On the abelianization of the Torelli group

De abelianisatie van de Torelligroep
(met een samenvatting in het Nederlands)

Abstract

Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magnificus, Prof. dr. W.H. Gispen, ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op maandag 6 oktober 2003 des ochtends te 10.30 uur

door
Barbara van den Berg
geboren op 22 februari 1971, te Groningen

Promotor: Prof. Dr. E.J.N. Looijenga
Faculteit der Wiskunde en Informatica, Universiteit Utrecht

Leescommissie: Prof. Dr. G.B.M. van der Geer
Prof. Dr. R.M. Hain
Dr. W.L.J. van der Kallen
Prof. Dr. I. Moerdijk
Prof. Dr. D. Siersma

Dit proefschrift werd mede mogelijk gemaakt met financiële steun van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

2000 Mathematics Subject Classification: 57M50

Contents

List of Notations v
Introduction ix
Chapter 1. Symplectic modules 1
1.1. Introduction 1
1.2. Surface modules 1
1.3. Quadratic forms 4
1.4. Simplicial complexes and posets 5
1.5. Definitions of simplicial complexes associated to a surface module. 8
1.6. The Cohen-Macaulay property of $\mathcal{I}(H, J)$ and $\mathcal{I}^{o}(H, J)$ 11
1.7. The Cohen-Macaulay property $I(\pi)_{\leq g-2}$ 13
1.8. The Cohen-Macaulay property of $\mathcal{I}\left(\pi^{-1}(1)\right)_{\leq g-2}$ and $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)_{\leq g-2}$ 17
1.9. The Cohen-Macaulay property of $\mathcal{I}\left(\pi^{-1}(1)\right)$ and $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$ when $g=1,2,3$ 18
1.10. The connectedness of $\mathcal{A}^{o}(H)$ and $\mathcal{A}^{o}(H, \pi)$ 27
1.11. Simplicial complexes with a group action 29
1.12. Computation of $H_{0}(\Sigma, \mathcal{F})$ 30
Chapter 2. Surfaces 35
2.1. Introduction 35
2.2. The Torelli group 35
2.3. The work of Johnson and others on the Torelli group 38
2.4. Closing a hole of a surface 42
2.5. The arc-complexes of Harer 45
Chapter 3. The abelianization of the Torelli group 49
3.1. Introduction 49
3.2. Genus zero 51
3.3. Genus one 59
3.4. Genus two 62
3.5. Genus three or more 64
Bibliography 73
Samenvatting 75
Dankwoord 83
Curriculum vitae 85

List of Notations

We use the following notations. The number refers to the page number where you can find the definition.
$\left.\begin{array}{lll}\text { General } & \text { notations } & \\ \hline H_{i}(X) & H_{i}(X) \text { is the } i^{\text {th }} \text { (group, singular, cellular) homology group } \\ \text { of (a group, a topological space, a space with cell structure) }\end{array}\right]$

$V \circ V / U$	$V \circ V / U:=S^{2} V / S^{2} U$ for a submodule U of V,	3
Ω_{H}	if H is a symplectic module over $\mathbb{Z} / 2$ then Ω_{H} denotes the affine space of associated quadratic forms on H,	5
Ψ_{H}	Ψ_{H} is the set of quadratic forms of Arf-invariant zero,	p. 5
$B_{r}\left(\Omega_{H}\right)$	$B_{r}\left(\Omega_{H}\right)$ is the space of all polynomial functions on Ω_{H} of degree $\leq r$,	p. 5
$\|\Sigma\|$	$\|\Sigma\|$ is the topological realization of a simplicial complex Σ,	p. 5
$H_{p}(\Sigma, \mathcal{F})$	the $p^{\text {th }}$ homology group of Σ with values in the system of coefficients \mathcal{F} is denoted by $H_{p}(\Sigma, \mathcal{F})$,	p. 6
f / y	$f / y:=\{x \in X: f(x) \leq y\}$,	6
$f \backslash y$	$f \backslash y:=\{x \in X: f(x) \geq y\}$,	p. 6
$\operatorname{Link}_{X}^{-}(y)$	$\operatorname{Link}_{X}^{-}(y):=X_{<y}=\{x \in X: x<y\}$,	6
$\operatorname{Link}_{X}^{+}(y)$	$\operatorname{Link}_{X}^{+}(y):=X_{>y}=\{x \in X: x>y\}$,	. 6
$\operatorname{Star}_{X}(y)$	$\operatorname{Star}_{X}(y):=\operatorname{Link}_{X}(y) \cup\{y\}$,	6
$C M_{d}$	$C M_{d}$ is an abbreviation for Cohen-Macaulay of dimension d,	p. 7
$\mathcal{O}(S)$	$\mathcal{O}(S)$ is the poset of nonempty finite subsets of S,	p. 8
$T(V, W)$	$T(V, W)$ is the poset of nonzero proper subspaces U of V such that $U \oplus W \rightarrow V$ is a primitive embedding,	p. 9
$\mathcal{P}(V, W)$	$\mathcal{P}(V, W)$ is the poset of partial bases E of V such that its span $\langle E\rangle$ is in $T(V, W)$	p. 9
$\mathcal{A}^{\circ}(H)$	$\mathcal{A}^{\circ}(H)$ is the poset of arc-sequences in H,	p. 9
$\mathcal{A}^{o}(H, \pi)$	if $\pi: H \rightarrow \mathbb{Z}$ is an epimorpism that factorizes of $\operatorname{Rad}(H)$, then $\mathcal{A}^{o}(H, \pi)$ is the poset of arc-sequences E^{o} in $\pi^{-1}(1)$ such that $E^{o} \in \mathcal{P}\left(H, \operatorname{Rad}\left(\pi^{-1}(0)\right)\right)$,	p. 9
$I(H, I)$	$I(H, I)$ is the poset of $U \in T(H, I)$ such that $U+I$ is isotropic,	p. 10
$\mathcal{I}(H, I)$	$\mathcal{I}(H, I)$ is the poset of $E \in \mathcal{P}(H, I)$ such that its span $\langle E\rangle$ is in $I(H, I)$,	p. 10
$T(\pi)$	$T(\pi)$ is the poset of $U \in T(V)$ such that U is in general position relative to π,	p. 13
$T(\pi / \rho)$	$T(\pi / \rho)$ is the poset of $U \in T(\pi)$ such that U is primitive relative to ρ,	p. 13
$I(\pi)$	$I(\pi):=I(H) \cap T(\pi)$,	p. 13

Notations introduced in Chapter 2

| $S_{g, r}^{n}$ | $S_{g, r}^{n}$ denotes a compact, oriented, connected topological sur-
 face of genus g, with r boundary components and n distinct | |
| :--- | :--- | :--- | :--- |
| | p. 35
 fixed points on the interior of $S_{g, r}^{n}$, | |
| $\mathfrak{F} S_{g, r}^{n}$ | $\mathfrak{F} S_{g, r}^{n}$ denotes the group of orientation preserving homeo- | |
| | p. 35
 morphisms of $S_{g, r}^{n}$ that are the identity on the boundary of | |
| | $S_{g, r}$ and fix the n distinct points pointwise, | |

$\Gamma_{g, r}^{n}$	$\Gamma_{g, r}^{n}$ is the mapping class group of $S_{g, r}^{n}$, that means, the group of isotopy classes of $\mathfrak{F} S_{g, r}^{n}$,	35
D_{γ}	if γ is an embedded circle on the interior of $S_{g, r}^{n}$ disjoint from the n fixed points, we denote by D_{γ} the left Dehn twist around γ,	p. 35
D_{β}	$D_{\beta} D_{\alpha}$ means first apply D_{α} then	
T_{S}	$T_{S}:=\operatorname{Ker}\left(\Gamma_{S} \rightarrow \operatorname{Sp}\left(H_{1}(S, P), H_{1}(S)\right)\right)$ is the Torelli group of S	p. 36
\widetilde{T}_{S}	$\widetilde{T}_{S}:=\operatorname{Ker}\left(\Gamma_{S} \rightarrow \operatorname{Sp}\left(H_{1}(S)\right)\right.$) is the big Torelli group of S	p. 36
SCC	simple closed curve,	p. 35
BSCC	bounding simple closed curve,	p. 38
$B P$	bounding pair,	p. 38
\mathfrak{T}_{k}	\mathfrak{T}_{k} is the set of BSCC-maps that bound a subsurface of genus k,	p. 38
\mathfrak{W}_{k}	\mathfrak{W}_{k} is the set of $B P$-maps that bound a subsurface of genus k,	p. 38
τ_{m}	for every $m \geq 1$ the Johnson homomorphism $\tau_{m}: \Gamma(m) \rightarrow$ $\operatorname{Hom}\left(H, \pi_{[m]} / \pi_{[m+1]}\right)$ is defined,	p. 40
t_{α}	for an oriented loop α without self intersection such that $\partial S \cap \alpha=\{p\}$ on a component ∂ of ∂S, we define $t_{\alpha}:=$ $D_{\alpha_{+}}^{-1} D_{\alpha_{-}}$. Here α_{+}, α_{-}are the boundary components of the regular neighborhood of $\alpha \cup \partial$ such that α_{-}is on the left of α and α_{+}on the right,	p. 42
$B X\left(\Lambda, \Lambda^{0}\right)$	$B X\left(\Lambda, \Lambda^{0}\right)$ denotes the simplicial complex of $\left(\Lambda, \Lambda^{0}\right)$-arc systems defined by Harer,	p. 45
$\overline{B X}(p, q)$	$\overline{B X}(p, q):=T_{S} \backslash B X(p, q)$, sometimes also abbreviated by $\overline{B X}$,	p. 46

Notations	introduced in Chapter 3	
$F^{n}(S)$	if S is a surface then $F^{n}(S)$ is the configuration space of n	p. 51
	pairwise distinct points of S,	
$P^{n}(S)$	$P^{n}(S):=\pi\left(F^{n}(S)\right)$ the pure braid group of S on n strings,	p. 51
H_{2}	if H is a free module over \mathbb{Z} then $H_{2}:=H \otimes_{\mathbb{Z}} \mathbb{Z} / 2$,	p. 59
M_{H}	M_{H} is the set of unimodular symplectic subspaces of H of	p. 59
	genus 1,	
N_{H}	N_{H} is the set of unimodular symplectic subspaces of H of	p. 59
	genus 2,	p. 59
R_{H}	R_{H} is the set of elements $U \oplus U^{\prime}-U-U^{\prime}$, where $U, U^{\prime} \in M_{H}$,	p. 59
	$U \perp U^{\prime}$ and $U \oplus U^{\prime} \in N_{H}$,	p. 59

Introduction

Let S be a surface of genus g, possibly with boundary (in this thesis by surface is meant a connected, orientable and compact topological surface). The mapping class group Γ_{S} of S is the group of isotopy classes of the orientation preserving homeomorphisms of S that are the identity on the boundary ∂S. If we choose on each boundary component of S a point and denote this set of points by P, then Γ_{S} acts on $H_{1}(S, P)$ (relative homology with integer coefficients), leaving the submodule $H_{1}(S)$ invariant and preserving the intersection product $H_{1}(S, P) \times H_{1}(S) \rightarrow \mathbb{Z}$ that can be defined. The kernel of this action is by definition the Torelli group T_{S} of S. This means that if ∂S is empty or connected, then T_{S} is the subgroup of mapping classes that act trivially on the homology of S. If ∂S has more than one component we need this refined definition in order to make T_{S} functorial for inclusion of surfaces.

In this thesis we study the abelianization of the Torelli group of a surface S with an arbitrary (but finite) number of boundary components. This study takes up and continues the work of Johnson from around 1980. He computes, among other things, that for a surface of genus at least three and with one boundary component, $H_{1}\left(T_{S}\right) \cong \wedge^{3} H_{1}(S)$ modulo 2-torsion, and the torsion is also completely described in terms of the homology of the surface, see [Johnson8]. Here we prove that this result holds for surfaces of $g \geq 3$ with an arbitrary number of boundary components. Our method of proof differs from his, is inductive in nature and may open the way to calculate the higher homology of these groups. We study how $H_{1}\left(T_{S}\right)$ changes compared to $H_{1}\left(T_{S^{\prime}}\right)$, where S is obtained from S^{\prime} by gluing a pair of pants to it, by using the action of T_{S} on Harer's arc-complexes. Furthermore we study the Torelli group of a surface of low genus, the results of which are also needed to start the induction.

We finish this introduction with an overview of the content of all chapters in this thesis, but let us first be more explicit about the method of proof we use.

Let $p, q \in \partial S$. The basic tool in our study of T_{S} is its action on the highly connected arc-complexes $B X(p, q)$ that were introduced by Harer in [Harer]. The k-simplices of this simplicial complex are $(k+1)$-tuples of isotopy classes of arcs from p to q that can be represented by a $(k+1)$-tuple of embedded arcs which are disjoint away from p, q and whose complement in S is connected. They have the
property that the stabilizers under the action of Γ_{S}, respectively T_{S}, are mapping class groups, respectively Torelli groups, of surfaces of lower genus or with fewer boundary components. Harer proves in that $B X(p, q)$ is spherical and, using the action of the mapping class group on $B X(p, q)$, he establishes the stability of the homology of the mapping class groups induced by the inclusion of surfaces. His approach is analogous to the proof of the stabilization of homology of various arithmetic groups. See also [Ivanov] on the stability of the homology of the mapping class group.

We use, just as Foisy does in [Foisy], the induced action of T_{S} on this arccomplex. Here the quotient space is a simplicial complex that is closely related to the complexes of (isotropic) partial bases of a (symplectic) lattice, studied by Maazen, Van der Kallen, Charney, Vogtmann and others to prove the homology stability for certain linear groups. See for example [Charney], [VdKallen], [Maazen], [Vogtmann]. Most of these complexes are known to be spherical and we show that this quotient space is connected up to a certain dimension. When the genus of the surface is ≥ 4 and we choose p, q on the same boundary component, this quotient is at least 2 -connected and we get by a spectral sequence argument a description of $H_{1}\left(T_{S}\right)$ as an amalgam of the abelianization of the stabilizers of the vertices. When $g=3$ the spectral sequence shows that $H_{1}\left(T_{S}\right)$ is a quotient of this amalgam, the Johnson and Birman-Craggs homomorphisms show that the kernel is trivial.

For low genera, $(g \leq 2)$, we do not have a uniform description of the abelianized Torelli group. Mess shows that for a closed surface of genus two, T_{S} is infinitely freely generated by a set of Dehn twists around separating curves, see [Mess]. We give a description of $H_{1}\left(T_{S}\right)$ in some other cases.

The thesis consists of three chapters, culminating in the proof of Johnsons result for all surfaces of $g \geq 3$. The outline of this thesis is as follows.

The first chapter is about symplectic modules and simplicial complexes described in terms of such modules. We introduce the notion of an extended surface module which formalizes the situation of $H_{1}(S, P)$ and the structures it has. It will appear in the second chapter that the quotient of $B X(p, q)$ by the action of the Torelli group, $T_{S} \backslash B X(p, q)$, is again a simplicial complex and can be described in terms of symplectic modules. The main goal of this chapter is to prove that $T_{S} \backslash B X(p, q)$ is $(g-2)$-connected when p and q are on the same boundary component; when p and q are on different components we show that it is 1 -connected if $g \geq 2$. We will do this in Sections 1.6 up to 1.10 and for this purpose we introduce some other complexes, some of them are known to be spherical, of others we prove connectedness properties here. We finish this chapter with a discussion about simply connected simplicial complexes with a group action. Using a spectral sequence we derive an exact sequence that relates the abelianization of the group to the low-dimensional homology of the quotient complex and the abelianization of the stabilizers.

The second chapter is about surfaces. We introduce the Torelli group and give an overview of the work of Johnson and others on the Torelli group. When S^{\prime} is obtained from S by closing a hole of S, we have a surjection of T_{S} onto $T_{S^{\prime}}$. We give a description of the kernel of this map. In the final section of this chapter we show that the quotient complexes of the arc-complexes of Harer by the action of the Torelli group are indeed isomorphic to the complexes introduced in Chapter 1.

In the third chapter we investigate the Torelli group of surfaces of low genus and establish an isomorphism between $H_{1}\left(T_{S}\right)$ and $\wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)$ when $g \geq 3$. Here $B_{2}\left(\Omega_{S}\right)$ is the $\mathbb{Z} / 2$ linear space of polynomial functions of degree ≤ 2 on the space of symplectic quadratic forms on $H_{1}(S, \mathbb{Z} / 2)$. If $g=0$ then T_{S} is the commutator subgroup of a pure braid group P and therefore we can give a description of $H_{1}\left(T_{S}\right)$ as a module over $\mathbb{Z}\left[P_{\mathrm{ab}}\right]$, the group ring of P_{ab}. When S is a torus then if S is closed, T_{S} is trivial; if ∂S is connected then T_{S} is infinitely cyclic and if S has two boundary components, we use the map from S to the torus with one boundary component to describe T_{S}. If S is a surface of genus two we know by the result of Mess that if S is closed, T_{S} is infinitely freely generated by Dehn twists around separating curves. When ∂S is connected, we use the map from S to the closed surface of genus two to compute $H_{1}\left(T_{S}\right)$. For a surface of genus two with two boundary components we were not able to compute its abelianized Torelli group, but we can describe it as a quotient of a group that is small enough to initiate the induction: it implies a surjection

$$
\wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right) \rightarrow H_{1}\left(T_{S}\right)
$$

when S has genus three, and will establish the theorem for S using the Johnson homomorphism and the Birman-Cragg homomorphism. For a surface of higher genus the theorem follows by induction.

A list of notations used in this thesis is given on page v.

CHAPTER 1

Symplectic modules

1.1. Introduction

This chapter is about symplectic modules and simplicial complexes associated to symplectic modules. We start with recalling definitions concerning symplectic modules and introduce the notion of an extended surface module. We then assume that we have a symplectic module over $\mathbb{Z} / 2$ and we recall some notions about quadratic forms. In the fourth section we give the definition of a simplicial complex and a poset and some related notions. We associate several simplicial complexes to a symplectic module, some of them are known to be spherical and we prove in the Sections 1.6 to 1.10 connectedness properties for the new ones. Finally, we discuss simply connected simplicial complexes with a group action and derive an exact sequence that relates the low dimensional homology groups of the quotient complex and the abelianization of the stabilizers with the abelianization of the group.

1.2. Surface modules

Let D denote \mathbb{Z} or $\mathbb{Z} / 2$ and let H be a symplectic module over D. With this we mean that H is a finitely generated free module over D with a pairing $H \times H \rightarrow D$ that is skew-symmetric, (so in fact symmetric if $D=\mathbb{Z} / 2$). If $v, w \in H$, we denote the pairing by $v \cdot w$. The radical of H is the submodule consisting of elements $v \in H$ such that $v \cdot w=0$ for all $w \in H$. In other words, it is the kernel of the homomorphism * : $H \rightarrow H^{*}=\operatorname{Hom}(H, D)$ defined by $v^{*}(x)=x \cdot v$. We denote the radical by $\operatorname{Rad}(H)$ and the quotient $H / \operatorname{Rad}(H)$ by \bar{H}. The symplectic module H is called quasi-unimodular if the induced map $\bar{H} \rightarrow \operatorname{Hom}(\bar{H}, D)$ is an isomorphism and is called unimodular if moreover $\operatorname{Rad}(H)=0$. In that case we know that the rank of the module is even and we call the integer $g(H):=\frac{1}{2} \operatorname{rk}(\bar{H})$ the genus of H. Any quasi-unimodular symplectic module H has a basis

$$
\left\{e_{1}, \ldots, e_{g}, e_{-g}, \ldots, e_{-1}, e_{g+1}, \ldots, e_{g+r}\right\}
$$

where $\left\{e_{g+i}\right\}_{i=1}^{r}$ is a basis for $\operatorname{Rad}(H)$ and $\left\{\overline{e_{ \pm i}}\right\}_{i=1}^{g}$ is a basis for \bar{H}, with intersection products $e_{i} \cdot e_{-i}=1$ and all other combinations of the basis elements have intersection product zero. We refer to such a basis as a symplectic basis for H. A direct summand I of H is called isotropic if $v \cdot w=0$ for all $v, w \in I$. If $a, b \in H$ and $a \cdot b=1$, we call $\{a, b\}$ a hyperbolic pair.

We introduce the following notions to create a setting that is suitable for later formulations.

Definition 1.2.1. A surface module is a pair (H, Δ) where H is a quasiunimodular symplectic module and $\Delta \subset \operatorname{Rad}(H)$ is a finite generating set for $\operatorname{Rad}(H)$ such that the evident map $\mathbb{Z}^{\Delta} \rightarrow \operatorname{Rad}(H)$ has kernel spanned by $\sum_{\partial \in \Delta} \partial$. An extended surface module is a triple $(\widetilde{H}, H, \Delta)$ where \widetilde{H} is a finitely generated free module over D and we have a filtration

$$
0 \subset \operatorname{Rad}(H) \subset H \subset \widetilde{H}
$$

together with a pairing $\widetilde{H} \times H \rightarrow D$ such that
(i) (H, Δ) with the restricted pairing is a surface module,
(ii) the induced map $\widetilde{H} / H \rightarrow(\operatorname{Rad}(H))^{*} \cong\left\{\sum_{\partial \in \Delta} n_{\partial} \partial^{*}: \sum_{\partial} n_{\partial}=0\right\}$ is injective and the image is of the form $\left\{\sum_{p \in P} n_{p} p^{*}: \sum_{p \in P} n_{p}=0\right\}$ for a subset $P \subset \Delta$.
We call an extended surface module complete if $\tilde{H} / H \rightarrow(\operatorname{Rad}(H))^{*}$ is an isomorphism, or equivalently, if the induced pairing $\widetilde{H} / \operatorname{Rad}(H) \times H \rightarrow D$ is perfect. We call P, which is clearly unique, the marking of the extended surface module.

If $(\widetilde{H}, H, \Delta)$ is an extended surface module, we define for every $v \in \widetilde{H}$ the orthogonal complement in H by $v^{\perp}:=\operatorname{Ker}\left(v^{*}: H \rightarrow D\right)$. If $W \subset \widetilde{H}$ is a subset we define $W^{\perp}:=\cap_{w \in W} w^{\perp}$.

The notion of an extended surface module is explained by the following example.
Example-Definition 1.2.2. Let S be a compact orientable connected topological surfaces with boundary ∂S. A boundary marking of S is a subset P of ∂S such that the map induced by the inclusion

$$
\pi_{0}(P) \rightarrow \pi_{0}(\partial S)
$$

is injective. We call it a complete boundary marking whenever this map is a bijection. The first homology group $H_{1}(S)$ of S with integer coefficients has a symplectic form defined by the intersection of cycles, the radical is generated by the boundary cycles. If Δ is the image of the natural basis of $H_{1}(\partial S)$ in $H_{1}(S)$ then $\left(H_{1}(S), \Delta\right)$ has the structure of a surface module. If P is a boundary marking of S we have the commuting exact diagram

Since we have the identification $H_{1}(S, \partial S) \cong H_{1}(S)^{*}$ by the intersection product, we see from this diagram that we can extend the pairing on $H_{1}(S)$ to a pairing

$$
H_{1}(S, P) \times H_{1}(S) \rightarrow \mathbb{Z}
$$

and that the map $H_{1}(S, P) / H_{1}(S) \rightarrow\left(\operatorname{Rad}\left(H_{1}(S)\right)^{*} \cong\left\{\sum_{\partial \in \Delta} n_{\partial} \partial^{*} \mid \sum_{\partial \in \Delta} n_{\partial}=0\right\}\right.$ thus obtained is injective. The image consists of the elements $\sum_{p \in \Delta_{P}} n_{p} p^{*}$ such that $\sum_{p \in \Delta_{P}} n_{p}=0$. Here $\Delta_{P} \subset \Delta$ is the set of cycles that are represented by a boundary component containing an element of P. Therefore $\left(H_{1}(S, P), H_{1}(S), \Delta\right)$ has the structure of an extended surface module and we remark that the marking is complete if and only if the module is complete. This finishes the example.

Let (\tilde{H}, H, Δ) be an extended surface module. We denote by $\operatorname{Sp}(\widetilde{H}, H)$ the group of automorphisms of \widetilde{H} that preserve the filtration $0 \subset \operatorname{Rad}(H) \subset H \subset \widetilde{H}$, that also preserve the pairing and are the identity on $\operatorname{Rad}(H)$. This implies that such an automorphism induces the identity on \widetilde{H} / H. The group $\operatorname{Sp}(\widetilde{H}, H)$ is called the group of automorphisms of the extended surface module. As the notation suggests, it is independent of the choice of Δ. If $H=\widetilde{H}$ is just a surface module then we denote this group by $\operatorname{Sp}(H)$. To every element $v \in H$ we assign an element δ_{v} of $\operatorname{Sp}(\widetilde{H}, H)$ by defining

$$
\delta_{v}(x):=x+(x \cdot v) v
$$

The element δ_{v} is called the symplectic transvection determined by v. An element of $\operatorname{Sp}(\widetilde{H}, H)$ maps H into itself and hence we have a group homomorphism $\operatorname{Sp}(\widetilde{H}, H) \rightarrow$ $\mathrm{Sp}(H)$ defined which is surjective. Since an automorphism of (H, Δ) is the identity on Δ we have the induced surjection $\operatorname{Sp}(H) \rightarrow \mathrm{Sp}(\bar{H})$. The kernel can be identified with $\operatorname{Hom}(\bar{H}, \operatorname{Rad}(H))$ and is generated by the elements $\delta_{r+a} \delta_{a}^{-1}(x)=x+(x \cdot a) r$ for $r \in \operatorname{Rad}(H)$ and $a \in \bar{H}$. We give a description of the kernel $K(\widetilde{H}, H)$ of the composition map $\operatorname{Sp}(\widetilde{H}, H) \rightarrow \mathrm{Sp}(\bar{H})$. If V is a D-module, we denote by $S^{2}(V)$ the submodule of $V \otimes_{D} V$ that is invariant under the involution defined by $a \otimes b \mapsto b \otimes a$. If U is a submodule of V then $S^{2} U$ is a submodule of $S^{2} V$ and we write $V \circ V / U$ for the quotient $S^{2} V / S^{2} U$.

Lemma 1.2.3. The kernel $K(\widetilde{H}, H)$ of the surjection $\operatorname{Sp}(\widetilde{H}, H) \rightarrow \operatorname{Sp}(\bar{H})$ is a central abelian extension of $\operatorname{Hom}(\bar{H}, \operatorname{Rad}(H))$ by $\operatorname{Rad}(H) \circ \operatorname{Rad}(H) /\langle\Delta-P\rangle$ that splits.

Proof. We show that the kernel of $\mathrm{Sp}(\widetilde{H}, H) \rightarrow \mathrm{Sp}(H)$ can by identified with $\operatorname{Rad}(H) \circ \operatorname{Rad}(H) /\langle\Delta-P\rangle$ and is central in $\operatorname{Sp}(\widetilde{H}, H)$. The statement then follows from the commuting exact diagram

Let $a \in \operatorname{Rad}(H)$, we define a map from $S^{2} \operatorname{Rad}(H)$ to $\operatorname{Sp}(\widetilde{H}, H)$ by $a \otimes a \mapsto \delta_{a}$. Because a is in the radical of H, we see that the image of $a \otimes a$ is the identity on H and on $\widetilde{H} / \operatorname{Rad}(H)$, so the image is in $\operatorname{Ker}(\operatorname{Sp}(\widetilde{H}, H) \rightarrow \operatorname{Sp}(H))$. Since

$$
\delta_{a} \delta_{b}(x)=x+(x \cdot b) b+(x \cdot a) a=\delta_{b} \delta_{a}(x)
$$

if $a \cdot b=0$ we see that the map is well-defined. The image is central in $\operatorname{Sp}(\widetilde{H}, H)$ because by definition every automorphism is the identity on $\operatorname{Rad}(H)$. From the definition it follows that $a \otimes b+b \otimes a$ maps to the automorphism $x \mapsto x+(x \cdot b) a+(x \cdot a) b$. The kernel is exactly $S^{2}\langle\Delta-P\rangle$ and if follows from the fact that any element of $\operatorname{Sp}(\widetilde{H}, H)$ induces the identity on \widetilde{H} / H that $\operatorname{Rad}(H) \circ \operatorname{Rad}(H) /\langle\Delta-P\rangle$ maps surjectively onto $\operatorname{Ker}(\operatorname{Sp}(\widetilde{H}, H) \rightarrow \operatorname{Sp}(H))$.

Lemma 1.2.4. The group $\operatorname{Sp}(\widetilde{H}, H)$ is generated by transvections.
Proof. It is well known that $\operatorname{Sp}(\bar{H})$ is generated by transvections (it is a quotient of the mapping class group, see [MKS] Theorem N13. The mapping class group is generated by Dehn twists and the image of the Dehn twists are the transvections, see Section 2.2). The subgroup $\operatorname{Hom}(\bar{H}, \operatorname{Rad}(H))$ is generated by the elements $\delta_{r+a} \delta_{a}^{-1}(x)=x+(x \cdot a) r$ for $r \in \operatorname{Rad}(H)$ and $a \in \bar{H}$, and the previous lemma shows that $\operatorname{Rad}(H) \circ \operatorname{Rad}(H) /\langle\Delta-P\rangle$ is generated by transvections as well. This proves the lemma.

1.3. Quadratic forms

Let W be a vector space over a field k and U an affine space over W. We call a function $f: U \rightarrow k$ affine-linear if there exist a linear functional $g: W \rightarrow k$ such that $f(w+u)=g(w)+f(u)$ for all $w \in W$ and $u \in U$. The function f is determined by g and the value of f at some fixed point of U. Hence, the vector space of affinelinear functions on U is of dimension $\operatorname{dim}(W)+1$. The polynomial functions on U are finite sums and products of linear functions. We denote by $B(U)$ the algebra of polynomial functions on U and by $B_{r}(U)$ the linear subspace of functions of degree $\leq r$.

Let H be a quasi-unimodular symplectic module over $\mathbb{Z} / 2$ of genus g. An associated quadratic form is a function $\omega: H \rightarrow \mathbb{Z} / 2$ such that $\omega(a+b)=\omega(a)+\omega(b)+a \cdot b$ for all $a, b \in H$. It is determined by its values on a basis, and these values can be arbitrarily chosen. The difference of two forms is a linear form on H, so the set of all associated-quadratic forms is an affine space over $\operatorname{Hom}(H, \mathbb{Z} / 2)$. We denote this space by Ω_{H}. The group $\operatorname{Sp}(H)$ acts on Ω_{H} adjoint to the action of $\operatorname{Sp}(H)$ on H, that is, if $h \in \operatorname{Sp}(H)$ and $\omega \in \Omega_{H}$ then $(h \omega)(a):=\omega\left(h^{-1}(a)\right)$. For every $v \in H$ we define a linear function $\bar{v}: \Omega_{H} \rightarrow \mathbb{Z} / 2$ by $\bar{v}(\omega):=\omega(v)$. If $\left\{e_{i}, e_{-i}\right\}_{i=1}^{g} \cup\left\{e_{g+i}\right\}_{i=1}^{r}$ is a symplectic basis of H then 1 and $\left\{\overline{e_{i}}, \overline{e_{-i}}\right\}_{i=1}^{g} \cup\left\{\overline{e_{g+i}}\right\}_{i=1}^{r}$ is a basis of the space of linear functions on Ω_{H}. The group $\operatorname{Sp}(H)$ acts on the functions on Ω_{H} adjoint to its action on Ω_{H}. Because we work over the field $\mathbb{Z} / 2$ every polynomial function on Ω_{H} can be written as a sum of square free monomials in the $\overline{e_{i}}$. They are called Boolean polynomials. If H is a symplectic module over \mathbb{Z} then $B_{r}\left(\Omega_{H \otimes \mathbb{Z} / 2}\right)$ is also denoted by $B_{r}\left(\Omega_{H}\right)$. If $U \subset H$ is a subspace, then we have the restriction map $\Omega_{H} \rightarrow \Omega_{U}$, which induces an injection $B_{r}\left(\Omega_{U}\right) \rightarrow B_{r}\left(\Omega_{H}\right)$. Let H be unimodular, then the Arf invariant α is the quadratic Boolean function on Ω_{H} given by $\alpha:=\sum_{i=1}^{g} \overline{e_{i} e_{-i}}$. It has the property that it is invariant under the action of $\operatorname{Sp}(H)$ and two forms ω, ω^{\prime} are in the same orbit of $\operatorname{Sp}(H)$ if and only if $\alpha(\omega)=\alpha\left(\omega^{\prime}\right)$. The set of quadratic forms of Arf invariant zero is denoted by Ψ_{H}. See also [Arf] and [Johnson2] for more about this subject.

1.4. Simplicial complexes and posets

We first recall some basic definitions concerning simplicial complexes and posets and fix some notations. We finish this section with recalling some useful lemma's and stating a theorem of Quillen.

A simplicial complex Σ consists of a set V of vertices and a set of finite nonempty subsets of V, called the simplices of Σ, such that each vertex is a simplex and each nonempty subset of a simplex is again a simplex, called a face of the simplex. If a simplex contains exactly $k+1$ vertices we say that it is a k-simplex or that it is of dimension k, and we denote the set of all k-simplices of Σ by Σ_{k}. The topological realization of Σ is the set of all functions $x: V \rightarrow[0,1]$ such that
(i) its support, $\operatorname{supp}(x)$, is a simplex of Σ,
(ii) $\sum_{v \in V} x(v)=1$.

We denote this set by $|\Sigma|$. If σ is a simplex of Σ then $|\sigma|=\{x \in|\Sigma|: \operatorname{supp}(x) \subset \sigma\}$. Notice that if we number the vertices of σ, then $|\sigma|$ gets identified with the geometric simplex $\left\{x \in \mathbb{R}^{\operatorname{dim}(\sigma)+1}: 0 \leq x_{i} \leq 1, \sum x_{i}=1\right\}$. This defines a topology on $|\sigma|$ and therefore on $|\Sigma|$, if we stipulate that $A \subset|\Sigma|$ is closed if and only if $A \cap|\sigma|$ is closed for all simplices σ of Σ.

We adopt the convention that a partially ordered set is abbreviated by poset. The set of all simplices of a simplicial complex is partially ordered by the face relation. Conversely, to a poset X we can associate a simplicial complex with X as vertex set and as k-simplices the set of sequences $x_{0}<\ldots<x_{k}$, where $x_{i} \in X$. We denote it by $\Sigma(X)$. If we do this for a poset associated to a simplicial complex then the simplicial complex thus obtained is the barycentric subdivision of the original complex.

We can regard a simplicial complex or a poset as a category with morphisms given by the face relation or the partial ordering. We define a system of coefficients on a simplicial complex Σ as a contravariant functor from Σ to the category of abelian groups. Let $H_{p}(\Sigma, \mathcal{F})$ denote the $p^{\text {th }}$ homology group of Σ with values in a system of coefficients \mathcal{F}. It is the homology of the complex

$$
C_{p}(\Sigma, \mathcal{F}):=\bigoplus_{\sigma \in \Sigma_{p}} \mathcal{F}(\sigma)
$$

with boundary maps the alternating sum of the restriction maps induced by the face relations.

We say that a poset X is of dimension n if $|\Sigma(X)|$ is of dimension n. A chain of elements $x_{0}<x_{1}<\ldots<x_{n}$ of length n is in that case called a maximal chain in this poset. If X and Y are posets and $f: X \rightarrow Y$ is a morphism between them, then there are two kinds of fibers over an element $y \in Y$; namely

$$
f / y:=\{x \in X: f(x) \leq y\} \text { and } f \backslash y:=\{x \in X: f(x) \geq y\}
$$

In case we have an inclusion $X \subset Y$ we also use the notation

$$
X_{\leq y}:=\{x \in X: x \leq y\}
$$

where $y \in Y$ and similarly for $X_{\geq y}$. We define

$$
\begin{aligned}
\operatorname{Link}_{X}^{-}(y) & :=X_{<y}=\{x \in X: x<y\} \\
\operatorname{Link}_{X}^{+}(y) & :=X_{>y}=\{x \in X: x>y\} \\
\operatorname{Link}_{X}(y) & :=\operatorname{Link}_{X}^{-}(y) \cup \operatorname{Link}_{X}^{+}(y) \\
\operatorname{Star}_{X}(y) & :=\operatorname{Link}_{X}(y) \cup\{y\} .
\end{aligned}
$$

The height $h(x)$ of an element $x \in X$ is by definition the dimension of $X_{\leq x}$. We use the notation $X_{\leq k}$ for the subset of elements of height $\leq k$. The join $X * Y$ of two posets X and Y is the disjoint union of X and Y with the given partial ordering on X and on Y and $x<y$ for all $x \in X, y \in Y$. Remark that $\operatorname{Link}_{X}(y)=$ $\operatorname{Link}_{X}^{-}(y) * \operatorname{Link}_{X}^{+}(y)$. Let x_{i} be elements of a poset X, indexed by a set I. If the supremum of $\left\{x_{i}\right\}_{i \in I}$ exists and is unique, we denote this element by $\sup _{i \in I}\left\{x_{i}\right\}$. A poset X is called d-connected if $|X|$ is d-connected, meaning that $\pi_{i}(|X|)=0$ for $i \leq d$, and we say that it is d-spherical if $\operatorname{dim}(X)=d$ and $|X|$ is $(d-1)$-connected. We stipulate that X is (-1)-connected if X is nonempty. We see that a nonempty
poset X is 0 -connected if $|X|$ is connected and X is 1-connected if $|X|$ is simply connected. A useful definition related to this is the following definition.

Definition 1.4.1. A poset is called Cohen-Macaulay of dimension d, abbreviated by $C M_{d}$, if
(i) X is d-spherical,
(ii) for all $x \in X$ we have $X_{<x}$ is $(h(x)-1)$-spherical and $X_{>x}$ is $(d-h(x)-1)$ spherical,
(iii) for all $x, x^{\prime} \in X$ such that $x>x^{\prime}$ we have $X_{>x^{\prime}} \cap X_{<x}$ is $\left(h(x)-h\left(x^{\prime}\right)-2\right)$ spherical.

We will often make use of the following three lemmas.
Lemma 1.4.2. Let X, Y be posets and $f: X \rightarrow Y, g: X \rightarrow Y$ morphisms of posets such that $f(x) \leq g(x)$ for all $x \in X$. Then $|f|$ and $|g|$ are homotopy equivalent.

Proof. The map $H: X \times\{0,1\} \rightarrow Y$ defined by $H(x, 0)=f(x)$ and $H(x, 1)=$ $g(x)$ gives a homotopy between $|f|$ and $|g|$.

Lemma 1.4.3. If X and Y are posets and if X is n-connected and Y is m connected, then $X * Y$ is $(n+m+2)$-connected.

Proof. See [Maazen], Chapter I, Proposition (1.5) and Chapter II, Proposition (1.2).

Lemma 1.4.4. Let Y be a poset, $X \subset Y$ a subposet. Assume that $Y \backslash X$ is discrete and X is n-spherical of the inclusion $X \subset Y$ is null-homotopic. If $\operatorname{Link}_{X}(y)$ is $(n-1)$-spherical for all $y \in Y \backslash X$, then Y is n-spherical.

Proof. See [Maazen], Chapter II, Theorem (3.2).
We also recall a results of Quillen, see [Quillen2] (Theorem (9.1) and Corollary (9.7)).

