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Chapter 1

Introduction

Computational geometry is the area of algorithms research that deals with com-
putations on geometric objects. Examples of such objects are points, lines and
polygons in the plane—which may represent a city plan—or balls, blocks and
more complex shapes in three dimensions—which may represent the interior of
a power plant. In these cases, the geometric objects represent physical objects in
the real world. But this is not always the case. For example, adatabase storing the
age and salary of a company’s employees can also be thought ofas a database that
stores points in a two-dimensional space: each point represents an employee, with
one coordinate indicating the age and the other coordinate indicating the salary
of the employee. Therefore, geometric computations are found in many applica-
tions of computers: databases, computer-aided design, geographical information
systems, flight simulators, other virtual reality applications, robotics, computer
vision and route planning are just a few examples.

This thesis contains some of the fruits of my research as a PhDstudent in the
computational-geometry group of Utrecht University from 1999 to 2004. In the
remainder of this chapter I will introduce my main research areas of these years—
geometric data structuresandgeometric networks—and I will discuss the results
we obtained. The next chapters are six articles written in these areas: four articles
about geometric data structures (Chapter 2 to 5) and two articles about geometric
networks (Chapter 6 and 7).1

1.1 Geometric data structures

To do efficient computations on geometric objects, it is crucial that we can store,
search, and sometimes update, sets of geometric objects efficiently. When the
objects are one-dimensional points, this is relatively easy: we can sort them by

1The article in Chapter 3 is a slightly modified version from the publication inDiscrete and Com-
putational Geometry. In this thesis, the analysis of our algorithm has been sharpened a little, leading
to better bounds on the query times.
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their coordinate in that dimension, and put them in memory inthat order. This
makes it possible to find points fast. It is like looking up words in a dictionary:
thanks to the ordering, we can find a word without turning all pages one by one.

When an object cannot be described by a single point in a one-dimensional
space, it is less clear how to store a set of objects effectively. For example, I have
a collection of music CD’s. I would like to order them by the year in which the
music was written, so that I can find all music from a particular era fast. My CD’s
usually contain several works of music written in a range of years. This makes it
impossible to characterise a CD by a single point on a time line: a CD is rather
like a group of points, or like a segment of the time line. How should I order my
CD’s? By the oldest work on the CD, maybe? But then even the most recent work
might be put in the very first place on the shelf, if it just happens to be on the same
CD as the oldest work. If I sort like this, how can I be sure of finding a work from
a certain era without checking all earlier CD’s too?

When geometric objects have more than one dimension, the problem becomes
even more difficult. But in many applications, a lot of questions about a set of
geometric objects need to be answered fast. For example, a flight simulator should
not need to scan the complete hard disk to determine if the plane is going to hit
a mountain in the next second. In such applications, it is essential that geometric
objects are stored in such a way that relevant objects can be identified quickly,
while irrelevant objects are ignored without checking themone by one. Often
we can do this by sorting the objects into groups. If we do thisin a clever way,
we can, hopefully, discriminate quickly between groups with potentially relevant
objects and groups without such objects. Therefore, findinguseful groupings of
objects is a key issue in many problems in computational geometry.

A set of geometric objects that is sorted, partitioned into groups and/or oth-
erwise preprocessed, so that certain queries about the set can be answered effi-
ciently, is called ageometric data structure. The goal of research into such data
structures is to make them as efficient as possible with respect to storage space,
the time needed to build the data structure, the time needed to insert or delete
objects, and the time needed to answer queries. Examples of such queries are:
which objects lie (partly) inside a given viewing window? Or: which object is
closest to a given query point? Of course, we would like our data structure to
facilitate fast answers, not for just one particular query point or window, but for
anyquery that might be asked. One cannot usually expect to optimize for all of
the objectives mentioned at the same time. In general, the faster the queries, the
larger the demands on storage, preprocessing and update time.

We do not usually measure the running times of data structurealgorithms by
counting milliseconds. We could, of course, but with computers getting faster all
the time, this would make our results outdated even before they are published.
Rather we ask the question: how well will a data structure be able to take advan-
tage of bigger and faster computers? To answer that question, we analyse in what
way the number of basic operations performed by the central processor depends
on the input size (the number of objects stored) and the output size (the number
of objects retrieved). The first is usually denoted byn, the second byk. We will
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write that algorithms have a running time of, for example,O(n) or O(n3). In
the first case, the running time is a linear function ofn. This means that if we
can double the speed of our hardware, this algorithm can process twice as much
data in the same time. In the second case, the running time is acubic function
of n, which means that our double-speed computer will enable us to handle only
26% more data with this algorithm. This means that even if thesecond algorithm
would be a little faster in practice on the current hardware,the first algorithm is
probably more promising in the future.

If the amount of data is so big that we cannot keep all of it in main memory
while working on it, we count the number of disk accesses rather than the number
of operations. In that case we analyse how the running times depend on three
parameters: the input sizen, the output sizek, and the amount of data transferred
in one disk access.

In the most basic form, geometric data structures store points and we want to
be able to retrieve, for any query range, the points that are inside, or sometimes
the points that are closest to that query range. This type of data structures has
been well studied and structures have been developed for simplex range queries,
axis-parallel (hyper-)rectangular range queries, circular or (hyper-)spherical range
queries, and point queries. WithO(n) space, one can build a data structure
for n points in d dimensions that reports all points inside a simplex in time
O(n1−1/d + k) [Mat93], wherek is the number of points reported. For queries
with axis-parallel rectangles, one can use the same data structure, or the much
simplerkd-treewith the same query time (see e.g. [Brg97KOS] for a descrip-
tion). With more space, one can often get faster queries. Forexample, alayered
range treeanswers axis-parallel rectangle queries in timeO(logd−1 n + k), us-
ing O(n logd−1 n) space [Brg97KOS]. There are also other data structures whose
query times depend more heavily on the output size and less onthe input size. For
more about data structures for points, see, for example, thesurvey by Agarwal and
Erickson [Aga98E].

1.1.1 Data structures for categorical data

In some problems, we are not interested in each individual object, but in classes
of objects. As an example, consider a geographic information system that stores
n points representing industrial plants. Each such point is coloured, such that
the colour indicates the type of plant (chemical, manufacturing, food, energy,
etc.). Now one can ask questions like: ”What types of industry are found within
a 10 × 10 kilometer square around a particular town?”. Such questions can be
answered by standard data structures for orthogonal range searching: we first find
all factories that lie inside our square query range, and then check all of those
factories to see what different colours they have. Thus we get the answer in time
O(log n+ k′), wherek′ is the number of plants inside our query range. However,
when our square contains a lot of factories of only few different colours, checking
all factories one by one seems to be a waste of time. It would bemuch nicer
to have a data structure that can give the answer in timeO(log n + k), where
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k is the number of different colours to report. Such data structures have been
developed indeed: in one dimension it can be achieved withO(n) storage [Jan93],
in two dimensions withO(n log2 n) storage [Jan93], and in higher dimensions
with O(n1+δ) storage [Aga02], for an arbitrarily small constantδ.

Still, this is not always satisfactory. If the query area is big enough, it can be
that virtually every colour has at least one point in the query range. But in some
applications, we are interested only in the colours that have asignificantpresence
in the area. The meaning ofsignificant presencecan be determined by several
criteria, depending on the application, for example:

• report only the colour that is found most frequently in the area;

• report only colours that have at least a certain number of points in the area;

• report only colours such that at least a certain percentage of the points in
the area have that colour;

• report only colours such that at least a certain percentage of all points of
that colour lie in the area.

So far, we do not know of any results on this type of range searching problems,
except for Krizanc et al. [Krz03], who recently studied the first criterion in the
one-dimensional case.

Results in this thesis

In Chapter 2,”Significant-presence range queries in categorical data”, we study
the problem with the last criterion mentioned above. For theone-dimensional
case, we present a data structure that usesO(n) storage, and can answer signifi-
cant-presence queries inO(log n + k) time, wherek is the number of reported
colors. Unfortunately, the generalization of our approachto higher dimensions
leads to a data structure that uses cubic storage already in the two-dimensional
case. To show this fact, we obtain the following result whichis of independent
interest. LetP be a set ofn points inR

d, andt a parameter with1 6 t 6 n
2d . In

the worst case, the maximum number of combinatorially distinct boxes containing
exactlyt points fromP is Θ(ndtd−1).

Because exact significant-presence queries appear to be difficult, we also study
a relaxed version of the problem, where we are also allowed toreport colours
whose presence is somewhat below the treshold. For example,instead of only
reporting all colours of which at least 50% of the points are inside the range, we
may also report some extra colours that have between 40% and 50% of the points
inside the range. The size of the data structure for this typeof queries depends
on the number of colours, the treshold and on the required precision, but, surpris-
ingly, not on the total number of points. For details, see Chapter 2.
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1.1.2 Data structures for object data:
bounding-volume hierarchies

As explained before, designing efficient data structures becomes significantly
more difficult if the objects stored are not points, but objects that have some shape
and size, such as line segments, balls or polyhedra. Theoretically efficient solu-
tions for such problems are often too complicated and bear too much overhead to
be useful in practice. It becomes even more difficult if we want a data structure
that supports multiple types of queries at the same time. Onecan cheat, of course,
by just taking a few data structures together and store each object multiple times:
once in each structure. But this increases the storage requirements and also puts
on us the burden of maintaining several structures.

In practice, so-calledbounding-volume hierarchiesoften provide a good so-
lution. They are easy to implement, and although a bounding-volume hierarchy
for n objects does not store more than2n pointers and geometric objects, it can
be used for different types of queries. A query in a bounding-volume hierarchy
does not go directly for the answer to the query; rather it generates a set of can-
didate answers, which then need to be checked one by one. In practice, the set of
candidate answers is usually small enough to make this approach efficient. For a
bounding-volume hierarchy to be useful, it should allow fast generation of can-
didate answers, and it should select the candidates such that they are likely to be
true answers.

Below, I will first explain what a bounding-volume hierarchyis and how it is
used. After that, I will explain what issues have to be addressed when designing
a bounding-volume hierarchy. I will then focus on a particular class of bounding-
volume hierarchies, namely R-trees, and give an overview ofour results on R-
trees. To conclude, I will suggest a few subjects for furtherresearch in this area.

Definition and usage

A bounding-volume hierarchy is a tree structure on a set of geometric objects
(the data objects). Each object is stored in a leaf of the tree. Each internal node
stores for each of its childrenν an additional geometric objectV (ν), that encloses
all data objects that are stored in descendants ofν. In other words,V (ν) is a
bounding volume for the descendants ofν. For an example, see Figure 1.1.

Bounding-volume hierarchies can be used to do many types of queries on the
set of data objects. For example, the algorithm in Figure 1.2finds all objects that
intersect a query rangeQ and are stored in descendants of nodeν. To find all data
input objects that intersectQ, start the algorithm with the root of the hierarchy as
ν. The query will then descend into the tree, visiting exactlythose nodes whose
bounding volumes intersectQ. The bounding-volume hierarchy can also be used
for other types of queries, such as nearest-neighbour queries (see Figure 1.3).

The algorithms can easily be adapted to hierarchies with leaves that store mul-
tiple data objects.
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Figure 1.1: Example of a bounding-volume hierarchy, using rectangles as bound-
ing volumes.

Algorithm Intersected(Q,ν)
1. for every childµ of ν
2. if V (µ) intersectsQ then
3. if µ is a leafthen {objectM stored inµ is a candidate answer}
4. if M intersectsQ then
5. reportM
6. else
7. Intersected(Q,µ).

Figure 1.2: Finding all objects that intersectQ. To find all objects that liecom-
pletelyinsideQ, replace the intersection test in line 4 by a test ifM lies insideQ.
To find all objects that completelycontainQ, replace the tests in line 2 and 4 by
a test ifQ is completely contained inV (µ), or in M , respectively.

Algorithm Closest(Q,ν)
1. smallestDistanceFoundSoFar←∞
2. P ← an empty priority queue
3. repeat
4. if ν is a leafthen { the objectN stored inν is a candidate answer}
5. if distance betweenN andQ < smallestDistanceFoundSoFarthen
6 . smallestDistanceFoundSoFar← distance betweenN andQ
7 . closestObject← N
8 . else
9 . for every childµ of ν

11. insertµ in P with priority (distance betweenV (µ) andQ)
12. ν ← the node with lowest priority inP ; let p be its priority
13. removeν from P
14. until p > smallestDistanceFoundSoFaror P is empty
15. return closestObject.

Figure 1.3: Finding the object closest toQ.



1.1. GEOMETRIC DATA STRUCTURES 11

Designing bounding-volume hierarchies

When designing a bounding-volume hierarchy, we have to decide what kind of
bounding volumes to use, what the structure of the hierarchyshould look like,
and how to order the data objects in the tree.

The shape of the bounding volumes. The choice of bounding volume is de-
termined by a trade-off between two objectives. On one hand,we would like to
use bounding volumes that have a very simple shape. Thus, we need only few
bytes to store them and intersection tests and distance computations are simple
and fast. On the other hand, we would like to have bounding volumes that fit the
corresponding data objects very tightly. Thus, we try to avoid going into subtrees
that will not lead to any object that satisfies our query. On one extreme, we could
use the full space as the bounding volume for everything. On the other extreme,
we would use the union of the data objects as their bounding volume. Both ex-
tremes are pointless. In the first case we would traverse the complete tree for
every query; in the second case, intersection tests would bejust as complex as
doing a complete query.

In practice, the most commonly used bounding volume is an axis-parallel
(hyper-)rectangle—we will just call them boxes. The minimum (best-fit) bound-
ing box for a given set of data objects is easy to compute, needs only few bytes
of storage, and robust intersection tests are easy to implement and extremely fast.
Experiments have been done with a number of other shapes though. Among them
are the set-theoretic difference of two boxes [Ary00], oriented—that is: non-axis-
aligned—bounding boxes [Bar96, Got96], spheres [Oos90] (with little success),
the intersection of a box and a sphere [Kat97], the Minkowskisum of a box
and a sphere [Lar00], a circular section of a spherical shell[Krs98], pie slices
[Bar96], and discretely oriented polytopes (k-DOP’s) [Jag90, Klo98], for exam-
ple octagons [Sit99] or bounded aspect ratio k-DOP’s [Dun99].

Circles and spheres seem to leave too little freedom to adjust the shape to fit
the objects inside. But some of the more complex shapes mightactually work
well. It is difficult to get a clear picture from comparitive studies on this is-
sue. Some authors who compared axis-aligned bounding boxeswith discretely-
oriented octagons (in two dimensions) or oriented boundingboxes (in three di-
mensions) reported that in the end, axis-aligned bounding boxes often seem to
work better, despite the bad fit to the data; see Van den Bergen[Bgn99] and Sitz-
mann and Stuckey [Sit99]. Sitzmann, however, also reportedpositive results for
octagon hierarchies on data consisting of randomly oriented line segments. The
right type of bounding volume might, in fact, depend on the input: some of the
non-standard bounding volumes are specifically aimed at fitting the triangles used
to approximate smooth surfaces in virtual reality applications. Finding the right
type of bounding volume definitively remains as a subject forfuther study.

In our research, we decided to try to establish the best performance that can
be achieved with axis-aligned bounding-box hierarchies, both from a theoretical
and from a practical point of view.



12 CHAPTER 1. INTRODUCTION

The structure of the hierarchy. Since a bounding-volume hierarchy is a tree
structure by definition, the main choice left is to decide on the degree of the nodes,
that is: the number of children and/or input objects stored in a node. The optimal
degree depends on the way in which the bounding-volume hierarchy is used. The
cost of processing a node in the hierarchy is composed of the costs of access-
ing the location of the node in memory, the cost of reading thenode’s children
pointers and their bounding volumes, and the cost of the intersection or distance
computations on those bounding volumes. If the hierarchy isstored on disk, the
access cost tends to be high: the disk’s head must be moved to the correct physical
location. Once the disk head is at the correct position, a complete block of data is
read into main memory at once. Computations on those data arerelatively cheap,
since these are done in main memory. Therefore, high-degreenodes that fill a
full block of data are preferred. On the other hand, if the hierarchy is stored in
main memory, our main concern is to keep the number of intersection or distance
computations down. For queries that do not yield too many answers, this is best
achieved by making many low-degree nodes. For example, two nodes that are
irrelevant to our query can often be skipped faster if we construct a parent node
that gets these two nodes as its children. A single distance computation on the
parent’s bounding volume may then reveal that we can skip itstwo children with-
out doing distance computations on them. Of course, this potential advantage of
having many low-degree nodes only materializes if usually,the parent node will
indeed be skipped if both of its children are, and usually, wedo not need to go
into both children after all. Whether or not this is actuallythe case depends on the
data, the queries, and the way in which the data objects are distributed in the tree.

Another issue with regard to the structure of the hierarchy is its height. If
we want to be able to go from the root to any data object fast, small height is
a necessary condition, but not a sufficient one. The main problem is that the
bounding volumes of a node’s children may intersect. If the object lies inside their
intersection, there is no way to tell which child has the object as a descendant.
However, small height may still be useful to guarantee that update algorithms can
run fast. Most algorithms to insert or delete an object run intime O(h), whereh
is the height of the tree. Small height is most easily guaranteed by requiring that
all leaves are at the same depth. This a sufficient, but not a necessary condition,
to guarantee that the tree has heightO(logt n), wheren is the number of objects
stored, andt is the minimum degree of the nodes.

The distribution of the objects in the hierarchy. Finally, the way in which
the objects are distributed in the hierarchy may have a huge impact on its per-
formance. One of the major issues is that overlap between bounding volumes
in the same node can make search paths branch and spread out into large parts
of the hierarchy. Therefore, it is important to keep the amount of overlap small.
Unfortunately, overlap cannot be avoided completely. Points can always be dis-
tributed among the different parts of the hierarchy in such away that the bounding
boxes in a node do not overlap, but with other objects this is not always possible.
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Figure 1.4: A set of rectangles for which an overlap-free hierarchy of degree two
is impossible.

Figure 1.5: Minimizing overlap does not always lead to optimal query efficiency.

Figure 1.4 shows a set of rectangles that does not admit of an overlap-free hi-
erarchy of bounding rectangles (or other convex bounding volumes) with nodes
of degree two. The only way to avoid overlap is to cut data objects into smaller
parts (clipping), but this comes at a cost: it would take morestorage space, and
while collecting the answers to a query, time may be wasted retrieving pointers to
objects which we had found already through another part.

Moreover, minimizing the amount of overlap does not necessarily lead to opti-
mal query efficiency, as is illustrated by the following example. In Figure 1.5, we
divided the line segments into groups of four: each group corresponds to a node
just above leaf level in a hierarchy with nodes of degree four. In the top figure,
we did the grouping so that we minimize the overlap between the bounding boxes
of the nodes. A query with the grey square will visit 8 nodes onthis level. In the
lower figure, the line segments are grouped in another way. A query with the grey
square will now visit only 4 nodes on this level.

If minimizing overlap is not enough to guarantee optimal queries, then how
should we distribute or group the objects in the hierarchy? It is this issue that is
the subject of Chapters 3 to 5 of this thesis.
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R-Trees

We restricted our study to hierarchies that use axis-parallel boxes as bounding
volumes. Extending the study to other types of bounding volumes is an obvious
subject for further research but it lies beyond the scope of our work. Bounding-
volume hierarchies that use axis-parallel boxes as bounding volumes and have
nodes of high degree are also known as R-trees. The R-tree wasoriginally in-
troduced by Guttman [Gut84]. His study has inspired two decades of research
about how to distribute the data objects in an R-tree, some authors designing new
distribution algorithms from scratch, others suggesting optimization heuristics to
be used in conjunction with known methods.

R-trees are parametrized by the maximum degree of the nodes,denoted byt
in this chapter. This parameter is set to match the characteristics of the hardware
used: usually the tree is stored on disk, andt is chosen such that a node fills a
full block on the disk. For in-memory applications, smallervalues oft would
be used. The minimum degree of the nodes is set to a fixed fraction of t; in the
R-tree variants studied it ranged from 10% to 50% oft. R-trees usually store
data objects in the leaves only and have all leaves on the samelevel in the tree,
although some authors have designed variants where this is not the case (e.g.
[Agg97, Kan97, Ros01]).

Essentially three types of algorithms have been designed todistribute the ob-
jects in an R-tree:

by repeated insertion: One defines an insertion algorithm that strives to opti-
mize the tree locally; a complete tree is built by inserting the data objects
one by one, e.g. [Ang97, Bkr92, Bmn90, Grc98b, Ros01]. Usually, dele-
tion algorithms are provided as well.

by recursive partitioning: One defines an algorithm to distribute any number
of data objects among up tot subtrees; the tree is built by applying the
partitioning algorithm recursively top-down, e.g. [Agg97, Grc98a, Whi96].
The resulting data structure can be maintained either by using insertion and
deletion heuristics as above (and, for example, rebalancing the complete
tree during quiet hours), or by using the logarithmic method[Aga01APV].

by linear ordering: One defines a function that maps each data object to a one-
dimensional value; the tree can then be built and maintainedas a stan-
dard B-tree that uses the function values as keys [Brg00, Bhm99, Kam93,
Kam94].

For an extensive survey on R-trees, see Manolopoulos et al. [Man03].
When comparing the query efficiency of R-trees built by such algorithms, one

should distinguish between a static environment (the tree is built once and not
changed afterwards), and a dynamic environment (the tree iscontinuously up-
dated). In a dynamic environment it may be very difficult to maintain an “ideal”
distribution of objects over the tree. The insertion of an object can, in princi-
ple, change the ideal distribution a lot. To allow for reasonably efficient update
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operations, one has to relax the ideal a bit. As a result, static trees, built with a par-
titioning or a linear-ordering algorithm, usually allow for more efficient queries
than their dynamic counterparts or insertion-based algorithms.

Despite the huge body of research on R-trees, until recently, very little was
known about the query times that can be guaranteed for worst-case data and
queries. From Kanth and Singh [Kan98] and De Berg et al. [Brg00] some lower
bounds for intersection queries with axis-parallel rectangles were known: query
times better thanΩ((n/t)1−1/d + k/t) can, in general, not be guaranteed. Here
n is the number of data objects,t is the degree of the nodes,k is the number
of object bounding boxes intersected, andd is the number of dimensions. There
were no algorithms to construct R-trees that can guarantee to do any query faster
than a full traversal of the complete hierarchy, even if there are no answers to
be reported. The only results in that direction were by De Berg et al. [Brg00],
but they could guarantee fast queries only for relatively small query ranges (for
details see the introduction of Chapter 3). Other research on R-trees was mainly
experimental, or of a statistical nature, making statements about expected query
times under certain assumptions on the distribution of the data and/or the queries.
To our knowledge, the algorithms presented in Chapter 3 and 4are the first al-
gorithms that construct R-trees that guarantee worst-casequery times better than
Ω(n) for all axis-parallel rectangle range queries.

Note that in the bound mentioned above, as well as in all results mentioned
below,k is not the number of objects intersected, but the number of data object
bounding boxesintersected. Ifk would be the number of data objects intersected,
it would be very difficult to prove anything about the efficiency of R-trees. Even
if the objects are disjoint, their bounding boxes may in the worst case intersect in
a single point, leading to a query time ofΩ(n/t). For an example, see Figure 1.6.
In three dimensions, there are sets of line segments such that any hierarchy of
convexbounding volumes on such a set, needsΩ(n/t) time to answer a query
with an axis-parallel line in the worst case [Bar96]. However, even if the objects
intersected cannot be identified efficiently in the worst case, this is no reason to
give up on at least identifying the objectbounding boxesintersected efficiently.
From now on, we will assume that the data objects stored in ourhierarchies are in
fact bounding boxes, andk will be the number of such bounding boxes intersected
by the query range.

Results in this thesis

Given the fact that we use axis-parallel boxes as bounding volumes and given the
maximum degree of the nodes, we set out to optimize the structure of the tree
for fast intersection queries. We chose to optimize for intersection queries since
such queries are an important application to start with, andthey are indicative
of the efficiency of some other types of queries as well. For example, queries
for objects intersecting a rectangle and queries for objects contained in a rect-
angle visit exactly the same nodes, and nearest-neighbour queries with a point
visit exactly those nodes which would be visited by a intersection query with a
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Figure 1.6: All bounding boxes of these line segments overlap in a single point.
A query with that point needs to examine the complete hierarchy.

circle centered on that point and just touching the nearest neighbour. Therefore,
a good performance on intersection queries is crucial and can be expected to be
a good indication of the performance of several other types of queries. To avoid
redundancy in the data structure, we excluded clipping variants from our studies.

Our research has led to three articles:“Box-trees and R-trees with near-
optimal query time”(Chapter 3),“The Priority R-Tree: a practically efficient and
worst-case-optimal R-tree”(Chapter 4), and:“Box-trees for collision checking
in industrial installations” (Chapter 5). All of them are, in the first place, about
static R-trees, that is: R-trees that are not updated anymore, once built (although
Chapter 4 also discusses updates with the logarithmic method).

In Chapter 3 we prove that there are sets of rectangles, such that in any R-
tree on such a set, there are queries that yield no answers butnevertheless visit
Ω((n/t)1−1/d) nodes. It is not so much this bound itself which is interesting: it
was already known from Kanth and Singh [Kan98] and De Berg et al. [Brg00].
What is interesting is the type of data that can bring out thisworst-case behaviour.
We show that such worst-case sets of rectangles and queries exist even if any one
or two of the following restrictions apply:

• no point is contained in the bounding boxes of more than a constant number
of data rectangles (in other words: they don’t overlap much);

• the aspect ratio of the query rectangles is bounded by a constant (in other
words: the query rectangles are not extremely long and thin);

• we have only two dimensions.

Only if all three of these restrictions apply, we cannot do our lower bound con-
struction. In fact, for that case we show how to construct R-trees that can answer
any axis-parallel rectangle query by visitingO(log2 n + k) nodes.

Note that all our lower bounds, like the previous bounds by Kanth and Singh
[Kan98] and De Berget al.[Brg00], do not hold for replicating data structures,
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that is, data structures that may store each object (or a pointer to it) more than
once.

In Chapter 3 we also give an algorithm for the construction ofaxis-aligned-
bounding-box hierarchies with nodes of degree two that achieves optimal query
time Θ(n1−1/d + k) in the general case. In Chapter 4 we extend this method to
get optimalΘ((n/t)1−1/d + k/t) query time on nodes of degreet (assuming that
I/O-operations dominate). Chapter 4 describes the method for nodes of degreet
in detail; it is not necessary to read Chapter 3 first to understand it. Chapter 4 also
presents experimental results in two dimensions. The results indicate that our
algorithm creates R-trees that are efficient in practice, while being more robust
than the heuristic approaches known so far.

One may wonder if it is possible to construct R-trees that combine the good
properties of both constructions mentioned above: getO((n/t)1−1/d+k/t) query
in the general case, andO(log2 n + k) query time if the three restrictions men-
tioned above apply. In Chapter 3 we describe a construction,called kd-interval
tree, that goes a long way towards achieving this goal. A kd-interval tree in two
dimensions answers axis-parallel range queries in timeO(

√
n
t + k) and point

queries in timeO(log2 +k), provided that the data rectangles don’t overlap much.
As overlap among the data rectangles increases, the point query performance de-
generates gradually intoO(

√
n
t + k). One could use similar techniques as in

Chapter 4 to get a better dependency on the degreet in thek-term.

The lower bound constructions in Chapter 3 show that it is notpossible to
achieve something similar in more than two dimensions: there are sets of disjoint
data boxes that make any R-tree that guarantees polylogarithmic query times for
point queries, spend near-linear time on some (hyper-)cubequeries.

In Chapter 5, we look into the three-dimensional situation further. The data
boxes in the lower-bound construction mentioned above do not look extremely
strange: they can be arbitrarily close to a unit cube in shapeand size. There is one
peculiar thing about them though: they must be arranged in such a way that certain
cubic query ranges yield no answers while there are alot of data boxes nearby.
It turns out that if we accept that such cases are difficult (but probably rare in
practice), and if we accept that certain arrangements of extremely flat data boxes
are difficult (but probably rare in practice), we can build a three-dimensional kd-
interval-tree with polylogarithmic query time for the remaining cases (the cases
we expect to find in practice). We prove that these query timesare achieved not
only for queries with boxes but also for queries with other query ranges of constant
complexity. Chapter 5 describes how to build a tree with nodes of low degree;
one may use the transformation algorithms described in Chapter 3 to transform
the tree into a real R-tree with high-degree nodes.

To distinguish between arrangements of boxes that should behandled effi-
ciently, and arrangements of boxes that may be considered difficult, we define the
slicing numberof a set of data objects as follows: let the slicing numberλC with
respect to a cubeC be the maximum number of data object bounding boxes that
intersect four parallel edges ofC; then the overall slicing numberλ is the max-
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imum value ofλC over all possible cubesC. A low slicing number means that
the data boxes do not overlap much and that there are no arrangements of lots of
extremely flat data boxes very close to each other.

The main results for point and axis-aligned rectangle queries can be summa-
rized in the following tables. We use the following notation:

n: the total number of data objects in the hierarchy;

k: the number of data object bounding boxes that intersect thequery range;

kε: (with ε > 0) the number of data object bounding boxes that intersect the
query range, or lie within a distance ofε times the diameter of the query
range;

t: the maximum degree of the nodes in the hierarchy;

α: the maximum aspect ratio (width/height or height/width) of the query range;

Results in two dimensions: asymptotic upper boundsO(...)

input rectangles tree (chapter) point queries rectangle queries

disjoint 2D kd-interval (3) log2 n
√

n
t + k

disjoint 2D kd-interval+lsf (3) log2 n α log2 n + k

intersecting PR (4)
√

n
t + k

t

√
n
t + k

t

Results in three dimensions: asymptotic upper boundsO(...)

input boxes tree (chapter) point queries box queries

constant slicing nr. 3D kd-int.+lsf (5) log4 n minε{(1
ǫ )2 log4 n + kǫ}

intersecting PR (4) (n
t )2/3 + k

t (n
t )2/3 + k

t

Subjects for further research

The 3-dimensional kd-interval-tree mentioned above has good theoretical bounds
for low-degree nodes, but when turned into an R-tree (using the technique ex-
plained in Chapter 3), the dependency on the degree of the nodes is not as good
as one would wish. We cannot yet say if data sets of realistic size and structure
will nevertheless bring out the strength of the kd-interval-tree, and if so, for what
types of data and queries this method would indeed be the method of choice.

In Chapter 4 we compare our PR-tree to two variants of the Hilbert-R-tree,
which is an R-tree based on ordering objects along the Hilbert space filling curve
[Kam94]. Although the Hilbert-R-tree cannot guarantee worst-case query times,
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and does not outperform the PR-tree, it still has advantages: it is built faster and it
is much easier to implement and maintain. We tested two variants of the Hilbert-
R-tree in two dimensions: one in which each data object is represented by its cen-
ter point, and one in which each data object is represented bya four-dimensional
point whose coordinates are those of the object’s bounding rectangle. Naturally,
the second variant is more robust when the data consists of rectangles. However,
the experiments also show that the second variant isweakeron some sets ofpoint
objects. It makes one wonder if this unwanted behaviour cannot be avoided. Can
we design a space-filling curve, to be used as the basis for an R-tree, which is
good for both point and rectangle data?

The next big question that remains is: what is the best type ofbounding vol-
ume? It might depend on the type of queries we want to perform.Are axis-aligned
bounding boxes the best choice for axis-aligned rectangle queries? What would
be the best bet for general range queries in two dimensions? Do the results on oc-
tagons by Sitzmann and Stuckey [Sit99] suggest that octagons, sometimes helpful,
sometimes harmful, are just a little bit too much? Would the optimum be found
at discretely oriented hexagons? And how would that be in three dimensions?
Dodecahedra?

Our research has been primarily aimed at two- and three-dimensional settings.
Our theoretical resultsare valid for multi-dimensional data as well. Unfortu-
nately, this includes the rather disappointing lower bounds. From this we must
conclude that the theoretical approach taken in this thesis, aiming for optimal
worst-case query times, may not give us a data structure thatis practical for high-
dimensional data. In practice, one would like to have a data structure that does
not only guarantee optimal query times on the worst possibledata, but can also
take advantage of easier data to allow for faster queries. Since in many practical
situations, we do not have worst-case data, this would lead to a data structure that
is much faster in practice. We do not know if our data structures take advantage
of easy data or fail to do so. For two-dimensional data, it worked out well—in
our experiments, the PR-tree does appear to be efficient—butthis success does
not necessarily carry over to higher dimensions. Handling high-dimensional data
may require more study into questions of the type: whatis easy data, and how
can we design a data structure that simultaneously guarantees worst-case query
times and takes advantage of easy data? Chapter 5 is an attempt to deal with the
first question in three dimensions, but it is doubtful if it makes sense to generalize
the approach of Chapter 5 to higher dimensions. The right questions to ask may
depend on the number of dimensions. Typical applications for low-dimensional
data include motion planning. There we have objects that mayhave a shape in,
for example, four dimensions (three spatial dimensions andone time dimension).
But high-dimensional data more often comes from applications where the data
objects have no shape and size, but are just points whose coordinates represent
the values of non-geometric properties of the objects.
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Figure 1.7: Example of a geometric network. In this case, thenodes are axis-
parallel rectangles, and the connections are axis-parallel line segments.

1.2 Geometric networks

A network consists of a set of vertices or nodes, and a set of connections be-
tween the nodes. In a geometric network, the nodes and connections are geo-
metric objects, which usually have a place and size in space but can also have
non-geometric properties such as the cost of construction and the time needed to
traverse a connection. Geometric networks arise frequently in our everyday life:
road networks, telephone networks, and computer networks are all examples of
geometric networks that we use daily. They also play a role indisciplines such as
VLSI (chip) design and motion planning. Almost invariably,the purpose of the
network is to provide a connection between the nodes in the network. Often it is
desirable that the connection through the network between any pair of nodes is
relatively short. From this viewpoint, one would ideally have a direct connection
between any pair of nodes. This is usually infeasible due to the costs involved,
so one has to compromise between the quality and the cost of the connections.
This leads to optimization problems of the following form: find the “best” set of
connections for a given set of geometric objects, subject toa given set of con-
straints. A well-known problem of this type is to find the minimum spanning tree
on a set of points, which is a set of connections of minimum total length such that
the network is connected. There are many different combinations of constraints
and criteria for a good network: for example, they may concern the total cost of
the network, the maximum distance between nodes, the degreeof the nodes, or
the number of nodes that may get disconnected if a connectionfails. There is a
vast literature on this type of problems, and a comprehensive overview would be
beyond the scope of this thesis. For a survey, see e.g. Eppstein [Epp00], or the
upcoming book by Narasimhan and Smid [Nar04]. We studied twoproblems in
this area, as described below.

Results in this thesis

In Chapter 6,“Facility location and the geometric minimum-diameter spanning
tree”, we study the following case. The nodes in our network are points in two
dimensions, and a straight line connection between two points costs the same
regardless of the distance. We are given just enough money tomake a network that
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connects each point. So if there aren points, we can make onlyn−1 connections.
In other words: we have to construct a spanning tree on the nodes. Our goal is to
choose our connections such that the biggest distance between any pair of points
through the network is as small as possible. So far, exact solutions take almost
O(n3) time to compute. Our algorithm finds a solution where the maximum
distance is up to a factor(1 + ε) larger than in the best solution, but it finds such
a solution in timeO((1

ε )5 + n). For large sets of points and modest requirements
on the accuracy, this can be much faster than the best known exact solution.

In Chapter 7,“Optimal spanners for axis-aligned rectangles”we study the
following case. The nodes in our network aren axis-aligned rectangles in two
dimensions; they are to be connected by line segments. We aregiven a graph on
the nodes of the network. For every connection given in the graph, an axis-aligned
line segment must be placed between the corresponding rectangles. What we
have to figure out, is where exactly the line segment between apair of rectangles
should be placed. Imagine the rectangles are buildings, andthe line segments are
foot bridges. It is quite frustrating if, to walk to a room opposite one’s own room
in an adjacent building, one has to walk all the way to the end of a long corridor,
then along the foot bridge, and then back again along the corridor in the other
building. Therefore our goal is to place the line segments such that we minimize
the maximum dilation, that is the worst possible ratio of theindoor distance and
the shortest distance for any pair of points inside the rectangles. Our results are
as follows.

• In general, the problem is NP-hard.

• If the bridge graph is a tree, then the problem can be solved bya linear
program withO(n2) variables and constraints.

• If the bridge graph is a path, then the problem can be solved inO(n3 log n)
time.

• If the bridge graph is a path and the buildings are sorted vertically along this
path, the problem can be solved inO(n2) time. A (1 + ε)-approximation,
where the maximum dilation is at most(1 + ε) times the optimum, can be
computed inO(n log 1

ε ) time.

This leaves the question of a strongly polynomial-time algorithm for the tree case
still open: so far, we did not succeed in finding a way of generalizing the path
algorithm to arbitrary trees. We hope that the insight gained from the research
in Chapter 7 will eventually be helpful in finding good solutions when the bridge
graph is not given and/or when we wish to connect arbitrary convex polygons
rather than axis-aligned rectangles.





Chapter 2

Significant-presence range
queries in categorical data

An extended abstract of this chapter was previously published as: Mark de Berg
and Herman J. Haverkort: Significant-presence range queries in categorical data,
in Proc. 8th Int. Workshop on Algorithms and Data Structures (WADS), Ottawa,
2003 (LNCS 2748), pages 462–473. Full text submitted toJournal of Algorithms.

Abstract. In traditional colored range-searching problems, one wants to store a
set ofn objects withm distinct colors for the following queries: report all colors
such that there is at least one object of that color intersecting the query range.
Such an object, however, could be an ‘outlier’ in its color class. Therefore we
consider a variant of this problem where one has to report only those colors such
that at least a fractionτ of the objects of that color intersects the query range,
for some parameterτ . Our main results are on an approximate version of this
problem, where we are also allowed to report those colors forwhich a fraction
(1 − ε)τ intersects the query range, for some fixedε > 0. We present efficient
data structures for such queries with orthogonal query ranges in sets of colored
points, and for point stabbing queries in sets of colored rectangles.

2.1 Introduction

Motivation. The range-searching problem is one of the most fundamental prob-
lems in computational geometry. In this problem we wish to construct a data
structure on a setS of objects inR

d, such that we can quickly decide for a query
range which of the input objects it intersects. The range-searching problem comes
in many flavors, depending on the type of objects in the input setS, on the type of
allowed query ranges, and on the required output (whether one wants to report all
intersected objects, to count the number of intersected objects, etc.). The range-
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searching problem is not only interesting because it is sucha fundamental prob-
lem, but also because it arises in numerous applications in areas like databases,
computer graphics, geographic information systems, and virtual reality. Hence,
it is not surprising that there is an enormous literature on the subject—see for
instance the surveys by Agarwal [Aga97], Agarwal and Erickson [Aga98E], and
Nievergelt and Widmayer [Nie00].

In this paper, we are interested in range searching in the context of databases.
Here one typically wants to be able to answer questions like:given a database of
customers, report all customers whose ages are between 20 and 30, and whose
income is between $50,000 and $75,000. In this example, the customers can be
represented as points inR2, and the query range is an axis-parallel rectangle.1

This is called the (planar)orthogonal range-searching problem, and it has been
studied extensively—see the surveys [Aga97, Aga98E, Nie00] mentioned earlier.

There are situations, however, where the data points are notall of the same
type but fall into different categories. Suppose, for instance, that we have a
database of stocks. Each stock falls into a certain category, namely the indus-
try sector it belongs to—energy, banking, food, chemicals,etc. Then it can be
interesting for an analyst to get answers to questions like:“In which sectors com-
panies had a 10–20% increase in their stock values over the past year?” In this
simple example, the input can be seen as points in 1D (namely for each stock its
increase in value), and the query is a 1-dimensional range-searching query.

Now we are no longer interested in reporting all the points inthe range, but
in reporting only the categories that have points in the range. This means that
we would like to have a data structure whose query time is not sensitive to the
total number of points in the range, but to the total number ofcategories in the
range. This can be achieved by building a suitable data structure for each category
separately, but this is inefficient if the number of categories is large. This has led
researchers to study so-calledcolored range-searching problems: store a given
set of colored objects—the color of an object represents itscategory—such that
one can efficiently report those colors that have at least oneobject intersecting a
query range [Aga02, Kre92, Gup95, Jan93].

We believe, however, that this is not always the correct abstracted version of
the range-searching problem in categorical data. Considerfor instance the stock
example sketched earlier. The standard colored range-searching data structures
would report all sectors that haveat least onecompany whose increase in stock
value lies in the query range. But this does not necessarily say anything about
how the sector is performing: a given sector could be doing very badly in general,
but contain a single ‘outlier’ whose performance has been good. It is much more
natural to ask for all sectors for whichmoststocks, or at least a significant por-
tion of them, had their values increase in a certain way. Therefore we propose a
different version of the colored range-searching problem:given a fixed threshold
parameterτ , with 0 < τ < 1, we wish to report all colors such that at least a

1From now on, whenever we use terms like “rectangle” or “box” we implicitly assume these are
axis-parallel.
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fraction τ of the objects of that color intersect the query range. We call this a
τ -significant-presence query, as opposed to the standardpresence querythat has
been studied before.

Problem statement and results. We study significant-presence queries in cat-
egorical data in two settings: orthogonal range searching where the data is a set
of colored points inRd and the query is a box, and stabbing queries where the
data is a set of colored boxes inR

d and the query is a point. We now discuss our
results on these two problems in more detail.

Let S = S1 ∪ · · · ∪ Sm be a set ofn points inR
d, wherem is the number

of different colors andSi is the subset of points of color classi. Let τ be a
fixed parameter with0 < τ < 1. We are interested in answeringτ -significant-
presence queries onS: given a query boxQ, report all colorsi such that|Q∩Si| >
τ · |Si|. Ford = 1, we present a data structure that usesO(n) storage, and that can
answer significant-presence queries inO(log n + k) time, wherek is the number
of reported colors. Unfortunately, the generalization of our approach to higher
dimensions leads to a data structure using already cubic storage in the planar
case. To show this fact, we obtain the following result whichis of independent
interest. LetP be a set ofn points inR

d, andt a parameter with1 6 t 6 n/(2d).
Then the maximum number of combinatorially distinct boxes containing exactly
t points fromP is Θ(ndtd−1) in the worst case.

As a data structure with cubic storage is prohibitive in practice, we study an
approximate version of the problem. More precisely, we study ε-approximate
significant-presence queries: here we are required to report all colorsi with |Q ∩
Si| > τ ·|Si|, but we are also allowed to report colors with|Q∩Si| > (1−ε)τ ·|Si|,
whereε is a fixed positive constant. For such queries we develop a data structure
that usesO(M1+δ) storage, for anyδ > 0, and that can answer such queries in
O(log n+k) time, whereM = m/(τ2d−2ε2d−1) andk is the number of reported
colors. We obtain similar results for the case whereτ is not fixed, but part of
the query—see Theorem 2.2.7. Note that the amount of storagedoes not depend
on n, the total number of points, but only onm, the number of colors. This
should be compared to the results for the previously considered case of presence
queries on colored points sets. Here the best known results are: O(n) storage with
O(log n+k) query time ford = 1 [Jan93],O(n log2 n) storage withO(log n+k)
query time ford = 2 [Jan93],O(n log4 n) storage withO(log2 n + k) query
time ford = 3 [Gup95], andO(n1+δ) storage withO(log n + k) query time for
d > 4 [Aga02]. These bounds all depend onn, the total number of points; this is
of course to be expected, since these results are all on the exact problem, whereas
we allow ourselves approximate answers.

In the point-stabbing problem we are given a parameterτ and a setB =
B1 ∪ · · · ∪ Bm of n colored boxes inRd, and we wish, for a query pointq, to
report all colorsi such that the number of boxes inBi containingq is at least
τ · |Bi|. We study theε-approximate version of this problem, where we are also
allowed to report colors such that the number of boxes containing q is at least



26 CHAPTER 2. SIGNIFICANT-PRESENCE QUERIES

(1 − ε)τ · |Bi|. Our data structure for this case usesO(M1+δ) storage, for any
δ > 0, and it hasO(log n+k) query time, whereM = m/(τε)d. The best results
for standard colored stabbing queries, where one has to report all colors with at
least one box containing the query point, are as follows. Ford = 2, there is a
structure usingO(n log n) storage withO(log2 n + k) query time [Gup95], and
for d > 2 there is a structure usingO(n1+δ) storage withO(log n + k) query
time [Aga02].

2.2 Orthogonal range queries

Our global approach is to first reduce significant-presence queries to standard
presence queries. We do this by introducing so-calledtest sets.

Test sets for orthogonal range queries

Let P be a set ofn points inR
d, and letτ be a fixed parameter with0 < τ < 1.

A setT of boxes—that is, axis-parallel hyperrectangles—is called aτ -test setfor
P if:

1. any box fromT contains at leastτn points fromP , and

2. any query boxQ that contains at leastτn points fromP fully contains at
least one box fromT .

We call the boxes inT test boxes. We can answer a significant-presence query on
P by answering a presence query onT : a query boxQ contains at leastτn points
from P if and only if it contains at least one test box. This does not yet reduce the
problem to a standard presence-query problem, becauseT contains boxes instead
of points. However, like Agarwalet al. [Aga02], we can map the setT of boxes
in R

d to a set of points inR2d, and the query boxQ to a box inR
2d, in such a

way that a boxb ∈ T is fully contained inQ if and only if its corresponding point
in R

2d is contained in the transformed query box.2 This means we can apply the
results from the standard presence queries on colored pointsets.

It remains to find small test sets. As it turns out, this is not possible in general:
below we show that there are point sets that do not admit test sets of near-linear
size. Hence, after studying the case of exact test sets, we will turn our attention to
approximate test sets.

Exact test sets. Let t be a parameter with1 6 t 6 n. Define at-box to be
a minimal box containing at leastt points fromP , that is, a boxb containing at
leastt points such that there is no strictly smaller boxb′ ⊂ b that containst or
more points. It is easy to see that any(τn)-box must be a test box, and that the

2In fact, the transformed query box is unbounded to one side along each coordinate-axis, so it is a
d-dimensional ‘octant’.
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Figure 2.1: Peeling a(τn)-
box b in two dimensions
(τn = 12). The black
dots are the four points of
D(b). Initially, each point
is extreme in only one di-
rection, as indicated by the
arrows. We can choose any
of them, let us takeT .

Figure 2.2: For
p2, we cannot take
R, as it is extreme
in two directions
among the remain-
ing points ofD(b).
So we have to take
one of the others,
for exampleL.

Figure 2.3: Now, all re-
maining points ofD(b)
are extreme in 2 direc-
tions: we stop peeling
here.R andB together
form the basisD∗(b)
of b. We conclude thatb
has a peeling sequence
of type+x2,−x1.

collection of all(τn)-boxes forms aτ -test set. Hence, the smallest possible test
set consists exactly of these(τn)-boxes.

In the 1-dimensional case a box is a segment, and a minimal segment is
uniquely defined by the point fromP that is its left endpoint. This means that
any set ofn points on the real line has a test set that has size(1 − τ)n + 1. Un-
fortunately, the size of test sets increases rapidly with the dimension, as the next
lemma shows.

Lemma 2.2.1 For any setP of n points inR
d, there is aτ -test set that has size

O(τd−1n2d−1). Moreover, for some setsP , anyτ -test set has sizeΩ(τd−1n2d−1).

Proof: By the observation made before, bounding the size of a test set boils
down to bounding the number of(τn)-boxes. In this proof, when we use the term
direction we mean one of the2d directions+x1,−x1, ..., +xd,−xd. Let b be a
(τn)-box, and letD(b) be a set of points inb such that there is at least one point
of D(b) on each facet ofb. If there are more such sets, letD(b) be a set with
minimum cardinality.

