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Chapter 1

Introduction

Computational geometry is the area of algorithms resednahdeals with com-
putations on geometric objects. Examples of such objeetpaints, lines and
polygons in the plane—which may represent a city plan—olspalocks and
more complex shapes in three dimensions—which may représeimnterior of
a power plant. In these cases, the geometric objects repngisgsical objects in
the real world. But this is not always the case. For exampletabase storing the
age and salary of a company’s employees can also be thouabbalatabase that
stores points in a two-dimensional space: each point reptegan employee, with
one coordinate indicating the age and the other coordinatieating the salary
of the employee. Therefore, geometric computations aredau many applica-
tions of computers: databases, computer-aided desiggraguical information
systems, flight simulators, other virtual reality applioas, robotics, computer
vision and route planning are just a few examples.

This thesis contains some of the fruits of my research as affindznt in the
computational-geometry group of Utrecht University fro899 to 2004. In the
remainder of this chapter | will introduce my main reseanefaa of these years—
geometric data structureendgeometric networks-and | will discuss the results
we obtained. The next chapters are six articles writtenésdtareas: four articles
about geometric data structures (Chapter 2 to 5) and twdestabout geometric
networks (Chapter 6 and 7).

1.1 Geometric data structures
To do efficient computations on geometric objects, it is @libat we can store,

search, and sometimes update, sets of geometric objeatiemtffy. When the
objects are one-dimensional points, this is relativelyyeage can sort them by

1The article in Chapter 3 is a slightly modified version frora fhublication inDiscrete and Com-
putational Geometryln this thesis, the analysis of our algorithm has been smeg a little, leading
to better bounds on the query times.
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their coordinate in that dimension, and put them in memorthat order. This
makes it possible to find points fast. It is like looking up @ein a dictionary:
thanks to the ordering, we can find a word without turning atigs one by one.

When an object cannot be described by a single point in a onergional
space, it is less clear how to store a set of objects effdgtiFer example, | have
a collection of music CD’s. | would like to order them by theayén which the
music was written, so that | can find all music from a particela fast. My CD’s
usually contain several works of music written in a rangeeadng. This makes it
impossible to characterise a CD by a single point on a time lanCD is rather
like a group of points, or like a segment of the time line. Hhwsld | order my
CD's? By the oldest work on the CD, maybe? But then even the& raosnt work
might be putin the very first place on the shelf, if it just happto be on the same
CD as the oldest work. If | sort like this, how can | be sure ofliitg a work from
a certain era without checking all earlier CD’s too?

When geometric objects have more than one dimension, thdgmndoecomes
even more difficult. But in many applications, a lot of quest about a set of
geometric objects need to be answered fast. For examplghadimulator should
not need to scan the complete hard disk to determine if theegkgoing to hit
a mountain in the next second. In such applications, it ier&&d that geometric
objects are stored in such a way that relevant objects caddwgified quickly,
while irrelevant objects are ignored without checking thene by one. Often
we can do this by sorting the objects into groups. If we doithia clever way,
we can, hopefully, discriminate quickly between groupdwpidtentially relevant
objects and groups without such objects. Therefore, findseful groupings of
objects is a key issue in many problems in computational gdgm

A set of geometric objects that is sorted, partitioned imougs and/or oth-
erwise preprocessed, so that certain queries about thesdtecanswered effi-
ciently, is called ageometric data structureThe goal of research into such data
structures is to make them as efficient as possible with ot$pestorage space,
the time needed to build the data structure, the time neeméusért or delete
objects, and the time needed to answer queries. Examplegbfgeries are:
which objects lie (partly) inside a given viewing window? :Qvhich object is
closest to a given query point? Of course, we would like oua d#ructure to
facilitate fast answers, not for just one particular quesinpor window, but for
any query that might be asked. One cannot usually expect to gifor all of
the objectives mentioned at the same time. In general, gterfthe queries, the
larger the demands on storage, preprocessing and update tim

We do not usually measure the running times of data struetigagithms by
counting milliseconds. We could, of course, but with congpsigetting faster all
the time, this would make our results outdated even befag &ne published.
Rather we ask the question: how well will a data structuretide t take advan-
tage of bigger and faster computers? To answer that quest@analyse in what
way the number of basic operations performed by the centoaligssor depends
on the input size (the number of objects stored) and the ostpe (the number
of objects retrieved). The first is usually denotedrhythe second by. We will
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write that algorithms have a running time of, for examgl&n) or O(n?). In
the first case, the running time is a linear functiomofThis means that if we
can double the speed of our hardware, this algorithm canegeovice as much
data in the same time. In the second case, the running timeudia function
of n, which means that our double-speed computer will enable handle only
26% more data with this algorithm. This means that even id#eond algorithm
would be a little faster in practice on the current hardwdre first algorithm is
probably more promising in the future.

If the amount of data is so big that we cannot keep all of it inmmaemory
while working on it, we count the number of disk accessesratan the number
of operations. In that case we analyse how the running tirepent on three
parameters: the input size the output sizé;, and the amount of data transferred
in one disk access.

In the most basic form, geometric data structures storetpaimd we want to
be able to retrieve, for any query range, the points thatresielé, or sometimes
the points that are closest to that query range. This typeat# structures has
been well studied and structures have been developed fpiesimange queries,
axis-parallel (hyper-)rectangular range queries, cacoi (hyper-)spherical range
queries, and point queries. Wiii(n) space, one can build a data structure
for n points in d dimensions that reports all points inside a simplex in time
O(n'~1/4 + k) [Mat93], wherek is the number of points reported. For queries
with axis-parallel rectangles, one can use the same datetiste, or the much
simplerkd-treewith the same query time (see e.g. [Brg97KOS] for a descrip-
tion). With more space, one can often get faster queriesekample, dayered
range treeanswers axis-parallel rectangle queries in tirf?(ekogd_1 n + k), us-
ingO(n log?1 n) space [Brg97KOS]. There are also other data structuresavhos
guery times depend more heavily on the output size and ledsdnput size. For
more about data structures for points, see, for examplsiihvey by Agarwal and
Erickson [Aga98E].

1.1.1 Data structures for categorical data

In some problems, we are not interested in each individuglobbbut in classes
of objects. As an example, consider a geographic informatystem that stores
n points representing industrial plants. Each such poinblewred, such that
the colour indicates the type of plant (chemical, manufacty food, energy,
etc.). Now one can ask questions like: "What types of induate found within
a 10 x 10 kilometer square around a particular town?”. Such questaam be
answered by standard data structures for orthogonal raagetsng: we first find
all factories that lie inside our square query range, and theck all of those
factories to see what different colours they have. Thus wéhgeanswer in time
O(logn+ k'), wherek’ is the number of plants inside our query range. However,
when our square contains a lot of factories of only few défercolours, checking
all factories one by one seems to be a waste of time. It woulchbeh nicer
to have a data structure that can give the answer in @irtlegn + k), where
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k is the number of different colours to report. Such data stimes have been
developedindeed: in one dimension it can be achieved@(it) storage [Jan93],
in two dimensions withO(n log” n) storage [Jan93], and in higher dimensions
with O(n'*?) storage [Aga02], for an arbitrarily small constant

Still, this is not always satisfactory. If the query areaig &nough, it can be
that virtually every colour has at least one point in the guange. But in some
applications, we are interested only in the colours thaelesignificantpresence
in the area. The meaning sfgnificant presencean be determined by several
criteria, depending on the application, for example:

e report only the colour that is found most frequently in theagr
e report only colours that have at least a certain number aftpdn the area;

e report only colours such that at least a certain percenthffee@oints in
the area have that colour;

e report only colours such that at least a certain percentag# points of
that colour lie in the area.

So far, we do not know of any results on this type of range $d@aggroblems,
except for Krizanc et al. [Krz03], who recently studied thstficriterion in the
one-dimensional case.

Results in this thesis

In Chapter 2;'Significant-presence range queries in categorical data/e study
the problem with the last criterion mentioned above. Fordhe-dimensional
case, we present a data structure that a¥eg storage, and can answer signifi-
cant-presence queries (logn + k) time, wherek is the number of reported
colors. Unfortunately, the generalization of our approtchigher dimensions
leads to a data structure that uses cubic storage alreathg itwb-dimensional
case. To show this fact, we obtain the following result whilf independent
interest. LetP be a set of: points inR¢, andt a parameter with < ¢ < 59 In
the worst case, the maximum number of combinatoriallymii$tbooxes containing
exactlyt points fromP is ©(ndtd~1).

Because exact significant-presence queries appear tdisaltlifve also study
a relaxed version of the problem, where we are also allowa@port colours
whose presence is somewhat below the treshold. For examptead of only
reporting all colours of which at least 50% of the points aixgde the range, we
may also report some extra colours that have between 40%Q26a6the points
inside the range. The size of the data structure for this dfppieries depends
on the number of colours, the treshold and on the requiredgiom, but, surpris-
ingly, not on the total number of points. For details, seepita2.
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1.1.2 Data structures for object data:
bounding-volume hierarchies

As explained before, designing efficient data structureimes significantly
more difficult if the objects stored are not points, but ot§ebat have some shape
and size, such as line segments, balls or polyhedra. Thealhgiefficient solu-
tions for such problems are often too complicated and beamtach overhead to
be useful in practice. It becomes even more difficult if we tadata structure
that supports multiple types of queries at the same time.daneheat, of course,
by just taking a few data structures together and store dajelctamultiple times:
once in each structure. But this increases the storageresgents and also puts
on us the burden of maintaining several structures.

In practice, so-calletbounding-volume hierarchiesften provide a good so-
lution. They are easy to implement, and although a boundaigme hierarchy
for n objects does not store more thzm pointers and geometric objects, it can
be used for different types of queries. A query in a boundialgime hierarchy
does not go directly for the answer to the query; rather iegates a set of can-
didate answers, which then need to be checked one by oneadtiqa, the set of
candidate answers is usually small enough to make this apprefficient. For a
bounding-volume hierarchy to be useful, it should allowt fgsneration of can-
didate answers, and it should select the candidates suctinéyaare likely to be
true answers.

Below, I will first explain what a bounding-volume hierarcisyand how it is
used. After that, | will explain what issues have to be adslrdsvhen designing
a bounding-volume hierarchy. | will then focus on a particuwlass of bounding-
volume hierarchies, namely R-trees, and give an overvieauofresults on R-
trees. To conclude, | will suggest a few subjects for furtiesearch in this area.

Definition and usage

A bounding-volume hierarchy is a tree structure on a set ofrgdric objects
(the data objects). Each object is stored in a leaf of the tE@eh internal node
stores for each of its childrenan additional geometric objett(v), that encloses
all data objects that are stored in descendants. oln other words,V (v) is a
bounding volume for the descendants.of-or an example, see Figure 1.1.

Bounding-volume hierarchies can be used to do many typeseas on the
set of data objects. For example, the algorithm in Figurditds all objects that
intersect a query rangg and are stored in descendants of nod&o find all data
input objects that interse@, start the algorithm with the root of the hierarchy as
v. The query will then descend into the tree, visiting exatilyse nodes whose
bounding volumes interse@. The bounding-volume hierarchy can also be used
for other types of queries, such as nearest-neighbouregigee Figure 1.3).

The algorithms can easily be adapted to hierarchies witkeketat store mul-
tiple data objects.
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-, ®

B

Figure 1.1: Example of a bounding-volume hierarchy, usewangles as bound-
ing volumes.

Algorithm Intersected@,v)
1. for every childu of v
if V(1) intersects) then
if 1 is aleafthen {objectM stored inu is a candidate answeér
if M intersects) then
reportiM
else

NogA~wN

Intersected @, ).

Figure 1.2: Finding all objects that interse&gt To find all objects that lieom-
pletelyinside@, replace the intersection test in line 4 by a testfifies insideQ.

To find all objects that completelyontain@, replace the tests in line 2 and 4 by
atestifQ is completely contained if (1), or in M, respectively.

Algorithm Closest{(Q,v)

1. smallestDistanceFoundSoFar oo

2. P «— an empty priority queue

3. repeat

4 if vis aleafthen  {the objectV stored inv is a candidate answer
5 if distance betweelN and@ < smallestDistanceFoundSoRdren
6. smallestDistanceFoundSoFar distance betweeV and@
7 closestObject— N
8

else
9. for every childu of v
11. insertu in P with priority (distance betweeW (1) andQ)
12. v « the node with lowest priority itP; let p be its priority
13. remover from P

14. until p > smallestDistanceFoundSoFar P is empty
15. return closestObject

Figure 1.3: Finding the object closest@
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Designing bounding-volume hierarchies

When designing a bounding-volume hierarchy, we have todgeeihat kind of
bounding volumes to use, what the structure of the hierastiould look like,
and how to order the data objects in the tree.

The shape of the bounding volumes. The choice of bounding volume is de-
termined by a trade-off between two objectives. On one hardyould like to
use bounding volumes that have a very simple shape. Thusgea anly few
bytes to store them and intersection tests and distanceutatigms are simple
and fast. On the other hand, we would like to have boundingraek that fit the
corresponding data objects very tightly. Thus, we try taidgming into subtrees
that will not lead to any object that satisfies our query. Oa extreme, we could
use the full space as the bounding volume for everything.Herother extreme,
we would use the union of the data objects as their boundihgn®. Both ex-
tremes are pointless. In the first case we would traverse dhglete tree for
every query; in the second case, intersection tests woujddbeas complex as
doing a complete query.

In practice, the most commonly used bounding volume is as-parallel
(hyper-)rectangle—we will just call them boxes. The minim(best-fit) bound-
ing box for a given set of data objects is easy to compute,erly few bytes
of storage, and robust intersection tests are easy to inguieamd extremely fast.
Experiments have been done with a number of other shapegthth8mong them
are the set-theoretic difference of two boxes [Ary00], otégl—that is: non-axis-
aligned—bounding boxes [Bar96, Got96], spheres [Oos9ih(little success),
the intersection of a box and a sphere [Kat97], the Minkoveskin of a box
and a sphere [Lar00], a circular section of a spherical §Ked98], pie slices
[Bar96], and discretely oriented polytopes (k-DOP’s) RagKlo98], for exam-
ple octagons [Sit99] or bounded aspect ratio k-DOP’s [D(in99

Circles and spheres seem to leave too little freedom to tttjashape to fit
the objects inside. But some of the more complex shapes raighally work
well. 1t is difficult to get a clear picture from comparitivéuslies on this is-
sue. Some authors who compared axis-aligned bounding vakesliscretely-
oriented octagons (in two dimensions) or oriented bounbimges (in three di-
mensions) reported that in the end, axis-aligned boundin@®$ often seem to
work better, despite the bad fit to the data; see Van den B¢Bgpr99] and Sitz-
mann and Stuckey [Sit99]. Sitzmann, however, also repqrtesitive results for
octagon hierarchies on data consisting of randomly oréelibe segments. The
right type of bounding volume might, in fact, depend on thauith some of the
non-standard bounding volumes are specifically aimed mfithe triangles used
to approximate smooth surfaces in virtual reality appiarsg. Finding the right
type of bounding volume definitively remains as a subjecfitiner study.

In our research, we decided to try to establish the best padice that can
be achieved with axis-aligned bounding-box hierarchiesh lirom a theoretical
and from a practical point of view.
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The structure of the hierarchy. Since a bounding-volume hierarchy is a tree
structure by definition, the main choice left is to decidelumdegree of the nodes,
that is: the number of children and/or input objects stoneal mode. The optimal
degree depends on the way in which the bounding-volumercteyas used. The
cost of processing a node in the hierarchy is composed ofdkes ©f access-
ing the location of the node in memory, the cost of readingntbée’s children
pointers and their bounding volumes, and the cost of thesattion or distance
computations on those bounding volumes. If the hierarclsyased on disk, the
access cost tends to be high: the disk’s head must be moveg ¢ottrect physical
location. Once the disk head is at the correct position, godet® block of data is
read into main memory at once. Computations on those datealateely cheap,
since these are done in main memory. Therefore, high-dewdes that fill a
full block of data are preferred. On the other hand, if thedriehy is stored in
main memory, our main concern is to keep the number of intémseor distance
computations down. For queries that do not yield too manyars this is best
achieved by making many low-degree nodes. For example, twesthat are
irrelevant to our query can often be skipped faster if we tosa parent node
that gets these two nodes as its children. A single distaoo®atation on the
parent’s bounding volume may then reveal that we can skipviischildren with-
out doing distance computations on them. Of course, thisrtiail advantage of
having many low-degree nodes only materializes if usutily,parent node will
indeed be skipped if both of its children are, and usually,deenot need to go
into both children after all. Whether or not this is actualig case depends on the
data, the queries, and the way in which the data objects strébdited in the tree.
Another issue with regard to the structure of the hierarchigs height. If
we want to be able to go from the root to any data object fasgllsneight is
a necessary condition, but not a sufficient one. The mainlg@nolis that the
bounding volumes of a node’s children may intersect. If thiect lies inside their
intersection, there is no way to tell which child has the obps a descendant.
However, small height may still be useful to guarantee tipafte algorithms can
run fast. Most algorithms to insert or delete an object rutinte O(h), whereh
is the height of the tree. Small height is most easily guaeohby requiring that
all leaves are at the same depth. This a sufficient, but notessary condition,
to guarantee that the tree has hei@titog, n), wheren is the number of objects
stored, and is the minimum degree of the nodes.

The distribution of the objects in the hierarchy. Finally, the way in which
the objects are distributed in the hierarchy may have a hugadt on its per-
formance. One of the major issues is that overlap betweending volumes
in the same node can make search paths branch and spreadodatrde parts
of the hierarchy. Therefore, it is important to keep the amai overlap small.
Unfortunately, overlap cannot be avoided completely. RBatan always be dis-
tributed among the different parts of the hierarchy in sualagthat the bounding
boxes in a node do not overlap, but with other objects thi®isaiways possible.
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Figure 1.4: A set of rectangles for which an overlap-freednighy of degree two
is impossible.

Figure 1.5: Minimizing overlap does not always lead to ojtiguery efficiency.

Figure 1.4 shows a set of rectangles that does not admit of/arap-free hi-
erarchy of bounding rectangles (or other convex boundingmes) with nodes
of degree two. The only way to avoid overlap is to cut data ckjato smaller
parts (clipping), but this comes at a cost: it would take nsiocgage space, and
while collecting the answers to a query, time may be wastegtwéing pointers to
objects which we had found already through another part.

Moreover, minimizing the amount of overlap does not neadgdead to opti-
mal query efficiency, as is illustrated by the following exaen In Figure 1.5, we
divided the line segments into groups of four: each groupesmonds to a node
just above leaf level in a hierarchy with nodes of degree.ftmuithe top figure,
we did the grouping so that we minimize the overlap betweertunding boxes
of the nodes. A query with the grey square will visit 8 nodestas level. In the
lower figure, the line segments are grouped in another wayiekygwith the grey
square will now visit only 4 nodes on this level.

If minimizing overlap is not enough to guarantee optimalrggse then how
should we distribute or group the objects in the hierarchyi8 this issue that is
the subject of Chapters 3 to 5 of this thesis.
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R-Trees

We restricted our study to hierarchies that use axis-pratixes as bounding
volumes. Extending the study to other types of boundingmasiis an obvious
subject for further research but it lies beyond the scopeuofamrk. Bounding-
volume hierarchies that use axis-parallel boxes as bognebiumes and have
nodes of high degree are also known as R-trees. The R-treenigasally in-
troduced by Guttman [Gut84]. His study has inspired two deseof research
about how to distribute the data objects in an R-tree, sorttmesidesigning new
distribution algorithms from scratch, others suggestiptimization heuristics to
be used in conjunction with known methods.

R-trees are parametrized by the maximum degree of the nddrefed by
in this chapter. This parameter is set to match the chaisatitsrof the hardware
used: usually the tree is stored on disk, @nd chosen such that a node fills a
full block on the disk. For in-memory applications, smalelues oft would
be used. The minimum degree of the nodes is set to a fixeddraofit; in the
R-tree variants studied it ranged from 10% to 50% .0fR-trees usually store
data objects in the leaves only and have all leaves on the E@len the tree,
although some authors have designed variants where thistithe case (e.g.
[Agg97, Kan97, Ros01]).

Essentially three types of algorithms have been designdi$tabute the ob-
jects in an R-tree:

by repeated insertion: One defines an insertion algorithm that strives to opti-
mize the tree locally; a complete tree is built by inserting tata objects
one by one, e.g. [Ang97, Bkr92, Bmn90, Grc98b, Ros01]. Ugudéle-
tion algorithms are provided as well.

by recursive partitioning: One defines an algorithm to distribute any number
of data objects among up tosubtrees; the tree is built by applying the
partitioning algorithm recursively top-down, e.g. [Agg@tc98a, Whi96].
The resulting data structure can be maintained either mgussertion and
deletion heuristics as above (and, for example, rebalgritia complete
tree during quiet hours), or by using the logarithmic metpagh01APV].

by linear ordering: One defines a function that maps each data object to a one-
dimensional value; the tree can then be built and maintaased stan-
dard B-tree that uses the function values as keys [Brg00,$hikdam93,
Kam94].

For an extensive survey on R-trees, see Manolopoulos éflah(3].

When comparing the query efficiency of R-trees built by sugbr@thms, one
should distinguish between a static environment (the dauilt once and not
changed afterwards), and a dynamic environment (the treerisnuously up-
dated). In a dynamic environment it may be very difficult toimtain an “ideal”
distribution of objects over the tree. The insertion of afeobcan, in princi-
ple, change the ideal distribution a lot. To allow for reasly efficient update
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operations, one has to relax the ideal a bit. As a resuli¢cstaes, built with a par-
titioning or a linear-ordering algorithm, usually allowrfomore efficient queries
than their dynamic counterparts or insertion-based atyos.

Despite the huge body of research on R-trees, until recerdtly little was
known about the query times that can be guaranteed for was#-data and
gueries. From Kanth and Singh [Kan98] and De Berg et al. [Bfgdme lower
bounds for intersection queries with axis-parallel regtas were known: query
times better tha®((n/t)'~'/¢ + k/t) can, in general, not be guaranteed. Here
n is the number of data objects,is the degree of the nodek,is the number
of object bounding boxes intersected, ahid the number of dimensions. There
were no algorithms to construct R-trees that can guaraotee any query faster
than a full traversal of the complete hierarchy, even if ¢hare no answers to
be reported. The only results in that direction were by DegBsiral. [Brg00],
but they could guarantee fast queries only for relativehaligquery ranges (for
details see the introduction of Chapter 3). Other reseandR-trees was mainly
experimental, or of a statistical nature, making statemabhbut expected query
times under certain assumptions on the distribution of #te énd/or the queries.
To our knowledge, the algorithms presented in Chapter 3 aak4he first al-
gorithms that construct R-trees that guarantee worst@asey times better than
Q(n) for all axis-parallel rectangle range queries.

Note that in the bound mentioned above, as well as in all tesuéntioned
below, & is not the number of objects intersected, but the number t&f dlject
bounding boxemtersected. I would be the number of data objects intersected,
it would be very difficult to prove anything about the efficogrof R-trees. Even
if the objects are disjoint, their bounding boxes may in tleesiycase intersect in
a single point, leading to a query time@fn/t). For an example, see Figure 1.6.
In three dimensions, there are sets of line segments sutlatlydierarchy of
convexbounding volumes on such a set, ne€lis/t) time to answer a query
with an axis-parallel line in the worst case [Bar96]. Howewewen if the objects
intersected cannot be identified efficiently in the worskgdkis is no reason to
give up on at least identifying the objeatunding boxeftersected efficiently.
From now on, we will assume that the data objects stored ihi@uarchies are in
fact bounding boxes, aridwill be the number of such bounding boxes intersected
by the query range.

Results in this thesis

Given the fact that we use axis-parallel boxes as boundihgnes and given the
maximum degree of the nodes, we set out to optimize the smeictf the tree
for fast intersection queries. We chose to optimize forrggetion queries since
such queries are an important application to start with, theg are indicative
of the efficiency of some other types of queries as well. Femgple, queries
for objects intersecting a rectangle and queries for objeontained in a rect-
angle visit exactly the same nodes, and nearest-neighlhumrieg with a point
visit exactly those nodes which would be visited by a intetisa query with a
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Figure 1.6: All bounding boxes of these line segments opdraa single point.
A query with that point needs to examine the complete hiésarc

circle centered on that point and just touching the neamghbour. Therefore,
a good performance on intersection queries is crucial andeaexpected to be
a good indication of the performance of several other tyfegieries. To avoid
redundancy in the data structure, we excluded clippingamsifrom our studies.

Our research has led to three articlé®ox-trees and R-trees with near-
optimal query time(Chapter 3);The Priority R-Tree: a practically efficient and
worst-case-optimal R-tree{Chapter 4), and:Box-trees for collision checking
in industrial installations” (Chapter 5). All of them are, in the first place, about
static R-trees, that is: R-trees that are not updated arg;mace built (although
Chapter 4 also discusses updates with the logarithmic rdgtho

In Chapter 3 we prove that there are sets of rectangles, sathintany R-
tree on such a set, there are queries that yield no answergebettheless visit
Q((n/t)*~'/4) nodes. It is not so much this bound itself which is interegtiin
was already known from Kanth and Singh [Kan98] and De Berd.4Beag00].
What is interesting is the type of data that can bring outwhisst-case behaviour.
We show that such worst-case sets of rectangles and quriséseen if any one
or two of the following restrictions apply:

e no pointis contained in the bounding boxes of more than ataahsumber
of data rectangles (in other words: they don't overlap much)

¢ the aspect ratio of the query rectangles is bounded by aamn@h other
words: the query rectangles are not extremely long and;thin)

e we have only two dimensions.

Only if all three of these restrictions apply, we cannot do lower bound con-
struction. In fact, for that case we show how to construatded that can answer
any axis-parallel rectangle query by visitifflog® n + k) nodes.

Note that all our lower bounds, like the previous bounds bytkand Singh
[Kan98] and De Berget al[Brg00], do not hold for replicating data structures,
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that is, data structures that may store each object (or &qudim it) more than
once.

In Chapter 3 we also give an algorithm for the constructioaxi§-aligned-
bounding-box hierarchies with nodes of degree two thatesgs optimal query
time ©(n'~1/4 4 k) in the general case. In Chapter 4 we extend this method to
get optimal®((n/t)'~'/¢ + k/t) query time on nodes of degre¢assuming that
I/O-operations dominate). Chapter 4 describes the methwodddes of degree
in detail; it is not necessary to read Chapter 3 first to unidetkit. Chapter 4 also
presents experimental results in two dimensions. The tegulicate that our
algorithm creates R-trees that are efficient in practicelenbeing more robust
than the heuristic approaches known so far.

One may wonder if it is possible to construct R-trees thatlmomthe good
properties of both constructions mentioned aboveét./t)'~'/¢ 4k /t) query
in the general case, ar@(log® n + k) query time if the three restrictions men-
tioned above apply. In Chapter 3 we describe a construatiaiied kd-interval
tree, that goes a long way towards achieving this goal. Arikdrival tree in two
dimensions answers axis-parallel range queries in ﬁmq;—‘ + k) and point
queries in timeD (log? +k), provided that the data rectangles don’t overlap much.
As overlap among the data rectangles increases, the pang garformance de-
generates gradually int@(\/? + k). One could use similar techniques as in
Chapter 4 to get a better dependency on the degrethe k-term.

The lower bound constructions in Chapter 3 show that it ispussible to
achieve something similar in more than two dimensions:etlage sets of disjoint
data boxes that make any R-tree that guarantees polylbgacifjuery times for
point queries, spend near-linear time on some (hyper-)qubges.

In Chapter 5, we look into the three-dimensional situatioritfer. The data
boxes in the lower-bound construction mentioned above ddoodk extremely
strange: they can be arbitrarily close to a unit cube in shaplesize. There is one
peculiar thing about them though: they must be arrangeddn away that certain
cubic query ranges yield no answers while there alat af data boxes nearby.
It turns out that if we accept that such cases are difficult flsabably rare in
practice), and if we accept that certain arrangements oémmdly flat data boxes
are difficult (but probably rare in practice), we can builcdheee-dimensional kd-
interval-tree with polylogarithmic query time for the reimiag cases (the cases
we expect to find in practice). We prove that these query tianesachieved not
only for queries with boxes but also for queries with othegruranges of constant
complexity. Chapter 5 describes how to build a tree with soafelow degree;
one may use the transformation algorithms described in €h&pto transform
the tree into a real R-tree with high-degree nodes.

To distinguish between arrangements of boxes that shouliahdled effi-
ciently, and arrangements of boxes that may be consideffenitti we define the
slicing numberof a set of data objects as follows: let the slicing numkemith
respect to a cub€ be the maximum number of data object bounding boxes that
intersect four parallel edges 6f; then the overall slicing numbexr is the max-



18

CHAPTER 1. INTRODUCTION

imum value of\x over all possible cubeS'. A low slicing number means that
the data boxes do not overlap much and that there are no ameangs of lots of
extremely flat data boxes very close to each other.

The main results for point and axis-aligned rectangle @seran be summa-
rized in the following tables. We use the following notation

n
k:

ke:

the total number of data objects in the hierarchy;
the number of data object bounding boxes that interseajukey range;

(with ¢ > 0) the number of data object bounding boxes that intersect the
query range, or lie within a distance oftimes the diameter of the query
range;

. the maximum degree of the nodes in the hierarchy;

: the maximum aspect ratio (width/height or height/widththe query range;

Results in two dimensions: asymptotic upper boundg)(...)
input rectangles  tree (chapter)  pointqueries rectanglernips

disjoint 2D kd-interval (3)  log’n VE4E
disjoint 2D kd-interval+isf (3) log®n alog®n +k
intersecting PR (4) VE+E VE+E

Results in three dimensions: asymptotic upper bound§)(...)
input boxes tree (chapter) point queries box queries

constant slicing nr. 3D kd-int.+Isf (5) log*n  min.{(2)%log* n + k.}

1
intersecting PR(4) (m)¥3+% (2)2/3 4 &

Subjects for further research

The 3-dimensional kd-interval-tree mentioned above haslgloeoretical bounds

for
plai

low-degree nodes, but when turned into an R-tree (udiegtéchnique ex-
ned in Chapter 3), the dependency on the degree of thesriedot as good

as one would wish. We cannot yet say if data sets of realigtecand structure

will

nevertheless bring out the strength of the kd-inteitvak, and if so, for what

types of data and queries this method would indeed be theatettchoice.

In Chapter 4 we compare our PR-tree to two variants of theddiR-tree,

which is an R-tree based on ordering objects along the Hiftparce filling curve
[Kam94]. Although the Hilbert-R-tree cannot guaranteestaase query times,
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and does not outperform the PR-tree, it still has advantagesuilt faster and it
is much easier to implement and maintain. We tested two naxriaf the Hilbert-
R-tree in two dimensions: one in which each data object isesmmted by its cen-
ter point, and one in which each data object is representedduyr-dimensional
point whose coordinates are those of the object’'s boundiogngle. Naturally,
the second variant is more robust when the data consiststigles. However,
the experiments also show that the second variaméakeron some sets qfoint
objects. It makes one wonder if this unwanted behaviour ctine avoided. Can
we design a space-filling curve, to be used as the basis for@@eRwhich is
good for both point and rectangle data?

The next big question that remains is: what is the best tyg®ahding vol-
ume? It might depend on the type of queries we want to perf@nmaxis-aligned
bounding boxes the best choice for axis-aligned rectanggeigs? What would
be the best bet for general range queries in two dimensiongfAdxesults on oc-
tagons by Sitzmann and Stuckey [Sit99] suggest that occagometimes helpful,
sometimes harmful, are just a little bit too much? Would th&rum be found
at discretely oriented hexagons? And how would that be iegtftimensions?
Dodecahedra?

Our research has been primarily aimed at two- and threerdiioeal settings.
Our theoretical resultare valid for multi-dimensional data as well. Unfortu-
nately, this includes the rather disappointing lower baunBrom this we must
conclude that the theoretical approach taken in this thesising for optimal
worst-case query times, may not give us a data structuréstpaactical for high-
dimensional data. In practice, one would like to have a datectsire that does
not only guarantee optimal query times on the worst possiata, but can also
take advantage of easier data to allow for faster querieszeSh many practical
situations, we do not have worst-case data, this would leadiata structure that
is much faster in practice. We do not know if our data struieguake advantage
of easy data or fail to do so. For two-dimensional data, itkedrout well—in
our experiments, the PR-tree does appear to be efficientthlsusuccess does
not necessarily carry over to higher dimensions. Handligh{dimensional data
may require more study into questions of the type: whatasy data, and how
can we design a data structure that simultaneously guasmterst-case query
times and takes advantage of easy data? Chapter 5 is an tttedgal with the
first question in three dimensions, but it is doubtful if itkea sense to generalize
the approach of Chapter 5 to higher dimensions. The righstépres to ask may
depend on the number of dimensions. Typical applicationsofg-dimensional
data include motion planning. There we have objects that Inaag a shape in,
for example, four dimensions (three spatial dimensionsaredtime dimension).
But high-dimensional data more often comes from applicatiohere the data
objects have no shape and size, but are just points whosdicatas represent
the values of non-geometric properties of the objects.
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Figure 1.7: Example of a geometric network. In this case,nibdes are axis-
parallel rectangles, and the connections are axis-phlialesegments.

1.2 Geometric networks

A network consists of a set of vertices or nodes, and a set mfiexiions be-
tween the nodes. In a geometric network, the nodes and cbomeare geo-
metric objects, which usually have a place and size in spatedn also have
non-geometric properties such as the cost of constructidritee time needed to
traverse a connection. Geometric networks arise frequantiur everyday life:
road networks, telephone networks, and computer netwoekalhexamples of
geometric networks that we use daily. They also play a rotkdaiplines such as
VLSI (chip) design and motion planning. Almost invarialtlye purpose of the
network is to provide a connection between the nodes in theank. Often it is
desirable that the connection through the network betwegrpair of nodes is
relatively short. From this viewpoint, one would ideallyaa direct connection
between any pair of nodes. This is usually infeasible dué&¢ocbsts involved,
so one has to compromise between the quality and the coseafaihnections.
This leads to optimization problems of the following forrmdithe “best” set of
connections for a given set of geometric objects, subjeet given set of con-
straints. A well-known problem of this type is to find the nmimim spanning tree
on a set of points, which is a set of connections of minimural tehgth such that
the network is connected. There are many different comioingibf constraints
and criteria for a good network: for example, they may condke total cost of
the network, the maximum distance between nodes, the defjtee nodes, or
the number of nodes that may get disconnected if a connefetien There is a
vast literature on this type of problems, and a comprehermrerview would be
beyond the scope of this thesis. For a survey, see e.g. EppSpp00], or the
upcoming book by Narasimhan and Smid [Nar04]. We studiedpwedlems in
this area, as described below.

Results in this thesis

In Chapter 6,‘Facility location and the geometric minimum-diameter spéng
tree”, we study the following case. The nodes in our network aratgdn two
dimensions, and a straight line connection between twotpaiosts the same
regardless of the distance. We are given just enough momegike a network that
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connects each point. So if there arpoints, we can make only— 1 connections.

In other words: we have to construct a spanning tree on thesaddur goal is to
choose our connections such that the biggest distance &gy pair of points
through the network is as small as possible. So far, exaatisnk take almost
O(n?) time to compute. Our algorithm finds a solution where the maxn
distance is up to a factdi + <) larger than in the best solution, but it finds such
a solution in timeO((1)5 + n). For large sets of points and modest requirements
on the accuracy, this can be much faster than the best knoaat exlution.

In Chapter 7,'Optimal spanners for axis-aligned rectanglesie study the
following case. The nodes in our network areaxis-aligned rectangles in two
dimensions; they are to be connected by line segments. Wgivame a graph on
the nodes of the network. For every connection given in taplgran axis-aligned
line segment must be placed between the correspondinghgdesa What we
have to figure out, is where exactly the line segment betwegmiraf rectangles
should be placed. Imagine the rectangles are buildingsthreniihe segments are
foot bridges. It is quite frustrating if, to walk to a room aygite one’s own room
in an adjacent building, one has to walk all the way to the drallong corridor,
then along the foot bridge, and then back again along thedoworin the other
building. Therefore our goal is to place the line segment $hat we minimize
the maximum dilation, that is the worst possible ratio of it@oor distance and
the shortest distance for any pair of points inside the regés. Our results are
as follows.

e In general, the problem is NP-hard.

o If the bridge graph is a tree, then the problem can be solved lryear
program withO(n?) variables and constraints.

o Ifthe bridge graph is a path, then the problem can be solvéx{irf logn)
time.

¢ Ifthe bridge graph is a path and the buildings are sortedoadist along this
path, the problem can be solvedd{n?) time. A (1 + ¢)-approximation,
where the maximum dilation is at mo@t + ) times the optimum, can be
computed inO(nlog 1) time.

This leaves the question of a strongly polynomial-time &t for the tree case
still open: so far, we did not succeed in finding a way of gelierg the path

algorithm to arbitrary trees. We hope that the insight gaiftem the research
in Chapter 7 will eventually be helpful in finding good sotuts when the bridge
graph is not given and/or when we wish to connect arbitrarywer polygons
rather than axis-aligned rectangles.






Chapter 2

Significant-presence range
gueries in categorical data

An extended abstract of this chapter was previously publists: Mark de Berg
and Herman J. Haverkort: Significant-presence range cquierigategorical data,
in Proc. 8th Int. Workshop on Algorithms and Data Structure&D8) Ottawa,
2003 (LNCS 2748), pages 462—-473. Full text submittetbtarnal of Algorithms

Abstract. In traditional colored range-searching problems, one vgatiotstore a
set ofn objects withm distinct colors for the following queries: report all coler
such that there is at least one object of that color intetiggcthe query range.
Such an object, however, could be an ‘outlier’ in its coloass. Therefore we
consider a variant of this problem where one has to reporydhnbse colors such
that at least a fractionr of the objects of that color intersects the query range,
for some parameter. Our main results are on an approximate version of this
problem, where we are also allowed to report those colorswhich a fraction

(1 — )7 intersects the query range, for some fixed- 0. We present efficient
data structures for such queries with orthogonal query & sets of colored
points, and for point stabbing queries in sets of coloredargles.

2.1 Introduction

Motivation. The range-searching problemis one of the most fundamerutiat p
lems in computational geometry. In this problem we wish tastouct a data
structure on a sef of objects inR?, such that we can quickly decide for a query
range which of the input objects it intersects. The rangeeteng problem comes
in many flavors, depending on the type of objects in the inpu$'son the type of
allowed query ranges, and on the required output (whethenamts to report all
intersected objects, to count the number of intersectegictdjetc.). The range-
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searching problem is not only interesting because it is sutilndamental prob-
lem, but also because it arises in numerous applicationsesdike databases,
computer graphics, geographic information systems, artdalireality. Hence,
it is not surprising that there is an enormous literature e gubject—see for
instance the surveys by Agarwal [Aga97], Agarwal and ExckpAga98E], and
Nievergelt and Widmayer [Nie00].

In this paper, we are interested in range searching in thieexbof databases.
Here one typically wants to be able to answer questions gkesn a database of
customers, report all customers whose ages are betweend2B0aand whose
income is between $50,000 and $75,000. In this example,us@mers can be
represented as points &, and the query range is an axis-parallel rectafgle.
This is called the (planagrthogonal range-searching problerand it has been
studied extensively—see the surveys [Aga97, Aga98E, Nie@htioned earlier.

There are situations, however, where the data points aralhot the same
type but fall into different categories. Suppose, for ins& that we have a
database of stocks. Each stock falls into a certain categarpely the indus-
try sector it belongs to—energy, banking, food, chemicals, Then it can be
interesting for an analyst to get answers to questions likewhich sectors com-
panies had a 10—20% increase in their stock values over #teypar?” In this
simple example, the input can be seen as points in 1D (namebeich stock its
increase in value), and the query is a 1-dimensional rargezking query.

Now we are no longer interested in reporting all the pointharange, but
in reporting only the categories that have points in the eanghis means that
we would like to have a data structure whose query time is ensitve to the
total number of points in the range, but to the total numberatégories in the
range. This can be achieved by building a suitable datatstreifor each category
separately, but this is inefficient if the number of categeis large. This has led
researchers to study so-calledlored range-searching problemstore a given
set of colored objects—the color of an object representsaitsgory—such that
one can efficiently report those colors that have at leasbbject intersecting a
query range [Aga02, Kre92, Gup95, Jan93].

We believe, however, that this is not always the correctrabtd version of
the range-searching problem in categorical data. Confidénstance the stock
example sketched earlier. The standard colored rangetsegrdata structures
would report all sectors that hae least onecompany whose increase in stock
value lies in the query range. But this does not necessailyasything about
how the sector is performing: a given sector could be doimg badly in general,
but contain a single ‘outlier whose performance has beangtt is much more
natural to ask for all sectors for whieghoststocks, or at least a significant por-
tion of them, had their values increase in a certain way. dfloee we propose a
different version of the colored range-searching problgiven a fixed threshold
parameterr, with 0 < 7 < 1, we wish to report all colors such that at least a

1From now on, whenever we use terms like “rectangle” or “box mplicitly assume these are
axis-parallel.
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fraction 7 of the objects of that color intersect the query range. Wetha a
T-significant-presence quergs opposed to the standameésence querthat has
been studied before.

Problem statement and results. We study significant-presence queries in cat-
egorical data in two settings: orthogonal range searchingravthe data is a set
of colored points inR? and the query is a box, and stabbing queries where the
data is a set of colored boxesif and the query is a point. We now discuss our
results on these two problems in more detail.

LetS = S; U---US,, be a set ok points inR¢, wherem is the number
of different colors andS; is the subset of points of color class Let = be a
fixed parameter witld < 7 < 1. We are interested in answeringsignificant-
presence queries ¢ given a query box), report all colorg such that@n.s;| >
7-|S:]. Ford = 1, we present a data structure that uSés) storage, and that can
answer significant-presence querie$iflog n + k) time, wherek is the number
of reported colors. Unfortunately, the generalization of approach to higher
dimensions leads to a data structure using already cubiagsgtdn the planar
case. To show this fact, we obtain the following result whlf independent
interest. LetP be a set of: points inR?, andt a parameter with < t < n/(2d).
Then the maximum number of combinatorially distinct boxestaining exactly
t points fromP is ©(nt9~1) in the worst case.

As a data structure with cubic storage is prohibitive in ficas we study an
approximate version of the problem. More precisely, we wterdpproximate
significant-presence querielsere we are required to report all colonsith |Q N
Si| = 7-]S;|, butwe are also allowed to report colors WiehN.S;| > (1—¢e)7-|S;],
wherese is a fixed positive constant. For such queries we developasiaicture
that useD(M'+9) storage, for any > 0, and that can answer such queries in
O(log n+ k) time, whereM = m/(724=2¢24-1) andk is the number of reported
colors. We obtain similar results for the case wheris not fixed, but part of
the query—see Theorem 2.2.7. Note that the amount of stol@ggnot depend
on n, the total number of points, but only an, the number of colors. This
should be compared to the results for the previously consitiease of presence
queries on colored points sets. Here the best known resalt®©én) storage with
O(log n+k) query time ford = 1 [Jan93],0(n log? n) storage withO(log n+k)
query time ford = 2 [Jan93],0(nlog* n) storage withO(log®n + k) query
time ford = 3 [Gup95], andO(n'*?) storage withO(log n + k) query time for
d > 4 [Aga02]. These bounds all dependonthe total number of points; this is
of course to be expected, since these results are all on #ut groblem, whereas
we allow ourselves approximate answers.

In the point-stabbing problem we are given a parametand a setB =
By U---U B, of n colored boxes irR?, and we wish, for a query point to
report all colorsi such that the number of boxes B, containingq is at least
7 - | B;|. We study thes-approximate version of this problem, where we are also
allowed to report colors such that the number of boxes coimgig is at least
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(1 — ¢)7 - |B;|. Our data structure for this case ugeg\/'+°) storage, for any
§ > 0, and it ha®)(log n+ k) query time, wherd/ = m/(re)%. The best results
for standard colored stabbing queries, where one has tatralbaolors with at

least one box containing the query point, are as follows. d~er 2, there is a
structure using)(n log n) storage withO(log? n + k) query time [Gup95], and
for d > 2 there is a structure usin@(n'*?) storage withO(logn + k) query

time [Aga02].

2.2 Orthogonal range queries

Our global approach is to first reduce significant-presencigs to standard
presence queries. We do this by introducing so-ca#ietisets

Test sets for orthogonal range queries

Let P be a set of points inR?, and letr be a fixed parameter with < 7 < 1.
A setT of boxes—that is, axis-parallel hyperrectangles—is dadle-test sefor
Pif:

1. any box froml" contains at leastn points fromP, and

2. any query boxQ that contains at leastn points fromP fully contains at
least one box frond".

We call the boxes if" test boxesWe can answer a significant-presence query on
P by answering a presence queryBna query box contains at leastn points
from P if and only if it contains at least one test box. This does mbtrgduce the
problem to a standard presence-query problem, beGagsatains boxes instead
of points. However, like Agarwadt al. [Aga02], we can map the s#ét of boxes
in R? to a set of points iR2¢, and the query box) to a box inR?¢, in such a
way that a bo» € T is fully contained inQ if and only if its corresponding point
in R24 is contained in the transformed query oXhis means we can apply the
results from the standard presence queries on colored getiant

It remains to find small test sets. As it turns out, this is ragtgible in general:
below we show that there are point sets that do not admit ¢ég¢stod near-linear
size. Hence, after studying the case of exact test sets, leikmi our attention to
approximate test sets.

