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CHAPTER 0

Introduction

1. Historical background of dynamical systems

Nonlinear Dynamics is a topic of interest in various fields of science and engi-
neering. A lot of problems arising in science and engineering can be modeled as a
dynamical system. To name but a few, population dynamics, celestial mechanics,
atmospheric models, the prediction of the stock market prices. Among these exam-
ples, celestial mechanics is by far the oldest. Already in 1772, Euler described the
well-known Three-Body Problem in his attempt to study the motion of the moon. In
a more general form, the N-body problem remains a subject of study until now. We
refer to [18] for a brief history of the three-body problem and for more references.
Some of the recent developments in applications of dynamical systems in Physics,
Biology and Economy, are nicely presented in a book by Mosekilde [15].

A revolutionary contribution to the theory of dynamical systems has been made by
the French mathematician Henri Poincaré. Before his time, the studies on dynami-
cal systems were concentrated on finding solutions in the sense of explicit functions
that solve the equations of motion. Poincaré’s proposal was to look at the geometry
of solutions instead of explicit formulas for the solution. As a consequence, in com-
parison with the classical technique, his technique managed to deal with many more
problems. Poincaré invented powerful qualitative methods in order to get hold on
the global behavior of the solutions, in situations where the quantitative aspects were
out of reach because of lack of explicit formulas or powerful electronic computers
in order to compute them. His studies also initiated a new branch of mathematics
called Topology.

Bifurcation theory is another subject in the theory of dynamical systems which
finds its origin in the work of Poincaré. To put it in a simple way, bifurcation
theory deals with a parameterized family of dynamical systems and the qualitative
variations in the family if we vary the parameters. This topic is without any doubt
very important in understanding a dynamical system from the mathematical point
of view as well as from the applications.

From the point of view of applications, it is important to study a family of dy-
namical systems to have a complete picture of the system under consideration. Think
of a practical problem which involves measurements to determine the parameters of
the system. In doing measurements, one cannot have a 100 % precision. Thus, one
would have to consider a family of dynamical systems containing the actual problem.
From a mathematical point of view, studying one particular dynamical system is like
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analyzing a projection to a two-dimensional plane of a three-dimensional object. One
must be very lucky in choosing a right plane out of infinitely many possibilities to
be able to recognize the shape of the object. Most of the time, one gets only partial
information from such a projection.

In the 20th century, the existence of a new phenomenon was acknowledged by the
scientific world. Although it has been realized by Poincaré, this new exciting phe-
nomenon called Chaos came into play only around 1960. It originated in models
which arose in applications, namely models in solid mechanics (Duffing equation,
1918), electric circuit theory (Van der Pol equation, 1927), atmospheric research
(Lorenz equation, 1963) and astrophysics (Hénon-Heiles, 1964). We have to note
that the contributions of Van der Pol and Duffing were more in the nonlinear dy-
namics field. It was only later that people found chaos in their models. In the
mathematical world, driven by some of these results, Stephen Smale was forced to
admit the existence of chaos which contradicted his own idea of deterministic sys-
tems. He reacted positively and in 1963, he constructed the so-called horseshoe map
which provides one of the possible ingredients for the onset of chaos in dynamical
systems.

2. Motivations and formulation of the problem

This thesis is a collection of studies on a particular (but important) family of

dynamical systems, namely systems of coupled oscillators. In Section 3 we will
describe this family again with more details. Systems of coupled oscillators arise
abundantly in applications. The reader could consult a book by Nayfeh and Mook
[17] which contains a lot of mechanical examples. Another example, which is still
from the field of mechanical engineering, is a book by Tondl et. al. [22]. This
book is concentrated on a special class of systems called auto-parametric systems.
Systems of coupled oscillators also could be derived from various partial differential
equations; for example wave equations [14], or beam equations [4].
Think of a system of two linear undamped oscillators with frequencies wy and ws.
Resonance is the situation where wy /ws € Q. Solutions of such a system live in two-
dimensional tori parameterized by the value of the energy of each of the oscillations
(except if one of the energies is zero). It is well known that in the case of non-
resonance, each torus is densely filled with a solution. In the case of resonance,
all solutions are periodic with period of T' (which is equal to the smallest common
positive integral multiple of 1/w; and 1/ws). See [8] for a detailed study on two
linear undamped oscillators.

If we add nonlinear terms to the system above, a natural question would be
whether the geometry of the phase space is changed. There are three things that
contribute to the complexity of the analysis. The first is that the frequency of each of
the oscillations becomes dependent on its energy due to the presence of the nonlinear
terms. Secondly, the nonlinear terms also contain a coupling between the oscillations.
Thus, energy can be transferred from one oscillator to the other. Thirdly, in general
the solutions will no longer be confined to two-dimensional tori, but wander around
in a complicated manner on the three-dimensional hyper-surfaces in the phase space
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determined by the value of the energy. However, we will see that for small energies
the difference with motions on tori is, for bounded time intervals, smaller in order
than any power of the energy.

Let us consider only weakly nonlinear systems: the order of magnitude of the
nonlinear terms is small compared to the linear oscillations, as is the case for small
amplitudes. The energy exchanges correspond to a change in the geometrical way
in which the phase space is filled up with the two-dimensional tori on which the
motion takes place. Recall that if there is no nonlinear term, the solutions live on
invariant two-dimensional tori which are the Cartesian product of the two circles of
constant energy of each of the oscillators. If there is an energy exchange between
the oscillators, the tori must be deformed.

In low-order resonances like the 1 : 2 resonance, the measure of these energy
exchanges is large. A good example to this phenomenon is a study by Van der
Burgh [28] on a classical mechanical example of a two-degrees of freedom Hamil-
tonian system: the elastic pendulum (also known as spring-pendulum). The elastic
pendulum is like an ordinary pendulum except that we replace the rigid bar with
a spring. The linearized system consists of two decoupled linear oscillations: the
swinging mode (like an ordinary pendulum) and radial oscillation mode due to the
spring when the pendulum hangs vertically. The second oscillation is unstable in the
case of the 1 : 2 resonance. Thus, a small deviation from the vertical will generate a
swinging motion. It means that energy is transferred from the radial oscillation to
the swinging mode, and back. The measure of energy which is transferred is of the
same order of magnitude as the energy in the system.

High-order resonances have received less attention in the literature. One of the
reason for this is that the energy exchanges are confined to a small domain in phase
space. The measure of energy which is transferred from one mode to the other is
small. In this thesis, we concentrate on studying systems of coupled oscillators at
high-order resonances. Apart from filling some gaps which have been left open in
the classical literature, we also improve some of the known results on high-order
resonances in two degrees of freedom Hamiltonian systems.

In relation with resonances, we consider also the effect of discrete symmetry
such as mirror symmetry and reversing symmetry to a system. The motivation for
this is that in nature, such symmetries are abundant. The presence of such sym-
metries complicates the analysis since it usually leads to certain degeneracies in the
equations for the invariant tori.

In our analysis, we will be using normal form theory a lot. This leads to a sim-
plification of a finite part of the Taylor expansion of the system at the origin, by
means of suitable substitutions of variables. On this simpler system, we perform
the analysis to gain as much as possible information about the dynamics. In this
way we obtain an asymptotic approximation of the motion of the original system.
Sometimes the approximation is accurate enough in order to draw conclusions about
exact solutions, such as the existence of families of periodic solutions with not too
long periods which are close to the singular fibers of the torus fibration of the normal
form.
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The results in this thesis would be interesting in particular from an application
point of view. However, we are not working specifically with particular problems
from applications. They appear only as examples of our analysis. Our goal is to
provide some mathematical insight to a class of dynamical systems which arise quite
a lot in applications. We present the analysis and the result in a rather explicit way.
We also try to make the connection with applications as clearly as possible.

3. Mathematical Preliminary

3.1. Dynamical systems. Consider a one parameter family of transforma-
tions in R™ parameterized by t: ® = {pi|lpr : U — R™ U C R™}. The fol-
lowing properties hold in ®: ¢¢ = I, (the identity transformation in R™) and
Pirs = Ps © @r. Dynamical systems consist of these three ingredients: the phase
space R™, time which is denoted by ¢, and the time evolution law encoded in ®. If
t € R then the system is called continuous dynamical system or flow. If t € Z, it is
called discrete dynamical system or map. If ¢; only exist for ¢t > 0, t € R, then they
form a so-called semi-flow. This occurs for instance in partial differential equations
of diffusion type, and will not be discussed in this thesis.

Consider a vector field F' : R™ — R™, and the dynamical system of which the
motion is determined by a system of first-order Ordinary Differential Equations
(ODEs), i.e.

01) Le=t=F(),

where £ € R™. A system of first order ODEs is called autonomous if the function F
does not depend explicitly on the time variable ¢. The system of ODEs: & = F(€)
is also called the equations of motion.