The central concept in the proof is that of a peeling sequence, which is defined
as follows: apeeling sequencefor D(b) is a sequencep1, p2, ... of points from
D(b) with the following property: anypi in the sequence is extreme in exactly one
direction among the points inD(b) − {p1, ..., pi−1}. Ties are broken arbitrarily,
i.e. if multiple points are extreme in the same direction, weappoint one of them
to be the extreme point in that direction. Thetypeof a peeling sequence is the
sequence~d1, ~d2, ... of directions such that~di is the unique direction in whichpi is
extreme amongD(b)−{p1, ..., pi−1}. Note that there are(2d)!/(2d−ℓ)! = O(1)
different sequence types of a given lengthℓ, so we haveO(1) different sequence
types of length between0 andd.
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Figure 2.4: Constructing a(τn)-box with sequence type
+x2,−x1 in two dimensions. First choose a basis of two
points for the remaining directions (the black dots). Then
follow the sequence type in reverse order. The extreme
point for direction−x1 must be one of the firstτn points
found when traversing the shaded area in the direction of
the arrow.

Figure 2.5: The ex-
treme point for the
first direction of the
sequence,+x2, must
be the(τn)’th point
in the shaded area.

It is easy to see that there must be a peeling sequenceσ(b) of lengthq =
max(0, |D(b)|−d): consider an incremental construction of the sequence, peeling
off points fromD(b) one at a time, as illustrated in Figs. 2.1–2.3. There are2d
directions, so as long as there are more thand points left there must be a point
that is extreme in only one direction, which we can peel off.

Call D∗(b) := D(b) − σ(b) thebasisof b. We charge the boxb to its basis
D∗(b), and we claim that each basis is chargedO((τn)d−1) times. Since there
areO(nd) possible bases, this proves the theorem. To prove the claim,consider a
basisD∗, and choose a sequence type. Any(τn)-boxb whose basisD(b) is equal
to D∗ and whose peeling sequence has the given type can be reconstructed incre-
mentally as follows—see Figs. 2.4 and 2.5 for an illustration. Start withD = D∗.
Now consider the last direction~dq of the sequence type. Since the last pointpq

of the peeling sequence is extreme only in direction~dq, it must be contained in
the semi-infinite box which is bounded in all other directions by planes through
points inD. Hence, only the firstτn points in this semi-infinite box are candi-
dates forpq, otherwise the box would already contain too many points. A similar
argument shows there are onlyτn choices forpq−1, ..., p2. The first pointp1 from
the sequence (which is the last point added in the reconstruction) is then fixed, as
b must contain exactlyτn points—see Figure 2.5.

To prove the lower bound, consider the following configuration (shown in
Fig. 2.6 for the planar case). We pair the2d directions+x1,−x1, ..., +xd,−xd

into d pairs(~d11, ~d12), (~d21, ~d22),. . . , (~dd1, ~dd2) so that no pair contains opposite
directions, that is~di1 6= −~di2 for 1 6 i 6 d. Let hi be the 2-plane spanned by
the directions~di1 and~di2 and containing the origin. On each 2-planehi, we place
n/d pointspi(1), ..., pi(n/d) such that all of them are in the positive quadrant
with respect to the origin and both directions~di1 and ~di2. We place these points
along a staircase. More precisely, we require that for1 < j 6 n/d, the pointpi(j)

is closer to the origin thanpi(j−1) with respect to direction~di1, and further from
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Figure 2.6: A lower bound on the number of(τn)-
boxes in two dimensions. The four directions are
grouped in two pairs(−x1, +x2) and (+x1,−x2).
We place a staircase ofn/2 points in the positive
quadrant for each pair (in two dimensions, these
quadrants are coplanar; in higher dimensions this
is not necessarily the case). Choosing one defining
point on each staircase fixes two sides of a box. We
haveΘ(n2) ways to do so.

Figure 2.7: Choosing one additional point on one
staircase fixes another side of the box. This addi-
tional point must be one of the firstΘ(τn) points
found when walking up the staircase from the first
defining point on that staircase. On the remaining
staircase, we will have no choice but to choose the
point such that the box will contain exactlyτn points.

the origin with respect to direction~di2. Any box containing at least one point
from each of these sets can now be specified by choosing two pointspi(bi) and
pi(b

′
i) in each 2-planehi; we define the boxb to be the minimum bounding box

of the points chosen. By choosingb′i 6 bi + (τn− 1)/(d− 1)− 1 for 1 6 i < d,
andb′d = bd− 1+

∑d−1
i=1 (b′i− bi +1), we get a box containing exactlyτn points.

Having Θ(n) choices for eachbi (1 6 i 6 d) andΘ(τn) choices for eachb′i
(1 6 i 6 d− 1), we can constructΘ(τd−1n2d−1) different(τn)-boxes. �

Note that already in the plane, the bound is cubic inn.

Remark 2.2.2 A different way to state the result above is as follows. LetP be
a set ofn points inR

d, and lett be a parameter with1 6 t 6 n/(2d). Then the
maximum number of combinatorially distinct boxes containing exactlyt points
from P is Θ(ndtd−1). In other words, we have proved a tight bound on the
number oft-sets for ranges that are boxes instead of hyperplanes. Since t-sets
have been studied extensively—see e.g. [Dey98] and [Sha01]—we suspected that
the case of box-ranges would have been considered as well, but we have only
found a result on this fort = 2: Alon et al. [Alo85] proved that the maximum
number of2-boxes is(1 − 1

22d−1
−1

)n2/2 + o(n2).

Remark 2.2.3 The lower-bound example in the proof of Lemma 2.2.1 is quite
contrived, and one may hope that much smaller test sets are possible if the points
are distributed more regularly. This is not the case, however. As an example,
consider the planar case withτ = 1/2, and suppose the point setP is distributed
uniformly at random in the unit square. Then the number of(n/2)-rectangles
is still Θ(n3) with high probability. This can be seen as follows. Considerthe
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area = 3/4

6/71/14 1/14

7/8

1/16
1/16

area = 1/224

area = 3/56

Figure 2.8: Partitioning of the unit square used in the argument in Remark 2.2.3.

partitioning of the unit square into nine regions, as in Fig.2.8. Since the points are
distributed uniformly, the expected number of points in a region of areaα is αn.
Moreover, the number of points in the region is at least(2/3)αn with probability
greater than1− exp(−αn/18), which follows from standard tail estimates on the
binomial distribution. Hence, the following properties hold simultaneously with
high probability:

(1) each of the three darkly shaded regions in Fig. 2.8 hasΘ(n) points;

(2) the lightly shaded region has at leastn/2 points, which also implies that the
six bottommost regions together have at mostn/2 points.

It follows from (1) that there areΘ(n3) triples of points such that each darkly
shaded region contains one point from the triple, and it follows from (2) that for
each such triple there is a rectangle with these points on theleft, right, and bottom
edge that contains exactlyn/2 points.

Approximate test sets. The worst-case bound from Lemma 2.2.1 is quite dis-
appointing. Therefore we now turn our attention to approximate test sets. A setT
of boxes is called anε-approximateτ -test setfor a setP of n points if

1. any box fromT contains at least(1− ε)τn points fromP ;

2. any query boxQ that contains at leastτn points fromP fully contains at
least one box fromT .

This means we can answerε-approximate significant-presence queries onP by
answering a presence query onT .

Lemma 2.2.4 For any setP of n points inR
d (d > 1) and anyε with 0 < ε <

1/2, there is anε-approximateτ -test set of sizeO(1/(ε2d−1τ2d−2)). Moreover,
there are setsP for which anyε-approximateτ -test set has sizeΩ(1/(ε2d−1τd)).



2.2. ORTHOGONAL RANGE QUERIES 31

Proof: To prove the upper bound, we proceed as follows. We will construct test
sets recursively, starting with the full setP as input. If the size of the current set
P is less thanτn0, wheren0 is the original number of points, there is nothing to
do. Otherwise, we choose a hyperplaneh orthogonal to thex1-axis, such that at
most half of the points inP lies on either side ofh. Then we construct three test
sets, one for queries on one side ofh, one for queries on the other side, and one
for queries intersectingh. The first two test sets are constructed by applying the
procedure recursively. The latter set is constructed as follows.

Let n be the number of points in the current setP . We construct a collec-
tion H2(P ) of n(2d − 1)/(ετn0) hyperplanes orthogonal to thex2-axis, such
that there areετn0/(2d− 1) points ofP between any pair of consecutive hyper-
planes.3 We do the same for the other axes, except thex1-axis, obtaining sets
H3(P ), . . . , Hd(P ).

From these collections of hyperplanes we construct our testset as follows.
Take any possible subsetH∗ of 2d− 2 hyperplanes fromH2(P ) ∪ · · · ∪Hd(P )
such thatH2(P ) up toHd(P ) each contribute exactly two hyperplanes toH∗. Let
P (H∗) be the set of points inP that lie on or between the hyperplanes contributed
by Hi(P ), for all 2 6 i 6 d. Construct a collectionH1(H

∗) of hyperplanes
orthogonal to thex1-axis, such that there areετn0/(2d − 1) points ofP (H∗)
between each pair of consecutive hyperplanes. For each suchhyperplaneh′ ∈
H1(H

∗), construct a test boxb with the following properties:

1. b is bounded byh′, the hyperplanes fromH∗, and one additional hyperplane
parallel toh′ and through a point ofP (H∗);

2. b is a((1 − ε)τn0)-box.

Of all the test boxes thus constructed, we discard those thatdo not intersecth.
Hence we will only keep boxes for whichh′ is relatively close toh: there cannot
be more than(1− ε)τn0 points fromP (H∗) betweenh andh′.

This implies that the total number of test boxes we create in this step is
bounded by(1 − ε)τn0 / (ετn0/(2d − 1)) 6 (2d − 1)/ε for a fixed setH∗.
Hence, we create at most(n(2d − 1)/(ετn0))

2d−2 · (2d − 1)/ε boxes in total.
The numberT (n) of boxes created in the entire recursive procedure therefore
satisfies:

T (n) = 0 if n < τn0

T (n) 6 2T (n/2) +
(

2d−1
ετn0

)2d−2

· 2d−1
ε · n2d−2 otherwise.

This leads to|T | = T (n0) = O(1/(ε2d−1τ2d−2)).
We now argue thatT is anε-approximateτ -test set forP . By construction,

every box inT contains at least(1 − ε)τn0 points, so it remains to show that

3If there are more points with the samex2-coordinate, we choose the hyperplanes such that
we have at mostετn0/(2d − 1) points strictly in between consecutive hyperplanes, and atleast
ετn0/(2d − 1) points in between or on consecutive hyperplanes.
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Figure 2.9: An example query rangeQ (shaded area)
that intersectsh, showing alsoh2, h′

2 and the grid
H1({h2, h

′
2}). The three dark areas ofQ each con-

tain at mostετn0/3 points. Hence, ifQ contains
at leastτn0 points, the bright area ofQ contains at
least(1 − ε)τn0 points, and a test box like the one
shown above, bounded byh2, h′

2 and a grid line from
H1({h2, h

′
2}), must lie insideQ.

every boxQ that contains at leastτn0 points fromP fully contains at least one
box b from T . Let h be the first hyperplane used in the recursive construction.
If at leastτn0 points inQ lie to the same side ofh, we can assume that there
is a test box contained inQ by induction. If this is not the case, we will show
that a test boxb insideQ was created for queries intersectingh. To see that
such a box must exist, observe that for anyi with 2 6 i 6 d, there must be a
hyperplanehi ∈ Hi(P ) that intersectsQ and has at mostετn0/(2d − 1) points
from Q ∩ P below it. Similarly, there is a hyperplaneh′

i ∈ Hi(P ) intersecting
Q with at mostετn0/(2d − 1) points fromQ ∩ P above it. Note thathi 6= h′

i.
Let H∗ be the set{h2, h

′
2, h3, h

′
3, . . . , hd, h

′
d}. Since each of these hyperplanes

‘splits off’ at mostετn0/(2d − 1) points fromQ, they define, together with the
facets ofQ orthogonal to thex1-axis, a box contained inQ and containing at least
(1− ε + ε/(2d− 1))τn0 points. From this, it follows that our construction, when
processing this particularH∗, must have produced a test boxb ⊂ Q. The proof is
illustrated in Fig. 2.9.

To prove the lower bound, recall the construction used in Lemma 2.2.1 for the
lower bound for the exact case. There we usedd staircases ofn/d points each. We
then picked two points from each staircase, with at most(τn− 1)/(d− 1) points
between (and including) them, except for the last staircase, where we picked only
one point. Each such combination of points defined a different (τn)-box, thus
givenΩ(τd−1n2d−1) different (τn)-boxes. Now, for the approximate case, we
consider a subset of(n/d)/(ετn+2) so-calledanchor pointsalong each staircase,
such that two consecutive anchor points haveετn+1 points in between. We now
pick two anchor points from each staircase, except the last staircase, where we
pick one. We make sure that in between two chosen anchor points from the same
staircase, there are at most(τn− 1)/(d− 1) points. We then pick a final point on
the last staircase to obtain a(τn)-box. Each of these boxes must be captured by
a different test box, because the intersection of two such boxes contains less than
(1 − ε)τn points. The lower bound follows. �

Putting it all together. To summarize, the construction of our data structure for
ε-approximate significant-presence queries onS = S1∪· · ·∪Sm is as follows. We
construct anε-approximateτ -test setTi for each color classSi. This gives us a
collection ofM = O(m/(ε2d−1τ2d−2)) boxes inRd. We map these boxes to a set
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Ŝ of colored points inR2d, and construct a data structure for the standard colored
range-searching problem (that is, presence queries) onP , using the techniques of
Agarwalet al. [Aga02]. Their structure was designed for searching on a grid, but
using the standard trick of normalization—replace every coordinate by its rank,
and transform the query box to a box in this new search space inO(log n) time
before running the query algorithm—we can employ their results in our setting.

The same technique works for exact queries, if we use exact test sets. This
gives a good result ford = 1, if we use the results from Guptaet al. [Gup95] on
quadrant range searching.

Theorem 2.2.5Let S = S1 ∪ · · · ∪ Sm be a colored point set inRd, andτ a
fixed constant with0 < τ < 1. For d = 1, there is a data structure that uses
O(n) storage such that exactτ -significant-presence queries can be answered in
O(log n + k) time, wherek is the number of reported colors. Ford > 1, there
is, for anyε with 0 < ε < 1/2 and anyδ > 0, a data structure forS that uses
O(M1+δ) storage such thatε-approximateτ -significant-presence queries onS
can be answered inO(log n + k) time, whereM = O(m/(ε2d−1τ2d−2)).

Remark 2.2.6 Observe that, since we only have constantly many points per color,
we could also use standard range-searching techniques. Butthis would increase
the termk in the reporting time toO(k/(ε2d−1τ2d−2)), which is undesirable.

The case of variableτ . Now consider the case where the parameterτ is not
given in advance, but is part of the query. We assume that we have a lower bound
τ0 on the value ofτ in any query. Then we can still answer queries efficiently,
at only a small increase in storage. To do so, we build a collection of O(T )
substructures, whereT = log(1/τ0)/ log(1 + ε/2). More precisely, for integers
i with 0 6 i 6 T , we defineτi := (1 + ε/2)iτ0, and for each suchi we build
a data structure for(ε/2)-approximateτi-significant-presence queries onS. To
answer a query with a query boxQ and query parameterτ , we first find the largest
τi smaller than or equal toτ , and we query withQ in the corresponding data
structure. This leads to the following result.

Theorem 2.2.7Let S = S1∪· · ·∪Sm be a colored point set inRd, andτ0 a fixed
constant with0 < τ0 < 1. Ford > 1, any0 < ε < 1/2 and anyδ > 0, there is a
data structure forS that usesO(M1+δ/ε) storage such that, for anyτ > τ0, one
can answerε-approximateτ -significant-presence queries onS in O(log n + k)
time, whereM = O(m/(ε2d−1τ2d−2

0 )) andk is the number of reported colors.

Proof: By Theorem 2.2.5, the size of substructurei is O(M1+δ(τ0/τi)
D) =

O(M1+δ/(1+ε/2)Di), whereM = O(m/(ε2d−1τ2d−2
0 )) andD = (2d−2)(1+

δ). The total size of all substructures is thereforeO(M1+δ
∑T

i=0(1+ε/2)−Di) =
O(M1+δ/ε).

It remains to show that queries are answered correctly. Notethat τi 6 τ 6

(1 + ε/2)τi. Now, any colorj with |Q ∩ Sj | > τi|Sj | will be reported by our
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algorithm, so certainly any color with|Q∩Sj | > τ |Sj | will be reported. Second,
for any reported colorj we have:

|Q ∩ Sj | > (1− ε/2) · τi|Sj |
> (1− ε/2) · τ/(1 + ε/2) · |Sj |
> (1− ε)τ · |Sj |.

This proves the correctness of the algorithm. �

2.3 Stabbing queries

Let B = B1 ∪ · · · ∪Bm be a set ofn colored boxes inRd, whereBi denotes the
subset of boxes of colori. Let τ be a constant with0 < τ < 1. For a pointq,
we useBi(q) to denote the subset of boxes fromBi that containq. We want to
preprocessB for the following type of stabbing queries: given a query point q,
report all colorsi such that|Bi(q)| > τ · |Bi|. As was the case for range queries,
we are not able to obtain near-linear storage for exact queries ford > 1, so we
focus on theε-approximate variant, where we are also allowed to report a color if
|Bi(q)| > (1 − ε)τ · |Bi|.

Our approach is similar to our approach for range searching.Thus we define
anε-approximateτ -test setfor a setBi to be a setTi of test boxes such that

1. for any pointq with |Bi(q)| > τ · |Bi|, there is a test boxb with q ∈ b;

2. for any test boxb and any pointq ∈ b, we have|Bi(q)| > (1− ε)τ · |Bi|.
This means we can answer a query by reporting all colorsi for which there is a
test boxb ∈ Ti that containsq.

Lemma 2.3.1 For any setBi of boxes inR
d, there is anε-approximateτ -test

setTi consisting ofO(1/(ετ)d) disjoint boxes. Moreover, forε < 1/(2d), there
are sets of boxes inRd for which anyε-approximateτ -test set has sizeΩ(((1 −
τ)/(ετ))d).

Proof: For each of thed main axes, sort the facets of the input boxes orthogonal
to that axis, and take a hyperplane through every(ετni/d)-th facet, whereni :=
|Bi|. This givesd collections ofd/(ετ) parallel planes, which together define a
grid with O(1/(ετ)d) cells. We letTi consist of all cells that are fully contained
in at least(1 − ε)τ · |Bi| boxes fromBi. ClearlyTi has the required number of
boxes, and has property (2). (Note: using the fact that, coming from infinity, we
must cross at leastd(1− ε)/ε > (1/ε)− 1 hyperplanes before we can come to a
cell fromTi, we can in fact obtain a slightly stronger bound on the size ofTi for
the case whereτ is large.)

It remains to show thatTi has property (1). Letq be a point for which
|Bi(q)| > τ · |Bi|, and letC be the cell containingq. Since any cell is crossed by
at mostετni facets, we must haveC ∈ Ti.



2.4. CONCLUDING REMARKS 35

The lower bound is proved as follows. For each of the main axes, take a
collection of(1−τ)/(2dετ) hyperplanes orthogonal to that axis. Slightly ‘inflate’
each hyperplane to obtain a very thin box. This way each intersection point ofd
hyperplanes becomes a tiny hypercube. Next, each of these thin boxes is replaced
by 2ετni identical copies of itself. Note that each tiny hypercube isnow covered
by 2dετni boxes, and that there are((1 − τ)/(2dετ))d such hypercubes. Add a
collection of(1−2dε)τni big boxes, each containing all the tiny hypercubes. The
tiny hypercubes are now covered by exactlyτni boxes, and the remaining space
is covered by at most(1 − 2ε)τni boxes. (Since we have used slightly less than
ni boxes in total, we need to add some more boxes, at some arbitrary location
disjoint from all other boxes.) Any test set must contain each of the hypercubes,
and the result follows. �

To solve our problem, we construct a test setTi for each color classBi according
to the lemma above. This gives us a collection ofM = O(m/(ετ)d) colored
boxes. Applying the results of Agarwalet al.[Aga02] again, we get the following
result.

Theorem 2.3.2Let B = B1 ∪ · · · ∪ Bm be a colored set of boxes inRd, andτ
a fixed constant with0 < τ < 1. For d = 1, there is a data structure that uses
O(n) storage such that exactτ -significant-presence queries can be answered in
O(log n + k) time, wherek is the number of reported colors. Ford > 1, there
is, for anyε with 0 < ε < 1/2 and anyδ > 0, a data structure forB that uses
O(M1+δ) storage such thatε-approximateτ -significant-presence queries onB
can be answered inO(log n + k) time, whereM = O(m/(ετ)d).

Remark 2.3.3 Note that, since the test boxes from any given color are disjoint,
we can simply report the color of each box containing the query point q. Thus
we do not have to use the structure of Agarwalet al., but we can apply results
from standard non-colored stabbing queries [Chz88]. This way we can slightly
reduce storage toO(M logd−2+δ M) at the cost of a slightly increased query time
of O(logd−1 M + k). Also note that we can treat the case of variableτ in exactly
the same way as for range queries.

2.4 Concluding remarks

Standard colored range searching problems ask to report allcolors that have at
least one object of that color intersecting the query range.We considered the
variant where a color should only be reported if some constant pre-specified frac-
tion of the objects intersects the range. We developed efficient data structures for
an approximate version of this problem for orthogonal rangesearching queries
and for stabbing queries. One obvious open problem is whether there exists a
data structure for the exact problem with near-linear space. We have shown that
this is impossible using our test-set approach, but perhapsa completely different
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approach is possible. Another open problem is to close the gap between our up-
per and lower bounds for the size of approximate test sets fororthogonal range
searching. Finally, one can develop structures that can report the color that has
the most points in the query range. Krizancet al. [Krz03] recently studied this
problem ford = 1, and it would be interesting to generalize their results tod > 2.
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Chapter 3

Box-trees and R-trees with
near-optimal query time

Previously published as: Pankaj K. Agarwal, Mark de Berg, Joachim Gudmunds-
son, Michael Hammar and Herman J. Haverkort: Box-trees and R-trees with near-
optimal query time, inDiscrete and Computational Geometry, 28(3), 2002, pages
291–312.

In the following text, the bounds in Lemma 3.3.6, Lemma 3.3.7, Lemma 3.3.8,
Theorem 3.3.9, Lemma 3.3.10, Theorem 3.3.11, and Corollary3.4.4 are a little
stronger than in the previously published version. This is due to slighlty more
detailed calculations in the proofs.

Abstract. A box-tree is a bounding-volume hierarchy that uses axis-aligned
boxes as bounding volumes. The query complexity of a box-tree with respect
to a given type of query is the maximum number of nodes visitedwhen answer-
ing such a query. We describe several new algorithms for constructing box-trees
with small worst-case query complexity with respect to queries with axis-parallel
boxes and with points. We also prove lower bounds on the worst-case query com-
plexity for box-trees, which show that our results are optimal or close to optimal.
Finally, we present algorithms to convert box-trees to R-trees, resulting in R-trees
with (almost) optimal query complexity.

3.1 Introduction

Motivation and problem statement. Window queriesreport all objects of a
given set that intersect ad-dimensional axis-parallel query window, that is, ad-
dimensional box. Preprocessing a setS of geometric objects inRd for answering
such queries is central to many applications and has been widely studied in several
areas, including computational geometry, computer graphics, spatial databases,
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GIS, and robotics [Brg97KOS, Man99]. In order to expedite and simplify the
data structure, a window query is often answered in two steps. In the first step,
called thefiltering step, each object is replaced by the smallest box containing
the object and the query procedure reports the bounding boxes that intersect the
query window. (Instead of boxes, other simple shapes such asspheres, ellipsoids
or cylinders have also been used.) The second step, called the refinement step,
extracts the actual objects among these bounding boxes thatintersect the query
window [Bri94, Ore90]. A few recent results show that under certain reason-
able assumptions on the input objects, the number of bounding boxes intersecting
a query window is not much larger than the number of objects intersecting the
window, which makes this approach quite attractive; see thepaper by Zhou and
Suri [Zho99] and the references therein. There has been muchwork on the filter-
ing step, and we also focus on this step. More precisely, we wish to preprocess a
setS of n boxes inR

d so that all boxes ofS intersecting ad-dimensional query
box can be reported efficiently. We will refer to this query asthebox-intersection
query. A related query is thebox-containmentquery in which we want to report
all boxes inS that contain a query point.

A number of data structures with good provable bounds for answering box-
intersection queries have been proposed. Unfortunately they are of limited practi-
cal use because the amount of storage used is rather high:O(n log n) storage and
evenO(n) storage with a large hidden constant are often unacceptable. Therefore
in practice one usually uses simpler data structures. A commonly used struc-
ture for answering box-intersection queries, box-containment queries, and in fact
many other types of queries is thebounding-box hierarchy, or box-treefor short,
sometimes also called AABB-tree: this is a treeT , in which each leaf is associ-
ated with a box of the input setS, and each interior nodeν is associated with the
smallest boxBν enclosing all the boxes stored at the leaves of the subtree rooted
at ν. All the boxes ofS intersecting a query boxR are reported by traversing
T in a top-down manner. Suppose the query procedure is visiting a nodeν. If
Bν ∩ R = ∅, there is nothing to do. IfBν ⊆ R, then it reports all input boxes
stored in the subtree rooted atν. Finally, if Bν ∩ R 6= ∅ but Bν 6⊆ R, it recur-
sively visits the children ofν. We say thatR crossesa nodeν if Bν ∩R 6= ∅ and
Bν 6⊆ R. If the fan-out ofT is bounded, then the query time is proportional to
the number of nodes ofT thatR crosses plus the number of boxes reported. We
define the stabbing number ofT to be the maximum number of its nodes crossed
by a query box. It is therefore desirable to construct a bounding-box hierarchy
with small stabbing number.

In many applications, especially in the database applications, the setS is too
large to fit in the main memory, therefore it is stored on disk.In that case, the
main goal is to minimize the number of disk accesses needed toanswer a window
query, and the performance of an algorithm is analyzed underthe standard exter-
nal memory model [Agg88]. This model assumes that each disk access transmits
a contiguous block oft units of data in a singleinput/output operation(or I/O).
The efficiency of a data structure is measured in terms of the amount of disk
space it uses (measured in units of disk blocks), the number of I/Os required to
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answer a query, and the number of I/Os needed to construct thedata structure. In
the context of bounding-box hierarchies, several schemes have been proposed that
construct a tree as above but in which the fanout of each node depends ont. Some
notable examples of external-memory bounding-box hierarchies are various vari-
ants of R-trees; see the survey paper [Gae98]. We can still define thecrossing
nodes and thestabbing numberas earlier, and one can argue that the number of
I/Os needed to answer a query is proportional to the stabbingnumber plus the
output size.

In this paper we study the problem of constructing bounding-box hierarchies,
both in main and external memory, that have low stabbing number, and conse-
quently, low query complexity.

Previous results. As noted above, several efficient data structures have been
proposed for answering a box-intersection query. For example, Chazelle [Chz88]
showed that a compressed range tree can be used to answer ad-dimensional box-
intersection query in timeO(logd−1 n + k) usingO(n logd−1 n/ log log n) space
(wherek is the number of boxes reported). This data structure is too complex to
be practical even inR2. As for bounding volume hiearchies, we know of only
one result on the query complexity of box-intersection queries (besides the results
on R-trees discussed later): if one maps eachd-dimensional box to a point in
R

2d, constructs a kd-tree on these points, and converts the kd-tree back to a box-
tree, then the query time is known to beO(n1−1/2d + k) [Aga98E, Lau78]. A
number of heuristics based onkd-trees have also been proposed to answer box-
intersection queries [Aga98E, Nie97]. Several papers [Got96, Klo98] describe
how to construct bounding-box hierarchies or other bounding-volume hierarchies
(for example, usingk-DOPs as bounding volumes), but they do not obtain bounds
on the worst-case query complexity.1

Some of the most widely used external-memory bounding-box hierarchies are
the R-tree and its variants. An R-tree, originally introduced by Guttmann [Gut84],
is aB-tree, each of whose leaves is associated with an input box. All leaves of
an R-tree are at the same level, the degree of all internal nodes except of the root
is betweent and2t, for a given parametert, and the degree of the root varies
between2 and2t. We will refer tot as theminimum degreeof the tree. To min-
imize the query complexity, several methods have been proposed [Fal92, Fal87,
Gae98, Leu97] for ordering the input boxes along the leaves—varying from sim-
ple heuristics to space filling curves—but none of them guarantee the worst-case
performance. In the worst case, a linear number of bounding boxes might inter-
sect a query box even if it intersects onlyO(1) input boxes. The only analytical
results are by Theodoridis and Sellis [The96], who present amodel that predicts
the average performance of R-trees for range queries, and Faloutos et al. [Fal87],
but they prove bounds on the query time only in the 1-dimensional case when the

1Barequetet al. [Bar96] gave an algorithm to construct a bounding-box hierarchy inR
2, and they

claimed that if the boxes inS are pairwise disjoint, then the resulting hierarchy hasO(log n) stabbing
number. But the argument presented in the paper has a technical problem.
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input intervals are uniformly distributed and have at most two different lengths.
Recently, de Berget al. [Brg00] described an algorithm for constructing an R-
tree on boxes inR2 so that allk boxes containing a query point can be reported in
O((σ + log ρ) log n/ log t) I/Os. Hereρ is the ratio of the maximum and the min-
imumx-lengths of the input boxes, andσ is thepoint-stabbing numberof S, that
is,σ is the maximum number of input boxes containing any point in the plane. For
a box-intersection query, the number of I/Os isO((σ+log ρ+w+k) logn/ log t),
wherew is the ratio of thex-length of the query box to the smallestx-length of
an input box.

Our results. In this paper we first describe several algorithms for constructing
box-trees, and we prove lower bounds on the worst-case querycomplexity of
box-trees. The lower bounds actually hold for all bounding volume hierarchies
that use convex shapes as bounding volumes.

Our first algorithm, like the approach mentioned earlier, isbased on a kd-tree
in R

2d. By changing the structure slightly and doing a more carefulanalysis, we
are able to obtainO(n1−1/d + k) query complexity for box-intersection queries.
We also prove a lower bound showing that this bound is optimal.

For disjoint input in the plane, we show how to construct a box-tree that
still has almost optimal query time for box-intersection queries, but much bet-
ter query times for point queries. In fact, it is already better for point-queries
when the point-stabbing numberσ of the input iso(n/ log4 n): the time for box-
intersection queries isO(

√
n log n+

√
σ log2 n+k), and the time for point queries

is O(
√

σ log2 n + k). We also develop a box-tree withO((α +
√

σ) log2 n + k)
query time for use with query boxes with aspect ratioα. One would hope that
similar improvements are possible in higher dimensions. One of our lower-bound
results shows that this is not possible: in dimensionsd > 3, theΩ(n1−1/d + k)
lower bound on the query complexity holds even for hypercubes as query ranges,
and any bounding-box hierarchy that achieves this query time cannot have a better
worst-case query time for point queries, even when the inputconsists of disjoint
‘almost-unit-hypercubes’.

Finally, we give general methods to convert box-trees with small query com-
plexity into R-trees with small query complexity. When we apply these results to
our box-trees, we improve the result of de Berget al. [Brg00]: our query com-
plexity does not depend on the parameterw (which makes their query complexity
linear in the worst case), and it is linear in

√
σ instead of inσ. We also introduce

the concept ofsemi-R-trees; these are similar to ordinary R-trees—the degree of
each internal node, except for the root, is betweent and2t for some given pa-
rametert—except that the leaves do not have to be at the same level. We give a
general algorithm to convert a box-tree with small query complexity into a semi-
R-tree with small query complexity; the bound obtained hereis better than that
for R-trees. This leads to semi-R-trees with (almost) optimal query complexity.

All box-tree construction algorithms in this paper run inO(n log n) time, and
all box-tree-to-(semi-)R-tree conversion algorithms runin O(n) time.
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3.2 Lower Bounds

In this section we give lower bounds on the query complexity of semi-R-trees of
minimum degreet in various settings. Since semi-R-trees are more general than
R-trees, the same bounds hold for R-trees. By choosingt = 2, we obtain lower
bounds for box-trees.

We start with a simple generalization of the 2-dimensional lower bound given
by de Berget al. [Brg00].

Theorem 3.2.1For anyn andd > 2, there is a set ofn disjoint unit hypercubes
in R

d with the following property: for any semi-R-treeT of minimum degreet
there is a query box not intersecting any box fromS such that a query with that
box visitsΩ((n/t)1−1/d) nodes inT .

Proof: Consider a set ofn unit hypercubes arranged in ann1/d×· · ·×n1/d grid,
and the following set of query ranges: for each axis, we choosen1/d−1 thin boxes
orthogonal to it and separating the ‘slices’ of the grid fromeach other. Now any
bounding box ont hypercubes intersects at leastd(t1/d − 1) of the query ranges.
Hence, the total number of incidences between the ranges andthe bounding boxes
is at leastΩ((n/t) · t1/d). As there areO(n1/d) ranges, there must be one that
intersectsΩ((n/t)1−1/d) bounding boxes. �

Next we describe a construction that proves lower bounds on box-containment
queries and that is also useful for a number of other cases. For anyε > 0, we call
a d-dimensional box anε-hypercubeif the length of each edge is between1 and
1 + ε. We fix a parameterµ ≥ 1 and construct a setS = {b(0), . . . , b(n − 1)}
of n ε-hypercubes inRd. We also construct two sets of query pointsQ1 andQ2,
calledprimary andsecondarypoint sets, that lie in the common exterior of the
boxes inS and have the following property: for any semi-R-treeT on S with
minimum degreet, either a point ofQ1 lies in at leastµ bounding boxes ofT or a
point ofQ2 lies inΩ((n/t)/µ1/(d−1)) bounding boxes ofT . From this we derive
the desired lower bounds. We first describe the setS and then construct the point
sets.

Let n1, . . . , n2d be the outward normals of ad-dimensional box. We can pair
these normals intod pairs(n11, n12), (n21, n22), . . . , (nd1, nd2) so that no pair
contains opposite normals, that is,ni1 6= −ni2 for 1 ≤ i ≤ d. Let hi be the
2-plane spanned by the vectorsni1 andni2 and containing the origin. Letb be a
d-dimensional box containing the origin. Sinceni1 6= −ni2, the facetsfi1, fi2 of
b normal toni1 andni2, respectively, share a(d− 2)-facefi, which is orthogonal
to the2-planehi. The intersection offi andhi is a pointci. Conversely, by spec-
ifying a pointci on eachhi, 1 ≤ i ≤ d, we can represent a uniqued-dimensional
box in whichci lies on the facets normal toni1 andni2. We will therefore de-
fine each boxb(j) ∈ S by ad-tuple(c1(j), . . . , cd(j)), where the facets ofb(j)
whose outward normals areni1 andni2 pass throughci(j). We next describe how
to choose the pointsci(j), for 1 ≤ i ≤ d and0 ≤ j < n.

On each2-planehi, we choose a lineℓi of slope−1; the exact equation of
ℓi will be specified below. We will refer toh1 as theprimary plane, and to
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hi, for i > 1, as asecondary plane. Set µ̂ = µ1/(d−1). We placen points
p1(0), . . . , p1(n − 1) on ℓ1 (sorted alongℓ1 by ascendingni1-coordinate, and
consequently, by descendingni2-coordinate) and setc1(j) = p1(j) for every
0 ≤ j < n. For eachi > 1, we placeµ̂ pointspi(0), . . . , pi(µ̂ − 1) on ℓi

and assignci(j) to these points as follows. Letα(j) = (α0(j), . . . , αd−2(j)) be
the representation ofj mod µ in radix µ̂, that is,

∑d−2
k=0 αk(j)µ̂k = j mod µ. For

eachi > 1, we setci(j) = pi(αd−i(j)). Note thatn/µ̂ points have the same value
of ci(j). We chooseℓi and the points onℓi so that eachbj is anε-hypercube, e.g.
by putting all pointspi(j) at a distance of at least1/2 and at most(1 + ǫ)/2 from
the origin, both in their projection on theni1-axis and on theni2-axis.

Finally, we choose a setQ1 of n − 1 points on the primary planeh1 and a
setQ2 of (d − 1)(µ̂ − 1) points on the secondary planes, as follows. Suppose
h1 is thex1x2-plane. For each1 ≤ j ≤ n − 1, we choose the pointq(j) =
(x1(p1(j−1)), x2(p1(j))) and add it toQ1. In other words, if we regard the points
on ℓ1 as the convex corners of a staircase,Q1 is the set of concave corners of the
staircase. To constructQ2, we repeat the same step for each of the secondary
planes, thus obtaininĝµ − 1 points on each of them. These points will be on the
boundary of some of the input boxes, but we can shift them a little to make them
disjoint from all input boxes.

Lemma 3.2.2 Let T be any semi-R-tree of minimum degreet on the setS con-
structed above. Then either there is a primary query point contained inΩ(µ)
bounding boxes stored inT , or one of the secondary query points is contained in
Ω(n/(tµ1/(d−1))) bounding boxes stored inT .

Proof: We first prove the lemma for box-trees, which are binary trees. Sup-
pose that all primary query points are contained in less thanµ/2 bounding boxes
stored in the interior nodes inT . Then the number of incidences between these
points and interior nodes’ bounding boxes is at most(n − 1)µ/2. Since there
aren − 1 interior nodes inT , they store at least(n − 1)/2 bounding boxes that
contain less thanµ primary query points. Observe that a bounding box for in-
put boxesb(j), b(j′) ∈ S contains|j − j′| primary query points, because there
are that many concave corners in the staircase between corners c1(j) andc1(j

′).
We conclude that there are at least(n − 1)/2 bounding boxes that store boxes
b(j), b(j′) (and perhaps some more boxes) with|j − j′| < µ. But if |j − j′| < µ
thenj 6≡ j′ (mod µ), soα(j) 6= α(j′). This implies that there is at least one
i with 2 6 i 6 d such thatci(j) 6= ci(j

′). Hence, the bounding box storing
b(j), b(j′) will contain one of the secondary query points. So in total wehave at
least(n− 1)/2 incidences between secondary query points and bounding boxes,
so one of the(d− 1)(µ̂− 1) = O(µ1/(d−1)) secondary query points is contained
in Ω(n/µ1/(d−1)) bounding boxes.

The generalization to semi-R-trees follows easily from theobservation that a
semi-R-tree of minimum degreet hasΩ(n/t) nodes. If each primary query point
is contained in less thanµ/2 bounding boxes, we then getΩ(n/t) nodes whose
bounding box contains less thanµ primary query points. From that point on, we
can basically follow the argument above. �
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Figure 3.1: The lower bound construction in two dimensions for µ = µ̂ =
√

n.
In this case, the primary and the secondary plane coincide. Each of the lower left
corners is shared by

√
n boxes (shown slightly displaced for clarity). The black

dots indicate the locations of the query points inQ1 andQ2.

We can use this lemma to prove lower bounds for several settings. By substituting
µ = (n/t)1−1/d, we prove the following lower bound for point queries.

Theorem 3.2.3For anyn, d > 2, andε > 0, there is a setS of n ε-hypercubes
in R

d with the following property: for any semi-R-treeT of minimum degreet
there is a point not contained in any box fromS such that a query with that point
visitsΩ((n/t)1−1/d) nodes inT .

Next, we modify the above construction so that the same boundcan be achieved
in d ≥ 3 even if the input consists of a set ofn disjoint ε-hypercubes and the
queries are hypercubes.

Theorem 3.2.4For anyn, d > 3, andε > 0, there is a setS of n disjoint ε-
hypercubes inRd with the following property: for any semi-R-treeT of minimum
degreet there is a hypercube not intersecting any box fromS such that a query
with that hypercube visitsΩ((n/t)1−1/d) nodes inT .
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Proof: We apply a variant of the construction above withµ = n1−1/(d−1) to
obtain a set of(d−1)-dimensional boxes in the hyperplanex1 = 0. The variation
is that we treat all planes on which we put the corners as secondary planes. We
use the remaining dimension to make the boxes intod-dimensionalε-hypercubes,
and we translate each box into thex1-direction such that they become disjoint
and intersect thex1-axis in the orderb(1), b(2), . . . , b(n). In between every pair
b(j), b(j + 1) we put a query point. Thesen− 1 query points play the role of the
primary query points. The secondary query points are replaced by query ranges
which are hypercubes. We can do that in such a way that the intersection of such
a range with a secondary plane is a square that missesS and that has one corner
coinciding with the secondary query points we had previously. It is easy to see
that the bound in Lemma 3.2.2 still holds. �

Finally, we observe that the proof of the preceding theorem actually shows that
in higher dimensions any semi-R-tree with small (say, polylogarithmic) query
complexity for points must have large (near-linear) query complexity for ranges.
More precisely, it shows the following result.

Theorem 3.2.5 For anyn, d > 3 andε > 0, there is a setS of n disjoint ε-
hypercubes inRd with the following property: for any semi-R-treeT of minimum
degreet, if the number of nodes visited by any point query isµ, then there is a
hypercube not intersecting any box fromS such that a query with that hypercube
visitsΩ(n/(tµ1/(d−1))) nodes inT .

3.3 From kd-trees to box-trees

In this section we describe and analyze several methods to construct box-trees
using kd-trees. For convenience we will allow our box-treesto have nodes of
degree up to2d + 3—it is easy to convert these trees to binary trees without
affecting the asymptotic bounds on the query complexity. Query ranges (other
than points) will be assumed to be open, while input boxes, bounding boxes and
cells in space decompositions are closed.

3.3.1 The configuration-space approach

The basic method. Let S be a set ofn arbitrary, possibly overlapping, boxes in
R

d, which we call theworkspace. As noted in the introduction, we can represent a
d-dimensional boxb =

∏d
i=1[x

−
i (b), x+

i (b)] by a point(x−
1 (b), x−

2 (b), ..., x−
d (b),

x+
1 (b), x+

2 (b), ..., x+
d (b)) in R

2d, which we call theconfiguration space. We build
a2d-dimensional kd-tree on these points.

A kd-tree is a binary space decomposition tree, which is usedto index points.
Every node in a2d-dimensional kd-tree is associated with a cell, which is a2d-
dimensional box, and an axis-parallel splitting hyperplane. The splitting plane
divides the cell into two axis-parallel subcells, one for each child of the node.
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The root cell is chosen large enough to contain all input points. The tree is then
built recursively by determining splitting planes for all cells. The orientations of
the splitting planes depend on the level in the tree, in such away that all possible
orientations (2d in this case) take turns in a round-robin fashion on any path down
into the tree. The location of each splitting plane is chosensuch that the numbers
of input points in the resulting subcells differ by at most one. When a cell contains
only one input point, we make it a leaf of the tree and do not split it further.

To transform the kd-tree in configuration space into a box-tree in workspace,
proceed as follows. Replace the representative point in each leaf by the cor-
responding input box. Then, going bottom-up, store in each internal node the
bounding box of its children. We call the resulting box-treeaconfiguration-space
box-tree, or cs-box-treefor short.

In the introduction we pointed out that it can be used to do box-intersection
queries inO(n1−1/2d + k) time; in this paper we will show how to improve the
upper bound toO(n1−1/d + k).

For the analysis of the range query complexity of the cs-box-tree, we need the
following fact about kd-trees, given here without proof.

Lemma 3.3.1 The number of cells at depthi in a d-dimensional kd-tree that in-
tersect an axis-parallelf -flat (0 6 f 6 d) is O(2if/d).

A kd-tree and, hence, our box-tree has the following property: the number of
objects stored in the two subtrees of any given node differ byat most one. We
call such treesperfectly balanced. The perfect balance in our box-tree will be
advantageous when we will convert it to an R-tree. We can now analyze the range
query complexity of a cs-box-tree.

Lemma 3.3.2 Let S be a set ofn possibly intersecting boxes inRd. There is a
perfectly balanced box-tree forS such that the number of nodes at leveli that are
visited by a range query with an axis-aligned box isO(2i(1−1/d) + k), wherek is
the number of boxes inS intersecting the query range. The box-tree can be built
in O(n log n) time.

Proof: Let Q =
∏d

i=1(x
−
i (Q), x+

i (Q)) be a query range. We can restrict our
attention to the interior nodes visited, since the number ofvisited leaves is at most
one more. We distinguish two types of visited interior nodesν. The first type is
where at least one of the input boxes stored in the subtree ofν intersectsQ.
Obviously there are onlyO(k) such nodes at a given leveli. The second type
is where all input boxes in the subtree ofν are disjoint fromQ. The interior of
any input box disjoint fromQ must be separated fromQ by a hyperplane through
a facet ofQ. Not all input boxes are separated fromQ by the same hyperplane,
otherwise the bounding box ofν would not intersectQ andν would not be visited.
Hence, there are at least two such hyperplanes separatingQ from an input box in
the subtree ofν.

Assume w.l.o.g. thatxi = x−
i (Q) is one of these separating hyperplanes, and

let b be the input box it separates fromQ. Then we must havex+
i (b) 6 x−

i (Q).
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But there must also be a boxb′ with x+
i (b′) > x−

i (Q), otherwise the bounding box
of ν would not intersectQ. We conclude that the points representingb andb′ in the
configuration space lie on or on opposite sides of the hyperplanex+

i = x−
i (Q).

Consequently, the hyperplanex+
i = x−

i (Q) intersects the cell in configuration
space of the node in the kd-tree corresponding toν.

We can apply the same argument to the second hyperplane separatingQ from
an input box (the hyperplanexj = x+

j (Q), for example), to show that there is
a hyperplane in configuration space with points on or on opposite sides (x−

j =

x+
j (Q) in the example).

We can conclude the following. SupposeQ visits a nodeν of the second
type. Then in configuration space there is a pair of hyperplanes, both of the form
x+

i = x−
i (Q) orx−

i = x+
i (Q) and both intersecting the cell in configuration space

of the kd-tree node corresponding toν. But then the cell is also intersected by the
(2d − 2)-flat that is the intersection of these two hyperplanes. By Lemma 3.3.1
there are onlyO(2i(2d−2)/2d) = O(2i(1−1/d)) such nodes at leveli.

For the building time, see section 3.3.4. �

This leads directly to the following theorem.

Theorem 3.3.3 Let S be a set ofn possibly intersecting boxes inRd. There is a
perfectly balanced box-tree forS such that the number of nodes visited by a range
query with an axis-aligned box isO(n1−1/d + k log n), wherek is the number of
boxes inS intersecting the query range. The box-tree can be built inO(n log n)
time.

Proof: From Lemma 3.3.2 we get a bound for the stabbing number on eachlevel
in the tree. Since a kd-tree has height⌈log n⌉, so does a cs-box-tree, and summa-
tion over all levels yields a total query complexity of

∑⌈log n⌉
i=0 O(2i(1−1/d)+k) =

O(n1−1/d + k log n). �

Improving the query time. We now show how to reduce theO(k log n) term
in the query complexity toO(k). The idea is the same as in a priority search
tree [Brg97KOS]: input elements (boxes in our case) that have a high chance
of being reported are pushed to high levels in the tree. In ourcase, the boxes
that extend farthest in one of thexi-directions are stored high in the tree. More
precisely, the construction of the treeT for a setS of boxes inR

d is as follows.
If |S| = 1, thenT consists of a single leaf node storing the input box inS.

Otherwise we make a nodeν storing the bounding boxb(ν) of all boxes inS, and
proceed as follows.

For each of the2d inner normals of the facets ofb(ν), take the box fromS
that extends farthest in the direction of that normal. This results in a setS∗ of
at most2d boxes. Each box inS∗ is put in a so-calledpriority leaf, which is an
immediate child ofν.

If the setS \ S∗ of remaining boxes contains less than two boxes, then this
box (if it exists) is put as a leaf child ofν. If two or more boxes remain, we
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split the set of boxes into two (almost) equal-sized subsetswith an axis-parallel
hyperplane in configuration space. Like in a normal kd-tree,the orientation of
the splitting plane depends on the level in the tree, so that all 2d orientations take
turns in a round-robin fashion on any path from the root down into the tree.

The subset of boxes whose representative points lie to one side of the cutting
hyperplane are stored recursively in one subtree ofν. The subset of boxes whose
representative points lie to the other side of the cutting hyperplane are stored
recursively in another subtree ofν.

Next we analyze the query complexity of the tree resulting from this construc-
tion, which we call acs-priority-box-tree. In our analysis we bound the number
of visited nodes of a given weight, where the weight of a node is defined as the
number of input boxes stored in its subtree. This will be useful when we convert
this box-tree into a semi-R-tree.