Exact test sets. Lett be a parameter with < ¢ < n. Define at-boxto be
a minimal box containing at leastpoints fromP, that is, a box containing at
leastt points such that there is no strictly smaller bgxC b that containg or
more points. It is easy to see that any:)-box must be a test box, and that the

2|n fact, the transformed query box is unbounded to one sialegadach coordinate-axis, so it is a
d-dimensional ‘octant’.
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Figure 2.1: Peeling &n)- Figure 2.2: For  Figure 2.3: Now, all re-
box b in two dimensions  p», we cannottake  maining points ofD(b)
(rn = 12). The black R, asitis extreme are extreme in 2 direc-
dots are the four points of in two directions  tions: we stop peeling
D(b). Initially, each point ~ amongthe remain- here. R and B together
is extreme in only one di- ing points ofD(b). form the basis D*(b)
rection, as indicated by the So we have to take  of b. We conclude that
arrows. We can choose any one of the others, has a peeling sequence
of them, let us také". for exampleL. of type+xa, —x1.

collection of all(7n)-boxes forms a-test set. Hence, the smallest possible test
set consists exactly of theéen)-boxes.

In the 1-dimensional case a box is a segment, and a minimal segment is
uniquely defined by the point from® that is its left endpoint. This means that
any set ofn. points on the real line has a test set that has @ize 7)n 4+ 1. Un-
fortunately, the size of test sets increases rapidly wighdimension, as the next
lemma shows.

Lemma 2.2.1 For any setP of n points inR?, there is ar-test set that has size
O(t91n2d=1). Moreover, for some sef3, anyr-test set has size(t4~1n21-1).

Proof: By the observation made before, bounding the size of a tédiais
down to bounding the number ¢fn)-boxes. In this proof, when we use the term
direction we mean one of th{ directions+x,, —x1, ..., +x4, —x4. Letb be a
(n)-box, and letD(b) be a set of points ih such that there is at least one point
of D(b) on each facet ob. If there are more such sets, [BXb) be a set with
minimum cardinality.

The central concept in the proof is that of a peeling sequemtieh is defined
as follows: apeeling sequencl®r D(b) is a sequence;, po, ... Of points from
D(b) with the following property: any; in the sequence is extreme in exactly one
direction among the points iP(b) — {p1, ..., p;—1}. Ties are broken arbitrarily,
i.e. if multiple points are extreme in the same direction,appoint one of them
to be the extreme point in that direction. Ttypeof a peeling sequence is the
sequencdl, dg, ... of directions such thavt1 is the unique direction in which; is
extreme amon® (b) — {p1, ..., pi—1 }. Note that there ar@d)!/(2d—¢)! = O(1)
different sequence types of a given lengtlso we haveO(1) different sequence
types of length betweehandd.
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Figure 2.4: Constructing @érn)-box with sequence type Figure 2.5: The ex-
+x2, —21 in two dimensions. First choose a basis of twareme point for the
points for the remaining directions (the black dots). Thefirst direction of the
follow the sequence type in reverse order. The extrensequencetxs, must
point for direction—z; must be one of the firstn points  be the(rn)’th point
found when traversing the shaded area in the direction iofthe shaded area.
the arrow.

It is easy to see that there must be a peeling seque(igeof lengthg =
max(0, |D(b)|—d): consider anincremental construction of the sequencéngee
off points fromD(b) one at a time, as illustrated in Figs. 2.1-2.3. There2are
directions, so as long as there are more ttigooints left there must be a point
that is extreme in only one direction, which we can peel off.

Call D*(b) := D(b) — o(b) thebasisof b. We charge the bok to its basis
D*(b), and we claim that each basis is charg&drn)?~!) times. Since there
areO(n?) possible bases, this proves the theorem. To prove the atainsjder a
basisD*, and choose a sequence type. Anx)-boxb whose basi® (b) is equal
to D* and whose peeling sequence has the given type can be rexdedtincre-
mentally as follows—see Figs. 2.4 and 2.5 for an illustratiBtart withD = D*.
Now consider the last directioﬁz of the sequence type. Since the last pgint
of the peeling sequence is extreme only in directi’f;nit must be contained in
the semi-infinite box which is bounded in all other direcidiy planes through
points in D. Hence, only the firstn points in this semi-infinite box are candi-
dates forp,, otherwise the box would already contain too many pointsirdilar
argument shows there are onty choices fop,_1, ..., p2. The first poinip; from
the sequence (which is the last point added in the reconigtn)és then fixed, as
b must contain exactlyn points—see Figure 2.5.

To prove the lower bound, consider the following configunmat{shown in
Fig. 2.6 for the planar case) We palr Mdlrectlons+x1, —X1, .., FT4, —Xqg
intod palrs(dll, dlg) (dgl,dgg) (ddl, ddg) so that no pair contams opposite
directions, that |$i11 ;é dzg for 1 < ¢ < d. Leth; be the 2-plane spanned by
the d|rect|on$i11 andd; 2 and containing the origin. On each 2-planewe place
n/d pointsp;(1), ..., p;(n/d) such that all of them are in the positive quadrant
with respect to the origin and both directiois andd;». We place these points
along a staircase. More precisely, we require that farj < n/d, the pointp;(j)
is closer to the origin thap; (j — 1) with respect to directiod;;, and further from
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Figure 2.6: A lower bound on the number @fn)-

boxes in two dimensions. The four directions are

grouped in two pair§—xz1, +x2) and (+z1, —x2).

We place a staircase of/2 points in the positive

quadrant for each pair (in two dimensions, these
™ quadrants are coplanar; in higher dimensions this
Pa(by) is not necessarily the case). Choosing one defining
- point on each staircase fixes two sides of a box. We
% have©(n?) ways to do so.

+x,

o, NI

toe) |0

—X

n
2 o

+x;

max w/.ﬂf Figure 2.7: Choosing one additional point on one

NG staircase fixes another side of the box. This addi-
foen o tional point must be one of the fir@(rn) points
—X; — +X; . . .

found when walking up the staircase from the first

| Palb) defining point on that staircase. On the remaining

’ staircase, we will have no choice but to choose the
X point such that the box will contain exactty. points.

the origin with respect to directiod;s. Any box containing at least one point
from each of these sets can now be specified by choosing twispg{b;) and
pi(b;) in each 2-plané;; we define the box to be the minimum bounding box
of the points chosen. By choosibg< b; + (tn —1)/(d—1) —1for1 <i < d,
andd), = by — 1+ Zf;ll(bg —b; + 1), we get a box containing exactly: points.

Having ©(n) choices for each; (1 < ¢ < d) and©(rn) choices for each,
(1 <i<d— 1), we can construd® (79— 1n24-1) different(rn)-boxes. O

Note that already in the plane, the bound is cubia.in

Remark 2.2.2 A different way to state the result above is as follows. Pebe

a set ofn points inR%, and lett be a parameter with < ¢ < n/(2d). Then the
maximum number of combinatorially distinct boxes contagnexactly: points
from P is ©(ndt?=1). In other words, we have proved a tight bound on the
number oft-sets for ranges that are boxes instead of hyperplanese Ssgts
have been studied extensively—see e.g. [Dey98] and [Sha@&]suspected that
the case of box-ranges would have been considered as wellydbtave only
found a result on this for = 2: Alon et al. [Alo85] proved that the maximum
number of2-boxes is(1 — 7t )n?/2 + o(n?).

Remark 2.2.3 The lower-bound example in the proof of Lemma 2.2.1 is quite
contrived, and one may hope that much smaller test sets asilypmif the points
are distributed more regularly. This is not the case, howeds an example,
consider the planar case with= 1/2, and suppose the point sBtis distributed
uniformly at random in the unit square. Then the numbe(of2)-rectangles

is still ©(n?) with high probability. This can be seen as follows. Consither
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1/14 6/7 1/14
area = 3/4 7/8
area = 1/224
1/16
1?16
area = 3/56

Figure 2.8: Partitioning of the unit square used in the argim Remark 2.2.3.

partitioning of the unit square into nine regions, as in Bi§. Since the points are
distributed uniformly, the expected number of points ingioa of areax is an.
Moreover, the number of paints in the region is at I§a$8)an with probability
greater than — exp(—an/18), which follows from standard tail estimates on the
binomial distribution. Hence, the following propertieddhsimultaneously with
high probability:

(1) each of the three darkly shaded regions in Fig. 2.89@ag points;

(2) the lightly shaded region has at leag® points, which also implies that the
six bottommost regions together have at mo& points.

It follows from (1) that there ar®(n?) triples of points such that each darkly
shaded region contains one point from the triple, and ibfed from (2) that for
each such triple there is a rectangle with these points oletheight, and bottom
edge that contains exactly/2 points.

Approximate test sets. The worst-case bound from Lemma 2.2.1 is quite dis-
appointing. Therefore we now turn our attention to appratartest sets. A sét
of boxes is called an-approximater-test sefor a setP of n points if

1. any box fronTl" contains at leastl — ¢)7n points fromP;

2. any query boxQ that contains at leastn points fromP fully contains at
least one box frond".

This means we can answefapproximate significant-presence queriesfoby
answering a presence querydn

Lemma 2.2.4 For any setP of n points inR¢ (d > 1) and anye with0 < ¢ <
1/2, there is are-approximater-test set of siz&(1/(e21~1724-2)). Moreover,
there are setB for which anye-approximate--test set has size(1/ (24~ 174)).



2.2. ORTHOGONAL RANGE QUERIES 31

Proof: To prove the upper bound, we proceed as follows. We will coestest
sets recursively, starting with the full sBtas input. If the size of the current set
P is less tharmng, whereng is the original number of points, there is nothing to
do. Otherwise, we choose a hyperplanerthogonal to ther; -axis, such that at
most half of the points irP lies on either side of. Then we construct three test
sets, one for queries on one sidehgfone for queries on the other side, and one
for queries intersecting. The first two test sets are constructed by applying the
procedure recursively. The latter set is constructed davsl

Let n be the number of points in the current g§&t We construct a collec-
tion Ho(P) of n(2d — 1)/(emno) hyperplanes orthogonal to the-axis, such
that there arerno/(2d — 1) points of P between any pair of consecutive hyper-
planes’ We do the same for the other axes, exceptihaxis, obtaining sets
Hs(P),...,Hq(P).

From these collections of hyperplanes we construct oursietsas follows.
Take any possible subst* of 2d — 2 hyperplanes fronHy(P) U - - - U Hy(P)
such thatt (P) up to H,(P) each contribute exactly two hyperplanegfo. Let
P(H*) be the set of points i that lie on or between the hyperplanes contributed
by H;(P), for all 2 < ¢ < d. Construct a collectiorf/; (H*) of hyperplanes
orthogonal to ther;-axis, such that there aeeng/(2d — 1) points of P(H*)
between each pair of consecutive hyperplanes. For eachhsgpehplane’ €
Hy(H™*), construct a test boxwith the following properties:

1. bis bounded by, the hyperplanes frof *, and one additional hyperplane
parallel toh’ and through a point oP (H*);

2. bisa((1 — e)rng)-box.

Of all the test boxes thus constructed, we discard thosedthaiot intersect..
Hence we will only keep boxes for whidi is relatively close tdi: there cannot
be more tharfl — ¢)mng points fromP(H*) betweerh andh’.

This implies that the total humber of test boxes we createhis $tep is
bounded by(1 — &)mng / (eTno/(2d — 1)) < (2d — 1)/e for a fixed setH*.
Hence, we create at mogt(2d — 1)/(s7no))%¢=2 - (2d — 1) /< boxes in total.
The numberT'(n) of boxes created in the entire recursive procedure therefor
satisfies:

T(n)=0 if n < 71ng

2d—2
T(n) < 2T(n/2) + (ﬁ‘f_;j) L2021 p2d=2  otherwise.
This leads td7'| = T'(ng) = O(1/ (24 1724-2)),

We now argue thal” is ane-approximater-test set forP. By construction,
every box inT contains at leastl — ¢)rng points, so it remains to show that

3If there are more points with the same-coordinate, we choose the hyperplanes such that
we have at mostTng/(2d — 1) points strictly in between consecutive hyperplanes, anleast
eTng/(2d — 1) points in between or on consecutive hyperplanes.
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h
. Figure 2.9: An example query range(shaded area)

that intersects, showing alsahs, h% and the grid
b H\,({hs, hy}). The three dark areas 6f each con-
tain at moste7ny/3 points. Hence, ifQ contains
at leastrng points, the bright area a@f contains at
least(1 — ¢)rno points, and a test box like the one
! 1, shownabove, bounded Iy, 45, and a grid line from
— . Hi({h2, hhy}), must lie inside?).

every box@ that contains at leastn, points fromP fully contains at least one
box b from T'. Let h be the first hyperplane used in the recursive construction.
If at leastrng points inQ lie to the same side df, we can assume that there
is a test box contained i@ by induction. If this is not the case, we will show
that a test box inside (Q was created for queries intersectihg To see that
such a box must exist, observe that for @nyith 2 < 7 < d, there must be a
hyperplaney; € H;(P) that intersects) and has at mostrng/(2d — 1) points
from Q N P below it. Similarly, there is a hyperplarié € H;(P) intersecting

Q with at mosteTng/(2d — 1) points from@ N P above it. Note thah,; # h/.
Let H* be the sefho, hf, hs, by, ..., hq, bl }. Since each of these hyperplanes
‘splits off’ at mosterng/(2d — 1) points from@, they define, together with the
facets ofQ) orthogonal to the:;-axis, a box contained i and containing at least
(1 —e+4¢/(2d —1))mne points. From this, it follows that our construction, when
processing this particuldd*, must have produced a test biox ). The proofis
illustrated in Fig. 2.9.

To prove the lower bound, recall the construction used into@r.2.1 for the
lower bound for the exact case. There we uésthircases af/d points each. We
then picked two points from each staircase, with at njest— 1) /(d — 1) points
between (and including) them, except for the last staircabere we picked only
one point. Each such combination of points defined a diffefen)-box, thus
given Q(r9-1n2d-1) different (n)-boxes. Now, for the approximate case, we
consider a subset ¢f./d) / (eTn+2) so-calledanchor pointslong each staircase,
such that two consecutive anchor points hawe + 1 points in between. We now
pick two anchor points from each staircase, except the tastase, where we
pick one. We make sure that in between two chosen anchorgfoim the same
staircase, there are at mgst. — 1) /(d — 1) points. We then pick a final point on
the last staircase to obtain(an)-box. Each of these boxes must be captured by
a different test box, because the intersection of two sugk$oontains less than
(1 — &)7n points. The lower bound follows. O

Putting it all together. To summarize, the construction of our data structure for
g-approximate significant-presence queriesoa S, U- - -US,, is as follows. We
construct are-approximater-test setl; for each color clas$;. This gives us a
collection of M = O(m/(£2?~1724-2)) boxes inR?. We map these boxes to a set
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S of colored points irR2¢, and construct a data structure for the standard colored
range-searching problem (that is, presence queries), aising the techniques of
Agarwalet al.[Aga02]. Their structure was designed for searching ona trit
using the standard trick of normalization—replace evemyrdmate by its rank,
and transform the query box to a box in this new search spa€¥lisg n) time
before running the query algorithm—we can employ their ltesn our setting.

The same technique works for exact queries, if we use exsicséds. This
gives a good result faf = 1, if we use the results from Gupé# al. [Gup95] on
guadrant range searching.

Theorem2.25LetS = S; U---U S,, be a colored point set iR?, andr a
fixed constant wit) < 7 < 1. Ford = 1, there is a data structure that uses
O(n) storage such that exactsignificant-presence queries can be answered in
O(logn + k) time, wherek is the number of reported colors. For> 1, there

is, for anys with 0 < ¢ < 1/2 and anyd > 0, a data structure fof that uses
O(M'*?) storage such that-approximater-significant-presence queries 6n
can be answered i (log n + k) time, whereM = O(m/(24-1724-2)).

Remark 2.2.6 Observe that, since we only have constantly many pointsqer,c
we could also use standard range-searching techniqueghiBwtould increase
the termk in the reporting time ta@(k/(¢2¢~1724-2)), which is undesirable.

The case of variabler. Now consider the case where the parameté& not
given in advance, but is part of the query. We assume that wedéower bound

7o on the value ofr in any query. Then we can still answer queries efficiently,
at only a small increase in storage. To do so, we build a didleof O(T")
substructures, wherfE = log(1/79)/log(1 + £/2). More precisely, for integers
iwith 0 < i < T, we definer; := (1 + ¢/2)*r, and for each suchwe build

a data structure fofz /2)-approximater;-significant-presence queries éh To
answer a query with a query baxand query parametet we first find the largest

7, Smaller than or equal te, and we query with®) in the corresponding data
structure. This leads to the following result.

Theorem 2.2.7 LetS = S,U---US,, be a colored point set R¢, andr, a fixed
constant with) < 7y < 1. Ford > 1, any0 < £ < 1/2 and any > 0, there is a
data structure fo$ that uses)(M'+9 /<) storage such that, for any> 1y, one
can answet-approximater-significant-presence queries 6nin O(logn + k)

time, whereMl = O(m/(24~172%72)) andk is the number of reported colors.

Proof: By Theorem 2.2.5, the size of substructirs O(M*(ry/7;)P) =
O(M'™9/(1+¢/2)P%), whereM = O(m/ (24~ 17247?)) andD = (2d—2)(1+
8). The total size of all substructures is therefoxgl/ ' +0 S°° (1+¢/2)~ %)
O(MH9/¢).

It remains to show that queries are answered correctly. Mater; < 7 <
(1 + ¢/2)7;. Now, any colorj with |Q N'S;| > 7;|S;] will be reported by our
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algorithm, so certainly any color witl§) N S;| > 7|S;| will be reported. Second,
for any reported coloj we have:

QNS;| = (1-¢/2) 7S]
> (1-¢/2)-7/(1+¢/2)-]5]
z (1—=¢)7-|5l.

This proves the correctness of the algorithm. O

2.3 Stabbing queries

Let B = B, U---U B,, be a set of, colored boxes ilR?, whereB; denotes the
subset of boxes of colar Letr be a constant with < 7 < 1. For a pointg,
we useB;(q) to denote the subset of boxes frdBj that contairng. We want to
preprocess3 for the following type of stabbing queries: given a querymai,
report all colors such thatB;(¢)| > 7 - | B;|. As was the case for range queries,
we are not able to obtain near-linear storage for exact gséord > 1, so we
focus on the-approximate variant, where we are also allowed to repootar &
[Bi(q)| = (1 —¢&)7 - |Bil.

Our approach is similar to our approach for range searctiihgs we define
ane-approximater-test sefor a setB; to be a sef’; of test boxes such that

1. for any pointy with |B;(q)| > 7 - | B;|, there is a test bokwith ¢ € b;
2. for any test box and any point € b, we havelB;(q)| > (1 —e)7 - | Byl

This means we can answer a query by reporting all caléos which there is a
test boxb € T; that containg.

Lemma 2.3.1 For any setB; of boxes inR?, there is are-approximater-test
setT; consisting of0(1/(e7)?) disjoint boxes. Moreover, far < 1/(2d), there
are sets of boxes iR? for which anye-approximater-test set has size(((1 —

7)/(eT)).

Proof: For each of thel main axes, sort the facets of the input boxes orthogonal
to that axis, and take a hyperplane through eyery.; /d)-th facet, where:; :=
|B;]. This givesd collections ofd/(e7) parallel planes, which together define a
grid with O(1/(e7)?) cells. We letT; consist of all cells that are fully contained
in at least(1 — ¢)7 - | B;| boxes fromB;. ClearlyT; has the required number of
boxes, and has property (2). (Note: using the fact that, sgrtom infinity, we
must cross at leag{1 — ¢)/e > (1/¢) — 1 hyperplanes before we can come to a
cell fromT;, we can in fact obtain a slightly stronger bound on the siZ&;dbr
the case where is large.)

It remains to show thaf; has property (1). Lety be a point for which
|Bi(q)| = 7 - |B;|, and letC be the cell containing. Since any cell is crossed by
at most=Tn; facets, we must hawg < T;.
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The lower bound is proved as follows. For each of the main ,ated® a
collection of(1—7)/(2deT) hyperplanes orthogonal to that axis. Slightly ‘inflate’
each hyperplane to obtain a very thin box. This way eachsatgion point ofd
hyperplanes becomes a tiny hypercube. Next, each of thiesedkes is replaced
by 2e7n; identical copies of itself. Note that each tiny hypercubeds covered
by 2deTn; boxes, and that there afél — 7)/(2deT))? such hypercubes. Add a
collection of(1—2d=)n, big boxes, each containing all the tiny hypercubes. The
tiny hypercubes are now covered by exaetly, boxes, and the remaining space
is covered by at mogtl — 2¢)7n; boxes. (Since we have used slightly less than
n; boxes in total, we need to add some more boxes, at some ayHication
disjoint from all other boxes.) Any test set must containheaicthe hypercubes,
and the result follows. O

To solve our problem, we construct a test’Betor each color clas®; according
to the lemma above. This gives us a collection\éf= O(m/(e7)?) colored
boxes. Applying the results of Agarwet al.[Aga02] again, we get the following
result.

Theorem 2.3.2LetB = B, U---U B,,, be a colored set of boxesRf', andr

a fixed constant with < 7 < 1. Ford = 1, there is a data structure that uses
O(n) storage such that exactsignificant-presence queries can be answered in
O(logn + k) time, wherek is the number of reported colors. For> 1, there

is, for anys with0 < ¢ < 1/2 and anyd > 0, a data structure foB that uses
O(M'*9) storage such that-approximater-significant-presence queries éh

can be answered i0(log n + k) time, whereM = O(m/(e7)9).

Remark 2.3.3 Note that, since the test boxes from any given color are idisjo
we can simply report the color of each box containing the ypeint . Thus
we do not have to use the structure of Agarethl., but we can apply results
from standard non-colored stabbing queries [Chz88]. Tlag we can slightly
reduce storage tO (M logd—2+? M) at the cost of a slightly increased query time
of O(log?~* M + k). Also note that we can treat the case of variabire exactly
the same way as for range queries.

2.4 Concluding remarks

Standard colored range searching problems ask to reparplalis that have at
least one object of that color intersecting the query rangk. considered the
variant where a color should only be reported if some congtaspecified frac-
tion of the objects intersects the range. We developedefficiata structures for
an approximate version of this problem for orthogonal rasgarching queries
and for stabbing queries. One obvious open problem is whefieee exists a
data structure for the exact problem with near-linear sp¥¢e have shown that
this is impossible using our test-set approach, but peraapsnpletely different
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approach is possible. Another open problem is to close thébgaween our up-
per and lower bounds for the size of approximate test seterfbbgonal range
searching. Finally, one can develop structures that caortréipe color that has
the most points in the query range. Krizagtcal. [Krz03] recently studied this
problem ford = 1, and it would be interesting to generalize their resulig o 2.
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Chapter 3

Box-trees and R-trees with
near-optimal query time

Previously published as: Pankaj K. Agarwal, Mark de Bergchém Gudmunds-
son, Michael Hammar and Herman J. Haverkort: Box-trees atrdé® with near-
optimal query time, iDiscrete and Computational GeometB8(3), 2002, pages
291-312.

In the following text, the bounds in Lemma 3.3.6, Lemma 3.Bémma 3.3.8,
Theorem 3.3.9, Lemma 3.3.10, Theorem 3.3.11, and Coralatyt are a little
stronger than in the previously published version. Thisus tb slighlty more
detailed calculations in the proofs.

Abstract. A box-tree is a bounding-volume hierarchy that uses aigat
boxes as bounding volumes. The query complexity of a bexatith respect
to a given type of query is the maximum number of nodes visiteth answer-
ing such a query. We describe several new algorithms fortoacting box-trees
with small worst-case query complexity with respect to gasewith axis-parallel
boxes and with points. We also prove lower bounds on the wags query com-
plexity for box-trees, which show that our results are optior close to optimal.
Finally, we present algorithms to convert box-trees to &4, resulting in R-trees
with (almost) optimal query complexity.

3.1 Introduction

Motivation and problem statement. Window queriegeport all objects of a
given set that intersect&dimensional axis-parallel query window, that isd-a
dimensional box. Preprocessing a Sedf geometric objects iiR? for answering
such queries is central to many applications and has beaxwgtlidied in several
areas, including computational geometry, computer gplapatial databases,
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GIS, and robotics [Brg97KOS, Man99]. In order to expeditd aimplify the
data structure, a window query is often answered in two stépthe first step,
called thefiltering step, each object is replaced by the smallest box containing
the object and the query procedure reports the boundingstibee intersect the
qguery window. (Instead of boxes, other simple shapes sushlares, ellipsoids
or cylinders have also been used.) The second step, cabledfthement step
extracts the actual objects among these bounding boxesteetect the query
window [Bri94, Ore90]. A few recent results show that undertain reason-
able assumptions on the input objects, the number of bogrdires intersecting
a query window is not much larger than the number of objedersecting the
window, which makes this approach quite attractive; seg#per by Zhou and
Suri [Zho99] and the references therein. There has been maoidhon the filter-
ing step, and we also focus on this step. More precisely, 88 ti preprocess a
setS of n boxes inR? so that all boxes of intersecting al-dimensional query
box can be reported efficiently. We will refer to this querytlasbox-intersection
query A related query is thbox-containmenquery in which we want to report
all boxes inS that contain a query point.

A number of data structures with good provable bounds fowarnisag box-
intersection queries have been proposed. Unfortunatelyate of limited practi-
cal use because the amount of storage used is ratherighog n) storage and
evenO(n) storage with a large hidden constant are often unaccepfEidgefore
in practice one usually uses simpler data structures. A comfyrused struc-
ture for answering box-intersection queries, box-comtent queries, and in fact
many other types of queries is theunding-box hierarchyor box-treefor short,
sometimes also called AABB-tree: this is a trEgin which each leaf is associ-
ated with a box of the input sé&t, and each interior nodeis associated with the
smallest boxB, enclosing all the boxes stored at the leaves of the subtm#edo
atv. All the boxes ofS intersecting a query boR are reported by traversing
7 in a top-down manner. Suppose the query procedure is \gsitinodev. If
B, N R = (), there is nothing to do. IB, C R, then it reports all input boxes
stored in the subtree rootedat Finally, if B, N R # 0 but B, € R, it recur-
sively visits the children of. We say thaf crossesa nodev if B, N R # () and
B, ¢ R. If the fan-out of7 is bounded, then the query time is proportional to
the number of nodes & that R crosses plus the number of boxes reported. We
define the stabbing number Bfto be the maximum number of its nodes crossed
by a query box. It is therefore desirable to construct a bowgidox hierarchy
with small stabbing number.

In many applications, especially in the database apptinatithe sef is too
large to fit in the main memory, therefore it is stored on dikkthat case, the
main goal is to minimize the number of disk accesses needmuktoer a window
guery, and the performance of an algorithm is analyzed utheéestandard exter-
nal memory model [Agg88]. This model assumes that each diskss transmits
a contiguous block of units of data in a singlenput/output operatiorfor 1/0O).
The efficiency of a data structure is measured in terms of theuat of disk
space it uses (measured in units of disk blocks), the nuntbiéDs required to
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answer a query, and the number of I/Os needed to construdataestructure. In
the context of bounding-box hierarchies, several schemesiheen proposed that
construct a tree as above but in which the fanout of each neplendis on. Some
notable examples of external-memory bounding-box hibiascare various vari-
ants of R-trees; see the survey paper [Gae98]. We can dfifledthecrossing
nodes and thetabbing numbeas earlier, and one can argue that the number of
I/Os needed to answer a query is proportional to the stahiimgber plus the
output size.

In this paper we study the problem of constructing boundinghierarchies,
both in main and external memory, that have low stabbing rerpdnd conse-
guently, low query complexity.

Previous results. As noted above, several efficient data structures have been
proposed for answering a box-intersection query. For exanghazelle [Chz88]
showed that a compressed range tree can be used to angwi@nansional box-
intersection query in tim@(log? ' n + k) usingO(n log? ! n/loglog n) space
(wherek is the number of boxes reported). This data structure is ¢ogpdex to
be practical even ifR2. As for bounding volume hiearchies, we know of only
one result on the query complexity of box-intersection tpsefbesides the results
on R-trees discussed later): if one maps ea@alimensional box to a point in
R2?, constructs a kd-tree on these points, and converts theekdstick to a box-
tree, then the query time is known to Bén'~1/2¢ 4 k) [Aga98E, Lau78]. A
number of heuristics based @u-trees have also been proposed to answer box-
intersection queries [Aga98E, Nie97]. Several papers 96,0KI098] describe
how to construct bounding-box hierarchies or other bougrdiolume hierarchies
(for example, using-DOPs as bounding volumes), but they do not obtain bounds
on the worst-case query complexity.

Some of the most widely used external-memory bounding-eralchies are
the R-tree and its variants. An R-tree, originally introddby Guttmann [Gut84],
is a B-tree, each of whose leaves is associated with an input btxeaves of
an R-tree are at the same level, the degree of all internasexicept of the root
is betweent and2t, for a given parametet, and the degree of the root varies
betweer and2t. We will refer tot as theminimum degreef the tree. To min-
imize the query complexity, several methods have been gexpf-al92, Fal87,
Gae98, Leu97] for ordering the input boxes along the leawesying from sim-
ple heuristics to space filling curves—but none of them guaethe worst-case
performance. In the worst case, a linear number of boundixgmight inter-
sect a query box even if it intersects orflf1) input boxes. The only analytical
results are by Theodoridis and Sellis [The96], who presenbdel that predicts
the average performance of R-trees for range queries, dodtba et al. [Fal87],
but they prove bounds on the query time only in the 1-dimeraioase when the

1Barequetet al.[Bar96] gave an algorithm to construct a bounding-box hmainR2, and they
claimed that if the boxes if are pairwise disjoint, then the resulting hierarchy 6d$og n) stabbing
number. But the argument presented in the paper has a tatpniblem.
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input intervals are uniformly distributed and have at mesi tlifferent lengths.
Recently, de Berget al. [Brg00] described an algorithm for constructing an R-
tree on boxes ifR? so that allk boxes containing a query point can be reported in
O((o +1log p)logn/logt) I/Os. Herep is the ratio of the maximum and the min-
imum z-lengths of the input boxes, anmdis thepoint-stabbing numbeof S, that

is, o is the maximum number of input boxes containing any pointélane. For

a box-intersection query, the number of /08I o +log p+w+k) logn/ logt),
wherew is the ratio of ther-length of the query box to the smallesiength of

an input box.

Our results. In this paper we first describe several algorithms for camesing
box-trees, and we prove lower bounds on the worst-case quenplexity of
box-trees. The lower bounds actually hold for all boundiofume hierarchies
that use convex shapes as bounding volumes.

Ouir first algorithm, like the approach mentioned earliehdsed on a kd-tree
in R2¢, By changing the structure slightly and doing a more carafiallysis, we
are able to obtai®(n'~!/? + k) query complexity for box-intersection queries.
We also prove a lower bound showing that this bound is optimal

For disjoint input in the plane, we show how to construct a-bree that
still has almost optimal query time for box-intersectioregas, but much bet-
ter query times for point queries. In fact, it is already eefor point-queries
when the point-stabbing numberof the input iso(n/ log* n): the time for box-
intersection queries i9(,/n log n++/o log® n+k), and the time for point queries
is O(y/a log?n + k). We also develop a box-tree with((a + /o) log® n + k)
guery time for use with query boxes with aspect ratioOne would hope that
similar improvements are possible in higher dimensions @frour lower-bound
results shows that this is not possible: in dimensiéns 3, theQ(n' /¢ + k)
lower bound on the query complexity holds even for hyperswgsequery ranges,
and any bounding-box hierarchy that achieves this query tiamnot have a better
worst-case query time for point queries, even when the inposists of disjoint
‘almost-unit-hypercubes’.

Finally, we give general methods to convert box-trees witlalsquery com-
plexity into R-trees with small query complexity. When wephpthese results to
our box-trees, we improve the result of de Beggyal. [Brg00]: our query com-
plexity does not depend on the parameitdwhich makes their query complexity
linear in the worst case), and it is linearyfv instead of ino. We also introduce
the concept osemi-R-treesthese are similar to ordinary R-trees—the degree of
each internal node, except for the root, is betweand 2t for some given pa-
rametert—except that the leaves do not have to be at the same level.iwa g
general algorithm to convert a box-tree with small query plaxity into a semi-
R-tree with small query complexity; the bound obtained hereetter than that
for R-trees. This leads to semi-R-trees with (almost) optiquery complexity.

All box-tree construction algorithms in this paper rur(gn log n) time, and
all box-tree-to-(semi-)R-tree conversion algorithmsiu®(n) time.
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3.2 Lower Bounds

In this section we give lower bounds on the query complexXityemi-R-trees of
minimum degree in various settings. Since semi-R-trees are more geneaxal th
R-trees, the same bounds hold for R-trees. By choadsiag2, we obtain lower
bounds for box-trees.

We start with a simple generalization of the 2-dimensiooadr bound given
by de Berget al.[Brg00Q].

Theorem 3.2.1 For anyn andd > 2, there is a set of disjoint unit hypercubes
in R with the following property: for any semi-R-tréE of minimum degreé
there is a query box not intersecting any box frénsuch that a query with that
box visitsQ((n/t)*~'/4) nodes irT .

Proof: Consider a set af unit hypercubes arranged in alv? x - - - x n'/? grid,
and the following set of query ranges: for each axis, we chads’—1 thin boxes
orthogonal to it and separating the ‘slices’ of the grid freath other. Now any
bounding box ort hypercubes intersects at ledgt'/? — 1) of the query ranges.
Hence, the total number of incidences between the rangabamsbunding boxes
is at least((n/t) - t'/4). As there areD(n'/?) ranges, there must be one that
intersect€2((n/t)'~'/?) bounding boxes. O

Next we describe a construction that proves lower boundsoxacbntainment
gueries and that is also useful for a number of other casesariya > 0, we call

a d-dimensional box aa-hypercubdf the length of each edge is betwegmand
1+ e. We fix a parameter. > 1 and construct a sef = {b(0),...,b(n — 1)}

of n e-hypercubes ilR¢. We also construct two sets of query poitis andQ-,
called primary andsecondarypoint sets, that lie in the common exterior of the
boxes inS and have the following property: for any semi-R-tr€eon S with
minimum degree, either a point of); lies in at leasi: bounding boxes of or a
point of @, lies inQ((n/t)/u'/(4=1) bounding boxes of . From this we derive
the desired lower bounds. We first describe theSsahd then construct the point
sets.

Letny,...,neq be the outward normals of&dimensional box. We can pair
these normals intd pairs(ni1,n12), (na21,n22), ..., (n41, ng2) SO that no pair
contains opposite normals, that is;; # —n for 1 < i < d. Let h; be the
2-plane spanned by the vectarg andn;, and containing the origin. Létbe a
d-dimensional box containing the origin. Sineg # —n;2, the facetsf;1, fio of
b normal ton;; andn,., respectively, share(@ — 2)-face f;, which is orthogonal
to the2-planeh;. The intersection of; andh; is a pointc;. Conversely, by spec-
ifying a pointc; on eachh;, 1 < i < d, we can represent a unigdedimensional
box in whiche; lies on the facets normal te;; andn;,. We will therefore de-
fine each box(j) € S by ad-tuple (¢1(j),. .., ca(j)), where the facets df(j)
whose outward normals arg;, andn;, pass through;(;). We next describe how
to choose the points (j), for1 <: < dand0 < j < n.

On each2-planeh;, we choose a liné; of slope—1; the exact equation of
£; will be specified below. We will refer td; as theprimary plane, and to
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h;, for i > 1, as asecondary plane Setj, = p'/(4=Y. We placen points
p1(0),...,p1(n — 1) on ¢; (sorted along/; by ascending:;;-coordinate, and
consequently, by descending.-coordinate) and set;(j) = pi(j) for every

0 < j < n. Foreachi > 1, we placej pointsp;(0),...,p;(& — 1) on¥;
and assigm; () to these points as follows. Let(j) = (a0 (j),-..,aqs—2(j)) be
the representation gfmod p in radix i, that is,zz;g ax(5)i* = j mod . For
eachi > 1, we set;;(j) = pi(aq—i(j)). Note thatn/ i points have the same value
of ¢;(j). We choosé; and the points o#; so that eacl; is ans-hypercube, e.g.
by putting all pointg;(j) at a distance of at leasf2 and at most1 + ¢)/2 from
the origin, both in their projection on the;-axis and on the;>-axis.

Finally, we choose a s&p; of n — 1 points on the primary plank; and a
set@. of (d — 1)(& — 1) points on the secondary planes, as follows. Suppose
hy is thezzo-plane. For each < j < n — 1, we choose the point(j) =
(z1(p1(j—1)),z2(p1(j))) and add it ta?, . In other words, if we regard the points
on /¢, as the convex corners of a stairca®g,is the set of concave corners of the
staircase. To constru€)s, we repeat the same step for each of the secondary
planes, thus obtaining — 1 points on each of them. These points will be on the
boundary of some of the input boxes, but we can shift thentla tit make them
disjoint from all input boxes.

Lemma 3.2.2 LetT be any semi-R-tree of minimum degreen the setS con-
structed above. Then either there is a primary query pointaieed inQ(u)
bounding boxes stored ih, or one of the secondary query points is contained in
Q(n/(tp*/@=1)) bounding boxes stored if.

Proof: We first prove the lemma for box-trees, which are binary tregsp-
pose that all primary query points are contained in less thy@bounding boxes
stored in the interior nodes . Then the number of incidences between these
points and interior nodes’ bounding boxes is at mest- 1)x/2. Since there
aren — 1 interior nodes ir7, they store at leasgth — 1)/2 bounding boxes that
contain less tham primary query points. Observe that a bounding box for in-
put boxes(5),b(j’) € S contains|j — j'| primary query points, because there
are that many concave corners in the staircase betweerrsogfig) andc; (j).
We conclude that there are at legat— 1)/2 bounding boxes that store boxes
b(j),b(3") (and perhaps some more boxes) Wijth- j'| < u. Butif |j — 7| < p
thenj £ j' (mod p), soa(j) # «(j’). This implies that there is at least one
1 with 2 < ¢ < d such thate;(5) # ¢i(j'). Hence, the bounding box storing
b(4),b(4") will contain one of the secondary query points. So in totahaee at
least(n — 1)/2 incidences between secondary query points and boundirgsbox
so one of théd — 1)(i — 1) = O(u'/(4=1)) secondary query points is contained
in Q(n/p'/(¢=1) bounding boxes.

The generalization to semi-R-trees follows easily fromdhservation that a
semi-R-tree of minimum degreéhas(2(n/t) nodes. If each primary query point
is contained in less tham/2 bounding boxes, we then g8{n/t) nodes whose
bounding box contains less tharprimary query points. From that point on, we
can basically follow the argument above. O
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= primary plane
b(0)
e b(1)
T b(ym- 1)
o b(v7)
o b(v/ii+1)
— . b(n—1)
b(O), b(\/ﬁ)b(Q\/ﬁ)v 4
b((v/i — 1)v/n)
b(1),b(1 + /n),b(1 + 2y/n), ..., .
b(1+ (Vi — 1)y/n)
b(y/ — 1), b2V — 1), b(n—1) |
secondary plane J

Figure 3.1: The lower bound construction in two dimensiansf = 4 = /n.

In this case, the primary and the secondary plane coincigeh Bf the lower left
corners is shared byn boxes (shown slightly displaced for clarity). The black
dots indicate the locations of the query pointgjpandQ-.

We can use this lemma to prove lower bounds for several gsttBy substituting
w = (n/t)'~1/4, we prove the following lower bound for point queries.

Theorem 3.2.3 For anyn, d > 2, ande > 0, there is a se$ of n e-hypercubes
in R with the following property: for any semi-R-tréE of minimum degreé
there is a point not contained in any box fréhsuch that a query with that point
visits Q((n/t)*~'/4) nodes irT .

Next, we modify the above construction so that the same boande achieved
in d > 3 even if the input consists of a set nfdisjoint e-hypercubes and the
queries are hypercubes.

Theorem 3.2.4 For anyn, d > 3, andes > 0, there is a sef of n disjoint c-
hypercubes ifR¢ with the following property: for any semi-R-tr@e of minimum
degred there is a hypercube not intersecting any box frerauch that a query
with that hypercube visitQ((n/t)* /%) nodes irnT .
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Proof: We apply a variant of the construction above with= n'~1/(¢=1 to
obtain a set ofd — 1)-dimensional boxes in the hyperplare= 0. The variation
is that we treat all planes on which we put the corners as skecgmplanes. We
use the remaining dimension to make the boxesdntiimensionak-hypercubes,
and we translate each box into the-direction such that they become disjoint
and intersect the; -axis in the ordeb(1),5(2),...,b(n). In between every pair
b(4),b(j + 1) we put a query point. These— 1 query points play the role of the
primary query points. The secondary query points are replédy query ranges
which are hypercubes. We can do that in such a way that thes@ttigon of such
a range with a secondary plane is a square that missexl that has one corner
coinciding with the secondary query points we had previpulilis easy to see
that the bound in Lemma 3.2.2 still holds. O

Finally, we observe that the proof of the preceding theoretally shows that
in higher dimensions any semi-R-tree with small (say, pggkithmic) query
complexity for points must have large (near-linear) quemnplexity for ranges.
More precisely, it shows the following result.

Theorem 3.2.5 For anyn, d > 3 ande > 0, there is a se$ of n disjoint c-
hypercubes ifR¢ with the following property: for any semi-R-trde of minimum
degred, if the number of nodes visited by any point querysthen there is a
hypercube not intersecting any box fragirsuch that a query with that hypercube
visits Q(n/(tp/(@=1))) nodes inT .

3.3 From kd-trees to box-trees

In this section we describe and analyze several methodsristremt box-trees
using kd-trees. For convenience we will allow our box-treefiave nodes of
degree up t@d + 3—it is easy to convert these trees to binary trees without
affecting the asymptotic bounds on the query complexityei®@uanges (other
than points) will be assumed to be open, while input boxesndimg boxes and
cells in space decompositions are closed.

3.3.1 The configuration-space approach

The basic method. Let S be a set of arbitrary, possibly overlapping, boxes in
R?, which we call thevorkspaceAs noted in the introduction, we can represent a
d-dimensional box = H?;l[iﬂf (b), z; (b)] by a point(zy (b), 25 (b), ...,z (b),
zf (b), 23 (b), ...,z } (b)) in R2%, which we call theconfiguration spaceWe build
a2d-dimensional kd-tree on these points.

A kd-tree is a binary space decomposition tree, which is tis@ttiex points.
Every node in &d-dimensional kd-tree is associated with a cell, which &la
dimensional box, and an axis-parallel splitting hyperplaifhe splitting plane

divides the cell into two axis-parallel subcells, one focteahild of the node.
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The root cell is chosen large enough to contain all inputigoifihe tree is then
built recursively by determining splitting planes for adllis. The orientations of
the splitting planes depend on the level in the tree, in sughyathat all possible
orientations 2d in this case) take turns in a round-robin fashion on any patmd
into the tree. The location of each splitting plane is chagerh that the numbers
of input points in the resulting subcells differ by at moseéoWhen a cell contains
only one input point, we make it a leaf of the tree and do nat ggurther.

To transform the kd-tree in configuration space into a ber-tn workspace,
proceed as follows. Replace the representative point ih ézaf by the cor-
responding input box. Then, going bottom-up, store in eatdrmal node the
bounding box of its children. We call the resulting box-teamnfiguration-space
box-tree or cs-box-tredor short.

In the introduction we pointed out that it can be used to do-intersection
queries inO(n'~1/2¢ 4+ k) time; in this paper we will show how to improve the
upper bound t@(n'~1/4 4+ k).

For the analysis of the range query complexity of the cs-tve®; we need the
following fact about kd-trees, given here without proof.

Lemma 3.3.1 The number of cells at depthin a d-dimensional kd-tree that in-
tersect an axis-parallgtflat 0 < f < d) isO(2'//%).

A kd-tree and, hence, our box-tree has the following prgpettie number of
objects stored in the two subtrees of any given node diffeatynost one. We
call such treeperfectly balanced The perfect balance in our box-tree will be
advantageous when we will convert it to an R-tree. We can n@alyae the range
guery complexity of a cs-box-tree.

Lemma 3.3.2 Let S be a set of. possibly intersecting boxes . There is a
perfectly balanced box-tree f6rsuch that the number of nodes at leivéiat are
visited by a range query with an axis-aligned bo®iQ**~1/4) 4 k), wherek is
the number of boxes ifi intersecting the query range. The box-tree can be built
in O(nlogn) time.
Proof: Let@ = Hle(a:;(Q),xj(Q)) be a query range. We can restrict our
attention to the interior nodes visited, since the numbeigifed leaves is at most
one more. We distinguish two types of visited interior noded he first type is
where at least one of the input boxes stored in the subtreeinfersectsq.
Obviously there are only)(k) such nodes at a given level The second type
is where all input boxes in the subtree:ofire disjoint from@. The interior of
any input box disjoint front) must be separated frog by a hyperplane through
a facet of@. Not all input boxes are separated fr@gnby the same hyperplane,
otherwise the bounding box ofwould not interseaf) andr would not be visited.
Hence, there are at least two such hyperplanes sepaafirgn an input box in
the subtree of.

Assume w.l.0.g. that; = z; (Q) is one of these separating hyperplanes, and
let b be the input box it separates fragh Then we must have; (b) < z; (Q).
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But there must also be a békwith ;" (v') > x; (Q), otherwise the bounding box
of v would notinterseaf). We conclude that the points representimdd’ in the
configuration space lie on or on opposite sides of the hypeeal; = z; (Q).
Consequently, the hyperplang = z; (Q) intersects the cell in configuration
space of the node in the kd-tree corresponding to

We can apply the same argument to the second hyperplanatergdy from
an input box (the hyperplang, = x;r(Q), for example), to show that there is

a hyperplane in configuration space with points on or on oppsges {; =

2} (Q) in the example).

We can conclude the following. Suppogevisits a nodev of the second
type. Then in configuration space there is a pair of hypegsaloth of the form

r =z; (Q)orz; =] (Q)andbothintersecting the cell in configuration space

of the kd-tree node correspondingtoBut then the cell is also intersected by the
(2d — 2)-flat that is the intersection of these two hyperplanes. Byira 3.3.1
there are onlyD(2/(21-2)/2d) — (2¢(1=1/4)) such nodes at level

For the building time, see section 3.3.4. |

This leads directly to the following theorem.

