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New Advances in Veterinary Epidemiology

Aline de Koeijer
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Abstract

The introduction gives an overview of recent advances in veterinary epi-
demiology. Especially the influence of dynamical modelling is discussed,
as that is the main topic of this thesis, but it also explains a bit about
the political, practical and general scientific influences that induce new
developments and new lines of research. Veterinary epidemiology is a
science that aims at results being applied soon and is easily influenced by
new trends and developments.

The introduction also gives a short overview of the scientific contents of
this thesis, describing the general type of methods and results obtained.
The binding factor in this thesis is that it uses theoretical modelling and
analysis aiming at results that can be applied in the field, or at least in
further research. Therefore, the use of data to quantify or validate models
is essential.
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1.1 New Advances in Veterinary Epidemiology

Throughout history, control of infectious diseases involved hygiene and avoiding con-
tacts. The development of sterilisation and pasteurisation methods have helped a lot in
improving the hygiene, but up to today, avoiding contacts still remains a good method
to prevent transmission. Vaccination has become a major method to prevent severe
disease symptoms, and together with eradication of infections diseases, these are con-
sidered to be major achievements. Especially when world wide eradication is realised,
as that solves the problem forever. At least in theory, because the discussions on stor-
age of eradicated infectious agents in labs to guarantee fast production of vaccines in
case things go wrong also poses a risk in relation to (bio-)terrorism. When eradica-
tion cannot be achieved, we need to remain on the alert for recurring epidemics and
persistent infections.

Apart from these basic tools, recent epidemiology has shown that especially in
animal diseases, control can often be based on small scale eradication, i.e. create an
infection free herd or region possibly based on rigorous measures, and then follow it
up by strict control of all contacts to that herd or region. However, such local eradi-
cation can only reliably persist, when supported by good surveillance. Development
and evaluation of surveillance programs has therefore become yet another major tool
in veterinary epidemiology. Trade restrictions for husbandry animals and their prod-
ucts are heavily leaning on epidemiological and statistical arguments derived from a
surveillance program and thus, veterinary epidemiology has a major impact on world
wide trade in animals and their products.

Epizootiology has recently been renamed into Veterinary Epidemiology. Although
the word epidemiology includes the greek word demos, meaning the human popula-
tion, it has still become a practical renaming of the profession, because methodology
and aims of epidemiology and epizootiology are mostly the same. As epizootiology is
a much smaller scientific field than its human counterpart, collaboration and adoption
of their methods and terminology can only be profitable. Therefore, the word veteri-
nary epidemiology has gradually taken over the term epizootiology over the last few
decades.

Recent advances in microbiology, virology, immunology, molecular biology have
led to major developments in veterinary epidemiology, especially by making more
tests for the prevalence of infection, but also through the creation of new vaccines that
can be used to control infections. However, the scientific field was probably influenced
even more by the advances in computer science and computational techniques, which
have allowed for major progress in data analysis, statistical methods and simulation.
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Problems that used to be too complicated or would have taken too much time, may
now be solved in a minute and data sets that used to be too large to extract the relevant
information have offered surprising new insights. The work of Donnely and Ferguson
[31], for example, shows the possibilities of analysing large data sets in combination
with major computational work. The book of Diekmann and Heesterbeek [24] offers
a good basic overview on recent advances in the analysis of epidemics with modelling
tools. Such new developments lead to new research lines in veterinary epidemiology.
For instance, to analyse the effect of various risk factors for development of disease
into far more detail than before, when logic and intuition tended to be the main tools
to work with in disease prevention and control. Furthermore, the computational devel-
opments also extended in new tools to analyse the geographical spread of infections,
which is one of the topics that can become of major importance in the future, when
more geographical information becomes available. The open exchange of information
is essential to allow for progress there, but several EU research studies have worked
hard on opening up data sources, and the advances are promising.

As for the biological advances mentioned before, new developments in the use
and choice of vaccines and tests have affected international trade, but also vice versa.
Existing trade restrictions due to risks of transporting infectious diseases have given a
major push to developing new methods in veterinary epidemiology. The international
community (in the form of the OIE, Office International des Epizooty) has agreed
on the use of international standards concerning tests, surveillance and analysis, to
prove freedom of disease status. Due to several agreements, for most infections a
non vaccination strategy in a region free from an infection is the most profitable sit-
uation, considering economical aspects. However, it also carries a high risk, in case
the infection reoccurs, because the population will be totally unprotected. When such
reoccurrences can be prevented sufficiently well, this strategy will lead to enormous
economic benefits and export options for those countries that are able to maintain the
status. Therefore, the prevention and control of epidemics has become even more
important than in previous years. The economic impact of losing the disease free
status has increased, but due to the large increase in animal husbandry, the situation
for controlling epidemics also changed. The intensified husbandry systems nowadays
can work at much higher hygienic levels than before, but the enormously increased
number of animals which has occurred simultaneously, has led locally to such high
densities of animals, that, once an infection is introduced, eradication has become
extremely difficult.

Furthermore, increased trade within the EU allows for faster spread to other EU
countries, as was shown in the Foot and Mouth disease outbreak in the UK in 2001.
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The increased movement of animals between and through countries is economically
speaking very beneficially for all concerned, but it leads to increasing risk of epi-
demics. On the other hand, scientific methods to detect infections early on have also
improved, and more professional organisation of the animal husbandry has decreased
the risk of disease transmission between farms. Given the large economic impacts
of any choice concerning animal disease control, an increased interest developed to
determine a cost benefit balance for different disease prevention and control meth-
ods and models became important in analysing the various scenario’s influencing the
cost benefit balance. Recent developments in the Netherlands have brought the ethical
aspects of disease control in the discussion. These aspects can somehow also be quan-
tified, everything has its value in politics, and it can be expected that especially more
disease control scenario’s which exclude major culling of animals will be included in
the analyses. However, political agreement within the EU will be essential to enable
application of for instance large scale vaccination for list A diseases.

In most of these new advances, analytical modelling of the transmission of infec-
tions has become a useful tool for the veterinary epidemiology. In human medicine
analytical models have been used for many years already. Especially for infections
where control and eradication with hygiene and vaccination have been rather unsuc-
cessful. Malaria and Aids are often found in papers where mathematical models are
applied to determine general conclusions concerning the infection. In veterinary epi-
demiology models were also used before, but until recently, their impact on policy
remained rather limited. The impact of new infections like BSE and new interest for
eradication of endemic diseases (non list A) has led to new developments in the field.
Because the questions addressed are generally very much to the point, a very applied
version of models can be used, and in general, a lot of data is available, to either
quantify, or validate the models. The link between data and models is a challenge
that is one of the binding factors of this thesis. Furthermore, in this thesis, we restrict
ourselves to the so-called "simple" models, which does not mean they are simple to
use and analyse, but means that a minimum of parameters is used to describe the sys-
tem. Thus, the sometimes hopeless task of quantifying hundreds of parameters, which
has to be confronted in simulation modelling work, is avoided here. The other major
advantage is that solutions can be easily generalized, and the sensitive points of the
analysis can easily be detected.

This thesis gathers several papers in which analytical models are applied to spe-
cific questions in veterinary epidemiology and always links the model results to some
available data. Depending on the availability of the data, this can be either just to
support the results (see Chapter 2) or it can be used to fully quantify the model and
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calculate the result, as is for example shown in Chapter 4. A wide range of topics
is addressed in this thesis, and at first sight there is no reason to gather all those pa-
pers within one volume. However, the methodology applied to solve the questions
addressed, is the same in all those papers. A problem is analysed, a simple model is
built, data are gathered and patterns in the data are sought for. From these initial steps,
the result will then be deduced, and depending on the topic, this last step can still be
a very complicated long road, but sometimes a fast method can be found. The results
can again vary widely, from attempts at predicting the pattern of present or future
epidemics (Chapter 2), Quantification of possibilities for eradication versus sponta-
neous extinction (Chapter 3) to quantifying the efficacy of control measures (Chapter
4) and risk assessment (Chapter 5). Chapters 6 and 7 are not as technical, but give
an overview of the possibilities to apply mathematical modelling in targeting surveil-
lance (Chapter 6) and a basic method to use the results of a surveillance program to
minimize risks of importing or exporting infection via trade (Chapter 7).

1.2 Overview of the Thesis

Chapter 2 describes a modelling exercise that compares two different transmission
models. Theoretical arguments suggest that herd-like behaviour should often be mod-
eled with a constant density of hosts, in contrast to the often applied concept of host
density decreasing with population size. For the case of Phocine Distemper Virus
(PDV), there are sufficient data available to support the choice for the first model with
constant density, independent of the population size. The implications of this for a
deadly infection like PDV (about 50% mortality rate) is a higher proportion of infected
animals in the population than would be the case if reducing numbers would lead to
lower transmission risk. Therefore, very deadly diseases can lead to full extinction of
a population under this model, where a model with transmission risk decreasing with
population size would always have a small proportion of the population that escapes
infection. For infections without mortality, there is no relevant difference, because the
population size would not be influenced by the epidemic. The general conclusion is
that for herds modelling of density dependence needs attention, and this point is kept
up throughout this thesis. All of the topics that are addressed in this thesis are con-
cerned with infections in herds. However, mostly the mortality of the infection is not
as high, or in the case of BSE, not as fast, which means that further analysis may be
necessary to derive new results and conclusions.

Chapter 3 addresses an extinction problem for Bovine Herpes Virus (BHV), which
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has the typical reactivating capacities of herpes viruses. Due to this, the infection is not
extinct when an epidemic has ended, extinction is not complete before all seropositive
animals are removed from the population. Thus, population demography needs to be
combined with epidemiology. To analyse the probability of new outbreaks, and the
time it takes before this happens, was an interesting challenge, that asked for some
creative solutions. Finally we find that it is possible to quantify this time to extinction
from the model ingredients, but we also found that the variation over the expected
time to extinction is huge. Therefore, in practical terms it is not worthwhile waiting
for spontaneous extinction of BHV in the Netherlands. However, it is also clear, that
a careful eradication program can benefit enormously from the rather good chances of
extinction in a fraction of the herds, which saves major expenses in active culling to
eradicate the infection. A good vaccine (in terms of reducing transmission) can give a
major support to this, by decreasing the probability of new epidemics. In general we
see that herpes viruses have a successful evolutionary survival strategy that requires
long living hosts, which can shed infection all through their lives due to reactivation.
Thus the disadvantages of fast spread and fast exhaust of hosts is solved by waiting
for the new born susceptibles.

Chapter 4 shows a calculation to quantify the basic reproduction ratio of BSE
from the ingredients, as a method for BSE risk assessment. Careful assessment of
the many steps that partake in a BSE infection and transmission, especially focussing
on the effect of various control measures, allows for a comparison of the efficacy
of control measures, and were the infection not so scary, it would have allowed for
optimization of these controls in a cost benefit manner. As a result of this work, many
other studies in BSE risk assessment followed, and examples thereof are found in
Chapters 5 and 6. This chapter does not offer general conclusions useful for future
epidemiological research in general, but is really focussed on the issue of BSE, and is
only useful for very slow developing infections. An early version [10] of the work in
Chapter 4 has been influencing the development of the EU’s Geographical BSE Risk
assessment [34]. Due to the, at that time limited, development of this work, and the
limited availability of data, this has so far been mainly restricted to a qualitative risk
assessment, which has still proven its success by pointing out several EU countries
into a risk class with BSE present, where the first BSE prevalence in the countries was
only detected after the assessment.

Chapter 5 shows how to apply the quantitative result of Chapter 4 in a model
that can be used to estimate the future or past prevalence of BSE infection. An age
structured model is needed for proper analysis of BSE, due to the slow development
of the infection. Therefore, a derived result of this model is a good prediction of the
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age distribution of BSE under specific conditions. This is worked out graphically into
a more popular version in Chapter 6, whereas Chapter 5 restricts itself to showing
the mathematical patterns that can be expected. Next, the model is transformed into
a discrete time version, because in practice, that is applied much more easily. Two
versions of a BSE transmission model are given. A simple version, which is very
suitable for a good quantitative regional BSE risk assessment. An extended model is
available for exploring data sets and analysing the impact of simplifying assumptions.
Both discrete time models have been applied successfully, and publications on these
are in progress. We find that to make models easily applicable for policy advisers, it
is useful to make them discrete. That simplifies the formulation of the model for those
who fear mathematical equations. Spreadsheet, as generally available on most PCs
can be a very helpful tool in applying the methodology, because they tend to be very
suitable for discrete time models.

Chapter 6, as explained above, shows graphically, and explains in logical terms,
the effects of population and infection processes on the age distribution of BSE in a
cattle population. The increasing age of BSE cases in the UK in the decreasing phase
of the epidemic can ve fully explained as a result of the longer delay that is necessary
for long incubation periods. Thus, more complicated assumptions are not necessary
to explain this phenomenon. In general we can say that in an increasing phase of an
epidemic, cases with shorter incubation periods are expected to be overrepresented,
whereas in a decreasing phase of an epidemic, underrepresentation of the short incu-
bation period can be expected in the case data. The basic methodology can be applied
to determine which age groups to focus on for active BSE surveillance, when trying
to establish the presence of the infection as efficiently as possible. Furthermore, it can
be applied the other way around: by looking at the results of the Dutch active BSE
surveillance in 2001, we can analyse the estimated growth rate of the epidemic in the
last decade. And thus, we also have an objective estimate of the efficacy of the BSE
control measures.

Chapter 7 finally gathers a lot of ideas on assessing surveillance, but especially,
on rating surveillance systems, while keeping in mind that an infectious disease is
constantly spreading, once introduced. For trade reasons, there is always a lot of dis-
cussion on the quality of surveillance systems. Every country adopts its own system,
depending on its leading scientists and the local conditions. Once we can agree on an
objective method to determine the quality of such surveillance systems, the endless
discussions on whatever others are not doing well, may end. When such assessments
were adopted by the international trading community, a full inclusive method that
would prevent major transmission between countries would even become one of the
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future possibilities. But first agreement on methodology will be essential. This Chap-
ter gives just another suggestion on how to solve the relevant problems in this area,
without suggesting to be complete. Actually, the work as it is, suggests that a lot more
needs to be done before full application of any system can be satisfactorily.

1.3 Future

Overall, this thesis builds up from a simple modelling exercise in Chapter 2, to an
attempt to improve the world in Chapter 7. Obviously, the latter is still restricted
to an attempt, but I am keen on continueing this topic and hope to be able to work
this out in far more detail, so as to finally arrive at a system that can be used easily
by all countries that trade animals and their products (i.e. all countries). At present
the control of epidemics is still the topic that attracts the most attention, due to sev-
eral major epidemics that have recently struck the Netherlands, and besides that, risk
assessment and spatial spread are still the key words needed to get large research pro-
posals accepted. However, personally I believe that the future of applied mathematical
modelling in veterinary epidemiology is to be found especially in topics concerning
surveillance and trade restrictions. When the effort in constructing good surveillance
programs will lead to lower risk of epidemics, the focus will soon shift from control of
epidemics, back to prevention of epidemics, which is traditionally the topic where the
biggest gain is to be made. When the dynamics of transmission can be wrll described
in a model, the analysis of surveillance results can become far more sophisticated than
presently applied and accepted internationally. Obviously, to obtain such international
acceptance, lots of work needs to be done to prove the efficacy of modelling in an-
swering these questions. And once this work is done, publication of the results and
presentation at major international meetings may finally lead to such acceptance.

At present however, we can still improve a lot on the methodologies that are ap-
plied in assessing and comparing surveillance programs. Next, comparison of the
theoretical work to field data will be very valuable for the validation of the new meth-
ods. Extension of the very simplistic basic model that is described in Chapter 7 will
be needed to properly analyse the international transmission risk of many relevant list
A diseases. Only for BSE, this work has been done at a pretty high level (Chapters
4 and 5), but for other infections, more specific models need to be developed and
analysed, and to quantify these properly, some very specific data needs to be gathered.
In most cases, we expect that a good choice would be a two step model, where first the
transmission within a herd is analysed, including the effect of surveillance within that
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herd. And this is than followed by an analysis of the transmission in the national or
regional population of herds, using the results of the within-herd model. In assessing
this typical two step pattern, we may profit from work in meta-population modelling,
which has so far, not been applied much in veterinary epidemiology.
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Abstract

Data presented in earlier publications on the 1988 epizootic among seals
in N.W. Europe show a pattern, that is somewhat inconsistent with the
predictions of the standard mathematical model of epidemics. We argue
that for animals living in herds or colonies, like seals, the mutual contact
behaviour is such that models for the transmission of infectious diseases
should be applied with special care for the distinction between numbers
and densities. This is demonstrated by using a mechanistic description of
the contacts among seals, which leads to a slightly different formulation
of the model. Results of the analysis of this formulation are more in line
with the PDV data.

The model introduced here can be applied to epidemics among all kinds
of animals living in herds and in fact to any species with constant local
density, independent of the total population size (so occupying a variable
area). Application of the traditional formulation, using different parame-
ters for herds of different size, will give equally good results for non-lethal
diseases. However, especially for diseases with a low reproduction ratio
and with a high death rate, like the PDV-disease, the two formulations
give quite different results.

Further analysis of the model is performed to determine the most im-
portant factors influencing such an epidemic. The survival of infected
animals turns out to have a disproportionately great influence on the in-
tensity of the epidemic. Therefore in the case of the PDV epizootic we
conclude that marine pollution may not only have contributed to the high
death rates, but, if so, it has intensified the epizootic as well.
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2.1 Introduction

On a short timescale (weeks) one can think of seals inhabiting the coastal waters of
Northern Europe as constituting a meta-population, a collection of many local subpop-
ulations (colonies) loosely coupled by incidental migrations. Within a colony, contacts
are probably at random. In the spring and summer of 1988 this meta-population was
struck by an infectious disease that caused the death of a substantial fraction of all
individuals (estimates vary from 40 to 60%). The morbilli virus causing the disease
was identified by Osterhaus and Vedder [70] and baptized Phocine Distemper Virus
(PDV).

The following characteristics appear from data acquired and analysed by Heide-
Jørgensen and Härkönen [47]:

• Almost all colonies in the studied area suffered from an outbreak.

• The fraction that caught the disease was more or less the same for all colonies,
and in particular independent of the size of the colony; (in Eastern Scotland this
fraction was a bit lower). A more elaborate presentation of these data can be
found in tables 1-3.

While analyzing the Kermack and McKendrick [56] epidemic model in its traditional
form, one arrives at the following conclusions:

• The basic reproduction ratio R0, i.e. the expected number of secondary cases
per primary case in the initial phase of an outbreak, is proportional to the colony
size. Hence, since R0 has a threshold value 1, there exists a critical colony size
below which the virus can only cause minor outbreaks affecting a negligible
fraction.

• The final size, i.e. the fraction ultimately infected, increases (nonlinearly) with
R0, hence with colony size (the overshoot is stronger when the peak is higher,
which is the case in larger colonies).

Clearly these general conclusions are at variance with the data (see the above and
[47]). Harwood and Hall [44] suggested that the traditional epidemic model might not
be very suitable for this epizootic, because the periodical aggregation of seals would
keep the contact rate rather high, although ’density’ might become low. Nevertheless,
the traditional model was applied both by Grenfell et al. [40] and Heide-Jørgensen
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et al., [47]. The latter authors achieved a correction of the results by adapting the
key contact parameter to the colony size. They motivate such an adaptation by noting
that ”seal density within a herd is relatively high regardless of population size”. A
larger colony will simply occupy a larger area during haul-out, while the effective,
local density remains constant. (See also Harada et al., [43])

When disease always leads to immunity and never to death, an adaptation of the
contact parameter to colony size is indeed all that is needed to take into account that
numbers may vary wildly while density stays constant and, more importantly in the
present context, contact intensity remains constant. But when, as in the case of PDV
among seals, a substantial fraction of all cases ends with death, a slightly more com-
plicated correction is required. In a sense the adaptation of the contact parameter has
to be updated as the colony becomes smaller due to the virus making victims. One can
also put it this way: as immunes receive part of the contacts of infectives, they serve
to protect susceptibles; when infected individuals die, rather than becoming immune,
they don’t contribute to this protection and a larger outbreak is to be expected. This
argument suggests that the final size should not only depend on R0, but also on the
probability to survive an infection.

The aim of this paper is to present the final size equation for a situation of constant
local density as described above and to analyse the data on the PDV epidemic with
this equation as the main tool.

2.2 Materials and methods

Usually the common seal (Phoca vitulina) is solitary in the water, where they have
their own private fishing routes. Social life, if at all, takes place on haul-out sites; in
the Wadden Sea these are the tidal sand banks. When the tide is out and the banks
appear, seals aggregate (and more or less form a row) on the shore. The virus is
thought to spread during this resting period on the banks, so to formulate a model we
will only consider this period.

On the sand banks of the Dutch Wadden Sea the seals typically lie down along
the waterline, thus forming a sort of row. Morbilli viruses are usually transferred
by aerosols secreted while coughing and snarling. In such a system the viruses are
thought not to be able to ‘fly’ very far; only near neighbours of the infectious animals
can be reached. As long as space is not a limiting factor, the typical nearest neighbour
distance is constant, that is, independent of colony size. When the colony is not too
small boundary effects don’t matter very much. Hence the per capita contact intensity
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does not depend on the number of seals hauling out at the sand bank and in particular
it will remain constant when the colony size decreases during an epidemic. As a
consequence, the force of infection (the probability per susceptible per unit of time of
becoming infected) is proportional to the fraction of seals that is infectious and not
to their absolute number. This is the keypoint underlying the model.

2.2.1 The model

Morbilli viruses usually cause lifelong immunity, so we will assume that when a seal
recovers from the disease, it will have become immune. Choose S to represent the
number of susceptible seals in the colony. Let I denote the number of infectious and
R the number of resistant (immune) animals. N denotes the total number of seals
in the colony, therefore N = S + I + R. Note that we describe numbers now, not
densities.

Let α denote the average number of contacts of one infectious animal per unit
of time, multiplied by the probability of spreading the infection indeed during such
a contact. β denotes the probability of removal from the infectious class in one tide
period, and f is the (average) survival probability for animals that reach the end of the
infectious period. Then an epidemic in the seal population can be described by the
following set of differential equations:

dS

dt
= −αS I

N
(2.1)

dI

dt
= αS

I

N
− βI (2.2)

dR

dt
= fβI f ∈ [0..1] (2.3)

dN

dt
= −(1− f)βI (2.4)

The third equation could actually be left out, as it gives the same information as
the fourth one. Note that for f 6= 1 N is a dynamic variable. For f = 1 we recover the
traditional ODE form of the Kermack-McKendrick model.

We derived and analysed this system [11] simultaneously with Lefèvre and Picard
[58] and [71], who give a detailed analysis of the model. A more elaborate mathe-
matical study of a general version of the model can be found in Diekmann et al. [20].
They describe the model in the spirit of the general Kermack-McKendrick model of
1927, which is (it cannot be stated often enough) much more general than the special
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case described by the ODE system.

2.3 Results

2.3.1 Analysis

Important information on the initial phase of an epidemic is given by R0 (by defin-
ition, the average number of new infections caused by an infectious seal living in a
completely susceptible population). In this model the expected infection time is 1

β

during which the infectious individual makes new victims at rate α, therefore R0 is
equal to α/β (and independent of population size). If R0 is smaller than or equal to
one, the infection will soon disappear from the population. If R0 is larger than one an
epidemic outbreak may occur.

The situation at the end of the epidemic can be derived from eq. (1) and (4) by
integration. We assume that at the start of the epidemic all seals are susceptible to
the disease. Then a relation between the fraction of the population that survives the
epidemic (x), and the fraction of the initial population that does not get infected at all
(y), can be calculated for any combination of the parameters f and R0 from eq. (2.5)
and (2.6):

(1− f)

R0
ln y = lnx (2.5)

(1− x) = (1− y)(1− f) (2.6)

We can see that the final situation is independent of the population sizeN , but only
depends on the parameters f and R0. Note that eq. (2.6) has a clear interpretation: The
fraction of seals dying as a result of the infection must be equal to the total fraction
that got infected during the epidemic multiplied with the probability to die due to the
infection.

When, conversely, x and y can be estimated from data of a certain epidemic, then
the disease specific parameters f and R0 can be calculated from:

f =
x− y

1− y
(2.7)

R0 =
(1− f) ln y

lnx
(2.8)

In the case of the PDV-seal epizootic, these results are valid for one subpopulation,
i.e. one herd. However, during this epizootic all the different herds in the area of the
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Wadden Sea, Kattegat and Skagerrak were affected. In all these herds the epizootic
will give equal final fractions, because the size of the (sub)-population does not make
any difference, hence the same fractions apply to the metapopulation.

Graphical representations of the final fractions under varying parameter values
(Figs 1 and 2) show the influence of the parameters f and R0 on the outcome of the
epidemic. As to be expected, f is the parameter that influences the final fractions x
and y the most. For an R0 smaller than 2 we can see that there is quite a substantial
influence of the precise value of R0, but for higher values only the value of f really
makes a difference.