Lemma 3.3.4 The number of nodes of weight at leastw visited by a query with
a query boxQ is O((n/w)1−1/d + k).

Proof: Let Q =
∏d

i=1(x
−
i (Q), x+

i (Q)). We can restrict our attention to the
visited nodes of weight at least2d, as the total number of visited nodes is at most
a constant times larger than this number. Letν be such a visited node of weight
at least2d. There are two cases.

The first case is where one of the priority leaves directly below ν stores a box
intersectingQ. Clearly there are at mostk such nodes.

The second case is when all priority leaves directly belowν store boxes dis-
joint from Q. Thus each such box’s interior is separated fromQ by a hyperplane
through a facet ofQ. We claim that not all boxes can be separated by the same
hyperplane. Suppose for a contradiction that there is a facet f whose containing
hyperplane separates all boxes of the priority leaves fromQ. Then in particular it
would separate the box that extends farthest in the direction of the inner normal
of the facetf , contradicting thatQ intersects the bounding box stored atν. So we
have two distinct hyperplanes through facets ofQ separating a box in the subtree
of ν from Q.

The box-tree that we have constructed basically corresponds to a kd-tree in
configuration space, as before. The priority leaves make that the tree in configu-
ration space is strictly speaking not a kd-tree, but it is easy to see that Lemma 3.3.1
still holds. Moreover, there is still a one-to-one correspondence between nodes of
the box-tree and nodes of the kd-tree in configuration space.Hence, we can use
the fact that there are two distinct hyperplanes through facets ofQ separating a
box in the subtree ofν from Q in the same way as in the proof of Lemma 3.3.2:
it implies that there is a(2d − 2)-flat in configuration space (defined by a pair of
facets ofQ) intersecting the cell in the kd-tree corresponding toν. It follows that
the total number of nodesν to which the second case applies at a given leveli is
O(2i(1−1/d)).

To finish the proof, observe that nodes at the lowermost⌊log(w/(2d))⌋ levels
have weight less thanw. Adding the bounds for the second case on the remaining
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levels, we get
∑⌈log n⌉−⌊log(w/(2d))⌋

i=0 O(2i(1−1/d)) = O((n/w)1−1/d).
For the building time, see section 3.3.4. �

The following theorem follows directly.

Theorem 3.3.5 Let S be a set ofn possibly intersecting boxes inRd. There is
a box-tree forS such that the number of nodes that are visited by a range query
with an axis-aligned box isO(n1−1/d + k), wherek is the number of boxes inS
intersecting the query range.

3.3.2 The kd-interval-tree approach

The cs-box-tree of the previous section has optimal query complexity for point
queries (and range queries) if the input consists of arbitrary, intersecting boxes.
Unfortunately, if the input boxes are disjoint then the query complexity for point
queries does not improve. In this section we develop a different box-tree, the
kd-interval tree, whose query complexity is much better ifσ, the point-stabbing
number of the input setS, is small. The query complexity for range queries
increases only slightly. This approach only works in the plane; Theorem 3.2.5
states that a similar result in more than two dimensions cannot be obtained.

The basic idea behind kd-interval trees is again to use a kd-tree, but this time
in the workspace (which is now the plane). Since the objects in the workspace
are boxes, not points, many of them may intersect the cuttingline. These boxes
are taken out and handled separately, like in an interval tree. To make kd-interval
trees more efficient, we introduce priority leaves, like in the previous section.

The 1-dimensional case. First we describe how a setS of boxes all intersecting
a given lineℓ are handled. With a slight abuse of terminology, we call a tree for
this case a 1-dimensional kd-interval tree.

If |S| = 1, thenT consists of a single leaf node storing the input box inS.
Otherwise we make a nodeν storing the bounding boxb(ν) of all boxes inS, and
proceed as follows.

For each of the4 inner normals of the edges ofb(ν), take the box fromS that
extends farthest in the direction of that normal. This results in a setS∗ of at most
4 boxes. Each box inS∗ is put in apriority leaf.

Consider the set of intersections of the edges of the remaining boxes withℓ.
Let p be the median of these intersection points. The boxes inS \ S∗ containing
p are stored in a subtree ofν that is a 2-dimensional cs-priority-box-tree as de-
scribed in the previous section. The boxes inS \ S∗ completely to one side ofp
are stored recursively as a 1-dimensional kd-interval treein a second subtree of
ν. The boxes inS \ S∗ completely to the other side ofp are stored recursively in
another subtree ofν.

We call the nodes in the main 1-dimensional kd-interval tree1D-nodes. Such
a node corresponds to an interval on the defining lineℓ. We call the nodes of the
2-dimensional cs-priority-box-treescs-nodes.
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We start by analysing the query complexity when we query witha segment on
the lineℓ.

Lemma 3.3.6 If we query a 1-dimensional kd-interval tree storing a set S of n
boxes with a line segment on the defining lineℓ, then we visit at mostO(log n

w +k)
nodes of weight at leastw, wherek is the number of boxes to be reported.

Proof: Observe that the query segments intersects a box if and only if it inter-
sects the intersection of that box withℓ.

Consider a 1D-node that is visited when we query withs. When the interval
corresponding to this node is completely contained ins, then by the above obser-
vation all input boxes in the subtree intersects. Hence, there cannot be more than
O(k) such nodes. When the interval is not completely contained ins, then it con-
tains an endpoint ofs, and there are onlyO(log(n/w)) such nodes with weight at
leastw.

Now consider a cs-nodeν that is visited. Letp be the point onℓ common to
all boxes in the subtree ofν. Assume w.l.o.g. thatℓ is vertical andp lies inside
or aboves. Then the input box in the subtree extending farthest downward must
intersects. This box is stored in a priority node directly belowν, so we can charge
the visit ofν to this answer. �

Next we analyze the query complexity when we query with a box.

Lemma 3.3.7 (i) If we query a 1-dimensional kd-interval tree storing a set S of
n boxes with a query boxQ, then we visit at mostO(⌈

√
σ/w ⌉ log(n/σ) + k)

nodes of weight at leastw, wherek is the number of boxes to be reported.
(ii) If σ is O(log n), then the query time isO(log n + k).
(iii) If the projection ofQ onto the lineℓ that stabs the boxes inS contains the
intersections of all boxes withℓ, then the query time reduces toO(k).

Proof: (i) See Figure 3.2. IfQ intersectsℓ then the query is equivalent to
querying withQ ∩ ℓ, so the result follows from the previous lemma. Otherwise,
assume w.l.o.g. thatℓ is vertical and thatQ lies to the right ofℓ. Consider a 1D-
nodeν that is visited when we query withQ. When the interval corresponding to
this node is completely contained in the projection ofQ ontoℓ, then the input box
in the subtree extending farthest to the right must be intersected. This box is stored
in a priority leaf immediately belowν, to which we can charge the visit ofν.
Hence, there can be at mostk such nodes. When the interval is not completely
contained in the projection ofQ, then it contains an endpoint of the projection of
Q, and there are onlyO(log(n/w)) such nodes of weight at leastw.

Now consider a 2-dimensional cs-priority-box-tree that isvisited. Suppose the
interval of the 1D-node that is the parent of this subtree is completely contained
in the projection ofQ. Then we can argue again (using the priority leaves) that
we can charge all the visited nodes to input boxes intersecting Q. If the interval
of the 1D-node that is the parent of this subtree is not completely contained in
the projection ofQ, we argue as follows. First observe that the interval must then
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Q

Figure 3.2: Querying a 1-dimensional kd-interval tree witha boxQ.

contain an endpoint of the projection ofQ, so there are only at most two such
parent nodes on each level in the tree. In the 2-dimensional configuration-space
box-tree below such a parent, we apply Lemma 3.3.4 to bound the number of
visited nodes of weightw by O(

√
n′/w + k′), wheren′ is the number of boxes

stored in the cs-priority-box-tree andk′ is the number of answers reported in this
subtree. Note thatn′ 6 σ, since the cs-box-trees are used only to store sets of
boxes that share a single point. Furthermore, when the parent is on depthi in the
tree, we haven′ 6 n/2i. Hence, the overall number of cs-nodes visited is:

O



log
n

w
+




⌊log(n/σ)⌋∑

i=0

⌈√
σ

w

⌉

+




log n∑

i=⌊log(n/σ)⌋+1

⌈√
n

2iw

⌉

+ k





which is O(⌈
√

σ/w ⌉ log(n/σ) + k). This finishes the proof of part (i) of the
lemma.

(ii) For the proof of part (ii), we analyze the number of cs-nodes visited in a
different way. Note that cs-nodes in a single cs-priority-box-tree share a single
point onℓ. If this point is contained in the projection ofQ onto ℓ, then we can
use the priority nodes to charge all nodes visited in this cs-box-tree to input boxes
intersectingQ.

If the defining point of a cs-prority-box-tree lies outside the projection ofQ
ontoℓ, then each cs-nodeν visited in this cs-box-tree must have at least one input
box that contains an endpoint of the projection ofQ. For each such nodeν, the
input box in its subtree which extends farthest into (or beyond) the projection of
Q, is stored in a priority node directly belowν, to which we can charge the visit
of ν. In all cs-box-trees together, at most2σ priority nodes can contain one of the
two endpoints; therefore, at mostO(σ) cs-nodes with defining points outside the
projection ofQ can be visited.

In total, we find a bound ofO(log n + σ + k), which reduces toO(log n + k)
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if σ is O(log n).
(iii) If the projection ofQ ontoℓ contains the intersections of all boxes withℓ,

it also contains all intervals corresponding to the nodes inthe box-tree. Therefore,
we can use the priority leaves again to charge all the visitednodes to input boxes
intersectingQ. �

The 2-dimensional case. Our kd-interval tree for a general setS of boxes in
the plane is defined as follows.

If |S| = 1, thenT consists of a single leaf node storing the input box inS.
Otherwise we make a nodeν storing the bounding boxb(ν) of all boxes inS, and
proceed as follows.

For each of the4 inner normals of the edges ofb(ν), take the box fromS that
extends farthest in the direction of that normal. This results in a setS∗ of at most
4 boxes. Each box inS∗ is put in apriority leaf, which is an immediate child ofν.

If the setS \ S∗ of remaining boxes contains less than two boxes, then this
box (if it exists) is put as a leaf child ofν. If two or more boxes remain, we split
the cell corresponding toν using a vertical or horizontal line (depending on the
levelν in the tree). This splitting lineℓ is chosen such that the number of boxes in
S \ S∗ lying completely to either side ofℓ is at most⌊|S \ S∗|/2⌋. The boxes in
S \ S∗ lying to one side ofℓ are stored recursively in one subtree ofν. The boxes
in S \S∗ lying to the other side ofℓ are stored recursively in another subtree ofν.
The boxes inS \ S∗ intersectingℓ are stored in a 1-dimensional kd-interval tree,
as explained above.

We call the nodes of the main tree, which correspond to 2-dimensional cells,
2D-nodes. Next we analyze the performance of the kd-interval tree.

Lemma 3.3.8 The number of nodes of weight at leastw that are visited by a
range query with an axis-aligned box isO(

√
n/w + k), wherek is the num-

ber of reported answers. The number of such nodes visited by apoint query is
O(⌈

√
σ/w ⌉ log2(n/σ) + k). If σ is O(log n), a point query visitsO(log2 n)

nodes.

Proof: Consider a 2D-node that is visited when we query with an axis-aligned
box Q. We distinguish four different types of such nodes (see Figure 3.3). We
bound their number and the number of nodes visited in 1-dimensional kd-interval-
subtrees for each type separately.

Inner nodes:These are 2D-nodes whose bounding boxes lie completely inside
Q. The number of inner nodes is easy to bound, since all input boxes in the subtree
of such a node intersectQ. Hence, the total number of such nodes, or nodes in
their 1-dimensional associated kd-interval trees, isO(k).

Side nodes:These are 2D-nodes whose bounding boxes cut exactly one edge
of Q. In this case the input box that extends farthest into the direction of the
inner normal of this edge must intersectQ. This box is stored in a priority leaf
immediately below the node. The same reasoning applies to their 1-dimensional
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corner

piercing

Q
inner

side

Figure 3.3: Four different types of 2D-nodes with respect toa query rangeQ.

Q

Figure 3.4: Piercing nodes with parallel splitting lines (to the left) and orthogonal
splitting lines (to the right).

associated kd-interval trees. Hence, the total number of side nodes or nodes in
their associated kd-interval trees isO(k).

Piercing nodes:These are 2D-nodes that cut two opposing edges ofQ, but do
not contain any corners ofQ. There are two cases—see Figure 3.4: the splitting
line used at such a nodeν on depthi is parallel to the intersected edges, or it
is orthogonal to them. In the first case we can apply Lemma 3.3.7(iii) to get a
bound ofO(k′), wherek′ is the number of reported answers. In the latter case we
can apply Lemma 3.3.6 to obtain aO(log((n/2i)/w) + k′) bound on the number
of nodes visited in the 1-dimensional kd-interval tree associated withν. From
Lemma 3.3.1 we learn that the number of such nodesν on depthi is O(2i/2).
Using the fact that nodes at depths greater thanlog(n/w) must have weight less
thanw, we get a grand total of:

O(k) +

⌊log(n/w)⌋∑

i=0

O
(
2i/2 log

n

2iw

)
= O

(√
n

w
+ k

)

Corner nodes:These are 2D-nodes that contain one or more corners ofQ.
There areO(1) such nodes on each level in the tree. To obtain the total number
of visited nodes in the associated 1-dimensional kd-interval trees, we have to sum
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up the bounds of Lemma 3.3.7 for each of them. Using the fact that for the subset
of boxes stored in a subtree on depthi, the stabbing numberσ is at mostn/2i, we
get a total of:

O



k +

log(n/w)∑

i=0

⌈√
min(σ, n/2i)

w

⌉⌈
log

n

2iσ

⌉


 = O

(⌈√
σ

w

⌉
log2 n

σ
+ k

)

If σ is O(log n), this bound isO(log2 n + k).
There are no other types of nodes whose bounding boxes intersectQ. Adding

up the number of nodes for all four cases gives the desired bound for box-queries.
Note that in the case of point queries, we only have corner nodes. For the building
time, see section 3.3.4. �

This leads to the following theorem.

Theorem 3.3.9Let S be a set ofn possibly intersecting boxes in the plane, such
that no single point is contained in more thanσ boxes. There is a box-tree forS
such that the number of nodes visited by a range query with an axis-aligned box
is O(

√
n + k), wherek is the number of boxes inS intersecting the query range.

The number of nodes visited by a point query isO(
√

σ log2(n/σ) + k). If σ is
O(log n), this reduces toO(log2 n). The box-tree can be built inO(n log n) time.

3.3.3 The longest-side-first approach

Recall that a kd-interval tree is basically a modified kd-tree, where each node is
split by a line. The orientations of these lines depend on thelevel in the tree in
such a way, that orientations take turns in a round-robin fashion on any path from
the root down into the tree. An interesting variation of the kd-interval tree arises
when we replace the round-robin splitting strategy by the longest-side splitting
rule as suggested by Dickerson et al. [Dic00]. In such a longest-side-first kd-
interval tree, the number of nodes whose corresponding cellis pierced by a query
box is small if the query box is fat. We use this to prove the following lemma.

Lemma 3.3.10The number of nodes of weight at leastw that are visited by a
range query with an axis-aligned box isO(α log2 n + ⌈

√
σ/w ⌉ log2(n/σ) + k),

wherek is the number of reported answers. The number of such nodes visited by
a point query isO(⌈

√
σ/w ⌉ log2(n/σ)+ k). If σ is O(log n), the bounds reduce

to O(α log2 n + k).

Proof: In the analysis in the previous subsection, the piercing nodes were respon-
sible for theO(

√
n/w) term in the query complexity. This term arose because in

a normal kd-tree, there can beO(
√

n/w) piercing nodes.
In the longest-side-first kd-tree, however, the number of disjoint cells that cut

opposing sides of a query box of aspect ratioα is O(α log n) [Dic00]. As before,
we have two types of piercing nodes: those with splitting lines that are orthogonal
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to the intersected edges ofQ, and those with parallel splitting lines. For the first
case, observe that such splitting lines separate two disjoint cells that cut opposing
sides of the query box. This implies that there can be at mostO(α log n) piercing
nodes with orthogonal splitting lines, each of which can have a 1-dimensional
kd-interval tree in whichO(log n + k′) nodes are visited. For the second case,
observe that the total number of piercing nodes on all levelsin the tree is at most
O(α log2 n), and each of them can have a 1-dimensional kd-interval tree in which
O(k′) nodes are visited. Hence, we get a grand total ofO(α log2 n + k) for both
types of piercing nodes.

Since the other cases in the analysis of the original kd-treestill go through,
the lemma follows. �

Theorem 3.3.11Let S be a set ofn boxes in the plane with stabbing numberσ.
There is a box-tree forS such that the number of nodes that are visited by a range
query with a query box of aspect ratioα is O(α log2 n +

√
σ log2(n/σ) + k),

wherek is the number of boxes inS intersecting the query range. The number of
such nodes visited by a point query isO(

√
σ log2(n/σ) + k). If σ is O(log n),

the bounds reduce toO(α log2 n + k). The box-tree can be built inO(n log n)
time.

3.3.4 Building the box-trees

All boxtrees mentioned in this section, can be built inO(n log n) time. Since the
construction algorithms are very similar, we will explain them together.

We start by sorting all input boxes byx−
i -coordinate andx+

i -coordinate for all
dimensions1 6 i 6 d. This costsO(n log n) time. Using suitable list structures
and cross-pointers, we can now do the following operations:

• in O(1) time, selecting a box with an extreme value for one of the2d coor-
dinates and removing it from the2d sorted lists;

• in O(1) time, determine the bounding box of the set (and, if necessary,
determine the dimension in which the bounding box is largest);

• in O(n) time, splitting the set of boxes in two, such that all boxes whose
value for a particular coordinate is smaller than the medianfor that coor-
dinate go in one list, while the remaining boxes go in the other list, and at
the same time splitting the2d sorted lists in sorted lists for each of the two
subsets.

• in O(n) time, splitting the set of boxes in three subsetsS−, S0 andS+

with respect to some discriminating dimensioni, such that there is a value
x0

i such that all boxes inS− are on one side of the hyperplanexi = x0
i , all

boxes inS+ are on the other side, and all boxes inS0 intersect the plane,
|S−| 6 n/2 and|S+| 6 n/2—and at the same time, splitting the2d sorted
lists in sorted lists for each of the three subsets.
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This operation can be implemented by choosingx0
i to be the median value

of the union of thex−
i - andx+

i -coordinates. Using the lists ordered by these
two coordinates, we can find the median value inO(n) time. By definition,
at mostn coordinate values can be smaller than the median and at mostn
coordinate values can be greater than the median. This implies that at most
n/2 input boxes can be completely on one side of the median hyperplane,
and at mostn/2 can be completely on the other side. After we have found
the median, we can just check all boxes to see on which side they are, assign
them to one of the three subsets, and then split the sorted lists accordingly.

The boxtrees can now be built top-down recursively, following the descriptions
in the previous subsections. First we make a root for a tree that has to store all
boxes, we calculate how to divide these boxes among its children, and then we
split the set of boxes, giving each child its own subset. Withthe above operations
we can do this for cs-box-trees, cs-priority-box-trees, kd-interval trees as well as
for longest-side-first kd-interval trees inO(n) time, wheren is the number of
boxes that has to be stored in the tree rooted at this node.

Then we construct the childrens’ subtrees recursively, spendingO(n) time in
total for each level in the tree. Since all box-trees constructed in this section have
heightO(log n), the total time for division and construction isO(n log n).

Adding the time needed for sorting to the time needed for division and con-
struction, we get a total building time ofO(n log n).

3.4 From box-trees to R-trees

In the previous section we described several algorithms to construct box-trees
with good query complexity. In this section we give general theorems to convert
them to (semi-)R-trees.

We start with a general theorem that converts any box-tree toan R-tree. Re-
call that theweightof a box-tree node is the number of input boxes stored in its
subtree.

Theorem 3.4.1LetT be a box-tree for a set ofn boxes inRd such that any query
with a range of a given type visits at mostf(w) nodes of weightw or more. Then
T can be converted inO(n) time to an R-tree of minimum degreet where every
query with a range of the same type visits at mostO(f(t) log n/ log t) nodes.

Proof: We simply read out the leaves fromT in order, and then construct an
R-tree where the boxes occur in the same order in the leaves. We can build this
R-tree bottom-up, level by level. First we construct the R-tree nodes just above
leaf level by repeatedly taking2t leaves from the list and giving them a new R-tree
node as their parent. We continue doing this until less than4t leaves are without
parent: these leaves are then divided into two groups (if there are more than2t) or
made children of a single parent (if there are no more than2t leaves left). Next,
we consider the new parent nodes just constructed as leaves,and construct the
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next level of the tree, and so on, until we reach the level where only one node is
constructed (the root). In this way, we spendO(1) time for each node to connect
it to a parent node, thus getting a total running time ofO(n).

Consider a bounding boxB stored in the R-tree. It is the bounding box for
some input boxes that were stored in consecutive leaves in the box-treeT . Let
ν(B) be the lowest common ancestor of these leaves. Since the minimum degree
in the R-tree ist, the weight ofν(B) is t or more. Furthermore, the nodesν(B)
for the bounding boxesB stored at a fixed level in the R-tree must be distinct,
because their defining sets form a partition of the leaves inT into consecutive
sequences. Hence, we can charge the visited nodes of the R-tree to visited nodes
of weight t or more inT , in such a way that a node inT does not get charged
more than once from nodes at a fixed level in the R-tree. Since the depth of the
R-tree isO(log n/ log t), the bound follows. �

The construction of Theorem 3.4.1 results in losing a logarithmic factor in the
query complexity. Next we show how to improve this result forperfectly balanced
box-trees. Recall that a box-tree is called perfectly balanced if for any node the
weight of its left and right child differ by at most one.

Theorem 3.4.2 Let T be a perfectly balanced box-tree for a set ofn boxes in
R

d such that any query with a range of a given type visits at mostf(i) nodes
at level i in T . ThenT can be converted inO(n) time to an R-tree of mini-
mum degreet where every query with a range of the given type visits at most
O(
∑(log n/ log t)−1

i=0 f(i log t)) nodes.

Proof: We first prove that any perfectly balanced tree has the following property:
the weights of all nodes at a fixed level in the tree differ by atmost one. The proof
is by induction on the level. The statement is trivially trueat level zero (the level of
the root). Now assume all nodes at a given level have weightw orw+1. Then the
balancing condition guarantees that the nodes at the next level have weightw/2
or w/2 + 1 (in casew is even) or they have weight(w + 1)/2− 1 or (w + 1)/2
(if w is odd). So in both cases the weights at the next level differ by at most one.

We can now construct an R-tree fromT as follows. From the leaf level of
the box-tree, walk up the tree until a leveli is encountered where all nodes have
weight at leastt. Thus there must be at least one node with weight at mostt − 1
on the level just belowi, and therefore, by the perfect-balance property, no node
on that level has weight more thant. This implies that the weight of nodes at
level i cannot exceed2t. Hence, each subtree rooted at a node at this level can
be compressed in a single leaf (which will be a node in the R-tree). Recurse
on the new tree. The recursion ends when there are less thant leaves, which
are compressed to a single node which will form the root of theR-tree. It is
immediately clear that this construction can be done inO(n) time.
The bound on the query complexity immediately follows from the construction.�

Finally, we can show that that we can also improve Theorem 3.4.1 for the general
case if we are willing to settle for semi-R-trees instead of real R-trees. Recall that
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the difference between a semi-R-tree and an R-tree is that inthe former we do not
require all leaves to be at the same depth.

Theorem 3.4.3LetT be a box-tree for a set ofn boxes inRd such that any query
with a range of a given type visits at mostf(w) nodes of weightw or more. Then
T can be converted inO(n) time to a semi-R-tree of minimum degreet where
every query with a range of the same type visits at mostO(f(t)) nodes.

Proof: We start by converting the binary box-tree to a forest of at least 1 and at
mostt − 1 semi-R-trees. This is done recursively as follows. If the box-tree is
just a leaf, we leave it as it is. Otherwise, we convert the left and the right subtree
separately, getting two forests of at least 2 and at most2(t − 1) semi-R-trees in
total. We distinguish two cases:

• The total number of semi-R-trees is less thant. In this case, we are done
immediately.

• The total number of semi-R-trees is at leastt. In this case, we combine
the semi-R-trees in the two forests into a single semi-R-tree by making the
semi-R-trees in the forests the children of a new root node. Note that the
new root node has betweent and2(t− 1) children. The descendant leaves
of this new root node are exactly the descendant leaves of thebox-tree node
which is being converted, so the associated bounding box is exactly the
same; no new bounding box is introduced.

In the end we get a forest of at least 1 and at mostt− 1 semi-R-trees. If it is not a
single tree, we combine the trees in the forest into one tree by adding a root node.

Clearly each node in the box-tree will be processed exactly once and will be
processed in O(1) time if the forest operations are implemented suitably. There-
fore, the conversion of a complete box-tree takesO(n) time.

No new bounding boxes are introduced, no bounding box in the boxtree ap-
pears more than once in the semi-R-tree, and no internal nodes with weight less
than t are constructed. This is easily seen to result in a semi-R-tree with the
desired bound on the query complexity. �

By applying the conversion algorithms of the theorems aboveto the structures
from the previous section, we obtain the following results.

Corollary 3.4.4 Let S be a set ofn boxes inR
d with stabbing numberσ.

(i) There is an R-tree forS of minimum degreet such that the number of nodes
visited by any box query isO((n/t)1−1/d + k log n/ log t), wherek is the
number of reported answers.

(ii) There is an semi-R-tree forS of minimum degreet such that the number of
nodes visited by any box query isO((n/t)1−1/d + k).
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(iii) When d = 2, there is a semi-R-tree forS of minimum degreet such that
the number of nodes visited by any box query isO(

√
n/t + k), and the the

number of nodes visited by any point query isO(⌈
√

σ/t ⌉ log2(n/σ) + k).
In both bounds,k is the number of reported answers. Ifσ is O(log n), the
number of nodes visited by a point query isO(log2 n).

(iv) Whend = 2, there is a semi-R-tree forS of minimum degreet such that
the number of nodes visited by any query with a box of aspect ratio α is
O(α log2 n + ⌈

√
σ/t ⌉ log2(n/σ) + k), wherek is the number of reported

answers. Ifσ is O(log n), the bound reduces toO(α log2 n + k).

(v) For the cases mentioned under (iii) and (iv) there is alsoan R-tree of min-
imum degreet for which the number of visited nodes isO(log n/ log t)
times the number of visited nodes in the semi-R-tree.

All R-trees can be constructed inO(n log n) time.

Proof: Part (i) follows from Theorem 3.4.2 and Lemma 3.3.2. Part (ii) follows
from Theorem 3.4.3 and Theorem 3.3.5, and part (iii) followsfrom Theorem 3.4.3
and Lemma 3.3.8. Part (iv) follows from Theorem 3.4.3 and Theorem 3.3.10. To
obtain part (v), we use Theorem 3.4.1 instead of Theorem 3.4.3. �

3.5 Conclusions

We have developed new algorithms to construct box-trees (bounding-volumehier-
archies using axis-aligned boxes as bounding volumes) and we analyzed the com-
plexity of box-intersection queries and box-containment queries for these struc-
tures. We also proved lower bounds showing that our results are optimal or almost
optimal. Finally, we gave algorithms to convert our box-trees to (semi-)R-trees
with optimal or almost optimal query complexity.

The bounds that we get, except for the case of fat ranges in theplane, are
rather disappointing—even though they are optimal. In practice, one would hope
for much better performance. It would be interesting to see under which condi-
tions one can obtain better bounds for, say, box-queries inR

3. We also would
like to see how our trees behave in practice—the lower-boundconstructions are
rather contrived—and to compare them experimentally against trees constructed
by known heuristics.

In many applications it is important to support fast insertions and deletions,
and it would be interesting to develop box-trees or R-trees that support fast inser-
tion and deletion, while still guaranteeing close to optimal query complexity.



Chapter 4

The Priority R-Tree:
a practically efficient and
worst-case-optimal R-tree

An extended abstract of this chapter will appear as: Lars Arge, Mark de Berg,
Herman J. Haverkort and Ke Yi: The Priority R-Tree: a practically efficient and
worst-case optimal R-tree, Proc.ACM Special Interest Group on Management of
Data (SIGMOD), 2004

Abstract. We present the Priority R-tree, or PR-tree, which is the firstR-tree
variant that always answers a window query usingO((N/B)1−1/d +T/B) I/Os,
whereN is the number ofd-dimensional (hyper-) rectangles stored in the R-tree,
B is the disk block size, andT is the output size. This is provably asymptotically
optimal and significantly better than other R-tree variants, where a query may
visit all N/B leaves in the tree even whenT = 0. We also present an extensive
experimental study of the practical performance of the PR-tree using both real-
life and synthetic data. This study shows that the PR-tree performs similar to the
best known R-tree variants on real-life and relatively nicely distributed data, but
outperforms them significantly on more extreme data.

4.1 Introduction

Spatial data naturally arise in numerous applications, including geographical in-
formation systems, computer-aided design, computer vision and robotics. There-
fore spatial database systems designed to store, manage, and manipulate spatial
data have received considerable attention over the years. Since these databases
often involve massive datasets, disk based index structures for spatial data have
been researched extensively—see e.g. the survey by Gaede and Günther [Gae98].
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Especially the R-tree [Gut84] and its numerous variants (see e.g. the recent survey
by Manolopoulos et al. [Man03]) have emerged as practicallyefficient indexing
methods. In this paper we present the Priority R-tree, orPR-tree, which is the first
R-tree variant that is not only practically efficient but also provably asymptotically
optimal.

4.1.1 Background and previous results

Since objects stored in a spatial database can be rather complex they are often
approximated by simpler objects, and spatial indexes are then built on these ap-
proximations. The most commonly used approximation is the minimal bounding
box: the smallest axis-parallel (hyper-) rectangle that contains the object. The
R-tree, originally proposed by Guttman [Gut84], is an indexfor such rectangles.
It is a height-balanced multi-way tree similar to a B-tree [Bay72, Com79], where
each node (except for the root) has degreeΘ(B). Each leaf containsΘ(B) data
rectangles (each possibly with a pointer to the original data) and all leaves are
on the same level of the tree; each internal nodev contains pointers to itsΘ(B)
children, as well as for each child a minimal bounding box covering all rectangles
in the leaves of the subtree rooted in that child. Figure 4.1 shows an example. If
B is the number of rectangles that fits in a disk block, an R-treeonN rectangles
occupiesΘ(N/B) disk blocks and has heightΘ(logB N). Many types of queries
can be answered efficiently using an R-tree, including the common query called a
window query: Given a query rectangleQ, retrieve all rectangles that intersectQ.
To answer such a query we simply start at the root of the R-treeand recursively
visit all nodes with minimal bounding boxes intersectingQ; when encountering a
leaf l we report all data rectangles inl intersectingQ.

Guttman gave several algorithms for updating an R-tree inO(logB N) I/Os
using B-tree-like algorithms [Gut84]. Since there is no unique R-tree for a given
dataset, and because the window query performance intuitively depends on the
amount of overlap between minimal bounding boxes in the nodes of the tree, it is
natural to try to minimize bounding box overlap during updates. This has led to
the development of many heuristic update algorithms; see for example [Bmn90,
Kam94, Sel87] or refer to the surveys in [Gae98, Man03]. Several specialized
algorithms for bulk-loading an R-tree have also been developed [Btd98, Dwt94,
Grc98a, Kam93, Leu97, Rou85]. Most of these algorithms useO(N

B logM/B
N
B )

I/Os (the number of I/Os needed to sortN elements), whereM is the number of
rectangles that fits in main memory, which is much less than the O(N logB N)
I/Os needed to build the index by repeated insertion. Furthermore, they typi-
cally produce R-trees with better space utilization and query performance than
R-trees built using repeated insertion. For example, whileexperimental results
have shown that the average space utilization of dynamically maintained R-trees
is between 50% and 70% [Bmn90], most bulk-loading algorithms are capable of
obtaining over 95% space utilization. After bulk-loading an R-tree it can of course
be updated using the standard R-tree updating algorithms. However, in that case
its query efficiency and space utilization may degenerate over time.
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Figure 4.1: R-tree constructed on rectangles A, B, C, . . . , I (block size = 3).

One common class of R-tree bulk-loading algorithms work by sorting the rect-
angles according to some global one-dimensional criterion, placing them in the
leaves in that order, and then building the rest of the indexbottom-uplevel-by-
level [Dwt94, Kam93, Leu97]. In two dimensions, the so-called packed Hilbert
R-tree of Kamel and Faloutsos [Kam93], which sorts the rectangles according
to the Hilbert values of their centers, has been shown to be especially query-
efficient in practice. The Hilbert value of a pointp is the length of the frac-
tal Hilbert space-filling curve from the origin top. The Hilbert curve is very
good at clustering spatially close rectangles together, leading to a good index. A
variant of the packed Hilbert R-tree, which also takes the extent of the rectan-
gles into account (rather than just the center), is the four-dimensional Hilbert R-
tree [Kam93]; in this structure each rectangle((xmin, ymin), (xmax, ymax)) is first
mapped to the four-dimensional point(xmin, ymin, xmax, ymax) and then the rect-
angles are sorted by the positions of these points on the four-dimensional Hilbert
curve. Experimentally the four-dimensional Hilbert R-tree has been shown to be-
have slightly worse than the packed Hilbert R-tree for nicely distributed realistic
data [Kam93]. However, intuitively, it is less vulnerable to more extreme datasets
because it also takes the extent of the input rectangles intoaccount.
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Algorithms that bulk-load R-trees in atop-downmanner have also been de-
veloped. These algorithms work by recursively trying to finda good partition
of the data [Btd98, Grc98a]. The so-called Top-down Greedy Split (TGS) algo-
rithm of Garcı́a, López and Leutenegger [Grc98a] has been shown to result in
especially query-efficient R-trees (TGS R-trees). To buildthe root of (a subtree
of) an R-tree on a given set of rectangles, this algorithm repeatedly partitions the
rectangles into two sets, until they are divided intoB subsets of (approximately)
equal size. Each subset’s bounding box is stored in the root,and subtrees are
constructed recursively on each of the subsets. Each of the binary partitions takes
a set of rectangles and splits it into two subsets based on oneof several one-
dimensional orderings; in two dimensions, the orderings considered are those by
xmin, ymin, xmax and ymax. For each such ordering, the algorithm calculates,
for each ofO(B) possible partitioning possibilities, the sum of the areas of the
bounding boxes of the two subsets that would result from the partition. Then it
applies the binary partition that minimizes that sum.1

While the TGS R-tree has been shown to have slightly better query perfor-
mance than other R-tree variants, the construction algorithm uses many more I/Os
since it needs to scan all the rectangles in order to make a binary partition. In
fact, in the worst case the algorithm may takeO(N logB N) I/Os. However, in
practice, the fact that each partition decision is binary effectively means that the
algorithm usesO(N

B log2 N) I/Os.
While much work has been done on evaluating the practical query perfor-

mance of the R-tree variants mentioned above, very little isknown about their the-
oretical worst-case performance. Most theoretical work onR-trees is concerned
with estimating the expected cost of queries under assumptions such as uniform
distribution of the input and/or the queries, or assuming that the input are points
rather than rectangles. See the recent survey by Manolopoulos et al. [Man03]. The
first bulk-loading algorithm with a non-trivial guarantee on the resulting worst-
case query performance was given only recently by Agarwal etal. [Aga01BGHH].
In d dimensions their algorithm constructs an R-tree that answers a window query
in O((N/B)1−1/d + T logB N) I/Os, whereT is the number of reported rectan-
gles. However, this still leaves a gap to theΩ((N/B)1−1/d + T/B) lower bound
on the number of I/Os needed to answer a window query [Aga01BGHH, Kan98].
If the input consists of points rather than rectangles, thenworst-case optimal query
performance can be achieved with e.g. a kdB-tree [Rob81] or an O-tree [Kan98].
Unfortunately, it seems hard to modify these structures to work for rectangles.
Finally, Agarwal et al. [Aga01BGHH], as well as Haverkort etal. [Hav02], also
developed a number of R-trees that have good worst-case query performance un-
der certain conditions on the input.

1Garcı́a et al. describe several variants of the top-down greedy method. They found the one de-
scribed here to be the most efficient in practice [Grc98a]. Inorder to achieve close to 100% space
utilization, the size of the subsets that are created is actually rounded up to the nearest power ofB
(except for one remainder set). As a result, one node on each level, including the root, may have less
thanB children.
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4.1.2 Our results

In Section 4.2 we present a new R-tree variant, which we call aPriority R-tree
or PR-treefor short. We call our structure the Priority R-tree becauseour bulk-
loading algorithm utilizes so-called priority rectanglesin a way similar to the re-
cent structure by Agarwal et al. [Aga01BGHH]. Window queries can be answered
in O((N/B)1−1/d +T/B) I/Os on a PR-tree, and the index is thus the first R-tree
variant that answers queries with an asymptotically optimal number of I/Os in the
worst case. To contrast this to previous R-tree bulk-loading algorithms, we also
construct a set of rectangles and a query with zero output, such that allΘ(N/B)
leaves of a packed Hilbert R-tree, a four-dimensional Hilbert R-tree, or a TGS
R-tree need to be visited to answer the query. We also show howto bulk-load
the PR-tree efficiently, using onlyO(N

B logM/B
N
B ) I/Os. After bulk-loading, a

PR-tree can be updated inO(logB N) I/Os using the standard R-tree updating
algorithms, but without maintaining its query efficiency. Alternatively, the exter-
nal logarithmic method [Arg03, Pro03] can be used to developa structure that
supports insertions and deletions inO(logB

N
M + 1

B (logM/B
N
B )(log2

N
M )) and

O(logB
N
M ) I/Os amortized, respectively, while maintaining the optimal query

performance.
In Section 4.3 we present an extensive experimental study ofthe practical

performance of the PR-tree using both real-life and synthetic data. We com-
pare the performance of our index on two-dimensional rectangles to the packed
Hilbert R-tree, the four-dimensional Hilbert R-tree, and the TGS R-tree. Overall,
our experiments show that all these R-trees answer queries in more or less the
same number of I/Os on relatively square and uniformly distributed rectangles.
However, on more extreme data—large rectangles, rectangles with high aspect
ratios, or non-uniformly distributed rectangles—the PR-tree (and sometimes also
the four-dimensional Hilbert R-tree) outperforms the others significantly. On a
special worst-case dataset the PR-tree outperforms all of them by well over an
order of magnitude.

4.2 The Priority R-tree

In this section we describe the PR-tree. For simplicity, we first describe a two-
dimensional pseudo-PR-tree in Section 4.2.1. The pseudo-PR-tree answers win-
dow queries efficiently but is not a real R-tree, since it doesnot have all leaves on
the same level. In Section 4.2.2 we show how to obtain a real two-dimensional
PR-tree from the pseudo-PR-tree, and in Section 4.2.3 we discuss how to extend
the PR-tree tod dimensions. In Section 4.2.4 we explain how a pseudo-PR-tree
can serve as the basis of a structure that supports efficient insertions and deletions
while maintaining optimal query efficiency. Finally, in Section 4.2.5 we show that
a query on the packed Hilbert R-tree, the four-dimensional Hilbert R-tree, as well
as the TGS R-tree can be forced to visit all leaves even ifT = 0.
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4.2.1 Two-dimensional pseudo-PR-trees

In this section we describe the two-dimensional pseudo-PR-tree. Like an R-tree,
a pseudo-PR-tree has the input rectangles in the leaves and each internal nodeν
contains a minimal bounding box for each of its childrenνc. However, unlike an
R-tree, not all the leaves are on the same level of the tree andinternal nodes only
have degree six (rather thanΘ(B)).

The basic idea of a pseudo-PR-tree is (similar to the four-dimensional Hilbert
R-tree) to view an input rectangle((xmin, ymin), (xmax, ymax)) as a four-dimen-
sional point(xmin, ymin, xmax, ymax). The pseudo-PR-tree is then basically just
a kd-tree on theN points corresponding to theN input rectangles, except that
four extra leaves are added below each internal node. Intuitively, these so-called
priority leavescontain the extremeB points (rectangles) in each of the four di-
mensions. Note that the four-dimensional kd-tree can easily be mapped back to
an R-tree-like structure, simply by replacing the split value in each kd-tree node
ν with the minimal bounding box of the input rectangles storedin the subtree
rooted inν. The idea of using priority leaves was introduced in a recentstructure
by Agarwal et al. [Aga01BGHH], they used priority leaves of size one rather
thanB.

In section 4.2.1 below we give a precise definition of the pseudo-PR-tree, and
in section Section 4.2.1 we show that it can be used to answer awindow query
in O(

√
N/B + T/B) I/Os. In Section 4.2.1 we describe how to construct the

structure I/O-efficiently.

The Structure

Let S = {R1, . . . , RN} be a set ofN rectangles in the plane and assume for
simplicity that no two of the coordinates defining the rectangles are equal. We
defineR∗

i = (xmin(Ri), ymin(Ri), xmax(Ri), ymax(Ri)) to be the mapping of
Ri = ((xmin(Ri), ymin(Ri)), (xmax(Ri), ymax(Ri))) to a point in four dimen-
sions, and defineS∗ to be theN points corresponding toS.

A pseudo-PR-treeTS on S is defined recursively: ifS contains at mostB
rectangles,TS consists of a single leaf; otherwise,TS consists of a nodeν with
six children, namely four priority leaves and two recursivepseudo-PR-trees. For
each childνc, we let ν store the minimal bounding box of all input rectangles
stored in the subtree rooted inνc. The nodeν and the priority leaves below it are
constructed as follows: The first priority leafνxmin

p contains theB rectangles inS
with minimalxmin-coordinates, the secondνymin

p theB rectangles among the re-
maining rectangles with minimalymin-coordinates, the thirdνxmax

p theB rectan-
gles among the remaining rectangles with maximalxmax-coordinates, and finally
the fourthνymax

p theB rectangles among the remaining rectangles with maximal
ymax-coordinates. Thus the priority leaves contain the “extreme” rectangles inS,
namely the ones with leftmost left edges, bottommost bottomedges, rightmost
right edges, and topmost top edges.2 After constructing the priority leaves, we

2S may not contain enough rectangles to putB rectangles in each of the four priority leaves. In
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Figure 4.2: The construction of an internal node in a pseudo-PR-tree.
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divide the setSr of remaining rectangles (if any) into two subsets,S< andS>, of
approximately the same size and recursively construct pseudo-PR-treesTS<

and
TS>

. The division is performed using thexmin, ymin, xmax, orymax-coordinate in
a round-robin fashion, as if we were building a four-dimensional kd-tree onS∗

r ,
that is, when constructing the root ofTS we divide based on thexmin-values, the
next level of recursion based on theymin-values, then based on thexmax-values,
on theymax-values, on thexmin-values, and so on. Refer to Figure 4.2 for an ex-
ample. Note that dividing according to, say,xmin corresponds to dividing based
on a vertical lineℓ such that half of the rectangles inSr have their left edge to the
left of ℓ and half of them have their left edge to the right ofℓ.

We store each node or leaf ofTS in O(1) disk blocks, and since at least four
out of every six leaves containΘ(B) rectangles we obtain the following (in Sec-
tion 4.2.1 we discuss how to guarantee that almost every leafis full).

Lemma 4.2.1 A pseudo-PR-tree on a set ofN rectangles in the plane occupies
O(N/B) disk blocks.

Query complexity

We answer a window queryQ on a pseudo-PR-tree exactly as on an R-tree by
recursively visiting all nodes with minimal bounding boxesintersectingQ. How-
ever, unlike for known R-tree variants, for the pseudo-PR-tree we can prove a
non-trivial (in fact, optimal) bound on the number of I/Os performed by this pro-
cedure.

Lemma 4.2.2 A window query on a pseudo-PR-tree onN rectangles in the plane
usesO(

√
N/B + T/B) I/Os in the worst case.

Proof: Let TS be a pseudo-PR-tree on a setS of N rectangles in the plane.
To prove the query bound, we bound the number of nodes inTS that are “kd-
nodes”, i.e. not priority leaves, and are visited in order toanswer a query with a
rectangular rangeQ; the total number of leaves visited is at most a factor of four
larger.

We first note thatO(T/B) is a bound on the number of nodesν visited where
all rectangles in at least one of the priority leaves belowν’s parent are reported.
Thus we just need to bound the number of visited kd-nodes where this is not the
case.

Let µ be the parent of a nodeν such that none of the priority leaves ofµ
are reported completely, that is, each priority leafµp of µ contains at least one
rectangle not intersectingQ. Each such rectangleE can be separated fromQ by
a line containing one of the sides ofQ—refer to Figure 4.3. Assume without loss
of generality that this is the vertical linex = xmin(Q) through the left edge ofQ,
that is,E’s right edge lies to the left ofQ’s left edge, so thatxmax(E) 6 xmin(Q).

that case, we may assume that we can still put at leastB/4 in each of them, since otherwise we could
just construct a single leaf.
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Figure 4.3: The proof of Lemma 4.2.2, withµ in the plane (upper figure), and
µ in four-dimensional space (lower figure—thexmin andymax dimensions are
not shown). Note thatX = H ∩ H ′ is a two-dimensional hyperplane in four-
dimensional space. It contains a two-dimensional facet of the transformation of
the query range into four dimensions.
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This means that the pointE∗ in four-dimensional space corresponding toE lies to
the left of the axis-parallel hyperplaneH that intersects thexmax-axis atxmin(Q).
Now recall thatTS is basically a four-dimensional kd-tree onS∗ (with priority
leaves added), and thus that a four-dimensional regionR4

µ can be associated with
µ. Since the queryQ visits µ, there must also be at least one rectangleF in the
subtree rooted atµ that hasxmax(F ) > xmin(Q), so thatF ∗ lies to the right of
H . It follows thatR4

µ contains points on both sides ofH and thereforeH must
intersectR4

µ.
Now observe that the rectangles in the priority leafµxmax

p cannot be separated
from Q by the linex = xmin(Q) through the left edge ofQ: Rectangles inµxmax

p

are extreme in the positivex-direction, so if one of them lies completely to the
left of Q, then all rectangles inµ’s children—includingν—would lie to the left of
Q; in that caseν would not be visited. Since (by definition ofν) not all rectangles
in µxmax

p intersectQ, there must be a line through one ofQ’s other sides, say
the horizontal liney = ymax(Q), that separatesQ from a rectangleG in µxmax

p .
Hence, the hyperplaneH ′ that cuts theymin-axis atymax(Q) also intersectsR4

µ.
By the above arguments, at least two of the three-dimensional hyperplanes

defined byxmin(Q), xmax(Q), ymin(Q) andymax(Q) intersect the regionR4
µ

associated withµ when viewingTS as a four-dimensional kd-tree. Hence, the
intersectionX of these two hyperplanes, which is a two-dimensional plane in
four-dimensional space, also intersectsR4

µ. With the priority leaves removed,TS

becomes a four-dimensional kd-tree withO(N/B) leaves; from a straightforward
generalization of the standard analysis of kd-trees we knowthat any axis-parallel
two-dimensional plane intersects at mostO(

√
N/B) of the regions associated

with the nodes in such a tree [Aga01BGHH]. All that remains isto observe that
Q definesO(1) such planes, namely one for each pair of sides. ThusO(

√
N/B)

is a bound on the number of nodesν that are not priority leaves and are visited by
the query procedure, where not all rectangles in any of the priority leaves below
ν’s parent are reported. �

Efficient construction algorithm

Note that it is easy to bulk-load a pseudo-PR-treeTS on a setS of N rectangles in
O(N

B log N) I/Os by simply constructing one node at a time following the defini-
tion in Section 4.2.1. We will now describe how, under the reasonable assumption
that the amountM of available main memory isΩ(B4/3), we can bulk-loadTS

usingO(N
B logM/B

N
B ) I/Os.

