 10 -2 sec., the measured
width cannot be narrower than 100 cycles/sec, or about 0.02 oersted for
protons. With the sweep HS — 0.02 oersted, used in
the relaxation experiments in very narrow lines, the signals get hardly
out of phase before the sweep turns back, so that the measurements
of T1 are not much affected by the wiggles.

The wiggles disappear for very small amplitude or low frequency of the
sweep. Furthermore the meter L is sensitive only to the 30 ~ component
in the energy absorption and will not be seriously affected by the
transient effect of the wiggles.



CHAPTER 4.

THEORY AND EXPERIMENTAL RESULTS.

4. 1. Relaxation time and line width in liquids (B 10, B 11).

4. 1. 1. The Fourier Spectrum of a random function.

In chapter 2 a general theory for the relaxation time was presented.
In order to apply it to practical cases we have to evaluate the Fourier
spectra of the functions of the position coordinates F0, F1 and F2 of
section 2. 5.

In a liquid these functions will vary in a random fashion with time,
as the particles containing the magnetic nuclei take part in the Brownian
motion. The fluctuating functions F0(t), F1(t) and F2(t) satisfy the
condition

( 4 - 1 )

The statistical character of the motion justifies an assumption, custom-
ary in the theory of fluctuation phenomena, that

(4.2)

The left hand side is called the correlation function of F(t).
The correlation function of the random function F(t) is independent

of t and an even function of T. From these assumptions it follows immediar
tely that is real. We shall now derive briefly the relation between this
correlation function and the intensity of the Fourier spectrum of F(t).
A very general theory of random processes has been given by W a n g
and U h l e n b e c k (W 2, R 4), where the reader may find further
references. Many other investigators have pointed out the connection
between the spectrum and the correlation function. We shall here follow
closely K e l l e r 's (K 1) argument, although there are some slight
modifications, as we want to distinguish between positive and negative
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frequencies and our function F ( t ) is complex. Expand F ( t ) in a Fourier
integral

(4.3)

We assume that F(t) = 0 for > T, where T is a time large
compared to all times in which we ever have made or shall make obser-
vations. This assumption therefore will not alter the physical results,
and in the end we can get rid of it by taking the limit T Between the
functions connected by the transformation of Fourier (4.3) exists the
P a r s e v a 1 relation

With (4. 3) and our assumption we can write this in the form

(4.5)

We next make the substitutions and Using the fact
that is only different from zero for small values of
at any rate much smaller than T, we obtain after some calculation

(4. 6)

with the expression for the spectral intensity

(4.7)

Since is real and even, is real and even. Because we made
a distinction between positive and negative frequencies, the intensity in
(4. 7) is half the value usually found in the literature. In the following
discussion we shall see that often has the form:

(4.4)
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The combination of (4. 7) and (4. 8) yields

(4.8)

(4.9)

In general we can say that is a function which goes rapidly to
zero, if exceeds a value which is characteristic for the mechanism
of the Brownian motion and is called the correlation time. The general
behaviour of the Fourier spectrum is therefore such that the intensity
is practically constant for low frequencies and falls off rapidly, when

The time average can be replaced by the sta-
tistical average according to a general theorem from statistical mechanics.

4. 1. 2. Evaluation of the relaxation time in water.
We start out with one water molecule, surrounded, say, by carbondi-

sulfide, which contains no nuclear magnetic moments. We assume that
the rotational magnetic moments of the molecules are also zero. We want
to calculate the relaxation time of one proton due to the presence of the
other. The functions F consist each of a single term:

where b is the constant distance between the two protons. The rotation
of the molecule in the liquid will change the angle between the magnetic
field HO and the radius vector connecting the two protons in a random
fashion.

The correlation function of the expressions F can be calculated if we
adopt the same simple picture as D e b y e ( D 2 ) did in his famous theory
of dielectric absorption and dispersion, namely a rigid sphere of radius a
in a medium of viscosity and absolute temperature T. D e b y e applies
to this model E i n s t e i n's theory (E l ) of the Brownian motion. In
the case that no external forces besides the thermal collisions are present,
the probability to find a fixed axis of the sphere in the solid angle
sin is described by the ordinary diffusion equation

(4.11)

The diffusion constant D is given by the general-expression



The damping constant for the rotation of a sphere in a viscous
medium was calculated by Stokes:

The Laplacian acts only on the angle variables and
A solution of (4. 11) may be written in a series of spherical harmonics

At t = 0 the sphere is in the position and
From this condition we find the coefficients

In order to find the correlation function note that
and

We have

The average has to be taken over all possible initial positions, i.e. over
and

The final result is

(4. 12)

(4. 13)

The characteristic time of D e b y e we obtain by carrying out the
same procedure for the function cos

The result is

(4. 14)

In D e b y e's theory is the time in which an assembly of water mole-
cules, originally oriented by an electric field, loses its distribution around
a preferred direction by the Brownian motion, after the electric field has
been switched off. In our case is the time, in which a molecule is
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rotated by the Brownian motion over such an angle that the relative
position of the nuclei with respect to the external field and thus the
functions F have changed appreciably.

Using (4.9), (4. 12) and the general formula (2.53) we find for the
relaxation time of a proton in a watermolecule

Substituting numerical values T = 300, = 10-2, a =1.5 X 10-8,
we find that = 0.35 X 10-" sec, and since = 3 X 107

cycles/sec we have We see from (4. 15) that in this case
I/T1 is proportional to and we can write with (4. 15)

(4.16)

The value of sec is in excellent agreement with ex-
perimental data on the dielectric absorption and dispersion in water at
microwave frequencies (C 5).

Next we consider the practical case that the neighbours are not CS2

molecules, but other H2O molecules. We can estimate the influence of
the other protons on the relaxation time in the following way.

Again the Brownian motion is responsible for the Fourier spectrum,
but the cause is now rather the relative translational motion of the mole-
cules than a rotation. Let us consider the protons in the other molecules
as independent of one another 1). We ask for and for
the protons in a spherical shell between r and r + dr around the proton
of which we wish to determine the relaxation process. A reasonable value

for is apparently the time it takes for a molecule to travel over a
distance r. For in that time the relative position and with it the spin spin
interaction has changed appreciably. From the theory of Brownian motion
we have the expression for the mean square displacement of a particle

(4. 17)

1) It would be better to consider the molecules as independent and attribute to them a
moment if the spins are parallel, or zero if they are antiparallel, and then apply to
these moments the statistical weight of the parallel and antiparallel state. The same
answer would be obtained. In the preceding problem of the rotating molecule also ortho-
and para- states should have been distinguished. We shall come back to this question
at the end of chapter 5.
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where is a damping constant. For a sphere in a viscous medium S t o k e s
derived

If one prefers to use the diffusion constant we find for
the correlation time

(4.18)

since r is the relative displacement of two particles in any direction.
To find we have to average the angular functions over the

spherical shell and multiply with the number of protons in the shell as
we treat them independently. Then we have to integrate over r to include
all other molecules, so approximately from 2a, the distance of closest
approach, to infinity. Using again (4. 9) and (2. 53) we find

{4.19)

In the integral we can neglect the term with in the denominators,
since for r < 10-7, and the most important contribution to

the integral comes from the nearest neighbours. Integration of (4. 19)
then simply leads to

(4.20)

Substituting numerical values in (4.16) and (4.20), a = 2 X 10 -8,
b=1.5 X 10-8, = 10-2, N =7 X 1022, =2.7 X 104

we find

This value is in good agreement with the experimental value of 2.3 sec.
In the case of a rotating sphere it was possible to calculate the correlation
function explicitly. For the translational effect and the rotation of more
complicated molecules in liquids this would be very difficult. In these
cases one might assume formula (4.8) or a linear combination of them
with various The correlation time should be larger in more viscous
media as the molecular motion becomes slower. In the next section we
shall discuss the general relation between the relaxation and correlation
times and the viscosity.
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4. l. 3. The relation between the relaxation time, the viscosity, the
correlation time and the Debye time.

There may be some doubt whether is is permissible to extend the
macroscopic notions of viscosity and diffusion to regions which contain
only a few atoms. The same objection can be raised against D e b y e's
theory. There, as in our case, the procedure is justified by its success.
Since we obtain the right order of magnitude for the relaxation time, we
might even inversely use the latter to extend our information regarding
the motion of the molecules. From our general considerations we would
expect that the relaxation time would decrease with increasing viscosity,
as long as the condition is satisfied. This is confirmed by
the experimental evidence in Table I and Table II.

