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Chapter 1

General Introduction

1.1 Simple Spatio-Temporal Models of Population

Dynamics

To construct analytical models of spatio-temporal processes, one has to make some
basic choices about space, time, and state variables. Each of them may be continuous
or discrete, giving eight combinations (Dieckmann et al 1999). Here we briefly introduce
two kinds of classical spatial models of population dynamics which are relevant to the
approaches in this thesis.

Reaction-Diffusion Equations The classical approach to modelling ecological
systems (Volterra 1926) simplifies by ignoring space completely and in essence assumes
that every individual is equally accessible to every other individual, which results in
the so-called mean-field description of the system. One of the classical methods to take
space as well as the movement of organisms into account is the standard reaction-
diffusion equation (Fisher 1937):

ut = f(u) + D∆u (1.1)

in which u = u(t, x) is the vector of population densities at time t in spatial position
x ∈ Ω ⊂ Rn (Ω can be either a bounded domain with no-flux on the boundary or an
unbounded domain), f is a smooth map, D is a diagonal matrix with constant diagonal
elements known as diffusion coefficients. ∆ is the Laplace operator. It is seen that the
equation is obtained by simply adding a diffusion term (i.e., D∆u) to the reaction
term describing local interaction and growth of populations (i.e. f(u)). The basic
assumption concerning the diffusion term is that organisms follow Brownian motion in
space with a rate which is invariant in time and space. Based on this type of simple
models, some well-known theories have been developed, which will be briefly reviewed
in the next sections.

Diffusively Coupled Patch Models In a patchy world (either the habitat is
patchy or the species assumes a patchy distribution) spatially discrete models (“patch
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models”, or“cell models”), in which patches are coupled by dispersal while the within-
patch dynamics is described explicitly, turns out to be one of the relevant approaches
(e.g., Comins and Blat 1974, Zeigler 1977 1978, Crowley 1981, Sabelis and Diekmann
1988, Reeve 1988, 1990). When organisms migrate among patches by way of unbiased
random walk and the rate of migration is constant, this type of models takes the form

ut = f(u) + MBu (1.2)

in which u = u(t, j) is the vector of population densities at time t in patch j ∈N
(N = {1, 2, · · · , n}, or {1, 2, · · · , }). M is a diagonal matrix with constant diagonal
elements. B is a certain linear and discrete spatial operator describing how one patch
exchanges dispersing organisms with other patches. Essentially, the migration term
MBu, in particular the discrete operator B, can be carefully defined so that the model
(1.2) can be taken as a spatially discrete analogue to (1.1) in some extent.

1.2 Pattern Formation in Ecological Systems

The fifty years since Turing (1952) have witnessed the unfolding of a vast literature
of theoretical investigations of the pattern formation mechanisms as well as numerous
appplications to real patterns in a large number of ecological systems (Murray 1993,
Bazykin 1998, Nishiura 1994, 2002, Holmes et al 1994, Plahte 2001, Fiedler and Sheel
2003).

Small Amplitude Patterns: Turing Instability It was Turing who firstly
exposed that homogeneous, unforced systems of reaction-diffusion equations can exhibit
inhomogeneous spatial structures via a symmetry-breaking bifurcation. More precisely,
in a reaction-diffusion system, a homogeneous equilibrium which would be predicted to
be stable without diffusion becomes unstable. It is hence diffusion that destabilzes the
homogeneous equilibrium. This idea is known as Turing Instability, or Diffusion-
Driven Instability (DDI) nowadays. Segel and Jackson (1972) introduced this idea
to the ecological field. By a predator-prey system of reaction-diffusion equations they
demonstrated the same diffusion-driven instability and gave a biological explanation
which is well-known now. In the absence of dispersal, the prey and the predator arrive
at a stable equilibrium so that any increase in prey is consumed by the predator, and
any increase in predator is reduced by self-limitation. When diffusion is added and the
diffusion rate of the predator is sufficiently larger than that of the prey, the stabilizing
influence of the predator may be dissipated by diffusion, yielding regular peaks and
troughs of prey and predator densities. The striking aspect of the theory is that
the spatially periodic patterns are formed due to the Brownian motion of individuals
in a homogeneous environment. Under such an assumption of random movement a
criterion for DDI in general two-species systems has been estabished, by which it is
concluded that a standard reaction-diffusion system of two-species competition can
not exhibit DDI (Okubo 1980, Edelstein-Keshet 1986, Murray 1993). There are also
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some new theories which extends the old reaction-diffusion models (e.g., Murray and
Oster, 1984a 1984b). However, the analytical methods developed for reaction-diffusion
models continue to be of use in the investigation of these alternative models.

Large Amplitude Patterns For some reaction-diffusion systems the spatial
inhomogeneous equilibria are far away from any uniform equilibrium. In this case, Tur-
ing’s method of local bifurcation is of no use in determining both the existence and the
stability of such large amplitude patterns. Mimura et al (1979) and Nishura (1982)
have presented a complete discussion of these patterns in some prey-predator systems
of reaction-diffusion equations (in bounded spatial domain with no-flux boundary con-
ditions) (reviewed by Conway (1984)). Gardner and Smoller (1983) have considered
analogous problems in unbounded spatial domain while focusing on travelling waves.
In general we face a system where one species diffuses much faster than the other.
The large amplitude pattern turns to be singular in the sense that they possess some
transition layers. The approach to constructing such solutions was originated by Fife
(1976a,1976b,1977). The Turing approach yields small amplitude patterns because it
depends only on the local structure of the interaction terms in a neighbourhood of a
point in phase space. In contrast, Fife’s method is inherently nonlinear and it depends
on certain global features of the interaction terms and yields macroscopic patterns.

1.3 The Fundamental Theories of Metapopulation

Dynamics

For more than thirty years, the Levins model (Levins 1969, 1970) has served as a
cornerstone of metapopulation studies, providing a conceptual foundation for much of
the theory as well as inspiration for empirial studies. Metapopulation theories contain
in fact three categories of hypotheses (Taylor 1990)

i) Local extinctions and recolonization occur frequently.

ii) Isolated local populations frequently would go extinct, but migration (usually)
prevents this.

iii) Isolated local populations usually would persist but fluctuate wildly, and migra-
tion reduces the magnitude of the fluctuation.

Throughout the history two distinct types of models of metapopulations have been
studied extensively. One type is called “patch occupancy” models (Levins 1969, Levins
and Culver 1971) in which the variable concerned is the fraction of patch occupancy.
The other type of models, in contrast, describes within-patch dynamics explicitly, like
that given by (1.2). The basic theoretical conclusion reached by studying these models
is that persistence can indeed be enhanced by dispersal among populations within a
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metapopulation provided some quite loose, and apparently plausible, conditions are
met.

The fundamental requirement is asynchrony of patch fluctuations because such an
asynchrony reduces fluctuations in the total population for purely statistical reasons
(Reeve 1990). To see this, suppose that the density of individuals in the ith patch, Xi,
is a random variable with mean µ and variance σ2. Suppose also that the densities in
any two patches have a pairwise correlation of ρ, a measure of their synchrony. The
coefficient of variance of average subpopulation density over time is

CV (X̄) =

√
σ(1 + (n− 1)ρ)

µ
√

n

where n is the number of subpopulations. This quantity increase with increasing ρ, i.e.,
synchrony. Fluctuations in a average density are thus reduced by asynchrony among
the subpopulations, for statistical reason alone. What is important is not just whether
local populations are asynchronous, but understanding how this situation arises and is
maintained.

Early work concerning Turing instability focuses on systems which have a stable
equilibrium without diffusion. An isolated local population, however, may settle on a
limit cycle. A question associated with the idea of Turing instability is thus whether
or not the homogeneous cycle can be destabilized by migration, giving rise to spa-
tially inhomogeneous cycles. The existence and persistence of such cycles have been
demonstrated by authors in specific diffusively coupled systems (Gyllenberg et al. 1993,
Hastings 1993). In other words, the Turing instability (or, diffusive instability) phe-
nomenon may occur in an oscillatory system. The importance of this result has been
emphasized by Adler (1993) and Jansen (1994): migration alone results in asynchrony
which, as we remarked in the last paragraph, reduces fluctuations in densities across
the entire system.

1.4 Beyond Standard Diffusion

It has been the basic assumption behind most early mathematical models of spatial
population dynamics that organisms move or disperse in space randomly, which allows
for a simple mathematical approach to population dynamics and yet is sufficient to
study the fundamental influence of space and dispersal on population dynamics. In the
classical applications of partial differential equations to population biology for instance,
organisms are assumed to have Brownian motion, the rate of which is invariant in time
and space. The assumption leads to the standard reaction-diffusion type of model
(1.1).

There is an extensive mathematical literature on reaction-diffusion systems applied
to ecological problems (Okubo 1980, Okubo and Levin 2001, Holmes et al 1994). How-
ever, in spite of all work that has been devoted to diffusion theory in ecology, the
suitability of the most naive diffusion model for the description of animal movements
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requires scrutiny. As Skellam (1973) remarked “ it is clearly much better to construct
the diffusion model in relation to the realities of the grass-roots situation than to borrow
some simple model, such as ∂u/∂t ∝ ∂2u/∂x2, from physical science or mathematical
textbooks and trust in its applicability.” For most insect and mamal species the reality
of individuals’ movement may be far different from standard diffusion. For instance,
individuals may move in response to the local abundance of populations. In some
predator-prey systems prey at a certain position usually have increasing inclination to
leave when the number of predators near-by increases because of the increasing danger,
whereas predators, in contrast, usually have decreasing inclination to leave when the
number of prey increases because of the increasing food resource. Obviously the stan-
dard reaction-diffusion model (1.1) or the standard diffusively coupled patchy model
(1.2) are too naive to describe such movement processes and interactions. The most
important question hence is not whether such a mechanism of interspecific influence
on mobility exists, but how to implement it mathematically and how to analyse what
impacts it would have on those basic theories which we reviewed in the previous two
sections.

1.5 The Aims and The Strategy

One of the fundamental issues in spatial ecology is how explicit considerations of space
alter the prediction of population models, or what insights they may give into the
cause of broad-scale patterns (Tilman and Kareiva 1997). Classical theories, such
as diffusion-driven instability and metapopulation dynamics which are developed via
simple spatial population models, have profoundly increased our understanding of the
issue. In this thesis we scrutinize these theories by considering more complicated
processes of spatial interaction of populations. For this purpose we need to construct
models in which the migration mechanisms are reflected well. Though there is no
absolute standard in this point, it is clearly much better to derive population-level
description from the assumptions about behavioural mechanisms of individuals. We
shall pay special attention to the interspecific influence on mobility, an important
factor that might have significant impact on the dynamical prediction of multi-species
interactions. We shall develop a general method to derive spatial population models in
which such a factor is naturally incorporated. As we have pointed out in the previous
sections, the classical models of spatial population dynamics are the reaction-diffusion
equations. The alternatives are spatially discrete models that approximate them. The
reaction-diffusion equations, which may have far more complicated diffusion terms
than that in (1.1), are often used to understand the origin of patterns and waves
(Obubo 1980, Okubo and Levin 2001, Holmes et al 1994). Though reaction-diffusion
equations have the advantage in avoiding an arbitrary division of space, they are usually
intractable, especially when the diffusion terms have to take a complicated nonlinear
form in order to reflect the reality of dispersal. For this reason we will scrutinize in
this thesis the theories that concern us by using mainly patchy models.
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1.6 A Survey of the Various Chapters

In Chapter 1, we briefly review the two types of simple spatio-temporal models of pop-
ulations and the well-known theories of diffusion-driven instability and metapopulation
dynamics.

In Chapter 2, a predator-prey metapopulation model with two identical patches
and only migration of the predator is investigated. Local predator-prey interaction is
described by the so-called Rosenzweig-MacArthur model, while the migration term of
the predator is put in a nonlinear form, which is derived by extending the Holling time
budget argument to migration. In particular, a dimensionless parameter is introduced
to quantify the migration tendency of predators while they are handling their prey,
which gives rise to a family of models connecting two extremes: predators have no in-
clination to migrate while handling prey and standard diffusion. We find that the two
extremes have both qualitative and quantitative differences in dynamics, leading to dif-
ferent answers to the key question about whether or not spatial structure substantially
reduces predator-prey oscillations.

Having realised that a cross-emigration response, i.e. the dependence of the emi-
gration tendency of individualsof one species on the density of some other species, is an
ubiquitous feature of multi-species systems we were motivated to study this potential
mechanism of pattern formation (i.e. Turing instability) theoretically. In Chapter 3,
we formulate a multi-patch multi-species model in which the cross-emigration response
is incorporated and quantified (The corresponding model is referred to as “the cross-
migration” model). We find that a cross-emigration response has crucial effects on
diffusive instability. In the case of competition a cross-emigration response promotes
pattern formation by exercising a destabilizing influence; in particular, it may lead to
diffusive instability provided that the response is sufficiently strong, which contrasts
sharply with the well-known fact that the standard competition system does not ex-
hibit diffusive instability. In the case of prey-predator or activator-inhibitor interaction
it acts against diffusive instability by exerting a stabilizing effect; in particular, the dif-
fusive instability, even though it may happen in a standard system, never occurs when
the response is sufficiently strong.

In Chapter 4 we present a general method to mechanistically derive “cross-migration
models”. We consider a system of multiple species living in a patchy habitat in which
the local population of each species consists of some behavioural groups. We then
formulate a time-continuous model in which a small positive parameter is present,
measuring the time scale of behavioural transitions relative to that of giving birth,
death and migration among patches. By the singular perturbation method the model
is reduced to a lower dimensional one in which the migration terms are, in general,
nonlinear and related to the reaction terms.

In Chapter 5, we examine the stability consequences of a particular migration pro-
cess in which individuals choose to settle. For this purpose, we formulated a time-
continuous multi-species multi-patch model in which individuals migrate by one or two
instantaneous jumps while making the second jump with a certain probability that
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possibly depends on the conditions at the end point of the first jump. It turned out
that a second jump has some quantitative effects on diffusive instability when it occurs
with a probability that is density-independent. When a second jump happens as a
natural interspecific response of individuals, and such a response is sufficiently strong,
it has crucial effects on diffusive instability: it leads to diffusive instability in the case
of competitive interactions, whereas it annihilates diffusive instability in the case of
prey-predator interactions.

In Chapter 6, we turn to a practical problem of spatial population dynamics. We
present a model that describes the dynamical change in the number of host individuals
(i.e. peach flowers and fruits) infected by the brown rot fungus (Monilinia laxa). The
model predicts both the annual incidence of the disease when the infected individuals
are spatially homogeneously distributed and the asymptotic velocity of disease spread
when the disease initiates at a certain spatial position. Numerical simulations based
on the model show that suitable orchard management restrains the epidemic incidence
and spread.





Chapter 2

Predator Migration In Response To
Prey Density: What Are The
Consequences?

Abstract. A predator-prey metapopulation model with two identical patches
and only migration of the predator is investigated. Local predator-prey interac-
tion is described by the so-called Rosenzweig-MacArthur model, while the migra-
tion term of the predator is put in a nonlinear form, which is derived by extending
the Holling time budget argument to migration. In particular, a dimensionless
parameter θ is introduced to quantify the migration tendency of predators while
they are handling their prey, which gives rise to a family of models connect-
ing two extremes: predators have no inclination to migrate while handling prey
(θ = 0) and standard diffusion (θ = 1). Various aspects of the model, including
changes in the number and the stability of equilibria and limit cycles, are inves-
tigated. We then focus on the key question: ”Does spatial structure lead to a
substantial damping of the violent oscillations exhibited by many predator-prey
models?”. It is known that the answer is ”yes”if one adopts standard diffusion
(θ = 1). However, we present substantial evidence that the answer is ”no”if one
takes θ = 0. We conclude that the migration submodel is an important con-
stituent of a spatial predator-prey model and that the issue deserves scrutiny,
both experimentally and theoretically.

Key words: Predator-Prey Model - Predator Migration - Time Budget - Bi-
furcations

AMS subject classification: 37G40, 37N25, 92D25

∗A joint work with Diekmann, O., Published in J. Math. Biol., Ref.[51]
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2.1 Introduction

Predator and prey populations that live and interact in an ensemble of patches exhibit
metapopulation dynamics. One of the hypotheses concerning the crucial role of disper-
sal and spatial structure in metapopulation dynamics is that isolated local populations
fluctuate wildly and that migration among local populations reduces the amplitude of
the fluctuations (Taylor, 1990).

Violent oscillations of local predator-prey populations in isolation are both predicted
by mathematical models and observed in experiments (Rosenzweig, 1971; 1972). How-
ever, oscillations of local populations may proceed out of phase persistently (in an
extreme case the peaks in densities of some local populations coincide with the troughs
in densities of other local populations) and consequently the amplitude of the global
oscillation may be much reduced.

Spatial predator-prey models can be used to scrutinize this idea theoretically. One
such model is the spatial variant of the so-called Rosenzweig-MacArthur model. The
local predator-prey interaction is then described by the two differential equations:

v′ = rv(1− v
k
)− αvp

1+αhv

p′ = βvp
1+αhv

− µp
(2.1)

which reflect the assumptions that prey with density v grow logistically without
predators, while predators with density p have Holling type II functional response
to prey density. k, r, µ, α, h, β/α are the prey carrying capacity, maximal prey growth
rate, predator death rate, predator searching efficiency, predator handling time per
prey and the conversion efficiency of prey to predators respectively.

Migration of predator and prey may follow complicated rules, in particular the
per capita rate might be density-dependent. The simplest case is that one or both
species migrate between two patches and that the per capita rate of emigration is
constant (Comins and Blatt, 1974, Crowley, 1981, Holt, 1985, Murdoch et al. 1992,
Nisbet, 1992, Jansen, 1995, de Roos et al. 1998, Jansen and de Roos, 1999, Gurney
and Veitch, 2000). When migratory rates are assumed to be constant, the bifurcation
diagram and the dynamics of the model are surprisingly complicated (Jansen, 1994).
However, we maintain that a constant rate of emigration of a predator is not a consistent
assumption when a predator is assumed to need a (prey-density dependent) fraction of
its time for the handling of prey. (Likewise, if it is the digestive capacity, rather than
the time budget, which limits the prey capture rate of a predator, one can imagine that
a predator with a full stomach has little inclination to move or emigrate.) In other
words, it is reasonable to apply the time budget argument to both local search for prey
and more global movement.

In this paper we first extend the Holling searching-handling time budget argument
to movement of predators in the spatially discrete case, which results in a special prey
density-dependent form of emigration rate of predators . Then we focus on a two
patch system in which local interaction is described by the Rosenzweig-MacArthur
model, prey is assumed immobile, while the migration rate of the predator is put in
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a general form. We will investigate the bifurcations of equilibria and limit cycles, and
find that the extension of the Holling time budget argument to movement has essential
effects on the dynamics. Our results show that the migration submodel is an important
constituent of a spatial prey-predator model and they point the way towards a further
investigation of possible spatio-temporal patterns.

2.2 The rationale of the model and some prelimi-

naries

According to the classical Holling time budget argument (Holling, 1966), a predator’s
total time of food-gathering T consists of two parts : the searching time Ts and the
handling time Th. The number of prey caught by one predator is then proportional to
the prey density (v) and the searching time. That is,

the total number of prey caught = αvTs

where α is the searching efficiency of the predator.
Moreover, the total handling time equals the product of the total number of prey

caught and the expected handling time h per prey

Th = hαvTs

So the expected number of prey caught per predator per unit of time equals

αvTs

T
=

αvTs

Ts + Th

=
αv

1 + αhv

which is the well known Holling type II functional response .
For the majority of predator species the movement of an individual in space is

closely related to its food-gathering activity (namely, the searching and handling of
prey). Therefore, we have to consider the effect of the food-gathering activity on the
movement, including the propensity to migrate, when we try to establish a model to
investigate spatial predator-prey interactions. To do so, we argue as follows.

