
Loyola Marymount University and Loyola Law School Loyola Marymount University and Loyola Law School 

Digital Commons at Loyola Marymount Digital Commons at Loyola Marymount 

University and Loyola Law School University and Loyola Law School 

Mathematics Faculty Works Mathematics 

2020 

A linear optimal feedback control for producing 1,3-propanediol A linear optimal feedback control for producing 1,3-propanediol 

via microbial fermentation via microbial fermentation 

Yangping Ma 
Loyola Marymount University 

Follow this and additional works at: https://digitalcommons.lmu.edu/math_fac 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Bei, Honghan & Wang, Lei & Ma, Yanping & Sun, Jing & Zhang, Liwei. (2020). A linear optimal feedback 
control for producing 1,3-propanediol via microbial fermentation. Discrete and Continuous Dynamical 
Systems - Series S. Vol 13, no. 6. 

This Article is brought to you for free and open access by the Mathematics at Digital Commons @ Loyola 
Marymount University and Loyola Law School. It has been accepted for inclusion in Mathematics Faculty Works by 
an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more 
information, please contact digitalcommons@lmu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola Marymount University

https://core.ac.uk/display/397021032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
digitalcommons.lmu.edu
digitalcommons.lmu.edu
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/
https://digitalcommons.lmu.edu/math_fac
https://digitalcommons.lmu.edu/math
https://digitalcommons.lmu.edu/math_fac?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.lmu.edu%2Fmath_fac%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@lmu.edu


DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2020095
DYNAMICAL SYSTEMS SERIES S
Volume 13, Number 6, June 2020 pp. 1623–1635

A LINEAR OPTIMAL FEEDBACK CONTROL FOR PRODUCING

1,3-PROPANEDIOL VIA MICROBIAL FERMENTATION

Honghan Bei

School of Maritime Economics and Management, Dalian Maritime University

Dalian 116026, China

Collaborative Innovation Center for Transport Studies@Dalian Maritime University
Dalian 116026, China

Lei Wang∗

School of Mathematical Science, Dalian University of Technology

Dalian, Liaoning 116024, China

Yanping Ma

Department of Mathematics, Loyola Marymount University
Los Angeles CA 90045, USA

Jing Sun and Liwei Zhang

School of Mathematical Science, Dalian University of Technology

Dalian, Liaoning 116024, China

Abstract. In this paper, we consider a multistage feedback control strategy
for the production of 1,3-propanediol(1,3-PD) in microbial fermentation. The

feedback control strategy is widely used in industry, and to the best of our
knowledge, this is the first time it is applied to 1,3-PD. The feedback control

law is assumed to be linear of the concentrations of biomass and glycerol,

and the coefficients in the controller are continuous. A multistage feedback
control law is obtained by using the control parameterization method on the

coefficient functions. Then, the optimal control problem can be transformed

into an optimal parameter selection problem. The time horizon is partitioned
adaptively. The corresponding gradients are derived, and finally, our numerical

results indicate that the strategy is flexible and efficient.

1. Introduction. 1,3-Propanediol (1,3-PD) has a wide range of applications in
cosmetics, polymers, adhesives, lubricants and medicines [12]. At present, there are
two methods for producing 1,3-PD: chemical synthesis and microbial conversion.
The second method is preferred because it is relatively easy to implement and does
not generate toxic byproducts. However, microbial conversion usually yields a lower
1,3-PD concentration when compared with traditional chemical synthesis methods.
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There are two ways to solve this problem: one is to improve the conversion rate of
the substrate through improvement of the bio-reaction technology, and the other is
to improve the conversion rate by optimizing the biochemical processing technology
[21]. Improving the productivity of the microbial conversion process by optimization
techniques is urgently necessary.

There are three conventional methods of microbial fermentation to produce 1,3-
PD: batch culture, continuous culture and fed-batch culture. Although batch cul-
ture and fed-batch culture are preferred in large-scale industrial fermentation, the
continuous culture is more appealing because of the higher production as well as
the increased stability and automation. This paper focuses on studying continuous
culture in which fresh medium is added while the old medium is removed during
the reaction [22, 3, 7, 25].