Table I
Relaxation time of protons at 29 Mc/sec in hydrocarbons at 20° C

Table II
Relaxation time of protons at 29 Mc/sec in polar liquids at 20° C

The viscosities in table I were measured with a viscosimeter, (time of
flow measurement), those of table II were taken from the Physikalisch
Chemische Tabelle.

We also measured the relaxation time in mixtures of water and glyce-
rin, of which the result is shown in fig. 4. 1.

The dependence of the relaxation time on the viscosity is not quite the
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inverse proportionality, which one might infer from (4. 16) and (4.20).
The relaxation time in glycerin is only 102 times smaller than in water,
while the viscosity is 103 times larger. In the first place one can remark
that in going from one substance to another the quantities a, b and N
change too. The deviation in sulfuric acid can so partly be understood
because the proton density in it is much smaller than in the other sub-
stances. But for the latter the density of nuclei nor the internuclear
distances b change very much from molecule to molecule. The molecular

The relaxation time of the proton resonance at 29 Me/sec in mixtures
of water and glycerin.

diameter a changes of course, but this would cause a deviation from the
inverse proportionality with in the direction opposite to that observed.
We can only say that our treatment of a molecule as a sphere with a
magnetic moment in the centre becomes very crude for large molecules,
each containing several protons. In the modern theory of the viscosity a
concept exists, that continually transitions are made between configura-
tions around a given molecule, which are more or less stable. The rate at
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which these changes in configurations take place determines our correla-
tion time which will depend therefore in a complicated manner on the
shape and size of the molecule. For the large chain-like molecules in the
hydrocarbons one has furthermore the possibility of bending and twisting
of a molecule, which changes the relative position of the protons in that
molecule.

The reader may be reminded that similar difficulties arise in D e b y e's
theory of dielectric dispersion. His time determined experimentally,
does not always correspond to the one calculated from (4. 14). Attempts
have been made to explain this deviation by taking into account the elec-
tric dipole interaction between the polar molecules and introducing diffe-
rent models for the electric local field. Note that glycerin which shows the
largest deviation in our case, also violates D e b y e's formula (4.14) most
severely. We want to stress, however, that the D e b y e time and our
correlation time characterize different- physical processes. D e b y e's
refers only to the orientation of the polar group in space, while for
any relative reorientation between the magnetic nuclei must be considered.
The following formulation then seems appropriate. The characteristic
time of D e by e and the correlation time in the magnetic local field
spectrum are proportional in one sample. They both vary in proportion
to If the temperature of the sample is changed.

The proportionality constant between and varies from substance
to substance, depending on the detailed picture of the molecular motion
in each substance, but the ratio will always be of the order of unity.
For the model of a sphere in a viscous medium we have 3
Experimental values for the proportionality factor are given in section
4.3.1.

We can obtain a better test of the theory if we carry out measurements
of the relaxation time and line width in one substance at various tempe-
ratures. We shall first describe in some detail the behaviour of T1 and
T2, that must be expected from theory. Substitution of (4. 9) and (4. 12)
into (2.54) and (2.53) leads to

(4.22)

with

and

(4. 23)

(4.24)

(4.21)
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It has been assumed that the averaging over could be carried out
independently. Use has been made of the relations (4. 12). Furthermore
the formulae are written for a single relaxation time
Actually we have a distribution of relaxation times as we have seen for
the translational effect in water. We should write instead of the constant
c the function and integrate over the parameter In most cases
the distribution will be narrow, since only the nearest neighbours contri-
bute strongly. Strictly speaking the constants K are functions of the
temperature, as they vary with the density of the sample, but this effect

Figure 4. 2.

The theoretical behaviour of the relaxation time T1 and T2, which is
a measure for the inverse line width.

is completely negligible. The simplifying assumptions now permit to point
out clearly the general behaviour of T1 and T2, which are plotted as a
function of in fig. 4.2. Here T2 is defined by (2.58).

For is inversely proportional to and thus to
and for directly proportional. The plot on a double
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logarithmic scale therefore shows two straight lines making angles of 45°
and 135° degrees with the x-axis.

In the transition region has a minimum value

(4.25)

for

The quantity T2' is a monotonie decreasing function of and reaches
an asymptotic value

(4.26)

for very long correlation times. This value is of course exactly the same
as the one we calculated for the static case (2. 36) where the nuclei are
at rest. For is inversely proportional to The
horizontal distance between the points, where T1 and T2 bend over
respectively, is given by the ratio For
T1 and T2' are proportional and from (4. 21) and (4. 22)
we find for the proportionality constant

(4.27)

The line width is given by (2. 58) with one of the relations (3. 22) or
(3. 23). For we have

for we have with (4. 27)

T2 = 0. 85 T1

(4. 28)

(4. 29)

We must not attach too much weight to this particular ratio, for about
the limits in the integral in (4. 22) we only know that they must be of the
order of magnitude of the line width expressed in cycles/sec. It might be
better to take the limits as ± instead of ± This would
not make any difference for long and does not affect the order
of magnitude for the region where T1 and T2 are proportional. We shall
see in the next paragraphs that the experimental ratio between T1 and T2

is close to the value predicted by (4. 28) and (4. 29). On this basis the
resonance line in water e.g. with T1 = 2.3 sec. should be very narrow
indeed. The width should be of the order of one cycle or about 10 - 4

oersted. The experimental width is then, of course, determined by the
inhomogeneity in H0 as we have already pointed out several times.
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4. 1.4. Experimental results in ethyl alcohol and glycerin between
+ 60° C and —35° C.

In order to vary the temperature of the sample in the radio frequency
coil, copper tubing (3mm inside diameter)- was soldered around the
grounded shield of the radiofrequency coil (see fig. 3.8). To obtain
low temperatures acetone, cooled by dry ice, could flow through the
tubing from a container, which was placed above the magnet, under the
influence of the gravitational force. This acetone was not in direct contact
with the dry ice. For dissolved CO2 would be set free, when the acetone
was warmed up in passing through the narrow tubing. This would prevent
a regular flow. The apparatus in the magnet gap and all other cold
parts were thermally insulated with glass wool and asbestos paper. The
temperature was measured by a copper-constantan thermo-element. One
contact point was brought in the liquid through the small cork stop closing
the thin walled glass tube which contained the sample. There was no
trouble of pick-up of radio frequencies, since the coupling between the
leads of the thermo-element and the coil was very small indeed, as the
contact point was kept well outside the volume of the coil. The other
contact of the element was put in melting ice. The thermo — E.M.F.
was measured with a Leeds & Northrup type K potentiometer. The
element was calibrated at + 100° C, 0° C and —78° C, which checked
with the calibration data given in the Handbook of Chemistry and Phy-
sics, so that this table was used. The temperature of the sample could be
varied by changing the flow of the cooling liquid. The temperature
remained constant to within 0.5° C during the determination of each
saturation curve. The balance of the bridge was also stable, once thermal
equilibrium had been established. To cover the range of higher tempera-
ture, the container was filled with iced water or hot water.

The variation of the viscosity with temperature was taken from the
Physikalisch-Chemische Tabelle. The data obtained with ethylalcohol at
two frequencies are shown in fig. 4. 3. The variation of the relaxation time
with viscosity is inversely proportional. The line drawn through the points
makes an angle of 135° with the x-axis. Although the variation in the vis-
cosity is not large, the points clearly indicate the theoretical behaviour, to
be expected for short The real line width could not be measured. The
limit set by the inhomogeneity of the field is 0.015 oersted at 4.8 Mc/sec.
According to theory the line width should be much narrower than this.
As was pointed out in chapter 3, any systematic errors in the relative
determination of T1 cancel out in this case. More interesting are the
results for glycerin shown in fig. 4. 4. The freezing point of this sub-
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stance is 18° C, but it usually gets supercooled and very high viscosities
are obtained at low temperature, where the substance becomes almost
glasslike. The experimental points show that we have reached the region
where The drawn lines are theoretical curves. The observed
minima are somewhat flatter and on the low temperature side the points
do not quite fit a 45° line. This can, at least in part, be explained by a
distribution of correlation times rather than the single value to which

Figure 4. 3.