Our algorithm is a modified version of the kd-tree construction algorithm
described in [Aga01APV, Pro03]; it is easiest described as constructing a four-
dimensional kd-treeTS on the pointsS∗. In the construction algorithm we first
construct, in a preprocessing step, four sorted listsLxmin

, Lymin
, Lxmax

, Lymax

containing the points inS∗ sorted by theirxmin-, ymin-, xmax-, andymax-coordi-
nate, respectively. Then we constructΘ(log M) levels of the tree, and recursively
construct the rest of the tree.
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To constructΘ(log M) levels ofTS efficiently we proceed as follows. We
first choose a parameterz (which will be explained below) and use the four sorted
lists to find the(kN/z)-th coordinate of the pointsS∗ in each dimension, for all
k ∈ {1, 2, ..., z−1}. These coordinates define a four-dimensional grid of sizez4;
we then scanS∗ and count the number of points in each grid cell. We choosez to
beΘ(M1/4), so that we can keep these counts in main memory.

Next we build theΘ(log M) levels ofTS without worrying about the priority
leaves: To construct the rootν of TS , we first find the slice ofz3 grid cells with
commonxmin-coordinate such that there is a hyperplane orthogonal to thexmin-
axis that passes through these cells and has at most half of the points inS∗ on one
side and at most half of the points on the other side. By scanning theO(N/(Bz))
blocks fromLxmin

that contain theO(N/z) points in these grid cells, we can
determine the exactxmin-valuex to use inν such that the hyperplaneH , defined
by xmin = x, divides the points inS∗ into two subsets with at most half of the
points each. After constructingν, we subdivide thez3 grid cells intersected by
H , that is, we divide each of thez3 cells in two atx and compute their counts
by rescanning theO(N/(Bz)) blocks fromLxmin

that contain theO(N/z) points
in these grid cells. Then we construct a kd-tree on each side of the hyperplane
defined byx recursively (cycling through all four possible cutting directions).
Since we createO(z3) new cells every time we create a node, we can ensure
that the grid still fits in main memory after constructingz nodes, that is,log z =
Θ(logM) levels ofTS .

After constructing theΘ(log M) kd-tree levels, we construct the four priority
leaves for each of thez nodes. To do so we reserve main memory space for the
B points in each of the priority leaves; we have enough main memory to hold all
priority leaves, since by the assumption thatM is Ω(B4/3) we have4 · Θ(B) ·
Θ(z) = O(M). Then we fill the priority leaves by scanningS∗ and “filtering”
each pointR∗

i through the kd-tree, one by one, as follows: We start at the root
of ν of TS , and check its priority leavesνxmin

p , νymin

p , νxmax

p , andνymax

p one by
one in that order. If we encounter a non-full leaf we simply placeR∗

i there; if we
encounter a full leafνp andR∗

i is more extreme in the relevant direction than the
least extreme pointR∗

j in νp, we replaceR∗
j with R∗

i and continue the filtering
process withR∗

j . After checkingνymax

p we continue to check the priority leaves of
the child ofν in TS whose region contains the point we are processing; ifν does
not have such a child (because we arrived at leaf level in the kd-tree) we simply
continue with the next point inS∗.

It is easy to see that the above process correctly constructsthe topΘ(log M)
levels of the pseudo-PR-treeTS onS, except that the kd-tree divisions are slightly
different than the ones defined in Section 4.2.1, since the points in the priority
leaves are not removed before the divisions are computed. However, the bound of
Lemma 4.2.2 still holds: TheO(T/B) term does not depend on the choice of the
divisions, and the kd-tree analysis that brought theO(

√
N/B) term only depends

on the fact that each child gets at most half of the points of its parent.
After constructing theΘ(log M) levels and their priority leaves, we scan

through the four sorted listsLxmin
, Lymin

, Lxmax
, Lymax

and divide them into four
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sorted lists for each of theΘ(z) leaves of the constructed kd-tree, while omitting
the points already stored in priority leaves. These lists contain O(N/z) points
each; after writing the constructed kd-tree and priority leaves to disk we use them
to construct the rest ofTS recursively.

Note that once the number of points in a recursive call gets smaller thanM ,
we can simply construct the rest of the tree in internal memory one node at a time.
This way we can make slightly unbalanced divisions, so that we have a multiple of
B points on one side of each dividing hyperplane. Thus we can guarantee that we
get at most one non-full leaf per subtree of sizeΘ(M), and obtain almost 100%
space utilization. To avoid having an underfull leaf that may violate assumptions
made by update algorithms, we may make the priority leaves under its parent
slightly smaller so that all leaves containΘ(B) rectangles. This also implies that
the bound of Lemma 4.2.1 still holds.

Lemma 4.2.3 A pseudo-PR-tree can be bulk-loaded withN rectangles in the
plane inO(N

B logM/B
N
B ) I/Os.

Proof: The initial construction of the sorted lists takesO(N
B logM/B

N
B ) I/Os.

To constructΘ(log M) levels ofTS we useO(N/B) I/Os to construct the initial
grid, as well asO(N/(Bz)) to construct each of thez nodes for a total ofO(N/B)
I/Os. Constructing the priority leaves by filtering also takesO(N/B) I/Os, and
so does the distribution of the remaining points inS∗ to the recursive calls. Thus
each recursive step takesO(N/B) I/Os in total. The lemma follows since there
areO(log N

B / log M) = O(logM
N
B ) levels of recursion. �

4.2.2 Two-dimensional PR-tree

In this section we describe how to obtain a PR-tree (with degreeΘ(B) and all
leaves on the same level) from a pseudo-PR-tree (with degreesix and leaves on
all levels), while maintaining theO(

√
N/B + T/B) I/O window query bound.

The PR-tree is built in stages bottom-up: In stage 0 we construct the leavesV0

of the tree from the setS0 = S of N input rectangles; in stagei > 1 we construct
the nodesVi on leveli of the tree from a setSi of O(N/Bi) rectangles, consisting
of the minimal bounding boxes of all nodes inVi−1 (on level i − 1). Stagei
consists of constructing a pseudo-PR-treeTSi

on Si; Vi then simply consists of
the (priority as well as normal) leaves ofTSi

; the internal nodes are discarded.3

The bottom-up construction ends when the setSi is small enough so that the
rectangles inSi and the pointers to the corresponding subtrees fit into one block,
which is then the root of the PR-tree.

3There is a subtle difference between the pseudo-PR-tree algorithm used in stage 0 and the algo-
rithm used in stagesi > 0. In stage 0, we construct leaves with input rectangles. In stagesi > 0,
we construct nodes with pointers to children and bounding boxes of their subtrees. The number of
children that fits in a node might differ by a constant factor from the numberB of rectangles that fits
in a leaf, so the number of children might beΘ(B) rather thanB. For our analysis the difference does
not matter and is therefore ignored for simplicity.
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Theorem 4.2.4A PR-tree on a setS of N rectangles in the plane can be bulk-
loaded inO(N

B logM/B
N
B ) I/Os, such that a window query can be answered in

O(
√

N/B + T/B) I/Os.

Proof: By Lemma 4.2.3, stagei of the PR-tree bulk-loading algorithm uses
O((|Si|/B) logM/B(|Si|/B)) = O((N/Bi+1) logM/B

N
B ) I/Os. Thus the com-

plete PR-tree is constructed in

O(logB N)∑

i=0

O

(
N

Bi+1
logM/B

N

B

)
= O

(
N

B
logM/B

N

B

)
I/Os.

To analyze the number of I/Os used to answer a window queryQ, we will
analyze the number of nodes visited on each level of the tree.Let Ti (i 6 0) be
the number of nodes visited on leveli. Since the nodes on level 0 (the leaves)
correspond to the leaves of a pseudo-PR-tree on theN input rectanglesS, it fol-
lows from Lemma 4.2.2 thatT0 = O(

√
N/B + T/B); in particular, there are

constantsN ′ andc such that forN/B > N ′, B > 4c2, andT > 0, we have
T0 6 c

√
N/B + c(T/B). There must beTi−1 rectangles in nodes of leveli > 1

of the PR-tree that intersectQ, since these nodes contain the bounding boxes of
nodes on leveli− 1. Since nodes on leveli correspond to the leaves of a pseudo-
PR-tree on theN/Bi rectangles inSi, it follows from Lemma 4.2.2 that for
N/Bi+1 > N ′ andB > 4c2 we haveTi 6 (c/

√
Bi)
√

N/B + c(Ti−1/B). We
can now write out the recurrence forN/Bi+1 > N ′, that is, fori 6 (logB

N
N ′

)−1:

Ti 6
c√
Bi

√
N

B
+ c

Ti−1

B

6
c√
Bi

(
1 +

c√
B

)√
N

B
+ c

c

B

Ti−2

B

6 ...

6
c√
Bi




i∑

j=0

(
c√
B

)j



√

N

B
+ c

( c

B

)i T

B

With B > 4c2, it follows that:

Ti 6
2c

(2c)i

√
N

B
+

c

(4c)i

T

B

Summing over all levelsi 6 (logB
N
N ′

)−1, we find that the total number of nodes
visited on those levels is at most:

⌊logB
N

N′
⌋−1∑

i=0

2c

(2c)i

√
N

B
+

c

(4c)i

T

B
= O

(√
N

B
+

T

B

)
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The higher levels, with less thanN ′ nodes, just add an additive constant, so we
conclude thatO(

√
N/B + T/B) nodes are visited in total. �

4.2.3 Multi-dimensional PR-tree

In this section we briefly sketch how our PR-tree generalizesto dimensions greater
than two. We focus on how to generalize pseudo-PR-trees, since ad-dimensional
PR-tree can be obtained usingd-dimensional pseudo-PR-trees in exactly the same
way as in the two-dimensional case; that thed-dimensional PR-tree has the same
asymptotic performance as thed-dimensional pseudo-PR-tree is also proved ex-
actly as in the two-dimensional case.

Recall that a two-dimensional pseudo-PR-tree is basicallya four-dimensional
kd-tree, where four priority leaves containing extreme rectangles in each of the
four directions have been added below each internal node. Similarly, ad-dimen-
sional pseudo-PR-tree is basically a2d-dimensional kd-tree, where each node has
2d priority leaves with extreme rectangles in each of the2d standard directions.
For constantd, the structure can be constructed inO(N

B logM/B
N
B ) I/Os using

the same grid method as in the two-dimensional case (Section4.2.1); the only
difference is that in order to fit the2d-dimensional grid in main memory we have
to decreasez (the number of nodes produced in one recursive stage) toΘ(M1/2d).

To analyze the number of I/Os used to answer a window query on ad-dimen-
sional pseudo-PR-tree, we analyze the number of visited internal nodes as in the
two-dimensional case (Section 4.2.1); the total number of visited nodes is at most
a factor2d higher, since at most2d priority leaves can be visited per internal node
visited. As in the two-dimensional case,O(T/B) is a bound on the number of
nodesν visited where all rectangles in at least one of the priority leaves belowν’s
parent are reported. The number of nodesν visited such that each priority leaf of
ν’s parent contains at least one rectangle not intersecting the query can then be
bounded using an argument similar to the one used in two dimensions; it is equal
to the number of regions associated with the nodes in a2d-dimensional kd-tree
with O(N/B) leaves that intersect the(2d − 2)-dimensional intersection of two
orthogonal hyperplanes. It follows from a straightforwardgeneralization of the
standard kd-tree analysis that this isO((N/B)1−1/d) [Aga01BGHH].

Theorem 4.2.5 A PR-tree on a set ofN d-dimensional hyper-rectangles can be
bulk-loaded inO(N

B logM/B
N
B ) I/Os, such that a window query can be answered

in O((N/B)1−1/d + T/B) I/Os.

4.2.4 LPR-tree: doing insertions and deletions

In this section we describe and analyze the logarithmic pseudo-PR-tree, or LPR-
tree for short. This tree enables us to maintain an R-tree-like structure efficiently
without losing the worst-case optimal query time. The structure of an LPR-tree
differs from a normal R-tree in two ways. First, the leaves are on different levels.
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Second, the internal nodes store some additional information, which is explained
below. Still, exactly the same query algorithms as for a realR-tree can be used
on an LPR-tree. We describe the LPR-tree in two dimensions—generalization to
higher dimensions can be done in the same way as with PR-trees.

Structure

An LPR-tree consists of a root with a number of subtrees. Eachsubtree is a normal
pseudo-PR-tree, except that the internal nodes (kd-nodes)store some additional
information, and the kd-nodes are grouped to share blocks ondisk. Both adapta-
tions serve to make efficient deletions possible. We will refer to these subtrees as
APR-trees (annotated pseudo-PR-trees).

In each internal nodeν of an APR-tree, the following information is stored:

• pointers to all ofν’s children, and a bounding box for each child;

• the split value which was used to cutν in the four-dimensional kd-tree;

• for each priority leaf ofν, the least extreme value of the relevant coordinate
of any rectangle stored in that leaf, that is:

– the largestxmin-coordinate inνxmin

p ;

– the largestymin-coordinate inνymin

p ;

– the smallestxmax-coordinate inνxmax

p ;

– the smallestymax-coordinate inνymax

p .

Recall that the internal nodes of pseudo-PR-trees have degree only six. In an
APR-tree, we group these nodes into blocks as follows. With each internal node
at depthi in a tree such thati = 0 (mod ⌊log B⌋), we store, in the same block,
all its descendant internal nodes down to leveli + ⌊log B⌋ − 1. In the following
sections, we will keep writing about nodes that share a blockas separate nodes,
but in the analysis, we will use the fact that we can follow anypath of lengthl
down into the tree with onlyO(l/ log B) I/Os.

An LPR-tree is the structure that results from applying the logarithmic method
[Arg03, Pro03] to APR-trees. An LPR-tree has up to⌈log(N/B)⌉ + 3 subtrees
T0, T1, T2, ..., T⌈log(N/B)⌉+2. SubtreeT0 stores at mostB rectangles, andTi (i >
0) is an APR-tree that stores at most2i−1B rectangles. SoT0 andT1 will never
contain more than one leaf; the other subtrees may have more nodes. The smaller
subtrees, that isT0 up to treeTm for somem = log M

B −O(1), have a total size of

at mostB+
∑log(M/B)−O(1)

i=0 2i−1B = O(M); we keep these subtrees completely
in main memory. From the larger subtrees, that is treeT⌈log(N/B)⌉+2 down to tree
Tl, for somel = log N

M +O(1), we keep the topi−l levels in main memory; these

have a total size of
∑⌈log(N/B)⌉+2

i=l O(2i−lB) = O(
∑log(N/B)−log(N/M)

i=0 2iB) =
O(M). The lower levels of the larger subtrees are stored on disk. If l > m + 1,
subtreesTm+1, ..., Tl−1 are stored on disk completely.
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T0 T1 T2 ... Tm Tm+1 ... T⌈log(N/Br)⌉+2

}

(log M) − O(1)

on disk

in memory

Figure 4.4: An LPR-tree. The bright part is kept in main memory; the dark part is
stored on disk.

Algorithms

To bulk-loadan LPR-tree with a set ofN rectangles, we build an APR-tree on the
rectangles and store it asT⌈log N/B⌉+1. All other subtrees are left empty.

To inserta rectangleR in an LPR-tree, we proceed as follows. CheckT0. If
T0 is full, we find the subtreeTj with smallestj such thatTj is empty. We take all
rectangles fromT0 to Tj together and build a new APR-treeTj on them. The old
APR-treesTi, for 0 6 i < j, are discarded. Having made sure that there is space
in T0, we addR to T0.

To deletea rectangleR from an LPR-tree, we proceed as follows. We search
for R in each subtreeTi. We start at the root of each subtree; in each internal node
ν, we compareR to the information stored about the priority leaves and the split
value ofν to decide in which child to continue the search. When we find the leaf
that containsR, we deleteR from it. If this leaf is a priority leafνp and its parent
ν has one or two kd-nodes (λ and possiblyµ) as children, we check ifνp still
contains more thanB/2 rectangles. If this is the case, we are done. Otherwise,
we check out the leaves that followνp in the sequenceνxmin

p , νymin

p , νxmax

p , νymax

p ,
the priority leaves ofλ (or λ itself, if it is a leaf), and the priority leaves ofµ (or
µ itself), to find theB/2 rectangles in those leaves that are the most extreme in
the relevant coordinate. We move those rectangles intoνp. As a result, one or
more of the leaves drawn from may have become underfull, thatis: containing
B/2 rectangles or less; we will replenish them in a similar manner. Leaves that
are kd-nodes, and priority leaves of kd-nodes that do not have kd-children, cannot
be replenished. We will just leave them underfull, and delete them when they
become completely empty.

Every now and then we do aclean-up, where we rebuild the entire LPR-tree
from scratch (using the bulk-loading algorithm). More precisely, we maintain a
counterN0, which is the number of rectangles present at the last clean-up4, a
counterI, which is the number of insertions since then, and a counterD, which
is the number of deletions since then. As soon asD > N0/2 or I > N0, we do a
clean-up.

4When the LPR-tree is initialized by bulk-loading, we setN0 to the number of rectangles present
at bulk-loading, and consider the bulk-loading to be the first clean-up.
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Query complexity

Let us first verify that we can query an LPR-tree efficiently.

Lemma 4.2.6 A window query in an LPR-tree onN rectangles in the plane needs
O(
√

N/B + T/B) I/Os in the worst-case.

Proof: An APR-tree has a structure very similar to a pseudo-PR-tree, but as a
result of deletions, an APR-tree can be somewhat unbalanced. Nevertheless, even
after deletions, the kd-nodes in an APR-treeTi (i > 0) will always form a subset
of the kd-nodes of an APR-tree on at most2i−1B rectangles. Furthermore, the
deletion algorithm ensures that the priority leaves in an APR-tree always contain
Θ(B) rectangles, except possibly the priority leaves of kd-nodes that have no
kd-children. It is easy to see now that the analysis for pseudo-PR-trees (proof of
Lemma 4.2.2) still goes through, if we just write2i−1 rather thanO(N/B) for the
number of leaves. Thus we find that the number of nodes visitedin an APR-tree
Ti is O(

√
2i−1 + Ti/B), whereTi is the number of answers found inTi.

Taking the sum of the number of I/Os needed for all treesTi, we find:

⌈log N
B ⌉+2∑

i=m+1

O

(√
2i−1 +

Ti

B

)
= O

(√
N

B
+

T

B

)

�

Bulk-loading complexity

Lemma 4.2.7 An LPR-tree can be bulk-loaded withO(N
B logM/B

N
B ) I/Os.

Proof: For bulk-loading the APR-treeT⌈log N/B⌉+1, we use to same algorithm
as for pseudo-PR-trees, now storing the additional information and grouping the
internal nodes into blocks at no additional I/O-cost. The algorithm uses
O(N

B logM/B
N
B ) I/Os (Lemma 4.2.3). �

Insertion complexity

Lemma 4.2.8 Inserting a rectangle in an LPR-tree takes
O( 1

B (logM/B
N
B )(log2

N
M )) I/Os amortized.

Proof: We will bound the I/Os spent on the insertions done in betweenany two
clean-up operations, including the I/Os needed for the second clean-up if that was
caused by an insertion.

Just after clean-up,N0 rectangles are present, and they are all stored inTk+1,
with k = ⌈log N0/B⌉. Recall that an insertion, ifT0 is full, finds the first empty
treeTj , and then constructsTj from T1, . . . , Tj−1. TreeTk+1 would only become
involved in this when a new rectangle is to be inserted after2kB insertions have
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filled up all treesTi with 0 6 i 6 k. However, this cannot happen before the sec-
ond clean-up, since a clean-up is done as soon asN0 < 2kB rectangles have been
inserted—or even earlier, if it is triggered by deletions. If the clean-up is caused
by an insertion, we charge the cost,O(N

B logM/B
N
B ) I/Os (Lemma 4.2.7), to the

N0 = Θ(N) insertions that caused it, which isO( 1
B logM/B

N
B ) I/Os amortized

per insertion. (Clean-ups caused by deletions will be charged to the deletions—
see Section 4.2.4.)

It remains to account for the construction of treesTj with m 6 j 6 k
in between clean-ups (treesTj with 0 6 m are constructed in main memory).
Note that only rectangles inserted since the last clean-up are involved in this. By
Lemma 4.2.7, the cost of constructingTj is O( 1

B logM/B
N
B ) I/Os amortized per

rectangle in the tree. WhenTj is constructed, all rectangles that are put in come
from a treeTi with i < j. It follows that a rectangle can be included at most
k − m + 1 = O(log2

N
M ) times in a new tree that is (partly) built in external

memory. This leads to an amortized cost of moving rectanglesbetween clean-ups
of O( 1

B (logM/B
N
B )(log2

N
M )) I/Os.

Adding the bounds, we see that moving rectangles between clean-ups domi-
nates, and gives the bound claimed. �

Deletion complexity

Lemma 4.2.9 Deleting a rectangle from an LPR-tree takes
O((logB

N
M )(log2

N
M )) I/Os amortized.

Proof: We first need to find the rectangle. In the worst case, we have tocheck all
APR-trees,O(log2

N
M ) of which are (partially) stored on disk. Since the higher

levels of these trees are stored in main memory, and the remaining internal nodes
are blocked in groups of heightΘ(logB), walking down a path in such an APR-
tree takes at mostO(logB

N
M ) I/Os. In total,O((logB

N
M )(log2

N
M )) I/Os may be

needed to locate the rectangle.
The replenishing of the priority leaves is accounted for as follows. Let the

external heighth of a priority leafνp be the largest number of kd-nodes that are
found on any path fromν down into the APR-tree and are stored on disk, or have
their priority leaves stored on disk. Since the higher levels of the larger APR-trees
are stored in main memory,h = O(log2

N
M ). Let therank of a priority leaf be

four times its external height, minus its rank among its siblings, i.e.−1 for νxmin

p ;
−2 for νymin

p ; −3 for νxmax

p , and−4 for νymax

p . When we remove a rectangle
from a priority leaf, we put a charge of2r/B in its place, wherer is the rank
of the priority leaf. We only replenish a priority leaf if it gets half-empty, which
implies that it contains a total charge ofr. By moving rectangles from lower-
ranked priority leaves in, we create gaps in those priority leaves, but since all of
these have lower rank, we need to put a total charge of at mostr−1 in their place.
Hence, the replenishing of a priority leafνp frees a charge of at least1, which
pays for theO(1) I/Os that are needed to replenishνp. Replenishing priority

leaves thus takesO(max(r)
B ) = O( 1

B log2
N
M ) I/Os amortized per deletion.
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WhenD becomesN0/2, which is more thanN/4, the LPR-tree is rebuilt
at a cost ofO(N

B logM/B
N
B ) I/Os (Lemma 4.2.7). This isO( 1

B logM/B
N
B ) per

deletion, amortized.
Adding the amortized cost of locating and deleting the rectangle, replenish-

ing the priority leaves and rebuilding the LPR-tree, we find that a deletion takes
O((logB

N
M )(log2

N
M )) I/Os amortized. �

Speeding up deletions

When the insertion of a rectangle leads to building a subtreeTi, we put in all rect-
angles that were inserted by then and are not stored in a previously built subtree
Tj with j > i. This makes it possible to find a rectangle in an LPR-tree without
searching alllog2

N
M subtreesTi that are stored on disk: we just need to keep track

of the time of insertion of each rectangle. When we want to finda particular rect-
angle in the LPR-tree, we only need to search the subtreeTi that was constructed
earliest after the rectangle’s insertion in the LPR-tree.

To make this work, we need to keep three additional structures with the LPR-
tree:

• a single numbertime, initially set to zero, which we increase with every
update so that we can use it to put unique time stamps on updateoperations;

• a time index, implemented as a B-tree of which the topΘ(logB M) levels
are kept in main memory; the lower levels are stored on disk. The time
index stores for every rectangle in the forest the time stampof its insertion.
It can do so using any type of key that uniquely identifies rectangles.

• in main memory: for each non-empty subtreeTi, the time at which it was
built.

The algorithms are modified as follows. When an LPR-tree is cleaned up, we
set time to zero, and rebuild the time index to store the zero time stamp for all
rectangles. When a subtreeTi is built or modified because of an insertion, we
incrementtimeand record it as the time of construction ofTi. When a rectangle
is inserted, we also incrementtime and insert the rectangle’s key with this time
stamp in the time index. When a rectangleR is deleted, we query the time index
to get the rectangle’s time of insertion, find the subtreeTi that was constructed
earliest after the rectangle was inserted, and search onlyTi to findR.

Lemma 4.2.10An LPR-tree with time stamps can be bulk-loaded with
O(N

B logM/B
N
B ) I/Os.

Proof: The LPR-tree itself is built withO(N
B logM/B

N
B ) I/Os (Lemma 4.2.7).

The time index can be built in the same time bound: sort the keys of the rectangles
in O(N

B logM/B
N
B ) I/Os and build a B-tree on them. �
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Lemma 4.2.11 Inserting a rectangle in an LPR-tree with time stamps takes
O((logB

N
M ) + 1

B (logM/B
N
B )(log2

N
M )) I/Os amortized.

Proof: Inserting the rectangle in the LPR-tree takesO( 1
B (logM/B

N
B )(log2

N
M ))

I/Os amortized (Lemma 4.2.8). Inserting the rectangle in the time index takes
O(logB

N
M ) I/Os. Add these bounds to get the bound claimed. �

Lemma 4.2.12Deleting a rectangle from an LPR-tree with time stamps takes
O(logB

N
M ) I/Os amortized.

Proof: We first find the rectangle in the time index; this takesO(logB
N
M )

I/Os. With the result we determine which subtreeTi to search; walking down
that subtree takes at mostO(logB

N
M ) I/Os. Replenishing the priority leaves takes

O( 1
B log2

N
M ) I/Os amortized (see the proof of Lemma 4.2.9), and rebuilding the

LPR-tree as soon asD > N0/2 takesO(N
B logM/B

N
B ) I/Os (Lemma 4.2.9), that

is O( 1
B logM/B

N
B ) I/Os amortized per deletion. Adding it all up, we find that a

deletion takesO(logB
N
M ) I/Os amortized. �

LPR-tree: the bounds

The lemmas above lead to the following theorem.

Theorem 4.2.13An LPR-tree with time stamps on a set ofN rectangles in the
plane can be bulk-loaded inO(N

B logM/B
N
B ) I/Os, such that a window query can

be answered inO(
√

N/B + T/B) I/Os in the worst case, a rectangle can be in-
serted inO((logB

N
M )+ 1

B (logM/B
N
B )(log2

N
M )) I/Os amortized, and a rectangle

can be deleted inO(logB
N
M ) I/Os amortized.

4.2.5 Lower bound for heuristic R-trees

The PR-tree is the first R-tree variant that always answers a window query worst-
case optimally. In fact, most other R-tree variants can be forced to visitΘ(N/B)
nodes to answer a query even when no rectangles are reported (T = 0). In this
section we show how this is the case for the packed Hilbert R-tree, the four-
dimensional Hilbert R-tree, and the TGS R-tree.

Theorem 4.2.14There exist a set of rectanglesS and a window queryQ that
does not intersect any rectangles inS, such that allΘ(N/B) nodes are visited
whenQ is answered using a packed Hilbert R-tree, a four-dimensional Hilbert
R-tree, or a TGS R-tree onS.

Proof: We will construct a set ofpointsS such that all leaves in a packed Hilbert
R-tree, a four-dimensional Hilbert R-tree, and a TGS R-treeonS are visited when
answering aline query that does not touch any point. The theorem follows since
points and lines are all special rectangles.
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Figure 4.5: Worst-case example

For convenience we assume thatB ≥ 4, N = 2kB andN/B = Bm, for some
positive integersk andm, so that each leaf of the R-tree containsB rectangles,
and each internal node has fanoutB. We constructS as a grid ofN/B columns
andB rows, where each column is shifted up a little, depending on its horizontal
position (each row is in fact a Halton-Hammersley point set;see e.g. [Chz01]).
More precisely,S has a pointpij = (xij , yij), for all i ∈ {0, ..., N/B − 1} and
j ∈ {0, ..., B − 1}, such thatxij = i + 1/2, andyij = j/B + h(i)/N . Here
h(i) is the number obtained by reversing, i.e. reading backwards, thek-bit binary
representation ofi. An example withN = 64, B = 4 is shown in Figure 4.5.

Now, let us examine the structure of each of the three R-tree variants on this
dataset.

Packed Hilbert R-tree: The packed Hilbert R-tree sorts the points by the
Hilbert values. To compare the Hilbert values of two points,we must first check
if they lie in the same quadrant of a sufficiently large squarewhose sides are
powers of two: in our case, a square of size2k suffices. If they lie in the same
quadrant, we zoom in on that quadrant, and see if they lie in the same subquadrant
of that quadrant. We keep zooming in until we arrive at the level where the points
lie in different quadrants. Then, we decide which quadrant comes first on the
Hilbert curve.

Now consider two pointspij andpi′j′ . Note that bothyij andyi′j′ are smaller
than1, so all bits before the “decimal point” of they-coordinates of these points
are the same, namely zero. In addition, ifi = i′, thenxij = xi′j′ , and therefore,
starting from a square of size2k, we have to zoom in more thank levels deep to
distinguish between the positions ofpij andpi′j′ on the Hilbert curve. On the
other hand, ifi 6= i′, then|xij − xi′j′ | > 1, so thex-coordinates ofpij andpi′j′

differ in at least one of the bits before the ”decimal” point.Hence, we do not have
to zoom in more thank levels and can compare them on the basis ofi andi′ only,
ignoringj andj′. As a result, the Hilbert curve visits the columns in our gridof
points one by one, and when it visits a column, it visits all points in that column
before proceeding to another column. Therefore, the packedHilbert R-tree makes
a leaf for every column, and a horizontal line can be chosen tointersect all these
columns while not touching any point.

Four-dimensional Hilbert R-tree: The analysis is similar to the one for the
packed Hilbert R-trees.

TGS R-tree: The TGS algorithm will partitionS into B subsets of equal
size and partition each subset recursively. The partitioning is implemented by
choosing a partitioning line that separates the set into twosubsets (whose sizes are
multiples ofN/B), and then applying binary partitions to the subsets recursively
until we have partitioned the set intoN subsets of sizeN/B. Observe that on all
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Figure 4.6: TGS partitioning the worst-case example. A vertical division creates
two bounding boxes with a total area of less thani2−i1−1. A horizontal division
creates two bounding boxes with a total area of more than(i2 − i1)(1 − 2σ) >
i2 − i1 − 1.

levels in this recursion, the partitioning line will leave at least a fraction1/B of
the input on each side of the line. Below we prove that TGS willalways partition
by vertical lines; it follows that TGS will eventually put each column in a leaf.
Then a line query can intersect all leaves but report nothing.

Suppose TGS is about to partition the subsetS(i1, i2) of S that consists of
columnsi1 to i2 inclusive, withi2 > i1, i.e. S(i1, i2) = {pij |i ∈ {i1, ..., i2}, j ∈
{0, ..., B − 1}}. When the greedy split algorithm gets to divide such a set into
two, it can look for a vertical partitioning line or for a horizontal partitioning line.
Intuitively, TGS favors partitioning lines that create a big gap between the bound-
ing boxes of the points on each side of the line. As we will showbelow, we have
constructedS such that the area of the gap created by a horizontal partitioning
line is always roughly the same, as is the area of the gap created by a vertical line,
with the latter always being bigger.

Partitioning with a vertical line would always leave a gap ofroughly a square
that fits between two columns—see Figure 4.6. More precisely, it would partition
the setS(i1, i2) into two setsS(i1, c − 1) and S(c, i2), for somec ∈ {i1 +
1, ..., i2}. The bounding boxes of these two sets would each have height less than
1, and their total width would be(c − 1 − i1) + (i2 − c), so their total areaAv

would be less thani2 − i1 − 1.

The width of a gap around a horizontal partitioning line depends on the num-
ber of columns inS(i1, i2). However, the more columns are involved the bigger
the density of the points in those columns when projected on they-axis, and the
lower the gap that can be created—see Figure 4.6 for an illustration. As a re-
sult, partitioning with a horizontal line can lead to gaps that are wide and low, or
relatively high but not so wide; in any case, the area of the gap will be roughly
the same. More precisely, we can estimate the total area of the bounding boxes
resulting from partitioning with a horizontal line as follows. The partitioning line
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must leave at least a fraction1/B of the points on each side, so there must be at
least one full row ofS(i1, i2) on each side of the line. Hence, the width of both
bounding boxes resulting from the partition step must bei2− i1. Observe that the
set{i1, ..., i2 + 1} contains at least two different multiples of2s if s is such that
i2+2−i1 > 2s+1; let t be the largest such value ofs, i.e. t = ⌊log(i2+2−i1)−1⌋,
let i′1 be the smallest multiple of2t that is at leasti1, and leti′2 be i′1 + 2t − 1.
Note that if we leti go through all values{i′1, ..., i′2}, then the firstk − t bits of
thek-bit representation ofi remain constant, while the lastt bits assume all pos-
sible values. Consequently, the lastk − t bits ofh(i) will remain constant, while
the firstt bits will assume all possible values. Hence, if we project all points in
S(i1, i2) on they-axis, the distance between each pair of consecutive pointsis
at mostσ = 2k−t/N = 1/(2tB), and the distance between the topmost and the
bottommost point is at least1−σ. When we partition this set by a horizontal line,
the total height of the resulting bounding boxes must be at least1− 2σ, and their
total areaAh must be at least(i2 − i1)(1 − 2σ) = i2 − i1 − 2(i2 − i1)/(2tB).
With t > log(i2 + 2− i1)− 1, we find thatAh is more thani2 − i1 − 4/B.

Recall thatAv is less thani2 − i1 − 1. SinceB > 4, we can conclude that
Ah > Av, and that partitioning with a vertical line will always result in a smaller
total area of bounding boxes than with a horizontal line. As aresult, TGS will
always cut vertically between the columns. �

4.3 Experiments

In this section we describe the results of our experimental study of the perfor-
mance of the PR-tree. We compared the PR-tree to several other bulk-loading
methods known to generate query-efficient R-trees: The packed Hilbert R-tree
(denoted H in the rest of this section), the four-dimensional Hilbert R-tree (de-
noted H4), and the TGS R-tree (denoted TGS). Among these, TGShas been re-
ported to have the best query performance, but it also takes many I/Os to bulk-
load. In contrast, H is simple to bulk-load, but it has worse query performance
because it does not take the extent of the input rectangles into account. H4 has
been reported to be inferior to H [Kam93], but since it takes the extent into ac-
count (like TGS) it should intuitively be less vulnerable toextreme datasets.

4.3.1 Experimental setup

We implemented the four bulk-loading algorithms in C++ using TPIE [Arg02].
TPIE is a library that provides support for implementing I/O-efficient algorithms
and data structures. In our implementation we used 36 bytes to represent each
input rectangle; 8 bytes for each coordinate and 4 bytes to beable to hold a pointer
to the original object. Each bounding box in the internal nodes also used 36 bytes;
8 bytes for each coordinate and 4 bytes for a pointer to the disk block storing the
root of the corresponding subtree. The disk block size was chosen to be 4KB,



82 CHAPTER 4. THE PRIORITY R-TREE

resulting in a maximum fanout of 113. This is similar to earlier experimental
studies, which typically use block sizes ranging from 1KB to4KB or fix the fan-
out to a number close to 100.

As experimental platform we used a dedicated Dell PowerEdge2400 work-
station with one Pentium III/500MHz processor running FreeBSD 4.3. A local
36GB SCSI disk (IBM Ultrastar 36LZX) was used to store all necessary files: the
input data, the R-trees, as well as temporary files. We restricted the main mem-
ory to 128MB and further restricted the amount of memory available to TPIE to
64MB; the rest was reserved to operating system daemons.

4.3.2 Datasets

We used both real-life and synthetic data in our experiments.

Real-life data

As the real-life data we used theTIGER/Line data [Tiger] of geographical features
in the United States. This data is the standard benchmark data used in spatial
databases. It is distributed on six CD-ROMs and we chose to experiment with the
road line segments from two of the CD-ROMs: disk one containing data for six-
teen eastern US states and disk six containing data from five western US states;
we use Eastern and Western to refer to these two datasets, respectively. To ob-
tain datasets of varying sizes we divided the Eastern dataset into five regions of
roughly equal size, and then put an increasing number of regions together to ob-
tain datasets of increasing sizes. The largest set is just the whole Eastern dataset.
For each dataset we used the bounding boxes of the line segments as our input
rectangles. As a result, the Eastern dataset had 16.7 million rectangles, for a total
size of 574MB, and the Western data set had 12 million rectangles, for a total size
of 411MB. Refer to Table 4.1 for the sizes of each of the smaller Eastern datasets.
Note that the biggest dataset is much larger than those used in previous works
(which only used up to 100,000 rectangles) [Kam93, Grc98a].Note also that our
TIGER data is relatively nicely distributed; it consist of relatively small rectangles
(long roads are divided into short segments) that are somewhat (but not too badly)
clustered around urban areas.

dataset: 1 2 3 4 5

million rectangles: 2.08 5.67 9.16 12.66 16.72
size (MB): 72 194 315 435 574

Table 4.1: The sizes of the Eastern datasets

Synthetic data

To investigate how the different R-trees perform on more extreme datasets than
theTIGER data, we generated a number of synthetic datasets. Each of these syn-
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thetic datasets consisted of 10 million rectangles (or 360MB) in the unit square.

• SIZE(max side): We designed the first class of synthetic datasets to in-
vestigate how well the R-trees handle rectangles of different sizes. In the
SIZE(max side) dataset the rectangle centers were uniformly distributed
and the lengths of their sides uniformly and independently distributed be-
tween 0 andmax side. When generating the datasets, we discarded rect-
angles that were not completely inside the unit square (but made sure each
dataset had 10 million rectangles). A portion of the datasetSIZE(0.001) is
shown in Figure 4.7.

Figure 4.7: Synthetic datasetSIZE(0.001)

• ASPECT(a): The second class of synthetic datasets was designed to inves-
tigate how the R-trees handle rectangles with different aspect ratios. The
areas of the rectangles in all the datasets were fixed to10−6, a reasonably
small size. In theASPECT(a) dataset the rectangle centers were uniformly
distributed but their aspect ratios were fixed toa and the longest sides cho-
sen to be vertical or horizontal with equal probability. We also made sure
that all rectangles fell completely inside the unit square.A portion of the
datasetASPECT(10) is shown in Figure 4.8. Note that if the input rectangles
are bounding boxes of line segments that are almost horizontal or vertical,
one will indeed get rectangles with very high aspect ratio—even infinite in
the case of horizontal or vertical segments.

• SKEWED(c): In many real-life multidimensional datasets different dimen-
sions often have different distributions. Some of these distributions may
be highly skewed compared to the others. We designed the third class of
datasets to investigate how this affects R-tree performance. SKEWED(c)
consists of uniformly distributed points that have been “squeezed” in the
y-dimension, that is, each point(x, y) is replaced with(x, yc). An example
of SKEWED(5) is shown in Figure 4.9.
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Figure 4.8: Synthetic datasetASPECT(10)

Figure 4.9: Synthetic datasetSKEWED(5)

• CLUSTER: Our final dataset was designed to illustrate the worst-casebehav-
ior of the H, H4 and TGS R-trees. It is similar to the worst-case example
discussed in Section 4.2. It consists of 10 000 clusters withcenters equally
spaced on a horizontal line. Each cluster consists of 1000 points uniformly
distributed in a0.000 01 × 0.000 01 square surrounding its center. Fig-
ure 4.10 shows a part of theCLUSTERdataset.

Figure 4.10: Synthetic datasetCLUSTER
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Figure 4.11: Bulk-loading performance onTIGER data: I/O (upper figure) and
time (lower figure).

4.3.3 Experimental results

Below we discuss the results of our bulk-loading and query experiments with the
four R-tree variants.

Bulk-loading performance

We bulk-loaded each of the R-trees with each of the real-lifeTIGER datasets, as
well as with the synthetic datasets for various parameter values. In all experiments
and for all R-trees we achieved a space utilization above 99%.5 We measured the
time spent and counted the number of 4KB blocks read or written when bulk-
loading the trees. Note that all algorithms we tested read and write blocks almost
exclusively by sequential I/O of large parts of the data; as aresult, I/O is much
faster than if blocks were read and written in random order.

Figure 4.11 shows the results of our experiments using the Eastern and West-
ern datasets. Both experiments yield the same result: The H and H4 algorithms
use the same number of I/Os, and roughly 2.5 times fewer I/Os than PR. This is not
surprising since even though the three algorithms have the sameO(N

B logM/B
N
B )

I/O bounds, the PR algorithm is much more complicated than the H and H4 al-
gorithms. The TGS algorithm uses roughly 4.5 times more I/Osthan PR, which
is also not surprising given that the algorithm makes binarypartitions so that the
number of levels of recursion is effectivelyO(log2 N). In terms of time, the H
and H4 algorithms are still more than 3 times faster than the PR algorithm, but
the TGS algorithm is only roughly 3 times slower than PR. Thisshows that H, H4
and PR are all more CPU-intensive than TGS.

Figure 4.12 shows the results of our experiments with the fiveEastern datasets.
These experiments show that the H, H4 and PR algorithms scalerelatively linearly
with dataset size; this is a result of the⌈logM/B

N
B ⌉ factor in the bulk-loading

bound being the same for all datasets. For H and H4 this means that the core step

5When R-trees are bulk-loaded to subsequently be updated dynamically, near 100% space utiliza-
tion is often not desirable [Dwt94]. However, since we are mainly interested in the query performance
of the R-tree constructed with the different bulk-loading methods, and since the methods could be
modified in the same way to produce non-full leaves, we only considered the near 100% utilization
case.
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Figure 4.12: Bulk-loading performances on Eastern datasets: I/O (left) and time
(right)

of the algorithm, which is sorting the rectangles by their position on the Hilbert
curve, runs in the same number of passes—namely two—in all experiments. For
the PR algorithm it means that only once, we have to build a grid and divide
among its cells a set of rectangles that is too big too fit in memory. All recursive
steps can be done in main memory. The cost of the TGS algorithmseems to grow
in an only slightly superlinear way with the size of the data set. This is a result of
the⌈logB N⌉ factor in the bulk-loading bound being almost the same for all data
sets. It means that in all data sets, the subtrees just below root level have roughly
the same size (B⌈logB N⌉−1 rectangles), and since each of them is too big to fit in
main memory, we need a significant number of I/Os to build them. This, together
with preprocessing, accounts for a big portion of the numberof I/Os that scales
linearly with the size of the data set. The slightly superlinear trend comes from
the cost of building the root, which varies from roughly 20% of the total number
of I/Os on set 1, to roughly 45% on set 5 (shaded in Figure 4.12).

In our experiments with the synthetic data we found that the performance
of the H, H4 and PR bulk-loading algorithms was practically the same for all
the datasets, that is, unaffected by the data distribution.This is not surprising,
since the performance should only depend on the dataset size(and all the syn-
thetic datasets have the same size). The PR algorithm performance varied slightly,
which can be explained by the small effect the data distribution can have on the
grid method used in the bulk-loading algorithm (subtrees may have slightly dif-
ferent sizes due to the removal of priority boxes). On average, the H and H4 algo-
rithms spent 381 seconds and 1.0 million I/Os on each of the synthetic datasets,
while the PR algorithm spent 1289 seconds and 2.6 million I/Os. On the other
hand, as expected, the performance of the TGS algorithm varied significantly over
the synthetic datasets we tried; the binary partitions madeby the algorithm depend
heavily on the input data distribution. The TGS algorithm was between 4.6 and
16.4 times slower than the PR algorithm in terms of I/O, and between 2.8 and 10.9
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Figure 4.13: Bulk-loading time in seconds of Top-down Greedy Split on synthetic
data sets of 10 million rectangles (SIZE and ASPECT) or points (SKEWED and
CLUSTER) each.

times slower in terms of time. The performance of TGS on theSIZE(max side),
ASPECT(a), SKEWED(c) andCLUSTERdatasets is shown in Figure 4.13.

Query performance

After bulk-loading the four R-tree variants we experimented with their query per-
formance; in each of our experiments we performed 100 randomly generated
queries and computed their average performance (a more exact description of
the queries is given below). Following previous experimental studies, we uti-
lized a cache (or “buffer”) to store internal R-tree nodes during queries. In fact,
in all our experiments we cached all internal nodes since they never occupied
more than 6MB. This means that when reporting the number of I/Os needed to
answer a query, we are in effect reporting the number of leaves visited in order
to answer the query.6 For several reasons, and following previous experimental
studies [Bmn90, Grc98a, Kam93, Kam94], we did not collect timing data. Two
main reasons for this are (1) that I/O is a much more robust measure of perfor-
mance, since the query time is easily affected by operating system caching and by
disk block layout; and (2) that we are interested in heavy load scenarios where not
much cache memory is available or where caches are ineffective, that is, where
I/O dominates the query time.

TIGER data: We first performed query experiments using the Eastern and
Western datasets. The results are summarized in Figure 4.14and 4.15. In Fig-
ure 4.14 we show the results of experiments with square window queries with

6Experiments with the cache disabled showed that in our experiments the cache actually had rela-
tively little effect on the window query performance.
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Figure 4.14: Query performance for queries with squares of varying size on the
WesternTIGER data (left) and the EasternTIGER data (right). The performance is
given as the number of blocks read divided by the output sizeT/B.
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Figure 4.15: Query performance for queries with squares of area 0.01 on Eastern
TIGER data sets of varying size. The performance is given as the number of blocks
read divided by the output sizeT/B.

areas that range from 0.25% to 2% of the area of the bounding box of all input
rectangles. We used smaller queries than previous experimental studies (for ex-
ample, the maximum query in [Kam93] occupies 25% of the area)because our
datasets are much larger than the datasets used in previous experiments—without
reducing the query size the output would be unrealisticallylarge and the reporting
cost would thus dominate the overall query performance. In Figure 4.15 we show
the results of experiments on the five Eastern datasets of various sizes with a fixed
query size of 1%. The results show that all four R-tree variants perform remark-



4.3. EXPERIMENTS 89

0.2 0.5 1 2 5 10 20% 101 1 3 5 7 9102 103 104 105

SIZE(max side) ASPECT(a) SKEWED(c)

100%

150%

200%

902 935 986 1090 1433 2147 3879 913 986 1195 1836 3864 886 887 892 904 968B rectangles
output

TGS

PR

H

H4

TGS

PR

H

H4

TGS

PR

H

H4

340%

H

TGS

H

Figure 4.16: Query performance for queries with squares of area 0.01 on synthetic
data sets. The performance is given as the number of blocks read divided by the
output sizeT/B.

ably well on theTIGER data; their performance is within 10% of each other and
they all answer queries in close toT/B, the minimum number of necessary I/Os.
Their relative performance generally agrees with earlier results [Kam93, Grc98a],
that is, TGS performs better than H, which in turn is better than H4. PR consis-
tently performs slightly better than both H and H4 but slightly worse than TGS.

Synthetic data. Next we performed experiments with our synthetic datasets,
designed to investigate how the different R-trees perform on more extreme data
than theTIGER data. For each of the datasetsSIZE, ASPECT and SKEWED we
performed experiments where we varied the parameter to obtain data ranging from
fairly normal to rather extreme. Below we summarize our results.

The left side of Figure 4.16 shows the results of our experiments with the
datasetSIZE(max side) when varyingmax side from 0.002 to 0.2, that is, from
relatively small to relatively large rectangles. As queries we used squares with
area 0.01. Our results show that for relatively small input rectangles, like the
TIGER data, all the R-tree variants perform very close to the minimum number of
necessary I/Os. However, as the input rectangles get larger, PR and H4 clearly
outperform H and TGS. H performs the worst, which is not surprising since it
does not take the extent of the input rectangles into account. TGS performs sig-
nificantly better than H but still worse than PR and H4. Intuitively, PR and H4
can handle large rectangles better, because they rigorously divide rectangles into
groups of rectangles that are similar in all four coordinates. This may enable these
algorithms to group likely answers, namely large rectangles, together so that they
can be retrieved with few I/Os. It also enables these algorithms to group small
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rectangles nicely, while TGS, which strives to minimize thetotal area of bound-
ing boxes, may be indifferent to the distribution of the small rectangles in the
presence of large rectangles.