A point in phase space &, which is kept invariant under the flow of dynamical system
(0.1) is called equilibrium. This point corresponds to a critical point of the vector
field: X(&,) = 0. For maps, the point is called fized point. Another interesting
solution is periodic solution: a non-constant solution &£(t) satisfying: &(t+71') = &(t)
fora T # 0.
Let &, be an equilibrium of system (0.1). A solution &(t) # &, satisfying

lim £(t) =&,

t—too
is called homoclinic orbit. Another object of interest that we will also see in this

thesis is a heteroclinic orbit. Let €, and &, be two (distinct) equilibria of system
(0.1). A heteroclinic orbit is defined as an orbit £(¢) which is non constant, satisfying

Jim £(t) =&, and Tim €(t) = &

One would like also to look for an invariant manifold: a manifold M C R such that
wi(M) C M where ¢, is the flow of system (0.1). This invariant manifold might
have a special geometry such as invariant sphere or invariant torus.
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Stability results for the above mentioned invariant structures are important.
Here we use mainly two different stability types: neutrally stable (or Lyapunov-
stable) and asymptotically stable. In a neutrally stable situation, nearby solutions
stay close to the invariant structure as time increases while in an asymptotically
stable situation, nearby solutions get attracted. We also have the notion of local
(in phase space) stability and global stability. If we vary the parameter in our dy-
namical system, these invariant structures might undergo a change of stability. This
phenomenon is known as bifurcation.

Let ¢ be a flow. For a fixed T € R, the map ¢, the flow after time T is called stro-
boscopic map. This map is useful in particular when dealing with non-autonomous
systems defined by a T-periodic vector field. The initial value for T-periodic solu-
tions of such a system are precisely the fixed points of ¢, i.e. the points £ such that
or (&) = &. The long term behavior of the system can be read off from the behavior
of the iterates: ;" = ¢, of the stroboscopic map.

In autonomous systems, it is more useful to construct a so-called Poincaré section
of the flow. This is defined as an (m — 1)-dimensional hyper-surface ¥ in R™, such
that the vector field of the system is nowhere tangent to 3. Let 3, be the set of all
&€ € ¥ such that ¢ (€) € ¥ for some t > 0. Let us write T'= T'(&€) for the minimal
t > 0 such that ¢;(&) € X. Then, the Poincaré map P : ¥, — X is defined by
P(&) = pre)(&). It follows from the transversality condition that ¥, is an open
subset of 3 and T'(¢) and P(&) depend smoothly on & € ¥,. Periodic solutions (of
period T'(€)) correspond to fixed points &€ of P. If one is lucky, then ¥, = ¥ and
one can study all iterates P™, but in general it can happen that P™(&) runs off ¥
for some (large) n.

3.2. Hamiltonian systems. Consider R?” as a symplectic space with coordi-
nate & = (x,y) where ,y € R"™ and a standard symplectic form, i.e. de Ady =
SV dzj Ady;. Let H(€) be a real-valued, smooth enough' function which is defined
in R?". Using H, we can define a Hamiltonian system of ODEs

(0.2) €= J dH(8),

where
o I,
J-(_% 0).

and I,, is the n x n identity matrix. This matrix J is also known as a standard
symplectic matrix. The function H is called the Hamiltonian function (or just
Hamiltonian). The natural number n is called the number of degrees of freedom of
the Hamiltonian system.

It is an easy computation to show that the orbital derivative of H(&) along
the solutions of the Hamiltonian system (0.2), i.e. (dH(¢))" J dH(&) vanishes
everywhere. This means that the flow of Hamiltonian system (0.2) is everywhere
tangent to the level sets of H, which implies that the function H is kept constant

Un this case we need only C?-function. For normalization, we need H to be a smoother
function.
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along the solutions of system (0.2). Such a system is called conservative system. In
a Hamiltonian system also the Liouville measure is preserved.
In some parts of this thesis, we assume that H(€) = Y7 2y;2 + V(x). As a

consequence, the Hamiltonian system becomes

T = Yi 5
(0.3) . v

;i = = , 1=1,...,n.

Yi oz
This class of Hamiltonian systems is also known as potential systems. They arise a
lot in problems from mechanical engineering.

3.3. Systems of coupled oscillators. In this thesis, we study a special fam-
ily of dynamical systems, namely systems of coupled oscillators. The equations of
motion of such dynamical systems are

T; = Y
0.4 J J
04) g = —wiry + fi(z,y),
forj=1,...,n,w; € Rt and @,y € R", where n is a natural number. The function

[j(z, &) is assumed to be sufficiently smooth. Moreover, we assume that f;(0,0) =0
and %(070) =0, for ¢,j = 1,...,n. The system (0.4) is equivalent to

(05) JCJ +Wj$j = fj(.’B,.’i}),
forj=1,...,n.

3.4. Bifurcation. Two vector fields on R™ are topologically orbitally equivalent,
if there exists a orientation-preserving homeomorphism h : R™ — R™ that maps
orbits of the first vector field to orbits of the second vector field in such a way
such that no time re-orientation is required. Those two vector fields are said to be
conjugate. Let us consider a one-parameter family of dynamical systems, defined by
£= X, (&), where £ € R”, u € R, and X, is a vector field on R™ for an arbitrary but
fixed p. It is said that the dynamical system & = X +(€), undergoes a bifurcation at
o if the vector fields X,,«,,, are not conjugate with the vector fields X, ,,, .

Another approach to bifurcation theory is using singularity theory, see [9]. One
of the central question in this approach is to classify the type of bifurcations, see
also [3]. For a more applied mathematics oriented reference, see [13].

3.5. Normalization. Consider a system of ODEs: & = F(&) with an equilib-
rium point at the origin: F(0) = 0 and & € R™. In order to analyze the behavior
of the solutions near the origin, it is very useful to construct nonlinear coordinate
transformations that bring the system into a simpler form (the meaning of simple is
obviously contextual). We can expand F' in its Taylor series, i.e.

k
(0.6) E=AE+) Fi(©)+...,

where A is a constant matrix and F';,j = 2,...,k are homogeneous polynomials of
degree j.
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In the normal form procedure one tries to simplify the higher order terms Fj
subsequently for j = 2,3, etcetera. In order to see what we can do for Fj, let
& = ¢+ Gi(¢) + ... where Gy is homogeneous of degree k and the dots denotes
a remainder term consists of higher order terms. A nonzero remainder term is
sometimes needed, for instance if one requires that the substitution of variables
leaves some structure invariant, such as symplectic form or a volume form. Then

k
(Im +dG({) +.. )¢ =€ =A(+G)+ > _F;i(¢+G) +...,

where the dots in the righthand side vanish of order k£ + 1. Note that for small || ¢ |
the inverse of I,,, + dG(¢) + . .. exists and is equal to I,,, — dGr(¢) + ..., where the
dots indicates terms which vanish of order k. It follows that

(0.7) C1M+ZF + (A Gi(¢) —dG(C) AC) +

where the dots vanish of order & + 1. This means that the substitution leads to an
addition of the k-th order term

(ad A) (G}) := AG,(C) — dG(C)AC,

which can be recognized as the commutator [A, Gj] of the linear vector field A with
the vector field Gy, to Fi(¢).

Let X;(R™) denotes the space of all homogeneous polynomial vector fields of
degree k in R™. Then X (R™) is a finite-dimensional vector space and

Ad A Xk(Rm) — Xk(Rm)

(0.8) X s AXA-

defines a linear mapping in Xj(R™), if A is invertible. The infinitesimal version
of this mapping is ad A. If the linear mapping Ad A is complex-diagonalizable (or
also known as semi-simple) then ad A is also complex-diagonalizable, which in turn
implies that A (R™) = im(ad A) + ker(ad A). As a conclusion, with the normal
form procedure at order k one can arrange that the transformed k-th order term
Fi = Fj + (ad A)(Gg) to be in the ker(ad A): (ad A)(Fy) = 0, which means
that Fk commutes with the linear vector field A. This is done by splitting F' into
Fy + F,, where F, € im(ad A) and F}, € ker(ad A). Thus, we have to solve

(ad A)(Gk> = —I‘:‘k.

In this way one can subsequently arrange that all the terms of the Taylor expansion
of F up to any desired order commute with A. This result is known in the litera-
ture as the Birkhoff-Gustavson normal form at an equilibrium point of a vector field.

For Hamiltonian systems, instead of normalizing the Hamiltonian vector field, we
can normalize the Hamiltonian itself. This is easier since we are working in an alge-
bra of real-valued functions. Recall that our symplectic space is R?" with symplectic
form: dx A dy. Let Py be the space of homogeneous polynomials of degree k in the
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canonical variables (z,y). The space of all (formal) power series without linear part,
P C @)+, P, is a Lie-algebra with the Poisson bracket

{fag}Zdw/\dy(Xf’Xg):Z<5f dg  of ag)_

1

8Ij 8yj 8yj 8117]‘

For each h € P, its adjoint ad h : P — P is the linear operator defined by
(ad h)(H) = {h,H}. Note that whenever h € Py, then (ad h) : P, — Piji—2
and (ad h)(H) = —(ad H)(h).