The relaxation time of the proton resonance in ethyl alcohol between
60° C and — 35° C. The straight line makes an angle of 45° degrees

with the negative x-axis.

the theoretical curves pertain. It would be interesting to extend the
measurements to lower temperatures to get more information about this
distribution. The shift of the minimum with frequency is somewhat less
than predicted by (4. 25). We find a factor 4 instead of 6. On thé low
temperature side the relaxation time should be proportional to In-
stead of a factor 36 we find a factor 14. Again this deviation can, at
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least partly, be understood by remarking that (4. 25) holds only in case
of a single correlation time, or if one wishes, of a single correlation
function. The data on the line width are plotted in the same diagram
with the aid of formula (3. 22) for a Gaussian curve.

At room temperature the line is narrower than the inhomogeneity of
the external field. Extrapolation of the dotted line towards higher tempe-
ratures gives the ratio In the region where T1 is proportional
to the viscosity and T2 inversely proportional, the saturation of the line

Figure 4. 4.

The relaxation time and the line width of the proton resonance in glycerin between 60° C and
—35° C. The lines, drawn through the experimental points, have the theoretical form of fig. 4.2.

always occurs at the same output power of the generator, that is at the
same density of the applied radio frequency field, as the product T1T2

is constant. From the viscosity, measured at 20° C, it followed that the
glycerin used in the experiment was not pure and probably contaminated
with 2 % water. Experiments carried out with mineral oil gave similar
results both for the relaxation time and line width.
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4. 1. 5. The influence of paramagnetic ions.

So far we have considered the dependence of the relaxation time on
It is also possible, however, to bring about changes in the quantities K1

and K0 in (4. 21) and (4. 22) by mixing the substance with paramagnetic
ions. From (4.23) and (4.24) we see that the large values of the
electronic moments will enhance the values of K1 and K2. The larger
interaction of the nuclear moment with the electronic moment will shorten
the relaxation time and enhance the line width, remaining constant.
Let us consider an aqueous solution of ferric nitrate. We can calculate the
influence of the ions in the same way as we did, when we
estimated the contribution of the protons in other molecules to the relaxa-
tion time in pure water. An adapted formula (4.20) would read

(4. 30)

This applies for ions of the iron-group, which are of the "spin-only"
type. For others we should replace

Of course we should add to (4. 30) the contribution of the protons in
the solution, which in pure water are solely responsible for the relaxation
time. But as is about 106 times larger than the influence of the

paramagnetic ions is predominating even in a concentration of 10 -3 N.
or 1018 ions/cc. According to (4. 30) the relaxation time should be inver-
sely proportional to the concentration and to the square of the magnetic
moment of the paramagnetic ions. In fig. 4. 5 the results for three ions
are given. It appears that the curves, also to the absolute magnitude,
can be well represented by (4.30). Only for very low frequencies there
seems to be a deviation towards longer relaxation times. This is all the
more remarkable since the straight lines finally must bend over to the
left to the asymptotic value of 2.3 sec. in pure water. We do not know
if the effect is real. It certainly seems too big for a systematic error.
We would like to point out that (4. 30) certainly needs some correction.
For while the motion of a watermolecule relative to the ion is still given
by (4. 17) and (4. 18), where a is the radius of the watermolecule, the
distance of closest approach is determined by the radius of the ion and
its hydratation. We must insert a correction factor a/b. It is very hard
to estimate correctly the motion of a watermolecule in the dipole atmo-
sphere around an ion. But if there is an effect from the hydratation, it
should become more pronounced at small concentrations.

Furthermore we should take into account that the correlation time in
the local field spectrum is not solely determined by the molecular motion
in the liquid, but also by changes in quantisation of the electronic spins,
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which possibility was already indicated in (2.42). The characteristic
time for this latter process is not known experimentally, as the para-
magnetic electronic relaxation times in solutions are short, of the
order of 10-10 sec.1). This implies that in the derivation of (4.30) we
should have used for the constant instead of (4. 18) for values of

Figure 4. 5.

The relaxation time of the proton resonance in aqueous solutions of
paramagnetic salts. The lines, drawn through the experimental points,

make angles of 45° with the negative X-axis.

r, where would become larger than This reduces only the influence
of the ions which are rather far away, so that this correction is not

1 ) One might be tempted to calculate in the same way as we did for the nuclear
relaxation time. However, more important than the magnetic interaction between the
spins will be the electric interaction in the polar liquid via the spin-orbit coupling. The
only experimental information, known to the author, comes from Z a v o i s k y (Z 1).
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important. The inverse proportionality with is rather well realised
for some ions, and completely violated for others and especially

and Fe(CN as is shown in Table III,

TABLE III.

The second column is computed with (4. 30) from measurements of
the nuclear relaxation time in solutions of known concentration. The
values in the last column were taken from G o r t e r (G3) .

They were obtained from the measurement of the static susceptibility
of solutions (comp. V I ) . The value for F e ( C N 6 ) - - - was taken from
measurements on solid K3Fe(CN)6 (J 1). The large deviations for the
last three ions can be understood, because nondiagonal elements 1 ) con-
tribute greatly to the magnetic moment of these ions. With these elements
components of the local field spectrum are connected, which have a
higher frequency than where is the limit where the local
spectrum caused by the Brownian motion drops off rapidly. Thus these
non-diagonal elements do not contribute to the nuclear relaxation mecha-
nism, and the for this process is correspondingly smaller. The ex-
tremely small influence of F e ( C N ) 6

- - - is probably partly caused by
the six CN groups around the iron atom, so that the b is very large.
For variations of b for the various ions have not been taken into account
in Table III.

Finally we may ask what the influence can be of oxygen gas dissolved
in water. The magnetic moment of O2 is 2.8. The maximum concentration
of dissolved O2 in water at room temperature under 18 % of the atmo-
spheric pressure is 1.5 X 1017 molecules/cc. The relaxation time, due to O2

alone, could not be smaller than 2.5 sec. The relaxation time in water
is therefore determined by the neighbouring protons and the dissolved

1) For Co++ and Fe (CN)6
— — — even important deviations from C u r i e's

law have been found.
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oxygen. In the determination of the absolute value of the relaxation time
(see chapter 3) distilled water was used. As the distillation was not
done in vacuo, we have no guarantee that for pure water the relaxation
time is not somewhat longer.

We now consider the line width in the solutions. As the correlation
time in paramagnetic solutions is essentially the same as in water and
thus we expect that T2 is proportional to T1. This is
confirmed by the experimental result in fig. 4. 6. The line width, measured

Figure 4. 6.

The line width of the proton resonance in aqueous solutions of
The quantity T2 is inversely proportional to the line width, which appears

to be proportional to the concentration.

between the points of maximum slope in an assumed Gaussian, is
and is proportional to the concentration. For small concentrations the
width is again too narrow to be measured. Comparison of fig. 4. 5 and
4. 6 yields or The same ratio was found for

solutions and is in good agreement with the value found in glycerin.
It may be well to point out here that the proton resonance in para-
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magnetic solutions appears to be shifted, because the field inside the
sample is different from the field elsewhere in the gap. The microscopic
field inside the sample at the position of the protons always determines
the position of the proton resonance. We are interested in the field
produced by all paramagnetic ions at the position of a proton and not
of all but one at the position of another ion. It is not permissible to put

the macroscopic inside the sample into the resonance condition (1. 7).
One has to take the average microscopic field at the position of the
protons. At the same time we might mention another factor which changes
slightly the magnetic field experienced by a nucleus, namely the dia-
magnetism of the surrounding electrons. This effect has been calculated
by R a b i and coworkers and is very small for light elements (K 12).

4. 1. 6. The resonance of F19 and Li7 in liquids.

To compare the resonances of F19 and H1 in a liquid compound, a
"Freon", CHFC12, monofluoro-dichloro-methane, was condensed in a
glass tube and sealed off. Both the H1 and F19 resonance were narrower
than the inhomogeneity in the field. The total intensity of the two lines
was the same (within 15 %) so that it was confirmed that F19 has the
same spin as the proton. The relaxation times were 3.0 sec. for H1 and
2.6 sec. for F19. The is 6.5 % smaller than but the F19 nucleus
experiences a somewhat larger local field as its nearest neighbour is the
proton in the same molecule, while the proton has in turn the F19 nucleus.
We should expect on this basis the relaxation times to be the same, as
is confirmed within the experimental error.