The main difference between the predictions of the current model and those of the
more traditional variant lies in the influence of the survival probability. If all animals
survive the disease, (f = 1), then N will be constant and the traditional formulation is
obtained. For diseases inducing high mortalities, the difference can be quite substan-
tial. This is shown in Fig. 3, which pictures the (different) final fractions in one plot:
The total fraction of the population that died due to the disease, 1−x, as it depends on
the value of f . For very small R0 and low f the difference is very large, so obviously
in such cases it is really important to make the right assumptions. For R0 higher than
3, the difference in the total number of deaths is very small. However for very high
death rates, it depends on what is considered more important: the fraction that died
or the fraction that survived? Under certain conditions survival may be estimated at
1% under the current model and 2% for the traditional model, a substantial difference
(100%), while the total fraction of deaths in these cases, 98% or 99% are almost equal.
The survival seems to be more important from a conservation biology point of view,
while farmers might consider the fraction of deaths more important.

2.3.2 Parameter estimates

To see what new information this model can supply in the case of the PDV epidemic,
we analysed available data from literature, which leads to the parameter estimates as
displayed in tables 1-3. Unfortunately there was a limited amount of data available,
coming from many sources and collected with different aims and methods, so large
variation in our results can be expected. The data, used to determine x in the different
regions, come from estimated numbers before and after the epidemic. The number of
carcasses found in different areas was a second, though equally unreliable indicator
for x. Estimates for y come from other sources [47] offer information on pup sur-
vival rates, which supplies an estimate for the fraction of seals that escape infection,
assuming that if a mother gets infected, its pup will surely die. This, of course, has
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to be related to ‘normal’ pup survival rates. Their detailed data on several different
colonies are embodied in Table 1 (See: [47],[48], and [26]). In Table 2, x estimates
from our own data ([72]) are combined with an over-all estimate for y, an average of
all the relevant data we could find. Table 3 shows data and parameter estimates for
Great Britain only. Antibody tests on blood samples collected in 1989 supply good
information to estimate y in that area, [44]. Here y can be calculated from the data as
y = ŷx, where ŷ denotes the fraction of seals with antibodies in the (sampled) group
of survivors.

Using the more traditional formulation, one would determine f equally as we did
in (6) and (7). In that situation R0 would be as follows:

R0 =
1− x ln(y)

1− y ln(x)
(2.9)

Then, when comparing the data of the outbreak in Waddensee and Kattegat area
with the Scottisch data, under these model assumptions, survival rate f is also esti-
mated half as high in the Waddensee but R0 is estimated about 50% higher (3.6 vs.
2.2) in the Waddensee area. The difference with the parameter estimates from the
model formulation as described in this article lies in the R0 estimate only. These R0
estimates are all about equal for the different regions.

2.3.3 Sensitivity analysis

For the data gathered on the seal epizootic (tables 1-3), we can not really give a proper
confidence interval, because the unreliability of these estimates is mostly in the meth-
ods used to determine them. However, a sensitivity analysis of the parameter estimates
for R0 and f will reveal their dependence on x and y, and hence their sensitivity to
variation in these variables. The matrix A of partial derivatives of f and R0 with
respect to x and y is given by (10).

A =

Ã
∂f
∂x

∂f
∂y

∂R0

∂x
∂R0

∂y

!
=

Ã
1
1−y

x−1
(1−y)2

(x−1−x lnx) ln y
(1−y)x ln2 x

(1−x)(1−y+y ln y)
(1−y)2y lnx

!
(2.10)

For the Waddensea area, with x = 0.4 and y = 0.03 (and local estimates f = 0.38
and R0 = 2.4), we find:

A =

Ã
1. 0309 −0. 63769
2. 5133 −20. 062

!
(2.11)
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We see that for the magnitude of x and y we are talking about here, the error in
f is more or less equal to the error in x and less than the error in y,( but reversed,
increase of y gives decrease of f). The error in R0 depends strongly on y, but R0 is
also an order 100 larger, so the influence remains relatively small.

This can better be seen from a matrix with relative sensitivies:Ã
x
f
∂f
∂x

y
f
∂f
∂y

x
R0

∂R0

∂x
y
R0

∂R0

∂y

!
=

Ã
1.1 −0.050
0.42 −0.25

!
(2.12)

This shows that the relative error in x is slightly amplified (1.1 times) in the es-
timate of f and is reduced in the estimate of R0. The error in y reduces strongly for
both estimates, f and R0. Thus we see that the estimates of the parameters f and R0
are not very sensitive to errors in the collected data.

2.4 Discussion and Conclusions

The model we describe here is, we admit, very crude and superficial. It certainly
does not describe exactly what happens in ’real life’, but it offers a convenient frame
to organise one’s thoughts about the key issues of a certain epidemic. Therefore we
think that this model will be a good tool in the study of infectious diseases in species
with gregarious behaviour.

From Figs 1 and 2 we can see that the most important parameter in the devel-
opment of the epizootic is f , the survival probability of infected seals. If survival f
is small, obviously more seals will die as a consequence of the infection. However,
as can be seen in Fig. 3 the total number of deaths will be disproportionately larger,
because the total fraction (1 − y) of seals that become infected during the epizootic
is higher, due to a positive feedback in the system: If the survival rate f is low, then
the fraction of susceptible seals will remain high during the epidemic and therefore
the force of infection will also remain at a higher level. With higher survival rates,
a susceptible will have more contacts with immunised (recovered) animals, thus re-
ducing the number of contacts with infectious individuals and lowering the force of
infection. This feature of such an epidemic is supported by data of the PDV-epizootic
from Scotland, where, compared to the Wadden Sea, higher survival x was found in
combination with lower prevalence of PDV antibodies, i.e. lower y ([44]).

The importance of carefull modelling of contact behaviour is shown by the dif-
ferent results that are obtained by modelling these contacts only slightly different.We
repeat that, in populations with gregarious behaviour, local density should be used,
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because it may divert enormously from the overall density of the species.
The previously described contradictions between model and data ([47]) are ex-

plained by applying this new model to the data. The parameter estimates show little
variation over the different colonies, although the difficulty of estimating y results in
a rather low precision of R0. A minimal group size needed to allow for an epidemic
does not exist, but all seals seem to live at local densities well above the minimal den-
sity needed to sustain an epidemic. An epidemic according to this model will follow
the same pattern in all colonies and (sub-)populations, independent of their size. In an
equal time interval, an equal fraction of the population will become infected. Obvi-
ously, stochastic differences will cause small differences between those colonies, but
these will be reduced by averaging over several colonies in a region. As none of the
colonies in the affected area managed to escape from a large outbreak, we conclude
that the contact rate between colonies must have been high. More distant colonies in
Norway and the Baltic Sea remained free from infection; very low local density or low
migration to and from the affected area may explain their lucky escape.

Although colonies in the Wadden Sea, Kattegat and Skagerrak seem to be affected
equally, data from Great Britain display different results (Table 3). Only about 15%
of the Scottish population died during the epidemic, but even there the intensity of
the epidemic was still quite high ([80]). Previously suggested explanations for this
include the timing of the infection in relation to seasonal behaviour and presence of
secondary infections ([54]). Thompson et al. [80] conclude that it must have been due
to either a mutation of the virus or higher resistance of the Scottish seals against the
infection.

Comparison of our parameter estimates in the different areas shows that survival
f is much higher in Scotland, while R0 estimates are almost equal in all areas. The
differences in survival could be explained by the different levels of pollution. Hall et
al. [42] postulate that high organochlorine levels were associated with higher mortal-
ity from PDV, although a direct link could not be established. Reduction of immune
functions of seals feeding from the heavily polluted Baltic sea has been shown by de
Swart et al. [16], Ross et al. [73] and de Swart, [17]. These reduced immune func-
tions may explain higher case mortality (1− f) in more polluted areas as the Wadden
Sea, Irish Sea, Kattegat and Skagerrak. Parameter estimates show that survival f in
Scotland is much higher. As, under our model assumptions, R0 turns out to be quite
constant in all areas, mutation of the virus during the epizootic seems unlikely.

Although other suggested influences, as mentioned above, should not be neglected
altogether, we conclude that the model presented here, explains the striking features
of the PDV-seal epizootic very well.
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Tables
Values for f and R0 in tables 1-3 are calculated from x and y estimates. These esti-
mates are taken from literature.

1. Denmark

Location x y f R0

Koster 0.38 0.05 0.33 2.1
Varberg 0.38 - - -
Hesselø 0.40 0.01 0.39 3.0
Anholt 0.33 0.03 0.31 2.4
Måkläppen 0.41 <0.03 0.4 >2.3

2. Kattegat and Waddensea area

Location x y f R0

Netherlands 0.44 0.03 0.42 2.5
Niedersachsen 0.50 0.03 0.48 2.6
Schlesw.H 0.39 0.03 0.37 2.3
Denmark 0.49 0.03 0.47 2.6

3. Great Britain

Location x y f R0

East Anglia 0.52 0.03 0.51 2.6
Irish sea 0.60 0.03 0.59 2.8
Scotland 0.90 0.16 0.88 2.1
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Abstract

The expected time to extinction of a herpes virus can be calculated from
a rather simple population-dynamical model that incorporates transmis-
sion, reactivation and fade-out of the infectious agent. We also derive
the second and higher moments of the distribution of the time to extinc-
tion. These quantities help to assess the possibilities to eradicate a re-
activating infection. The key assumption underlying our calculations is
that epidemic outbreaks are fast relative to the time scale of demographic
turnover.

Four parameters influence the expected time to extinction: the reproduc-
tion ratio, the reactivation rate, the population size, and the demographic
turn-over in the host population.

We find that the expected time till extinction is very long when the reacti-
vation rate is high (reactivation is expected more than once in a life time).
Furthermore, the infectious agent will go extinct much more quickly in
small populations.

This method is applied to Bovine Herpes Virus (BHV) in a cattle herd.
The results indicate that without vaccination, BHV will persist in large
herds. The use of a good vaccine can induce eradication of the infection
from a herd within a few decades. Additional measures are needed to
eradicate the virus from a whole region within a similar timespan.
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3.1 Introduction

A typical question in epidemiology concerns the feasibiliy to eradicate a specific in-
fectious agent. Extinction is a stochastic process and consequently it is hard to study
this in the context of a deterministic model. Therefore, stochastic modelling is es-
sential. The main questions are: under which conditions will an infectious agent go
extinct and, given these conditions, what is the probability of extinction within a given
time period.

The problem has been studied for well mixed populations and we know that the
probability of extinction depends in particular on incubation time and infectious period
relative to the hosts life expectancy, the basic reproduction ratio of the infectious agent,
and the average host population size. Recent developments concerning this topic can
be found in Nåsell [65] and an overview is given in [33].

Up to now, questions about extinction were mainly analysed for viral infections
with a rather short infectious period leading to immunity or death of the infected host.
Consequently, a previously infected animal cannot be infected again, and nolonger
contributes to the spread of the infection.

Herpes viruses have a special mechanism to persist in the host. After recovery of
the host, the virus is usually still present in the neural tissues where it remains dormant.
Either spontaneously, or due to certain events (stress), the virus may reactivate, is then
transported along the axons and excreted onto the same mucosa where it has entered
the host. Subsequently, another infectious period starts with normal replication of the
virus. Thus, a host that has recovered from infection may become infectious later on,
without the need for transmission from an infectious individual. This may influence
the long term dynamical behaviour of the virus-host system enormously, as we show
in the following. The probability of, and time to, extinction need a specific analysis,
because in this case absence of infectious individuals does not imply absence of the in-
fectious agent. The main goal of this paper is to determine the probability distribution
of the time to extinction for a reactivating viral infection.

In this paper a fast developing infection process is superimposed on relatively slow
dynamics of a host population. We consider a rather large host population and want
to use, as much as possible, a determininstic description. Stochasticity however, does
play a role in both virus reactivation, which is a rare event, as well as in the starting
phase of an outbreak, when there are just a few infectives. Accordingly we shall treat
the population state at which reactivation occurs as a stochastic variable and we shall
incorporate the possibility that even when the susceptible subpopulation exceeds the
critical level, reactivation may lead to a minor outbreak only.
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The substitution of previously infected animals by susceptible newborns is de-
scribed deterministically. In other words, we develop a hybrid model, that incorporates
some stochastic sub-modelling into an otherwise deterministic model. The stochas-
tic part handles the strong stochastic effects during certain phases of the dynamics,
whereas in all other aspects deterministic modelling is applied.

As an example of the practical use of our results, we will answer a question con-
cerning eradication of bovine herpes virus (BHV). Important issues are: how fast will
eradication be achieved in different herds; where can problems be expected, and can
BHV persist in feral cattle herds, if these herds remain untreated.

3.2 The model

3.2.1 Overview

To determine the time to extinction, we model the presence of a herpes infection in
the host population. Several assumptions underlie the model:

• Reactivation of the virus in a host occurs with a fixed probability per unit of
time, among all the animals that have previously been infected.

• The time scale of an epidemic outbreak is much shorter than the time scale
of demographic turn-over. Accordingly, the time that an outbreak lasts can be
neglected at the demographic time scale.

• Stochasticity in the birth-death process is neglected, using a constant birth rate
(b) in deterministic demography. The size of a herd (N ) is assumed constant,
which requires that the population birth and death rate are equal.

After an epidemic outbreak, the herd is not at risk for a new major outbreak for
a certain period of time, until the fraction of susceptibles has passed a critical value.
In such an epidemiologically closed system (no introduction of the virus from outside
the population) there is a certain probability that the virus will go extinct, i.e. all pre-
viously infected animals are removed from the system before a new outbreak occurs
and only susceptible hosts remain.

A simple deterministic model serves as the basis from which we will determine
the major features and impacts of an epidemic outbreak. The reproduction ratio of
the infection is one of the features we use. This was chosen firstly because the repro-
duction ratio can generally be estimated rather easily from various kinds of data and
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secondly because the impact of an outbreak can immediately be calculated from this
reproduction ratio (in the context of a certain transmission model).

It is important to note that the basic reproduction ratio, R0, is defined as the ex-
pected number of new infections, caused by a typical infectious individual, during its
full infectious period, in a fully susceptible population [24].

For reactivating viruses, we need to be aware that for each infected individual
there may be several infectious periods, where the later periods are not induced by a
new introduction of the virus. Therefore we define the primary reproduction ratio, R1,
as the expected number of new infections, caused by a typical infectious individual,
during one full infectious period, in a fully susceptible environment; and in accordance
with the general definition, R0 as the expected number of new infections, caused by
a typical infectious individual, during its entire life (which may consist of several
infectious periods), in a fully susceptible environment.

3.2.2 Dynamics of a single outbreak

Let us call S the number of susceptibles, I the number of infectious animals and N

the total herd size. γ denotes the recovery rate of infectious animals and β is the
transmission parameter of the infection, where the rate of transmission is given by
β SI
N .

Then, ignoring the relatively small birth, death and reactivation rates for the dura-
tion of an outbreak, we observe the infection process. If the agent is introduced in a
naive host population and we focus on the initial phase of an outbreak, we may replace
the rate of transmission by βI . The reproduction ratio, R1, for such a model is wel
known (See for example Diekmann and Heesterbeek [24]):

R1 =

∞Z
0

A(τ)dτ =

∞Z
0

β e−γτdτ =
β

γ

N.B. Now we may realise that the basic reproduction ratio for a reactivating infec-
tion, R0, is equal to the primary reproduction ratio, R1 (that applies to one infectious
period only) plus the probability of reactivation for that individual (reactivation rate
α divided by the overall removal rate from the recovered state, α + b) multiplied by
R0 (since if there is reactivation of the virus, we are back at the start of an infectious
period, where the whole process repeats itself; a renewal event). Thus we are led to
the equation



36 Chapter 3

R0 = R1 +
α

α+ b
R0

which has the solution

R0 =
α+ b

b
R1 (3.1)

We see that it is possible that R1 < 1, while, with a high reactivation rate α, R0 > 1,
so that virus may still spread (and persist) in the population.

The final size as calculated from a deterministic model yields a coarse approximate
description of the behaviour of the full stochastic system. Suppose the infectious
agent is introduced and there are sufficiently many susceptibles in the population so
that a large outbreak may strike. Such a situation does not necessarily lead to a large
outbreak. By chance, the infection may die out after only a few animals are infected,
before a true outbreak has started. Moreover, the calculated final size is the expected
size of a large outbreak in the corresponding stochastic model. Depending on the
size of the population and the realisation of the contacts and transmissions, the actual
final size for large outbreaks will show some variance around the deterministic value.
Thus, the density of the final size after introduction of the virus is a bimodal function
with one peak close to zero and a second peak around the deterministic solution. This
phenomenon has been analysed before for similar models [74].

Based on all this we determine the final size of an outbreak from the deterministic
value for a large outbreak, while a minor outbreak is approximated by assuming that
no new infections occur at all. In other words, the full bimodal distribution of the
final size from the stochastic infection model is approximated by a combination of
two Dirac measures, one concentrated at zero and the other at the deterministic final
size value. The probability of a minor outbreak (i.e. the probability that a supercriti-
cal branching process started with one individual goes extinct) is, in case of a single
exponentially distributed infectious period equal to 1/R1 (see e.g. [24], section 1.2.2).

This simplification in the description of the final size distriution obviously has
a major impact on the analysis in this paper, as a major source of variance is fully
neglected. Simulations of the full stochastic model have been performed recently,
showing that for large population sizes, the impact of this source of variance is very
small. However, for smaller population sizes (less than 25) neglecting the variance in
the final size of a major outbreak leads to an underestimation of the total variance in
the order of 10%. For low values of R1 (less than 1.2) the simplification has an even
stronger effect, it leads to underestimation of the expected time to extinction and the
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variance. This is logical because minor outbreaks do induce new infections leading
to delayed extinction. The effect of the variance in the final size of a major outbreak
is rather small, because it is reduced by the effect of fast replacement of previously
infected animals right after an outbreak as explained in section 3 and following.

The effect of a virus being introduced in a fully susceptible population is described
as follows. (See [74] but also [58], [12] and Exercise 1.12 of [24]):

event probability effect on fraction susceptibles:S(t)N

minor outbreak 1
R1

1

major outbreak 1− 1
R1

ln S(∞)
N = R1(

S(∞)
N − 1)

For a partially susceptible population we find that the final size of a major outbreak
should be calculated as follows. Let x denote the fraction of susceptible animals
in the herd. Then the fraction 1 − x must have been infected, so in these animals
reactivation of the virus may occur. Let f(x) describe the deterministic effect of an
outbreak on x, by giving the fraction of remaining susceptibles immediately after
an epidemic, that started with a fraction x of susceptibles. Then x = S(0)

N , where
time is set equal to zero at virus reactivation, i.e. at the beginning of the outbreak,
and f(x) = S(∞)

N . The infection has disappeared when time goes to infinity on
the relatively fast epidemic time scale, which is immediately after the epidemic on
the relatively slow demographic time scale. For general x 6= 0 the quantity f(x) is
calculated from

ln(f(x))− f(x)R1 = ln(x)− xR1 (3.2)

The function f(x) cannot be described explicitly, but is implicitly completely charac-
terised by (3.2).

The shape of the graph of f(x) can be seen in Figure 1 (R1 = 3). For values
of x below a critical value, 13 (see (3.5)) we have f(x) = x, i.e. a minor and hence
negligible outbreak. The second part of the graph describes the remaining fraction of
susceptibles after a major outbreak.
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Figure 1. The graph of the function f(x), as defined by (3.2).

3.2.3 Demography and reactivation

Apart from the epidemic outbreaks, there is a much slower continuous process of
constant entry of susceptible animals (birth) and random removal (death). When the
host life expectancy is chosen to be equal to the unit of time to simplify calculations,
then the change in state x is, as long as no outbreak occurs, described by:

dx

dt
= 1− x⇒ x(t) = 1− (1− x(0))e−t (3.3)

Let α denote the probability per unit of time that the virus will reactivate in a
previously infected animal, and let a = αN , so that a(1 − x) is the probability per
unit of time of reactivation in the herd. Then, given the above definition of major and
minor outbreaks, the probability per unit of time, g(x), that an outbreak will occur in
a herd of size N can be described as

g(x) =

(
a(1− x)h(x) provided xR1 > 1

0 if xR1 ≤ 1 (3.4)

where h(x) is the probability of a major outbreak, i.e.
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h(x) =

(
1− 1

xR1
for xR1 ≥ 1

0 for xR1 < 1

Let us define
x0 = 1/R1 (3.5)

and call x0 the critical point, where a herd switches from a ‘safe’ state into a ‘super-
critical’ or ‘vulnerable’ state.

When xR1 is far above 1, h(x) is close to one. x is continuously increasing by
demographic turn-over as described by (3.3). Thus, for infections with large R1, the
probability that virus reactivation does not lead to a major outbreak is only relevant
during a relatively short time period after passing the critical point x0 and that short
period can usually be neglected. When, on the other hand, R1 is rather close to one,
h(x), the probability of a major outbreak, is, for most values of x, not even approxi-
mately equal to one.

When an epidemic has recently occurred in a certain herd, the fraction of suscep-
tible animals in that herd, x, is always less than 1/R1. The susceptible fraction will
gradually increase according to (3.3). Until x = x0 no new epidemic can occur. At
some point in time, x reaches x0. We will choose this moment as a calibration or
renewal point, where for the sake of the calculation time is reset to zero.

When the reactivation rate is rather high, it will be rather unlikely that the virus
will go extinct. We expect several more outbreaks, initiated by reactivation of the virus
in one of the recovered animals. So we are led to consider the embedded discrete time
population process of passage through the critical point x0. In between two such
passages there is a continuous increase of x according to (3.3) and next a possible
jump to a value below x0. The value of x before the jump is a stochastic variable
determined by (3.4) and the value after the jump is determined from the value of x
before the jump, by f as defined in (3.2).

3.3 The time to extinction

3.3.1 Calculating the expected time to extinction

Interesting questions now are: how many outbreaks do we expect, and how much time
will pass between two outbreaks? The second question depends on the fraction of
susceptibles in the population, x, when a new outbreak strikes, because the size of
the outbreak depends on the population state x just before the outbreak. Therefore,
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to make an estimate of the time until extinction, we calculate the time that will have
passed between two consecutive times that the population state passes the critical state
x0.

First we calculate the length t of the time interval it takes a herd to go from popu-
lation state x(0) at time 0 to state x(t) at time t, on the condition that there is no major
outbreak in the mean time:

t =

x(t)Z
x(0)

dt

dx
dx =

x(t)Z
x(0)

1

(1− x)
dx = ln(1− x(0))− ln(1− x(t)) (3.6)

The stochastic part of the model is incorporated in the moment that a new epidemic
strikes. So, let X be the stochastic variable describing the susceptible fraction of the
population at the moment an epidemic strikes. Next, let Y be the stochastic variable
describing the time s(X) of a single round, i.e. the total time interval it takes, to go
from the critical point x0 via state X , when an outbreak will occur, and then back to
the critical point from the state f(X) immediately after the epidemic outbreak. (Recall
the assumption that an epidemic develops so fast compared to the turnover rate in the
herd that we can neglect the time that the outbreak itself lasts.) Then, using (3.6) we
find that the total time period Y is given by:

Y = s(X) = ln
(1− f(X))

(1−X)

Let G(x) denote the survival function describing the probability for the herd to go
from x0 to state x without a new epidemic phase. Then, starting at t = 0 in x0, with
G(x0) = 1 and using (3.4), Ġ can be determined as

dG(x(t))

dt
= −a(1− x(t))h(x(t))G(x(t)) (3.7)

and with (3.3)

dG(x(t))

dt
= −adx

dt
h(x(t))G(x(t))

So

dG(x)

dx
= −ah(x)G(x) (3.8)
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Defining H by dH(x)
dx = h(x) and H(x0) = 0 for x ≤ x0 we find

G(x) = G(x0)e
−aH(x) = e−aH(x) (3.9)

and

H(x) = x− 1 + ln(xR1)
R1

From formula (3.9) we can now deduce the probability µ to become completely
virus free (x = 1) without any further outbreaks:

µ = G(1) = e−aH(1)

Using formula (3.8) we can now calculate the expected single cycle timeE(Y ), i.e. the
time between two consecutive times of passing x0, while conditioning on an outbreak
taking place (i.e. no extinction):

E(Y ) =

1Z
x0

s(x)ah(x)G(x)

1− µ
dx

This expected time between two outbreaks, E(Y ), is graphically represented in
Figure 2 as a function of the parameters. Time is scaled by life expectancy and is not
given in years. The figure shows that for very low values of R1 the time between two
outbreaks exceeds the generation time of the host population.
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Figure 2. Expected time between two outbreaks in 3-D (2a) and contourplot (2b) with
level lines at 0.6, 0.8, 1, 1.2, 1.5 and 1.8.
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The duration of each full cycle between two outbreaks is totally independent of the
previous, because we use state x0 as a reference point, and the population will pass
through that state in between any two outbreaks. For the calculation of the expected
time to extinction we will assume that time will start when the population is in the
critical state x0. We neglect the time between the last passage of the critical state and
real extinction (i.e. all previously infected animals are removed), firstly because due
to the choice of constant removal rates that time would be infinite in this model, and
secondly because if there will be no new outbreak, from a more practical point of view
eradication is already achieved.