Let us take an h € P. It can be shown that for this h there is an open neighbor-
hood U of the origin such that for every |t| < 1 each time-t flow e!*» : U — R2" of
the Hamiltonian vector field X} induced by h is a symplectic diffeomorphism on its
image. These time-t flows define a family of mappings (etXh)* : P — P by sending

H € Pto (eX*)"H = H oe!Xn. Differentiating the curve ¢t — (e!*»)" H with

respect to ¢t we find that it satisfies the linear differential equation % (etX’l)* H =

dH - X, = —(ad h)(H) with initial condition (e®X»)" H = H. The solution reads
(etxh)* H = e *@d M In particular the symplectic transformation e~*" trans-
forms H into

(09)  H'i= ()" H = ™ WH = H + (b, H} + o (. (b H}} + ...

The diffeomorphism e~*" sends 0 to 0 (because X (0) = 0). If h € @), 5 Pi, then
De=%n(0) = Id. A diffeomorphism with these two properties is called a near-identity
transformation.

The next step is identical with the non-Hamiltonian case. We expand equation
(0.9) into its Taylor series and normalize degree by degree. The homology equation
that we need to solve in each step of the normalization is identical, i.e. (ad Hs) (h) =
Hj. The resulting normal form for the Hamiltonian truncated up to degree k, is

(0.10) H=Hy+Hs;+...+Hy,

where {Ha, Hy} = 0. But this implies {Hy, H} = 0. Note that {Hs, H} = Lx__(H>):
the orbital derivative of the function Hs along the solutions of Hamiltonian system of
ODEs defined by H. Thus, apart from the Hamiltonian function: H, normalization
adds to the truncated system an extra constant of motion: Hy. In two degrees of
freedom systems, this is enough for integrability of the normal form.

REMARK 0.1. Near-identity transformations defining the coordinate transfor-
mation in Hamiltonian systems, are defined using the flow of a Hamiltonian h. This
transformation then, is naturally symplectic (it preserves the symplectic structure).
In the non-Hamiltonian case, we need not worry about this. In both cases, if the
dynamical system enjoys an additional discrete symmetry, it can be preserved during
normalization.

3.6. Resonance. Recall that the terms in the normal form of a vector field
are elements of ker(ad A). Thus, it boils down to characterizing the generators
of ker(ad A). Let Go(€) = (% e;, e, is the standard j-th basis of R™, and A =
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diag(A1,...,Am), Aj € C,j =1,...,m, it is an easy exercise to show that
(ad A)(¢) = </\j - Z%M) (“e; € ker (ad A)
1

if and only if (A\; — 3" @;A;) = 0. This situation is also called resonance and the
terms in the normal form are called resonant terms. Similarly for a Hamiltonian
system, we would like to characterize the generators of ker(ad Hs). Let us assume
Hy =3 wj (mf + yj2). For computational reason, we transform the variables by
u; = x; +1iy; and v; = x; —1y;, j = 1,...,n. In these new variables, a monomial
u®v? is in ker(ad Hs) if and only if

n

Y (= Bj)w; =0,

1

which is the resonance condition for Hamiltonian systems.
Consider a resonance relation:

k1w1 +k2w2+...+knwn == 0,

for a nonzero k = (k1, ks, ..., k,)" € Z". A number |k| = Y] |k;| is usually used to
classify the resonances. A phrase like low-order (or strong, or genuine) resonance, is
used to do the classification. From the normal form point of view, the number |k|
also corresponds to the degree of the resonant term appearing in the normal form.
Resonances are responsible for producing a nontrivial dynamics in the normal form.
As a consequence, the higher the resonance is, the higher we have to normalize in
order to get nontrivial dynamics.

3.7. Averaging method. In the case of time-periodic vector fields, the nor-
malization described above can also be done using averaging. Let 0 < ¢ < 1, and
consider a system of first-order ODEs

(0.11) E=cF (& t,e),

where £ € R™ and there exists 7' € R such that F(&,t+ T,e) = F(€,t,¢) for all ¢.
A system of the form (0.11) is also said to be in the Lagrange standard form. Using
transformation & = ¢ + eu(({,t) where

t T
u(Ct) = [ ()~ F(O)ds and F°(¢) = 1 [ Flc.tat
0

0
we transform system (0.11) into

(0.12) ¢ =cF°(¢) + 0(£2).

Under some conditions on the function F, if £(t) is a solution of system (0.11) and
¢(t) is a solution of system (0.12) with the property: £(0) = ¢(0) = &, € R™, then
£(t) — ¢(t) = O(e) on the time-scale of 1/e. See [20] for details on the averaging
method and the relation with normal forms.

For a system of undamped coupled oscillators: & = F(£), the small parameter ¢
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is introduced into the equations by employing a blow-up transformation (or scal-
ing): & — e£&. This bring the system (after expanding to its Taylor series) into
E=A¢t+ eF5 (&) + O(g?), where A is a matrix with purely imaginary eigenvalues.
The next step: using time-dependent coordinate transformation: & = ¢(t)¢ where
¢(t) is a matrix satisfying %(ﬁ(t) = A ¢(t), we bring the system into the Lagrange
standard form. In this standard form, we have a time-periodic vector field (because
all nontrivial solutions of £ = A £ are periodic). Averaging can also be done while
preserving the symplectic structure.

3.8. Additional notes to references. A concise description, using modern
mathematics, of the theory of dynamical systems can be found in [12]. A mathemat-
ically rigorous approach to dynamical systems can also be found in [1]. For more
practically oriented references, see for instance [10, 29]. In [11], recent develop-
ments in dynamical systems are nicely presented. In [1], the theory of Hamiltonian
systems is treated in a very general manner. Another good reference for the theory
of Mechanics can be found in [2]. The theory of normal forms can be found in
various standard textbooks on dynamical systems such as [29]. For the theory of
normal forms in Hamiltonian systems, we refer to [1, 2, 18, 20]. In [1, 18] normal-
ization using Lie-series method is described. In [2, 20], it is done using averaging
and also using generating functions. See also [16] for general perturbation methods
in dynamical systems.

4. Summary of the results

4.1. Symmetry and resonance in Hamiltonian systems. We start with

considering a two degrees of freedom Hamiltonian system around an elliptic equi-
librium. Such a system can be seen as a Hamiltonian perturbation of two linear
harmonic oscillators. We assume that the Hamiltonian enjoys a mirror symmetry in
one of the degrees of freedom. Using averaging, we construct an approximation for
the Hamiltonian system and study its dynamics.
Discrete symmetries, such as mirror symmetry or time reversal symmetry, arise
naturally in applications. These symmetries receive less attention in the classical
literature since they do not correspond to the existence of integrals of motion of the
system. However, the presence of these symmetries is quite often responsible for
certain degeneracies in the normal form.

In [19], J.A. Sanders described the dynamics of two degrees of freedom Hamil-
tonian systems at higher order resonance defined by Hamiltonian H, with quadratic
part

Hy = w1 (z12 4+ 11?) + gw2 (222 + 327)
where € = (x,y) is a pair of canonical coordinates, wy and wy are both positive,
and wy/wy # %, %, 1,2,3. Using a blow-up transformation, the small parameter ¢
is introduced: & — c£. By rescaling time, we can keep the quadratic part of the
Hamiltonian invariant under the blow-up transformation.

For a fixed energy, a large part of the phase space (near the origin) of such
systems is foliated by invariant two-tori parameterized by taking the linear energy of

1

each oscillator: 1w; (z;2 +y;%),j = 1,2, to be constant. On these two-dimensional
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tori, the solutions are conditionally periodic. This can be seen from the fact that
in the normal form, the linear energy of each oscillator is constant up to at least
quartic terms (that is if we truncate the normal form after the quartic terms). In
fact, for most of the initial conditions, these linear energies are constant up to any
finite degree of normal form approximation. For those initial conditions, there is
no energy exchange between the oscillators. There exists also a domain in phase
space where something else happens. In this domain, there is energy exchange, and
generically one would find two periodic solutions: one stable and the other is of
the saddle type. In fact, one would find more periodic solutions with much higher
period. This domain is called the resonance domain.

Using the normal form theory, we construct an approximate Poincaré section
for the system. By doing this, we have significantly improved the estimate of the
size of the resonance domain which is given by Sanders in [19]. We also show, how
some of the low-order resonances, such as the 1 : 2-resonance, behave as a higher
order resonance in the presence of a particular mirror symmetry. We note that one
could preserve the mirror symmetries while normalizing. The kernel of the adjoint
operator (0.8) becomes smaller in the presence of some of these symmetries. Since
the terms in the normal form are elements of the kernel of the adjoint operator, this
means the normal form might have certain degeneracies.