Experiments were also carried out in solutions of KF. Since the signal
to noise ratio drops proportional to the number of nuclei per cc, only
very concentrated solutions could be investigated to obtain a sufficiently
intense F19 resonance. Again the resonance lines are narrow. The result
for the relaxation times is shown in fig. 4. 7. The decrease in the proton
relaxation time can be explained by the increase in viscosity of the
concentrated solution. The much more pronounced decrease for fluorine
may be an indication that the motion of these ions is more quenched, when
one comes very close to the transition point, where the solution changes
into the solid hydrate KF.2H2O. A more careful study of the nuclear
relaxation might give information about the character of this, and other,
transitions. Anticipating the results for solids we can say that in the
crystalline KF.2H2O the lines are wide and that we are in the region
where

An interesting substance is also BeF2, which can be mixed with water



102

in any proportion. For high concentrations the substance becomes very
viscous, and finally goes over into the glasslike, amorphous BeF2, when
no water is present. Preliminary experiments showed that the behaviour
of both the proton and the fluorine resonance in Be F2 + H2O is similar
to that of the proton resonance in glycerin. With increasing viscosity of
the mixture the relaxation time first drops to about 10-3 sec., then rises

Figure 4. 7.

The relaxation time of the proton and fluorine resonance in aqueous
solutions of K F of various concentrations.

again to 0.2 sec in pure BeF2. The line width measured between the
points of maximum slope increases from very small values to about
10 oersted in pure BeF2.

Experiments on the Li7 resonance were carried out at 14.5 Mc/sec
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TABLE IV.

in solutions of LiCl and LiNO3. Table IV gives some results. For
the solutions without paramagnetic ions the decrease in relaxation
time of the proton resonance compared to pure water can be explained
by an increase in viscosity of the concentrated solutions. The relaxation
time for Li7 in this case is somewhat longer. The ratio of the local field
spectra is given by

Since = 6.6, the local field has a somewhat higher intensity
at the Li-nucleus. The cause could be the slower motion of the largely
hydrated Li-ion. A more likely explanation however, is, as we shall see
later, that the intensity of the magnetic local field is the same, or even
smaller but that there is a contribution to the relaxation process from
the quadrupole moment of Li7, which has a spin I = 3/2.

The influence of paramagnetic ions is much smaller on Li7 than on the
protons. In the first place the local field spectrum at the Li7 nucleus will
be smaller because the repulsion of two positive ions will make it less
likely for them to come close together, and then they have to compete
with the quadrupole transitions (cf. chapter 5). At the conclusion of
this paragraph we direct the attention of the reader to the results found
by other investigators (B 2, B 7, R 5), which seem to be in agreement
with the general ideas, here proposed. Especially we might mention the
experiment in liquid hydrogen by R o l l i n ( R 6 ) .

4. 2. The relaxation time and line width in gases.

4. 2. 1. Hydrogen.

The only experiment of nuclear magnetic resonance (P6) in gases
which has been reported was performed with hydrogen gas at room
temperature between 10 and 30 atmospheres of pressure. The accuracy
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was poor, as the density of the nuclei is low. It was found that the line
is narrow (< 0.15 oersted) and that the relaxation time at 10 atmospheres
T 1 0.015 sec. with an indication that T1 increases with increasing
pressure. We shall now investigate what the theory predicts for this case.

The local field at the position of a proton in an H2-molecule in a
volume of hydrogen gas consists in the first place of the contribution

connected with the rotational moment of the molecule and the
magnetic moment of the other proton. According to P a u l i's exclusion
principle the spins of the two protons can only be parallel, if the electronic
wave function is antisymmetric (J odd, orthohydrogen), and only anti-
parallel, if the electronic wave function is symmetric (J even, parahydrogen).
The transitions from the ortho- to the para-state in hydrogen gas are
extremely rare. Furthermore, if the system is in thermal equilibrium at
room temperature, 13% of the H2 molecules have J = 0, 66% have
J — 1, 12 % have J = 2 and 9 % have J = 3. We ignore for the sake
of the simplicity transitions from J = 1 to J = 3. We assume that the
rotational angular momentum of orthohydrogen is a constant of the
motion. The total nuclear spin I = I1 + I2, I = 0 for parahydrogen,
I = 1 for orthohydrogen. Only orthohydrogen will show nuclear reso-
nance. At room temperature equilibrium the ratio of molecules in ortho-
and para-states is as 3 : 1. So the total intensity of the nuclear magnetic
absorption line is proportional to 3/8 NI(I + 1). This is equal to
(1/2 • 3/2)N. Thus the total intensity of the line of orthohydrogen is the
same as if all N protons were uncoupled in hydrogen atoms.

If the molecule is placed in a strong magnetic field, in zero approxima-
tion not only I and ], but also mI and mJ are constants of the motion.
We first consider the interaction of the nuclear spin with the rotational
moment. The perturbation term in the Hamiltonian is given by

From Rab i ' s experiments (K 3) follows the value of H ' ; the magnetic
field at the position of the protons produced by the rotation of the
molecule is 27 oersted. With (4.31) we can once more repeat the
reasoning explained in sections 2. 4 and 2. 5 in order to calculate the
relaxation time. If the quantisation of J were fixed, that is if mJ did not
change during collisions, we would have no transitions in mJ. For the



105

first two terms on the left hand side in (4. 31), which have non-diagonal
elements in involve also a change in But the collisions in the gas
will change and we can assume that after each collison has equal
chance for any of its 2] + 1 values. As the distribution of the collisions
in time of a given molecule, measured from the time of the preceding

collision, is given by where is the mean collision time in the

gas, we have a Fourier spectrum for and thus for The
intensity of the spectrum of the latter is with (4. 9)

(4.32)

From this and (4. 31) we obtain a relaxation time

(4.33)

with (4.34)

The number of molecules per cc, proportional to the pressure, is
denoted by N, is the collision cross section, v is the average velocity of
the molecules.

To (4. 33) we have to add the contribution of the spin-spin interaction,
which is represented by the perturbation term

(4.35)

where is the unit vector pointing from one proton to the other, and r
is the distance between them. The expression (4. 35) can be transformed

to one which only contains constants and the operators and

In order to find the contribution of this interaction to the relaxation
process, we have to write the operator between square brackets in the
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representation. R a b i and collaborators (K 4) found that this
operator is equal to

The matrix elements can be written down immediately with the rules
of matrix multiplication and the expressions (1,1), (1.2) and (1,3). The
matrix elements of (4. 37) with = 1 and 2, combined with the com-
ponents at and of the frequency spectrum of the corresponding
terms in give an expression for l/T1, which must be added to (4. 33).

We write down the final result, first derived by S c h w i n g e r for
the case realized in practice that is short compared to the Larmor
period

(4. 38)

where is the effective field from one proton at the position

of the other. From R a b i's experiments (K3) follows — 34 oersted.
In (4.38) we have already asumed This is always
fulfilled under practical conditions. The opposite case
would occur at pressures of 1 mm Hg or less, where the signal is much
too small to be detected. From (4.38) and (4.34) it follows that the
relaxation time T1 is proportional to the pressure. Substituting numerical
values = 2.7 X 104, ƒ = 1, = 10-11 sec. (Handbook of Chemistry
and Physics) for a pressure of 10 atmospheres, we find T1 = 0.03 sec,
which is in agreement with the experimental value.
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The line width can be calculated on similar lines as we did in chapter 2
from (4. 31) and (4. 32). As in liquids we find again that T2 is of the
same order as T1, so that the resonance line should be very narrow. As
T'2 is proportional to T1, the line width should be inversely proportional
to the pressure. We can speak of "pressure-narrowing" of the nuclear
resonance line in H2-gas.

The conclusion is: The magnetic interactions in the H2-molecule give
rise to a fine structure of the radiofrequency spectrum in R a b i's mole-
cular beam method (K 3). Combined with the collisions in the gas sample
for pressures > 10 mm Hg, as used in P u r c e l l's method, they give
rise to a relaxation mechanism and the. local fields average out to a single
very narrow line.

We have not considered the influence of the other molecules during a
collision on the relaxation time. In the next paragraph we shall see, that
this effect can usually be neglected in H2-gas.

4. 2. 2. Helium.