Let T be the stochastic variable describing the time until reaching x0 after the last
outbreak ever. (This approximates the total time to extinction of the virus in that herd,
as explained above.) As the probability to reach a fully virus free state without new
outbreaks is µ, the expected number of times a herd passes the critical point before
reaching this virus free state will be 1

µ . We here include the starting passage of the
critical state, so the average number of intervals between two outbreaks will be 1

µ − 1.
Hence, we can calculate the expected value of T :

E(T ) = (
1

µ
− 1)E(Y ) =

1Z
x0

s(x)ah(x)G(x)

1− µ
dx(

1

µ
− 1) =

1Z
x0

s(x)ah(x)G(x)

µ
dx

= eaH(1)
1Z

x0

ln(
1− f(x)

1− x
)ah(x)e−aH(x)dx (3.10)

= a

1Z
x0

ln(
1− f(x)

1− x
)(1− 1

xR1
)ea(1−x+

ln x
R1

)dx

The outcome of the numerical evaluation of this integral is graphically represented
in Figure 3 (and 4).

Note: E(T ) only depends onR1 of the infection and on a, which is the reactivation
rate of the virus, α, times the herd size, N . The expected life time is also important
for the total time to extinction. That cannot be seen from formula (3.10), because,
as a first step in the modelling, time is scaled such that the expected life time of the
animals is 1 time unit. Thus we are able to calculate the time to extinction without
specifying the host and the pathogen more specifically.
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Figure 3. Expected time to extinction, E(T ) in 3-D plot and contourplot for E(T ) =
0.01, 0.1, 0.5, 1, 2, 5, 10 and 20.

3.3.2 Probability density function of the time to extinction, T .

We have calculated the expected time between two outbreaks in a herd, E(Y ) (from
population state x0 via an outbreak back to state x0) and the expected time to ex-
tinction, E(T ) (from state x0 via several outbreaks, until the last time the population
goes through state x0). To gain more insight into the probability distribution of these
stochastic time periods the first two moments of these distributions are calculated.
No doubt, experienced probabilitists will find that we provide too many details here
(Section 3.2 and 3.3).

The probability distribution of Y is absolutely continuous (since the probability
distribution of X is absolutely continuous, see (3.8)), and will be described by its
density Λ(y). With x = φ(y) we describe the state x where an epidemic will have
started, when it is given that the herd has returned to state x0 at time y; so φ is the
inverse function of s(x̃) and G(φ(y)) is the corresponding survival function, i.e. it
describes the probability that it will take longer than y to return to x0. Then −Λ(y) is
the properly normalized derivative of G(φ(y)) and hence can be calculated as follows

Λ(y) = − 1

(1− µ)

d

dy
G(φ(y)) = −G

0
(φ(y))φ0(y)
1− µ

Next we can also calculate the probability distribution of T , the total time until a
herd is virus free. This distribution has an atom of size µ at t = 0 (no further outbreak
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at all); and it is otherwise absolutely continuous, with a density denoted by Γ(t). As
we explain below,

Γ(t) = µ(1− µ)Λ(t)

+ µ(1− µ)2Λ2∗(t)

+ µ(1− µ)3Λ3∗(t)

+ . . .

i.e.

Γ(t) = µ
∞X
n=1

(1− µ)nΛn∗(t) (3.11)

where by definition

Λn∗(t) =

tZ
0

Λ(n−1)∗(t− σ)Λ(σ)dσ (3.12)

Λ1∗(t) = Λ(t)

This can be seen as follows: if there is only one further outbreak, which has prob-
ability µ(1−µ), then the distribution of t is described by Λ(t). Exactly two outbreaks
has probability µ(1 − µ)2 and the distribution of the time t it then takes to return to
the critical point is described by a convolution integral of Λ with itself, so by:

Λ2∗(t) =

tZ
0

Λ(t− σ)Λ(σ)dσ

where σ is the time taken by the first outbreak free interval. For higher numbers of
outbreaks an analogous reasoning is applied.

3.3.3 The variance of the time to extinction.

Define λi as the i-th moment of Y , i.e.

λi =

∞Z
0

siΛ(s)ds (3.13)
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We find λ0 = 1 and λ1 = E(Y ) and

Var(Y ) =
∞Z
0

s2Λ(s)ds−E(Y )2 = λ2 − λ21 (3.14)

As to be expected, from (11) we can determine the moments of the stochastic time to
extinction, T , in terms of µ and λi.

Proposition 1
E(T ) =

1− µ

µ
λ1 (3.15)

To prove this, first we will calculate the first moment of higher order convolutions
of Λ in the following lemma:

Lemma 2 ∞Z
0

tΛn∗(t)dt = nλ1 (3.16)

Proof Lemma 2. From formula (3.12) it follows that

∞Z
0

tΛn∗(t)dt =

∞Z
0

t

tZ
0

Λ(n−1)∗(t− σ)Λ(σ)dσdt

=

∞Z
0

∞Z
σ

tΛ(n−1)∗(t− σ)Λ(σ)dtdσ

which, by putting t = s+ σ is seen to be equal to

∞Z
0

∞Z
0

(s+ σ)Λ(n−1)∗(s)Λ(σ)dsdσ

=

∞Z
0

∞Z
0

(s+ σ)Λ(σ)dσΛ(n−1)∗(s)ds

which by definition (3.13) is equal to
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∞Z
0

(λ1 + s)Λ(n−1)∗(s)ds

So we see that

∞Z
0

tΛn∗(t)dt = λ1 +

∞Z
0

sΛ(n−1)∗(s)ds

For n = 2 this means that

∞Z
0

tΛ2∗(t)dt = 2λ1

By induction, Lemma 2 is now readily proven.

Proof Proposition 1. Since

E(T ) =

∞Z
0

tΓ(t)dt

we deduce from formulas (3.11) and (3.16)

E(T ) =
∞X
n=1

µ(1− µ)n
∞Z
0

tΛn∗(t)dt

=
∞X
n=1

µ(1− µ)nnλ1

=
1− µ

µ
λ1

Note that the assertion of Proposition 1 is in fact equal to the first identity in
formula (3.10), as λ1 = E(S). Thus two different methodologies were used to deduce
an expression for the expected time to extinction, reassuringly leading to the same
result.

A bit more complicated is the derivation of the variance of T :
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Proposition 3

Var(T ) =
1− µ

µ
λ2 +

µ
1− µ

µ
λ1

¶2
(3.17)

To prove Proposition 3, we calculate the second moment of higher convolutions of
Λ:

Lemma 4 ∞Z
0

t2Λn∗(t)dt = nλ2 + n(n− 1)λ21

Proof Lemma 4.

∞Z
0

t2Λn∗(t)dt =

∞Z
0

t2
tZ
0

Λ(n−1)∗(t− σ)Λ(σ)dσdt

=

∞Z
0

∞Z
σ

t2Λ(n−1)∗(t− σ)Λ(σ)dtdσ

=

∞Z
0

∞Z
0

(s+ σ)2Λ(n−1)∗(s)Λ(σ)dsdσ

=

∞Z
0

∞Z
0

(s+ σ)2Λ(σ)dσΛ(n−1)∗(s)ds

Expanding and using the defining formula 3.13, while remembering that
∞R
0

Λn∗(σ)dσ = 1, we continue with

∞Z
0

t2Λn∗(t)dt =

∞Z
0

(λ2 + 2λ1s+ s2)Λ(n−1)∗(s)ds

= λ2 + 2λ1

∞Z
0

sΛ(n−1)∗(s)ds+

∞Z
0

s2Λ(n−1)∗(s)ds
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and with Lemma 2 we finally derive that

∞Z
0

t2Λn∗(t)dt = λ2 + 2(n− 1)λ21 +
∞Z
0

s2Λ(n−1)∗(s)ds

And by induction Lemma 4 can be derived from this.

With the results from Lemma’s 2 and 4 at hand, we can now prove Proposition 3:
Proof Proposition 3.

Var(T ) =
∞Z
0

t2Γ(t)dt−E(T )2

which by formula (3.11) is equal to

(
∞X
i=1

µ(1− µ)i
∞Z
0

t2Λi∗(t)dt)−
µ
1− µ

µ
λ1

¶2

which, according to Lemma 4, equals

(
∞X
i=1

µ(1− µ)i(iλ2 + i(i− 1)λ21))−
µ
1− µ

µ
λ1

¶2
Evaluation of the sum yields

1− µ

µ
λ2 +

µ
1− µ

µ
λ1

¶2
thus proving Proposition 3

3.3.4 Numerical elaboration of the results

We find that when the maximal reactivation rate per herd, a (equal to the individual
reactivation rateα times the population sizeN ) is very low, (a smaller than the average
life span of a host), then reactivating viruses tend to go extinct within a few host
generations (see Figure 3). The expected number of new outbreaks is also low (< 10)
for a low reactivation rate. However, the extinction time may exceed the host’s life
span with several orders of magnitude when the reactivation rate of the population (a)
is large (a much bigger than the average hosts life span), because the expected time
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to extinction grows extremely fast with increasing reactivation rate and herd size (see
Figure 3).

When the primary reproduction ratio, R1, is small, we find that the expected time
to extinction is very sensitive to the precise value of R1, the higher R1, the longer the
time to extinction will be. However, at high values of R1 variation in R1 has relatively
little impact on the expected time to extinction. On the other hand, the expected time
to extinction is very sensitive to a high reactivation rate in the herd. The sensitivity of
the extinction time to a behaves just opposite from the sensitivity to R1, here we find
that the extinction time is hardly influenced by some perturbation at small values of a,
(a < 1). All calculations of time are expressed in expected life time of the host, which
is therefore also an important factor, when a specific infection is studied.

In Figures 4 (a-d) the expected time to extinction, E(T ), is combined in one graph
with its standard deviation, sd(T ). We see that generally the standard deviation of
T has the same order of magnitude as E(T ). We can analyse this further by observ-
ing the coefficient of variation for T , which is the standard deviation divided by the
expectation of T . Using (3.15) and (3.17)

p
V ar(T )

E(T )
=

s
1− µ

µ
λ2 +

µ
1− µ

µ

¶2
λ21

µ
µ

(1− µ)λ1

¶
=

s
µ

(1− µ)

λ2

λ21
+ 1

we see that for {λ1, λ2} 6= 0 the coefficient of variation goes to infinity for µ ↑ 1 (i.e.
small a or R1) and for µ ↓ 0 (i.e. large a and R1) the coefficient of variation becomes
asymptotically equal to 1.

The calculation method for the time to extinction neglects the variance in the final
size of a major outbreak. This variance is indeed mostly negligible, as can be seen
from the following analysis. A major outbreak must (by definition) have an outcome
between 0 and x0. The time it takes to go from 0 to x0, (− ln(1−x0)), must therefore
be higher than the variance in the single cycle time Y , that is induced by the variance
in the final size. In Figure 5 the time to close a single cycle (thick line) is compared
to the time to go from 0 to x0 (decreasing function − ln(1 − x0)). We notice that
− ln(1− x0) is much less than E(Y ), when R1is sufficiently large and a sufficiently
small. Thus we conclude that under those conditions, the impact of the neglected
variance from the final size is rather small.



50 Chapter 3

2 4 6 8 10
R1

0.25

0.5

0.75

1

1.25

1.5

1.75
EHTL and sdHTL HdashedL for a=1

Figure 4a
2 4 6 8 10

R1

50

100

150

200

250

EHTL and sdHTL HdashedL for a=10

Figure 4b

2 4 6 8 10
a

1

2

3

4

5

EHTL and sdHTL HdashedL for R1=2

Figure 4c
2 4 6 8 10

a

50

100

150

200

250

EHTL and sdHTL HdashedL for R1=10

Figure 4d
Figure 4. E(T ) and standard deviation (dashed) for various parameter values.

Figure 5a shows E(Y ) and − ln(1− x0) for a = 10, and Figure 5b shows E(Y )
and − ln(1 − x0) for R1 = 10. The neglected variance has a major impact for very
small values of a and R1, where this method can lead to a major underestimation of
the variance. A comparison of E(Y ) and − ln(1− x0)) can be used to decide on the
necessity of further analysis.
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Figure 5. Comparison of E(Y ) and − ln(1 − x0) for a = 10 in 5a and E(Y ) for
R1 = 10 in 5b.
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3.4 Application to Bovine Herpes Virus

The results derived above are now applied to quantify the expected time to extinction
of Bovine Herpes Virus (BHV) in the Netherlands. The influence of control measures
on the extinction time will also be assessed.

In 1997, a control program was started, aiming at eradication of Bovine Herpes
Virus in the Netherlands. To achieve this, a marker vaccine was selected which re-
duces, but does not stop, the transmission. From field studies, the reproduction ratio
is estimated to be slightly higher than 1, R1 ≈ 1.5 [38],[59] and [4]. Although this
reproduction ratio is above 1, and immediate extinction of the virus is therefore not to
be expected, local extinction of the virus may still induce eradication. To obtain an
estimate of the time it would take to eradicate BHV in the Netherlands, we assessed
the expected time to extinction of BHV in a typical Dutch cattle herd.

The Netherlands also has a few feral cattle herds living in extensively managed
natural area’s. For obvious reasons, in these herds only oral vaccination is allowed,
but there is not yet a useful and good oral vaccine against Bovine Herpes Virus (BHV)
available. Therefore BHV-vaccination is not applied in these herds. We assessed
whether the virus may persist long in such feral herds, thus posing a threat to the
eradication process.

The previous analysis can very well be used to assess the expected extinction time,
for both vaccinated and non-vaccinated herds. The only parameters needed to tackle
the problem described in this paper, are the reactivation rate of BHV in individual
cattle and the basic reproduction ratio of BHV in herds. As we have only access to
data collected in husbandry herds, we are forced to assume that the parameters are
similar for feral cattle. In dairy cattle, the primary reproduction ratio of BHV has
been estimated at R1 = 3.2 [3] for non-vaccinated herds.

To estimate the reactivation rate for BHV, we used original data collected in a
vaccination-control experiment by Bosch et al [3], where transmission of BHV was
quantified. The controls in this experiment were treated with a placebo vaccine and
the vaccine used was a dead marker vaccine, not the same one as used for the Dutch
eradication process. The control group consisted of 45 farms and the vaccine group
consisted of 42 farms. At all these farms there was BHV positive cattle present at the
beginning of the screening period. During the whole screening period of 13 months,
the farmers were asked to minimize trade in and out of the farm. Dairy cattle were
always kept separate from the calves and heifers, so each farm has two separate herds.
The cattle were all regularly screened for antibodies against BHV. Thus outbreaks
of the infection could be detected in several of these herds. It was not possible to
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distinguish between outbreaks induced by reactivation of the virus in one of the BHV
carrying animals and outbreaks due to renewed introduction of the virus from the
outside.

We estimate the reactivation rate of the virus by assuming that no introduction of
the virus from elsewhere did occur. Thus, we may overestimate the reactivation rate
if the virus was actually reintroduced at the farms regularly. The vaccinated groups
were assessed separately, and from these data we estimated the reactivation rate for
vaccinated animals.

The data on the dairy herds were used because there was always at least one
seropositive animal in the herd. The data on the young stock were neglected. For
each herd i, the number of positive animals Zi was registered at the beginning of the
experiment. Furthermore during and at the end of the experiment it was noted whether
animals in the herd showed seroconversion indicating an outbreak (i+) or not (i−). A
very simple model was used for a first assessment

Call the probability of reactivation per seropositive animal in those 13 months p,
then the probability of no reactivation in this period in herd i is (1 − p)Zi and the
probability of reactivation is 1− (1− p)Zi . Thus we are led to a maximum likelihood
estimator for p by maximising the quantity

Y
i−
(1− p)Zi

Y
i+

1− (1− p)Zi (3.18)

This method implicitly assumes that reactivation always leads to at least one new
infection.

We soon concluded that the model underlying this first maximum likelihood esti-
mator was too simplistic. It can easily be improved, by taking account of the prob-
ability of seroconversion relative to the probability of transmission. Furthermore we
assume that seropositive animals are not susceptible. Thus the susceptible fraction of
the population, ( SN ), is the relevant variable for the probability of transmission, given
reactivation of the virus. Assuming a constant density within the herd (true mass ac-
tion) as sub-model for transmission, we propose the following maximum likelihood
function to estimate the reactivation rate:
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Y
i−

ZiX
k=0

µ
Zi
k

¶
pk(1− p)Zi−k

µ
1− R1

Ni

¶k Si

(3.19)

Y
i+

ZiX
k=1

µ
Zi
k

¶
pk(1− p)Zi−k

Ã
1−

µ
1− R1

Ni

¶k Si
!

where
¡
Zi
k

¢
pk(1−p)Zi−k gives the probability of k reactivations among theZi seropos-

itive cattle within the given time-span. R1

Ni
gives the probability for each susceptible in

the population to become infected if one animal reactivates and therefore (1− R1

Ni
)k Si

describes the probability of no seroconversions among the Si susceptibles, while the
virus reactivates in k animals in group Zi, during the period surveyed.

Applying the first maximum likelihood method (3.18) to the data of Bosch, we
find p = 0.028 per 13 months or 0.026 per year. The second, improved method (3.19)
is based on a stochastic mass-action transmission model and leads to a much higher
estimate of the reactivation rate: p = 0.10 per 13 months or 0.09 per year. The second
method includes the probability of transmitting the infection to a susceptible animal,
which is neglected in the first method. These differences lead to a major difference in
the outcome. Therefore we conclude that in the present case the formula (3.18) is too
simplistic and more elaborate modelling, as underlying (3.19), is needed for a good
assessment of the reactivation rate. Still, both methods overestimate the reactivation
rate by neglecting possible reintroduction of the virus from outside the herd.

Now we estimate the expected time to extinction for vaccinated production herds.
The inactivated virus vaccine, which was used in the experiments of Bosch et al., is
expected to lead to a somewhat lower reactivation rate than the live vaccine which
was used for the eradication process. Data from Jet Mars [59] support this. However,
the different estimates for the reactivation rate for untreated cattle are not significantly
different from the reactivation rate in cattle vaccinated with either vaccine. Thus, we
apply the same estimate for the reactivation rate. Using the above method (3.19) on
the original data from the vaccinated herds [3], the reactivation rate is estimated at
0.09 per year. With all the above, we derive that the expected extinction time ranges
from about 15 years for rather small vaccinated herds of 40 animals up to about 90
years for vaccinated herds of 100 animals (see Figure 6).
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Fig 6. Expected time to extinction for BHV in vaccinated herds of size N

We find that despite vaccination, the expected time to extinction is still rather long
for large herds. In practice many farms enhance the extinction process by increased re-
moval of seropositive animals from the herd, once their prevelance has become rather
low. Various scenario’s of culling in BHV eradication are analysed in more detail
applying a stochastic simulation model by VonkNoordegraaf. [82]. For full analy-
sis of this extinction problem on a national scale, a meta-population study would be
helpful, but intuition suggests that the outliers, i.e. the herds with an extremely long
time to extinction, may cause problems for the full metapopulation by reintroducing
the virus into virus free herds, depending on the level of coupling. Removal of the
last seropositive herds in the country will probably be applied, once their number has
become small enough, thus reducing the total time to eradicate the virus substantially
at minimal cost.

The same analysis was performed for unvaccinated herds, domestic and feral. The
average life-span of feral cattle is estimated to be similar to that of domestic cattle,
about 5 years. Feral cattle herds, just like domestic herds, range from very few animals
up to several hundreds of animals. Using (3.10) we calculate the expected time to
extinction of BHV in a population of size 250 (largest feral herd) to be of the order
of a hundred million (108) years, but in small herds (20 animals) the expected time
to extinction would be much less, 40 years only (Figure 7). Without vaccination or
other control measure, BHV will go extinct with high probability in the small herds,
but is expected to persist forever in larger ones. Reintroduction of the virus will be
prevented by import restrictions and testing, according to the EU regulations on exotic
infections.
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Figure 7. Expected time to extinction E(T ) for BHV in herds of size N .

3.5 Discussion and Conclusions

When the reactivation rate of herpes virus is very low, this infective agent behaves
very similar to other viruses, as can be expected. However, with higher reactivation
rates, herpes viruses are much more persistent, even in rather small populations. Ex-
tinction becomes highly unlikely, when both the primary reproduction ratio and the
reactivation rate in the herd are large. With an increasing reactivation rate, the time to
extinction soon becomes essentially infinitely long.

The expected time to extinction turns out to be very sensitive to the primary repro-
duction ratio and therefore (partial) vaccination may have an enormous impact on the
persistence of a herpes infection in a population. Thus, for eradication of reactivating
viruses it may be sufficient to only bring the reproduction ratio (R1) close to one, and
not necessarily below one, while still obtaining rather fast extinction of the infection.

In small vaccinated herds (<50 animals), BHV will probably go extinct within
one or two decades. In unvaccinated herds the virus will be very persistent, (cen-
turies). This is confirmed by the frequent occurence of this virus in untreated herds.
In large herds (>100), vaccinated or not, the virus will persist for many, many cen-
turies. Therefore, once introduced, we expect BHV to persist in most of the Dutch
feral herds.

When R1 is smaller than 1, large outbreaks can not occur. Such infections might
still persist in a closed population if the reactivation rate per individual, α is suffi-
ciently large to bring R0 above 1. Herpes simplex in the human population may be an
example of a virus with such a strategy. However, in the model as described in this
paper, the advantages of such a strategy cannot be shown, because this model neglects
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the effect of minor outbreaks completely. For very low value’s of R1 the impact of
minor outbreaks can be rather large and become the basis for prolonged persistence
of the infection. (Unpublished results of an extended fully stochastic version of the
model [63]).

However, a basic rule applies for all types of infections: when the basic reproduc-
tion ratio, R0 is below 1, any introduced infection will go extinct. This also applies to
reactivating infections, like those caused by herpes viruses, except that in those cases
extinction may take a bit longer, i.e. a few host generations.

Constant removal rates are often used in mathematical modeling to describe all
kinds of state transition processes, because it makes the analysis of the models a lot
easier, although the implied exponential distribution of the residence time may show
little similarity with the actual distribution. Experience learns that in general, such a
simplification of reality still leads to a good model of the system. However, in a few
situations one must be careful with the use of a constant removal rate and the concomi-
tant exponential distribution of residence time. For instance, with a constant removal
rate extinction is only reached in the limit of time going to infinity. The method de-
scribed in this paper elegantly avoids this artefact, by declaring the agent extinct at the
moment that criticality is reached and yet there will not be another outbreak.

The deterministic model leads to a long tail in the distribution of the hosts life
span, which does not fit ”real life”. However, a numerical check, while setting the tail
of the distribution to zero above 12 years, showed that this has little impact on the time
to extinction if R1 is sufficiently large. For R1 = 2, this method overestimates the
time to extinction with about 5%. However, for very small R1, the error may become
substantial: for R1 = 1.1, the total time to extinction is overestimated by about 60%.
Overall, in most cases the very low probability of reactivation in the long tail of the
survival distribution leads to a minor impact on the expected time to extinction. The
elegance of modelling with constant removal rates is thus conserved while avoiding
the disadvantages.

Acknowledgement 5 We thank Rolf Mertig for his help in producing Figures 2 and
3 and we thank Jaap Bosch and Jet Mars for giving access to the original data sets
of their vaccination experiments, which were used to quantify the reactivation rate of
BHV.
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Abstract

The safety of using meat and bone meal (MBM) in mammal feed was stud-
ied in view of BSE, by quantifying the risk of BSE transmission through
different infection routes. This risk is embodied in the basic reproduc-
tion ratio R0 of the infection, i.e. the average number of new infections
induced by one initial infection. Only when R0 is below 1, will the dis-
ease die out with certainty and the population will become free from BSE.
Unfortunately this is a slow process due to the slow progression of the
disease.

We calculate R0 explicitly from basic ingredients taking several different
transmission routes into account. Several of the basic ingredients are
functions of age or of infection-age. We also calculate the exponential
growth rate r in terms of the same basic ingredients.

Next we quantify the ingredients from available data and compute the
effects on R0 of various scenario’s for controlling BSE, with examples
for the UK and the Netherlands.



Calculating R0 for BSE 59

4.1 Introduction

Major public attention recently focused on bovine spongiform encephalopathy (BSE)
and related diseases. BSE may pose a threat for human health, as consumption of
BSE infected beef may induce a new variant of Creutzfeldt-Jakob disease (vCJD) [6].
The risk for humans to contract vCJD seems to be very small, when assuming an
average incubation period of less than ten years, but because the incubation period
may be much longer, we may not yet have reached the peak of the vCJD-epidemic
and infection risks may be underestimated so far. Presently, the BSE epidemic in the
UK is far below its peak of 1992 and many food-safety measures make sure that the
risk of contracting new infections in the human population has decreased enormously.