TheOrem 1.4.5. Let $f: X \rightarrow Y$ be a morphism of posets. Assume that Y is d-spherical, for every $y \in Y$ the poset $Y_{>y}$ is $(d-h(y)-1)$-spherical and f / y is $h(y)$-spherical. Then X is d-spherical. Moreover, there is a canonical filtration

$$
0=F_{d+1} \subset F_{d} \subset \ldots \subset F_{-1}=\widetilde{H}_{d}(X)
$$

and isomorphisms

$$
\begin{aligned}
F_{-1} / F_{0} & \cong \widetilde{H}_{d}(Y) \\
F_{q} / F_{q+1} & \cong \bigoplus_{h(y)=q} \widetilde{H}_{d-q-1}\left(Y_{>y}\right) \otimes \widetilde{H}_{q}(f / y) \\
F_{d} & \cong \bigoplus_{h(y)=d} \widetilde{H}_{d}(f / y)
\end{aligned}
$$

for $0 \leq q \leq d-1$ and the sum is taken over the elements of height q in Y.
Corollary 1.4.6. If $f: X \rightarrow Y$ is a strictly increasing map, Y is CohenMacaulay of dimension d and for all $y \in Y$ the poset f / y is Cohen-Macaulay of dimension $h(y)$, then X is Cohen-Macaulay of dimension d.

For the proofs we refer to [Quillen2].

1.5. Definitions of simplicial complexes associated to a surface module.

We now restrict ourselves to special classes of posets. Let V be a finitely generated free abelian group. Since a direct summand of V is the same thing as the intersection of V with a linear subspace of $V \otimes \mathbb{Q}$ we shall use the term subspace of V as synonymous for a direct summand of V. We associate several posets to V; we use Roman letters for posets having subspaces of V as elements and calligraphic letters for posets consisting of finite subsets of V. When we assume that the finite subsets are totally ordered we use the superscript ${ }^{\circ}$. The subsets of V are partially ordered by inclusion, the ordered sequences of elements of V by refinement: we say that $\left(v_{0}, \ldots, v_{k}\right) \leq\left(w_{0}, \ldots, w_{p}\right)$ if and only if there exists a strictly increasing map $\varphi:\{0, \ldots, k\} \rightarrow\{0, \ldots, p\}$ such that $v_{i}=w_{\varphi(i)}$.

If S is a set, we define the full simplex on S by

$$
\mathcal{O}(S):=\{E \subset S: E \text { is finite and nonempty }\}
$$

We recall the following result of Maazen, see [Maazen], Chapter II, Corollary (5.5).
Proposition 1.5.1. Let S be a set, $z=\left(z_{0}, \ldots, z_{n}\right) \in \mathcal{O}^{\circ}(S)$ and let F be a poset contained in $S-\left\{z_{0}, \ldots, z_{n}\right\}$. Regard F as a subposet of $\mathcal{O}\left(S-\left\{z_{0}, \ldots, z_{n}\right\}\right)$ and assume that its preimage in $\mathcal{O}^{\circ}\left(S-\left\{z_{0}, \ldots, z_{n}\right\}\right)$ is $C M_{d}$. Then its preimage under the composite map

$$
\operatorname{Link}_{\mathcal{O}^{\circ}(S)}^{+}(z) \rightarrow \mathcal{O}^{o}\left(S-\left\{z_{0}, \ldots, z_{n}\right\}\right) \rightarrow \mathcal{O}\left(S-\left\{z_{0}, \ldots, z_{n}\right\}\right)
$$

(the first map suppresses the terms z_{0}, \ldots, z_{n}) is d-spherical.
According to Theorem (2.1), Chapter III in [Maazen] we have that for any integer $n \geq 1$, the poset $\mathcal{O}^{\circ}(\{1, \ldots, n\})$ is $(n-1)$-spherical. We show that it is also Cohen-Macaulay.

Proposition 1.5.2. For any integer $n \geq 1$ is $\mathcal{O}^{\circ}(\{1, \ldots, n\})$ Cohen-Macaulay of dimension $n-1$.

Proof. We know that it is $(n-1)$-spherical. Suppose $E^{o} \in \mathcal{O}^{o}(\{1, \ldots, n\})$ then $\mathcal{O}^{o}(\{1, \ldots, n\})_{<E^{\circ}}$ is spherical of dimension $h\left(E^{o}\right)-1, \mathcal{O}^{o}(\{1, \ldots, n\})_{>E^{\circ}}$ is spherical of dimension $n-h\left(E_{0}\right)-2$ by Propositon 1.5.1 and if $E^{o}<F^{o}$ then $\mathcal{O}^{o}(\{1, \ldots, n\})_{>E^{o}} \cap \mathcal{O}^{o}(\{1, \ldots, n\})_{<F^{o}}$ is spherical of dimension $h\left(F^{o}\right)-h\left(E^{o}\right)-2$.

Let V be a free abelian group of finite rank. We call a nonempty subset E in $\mathcal{O}(V)$ a partial basis if it can be completed to a basis of V. We denote by $\langle E\rangle$ the span of E in V. Let $T(V)$ be the Tits building of the general linear group of V, that is, the poset of nonzero proper subspaces of V. For a subspace W of V we define

$$
\begin{aligned}
& T(V, W):=\{U: U \in T(V), U \oplus W \rightarrow V \text { is a primitive embedding }\} \\
& \mathcal{P}(V, W):=\{E \subset V: E \text { is a partial basis and }\langle E\rangle \in T(V, W)\}
\end{aligned}
$$

With primitive embedding we mean that $U \oplus W$ is a subspace of H, which means that $\left((U \oplus W) \otimes_{\mathbb{Z}} \mathbb{Q}\right) \cap H=U \oplus W$. For a subset S of V we put

$$
\mathcal{P}(S, W):=\mathcal{P}(V, W) \cap \mathcal{O}(S)
$$

So the poset $\mathcal{P}^{o}(S, W)$ consists of totally ordered sequences $\left(v_{0}, \ldots v_{k}\right)$ such that $\left\{v_{0}, \ldots v_{k}\right\} \in \mathcal{P}(S, W)$. If $W=\emptyset$ we often omit W from the notation.

We now define the poset that interests us for the rest of this thesis.
Definition 1.5.3. Let H be a quasi-unimodular symplectic module. An ordered sequence $\left(v_{0}, \cdots, v_{m}\right) \in \mathcal{P}^{o}(H, \operatorname{Rad}(H))$ is called an arc-sequence if it satisfies the following three conditions:
(i) if $0 \leq i<j \leq m$ then $v_{i} \cdot v_{j} \in\{0,1\}$,
(ii) if $0 \leq i<j<k \leq m$ and $v_{i} \cdot v_{k}=1$ then $v_{i} \cdot v_{j}=1$ or $v_{j} \cdot v_{k}=1$,
(iii) if $0 \leq i<j<k \leq m$ and suppose that $v_{i} \cdot v_{j}=1$ and $v_{j} \cdot v_{k}=1$, then $v_{i} \cdot v_{k}=1$.
Let $\mathcal{A}^{\circ}(H)$ be the poset of arc-sequences in H. For a subset S of H and a subspace $J \subset H$ we put $\mathcal{A}^{o}(S, J):=\mathcal{A}^{o}(H) \cap \mathcal{P}^{o}(S, J)$. Let $\pi: H \rightarrow \mathbb{Z}$ be an epimorphism of groups that factorizes over $\bar{\pi}: \bar{H} \rightarrow \mathbb{Z}$, so that π is given by taking the symplectic product with some $e \in H$. Then $\pi^{-1}(0)$ is a quasi-unimodular symplectic module and $\operatorname{Rad}\left(\pi^{-1}(0)\right) \cong \operatorname{Rad}(H) \oplus\langle e\rangle$. Define

$$
\mathcal{A}^{o}(H, \pi):=\mathcal{A}^{o}\left(\pi^{-1}(1), \operatorname{Rad}\left(\pi^{-1}(0)\right)\right) .
$$

Figure 1.1. The conditions (ii) and (iii).
The goal of Sections 1.6 to 1.10 is to prove the following two theorems.

THEOREM 1.5.4. Let H be a quasi-unimodular symplectic module of genus g over \mathbb{Z}, then $\mathcal{A}^{\circ}(H)$ is $(g-2)$-connected.

Theorem 1.5.5. Let H be a quasi-unimodular symplectic module of genus g over \mathbb{Z} and $\pi: H \rightarrow \mathbb{Z}$ an epimorphism that factorizes over $\bar{\pi}: \bar{H} \rightarrow \mathbb{Z}$. If $g \geq 3$ then $\mathcal{A}^{o}(H, \pi)$ is 1 -connected.

We remark that $\mathcal{A}^{o}(H)$ is of dimension $2 g-1$ and $\mathcal{A}^{o}(H, \pi)$ is of dimension $2 g-2$. To see this, we choose a symplectic basis

$$
\left\{e_{1}, \ldots, e_{g}, e_{-1}, \ldots, e_{-g}, e_{g+1}, \ldots, e_{g+r}\right\}
$$

of H, then $\left(e_{1}, e_{-1}, e_{2}, e_{-2}, \ldots, e_{g}, e_{-g}\right\}$ is an arc-sequence in H of maximal length. Assume that π is given by $\pi(x)=x \cdot e_{-1}$, then $\operatorname{Rad}\left(\pi^{-1}(0)\right)=\left\langle e_{-1}\right\rangle \oplus \operatorname{Rad}(H)$ and $E^{o}=\left(e_{1}, e_{1}+e_{2}, e_{1}+e_{-2}, \ldots, e_{1}+e_{g}, e_{1}+e_{-g}\right)$ is an arc-sequence in $\pi^{-1}(1)$ of maximal length such that $\left\langle E^{o}\right\rangle \oplus \operatorname{Rad}\left(\pi^{-1}(0)\right) \rightarrow H$ is a primitive embedding.

We give an overview of the proof of Theorem 1.5.4 and 1.5.5 now. For this, we need the following auxiliary posets. Let H be a quasi-unimodular symplectic module and $J \subset H$ an isotropic subspace that contains $\operatorname{Rad}(H)$. We define

$$
\begin{aligned}
& I(H, J):=\{U \in T(H, J): U+J \text { is isotropic }\}, \\
& \mathcal{I}(H, J):=\{E \in \mathcal{P}(H, J):\langle E\rangle \in I(H, J)\}
\end{aligned}
$$

So $E \in \mathcal{I}(H, J)$ means that its elements span together with J a primitive isotropic subspace of H of $\operatorname{rank}|E|+\operatorname{rk}(J)$. For a subset S of H we put

$$
\mathcal{I}(S, J):=\mathcal{I}(H, J) \cap \mathcal{O}(S)
$$

If $J=\operatorname{Rad}(H)$ we usually omit J from the notation. Let

$$
d(H, J):=g(H)-\operatorname{rk}(J / \operatorname{Rad}(H))-1
$$

In section 1.6 we prove the following proposition.
Proposition 1.5.6. Let H be a quasi-unimodular symplectic lattice, then $\mathcal{I}^{o}(H, J)$ is Cohen-Macaulay of dimension $d(H, J)$.

In Section 1.8 we prove that
Proposition 1.5.7. Let H be a quasi-unimodular symplectic lattice of genus g and let $\pi: H \rightarrow \mathbb{Z}$ be an epimorphism such that it factorizes over $\bar{\pi}: \bar{H} \rightarrow \mathbb{Z}$. If $g=1,2,3$ then $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$ is Cohen-Macaulay of dimension $g-1$. If $g \geq 4$ then $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)_{\leq g-2}$ is Cohen-Macaulay of dimension $g-2$.

We recall that $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$ is by definition $\mathcal{I}^{o}\left(\pi^{-1}(1), \operatorname{Rad}(H)\right)$, but we remark that it is a subposet of $\mathcal{A}^{o}(H, \pi)$. In Section 1.10 we show that $\mathcal{A}^{o}(H)$ arises from $\mathcal{I}^{o}(H)$ by attaching only $(g-1)$-cells and therefore the degree of connectedness does not change. In Section 1.10 we show that if $g \geq 2$ then any 1 -cycle in $\mathcal{A}^{o}(H, \pi)$ is
homotopic in $\mathcal{A}^{o}(H, \pi)$ to a 1-cycle in $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$. This proves that for $g \geq 3$ the poset $\mathcal{A}^{o}(H, \pi)$ is 1 -connected, if $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$ is 1 -connected.

To prove the connectedness properties of $\mathcal{I}^{o}(H)$ and $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$, we use the restriction of the map

$$
f: \mathcal{O}^{\circ}(S) \rightarrow \mathcal{O}(S)
$$

that forgets the ordering. The fibers f / y are Cohen-Macaulay by Proposition 1.5.2 and so by Quillen's theorem it suffices to show that $\mathcal{I}(H)$ and $\mathcal{I}\left(\pi^{-1}(1)\right)_{\leq g-2}$ are Cohen-Macaulay, and that if $g=1,2,3$ then $\mathcal{I}\left(\pi^{-1}(1)\right)$ is Cohen-Macaulay. For $\mathcal{I}(H)$ the proof we give in Section 1.6 is inspired by the proof of Maazen for $\mathcal{P}(H)$. Let $n=g-1$ if $g=1,2,3$ and $n=g-2$ if $g \geq 4$. To prove the connectedness of $\mathcal{I}\left(\pi^{-1}(1)\right)_{\leq n}$ we use the map $E \mapsto\langle E\rangle$ to the subposet of $I(H)_{\leq n}$ consisting of those subspaces X such that $\left.\pi\right|_{X}$ is surjective. In Section 1.7 we prove that this poset is Cohen-Macaulay and by using Quillen's theorem once more, we conclude that $\mathcal{I}\left(\pi^{-1}(1)\right)_{\leq n}$ is Cohen-Macaulay of the right dimension.

1.6. The Cohen-Macaulay property of $\mathcal{I}(H, J)$ and $\mathcal{I}^{o}(H, J)$

Let H be a symplectic quasi-unimodular module, J an isotropic submodule such that $\operatorname{Rad}(H) \subset J$ and put $d(H, J):=g(H)-\operatorname{rk}(J / \operatorname{Rad}(H))-1$. Then $\mathcal{I}(H, J)$ is of dimension $d(H, J)$. The proof of the following theorem is essentially the same proof of Maazen of the spherical property of $\mathcal{P}(H, W)$, see [Maazen], Chapter III, Theorem (4.2).

Proposition 1.6.1. The poset $\mathcal{I}(H, J)$ is Cohen-Macaulay of dimension $d(H, J)$.
Proof. It is clear that the proposition holds for $d(H, J)=0$. We proceed with induction on $d:=d(H, J)$ and assume that $d \geq 1$. In that case, we can choose a hyperbolic pair a, b, that means $a \cdot b= \pm 1$, such that $\{a, b\} \in \mathcal{P}(H, J)$ and $a, b \perp J$. For $k, l \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$ we denote by $H_{(k, l)}$ the set of $e \in H$ such that $|e \cdot a| \leq k$ and $|e \cdot b| \leq l$ and by $\mathcal{I}_{(k, l)}(H, J)$ the set of $E \in \mathcal{I}(H, J)$ such that $E \cap H_{(k, l)} \neq \emptyset$. By Lemma 1.4.2 we see that the map $E \mapsto E \cap H_{(k, l)}$ gives a deformation retraction of $\mathcal{I}_{(k, l)}(H, J)$ onto $\mathcal{I}\left(H_{(k, l)}, J\right)$, similarly we see that if $k \geq 1 \mathcal{I}\left(H_{(k, l)}, J\right)$ is a deformation retract of $\mathcal{I}_{(k-1, l)}(H, J) \cup \mathcal{I}\left(H_{(k, l)}, J\right)$ and the equivalent statement holds for $l \geq 1$.

Step 1. The inclusion $\mathcal{I}\left(H_{(0,0)}, J\right) \subset \mathcal{I}\left(H_{(1,0)}, J\right)$ is null-homotopic.
Proof. For any $E \in \mathcal{I}\left(H_{(0,0)}, J\right)$ we have $E \cup\{b\} \in \mathcal{I}\left(H_{(1,0)}, J\right)$ and since $\{b\} \in \mathcal{I}\left(H_{(1,0)}, J\right)$ this shows, by Lemma 1.4.2 again, that the inclusion is homotopic to the map that is constant equal to $\{b\}$.

Step 2. For $k \geq 1$ is the inclusion $\mathcal{I}\left(H_{(k-1,0)}, J\right) \subset \mathcal{I}\left(H_{(k, 0)}, J\right)$ a d-cellular extension up to homotopy.

Proof. We shall prove the equivalent assertion that the inclusion

$$
\mathcal{I}_{(k-1,0)}(H, J) \subset \mathcal{I}_{(k-1,0)}(H, J) \cup \mathcal{I}\left(H_{(k, 0)}, J\right)
$$

is a d-cellular extension up to homotopy. Let \mathcal{X}_{q} be the union of $\mathcal{I}_{(k-1,0)}(H, J)$ and the elements of $\mathcal{I}\left(H_{(k, 0)}, J\right)$ of height $\leq q$, so that we have the filtration

$$
\mathcal{I}_{(k-1,0)}(H, J)=\mathcal{X}_{-1} \subset \mathcal{X}_{0} \subset \ldots \subset \mathcal{X}_{d}=\mathcal{I}_{(k-1,0)}(H, J) \cup \mathcal{I}\left(H_{(k, 0)}, J\right)
$$

We prove that for $q=0, \ldots, d \mathcal{X}_{q} \subset \mathcal{X}_{q-1}$ is a d-cellular extension up to homotopy. For this it is enough to show that for $E \in \mathcal{X}_{q}-\mathcal{X}_{q-1}, \operatorname{Link}_{\mathcal{X}_{q-1}}(E)$ is $(d-1)$ spherical, see Lemma 1.4.4. Notice that for $q=d$ and $k>1 \mathcal{X}_{q}-\mathcal{X}_{q-1}$ is empty, in the other cases it means that $|E|=q,|e \cdot a|=k$ and $|e \cdot b|=0$ for all $e \in E$. Now $\operatorname{Link}_{\mathcal{X}_{q-1}}^{-}(E)$ is just the poset of nonempty proper subsets of E and so is spherical of dimension $q-1$. If $q=d$ we are done, otherwise, by Lemma 1.4.3 it remains to show that $\operatorname{Link}_{\mathcal{X}_{q-1}}^{+}(E)=\operatorname{Link}_{\mathcal{I}_{(k-1,0)}(H, J)}(E)$ is $(d-q-1)$-spherical. We identify $\operatorname{Link}_{\mathcal{I}_{(k-1,0)}(H, J)}(E)$ with $\mathcal{I}_{(k-1,0)}(H, J+\langle E\rangle)$ via the map $E^{\prime} \mapsto E^{\prime}-E$, we know that the latter is homotopy equivalent to $\mathcal{I}\left(H_{(k-1,0)}, J+\langle E\rangle\right)$. We construct a poset retraction $R: \mathcal{I}(H, J+\langle E\rangle) \rightarrow \mathcal{I}\left(H_{(k-1,0)}, J+\langle E\rangle\right)$; this will finish the job, since we know by our induction hypothesis that $\mathcal{I}(H, J+\langle E\rangle)$ is spherical of dimension $d-q-1$. Choose $e_{k} \in E$ and let $\{e\} \in \mathcal{I}(H, J+\langle E\rangle)$. If $|e \cdot a| \leq k-1$ then $R(\{e\})=\{e\}$. If this is not the case, then divide $|e \cdot a|$ by k with remainder: we find that there exists an $n_{e} \in \mathbb{Z}$ such that $\left|\left(e+n_{e} e_{k}\right) \cdot a\right| \leq k-1$ and we put $R(\{e\})=\left\{e+n_{e} e_{k}\right\}$; this is clearly an element of $\mathcal{I}\left(H_{(k-1,0)}, J+\langle E\rangle\right)$. This extends to a poset map as desired and thus completes the proof of step 2 . We conclude that $\mathcal{I}\left(H_{(\infty, 0)}, J\right)=\underset{\longrightarrow}{\lim } \mathcal{I}\left(H_{(k, 0)}, J\right)$ is spherical of dimension d.

Step 3. For $l \geq 1$ is the inclusion $\mathcal{I}\left(H_{(\infty, l-1)}, J\right) \subset \mathcal{I}\left(H_{(\infty, l)}, J\right)$ a d-cellular extension up to homotopy.

Proof. We prove the equivalent statement that the inclusion

$$
\mathcal{I}_{(\infty, l-1)}(H, J) \subset \mathcal{I}_{(\infty, l-1)}(H, J) \cup \mathcal{I}\left(H_{(\infty, l)}, J\right)
$$

is a d-cellular extension up to homotopy, in the same way as we did in step 2 . We have the filtration

$$
\mathcal{I}_{(\infty, l-1)}(H, J)=\mathcal{Y}_{-1} \subset \mathcal{Y}_{0} \subset \ldots \subset \mathcal{Y}_{d}=\mathcal{I}_{(\infty, l-1)}(H, J) \cup \mathcal{I}\left(H_{(\infty, l)}, J\right)
$$

where \mathcal{Y}_{q} is the union of $\mathcal{I}_{(\infty, l-1)}(H, J)$ and the elements of $\mathcal{I}\left(H_{(\infty, l)}, J\right)$ of height $\leq q$ and the argument goes exactly the same way as in step 2 .

Step 4. Conclusion. As $\mathcal{I}(H, J)=\underset{\longrightarrow}{\lim }\left(H_{(\infty, l)}, J\right)$ the previous steps imply that $\mathcal{I}(H, J)$ is d-spherical. For the Cohen-Macaulay property, we note that for $E \in \mathcal{I}(H, J)$ we have that $\operatorname{Link}_{\mathcal{I}(H, J)}^{-}(E)$ is $(|E|-2)$-spherical and that if $E^{\prime} \in$ $\mathcal{I}(H, J)$ with $E<E^{\prime}$ then $\operatorname{Link}_{\mathcal{I}(H, J)}^{+}(E) \cap \operatorname{Link}_{\mathcal{I}(H, J)}^{-}\left(E^{\prime}\right)$ is $\left(\left|E^{\prime}-E\right|-2\right)$-spherical. Furthermore, $\operatorname{Link}_{\mathcal{I}(H, J)}^{+}(E) \cong \mathcal{I}(H, J+\langle E\rangle)$ is $(d-|E|)$-spherical. This proves the Cohen-Macaulay property.

We show that this proposition implies Proposition 1.5.6 that states that $\mathcal{I}^{o}(H, J)$ is Cohen-Macaulay of dimension $d(H, J)$.

Proof of Proposition 1.5.6. For $d(H, J)=0$ the proposition obviously holds. Assume $d:=d(H, J)>0$. Let $f: \mathcal{I}^{0}(H, J) \rightarrow \mathcal{I}(H, J)$ be the map that forgets the ordering. If $E \in \mathcal{I}(H, J)$ then $h(E)=|E|-1$ and $f / E \cong \mathcal{O}^{0}(\{1, \ldots,|E|\})$. The latter is Cohen-Macaulay of dimension $|E|-1=h(E)$ by Proposition 1.5.2. By Theorem 1.4.5 of Quillen we conclude that $\mathcal{I}^{0}(H, J)$ is Cohen-Macaulay of dimension d, since by Proposition 1.6.1 we know that $\mathcal{I}(H, J)$ is Cohen-Macaulay of this dimension.

1.7. The Cohen-Macaulay property $I(\pi)_{\leq g-2}$

In this section we define a poset $I(\pi)$ of dimension $g-1$ and prove that $I(\pi)_{\leq g-2}$ is Cohen-Macaulay. The proof is based on unpublished notes of Looijenga ${ }^{1}$.

We introduce the following definitions. Let V be a free abelian group of finite rank r. By assigning to a subspace of V its nilspace in $V^{*}:=\operatorname{Hom}(V, \mathbb{Z})$, we may identify $T\left(V^{*}\right)$ with the poset opposite to $T(V)$. Given an epimorphism $\pi: V \rightarrow A$ of groups, we say that a subspace $X \subset V$ is in general position relative to π if $\pi \mid X$ is onto. Dually, if we are given an epimorphism $\rho: V^{*} \rightarrow B$, then we say that a subspace $X \subset V$ is primitive relative to ρ if $\rho \mid(V / X)^{*}$ is onto. (This terminology is explained by the fact that we can understand that property in terms of V as follows: if we put

$$
V_{\rho}:=\{v \in V \otimes \mathbb{Q}: \phi(v) \in \mathbb{Z} \text { for all } \phi \in \operatorname{Ker}(\rho)\}
$$

then $V \subset V_{\rho} \subset V \otimes \mathbb{Q}, V_{\rho} / V$ can be identified with $\operatorname{Hom}(B, \mathbb{Q} / \mathbb{Z})$ and the condition imposed on X amounts to: X is a direct summand of V_{ρ}. In case B is free abelian, then $\rho^{*}: B^{*} \rightarrow V$ is a primitive embedding, $V_{\rho}=V+\left(B^{*} \otimes \mathbb{Q}\right)$ and the condition on X is equivalent to $X \oplus B^{*} \rightarrow V$ being a primitive embedding.) We denote by $T(\pi)$ the set of members of $T(V)$ that are in general position relative to π and by $T(\pi / \rho)$ those that have the additional property that they are primitive relative to ρ. Notice that $T(\pi / \rho)$ and $T(\rho / \pi)$ are opposite as posets. If H is a quasi-unimodular symplectic lattice and $\pi: H \rightarrow A$ is an epimorphism of groups, then we write

$$
I(\pi):=I(H) \cap T(\pi)
$$

If also is given a factorization of π over an epimorphism $\tilde{\pi}: H \rightarrow \tilde{A}$, then we write $I(\pi, \tilde{\pi})$ for the poset of $Y \in I(\pi)$ with $Y^{\perp} \in T(\tilde{\pi})$. It is clear that

$$
I(\tilde{\pi}) \subset I(\pi, \tilde{\pi}) \subset I(\pi)
$$

[^0]Proposition 1.7.1. Let V be a lattice of rank r and $\pi: V \rightarrow A$ be a cyclic quotient of V, then $T(\pi)$ is $(r-2)$-spherical.

Proof. If $r \leq 1$ then $T(\pi)=\emptyset$ and the proposition holds. We proceed with induction on r and assume that $r \geq 2$. In that case we can choose a $\varphi \in V^{*}$ such that $\tilde{\pi}=(\pi, \varphi): V \rightarrow A \oplus \mathbb{Z}$ is surjective.

Step 1.The inclusion $T(\tilde{\pi}) \subset T(\pi)$ in null-homotopic.
Proof. If $X \in T(\tilde{\pi})$ then $X \cap \operatorname{Ker}(\varphi) \in T(\pi)$. So $X>X \cap \operatorname{Ker}(\varphi)<\operatorname{Ker}(\varphi)$ gives a path from X to $\operatorname{Ker}(\varphi)$. By applying Lemma 1.4.2 two times, this shows that the inclusion $T(\tilde{\pi}) \subset T(\pi)$ is null-homotopic.

Step 2. $T(\pi)$ is an $(r-2)$-cellular extension of $T(\tilde{\pi})$.
Proof. For $\sigma \geq-1$ we define $T_{\alpha}:=T(\tilde{\pi}) \cup\{X \in T(\pi): \operatorname{rk}(X) \leq \alpha+1\}$, then

$$
T(\tilde{\pi})=T_{-1} \subset T_{0} \subset T_{1} \subset \cdots \subset T_{r-2}=T(\pi)
$$

gives a filtration. Let $X \in T_{\alpha}-T_{\alpha-1}$, then $\operatorname{dim}(X)=\alpha+1$. We prove that $\operatorname{Link}_{T_{\alpha-1}}(X)$ is $(r-4)$-connected. We have that $\operatorname{Link}_{T_{\alpha-1}}^{-}(X)=T\left(\left.\pi\right|_{X}\right)$ is $(\alpha-1)$ spherical with induction. We know that $\left.\tilde{\pi}\right|_{X}$ is not onto, so that

$$
\widetilde{A}_{X}:=\operatorname{Coker}\left(\left.\tilde{\pi}\right|_{X}: X \rightarrow A \oplus \mathbb{Z}\right)
$$

is nontrivial and cyclic, and the composition $V \xrightarrow{\tilde{\pi}} A \oplus \mathbb{Z} \rightarrow \widetilde{A}_{X}$ factorizes over a map $\tilde{\pi}_{X}: V / X \rightarrow \widetilde{A}_{X}$. We have $\operatorname{Link}_{T_{\alpha-1}}^{+}(X)=\left\{X \subsetneq Y \subsetneq V:\left.\tilde{\pi}\right|_{Y}\right.$ is surjective $\} \cong$ $T\left(\tilde{\pi}_{X}\right)$ via the map $Y \mapsto Y / X$. The latter is spherical of dimension $(r-\alpha-3)$ with induction. Since the Link of X in $T_{\alpha-1}$ is the join of the lower and the upper Link of X in $T_{\alpha-1}$, we have by Lemma 1.4.3 that $\operatorname{Link}_{T_{\alpha-1}}(X)$ is $(\alpha-1)+(r-\alpha-3)+1=$ $(r-3)$-spherical. So T_{α} is an $(r-2)$-cellular extension of $T_{\alpha-1}$. This finishes the proof of Step 2. and therefore of the Proposition.

Proposition 1.7.2. Let V be a lattice of rank $r, \pi: V \rightarrow A$ and $\rho: V^{*} \rightarrow B$ cyclic quotients, then $T(\pi / \rho)$ is $(r-4)$-connected.

Proof. For $r \leq 2$ there is nothing to prove. Let $r \geq 3$, then $T(\pi / \rho)$ is nonempty. We proceed with induction on r and assume that $r \geq 3$.

Choose $\varphi \in V^{*}$ such that $\tilde{\pi}=(\pi, \varphi): V \rightarrow A \oplus \mathbb{Z}$ is surjective and ρ : $(V / \operatorname{ker}(\varphi))^{*} \rightarrow B$ is surjective. This means that $\varphi \in \rho^{-1}(\overline{1})$, where $\overline{1}$ is a generator of B, when $r \geq 3$ such a φ exists. Then again $T(\tilde{\pi} / \rho) \subset T(\pi / \rho)$ is nullhomotopic: if $X \in T(\tilde{\pi} / \rho)$, then $X>X \cap \operatorname{Ker}(\varphi)<\operatorname{Ker}(\varphi)$, so applying Lemma 1.4.2 two times we see that the inclusion is homotopic to the constant map. Let $T_{\alpha}:=T(\tilde{\pi} / \rho) \cup\{X \in T(\pi / \rho): \operatorname{rk}(X) \leq \alpha+1\}$. Then

$$
T(\tilde{\pi} / \rho)=T_{-1} \subset T_{0} \subset T_{1} \subset \cdots \subset T_{r-2}=T(\pi / \rho)
$$

gives a filtration; we follow the procedure as usual.

Let $X \in T_{\alpha}-T_{\alpha-1}$, then $\operatorname{rk}(X)=\alpha+1$ and $\left.\tilde{\pi}\right|_{X}$ is not surjective. Let $\tilde{\pi}_{X}$: $V / X \rightarrow \widetilde{A}_{X}$ be defined as in the previous proof. Then $\operatorname{Link}_{T_{\alpha-1}}^{-}(X)=T\left(\left.\pi\right|_{X}\right)$ is ($\alpha-1$)-spherical. We have

$$
\operatorname{Link}_{T_{\alpha-1}}^{+}(X)=\left\{X \subsetneq Y \subsetneq V:\left.\tilde{\pi}\right|_{Y},\left.\rho\right|_{(V / Y)^{*}} \text { are surjective }\right\}
$$

Via the map $Y \mapsto Y / X$ this poset is isomorphic to $T\left(\tilde{\pi}_{X} /\left.\rho\right|_{(V / X)^{*}}\right)$, which is $(r-$ $\alpha-5)$-connected by induction. So $\operatorname{Link}_{T_{\alpha-1}}(X)$ is $(r-5)$-connected by Lemma 1.4.3 and hence, T_{α} is $(r-4)$-connected by Lemma 1.4.4.

Theorem 1.7.3. Let H be a unimodular symplectic lattice of genus $g \geq 1$ and let $\pi: H \rightarrow A$ be a cyclic quotient of H. Then $I(\pi)_{\leq g-2}$ is Cohen-Macaulay of dimension $g-2$.

REmark 1.7.4. We are only interested in the special case when A is infinite cyclic, so that π is essentially given as the symplectic product with a primitive vector. But the inductive set-up of the proof requires that we prove this more general result. When A is trivial, $I(\pi)=I(H)$ is the Tits building associated to the symplectic group. By the Solomon-Tits Theorem it is spherical of dimension $(g-1)$; we shall use this special case in the proof below. A direct proof of the sphericalness property of $I(H)$ can be found in [Vogtmann], Theorem 1.6, where she proves it for $O_{n, n}$ but the proof works for the symplectic group as well.

Proof of Theorem 1.7.3. It is clear that $I(\pi)$ is nonempty of dimension $g-1$. So for $g=1$ there is nothing to prove. We continue with induction on g and assume that $g \geq 2$. We also assume that A is nontrivial.

Choose a line L that belongs to $I(\pi)$ and let

$$
\tilde{\pi}: H \rightarrow A \oplus L^{*}, \quad v \mapsto(\pi(v), x \in L \mapsto x \cdot v \in \mathbb{Z}) .
$$

We have defined $I(\tilde{\pi})$ and $I(\pi, \tilde{\pi})$.
Step 1. The inclusion $I(\tilde{\pi}) \subset I(\pi)$ is null-homotopic.
Proof. If $X \in I(\tilde{\pi})$, then $\tilde{\pi}: X \rightarrow A \oplus L^{*}$ is onto by definition, and so $\pi: X \cap L^{\perp} \rightarrow A$ onto. Since A is nontrivial, we cannot have that $X \cap L^{\perp}$ is trivial and so $X \cap L^{\perp} \in I(\pi)$. In other words, $X \cap L^{\perp}<X$ is a 1 -simplex of $I(\pi)$. The submodule $\left(X \cap L^{\perp}\right)+L$ is primitive, because if $L=\langle v\rangle$, then, since $X \in I(\tilde{\pi})$, there exists a $w \in X$ such that $w \cdot v=1$. This implies that $w^{*}: X \cap L^{\perp}+L \rightarrow \mathbb{Z}$ is surjective with kernel $X \cap L^{\perp}$. So $\left(X \cap L^{\perp}\right)+L \in I(\pi)$ and so $X \cap L^{\perp}<\left(X \cap L^{\perp}\right)+L>L$ are 1-simplices of $I(\pi)$. It follows that $I(\tilde{\pi}) \cup \operatorname{Star}_{I(\pi)}(L)$ contracts onto the singleton represented by L by Lemma 1.4.2.

Step 2. $I(\pi, \tilde{\pi})$ is a $(g-1)$-cellular extension of $I(\tilde{\pi})$.

Proof. Let I_{α} denote the union of $I(\tilde{\pi})$ and the set of members of $I(\pi, \tilde{\pi})$ of rank $\leq 1+\alpha$ so that we have the filtration

$$
I(\tilde{\pi})=I_{-1} \subset I_{0} \subset \cdots \subset I_{g-1}=I(\pi, \tilde{\pi}) .
$$

It suffices to show that for $\alpha=0, \ldots, g-1, I_{\alpha}$ is a $(g-1)$-cellular extension of $I_{\alpha-1}$. We prove this by showing that for every $X \in I_{\alpha}-I_{\alpha-1}(\alpha=0, \ldots, g-1)$, $\operatorname{Link}_{I_{\alpha-1}}(X)$ is $(g-2)$-spherical. Observe that for such an $X, \operatorname{rk}(X)=1+\alpha$ (so that X^{\perp} / X has genus $\left.g-1-\alpha\right), \pi \mid X$ and $\tilde{\pi} \mid X^{\perp}$ are onto, but $\tilde{\pi} \mid X$ is not onto. In any case, the cokernel \tilde{A}_{X} of $\tilde{\pi} \mid X$ is cyclic and we have an induced surjection $\tilde{\pi}_{X}: X^{\perp} / X \rightarrow \tilde{A}_{X}$.

If $\alpha=0$ then $\operatorname{Link}_{I_{\alpha-1}}^{-}(X)=\emptyset$. Assume $\alpha>0$. Let $Y \in I(H)$ be such that $Y<X$. Then $Y \in I_{\alpha-1}$ iff $\pi \mid Y$ is onto. This shows that $\operatorname{Link}_{I_{\alpha-1}}^{-}(X)=T(\pi \mid X)$ and this is spherical of dimension $\operatorname{rk}(X)-2=\alpha-1$ by Proposition 1.7.1.

Next consider the case when $Y \in I(H)$ is such that $Y>X$. Then $Y \subset X^{\perp}$ and Y / X is a member of $I\left(X^{\perp} / X\right)$. We have $Y \in I_{\alpha-1}$ iff $Y \in I(\tilde{\pi})$. This means that $\tilde{\pi} \mid Y$ is onto, or equivalently, that a $\tilde{\pi}_{X} \mid(Y / X)$ is onto. So $\operatorname{Link}_{I_{\alpha-1}}^{+}(X) \cong I\left(\tilde{\pi}_{X}\right)$. The latter is spherical of dimension $(g-1-\alpha)-1=g-\alpha-2$ by induction.

It follows by Lemma 1.4.3 that $\operatorname{Link}_{I_{\alpha-1}}(X)$ is spherical of dimension $(\alpha-1)+$ $1+(g-\alpha-2)=g-2$.

Step 3. $I(\pi)$ is a $(g-2)$-cellular extension of $I(\pi, \tilde{\pi})$ up to homotopy.
Proof. Let J_{α} denote the union of $I(\pi, \tilde{\pi})$ and the set of members of $I(\pi)$ of rank $\geq g-\alpha$ so that

$$
I(\pi, \tilde{\pi})=J_{-1} \subset J_{0} \subset \cdots \subset J_{g-1}=I(\pi)
$$

We prove that for $\alpha=0, \ldots, g-1, J_{\alpha}$ is a $(g-2)$-cellular extension of $J_{\alpha-1}$ by showing that for every $X \in J_{\alpha}-J_{\alpha-1}, \operatorname{Link}_{J_{\alpha-1}}(X)$ is $(g-4)$-connected. For such an $X, \operatorname{rk}(X)=g-\alpha$ (so that X^{\perp} / X has genus α), $\pi \mid X$ is onto, whereas $\tilde{\pi} \mid X^{\perp}$ isn't. So the cokernel \tilde{A}^{X} of $\tilde{\pi} \mid X^{\perp}$ is cyclic and we have an induced surjection $\tilde{\pi}^{X}: X^{*} \cong H / X^{\perp} \rightarrow \tilde{A}^{X}$.

Let $Y \in I(H)$ be such that $Y<X$. Then $Y \in I_{\alpha-1}$ iff $Y \in I(\pi, \tilde{\pi})$, that is, iff $\pi \mid Y$ and $\tilde{\pi} \mid Y^{\perp}$ are onto. The latter property is equivalent to $Y^{\perp} / X^{\perp} \rightarrow \tilde{A}^{X}$ is onto. Since we can identify Y^{\perp} / X^{\perp} with the dual of X / Y, this amounts to: $\tilde{\pi}^{X} \mid(X / Y)^{*}$ is onto. This shows that $\operatorname{Link}_{J_{\alpha-1}}^{-}(X)=T\left(\pi \mid X / \tilde{\pi}^{X}\right)$. According to Proposition 1.7.2 that poset is $(\operatorname{rk}(X)-4)=(g-\alpha-4)$-connected.

Now consider the case when $Y \in I(H)$ is such that $Y>X$. Then $Y \in I_{\alpha-1}$ automatically (there is no such Y when $\alpha=0$) and so $\operatorname{Link}_{J_{\alpha-1}}^{+}(X) \cong I\left(X^{\perp} / X\right)$. The latter is $(\alpha-1)$-spherical by the Solomon-Tits Theorem.

It follows that $\operatorname{Link}_{J_{\alpha-1}}(X)$ is $(g-\alpha-3)+(\alpha-1)=(g-4)$-connected.
Step 4. Conclusion.