Theorem 3.3.3 Let S be a set of, possibly intersecting boxes . There is a
perfectly balanced box-tree f6rsuch that the number of nodes visited by a range
query with an axis-aligned box (n'~1/¢ 4 klogn), wherek is the number of
boxes inS intersecting the query range. The box-tree can be budlt(imlog n)
time.

Proof: From Lemma 3.3.2 we get a bound for the stabbing number onleaeh

in the tree. Since a kd-tree has heighig n], so does a cs-box-tree, and summa-
tion over all levels yields a total query complexity@‘gf(% " o@iI-1/d) 4 k) =
O(n'~Y 4 klogn). O

Improving the query time. We now show how to reduce th@(k logn) term

in the query complexity t@ (k). The idea is the same as in a priority search
tree [Brg97KOS]: input elements (boxes in our case) thaehahigh chance
of being reported are pushed to high levels in the tree. Incase, the boxes
that extend farthest in one of the-directions are stored high in the tree. More
precisely, the construction of the tr@efor a setS of boxes inR< is as follows.

If |S| = 1, then7 consists of a single leaf node storing the input box§in
Otherwise we make a nodestoring the bounding boiv) of all boxes inS, and
proceed as follows.

For each of thed inner normals of the facets &fv), take the box fronS
that extends farthest in the direction of that normal. Thisuits in a set™* of
at most2d boxes. Each box i is put in a so-callegbriority leaf, which is an
immediate child of.

If the setS \ S* of remaining boxes contains less than two boxes, then this
box (if it exists) is put as a leaf child of. If two or more boxes remain, we
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split the set of boxes into two (almost) equal-sized subséts an axis-parallel
hyperplane in configuration space. Like in a normal kd-ttee,orientation of
the splitting plane depends on the level in the tree, so thatlarientations take
turns in a round-robin fashion on any path from the root dawa the tree.

The subset of boxes whose representative points lie to deeoéithe cutting
hyperplane are stored recursively in one subtree dthe subset of boxes whose
representative points lie to the other side of the cuttingenglane are stored
recursively in another subtree of

Next we analyze the query complexity of the tree resultingfthis construc-
tion, which we call acs-priority-box-tree In our analysis we bound the number
of visited nodes of a given weight, where the weight of a nadeefined as the
number of input boxes stored in its subtree. This will be ulb&hen we convert
this box-tree into a semi-R-tree.

Lemma 3.3.4 The number of nodes of weight at leasvisited by a query with
a query boxQ is O((n/w)'=4 4+ k).

Proof: LetQ = Hle(:c; (Q),z](Q)). We can restrict our attention to the
visited nodes of weight at lea2t/, as the total number of visited nodes is at most
a constant times larger than this number. Ldte such a visited node of weight
at least2d. There are two cases.

The first case is where one of the priority leaves directlypWwel stores a box
intersectingy. Clearly there are at mostsuch nodes.

The second case is when all priority leaves directly belostore boxes dis-
joint from @. Thus each such box’s interior is separated fi@ray a hyperplane
through a facet of). We claim that not all boxes can be separated by the same
hyperplane. Suppose for a contradiction that there is & fawéose containing
hyperplane separates all boxes of the priority leaves fgorithen in particular it
would separate the box that extends farthest in the directidhe inner normal
of the facetf, contradicting thaf) intersects the bounding box stored-aSo we
have two distinct hyperplanes through facetg)deparating a box in the subtree
of v from Q.

The box-tree that we have constructed basically corresptmd kd-tree in
configuration space, as before. The priority leaves makeltlearee in configu-
ration space is strictly speaking not a kd-tree, but itiy¢éasee that Lemma 3.3.1
still holds. Moreover, there is still a one-to-one correspence between nodes of
the box-tree and nodes of the kd-tree in configuration spldeeace, we can use
the fact that there are two distinct hyperplanes throughtéof () separating a
box in the subtree af from @ in the same way as in the proof of Lemma 3.3.2:
it implies that there is é2d — 2)-flat in configuration space (defined by a pair of
facets ofQQ) intersecting the cell in the kd-tree corresponding tdt follows that
the total number of nodesto which the second case applies at a given level
0(21'(171/(1))_

To finish the proof, observe that nodes at the lowermiogt{(w/(2d)) | levels
have weight less tham. Adding the bounds for the second case on the remaining
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levels, we gegl@gnl—uog(w/@dm O(211=1/D) = O((n/w)~1/4).
For the building time, see section 3.3.4. O

The following theorem follows directly.

Theorem 3.3.5 Let S be a set of possibly intersecting boxes . There is

a box-tree forS such that the number of nodes that are visited by a range query
with an axis-aligned box i©(n' =1/ + k), wherek is the number of boxes if
intersecting the query range.

3.3.2 The kd-interval-tree approach

The cs-box-tree of the previous section has optimal quenypdexity for point
gueries (and range queries) if the input consists of anitiatersecting boxes.
Unfortunately, if the input boxes are disjoint then the gussmplexity for point
gueries does not improve. In this section we develop a diffebox-tree, the
kd-interval tree whose query complexity is much bettetif the point-stabbing
number of the input sef, is small. The query complexity for range queries
increases only slightly. This approach only works in thenplaTheorem 3.2.5
states that a similar result in more than two dimensions agos obtained.

The basic idea behind kd-interval trees is again to use adeaj-but this time
in the workspace (which is now the plane). Since the objecthé workspace
are boxes, not points, many of them may intersect the culitieg These boxes
are taken out and handled separately, like in an interval ffe make kd-interval
trees more efficient, we introduce priority leaves, likelia previous section.

The 1-dimensional case. First we describe how a sstof boxes all intersecting
a given line? are handled. With a slight abuse of terminology, we call a foe
this case a 1-dimensional kd-interval tree.

If |S| = 1, thenT7 consists of a single leaf node storing the input box§in
Otherwise we make a nodestoring the bounding boiv) of all boxes inS, and
proceed as follows.

For each of the inner normals of the edges bfv), take the box front' that
extends farthest in the direction of that normal. This ressinl a setS* of at most
4 boxes. Each box i8* is put in apriority leaf.

Consider the set of intersections of the edges of the renmindxes with?.
Let p be the median of these intersection points. The box&s\irt* containing
p are stored in a subtree ofthat is a 2-dimensional cs-priority-box-tree as de-
scribed in the previous section. The boxesik S* completely to one side gf
are stored recursively as a 1-dimensional kd-intervalitmese second subtree of
v. The boxesinS \ S* completely to the other side pfare stored recursively in
another subtree of.

We call the nodes in the main 1-dimensional kd-interval frBenodes Such
a node corresponds to an interval on the definingdiné/e call the nodes of the
2-dimensional cs-priority-box-trees-nodes
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We start by analysing the query complexity when we query wisegment on
the linel.

Lemma 3.3.6 If we query a 1-dimensional kd-interval tree storing a seff & o
boxes with a line segment on the defining linéhen we visit at mosp(log = +k)
nodes of weight at least, wherek; is the number of boxes to be reported.

Proof: Observe that the query segmaerintersects a box if and only if it inter-
sects the intersection of that box with

Consider a 1D-node that is visited when we query wittWhen the interval
corresponding to this node is completely containegl ithen by the above obser-
vation all input boxes in the subtree intersecHence, there cannot be more than
O(k) such nodes. When the interval is not completely containedtimen it con-
tains an endpoint of, and there are onl@ (log(n/w)) such nodes with weight at
leastw.

Now consider a cs-nodethat is visited. Lep be the point o common to
all boxes in the subtree of. Assume w.l.0.g. that is vertical andp lies inside
or aboves. Then the input box in the subtree extending farthest dowrwaust
intersects. This box is stored in a priority node directly belowso we can charge
the visit of v to this answer. O

Next we analyze the query complexity when we query with a box.

Lemma 3.3.7 (i) If we query a 1-dimensional kd-interval tree storing & Seof
n boxes with a query bog), then we visit at mosO([ /o /w ] log(n/c) + k)
nodes of weight at least, wherek is the number of boxes to be reported.

(i) If o isO(logn), then the query time i©(logn + k).

(iii) If the projection ofQ onto the linel that stabs the boxes # contains the
intersections of all boxes with then the query time reduces@gik).

Proof: (i) See Figure 3.2. IQ intersects? then the query is equivalent to
querying with@ N ¢, so the result follows from the previous lemma. Otherwise,
assume w.l.0.g. thdtis vertical and that) lies to the right of?. Consider a 1D-
nodev that is visited when we query witf). When the interval corresponding to
this node is completely contained in the projectioifodntos, then the input box
in the subtree extending farthest to the right must be iatetesl. This box is stored
in a priority leaf immediately below, to which we can charge the visit of
Hence, there can be at mdssuch nodes. When the interval is not completely
contained in the projection @p, then it contains an endpoint of the projection of
Q, and there are onlg (log(n/w)) such nodes of weight at least

Now consider a 2-dimensional cs-priority-box-tree thaisited. Suppose the
interval of the 1D-node that is the parent of this subtreeimgletely contained
in the projection of). Then we can argue again (using the priority leaves) that
we can charge all the visited nodes to input boxes intersg@i If the interval
of the 1D-node that is the parent of this subtree is not cotalyl€ontained in
the projection of)), we argue as follows. First observe that the interval muest th
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Figure 3.2: Querying a 1-dimensional kd-interval tree vaithox@.

contain an endpoint of the projection ¢f, so there are only at most two such
parent nodes on each level in the tree. In the 2-dimensiamdiguration-space
box-tree below such a parent, we apply Lemma 3.3.4 to boumchtimber of
visited nodes of weight by O(y/n’/w + k'), wheren’ is the number of boxes
stored in the cs-priority-box-tree aidis the number of answers reported in this
subtree. Note that’ < o, since the cs-box-trees are used only to store sets of
boxes that share a single point. Furthermore, when the pigren depth in the
tree, we have’ < n/2°. Hence, the overall number of cs-nodes visited is:

n [log(n/o)] ? logn —n
log — - . k
Ol +| 2 NJ " 2 NMW i

i=0 i=[log(n/o)]+1

which is O([\/a/w ] log(n/o) + k). This finishes the proof of part (i) of the
lemma.

(ii) For the proof of part (ii), we analyze the number of csdre visited in a
different way. Note that cs-nodes in a single cs-prioribydiree share a single
point on/. If this point is contained in the projection 6f onto/, then we can
use the priority nodes to charge all nodes visited in this@stree to input boxes
intersecting?).

If the defining point of a cs-prority-box-tree lies outside tprojection of)
onto/, then each cs-nodevisited in this cs-box-tree must have at least one input
box that contains an endpoint of the projectiorn;bf For each such node the
input box in its subtree which extends farthest into (or mel)dhe projection of
Q, is stored in a priority node directly below to which we can charge the visit
of v. In all cs-box-trees together, at m@st priority nodes can contain one of the
two endpoints; therefore, at maS{o) cs-nodes with defining points outside the
projection of@ can be visited.

In total, we find a bound a®(log n + o + k), which reduces t®(log n + k)
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if o isO(logn).

(i) If the projection ofQ onto/ contains the intersections of all boxes with
it also contains all intervals corresponding to the nodéisérbox-tree. Therefore,
we can use the priority leaves again to charge all the visitetes to input boxes
intersecting?. O

The 2-dimensional case. Our kd-interval tree for a general s€tof boxes in
the plane is defined as follows.

If |S| = 1, thenT consists of a single leaf node storing the input box'in
Otherwise we make a nodestoring the bounding bov) of all boxes inS, and
proceed as follows.

For each of the inner normals of the edges bfv), take the box fronf that
extends farthest in the direction of that normal. This rissuala setS* of at most
4 boxes. Each box ig* is put in apriority leaf, which is an immediate child of.

If the setS \ S* of remaining boxes contains less than two boxes, then this
box (if it exists) is put as a leaf child of. If two or more boxes remain, we split
the cell corresponding to using a vertical or horizontal line (depending on the
levelv in the tree). This splitting liné is chosen such that the number of boxes in
S\ S* lying completely to either side dfis at most||S \ S*|/2]. The boxes in
S\ S* lying to one side of are stored recursively in one subtreaofThe boxes
in S\ S* lying to the other side of are stored recursively in another subtree of
The boxes inS \ S* intersecting are stored in a 1-dimensional kd-interval tree,
as explained above.

We call the nodes of the main tree, which correspond to 2-dgiomal cells,
2D-nodesNext we analyze the performance of the kd-interval tree.

Lemma 3.3.8 The number of nodes of weight at leastthat are visited by a
range query with an axis-aligned box(¥+/n/w + k), wherek is the num-
ber of reported answers. The number of such nodes visitedpmyira query is
O([v/o/w]log*(n/o) + k). If o is O(logn), a point query visitsO(log® n)
nodes.

Proof: Consider a 2D-node that is visited when we query with an akégsed
box Q. We distinguish four different types of such nodes (see feidi3). We
bound their number and the number of nodes visited in 1-d&oeal kd-interval-
subtrees for each type separately.

Inner nodesThese are 2D-nodes whose bounding boxes lie completetlensi
Q. The number of inner nodes is easy to bound, since all inptegdim the subtree
of such a node interse@. Hence, the total number of such nodes, or nodes in
their 1-dimensional associated kd-interval treeg) (&).

Side nodesThese are 2D-nodes whose bounding boxes cut exactly one edge
of @. In this case the input box that extends farthest into thection of the
inner normal of this edge must intersé&gt This box is stored in a priority leaf
immediately below the node. The same reasoning applieetotkdimensional
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Figure 3.4: Piercing nodes with parallel splitting lines ttie left) and orthogonal
splitting lines (to the right).

associated kd-interval trees. Hence, the total numberdef sodes or nodes in
their associated kd-interval treesigk).

Piercing nodesThese are 2D-nodes that cut two opposing edgés ot do
not contain any corners @. There are two cases—see Figure 3.4: the splitting
line used at such a nodeon depthi is parallel to the intersected edges, or it
is orthogonal to them. In the first case we can apply Lemm&@ii3.to get a
bound ofO(k’), wherek’ is the number of reported answers. In the latter case we
can apply Lemma 3.3.6 to obtainlog((n/2%) /w) + k') bound on the number
of nodes visited in the 1-dimensional kd-interval tree aigged withy. From
Lemma 3.3.1 we learn that the number of such nodes depthi is O(2%/2).
Using the fact that nodes at depths greater thafv:/w) must have weight less
thanw, we get a grand total of:

[Log(n/w)] —
i/2 noy n
O(k) + ; 0(2 log m) 0 <\/w +k)

Corner nodes:These are 2D-nodes that contain one or more corne€g. of
There areD(1) such nodes on each level in the tree. To obtain the total numbe
of visited nodes in the associated 1-dimensional kd-irstié¢rees, we have to sum
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up the bounds of Lemma 3.3.7 for each of them. Using the fatftn the subset
of boxes stored in a subtree on deptthe stabbing numberis at mostu/2¢, we
get a total of:

0) (M“’g%w){ %”/2)} {bg;(j]) :o(w\ﬂ 10g2§+k)

=0

If o is O(logn), this bound isD(log? n + k).

There are no other types of nodes whose bounding boxesdnté)sAdding
up the number of nodes for all four cases gives the desireddfmr box-queries.
Note that in the case of point queries, we only have corneesdgor the building
time, see section 3.3.4. O

This leads to the following theorem.

Theorem 3.3.9 Let S be a set ofv possibly intersecting boxes in the plane, such
that no single point is contained in more thamoxes. There is a box-tree f6r
such that the number of nodes visited by a range query witlx@radigned box

is O(y/n + k), wherek is the number of boxes ifi intersecting the query range.
The number of nodes visited by a point queryis,/o log?(n/o) + k). If o is
O(log n), this reduces t@(log® n). The box-tree can be built id(n log n) time.

3.3.3 The longest-side-first approach

Recall that a kd-interval tree is basically a modified keetne@here each node is
split by a line. The orientations of these lines depend orlghel in the tree in
such a way, that orientations take turns in a round-robimésson any path from
the root down into the tree. An interesting variation of tlieikterval tree arises
when we replace the round-robin splitting strategy by thegést-side splitting
rule as suggested by Dickerson et al. [DicO0Q]. In such a lshgle-first kd-
interval tree, the number of nodes whose correspondingsgaiérced by a query
box is small if the query box is fat. We use this to prove théofeing lemma.

Lemma 3.3.10 The number of nodes of weight at leastthat are visited by a
range query with an axis-aligned boxG§a log® n + [/ /w | log?(n/o) + k),
wherek is the number of reported answers. The number of such noslésd/by
a point query i (/o /w]log*(n/c) + k). If o isO(log n), the bounds reduce
toO(alog® n + k).

Proof: Inthe analysisin the previous subsection, the piercingeeekre respon-
sible for theO(y/n/w) term in the query complexity. This term arose because in
a normal kd-tree, there can 6§ /n/w) piercing nodes.

In the longest-side-first kd-tree, however, the number sibdit cells that cut
opposing sides of a query box of aspect ratis O(a logn) [Dic00]. As before,
we have two types of piercing nodes: those with splittingdithat are orthogonal
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to the intersected edges ©f, and those with parallel splitting lines. For the first
case, observe that such splitting lines separate two dtgjells that cut opposing
sides of the query box. This implies that there can be at @@stlogn) piercing
nodes with orthogonal splitting lines, each of which canehavl-dimensional
kd-interval tree in whichO(logn + k') nodes are visited. For the second case,
observe that the total number of piercing nodes on all lewvetise tree is at most
O(alog® n), and each of them can have a 1-dimensional kd-intervaltredich
O(k') nodes are visited. Hence, we get a grand totad of log” n + k) for both
types of piercing nodes.

Since the other cases in the analysis of the original kdgtidlego through,
the lemma follows. O

Theorem 3.3.11Let S be a set of, boxes in the plane with stabbing numlser
There is a box-tree fa§ such that the number of nodes that are visited by a range
query with a query box of aspect ratiois O(calog® n + /o log(n/o) + k),
wherek is the number of boxes ifi intersecting the query range. The number of
such nodes visited by a point queryG§./c log®(n/o) + k). If o is O(logn),

the bounds reduce 1©(alog” n + k). The box-tree can be built i®(n log n)

time.

3.3.4 Building the box-trees

All boxtrees mentioned in this section, can be builtitn log n) time. Since the
construction algorithms are very similar, we will explairetn together.

We start by sorting all input boxes by -coordinate and; -coordinate for all
dimensionsl < ¢ < d. This cost®(n logn) time. Using suitable list structures
and cross-pointers, we can now do the following operations:

e in O(1) time, selecting a box with an extreme value for one ofXieoor-
dinates and removing it from thx/ sorted lists;

e in O(1) time, determine the bounding box of the set (and, if necgssar
determine the dimension in which the bounding box is lajgest

e in O(n) time, splitting the set of boxes in two, such that all boxeogeh
value for a particular coordinate is smaller than the meftiarthat coor-
dinate go in one list, while the remaining boxes go in the olisg and at
the same time splitting thd sorted lists in sorted lists for each of the two
subsets.

e in O(n) time, splitting the set of boxes in three subséts, S° and S+
with respect to some discriminating dimensigisuch that there is a value
x? such that all boxes i§~ are on one side of the hyperplane= z?, all
boxes inS* are on the other side, and all boxesdf intersect the plane,
|S~| < n/2and|ST| < n/2—and at the same time, splitting thé sorted
lists in sorted lists for each of the three subsets.
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This operation can be implemented by choosifldo be the median value
of the union of ther; - andz;" -coordinates. Using the lists ordered by these
two coordinates, we can find the median valu®im) time. By definition,

at mostn coordinate values can be smaller than the median and atrmost
coordinate values can be greater than the median. Thisdémtblat at most
n/2 input boxes can be completely on one side of the median higrerp
and at most:/2 can be completely on the other side. After we have found
the median, we can just check all boxes to see on which sigeatieeassign
them to one of the three subsets, and then split the sortedilisordingly.

The boxtrees can now be built top-down recursively, follogvthe descriptions
in the previous subsections. First we make a root for a tratehhs to store all
boxes, we calculate how to divide these boxes among itsrelijcand then we
split the set of boxes, giving each child its own subset. Withabove operations
we can do this for cs-box-trees, cs-priority-box-treesirkdrval trees as well as
for longest-side-first kd-interval trees ®(n) time, wheren is the number of
boxes that has to be stored in the tree rooted at this node.

Then we construct the childrens’ subtrees recursivelyidipg O(n) time in
total for each level in the tree. Since all box-trees comséd in this section have
heightO(log n), the total time for division and constructiond¥n log n).

Adding the time needed for sorting to the time needed forstbvi and con-
struction, we get a total building time 6f(n logn).

3.4 From box-trees to R-trees

In the previous section we described several algorithmtestcuct box-trees
with good query complexity. In this section we give genehaldrems to convert
them to (semi-)R-trees.

We start with a general theorem that converts any box-tremtB-tree. Re-
call that theweightof a box-tree node is the number of input boxes stored in its
subtree.

Theorem 3.4.1 LetT be a box-tree for a set afboxes inR? such that any query
with a range of a given type visits at mggtv) nodes of weighty or more. Then
T can be converted i®(n) time to an R-tree of minimum degreevhere every
query with a range of the same type visits at mo§f (t) logn/logt) nodes.

Proof: We simply read out the leaves frofh in order, and then construct an
R-tree where the boxes occur in the same order in the leavesawhbuild this
R-tree bottom-up, level by level. First we construct theréetnodes just above
leaf level by repeatedly takirzf leaves from the list and giving them a new R-tree
node as their parent. We continue doing this until less thidaaves are without
parent: these leaves are then divided into two groups (iéthee more that) or
made children of a single parent (if there are no more ttdraves left). Next,
we consider the new parent nodes just constructed as leavds;onstruct the
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next level of the tree, and so on, until we reach the level wloely one node is
constructed (the root). In this way, we spafl) time for each node to connect
it to a parent node, thus getting a total running timéfh).

Consider a bounding bo® stored in the R-tree. It is the bounding box for
some input boxes that were stored in consecutive leaveibdRk-tree7. Let
v(B) be the lowest common ancestor of these leaves. Since thenomimdegree
in the R-tree ig, the weight ofv(B) is t or more. Furthermore, the node&B)
for the bounding boxe® stored at a fixed level in the R-tree must be distinct,
because their defining sets form a partition of the leaves into consecutive
sequences. Hence, we can charge the visited nodes of tlee Rotvisited nodes
of weightt or more in7, in such a way that a node ih does not get charged
more than once from nodes at a fixed level in the R-tree. Simeelépth of the
R-tree isO(log n/ logt), the bound follows. O

The construction of Theorem 3.4.1 results in losing a ldbaric factor in the
guery complexity. Next we show how to improve this resultderfectly balanced
box-trees. Recall that a box-tree is called perfectly baddnf for any node the
weight of its left and right child differ by at most one.

Theorem 3.4.2 Let T be a perfectly balanced box-tree for a setolfoxes in
R? such that any query with a range of a given type visits at nfiést nodes
at leveli in T. ThenT can be converted i@ (n) time to an R-tree of mini-
mum degreeé where every query with a range of the given type visits at most

Oy \lan/ e =1 ¢(j10g 1)) nodes.

Proof: We first prove that any perfectly balanced tree has the fatigwroperty:
the weights of all nodes at a fixed level in the tree differ bsnast one. The proof
is by induction on the level. The statement is trivially tatéevel zero (the level of
the root). Now assume all nodes at a given level have weigittw + 1. Then the
balancing condition guarantees that the nodes at the neslthave weightv/2
orw/2 + 1 (in casew is even) or they have weiglitv + 1)/2 — 1 or (w + 1)/2
(if w is odd). So in both cases the weights at the next level diffeatbmost one.

We can now construct an R-tree frafmas follows. From the leaf level of
the box-tree, walk up the tree until a levek encountered where all nodes have
weight at least. Thus there must be at least one node with weight at mest
on the level just below, and therefore, by the perfect-balance property, no node
on that level has weight more than This implies that the weight of nodes at
level i cannot excee@t. Hence, each subtree rooted at a node at this level can
be compressed in a single leaf (which will be a node in thee@)}r Recurse
on the new tree. The recursion ends when there are lesst tle@ves, which
are compressed to a single node which will form the root of Raieee. It is
immediately clear that this construction can be don@(n) time.

The bound on the query complexity immediately follows frdra tonstructior.]

Finally, we can show that that we can also improve Theoremi 304 the general
case if we are willing to settle for semi-R-trees insteacead R-trees. Recall that
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the difference between a semi-R-tree and an R-tree is thla¢ iformer we do not
require all leaves to be at the same depth.

Theorem 3.4.3 Let7T be a box-tree for a set afboxes inR? such that any query
with a range of a given type visits at mg&tv) nodes of weighty or more. Then
T can be converted i®(n) time to a semi-R-tree of minimum degreevhere
every query with a range of the same type visits at midgt(t)) nodes.

Proof: We start by converting the binary box-tree to a forest of astd and at
mostt — 1 semi-R-trees. This is done recursively as follows. If th&-bee is
just a leaf, we leave it as it is. Otherwise, we convert thiedafl the right subtree
separately, getting two forests of at least 2 and at Agst 1) semi-R-trees in
total. We distinguish two cases:

e The total number of semi-R-trees is less tharn this case, we are done
immediately.

e The total number of semi-R-trees is at leastin this case, we combine
the semi-R-trees in the two forests into a single semi-B4yemaking the
semi-R-trees in the forests the children of a new root nodate khat the
new root node has betweemand2(t — 1) children. The descendant leaves
of this new root node are exactly the descendant leaves bfithdree node
which is being converted, so the associated bounding boxastly the
same; no new bounding box is introduced.

In the end we get a forest of at least 1 and at mesi semi-R-trees. Ifitis nota
single tree, we combine the trees in the forest into one tyesllding a root node.

Clearly each node in the box-tree will be processed exacite @nd will be
processed in O(1) time if the forest operations are implegetesuitably. There-
fore, the conversion of a complete box-tree takés) time.

No new bounding boxes are introduced, no bounding box in tx¢rée ap-
pears more than once in the semi-R-tree, and no internaknaeitle weight less
thant are constructed. This is easily seen to result in a seme®with the
desired bound on the query complexity. O

By applying the conversion algorithms of the theorems aliovéhe structures
from the previous section, we obtain the following results.

Corollary 3.4.4 Let S be a set ofy boxes inR¢ with stabbing number.

(i) Thereis an R-tree fa$ of minimum degreé such that the number of nodes
visited by any box query i©((n/t)*~/¢ + klogn/logt), wherek is the
number of reported answers.

(i) There is an semi-R-tree f& of minimum degreé such that the number of
nodes visited by any box query@(n/t)* /¢ + k).
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(i) Whend = 2, there is a semi-R-tree fdét of minimum degree such that
the number of nodes visited by any box queris,/n/t + k), and the the
number of nodes visited by any point queryi§[\/a /t ] log*(n/o) + k).
In both boundsk is the number of reported answersolfs O(logn), the
number of nodes visited by a point queryiélog® n).

(iv) Whend = 2, there is a semi-R-tree fdéf of minimum degree such that
the number of nodes visited by any query with a box of aspéitt cais
O(alog® n + [\/o/t]log?(n/a) + k), wherek is the number of reported
answers. Ifr is O(logn), the bound reduces t(a log® n + k).

(v) For the cases mentioned under (iij) and (iv) there is als&-tree of min-
imum degree for which the number of visited nodes @(logn/logt)
times the number of visited nodes in the semi-R-tree.

All R-trees can be constructed@(n logn) time.

Proof: Part (i) follows from Theorem 3.4.2 and Lemma 3.3.2. Paytf¢ilows
from Theorem 3.4.3 and Theorem 3.3.5, and part (iii) follésesn Theorem 3.4.3
and Lemma 3.3.8. Part (iv) follows from Theorem 3.4.3 andoram 3.3.10. To
obtain part (v), we use Theorem 3.4.1 instead of Theorer3.3.4. O

3.5 Conclusions

We have developed new algorithms to construct box-treasting-volume hier-
archies using axis-aligned boxes as bounding volumes) arahalyzed the com-
plexity of box-intersection queries and box-containmargrigs for these struc-
tures. We also proved lower bounds showing that our reswdtsgtimal or almost
optimal. Finally, we gave algorithms to convert our boxegdo (semi-)R-trees
with optimal or almost optimal query complexity.

The bounds that we get, except for the case of fat ranges ipltme, are
rather disappointing—even though they are optimal. Infiracone would hope
for much better performance. It would be interesting to sedeu which condi-
tions one can obtain better bounds for, say, box-queri&’inWe also would
like to see how our trees behave in practice—the lower-b@amdtructions are
rather contrived—and to compare them experimentally agaiaes constructed
by known heuristics.

In many applications it is important to support fast insers and deletions,
and it would be interesting to develop box-trees or R-trBasgupport fast inser-
tion and deletion, while still guaranteeing close to optiqueery complexity.



Chapter 4

The Priority R-Tree:
a practically efficient and
worst-case-optimal R-tree

An extended abstract of this chapter will appear as: LareAlgark de Berg,
Herman J. Haverkort and Ke Yi: The Priority R-Tree: a praaticefficient and
worst-case optimal R-tree, ProBCM Special Interest Group on Management of
Data (SIGMOD) 2004

Abstract. We present the Priority R-tree, or PR-tree, which is the fdiree
variant that always answers a window query using N/B)'~/¢ +T/B) 1/Os,
whereN is the number ofl-dimensional (hyper-) rectangles stored in the R-tree,
B is the disk block size, arifl is the output size. This is provably asymptotically
optimal and significantly better than other R-tree variantdhere a query may
visit all N/B leaves in the tree even wh&h= 0. We also present an extensive
experimental study of the practical performance of the RR-tising both real-
life and synthetic data. This study shows that the PR-tre®pes similar to the
best known R-tree variants on real-life and relatively hjadistributed data, but
outperforms them significantly on more extreme data.

4.1 Introduction

Spatial data naturally arise in numerous applicationsuding geographical in-
formation systems, computer-aided design, computerviaia robotics. There-
fore spatial database systems designed to store, manabmaampulate spatial
data have received considerable attention over the yeamse $ese databases
often involve massive datasets, disk based index strucfarespatial data have
been researched extensively—see e.g. the survey by Gag@iather [Gae98].
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Especially the R-tree [Gut84] and its numerous variants €sg. the recent survey
by Manolopoulos et al. [Man03]) have emerged as practiaffigient indexing
methods. In this paper we present the Priority R-tre®Rutree which is the first
R-tree variant that is not only practically efficient butagovably asymptotically
optimal.

4.1.1 Background and previous results

Since objects stored in a spatial database can be ratherdeothpy are often
approximated by simpler objects, and spatial indexes ane biuilt on these ap-
proximations. The most commonly used approximation is tirénmal bounding
box: the smallest axis-parallel (hyper-) rectangle thattams the object. The
R-tree, originally proposed by Guttman [Gut84], is an inftaxsuch rectangles.
Itis a height-balanced multi-way tree similar to a B-treayB2, Com79], where
each node (except for the root) has degedd). Each leaf contain®(B) data
rectangles (each possibly with a pointer to the originahfland all leaves are
on the same level of the tree; each internal nodentains pointers to it®(B)
children, as well as for each child a minimal bounding boxesing all rectangles
in the leaves of the subtree rooted in that child. Figure Adins an example. If
B is the number of rectangles that fits in a disk block, an R-ored’ rectangles
occupie®(N/B) disk blocks and has height(log; N). Many types of queries
can be answered efficiently using an R-tree, including tlreraon query called a
window query: Given a query rectandlk retrieve all rectangles that interségt
To answer such a query we simply start at the root of the Renekrecursively
visit all nodes with minimal bounding boxes intersecti@gwhen encountering a
leaf! we report all data rectanglesirintersecting).

Guttman gave several algorithms for updating an R-tre@(itog 5 N) 1/0Os
using B-tree-like algorithms [Gut84]. Since there is noqua R-tree for a given
dataset, and because the window query performance imlyittlepends on the
amount of overlap between minimal bounding boxes in the sofléhe tree, it is
natural to try to minimize bounding box overlap during uggatThis has led to
the development of many heuristic update algorithms; seeXample [Bmn90,
Kam94, Sel87] or refer to the surveys in [Gae98, Man03]. &d\apecialized
algorithms for bulk-loading an R-tree have also been deexdBtd98, Dwt94,
Grc98a, Kam93, Leu97, Rou85]. Most of these algorithms@isg log /5 %)
I/Os (the number of I/Os needed to sdftelements), wheré/ is the number of
rectangles that fits in main memory, which is much less tharoV log V)
I/Os needed to build the index by repeated insertion. Furbee, they typi-
cally produce R-trees with better space utilization andrggerformance than
R-trees built using repeated insertion. For example, wéxigerimental results
have shown that the average space utilization of dynamgioadlintained R-trees
is between 50% and 70% [Bmn90], most bulk-loading algorgtare capable of
obtaining over 95% space utilization. After bulk-loadingR:tree it can of course
be updated using the standard R-tree updating algorithrawelkr, in that case
its query efficiency and space utilization may degenerate tme.
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Figure 4.1: R-tree constructed on rectangles A, B, C, . .blddk size = 3).

One common class of R-tree bulk-loading algorithms workdaisg the rect-
angles according to some global one-dimensional criteptating them in the
leaves in that order, and then building the rest of the inoettom-uplevel-by-
level [Dwt94, Kam93, Leu97]. In two dimensions, the so-edlpacked Hilbert
R-tree of Kamel and Faloutsos [Kam93], which sorts the regits according
to the Hilbert values of their centers, has been shown to pecésly query-
efficient in practice. The Hilbert value of a poiptis the length of the frac-
tal Hilbert space-filling curve from the origin to. The Hilbert curve is very
good at clustering spatially close rectangles togethaditey to a good index. A
variant of the packed Hilbert R-tree, which also takes therxof the rectan-
gles into account (rather than just the center), is the émensional Hilbert R-
tree [Kam93y]; in this structure each rectan@lemin, Ymin)s (Tmax; Ymax)) is first
mapped to the four-dimensional poityin, Ymin, Tmax, Ymax) @nd then the rect-
angles are sorted by the positions of these points on thediougnsional Hilbert
curve. Experimentally the four-dimensional Hilbert Retfgas been shown to be-
have slightly worse than the packed Hilbert R-tree for yjickétributed realistic
data [Kam93]. However, intuitively, it is less vulnerabterhore extreme datasets
because it also takes the extent of the input rectangleswetiount.
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Algorithms that bulk-load R-trees intap-downmanner have also been de-
veloped. These algorithms work by recursively trying to fangjood partition
of the data [Btd98, Grc98a]. The so-called Top-down Gregait STGS) algo-
rithm of Garcia, Lopez and Leutenegger [Grc98a] has beews to result in
especially query-efficient R-trees (TGS R-trees). To btlilelroot of (a subtree
of) an R-tree on a given set of rectangles, this algorithneaggdly partitions the
rectangles into two sets, until they are divided iftsubsets of (approximately)
equal size. Each subset's bounding box is stored in the ewat,subtrees are
constructed recursively on each of the subsets. Each ofitlaetpartitions takes
a set of rectangles and splits it into two subsets based orobeeveral one-
dimensional orderings; in two dimensions, the orderingsstered are those by
ZTmin, Ymin, Zmax aNdymax. FOr each such ordering, the algorithm calculates,
for each ofO(B) possible partitioning possibilities, the sum of the arefthe
bounding boxes of the two subsets that would result from #rétjpn. Then it
applies the binary partition that minimizes that stim.

While the TGS R-tree has been shown to have slightly betterygperfor-
mance than other R-tree variants, the construction alguaritses many more 1/0s
since it needs to scan all the rectangles in order to makeanbpartition. In
fact, in the worst case the algorithm may takeN logz N) I/Os. However, in
practice, the fact that each partition decision is binafgaively means that the
algorithm use®) (¥ log, N) /Os.

While much work has been done on evaluating the practicatygperfor-
mance of the R-tree variants mentioned above, very lith@@vn about their the-
oretical worst-case performance. Most theoretical worlRetnees is concerned
with estimating the expected cost of queries under assomgptuch as uniform
distribution of the input and/or the queries, or assumirgg the input are points
rather than rectangles. See the recent survey by Manolopetél. [Man03]. The
first bulk-loading algorithm with a non-trivial guaranter the resulting worst-
case query performance was given only recently by Agarvall pAga01BGHH].
In d dimensions their algorithm constructs an R-tree that arsa@indow query
in O((N/B)'~'/4 + T'logy N) I/Os, whereT is the number of reported rectan-
gles. However, this still leaves a gap to g N/B)'~'/¢ + T/ B) lower bound
on the number of I/Os needed to answer a window query [Aga®iiB&an98].

If the input consists of points rather than rectangles, thanrst-case optimal query
performance can be achieved with e.g. a kdB-tree [Rob81h @-tree [Kan98].
Unfortunately, it seems hard to modify these structures dokvior rectangles.
Finally, Agarwal et al. [Aga01BGHH], as well as Haverkortadt [Hav02], also
developed a number of R-trees that have good worst-casg gagormance un-
der certain conditions on the input.

1Garcia et al. describe several variants of the top-dowadyrenethod. They found the one de-
scribed here to be the most efficient in practice [Grc98a]orler to achieve close to 100% space
utilization, the size of the subsets that are created isaligttounded up to the nearest power Bf
(except for one remainder set). As a result, one node on esgeh Including the root, may have less
than B children.
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4.1.2 Ourresults

In Section 4.2 we present a new R-tree variant, which we cBHiarity R-tree
or PR-treefor short. We call our structure the Priority R-tree becamsebulk-
loading algorithm utilizes so-called priority rectangies way similar to the re-
cent structure by Agarwal et al. [Aga01BGHH]. Window qusran be answered
in O((N/B)'~Y4 1+ T/B) I/0s on a PR-tree, and the index is thus the first R-tree
variant that answers queries with an asymptotically ogtimanber of I/Os in the
worst case. To contrast this to previous R-tree bulk-logdilgorithms, we also
construct a set of rectangles and a query with zero outpciy that allo (N/B)
leaves of a packed Hilbert R-tree, a four-dimensional Hillietree, or a TGS
R-tree need to be visited to answer the query. We also showttidawlk-load
the PR-tree efficiently, using onl§ (% log,,, 5 %) /Os. After bulk-loading, a
PR-tree can be updated ®(logz N) 1/Os using the standard R-tree updating
algorithms, but without maintaining its query efficiencylteknatively, the exter-
nal logarithmic method [Arg03, Pro03] can be used to develgiructure that
supports insertions and deletionsdrlog ; 47 + % (logy, ) (log, 47)) and
O(logp %) I/Os amortized, respectively, while maintaining the ogtirquery
performance.

In Section 4.3 we present an extensive experimental studiieopractical
performance of the PR-tree using both real-life and syittadta. We com-
pare the performance of our index on two-dimensional regésnto the packed
Hilbert R-tree, the four-dimensional Hilbert R-tree, ahd TGS R-tree. Overall,
our experiments show that all these R-trees answer queriemie or less the
same number of 1/Os on relatively square and uniformly ihisted rectangles.
However, on more extreme data—Ilarge rectangles, rectamgth high aspect
ratios, or non-uniformly distributed rectangles—the P&t(and sometimes also
the four-dimensional Hilbert R-tree) outperforms the oshgignificantly. On a
special worst-case dataset the PR-tree outperforms afiemfi oy well over an
order of magnitude.

4.2 The Priority R-tree

In this section we describe the PR-tree. For simplicity, w&t fiescribe a two-
dimensional pseudo-PR-tree in Section 4.2.1. The pseidtd® answers win-
dow queries efficiently but is not a real R-tree, since it dogshave all leaves on
the same level. In Section 4.2.2 we show how to obtain a reaidimensional
PR-tree from the pseudo-PR-tree, and in Section 4.2.3 veeisishow to extend
the PR-tree tal dimensions. In Section 4.2.4 we explain how a pseudo-PR-tre
can serve as the basis of a structure that supports efficigertions and deletions
while maintaining optimal query efficiency. Finally, in Sien 4.2.5 we show that

a query on the packed Hilbert R-tree, the four-dimensiorilbitt R-tree, as well

as the TGS R-tree can be forced to visit all leaves evé&h=f 0.
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4.2.1 Two-dimensional pseudo-PR-trees

In this section we describe the two-dimensional pseudd+E&-Like an R-tree,
a pseudo-PR-tree has the input rectangles in the leavesaghdrgernal node
contains a minimal bounding box for each of its childegen However, unlike an
R-tree, not all the leaves are on the same level of the treénéerthal nodes only
have degree six (rather th&(B)).

The basic idea of a pseudo-PR-tree is (similar to the foomedisional Hilbert
R-tree) to view an input rectangl€zmin, Ymin), (Tmax, Ymax)) as a four-dimen-
sional point(Zmin, Ymin, Tmax, Ymax)- 1he pseudo-PR-tree is then basically just
a kd-tree on theV points corresponding to th® input rectangles, except that
four extra leaves are added below each internal node. ilrglyit these so-called
priority leavescontain the extremé points (rectangles) in each of the four di-
mensions. Note that the four-dimensional kd-tree canyeasiimapped back to
an R-tree-like structure, simply by replacing the splitwaain each kd-tree node
v with the minimal bounding box of the input rectangles stoiredhe subtree
rooted inv. The idea of using priority leaves was introduced in a resemtcture
by Agarwal et al. [Aga01BGHH], they used priority leaves ofesone rather
thanB.

In section 4.2.1 below we give a precise definition of the dseBR-tree, and
in section Section 4.2.1 we show that it can be used to answéndow query
in O(y/N/B + T/B) l/Os. In Section 4.2.1 we describe how to construct the
structure 1/O-efficiently.

The Structure

Let S = {Ry,...,Rn} be a set ofN rectangles in the plane and assume for
simplicity that no two of the coordinates defining the reglas are equal. We
defineRf = (Tmin(Ri); Ymin(Ri), Tmax(Ri), Ymax(R;)) 10 be the mapping of
R; = ((xmin(Ri), Ymin(R:)), (Tmax (Ri), ymax(R;))) to a point in four dimen-
sions, and defing* to be theN points corresponding t§.

A pseudo-PR-tre€s on S is defined recursively: if5 contains at mosB
rectangles7s consists of a single leaf; otherwisgs consists of a node with
six children, namely four priority leaves and two recurgdgeudo-PR-trees. For
each childv., we letv store the minimal bounding box of all input rectangles
stored in the subtree rooted:in. The node’ and the priority leaves below it are
constructed as follows: The first priority legf= contains the3 rectangles irt
with minimal z,,;,-coordinates, the secom(gmin the B rectangles among the re-
maining rectangles with minimai,,;,,-coordinates, the thirdgmax the B rectan-
gles among the remaining rectangles with maximal.-coordinates, and finally
the fourthvy==< the B rectangles among the remaining rectangles with maximal
Ymax-coordinates. Thus the priority leaves contain the “exagéractangles irb,
namely the ones with leftmost left edges, bottommost botdges, rightmost
right edges, and topmost top eddedfter constructing the priority leaves, we

2S5 may not contain enough rectangles to @itectangles in each of the four priority leaves. In
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Figure 4.2: The construction of an internal node in a pseeRetree.
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divide the sefS,. of remaining rectangles (if any) into two subsefs, andS-, of
approximately the same size and recursively constructdus@R-treeds_ and
Ts. . The division is performed using thyin, Ymin, Tmax Of Ymax-cOOrdinate in
a round-robin fashion, as if we were building a four-dimensil kd-tree orS?,
that is, when constructing the root 8§ we divide based on the,,;,-values, the
next level of recursion based on thg;,-values, then based on thg,..-values,
on they.-values, on the:,,;,-values, and so on. Refer to Figure 4.2 for an ex-
ample. Note that dividing according to, say,;, corresponds to dividing based
on a vertical line such that half of the rectangles.ff) have their left edge to the
left of £ and half of them have their left edge to the rightof

We store each node or leaf 8% in O(1) disk blocks, and since at least four
out of every six leaves contaf(B) rectangles we obtain the following (in Sec-
tion 4.2.1 we discuss how to guarantee that almost everyddall).

Lemma 4.2.1 A pseudo-PR-tree on a set if rectangles in the plane occupies
O(N/B) disk blocks.

Query complexity

We answer a window quer§ on a pseudo-PR-tree exactly as on an R-tree by
recursively visiting all nodes with minimal bounding boxetersecting?. How-
ever, unlike for known R-tree variants, for the pseudo-RiR-tve can prove a
non-trivial (in fact, optimal) bound on the number of I/Ogfoemed by this pro-
cedure.

Lemma 4.2.2 A window query on a pseudo-PR-tree inrectangles in the plane
usesO(y/N/B + T/ B) I/Os in the worst case.

Proof: Let 75 be a pseudo-PR-tree on a sef N rectangles in the plane.
To prove the query bound, we bound the number of node&ithat are “kd-
nodes”, i.e. not priority leaves, and are visited in ordeanswer a query with a
rectangular rang@; the total number of leaves visited is at most a factor of four
larger.

We first note thaO(7'/ B) is a bound on the number of nodesisited where
all rectangles in at least one of the priority leaves beldsparent are reported.
Thus we just need to bound the number of visited kd-nodesewhés is not the
case.