The BSE epidemic in the United Kingdom was probably due to BSE infected meat
and bone meal (MBM) in cattle feed [85]. In the 1980s a major part of MBM in the
UK was produced at low temperatures (about 100oC). Later it was shown that such
conditions are insufficient for the inactivation of the BSE agent [79].

To answer questions about the efficacy of control measures and to quantify re-
gional risk of BSE outbreaks, we calculate the basic reproduction ratio R0, incorpo-
rating the postulated mechanisms of BSE transmission in an age-structured population
of cattle. The basic reproduction ratio R0 of an infection is the expected (average)
number of new infections, caused by a typical infected individual. (See [24].) We will
derive an explicit expression for R0 of BSE in terms of basic ingredients that describe
cattle demography and transmission routes of the BSE agent. In section 2 we describe
the ingredients, the calculation of R0 and of the real-time exponential growth rate r

of the early part of an epidemic. In section 3 we quantify all ingredients from data.
In section 4 we compute values for R0 under various realistic combinations of con-
trol measures, and provide confidence intervals for R0-estimates. Finally we briefly
discuss implications for EU-guidelines in section 5.

4.2 The ingredients

4.2.1 Infection routes

A model of infection-host interaction intended for risk assessment by quantifying R0
should include all characteristics of the infection and the host that may have a major
impact on R0. The characteristics that we consider important in BSE epidemiology
are, firstly, the incubation time of BSE, which is extremely long, close to the average
life time of cattle. Secondly, new born calves are more susceptible than adult cattle,
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as a result of which the average age at infection is rather low, therefore age needs to
be taken into account. Thirdly, different infection routes exist.

We consider the following five infection routes. (1) Recycling of proteins in MBM
that is used in cattle feed (horizontal infection). (2) Maternal infection, i.e. from
mother to calf (vertical infection) probably at birth, (3) Birth related infection may also
affect other cattle at close proximity during birth (diagonal infection). The afterbirth
is supposed to be a risk factor. (4) Direct animal to animal transmission (horizontal).
(5) Infectious material in the environment (use of MBM as fertilizer and remaining
infection from feed, left in manure).

Infection routes (4) and (5) seem of minor importance, but are included in the
model to allow an assessment of their impact. Given the difficulties in inactivating the
BSE agent, infectious material may persist in the environment for a long time. Scrapie
material is known to remain infectious for several years in the environment [5] and for
BSE similar survival may be expected. Therefore, although infection route (5) may
cause only a small risk at any moment in time, it is possible that new cases will arise
by this route over a very long period to come. This delay effect of the environment is
not incorporated into the model.

As infection routes (3), (4) and (5) can not be estimated separately from the data
presently available, we clustered them into one parameter ω. During the initial stage
of the epidemic in the UK, these routes were probably negligibly small compared to
the feed infection route. However, when infection via the feed infection route has
become small due to BSE control measures, ω may become of influence.

4.2.2 Fundamental assumptions.

Two fundamental assumptions underlie the model of the BSE-cattle interaction. One
assumption is very common in epidemiological models: infection is transmitted dur-
ing random contacts between animals, so spatial structure is not incorporated. This
implies that all infectious contacts are randomly distributed in space over the whole
cattle population and the model neglects clustering of the infection in space. Gener-
ally, such a model is well suited for describing contact infections within a herd, and
can be applied to a regional or national population when there is contact (direct or
indirect) between all herds.

The second main assumption underlying the model is that the infectious agent of
BSE behaves according to the ’single hit theory’ [45]. This means that there are nu-
merous infectious particles (in case of BSE prions) in an animal with clinical BSE
and each of these particles has a very small probability of inducing infection. Present
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knowledge of BSE (and Transmittable Spongiform Encephalopathy’s, TSEs in gen-
eral) suggests that the infection does not trigger any immune reaction in the host, so
multiple doses of ingested infectious material are not supposed to lead to increasing
resistance.

4.2.3 The parameters

We list the parameters of our description of cattle demography and BSE-cattle inter-
actions. Some of these are functions of age (a) and infection-age (τ , i.e. time elapsed
since the animal got infected). The latter variability is introduced since susceptibility
of cattle depends on age and infectiousness depends on infection-age. The population
dynamics of cattle is described by age-dependent culling and age-dependent birth rate.
The infectious load in an infected animal grows with the time τ since the animal was
infected. All newborn animals arrive in the susceptible class, except those that already
get infected maternally. For infected animals, culling can be either due to age, or due
to recognition of BSE-symptoms.

The model contains parameters that can be influenced by control measures against
BSE or local conditions, and parameters that cannot. The parameters that remain fixed
in this study are:

• age-dependent susceptibility of cattle, β(a)

• infection-age dependent infectious load of an infected animal, γ(τ)

• maternal transmission rate (per unit of infectious load of the mother), m

• contact infection rate via the environment, ω

The following parameters can be affected by control measures or local conditions:

• per capita culling rate for cattle (not infected), µ

• per capita birth rate, b

• the reduction of infectious load by the rendering process, k1

• the fraction of MBM that is fed to cattle (not to other animal species), k2

• the fraction of infectious load from a non-BSE suspect carcass that enters the
rendering process, c1
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• the fraction of infectious load from a BSE suspect carcass that enters the ren-
dering process, c2

• the per capita culling rate of infected cattle by recognizing BSE symptoms at
time τ after infection, ν(τ).

4.2.4 Characterization of R0
After naming the basic ingredients of the BSE cattle interactions, the basic reproduc-
tion ratio R0 can be characterized. It applies to a set of models, which may include
features like heterogeneity and stochasticity, which need not be specified at this point.
Such model details are not essential for the methodology, but they may influence pa-
rameter estimations. A general description of the method to calculate R0 can be found
in [24]. During an epidemic, the fraction of susceptible animals decreases and due to
that, the expected number of infections initiated by an infected animal also decreases.
Although the basic reproduction ratio is a measure for the initial phase of an out-
break, it also supplies information about the expected number of animals that will get
infected during the whole outbreak, (see also [24]).

To characterize the basic reproduction ratio R0, we need to define the ’typical’
infected individual. Reviewing the five different infection routes, it appears that there
are two typical distributions for age at infection. Maternal infection takes place at
birth, and thus for maternally infected animals infection age is equal to their real
age. Animals infected by the other infection routes all have a distribution of age at
infection, depending on the age-dependent susceptibility and age-dependent survival.
For animals infected via MBM, the age distribution will also depend on the amount of
MBM ingested at different ages. As data are very hard to obtain, we assume this to be
a constant for all ages, thus leading to only two different groups of infected animals:
a group of animals infected at birth and a group that can be described by a fixed
probability distribution of age at infection. Thus we arrive at a two dimensional ’age
at infection’ space, spanned by a delta ’function’ δa = δ0 = 0 for maternal infections
and the function β(a)Fs(a), for horizontal, diagonal en environmental infections.

For the two types of infected animals we separately determine the expected num-
ber of new infections that they will induce during their whole infectious period (by
the two types of infection routes). We denote the expected number of infections via a
type i route caused by an animal that was itself infected through a type j route as qij .
Explicit formulas for qij can be derived.

A first step in formulating qij is constructing a survival function Fs(a), which
describes the probability for a susceptible animal to survive until at least age a:



Calculating R0 for BSE 63

Fs(a) = e
−

aR
0

µ(α)dα
(4.1)

The infection survival function Fi(τ) describes the probability of an infected cow
to survive until at least infection age τ , under the condition that the animal will be
culled only due to BSE signs, i.e. neglecting the possibility of normal cull.

Fi(τ) = e
−

τR
0

ν(α)dα
(4.2)

Then the survival function of infected cattle under normal farming conditions (in-
cluding normal cull) is represented by Fs(a+ τ) Fi(τ), where a represents the age at
infection, and the true age of the animal becomes a+ τ .

Here q11 represents the expected number of new feed infected individuals from
one (average) feed infected individual. Next, q21 represents the expected number
of new maternally infected individuals from one (average) feed infected individual.
One (average) feed infected animal is distributed over all possible ages at infection
according to the density.

β(a)Fs(a)
∞R
0

β(α)Fs(α)dα
(4.3)

Now q11 is calculated as the probability of cull µ at age (a+ τ) and ν at infection-
age τ , multiplied with the fraction of its infectious load γ(τ) that enters rendering (c1
and c2), the rendering reduction factor (k1) and the fraction fed to cattle (k2). Thus
c1µ(a+τ)+c2ν(τ) is the fraction of the infectious load (prions) of an infected animal
entering the rendering process, and multiplication with k1k2 gives the fraction that
survives rendering and is fed to cattle. This expression then has to be multiplied with
the probability of an infected animal to survive,Fs(a+τ)Fi(τ)/Fs(a), and also has to
be multiplied with the infectious load γ(τ) at infection-age τ . Accumulating this over
all possible combinations of age and infection age at cull (integral over a and τ ), we
find the expected number of infectious doses in feed taken up by cattle. Multiplying
this with the age dependent susceptibility β(a)Fs(a) yields the total number of new
infections. After dividing by a factor to normalize the relevant distributions we obtain
the expected number of new feed infections that will be caused by the ‘average’ feed
infected cow of ‘average’ age. The ω for the other horizontal infection also needs to be
incorporated for the various age groups. The calculation takes account of both the age
of the infectious animal (α) and the age of a newly infected animals (a) for the feed
infection route. The other three partial ratios (qij) can be derived likewise, leading to
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q11 =

∞R
0

∞R
0

β(α) ((c1µ(α+ τ) + c2ν(τ))k1k2 + ω)Fs(α+ τ)Fi(τ)γ(τ)dτdα
∞R
0

Fs(a)da
(4.4)

q21 =

∞R
0

∞R
0

β(α)b(α+ τ)Fs(α+ τ)Fi(τ)mγ(τ)dτdα

∞R
0

β(α)Fs(α)dα
(4.5)

q12 =

∞R
0

β(a)Fs(a)da
∞R
0

Fs(a)da

∞Z
0

((c1µ(τ) + c2ν(τ))k1k2 + ω)Fs(τ)Fi(τ)γ(τ)dτ (4.6)

q22 =

∞Z
0

b(τ)Fs(τ)Fi(τ)mγ(τ)dτ (4.7)

From these four partial reproduction ratio’s by infection type, the overall reproduc-
tion ratio R0 of BSE in a cattle population can be calculated as the dominant eigen-
value of the 2x2 matrix, Q. The two components of the right eigenvector show the
relative importance of the feed infection route and the maternal infection route.

R0 =
1

2
q11 +

1

2
q22 +

1

2

q
(q211 − 2q11q22 + q222 + 4q12q21) (4.8)

To stop the epidemic, several measures can be taken. The rendering method can
be improved, brains and spinal cord can be removed from rendering, and feeding of
MBM to cattle can be minimized. In the model we can calculate the effect of these
measures on R0 by adjusting the relevant parameters, such as c1, c2, k1 and k2 (see
Section 4). In this way one can draw up a set of regulations to minimize the risk of a
major epidemic given the costs of following these regulations, or regulations that lead
to a fast decline in the number of new infections, given that an epidemic has started
(see section 2.5).
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4.2.5 Characterization of growth rate r.

Analogous to the derivation of the reproduction ratio R0, we can derive an equation
for the per capita growth rate r of the infection at the initial (exponential) phase of the
epidemic. This derivation is slightly more complicated.

The real-time evolution of the infection is described by

I(a, t, 0) = S(a)β(a)

∞Z
0

∞Z
0

θ11(α, τ) I(α, t− τ , 0) + θ12(α, τ)I(0, t− τ , 0)dτdα

I(0, t, 0) =

∞Z
0

∞Z
0

θ21(α, τ) I(α, t− τ , 0) + θ22(α, τ)I(0, t− τ , 0)dτdα (4.9)

which is the continuous-time counterpart of the next-generation operator Q on
which the expression for R0 is based. Here, I(a, t, 0) denotes the feed-induced in-
cidence of new cases with age a arising at time t (then infection age τ = 0) and
I(0, t, 0) denotes the maternally induced incidence with age a = 0 at time t. S(a) =
Fs(a)/

R∞
0

Fs(α)dα denotes the age distribution arising from the demographic steady
state of the cattle population (held constant by the farmer) and β(a) denotes the age de-
pendent susceptibility. The transmission kernelΘ(a, τ) is given by a two-dimensional
matrix with elements θij(a, τ):

θ11(a, τ) = ((c1µ(a+ τ) + c2ν(τ))k1k2 + ω)
Fs(a+ τ)

Fs(a) Fi(τ)γ(τ)

θ12(a, τ) = b(a+ τ)
Fs(a+ τ)

Fs(a) Fi(τ)mγ(τ)β(a)

θ21(a, τ) =

∞R
0

β(a)Fs(a)da
∞R
0

Fs(a)
(c1µ(τ) + c2ν(τ))k1k2 + ω)Fs(τ)Fi(τ)γ(τ)

θ22(a, τ) = b(τ)Fs(τ)Fi(τ)mγ(τ) (4.10)

We write i(a, t) for the vector (I(a, t, 0), I(0, t, 0))T and can then rewrite system (4.9)
as

i(a, t) =

Ã
S(a)β(a) 0

0 1

! ∞Z
0

∞Z
0

Θ(α, τ)i(α, t− τ)dαdτ (4.11)

To derive the growth rate r, we look for exponential solutions to (4.11), i.e. solutions
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of the form:
i(a, t) = F (a)ert

where F (a) = (f(a), f(0))T. Substitution into equation (4.11) leads to a relation for
the vector F (a):

F (a) =

Ã
S(a)β(a) 0

0 1

! ∞Z
0

∞Z
0

Θ(α, τ)F (α)e−rτdαdτ (4.12)

One can show that this operator has a two-dimensional range and that we can re-
formulate the eigenvalue relation (see Diekmann & Heesterbeek, 2000, section 5.3.3)
as stating that the value of r we are looking for should be such that the dominant
eigenvalue of the following 2*2-matrix is one:

∞Z
0

∞Z
0

θ11(α, τ)S(α)β(α)e
−rτdαdτ

∞Z
0

∞Z
0

θ12(α, τ)e
−rτdαdτ

∞Z
0

∞Z
0

θ21(α, τ)S(α)β(α)e
−rτdαdτ

∞Z
0

∞Z
0

θ22(α, τ)e
−rτdαdτ

 .

This leads to an equation for r which can be solved numerically.

From the available data (see Section 3) we find that θ12(α, τ) and θ22(α, τ) are
small relative to θ11(α, τ)S(α)β(α), so the second component of the eigenvector (ver-
tical transmission) will be rather small relative to the first. Therefore we restrict our-
selves to the horizontal-infection routes we get a simple relation from which r can be
estimated:

f(a) = S(a)β(a)

∞Z
0

∞Z
0

θ11(α, τ)f(α)e
−rτdαdτ

If we define the operator Kr by the right-hand side of this relation, then r is defined
as the value for which f(a) is an eigenvector of Kr corresponding to eigenvalue 1.
Note that Kr has a one-dimensional range and S(a)β(a) is the only eigenvector cor-
responding to a non-zero eigenvalue. Substituting this into the eigenvalue relation
leads to an implicit relation:

1 =

∞Z
0

∞Z
0

θ11(α, τ)S(α)β(α)e
−rτdαdτ (4.13)
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which can be shown to have a unique solution r, which can be computed by, for
example, a Newton algorithm. We will make this restriction for the remainder of this
paper.

4.3 Estimation of Parameter values

4.3.1 Demographic parameters

In most developed countries the replacement rate of cattle older than two years is
approximately 1/3 to 1/4 per year, and rather constant over ages. Young stock are
submitted to higher culling rates, about 0.5 per year with peaks in the first half year
and at about 18 months. Culling of young stock is normally done to control the size
of a local herd, so it depends on both the culling rate of adult cattle and the birth rate.

We assume a constant per capita culling rate per year for cattle older than two
years. For the Netherlands that culling rate of adult cattle is µa = 0.3 and for the UK
it is somewhat lower, i.e. µa = 0.25. In cattle younger than two years BSE has rarely
been detected (0.002%) and therefore this age group is supposed to hardly contribute
to the spread of the infection. Thus, the precise shape of the survival function up to
two years old is of minor importance. We simplify the culling rate of young stock to a
constant, µy. Cattle reproduce from two years of age onwards, and produce on average
one calf per cow per year (b = 1). Assuming a constant population size and stable age
distribution, the fraction Fs(2) of cattle surviving until at least two years of age can
be calculated as the adult culling rate (µa) divided by the birth rate b, since bFs(2)/µa
should equal one, at a constant population size. Thus we estimate the culling rate of
young stock (µy) from Fs(2) = e−2µy = µa/b. In summary, we use:

b(a) =

(
0 if a < 2

1 if a ≥ 2

µ(a) =

(
0.55 if a < 2 in NL
0.3 if a ≥ 2 in NL

µ(a) =

(
0.6 if a < 2 in the UK
0.25 if a ≥ 2 in the UK.
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4.3.2 Probability of becoming infected

Recently, various models (e.g. [60]) for the infectious behaviour of prions were de-
veloped, generally involving polymerization of prions and giving very plausible ex-
planations of some features found in infectious load development and dose response
relations. We will focus on one of the simplest models for infection, assuming that
BSE infection is spread by many small infectious particles (prions or small clusters of
prions), which all have an extremely low probability p to induce infection (single hit
theory). This leads to the following dose-response relation: (See also [45])

response = 1− (1− p)dose (4.14)

Here response is defined as the probability for an animal to become infected by the
dose of infectious material ingested (expressed in grams of brain material) and this
is estimated from the fraction of animals that respond (get infected) in a bioassay.
Because p is very small, this relation can be approximated by:

response = 1− e−p·dose (4.15)

For different amounts of infectious material ingested (dose) we visualized this relation
in Figures 1. Using (4.14), we analyzed titration data from mouse bio-assays of Taylor
[79],[78] and Schreuder et al. [75] for the effect of heating and rendering on prion
survival. Generalized linear modelling (GLM, see [61]) with a binomial distribution
and a complementary log-log link function is applied to the data using GENSTAT v5,
which estimates the constant p and its standard error. Our results are generally the
same as the original analysis with the Kärber method, with this differencem that the
latter expresses the results in terms of ID50, i.e. dose that is infectious for 50% of a
test group.

This dose response relation is also used to describe the transmission of the infection in
the population. In the population the incidence of BSE is generally low and infectious
contacts are spread widely over the population due to the processing steps of MBM-
rendering, feed processing and feed distribution. Therefore, the infectious dose per
individual animal will remain low. For low individual dose, the dose response relation
can be linearized, which leads to a constant probability for each particle to induce
infection:

response = 1− e−p·dose ≈ p · dose
dose as the amount of infectious material, that is expected to induce one new infection
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in a population. In the linearized model, it does not matter whether this material
is spread over one herd or a hundred herds, it is still expected to induce one new
infection. If such an infectious dose unit would be fed to one animal (relatively high
dose), the linearization of the model is not valid any more, in that case the probability
of infection for that one animal is estimated from the above to be 63%.
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Figure 1a.
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Figure 1. Dose-response curve for TSE’s on a lineair (1a) and on a logarithmic scale,
i.e. titre (1b).Next we define the unit of infectious

4.3.3 Infectious load in the animal

The infectious load of an infected animal is assumed to increase exponentially during
the infectious period, as there is no knowledge of any inhibiting immune reaction to
the BSE agent. Infectious load means the amount of the infectious agent that accu-
mulates in the infected animal in time. Dose-incubation time analysis for cattle yields
a shortening of the incubation time by 22 weeks for a 10 times higher dose, which
suggests a doubling time of the infectious agent of about 6 weeks (oral exposure ex-
periment, unpublished data from VLA, Weybridge, UK). Thus, assuming a doubling
of BSE infectiousness over 6weeks time (i.e. 0.12 year), we estimate and use a growth
rate of the infectious load of 6 per year.

The oral infectious dose for cattle of 4 months old was estimated from the same
oral exposure study which consists of 4 groups of 10 cattle (unpublished data, VLA),
using the previously described dose response analysis. Analysis with the dose re-
sponse relation as suggested above yields an estimated oral infectious dose unit of 1.9
grams of brain material of a cow with clinical BSE symptoms (equaling an ID50 of 1.3
grams). An average brain weighs 600 to 800 grams and the spinal cord weighs about
250 grams. Other parts of the carcass contain a very small infectious load compared
to these parts. This leads to an estimate of the total infectious load of a BSE infected
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cow in the last stage (when clinical BSE signs have developed and τ can be assumed
4.5 years) of about five hundred infectious dose units.

The infectious load as a function of infection age, can be derived by calculating
backwards from the infectious load at the time clinical symptoms show (τ = 4.5

years) and using an exponential growth rate of 6 per year:

γ(τ) = 10−9e6τ (4.16)

4.3.4 Other infection related parameters

We assume that cattle of all ages receive equal amounts of feed. The exact shape of
the decreasing function that describes the age-dependent susceptibility is not known.
We assume an exponential decrease to 10% of the susceptibility of 4 months old cattle
and a relative rate of decrease of 2 per year. The susceptibility of calves of 4 months
old is by definition equal to 1, and the age dependent susceptibility of cattle is given
by (Figure 2):

β(a) = 0.1 + 1.8 · e−2a (4.17)
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Figure 2. Age dependent susceptibility of cattle for BSE, relative to the susceptibility
of a four months old calf.

We assume that clinical signs of BSE (and thus also the infection-age dependent
culling rate) increase with the infectious load of a cow. At present in the UK, farmers
and veterinarians will be more experienced in recognizing BSE than before 1990. Be-
fore 2000 most other countries were as unexperienced as Britain was in the early stage
of the epidemic. We estimate the average infection age of clinically diagnosed BSE
cattle (incubation period) at 4.5 years for the UK since 1989 and in other countries as
well as in the UK prior to 1989, diagnosis is assumed a few months later, 4.8 years.
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Given an average incubation period of 4.5 and 4.8 years, we determined the infec-
tionage dependent culling rate (per year) as:

ν(τ) =

(
10−12e6τ UK since 1990
5 · 10−12e6τ otherwise (Figure 3)

(4.18)
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Figure 3. survival function of BSE infected cattle, when culling will be limited to
clinical BSE.

To model the feed infection route we have to follow the infectious material from
the infected animal up to the moment of new infection and estimate the reduction of
infectivity in each step in the material, by keeping track of the total infectious load.
For animals which were culled without signs of a neural disease (even though they
may have been infected), the normal slaughter process will be applied. The fraction
of the infectious load of a cow that enters the rendering process is called c1. For the
UK before 1989, it was estimated that almost 70% of the infectious material (mainly
brains and spinal cord) of a beef carcass entered the rendering process (c1 = 0.7,
Table 1). Animals which were culled due to signs of a neural disease, may have been
treated differently. For these animals we assume a fraction c2 of the infectious load
of a cow entering the rendering process. Before 1987, BSE was not recognized as
such. About 50% of cattle with neural diseases was not used for human consumption
and was therefore fully rendered, therefore we assume c2 to be slightly higher than c1:
0.85 (Table 1).

The reduction of infectious load during the process of rendering, k1, is determined
in mouse bioassays. Taylor et al. ([79],[78]) tested a continuous vacuum rendering
process with high fat content, which was commonly used in the UK since the 1970s.
Schreuder et al. ([75]) tested several different treatments to quantify the efficacy of
various rendering processes in TSE reduction. He found similar results for the at-
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mospheric process and also quantified processes as applied in the Netherlands (see
Table 1).

Next, from the total amount MBM that is produced from the rendered cattle mate-
rial, a fraction of about k2 = 0.20 is used in the production of cattle feed, whereas the
major part is used in pig, pet and chicken feed. These species are far less susceptible
to the BSE agent than cattle (there are only a few reports of cats infected with TSE),
and this is considered to be a dead end route for the spread of the infectious agent
among cattle.

parameter UK 1986 UK 1991 UK 1995 UK 1998
k1 0.1 0.1 0.1 0.1

k2 0.2 0.02 0.005 0.002

c1 0.7 0.05 0.05 0.01

c2 0.85 0.05 0.05 0.01

ν(τ) 5 · 10−13e6τ 10−12e6τ 10−12e6τ 10−12e6τ

parameter NL 1986 NL 1991 NL 1995 NL 1998

k1 0.01 0.01 0.001 0.001

k2 0.2 0.1 0.01 0.005

c1 0.7 0.7 0.7 0.05

c2 0.85 0.85 0.85 0.05

ν(τ) 5 · 10−13e6τ 5 · 10−13e6τ 5 · 10−13e6τ 5 · 10−13e6τ

Table 1. The parameter estimates underlying the estimate of R0.