This theory is then applied to a classical mechanical system: the elastic pen-
dulum. To our knowledge, Van der Burgh [28] is one of the first who studied this
example for the 2 : 1-resonance by using normalization. Following [28], we modeled
the elastic pendulum as a two degrees of freedom Hamiltonian system. It enjoys
a mirror symmetry in one of the degrees of freedom. The theory produces a new
hierarchy of resonances ordered by the lowest degree in the Taylor series of the nor-
mal form in which the resonant interaction term appears. For two among the six
most prominent resonances, we numerically check the new estimate of the resonance
domain we have derived. The numerics shows a good agreement with the theory.
This is all presented in the paper [25] and Chapter 1.

4.2. Geometric numerical integration applied to the elastic pendu-
lum at higher order resonance. The characteristic time-scale of the interaction
between the degrees of freedom for a Hamiltonian system at high-order resonance
is rather long. This is actually the reason why in Chapter 1, we managed to pro-
vide numerical confirmation to our estimate, only for two resonances. In Chapter
2, we apply Geometric Numerical Integration to the elastic pendulum at high-order
resonance. The integrator that we use is based on the so-called splitting method.
The idea is to split the Hamiltonian into several parts for which solutions can be
obtained analytically. Using these analytic flows, we construct an approximation
for the original flow. An excellent agreement between the theory and numerics is
achieved.

The idea of using the splitting method is well-known. The goal of the paper
[24] is to find a numerical confirmation of the theory that is developed in [25]. We
note that the first evidence that the estimate given by Sanders can be improved, is
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found numerically by van den Broek [27]. This is why we would like to achieve a
numerical confirmation of the estimate in [25].

The estimate for the size of the resonance domain, is given by using a small
parameter €. This small parameter is explicitly introduced into the equations that
we numerically integrate (using the blow-up transformation). Usually, one needs not
introduce the small parameter explicitly, but uses a small value of the energy instead.
In our case, it is crucial to have this explicit dependency of the vector field on the
small parameter. By doing this, we can explicitly vary the small parameter and
study the effect of it on the size of the resonance domain. The Hamiltonian in our
case is split into three parts. One of these is the quadratic part of the Hamiltonian.
By doing this, our numerics preserve the linear structures of the system, such as the
linear resonances. The results in this chapter are also presented in [24].

4.3. Widely separated frequencies in Hamiltonian systems. The next
problem that we consider in this thesis is a Hamiltonian system with widely separated
frequencies (an example is given below). This can be viewed as an extreme type of
high-order resonance. It is only recently (starting around 1990) that people have
started to pay some attention to this type of resonances. We present the study on
this system in Chapter 3.

In [5, 6], Broer et al. described this problem as a two degrees of freedom Hamil-
tonian system near an equilibrium having a pair of purely imaginary and double
zero eigenvalues. Using singularity theory and normal form theory, the unfolding of
the equilibrium of such a system is studied. Motivated by this, in Chapter 3, we
present a study on the dynamics of such a system, using normal form theory. The
normal form is computed explicitly which then can be considered as a supplement
to the results in [5, 6]. As in nature discrete symmetries occur quite often, in some
cases the normal form is degenerate. We characterize which symmetry causes this
to occur and then also compute the higher order normal form.

We compare this analysis with that for an ordinary higher-order resonance. We
find no energy exchange between the degrees of freedom. However, there is phase
interaction on a time-scale which is shorter than in an ordinary high-order resonance.
We also distinguish two different ways of having these extreme type of high-order
resonances in applications. Think of two systems in which a small parameter ¢ has
been introduced. The first system has a frequencies pair (w;,wz) = (1,¢) and the
other has a frequencies pair: (w1, ws) = ((1/€),1). Do they behave in the same way?
It turns out that the second system is simpler than the first one.

We also consider an application in wave equations. Using Galerkin trunca-
tion, one would derive a system of coupled oscillators as an approximation for the
wave equation. We consider several possibilities: dispersive and non-dispersive wave
equations, and also two types of nonlinearities. The results in this chapter are also
presented in [26].

4.4. Widely separated frequencies in coupled oscillators with energy-
preserving quadratic nonlinearity. In Chapter 4 we consider a slightly more
general system of coupled oscillators. The system is non-Hamiltonian with weak
dissipation or weak energy input (or a combination of the two). The nonlinearity
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is assumed to be quadratic and energy preserving. Thus, the system is a linearly
perturbed conservative system. As in the previous chapter, we are interested in
the internal dynamics of the system. Therefore, the system in Chapter 4 is also
autonomous.

Apart from the fact that studies of internal dynamics of such a system are
lacking in the literature, we are motivated by a study from the applications in
atmospheric research in [7]. The model considered in [7] is derived from the Navier-
Stokes equation projected to a ten-dimensional space. There is a lot of interesting
dynamics such as homoclinic behavior, regime transitions etc. which are observed.
Two among five modes which are considered, have a high frequency ratio: 12.4163.. ..
Based on this, we set up a system of coupled oscillators having widely separated
frequencies and energy-preserving nonlinearity. By doing this, we might be able
to provide an alternative explanation for the presence of some of the interesting
dynamics.

We use normal form theory to construct an approximation for our system. This
normal form is computed by averaging out the fast oscillation. The resulting normal
form is then reduced to a three-dimensional system of first-order differential equa-
tions. Due to the wide separation in the frequencies, we can prove the existence
of a manifold which is invariant under the flow of the normal form. Moreover, this
manifold can not be perturbed away by adding higher order terms in the normal
form.

Next, we use the assumption that the nonlinearity preserves the energy. We
note that this assumption can be preserved while normalizing. In fact, we split the
reduced normal form into the energy-preserving part and the rest. Furthermore, we
assume that the rest is small. This boils down to rescaling two of the parameters in
the system using a small parameter.

The dynamics of the rescaled normal form consists of slow-fast dynamics. The
fast dynamics corresponds to the motion on the energy manifolds, which are two-
dimensional spheres, while the slow dynamics is the motion from one energy manifold
to another along the direction of the curves consisting of attracting equilibria of the
fast system. Due to non-compactness, we cannot prove the existence of an invariant
slow manifold. The dynamics however, is similar: the slow motion is funneling into
a very narrow tube along the curve.

On this rescaled normal form, we study the bifurcation of the nontrivial equilib-
rium (analytically) and also the bifurcation of the periodic solution (numerically).
This result is used to understand the global behavior of the normal form. In the
neighborhood of the trivial equilibrium, for an open set of the parameter values,
we find a lot of periodic solutions (most of them are unstable) with high periods.
We do not find an orbit which is homoclinic to the nontrivial critical point. This
statement is valid up to any finite-degree of the normal form. We do, however, find
a finite sequence of period-doubling bifurcations and fold bifurcations which usually
is connected to the appearance of a homoclinic orbit.

In contrast with the Hamiltonian case in the previous chapter, energy exchanges
between the degrees of freedom occur significantly. This is again another counter
example to the traditional wisdom in engineering on high-order resonances. It is
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even more severe since we include no forcing term in our model. The results in this
chapter are also presented in [23].

4.5. Heteroclinic behavior in a singularly perturbed conservative sys-
tem. Chapter 5 is a continuation of the work in Chapter 4. We want to note that
some of the results which are presented in this chapter are preliminary. In this
chapter, we look at the system which is also studied in Chapter 4, as a singularly
perturbed conservative system. The conserved quantity is the energy which is rep-
resented by the distance to the origin. We present also a generalization of this idea.
Apart from extending the phase space to R™, we generalize the conserved quantity
to any sufficiently smooth function which is critical at zero, has no linear term and
has semi-definite quadratic terms. For such a system, we derive a condition for the
existence of a nontrivial equilibrium.

As is mentioned in the previous chapter, we find curves of equilibria of the
fast system. One of these curves, is characterized by a quadratic equation in two
variables. We find three possibilities: the equation gives us an ellipse, a hyperbola
or a parabola. The first possibility is analyzed in Chapter 4. In this chapter we
concentrate on the situation where the curve is a hyperbola. Instead of having a
homoclinic-like behavior, in this case we find a heteroclinic-like behavior. It is also
interesting to note that there exists a manifold in the parameter space where we have
only one equilibrium. This equilibrium is of the saddle type. Also in that manifold
we find an attractor which has the shape of a heteroclinic cycle between two saddle
points. This attractor is not periodic, nor quasi-periodic, and it has one positive
Lyapunov exponent. Thus the system is chaotic.

The strange attractor that we find exists in a large open set of parameter values.
The size of the attractor (measured by the Kaplan-Yorke dimension dgy) varies
between two and three: 2 < dxy < 3. For some values of the parameters we also
find a strange repellor. There is strong evidence that this strange repellor produces
a fractal boundary between the basin of attraction of the co-existing stable invariant
structures (one of them is the strange attractor).

We end this chapter by formulating some open questions that arose during the
execution of this research. We present these as subjects for further investigation.