During a food-gathering time period a predator is, by assumption, in one of the
following four states (here we follow an idea of the state classification by Metz &
Diekmann (1986))

(m, s), (m,h), (n, s), (n, h)

where the symbols m,n, s, h correspond to the mobile, immobile, searching and han-
dling state respectively. By ”mobile”we mean that there is a certain positive probability
per unit of time, say D, that the predator moves from one patch to another.

The time partition is now

T = Tms + Tmh + Tns + Tnh
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where Tms is the total time that a predator is in the (m, s) state, etc..
If a predator is mobile in a fraction δ of its searching time, while it is mobile in a

fraction θ of its handling time, then

Tms = δTs, Tns = (1− δ)Ts with 0 ≤ δ ≤ 1

Tmh = θTh, Tnh = (1− θ)Th with 0 ≤ θ ≤ 1

so that δ = 1 & θ = 0 corresponds to the case with mobile-searching and immobile-
handling states only, while δ = 1 & θ = 1 corresponds to another extreme case in
which the predator is always mobile.

Recall that Th = hαvTs. So we have

m(v) :=
Tm

T
=

Tms + Tmh

T
=

δTs + θTh

Ts + Th

=
δ + θαhv

1 + αhv
(2.2)

where m(v) can be interpreted as the probability that a predator is in the mobile
state at any moment. So the density of mobile predators is m(v)p, where v, p are the
prey and predator densities at the spatial position or the local patch.

The two patch Rosenzweig-MacArthur model with immobile prey then takes the
following form:

dvi

dt
= rvi(1− vi

k
)− αvipi

1 + αhvi

dpi

dt
= −µpi +

βvipi

1 + αhvi

+ D(
δ + θαhvj

1 + αhvj

pj − δ + θαhvi

1 + αhvi

pi)

i, j = 1, 2 and j 6= i

where D is the diffusion rate.
Note that the model has, in essence, no difference between 0 < δ < 1 and δ = 1 (as

follows from the parameter transformation Dδ ∼ D, θ/δ ∼ θ). So we restrict to the
case δ = 1 in the rest of the paper.

After scaling
βvi/r ∼ vi, (α/r)pi ∼ pi, βk/r ∼ k, µ/r ∼ µ, rαh/β ∼ h, D/r ∼ D, rt ∼ t
the system has the form:

dvi

dt
= vi(1− vi

k
)− vipi

1 + hvi

dpi

dt
= −µpi +

vipi

1 + hvi

+ D(
1 + θhvj

1 + hvj

pj − 1 + θhvi

1 + hvi

pi) (2.3)

i, j = 1, 2 and i 6= j

We consider θ as a homotopy parameter, linking the traditional ”diffusion”model
θ = 1 to the ”only mobile while searching”model θ = 0.
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Throughout the rest of this paper we assume that hµ < 1 (because otherwise the
predator goes extinct no matter how abundant the prey is).

We follow Jansen & Lloyd (to appear) to write the state variable in a matrix form

X := (x.1, x.2) = (x1., x2.)
T =

(
v1 v2

p1 p2

)

In order to link up with the bifurcation theory of symmetric systems we define a
symmetry transformation on R4

+ by

R :

(
v1 v2

p1 p2

)
7−→

(
v2 v1

p2 p1

)

It is obvious that if X is a solution of (2.3), so is R(X). Hence the system (2.3) is,
since R2 = I, a so-called Z2− equivariant system (Kuznetsov, 1998).

In addition to the symmetry transformation R, the following three subspaces are
helpful for the description of the bifurcations and the dynamics of the system:

Diagonal space: W = {X = (x.1, x.2) ∈ R4
+ | x.1 = x.2}

Boundary space: W b
i = {X ∈ R4

+ | vi = 0}, i = 1, 2

W,W b
1 and W b

2 are all invariant sets of the flow generated by (2.3).

2.3 Equilibria and Their Classification

The system (2.3) has a maximum of 9 equilibria which can be divided into 4 categories
(see Appendix A):

• Trivial equilibria

E00 =

(
0 0
0 0

)
Ekk =

(
k k
0 0

)

Ek0 =

(
k 0
0 0

)
E0k = R(Ek0)

• Nontrivial symmetric (or, homogeneous) equilibrium

Es =

(
vs vs

ps ps

)

• Nontrivial boundary equilibria:

Eb
1 =

(
vb 0
pb pb

0

)
Eb

2 = R(Eb
1)
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• Asymmetric equilibria:

Ea
1 =

(
va

1 va
2

pa
1 pa

2

)
Ea

2 = R(Ea
1 )

The explicit expressions of the equilibrium components in terms of the parameters
are derived in Appendix A.1 and listed in Table 2.1.

Table 2.1: Equilibrium components

Symbol Expression
vs µ/(1− hµ)
ps (1 + hvs)(1− vs/k)

vb µ(2D+µ)
D(1−hµ−θhµ)+µ(1−hµ)

pb (1 + hvb)(1− vb

k
)

pb
0

D
D+µ

(1 + θhvb)(1− vb

k
)

γ D(1−hµ−θhµ)+(1−hµ)µ
(1−hµ)(2θhD−(1−hµ))

va
1

1
2
(k− vs)− γ + 1

2

√
(k − 3vs − 2γ)(k + vs + 2γ)

va
2

1
2
(k− vs)− γ − 1

2

√
(k − 3vs − 2γ)(k + vs + 2γ)

pa
1 (1 + hva

1)(1− va
1/k)

pa
2 (1 + hva

2)(1− va
2/k)

Throughout the rest of the paper we will say that an equilibrium exists if it is
biologically meaningful, i.e. all of its components are non-negative. Figure 2.1 gives
an impression of the position of the 9 equilibria when they exist.

2.4 Local Dynamics and Bifurcations

In this and the following sections, we use certain symbols to denote particular bi-
furcations and the parameter conditions which characterise them. To enhance the
surveyability, these symbols are introduced in Table 2.2, 2.3, 2.4. A more detailed
description is presented in the later subsections.

For the bifurcation theory of Z2−equivariant systems we refer to [65]. Note, how-
ever, that the invariance of the boundary subspaces makes transcritical bifurcations a
generic possibility in the present system.

In addition, the following terminology is adopted:
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v1

v2

Ek0

Eb
1

Ea
1

Es

E00

Eb
2

Ea
2

EkkE0k

Figure 2.1: Nine non-negative equilibria projected in (v1, v2) plane. When θ > 0 the
system may have three interior equilibria provided certain parameter conditions are
satisfied (see Section 4.3); When θ = 0 only one interior equilibrium (the symmetric
one) exists.

1). a limit cycle is called synchronous if, pointwise in time, it is invariant under R
(i.e., if the two patches oscillate in phase); in [65] a periodic solution with this property
is called fixed.

2). a limit cycle is called asynchronous, if the orbit, as a set, is invariant under
R, yet it is not synchronous; the action of R then corresponds to a phase shift of π,
i.e. a translation over half the period; in [65] a periodic solution with this property is
called symmetric.

3). a limit cycle for which the orbit is not invariant under R is called asymmetric,
unless it is contained in one of the boundary subspaces W b

i , in which case we speak
about a boundary limit cycle.
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Table 2.2: Transcritical bifurcation curves

Symbol Formula What happens
ls k = vs Es and Ekk coincide

lsa D(θk− 1+(2θ−1)hµ
h(1−hµ)

) = 1−hµ
2h

(k−vs) Es and Ea
i coincide

lb k = vb Eb
1 and Ek0 coincide

lba k = Dvb(1+θhvb)
θhDvb−µ

Eb
i and Ea

i coincide

Table 2.3: Hopf bifurcation curves

Symbol Formula Limit cycle

H+
s k = 1+hµ

h(1−hµ)
=: k∗ Γs

+

H−
s (2.26) & (2.27) Γs

−
Hb not available Γb

i

Ha not available Γa
i

As the system has five parameters, a choice has to be made when we want to visu-
alise the subdivision of the parameter space according to these stability and bifurcation
conditions. In Figure 2.2 we choose to fix h and µ at a particular value and to picture,
for three different values of θ, the various conditions as curves in the (k, D)-plane.

2.4.1 Equilibria in W

In the diagonal space W there are at most three equilibria E00, Ekk and Es. Local
dynamics near, and bifurcations of, the two trivial equilibria E00 and Ekk are simple.
We briefly describe these as follows: E00 is unstable for all k > 0; Ekk is a stable node
when k < vs = µ/(1 − hµ), while it is a saddle when k > vs. There is a transcritical
bifurcation within the diagonal space at Ekk when k = vs. Note that k > vs is exactly
the condition that the predator population can grow when the prey population is held
fixed at density k.

Next we focus on the nontrivial equilibrium Es. Based on computation of the
eigenvalues and eigenvectors of the corresponding Jacobian matrix in Appendix B.1
(where a decomposition of the linearized system into two decoupled 2 − d systems
is also given to elucidate both the symmetry and the biological meaning of the local
dynamics), we now present a survey of local stability and bifurcation results:

• A transcritical bifurcation happens at ls : Es exists if and only if k > vs .

• Es is a stable equilibrium if and only if vs < k < k∗, where k∗ = (1 + hµ)/(h(1−
hµ)).
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H+

b
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s
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s

θ = 0

θ = 0.5 θ = 1
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H−
b
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b

D

k
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s

ls
lb

H+
s

Ha

lsa

ZH

lba ls H+
s lba

H−
b

H−
s

H+
b

lb

Figure 2.2: Two parameter bifurcation diagrams of equilibria. H−
b and H+

b are actually
two parts of one curve separated by the point ”ZH”. The intersection of H−

s and lsa is
not shown. See text for the meaning of the symbols. ( h = 0.5, µ = 0.8.)
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Table 2.4: A partial list of limit cycles

Symbol Name
Γs

+ synchronous limit cycle
Γs
− asynchronous limit cycle

Γb
i boundary limit cycle

Γa
i asymmetric limit cycle

• A Hopf bifurcation happens at H+
s : at k = k∗ a unique limit cycle Γs

+ super-
critically bifurcates within W from Es (Cheng, 1981) and hence Γs

+ is a global
attractor for the flow restricted to this invariant subspace. Note that Γs

+ describes
synchronous (in-phase) oscillations in the two patches.

• A pitchfork bifurcaton happens at lsa : the two asymmetric equilibria Ea
i originate

from Es at lsa defined by (2.25) in the Appendix B.1.

• A Hopf bifurcation happens at H−
s : an unstable limit cycle Γs

−, describing asyn-
chronous (i.e. π-out-of-phase) oscillations in the two patches, bifurcates from Es

at H−
s defined by (2.26)&(2.27) in the Appendix B.1.

2.4.2 Equilibria in W b
i

Because of symmetry we only need to discuss the equilibria in one of the boundary
spaces, say W b

1 . In W b
1 there are at most three equilibria E00, Ek0 and Eb

1. As noted
before E00 is always unstable. Ek0 is a stable node when 0 < k < vb, while it is a
saddle when k > vb. There is a transcritical bifurcation within W b

1 at lb, i.e. k = vb. In
fact, k > vb is exactly the condition that the two-patch predator population can grow
when the prey population is held fixed at density k in one patch and at density zero
in the other patch and accordingly Eb

1 exists if and only if k > vb.
Next we focus on the local dynamics and bifurcations related to the nontrivial

boundary equilibrium Eb
1.

The linearized system of (2.3) around Eb
1 can be decomposed into a 3−d system that

describes the dynamics near Eb
1 within W b

1 (i.e. no prey in patch 2) and an equation
that describes the behavior of v2, the prey density in patch 2, near zero. We call the
eigenvalue associated with the one-dimensional system the transversal eigenvalue.

We now present a survey of local stability and bifurcation results:

• A transcritical bifurcation happens at lb : Eb exists if and only if k > vb.

• A transcritical bifurcation happens at lba : Ea
1 and Eb

1 meet at lba defined by
(2.28) (i.e. the transversal eigenvalue equals zero). (see Appendix B.2.)
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• A Hopf bifurcation happens at Hb: a limit cycle Γb
1 within W b

1 , describing an
oscillation among predators in both patches and prey in one patch, bifurcates
from Eb

1. (see Appendix B.2 for the definition and the computation of Hb)

As Hb and lba intersect, we need a two parameter bifurcation analysis to obtain
more detailed information. This is postponed till the next section

2.4.3 The asymmetric equilibria

The asymmetric equilibria exist if and only if the following three conditions are satisfied
(see Appendix A.2)

θD >
1− hµ

2h
(2.4)

D(θk − 1 + (2θ − 1)hµ

h(1− hµ)
) ≥ 1− hµ

2h
(k − vs) (2.5)

k ≤ Dvb(1 + θhvb)

θhDvb − µ
(2.6)

Note that when (2.4) holds, the subset of the parameter space given by, respectively,
(2.5) and (2.6) with the equality sign is, respectively, lsa and lba.

Apart from the transcritical bifurcations at lsa and lba we have

• A Hopf bifuraction happens at Ha: an asymmetric limit cycle Γa
i bifurcates from

Ea
i . With reference to Figure 2.2, where Ha is computed numerically by CON-

TENT (Kuznetsov, 1998a), we can say that Ea
i is stable in between lba and Ha

and unstable in between lsa and Ha.

2.5 The Zero-Hopf point

As is clear from the two diagrams in Figure 2.2 corresponding to θ > 0, the codimen-
sion two point ”ZH”(for Zero-Hopf: three simple eigenvalues on the imaginary axis,
one at zero and one conjugate pair) is an organizing centre. At this point the curves
Ha, Hb and lba intersect. In Figure 2.3 we present a blow-up of a neighbourhood of
this point featuring yet another curve called TCb, which corresponds to a transcritical
bifurcation of the boundary limit cycles Γb

i (this curve is found numerically by contin-
uing Γb

i from H−
b ). The curves divide the neighbourhood of ”ZH”into six regions and

for each of these we have sketched phase portraits in terms of tailor made coordinates:
amplitude ρ of the boundary limit cycle and distance to the boundary space ξ.

In particular the existence and stability of the relevant equilibria and limit cycles
in each of the six regions can be observed. We summarise the results in Table 2.5.
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Figure 2.3: A two parameter bifurcation diagram and typical phase portraits in the
vicinity of the Zero-Hopf point (labeled by ”ZH”in the figure). The meaning of the
curves lba, Ha, Hb and TCb are stated in the text. In the phase portraits, the symbol ρ
represents the amplitude of the limit cycle Γb

i , while ξ is a coordinate in the direction
transversal to the boundary space. The origin corresponds to Eb

i . The dot on the
horizontal axis, the vertical axis and in the interior of the positive cone respectively
corresponds to Γb

i , E
a
i and Γa

i . (The value of the other fixed parameters is θ = 1, h =
0.5, µ = 0.8)
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Table 2.5: Existence and stability of the relevant equilibria and limit cycles: the sym-
bols ”n”,”s”and ”u”mean, respectively, non-existent, stable and unstable

Eb
i Ea

i Γb
i Γa

i

Region 1 s n n u
2 u n s u
3 u n u n
4 u u u n
5 u u n n
6 u s n u

At this stage the status of Figure 2.3 is that of an educated guess strongly sup-
ported by numerical evidence. A rigorous justification of the information presented in
Figure 2.3 requires more detailed calculations, in particular the normal form analysis
(see Kuznetsov & Rinaldi, 1996, for a similar yet somewhat different situation; also see
Jansen, 1994).

2.6 Contrasting θ = 0 with θ = 1

The aim of this section is to pinpoint the qualitative differences that exist between
θ = 0 and 0 < θ ≤ 1 (in particular θ = 1).

Equilibria By fixing θ, h and µ, the conditions lsa and lba define curves in the
(k, D)-plane (see Figure 2.2). Both have

D =
1− hµ

2θh
(2.7)

as a lower horizontal asymptote and lsa has

k =
1 + (2θ − 1)hµ

θh(1− hµ)
=

1

θh
+

2µ

1− hµ
(2.8)

as a left vertical asymptote. So the region between these curves (which, according to
(2.4)-(2.6), is exactly the region where Ea

i exists) is pushed up and right as θ varies
from 1 to 0 and disappears when θ = 0. Likewise, the region between lba and H−

b , i.e.
the region of stability of the boundary equilibria Eb

i , moves off to infinity as θ ↘ 0.

We conclude:

both the condition for the existence of the asymmetric equilibria Ea
i and the con-

dition for the stability of the boundary equilibria Eb
i become more and more restrictive

as θ decreases and can not be met when θ = 0.
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Limit cycles We summarize our (incomplete!) knowledge about the existence
and the stability of limit cycles:

i) Γa
i is unstable (it arises in a subcritical Hopf bifurcation) and does not exist for

θ = 0 (since Ha lies in between lsa and lba).

ii) Γb
i can be stable (see region 2 in Figure 2.2), but not for θ = 0 (since the point

”ZH”moves off to infinity when θ ↘ 0).

iii) Γs
− is unstable (it arises by Hopf bifurcation from the equilibria Es with two

eigenvalues in the right half plane)

iv) Γs
+ can be stable (in fact, it is stable close to the Hopf bifurcation)

We conclude:
both the condition for the existence of asymmetric limit cycles Γa

i , arising by Hopf
bifurcation from Ea

i , and the condition for the stablity of the boundary limit cycles Γb
i

become more and more restrictive as θ decreases and can not be met when θ = 0.

However, as is pointed out by Jansen (1994), asynchronous limit cycles can arise
from a flip (i.e. period doubling) bifurcation of Γs

+. So we can not exclude the existence
of attractors that exhibit spatio-temporal patterns and further numerical bifurcation
studies, especially the bifurcation of the symmetric limit cycle Γs

+, are needed. Yet we
like to state the following preliminary conclusion of our numerical experiments so far:

when θ = 0 the amplitude of the prey-predator fluctuations in the two patch
system is never substantially reduced relative to the amplitude of Γs

+.

2.7 Conclusions and Discussion

The time budget of a predator for searching and handling leads to the functional
response, i.e. a prey density-dependent catch rate. The movement of a predator is
often closely related to its food-gathering activity . Therefore it is not only natural,
but also necessary, to consider the effect of the time budget on movement. Such
a consideration leads to a prey density-dependent rate of diffusion (in the spatially
continuous case) or migration (in the spatially discrete case) of the predator.

In this paper we introduced and studied a family (parametrised by θ) of models
such that at one extreme, viz. for θ = 0, the effect is fully included, while at the other
extreme, viz. for θ = 1, the effect is fully neglected and the migration is described by
standard diffusion.

One of the motivations to investigate patchy predator-prey systems is to show that
spatial structure reduces predator-prey oscillations by maintaining spatial differences
(i.e. spatial patterns (Turing, 1952)), which is a significant idea in metapopulation
dynamics (Jansen, 1994). Two kinds of mechanisms have been suggested in some
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recent investigations (Jansen, personal communication, Jansen, 1994, Jansen and de
Roos, 1999):

I. For large predator migration rate, the pattern is formed by persistent asymmetry,
in particular prey missing in parts of the space.

II. For small predator migration rate, predator and prey are present everywhere
and the spatio-temporal pattern is formed by the out-of-phase fluctuations in the local
densities.

The behaviour of the model for θ > 0 corroborates both the mechanisms I and II.
However, the dynamics of the system for θ = 0, which corresponds to an arguably more
realistic assumption about predator migration, does not exhibit the mechanism I. In
fact, there is a continuous change: when θ decreases from 1 to 0 the conditions for the
other parameters to obtain asymmetric persistent behaviour become more and more
severe until ultimately, for θ = 0, they cannot be met by any parameter combination.