Let 1 be the parent of a node such that none of the priority leaves pf
are reported completely, that is, each priority lggfof 1 contains at least one
rectangle not intersecting. Each such rectangle can be separated fro@ by
a line containing one of the sides @frefer to Figure 4.3. Assume without loss
of generality that this is the vertical line= z.,;, (Q) through the left edge ap,
that is,E’s right edge lies to the left af’s left edge, so thatax (F) < Zmin(Q).

that case, we may assume that we can still put at [Bgdtin each of them, since otherwise we could
just construct a single leaf.
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T = Tin(Q)
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Figure 4.3: The proof of Lemma 4.2.2, within the plane (upper figure), and
1 in four-dimensional space (lower figure—thg;, andym.x dimensions are
not shown). Note thak = H N H' is a two-dimensional hyperplane in four-
dimensional space. It contains a two-dimensional facehefitansformation of
the query range into four dimensions.
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This means that the poifit* in four-dimensional space correspondindities to
the left of the axis-parallel hyperplafiEthat intersects the,.,-axis atrmin (Q).
Now recall thatZs is basically a four-dimensional kd-tree &if (with priority
leaves added), and thus that a four-dimensional re@';bnan be associated with
. Since the query visits i, there must also be at least one rectarigle the
subtree rooted at that hase,.x(F) > Zmin(Q), SO thatF™* lies to the right of
H. It follows thatRﬁ contains points on both sides &f and therefordd must
intersectR ;.

Now observe that the rectangles in the priority Iggf=> cannot be separated
from @ by the linez = .,y (Q) through the left edge ap: Rectangles i
are extreme in the positive-direction, so if one of them lies completely to the
left of @, then all rectangles ip’s children—including/—would lie to the left of
Q); in that case” would not be visited. Since (by definition of not all rectangles
in pp== intersect@, there must be a line through one @fs other sides, say
the horizontal liney = ymax(Q), that separateQ from a rectangléx in ju5=x.
Hence, the hyperplang’ that cuts they,i,-axis atymax(Q) also intersectsRﬁ.

By the above arguments, at least two of the three-dimenkhymerplanes
defined byzmin(Q), Tmax(Q), ymin(Q) andym.x(Q) intersect the regioer;
associated with: when viewing7Zs as a four-dimensional kd-tree. Hence, the
intersectionX of these two hyperplanes, which is a two-dimensional plane i
four-dimensional space, also interseBJfg. With the priority leaves removedg
becomes a four-dimensional kd-tree witi N/ B) leaves; from a straightforward
generalization of the standard analysis of kd-trees we khatvany axis-parallel
two-dimensional plane intersects at méxt,/N/B) of the regions associated
with the nodes in such a tree [Aga01BGHH]. All that remain®isbserve that
Q definesO(1) such planes, namely one for each pair of sides. Thug N/B)
is a bound on the number of nodethat are not priority leaves and are visited by
the query procedure, where not all rectangles in any of tharifyr leaves below
V's parent are reported. (]

Efficient construction algorithm

Note that it is easy to bulk-load a pseudo-PR-ffe®n a setS of NV rectanglesin
O(% log N) I/Os by simply constructing one node at a time following tiedimi-
tion in Section 4.2.1. We will now describe how, under thesceeable assumption
that the amound/ of available main memory i€(B*/?), we can bulk-load’g
usingO( % log /5 &) /Os.

Our algorithm is a modified version of the kd-tree constauttalgorithm
described in [Aga01APV, Pro03]; it is easiest describedassitucting a four-
dimensional kd-tre€s on the pointsS*. In the construction algorithm we first
construct, in a preprocessing step, four sorted UstS, ., Ly,.... Lzmeer Lymas
containing the points its* sorted by theit,in-, Ymin-» Tmax-» @Ndymax-coordi-
nate, respectively. Then we constrégfiog M) levels of the tree, and recursively
construct the rest of the tree.
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To constructd(log M) levels of 7 efficiently we proceed as follows. We
first choose a parametefwhich will be explained below) and use the four sorted
lists to find the(kN/z)-th coordinate of the pointS* in each dimension, for all
k€ {1,2,...,2—1}. These coordinates define a four-dimensional grid of size
we then sca™ and count the number of points in each grid cell. We chadse
be©(M'/*), so that we can keep these counts in main memory.

Next we build thed (log M) levels of 75 without worrying about the priority
leaves: To construct the roptof 7g, we first find the slice of? grid cells with
commonz,i,-coordinate such that there is a hyperplane orthogonakto,th, -
axis that passes through these cells and has at most ha#f pbthts inS* on one
side and at most half of the points on the other side. By scagrthieO(N/(Bz))
blocks from L, that contain theD(N/z) points in these grid cells, we can
determine the exaat,,;,-valuex to use inv such that the hyperplarfé, defined
by i, = z, divides the points ir6* into two subsets with at most half of the
points each. After constructing we subdivide the:® grid cells intersected by
H, that is, we divide each of the?® cells in two atz and compute their counts
by rescanning th&(N/(Bz)) blocks fromL,,_,. that contain th€(N/z) points
in these grid cells. Then we construct a kd-tree on each ditdeechyperplane
defined byx recursively (cycling through all four possible cutting elitions).
Since we creat®(z®) new cells every time we create a node, we can ensure
that the grid still fits in main memory after constructingodes, that islog z =
O(log M) levels of 7.

After constructing thé® (log M) kd-tree levels, we construct the four priority
leaves for each of the nodes. To do so we reserve main memory space for the
B points in each of the priority leaves; we have enough main argno hold all
priority leaves, since by the assumption tidtis Q(B*/3) we have4 - O(B) -
O(z) = O(M). Then we fill the priority leaves by scannirfj and “filtering”
each pointR; through the kd-tree, one by one, as follows: We start at tioé ro
of v of 7s, and check its priority leaveg; =i, pmin, pime, andyg== one by
one in that order. If we encounter a non-full leaf we simplgqaR; there; if we
encounter a full leak,, and R is more extreme in the relevant direction than the
least extreme poink; in v, we replacez; with R} and continue the filtering
process withR;. After checkingyy==< we continue to check the priority leaves of
the child ofv in 7g whose region contains the point we are processinggibes
not have such a child (because we arrived at leaf level in thzde) we simply
continue with the next point ig™.

It is easy to see that the above process correctly consthetopO (log M)
levels of the pseudo-PR-tr&g on S, except that the kd-tree divisions are slightly
different than the ones defined in Section 4.2.1, since thetpm the priority
leaves are not removed before the divisions are computedettsr, the bound of
Lemma 4.2.2 still holds: Th@(T'/B) term does not depend on the choice of the
divisions, and the kd-tree analysis that broughtdtig/ N/ B) term only depends
on the fact that each child gets at most half of the pointssgbérent.

After constructing thed(log M) levels and their priority leaves, we scan
through the four sorted lists L L L and divide them into four

Tmin? ~Ymin? ~Tmax? ~Ymax
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sorted lists for each of th®(z) leaves of the constructed kd-tree, while omitting
the points already stored in priority leaves. These listst@io O(N/z) points
each; after writing the constructed kd-tree and priorigwies to disk we use them
to construct the rest dfg recursively.

Note that once the number of points in a recursive call getdlenthan}M,
we can simply construct the rest of the tree in internal mgmae node at a time.
This way we can make slightly unbalanced divisions, so tleghawe a multiple of
B points on one side of each dividing hyperplane. Thus we canagtee that we
get at most one non-full leaf per subtree of s2€\/), and obtain almost 100%
space utilization. To avoid having an underfull leaf thatymaelate assumptions
made by update algorithms, we may make the priority leavefeuits parent
slightly smaller so that all leaves cont&{B) rectangles. This also implies that
the bound of Lemma 4.2.1 still holds.

Lemma 4.2.3 A pseudo-PR-tree can be bulk-loaded with rectangles in the
plane inO(% log /%) 1/0s.

Proof: The initial construction of the sorted lists tak€$%; log,,, 5 %) 1/Os.
To construcB (log M) levels of7s we useO(N/B) I/Os to construct the initial
grid, as wellag)(N/(Bz)) to construct each of thenodes for a total o® (N/ B)
I/0s. Constructing the priority leaves by filtering alsogak)(N/B) 1/Os, and
so does the distribution of the remaining pointsSinto the recursive calls. Thus
each recursive step také§ N/ B) I/Os in total. The lemma follows since there
areO(log & /log M) = O(log,, %) levels of recursion. O

4.2.2 Two-dimensional PR-tree

In this section we describe how to obtain a PR-tree (with ele@r(B) and all
leaves on the same level) from a pseudo-PR-tree (with desjixesnd leaves on
all levels), while maintaining th&(\/N/B + T/ B) /O window query bound.

The PR-tree is built in stages bottom-up: In stage 0 we coaistine leaved)
of the tree from the se§;, = S of IV input rectangles; in stage> 1 we construct
the noded/; on leveli of the tree from a sef; of O(N/B?) rectangles, consisting
of the minimal bounding boxes of all nodes ¥)_; (on leveli — 1). Stagei
consists of constructing a pseudo-PR-tlge on S;; V; then simply consists of
the (priority as well as normal) leaves B§,; the internal nodes are discardéd.
The bottom-up construction ends when the Sgis small enough so that the
rectangles ir5; and the pointers to the corresponding subtrees fit into amekbl
which is then the root of the PR-tree.

3There is a subtle difference between the pseudo-PR-treeithly used in stage 0 and the algo-
rithm used in stages > 0. In stage 0, we construct leaves with input rectangles. dgesi > 0,
we construct nodes with pointers to children and boundingb®f their subtrees. The number of
children that fits in a node might differ by a constant factonf the numbeiB of rectangles that fits
in a leaf, so the number of children might 8 B) rather thanB. For our analysis the difference does
not matter and is therefore ignored for simplicity.
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Theorem 4.2.4 A PR-tree on a sef of N rectangles in the plane can be bulk-
loaded inO(% log,,, 5 %) 1/0s, such that a window query can be answered in

O(\/N/B+T/B) I/Os.
Proof: By Lemma 4.2.3, stageé of the PR-tree bulk-loading algorithm uses

O((ISil/B)1ogr/5(1Sil/B)) = O((N/B**')log,, 5 %) 110s. Thus the com-
plete PR-tree is constructed in

O(logg N)
N N N N
> o <ﬁlogM/B —) =0 (— logar/ —) 1/Os.
vard Bi B B B

To analyze the number of 1/Os used to answer a window q@grwe will
analyze the number of nodes visited on each level of the tre€T; (: < 0) be
the number of nodes visited on leviel Since the nodes on level 0 (the leaves)
correspond to the leaves of a pseudo-PR-tree olMlirgput rectangles, it fol-
lows from Lemma 4.2.2 thdfy, = O(y/N/B + T/B); in patrticular, there are
constantsNV’ andc such that forN/B > N’, B > 4¢?, andT > 0, we have
To < ¢y/N/B + ¢(T/B). There must b&;_; rectangles in nodes of level: 1
of the PR-tree that interse@, since these nodes contain the bounding boxes of
nodes on level — 1. Since nodes on leveélcorrespond to the leaves of a pseudo-
PR-tree on theV/B? rectangles inS;, it follows from Lemma 4.2.2 that for
N/B*' > N’ andB > 4¢* we haveT; < (¢/VB')y/N/B + ¢(T;_1/B). We
can now write out the recurrence i/ B'+! > N’, thatis, fori < (log 47)—1:

& N Ti,1
n p— —
VEVE "B

N

< £ (1+L)\/ﬂ+c£Ti_2
= /B VB B B B
<

c : ¢\’ N c\*T
< —_— —— - - -
S U JX_;( B))\/B+C(B)B

Summing over all levels < (log %) —1, we find that the total number of nodes
visited on those levels is at most:

1 N1
Hosr 07 o, N, e _ (/8. T
_ 29 VB " ey B BB

-
Il
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The higher levels, with less thal’ nodes, just add an additive constant, so we
conclude tha©(,/N/B + T/ B) nodes are visited in total. O

4.2.3 Multi-dimensional PR-tree

In this section we briefly sketch how our PR-tree generatizdémensions greater
than two. We focus on how to generalize pseudo-PR-trees sid+dimensional
PR-tree can be obtained usidtglimensional pseudo-PR-trees in exactly the same
way as in the two-dimensional case; that thdimensional PR-tree has the same
asymptotic performance as thedimensional pseudo-PR-tree is also proved ex-
actly as in the two-dimensional case.

Recall that a two-dimensional pseudo-PR-tree is basiedibur-dimensional
kd-tree, where four priority leaves containing extremeargles in each of the
four directions have been added below each internal nodeila®iy, a d-dimen-
sional pseudo-PR-tree is basicallgé&dimensional kd-tree, where each node has
2d priority leaves with extreme rectangles in each of 2destandard directions.
For constantl, the structure can be constructed@r@%logM/B &) 1/0s using
the same grid method as in the two-dimensional case (Seétih); the only
difference is that in order to fit th&xi-dimensional grid in main memory we have
to decrease (the number of nodes produced in one recursive stagejig'/?¢).

To analyze the number of I/Os used to answer a window querydsdiaen-
sional pseudo-PR-tree, we analyze the number of visitedriat nodes as in the
two-dimensional case (Section 4.2.1); the total numbeisifed nodes is at most
a factor2d higher, since at mo&i priority leaves can be visited per internal node
visited. As in the two-dimensional cas@(T'/B) is a bound on the number of
nodes visited where all rectangles in at least one of the prioggvies below’s
parent are reported. The number of nodessited such that each priority leaf of
V's parent contains at least one rectangle not intersedtiagjtiery can then be
bounded using an argument similar to the one used in two difoes; it is equal
to the number of regions associated with the nodesid-dimensional kd-tree
with O(N/B) leaves that intersect tHéd — 2)-dimensional intersection of two
orthogonal hyperplanes. It follows from a straightforwgeheralization of the
standard kd-tree analysis that thigi§(N/B)'~1/4) [Aga01BGHH].

Theorem 4.2.5 A PR-tree on a set aV d-dimensional hyper-rectangles can be
bulk-loaded inO (% log,, /B &) I/0s, such that a window query can be answered

in O((N/B)'~'/? + T/B) I/Os.

4.2.4 LPR-tree: doing insertions and deletions

In this section we describe and analyze the logarithmic ¢iad@R-tree, or LPR-
tree for short. This tree enables us to maintain an R-tieeskiructure efficiently
without losing the worst-case optimal query time. The dtite of an LPR-tree
differs from a normal R-tree in two ways. First, the leavesanm different levels.
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Second, the internal nodes store some additional infoamatvhich is explained
below. Still, exactly the same query algorithms as for a Reélee can be used
on an LPR-tree. We describe the LPR-tree in two dimensiorenexglization to

higher dimensions can be done in the same way as with PR-trees

Structure

An LPR-tree consists of a root with a number of subtrees. Bablree is a normal
pseudo-PR-tree, except that the internal nodes (kd-nati@s some additional
information, and the kd-nodes are grouped to share blockkstn Both adapta-
tions serve to make efficient deletions possible. We wikkréd these subtrees as
APR-trees (annotated pseudo-PR-trees).

In each internal node of an APR-tree, the following information is stored:

e pointers to all ofv’s children, and a bounding box for each child;
¢ the split value which was used to cutn the four-dimensional kd-tree;

o for each priority leaf of/, the least extreme value of the relevant coordinate
of any rectangle stored in that leaf, that is:

— the largestry,iy-coordinate inv;mi»;
— the largesymin-coordinate in/gmi»;
— the smallest,,.x-coordinate inv;m=x;
— the smallesymax-coordinate in/g=x.

Recall that the internal nodes of pseudo-PR-trees haveedemily six. In an
APR-tree, we group these nodes into blocks as follows. Watthenternal node
at depthi in a tree such that= 0 (mod [log B]), we store, in the same block,
all its descendant internal nodes down to lev¢l |log B] — 1. In the following
sections, we will keep writing about nodes that share a b&sckeparate nodes,
but in the analysis, we will use the fact that we can follow gayh of lengthl
down into the tree with only)(l/ log B) I/Os.

An LPR-tree is the structure that results from applying trgarithmic method
[Arg03, Pro03] to APR-trees. An LPR-tree has up[iog(N/B)] + 3 subtrees
To, 71,72, .-, Tiog(N/ B) +2- Subtre€] stores at mosb rectangles, and; (i >
0) is an APR-tree that stores at ma@ét! B rectangles. S@, and7; will never
contain more than one leaf; the other subtrees may have mdesnThe smaller
subtrees, that i, up to tree7,,, for somem = log % —O(1), have a total size of
at mostB+Zi":g(§M/B)_O(l) 211 B = O(M); we keep these subtrees completely
in main memory. From the larger subtrees, that is Tigg v, 5)1+2 down to tree
7;, forsome = log %4—0(1), we keep the top—! levels in main memory; these
have a total size of |5/ 2142 0 (2i-1 B) = O(S2 &N/ BITlos(N/M) 9i gy
O(M). The lower levels of the larger subtrees are stored on disk>Im + 1,
subtree¥,, 1, ..., 7;_1 are stored on disk completely.
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in memory |
}(log M) —-0(1)
on disk
T T L. Tn Tt Tnog(n/B.)1+2

Figure 4.4: An LPR-tree. The bright part is kept in main meyntre dark part is
stored on disk.

Algorithms

To bulk-loadan LPR-tree with a set a¥ rectangles, we build an APR-tree on the
rectangles and store it &, n/5141- All other subtrees are left empty.

To inserta rectangleR in an LPR-tree, we proceed as follows. Chégk If
Ty is full, we find the subtre&; with smallestj such that7; is empty. We take all
rectangles fron¥, to 7; together and build a new APR-tr&g on them. The old
APR-treesT;, for 0 < i < j, are discarded. Having made sure that there is space
in 7o, we addR to 7.

To deletea rectangleR from an LPR-tree, we proceed as follows. We search
for R in each subtre@;. We start at the root of each subtree; in each internal node
v, we compareR to the information stored about the priority leaves and gii s
value ofv to decide in which child to continue the search. When we firdélaf
that containsk?, we deleteR from it. If this leaf is a priority leaf/, and its parent
v has one or two kd-nodes @and possiblyu:) as children, we check i, still
contains more thai® /2 rectangles. If this is the case, we are done. Otherwise,
we check out the leaves that follawy in the sequencey=i», yymin, yfmax, phmeax,
the priority leaves of\ (or A itself, if it is a leaf), and the priority leaves of (or
u itself), to find theB/2 rectangles in those leaves that are the most extreme in
the relevant coordinate. We move those rectangles:iptoAs a result, one or
more of the leaves drawn from may have become underfull,ishatontaining
B/2 rectangles or less; we will replenish them in a similar manheaves that
are kd-nodes, and priority leaves of kd-nodes that do nat kdwchildren, cannot
be replenished. We will just leave them underfull, and deteem when they
become completely empty.

Every now and then we dodean-up where we rebuild the entire LPR-tree
from scratch (using the bulk-loading algorithm). More psety, we maintain a
counter Ny, which is the number of rectangles present at the last agéna
counterl, which is the number of insertions since then, and a coutexhich
is the number of deletions since then. As soo®as Ny/2 orI > Ny, we do a
clean-up.

4When the LPR-tree is initialized by bulk-loading, we 2t to the number of rectangles present
at bulk-loading, and consider the bulk-loading to be the €ilsan-up.
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Query complexity
Let us first verify that we can query an LPR-tree efficiently.

Lemma 4.2.6 Awindow query in an LPR-tree oN rectangles in the plane needs
O(y/N/B + T/B) I/Os in the worst-case.

Proof: An APR-tree has a structure very similar to a pseudo-PR-lbrgeas a
result of deletions, an APR-tree can be somewhat unbalahmertheless, even
after deletions, the kd-nodes in an APR-t&€i > 0) will always form a subset
of the kd-nodes of an APR-tree on at mast! B rectangles. Furthermore, the
deletion algorithm ensures that the priority leaves in aiRARee always contain
O(B) rectangles, except possibly the priority leaves of kd-saithat have no
kd-children. It is easy to see now that the analysis for pseRid-trees (proof of
Lemma 4.2.2) still goes through, if we just writé! rather tharO(N/B) for the
number of leaves. Thus we find that the number of nodes visitad APR-tree
7; is O(\/Qi—l + T;/B), whereT; is the number of answers found .

Taking the sum of the number of 1/0s needed for all trégsve find:

|—log %1 +2

>, 0w 5)=o(\55)

1=m-+1

Bulk-loading complexity

Lemma 4.2.7 An LPR-tree can be bulk-loaded with( % 1og,;, 5 %) I/Os.

Proof: For bulk-loading the APR-tre€[,, n/p1+1, We Use to same algorithm
as for pseudo-PR-trees, now storing the additional inftionand grouping the
internal nodes into blocks at no additional 1/0O-cost. Thgoathm uses

O(% logy/p ) 1/0s (Lemma 4.2.3). O

Insertion complexity

Lemma 4.2.8 Inserting a rectangle in an LPR-tree takes
O(% (log %) (logy 47)) /Os amortized.

Proof: We will bound the 1/Os spent on the insertions done in betvagntwo
clean-up operations, including the I/Os needed for thersbctean-up if that was
caused by an insertion.

Just after clean-ugy, rectangles are present, and they are all storéfd in,
with £ = [log Ny/B]. Recall that an insertion, if; is full, finds the first empty
tree7;, and then construct; from 75, ..., 7;_;. Tree7;,, would only become
involved in this when a new rectangle is to be inserted &fté? insertions have
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filled up all trees7; with 0 < 7 < k. However, this cannot happen before the sec-
ond clean-up, since a clean-up is done as sodvias 2* B rectangles have been
inserted—or even earlier, if it is triggered by deletiorfsthk clean-up is caused
by an insertion, we charge the coSt & log,,, 5 %) I/Os (Lemma 4.2.7), to the
Ny = ©(N) insertions that caused it, which@( log,,, 5 %) /Os amortized
per insertion. (Clean-ups caused by deletions will be aktatg the deletions—
see Section 4.2.4.)

It remains to account for the construction of treBswith m < j < k
in between clean-ups (tre€$ with 0 < m are constructed in main memory).
Note that only rectangles inserted since the last clearreipaolved in this. By
Lemma 4.2.7, the cost of constructifigis O( & logy s &) 1/0s amortized per
rectangle in the tree. Whefy is constructed, all rectangles that are put in come
from a treeZ; with ; < j. It follows that a rectangle can be included at most
kE—m+1 = O(log, %) times in a new tree that is (partly) built in external
memory. This leads to an amortized cost of moving rectariggégeen clean-ups
of O(%(logM/B 7)(logy 37)) I/Os.

Adding the bounds, we see that moving rectangles betwean-tlps domi-
nates, and gives the bound claimed. |

Deletion complexity

Lemma 4.2.9 Deleting a rectangle from an LPR-tree takes
O((logg &%) (log, &) 1/0Os amortized.

Proof: We first need to find the rectangle. In the worst case, we hasledok all
APR-treesO(log, %) of which are (partially) stored on disk. Since the higher
levels of these trees are stored in main memory, and the namgdinternal nodes
are blocked in groups of height(log;), walking down a path in such an APR-
tree takes at mog(logz 4%) I/0s. In total,O((log 5 47)(log, 47)) /Os may be
needed to locate the rectangle.

The replenishing of the priority leaves is accounted foradmWs. Let the
external height of a priority leafy, be the largest number of kd-nodes that are
found on any path fromr down into the APR-tree and are stored on disk, or have
their priority leaves stored on disk. Since the higher Iseétthe larger APR-trees
are stored in main memory, = O(log, %). Let therank of a priority leaf be
four times its external height, minus its rank among itsisgd, i.e.—1 for v mi»;
=2 for yymin; —3 for yym=x, and —4 for vy==<. When we remove a rectangle
from a priority leaf, we put a charge @f-/B in its place, where- is the rank
of the priority leaf. We only replenish a priority leaf if itegs half-empty, which
implies that it contains a total charge af By moving rectangles from lower-
ranked priority leaves in, we create gaps in those prioeiwés, but since all of
these have lower rank, we need to put a total charge of atimestin their place.
Hence, the replenishing of a priority leaf frees a charge of at leasf which
pays for theO(1) 1/Os that are needed to replenish. Replenishing priority

leaves thus take@(%ﬁ) = O(+ log, 4%) 1/Os amortized per deletion.
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When D becomesV, /2, which is more thanV/4, the LPR-tree is rebuilt
at a cost ofO (% log, %) 1/0s (Lemma 4.2.7). This i©(F logy/ 5 %) Per
deletion, amortized.

Adding the amortized cost of locating and deleting the gl replenish-
ing the priority leaves and rebuilding the LPR-tree, we findtta deletion takes
O((logp %) (log, &%) 1/0s amortized. O

Speeding up deletions

When the insertion of a rectangle leads to building a sutfreee putin all rect-
angles that were inserted by then and are not stored in agugyibuilt subtree
7T; with j > 4. This makes it possible to find a rectangle in an LPR-treeauth
searching allog, % subtreed’; that are stored on disk: we just need to keep track
of the time of insertion of each rectangle. When we want to dipgrticular rect-
angle in the LPR-tree, we only need to search the sulifréieat was constructed
earliest after the rectangle’s insertion in the LPR-tree.

To make this work, we need to keep three additional strustwith the LPR-
tree:

e a single numbetime, initially set to zero, which we increase with every
update so that we can use it to put unique time stamps on upgdetations;

e atime indeximplemented as a B-tree of which the t6plog; M) levels
are kept in main memory; the lower levels are stored on digke fime
index stores for every rectangle in the forest the time stahifg insertion.
It can do so using any type of key that uniquely identifiesangtes.

e in main memory: for each non-empty subtrEethe time at which it was
built.

The algorithms are modified as follows. When an LPR-tree éaméd up, we
settimeto zero, and rebuild the time index to store the zero time gtéonall
rectangles. When a subtr@g is built or modified because of an insertion, we
incrementimeand record it as the time of constructionf When a rectangle
is inserted, we also incremetitne and insert the rectangle’s key with this time
stamp in the time index. When a rectangiés deleted, we query the time index
to get the rectangle’s time of insertion, find the subtfe¢hat was constructed
earliest after the rectangle was inserted, and searchomdyfind R.

Lemma 4.2.10 An LPR-tree with time stamps can be bulk-loaded with
o(% logy %) I/Os.

Proof: The LPR-tree itself is built wittO(% log,,, 5 %) /Os (Lemma 4.2.7).
The time index can be built in the same time bound: sort the kéthe rectangles
in O(% log,/ %) 1/Os and build a B-tree on them. O
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Lemma 4.2.11 Inserting a rectangle in an LPR-tree with time stamps takes
O((logp %) + £ (logy 5 &) (log, 17)) I/Os amortized.

Proof: Inserting the rectangle in the LPR-tree takés; (log /5 % )(log, 17))
I/Os amortized (Lemma 4.2.8). Inserting the rectangle mttme index takes
O(log s &) 1/0s. Add these bounds to get the bound claimed. O

Lemma 4.2.12 Deleting a rectangle from an LPR-tree with time stamps takes
O(logp 4%) I/Os amortized.

Proof:  We first find the rectangle in the time index; this talk@fogp %)
I/Os. With the result we determine which subtréeto search; walking down
that subtree takes at mastlog 5 %) I/0s. Replenishing the priority leaves takes
O(% log, %) I/Os amortized (see the proof of Lemma 4.2.9), and rebudlte
LPR-tree as soon a8 > Ny/2 takesO(% log,,, p %) 1/Os (Lemma 4.2.9), that
is O(§ logy, &) 1/Os amortized per deletion. Adding it all up, we find that a
deletion take®)(log 5 4% ) 1/Os amortized. O

LPR-tree: the bounds

The lemmas above lead to the following theorem.

Theorem 4.2.13 An LPR-tree with time stamps on a set dfrectangles in the
plane can be bulk-loaded (% log /B %) I/Os, such that a window query can

be answered i®(\/N/B + T/B) I/Os in the worst case, a rectangle can be in-
serted inD((log g 17)+ % (logy 5 ) (log, 17)) I/Os amortized, and a rectangle
can be deleted if)(log ; %) 1/Os amortized.

4.2.5 Lower bound for heuristic R-trees

The PR-tree is the first R-tree variant that always answersdomw query worst-
case optimally. In fact, most other R-tree variants can beefito visitO(N/B)
nodes to answer a query even when no rectangles are rep®@rtedd). In this
section we show how this is the case for the packed HilbenteR-tthe four-
dimensional Hilbert R-tree, and the TGS R-tree.

Theorem 4.2.14 There exist a set of rectanglésand a window query) that
does not intersect any rectanglesSinsuch that al®(N/B) nodes are visited
when( is answered using a packed Hilbert R-tree, a four-dimeasibliibert
R-tree, ora TGS R-tree af.

Proof: We will construct a set gbointsS such that all leaves in a packed Hilbert
R-tree, a four-dimensional Hilbert R-tree, and a TGS R-tre€ are visited when
answering dine query that does not touch any point. The theorem followsesinc
points and lines are all special rectangles.
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Figure 4.5: Worst-case example

For convenience we assume tiiat> 4, N = 2¥ BandN/B = B™, for some
positive integerg andm, so that each leaf of the R-tree contaiBgectangles,
and each internal node has fandt We constructS as a grid ofN/B columns
and B rows, where each column is shifted up a little, depending®harizontal
position (each row is in fact a Halton-Hammersley point seg e.g. [Chz01]).
More preciselyS has a poinp;; = (z;;,v:;), foralli € {0,...,N/B — 1} and
j € {0,...,B — 1}, such thate;; = i + 1/2, andy,;; = j/B + h(i)/N. Here
h(%) is the number obtained by reversing, i.e. reading backw#rd&-bit binary
representation of. An example withV = 64, B = 4 is shown in Figure 4.5.

Now, let us examine the structure of each of the three R-tagiants on this
dataset.

Packed Hilbert R-tree: The packed Hilbert R-tree sorts the points by the
Hilbert values. To compare the Hilbert values of two poimts,must first check
if they lie in the same quadrant of a sufficiently large squah®se sides are
powers of two: in our case, a square of st¥esuffices. If they lie in the same
guadrant, we zoom in on that quadrant, and see if they liesiséime subquadrant
of that quadrant. We keep zooming in until we arrive at thell@here the points
lie in different quadrants. Then, we decide which quadrames first on the
Hilbert curve.

Now consider two pointg;; andp; ;-. Note that bothy;; andy, ;» are smaller
than1, so all bits before the “decimal point” of thecoordinates of these points
are the same, namely zero. In additior, # ¢/, thenz;; = z;;, and therefore,
starting from a square of siZ¥, we have to zoom in more thanlevels deep to
distinguish between the positions f; andp; ;; on the Hilbert curve. On the
other hand, i # ¢/, then|z;; — ;.| > 1, so thez-coordinates op;; andp;
differ in at least one of the bits before the "decimal” poidence, we do not have
to zoom in more thaw levels and can compare them on the basisasfd:’ only,
ignoringj andj’. As a result, the Hilbert curve visits the columns in our grid
points one by one, and when it visits a column, it visits alhg®in that column
before proceeding to another column. Therefore, the padkbdrt R-tree makes
a leaf for every column, and a horizontal line can be chosémtéosect all these
columns while not touching any point.

Four-dimensional Hilbert R-tree: The analysis is similar to the one for the
packed Hilbert R-trees.

TGS R-tree: The TGS algorithm will partitionS into B subsets of equal
size and partition each subset recursively. The partitiprs implemented by
choosing a partitioning line that separates the set intstvibsets (whose sizes are
multiples of N/ B), and then applying binary partitions to the subsets réxelys
until we have partitioned the set infé subsets of sizé&V/B. Observe that on all



80 CHAPTER 4. THE PRIORITY R-TREE

<1

>1—o0|t

' ; Lo

column 7 iy =k-2 ih=(k+120 -1 4

Figure 4.6: TGS patrtitioning the worst-case example. Aigaltivision creates
two bounding boxes with a total area of less than i; — 1. A horizontal division
creates two bounding boxes with a total area of more thanr i1)(1 — 20) >
19 — 11 — 1.

levels in this recursion, the partitioning line will leavelaast a fractiori /B of
the input on each side of the line. Below we prove that TGSalillays partition
by vertical lines; it follows that TGS will eventually put @acolumn in a leaf.
Then a line query can intersect all leaves but report nothing

Suppose TGS is about to partition the subSét , i2) of S that consists of
columnsi; to i, inclusive, withiy > i1, i.e. S(i1,42) = {pi;|i € {i1,...,92},7 €
{0, ..., B —1}}. When the greedy split algorithm gets to divide such a set int
two, it can look for a vertical partitioning line or for a hadntal partitioning line.
Intuitively, TGS favors partitioning lines that create g lgiap between the bound-
ing boxes of the points on each side of the line. As we will sthelow, we have
constructedS such that the area of the gap created by a horizontal paititio
line is always roughly the same, as is the area of the gapettbata vertical line,
with the latter always being bigger.

Partitioning with a vertical line would always leave a gapaighly a square
that fits between two columns—see Figure 4.6. More precigeilpuld partition
the setS(i1,i2) into two setsS(iy,c — 1) and S(c,i2), for somec € {i; +
1,...,42}. The bounding boxes of these two sets would each have heigghthan
1, and their total width would béc — 1 — i1) + (i2 — ¢), so their total area,
would be less thai, — 77 — 1.

The width of a gap around a horizontal partitioning line deggeon the num-
ber of columns inS(iy, i2). However, the more columns are involved the bigger
the density of the points in those columns when projectechen+axis, and the
lower the gap that can be created—see Figure 4.6 for anrdhist. As a re-
sult, partitioning with a horizontal line can lead to gapatthre wide and low, or
relatively high but not so wide; in any case, the area of thewil be roughly
the same. More precisely, we can estimate the total areaedidhnding boxes
resulting from partitioning with a horizontal line as fas. The partitioning line
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must leave at least a fractidrl B of the points on each side, so there must be at
least one full row ofS(i;,42) on each side of the line. Hence, the width of both
bounding boxes resulting from the partition step musibei,. Observe that the
set{iy, ..., 12 + 1} contains at least two different multiples ®f if s is such that
io+2—i1 > 2571 lett be the largest such value gfi.e. t = |log(ia+2—i1)—1],

let 7} be the smallest multiple ¢f* that is at least;, and leti}, bei] + 2t — 1.
Note that if we leti go through all valuegi’, ..., i5}, then the firstc — ¢ bits of

the k-bit representation aof remain constant, while the lasbits assume all pos-
sible values. Consequently, the l&st ¢ bits of (i) will remain constant, while
the first¢ bits will assume all possible values. Hence, if we projecpaints in
S(i1,12) on they-axis, the distance between each pair of consecutive pisints
at moste = 2*~*/N = 1/(2!B), and the distance between the topmost and the
bottommost point is at lea$t— . When we patrtition this set by a horizontal line,
the total height of the resulting bounding boxes must beagtle— 20, and their
total aread;, must be at leasiz — i1)(1 — 20) = iy — i1 — 2(i2 — 41)/(2¢B).
With ¢ > log(iz + 2 — i1) — 1, we find that4, is more than, — i; — 4/B.

Recall that4, is less than, — i; — 1. SinceB > 4, we can conclude that
Ap > A,, and that partitioning with a vertical line will always résim a smaller
total area of bounding boxes than with a horizontal line. Assult, TGS will
always cut vertically between the columns. O

4.3 Experiments

In this section we describe the results of our experimertalysof the perfor-
mance of the PR-tree. We compared the PR-tree to several lmiieloading

methods known to generate query-efficient R-trees: Thegquhéklbert R-tree
(denoted H in the rest of this section), the four-dimendidiiibert R-tree (de-
noted H4), and the TGS R-tree (denoted TGS). Among these, &G deen re-
ported to have the best query performance, but it also talees/ iiOs to bulk-

load. In contrast, H is simple to bulk-load, but it has worsery performance
because it does not take the extent of the input rectanglesstount. H4 has
been reported to be inferior to H [Kam93], but since it takes éxtent into ac-
count (like TGS) it should intuitively be less vulnerablestdreme datasets.

4.3.1 Experimental setup

We implemented the four bulk-loading algorithms in C++ gsiFPIE [Arg02].
TPIE is a library that provides support for implementing-gé@icient algorithms
and data structures. In our implementation we used 36 bgtespresent each
inputrectangle; 8 bytes for each coordinate and 4 bytes édbleeto hold a pointer
to the original object. Each bounding box in the internalemdlso used 36 bytes;
8 bytes for each coordinate and 4 bytes for a pointer to theldaxk storing the
root of the corresponding subtree. The disk block size waset to be 4KB,
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resulting in a maximum fanout of 113. This is similar to earlexperimental
studies, which typically use block sizes ranging from 1KBIKB or fix the fan-
out to a number close to 100.

As experimental platform we used a dedicated Dell PowerEd@® work-
station with one Pentium [11/500MHz processor running B8B 4.3. A local
36GB SCsSil disk (IBM Ultrastar 36LZX) was used to store alles=gary files: the
input data, the R-trees, as well as temporary files. We ctstrithe main mem-
ory to 128MB and further restricted the amount of memory latéé to TPIE to
64MB; the rest was reserved to operating system daemons.

4.3.2 Datasets

We used both real-life and synthetic data in our experiments

Real-life data

As the real-life data we used thecER/Line data [Tiger] of geographical features
in the United States. This data is the standard benchmagkidagd in spatial
databases. It is distributed on six CD-ROMs and we chosegerarent with the
road line segments from two of the CD-ROMs: disk one contgjmiata for six-
teen eastern US states and disk six containing data from #gtenn US states;
we use Eastern and Western to refer to these two datasgiectiesly. To ob-
tain datasets of varying sizes we divided the Eastern daitetsefive regions of
roughly equal size, and then put an increasing number obnsgibgether to ob-
tain datasets of increasing sizes. The largest set is jasttinle Eastern dataset.
For each dataset we used the bounding boxes of the line s¢gaepur input
rectangles. As a result, the Eastern dataset had 16.7 miéliciangles, for a total
size of 574MB, and the Western data set had 12 million reétantpr a total size
of 411MB. Refer to Table 4.1 for the sizes of each of the sm&#stern datasets.
Note that the biggest dataset is much larger than those aspikvious works
(which only used up to 100,000 rectangles) [Kam93, Grc9Ra}e also that our
TIGER data is relatively nicely distributed; it consist of relely small rectangles
(long roads are divided into short segments) that are somigilvhit not too badly)
clustered around urban areas.

dataset: 1 2 3 4 5
million rectangles: 2.08 5.67 9.16 12.66 16.72
size(MB): 72 194 315 435 574

Table 4.1: The sizes of the Eastern datasets

Synthetic data

To investigate how the different R-trees perform on moreeme datasets than
the TIGER data, we generated a number of synthetic datasets. Eachsaf $lyn-
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thetic datasets consisted of 10 million rectangles (or 3BDM the unit square.

e SIZE(max_side):. We designed the first class of synthetic datasets to in-
vestigate how well the R-trees handle rectangles of diffesezes. In the
size(mazx_side) dataset the rectangle centers were uniformly distributed
and the lengths of their sides uniformly and independeriliriduted be-
tween 0 andnaz _side. When generating the datasets, we discarded rect-
angles that were not completely inside the unit square (laatersure each
dataset had 10 million rectangles). A portion of the dataset(0.001) is
shown in Figure 4.7.
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Figure 4.7: Synthetic datasgtzg(0.001)

e ASPECTa): The second class of synthetic datasets was designedds-inv
tigate how the R-trees handle rectangles with differeneespatios. The
areas of the rectangles in all the datasets were fixdd16, a reasonably
small size. In theasPECT(a) dataset the rectangle centers were uniformly
distributed but their aspect ratios were fixeditand the longest sides cho-
sen to be vertical or horizontal with equal probability. Weoamade sure
that all rectangles fell completely inside the unit squakeportion of the
datasensPeECT(10) is shown in Figure 4.8. Note that if the input rectangles
are bounding boxes of line segments that are almost hoakonvertical,
one will indeed get rectangles with very high aspect rativendnfinite in
the case of horizontal or vertical segments.

e SKEWED(c): In many real-life multidimensional datasets differeirhdn-
sions often have different distributions. Some of thesé&itigions may
be highly skewed compared to the others. We designed the dlaiss of
datasets to investigate how this affects R-tree performas&EWED(c)
consists of uniformly distributed points that have beerutsged” in the
y-dimension, that is, each poifit, y) is replaced with(x, y¢). An example
of skeweD(5) is shown in Figure 4.9.
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Figure 4.8: Synthetic datasesPECT(10)

Figure 4.9: Synthetic datasekEWED(5)

e CLUSTER Our final dataset was designed to illustrate the worstHoakav-
ior of the H, H4 and TGS R-trees. It is similar to the worstecagzample
discussed in Section 4.2. It consists of 10 000 clusters edgttiers equally
spaced on a horizontal line. Each cluster consists of 100Qgponiformly
distributed in a0.00001 x 0.00001 square surrounding its center. Fig-
ure 4.10 shows a part of tl|e USTERdataset.
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Figure 4.10: Synthetic datasetUSTER
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Western data Eastern data
Hilbert (H/H4) [| 1.2 min 1.7 min
PR-tree (PR) 3.1 min 4.4 min
Greedy (TGS) 14.7 min 21.1 min
Hilbert (H/H4) [ 451s 583's
PR-tree (PR) 1495 s 2138 s
Greedy (TGS) 4421 s 6530 s

Figure 4.11: Bulk-loading performance anGeR data: /O (upper figure) and
time (lower figure).

4.3.3 Experimental results

Below we discuss the results of our bulk-loading and quepeements with the
four R-tree variants.

Bulk-loading performance

We bulk-loaded each of the R-trees with each of the realflifeEr datasets, as
well as with the synthetic datasets for various parametaega In all experiments
and for all R-trees we achieved a space utilization above.99% measured the
time spent and counted the number of 4KB blocks read or writthen bulk-
loading the trees. Note that all algorithms we tested reddaaite blocks almost
exclusively by sequential I/O of large parts of the data; assalt, I/O is much
faster than if blocks were read and written in random order.

Figure 4.11 shows the results of our experiments using tiseeEaand West-
ern datasets. Both experiments yield the same result: ThedHHd algorithms
use the same number of I/Os, and roughly 2.5 times fewer H@sPR. This is not
surprising since even though the three algorithms havesiine® ( logys/ s )
I/O bounds, the PR algorithm is much more complicated tharHtand H4 al-
gorithms. The TGS algorithm uses roughly 4.5 times more thas PR, which
is also not surprising given that the algorithm makes bimpengitions so that the
number of levels of recursion is effectivey(log, N). In terms of time, the H
and H4 algorithms are still more than 3 times faster than fRealgorithm, but
the TGS algorithm is only roughly 3 times slower than PR. Bhisws that H, H4
and PR are all more CPU-intensive than TGS.

Figure 4.12 shows the results of our experiments with theHagtern datasets.
These experiments show that the H, H4 and PR algorithmsidatevely linearly
with dataset size; this is a result of thivg,,/ 5 %1 factor in the bulk-loading
bound being the same for all datasets. For H and H4 this mbah#e core step

5When R-trees are bulk-loaded to subsequently be updatesimigally, near 100% space utiliza-
tion is often not desirable [Dwt94]. However, since we arémyanterested in the query performance
of the R-tree constructed with the different bulk-loadingthods, and since the methods could be
modified in the same way to produce non-full leaves, we onhsimtered the near 100% utilization
case.
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Figure 4.12: Bulk-loading performances on Eastern data# (left) and time
(right)

of the algorithm, which is sorting the rectangles by theisifion on the Hilbert
curve, runs in the same number of passes—namely two—in pdirarents. For
the PR algorithm it means that only once, we have to build d grid divide
among its cells a set of rectangles that is too big too fit in wmAll recursive
steps can be done in main memory. The cost of the TGS algosig@ms to grow
in an only slightly superlinear way with the size of the daga Fhis is a result of
the [logg N'| factor in the bulk-loading bound being almost the same fladath
sets. It means that in all data sets, the subtrees just belavel have roughly
the same sizeR !¢z V11 rectangles), and since each of them is too big to fit
main memory, we need a significant number of 1/Os to build th€his, together
with preprocessing, accounts for a big portion of the nundfefOs that scales
linearly with the size of the data set. The slightly superdintrend comes from
the cost of building the root, which varies from roughly 20%tee total number
of I/Os on set 1, to roughly 45% on set 5 (shaded in Figure 4.12)

In our experiments with the synthetic data we found that tedgomance
of the H, H4 and PR bulk-loading algorithms was practicalig same for all
the datasets, that is, unaffected by the data distributidris is not surprising,
since the performance should only depend on the datase(asizeall the syn-
thetic datasets have the same size). The PR algorithm peafare varied slightly,
which can be explained by the small effect the data distidbutan have on the
grid method used in the bulk-loading algorithm (subtreey have slightly dif-
ferent sizes due to the removal of priority boxes). On avertie H and H4 algo-
rithms spent 381 seconds and 1.0 million I/Os on each of théhsyic datasets,
while the PR algorithm spent 1289 seconds and 2.6 milliors.l/On the other
hand, as expected, the performance of the TGS algorithradsaignificantly over
the synthetic datasets we tried; the binary partitions nibgdke algorithm depend
heavily on the input data distribution. The TGS algorithnsvietween 4.6 and
16.4 times slower than the PR algorithm in terms of I/O, artd/ben 2.8 and 10.9
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Figure 4.13: Bulk-loading time in seconds of Top-down Gre8glit on synthetic
data sets of 10 million rectanglesiZe and ASPECT) or points 6KEWED and
CLUSTER) each.

times slower in terms of time. The performance of TGS orstiiz&(max-side),
ASPECT(a), SKEWED(c) andCLUSTERdatasets is shown in Figure 4.13.

Query performance

After bulk-loading the four R-tree variants we experimehigth their query per-
formance; in each of our experiments we performed 100 rahdgenerated
queries and computed their average performance (a moré¢ égscription of
the queries is given below). Following previous experinaéstudies, we uti-
lized a cache (or “buffer”) to store internal R-tree nodesmyqueries. In fact,
in all our experiments we cached all internal nodes sincg ttever occupied
more than 6MB. This means that when reporting the numberQ¥ Heeded to
answer a query, we are in effect reporting the number of ke&isited in order
to answer the querd.For several reasons, and following previous experimental
studies [Bmn90, Grc98a, Kam93, Kam94], we did not colleving data. Two
main reasons for this are (1) that I/0 is a much more robussarezof perfor-
mance, since the query time is easily affected by operatistgs caching and by
disk block layout; and (2) that we are interested in heavsl kxgenarios where not
much cache memory is available or where caches are ineffechiat is, where
I/O dominates the query time.