5. Concluding remarks

In this thesis, we present a study of high-order resonances in dynamical systems.
Going through chapter by chapter, one would find an interplay between analytical
and numerical work. We present the analytical work as explicitly as possible, al-
though we try to avoid presenting the explicit calculation. This thesis is a collection
of research papers, each chapter can be read separately. We hope that it is enjoyable
to read this work as much as we have enjoyed the work.
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CHAPTER 1

Symmetry and Resonance in Hamiltonian Systems

A joint work with Ferdinand Verhulst

ABSTRACT. In this paper we study resonances in two degrees of freedom, au-
tonomous, Hamiltonian systems. Due to the presence of a symmetry condition
on one of the degrees of freedom, we show that some of the resonances vanish
as lower order resonances. After giving a sharp estimate of the resonance do-
main, we investigate this order change of resonance in a rather general potential
problem with discrete symmetry and consider as an example the Hénon-Heiles
family of Hamiltonians. We also study a classical example of a mechanical
system with symmetry, the elastic pendulum, which leads to a natural hier-
archy of resonances with the 4 : 1-resonance as the most prominent after the
2 : 1-resonance and which explains why the 3 : 1-resonance is neglected.

Keywords. Hamiltonian mechanics, higher-order resonance, normal forms, symmetry,
elastic pendulum.
AMS clasification. 34E05, 70H33, 70K30

1. Introduction

Symmetries play an essential part in studying the theory and applications of
dynamical systems. In the old literature, attention was usually paid to the relation
between symmetry and the existence of first integrals but recently the relation be-
tween symmetry and resonance, in particular its influence on normal forms has been
explored using equivariant bifurcation and singularity theory; see Golubitsky and
Stewart [11], Golubitsky et al. [10] or Broer et al. [5] and also [29] for references.
For a general dynamical systems reference see [1, 6]; for symmetry in the context of
Hamiltonian systems see [6, 15, 28].

In the literature the emphasis is usually on the low-order resonances like 1 : 2 or
1 : 1 for the obvious reason that in these cases there is interesting dynamics while the
number of nonlinear terms to be retained in the analysis is minimal. This emphasis
is also found in applications, see for instance Nayfeh and Mook [16] for examples
of mechanical engineering. As in practice higher-order resonance will occur more
often than the low-order case we shall focus here on the theory and application of
higher-order resonance, extending [21, 22].

In our analysis we shall use normal forms where in the usual way a small pa-
rameter ¢ is introduced by re-scaling the variables, see section 2. The implication is
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that, as € is small we analyze the dynamics of the Hamiltonian flow in the neighbor-
hood of equilibrium corresponding with the origin of phase-space. Note that 2 is a
measure for the energy with respect to equilibrium. Putting e = 0, the equations of
motion reduce to linear decoupled oscillators.

Apart from considering frequency ratios one can also classify resonance in the
sense of energy interchange between the degrees of freedom. Terms like strong (or
genuine) resonance and weak resonance are used to express the order of energy
interchange on a certain time-scale which is characteristic for the dynamics of the
system; see the discussion in section 6.

Symmetries arise naturally in applications, think for instance of the plane of
symmetry of a pendulum or, on a much larger scale, the three planes of symmetry
of an elliptical galaxy; an introduction and references are given in [29].

In section 2 we present the framework of our analysis by indicating how symme-
try assumptions affect resonance and the normal forms. We use Birkhoff-Gustavson
normalization which is equivalent with averaging techniques. In section 3 we give a
new sharp estimate of the size of the resonance domain at higher order resonance.

Section 4 focuses on a special resonance, the 1 : 2-resonance for symmetric
potential problems; we discuss an example from an important family of potential
problems for which applications abound. The classical example is the Hénon-Heiles
problem [12] which applies to axisymmetric galaxies but also to nonlinear chains
as in the Fermi-Pasta-Ulam problem, see [8]. Molecular dynamics uses such two-
degrees-of-freedom formulations, for instance in [17, 24]. In mechanical engineering
many examples can be found in [16], see also the treatment of the spring-pendulum
in [5].

Section 5 discusses one of the classical mechanical examples with symmetry, the
elastic pendulum. This system has played a part in applications in aeronautical en-
gineering [9, 20], celestial mechanics [18], astrophysics and aeronautics [13, 14, 18|
and biology [2, 19]. In this problem, we show that the symmetry assumption pro-
duces a new hierarchy of resonances in which, after the well-known 2 : 1-resonance,
the 4 : 1-resonance is the most prominent one. The asymptotic analysis is supple-
mented by numerical calculations which show excellent agreement.

2. Higher order resonance triggered by symmetry
Consider a two degrees of freedom Hamiltonian
(1.1) H(q,p) = w1 (p?+ @1?) + gwa (p2? + @2?) + Hs + Hy+ - - .

with (g,p) = (q1,92,p1,p2), Hi, k > 3, a homogeneous polynomial of degree k.
We introduce a small parameter ¢ into the system by rescaling the variables by
q; = €q;,p; = €pj,j = 1,2 and divide the Hamiltonian by 2. We can define
successive nonlinear coordinate (or near-identity) transformations that will bring
the Hamiltonian into the so-called Birkhoff normal form. In action-angle variables,
a Hamiltonian H is said to be in Birkhoff normal form of degree 2k if it can be
written as

H = W1T1 +(.02T2 +€2P2(T17T2) +54P3(T1,7'2) —+ .- +€2k72pk(7'1,7'2),
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where P; (71, 72) is a homogeneous polynomial of degree i in 7; = %(ij—i-qu),j =1,2.
The variables 71, 7o are called actions; note that if Birkhoff normalization is possible,
the angles have been eliminated. If a Hamiltonian can be transformed into Birkhoff
normal form, the dynamics is fairly regular. The system is integrable with integral
manifolds which are tori described by taking 71, 75 constant. The flow on the tori is
quasi-periodic.

In normalizing, it is convenient if we transform to complex coordinates by

r; = qj—i—ipj

with corresponding Hamiltonian H = 2iH. The idea of Birkhoff-Gustavson nor-
malization is to transform H (we have dropped the tilde) so that the transformed
Hamiltonian becomes

(1.2) H(z,y) = Bp(11,72,¢) + R(z,y,¢)

where (x,y) = (1,22, Y1, y2) B, is in Birkhoff normal form with & as high as possible
(1; = 3295, = 1,2). R is a polynomial which has degree of either 2k or 2k + 1
in (x,y). The terms R are also known as resonant interaction terms and H in this
form is called the Birkhoff-Gustavson or resonant normal form. In this paper we
will refer to the terms in R as resonant terms. For normalization one can use a
generating function or suitable averaging techniques. See for example [1] appendix
7 or [28] chapter 11.

The presence of resonant terms of the lowest degree in the Hamiltonian de-
termines until what order the normalization should be carried out. For example,
consider the Hamiltonian (1.1) and assume there is a pair of natural numbers (m,n)
such that m/n = wy /ws where m and n are relatively prime. The resonant terms of
the lowest degree are generally found in H,,,; w1 : ws is said to be a lower order
resonance if the corresponding resonant terms of the lowest degree are found in Hy
with & < 5. If m +n > 5 the normal form (1.2) becomes

(1.3) H(z,y) = 2i(By (11, T2, €) + 5m+n72(D$1ny2m er@hnzzm)) +oee

It turns out that some of the lower order resonances are eliminated by symmetry
in which case m and n need not be relative prime. This is due to the fact that dur-
ing normalization symmetries can be preserved. See for example [7]. In table 1 we
present a list of lower order resonances and its corresponding resonant terms of the
lowest degree. The second column shows resonant terms in a general Hamiltonian
system while the third column is for a Hamiltonian system with symmetry in the
second degree of freedom, i.e. H(q1,—q2,p1,—p2) = H(q1,q2,p1,p2). Except for
the 1 : 1 and 2 : 1 -resonances, the other resonances are affected by the symmetry
assumption. For example, the 1 : 2-resonance in the general Hamiltonian has reso-
nant terms of the form 2%y, or x2y?. These terms vanish because of the symmetry
assumption. Thus, instead of these terms which arise from Hj, the resonant terms
in the normal form derive from Hg in the form of zjy3 or z3yf.

It is also clear that symmetry in the second degree of freedom does not affect
the 2 : 1-resonance. If we assume the symmetry is in the first degree of freedom,
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Resonant term

wi W General Hamiltonian | Symmetric in xs, Y2
1:2 21%y2, Tayi® z1ty?, oyt
2:1 o2y, w1y? T2y, w1y?
1:3 z13y0, @y ® 215922, @22y, °
3:1 T1y2°, w23y z12y2%, @0u?
1:1 z1%ys?, xa?y? x1%y2?, w3y.?
x12y1y2, 5515522122
$1y12$€27 y1x22y2

TABLE 1. The table presents lower order resonant terms which
cannot be removed by Birkhoff normalization. The second column
shows resonant terms in the general case while in the third column
we have added the symmetry condition H(z1,—z2,y1,—Y2) =

H<x17$25y17y2)~

then this resonance will be affected while the 1 : 2-resonance will not. On the other
hand, both the 3 : 1- and 1 : 3-resonances are eliminated as a lower order resonance
by the symmetry assumption, no matter on which degree of freedom the symmetric
condition is assumed. As in mechanics one often has symmetries, this may also
explain why these resonances received not much attention in the literature. This is
demonstrated clearly for the elastic pendulum in section 5. For the 1 : 1-resonance,
symmetry conditions on any degree of freedom (or even in both) do not push it into
higher order resonance.