The previous steps imply that $I(\pi)$ is $(g-3)$-connected, so $I(\pi)_{\leq g-2}$ is spherical. For the Cohen-Macaulay property of $I(\pi)_{\leq g-2}$, we note that for $X \in I(\pi)_{\leq g-2}$, $\operatorname{Link}_{I(\pi)_{\leq g-2}}^{-}(X)=T(\pi \mid X)$ is $(\operatorname{rk}(X)-2)$-spherical,

$$
\operatorname{Link}_{I(\pi) \leq g-2}^{+}(X) \cong I\left(X^{\perp} / X\right)_{\leq g-\operatorname{rk}(X)-2}
$$

is $(g-\operatorname{rk}(X)-2)$-spherical and that if we are also given $X^{\prime} \in I(\pi)_{\leq g-2}$ with $X<X^{\prime}$, then $\operatorname{Link}_{I(\pi) \leq g-2}^{-}\left(X^{\prime}\right) \cap \operatorname{Link}_{I(\pi) \leq g-2}^{+}(X)=T\left(X^{\prime} / X\right)$ is $\left(\operatorname{rk}\left(X^{\prime}\right)-\mathrm{rk}(X)-2\right)$-spherical by the Solomon-Tits Theorem for the general group, see for example [Quillen1]. This proves the Cohen-Macaulay property of $I(\pi)_{\leq 2}$.

Question 1.7.5. Is $I(\pi)$ Cohen-Macaulay of dimension $g-1$?

1.8. The Cohen-Macaulay property of $\mathcal{I}\left(\pi^{-1}(1)\right)_{\leq g-2}$ and $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)_{\leq g-2}$

Proposition 1.8.1. Let H be a unimodular symplectic lattice of genus g and $\pi: H \rightarrow \mathbb{Z}$ an epimorphism. Then $\mathcal{I}\left(\pi^{-1}(1)\right)_{\leq g-2}$ is Cohen-Macaulay of dimension $g-2$.

Proof. Let $\varphi: \mathcal{I}\left(\pi^{-1}(1)\right)_{\leq g-2} \rightarrow I(\pi)_{\leq g-2}$ be defined by $E \mapsto\langle E\rangle$. Then φ is a strictly increasing map. If $X \in I(\pi)$ then $\varphi / X \cong \mathcal{P}\left(\left(\left.\pi\right|_{X}\right)^{-1}(1)\right)$ is CohenMacaulay of dimension $\operatorname{dim}(X)-1$ by [Maazen], Chapter III, Corollary (5.7). By Corollary 1.4 .6 we conclude that $\mathcal{I}\left(\pi^{-1}(1)\right)$ is Cohen-Macaulay of dimension $g-1$, since by Theorem 1.7.3 $I(\pi)_{\leq g-2}$ is Cohen-Macaulay of dimension $g-2$.

We are now in the position to prove Proposition 1.5.7 for $g \geq 4$, which states that for any quasi-unimodular symplectic lattice H of genus g and epimorphism $\pi: H \rightarrow \mathbb{Z}$ that factorizes over $\bar{\pi}: \bar{H} \rightarrow \mathbb{Z}$ the poset $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)_{\leq g-2}$ is Cohen-Macaulay of dimension $g-2$.

Proof of Proposition 1.5.7 For $g \geq 4$. We first show that we may assume that H is unimodular. We choose a section of the projection $H \rightarrow \bar{H}$ so that we have a decomposition $H=\bar{H} \oplus \operatorname{Rad}(H)$. Let $E^{o}=\left(\left(v_{0}, r_{0}\right), \ldots,\left(v_{k}, r_{k}\right)\right) \subset \bar{H} \oplus \operatorname{Rad}(H)$ be written according to this decomposition. Then E^{o} is in $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)_{\leq g-2}$ if and only if $\left(v_{0}, \ldots, v_{k}\right)$ is in $\mathcal{I}^{o}\left(\bar{\pi}^{-1}(1)\right)_{\leq g-2}$. By [Maazen], Corollary (6.3), Chapter II, it follows that if $\mathcal{I}^{o}\left(\bar{\pi}^{-1}(1)\right)_{\leq g-2}$ is Cohen-Macaulay, then $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)_{\leq g-2}$ is CohenMacaulay of the same dimension. The proof of the $C M$-property of $\mathcal{I}^{o}\left(\bar{\pi}^{-1}(1)\right)_{\leq g-2}$ is completely analogous to the proof of Proposition 1.5.6, see Section 1.6, where we use the map $f: \mathcal{I}^{o}\left(\bar{\pi}^{-1}(1)\right)_{\leq g-2} \rightarrow \mathcal{I}\left(\bar{\pi}^{-1}(1)\right)_{\leq g-2}$ that forgets the ordering.

1.9. The Cohen-Macaulay property of $\mathcal{I}\left(\pi^{-1}(1)\right)$ and $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$ when

$$
g=1,2,3
$$

Let H be a unimodular symplectic lattice of genus g and $\pi: H \rightarrow \mathbb{Z}$ an epimorphism. In this section we prove that $\mathcal{I}\left(\pi^{-1}(1)\right)$ is spherical when $g=1,2,3$, that means, the geometric realization is nonempty when $g=1$, connected when $g=2$ and simply connected when $g=3^{1}$. As before, using the map $f: \mathcal{I}^{o}\left(\pi^{-1}(1)\right) \rightarrow$ $\mathcal{I}\left(\pi^{-1}(1)\right)$ that forgets the ordering, this implies the same result for $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$. the For $g=1$ the statement is trivially true. Let $e_{1}, e_{-1}, \ldots, e_{g}, e_{-g}$ be an ordered symplectic basis of H and assume that π is given by $\pi(x)=x \cdot e_{-1}$. In this section we often write a vector with respect to this basis as a column vector. We sometimes abbreviate $\mathcal{I}\left(\pi^{-1}(1)\right)$ with \mathcal{I}. We use the following terminology when we are dealing with a poset P that is a subposet of a poset that is associated to a simplicial complex Σ. An element of height k will, in that case, be called a k-simplex; in particular, an element of height zero is called a vertex and an element of height one an edge. Although in the geometric realization of P an element of height k is represented by a vertex, as it is the subspace of the geometric realization of the barycentric subdivision of Σ, we hope that this does not cause any confusion.

Proposition 1.9.1. If $g=2$ then $\mathcal{I}\left(\pi^{-1}(1)\right)$ is connected.
Proof. We show that every vertex of \mathcal{I} can be connected to the vertex e_{1}. Let $\left(\begin{array}{l}1 \\ a \\ b \\ 0\end{array}\right) \in \mathcal{I}$, assume $a \geq 0, b>0$, then

$$
\left(\begin{array}{l}
1 \\
a \\
b \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
a \\
b-1 \\
0
\end{array}\right), \ldots,\left(\begin{array}{l}
1 \\
a \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
a
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
0 \\
a-1
\end{array}\right), \ldots,\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

is a path in \mathcal{I}. If $b=0$ then $\left(\begin{array}{l}1 \\ a \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ a \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ a\end{array}\right), \ldots,\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$ is a path in \mathcal{I}. The cases with $a<0$ or $b<0$ are similar. Let $\left(\begin{array}{l}1 \\ a \\ b \\ c\end{array}\right) \in \mathcal{I}$, then we can apply a symplectic

[^1]transformation φ that stabilizes e_{1} and maps $\left(\begin{array}{l}1 \\ a \\ b \\ c\end{array}\right)$ to an element $\left(\begin{array}{c}1 \\ a \\ b^{\prime} \\ 0\end{array}\right)$, so φ applied to the path above gives a path between this element and e_{1} again.

Proposition 1.9.2. If H is a unimodular symplectic lattice of genus 3 and $\pi: H \rightarrow \mathbb{Z}$ is an epimorphism, then $\mathcal{I}\left(\pi^{-1}(1)\right)$ is simply connected.

Proof. The proof consists of four lemmas. First we define the bigger simplicial complex $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1)\right)$ by stating that an isotropic subset $\left\{v_{0}, \ldots, v_{p}\right\}$ of $\pi^{-1}(1)$ is in $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1)\right)$ if and only if they are independent vectors over \mathbb{Q}, so we drop the assumption that they span a primitive subspace. We abbreviate this poset by $\mathcal{I}_{\mathbb{Q}}$. In Lemma 1.9.5 we prove, using Lemma 1.9.3 and 1.9.4, that \mathcal{I} is a retract of $\mathcal{I}_{\mathbb{Q}}$. It suffices then to prove that $\mathcal{I}_{\mathbb{Q}}$ is simply connected, which we do in Lemma 1.9.6. To prove that \mathcal{I} is a retract of $\mathcal{I}_{\mathbb{Q}}$ we use the following definition and two lemmas. Let $\sigma \in \mathcal{I}_{\mathbb{Q}}$ then we define $\mathcal{I}_{\sigma}:=\mathcal{I}\left(\pi^{-1}(1) \cap\langle\sigma\rangle^{\perp}\right)$.

Lemma 1.9.3. If $\sigma \in \mathcal{I}_{\mathbb{Q}}$ is an edge, then \mathcal{I}_{σ} is simply connected.
Proof. After applying a suitable symplectic transformation we may assume that $\sigma=\left\{e_{1}, e_{1}+k e_{2}\right\}$, for some $k \neq 0$. Then $\mathcal{I}_{\sigma}=\mathcal{I}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}\right\rangle^{\perp}\right)$. The subposet $\mathcal{I}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}, e_{3}\right\rangle^{\perp}\right)$ is simply connected by a Theorem of Maazen, see [Maazen], Chapter III, Theorem (5.5). We define an infinite filtration $Y_{0} \subset$ $Y_{1} \subset Y_{2} \subset \cdots$ such that $Y_{0}:=\mathcal{I}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}, e_{3}\right\rangle^{\perp}\right)$ and $\lim _{n \rightarrow \infty} Y_{n}=\mathcal{I}_{\sigma}$. If $\{v\} \in \mathcal{I}_{\sigma}-Y_{0}$ then we may write $v=\left(\begin{array}{c}1 \\ 0 \\ a \\ 0 \\ b p \\ b q\end{array}\right)$, with $b>0$ and $\operatorname{gcd}(p, q)=1$. Let Y_{n} be the subposet of \mathcal{I}_{σ} consisting of $E \in \mathcal{I}_{\sigma}$ such that an elements of E is a vertex of Y_{0} or a vertex such that $b \leq n$. For each $n \geq 1$, let \widetilde{Y}_{n-1} be the poset of $E \in Y_{n}$ such that E contains a vertex of Y_{n-1}. Then deleting the vertices not in Y_{n-1} gives, by Lemma 1.4.2 a homotopy equivalence between \widetilde{Y}_{n-1} and Y_{n-1}. We define the subfiltration $\left(X_{n-1}\right)_{m}:=\widetilde{Y}_{n-1} \cup\left(Y_{n}\right)_{\leq m}$ for $m=-1,0,1,2$. We show in the following steps that if $i=-1,0,1$ and $\tau \in\left(X_{n-1}\right)_{i+1}-\left(X_{n-1}\right)_{i}$ then $\operatorname{Link}_{\left(X_{n-1}\right)_{i}}(\tau)$ is connected. This implies that if Y_{n-1} is simply connected then so is Y_{n}, since Y_{0} is simply connected we can conclude that $\mathcal{I}_{\sigma}=\lim _{n \rightarrow \infty} Y_{n}$ is simply connected.

Step 1. Suppose $\tau \in\left(X_{n-1}\right)_{0}-\left(X_{n-1}\right)_{-1}$. Then $\tau=e_{1}+a e_{2}+n p e_{3}+n q e_{-3}$ with $q \neq 0$. We claim that $\operatorname{Link}_{\left(X_{n-1}\right)_{-1}}(\tau)$ is connected. If a vertex in $\left(X_{n-1}\right)_{-1}$ forms
an edge with τ in $\left(X_{n-1}\right)_{-1}$ then it is of the form $\left(\begin{array}{c}1 \\ 0 \\ x \\ 0 \\ y p \\ y q\end{array}\right)$ with $|y|<n$. After applying a suitable symplectic transformation of $\left\langle e_{3}, e_{-3}\right\rangle$ we may assume that $\binom{p}{q}=\binom{0}{1}$. Apply now the symplectic transformation $\delta_{e_{2}}^{a} \delta_{e_{-1}}^{a} \delta_{e_{2}+e_{-1}}^{-a}(x)=x-a\left(x \cdot e_{2}\right) e_{-1}-a(x$. $\left.e_{-1}\right) e_{2}$; it maps $e_{1}+a e_{2}+n e_{-3}$ to $e_{1}+n e_{-3}$ and leaves the set of elements in $\left(X_{n-1}\right)_{-1}$ invariant. Then $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ n\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ x \\ 0 \\ 0 \\ y\end{array}\right)\right\}$ is an edge in $\operatorname{Link}_{\left(X_{n-1)}(\tau) \text { if and only if }|y|<n, ~(X)\right.}$ and $\operatorname{gcd}(x, n-y)=1$. Suppose that $y \neq n-1$. This means that there are integers α, β such that $(\alpha-n) x-\beta(y-n)=1, \alpha-n<0$ and $|\alpha-n|<n-y$, so $y<\alpha<n$. Then $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ n\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ x \\ 0 \\ 0 \\ y\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ \beta \\ 0 \\ 0 \\ \alpha\end{array}\right)\right\} \in \operatorname{Link}_{\left(X_{n-1}\right)_{-1}}^{+}(\tau)$ and with induction we see that we may assume that $y=n-1$. Then $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ n\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ x \\ 0 \\ 0 \\ n-1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ x \pm 1 \\ 0 \\ 0 \\ n-1\end{array}\right)\right\} \in \operatorname{Link}_{\left(X_{n-1}\right)-1}^{+}(\tau)$, so with induction we see that it is connected to $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ n\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ 1 \\ 0 \\ 0 \\ n-1\end{array}\right)\right\}$. This proves that $\operatorname{Link}_{\left(X_{n-1}\right)-1}^{+}(\tau)$ is connected and hence $\left(X_{n-1}\right)_{0}$ is simply connected if X_{n-1} is.
1.9. THE COHEN-MACAULAY PROPERTY OF $\mathcal{I}\left(\pi^{-1}(1)\right)$ AND $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$ WHEN $g=1,2,321$

Step 2. Let $\tau \in\left(X_{n-1}\right)_{1}-\left(X_{n-1}\right)_{0}$. Again, we may assume that $\tau=$ $\{v, w\}$ with $v=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ n\end{array}\right)$, then w must be $\left(\begin{array}{c}1 \\ 0 \\ \pm 1 \\ 0 \\ 0 \\ n\end{array}\right)$ or $\left(\begin{array}{c}1 \\ 0 \\ x \\ 0 \\ 0 \\ -n\end{array}\right)$. In the first case $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ n\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ \pm 1 \\ 0 \\ 0 \\ n\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ n-1\end{array}\right)\right\}$ is a 2-simplex, so $\operatorname{Link}_{\left(X_{n-1}\right)_{0}}^{+}(\tau)$ is nonempty in that case. If $w=\left(\begin{array}{c}1 \\ 0 \\ x \\ 0 \\ 0 \\ -n\end{array}\right)$ then $\operatorname{gcd}(x, 2 n)=1$, because $\{v, w\}$ is an edge, so there exist α, β with $-2 n<\alpha<0$ such that $\alpha x+\beta 2 n=1$. Write $y=n+\alpha$, then $-n<y<n$, and with the conditions on α and β we see that $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ n\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ x \\ 0 \\ 0 \\ -n\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ \beta \\ 0 \\ 0 \\ y\end{array}\right)\right\}$ is a 2-simplex in $\operatorname{Link}_{\left(X_{n-1}\right)_{0}}^{+}(\tau)$.

Step 3. Let $\tau \in\left(X_{n-1}\right)_{2}-\left(X_{n-1}\right)_{1}$, then trivially $\operatorname{Link}_{\left(X_{n-1}\right)_{1}}(\tau)$ is connected. This finishes the proof of Lemma 1.9.3.

Lemma 1.9.4. If $\sigma \in \mathcal{I}_{\mathbb{Q}}$ is a 2-simplex, then \mathcal{I}_{σ} is simply connected.
Proof. Let $\sigma=\{v, w, u\} \in \mathcal{I}_{\mathbb{Q}}$. After applying a symplectic transformation we may and will assume that $v=e_{1}, w=e_{1}+a e_{2}$ and $u=e_{1}+b e_{2}+c e_{3}$ for integers a, b, c. So $\mathcal{I}_{\sigma}=\mathcal{I}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}, e_{3}\right\rangle^{\perp}\right)$. This poset is spherical, that means, simply connected, by [Maazen], Chapter III, Theorem (5.5).

Using these two lemmas we prove the following lemma.
Lemma 1.9.5. The simplicial complex \mathcal{I} is a retract of $\mathcal{I}_{\mathbb{Q}}$.
Proof. We define a retract $\mathcal{I}_{\mathbb{Q}} \rightarrow \mathcal{I}$. Let $v \in \mathcal{I}_{\mathbb{Q}}$ be a vertex, then v is a vertex of \mathcal{I}. Let $\{v, w\}$ be an edge of $\mathcal{I}_{\mathbb{Q}}$. Then $\mathcal{I}_{\{v, w\}}$ is connected, so we can choose a
path $e_{(v, w)}$ in $\mathcal{I}_{\{v, w\}}$ between v, w; let $e_{(v, w)}$ be the image of $\{v, w\}$. Let $\{v, w, u\}$ be a 2 -simplex of $\mathcal{I}_{\mathbb{Q}}$. Then we choose a point x in $\mathcal{I}_{\{v, w, u\}}$ and paths $e_{(x, v)}, e_{(x, w)}$, $e_{(x, u)}$ in $\mathcal{I}_{(v, w, u)}$ between x and v, x and w, and x and u respectively. Because $e_{(x, v)}$, $e_{(v, w)}, e_{(x, w)}$ gives a closed path in $\mathcal{I}_{\{v, w\}}$ it can be filled in this space by Lemma 1.9.3 with a 2 -cell. We do the same for $\{v, u, x\}$ and $\{w, u, x\}$ respectively and this defines the image of $\{v, w, u\}$.

This lemma implies that it suffices to prove that $\mathcal{I}_{\mathbb{Q}}$ is simply connected, which we prove in Lemma 1.9.6.

Lemma 1.9.6. The simplicial complex $\mathcal{I}_{\mathbb{Q}}$ is simply connected.
Proof. The proof of Lemma 1.9.6 consists of the following steps. We have the filtration
$\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}, e_{3}\right\rangle^{\perp}\right) \subset \mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}\right\rangle^{\perp}\right) \subset \mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}\right\rangle^{\perp}\right) \subset \mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1)\right)$.
In the first step we show that $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}, e_{3}\right\rangle^{\perp}\right)$ is simply connected. Let $U \subset V \subset H$ be subspaces, then $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap U\right) \subset \mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap V\right)$. We introduce the following notation. Let $\widetilde{\mathcal{I}}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap U\right)$ be the poset consisting of $E \in \mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap V\right)$ such that $E \cap U \neq \emptyset$, then $\widetilde{\mathcal{I}}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap U\right)$ is homotopy equivalent to $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap U\right)$. Define further

$$
X_{m}:=\widetilde{\mathcal{I}}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap U\right) \cup \mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap V\right)_{\leq m}
$$

then we have the subfiltration

$$
\tilde{\mathcal{I}}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap U\right)=X_{-1} \subset X_{0} \subset X_{1} \subset X_{2}=\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap V\right)
$$

In Steps 2,3 and 4 we apply this to $(U, V)=\left(\left\langle e_{1}, e_{2}, e_{3}\right\rangle^{\perp},\left\langle e_{1}, e_{2}\right\rangle^{\perp}\right),(U, V)=$ $\left(\left\langle e_{1}, e_{2}\right\rangle^{\perp},\left\langle e_{1}\right\rangle^{\perp}\right)$ and $(U, V)=\left(\left\langle e_{1}\right\rangle^{\perp}, H\right)$ respectively. We show in each step that if $\sigma \in X_{i+1}-X_{i}$ then $\operatorname{Link}_{X_{i}}(\sigma)$ is connected, or for some edges σ where this is not the case, we show that σ is homotopic relative the endpoints in X_{2} to a path consisting of edges with a connected link in X_{i}. This will show that if X_{i} is simply connected then so is X_{i+1} and will finish the proof.

Step 1. The poset $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}, e_{3}\right\rangle^{\perp}\right)$ is simply connected.
Proof. Any path γ in $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}, e_{3}\right\rangle^{\perp}\right)$ is homotopic to a path in the 1 -skeleton of this poset, so assume that this is the case. Let $e_{1}+p_{0} e_{2}+q_{0} e_{3}, e_{1}+$ $p_{1} e_{2}+q_{1} e_{3}, \ldots, e_{1}+p_{n} e_{2}+q_{n} e_{3}$ be the vertices of γ. A vertex $e_{1}+a e_{2}+b e_{3}$ with $a, b \in \mathbb{Z}$ spans a 2 -simplex with the edges $e_{1}+p_{i} e_{2}+q_{i} e_{3}, e_{1}+p_{i+1} e_{2}+q_{i+1} e_{3}$ if and only if $\binom{a}{b}$ is not on the line through $\binom{p_{i}}{q_{i}}$ and $\binom{p_{i+1}}{q_{i+1}}$, where $i \in\{0, \ldots, n\}$. Because there are only finitely many of such lines, there exists a point $e_{1}+a e_{2}+b e_{3}$ such that γ is in the star of this point, which shows that the path γ is contractible.

Step 2. The poset $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}\right\rangle^{\perp}\right)$ is simply connected.
Proof. Let $U=\left\langle e_{1}, e_{2}, e_{3}\right\rangle^{\perp}, V=\left\langle e_{1}, e_{2}\right\rangle^{\perp}$ and X_{i} for $-1 \leq i \leq 2$ as in the notation of the beginning of the proof of the lemma.

Let $\sigma \in X_{0}-X_{-1}$, then σ is of the form $\sigma=e_{1}+a e_{2}+b e_{3}+c e_{-3}$ with $c \neq 0$. Then $\operatorname{Link}_{X_{-1}}(\sigma) \cong \mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}, e_{2}, e_{3}, e_{-3}\right\rangle^{\perp}\right)$ via the map $E \mapsto E-\{\sigma\}$. The latter is connected since every vertex of this poset is connected to e_{1}.

Let $\sigma \in X_{1}-X_{0}$, then $\operatorname{Link}_{X_{0}}^{-}(\sigma)$ is clearly nonempty. We show that $\operatorname{Link}_{X_{0}}^{+}(\sigma)$ is nonempty as well. Let $\sigma=\left\{e_{1}+a_{0} e_{2}+b_{0} e_{3}+c_{0} e_{-3}, e_{1}+a_{1} e_{2}+b_{1} e_{3}+c_{1} e_{-3}\right\}$ with $c_{i} \neq 0$ for $i=0,1$. Then $\sigma \cup\left\{e_{1}\right\}$ is a 2-simplex in X_{0} if $\left(\begin{array}{c}a_{0} \\ b_{0} \\ c_{0}\end{array}\right) \neq \lambda\left(\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right)$, but in case of equality, $\sigma \cup\left\{e_{1}+e_{2}\right\}$ is a 2 -simplex in X_{0}.

Let $\sigma \in X_{2}-X_{1}$, then trivially $\operatorname{Link}_{X_{1}}(\sigma)=\operatorname{Link}_{X_{1}}^{-}(\sigma)$ is connected.

Step 3. The poset $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}\right\rangle^{\perp}\right)$ is simply connected.
Proof. Let $U=\left\langle e_{1}, e_{2}\right\rangle^{\perp}, V=\left\langle e_{1}\right\rangle^{\perp}$ and X_{i} for $-1 \leq i \leq 2$ as in the notation of the beginning of the proof of the lemma.

Let $\sigma \in X_{0}-X_{-1}$, then $\sigma=e_{1}+a e_{2}+b e_{-2}+c e_{3}+d e_{-3}$ with $b \neq 0$. The vertices of X_{-1} that form an edge in X_{-1} together with σ, are of the form $v=$ $e_{1}+x e_{2}+y e_{3}+z e_{-3}$ and orthogonal to σ. Since $\left\{\sigma, v, e_{1}\right\} \in \operatorname{Link}_{X_{-1}}(\sigma)$, every element in $\operatorname{Link}_{X_{-1}}(\sigma)$ is connected to $\left\{\sigma, e_{1}\right\}$.

Let $\sigma \in X_{1}-X_{0}$, then after applying a suitable symplectic transformation of $\left\langle e_{3}, e_{-3}\right\rangle$ we may assume that $\sigma=\left\{\left(\begin{array}{c}1 \\ 0 \\ a_{0} \\ b_{0} \\ c_{0} \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ a_{1} \\ b_{1} \\ c_{1} \\ d_{1}\end{array}\right)\right\}$, with $b_{0}, b_{1} \neq 0$. Then $\sigma \cup\left\{e_{1}\right\}$ is a 2-simplex in X_{0}, except for the special case that $\left(\begin{array}{c}a_{0} \\ b_{0} \\ c_{0} \\ 0\end{array}\right)=\lambda\left(\begin{array}{c}a_{1} \\ b_{1} \\ c_{1} \\ d_{1}\end{array}\right)$ with $\lambda \neq 1$, but in that case $e_{1}+e_{3}$ will do the job.

Let $\sigma \in X_{2}-X_{1}$, then trivially $\operatorname{Link}_{X_{1}}(\sigma)=\operatorname{Link}_{X_{1}}^{-}(\sigma)$ is connected.
Step 4. The poset $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1)\right)$ is simply connected.
Proof. Let $U=\left\langle e_{1}\right\rangle^{\perp}, V=H$ and X_{i} for $-1 \leq i \leq 2$ as in the notation of the beginning of the proof of the lemma. In this step the procedure is more subtle, a reason for this is that $\operatorname{Link}_{X_{-1}}\left(e_{1}+a e_{-1}\right)=\emptyset$ if $a \neq 0$. For every pair $a \leq b$ of integers
we define $Y_{[a, b]}$ to be the subposet of $\mathcal{I}_{\mathbb{Q}}$ consisting of $E \in \mathcal{I}_{\mathbb{Q}}$ such that an elements of E is a vertex of $\mathcal{I}_{\mathbb{Q}}\left(\pi^{-1}(1) \cap\left\langle e_{1}\right\rangle^{\perp}\right)$ or is an element $e_{1}+x e_{-1}+y e_{2}+z e_{-2}+t e_{3}+u e_{-3}$ such that $a \leq x \leq b$ and $\left(\begin{array}{l}y \\ z \\ t \\ u\end{array}\right)$ is unimodular over \mathbb{Z}. By the previous step we know that $Y_{[0,0]}=X_{-1}$ is simply connected. Assume that $Y_{[a, b]}$ is simply connected, we prove that this implies that $Y_{[a, b+1]}$ is simply connected and by the same way of arguing that $Y_{[a-1, b]}$ is simply connected. We use the same procedure as before.

Let $\widetilde{Y}_{[a, b]}$ be the subposet consisting of $E \in Y_{[a, b+1]}$ such that E contains a vertex of $Y_{[a, b]}$. Then $\widetilde{Y}_{[a, b]}$ is homotopy equivalent to $Y_{[a, b]}$. We have the filtration

$$
\widetilde{Y}_{[a, b]}=X_{-1} \subset X_{0} \subset X_{1} \subset X_{2}=Y_{[a, b+1]}
$$

where $X_{m}:=\widetilde{Y}_{[a, b]} \cup\left(Y_{[a, b+1]}\right)_{\leq m}$.
Let $\sigma \in X_{0}-X_{-1}$, then, after applying a suitable symplectic transformation that stabilizes $\left\langle e_{1}, e_{-1}\right\rangle$, we may assume that $\sigma=e_{1}+c e_{-1}+e_{2}$ with $c=b+1$. If a vertex v_{0} in X_{-1} forms an edge in X_{-1} together with σ, then $v_{0}=\left(\begin{array}{c}1 \\ x \\ y \\ c-x \\ z \\ t\end{array}\right)$ with $a \leq x \leq b$. We show that $\left\{\sigma, v_{0}\right\}$ can be connected to $\left\{\sigma, e_{1}+b e_{-1}+e_{-2}\right\}$ via a path in $\operatorname{Link}_{X_{-1}}(\sigma)$. By applying a suitable symplectic transformation of $\left\langle e_{3}, e_{-3}\right\rangle$ we may assume that $t=0$. Let $v_{1}=\left(\begin{array}{c}1 \\ x \\ y \\ c-x \\ 1 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{l}1 \\ b \\ 0 \\ 1 \\ 1 \\ s\end{array}\right), v_{3}=\left(\begin{array}{l}1 \\ b \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right)$ where $s=-b+x-y$. Then $\left\{\sigma, v_{0}, v_{1}\right\},\left\{\sigma, v_{1}, v_{2}\right\},\left\{\sigma, v_{2}, v_{3}\right\} \in \operatorname{Link}_{X_{-1}}(\sigma)$ connect them.

Let $\sigma \in X_{1}-X_{0}$. For investigating $\operatorname{Link}_{X_{0}}(\sigma)$ we may assume that $\sigma=\{v=$ $\left.\left(\begin{array}{l}1 \\ c \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right), w_{0}=\left(\begin{array}{c}1 \\ c \\ d_{0} \\ 0 \\ f_{0} \\ 0\end{array}\right)\right\}$ with $\operatorname{gcd}\left(d_{0}, f_{0}\right)=1$ and $f_{0} \geq 0$. Then $\operatorname{Link}_{X_{0}}^{+}(\sigma)$ may be empty because if a vertex $u=e_{1}+x e_{-1}+y e_{2}+(c-x) e_{-2}+z e_{3}+t e_{-3}$ in X_{0} forms a 2 -simplex with σ then $a \leq x \leq b$ and $(c-x)\left(d_{0}-1\right)+f_{0} t=0$. This means that if $f_{0}= \pm 1$, then the link is nonempty. We show that otherwise we
can find vertices w_{1}, \ldots, w_{k} in X_{0} such that $\left\{v, w_{i}, w_{i+1}\right\}$ is a 2 -simplex in $Y_{[a, c]}$ for all $i \in\{0, \ldots, k-1\}$ and $\operatorname{Link}_{X_{0}}^{+}\left(\left\{w_{i}, w_{i+1}\right\}\right), \operatorname{Link}_{X_{0}}^{+}\left(\left\{w_{k}, v\right\}\right)$ are nonempty. This will imply the following. Any closed path in $Y_{[a, c]}$ is homotopic to a path in the 1-skeleton of $Y_{[a, c]}$ and, by what we show now, any edge of the path is homotopic to a path with edges such that their upper link in X_{0} is nonempty. So this path is homotopic to a path in X_{0} and hence is contractible. We show now that we can find the vertices with the given property.

Since $\operatorname{gcd}\left(d_{0}, f_{0}\right)=1$ and $f_{0} \geq 0$ we can find with induction pairs of integers $\left(d_{i}, f_{i}\right)$ such that $\operatorname{gcd}\left(d_{i}, f_{i}\right)=1, d_{i} f_{i+1}-f_{i} d_{i+1}=1,0<f_{i+1}<f_{i}$ and $f_{k}=1$. Let $w_{i}=\left(\begin{array}{c}1 \\ c \\ d_{i} \\ 0 \\ f_{i} \\ 0\end{array}\right)$, we have that $\left\{\left(\begin{array}{l}1 \\ c \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ c \\ d_{i} \\ 0 \\ f_{i} \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ c \\ d_{i+1} \\ 0 \\ f_{i+1} \\ 0\end{array}\right)\right\}$ is a 2-simplex in $Y_{[a, c]}$, since with our choices det $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & d_{i} & d_{i+1} \\ 0 & f_{i} & f_{i+1}\end{array}\right) \neq 0$. Also $\operatorname{Link}_{X_{0}}^{+}\left(\left\{w_{i}, w_{i+1}\right\}\right)$ is nonempty, since one can compute that $\left\{\left(\begin{array}{c}1 \\ c \\ d_{i} \\ 0 \\ f_{i} \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ c \\ d_{i+1} \\ 0 \\ f_{i+1} \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ x \\ 0 \\ y\end{array}\right)\right\}$ is a 2-simplex if $x=c\left(f_{i}-f_{i+1}\right)$ and $y=c\left(d_{i+1}-d_{i}\right)$.

Let $\sigma \in X_{2}-X_{1}$, then trivially $\operatorname{Link}_{X_{1}}(\sigma)=\operatorname{Link}_{X_{1}}^{-}(\sigma)$ is connected.
This proves that $Y_{(-\infty, \infty)}:=\lim _{a \rightarrow-\infty} \lim _{b \rightarrow \infty} Y_{[a, b]}$ is simply connected. Let $\widetilde{Y}_{(-\infty, \infty)}$ be the poset of $E \in \mathcal{I}_{\mathbb{Q}}$ such that E contains vertices of $Y_{(-\infty, \infty)}$. Then $\tilde{Y}_{(-\infty, \infty)}$ is homotopy equivalent to $Y_{(-\infty, \infty)}$, we define as usual $X_{m}:=\widetilde{Y}_{(-\infty, \infty)} \cup$ $\left(\mathcal{I}_{\mathbb{Q}}\right)_{\leq m}$.

If $\sigma \in X_{0}-X_{-1}$ then we may assume that $\sigma=e_{1}+a e_{-1}+b e_{2}$ with $|b| \neq 1$. Let $v=\left(\begin{array}{c}1 \\ a-b y \\ x \\ y \\ z \\ t\end{array}\right) \in X_{-1}$ and assume that it forms an edge in X_{-1} with σ. We claim
that $\{\sigma, v\}$ is connected to $\{\sigma, \tau\}$, where $\tau=\left(\begin{array}{c}1 \\ a-b \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right)$. Assume first that $t=0$, then $\{\sigma, v, w\} \in \operatorname{Link}_{X_{-1}}^{+}(\sigma)$ with $w=\left(\begin{array}{l}1 \\ a \\ b \\ 0 \\ 1 \\ 0\end{array}\right)$, except when $x=b$ and $y=0$. In that case , let $u=\left(\begin{array}{c}1 \\ a-b \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right)$ then $\{\sigma, v, u\}$ and $\{\sigma, u, w\}$ are 2 -simplices in $\operatorname{Link}_{X_{-1}}^{+}(\sigma)$.
This shows that $\{\sigma, v\}$ is connected to $\{\sigma, w\}$, but $\{\sigma, w\}$ is connected to $\{\sigma, \tau\}$ since $\left\{\left(\begin{array}{l}1 \\ a \\ b \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ a \\ b \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ a-b \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right)\right\}$ is a 2-simplex in $\operatorname{Link}_{X_{-1}}(\sigma)$. If $t \neq 0$ we apply a suitable symplectic transformation of $\left\langle e_{3}, e_{-3}\right\rangle$ so that it becomes zero, this leaves τ and σ invariant.

If $\sigma \in X_{1}-X_{0}$ then we may assume that $\sigma=\left\{\left(\begin{array}{l}1 \\ a \\ b \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ a-b s \\ r \\ s \\ t \\ 0\end{array}\right)\right\}$ with $|b| \neq 1$ and we can choose $z \in \mathbb{Z}$ such that $\sigma \cup\left(\begin{array}{c}1 \\ a-b s \\ r-t \\ s \\ z \\ -s\end{array}\right) \in \operatorname{Link}_{X_{0}}^{+}(\sigma)$. This shows that $\operatorname{Link}_{X_{0}}^{+}(\sigma)$ is nonempty.

Let $\sigma \in X_{2}-X_{1}$, then trivially $\operatorname{Link}_{X_{1}}(\sigma)=\operatorname{Link}_{X_{1}}^{-}(\sigma)$ is connected.

The steps $1,2,3$ and 4 together prove that $\mathcal{I}_{\mathbb{Q}}$ is simply connected.

Corollary 1.9.7. If H is a unimodular symplectic lattice of genus ≤ 3 and $\pi: H \rightarrow \mathbb{Z}$ an epimorphism, then $\mathcal{I}\left(\pi^{-1}(1)\right)$ is Cohen-Macaulay.

Proof. We check the three conditions of the definition of $C M$ on p. 7. The only nontrivial condition we have to check is if $g(H)=3$ and $\{v\} \in \mathcal{I}\left(\pi^{-1}(1)\right)$ then $\mathcal{I}\left(\pi^{-1}(1)\right)_{>\{v\}}$ is connected. We may assume that $v=e_{1}$, then $\mathcal{I}\left(\pi^{-1}(1)\right)_{>\{v\}} \cong$ $\mathcal{I}\left(\left\langle e_{2}, e_{-2}, e_{3}, e_{-3}\right\rangle\right)$, which is spherical by Proposition 1.6.1.

We are now able to finish the proof of Proposition 1.5.7 for $g \leq 3$ which states that $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$ is Cohen-Macaulay of dimension $g-1$. Again, we use the map $f: \mathcal{I}^{o}\left(\pi^{-1}(1)\right) \rightarrow \mathcal{I}\left(\pi^{-1}(1)\right)$ that forgets the ordering and the proof is exactly the same as for $g \geq 4$, see p. 17 .

1.10. The connectedness of $\mathcal{A}^{o}(H)$ and $\mathcal{A}^{\circ}(H, \pi)$

We are now in the position to prove Theorem 1.5.4 that says that if H is a quasi-unimodular symplectic lattice of genus g, then $\mathcal{A}^{\circ}(H)$ is $(g-2)$-connected.

Proof of Theorem 1.5.4. Every $\sigma=\left(v_{0}, \ldots, v_{m}\right) \in \mathcal{A}^{o}(H)$ determines a subgraph \mathcal{G}_{σ} on its set of vertices, where two different vertices v_{i}, v_{j} are connected via an edge if and only if $v_{i} \cdot v_{j} \neq 0$. We say that a vertex is isolated if there are no edges emerging from this vertex. Let k_{σ} be the number of non-isolated vertices in this graph. Notice that k_{σ} is never 1 and is $2 g$ at most, so if we define $\mathcal{A}^{o}(H)_{k}:=\left\{\sigma \in \mathcal{A}^{o}(H): k_{\sigma} \leq k+1\right\}$ then we have a filtration

$$
\mathcal{I}^{o}(H)=\mathcal{A}^{o}(H)_{0} \subset \mathcal{A}^{o}(H)_{1} \subset \cdots \subset \mathcal{A}^{o}(H)_{2 g-1}=\mathcal{A}^{o}(H)
$$

Since $\mathcal{I}^{o}(H)$ is spherical of dimension $g-1$ we want to see that for $k \geq 1 \mathcal{A}^{o}(H)_{k}$ is a $(g-1)$-cellular extension of $\mathcal{A}^{o}(H)_{k-1}$. Let Σ_{k} denote the set of $\sigma=\left(v_{0}, \ldots, v_{k}\right) \in$ $\mathcal{A}^{o}(H)$ with $k_{\sigma}=k+1$. Then every member of $\mathcal{A}^{o}(H)_{k}-\mathcal{A}^{o}(H)_{k-1}$ is in the link of a unique member of Σ_{k}. We claim that $\mathcal{A}^{o}(H)_{k-1}$ is a deformation retract of $\mathcal{A}^{o}(H)_{k}-\Sigma_{k}$. Let

$$
X_{m}=\mathcal{A}^{o}(H)_{k-1} \cup\left\{\tau \in \mathcal{A}^{o}(H)_{k}-\Sigma_{k}: h(\tau) \leq m\right\}
$$

If $m \leq k$ then $X_{m}-X_{m-1}=\emptyset$. If $m>k$ and $\tau \in X_{m}-X_{m-1}$ then there is a unique $\sigma \in \Sigma_{k}$ such that $\sigma<\tau$. Then $\operatorname{Link}_{X_{m-1}}^{-}(\tau)$ is contractible since it consists of all the faces of τ unequal to σ. This implies that $\operatorname{Link}_{X_{m-1}}(\tau)$ is contractible as well. So X_{m-1} is a deformation retract of X_{m} and hence, $\mathcal{A}^{o}(H)_{k-1}$ of $\mathcal{A}^{o}(H)_{k}-\Sigma_{k}$. Therefore it suffices to prove that $\left(\mathcal{A}^{o}(H)_{k}, \mathcal{A}^{o}(H)_{k}-\Sigma_{k}\right)$ is $(g-2)$ connected. Let $\sigma \in \Sigma_{k}$. Then \mathcal{G}_{σ} has no isolated points and therefore $\operatorname{dim}(\sigma)=k$,
$\operatorname{Link}_{\mathcal{A}^{o}(H)_{k}}^{-}(\sigma) \subset \mathcal{A}^{o}(H)_{k-1} \subset \mathcal{A}^{o}(H)_{k}-\Sigma_{k}$ and is a sphere of dimension $k-1$. Furthermore,
$\operatorname{Link}_{\mathcal{A}^{o}(H)_{k}-\Sigma_{k}}^{+}(\sigma)=\left\{\tau \in \mathcal{A}^{o}(H): \tau>\sigma\right.$ and all vertices of τ not in σ are isolated $\}$, By the definition of an arc-sequence it is possible to write $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ such that $\mathcal{G}_{\sigma_{1}}, \ldots, \mathcal{G}_{\sigma_{m}}$ are the connected components of \mathcal{G}_{σ}. If $\tau \in \operatorname{Link}_{\mathcal{A}^{o}(H)_{k}-\Sigma_{k}}^{+}(\sigma)$ then deleting σ gives a map to $\mathcal{I}^{o}\left(\langle\sigma\rangle^{\perp}\right)$; recall that $\mathcal{I}^{o}\left(\langle\sigma\rangle^{\perp}\right)=\mathcal{I}^{o}\left(\langle\sigma\rangle^{\perp}, \operatorname{Rad}\left(\langle\sigma\rangle^{\perp}\right)\right)$. We show that $\operatorname{Link}_{\mathcal{A}^{o}(H)_{k}-\Sigma_{k}}^{+}(\sigma)$ can be identified with the preimage of $\mathcal{I}^{o}\left(\langle\sigma\rangle^{\perp}\right)$ under the map

$$
\operatorname{Link}_{\mathcal{O}^{o}\left(\langle\sigma\rangle^{\perp} \cup\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}\right)}^{+}\left(\left(\sigma_{1}, \ldots, \sigma_{m}\right)\right) \rightarrow \mathcal{O}^{o}\left(\langle\sigma\rangle^{\perp}\right)
$$

that deletes $\sigma_{1}, \ldots, \sigma_{m}$. This means, we have to show that for every $\rho \in \mathcal{I}^{o}\left(\langle\sigma\rangle^{\perp}\right)$ the map $\langle\rho\rangle+\langle\sigma\rangle+\operatorname{Rad}(H) \rightarrow H$ is a primitive embedding.