The middle of Figure 4.16 shows the results of our experiments with the
datasetASPECT(a), when we varya from 10 to 105, that is, when we go from
rectangles (of constant area) with small to large aspect ratio. As query we again
used squares with area 0.01. The results are very similar to the results of theSIZE

dataset experiments, except that as the aspect ratio increases, PR and H4 become
significantly better than TGS and especially H. Unlike with the SIZE dataset, PR
performs as well as H4 and they both perform close to the minimum number of
necessary I/Os to answer a query. Thus this set of experiments re-emphasizes that
both the PR-tree and H4-tree are able to adopt to varying extent very well.

The right side of Figure 4.16 shows the result of our experiments with the
datasetSKEWED(c), when we varyc from 1 to 9, that is, when we go from a uni-
formly distributed point set to a very skewed point set. As query we used squares
with area 0.01 that are skewed in the same way as the dataset (that is, where the
corner(x, y) is transformed to(x, yc)) so that the output size remains roughly
the same. As expected, the PR performance is unaffected by the transformations,
since our bulk-loading algorithm is based only on the relative order of coordi-
nates:x-coordinates are only compared tox-coordinates, andy-coordinates are
only compared toy-coordinates; there is no interaction between them. On the
other hand, the query performance of the three other R-treesdegenerates quickly
as the point set gets more skewed.

As a final experiment, we queried theCLUSTERdataset with long skinny hor-
izontal queries (of area1 × 10−7) through the 10 000 clusters; they-coordinate
of the leftmost bottom corner was chosen randomly such that the query passed
through all clusters. The results are shown in Table 4.2. As anticipated, the query
performance of H, H4 and TGS is very bad; theCLUSTERdataset was constructed
to illustrate the worst-case behavior of the structures. Even though a query only
returns around 0.3% of the input points on average, the queryalgorithm visits
37%, 94% and 25% of the leaves in H, H4 and TGS, respectively. In comparison,
only 1.2% of the leaves are visited in PR. Thus the PR-tree outperforms the other
indexes by well over an order of magnitude.

tree: H H4 PR TGS

# I/Os: 32 920 83 389 1 060 22 158
% of the R-tree visited: 37% 94% 1.2% 25%

Table 4.2: Query performances on synthetic datasetCLUSTER.

4.3.4 Conclusions of the experiments

The main conclusion of our experimental study is that the PR-tree is not only
theoretically efficient but also practically efficient. Ourbulk-loading algorithm is
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slower than the packed Hilbert and four-dimensional Hilbert bulk-loading algo-
rithms but much faster than the TGS R-tree bulk-loading algorithm. Furthermore,
unlike for the TGS R-tree, the performance of our bulk-loading algorithm does
not depend on the data distribution. The query performance of all four R-trees
is excellent on nicely distributed data, including the real-life TIGER data. On ex-
treme data however, the PR-tree is much more robust than the other R-trees (even
though the four-dimensional Hilbert R-tree is also relatively robust).

4.4 Concluding remarks

In this paper we presented the PR-tree, which is the first R-tree variant that can
answer any window query in the optimalO(

√
N/B + T/B) I/Os. We also per-

formed an extensive experimental study, which showed that the PR-tree is not
only optimal in theory, but that it also performs excellent in practice: for normal
data, it is quite competitive to the best known heuristics for bulk-loading R-trees,
namely the packed Hilbert-R-tree [Kam93] and the TGS R-tree[Grc98a], while
for data with extreme shapes or distributions, it outperforms them significantly.

The PR-tree can be updated using any known update heuristic for R-trees,
but then its performance cannot be guaranteed theoretically anymore and its prac-
tical performance might suffer as well. Alternatively, we can use the dynamic
version of the PR-tree using the logarithmic method, which has the same theoret-
ical worst-case query performance and can be updated efficiently. In the future
we wish to experiment to see what happens to the performance when we apply
heuristic update algorithms and when we use the theoretically superior logarith-
mic method.





Chapter 5

Box-trees for collision
checking in industrial
installations

An extended abstract of this chapter appeared as: Herman J. Haverkort, Mark
de Berg and Joachim Gudmundsson: Box-trees for collision checking in indus-
trial installations, inProc. 18th ACM Symposium on Computational Geometry,
Barcelona, 2002, pages 53–62. Full text to appear inComputational Geometry –
Theory and Applications.

Abstract. A box-tree is a bounding-volume hierarchy that uses axis-aligned
boxes as bounding volumes. We describe a new algorithm to construct a box-tree
for objects in a 3D scene, and we analyze its worst-case querytime for approx-
imate range queries. If the input scene has certain characteristics that we de-
rived from our application—collision detection in industrial installations—then
the query times are polylogarithmic, not only for searchingwith boxes but also
for range searching with other constant-complexity ranges.

5.1 Introduction

Motivation. Collision checking is an important operation in all applications
where objects move around in a 3D scene—virtual reality, computer animation,
and robotics are obvious examples. A popular way of doing collision checking
is the following two-phase approach. In the first phase, thefiltering phase, one
finds all primitive objects in the scene whose bounding box intersects the query
object (or its bounding box). In the second phase, therefinement phase, one tests
for each of these primitives (if any) whether it actually intersects the object. To
speed up the filtering phase, the setS of bounding boxes of the primitives in the
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Figure 5.1: CAD model of a carbon black unit. Designed by OLAJTERV Process
and Energy, Hungary.

scene is often stored in a bounding-volume hierarchy. This is a binary tree whose
leaves store the boxes inS, and where each internal nodeν stores the bounding
box b(ν) of all boxes stored in the subtree rooted atν. We call such a tree abox-
tree; sometimes it is more precisely called anaxis-aligned-bounding-box tree, or
AABB-treefor short. A query with a query rangeQ is performed by traversing
the tree in a top-down manner, only visiting nodesν such thatb(ν) intersectsQ.
This way we end up exactly in the leaves storing boxes that intersectQ.

The query time in a box-tree is determined by the number of nodes visited,
and the goal is therefore to organize the tree in such a way that this number is kept
as small as possible. Agarwalet al. [Aga01BGHH] recently showed that a box-
tree exists that hasO(n2/3 +k) query time for ranges that are axis-parallel boxes,
wheren is the total number of boxes inS andk is the number of boxes intersecting
the query range. This bound is rather disappointing: if the query time would really
be that bad, box-trees would not be used so much in practice. Unfortunately, the
bound is optimal. Agarwalet al.prove that there are sets of input boxes for which
the worst-case query time of any box-tree isΩ(n2/3 + k).1 This is the starting
point for our work: we want to understand what makes box-trees perform well in
practical applications even though in theory they may perform badly.

The application we have in mind comes from the MOLOG project [Molog].
The goal of this project is to add motion support to CAD systems used to design
large industrial installations, such as depicted in Fig. 5.1.

Adding motion support will help the designer of an industrial installation to
decide whether it will be possible to move certain parts out of the installation,
for maintenance or replacement. The approach taken in the MOLOG project is
based on theprobabilistic path planner[Ama96, Kav95, Sve97], a technique for
motion planning that has proved very successful in many applications. A basic
test performed many times by the probabilistic path planneris collision checking:
given a query object—the object for which we are planning a motion, at a certain
position and orientation—does it collide with the CAD model? We can now state

1In general, the worst-case query time of a box-tree ind-dimensional space isΘ(n1−1/d + k). In
this paper we focus on 3-dimensional box-trees, because this is most natural in our application.
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the goal of this paper as follows: we want to design a provablyefficient box-tree
for storing scenes that are CAD models of large industrial installations.

Further background. The lower bounds of Agarwalet al. mentioned earlier
imply that, to be able to design provably efficient box-treesfor CAD models
of large industrial installations, we have to make use of theproperties of the
bounding boxes of the primitives in such CAD models. Therealistic input mod-
els[Brg97KSV] suggested in the literature do not seem applicable in our setting:
the industrial installation of Fig. 5.1, for instance, contains many long and thin
pipes that are relatively close together. But if we forget about the pipes, the scene
seems to be well-behaved. Hence, the assumption we make is that the boxes in
S can be partitioned into two subsets, one containing only long and thin (almost)
disjoint pipes, and one forming a low-density scene [Brg97KSV]. Here a pipe is
defined to be an axis-aligned box whose shortest dimension isat most a constant
β times shorter than its middle dimension—see Section 5.2.3 for formal defini-
tions of these concepts. It is important to note that our algorithm to construct the
box-tree does not need this assumption; we only use it in the analysis.

Unfortunately, with the assumption just stated one still cannot prove good
bounds: theΩ(n2/3 + k) lower bound for range queries with a box even holds if
the input consists of disjoint unit squares arranged in a grid-like fashion. There-
fore we analyze approximate range queries. More precisely,instead of the param-
eterk in the time bound, we usekǫ, which is the number of boxes intersecting the
extended rangeQǫ. For a givenǫ > 0, the extended rangeQǫ is the set of points
lying at L∞-distance at mostǫw from Q, wherew is the length of the longest
edge ofQ. The expectation is that in practicekǫ will not be much larger than
k for moderately smallǫ, at least when the query range is rather fat. Note that
in our application, the query range is (the bounding box of) an object for which
we are planning a motion. If the object is a forklift truck or some other car-like
device, its bounding box is likely to be fat. The concept of approximate range
searching was also used by Arya and Mount [Ary00], who considered approxi-
mate range queries on a set of points. The parameterǫ is not used by our query
algorithm—the algorithm still visits only nodes whose bounding boxes are inter-
sected byQ—but it is only used in the analysis. (So perhaps approximaterange
searching is a slight misnomer.)

Our results. We describe a new, simple algorithm to construct a box-tree on a
set of boxes in 3D. This algorithm generalizes the 2D kd-interval tree described
by Agarwal et al. [Aga01BGHH] to 3D, with one additional crucial twist: We
partition the input boxes into three subsets, according to the orientation of their
longest edge, and construct separate box-trees for these subsets; these subtrees are
then combined to form the final tree. Our main contribution isa rather involved
analysis of the worst-case query time of this box-tree in thesetting described
above, showing it is polylogarithmic. More precisely, we prove that the number
of visited nodes isO(1

ǫ (1
ǫ + λ) log4 n + kǫ), whereλ is a constant depending on

the scene parameters. Typically,λ will only be large if the input contains many
flat ‘plates’ that are very close together—see section 5.2.2for details. Note that
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the choice ofǫ determines a trade-off between the terms in the bound: choosing ǫ
small will cause a large factor in the first term, butkǫ will be close tok. On the
other hand, choosingǫ big keeps the first term down, butkǫ might grow toO(n).
In any case, sinceǫ is only a parameter in the analysis and not for the algorithm,
the bound on the query time will be the lowest bound over all possible values of
ǫ; in other words:O(min0<ǫ61{ 1

ǫ (1
ǫ + λ) log4 n + kǫ}).

This result should be compared with the results for approximate range search-
ing in a set of points in 3-space. Here, the best result that uses boxes as bounding
volumes is by Dickersonet al. [Dic00], who show that the query time in a so-
calledlongest-side-first kd-treeis O(min0<ǫ61{(1

ǫ )2 log3 n + kǫ}). Our result is
more general than this, as we store boxes instead of points and the bounds we get
are only slightly worse.

We have also designed a variant of the box-tree, where an interior node uses
a different type of bounding volume: instead of a bounding box, it can use a
donut-like shape, namely the difference of two boxes. This was inspired by Arya
and Mount [Ary00], who show that a similar structure for points—they call it
BBD-tree—outperforms kd-trees in the worst case: the time for approximate
range queries in 3D in a BBD-tree isO(min0<ǫ61{log n + (1

ǫ )2 + kǫ}). (The
same result can be obtained using BAR-trees [Dun99, Dun99GK]. BAR-trees
use convex, but not necessarily axis-parallel, bounding volumes whose facets
have a bounded number of different orientations.) In our case, a similar im-
provement is possible: ourBBD-interval treehas a worst-case query time of
O(min0<ǫ61{log3 n + λ

ǫ log2 n + (1
ǫ )2 log n + kǫ}). However, despite the fact

that the theoretical asymptotic bounds of the BBD-intervaltree are better than
those of the kd-interval tree, we will only describe the latter in this article. There
are two reasons for this. First, the analysis of the kd-interval tree will already
demonstrate all of the main ideas, and thus everything whichmight inspire future
research. The BBD-interval tree has little to add: it combines the ideas described
in this article with the principles of the BBD-tree, but it takes many pages of
tedious analysis to describe and analyse how we can get the details of the BBD-
interval tree right. Second, the details being much more complex than those of
the kd-interval tree, the BBD-interval tree is probably relatively cumbersome to
implement and will have significantly higher hidden constants in the asymptotic
bounds. For this reason, we think that the kd-interval tree is more likely to be the
structure of choice in practice. Therefore, we will only describe the latter in this
article. The details of the BBD-interval tree can be found inthe appendix of the
technical report version of this article [Hav02a].

Finally, in this article we extend our results to constant-complexity query
ranges of arbitrary shape, showing that the time for approximate queries with such
ranges isO(min0<ǫ61{(λ/ǫ2) log4 n+kǫ}) in our LSF-interval tree—in a BBD-
interval tree, this would beO(min0<ǫ61{(log3 n + λ log2 n)/ǫ2 + kǫ}). Similar
extensions were given for the case of point data by Dickersonet al. [Dic00] and
by Arya and Mount [Ary00], who achieved query times ofO((log3 n)/ǫ3 + kǫ)
andO(log n + (1

ǫ )3 + kǫ), respectively. Note that the dependency onǫ in our
bounds is better by a factor ofO( 1

ǫ ); only for convex ranges they were able to
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prove the dependency we get for general ranges. Our proof technique also applies
to their structures, which implies an improvement of their query time by a factor
of O(1

ǫ ) for non-convex ranges.

5.2 The LSF-interval tree

In this section we first describe how to construct a kd-interval tree with longest-
side-first splitting, or LSF-interval tree for short, for a set of boxes in3-space.
After that we analyse its performance for approximate rangequeries.

5.2.1 The construction

Our three-dimensional LSF-interval tree is a generalisation of the two-dimen-
sional kd-interval tree with longest-side-first splittingas described by Agarwal
et al. [Aga01BGHH]. In fact, the two-dimensional substructures in our three-
dimensional structure are basically their two-dimensional structures.

Our construction algorithm takes as input a set of 3-dimensional axis-parallel
boxes and their joint bounding box. The algorithm then workstop-down, re-
cursively constructing subtrees on subsets of the input. Ina generic step of the
construction, we have as input a setS of 3-dimensional axis-parallel boxes and a
defining regionR. The construction is started with the full input set as inputand
the bounding box of the entire scene as defining region. In therecursive steps, the
defining regions can be axis-parallel boxes, rectangles, line segments, or points.
Each input boxb ∈ S will intersectR; more precisely, the defining regions will
always be such that if aff(R) denotes the affine hull ofR, thenb ∩ aff(R) ⊂ R.
If the defining regionR is d-dimensional, for somed ∈ {0, 1, 2, 3}, then we call
the subtree storingS ad-LSF-interval tree, and we call its root ad-node.

We will now describe an algorithm to construct ad-LSF-interval tree for a set
S of input boxes and a defining regionR. The algorithm produces a tree whose
nodes have degree at most nine; conversion to a binary tree can easily be done
and does not affect the asymptotic bounds.

We proceed as follows:

1. We create a root nodeν, storing the bounding boxb(ν) of the boxes inS.

2. For each of the six directions+x,−x, +y,−y, +z, and−z we take the box
in S extending farthest in that direction. Each of these at most six boxes is
stored in a separate leaf, called apriority leaf, immediately below the root
nodeν. LetS′ denote the set of remaining boxes. AssumeS′ is non-empty;
otherwise we are done.

3. If d = 0, we recursively build a0-LSF-interval tree forS′ using the point
R as defining region, and we make the root of this tree a child ofν. (In
fact, ford = 0, building a cs-priority-box-tree [Aga01BGHH] could make
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a better choice, but in our analysis the better performance of a cs-priority-
box-tree would be overshadowed by other terms. In the analysis presented
in this paper, we only need the priority leaves, and the division of boxes
among the children does not matter.)

Otherwise, ifd > 0, lete be a longest edge ofR, wheree = R if R is a line
segment. Leth be a plane orthogonal toe. Defineh− to be the halfspace on
one side ofh, andh+ to be the halfspace on the other side ofh. DefineS−

to be the subset of boxes inS′ lying completely inh−, S+ to be the subset
of boxes inS′ lying completely inh+, andS× to be the subset of boxes
intersectingh. We chooseh such that|S−| < |S′|/2 and|S+| 6 |S′|/2.
We then recursively construct three subtrees whose roots become children
of the root nodeν:

• The subsetS− is stored in ad-LSF-interval tree withR∩h− as defin-
ing region.

• The subsetS+ is stored in ad-LSF-interval tree withR∩h+ as defin-
ing region.

• The subsetS× is stored in a(d − 1)-LSF-interval tree withR ∩ h as
defining region.

We could start the construction with the entire input setS and any boxR com-
pletely containingS as defining region. To achieve good performance, however,
we first need to apply one simple but crucial step: we divideS into three ‘ori-
ented’ subsetsSx, Sy, andSz, whereSx, Sy andSz contain all boxes whose
longest edges are parallel to thex-axis,y-axis andz-axis, respectively, with ties
broken arbitrarily. We then build an LSF-interval tree for each of these three sub-
sets separately, and combine them at the top level. For each of the subsets, we say
that theprimary axisis the axis that corresponds to the orientation of the longest
edges of the boxes in the set; the other axes are calledsecondary axes.

5.2.2 Analysis for box-intersection queries

We will analyse the query time in 3-dimensional LSF-interval trees for a box-
intersection query in the subtree constructed forSx. The analysis forSy andSz

is similar; therefore, the asymptotic bounds we obtain holdfor the entire tree as
well. Recall that a query with a rangeQ visits all nodesν whose bounding box
b(ν) intersectsQ. In the analysis, however, we work with a slightly extended
rangeQǫ, and we will charge the visiting of some of the nodes to ‘approximate
answers’, that is, to input boxes intersectingQǫ.

In the analysis we will use the following notation:

Q: the query range;

w = w(Q): the length of the longest edge of the query range;
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ǫ > 0: the factor determining the size of the extended query range; to simplify the
formulae we assume thatǫ 6 1, although the analysis can easily be adapted
to values greater than1. Our analysis holds for any0 < ǫ 6 1. Sinceǫ
is only used in the analysis and not by the algorithm, this implies that the
actual query time is bounded by the minimum over allǫ with 0 < ǫ 6 1.

Qǫ: the extended query range, which consists ofQ and all points within a dis-
tanceǫw from Q in theL∞-metric;

kǫ: the number of input boxes intersecting the extended query rangeQǫ; bykǫ(T )
we will denote the number of input boxes in a subtreeT that intersectQǫ.

We also use a parameter that describes certain properties ofthe distribution of the
input boxes over the space.

λ > 1: theslicing numberof S, defined as follows. Let the slicing numberλC

of S with respect to a cubeC be the maximum number of input boxes
that intersect four parallel edges ofC; then the overall slicing numberλ
is the maximum value ofλC over all possible cubesC. Note that a box
also intersects an edge if it fully contains that edge. Hence, λ is also an
upper bound on thestabbing numberσ of S, which is defined as the largest
number of input boxes with a non-empty common intersection.

At the end of this section, we will show that if the input consists of a set of
pipes with small stabbing number, together with a set of arbitrary boxes with low
density, the complete input set will have low slicing number.

We will do the analysis bottom-up, first analysing the query time in 1-dimen-
sional subtrees, then in 2-dimensional subtrees, then in 3-dimensional subtrees.
We will denote the subtree we are analyzing byT , and its defining region by
R(T ). The subtree rooted at a nodeν is denoted byTν . Sometimes we will speak
of the defining regionR(ν) of a nodeν, which is simply the defining regionR(Tν)
of its subtree.

Before we proceed we state a lemma that we will need at variousoccasions.

Lemma 5.2.1 Let T be a d-dimensional LSF-interval-tree and letC be a k-
dimensional cube, with1 6 k 6 d 6 3. Then there are onlyO(logk−1 n) d-nodes
in T whose defining regions are disjoint and intersect opposite facets ofC.

Proof: The d-nodes in ad-dimensional LSF-interval tree basically form ad-
dimensional longest-side-first kd-tree. Hence, the lemma is in fact an easy gen-
eralization of Lemma 3.2 from Duncanet al. [Dic00] (the hypercube stabbing
lemma). For completeness we give a proof, which closely follows the proof of
Duncanet al.

Let h be the height ofT . SupposeX is a set of defining regions ofd-nodes in
T that are disjoint and intersect at least one pair of oppositefacets ofC. We will
prove that for any such set|X | 6 2k(h + 1)k−1. Since the height of the tree is
O(log n), this means thatX must have sizeO(logk−1 n).
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For all d-nodesν in T , let l(ν) be the height of the subtreeTν rooted atν.
Let p(ν) be the number of pairs of opposite facets ofC intersected byR(ν). Let
s(ν) be the number of ‘single’ facets ofC intersected, that is, facets that intersect
R(ν), while their opposites do not intersectR(ν). For each nodeν in T , we
defineX(ν) as the set of regionsR(µ) in Tν that are inX . For all p > 0 and
s, l > −1, let x(p, s, l) be the maximum size ofX(ν) over all nodesν in T with
p(ν) = p, s(ν) = s andl(ν) 6 l (if there are no such nodes,x(p, s, l) = 0). First
note thatx(p, s, l) = 0 for p = 0, regardless ofs andl: if p(ν) = 0, thenR(ν)
does not intersect opposite facets ofC, and neither does any of its descendants,
henceX(ν) must be empty. Furthermore, ifs = −1 and/orl = −1, we have
x(p, s, l) = 0 as well (nodesν with s(ν) < 0 or l(ν) < 0 do not exist). We claim
that forp > 1 ands, l > 0 we have:

x(p, s, l) 6 max






1
x(p, s, l − 1)
2 · x(p− 1, s + 1, l − 1)
x(p, s, l − 1) + x(p, s− 1, l− 1)

To see this, examine a regionR(ν) with p(ν) = p > 1, s(ν) = s andl(ν) = l. Let
c be the length of the sides ofC and assume without loss of generality thatR(ν)
is cut into twod-dimensional subregionsR(ν1) andR(ν2) by a plane orthogonal
to thex-axis. Recall that, as a result of the longest-side-first cutting rule used
in the construction of the tree, thex-axis must be the one that is parallel to the
longest edges ofR(ν). SinceR(ν) intersects at least one pair of opposite facets
of C, its longest side must have length at leastc. Therefore, the size ofR(ν) in
the x-dimension must be at leastc, otherwise this cutting plane could not have
been chosen. Therefore, if the plane cutsC, R(ν) does not fit between the facets
of C that are parallel to the cut, soR(ν) must intersect at least one of these facets.
We can now bound|X(ν)| as follows.

• If ν has childrenν1 andν2, butR(ν) is in X itself, then none of its decen-
dants can be, since the regions inX are all disjoint. Therefore,|X(ν1)| =
|X(ν2)| = 0 and|X(ν)| = 1. Also, if R(ν) is not cut,|X(ν)| 6 1.

• If R(ν) is cut by a plane that does not intersectC, we getp(ν1) = p,
s(ν1) = s, p(ν2) = 0, ands(ν2) = 0 (or the other way around, exchanging
ν1 andν2), and therefore|X(ν)| = |X(ν1)| + |X(ν2)| 6 x(p, s, l − 1) +
x(0, 0, l− 1) = x(p, s, l − 1).

• If R(ν) is cut by a plane that intersectsC, and both facets ofC that are
parallel to the cutting plane are intersected byR(ν), then the cut separates
these facets and we getp(ν1) = p(ν2) = p− 1, s(ν1) = s(ν2) = s + 1 and
therefore,|X(ν)| 6 2 · x(p− 1, s + 1, l− 1).

• If R(ν) is cut by a plane that intersectsC, and only one of the facets of
C that are parallel to the cutting plane are intersected byR(ν), we get
p(ν1) = p(ν2) = p, s(ν1) = s, ands(ν2) = s − 1 (or the other way
around), and therefore,|X(ν)| 6 x(p, s, l − 1) + x(p, s− 1, l − 1).
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Figure 5.2: Two planes containing the line segmentR(T ) intersectQǫ.

Sincex(p, s, l) = max(|X(ν)|), the claim follows.
By induction it is now easy to show thatx(p, s, l) 6 2p(l + 1)p+s−1. Notice

that the rootν of T hasp(ν) + s(ν) 6 k, and therefore,|X | = |X(ν)| 6

x(p(ν), s(ν), h) 6 2k(h + 1)k−1. �

1-dimensional subtrees

In a 1-dimensional subtreeT , the defining regionR(T ) is a line segment that
intersects all input boxes stored inT . The worst-case query time inT depends
on the relation ofR(T ) to the query range. In particular, we distinguish three
cases, depending on how many of the two axis-parallel planescontainingR(T )
intersectQǫ.

Case 1: Two planes containingR(T ) intersect Qǫ. This case is illustrated in
Fig. 5.2. Parts (a) and (b) of the figure correspond to part (i)in the lemma below,
part (c) to part (ii).

Lemma 5.2.2 LetT be a 1-LSF-interval tree storingn boxes. Suppose we query
T with a boxQ such that both axis-parallel planes containingR(T ) intersectQǫ.

(i) If the axis-parallel projection ofQǫ onto the line containingR(T ) contains
at least one endpoint ofR(T ), we visitO(kǫ(T )) nodes.

(ii) Otherwise, we visitO(log n + kǫ(T )) nodes.

Proof: Since both axis-parallel planes containingR(T ) intersectQǫ, we know
thatR(T ) itself must intersectQǫ. Hence, an (input or bounding) boxb stored
in T intersectsQǫ if and only if b ∩ R(T ) intersectsQǫ ∩ R(T ). We can there-
fore analyse the query time in this case as if the situation were completely 1-
dimensional, that is, as ifT were a 1-tree storing segments on a line, which is
queried with a segment on the same line. An analysis of this case, proving the
lemma, can be found in the paper by Agarwalet al. [Aga01BGHH]. �
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Figure 5.3: One plane containing the line segmentR(T ) intersectsQǫ.

Case 2: One plane containingR(T ) intersectsQǫ. This case is illustrated in
Fig. 5.3. Part (a) of the figure corresponds to part (i) in the lemma below, parts
(b) and (c) to part (ii).

Lemma 5.2.3 LetT be a 1-LSF-interval tree storingn boxes with stabbing num-
ber σ. Suppose we queryT with a boxQ such that one axis-parallel plane con-
tainingR(T ) intersectsQǫ.

(i) If the axis-parallel projection ofQǫ onto the line containingR(T ) contains
R(T ) completely, then we visitO(kǫ(T )) nodes.

(ii) Otherwise, we visitO(log n + σ + kǫ(T )) nodes.

Proof: Let g be the axis-parallel plane containingR(T ) and intersectingQǫ.
For any (input or bounding) boxb stored inT , we know thatb intersectsQǫ if
and only if b ∩ g intersectsQǫ ∩ g. We can therefore analyse the query time in
this case as if the situation were completely 2-dimensional, that is, as ifT were
a 1-tree storing rectangles in the plane, which is queried with a rectangle in the
plane. An analysis of this case, proving the lemma, can be found in the paper by
Agarwal et al. [Aga01BGHH]. �

Case 3: No plane containingR(T ) intersectsQǫ. In the analysis of this case
we will take into account how much of the query range is ‘within reach’ of the
tree. More precisely, consider the intersection ofR(T ) with the projection ofQǫ

on the line containingR(T ). We denote byCQ(T ) the length of this intersection
divided by the length of the longest edge ofQ—see Fig. 5.4. In the next subsec-
tion we will sum the bound for several different disjoint subtreesT , and then we
will use the fact that theirCQ(T )-values sum up to at most1 + 2ǫ.

Figure 5.4 illustrates the cases that arise in the next lemma, with part (a) of the
figure corresponding to part (i) of the lemma, and parts (b) and (c) corresponding
to part (ii).

Lemma 5.2.4 LetT be a 1-LSF-interval tree storingn boxes with slicing number
λ. Suppose we queryT with a boxQ such that no axis-parallel plane containing
R(T ) intersectsQǫ.
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Figure 5.4: No plane containing the line segmentR(T ) intersectsQǫ.

Figure 5.5: a. A node’s bounding boxb(ν) such thatb(ν)∩R(T ) 6⊂ R. R(ν) is a
line segment (black) that containsp. — b. A node’s bounding boxb(ν) such that
b(ν)∩R(T ) 6⊂ R. R(ν) is a point (black dot). — c. A node’s bounding boxb(ν)
such thatb(ν) ∩R(T ) ⊂ R.

(i) If the axis-parallel projection ofQǫ onto the line containingR(T ) contains
R(T ) completely, then we visitCQ(T ) ·O(λ

ǫ ) + O(λ) nodes.

(ii) Otherwise, we visitO(log n + λ
ǫ ) nodes.

Proof: Since the maximum degree of each node is nine, the number of visited
leaf nodes is at most nine times the number of visited internal nodes. Hence, we
can restrict our attention to bounding the latter number. Let Qǫ denote the axis-
parallel projection ofQǫ onto the line containingR(T ), and letR := Qǫ∩R(T ),
i.e., in Fig. 5.4,R is the part ofR(T ) indicated by the stick measuringCQ(T )w.
Let ν be a visited internal node ofT , and letb(ν) be its bounding box. We
distinguish two cases:b(ν) ∩ R(T ) ⊂ R (Fig. 5.5c), andb(ν) ∩ R(T ) 6⊂ R
(Fig. 5.5a and 5.5b). We claim that the number of nodes to which the first case
applies isCQ(T ) · O(λ

ǫ ) + O(λ), and that the number of nodes to which the
second case applies isO(σ + logn), whereσ is the stabbing number of the boxes
stored in the tree. Note that in part (i) of the lemma the second case cannot arise.
Together with the fact thatλ > σ andCQ(T ) 6 1 + 2ǫ, this means that proving
the claim above will establish the lemma.
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Figure 5.6: a. A shield on a defining region parallel to the primary axis. — b.
Arrangement of cubes intersected by shields on a defining region parallel to a
secondary axis.

We first bound the number of nodes for whichb(ν)∩R(T ) 6⊂ R, since this is
the easier case. Letν be such a node. Sinceb(ν) ∩R(T ) cannot be disjoint from
R—otherwiseb(ν) would not intersectQǫ (not to mentionQ) andν would not be
visited—it follows thatb(ν) must contain an endpointp of R. Now there are two
possibilities.

One is thatR(ν), the defining region ofν, is a line segment containingp (see
Fig. 5.5a). Since the defining regions of 1-nodes at a fixed level of the tree are
disjoint and the depth of the tree isO(log n), there are onlyO(log n) such nodes.

The other possibility is thatR(ν) is a point—see Fig. 5.5b—then all boxes
stored inT (ν) must contain the pointR(ν). But then the priority leaf immediately
belowν storing the box extending farthest into the direction ofp must containp.
We charge the visit ofν to this leaf. Since a leaf gets charged only from its parent,
and there are at mostσ input boxes containing any given point, there are at most
2σ such nodes.

Thus we find a bound ofO(log n + σ) = O(log n + λ) for the case ofb(ν) ∩
R(T ) 6⊂ R.

Now consider the nodesν such thatb(ν) ∩ R(T ) ⊂ R. We shall charge the
visit of ν to a certain priority leaf directly below it, called ashield. Each shield
will be charged at most once, namely from its parent. Bounding the maximum
number of shields will then prove this part of the claim.

We start by defining the shields. Recall that the primary axisof Sx—the axis
parallel to the longest edges of the boxes inSx—is thex-axis. Since the two
remaining (secondary) axes play equivalent roles, we can assume that they-axis
is not parallel toR(T ). Let us also assume w.l.o.g. that they-coordinate ofR(T )
is smaller than the smallesty-coordinate ofQ (i.e. R(T ) lies diagonally underQ,
like in Fig. 5.6). Ashield is now defined as a priority leaf whose corresponding
input boxb extends into the positivey-direction fromR(T ) over a distance of at
leastǫw. That is, if ymax(b) is the maximum y-coordinate ofb andy(R(T )) is
they-coordinate ofR(T ), thenb is a shield ifymax(b)− y(R(T )) > ǫw.

We now argue that each visited internal nodeν for which it holds thatb(ν) ∩
R(T ) ⊂ R, has at least one shield as a child. Indeed, since none of the two
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axis-parallel planes containingR(T ) intersectsQǫ, they-distance ofR(T ) and
Q must be at leastǫw. This means that the bounding box ofν must extend over
a distance at leastǫw into they-direction fromR(T ), otherwiseν would not be
visited. Hence, the input box extending farthest into they-direction, extends that
far; the priority leaf directly belowν storing this box is a shield.

It remains to bound the number of shields. We consider two subcases.
The first subcase is thatR(T ) is parallel to thex-axis, as in Fig. 5.6a. In this

case the length of any box inSx alongR(T ) is at least its length in any other
direction. In particular, a shield will cover a portion ofR of length at leastǫw.
Since no point is contained in more thanσ input boxes, there can be at most
σ · length(R)/(ǫw) shields in this case. Because length(R) = CQ(T ) · w by
definition, the number of shields is bounded byσ

ǫ · CQ(T ).
The second subcase is thatR(T ) is parallel to thez-axis—see Fig. 5.6b. In

this case, a shield must extend over a distance of at leastǫw upwards fromR(T )
and over a distance of at leastǫw/2 into either the positive or negativex-direction
from R(T ). Now imagine a line-up of⌈ 2ǫ CQ(T )⌉ cubes of sizeǫ2w whose lower
right edges together coverQ’s projection onR(T ). Add a copy of this line-up
shifted right over a distance ofǫw/2, so that in the second line-up, the lowerleft
edges together coverQ’s projection—see Fig. 5.6b. Since a shield extends away
from R(T ) in both orthogonal directions over a distance greater than the size of
the cubes in the line-up, it must intersect the four edges parallel to R(T ) of at
least one of these cubes. Since the slicing number of the input boxes is at mostλ,
there can be at most2λ⌈ 2ǫ CQ(T )⌉ 6 2λ + 4CQ(T )λ

ǫ shields in this case.
Using λ > σ, we conclude that the bounds for both subcases are within

O(λ) + CQ(T ) ·O(λ
ǫ ), which finishes the proof of our claim. �

2-dimensional subtrees

LetT be a 2-dimensional subtree. As before, it will be useful to take into account
how much of the query range’s boundary is ‘within reach’ of the tree. More
precisely, consider the edges ofQǫ’s projection on the plane containingR(T ).
Denote byCQ(T ) the sum of the lengths of the intersections of these edges with
R(T ), divided byw, the length of the longest edge of the query range.

We distinguish two cases, depending on whether or not the plane containing
the 2-dimensional defining regionR(T ) intersectsQǫ.

Case 1: The plane containingR(T ) intersectsQǫ. This case is illustrated in
Fig. 5.7. Parts (a) and (b) of the figure correspond to case (i)in the lemma below,
part (c) to case (ii), and part (d) to case (iii).

Lemma 5.2.5 LetT be a 2-LSF-interval tree storingn boxes with stabbing num-
ber σ. Suppose we queryT with a boxQ such that the plane containingR(T )
intersects the extended query rangeQǫ. LetQǫ denote the intersection ofQǫ with
the plane containingR(T ).
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Figure 5.7: The plane containing the rectangleR(T ) intersectsQǫ.

(i) If at most one edge ofQǫ intersectsR(T ), then we visitO(kǫ(T )) nodes.

(ii) If two opposite edges, and no other edges, ofQǫ intersectR(T ), then we
visit O(log2 n + kǫ(T )) + CQ(T ) ·O(1

ǫ log2 n) nodes.

(iii) Otherwise we visitO(1
ǫ log2 n + σ log n + kǫ(T )) nodes.

Proof: First we observe that the longest edge ofQǫ has length(1 + 2ǫ)w and
that its shortest edge has length at least2ǫw. Hence, the aspect ratio ofQǫ and
the aspect ratio ofQǫ are at most1 + 1/(2ǫ).

SinceR(T ) intersectsQǫ, we know for any (input or bounding) boxb stored
in T that b intersectsQǫ if and only if b ∩ R(T ) intersectsQǫ ∩ R(T ). We
can therefore analyse the query time in this case as if the situation were com-
pletely 2-dimensional, that is, as ifT were a 2-tree storing rectangles in the
plane, which is queried withQǫ. SinceQǫ has aspect ratio at most1 + 1/(2ǫ),
parts (i) and (iii) of the lemma now immediately follow from the results by Agar-
wal et al. [Aga01BGHH].

For part (ii), we need a bit more refined analysis. Consider the collectionN
of all visited 2-nodesν in T whose defining regionR(ν) intersects two opposite
edges ofQǫ, and no other edges. This collection forms a subgraphG(N) of T ,
which is a tree rooted at the root ofT . We shall first bound the number of nodes
in N , and then the number of visited descendants.

To bound the number of nodes inN , we coverQǫ with at most⌈α⌉ squares
with side length(1+2ǫ)w/α, whereα 6 1+1/(2ǫ) is the aspect ratio ofQǫ (see
Fig 5.8a). From a bound on the number of nodes intersecting these squares, we
can derive a bound on the number of nodes inN as follows. At mostαCQ(T )+1
of the squares intersectR(T ). Now consider a nodeν ∈ N . SinceR(ν) intersects
two opposite sides ofQǫ, it intersects two opposite sides of at least one of the
αCQ(T )+1 squares used to coverQǫ∩R(T ). Observe that the leaves ofG(N)—
that is, the nodes that have no children inN ; they need not be leaves ofT—have
disjoint defining regions. Lemma 5.2.1 implies that the number of such leaves is
O(log n) + CQ(T ) · O(α log n). If we include their ancestors in the count, we
obtain a bound ofO(log2 n)+CQ(T ) ·O(α log2 n) on the number of nodes inN .

It remains to bound the number of descendants of the nodes inN . These are
organized into subtrees whose roots are children of nodes inN and are not inN
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Figure 5.8: (For ease of visualization, we changed the orientation of R(T ) as
compared to Fig. 5.7.) a. CoveringQǫ with ⌈α⌉ squares. — b.µ is a 1-node
whose defining region cuts a 2-node intersecting opposite edges ofQǫ, that is:
opposite facets ofQǫ.

themselves. Consider such a root nodeµ. Let pa(µ) ∈ N be the parent ofµ.
There are three cases.

• The first case is thatµ is a 2-node. In this caseR(µ) intersects at most one
edge ofQǫ, as in part (i) of the lemma; if it would intersect two opposite
edges it would be inN , and the case where a vertex ofQǫ lies in R(µ)
cannot occur when we are handling part (ii) of the lemma. The total number
of visited nodes ofTµ is O(kǫ(Tµ)) by part (i) of the lemma. Summing over
all nodesµ thus gives us a total bound ofO(kǫ(T )) for these subtrees.

• The second case is that the root is a 1-nodeµ andR(µ) cutsR(pa(µ)) such
thatpa(µ) has two children inN—see Fig. 5.8b case 2.

The number of nodes of degree two inG(N) is no more than the number
of leaves inG(N), so there can be at mostO(log n) + CQ(T ) ·O(α log n)
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Figure 5.9: The plane containing the rectangleR(T ) is disjoint fromQǫ.

such nodesµ. Lemma 5.2.2(ii) states that the query time in each such tree
is O(log n + kǫ(Tµ)), so the total query time in these trees isO(log2 n +
kǫ(T )) + CQ(T ) ·O(α log2 n).

• The third case is that the root is a 1-nodeµ, whereR(µ) cutsR(pa(µ)) such
thatpa(µ) has at most one child inN—see Fig. 5.8b case 3a and case 3b.

Now R(µ) must lie completely inside the projection ofQǫ onto the line
containingR(µ). Lemma 5.2.2(i) (for case 3a) and Lemma 5.2.3(i) (for
case 3b) state that the query time in each tree rooted at such anode is
O(kǫ(Tµ)). Since the number of such nodes is asymptotically bounded by
the size ofN , the total query time in these 1-trees isO(log2 n + kǫ(T )) +
CQ(T ) ·O(α log2 n).

In total, we find a bound ofO(log2 n + kǫ(T )) + CQ(T ) · O(α log2 n). With
α 6 1 + 1/(2ǫ), this proves part (ii) of the lemma. �

Case 2: The plane containingR(T ) does not intersectQǫ. This case is illus-
trated in Fig. 5.9. Part (a) of the figure corresponds to case (i) in the lemma below,
parts (b) and (c) to case (ii), and part (d) to case (iii).

Lemma 5.2.6 LetT be a 2-LSF-interval tree storingn boxes with slicing number
λ. Suppose we queryT with a boxQ such that the plane containingR(T ) does
not intersectQǫ. LetQǫ denote the axis-parallel projection ofQǫ onto the plane
containingR(T ).

(i) If Qǫ containsR(T ) completely, then we visitO(kǫ(T )) nodes.

(ii) If R(T ) intersects at least one edge but no vertex ofQǫ, then we visit
O(λ log2 n + kǫ(T )) + CQ(T ) ·O(λ

ǫ log2 n) nodes.

(iii) Otherwise we visitO(λ
ǫ log2 n + kǫ(T )) nodes.

Proof: (i) Without loss of generality, supposeR(T ) is horizontal and lies below
Q. Then for every nodeν visited inT , the subtree rooted atν must contain an
input box which raises high enough to intersectQ. In particular, there is a priority
leaf immediately belowν that stores an input box intersectingQ. We can charge
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Figure 5.10: CoveringQǫ \Q with squares.

the visit toν to that priority leaf. Since there are at mostkǫ(T ) such priority
leaves and each of them is charged at most once, the bound follows.

(ii) We can distinguish two types of visited nodes.
The first type of nodes are 2-nodes whose defining regions lie completely

insideQǫ and descendants of such nodes. Here a similar argument as in the proof
of part (i) applies: any such node has a priority leaf below itthat intersectsQǫ, so
there are onlyO(kǫ(T )) such nodes.

The second type of nodes are the remaining ones. LetN be the collection
of all remaining visited 2-nodes. For any nodeν ∈ N , we know thatR(ν) in-
tersects the complement ofQǫ as well asQ, the projection ofQ onto the plane
containingR(T ).

To bound the number of nodes inN we coverQǫ\Q using at most4(⌈ 1ǫ ⌉+1)

squares with side lengthǫw, which are contained inQǫ \ Q—see Fig. 5.10. For
any nodeν ∈ N we have thatR(ν) intersects two opposite edges of at least one
of these squares. SinceR(ν) ⊂ R(T ) andR(T ) does not contain a vertex of
Qǫ, we can restrict our attention to squares that are used to cover two opposite
‘sides’ of Qǫ \ Q and that intersectR(T ). Hence, the number of squares we
have to consider is at most2⌈CQ(T )/ǫ⌉. As before, we observe that the nodes
of N form a subgraphG(N) of T , which is a tree whose leaves have disjoint
defining regions. Hence, by Lemma 5.2.1 there areO(log n)+CQ(T )·O(1

ǫ log n)
leaves inG(N). If we include their ancestors in the count, we find a bound of
O(log2 n) + CQ(T ) ·O(1

ǫ log2 n) on the number of nodes inN .
It remains to bound the number of descendants of nodes inN . The descen-

dants are organized into subtrees whose roots are children of nodes inN and are
not inN themselves. Consider such a root nodeν. Let pa(µ) ∈ N be the parent
of µ. There are three cases.

• The first case is thatµ is a 2-node. But thenµ must be of the first type—
its defining region must lie completely insideQǫ—so we already counted
these nodes and their descendants earlier.



110 CHAPTER 5. BOX-TREES FOR INDUSTRIAL INSTALLATIONS

• The second case is thatµ is a 1-node andR(µ) cutsR(pa(µ)) in such a
way thatpa(µ) has two children inN .

The analysis for this case is done in the same way as in the proof of Lemma
5.2.5(ii), now referring to Lemma 5.2.3 instead of Lemma 5.2.2.

Since the number of nodes of degree two inG(N) is at most its number of
leaves, there can be at mostO(log n) + CQ(T ) ·O(1

ǫ log n) such nodesµ.
Lemma 5.2.3(ii) states that the query time in each such tree is O(log n +
σ + kǫ(Tµ)), so the total query time in these trees is

O(log2 n + σ log n + kǫ(T )) + CQ(T ) ·O
(

1

ǫ
log2 n +

σ

ǫ
log n

)
.

(Note that thekǫ terms always add up toO(kǫ(T )).)

• The remaining case is thatµ is a 1-node andpa(µ) is cut byR(µ) such that
it has at most one child inN .

Now R(µ) lies completely inside the projection ofQǫ onto the line con-
tainingR(µ). Lemma 5.2.4(i) and Lemma 5.2.3(i) state that the query time
in such trees isO(λ) + CQ(Tµ) · O(λ

ǫ ) andO(kǫ(Tµ)), respectively. The
number of nodes to which this applies is clearly bounded by the number of
nodes inN , which isO(log2 n) + CQ(T ) · O(1

ǫ log2 n). Hence, the total
query time in these 1-trees is

O(λ log2 n + kǫ(T )) + CQ(T ) ·O
(

λ

ǫ
log2 n

)
+
∑

CQ(Tµ) ·O
(

λ

ǫ

)
,

where the sum is over all 1-nodesµ that are a child of a node inN and
are such thatR(µ) lies completely inside the projection ofQǫ onto the line
containingR(µ). Note that each point of an edge ofQǫ lies in O(log n)
defining regions of 2-nodes (one node on each level), so

∑
ν∈N CQ(Tν) =

O(log n)CQ(T ). The same bound holds if we sum over the 1-nodesµ that
are children of nodes inN . Hence, we find a total query time for this case
of O(λ log2 n + kǫ(T )) + CQ(T ) ·O(λ

ǫ log2 n).

Putting the three cases together, and usingσ 6 λ, we find an overall bound of
O(λ log2 n + kǫ(T )) + CQ(T ) ·O(λ

ǫ log2 n).
(iii) We can distinguish three types of visited nodes: the two types that were

also considered in the proof of part (ii), and a third type, namely 2-nodes contain-
ing a corner ofQ and their descendant 1-nodes and 0-nodes.

The number of nodes of the first two types can be bounded as in the proof of
part (ii). Using thatCQ(T ) 6 4(1 + 2ǫ), we get a bound ofO(λ

ǫ log2 n + kǫ(T ))
for these types. As for the third type, we note that there areO(log n) 2-nodes
containing a corner ofQ. If µ is a 1-node that is a child of such a node, then the
query time inTµ is O(log n + σ + kǫ(T )) or O(log n + λ

ǫ ) by Lemma 5.2.3 or
Lemma 5.2.4, respectively, so we haveO(log2 n + λ

ǫ log n + kǫ(T )) nodes of the
third type. �
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Figure 5.11: CoveringQǫ with O((1
ǫ )2) cubes.

3-dimensional trees

Finally we can prove our main result.

Theorem 5.2.7LetT be a 3-LSF-interval tree storingn boxes with slicing num-
berλ. Then a query inT with a boxQ will visit O(min0<ǫ61{ 1

ǫ (1
ǫ + λ) log4 n +

kǫ}) nodes, wherekǫ is the number of boxes intersecting the extended rangeQǫ.

Proof: Fix an arbitrary0 < ǫ 6 1. As observed before, it suffices to bound the
number of visited internal nodes. These can be partitioned into four categories,
namely 3-nodesν such thatR(ν) intersects:

(i) at most one facet ofQǫ,

(ii) more than one facet ofQǫ, but none of its edges,

(iii) at least one edge ofQǫ, but none of its vertices,

(iv) at least one vertex ofQǫ,

where each category also includes the descendant 2-nodes, 1-nodes and 0-nodes
of the 3-nodes. We will now treat these cases one by one.

(i) 3-Nodesν such thatR(ν) intersects at most one facet ofQǫ, plus their
descendant 2-nodes, 1-nodes, and 0-nodes.Any such node must have a priority
leaf directly below it that stores a box intersectingQǫ. Hence, the total number of
nodes in this category isO(kǫ).

(ii) 3-Nodesν such thatR(ν) intersects more than one facet ofQǫ but none
of its edges, plus their descendant 2-nodes, 1-nodes, and 0-nodes.