3. Sharp estimate of the resonance domain

In a seminal paper [21], Sanders describes the flow of (1.1) for the m : n (m+n >
5) resonance cases on the energy manifold as follows. Interesting dynamics of the
flow takes place in the resonance domain which is embedded in the energy manifold.
The resonance domain which contains a stable and an unstable periodic solution,
is foliated into tori on which the interaction between the two degrees of freedom
takes place. The time-scale of the interaction is e~ ("+")/2 and the size d. of the
resonance domain is estimated to be O(E(m"‘"_‘l)/ﬁ). This estimate is an upper limit,
due to the approximation technique used there. Van den Broek [25] (pp. 65-67)
gave numerical evidence that the size of the resonance domain is actually smaller.
In this section we shall present a sharp estimate of the size d. which we derive from
a Poincaré section of the flow.

Consider the normal form of a Hamiltonian at higher order resonance as in [21]
in action-angle variables

1
(1.4) H=wm +wamy + Py (11, 72) + -+ + ™72 (1" 1™) 2 cos(x),

where x = ng; — mps + @, m/n = wy/ws; and a € [0,27). Note that Py is a
homogeneous polynomial of degree k and it corresponds to the Hop term in the
Hamiltonian (1.1). Independent integrals of the system are 7; = w7 + ware = Eo,
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and Iy = Py (19, 72) + -+ + emtnd (7'1”7'2’”)% cos(x) = C. We will use these two
integrals to construct the Poincaré map.

The derivation runs as follows. First eliminate one of the actions, for instance
by setting 7 = (Eo —wa72)/w1. Then we choose the section by setting @1 = 0. Thus
we have a section in the second degree of freedom direction which is transversal to
the flow of the system. For simplicity, we put o = 0. Substitute all of these into the
second integral T and define 7 = (p* + ¢*)/2 and @, = arccos (¢/(p* + ¢2)). We
then define P(q,p,e) = Z and from (1.4) we know that P has an expansion of the
form

(1.5) P(q,p,e) = Palq,p) +°Ps(q,p) + - - + ™" *R(q,p, ),

where Py, is non-homogeneous polynomial of degree k and R is determined by the
resonant term. For a fixed value of E, and ¢, the contour plot of (1.5) gives us the
Poincaré map.

The contour plot of P mainly consists of circles surrounding the origin. This is
due to the fact that in the equations of motion, the equation for the actions vary of
order e™*"~2 and the equation for y of order £2. This implies that for most of the
initial conditions, the actions are constant up to order €™+"~2 and only the angles
are varying. This condition fails to hold in a region where the right hand side of the
equation for x is zero or becomes small. Up to order €2, the location of this region
can be found by solving

0P, P,
(1.6) n on m oy
In phase space, equation (1.6) defines the so-called resonance manifold and on this
manifold there exist at least 2 short periodic solutions of the system (more if m and
n are not relatively prime).

In the contour plot, these short periodic orbits appear as 2m fixed points (ex-
cluding the origin) which are saddles and centers corresponding to the unstable and
stable periodic orbit. Each two neighboring saddles are connected by a heteroclinic
cycle. Inside each domain bounded by these heteroclinic cycles, also known as the
resonance domain, there is a center point. For an illustration, see figure 4 in section
5. We approximate the size of this domain by calculating the distance between the
two intersection points of the heteroclinic cycle and a straight line p = A\g connecting
a center point to the origin.

Suppose we found one of the saddles (gs, ps) and one of the centers (g, p.). Let
C: = P(gs,ps,e) and C¢ = P(qe, pe,€). Since the integral Zo depends only on the
actions up to order e™T" "% we have C¢ — C¢ = O(¢™™"~4). The heteroclinic cycles
are given by the equation P(q,p,e) = C? and the intersection with the line p = Aq is
given by solving P(q, Aq,e) = C2. Write ¢ = q. + Y€, v € R. We want to determine
v which leads us to the size of the domain.

Since (g, pe) is a critical point, we have P’(gc, pe, €) = 0 where the prime denotes
total differentiation with respect to q. We expand P

Pa(ge; Mge) + €2 5P (ge; Ae) €2 + -+ +
527)6((]5’ Age) + EQVJFQ%'P(;”((]C, )\qc)§2 +- =Cc+ O(Em-‘rn—zl).

=0.
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Since Py (e, M\ge) +2Ps(qe, A\ge) + -+ -+ O(e™T=4) = C¢, we have v = (m+n—4)/2
and conclude:

Size of the resonance domain:
In two degrees of freedom Hamiltonian systems at higher order resonance m : n with
m and n natural numbers satisfying m +n > 5, a sharp estimate of the size d. of

the resonance domain is
m+n—4
2

(1.7) d. = O(e ).
Note that in cases of the presence of an appropriate symmetry, the 2 : 1-resonance
for instance, has to be viewed as a 4 : 2-resonance

Of course degeneracies in the normal form may change this estimate. It is
interesting to compare this with a formal method to derive the size of a resonance
domain, described in [28], section 11.7. If we repeat the balancing method (method
of significant degenerations) described there for our higher order resonance problem,
we recover estimate (1.7).

4. A potential problem with symmetry

We will now study the 1 : 2 resonance in potential problems with a symme-
try assumption. In the introductory section we listed a large number of different
fields of application. From those we briefly discuss protein cluster modeling from
a paper by E.G. Shidlovskaya et.al [24] and the theory of galactic orbits as sum-
marized by Binney and Tremaine [3]. Substrate activation of the formation of the
enzyme-substrate complex can be considered as a classical (or potential) nonlinear
mechanical system. In [24] the authors consider a 2-dimensional protein cluster
model with linear bonds, which is modeled as a mass suspended to walls by four
springs as in figure 1. The spring constants depend on the type of enzyme involved
in the process. For small oscillations, it can be viewed as a potential Hamiltonian
system with linear frequencies w; = /k1 + k3 and wy = ko + ky.

We re-scale time to set one of the frequencies to be 1; we put w; = 1 and
wo = w. The Hamiltonian with a potential, discrete symmetric in the second degree
of freedom, becomes
18) H = (¢ +d)+3(f +wa)

—e(3a1¢3 + a2q1q3) — €2(3b1qt + 2020363 + 1b3q3).
Assume w? = 4(1 + §(g)). The reason for the assumption of the perturbation §(e)
is that in applications we never encounter exact resonances; J is an order function
which is called the detuning to be specified later. In any case d(¢) = o(1) as ¢ — 0.
We note that this is exactly the same as the system considered in [24] with symmetry
condition (k2 = k4) and detuning parameter added. The symmetry assumption can
be imposed by choosing the appropriate enzyme.

Another application involving the same potential problem (1.8) arises in the
theory of three-dimensional axisymmetric galaxies, see [3] chapter 3 and [27] for
the mathematical formulation and older references. Among these galactic orbits the
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FIGURE 1. The 2-dimensional model for Protein Cluster with linear bonds.

so-called box orbits correspond with orbits outside the resonance manifold which
behave like orbits of anharmonic two-dimensional oscillators. The closed loop orbits
correspond with the periodic solutions in the resonance manifold; tube orbits are
solutions in the resonance manifold which stay nearby the stable periodic solutions.

The unperturbed form (¢ = 0) of the equations of motion derived from (1.8) is
linear and all solutions are periodic. The periodic solutions in one degree of freedom
only, are called normal modes. The normal mode of the p1, ¢; direction will be called
the first normal mode and the other one will be called the second normal mode.
Using averaging techniques, we will approximate other (short) periodic solutions
up to order of € on a time-scale 1/e2. Details of the averaging techniques and the
asymptotic validity of the method can be found in [26] or [23].

4.1. The resonance manifold. To apply the averaging techniques, we trans-
form the equations of motion into amplitude-phase form, by ¢; = r;cos(w,t +
®j),4; = —w;r;sin(w;t + ¢;),j = 1,2. The transformed equations of motion have
average zero to O(e). This means that on the time-scale 1/¢, both the amplitude
and the phase are constant, up to order e. If § is of O(e) then there will be no fixed
point in the averaged system and there is no interesting dynamics on this time-
scale. Putting 6(¢) = §;¢2, we perform second-order averaging which produces O(g)
approximations on the time-scale 1/e%, see [23].
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We find for the approximate amplitudes p;, p2 and phases @1, @2

= 0+0(P)
o1 = —2((Fa? + 2b1) pr 2+

(1.9) (%CHGQ + T15a22 + ibQ) /)22) +0(e%)
pa = 0+0(?)

—e? ((Jaraz + 4502 + §b2) i
+ (5505 + 15b3) p3 — 61) + O(£?).

From system (1.9), we conclude that, up to order £ the amplitude of the periodic
solution is constant. This result is consistent with the result in [27].