The underlying reason is the following. Peaks in prey density lead to peaks in the
predator birth rate. In the case of standard diffusion with a large rate these then serve
as a local source of predators which at other positions prevent the growth of the prey
population. When θ = 0, however, the predators basically stay where they are born as
long as the prey density is high.

Mechanism II may still operate for θ = 0, but its quantitative effect seems to be
far less pronounced than in the standard diffusion case θ = 1. Again the reason seems
to be that predators don’t move away from local peaks in prey density.

It has been suggested repeatedly (Jansen 1994, Jansen and de Roos 1999, Gurney
et al 2000) that spatial structure may, by itself, lead to a substantial damping of the
violent oscillations exhibited by reasonable predator-prey models. As such suggestions
are based on coupling local systems by standard diffusion, the present paper shows
they are premature. In our view, this paper serves as an invitation to experimental
and field biologists to investigate in detail how the tendency to migrate (i.e. move in
a short time over a long distance, where both the ”short”and the ”long”are relative
to the scale of the food-gathering activity) is related to the success (or lack thereof)
of predation. Moreover, to ascertain the extent to which asynchronous or asymmetric
spatio-temporal patterns show reduced amplitudes, a detailed study (by numerical
bifurcation methods) of various types of attractors should be carried out, in particular
for the system with θ = 0.

2.8 Appendix A. Computation of Equilibria

2.8.1 A.1. Expression of equilibria

In this appendix we use the symbols x and y instead of vi and vj and correspondingly
px and py instead of pi and pj. An equilibrium is a solution of the following system of
equations
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x(1− x
k
− px

1+hx
) = 0

y(1− y
k
− ypy

1+hy
) = 0

(1−hµ−θhD)x−(D+µ)
1+hx

px + D(1+θhy)
1+hy

py = 0
(1−hµ−θhD)y−(D+µ)

1+hy
py + D(1+θhx)

1+hx
px = 0

(2.9)

a) The restriction x = y (symmetry in prey density) leads to three equilibria

E00: x = y = 0 px = py = 0

Ekk: x = y = k px = py = 0

Es: x = y = vs :=
µ

1− hµ
px = py = ps := (1 + hvs)(1− vs

k
)

b) If x 6= y (asymmetry in prey density) equilibria occur in pairs, one being the
R-image of the other. Whenever appropriate we list one of each pair.

Ek0 and E0k: If x = 0, y = k we immediately have px = py = 0;

Eb
i : If x = 0, y 6= 0, k, we have

y = vb :=
µ(2D + µ)

D(1− hµ− θhµ) + µ(1− hµ)

py = pb := (1 + hvb)(1− vb

k
)

px = pb
0 :=

D

D + µ
(1 + θhvb)(1− vb

k
)

Ea
i : If x, y 6= 0, k, it must be that

px = (1 + hx)(1− x/k) and py = (1 + hy)(1− y/k)

and therefore that

[(1− hµ− θhD)x− (D + µ)](1− x/k) + D(1 + θhy)(1− y/k) = 0 (2.10)

[(1− hµ− θhD)y − (D + µ)](1− y/k) + D(1 + θhx)(1− x/k) = 0 (2.11)

Now we follow the computational procedure by Jansen (1994).
Addition of the last two equations yields (using the notation a := 1− hµ)

(ax− µ)(k − x) + (ay − µ)(k − y) = 0
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or, after elaboration,

[x− (k + vs)

2
]2 + [y − (k + vs)

2
]2 =

(k − vs)2

2
(2.12)

y can be solved from (2.10) and (2.11) as

y =
[a(D + µ)− θhµD]x− µ(2D + µ)

a(a− 2θhD)x− [a(D + µ)− θhµD]
(2.13)

If we introduce another compound parameter

γ :=
θhµD − a(D + µ)

a(a− 2θhD)
=

(a− θhµ)D + aµ

a(2θhD − a)
(2.14)

then we can write (2.13) as

y =
−γx + vs(vs + 2γ)

x + γ
(2.15)

By plugging (2.15) into (2.12) and then multiplying both sides by (x + γ)2 we find

(x + γ)2[(x− vs)− k − vs

2
]2 + [(

k − vs

2
+ vs + γ)(x− vs) +

k − vs

2
(vs + γ)]2

−1

2
(k − vs)2(x + γ)2 = 0 (2.16)

Note that x + γ = (x− vs) + (vs + γ). So the left hand side of the above equation
is a fourth order polynomial with respect to the variable (x− vs):

(x−vs)2[(x−vs)2+2(vs+γ−1

2
(k−vs))(x−vs)+2(vs+γ)(vs+γ−1

2
(k−vs))] = 0 (2.17)

The two roots that are different from vs therefore are

x = va
1 :=

1

2
(k − vs)− γ +

1

2

√
(k − 3vs − 2γ)(k + vs + 2γ) (2.18)

and

x = va
2 :=

1

2
(k − vs)− γ − 1

2

√
(k − 3vs − 2γ)(k + vs + 2γ) (2.19)

It is due to the symmetry that y = va
j when x = va

i (j 6= i, i, j=1,2). Hence, we
have one pair of such equilibria. When x = va

i , the corresponding p component is

px = pa
i := (1 + hva

i )(1− va
i /k) i=1,2
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2.8.2 A.2. When does Ea
i exist ?

Ea
i exists (i.e. non-negative) if and only if 0 ≤ va

1 , v
a
2 ≤ k, which holds if and only if

(k − 3vs − 2γ)(k + vs + 2γ) ≥ 0

and

0 ≤ 1

2
(k − vs − 2γ)∓ 1

2

√
(k − 3vs − 2γ)(k + vs + 2γ) ≤ k

So we have the following three conditions:

k − 3vs − 2γ ≥ 0 ⇐⇒ k ≥ 3vs + 2γ (2.20)
√

(k − 3vs − 2γ)(k + vs + 2γ) ≤ k − vs − 2γ ⇐⇒ γk ≤ (vs + γ)(vs + 2γ) (2.21)

√
(k − 3vs − 2γ)(k + vs + 2γ) ≤ k + vs + 2γ ⇐⇒ vs + γ ≥ 0 (2.22)

Since

vs + γ =
(1− hµ + θhµ)D

(1− hµ)(2θhD − (1− hµ))

vs + 2γ =
2D + µ

2θhD − (1− hµ)

3vs + 2γ =
2D(1− hµ + 2θhµ)− (1− hµ)µ

(1− hµ)(2θhD − (1− hµ))

one finds that (2.20) & (2.21) & (2.22) can be rewritten as (2.4) & (2.5) & (2.6) in
Section 4.3, which, as a whole, is a sufficient and necessary condition for Ea

i to exist.

2.9 Appendix B. Computation of Eigenvalues

The Jacobian matrix of the linearized system of ( 2.3) at an equilibrium

E0 =

(
vi0 vj0

pi0 pj0

)

is

M =

(
Ai Bj

Bi Aj

)

Where

Ai =

(
1− 2vi0

k
− pi0

(1+hvi0)2
− vi0

1+hvi0
1+(1−θ)hD
(1+hvi0)2

pi0
(1−hµ−θhD)vi0−(D+µ)

1+hvi0

)

Bi =

(
0 0

− (1−θ)hD
(1+hvj0)2

pj0
D(1+θhvj0)

1+hvj0

)

i 6= j, i, j = 1, 2.
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2.9.1 B.1. Eigenvalues corresponding to Es

In this case we have vi0 = vj0 = vs, pi0 = pj0 = ps. It follows that Ai = Aj =: A,
Bi = Bj =: B. The matrix

M =

(
A B
B A

)

has exactly the same eigenvalues as the block-diagonal matrix

(
A + B 0
0 A−B

)

Accordingly, the linearized system of (2.3) around Es can be decomposed into
two 2−dimensional linear systems by considering mean prey and predator densities
supplemented by the differences:

(
v̄
p̄

)′
= (A + B)

(
v̄
p̄

)
(2.23)

(
v̂
p̂

)′
= (A−B)

(
v̂
p̂

)
(2.24)

where

v̄ =
v1 + v2

2
− vs p̄ =

p1 + p2

2
− ps

v̂ = v1 − v2 p̂ = p1 − p2

If η is an eigenvector of A + B corresponding to eigenvalue λ, then (η, η) is an
eigenvector of M corresponding to λ (in particular, it belongs to the diagonal space
W ). If ξ is an eigenvector of A − B corresponding to eigenvalue λ, then (ξ,−ξ) is an
eigenvector of M corresponding to λ (in particular, it is orthogonal to W ).

By substituting the components of Es into A,B we have, with k∗ = (1+hµ)/(h(1−
hµ))

A + B =

(
1− 2vs

k
− ps

(1+hvs)2
− vs

1+hvs

ps

(1+hvs)2
(1−hµ)vs−µ

1+hvs

)

=

(
hµ(1− k∗

k
) −µ

(1− hµ)(1− vs

k
) 0

)
=:

(
a1 −a2

a3 0

)

A−B =

(
1− 2vs

k
− ps

(1+hvs)2
− vs

1+hvs

1+2(1−θ)hD
(1+hvs)2

ps (1−hµ−2θhD)vs−(2D+µ)
1+hvs

)

=

(
hµ(1− k∗

k
) −µ

(1− hµ)[1 + 2(1− θ)hD](1− vs

k
) −2D[1− hµ(1− θ)]

)
=:

(
a1 −a2

a4 −a5

)
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The eigenvalues of A + B are

λ1,2 =
a1 ±

√
a2

1 − 4a2a3

2

and the eigenvalues of A−B are

λ3,4 =
(a1 − a5)±

√
(a1 − a5)2 − 4(a2a4 − a1a5)

2

We now check when these eigenvalues are zero or purely imaginary:

ls : A + B has a zero eigenvalue if and only if a2a3 = 0, i.e. k = vs = µ/(1− hµ).
Moreover, the zero eigenvalue is simple because a1 < 0. We denote the subset of
parameter space where this condition is satisfied by ls.

H+
s : Two eigenvalues (i.e. λ1,2) of A + B are purely imaginary if and only if

a1 = 0 , i.e. k = k∗ (see Section 4.1 for the definition of k∗). We denote the subset of
parameter space where this condition is satisfied by H+

s .

lsa : A−B has a zero eigenvalue if and only if a2a4−a1a5 = 0 or, after elaboration,

D(θk − 1 + (2θ − 1)hµ

h(1− hµ)
) =

1− hµ

2h
(k − µ

1− hµ
) (2.25)

We denote the subset of parameter space where this condition (with k > vs) is
satisfied by lsa.

H−
s : A − B to have purely imaginary eigenvalues if and only if a1 = a5 and

a2a4 − a1a5 > 0, which can be expressed, respectively, as

2D =
hµ

1− hµ(1− θ)
(1− k∗/k) (2.26)

D(θk − 1 + (2θ − 1)hµ

h(1− hµ)
) <

1− hµ

2h
(k − µ

1− hµ
) (2.27)

We denote the subset of parameter space where (2.26) and (2.27) are satisfied by
H−

s . Note that the boundary of the subset, where (2.27) is satisfied , is just lsa. So
A−B has double zero eigenvalue if and only if both (2.26) and lsa are satisfied.

2.9.2 B.2. Eigenvalues corresponding to Eb
i

In this case we have vi0 = vb, vj0 = 0, pi0 = pb, pj0 = pb
0. The Jacobian matrix M

necessarily has an eigenvalue

λ1 = 1− pb
0 = 1− D

D + µ
(1 + θhvb)(1− vb

k
)
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Clearly λ1 > 0 if θ = 0 , an observation that is of some importance.
The other three eigenvalues are the roots of a third order polynomial with coeffi-

cients that can be expressed in terms of the parameters, but these expressions are both
extremely lengthy and uninformative.

The criticality conditions are as follows:

lba: λ1 = 0 if and only if

1− D

D + µ
(1 + θhvb)(1− vb

k
) = 0

which can be rewriten as

k =
Dvb(1 + θhvb)

θhDvb − µ
(2.28)

We denote the subset of parameter space where this condition is satisfied by lba.

Hb: By definition, Hb is the subset of parameter space for which a pair of complex
conjugate eigenvalues lie on the imaginary axis. Its intersection with a plane (e.g. the
(k, D) plane ) is a curve that can be easily computed by means of the numerical software
CONTENT. The intersection of Hb and lba divides Hb into two parts, labeled by H−

b

and H+
b in Figure 2.2 and Figure 2.3. So, Hb = H−

b ∪H+
b .

2.9.3 B.3. Eigenvalues corresponding to Ea
i

The eigenvalues corresponding to Ea
i satisfy a fourth order polynomial equation. As

follows indirectly from the expression of Ea
i that we obtained in Appendix A, the

condition for zero to be an eigenvalue yields the already known curves lsa and lba.

Ha: By definition Ha is the subset of parameter space for which there is a pair
of purely imaginary eigenvalues. To compute Ha we use CONTENT.

Acknowledgements We thank Vincent Jansen, Yuri Kuznetsov, Andre de
Roos, and Roger Nisbet for their comments. We are greatly indebted to the two anony-
mous referees, especially the one who gave very constructive suggestions for revision of
the manuscript.





Chapter 3

Interspecific Influence On Mobility
And Turing Instability

Abstract. In this paper we formulate a multi-patch multi-species model in
which the per capita emigration rate of one species depends on the density of
some other species. We then focus on Turing instability to examine if and when
this cross-emigration response has crucial effects. We find that the type of in-
teraction matters much. In the case of competition a cross-emigration response
promotes pattern formation by exercising a destabilizing influence; in particu-
lar, it may lead to diffusive instability provided that the response is sufficiently
strong, which contrasts sharply with the well-known fact that the standard com-
petition system does not exhibit Turing instability. In the case of prey-predator
or activator-inhibitor interaction it acts against pattern formation by exerting
a stabilizing effect; in particular, the diffusive instability, even though it may
happen in a standard system, never occurs when the response is sufficiently
strong. We conclude that the cross-emigration response is an important factor
that should not be ignored when pattern formation is the issue.

Key words: Emigration Response, Cross-migration, Cross-diffusion, Pat-
tern Formation, Diffusive Instability

AMS subject classification: 37G40, 37N25, 92D25

∗A joint work with Diekmann, O., Published in Bull. Math. Biol., Ref.[52]



32 Chapter 3. Interspecific Influence On Mobility

3.1 Introduction

Throughout the history of theoretical biology, spatially continuous models formu-
lated as reaction-diffusion equations (Okubo 1980, Murray 1993, Holmes et al. 1994,
Grindrod 1996, Okubo&Levin 2000) have been intensely used to describe spatio-temporal
dynamics and to investigate mechanisms for pattern formation. When individuals un-
dergo unbiased random walk and the mobility of individuals of the various species is
independent of the densities of both its own and other species, the standard system of
reaction-diffusion equations

ut = D∆u + f(u) (3.1)

arises, where u = u(t, x) is a vector of functions of t and x, f is a smooth map, D is a
diagonal matrix with constant components and ∆ is the Laplace operator.

However, there exist both experimental evidence (Takafuji 1977, Sabelis 1981, Bern-
stein 1984, Pels 2001) and theoretical arguments (e.g. Shigesada et al. 1979, Huang and
Diekmann 2001) in favour of an emigration response, in particular, cross-emigration
response: the inclination to emigrate depends on the densities of other species. For
predator-prey interactions, for instance, prey at a certain position shall have increasing
inclination to emigrate when the number of predators near-by increases because of the
increasing danger, whereas predators, in contrast, shall have decreasing inclination to
emigrate when the number of prey increases because of the increasing food resource.

When a cross-emigration response is incorporated, the corresponding reaction-
diffusion model has the form

ut = ∆φ(u) + f(u) (3.2)

featuring a nonlinear vector diffusion term ∆φ(u) = ∆(D(u)u) with a diagonal matrix
D(u) (Okubo 1980, Aronson 1985). With the well-known theory of Turing instability
in mind, a natural question then arises: Does such a cross-emigration response lead
to crucially different stability results? Or, more specifically, does it promote or act
against diffusive instability?

The system (3.2) is a cross-diffusion system in the sense that the temporal change
of the density of a certain species is influenced by the spatial distribution of some other
species. Such quasilinear systems are not at all easy to handle mathematically (Amann
1990, 1993, 1995, Lou&Ni 1996, Ni 1998). A spatially discrete model hence has certain
advantages. In fact, when small amplitude pattern formation is the issue, spatially
explicit multi-patch models and coupled map lattice models have often been used as
an alternative (see e.g. some early work by Allen (1975) and Crowley (1981) and some
recent work by Jansen&Lloyd (2000) and Plahte (2001)). The choice of the “right”
model requires a careful assessment of the scale over which interactions and movement
are taking place (Hastings 1990, Durrett&Levin 1994). Fortunately, however, the two
types of model can be formulated and, at a formal level (i.e., ignoring the technicalities
of justification), even analysed in an identical manner.
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In this paper, we shall formulate a time-continuous multi-patch model analogous
to (3.2) and then focus on the stability of homogeneous steady state solutions in the
two species case to examine the effects of a cross-emigration response. Our strategy
is to measure the strength of the cross-emigration response by real parameters related
to the “size” of the quantities ∂Dii(u)/∂uj for i 6= j and then to investigate how
the stability of homogeneous steady state solutions changes as these parameters vary.
By elaborating the second derivatives in ∆(D(u)u) one obtains the sum of a full (as
opposed to a diagonal ) matrix acting on the vector of second order derivatives and
first order terms. Previous authors (Jorńe 1974, Almirantis and Papageorgiou 1991,
Capasso and Di Liddo 1994, Chattopadhyay and Tapaswi 1993 1997, Farkas 1997)
have studied the effect of the non-diagonal terms in this matrix. Our analysis is just
a slight twist which, as we hope to demonstrate, has the advantage of allowing a clear
biological interpretation yielding a general insight.

The organization of the paper is the following: In Section 2 we formulate the time-
continuous multi-patch model in which the cross-emigration response is incorporated
by way of a nonlinear map. In Section 3 we present a stability principle that simplifies
the linear stability analysis. In Section 4 we examine the effects of the cross-emigration
response on the stability of a homogeneous equilibrium by distinguishing different types
of interactions.

3.2 The Model Formulation

Consider a system of k species living in a habitat of n identical patches linked by
migration. (To assume that the patches are identical, facilitates the bookkeeping,
since we do not have to elaborate how conservation of numbers works out on densities;
but it is not really essential for the conclusions we shall obtain.)

Let

ui(t, j) = density of species i in patch j

u(t, j) = (u1(t, j), · · · , uk(t, j))
T

then the time-continuous model to be investigated can be formulated as a system of
differential equations

∂

∂t
u(t, j) = f(u(t, j)) +

n∑

l=1

cljφ(u(t, l)), j = 1, · · · , n (3.3)

which is specified in terms of three ingredients f , φ and C that are defined as follows:

• f : Rk → Rk is a (nonlinear) smooth map describing the local interaction. So

u′ = f(u) for u ∈ Rk
+
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generates the dynamics in an isolated patch.

• φ : Rk → Rk is a given (linear or nonlinear) map describing emigration at the
population level. We assume that this map has the form

φ(u) = M(u)u (3.4)

and that

M(u) = diag {d1ρ1(u), · · · , dkρk(u)} (3.5)

where di (i = 1, 2 · · · , k) is a constant characterising the per capita rate of em-
igration when individuals of species i emigrate from a certain patch randomly
(i.e., with no response to the density of any species), while ρi(u) (i = 1, 2 · · · , k)
is positive and monotone as a function of the various components of u charac-
terising the increase or the decrease of the per capita rate of emigration, relative
to the per capita rate of random emigration (i.e. di), when individuals of species
i emigrate from a certain patch in response to the densities of its own or other
species.