Let N be the collection of 3-nodes in this category, and letG(N) be the sub-
graph ofT formed by these nodes.G(N) is a forest of trees.

To bound the number of nodes inN , we coverQǫ by O((1
ǫ )2) cubes that are

contained inQǫ and are as big as the smallest edges ofQǫ — see Fig. 5.11. Any
node inN must intersect opposite facets of at least one of these cubes. Because
the leaves ofG(N) have disjoint defining regions, their number is bounded by
O((1

ǫ )2 log2 n) by Lemma 5.2.1. The total number of nodes inN is therefore
bounded byO((1

ǫ )2 log3 n).
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Figure 5.12: 3d-nodes that intersect more than one facet ofQǫ, but none of its
edges.

It remains to bound the number of descendant 2-nodes, 1-nodes, and 0-nodes
of the nodes inN . These are organized in subtrees whose roots are children of
nodes inN . Let µ be such a root and letpa(µ) ∈ N be its parent. There are two
cases, as illustrated in Fig. 5.12.

• R(µ) cutsR(pa(µ)) in such a way thatpa(µ) has two children inN—see
case (a) in Fig. 5.12.

Since the number of nodes of degree two inG(N) is bounded by the number
of leaves inN , there are onlyO(( 1

ǫ )2 log2 n) such roots. Lemma 5.2.5(ii)
states that the query time in each subtree rooted at such a node isO(log2 n+
kǫ(Tµ)) + CQ(Tµ) · O(1

ǫ log2 n), so the total query time in these subtrees
is

O

(
1

ǫ2
log4 n + kǫ

)
+
∑

µ

CQ(Tµ) ·O
(

1

ǫ
log2 n

)
,

where the sum is over all 2-nodesµ in the current category such thatR(Tµ)
cuts opposite facets ofQǫ.

We proceed to bound
∑

µ CQ(Tµ). To simplify the discussion, let’s assume
that the defining regionsR(µ) andR(pa(µ)) cut the top and bottom facet
of Qǫ, as in Fig. 5.12, case a. Then for each nodeµ we have thatCQ(Tµ)w
is the length ofR(µ) as seen from above. Note thatR(pa(µ)) has height
at least2ǫw, because the height ofQǫ is at least that much. Therefore,
the length of the horizontal edges ofR(pa(µ)) orthogonal toR(µ) is at
least2ǫw as well, otherwiseR(pa(µ)) would have been cut by a horizontal
plane. Cover the top facet ofQǫ by O((1

ǫ )2) squares of side lengthǫw.
SinceR(pa(µ)) has horizontal edges of length at least2ǫw, it must intersect
opposite sides of at least one such squares. If this happens form 2-nodesµ,
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Figure 5.13: Covering an edge ofQ with O( 1
ǫ ) cubes.

then there are at leastm disjoint defining regions of 3-nodes that intersect
opposite sides ofs. Lemma 5.2.1 tells us thats is cut byO(log n) disjoint
defining regions. Hence, the total length withins of all regionsR(µ) as
seen from above isO(ǫw log n). Summed over all squares we find that the
total length of all regionsR(µ) as seen from above isO(w

ǫ log n). This
implies that

∑
µ CQ(Tµ) = O(1

ǫ log n). It follows that the total number of

nodes for this case isO((1
ǫ )2 log4 n + kǫ(T )).

• R(T ) cuts R(pa(µ)) such thatpa(µ) has at most one child inN—see
case (b) in Fig. 5.12.

In this caseR(µ) lies completely inside the projection ofQǫ onto the plane
containingR(µ). Lemma’s 5.2.6(i) and 5.2.5(i) state that the number of
visited nodes in each such tree isO(kǫ(Tµ)), which adds up toO(kǫ(T )).

In total, there areO((1
ǫ )2 log4 n + kǫ) nodes in this category.

(iii) 3-Nodesν such thatR(ν) intersects at least one edge ofQǫ but does not
contain one of its vertices, plus their descendant 2-nodes,1-nodes, and 0-nodes.

In this caseR(ν) must intersect an edgeeǫ of Qǫ and the corresponding edge
e of Q (the edge with both endpoints lying at anL∞-distance ofǫw from eǫ),
otherwiseν would not be visited. For each paire, eǫ of corresponding edges, we
take a set ofO( 1

ǫ ) cubes of sizeǫw, such that each cube has an edge contained
in e and the opposite edge contained ineǫ, and such that together they covere
completely — see Fig. 5.13. LetN be the collection of 3-nodes in the current
category, and letG(N) be the subgraph ofT formed by these nodes.G(N) is a
forest of trees.

Any 3-node inN must intersect opposite edges of a facet of at least one of
these cubes. Summing over the facets of all cubes and using Lemma 5.2.1 again,
we find that there are onlyO( 1

ǫ log n) leaves inG(N) and, hence,O( 1
ǫ log2 n)

3-nodes inN in total.
The descendant 2-nodes, 1-nodes, and 0-nodes are organizedin subtrees that

are rooted at 2-nodesµ with a nodepa(µ) in N as parent. We distinguish two
cases, as illustrated in Fig. 5.14.
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Figure 5.14: 3d-nodes that intersect an edge ofQǫ, but none of its vertices.

• For the subtrees rooted at nodeµ such thatpa(µ) has two children inN
(case (a) in Fig. 5.14), we can apply Lemma 5.2.5(iii) and finda bound
of O(1

ǫ log2 n + σ log n + kǫ(Tµ)) for each subtree. Since the number of
such nodes is bounded by the number of leaves inG(N), we get a total of
O((1

ǫ )2 log3 n + σ
ǫ log2 n + kǫ) nodes.

• For the other subtrees, of which there areO( 1
ǫ log2 n), we apply Lem-

mas 5.2.5(i) and (ii) (case (b1) in Fig. 5.14) and Lemma 5.2.6(ii) (case (b2))
to find a total bound for all such subtrees of

O

(
λ

ǫ
log4 n + kǫ

)
+
∑

CQ(Tµ) ·O
(

λ

ǫ
log2 n

)
.

Because any point in 3-space lies in at mostO(log n) defining regions of
3-nodes, we have

∑
CQ(Tµ) = O((1 + 2ǫ) logn) and we get a bound of

O(λ
ǫ log4 n + kǫ).

In total, the number of nodes in this category isO( 1
ǫ (1

ǫ + λ) log4 n + kǫ).
(iv) 3-Nodesν such thatR(ν) contains at least one vertex ofQǫ, plus their

descendant 2-nodes, 1-nodes and 0-nodes.
At mostO(log n) 3-nodes can contain a vertex ofQǫ. By Lemma 5.2.6(iii)

each of them may have a 2-subtreeT with query timeO(λ
ǫ log2 n + kǫ(T )),

leading to a total ofO(λ
ǫ log3 n + kǫ) visited nodes in this category.

Since the number of visited nodes of each category is within the claimed
bound, this proves the theorem. �

Remark 5.2.8 If the query range has bounded aspect ratio, then it can be shown
that the number of visited nodes reduces toO(min0<ǫ61{λ

ǫ log4 n + kǫ}).
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5.2.3 Pipes and low-density scenes

Our research is motivated by the MOLOG project [Molog], where we need to
perform collision checking in CAD models of industrial installations such as in
Fig. 5.1. LetS be the set of bounding boxes in the given scene. For the analysis
we assume thatS can be partitioned into two subsetsSP andSD, such thatSP

is a set ofpipesandSD forms alow-density scene[Brg97KSV, Sta98]. These
concepts are defined as follows.

Definition 5.2.9 Let b be a 3-dimensional axis-parallel box, and consider its
length in x-, y-, and z-direction. The boxb is called aβ-pipe if the shortest
of these three lengths is at mostβ times shorter than the shortest-but-one.

Next we define the density of a scene, specialized to sets of boxes. (The original
definition by van der Stappen and Overmars [Sta98] uses ballsinstead of cubes,
but this is equivalent up to a constant.)

Definition 5.2.10 A setB of boxes in 3-space hasdensityδ if the following holds:
any cubeC is intersected by at mostδ boxes fromB whose longest edge is longer
than the edge length ofC.

Recall that the stabbing number of a set of boxes is defined as the maximum
number of boxes with a non-empty intersection. Next we show that low-density
sets and sets of pipes with low stabbing number also have low slicing number,
which means that we can use the analysis of the previous subsection.

Lemma 5.2.11Let S = SP ∪ SD be a set of boxes in 3-space such thatSP is
a set ofβ-pipes with stabbing numberσ andSD has densityδ. Then the slicing
number ofS is at most(β + 2)σ + δ.

Proof: Let C be a cube of edge lengthc. Since a box that slicesC has edge
length at leastc, the setSD has slicing number at mostδ.

It remains to bound the number of pipes slicingC. A pipe slicingC has to
occupy a volume of at leastc × c × c/β = c3/β in the cube, unless it contains
one of the six sides of the cube completely. In the latter case, the pipe has to
contain either the top-right-back corner or the bottom-left-front corner ofC, and
since each of these corners can be contained in at mostσ input boxes, there can
be at most2σ such pipes. To bound the number of pipes in the former case, we
observe that the total volume of the intersection of the pipes with C is at most
σc3. Therefore, the total number of boxes slicing the cube is at mostδ + 2σ +
σc3/(c3/β) = δ + (β + 2)σ. �

By putting together Lemma 5.2.11 and Theorem 5.2.7, we get the following corol-
lary.

Corollary 5.2.12 LetS = SP ∪SD be a set of boxes in 3-space such thatSP is a
set ofβ-pipes with stabbing numberσ andSD has densityδ. There is a box-tree
for S such that the number of nodes visited by a range query with a query boxQ
is O(min0<ǫ61{ 1

ǫ (1
ǫ + λ) log4 n + kǫ}), whereλ = δ + (β + 2)σ andkǫ is the

number of boxes intersecting the extended rangeQǫ.
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5.2.4 Analysis for other types of ranges

In the previous sections we assumed that the query rangeQ is an axis-parallel
box. In this section we will generalize our results to constant-complexity ranges
of arbitrary shape. A 3D query range is said to have constant complexity if its
boundary consists of a constant number of algebraic surfacepatches of constant
maximum degree, which are in turn bounded by a constant number of curves of
constant maximum degree. In the analysis we only need the restriction that∂Q,
the boundary ofQ, has a constant number of local extrema in any orthogonal
cross-section, which is a condition fulfilled by the constant-complexity require-
ment.

We first prove a general theorem, that states that an LSF-interval tree with
good query complexity for approximate range queries with boxes also has good
query complexity for approximate range queries with other shapes. To this end
we define a nodeν to bechargeablewith respect to a given range if all input boxes
stored inTν intersect that range, or ifν has a child with this property. Nodes for
which this is not the case areunchargeable.

Theorem 5.2.13LetT be ad-dimensional box-tree on a set ofn boxes, withd ∈
{2, 3}. Suppose that, for any0 < ǫ 6 1, a query with a boxB visitsO(f(n, ǫ))
nodes that are unchargeable with respect to the extended query boxBǫ. Then a
query with a constant-complexity rangeQ visitsO(min0<ǫ61{(1

ǫ )d−1f(n, 1) +
kǫ}) nodes ofT , wherekǫ is the number of objects intersecting theǫ-extended
query rangeQǫ.

Proof: We first prove the theorem ford = 2.
Fix any0 < ǫ 6 1. We claim that we can cover∂Q by O( 1

ǫ ) squares of edge
lengthǫw/3, wherew is the diameter ofQ (as was also shown for convex ranges
by Arya and Mount [Ary00]). To see this, consider a regular grid whose cells
have sizeǫw/3. Then∂Q will intersect onlyO( 1

ǫ ) grid cells, because for any
two adjacent cells intersected by a connected portion of∂Q the following holds:
either they contain a local extremum of∂Q, or the length of the portion of∂Q
within the cells is at leastǫw/3. Since the total length of∂Q is O(w), onlyO( 1

ǫ )
grid cells can contain a portion of∂Q of sizeO(ǫw).

Now consider a query with a rangeQ. The number of visited nodes that are
chargeable with respect toQǫ is clearlyO(kǫ). Any visited unchargeable node
must have a bounding box that intersects at least one of the squares in the covering
of ∂Q. To bound the number of such nodes, consider a squares in the covering.
Define its extended squaresǫ′ as the set of points withinL∞-distanceǫ′ǫw/3
from s. The boundary of the extended square has edge length(1 + 2ǫ′)ǫw/3 and
intersects∂Q, so even forǫ′ as large as 1, it is fully contained inQǫ. Hence,
any node that is unchargeable with respect toQǫ is unchargeable with respect to
sǫ′ for ǫ′ = 1. The number of nodesν such thatb(ν) intersectss and that are
unchargeable with respect tosǫ′ is O(f(n, ǫ′)). Summing over all squaress and
plugging inǫ′ = 1, we get a bound ofO( 1

ǫ f(n, 1)) on the number of unchargeable
nodes.
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Hence, the total number of visited nodes is bounded byO( 1
ǫ f(n, 1) + kǫ), as

claimed.
The proof ford = 3 is similar. We start by covering∂Q by cubes of edge

lengthǫw/3, wherew is the diameter ofQ. We claim that∂Q intersectsO(( 1
ǫ )2)

cells of a regular grid with cells of the required size. Indeed, any intersected cell
must have an intersected facet, so we can bound the number of intersected cells by
summing the number of intersected facets over allO( 1

ǫ ) grid planes intersecting
Q. Since∂Q consists of a constant number of algebraic surface patches of con-
stant maximum degree, which are in turn bounded by a constantnumber of curves
of constant maximum degree, the same must hold for the intersection of∂Q with
a grid plane. Therefore, at mostO( 1

ǫ ) facets can be intersected in each grid plane,
and it follows thatQ can be covered usingO(( 1

ǫ )2) cubes of the required size.
From here we can follow the proof for the cased = 2. �

The analysis of the previous section shows that in all boundsderived there, the
O(kǫ) term on the number of visited internal nodes is caused solelyby nodes with
a priority leaf as a child that stores a box intersecting the extended query range.
Such nodes are chargeable, so Theorem 5.2.13 and Corollary 5.2.12 together im-
ply the following result.

Corollary 5.2.14 LetS = SP ∪SD be a set of boxes in 3-space such thatSP is a
set ofβ-pipes with stabbing numberσ andSD has densityδ. There is a box-tree
for S such that the number of nodes visited by a range query with a constant-
complexity rangeQ isO(min0<ǫ61{(λ/ǫ2) log4 n+kǫ}), whereλ = δ+(β+2)σ
andkǫ is the number of boxes intersecting the extended rangeQǫ.

Remark 5.2.15 The dependency onǫ that we get is better by a factor ofO( 1
ǫ )

than what Dickersonet al.[Dic00] and Arya and Mount [Ary00] get for queries
with non-convex query ranges in point sets. Applying Theorem 5.2.13 to their
structure, however, improves the dependency onǫ by a factor ofO( 1

ǫ ), leading to
the same dependency as we get.

5.3 The BBD-interval tree

The bounding-volume hierarchy of the previous section is based on the longest-
side-first kd-tree. It turns out that we can improve the results if we base the
bounding-volume hierarchy on the so-called BBD-tree by Arya et al. [Ary00].
The resulting hierarchy is somewhat unorthodox, however, as it uses non-convex
bounding volumes.

Define adonutto be the set-theoretic difference of two boxes, one being con-
tained in the other. That is, a donut is defined asR+ \R−, whereR+ andR− are
boxes andR− ⊂ R+. The inner boxR− may be empty, in which case a donut
is simply a box. The inner box may also touch the boundary of the outer box, in
which case a degenerate type of donut results. It is not allowed to split the outer
box, that is,R+ \ R− should be connected. Abounding donutof a set of ob-
jects is a donutR+ \R− that contains all objects and whose outer boxR+ is the
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bounding box of the set. Adonut treefor a set of objects is a bounding-volume
hierarchy that uses bounding donuts.

Like a kd-tree, the BBD-tree by Aryaet al. is a tree representing a recursive
decomposition of space. Unlike in a kd-tree, however, the regions corresponding
to the nodes of a BBD-tree are not boxes — they are donuts. It ispossible to con-
struct a donut tree on a set of boxes using a BBD-tree in a similar way as one can
construct a box-tree from a kd-tree. The main advantage is that BBD-trees have a
stronger ‘packing property’ than kd-trees: whereas in a longest-side-first kd-tree
there can beO(logd−1 n) nodes whose regions are disjoint and intersect opposite
facets of a cube, there can be onlyO(1) such nodes in a BBD-tree [Ary00]. This
is the main reason that we can show the following result.

Theorem 5.3.1 Let S be a set of boxes in 3-space with slicing numberλ. There
is a donut-tree forS such that a query with a boxQ visitsO(min0<ǫ61{log3 n +
(λ/ǫ) log2 n + (λ/ǫ2) log n + kǫ}) nodes, wherekǫ is the number of boxes inter-
secting the extended rangeQǫ.

This theorem can also be combined with Theorem 5.2.13 to get the following
result:

Corollary 5.3.2 LetS be a set of boxes in 3-space with slicing numberλ. There
exists a donut-tree forS such that a query with a constant-complexity rangeQ
visitsO(min0<ǫ61{(1/ǫ2) log3 n + (λ/ǫ2) log2 n + kǫ}) nodes, wherekǫ is the
number of boxes intersecting the extended rangeQǫ.

As mentioned in the introduction, the details of the construction of the donut-
tree and the analysis of its performance are similar to thoseof the LSF-interval
tree, but still rather technical. Therefore we omit the details here. The interested
reader can find them in the technical report [Hav02a] on whichthis article is
based.

5.4 Concluding remarks

We have developed a new algorithm to construct box-trees, and analyzed its per-
formance for approximate range queries when the input is a low-density scene
combined with (almost) disjoint pipes. We proved that in such a setting—which
was motivated by the need to perform collision checking in CAD models of indus-
trial installations—one can achieve polylogarithmic query times. This is in sharp
contrast with theΩ(n2/3 + k) lower bound for the query time in box-trees for ar-
bitrary input proved by Agarwalet al.[Aga01BGHH]. Our bounds almost match
the best known bounds for range queries using box-trees in the much simpler case
of point data.

The assumptions we use in the analysis cannot be relaxed muchfurther. In
particular, we can give a lower bound construction showing that it is not possible
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to achieve polylogarithmic performance for box-trees whenthe input is unclut-
tered [Brg97KSV] instead of having low-density, even for approximate queries.

Our results can be used to performǫ-approximate nearest-neighbor searching,
using the techniques described for instance in Duncan’s thesis [Dun99]. Thus,
for input scenes satisfying the requirements above, approximate nearest-neighbor
queries take timeO((λ/ǫ2)(log4 n)(log λ + log 1

ǫ + log log n)) with our LSF-
interval-tree, orO(((1/ǫ2) log3 n + (λ/ǫ2) log2 n)(log λ + log 1

ǫ + log log n)) in
our BBD-interval-tree. (Note that for nearest-neighbor searching,ǫ is given as
part of the query.)

In our future work we plan to investigate the performance of box-trees ex-
perimentally. We want to fine-tune our algorithm for constructing box-trees—in
particular, we want to investigate whether the use of priority leaves, which are
so convenient in the theoretical analysis, pays off in practice—and we want to
compare it to existing heuristics.





Chapter 6

Facility location and the
geometric minimum-diameter
spanning tree

Previously published as: Joachim Gudmundsson, Herman J. Haverkort, Sang-
Min Park, Chan-Su Shin and Alexander Wolff: Facility location and the geomet-
ric minimum-diameter spanning tree, inComputational Geometry—Theory and
Appl., 27(1), 2004, p87–106

Abstract. Let P be a set ofn points in the plane. A dipolar spanning treeTpq

of P is a tree that spansP and has exactly two nodes of degree greater than one,
namelyp andq. We can think ofp andq as “facilities”, while the other nodes are
“clients”.

Thegeometric minimum-diameter spanning tree(MDST) ofP is a tree that
spansP and minimizes the Euclidian length of the longest path. It isknown that
there is always a mono- or a dipolar MDST, i.e. the MDST is a tree with only
one node greater than one, or it is a dipolar treeTpq that minimizes the distance
between any two clients. So far, a dipolar MDST can only be found in slightly
subcubic time.

Thediscrete two-center-problem(2CP) is to find a treeTpq of P that min-
imizes the distance of any client to the closest facility. For this problem, an
O(n4/3 log5 n)-time algorithm is known.

In this paper, we define an intermediate problem: find the treeTpq that mini-
mizes the distance of any client to theotherfacility, that is, the sum of the distance
to the closest facility and the distance between the two facilities. We call such a
tree aminimum-sum dipolar spanning tree(MSST). We show that the MSST of
any setP can be found inO(n2 log n) time. A variant of the MSST-algorithm
yields a factor-43 approximation of the MDST.
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Furthermore, we give two fast approximation schemes for theMDST, i.e.
factor-(1+ε) approximation algorithms. One algorithm uses a grid and takes time
O∗((1

ε )5+2/3 + n), where theO∗-notation hides terms of typeO(logO(1) 1
ε ). The

other uses the well-separated pair decomposition and takesO(( 1
ε )3n+ 1

εn log n)
time. A combination of the two approaches runs inO∗((1

ε )5 + n) time. Both
schemes can also be applied to 2CP and MSST.

6.1 Introduction

The MDST can be seen as a network without cycles that minimizes the max-
imum travel time between any two sites connected by the network. This is of
importance, e.g. in communication systems where the maximum delay in deliv-
ering a message is to be minimized. Ho et al. showed there is always a mono- or
a dipolarMDST [Ho91]. For a different proof, see [Has95]. Ho et al. also gave
an O(n log n)-time algorithm for the monopolar and anO(n3)-time algorithm
for the dipolar case [Ho91]. In addition, they showed that the problem becomes
considerably easier when allowing Steiner points, i.e. to find a spanning tree with
minimum diameter over all point setsP ′ that contain the input point setP . The
reason is that there always is a minimum-diameter Steiner tree that is monopo-
lar and whose pole is the center of the smallest enclosing circle of P . Thus the
minimum-diameter Steiner tree can be determined in linear time [Ho91].

The cubic time bound for the dipolar case was recently improved by Chan
[Chn02] to Õ(n3−cd), wherecd = 1/((d + 1)(⌈d/2⌉ + 1)) is a constant that
depends on the dimensiond of the point set and thẽO-notation hides factors
that areo(nε) for any fixedε > 0. In the planar casecd = 1/6. Chan speeds
up the exhaustive-search algorithm of Ho et al. by using new semi-dynamic data
structures. Note however thatcd tends to 0 with increasingd, while the asymptotic
running time of the algorithm of Ho et al. does not depend on the dimension.

Note that in the dipolar case the objective is to find the two polesx, y ∈ P
of the tree such that the functionrx + |xy| + ry is minimized, where|xy| is the
Euclidean distance ofx andy, andrx andry are the radii of two disks centered at
x andy whose union coversP . On the other hand thediscretek-center problem
is to determinek points inP such that the union ofk congruent disks centered at
thek points coversP and the radius of the disks is minimized. This is a typical
facility location problem: there aren supermarkets and ink of them a regional
director must be placed such that the maximum director-supermarket distance is
minimized. This problem is NP-hard provided thatk is part of the input [Gry79].
Thus, the main research on this problem has focused on smallk, especially on
k = 1, 2. For k = 1, the problem can be solved inO(n log n) time using the
farthest-point Voronoi diagram ofP . For k = 2, the problem becomes consid-
erably harder. Using the notation from above, the discrete two-center problem
consists of finding two centersx, y ∈ P such that the functionmax{rx, ry} is
minimized. Agarwal et al. [Aga98SW] gave the first subquadratic-time algorithm
for this problem. It runs inO(n4/3 log5 n) time.
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In this paper we are interested in (a) a new facility locationproblem that
mediates between the minimum-diameter dipolar spanning tree (MDdST) and
the two-center problem and (b) fast approximations of the computationally ex-
pensiveMDdST. As for our first aim we observe the following. Whereas the
MDdST minimizes|xy| + (rx + ry), the discrete two-center problem is to min-
imize max{rx, ry}, which means that the distance between the two centers is
not considered at all. If, however, the two centers need to communicate with
each other for cooperation, then their distance should be considered as well—
not only the radius of the two disks. Therefore our aim is to find two centersx
andy that minimize|xy| + max{rx, ry}, which is a compromise between the
two previous objective functions. We will refer to this problem as thediscrete
minimum-sum two-center problemand call the resulting graph theminimum-sum
dipolar spanning tree(MSST). As it turns out, our algorithm for theMSST also
constitutes a compromise, namely in terms of runtime between the subcubic-time
MDdST-algorithm and the superlinear-time 2CP-algorithm. More specifically,
in Section 6.2 we will describe an algorithm that solves the discrete minimum-
sum two-center problem in the plane inO(n2 log n) time usingO(n2) space.
For dimensiond < 5 a variant of our algorithm is faster than the more general
Õ(n3−cd)-time MDST-algorithm of Chan [Chn02] that can easily be modified to
compute the MSST instead.

In Section 6.3 we turn to our second aim, approximations for theMDST. We
combine a slight modification of theMSST with the minimum-diameter monopo-
lar spanning tree (MDmST). We identify two parameters that depend on the
MDdST and help to express a very tight estimation of how well the twotrees
approximate it. It turns out that at least one of them is a factor-4/3 approximation
of theMDST.

Finally, in Section 6.4 we show that there are even strong linear-time approx-
imation schemes (LTAS) for theMDST, i.e. algorithms that given a setP of n
points and someε > 0 compute inO∗(Ec +n) time a spanning tree whose diam-
eter is at most (1 + ε) times as long as the diameter of aMDST. In the runtime
expressionE = 1/ε, c is a constant and theO∗-notation hides terms of type
O(logO(1) E). The existence of a strong LTAS for theMDST has independently
been proven by Spriggs at al. [Spr03]. Their LTAS is of orderc = 3, i.e. it takes
O∗(E3 + n) time.

Our results are as follows. Our first LTAS uses a grid ofO(E)×O(E) square
cells and runs Chan’s exact algorithm [Chn02] on one representative point per
cell. The same idea has been used before [Bar99, Chn00] to approximate the
diameter of a point set, i.e. the longest distance between any pair of the given
points. Our first LTAS is of order5 2

3 .

Our second approximation scheme is based on the well-separated pair decom-
position [Cal95] ofP and takesO(E3n+En log n) time. The well-separated pair
decomposition will help us to limit our search for the two poles of an approximate
MDdST to a linear number of point pairs. If we run our second scheme on the
O(E2) representative points in the grid mentioned above, we get a LTAS of order
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five. Both schemes can be adjusted to approximate theMSST and the 2CP within
the same time bounds.

We will refer to the diameterdP of theMDST of P as thetree diameterof P .
We assume thatP contains at least four points.

6.2 The minimum-sum dipolar spanning tree

It is simple to give anO(n3)-time algorithm for computing theMSST. Just go
through allO(n2) pairs {p, q} of input points and compute in linear time the
point mpq whose distance to the current pair is maximum. In order to give a
faster algorithm for computing theMSST, we need a few definitions. Lethpq be
the closed halfplane that containsp and is delimited by the perpendicular bisector
bpq of p and q. Note thathpq ∩ hqp = bpq = bqp. Let Tpq be the tree with
dipole {p, q} where all other points are connected to the closer pole. (Points
on bpq can be connected to eitherp or q.) Clearly the treeTpq that minimizes
|pq| + min{|pmpq|, |qmpq|} is anMSST. The following two observations will
speed up theMSST computation.

We first observe that we can split the problem of computing allpoints of type
mpq into two halves. Instead of computing the pointmpq farthest from the pair
{p, q}, we compute for each ordered pair(p, q) a pointfpq ∈ P ∩ hpq that is
farthest fromp. See Figure 6.1 for an example. Now we want to find the treeTpq

that minimizes|pq|+ max{|pfpq|, |qfqp|}. We will see that other than the points
of typempq we can compute those of typefpq in batch.

Our algorithm consists of two phases, see Algorithm 1. In phase I we go
through all pointsp in P . The central (and time-critical) part of our algorithm
is the procedure COMPUTEALL FARTHEST that computesfpq for all q ∈ P \
{p}. For a trivialO(n2)-time implementation of this procedure, see Algorithm 2.
In phase II we then use the above form of our target function todetermine the
MSST. The second important observation that helped us to speed upCOMPUTE-
ALL FARTHEST is the following. Letp be fixed. Instead of computingfpq for
eachq ∈ P \ {p} individually, we characterize in Lemma 6.2.2 allq that have the

Algorithm 1 MSST(P )

Phase I: compute allfpq

for eachp ∈ P do
COMPUTEALL FARTHEST(P, p)

end for p
Phase II: search forMSST

for each{p, q} ∈
(
P
2

)
do

dpq ← |pq|+ max{|pfpq|, |qfqp|}
end for {p, q}

return Tpq with dpq minimum.
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Algorithm 2 COMPUTEALL FARTHEST(P, p) {first version}
for eachq ∈ P \ {p} do

fpq ← p
for eachr ∈ P \ {p, q} do

if r ∈ hpq and |pr| > |pfpq| then
fpq ← r

end if
end for q

end for r
return fpq for eachq ∈ P \ {p}

p

q

fpq bpq

hqp

hpq

Figure 6.1: fpq denotes
the point farthest fromp
in P ∩ hpq.

p

q

x

D(c, p)

D(x, p)

c

hpq

Figure 6.2:x ∈ hpq

if and only if q 6∈
D(x, p).

p
q1

q2

q3

D1

D2

D3

P1

P2

P3

Figure 6.3: Computing
the points of typefpq in
batch.

samefpq. Our characterization uses the following direct consequence of Thales’
Theorem. See Figure 6.2 as illustration.

Fact 6.2.1 Let D(x, p) be the open disk that is centered atx and whose boundary
containsp (D(x, p) = ∅ if x = p). Thenx ∈ hpq if and only if q 6∈ D(x, p).

Lemma 6.2.2 x is farthest fromp in P ∩ hpq if and only if q 6∈ D(x, p) and, for
all x′ ∈ P with |px′| > |px|, q ∈ D(x′, p).

Proof: “If” part: Due to q 6∈ D(x, p) and Fact 6.2.1 we know thatx lies in hpq.
Fact 6.2.1 also yields that allx′ ∈ P with |px′| > |px| do not lie in hpq since
q ∈ D(x′, p) for all suchx′. Thusx is farthest fromp among all points inhpq.

“Only if” part: supposeq ∈ D(x, p) or suppose there is anx′ ∈ P with
|px′| > |px| andq 6∈ D(x′, p). In the former case we would havex 6∈ hpq, in the
latter |px′| > |px| andx′ ∈ hpq. Both would contradictx being farthest fromp
among the points inhpq. �

Lemma 6.2.2 immediately yields a way to set the variablesfpq in batch: go
through the pointsqi ∈ P \ {p} in order of non-increasing distance fromp, find
all points inPi = P \D(qi, p), setfpq to qi for all q ∈ Pi, remove the points in
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Algorithm 3 COMPUTEALL FARTHEST(P, p) {second version}
1: sortP = q1, . . . , qn such that|pq1| ≥ |pq2| ≥ · · · ≥ |pqn|
2: P ← P \ {p}
3: for i← 1 to n do
4: Pi ← P \D(qi, p)
5: for eachq ∈ Pi do
6: fpq ← qi

7: end for q
8: P ← P \ Pi

9: end for i
10: return fpq for eachq ∈ P \ {p}

Pi from P , and continue—see the second version of COMPUTEALL FARTHEST

in Algorithm 3.
Figure 6.3 visualizes what happens in the first three runs through the outer for-

loop of Algorithm 3: the areas shaded light, medium, and darkcontain all points
q with fpq = q1, fpq = q2, andfpq = q3, respectively. We usedDi as shorthand
for D(qi, p).

Lemma 6.2.3 For eachq ∈ P \ {p} Algorithm 3 setsfpq to the point farthest
from p in P ∩ hpq.

Proof: Note thatP \ {p} =
⋃n

i=1 Pi. This is due to the fact thatD(qn, p) =
D(p, p) = ∅. Thus the variablesfpq are in fact set for allq ∈ P \ {p} in line 6 of
Algorithm 3.

The values that are assigned to thefpq ’s are correct due to the order, in which
the outer for-loop runs through the points inP : fpq is set toqi if i is the smallest
index such thatq ∈ Pi. This is the case ifi is the smallest index such that
q 6∈ D(qi, p) andq ∈ D(qj , p) for j < i. Since theqj with j < i are exactly the
points inP farther fromp thanqi, Lemma 6.2.2 yields thatqi is the point farthest
from p in P ∩ hpq. �

The remainder of this section deals with efficiently finding points inPi. We give
two methods. The first, which is slightly slower in the plane,also works for higher
dimensions.

Method I. We use dynamic circular range searching, which is a special case
of halfspace range searching inR3 via orthogonal projection to the paraboloid
{(x, y, z) | z = x2 + y2} [Aga95]. The necessary data structure can be build in
O(n1+ε) time and space for an arbitrarily smallε > 0. After each query with
the halfspaceHi corresponding to the complement of the diskD(qi, p) all points
in Hi must be deleted (according to step 8 of Algorithm 3). The total time for
querying and deleting isO(n1+ε). This yields anO(n2+ε)-time algorithm for
finding theMSST. We will give a faster algorithm for the planar case. However,
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it is not clear how that algorithm can be generalized to higher dimensions. For di-
mensionsd ∈ {3, 4} computing theMSST with range searching takesO(n2.5+ε)
time [Aga95]. This is faster than Chan’sMDST-algorithm [Chn02] that can eas-
ily be modified to compute theMSST instead. His algorithm runs iñO(n3−cd)
time, wherecd = 1/((d + 1)(⌈d/2⌉+ 1)) ≤ 1/12 for d ≥ 3.

Method II. We compute a partition of the plane into regionsR1, . . . , Rn such
that Ri contains the setPi of all pointsq with fpq = qi. Then we do a plane
sweep to determine for eachq ∈ P \ {p} the regionRi that contains it. Method II
takesO(n log n) time and thus yields anO(n2 log n)-time algorithm for finding
theMSST in the plane. We will use the following simple fact.

Fact 6.2.4 Given a setD of disks in the plane that all touch a pointp, each disk
contributes at most one piece to the boundary of

⋂D.

This helps us to bound the complexity of our planar partition.

Lemma 6.2.5 LetD = {D1, . . . , Dn−1} be a set of disks in the plane, letD0 =
R

2, Dn = ∅, and fori = 1, . . . , n let Ii = D0 ∩ · · · ∩Di−1 andRi = Ii \Di.
ThenR(D) = {R1, . . . , Rn} is a partition of the plane whose complexity—the
total number of arcs on the boundaries ofR1, . . . , Rn—is O(n).

Proof: The regionRi consists of all points that lie inD0, . . . , Di−1 but not in
Di. SinceD0 = R

2 andDn = ∅ it is clear thatR(D) is in fact a partition of the
plane. For an example refer to Figure 6.4, where the regionsR1, R2, R3, andR4

are shaded from light to dark gray.

p
q1

q2

q3

D1

D2

D3

R1

R2

R3

R4

q4

Figure 6.4: Regions of the partition
R(D).

p

Ii+1

Ri

∂Di

Figure 6.5: A step in the incremental
construction ofR(D).

If R(D) is constructed incrementally, each new diskDi splitsIi into Ii+1 andRi.
For illustration, see Figure 6.5, whereIi is the shaded region. Due to Fact 6.2.4,
Di contributes at most one circular arcA to the boundary ofIi+1. The start- and
endpoint ofA can split two arcs on the boundary ofIi into two pieces each. Two
of these at most four pieces will belong toIi+1 and two toRi. Thus the number
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of arcs inR(D) increases at most by three when adding a new disk to the current
partition. �

Now we can give a faster implementation of COMPUTEALL FARTHEST for the
planar case. More specifically we will show the following.

Lemma 6.2.6 Let D0 = R
2 andDn = ∅. Given a setQ of m points and a set

D = {D1, . . . , Dn−1} of disks in the plane that all touch a pointp, there is an
algorithm that computes inO((m + n) log n) total time for each pointq ∈ Q the
regionR ∈ R(D) that containsq. The algorithm needsO(n + m) space.

Proof: We first construct the partitionR(D) and then do a plane sweep to locate
the points inQ in the cells ofR(D).

We use the incremental construction ofR(D) as in Lemma 6.2.5. In order
to find the two points where the boundary∂Di of a new diskDi intersects the
boundary∂Ii of Ii we need a data structureT that stores the circular arcs on
∂Ii. The data structure must allow us to do search, remove, insert, and successor
operations in logarithmic time. This is standard, e.g. for red-black trees [Cor90].
In T we store the circular arcs on∂Ii in clockwise order starting fromp. We
assume thatp is the leftmost point of∂Ii.

By Fact 6.2.4,∂Di intersects∂Ii at zero, one, or two points other thanp. Let
A andB be the first respectively last arc on∂Ii (both incident top), and letA′

andB′ be infinitesimally small pieces ofA respectivelyB incident top. There
are three cases, which can be distinguished from each other in constant time. For
illustration see Figures 6.6 to 6.8, where we have sketched∂Ii as a polygon for
simplicity.

p

∂Di

A′

B′

∂Ii

Figure 6.6:
Case (1)

p

∂Di

A′

B′

∂Ii

x

Figure 6.7:
Case (2)

p

∂Di

B′

A′
∂Ii

Figure 6.8:
Case (3)

p

∂Di

A′

B′

∂Ii

Cv

Av

x

Figure 6.9:
QueryingT atv

1. Di ∩ Ii = ∅.
This can be verified by checking whether the tangent ofDi in p separates
Di from A andB. If this is the case, we are done since thenRi = Ii and
Rj = Ij = ∅ for all j > i.

2. Di ∩ Ii 6= ∅, and at least one ofA′ or B′ lies outsideIi.
We follow the part of∂Ii from p that lies outsideDi until we reach an
intersection pointx (possibly againp) of ∂Di and∂Ii. On our way we
replace all nodes inT that correspond to arcs outsideDi by a new node
that corresponds to the arc∂Di ∩ Ii (bold in Figure 6.7). The regionRi =
Ii \Di is delimited by the new arc and all arcs on∂Ii from p up tox.
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3. Di ∩ Ii 6= ∅, andA′ andB′ lie insideIi.
We queryT to find out whether and where∂Di and∂Ii intersect other
than inp. We follow a path from the root ofT either to a node whose arc
intersects∂Di, or to a leaf if∂Ii and∂Di do not intersect. Letv be the
current inner node ofT , Av the corresponding arc andCv the circle that
containsAv (and touchesp). We consider the following two subcases:

(a) ∂Di ∩ Cv = {p}.
This occurs in the degenerate case thatp and the centers ofDi andCv

are collinear. IfCv is contained inDi, thenIi is also contained inDi.
ThusRi = ∅, Ii+1 = Ii, and we can continue withDi+1.

OtherwiseAv lies outsideDi—recall thatCv, Di ∈ D and that all
disks inD are pairwise different. SinceA′ andB′ lie insideDi, ∂Di

intersects two arcs on∂Ii; one betweenA′ andAv, and one between
Av andB′. Thus we can continue to search for an intersection in any
of the two subtrees ofv.

(b) ∂Di ∩ Cv = {p, x} andx 6= p.
If x ∈ Av, we stop. Otherwise we continue our search in the left or
right subtree ofv depending on whetherp, x, andAv lie on Cv in
clockwise or counterclockwise order, respectively. Note that in the
clockwise case the part of∂Ii from Av to B′ (in clockwise order) is
completely contained inDi, see Figure 6.9. Thus no arc in the right
subtree ofv intersects∂Di. The counterclockwise case is symmetric.

If—in case (3b)—we reach a leaf ofT without finding any intersection, this
means that∂Ii ∩ ∂Di = {p}, since in each step of the query we have only
discarded arcs inT that lie on the portion of∂Ii that cannot intersect∂Di.
The fact thatA′ andB′ lie insideDi now yieldsIi ⊆ Di. ThusRi = ∅,
and we can continue withDi+1.

Otherwise we have found somex 6= p that lies on∂Di ∩ ∂Ii. If it turns
out that∂Di and∂Ii just touch inx, then we again haveIi ⊆ Di, which
means thatRi = ∅ and we can proceed withDi+1. If, however,∂Di and
∂Ii intersect properly, then we continue as in case (2), following the part of
∂Ii outsideDi from x until we hit a second intersection pointx′. Due to
Fact 6.2.4 there cannot be any further intersection points.

Whenever we modifyT we also do the necessary steps in the incremental con-
struction ofR(D): we create circular pointers around eachRi and pointers from
each arc to the two regions it borders.

The plane sweep is practically the same as for locating points in a vertical
decomposition of line segments. Our (multi-) setE of event points consists of the
setV of vertices ofR(D), the points inQ, and the setX of the left- and rightmost
points of arcs that are not arc endpoints. Note that there is alinear order among
the arcs in the vertical strip between any two consecutive event points inV ∪X .
We store the points inE in an array and sort them according to non-decreasing
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x-coordinate. The sweep-line status consists of the arcs inR(D) that are currently
intersected by the vertical sweep lineℓ in the order in which they are intersected
by ℓ. The sweep-line status§ can be implemented by any balanced binary search
tree (like a red-black tree) that allows insertion, deletion, and search in logarithmic
time.

Each timeℓ hits an event point inX or V , we either add an arc to§ or remove
an arc from§. (This assumes non-degeneracy ofD, i.e. no three disk boundaries
intersect in a point other thanp. The assumption can be overcome by using several
event points for vertices inR(D) of degree greater than 3.) Each timeℓ hits an
event pointq ∈ Q we determine the first arc in§ above or belowq and return the
indexi of the corresponding regionRi ofR(D).

The data structure forR(D) can be set up inO(n log n) time due to Lemma
6.2.5: each step of the incremental construction takesO(log n) time for querying
T andO(|Ri| log n) time for updatingT andR(D). Lemma 6.2.5 also ensures
thatE consists of at mostO(n+m) points, and that§ contains at mostO(n) arcs
at any time during the sweep. Since each event point is processed inO(log n)
time, the whole sweep takesO((m + n) log n) time. �

Now we can conclude:

Theorem 6.2.7 There is an algorithm that computes an MSST inO(n2 log n)
time using quadratic space.

Proof: We can implement COMPUTEALL FARTHEST by applying the algorithm
of Lemma 6.2.6 toD = {D(q1, p), . . . , D(qn−1, p)} andQ = P \ {p}. This
yields a running time ofO(n log n) for COMPUTEALL FARTHEST. With this sub-
routine, Algorithm 1 computes anMSST in O(n2 log n) time. �

6.3 Approximating the minimum-diameter
spanning tree

We first make the trivial observation that the diameter ofanymonopolar tree on
P is at most twice as long as the tree diameterdP of P . We use the following
notation. LetTdi be a fixedMDdST andTmono a fixedMDmST of P . The tree
Tdi has minimum diameter among those trees with vertex setP in which all but
two nodes—the poles—have degree 1. The treeTmono is a minimum-diameter
star with vertex setP . Let x andy be the poles ofTdi, and letδ = |xy| be their
distance. Finally letrx (ry) be the length of the longest edge inTdi incident tox
(y, respectively) without taking into account the edgexy. Thus disks of radiusrx

andry centered atx andy, respectively, coverP . Without loss of generality we
assumerx ≥ ry .

Ho et al. showed that in the dipolar case (i.e. if there is no monopolarMDST),
the disk centered aty cannot be contained by the one centered atx. We will need
thisstability lemmabelow.
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Lemma 6.3.1 [Stability lemma [Ho91]]rx < δ + ry.

In order to get a good approximation of theMDST, we slightly modify the algo-
rithm for theMSST described in Section 6.2. After computing theO(n2) points
of typefpq, we go through all pairs{p, q} and consider the treeTpq with dipole
{p, q} in which each point is connected to its closer dipole. In Section 6.2 we
were searching for a tree of typeTpq that minimizes|pq| + max{|fpqp|, |qfqp|}.
Now we go through all treesTpq to find the treeTbisect with minimumdiameter,
i.e. the tree that minimizes|pq|+ |fpqp|+ |qfqp|. Note that the only edge inTpq

that crosses the perpendicular bisector ofpq is the edgepq itself. This is of course
not necessarily true for theMDdST Tdi. We will show the following:

Lemma 6.3.2 Given a setP of n points in the plane there is a tree with the
following two properties: it can be computed inO(n2 log n) time usingO(n2)
storage, and its diameter is at most4/3 · dP .

Proof: Due to Theorem 6.2.7 it suffices to show the approximation factor. We
will first compute upper bounds for the approximation factors ofTbisect andTmono

and then analyze where the minimum of the two takes its maximum.
For the analysis ofTbisect consider the treeTxy whose poles are those ofTdi.

The diameter ofTxy is an upper bound for that ofTbisect. Let r′x (r′y) be the
length of the longest edge ofTxy incident tox (y, respectively) without taking
into account the edgexy. Note thatr′x = |xfxy| andr′y = |yfyx|.

Now we compare the diameter ofTxy to the diameter ofTdi. Observe that
max{r′x, r′y} ≤ rx. This is due to our assumptionrx ≥ ry and to the fact that
fxy andfyx have at most distancerx from bothx andy. This observation yields
dia Txy = r′x + δ + r′y 6 2 max{r′x, r′y} + δ 6 2rx + δ. Now we define two
constantsα andβ that only depend onTdi. Let

α =
δ

rx + ry
and β =

rx

ry
.

Note thatα > 0 andβ ≥ 1. Introducingα andβ yields

dia Tbisect

dia Tdi
6

dia Txy

dia Tdi
6

2rx + δ

rx + δ + ry
=

α(1 + β) + 2β

(1 + α)(1 + β)
=: fbisect(α, β),

since2rx = 2β(rx + ry)/(1+β) andδ = α(rx + ry). The functionfbisect(α, β)
is an upper bound for the approximation factor thatTbisect achieves.

Now we apply ourα-β-analysis toTmono. The stability lemmarx < δ + ry

[Ho91] implies that all points inP are contained in the diskDx,δ+ry
of radius

δ + ry centered atx, see Figure 6.10. Due to that, the diameter of a monopolar
treeT that spansP and is rooted atx is at most twice the radius of the disk. We
know thatdia Tmono ≤ dia T sinceTmono is theMDmST of P . Thus

dia Tmono 6 2(δ + ry) = 2α(rx + ry) +
2

1 + β
(rx + ry),
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rx δ ryx

Dx,δ+ry

Figure 6.10: ApproximatingTdi with Tmono.

sinceδ = α(rx +ry) and1+β = (rx +ry)/ry . Usingdia Tdi = (1+α)(rx+ry)
yields

dia Tmono

dia Tdi
6

2α(1 + β) + 2

(1 + α)(1 + β)
=: fmono(α, β),

and the functionfmono(α, β) is an upper bound ofTmono’s approximation factor.
In order to compute the maximum of the minimum of the two bounds we first

analyze wherefbisect ≤ fmono. This is always the case ifα ≥ 2 but also ifα < 2
andβ ≤ gequal(α) := α+2

2−α . See Figure 6.11 for the corresponding regions. Since
neitherfbisect nor fmono have any local or global maxima in the interior of the
(α, β)-range we are interested in, we must consider their boundaryvalues.

1. Forβ ≡ 1 the treeTbisect is optimal sincefbisect(α, 1) ≡ 1.

2. Note that the stability lemmarx ≤ δ + ry is equivalent toβ ≤ gstab(α) :=
α+1
1−α , see Figure 6.11. Along the graph ofgstab the treeTmono is optimal
sincefmono(α, gstab(α)) ≡ 1.

3. Along gequal both functions equal(3α + 2)/(2α + 2). This expression
increases monotonically from 1 towards4/3 whenα goes from 0 towards 2.

Standard analysis of the partial derivatives shows thatfmono increases while
fbisect decreases monotonically whenα goes to infinity. So the maximum of
min(fmono, fbisect) is indeed attained atgequal. �

6.4 Approximation schemes for the MDST

In this section we give some fast approximation schemes for the MDST, i.e.
factor-(1 + ε) approximation algorithms. The first approximation schemeuses
a grid, the second and third use the well-separated pair decomposition, and the
fourth is a combination of the first and the third method. The reason for this mul-
titude of approaches is that we want to take into account the way the running time
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Figure 6.11: Our upper bound for the approximation factor ofTmono (Tbisect) is
smaller to the left (right, respectively) ofgequal. To the left ofgstab the treeTmono

is optimal.

depends not only onn, the size of the point set, but also onε, the approximation
factor.