TIGER data: We first performed query experiments using the Eastern and
Western datasets. The results are summarized in Figurea#id 4.15. In Fig-
ure 4.14 we show the results of experiments with square winglgeries with

SExperiments with the cache disabled showed that in our @rpets the cache actually had rela-
tively little effect on the window query performance.
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Figure 4.14: Query performance for queries with squaresaofing size on the
WesternTIGER data (left) and the EastemGER data (right). The performance is
given as the number of blocks read divided by the outputBjzB.
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Figure 4.15: Query performance for queries with squareses 8.01 on Eastern
TIGER data sets of varying size. The performance is given as théauafi blocks
read divided by the output sizé/B.

areas that range from 0.25% to 2% of the area of the boundirgball input

rectangles. We used smaller queries than previous expetafrstudies (for ex-
ample, the maximum query in [Kam93] occupies 25% of the abegpuse our
datasets are much larger than the datasets used in prexjpersnents—without
reducing the query size the output would be unrealistidatiye and the reporting
cost would thus dominate the overall query performanceidoré 4.15 we show
the results of experiments on the five Eastern datasetsiofrxgsizes with a fixed
query size of 1%. The results show that all four R-tree vasigerform remark-
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Figure 4.16: Query performance for queries with squaress# @.01 on synthetic
data sets. The performance is given as the number of bloekisdigided by the
output sizel'/ B.

ably well on theTIGER data; their performance is within 10% of each other and
they all answer queries in closeTy B, the minimum number of necessary 1/Os.
Their relative performance generally agrees with earéisults [Kam93, Grc98a],
that is, TGS performs better than H, which in turn is bettantiki4. PR consis-
tently performs slightly better than both H and H4 but slightorse than TGS.

Synthetic data. Next we performed experiments with our synthetic datasets,
designed to investigate how the different R-trees perfonnmore extreme data
than theTIGER data. For each of the dataseligE, ASPECT and SKEWED we
performed experiments where we varied the parameter tinakdga ranging from
fairly normal to rather extreme. Below we summarize our itesu

The left side of Figure 4.16 shows the results of our expans&vith the
datasesizE(max_side) when varyingnazx _side from 0.002 to 0.2, that is, from
relatively small to relatively large rectangles. As qusnee used squares with
area 0.01. Our results show that for relatively small inpdtangles, like the
TIGER data, all the R-tree variants perform very close to the mimmmumber of
necessary I/0s. However, as the input rectangles get JdPgeand H4 clearly
outperform H and TGS. H performs the worst, which is not ssipg since it
does not take the extent of the input rectangles into accau®$ performs sig-
nificantly better than H but still worse than PR and H4. Intelly, PR and H4
can handle large rectangles better, because they riggrdivéde rectangles into
groups of rectangles that are similar in all four coordisafhis may enable these
algorithms to group likely answers, namely large rectasmglegether so that they
can be retrieved with few I/Os. It also enables these algmstto group small
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rectangles nicely, while TGS, which strives to minimize tbtal area of bound-
ing boxes, may be indifferent to the distribution of the dnmattangles in the
presence of large rectangles.

The middle of Figure 4.16 shows the results of our experisaith the
datasetasPECT(a), when we varya from 10 to 10°, that is, when we go from
rectangles (of constant area) with small to large aspeict. rAs query we again
used squares with area 0.01. The results are very similhetesults of thesize
dataset experiments, except that as the aspect ratio gaze@R and H4 become
significantly better than TGS and especially H. Unlike whie $1zE dataset, PR
performs as well as H4 and they both perform close to the mimimumber of
necessary I/Os to answer a query. Thus this set of expememmphasizes that
both the PR-tree and H4-tree are able to adopt to varyingnexesy well.

The right side of Figure 4.16 shows the result of our expenisevith the
datasesKEWED(c), when we vary: from 1 to 9, that is, when we go from a uni-
formly distributed point set to a very skewed point set. Asiguve used squares
with area 0.01 that are skewed in the same way as the datasets(twhere the
corner(z,y) is transformed tqx, y©)) so that the output size remains roughly
the same. As expected, the PR performance is unaffectechiyaifisformations,
since our bulk-loading algorithm is based only on the reéatirder of coordi-
nates:z-coordinates are only compared:tecoordinates, ang-coordinates are
only compared tg-coordinates; there is no interaction between them. On the
other hand, the query performance of the three other R-ttegsnerates quickly
as the point set gets more skewed.

As a final experiment, we queried theusTERdataset with long skinny hor-
izontal queries (of ared x 10~7) through the 10000 clusters; thecoordinate
of the leftmost bottom corner was chosen randomly such tregtiery passed
through all clusters. The results are shown in Table 4.2.rAisipated, the query
performance of H, H4 and TGS is very bad; thessTERdataset was constructed
to illustrate the worst-case behavior of the structureserBthough a query only
returns around 0.3% of the input points on average, the qalgorithm visits
37%, 94% and 25% of the leaves in H, H4 and TGS, respectivelyoinparison,
only 1.2% of the leaves are visited in PR. Thus the PR-treparfdrms the other
indexes by well over an order of magnitude.

tree: H H4 PR TGS
#1/0s: 32920 83389 1060 22158
% of the R-tree visited: 37% 94% 1.2% 25%

Table 4.2: Query performances on synthetic dataseSTER

4.3.4 Conclusions of the experiments

The main conclusion of our experimental study is that thetieB-is not only
theoretically efficient but also practically efficient. Guulk-loading algorithm is
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slower than the packed Hilbert and four-dimensional Hiltbernk-loading algo-

rithms but much faster than the TGS R-tree bulk-loadingritigm. Furthermore,
unlike for the TGS R-tree, the performance of our bulk-logdalgorithm does
not depend on the data distribution. The query performanedl éour R-trees

is excellent on nicely distributed data, including the +iéal TIGER data. On ex-

treme data however, the PR-tree is much more robust tharttibe R-trees (even
though the four-dimensional Hilbert R-tree is also rekiwobust).

4.4 Concluding remarks

In this paper we presented the PR-tree, which is the firseR¥ariant that can
answer any window query in the optimal/N/B + T/B) 1/0s. We also per-
formed an extensive experimental study, which showed thatPR-tree is not
only optimal in theory, but that it also performs excellempractice: for normal
data, it is quite competitive to the best known heuristiedidk-loading R-trees,
namely the packed Hilbert-R-tree [Kam93] and the TGS R-{&e98a], while
for data with extreme shapes or distributions, it outpen®them significantly.

The PR-tree can be updated using any known update heustR-frees,
but then its performance cannot be guaranteed theorgtaralimore and its prac-
tical performance might suffer as well. Alternatively, wancuse the dynamic
version of the PR-tree using the logarithmic method, whiat the same theoret-
ical worst-case query performance and can be updated efficidn the future
we wish to experiment to see what happens to the performahea we apply
heuristic update algorithms and when we use the theorigteapberior logarith-
mic method.






Chapter 5

Box-trees for collision
checking in industrial
Installations

An extended abstract of this chapter appeared as: Hermaavérkbrt, Mark
de Berg and Joachim Gudmundsson: Box-trees for collisi@tkihg in indus-
trial installations, inProc. 18th ACM Symposium on Computational Geometry
Barcelona, 2002, pages 53—-62. Full text to appe&@amputational Geometry —
Theory and Applications

Abstract. A box-tree is a bounding-volume hierarchy that uses aigeat

boxes as bounding volumes. We describe a new algorithm &irceha box-tree
for objects in a 3D scene, and we analyze its worst-case diragy/for approx-
imate range queries. If the input scene has certain charesties that we de-
rived from our application—collision detection in induslrinstallations—then
the query times are polylogarithmic, not only for searchimith boxes but also
for range searching with other constant-complexity ranges

5.1 Introduction

Motivation. Collision checking is an important operation in all applicas
where objects move around in a 3D scene—virtual reality, moer animation,
and robotics are obvious examples. A popular way of doinistmh checking
is the following two-phase approach. In the first phase fittexring phase one
finds all primitive objects in the scene whose bounding beergects the query
object (or its bounding box). In the second phase#fiaement phas@ne tests
for each of these primitives (if any) whether it actuallyergects the object. To
speed up the filtering phase, the sedf bounding boxes of the primitives in the
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Figure 5.1: CAD model of a carbon black unit. Designed by OLBERV Process
and Energy, Hungary.

scene is often stored in a bounding-volume hierarchy. Baskiinary tree whose
leaves store the boxes # and where each internal nodestores the bounding
boxb(v) of all boxes stored in the subtree rooted-aiWe call such a tree box-
tree sometimes it is more precisely called axis-aligned-bounding-box treer
AABB-treefor short. A query with a query rang@ is performed by traversing
the tree in a top-down manner, only visiting nodesuch thab(v) intersect).
This way we end up exactly in the leaves storing boxes thatsett)).

The query time in a box-tree is determined by the number oeaadsited,
and the goal is therefore to organize the tree in such a wayhisasnumber is kept
as small as possible. Agarwai al.[Aga01BGHH] recently showed that a box-
tree exists that had(n?/3 4 k) query time for ranges that are axis-parallel boxes,
wheren is the total number of boxes $1andk is the number of boxes intersecting
the query range. This bound is rather disappointing: if tnergtime would really
be that bad, box-trees would not be used so much in practictartunately, the
bound is optimal. Agarwaét al.prove that there are sets of input boxes for which
the worst-case query time of any box-tree:?/3 + k).! This is the starting
point for our work: we want to understand what makes boxstpegform well in
practical applications even though in theory they may perfoadly.

The application we have in mind comes from the MOLOG projébblpg].
The goal of this project is to add motion support to CAD systersed to design
large industrial installations, such as depicted in Fid. 5.

Adding motion support will help the designer of an industiistallation to
decide whether it will be possible to move certain parts duhe installation,
for maintenance or replacement. The approach taken in the@@project is
based on therobabilistic path plannefAma96, Kav95, Sve97], a technique for
motion planning that has proved very successful in manyiegdns. A basic
test performed many times by the probabilistic path plaieollision checking:
given a query object—the object for which we are planning éionoat a certain
position and orientation—does it collide with the CAD md?l&Ve can now state

1n general, the worst-case query time of a box-treé-dimensional space ®(n'~1/4 + k). In
this paper we focus on 3-dimensional box-trees, becausésthiost natural in our application.
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the goal of this paper as follows: we want to design a provefilgient box-tree
for storing scenes that are CAD models of large industrigthiltations.

Further background. The lower bounds of Agarwakt al. mentioned earlier
imply that, to be able to design provably efficient box-tréms CAD models
of large industrial installations, we have to make use of gheperties of the
bounding boxes of the primitives in such CAD models. Téalistic input mod-
els[Brg97KSV] suggested in the literature do not seem appleabour setting:
the industrial installation of Fig. 5.1, for instance, cains many long and thin
pipes that are relatively close together. But if we forgetwdtihe pipes, the scene
seems to be well-behaved. Hence, the assumption we makat iéhboxes in
S can be partitioned into two subsets, one containing onlg koxmd thin (almost)
disjoint pipes, and one forming a low-density scene [Brg8YK Here a pipe is
defined to be an axis-aligned box whose shortest dimensami®st a constant
0 times shorter than its middle dimension—see Section 5d.8fmal defini-
tions of these concepts. It is important to note that ourrétigm to construct the
box-tree does not need this assumption; we only use it innh®sis.

Unfortunately, with the assumption just stated one stitirgat prove good
bounds: the(n?/3 + k) lower bound for range queries with a box even holds if
the input consists of disjoint unit squares arranged in @-tike fashion. There-
fore we analyze approximate range queries. More precisstgad of the param-
eterk in the time bound, we use, which is the number of boxes intersecting the
extended rang€.. For a givere > 0, the extended rang@. is the set of points
lying at L..-distance at mostw from @, wherew is the length of the longest
edge of(). The expectation is that in practiée will not be much larger than
k for moderately smalt, at least when the query range is rather fat. Note that
in our application, the query range is (the bounding box afphject for which
we are planning a motion. If the object is a forklift truck @mse other car-like
device, its bounding box is likely to be fat. The concept gpraximate range
searching was also used by Arya and Mount [Ary00], who carsid approxi-
mate range queries on a set of points. The paranaegenot used by our query
algorithm—the algorithm still visits only nodes whose bding boxes are inter-
sected byQ—Dbut it is only used in the analysis. (So perhaps approximaige
searching is a slight misnomer.)

Our results. We describe a new, simple algorithm to construct a box-trea o
set of boxes in 3D. This algorithm generalizes the 2D kdrirstktree described
by Agarwal et al. [Aga01BGHH] to 3D, with one additional crucial twist: We
partition the input boxes into three subsets, accordin@p¢octrientation of their
longest edge, and construct separate box-trees for thiesetsuthese subtrees are
then combined to form the final tree. Our main contributioa imther involved
analysis of the worst-case query time of this box-tree ingb#ing described
above, showing it is polylogarithmic. More precisely, wewe that the number
of visited nodes i©)(1 (4 + \) log* n + k), where) is a constant depending on
the scene parameters. Typicallywill only be large if the input contains many
flat ‘plates’ that are very close together—see section 5dt.details. Note that
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the choice ot determines a trade-off between the terms in the bound: ampes
small will cause a large factor in the first term, Butwill be close tok. On the
other hand, choosingbig keeps the first term down, bkt might grow toO(n).

In any case, sinceis only a parameter in the analysis and not for the algorithm,
the bound on the query time will be the lowest bound over adlsiile values of

¢; in other words:O (ming<e<1 {2 (2 + ) log* n + kc}).

This result should be compared with the results for appratémange search-
ing in a set of points in 3-space. Here, the best result thest bexes as bounding
volumes is by Dickersonret al. [Dic00], who show that the query time in a so-
calledlongest-side-first kd-treis O(ming<c<1{($)? log®n + k.}). Our result is
more general than this, as we store boxes instead of poidttharbounds we get
are only slightly worse.

We have also designed a variant of the box-tree, where anantede uses
a different type of bounding volume: instead of a bounding,libcan use a
donut-like shape, namely the difference of two boxes. This imspired by Arya
and Mount [Ary00], who show that a similar structure for pgsin-they call it
BBD-tree—outperforms kd-trees in the worst case: the tioreapproximate
range queries in 3D in a BBD-tree @3(ming<c<1{logn + ()% + kc}). (The
same result can be obtained using BAR-trees [Dun99, Dun99®AR-trees
use convex, but not necessarily axis-parallel, boundingmes whose facets
have a bounded number of different orientations.) In ouecassimilar im-
provement is possible: oBBD-interval treehas a worst-case query time of
O(ming<c<i{log’ n + 2 log” n + (1)%logn + k.}). However, despite the fact
that the theoretical asymptotic bounds of the BBD-intetveé are better than
those of the kd-interval tree, we will only describe thedath this article. There
are two reasons for this. First, the analysis of the kd-uatetree will already
demonstrate all of the main ideas, and thus everything winigit inspire future
research. The BBD-interval tree has little to add: it corekithe ideas described
in this article with the principles of the BBD-tree, but itkess many pages of
tedious analysis to describe and analyse how we can get taigsdsf the BBD-
interval tree right. Second, the details being much morepexithan those of
the kd-interval tree, the BBD-interval tree is probablyatelely cumbersome to
implement and will have significantly higher hidden consdan the asymptotic
bounds. For this reason, we think that the kd-interval tseaare likely to be the
structure of choice in practice. Therefore, we will only ciélse the latter in this
article. The details of the BBD-interval tree can be founthia appendix of the
technical report version of this article [Hav02a].

Finally, in this article we extend our results to constamtaplexity query
ranges of arbitrary shape, showing that the time for appnase queries with such
ranges i€)(ming<.<1{(\/e?) log* n+ k.}) in our LSF-interval tree—in a BBD-
interval tree, this would b&(ming«.<1{(log® n + Alog®n)/e* + k.}). Similar
extensions were given for the case of point data by Dickersoal. [Dic0O0] and
by Arya and Mount [Ary00], who achieved query times®@f(log® n)/e® + k)
andO(logn + (1)® + k), respectively. Note that the dependencyeain our
bounds is better by a factor @(%); only for convex ranges they were able to
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prove the dependency we get for general ranges. Our prduiitpee also applies
to their structures, which implies an improvement of theiexy time by a factor
of O(%) for non-convex ranges.

5.2 The LSF-interval tree

In this section we first describe how to construct a kd-irdaetree with longest-
side-first splitting, or LSF-interval tree for short, for at®f boxes in3-space.
After that we analyse its performance for approximate rangies.

5.2.1 The construction

Our three-dimensional LSF-interval tree is a generabisatf the two-dimen-
sional kd-interval tree with longest-side-first splittiag described by Agarwal
et al. [Aga01BGHH]. In fact, the two-dimensional substructuresour three-
dimensional structure are basically their two-dimensistractures.

Our construction algorithm takes as input a set of 3-dinweradiaxis-parallel
boxes and their joint bounding box. The algorithm then wddgs-down, re-
cursively constructing subtrees on subsets of the input generic step of the
construction, we have as input a $£bf 3-dimensional axis-parallel boxes and a
defining regionk. The construction is started with the full input set as ingoud
the bounding box of the entire scene as defining region. Inetbersive steps, the
defining regions can be axis-parallel boxes, rectangles,degments, or points.
Each input box € S will intersect R; more precisely, the defining regions will
always be such that if gf?) denotes the affine hull &, thenb N aff(R) C R.

If the defining regionR is d-dimensional, for somé € {0, 1,2, 3}, then we call
the subtree storing a d-LSF-interval treeand we call its root &-node

We will now describe an algorithm to construcid SF-interval tree for a set
S of input boxes and a defining regidd The algorithm produces a tree whose
nodes have degree at most nine; conversion to a binary treeasily be done
and does not affect the asymptotic bounds.

We proceed as follows:

1. We create a root node storing the bounding boXv/) of the boxes inS.

2. For each of the six directionse, —z, +y, —y, +z, and—z we take the box
in S extending farthest in that direction. Each of these at mgdiaxes is
stored in a separate leaf, callegority leaf, immediately below the root
nodev. Let .S’ denote the set of remaining boxes. Assusfés non-empty;
otherwise we are done.

3. If d = 0, we recursively build &-LSF-interval tree forS’ using the point
R as defining region, and we make the root of this tree a child. ofin
fact, ford = 0, building a cs-priority-box-tree [Aga01BGHH] could make
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a better choice, but in our analysis the better performahaecs-priority-

box-tree would be overshadowed by other terms. In the aisghyssented
in this paper, we only need the priority leaves, and the ivi®f boxes
among the children does not matter.)

Otherwise, ifd > 0, lete be alongest edge dt, wheree = Rif Risaline
segment. Leb be a plane orthogonal to Defineh~ to be the halfspace on
one side ofh, andh™ to be the halfspace on the other sidéioDefineS—

to be the subset of boxes # lying completely inh—, S to be the subset
of boxes inS’ lying completely ink™, and S to be the subset of boxes
intersectingh. We choosé: such thafS—| < [S’|/2 and|S™| < |S7|/2.
We then recursively construct three subtrees whose roctsne children
of the root node:

e The subsef~ is stored in al-LSF-interval tree withRN A~ as defin-
ing region.

e The subsefT is stored in al-LSF-interval tree withR N~ T as defin-
ing region.

e The subsef* is stored in &d — 1)-LSF-interval tree withR N h as
defining region.

We could start the construction with the entire input. Setnd any boxk com-
pletely containingS as defining region. To achieve good performance, however,
we first need to apply one simple but crucial step: we disdieito three ‘ori-
ented’ subsets,, S,, andS., whereS,, S, and S, contain all boxes whose
longest edges are parallel to theaxis, y-axis andz-axis, respectively, with ties
broken arbitrarily. We then build an LSF-interval tree fach of these three sub-
sets separately, and combine them at the top level. For ddlch subsets, we say
that theprimary axisis the axis that corresponds to the orientation of the longes
edges of the boxes in the set; the other axes are cadleghdary axes

5.2.2 Analysis for box-intersection queries

We will analyse the query time in 3-dimensional LSF-inténvaes for a box-
intersection query in the subtree constructedSgr The analysis fol5, and.S,
is similar; therefore, the asymptotic bounds we obtain liofdhe entire tree as
well. Recall that a query with a rangg visits all nodes’ whose bounding box
b(v) intersects). In the analysis, however, we work with a slightly extended
rangeQ)., and we will charge the visiting of some of the nodes to ‘appnate
answers’, that is, to input boxes intersectipg

In the analysis we will use the following notation:

Q: the query range;

w = w(Q): the length of the longest edge of the query range;
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e > 0: the factor determining the size of the extended query rainggmplify the
formulae we assume thak 1, although the analysis can easily be adapted
to values greater thah Our analysis holds for any < ¢ < 1. Sincee
is only used in the analysis and not by the algorithm, thisliespthat the
actual query time is bounded by the minimum ovekallith 0 < e < 1.

Q.: theextended query rangeavhich consists of) and all points within a dis-
tanceew from @ in the L,-metric;

ke: the number of input boxes intersecting the extended qaewyaQ). ; by k. (7)
we will denote the number of input boxes in a subtfethat intersect)..

We also use a parameter that describes certain properties distribution of the
input boxes over the space.

A > 1: theslicing numberof S, defined as follows. Let the slicing numbkgs
of S with respect to a cub€’ be the maximum number of input boxes
that intersect four parallel edges ©6f then the overall slicing number
is the maximum value oA~ over all possible cube§'. Note that a box
also intersects an edge if it fully contains that edge. Hends also an
upper bound on thstabbing numbes of S, which is defined as the largest
number of input boxes with a non-empty common intersection.

At the end of this section, we will show that if the input catsiof a set of
pipes with small stabbing number, together with a set ottty boxes with low
density, the complete input set will have low slicing number

We will do the analysis bottom-up, first analysing the quangetin 1-dimen-
sional subtrees, then in 2-dimensional subtrees, thendim@&nsional subtrees.
We will denote the subtree we are analyzing By and its defining region by
R(T). The subtree rooted at a nodés denoted by7,,. Sometimes we will speak
of the defining regio®(») of a nodev, which is simply the defining regioR(7,,)
of its subtree.

Before we proceed we state a lemma that we will need at vadocasions.

Lemmab5.2.1 Let 7 be ad-dimensional LSF-interval-tree and &t be a k-
dimensional cube, with < k¥ < d < 3. Thenthere are Onl@(logk_l n) d-nodes
in 7 whose defining regions are disjoint and intersect oppoaitets ofC'.

Proof: Thed-nodes in ad-dimensional LSF-interval tree basically formda
dimensional longest-side-first kd-tree. Hence, the lemsria fact an easy gen-
eralization of Lemma 3.2 from Duncaet al. [Dic0O0] (the hypercube stabbing
lemma). For completeness we give a proof, which closelyfadl the proof of
Duncanet al.

Let h be the height off . SupposeX is a set of defining regions @fnodes in
7T that are disjoint and intersect at least one pair of oppésitets ofC'. We will
prove that for any such sék| < 2%(h + 1)*~1. Since the height of the tree is
O(logn), this means thak must have siz€(log" ' n).
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For all d-nodesv in 7, letl(v) be the height of the subtreg rooted atv.
Let p(v) be the number of pairs of opposite facets’bintersected byR(v). Let
s(v) be the number of ‘single’ facets 6f intersected, that is, facets that intersect
R(v), while their opposites do not interseB{v). For each node in 7, we
defineX (v) as the set of regionB(u) in 7, that are inX. For allp > 0 and
s, 1 = —1, letx(p, s,1) be the maximum size oX (v) over all nodes in 7 with
p(v) = p, s(v) = sandi(v) < I (if there are no such nodes(p, s, 1) = 0). First
note thatz(p, s,1) = 0 for p = 0, regardless of and!: if p(v) = 0, thenR(v)
does not intersect opposite facets(dfand neither does any of its descendants,
henceX (v) must be empty. Furthermore, if = —1 and/orl = —1, we have
z(p, s,1) = 0 as well (nodew with s(v) < 0 orl(r) < 0 do not exist). We claim
that forp > 1 ands, ! > 0 we have:

1

x(p,s,l —1)
2-z(p—1,s+1,1-1)
xz(p,s,l —1)+z(p,s—1,1—1)

x(p, s,1) < max

To see this, examine aregid{v) withp(v) = p > 1, s(v) = sandi(v) = I. Let

¢ be the length of the sides 6f and assume without loss of generality thigi/)

is cut into twod-dimensional subregion8(v;) and R(v2) by a plane orthogonal
to the xz-axis. Recall that, as a result of the longest-side-firstimytrule used

in the construction of the tree, theaxis must be the one that is parallel to the
longest edges aRk(v). SinceR(v) intersects at least one pair of opposite facets
of C, its longest side must have length at leasTherefore, the size aR(v) in

the z-dimension must be at least otherwise this cutting plane could not have
been chosen. Therefore, if the plane alitsR(v) does not fit between the facets
of C that are parallel to the cut, 99(v) must intersect at least one of these facets.
We can now boundlX (v)| as follows.

e If v has children; andwvs, but R(v) is in X itself, then none of its decen-
dants can be, since the regionsXnare all disjoint. Thereford X (v1)| =
| X (v2)| =0and| X (v)| = 1. Also, if R(v) is not cut,| X (v)| < 1.

e If R(v) is cut by a plane that does not intersétt we getp(v1) = p,
s(r1) = s, p(r2) = 0, ands(v2) = 0 (or the other way around, exchanging
v1 andw), and thereforéX (v)| = | X (11)| + | X (12)] < z(p, s, 1 — 1) +
2(0,0,1 — 1) = z(p, s,1 — 1).

e If R(v) is cut by a plane that interseafs, and both facets of' that are
parallel to the cutting plane are intersectediby ), then the cut separates
these facets and we ge1) = p(12) =p—1,s(v1) = s(r2) = s+ 1and
therefore| X (v)| < 2-z(p—1,s+1,1—1).

e If R(v) is cut by a plane that interseafs and only one of the facets of
C that are parallel to the cutting plane are intersectedify), we get
p(v1) = p(va) = p, s(r1) = s, ands(rz) = s — 1 (or the other way
around), and thereforeX (v)| < z(p,s,l — 1) + x2(p,s — 1,1 — 1).
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Figure 5.2: Two planes containing the line segmR(l') intersectq)..

Sincez(p, s,1) = max(| X (v)|), the claim follows.

By induction it is now easy to show thafp, s, 1) < 2P(I + 1)P**~1. Notice
that the rootv of 7 hasp(v) + s(v) < k, and therefore|X| = |X(v)| <
z(p(v),s(v),h) < 2F(h + 1)F 1L, O

1-dimensional subtrees

In a 1-dimensional subtreg, the defining regiom?(7) is a line segment that
intersects all input boxes storedTh The worst-case query time ih depends
on the relation ofR(7") to the query range. In particular, we distinguish three
cases, depending on how many of the two axis-parallel pleoe&iningR(7)
intersect))..

Case 1: Two planes containing?(7) intersect@.. This case is illustrated in
Fig. 5.2. Parts (a) and (b) of the figure correspond to paint (e lemma below,
part (c) to part (ii).

Lemma 5.2.2 Let7 be a 1-LSF-interval tree storing boxes. Suppose we query
7 with a box@ such that both axis-parallel planes containiRg7 ) intersect()..

(i) If the axis-parallel projection of). onto the line containind?(7") contains
at least one endpoint d®(7), we visitO(k. (7)) nodes.

(i) Otherwise, we visiD(logn + k(7)) nodes.

Proof: Since both axis-parallel planes containiR¢7) intersect?)., we know
that R(7) itself must intersect).. Hence, an (input or bounding) béxstored

in 7 intersectsy). if and only if b N R(7) intersectx). N R(T"). We can there-
fore analyse the query time in this case as if the situatiorewempletely 1-
dimensional, that is, as if were a 1-tree storing segments on a line, which is
gueried with a segment on the same line. An analysis of thée,qgaroving the
lemma, can be found in the paper by Agarvedlal. [Aga01BGHH]. O
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Figure 5.3: One plane containing the line segmR() intersects)..

Case 2: One plane containing?(7) intersects@.. This case is illustrated in
Fig. 5.3. Part (a) of the figure corresponds to part (i) in #marha below, parts
(b) and (c) to part (ii).

Lemma 5.2.3 Let7 be a 1-LSF-interval tree storing boxes with stabbing num-
bero. Suppose we quefl with a box@ such that one axis-parallel plane con-
taining R(7) intersectsy..

(i) If the axis-parallel projection of). onto the line containind?(7") contains
R(T) completely, then we visi®(k. (7)) nodes.

(i) Otherwise, we visiO(logn + o + k(7)) nodes.

Proof: Let g be the axis-parallel plane containidt(7) and intersecting)..
For any (input or bounding) bok stored in7, we know thath intersects). if
and only ifb N g intersectL). N g. We can therefore analyse the query time in
this case as if the situation were completely 2-dimensijahal is, as if7 were

a 1-tree storing rectangles in the plane, which is queried airectangle in the
plane. An analysis of this case, proving the lemma, can bedauthe paper by
Agarwal et al.[Aga01BGHH]. |

Case 3: No plane containingR(7) intersects@.. In the analysis of this case
we will take into account how much of the query range is ‘withéach’ of the
tree. More precisely, consider the intersectiorRg¥") with the projection of).
on the line containind?(7"). We denote by’ (7) the length of this intersection
divided by the length of the longest edge(@see Fig. 5.4. In the next subsec-
tion we will sum the bound for several different disjoint snefes7, and then we
will use the fact that thei€'o (7)-values sum up to at most+ 2e.

Figure 5.4 illustrates the cases that arise in the next lemiitlapart (a) of the
figure corresponding to part (i) of the lemma, and parts (l)(@hcorresponding
to part (ii).

Lemma 5.2.4 Let7 be a 1-LSF-interval tree storing boxes with slicing number
. Suppose we quefl with a box@ such that no axis-parallel plane containing
R(T) intersectsy..
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Figure 5.4: No plane containing the line segma&(7) intersectsy)..

R = R(T)
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Figure 5.5: a. A node’s bounding bék) such thab(v) N R(T) ¢ R. R(v)isa
line segment (black) that contaips— b. A node’s bounding bok(») such that
b(v)NR(T) ¢ R. R(v) is a point (black dot). — c. A node’s bounding b )
suchthab(v)N R(7) C R.

(i) If the axis-parallel projection of). onto the line containind?(7") contains
R(T) completely, then we visit(7) - O(2) + O(\) nodes.

(ii) Otherwise, we visiO(logn + %) nodes.

Proof: Since the maximum degree of each node is nine, the numbesitédi
leaf nodes is at most nine times the number of visited interodes. Hence, we
can restrict our attention to bounding the latter numbet.edenote the axis-
parallel projection of). onto the line containing(7), and letR := Q. N R(T),
i.e., in Fig. 5.4,R is the part ofR(7) indicated by the stick measurirg, (7 )w.
Let v be a visited internal node df, and letb(v) be its bounding box. We
distinguish two casesb(v) N R(7) C R (Fig. 5.5¢), andb(v) N R(7) ¢ R
(Fig. 5.5a and 5.5b). We claim that the number of nodes to hwtfie first case
applies isCq(7T) - O(2) + O(A), and that the number of nodes to which the
second case applies@q o + log n), whereo is the stabbing number of the boxes
stored in the tree. Note that in part (i) of the lemma the sd@ase cannot arise.
Together with the fact that > o andCq(7) < 1 + 2¢, this means that proving
the claim above will establish the lemma.
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a) b)

Figure 5.6: a. A shield on a defining region parallel to thenamy axis. — b.
Arrangement of cubes intersected by shields on a defininigmguarallel to a
secondary axis.

We first bound the number of nodes for whiglv) N R(T) ¢ R, since this is
the easier case. Letbe such a node. Sinéév) N R(7") cannot be disjoint from
R—otherwiseb(r) would not intersecf), (not to mentionR) andx would not be
visited—it follows thath(») must contain an endpoiptof R. Now there are two
possibilities.

One is thatR(v), the defining region of, is a line segment containingy(see
Fig. 5.5a). Since the defining regions of 1-nodes at a fixed lef/the tree are
disjoint and the depth of the tree@log n), there are only)(log n) such nodes.

The other possibility is thak(v) is a point—see Fig. 5.5b—then all boxes
stored in7 (v) must contain the poiR(v). But then the priority leaf immediately
belowwv storing the box extending farthest into the directiopahust contairp.
We charge the visit of to this leaf. Since a leaf gets charged only from its parent,
and there are at mostinput boxes containing any given point, there are at most
20 such nodes.

Thus we find a bound dP(log n + o) = O(logn + ) for the case 0b(v) N
R(T) ¢ R.

Now consider the nodessuch thab(v) N R(7) C R. We shall charge the
visit of v to a certain priority leaf directly below it, calledshield Each shield
will be charged at most once, namely from its parent. Boumdire maximum
number of shields will then prove this part of the claim.

We start by defining the shields. Recall that the primary akiS,—the axis
parallel to the longest edges of the boxesSin—is the z-axis. Since the two
remaining (secondary) axes play equivalent roles, we caumnaes that the-axis
is not parallel taR(7 ). Let us also assume w.l.0.g. that thheoordinate ofR(7)
is smaller than the smallegtcoordinate of) (i.e. R(7) lies diagonally unde®,
like in Fig. 5.6). Ashieldis now defined as a priority leaf whose corresponding
input boxb extends into the positivg-direction fromR(7") over a distance of at
leastew. That is, if ymax(b) is the maximum y-coordinate éfandy(R(7)) is
they-coordinate ofR(7), thenb is a shield ifymax(b) — y(R(7T)) > ew.

We now argue that each visited internal nedir which it holds thab(v) N
R(T) C R, has at least one shield as a child. Indeed, since none ofvhe t
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axis-parallel planes containin®(7) intersects., the y-distance ofR(7) and
@ must be at leastw. This means that the bounding boxmwoMust extend over
a distance at leastv into they-direction fromR(7), otherwiser would not be
visited. Hence, the input box extending farthest intogkairection, extends that
far; the priority leaf directly below storing this box is a shield.

It remains to bound the number of shields. We consider twoasgs.

The first subcase is thd@(7) is parallel to thez-axis, as in Fig. 5.6a. In this
case the length of any box ifi, along R(7) is at least its length in any other
direction. In particular, a shield will cover a portion &f of length at leastw.
Since no point is contained in more thaninput boxes, there can be at most
o - length R)/(ew) shields in this case. Because lerdh = Co(7) - w by
definition, the number of shields is bounded$y Cq (7).

The second subcase is tha{7") is parallel to thez-axis—see Fig. 5.6b. In
this case, a shield must extend over a distance of atdeaspwards fromR(7)
and over a distance of at least/2 into either the positive or negatiwedirection
from R(7). Now imagine a line-up of2C(7')] cubes of siz&w whose lower
right edges together cové}’s projection onR (7). Add a copy of this line-up
shifted right over a distance efv/2, so that in the second line-up, the loweft
edges together covél’s projection—see Fig. 5.6b. Since a shield extends away
from R(7) in both orthogonal directions over a distance greater tharsize of
the cubes in the line-up, it must intersect the four edgealighto R(7) of at
least one of these cubes. Since the slicing number of the byxes is at mosk,
there can be at mo8i\[2C,(7)] < 2A + 4Cq(7)2 shields in this case.

Using A > o, we conclude that the bounds for both subcases are within
O(X) 4+ Co(T) - O(2), which finishes the proof of our claim. O

2-dimensional subtrees

Let7 be a 2-dimensional subtree. As before, it will be useful ke fato account
how much of the query range’s boundary is ‘within reach’ of thee. More
precisely, consider the edges @f’s projection on the plane containing(7 ).
Denote byC(7) the sum of the lengths of the intersections of these edgés wit
R(T), divided byw, the length of the longest edge of the query range.

We distinguish two cases, depending on whether or not theepiantaining
the 2-dimensional defining regidR(7) intersectsy)..

Case 1: The plane containingR(7) intersectsQ.. This case is illustrated in
Fig. 5.7. Parts (a) and (b) of the figure correspond to case e lemma below,
part (c) to case (ii), and part (d) to case (iii).

Lemma 5.2.5 Let7 be a 2-LSF-interval tree storing boxes with stabbing num-
bero. Suppose we query with a box@ such that the plane containing(7)
intersects the extended query rar@g Let(@, denote the intersection 6f. with
the plane containind?(7).
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Figure 5.7: The plane containing the rectanBlg") intersects)..

(i) If at most one edge @, intersectsk(7), then we visiO(k. (7)) nodes.

(ii) If two opposite edges, and no other edgeshfintersectR(7), then we
visit O(log® n + ke(T)) + Cq(T) - O(+log” n) nodes.

(iii) Otherwise we visiD(2 log>n + o logn + k(7)) nodes.

Proof: First we observe that the longest edgethfhas length(1 + 2¢)w and
that its shortest edge has length at lexst. Hence, the aspect ratio ¢f. and
the aspect ratio af). are at most + 1/(2¢).

SinceR(7) intersects)., we know for any (input or bounding) bdxstored
in 7 that b intersectsq. if and only if b N R(7T) intersectsQ). N R(T). We
can therefore analyse the query time in this case as if thatgh were com-
pletely 2-dimensional, that is, as I were a 2-tree storing rectangles in the
plane, which is queried witl),. Since@, has aspect ratio at most+ 1/(2¢),
parts (i) and (iii) of the lemma now immediately follow frofne results by Agar-
wal et al.[Aga01BGHH].

For part (ii), we need a bit more refined analysis. ConsiderctilectionV
of all visited 2-node% in 7 whose defining regiof(») intersects two opposite
edges ofQ_, and no other edges. This collection forms a subg@@H) of 7,
which is a tree rooted at the root 8. We shall first bound the number of nodes
in N, and then the number of visited descendants.

To bound the number of nodes i, we coverQ, with at most[a| squares
with side length(1 + 2¢)w/a, wherea < 1+1/(2¢) is the aspect ratio ap, (see
Fig 5.8a). From a bound on the number of nodes intersectiegetbquares, we
can derive a bound on the number of noded’ias follows. At mosteCq(7) +1
of the squares interseB{(7T ). Now consideranode € N. SinceR(v) intersects
two opposite sides o), it intersects two opposite sides of at least one of the
aCq(T)+1 squares used to cover. N R(T ). Observe that the leaves@f N )—
that is, the nodes that have no childremNinthey need not be leaves #t—have
disjoint defining regions. Lemma 5.2.1 implies that the nentdf such leaves is
O(logn) + Cq(T) - O(alogn). If we include their ancestors in the count, we
obtain a bound of)(log” 1) + C (7)) - O log® n) on the number of nodes iN.

It remains to bound the number of descendants of the nod¥s ifhese are
organized into subtrees whose roots are children of nodadsand are not inV
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a)

O

R(T)

R(pa(n)) ~ R(pa(n)) = R(pa(w))
(case 2) (case 3a) (case 3b)

Figure 5.8: (For ease of visualization, we changed the taiem of R(7) as
compared to Fig. 5.7.) a. Coverirg, with [o] squares. — by is a 1-node
whose defining region cuts a 2-node intersecting opposigedfQ., that is:
opposite facets of)..

themselves. Consider such a root ngdelLet pa(i) € N be the parent ofi.
There are three cases.

e The first case is that is a 2-node. In this cas®(y) intersects at most one
edge ofQ._, as in part (i) of the lemma; if it would intersect two oppesit
edges it would be inV, and the case where a vertex@f lies in R(y)
cannot occur when we are handling part (i) of the lemma. ©ted humber
of visited nodes of, is O(k.(7,,)) by part (i) of the lemma. Summing over
all nodesu thus gives us a total bound 6f(k. (7)) for these subtrees.

e The second case is that the root is a 1-ned&dR(1:) cutsR(pa(u)) such
thatpa(u) has two children invV—see Fig. 5.8b case 2.

The number of nodes of degree twoGiiN) is no more than the number
of leaves inG(NN), so there can be at maStlogn) + Cq(7) - O(alogn)
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a b c d

Figure 5.9: The plane containing the rectanBIl&) is disjoint from@)..

such nodeg. Lemma 5.2.2(ii) states that the query time in each such tree
is O(logn + k<(7,,)), so the total query time in these treegliflog® n +
k(T)) + Co(T) - O(alog?® n).

e Thethird case is that the root is a 1-nQdevhereR(u) cutsR(pa(u)) such
thatpa(u) has at most one child iv—see Fig. 5.8b case 3a and case 3b.

Now R(u) must lie completely inside the projection @f. onto the line
containingR(u). Lemma 5.2.2(i) (for case 3a) and Lemma 5.2.3(i) (for
case 3b) state that the query time in each tree rooted at snda is
O(ke(7,,)). Since the number of such nodes is asymptotically bounded by
the size ofV, the total query time in these 1-treesi¢log® n + k. (7)) +
Co(T) - O(alog®n).

In total, we find a bound 00O(log®n + k.(T)) + Co(T) - O(alog®n). With
a < 1+ 1/(2¢), this proves part (i) of the lemma. O

Case 2: The plane containing?(7") does not intersect).. This case is illus-
trated in Fig. 5.9. Part (a) of the figure corresponds to aagethe lemma below,
parts (b) and (c) to case (ii), and part (d) to case (iii).

Lemma 5.2.6 Let7 be a 2-LSF-interval tree storing boxes with slicing number
A. Suppose we quefy with a box@ such that the plane containing(7") does

not intersect).. LetQ, denote the axis-parallel projection 6f. onto the plane
containingR (7).

(i) If Q. containsR(7) completely, then we visi?(k. (7)) nodes.

(i) If R(T) intersects at least one edge but no vertexQf then we visit
O(Mlog®n + ke(T)) + Cq(T) - O(2 log® n) nodes.

(iii) Otherwise we VisitO(2 log® n + k(7)) nodes.

Proof: (i) Without loss of generality, suppo$&7) is horizontal and lies below
Q. Then for every node visited in7, the subtree rooted at must contain an
input box which raises high enough to inters@ctin particular, there is a priority
leaf immediately below that stores an input box intersectiflg We can charge
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Figure 5.10: Covering), \ Q with squares.

the visit tov to that priority leaf. Since there are at mads{7") such priority
leaves and each of them is charged at most once, the bouadoll

(ii) We can distinguish two types of visited nodes.

The first type of nodes are 2-nodes whose defining regionsolieptetely
inside. and descendants of such nodes. Here a similar argumentraspndof
of part (i) applies: any such node has a priority leaf belcthat intersects)., so
there are onlyY (k. (7)) such nodes.

The second type of nodes are the remaining ones.NLée the collection
of all remaining visited 2-nodes. For any node= N, we know thatR(v) in-
tersects the complement &f. as well as, the projection ofQ onto the plane
containingR(7).

To bound the number of nodesMwe coverQ, \ @ using at most([ 1] +1)
squares with side lengihw, which are contained i), \ Q—see Fig. 5.10. For
any nodevr € N we have thafR(v) intersects two opposite edges of at least one
of these squares. Sind&(v) C R(7) and R(7) does not contain a vertex of
Q., we can restrict our attention to squares that are used ter ¢ao opposite
‘sides’ of Q. \ @Q and that intersecR(7). Hence, the number of squares we
have to consider is at mo8fCq(7)/¢]. As before, we observe that the nodes
of N form a subgrapl§(N) of 7, which is a tree whose leaves have disjoint
defining regions. Hence, by Lemma5.2.1 there@flog n)+Cq(7)-O(L logn)
leaves inG(N). If we include their ancestors in the count, we find a bound of
O(log®n) + Cq(T) - O(L log® n) on the number of nodes iN.

It remains to bound the number of descendants of nod@é.iThe descen-
dants are organized into subtrees whose roots are childireodes inNV and are
notin N themselves. Consider such a root nedéetpa(u) € N be the parent
of . There are three cases.

e The first case is that is a 2-node. But thep must be of the first type—
its defining region must lie completely insidg —so we already counted
these nodes and their descendants earlier.
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e The second case is thatis a 1-node and?(u:) cuts R(pa(y)) in such a
way thatpa(u) has two children inv.

The analysis for this case is done in the same way as in thé grbemma
5.2.5(ii), now referring to Lemma 5.2.3 instead of Lemma3.2

Since the number of nodes of degree tw@;i{iV) is at most its number of
leaves, there can be at mastlog n) + Cq(7) - O(L logn) such nodeg.
Lemma 5.2.3(ii) states that the query time in each such sgréxlogn +
o + k.(7,)), so the total query time in these trees is

O(log®n + ologn + k(T)) + Co(T) - O (1 log®n + g logn) .
€ €

(Note that thek. terms always add up t0(k.(7)).)

e The remaining case is thatis a 1-node anga(p) is cut by R(x) such that
it has at most one child itvV.

Now R(u) lies completely inside the projection ¢f. onto the line con-
taining R(u). Lemma 5.2.4(i) and Lemma 5.2.3(i) state that the query time
in such trees i©)(\) + Cq(7,) - O(2) andO(k.(7,,)), respectively. The
number of nodes to which this applies is clearly bounded byntimber of
nodes inN, which isO(log® n) + Cq(T) - oL log? n). Hence, the total
guery time in these 1-trees is

O(Nlog?n + ko(T)) + Co(T) - O (%log2n) +3 Co(T) -0 (%) 7

where the sum is over all 1-nodgsthat are a child of a node iv and
are such thak(u) lies completely inside the projection §f. onto the line
containingR (). Note that each point of an edge @f lies in O(logn)
defining regions of 2-nodes (one node on each level}, so , Co(7,) =
O(logn)Cq(T). The same bound holds if we sum over the 1-nqdésat
are children of nodes iV. Hence, we find a total query time for this case
of O(Alog® n + ke(T)) + Cq(T) - O(2 log® n).