An entirely different state of affairs occurs in the interesting case of
He3 gas. The atoms are in an S-state. The only perturbation is brought
about during the collisions by the nuclear magnetic moment of the col-
liding atom. Unlike in hydrogen, here the influence of the other molecules
is the only effect. Suppose that the He3 nucleus has the set of eigen-

functions in the constant field H0, We ask for the chance that the
perturbation by a collision brings the system from the initial state i with
energy Ei to the final state with energy The perturbation method,
which may be applied, if the chance in one collision is small compared to
unity, gives for the probability to find the system in state after the
collision

(4.39)

. We cannot say precisely, what is going on during the collision. But
the order of magnitude of the matrix element of the perturbation operator
between the initial and final state will be the same as that of the inter-
action energy The colliding particles have magnetogyric
ratio's and and d is the distance of closest approach between the
moments during the collision. The time t, during which a strong inter-
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action takes place, is probably 10-15 sec, at any rate
10~~8 sec. We can therefore write instead of (4. 39)

(4.40)

If v is the relative velocity of the colliding particles, we have t d/v.
We then multiply by the number of collisions per second and find
for the relaxation time

(4. 41)

Substituting numerical values for He3 at room temperature and atmo-
spheric pressure, v = 1.4 X 105 cm/sec., = 2 X 10-10 sec, d = 2 X
10-8 cm, = 2.4 X 104, we find T1 — 106 sec. In order to avoid
saturation during the resonance measurements it is therefore necessary
to admit oxygen gas. The magnetic moment of an O2 molecule is about
103 times as large as of a He3 atom.

Taking = 2.4 X 104, = 2.8 X 107, d = 2.5 X 10-8 cm, = 10-10

sec we find for the relaxation time of He3 resonance, if the partial
pressure of the oxygen is one atmosphere, T1 1 sec. From (4.41)
and (4.35) it follows that in this case the relaxation time is inversely
proportional to the pressure. Strictly speaking we ought to add a term
which is similar to (4.41) to (4.38) in the case of H2. From the order
of magnitudes, resulting from (4.38) and (4.41) , we see that such a
term in pure H2 gas is completely negligible for pressures below 103

atmospheres. For O2 pressures of 102 atmospheres, however, it is an im-
portant contribution. In general we can say that most gases, consisting
of molecules, will behave like hydrogen and show the "anomalous"
pressure-narrowing. The noble gases, consisting of atoms in an S-state,
will behave like He3 and have pressure broadening.

We shall now derive the relation between T1 and T2 for the case
of He3. At the same time we obtain an independent derivation of the
saturation formula (2.64). The He-nuclei can be considered as com-
pletely free most of the time, but during each collision there is a small
chance for the nucleus to change its orientation. The probability w =
1/2T1 for such a transition is given by (4.40). If a radio frequency field
H1 is switched on at t = 0, the free nuclei will oscillate between the upper
and lower state according to Rabi's formula (2. 11), until the situation
is interrupted by a thermal transition. We start out with the system of
nuclei in thermal equilibrium. The situation can be described by the
number of surplus nuclei, originally + no in the lower state, oscillating
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between + n0 and —n0, while the collisions tend to restore the equili-
brium value + n0. The probability that this is achieved in the time
interval between t and t + dt is given by l/T1 exp(—t/T1) dt, as T1

is the average time and the distribution of gas kinetic collisions in time
is given by an exponential. The average energy dissipated from the spin
system and absorbed during the collisions is

(4.42)

where is the probability that the surplus -nuclei are in the upper
state at time t (2. 11).

After the equilibrium has been restored, the process repeats itself.
!n our description we have artificially broken up the natural process into
self repeating steps. In reality the individual nuclei each have a chance
to make transitions both up and down, with a preference for the latter.
The energy absorbed per second, which must be supplied by the radio
frequency field, is obtained if we multiply (4.42) by l/T1, the number
of times that the process is repeated per second. The integration over t can
be evaluated by partial integrations. The absorbed power P is given by

(4.43)

Since always we can put sin and cos
1 — Near resonance we then have

(4. 44)

which on comparison with (2. 71) and (2, 66) appears to be the B l o c h
formula with T1 = T2.

It is interesting to apply the noise formula (3. 21) to the case of He3

and see what the minimum detectable amount is. It is not justified, how-
ever, to put in that formula T1 = T2, since the line width will always be
determined by the inhomogeneity in the field. Using 10 atmospheres of
O2 we have T1 = 10 -1 sec and we can take T2/T1 ~ 10-2.

Substituting for q, and F each of their ideal values of unity and
taking Q = 102, = 2.4 X 104, H0 = 104, we find that 1 cc of He3 gas
at room temperature and atmospheric pressure would give a signal to
noise ratio about 5, if the indication time of the meter is one second.
In practice it would be very hard to find such a signal of such an extre-
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mely narrow line. One would have a better chance by searching for
the moment in liquid He3 at 1° K.

Added in the proof:
Very recently A n d e r s o n ( A 5 ) succeeded in measuring in a

mixture of He3 and O2, each at a partial pressure of 10 atmospheres.

4. 3 The relaxation time and line width in solids.

4. 3. 1. Solids, to which the theory for liquids is applicable.

In some solids there seems to be sufficient freedom of motion (S 5)

TEMPERATURE IN °G
Figure 4.8.

Values of the dielectric relaxation time defined by Debye, in ice at
various temperatures. The points, indicated in the graph, are obtained
from measurements of the anomalous dielectric dispersion in ice by

Wintsch.

for the particles, that we can apply the same theory as in liquids. This
state of affairs was already evident from the dielectric dispersion of the
D e b y e type occurring in solids (D2). The typical example is ice, of
which we show the D e b y e time as a function of temperature in fig. 4.8,



The data are calculated from measurements by W i n t s c h (W5).
Of course, the molecules are not as free as in water; is about 106

times larger than in water. We expect then that the correlation
time in the local field spectrum has increased by about the same
factor, so that the relaxation time in ice will behave in the same way as
in glycerin at low temperatures where In fig. 4. 9 T1

in ice between —2° C and —40° C is shown as a function of the Debye

DEBYE TIME IN SECONDS
Figure 4.9.

The relaxation time of the proton resonance in ice between — 2° C
and — 40° C, plotted against the Debye time The line drawn
through the experimental points, makes an angle of 45° with the

positive X-axis.

time, to which is proportional. The graph apparently confirms the
ideas set forth in the beginning of this chapter. The straight line drawn
through the points makes an angle of 45° with the x-axis. Unfortunately
we were not able to investigate the resonance in ice at 4.8 Mc/sec,
because the signal to noise ratio became too low in that case. We would
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expect, of course, the relaxation time to be shorter, but having the same
dependence on

Measurements of the line width yield values of T2, which are shown
in fig. 4. 10. The drawn line is the theoretical curve computed from
(4 .22) . So here becomes so large that we approach the asymptotic
value of the line width, which should be, according to the graph, about
16 oersted for a Gaussian. This is in good agreement with the value
calculated from the crystal structure of ice (B 15), assuming that the

Figure 4. 10.

The line width of the proton resonance in ice between — 2° C and
— 40° C. The theoretical curve (4. 22) for the quantity T2, |which is
inversely proportional to the line width, is drawn through the

experimental points.

nuclei are at rest. In ice a translational motion of the molecules in a
viscous surrounding is apparently excluded. One might assume with
D e b y e a hindered rotation of the H2O molecules in the crystalline
structure, although a more recent picture by Onsager suggests, that
chains of lined up dipoles will reorient themselves at the positions, where
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there are misfits with other chains. Either picture will produce the
required fluctuations in the local magnetic field and will only affect the
proportionality constant between and The best explanation for the
fluctuations in the local field are'perhaps the transitions between the
two available positions for the proton in the O-H-O bond, as proposed
by P a u l i n g ( P 8 ) . For comparison the results for alcohol, glycerin
and ice at 29 Me are shown together in fig, 4. 11. For glycerin we can

Figure 4. 11.

The relaxation time T1 of the proton resonance in ethyl alcohol, glycerin and ice at
29 Me/sec between — 40° C and + 60° C.

determine the ratio from comparison of the experimental result of .the
minimum in the curve with formula (4. 25). We find Then we
must have for alcohol = 0.2 and for ice = 0.8 These results are
very satisfactory and must be considered as additional proof for our
theory.

We now give a very brief account of what can be expected in other
solids with some preliminary experimental results to confirm our view.
Much more detailed investigations have to be carried out to refine the
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following global exposition. In hydrated paramagnetic salts like CuSO4.
5 H2O the field at the position of a proton will fluctuate, because the elec-
tron spins of the Cu++ ion change their quantisation with respect to H0

at the rate of the short electronic relaxation times to which we must put
equal the correlation time The proton resonance in CuSO4. 5 H2O
and CoSO4. 7 H2O show line widths of only 12—14 oersted, while the
instantaneous value of the internal fields in these paramagnetic salts is
several hundred oersted. This can be explained by the short The high
intensity of local field, arising from the electronic moments, makes the
relaxation time so short (< 3 X l O - 4 sec), that we could not saturate the
proton line.