Table 1 gives an overview of the parameter values, that were separately estimated
for the UK and the Netherlands. These estimates were made in four different time
periods, 1986, 1991, 1995 and 1998. In 1986, BSE control was unknown, differ-
ences between countries lie only in the rendering and feeding methods: UK uses low
temperature atmospheric systems whereas in the Netherlands mostly pressurized high
temperature methods were applied (different value of k1). Before 1991 both countries
introduce a ban to feed MBM to ruminants (reducing k2) and in the UK specified risk
materials, SRMs, are defined and removed to be incinerated (reducing c1 and c2). In
the period between 1991 and 1995, the feedban is extended and inspection for com-
pliance with the ban follows, leading to a further reduction of k2. Furthermore in the
Netherlands rendering temperatures and pressure are slightly increased (EU regula-
tions affecting k1) and in the UK clinical diagnosis improves (ν(τ)). Between 1995
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and 1998, especially in the UK inspection into compliance with all bans is extended
and risk of cross-contamination becomes clear, leading to separate production lines
and flush batches (further reducing k2). In the Netherlands the SRM removal is intro-
duced, reducing c1 and c2.

A maternal transmission study [30] gives an estimate of 10%±5%maternal trans-
mission when a cow gives birth at the highly infectious last stage of the infection
(when the infectious load γ(4.5) is estimated at 2000 infectious dose units, see the
previous). Maternal infection is assumed to be lower for cows in earlier stages of
the infection, according to the infectious load γ(τ) of the mother. With this infor-
mation we estimate the maternal transmission rate for a calf (relative to the mothers
infectiousness): m = 0.1/γ(4.5) = 0.1/2000 = 0.5 · 10−4.

The last parameter that remains to be estimated is very difficult to quantify. It
describes the combined transmission rate for direct horizontal contact infection, ωh,
diagonal infection, ωd and indirect infection via the environment, ωi. These three
parameters can not be estimated separately from any data presently available, so we
cluster them into one parameter ω. The following argumentation leads to a quantifica-
tion of this parameter.

During the initial stage of the outbreak in the UK, these ”other” transmission
routes were negligibly small compared to the feed infection route. However, when
infection via the feed infection route is minimized, due to the feed and SRM bans, ω
may become visible in the development of the epidemic. It can explain why it has
been impossible to bring BSE transmission to a complete stop immediately. The para-
meter was estimated from the observed data of infections after the feed ban (new cases
during 1993 until 1997). Assuming that the feed infection route was fully closed in
that period, we estimated backwards from the exponential decay rate of the epidemic
at that time (using (4.13) and Figure 6) that ω is at most 3 · 10−4.

Thus we derive a maximum estimate for ω, knowing that the feed ban was certainly
not fully effective between 1990 and 1996. In the mean time we neglect a part of the
environmental infection route, by only looking at short-term survival (in the order of
months) of the material in the environment. Given enough time, infectious material
will flow away from the soil with the rain and ground water, so this appears to be a
reasonable assumption. Such infectious material may finally accumulate in lakes, seas
and oceans where it is presently assumed to be harmless.
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4.4 Quantifying R0

4.4.1 Estimates

R0 (upper 95%) 1986 1991 1995 1998
UK 14 (25) 0.1 (0.3) 0.05 (0.1) 0.03 (0.1)

NL 0.7 (1.3) 0.2 (0.5) 0.08 (0.1) 0.05 (0.1)

Table 2. Estimated reproduction ratio R0 for the United Kingdom (UK) and the
Netherlands (NL), during different periods depending on the implemented control
measures. Numbers between brackets are the upper boundary of the confidence in-
terval (alpha = 0.95), see section on sensitivity analysis.

Table 2 shows estimates of the reproduction ratio R0 for the UK and the Nether-
lands over the last two decades. The impact of the first control measures, such as feed
and SRM bans can clearly be seen in the strong decline of R0. Later measures had
little impact. The reproduction ratio was estimated to be below one in the Netherlands
even before introduction of control measures. Therefore, a BSE epidemic was not to
be expected. The difference in R0 with the UK is almost completely due to differ-
ences in the rendering processes between these countries, affecting k1 (see also Table
1). That the Netherlands actually still finds BSE cases in the indigenous population
is mainly due to large imports of risk material and live animals. Since then very slow
fade out of the infection started, but total eradication is not expected within another 5
to 10 years, depending especially on the level of infection via non-feed routes. Figures
4-6 show the development of the epidemic in these periods.
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Figure 4. Increase and decrease of the number of new BSE cases per week during the
outbreak in the United Kingdom.
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Figure 5. Linear regression on the data of the BSE outbreak from June 1988 until
December 1991
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Figure 6. Linear regression on the data of the BSE outbreak from October 1993 until
march 1996.

From the model, the growth rate of the infection was estimated at r = 0.58 per
year in the initial exponential phase of the epidemic in the UK. Using linear regression
on the case data from the beginning of 1988 (when reporting levels stabilized) up to
halfway 1991, we find that the growth rate r = 0.64. For the decreasing phase of the
epidemic, the data (end 1993 to beginning 1996) lead to an estimated growth rate of
r = −0.53 per year.

In the UK, introduction of a feed ban and SRMban (ban on the use of SRMs in the
rendering process) reduced the reproduction ratio from 14 to 0.1, a 100 fold reduction.
Application of an initial feed ban in the Netherlands reduced the local reproduction
ratio only about 10 fold. Later extensions on the feedban led to further decrease of
R0. In 1997 the Netherlands also introduced an SRMban, but at that point the impact
was rather small because the feed infection route had already become small compared
to the remaining infection routes.
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4.4.2 Sensitivity analysis and confidence interval

The quality and accuracy of the estimate of R0 depends heavily on the quantifica-
tion of the ingredients. Whenever modelling and quantification are combined, one
of the more difficult issues to deal with is the confidence interval associated with the
estimated or calculated results. Due to high uncertainty in some of the parameter es-
timates in this study, the ensuing uncertainty in the estimated reproduction ratio is
possibly high and we need to quantify this more precisely. We determine a 95% con-
fidence interval from the known variance of the parameters for the model with the
restrictions and assumptions as mentioned before. A good choice for the distribution
of the uncertainty of the parameters and of the R0 estimate are important for the fi-
nal result. In constructing methods to quantify the variance of R0, we distinguish
transmission via food, and other transmission routes.

For the feed infection route the analysis is explained in detail below. For the other
infection routes, little information is available, and we restrict ourselves to determin-
ing an upper 95% confidence level, leaning on the assumption that the highest possible
value of the reproduction ratio through non-feed routes is equal to the lowest reproduc-
tion ratio to be determined from the data. This is estimated at R0 = 0.1, and r = −0.5
which fits with the negative growth rate estimated from the case data between 1994
and 1996. We therefore determine the upper boundary of the 95% confidence interval
for non-feed infections at 0.1. The total variance of the estimator is the sum of the
variances of the two parts, and thus, the upper confidence boundary cannot get below
0.1, but can be (much) higher if the feed transmission route is non-zero.

For the calculation of q11 the estimates of infectious load, γ(τ) and the efficacy of
the rendering process, k1 are the most uncertain ingredients. This does not imply that
R0 is most sensitive to these ingredients. One could use e.g. latin hypercube sampling
to determine the contribution of all ingredients to the uncertainty in R0. Here we have
chosen to analyse uncertainty only with respect to γ(τ) and k1. These two factors
are estimated using generalized linear modelling on titration of infectious material
in cattle (γ(τ)) and mice bio-assays (k1). The efficacy of the rendering process is
determined by titration of material before and after treatment. The high uncertainty in
these parameter estimates is due to the limitation in the number of test animals. For k1
the material before and after a rendering process needs to be analyzed, bringing two
such parameters into the equation. Those parameters derived from the bio-assays are
here denoted as bxi. Given the structure of q11, we assume that:

\Rfeed = f(cx1,cx2,cx3) = c
cx1cx3cx2 (4.19)
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We will estimate the ensuing variance of\Rfeed, from the variance of the estimators
(bxi). From the bioassay results the titre (10 log(dilution)) of the original material
is determined. We assume a normal distribution for the titre with expected value µ

and variance σ2. Then the estimated infectious dose cxi of that material follows a
lognormal distribution. The expected value and variance of Rfeed (for which we also
assume a lognormal distribution) can then be analyzed as follows (see [53]):

E(xi) = e(µ+
1
2σ

2)

and

Var(xi) = e(µ+
1
2σ

2)(eσ
2 − 1)

For independent variables xi we know that

Var(lnRfeed) = Var(lnx1) + Var(lnx2) + Var(lnx3) (4.20)

Now, using

Var(lnxi) ' ln
µ
1 +

Var(xi)
E(xi)2

¶
(4.21)

we derive

Var(lnRfeed) ' ln
µ
1 +

Var(x1)
E(x1)2

¶
+ ln

µ
1 +

Var(x2)
E(x2)2

¶
+ ln

µ
1 +

Var(x3)
E(x3)2

¶
(4.22)

which can be calculated from the data. Finally using (4.21) and (4.22) we derive
the variance of Rfeed

V ar(Rfeed) ' E(Rfeed)
2e(V ar(lnRfeed)−1) (4.23)

The rules as explained above are applied to calculate the upper boundary of the
95% confidence interval as given in table 2.

4.4.3 Choice of functions/curves

The use of a different function for the age-dependent susceptibility may lead to very
different results, especially for a cattle population with a rather unusual age distrib-
ution. We tested whether constant susceptibility over all ages would be a reasonable
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assumption, but from the decreasing BSE prevalence at older ages (over 7 years) it is
clear that this model does not fit the observed distribution in the UK so we did not
calculate the effect on R0. Infection only at birth or very young age would fit the data
rather well, if the incubation period has a very long tail to the right, but that effect on
R0 is minimal (3 % at most). The assumed susceptibility curve of formula 25 results
in a good fit with the data. From the data it is not yet possible to make an accurate
estimate of the susceptibility as function of age (see also Ferguson et al., [36]).

The estimated R0 is also sensitive to the age distribution of the cattle population.
Extreme age distributions (resulting from very high or very low culling rates) may
lead to more than a 10 fold difference in the estimated R0. However, for the observed
cases, UK and Netherlands, realistic variation in age distributions leads to less than
1% differences.

4.4.4 Comparison of the estimatedR0 with field data

The results from the present model can be compared to the observed case data of the
UK outbreak. From the model with the parameters set at the estimated values for 1986
(Table 1), we calculate a reproduction ratio R0 = 14 with an exponential increase of
infection of r = 0.58 per year. From the UK case data, a growth rate of 0.64±0.14 per
year is directly estimated by use of linear regression on the logarithm of the number
of BSE cases per week, in the period between the beginning of 1988 (when reporting
levels stabilized) and mid-1991 (after which exponential increase slows down due to
control measures). Cases in this period are born before the feed ban, and are therefore
considered to be representative for the development of the epidemic without the ban.
Thus, the model slightly underestimates the growth rate and the reproduction ratio
of the infection in the UK in the 1980s, but the model result for the growth rate still
lies within the confidence interval of the growth rate estimated from the field data.
Ferguson et al. [37] quantify R0 from a data driven model, and estimate it between
10 and 18 between 1983 and 1988, with some variation over the years. Valleron et al.
[81] estimate a growth rate of 0.6 per year. All these estimates lie easily within our
confidence interval (see below) and thus support our quantification.

The measured growth rate r = 0.64 can be mimicked with the model by calibrat-
ing some of the more uncertain parameter estimates, such as k2. Such a calibrated
model gives an estimate of R0 equal to 19, leading to a good fit of the model to the
observed UK data. However, given that it is unclear which parameters should be
calibrated, in this paper we restrict ourselves to the original parameter estimates to
quantify R0.
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4.5 Discussion

This paper describes the calculation of R0 and r for BSE, where all ingredients are
based on proposed underlying mechanisms of infection or estimated from data. A
problem in modelling BSE (and other TSEs) is that much of the behaviour of the
infectious agent is still unknown or uncertain. Some assumptions made in our calcu-
lation have a substantial influence. Especially the behaviour of the infectious agent
according to the ’single hit theory’ and to a lesser extent the exponential increase of
the infectious load in an infected individual. Existence of a minimal infectious dose
or polymer formation by prions will affect the transmission of BSE, and if proven,
should lead to more accurate calculation of R0. The single hit theory must be seen as
a worst case scenario.

The confidence interval of the estimated reproduction ratio R0 is wide, due to high
uncertainty, especially in parameter values estimated from infectious dose quantifica-
tion by bioassay. The estimate of k1, the reduction of infectious load by the rendering
process, also shows a high standard error. When, in the future, more advanced and
precise tests are developed to measure the concentration of the infectious agent, the
uncertainty in this factor may be reduced.

In our calculation we ignore spatial aspects of the infection, so local clustering of
BSE cases, as observed in the UK data, is not explained in this model. Hagenaars
et al. [41] give a nice overview of some spatial features of the BSE epidemic. It
remains to be seen in how far ignoring clustering will affect our calculations. We also
ignore infection of other species than cattle, and long-term persistence of infection in
the environment. Although these two factors are worrysome for the future, they are
unlikely to have a strong influence on the short-term analysis of the effect of BSE
control.

We assessed the effect of different control measures and find that there are three
major control measures: a feed ban on MBM to cattle, optimization of the rendering
process and SRM removal and incineration. In most cases, to reduce R0 below 1, it
suffices to apply two of these measures, but faster reduction of the problem will be
obtained by adding further controls. When the compliance to the control measures
is difficult to maintain as was the case in the first decade of controlling the infection,
extra measures should be taken to ensure fade out of the epidemic.

When these control measures are sufficiently in place, infection routes other than
via feed will become the major remaining transmission routes. These remaining trans-
mission routes will be much harder to control, and therefore, the reproduction ratio
cannot be reduced to zero. However, the remaining transmission routes are definitely



80 Chapter 4

too small to cause a major BSE epidemic, and under some basic control measures a
decrease of 50% per year can easily be achieved. The maximum estimate of the re-
production ratio without feed transmission is 0.06, which leads to fast decrease of the
number of BSE infections.

We conclude that countries which had a rather inefficient rendering industry with
respect to BSE inactivation and where farmers tended to feed large amounts of MBM
to cattle are presently at high risk concerning BSE in their cattle herd. Especially
when such countries also imported cattle and/or MBM concentrated feeds from the
UK. Countries with a rather efficient rendering and with low amounts of MBM in
their cattle feed can expect a very low BSE prevalence, if at all.

Countries with a high BSE prevalence should close the feed infection routes as
much as possible, thus minimizing the reproduction ratio and the growth rate, leading
to a fast decrease of infection and disease. When the prevalence has become very low,
these control measures may be relaxed, but these countries must be more careful in
this respect than other countries, because of the unknown long-term survival of the
infectious agent in the environment.
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Abstract

Recently, due to consumer fears and political worries concerning BSE as
a possible threat to human health, a need arose for more sensitive meth-
ods to detect BSE and more accurate methods to determine BSE preva-
lence. As a part of that, it is important to pinpoint groups in which BSE
risk is higher. One of the well known risk factors for BSE is age, very
young animals do not develop the disease, and very old animals are less
likely to develop the disease. We analyse which factors have a strong in-
fluence on the age distribution of BSE in a population. In a next step,
we develop a system to easily calculate the (risk of) BSE prevalence in a
population. Data on imports and on the BSE control level over the last
ten or twenty years are the required input data.
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5.1 Introduction

The presence of BSE in the European cattle population led to decreased beef consump-
tion in the late nineteennineties. Clearly consumers worry about the possibility that
material from infected cattle may induce a new variant of Creutzfeld Jacob, a fatal and
incurable disease in humans. For proper assessment of the human risk per region, it is
important to estimate the local prevalence of BSE. This is not easy, because the infec-
tion can spread among cattle unnoticed for several years, as the disease develops very
slowly, and early clinical symptoms are various and difficult to diagnose, especially by
unexperienced people. This difficulty to diagnose can lead to major underreporting of
the disease, as was shown to have happened in the UK and Switzerland in the begin-
ning of their respective outbreaks. It has by now become clear that several European
countries had BSE circulating in their population while still claiming freedom from
the disease.

Especially in countries where few or no BSE cases are reported so far, active
surveillance is far more effective than passive surveillance (mandatory reporting of
clinical suspects) to assess the apparently low or zero prevalence. If the prevalence of
BSE is low, large numbers of animals need to be tested to establish and quantify it. The
number of tests could possibly be reduced if there would be a good method to focus
on specific risk groups in the population and, thus, design an optimal surveillance
program. Indeed, targeting of surveillance to specific risk groups may reduce the
sample size needed to determine the prevalence of BSE, and if, according to a reliable
risk assessment, there is negligible risk, this can be a good reason to refrain from an
intensive surveillance program.

Doherr et al (1999) showed that, in Switzerland, BSE is found with a higher prob-
ability in fallen stock (5 times higher) and emergency slaughter (4 times higher), than
it is in the normal slaughter line. Biased sampling from groups with higher risk can in-
crease the sensitivity of a surveillance system. Thus, surveillance could be improved
by concentrating on the fallen stock and emergency slaughtered animals. Quantita-
tively, this risk pattern is established for Switzerland. Relevant other information can
be derived from the routine testing of all slaughter animals over 30 months and of
some part of the fallen stock, which most EU countries started in 2001, confirms the
higher BSE prevalence in fallen stock and emergency slaughter animals. However,
given that large differences between countries have appeared, a more subtle method
to extrapolate to other countries may be needed.

General patterns in the age distribution of BSE cases, as resulting from the local
cattle population structure and from the local measures in BSE control are analysed
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in DeKoeijer et al 2002. Here we will show in more detail how to develop a model to
analyse such patterns and the effect of changing BSE control conditions over time. Us-
ing the available information on development of the infection, focussing specifically
at regional conditions, and including information on import of risk animals and infec-
tious material in the past, we strive for a good risk assessment of the infection. How-
ever, to do so, several difficult steps in modelling and calculation need to be made. In
this paper, we introduce a basic deterministic BSE transmission model, which is then
transformed into a rather simple calculation system, based on discrete time steps. This
calculation system can be used to make a quantitative regional BSE risk assessment,
that requires rather simple and straightforward input information. It also offers options
to analyse the age distribution of detected BSE in a cattle population and evaluate the
quality of historical information on import or control conditions from that. The results
can be used to support discussion on trade safety, and can be applied to further target
the BSE surveillance to a smaller group of cattle with relatively high risk of BSE.

5.2 Age Structured Model

According to basic theory, the number of new infections at some point in time depends
on the infection pressure at that moment in time. The number of individuals suffering
from the disease depends on the number of infected individuals some time ago (i.e.
the incubation period ago); the precise dependence has to take account of processes
like survival of the infected individual, see Diekmann and Heesterbeek (2000) [24].
For very slowly developing diseases like BSE, the delay introduced by the incubation
period has a major impact on the prevalence of the infection in specific age groups.

In de Koeijer et al 2002 [14] it is shown that the age distribution of BSE cases is
influenced by life history parameters of the population; for instance, a high culling rate
of cattle leads to a lower average age of BSE cases. The control history also has a high
impact; a region with bad BSE control measures will find BSE cases with a lower age
(on average), than a region with good BSE control measures. This all follows from
straightforward age structured modelling of the dynamics of the infection. However, a
few important features are ignored in [14]. (1) the fact that conditions can change over
time: most EU countries have introduced many new control measures over the last 15
years. (2) the lack of suitable input data.(3) the fact that cattle can become infected at
an advanced age (preliminary results of Wang et al. [83]). Most of these features can
be incorporated in a more careful mathematical formulation. We aim at a model that
describes the number of BSE cases over time and age, based on parameters concerning
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typical BSE cattle interactions, survival of cattle, and impact of BSE control measures.
We model the infection deterministically and assume that the fraction of suscep-

tibles in the population remains close to 1. We define a BSE case as an animal that
would give a positive result if tested for prions, and denote the number of BSE cases
at time t by c(t). New infections induced at time t will be referred to as n(t), the
infection cohort of time t. Assume a simple model with a fixed incubation period τ∗,
where the animals will die as a result of the disease after the incubation period. In this
case, the normal survival of cattle (not influenced by the disease), denoted by F(α),
determines which part of this infection cohort will live sufficiently long to become
cases later on (for more details see Diekmann and Heesterbeek [21]), so

c(t) = n(t− τ∗)F(τ∗). (5.1)

Animals in early stages of BSE infection hardly contribute to the transmission of
BSE, so for practical purposes we neglect their contribution and assume that the in-
fectiousness is concentrated in a very narrow time window centred around the mo-
ment when disease symptoms show. Therefore, n(t) is proportional to c(t), say
n(t) = θc(t). Combining this with (5.1) we obtain

c(t+ τ∗) = R0c(t), (5.2)

where R0 is the basic reproduction ratio of the infection, given by R0 = θF(τ∗). In
the context of BSE, we find that θ is actually time dependent, since behaviour and con-
trol measures are changing in the course of time. Here it is also relevant to realise that
in general θ is mostly influenced by the major transmission route, i.e. transmission
via cattle derived meat and bone meal (MBM) in cattle feed. Other factors also influ-
ence R0 but are assumed to be small compared to the above. When R0 is constant,
the model in (5.2) is straightforward. When R0 varies over time, strictly speaking
we cannot interpret R0(t) as a reproduction ratio since the very concept doesn’t make
sense when environmental conditions change with time while generations overlap. In
this paper we will make the more specific assumption that R(t) denotes a quantity
that relates the number of cases at time t, to the number of cases in animals that got
infected at time t and will become cases at time t+ τ∗. More specifically this means
that

c(t+ τ∗) = R(t)c(t). (5.3)

The BSE case data from the UK ([84]) indicate that infection mostly occurs at very
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young age but cases display a large variation in the incubation period. Therefore, we
extend the basic model into a very simple age structured model by adding a variable
incubation period while assuming that BSE infections start at the birth of an animal.
As a consequence, the length of the incubation period coincides exactly with the age
of the case. Let g(τ) denote the probability density function of the variable incubation
period τ . Note that the distribution of the incubation period of cases detected in the
population will generally differ from g(τ), due to a lower probability for animals with
a long incubation period to survive until the onset of the disease. We will now dis-
tinguish cases according to the variables time and age and define the relation between
cases in the past and future by:

∞Z
0

c(t+ σ, σ)dσ = R(t)
∞Z
0

c(t, τ)dτ . (5.4)

Here c(t, τ) is the number of cases at time t, with infection age τ . Then
R∞
0

c(t, τ)dτ

is the number of cases at time t, while
R∞
0

c(t+ σ, σ)dσ corresponds to all cases that
became infected at time t. Previously, we saw that R0 consisted of a time depen-
dent factor θ(t) and survival F(τ∗). With a variable incubation period, the survival
influence is given by the average survival of a BSE case

R∞
0

g(τ)F(τ)dτ . When quan-
tifying the valueR(t) from information on feeding patterns, population data and BSE
control, the moment that these ingredients have their impact is important. For θ(t) this
is simple, the effect will be timed around the moment of transmission, i.e. between
death of a BSE case and infection of a susceptible young cow through MBM. When
the survival function changes over time, it changes during incubation. Therefore, such
changes in R(t) should be analysed using the F(τ), that is valid for the birth co-
hort of time t. In general, the survival function does not depend on time, but major
policy changes like the British OTMS (Over Thirty Months Scheme: cattle over thirty
months old are not accepted for human consumption) may lead to substantial changes.
In such cases carefull specification of the survival function for a given point in time
becomes important.

The number of BSE cases at time t is distributed with respect to age. This distri-
bution is influenced by three factors: (1) the distribution of the BSE incubation period
as described by g, (2) the survival probability F which may vary between countries
and over time, and (3) the way new infections in the past varied with time, which de-
pends on the local epidemic history. Let k denote the normalisation constant of this
distribution (so k−1 =

R∞
0

g(ξ)F(ξ)dξ). We can now formulate the number of cases
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in a cohort by

c(t+ τ , τ) = k g(τ)F(τ)R(t)
∞Z
0

c(t, ξ)dξ (5.5)

and find that the age distribution of cases at time t, denoted by h(t, a), is given by

h(t, a) =
c(t, a)R∞

0
c(t, ζ)dζ

= k g(a)F(a)R(t− a)

R∞
0

c(t− a, ξ)dξR∞
0

c(t, ζ)dζ
. (5.6)

When R(t) is constant over time (R(t) = R0), a stable age distribution will be
reached (see for example [21] ), where the total number of cases grows (or declines)
exponentially over time, with rate r:

∞Z
0

c(t0 + t, ξ)dξ = ert
∞Z
0

c(t0, ζ)dζ (5.7)

For the method to calculate r, we refer to deKoeijer et al [13]. Substituting (5.7) in
(5.6) we find that h is independent of time and given by

h(t, a) = k g(a)F(a)R0e−ra.