We shall term the per capita rate of emigration of a certain species i as the
emigration response of species i when it is density-dependent. In particular, we
refer to it as self-emigration response when it depends on the density of the
species itself and as cross-emigration response when it depends on the density of
some other species.

– If ρi(u) ≡ 1, i = 1, 2, · · · , k we refer to the system (3.3) as the standard
(diffusively coupled) system.

– If the system of equations (3.3) involves a cross-emigration response (i.e.,
∂ρi(u)/∂uj 6= 0 for some j 6= i), we call it a cross-migration system.

• C : Rn → Rn is a linear map describing spatial structure or, in other words, the
connectivity between patches. The map is represented by a matrix C = (cij)n×n

whose elements are defined as

cij =

{
c̃ij if i 6= j
−1 + c̃ij if i = j

(3.6)

where c̃ij is the probability per unit of time that an individual lands at patch j
when it starts from patch i. Namely, the map C̃ defined by the matrix

(c̃ij)n×n

describes the instantaneous redistribution.
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We make, motivated by the properties of redistribution, two fundamental as-
sumptions concerning C:

Symmetry: cij = cji, for 1 ≤ i, j ≤ n (3.7)

Conservation:
n∑

j=1

cij = 0

(
i.e.,

n∑
j=1

c̃ij = 1

)
(3.8)

The former expresses that migration is non-directional (for instance, governed
only by relative distance), while the latter implies that individuals do not die in
the process of migration.

Hence, C has n real eigenvalues λ1, λ2, · · · , λn (see e.g. Marcus and Minc, 1964),
satisfying

0 = λ1 > λ2 ≥ · · · ≥ λn (3.9)

The system (3.3) may be written in a matrix form (Jansen&Lloyd 2000) as

U ′ = F (U) + Φ(U)C (3.10)

where
U = (u(t, 1), · · · , u(t, n)) = (ui(t, j))k×n

and where F, Φ : Rk×n → Rk×n are defined by “lifting” f, φ : Rk → Rk in the sense
that

F (U) = (f(u(t, 1)), · · · , f(u(t, n))) = (fi(u(t, j)))k×n

Φ(U) = (φ(u(t, 1)), · · · , φ(u(t, n))) = (φi(u(t, j)))k×n

3.3 Stability Principle

In this section we shall establish a stability principle (due to Othmer&Scriven (1971),
Jansen&Lloyd (2000), see also Plahte (2001)) for the homogeneous solutions of (3.10),
to facilitate the forthcoming investigation.

Theorem 3.1 Suppose that f, φ are two smooth Rk → Rk maps and that C is a n×n
matrix which has n independent eigenvectors. The linearized system of (3.10) about a
homogeneous solution Ū = (ū, ū, · · · , ū) with ū taking values in Rk

+, can be transformed
by a similarity transformation into n decoupled k−dimensional subsystems

y′ = Bjy (j = 1, 2, · · · , n)

where Bj := Df(ū) + λjDφ(ū) in which λj is an eigenvalue of C.
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The proof is put in the appendix of this chapter.

Remark The two assumptions (3.7) and (3.8) that we made in the last section
guarantee that the matrix C has n independent eigenvectors. Moreover, they also
allow the system (3.10) to have homogeneous solutions because it follows from them
that

∑n
l=1 clj = 0 for all j = 1, · · · , n. The subsystem corresponding to λ1 = 0 describes

the linearized dynamics of (3.10) near Ū within the homogeneous space W = {U =
(u, u, · · · , u) ∈ Rk×n

+ |u ∈ Rk
+}, whereas the other subsystems describe the perturbations

with spatial structure (i.e., the differences between patches).

When the homogeneous solution Ū is an equilibrium we immediately have the
following corollary

Corollary 3.2 The homogeneous equilibrium Ū = (ū, ū, · · · , ū) of (3.10) is linearly
stable if and only if all eigenvalues of Bj (j = 1, 2, · · · , n) have negative real parts

Remark If the eigenvalues of B1 lie in the left half of the complex plane (i.e.,
Ū is stable with respect to spatially homogeneous perturbations), while one or more
eigenvalues of Bj (j = 2, 3, · · · , n) are to the right of the imaginary axis, we have the
well-known Turing instability: small non-constant (in space) perturbations to the
homogeneous equilibrium will grow and develop into spatial patterns. If the eigenvalues
of B1 do not lie in the left half of the complex plane (i.e., Ū is homogeneously unstable),
the homogeneous dynamics presumably leads to other attractors such as another steady
state or periodic oscillations. We will not consider the latter case in this paper.

3.4 The Effects of a Cross-Emigration Response

For simplicity we consider only the two species case (i.e., k = 2) hereafter.
Suppose that Ū = (ū, · · · , ū) is a positive homogeneous equilibrium of (3.3) whose

uniform component ū is a stable equilibrium of the one-patch model. Let

Df(ū) =

(
a11 a12

a21 a22

)
(3.11)

then we have the following two inequalities which are the general assumptions for the
forthcoming discussion:

(I)

{
a11 + a22 < 0
a11a22 − a12a21 > 0

(3.12)

According to the assumption for the map φ (see (3.4) and (3.5)) the Jacobian matrix
Dφ(ū) can be computed and next be written as

Dφ(ū) ≡
(

m1 m1α
m2β m2

)
(3.13)
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where

mi = di

(
∂ρi(ū)

∂ui

ūi + ρi(ū)

)
, i = 1, 2 (3.14)

α =

(
∂ρ1(ū)

∂u2

ū1

)
/

(
∂ρ1(ū)

∂u1

ū1 + ρ1(ū)

)
(3.15)

β =

(
∂ρ2(ū)

∂u1

ū2

)
/

(
∂ρ2(ū)

∂u2

ū2 + ρ2(ū)

)
(3.16)

We assume that m1,m2 > 0. The magnitude of the parameters α and β mea-
sures the strength of the cross-emigration response, while their sign indicates the type:
attraction (negative sign) or repulsion (positive sign).

It is easier to contrast the cross-migration system with the standard system and
to interpret the differences biologically if the per capita emigration rates are not self-
density dependent (i.e., ∂ρi(u)/∂ui = 0, for i = 1, 2). One then sees that the system
(3.3) is a standard system if and only if α = β = 0.

Scaling m1 to 1 (with the consequence that C and its eigenvalues change; we do not
incorporate this in our notation; note, therefore, that the eigenvalues of C below are the
scaled ones) and dropping the superfluous index 2 in m2 the matrices Bj (j = 2, · · · , n)
defined in the previous section can be written as

B(α, β, m, σ2) =

(
a11 − σ2 a12 − σ2α
a21 − σ2mβ a22 − σ2m

)
(3.17)

where
σ ∈ Λ := {

√
−λj|j = 2, · · · , n}

According to the corollary in the previous section, the equilibrium Ū is linearly stable
if and only if, for any σ ∈ Λ, the following two inequalities hold

(II)

{
a11 + a22 − σ2(1 + m) < 0
K(α, β,m, σ2) > 0

(3.18)

where

K(α, β,m, σ2) = [mσ4 − (ma11 + a22)σ
2 + a11a22 − a12a21]

+[σ2a21α + mσ2a12β −mσ4αβ] (3.19)

It is clear that the first inequality in (II) always holds because of the general assump-
tion (I) (see (3.12) and (3.18)). Therefore the linearized stability of the equilibrium Ū
is fully determined by the signs of the functions K(α, β, m, σ2) for the various σ ∈ Λ.
Namely,

Stability
Instability

⇐⇒ K > 0 for all σ ∈ Λ
K < 0 for some σ ∈ Λ

(3.20)
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Now we are ready to check how the strength and the type of the cross-emigration
response, as measured by α and β, affect the stability of Ū . To proceed, we distinguish
different types of interactions.

3.4.1 Competitive Interaction

For competitive interaction, a12, a21 and α, β should satisfy

a12 < 0, a21 < 0, α ≥ 0, β ≥ 0 (3.21)

where the positive sign of α and β corresponds to the inclination of individuals of one
species to leave from a certain patch due to the repulsion by the competitors in the
patch.

Combining the general assumption (I) (i.e. (3.12)) with the sign assumption on
a12, a21 made here, we immediately find that a11 < 0, a22 < 0 which implies that

K(0, 0,m, σ2) > 0, for all σ ∈ Λ and for all m > 0 (3.22)

Therefore, Ū remains stable when α = β = 0 (no matter how big the parameter m
is), corresponding to the well-known fact that the standard competition system does
not exhibit Turing instability (Edelstein-Keshet 1987).

We now check the stability of Ū when α 6= 0 or/and β 6= 0 to see if the cross-
emigration response can lead to diffusive instability.

Checking the expression of the function K defined in (3.19) we find that all terms
involving α or/and β are negative when α 6= 0, β 6= 0 according to the sign assumption
(3.21) and that the sum of these terms decreases at a rate bounded away from zero as
α or/and β increase. Therefore the function K shall be negative sooner or later as α
or/and β increase. In other words, the diffusive instability shall arise when the cross-
emigration response is sufficiently strong. To illustrate such a destabilizing effect of
the cross-emigration response we visualize the neutral stability condition K = 0 in the
(α, β, σ2) space while the rest of the parameters are chosen to be fixed (see Fig.3.1).

3.4.2 Mutualism

For mutualistic interaction, a12, a21 and α, β should satisfy

a12 > 0, a21 > 0, α ≤ 0, β ≤ 0 (3.23)

where the negative sign of α and β corresponds to the inclination of individuals of one
species to stay at a certain patch due to the attraction by the other species in the
patch.

For this type of interaction, we have the same conclusion about the effects of the
cross-emigration response on the stability of the equilibrium Ū as for the competitive
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interaction because the signs of αβ, a12β and a21α in the two types of interactions are
the same.

3.4.3 Prey-Predator and Activator-Inhibitor Interaction

For prey-predator (or activator-inhibitor) interaction, if the prey and the predator
correspond to, respectively, the indices 1 and 2, we should have

a12 < 0, a21 > 0, α ≥ 0, β ≤ 0 (3.24)

where the positive sign of α describes the inclination of a prey (or an activator) to leave
from a certain patch because of the danger (or the inhibition), whereas the negative
sign of β corresponds to the tendency of a predator (or an inhibitor) to stay at a certain
patch because of the presence of prey (or the activator).

For this type of interaction Ū may be diffusively stable or unstable when α = β = 0,
depending on the precise local interaction terms (Segel&Jackson 1972). Let us first
assume that Ū is diffusively stable when α = β = 0, namely

K(0, 0,m, σ2) > 0, for all σ ∈ Λ and all m > 0 (3.25)

Then we have, according to the sign assumptions on a12, a21 and α, β, that

K(α, β, m, σ2) > 0 for all σ ∈ Λ and for all m > 0

as well when α 6= 0 or/and β 6= 0 (because all terms involving α or/and β are positive
when α 6= 0, β 6= 0 according to the sign assumption (3.24)). Therefore, the equilibrium
Ū can not be destabilized by the cross-emigration response.

Next, we assume that Ū is diffusively unstable when α = β = 0, namely

K(0, 0,m, σ2) < 0, for some σ ∈ Λ and for some m > 0 (3.26)

Now, the fact that all terms involving α or/and β in the expression of the function
K are positive and that the sum of these terms increases at a rate bounded away from
zero as α or/and |β| increase means that the function K shall be positive sooner or later
as α or/and |β| increase. In other words, the equilibrium Ū shall be stable when the
cross-emigration response is sufficiently strong. To illustrate such a stabilizing effect of
the cross-emigration response we visualize the neutral stability condition K = 0 in the
(α, β, σ2) space while the rest of the parameters are chosen to be fixed (see Fig.3.2).
Note that it is required that ma11 + a22 > 0 because of the assumption (3.26).

3.4.4 Summary

Now we summarise the results as follows
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Figure 3.1: Neutral stability surfaces in the case of competition. When α = β = 0
the equilibrium Ū is stable. When α or/and β are sufficiently large the equilibrium
becomes unstable. The other fixed parameters are as follows: a11 = −2, a22 = −2,
a12 = −0.4, a21 = −0.5.
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Proposition 3.3 For a competitive type of interaction (or mutualism), random emi-
gration never results in diffusive instability, but a cross-emigration response may lead to
diffusive instability provided that the response is sufficiently strong. For a prey-predator
(or an activator-inhibitor) type of interaction, a standard system with no emigration
response may be either stable or unstable. A cross-emigration response, in particular
that of the predator or inhibitor, can stabilize an unstable standard system provided
that the response is sufficiently strong, but it can never destabilize a stable standard
system.

3.5 Discussion

In the study of a competition model proposed by Shigesada et al.(1979), several au-
thors (Lou&Ni 1996, Ni 1998) found that a cross-emigration response characterised by
a specific nonlinear diffusion term leads to inhomogeneous solutions that do not exist
in the standard diffusion system. In the study of a two-patch prey-predator model in
which a specific nonlinear form of the emigration map is incorporated, however, we
found that inhomogeneous equilibria that exist in the standard diffusively coupled sys-
tem disappear (Huang&Diekmann 2001). Having noticed these two specific examples
and, more importantly, having realised that a cross-emigration response is an ubiqui-
tous feature of multi-species systems (Sabelis 1981, Bernstein 1984, Pels 2001) we were
motivated to study this potential mechanism of pattern formation theoretically. For
this purpose we formulated a coupled multi-patch multi-species model in which the
cross-emigration response is reflected by the nonlinearity of the emigration map. Here
we did restrict ourselves to increased or decreased random movement rather than direc-
tional movement (Segel 1984, Aronson 1985), so that we could contrast the behaviour
of the cross-migration systems with that of the standard system.

The cross-emigration response reflects density-dependence. We may distinguish an
attractive cross-emigration response, in which an emigration rate is reduced, and a
repulsive cross-emigration response, in which it is enhanced (the terminology has a
tendency to be ambiguous, as there might very well be an asymmetry in the costs and
benefits for the species A and B, when A exerts an influence on the emigration rate
of B). Essentially we could quantify it by way of real parameters and could study its
effect through bifurcation analysis. Our main result is that repulsive cross-emigration
promotes pattern formation in competition systems while the natural combination
of attractive and repulsive cross-emigration response for prey-predator or activator-
inhibitor systems inhibits pattern formation.

The purpose of this paper is to emphasize the importance of the cross-emigration
response as an ecological phenomenon. Our method of contrasting the cross-migration
system with the standard system is quite similar to that which leads to the well-
known theory of diffusion-driven instability (Segel&Jackson 1972, Edelstein-Keshet
1987, Grindrod 1996), where the conclusion is reached by contrasting the spatial system
with the nonspatial system. Our results suggest that the cross-emigration response
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might play a crucial stabilizing or destabilizing role in real biological systems and
that it has so far not yet received the attention it deserves. In other words, spatial
ecological theory based on simple standard diffusion should be subjected to a careful
re-assessment and reinterpretation.

Since the emigration response is a highly uncontrollable factor in real biological
systems, it is difficult (but perhaps not impossible) to experimentally examine whether
or not it plays a crucial stabilizing or destabilizing role in the field. This difficulty is
probably the reason that the issue has often been ignored. We hope that this work,
although it is merely a theoretical argument at this stage, serves to alert the ecologists
and to stimulate further experimental study of the issue.

3.6 Appendix: The Proof of Theorem 3.1

Let Z = U − Ū be a small perturbation. Then the nonlinear system

U ′ − Ū ′ = F (U)− F (Ū) + [Φ(U)− Φ(Ū)]C (3.27)

can be approximated by the linear system

Z ′ = DF (Ū)Z + [DΦ(Ū)Z]C (3.28)

Since the matrix C has n independent eigenvectors, it can be diagonalized by a
similarity transformation. Let ω1, · · · , ωn be the n right eigenvectors with associated
eigenvalues, respectively, λ1, · · · , λn. We shall have

A−1CA = Λ, or CA = AΛ

where A = (ω1, · · · , ωn), while Λ = diag{λ1, · · · , λn}. Multiplying (3.28) by A from
the right and using the transformation

Y = ZA

we obtain a k × n dimensional system

Y ′ = DF (Ū)Y + DΦ(Ū)Y Λ (3.29)

which indeed consists of n decoupled k−dimensional systems

y′(t, j) = [Df(ū) + λjDφ(ū)]y(t, j), j = 1, 2, · · · , n (3.30)

Acknowledgements We thank Vincent Jansen for his comments and Miklos
Farkas for providing some references.



Chapter 4

How Do Cross-Migration Models
Arise?

Abstract. In this chapter we present a general method to derive spatial popu-
lation models mechanistically. We consider a system of multiple species living in
a patchy habitat in which the local population of each species consists of some
behavioural groups. We then formulate a time-continuous model where a small
positive parameter is present, measuring the time scale of behavioural transitions
relative to that of giving birth, death and migration among patches. By the sin-
gular perturbation method the model is reduced to a lower dimensional one in
which the migration terms are, in general, nonlinear and related to the reaction
terms. Three examples demonstrating the emergence of cross-migration models,
i.e., the models in which the per-capita emigration rate of one species depends
on the density of some other species, are given.

∗to be submitted



44 Chapter 4. How Do Cross-Migration Models Arise?

4.1 Introduction

Although it has been widely accepted that an understanding of spatial processes is
important in ecological theory, it is not clear how best to proceed when modelling the
interplay of dispersal and local interactions.

Classical reaction-diffusion models, in which dispersal is assumed to be a process
independent of local interactions, like those studied by Skellam (1951) and Turing
(1952), have revealed the fundamental importance of dispersal. Individuals’ dispersal,
or migration, however, may be far more complicated. Individuals of a species often
have different behavioural states in which they have different migration inclinations.
When predators are involved in handling a prey caught, or their stomach is full, for
instance, they may have little inclination to migrate. When predators are searching,
or they are very hungry, they might have a strong inclination to move. On the other
hand, individuals may have a distinctive fecundity as well as mortality when they are
in different behavioural states. Therefore, a consideration of individuals’ behavioural
states helps to model migration mechanistically.

There have been many examples of distinguishing different behavioural states of
some predators and prey in connection with their foraging and predator avoidance be-
haviour. Huisman and De Boer (1997) have considered a case where predators have
three states: searching, handling and coupling with a certain prey which can still
escape. Ruxton et al (1992) have considered the interference between searching preda-
tors, so they assume that predators have three behavioural states: searching without
interference, handling and a special state in which a forager is in trouble with another
forager, so it is neither searching nor handling. Ruxton and Moody (1997) discussed
kleptoparasitic interactions among predators, so predators have three different states:
searching, handling without interference, being involved in the kleptoparasitic interac-
tion. Various forms of the functional response have been derived in accordance with
their assumptions. None of these works, however, addresses the connection of migration
of predators to their feeding behaviour.

One of the major questions in spatial ecology is how explicit considerations of space
alter the predictions of population models (Tilman and Karevia 1997). To answer
the question we need to extend population models to incorporate the spatial factor.
Yet the mechanisms of spatial interactions of populations should be reflected well in
the models in order to draw convincing conclusions. Though there is no absolute
standard in this point, it is clearly much better to derive population-level description
from assumptions concerning the behavioural mechanisms of individuals. In a previous
study (Huang & Diekmann, 2001) we have studied a two-patch predator-prey model
in which predators are assumed to be immobile when they are handling prey caught
and to be mobile only when they are searching for prey. The model did show some
qualitative and quantitative differences from the simple model. As we have pointed out
in the previous paragraph, individuals of many species do have two or more behavioural
states in which they may have different migration inclination. It is therefore natural
to consider a general case where individuals have multiple behavioural states.
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In this paper we shall formulate a time-continuous multi-patch multi-species model
in which each population consists of some behavioural groups. We shall assume that be-
havioural transitions occur much faster than giving birth, death and migration among
patches and that the per-capita rates of transition from one behavioural group to an-
other are in general density-dependent. We then present a rigorous argument to reduce
the model to a lower dimensional one . We shall also give some examples to show how
cross-migration models, i.e., the models in which the per-capita emigration rate of one
species depends on the density of some other species, naturally arise.