There are significant improvements in continuous fermentation. Zhang et al.
[30] presented a nonlinear hybrid system, which described the intracellular reduc-
tive pathway according to the possible transport mechanisms of 1, 3-propanediol
across a cell membrane. Gao et al. [4] discussed three different ways for glycerol
and one way for 1,3-PD (passive diffusion and active transport) to pass the cell
membrane. They also established a modified fourteen-dimensional nonlinear hybrid
dynamic system with genetic regulation to describe the continuous fermentation.
Lv [19] considered a nonlinear non-differentiable dynamic system in continuous cul-
tures involving all possible metabolic pathways of the inhibition mechanisms of 3-
hydroxypropionaldehyde onto the cell growth and the transport systems of glycerol
and 1,3-PD across the cell membrane.

The study of the microbial conversion process for synthesizing 1,3-PD started
in the 1980s [29]. There is more focus on the research of the fermentation process
of 1,3-PD with different methods now. The optimal control problems with state
constraints [13, 16] arise in a wide range of practical applications, such as contin-
uous culture in the production of 1,3-PD [18]. Also, researchers proposed several
new computational methods [20] to solve this problem with continuous inequality
constraints. Although these methods were proven to be effective, they were only
capable of producing an open loop control, which may not be robust in practice [8].
An optimal feedback control, expressed as a function of the current system state, is
usually more effective. In this paper, we will consider a multistage feedback control
strategy to maximize the yield of 1,3-PD.

The traditional approach to determine an optimal feedback control involves solv-
ing the well-known HJB partial differential equation. Other relevant approaches to
solve the feedback control problem include the sensitivity penalization approach
for computing robust suboptimal controllers [17], and the neighboring extremal ap-
proach [2, 6]. Loxton [8] considered a general optimal control problem in which a
feedback controller of a given structure was optimized by altering certain adjustable
parameters. However, none of the previous studies considered the feedback control
parameters function with time dependence. We propose to generate an adaptive
grid for time to incorporate the variations of parameters in different time inter-
vals. Therefore, the strategy has more flexibility comparing to those methods with
fixed parameters throughout the whole interval of interests. To solve the optimal
feedback problem, we use the control parameterization method. Control parame-
terization is a powerful numerical technique to solve optimal control problems with
general nonlinear constraints [15]. The main idea is to discretize the control space by
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approximation with a piecewise-constant or piecewise-linear function, thereby yield-
ing an approximate nonlinear programming problem [9]. Reference [31] studied a
control vector parameterization (CVP) based hybrid algorithm, HAPSODSA-CVP,
which solves the nonlinear chemical dynamic optimization problems. In this al-
gorithm, the adaptive particle swarm optimization (APSO) is applied to enhance
the global search ability, while the differential search algorithm (DSA) is used to
improve the local exploitation ability.

In this paper, we present an innovative strategy to study the optimal control
problem in the continuous culture of microbial fermentation. This method has four
significant contributions. Firstly, the optimal control law is given as a generalized
linear feedback control. Secondly, the parameters in the linear form are considered
as a continuous function of time t, since the continuous culture is a long-term
process control problem. Thirdly, the time-based process control is transformed
into a multistage linear feedback control based on the control parameterization
technique. Last but not least, both the number of stages and the length of each
stage’s interval are self-adapted in this scheme.

The structure of the paper is as follows. A nonlinear dynamic model is intro-
duced to describe the microbial continuous culture process in Sec. 2. Then, the
corresponding optimal control problem and the strategy of the multistage feedback
control are discussed in Sec. 3 and Sec. 4, respectively. In the following sections,
we use techniques in control parameterization method, and the optimal feedback
control problem is transformed into a multi-stage linear feedback control form. Fi-
nally, an adaptive gradient-based optimization algorithm is developed to solve the
optimal feedback control problem is given in Sec. 7, and the numerical results are
explained in Sec. 8.

2. Problem statement. Following the continuous fermentation process and the
hypothesis used in [5, 26], we propose two assumptions for our dynamical model.

Assumption 2.1. The material composition in the fermentation tank is homo-
geneous. Namely, it does not change in space, and the solution in the reactor is
sufficiently well-mixed such that the concentrations of reactants are uniform.

Assumption 2.2. The continuously added medium only contains glycerin, and the
substance in the reactor is exported at a dilution rate, denoted by D.