Note that the age distribution of the BSE cases displays the growth rate of the
infection. An epidemic in a stage of fast growth will display a lower average age
of the BSE cases than an epidemic in a stage of slow or negative growth. Real data
and predictions derived from these can be found in deKoeijer et al. [14]. Such results
can be applied to monitor the efficacy of BSE control measures in a country which
recently started testing and has since detected enough BSE cases to determine the age
distribution.

An abrupt change in R0 at time t∗ induces an abrupt change in the growth rate.
Let r1 denote the growth rate of the epidemic before change. Then, soon after the
change, the age distribution of cases will show a running wave over time, and slowly
settle into the new stable age distribution. As before, the age distribution of the older
cases displays the growth rate of the infection before change:

h(t∗ + t, a) = k g(a)F(a)e−r1a ∀a > t (5.8)

For younger cases, the age distribution can be calculated, but it will not immedi-
ately settle into the new stable distribution, because the infection pressure is changed
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abruptly due to the newR(t), but the number of cases after change will still grow with
the old growth rate for a while, because they are already incubating. It may take many
years before the new age distribution will be visible in the case data. When R(t) is
constantly changing, the model (Formula (5.6)) has to be applied to predict or analyse
the age distributions that will appear in the data.

It is suspected that, although young cattle are far more susceptible, adults are also
susceptible to the infection. Neglecting the low susceptibility of older cattle may
not be warranted to answer some specific questions which involve the infection age.
Therefore we introduce a variable age at infection, which is influenced by age depen-
dent feeding and age dependent susceptibility. Let f(α) denote the probability density
function for the age at infection by BSE in a test group of cattle with a uniform age
distribution. In a production population of cattle the probability density function of
the age at infection is then given (modulo normalisation) by f(α)F(α), because the
lower survival of older cattle influences the effective age at infection. We assume that
g(τ) is independent of the age at which an animal is infected.

Under this extended model, the incubation period is no longer the same as the age
of a case. Formula (5.5) remains valid, but it can be extended by including the age of
the animals separate from the incubation period. Let ec(t, α, τ) denote the BSE cases
at time t that were infected at age α and had incubation period τ . As before, (see
Formula (5.4)), R(t) is defined by the balance of all the cases in an infection cohort
and all the cases at the moment that cohort got infected. (An infection cohort is a
group of animals that got infected at the same time.)

∞Z
0

∞Z
0

ec(t+ τ , α, τ)dαdτ = R(t)
∞Z
0

∞Z
0

ec(t, ζ, ξ)dζdξ.
Next we derive the age distribution of the cases at time t, h(t, a). New infections

are distributed over the age groups according to f(α)F(α) and as before, the incuba-
tion period is distributed according to g(τ)F(α+τ)F(α) . Thus, the cases at time t, that got
infected at age α, and had incubation period τ ,are given by

ec(t, α, τ) = κf(α)F(α)g(τ)F(α+ τ)

F(α) R(t− τ)

∞Z
0

∞Z
0

ec(t− τ , ζ, ξ)dζdξ,

where κ is now the normalisation constant for the distribution of the cases over α and
τ (κ−1 =

R∞
0

R∞
0

f(α) g(τ)F(α+ τ)dαdτ ).
In the case data, the only available characteristics are the time and the age, whereas
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the age at infection and the incubation period will not be detectable. Therefore, we
denote cases by c(t, a) and find

c(t, a) =

aZ
0

ec(t, a− σ, σ)dσ =

κF(a)
aZ
0

f(a− ζ) g(ζ)R(t− ζ)

∞Z
0

∞Z
0

ec(t− ζ, σ, ξ)dσdξdζ

which, using that
R∞
0

c(t.a)da =
R∞
0

R∞
0
ec(t, σ, ξ)dσdξ, can also be written as

c(t, a) = κF(a)
aZ
0

f(a− ζ) g(ζ)R(t− ζ)

∞Z
0

c(t− ζ, ξ)dξdζ. (5.9)

The age distribution of cases is then given by

h(t, a) =
c(t, a)R∞

0
c(t, ξ)dξ

=
κF(a) R a

0
f(a− ζ) g(ζ)R(t− ζ)

R∞
0

c(t− ζ, ξ)dξdζR∞
0

c(t, ξ)dξ
.

WhenR is constant over time (R0), the system reaches a stable age distribution given
by

h(t, a) =
c(t, a)R∞

0
c(t, ξ)dξ

= κF(a)
aZ
0

f(a− ζ) g(ζ)Re−rζdζ,

which is independent of t.

5.3 Semi-discrete Model

A user of this model needs to specify all the relevant functions in quantitative terms.
To facilitate the use of the model by people with little background in mathematics, we
should make sure that the specification and the implementation is as straightforward as
possible. Given the sort of information that is available in most European countries,
the functions F(a), f(a) and g(τ) may best be given as step functions with a one
year step over time or age. The case data are often presented in statistics clustered
by year of detection and by age group. These full-year steps have the advantage that
seasonality patterns in the data disappear, and can therefore also be neglected in the
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transmission model. Discretizing time into steps of one year brings the model into a
form that can be implemented in a spreadsheet, and is therefore easy to apply by the
animal and veterinary scientists, who can provide the input information.

Let C(y, z) denote the number of detectable cases in the full calendar year y and
having an age of z, when age is expressed in full years. Below we use δ to denote
the part of the year that has passed since the first of January and we use ε to denote
the time elapsed since the animals last birth day. So 0 ≤ {δ, ε} < 1 and {y, z} ∈ N.
The step function assumption amounts to F(z) = F(z + ε), g(z) = g(z + ε) and
R(y + ε) = R(y).

Given that

C(y, z) =

y+1Z
y

z+1Z
z

c(t, a)dadt,

using formula (5.5) we find that:

C(y, z) =

y+1Z
y

z+1Z
z

k g(a)F(a)R(t− a)

∞Z
0

c(t− a, τ)dτdadt.

Now replace a and t by, respectively, z plus ε and y plus δ and separate into parts
where ε is bigger or smaller than δ.

C(y, z) =
1Z
0

1Z
0

k g(z + ε)F(z + ε)R(y + δ − z − ε)

∞Z
0

c(y + δ − z − ε, τ)dτdεdδ =

1Z
0

δZ
0

k g(z + ε)F(z + ε)R(y + δ − z − ε)

∞Z
0

c(y + δ − z − ε, τ)dτdεdδ

+

1Z
0

1Z
δ

k g(z + ε)F(z + ε)R(y + δ − z − ε)

∞Z
0

c(y + δ − z − ε, τ)dτdεdδ.

Next we can remove those functions from the integral, which are not dependent on
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τ , ε and δ and analyse the remaining integral further.

C(y, z) = k g(z)F(z)R(y − z)

1Z
0

δZ
0

∞Z
0

c(y + δ − z − ε, τ)dτdεdδ

+k g(z)F(z)R(y − z − 1)
1Z
0

1Z
δ

∞Z
0

c(y + δ − z − ε, τ)dτdεdδ

The latter integrals cannot be written in terms of
∞X
i=0

C(y, i) and
∞X
i=0

C(y−1, i), unless

we assume that c(t, τ) also behaves as a step function over t, i.e. all cases found in
year y and with age z are detected with equal probability throughout that year. In that
case C(y, z) = c(y + δ, z + ε) and we see that

R 1
0
(1 − δ)

R∞
0

c(y + δ, τ)dτdδ =R 1
0
(1 − δ)

∞X
i=0

C(y, i)dδ =
R 1
0
(1 − δ)dδ

∞X
i=0

C(y, i) = 1
2

∞X
i=0

C(y, i). Also usingR 1
0

R δ
0
1dεdδ =

R 1
0

R 1
δ
1dεdδ = 1

2 , we find that

C(y, z) = (5.10)

k g(z)F(z)1
2

Ã
R(y − z)

∞X
i=0

C(y − z, i) +R(y − z − 1)
∞X
i=0

C(y − z − 1, i)
!
.

Thus, the cases in year y, and having age z are partly born in y− z, and partly born in
year y − z − 1.

Obviously, in some cases a discrete version of the extended model can be ap-
plied best, so we will also transform the model with a variable age at infection into
a semi-discrete model. We use all definitions as given above and already include the
assumption that cases develop as a step function over time. Then we use (5.9) and
argue as follows:

C(y, z) =

y+1Z
y

z+1Z
z

c(t, a)dadt =

y+1Z
y

z+1Z
z

κF(a)
aZ
0

f(a− ζ) g(ζ)R(t− ζ)

∞Z
0

c(t− ζ, ξ)dξdζdtda
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C(y, z) = κ

1Z
0

1Z
0

z+εZ
0

f(z+ε−ζ) g(ζ)F(z+ε)R(y+δ−ζ)
∞Z
0

c(y+δ−ζ, ξ)dξdζdδdε

and replace the functions where possible with the discrete values,

C(y, z) = κF(z)
1Z
0

1Z
0

z+εZ
0

f(z+ε−ζ) g(ζ)R(y+δ−ζ)
∞Z
0

c(y+δ−ζ, ξ)dξdζdδdε.

Now we can split the right-hand size of the equation for various values of ζ, to obtain
functions that can be rewritten in a discrete version. To do so we let ζ = x+φ, where
x ∈ N and 0 ≤ φ < 1 and formulate and we split the equation up further into

C(y, z) =

κF(z)
z−1X
x=0

1Z
0

1Z
0

1Z
0

f(z + ε− x− φ) g(x+ φ)R(y + δ − x− φ)

∞Z
0

c(y + δ − x− φ, ξ)dξdφdδdε

+ κF(z)
1Z
0

1Z
0

εZ
0

f(ε− φ) g(z + φ)R(y + δ − z − φ)

∞Z
0

c(y + δ − z − φ, ξ)dξdφdδdε

Move f and g out of the integrals, and separate the case where δ < ε, from the case
where δ > ε, which leads to
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C(y, z) =

κF(z)
zX

x=0

g(x)f(z− x)

1Z
0

εZ
0

δZ
0

R(y+ δ− x− φ)

∞Z
0

c(y+ δ− x− φ, ξ)dξdφdδdε

+κF(z)
zX

x=0

g(x)f(z−x)
1Z
0

εZ
0

εZ
δ

R(y+δ−x−φ)
∞Z
0

c(y+δ−x−φ, ξ)dξdφdδdε

+κF(z)
zX

x=0

g(x)f(z−x)
1Z
0

1Z
ε

εZ
0

R(y+δ−x−φ)
∞Z
0

c(y+δ−x−φ, ξ)dξdφdδdε

+ κF(z)
z−1X
x=0

g(x)f(z − x− 1)
1Z
0

εZ
0

1Z
ε

R(y + δ − x− φ)

∞Z
0

c(y + δ − x− φ, ξ)dξdφdδdε

+ κF(z)
z−1X
x=0

g(x)f(z − x− 1)
1Z
0

1Z
ε

δZ
ε

R(y + δ − x− φ)

∞Z
0

c(y + δ − x− φ, ξ)dξdφdδdε

+ κF(z)
z−1X
x=0

g(x)f(z − x− 1)
1Z
0

1Z
ε

1Z
δ

R(y + δ − x− φ)

∞Z
0

c(y + δ − x− φ, ξ)dξdφdδdε

Now we can simplify R and c to their semi-discrete versions, and move both R
and summation over c out of the integration. Then the remaining part of the integrals
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can be calculated and we find all six of them to be equal to 1
6 . Thus we arrive at

C(y, z) =
1

3
κF(z)

zX
x=0

g(x)f(z − x)R(y − x)
∞X
i=0

C(y − x, i)

+
1

6
κF(z)

zX
x=0

g(x)f(z − x)R(y − x− 1)
∞X
i=0

C(y − x− 1, i)

+
1

6
κF(z)

z−1X
x=0

g(x)f(z − x− 1)R(y − x)
∞X
i=0

C(y − x, i)

+
1

3
κF(z)

z−1X
x=0

g(x)f(z − x− 1)R(y − x− 1)
∞X
i=0

C(y − x− 1, i).

Thus the semi discrete version of the extended model is also derived. Obviously
it is far more complicated than the earlier model, because the sum over all possible
ages at infection continuously complicates the model. This system can be very well
applied and fully calculated from a given starting situation, and calculations forwards
in time are no problem. For calculations backwards in time, this model is less suitable,
because of the far more complicated dependence of a new value of C on many others,
earlier in time.

5.4 Applications

In the above, we developed several versions of a case cohort model, that relates in-
cidence and infection pressure in the past to incidence and infection pressure in the
future. The first, continuous time models (5.5) are exact, given the assumptions on
BSE and cattle behaviour, but it is very hard to quantify the various continuous time
functions included in the model accurately, unless extra assumptions are included on
their general form. The semi-discrete versions of these models overcome such practi-
cal problems. They require a limited amount of input, which links well to the type of
information that can generally be obtained. The method typically fits the sort of data
that can be found in statistics describing a cattle population and their management.
But most importantly, the semi discrete model allows for easy use in a spread sheet to
calculate the behaviour of a regional cattle BSE situation. Therefore, little is required
in terms of computer software to do the analysis, which will be very valuable if there
are no mathematicians involved in the risk assessment study.

This paper focusses on deriving an easy-to-apply method for quantitative BSE risk
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assessment, with a secondary aim in predicting the age distribution of BSE, which can
be used to target age specific surveillance. However, once available, such a model
can be applied in many ways. Three typical ways to apply the model are explained
here. One way uses the model and case data over a long period of time, to estimate
the previous infection pressure, and from that, calculate the historical reproduction
ratio in the country. Obviously, this method can only be applied to countries with a
sufficiently large number of BSE cases over at least a decade and a good record on
the changes in disease notification. The model takes account of the known number of
cases, but can only be related to the real number of cases, when a good estimation of
disease notification can be made, including its development over time. This method of
analysis is very suitable for countries like the UK, Switzerland and Portugal. We will
not address this method any further, because similar work has been done with more
sophisticated continuous time models, and is explained with much more detail by
Donnely and Ferguson [31]. This method can be used to analyse the history of the BSE
epidemic in a country and, within limitations, it also allows for forward extrapolation
to predict future development of the epidemic. However, for those scientists who
would like to do such an analysis themselves, our method is more accessible and
easier to apply than those more detailed models.

The other two ways to apply the model are fit for analysing BSE prevalence in
countries with few BSE cases. In such countries a case data based model can not
be applied, and therefore other available data sources must be analysed to assess the
local prevalence. The semi-discrete model can be applied to such countries for two
main purposes, prediction of undetected and future prevalence and quantification of
parameters.

The model focusses on making a quantitative risk assessment of the BSE preva-
lence, but at the same time it supplies information that can be used to target the disease
surveillance more efficiently and it offers future predictions on prevalence of the infec-
tion. The effectivity of present and intended control measures can also be calculated
and predicted. This may then be used to support a cost-benefit analysis.

Quantification of parameters can be used to make an analysis of the efficacy of the
BSE control over the last few decades. Recent results of active BSE surveillance can
be used to calculate the BSE prevalence earlier on. Thus, the efficacy of control mea-
sures can be quantified. Control measures can include a feed ban, import ban on live
cattle, etc. This method can also be used to quantify disease specific characteristics
like the distribution of the incubation period, by applying it to a large data set of BSE
cases. (UK case data would be the best.) The extended model is used to quantify f(a)
by Wang et al [83].
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A disadvantage of the extended model is that it is not easy to apply as a backwards
calculation model, but as a forward model it works fine and is hardly more complicated
to use. However, we found that the results differ little from the first model that assumes
infection at birth. Therefore, the simplest model may be preferred for most problems.

5.5 Example quantitative risk assessment

A quantitative risk assessment for countries with few or no BSE cases can best be
built on an analysis of the main risk factors and prevention of import and transmission.
The model we have just developed, does not take account of the effect of import or
export of infection into and from the population addressed. However, without an initial
import, very few countries would have had a problem with BSE. Therefore, the above
model on transmission of BSE over time, needs to be combined with the aspects of
the (continued) import of risk material.

The European Union has developed a good method to analyse the combination of
these two factors in their Geographical BSE Risk assessment, which makes a quali-
tative analysis of BSE propagation (i.e. transmission), with results ranging from very
unstable (R > 1) to a very stable system (little propagation, R > 1). Next, this is
combined with the assessed internal challenge (i.e. local prevalence of infection) and
external challenge (i.e. import of risk material) into the system each year. Obviously,
due to the qualitative level of the assessment, the dynamics of the interactions cannot
be incorporated completely, but for rather short term analysis, the method works very
well.

We will explain how to extend the simple version of the semi-discrete model to do
just that, but quantitatively. (Given the expected accuracy of the input data, it seems
that use of the extended model with f(a), will not contribute much to the accuracy of
the result, but will complicate the assessment very much.) We start by quantifying all
the relevant functions, g(τ), F(a) and R(t), where the last may prove to be quite a
big job in most cases (methodology is explained in deKoeijer et al. [13]). To quantify
g(τ), we use the UK case data of a few cohorts as explained in [14] and correct for
the age dependent survival of cattle in the UK, F(a) should be quantified based on
the regional statistics and when the extended model is chosen, we need to quantify
f(a), which is done best by Wang et al (in prep.)[83]. Analysing the UK data on BSE
cases with this model, he estimates that the probability for older cattle to get infected
is about 10 times lower than that of calves (0 to 11 months).

Subsequently, risk imports need to be analysed in terms of the expected number
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of cases they will induce in the exposed cohort of cattle. Thus we derive a starting
distribution of BSE cases, due to the first import of BSE. The expected prevalence of
BSE due to imports must be added to the BSE prevalence, resulting from internal BSE
transmission and we obtain the following equation. Let I(y, z) denote the expected
number of BSE cases per year y, and per age group z, directly resulting from import
of live cattle and MBM in previous years. Then we extend equation (5.10) and derive:

C(y, z) =

k g(z)F(z)1
2

Ã
R(y − z)

∞X
i=0

C(y − z, i) +R(y − z − 1)
∞X
i=0

C(y − z − 1, i)
!

+ I(y, z)

To determine I(y, z), lots of factors need to be taken into account. For instance MBM
imports in year y will lead to cases in the birth cohort of year y, and they will dis-
tribute over I(y + z, z) for random z. Imports of live cattle can only lead to direct
cases in those imported animals. The age of the imported animals and the purpose
of import will affect the distribution of cases over I(y, z). Imports often consist of
calfs for slaughter which will lead to a very small import risk, but cattle imported for
breeding are mostly 1 or 2 years old and will have a longer life expectance than local
stock. Finally, to determine I(y, z) one will need to assess the prevalence of infection
in the exporting country, and bearing the previous in mind, then determine the age
distribution for cases due to these imports. We refer to the EU-GBR methodology
[34] for further details on the many factors that can influence the age distribution of
the cases, as it is somewhat beside the scope of this article.

This method for risk analysis has been applied in a quantitative risk assessment of
BSE in Norway. A scientific publication of that work is in preparation [51]. We find
that this model offers an easy to apply calculation, and find that most of the actual
work now goes to assessing the input parameters of the model, but given their straight
forward definition, they can be determined within the limits set by the available data.
We conclude that a quantitative BSE risk assessment of a country is a major job to
fulfill, and note that the reports of the EU GBR are a good starting point for each
country that would be interested in applying this method.
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5.6 Discussion and Conclusions

We have derived a method of calculation that can be applied to assess regional BSE
risk in quantitative terms. Given that it follows the general lines of the European
Geographical BSE Risk (EU-GBR) Assessment, it may be of interest to the EU, and
to those countries, that want to extend quantitatively on the results of the EU-GBR
work. Furthermore, so far, this is the only systematic approach to BSE risk assessment
that is suitable for low and zero prevalence countries. Because of the easy-to-apply
methodology, it may even be of interest for countries with a lot of cases, as a tool to
easily explore the effect of specific control measures and the effect of changing the
surveillance programme.

The model has been applied to the Netherlands and Norway [51], and it becomes
clear that for optimal accuracy, one actually needs to assess all countries where the
imports originate. Fortunately, a quick assessment may suffice, for slightly lower
accuracy, but the results of the assessment will always depend on the quality of the
assessed BSE risk in other countries. For the Netherlands, this is not so much of a
problem when assessing the period up to 1995, because the majority of imports origi-
nate from the UK. In the last ten years, imports from Germany dominate the statistics.
This should not be a problem, given that their BSE prevalence is presently of the same
order of magnitude. However, whereas BSE control in the Netherlands leans a bit
more on the quality of the rendering system, the German BSE controls tend to lean
a bit heavier on the feed ban. Therefore, MBM produced in Germany used to carry
a slightly heavier risk than Dutch MBM, which, through cross-contamination, could
still lead to a higher risk of new BSE infections in the Netherlands, a higher risk than
in Germany itself. Thus, even imports from countries with similar BSE prevalence
may have a negative effect on the BSE risk. Clearly the recent total ban on the use of
MBM for all animal husbandry feeds has ended the effect mentioned before. For Nor-
way we found that the very limited imports came from other Scandinavian countries,
which all have low to zero BSE prevalence. The risk of BSE being imported in Nor-
way therefore depends very strongly upon the BSE prevalence in those countries. For
a good assessment of the BSE risk in any European country, it would be best to assess
most other EU countries too. We suggest that a joint European study to quantify BSE
prevalence and risk will contribute to the present discussion on the safety of cattle and
cattle derived products.

Finally we note that a human BSE exposure assessment must always be based
upon a good BSE risk assessment of the cattle population. Therefore, we expect that
linking of this model with existing human exposure models that use an estimated
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BSE prevalence in the slaughter population can improve the results of those models in
making them more accurate.
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Abstract

Recently, due to consumers fears concerning BSE and vCJD, the need
arose for methods to detect BSE, to estimate the present prevalence of
BSE among cattle and to predict future BSE prevalence. As a part of
that set of urgent questions, it has become important to indicate groups in
which BSE risk is higher or lower. One of the well-known risk factors for
BSE is age: very young animals do not develop the disease, and very old
animals are less likely to develop the disease. Using age structured mod-
elling, three factors influencing the age distribution of BSE were found
to be important: 1) the incubation period of BSE, 2) age structure of
the cattle population, and 3) the local risk history: methods of render-
ing, feeding of compound feed containing Meat and Bone Meal (MBM),
and the development of BSE control. The EU has considered these three
risk factors to be the most important for BSE risk assessment. So far,
this EU risk assessment method has been proven right by several coun-
tries detecting BSE after being classified as “BSE is most likely present
here”. The age distribution of BSE seems to vary a lot between coun-
tries and regions. When information on these three factors is available,
the expected age distribution of BSE in different countries can be calcu-
lated. Our calculations show that in countries where, until very recently,
the reproduction ratio was high, (i.e.BSE risk factors were high), the BSE
prevalence is expected to be highest in 4-year-old cattle. In countries with
low reproduction ratio for BSE, (i.e. BSE control at a very high level) for
more than 5 years, the prevalence will be highest in the 6- to 8-year-old
cattle. Thus, surveillance could be targeted specifically at the age groups
with the highest BSE risk. For each country, a short assessment shows in
which age group BSE is most likely to be found.
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6.1 Introduction

The presence of Bovine Spongiform Encephalopathy (BSE) in the European cattle
population led to consumers fear that the eating of food products from infected cattle
may induce a new variant of Creutzfeld Jacob (nvCJD), a fatal and incurable disease
in humans. Since BSE-infected cattle are still present in the population in Europe,
a proper assessment of the risk for consumers has to be made. For an adequate as-
sessment, it is important to estimate the local prevalence of BSE in a region or coun-
try. However, the infection can spread among cattle unnoticed for several years, the
disease has a long incubation period, and early symptoms are difficult to diagnose,
especially by inexperienced people. Therefore, a proper assessment of human risk is
difficult to make.

The difficulty to diagnose can lead to major underreporting of the disease, as was
shown for the UK and Switzerland in the beginning of their respective outbreaks ([1],
[7]), and it is now clear that several countries had BSE circulating in their population
while they were still claiming freedom from the disease. Especially in countries where
few or no BSE cases are reported, active surveillance appears to be a suitable way to
assess the presence of BSE.

For the risk assessment it is necessary to estimate the prevalence of BSE in each
country or region. The prevalence is the percentage animals of the population that is
BSE-positive. If the prevalence of BSE is low, a large number of animals should be
tested to accurately quantify this prevalence. The large number of tests can be reduced
if groups with high BSE-risk are identified within the population. Especially if the
surveillance is meant to determine whether the infection is present or not, targeting a
surveillance program to such high-risk groups can reduce the sample size needed to
establish the presence of BSE. An optimal monitoring program can thus reduce the
costs without loosing sensitivity. For surveillance to better quantify the prevalence of
the infection, the certainty of the risk history parameters must be followed throughout
the surveillance, by also analysing some lower risk age groups.

For Switzerland, [27] showed that BSE was found more often in fallen stock and
emergency slaughter than during the normal slaughter procedure. This finding indi-
cates that an accurate BSE control surveillance could focus on the fallen stock and
emergency slaughter. However, although this pattern is established for Switzerland,
and the first results from the slaughter line testing in the EU indicate similar results, it
is not yet clear, whether this pattern is the same in other countries. We concentrated
on another factor that increases the BSE risk, i.e. the risk of age for developing dis-
ease. Analysing the age distribution of BSE in a population will enable more efficient
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focusing of the BSE surveillance to certain age groups of cattle, which can reduce the
number of sampling and maximises the probability of finding infected animals.