In paraffin the relaxation time was found to be 0.01 sec. and the line
width 4.5 oersted. These data are in agreement with the estimates of
other investigators. In molten paraffin the line is narrow. Paraffin be-
haves again in a similar way as glycerin. In the solid state there still
must be an appreciable opportunity for motion, either rotation or twisting
or realignment, of the molecules. About the same as for solid paraffin
holds for the F19 resonance in teflon. This carbon fluoride compound
can be considered for our purpose as paraffin, in which the protons are
replaced by F19 nuclei.

For the proton resonance in NH4C1 a relaxation time of 0.12 sec. at
+ 20° C and 0.015 sec at —20° C was found. The line width at both
temperatures was 4 oersted. These results can probably be explained by
a hindered rotation of the NH4 tetrahedron (S 5).

Very interesting experiments have been carried out by B i t t e r (B 2,
A 1), who observed a sharp transition point in the line width of the
proton resonance in solid CH4, at the same temperature where there
is known to be a transition point in the rotational degree of freedom of
the molecule. The attention of the reader is also called to the measure-
ments at very low temperatures by R o l l i n and collaborators ( R 7 ) .
Possibly the rotation of the hydrogen molecule can be helpful in ex-
plaining the experimental results in solid ortho-hydrogen.

4. 3. 2. Ionic crystals; the influence of the lattice vibrations.

4. 3. 2. 1. The relaxation time.

We now take up the question of the relaxation time in those crystals,
in which lattice vibrations are the only motion. For this case the
theory of the relaxation time had been worked out by W a l l e r (W 1,
H 2), who considered the interaction of the magnetic moments with
the lattice vibrations. We shall show that our procedure, which gave
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the new results for liquids and gases, is essentially aequivalent to
W a 1 1 e r 's considerations, when it is applied to crystals.

For the lattice vibrations we shall adopt the same simplified picture,
which D e b y e introduced in his theory of the specific heat of solids (S 5).
According to this picture there is an isotropic distribution of lattice oscil-
lators. In the volume of the crystal there are oscillators
for one direction of polarisation in the frequency range

Here c denotes the velocity of propagation of elastic waves in the
crystal, which is taken to be the same for longitudinal and transverse
modes.

This formula is valid up to the frequency determined by the equation

(4. 45)

For there are no lattice oscillators; (4.45) expresses that the
total number of oscillators is equal to the degrees of freedom of the
system of N atoms.

We first consider the contribution of one neighbour j to the Fourier
spectrum of

We take the z-axis in the direction of H0. The radius vector

connecting the equilibrium positions of the two nuclei ma-

kes an angle with the z-axis. The displacement of the nu-
cleus from its equilibrium position by the lattice vibrations is

(4.46)

The relative displacement of the ilh and j'th nucleus for waves propaga-

ting in the direction of

(4.47)

since The variation in

can be expressed by a Taylor series
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We dropped the subscripts i and j. For longitudinally polarised waves
we have only changes in r; for these long.

The direction of polarisation of one of the transverse modes is taken in

the plane through and the z-direction. For this mode we have
tr. I. For the second transverse mode we have
tr. II/r sin If we may write

tr. II. Only for very small this relation is not
satisfied. For this last mode and very small values of the expansion
(4.48) of F is not suitable.

To find the intensity of the spectrum of F1, we have to deter-
mine the sum of the mean square deviations in each of the
independent waves in the frequency interval

We can find an expression for the amplitude of each wave by
means of the aequipartition theorem. Each lattice vibrator has an energy

For small or large T this is equal to kT. Let M be the
mass of the crystal, = M/Vc the density. The aequipartition theorem
can be written with (4.46) as

(4.49)

We use the last approximation for the three first order terms in (4. 48).
These terms can be treated independently, as they belong to different
directions of polarisation. By squaring each of them and multiplying with
the number of oscillators, we find with (4.47, 4.48, 4.49) for the
intensity of the spectrum of the first orders terms

(4.50)

A factor is inserted, because the two directions of wave propagation

perpendicular to do not contribute, as in those waves the two nuclei
have the same phase.

Now we can sum (4.50) over all nuclei i j This is legitimate,



117

although there are fixed phase relations between the deviations of the
nuclei in one wave. For the quantisation of the various nuclei is inde-
pendent, so that their fields aid or counteract at random. If we do not
have a single crystal we can average over the angle which yields a
factor 2 for the expression between brackets in (4. 50). The contribution
of the Z, nearest neighbours at a distance a will be the most important.
Applying (2. 53) we find for the relaxation time

(4.51)

This result is essentially the same as W a 1 1 e r's formula 51 (W l, p.386),
derived for the transition probability of electronic spins with I =
If we take and multiply Waller's result by 2
to get 1/T1, we find that our numerical factor is times larger.
This difference could probably be explained by noting that W a l l e r used
a more detailed picture for the lattice vibrations in a simple cubic lattice.
He followed B o r n 's representation of coupled harmonie oscillators.
Furthermore W a l l e r quantised the lattice oscillators. To W a l l e r's
result and our formula (4.51) a contribution of the processes in which
two spins flop simultaneously should be added. It will appear to be
much more important, however, to consider the influence of the second
order terms in (4. 48). On substitution of (4. 47) into these terms we see
that products of two harmonic functions are present and terms with

frequency in the expression of occur as the sum or the difference
of two frequencies and The whole spectrum of the lattice vibrations
is important for the second order spectral intensity of F. Since the
density of oscillators near the upper limit is so much higher than
at the frequency it will turn out that the second order contributions
are larger than the first order effects. We find by the same argument
which led to (4.50) for the contribution of the first second order term
in (4.48) to the spectral intensity

and, since

(4.52)



118

Since all frequencies up to are involved, we cannot make use of
of the condition unless the temperature T is large
compared to the Debye temperature of the crystal. The
relaxation time, determined by this second order process, is by the
same arguments which led to (4. 51),

(4.53)

To (4. 53) should be added the result of the other second order terms
and the contribution of the double processes, in which two spins make a
simultaneous transition. The numerical factor in (4.53) would become
somewhat larger. But as it is, it is already X 192/245 larger than
in W a l l e r's formula 56 (p. 388) for the quantised lattice oscillators.
In the language of quantummechanics we can say that to (4. 53) corres-
pond transitions of the nuclear spin accompanied by the emission of a
phonon and the absorption of another in the lattice. One could develop
(4. 48) to the third order terms, etc. It turns out that the contribution of
the successive higher terms decreases as so they can
be neglected.

We see from (4.51) and (4.53) that the first order transition pro-
bability goes as T, the second order one as T2 for but as
for At room temperature the second order terms are more
important. Substituting numerical values =2, c = 2X105, =3X107,
a = 2 X 10-8, Z = 6, = 3 X 104, T = 300°, T we find that
(7\) first order 1014 sec and ( T 1 ) second order 103 sec.

It was a surprise that, while W a 1 1 e r 's theory predicted such long
relaxation times for the nuclear magnetic resonance, the first experimental
results gave much shorter times ( 1 0 - 2 sec in paraffin). We have shown
that in many solids the spectral intensity of the local field is caused by
other motions than the lattice vibrations and that so many observed
relaxation times could be explained. In ionic crystals like Ca F2, however,
one would expect W a 1 1 e r 's theory to be applicable. Nevertheless the
relaxation time for the F19 resonance in a single crystal of Ca F2 ap-
peared to be 8 sec. Relaxation times of the order of one second were also
found in powdered Al F3 and Na F, and by other authors in Li F. There
are some indications that impurities and lattice defects play an important
role in the relaxation process of these crystals (Compare the note at the
end of this chapter).
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4. 3. 2. 2. The line width.

The line width must be calculated from the components near zero
frequency in the spectrum of In the evaluation

we can safely neglect the small and rapid lattice vibrations and assume
that the nuclei are at rest. For this static problem the line width is given
by (2.36). It should be independent of the temperature, but vary with
the orientation of the axes of a single crystal with respect to the direction

of Experiments (P 5) with a single crystal of Ca F2 gave results
for the line width in accordance with (2. 36) applied to the simple cubic
lattice of F19 nuclei, the Ca ions having no magnetic moment. A detailed
investigation of the line width in solids with special attention to the line
shape was made by P a k e (P l ) . In many compounds the same element
can occur in more than one position in the unit cell of the crystal. When
these positions are not aequivalent with respect to the internal magnetic
field, one should distinguish more than one relaxation time and line width
at the resonance of those nuclei. It is of no use, however, to discuss the
situation in crystalline solids in detail, before more experimental material
has become available.