Putting the three cases together, and using )\, we find an overall bound of
O\ log?n 4 k(T)) + Co(T) - O(%log2 n).

(iii) We can distinguish three types of visited nodes: the twodyhat were
also considered in the proof of part (ii), and a third typamely 2-nodes contain-
ing a corner of and their descendant 1-nodes and 0-nodes.

The number of nodes of the first two types can be bounded asg iprtof of
part (ii). Using thalCq (7)) < 4(1 + 2¢), we geta bound af(2 log? n + k(7))
for these types. As for the third type, we note that there(feg n) 2-nodes
containing a corner af). If 1 is a 1-node that is a child of such a node, then the
query time in7,, is O(logn + o + kc(7)) or O(logn + 2) by Lemma 5.2.3 or
Lemma 5.2.4, respectively, so we ha®éog” n + 2 log n + k(7)) nodes of the
third type. O
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>2ew

..... - ‘..‘m.-‘ Qs

Figure 5.11: Covering). with O((2)?) cubes.

3-dimensional trees
Finally we can prove our main result.

Theorem 5.2.7 Let T be a 3-LSF-interval tree storing boxes with slicing num-
ber \. Then a query i with a boxQ will visit O(ming<e<1{2 (2 + ) log* n+
ke}) nodes, wheré, is the number of boxes intersecting the extended rahge

Proof: Fix an arbitrary0 < ¢ < 1. As observed before, it suffices to bound the
number of visited internal nodes. These can be partitiontxfour categories,
namely 3-nodes such thatR(v) intersects:

(i) at most one facet af).,

(i) more than one facet a., but none of its edges,
(iii) at least one edge af., but none of its vertices,
(iv) atleast one vertex af.,

where each category also includes the descendant 2-nedesles and 0-nodes
of the 3-nodes. We will now treat these cases one by one.

(i) 3-Nodesv such thatR(v) intersects at most one facet @k, plus their
descendant 2-nodes, 1-nodes, and 0-nodes. such node must have a priority
leaf directly below it that stores a box intersectiig Hence, the total number of
nodes in this category 9(k.).

(i) 3-Nodesv such thatR(v) intersects more than one facet@f but none
of its edges, plus their descendant 2-nodes, 1-nodes, amodiés.

Let N be the collection of 3-nodes in this category, andielV) be the sub-
graph of7 formed by these node§(N) is a forest of trees.

To bound the number of nodes M, we coverQ, by O((1)?) cubes that are
contained inQ). and are as big as the smallest edge® of— see Fig. 5.11. Any
node in N must intersect opposite facets of at least one of these cldsEause
the leaves off(IV) have disjoint defining regions, their number is bounded by
O((2)? log®n) by Lemma 5.2.1. The total number of nodeshhis therefore

bounded bYO((2)? log® n).
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R(pa(p)) (case b)
R(pa(p)) (case a)

Figure 5.12: 3d-nodes that intersect more than one facé pbut none of its
edges.

It remains to bound the number of descendant 2-nodes, 1snadd 0-nodes
of the nodes inV. These are organized in subtrees whose roots are children of
nodes inN. Let u be such a root and lgta(i) € N be its parent. There are two
cases, as llustrated in Fig. 5.12.

e R(u) cutsR(pa(u)) in such a way thapa(u) has two children inv—see
case (a) in Fig. 5.12.

Since the number of nodes of degree twg iV ) is bounded by the number
of leaves inV, there are only((1)? log? n) such roots. Lemma 5.2.5(ii)
states that the query time in each subtree rooted at sucteds@dog® n+
ke(T,,)) + Co(T,,) - O(Xlog? n), so the total query time in these subtrees
is

1 1
O (6—210g4n+k5) +;C’Q(’];) ) <Elog2n) ,

where the sum is over all 2-nodgsn the current category such th&{7,,)
cuts opposite facets @j..

We proceed to bouni | C(7,,). To simplify the discussion, let's assume
that the defining region&(;:) and R(pa(y)) cut the top and bottom facet
of Q., asin Fig. 5.12, case a. Then for each npaee have thaCy (7, )w

is the length ofR(1:) as seen from above. Note th&fpa(u)) has height
at least2ew, because the height @. is at least that much. Therefore,
the length of the horizontal edges &fpa(u)) orthogonal toR(u) is at
least2ew as well, otherwise?(pa(u)) would have been cut by a horizontal
plane. Cover the top facet @§. by O((1)?) squares of side lengthw.
SinceR(pa(u)) has horizontal edges of length at leasb, it must intersect
opposite sides of at least one such squatéthis happens fom 2-nodes,
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Figure 5.13: Covering an edge @fwith O(1) cubes.

then there are at least disjoint defining regions of 3-nodes that intersect
opposite sides of. Lemma 5.2.1 tells us thatis cut byO(logn) disjoint
defining regions. Hence, the total length withirof all regionsR(u) as
seen from above i®(ew logn). Summed over all squares we find that the
total length of all regions?(2) as seen from above i9(* logn). This
implies thaty ©, Cq(7,.) = O(L1logn). It follows that the total number of

nodes for this case i9((1)? log* n + kc(T)).

e R(T) cuts R(pa(u)) such thatpa(u) has at most one child iN—see
case (b) in Fig. 5.12.

In this caseR(1:) lies completely inside the projection ¢ onto the plane
containingR(x). Lemma’s 5.2.6(i) and 5.2.5(i) state that the number of
visited nodes in each such treel$k.(7,,)), which adds up t@ (k.(7)).

In total, there are)((1)? log* n + k.) nodes in this category.

(iii) 3-Nodesv such thatR(v) intersects at least one edge®@f but does not
contain one of its vertices, plus their descendant 2-notlemdes, and 0-nodes.

In this caseR(r) must intersect an edge of ). andthe corresponding edge
e of @ (the edge with both endpoints lying at d&n,-distance ofew from e.),
otherwiser would not be visited. For each paire. of corresponding edges, we
take a set of)(1) cubes of sizew, such that each cube has an edge contained
in e and the opposite edge containeckin and such that together they cover
completely — see Fig. 5.13. LéY be the collection of 3-nodes in the current
category, and leG(N) be the subgraph of formed by these nodegi(N) is a
forest of trees.

Any 3-node inN must intersect opposite edges of a facet of at least one of
these cubes. Summing over the facets of all cubes and usmgiaes.2.1 again,
we find that there are onl@)(1 logn) leaves inG(N) and, henceQ(< log” n)
3-nodes inN in total.

The descendant 2-nodes, 1-nodes, and 0-nodes are organ@&éditrees that
are rooted at 2-nodgs with a nodepa(r) in N as parent. We distinguish two
cases, as illustrated in Fig. 5.14.
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R(pa(p)) (case bl)

R(pa(p))

(case a)

R(pa(u)) (case b2)

Figure 5.14: 3d-nodes that intersect an edg€ gfbut none of its vertices.

e For the subtrees rooted at nodesuch thatpa(u) has two children inV
(case (a) in Fig. 5.14), we can apply Lemma 5.2.5(iii) and findound
of O(% log> n + o logn + k(7)) for each subtree. Since the number of
such nodes is bounded by the number of leaves(iN ), we get a total of
O((1)?log® n + Zlog” n + k.) nodes.

e For the other subtrees, of which there a@él— log?n), we apply Lem-
mas 5.2.5(i) and (ii) (case (b1) in Fig. 5.14) and Lemma %i} (6ase (b2))
to find a total bound for all such subtrees of

Ay Ao
—1 ke 7,) - —1 .
0(6 og"n+ >+E Co(7,) O(6 og n>

Because any point in 3-space lies in at mOstog n) defining regions of
3-nodes, we hav®_ C(7,) = O((1 + 2¢)logn) and we get a bound of
O(2log" n + k).

In total, the number of nodes in this categoryil (1 + \)log* n + k).

(iv) 3-Nodesv such thatR(v) contains at least one vertex &f., plus their
descendant 2-nodes, 1-nodes and 0-nodes.

At mostO(log n) 3-nodes can contain a vertex @¢. By Lemma 5.2.6(iii)
each of them may have a 2-subtrBewith query timeO(2 log”n + k.(7)),
leading to a total oO(% log® n + k) visited nodes in this category.

Since the number of visited nodes of each category is withendaimed
bound, this proves the theorem. O

Remark 5.2.8 If the query range has bounded aspect ratio, then it can bavsho
that the number of visited nodes reduce®i@ning.<1{2 log* n + kc}).
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5.2.3 Pipes and low-density scenes

Our research is motivated by the MOLOG project [Molog], whare need to
perform collision checking in CAD models of industrial iaBations such as in
Fig. 5.1. LetS be the set of bounding boxes in the given scene. For the asalys
we assume that can be partitioned into two subseis andSp, such thatSp

is a set ofpipesand Sp forms alow-density scenfBrg97KSV, Sta98]. These
concepts are defined as follows.

Definition 5.2.9 Let b be a 3-dimensional axis-parallel box, and consider its
length inz-, y-, and z-direction. The box is called aS-pipe if the shortest
of these three lengths is at mgstimes shorter than the shortest-but-one.

Next we define the density of a scene, specialized to setsxaish¢The original
definition by van der Stappen and Overmars [Sta98] usesihatisad of cubes,
but this is equivalent up to a constant.)

Definition 5.2.10 A setB of boxes in 3-space hagnsitys if the following holds:
any cubg’ is intersected by at mostboxes fromB whose longest edge is longer
than the edge length @f.

Recall that the stabbing number of a set of boxes is definetleasnaximum
number of boxes with a non-empty intersection. Next we sht lbw-density
sets and sets of pipes with low stabbing number also have lloimg number,
which means that we can use the analysis of the previousidose

Lemmab5.2.11LetS = Sp U Sp be a set of boxes in 3-space such thatis
a set ofg-pipes with stabbing number and.Sp has density. Then the slicing
number ofS is at most(3 + 2)o + 4.

Proof: Let C be a cube of edge length Since a box that slice§' has edge
length at least, the setSp has slicing number at moét

It remains to bound the number of pipes sliciig A pipe slicingC has to
occupy a volume of at leastx ¢ x ¢/3 = ¢*/3 in the cube, unless it contains
one of the six sides of the cube completely. In the latter ctse pipe has to
contain either the top-right-back corner or the bottont-legnt corner ofC, and
since each of these corners can be contained in at smivgiut boxes, there can
be at mos®o such pipes. To bound the number of pipes in the former case, we
observe that the total volume of the intersection of the pipéh C is at most
oc3. Therefore, the total number of boxes slicing the cube is @t + 20 +
ocd/(/B) =56+ (B +2)o. O

By putting together Lemma 5.2.11 and Theorem 5.2.7, we gdbilowing corol-
lary.

Corollary 5.2.12 LetS = SpUSp be a set of boxes in 3-space such thatis a
set of3-pipes with stabbing numberand.Sp has density. There is a box-tree
for S such that the number of nodes visited by a range query witreayduoxQ
is O(ming<e<i{2 (L + A)log* n + kc}), whereX = § + (3 + 2)o and k. is the
number of boxes intersecting the extended ragge
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5.2.4 Analysis for other types of ranges

In the previous sections we assumed that the query rghigean axis-parallel
box. In this section we will generalize our results to constaomplexity ranges
of arbitrary shape. A 3D query range is said to have constamipexity if its
boundary consists of a constant number of algebraic sufates of constant
maximum degree, which are in turn bounded by a constant nuaiflmirves of
constant maximum degree. In the analysis we only need théctes thatoQ),
the boundary of, has a constant number of local extrema in any orthogonal
cross-section, which is a condition fulfilled by the constemmplexity require-
ment.

We first prove a general theorem, that states that an LSFE+aiteee with
good query complexity for approximate range queries witkescalso has good
guery complexity for approximate range queries with othepes. To this end
we define a node to bechargeableawith respect to a given range if all input boxes
stored in7, intersect that range, or if has a child with this property. Nodes for
which this is not the case ammchargeable

Theorem 5.2.13Let7 be ad-dimensional box-tree on a setwboxes, withl €
{2,3}. Suppose that, for any < ¢ < 1, a query with a boxB visits O(f(n, €))
nodes that are unchargeable with respect to the extendeqy dpox B.. Then a
query with a constant-complexity ranggvisits O(ming<c<1{(2)? " f(n, 1) +
k.}) nodes of7, wherek. is the number of objects intersecting thextended
query rangeq)..

Proof: We first prove the theorem far = 2.

Fix any0 < e < 1. We claim that we can coveélQ by O(%) squares of edge
lengthew/3, wherew is the diameter of) (as was also shown for convex ranges
by Arya and Mount [Ary00]). To see this, consider a reguldad grvhose cells
have sizerw/3. ThendQ will intersect onlyO(1) grid cells, because for any
two adjacent cells intersected by a connected portia?(pthe following holds:
either they contain a local extremum @€, or the length of the portion adQ
within the cells is at leastw/3. Since the total length a¥Q is O(w), only O(2)
grid cells can contain a portion 6K of sizeO(ew).

Now consider a query with a rangg. The number of visited nodes that are
chargeable with respect @. is clearlyO(k.). Any visited unchargeable node
must have a bounding box that intersects at least one of traasg)in the covering
of Q). To bound the number of such nodes, consider a squir¢he covering.
Define its extended square as the set of points withill.-distancee’ew/3
from s. The boundary of the extended square has edge lémngthee’)ew/3 and
intersectsd(, so even fore’ as large as 1, it is fully contained if).. Hence,
any node that is unchargeable with respeaptdas unchargeable with respect to
se for ¢ = 1. The number of nodes such thath(v) intersectss and that are
unchargeable with respecttp is O(f(n,€')). Summing over all squaresand
pluggingine’ = 1, we geta bound ad(L f(n, 1)) on the number of unchargeable
nodes.



5.3. THE BBD-INTERVAL TREE 117

Hence, the total number of visited nodes is bounde®b¥f (n, 1) + k), as
claimed.

The proof ford = 3 is similar. We start by covering@ by cubes of edge
lengthew /3, wherew is the diameter of). We claim thabQ intersectsD((1)?)
cells of a regular grid with cells of the required size. Indlegny intersected cell
must have an intersected facet, so we can bound the numbeersfacted cells by
summing the number of intersected facets ovef)a%) grid planes intersecting
Q. Sinced(Q consists of a constant number of algebraic surface patdheme
stant maximum degree, which are in turn bounded by a constember of curves
of constant maximum degree, the same must hold for the etgos of0Q with
a grid plane. Therefore, at m(ﬁ(%) facets can be intersected in each grid plane,
and it follows thatQ can be covered usin@((1)?) cubes of the required size.
From here we can follow the proof for the cate- 2. O

The analysis of the previous section shows that in all bodedsed there, the
O(k.) term on the number of visited internal nodes is caused sbiehodes with
a priority leaf as a child that stores a box intersecting ttereded query range.
Such nodes are chargeable, so Theorem 5.2.13 and Coralkaty %ogether im-
ply the following result.

Corollary 5.2.14 LetS = SpUSp be a set of boxes in 3-space such thatis a
set of3-pipes with stabbing numberand.Sp has density. There is a box-tree
for S such that the number of nodes visited by a range query withnateat-
complexity rang&) is O(ming< <1 {(\/€?) log* n+k.}), whereh = 6+(3+2)a
andk. is the number of boxes intersecting the extended rghge

Remark 5.2.15 The dependency anthat we get is better by a factor 61(%)
than what Dickersoret al.[Dic00] and Arya and Mount [Ary00] get for queries
with non-convex query ranges in point sets. Applying Thadse2.13 to their
structure, however, improves the dependency loypa factor ofO(%), leading to
the same dependency as we get.

5.3 The BBD-interval tree

The bounding-volume hierarchy of the previous section selaon the longest-
side-first kd-tree. It turns out that we can improve the rssiflwe base the
bounding-volume hierarchy on the so-called BBD-tree byaAmt al. [Ary00].
The resulting hierarchy is somewhat unorthodox, howegit, @ses non-convex
bounding volumes.

Define adonutto be the set-theoretic difference of two boxes, one beimg co
tained in the other. That is, a donut is defined#s\ R~, whereR™ and R~ are
boxes and?~ C R™. The inner boxR~ may be empty, in which case a donut
is simply a box. The inner box may also touch the boundary eftlter box, in
which case a degenerate type of donut results. It is not etidw split the outer
box, that is,R™ \ R~ should be connected. Bounding donubf a set of ob-
jects is a donuRR™ \ R~ that contains all objects and whose outer v is the
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bounding box of the set. Aonut treefor a set of objects is a bounding-volume
hierarchy that uses bounding donuts.

Like a kd-tree, the BBD-tree by Aryat al.is a tree representing a recursive
decomposition of space. Unlike in a kd-tree, however, tiygores corresponding
to the nodes of a BBD-tree are not boxes — they are donutspdtssible to con-
struct a donut tree on a set of boxes using a BBD-tree in aa@imihy as one can
construct a box-tree from a kd-tree. The main advantagets®BD-trees have a
stronger ‘packing property’ than kd-trees: whereas in gést-side-first kd-tree
there can be?(logd_l n) nodes whose regions are disjoint and intersect opposite
facets of a cube, there can be only1) such nodes in a BBD-tree [Ary00]. This
is the main reason that we can show the following result.

Theorem 5.3.1Let S be a set of boxes in 3-space with slicing numbefhere
is a donut-tree foiS' such that a query with a bag visits O(ming<.<1{log® n +
(M e)log?n + (A/€?) logn + k. }) nodes, wheré. is the number of boxes inter-
secting the extended ranggk.

This theorem can also be combined with Theorem 5.2.13 tchgdbtlowing
result:

Corollary 5.3.2 Let.S be a set of boxes in 3-space with slicing numbefhere
exists a donut-tree fof such that a query with a constant-complexity rarige
visits O(ming<.<1{(1/€?)log® n + (\/€?)log® n + k.}) nodes, wheré, is the
number of boxes intersecting the extended rajge

As mentioned in the introduction, the details of the cortdtam of the donut-
tree and the analysis of its performance are similar to tlodgbe LSF-interval
tree, but still rather technical. Therefore we omit the dieteere. The interested
reader can find them in the technical report [Hav02a] on wltigé article is
based.

5.4 Concluding remarks

We have developed a new algorithm to construct box-treesaaalyzed its per-
formance for approximate range queries when the input isvadiensity scene
combined with (almost) disjoint pipes. We proved that intsacsetting—which
was motivated by the need to perform collision checking ird3Aodels of indus-
trial installations—one can achieve polylogarithmic quémes. This is in sharp
contrast with the2(n?/3 + k) lower bound for the query time in box-trees for ar-
bitrary input proved by Agarwaét al.[Aga01BGHH]. Our bounds almost match
the best known bounds for range queries using box-treegimtith simpler case
of point data.

The assumptions we use in the analysis cannot be relaxed fuxhbbr. In
particular, we can give a lower bound construction showivag it is not possible
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to achieve polylogarithmic performance for box-trees wht@ninput is unclut-
tered [Brg97KSV] instead of having low-density, even fopegximate queries.

Our results can be used to perfosrapproximate nearest-neighbor searching,
using the techniques described for instance in Duncan&giBun99]. Thus,
for input scenes satisfying the requirements above, ajypaie nearest-neighbor
queries take time((\/e?)(log* n)(log X + log 1 + loglogn)) with our LSF-
interval-tree, 00(((1/€?) log® n + (\/€?) log® n)(log A + log L + loglogn)) in
our BBD-interval-tree. (Note that for nearest-neighbarshing, e is given as
part of the query.)

In our future work we plan to investigate the performance af-trees ex-
perimentally. We want to fine-tune our algorithm for constitng box-trees—in
particular, we want to investigate whether the use of psidaaves, which are
so convenient in the theoretical analysis, pays off in fpcaetand we want to
compare it to existing heuristics.






Chapter 6

Facility location and the
geometric minimum-diameter
spanning tree

Previously published as: Joachim Gudmundsson, Hermanwerktat, Sang-
Min Park, Chan-Su Shin and Alexander Wolff: Facility locatiand the geomet-
ric minimum-diameter spanning tree, Gomputational Geometry—Theory and
Appl, 27(1), 2004, p87-106

Abstract. Let P be a set ok points in the plane. A dipolar spanning trég,
of P is a tree that span#® and has exactly two nodes of degree greater than one,
namelyp andq. We can think op andq as “facilities”, while the other nodes are
“clients”.

Thegeometric minimum-diameter spanning t@#DST) of P is a tree that
spansP and minimizes the Euclidian length of the longest path. kiniewn that
there is always a mono- or a dipolar MDST, i.e. the MDST is & téth only
one node greater than one, or it is a dipolar trég, that minimizes the distance
between any two clients. So far, a dipolar MDST can only badan slightly
subcubic time.

Thediscrete two-center-proble@CP) is to find a treeZ,,, of P that min-
imizes the distance of any client to the closest facility.r this problem, an
O(n*/3 1og® n)-time algorithm is known.

In this paper, we define an intermediate problem: find the Trgethat mini-
mizes the distance of any client to ththerfacility, that is, the sum of the distance
to the closest facility and the distance between the twditiasi We call such a
tree aminimum-sum dipolar spanning tr®SST). We show that the MSST of
any setP can be found inD(n?logn) time. A variant of the MSST-algorithm
yields a factor% approximation of the MDST.
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Furthermore, we give two fast approximation schemes forMST, i.e.
factor-(1+¢) approximation algorithms. One algorithm uses a grid ankstime
O*((1)>+2/3 4 n), where theD*-notation hides terms of typ@(log®*) ). The
other uses the well-separated pair decomposition and t@é%)3n + 1nlogn)
time. A combination of the two approaches rungiin((1)® + n) time. Both
schemes can also be applied to 2CP and MSST.

6.1 Introduction

The MDST can be seen as a network without cycles that minimizes the max
imum travel time between any two sites connected by the n&twohis is of
importance, e.g. in communication systems where the maxiaieiay in deliv-
ering a message is to be minimized. Ho et al. showed therevésyala mono- or
a dipolarMDST [Ho91]. For a different proof, see [Has95]. Ho et al. alsogav
an O(nlogn)-time algorithm for the monopolar and &(n?)-time algorithm
for the dipolar case [Ho91]. In addition, they showed that pnoblem becomes
considerably easier when allowing Steiner points, i.ertd & spanning tree with
minimum diameter over all point sef?’ that contain the input point sét. The
reason is that there always is a minimum-diameter Steieerttrat is monopo-
lar and whose pole is the center of the smallest enclosimgeodf P. Thus the
minimum-diameter Steiner tree can be determined in lines f[Ho91].

The cubic time bound for the dipolar case was recently imgdoyy Chan
[Chn02] to O(n~¢4), wherecq = 1/((d + 1)([d/2] + 1)) is a constant that
depends on the dimensiehof the point set and thé-notation hides factors
that areo(n®) for any fixede > 0. In the planar case; = 1/6. Chan speeds
up the exhaustive-search algorithm of Ho et al. by using reewmislynamic data
structures. Note however thattends to 0 with increasing while the asymptotic
running time of the algorithm of Ho et al. does not depend edimension.

Note that in the dipolar case the objective is to find the twego,y € P
of the tree such that the functieny + |zy| + r,, is minimized, wherézy| is the
Euclidean distance af andy, andr, andr, are the radii of two disks centered at
x andy whose union cover®. On the other hand théiscretek-center problem
is to determiné: points in P such that the union df congruent disks centered at
the k points covers? and the radius of the disks is minimized. This is a typical
facility location problem: there are supermarkets and ik of them a regional
director must be placed such that the maximum director+sogeket distance is
minimized. This problem is NP-hard provided thats part of the input [Gry79].
Thus, the main research on this problem has focused on &medipecially on
k = 1,2. Fork = 1, the problem can be solved @#i(nlogn) time using the
farthest-point Voronoi diagram dP. Fork = 2, the problem becomes consid-
erably harder. Using the notation from above, the discmtedenter problem
consists of finding two centets y € P such that the functiomax{r,,r,} is
minimized. Agarwal et al. [Aga98SW] gave the first subquéidréme algorithm
for this problem. It runs it (n*/3 log® n) time.
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In this paper we are interested in (a) a new facility locatproblem that
mediates between the minimum-diameter dipolar spannewy ¢ DdJST) and
the two-center problem and (b) fast approximations of thmmatationally ex-
pensiveMDdST. As for our first aim we observe the following. Whereas the
MDdST minimizes|zy| + (r, + r,), the discrete two-center problem is to min-
imize max{r,,r,}, which means that the distance between the two centers is
not considered at all. If, however, the two centers need tangonicate with
each other for cooperation, then their distance should bsidered as well—
not only the radius of the two disks. Therefore our aim is td two centerse
andy that minimize|ry| + max{r,,r,}, which is a compromise between the
two previous objective functions. We will refer to this pteim as thediscrete
minimum-sum two-center problesnd call the resulting graph tmeinimum-sum
dipolar spanning treéMSST). As it turns out, our algorithm for theISST also
constitutes a compromise, namely in terms of runtime batwee subcubic-time
MDdST-algorithm and the superlinear-time 2CP-algorithm. Mapecifically,
in Section 6.2 we will describe an algorithm that solves tlser@te minimum-
sum two-center problem in the plane @(n?logn) time usingO(n?) space.
For dimensiond < 5 a variant of our algorithm is faster than the more general
O(n3~<)-time MDST-algorithm of Chan [Chn02] that can easily be nfiedito
compute the MSST instead.

In Section 6.3 we turn to our second aim, approximationsfeMDST. We
combine a slight modification of tfdSST with the minimum-diameter monopo-
lar spanning tree\[DmST). We identify two parameters that depend on the
MDdST and help to express a very tight estimation of how well the tiees
approximate it. It turns out that at least one of them is aoiadt3 approximation
of the MDST.

Finally, in Section 6.4 we show that there are even stroreglitiime approx-
imation schemes (LTAS) for th®IDST, i.e. algorithms that given a sét of n
points and some > 0 compute inD*(E° + n) time a spanning tree whose diam-
eter is at mostl( + ) times as long as the diameter oMEDST. In the runtime
expressionE = 1/g, ¢ is a constant and th@*-notation hides terms of type
0(log®Y) E). The existence of a strong LTAS for théDST has independently
been proven by Spriggs at al. [Spr03]. Their LTAS is of order 3, i.e. it takes
O*(E® + n) time.

Our results are as follows. Our first LTAS uses a gridd¥) x O(E) square
cells and runs Chan’s exact algorithm [Chn02] on one reptasige point per
cell. The same idea has been used before [Bar99, Chn00] toxpate the
diameter of a point set, i.e. the longest distance betwegrpain of the given
points. Our first LTAS is of orde5Z.

Our second approximation scheme is based on the well-gdeparair decom-
position [Cal95] ofP and take®) (E3n+ Enlogn) time. The well-separated pair
decomposition will help us to limit our search for the twog®bf an approximate
MDdJST to a linear number of point pairs. If we run our second schemthe
O(E?) representative points in the grid mentioned above, we g&ASlof order
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five. Both schemes can be adjusted to approximat®isieT and the 2CP within
the same time bounds.

We will refer to the diametei p of theMDST of P as thetree diameteof P.
We assume thaP contains at least four points.

6.2 The minimum-sum dipolar spanning tree

It is simple to give arO(n?)-time algorithm for computing th&ISST. Just go
through allO(n?) pairs {p, ¢} of input points and compute in linear time the
point m,, whose distance to the current pair is maximum. In order te giv
faster algorithm for computing thelSST, we need a few definitions. Lét,, be
the closed halfplane that contaimand is delimited by the perpendicular bisector
byq Of p andq. Note thath,, N hy, = b,y = by,. Let T, be the tree with
dipole {p, ¢} where all other points are connected to the closer pole. n{foi
on b, can be connected to eithgror ¢q.) Clearly the tree7,,, that minimizes
Ipg| + min{|pm,q|, |gmyq|} is anMSST. The following two observations will
speed up th&ISST computation.

We first observe that we can split the problem of computingailhts of type
myp, iNto two halves. Instead of computing the poing, farthest from the pair
{p, ¢}, we compute for each ordered pé&ir, ¢) a pointf,, € P N h,, that is
farthest fronp. See Figure 6.1 for an example. Now we want to find the Tige
that minimizegpq| + max{|pfpq|, |¢f4p|}. We will see that other than the points
of typem,,, we can compute those of tygfg, in batch.

Our algorithm consists of two phases, see Algorithm 1. Insphlawe go
through all pointgp in P. The central (and time-critical) part of our algorithm
is the procedure GMPUTEALL FARTHEST that computesf,, for all ¢ € P\
{p}. For a trivialO(n?)-time implementation of this procedure, see Algorithm 2.
In phase Il we then use the above form of our target functiodet@rmine the
MSST. The second important observation that helped us to speEdmPUTE-
ALLFARTHEST is the following. Letp be fixed. Instead of computing,, for
eachg € P\ {p} individually, we characterize in Lemma 6.2.2 athat have the

Algorithm 1 MSST(P)
Phase I: compute allf,,
for eachp € P do
COMPUTEALL FARTHEST(P, p)
end for p
Phase II: search folMSST
for each{p, ¢} € (%) do
dpq < |pq| + max{[pfpql; afopl}
end for {p, ¢}
return 7,, with d,, minimum.




6.2. THE MINIMUM-SUM DIPOLAR SPANNING TREE 125

Algorithm 2 COMPUTEALL FARTHEST(P, p) {first versior}
foreachq € P\ {p} do
Jpg =P
foreachr € P\ {p,q} do
if r € hyy and |pr| > |pfpq| then
fpg =1
end if
end for ¢
end for r
return f,, foreachq € P\ {p}

Figure 6.1: f,, denotes Figure 6.2:x € h,, Figure 6.3: Computing
the point farthest fronp  if and only if ¢ ¢  the points of typef,, in
in PN hp,. D(x,p). batch.

samef,,. Our characterization uses the following direct conseqeaerf Thales’
Theorem. See Figure 6.2 as illustration.

Fact6.2.1 Let D(z, p) be the open disk that is centered:and whose boundary
containg (D(z,p) = 0 if z = p). Thenz € hyy ifand only if¢ ¢ D(x,p).

Lemma 6.2.2 z is farthest fronp in P N hy, if and only ifq ¢ D(x,p) and, for
allz’ € P with |pz'| > |pz|, ¢ € D(2',p).

Proof: “If” part: Due to ¢ ¢ D(z, p) and Fact 6.2.1 we know thatlies in h,.
Fact 6.2.1 also yields that alf € P with |pz’| > |pz| donotlie in h,, Since
q € D(2', p) for all suchz’. Thusz is farthest fromp among all points irh,,.
“Only if” part: supposeq € D(x,p) or suppose there is arf € P with
|pz’| > |pz| andg & D(2’,p). In the former case we would hawegZ h,,, in the
latter |pz’| > |px| andz’ € h,,. Both would contradict being farthest fronp
among the points if,,. O

Lemma 6.2.2 immediately yields a way to set the variafigsin batch: go
through the pointg; € P \ {p} in order of non-increasing distance frgmfind
all points inP; = P\ D(q;,p), setf,, to g; for all ¢ € P;, remove the points in
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Algorithm 3 COMPUTEALL FARTHEST(P, p) {second versioh
1 sortP = qi, ..., g, such thatpgi| > [pga| > - -+ > |pgs|
2: P— P\ {p}
3: fori— 1tondo
4: PiHP\D(qi,p)
5. foreachq € P; do
6: Jra < Qi
7. endforgq
8 P«<— P\P
9: end for ¢

=
o

: return f,, foreachg € P\ {p}

P; from P, and continue—see the second version oMPUTEALL FARTHEST
in Algorithm 3.

Figure 6.3 visualizes what happens in the first three rumaityir the outer for-
loop of Algorithm 3: the areas shaded light, medium, and darkain all points
g with frq = q1, fpq = g2, andfp, = g3, respectively. We usefd; as shorthand
for D(q;, p).

Lemma 6.2.3 For eachy € P \ {p} Algorithm 3 setsf,, to the point farthest
fromp in P N hy,.

Proof: Note thatP \ {p} = J!"; P;. This is due to the fact thad(q,,p) =
D(p, p) = 0. Thus the variableg,, are in fact set for alf € P\ {p} in line 6 of
Algorithm 3.

The values that are assigned to ffag's are correct due to the order, in which
the outer for-loop runs through the pointsinh f,, is set tog; if ¢ is the smallest
index such thay € P,. This is the case i is the smallest index such that
q & D(¢i,p) andg € D(q;,p) for j < i. Since theg; with j < ¢ are exactly the
points in P farther fromp thang;, Lemma 6.2.2 yields thay; is the point farthest
frompin P N hp,. O

The remainder of this section deals with efficiently findirgrts in P;. We give
two methods. The first, which is slightly slower in the plaslsp works for higher
dimensions.

Method I.  We use dynamic circular range searching, which is a speai# c
of halfspace range searchingIR¥ via orthogonal projection to the paraboloid
{(z,y,2) | = = 2% + y*} [Aga95]. The necessary data structure can be build in
O(n'*¢) time and space for an arbitrarily small> 0. After each query with
the halfspace; corresponding to the complement of the di3ky;, p) all points

in H; must be deleted (according to step 8 of Algorithm 3). Thel tirtae for
querying and deleting i®(n'*¢). This yields anO(n?*¢)-time algorithm for
finding theMSST. We will give a faster algorithm for the planar case. However
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it is not clear how that algorithm can be generalized to higli@ensions. For di-
mensions! € {3,4} computing the\ISST with range searching takéy(n?-5+¢)
time [Aga95]. This is faster than Char¥$DST-algorithm [Chn02] that can eas-
ily be modified to compute th®ISST instead. His algorithm runs i@ (n3—¢)
time, wherecqy = 1/((d + 1)([d/2] + 1)) <1/12ford > 3.

Method Il.  We compute a partition of the plane into regidRs, . .., R,, such
that R; contains the sef’; of all pointsq with f,, = ¢;. Then we do a plane
sweep to determine for eaghe P\ {p} the regionR; that contains it. Method Il
takesO(nlogn) time and thus yields a®(n? logn)-time algorithm for finding
theMSST in the plane. We will use the following simple fact.

Fact 6.2.4 Given a setD of disks in the plane that all touch a poimteach disk
contributes at most one piece to the boundarfy\d@?.

This helps us to bound the complexity of our planar partition

Lemma6.2.5 LetD = {D:,...,D,_1} be a set of disks in the plane, Bt =
R2, D, = @, and fori = 1,...771 Iet[l =DoNn---ND;_4 andRi =1 \ D;.
ThenR(D) = {Ru,...,R,} is a partition of the plane whose complexity—the
total number of arcs on the boundariedtif, . . ., R,,—is O(n).

Proof: The regionR; consists of all points that lie id, ..., D; 1 but notin
D;. SinceDy = R? andD,, = 0 it is clear thatR(D) is in fact a partition of the
plane. For an example refer to Figure 6.4, where the regiang:,, R3, andR,
are shaded from light to dark gray.

Dy~

R1 p:,

DQ“\

Figure 6.4: Regions of the partition Figure 6.5: A step in the incremental
R(D). construction ofR(D).

If R(D) is constructed incrementally, each new digksplits I; into I;1 andR;.
For illustration, see Figure 6.5, whefgis the shaded region. Due to Fact 6.2.4,
D; contributes at most one circular afcto the boundary of; ;. The start- and
endpoint ofA can split two arcs on the boundary bfinto two pieces each. Two
of these at most four pieces will belong£o ; and two toR;. Thus the number
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of arcs inR(D) increases at most by three when adding a new disk to therturre
partition. O

Now we can give a faster implementation o6@PUTEALL FARTHEST for the
planar case. More specifically we will show the following.

Lemma 6.2.6 Let Dy = R? andD,, = (. Given a set) of m points and a set
D ={D,...,D,_1} of disks in the plane that all touch a pomtthere is an
algorithm that computes i0((m + n) logn) total time for each point € Q the
regionR € R(D) that containg. The algorithm needd(n + m) space.

Proof: We first construct the partitioR(D) and then do a plane sweep to locate
the points in@ in the cells ofR(D).

We use the incremental construction®{D) as in Lemma 6.2.5. In order
to find the two points where the boundaiy; of a new diskD; intersects the
boundarydI; of I; we need a data structufe that stores the circular arcs on
0I;. The data structure must allow us to do search, remove tjrzsat successor
operations in logarithmic time. This is standard, e.g. &at-black trees [Cor90].
In 7 we store the circular arcs al; in clockwise order starting fromp. We
assume that is the leftmost point 0b ;.

By Fact 6.2.40D; intersect®)1; at zero, one, or two points other thanL et
A and B be the first respectively last arc é1; (both incident tgp), and letA’
and B’ be infinitesimally small pieces of respectivelyB incident top. There
are three cases, which can be distinguished from each etleenistant time. For
illustration see Figures 6.6 to 6.8, where we have sketélie@s a polygon for
simplicity.

ol
(AN
oI, aD; BDL
Figure 6.6: Figure 6.7: Figure 6.8: Figure 6.9:
Case (1) Case (2) Case (3) Querying7 atw
1. D;nI =0.

This can be verified by checking whether the tangenbpfn p separates
D, from A andB. If this is the case, we are done since tign= I; and
R; =1;=0forallj > i.

2. D;NI; # 0, and at least one of’ or B’ lies outsidel;.
We follow the part ofdI; from p that lies outsideD; until we reach an
intersection pointr (possibly agairp) of 0D; anddI;. On our way we
replace all nodes iff that correspond to arcs outside by a new node
that corresponds to the abd; N I; (bold in Figure 6.7). The regioR; =
I; \ D; is delimited by the new arc and all arcs @5, from p up toz.
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3. D;N1I; # 0, andA’ andB’ lie insidel;.
We query7 to find out whether and wher@D; and 0I; intersect other
than inp. We follow a path from the root df either to a node whose arc
intersectso D;, or to a leaf ifoI; anddD; do not intersect. Let be the
current inner node of , A, the corresponding arc ar@, the circle that
containsA, (and toucheg). We consider the following two subcases:

(@) oD; N C, = {p}.
This occurs in the degenerate case thand the centers dD; andC,,
are collinear. IfC,, is contained inD;, thenI; is also contained ib;.
ThusR; =0, I;+1 = I;, and we can continue with; , ;.
OtherwiseA, lies outsideD;—recall thatC,, D; € D and that all
disks inD are pairwise different. Sincd’ and B’ lie inside D;, 0D;
intersects two arcs ofi/;; one betweem’ andA,,, and one between
A, andB’. Thus we can continue to search for an intersection in any
of the two subtrees af.

(b) 0D; N C, = {p,x} andzx # p.
If z € A,, we stop. Otherwise we continue our search in the left or
right subtree ofv depending on whether, z, and A, lie on C,, in
clockwise or counterclockwise order, respectively. Ndigattn the
clockwise case the part off; from A, to B’ (in clockwise order) is
completely contained i;, see Figure 6.9. Thus no arc in the right
subtree oby intersects)D;. The counterclockwise case is symmetric.

If—in case (3b)—we reach a leaf @f without finding any intersection, this
means thadl; N 9D, = {p}, since in each step of the query we have only
discarded arcs il that lie on the portion ofI; that cannot interse@D,.
The fact thatd’ and B’ lie inside D; now yieldsI; C D;. ThusR; = 0,
and we can continue with, ;.

Otherwise we have found some=# p that lies onoD; N 9I;. If it turns
out thatoD; anddl; just touch inz, then we again havg C D;, which
means thaf?; = () and we can proceed with; ;. If, however,0D; and
01; intersect properly, then we continue as in case (2), folowhe part of
oI; outsideD; from z until we hit a second intersection point Due to
Fact 6.2.4 there cannot be any further intersection points.

Whenever we modify7” we also do the necessary steps in the incremental con-
struction of R(D): we create circular pointers around ed¢hand pointers from
each arc to the two regions it borders.

The plane sweep is practically the same as for locating pama vertical
decomposition of line segments. Our (multi-) &8bf event points consists of the
setV of vertices ofR(D), the points iny, and the seX of the left- and rightmost
points of arcs that are not arc endpoints. Note that therdimgar order among
the arcs in the vertical strip between any two consecutieaepoints inl” U X,

We store the points ity in an array and sort them according to non-decreasing
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z-coordinate. The sweep-line status consists of the arR¢1p) that are currently
intersected by the vertical sweep liaén the order in which they are intersected
by £. The sweep-line statuscan be implemented by any balanced binary search
tree (like ared-black tree) that allows insertion, deletend search in logarithmic
time.

Each time/ hits an event pointiX or V/, we either add an arc &or remove
an arc from§. (This assumes non-degeneracyyfi.e. no three disk boundaries
intersect in a point other than The assumption can be overcome by using several
event points for vertices iR (D) of degree greater than 3.) Each timhaits an
event pointy € @ we determine the first arc ihabove or belowy and return the
index: of the corresponding regioR; of R(D).

The data structure foR(D) can be set up i®(nlogn) time due to Lemma
6.2.5: each step of the incremental construction tdk@sg n) time for querying
7 andO(|R;|logn) time for updatingZ andR(D). Lemma 6.2.5 also ensures
that £’ consists of at mosP(n 4+ m) points, and tha$ contains at mos(n) arcs
at any time during the sweep. Since each event point is pgeddaO(logn)
time, the whole sweep takéX(m + n) logn) time. O

Now we can conclude:

Theorem 6.2.7 There is an algorithm that computes an MSSTOm? logn)
time using quadratic space.

Proof: We can implement GMPUTEALL FARTHEST by applying the algorithm
of Lemma 6.2.6 tdD = {D(q1,p),...,D(qn-1,p)} and@ = P\ {p}. This
yields a running time of)(n log n) for COMPUTEALL FARTHEST. With this sub-
routine, Algorithm 1 computes aviSST in O(n? logn) time. O

6.3 Approximating the minimum-diameter
spanning tree

We first make the trivial observation that the diameteawy monopolar tree on
P is at most twice as long as the tree diametgrof P. We use the following
notation. Let7y; be a fixedMDdST and7,,0n0 a fixedMDmST of P. The tree
Tq; has minimum diameter among those trees with vertexPsiet which all but
two nodes—the poles—have degree 1. The fgg,, is a minimum-diameter
star with vertex seP. Letx andy be the poles ofy;, and let§ = |zy| be their
distance. Finally let, (r,) be the length of the longest edgeds incident tox
(y, respectively) without taking into account the edge Thus disks of radius,
andr, centered at andy, respectively, covef’. Without loss of generality we
assume, > ry.

Ho et al. showed that in the dipolar case (i.e. if there is noaopolarMDST),
the disk centered at cannot be contained by the one centered. Ae will need
this stability lemmabelow.
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Lemma 6.3.1 [Stability lemma [HO91]}r, < § +7y.

In order to get a good approximation of tNeDST, we slightly modify the algo-
rithm for theMSST described in Section 6.2. After computing thén?) points
of type f,q, We go through all pairgp, ¢} and consider the tre,, with dipole
{p, q} in which each point is connected to its closer dipole. In Bec6.2 we
were searching for a tree of ty¥g, that minimizespq| + max{|fpqpl, |¢fqp|}-
Now we go through all treeg,, to find the tree7y;s.c; With minimumdiameter
i.e. the tree that minimizepq| + | foqp| + |¢fqp|- Note that the only edge i@,
that crosses the perpendicular bisectaris the edgeq itself. This is of course
not necessarily true for thedDAST 73;. We will show the following:

Lemma 6.3.2 Given a setP of n points in the plane there is a tree with the
following two properties: it can be computed@(n?logn) time usingO(n?)
storage, and its diameter is at mdgs - dp.

Proof: Due to Theorem 6.2.7 it suffices to show the approximatiotofadVe
will first compute upper bounds for the approximation fasti7y;sect aNd7mono
and then analyze where the minimum of the two takes its maximu

For the analysis ofy,isect COnsider the tre&,,, whose poles are those Bj;.
The diameter of7;,, is an upper bound for that Gfiisecs. Letr) (r;) be the
length of the longest edge @f,, incident tox (y, respectively) without taking
into account the edgey. Note thatr, = |z f.,| andr) = [y fy.|-

Now we compare the diameter @f, to the diameter offy;. Observe that
max{r,,r,} < 7. This is due to our assumption > r, and to the fact that
fzy and f,, have at most distanog from bothx andy. This observation yields

dia 7oy = 7), +0 + 7, < 2max{r,,r,} + 0 < 2r, +J. Now we define two

constantgy and 3 that only depend ofiy;. Let
a = 0 and (8 = T—z.
Ty + Ty Ty

Note thato > 0 and/ > 1. Introducinga: and3 yields

dia Tpisect o dia 7, 2r, + 6 a(l+8)+24

dia?:ii B dia’]ﬁi B Tz+5+ry = (1+Oé)(1+ﬂ) = fbiscct(aaﬁ)a

since2r, = 26(ry +ry,)/(1+8) andd = a(r, +ry). The functionfpisect (v, 5)
is an upper bound for the approximation factor that... achieves.

Now we apply outa-B-analysis t0Zmono. The stability lemma, < § + ry,
[Ho91] implies that all points inP are contained in the disk, ;.. of radius
d + ry centered at, see Figure 6.10. Due to that, the diameter of a monopolar
tree7 that spans® and is rooted at is at most twice the radius of the disk. We
know thatdia 7Tyono < dia 7 SiNnCe€7 om0 IS theMDmST of P. Thus

dia Trono < 2(6 +1y) = 2a(ry +1y) +

1 +6(T1 +r’y)7
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- /Dm,6+ry

Figure 6.10: Approximatin@g; with 7;,op0.

sinced = a(ry+ry) andl+g = (r,+ry)/ry. Usingdia Zg; = (1+a)(rz+1y)
yields

dia Tmono o 20(143) +2

diaZy — (1+a)(1+8)

and the functionfy,ono (v, 8) is an upper bound df;,,,n,'s approximation factor.

In order to compute the maximum of the minimum of the two bcaavd first
analyze whergisect < fmono- This is always the casedf > 2 but also ifa < 2
andf < gequal(@) := g—;% See Figure 6.11 for the corresponding regions. Since
neither fuisect NOr fiono have any local or global maxima in the interior of the
(a, B)-range we are interested in, we must consider their bounddngs.