We have $\langle\sigma\rangle \cong \overline{\langle\sigma\rangle} \oplus\langle\sigma\rangle \cap\langle\sigma\rangle^{\perp}$ and $\langle\sigma\rangle^{\perp} \cong \overline{\langle\sigma\rangle^{\perp}} \oplus\left(\langle\sigma\rangle \cap\langle\sigma\rangle^{\perp}+\operatorname{Rad}(H)\right)$. So if $\rho \in \mathcal{I}^{o}\left(\langle\sigma\rangle^{\perp}\right)$ then

$$
\langle\rho\rangle+\langle\sigma\rangle \cap\langle\sigma\rangle^{\perp}+\operatorname{Rad}(H) \rightarrow H
$$

is a primitive embedding, and because $\langle\rho\rangle \cap \overline{\langle\sigma\rangle}=\emptyset$ we have
$\langle\rho\rangle+\langle\sigma\rangle+\operatorname{Rad}(H)=\langle\rho\rangle+\overline{\langle\sigma\rangle} \oplus\langle\sigma\rangle \cap\langle\sigma\rangle^{\perp}+\operatorname{Rad}(H)=\overline{\langle\sigma\rangle} \oplus\left(\langle\rho\rangle+\langle\sigma\rangle \cap\langle\sigma\rangle^{\perp}\right)+\operatorname{Rad}(H)$
maps injectively to a primitive subspace of H. Since σ contains a hyperbolic pair we have that $g\left(\langle\sigma\rangle^{\perp}\right) \geq g-k$, and hence $\mathcal{I}^{o}\left(\langle\sigma\rangle^{\perp}\right)$ is $(g-k-2)$-connected. It follows by Proposition 1.5.1 that $\operatorname{Link}_{\mathcal{A}^{o}(H)_{k}}^{+}(\sigma)$ is $(g-k-2)$-connected. We conclude that $\operatorname{Link}_{\mathcal{A}^{o}(H)_{k}-\Sigma_{k}}(\sigma)=\operatorname{Link}_{\mathcal{A}^{o}(H)_{k}-\Sigma_{k}}^{-}(\sigma) * \operatorname{Link}_{\mathcal{A}^{o}(H)_{k}-\Sigma_{k}}^{+}(\sigma)$ is $(k-1)+(g-k-2)+1=$ $g-2$ connected, so if $\mathcal{A}^{o}(H)_{k}-\Sigma_{k}$ is $g-2$ connected, then so is $\mathcal{A}^{o}(H)_{k}$.

We now give the proof of Theorem 1.5.5, which states that if H is a quasiunimodular symplectic lattice of genus g and $\pi: H \rightarrow \mathbb{Z}$ an epimorphism that factorizes over $\bar{\pi}: \bar{H} \rightarrow \mathbb{Z}$, then $\mathcal{A}^{o}(H, \pi)$ is 1 -connected if $g \geq 3$.

Proof of Theorem 1.5.5. We show that any vertex $(v, w) \in \mathcal{A}^{o}(H, \pi)$ is homotopic, relative the endpoints, to a path in $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$. Since $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$ is 1connected by Theorem 1.5.7, this proves the Theorem. We choose a symplectic basis

$$
\left\{e_{1}, e_{-1}, \ldots, e_{g}, e_{-g}, e_{g+1}, \ldots, e_{g+r}\right\}
$$

of H and assume that $\pi: H \rightarrow \mathbb{Z}$ is given by $\pi(x)=x \cdot e_{-1}$. Assume that (v, w) is not an edge of $\mathcal{I}^{o}\left(\pi^{-1}(1)\right)$, otherwise we are done. After applying a suitable symplectic transformation we may assume that $v=e_{1}, w=e_{1}+e_{-1}+a e_{2}$ for some $a \in \mathbb{Z}$. If $a= \pm 1$ then $\left(e_{1}, e_{1}+e_{-1}+a e_{2}, e_{1}+a e_{-2}\right)$ will do the job. If $a \neq \pm$ then
$\left(e_{1}, e_{1}+e_{-1}+a e_{2}, e_{1}+e_{-1}+(a \pm 1) e_{2}\right)$ is a 2 -simplex in $\mathcal{A}^{o}(H, \pi)$, so with induction we can reduce this to the case $a= \pm 1$.

1.11. Simplicial complexes with a group action

Let Σ be a simplicial complex and G a group that acts simplicially on Σ. Assume that there are no edges $\{v, w\}$ such that v and w are in the same orbit of the action of G. If this is not the case, we can pass to the barycentric subdivision to achieve this situation. The orbit space $\bar{\Sigma}:=G \backslash \Sigma$ can in that case be viewed as a set of vertices of a simplicial complex, such that the projection map $\pi: \Sigma \rightarrow \bar{\Sigma}$ is a morphism of simplicial complexes (k-simplices are mapped to k-simplices), by stating that $\left\{v_{0}, \ldots, v_{k}\right\} \subset \bar{\Sigma}$ forms a k-simplex if and only if $v_{i}=\overline{w_{i}}$ for $w_{i} \in \Sigma$ such that $\left\{w_{0}, \ldots, w_{k}\right\}$ is a k-simplex of Σ.

The action of G on Σ defines for every $q \geq 0$ a system of coefficients on Σ, as follows. If σ is a simplex, we denote by G_{σ} the stabilizer of σ in G and we assign to σ the group $H_{q}\left(G_{\sigma}\right)$. If $\tau \leq \sigma$ then $G_{\sigma} \subset G_{\tau}$ and this induces the restriction map $\rho_{\sigma, \tau}: H_{q}\left(G_{\sigma}\right) \rightarrow H_{q}\left(G_{\tau}\right)$. We get an induced system of coefficients \mathcal{H}_{q} on $\bar{\Sigma}$ defined by

$$
\mathcal{H}_{q}(\bar{\sigma}):=\left(\underset{\tau \in \pi^{-1}(\bar{\sigma})}{\oplus} H_{q}\left(G_{\tau}\right)\right)_{G}
$$

the group of co-invariants under the conjugation action of G.
Let F_{*} be a projective resolution of \mathbb{Z} as $\mathbb{Z} G$-module and let C_{*} denote the simplicial chain complex of $|\Sigma|$. The double complex $F_{*} \otimes_{G} C_{*}$ gives rise to two spectral sequences converging to the homology of the total complex of $F_{*} \otimes_{\mathbb{Z} G} C_{*}$, denoted by $H_{*}\left(G, C_{*}\right)$. The first spectral sequence (where we take the differential of C_{*} first) has E^{1}-term

$$
E_{p, q}^{1}(I)=H_{q}\left(C_{*} \otimes_{G} F_{p}\right) \cong H_{q}(\Sigma) \otimes_{G} F_{p}
$$

and thus $E_{p, q}^{2}(I)=H_{p}\left(G, H_{q}(\Sigma)\right)$. The other spectral sequence has

$$
E_{p, q}^{1}(I I)=H_{q}\left(G, C_{p}\right) \cong \underset{\bar{\sigma} \in \bar{\Sigma}_{p}}{\oplus} H_{q}\left(G, \underset{\tau \in \pi^{-1}(\bar{\sigma})}{\oplus} \mathbb{Z}\right)
$$

Since this is isomorphic to

$$
\underset{\bar{\sigma} \in \bar{\Sigma}_{p}}{\oplus}\left(\underset{\tau \in \pi^{-1}(\bar{\sigma})}{\oplus} H_{q}\left(G, \mathbb{Z} G \otimes_{\mathbb{Z} G_{\tau}} \mathbb{Z}\right)\right)_{G}
$$

we conclude by Shapiro's Lemma, see [Brown2], that this is isomorphic to

$$
\underset{\bar{\sigma} \in \bar{\Sigma}_{p}}{\oplus}\left(\underset{\tau \in \pi^{-1}(\bar{\sigma})}{\oplus} H_{q}\left(G_{\tau}\right)\right)_{G}=\underset{\bar{\sigma} \in \bar{\Sigma}_{p}}{\oplus} \mathcal{H}_{q}(\bar{\sigma})=: C_{p}\left(\bar{\Sigma}, \mathcal{H}_{q}\right) .
$$

Hence $E_{p, q}^{2}(I I)=H_{p}\left(\bar{\Sigma}, \mathcal{H}_{q}\right)$ for all $p \geq 0, q \geq 0$. In the next lemma we apply these spectral sequences to the special case when Σ is simply connected.

LEMMA 1.11.1. Let Σ be a simply connected simplicial complex and G a group which acts on Σ in such a manner that there are no edges $\{v, w\}$ such that v and w are in the same orbit. Then there is an exact sequence

$$
H_{2}(\bar{\Sigma}) \rightarrow H_{0}\left(\bar{\Sigma}, \mathcal{H}_{1}\right) \rightarrow H_{1}(G) \rightarrow H_{1}(\bar{\Sigma}) \rightarrow 0
$$

Proof. The assumption that Σ is simply connected implies that $E_{p, 1}^{\infty}(I)=$ $E_{p, 1}^{2}(I)=0$ for all $p \geq 0$. Also, we have that $E_{1,0}^{\infty}(I)=E_{1,0}^{2}(I)=H_{1}\left(G, H_{0}(\Sigma)\right)=$ $H_{1}(G)$. Using the exact sequence

$$
0 \rightarrow E_{0,1}^{\infty} \rightarrow H_{1}\left(G, C_{*}\right) \rightarrow E_{1,0}^{\infty} \rightarrow 0
$$

that holds for both spectral sequences, we see that $H_{1}\left(G, C_{*}\right) \cong H_{1}(G)$. Since $E_{0,1}^{\infty}(I I)=E_{0,1}^{3}(I I)=\operatorname{Coker}\left(H_{2}(\bar{\Sigma}) \rightarrow H_{0}\left(\bar{\Sigma}, \mathcal{H}_{1}\right)\right)$ and $E_{1,0}^{\infty}(I I)=E_{1,0}^{2}(I I)=$ $H_{2}(\bar{\Sigma})$, the lemma follows using the exact sequence again.

1.12. Computation of $H_{0}(\Sigma, \mathcal{F})$

In this section we compute $H_{0}(\Sigma, \mathcal{F})$ for $\mathcal{A}^{\circ}(H)$ and $\mathcal{A}^{o}(H, \pi)$ and certain systems of coefficients \mathcal{F}. Let H be a symplectic quasi-unimodular module and $\pi: H \rightarrow \mathbb{Z}$ an epimorphism. We define the systems of coefficients $\mathcal{F}_{f}, \mathcal{F}_{t}$ on $\mathcal{A}^{o}(H)$ by

$$
\begin{aligned}
\mathcal{F}_{f}(\sigma) & :=\wedge^{3} \sigma^{\perp} \\
\mathcal{F}_{t}(\sigma) & :=B_{2}\left(\Omega_{\sigma^{\perp}}\right)
\end{aligned}
$$

Because \mathcal{F}_{f} has image in the category of free abelian groups, we use the subscript f here and since \mathcal{F}_{t} maps into the category of 2-torsion groups, we use the subscript t there.

On $\mathcal{A}^{o}(H, \pi)$ we define the following systems of coefficients, by abuse of notation denoted by the same letters,

$$
\begin{aligned}
\mathcal{F}_{f}(\sigma) & :=\wedge^{3}\left(\sigma^{\perp} \cap \pi^{-1}(0)\right) \\
\mathcal{F}_{t}(\sigma) & :=B_{2}\left(\Omega_{\sigma^{\perp} \cap \pi^{-1}(0)}\right)
\end{aligned}
$$

The restriction maps are in each case the inclusion maps.
Remark 1.12.1. If $U, V \subset H$ are subspaces then

$$
\left(\wedge^{k} U\right) \cap\left(\wedge^{k} V\right)=\wedge^{k}(U \cap V)
$$

for if $K, L_{1}, L_{2} \subset H$ such that $U \cap V=\left(K \oplus L_{1}\right) \cap\left(K \oplus L_{2}\right)=K$ then $\wedge^{k}(K \oplus$ $\left.L_{1}\right) \cap \wedge^{k}\left(K \oplus L_{2}\right)=\oplus_{i=0}^{k}\left(\wedge^{i} K \otimes \wedge^{k-i} L_{1}\right) \cap \underset{i=0}{\oplus}\left(\wedge^{i} K \otimes \wedge^{k-i} L_{2}\right)=\wedge^{k} K$.

We state a lemma that is helpful in the computations of $H_{0}(\Sigma, \mathcal{F})$.
Lemma 1.12.2. Let Σ be a simplicial complex and \mathcal{F} a system of coefficients on Σ. We assume the following three conditions on Σ and \mathcal{F} :
(i) the functor \mathcal{F} takes values in the category of subgroups of some abelian group A,
(ii) the group A is spanned by $\cup_{\sigma \in \Sigma_{0}} \mathcal{F}(\sigma)$ for all σ,
(iii) if σ_{0}, σ_{1} are vertices of Σ and $x \in \mathcal{F}\left(\sigma_{0}\right) \cap \mathcal{F}\left(\sigma_{1}\right)$ then σ_{0}, σ_{1} are connected in $\Sigma_{x}:=\{\sigma \in \Sigma: x \in \mathcal{F}(\sigma)\}$.
Then $H_{0}(\Sigma, \mathcal{F}) \cong A$.
Proof. By the first two assumptions we know that there is a surjective map $\epsilon: C_{0}(\Sigma, \mathcal{F}) \rightarrow A$ which factors through $H_{0}(\Sigma, \mathcal{F})$. A section of ϵ can be defined on an element in $\mathcal{F}(\sigma)$ by the inclusion in the $\mathcal{F}(\sigma)$-summand. Because of assumption (iii) this map is well-defined and it is an inverse of $\bar{\epsilon}: H_{0}(\Sigma, \mathcal{F}) \rightarrow A$.

Proposition 1.12.3. Let H be a quasi-unimodular symplectic module over \mathbb{Z} of genus g. If $g \geq 2$ then $H_{0}\left(\mathcal{A}^{o}(H), \mathcal{F}_{f}\right)$ surjects onto $\wedge^{3} H$ and $H_{0}\left(\mathcal{A}^{o}(H), \mathcal{F}_{t}\right)$ surjects onto $B_{2}\left(\Omega_{H}\right)$. If $g \geq 4$ then $H_{0}\left(\mathcal{A}^{o}(H), \mathcal{F}_{f}\right) \cong \wedge^{3} H$ and $H_{0}\left(\mathcal{A}^{o}(H), \mathcal{F}_{t}\right) \cong B_{2}\left(\Omega_{H}\right)$.

Proof. We only prove the statement for \mathcal{F}_{f} as the proof of the statement for \mathcal{F}_{t} is similar. We check the conditions of Lemma 1.12.2. First we see that after choosing a symplectic basis of H, every element of $\wedge^{3} H$ is a sum of basis elements and these are obviously in a summand $\mathcal{F}_{f}(\sigma)$ as long as $g \geq 2$. So $H_{0}\left(\mathcal{A}^{o}(H), \mathcal{F}_{f}\right)$ surjects onto $\wedge^{3} H$. Suppose that v and w are vertices of $\mathcal{A}^{o}(H), x \in \mathcal{F}(v) \cap \mathcal{F}(w)$ and that $g \geq 4$. If we look at the proof of Lemma 1.12.2, we see that we may assume that $x=x_{0} \wedge x_{1} \wedge x_{2}$ for some $x_{0}, x_{1}, x_{2} \in H$. If (v, w) (or $\left.(w, v)\right)$ is an edge of Σ_{x} we are done. The other cases are proved in the following steps.

Case 1. Suppose now that (v, w) is an edge of $\mathcal{P}(H, \operatorname{Rad}(H))$ but not of $\mathcal{A}^{o}(H)$. Then we can choose a symplectic basis for H such that $v=e_{1}$ and $w=\alpha e_{1}+\beta e_{-1}+$ γe_{2} for integers α, β, γ with $\operatorname{gcd}(\beta, \gamma)=1$. Then $v^{\perp} \cap w^{\perp}$ has basis

$$
\beta=\left\{e_{2}, \ldots, e_{g}, \gamma e_{1}+\beta e_{-2}, e_{-3}, \ldots, e_{-g}, e_{g+1}, \ldots, e_{g+r}\right\}
$$

If $g \geq 4$ we can find for every triple $x_{0}, x_{1}, x_{2} \in \beta$ an element $u_{0} \in \beta$ such that $x_{0} \wedge x_{1} \wedge x_{2} \in \wedge^{3} u_{0}^{\perp}$ and v, u_{0}, w forms a path in Σ_{x}.

Case 2. Suppose that $\langle v, w\rangle \oplus \operatorname{Rad}(H) \rightarrow H$ is an embedding but the image is not primitive. We may assume that $v=e_{1}$, then $w=\alpha_{0} e_{1}+\beta_{0} u \bmod \operatorname{Rad}(H)$ for some integers α_{0}, β_{0} with $\operatorname{gcd}\left(\alpha_{0}, \beta_{0}\right)=1$ and primitive element u of H. With induction we can find pairs $\left(\alpha_{1}, \beta_{1}\right), \cdots,\left(\alpha_{n}, \beta_{n}\right)$ such that $\alpha_{i} \beta_{i+1}-\alpha_{i+1} \beta_{i}=1$ and $\left|\alpha_{i+1}\right|<\left|\alpha_{i}\right|$, $\left|\beta_{i+1}\right|<\left|\beta_{i}\right|$ and $\left|\alpha_{n}\right| \leq 1,\left|\beta_{n}\right| \leq 1$. Then $v, \alpha_{n} v+\beta_{n} u, \cdots, \alpha_{0} v+\beta_{0} u$ are vertices in the primitive hull of $\langle v, w\rangle$ of a path in $\mathcal{P}(H, \operatorname{Rad}(H))$ and if $x_{0} \wedge x_{1} \wedge x_{2} \in$ $\mathcal{F}_{f}(v) \cap \mathcal{F}_{f}(w)$ then it is in the summand of each of the vertices of this path. The previous case shows how we can deal with each of the edges of this path.

Case 3. Remains the case where v, w are vertices of Σ_{x} but $\langle v, w\rangle \oplus \operatorname{Rad}(H) \rightarrow H$ is not an embedding. In that case we may assume that $v=e_{1}$ and $w=e_{1}+\rho$ for
some $\rho \in \operatorname{Rad}(H)$. Then $v^{\perp} \cap w^{\perp}$ has basis

$$
\beta=\left\{e_{1}, \ldots, e_{g}, e_{-2}, \ldots, e_{-g}, e_{g+1}, \ldots, e_{g+r}\right\}
$$

and it is easy to see that that for each triple $x_{0}, x_{1}, x_{2} \in \beta$ there is an element $u_{0} \in \beta$ such that $x_{0}, x_{1}, x_{2} \perp u_{0}$ and v, u_{0}, w are vertices of a path in $\mathcal{A}^{o}(H)$.

This proves all cases and therefore the proposition.
We now state the affine version of Proposition 1.12.3.
Proposition 1.12.4. Let H be a quasi-unimodular symplectic module and π : $H \rightarrow \mathbb{Z}$ an epimorphism. If $g \geq 3$ then $H_{0}\left(\mathcal{A}^{o}(H, \pi), \mathcal{F}_{f}\right)$ surjects onto $\wedge^{3} \pi^{-1}(0)$ and $\left.H_{0}\left(\mathcal{A}^{o}(H, \pi)\right), \mathcal{F}_{t}\right)$ surjects onto $B_{2}\left(\Omega_{\pi^{-1}(0)}\right)$. If $g \geq 4$ then

$$
\left.H_{0}\left(\mathcal{A}^{o}(H, \pi)\right), \mathcal{F}_{f}\right) \cong \wedge^{3} \pi^{-1}(0)
$$

and

$$
H_{0}\left(\mathcal{A}^{o}(H, \pi), \mathcal{F}_{t}\right) \cong B_{2}\left(\Omega_{\pi^{-1}(0)}\right)
$$

Proof. Again we only prove the statement for \mathcal{F}_{f}. Let $e_{-1} \in H$ be primitive such that π is given by e_{-1}^{*} and complete e_{-1} to a symplectic basis of H. Then

$$
\beta=\left\{e_{2}, \ldots, e_{g}, e_{-1}, \ldots e_{-g}, e_{g+1}, \ldots e_{g+r}\right\}
$$

is a basis for $\pi^{-1}(0)$. If $x, y, z \in \beta-\left\{e_{-1}\right\}$ then $x \wedge y \wedge z \in \wedge^{3} e_{1}^{\perp} \cap \pi^{-1}(0)$. For distinct elements $e_{-1}, y, z \in \beta$, we can choose a hyperbolic pair $\left\{e_{i}, e_{-i}\right\} \subset \beta$ such that $y, z \perp e_{-i}$ (this is possible if $g \geq 3$), then

$$
\left(e_{-1}+e_{i}\right) \wedge y \wedge z \in \wedge^{3}\left(e_{1}-e_{i}\right)^{\perp} \cap \pi^{-1}(0)
$$

This shows that $\wedge^{3} \pi^{-1}(0)$ has a basis for which each element is in a summand of $C_{0}\left(\mathcal{A}^{o}(H, \pi), \mathcal{F}_{f}\right)$. This shows that condition (ii) holds. Suppose that v and w are vertices of $\Sigma_{x}, x \in \mathcal{F}(v) \cap \mathcal{F}(w)$ and $g \geq 4$.

If (v, w) (or $(w, v))$ be an edge of Σ_{x} we are done. Again, we may assume that $x=x_{0} \wedge x_{1} \wedge x_{2}$.

Case 1. If (v, w) is an edge of $\mathcal{P}\left(\pi^{-1}(1), \operatorname{Rad}(H)\right)$ but not of Σ_{x}, we may assume, after applying a suitable element of $\operatorname{Sp}\left(H, \pi^{-1}(0)\right)$, that $v=e_{1}$ and $w=$ $e_{1}+\lambda e_{-1}+\mu e_{2}$ for some integers λ, μ such that $\operatorname{gcd}(\lambda, \mu)=1$. Then $v^{\perp} \cap w^{\perp} \cap \pi^{-1}(0)$ has basis $\beta=\left\{e_{2}, \ldots, e_{g}, e_{-3}, \ldots, e_{-g}, e_{g+1}, \ldots, e_{g+r}\right\}$ and for every $x_{0}, x_{1}, x_{2} \in \beta$ the path $e_{1}, e_{1}+\frac{\lambda}{|\lambda|} e_{-1}+e_{2}, \ldots, e_{1}+(|\lambda|-1) \frac{\lambda}{|\lambda|} e_{-1}+e_{2}, e_{1}+\lambda e_{-1}+\mu e_{2}$ is in Σ_{x} and $x_{0} \wedge x_{1} \wedge x_{2}$ is in every summand of \mathcal{F}_{f} evaluated on each of the vertices of this path.

Case 2. Suppose now that $\langle v, w\rangle \oplus \operatorname{Rad}(H) \rightarrow H$ is an embedding but the image is not primitive, then we may assume that $v=e_{1}$ and $w=e_{1}+\lambda u \bmod \operatorname{Rad}(H)$ for some integers λ and primitive element u of H such that $\langle v, u\rangle$ is primitive modulo $\operatorname{Rad}(H)$. Then $e_{1}, e_{1}+\frac{\lambda}{|\lambda|} u, e_{1}+2 \frac{\lambda}{|\lambda|} u, \cdots, e_{1}+\lambda u$ is a path in $\mathcal{P}\left(\pi^{-1}(1), \operatorname{Rad}(H)\right)$ and for each of these edges we showed in the previous case what to do.

Case 3. As in the proof of Proposition 1.12.3 the case that v, w are vertices of $\mathcal{A}^{o}(H)$ but $\langle v, w\rangle \oplus \operatorname{Rad}(H) \rightarrow H$ is not an embedding is clear once we have chosen a symplectic basis and remember that $g \geq 4$.

This proves all cases and therefore the proposition.

CHAPTER 2

Surfaces

2.1. Introduction

This chapter is about surfaces. We start with introducing the Torelli group, a subgroup of the mapping class group, and explain about the work of Johnson on the Torelli group that he published around 1980. In Section 2.4 we describe the kernel of the map of Torelli groups induced by an closing a hole of the surface. We finish this chapter with recalling the definitions of the arc-complexes associated to a surface, that were introduced by Harer. The mapping class group acts on these complexes and therefore we also have an action of the Torelli group on it. We show that the orbit space under the action of the Torelli group on the arc-complexes is isomorphic to a poset that we defined in Chapter 1.

2.2. The Torelli group

Let $S_{g, r}^{n}$ denote a compact, connected, oriented surface of genus g with r boundary components and n distinct fixed points chosen on the interior of the surface. We shall associate several groups or spaces to $S_{g, r}^{n}$, they are indexed by ${ }_{g, r}^{n}$ or ${ }_{S}$. The indices will often be omitted when this can not cause any confusion. We usually omit the index n or r when it is zero. We shall denote the boundary of S by ∂S.

Let $\mathfrak{F} S_{g, r}^{n}$ be the topological group of orientation preserving homeomorphisms of S that fix each of the n points and are the identity on the boundary of the surface, where the topology is the compact-open topology. The mapping class group or modular group $\Gamma_{g, r}^{n}$ of $S_{g, r}^{n}$ is the group of path components of $\mathfrak{F} S_{g, r}^{n}$. Up to isomorphism, a surface can be given a unique C^{∞}-structure and we will sometimes assume such a structure on S. It is well known that every homeomorphism in $\mathfrak{F} S_{g, r}^{n}$ is isotopic to a diffeomorphism of S.

When γ is a (non-oriented) loop on S without self intersections, also called a simple closed curve, and abbreviated by $S C C$, we associate to it a mapping class D_{γ}, the so called left Dehn twist around γ. The word left in this definition will often be suppressed in the rest of this thesis. It is represented by the map defined by choosing a regular neighborhood of γ, twist this cylinder around clockwise over 2π and extend the map by the identity on the rest of the surface, see Figure 2.1. The Dehn twist D_{γ} only depends on the isotopy class of γ. Let $p, q \in \partial S$ be on different components and α an arc between them without self intersections. By abuse of

Figure 2.1. The effect of the left Dehn twist around γ on α.
notation we write D_{α} for the Dehn twist around the curve that is the boundary of a regular neighborhood of α and the boundary components containing p and q. The mapping class group is finitely generated by Dehn twists; Wajnryb shows that it is generated by $2 g+1$ Dehn twists, with finitely many relations between them, see [Wajnryb]. When $r \geq 1$, we can define a map $\Gamma_{g, r}^{n} \rightarrow \Gamma_{g, r-1}^{n+1}$ by closing a hole ∂_{r} with a disc and fix a point on the disc. The kernel of this map is the infinitely cyclic group generated by the Dehntwist around a curve isotopic to the boundary curve that is closed. This is because if f is a mapping class in the kernel of this map, we have an isotopy on $S_{g, r-1}^{n+1}$ between f and the identity; by composing this isotopy with a suitable power of $D_{\partial_{r}}$, we can assume that this isotopy is the identity on a neighborhood of ∂_{r} and therefore this composition with f is the identity in $\Gamma_{g, r}^{n}$.

Let (S, P) be a surface with boundary marking (see Definition 1.2.2. The mapping class group acts on the relative homology group $H_{1}(S, P)$ and because the mapping classes are orientation preserving and the identity on the boundary of the surface, this defines a map

$$
\Gamma_{S} \rightarrow \operatorname{Sp}\left(H_{1}(S, P), H_{1}(S)\right)
$$

The image of a Dehn twist around a $S C C \gamma$ is, if we orient γ in the right way, precisely the symplectic transvection $\delta_{[\gamma]}$, determined by the class $[\gamma] \in H_{1}(S)$. So according to Lemma 1.2.4 the image of Γ_{S} is exactly $\operatorname{Sp}\left(H_{1}(S, P), H_{1}(S)\right)$.

Proposition-Definition 2.2.1. Let (S, P) be a surface with a complete boundary marking. The Torelli group T_{S} of S is the kernel of the representation of Γ_{S} on $\mathrm{Sp}\left(H_{1}(S, P), H_{1}(S)\right)$. It is independent of the choice of P.

Proof. If P^{\prime} is another complete boundary marking of S then we can choose a subset A of ∂S such that A intersected with each boundary component is an interval meeting a point of P and of P^{\prime}. We see that $H_{1}(S, P) \cong H_{1}(S, A) \cong H_{1}\left(S, P^{\prime}\right)$ as representations of Γ_{S}.

We should remark that there exist an ambiguity in the literature about the definition of the Torelli group. In some references one works with the bigger group that is the kernel of the action of Γ_{S} on $H_{1}(S)$. We refer to the latter as the big Torelli group, $\widetilde{T_{S}}$. A problem of this definition (or more generally, when one drops the assumption that the boundary marking is complete) is that it not functorial;
when $S \subset S^{\prime}$ is an inclusion of surfaces, this induces a homomorphism $\Gamma_{S} \rightarrow \Gamma_{S^{\prime}}$ by extending the mapping class on S by the identity on the rest of the surface of S^{\prime}, but in general this will not restrict to a map on the big Torelli group whenever S has more than one boundary component. A counter example can be the Dehn twist around a boundary curve. With the more refined definition, where we do assume the boundary marking to be complete, we do not encounter this problem, as the next lemma shows.

LEmma 2.2.2. An inclusion $S \subset S^{\prime}$ of surfaces induces a homomorphism $T_{S} \rightarrow$ $T_{S^{\prime}}$ of Torelli groups. If $H_{1}(S) \rightarrow H_{1}\left(S^{\prime}\right)$ is injective then T_{S} is the preimage of $T_{S^{\prime}}$ in Γ_{S}.

Proof. We choose complete boundary markings P of S, P^{\prime} of S^{\prime} and R of $\overline{S^{\prime}-S}$ such that on intersections they agree, see Figure 2.2 The Mayer-Vietoris

Figure 2.2. The surfaces S, S^{\prime} and $\overline{S-S^{\prime}}$ with boundary markings.
sequence of a regular neighborhood of the pairs $\left(\overline{S^{\prime}-S}, R\right)$ and (S, P) shows that

$$
H_{1}\left(\overline{S^{\prime}-S}, R\right) \oplus H_{1}(S, P) \rightarrow H_{1}\left(S^{\prime}, P^{\prime} \cup P\right)
$$

is surjective because $H_{0}\left(S \cap\left(\overline{S^{\prime}-S}\right), P \cap R\right)=0$. The map commutes with the action of Γ_{S} and since T_{S} acts trivial on both summands of the domain, the action on $H_{1}\left(S^{\prime}, P^{\prime} \cup P\right)$ is trivial. This last module contains $H_{1}\left(S^{\prime}, P^{\prime}\right)$ and we see that an element of T_{S} extends to an element of $T_{S^{\prime}}$.

Suppose that $H_{1}(S) \rightarrow H_{1}\left(S^{\prime}\right) \subset H_{1}\left(S^{\prime}, P^{\prime}\right)$ is injective. This means that we do not close a hole of S with a disc. Any arc α in S with endpoint in $P \cap R$ can be extended in $S^{\prime}-S$ to a loop $\beta \alpha$ representing an element in $H_{1}\left(S^{\prime}, P^{\prime}\right)$. If $g \in \operatorname{Im}\left(\Gamma_{S} \rightarrow \Gamma_{S^{\prime}}\right) \cap T_{S^{\prime}}$ then $[\beta \alpha]=[g(\beta \alpha)]=[\beta g(\alpha)]$ and thus $\left.g\right|_{S} \in T_{S}$ because by assumption $\left.g\right|_{S}$ act trivial on $H_{1}(S)$. So T_{S} is the preimage of $T_{S^{\prime}}$ in Γ_{S}.

We further remark that if S has at most one boundary component then both definitions of the Torelli group agree. More precisely, the Torelli group and the big Torelli group are related as follows.

Proposition 2.2.3. If S is a surface, T_{S} the Torelli group and $\widetilde{T_{S}}$ the big Torelli group of S, then we have a short exact sequence

$$
1 \rightarrow T_{S} \rightarrow \widetilde{T_{S}} \rightarrow S^{2} \operatorname{Rad}\left(H_{1}(S)\right) \rightarrow 0
$$

Proof. This follows from the exact sequence

$$
0 \rightarrow S^{2} \operatorname{Rad}\left(H_{1}(S)\right) \rightarrow \mathrm{Sp}\left(H_{1}(S, P), H_{1}(S)\right) \rightarrow \mathrm{Sp}\left(H_{1}(S)\right) \rightarrow 1
$$

and the snake lemma.
We describe two types of typical elements in T_{S}. If γ is a simple closed curve on S that is the boundary of a subsurface $S_{k, 1}$ of S, then $[\gamma]=0$ in $H_{1}(S)$, so D_{γ} is in T_{S}. We abbreviate such a curve with BSCC, bounding simple closed curve, and we refer to D_{γ} as a $B S C C$-map. The set of $B S C C$-maps such that γ bounds a subsurface of genus k is denoted by \mathfrak{T}_{k}. When S is a closed surface of genus g we see that $\mathfrak{T}_{k}=\mathfrak{T}_{g-k}$. Let $\mathfrak{T}=\cup_{k=1}^{g} \mathfrak{T}_{k}$. The second type of element is described as follows. If $\left\{\gamma_{1}, \gamma_{2}\right\}$ is a pair of oriented $S C C$'s that together bound a subsurface $S_{k, 2}$ of S and are oriented such that $\left[\gamma_{1}\right]+\left[\gamma_{2}\right]=0$ in $H_{1}(S)$, then the mapping class $D_{\gamma_{1}} D_{\gamma_{2}}^{-1}$ is another element in T_{S}. We abbreviate such a pair with $B P$, bounding pair, and we refer to $D_{\gamma_{1}} D_{\gamma_{2}}^{-1}$ by $B P$-map. The set of $B P$-maps such that $\left\{\gamma_{1}, \gamma_{2}\right\}$ bounds a subsurface of genus k is denoted by \mathfrak{W}_{k}. Each of the sets \mathfrak{T}_{k} and \mathfrak{W}_{k} is a full conjugate class of the mapping class group. The importance of these maps is explained in the next section.

2.3. The work of Johnson and others on the Torelli group

We give a short overview of some results on the Torelli group and focus only on the work of Johnson from around 1980, the work of Mess on T_{2} and of the work of Foisy, because he uses methods similar to those here. We do not at all pretend to be complete.

In this section we assume that the genus of S is ≥ 3 unless otherwise stated. The first article which I found on the Torelli group is that of Birman [Birman3] on Siegel's Modular Group in 1971. She gives here a finite presentation of $\operatorname{Sp}(H)$ where H is a unimodular symplectic \mathbb{Z}-module of rank $2 g$ with $g \geq 3$. The liftings of the words in $\mathrm{Sp}(H)$ that represent the relations to the mapping class group, are elements of the Torelli group that normally generate it. Powell computes in [Powell] that these lifted relations are of type $\mathfrak{T}_{1}, \mathfrak{T}_{2}$ and \mathfrak{W}_{1}. Since two such elements are conjugated in Γ if and only if they bound homeomorphic subsurfaces, this implies that $\mathfrak{T}_{1}, \mathfrak{T}_{2}$ and \mathfrak{W}_{1} together are a set of generators for $T_{g, 0}$. With use of the so called lantern relation, see Figure 2.3, Johnson shows in [Johnson1] that \mathfrak{T}_{1} and \mathfrak{T}_{2} are already in \mathfrak{W}_{1}. In [Johnson6] he proves that the Torelli group of a closed surface or a surface with one boundary component is finitely generated. The generators he gives are all $B P$-maps but not necessarily in \mathfrak{W}_{1}. The proof requires a lot of computations and the remark that a normal subgroup of Γ which is contained in T and contains an element of \mathfrak{W}_{1} must be T itself. Whether the Torelli group is also finitely presented for $g \gg 0$ is not known.

Figure 2.3. The lantern relation $D_{\gamma} D_{\beta} D_{\alpha}=D_{\epsilon_{1}} D_{\epsilon_{2}} D_{\epsilon_{3}} D_{\epsilon_{4}}$.

It was until this last article that the "Torelli group" did not carry a name. Johnson tells us here that an analyst had told him that this group was classically known as the Torelli group. From then on this name has become standard, also for topologists.

In the meantime Johnson had done an extensive study of abelian quotients of T and published a sequence of papers that led to a characterization of $H_{1}(T)$. We review his results on this now.

Birman and Craggs have produced a number of maps $T_{g} \rightarrow \mathbb{Z} / 2$ using the Rochlin invariant for 3-manifolds, see [Birman-Craggs]. In [Johnson2] we find a refined version of these homomorphisms, to describe them we need the following definitions and facts that we recall from that article.