4.2 The Full System

Consider a system of K species who interact and grow in N identical habitat patches
coupled by migration. Suppose that individuals of species i have Si behavioural states.
Therefore population i at a certain patch consists of Si behavioural groups (or, subpop-
ulations). The key assumptions concerning the transition between behavioural states
are

i) Two time scales: The behavioural transitions occur much faster than the pro-
cesses of giving birth, death and migration.

ii) Nonlinear behavioural kinetics: The per-capita rate at which individuals of
a certain species at a certain patch switch from one behavioural group to another
depends, in general, on the density of local behavioural groups of the species
itself and/or some other species.

Incorporating these assumptions we have the following system of equations which
we shall call the full system:

dUis

dt
= mis∆Uis + Fis(·)Uis +

1

ε

Si∑

q 6=s,q=1

(λiqs(·)Uiq − λisq(·)Uis) (4.1)

(i = 1, · · · , K ; s = 1, · · · , Si ; j = 1, · · · , N)

in which we use the symbol i to index species, j to index patches, s and q to
index behavioural states. The meaning of the various notations is as follows

Uis = Uis(t, j) = the local density of group s of species i

Ui. = Ui.(t, j) = (Ui1(t, j), · · · , UiSi
(t, j))T

• ε is a small positive constant measuring the timescale of the behavioural transition
relative to that of the other processes (viz. birth, death and migration among
patches). In order to reformulate the model (4.1) and to apply the singular
perturbation theory in the later sections we introduce a fast time τ = t/ε. t is
hence a slow time.
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• Fis(·) = Fis(U1., · · · , UK.) is a smooth function describing the identical local per-
capita rate of change of group s of species i.

• λisq(·) = λisq(U1., · · · , UK.) is a smooth function describing the per capita rate
(measured at the fast time scale τ = t/ε) at which individuals of group s of species
i at a certain patch switch to group q of the same species (s, q = 1, · · · , Si). These
rates in general are functions of (U1., · · · , UK.). Namely, they depend, in general,
on the density of various behavioural groups of various species.

• mis is the per-capita emigration rate of individuals of group s of species i which
is assumed to be constant.

• ∆ is a (linear and discrete) spatial operator defined as

∆W (t, j) = −cjjW (t, j) +
n∑

l 6=j,l=1

clj

∫ ∞

0

g(δ)e−µδW (t− τ, l)dδ, j = 1, 2, · · · , n

(4.2)
for any density variable W .

– g(δ) is a species-dependent probability density function for the travel-
ing time of an individual. This probability density function may be (be-
havioural) group-dependent and even (l, j)-dependent. We do not consider
such a complicated case in this paper.

– e−µδ is the probability that migrators survive a trip of duration δ. µ is a
species-dependent positive constant.

What we consider here is a general situation where individuals spend some time
to travel from one patch to another and that individuals may die on the way, as
considered by, for instance, van den Bosch et al (1990) and Neubert et al (2002).
In the special case where individuals travel instantaneously, we have

∆W (t, j) =
n∑

l=1

cljW (t, l), j = 1, 2, · · · , n (4.3)

C = (cij)n×n is a matrix (with constant elements) describing the spatial structure
(For the detailed explanation of this matrix we refer to Jansen & Lloyd (2000),
or Huang & Diekmann (2003), so as to avoid a lengthy repetition). A simple
example of this matrix is
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C =




−1 1 0 · · · · · · 0
1 −2 1 · · · · · · 0
0 1 −2 1 · · · 0
...

...
. . . . . . . . .

...
...

0 · · · 1 −2 1 0
0 · · · · · · 1 −2 1
0 · · · · · · 0 1 −1




(4.4)

The system of equations (4.1) may be written as

dUi.

dt
= Mi∆Ui. + Fi(·)Ui. +

1

ε
Λi(·)Ui. (4.5)

(i = 1, · · · , K ; j = 1, · · · , N)

Here

Fi(·) = diag{Fi1(·), · · · , FiSi
(·)} (4.6)

Mi = diag{mi1, · · · ,miSi
} (4.7)

Λi(·) =




−∑
q 6=1 λi1q λi21 · · · · · · λiSi1

λi12 −∑
q 6=2 λi2q · · · · · · λiSi2

· · · · · · · · · · · · · · ·
λi1Si

λi2Si
· · · · · · −∑

q 6=Si
λiSiq


 (4.8)

We may compress (4.5) further to

dU

dt
= M∆U + F (U)U +

1

ε
Λ(U)U (4.9)

(j = 1, · · · , N)

in which

U = (U1., · · · , UK.)
T (4.10)

F (U) = diag{F1, · · · , FK} (4.11)

Λ(U) = diag{Λ1, · · · , ΛK} (4.12)

M = diag{M1, · · · ,MK} (4.13)

Clearly the three terms in the right hand side of (4.9), i.e., M∆U , F (U)U and
(1/ε)Λ(U)U , describe, respectively, the global migration, the local increase or decrease
and the local behavioural transition.
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4.3 Reduction

In most of cases what concerned is often the spatio-temporal evolution of the to-
tal abundance of the populations rather than the evolution of the distribution of the
abundances of behavioural groups. For this reason , yet noticing that two timescales
are present, we seek to reduce the full system (4.1) to a lower dimensional one by the
singular perturbation method. We shall continue to omit the time and patch argument
of density variables unless it is necessary to show them.

In order to apply the singular perturbation method we rewrite the full system (4.1)
as the following (S −K)×K-dimensional system (with S = S1 + · · ·+ SK)

ε
dUis

dt
= εmis∆Uis + εFis(·)Uis +

Si∑

q 6=s,q=1

[λiqs(·)Uiq − λisq(·)Uis] (4.14)

dUi

dt
= ∆

(
Si∑

s=1

misUis

)
+

Si∑
s=1

Fis(·)Uis (4.15)

(i = 1, · · · , K ; s = 1, · · · , Si − 1)

in which the equation (4.14) is obtained by multiplying the two sides of the equation
(4.1) by ε, while the second equation (4.15) is obtained by summing up, respectively,
the species specific equations in (4.1). Note that

Ui =

Si∑
s=1

Uis, i = 1, · · · , K (4.16)

is the total population density of species i in patch j and that for each species i, UiSi

should be understood as a function of Ui1, · · · , Ui(Si−1) and Ui, i.e.,

UiSi
= Ui −

Si−1∑
s=1

Uis, i = 1, · · · , K (4.17)

Let ε = 0 in (4.14) we have following quasi-steady-state equations (note that
for each species i, UiSi

still has to be understood as a function of Ui1, · · · , Ui(Si−1) and
Ui)

0 =

Si∑

q 6=s,q=1

[λiqs(·)Uiq − λisq(·)Uis] (4.18)

(i = 1, · · · , K ; s = 1, · · · , Si)

which, together with (4.17), determines a set in R(S−K)×K . This set (or its certain sub-
set that is of interest) constitutes the so-called critical manifold by the terminology
of the Geometric Singular Perturbation theory (Jones, 1994).
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Let us assume that (4.18) together with (4.17) has a unique positive solution ex-
pressing Uis (i = 1, · · · , K, s = 1, · · · , Si) as functions of U := (U1, · · · , UK)T (for
U ∈ RK

+ ), say

Uis = Ψis(U1, · · · , UK)Ui, i = 1, · · · , K, s = 1, · · · , Si (4.19)

which means that the critical manifold is given as the graph of the vector function Ψ =
(Ψ1, · · · , ΨK)T with Ψi = (Ψi1, · · · , Ψi(Si−1))

T (i = 1, · · · , K). For each species i, Uis

(i = 1, · · · , Si) given by (4.19) may be called the quasi-steady state distribution.
Since every element in any vector Ui. now is a function of (U1, · · · , UK) according

to the quasi-steady-state distribution (4.19) we can indeed obtain a decoupled K ×N
dimensional system describing the spatio-temporal evolution of the total densities of
populations by substituting (4.19) into (4.15):

dUi

dt
= ∆

(
Si∑

s=1

misΨis(U1, · · · , UK)Ui

)
+ Gi(U1, · · · , UK) (4.20)

(i = 1, · · · , k)

Here G(U1, · · · , UK) =
∑Si

s=1 Fis(U1., · · · , UK.).
This lower dimensional system contains nonlinear migration terms as long as

one or more λiqs(·) are density-dependent; in particular, the system reflects cross-
migration (i.e., the dependence of the per-capita emigration rate of one species on
the density of some other species) if one or more λiqs depend on the density of some
other species j (j 6= i) (Huang & Diekmann 2003). Moreover, the migration terms in
(4.20) are, in general, nonlinear and related to the local interaction terms.

For the full system (4.1) what we are concerned about are usually some specific
dynamical properties, the bifurcation of equilibria for instance. As far as such dynam-
ical properties are concerned, it is sufficient to study the reduced system (4.20) if the
critical manifold defined by (4.19) is normally hyperbolic and if the reduced system
(4.20) is structurally stable (see Appendix A for a rigorous argument).

4.4 Examples

4.4.1 Example 1: Predator-Prey Interactions with Predators’
Searching-handling Classification

Let us consider a multi-patch predator-prey system. Suppose that the prey is a sessile
species and its individuals have only one state. Suppose that predators have two states
in connection with their feeding activities: searching and handling. It follows that the
predator population in each local patch (with density P ) consists of two groups: the
searching predators (with density Ps) and the handling predators (with density Ph).
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The multi-patch model corresponding to (4.1) may be written, by omitting the time
and patch argument of the various density variables, as

dV

dt
= F (V )− αV Ps (4.21)

dPs

dt
= ms∆Ps − µPs + e

1

h
Ph + [

1

h
Ph − αV Ps]/ε (4.22)

dPh

dt
= mh∆Ph − µPh + [αV Ps − 1

h
Ph]/ε (4.23)

Here α is the searching efficiency. h is the mean handling time per prey item. µ is
the per-capita death rate of both searching and handling predators. e is a conversion
parameter. ms and mh are, respectively, the per-capita emigration rates of the search-
ing and handling predators. The per-capita rate of switching from being searching to
being handling (measured at the fast time scale τ = t/ε) is αV , while the per-capita
rate of switching from being handling to being searching is 1/h (Holling 1959 1966, see
also Metz and Diekmann 1986). F (V ) is a certain function describing the growth of
prey in the absence of predators.

The full system may be rewritten as

ε
dPs

dt
= εms∆Ps + ε[−(µ +

e

h
)Ps +

e

h
P ] + [

1

h
P − (αV +

1

h
)Ps] (4.24)

dV

dt
= F (V )− αV Ps (4.25)

dP

dt
= ∆[(ms −mh)Ps + mhP ] + (

e

h
− µ)P − e

h
Ps (4.26)

in which the relation P = Ps + Ph has been used. The critical manifold is then given
as

M0 = {(Ps, V, P ) : 0 =
1

h
P − (αV +

1

h
)Ps}

= {(Ps, V, P ) : Ps =
1

1 + αhV
P}

where the expression Ps = 1
1+αhV

P is meaningful for any non-negative V, P . A substi-
tution of this expression into the second and the third equation of the rewritten system
yields the following reduced multi-patch predator-prey equations:

dV

dt
= F (V )− αV

1 + αhV
P (4.27)

dP

dt
= ∆

(
ms + mhαhV

1 + αhV
P

)
− µP + e

αV

1 + αhV
P (4.28)
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4.4.2 Example 2: Predator-Prey Interactions with Predators’
Kleptoparasitism

Let us consider a multi-patch system of predator-prey with predators’ kleptoparasitism
(i.e. food-stealing) which is inspired by Ruxton and Moody (1997). Suppose that the
prey is a sessile species and its individuals have only one state. Suppose that preda-
tors have three behavioural states: searching (s−state), handling without interference
(h−state) and kleptoparasitic coupling (k−state). It follows that the predator pop-
ulation in each local patch (with density P ) consists of three groups: the searching
predators (with density Ps), the handling predators (with density Ph) and the preda-
tors who are being involved in the kleptoparasitic interaction (Pk). The multi-patch
model corresponding to (4.1) may take the form

dV

dt
= F (V )− αV Ps (4.29)

dPs

dt
= ms∆Ps − µPs + e

1

h
Ph

+

(
[
1

h
Ph − αV Ps] + [

1

2k
Pk − βPsPh]

)
/ε (4.30)

dPh

dt
= mh∆Ph − µPh

+

(
[αV Ps − 1

h
Ph] + [

1

2k
Pk − βPsPh]

)
/ε (4.31)

dPk

dt
= mk∆Pk − µPk

+

(
[βPsPh − 1

2k
Pk] + [βPsPh − 1

2k
Pk]

)
/ε (4.32)

Here αV is the rate at which searching predators discover a prey. βPh is the rate
at which searching predators discover a handling predator. h is the mean handling
time per prey item. k is the mean time per kleptoparasitic interaction. µ is the per-
capita death rate of predators. e is a conversion parameter. ms, mh and mk are
respectively the per-capita emigration rates of searching predators, handling predators
and predators involved in the kleptoparasitic interaction. F (V ) is a certain function
describing the growth of prey in the absence of predators.

The assumptions concerning the per-capita rates of behavioural transition (mea-
sured at the fast time scale τ = t/ε) are the following

i) Searching predators discover prey (and hence become handling predators) at a
rate αV . Handling predators come back to search at a rate 1/h.

ii) Searching predators discover handling predators (and hence become involved in
the kleptoparasitic interaction) at a rate βPh. The k − state predators become
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searching predators at a rate 1
2k

. (That is, the “klepto-owner” pair dissolves in
one searching and one handling predator after an exponentially distributed time
with mean k).

iii) Handling predators are discovered by searching predators (and hence become
involved in the kleptoparasitic interaction) at a rate βPs. The k−state predators
become handling predators at a rate 1

2k
.

The quasi-steady state equations are

0 = [
1

h
Ph − αV Ps] + [

1

2k
Pk − βPsPh] (4.33)

0 = [αV Ps − 1

h
Ph] + [

1

2k
Pk − βPsPh] (4.34)

0 = 2βPsPh − 1

k
Pk (4.35)

Note that

P = Ps + Ph + Pk (4.36)

We may solve for Ps, Ph and Pk as functions of V and P . We indeed have the following
unique steady state solution which is biologically meaningful.

Ps =
−(1 + αhV ) +

√
(1 + αhV )2 + 8αβhkV P

4αβhkV
:= Φs(V, P ) (4.37)

Ph =
−(1 + αhV ) +

√
(1 + αhV )2 + 8αβhkV P

4βk
:= Φh(V, P ) (4.38)

Pk = P − Φs(V, P )− Φh(V, P ) =: Φk(V, P ) (4.39)

We then end up with a time-continuous multi-patch predator-prey equations as
follows

dV

dt
= F (V )− αV Φs(V, P ) (4.40)

dP

dt
= ∆[msΦs(V, P ) + mhΦh(V, P ) + mkΦk(V, P )]

−µP + eαV Φs(V, P ) (4.41)

One can see that both the functional response αV Ps/P and the emigration response
of searching predators to prey density Ps/P vary with the kleptoparasitic strength ρ
defined as ρ = βk

αh
. (see Fig.4.1.)
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Figure 4.1: The graphs of the functional response αV Ps/P and the emigration re-
sponse of the searching predators to prey density Ps/P for the various values of the
kleptoparasitic strength ρ (see (a) and (b) respectively). Note that the expression of
Ps is given as in (4.37). Fixed parameters or variables are α = 1, h = 0.4, P = 10.

4.4.3 Example 3: Competition between Two Consumers

Consider a system of two consumers (C1 and C2) competing for a single food resource
(R) in a patchy environment. Suppose that individuals of each consumer species have
two states in connection with their feeding activity: searching and handling. Each con-
sumer population in any patch then consists of a searching group (Cis) and a handling
group (Cih) (i = 1, 2). Ignoring any direct conspecific and interspecific interference
among individuals we may have the following full system:

dR

dt
= R0 −R− α1RC1s − α2RC2s (4.42)

dC1s

dt
= m1s∆C1s − µC1s + e1

1

h1

C1h + [
1

h1

C1h − α1RC1s]/ε (4.43)

dC1h

dt
= m1h∆C1h − µC1h + [α1RC1s − 1

h1

C1h]/ε (4.44)

dC2s

dt
= m2s∆C2s − µC2s + e2

1

h2

C2h + [
1

h2

C2h − α2RC2s]/ε (4.45)

dC2h

dt
= m2h∆C2h − µC2h + [α1RC2s − 1

h2

C2h]/ε (4.46)
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The meaning of the parameters αi, hi, ei,mi (i = 1, 2) as well as µ is hopefully clear
from the previous two examples. R0 is the resource production. For simplicity we have
assumed that the two consumer populations have the same per-capita death rate.

By the computational procedure of reduction method we end up with the following
equations:

dR

dt
= R0 −R− α1R

1 + α1h1R
C1 − α2R

1 + α2h2R
C2 (4.47)

dC1

dt
= ∆

(
m1s + m1hα1h1R

1 + α1h1R
C1

)
− µC1 + e1

α1R

1 + α1h1R
C1 (4.48)

dC2

dt
= ∆

(
m2s + m2hα2h2R

1 + α2h2R
C2

)
− µC2 + e2

α2R

1 + α2h2R
C2 (4.49)

4.5 Discussion

In this paper we formulated and (mathematically) justified a method to derive spatial
population models mechanistically where the migration terms are in general nonlinear
and related to the reaction terms. The algorithm may be summarized as three steps:

i) Formulate the full time-continuous multi-species multi-patch model in which each
species locally consists of some behavioural groups. The full model contains a
submodel describing the kinetics of behavioural transitions of the various species
which occur very fast compared to the other processes.

ii) Specifying the various rates of behavioural transitions and then solve the steady
state of the behavioural transition submodel to obtain a quasi-steady-state dis-
tribution which expresses the densities of the various behavioural groups as func-
tions of the total local densities of the various species.

iii) Reformulate the full model by respectively summing up the species-specific equa-
tions and then plug the quasi-steady-state distribution, which shall yield a lower
dimensional population model containing information about the behavioural pro-
cesses.

The behavioural transition submodel may be either linear, in which those per-
capita rates of exchanging from one behavioural group to another are all constant or
depend only on some environmental variables that do not change at the short be-
havioural time scale, or nonlinear, in which some transition rates depend on variables
that do vary at the behavioural time scale. In this paper, we presented examples of
both linear (Examples 1 and Example 3) and nonlinear case (Example 2). (see also
Heesterbeek and Metz (1993) for an example of the nonlinear case and the relevant
result).
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The nonlinearity of migration terms and the connection of migration terms with
reaction terms are the two important features that are not reflected in classical spatial
models, such as the reaction-diffusion type of models. In a previous work (Huang &
Diekmann 2001) we have investigated a specific predator-prey model with these two
features and found that it did exhibit both quantitative and qualitative differences
from the corresponding simple model. We hope that the method in this paper helps
to derive realistic descriptions of spatial interactions of populations, like those models
we obtained in the examples in this paper, by which we can understand the impact of
dispersal and spatial interaction on population dynamics better.

There are a few practical problems associated with the implementation of the
method. First of all, we need to recognize (or classify) the behavioural states (of indi-
viduals of species). The well-estabilished concept, like the Holling searching-handling
classification of predators, may give a great help in this point. Second, the time scale
of behavioural transitions should be very small compared to other processes, in par-
ticular the migration among patches. If this is not true then the reduction method
introduced in this paper is not applicable. Third, we have to make reasonable assump-
tions concerning the per-capita rates of transition between behavioural groups. All
these problems have to be solved by studying the specific system concerned carefully.