We shall define a combination angle x which reduces the dimension of the av-
eraged system by one. Moreover, a lemma by Verhulst [22] (stated there without
proof) , can simplify the equation for the combination angle. We present this theo-
rem in a slightly different form:

P2

LEMMA 1.1. Consider the real Hamiltonian
H = 1(p1? +p2%) + Vg1, ¢2)

where V(q1,q2) is analytic near (0,0) and has a Taylor-expansion which starts with

%(w12q12 + wao?q2?). Then the coefficient of the resonant term D in the Birkhoff-

Gustavson normal form (1.8) of the Hamiltonian can be chosen as a real number.

PROOF. Assume w;/ws = m/n where m,n € N* and the Hamiltonian in po-
tential form as assumed in the lemma. By linear transformation the Hamiltonian
can be expressed as

H = gw1 (p° + a1®) + 502 (p2° + 22°) + ) _Vilar,2)
k=3

where Vj, is the k-th term of the Taylor expansion of V. Define a transformation to
complex coordinates by x; = ¢;+ip; and y; = T;. In these variables the Hamiltonian
becomes

H = 2i {%(w1$1y1 +wamays) + Yptg Vi (B, L;”)} :

Since the function inside the bracket is polynomial over IR we conclude that the
Birkhoff-Gustavson normal form of the Hamiltonian is

(1.10) H = 2i{P(11,72) + D (1"y2" + 11" 22™) + -}
where 7; = %xjyj, P is a real polynomial, and D € R. (]

REMARK 1.2. Generalization of this lemma is possible by considering a wider
class of Hamiltonians by allowing terms like p22°g2"q;! (s a fixed natural number, k
and [ are natural numbers) to exist in the Hamiltonian.
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An important consequence of lemma 1.1 is that in the equations of motion
derived from the normal form of the Hamiltonian we have the combination angle
X = ngp1 —mps +a with o = 0. The phase-shift o will not affect the location of the
resonance manifold, it will only rotate it with respect to the origin but it will affect
the location of the periodic solutions in the resonance manifold.

Because of this lemma, define x = 4¢1 — 2. Then, the averaged equations
become

pl = 07 p2 =0
1.11 .
(1.11) X = & (mp?®+y2p® - 201)
where vy, = —galz + %alag + 1—15a22 — %bl + %bg and v = —2aqas + %agz —bo + %b?,.

By putting the right hand side of the last equation zero, the resonance manifold is
given by

(112) ’71,0124"72022 = 251

This is equivalent with (1.6). The resonance manifold is embedded in the energy
manifold and contains periodic solutions; because of lemma 1.1 we know the location.

Using the approximate energy integral, i.e. Ey = %p12+2p22, assuming o # 47y,
we can solve (1.12) for p;2 and ps?, i.e.:
2 2’}/2E0 - 851 2 251 - 2"}/1E0

Y2 —4mn Yo —dy

We shall now discuss what happens at exact resonance (§; = 0). It is clear
that 0 < p? < 2Fy, so that we have, 0 < 75/(72 — 471) < 1. The last inequality is
equivalent with v1vy, < 0. If 71 tends to zero, then the resonance manifold will be
approaching the first normal mode. For «, tending to zero, the resonance manifold
approaches the second normal mode. We exclude now the equality and will consider
only the resonance manifold in general position. We summarize in a lemma:

(1.13) 1 and pg

LeEMMA 1.3 (Existence of the resonance manifold in general position for ex-
act resonance). Consider Hamiltonian (1.8) with 6(¢) = 0. A resonance manifold
containing periodic solutions of the equations of motion induced by this Hamilton-
ian exists if and only if y1v2 < 0. Those periodic solution are approximated by
x = p1(0) cos(t + p1(t)) and y = p2(0) cos(2t + 2 (t)) where p1(0) and p2(0) satisfy
(1.13), p1 and o are calculated by direct integration of the second and the fourth
equation of (1.9).

REMARK 1.4. Using a specific transformation, we can derive the mathematical
pendulum equation ¥ +Qx = 0 related to the system (1.9), see [22]. The fixed points
x = 0,7, x = 0 of the mathematical pendulum equation determine the locked-in
phases of the periodic solutions by setting 47 — 2¢2 = 0 or 4¢1 — 299 = 7. The
first one corresponds with the stable periodic solutions and the second one with the
unstable periodic solutions.

REMARK 1.5. From section 3 we know that the size of the resonance domain
is d. = O(e), the time-scale of interaction is O(¢~3). Note that the size d. is in
agreement with the work of van den Broek in [25].
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4.2. Examples from the Hénon-Heiles family of Hamiltonians. An im-
portant example of Hamiltonian (1.8), with b, = by = b3 = 0, is known as the
Hénon-Heiles family of Hamiltonians, see [27]. The condition for existence of the
resonance manifold in exact resonance in lemma 1.3 reduces to

(—3a1® + 3a102 + F502°) (—2a102 + Fa2?) <0

Assuming as # 0 to avoid decoupling, we introduce the parameter A = a1 /3asz. Using

this parameter, the existence condition can be written as (450A% — 45\ — 2) (360A — 13) <

0. Thus, the resonance manifold for the Hénon-Heiles family exists for A < —% or

% <A< 12—5 Note that for the Contopoulos problem (a; = 0) the resonance man-

ifold does not exist at exact resonance while in the original Hénon-Heiles problem
(a1 =1 and as = —1) the resonance manifold exists.

From this analysis, we know that for A = 12—5 the resonance manifold will coincide
with the first normal mode. Since for A > % the resonance manifold does not exist,

let \ decrease on the interval (—oo, 1—25
normal mode which it reaches at A\ = %. After that the resonance manifold vanishes

and then emerges again from the first normal mode when A = —3—10. The resonance

manifold then always exist and tends to the second normal mode as A decreases.

] . The resonance manifold moves to the second

-0.04

Delta 1

-0.06+

FIGURE 2. Existence of the resonance manifold in the presence of

(scaled) detuning parameter A = E‘Zl >. The vertical axis represents A
a3
and the horizontal axis A = ;le The domain II and the unbounded

domain I and III (both bounded by the parabola and the straight line)
correspond with existence of the resonance manifold.

How is the effect of detuning in the case of existence of the resonance manifold?
In the same way as before, in terms of parameters A and A = §1/(Fpas?), we can
write for the existence of the resonant manifold

—360\+13—240A
(1.14) 0 < Seoon—r200—3 = I-



4 A potential problem with symmetry 29

In figure 2, the area marked by I, IT and III represent the domains of existence of the
resonance manifold in the parameter space. The parabolic boundary of the domain
represents the first normal mode (g1, p; direction) and the straight line boundary
the second normal mode. By fixing the detuning coefficient, we have a horizontal
line on which we can move the resonance manifold from one normal mode to the
other as we vary A. The analysis can be repeated for fixed X\. The bold parts of the
horizontal axes are the cases of exact resonance. Note that the intersection points
are excluded as they correspond with the zero of the denominator in (1.13).

4.3. The degenerate case: v, = 4v;. Consider again the equations in (1.11).
With the condition 7, = 471, equations (1.11) become

o1 = 0+0(?)
(1.15) P2 0+ O(e3)
e? (2’}’1E0 - 2(51) + 0(83).

>
|

System (1.15) immediately yields that at exact resonance there will be no resonance
manifold. Another consequence is that there exist a critical energy E. = :% such
that the last equation of (1.15) is zero, up to order 3. It means we have to include
even higher order terms of the Hamiltonian in the analysis.

From the normal form theory in section 2, we know that for the 1 : 2-resonance
Hjy does not contain resonant terms. Thus the next nonzero term would be derived
from Hg. As a consequence, the equations for amplitudes and phases are all of the
same order, i.e. O(g*). It is also clear that in Hg besides terms which represent inter-
action between two degrees of freedom (resonant terms), there are also interactions
between each degree of freedom with itself (terms of the form 1 %7;7).

To avoid a lengthy calculation and as an example, we consider a problem where
a1 = az = 0. From the condition v = 4+, we derive by = 3b; + %bg. Then the last
equation of (1.15) becomes

X = g? ((_%bl + 6371()3) p12 +4 (—%b1 + 6%1173) p22 — 2(51) + 0(63).

Introducing the critical energy E., we have a degeneration of the last equation which
gives an additional relation, i.e.

1= 5 ((~ 300+ &) 12+ 4 (<3by + Bba) pa?)

We note also that for §; > 0 the critical energy exists providing b, < %Gbg.
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We apply second order averaging to have an O(g?) approximation on the time-
scale 1/e*. We find for the approximations

pro= et + gibibs + 5ibs’)papr” sin()
P2 = ety (bi® + Sbibs + 55b5%)popr* sin(x)
(1.16) XY= (% ( + 3b1bs + 5igbs”) (1 — §o1%p2°) cos(x)
g (=401 + Sbiby + 5350s%)pl
+&(—46b1% + 1b1bs + 1h5bs”) p12pa?
2 (—44b % + 3biby + &bs%)pat)

It is clear that the analysis of periodic solutlons obtained by setting x = 0 or

x = 7 runs along the same lines as in lower order resonance cases. Consider x = 0.