= fmono(aaﬁ)7

1. For( = 1 the tre€Tyisect IS optimal sincefpisect (a, 1) = 1.

2. Note that the stability lemma, < § + r, is equivalent tgs < gsgan (@) :=
f—;%, see Figure 6.11. Along the graph @f.. the treeZ,,,, IS optimal

SiNCe frnono (v, gstab () = 1.

3. Along gequa both functions equal3a + 2)/(2a + 2). This expression
increases monotonically from 1 towart}§3 whena goes from O towards 2.

Standard analysis of the partial derivatives shows that,, increases while
Jvisect decreases monotonically whengoes to infinity. So the maximum of
min( fmono, foisect) IS indeed attained at.qyai. O

6.4 Approximation schemes for the MDST

In this section we give some fast approximation schemeshfieMDST, i.e.

factor-(L + €) approximation algorithms. The first approximation schames
a grid, the second and third use the well-separated paimaeesition, and the
fourth is a combination of the first and the third method. Téweson for this mul-
titude of approaches is that we want to take into account thette running time
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Figure 6.11: Our upper bound for the approximation facto?,.0f., (Zpiscct) IS
smaller to the left (right, respectively) 9fqua1. To the left ofgg;.r, the tre€lono
is optimal.

depends not only on, the size of the point set, but also enthe approximation
factor.

Chan [Chn0Q] uses the following notation. LBt = 1/¢ and let theO*-
notation be a variant of th@-notation that hides terms of typ@(logo(l) E).
(Such terms come into play e.g. when the use of the floor fandsi replaced by
binary search with precision) Then dinear-time approximation scheme (LTAS)
of ordercis a scheme with a running time of the fo (E°n) for some constant
c. A strong LTAS of ordet has a running time a@* (E°+n). Our asymptotically
fastest scheme for approximating ST is a strong LTAS of order 5.

6.4.1 A grid-based approximation scheme

The idea of our first scheme is based on a grid which has beeresere e.g. to
approximate the diameter of a point set [Bar99, Chn00]the longest distance
between any pair of the given points. We lay a griddfE) x O(F) cells overP,
choose an arbitrary representative point for each cell aedhe exact algorithm
of Ho et al. [Ho91] to compute thBIDST 75 of the setR of all representative
points. By connecting the remaining pointsih\ R to the pole adjacent to their
representatives, we get a dipolar ttEewhose diameter is at mogt + ) times
the tree diameteip of P.

The details are as follows. L&t/ = max, scr{|z(p)z(q)], ly(p)y(q)|} be
the edge length of the smallest enclosing squar® aind letl = M /(10v/2)
be the edge length of the square grid cells. Cled#ly< dp. Since each path
in 7. is at most by two edges of lengtk/2 longer than the corresponding path
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in T we havedia T. < dia Tr 4 21v/2 < dia Tk + edp/5. To see that
dia T. < (14 ¢) dp it remains to prove:

Lemma6.4.1dia7r < (14 4e/5) dp.

Proof: Let 7p be aMDST of P that is either mono- or dipolar. Such a tree
always exists according to [H091].

Case |: 7p is monopolar. Letr € P be the pole of/p and letp, € R be the
representative point gf € P. Due to the definition of 'z we have

dia Tz < min max |sz’| + |2't] < max [sps| + |pst]-
'€ R s#tER s#tER

(The first two terms are equal if there is a monopdHDST of R, the last two

terms are equal if there isMDmST of R with polep,.) By triangle inequality

dia 7p < max, |s2| + [pz] + |pa| + [t],

i.e. we maximize the length of the polygonal chainz, p,., z,t) over all s #

t € R. By appending edges to poinisandb € P in the grid cells ofs and¢,
respectively, the length of the longest chain does not @dsereeven if we now
maximize over alk, b € P with a # b.

dia Tr < max [apae| + |paz| + 2|zp] + |206] + |-
a#beP

Using|apal, |zpz|, |ppb| < 13/2 and the triangle inequalitigp,z| < |pqal + |az]
and |zpy| < |2b| + |bpy| yields dia Tr < 61v/2 + max,pep [ax| + |2b] =
(14 3¢/5)dp.

Case ll: 7p is dipolar. The analysis is very similar to case |, exceptdhains
consist of more pieces. Thisyield& 7T < 81v2+dia7p = (14+4¢/5) dp.O

Theorem 6.4.2 A spanning tredp of P with dia 7p < (1 + 1/E) - dp can be
computed ir0* (E®~1/3 + n) time usingO* (E? + n) space.

Proof: In order to determine the grid cell of each pointihwithout the floor
function, we do binary search—once on &anand once on g-interval of size
M until we have reached a precisioniofi.e. we need)(log F) steps for each
point. Using Chan’s algorithm [Chn02] to compufg takesO(|R|>*~1/6) time
andO(|R|) space, wheréR| = O(E?). O

6.4.2 The well-separated pair decomposition

Our second scheme uses the well-separated pair decoropasitCallahan and
Kosaraju [Cal95]. We briefly review this decomposition bvelo
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Definition 6.4.3 LetT > 0 be a real number, and Idt andB be two finite sets
of points inR?. We say thatd and B arewell-separated w.r.tr, if there are
two disjointd-dimensional ball&® » andC'g both of radiug- such thatA C C4,
B c Cp, and the distance betweéh, andCy is at least equal tor.

The parameter will be referred to as theeparation constantThe following
lemma follows easily from Definition 6.4.3.

Lemma 6.4.4 Let A and B be two finite sets of points that are well-separated
w.r.t. T, let x andp be points ofA, and lety andq be points ofB. Then (i)
eyl < (1+2/7) - |ql, (ii) lxy| < (1 +4/7) - |pql, (i) |pz| < (2/7) - |pq|, and

(iv) the angle between the line segmemtsandpy is at mostresin(2/7).

Definition 6.4.5 Let P be a set of points inR?, andr > 0 a real number. A
well-separated pair decompositiSPD) forP (w.r.t.7) is a sequence of pairs
of non-empty subsets @f, (A1, B1), (A2, Ba), ..., (A¢, Be), such that

1. A; andB; are well-separated w.rit.fori = 1,2,...,¢, and

2. for any two distinct pointp andq of P, there is exactly one paft\;, B;)
in the sequence such thatgi= A; andq € B;, or (ii) g € A; andp € B;,

The integer? is called thesize of a WSPD. Callahan and Kosaraju show that
a WSPD of size/ = O(7%n) can be computed usin@(nlogn + 72n) time
and space. The WSPD will help us to limit our search for the pates of an
approximatéIDdST to a linear number of point pairs.

6.4.3 A straight-forward approximation scheme

The approximation algorithm consists of two subalgorithme first algorithm
computes & DmST and the second computes an approximation oMiElST.
We always output the one with smaller diameter. AccordinfiHo91] there ex-
ists aMDST that is either a monopolar or a dipolar tree. TM®mST can be
computed in time)(n log n), hence we will focus on the problem of computing
aMDdST. Letdwin be the diameter of &IDdST and let§,, denote a spanning
tree with dipole{p, ¢} whose diameter is minimum among all such trees. For
any dipolar spanning treg with dipole{u, v} letr,(7") andr,(7) be the length
of the longest edge df incident tou and v, respectively, without taking into
account the edgev. When it is clear which tre@ we refer to, we will use-,
andr,.

Lemma 6.4.6 Let(A1, By),..., (A, Be) be a WSPD oP w.r.t.T, and letp and
g be any two points irP. Then there is a palrA;, B;) such that for every point
u € A; and every point € B, the inequalityia §,,, < (1+48/7)-dia §,, holds.

Proof: According to Definition 6.4.5 there is a pdid;, B;) in the WSPD such
thatp € A; andg € B;. If uis any pointinA; andv is any point inB;, then letT
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be the tree with poles andv whereu is connected te, p and each neighbor gf
in §,, excepty is connected ta,, andg and each neighbor afin §,, exceptp is
connected te. By Lemma 6.4.4(iijuv| < (144/7)|pg| and by Lemma 6.4.4(iii)
ru < |up| +rp < 2|pg|/T + 1rp. Sincedia T = r,, + |uv| + 1, We have

8
dia T < <rp+2|pQ|)+<|pq|+4|pQ|)+<rq+2|pq|) < <1+;) dia §pq.

Ea T ES
The lemma follows due to the minimality &f,.,. O

A first algorithm is now obvious. For each of tli&(?n) pairs (A4;, B;) in a
WSPD of P w.r.t. 7 = 8E pick anypointp € A; andanypointq € B;, sortP
according to distance from, and computé,, in linear time by checking every
possible radius of a disk centeredpeds in [Ho91].

Lemma 6.4.7 A dipolar treeT withdia 7 < (14 1/FE)- dmin can be computed
in O(E*n?logn) time usingO(E?n + nlogn) space.

6.4.4 A fast approximation scheme

Now we describe a more involved algorithm. It is asymptdlyctaster than the
previous algorithm ifn. = Q(FE) (more precisely ifE = o(nlogn)). We will
prove its correctness in Section 6.4.5.

Theorem 6.4.8 A dipolar treeT withdia T < (1+1/E)-dmin can be computed
in O(E®n + Enlogn) time usingO(E?n + nlogn) space.

The idea of the algorithm is again to check only a linear nurmobpairs of points,
using the WSPD, in order to speed up the computation of tHesdisound the
two poles. Note that we need to find a close approximationefithmeters of the
disks to be able to guaranteéla+ ¢)-approximation of thé/IDdST. Obviously
we cannot afford to try all possible disks for all possibl@gaf poles. Instead of
checking the disks we will show in the analysis that it suffitecheck a constant
number of ways to partition the input point set into two subseach correspond-
ing to a pole. The partitions we consider are induced by ataohsiumber of
lines that are approximately orthogonal to the line throtighpoles. We cannot
afford to do this for each possible pair. Instead we seleonatant number of ori-
entations and use a constant number of orthogonal cuts ébra#entation. For
each cut we calculate for each pointfiithe approximate distance to the farthest
point on each side of the cut. Below we give a more detailedrg®on of the
algorithm. For its pseudocode refer to Algorithm 4.

Phase 1: Initializing. Choose an auxiliary positive constant< min{0.9¢,
1/2}. As will be clear later, this parameter can be used to fine-twhich part
of the algorithm contributes how much to the uncertainty tartthe running time.
In phase 3 the choice of the separation constantll depend on the value of
ande.
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Algorithm 4 Approx-MDdST(P, ¢)

Ph
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29
Ph
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39:
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42
43
44
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N
TR WN R

ase 1: initializing
: choosex € (0, min{0.9¢, 1/2}); sety «— [4/k]
. fori— 1to~do
l; < line with angleir /~ to the horizontal
F; < l;-ordering of P
end for ¢
. for i —to~ do
rotate P and/; such that; is horizontal
letps, ..., pn be the points inF; from left to right
di — |p1.2 — pn.x|
for j «— 1to~ do
bi; < marker or; at distanceid; /(v + 1) to the right ofp;
for k — 1to~ do
ngk «— l,-ordered subset dfy, to the left ofb;;
R}, < lx-ordered subset df, to the right ofb;;
end for k
end for j
: endfori
ase 2: computing approximate farthest neighbors
: for i — 1to~do
for j — 1to~ do
for k — 1tondo
N(pk,i,7, L) < pr, {dummy}
for I — 1to~do
Pmin — first pointiN L ;;; pmax «— last pointinL;;,
N(pk,i,3, L) < point in{pmin, Pmax, N (px, %, j, L)} furthest frompy,
end for [
end for k
repeat lines 20-26 witlk instead ofL
end for j
: end for ¢
ase 3: testing pole candidates
-7 = 8(e ey — D
: build WSPD forP with separation constant
. d «— oo {smallest diameter so far
: for each pair A, B) in WSPDdo
choose any two pointg € A andv € B
find I; with the smallest angle to the line througtandv
D — oo {approximate diameter of tree with polesindv, ignoring |uv|}
for j «— 1to~ do
D+
min{D, [N (u, i, j, Lyul+|oN (v, 4, 4, R), IN(u, 4, j, R)u| +|oN (v, , j, L)|}
end for j
if D+ |uv| < dthenv' «— u; v «— v;d — D + |uv| end if
: end for (A, B)
: compute? «— 8,1,
: return T
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Definition 6.4.9 A set of pointsP is said to bé-ordered if the points are ordered
with respect to their orthogonal projection onto the line

Letl; be the line with anglér/~ to the horizontal line, where = [4/x]. This
implies that for an arbitrary linéthere exists a ling; such that/l;l < =/(2).
Fori = 1,...,, let F; be a list of the input points sorted according to the
ordering. The time to construct these list€igyn logn).

For each;, rotateP andi; such thati; is horizontal. For simplicity we denote
the points inP from left to right onl; by py, ..., p,. Letd; denote the horizontal
distance betweep; andp,. Letb;;, 1 < j < v, be a marker on; at distance
jdi/(v+ 1) to the right ofp,. Let L;; andR;; be the set of points it to the left
and to the right of the verticat;; throughb;;, respectively.

For each markeb;; on l; we constructy pairs of lists, denotedJ;jk and
R, wherel < k < . The listL;;, (R;;) contains the points if;; (R;;,
respectively) sorted according to theordering. Such a list can be constructed
in O(n) time since the ordering is given k¥,: we just have to filter out the
points in Fj, that are on the “wrong” side ¢f;;. (Actually it is not necessary to
store the whole listd.};; and R}, : we only need to store the first and the last
point in each list.) Hence the total time complexity neededdnstruct the lists
is O(y3n + ynlogn), see lines 1-17 in Algorithm 4. These lists will help us to
compute an approximate farthest neighboLjnandR;; for each poinp € P in
time O(v), as we describe below.

Phase 2: Computing approximate farthest neighbors. Let the approximate
distance of a poing from p be the maximum distance among all projectiong of
onto the lined,.. Now let the approximate farthest neightétp, i, j, L) of p be

the pointg € L,; with maximum approximate distance frgmEachN (p, i, j, L)

can be computed in tim@(~y) by taking the farthest point from over all first
and last elements dﬁgjk with & = 1,...,~. Define and comput&/(p, i, j, R)
analogously. Hence the total time complexity of phase@(i$*n), as there are
O(~2n) triples of type(p, i, j). The error we make by using approximate farthest
neighbors is small:

Lemma 6.4.10 If p is any point inP, p;, the point inL;; farthest fromp andpr
the point inR;; farthest fronp, then

@) |ppe| < (1+r/24)-|pN(p,i,j,L)| and

(b) Ippr| < (1+K/24) - [pN(p,i, j, R)|.

Proof: Due to symmetry it suffices to check (a). If the algorithm dat se-
lect p;, as farthest neighbor it holds that for each of theorderings there is a
point farther fromp thanpy. Hencep; must lie within a symmetriQy-gon
whose edges are at distangV(p, i, j, L)| from p. This implies thatppr| <
DN (p, i, 4, L)|/ cos(n/(2)) < |[pN(p,i,j, )|/ cos(rr/8) usingy = [4/x].
Thus it remains to show thay cos(mx/8) < 1+ /24. Sincecosz > 1 — z2%/2
for any z, the claim is true ifl — 72x2/128 > 1/(1 + x/24). This inequality
holds for all0 < x < 1/2. O
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Phase 3: Testing pole candidates. Compute the WSPD faoP with separation
constantr. To be able to guaranteea + ¢)-approximation algorithm the value
of 7 will depend ore and« as follows:

1+e¢
T_8<1+5—(1+/£)(1+H/24)_1)'

Note that the above formula implies that there is a traddéseffveen the values
7 andk, which can be used to fine-tune which part of the algorithrmrdmutes
how much to the uncertainty and to the running time. Settargrfstances to
0.9¢ yields, fore small, 16/ + 15 < 7/8 < 32/ + 31, i.e.7 = ©(1/¢e). For
each pai( A, B) in the decomposition we select two arbitrary poiats A and
v € B. Letl,,) be the line through: andv. Find the linel; that minimizes
the angle betweeh andi(, ). Thatis, the ling; is a close approximation of
the direction of the line through andv. From above we have thatis divided
into v + 1 intervals of lengthd;/(y + 1). For eachj, 1 < j < ~, compute
min(|N (u, i, j, L)u| + |[oN (v, 1, j, R)|, |N (u, i, j, R)u| + |[vN(v,1, 4, L)|). The
smallest of thes® () values is saved, and is a close approximatiodiaf,, —
|uv|, which will be shown below.

The number of pairs in the WSPD @(72n), which implies that the total
running time of the central loop of this phase (lines 33—4RAlgorithm 4) is
O(y - 72n). Building the WSPD and computing,., takes an extr&(r%n +
nlogn) time. Thus the whole algorithm runs @(+3n + vy72n + ynlog n) time
and use®)(n logn + v?n + 72n) space. Setting = 0.9¢ yieldsy = O(E) and
7 = O(F) and thus the time and space complexities we claimed.

6.4.5 The proof of correctness for Theorem 6.4.8

It remains to prove that the diameter of the dipolar treewetompute is indeed
at most(1 + ) dmin-

From Lemma 6.4.6 we know that we will test a pair of paleandv for which
dia §4y < (1 4+ 8/7) dimin = W% dmin. The equality actually explains
our choice ofr. In this section we will prove that our algorithm always cartgs
a dipolar tree whose diameter is at most «)(1 + «/24) dia §,, and thus at
most(1 + €) dmin.

Consider the treg,,,,. For simplicity we rotate” such that the liné through
u andv is horizontal and: lies to the left ofv, as illustrated in Figure 6.12a. Let
d = |uv|. Our aim is to prove that there exists an orthogonal cut tplitssthe
point setP into two sets such that the tree obtained by conneatitmall points
to the left of the cut and connectingto all points to the right of the cut will
give a tree whose diameter i B+ «)-approximation oflia §,,,. Since the error
introduced by approximating the farthest neighbor distaris not more than a
factor of (1 + x/24) according to Lemma 6.4.10, this will prove the claim in the
previous paragraph.

Denote byC, and C, the circles with center at and with radius-, and
r. = 1y + Kz respectively, where = dia §,,, = 6 + r,, + r,. Denote byC, the
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Figure 6.12: A valid cut.

circle with center ab and with radius-,. Let s ands’ (¢t andt’) be two points on
C\ (C,) such that ifC,, (C,) andC, intersect, thes ands’ (¢t andt’) are the two
intersection points, where (t) lies aboves’ (¢, respectively). Otherwise, if’,
(C,) andC, do not intersect, then = s’ (t = t’) is the intersection of the line
segmenfu, v) andC,, (C,, respectively), see Figure 6.12a.

We say that a cut with a ling; is valid iff all points in P to the left ofi,
are contained irC;, and all points ofP to the right ofl,, are contained irC,.
A valid cut guarantees a dipolar tree whose diameter is at mesr, + r, =
(1+ k) - dia §yp.

We will prove that the algorithm above always considers advelit. For
simplicity we assume that,(§.,) > r,(8.,). We will show that there always
exists a markeb;; on l; such that cutting; orthogonally througtb;; is valid.
Actually it is enough to show that the two requirements bedoe valid for any
8.v. FOr a pointp, denote ther-coordinate and thg-coordinate op by p.z and
p.y, respectively. For simplicity we set= (0,0). We have

z 1 1

< —(tx—s.x), and

’7—1—1.(308217 -2

(i)

(i) ta ™ < t.x —s.x
" 2y 7 2(ru(§uv) + 70 (8uv))
The reason for this will now be explained. First we need tadesome additional
points. The reader is encouraged to study Figure 6.12 faual/description. Let
5= (sa,ry), 5 = (5a,—ry), T = (t.x,r,) andf = (t'.z,—r,). Leta be
the perpendicular bisector of the projectionssadndt on thez-axis and letr
be the orthogonal projection of the plane @anNow we can define; to be the
intersection point of the line&, 7(¢')) and(', 7()), ande, to be the intersection
point of the lines(?, 7(5')) and(#’, x(3)).

It now follows that any bisectdf that intersects the three line segme(ts ),
(¢r,¢r) and(,7'), will be a valid cut. This follows since all points to the left
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I will be connected ta: and all points to the right of will be connected ta,
and the diameter of that tree will, obviously, be bounded By(r, (§.,) + k2) +
r,(8uv) Which is a(1 4 x)-approximation oflia §,,,,.

From the algorithm we know that (a) there is a linsuch that/(l;, l(u,v)) <
7/(2v), and that (b) there arg orthogonal cuts of; that define equally many
partitions of P. The distance between two adjacent orthogonal cuts i3f at
mostz /(v + 1). This implies that the length of the largest intervaligp,, that
is not intersected by any of these orthogonal cuts is at most

1 z

cos 3= N4 1

Hence requirement (i) ensures that for evégry the distancdcic.| = (t.z —
s.z)/2 must be large enough to guarantee that there is an orthogatnafl/; that
intersects it.

An orthogonal cut of; has an angle of at least/2 — 7/(2v) to [, .. To
ensure that an orthogonal cutilpthat intersects the line segmefit,. also passes
betweerk and? and betwees’ and? it suffices to add requirement (ii).

It remains to prove the following lemma which implies thatéwerys,,,, there
is a valid orthogonal cut.

Lemma 6.4.11 For anyu,v € P (u # v) the trees,,, fulfills requirements (i)
and (ii).

Proof: The tree§,,,, can be characterized by the relationship of the two ratios

] 14+ rK/2
Ty + To '_1—/1/2'

We distinguish three cases: (@)< 1, (2)1 < a < F, and (3)a > F. For each
of these three cases we will show tljat fulfills the two requirements.

Case 1:Using the following two straight-forward equalitiesz? + s.y? = r?
and(d — s.z)? + s.y? = r2, we obtain that.z = (6% +r2 —r2)/(25). A similar
calculation fort.z yieldst.x = (6% + 72 — r2)/(26). Inserting these values gives
tao—s.x = (k*2% + 2k2r,)/(20). The fact thate < F allows us to further
simplify the expression far.z—s.z by using the following two expressions:

z 04Ty +ry T+ To 2 Tu 1—k/2

o0ty > ,and s TR
5 5 L ey S L S Ry )

From this we obtain that

" Kz [ Kz n 2ry S Kz
xXx—sr=—|—+4+— —.
2 1) 1)

This fulfills requirement (i) since

z 1 Kz
T \_<

1
7—&—1.005% 4 2

(t.x — s.x). (6.1)
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For requirement (i) note thatn 7 /(2v) < 2k tan7/16 < 2x/5. Sincex < 1/2
we getthat:/§ > 2/(1 + k/2) > 8/5. Combining this inequality, Equality 6.1,
and our assumption that, > r, shows that requirement (ii) is also fulfilled:

t.x —s.x L Kz <2ru+mz) AN 2K

2ry +70) ~ 46 “ 457 57

Tw + To

Case 2:In this case we argue in the same manner as in the previousldsisg
the fact that.z = r, andt.x = (62 + 12 — r2)/(2) yields

' S Kz [ Kz n 27y, - Kz
X —8xr =2 — | — e —.

2 \ ¢ ) 2
The rest of the proof is exactly as in case 1.

Case 3:The first requirement is already shown to be fulfilled sihae— s.z >
d —ry — 1y = Kz/2, hence it remains to show requirement (ii). We have

t.x — s.x 0— (ry + 1)
2ry +10) ~ 2(ry +70)

plugging in the values gives/(2 — ), which is at leas2x /5. The lemma fol-
lows. O

The lemma says that for every dipofe, v} there exists a line such that the
dipolar tree obtained by connecting all the points on one efd to » and all the
points on the opposite side t9is a(1 + «)-approximation of,,,,.

6.4.6 Putting things together
Combining grid- and WSPD-based approach yields a strongLd®Porder 5:

Theorem 6.4.12 A spanning tre” of P with dia 7 < (1 + 1/FE) dp can be
computed irD* (E5 + n) time usingO(E* + n) space.

Proof:  Applying Algorithm 4 to the set? C P of the O(E?) representative
points take(E3|R| + E|R|log |R|) time usingO(E?|R| + |R|log |R|) space
according to Theorem 6.4.8. Connecting the point8 inR to the poles adjacent
to their representative points yieldg A+ ¢)-approximation of the\IDdST of
P within the claimed time and space bounds as in Section 6¥hé.difference
is that now the grid cells must be slightly smaller in ordectonpensate for the
fact that we now approximate tAddDdST of R rather than compute it exactly. A
(14 ¢)-approximation of th&IDmST of P can be computed via the grid and an
exact algorithm of Ho et al. [H091] i®* (E? + n) time usingO(E? + n) space.
Of the two trees the one with smaller diameter id & ¢)-approximation of the
MDST of P. O
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6.5 Conclusions

On the one hand we have presented a new planar facility tocptbblem, the dis-
crete minimum-sum two-center problem that mediates betlee discrete two-
center problem and the minimum-diameter dipolar spanmée W\We have shown
that there is an algorithm that computes the correspondisgT in O(n? logn)
time and that a variant of this tree is a factor-4/3 approxiomeof the MDST. It
would be interesting to know whether there is a near quadtiatie algorithm for
the MSST that uses(n?) space.

On the other hand we have given four approximation schenmekdd/[DST.
The asymptotically fastest is a combination of a grid-baggatoach with an algo-
rithm that uses the well-separated pair decompositiomnitgutes ir0* (e =5 +n)
time a tree whose diameter is at mgst-<) times that of &IDST. Such an algo-
rithm is called a strong linear-time approximation schererder 5. Spriggs et
al. [Spr03] recently improved our result by giving a stroff@\S of order 3 whose
space consumption is linearinand does not depend enls order 3 optimal? Is
there an exact algorithm that is faster than Chan’s [ChnG2{Rere a non-trivial
lower bound on the computation time needed for the exHOST?

Our scheme also works for higher-dimensional point setsthieLrunning time
increases exponentially with the dimension. Linear-tipppraximation schemes
for the discrete two-center problem and M&ST can be constructed similarly.
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Chapter 7

Optimal spanners for
axis-aligned rectangles

A brief abstract of this chapter appeared as: Tetsuo Asaaok Bk Berg, Otfried
Cheong, Hazel Everett, Herman Haverkort, Naoki Katoh arekahder Wolff:
Optimal spanners for axis-aligned rectangles?iac. 20th European Workshop
on Computational Geometry (EWC&evilla, 2004, pages 97-100. Full text
submitted taComputational Geometry — Theory and Applications

Abstract. The dilation of a geometric graph is the maximum, over allrpai
of points in the graph, of the ratio of the Euclidean lengthtta shortest path
between them in the graph and their Euclidean distance. \ksider a gen-
eralized version of this notion, where the nodes of the graghnot points but
axis-parallel rectangles in the plane. The arcs in the graphhorizontal or ver-
tical segments connecting a pair of rectangles, and theade# measure we use
is the L, -distance. The dilation of a pair of points is then definedresléngth of
the shortest rectilinear path between them that stays withe union of the rect-
angles and the connecting segments, divided by theidistance. The dilation
of the graph is the maximum dilation over all pairs of pointghe union of the
rectangles.

We study the following problem: givennon-intersecting rectangles and a
graph describing which pairs of rectangles are to be cone@cive wish to place
the connecting segments such that the dilation is minimi¥eel obtain four re-
sults on this problem: (i) for arbitrary graphs, the problemNP-hard; (ii) for
trees, we can solve the problem by linear programming)gn?) variables and
constraints; (iii) for paths, we can solve the problem indim(n3 logn); (iv)
for rectangles sorted vertically along a path, the problean be solved i) (n?)
time, and a1 + ¢)-approximation can be computed in linear time.
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7.1 Introduction

Geometric networks arise frequently in our everyday lifead networks, tele-
phone networks, and computer networks are all examplesarhggic networks
that we use daily. They also play a role in disciplines suck1aSI design and
motion planning. Almost invariably, the purpose of the natkvis to provide a
connection between the nodes in the network. Often it isralels that the con-
nection through the network between any pair of nodes bévelashort. From
this viewpoint, one would ideally have a direct connecti@tween any pair of
nodes. This is usually infeasible due to the costs involsedine has to compro-
mise between the quality and the cost of the connections.

For two given nodes in a graph, the ratio of their distancehendraph and
their ‘direct’ distance is called thdilation or stretch factoffor that pair of nodes,
and the dilation of a graph is the maximum dilation over altpaf nodes. For
geometric networks, this is more precisely defined as fallolet S be a set of
n points (in the plane, say), and @te a graph with node sét Now the dilation
for a pair of point, ¢ is defined as the ratio of the length of the shortest pagh in
betweerp andq, and the length of the segmemt. (The length of a path is the
sum of the lengths of its edges.) Again, the dilatiogja$ the maximum dilation
over all pairs of points ir5. A graph with dilationt is called at-spanner Ideal
networks areé-spanners for smatlwith small cost.

Spanners were introduced by Peleg and Schaffer [Pel8%arcontext of
distributed computing, and by Chew [Che89] in the contextarhputational ge-
ometry. They have attracted much attention since—see #tarice the survey
by Eppstein [Epp00]. The cost of spanners can be measuredding to various
criteria. For example, it is sometimes defined as the numbedges (here the
goalis to find a spanner with(n) edges), or as the total weight of the edges (here
the goal is to find a spanner whose total weight is a constaestihe weight of a
minimum spanning tree). Additional properties, such asiding the maximum
degree or the diameter, have been considered as well.

We generalize the notion of spanners to geometric netwohcse/nodes are
rectangles rather than points. L&the a set of» non-intersecting, axis-parallel
rectangles and lef be a set of axis-parallel segments connecting pairs ofmecta
gles. For any two pointg, ¢ in the union of the rectangles, the dilation is now the
ratio of the length of the shortest rectilinear path in theveek betweerp andg
and theirL;-distance. Here a path in the network is a path that staysmfitie
union of the rectangles and the connecting segments. Tégodilof the network
is the maximum dilation over all paigs g. Again, our aim is to construct a net-
work whose dilation is small. To illustrate the concept, gim& one is given a
number of rectangular buildings, which have to be connebiefbotbridges. It
is quite frustrating if, to walk to a room opposite ones owanin an adjacent
building, one has to walk all the way to the end of a long cam;ithen along the
footbridge, and then back again along the corridor in thewobiuilding. Hence,
one would usually place the footbridge in the middle betwaaidings. Follow-
ing this analogy, we will call the rectangles in the inpuildingsfrom now on,
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and the connecting segmebtidges We call the underlying graph of the network
thebridge graph

The generalization we study introduces one important it difficulty in
the construction of a spanner: for points one only has todgeghich edges to
choose in the spanner, but for buildings, one also has taldetiereto place the
bridge between a given pair of buildings. It is the latterljjeon we focus on in
this paper: we assume the topology of the network (the brgtgph) is given,
and our only task is to place the bridges so as to minimize itagah.

Formally, our problem can be stated as follows: we are giveet& of axis-
parallel disjoint rectangles (buildings) in the plane, agirG with node setS,
and for each are of G a bridge regionA., an axis-aligned rectangle connecting
the two buildings. Buildings may degenerate to segmentomnt@ The bridge
graphg must only have arcs between buildings that can be connegtacbri-
zontal or vertical segment, and may not have multiple edgsops. The bridge
regions must be disjoint from each other and the buildings: gaal is to find a
set of horizontal or vertical bridges lying in the bridgeimets that has minimum
dilation.

Figure 7.1 shows a bridge graph (the bridge regions are dhaael a set of
possible bridges. Note that the bridge regidnsandA3 simply allow any bridge
between the two buildings, but bridge regidn has been chosen so as to avoid
intersectingss or the bridge betwees, andss.

Our results are as follows.

e In general, the problem is NP-hard.

o If the bridge graph is a tree, then the problem can be solved lryear
program withO(n?) variables and constraints.

o Ifthe bridge graph is a path, then the problem can be solvéxirf log n)
time.

¢ Ifthe bridge graph is a path and the buildings are sortedoadist along this
path, the problem can be solved in tir&n?). A (1 + ¢)-approximation
can be computed in linear time.

Ay

52

53
N (EX

S0

As L

Figure 7.1: A bridge graph and a bridge configuration
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7.2 The bridge graph is arbitrary

In this section we show that the bridge-placement problediidhard if the bridge
graph is allowed to be arbitrary. We prove this by a reductiom PARTITION.
The input to RRTITION is a setB of n positive integers, and the task is to decide
whetherB can be partitioned into two subsets of equal SURRTPTION is NP-
hard [Gry79, Problem SP12].

Theorem 7.2.11t is NP-hard to decide whether the bridges in a given bridge
graph om rectangular buildings can be placed such that the dilati@b mose.

Let B := {f,-..,Bn—1} be an instance of ARTITION. For0 < i < n, we
definea; := 3;/(23 < ;< Bj). Notethaty ., «; = 1/2, and thatB can
be partitioned equally if and only if«o, ..., a,—1} can be partitioned into two

subsets of sum /4. We create a bridge gragh(B) with 8n + 2 buildings, as
follows:

e for each0 < i < n, we have two point-shaped buildings, namély :=
(44,0) and@Q; := (4i + 2 — 2a;,0);

e foreach0 < ¢ < n, we have four segment-shaped buildings, nantgly=
{4i} x [1 -y, 1] andS; := {4i+2 —2q;} x [1 — o, 1], and their mirrored
imagesR, := {4i} x [-1,a; — 1] andS] := {4i+2 —2a;} x [-1,a; — 1];

e for each0 < ¢ < n, we have two point-shaped buildings, namely:=
(4 —1,1)andT} := (4 — 1, -1);

¢ we have two more point-shaped buildings, := (0,2n+3/4)andS’ ; :=
(0, —2n — 3/4), and two more segment buildings, := {4n} x [1,2n +
3/4] andR], := {4n} x [-2n — 3/4, —1].

The arcs inG(B) are as follows:

e for each0 < i < n, we have arc§P;, R;), (P, R;), (Qi,S:), (Q:,S)),
(R;i, Si), and(R;, S1);

e foreachd < i < n,we have arcéS;_1,T;), (T, R:), (Si_,,T}), (T}, R}),
and(T;,T));
e we have arc$S_1, Ro), (S" 1, R}), (Sn—1, Rn), (S!,_1, R.).

n—1»

Observe thatR;, S;) and (R}, S}) are the only bridges that can still be moved;
all other bridges are fixed by the geometry. The construdsoiiustrated in
Figure 7.2; the bridges to be placed are indicated as grayessg or rectangles.
For the sake of clarity, we chose different scales onthendy-axis.

The reduction can clearly be done in polynomial time. Théfeing lemma

now implies the theorem.

Lemma 7.2.2 The setB can be partitioned into two subsets of equal sum if and
only if the bridges irG(B) can be placed such that the dilation is at nost
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Figure 7.2: An instance of the bridge decision problem.

Proof: “If:" Suppose we can place the bridgesd{B) such that the dilation
is at most2. Then the dilation must be at moatfor any pair(P;, Q;), which
implies that either the bridg@R;, S;) must be placed in its bottommaost position
or (R}, S{) must be placed in its topmost position. Liedlenote the set of indices
for which the former holds, anfl the set of indices for which the latter holds.

Now considerS_; and the top vertex oR,,. The L,-distance between them
is 4n. The shortest path between thendifiB) cannot visit anyP; or @);, because
the length of such a path would be at le&st-2(2n+3/4) so its dilation would be
larger thar2. Hence, the shortest path must vi&§, So, T4, ..., Ry—1,Sp—1 In
order from left to right. Anyi € I induces an extra vertical distan2e;. Adding
the vertical distance betweeth ; and Ry and alongR,,, and the horizontal dis-
tance traversed, we get a total length of at Igdst ; (2cv;) + 2(2n — 1/4) + 4n.
Hence,) ;. ; ; < 1/4. A similar argument forS” ; and the bottom vertex of
Ry, shows thad ", _; «; < 1/4. Itfollows that] and/’ induce an equal partition
of B.

“Only if:” Suppose there is an equal partition 8f Then there are disjoint
sets of indiced and I’ with T U I" = {0,...,n — 1} such that) ,_; o; =
Y ier @i = 1/4. Fori € I place the bridgesR;, S;) and (R;,S;) in their
bottommost position, and for € I’ place the bridge$R;, S;) and (R}, S) in
their topmost position.

Consider two pointg, ¢, each lying on a building, with, < ¢,. If p, = ¢,
theng can be reached without any detour. Otherwise, we distihguis cases.

e The first case is that or ¢ (or both) have non-zerg-coordinate. Assume
without loss of generality that, > 0 or thatp, = 0 andg, > 0. Consider
the path that goes up or down frgmuntil reachingy = 1, then goes to the
right while staying above the-axis until thexz-coordinate of; is reached,
and then goes straight down or upgto
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If p=5_; andq € R,, then the length of the path is bounded by

An+> " (205) +2(2n — 1/4) = 8n.
iel

Since|p, — ¢.| = 4n, the dilation is at mos2.
If p#£S_10rq ¢ R,, the length of the path is bounded by

|pm_Qm|+2Zai+|1_py|+|1_Qy| = |pm_Qm|+1/2+|1_py|+|1_Qy|'
el

If p, andg, are not both< 1, then|1 —p,|+|1—q,| = |p, — g, |, Otherwise,
11— py+ 11— qy| = [py — ay| + 2|1 —max(py, qy)| < |py —gqy[ +1/2.1n

both cases the length of the path is at mpst— ¢.| + [p, — ¢,| + 1, and
from |p, — q.| > 1 it follows that the dilation is at mogt.

e The second case is thaf = ¢, = 0. Now the vertical distance traversed
by the shortest pathis atmast-» ., (2a;) = 5/2. Hence, ifjp, — q.| >
5/2, the dilation is at most 2. Bup, — ¢,| < 5/2 implies thatp = P,
andq = Q; for some0 < i < n orthatp = Q; andq = P, for some
0 < i < n. In the former case the dilation is 2 because eilfer, S;) is
bottommost of R}, S}) is topmost. In the latter case the dilation is less than
2 because the vertical distance traversed is exactly 2pand ¢,| > 2.

O

7.3 The bridge graph is a tree

In this section we will show that the bridge-placement peoblcan be solved
by a linear program if the bridge graph is a tree. We start lphucing some
terminology and notation, and by proving some basic lemmas.

As before, we denote the bridge graphdy Any set of bridges realizing
will be called aconfiguration

Given a configuratiorB and two pointsp and ¢ in the union of all build-
ings, we user(p, q, B) to denote the family of rectilinear shortest paths from
to ¢ within the configuration (that is, paths whose links lie desibuildings or
on bridges). The paths of this family are essentially theesaimey differ only
in how they connect two points inside the same building, andis will simply
speak abouhe unique pathr(p, ¢, B). Thedilation of the pathr = 7 (p, ¢, B) is
dil(m) := |7|/||pql|, where|r| is the total length ofr and||pq|| is the L,-distance
of p andgq. Figure 7.3 shows a configuration and an example path.

Thedilation dil(B) of a configurationB is defined as the maximum dilation
of any path with respect t&. Our aim is to find a configuration of minimum
dilation. We first characterize pairs of points that are oesjible for the dilation
of a given configuration.
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Figure 7.3 Figure 7.4 Figure 7.5

Lemma 7.3.1 Leto be the dilation of a configuratioR whose underlying graph
is a tree. Then there are pointandq with dil(x(p, q, B)) = o such that the
closed bounding box gf andq does not contain any point of a building other
thanp andq, and at least one of the pointsandyq is a building corner.

Proof: Among all pairs of pointgp, ¢) that have maximum dilation with respect
to B, consider the subset of pairs whely®|| is minimum. Choose a paip, q)
from this subset whergis lexicographically smallest. Létbe the closed bound-
ing box of p andg, and assume there is a point [ distinct fromp andgq that
belongs to a building. By our choice ¢f, ¢), we haver(p,r, B)| < o||pr|| and

|7 (r,q, B)| < ollrq||. Sincer € 3 we have||pq|| = ||pr]| + ||r¢||. Combining
with the triangle inequality we obtain

|7(p,q,B)| < |n(p,r, B)| + |n(r,q, B)| <
allpr|l + ollrql| = ollpql| = |7(p, g, B)|,

a contradiction, so no such poinge g exists.

It immediately follows thap andq are on the boundary of their buildings. It
remains to prove that at least one of them is a building corAssume to the
contrary that both are on the interior of a building edge. mbé&herp and g
have the same-coordinate and lie on the top and bottom edge of their bugslj
or they have the samg-coordinate and lie on the left and right edge of their
buildings. We discuss the first case, the second case isggnedoClearly, moving
bothp andq the same distance to the left or right does not chdjpgé. But what
about|w(p, q, B)|? Let/ be the vertical line through andg, and lete and f be
the points wherer(p, ¢, B) leaves the building containingandg, respectively.
If e andf lie on opposite sides dfas in Figure 7.4, we can mowyeandg slightly
to the left without changinglil(w(p, ¢, B)), a contradiction to the assumption
thatp is lexicographically smallest. It follows thatand f lie on the same side
of ¢ (including ¢ itself), and so|x(p, ¢, B)| increases if we movg andq into
the opposite direction, a contradiction to the assumptiat dil(=(p, ¢, B)) is
maximal. O

A point pair (p, ¢) as in the lemma—its bounding box contains no other point of
any building and at least one pfandq is a building corner—will be called a
visible pai—see Figure 7.5 for examples. We denote the set of all vigiales
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by V. Note that the second statement of the lemma does not hdheiié tare
cycles in the bridge graph—the maximum dilation may occinwken two points
in the interior of building edges, as in Figure 7.6.

Lemma 7.3.2 For any set of buildings, there are at moét(n?) visible pairs
and they involve at mod2n points. These points can be compute®im logn)
time.

Proof: Clearly there are at moé(n?) visible pairs where both points are build-
ing corners. These pairs involve only the at mbsbuilding corners. Consider a
visible pair(p, ¢) where onlyp is a building corner. Themcan be found by shoot-
ing a vertical or horizontal ray from until it hits another building. It follows that
for each building cornep there are at most two choices fgrso there are at most
8n such visible pairs, and at mast candidates for non-corner points that can be
involved in a visible pair. They can be foundd@n log n) time by computing a
vertical and a horizontal decomposition of the set of buiddi[Brg97KOS]. O

Lemmas 7.3.1 and 7.3.2 allow us to compute the dilation ofargtonfiguration
efficiently. The quadratic bound is tight: even if the bridgaph is a path, there
can beQ(n?) visible pairs.

Given a bridge grap§, our goal is to minimize

max dil(w(p,q, B
nax (7(p.q, B))

over all configuration$3 realizingG. We will now reformulate this problem as a
linear program.

Theorem 7.3.3 If the bridge graphg is a tree, then a placement of the bridges
that minimizes the dilation can be computed by solving adlingrogram with
O(n?) variables and constraints, wherds the number of bridges in the bridge
graph.

Proof: For each edge of G, we introduce a variabl&, specifying the position
of the corresponding bridgeX. is the z-coordinate of a vertical bridge or the
y-coordinate of a horizontal bridge. We also introduce aaldeZ. Our linear
program will be such that a variable assignment is feadillied only if the bridge
assignment prescribed by th& is a configuration realizing with dilation < Z.
Minimizing Z will then solve the bridge-placement problem.

We will need a number of extra variables. We first define a setodrits U
by taking all points involved in a visible pair, as well as htidge endpoints.
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By Lemma 7.3.2, the size d¥ is O(n). Some of the points itV are of the
form (constcons) (namely the points in a visible pair), some are of the form
(const X.) (the endpoints of a horizontal bridge), and some are of the fo
(X.,cons) (the endpoints of a vertical bridge). For each pair of points)
from U that lie in the same building, we introduce an extra varidblg.

We can now describe the linear program. For eAchwe need two simple
constraints of the fornX. > constand X, < const ensuring that the bridge
indeed lies in the bridge region. For ea£h,,, we add constraints enforcing
Dy = |lwv||, as follows. Letu = (2y,y.), v = (x4,y,) (recall that each
coordinate is either a constant, or one of the varialllgfor some edge). Then
we add the constraints:

Duy =2 Tu—Ty+Yu— Yo
Duy =2 Ty —ZTu+Yu— Yo
Dyy 2 ZTu—Ty+Yv — Yu
Dyy 2 Ty — Ty + Yo — Yu

Clearly, these four constraints together guaranteelthat> ||uv|].

Finally, we introduce one constraint for each visible pairg) € V. Let
bl(p, q) be the total length of all bridges traversedty, ¢, B). Sinceg is a tree,
the buildings and bridges traversedbfp, ¢, B) are independent of the configu-
ration, and sdl(p, q) is a constant. We can now write

m(p,q, B)| = bl(p,q) + > uv],

where the sum is over the entry and exit pointand v of = (p, ¢, B) for each
building traversed. Note that v € U, andu andv lie in the same building. We
introduce the constraint

We now argue that if a variable assignment is feasible inlitésgr program, then
the bridge assignment prescribed by tkig is a configuration realizing with
dilation < Z. Indeed, consider a visible pdjp, ¢). We have

m(p,q, B)| = bl(p.q) + Y _ uv| < bl(p,q) + Y _ Duw < Z - ||pql,

and sadil(w(p, ¢, B)) < Z.

On the other hand, assume there is a configurdiioralizingg. Let X, be
the placement of the bridgein B, let D,,,, = |Juv||, and letZ be the dilation
of B. Itis now easy to see that this variable assignment is flEasib

It follows that the bridge-placement problem can be solwedinimizing Z
with respect to the linear programme described. The numbearnables and
constraints ig)(n?). a
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7.4 The bridge graph is a path

In the previous section we have given a linear program fobtiage-placement
problem for the case where the bridge graph is a tree. Linemrams can be
solved in practice, and for integer coefficients, intepoint methods can solve
them in time polynomial in the bit-complexity of the input §k84]. It is not
known, however, if they can be solved in polynomial time oa teal RAM, the
standard model of computational geometry. In this sectiangive polynomial
time algorithms for the case where the bridge graph is a path.