Under these assumptions, the mass balance relationships of biomass, substrate,
and products in the microbial continuous fermentation can be described by the
following nonlinear dynamic system:

ẋ1(t) = f1(t) = (µ−D)x1(t),

ẋ2(t) = f2(t) = D(Cs0 − x2(t))− q2x1(t),

ẋ3(t) = f3(t) = q3x1(t)−Dx3(t),

ẋ4(t) = f4(t) = q4x1(t)−Dx4(t),

ẋ5(t) = f5(t) = q5x1(t)−Dx5(t),

and

xi(0) = x0i i = 1, 2, 3, 4, 5
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where xi(t), i = 1, 2, 3, 4, 5, represents the concentration (in mmolL−1) of biomass,
extracellular glycerol, extracellular 1,3-PD, acetate, and ethanol at time t, respec-
tively; x0i, i = 1, 2, 3, 4, 5, are the corresponding initial concentrations; t ∈ [0, tf ],
where tf is the terminal time; the constant D denotes the dilution rate, and Cs0
is the control variable denoting the concentration of glycerol in the input. Also, µ
is the specific growth rate of cells (in h−1); q2 is the specific consumption rate of
substrate (in h−1); qi, i = 3, 4, 5, are the specific formation rate of 1,3-PD, acetate
and ethanol (in h−1) respectively; and their formulations are listed below:

µ = µm
x2(t)

x2(t) + ks

3∏
i=2

(
1− xi(t)

x∗i

)
,

q2 = m2 +
µ

Y2
+ ∆q2

x2(t)

x2(t) + k2
, (1)

q3 = m3 + µY3 + ∆q3
x2(t)

x2(t) + k3
, (2)

q4 = m4 + µY4 + ∆q4
x2(t)

x2(t) + k4
, (3)

q5 = q2

( b1
c1 +Dx2(t)

+
b2

c2 +Dx2(t)

)
. (4)

Here, µm = 0.67(h−1) is the maximum specific growth rate and ks = 0.28 (mmolL−1)
is the Monod saturation constant for substrate. Under anaerobic conditions at 37◦C,
pH=7.0, other parameters used in Eqs. (1) - (4) are available in literature [28] and
are listed in Table (1) below:

Table 1. The values of some parameters used in Eqs. (1) - (4).

i mi Yi ∆qi ki bi ci

1 - - - - 0.025 0.06
2 2.20 0.0082 28.58 11.43 5.18 50.45
3 -2.69 67.69 26.59 15.50 - -
4 -0.97 33.07 5.74 85.71 - -

3. Optimal control problem. Let x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))T , x0 =
(x01, x02, ..., x05)T , u(t) := Cs0(t) and f(x(t), u(t)) := (f1(t), ..., f5(t))T . The non-
linear control system can be formulated in the following way: ẋ(t) = f

(
x(t), u(t)

)
, t ∈ [0, tf ]

x(0) = x0,
(5)

For the actual bioprocess, it should be noted that there exist critical concentra-
tions for the state vector x. Therefore, it is natural to restrict the concentrations
of biomass, glycerol and products in a given set W defined as

x(t) ∈W := [x∗, x
∗] =

5∏
i=1

[xi∗, x
∗
i ] ⊂ R5

+ (6)
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where x∗i and xi∗, respectively, denote the upper and lower bound of the corre-
sponding state variables.

Equation (6) can be equivalently transformed as a continuous state inequality
constraints by introducing the functions as follows:

hi
(
x(t), u(t)

)
≤ 0, t ∈ [0, tf ], i = 1, .., 10, (7)

where hi(x(t), u(t)) = xi(t)− x∗i and hi+5(x(t), u(t)) = x∗i − xi(t), i = 1, ..5.
In this paper, the concentration of glycerol in the input feed is chosen as the

control variable. It is obvious that the control variable is also constrained:

u∗ ≤ u(t) ≤ u∗, t ∈ [0, tf ],

where u∗ and u∗ are the lower and upper bound of u(t).
Let x(· | u(t)) be the solution of (5) under the control of u(t), then x3(· | u(t)) is

the concentration of 1,3-PD. We can describe the optimal problem as follows:

Problem P0. Find u(t) to minimize the cost function with constraints.

min J0(u) = −x3
(
tf | u(t)

)
s.t. ẋ(t) = f

(
x(t), u(t)

)
,

x(t) ∈W,

u∗ ≤ u(t) ≤ u∗.

4. Feedback control. The linear state feedback control law is one of the most
common feedback control structures [1]. In microbial fermentation, the most im-
portant factors to influence the final concentration of 1,3-PD are the concentrations
of biomass and glycerol. Thus, the feedback controller is set to be of a linear form
with respect to the two concentrations:

u(t) = ϕ(x(t), ξ(t)) = ξ1(t)x1(t) + ξ2(t)x2(t), t ∈ [0, tf ], (8)

where ξ(t) = (ξ1(t), ξ2(t))T is a vector function of the feedback control parameters.
As showed in (8), ϕ is a given continuously differentiable functional, and the control
parameter function, ξ(t), is a decision function to be chosen optimally.