Chan [Chn00] uses the following notation. LetE = 1/ε and let theO∗-
notation be a variant of theO-notation that hides terms of typeO(logO(1) E).
(Such terms come into play e.g. when the use of the floor function is replaced by
binary search with precisionε.) Then alinear-time approximation scheme (LTAS)
of orderc is a scheme with a running time of the formO∗(Ecn) for some constant
c. A strong LTAS of orderc has a running time ofO∗(Ec+n). Our asymptotically
fastest scheme for approximating theMDST is a strong LTAS of order 5.

6.4.1 A grid-based approximation scheme

The idea of our first scheme is based on a grid which has been used before e.g. to
approximate the diameter of a point set [Bar99, Chn00], i.e.the longest distance
between any pair of the given points. We lay a grid ofO(E)×O(E) cells overP ,
choose an arbitrary representative point for each cell and use the exact algorithm
of Ho et al. [Ho91] to compute theMDST TR of the setR of all representative
points. By connecting the remaining points inP \R to the pole adjacent to their
representatives, we get a dipolar treeTε whose diameter is at most(1 + ε) times
the tree diameterdP of P .

The details are as follows. LetM = maxp,q∈P {|x(p)x(q)|, |y(p)y(q)|} be
the edge length of the smallest enclosing square ofP and letl = εM/(10

√
2)

be the edge length of the square grid cells. ClearlyM ≤ dP . Since each path
in Tε is at most by two edges of lengthl

√
2 longer than the corresponding path
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in TR we havedia Tε ≤ dia TR + 2l
√

2 ≤ dia TR + εdP /5. To see that
dia Tε ≤ (1 + ε) dP it remains to prove:

Lemma 6.4.1 dia TR ≤ (1 + 4ε/5) dP .

Proof: Let TP be aMDST of P that is either mono- or dipolar. Such a tree
always exists according to [Ho91].

Case I: TP is monopolar. Letx ∈ P be the pole ofTP and letρp ∈ R be the
representative point ofp ∈ P . Due to the definition ofTR we have

dia TR 6 min
x′∈R

max
s6=t∈R

|sx′|+ |x′t| 6 max
s6=t∈R

|sρx|+ |ρxt|.

(The first two terms are equal if there is a monopolarMDST of R, the last two
terms are equal if there is aMDmST of R with poleρx.) By triangle inequality

dia TR 6 max
s6=t∈R

|sx|+ |xρx|+ |ρxx|+ |xt|,

i.e. we maximize the length of the polygonal chain(s, x, ρx, x, t) over all s 6=
t ∈ R. By appending edges to pointsa andb ∈ P in the grid cells ofs andt,
respectively, the length of the longest chain does not decrease, even if we now
maximize over alla, b ∈ P with a 6= b.

dia TR 6 max
a6=b∈P

|aρa|+ |ρax|+ 2|xρx|+ |xρb|+ |ρbb|.

Using|aρa|, |xρx|, |ρbb| ≤ l
√

2 and the triangle inequalities|ρax| ≤ |ρaa|+ |ax|
and |xρb| ≤ |xb| + |bρb| yields dia TR ≤ 6l

√
2 + maxa6=b∈P |ax| + |xb| =

(1 + 3ε/5)dP .

Case II: TP is dipolar. The analysis is very similar to case I, except thechains
consist of more pieces. This yieldsdia TR ≤ 8l

√
2+dia TP = (1+4ε/5) dP . �

Theorem 6.4.2 A spanning treeTP of P with dia TP ≤ (1 + 1/E) · dP can be
computed inO∗(E6−1/3 + n) time usingO∗(E2 + n) space.

Proof: In order to determine the grid cell of each point inP without the floor
function, we do binary search—once on anx- and once on ay-interval of size
M until we have reached a precision ofl, i.e. we needO(log E) steps for each
point. Using Chan’s algorithm [Chn02] to computeTR takesÕ(|R|3−1/6) time
andÕ(|R|) space, where|R| = O(E2). �

6.4.2 The well-separated pair decomposition

Our second scheme uses the well-separated pair decomposition of Callahan and
Kosaraju [Cal95]. We briefly review this decomposition below.
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Definition 6.4.3 Let τ > 0 be a real number, and letA andB be two finite sets
of points inR

d. We say thatA andB arewell-separated w.r.t.τ , if there are
two disjointd-dimensional ballsCA andCB both of radiusr such thatA ⊂ CA,
B ⊂ CB , and the distance betweenCA andCB is at least equal toτr.

The parameterτ will be referred to as theseparation constant. The following
lemma follows easily from Definition 6.4.3.

Lemma 6.4.4 Let A andB be two finite sets of points that are well-separated
w.r.t. τ , let x andp be points ofA, and lety andq be points ofB. Then (i)
|xy| ≤ (1 + 2/τ) · |xq|, (ii) |xy| ≤ (1 + 4/τ) · |pq|, (iii) |px| ≤ (2/τ) · |pq|, and
(iv) the angle between the line segmentspq andpy is at mostarcsin(2/τ).

Definition 6.4.5 Let P be a set ofn points inR
d, andτ > 0 a real number. A

well-separated pair decomposition(WSPD) forP (w.r.t. τ ) is a sequence of pairs
of non-empty subsets ofP , (A1, B1), (A2, B2), . . . , (Aℓ, Bℓ), such that

1. Ai andBi are well-separated w.r.t.τ for i = 1, 2, . . . , ℓ, and

2. for any two distinct pointsp andq of P , there is exactly one pair(Ai, Bi)
in the sequence such that (i)p ∈ Ai andq ∈ Bi, or (ii) q ∈ Ai andp ∈ Bi,

The integerℓ is called thesizeof a WSPD. Callahan and Kosaraju show that
a WSPD of sizeℓ = O(τ2n) can be computed usingO(n log n + τ2n) time
and space. The WSPD will help us to limit our search for the twopoles of an
approximateMDdST to a linear number of point pairs.

6.4.3 A straight-forward approximation scheme

The approximation algorithm consists of two subalgorithms: the first algorithm
computes aMDmST and the second computes an approximation of theMDdST.
We always output the one with smaller diameter. According to[Ho91] there ex-
ists aMDST that is either a monopolar or a dipolar tree. TheMDmST can be
computed in timeO(n log n), hence we will focus on the problem of computing
aMDdST. Let dmin be the diameter of aMDdST and let§pq denote a spanning
tree with dipole{p, q} whose diameter is minimum among all such trees. For
any dipolar spanning treeT with dipole{u, v} let ru(T ) andrv(T ) be the length
of the longest edge ofT incident tou andv, respectively, without taking into
account the edgeuv. When it is clear which treeT we refer to, we will useru

andrv.

Lemma 6.4.6 Let (A1, B1), . . . , (Aℓ, Bℓ) be a WSPD ofP w.r.t. τ , and letp and
q be any two points inP . Then there is a pair(Ai, Bi) such that for every point
u ∈ Ai and every pointv ∈ Bi the inequalitydia §uv ≤ (1+8/τ) ·dia §pq holds.

Proof: According to Definition 6.4.5 there is a pair(Ai, Bi) in the WSPD such
thatp ∈ Ai andq ∈ Bi. If u is any point inAi andv is any point inBi, then letT
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be the tree with polesu andv whereu is connected tov, p and each neighbor ofp
in §pq exceptq is connected tou, andq and each neighbor ofq in §pq exceptp is
connected tov. By Lemma 6.4.4(ii)|uv| ≤ (1+4/τ)|pq| and by Lemma 6.4.4(iii)
ru ≤ |up|+ rp ≤ 2|pq|/τ + rp. Sincedia T = ru + |uv|+ rv we have

dia T ≤
(

rp + 2
|pq|
τ

)
+

(
|pq|+ 4

|pq|
τ

)
+

(
rq + 2

|pq|
τ

)
<

(
1 +

8

τ

)
dia §pq.

The lemma follows due to the minimality of§uv. �

A first algorithm is now obvious. For each of theO(τ2n) pairs (Ai, Bi) in a
WSPD ofP w.r.t. τ = 8E pick anypoint p ∈ Ai andanypoint q ∈ Bi, sortP
according to distance fromp, and compute§pq in linear time by checking every
possible radius of a disk centered atp as in [Ho91].

Lemma 6.4.7 A dipolar treeT with dia T 6 (1 + 1/E)· dmin can be computed
in O(E2n2 log n) time usingO(E2n + n log n) space.

6.4.4 A fast approximation scheme

Now we describe a more involved algorithm. It is asymptotically faster than the
previous algorithm ifn = Ω(E) (more precisely ifE = o(n log n)). We will
prove its correctness in Section 6.4.5.

Theorem 6.4.8 A dipolar treeT with dia T ≤ (1+1/E) ·dmin can be computed
in O(E3n + En log n) time usingO(E2n + n log n) space.

The idea of the algorithm is again to check only a linear number of pairs of points,
using the WSPD, in order to speed up the computation of the disks around the
two poles. Note that we need to find a close approximation of the diameters of the
disks to be able to guarantee a(1 + ε)-approximation of theMDdST. Obviously
we cannot afford to try all possible disks for all possible pairs of poles. Instead of
checking the disks we will show in the analysis that it suffices to check a constant
number of ways to partition the input point set into two subsets, each correspond-
ing to a pole. The partitions we consider are induced by a constant number of
lines that are approximately orthogonal to the line throughthe poles. We cannot
afford to do this for each possible pair. Instead we select a constant number of ori-
entations and use a constant number of orthogonal cuts for each orientation. For
each cut we calculate for each point inP the approximate distance to the farthest
point on each side of the cut. Below we give a more detailed description of the
algorithm. For its pseudocode refer to Algorithm 4.

Phase 1: Initializing. Choose an auxiliary positive constantκ < min{0.9ε,
1/2}. As will be clear later, this parameter can be used to fine-tune which part
of the algorithm contributes how much to the uncertainty andto the running time.
In phase 3 the choice of the separation constantτ will depend on the value ofκ
andε.
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Algorithm 4 Approx-MDdST(P, ε)
Phase 1: initializing

1: chooseκ ∈ (0, min{0.9ε, 1/2}); setγ ← ⌈4/κ⌉
2: for i← 1 to γ do
3: li ← line with angleiπ/γ to the horizontal
4: Fi ← li-ordering ofP
5: end for i
6: for i← to γ do
7: rotateP andli such thatli is horizontal
8: let p1, . . . , pn be the points inFi from left to right
9: di ← |p1.x− pn.x|

10: for j ← 1 to γ do
11: bij ← marker onli at distancejdi/(γ + 1) to the right ofp1

12: for k ← 1 to γ do
13: L′

ijk ← lk-ordered subset ofFk to the left ofbij

14: R′

ijk ← lk-ordered subset ofFk to the right ofbij

15: end for k
16: end for j
17: end for i
Phase 2: computing approximate farthest neighbors
18: for i← 1 to γ do
19: for j ← 1 to γ do
20: for k ← 1 to n do
21: N(pk, i, j, L)← pk {dummy}
22: for l← 1 to γ do
23: pmin ← first point inL′

ijl; pmax ← last point inL′

ijl

24: N(pk, i, j, L)← point in{pmin, pmax, N(pk, i, j, L)} furthest frompk

25: end for l
26: end for k
27: repeat lines 20–26 withR instead ofL
28: end for j
29: end for i
Phase 3: testing pole candidates
30: τ = 8( 1+ε

(1+ε−(1+κ)(1+κ/24)
− 1)

31: build WSPD forP with separation constantτ
32: d←∞ {smallest diameter so far}
33: for each pair(A, B) in WSPDdo
34: choose any two pointsu ∈ A andv ∈ B
35: find li with the smallest angle to the line throughu andv
36: D ←∞ {approximate diameter of tree with polesu andv, ignoring|uv|}
37: for j ← 1 to γ do
38: D←
39: min{D, |N(u, i, j, L)u|+|vN(v, i, j, R)|, |N(u, i, j, R)u|+|vN(v, i, j, L)|}
40: end for j
41: if D + |uv| < d then u′ ← u; v′ ← v; d← D + |uv| end if
42: end for (A,B)
43: computeT ← §u′v′

44: return T
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Definition 6.4.9 A set of pointsP is said to bel-ordered if the points are ordered
with respect to their orthogonal projection onto the linel.

Let li be the line with angleiπ/γ to the horizontal line, whereγ = ⌈4/κ⌉. This
implies that for an arbitrary linel there exists a lineli such that∠lil ≤ π/(2γ).
For i = 1, . . . , γ, let Fi be a list of the input points sorted according to theli-
ordering. The time to construct these lists isO(γn log n).

For eachli, rotateP andli such thatli is horizontal. For simplicity we denote
the points inP from left to right onli by p1, . . . , pn. Let di denote the horizontal
distance betweenp1 andpn. Let bij , 1 ≤ j ≤ γ, be a marker onli at distance
jdi/(γ + 1) to the right ofp1. LetLij andRij be the set of points inP to the left
and to the right of the verticalβij throughbij , respectively.

For each markerbij on li we constructγ pairs of lists, denotedL′
ijk and

R′
ijk , where1 ≤ k ≤ γ. The listL′

ijk (R′
ijk) contains the points inLij (Rij ,

respectively) sorted according to thelk-ordering. Such a list can be constructed
in O(n) time since the ordering is given byFk: we just have to filter out the
points inFk that are on the “wrong” side ofβij . (Actually it is not necessary to
store the whole listsL′

ijk andR′
ijk : we only need to store the first and the last

point in each list.) Hence the total time complexity needed to construct the lists
is O(γ3n + γn log n), see lines 1–17 in Algorithm 4. These lists will help us to
compute an approximate farthest neighbor inLij andRij for each pointp ∈ P in
timeO(γ), as we describe below.

Phase 2: Computing approximate farthest neighbors. Let the approximate
distance of a pointq from p be the maximum distance among all projections ofq
onto the lineslk. Now let the approximate farthest neighborN(p, i, j, L) of p be
the pointq ∈ Lij with maximum approximate distance fromp. EachN(p, i, j, L)
can be computed in timeO(γ) by taking the farthest point fromp over all first
and last elements ofL′

ijk with k = 1, . . . , γ. Define and computeN(p, i, j, R)

analogously. Hence the total time complexity of phase 2 isO(γ3n), as there are
O(γ2n) triples of type(p, i, j). The error we make by using approximate farthest
neighbors is small:

Lemma 6.4.10 If p is any point inP , pL the point inLij farthest fromp andpR

the point inRij farthest fromp, then
(a) |ppL| 6 (1 + κ/24) · |pN(p, i, j, L)| and
(b) |ppR| 6 (1 + κ/24) · |pN(p, i, j, R)|.

Proof: Due to symmetry it suffices to check (a). If the algorithm did not se-
lect pL as farthest neighbor it holds that for each of thelk-orderings there is a
point farther fromp than pL. HencepL must lie within a symmetric2γ-gon
whose edges are at distance|pN(p, i, j, L)| from p. This implies that|ppL| ≤
|pN(p, i, j, L)|/ cos(π/(2γ)) ≤ |pN(p, i, j, L)|/ cos(πκ/8) usingγ = ⌈4/κ⌉.
Thus it remains to show that1/ cos(πκ/8) ≤ 1 + κ/24. Sincecosx ≥ 1− x2/2
for anyx, the claim is true if1 − π2κ2/128 ≥ 1/(1 + κ/24). This inequality
holds for all0 < κ ≤ 1/2. �
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Phase 3: Testing pole candidates.Compute the WSPD forP with separation
constantτ . To be able to guarantee a(1 + ε)-approximation algorithm the value
of τ will depend onε andκ as follows:

τ = 8

(
1 + ε

1 + ε− (1 + κ)(1 + κ/24)
− 1

)
.

Note that the above formula implies that there is a trade-offbetween the values
τ andκ, which can be used to fine-tune which part of the algorithm contributes
how much to the uncertainty and to the running time. Setting for instanceκ to
0.9ε yields, forε small,16/ε + 15 < τ/8 < 32/ε + 31, i.e. τ = Θ(1/ε). For
each pair(A, B) in the decomposition we select two arbitrary pointsu ∈ A and
v ∈ B. Let l(u,v) be the line throughu andv. Find the lineli that minimizes
the angle betweenli and l(u,v). That is, the lineli is a close approximation of
the direction of the line throughu andv. From above we have thatli is divided
into γ + 1 intervals of lengthdi/(γ + 1). For eachj, 1 ≤ j ≤ γ, compute
min(|N(u, i, j, L)u| + |vN(v, i, j, R)|, |N(u, i, j, R)u| + |vN(v, i, j, L)|). The
smallest of theseO(γ) values is saved, and is a close approximation ofdia §uv −
|uv|, which will be shown below.

The number of pairs in the WSPD isO(τ2n), which implies that the total
running time of the central loop of this phase (lines 33–41 inAlgorithm 4) is
O(γ · τ2n). Building the WSPD and computing§u′v′ takes an extraO(τ2n +
n logn) time. Thus the whole algorithm runs inO(γ3n + γτ2n + γn log n) time
and usesO(n log n + γ2n + τ2n) space. Settingκ = 0.9ε yieldsγ = O(E) and
τ = O(E) and thus the time and space complexities we claimed.

6.4.5 The proof of correctness for Theorem 6.4.8

It remains to prove that the diameter of the dipolar tree thatwe compute is indeed
at most(1 + ε) dmin.

From Lemma 6.4.6 we know that we will test a pair of polesu andv for which
dia §uv ≤ (1 + 8/τ) dmin = 1+ε

(1+κ)(1+κ/24) dmin. The equality actually explains
our choice ofτ . In this section we will prove that our algorithm always computes
a dipolar tree whose diameter is at most(1 + κ)(1 + κ/24) dia §uv and thus at
most(1 + ε) dmin.

Consider the tree§uv. For simplicity we rotateP such that the linel through
u andv is horizontal andu lies to the left ofv, as illustrated in Figure 6.12a. Let
δ = |uv|. Our aim is to prove that there exists an orthogonal cut that splits the
point setP into two sets such that the tree obtained by connectingu to all points
to the left of the cut and connectingv to all points to the right of the cut will
give a tree whose diameter is a(1 + κ)-approximation ofdia §uv. Since the error
introduced by approximating the farthest neighbor distances is not more than a
factor of(1 + κ/24) according to Lemma 6.4.10, this will prove the claim in the
previous paragraph.

Denote byCu andCκ the circles with center atu and with radiusru and
rκ = ru + κz respectively, wherez = dia §uv = δ + ru + rv. Denote byCv the
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Figure 6.12: A valid cut.

circle with center atv and with radiusrv. Let s ands′ (t andt′) be two points on
Cu (Cv) such that ifCu (Cκ) andCv intersect, thens ands′ (t andt′) are the two
intersection points, wheres (t) lies aboves′ (t′, respectively). Otherwise, ifCu

(Cκ) andCv do not intersect, thens = s′ (t = t′) is the intersection of the line
segment(u, v) andCu (Cv, respectively), see Figure 6.12a.

We say that a cut with a linelκ is valid iff all points in P to the left of lκ
are contained inCκ and all points ofP to the right oflκ are contained inCv.
A valid cut guarantees a dipolar tree whose diameter is at most δ + rκ + rv =
(1 + κ) · dia §uv.

We will prove that the algorithm above always considers a valid cut. For
simplicity we assume thatru(§uv) ≥ rv(§uv). We will show that there always
exists a markerbij on li such that cuttingli orthogonally throughbij is valid.
Actually it is enough to show that the two requirements beloware valid for any
§uv. For a pointp, denote thex-coordinate and they-coordinate ofp by p.x and
p.y, respectively. For simplicity we setu = (0, 0). We have

(i)
z

γ + 1
· 1

cos π
2γ

≤ 1

2
(t.x− s.x), and

(ii) tan
π

2γ
≤ t.x− s.x

2(ru(§uv) + rv(§uv))
.

The reason for this will now be explained. First we need to define some additional
points. The reader is encouraged to study Figure 6.12 for a visual description. Let
s = (s.x, ru), s′ = (s′.x,−ru), t = (t.x, rv) andt

′
= (t′.x,−rv). Let a be

the perpendicular bisector of the projections ofs and t on thex-axis and letπ
be the orthogonal projection of the plane ona. Now we can definecl to be the
intersection point of the lines(s, π(t

′
)) and(s′, π(t)), andcr to be the intersection

point of the lines(t, π(s′)) and(t
′
, π(s)).

It now follows that any bisectorl′ that intersects the three line segments(s, t),
(cl, cr) and(s′, t

′
), will be a valid cut. This follows since all points to the leftof
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l′ will be connected tou and all points to the right ofl′ will be connected tov,
and the diameter of that tree will, obviously, be bounded byδ +(ru(§uv)+κz)+
rv(§uv) which is a(1 + κ)-approximation ofdia §uv.

From the algorithm we know that (a) there is a lineli such that∠(li, l(u,v)) ≤
π/(2γ), and that (b) there areγ orthogonal cuts ofli that define equally many
partitions ofP . The distance between two adjacent orthogonal cuts ofli is at
mostz/(γ + 1). This implies that the length of the largest interval onl(u,v) that
is not intersected by any of these orthogonal cuts is at most

1

cos π
2γ

· z

γ + 1
.

Hence requirement (i) ensures that for every§uv the distance|clcr| = (t.x −
s.x)/2 must be large enough to guarantee that there is an orthogonalcut of li that
intersects it.

An orthogonal cut ofli has an angle of at leastπ/2 − π/(2γ) to l(u,v). To
ensure that an orthogonal cut ofli that intersects the line segmentclcr also passes
betweens andt and betweens′ andt

′
it suffices to add requirement (ii).

It remains to prove the following lemma which implies that for every§uv there
is a valid orthogonal cut.

Lemma 6.4.11For anyu, v ∈ P (u 6= v) the tree§uv fulfills requirements (i)
and (ii).

Proof: The tree§uv can be characterized by the relationship of the two ratios

α :=
δ

ru + rv
and F :=

1 + κ/2

1− κ/2
.

We distinguish three cases: (1)α < 1, (2) 1 ≤ α ≤ F , and (3)α > F . For each
of these three cases we will show that§uv fulfills the two requirements.

Case 1: Using the following two straight-forward equalities,s.x2 + s.y2 = r2
u

and(δ− s.x)2 + s.y2 = r2
v, we obtain thats.x = (δ2 + r2

u − r2
v)/(2δ). A similar

calculation fort.x yieldst.x = (δ2 + r2
κ − r2

v)/(2δ). Inserting these values gives
t.x−s.x = (κ2z2 + 2κzru)/(2δ). The fact thatα ≤ F allows us to further
simplify the expression fort.x−s.x by using the following two expressions:

z

δ
=

δ + ru + rv

δ
= 1 +

ru + rv

δ
>

2

1 + κ/2
, and

ru

δ
≥ 1− κ/2

2(1 + κ/2)
.

From this we obtain that

t.x− s.x =
κz

2

(
κz

δ
+

2ru

δ

)
>

κz

2
.

This fulfills requirement (i) since

z

γ + 1
· 1

cos π
2γ

6
κz

4
6

1

2
(t.x− s.x). (6.1)
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For requirement (ii) note thattanπ/(2γ) ≤ 2κ tanπ/16 < 2κ/5. Sinceκ ≤ 1/2
we get thatz/δ > 2/(1 + κ/2) ≥ 8/5. Combining this inequality, Equality 6.1,
and our assumption thatru > rv shows that requirement (ii) is also fulfilled:

t.x− s.x

2(ru + rv)
>

κz

4δ

(
2ru + κz

ru + rv

)
>

κz

4δ
>

2κ

5
.

Case 2:In this case we argue in the same manner as in the previous case. Using
the fact thats.x = ru andt.x = (δ2 + r2

κ − r2
v)/(2δ) yields

t.x− s.x >
κz

2

(
κz

δ
+

2ru

δ

)
>

κz

2
.

The rest of the proof is exactly as in case 1.

Case 3:The first requirement is already shown to be fulfilled sincet.x − s.x >

δ − ru − rv > κz/2, hence it remains to show requirement (ii). We have

t.x− s.x

2(ru + rv)
>

δ − (ru + rv)

2(ru + rv)

plugging in the values givesκ/(2 − κ), which is at least2κ/5. The lemma fol-
lows. �

The lemma says that for every dipole{u, v} there exists a linea such that the
dipolar tree obtained by connecting all the points on one side ofa to u and all the
points on the opposite side tov, is a(1 + κ)-approximation of§uv.

6.4.6 Putting things together

Combining grid- and WSPD-based approach yields a strong LTAS of order 5:

Theorem 6.4.12A spanning treeT of P with dia T ≤ (1 + 1/E) dP can be
computed inO∗(E5 + n) time usingO(E4 + n) space.

Proof: Applying Algorithm 4 to the setR ⊆ P of the O(E2) representative
points takesO(E3|R| + E|R| log |R|) time usingO(E2|R|+ |R| log |R|) space
according to Theorem 6.4.8. Connecting the points inP \R to the poles adjacent
to their representative points yields a(1 + ε)-approximation of theMDdST of
P within the claimed time and space bounds as in Section 6.4.1.The difference
is that now the grid cells must be slightly smaller in order tocompensate for the
fact that we now approximate theMDdST of R rather than compute it exactly. A
(1 + ε)-approximation of theMDmST of P can be computed via the grid and an
exact algorithm of Ho et al. [Ho91] inO∗(E2 + n) time usingO(E2 + n) space.
Of the two trees the one with smaller diameter is a(1 + ε)-approximation of the
MDST of P . �
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6.5 Conclusions

On the one hand we have presented a new planar facility location problem, the dis-
crete minimum-sum two-center problem that mediates between the discrete two-
center problem and the minimum-diameter dipolar spanning tree. We have shown
that there is an algorithm that computes the correspondingMSST in O(n2 log n)
time and that a variant of this tree is a factor-4/3 approximation of theMDST. It
would be interesting to know whether there is a near quadratic-time algorithm for
theMSST that useso(n2) space.

On the other hand we have given four approximation schemes for theMDST.
The asymptotically fastest is a combination of a grid-basedapproach with an algo-
rithm that uses the well-separated pair decomposition. It computes inO∗(ε−5+n)
time a tree whose diameter is at most(1+ε) times that of aMDST. Such an algo-
rithm is called a strong linear-time approximation scheme of order 5. Spriggs et
al. [Spr03] recently improved our result by giving a strong LTAS of order 3 whose
space consumption is linear inn and does not depend onε. Is order 3 optimal? Is
there an exact algorithm that is faster than Chan’s [Chn02]?Is there a non-trivial
lower bound on the computation time needed for the exactMDST?

Our scheme also works for higher-dimensional point sets, but the running time
increases exponentially with the dimension. Linear-time approximation schemes
for the discrete two-center problem and theMSST can be constructed similarly.
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Chapter 7

Optimal spanners for
axis-aligned rectangles

A brief abstract of this chapter appeared as: Tetsuo Asano, Mark de Berg, Otfried
Cheong, Hazel Everett, Herman Haverkort, Naoki Katoh and Alexander Wolff:
Optimal spanners for axis-aligned rectangles, inProc. 20th European Workshop
on Computational Geometry (EWCG), Sevilla, 2004, pages 97–100. Full text
submitted toComputational Geometry – Theory and Applications.

Abstract. The dilation of a geometric graph is the maximum, over all pairs
of points in the graph, of the ratio of the Euclidean length ofthe shortest path
between them in the graph and their Euclidean distance. We consider a gen-
eralized version of this notion, where the nodes of the graphare not points but
axis-parallel rectangles in the plane. The arcs in the graphare horizontal or ver-
tical segments connecting a pair of rectangles, and the distance measure we use
is theL1-distance. The dilation of a pair of points is then defined as the length of
the shortest rectilinear path between them that stays within the union of the rect-
angles and the connecting segments, divided by theirL1-distance. The dilation
of the graph is the maximum dilation over all pairs of points in the union of the
rectangles.

We study the following problem: givenn non-intersecting rectangles and a
graph describing which pairs of rectangles are to be connected, we wish to place
the connecting segments such that the dilation is minimized. We obtain four re-
sults on this problem: (i) for arbitrary graphs, the problemis NP-hard; (ii) for
trees, we can solve the problem by linear programming onO(n2) variables and
constraints; (iii) for paths, we can solve the problem in time O(n3 log n); (iv)
for rectangles sorted vertically along a path, the problem can be solved inO(n2)
time, and a(1 + ε)-approximation can be computed in linear time.
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7.1 Introduction

Geometric networks arise frequently in our everyday life: road networks, tele-
phone networks, and computer networks are all examples of geometric networks
that we use daily. They also play a role in disciplines such asVLSI design and
motion planning. Almost invariably, the purpose of the network is to provide a
connection between the nodes in the network. Often it is desirable that the con-
nection through the network between any pair of nodes be relatively short. From
this viewpoint, one would ideally have a direct connection between any pair of
nodes. This is usually infeasible due to the costs involved,so one has to compro-
mise between the quality and the cost of the connections.

For two given nodes in a graph, the ratio of their distance in the graph and
their ‘direct’ distance is called thedilation or stretch factorfor that pair of nodes,
and the dilation of a graph is the maximum dilation over all pairs of nodes. For
geometric networks, this is more precisely defined as follows. LetS be a set of
n points (in the plane, say), and letG be a graph with node setS. Now the dilation
for a pair of pointsp, q is defined as the ratio of the length of the shortest path inG
betweenp andq, and the length of the segmentpq. (The length of a path is the
sum of the lengths of its edges.) Again, the dilation ofG is the maximum dilation
over all pairs of points inS. A graph with dilationt is called at-spanner. Ideal
networks aret-spanners for smallt with small cost.

Spanners were introduced by Peleg and Schäffer [Pel89] in the context of
distributed computing, and by Chew [Che89] in the context ofcomputational ge-
ometry. They have attracted much attention since—see for instance the survey
by Eppstein [Epp00]. The cost of spanners can be measured according to various
criteria. For example, it is sometimes defined as the number of edges (here the
goal is to find a spanner withO(n) edges), or as the total weight of the edges (here
the goal is to find a spanner whose total weight is a constant times the weight of a
minimum spanning tree). Additional properties, such as bounding the maximum
degree or the diameter, have been considered as well.

We generalize the notion of spanners to geometric networks whose nodes are
rectangles rather than points. LetS be a set ofn non-intersecting, axis-parallel
rectangles and letE be a set of axis-parallel segments connecting pairs of rectan-
gles. For any two pointsp, q in the union of the rectangles, the dilation is now the
ratio of the length of the shortest rectilinear path in the network betweenp andq
and theirL1-distance. Here a path in the network is a path that stays within the
union of the rectangles and the connecting segments. The dilation of the network
is the maximum dilation over all pairsp, q. Again, our aim is to construct a net-
work whose dilation is small. To illustrate the concept, imagine one is given a
number of rectangular buildings, which have to be connectedby footbridges. It
is quite frustrating if, to walk to a room opposite ones own room in an adjacent
building, one has to walk all the way to the end of a long corridor, then along the
footbridge, and then back again along the corridor in the other building. Hence,
one would usually place the footbridge in the middle betweenbuildings. Follow-
ing this analogy, we will call the rectangles in the inputbuildingsfrom now on,
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and the connecting segmentsbridges. We call the underlying graph of the network
thebridge graph.

The generalization we study introduces one important additional difficulty in
the construction of a spanner: for points one only has to decidewhichedges to
choose in the spanner, but for buildings, one also has to decidewhereto place the
bridge between a given pair of buildings. It is the latter problem we focus on in
this paper: we assume the topology of the network (the bridgegraph) is given,
and our only task is to place the bridges so as to minimize the dilation.

Formally, our problem can be stated as follows: we are given asetS of axis-
parallel disjoint rectangles (buildings) in the plane, a graphG with node setS,
and for each arce of G a bridge regionΛe, an axis-aligned rectangle connecting
the two buildings. Buildings may degenerate to segments or points. The bridge
graphG must only have arcs between buildings that can be connected by a hori-
zontal or vertical segment, and may not have multiple edges or loops. The bridge
regions must be disjoint from each other and the buildings. Our goal is to find a
set of horizontal or vertical bridges lying in the bridge regions that has minimum
dilation.

Figure 7.1 shows a bridge graph (the bridge regions are shaded) and a set of
possible bridges. Note that the bridge regionsΛ2 andΛ3 simply allow any bridge
between the two buildings, but bridge regionΛ1 has been chosen so as to avoid
intersectings3 or the bridge betweens2 ands3.

Our results are as follows.

• In general, the problem is NP-hard.

• If the bridge graph is a tree, then the problem can be solved bya linear
program withO(n2) variables and constraints.

• If the bridge graph is a path, then the problem can be solved inO(n3 log n)
time.

• If the bridge graph is a path and the buildings are sorted vertically along this
path, the problem can be solved in timeO(n2). A (1 + ε)-approximation
can be computed in linear time.

s0

s1

s2

s3
Λ1

Λ2

Λ3

Figure 7.1: A bridge graph and a bridge configuration
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7.2 The bridge graph is arbitrary

In this section we show that the bridge-placement problem isNP-hard if the bridge
graph is allowed to be arbitrary. We prove this by a reductionfrom PARTITION.
The input to PARTITION is a setB of n positive integers, and the task is to decide
whetherB can be partitioned into two subsets of equal sum. PARTITION is NP-
hard [Gry79, Problem SP12].

Theorem 7.2.1 It is NP-hard to decide whether the bridges in a given bridge
graph onn rectangular buildings can be placed such that the dilation is at most2.

Let B := {β0, . . . , βn−1} be an instance of PARTITION. For0 6 i < n, we
defineαi := βi/(2

∑
06j<n βj). Note that

∑
06j<n αj = 1/2, and thatB can

be partitioned equally if and only if{α0, . . . , αn−1} can be partitioned into two
subsets of sum1/4. We create a bridge graphG(B) with 8n + 2 buildings, as
follows:

• for each0 6 i < n, we have two point-shaped buildings, namelyPi :=
(4i, 0) andQi := (4i + 2− 2αi, 0);

• for each0 6 i < n, we have four segment-shaped buildings, namelyRi :=
{4i}× [1−αi, 1] andSi := {4i+2−2αi}× [1−αi, 1], and their mirrored
imagesR′

i := {4i}× [−1, αi−1] andS′
i := {4i+2−2αi}× [−1, αi−1];

• for each0 < i < n, we have two point-shaped buildings, namelyTi :=
(4i− 1, 1) andT ′

i := (4i− 1,−1);

• we have two more point-shaped buildingsS−1 := (0, 2n+3/4) andS′
−1 :=

(0,−2n− 3/4), and two more segment buildingsRn := {4n} × [1, 2n +
3/4] andR′

n := {4n} × [−2n− 3/4,−1].

The arcs inG(B) are as follows:

• for each0 6 i < n, we have arcs(Pi, Ri), (Pi, R
′
i), (Qi, Si), (Qi, S

′
i),

(Ri, Si), and(R′
i, S

′
i);

• for each0 < i < n, we have arcs(Si−1, Ti), (Ti, Ri), (S′
i−1, T

′
i ), (T

′
i , R

′
i),

and(Ti, T
′
i );

• we have arcs(S−1, R0), (S′
−1, R

′
0), (Sn−1, Rn), (S′

n−1, R
′
n).

Observe that(Ri, Si) and(R′
i, S

′
i) are the only bridges that can still be moved;

all other bridges are fixed by the geometry. The constructionis illustrated in
Figure 7.2; the bridges to be placed are indicated as gray segments or rectangles.
For the sake of clarity, we chose different scales on thex- andy-axis.

The reduction can clearly be done in polynomial time. The following lemma
now implies the theorem.

Lemma 7.2.2 The setB can be partitioned into two subsets of equal sum if and
only if the bridges inG(B) can be placed such that the dilation is at most2.
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Figure 7.2: An instance of the bridge decision problem.

Proof: “If:” Suppose we can place the bridges inG(B) such that the dilation
is at most2. Then the dilation must be at most2 for any pair(Pi, Qi), which
implies that either the bridge(Ri, Si) must be placed in its bottommost position
or (R′

i, S
′
i) must be placed in its topmost position. LetI denote the set of indices

for which the former holds, andI ′ the set of indices for which the latter holds.
Now considerS−1 and the top vertex ofRn. TheL1-distance between them

is 4n. The shortest path between them inG(B) cannot visit anyPi or Qi, because
the length of such a path would be at least4n+2(2n+3/4)so its dilation would be
larger than2. Hence, the shortest path must visitR0, S0, T1, . . . , Rn−1, Sn−1 in
order from left to right. Anyi ∈ I induces an extra vertical distance2αi. Adding
the vertical distance betweenS−1 andR0 and alongRn, and the horizontal dis-
tance traversed, we get a total length of at least

∑
i∈I(2αi) + 2(2n− 1/4) + 4n.

Hence,
∑

i∈I αi 6 1/4. A similar argument forS′
−1 and the bottom vertex of

R′
n shows that

∑
i∈I′ αi 6 1/4. It follows thatI andI ′ induce an equal partition

of B.
“Only if:” Suppose there is an equal partition ofB. Then there are disjoint

sets of indicesI and I ′ with I ∪ I ′ = {0, . . . , n − 1} such that
∑

i∈I αi =∑
i∈I′ αi = 1/4. For i ∈ I place the bridges(Ri, Si) and (R′

i, S
′
i) in their

bottommost position, and fori ∈ I ′ place the bridges(Ri, Si) and(R′
i, S

′
i) in

their topmost position.
Consider two pointsp, q, each lying on a building, withpx 6 qx. If px = qx,

thenq can be reached without any detour. Otherwise, we distinguish two cases.

• The first case is thatp or q (or both) have non-zeroy-coordinate. Assume
without loss of generality thatpy > 0 or thatpy = 0 andqy > 0. Consider
the path that goes up or down fromp until reachingy = 1, then goes to the
right while staying above thex-axis until thex-coordinate ofq is reached,
and then goes straight down or up toq.
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If p = S−1 andq ∈ Rn, then the length of the path is bounded by

4n +
∑

i∈I

(2αi) + 2(2n− 1/4) = 8n.

Since|px − qx| = 4n, the dilation is at most2.

If p 6= S−1 or q 6∈ Rn, the length of the path is bounded by

|px−qx|+2
∑

i∈I

αi+|1−py|+|1−qy| = |px−qx|+1/2+|1−py|+|1−qy|.

If py andqy are not both6 1, then|1−py|+ |1−qy| = |py−qy|, otherwise,
|1− py|+ |1− qy| = |py− qy|+ 2|1−max(py, qy)| 6 |py − qy|+ 1/2. In
both cases the length of the path is at most|px − qx| + |py − qy| + 1, and
from |px − qx| > 1 it follows that the dilation is at most2.

• The second case is thatpy = qy = 0. Now the vertical distance traversed
by the shortest path is at most2+

∑
i∈I(2αi) = 5/2. Hence, if|px−qx| >

5/2, the dilation is at most 2. But|px − qx| < 5/2 implies thatp = Pi

andq = Qi for some0 6 i < n or thatp = Qi andq = Pi+1 for some
0 6 i < n. In the former case the dilation is 2 because either(Ri, Si) is
bottommost or(R′

i, S
′
i) is topmost. In the latter case the dilation is less than

2 because the vertical distance traversed is exactly 2 and|px − qx| > 2.
�

7.3 The bridge graph is a tree

In this section we will show that the bridge-placement problem can be solved
by a linear program if the bridge graph is a tree. We start by introducing some
terminology and notation, and by proving some basic lemmas.

As before, we denote the bridge graph byG. Any set of bridges realizingG
will be called aconfiguration.

Given a configurationB and two pointsp and q in the union of all build-
ings, we useπ(p, q, B) to denote the family of rectilinear shortest paths fromp
to q within the configuration (that is, paths whose links lie inside buildings or
on bridges). The paths of this family are essentially the same, they differ only
in how they connect two points inside the same building, and so we will simply
speak aboutthe unique pathπ(p, q, B). Thedilation of the pathπ = π(p, q, B) is
dil(π) := |π|/‖pq‖, where|π| is the total length ofπ and‖pq‖ is theL1-distance
of p andq. Figure 7.3 shows a configuration and an example path.

Thedilation dil(B) of a configurationB is defined as the maximum dilation
of any path with respect toB. Our aim is to find a configuration of minimum
dilation. We first characterize pairs of points that are responsible for the dilation
of a given configuration.
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Lemma 7.3.1 Let σ be the dilation of a configurationB whose underlying graph
is a tree. Then there are pointsp andq with dil(π(p, q, B)) = σ such that the
closed bounding box ofp andq does not contain any point of a building other
thanp andq, and at least one of the pointsp andq is a building corner.

Proof: Among all pairs of points(p, q) that have maximum dilation with respect
to B, consider the subset of pairs where‖pq‖ is minimum. Choose a pair(p, q)
from this subset wherep is lexicographically smallest. Letβ be the closed bound-
ing box ofp andq, and assume there is a pointr ∈ β distinct fromp andq that
belongs to a building. By our choice of(p, q), we have|π(p, r, B)| < σ‖pr‖ and
|π(r, q, B)| < σ‖rq‖. Sincer ∈ β we have‖pq‖ = ‖pr‖ + ‖rq‖. Combining
with the triangle inequality we obtain

|π(p, q, B)| 6 |π(p, r, B)|+ |π(r, q, B)| <
σ‖pr‖+ σ‖rq‖ = σ‖pq‖ = |π(p, q, B)|,

a contradiction, so no such pointr ∈ β exists.
It immediately follows thatp andq are on the boundary of their buildings. It

remains to prove that at least one of them is a building corner. Assume to the
contrary that both are on the interior of a building edge. Then eitherp and q
have the samex-coordinate and lie on the top and bottom edge of their buildings,
or they have the samey-coordinate and lie on the left and right edge of their
buildings. We discuss the first case, the second case is analogous. Clearly, moving
bothp andq the same distance to the left or right does not change‖pq‖. But what
about|π(p, q, B)|? Letℓ be the vertical line throughp andq, and lete andf be
the points whereπ(p, q, B) leaves the building containingp andq, respectively.
If e andf lie on opposite sides ofℓ as in Figure 7.4, we can movep andq slightly
to the left without changingdil(π(p, q, B)), a contradiction to the assumption
thatp is lexicographically smallest. It follows thate andf lie on the same side
of ℓ (including ℓ itself), and so|π(p, q, B)| increases if we movep andq into
the opposite direction, a contradiction to the assumption that dil(π(p, q, B)) is
maximal. �

A point pair(p, q) as in the lemma—its bounding box contains no other point of
any building and at least one ofp andq is a building corner—will be called a
visible pair—see Figure 7.5 for examples. We denote the set of all visiblepairs
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p

q

Figure 7.6

by V . Note that the second statement of the lemma does not hold if there are
cycles in the bridge graph—the maximum dilation may occur between two points
in the interior of building edges, as in Figure 7.6.

Lemma 7.3.2 For any set ofn buildings, there are at mostO(n2) visible pairs
and they involve at most12n points. These points can be computed inO(n log n)
time.

Proof: Clearly there are at mostO(n2) visible pairs where both points are build-
ing corners. These pairs involve only the at most4n building corners. Consider a
visible pair(p, q) where onlyp is a building corner. Thenq can be found by shoot-
ing a vertical or horizontal ray fromp until it hits another building. It follows that
for each building cornerp there are at most two choices forq, so there are at most
8n such visible pairs, and at most8n candidates for non-corner points that can be
involved in a visible pair. They can be found inO(n log n) time by computing a
vertical and a horizontal decomposition of the set of buildings [Brg97KOS]. �

Lemmas 7.3.1 and 7.3.2 allow us to compute the dilation of a given configuration
efficiently. The quadratic bound is tight: even if the bridgegraph is a path, there
can beΩ(n2) visible pairs.

Given a bridge graphG, our goal is to minimize

max
(p,q)∈V

dil(π(p, q, B))

over all configurationsB realizingG. We will now reformulate this problem as a
linear program.

Theorem 7.3.3 If the bridge graphG is a tree, then a placement of the bridges
that minimizes the dilation can be computed by solving a linear program with
O(n2) variables and constraints, wheren is the number of bridges in the bridge
graph.

Proof: For each edgee of G, we introduce a variableXe specifying the position
of the corresponding bridge;Xe is thex-coordinate of a vertical bridge or the
y-coordinate of a horizontal bridge. We also introduce a variableZ. Our linear
program will be such that a variable assignment is feasible if and only if the bridge
assignment prescribed by theXe is a configuration realizingG with dilation6 Z.
Minimizing Z will then solve the bridge-placement problem.

We will need a number of extra variables. We first define a set ofpointsU
by taking all points involved in a visible pair, as well as allbridge endpoints.
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By Lemma 7.3.2, the size ofU is O(n). Some of the points inU are of the
form (const, const) (namely the points in a visible pair), some are of the form
(const, Xe) (the endpoints of a horizontal bridge), and some are of the form
(Xe, const) (the endpoints of a vertical bridge). For each pair of points(u, v)
from U that lie in the same building, we introduce an extra variableDuv.

We can now describe the linear program. For eachXe, we need two simple
constraints of the formXe > constandXe 6 const, ensuring that the bridge
indeed lies in the bridge region. For eachDuv, we add constraints enforcing
Duv > ‖uv‖, as follows. Letu = (xu, yu), v = (xv, yv) (recall that each
coordinate is either a constant, or one of the variablesXe, for some edgee). Then
we add the constraints:

Duv > xu − xv + yu − yv

Duv > xv − xu + yu − yv

Duv > xu − xv + yv − yu

Duv > xv − xu + yv − yu

Clearly, these four constraints together guarantee thatDuv > ‖uv‖.
Finally, we introduce one constraint for each visible pair(p, q) ∈ V . Let

bl(p, q) be the total length of all bridges traversed byπ(p, q, B). SinceG is a tree,
the buildings and bridges traversed byπ(p, q, B) are independent of the configu-
ration, and sobl(p, q) is a constant. We can now write

|π(p, q, B)| = bl(p, q) +
∑

uv

‖uv‖,

where the sum is over the entry and exit pointsu andv of π(p, q, B) for each
building traversed. Note thatu, v ∈ U , andu andv lie in the same building. We
introduce the constraint

bl(p, q) +
∑

uv

Duv 6 Z · ‖pq‖.

We now argue that if a variable assignment is feasible in thislinear program, then
the bridge assignment prescribed by theXe is a configuration realizingG with
dilation6 Z. Indeed, consider a visible pair(p, q). We have

|π(p, q, B)| = bl(p, q) +
∑

uv

‖uv‖ 6 bl(p, q) +
∑

uv

Duv 6 Z · ‖pq‖,

and sodil(π(p, q, B)) 6 Z.
On the other hand, assume there is a configurationB realizingG. Let Xe be

the placement of the bridgee in B, let Duv = ‖uv‖, and letZ be the dilation
of B. It is now easy to see that this variable assignment is feasible.

It follows that the bridge-placement problem can be solved by minimizingZ
with respect to the linear programme described. The number of variables and
constraints isO(n2). �
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7.4 The bridge graph is a path

In the previous section we have given a linear program for thebridge-placement
problem for the case where the bridge graph is a tree. Linear programs can be
solved in practice, and for integer coefficients, interior-point methods can solve
them in time polynomial in the bit-complexity of the input [Kar84]. It is not
known, however, if they can be solved in polynomial time on the real RAM, the
standard model of computational geometry. In this section,we give polynomial
time algorithms for the case where the bridge graph is a path.

Since the bridge graphG is a path, we can number the buildings and bridges
so that bridgebi connects buildingssi−1 andsi, for 1 6 i 6 n (so there are
n + 1 buildings andn bridges). Before we continue, we need to introduce some
more terminology. We consider a pathπ = π(p, q, B) to be oriented fromp to q.
After traversing a bridgeb, the path can continue straight on to traverse the next
bridgeb′ if b andb′ are collinear. In all other cases, it has to turn.