Let W be an oriented $\mathbb{Z} / 2$-homology 3 -sphere and $h: S_{g} \rightarrow W$ a Heegaard embedding of a closed surface. This means that $h\left(S_{g}\right)$ splits W into two handlebodies A and B. We agree that A is on the positive side of $h\left(S_{g}\right)$. The surface $h\left(S_{g}\right)$ is called a Heegaard surface. The Seifert linking form λ is defined on $H_{1}\left(h\left(S_{g}\right), \mathbb{Z} / 2\right)$ by stating that $\lambda(a, b)$ is the modulo 2 linking number of a and b^{+}, where b^{+}is obtained from b by moving it in the positive normal direction. The map $\omega(a)=\lambda(a, a)$ is a quadratic form on $H_{1}\left(h\left(S_{g}\right), \mathbb{Z} / 2\right)$ and via h we get a quadratic form ω_{h} on $H_{1}\left(S_{g}, \mathbb{Z} / 2\right)$. This form has Arf invariant zero, so by definition $\omega_{h} \in \Psi$ (recall that Ψ denotes the set of quadratic forms of Arf invariant zero). Conversely, every $\omega \in \Psi$ can be realized as the quadratic form of some Heegaard embedding in a $\mathbb{Z} / 2$-homology 3 -sphere. When $h: S_{g} \rightarrow S^{3}$ is a Heegaard embedding into the 3 -sphere and $k \in T$, we produce a new 3 -manifold $M(h, k)$ by splitting S^{3} along $h\left(S_{g}\right)$ and glue the boundary by the identification $x \sim h k h^{-1}(x)$ for all $x \in h\left(S_{g}\right)$. The fact that $k \in T$ implies that $M(h, k)$ is a homology 3 -sphere again. For any
$\mathbb{Z} / 2$-homology 3 -sphere we define the Rochlin-invariant $\mu \in \mathbb{Z} / 2$, see [HNK] for definitions; in case of $M(h, k)$ it is denoted by $\mu(h, k)$. Johnson shows by computing $\mu(h, k)$ on generators of T that $\mu(h,-)$ only depends on ω_{h} and therefore we have a function $\rho_{\omega}: T \rightarrow \mathbb{Z} / 2$ for every $\omega \in \Psi$. Let $\mathfrak{C}=\cap_{\omega \in \Psi} \operatorname{ker}\left(\rho_{\omega}\right)$. The map

$$
\sigma: T / \mathfrak{C} \rightarrow\{\text { functions on } \Psi\}
$$

defined by $\sigma(k)(\omega)=\rho_{\omega}(k)$ is injective onto $B_{3}(\Psi)$ and the image of \mathfrak{T} is exactly $B_{2}(\Psi)$. On generators the map σ is defined as follows.

Let γ be a $B S C C$ that bounds a subsurface $S_{k, 1}$ and $\left\{e_{i}, e_{-i}\right\}_{i=1}^{k}$ a symplectic basis of $H_{1}\left(S_{k, 1}, \mathbb{Z} / 2\right)$, then $\sigma\left(D_{\gamma}\right)=\sum_{i=1}^{k} \overline{e_{i} e_{-i}}$. Let $\left\{\gamma_{1}, \gamma_{2}\right\}$ be a $B P$ that bounds a subsurface $S_{1,2}$ and $\left\{e_{1}, e_{-1}, e_{2}\right\}_{i=1}^{k}$ a symplectic basis of $H_{1}\left(S_{1,2}, \mathbb{Z} / 2\right)$ such that $\left[\gamma_{1}\right]=e_{2}$, then $\sigma\left(D_{\gamma_{1}} D_{\gamma_{2}}^{-1}\right)=\overline{e_{1} e_{-1}}\left(\overline{e_{2}}+1\right)$.

All this also extends to surfaces with one boundary component and Johnson proves that in that case all quadratic forms occur as self linking forms. We get the isomorphism

$$
\sigma: T / \mathfrak{C} \rightarrow B_{3}\left(\Omega_{S}\right)
$$

and the image of \mathfrak{T} is $B_{2}\left(\Omega_{S}\right)$. We will call the homomorphism σ the Birman-Craggs homomorphism.

Johnson produced another abelian quotient of $T_{g, 1}$ and $T_{g, 0}$ in [Johnson3], via what are now called Johnson homomorphisms. To define them, let $\pi:=\pi_{1}\left(S_{g, 1}\right)$, $\pi_{[0]}:=\pi$ and $\pi_{[m]}:=\left[\pi, \pi_{[m-1]}\right](m \geq 1)$, the $m^{\text {th }}$ term of the lower central series of π. Let $\pi / \pi_{[m]}$ be the $m^{\text {th }}$ nilpotent quotient of π; we will denote $\pi / \pi_{[1]}$ by H. The mapping class group $\Gamma_{g, 1}$ acts on $\pi / \pi_{[m]}$, let $\Gamma(m)$ be the kernel of this action. This means that $\Gamma(0)=\Gamma, \Gamma(1)=T$ and Johnson proves in [Johnson7] that $\Gamma(2)=\mathfrak{T}$. The Johnson homomorphisms

$$
\tau_{m}: \Gamma(m) \rightarrow \operatorname{Hom}\left(H, \pi_{[m]} / \pi_{[m+1]}\right)
$$

are defined by

$$
\tau_{m}(k)(c)=\left[k(\gamma) \gamma^{-1}\right]
$$

where $c \in H, \gamma$ is a lift of c in π and $\left[k(\gamma) \gamma^{-1}\right]$ is the image in $\pi_{[m]} / \pi_{[m+1]}$ of $k(\gamma) \gamma^{-1} \in \pi_{[m]}$. See also [Johnson5], [Hain] and [Morita] for equivalent definitions and more about these maps. We denote τ_{1} just by τ. We have the identification $\operatorname{Hom}\left(H, \pi_{[1]} / \pi_{[2]}\right) \cong H^{*} \otimes \wedge^{2} H \cong H \otimes \wedge^{2} H$ and $\wedge^{3} H$, can be embedded via

$$
a \wedge b \wedge c \mapsto a \otimes b \wedge c+b \otimes c \wedge a+c \otimes a \wedge b
$$

Johnson shows that the image of T under τ is precisely $\wedge^{3} H$ via this identification and τ is $\operatorname{Sp}(H)$-equivariant. The image of a $B P$-map $D_{\gamma_{1}} D_{\gamma_{2}}^{-1} \in \mathfrak{W}_{k}$ induced by an oriented bounding pair $\left\{\gamma_{1}, \gamma_{2}\right\}$ that bounds a subsurface $S_{k, 2}$, is $\left(\sum_{i=1}^{k} e_{i} \wedge e_{-i}\right) \wedge f$, where $\left\{e_{i}, e_{-i}\right\}_{i=1}^{k}$ is a symplectic basis of a maximal unimodular subspace of $H_{1}\left(S^{\prime}\right)$
and $f=\left[\gamma_{1}\right]$. The BSCC-maps generate precisely the kernel of τ. In the final paper [Johnson8] of Johnson in this series he proves that $\bar{\sigma}: T / T^{2} \rightarrow B_{3}\left(\Omega_{H}\right)$ is an isomorphism, the elements of $\mathfrak{T} /[T, T]$ are of order 2 and we had seen that the image of this group under $\bar{\sigma}$ is $B_{2}\left(\Omega_{H}\right)$. Hence we have the short exact sequence

$$
0 \rightarrow B_{2}\left(\Omega_{H}\right) \rightarrow H_{1}(T) \rightarrow \wedge^{3} H \rightarrow 0
$$

If S is closed, he proves an analogous result. Let in that case $\theta=\sum_{i=1}^{g} e_{i} \wedge e_{-i} \in$ $\wedge^{2} H_{1}(S)$ be the fundamental class of S, where $\left\{e_{i}, e_{-i}\right\}_{i=1}^{g}$ is a symplectic basis of $H_{1}(S)$ (but θ is independent of the choice of this basis). For a closed surface we have the short exact sequence

$$
0 \rightarrow B_{2}\left(\Psi_{H_{1}(S)}\right) \rightarrow H_{1}(T) \rightarrow \wedge^{3} H_{1}(S) / \theta \wedge H_{1}(S) \rightarrow 0
$$

If $g=2$ the situation is completely different. Mess shows that T_{2} is freely generated by a set of BSCC-maps that corresponds one-to-one with the set of splittings of $H_{1}\left(S_{2}\right)$ into two unimodular symplectic and mutually orthogonal subspaces of rank 2, see [Mess]. To prove this, he uses the period map from the Torelli space, the quotient of the Teichmüller space by the action of the Torelli group, to the Siegel space, which is the space of all symmetric $g \times g$ complex matrices with positive definite imaginary part. When $g=2$ this is an injection with image the period matrices of abelian varieties of dimension 2 with smooth theta divisor. The complement is the set of period matrices of abelian varieties that are products of two elliptic curves with singular theta divisor. With this description the image can be studied and using Morse theory we can give the Torelli space a cell decomposition with a single 0 -cell and a 1 -cell for every homology splitting. Because the action of the Torelli group on the contractible Teichmüller space is free, this detects the free generators of T_{2}.

We also want to mention the work of Foisy, see [Foisy]. A key step on his way of proving his main result that $H_{2}(\Gamma[2], \mathbb{Q}) \cong \mathbb{Q}$, where $\Gamma[2]$ is the level 2 mapping class group, is that $H_{2}(E T, \mathbb{Q})$ is finitely generated when $g \geq 3$ and the surface has one boundary component. Here $E T$ is the extended Torelli group, the extension of $\mathbb{Z} / 2$ by T. The method he uses in proving this is very similar to the method we use in this thesis. He lets ET act on the arc complexes defined by Harer and Ivanov, that we will discuss in Section 2.5. The importance of working with the extended Torelli group is that $H_{1}(E T, \mathbb{Q}) \cong H_{1}(T, \mathbb{Q})_{\mathbb{Z} / 2}=0$ by Johnsons result. This will imply that in the associated spectral sequence explained in Section 1.11, $E_{1,1}^{2}(I I)=0$. This, together with the connectedness of both the arc-system and the quotient by $E T$, will induce the result that $H_{2}(E T, \mathbb{Q})$ is finitely generated. The final result that $H_{2}(\Gamma[2], \mathbb{Q}) \cong \mathbb{Q}$ then follows using representation theory.

Other overviews of work on the Torelli group include [Hain-Looijenga] and [Johnson5].

2.4. Closing a hole of a surface

Let $\left(S^{\prime}, P^{\prime}\right)$ be a surface with complete boundary marking and p a point on the interior of S^{\prime}. We can regard the real oriented blow up of S^{\prime} in p as a surface $S \xrightarrow{\varphi} S^{\prime}$ with p replaced by one extra boundary component, because in the blow up process p is replaced by all directions through p. A point q on the boundary component $\varphi^{-1}(p)$ determines a unit tangent vector $v_{q} \in T_{p} S^{\prime}$ and vice versa, a nonzero tangent vector $v \in T_{p} S^{\prime}$ determines a point q_{v} on $\varphi^{-1}(p)$. Let P be a complete boundary marking of S that extends P^{\prime} and $\partial=\varphi^{-1}(p)$ a connected component of ∂S. We assume that the Euler characteristic of S^{\prime} is negative. The map φ induces an epimorphism on mapping class groups and restricts to an epimorphism $T_{S} \rightarrow T_{S^{\prime}}$ of Torelli groups. If S^{\prime} has at least one boundary component then the map splits by gluing a pair of pants to a boundary component of S^{\prime}. The kernel of the map $\Gamma_{S} \rightarrow \Gamma_{S^{\prime}}$ is described in [Johnson6]. We recall this result in this section and we determine the image and kernel of the action of $\operatorname{Ker}\left(\Gamma_{S} \rightarrow \Gamma_{S^{\prime}}\right)$ on $H_{1}(S, P)$.

We introduce some notations. If $\partial \cap P=\{q\}$ and α is an oriented $S C C$ that meets ∂S only in q, we define a mapping class t_{α}; it has the effect of sliding the hole ∂ along the path α. We choose a regular neighborhood of $\alpha \cup \partial$ and label the boundary components of this neighborhood unequal to ∂ with α_{+}and α_{-}, in such a way that α_{+}is on the left of α. Then $t_{\alpha}=D_{\alpha_{+}} D_{\alpha_{-}}^{-1}$, see Figure 2.4.

Figure 2.4. The effect of the map t_{α}.
Let $U S^{\prime}$ be the unit tangent bundle of S^{\prime} and $\widetilde{\pi}:=\pi_{1}\left(U S^{\prime}, v_{q}\right), \pi:=\pi_{1}\left(S^{\prime}, p\right)$. The loop α determines an element $\tilde{\alpha} \in \widetilde{\pi}$ by translating the vector v_{q} parallel along the image of α in S^{\prime}. The mapping class t_{α} only depends on $\tilde{\alpha}$, so we denote it by $t_{\tilde{\alpha}}$. The image of a loop homotopic to ∂ gives the central element in $\widetilde{\pi}$ that generates the kernel of the projection $\widetilde{\pi} \rightarrow \pi$; it is a clockwise rotation of v_{q} and we denote it again by ∂. The group $\tilde{\pi}$ is generated by the images $\tilde{\alpha}$ of $S C C$'s α on S through q and the claim is that the correspondence $\tilde{\alpha} \mapsto t_{\tilde{\alpha}}$ gives a well defined isomorphism of $\widetilde{\pi}$ onto $\operatorname{Ker}\left(\Gamma_{S} \rightarrow \Gamma_{S^{\prime}}\right)$. A proof of this can be found in [Johnson6], where he uses the inverse map: if we have a mapping class on S that is isotopic to the identity on S^{\prime} then the orbit of v_{p} under this isotopy determines an element of $\widetilde{\pi}$. This element is independent of the chosen isotopy because $\pi_{1}\left(\operatorname{Diff}^{+}\left(S^{\prime}\right), i d\right)=\{1\}$ whenever the Euler characteristic of S^{\prime} is negative, see [Gramain].

If the orientation of the SCC α near q is the same as ∂ and $\left(\alpha_{+}, \alpha_{-}\right)$are oriented such that $\left[\alpha_{+}\right]=[\alpha]=a$ and $\left[\alpha_{-}\right]=[\alpha]-[\partial]$ in $H_{1}(S)$, then the action of
$t_{\alpha}=D_{\alpha_{+}} D_{\alpha_{-}}^{-1}$ on $H_{1}(S, P)$ is given by

$$
\begin{equation*}
x \mapsto x+(x \cdot a)[\partial]+(x \cdot[\partial]) a-(x \cdot[\partial])[\partial] . \tag{*}
\end{equation*}
$$

Therefore we can write t_{a} for the image of $t_{\tilde{\alpha}}$ in $\operatorname{Sp}\left(H_{1}(S, P), H_{1}(S)\right)$. The elements t_{a} generate the image of $\widetilde{\pi}$ in $\operatorname{Sp}\left(H_{1}(S, P), H_{1}(S)\right)$. We see that when S^{\prime} is a closed surface then the action is trivial because in that case $[\partial]=0$. We further remark that the correspondence $a \in H_{1}(S) \mapsto t_{a} \in \mathrm{Sp}\left(H_{1}(S, P), H_{1}(S)\right)$ is not a homomorphism: $t_{a} t_{b}(x)=x+(x \cdot(a+b)) \partial+(x \cdot \partial)(a+b)-2(x \cdot \partial) \partial+(x \cdot \partial)(b \cdot a) \partial=t_{a+b} D_{\partial}^{-1-(a \cdot b)}(x)$ so that $\left[t_{a}, t_{b}\right]=D_{\partial}^{-2(a \cdot b)}$. We see that if α and β are both SCC's with the agreed orientation then the composition $\alpha \beta$ is homotopic to a $S C C$ with the agreed orientation if and only if $a \cdot b=-1$.

Proposition 2.4.1. Let $\pi: S \rightarrow S^{\prime}$ be the real oriented blow up of a surface S^{\prime} in a point $p \in S^{\prime}$ and let $q \in \varphi^{-1}(p)$. Assume that the Euler characteristic of S^{\prime} is negative. Then $\operatorname{ker}\left(\Gamma_{S} \rightarrow \Gamma_{S^{\prime}}\right) \cong \pi_{1}\left(U S^{\prime}, v_{q}\right)$. If the surface S^{\prime} is closed, then $\operatorname{ker}\left(T_{S} \rightarrow T_{S^{\prime}}\right) \cong \pi_{1}\left(U S^{\prime}, v_{q}\right)$. If the boundary of S^{\prime} is nonempty then $\operatorname{ker}\left(T_{S} \rightarrow T_{S^{\prime}}\right)$ can be identified with $\left[\pi_{1}\left(S^{\prime}, p\right), \pi_{1}\left(S^{\prime}, p\right)\right]$ via

$$
[\alpha, \beta] \mapsto\left[t_{\alpha}, t_{\beta}\right] D_{\partial}^{2(a \cdot b)}
$$

whenever α, β are represented by SCC's.
Proof. We remarked that if S^{\prime} is closed then the action is trivial. So assume that S^{\prime} has at least one boundary component. Define $\tilde{\kappa}:=\operatorname{ker}\left(T_{S} \rightarrow T_{S^{\prime}}\right)$. We first compute the kernel κ of the action of $\widetilde{\pi}$ on $H_{1}\left(S^{\prime}, P^{\prime} \cup\{p\}\right) \cong H_{1}(S, P) /\langle\partial\rangle$. Let $\tilde{\alpha} \in \tilde{\pi}$. From $(*)$ we see that $t_{\tilde{\alpha}}$ acts on this group via $t_{a}(x)=x+(x \cdot p) a$ where a is the image of $\tilde{\alpha}$ in $H_{1}\left(S^{\prime}\right)$ and that the map $a \mapsto t_{a}$ is a homomorphism, $t_{a} t_{b}=t_{a+b}$. We conclude that $H_{1}\left(S^{\prime}\right)$ acts faithfully on $H_{1}\left(S^{\prime}, P^{\prime}\right)$. So κ contains $[\tilde{\pi}, \tilde{\pi}]=[\pi, \pi]$ and the central element ∂. In fact $\kappa=[\pi, \pi] \times\langle\partial\rangle$ since

$$
H_{1}\left(S^{\prime}\right) \cong \frac{\pi}{[\pi, \pi]} \cong \frac{\widetilde{\pi}}{[\pi, \pi] \times\langle\partial\rangle}
$$

It contains $\tilde{\kappa}$ and the inclusion of the central element gives an isomorphism $\langle\partial\rangle \cong$ $([\pi, \pi] \times\langle\partial\rangle) / \tilde{\kappa}$. This means that we have a map $[\pi, \pi] \times\langle\partial\rangle \rightarrow\langle\partial\rangle$ given by $(g, h) \mapsto f(g) h$ which is constant e on $\tilde{\kappa}$. So $\tilde{\kappa}$ is the graph of a homomorphism $[\pi, \pi] \rightarrow\langle\partial\rangle$, that factorizes over a skew-symmetric form $H_{1}(S) \times H_{1}(S) \rightarrow \mathbb{Z}$ and we saw that it is defined by $(a, b) \mapsto 2(a \cdot b)$.

Notice that the map $[\pi, \pi] \rightarrow T_{\widehat{S}}$ commutes with the action of $\Gamma_{\widehat{S}}$. We show that the short exact sequence

$$
1 \rightarrow[\pi, \pi] \rightarrow T_{\widehat{S}} \rightarrow T_{S} \rightarrow 1
$$

implies that $T_{\widehat{S}}$ is generated by the elements of type $\mathfrak{W}_{1}, \mathfrak{T}_{1}$ if $g \geq 3$ and by \mathfrak{W}_{1}, \mathfrak{T}_{1} and \mathfrak{T}_{2} if $g=2$. Johnson proved that $T_{g, 1}(g \geq 3)$ is finitely generated. For $T_{g, r}$
with $r \geq 2$ we do not know whether this is the case. In the following proposition we only use that $T_{g, 1}$ is generated by \mathfrak{W}_{1} (see overview Section 2.3).

Proposition 2.4.2. Let S be a surface with $g(S) \geq 1$. If $g(S)=2$ then T_{S} is generated by the elements of type $\mathfrak{T}_{1}, \mathfrak{T}_{2}$ and \mathfrak{W}_{1}. Otherwise, T_{S} is generated by the elements of type \mathfrak{T}_{1} and \mathfrak{W}_{1}.

Proof. If S is a closed torus, T_{S} is trivial and if S is a torus with one boundary component, T_{S} is infinitely free generated by the Dehn twist around the boundary curve (see Section 3.3). So in that case the proposition holds. If S is closed and $g(S)=2$, the proposition is true by Mess. If S has one boundary component and $g(S)=2$, we have the short exact sequence in the notation of Proposition 2.4.1

$$
1 \rightarrow \tilde{\pi} \rightarrow T_{S} \rightarrow T_{S^{\prime}} \rightarrow 1
$$

The Mess-generators are of type \mathfrak{T}_{1} and lift to elements of the same type in T_{S}. For $\tilde{\pi}$ we can choose generators such that they map to the Dehn twist around the boundary, which is in \mathfrak{T}_{2}, or to elements in \mathfrak{W}_{1}. If $g \geq 3$ and S is closed or has connected boundary, the proposition is true by Johnson, see [Johnson1].

We proceed with induction on the number of boundary components r and assume that $r \geq 2$. In that case S is the real oriented blow up in a point of a surface S^{\prime} as before, so we have by Proposition 2.4.1 the exact sequence

$$
1 \rightarrow[\pi, \pi] \rightarrow T_{S} \rightarrow T_{S^{\prime}} \rightarrow 1
$$

The generators of $T_{S^{\prime}}$ of type $\mathfrak{W}_{1}, \mathfrak{T}_{1}$ (and \mathfrak{T}_{2} if $g(S)=2$) lift to elements in T_{S} of the same type.

Let $\alpha_{1}, \alpha_{-1}, \ldots, \alpha_{g}, \alpha_{-g}, \alpha_{g+1}, \ldots, \alpha_{g+r-2}$ be a set of generators of π that are represented by $S C C^{\prime} s$ on S^{\prime}, disjoint outside the basepoint p and such that their images in $H_{1}\left(S^{\prime}\right)$ form a symplectic basis of $H_{1}\left(S^{\prime}\right)$. Then $\left[\alpha_{i}, \alpha_{-i}\right]$ maps to $t_{\gamma} D_{\partial}^{-1}=$ $D_{\gamma_{-}}^{-1} D_{\gamma_{+}} D_{\partial}^{-1}$, where γ is a SCC homotopic to $\left[\alpha_{i}, \alpha_{-i}\right]$ and ∂ is the boundary of the hole that is closed in S^{\prime}, see Figure 3.4 in Chapter 3. Then $D_{\gamma_{-}}^{-1} \in \mathfrak{W}_{1}$ and $D_{\gamma_{+}} D_{\partial}^{-1} \in \mathfrak{T}_{1}$. In general, if $j \in\{1, \ldots, g+r-2,-1, \ldots,-g\}$, we have $\left[\alpha_{i}, \alpha_{j}\right]=$ $\left[\alpha_{i}, \alpha_{j} \alpha_{-i}\right] \alpha_{j}\left[\alpha_{-i}, \alpha_{i}\right] \alpha_{j}^{-1}$. Then $\alpha_{j}\left[\alpha_{-i}, \alpha_{i}\right] \alpha_{j}^{-1}$ maps to a conjugate of the image of $\left[\alpha_{-i}, \alpha_{i}\right]$ so is in the group generated by \mathfrak{W}_{1} and \mathfrak{T}_{1}. If $\alpha_{j} \alpha_{-i}$ is homotopic to a $S C C$ (if not, replace α_{-i} by α_{-i}^{-1}), then $\left[\alpha_{i}, \alpha_{j} \alpha_{-i}\right]$ is in the same orbit as $\left[\alpha_{i}, \alpha_{-i}\right]$ under the action of $\Gamma_{\widehat{S}}$, so maps to an element in $\mathfrak{W}_{1} \mathfrak{T}_{1}$. Since $[\pi, \pi]$ is normally generated by these elements, this proves the proposition.

We show that the maps $\tau: T_{g, 1} \rightarrow \wedge^{3} H_{1}\left(S_{g, 1}\right)$ and $\sigma: T_{g, 1} \rightarrow B_{3}\left(\Omega_{g, 1}\right)$ defined by Johnson and Birman and Craggs (see the overview in Section 2.3), can be extended to maps defined on Torelli groups of surfaces S with an arbitrary number of boundary components. The images are $\wedge^{3} H_{1}(S)$ and $B_{3}\left(\Omega_{S}\right)$ respectively. For τ this is also done in [Johnson7].

Let $S=S_{g, r}$ be a surface and $S^{\prime \prime}=S_{g+r-1,1}$ with $g \geq 3$ or we have $g \geq 2$ and $r \geq 2$. We embed $S \subset S^{\prime \prime}$ by gluing a surface $S_{0, r+1}$ to S. This inclusion induces a map on Torelli groups $T_{S} \rightarrow T_{S^{\prime \prime}}$, composition with $\tau_{S^{\prime \prime}}, \sigma_{S^{\prime \prime}}$ give homomorphisms

$$
\begin{array}{r}
\tau_{S}: T_{S} \rightarrow T_{S^{\prime \prime}} \rightarrow \wedge^{3} H_{1}\left(S^{\prime \prime}\right) \\
\sigma_{S}: T_{S} \rightarrow T_{S^{\prime \prime}} \rightarrow B_{3}\left(\Omega_{S^{\prime \prime}}\right)
\end{array}
$$

Proposition 2.4.3. The image of T_{S} under τ_{S} is $\wedge^{3} H_{1}(S)$, the image of T_{S} under σ_{S} is $B_{3}\left(\Omega_{S}\right)$.

Proof. By Proposition 2.4.2 we know that T_{S} is generated by the elements of type $\mathfrak{W}_{1}, \mathfrak{T}_{1}$, and \mathfrak{T}_{2} if $g=2$. The images of these elements are obviously in $\wedge^{3} H_{1}(S)$ respectively in $B_{3}\left(\Omega_{S}\right)$ (see section 2.3 for a formula of these images), and $\wedge^{3} H_{1}(S), B_{3}\left(\Omega_{S}\right)$ are both generated by the images of type \mathfrak{W}_{1} and \mathfrak{T}_{1}.

2.5. The arc-complexes of Harer

Let $\Lambda \subset \partial S$ be a finite set (different points do not necessarily lie on distinct components) and let $\Lambda^{0} \subsetneq \Lambda$ be a proper subset. A Λ-arc α is an isotopy class of a C^{∞}-embedded path in S with endpoints in Λ. We say that it is nontrivial if it is not homotopic (relative the endpoints) to an arc in $(\partial S-\Lambda) \cup \partial \alpha$. A $\left(\Lambda, \Lambda^{0}\right)$-arc is a Λ-arc with one endpoint in Λ^{0} and the other in $\Lambda-\Lambda^{0}$. A family $\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$ of nontrivial $\left(\Lambda, \Lambda^{0}\right)$-arcs that have the property that they can be represented by disjoint arcs, except that they may intersect at their endpoints, is called $a\left(\Lambda, \Lambda^{0}\right)$-arc system of height k. We define the arc-complex $B X\left(\Lambda, \Lambda^{0}\right)$ defined by Harer.

Definition 2.5.1. Let $B X\left(\Lambda, \Lambda^{0}\right)$ be the simplicial complex with k-simplices the $\left(\Lambda, \Lambda^{0}\right)$-arc systems $\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$ of height k on S that can be represented by $a(k+1)$-tuple of embedded arcs, which are disjoint away from the endpoints and whose complement in S is connected. When $\Lambda=\{p, q\}$ and $\Lambda^{0}=\{p\}$ we write $B X(p, q)$ instead and in this case we orient the arcs from p to q. If p and q are on the same boundary component we refer to it as the 1-component case, when they are on different components we say that we are in the 2-component case.

Notice that if α is an arc with both endpoints on the same boundary component, then the surface obtained from S by removing α has genus $g(S)-1$ and the number of boundary components has increased by one. If on the other hand, α is an arc with endpoints on different components, then the genus remains unchanged if we remove α from S and the number of boundary components has decreased by one. We deduce with induction that the dimension of $B X\left(\Lambda, \Lambda^{0}\right)$ is $2 g-2+r$, where r is the number of boundary components containing a point of Λ. Harer proved in [Harer], Theorem 1.4, the following important theorem.

Theorem 2.5.2. The complex $B X\left(\Lambda, \Lambda^{0}\right)$ is spherical of dimension $2 g-2+r$.

We orient the boundary of S such that S is on the left of ∂S. The vertices of a k-simplex of $B X(p, q)$ inherit an ordering via this orientation, as they all depart at p; their order of arrival at q determines a permutation of $\{0, \ldots, k\}$. We will denote an ordered k-simplex by $\alpha=\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ and the induced permutation by π_{α}. We remark that if $k \leq g-1$ then every permutation occurs, if $k \geq g$ this is not the case. The mapping class group acts on the simplicial complex $B X\left(\Lambda, \Lambda^{0}\right)$. By the classification of surfaces we have that two arc-systems of $B X(p, q)$ of the same height are in the same orbit if and only if they determine the same permutation, see [Harer], Lemma 3.2. The induced action of the Torelli group preserves the homology classes in $H_{1}(S,\{p, q\})$ determined by the arc-system. Conversely, if two arc-systems represent the same ordered sequence of elements in $H_{1}\left(S,\left\{p_{0}, p_{1}\right\}\right)$ and determine the same permutation, then they are in the same orbit of the action of T_{S}, see [Foisy], Lemma 3.2.

If σ is a simplex of $B X(p, q)$, we denote by T_{σ} the stabilizer of σ in T and by S_{σ} the surface obtained by cutting S along arcs that represent the vertices of σ and are disjoint away from the endpoints. In the 1 -component case, we denote by γ_{1} that part of the boundary going from p to q. In the 2 -component case, let $\widetilde{S}=S_{g+1, r-1}$ be a surface obtained from S by gluing a pair of pants $S_{0,3}$ to the two boundary components that contain the points p and q. We fix an arc γ_{2} on this pair of pants that connects q with p. Let $\left[\partial_{0}\right] \in H_{1}(\widetilde{S})$ be the homology class of the boundary component containing p and let $\pi: H_{1}(\widetilde{S}) \rightarrow \mathbb{Z}$ be defined by $v \mapsto\left[\partial_{0}\right] \cdot v$. We denote by $\overline{B X}(p, q)$ the quotient space of the action of the Torelli group on $B X(p, q)$. Define two maps,

$$
\varphi_{1}: B X(p, q) \rightarrow \mathcal{O}^{o}\left(H_{1}(S)\right)
$$

in the 1-component case and

$$
\varphi_{2}: B X(p, q) \rightarrow \mathcal{O}^{o}\left(\pi^{-1}(1)\right)
$$

in the 2-component case, by

$$
\varphi_{i}\left(\left(\alpha_{0}, \ldots, \alpha_{k}\right)\right):=\left(\left[\gamma_{i} \alpha_{0}\right], \ldots,\left[\gamma_{i} \alpha_{k}\right]\right)
$$

for $i=1,2$. Then φ_{1} and φ_{2} factorize over $\overline{B X}(p, q)$. The next proposition identifies $\overline{B X}(p, q)$ with a subposet of the codomain.

Proposition 2.5.3. The map φ_{1} factorizes over an isomorphism

$$
\overline{\varphi_{1}}: \overline{B X}(p, q) \rightarrow \mathcal{A}^{o}\left(H_{1}(S)\right)
$$

in the 1-component case and in the 2-component case, φ_{2} factorizes over an isomorphism

$$
\varphi_{2}: \overline{B X}(p, q) \rightarrow \mathcal{A}^{o}\left(H_{1}(\widetilde{S}), \pi\right)
$$

Proof. Let $\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ be a k-simplex of $B X(p, q)$. We first show that the arc-system maps to an element of $\mathcal{P}^{o}\left(H_{1}(S), \operatorname{Rad}\left(H_{1}(S)\right)\right)$ in the 1-component case and of $\mathcal{P}^{o}\left(\pi^{-1}(1), \operatorname{Rad}\left(\pi^{-1}(0)\right)\right)$ in the 2 -component case; here we have

$$
\operatorname{Rad}\left(\pi^{-1}(0)\right) \cong \operatorname{Rad}\left(H_{1}(S)\right) \cong\left\langle\partial_{0}\right\rangle \oplus \operatorname{Rad}\left(H_{1}(\widetilde{S})\right)
$$

The conditions of an arc-sequence are then easily checked.
When $k=0$ this is clearly the case. We proceed with induction on k. Let $i=1,2$. Since the complement of the arc-sequence in S is connected, we can find for α_{0} an element $\left(\beta_{0}\right) \in B X(p, q)$ such that $\left[\gamma_{i} \beta_{0}\right] \cdot\left[\gamma_{i} \alpha_{0}\right]=1$ and $\left[\gamma_{i} \beta_{0}\right] \cdot\left[\gamma_{i} \alpha_{j}\right]=1$ if $\left[\gamma_{i} \alpha_{0}\right] \cdot\left[\gamma_{i} \alpha_{j}\right]=1$ but $\left[\gamma_{i} \beta_{0}\right] \cdot\left[\gamma_{i} \alpha_{j}\right]=0$ otherwise, as follows. We take an arc disjoint away from the endpoints with the other arcs, starting from the left of α_{0} and arriving on the right of α_{0}, between α_{0} and the next one to arrive. Because S remains connected after cutting it along the arcs, such an arc exists. Let

$$
\lambda_{0}\left[\gamma_{i} \alpha_{0}\right]+\cdots+\lambda_{k}\left[\gamma_{i} \alpha_{k}\right]+r=\lambda v
$$

for some $\lambda_{0}, \ldots, \lambda_{k}, \lambda \in \mathbb{Z}, r \in \operatorname{Rad}\left(H_{1}(S)\right)$ and and in the 1-component case $v \in$ $H_{1}(S)$; in the 2-component case $v \in H_{1}(\widetilde{S})$. Taking the product with $\left[\gamma_{i} \beta_{0}\right]-\left[\gamma_{i} \alpha_{0}\right]$ shows that $\lambda \mid \lambda_{0}$, so with induction we find that $\lambda \mid \lambda_{j}$ and $\lambda \mid r$. This proves that the maps are well-defined.

For every arc-sequence $a=\left(a_{0}, \ldots, a_{k}\right)$ we define a permutation π_{a} of $\{0, \ldots k\}$. It will have the property that for all $i<j$ we have that $a_{i} \cdot a_{j}=0$ if and only if $\pi_{a}(i)<\pi_{a}(j)$, and if $a=\varphi_{i}(\alpha)$ then $\pi_{a}=\pi_{\alpha}$. If $k=0$ then $\pi_{a}(0)=0$. Assume that $k \geq 1$. Let $\tilde{a}:=\left(a_{0}, \ldots, a_{k-1}\right)$ and suppose with induction that $\pi_{\tilde{a}}$ is defined with the above property.

CLAIM 2.5.4. If $a_{\pi_{\bar{a}}^{-1}(i)} \cdot a_{k}=1$ then $a_{\pi_{\tilde{a}}^{-1}(j)} \cdot a_{k}=1$ for all $0 \leq i<j \leq k-1$.
Proof. If $\pi_{\tilde{a}}^{-1}(i)<\pi_{\tilde{a}}^{-1}(j)$ then $a_{\pi_{\tilde{a}}^{-1}(i)} \cdot a_{\pi_{\tilde{a}}^{-1}(j)}=0$ so by property $(i i)$ of the definition of an arc-sequence (see p. 9) we know that $a_{\pi_{\tilde{a}}^{-1}(i)} \cdot a_{k}=1$. If on the other hand $\pi_{\tilde{a}}^{-1}(i)>\pi_{\tilde{a}}^{-1}(j)$ then $a_{\pi_{\tilde{a}}^{-1}(j)} \cdot a_{\pi_{\tilde{a}}^{-1}(i)}=1$ and by property (iii) of the definition of an arc-sequence we know that $a_{\pi_{\bar{a}}^{-1}(j)} \cdot a_{k}=1$. This proves the claim.

From the claim it follows that there is a unique $i_{a} \in\{0, \ldots, k\}$ such that for all $i<k$ we have $a_{\tilde{\pi}^{-1}(i)} \cdot a_{k}=1$ if and only if $i \geq i_{a}$. We define

$$
\begin{array}{lll}
\pi_{a}(i):=\pi_{\tilde{a}}(i) & \text { if } & \pi_{\tilde{a}}(i)<i_{a} \\
\pi_{a}(k):=i_{a}, & & \\
\pi_{a}(i):=\pi_{\tilde{a}}(i)+1 & \text { if } & \pi_{\tilde{a}}(i) \geq i_{a}
\end{array}
$$

We check that π_{a} satisfies the condition that for $i<j$ we have that $a_{i} \cdot a_{j}=0$ if and only if $\pi_{a}(i)<\pi_{a}(j)$. If $j<k$ then $a_{i} \cdot a_{j}=0$ if and only if $\pi_{\tilde{a}}(i)<\pi_{\tilde{a}}(j)$ and this is equivalent to $\pi_{a}(i)<\pi_{a}(j)$ by the above definition. If $j=k$ then $a_{i} \cdot a_{k}=0$ if and only if $\tilde{\pi}(i)<i_{a}$ and this is equivalent to $\pi_{a}(i)<\pi_{a}(k)$. By construction we see that
if a is the image of an arc-system then π_{a} is the same as the permutation determined by the arc-system. This implies that the maps φ_{1} and φ_{2} are injective. We prove that they are also surjective. For this it is enough to see that the permutations associated to the arc-sequences also occur as permutations coming from the arcsystems. This is because if a, b are arc-sequences inducing the same permutation, then $\langle a\rangle \cong\langle b\rangle$ and therefore in the 1-component case we can find an element in $\operatorname{Sp}\left(H_{1}(S)\right)$ mapping a onto b. In the 2 -component case we know that $\left(a,\left[\partial_{0}\right]\right)$ and $\left(b,\left[\partial_{0}\right]\right)$ are arc-sequences in $\mathcal{A}^{o}\left(H_{1}(\widetilde{S})\right)$ inducing the same permutation, so we can find an element f in the stabilizer of $\left[\partial_{0}\right]$ in $\operatorname{Sp}\left(H_{1}(\widetilde{S}), H_{1}(S)\right)$ mapping a onto b. This shows that if a and b are arc-sequences inducing the same permutation, then they are in the same orbit under the induced action of Γ_{S}.

For $k=0$ we can clearly lift $\left(a_{0}\right)$ to an arc in $B X(p, q)$. Suppose that we know that this is the case for all permutations of $\{0, \ldots, i\}$ with $i \leq k-1$. Let π_{a} be the permutation induced by $a \in \mathcal{A}^{o}(H)_{k}$ or $\mathcal{A}^{o}\left(H_{1}(\widetilde{S}), \pi\right)_{k}$. Then we know that if $\tilde{a}=\left(a_{0}, \ldots, a_{k-1}\right)$, then $\pi_{\tilde{a}}$ is induced by an arc-system $\tilde{\alpha}=\left(\alpha_{0}, \ldots, \alpha_{k-1}\right)$. Let $S_{\tilde{a}}$ be the closure of the surface obtained by removing $\alpha_{0}, \ldots, \alpha_{k-1}$. The integer i_{a} determines points p^{\prime}, q^{\prime} on $\partial S_{\tilde{a}}$ such that there is an embedded $\operatorname{arc} \alpha_{k}$ from p^{\prime} to q^{\prime} on $S_{\tilde{\alpha}}$ with the property that the complement remains connected, since otherwise $\left\langle a_{0}, \ldots a_{k-1}\right\rangle+\operatorname{Rad}\left(H_{1}(S)\right) \cong H_{1}(S)$ or $\left\langle a_{0}, \ldots, a_{k-1}\right\rangle+\operatorname{Rad}\left(H_{1}(S)\right) \cong H_{1}(\widetilde{S})$ in the 2 -component case. The arc system $\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ has permutation π_{a}.

CHAPTER 3

The abelianization of the Torelli group

3.1. Introduction

In this chapter we study the abelianization of the Torelli group. For a surface $S_{g, 1}$ with $g \geq 3$, Johnson has computed that

$$
H_{1}\left(T_{S}\right) \cong \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)
$$

using the Johnson homomorphism $\tau: T_{S} \rightarrow \wedge^{3} H_{1}(S)$ and the Birman-Craggs homomorphism $\sigma: T_{S} \rightarrow B_{3}\left(\Omega_{S}\right)$. For lower genera, the only known nontrivial result is that of Mess which says that $T_{2,0}$ is infinitely free generated by Dehn twists around separating curves that are in one-to-one correspondence with the homology splittings of $H_{1}(S)$.

We show that the result of Johnson holds for surfaces of genus $g \geq 3$ having an arbitrary number of boundary components. The method we use is different from the one Johnson uses and this gives an alternative proof of his result. The outline of the proof is as follows.