The following constraints are imposed on the feedback control parameters:

ξ(t) = [ξ1(t), ξ2(t)]T ∈ Uad = [α1, β1]× [α2, β2],

Substituting (8) into (5) gives

ẋ(t) = f̃(x(t), ξ(t)), t ∈ [0, tf ], i = 1, 2, ..., 5, (9)

where

f̃(x(t), ξ(t)) =


f̃i
(
x(t), ξ(t)

)
= fi(x), i = 1, 3, 4, 5,

f̃2
(
x(t), ξ(t)

)
= D

(
ξ1(t)x1(t) +

(
ξ2(t)− 1

)
x2(t)

)
− q2x1(t).

(10)

Let x(· | ξ(t)) denote the solution of system (9) with f̃ defined in (10). Then, the
constraint conditions (7) become

hi(x(t), ξ(t)) ≤ 0, t ∈ [0, tf ], i = 1, .., 10, (11)

Our goal is to present a state feedback control strategy to maximize the final
concentration of 1,3-PD. We now consider the problem of choosing the feedback
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control parameters ξ1(t) and ξ2(t) to minimize the total system cost subject to
constraints (11).
Problem P. Choose ξ(t) ∈ Uad to minimize the cost function J1(ξ).

min J1(ξ) = −x3(tf | ξ(t))

s.t. x(t) = f̃(ξ(t), x(t)),

x(0) = x0,

ξ(t) ∈ Uad.

5. A penalty approach and approximate problem. The Problem P is a non-
linear optimization problem in which a finite number of decision variables (the feed-
back control parameters) need to be optimized subject to a set of constraints. This
is a challenging optimization problem to solve because each continuous inequality
constraint in (11) constitutes of infinite constraints—one for each point in [0, tf ].
Hence, the Problem P can be viewed as a semi-infinite optimization problem. Then,
we will use a penalty approach to approximate the Problem P. [23, 10]

The condition x(t) ∈W is equivalently transcribed into

G
(
ξ(t)

)
= 0,

with

G(ξ(t)) =

∫ tf

0

10∑
i=1

max
{
h̃i(x(t), ξ(t)), 0

}
dt. (12)

Clearly, G(ξ(t)) = 0 if and only if x(t) ∈ W . However, the equality constraint
(12) is not smooth at the points when hi = 0. Consequently, standard optimization
routines would have difficulties in dealing with this type of equality constraints. Let

G̃(ξ(t)) =

∫ tf

0

10∑
i=1

ϕε(h̃i(x(t), ξ(t))dt,

be a smooth function in ξ, where the smoothing parameter ε is a tiny positive
number, and ϕε : R→ R is defined by

ϕε(η) =


η, if η > ε,

(η + ε)2/4ε, if −ε ≤ η ≤ ε,

0, otherwise.

Then, the objective function of the Problem P can be reformulated as

J(ξ) = J1(ξ) + ρG̃(ξ),

where ρ > 0 is the given penalty parameter. Hence, P can be approximated by the
following problem:

Problem Q. Choose ξ ∈ Uad to minimize the penalty function J(ξ).

min J(ξ) = J1(ξ) + ρG̃(ξ(t))

s.t. x(t) = f̃(ξ(t), x(t)),

x(0) = x0,

ξ(t) ∈ Uad.
Similar to the work [14], we can get the following theorem.
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Theorem 5.1. Let ξ∗ε be the optimal solution of the approximate the Problem Q.
Suppose that there exists an optimal solution ξ∗ of the original Problem P. Then

lim
ε→0

J(ξ∗ε ) = J(ξ∗)

Theorem 5.1 guarantees that any local solution of the approximate problem can
be used for generating a corresponding local solution of the original problem when
the smoothing penalty parameter is sufficiently small.

6. Control vector parametrization technique. To solve the Problem Q numer-
ically, the control vector parametrization approach is applied [24, 11], in which the
feedback control variable ξ(t) = [ξ1(t), ξ2(t)] are discretized. Partition the time hori-
zon [t0, tf ] into p subintervals [tk−1, tk)(k = 1, ..., p) such that t0 < t1 < ... < tp = tf .
Using the piecewise-constant policy, the feedback control variable ξi(t) is approxi-
mated by

ξi(t) ≈ ξ̂i(t) =

p∑
k=1

σi,kχk(t), i = 1, 2

where ξ̂ = [ξ̂1(t), ξ̂2(t)]T , and σi,k is the value of ξ̂i(t) in the kth subinterval [tk−1, tk),
and χk is defined as

χk(t) :=

 1, if t ∈ [tk−1, tk),

0, otherwise.