It is no doubt that there are both differences and correspondences in fecundity,
mortality and mobility between individuals of a species. In the one extreme, one
assumes that every individual is different from others, yielding individual-based models
which can only be analyzed by computer simulation. In the other extreme, one simply
uses the art of averaging, formulating population models in which such differences and
correspondences between individuals are usually ignored. The method in this paper is
an attempt to bridge the gap between the two extremes.

Some authors (Weisser and Hassell (1996), Weisser et al (1997)) have considered
multi-patch host-parasitoid models where each species is locally divided into a mobile
and a stationary group. The local mobile and stationary groups may be thought of as
two special behavioural groups. In this point their models are the special cases of the
full system in this paper. However, they assumed that the mobile-stationary transition
has the same time scale as the other processes and that the per-capita rates of transition
between the two groups are constant, which are different from our assumptions. Some
other authors (Michalski et al. 1997, Auger and Poggiale 1996) have developed a
method to derive complex non-spatial predator-prey models. Our models and method
are more general than these mentioned.

4.6 Appendix: Mathematical Justification of the

Reduction Method

The mathematical justification of the reduction method relies on the Fenichel’s first
invariant manifold theorem (Fenichel 1971) which can be formulated and stated as
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follows (Jones 1994).
Let

εx′ = H(x, y, ε) x ∈ Rl

y′ = G(x, y, ε) y ∈ Rm (4.50)

be a C∞ vector field on Rl×Rm with one-dimensional small real parameter ε on which
H and G depend C∞−smoothly. ·′ = d

dt
.

Suppose that the critical manifold M0 = {(x, y) : H(x, y, 0) = 0} is normally
hyperbolic, i.e., the matrix DxH(x̂, ŷ, 0) is invertible for any (x̂, ŷ) ∈ M0. Suppose
further that the critical manifold M0 is given as the graph of the function ψ0, i.e.,

M0 = {(x, y) : x = ψ0(y)} (4.51)

We then have the following theorem

Theorem 4.1 If ε > 0, but sufficiently small, there is a function x = ψε(y) defined on
Ω ⊂ Rm, such that the graph

Mε = {(x, y) : x = ψε(y)} (4.52)

is locally invariant under (4.50). Moreover, ψε is Cr for any r < ∞, jointly for y and
ε.

The theorem implies that we can restrict the flow to a lower dimensional manifold Mε

which satisfies

i) Mε = M0 + O(ε) or ψε(y) = ψ0(y) + O(ε)

ii) Mε is diffeomorphic to M0

Therefore, the following decoupled system

y′ = G(ψε(y), y, ε) (4.53)

suffices to describe the flow on Mε. One can see that (4.53) is a regular perturbation
of

y′ = G(ψ0(y), y, 0) (4.54)

It is easy to see that the system consisted of (4.14) and (4.15) has exactly the same
form as (4.50). The Theorem 4.1 indicates that we can restrict the flow generated by
(4.14) & (4.15) to the slow manifold which is O(ε)−close to the critical manifold, in
order to find interesting structure. In other words, the full system (4.1) is approximated
by (4.20) with an error of order O(ε). If (4.20) is structurally stable this error then
can be neglected.



Chapter 5

Double-Jump Migration and
Diffusive Instability

Abstract. To look into the stability consequences of a particular migration
process in which individuals choose to settle, we formulated a time-continuous
multis-pecies multi-patch model in which individuals migrate by one or two in-
stantaneous jumps while making the second jump with a certain probability that
possibly depends on the conditions at the end point of the first jump. It turned
out that a second jump has some quantitative effects on diffusive instability when
it occurs with a probability that is density-independent. When a second jump
happens as a natural interspecific response of individuals, and such a response
is sufficiently strong, it has crucial effects on diffusive instability: it leads to dif-
fusive instability in the case of competitive interactions, whereas it annihilates
diffusive instability in the case of prey-predator interactions.

∗A joint work with Diekmann, O. and Van den Bosch, F., submitted to BMB
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5.1 Introduction

One of the major issues in spatial population ecology is how dispersal combined with
population dynamics influences stability and persistence of interacting species. Al-
though a tremendous amount of theoretical work has been devoted to investigating the
issue (Turing 1952, Okubo 1980, Okubo and Levin 2001, Segel 1984, Kareiva and Odell
1987, Othmer et al. 1988), the underlying mechanisms are far from being completely
understood because of the complexity of dispersal processes.

Density-dependence, in particular interspecific density-dependence, might contribute
substantially to the complexity of dispersal processes. In the case of predator-prey in-
teractions, for instance, prey at a certain position may have increasing inclination to
leave when the number of predators near-by increases because of the increasing dan-
ger, whereas predators, in contrast, may have decreasing inclination to emigrate when
the number of prey increases because of the increasing food abundance. In the pre-
vious study (Huang&Diekmann, 2003) we scrutinized the issue via a time-continuous
multi-species multi-patch model and found that such a density-dependence mechanism
indeed has crucial effects on the stability of interacting species. The model takes (in
somewhat different notation) the form

∂

∂t
uj = f(uj)− Φ(uj)uj +

n∑

k=1

c̃kjΦ(uk)uk, j = 1, · · · , n (5.1)

in which uj is the vector of densities of species in a certain patch j, f is a nonlinear map
describing the local interactions and Φ(·) is a diagonal matrix in which the diagonal
elements are the per-capita rate of emigration of the various species while c̃ij is the
probability that an individual arrives at patch j instantaneously after emigrating from
patch i. The key assumption behind the equation is that individuals migrate in response
to the quality of the patch of departure (Aronson 1985, Skellam 1973). In other words,
it was assumed that there is a density-dependent mechanism at the emigration stage of
the migration process and that individuals travel and land randomly after emigration.

Clearly some biological situatons do not fit this description. In fact, for some
species, such as benthic populations dispersing in the water and insect populations
dispersing in the air, not only the departure but also the arrival could be influenced by
density-dependent factors. For example, predatory mites dispersing in the air usually
look for a “good place” to settle, while the settlement of free swimming larvae of some
rock-shore species is often inhibited by chemical defence mechanisms of competitors.
Even bird and mammal species do preferentially settle at places of higher prey density
(van den Bosch et al, in press). In short, after travelling to a place, individuals may
“choose” to settle or to travel again immediately, depending on the “quality” of the
place.

To model such a dispersion process by a time-continuous multi-patch model, we
need to extend our previous formulation. Indeed, the dispersal process described in
the last paragraph may be regarded as consisting of two or more jumps. The approach
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to dividing a spatio-temporal transition process into consecutive subprocesses (e.g.,
a sedentary stage of growth and interaction and a mobile stage) has been used in
formulating time-discrete spatial models (Kot 1992, Neubert et al. 1995, Lewis et al.
2000). In the case where individuals do move by jumps of short duration (Othmer et
al. 1988), we may use this method to formulate a time-continuous model.

In this paper, we shall indeed formulate a time-continuous multispecies multipatch
model in which migration of individuals of each species is in general a composite of
two instantaneous jumps. We shall assume that there is a probability for individuals
to make a second jump (which depends in general on the conditions at the end point
of the first jump). We shall first examine if and how the second-jump, when it is
assumed to be density-independent (so merely featuring the approach of double-jump
scheme of migration), changes the conditions for diffusive instability as compared to the
standard approach. We then study whether or not the second jump, when it happens
as a natural interspecific response of individuals, affects diffusive instability crucially.

5.2 The Model

Consider a system of m species in a habitat consisting of n identical patches. For any
species i in any patch j, the rate of change of density matches the sum of the net
growth rate and the net migration rate (i.e., immigration minus emigration), yielding
the following system of ordinary differential equations:

duj

dt
= f(uj)−Muj + (I − Φ(uj))

n∑

k=1

qkjMuk +
n∑

l=1

qljΦ(ul)
n∑

k=1

qklMuk

j = 1, 2, · · · , n (5.2)

in which uj = (u1j, · · · , umj)
T ∈ Rm is a m−vector whose element uij is the density of

species i in patch j, while

• f(·) = (f1(·), · · · , fm(·))T : Rm → Rm is a vector function in which fi(·) (i =
1, · · · ,m) is the local growth rate of species i.

• M = diag{m1, · · · ,mm}: Rm → Rm×m in which mi (i = 1, · · · ,m) is the
per-capita emigration rate of species i (from any patch). mi may be density-
dependent in general (which is in fact the case we have studied in the previous
work (Huang&Diekmann 2003)), but we assume that mi is density-independent
in this paper in order to focus on our main concerns.

• Φ(·) = diag{φ1(·), · · · , φm(·)}: Rm → Rm×m in which φi(·) (i = 1, · · · ,m) is the
probability that an individual of species i makes a second jump. For the sake of
convenience we introduce one more piece of notation: φ(·) = (φ1(·), · · · , φm(·))T :
Rm → Rm.



60 Chapter 5. Double-Jump Migration and Diffusive Instability

• qij (i, j = 1, 2 · · · , n) is the probability that an individual instantaneously jumps
to patch j from patch i. Therefore, Q = (qij) is an n × n matrix describing the
instantaneous spatial redistribution of individuals. Note that this redistribution
is assumed to be identical for all species. We shall discuss this matrix in detail
in the next section.

An important assumption behind the formulation (5.2) is that a migration event
in general consists of two jumps (and that neither the jumps , nor the period between
jumps, take any time). It is also assumed that individuals make a second jump with a
certain probability (which depends in general on the conditions at the end point of the
first jump). It is clear, when focusing on a certain patch j, that the term Muj is the
emigration rate, whereas the term (I − Φ(uj))

∑n
k=1 qkjMuk is the immigration rate

via a single jump and the term
∑n

l=1 qljΦ(ul)
∑n

k=1 qklMuk is the immigration rate via
double jumps.

If we define a new matrix C = (cij)n×n ≡ Q − I in which I is the n × n identity
matrix, i.e.,

cij =

{
qij if i 6= j
qij − 1 if i = j

(5.3)

(5.2) can be rewritten as

duj

dt
= f(uj) +

n∑

k=1

ckjMuk +
n∑

l=1

cljΦ(ul)
n∑

k=1

qklMuk (5.4)

j = 1, 2, · · · , n

We call (5.4) the standard or single-jump equation when Φ = 0, and the double-
jump equation when Φ 6= 0.

5.3 Jump Redistribution

The matrix Q describing the instantaneous jumps is one of the important components
of the model. We assume

0 ≤ qij ≤ 1 for i, j = 1, 2, · · · , n (5.5)
n∑

j=1

qij = 1 for i = 1, 2, · · · , n (5.6)

The first assumption indicates that the elements of Q are probabilities. The second
implies that no death occurs during migration.

In addition, we assume that
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qij = qji for i, j = 1, 2, · · · , n (5.7)

which amounts to assuming that dispersal is non-directional (e.g. governed only by
the distance).

Therefore, Q is diagonalizable and it has n real eigenvalues, one of which is one, the
others being smaller than one. Indeed, all eigenvalues of Q lie in [−1, 1] as follows from
the well-known Gerschgorin Theorem in matrix theory (see e.g. Ortega (1987)). We
shall denote the eigenvalues of Q by σi, i = 1, 2, · · · , n and designate σ1 = 1. Therefore

1 = σ1 > σ2 ≥ · · · ≥ σn ≥ −1 (5.8)

(see two examples of the matrix in the Appendix). Immediately one finds that the
matrix C is diagonalizable as well and it has n real eigenvalues, one of which is zero,
the others are negative, lying in [−2, 0). We shall denote the eigenvalues of C by
λi, i = 1, 2, · · · , n and designate λ1 = 0. Then

0 = λ1 > λ2 ≥ · · · ≥ λn ≥ −2 (5.9)

5.4 Stability Criteria of the Flat Solutions

It is clear that the assumptions about the matrices Q are such that the system (5.4)
allows spatially homogeneous (or, flat) solutions. A flat solution has the form

S(t) = (s(t), · · · , s(t)) ∈ Rm×n

where s(t) ∈ Rm is the solution to the one-patch problem, i.e.,

ṡ = f(s)

The linear stability analysis of a flat solution to the n-patch system (5.4) can be
simplified, as detailed in the following result.

Theorem 5.1 The linearization of (5.4) around a flat solution S(t) = (s(t), · · · , s(t))
can be transformed by a similarity transformation into n decoupled subsystems

ẇj = {Df(s) + λjM [I + H(s) + (1 + λj)Φ(s)]}wj, j = 1, 2, · · · , n (5.10)

Here H(s) = diag{s1, · · · , sm}Dφ(s).

Remark A flat solution of (5.4) is linearly stable if and only if the zero solutions
of the n subsystems given by (5.10) are all asymptotically stable. Hereafter, we shall
call the matrices Bj defined by
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Bj = Df(s) + λjM [I + H(s) + (1 + λj)Φ(s)], j = 1, 2, · · · , n (5.11)

as the criterion matrices. When s(t) = s is an equilibrium, the flat solution S =
(s, · · · , s) is linearly stable if all eigenvalues of the criterion matrices Bj have negative
real parts. When s(t + T ) = s(t), i.e., s(t) is periodic with period T , the flat solution
S(t) is linearly stable if all non-trivial Floquet multipliers of the system ẇj = Bj(s(t))wj

for all j lie inside the unit circle.

Proof of Theorem 5.1

For any solution (u1, · · · , un) and a flat solution (s, ·, s) of (5.4) we can write

u̇j − ṡ = f(uj)− f(s) +
n∑

k=1

ckjM(uk − s)

+
n∑

l=1

clj

n∑

k=1

qklM [Φ(ul)uk − Φ(s)s] j = 1, 2, · · · , n (5.12)

The following Taylor expansion holds for any pair of m−dimensional vectors x =
(x1, · · · , xm) ∈ Rm and y = (y1, · · · , ym) ∈ Rm with both x− s and y − s small:

Φ(x)y = Φ(s)s + H(s)(x− s) + Φ(s)(y − s) + h.o.t. (5.13)

in which

H(s) = diag{s1, · · · , sm}Dφ(s) :=




∂φ1(x)
∂x1

y1 · · · ∂φ1(x)
∂xm

y1

· · · · · · · · ·
∂φm(x)

∂x1
ym · · · ∂φm(x)

∂xm
ym


 |x=y=s (5.14)

Let
uj(t) = zj(t) + s(t), j = 1, 2, · · · , n

with zj(t) small. Then we find, for any l, k = 1, 2, · · · , n, that

Φ(ul)uk − Φ(s)s = H(s)zl + Φ(s)zk + h.o.t. (5.15)

The dynamics of zj(t), j = 1, 2 · · · , n can therefore be approximated by the linear
system

żj = Df(s)zj +
n∑

k=1

ckjMzk

+
n∑

l=1

clj

n∑

k=1

qklM [H(s)zl + Φ(s)zk], j = 1, 2, · · · , n (5.16)
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Since
∑n

k=1 qkl = 1 (which follows from (5.6)&(5.7)), we find that

żj = Df(s)zj +
n∑

k=1

ckjM(I + H(s))zk

+
n∑

l=1

clj

n∑

k=1

qklMΦ(s)zk, j = 1, 2, · · · , n (5.17)

To perform a linear transformation, we write the above system in the following matrix
form

(ż1, · · · , żn) = (Df(s)z1, · · · , Df(s)zn)

+ (M(I + H(s))z1, · · · ,M(I + H(s))zn) C

+

(
n∑

k=1

qk1MΦ(s)zk, · · · ,

n∑

k=1

qknMΦ(s)zk

)
C (5.18)

which may be written, using Q = C + I, as

(ż1, · · · , żn) = (Df(s)z1, · · · , Df(s)zn)

+ (M(I + H(s) + Φ(s))z1, · · · ,M(I + H(s) + Φ(s))zn) C

+ (MΦ(s)z1, · · · ,MΦ(s)zn) C2 (5.19)

Because C is similar to the diagonal matrix Λ = diag{λ1, · · · , λn} in which λ1, · · · , λn

are the n eigenvalues of C, there exists a nonsingular n× n matrix P such that

P−1CP = Λ = diag{λ1, · · · , λn}, or CP = PΛ (5.20)

Multiplying (5.19) from the right by P and using the similarity transformation

wj = zjP, j = 1, 2, · · · , n (5.21)

we obtain

(ẇ1, · · · , ẇn) = (Df(s)w1, · · · , Df(s)wn)

+ (M [I + H(s) + Φ(s)]w1, · · · ,M [I + H(s) + Φ(s)]wn) Λ

+ (MΦ(s)w1, · · · ,MΦ(s)wn) Λ2 (5.22)

which consists of n decoupled m−dimensional subsystems

ẇj = {Df(s) + λjM [I + H(s) + Φ(s) + λjΦ(s)]}wj, j = 1, 2, · · · , n (5.23)
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5.5 Effects on Diffusive Instability

Throughout this section we restrict ourselves to the two species case (i.e., m = 2). Let
S = (s, · · · , s) be a homogeneous equilibrium of (5.4) in which s = (s1, s2)

T is a stable
equilibrium of the one-patch problem u̇ = f(u). For the standard equation (Φ = 0)
the criterion matricies are

Bj = Df(s) + λjM, j = 1, 2, · · · , n (5.24)

whereas for the double-jump equation (Φ 6= 0) the criterion matrices are

Bj = Df(s) + λj[I + H(s) + (λj + 1)Φ(s)]M, j = 1, 2, · · · , n (5.25)

Let Df(s) = (fij)2×2. The assumption that the equilibrium of the one-patch problem
s is linearly stable implies that

{
f11 + f22 < 0
f11f22 − f12f21 > 0

(5.26)

Let Dφ(s) = (φij)2×2. We then find, by definition, that

H(s) = diag{s1, s2}Dφ(s) =

(
s1φ11 s1φ12

s2φ21 s2φ22

)
(5.27)

It follows that the criterion matrix Bj (for λj ∈ [−2, 0] and φ1, φ2 ∈ [0, 1]) has the form

B(λj, φ1, φ2, α, β) =

(
f11 + λjm̂1 f12 + λjα
f21 + λjβ f22 + λjm̂2

)
(5.28)

in which

m̂i = mi[1 + (λj + 1)φi + siφii], i = 1, 2 (5.29)

α = s1φ12 β = s2φ21 (5.30)

We shall assume that φii ≥ 0 for i = 1, 2. It follows that m̂i ≥ 0 (i = 1, 2) for any
λj ∈ [−2, 0] and φ1, φ2 ∈ [0, 1].

S is stable if and only if

{
f11 + f22 + λj(m̂1 + m̂2) < 0
K(λj, φ1, φ2, α, β) > 0

(5.31)

in which

K(λj, φ1, φ2, α, β) = f11f22 − f12f21 + λj(f11m̂2 + f22m̂1) + λ2
jm̂1m̂2

−λjf21α− λjf12β − λ2
jαβ (5.32)
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Since the first inequality in (5.31) holds for any λj ∈ [−2, 0] under the assumption (5.26)
(Note that m1,m2 are nonnegative and that φ1, φ2 ∈ [0, 1]), the diffusive instability
arises if and only if K(λj, φ1, φ2, α, β) < 0 for some λj ∈ [−2, 0).

5.5.1 Density-Independent Second Jump

Let us look in this subsection at the case where Φ is density-independent. In this case
H(s) = 0. It follows that α = β = 0 and that

K(λj, φ1, φ2, 0, 0) = f11f22 − f12f21 + λj[1 + (λj + 1)φ1]f22m1

+λj[1 + (λj + 1)φ2]f11m2

+λ2
j [1 + (λj + 1)φ1][1 + (λj + 1)φ2]m1m2 (5.33)

For competitive interaction, it is natural that f12 < 0, f21 < 0. It follows from the
general assumption (5.26) that f11 < 0, f22 < 0. Therefore, K(λj, φ1, φ2, 0, 0) > 0 for all
λj ∈ [−2, 0], which suggests that the system (5.4) can not exhibit diffusive instability.