We choose two points p, q on ∂S, if ∂S is not connected we may choose them on different components. The Torelli group acts on the arc-complex $B X:=B X(p, q)$ and the stabilizer of a vertex is a Torelli group of a surface of lower genus in the 1 -component case, or with fewer boundary components in the 2-component case. In any case S is obtained from a subsurface by gluing a pair of pants to it. Harer shows that the arc-complex $B X$ is spherical, of dimension $2 g-1$ in the 1 -component case and of dimension $2 g$ in the 2 -component case. The quotient by the action of the Torelli group, that we denote by $\overline{B X}$, is a poset isomorphic to the poset of arc-sequences introduced in Section 1.5. We proved in Section 1.10 that they are ($g-2$)-connected when p, q are on the same component, and 1-connected otherwise. This means that when $g \geq 4$ we get in the 1-component case by a spectral sequence argument as discussed in Section 1.11 an isomorphism

$$
H_{1}\left(T_{S}\right) \cong H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)
$$

Hence with induction we can compute $H_{1}\left(T_{S}\right)$, since $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$ is completely described in terms of the stabilizers of vertices and edges. When $g=3$ we get by this spectral sequence an epimorphism

$$
H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \rightarrow H_{1}\left(T_{S}\right)
$$

which also allows us to compute $H_{1}\left(T_{S}\right)$. In order to let the induction start we need to know more about the abelianization of Torelli groups of surfaces of low genera. We did not succeed in computing them all but we learned enough about them to let the induction begin.

When $g=0$ we describe T_{S} in terms of a colored braid group P; it turns out that $T \cong[P, P]$. Because there is a presentation of P having all the relations in the commutator subgroup, we can give a finite presentation of $H_{1}(T)$ as a module over the group ring $\mathbb{Z}\left[P_{\mathrm{ab}}\right]$.

When $g=1$ it is easily seen that $T_{1,0}=\{1\}$ and $T_{1,1}$ is infinitely cyclic, generated by the Dehn twist around the boundary curve. We give a presentation of $H_{1}\left(T_{1,2}\right)$ using the exact sequence

$$
1 \rightarrow[\pi, \pi] \rightarrow T_{1,2} \rightarrow T_{1,1} \rightarrow 1
$$

of Section 1.11. For $T_{1, r}$ with $r \geq 3$ the computation becomes more complicated this way.

When $g=2$ we know $H_{1}\left(T_{2,0}\right)$ by the result of Mess. Using the short exact sequence

$$
1 \rightarrow \tilde{\pi} \rightarrow T_{2,1} \rightarrow T_{2,0} \rightarrow 1
$$

we compute $H_{1}\left(T_{2,1}\right)$. For $H_{1}\left(T_{2,2}\right)$ we use the complex $B X(p, q)$ where p, q are on different boundary components. We know that the quotient $\overline{B X}$ is 1 -connected and therefore we have by Lemma 1.11.1 the exact sequence

$$
H_{2}(\overline{B X}) \rightarrow H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \rightarrow H_{1}\left(T_{S}\right) \rightarrow 0
$$

which enables us to describe $H_{1}\left(T_{S}\right)$ as a quotient of a group that we can compute. Since we do not know the image of $H_{2}(\overline{B X})$ in $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$ we cannot compute $H_{1}\left(T_{S}\right)$.

When $S=S_{3,1}$ we use the spherical arc-complex with both points on one boundary component of S; then $\overline{B X}$ is 1-connected, so we get again the above exact sequence. We cannot compute $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$ since the stabilizer of a vertex is $T_{2,2}$ but we can bound this group from above and hence $H_{1}\left(T_{S}\right)$. This bound turns out to be the same as the lower bound for $H_{1}\left(T_{S}\right)$ that one gets via the Johnson homomorphism and the Birman-Craggs homomorphism.

When $g=3$ and $r \geq 2$ we choose p, q on different components; then $\overline{B X}$ is 1-connected and therefore we have the exact sequence

$$
H_{2}(\overline{B X}) \rightarrow H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \rightarrow H_{1}\left(T_{S}\right) \rightarrow 0
$$

We can compute $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$ since the stabilizer of a vertex is $T_{3,1}$ and of an edge is $T_{2,2}$ and we know enough of the latter to see which identifications we get in $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$. We use the Johnson homomorphism and the Birman-Craggs homomorphism to show that $H_{1}\left(T_{S}\right) \cong H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$.

When $g \geq 4$ and $r \geq 1$ we choose the points p, q on the same component, then $\overline{B X}$ is 2 -connected, so we get an isomorphism

$$
H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \cong H_{1}\left(T_{S}\right)
$$

and we have enough information to compute $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$.

3.2. Genus zero

If the genus of the surface is zero, we will see that the mapping class group $\Gamma_{0,1}^{n}$ is isomorphic to $P^{n}\left(D^{2}\right)$, the colored braid group on n strings of the disc. Of the latter we have a presentation. This isomorphism makes it possible to express the Torelli group in terms of this braid group and in Theorem 3.2.2 we show that $T_{0, r}$ is isomorphic to $\left[P^{r-1}\left(D^{2}\right), P^{r-1}\left(D^{2}\right)\right]$. For $r \geq 4$ this group is not finitely generated, but since the relations in the presentation of $P^{r-1}\left(D^{2}\right)$ are all in the commutator subgroup, we can give a finite presentation of $H_{1}(T)$ as a module over $\mathbb{Z}\left[P^{r-1}\left(D^{2}\right)_{a b}\right]$, as we do in Corollary 3.2.8.

We start with the relation between the mapping class group and the pure braid group. A reference is [Birman4].

Let S be a surface and $F^{n}(S)$ the configuration space of pairwise distinct points $\left(z_{1}, \ldots, z_{n}\right) \in \Pi_{i=1}^{n} S$. Let $p \in F^{n}(S)$, the pure braid group $P^{n}(S)$ of S on n strings is defined by

$$
P^{n}(S):=\pi_{1}\left(F^{n}(S), p\right)
$$

Because $F^{n}(S)$ is connected this does not depend on the choice of the basepoint p. Recall that $\mathfrak{F} S_{g, r}^{n}$ is the set of orientation preserving homeomorphisms of $S_{g, r}^{n}$ that are the identity on ∂S and fix the n points. The evaluation map $\epsilon: \mathfrak{F} S_{g, r} \rightarrow F^{n} S$, defined by

$$
\epsilon(f):=\left(f\left(p_{1}\right), \ldots, f\left(p_{n}\right)\right)
$$

relates the mapping class group of S with the pure braid group of this surface. It is a locally trivial fibration with fiber $\mathfrak{F} S_{g, r}^{n}$ and the tail of the long exact sequence of homotopy groups is

$$
\cdots \rightarrow \pi_{1}\left(\mathfrak{F} S_{g, r}\right) \rightarrow P^{n}\left(S_{g, r}\right) \rightarrow \pi_{0}\left(\mathfrak{F} S_{g, r}^{n}\right) \rightarrow \pi_{0}\left(\mathfrak{F} S_{g, r}\right) \rightarrow 1
$$

When S is the disc D^{2} this comes down to

$$
\pi_{1}\left(\mathfrak{F} D^{2}\right) \rightarrow P^{n}\left(D^{2}\right) \rightarrow \Gamma_{0,1}^{n} \rightarrow \Gamma_{0,1}=1
$$

We show that $\pi_{1}\left(\mathfrak{F} D^{2}\right)=1$ using a homotopy given in [Birman4]. Suppose that $\left\{f_{t}\right\}_{t \in[0,1]}$ is a continuous family of homeomorphisms $f_{t}: D^{2} \rightarrow D^{2}$ such that $\left.f_{t}\right|_{\partial D^{2}}$ is the identity and $f_{0}=f_{1}$ is the identity on D^{2}. We write $f_{t}(r, \theta)=$ $\left(R_{t}(r, \theta), \Theta_{t}(r, \theta)\right)$ in polar coordinates and extend f_{t} to \mathbb{R}^{2} by the identity outside D^{2}. We show that the loop f_{t} is homotopic to the identity by shrinking the disc on which f_{t} is not the identity to the origin. For $s \in(0,1]$ we define
$H(s, t)(r, \theta):=\left(s R_{t}(r / s, \theta), \Theta_{t}(r / s, \theta)\right)$. As for $(s, t) \rightarrow(0, \tilde{t})$ for any $\tilde{t} \in[0,1]$, the limit of $H(s, t)$ is the identity on D^{2}, we can extend H continuously to $s=0$ by $H(0, t)(r, \theta):=(r, \theta)$. This shows that $\left\{f_{t}\right\}$ is homotopic to the constant loop, hence we have proved the following lemma.

Lemma 3.2.1. For every $n \geq 0$ is $\Gamma_{0,1}^{n} \cong P^{n}\left(D^{2}\right)$.
Originally, Artin gave in [Artin] a geometrical definition of the group of braids of n strings embedded in \mathbb{R}^{3} up to isotopy. They correspond as follows. If $[\gamma] \in P^{n}\left(D^{2}\right)$ is represented by the loop $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right):[0,1] \rightarrow \prod_{i=1}^{n} D^{2}$ then the graphs of $\gamma_{1}, \ldots, \gamma_{n}$ are disjoint in $[0,1] \times D^{2}$ and their union represents a braid in \mathbb{R}^{3}. We give a well known presentation of $P^{n}\left(D^{2}\right)$ in Theorem 3.2.3 and in Corollary 3.2.4 we rewrite this presentation in a somewhat simpler way.

For every pair $i, j \in\{1, \ldots, n\}$ let $\gamma^{i j}$ be the arc $[0,1] \rightarrow F^{n}\left(D^{2}\right)$ with coordinates $\gamma_{1}^{i j}, \ldots, \gamma_{n}^{i j}$, where $\gamma_{k}^{i j}$ is constant for $k \neq i, j, \gamma_{i}^{i j}$ is an arc from p_{i} to p_{j} and $\gamma_{j}^{i j}$ an arc from p_{j} to p_{i} such that the composition $\gamma_{j}^{i j} \gamma_{i}^{i j}$ of arcs is a loop starting at p_{i}, that bounds a disc counterclockwise and does not enclose any point p_{k}. Let $D_{i j}$ be the element in $P^{n}\left(D^{2}\right)$ represented by the loop $\left(\gamma^{i j}\right)^{2}$, so $D_{i j}=D_{j i}$, see Figure 3.1.

Figure 3.1. The element $D_{i j}$ as geometric braid.

Proposition 3.2.2. The group $T_{0,0}=1$ and for all $r \geq 1$ is

$$
T_{0, r} \cong\left[P^{r-1}\left(D^{2}\right), P^{r-1}\left(D^{2}\right)\right]
$$

Proof. Since $\Gamma_{0,0}=1$ we have that $T_{0,0}=1$.
Let $S=S_{0, r}$ and P be a complete boundary marking of S then

$$
\operatorname{Sp}\left(H_{1}(S, P), H_{1}(S)\right) \cong S^{2} H_{1}(S)
$$

Let $H_{1}(S)$ be generated by $\epsilon_{1}, \ldots, \epsilon_{r-1}$, then

$$
\left(P^{r-1}\left(D^{2}\right)\right)_{a b} \cong H_{1}\left(F^{r-1}\left(D^{2}\right)\right) \cong S^{2} H_{1}(S) /\left\langle\epsilon_{i} \otimes \epsilon_{i}: i=1, \ldots, r-1\right\rangle
$$

where each $D_{i j}$ maps to the cycle in $F^{r-1}\left(D^{2}\right)$ around the hyperplane $z_{i}=z_{j}$ that corresponds to $\epsilon_{i} \otimes \epsilon_{j}+\epsilon_{j} \otimes \epsilon_{i}$ in $S^{2} H_{1}(S) /\left\langle\epsilon_{i} \otimes \epsilon_{i}: i=1, \ldots, r-1\right\rangle$. We number the r boundary components of $S_{0, r}$; we close the first $r-1$ holes with a disc and choose a point on each of the discs. By the previous lemma we get a map

$$
\Gamma_{0, r} \rightarrow \Gamma_{0,1}^{r-1} \cong P^{r-1}\left(D^{2}\right)
$$

As we have remarked in Section 2.2, the kernel of this map is the free abelian group generated by the Dehn twist around the boundary curves. The following commuting exact diagram shows that $T_{0, r}$ maps isomorphicly onto the commutator subgroup of $P^{r-1}\left(D^{2}\right)$

This proves the proposition.
The following presentation of $P^{n}\left(D^{2}\right)$ appeared already in the original paper [Artin] of Artin.

Proposition 3.2.3. The group $P^{n}\left(D^{2}\right)$ is generated by the elements $D_{i j}$ for $1 \leq i<j \leq n$. The relations are generated by

$$
D_{k l} D_{i j} D_{k l}^{-1}= \begin{cases}D_{i j} & \text { if } i<k<l<j \\ & \text { or } k<l<i<j \\ D_{k j}^{-1} D_{i j} D_{k j} & \text { if } k<i=l<j \\ D_{k j}^{-1} D_{l j}^{-1} D_{i j} D_{l j} D_{k j} & \text { if } i=k<l<j \\ D_{k j}^{-1} D_{l j}^{-1} D_{k j} D_{l j} D_{i j} D_{l j}^{-1} D_{k j}^{-1} D_{l j} D_{k j} & \text { if } k<i<l<j\end{cases}
$$

We now choose the n fixed points p_{1}, \ldots, p_{n} on a circle in the interior of D^{2} and label them in a counterclockwise manner with the elements of \mathbb{Z} / n. For every pair $i, j \in \mathbb{Z} / n$ of distinct elements we have defined the element $D_{i j}$. We denote the line segment between p_{i} and p_{j} by $\overline{p_{i} p_{j}}$. In the following corollary we rewrite the presentation of Proposition 3.2.3 in a way more convenient for us.

Corollary 3.2.4. The group $P^{n}\left(D^{2}\right)$ is generated by the elements $D_{i j}=D_{j i}$ where $i \neq j \in \mathbb{Z} / n$. The relations are generated by
(i) for $i, j, k \in \mathbb{Z} / n$ pairwise distinct and ordered counter clockwise is $D_{i j} D_{j k} D_{k i}$ cyclic invariant, or equivalently

$$
\left[D_{i j}, D_{j k}\right] D_{j k}\left[D_{i j}, D_{i k}\right] D_{j k}^{-1}=1
$$

(ii) for $i, j, k, l \in \mathbb{Z} / n$ pairwise distinct and $\overline{p_{i} p_{j}} \cap \overline{p_{k} p_{l}}=\varnothing$ is $\left[D_{i j}, D_{k l}\right]=1$ and
(iii) for $i, j, k, l \in \mathbb{Z} / n$ pairwise distinct and $\left(p_{j}-p_{i}, p_{l}-p_{k}\right)$ clockwise oriented is

$$
\left[D_{i j}, D_{k l}\right]=\left[D_{i j},\left[D_{k l}, D_{j k}\right]\right] .
$$

See Figure 3.2 for the three cases.

Figure 3.2. The positions of $p_{i}, p_{j}, p_{k}, p_{l}$ in the three cases of the corollary.

Proof. The first case of the relations in Proposition 3.2.3, $D_{k l} D_{i j} D_{k l}^{-1} D_{i j}^{-1}=1$, is equivalent to relation ($i i$). In the second case we have $D_{k i} D_{i j} D_{k i}^{-1}=D_{j k}^{-1} D_{i j} D_{j k} \Leftrightarrow$ $D_{j k} D_{k i} D_{i j}=D_{i j} D_{j k} D_{k i}$; therefore it is equivalent to relation (i) because the condition $k<i=l<j$ is equivalent to $i, j, k \in \mathbb{Z} / n$ are ordered counterclockwise. The equivalence in relation (i) of the corollary holds because if x, y, z are group elements then

$$
x y z=y z x \Leftrightarrow x y x^{-1} y^{-1}=y z x z^{-1} x^{-1} y^{-1} \Leftrightarrow[x, y]=y[z, x] y^{-1} .
$$

In the third case of Proposition 3.2.3,

$$
\begin{aligned}
& D_{i l} D_{j i} D_{i l}^{-1}=D_{j i}^{-1} D_{l j}^{-1} D_{j i} D_{l j} D_{j i} \Leftrightarrow \\
& D_{l j} D_{j i} D_{i l} D_{j i}=D_{j i} D_{l j} D_{j i} D_{i l} \stackrel{(i)}{\Longleftrightarrow} \\
& D_{j i} D_{i l} D_{l j} D_{j i}=D_{j i} D_{l j} D_{j i} D_{i l} \Leftrightarrow \\
& D_{i l} D_{l j} D_{j i}=D_{l j} D_{j i} D_{i l}
\end{aligned}
$$

which is again equivalent to (i). The relation (iii) in the corollary is equivalent to the last equation in Proposition 3.2.3 because

$$
\begin{aligned}
& D_{k l} D_{i j} D_{k l}^{-1}=D_{j k}^{-1} D_{l j}^{-1} D_{j k} D_{l j} D_{i j} D_{l j}^{-1} D_{j k}^{-1} D_{l j} D_{j k} \stackrel{(*)}{\Longleftrightarrow} \\
& D_{k l} D_{i j} D_{k l}^{-1} D_{i j}^{-1}=D_{k l} D_{j k} D_{k l}^{-1} D_{j k}^{-1} D_{i j} D_{j k} D_{k l} D_{j k}^{-1} D_{k l}^{-1} D_{i j}^{-1} \Leftrightarrow \\
& {\left[D_{i j}, D_{k l}\right]=\left[D_{i j},\left[D_{k l}, D_{j k}\right]\right]}
\end{aligned}
$$

where ($*$) holds because if k, l, j are ordered counterclockwise, we know from (i) that $D_{k l} D_{l j} D_{j k}$ is cyclic invariant and we get

$$
\begin{aligned}
& D_{j k} D_{k l} D_{l j}=D_{l j} D_{j k} D_{k l} \Leftrightarrow \\
& D_{j k}^{-1} D_{l j}^{-1} D_{j k}=D_{k l} D_{l j}^{-1} D_{k l}^{-1}=D_{k l} D_{j k} D_{j k}^{-1} D_{l j}^{-1} D_{k l}^{-1}=D_{k l} D_{j k} D_{k l}^{-1} D_{j k}^{-1} D_{l j}^{-1} \Leftrightarrow \\
& D_{j k}^{-1} D_{l j}^{-1} D_{j k} D_{l j}=D_{k l} D_{j k} D_{k l}^{-1} D_{j k}^{-1}
\end{aligned}
$$

Notice that the presentation implies that $\left[P^{n}\left(D^{2}\right), P^{n}\left(D^{2}\right)\right]$ is normally generated by the commutators $\left[D_{i j}, D_{j k}\right]$ for $i, j k, \in \mathbb{Z} / n$ ordered counter clockwise.

A lift of the braid $D_{i j}$ to $\Gamma_{0, r}$ is the mapping class $D_{\overline{p_{i} p_{j}}}$ that is again denoted by $D_{i j}$. Let $i, j, k \in \mathbb{Z} / r-1$ be pairwise different and ordered counterclockwise and let γ be an oriented arc from p_{j} to p_{k}. We define the mapping class $B_{\gamma, i}:=D_{D_{\overline{P_{i} P_{j}}}(\gamma)}^{-1} D_{\gamma}$, see Figure 3.3.

Figure 3.3. The mapping class $B_{\gamma, i}$ corresponding to an oriented arc γ from p_{j} to p_{k}.

Corollary 3.2.5. The groups $T_{0,0}, T_{0,1}, T_{0,2}, T_{0,3}$ are trivial and for $r \geq 4$ we have that

$$
T_{0, r} \cong\left[P^{r-1}\left(D^{2}\right), P^{r-1}\left(D^{2}\right)\right]
$$

is not finitely generated. Generators are in that case $B_{\gamma, i}$, where γ is an embedded arc from p_{j} to p_{k} and $i, j, k \in \mathbb{Z} /(r-1)$ are pairwise different and ordered counterclockwise.

Proof. The property that $T_{0, r}$ is trivial for $r \leq 3$ follows immediately from Theorem 3.2.2 because $P^{0}\left(D^{2}\right)$ and $P^{1}\left(D^{2}\right)$ are trivial and $P^{2}\left(D^{2}\right)$ is infinitely cyclic.

Let F_{n} denote the free group on n generators. We have the short exact sequence

$$
1 \rightarrow F_{r-2} \rightarrow P^{r-1}\left(D^{2}\right) \rightarrow P^{r-2}\left(D^{2}\right) \rightarrow 1
$$

obtained by forgetting the $r^{\text {th }}$ string, here F_{r-2} is generated by the elements $D_{i, r-1}$ with $1 \leq i \leq r-2$. Because all the relations of the presentation of $P^{r-1}\left(D^{2}\right)$ of

Corollary 3.2 .4 are in the commutator subgroup, we have that $P^{r-1}\left(D^{2}\right)_{\mathrm{ab}}$ is the free abelian group generated by the images of $D_{i j}$. We see that $\left(F_{r-2}\right)_{\mathrm{ab}}$ maps injectively into $P^{r-1}\left(D^{2}\right)_{\mathrm{ab}}$. Hence, the sequence

$$
1 \rightarrow\left[F_{r-2}, F_{r-2}\right] \rightarrow\left[P^{r-1}\left(D^{2}\right), P^{r-1}\left(D^{2}\right)\right] \rightarrow\left[P^{r-2}\left(D^{2}\right), P^{r-2}\left(D^{2}\right)\right] \rightarrow 1
$$

is exact. It follows by induction that $\left[P^{r-1}\left(D^{2}\right), P^{r-1}\left(D^{2}\right)\right]$ is not finitely generated when $r \geq 4$, because $P^{2}\left(D^{2}\right)$ is isomorphic to \mathbb{Z} and hence $\left[P^{3}\left(D^{2}\right), P^{3}\left(D^{2}\right)\right] \cong$ $\left[F_{2}, F_{2}\right]$, which is not finitely generated. Generators are of the form $w\left[D_{i j}, D_{j k}\right] w^{-1}$, where $w \in P^{r-1}\left(D^{2}\right)$ and $i, j, k \in \mathbb{Z} / r-1$ are ordered counterclockwise. This follows immediately from the relations in the generators $D_{i j}$ of $P^{r-1}\left(D^{2}\right)$ and the fact that any commutator subgroup $[G, G]$ is normally generated in G by the commutators of the generators of G. The element $D_{i j} D_{j k} D_{i j}^{-1} D_{j k}^{-1}=D_{D_{i j}\left(\overline{p_{j} p_{k}}\right)} D_{j k}^{-1}=B_{\left(\overline{\left.p_{j} p_{k}\right), i}\right.}$ and conjugation by all $w \in P^{r-1}\left(D^{2}\right)$ give all the generators of the corollary.

Although $T_{0, r}$ is not finitely generated when $r \geq 4$, we do have a finite presentation of $H_{1}\left(T_{0, r}\right)$ as a module over $\mathbb{Z}\left[P^{r-1}\left(D^{2}\right)_{\mathrm{ab}}\right]$, as the following general discussion shows.

Let G be a group. Then G acts on $[G, G]$ by conjugation and this induces an action of the group ring $\mathbb{Z}\left[G_{\mathrm{ab}}\right]$ on $H_{1}([G, G])$. Suppose that G is of rank n generated by a_{1}, \ldots, a_{n}. We denote the images of a_{i} in G_{ab} by α_{i} and that of $\left[a_{i}, a_{j}\right]$ in $H_{1}([G, G])$ by $e_{i j}$, where $i, j \in\{1, \ldots, n\}$. The group ring $\mathbb{Z}\left[G_{\mathrm{ab}}\right]$ is isomorphic to $\mathbb{Z}\left[\alpha^{ \pm 1}, \ldots, \alpha^{ \pm n}\right]$, the ring of Laurent polynomials. Let us first assume that the group in question is a free group F on n letters. The following lemma gives in that case a presentation of $H_{1}([F, F])$.

Lemma 3.2.6. The module $H_{1}([F, F])$ over $\mathbb{Z}\left[F_{\mathrm{ab}}\right]$ admits the following presentation. It is generated by $e_{i j}$, and the relations are generated by
(i) $e_{i j}+e_{j i}$ and
(ii) $\alpha_{i} e_{j k}+\alpha_{j} e_{k i}+\alpha_{k} e_{i j}$.
where $i, j, k \in\{1, \ldots, n\}$ are pairwise distinct.
Proof. We construct a graph with an action of $F_{\text {ab }}$ such that

$$
H_{1}(X) \cong H_{1}([F, F])
$$

as $\mathbb{Z}\left[F_{\mathrm{ab}}\right]$-modules. Let $\vee^{n} S^{1}$ be a bouquet of n-circles. We view $\vee^{n} S^{1}$ as a graph with one vertex p and n oriented edges and we make the identification $\pi_{1}\left(\vee^{n} S^{1}, p\right)=$ F. We embed $\vee^{n} S^{1}$ in the n-dimensional torus $\mathbb{R}^{n} / \mathbb{Z}^{n}$ in an obvious way and define the graph X to be the preimage of $\vee^{n} S^{1}$ in \mathbb{R}^{n} of the projection map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n} / \mathbb{Z}^{n}$. Using the choice of a basepoint we can identify $\pi_{0}\left(\mathbb{Z}^{n}\right)$ with the fiber \mathbb{Z}^{n} of the fibration $X \rightarrow V^{n} S^{1}$. The long exact sequence of a fibration gives us the short exact
sequence

$$
1 \rightarrow \pi_{1}(X) \rightarrow F \xrightarrow{\mathrm{ab}} F_{\mathrm{ab}} \rightarrow 0
$$

We conclude that $\pi_{1}(X) \cong[F, F]$. The group $F_{\text {ab }}$ acts on X, so we have an induced action of $\mathbb{Z}\left[F_{\mathrm{ab}}\right]$ on $H_{1}(X)$ and the isomorphism with $H_{1}([F, F])$ is $F_{\text {ab-equivariant. }}$.

The cellular chain complex of X induces the exact sequence

$$
0 \rightarrow H_{1}(X) \rightarrow \mathbb{Z}\left[F_{\mathrm{ab}}\right]^{n} \rightarrow \mathbb{Z}\left[F_{\mathrm{ab}}\right] \rightarrow \mathbb{Z} \rightarrow 0
$$

where the $i^{\text {th }}$ generating directed edge that generate the $i^{\text {th }}$ component of $\mathbb{Z}\left[F_{\mathrm{ab}}\right]^{n}$ maps to $\alpha_{i}-1$ in $I\left[F_{\mathrm{ab}}\right]$, the augmentation ideal of $\mathbb{Z}\left[F_{\mathrm{ab}}\right]$. We recognize the tail of the Koszul complex coming from the regular sequence $\left(\alpha_{1}-1, \ldots, \alpha_{n}-1\right)$ in $\mathbb{Z}\left[F_{\mathrm{ab}}\right]$ and thus

$$
\wedge^{3} \mathbb{Z}\left[F_{\mathrm{ab}}\right]^{n} \rightarrow \wedge^{2} \mathbb{Z}\left[F_{\mathrm{ab}}\right]^{n} \rightarrow H_{1}(X) \rightarrow 0
$$

is a presentation of $H_{1}(X)$, which is the presentation of the lemma.
Geometrically we see that the generators correspond to the $\binom{n}{2}$ oriented squares in X in the first quadrant and the relations correspond to the $\binom{n}{3}$ unit cubes in each first octant.

Suppose now that G is finitely presented, with generators a_{1}, \ldots, a_{n} and relations r_{1}, \ldots, r_{N}. We assume that the relations are all in the commutator subgroup, that is, for every $1 \leq j \leq N$, we can write

$$
r_{j}=\prod_{i=1}^{k_{j}} w_{j i}\left[a_{p_{j i}}, a_{q_{j i}}\right]^{l_{j i}} w_{j i}^{-1}
$$

where $w_{j i}$ is a word in a_{1}, \ldots, a_{n} and $k_{j}, p_{j i}, q_{j i}, l_{j i} \geq 1$. The next proposition gives a presentation of $H_{1}([G, G])$, as module over $\mathbb{Z}\left[G_{a b}\right]$.

Proposition 3.2.7. Let G be a finitely presented group with relations in the commutator subgroup. Then, in the notation given above, $H_{1}([G, G])$ admits the following presentation as $\mathbb{Z}\left[G_{a b}\right]$-module. It is generated by the elements $e_{i j}$ and the relations are generated by
(i) $e_{i j}+e_{j i}$,
(ii) $\alpha_{i} e_{j k}+\alpha_{j} e_{k i}+\alpha_{k} e_{i j}$ and
(iii) $\sum_{i=1}^{k_{j}} l_{j i} \overline{w_{j i}} e_{p_{j i}, q_{j i}}$ for $1 \leq j \leq N$,
where \bar{w} denotes the image in $G_{a b}$ of a word w in G. Here $i, j, k \in\{1, \ldots, n\}$ are pairwise distinct.

Proof. Since $[G, G]$ is generated by $w\left[g_{i}, g_{j}\right] w^{-1}$, where $w \in G$ and $1 \leq i, j \leq n$, the module $H_{1}([G, G])$ is generated by the images $e_{i j}$ of $\left[g_{i}, g_{j}\right]$ in $H_{1}([G, G])$. Let

$$
1 \rightarrow R_{G} \rightarrow F \stackrel{p}{\rightarrow} G \rightarrow 1
$$

be a presentation of G such that the relations are in the commutator subgroup. Because $R_{G} \subseteq[F, F]$, the group $[G, G]$ has presentation

$$
1 \rightarrow R_{G} \rightarrow[F, F] \xrightarrow{[p, p]}[G, G] \rightarrow 1
$$

and thus the kernel of the induced map $[p, p]_{*}: H_{1}([F, F]) \rightarrow H_{1}([G, G])$ is generated by the images in $H_{1}([F, F])$ of the generators of R_{G}, that means, by the elements $\sum_{i=1}^{k_{j}} l_{j i} \overline{w_{j i}} e_{p_{j i}, q_{j i}}$. Let

$$
0 \rightarrow R_{H_{1}([F, F])} \rightarrow \underset{i, j}{\oplus} \mathbb{Z}\left[F_{a b}\right] \rightarrow H_{1}([F, F]) \rightarrow 0
$$

be the presentation of $H_{1}([F, F])$ given in Proposition 3.2.6. So $R_{H_{1}([F, F])}$ is generated by $e_{i j}+e_{j i}$ and $\alpha_{i} e_{j k}+\alpha_{j} e_{k i}+\alpha_{k} e_{i j}$. Applying the snake lemma to the diagram

shows that the kernel of $\underset{i, j}{\oplus} \mathbb{Z}\left[G_{a b}\right] \rightarrow H_{1}([G, G])$ is generated by the elements (i), (ii) and (iii) of the proposition.

In the presentation of $P^{r-1}\left(D^{2}\right)$ in Corollary 3.2 .4 we see that all the relations are in the commutator subgroup, therefore we can apply Proposition 3.2.7 to obtain a finite presentation of $H_{1}\left(\left[P^{r-1}\left(D^{2}\right), P^{r-1}\left(D^{2}\right)\right]\right)$, and therefore of $H_{1}\left(T_{0, r}\right)$, as a module over $\mathbb{Z}\left[P^{r-1}\left(D^{2}\right)_{a b}\right]$. We write $[i j, k l]$ for the images of $\left[D_{i j}, D_{k l}\right]$ in $H_{1}\left(T_{0, r}\right)$ and $\alpha_{i j}$ for the image of $D_{i j}$ in $\mathbb{Z}\left[P^{r-1}\left(D^{2}\right)_{a b}\right]$.

Corollary 3.2.8. For every $0 \leq r \leq 3$ we have $H_{1}\left(T_{0, r}\right)=0$. For $r \geq 4$ $H_{1}\left(T_{0, r}\right)$ is a module over $\mathbb{Z}\left[P^{r-1}\left(D^{2}\right)_{a b}\right]$ via the isomorphism of Theorem 3.2.2, with the following presentation. It is generated by the elements $[i j, k l]$ with $i, j, k, l \in$ $\mathbb{Z} / r-1, i \neq j, k \neq l$, and the relations are generated by
(i) $[i j, k l]$ is symmetric in (i, j) and in (k, l),
(ii) $[i j, k l]=-[k l, i j]$,
(iii) $\left(\alpha_{i j}-1\right)[k l, m n]+\left(\alpha_{k l}-1\right)[m n, i j]+\left(\alpha_{m n}-1\right)[i j, k l]=0$,
(iv) $[i j, j k]=\alpha_{j k}[k i, i j]$, if $i, j, k \in \mathbb{Z} / r-1$ are ordered counter clockwise,
(v) $[i j, k l]=0$ if $\overline{p_{i} p_{j}} \cap \overline{p_{k} p_{l}}=\varnothing$ and
(vi) $[i j, k l]=\left(\alpha_{i j}-1\right)[l k, k j]$ if $\left(p_{l}-p_{k}, p_{j}-p_{i}\right)$ is an oriented basis.

From the relations we see that the elements $[i j, j k]$ already generate the module $H_{1}\left(T_{0, r}\right)$ where $i, j, k \in \mathbb{Z} / r-1$ are ordered counterclockwise.

3.3. Genus one

Let $\Gamma_{1,1} \rightarrow \Gamma_{1,0}$ be the map induced by closing the hole of the surface with a disc. The kernel of this map is the infinite cyclic group generated by D_{∂}, where ∂ denotes the boundary of the surface. It is well known that $\Gamma_{1,0} \cong \mathrm{Sl}(2, \mathbb{Z}) \cong \operatorname{Sp}\left(H_{1}\left(S_{1,0}\right)\right)$ and so $T_{1,0}=\{1\}$ and $T_{1,1}=\left\langle D_{\partial}\right\rangle$. In this section we give a description of $T_{1,2}$ and compute $H_{k}\left(T_{1,2}\right)$ for $k \geq 0$.

We start with introducing notations. Let H be a symplectic quasi-unimodular module over \mathbb{Z}, we write H_{2} for $H \otimes_{\mathbb{Z}} \mathbb{Z} / 2$. If A is a set, then $\mathbb{Z}^{(A)}$ denotes the group of maps $A \rightarrow \mathbb{Z}$ with finite support.

Definition 3.3.1. We define the following sets and groups

$$
\begin{aligned}
M_{H} & :=\{U: U \text { is a unimodular symplectic subspace of } H \text { of genus } 1\} \\
N_{H} & :=\{U: U \text { is a unimodular symplectic subspace of } H \text { of genus } 2\}, \\
R_{H} & :=\left\langle U-U^{\prime}-U \oplus U^{\prime}: U, U^{\prime} \in M_{H}, U \perp U^{\prime} \text { and } U \oplus U^{\prime} \in N_{H}\right\} \\
\widetilde{G}_{H} & :=\frac{\mathbb{Z} / 2^{\left(N_{H}\right)} \oplus \mathbb{Z}^{\left(M_{H}\right)}}{R_{H}} \text { and } \\
G_{H} & :=\frac{\mathbb{Z} / 2^{\left(N_{\left.H_{2}\right)}\right.} \oplus \mathbb{Z} / 2^{\left(M_{H_{2}}\right)}}{R_{H_{2}}} .
\end{aligned}
$$

If $H=H_{1}(S)$ we write $M_{S}, N_{S}, \widetilde{G}_{S}, G_{S}$ instead. We denote the class of a subspace U in \widetilde{G}_{H} and G_{H} respectively, by $[U]$.

Let $S=S_{1,2}$ and label the boundary components with ∂_{0} and ∂_{1}. Let $S^{\prime}=S_{1,1}$ be the surface obtained from S by closing ∂_{1} with a disc and fix a point p on the boundary of this disc. As we have seen in Section 2.4, we have the following exact sequence

$$
1 \rightarrow[\pi, \pi] \rightarrow T_{S} \rightarrow\left\langle D_{\partial}\right\rangle \rightarrow 1
$$

where $\pi=\pi_{1}\left(S^{\prime}, p\right)$, so π is a free group on two generators. When α, β are represented by $S C C^{\prime} s$ and $a, b \in H_{1}\left(S^{\prime}\right)$ the classes represented by α, β respectively, then the map $[\pi, \pi] \rightarrow T_{S}$ is given by (see Section 2.4)

$$
[\alpha, \beta] \mapsto\left[t_{\alpha}, t_{\beta}\right] D_{\partial_{0}}^{2(a \cdot b)}
$$

Let α and β be two generators of π such that $[\alpha, \beta]$ is represented by a SCC γ that is isotopic to ∂_{0}. We compute the image of $[\alpha, \beta]$. In Γ_{S} we have that

$$
\left[t_{\alpha}, t_{\beta}\right]=t_{\alpha} t_{\beta} t_{\alpha}^{-1} t_{\beta}^{-1}=t_{\gamma} D_{\partial_{1}}^{-1}
$$

So the element $[\alpha, \beta]$ maps to $t_{\gamma} D_{\partial_{1}}^{-1} D_{\partial_{1}}^{2(a \cdot b)}=D_{\gamma^{+}} D_{\partial_{0}}^{-1} D_{\partial_{1}}$ in T_{S}. See Figure 3.4 where we compute it on a covering of $S_{1,1}$. Notice that $D_{\partial_{0}}^{-1} D_{\partial_{1}}$ is central in Γ_{S}. The group $[\pi, \pi]$ is normally generated by the elements $[\alpha, \beta]$ and any conjugate $g[\alpha, \beta] g^{-1}$ maps to $D_{\omega} D_{\partial_{0}}^{-1} D_{\partial_{1}}$, where $\omega=\tilde{g}\left(\gamma^{+}\right)$and $\tilde{g} \in \operatorname{Ker}\left(\Gamma_{S} \rightarrow \Gamma_{S^{\prime}}\right)$ is the

Figure 3.4. Computation of $\left[t_{\alpha}, t_{\beta}\right]=t_{\gamma} D_{\partial_{1}}^{-1}$ on a covering of $S_{1,1}$ and $\gamma^{+}, \partial_{0}, \partial_{1}$ on $S_{1,2}$.
map associated to a lift of g in $\tilde{\pi}=\pi_{1}\left(U S^{\prime}, v_{p}\right)$. In this way we get $S C C^{\prime} s \omega$ that separate $S_{1,2}$ into a surface $S_{1,1}$ and a pair of pants $S_{0,3}$.

We can split the above exact sequence by lifting D_{∂} to the central element $D_{\partial_{0}}^{-1} D_{\partial_{1}}$ and therefore $T_{S} \cong[\pi, \pi] \times\left\langle D_{\partial}\right\rangle$. We construct a set of free generators for $[\pi, \pi]$.

We close the hole of S^{\prime} to a point q and get the two-pointed torus S_{1}^{2}. Assume that the base point p is the unit element $0 \in S_{1}^{2}$ and that q is not on a circle subgroup of S_{1}^{2}. Let $g: \widehat{S_{1}^{2}} \rightarrow S_{1}^{2}$ be the universal cover of S_{1}^{2} and fix $\hat{0} \in g^{-1}(0)$. Then $[\pi, \pi]$ is the fundamental group of the graph that is the preimage in $\widehat{S_{1}^{2}}$ of the embedded circles α and β based at 0 . So a set of free generators of $[\pi, \pi]$ corresponds one to one with the set of unit squares in this graph. It is an affine set with group of translations $H_{1}\left(S_{1}^{2}\right)$. The unit squares correspond one-to-one with the elements of $g^{-1}(q)$. Since we have chosen q general enough, the images under g of the line segments [$\hat{0}, \hat{q}]$, with $\hat{q} \in g^{-1}(q)$, correspond with the set of geodesics on S_{1}^{2} from 0 to q without self intersection. The set of classes of such arcs in $H_{1}\left(S_{1}^{2},\{0, q\}\right) \cong H_{1}(S, \partial S)$ corresponds one-to-one with the set of linear forms on $H_{1}(S)$ that split $H_{1}(S)$ in the radical and a complementary symplectic summand of rank two, that is, with the set M_{S}. When γ is a geodesic from p to q and ω is the boundary of a regular neighborhood of γ, then $[\gamma]$ corresponds to the mapping class $D_{\omega} D_{\partial_{0}}^{-1} D_{\partial_{1}}$ on $S_{1,2}$.