In this paper we explain the use of age-structured modelling to predict the age
distribution of BSE in the cattle population. We explore factors that influence the age
distribution of BSE and we apply these methods to analyse the expected age distrib-
ution of BSE in the Netherlands. Finally we determine the age at which most BSE
cases are expected to be found in total and the age with the highest probability per
individual animal to show BSE if tested, which is not necessarily the same age.

6.2 Methods: the age-structured Model

6.2.1 Data analysis

Mathematical modelling is very useful in analysing dynamic infection processes in
populations. By formulating functions to describe the key dynamic processes in the
cattle population and the pathogen-host interaction, the age distribution of cases can
be predicted for any sort of conditions.

Basic population dynamical analysis is used to assess the BSE data from the UK
epidemic, to make them independent of the local conditions, and fit for extrapolation
to other countries. Dr J. Wilesmith of the British Veterinary Laboratory Agencies
kindly supplied us with the essential information from their BSE database.

Figure 1

Age distribution of detected BSE cases in the UK
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Figure 1 shows the age distribution of all reported and confirmed BSE cases in the UK
until the beginning of 1997. We suspect that local conditions may affect the detailed
shape of this distribution, and we will therefore look into more detail at the data. It
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can be seen easily from Figure 2 that the age distribution of cases detected in 1988
(Figure 2a) differs from the age distribution of cases detected in 1996 (Figure 2b).
Basic age-structured modelling of a BSE infection in a cattle population can explain
this characteristic (see also [77]).

Figure 2a

Age distribution of BSE cases in the UK in 1988
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Figure 2b

Age distribution of detected BSE cases in the UK in 1996

0

200

400

600

800

1000

1200

1400

1600

0

200

400

600

800

1000

1200

1400

1600

2 3 4 5 6 7 8 9 10 11
Age (years)

2 3 4 5 6 7 8 9 10 11
Age (years)

N
um

be
r o

fc
as

es

6.2.2 Modelling

Two typical characteristics of the population dynamics of the host and pathogen inter-
action are expected to appear in this type of data. The first characteristic is the survival
of cattle. Very few animals will reach a high age (over ten years). Since BSE has a
very long incubation period, animals that are infected with BSE are not very likely
to survive long enough to become a clinical BSE case (less than 25% would survive
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more than 4 years, given an annual replacement of about 30%). The longer the incu-
bation period, the less likely that the animal lives to develop clinical BSE. Thus, older
animals are relatively underrepresented in the case data. Information on the survival
and age distribution of cattle in the normal population is essential to correct for this
feature.

The second important characteristic is the force of infection, i.e. the probability
for an animal in the population to become infected. Generally, the force of infection
increases exponentially over time in the early, exploding phase of an epidemic. Thus,
it is assumed that the force of infection of BSE in the UK increased more or less
exponentially between 1980 and 1988. This is supported by the exponential increase
in BSE cases until 1991 (Figure 3). Thus, before 1988, the number of newly infected
animals increased each year (with about 60%). Assuming that BSE only infects cattle
at a very young age, the incubation period would be approximately equal to the age
distribution of cases from a birth cohort.
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Figure 3. BSE cases between 1989 and 1992
However, when the epidemic grows exponentially, the age distribution of cases

per year differs from the distribution of the incubation period. This implies that an-
imals with a very short incubation period would be over-represented in the annual
age distribution of BSE cases. This is, because animals that become a BSE case at
young age also got infected later in time, that is, when the infection pressure had in-
creased. Many more animals became infected at that later stage in time. Therefore
the age distribution of BSE-cases in the nineteen-eighties would peak at a younger
age as compared to the distribution of the incubation period in itself. (See Figure 2a.)
The inverse effect is seen when BSE control measures have reduced the exponential
growth rate to a negative growth: an exponential decrease of new infections. Due to
the decreasing force of infection, the age distribution of BSE-cases then shifts to older
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ages (Compare Figure 2a and 2b).

6.2.3 Mathematical calculation

Mathematical modelling is very useful in analysing problems that deal with the in-
teraction of age, survival and real time. By formulating functions to describe the key
dynamic processes in the cattle population and the basic pathogen-host interaction,
the age distribution of cases can be predicted under all kinds of conditions.

First, assuming that cattle get infected at a very young age, the incubation period
would be distributed according to the age distribution of the detected BSE cases, but
corrected for the survival of cattle. Thus, let g(t) denote the distribution of the incu-
bation period, let F(a) denote the survival probability of cattle and let φ(a) be the
age distribution of all BSE cases in an infection cohort. Then we derive

φ(a)g(a)F (a). (6.1)

Next, we can calculate the distribution of BSE cases in the nineteen-eighties,
which will be equal to the distribution of the incubation period multiplied by the force
of infection at the time of birth of those animals and multiplied with the survival func-
tion (age distribution) of cattle. In mathematical notation the following terminology
could be applied:

Let r denote the exponential growth rate of the BSE epidemic in the early 1980s.
Then the expected age distribution of BSE cases C(a), (which is valid under a given
time period with BSE growth rate r), is described by

C(a) = g(a)er(−a) F(a) = φ(a)er(−a) (6.2)

Stochastic influences in the infection process and underreporting may lead to small
differences in the age distribution of the detected case data. A Poisson distribution is
expected to fit such stochastic influences.

6.2.4 Quantifying the functions

The function φ(a) can be estimated from the BSE cases in a cohort. To derive the best
possible estimate, we use several birth cohorts. All BSE cases detected in animals
born between July 1985 and June 1991 contribute to this estimate. Thus, the effect
of the force of infection on the age distribution of cases is removed by looking at
all animals born in the same year. Data on animals born before 1985 were not used
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here, because the effect of major underreporting before 1988 can strongly reduce the
number of cases in the younger age groups. Data on animals, born after 1991 were
excluded, because older cases are still expected to show the disease in these cohorts.
The age distribution of BSE cases is not exactly constant over those five cohorts, but
the differences are small (2%). This may suggest that other effects (like infection of
cattle at older age) have a small impact on the age distribution of BSE cases. The data
derived estimate of function φ(a) is graphically represented in Figure 4.

Figure 4

Age distribution in cattle born July 1982 until June 1986
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Assuming that dairy cattle in the UK have on average about 4 productive years,
that means that about one quarter of the productive (adult) cattle will be replaced each
year. This replacement is rather constant over all ages, although it increases slightly
with age. This means that the adult cattle population is rather well described by an
exponential decrease over age. The survival function of adult cattle could thus be
described by

F(a) = e−(0.25a).

6.3 Results

Using formula (6.1) we can derive an estimate g(a) of g(a), which is graphically
represented in Fig. 5. This is a function that appears to be typical for the infection, and
has little dependence of the UK conditions under which the BSE epidemic developed.
Therefore, this function will be used to extrapolate UK BSE information to other
countries with different circumstances.
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Figure 5

Distribution of BSE incubation period
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6.3.1 Extrapolation to other regions

Now, we can predict the case age distribution of BSE in all kinds of situations. We
will give the two extreme examples. Let us look at a country with a high annual turn-
over of adult cattle (removal rate is 35% per year), and where the BSE epidemic is still
growing exponentially (This description would fit many western countries about ten
years ago). To estimate the exponential growth rate, we will use available estimates
of the basic reproduction ratio of the infection. The basic reproduction ratio is the
expected number of new infections that is induced by one "typical" initial infection.
From this reproduction ratio we can derive the growth rate of the epidemic ([13],
chapter 3 of this thesis).

Let us look at a country with a reproduction ratio of BSE being about equal to
the UK in the initial phase of the epidemic, i.e. equal to about 16 (Ferguson et al.,
1999). Then the exponential growth rate of the infection, r is approximately equal to
0.7 ([13], chapter 3 of this thesis). The distribution of the BSE cases that will be found
that year can be predicted from formula (6.2), and we can quantify an estimate C(a)
of C(a) and find:

C(a) = g(a)e−(0.7a)e−(0.35a)

as shown in Figure 6. Clearly, this only indicates the distribution of cases over the
ages. The absolute numbers remain unclear, as long as there is no indication of the
actual prevalence in this country.
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Figure 6

Age distribution BSE cases in fast growing epidemic
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Figure 7

BSE case age distribution in fast declining epidemic

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11

Pe
rc

en
ta

ge

Age (years)

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11

Pe
rc

en
ta

ge

Age (years)

The same is done for another extreme situation. Observe a country with a low
annual removal rate of cattle (20%) and a very low reproduction ratio R = 0.1 for
BSE. (This level is achieved when several control measures, for instance a feed ban
and an SRM ban are implemented, see [13]; chapter 3 of this thesis). Then the growth
rate of the epidemic can be estimated at r = −0.5 and the case age distribution will
follow from:

C(a) = g(a)e(0.5a)e−(0.20a)

as shown in Figure 7. With these extreme examples we see that the age distribution
of the BSE cases can shift considerably, due to local conditions. Thus, if we want to
monitor for BSE, it is useful to analyse the local population and it’s history in BSE
control. In that way, a targeted surveillance may improve BSE surveillance and reduce
the number of samples needed for an adequate estimate of the local BSE prevalence.
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For the Netherlands with a long history of BSE control, that would mean the following.
Since a feedban was introduced (1989) and extended (1994) the reproduction ratio
of BSE was slightly below 1 due also to the applied high temperature, pressurised
rendering ([13], chapter 3 of this thesis). This reproduction ratio decreased further
over time, due to more extended measures and inspection, but the strongest decreases
will have come after 1996. Given a small rate of decrease of the infection and a high
annual replacement of cattle (about 30%), for the Netherlands the most BSE cases
are expected to be found in cattle of 5 years old, with extra low numbers in the age
groups up to 4, due to an extra BSE control measures introduced halfway 1997 (SRM
removal). The results of the Dutch BSE surveillance in 2001, testing (almost) all dead
and slaughtered cattle over 30 months of age, confirm this pattern (See Figure 8).

Figure 8

Age distribution of BSE cases in the Netherlands in 2001
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Finally, to apply such a targeted surveillance efficiently, we should not focus on
the age group where the most cases are predicted. Better would be, to focus on the age
group with the highest relative incidence, i.e. the most cases relative to the size of the
age group. This is not necessarily the same, because younger age groups consist of
far more animals than older age groups. Thus, the predicted distribution C(a) should
be corrected for the size of the age groups, which is described (again) by the survival
function F(a). The removal of F(a) from the formulae, would give the relative
distribution of BSE cases over the ages as

g(a)er(−a).

For the two examples given, the predicted relative age distribution of BSE is given
in Figures 9 and 10. Summarising: in countries with an exploding epidemic, BSE-
cases are to be found mostly in 4-year-old cattle and the BSE prevalence is also ex-
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pected to be highest in the 4-year-old population. However, in countries with a fast
decreasing epidemic, BSE cases are mostly to be found in 5-year-old cattle, whereas
BSE prevalence appeared to be highest in the 6-year-old animals.

Figure 9

Age distribution of BSE relative to size of age group (at fast growth)
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Figure 10

Age distribution of BSE relative to size of age group (at fast decline)
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6.4 Discussion and Conclusions

An adequate risk assessment for BSE requires the estimation of the local prevalence
of BSE among cattle in a region or country. Targeting a surveillance program to such
high-risk groups can reduce the sample size needed to estimate the local prevalence
of BSE. In this paper we explained the use of age-structured modelling to predict the
age distribution of BSE in the cattle population. We explored factors that influence
the age distribution of BSE and we analysed the expected age distribution of BSE in
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the Netherlands. Finally we determine the age at which most BSE cases are expected
to be found in total and the age with the highest probability per individual animal to
show BSE if tested, which is not necessarily the same age. Earlier published models
for BSE ([31]; [50]) can be very valuable in answering these questions. Unlike the
model described in this paper, these models are case-data-driven. These models use
information on the development of BSE over the last ten years, to analyse what has
happened and how the epidemic evolved. That has a major advantage, in the fact
that the result will be very to the point and very exact, for the specific situation that
is assessed. However, such models are not suitable for extrapolation to the future
or to other countries, although limited extrapolation can be acceptable. The main
disadvantage of such work is that it is not suitable for countries where the number
of detected BSE cases so far is limited or zero. This gap is filled using the model
addressed in this paper. This work has the advantage that no large numbers of cases
are needed for predictions. Another advantage is that it is more suitable for future
extrapolation.

One of the major weaknesses of the work in this paper is the assumption that all
cattle get infected at birth (or very shortly after). The general opinion on the age-
dependent susceptibility is based on epidemiological assessment of the data and phys-
iological information on the transmission via the bowels. According to this hypothe-
sis, most cattle will have become infected at a very young age, during the first year of
their life. However, although it is clear that older animals are less susceptible ([31]), it
remains unknown whether these older animals can get infected at all. The assumption
of BSE-infection at birth leads to an overestimation of the incubation period. How-
ever, because most animals become infected at very young age, this overestimation
will probably be minor.

The age distribution of BSE can be predicted rather easily for situations as de-
scribed in this paper, i.e. for countries with a rather constantly evolving BSE infection
(either increasing or decreasing). Age-structured modelling, indicating the age distri-
bution of BSE within the population, is a very strong tool in applying a targeted sur-
veillance. Moreover, risk assessment methods can be applied that are partially based
on surveillance results. The results and effects of this modelling can even be strength-
ened by combining the age distribution of BSE in the population with a prediction on
the distribution of BSE over different exit routes, as can be based on [27].

There are, however, a few warnings. First, the age distribution of cattle in the
high-risk exit routes could be different from the general age distribution of removed
(culled) cattle. Secondly, the regular change in BSE control measures and the regular
introduction of new control measures over the last 10 years might disturb the calcu-
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lations. This makes it rather unclear which set of control measures should be chosen
for the model to determine the development of the epidemic. Thirdly, the import of
BSE-contaminated feed and BSE-infected cattle can have a strong influence on the
age distribution of BSE in a country when these imports fluctuated strongly in time.
Clearly, years with major imports will strongly bias the age distribution of BSE later
on. Thus, if there are reasons to expect such biases in the development of the epidemic,
this should be included in the assessment of the age distribution. Models that include
more detailed information can provide better calculations for these cases. Then, gen-
erally, the years of major imports and the years of implementation of the major control
measures show up as the cohorts inducing most cases thus causing a peak in the age
distribution.

Using age structured modelling, three factors influencing the age distribution of
BSE were found to be the most important: 1) the incubation period of BSE, 2) age
structure of the cattle population, and 3) the local risk history: methods of rendering,
feeding of compound feed containing Meat and Bone Meal (MBM), and the devel-
opment of BSE control. When information on these three factors is available, the
expected age distribution of BSE in different countries can be calculated.

The age distribution of BSE seems to vary a lot between countries and regions.
It appears that in countries where BSE risk factors were high and control measures
were minimal until very recently, the BSE prevalence is expected to be highest in 4-
year-old cattle. In countries where BSE control is at a very high level for more than 5
years, the prevalence may be highest in the 6- to 8-year-old cattle. Then, an adequate
surveillance could be targeted specifically at the age groups with the highest BSE
risk. For each country, the assessment shows in which age group BSE is most likely
to be found. Obviously pure focussing on the predicted age group with the highest
BSE prevalence is not optimal, because of the difficulty to quantify a risk history, but
great economic gain can be made in focussing a part of the surveillance (for instance
50%) on the indicated risk group. Especially for countries that try to establish a so far
undetected presence of the infection, this method can be very rewarding.

In countries with a very high turnover of cattle, the age distribution of BSE peaks
at a slightly lower age than in countries where cattle have a very long production span.
However, when we observe this incidence in relation to the size of the age groups,
then this difference disappears and only the course of the epidemic remains as a major
influence on the age distribution.
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Abstract

The paper describes the general principles underlying the concept of
disease-free territory and the required statistical basis for the correspond-
ing epidemiological surveillance operations. Among the essential points,
it is emphasized that "disease-free" status should be assigned only under
conditions substantiating the absence of infection (or infestation) and not
simply on basis of a known low level of infection (or infestation). We
also raise concerns about confusion that may arise between, on the one
hand, the inevitable requirement to set a threshold on the level of detec-
tion of epidemiological surveillance tools, for economic reasons, and on
the other hand the acceptance of a level of infection (or infestation) that
is known, but occurring below the accepted threshold, when awarding the
official status of "territory free from a given disease". In such a situation,
it would be preferable to accord the status of "territory where the disease
is in the process of eradication".

Surveillance programs are used to support the free from disease status of
a country, but unfortunately, so far, these programs can only prove that
the infection was below the threshold some time ago. The time that has
elapsed since, offers infections the opportunity to develop a new epidemic
when they are reintroduced in the area. This is generally not assessed
quantitatively so far.

In this paper we describe a method to assess surveillance programs on all
these issues. Repeated negative results of the surveillance proves freedom
from infection of the country for the recent past, but they also allow us to
calculate the expected time needed to detect a newly started epidemic,
and the expected size of that epidemic. We suggest that this method can
help to compare various surveillance programs, and will also offer fur-
ther opportunities in setting standards in the prevention of importing and
exporting infections.
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7.1 Introduction

The expanding international trade in live animals and products of animal origin in-
creases the risk of transmission of infectious diseases throughout the world. These
risks apply not only to notifiable diseases (list A diseases of the Office Internationale
des Epizooty (OIE)), for example foot-and-mouth disease (FMD) or classical swine
fever, but also to other infectious diseases, e.g. OIE list B diseases such as Porcine
Reproductive and Respiratory Syndrome (PRRS). Generally, infectious diseases of
economic importance, which might result in an epidemic after introduction to popula-
tions free from these diseases, are of primary relevance.

Every country is aware of the risks of transmission of infectious diseases by trade,
and tries to prevent the import (and even export) of diseases (or more precisely: the
causative agents) by blocking the import of animals or animal products from countries
where an infectious disease is present. On the other hand, many countries benefit
from an open market, or from its export possibilities. Thus, to maximize exports
many countries are interested in proving their ’free from disease’ state. For infectious
diseases, ’freedom from infection’ is the real thing to prove, while the presence or
absence of disease due to the infection is less relevant here.

The way to show that an area is free from a certain infection is a proper surveil-
lance program (e.g. [28]; [35]; [67]). The claim ’free from disease’ only has a mean-
ing after evaluation of the test procedure. The OIE is an independent international
organization that monitors these test procedures and certifies the ’free from disease’
status (OIE, 2001). The surveillance programs should, with a specified level of cer-
tainty, guarantee freedom from disease or infection as appropriate. To do so, usually a
percentage of a population is tested, generally by taking serum samples that are sub-
sequently tested for the presence of antibodies. In practice, ’freedom from disease’
means that the prevalence in a sampled population is below a certain, specified level
(e.g. 2%). Most of the surveillance programs are supported by statistical methods
to determine the appropriate sample size for the detection of a specified prevalence
level. A statistical analysis, in combination with the test characteristics, shows the
probability that the local prevalence is below that level. Such an assessment is gener-
ally accepted as an indication of the freedom from disease, particularly after repeated
sampling with negative results.

The advantage of using serology for a surveillance program is that samples are
easy to gather, the tests are relatively easy to perform, and can often be applied on
a large scale. There are, however, also disadvantages to serological surveillance to
assess the ’freedom from disease’ status. One disadvantage is a matter of timing:
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test results always lag behind reality. Other disadvantages of the methodology are
that test methods and the assessment of the test results may vary between countries
and regions, and that the biological interpretation of the test results with regard to
the dynamic course of an infection in a population and the risk of transmission is not
always clear.

In this paper we will focus on the time delay problem and the dynamic devel-
opment of the infection throughout the population. We will combine mathematical
modelling with statistical analysis to develop and compare surveillance methods that
can be used to assess a ’freedom from disease’ status. We will show that an integrated
approach allows for a much more sophisticated assessment of the freedom from dis-
ease status, it can also include an analysis of the risk of re-occurring epidemics, which
is not traditionally included in surveillance programs.

7.2 Critical aspects of serological surveillance related
to time delay

The time delay problem is twofold. One is that serology gives a ’late’ response to in-
fection. For many infectious diseases, the interval between infection and a subsequent
serological response, i.e. a detectable antibody titer in the blood, is at least one week.
That means that a surveillance program that is based on serology, tells you what the
situation was ’then’ rather than what it is ’now’. Serological monitoring may there-
fore give a misleading perception of security, or may not be informative with respect
to presence of the agent in sero-negative animals. Secondly, surveillance by random
sampling with statistical assessment of prevalence is a static approach, whereas the
spread of infection is a dynamic process, so in between surveillance rounds, an epi-
demic may develop unseen.

At the start of an epidemic (immediately after introduction) the prevalence will
be very low, only few animals will be infected. The prevalence can be too low to be
detected in a sample, especially if the applied test is not very sensitive (e.g. [67]),
and when the serological test results lag behind a lot on infection. This implies that
a starting epidemic may easily be missed in a surveillance program. The sensitivity
of the test is very important in this context, since it will determine whether some of
the - few - cases will be detected or missed. Depending on the contagiousness of the
infection and its incubation period, the course of the infection may very soon lead to a
high prevalence of the infection and therefore a high export risk, before it is detected
in the (next) surveillance round. For instance the FMD epidemic in the UK in 2001
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was exported to France before it was detected, and it is also thought that the infection
was already, again, exported further into the Netherlands, before it was established
that the disease was present in France.

With some basic epidemiological information and mathematical modelling it is
possible to analyse this problem of exporting/importing infections.

To summarize: Four major factors are important for the assessment of the risk of
exporting infection:

1. The probability that the infection is introduced into the country (assessing
import risk);

2. The growth rate of an epidemic, if the infection is "successfully" intro-
duced;

3. The ability of the local surveillance program to detect new epidemics;
4. The size of the exported population (per unit of time).
Assessment of the risk of missing an infection under a specific monitoring program

is a very recent development in veterinary science. Mathematical models can help in
analysing the dynamic processes of infectious diseases in relation to test characteris-
tics and surveillance efforts. The purpose of this paper is to show the possibilities and
advantages of combining mathematical modelling with statistical analysis in a ’free-
dom from disease’ assessment. We combined the factors 2 and 3 into one method to
assess the disease free status of a country, focusing on the risk of exporting a disease.

7.3 Model for evaluation of ’free from disease’ status

Mathematical modelling may be used to incorporate the dynamical behaviour of infec-
tious diseases into the assessment of a surveillance program. Such a comprehensive
quantitative approach enables us to test whether a surveillance program suffices under
some given criteria. It also allows us to compare the quality and reliability of different
surveillance programs.

One way to apply mathematical modelling in the assessment of efficacy of a sur-
veillance program is shown by Graat et al. [39], who calculated the critical sampling
frequency and sampling intensity for BHV infection in a group of BHV free herds in
the Netherlands. They used a model for the change in number of sero-positive cat-
tle in a herd from bulk milk samples. They subsequently assessed the probability of
detecting the infection in a herd before the infection has spread to (on average) more
than 1 other (free) farm. Their method was applied to free herds based on the disease
dynamics within a herd, between individual animals.
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In the current study, the analysis focuses on the country level, whereas Graat et al.
[39] focused on a small cluster of herds. The approach for analysis, however, is simi-
lar. We will, therefore, apply the same basic method for the evaluation of surveillance
programs. Since a variety of diseases occur and several surveillance procedures are
available, this framework is outlined with as much generality as possible. Here, we
explain a method that would be suitable for viral infections that spread fast within a
herd, while transmission between herds is relatively slow. We will look at the preva-
lence of such infections, meaning the fraction of infected herds in the national (or
regional) population. In this case, a test is a screening method of a herd, to classify
them either as infected or disease free. We will, for now, assume that the sensitivity of
this herd test is constant over time. In section 6, we work this out with an example for
Aujeszky’s disease.

Let us assume that at some moment in time, t0, some infection is introduced into a
population of herds with prevalence i0. It is assumed that the prevalence of this infec-
tion, i(t), initially increases exponentially (deterministic description of an inherently
stochastic system) with rate r. Hence

i(t) =

(
i0e

r(t−t0) t > t0
0 t ≤ t0

.

We assume an ongoing surveillance program in this population, with regular sam-
pling points over time. During sampling, a fixed number of samples, xm, are taken,
and the time between two sequential sampling moments will equal∆m.

Let the sensitivity of the test be denoted by σ. The tested ’individual’ can be an
animal, a herd or a region, in this paper we generally use the term individual for a
herd. Thus, sensitivity means herd sensitivity and sample size means the number of
herds sampled.