Given a pathπ, a link ℓ of π is a maximal straight segment of the path. A link
can contain more than one bridge if they are collinear. For example, in Figure 7.7
there is a link containingb1 andb2, and another link containingb8, b9, andb10.

b9b10 b8

b12

b13

pπ

b1

b2

b4

b6

b7

b11

b14

q

s6

b5

b3

s10

s0

Figure 7.7: U-turns and their outer sides

The pathπ turns at both ends of a link (except for the first and last link). The
link is a right U-turn if π turns right before and after the link. Aleft U-turn
is defined symmetrically. In Figure 7.7, the links containing bridges(b1, b2),
(b4, b5), andb12 are right U-turns, while the links containingb7, (b8, b9, b10), b11,
and(b13, b14) are left U-turns. Note that there can be U-turns that do not contain
any bridges, as the link ofπ inside buildings6 in Figure 7.7.

The inner sideandouter sideof a U-turn are rectangular regions infinite on
one side, and bounded by the line supporting the link and the two lines orthogonal
to it through the first and last points of the link. The outer side lies locally to the
left of a right U-turn, or to the right of a left U-turn, the inner side lies locally to
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the right of a right U-turn or to the left of a left U-turn. In Figure 7.7, the outer
sides of all U-turns are shaded.

U-turns are the links of a path that determine its dilation, as the following
lemma shows.

Lemma 7.4.1 Let B andB′ be configurations,(p, q) a visible pair, andπ :=
π(p, q, B) andπ′ := π(p, q, B′) the paths betweenp andq with respect to the
two configurations. Ifdil(π′) < dil(π) then there exists a U-turnℓ containing
bi . . . bj of π such that the corresponding bridgesb′i, . . . , b

′
j of B′ lie strictly on

the inner side ofℓ.

Proof: For each U-turnℓ of π, shade the outer side ofℓ, as in Figure 7.7. It
is easy to see thatπ is a shortest rectilinear path fromp to q that visits all the
shaded regions in order. If the claim were not true, thenπ′ would also visit all
these regions in order, and so|π′| > |π|, a contradiction. �

7.4.1 The decision problem

We will give an algorithm that takes as input the set of buildingss0, . . . , sn and
a real numberσ > 1, and computes a configurationB with dil(B) 6 σ, or
determines that no such configuration exists.

The algorithm computesn setsI1, I2, . . . , In, whereIi is a set of possible
bridges betweensi−1 andsi. The sets are defined recursively as follows. Assume
that I1, . . . , Ii−1 have already been defined. For each visible pair(p, q) with
p ∈ ⋃i−1

j=0 sj andq ∈ si we defineI(p, q) as the set of bridgesbi connecting
si−1 andsi such that the following holds: there is a set of bridgesb1 ∈ I1, b2 ∈
I2, . . . , bi−1 ∈ Ii−1 such thatdil(π(p, q, (b1, . . . , bi))) 6 σ. Finally, Ii is the
intersection of allI(p, q).

Note that for each visible pair(p, q) we can choose the bridges inI1, . . . , Ii−1

independently. This makes it possible to computeIi efficiently, as we will see
below. On the other hand, it implies that not every sequence of bridges chosen
from the sets will be a configuration with dilation at mostσ—our main lemma
will be to show that such a sequence does indeed exist.

The opposite direction is nearly trivial: if a configurationwith dilation at
mostσ exists, it can be found in the sets we constructed, as we show now.

Lemma 7.4.2 Let B = (b1, b2, . . . , bn) be a configuration such thatbi 6∈ Ii for
somei. Thendil(B) > σ.

Proof: Let i be the smallest index withbi 6∈ Ii. Sincebi 6∈ Ii, there exists
a visible pair(p, q) with p ∈ sj , j < i, andq ∈ si such that for any set of
bridges chosen fromI1, . . . , Ii−1 the path betweenp andq has dilation larger
thanσ. Since by our choice ofi we havebk ∈ Ik for k < i, we have indeed
dil(π(p, q, B)) > σ. �

We first argue that the setsIi can be represented and managed easily.



156 CHAPTER 7. SPANNERS FOR RECTANGLES

Lemma 7.4.3 Let I1, I2, . . . , In be defined as above. Then thex-coordinates (y-
coordinates) of the bridges in each set form an interval.

Proof: It is sufficient to show that the setsI(p, q) are intervals. Consider a
visible pair(p, q) with p ∈ sj andq ∈ si. Without loss of generality, assume
the bridges inI(p, q) to be vertical. Take three bridgesa, b, c with x-coordinates
ax < bx < cx anda, c ∈ I(p, q). We will show thatb ∈ I(p, q).

Due to symmetry, we can assumeqx > cx. Sincea ∈ I(p, q), a pathπ =
π(p, q, (b1, . . . , bi−1, a)) exists (fat gray in Figure 7.8) withdil(π) ≤ σ that uses
bridgesb1 ∈ I1, . . . , bi−1 ∈ Ii−1. Now we can exchange the part ofπ from
whereπ entersa to whereπ reachesq by a piece that usesb instead ofa (dashed
black in Figure 7.8). This new path is at most as long asπ, which shows that
b ∈ I(p, q). �
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Figure 7.8: Proof of Lemma 7.4.3
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Figure 7.9: Proof of Lemma 7.4.4.

Once we knowI1, . . . , In, we can recursively compute a configuration with dila-
tion at mostσ. Choose an arbitrary bridgebn ∈ In. If bridgesbn−1, bn−2, . . . ,
bi+1 have been computed, choose a bridgebi ∈ Ii whose distance frombi+1 is
minimal. SinceIi is an “interval of bridges”, this implies that eitherbi andbi+1

are collinear, orbi is one of the extreme bridges inIi. We now prove that this
approach is correct.

Lemma 7.4.4 Let I1, . . . , In be given as defined above. A configurationB with
dilation dil(B) 6 σ exists if and only ifIn 6= ∅. If it exists, it can be computed
in O(n) time from the intervals.

Proof: The “only if” part follows from Lemma 7.4.2. We show the “if” part by
proving that the configurationB = (b1, . . . , bn) defined above has dilation6 σ.
Since this configuration can clearly be computed in linear time from the intervals,
the last statement of the lemma will follow at the same time.

Assume thatdil(B) > σ. Then there is a visible pair(p, q), such that the
dilation dil(π(p, q, B)) > σ. Let π = π(p, q, B), and letsu, st be the buildings
containingp and q. Without loss of generality we can assumeu < t. Since
bt ∈ It, there is a sequence of bridgesb′1, . . . , b

′
t−1 with b′k ∈ Ik, such that the

pathπ′ = π(p, q, (b′1, . . . , b
′
t−1, bt)) has dilation at mostσ.

We havedil(π′) 6 σ < dil(π). By Lemma 7.4.1 there is a U-turnℓ =
(bi, . . . , bj) of π (without loss of generality assumed to be a left U-turn) suchthat
all the bridgesb′i, . . . , b

′
j lie strictly to the left ofℓ, see Figure 7.9.
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The last bridge of bothπ andπ′ is bt, so j < t. It follows that π passes
throughbj+1. Sinceℓ is a left U-turn, the bridgebj+1 is strictly to the left ofbj .
By definition of bj , however, this implies thatbj is the left endpoint ofIj , and
b′j 6∈ Ij , a contradiction. �

Given a pointp in a buildingsu, we can define a configurationBp that is, in a
sense, optimal forp by choosing bridgesbp

1, . . . , b
p
n as follows. Fork 6 u, choose

an arbitrary bridgebp
k ∈ Ik. Choose bridgebp

u+1 as close as possible top. The
remaining bridges are chosen recursively, by choosingbp

k ∈ Ik to be as close
to bp

k−1 as possible. Letmp
i denote the endpoint ofbp

i on the buildingsi. The
following lemma shows thatBp is indeed optimal forp.

Lemma 7.4.5 Let intervalsI1, . . . , In be as defined above, letp ∈ su andq ∈ st,
with u < t. Furthermore, letB = (b1, . . . , bn) be a configuration withbi ∈ Ii

for i < t, and letB′ be the configuration(b1, . . . , bu, bp
u+1, . . . , b

p
t−1, bt, . . . , bn).

Thendil(p, q, B′) 6 dil(p, q, B).

Proof: Let π = π(p, q, B), andπ′ = π(p, q, B′). Assume thatdil(π′) > dil(π).
By Lemma 7.4.1 there is then a U-turnℓ = (bp

i , . . . , b
p
j ) of π′ (without loss of

generality assumed to be a left U-turn) such that the corresponding bridges ofπ
lie strictly to the left ofℓ. Sinceℓ is a left U-turn, the bridgebp

i−1 (or the pointp,
if i − 1 = u) lies to the left ofbp

i . The definition ofbp
i implies thatbp

i is then the
leftmost bridge inIi, a contradiction withbi ∈ Ii. �

The following lemma shows that optimal paths are helpful in computing the in-
tervalsIi.

Lemma 7.4.6 Let p ∈ su, q ∈ si, with u < i − 1. The intervalI(p, q) can be
computed in constant time ifbp

i−1 and|π(p, mp
i−1, B

p)| are known.

Proof: Recall thatI(p, q) is defined as the set of all bridgesbi connecting
si−1 andsi, such that there is a set of bridgesb1 ∈ I1, b2 ∈ I2, . . . , bi−1 ∈
Ii−1 with dil(π(p, q, (b1, . . . , bi))) 6 σ. By Lemma 7.4.5 this is equivalent to
dil(π(p, q, (bp

1, b
p
2, . . . , b

p
i−1, bi))) 6 σ. This path coincides withπ(p, q, Bp) up

to and including bridgebp
i−1, which is the pathπ(p, mp

i−1, B
p). Since the length

of this path is known, we can computeI(p, q) in constant time. �

Lemma 7.4.7 The intervalsI1, . . . , In defined above can be computed inO(n2)
time andO(n) space.

Proof: Let P denote the set of all building corners and all pointsp such that
there is a visible pair(p, q) with p ∈ su, q ∈ st, andu < t. By Lemma 7.3.2,
P contains at most12n points and it can be computed inO(n log n) time.

For each buildingst, we create a list of visible pairs(p, q) with q ∈ st and
p ∈ ⋃t−1

u=1 su such that not bothp andq are building corners. This can be done
during the same computation.
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The computation then proceeds inn stages, with stagei computing intervalIi.
Throughout, we maintain for each pointp ∈ P the bridgebp

i , as well as the length
of the pathπ(p, mp

i , B
p).

Consider stagei. We compute the intervalsI(p, q), for all pairs(p, q) with
p ∈ ⋃i−1

u=0 su andq ∈ si that are either visible pairs or where bothp andq are
building corners. (This avoids the need to precompute and store O(n2) visible
pairs.) Note that all the pointsp appearing in such pairs are inP , and so there are
at most12n such pairs.

By Lemma 7.4.6, it takes constant time to computeI(p, q) using the informa-
tion from the previous stage. We can determinebp

i and update the stored length
for π(p, mp

i , B
p) in constant time as well.

It takesO(n) time to compute the intersection intervalIi, so the total time
spent per stage isO(n). �

Lemmas 7.4.7 and 7.4.4 imply the following theorem.

Theorem 7.4.8 Given a bridge graphG on a set ofn + 1 buildings that is a path
and a real numberσ > 1, we can in timeO(n2) compute a configurationB
realizingG with dil(B) 6 σ or determine that no such configuration exists.

It seems hard to improve this result when there areΘ(n2) visible pairs that could
determine the dilation. In fact, we do not even know how to decide in o(n2) time
whether agivenconfiguration has dilation6 σ.

If the number of visible pairs of the given set of buildings iso(n2/ logn), it is
possible to do better. The difficulty is that the size of the set P is still linear, and
we cannot maintainbp

i for all pointsp ∈ P explicitly. Instead, we storebp
i and

|π(p, mp
i , B

p)| in data structures that allow us to update them efficiently. We will
need the simple data structure described in the following lemma.

Lemma 7.4.9 There is a data structure that storesm real numbersa1, . . . , am,
can be built in timeO(m), and supports the following operations inO(log m)
time:

• given an indexj ∈ {1, . . . , m}, returnaj ;

• given two indicesj′, j′′ ∈ {1, . . . , m} and a real numberb, replace the
value ofaj by aj + b for all j′ 6 j 6 j′′.

Proof: The data structure is basically a segment tree [Brg97KOS]. It is a bal-
anced binary tree, whose leaves correspond to the indices1, . . . , m in order. Each
nodev of the tree contains a real numberbv, and the value ofaj for a leafj is the
sum ofbv over the nodes on the path from the root toj. Clearly it can be returned
in timeO(log m). For the last operation, we find all the nodesv of the tree whose
descendents’ indices are in the interval[j′, j′′], but where this statement is not
true for the parent, and addb to bv. �

Let againΛi be the bridge region connectingsi−1 andsi. Let b andb′ be two
bridges inΛi, and consider them directed fromsi−1 to si. We letb ≺ b′ if and
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only if b lies left of b′. Now let P be the set of points defined in Lemma 7.4.7,
and letPi := P ∩ ⋃i

j=0 sj . Consider the union of all rectangles and all bridge
regions. This is a single rectilinear polygon. We order the points ofP along the
boundary of this polygon, in counter-clockwise order starting and ending onsn

(note that there are no points ofP in sn) and denote this order again by≺.

Lemma 7.4.10Let p, p′ ∈ Pi−1. If bp
i ≺ bp′

i thenp ≺ p′.

Proof: If p′ ≺ p while bp
i ≺ bp′

i , then the pathsπ(p, mp
i , B

p) andπ(p′, mp′

i , Bp′

)
have to cross, which is impossible. �

Theorem 7.4.11Given a bridge graphG on a set ofn+1 buildings that is a path,
and a real numberσ > 1, we can in timeO(k log n) compute a configurationB
realizingG with dil(B) 6 σ or determine that no such configuration exists, where
k is the number of visible pairs.

Proof: It is sufficient to show how to compute the intervalsIi. We start by
computing all visible pairs. This can be done in timeO(k log n) (note thatk > n),
by computing both vertical and horizontal decompositions [Brg97KOS], and a
modified version of the algorithm for reporting all direct visibility pairs by de
Berg et al. [Brg92]. For each buildingst we build a list of visible pairs(p, q) with
q ∈ st andp ∈ Pt−1.

The algorithm proceeds again inn stages, computingIi in stagei. We main-
tain two data structures,P (paths) andB (bridges). P is the data structure of
Lemma 7.4.9. It stores for eachp ∈ P a valueap, with the points sorted by≺.
If p ∈ su, thenap = 0 up to stageu + 1, andap = |π(p, mp

i−1, B
p)| when

stagei > u + 2 is about to start.B is a dictionary. At the beginning of stagei, it
stores all the bridgesbp

i−1, for p ∈ Pi−2, in the order≺. A bridge shared by sev-
eral points is only stored once. For each bridgeb, we store thex- or y-coordinate,
and two pointsp′, p′′ ∈ Pi−2 such thatbp

i−1 = b if and only if p′ � p � p′′. This
is possible by Lemma 7.4.10.

In stagei, we retrieve the list of visible pairs(p, q) with q ∈ si. For each
pair, we computeI(p, q). If p ∈ si−1, this is done directly, in constant time.
Otherwisep ∈ Pi−2, and we computeI(p, q) from bp

i−1 and |π(p, mp
i−1, B

p)|
in constant time by Lemma 7.4.6. We can find the bridgebp

i−1 in O(log n) time
in B—by Lemma 7.4.10B is sorted by points as well as by bridges. The value
|π(p, mp

i−1, B
p)| is stored inP . It follows that the total time, over all stages, for

this computation isO(k log n).
It remains to discuss the updating ofP andB to prepare them for the next

stage. Let’s first discussB. Consider the intervalIi−1. The part ofIi−1 that
continues straight on intoIi doesn’t need to be touched. The bridgesbp

i−1 on the
left or right ofIi−1 that cannot continue straight on (all bridges, if the orientation
of Ii−1 andIi is different) are removed, and replaced by bridges on the edge ofIi.
In addition, we insert new bridges for allp ∈ P ∩ si. This can be done in time
O(d log n), whered is the number of bridges being removed and created. We can
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charge the cost of removing a bridge to its creation. Since the number of bridges
created during the course of the algorithm is|P |+ 2n = O(n), the total time for
this isO(n log n).

Finally, we discuss the updating ofP . For all the bridges ofIi−1 that go
straight on toIi, we need to increase the path length by the same value. By
Lemma 7.4.10, they correspond to a single interval of pointsof P , and so this can
be done in timeO(log n). For each bridge that has been removed, we increase the
path length for its interval of points, in timeO(log n) per bridge removed. Finally,
for each pointp ∈ P ∩si inserted in this stage, we set its path length to the correct
value. The total cost of updating isO(n log n) according to Lemma 7.4.9. �

7.4.2 The optimization problem

We can now solve the original optimization problem using Megiddo’s parametric
search [Meg83].

Theorem 7.4.12Given a bridge graph on a set ofn + 1 buildings that is a path,
we can compute a configuration with the optimal dilation in timeO(n3 log n), or
in timeO(nk log2 n), wherek is the number of visible pairs.

Proof: We run the algorithm of Lemma 7.4.7 with inputσ∗, whereσ∗ is the
optimal dilation. Sinceσ∗ is not known, we parameterize all coordinates used by
the decision algorithm in the formaσ + b. One can verify that all calculations
performed by the algorithm are linear functions on the coordinates, and any linear
combination of expressions of the formaσ + b is again of this form.

Whenever the algorithm needs to compare two “numbers”aσ+b anda′σ+b′,
we compute the valueσ0 whereaσ0 + b = a′σ0 + b′. We then run the decision
algorithm of Theorem 7.4.8 usingσ0, which tells us whetherσ∗ 6 σ0. The
answer implies which of the two “numbers” is larger, and the parametrized al-
gorithm can proceed. Note that ifσ∗ = σ0, the outcome of the comparison is
arbitrary—inspection of the algorithm shows that this is not a problem.1

When the parametrized algorithm finishes, it has computed a set of non-empty
intervalsI1, . . . , In, since a configuration with dilation6 σ∗ exists. Since the
outcome of the parametrized algorithm changes forσ = σ∗, the algorithm must
have made a comparison againstσ∗. It follows thatσ∗ is the smallestσ0 tested
during the algorithm that resulted in a positive answer of the decision algorithm.

During the algorithm we maintain an interval of dilation values in which the
optimal value is known to lie. Whenever a comparison requires answeringσ∗ 6

σ0 for a σ0 outside this interval, we can immediately return the correct answer
without running the decision algorithm. At the end of the parametrized algorithm,
we can report the upper end of the interval asσ∗.

1The reader may wonder why we do not simply augment the algorithm of Theorem 7.4.8 to report
whether a configuration with dilation strictly less thanσ exists. This is indeed possible, for instance
by allowing open and half-open intervalsIi, but seems to be more complex than the observation that
tests for equality are not actually needed.
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Following Megiddo [Meg83], we organize the parametric algorithm as a “par-
allel” algorithm, using batches of independent computations. Recall that the al-
gorithm of Lemma 7.4.7 proceeds inn stages, with stagei computingI(p, q)
for O(n) pairs (p, q) with q ∈ si. The computations for each pair are inde-
pendent, and take timeO(1). It follows that we can implement them in total
timeO(n log n) plusO(log n) calls to the decision algorithm [Meg83].

Forming the intersectionIi is equivalent to the computation of a maximum
and a minimum ofn “numbers” of the formaσ + b. Consider the “number”
aσ + b as the liney = ax + b. We compute the upper and lower envelope of
all n lines, in timeO(n log n) [Brg97KOS]. We can now perform binary search
on the vertices of the envelopes, usingO(log n) calls to the decision algorithm,
to determine between which two verticesσ∗ falls. This allows us to return the
largest and smallest “number.”

Each stage takes timeO(n log n) plus O(log n) calls to the decision algo-
rithm, so the total running time isO(n3 log n). We can also use Theorem 7.4.11
to obtain total running timeO(nk log2 n). �

7.4.3 The case of vertically sorted buildings

There is one interesting case where we can prove that there are onlyO(n) visible
pairs, namely when the buildings are sorted vertically along the path, that is, all
bridges are directed vertically upwards.

Lemma 7.4.13 If the bridge graph is a path, and then + 1 buildings are sorted
vertically along the path, then there are at mostO(n) visible pairs.

Proof: A visible pair appears in the vertical decomposition of the set of build-
ings. �

Theorem 7.4.11 now leads to anO(n log n)-time decision algorithm for this case.
It is possible to do even better, as we will show in this section.

The improvement is based on a bracket structure formed by thevisible pairs.
Consider a visible pair(p, q). The segmentpq is vertical. Without loss of general-
ity, let p be its bottom end. The pathπ(p, q, B) is y-monotone, and since it cannot
intersectpq, it lies either completely to the left or to the right ofpq. We call a
visible pair (p, q) where the path lies completely to the right ofpq a left-hand
visible pair, otherwise aright-handvisible pair.

Lemma 7.4.14Given a set ofn + 1 vertically sorted buildings as defined above,
and two left-hand visible pairs(p, q) and(p′, q′), with p ∈ su, q ∈ st, p′ ∈ su′ ,
q′ ∈ st′ . Assume thatu 6 u′. Then either the pairs are independent andt 6 u′,
or (p, q) is bracketed around(p′, q′), that is,px < p′x andu 6 u′ < t′ 6 t.

Proof: If u′ < t, then the buildingsu′ lies completely to the right of the seg-
mentpq, and so we havepx < p′x. The pathπ(p′, q′, B) lies completely to the
right of the segmentp′q′, and so it cannot reachq before reachingst′ . This implies
u 6 u′ < t′ 6 t. �
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In a left-hand visible pair(p, q), eitherp is the top-left corner of a building andq
is on a bottom edge of a building, orq is a bottom-left corner, andp is on the top
edge of a building. Lemma 7.4.14 leads to a simple algorithm to compute all left-
hand visible pairs in linear time. (The same procedure, withopposite orientation,
can be used to find all right-hand visible pairs.) All we need is a stack. In stagei,
we repeatedly check whetherpx > qx, wherep is the top element of the stack
andq is the bottom-left corner ofsi. While that is true, we report(p, (px, qy))
as a visible pair and popp from the stack. Finally, either the stack is empty, or
px < qx. In the latter case, we report((qx, py), q) as a visible pair. Finally, we
push the top-left corner ofsi onto the stack, and proceed to the next stage.

Theorem 7.4.15Given a set ofn+1 vertically sorted buildings as defined above
and a real numberσ > 1. We can compute inO(n) time a configurationB with
dilationdil(B) 6 σ, or determine that none exists.

Proof: Again, we compute the intervalsI1, . . . , In in n stages. The visible
pairs are computed during the process, using a “left-side stack” for the top-left
corners and a “right-side stack” for the top-right corners.During the course of
computation, we again maintain two data structuresP andB to store path lengths
and optimal bridges. Define the index of the top-left corner of building su to be
−(u + 1), and the index of the top-right corner ofsu to beu + 1.
P is implemented as a doubly-linked list. In this list, we store the path lengths

|π(p, mp
i , B

p)| for all pointsp currently in the two stacks. The points are ordered
by increasing index as defined above (which is the same as ordering them by the
relation≺ as defined before). The points on top of the stacks are thus found at
the ends of the list. We store the path lengths by storing thedifferencebetween
two adjacent values on the edges of the list. Only for the firstand the last point
in the list, we store|π(p, mp

i , B
p)| explicitly. Note that we do not explicitly store

path lengths for pointsp that are not the corner of a building. However, these path
lengths can be derived in constant time from path lengths that are stored inP :
if p on a building with top-left cornerl is part of a left-hand visible pair, then
|π(p, mp

i , B
p)| is simply |π(l, ml

i, B
l)| − |pl|; similarly, if p is part of a right-

hand visible pair, we can derive the path length from that of atop-right corner.
Note that we can easily increase the path lengths for an interval of points inP
in constant time by adjusting two difference or end values, provided we have
pointers to the first and the last point of the interval.
B stores the optimal bridgesbp

i for all pointsp currently in the two stacks,
and is implemented as a doubly-linked list as well. As before, a bridge shared by
several points is stored only once. With each bridge, we store the index of the first
and last point using it. For each point index, we store a pointer to the node ofP
that represents it.

A stage is now implemented as follows:

1. Using the two stacks, compute left-hand and right-hand visible pairs. Ac-
cessing the leftmost and rightmost nodes inB andP , we can obtain path
length values and bridge positions for these points. With these values, we
compute the new intervalIi.
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2. Remove from the ends ofP all nodes for points popped from the two stacks.
Remove from the ends ofB all bridges that are not used by any point any-
more (these bridges can be identified by comparing the index of the point
on top of the stack with the indices of the points using the bridge). Adjust
the interval of points used by the leftmost and rightmost bridge to end at
the points on the top of the stacks.

3. For each bridgeb in Ii−1 that cannot go straight intoIi, update the path
lengths for the corresponding interval of points inP (using the indices of
the points forb and the pointers for these indices intoP).

4. Finally, remove all these bridges, update inP the interval of all points that
use the remaining bridges (the bridges that do continue straight intoIi), add
the top-left and top-right corner ofsi−1 toP and add new bridges at the left
and right margin ofIi, set the point interval of these bridges to the union of
what was just deleted and the new corner points, and push the top-left and
top-right corner ofsi on the two stacks.

Observe that all queries and updates ofB andP are done at the ends of the lists
and can be done in constant time each. Only updating path lengths inP requires
access to an edge in the interior of the list, but this edge is found in constant
time through the indices stored with the corresponding bridge at the end ofB. As
before, the removal of bridges is charged to their creation.We thus spend constant
time per stage, plus constant time per visible pair. �

Parametric search now leads directly to the following theorem. Unlike in Theo-
rem 7.4.12, we make no attempt to parallelize the parametricalgorithm.

Theorem 7.4.16Given a bridge graph on a set ofn + 1 buildings that is a path,
we can compute a configuration with the optimal dilation in timeO(n2).

Finally, we can compute a(1 + ε)-approximation in linear time. We first show
a quality bound for an arbitrary placement of the bridges. For completeness, we
cover the general case as well.

Lemma 7.4.17Given a bridge graphG on a set ofn + 1 buildings that is a path,
and any configurationB realizingG. Thendil(B) 6 (σ∗)2, whereσ∗ is the
optimal dilation. If the buildings are sorted vertically along the path, then we
havedil(B) 6 2σ∗.

Proof: Let B∗ = (b∗1, b
∗
2, . . . , b

∗
n) be an optimal configuration, that isdil(B∗) =

σ∗. Consider the interval of possible bridges betweensi−1 andsi, see Figure 7.10.
Let di be the distance ofb∗i to the farther endpoint of the interval, and lethi be
the length ofb∗i . The pair of points(p′, q′) indicated in the figure has dilation
(2di + hi)/hi 6 σ∗, which implies2di 6 (σ∗ − 1)hi.
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si−1

si

b∗
i

p′

q′

hi

di

Figure 7.10: Proof of Lemma 7.4.17

Now consider any visible pair(p, q). If π(p, q, B) uses bridgesbu, . . . , bt, we
have

|π(p, q, B)| 6 |π(p, q, B∗)|+
t∑

i=u

2di 6 |π(p, q, B∗)|+ (σ∗ − 1)

t∑

i=u

hi

6 |π(p, q, B∗)|+ (σ∗ − 1)|π(p, q, B∗)| 6 σ∗|π(p, q, B∗)|
6 (σ∗)2‖pq‖.

If the buildings are sorted vertically along the path, we canobserve that‖pq‖ >∑t
i=u hi, and so we have

|π(p, q, B)| 6 |π(p, q, B∗)|+
t∑

i=u

2di 6 σ∗‖pq‖+ (σ∗ − 1)
t∑

i=u

hi 6 2σ∗‖pq‖.

�

The lemma leads directly to a PTAS for the vertically orderedcase: start with an
arbitrary configuration, compute its dilationσ, and approximateσ∗ by a binary
search in the interval〈σ/2, σ]. This gives us a(1 + ε)-approximation ofσ∗ after
O(log(1/ε)) calls to the decision algorithm, leading to the following result.

Theorem 7.4.18Given a set ofn + 1 buildings sorted vertically along a path.
We can compute a configuration with dilation at most(1 + ε) times the minimum
dilation in timeO(n log(1/ε)).

7.5 Concluding remarks

We posed the following question: givenn non-intersecting rectangles and a graph
describing which pairs of rectangles are to be connected, can we find the connect-
ing segments such that the dilation is minimized in polynomial time? We found
that if the graph may contain cycles, this is not generally possible (unless P=NP),
but if the graph is a path, it is possible. For the case of trees, the question is still
open: so far, we can solve the problem by linear programming on O(n2) variables
and constraints, but we have no strongly polynomial-time algorithm, that is, we
have no polynomial-time algorithm for the real RAM model.
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Having gained some insight in the bridge placement problem when the bridge
graph is prescribed, it may now be interesting to study the problem with the bridge
graph not given. For example: given a set of non-intersecting rectangles, find a set
of connecting segments of given total length such that the dilation is minimized.
Or: given a set of non-intersecting rectangles: find a set of connecting segments
of minimum total length such that a given dilation is achieved. We might have to
settle for approximation algorithms in this case.

When starting this research, we originally asked about how to connect convex
polygonal objects by line segments unrestricted in orientation. It will be inter-
esting to see to what extent the techniques for the axis-aligned case carry over to
(approximation) algorithms for the unaligned case.
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Samenvatting in het
Nederlands

“Computationeel-geometrici” doen onderzoek naar het rekenen met meetkundige
voorwerpen. Voorbeelden van zulke voorwerpen zijn punten,lijnen en veel-
hoeken in het vlak—die bijvoorbeeld een stadsplattegrond voorstellen—of bollen,
blokken en ingewikkelder drie-dimensionale voorwerpen—die bijvoorbeeld de
inrichting van een electriciteitscentrale voorstellen. In deze gevallen stellen de
meetkundige voorwerpen de vorm en afmetingen van tastbare zaken in de werke-
lijkheid voor. Maar dat is niet altijd zo. Een bestand met daarin de leeftijd en
het loon van de werknemers van een bedrijf, kan ook als een bestand met pun-
ten in het vlak worden gezien: elk punt stelt een werknemer voor, waarbij één
coördinaat zijn leeftijd aanduidt en de andere coördinaat het loon. Berekenin-
gen met meetkundige voorwerpen komen voor in veel toepassingen van com-
puters: gegevensbeheer, computergesteund ontwerpen, geografische informatie-
systemen, vluchtsimulatoren, andere toepassingen van schijnwerkelijkheid, robo-
tica en routeplanning zijn maar een paar voorbeelden.

Dit proefschrift bevat resultaten in twee onderzoeksgebiedenwaarmee compu-
tationeel-geometrici zich bezighouden, ten eersteruimtelijke gegevensstructuren,
en ten tweederuimtelijke netwerken.

Ruimtelijke gegevensstructuren

Om doeltreffend te kunnen rekenen met meetkundige voorwerpen, is het van over-
wegend belang dat we verzamelingen van zulke voorwerpen doeltreffend kunnen
opslaan, doorzoeken, en soms ook wijzigen. Voor voorwerpendie meerdere di-
mensies hebben, is dat niet eenvoudig. De sleutel tot een goede oplossing ligt
vaak in het op een zinvolle manier groeperen van de voorwerpen, zodat we bij het
rekenen groepen met voorwerpen die terzake doen snel kunnenonderscheiden
van groepen zonder zulke voorwerpen.

Een ruimtelijke gegevensstructuur is een verzameling meetkundige voorwer-
pen die is geordend, in groepen is opgedeeld of op een andere wijze is behan-
deld, zodat bepaalde vragen over de voorwerpen snel kunnen worden beantwoord.
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Een belangrijk voorbeeld van zo’n vraag is: welke voorwerpen liggen binnen
een bepaald zoekgebied? De doeltreffendheid van een gegevensstructuur wordt
bepaald door de hoeveelheid benodigd geheugen, de tijd die het kost om de struc-
tuur te bouwen, de tijd die het kost om er voorwerpen aan toe tevoegen of uit te
verwijderen, en de tijd die het kost om vragen te beantwoorden. Hierbij meten
we de tijd doorgaans niet in milliseconden. In plaats daarvan gaan we na hoe het
aantal benodigde bewerkingen door de centrale verwerkingseenheid van de com-
puter, of het aantal keren dat de vaste schijf moet worden gelezen of beschreven,
afhangt van het aantal opgeslagen voorwerpen. We schrijvendan bijvoorbeeld dat
de benodigde rekentijdO(

√
n) of Ω(

√
n) is. Dat betekent dan, dat alsn het aan-

tal voorwerpen is, het aantal benodigde bewerkingen hoogstens, respectievelijk
minstens, recht evenredig is met de wortel uit het aantal voorwerpen.

Het geval dat de voorwerpen punten zijn, is in het verleden algrondig bestu-
deerd. In dit proefschrift houden we ons met twee ingewikkelder gevallen bezig:
gegevensstructuren voorgroepenpunten, en structuren voorgrotere voorwerpen.

Gegevensstructuren voor groepen punten. Bij sommige vraagstukken gaat
het niet om afzonderlijke punten, maar om groepen punten. Denk bijvoorbeeld
aan een geografisch informatiesysteem, waarinn punten zijn opgeslagen die fa-
brieken voorstellen. Elk punt heeft een kleur die aangeeft wat voor een soort pro-
ducten de betreffende fabriek maakt (chemicaliën, apparaten, voeding, energie,
enz.). Nu kun je vragen stellen zoals: “Wat voor een soorten fabrieken staan er
binnen een vierkant van tien bij tien kilometer rondom een bepaalde stad?” Zulke
vragen kunnen worden beantwoord met behulp van gewone gegevensstructuren
voor het zoeken van punten in rechthoekige gebieden: we vragen eerst alle pun-
ten op die binnen het vierkant liggen, en lopen die dan een voor een na om te
kijken welke verschillende kleuren ze hebben. Het nadeel van die aanpak is dat
het onnodig tijdrovend is als er in het zoekgebied heel veel punten liggen, maar
slechts weinig verschillende kleuren. Gegevensstructuren waarmee we gelijk de
verschillende kleuren kunnen vinden, zonder de tussenstaplangs de afzonder-
lijke punten te maken, verdienen dan de voorkeur. Nog mooieris het als we het
zoekresultaat kunnen beperken tot de kleuren diebetrekkelijk vaakvoorkomen in
het zoekgebied, zonder dat we ook alle uitzonderingen te zien krijgen. Anders zal
bij een groot gebied al gauw bijna elke kleur worden gerapporteerd, al is het maar
vanwege één fabriek. Wat met “betrekkelijk vaak” wordt bedoeld, zal afhangen
van de toepassing.

In hoofdstuk 2,”Significant-Presence Range Queries in Categorical Data”,
bekijken we dit zoekprobleem voor het geval dat “betrekkelijk vaak” betekent dat
tenminste een bepaald percentage van alle punten van de betreffende kleur in het
zoekgebied ligt. Voor het geval vann punten in één dimensie, beschrijven we een
gegevensstructuur dieO(n) geheugen gebruikt en vragen naar vaak voorkomende
kleuren in een gebied beantwoordt inO(log n + k) tijd (hierbij is k het aantal
gevonden kleuren). Helaas leidt de veralgemenisering van onze aanpak naar meer
dimensies tot een gegevensstructuur die in twee dimensies al Ω(n3) geheugen
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nodig heeft. We tonen dit aan met behulp van de volgende stelling. Stel:P is een
verzameling vann punten in eend-dimensionale ruimte, ent is een getal tussen
1 en n

2d . Het aantal verschillend samengestelde rechthoeken die preciest punten
vanP bevatten is dan in het slechtste gevalΩ(ndtd−1) enO(ndtd−1).

Omdat vragen naar vaak voorkomende kleuren kennelijk moeilijk nauwkeurig
te beantwoorden zijn, kijken we ook naar een minder strikte vorm van dit vraag-
stuk. Hierbij mogen we ook kleuren melden die eigenlijk net te weinig pun-
ten in het zoekgebied hebben. Bijvoorbeeld: in plaats van alleen alle kleuren
waarvan minstens 50% van de punten in het zoekgebied ligt, mogen we ook
kleuren melden die tussen 40% en 50% van de punten in het zoekgebied hebben
liggen. Het benodigde geheugen voor onze gegevensstructuur voor dergelijke vra-
gen hangt af van het aantal kleuren, de drempelwaarde en de vereiste nauwkeurig-
heid, maar verrassend genoeg niet van het aantal punten.

Gegevensstructuren voor grotere voorwerpen: hïerarchieën van omhullen-
den. Het is niet eenvoudig om doeltreffende gegevensstructurente ontwerpen
voor voorwerpen die meer zijn dan een punt, bijvoorbeeld lijnstukken, bollen
of veelvlakken. Oplossingen die in theorie heel doeltreffend zijn, zijn vaak zo
ingewikkeld dat ze in de praktijk nauwelijks bruikbaar zijn. Bovendien zijn
ze meestal slechts geschikt voor één soort zoekopdracht.Een goede praktische
oplossing wordt vaak geboden door hiërarchiën van omhullenden: ze zijn makke-
lijk te verwezenlijken, en hebben weinig geheugen nodig.

Een hiërarchie van omhullenden laat zich beschrijven als een boomstructuur.
In de bladeren van de boom vinden we de meetkundige voorwerpen die we willen
opslaan. Bij elke vertakking slaan we voor elke tak een rechthoek op, die net
groot genoeg is om de voorwerpen in de bladeren aan die tak geheel te bevatten,
en waarvan de zijden evenwijdig aan de assen van het assenstelsel lopen. Een
zoekopdracht met een willekeurig zoekgebied kan nu als volgt worden uitgevoerd.
We lopen de boom na, te beginnen bij de wortel. Telkens als we bij een vertakking
komen, kijken we voor elke tak of de bijbehorende omhullenderechthoek geheel
of gedeeltelijk in ons zoekgebied valt. Zo ja, dan onderzoeken we die tak verder.
Zo nee, dan kunnen we die tak overslaan. Uiteindelijk vindenwe op deze manier
precies de bladeren met de voorwerpen waarvan de omhullenderechthoek in het
zoekgebied ligt. We moeten dan alleen nog nagaan of de voorwerpen zelf ook in
het zoekgebied vallen. Op een vergelijkbare manier kunnen we bijvoorbeeld ook
zoeken naar het voorwerp dat het dichtst bij een gegeven zoekpunt ligt.

Bij het ontwerp van een hiërarchie van omhullenden kunnen we een aantal
dingen kiezen.

Om te beginnen de vorm van de omhullenden. Hierboven heb ik destructuur
beschreven aan de hand van omhullende rechthoeken, maar we zouden ook andere
vormen kunnen gebruiken. In de praktijk blijken rechthoeken echter vaak goed
te werken: ze vergen weinig opslagruimte, en de berekening of een rechthoek
al dan niet in het zoekgebied valt kan veel sneller worden gedaan dan dezelfde
berekening voor andere vormen.
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Hierboven heb ik in het midden gelaten hoe de vertakkingen inde boom eruit
zien: moeten die hoge graad hebben—dat wil zeggen dat er bij elke vertakking
een groot aantal takken tegelijk worden afgesplitst—of lage graad? Wat het han-
digst is, blijkt onder meer af te hangen van de verhouding tussen de snelheid
van de vaste schijf en de snelheid van de centrale verwerkingseenheid. Daarom
worden hiërarchieën van omhullenden vaak zo ontworpen dat we de graad kunnen
instellen, afhankelijk van de apparatuur.

De belangrijkste keuze die we verder moeten maken, is hoe de meetkundige
voorwerpen in de bladeren van de boom worden gerangschikt. Een van de groot-
ste zorgen hierbij is dat we willen vermijden dat omhullenderechthoeken van
verschillende takken elkaar overlappen. Dan bestaat immers de kans dat we beide
takken moeten doorzoeken, terwijl we bij een andere rangschikking van de voor-
werpen misschien met het doorzoeken van één tak hadden kunnen volstaan. Met
voorwerpen die groter dan punten zijn, is overlap echter niet volledig te vermij-
den. Bovendien blijkt het niet altijd voordelig te zijn om dehoeveelheid overlap
zo klein mogelijk te houden: in sommige gevallen werkt het averechts. Ongeveer
de helft van dit proefschrift is gewijd aan de vraag hoe we eenhiërarchie van
omhullende rechthoeken moeten inrichten om te kunnen garanderen dat zoekop-
drachten werkelijk snel kunnen worden uitgevoerd.

Een hiërarchie van omhullende rechthoeken met instelbaregraad wordt een
R-boom genoemd. De R-boom werd in 1984 voorgesteld door Guttman. Sinds-
dien is er veel onderzoek gedaan naar de beste manier om de voorwerpen in de
boom te rangschikken. Toch was het bij alle tot nu toe voorgestelde manieren nog
zo dat voor een zoekopdracht in het slechtste geval alle bladeren van de boom
moeten worden nagelopen, zelfs als de zoekopdracht niets oplevert. Wij hebben
onderzoek gedaan naar manieren om een R-boom zo in te richten, dat we kunnen
garanderen dat de bladeren waarvan de omhullende rechthoeken in het zoekge-
bied liggen snel kunnen worden gevonden.

Het was al bekend dat er verzamelingen van rechthoeken zijn,zodat elke R-
boom voor zo’n verzameling een zoektijd van in het slechtstegevalΩ(n1−1/d)
heeft (hierbij isn het aantal rechthoeken end het aantal dimensies). In dit proef-
schrift tonen we aan dat dit zelfs het geval is als de rechthoeken elkaar nauwe-
lijks overlappen, of als we zoeken met bijna vierkante gebieden. Alleen als we én
weinig overlap, én bijna vierkante zoekgebieden, én maartwee dimensies hebben,
dan is het denkbaar dat we voor het slechtste geval een beterezoektijd kunnen
garanderen. We beschrijven in dit proefschrift ook daadwerkelijk een manier om
R-bomen te bouwen die onder deze voorwaarden een betere zoektijd garandeert,
namelijkO(log2 n + k). Hierbij is k het aantal bladeren waarvan de omhullende
rechthoeken geheel of gedeeltelijk in het zoekgebied liggen.

Verder beschrijven we een manier om R-bomen te bouwen die voor de overige
gevallen de best denkbare zoektijd, namelijkO(n1−1/d + k), garandeert. We
hebben onze aanpak ook getest. De uitkomsten geven aan dat onze methode
moeilijke verzamelingen rechthoeken beter kan verwerken dan de tot nu toe be-
kende methoden. Ook in makkelijker, meer gebruikelijke omstandigheden kan
onze aanpak zich met de tot nu toe bekende methoden meten.
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We beschrijven ook een manier om onze beide methoden te combineren,
waardoor in eenvoudige gevallen zoals hierboven beschreven een zoektijd van
O(log2 n + k) wordt gegarandeerd, terwijl naar mate de invoer ingewikkelder
wordt, de garantie geleidelijk verslechtert totO(n1−1/d + k).

In drie dimensies is de aanname dat er weinig overlap is en datzoekgebieden
bijna vierkant—dat wil zeggen: kubusvormig—zijn, helaas niet genoeg om een
goede zoektijd te kunnen garanderen. We kunnen dat, op zijn minst in theorie,
echter wel als we aanvaarden dat er nog twee omstandigheden zijn waarin een
zoekopdracht moeilijk mag zijn. Ten eerste de omstandigheid dat er heel veel
drie-dimensionale rechthoeken—blokken dus—zijn die het zoekgebied niet snij-
den, maar wel heel dichtbij liggen. Ten tweede de omstandigheid dat er heel veel
heel platte blokken op een bepaalde manier vlak bij elkaar liggen. We definiëren
een maat voor een verzameling blokken, het plakjesgetal, die aangeeft in hoe-
verre de tweede omstandigheid zich voor kan doen. Onze manier om R-bomen te
bouwen garandeert korte zoektijden,O(log4 n+k), mits het aantal blokkenvlak-
bij het zoekgebied niet al te veel groter is dan het aantal blokken in het zoekge-
bied, en het plakjesgetal niet al te hoog is. Dezelfde zoektijden worden bovendien
ook gehaald bij het zoeken met niet-blokvormige zoekgebieden.

Ruimtelijke netwerken

Een netwerk bestaat uit knopen en verbindingen. In een ruimtelijk netwerk zijn
de knopen en verbindingen meetkundige voorwerpen. Gewoonlijk hebben die
een plaats en afmetingen in de ruimte, maar ze kunnen ook niet-meetkundige
eigenschappen hebben, zoals de aanlegkosten en de snelheidvan de verbindingen.
Ruimtelijke netwerken vind je overal in het dagelijks leven: wegennetwerken,
telefoonnetwerken, computernetwerken enz. Het doel van het netwerk is meestal
om een verbinding tussen de knopen te verschaffen, het liefst een korte, of snelle,
verbinding. Wat dat betreft zou het volmaakte netwerk er eenzijn met een recht-
streekse verbinding tussen alle knopen. In de praktijk is dat meestal te duur,
en moet er een tussenweg worden gevonden tussen een goed en een goedkoop
netwerk. Dat leidt tot optimaliseringsproblemen van de vorm: vind voor een
gegeven verzameling knopen de “beste” verzameling verbindingendie aan bepaal-
de voorwaarden voldoet. We hebben twee van zulke vraagstukken onderzocht.

In hoofdstuk 6,“Facility location and the geometric minimum-diameter span-
ning tree”, gaat het om het volgende geval. De knopen zijn punten in het vlak,
en een verbinding tussen twee knopen kost altijd hetzelfde,ongeacht de afstand.
Er zijn n knopen, en we mogenn − 1 verbindingen aanleggen, zodat we net
elke knoop met het netwerk kunnen verbinden. Ons doel is de verbindingen
zo te kiezen dat de grootste afstand tussen twee punten in hetnetwerk zo klein
mogelijk is. Nauwkeurige oplossingen vergen tot op heden helaas bijnaO(n3)
rekentijd. Onze aanpak vindt een oplossing waarbij de grootste afstand in het
netwerk tot(1 + ε) keer zo groot is als in de beste oplossing, maar het vindt die
oplossing inO((1

ε )5 + n) tijd. Hierbij kan de onnauwkeurigheidε willekeurig
dicht bij nul worden gekozen. Voor grote verzamelingen knopen en bescheiden
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nauwkeurigheidseisen garandeert onze manier van uitrekenen een veel kortere
rekentijd dan de snelste bekende precieze berekeningswijze.

In hoofdstuk 7,“Optimal spanners for axis-aligned rectangles”, onderzoeken
we het volgende geval. De knopen in ons netwerk zijnn rechthoeken die even-
wijdig aan de assen van een twee-dimensionaal assenstelselzijn geplaatst. Ze
moeten met lijnstukken worden verbonden. Daarbij is gegeven tussen welke paren
rechthoeken een lijnstuk moet worden geplaatst; de bedoeling is nu om voor elk
zo’n paar te bepalen waar precies het lijnstuk tussen de tweerechthoeken moet
worden geplaatst. Denk hierbij bijvoorbeeld aan een aantalgebouwen die we
met loopbruggen met elkaar willen verbinden. Daarbij zou het erg vervelend
zijn als de bruggen zo worden geplaatst, dat je een grote omweg moet maken
om een kamer in een ander gebouw te bereiken die je vanuit je eigen kamer
zo kunt zien liggen. De bedoeling is daarom dat we de lijnstukken zo plaat-
sen dat de grootst mogelijke verhoudingsgewijze omweg—datis de verhouding
tussen de afstand over de bruggen en de korste rechtstreekseweg—zo klein mo-
gelijk is. In het algemeen blijkt dit vraagstuk te behoren tot de zogenaamde
NP-moeilijkeproblemen—wat wil zeggen dat het onwaarschijnlijk is dat een
nauwkeurige oplossing snel kan worden berekend. In bijzondere gevallen kan
de beste plaatsing van de lijnstukken wel gegarandeerd snelworden berekend: als
het netwerk een boomstructuur heeft, dan kan dat door middelvan lineair pro-
grammeren metO(n2) veranderlijken en voorwaarden; als het netwerk een pad
is—dat wil zeggen dat we de rechthoeken kunnen nummeren van1 totn zodat elk
lijnstuk opeenvolgende rechthoeken in de nummering met elkaar verbindt—dan
kunnen we de beste plaatsing berekenen inO(n3 log n) tijd.
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