We compute the homology of T_{S} using its product structure. It shows that

$$
H_{1}\left(T_{S}\right) \cong \mathbb{Z} \oplus \mathbb{Z}^{\left(M_{S}\right)}
$$

and $H_{k}\left(T_{S}\right)=0$ if $k \geq 3$. Using the Künneth formula we see that $H_{2}\left(T_{S}\right) \cong \mathbb{Z}^{\left(M_{S}\right)}$.
The previous discussion proves the following theorem.

Theorem 3.3.2. Let $S=S_{1,2}$ then

$$
\begin{aligned}
& H_{1}\left(T_{S}\right)=\mathbb{Z} \oplus \mathbb{Z}^{\left(M_{S}\right)} \cong \wedge^{3} H_{1}(S) \oplus \widetilde{G}_{S} \\
& H_{2}\left(T_{S}\right)=\mathbb{Z}^{\left(M_{S}\right)} \text { and } \\
& H_{k}\left(T_{S}\right)=0 \text { if } k \geq 3
\end{aligned}
$$

REmARK 3.3.3. Let p, q be two points on different boundary components of $S_{1,2}$ and $B X(p, q)$ the associated arc-complex, which is of dimension two. The stabilizer of a vertex α is the Torelli group $T_{1,1} \cong\left\langle D_{\alpha}\right\rangle$. The stabilizer of an edge is trivial. The vertices of $\overline{B X}:=T_{S} \backslash B X(p, q)$ correspond one-to-one with the set M_{S} and hence $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \cong \mathbb{Z}^{\left(M_{S}\right)}$. Therefore $H_{1}(\overline{B X}) \cong \mathbb{Z}$ is not trivial, a generator corresponds with the central element $D_{\partial_{0}}^{-1} D_{\partial_{1}}$. This implies that $\mathcal{A}^{o}(H, \pi)$ is not 1 -connected in this case.

When the number of boundary components of S is at least three, then the action of $T_{S^{\prime}}$ on $\left[\pi_{S^{\prime}}, \pi_{S^{\prime}}\right]$ is not trivial. In that case, T_{S} is isomorphic to a successive semidirect product via the split exact sequence

$$
1 \rightarrow\left[\pi_{S^{\prime}}, \pi_{S^{\prime}}\right] \rightarrow T_{S} \rightarrow T_{S^{\prime}} \rightarrow 1
$$

We do not compute its homology.
Remark 3.3.4. As in the case of genus zero, we can relate the Torelli group of a surface of genus one to the associated braid group. Let $S=S_{1, r}, \mathbb{T}$ be the torus, $F^{r}(U \mathbb{T})$ the configuration space of pairwise distinct points $\left(v_{1}, \ldots, v_{r}\right) \in \Pi_{i=1}^{r} U \mathbb{T}$, where $U \mathbb{T}$ is the unit tangent bundle and $P_{r}(\mathbb{T})=\pi_{1}\left(F^{r}(U \mathbb{T})\right)$. The kernel of the map $\Gamma_{S} \rightarrow \mathrm{Sl}(2, \mathbb{Z})$ defined by filling the r holes with a disc is isomorphic to $P_{r}(\mathbb{T}) / Z\left(P_{r}(\mathbb{T})\right)$, where $Z\left(P_{r}(\mathbb{T})\right)$ is the center of $P_{r}(\mathbb{T})$ (see [Birman4]). The center $Z\left(P_{r}(\mathbb{T})\right)$ is the free abelian group generated by the two loops that move the r holes together around α and β respectively. We denote $P_{r}(\mathbb{T}) / Z\left(P_{r}(\mathbb{T})\right)$ by \bar{P}.

The Torelli group T_{S} is in \bar{P} with quotient $K\left(H_{1}(S, P), H_{1}(S)\right)$ (see Section 1.2 for notations). The group \bar{P} has an explicit presentation (see [Birman1]); using this presentation one can derive the following commuting exact diagram

$$
\left.\begin{array}{ccccccccc}
& & 1 & & 1 & & 0 & & \\
& & & & & & & \\
1 & \rightarrow & {[\bar{P},[\bar{P}, \bar{P}]]} & \rightarrow & {[\bar{P}, \bar{P}]} & \rightarrow & R \circ R & \rightarrow & R / 2 R
\end{array}\right) \rightarrow 0
$$

that relates T_{S} with $[\bar{P},[\bar{P}, \bar{P}]]$. Here $R:=\operatorname{Rad}\left(H_{1}(S)\right), H:=H_{1}(S)$ and $\widetilde{H}:=$ $H_{1}(S, P)$. The computation of $H_{1}([\bar{P},[\bar{P}, \bar{P}]])$ becomes complicated when we follow the method of Section 3.2. We did not succeed in computing it.

3.4. Genus two

When $S=S_{2,0}$ it is proved in [Mess] that the Torelli group of S is freely generated by an infinite set of BSCC-maps that corresponds one-to-one with the set of homology splittings of $H_{1}(S)$ into two mutually orthogonal unimodular symplectic subspaces of rank two. Using this result we compute in Theorem 3.4.1 the group $H_{1}\left(T_{2,1}\right)$. For a surface of genus two and more boundary components the computation becomes difficult, as we explain in Remark 3.4.3, but for $S_{2,2}$ we can describe $H_{1}\left(T_{S}\right)$ as a quotient of a certain group. This will be useful in the computations of $H_{1}\left(T_{S}\right)$ for surfaces of genus three and four.

In our notation, introduced in Section 3.3, we know by the result of Mess that if $S=S_{2,0}$ then

$$
H_{1}\left(T_{S}\right) \cong \frac{\mathbb{Z}^{\left(M_{S}\right)}}{\left\langle U-U^{\prime}: U \oplus U^{\prime}=H_{1}(S), U \perp U^{\prime}\right\rangle}=\frac{\widetilde{G}_{S}}{\left\langle H_{1}(S)\right\rangle}
$$

When the surface has one boundary component, we can regard it as the blow up $\varphi: S \rightarrow S^{\prime}$ of a closed surface S^{\prime} such that $\varphi^{-1}(p)=\partial S$ for some $p \in S^{\prime}$. By Proposition 2.4.1 we have the exact sequence

$$
1 \rightarrow \pi_{1}\left(U S^{\prime}, v_{q}\right) \rightarrow T_{S} \rightarrow T_{S^{\prime}} \rightarrow 1
$$

where $q \in \partial S$. Using the Gysin sequence one finds that $H_{1}\left(U S^{\prime}\right) \cong H_{1}\left(S^{\prime}\right) \oplus \mathbb{Z} / 2 \cong$ $H_{1}(S) \oplus \mathbb{Z} / 2$. The action of $T_{S^{\prime}}$ on $H_{1}\left(U S^{\prime}\right)$ is trivial, hence the short exact sequence reduces to the exact sequence

$$
0 \rightarrow H_{1}(S) \oplus \mathbb{Z} / 2 \rightarrow H_{1}\left(T_{S}\right) \rightarrow H_{1}\left(T_{S^{\prime}}\right) \rightarrow 0
$$

on homology. The generator of $\mathbb{Z} / 2$ is represented by the Dehn twist D_{∂} around the boundary component of S^{\prime}. There are two natural lifts of a free Mess-generator of T_{2} to $T_{2,1}$; on homology they differ by the order two element D_{∂}. Notice that $H_{1}(S)$ has rank four and therefore $N_{S}=\left\{H_{1}(S)\right\}$. We have a one-to-one correspondence between the set M_{S} and the set of the two liftings of all the Mess-generators. With this correspondence their relations are precisely expressed in R_{S}. Hence, we have the following proposition.

Proposition 3.4.1. Let $S=S_{2,1}$, then

$$
H_{1}\left(T_{S}\right) \cong H_{1}(S) \oplus \widetilde{G}_{S} \cong \wedge^{3} H_{1}(S) \oplus \widetilde{G}_{S}
$$

An element $[\gamma] \in H_{1}(S)$ represented by an oriented $S C C \gamma$ based at $q \in \partial S$ corresponds to the class of t_{γ} in $H_{1}\left(T_{S}\right)$.

When $S=S_{2,2}$ we do not know how to compute $H_{1}\left(T_{S}\right)$ but we show that it is a quotient of $\wedge^{3} H_{1}(S) \oplus \widetilde{G}_{S}$. Let $\partial_{0}, \partial_{1}$ be the two boundary components of S; we write $\widetilde{S}=S_{3,1}$ for the surface obtained from S by gluing a pair of pants to $\partial_{0}, \partial_{1}$. Let $\widetilde{H}:=H_{1}(\widetilde{S})$ and $\pi: \widetilde{H} \rightarrow \mathbb{Z}$ be the map defined by $v \mapsto\left[\partial_{0}\right] \cdot v$, then $\pi^{-1}(0) \cong H_{1}(S)$. If $v \in \widetilde{H}$ let $\breve{v}:=v^{\perp} \cap \pi^{-1}(0)$. We choose two points p, q on the two boundary components of S and associated to them we have the arc-complex $B X(p, q)$, see Definition 2.5.1. By Proposition 2.5.3 we know that $T \backslash B X(p, q) \cong \mathcal{A}^{o}(\widetilde{H}, \pi)$. On this complex we have defined the system of coefficients \mathcal{H}_{1}, see Section 1.11 for the definition. This system can be identified with

$$
\mathcal{H}_{1}(v) \cong \wedge^{3} \breve{v} \oplus \widetilde{G}_{\breve{v}}
$$

with the inclusions as boundary maps. This is because the stabilizer of a vertex is the Torelli group $T_{2,1}$ and the stabilizer of an edge is either $T_{1,2}$ or $T_{0,3}=\{1\}$. The stabilizer of a 3 -simplex is trivial in all cases.

The poset $B X(p, q)$ is spherical of dimension four and $\mathcal{A}^{o}(\tilde{H}, \pi)$ is simply connected by Theorem 1.5.5. Hence, by Lemma 1.11.1 we have the exact sequence

$$
H_{2}\left(\mathcal{A}^{o}(\widetilde{H}, \pi)\right) \rightarrow H_{0}\left(\mathcal{A}^{o}(\widetilde{H}, \pi), \mathcal{H}_{1}\right) \rightarrow H_{1}\left(T_{S}\right) \rightarrow 0
$$

Proposition 3.4.2. If $S=S_{2,2}$ then $H_{1}\left(T_{S}\right)$ is a quotient of $\wedge^{3} H_{1}(S) \oplus \widetilde{G}_{S}$.
Proof. The system \mathcal{H}_{1} decomposes into a direct sum of $\mathcal{F}_{f}(\breve{v})=\wedge^{3} \breve{v}$ and $\mathcal{F}_{G}(\breve{v})=\widetilde{G}_{\breve{v}}$. According to Proposition 1.12 .4 we know that $H_{0}\left(\mathcal{A}^{o}(\widetilde{H}, \pi), \mathcal{H}_{f}\right)$ surjects onto $\wedge^{3} H_{1}(S)$ and by the same argument we have that

$$
H_{0}\left(\mathcal{A}^{o}(\widetilde{H}, \pi), \mathcal{F}_{G}\right)
$$

surjects onto \tilde{G}_{S}. We prove that

$$
H_{0}\left(\mathcal{A}^{o}(\widetilde{H}, \pi), \mathcal{H}_{1}\right) \rightarrow H_{1}\left(T_{S}\right)
$$

factorizes over

$$
\wedge^{3} H_{1}(S) \oplus \widetilde{G}_{S} \rightarrow H_{1}\left(T_{S}\right)
$$

Let $x=e_{1} \wedge e_{-1} \wedge e_{2} \in \wedge^{3} H_{1}(S)$ such that $\left\{e_{1}, e_{-1}, e_{2}\right\}$ is a symplectic basis of $H_{1}\left(S_{x}\right)$, where $S_{x} \cong S_{1,2}$ is a subsurface of S, and that can be extended to a symplectic basis

$$
\left\{e_{1}, e_{-1}, e_{2}, e_{-2}, e_{3}, e_{-3}\right\}
$$

of $H_{1}(\widetilde{S})$ with $e_{3}=\left[\partial_{0}\right]$. Any primitive element $v \in \pi^{-1}(1)$ such that $x \in \Lambda^{3} \breve{v}$, is in $e_{-3}+\left\langle e_{2}, e_{3}\right\rangle$. This implies that it can be represented by an embedded arc on the subsurface of \widetilde{S} that is the closure of $\widetilde{S}-S_{x}$. Because the image of $x \in \wedge^{3} \breve{v}$ in $H_{1}\left(T_{S}\right)$ is the mapping class $D_{\gamma_{1}} D_{\gamma_{2}}^{-1}$, where γ_{1}, γ_{2} are the two boundary curves of
S_{x}, oriented such that $\left[\gamma_{1}\right]+\left[\gamma_{2}\right]=0$, we see that every lift of x to $H_{0}\left(\mathcal{A}^{o}(\widetilde{H}, \pi), \mathcal{H}_{1}\right)$ has the same image in $H_{1}\left(T_{S}\right)$.

Let $U=\left\langle e_{1}, e_{-1}\right\rangle \in M_{S}$ such that $\left\{e_{1}, e_{-1}\right\}$ is a symplectic basis of $H_{1}\left(S_{U}\right)$, where $S_{U} \cong S_{1,1}$ is a subsurface of S and that can be extended to a symplectic basis

$$
\left\{e_{1}, e_{-1}, e_{2}, e_{-2}, e_{3}, e_{-3}\right\}
$$

of $H_{1}(\widetilde{S})$ with $e_{3}=\left[\partial_{0}\right]$. Any primitive element $v \in \pi^{-1}(1)$ such that $U \in \widetilde{G}_{\breve{v}}$ is in $e_{-3}+\left\langle e_{2}, e_{-2}, e_{3}\right\rangle$. Therefore, it can be represented by an embedded arc on the subsurface of \widetilde{S} that is the closure of $\widetilde{S}-S_{U}$. Because the image of $[U]$ in $H_{1}\left(T_{S}\right)$ is the Dehn twist D_{γ}, where γ is homotopic to the boundary of S_{U}, we see that every lift of U to $H_{0}\left(\mathcal{A}^{o}(\widetilde{H}, \pi), \mathcal{H}_{1}\right)$ has the same image in $H_{1}\left(T_{S}\right)$.

Because the elements x and $[U]$ generate $\wedge^{3} H_{1}(S) \oplus \widetilde{G}_{S}$ we have the above factorization.

Remark 3.4.3. One difficulty we encounter in the computation of $H_{1}\left(T_{2,2}\right)$ is that we do not know generators of $H_{2}\left(\mathcal{A}^{o}(\widetilde{H}, \pi)\right)$.

REMARK 3.4.4. If $\partial_{0}, \partial_{1}$ denote the two boundary components, then $D_{\partial_{0}}^{-1} D_{\partial_{1}}$ is a central element in T_{S}. Its class is represented by $e_{1} \wedge e_{-1} \wedge e_{3}+e_{2} \wedge e_{-2} \wedge e_{3}$ when $\left[\partial_{0}\right]=e_{3}$ is a generator of $\operatorname{Rad}\left(H_{1}(S)\right)$ and $\left\{e_{1}, e_{2}, e_{-1}, e_{-2}\right\}$ is a symplectic basis for $\overline{H_{1}(S)}$. We have that $e_{1} \wedge e_{-1} \wedge e_{3}=e_{-1} \wedge e_{1} \wedge\left(e_{3}+e_{2}\right)-e_{1} \wedge e_{-1} \wedge e_{2}$ and $e_{1} \wedge e_{-1} \wedge\left(e_{3}+e_{2}\right) \in\left(e_{-3}-e_{-2}\right)$-summand and $e_{1} \wedge e_{-1} \wedge e_{2} \in e_{-3}$-summand of $C_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$ is represented by a BP-map. This shows how $e_{1} \wedge e_{-1} \wedge e_{3}$ is represented by Dehn twists. Analogous, we see how $e_{2} \wedge e_{-2} \wedge e_{3}$ is represented. This shows that the central element is indeed represented in $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$, where this was not the case for $S_{1,2}$, see Remark 3.3.3.

3.5. Genus three or more

This section is devoted to the computations of $H_{1}\left(T_{S}\right)$ when S is a surface of genus three or more and having an nonempty boundary. We prove in this case that

$$
H_{1}\left(T_{S}\right) \cong \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)
$$

Johnson has proved this result for $S=S_{g, 1}$ and $g \geq 3$ using a different method than is used here, see [Johnson8] and the review in Section 2.3. The method we apply is as follows. We use the arc-complex $B X(p, q)$ defined by Harer that enables us to compute $H_{1}\left(T_{S}\right)$ by inductive means. We let T_{S} act on the spherical simplicial complex $B X(p, q)$. The quotient $\overline{B X}$ is in the 1-component case isomorphic to $\mathcal{A}^{o}(H)$ case and hence $(g-2)$-connected. In the 2-component case it is isomorphic to $\mathcal{A}(\widetilde{H}, \pi)$ for a certain \widetilde{H} and π and therefore 1-connected. By Lemma 1.11.1, we have the short exact sequence

$$
H_{2}(\overline{B X}) \rightarrow H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \rightarrow H_{1}\left(T_{S}\right) \rightarrow 0
$$

which tells us how $H_{1}\left(T_{S}\right)$ is related to the abelianization of Torelli groups of lower genera or less boundary components. If $g \geq 4$ then $H_{2}(\overline{B X})=0$ when p, q are on the same component, so in that case, we have an isomorphism

$$
H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \cong H_{1}\left(T_{S}\right)
$$

If $g=3$ we get by the exact sequence an upper bound for $H_{1}\left(T_{S}\right)$. We use the Johnson epimorphism $\tau: T_{S} \rightarrow \wedge^{3} H_{1}\left(T_{S}\right)$ and the Birman-Craggs epimorphism $\sigma: T_{S} \rightarrow B_{3}\left(\Omega_{H_{1}(S)}\right)$ to find a lower bound for $H_{1}\left(T_{S}\right)$ which turns out to be equal to our upper bound.

We start with computing $H_{1}\left(T_{S}\right)$ when $S=S_{3,1}$. Fix two distinct points p, q on ∂S and let $B X:=B X(p, q)$ be the associated complex in the 1-component case. We denote the quotient of $B X$ by the action of T_{S} by $\overline{B X}$ and denote $H_{1}(S)$ by H. By Proposition 2.5.3 and Theorem 1.5.4 we know that $\overline{B X} \cong \mathcal{A}^{o}(H)$ is 1-connected and therefore by Lemma 1.11.1 we have the exact sequence

$$
H_{2}(\overline{B X}) \rightarrow H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \rightarrow H_{1}\left(T_{S}\right) \rightarrow 0
$$

If $\alpha \in B X$ is a vertex we denote by $S_{\alpha} \cong S_{2,2}$ the closure of $S-\{\alpha\}$. Let γ be the part of ∂S going from p to q. If $v \in H$ and $v=[\gamma \alpha]$ for some embedded $\alpha \in B X$ then $v^{\perp} \cong H_{1}\left(S_{\alpha}\right)$. The group $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$ is by definition a quotient of $\underset{v \in \mathcal{A}^{\circ}(H)_{0}}{\oplus} \mathcal{H}_{1}(v)$. The stabilizer of a lift of $v=[\gamma \alpha]$ is exactly the Torelli group of S_{α}, so by Proposition 3.4.2 we have that $\underset{v \in \mathcal{A}^{\circ}(H)_{0}}{\oplus} \mathcal{H}_{1}(v)$ is a quotient of

$$
\underset{v \in \mathcal{A}^{\circ}(H)_{0}}{\oplus} \wedge^{3} v^{\perp} \oplus \widetilde{G}_{v^{\perp}}
$$

Let $f_{v}: \widetilde{G}_{v \perp} \rightarrow G_{v \perp}$ be the projection map that reduces modulo two.
Lemma 3.5.1. The group $\underset{v \in \mathcal{A}(H)_{o}}{\oplus} \operatorname{Ker}\left(f_{v}\right)$ is in the kernel of the surjection

$$
\underset{v \in \mathcal{A}^{0}(H)_{0}}{\oplus} \wedge^{3} v^{\perp} \oplus \widetilde{G}_{v^{\perp}} \rightarrow H_{1}\left(T_{S}\right)
$$

Proof. The group $\operatorname{Sp}(2 g, \mathbb{Z})[2]:=\operatorname{ker}(\operatorname{Sp}(2 g, \mathbb{Z}) \rightarrow \operatorname{Sp}(2 g, \mathbb{Z} / 2))$ is generated by all squares δ_{v}^{2}, see the appendix in [Johnson8]. This implies that in each summand of $v \in \mathcal{A}^{o}(H)_{0}$, the kernel of f_{v} is generated by
(i) $2[U]$ for $U \in M_{v^{\perp}}$,
(ii) $[U]-\left[\delta_{a}^{2}(U)\right]$ with $U \in M_{v^{\perp}}, a \in v^{\perp}$ and
(iii) $[W]-\left[\delta_{a}^{2}(W)\right]$ with $W \in N_{v^{\perp}}, a \in v^{\perp}$.

We will prove that these relations also hold in $H_{1}\left(T_{S}\right)$.
The image of an element $U \in M_{v^{\perp}}$ in $H_{1}\left(T_{S}\right)$ is represented by the Dehn twist around the boundary curve of a separating subsurface $S_{U} \subset S$ such that $H_{1}\left(S_{U}\right)=$ U. It follows from the lantern relation that $2[U]=0$ in $H_{1}\left(T_{S}\right)$, when $g(S) \geq 3$, see Figure 2.3 and [Johnson8] Lemma 2, for an explanation.

Let $b \in H$ and $a \in b^{\perp}$, we define a homomorphism $\varphi_{a, b}: b^{\perp} \rightarrow b^{\perp}$ by

$$
\varphi_{a, b}(x):=x+(a \cdot x) b .
$$

Then $\varphi_{a, b}$ is a symplectic automorphism, $\varphi_{a+a^{\prime}, b}=\varphi_{a, b} \varphi_{a^{\prime}, b}$ and $\varphi_{a, b+b^{\prime}}=\varphi_{a, b} \varphi_{a, b^{\prime}}$. The proof that the relations (ii) and (iii) hold in $H_{1}\left(T_{S}\right)$ follows from the following lemmas.

Lemma 3.5.2. Let $U \in M_{H} \cup N_{H}$ and a in H. We decompose $H=U \oplus U^{\prime}$ where U^{\prime} is a symplectic subspace such that $U \perp U^{\prime}$ and write $a=u+u^{\prime}$ according to this decomposition. Then $\delta_{a}^{2}(U)=\varphi_{2 u, u^{\prime}}(U)$.

Proof. For any $k \in \mathbb{Z}$ and $x \in U$ is

$$
\begin{aligned}
\delta_{a}^{k}(x) & =x+k(a \cdot x) a=x+k(u \cdot x)\left(u+u^{\prime}\right)=x+k(u \cdot x) u+k(u \cdot x) u^{\prime} \\
& =\varphi_{k u, u^{\prime}}(x+k(u \cdot x) u)=\varphi_{k u, u^{\prime}} \delta_{u}^{k}(x)
\end{aligned}
$$

If $u \in U$ then $x \in U$ if and only if $\delta_{u}^{k}(x) \in U$, so $\delta_{a}^{k}(U)=\varphi_{k u, u^{\prime}}(U)$.
We see that it suffices to prove the relations for $\varphi_{2 u, u^{\prime}}$. We further deduce that it is enough to prove that relation (iii) holds in $H_{1}\left(T_{S}\right)$. This is because if H is quasiunimodular of rank five with cyclic radical, $U \in M_{H}, H=U \oplus U^{\prime}$ a decomposition as above and $u^{\prime} \in U^{\prime}$, then we can choose a hyperbolic pair $\{a, b\}$ in U^{\prime} such that $u^{\prime} \in\langle a, b\rangle^{\perp}$. Then

$$
\begin{aligned}
{[U]-\left[\varphi_{2 u, u^{\prime}}(U)\right] } & =[U]-[\langle a, b\rangle]-\left[\varphi_{2 u, u^{\prime}}(U)\right]+[\langle a, b\rangle] \\
& =[U \oplus\langle a, b\rangle]-\left[\varphi_{2 u, u^{\prime}}(U \oplus\langle a, b\rangle)\right]
\end{aligned}
$$

in $H_{1}\left(T_{S}\right)$.
Lemma 3.5.3. Suppose $W \in N_{H}, v_{1}, v_{2} \in W$ such that $u_{1} \cdot u_{2}=0$ and let $w^{\prime} \in W^{\perp}$. Then

$$
\left[\varphi_{u_{1}+u_{2}, w^{\prime}}(W)\right]+\left[\varphi_{u_{1}, w^{\prime}}(W)\right]+\left[\varphi_{u_{2}, w^{\prime}}(W)\right]+[W]=0
$$

in $H_{1}\left(T_{S}\right)$.

Proof. Assume first that $u_{1} \neq \pm u_{2}$. Then there exists a unimodular decomposition $W=U_{1} \oplus U_{2}$ such that $u_{i} \in U_{i}$ for $i=1,2$ and $U_{1} \perp U_{2}$. Then

$$
\begin{aligned}
& {\left[\varphi_{u_{1}+u_{2}, w^{\prime}}(W)\right]=\left[\varphi_{u_{1}, w^{\prime}}\left(U_{1}\right) \oplus \varphi_{u_{2}, w^{\prime}}\left(U_{2}\right)\right]=\left[\varphi_{u_{1}, w^{\prime}}\left(U_{1}\right)\right]+\left[\varphi_{u_{2}, w^{\prime}}\left(U_{2}\right)\right]} \\
& {\left[\varphi_{u_{1}, w^{\prime}}(W)\right]=\left[\varphi_{u_{1}, w^{\prime}}\left(U_{1}\right) \oplus U_{2}\right]=\left[\varphi_{u_{1}, w^{\prime}}\left(U_{1}\right)\right]+\left[U_{2}\right]} \\
& {\left[\varphi_{u_{2}, w^{\prime}}(W)\right]=\left[U_{1} \oplus \varphi_{u_{2}, w^{\prime}}\left(U_{2}\right)\right]=\left[U_{1}\right]+\left[\varphi_{u_{2}, w^{\prime}}\left(U_{2}\right)\right],} \\
& {[W]=\left[U_{1} \oplus U_{2}\right]=\left[U_{1}\right]+\left[U_{2}\right]}
\end{aligned}
$$

in $H_{1}\left(T_{S}\right)$, because this relation holds already in each summand of $\underset{v \in \mathcal{A}^{\circ}(H)_{0}}{\oplus} \widetilde{G}_{v^{\perp}}$. We see that their sum is zero in $H_{1}\left(T_{S}\right)$.

If $u_{1}=u_{2}$ we can choose $u_{3} \in W$ such that $u_{1} \cdot u_{3}=0, u_{1} \neq u_{3}$, then

$$
\begin{aligned}
& {\left[\varphi_{2 u_{1}, w^{\prime}}(W)\right]+\left[\varphi_{u_{3}, w^{\prime}}(W)\right]+[W]=\left[\varphi_{2 u_{1}+u_{3}, w^{\prime}}(W)\right]=\left[\varphi_{u_{1}+\left(u_{1}+u_{3}\right), w^{\prime}}(W)\right]=} \\
& {\left[\varphi_{u_{1}, w^{\prime}}(W)\right]+\left[\varphi_{u_{1}+u_{3}, w^{\prime}}(W)\right]+[W]=\left[\varphi_{u_{3}, w^{\prime}}(W)\right]}
\end{aligned}
$$

in $H_{1}\left(T_{S}\right)$, hence $\left[\varphi_{2 u_{1}, w^{\prime}}(W)\right]=[W]$ in $H_{1}\left(T_{S}\right)$. If $u_{1}=-u_{2}$, the lemma is trivially true.

If we choose $u_{1}=u_{2}$ this finishes the proof of Lemma 3.5.1
Lemma 3.5.1 implies that we have the surjection

$$
(*) \underset{v \in \mathcal{A}^{\circ}(H)_{0}}{\oplus} \wedge^{3} v^{\perp} \oplus G_{v^{\perp}} \rightarrow H_{1}\left(T_{S}\right)
$$

Lemma 3.5.4. If $v \in H$ then $G_{v^{\perp}} \cong B_{2}\left(\Omega_{v^{\perp}}\right)$.
Proof. If $U \in M_{H} \cup N_{H}$, let $\operatorname{arf}(U):=\sum_{i=1}^{g(U)} \overline{e_{i} e_{-i}}$ be the Arf-invariant of U where $\left\{e_{ \pm i}\right\}_{i=1}^{g(U)}$ is a symplectic basis of U. We have an epimorphism $G_{v^{\perp}} \rightarrow B_{2}\left(\Omega_{v^{\perp}}\right)$ defined by $U \mapsto \operatorname{arf}(U)$. Since $\operatorname{dim}\left(B_{2}\left(\Omega_{v^{\perp}}\right)\right)=16$ we prove that this map is injective by showing that $\operatorname{dim}\left(G_{v^{\perp}}\right) \leq 16$.

For each $v \in H$ we have that v^{\perp} is quasi-unimodular of genus two and with radical $\langle v\rangle$. Let V be a module over $\mathbb{Z} / 2$ of this type, that means, quasi-unimodular, $g(V)=2$ and $\operatorname{Rad}(V)$ has rank one.

The projection $V \rightarrow \bar{V}$ induces $G_{V} \rightarrow G_{\bar{V}}$. Now \bar{V} is unimodular of rank four so $[\bar{V}]$ is a special element in it and a direct computation shows that $G_{\bar{V}} /[\bar{V}]$ has dimension ten, so $\operatorname{dim}\left(G_{\bar{V}}\right)=11$. So it suffices to show that the kernel K of $G_{V} \rightarrow G_{\bar{V}}$ is at most of dimension five. A priori K is generated by the elements $[U]+\left[U^{\prime}\right]$ with $U, U^{\prime} \in M_{V}$ and $[W]+\left[W^{\prime}\right]$ with $W, W^{\prime} \in N_{V}$, that have the same image in $G_{\bar{V}}$. But if $U, U^{\prime} \in M_{V}$ such that $U=U^{\prime} \bmod \operatorname{Rad}(V)$, then we can choose $U_{1} \in M_{V}$ such that $U \perp U_{1}$ and $U^{\prime} \perp U_{1}$ and so

$$
[U]+\left[U^{\prime}\right]=\left[U \oplus U_{1}\right]+\left[U^{\prime} \oplus U_{1}\right] \text { in } G_{V}
$$

Therefore K is generated by the second type of elements only. Let v_{0} be a generator of $\operatorname{Rad}(V)$. The set N_{V} is an affine space over \bar{V}; if $v \in \bar{V}$ and $W \in N_{V}$ then the
translation of W over v is defined by $W+v:=\varphi_{v, v_{0}}(W)$. We fix an element $W_{0} \in$ M_{V}. Let $\left\{e_{1}, e_{2}, e_{-1}, e_{-2}\right\}$ be a symplectic basis of \bar{V}. It follows by Lemma 3.5.3 that K is generated by the six elements $\left[W_{0}+e_{ \pm i}\right]+\left[W_{0}\right]$ and $\left[W_{0}+e_{i}+e_{-i}\right]+\left[W_{0}\right]$, for $i=1,2$. In K we have the relation

$$
\begin{aligned}
& {\left[W_{0}+e_{1}+e_{-1}\right]+\left[W_{0}+e_{2}+e_{-2}\right]=} \\
& {\left[W_{0}+e_{1}+e_{-1}+e_{2}+e_{-2}\right]+\left[W_{0}\right]=} \\
& {\left[W_{0}+e_{1}+e_{2}\right]+\left[W_{0}+e_{-1}+e_{-2}\right]=} \\
& {\left[W_{0}+e_{1}\right]+\left[W_{0}+e_{2}\right]+\left[W_{0}+e_{-1}\right]+\left[W_{0}+e_{-2}\right]}
\end{aligned}
$$

Hence $\operatorname{dim}(K) \leq 5$ and thus $\operatorname{dim}\left(G_{V}\right) \leq 16$.
If v is a vertex of $\mathcal{A}^{o}(H)$ and $U \in M_{v^{\perp}}$ is a generating element, then the image of [U] in $H_{1}\left(T_{S}\right)$ is represented by the Dehn twist around the boundary of a genus one subsurface $S_{U} \subset S$ such that $H_{1}\left(S_{U}\right) \otimes \mathbb{Z} / 2 \cong U$ and $H_{1}\left(S_{U}\right) \subset v^{\perp}$. If v, w are two vertices of $\mathcal{A}^{o}(H)$ and $U \in M_{v^{\perp}} \cap M_{w^{\perp}}$ then we may choose S_{U} such that v and w can be represented by arcs on $S-S_{U}$. This implies that

$$
\underset{v \in \mathcal{A}^{\circ}(H)_{0}}{\oplus} G_{v^{\perp}} \cong \underset{v \in \mathcal{A}^{\circ}(H)_{0}}{\oplus} B_{2}\left(\Omega_{v^{\perp}}\right) \rightarrow H_{1}\left(T_{S}\right)
$$

factorizes over $G_{S} \cong B_{2}\left(\Omega_{S}\right) \rightarrow H_{1}\left(T_{S}\right)$.
If v is a vertex of $\mathcal{A}^{o}(H)$ then $\wedge^{3} v^{\perp}$ is generated by the elements $x=a \wedge b \wedge c$ such that $\{a, b\}$ is a hyperbolic pair and $c \in\langle a, b\rangle^{\perp}$ is primitive. Then $\langle a, b, c\rangle=$ $H_{1}\left(S_{x}\right) \subset v^{\perp}$ for a subsurface $S_{x} \subset S$ with oriented boundary curves γ_{1}, γ_{2} such that [γ_{1}] $=c$ and the image of x in $H_{1}\left(T_{S}\right)$ is $D_{\gamma_{2}}^{-1} D_{\gamma_{1}}$. If v, w are two vertices of $\mathcal{A}^{o}(H)$ and $x \in \wedge^{3}\left(v^{\perp} \cap w^{\perp}\right)$ then this surface S_{x} is such that v and w can be represented by arcs on $S-S_{x}$. This implies that the map ($*$) factorizes over an epimorphism

$$
\wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right) \rightarrow H_{1}\left(T_{S}\right)
$$

In the overview of the work of Johnson, Section 2.3, we have recalled the Johnson epimorphism $\tau: T_{S} \rightarrow \wedge^{3} H_{1}\left(T_{S}\right)$ and the Birman-Craggs epimorphism $\sigma: T_{S} \rightarrow$ $B_{3}\left(\Omega_{S}\right)$. The composition

$$
\wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right) \rightarrow H_{1}\left(T_{S}\right) \rightarrow \wedge^{3} H_{1}(S) \oplus B_{3}\left(\Omega_{S}\right)
$$

is the map

$$
(a \wedge b \wedge c, \beta) \mapsto(a \wedge b \wedge c, \beta+\bar{a} \bar{b}(\bar{c}+1))
$$

when $\{a, b, c\}$ is a symplectic basis for a subsurface $S_{1,2}$ such that $a \cdot b=1$. So this composition is injective and hence

$$
H_{1}\left(T_{S}\right) \cong \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)
$$

Assume now that $S=S_{3, r}$ with $r \geq 2$. We choose two points p, q on different boundary components of S and let $B X$ be the associated arc-complex. The quotient,
$\overline{B X}$, by the action of the Torelli group is 1-connected by Theorem 1.5.5 and Theorem 2.5.3. By Lemma 1.11 .1 we have the exact sequence

$$
H_{2}(\overline{B X}) \rightarrow H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \rightarrow H_{1}\left(T_{S}\right) \rightarrow 1
$$

The stabilizer of a vertex of $B X$ is the Torelli group of a surface $S_{3, r-1}$ and that of an edge is the Torelli group of a surface $S_{2, r}$.

Proposition 3.5.5. If $S=S_{3, r}$ with $r \geq 1$ then

$$
H_{1}\left(T_{S}\right) \cong \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)
$$

Proof. For $r=1$ we know that the proposition holds. We proceed with induction on r and assume that $r \geq 2$. We compute $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$. Let $S_{4, r-1}$ be the surface obtained from S by gluing a pair of pants to the two boundary components that contain a point of p, q. Let $\pi: H_{1}\left(S_{4, r-1}\right) \rightarrow \mathbb{Z}$ be the epimorphism defined by $v \mapsto\left[\partial_{0}\right] \cdot v$ where $\left[\partial_{0}\right]$ is the class determined by the boundary component containing p. We know by Proposition 2.5.3 that $\overline{B X} \cong \mathcal{A}^{\circ}\left(H_{1}\left(S_{4, r-1}\right), \pi\right)$. If (v, w) is an edge of $B X$, then the stabilizer of (v, w) maps via the boundary map onto $\wedge^{3}\left(v^{\perp} \cap w^{\perp}\right) \oplus B_{2}\left(\Omega_{v^{\perp} \cap w^{\perp}}\right)$ in the summand of a and b respectively of $C_{0}\left(\overline{B X}, \mathcal{H}_{1}\right)$. Hence by Proposition 1.12 .3 and induction we have $H_{0}\left(\overline{B X}, \mathcal{H}_{1}\right) \cong$ $\wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)$. This implies that we have an epimorphism

$$
\wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right) \rightarrow H_{1}\left(T_{S}\right)
$$

In Proposition 2.4.3, we have extended the Johnson epimorphism $\tau: T_{S} \rightarrow \wedge^{3} H_{1}\left(T_{S}\right)$ and the Birman-Craggs epimorphism $\sigma: T_{S} \rightarrow B_{3}\left(\Omega_{S}\right)$ to Torelli groups of surfaces with arbitrarily many boundary components. The composition

$$
\wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right) \rightarrow H_{1}\left(T_{S}\right) \rightarrow \wedge^{3} H_{1}(S) \oplus B_{3}\left(\Omega_{S}\right)
$$

is the map

$$
(a \wedge b \wedge c, \beta) \mapsto(a \wedge b \wedge c, \beta+\bar{a} \bar{b}(\bar{c}+1))
$$

when $\{a, b, c\}$ is a symplectic basis for a subsurface $S_{1,2}$ such that $a \cdot b=1$. So this composition is injective and hence

$$
H_{1}\left(T_{S}\right) \cong \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)
$$

Let $S=S_{4, r}$. Choose two points p, q on the same boundary component of S and let $B X(p, q)$ be the associated arc-complex. Then $B X(p, q)$ and $T_{S} \backslash B X(p, q)$ are both 2-connected, thus $H_{1}\left(T_{S}\right) \cong H_{0}\left(\mathcal{A}^{o}(H), \mathcal{H}_{1}\right)$, by Lemma 1.11.1. The stabilizer of a vertex of $B X(p, q)$ is the Torelli group of a surface $S_{3, r+1}$ and the stabilizer of an edge is the Torelli group of either a surface $S_{3, r}$ or $S_{2, r+2}$. In both cases we have that if (v, w) is the edge, then $H_{1}\left(T_{(v, w)}\right)$ maps by Proposition 2.4.3 onto $\wedge^{3}\left(v^{\perp} \cap w^{\perp}\right) \oplus B_{2}\left(\Omega_{v^{\perp} \cap w^{\perp}}\right)$ in the summand of v and w in $C_{0}\left(\mathcal{A}^{o}(H), \mathcal{H}_{1}\right)$. By

Proposition 1.12 .3 we know that $H_{0}\left(\mathcal{A}^{o}(H), \mathcal{H}_{1}\right) \cong \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)$. We conclude that

Theorem 3.5.6. If $S=S_{g, r}$ with $g \geq 3$ and $r \geq 1$ then

$$
H_{1}\left(T_{S}\right) \cong \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)
$$

Summarizing we get (Corollary 3.2.5, Theorem 3.3.2, Mess, Proposition 3.4.1, Proposition 3.4.2 and Theorem 3.5.6)

$$
\begin{aligned}
H_{1}\left(T_{0, r}\right)=0 \text { if } r \leq 3 \\
H_{1}\left(T_{0, r}\right) \cong H_{1}\left(\left[P^{r-1}\left(D^{2}\right), P^{r-1}\left(D^{2}\right)\right]\right) \text { if } r \geq 4 \\
H_{1}\left(T_{1,0}\right)=0, \\
H_{1}\left(T_{1,1}\right) \cong \mathbb{Z} \cong \wedge^{3} H_{1}\left(S_{1,1}\right) \oplus \widetilde{G}_{S_{1,1}}, \\
H_{1}\left(T_{1,2}\right) \cong \wedge^{3} H_{1}\left(S_{1,2}\right) \oplus \widetilde{G}_{S_{1,2}}, \\
H_{1}\left(T_{2,0}\right) \cong \frac{\widetilde{G}_{S_{2,0}}}{\left\langle H_{1}\left(S_{2,0}\right)\right\rangle}, \\
H_{1}\left(T_{2,1}\right) \cong \wedge^{3} H_{1}\left(S_{2,1}\right) \oplus \widetilde{G}_{S_{2,1}}, \\
H_{1}\left(T_{2,2}\right) \\
H_{1}\left(T_{g, r}\right) \cong \wedge^{3} H_{1}\left(S_{g, r}\right) \oplus B_{2}\left(\Omega_{S_{g, r}}\right) \cong \wedge^{3} H_{1}\left(S_{g, r}\right) \oplus G_{S_{1,2}} \text { if } g \geq 3, r \geq 1
\end{aligned}
$$

Recall that the "big Torelli group", denoted by $\widetilde{T_{S}}$, is the subgroup of Γ_{S} of mapping classes that act trivially on $H_{1}(S)$. We can compute $H_{1}\left(\widetilde{T_{S}}\right)$ when $g \geq 3$, using Theorem 3.5.6.