Note added in the proof:

Recents experiments carried out in the Kamerlingh Onnes Laboratory
of the University of Leiden confirm the hypothesis that the relaxation
mechanism in ionic crystals is determined by paramagnetic impurities.

A theory, taking these into account, gives for T1 a value of the order
of a few seconds, if the crystal is contaminated with 0.0001 % iron.
Furthermore this theory predicts that T1 should be largely independent
of the temperature of the lattice. These features are in striking contrast
with W a 1 1 e r's results for an ideal lattice and agree much better with
the experimental data (comp. R 7).

A full account of these researches will be given elsewhere.



. CHAPTER 5.

RELAXATION BY QUADRUPOLE COUPLING.

5. 1. The influence of the quadrupole moment on the relaxation time
and line width.

If a nucleus has a spin the possibility of a spherically asym-
metrical charge distribution over the nucleus exists. The value of the
electric quadrupole momente e Q is defined in C a s i m i r's basic treatise
(C 2) on the quantummechanics of the quadrupole moment as (compare
however B 14)

(5. 1)

The integral is extended over the volume of the nucleus. The nuclear
charge distribution is taken for the state with maximum z-component of
the angular momentum = I. The quantummechanical operator asso-
ciated with the electric quadrupole moment consists of the components of
a symmetrical tensor, the diagonal sum of which is zero. Since the group of
rotations transforms these components in the same way as the Legendre
polynomia of the second order, the components of the quadrupole moment
can be shown to have the form

(5.2)

The subscripts k, L can each denote the x-, y- or z-component. Each
of the components of the tensor is a matrix over the magnetic quantum-
number m j. The matrix elements can easily be evaluated from (5.2) with
the given form (1 .1 ) , ( 1 .2 ) and (1.3) of the operators
It is directly seen that Qk,l has only elements connecting states with

= ± 2, ± 1 or 0.
When a quadrupole moment is present, we have to add a term to the

Hamiltonian

(5.3)
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The gradient of the components of the electric field which occurs
in this expression, is, of course, entirely due to the charge distribution in
the sample. We do not apply an external inhomogeneous electric field. In
heavy water e.g. the inhomogenous field at the position of a deuteron
arises in the first place from the asymmetrical charge distribution of the
other constituents in the same water molecule, but also from the electric
dipoles of the neighbouring water molecules. We can now apply to the
electric quadrupole perturbation (5.3) the same considerations as we
did in chapter 2 to the magnetic dipole interaction (2.33). We note that
because of the thermal motion of the molecules in the sample we again

have a frequency spectrum of each of the components of grad
The correlation time for these components will be about the same as
for the magnetic field, since for both Is the time in which the position
of the molecules with respect to H0 and one another has changed appre-

ciably. The intensity of the spectrum of grad at the Larmor frequency
of the nuclei is responsible for quadrupole transitions with = ± 1,

the intensity of the spectrum at for quadrupole transitions with =
± 2. These transitions shorten the relaxation time 7\. The components
near the frequency zero in combination with the diagonal matrix elements
of Qof will broaden the resonance line. As an example of the terms we
have to add to the formulae (2. 51) and (2. 53) for the relaxation time
and line width, we write down the contribution to TI by the quadrupole
moment of a nucleus with I = 1:

5.2. Experimental results for the resonance of H2 and Li7.

The influence of the quadrupole moment on the relaxation time has
been observed for the resonance of the deuteron in water. Two samples
were used. One contained 0.4 cc of a mixture of normal and heavy water,
the other consisted of the same mixture with some CuSO4 added. In
both samples 51 % of the hydrogen nuclei were deuterons. The magnetic
resonance of both protons and deuterons was observed at 4.8 Mc/sec and
saturation curves were taken which are shown in fig. 5. 1. For compa-
rison the proton resonance in normal water was also measured.
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The relaxation time for the proton resonance in H2O + D2O is about
1.4 times longer than in H2O. This is due to the decreased intensity of
the local magnetic field, since half of the protons are replaced by deu-
terons, of which the magnetic moment is about three times smaller.

The intensity of the local field at the position of a deuteron will be
about the same as for a proton. It will be slightly higher because the
percentages of H2O, HDO and D2O molecules in the liquid are such
that the chance of a nearest neighbour of a deuteron to be a proton is

Figure 5. 1.

The saturation of the proton and deuteron resonance at 4.8 Me/sec
in light and heavy water.
a) Proton resonance in H2O;
b) Proton resonance in 49% H2O + 51% D2O ;
c) Proton resonance in 49% H2O + 51 % D2O + CuSO4 ;
d) Deuteron resonance in 49 % H2O + 51 % D2O;
e) Deuteron resonance in 49 % H2O + 51 % D2O + CuSO4.
The relaxation times calculated from the saturation curves can

be found in the text.

larger than 49 %. The local field intensity, however, can certainly not
be higher than in pure H2O.

Suppose for the moment, that the deuteron would have no quadrupole
moment. Then we expect, that the saturation of the d-resonance would
occur at the same energy density of the applied radiofrequency field as
the proton resonance, namely, when this density becomes comparable to
that of the local field. We see, however, from fig. 5. 1 that the energy
density, required for the saturation of the d-resonance, is 180 times
higher. Taking into account that = 39, we find that the re-
laxation time for the d-resonance in water is 0.5 sec, while it should be
90 sec, if no quadrupole moment were present. The explanation must be
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that the quadrupole moment of the deuteron is almost solely responsible
for the observed short relaxation time. Substituting the values for T1

and Q = 2.73 X 10—27 cm2 in (5.4) we can estimate the value of grad
in the liquid. It is the same as would be produced by one elementary
charge at a distance of one from the deuteron. This is a
reasonable value for the inhomogeneity of the electric field in the mole-
cule, surrounded by electric dipoles. So even small quadrupole moments
can have a considerable effect.

Small concentrations of a paramagnetic salt will have no effect on the
relaxation time, as the electric transitions remain more important at first
than the magnetic ones. But the addition of a sufficient amount of CuSO4
will increase the magnetic local field density so much that the relaxation
time is then determined only by the magnetic transitions. The saturation
of the p- and d-resonance then occurs at the same value of the applied
field. The curves c and e show this situation. They should coincide
exactly. The deviation of a factor 1,8 is probably due to a systematic
error (cf. section 3.5). The inhomogeneity of the magnetic field for the
p-resonance (at about 1100 oersted) is certainly different from that for
the d-resonance (at about 7000 oersted).

One might ask why the influence of the quadrupole moment on the
relaxation time of Li7 is not more pronounced. In the first place is the
magnetic moment of Li7 rather large, making the relative influence of
Q smaller.

Let us assume that the relaxation time of Li7 in an aqueous solution,
which according to tabel IV is 1.75 sec, is for 50 % due to quadrupole
interactions. The quadrupole moment Q of Li7 is not known experi-
mentally. A very rough theoretical estimate by W e l l e s (W4), built on
the Hartree model, gives a value of —2.7 X 10-26 cm2. On substitution
of this value and T1 = 3.5 sec in (5. 4) we find that the gradient of the
electric field is the same as produced by an elementary charge at least 3

away. This distance seems to be too large, although
one must expect that grad E is much smaller than in the case of the
deuteron, since the Li+ ion is in a 1S state and the neighbouring water
dipoles will arrange themselves around the ion so as to give an approxi-
mately spherical charge distribution. It seems probable, that the qua-
drupole moment of Li7 is about five times smaller than the theoretical
estimate, mentioned above.

The line width of the D2 and Li7 resonance in the liquids used is
determined by the inhomogeneity of the field H0. The influence of the
quadrupole moment could not be detected. P o u n d (P 9) recently has
found broad resonance lines of the two Br isotopes in a solution of NaBr.
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The width must be ascribed to the large quadrupole moments of these
isotopes. P o u n d also discovered a fine structure of the Li7 resonance
in a single crystal of Li2 SO4. The diagonal elements of (5. 3), in which

grad can now be considered as a constant, give the first order pertur-
bation of the four levels which the Li7 nucleus can occupy in a

magnetic field. If grad is known from the crystal structure, the observed
shift of the resonance frequencies enables one to determine the quadrupole
moment Q.

5. 3. The quadrupole interaction in free molecules.

The quadrupole interaction can be described more precisely, if we
have to do with only one molecule. This is the case in molecular beam
experiments (K4) and in the application of the theory of the relaxation
time to deuterium gas.