For prey-predator (or activator-inhibitor) interaction it is natural that f12 and f21

have the opposite signs. It follows from the general assumption (5.26) that f11f22 <
0. Suppose, without loss of generality, that f11 > 0, f22 < 0. The neutral stability
condition K(λj, φ1, φ2, 0, 0) = 0 can then be written as

m2 =
(f11f22 − f12f21) + f22λj[1 + (λj + 1)φ1]m1

−λj[1 + (λj + 1)φ2]{f11 + λj[1 + (λj + 1)φ1]m1} (5.34)

which defines a curve in the (m1,m2) plane (while 0 ≤ m1 ≤ − f11

λj [1+(λj+1)φ1]
) when the

other parameters are fixed. It is clear that the homogeneous equilibrium S becomes
unstable in the jth eigenmode as the point (m1, m2) move upwards over the curve.
Some simple algebra shows that the curve moves upwards as φ2 increases from 0 to
1 for any |λj| ≤ 1 (while the other parameters are fixed) and that the curve moves
downwards as φ2 increases from 0 to 1 for any |λj| > 1 (while the other parameters
are fixed) (see the two upper pictures in Fig.5.1 where we plot the curve for the two
extremes of φ2 only). It can be shown similarly that the curve moves to the left as
φ1 increases for any |λj| ≤ 1 and that the curve moves to the right as φ1 increases for
any |λj| > 1 (see the two lower pictures in Fig.5.1 where we plot the curve for the two
extremes of φ1 only). In summary, we have

Proposition 5.2 Without density-dependent mechanisms in making jumps both the
double-jump equation and the standard equation exhibit no diffusive instability for com-
petitive interactions. For predator-prey (or activator-inhibitor) interactions, both equa-
tions could exhibit diffusive instability, for which some quantitatively different condi-
tions are required.
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Figure 5.1: Neutral stability curves (lij corrsponds to the neutral stability condition
Det(B(λj, φ1, φ2, 0, 0)) = 0 for φ1 = i, φ2 = j, i, j = 0, 1). The homegeneous equilib-
rium becomes linearly unstable in the jth eigenmode of the linearized system when the
point (m1,m2) moves upwards over a curve in each picture. The other fixed parameters
are: f11 = 1, f22 = −1.5, f12 = −2, f21 = 1.5.
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5.5.2 Density-Dependent Second Jump

In this subsection we consider the case where one or both diagonal elements of Φ
are density-dependent. We shall speak of the cross-response second jump if the
probability that individuals of species i make a second jump (i.e. φi) depends on the
density of the other species. Now, one finds that H(s) = diag{s1, · · · , sm}Dφ(s) is a
full matrix (rather than a diagonal matrix) and that α 6= 0, β 6= 0. Note that |α| and
|β| measure the strength of the cross-response of the second-jump.

For competitive interaction, f12, f21 and α, β should satisfy

f12 < 0, f21 < 0, α ≥ 0, β ≥ 0 (5.35)

where the positive sign of α and β means that the inclination of individuals of one
species to make a second jump increases as the number of the competitors increases.

Checking the expression of the function K defined in (5.32) we find that all terms
involving α or/and β are negative when α 6= 0, β 6= 0 according to the sign assumption
(5.35) and that the sum of these terms decreases at a rate bounded away from zero
as α or/and β increase. Therefore the function K shall be negative sooner or later
as α or/and β increase. In other words, the diffusive instability shall arise when the
cross-response (of the second jump) is sufficiently strong.

For prey-predator (or activator-inhibitor) interaction, if the prey and the predator
correspond to, respectively, the indices 1 and 2, we should have

f12 < 0, f21 > 0, α ≥ 0, β ≤ 0 (5.36)

where the positive sign of α implies that the inclination of prey to make a second jump
increases as the number of predators increases, whereas the negative sign of β suggests
that the tendency of predators to make a second jump decreases as the number of prey
increases.

For this type of interaction S may be diffusively stable or unstable when α = β = 0,
depending on the precise local interaction terms (Segel&Jackson 1972). Let us first
assume that S is diffusively stable when α = β = 0, namely

K(λj, φ1, φ2, 0, 0) > 0, for all λj ∈ [−2, 0) (5.37)

Then we find, according to the sign assumptions on f12, f21 and α, β, that

K(λj, φ1, φ2, α, β) > 0, for all λj ∈ [−2, 0) (5.38)

as well when α 6= 0 or/and β 6= 0 (because all terms involving α or/and β are positive
when α 6= 0, β 6= 0 according to the sign assumption (5.36)). Therefore, the equilibrium
S can not be destabilized by the cross-response (of the second jump).

Next, we assume that S is diffusively unstable when α = β = 0, namely
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K(λj, φ1, φ2, 0, 0) < 0, for some λj ∈ [−2, 0) (5.39)

Now, the fact that all terms involving α or/and β in the expression of the function
K are positive and that the sum of these terms increases at a rate bounded away from
zero as α or/and |β| increase means that the function K shall be positive sooner or
later as α or/and |β| increase. In other words, the equilibrium Ū shall be stable when
the cross-response (of the second jump) is sufficiently strong. In summary, we have

Proposition 5.3 For a competitive type of interaction (or mutualism), a standard
equation does not exhibit diffusive instability, but a cross-response second jump may
lead to diffusive instability provided that the response is sufficiently strong. For a prey-
predator (or an activator-inhibitor) type of interaction, a standard equation may be ei-
ther stable or unstable. A cross-response second jump can stabilize an unstable standard
equation provided that the response is sufficiently strong, but it can never destabilize a
stable standard equation.

5.6 Examples

5.6.1 Competition

Let us consider a multi-patch two-species competitive system (formulated as (5.4))
in which the identical local dynamics is described by the following Lotka-Volterra
equations

u̇ = u(a1 − b1u− c1v)
v̇ = v(a2 − b2u− c2v)

(5.40)

where all the constants ai, bi, ci, i = 1, 2 are positive. u and v are respectively the
population densities of the two competing species. In the “weak competition” case,
i.e.,

b1

b2

>
a1

a2

>
c1

c2

(5.41)

(5.40) has a positive steady state

(u∗, v∗) =

(
a1c2 − a2c1

b1c2 − b2c1

,
b1c2 − b2a1

b1c2 − b2c1

)

Standard Equation The corresponding equation is (5.4) with Φ = 0. It is
well-known that the homogeneous steady state of (5.4), i.e., S = (s, · · · , s) with s =
(u∗, v∗)T , is globally asymptotically stable no matter how large the constants m1,m2

are.
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Double-Jump Equation The corresponding equation is (5.4) with Φ 6= 0. Let
us assume that the probability that individuals of species 1 make a second jump is
constant and that the probability that individuals of species 2 make a second jump
depends on the density of species 1, i.e., Φ = diag{φ1, φ2(u)}. Suppose that

φ2(u) =
uθ

(u∗)θ + uθ
, u ≥ 0, θ ≥ 0 (5.42)

(see Fig.5.2). One can easily compute that

β = [φ′2(u)v]|u=u∗,v=v∗ = φ′2(u
∗)v∗ =

v∗

4u∗
θ

So the parameter θ measures the strength of the second-jump response of species 2 to
the density of species 1.

By Proposition 5.3, S becomes unstable when θ is sufficiently large. (see Fig.5.3.)
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Figure 5.2: Left picture: the graphs of the function φ(x) = xθ

xθ+2θ for the various values

of θ. Right picture: the graphs of the function φ(x) = 2θ

xθ+2θ for the various values of θ.

5.6.2 Predator-Prey Interaction

Let us consider a multi-patch phytoplankton-herbivore system (formulated as (5.4)) in
which the identical local dynamics is determined by the equations (Levin and Segel
1976)

v̇ = av + ev2 − b1vp
ṗ = −cp2 + b2vp

(5.43)
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Figure 5.3: A one-parameter bifurcation diagram of the two-patch competition system
with a double-jump scheme of migration. The local dynamics is determined by (5.40).
φ1 = const, φ2 is given by (5.42). It is clear that inhomogeneous equilibria arise
as the parameter θ, which measures the strength of the second-jump response of the
species 2 to the density of species 1, increases. The other relevant parameters are
a1 = b1 = c1 = 1, a2 = 2, b2 = 1, c2 = 3; m1 = 0.1,m2 = 2.5; The redistribution matrix
Q is set to be q11 = q12 = q21 = q22 = 0.5.
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which reflect the assumptions that there is an autocatalytic effect in the growth rate
of phytoplankton (v) and that the mortality of the herbivore (p) is density-dependent.
All parameters a, b1, b2, c and e are positive.

When b1b2 > ce and b2 > e, (5.43) has an asymptotically stable steady state

(v∗, p∗) =

(
ac

b1b2 − ce
,

ab2

b1b2 − ce

)

Standard Equation The corresponding equation is (5.4) with Φ = 0. It is known
that when

m2

m1

>
1

[
√

b1/c−
√

b1/c− e/b2]2
(5.44)

diffusive instability occurs.

Double-Jump Equation The corresponding equation is (5.4) with Φ 6= 0. Let
us assume that the probability that individuals of species 1 make a second jump is
constant and that the probability that individuals of species 2 make a second jump
depends on the density of species 1, i.e., Φ = diag{φ1, φ2(u)}. Suppose that

φ2(v) =
(v∗)θ

(v∗)θ + vθ
, u ≥ 0, θ ≥ 0 (5.45)

(see Fig.5.2). One can easily compute that

β = [φ′2(v)p]|v=v∗,p=p∗ = φ′2(v
∗)p∗ = − p∗

4v∗
θ

So the parameter θ measures the strength of the second-jump response of predators to
the density of prey.

Thus, diffusive instability never occurs when θ is sufficiently large according to
Proposition 5.3.

5.7 Discussion

The migration process of some animal and insect species might be so complicated that
it can not be considered as a simple Markov process, as has been the standard approach
to describe the spatial transition of organisms. In this paper we considered the case
where a migration event consists of one or two instantaneous jumps (by a jump we
mean an instantaneous take-off-and-landing process). It turned out that a density-
independent second jump has some quantitative effects on diffusive instability. When
a second jump happens as a natural interspecific response of individuals, and such a
response is sufficiently strong, it has crucial effects on diffusive instability: it leads
to diffusive instability in the case of competitive interactions, whereas it annihilates
diffusive instability in the case of prey-predator interactions. So the present results
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reinforce our earlier (Huang&Diekmann, 2003) conclusion that it is the interspecific
influence on mobility, occuring in one way or another, that crucially affects diffusive
instability.

Clearly the type of interaction is crucial in leading to our results. In the case of
two-species competition, the local growth of one species decrease as the abundance of
the other species increases, while the inclination of individuals of one species to make
a second jump increases as the abundance of the other species increases. In the case
of predator-prey interactions, the local growth of predators increase as the abundance
of prey increases, while the inclination of predator to make a second jump decreases
as the abundance of prey increases. So there is a natural configuration between the
local interaction and the second-jump response in each type of interaction. It is such
a natural configuration determined by the interaction type that leads to our results.

We may extend the model (5.4) further to let M be cross-density-dependent. Namely,
we may further consider the case where both a cross-emigration response and a cross-
second-jump-response exist. Apart from that some expressions could be more lengthy
the computation procesure in Section 5.5 should carry over. It is hence expected that
the resulting model with both mechanisms (viz, both the cross-response of second jump
and the cross-response of emigration) should exhibit diffusive instability easier in the
case of competition, but more difficult in the case of predator-prey interactions as
compared to the model with only one mechanism.

5.8 Appendix: Examples of the Matrix Q

In the case that n patches are arranged in a one-dimensional linear chain, Q may have,
for instance, the form

Q =




1
2

1
2

0 · · · · · · 0
1
2

0 1
2
· · · · · · 0

0 1
2

0 1
2

· · · 0
...

...
...

...
...

...
...

0 · · · 0 1
2

0 1
2

0 · · · · · · 0 1
2

1
2




(5.46)

The n eigenvalues are σi = cos i−1
n

π, i = 1, · · · , n, which lie in [−1, 1]. It follows that
the n eigenvalues of C = Q− I are λi = −1 + cos i−1

n
π, i = 1, · · · , n

In the case that n patches (n ≥ 3) form a ring, Q typically is a circulant matrix.
For instance
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Q =




a b 0 · · · 0 b
b a b · · · · · · 0
0 b a b · · · 0
...

...
...

...
...

...
...

0 · · · 0 b a b
b 0 · · · 0 b a




(5.47)

where a, b > 0 and a + 2b = 1. The n eigenvalues are σi = a + 2b cos 2(i−1)
n

π, i =
1, · · · , n, which lie in [−1, 1]. It follows that the n eigenvalues of C = Q − I are

λi = −1 + a + 2b cos 2(i−1)
n

π = −2b + 2b cos 2(i−1)
n

π,i = 1, · · · , n.





Chapter 6

Incidence And Spread Of Peach
Brown Rot: Modelling And
Analysis

Abstract. This paper presents a model that describes the dynamic change in
the number of host individuals (i.e. peach flowers and fruits) infected by the
brown rot fungus (Monilinia laxa). The disease is physically transmitted from a
diseased individual (“ an infective”) to a healthy one (“a susceptible”) in a form
of inoculum known as conidium. Three phases of an infection cycle, viz. the
production, diffusion and germination of conidia, are formulated as submodels.
The model predicts both the annual incidence of the disease when the infected
individuals are spatially homogeneously distributed and the asymptotic velocity
of disease spread when the disease initiates at certain spatial position. Numerical
simulations based on the model show that suitable orchard management restrains
the epidemic incidence and spread.

Key words: M.laxa - Fungus Diseaase - Peach Fruit - Orchard Manage-
ment

∗A joint work with F. Lescourret, R. Habib and V. Mercier, submitted to Ecological Modelling
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6.1 Introduction

In western Europe, the brown rot fungus Monilinia laxa is known as an important
pathogen on apricots, sour cherry (Prunus cerasus L.), sweet cherry (Prunus avium
L.) etc. (Batra 1991, Tamm 1993). In southern France, M.laxa has recently become a
major problem on peach [Prunus persica (L.) Batsch] fruits. The disease can seriously
cause blossom blight and fruit rot.

The life history of the fungus is closely related to the season and the physiological
age of the host (Byrde and Willetts, 1976). In the spring, when climate conditions
are suitable, mummies left in the orchard in last winter begin to sporulate, producing
abundant conidia. When conidia alight on blossoms or other susceptible tissues by
dissemination which usually coincides with the emergence of blossoms, infections are
initiated under favorable climatic conditions.

Plenty of experimental and field work has contributed to the knowledge of the
influence of climate conditions, such as temperature, relative humidity and moisture, on
the development of the fungus (Tamm and Fluckiger 1993, Hong and Michailides 1999).
However, not sufficient attention has been paid to the effects of technical operations.
For instance, irrigation is often intensively conducted in order to promote the growth
of fruit, but it may in turn result in physiological vulnerablity of fruits to disease
transmission (B∅rve et al 2000).

Models can be established and operate at different time scales: a few weeks (one
infectious cycle), a year (an entire growth period of fruits), or many years. Typi-
cally, the effects of some climatic factors such as relative humidity and temperature
on sporulation and germination of the fungus are of prime concern in some short time
scale modelling work. In this paper, we intend to develop a general model of fungus
disease that can be applied over various time scales. The effects of orchard technical
operations on disease incidence will be the main concern in this paper.

6.2 Site, Materials and Methods

Observations on disease incidence were undertaken in an experimental peach orchard,
situated in INRA Gotheron (Valence, southern France). Daily temperature and rel-
ative humidity data over several decades are available in the local meteorological
database. The peach trees [Prunus persica (L.) Batsch] were planted in 1993 (with
colomn-distance 4m and row-distance 4m). Routine horticultural care, such as winter
pruning, summer pruning, irrigation in the summer was conducted. No fungicide was
applied. The number of infected individuals (flowers or fruits) on randomly selected
trees has been weekly recorded from bud break to harvest in 1999 and 2000.
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Figure 6.1: Graphical representation of the disease transmission cycle.

6.3 Model Construction

The Host Population The host population consists of individuals that are spa-
tially distributed in R2. These are called susceptibles when they are not infected. The
infected individuals are called ”infectives”. The change in the number of susceptibles
caused by factors other other disease is neglected.

The Disease and Inoculum The disease is transmitted from an infective to
susceptibles in the form of inocula (i.e. conidia) which may generally be referred to
as infectious agents. An infective continually produces conidia after a latent period.
Conidia are driven by wind, air current or water splash to disperse. Germination of
conidia deposited on a susceptible gives rise to a new infective. (Fig.6.1).

Spatio-Temporal Evolution of the Density of Infectives

The equation for the density of infectives, according to our assumptions about the
physiology of host and the disease transmission process, is (van den Bosch et al. 1988a,
Diekmann and Heesterbeek 2000)

∂v(t, x)

∂t
= [s0(x)− v(t, x)]g(γN(t, x), E(t)) (6.1)

v(0, x) = m0(x) (6.2)

where
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N(t, x) =

∫ t

0

∫

R2

∂v(t− τ, y)

∂t
K(t, τ)C(y, x)dτdy (6.3)

The main components of the model are functions K, C and g that will be specified and
explained below. Notations and their meaning are listed in Tab.6.1.

Table 6.1: A list of symbols and their meaning

Symbol Meaning
t the chronological time
x ∈ R2 the spatial position
v(t, x) the local density of infectives
s0(x) the initial density of susceptibles
τ the age of infection (i.e. the time since infection)
E(t) a relative number measuring the physiological

vulnerability of the susceptibles to the disease
γ(t) the occupied area per susceptible
m0(x) the local density of overwintered mummies
K(t, τ) the density of conidia produced by an infective
C(y, x) the probability that a spore released at position y

will (instantaneously) settle at position x

g a function describing the local infectivity. i.e., the
probability per unit of time that a susceptible is infected

Spore Production: Time Kernel

The mean production of conidia per infective can be described as

K(t, τ) = M(t)k(τ) (6.4)

where τ is the time since infection. k(τ) is a probability density function. M(t) is
the number of conidia produced, or more strictly speaking, discharged per infective at
time t. M(t) is a function of time because the conidial production is related to both
the physiological age of a susceptible and climatic conditions (Rossi et al. 2000). In
this paper we use the following shifted gamma distribution to describe k(τ)

k(τ) = [βi(τ − p)i−1 exp (−β(τ − p))]/Γ(i) when τ ≥ p (6.5)

where Γ(i) is the gamma function. p is the latency period (i.e., no spore is produced
when τ < p). i, β are two constants that determine the mean (i/β) and variance (i/β2).
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Conidial Diffusion: Spatial Redistribution

The conidia of brown rot fungi are dry air spores (Zoberi, 1961). The spores are
not violently discharged but are set free to diffuse by air currents, wind and water
splash. A simple conventional assumption is that they follow the Brownian motion
(i.e. unbiased random walk). For simplicity we further assume that the probability
that a spore disperses from one site to another depends only on the distance between
the two sites. Therefore

C(y, x) = C(0, |x− y|) =: Ĉ(|x− y|) (6.6)

holds for any x, y ∈ R2. Note that we shall remove the hat from Ĉ to write the fuction
Ĉ(x) as C(x) for any x ∈ R2 hereafter in order to reduce the number of notations. It
is well-known, under the above assumptions, that the probability density of a spore’s
position x = (x1, x2) after traveling a period of time ξ from the source lesion (0, 0) is
a Gaussian

C(x) =
1

4πDξ
exp {−x2

1 + x2
2

4Dξ
} (6.7)

where D is the diffusion coefficient (Pielou,1976).
More realistic form of C(x) is a Bessel distribution

C(x) =
1

4πδ2

∫ ∞

0

1

ξ
exp {−ξ − x2

1 + x2
2

4ξδ2
}dξ (6.8)

which is derived by assuming that spores settle asynchronously with a settlement rate.
δ2 is a constant determined by the diffusion coefficient and the settlement rate.