Corollary 3.5.7. If $g \geq 3$ then we have a short exact sequence

$$
0 \rightarrow \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right) \rightarrow H_{1}\left(\widetilde{T_{S}}\right) \rightarrow S^{2} \operatorname{Rad}\left(H_{1}(S)\right) \rightarrow 0
$$

If $\operatorname{Rad}\left(H_{1}(S)\right)=\left\langle\left[\partial_{1}\right], \ldots,\left[\partial_{r}\right]:\left[\partial_{1}\right]+\cdots+\left[\partial_{r}\right]=0\right\rangle$ where ∂_{i} is the $i^{\text {th }}$ boundary component, we have for $i, j \in\{1, \ldots, r\}$ that $\left[\partial_{i}\right] \otimes\left[\partial_{i}\right]$ lifts to $D_{\partial_{i}}$ and $\left(\left[\partial_{i}\right]+\left[\partial_{j}\right]\right) \otimes$ $\left(\left[\partial_{i}\right]+\left[\partial_{j}\right]\right)$ lifts to $D_{\gamma_{i j}}$, where $\gamma_{i j}$ is a SCC such that $\left[\gamma_{i j}\right]=\left[\partial_{i}\right]+\left[\partial_{j}\right]$.

Proof. Let $U:=S^{2} \operatorname{Rad}\left(H_{1}(S)\right)$, we have by Proposition 2.2.3 the short exact sequence

$$
1 \rightarrow T_{S} \rightarrow \widetilde{T_{S}} \rightarrow U \rightarrow 0
$$

It induces the exact sequence

$$
\cdots \rightarrow \wedge^{2} U \rightarrow H_{1}\left(T_{S}\right)_{U} \rightarrow H_{1}\left(\widetilde{T_{S}}\right) \rightarrow U \rightarrow 0
$$

on homology. By Theorem 3.5.6 we have $H_{1}\left(T_{S}\right) \cong \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)$. The lifts $D_{\partial_{i}}$ and $D_{\gamma_{i j}}$, where $\gamma_{i j}$ is such that $\left[\gamma_{i j}\right]=\left[\partial_{i}\right]+\left[\partial_{j}\right]$, act via this isomorphism on $\wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)$ by the transvections determined by [∂_{i}] and $\left[\gamma_{i j}\right]$ respectively, hence trivially on this module. Let $x, y \in U$ and \tilde{x}, \tilde{y} liftings in $\widetilde{T_{S}}$ of x, y respectively,
then $[\tilde{x}, \tilde{y}]$ is in T_{S}. We show that the image of $\wedge^{2} U \rightarrow \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)$ is trivial, where $x \wedge y$ maps to the image of $\overline{[\tilde{x}, \tilde{y}]}$ in $H_{1}\left(T_{S}\right) \cong H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)$.

The elements $D_{\partial_{i}}$ are central. We have for $i, j, k, l \in\{1, \ldots, r\}$ that

$$
\left(\left[\partial_{i}\right]+\left[\partial_{j}\right] \otimes\left[\partial_{i}\right]+\left[\partial_{j}\right]\right) \wedge\left(\left[\partial_{k}\right]+\left[\partial_{l}\right] \otimes\left[\partial_{k}\right]+\left[\partial_{l}\right]\right) \mapsto\left[D_{\gamma_{i j}}, D_{\gamma_{k l}}\right]=D_{\gamma_{i j}} D_{D_{\gamma_{k l}}\left(\gamma_{i j}\right)}^{-1} .
$$

If $\{i, j\} \cap\{k, l\}=\emptyset$ we can choose $\gamma_{i j}$ and $\gamma_{k l}$ such that they are disjunct on S, so the image is 0 in that case. Otherwise, we can assume without loss of generality that $l=j$. Suppose $S=S_{g, r}$. If $r \leq 2$ there is nothing to prove. If $r \geq 3$ let $S^{*}=S_{g+r-3,3}$ be the surface obtained from S by gluing to each boundary component not equal to $\partial_{i}, \partial_{j}, \partial_{k}$ a torus $S_{1,1}$, see Figure 3.5. So if $r=3$ then $S=S^{*}$. The map $H_{1}(S) \rightarrow H_{1}\left(S^{*}\right)$ is injective and hence by Theorem 3.5.6 the

Figure 3.5. The surface S^{*} with $\gamma_{i j}$ and $D_{\gamma_{j k}}\left(\gamma_{i j}\right)$.
induced map $H_{1}\left(T_{S}\right) \rightarrow H_{1}\left(T_{S^{*}}\right)$ is injective. In $H_{1}\left(T_{S^{*}}\right)$ we have $D_{\gamma_{i j}} D_{D_{\gamma_{j k}}\left(\gamma_{i j}\right)}^{-1}=$ $D_{\gamma_{i j}} D_{\partial_{k}}^{-1} D_{\partial_{k}} D_{D_{\gamma_{j k}\left(\gamma_{i j}\right)}^{-1}}^{-1}$. We remark that $D_{\gamma_{i j}} D_{\partial_{k}}^{-1}$ and $D_{\partial_{k}} D_{D_{\gamma_{j k}\left(\gamma_{i j}\right)}^{-1}}^{-1}$ are both elements in $T_{S^{*}}$ representing opposite elements in $\wedge^{3} H_{1}\left(S^{*}\right) \oplus B_{2}\left(\Omega_{S}\right)$. This is because they are $B P$-maps representing $-\left(\sum_{i=1}^{g+r-3} e_{i} \wedge e_{-i}\right) \wedge\left[\partial_{k}\right]$ and $\left(\sum_{i=1}^{g+r-3} e_{i} \wedge e_{-i}\right) \wedge\left[\partial_{k}\right]$ respectively, where $\left\{e_{i}, e_{-i},\left[\partial_{i}\right],\left[\partial_{j}\right],\left[\partial_{k}\right]\right\}_{i=1}^{g+r-3}$ is a symplectic basis of $H_{1}\left(S^{*}\right)$. So in $H_{1}\left(T_{S^{*}}\right)$ their sum is zero and hence in $H_{1}\left(T_{S}\right)$ it is too. This finishes the proof of the Corollary.

Bibliography

[Arf] C. Arf, Untersuchungen über quadratische Formen in Körpern der Charakeristik 2. (Teil I.) J. Reine Angew. Math. 183, 148-167 (1941).
[Artin] E. Artin, Theory der Zöpfe. Abh. Math. Sem. Hamburg (4), 47-72 (1926).
[Birman1] J. Birman, On braid groups. Comm. Pure Appl. Math. 22, 41-72 (1969).
[Birman2] J. Birman, Mapping class groups and their relationship to braid groups. Comm. Pure Appl. Math. 22, 213-238 (1969).
[Birman3] J. Birman, On Siegel's modular group. Math. Ann. 191, 59-68 (1971).
[Birman4] J. Birman, Braids, links and mapping class groups. Ann. of Math. Studies 82, Princeton Univ. Press (1975).
[Birman-Craggs] J. Birman and R. Craggs, The μ-invariant of 3-manifolds and certain structural properties of the group of homeomorphisms of a closed, oriented 2-manifold. Trans. Amer. Math. Soc. 237, 283-309 (1978).
[Brown1] K. Brown, Buildings. Springer-Verlag, New York (1989).
[Brown2] K. Brown, Cohomology of groups. Graduate Texts in Mathematics 87, Springer-Verlag, New York-Berlin (1982).
[Charney] R. Charney, A generalization of a theorem of Vogtmann. J. Pure Appl. Algebra 44, 107-125 (1987).
[Foisy] J. Foisy, The second homology group of the level 2 mapping class group and the extended Torelli group of an orientable surface. Topology 38, 1175-1207 (1999).
[Gramain] A. Gramain, Le type d'homotopie du groupe des diffomorphismes d'une surface compacte. Ann. sci. Ecole Norm. Sup. (4), 6, 53-66 (1973).
[Hain] R. Hain, Torelli groups and geometry of moduli spaces of curves. Math. Sci. Res. Inst. Publ. 28, 97-143 (1995).
[Hain-Looijenga] R. Hain and E. Looijenga, Mapping class groups and Moduli Spaces of Curves. Proc. Sympos Pure Math. 62 part 2, Amer. Math. Soc., 97-142 (1997).
[Harer] J. Harer, Stability of the homology of the mapping class groups of orientable surfaces. Ann. of Math. 121, 215-249 (1985).
[Hatcher-Thurston] A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed orientable surface. Topology 19, 221-237 (1980).
[HNK] F. Hirzebruch, W.D. Neumann, S.S. Koh, Differentiable manifolds and quadratic forms. Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc. New York (1971).
[Ivanov] N. Ivanov, Complexes of curves and the Teichmüller modular groups. Russian Math. Surveys 42:3, 55-107 (1987).
[Johnson1] D. Johnson, Homeomorphisms of a surface which act trivially on homology. Proc. Amer. Math. Soc. 75, 119-125 (1979).
[Johnson2] D. Johnson, Quadratic forms and the Birman-Craggs homomorphisms. Trans. Amer. Math. Soc. 261, 235-254 (1980).
[Johnson3] D. Johnson, An abelian quotient of the mapping class group. Math. Ann. 249, 225-242 (1980).
[Johnson4] D. Johnson, Conjugacy relations in subgroups of the mapping class group and a grouptheoretic description of the Rochlin invariant. Math. Ann. 249, 243-263 (1980).
[Johnson5] D. Johnson, A survey of the Torelli group. In: Low-dimensional topology (San Francisco, Calif., 1981), Contemp. Math. 20, Amer. Math. Soc. Providence, RI, 165-179 (1983).
[Johnson6] D. Johnson, The structure of the Torelli group I: A finite set of generators for T. Ann. of Math. (2), 118, 423-442 (1983).
[Johnson7] D. Johnson, The structure of the Torelli group II: A characterization of the group generated by twists on bounding curves. Topology 24, 113-126 (1985).
[Johnson8] D. Johnson, The structure of the Torelli group III: The abelianization of T. Topology 24, 127-144 (1985).
[VdKallen] W. van der Kallen, Homology stability for linear groups. Invent. Math. 60, 269-295 (1980).
[Maazen] H. Maazen, Homology stability for the general linear group. Thesis Universiteit Utrecht (1979).
[MKS] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations. Interscience publishers, New York-London-Sydney (1966).
[Mess] G. Mess, The Torelli groups for genus 2 and 3 surfaces. Topology 31, 775-790 (1992).
[Morita] S. Morita, On the structure and the homology of the Torelli group. Proc. Japan Acad. Ser. A Math. Sci. 65, 147-150 (1989).
[Powell] J. Powell, Two theorems on the mapping class group of surfaces. Proc. Amer. Math. Soc. 68, 347-350 (1978).
[Quillen1] D. Quillen, Finite generation of the group K_{i} of rings of algebraic integers. Algebraic K-Theory I, Batelle Institute Conference 1972, Lecture Notes in Math. 341, Springer, Berlin, 179-198 (1973).
[Quillen2] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in Math. 28, 101-128 (1978).
[Vogtmann] K. Vogtmann, Spherical posets and homology stability for $O_{n, n}$. Topology 20, 119-132 (1981).
[Wajnryb] B. Wajnryb, A simple presentation for the mapping class group of an orientable surface. Israel J. Math. 45,157-174, (1983).

Samenvatting

Deze samenvatting probeert aan lezers die niet bekend zijn met wiskunde een indruk te geven van waar dit proefschrift over gaat. Soms zullen er ook technische termen gebruikt worden (vaak tussen haakjes) om ook de niet-leken duidelijkheid te geven. Het is de bedoeling dat er ook zonder die termen een begrijpelijk verhaal overblijft.

We beginnen met het definiëren van de oppervlakken die een hoofdrol spelen in dit verhaal, daarna beschrijven we een constructie die we toe kunnen passen op deze oppervlakken, de zogenoemde Dehnse verwringing. Met behulp hiervan kunnen we de Torelligroep definiëren, het onderwerp van dit proefschrift. Vervolgens leggen we uit wat het belangrijkste resultaat is van deze studie en schetsen we de methode die we hiervoor gebruikt hebben.

Oppervlakken

De objecten waar we ons in dit proefschrift mee bezighouden zijn oppervlakken; hiermee bedoelen we compacte, samenhangende en oriënteerbare topologische oppervlakken. Voor de lezer die niet weet wat dit betekent, is de volgende stelling (over de classificatie van oppervlakken) van belang: de oppervlakken die hier beschreven worden zijn precies de oppervlakken die men verkrijgt als men willekeurig veel stretchbroeken (een boloppervlak met alleen drie randen: de onderkant van de twee broekspijpen en de taille) met de randen aan elkaar naait, en eventueel daarna nog randen dichtmaakt met een schijfje. Met de keuze voor stretchbroeken drukken we uit dat we het hebben over topologische oppervlakken: twee oppervlakken beschouwen we als gelijk als de één na uitrekken en/of inkrimpen gelijk is aan de ander. Zie Figuur 3.6 voor voorbeelden: links één stretchbroek, midden twee, en rechts vijf aan elkaar genaaid. De notatie in het onderschrift wordt nu uitgelegd.

Ieder samenhangend deel van de rand, zoals de onderkant van de broekspijp of de hals van een hemd, noemen we een randcomponent. Wanneer we iedere randcomponent dichtmaken met een schijfje, ontstaat er een gesloten oppervlak dat de buitenkant is van een driedimensionaal object. Het aantal gaten dat dit object heeft

Figuur 3.6. Van links naar rechts: oppervlakken $S_{0,3}, S_{1,2}$ en $S_{2,3}$
heet het geslacht van het oppervlak. Een oppervlak van geslacht g met r randcomponenten wordt genoteerd met $S_{g, r}$, of, als dit niet tot verwarring leidt, met S. Een sfeer, oftewel een voetbal, is een gesloten oppervlak $S_{0,0}$ van geslacht nul, een broek is dus een oppervlak $S_{0,3}$, een hemd een oppervlak $S_{0,4}$ en is dus topologisch hetzelfde als een coltrui. Een gesloten oppervlak van geslacht één, $S_{1,0}$, wordt een torus genoemd en ziet er uit als een zwemband. In Figuur 3.6 zijn oppervlakken $S_{0,3}, S_{1,2}$ en $S_{2,3}$ getekend.

Dehnse verwringingen

Laat $S_{g, r}$ een oppervlak zijn en γ een gesloten lus op $S_{g, r}$ die zichzelf niet doorsnijdt; in het vervolg noemen we dit een ingebedde cirkel op S. Gegeven γ definiëren we nu een constructie die we uit kunnen voeren op S : de (linkse) Dehnse verwringing langs γ genoemd en die we noteren met D_{γ}. Kies een cylinderomgeving C_{γ} van γ en knip dit uit het oppervlak. Houd één randcomponent vast en draai de andere kant van C_{γ} met de wijzers van de klok mee, rond om de cylinderas over 360° en plaats de getwiste cylinder terug in het oppervlak waarbij de randen van de cylinder weer op dezelfde plek worden teruggeplaatst, zie Figuur 3.7.

Figuur 3.7. Het effect van de Dehnse verwringing langs γ op een boog α.

De Dehnse verwringing langs γ definiëren we op continue vervormingen van γ na, en, wanneer we de rand van het oppervlak vastlaten, ook op vervormingen van het oppervlak na (we bekijken isotopieklassen van homeomorfismen waarbij de rand puntsgewijs vastgelaten wordt). Wanneer γ bijvoorbeeld de rand is van een schijfje op S, is D_{γ} triviaal omdat na het uitvoeren van D_{γ} het oppervlak weer terug te
vervormen is in zijn oude toestand. Wanneer γ is zoals in Figuur 3.8 is dit niet het geval. Er zijn oneindig veel verschillende ingebedde cirkels op S te bedenken zodat er oneindig veel verschillende Dehnse verwringingen op S uit te voeren zijn. De inverse Dehnse verwringing is de afbeelding die we krijgen wanneer we de cylinder C_{γ} tegen de wijzers van de klok in hadden gedraaid, deze wordt met D_{γ}^{-1} genoteerd.

Afbeeldingsklassegroep

We kunnen (inverse) Dehnse verwringingen achter elkaar uitvoeren en zo ontstaat de afbeeldingsklassegroep van S, genoteerd met Γ_{S}, bestaande uit alle samenstellingen van Dehnse verwringingen en inverse verwringingen uitgevoerd op S. Bijvoorbeeld, als γ_{1}, γ_{2} ingebedde cirkels op S zijn, dan bedoelen we met $D_{\gamma_{2}} D_{\gamma_{1}}^{-1}$ eerst $D_{\gamma_{1}}^{-1}$ uitvoeren en vervolgens $D_{\gamma_{2}}$. Elementen van Γ_{S} worden afbeeldingsklassen van S genoemd. We zeggen dat de Dehnse verwringingen de afbeeldingsklassegroep voortbrengen (hier per definitie, maar de afbeeldingsklassegroep wordt ook gedefinieerd als de groep van isotopieklassen van de orientatiebehoudende homeomorfismen van S die de rand puntsgewijs vastlaten en dan is dit een stelling). De Dehnse verwringingen zijn dus de basiselementen, voortbrengers van Γ_{S} genoemd; de afbeeldingsklassen zijn alle mogelijke recepten waarin verteld wordt in welke volgorde bepaalde Dehnse verwringingen en inverse verwringingen uitgevoerd moeten worden. Hatcher and Thurston bewijzen in [Hatcher-Thurston] een sterker resultaat: de groep Γ_{S} heeft een eindige presentatie, in dit geval betekent dit dat hij door eindig veel Dehnse verwringingen wordt voortgebracht en er slechts eindig veel relaties gelden tussen deze voortbrengers. Een relatie is een vergelijking die geldt tussen voortbrengers, hiermee kun je soms inzien dat je met minder voortbrengers af kunt.

Abelianisatie

Een voorbeeld van een relatie in Γ_{S} is het volgende. Laat γ_{1}, γ_{2} twee ingebedde cirkels op S zijn die elkaar niet snijden. Je kunt dan eenvoudig inzien dat het dan niet uitmaakt in welke volgorde we de Dehnse verwringingen om γ_{1} en γ_{2} uitvoeren. Met andere woorden, in Γ_{S} geldt voor zulke lussen de relatie

$$
D_{\gamma_{2}} D_{\gamma_{1}}=D_{\gamma_{1}} D_{\gamma_{2}}
$$

Wanneer γ_{1} en γ_{2} elkaar precies één keer snijden, dan geldt juist $D_{\gamma_{2}} D_{\gamma_{1}} \neq D_{\gamma_{1}} D_{\gamma_{2}}$. We zeggen dat de groep Γ_{S} niet abels is, want een groep G is namelijk per definitie abels als $f h=h f$ voor álle elementen f, h in de groep. Een voorbeeld van een abelse groep is de verzameling van alle gehele getallen $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ waarin we optellen; hier geldt $x+y=y+x$ voor alle gehele getallen x, y. In het algemeen zijn groepen die niet abels zijn veel moeilijker te bestuderen dan abelse groepen. Om die reden voert men vaak een constructie uit die de groep abels maakt; we vervangen
G door een nieuwe groep genoteerd als $H_{1}(G)$. Deze groep $H_{1}(G)$ lijkt in alles op G, behalve dat we voor alle f en h uit G nu wél laten gelden dat $f h=h f$; deze groep wordt de abelianisatie van G genoemd. De notatie suggereert dat er ook groepen $H_{k}(G)$ bestaan, dit is inderdaad het geval voor $k \geq 0$, het zijn objecten die men bestudeert om de groep G te leren kennen, maar hier zullen we niet verder op ingaan.

Torelligroep

De Torelligroep T_{S} van S is een deelverzameling van Γ_{S} (een normale ondergroep), die we nu zullen beschrijven door te vertellen door welke elementen het wordt voortgebracht. We doen dit hier voor $g \geq 1$, waarbij g het geslacht is van S. In dat geval wordt het door twee typen elementen voortgebracht. Het eerste type voortbrenger is als volgt. Laat γ een ingebedde cirkel zijn op S zodat γ precies de rand is van een deeloppervlak $S_{g^{\prime}, 1}$ van S, met $g^{\prime} \leq g$, zie bijvoorbeeld Figuur 3.8.

Figuur 3.8. De lus γ is precies de rand van het deeloppervlak $S_{1,1}$ links van γ. De lussen γ_{1} en γ_{2} vormen samen precies de rand van het deeloppervlak $S_{1,2}$ links van hen.

Dan is D_{γ} een element van de Torelligroep van S. We noemen zo'n cirkel een $B S C C$, bounding simple closed curve, en D_{γ} een BSCC-afbeelding. Voor de beschrijving van het tweede type voortbrenger, laat γ_{1} en γ_{2} twee ingebedde cirkels op S zijn zodat γ_{1} en γ_{2} samen precies de rand van een deeloppervlak $S_{g^{\prime}, 2}$ van S zijn, met $g^{\prime} \leq g$, zie opnieuw Figuur 3.8. Dan is ook $D_{\gamma_{2}}^{-1} D_{\gamma_{1}}$ een element van de Torelligroep van S. We noemen zo'n paar een $B P$, bounding pair en de afbeeldingsklasse $D_{\gamma_{2}}^{-1} D_{\gamma_{1}}$ een $B P$-afbeelding. Als $g \geq 1$ dan brengen alle $B S C C$-afbeeldingen en $B P$-afbeeldingen de Torelligroep voort, dat wil dus zeggen dat de Torelligroep in dat geval precies bestaat uit alle samenstellingen (recepten) van $B S C C$ en $B P$ afbeelingen en inverses daarvan. Dit is een stelling wanneer we de definitie van de Torelligroep geven die deze afbeeldingen karakteriseert; het begrijpen van deze definitie vergt wel enige wiskundige kennis. Kies hiervoor op iedere randcomponent een punt en laat P de verzameling van deze punten zijn. Wiskundig gezegd is de Torelligroep de ondergroep van Γ_{S} bestaande uit die afbeeldingsklassen die triviaal werken op de relatieve homologiegroep $H_{1}(S, P ; \mathbb{Z})$. Voor $S_{2,0}$ is dit door Mess bewezen, zie
[Mess], voor $S_{g, 1}$ met $g \geq 3$ is dit door [Powell] bewezen. Zij bewijzen eigenlijk een veel sterker resultaat. Voor willekeurige oppervlakken $S_{g, r}$ van geslacht minstens één is dit nu af te leiden uit deze resultaten, zie Hoofdstuk 2 van dit proefschrift. Voor $g=0$ kan men inzien dat er geen niet triviale $B S C C$ en $B P$-afbeeldingen zijn, maar kan men andere voortbrengers aanwijzen (zie Paragraaf 3.2, Hoofdstuk 3).

Resultaten

In dit proefschrift bestuderen we de abels gemaakte Torelligroep $H_{1}\left(T_{S}\right)$. Het is een vervolg op het werk van Johnson van rond 1980, waarin hij de Torelligroep bestudeert. Zie [Johnson1] tot en met [Johnson8]. Hij bewijst hier onder meer dat de Torelligroep T_{S} van een oppervlak van geslacht minstens drie en hoogstens één randcomponent, eindig is voortgebracht. Of er ook eindig veel voortbrengers te vinden zijn waartussen ook maar eindig veel relaties gelden is niet bekend. Vervolgens berekent hij de abels gemaakte Torelligroep, opnieuw alleen voor oppervlakken $S_{g, 1}$ waarbij $g \geq 3$. Hij bewijst dat voor zulke oppervlakken S

$$
H_{1}\left(T_{S}\right) \cong \wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)
$$

Het teken \cong betekent dat we elementen uit het linkerlid kunnen identificeren met elementen uit het rechterlid en dat na deze identificaties, $H_{1}\left(T_{S}\right)$ gelijk is aan het rechterlid. Voor de niet wiskundige lezer vergt het te veel voorkennis om kort uit te kunnen leggen wat het rechterlid is. Van belang is dat $\wedge^{3} H_{1}(S) \oplus B_{2}\left(\Omega_{S}\right)$ volledig bekend is, en hiermee dus ook $H_{1}\left(T_{S}\right)$. Voor wiskundigen zal de notatie $B_{2}\left(\Omega_{S}\right)$ meestal niet bekend zijn, het betekent het volgende. Laat Ω_{S} de verzameling van alle kwadratische vormen op $H_{1}(S, \mathbb{Z} / 2)$ zijn, die het intersectieproduct modulo $\mathbb{Z} / 2$ bepalen, dat wil zeggen, functies $\omega: H_{1}(S, \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2$ met de eigenschap dat $\omega(a+b)=\omega(a)+\omega(b)+a \cdot b$. Dit is een affiene ruimte over $\operatorname{Hom}\left(H_{1}(S, \mathbb{Z} / 2), \mathbb{Z} / 2\right)$ en laat $B_{2}\left(\Omega_{S}\right)$ de $\mathbb{Z} / 2$-lineaire ruimte van polynomiale functies van graad ≤ 2 zijn op Ω_{S}. De groep $B_{2}\left(\Omega_{S}\right)$ is het 2-torsiegedeelte van $H_{1}\left(T_{S}\right)$ van rang $\sum_{i=0}^{2}\binom{2 g}{i}$, de groep $\wedge^{3} H_{1}(S)$ is het vrije gedeelte van $H_{1}\left(T_{S}\right)$ van rang $\binom{2 g}{3}$.

We bewijzen in dit proefschrift dat dit resultaat van Johnson over $H_{1}\left(T_{S}\right)$ geldig is voor álle oppervlakken met rand en $g \geq 3$, maar nu dus met een willekeurig aantal randcomponenten. Verder berekenen we $H_{1}\left(T_{S}\right)$ voor $g=0$, voor $g=1$ en $r=0,1,2$ en voor $g=2$ en $r=1$ (voor $r=0$ is dit gedaan door Mess, zie [Mess]). Voor $g=1,2$ en meer randcomponenten waren we niet in staat de Torelligroep te berekenen. De methode die we gebruiken voor de berekening van $H_{1}\left(T_{S}\right)$ als $g \geq 3$ is anders dan de methode gebruikt door Johnson en zal nu worden toegelicht. Het geeft in het bijzonder een alternatief bewijs voor het resultaat van Johnson over $H_{1}\left(T_{S}\right)$, en geeft mogelijk een manier om ook $H_{k}\left(T_{S}\right)$ te bepalen voor $k \geq 2$.

Bewijsmethode

Laat $S_{g, r}$ een oppervlak zijn, dat we kortweg noteren met S, waarbij we veronderstellen dat $r \geq 1$, oftewel het oppervlak is niet gesloten, maar heeft één of meerdere randcomponenten. Kies twee punten p, q op de rand van S, ze mogen op dezelfde randcomponent liggen, en laat α een pad van p naar q zijn op S dat zichzelf niet doorsnijdt. We leggen de eis op aan α dat wanneer we S langs α openknippen, het nieuwe oppervlak S_{α} dat zo ontstaat nog uit één stuk bestaat. Het is dan van het volgende type: als p en q op dezelfde randcomponent liggen dan is $S_{\alpha}=S_{g-1, r+1}$; als p en q op verschillende randen liggen dan is $S_{\alpha}=S_{g, r-1}$. In beide gevallen krijg je S weer terug uit S_{α} door het aanhechten van een broek. De bewijsmethode die we gebruiken om $H_{1}\left(T_{S}\right)$ te bepalen is een bewijs met inductie: van oppervlakken van geslacht 1 en 2 proberen we genoeg te weten te komen over de Torelligroep (de inductiestart) en vervolgens willen we weten hoe $H_{1}\left(T_{S_{\alpha}}\right)$ verandert als we S_{α} een broek aannaaien (de inductiestap). Omdat ieder oppervlak met rand en $g \geq 3$ onstaat uit een oppervlak $S_{2,1}$ door hier genoeg broeken aan te naaien, kunnen we zo $H_{1}\left(T_{S}\right)$ berekenen voor willekeurige oppervlakken $S_{g, r}$ met $g \geq 3$ en $r \geq 1$. Voor oppervlakken van geslacht ≤ 2 kunnen we inderdaad genoeg berekenen om de inductie te laten starten (Paragraaf $3.2 \mathrm{t} / \mathrm{m} 3.4$ in het proefschrift), hier zullen we in deze samenvatting niet verder op ingaan. We schetsen nu hoe we de inductiestap kunnen nemen.

Boogsystemen

Als γ een ingebedde cirkel is op S dan kunnen we D_{γ} toepassen op de boog α. Als γ en α elkaar niet snijden gebeurt er niets met α, als ze elkaar wel snijden ontstaat er na het twisten een nieuwe boog, die we noteren met $D_{\gamma}(\alpha)$. Zie opnieuw Figuur 3.7. Dit kunnen we voor willekeurige afbeeldingsklassen $f \in \Gamma_{S}$ doen door de verschillende (inverse) Dehnse verwringingen achter elkaar uit te voeren volgens het recept van f en we noteren het resultaat met $f(\alpha)$. De afbeeldingsklassen die α onveranderd laten zijn precies de afbeeldingsklassen die leven op het oppervlak S_{α} en zoals we al opmerkten is S_{α} of van lager geslacht, of heeft deze minder randcomponenten dan S. De verzameling van zulke afbeeldingsklassen heet de stabilisator van α in Γ_{S}. Deze wordt genoteerd met $\left(\Gamma_{S}\right)_{\alpha}$ en we hebben net opgemerkt dat

$$
\left(\Gamma_{S}\right)_{\alpha} \cong \Gamma_{S_{\alpha}}
$$

Wanneer we ons beperken tot de afbeeldingsklassen die in de Torelligroep zitten dan hebben we opnieuw dat $\left(T_{S}\right)_{\alpha} \cong T_{S_{\alpha}}$. We kunnen het bovenstaande verhaal veralgemeniseren door boogsystemen $\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ te bekijken waarbij iedere α een boog is van p naar q die zichzelf niet doorsnijdt en die behalve in p en q, geen punten gemeenschappelijk heeft met de andere bogen. Opnieuw bekijken we de bogen op vervormingen waarbij de eindpunten vastgelaten worden, na. De verzameling van
alle boogsystemen op S met de eigenschap dat als we S langs de bogen $\alpha_{0}, \ldots, \alpha_{k}$ tegelijk openknippen, er een oppervlak ontstaat dat nog steeds uit één stuk bestaat, wordt genoteerd met $B X(p, q)$. Zie Figuur 3.9 voor een voorbeeld als $k=2$.

Figudr 3.9
Deze verzameling $B X(p, q)$ is geïntroduceerd door Harer en is door hem en Ivanov gebruikt voor de bestudering van de afbeeldingsklassegroep, zie [Harer], [Ivanov] (zij bewijzen met behulp van de werking van Γ_{S} op $B X(p, q)$ de stabiliteit van de homologie van de afbeeldingsklassegroep).

Partiëel geordende verzamelingen

De verzameling $B X(p, q)$ heeft de stuctuur van een partiëel geordende verzameling: we zeggen dat

$$
\left(\alpha_{0}, \ldots, \alpha_{k}\right) \leq\left(\beta_{0}, \ldots, \beta_{m}\right)
$$

precies dan als $\left\{\alpha_{0}, \ldots, \alpha_{k}\right\}$ een deelverzameling is van $\left\{\beta_{0}, \ldots, \beta_{m}\right\}$. Bijvoorbeeld, als $\left(\alpha_{0}, \alpha_{1}\right)$ en $\left(\alpha_{0}, \beta, \alpha_{1}\right)$ boogsystemen in $B X(p, q)$ zijn dan $\left(\alpha_{0}, \alpha_{1}\right) \leq\left(\alpha_{0}, \beta, \alpha_{1}\right)$. De verzameling van natuurlijke getallen, $\{0,1,2,3, \ldots\}$, heeft zoals bekend een natuurlijke ordening ($4<7$ etcetera). In tegenstelling tot deze geordende verzameling kun je van twee boogrijtjes niet altijd zeggen of de één kleiner is dan de ander of andersom, vandaar de naam partiëel geordend. Partiëel geordende verzamelingen hebben een meetkundige structuur in zich (de meetkundige realisatie van het bijbehorende simpliciaalcomplex) en Harer bewijst dat de meetkundige structuur van $B X(p, q)$ een hele bijzondere is. (Namelijk $B X(p, q)$ bestaat uit een boeket van sferen van dimensie $2 g-1$ als p, q op dezelfde rand liggen, en van dimensie $2 g$ in het andere geval).

Met behulp van $B X(p, q)$ maken we een nieuwe partiëel geordende verzameling, genoteerd als $T_{S} \backslash B X(p, q)$, door te stellen dat twee boogrijtjes $\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ en $\left(\beta_{0}, \ldots, \beta_{k}\right)$ uit $B X(p, q)$ in $T_{S} \backslash B X(p, q)$ met elkaar geïdentificeerd worden als er een element t uit de Torelligroep is zodat $t\left(\alpha_{i}\right)=\beta_{i}$ voor iedere i met $0 \leq i \leq k$. We laten in dit proefschrift zien dat $T_{S} \backslash B X(p, q)$ ook een bijzondere meetkundige
structuur heeft (namelijk dat deze sferisch is als p, q op dezelfde rand liggen en enkelvoudig samenhangend als p, q op verschillende randen liggen).

Inductiestap

Met behulp van een techniek uit de algebraïsche topologie, de techniek van de spectraalrijen, die we hier niet uit zullen leggen maar die zeer krachtig is, kunnen we nu een verband leggen tussen $H_{k}\left(T_{S}\right), H_{k}\left(\left(T_{S}\right)_{\alpha}\right)$ en de meetkunde van $B X(p, q)$ en $T_{S} \backslash B X(p, q)$. Dit verband stelt ons in staat om $H_{1}\left(T_{S}\right)$ te berekenen, gegeven dat we $H_{1}\left(T_{S_{\alpha}}\right)$ kennen, en voltooit dus de inductiestap.

Dankwoord

Eduard Looijenga zou ik hartelijk willen bedanken voor verschillende dingen: de colleges die ik als student bij hem gevolgd heb, die uitblonken in helderheid en schoonheid; voor het onderwerp van dit proefschrift; voor zijn hulp en ideeën tijdens mijn onderzoek en voor alle verbeteringen die hij in mijn proefschrift heeft aangebracht. Ik hoop dat ik iets heb meegekregen van de manier waarop hij wiskundige problemen aanpakt.

Zonder de (projectieve) meetkundelessen van Gerrit Korteweg, mijn wiskundeleraar op de middelbare school, was ik überhaupt misschien wel geen wiskunde gaan studeren. Hem bedank ik daarvoor.

I would also like to thank the reading committee, Gerard van der Geer, Richard Hain, Wilberd van der Kallen, Ieke Moerdijk and Dirk Siersma, for carefully reading the manuscript and their comments to improve it; I especially want to thank Wilberd van der Kallen for finding a mistake at the very last moment and helping extensively to solve it. I would also like to thank Richard Hain for his warm reception and his help with my research during my visit to Duke University in Durham (USA).

Ook wil ik alle medewerkers van het Mathematisch Instituut bedanken voor de samenwerking en, in het bijzonder de mensen op de zesde verdieping, voor de fijne werksfeer. Verder bedank ik alle studenten uit de werkgroepen die ik deze jaren heb gegeven voor de gezellige afwisseling in werk, hun belangstelling en omdat zij ervoor zorgden dat ik me als OiO ook eens nuttig kon voelen.

Tim Dokchitser, Behrooz Mirzaii, Utpal Sarkar, Franziska Bittner en anderen bedank ik voor de tijd die ze genomen hebben om mijn werk te bespreken. Franziska en Utpal bedank ik daarnaast ook omdat ze leuke kamergenoten waren, net als Federica en Dmitry. Voor hun hulp bij computerproblemen wil ik de helpdesk bedanken en vooral Martijn van Manen.

Mijn zus Kirsten bedank ik voor een heleboel dingen, vooral voor haar hulp bij het maken van de illustraties in dit proefschrift. Manik en Hans Schutte wil ik bedanken voor het corrigeren van mijn Engels.

Ik ben heel blij dat Claudia en Doetoe paranimfen willen zijn bij de verdediging van mijn proefschrift: met z'n drieen hebben we samen veel gestudeerd en veel gelachen.

Elisabeth Giljam zou ik willen bedanken voor haar opbeurende (telefoon)gesprekken tijdens deze jaren als OiO.

Mijn familie bedank ik voor hun steun en aanmoediging: als kleuter bestookte mijn vader ons al met de vraag wat a+a is. Verder bedank ik al mijn vrienden: Ronan, Petra, Silvia, Philipp, Hadewych, Charlot, Lennaert, Arno, John, Natasja, Ruud, Kommus en alle anderen, en nogmaals Manik.

Utrecht, augustus 2003

Curriculum vitae

Barbara van den Berg werd op 22 februari 1971 in Groningen geboren. Na daar de Vrije School te hebben doorlopen behaalde ze in 1990 op het Noordelijk Avondcollege haar VWO-diploma. In 1991 studeerde ze wijsbegeerte aan de Universiteit Utrecht en haalde haar propedeuse daarin. Het volgende jaar begon zij met haar studie wiskunde aan de Universiteit Utrecht en in 1997 behaalde zij haar doctoraaldiploma. Van 1997 tot 2002 was ze Onderzoeker in Opleiding aan dezelfde faculteit binnen het NWO-project "Algebraïsche krommen en Riemannoppervlakken" met als promotor professor E.J.N. Looijenga. In dit kader bezocht ze in de lente van 2000 professor R.M. Hain aan Duke University in Durham NC (VS). Vanaf september 2002 was zij junior-docent aan de Wiskunde \& Informatica faculteit van de Universiteit Utrecht en voltooide zij dit proefschrift, dat op 6 oktober 2003 verdedigd wordt.

[^0]: ${ }^{1}$ In [Foisy], Lemma 5.1 it is claimed that $I(\pi)$ is spherical of dimension $g-1$, but Foisy and I agreed that the proof there is incomplete. We did not manage to solve this, but instead give a proof of the weaker result that $I(\pi)_{\leq g-2}$ is Cohen-Macaulay, Theorem 1.7.3.

[^1]: ${ }^{1}$ Since we could not answer Question 1.7.5 positively, we prove the low-dimensional case "by hand ". With many thanks to Wilberd van der Kallen.