The grad can then be written in terms of the angular momentum
of the molecule. By grouptheoretical arguments we have

(5.5)

(5.6)

The integration has to be extended over the charges of the molecule
outside the nucleus under consideration, and for the state

The interaction term in the Hamiltonian can then be written as

(5.7)

We note that this operator has the same form as (4. 36) and can be
dealt with in the same way as described in chapter 4. For D2 gas we
must expect a shorter relaxation time than in H2 gas, for the quadrupole
interaction in the D2 molecule is much larger than the magnetic interaction
in H2, as follows from the splitting of the lines of the resonance spectra
obtained with the molecular beam method.

Finally we must mention a refinement of the theory given in chapter 2.
When we consider the dipole-dipole interaction between two identical
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protons in the same molecule, we should distinguish between ortho- and
para-states, as we did for the hydrogen molecule. The magnetic inter-
action in a linear molecule will again assume the form (4. 36). In a liquid
J will probably not be constant of the motion which would make the
problem involved. But J will usually be very high. The very light mole-
cules like H2 and D2 are an exception in this respect. When J is large,
we can introduce the classical approximation and replace by cos
and by sin in the matrix elements (4.37). So we come
back to formulae of the same form as (2.34) previously derived.

We do not touch the question how exchanges between nuclei in more
complicated nuclei and between nuclei in neighbouring molecules should
be taken into account. Under many circumstances — but not in H2 and D:2

— the formulae (2.51) and (5.4), where all nuclei have been considered
as distinguishable and the motion of the molecules is not quantised, will
give a satisfactory description.



SUMMARY.

The exchange of energy between a system of nuclear spins immersed in
a strong magnetic field, and the heat reservoir consisting of the other
degrees of freedom (the "lattice") of the substance containing the mag-
netic nuclei, serves to bring the spin system into equilibrium at a finite
temperature. In this condition the system can absorb energy from an
applied radiofrequency field. With the absorption of energy however,
the spin temperature tends to rise and the rate of absorption to decrease.
Through this "saturation" effect, and in some cases by a more direct
method, the spin-lattice relaxation time T1 can be measured. The inter-
action among the magnetic nuclei, with which a characteristic time T2'
is associated, contributes to the width of the absorption line. Both inter-
actions have been studied in a variety of substances, but with the em-
phasis on liquids containing hydrogen.

Magnetic resonance absorption is observed by means of a radiofre-
quency bridge; the magnetic field at the sample is modulated at a low
frequency. A detailed analysis of the method by which T1 is derived
from saturation experiments is given. Special attention is paid to the
influence of the inhomogeneity of the external magnetic field and to the
limitation of the accuracy by noise. Relaxation times observed range
from 10 - 4 to 10 seconds. In liquids T1 ordinarily decreases with in-
creasing viscosity, in some cases reaching a minimum value after which
it increases with further increase in viscosity. The line width meanwhile
increases monotonically from an extremely small value toward a value
determined by the spin-spin interaction in the rigid lattice. The effect of
paramagnetic ions in solution upon the proton relaxation time and line
width has been investigated. The relaxation time and line width in ice
have been measured at various temperatures.

The results can be explained by a theory which takes into account the
effect of the thermal motion of the magnetic nuclei upon the spin-spin
interaction. The local magnetic field produced at one nucleus by neigh-
bouring magnetic nuclei, or even by electronic magnetic moments
of paramagnetic ions, is spread out into a spectrum extending
to frequencies of the order of where is a correlation time
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associated with the local Brownian motion and closely related
to the characteristic time which occurs in D e b y e's theory of polar
liquids. If the nuclear Larmor frequency is much less than the
perturbations due to the local field nearly average out, and
the width of the resonance line, in frequency, is about A similar
situation is found in hydrogen gas where is the time between collisions.
In very viscous liquids and in some solids where a quite
different behavior is predicted, and observed.

Values of for ice, inferred from nuclear relaxation measurements,
correlate well with dielectric dispersion data.

When the theory is applied to the motion embodied by the lattice
vibrations of a crystal, it becomes identical to that of W a l l e r. The
values for T1 predicted by this theory are several orders of magnitude
larger than those observed experimentally in ionic crystals.

The theory is also extended to the interaction of an electric qua-
drupole moment with an inhomogeneous internal electric field. The
results are in good agreement with the observed relaxation time for the
D2-resonance in heavy water.
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ERRATA

page

17 formula 1. 13, for read:
23 4th line from top, for „aud" read: „and".
27 3th line from bottom, for „is" read: „if".
31 5th line from top, add „a" between „has" and „sharp".
31 formula 2.26, for „ " read: „ ".
32 18th line from bottom, omit „the".
37 11th line from top, for „distingiush" read: „distinguish".
39 formula 2. 44 should read:

42 8th line from top, for „to" read: „two".
46 10th line from top, read:

50 formula 2. 77, the lower limit of the integral should be „ ".
58 4th line from bottom, add reference „(V0)".

108 The value of for He3 is not 2.4 X 104.
For correct value see reference (A 5).



STELLINGEN

I.
De theorie van W a l l e r1) over de wisselwerking van een systeem

van kernspins en een ideaal kristalrooster levert waarden voor
de relaxatietijd, die een factor 1000 of meer groter zijn dan die,
welke experimenteel gevonden worden. Een theorie, die rekening
houdt met verontreinigingen, geeft evenwel een bevredigende over-
eenstemming.

1) W. Hei t l e r en E. T e l l e r, Proc. Roy. Soc. A 155, 629, 1936.

II.

Het is te begrijpen, dat de relaxatietijd van een systeem van
kernspins in een niet-ideaal kristalrooster in vele gevallen vrijwel
onafhankelijk is van de temperatuur van het rooster.

III.

De waarneming van R o l l i n, dat voor de magnetische resonantie
van deuteronen in vloeibare waterstof enerzijds de relaxatietijd
langer, anderzijds de lijn wijder is dan van protonen, valt moeilijk
te begrijpen.

B. V. R o l l i n et al., Nature 160, 436, 1947.

IV.
Ten onrechte meent E n g s t r o m, dat een versterker van ladings-

stoten, die veroorzaakt zijn door afzonderlijke lichtquanta in een
fotocel met inwendige versterking door secundaire emissie, een
hoge ingangsweerstand moet hebben om de gunstigste verhouding
van signaal tot geruis te verkrijgen.

R. W. E n g s t r o m, J.O.S. A. 37, 420, 1947.

V.

De door S i m o n gevonden anomalie in de soortelijke warmte
van vaste ortho-waterstof doet vermoeden, dat deze stof absorptie
zal vertonen in het gebied van de centimetergolven.

F. S i m o n s, K . M e n d e l s s o h n en M. R u h e m a n n. Naturwissen-
schaften 18, 34, 1930.

N. BLOEMBERGEN.



VI.
Voor de detectie van periodieke spanningen dient men uit

practische overwegingen aan een fase-gevoelige versterker de
voorkeur te geven boven een wisselstroom- of vibratiegalvanometer.

VII.
De kristalteller is reeds in het huidige stadium van zijn ont-

wikkeling een waardevol instrument voor het onderzoek van deeltjes
met grote energie.

L. F. W o u t e r s and R. S. C h r i s t i a n, Phys. Rev. 72, 1127, 1947.

VIII.
R u t g e r s heeft in zijn „Leerboek der Physische Scheikunde" bij

de behandeling van de theorie van D e b y e - H ü c k e l voor sterke
electrolyten niet voldoende nadruk gelegd op de benadering, die
bij het veronderstellen van de continuïteit van de ladingsverdeling
en tevens van is gemaakt.

IX.

Bij kunstbemesting van niet-zure, niet-ijzerhoudende gronden zal
men met in water oplosbaar fosfaat meestal betere resultaten be-
reiken dan met onoplosbaar fosfaat.

E. J. R u s s e l l, Artificial Fertilisers, London, 1933.
A. W i l h e l m j, Ursachen der Wirkung des Thomasmehls, Berlin,

1931.

X.
Het is soms wenselijk, dat proefschriften over wetenschappelijke

onderwerpen, die niet aan nationale grenzen gebonden zijn, in
een andere taal dan de landstaal worden geschreven.

vgl.: R. P. C l e v e r i n g a, Rectoraatsrede, Leiden 1947.

XI.
Het begrip „Universitaire Gemeenschap" .— c.q. „Civitas Aca-

demica" — komt in de „Colleges" van de Verenigde Staten beter
tot zijn recht dan aan de Nederlandse Universiteiten.