The marginal distribution of C(x) is a leptokurtic Laplace or double-exponential
distribution (Neubert et al. 1995)

C(xi) =
1

2δ
exp {−|xi|

δ
} (6.9)

Conidial Germination: Infectivity Function

In addition to the rate at which a susceptible contacts with infectious agents, the
physiological vulnerability of the host also contributes to germination, leading a sus-
ceptible to an infective. Therefore, the local infectivity (i.e. the probability per unit
of time that a susceptible is infected) should depend on not only the number of the
infectious agents arrived per unit of time, but also the physiological vulnerability of
the host, which can be quantifed by a relative number E(t) (0 ≤ E(t) ≤ 1). The
vulnerability increases as E increases. In this paper, we assume

g(γ(t)N(t, x), E(t)) = aE(t) · γ(t)N(t, x) (6.10)

Here a is a positive constant, γ(t) is the occupied area per susceptible.
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6.4 Results and Analyses

6.4.1 Annual Incidence of Disease

Table 6.2: Input and parameter values

t (day) p(day) M E γ(m2)
[0, 30] p1 = 3 M1 = 5000 E1 = 0.2 γ1 = 0.01
(30, 90] p2 = 5 M2 = 12000 E2 = 0.15 γ2 = 0.02
(90, 160] p3 = 2 M3 = 20000 E3(vary) γ3 = 0.05

s0 = 10 δ = 1 a = 0.01

In this subsection, we apply the model to a simple case in which susceptibles,
infectives and initial inocula are spatially homogeneously distributed (which implies
that all components in (6.1) are independent of space). We focus on the annual disease
incidence to examine the effect of horticultural management measures.

The chronological changes in the density of infectives from bud break to harvest of
the host are simulated by a daily time step. Individuals of the host population have
three physiological stages: Flowers, Young fruits (or Green fruits) and Ripe fruits. For
each stage we assume a constant parameter regime in the model. The simulation using
various combinations of parameter values show that the general trend of annual disease
incidence is consistent with the field observation: before being ripe (i.e. during the
bloom and green fruit period) the infection rate maintains at a stable level. However,
the infection increases rapidly once the host reaches the ripe period (see Fig.6.2). Two
reasons explain the sharp increase of infection in the ripe fruit period: the delay effect
of latency infection in the previous periods and the high susceptibility of ripe fruits
(Hall, 1972). Input and parameter values that are used in the simulations are listed in
Tab.6.2.

Effect of Initial Inoculum Density

The density of initial inocula (i.e. the number of overwintered mummies) is one of
the parameters that can be controlled by routine horticultural care such as pruning.
Numerical simulation shows that when the number of the initial inocula is controlled
under a low level there is no outbreak in the fruit-ripening period. (see Fig.6.3).

Effect of Microcracks

In the model, we have generally introduced a time-dependent parameter E(t) to
measure the physiological vulnerability of a susceptible to the disease. In the later pe-
riod of the fruit growth, such a vulnerability is mainly characterised by the microcracks
(or cuticular fractures) on the surface of fruits (Sekse 1998; B∅rve et al 2000). Intu-



6.4. Results and Analyses 81

itively, the incidence of the disease should be positively related to the microcracks that
promote the conidial germination. To look at the quantitative influence of microcracks,
we conduct a sensitivity analysis by changing the value of E(t) in the maturing period
of fruit (i.e. E3). We find that a small change of this value results in a significant
change in the density of infectives (Fig.6.4).

Because the microcracks are often caused by intensive or irregular irrigation (B∅rve
et al 2000), the result here suggests that irrigation should be conducted with care
prudence.
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Figure 6.2: Annual incidence: a comparison of model predictions with observations.
The solid line represents the annual incidence predicted by the model with a group of
artificial parameter values. The dotted line and the dashed line, respectively, are the
field incidence in the year 1999 and 2000

6.4.2 Velocity of Epidemic Spread

The model (6.1) can also be used to calculate the typical velocity c0 for the disease to
spread (i.e., the disease spreads in space in a planar front) provided that the parameters
M, E, γ are constant (see appendix) and to examine the effects of various parameters
on the velocity. Since it is well-known (e.g. Minogue and Fry 1983) that the wave
velocity increases linearly with diffusion parameter δ2 we shall focus on other interesting
parameters like E and p etc.

In our model, both parameter E and p are linked to the so-called basic reproduc-
tion ratio R0 (see Diekmann and Heesterbeek 2000 for the definition and (6.13) in
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Figure 6.3: The effect of initial inoculum density on disease incidence. Note that in
this figure we have used the notation m instead of m0 to denote the initial inoculum
density.
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Figure 6.4: The effect of microcracks of fruits on disease incidence. Note that in this
figure we have denoted the entry point parameter in the ripe fruit stage by E instead
of E3.
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the appendix for the expression). Numerical simulation shows that the velocity is pos-
itively related to E3, the entry point parameter in the ripe fruit period, but negatively
related to the latency parameter p (Fig.6.5).
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Figure 6.5: The relationship between the asymptotic velocity and the basic reproduc-
tion ratio for the various values of the scaled latency period.

6.5 Discussion

The main purpose of this paper is to examine the influence of orchard technical op-
erations on the disease incidence. For this purpose, we have discussed two cases: the
homogeneous incidence and the focus expansion. We found that the model was capable
of providing both the qualitative and the quantitative information about the integrated
influence of the orchard technical operations on disease incidence and spread.

Incidence of the fungal disease is expressed as an overlapping process of infection
cycles. Each infection cycle consists of three stages referred to as sporulation, diffusion
and germination. A susceptible is infected if and only if some infective agents arrive,
settle and successfuly germinate. Hence the infectivity is, in essence, the germination
probability. The usual ”law of mass action”assumes that the infectivity linearly de-
pends on the number of infective agents. We extend it to consider the dependence of
infectivity on a newly introduced entry point parameter, which characterises the physi-
ological vulnerability of the host to the disease. Moreover, we establish a dose-response
relation between the infectivity and the number of arriving infectious agents. Although
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our model is developed for the peach brown rot, one can see that it is applicable to the
fungal diseases of other fruit plants.

The factors that directly affect the incidence and spatial spread of the brown rot
can be classified into two categories: the climatic conditions and the orchard techni-
cal operations. The climate factors such as temperature and relative humidity etc.,
although they play a very important role in the development of the fungus, are not
explicitly included in our model as parameters.

The main components of our model: the time kernel, the spatial redistribution are
supposed to be fitted or estimated by either laboratory or field data. The normalized
time kernel can be fitted by data of sporulation (Rossi et al. 1999 and 2000). The
method of linear regression can be used to estimate the effectivity parameter a in the
infectivity function when data are available. The unique parameter δ in the contact
distribution can be estimated by fitting the marginal distribution. To get data we can
experimentally put only one infective (e.g. a mummy) as the source of inocula in a
sufficently large area and then count the number of new infectives at various distance
along a straight line (van den Bosch 1988b), which gives a frequency distribution after
normalization. This frequency distribution can be used as the fitting data for (6.9).

We have introduced a relative number to characterise the degree of microcracks on
fruits which is believed to be closely related to irrigation (Lescourret et al. 2001) and
examined the relation of this parameter to the incidence and spreading velocity of the
disease. Combination of our disease model with a fruit growth model that quantify
the relation between irrigation and microcrack would constitute a management system
that guides the orchard technical operations.

6.6 Appendix: Calculation of Asymptotic Velocity

Since we are concerned about the asymptotic behaviour, the initial inoculum is not
important. To guarantee the existence of traveling wave solutions we assume that the
density of infectives is much smaller than the density of host and that the density of
host is homogeneously distributed (i.e. s0(x) ≡ s0). Moreover, we restrict to the one-
dimensional space in order to simplify the calculaton of the asymptotic velocity. With
these assumptions the equation from which we are going to calculate the asymptotic
velocity is

∂v(t, x)

∂t
= s0 · aEγ

∫ t

0

∫

R

∂v(t− τ, y)

∂t
Mk(τ)C(|y − x|)dτdy (6.11)

in which x, y ∈ R1. This equation typically has wave solutions. Setting

v(t, x) = u(x− ct)

and using the trial solution

u(x− ct) = exp {−ω(x− ct)}
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one obtains the characteristic equation 1 = L(c, ω) in which ω is the so-called charac-
teristic number, c is the asymptotic velocity, while

L(c, ω) := R0

∫ ∞

0

e−ωcτk(τ)dτ

∫ +∞

−∞
e−ωξC(|ξ|)dξ (6.12)

in which

R0 := s0 · aE · γM (6.13)

is the basic reproduction ratio.
The minimum of the velocity is a solution of the following pair of equations (Diek-

mann 1979)

1 = L(c, ω) (6.14)

0 =
∂L(c, ω)

∂ω
(6.15)

When the two functions k(τ) and C(x) are given by, respectively, (6.5) and (6.9),
(6.14) and (6.15) can be calculated, according to van den Bosch (1988b), as

log R0 − log (1− (ω∗)2/2)− ω∗c∗p∗ − α∗ log (1 + c∗ω∗/α∗) = 0 (6.16)

ω∗/(1− ω∗/2)− c∗p∗ − c∗/(c∗ω∗/α∗ + 1) = 0 (6.17)

here α∗ = β2, p∗ = pβ/n, c∗ = cn/(βδ), ω∗ = ωδ
The two equations (6.16) and 6.17), when other parameters are fixed, characterise

the dependence of c∗ on R0.
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Samenvatting

Een belangrijk probleem in de spatiële ecologie is na te gaan hoe resultaten verkre-
gen met behulp van populatiemodellen afhangen van de precieze aannames over de
spatiële structuur en in hoeverre patronen op veel grotere schaal hiermee verklaard
kunnen worden. Klassieke theorieën, zoals door diffusie aangedreven instabiliteit en
metapopulatiedynamica, die ontwikkeld zijn aan de hand van zeer eenvoudige spatiële
populatiemodellen, hebben veel inzicht gegeven in deze materie. In dit proefschrift
onderzoeken we in hoeverre de conclusies uit de betreffende theorieën stand houden als
de ruimtelijke interacties tussen populaties gecompliceerder zijn.

In hoofdstuk 2 wordt een roofdier-prooi-metapopulatiemodel met twee identieke,
bewoonbare gebieden (patches) onderzocht waarin alleen de roofdieren zich kunnen
verplaatsen van de ene naar de andere patch. We beschrijven de lokale interactie
tussen roof- en prooidieren met het zogenaamde Rosenzweig-MacArthur model. Voor
de migratieterm van de roofdieren is een niet-lineaire uitdrukking gekozen die verkre-
gen is door Hollings argument over het tijdsbudget ook toe te passen op migratie. We
introduceren een dimensieloze parameter die de neiging tot verhuizen van roofdieren
beschrijft als ze net een prooi consumeren. De verkregen familie modellen heeft twee
extrema: Roofdieren verhuizen niet als ze een prooi consumeren en standaard diffusie.
De dynamica van deze twee extrema zijn zowel kwantitatief als kwalitatief verschil-
lend en geven verschillende antwoorden op de kernvraag of spatiële structuur de roof-
prooidieroscillaties significant kan verminderen.

De neiging tot migratie van één soort hangt af van de dichtheid van andere soorten.
Dit verschijnsel, ook wel emigratie-interactie genoemd, is van zeer algemene aard.
Daarom zijn we dit mogelijke mechanisme van patroonvorming (i.e. Turing insta-
biliteit) theoretisch gaan onderzoeken. In hoofdstuk 3 formuleren we een model met
veel soorten en veel patches, waarin de emigratie-interactie expliciet is verwerkt en gek-
wantificeerd. (We noemen dit het “kruismigratiemodel”.) De emigratie-interactie blijkt
een cruciale invloed te hebben op de diffusie-gëınduceerde instabiliteit. In het geval
van competitie, bevordert de emigratie-interactie de patroonvorming omdat ze desta-
biliserend werkt. Als de interactie voldoende sterk is kan er zelfs diffusie-gëınduceerde
instabiliteit optreden. Dit is opmerkelijk aangezien het algemeen bekend is dat er
geen diffusie-gëınduceerde instabiliteit optreedt in standaard competitiemodellen. In
het geval van roof- prooidier interactie of een “activator-inhibitor”-interactie zorgt
emigratie-interactie juist voor een stabiliserend effect. Wanneer de emigratie-interactie
voldoende sterk is, treedt er nooit diffusie-gëınduceerde instabiliteit op, zelfs niet als
dit wel het geval was in het standaard systeem.

In hoofdstuk 4 introduceren we een algemeen model om op mechanistische wijze
“kruismigratiemodellen” af te leiden. We beschouwen een model waarin veel soorten
individuen leven in een wereld die uit vele patches bestaat. Bovendien worden de
individuen gekenmerkt door bepaalde gedragseigenschappen. We formuleren een model
waarin een kleine parameter voorkomt. Deze parameter bepaalt de relatieve tijdschaal



van gedragsveranderingen ten opzichte van geboorte-, sterfte- en migratieprocessen.
Met behulp van singuliere storingsrekening kan een lager dimensionaal model verkregen
worden waarin de migratietermen in het algemeen niet-lineair zijn en gerelateerd zijn
aan de reactietermen.

In hoofdstuk 5 onderzoeken we wat de consequenties zijn voor de stabiliteit in
het geval van een migratieproces waarbij individuen kunnen kiezen of ze zich ergens
vestigen. Daartoe formuleren we een model waarin vele soorten individuen leven in veel
verschillende patches. Individuen kunnen instantaan verhuizen van een patch naar een
andere patch via een of twee sprongen. De kans dat het individu een tweede sprong
maakt mag afhangen van de situatie in de patch waar het na de eerste sprong terecht
komt. De stabiliteit wordt kwantitatief bëınvloed door de tweede sprong als de kans
om een tweede sprong te maken afhangt van de dichtheid. Als de tweede sprong op een
natuurlijke en voldoende sterke manier afhangt van de interactie tussen individuen van
verschillende soorten, zijn er cruciale effecten op de diffusie-gëınduceerde instabiliteit:
In geval van competitie treedt er diffusie-gëınduceerde instabiliteit op, terwijl in geval
van roofdier-prooi-interacties de diffusie-gëınduceerde instabiliteit wordt opgeheven.

In hoofdstuk 6, beschouwen we een praktisch probleem uit de spatiële populatie dy-
namica. We beschrijven een model dat de verandering in het aantal gastheren (te weten,
perzikbloesem en fruit) dat gëınfecteerd is met de vruchtrot veroorzakende schimmel
Monilinia laxa. Het model beschrijft zowel het aantal nieuwe infecties per jaar als
de gëınfecteerde gastheren spatieel homogeen verdeeld zijn, alsmede de asymptotische
snelheid waarmee de ziekte zich verspreid als de infectie op een bepaalde plaats be-
gonnen is. Numerieke simulaties, op basis van het model, laten zien dat een geschikte
indeling van de boomgaard zowel de verspreidingssnelheid als het aantal nieuwe gevallen
kan beperken.



迁移和离散生境中种群动态的相互作用 
 

摘    要 
 

空间生态学的一个基本问题是空间因素如何改变种群动态模型的预

测结果。为了回答这一问题，扩散不稳定性和异质动群动态等经典理论

逐步发展起来。不过，这些经典理论所依据的一般是一些非常简单的空

间种群模型。在这篇博士论文中，我们将通过考虑较为复杂的空间种群

相互作用过程对这些理论进行进一步的审查和探索。  

在第二章，我们考虑一个仅含两个镶块子种群的捕食---被捕食异质

种群动态模型。每个块内的捕食 --- 被捕食相互作用过程由所谓的

Rosenzweig--MacArthur 模型来描述。根据 Holling 关于捕食者“搜索”--

-“处理”食物的观点，我们推导出了一个描述捕食者迁移的非线性项。特

别是我们引进了一个反映捕食者在处理食物过程中的迁移倾向性的无量

刚参数。由此我们得到一个包含两个极端情形的模型组。一个极端对应

于标准扩散，而另一个极端对应于捕食者在处理食物的过程中根本不想

迁移的情形。我们发现对应于这两个极端情形的模型的动态之间存在着

显著的定性和定量差异。据此，我们认为对“空间因素是否降低捕食 ---

被捕食系统的波动幅度”这一重要理论问题的回答实际上取决于我们对捕

食者迁移的假定，至少这一问题值得进一步研究。  

在多种系统中，有一种十分普遍的现象：就是某种个体从某个生境

块中迁出的倾向性受到该块内某些其他相关种的密度的影响。我们将这

种现象称之为“交叉 ---迁出反应”。在第三章，我们从理论上研究这种现

象对格局形成（或扩散不稳定性）的影响。为此我们建立了一个将这种

“交叉--迁出--反应”定量化的多种多块“交叉--迁移  模型”。通过对该模型

的同质平衡点的稳定性进行研究，我们发现“交叉--迁出--反应”确实对扩

散不稳定性的发生具有重要影响。具体结果如下：如果种群之间的关系

是竞争型的，那么“交叉--迁出--反应”促进扩散不稳定性的发生。当这种

反应足够强时，扩散不稳定性确实可以发生。这一点同竞争系统不能显



示扩散不稳定性现象的经典结论形成鲜明的对比。如果种群之间是捕食-

-被捕食关系，那么交叉--迁出--反应限制扩散不稳定性的发生。  

在第四章，我们给出了一个从行为机理上推导交叉 --迁移模型的一

般方法。我们仍然考虑一个栖息在块状生境中的多种系统，其中每个种

由一些行为子种群构成。我们注意到，形为转换的时间尺度通常要比象

生殖，死亡和迁移这样一些过程的时间尺度小的多。也就是说，两者之

间的比率是一个非常小的参数。结合种群各形为子种群之间的转换机制

以及行为子种群本身的生殖，死亡和迁移过程。我们构造出了一个含有

这一小参数的连续时间模型。通过奇异摄动理论，这一模型最终被简化

为一个描述各完全种群密度时空演变的模型。它正是我们所定义的交叉-

-迁移模型 .  本章给出的方法自然的将形为水平上的机制反映在一个描述

完全种群密度时空变动的模型中。  

个体在迁移过程中一般是有选择地而非随机地着陆。在第五章中，

我们考察了这种特殊的迁移现象的稳定性后果。为了反映这一迁移现

象，我们假定个体通过一次或两次瞬间跳跃来完成一次迁移过程，并且

假定个体进行第二次跳跃的概率取决于第一次跳跃到达点的环境条件。

在此假设的基础上，我们构造了一个多种多块连续时间模型。对模型稳

定性的研究结果表明，如果第二次跳跃产生于第一次跳跃后的一种自然

的种间排斥或吸引反应，那么它对系统稳定性，尤其是对扩散不稳定现

象的发生有决定性的影响。  

在第六章，我们研究了一个应用型的空间种群动态问题。研究对象

是一个受到棕色腐烂菌 (M.Laxa)感染的桃种群 (包括桃花和桃果 )。我们

给出了描述这一种群密度的时空变动模型。这个模型既可以用来预测这

种病害的年度发生，也可以用来预测该病害在较大范围果园区的传播速

度。数值模拟显示，合理的果园管理措施，特别是灌溉措施，可以有效

的控制该病害的发生和传播。  
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