Given that the infection is introduced into the country, at t0, we will set the time
to zero at the last sampling moment before introduction of infection. Note that t = 0
is not equal to t0. The unknown moment of introduction of the infection, t0, lies
somewhere between t = 0 and t = ∆m. Assuming a uniform distribution of t0 over
this time interval, the expected prevalence of the infection, i(t), can be calculated by
averaging i(t) over all possible introduction moments, thus deriving
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ei(t) =
1

∆m

∆mZ
0

i(t)dto (7.1)

=
i0

r∆m
ert(1− e−r∆m) ∀t > ∆m.

The probability to detect the infection, depends on the prevalence and on the test
quality. The probability that a randomly sampled herd gives a negative test result at
time step k, is one minus the probability of selecting an infected herd, (i.e.,ei(t)), but
needs to be corrected for the sensitivity of the test.

For the time being, we assume the specificity of the test to be equal to 100%
(neglecting false positive test results, for instance by confirming positive results with
the gold standard). Thus, the probability of not detecting an introduced epidemic in k

consecutive samples of xm individuals, is given by

(1− σei(k∆m))
xm ≈ e−xmσei(k∆m).

The approximation is valid for allei(t)σ ¿ 1, which fits the presumed low preva-
lence of a newly introduced exotic disease. The probability that a sequence of m
samples after virus introduction give negative test results only (escape probability) is
given by

P (m∆m) =
mY
k=1

e−σei(k∆m)xm (7.2)

= e
−σxm

mX
k=1

ei(k∆m)
.

This formula is the basic tool to analyse the quality of a surveillance program:
the lower the escape probability, the better the surveillance program. In the following
paragraph, we explain some of the main features of surveillance programs on the basis
of formula (7.2)
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7.4 Main features of surveillance methods

Two typical features of a surveillance program can be shown easily. First we will
put more emphasis on the time interval between sampling. The main question is:
which interval is optimal? To answer this question, we have to reformulate the escape
probability by substituting the total number of tests x = mxm and the total period
∆ = m∆m in the expression forei(k∆m) (i.e. Formula 7.1), thus a key ingredient of
Formula (7.2) can be rephrased as

mX
k=1

ei(k∆m) =
mX
k=1

i0
r∆m

erk∆m(1− er∆m)

=
mio
r∆

(er∆ − 1)

and we derive

P (∆) = e
−σxi0( e

r∆−1
r∆

)

(7.3)

Thus, the probability that the epidemic will not be detected in the full time period
∆, (P (∆) ) does not depend on the time interval between sampling moments if the
total number of samples, x, remains equal. This implies that it is irrelevant how of-
ten measurements are taken within the period ∆, as long as the sampling rounds are
equally spaced over time and the total number of sampled individuals is constant. For
example, twice the number of sampling occasions with half the sample size will lead
to the same escape probability as the original.

Secondly, in Formula (7.3) we distinguish two sets of parameters, which influence
the escape probability. These two sets of variables are {σ, x, i0} and {r,∆}. As a
group these parameters are restricted, but single parameters from a group are free to
choose, as long as they are compensated by the other parameter(s) in the group to
maintain an acceptably low escape probability.

These observations can be very useful in an economic assessment of the surveil-
lance program. If, for example, two tests are available, a cheap test with a low sen-
sitivity and an expensive one with a high sensitivity, we can now easily calculate the
optimal test, both for epidemiological aspects (earliest and most reliable detection)
and for economical ones (financially optimal, depending on cost of sampling, costs of
testing, costs of control and risk of an infection being re-introduced). The optimal test
is not necessarily the test with the highest sensitivity, although that is generally called
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the best test.

7.5 Quality of a surveillance program

A consequence of the non-zero escape probability is that, despite constant negative
results in the surveillance, the real prevalence can still be above zero. A perfect sur-
veillance program should determine the actual prevalence of the infection at sampling.
Knowing that to be impossible, we suggest defining the quality of a surveillance pro-
gram, taking account of the fast growth of an infection, using quantitative measures,
which allow for comparison of alternative approaches. The quality of a surveillance
program can be defined by two factors, (1) the escape probability, at a specific time
period since introduction of an infection, and (2) the actual prevalence upon detection.
If the prevalence and escape probability are high, the surveillance program has a low
quality, and vice versa, since the time of detecting an infection is heavily influenced
by the stochasticity of the process. Therefore, we propose to define the quality of the
surveillance program using the expectation of the prevalence at detection :

i(m∆m) =
mX
k=1

ei(k∆m) (P ((k − 1)∆m)− P (k∆m)) .

This is derived as follows: the probability of detecting the infection at sampling
moment k is equal to the probability of detecting up to (and including) sampling mo-
ment k; (1−P (k∆m)) minus the probability of detecting it before sampling moment
k; (1− P ((k − 1)∆m)), which results into P ((k − 1)∆m)− P (k∆m). Substituting
formula’s (7.1) and (7.2), we derive that the expected prevalence at detection can be
described by

i(m∆m) = i0

mX
k=1

erk∆m − er(k−1)∆m

r∆m

µ
e−σxmi0

er(k−1)∆m−1
r∆m − e−σxmi0

erk∆m−1
r∆m

¶
(7.4)

This looks rather complicated, and the influence of separate parameters is difficult
to determine. Therefore, we give a short overview of the typical characteristics that
follow from this expression.

Let us start by scaling i0 to one (multiplying i at both sides with the population size
making it the number of infected herds instead of the prevalence of infected herds).
Furthermore, assume that m (total time) goes to infinity. We want the expected preva-
lence at detection to remain sufficiently small, so that control of the epidemic will be
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feasible. We suggest that a maximum of 10 infected individuals would be realistic for
most infections. Now we will visualize the effect of the two relevant group-variables
σ, xm, i0 and r, ∆m on the expected prevalence at detection. Figure 1 shows that the
multiplication of σ, xm, and i0 should remain above 0.2, while Figure 2 shows that the
multiplication of r and∆m should remain below 3. Thus, as a rule of thumb, keeping
both in the order of one would suffice the basic quality needs of a surveillance system
aiming at early detection.
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Figure 1
The steepness of the graphics in Figure 1 for values of σ xm i0 below 0.5 shows the

fast decline of the quality of the surveillance program when this limit is passed. The
constraint on r ∆m is even stronger, which is clear from the exponentially increasing
function in Figure 2.
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7.6 Application to Aujeszky’s disease virus (ADV)

Aujeszky’s disease is an infectious disease of swine, characterized by, in particular,
respiratory distress and abortion. In 1993, the Netherlands started a campaign to erad-
icate the virus from the Dutch pig population by means of vaccination. The strategy
was based on the application of a glycoprotein E (gE)-negative marker vaccine in
combination with an ELISA that detects gE antibodies after infection with a wild type
ADV strain (Stegeman 1997). This gE-negative vaccine reduced the transmission of
the virus sufficiently (De Jong and Kimman, 1994), inducing a negative growth rate
of infected herds and subsequent extinction in fade-out of the infection. The Nether-
lands may soon try to establish the status freedom from infection for ADV and end the
vaccination program. An ongoing surveillance program will be needed to make sure
that we remain free from the infection ([15]). Based on the methodology in this paper,
we give an example of a surveillance program to guarantee that the prevalence of the
infection is, with high probability, below a certain level.

A quick guestimate of the relevant parameter values is applied here to quantify the
relevant parameters under non-vaccinating conditions, because it is merely meant as
an example. Obviously, for a serious analysis of ADV, a more elaborate assessment of
the parameter values will be needed, to obtain the required precision.

The herd will serve as the unit of infection in this case. Based on earlier studies
([15]), we estimate the growth rate of the infection r = 0.3 per week. The herd test
sensitivity (gE ELISA) depends on the number of samples within the herd and the
development of infections within. For now, we assume that the sample size within the
herd is sufficiently large to obtain a high sensitivity of the herd test in the field, i.e.
σ = 95%. For the simplicity of the example, we will not make a full analysis of the
herd test quality, but simply assume that the herd test is sufficiently sensitive to pick
up the infection in an early stage (with 95% probability). Finally we assume that an
epidemic will start with one infected herd in a free population (the Netherlands) of
about 20 000 herds (Stegeman et al., 1999), i.e. i0 = 1/20000.

For financial and logistic efficiency, we would like to combine this new surveil-
lance program with an existing monitoring scheme (for other infections) in The Nether-
lands, where all pig herds are visited and sampled once every 4 months (is 17 weeks).
Week will serve as unit of time, and we find that each week (= ∆m), 20000/17
(= xm) herds will be tested. We calculate the probability of detection over time using
Formula (7.3) (see Figure 3) and the expected prevalence at detection using Formula
(7.4). Calculations are performed using Mathematica R° 4.1.
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Figure 3
We find that the given surveillance scheme and the parameter estimates, will lead

to detection of the infection within about 2 months, on average about 4 weeks after
introduction, with an expected prevalence at detection of 8 herds. These results are
based on a perfect test in the sense that it detects infection immediately. Now from
the Dutch point of view, the problem is controlling an epidemic, once infection has
reoccurred. In that view, the result of this analysis is not impressive. It merely proves
that the intensity of the chosen surveillance program is a bit low for ADV, because it
will be hard to eradicate the infection, when on average 8 herds are infected at first
detection of the epidemic.

In a more conventional analysis of the surveillance program, we would assess
that we have a surveillance program that repeats every 4 months. We find that this
surveillance system is very sensitive, it is able to detect the presence of infection in
the country with 95% certainty, when more than 1 herd is infected. And indeed this
analysis proves that the country is free from the infection, at least, it was so, 4 months
ago. But it does not include an assessment of the likeliness of detecting a recently
started new epidemic. How far can this epidemic develop before the surveillance
picks it up? That is determined by the time between surveillance rounds, and the
growth rate of the infection. Obviously, a gut feeling assessment of the growth rate
of the infection is used to determine the time between surveillance rounds, which is
usually quite sufficient, but that does not allow for a calculation of the possible size of
the epidemic at detection as we describe in this paper.

Whereas the conventional assessment gives sufficient proof of a Freedom of Dis-
ease status, the method in this paper adds an analysis of what happens in the un-
likely event that the infection was re-introduced recently: We expect to detect the
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epidemic before the epidemic has infected 8 herds. Thus, the probability of importing
ADV from the Netherlands is proven to be very small, even when the infection is re-
introduced. This re-introduction probability of the infection in the Netherlands is not
well quantified. However, the ability of the Netherlands to eradicate the infection with
vaccination within five to ten years, and without detection of the infection for a few
years in the surveillance as described above, shows that the reintroduction rate must
be less than once per 2 years (104 weeks). The expected time between introduction
and detection is estimated at 4 weeks, so the probability of importing infection from
the Netherlands is now quantified to be less than 4/104 ∗ 8/20000 = 1.5 × 10−5
per exporting herd per 4 weeks. Depending on the situation, this may or may not be
considered a sufficient guarantee.

Obviously, a better quantification of the introduction risk in the Netherlands could
improve the numbers a lot, but so far, the period of disease freedom is too short to
make a better estimate. At present, the Netherlands maintains a surveillance program
for ADV and also has a quarantine system for export, according to OIE regulations.
However, depending on the exact details, for some infections a more efficient strategy
may be found in integrating the safety of exports in the national surveillance, without
specifically separating surveillance and quarantine for export.

7.7 Discussion

In this paper, we showed the possibilities and advantages of combining mathematical
modeling with statistical analysis to assess a ’freedom from disease’ status, and we
focused on the export of infections. Many surveillance programs are based on serolog-
ical testing of a randomly chosen percentage of a population on a regular basis. This
is usually done in live animals, but carcass screening at the slaughterhouse is also ap-
plied (e.g. [76]). The optimal sampling intensity depends on 1) an optimization of the
surveillance program, to fulfill internationally agreed standards, which should prefer-
ably be based on export risk, and 2) an economic optimization that includes costs and
quality of the surveillance program versus the (in-)direct costs of an epidemic. Thus
conventional assessment of surveillance is very efficient in proving freedom of dis-
ease, but it does not assess the quality of the surveillance system in detecting new
epidemics. When surveillance is (also) assessed with a dynamic model, it’s ability to
detect new epidemics can also be included in the results, and thus, a higher guarantee
of safety of import/exports can be given.

The probability of exporting an infectious disease depends on the local prevalence
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of the infection, and of the type of infection. For infections that induce sterile im-
munity, e.g. many viral diseases, sero-positive animals might be of no risk, although
importing countries do not accept those sero-positive animals. However, carriers, la-
tently or persistently infected animals, e.g. ADV-infected pigs or FMD- carriers are
sero-positive and might be a risk for importing infectious agents. Therefore, sero-
prevalence will be regarded as presence of the infection and seropositive animals are
regarded as a potential risk. A low prevalence might not be detected when only a
random sample of the population is examined, but after some initial random fluctu-
ations with a possibility of spontaneous extinction of the infection, an epidemic can
be expected to approximate exponential growth ([24]). Once the prevalence exceeds
the detection limit, the presence of the infection will be detected at the next sampling.
The probability of detecting the outbreak increases over time with each new sampling
round.

The advantage of implementing the dynamic characteristics of infectious diseases
in the design of a surveillance program is mainly found in the way the factor time is
included in the analysis. Without a dynamic assessment, it is not possible to calculate
the time between introduction and detection, i.e. the high risk period (HRP). The
longer the HRP, the more animals are exported to other countries, and thus, the higher
the probability of exporting the infection. A dynamic model immediately shows that
the sampling intensity (or frequency) is essential in detecting the epidemic before it
has reached a predefined level. So far, this has rarely been calculated properly in
relation to the development of a possible epidemic or in comparing the quality of
surveillance programs. The OIE Animal Health Code and the Manual on diagnostic
tests ([69]) do not mention this topic at all. Proving freedom of disease is sufficient
and the fact that the infection can be reintroduced in the country is neglected.

Conventional surveillance analysis calculates the detection level of a surveillance
program, but neglects to analyse the development in between. Between rounds of
testing, a large epidemic can develop, depending on the rate of transmission for that
infection. Therefore, an analysis that includes the assessment of the size of such an
epidemic gives a better idea of the safety of a surveillance system. Previously, the
surveillance was mainly aiming at proving that a country has been free from the in-
fection, and therefore, it most likely still is. With the basic methodology as explained
in this paper we can now also analyse the risk of a recently reintroduced infection for
export, and compare the quality of surveillance systems in other countries with respect
to HRP and import risk.

The optimal sampling frequency is partly based on the costs of a surveillance pro-
gram and the costs of an epidemic. Thus, one can set criteria for monitoring from
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an economic assessment of surveillance costs against the costs of controling an epi-
demic. Especially, the time until detection has a very strong influence on the costs of
controling the infection ([52]; [66]).

The example of ADV shows that an ADV epidemic will be detected by serolog-
ical surveillance within 2 months after introduction. For comparison and validation,
little is available in literature. The closest we can find is a study by Crauwels et al.
[9], who investigated the effectiveness of serological surveillance for classical swine
fever (CSF), based on a sampling interval of four months and assuming within-herd
prevalence of 25%. To do this, they used the data of the CSF epidemic 1998-98 in
the Netherlands, and a simulation model that was used to analyse that epidemic. They
calculated that the probability of detection of a CSF case was very low. They further
showed, that even sampling scheme of 60 samples per month, the probability of detec-
tion within 40 days was less than 40%. This supports our calculations about an ADV
infection, which spreads somewhat slower, but is in most transmission aspects com-
parable to CSF. The sampling intensity of 60 herds per month is indeed far too low to
detect the infection within a reasonable time frame. The advantage of our method is
that the calculation for general situations is more straightforward, and the assessment
is also faster, because it does not require the availability of a simulation model.
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Summary

For the eradication or control of infectious diseases, one needs knowledge of the
spread of the infection between (groups of) animals. Models can easily be used to
observe the efficacy of various control measures in fighting the infection. However,
the availability of information and data to build and quantify these models is essential
for applying such models in real life. In this thesis, models on the spread of infectious
diseases in animals are always combined with data concerning the host, the infectious
agent, their interactions and often also case data from epidemic or endemic disease
situations. In some cases, the models are used to interpret data (Chapter 2 and 6), but
mostly, the data are used to quantify the various model parameters. In some cases data
on outbreaks or epidemics can also be applied to validate the models. Therefore, the
results of such modelling studies can often be used to improve or optimise the disease
control situation.

Two factors enable us to compare the efficacy of disease control measures, i.e.
modelling and data. Careful representation of the contact patterns between host and
infectious agent, but also between infected and susceptible hosts may have a large in-
fluence on the result. Good en recent data allow for increased insight in the important
factors in the spread of the infection, and allow for reliable quantification of the re-
sults. Various methods in modelling, model analysis and quantification of models are
addressed in this thesis, but typically, they will always be given with a real life exam-
ple, where a disease situation poses a certain problem, that may be of environmental,
ethical, or economical origin.

Careful consideration of the epidemiological situation (behaviour, time delays,
etc.) in relation to the purpose of the study (understanding, optimising control, etc. )
is needed to choose the best model to analyse the situation. For slow developing dis-
eases, age structured models are often useful, because many animals may not survive
long enough to become infectious. For animals living in herds, their clustering can
be very influential in spreading the infection, and that behaviour should be incorpo-
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rated in the model. For herpes viruses, it is important to see whether reactivation of
the infection in previously infected hosts influences the dynamics of the infection in a
population.

We show that for Phocine Distemper Virus (PDV) the data of the epidemic in 1988
show that clustering of animals has a strong influence on the transmission and survival
of the animals. A previously applied model to analyse the seal situation did not fit the
data very well, and further analysis of the seal behaviour, and the transmission options
for the virus suggested that the virus will mainly be transmitted when the seals haul
out on the sand banks. Due to their clustering, the death rate was higher than could be
expected from the first model.

To control and eradicate Infectious Bovine Rhinotracheitis (IBR) it is known that
the persistence of the infection in previously infected animals may cause a delay in
eradication. We have quantified the probability for such a virus to reactivate in the
field, and combined that with a model that calculates the expected time to extinction.
Thus, control measures in the eradication process can easily be compared for efficacy
and a time frame can be defined.

In the control of BSE, the major consumers fears have lead to extremely strict
attempts to control the infection, after an initial neglect of the seriousness of the prob-
lem. By quantifying the transmission parameters, the various control measures can be
compared, and it becomes clear that to end the epidemic, several options are avail-
able and may be interchangeable. Given the uncertainty of the human risk, maximum
efforts have been put forward, but now that more information is available, both on
surveillance and on control, optimisation of the methods can be introduced, based on
the models as explained in this thesis. Based on the age distribution of BSE cases,
much information becomes available on the efficacy of BSE control in the past, but
also concerning the prevalence of the infection in the future. Risk assessment and
modelling are especially important for countries without BSE cases, or to few cases to
really describe an epidemic. Based on the models, surveillance can be aimed at higher
risk groups in the population, thus improving the efficacy of the surveillance program.

Monitoring of an animal disease situation may have many purposes, for instance
to prove freedom from infection for a certain farm or country. Such a status increases
the value of animal in those herds or countries. However, there is never a full-proof
method to show absence of the infection. This is caused by various reasons; 1) test
quality, infected animals are not always detected by the test, 2) a sample of the animals
is tested, and the few infected animals may be missed, and 3) the infection may be
introduced after the sampling. In the last chapter of the thesis, we give an opening for
extended modelling to quantify such risks. An integrated approach of transmission
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models that include repeated sampling over time allow a calculation of the probability
that an early epidemic escapes from detection. Thus a much more exact calculation
can be given of the safety of the herd or herds concerning this infection.
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Samenvatting

Om besmettelijke ziekten te kunnen beheersen of bestrijden is kennis nodig van het
spreiden van de infectie tussen (groepen) dieren. Met behulp van modellen kan een-
voudig worden bestudeerd welke maatregel geschikt is om de infectie te bestrijden.
Maar daarvoor dient wel voldoende informatie beschikbaar te zijn, om de modellen
goed te kunnen kwantificeren. In dit proefschrift wordt het gebruik van modellen
steeds gecombineerd met data, omtrent de gastheer, het infectieuze agens en de inter-
acties daartussen. Bovendien worden er ook van data over de ontwikkeling van een
epidemie of de incidentie van de ziekte in een endemische situatie gebruikt. Soms
kunnen modellen gebruikt worden om de data te verklaren (hoofdstukken 2 en 6), in
andere gevallen worden de data gebruikt om parameters in de modellen te kwantifi-
ceren en soms ook om de modellen te valideren. Hierdoor zijn de model resultaten
vaak direct in de praktijk toe te passen voor het verbeteren of optimaliseren van de
beheersing van de infectie.

Voor het vergelijken van de effectiviteit van bestrijdings- en/of beheersingsstrate-
gieën van besmettelijke dierziekten zijn twee factoren heel belangrijk, modelformule-
ring en dataverzameling. Het zorgvuldig weergeven van contactpatronen binnen mo-
dellen is vaak heel belangrijk voor het eindresultaat. Actuele en goede data geven veel
meer inzicht in factoren die een rol spelen bij de verspreiding van besmettelijke ziek-
ten. Daarmee kan zo’n model kwantitatief verder worden uitgewerkt. Verschillende
methodes voor modelleren, analyseren van modellen en kwantificeren van modellen
komen aan de orde, en worden dan altijd geplaatst in de context van een praktijk pro-
bleem, zoals bijvoorbeeld gekke koeienziekte of zeehondenziekte, waar verbetering
van de ziektebeheersing wenselijk is.

Het is belangrijk om de epidemiologische situatie (snelheid, gedrag zieke dieren,
etc) zorgvuldig te bestuderen, alvorens een definitieve keuze te maken voor bepaalde
modellen, en de keuze hangt bovendien af van het doel, bijvoorbeeld vergelijken van
de effectiviteit van verschillende bestrijdingsmaatregelen. Bij traag ontwikkelende
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infecties zijn leeftijdsgestructureerde modellen belangrijk, bij kudde dieren moet re-
kening gehouden worden met kudde gedrag. Bij herpes virussen kan reactivatie in
dieren die hersteld zijn van de infectie belangrijk om mee te nemen.

Voor Pocine Distemper Virus (PDV, zeehondenziekte) blijkt uit toepassen van
data, dat een eerder gebruikt model minder geschikt is voor het analyseren van een
epidemie, maar dat voor zeehonden toch sterk rekening moet worden gehouden met
kudde gedrag tijdens het rusten op de zandplaten. Daardoor verloopt de epidemie
sneller dan verwacht, en is de sterfte onder de dieren ook hoger dan verwacht.

Bij de bestrijding en eradicatie van Infectious Bovine Rhinotracheitis (IBR, koeien-
griep) blijkt dat het persisteren van de infectie in eerder besmette dieren sterke invloed
kan hebben op de tijd die het duurt voor de infectie uit een kudde verdwenen is. Door
het kwantificeren van de kans dat het virus weer reactiveert, kan worden berekend hoe
lang het eradicatieproces onder bepaalde (extra) bestrijdingsmaatregelen zal duren.

Bij de bestrijding van BSE (gekke koeienziekte) heeft de angst onder consumenten
geleid tot een zeer streng controlebeleid, nadat er in eerste instantie voor een wat
voorzichtige aanpak was gekozen. Door het kwantificeren van de transmissieparame-
ters kan de effeciviteit van de verschillende maatregelen zichtbaar gemaakt worden en
blijkt dat een aantal maatregelen om de epidemie te stoppen uitwisselbaar zijn, maar
niet efficient optellen. Door de onzekerheid over de voedselveiligheid was in eerste
instantie een maximale veiligheid noodzakelijk. Nu veel meer duidelijkheid bestaat
over zowel epidemie bij mensen als bij koeien, kunnen de controlemaatregelen en sur-
veillance gerichter worden ingezet, op basis van model resultaten, zoals in dit proef-
schrift in detail wordt uitgelegd. De surveillance voor BSE kan efficiënter worden
ingericht, door gebruik te maken van kennis over de leeftijd waarop BSE zichtbaar
wordt. Bovendien kan door analyse van de leeftijden van BSE koeien een geschikte
toekomst voorspelling van het voorkomen van de ziekte worden gemaakt, en kan ook
de effectiviteit van bestrijdingmaatregelen in het verleden beter geanalyseerd worden.

Monitoren van een dierziektesituatie kan met vele doelen gebeuren, onder andere
wordt het toegepast om aan te tonen dat een bedrijf of land vrij is van een bepaalde
infectieziekte. Om meerdere redenen is zo’n analyse nooit een 100%-bewijs dat de
infectie afwezig is; 1) de test is meestal niet volledig betrouwbaar, 2) niet alle dieren
zijn getest, maar slecht een sample, en 3) na het testen is de infectie binnengekomen.
In het laatste hoofdstuk van het proefschrift wordt uitgelegd hoe deze problematiek
in de toekomst beter kan worden aangepakt. Daarvoor is een geïntegreerde aanpak
nodig, waarbij de spreiding van de infectie (indien aanwezig) en het tijdsverloop sinds
de laatste test specifiek wordt meegenomen. Daarmee kan veel zuiverder dan voorheen
worden berekend wat het risico is dat het bedrijf of land toch niet vrij is van de infectie.
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