Let σ = [σ1, σ2]T , where σi = [σi,1, ..., σi,p].
With the ξ ∈ Uad, the differential equation (9) is of form:

ẋ(t) = f̃(x(t), σ), (13)

where

f̃(x(t), σ) = f̃
(
x(t),

p∑
k=1

σi,kχi,k(t)
)
,

The initial condition remains the same as x(0) = x0.
Let x(·|σ) be the solution of the system (13) corresponding to the control pa-

rameter vector σ. Then, the Problem Q can be reformulated as a NLP problem,
in which σ is the decision vector. We may now specify the approximating Problem
Q(p) in the following way:

Problem Q(p). Find a control parameter vector σ ∈ Uad to minimize the cost
function J(σ).

min J(σ) = J1(σ) + ρG̃(σ)

s.t. x(t) = f̃(x(t), σ),

x(0) = x0,

σ ∈ Uad.

Theorem 6.1. Let ξ̂∗ be the optimal control of the approximating Problem Q(p).
Suppose that the original Problem Q has an optimal control ξ∗. Then,

lim
p→∞

J(ξ̂∗) = J(ξ∗)
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To solve the Problem P as a mathematical programming problem, we need to
know the gradient for the function J(σ). We derive the formulae as follows [23]:

Let the corresponding Hamiltonian function for the cost function be defined by

H
(
t, x, σ, λ

)
= £

(
x(t), σ

)
+ λT f

(
x(t), σ

)
,

where

£(x(t), σ) = ρ

10∑
i=1

ϕε
(
h̃i(x(t), σ

)
,

and

λ(t) =
(
λ1(t), λ2(t), λ3(t), λ4(t), λ5(t)

)T
,

is the solution of the costate system

λ̇(t) = −∂H(t, x, σ, λ)T

∂x
,

with the boundary continuous λ(tf ) = (0, 0, 0, 0, 0)T . And the gradient of J is
computed from

∂J(σ)

∂σ
=

∫ tf

0

∂H(t, x(t | σ), σ, λ(t | σ))

∂σ
dt. (14)

Very often the control parametrization is carried out on an partition of the inter-
val [0, tf ] in simulations. Each component of (14) can be written in a more specific
form as shown below:

∂J(σ)

∂σi,j
=

∫ tj

tj−1

∂H(t, x(t | σ), σ, λ(t | σ))

∂ξ̂i
dt.

7. Gradient-based adaptive algorithm. Based on the control vector parame-
trization approach above, we adopt a gradient-based adaptive refinement method
[27] to solve the Problem P. The algorithm is adaptive to obtain time-efficient
and cost-effective discretization grids. In this way, a high-quality solution can be
obtained with low computational cost.

Define J∗l as the optimal objective function value; define ξ̂∗li = [σ∗li,1, ..., σ
∗l
i,p], (i =

1, 2) as the optimal solution, and define ∆l = [tl0, ..., t
l
p]
T as the corresponding dis-

cretization time grid found in iteration l. ∆l
′

:= [tl
′

0 , ..., t
l
′

2p]
T is obtained by bisecting

each subinterval in ∆l with two initial control variables, ξl
′

1 = [σ∗l1,1, σ
∗l
1,1, .., σ

∗l
1,p, σ

∗l
1,p]

T

and ξl
′

2 = [σ∗l2,1σ
∗l
2,1, .., σ

∗l
2,p, σ

∗l
2,p]

T . Suppose J∗l
′

, ξ∗l
′

1 and ξ∗l
′

2 are the optimal objec-

tive function value and the optimal solution in iteration l
′
, respectively. We hope

to find a new discretization grid to make it better adapted to the solution.