Since the bridge grapé is a path, we can number the buildings and bridges
so that bridgey; connects buildings;_; ands;, for1 < ¢ < n (so there are
n + 1 buildings andn bridges). Before we continue, we need to introduce some
more terminology. We consider a path= 7 (p, ¢, B) to be oriented fronp to q.
After traversing a bridgé, the path can continue straight on to traverse the next
bridged’ if b andd’ are collinear. In all other cases, it has to turn.

Given a pathr, alink ¢ of 7 is a maximal straight segment of the path. A link
can contain more than one bridge if they are collinear. Famge, in Figure 7.7
there is a link containing; andb,, and another link containinig, by, andbyg.

Figure 7.7: U-turns and their outer sides

The pathr turns at both ends of a link (except for the first and last linkhe
link is aright U-turn if 7 turns right before and after the link. Keft U-turn
is defined symmetrically. In Figure 7.7, the links contagioridges(by, b2),
(b4, bs), andby 5 are right U-turns, while the links containirbg, (bs, bg, b10), b11,
and(by3, b14) are left U-turns. Note that there can be U-turns that do notaio
any bridges, as the link of inside buildingsg in Figure 7.7.

Theinner sideandouter sideof a U-turn are rectangular regions infinite on
one side, and bounded by the line supporting the link andibdimhes orthogonal
to it through the first and last points of the link. The outeleslies locally to the
left of a right U-turn, or to the right of a left U-turn, the ianside lies locally to
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the right of a right U-turn or to the left of a left U-turn. Indtire 7.7, the outer
sides of all U-turns are shaded.

U-turns are the links of a path that determine its dilatios ttee following
lemma shows.

Lemma 7.4.1 Let B and B’ be configurations(p, q) a visible pair, andr :=
7(p,q, B) andn’ .= 7(p,q, B') the paths between andq with respect to the
two configurations. I8il(n’") < dil(w) then there exists a U-turhcontaining
bi...b; of w such that the corresponding bridggs. .., b, of B’ lie strictly on
the inner side of.

Proof: For each U-turr? of =, shade the outer side éf as in Figure 7.7. It
is easy to see that is a shortest rectilinear path fromto ¢ that visits all the
shaded regions in order. If the claim were not true, themwould also visit all
these regions in order, and d| > ||, a contradiction. O

7.4.1 The decision problem

We will give an algorithm that takes as input the set of buigdisg, . . ., s, and
a real number > 1, and computes a configuratid® with dil(B) < o, or
determines that no such configuration exists.

The algorithm computes setsy, I, ..., I,, wherel; is a set of possible
bridges between,; | ands;. The sets are defined recursively as follows. Assume
thatI,...,I;_1 have already been defined. For each visible faijr) with
D € U;;E s; andg € s; we definel(p, ¢) as the set of bridgels connecting
s;—1 ands; such that the following holds: there is a set of bridges I, bs €
Iy, ...,bi—1 € I;_;1 such thadil(w(p, ¢, (b1,...,b;))) < o. Finally, I; is the
intersection of alll (p, q).

Note that for each visible pafp, ¢) we can choose the bridgesin ..., I;_;
independently. This makes it possible to compltefficiently, as we will see
below. On the other hand, it implies that not every sequemd®idges chosen
from the sets will be a configuration with dilation at mest-our main lemma
will be to show that such a sequence does indeed exist.

The opposite direction is nearly trivial: if a configuratiarnth dilation at
mosto exists, it can be found in the sets we constructed, as we shaw n

Lemma7.4.2LetB = (by,bo,...,b,) be a configuration such that ¢ I, for
somei. Thendil(B) > o.

Proof: Let i be the smallest index with; ¢ I;. Sinceb; ¢ I;, there exists
a visible pair(p, ¢) with p € s;, j < i, andg € s; such that for any set of

bridges chosen frond, ..., I;_; the path betweep andq has dilation larger
thano. Since by our choice of we haveb, € I for & < ¢, we have indeed
dil(7(p, ¢, B)) > o. O

We first argue that the sefscan be represented and managed easily.
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Lemma 7.4.3 Letl, I, ..., I, be defined as above. Then theoordinatesy-
coordinates) of the bridges in each set form an interval.

Proof: It is sufficient to show that the sef§p, q) are intervals. Consider a
visible pair(p, ¢) with p € s; andg € s;. Without loss of generality, assume
the bridges in/(p, q) to be vertical. Take three bridgesb, ¢ with z-coordinates
ay < by < ¢z anda, c € I(p,q). We will show thath € I(p, q).

Due to symmetry, we can assumg > c,. Sincea € I(p,q), a pathr =
m(p,q, (b1,...,bi—1,a)) exists (fat gray in Figure 7.8) withil(7) < o that uses
bridgesb; € I,...,b;—1 € I;_1. Now we can exchange the part offrom
wherer entersa to wherer reacheg by a piece that usdsinstead ofa (dashed
black in Figure 7.8). This new path is at most as longrasvhich shows that

b e I(p,q) O
S; q
al bj ¢
™
Sj 2 o
Figure 7.8: Proof of Lemma 7.4.3 Figure 7.9: Proof of Lemma 7.4.4.
Once we knowy, .. ., I,,, we can recursively compute a configuration with dila-

tion at mosts. Choose an arbitrary bridge, € I,,. If bridgesb,_1,b,_2, ...,
b;+1 have been computed, choose a bridge I; whose distance from,, 1 is
minimal. Sincel; is an “interval of bridges”, this implies that eitherandb; 1
are collinear, ob; is one of the extreme bridges ). We now prove that this
approach is correct.

Lemma7.4.4 Letl,..., I, be given as defined above. A configurati®mwith
dilationdil(B) < o exists if and only ifl,, # 0. If it exists, it can be computed
in O(n) time from the intervals.

Proof: The “only if” part follows from Lemma 7.4.2. We show the “if"got by
proving that the configuratioB® = (b4, ..., b,) defined above has dilatioq o.
Since this configuration can clearly be computed in lingaetfrom the intervals,
the last statement of the lemma will follow at the same time.

Assume thatlil(B) > o. Then there is a visible paip, ¢), such that the
dilation dil(w(p, ¢, B)) > o. Letw = = (p, ¢, B), and lets,,, s, be the buildings
containingp and ¢. Without loss of generality we can assume< ¢. Since
b, € I, there is a sequence of bridgés. .., b;_; with b}, € I, such that the
pathn’ = w(p, q, (b}, ...,b;_1,b)) has dilation at most.

We havedil(n’) < o < dil(7). By Lemma 7.4.1 there is a U-turh =
(bi, - .., b;) of w (without loss of generality assumed to be a left U-turn) sthett
all the bridged;, ..., b, lie strictly to the left of¢, see Figure 7.9.
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The last bridge of bothr and#’ is b;, soj < t. It follows thatw passes
throughb; 1. Sincel is a left U-turn, the bridgé;, is strictly to the left ofb;.
By definition ofb;, however, this implies that; is the left endpoint off;, and
b & 1;, a contradiction. a

Given a pointp in a buildings,,, we can define a configuratidB? that is, in a
sense, optimal fop by choosing bridges], . . ., b2 as follows. Fork < u, choose
an arbitrary bridgé; € I,. Choose bridgé! _ , as close as possible jo The

remaining bridges are chosen recursively, by choosfhg I, to be as close
to by _, as possible. Letn! denote the endpoint @f on the buildings;. The

following lemma shows thaBP? is indeed optimal fop.

Lemma 7.4.5 Letintervalsl,, ..., I, be as defined above, [ek s, andg € s,
with u < t. Furthermore, leB = (b1,...,b,) be a configuration with; € I;
fori < t, and letB’ be the configuratiofby, ... by, b} 1, ..., b0_1,bs,... by).
Thendil(p, ¢, B") < dil(p, ¢, B).

Proof: Letw = n(p, ¢, B), andn’ = n(p, ¢, B"). Assume thadlil(n’) > dil(r).
By Lemma 7.4.1 there is then a U-tutn= (b7, ...,b}) of 7’ (without loss of
generality assumed to be a left U-turn) such that the cooredipg bridges ofr
lie strictly to the left of¢. Sincel is a left U-turn, the bridgé?_, (or the pointp,
if i — 1 = u) lies to the left oft?. The definition oft? implies thath? is then the
leftmost bridge inl;, a contradiction with; € I;. O

The following lemma shows that optimal paths are helpfulamputing the in-
tervalsz;.

Lemma7.4.6 Letp € sy, q € s;, Withu < i — 1. The intervall (p,q) can be
computed in constant timetf_, and|x(p, mY_,, B?)| are known.

Proof: Recall that/(p,q) is defined as the set of all bridgés connecting
s;—1 ands;, such that there is a set of bridges € 11, b, € I, ...,b;_1 €
I;,—1 with dil(7(p, g, (b1,...,b;))) < o. By Lemma 7.4.5 this is equivalent to
dil(m(p, g, (b),05,....0Y_1,b;))) < o. This path coincides with (p, ¢, B?) up
to and including bridgé?_,, which is the pathr(p, m?_,, B?). Since the length
of this path is known, we can compukép, ¢) in constant time. O

Lemma 7.4.7 The intervaldy, . . ., I,, defined above can be computedifin?)
time andO(n) space.

Proof: Let P denote the set of all building corners and all pointsuch that
there is a visible paifp, ¢) with p € s,, ¢ € s¢, andu < t. By Lemma 7.3.2,
P contains at most2n points and it can be computedd(n logn) time.

For each buildings;, we create a list of visible pair®, ¢) with ¢ € s, and
pE Ufj:ll s, such that not botlp andq are building corners. This can be done
during the same computation.
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The computation then proceedsistages, with stagecomputing interval’;.
Throughout, we maintain for each pomt P the bridge)’, as well as the length
of the pathr(p, m?, BP).

Consider stage. We compute the intervalB(p, ¢), for all pairs(p, ¢) with
p € UL;IO sy andq € s; that are either visible pairs or where bgttandq are
building corners. (This avoids the need to precompute aore £ (n?) visible
pairs.) Note that all the poingsappearing in such pairs are ity and so there are
at mostl2n such pairs.

By Lemma 7.4.6, it takes constant time to compl(te ¢) using the informa-
tion from the previous stage. We can determifi@nd update the stored length
for m(p, m¥, BP) in constant time as well.

It takesO(n) time to compute the intersection interva| so the total time
spent per stage i9(n). |

Lemmas 7.4.7 and 7.4.4 imply the following theorem.

Theorem 7.4.8 Given a bridge grap§i on a set of + 1 buildings that is a path
and a real number > 1, we can in timeO(n?) compute a configuratiofs
realizingG with dil(B) < o or determine that no such configuration exists.

It seems hard to improve this result when there@fe?) visible pairs that could
determine the dilation. In fact, we do not even know how tadea o(n?) time
whether agivenconfiguration has dilatiok o.

If the number of visible pairs of the given set of buildingsig?/ logn), itis
possible to do better. The difficulty is that the size of thiel3és still linear, and
we cannot maintai? for all pointsp € P explicitly. Instead, we stor&’ and
|7 (p,m?, BP)| in data structures that allow us to update them efficientlg.\Will
need the simple data structure described in the followingie.

Lemma 7.4.9 There is a data structure that storesreal numbersi, . . ., an,
can be built in timeD(m), and supports the following operations@{log m)
time:

e givenanindex € {1,...,m}, returna;;

e given two indicesj’,j” € {1,...,m} and a real numbdr, replace the
value ofa; bya; + b forall j' < j < j”.

Proof: The data structure is basically a segment tree [Brg97KQSk d bal-
anced binary tree, whose leaves correspond to the indlices, m in order. Each
nodev of the tree contains a real numidgr and the value o; for a leafy is the
sum ofb,, over the nodes on the path from the roojt&learly it can be returned
intime O(log m). For the last operation, we find all the nodesf the tree whose
descendents’ indices are in the inter{gl j”], but where this statement is not
true for the parent, and addo b,,. O

Let againA; be the bridge region connecting_; ands;. Letb andd’ be two
bridges inA;, and consider them directed frasm ; to s;. We letb < b’ if and
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only if b lies left of b’. Now let P be the set of points defined in Lemma 7.4.7,
and letP; := PN U;-:o sj. Consider the union of all rectangles and all bridge
regions. This is a single rectilinear polygon. We order thim{s of P along the
boundary of this polygon, in counter-clockwise order @t@rand ending o,
(note that there are no points Bfin s,,) and denote this order again by

Lemma7.4.10 Letp,p’ € P,_y. If b¥ < bf/ thenp < p'.
Proof: If p’ < pwhilebd? < bf,, then the paths(p, m!, B?) andr(p/, mp,, Br')

%

have to cross, which is impossible. O

Theorem 7.4.11 Given a bridge grapg§ on a set of. + 1 buildings that is a path,
and a real number > 1, we can in timeD(k log n) compute a configuratioB
realizingG with dil(B) < o or determine that no such configuration exists, where
k is the number of visible pairs.

Proof: It is sufficient to show how to compute the intervdls We start by
computing all visible pairs. This can be done in tidg: log n) (note that: > n),
by computing both vertical and horizontal decompositioBsgp7KOS], and a
modified version of the algorithm for reporting all direcsiility pairs by de
Berg et al. [Brg92]. For each building we build a list of visible pairgp, ¢) with
q € sgandp € P,_.

The algorithm proceeds againsinstages, computing in stagei. We main-
tain two data structures? (paths) and3 (bridges). P is the data structure of
Lemma 7.4.9. It stores for eaghe P a valuea,, with the points sorted by.

If p € s, thena, = 0 up to stageu + 1, anda, = |7(p,m}_,, B?)| when
stagel > u + 2 is about to startB3 is a dictionary. At the beginning of stageit
stores all the bridgelg’_,, for p € P,_», in the order<. A bridge shared by sev-
eral points is only stored once. For each bridgee store ther- or y-coordinate,
and two point®’, p” € P,_, such that? ; = bifandonlyifp’ < p < p”. This
is possible by Lemma 7.4.10.

In stagei, we retrieve the list of visible pair&, ¢q) with ¢ € s;. For each
pair, we computd (p,q). If p € s;_1, this is done directly, in constant time.
Otherwisep € P,_,, and we computd(p, ¢) from b?_, and|x(p,m?_,, B?)]
in constant time by Lemma 7.4.6. We can find the britlgg in O(log n) time
in B—by Lemma 7.4.1@ is sorted by points as well as by bridges. The value
|m(p, m_,, BP)| is stored inP. It follows that the total time, over all stages, for
this computation i$)(k logn).

It remains to discuss the updating Bfand B to prepare them for the next
stage. Let's first discusB. Consider the interval;_,. The part ofl;_; that
continues straight on int§, doesn’t need to be touched. The bridges, on the
left or right of I, _; that cannot continue straight on (all bridges, if the orion
of I;_; andI; is different) are removed, and replaced by bridges on the etlf.

In addition, we insert new bridges for alle P N s;. This can be done in time
O(dlogn), whered is the number of bridges being removed and created. We can
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charge the cost of removing a bridge to its creation. Sineentimber of bridges
created during the course of the algorithmi# + 2n = O(n), the total time for
thisisO(nlogn).

Finally, we discuss the updating @f. For all the bridges of;_; that go
straight on tol;, we need to increase the path length by the same value. By
Lemma 7.4.10, they correspond to a single interval of pah#3, and so this can
be done in time(log n). For each bridge that has been removed, we increase the
path length for its interval of points, in tim@(log n) per bridge removed. Finally,
for each poinp € PNs; inserted in this stage, we set its path length to the correct
value. The total cost of updating¥(n logn) according to Lemma 7.4.9. O

7.4.2 The optimization problem

We can now solve the original optimization problem using Mdg’s parametric
search [Meg83].

Theorem 7.4.12 Given a bridge graph on a setwft 1 buildings that is a path,
we can compute a configuration with the optimal dilation meiO(n? logn), or
in time O(nk log® n), wherek is the number of visible pairs.

Proof: We run the algorithm of Lemma 7.4.7 with inpat, wheres* is the
optimal dilation. Sincer* is not known, we parameterize all coordinates used by
the decision algorithm in the formo + b. One can verify that all calculations
performed by the algorithm are linear functions on the coats, and any linear
combination of expressions of the fora + b is again of this form.

Whenever the algorithm needs to compare two “numbersf-b anda’c + ¥,
we compute the value, whereaoy + b = a’og + b’. We then run the decision
algorithm of Theorem 7.4.8 usingy, which tells us whethes* < og. The
answer implies which of the two “numbers” is larger, and tlagametrized al-
gorithm can proceed. Note thatdf* = o(, the outcome of the comparison is
arbitrary—inspection of the algorithm shows that this is aproblemt

When the parametrized algorithm finishes, it has computetiaf #on-empty
intervalsiy, ..., I, since a configuration with dilatiogt o* exists. Since the
outcome of the parametrized algorithm changessfet o*, the algorithm must
have made a comparison against It follows thato* is the smallest, tested
during the algorithm that resulted in a positive answer efdbcision algorithm.

During the algorithm we maintain an interval of dilation weé in which the
optimal value is known to lie. Whenever a comparison reguamgsswering-* <
oo for a oy outside this interval, we can immediately return the cdrestswer
without running the decision algorithm. At the end of thegraetrized algorithm,
we can report the upper end of the intervabds

1The reader may wonder why we do not simply augment the algoriif Theorem 7.4.8 to report
whether a configuration with dilation strictly less tharexists. This is indeed possible, for instance
by allowing open and half-open intervalg, but seems to be more complex than the observation that
tests for equality are not actually needed.
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Following Megiddo [Meg83], we organize the parametric aitlon as a “par-
allel” algorithm, using batches of independent computetioRecall that the al-
gorithm of Lemma 7.4.7 proceeds instages, with stagé computing!(p, q)
for O(n) pairs (p,q) with ¢ € s;. The computations for each pair are inde-
pendent, and take tim@(1). It follows that we can implement them in total
time O(n log n) plusO(log n) calls to the decision algorithm [Meg83].

Forming the intersectiom; is equivalent to the computation of a maximum
and a minimum ofn “numbers” of the formac + b. Consider the “number”
ao + b as the liney = ax + b. We compute the upper and lower envelope of
all n lines, in timeO(n logn) [Brg97KOS]. We can now perform binary search
on the vertices of the envelopes, usifiglog n) calls to the decision algorithm,
to determine between which two vertices falls. This allows us to return the
largest and smallest “number.”

Each stage takes tim@(nlogn) plus O(logn) calls to the decision algo-
rithm, so the total running time i9(n?3 logn). We can also use Theorem 7.4.11
to obtain total running timeé(nk log® n). O

7.4.3 The case of vertically sorted buildings

There is one interesting case where we can prove that thengrO(n) visible
pairs, namely when the buildings are sorted vertically gltre path, that is, all
bridges are directed vertically upwards.

Lemma 7.4.13 If the bridge graph is a path, and thet 1 buildings are sorted
vertically along the path, then there are at mo6t) visible pairs.

Proof: A visible pair appears in the vertical decomposition of teeaf build-
ings. O

Theorem 7.4.11 now leads to &X{n log n)-time decision algorithm for this case.
Itis possible to do even better, as we will show in this sectio

The improvement is based on a bracket structure formed byisige pairs.
Consider a visible paifp, ¢). The segmenjiq is vertical. Without loss of general-
ity, let p be its bottom end. The patt(p, ¢, B) is y-monotone, and since it cannot
intersectpg, it lies either completely to the left or to the right p§. We call a
visible pair (p, ¢) where the path lies completely to the rightaf a left-hand
visible pair, otherwise aght-handvisible pair.

Lemma 7.4.14 Given a set ofy + 1 vertically sorted buildings as defined above,
and two left-hand visible pair®, q) and(p’,q'), withp € s, q € 3¢, p’ € Su,

q € sp. Assume that. < u’. Then either the pairs are independent ardv’,
or(p, q) is bracketed aroun@’, ¢'), that is,p,, < p, andu < v’ < t' < t.

Proof: If v/ < t, then the buildings,/ lies completely to the right of the seg-
mentpg, and so we have, < p,. The pathr(p’, ¢, B) lies completely to the
right of the segment’¢’, and so it cannot reagtbefore reaching;.. Thisimplies
u<u <t <t O
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In a left-hand visible paifp, q), eitherp is the top-left corner of a building and

is on a bottom edge of a building, giis a bottom-left corner, anglis on the top
edge of a building. Lemma 7.4.14 leads to a simple algorithootmpute all left-
hand visible pairs in linear time. (The same procedure, vjfithosite orientation,
can be used to find all right-hand visible pairs.) All we nezd stack. In stagg
we repeatedly check whethgg > ¢, wherep is the top element of the stack
andq is the bottom-left corner of;,. While that is true, we repofip, (ps, q,))

as a visible pair and pop from the stack. Finally, either the stack is empty, or
ps < ¢z In the latter case, we repdity,, py ), ¢) as a visible pair. Finally, we
push the top-left corner of; onto the stack, and proceed to the next stage.

Theorem 7.4.15 Given a set ofy + 1 vertically sorted buildings as defined above
and a real number > 1. We can compute i@ (n) time a configuratiorB with
dilationdil(B) < o, or determine that none exists.

Proof: Again, we compute the intervalg, ..., I, in n stages. The visible
pairs are computed during the process, using a “left-sidekstfor the top-left
corners and a “right-side stack” for the top-right corndtairing the course of
computation, we again maintain two data structd?eendB to store path lengths
and optimal bridges. Define the index of the top-left corrfdndlding s, to be
—(u + 1), and the index of the top-right corner af to beu + 1.

P is implemented as a doubly-linked list. In this list, we sttre path lengths
|7 (p, m¥, BP)| for all pointsp currently in the two stacks. The points are ordered
by increasing index as defined above (which is the same asilngdeem by the
relation< as defined before). The points on top of the stacks are thuslfat
the ends of the list. We store the path lengths by storinglifierencebetween
two adjacent values on the edges of the list. Only for the dinst the last point
in the list, we storer(p, m?, BP)| explicitly. Note that we do not explicitly store
path lengths for pointg that are not the corner of a building. However, these path
lengths can be derived in constant time from path lengthisatestored irP:
if p on a building with top-left corner is part of a left-hand visible pair, then
|7 (p, m?, BP)| is simply |z (l,m}, BY)| — |pl|; similarly, if p is part of a right-
hand visible pair, we can derive the path length from that tfaright corner.
Note that we can easily increase the path lengths for anvaitef points in?
in constant time by adjusting two difference or end valuesyided we have
pointers to the first and the last point of the interval.

B stores the optimal bridgdg for all pointsp currently in the two stacks,
and is implemented as a doubly-linked list as well. As befareridge shared by
several points is stored only once. With each bridge, wedta index of the first
and last point using it. For each point index, we store a poittt the node of?
that represents it.

A stage is now implemented as follows:

1. Using the two stacks, compute left-hand and right-hasibhd pairs. Ac-
cessing the leftmost and rightmost nodedSimnd P, we can obtain path
length values and bridge positions for these points. Wids¢hvalues, we
compute the new intervdj.
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2. Remove from the ends &fall nodes for points popped from the two stacks.
Remove from the ends @& all bridges that are not used by any point any-
more (these bridges can be identified by comparing the infléxegpoint
on top of the stack with the indices of the points using thdde). Adjust
the interval of points used by the leftmost and rightmostidpei to end at
the points on the top of the stacks.

3. For each bridgé in 1;_; that cannot go straight int§;, update the path
lengths for the corresponding interval of points/in(using the indices of
the points forh and the pointers for these indices ).

4. Finally, remove all these bridges, updatéirhe interval of all points that
use the remaining bridges (the bridges that do continuigbtriato 7;), add
the top-left and top-right corner ef_; to P and add new bridges at the left
and right margin of/;, set the point interval of these bridges to the union of
what was just deleted and the new corner points, and pusphkieft and
top-right corner of; on the two stacks.

Observe that all queries and update®3adindP are done at the ends of the lists
and can be done in constant time each. Only updating patithieimyP requires
access to an edge in the interior of the list, but this edg®usd in constant
time through the indices stored with the correspondingdzialt the end oB. As
before, the removal of bridges is charged to their creadémthus spend constant
time per stage, plus constant time per visible pair. O

Parametric search now leads directly to the following teear Unlike in Theo-
rem 7.4.12, we make no attempt to parallelize the paramadggarithm.

Theorem 7.4.16 Given a bridge graph on a setw#- 1 buildings that is a path,
we can compute a configuration with the optimal dilation meaiO(n?).

Finally, we can compute @l + ¢)-approximation in linear time. We first show
a quality bound for an arbitrary placement of the bridges. demnpleteness, we
cover the general case as well.

Lemma 7.4.17 Given a bridge grap§i on a set ofv + 1 buildings that is a path,
and any configuratiom3 realizingG. Thendil(B) < (o*)?, wherec* is the
optimal dilation. If the buildings are sorted verticallyoaly the path, then we
havedil(B) < 20*.

Proof: Let B* = (b3, b5,...,b%) be an optimal configuration, thatdsl(B*) =
o*. Consider the interval of possible bridges betwegen ands;, see Figure 7.10.
Let d; be the distance df} to the farther endpoint of the interval, and lgtbe
the length ofty. The pair of pointyp’, ¢’) indicated in the figure has dilation
(2d; + h;)/h; < o*, which implies2d; < (o* — 1)h;.
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Figure 7.10: Proof of Lemma 7.4.17

Now consider any visible paip, ¢). If 7(p,q, B) uses bridge$,,, ..., b;, we
have

t t
m(p.q, B)| < |n(p,q, BY)|+ Y 2d; <|m(p,q, BY)| + (0" = 1) > h
|7T(p7q7B*)| + (O'* - 1)|7T(p7q7B*)| g U*|7T(p7QaB*)|
(o™)?[Ipgll-

If the buildings are sorted vertically along the path, we ohserve thafipq|| >
>¢_, hi, and so we have

<
<

t t
Im(p, ¢, B)| < Im(p,q, BY)| + ) 2di < o™ [lpall + (0" = 1) Y hi < 20" pall.

O

The lemma leads directly to a PTAS for the vertically orderase: start with an
arbitrary configuration, compute its dilation and approximate™* by a binary
search in the intervab /2, o]. This gives us &1 + ¢)-approximation ob™ after
O(log(1/¢)) calls to the decision algorithm, leading to the followingu.

Theorem 7.4.18 Given a set of, + 1 buildings sorted vertically along a path.
We can compute a configuration with dilation at mdst- =) times the minimum
dilation in timeO(n log(1/¢)).

7.5 Concluding remarks

We posed the following question: givemon-intersecting rectangles and a graph
describing which pairs of rectangles are to be connectedyedind the connect-
ing segments such that the dilation is minimized in polyredrime? We found
that if the graph may contain cycles, this is not generallysiale (unless P=NP),
but if the graph is a path, it is possible. For the case of {ibesquestion is still
open: so far, we can solve the problem by linear programmirn@@?) variables
and constraints, but we have no strongly polynomial-ting@athm, that is, we
have no polynomial-time algorithm for the real RAM model.
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Having gained some insight in the bridge placement problé&@nithe bridge
graph s prescribed, it may now be interesting to study tbelem with the bridge
graph not given. For example: given a set of non-intersgcéntangles, find a set
of connecting segments of given total length such that ttadicl is minimized.
Or: given a set of non-intersecting rectangles: find a sebohecting segments
of minimum total length such that a given dilation is achivé/e might have to
settle for approximation algorithms in this case.

When starting this research, we originally asked about lmopohnect convex
polygonal objects by line segments unrestricted in origoria It will be inter-
esting to see to what extent the techniques for the axis@digase carry over to
(approximation) algorithms for the unaligned case.
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Samenvatting in het
Nederlands

“Computationeel-geometrici” doen onderzoek naar hetmekanet meetkundige
voorwerpen. Voorbeelden van zulke voorwerpen zijn punt@men en veel-
hoeken in het vlak—die bijvoorbeeld een stadsplattegrandstellen—of bollen,
blokken en ingewikkelder drie-dimensionale voorwerperie-gjvoorbeeld de
inrichting van een electriciteitscentrale voorstellen.deze gevallen stellen de
meetkundige voorwerpen de vorm en afmetingen van tastlaéenin de werke-
lijkheid voor. Maar dat is niet altijd zo. Een bestand metrdade leeftijd en
het loon van de werknemers van een bedrijf, kan ook als eearizbsmet pun-
ten in het vlak worden gezien: elk punt stelt een werknemer,wvaarbij één
coordinaat zijn leeftijd aanduidt en de andere coorditad loon. Berekenin-
gen met meetkundige voorwerpen komen voor in veel toepgasinan com-
puters: gegevensbeheer, computergesteund ontwerpegrafjeche informatie-
systemen, vluchtsimulatoren, andere toepassingen vignwerkelijkheid, robo-
tica en routeplanning zijn maar een paar voorbeelden.

Dit proefschrift bevat resultaten in twee onderzoeksgidnievaarmee compu-
tationeel-geometrici zich bezighouden, ten eemsiimtelijke gegevensstructuren
en ten tweedeuimtelijke netwerken

Ruimtelijke gegevensstructuren

Om doeltreffend te kunnen rekenen met meetkundige vooewveig het van over-
wegend belang dat we verzamelingen van zulke voorwerpdtrelidend kunnen
opslaan, doorzoeken, en soms ook wijzigen. Voor voorwediemeerdere di-
mensies hebben, is dat niet eenvoudig. De sleutel tot eetegm@ossing ligt
vaak in het op een zinvolle manier groeperen van de voorwepgoelat we bij het
rekenen groepen met voorwerpen die terzake doen snel kiomamrscheiden
van groepen zonder zulke voorwerpen.

Een ruimtelijke gegevensstructuur is een verzameling kueelige voorwer-
pen die is geordend, in groepen is opgedeeld of op een andjeeisvbehan-
deld, zodat bepaalde vragen over de voorwerpen snel kunmelewbeantwoord.
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Een belangrijk voorbeeld van zo'n vraag is: welke voorwerfiggen binnen
een bepaald zoekgebied? De doeltreffendheid van een gesptaectuur wordt
bepaald door de hoeveelheid benodigd geheugen, de tijeetliebt om de struc-
tuur te bouwen, de tijd die het kost om er voorwerpen aan twedgen of uit te
verwijderen, en de tijd die het kost om vragen te beantwaurdéierbij meten
we de tijd doorgaans niet in milliseconden. In plaats daagaan we na hoe het
aantal benodigde bewerkingen door de centrale verwerk@rdwid van de com-
puter, of het aantal keren dat de vaste schijf moet wordeszgalof beschreven,
afhangt van het aantal opgeslagen voorwerpen. We schdpebijvoorbeeld dat
de benodigde rekentij@(,/n) of Q(y/n) is. Dat betekent dan, dat aishet aan-
tal voorwerpen is, het aantal benodigde bewerkingen heagstespectievelijk
minstens, recht evenredig is met de wortel uit het aantatiwerpen.

Het geval dat de voorwerpen punten zijn, is in het verledegr@hdig bestu-
deerd. In dit proefschrift houden we ons met twee ingewitkeyevallen bezig:
gegevensstructuren vogroeperpunten, en structuren vogrotere voorwerpen

Gegevensstructuren voor groepen punten. Bij sommige vraagstukken gaat
het niet om afzonderlijke punten, maar om groepen puntemkbgvoorbeeld
aan een geografisch informatiesysteem, waanunten zijn opgeslagen die fa-
brieken voorstellen. Elk punt heeft een kleur die aangeaftwor een soort pro-
ducten de betreffende fabriek maakt (chemicalién, appayaoeding, energie,
enz.). Nu kun je vragen stellen zoals: “Wat voor een soorbnidéken staan er
binnen een vierkant van tien bij tien kilometer rondom egudadde stad?” Zulke
vragen kunnen worden beantwoord met behulp van gewone gegsvucturen
voor het zoeken van punten in rechthoekige gebieden: wesuragrst alle pun-
ten op die binnen het vierkant liggen, en lopen die dan een @en na om te
kijken welke verschillende kleuren ze hebben. Het nadeeldia aanpak is dat
het onnodig tijdrovend is als er in het zoekgebied heel vaaten liggen, maar
slechts weinig verschillende kleuren. Gegevensstructwaarmee we gelijk de
verschillende kleuren kunnen vinden, zonder de tussenateys de afzonder-
lijke punten te maken, verdienen dan de voorkeur. Nog masiket als we het
zoekresultaat kunnen beperken tot de kleurerbdieskkelijk vaakoorkomen in
het zoekgebied, zonder dat we ook alle uitzonderingen tekziggen. Anders zal
bij een groot gebied al gauw bijna elke kleur worden gerajgeod, al is het maar
vanwege één fabriek. Wat mebétrekkelijk vaakwordt bedoeld, zal afhangen
van de toepassing.

In hoofdstuk 2,"Significant-Presence Range Queries in Categorical Data
bekijken we dit zoekprobleem voor het geval dagetrekkelijk vaakbetekent dat
tenminste een bepaald percentage van alle punten van eéféede kleur in het
zoekgebied ligt. Voor het geval vanpunten in één dimensie, beschrijven we een
gegevensstructuur di&(n) geheugen gebruikt en vragen naar vaak voorkomende
kleuren in een gebied beantwoordtdi(logn + k) tijd (hierbij is k& het aantal
gevonden kleuren). Helaas leidt de veralgemenisering mae aanpak naar meer
dimensies tot een gegevensstructuur die in twee dimenki@érd) geheugen
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nodig heeft. We tonen dit aan met behulp van de volgendésebtel: P is een
verzameling vam punten in eenl-dimensionale ruimte, ehis een getal tussen
1 eng;. Het aantal verschillend samengestelde rechthoeken elogeist punten
van P bevatten is dan in het slechtste geRght?—1) enO(ndtd=1).

Omdat vragen naar vaak voorkomende kleuren kennelijk mjoeduwkeurig
te beantwoorden zijn, kijken we ook naar een minder strikt@evwan dit vraag-
stuk. Hierbij mogen we ook kleuren melden die eigenlijk reetateinig pun-
ten in het zoekgebied hebben. Bijvoorbeeld: in plaats vigealalle kleuren
waarvan minstens 50% van de punten in het zoekgebied liggemaeve ook
kleuren melden die tussen 40% en 50% van de punten in het ebigkbhebben
liggen. Het benodigde geheugen voor onze gegevensstrvctoudergelijke vra-
gen hangt af van het aantal kleuren, de drempelwaarde eneisteenauwkeurig-
heid, maar verrassend genoeg niet van het aantal punten.

Gegevensstructuren voor grotere voorwerpen: lérarchieén van omhullen-
den. Het is niet eenvoudig om doeltreffende gegevensstructigr@mtwerpen
voor voorwerpen die meer zijn dan een punt, bijvoorbeeltstijkken, bollen
of veelvlakken. Oplossingen die in theorie heel doeltradfeijn, zijn vaak zo
ingewikkeld dat ze in de praktijk nauwelijks bruikbaar zijrBovendien zijn
ze meestal slechts geschikt voor één soort zoekopdr&aht.goede praktische
oplossing wordt vaak geboden door hiérarchién van orahd#n: ze zijn makke-
lijk te verwezenlijken, en hebben weinig geheugen nodig.

Een hiérarchie van omhullenden laat zich beschrijveneatstmomstructuur.
In de bladeren van de boom vinden we de meetkundige voorwelipave willen
opslaan. Bij elke vertakking slaan we voor elke tak een remdit op, die net
groot genoeg is om de voorwerpen in de bladeren aan die taethbevatten,
en waarvan de zijden evenwijdig aan de assen van het adseh&ipen. Een
zoekopdracht met een willekeurig zoekgebied kan nu als vadgden uitgevoerd.
We lopen de boom na, te beginnen bij de wortel. Telkens alsjpeeb vertakking
komen, kijken we voor elke tak of de bijbehorende omhulleredfithoek geheel
of gedeeltelijk in ons zoekgebied valt. Zo ja, dan ondereoeke die tak verder.
Zo nee, dan kunnen we die tak overslaan. Uiteindelijk vinderop deze manier
precies de bladeren met de voorwerpen waarvan de omhultenldthoek in het
zoekgebied ligt. We moeten dan alleen nog nagaan of de vopeneelf ook in
het zoekgebied vallen. Op een vergelijkbare manier kunreehijwoorbeeld ook
zoeken naar het voorwerp dat het dichtst bij een gegeverppo¢kgt.

Bij het ontwerp van een hiérarchie van omhullenden kunnereen aantal
dingen kiezen.

Om te beginnen de vorm van de omhullenden. Hierboven heb sitrdetuur
beschreven aan de hand van omhullende rechthoeken, maavodervook andere
vormen kunnen gebruiken. In de praktijk blijken rechthaekehter vaak goed
te werken: ze vergen weinig opslagruimte, en de berekerfirggio rechthoek
al dan niet in het zoekgebied valt kan veel sneller worderagedaian dezelfde
berekening voor andere vormen.
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Hierboven heb ik in het midden gelaten hoe de vertakkingeleibhoom eruit
zien: moeten die hoge graad hebben—dat wil zeggen dat elkbijertakking
een groot aantal takken tegelijk worden afgesplitst—oélgrpad? Wat het han-
digst is, blijkt onder meer af te hangen van de verhoudingetasde snelheid
van de vaste schijf en de snelheid van de centrale verwesg@erheid. Daarom
worden hiérarchieén van omhullenden vaak zo ontworpeweae graad kunnen
instellen, afhankelijk van de apparatuur.

De belangrijkste keuze die we verder moeten maken, is hoeeg¢komdige
voorwerpen in de bladeren van de boom worden gerangsclektvan de groot-
ste zorgen hierbij is dat we willen vermijden dat omhullemdehthoeken van
verschillende takken elkaar overlappen. Dan bestaat isidekans dat we beide
takken moeten doorzoeken, terwijl we bij een andere rarkjsicly van de voor-
werpen misschien met het doorzoeken van één tak hadderekwolstaan. Met
voorwerpen die groter dan punten zijn, is overlap echtdrvabedig te vermij-
den. Bovendien blijkt het niet altijd voordelig te zijn om Heeveelheid overlap
zo klein mogelijk te houden: in sommige gevallen werkt hetraghts. Ongeveer
de helft van dit proefschrift is gewijd aan de vraag hoe we lgiénarchie van
omhullende rechthoeken moeten inrichten om te kunnen daran dat zoekop-
drachten werkelijk snel kunnen worden uitgevoerd.

Een hiérarchie van omhullende rechthoeken met instelipa@d wordt een
R-boom genoemd. De R-boom werd in 1984 voorgesteld doontGuitt Sinds-
dien is er veel onderzoek gedaan naar de beste manier om deerpen in de
boom te rangschikken. Toch was het bij alle tot nu toe vodelgs manieren nog
zo dat voor een zoekopdracht in het slechtste geval alleeldadvan de boom
moeten worden nagelopen, zelfs als de zoekopdracht nikeesp Wij hebben
onderzoek gedaan naar manieren om een R-boom zo in te ridaene kunnen
garanderen dat de bladeren waarvan de omhullende reclethagket zoekge-
bied liggen snel kunnen worden gevonden.

Het was al bekend dat er verzamelingen van rechthoekerzzigiat elke R-
boom voor zo’n verzameling een zoektijd van in het slectgsteal Q(n!~1/4)
heeft (hierbij isn het aantal rechthoeken drhet aantal dimensies). In dit proef-
schrift tonen we aan dat dit zelfs het geval is als de rechiroelkaar nauwe-
lijks overlappen, of als we zoeken met bijna vierkante gadie Alleen als we én
weinig overlap, én bijna vierkante zoekgebieden, &n riveee dimensies hebben,
dan is het denkbaar dat we voor het slechtste geval een kmtekdjd kunnen
garanderen. We beschrijven in dit proefschrift ook daaételgk een manier om
R-bomen te bouwen die onder deze voorwaarden een betergidgekandeert,
namelijkO(log? n + k). Hierbij is k het aantal bladeren waarvan de omhullende
rechthoeken geheel of gedeeltelijk in het zoekgebied tigge

Verder beschrijven we een manier om R-bomen te bouwen diedeooverige
gevallen de best denkbare zoektijd, nametilkn'~/¢ + k), garandeert. We
hebben onze aanpak ook getest. De uitkomsten geven aan zatr@thode
moeilijke verzamelingen rechthoeken beter kan verwerlande tot nu toe be-
kende methoden. Ook in makkelijker, meer gebruikelijke mmdigheden kan
onze aanpak zich met de tot nu toe bekende methoden meten.
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We beschrijven ook een manier om onze beide methoden te nenaii,
waardoor in eenvoudige gevallen zoals hierboven beschrega zoektijd van
O(log® n + k) wordt gegarandeerd, terwijl naar mate de invoer ingewikdel
wordt, de garantie geleidelijk verslechtert @tn' '/ + k).

In drie dimensies is de aanname dat er weinig overlap is enaddigebieden
bijna vierkant—dat wil zeggen: kubusvormig—zijn, helaast genoeg om een
goede zoektijd te kunnen garanderen. We kunnen dat, op nijstim theorie,
echter wel als we aanvaarden dat er nog twee omstandighgdemaarin een
zoekopdracht moeilijk mag zijn. Ten eerste de omstandejHet er heel veel
drie-dimensionale rechthoeken—blokken dus—zijn die loekgebied niet snij-
den, maar wel heel dichtbij liggen. Ten tweede de omstardigat er heel veel
heel platte blokken op een bepaalde manier vlak bij elkggel. We definiéren
een maat voor een verzameling blokken, het plakjesgetaladngeeft in hoe-
verre de tweede omstandigheid zich voor kan doen. Onze mami®-bomen te
bouwen garandeert korte zoektijd«é?(,log4 n+ k), mits het aantal blokkeviak-
bij het zoekgebied niet al te veel groter is dan het aantal blokkaet zoekge-
bied, en het plakjesgetal niet al te hoog is. Dezelfde zjhktiworden bovendien
ook gehaald bij het zoeken met niet-blokvormige zoekgedried

Ruimtelijke netwerken

Een netwerk bestaat uit knopen en verbindingen. In een elijmbhetwerk zijn
de knopen en verbindingen meetkundige voorwerpen. Gevjodrbben die
een plaats en afmetingen in de ruimte, maar ze kunnen ookmaetkundige
eigenschappen hebben, zoals de aanlegkosten en de swelmdielverbindingen.
Ruimtelijke netwerken vind je overal in het dagelijks levamegennetwerken,
telefoonnetwerken, computernetwerken enz. Het doel vandteverk is meestal
om een verbinding tussen de knopen te verschaffen, hdtdiefskorte, of snelle,
verbinding. Wat dat betreft zou het volmaakte netwerk eraij@met een recht-
streekse verbinding tussen alle knopen. In de praktijk isnoeestal te duur,
en moet er een tussenweg worden gevonden tussen een goea goeeoop
netwerk. Dat leidt tot optimaliseringsproblemen van denvowind voor een
gegevenverzameling knopen de “beste” verzameling veitjieeh die aan bepaal-
de voorwaarden voldoet. We hebben twee van zulke vraagstukikderzocht.

In hoofdstuk 6;Facility location and the geometric minimum-diameter spa
ning tree”, gaat het om het volgende geval. De knopen zijn punten in lagt v
en een verbinding tussen twee knopen kost altijd hetzetiidgeacht de afstand.
Er zijn n knopen, en we mogen — 1 verbindingen aanleggen, zodat we net
elke knoop met het netwerk kunnen verbinden. Ons doel is deindingen
zo te kiezen dat de grootste afstand tussen twee punten meheerk zo klein
mogelijk is. Nauwkeurige oplossingen vergen tot op heddadsebijnaO(n?)
rekentijd. Onze aanpak vindt een oplossing waarbij de gteaifstand in het
netwerk tot(1 + ¢) keer zo groot is als in de beste oplossing, maar het vindt die
oplossing inO((é)5 + n) tijd. Hierbij kan de onnauwkeurigheidwillekeurig
dicht bij nul worden gekozen. Voor grote verzamelingen leropn bescheiden
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nauwkeurigheidseisen garandeert onze manier van uiteekean veel kortere
rekentijd dan de snelste bekende precieze berekeningswijz

In hoofdstuk 7,'Optimal spanners for axis-aligned rectangleginderzoeken
we het volgende geval. De knopen in ons netwerk zijrechthoeken die even-
wijdig aan de assen van een twee-dimensionaal assenigsgeplaatst. Ze
moeten met lijnstukken worden verbonden. Daarbij is gegavesen welke paren
rechthoeken een lijnstuk moet worden geplaatst; de bedpelinu om voor elk
zo'n paar te bepalen waar precies het lijnstuk tussen de teaghoeken moet
worden geplaatst. Denk hierbij bijvoorbeeld aan een aajghbuwen die we
met loopbruggen met elkaar willen verbinden. Daarbij zoti drg vervelend
zijn als de bruggen zo worden geplaatst, dat je een grote gnmaet maken
om een kamer in een ander gebouw te bereiken die je vanuiggn éiamer
zo kunt zien liggen. De bedoeling is daarom dat we de lijristakzo plaat-
sen dat de grootst mogelijke verhoudingsgewijze omweg-isdad¢ verhouding
tussen de afstand over de bruggen en de korste rechtstnwegsezo klein mo-
gelijk is. In het algemeen blijkt dit vraagstuk te behoreh de zogenaamde
NP-moeilijke problemen—wat wil zeggen dat het onwaarschijnlijk is dat ee
nauwkeurige oplossing snel kan worden berekend. In bijeondevallen kan
de beste plaatsing van de lijnstukken wel gegarandeerdvemden berekend: als
het netwerk een boomstructuur heeft, dan kan dat door middelineair pro-
grammeren me®(n?) veranderlijken en voorwaarden; als het netwerk een pad
is—dat wil zeggen dat we de rechthoeken kunnen nummerehtamn zodat elk
liijnstuk opeenvolgende rechthoeken in de nummering metaglkerbindt—dan
kunnen we de beste plaatsing berekene@(in® log n) tijd.
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