Let σl
′

i,j denote σ∗li,b(j+1)/2c, where b j+1
2 c denotes the maximum integer that does

not exceed j+1
2 . We define the sensitivity of σl

′

i,j as si,j =

∣∣∣∣ ∂J

∂σl
′

i,j

∣∣∣∣.
Suppose σ∗l−1i,K and σ∗li,K are the optimal values in time interval K := [tl

′

2k−2, t
l
′

2k]
in iteration l − 1 and iteration l, respectively. For a given value ε1 > 0, if∣∣σ∗li.K − σ∗l−1i,K

∣∣ < ε1,

then let

si,2k−1 = 0 and si,2k = 0. (15)
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If the following conditions

si,2k−1 > λ1s̄i or si,2k > λ1s̄i (16)

hold, in which

s̄i =
1

2p

2p∑
j=1

si,j (17)

then the grid point tl
′

2k−1 in ∆l
′

is reserved; otherwise, eliminate it. When both

tl
′

2k−1 and tl
′

2(k+1)−1 are removed, the grid point tl
′

2k is also eliminated if
si,2k−1 < λ2s̄i, si,2k < λ2s̄i

si,2k+1 < λ2s̄i, si,2(k+1) < λ2s̄i∣∣σ∗li,k+1 − σ∗li,k
∣∣ < ε2

(18)

where λ1, λ2 and ε2 are given constants, and λ1 > 0, λ2 ∈ (0, λ1], ε2 > 0.
The main steps of this algorithm are as follows:

Algorithm

Step 0. Choose the time grids ∆0, the maximum number of iterations lmax ≥ 1, the
error tolerance tolJ > 0, constants ε1 > 0, ε2 > 0, λ1 > 0, and λ2 ∈ (0, λ1].

Also, choose the initial value ξ̂0 = [ξ̂01 , ξ̂
0
2 ]T , let the ξ̂0 be the initial value for

all subintervals.

Step 1. Set l = 0.

Step 2. Use ξ̂l as the starting point and ∆l as the starting time grids. By using
a nonlinear programming algorithm to solve the NLP to obtain the optimal
objective function value J∗l and the optimal solution û∗l.

Step 3. Check the stopping criterion. If l = lmax or |J
∗l−J∗l−1

J∗l
| < tolJ(l > 0), stop;

otherwise, go to Step 4.

Step 4. Refine time grids.

Step 4.1. Bisecting each subinterval in ∆l to obtain the temporary grids ∆l
′

and the corresponding control variables ξl
′

;

Step 4.2. Compute the sensitivity according to (15), (16) and (17);

Step 4.3. Eliminate unnecessary grid points according to (18);

Step 4.4. Let ξ̂l+1 = ξ̂l
′

, ∆l+1 = ∆l
′

.

Step 5. Set l = l + 1. If l = lmax, stop; otherwise, go to Step 2.

8. Numerical results. In the microbial fermentation, the boundary value of state
vector are chosen as x∗ = [0.001, 100, 0, 0, 0]T , x∗ = [10, 2039, 939.5, 1026, 360.9]; the
initial concentrations of biomass, glycerol, 1,3-PD, acetate and ethanol are x10 =
0.404 mmol/L, x20 = 440.8578mmol/L, x30 = 0.01mmol/L,x40 = 0.01mmol/L,x50 =
0.01mmol/L. The control variable Cs0 lies in [100, 1800]. The penalty parameter
and the smoothing parameter are selected as ρ = 104, ε = 10−10. The other parame-
ters are listed here: ε1 = 10−8, ε2 = 10−4, λ1 = 0.2, λ2 = 0.2, tolJ = 10−4. There
are sufficient substrate during the whole continuous fermentation, which lasts for
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100 hours. We set α1 = 0, β1 = 400, α2 = 0, β2 = 2 based on realistic experimental
range of ξ(t).

With those parameters, the algorithm meets the stopping criteria and termi-
nates in six iterations. The evolution of time grids is illustrated in Fig 1. The
concentration of 1,3-PD at the terminal time is 686.5683 mmol/L, which agrees
with experimental data [5]. Hence, the control found at this time grid point is
optimal. The feedback control parameters are shown in Fig 2. The changes of
concentrations of biomass, glycerol, 1,3-PD, acetate and ethanol under the optimal
feedback control over 100 hours are shown in Fig 3. The computational results
verify the effectiveness of our proposed method.

Figure 1. The evolution of the time grids in 100 hours.

9. Conclusions. To the best of our knowledge, a robust multistage feedback con-
trol strategy with a closed-loop is proposed, for the first time, for the production of
1,3-propanediol in microbial fermentation. In this paper, we also develop an adap-
tive gradient-based optimization algorithm to obtain the global solution. In Sec. 8,
the numerical results show that the method is successful at producing high-quality
control strategies. In the future, we plan to set D as another controller to maximize
the productivity of the process.
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