The fixed point of the averaged equations is determined by the last equation of

(1.16). Since we are looking for periodic solutions which are different from normal
2

modes, we assume both p; and ps to be nonzero. Writing £ = (%) we obtain a

periodic solution by solving the quadratic equation
(1.17) a® + b +c=0,

Where a=—3p%+ 1381)11;3 + 2537, b = —8Lb? — Sbiby — o5bs” and ¢ =
b1 + 20481)1b3 + 32768 bs?. Assuming that b3 # 0, we have

a = “ +128“+4096
81 2 3 15
_ﬁ’f — 54/~ 3192
¢ = “ +2048“+32768’

where k = Z—; It is easy to see that b < 0. Note that both the magnitude and

the sign of b3 is not important. We can also consider 2—? instead if b5 = 0. We
calculate the discriminant D = b? — 4ac and - a, b, and ¢ being quadratic in - plot
the function D(k) in figure 3.

There is an interval around x = 0 where the value of D is negative. The value
of k so that D is zero can be calculated using numerics. Thus we know that except
for small values of k, we always have two roots for the quadratic equation (1.17).
Knowing that we are looking for the root of equation (1.17) which is positive, we have
to add another requirement. If we require ¢/a to be positive and b/a to be negative
we will have two different periodic solutions. These requirements are satisfied by

K € (614 — —Vl‘ggl, 11—6> When &k is at the lower bound of the interval, the periodic

solution coincides with the normal mode, in this case with the second normal mode.
Note also that this interval contains the interval where the discriminant becomes
zero or negative. The upper bound of the interval has to be excluded as a vanishes
there. Thus if k increases towards zero, the periodic solutions become closer, then
coincide with each other and afterwards disappear. If we let k increase from zero,
at some point a periodic solution will emerge and split up by increasing x. For
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FIGURE 3. Plot of D (k). Positivity of D(k) is a necessary condition
for periodic solutions to exist of system (1.16) with x = 0, which are not
normal modes.

176 64 192 16 64 192
is reasonable since one of the periodic solution coincides with one of the normal
modes at the upper end points of each interval. It is easy to see that the case where
a vanishes corresponds to the existence of one periodic solution. For other values of
k the periodic solution does not exist. Note that we are only considering the case
x =0.

We have to apply the same reasoning to the other case and we expect conditions
where there is no periodic solution (apart from the normal modes), one, two, three or
four periodic solutions. Note that the analysis above also has to satisfy the existence
condition for the critical energy, i.e. if § > 0 the critical energy only exist for xk < Tlﬁ
andif6<0f0r/-i>1—16.

K € (,i AN 561) or (i L 4 —VSGl) there is only one periodic solution. This

5. The elastic pendulum

In this section we will study one of the classical mechanical examples with dis-
crete symmetry. Consider a spring with spring constant s and length l,, a mass
m is attached to the spring; g is the gravitational constant and [ is the length of
the spring under load in the vertical position. The spring can both oscillate in the
vertical direction and swing like a pendulum. This is called the elastic pendulum.

Let r(t) be the length of the spring at time ¢ and ¢ the angular deflection of the
spring from its vertical position. In [26] van der Burgh uses a Lagrangian formulation
to analyze the elastic pendulum, while in this paper we will use a Hamiltonian
formulation. The Hamiltonian is given by
(1.18) H=2 (prr@) + £(r —15)* — mgr cos ¢,

2m 72

where p, = m# and p, = mr?e.



32 Symmetry and Resonance in Hamiltonian Systems

Introducing the elongation of the spring by z = TT*Z, we translate the origin of
the coordinate system to the fixed point of the system where the elastic pendulum
is hanging vertically at rest. By dividing by [ we normalize the length of the spring;
we adjust also the momenta p, = Ip, to keep the Hamiltonian structure. The
Hamiltonian in the new variables is

2 12 —1 2
(1.19) H= <p§+(p“”> + (z-i—l ll ) —mgl(z+1)cosp

2mi? z+1)? 2

Put oy = w,0 and ay = w,o where o = ml2. We transform Z = /a7z and v=
v/ai1p. To preserve the Hamiltonian structure we also transform p, = /a7 p, and
Dy = /02 P,. Expanding this Hamiltonian the two leading terms of the Hamiltonian
are,

Hy = 1s(1—1)*—mgl
H, = L (s1(l—1,) —mgl) .
1 \/wzio' o g

We define the coordinate such that the pendulum is at rest in (p.,z,p,, ) =
(0,0,0,0). As a consequence the linear term of the Hamiltonian is zero. Thus
we have s(I —[l,) = mg. This condition restricts the ratio of the frequencies of the
two oscillators, i.e. w,/w, > 1. The restriction is natural since at the equilibrium
position the resultant force of gravitational force (mg) and spring force (s(I —1,)) is
zero. With v/s/m = w, and Jng = w,, the remaining terms in the expansion of
the Hamiltonian are

Hy = 3w (Zzlﬂgi) %2%» (#* +13)
Hy = 2= (329" —2p})
_ 1 (3 2,2 1,4
Hy = ;(5%’2%_%@)
(1.20) Hy = —oh—(heet +222:%2)
2
_ 1 1 6 5 (w 4,2
H6 T 2w, (720@ + 2 (Ti) z p@)

As expected, the - relatively few - terms in the Hamiltonian are symmetric in
the second degree of freedom and also in p,. Due to the restriction of the frequency
ratio above, we will not have the 1 : A-resonances with A > 1. On the other hand, the
symmetry condition on the second degree of freedom eliminates the 3 : 1-resonance
as a lower order resonance. The next resonant term of this resonance arises from
Hg. Thus, for lower order resonances, the remaining cases are the 2 : 1- and, if we
allow small detuning, the 1 : 1-resonance. The 2 : 1-resonance has been intensively
studied, see [26] or [16] for references. This resonance is the one with resonant terms
of the lowest degree.

As noted in [26], for the 1 : 1-resonance, second order averaging still gives only
zero for both the amplitudes and the phases (this is not rendered correctly in [29]).
It follows that the 1 : 1-resonance is also eliminated as a lower order resonance. The
reason for this degeneracy is simple; by defining = rsin(y) and y = r cos(p) we
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can transform (1.18) to
s
2
This means that for the 1 : 1-resonance we have the harmonic oscillator in which all
solutions are periodic with the same period. Thus we have isochronism. Let us now
assume that w, /w, # 1.

Introduce the transformation z = ry cos(w,t + ¢1),p. = —rysin(w.t + ¢1), 0 =
o cos(wet + ¢2), and p, = —rasin(wet + ¢2). Assuming w, # 2w, and rescaling
with € as usual we find the second-order averaged equations for amplitudes and
phases

1
H= im(iﬂ + ) + = (2° + y*) — mgy.

pr = 0+40()
p2 = 040(e)
(1.21) 1/) = _62§ (w<ﬁ - U—’z)(WZQ + wow, — 3w¢2) p12+

4 (wr +2wy,) (2w, —w.)o
1 (wy — w,) (. 4 13w, w, + 20w,w,? — 28w,3) L0
— €
16 Wz (ws + 2w,) (2w, — wy) P2 ’

where ¥ = w1 — w,1e, p1 and py are the approximations of r; and rg, ¥; and
19 are the approximations of ¢; and ¢o, respectively. The resonance manifold is
determined by the requirement that the right hand side of equation (1.21) vanishes.
This implies the resonance manifold exists for all resonances with w, /w, > (v/13 —
1)/2 =~ 1.30277... (we exclude the 2 : 1-resonance and small detuning of it).

We will now consider the most prominent higher order resonances which are
possible for the elastic pendulum problem. We start with the 3 : 2- and the 4 : 1-
resonance. For both resonances we know that in general the resonant terms arises
from Hs which implies that the amplitude variation will be zero up till second order
averaging. This is in agreement with (1.21). To determine which resonance in the
elastic pendulum arises from Hs, we have to normalize.

w; 1w, | Resonant Part | d. | Interaction time-scale
4:1 Hs gl/? g=o/?
4:3 H; g3/2 e=7/2
6:1 H g3/2 e=7/2
3:1 Hg g? g4
8:1 Hy gb/2 g=9/2
3:2 Hyg g3 e™®

TABLE 2. The table presents the most prominent higher order res-
onances of the elastic pendulum with lowest order resonant terms
Hy. The third column gives the size of the resonance domain in
which the resonance manifold is embedded while in the fourth col-
umn we find the time-scale of interaction in the resonance domain.

The result is, for the 3 : 2-resonance, there is no resonant term in the normalized
Hamiltonian up to degree 5. However, for the 4 : 1-resonance, there are resonant



34 Symmetry and Resonance in Hamiltonian Systems

FIGURE 4. The Poincaré map for the 6 : 1-resonance in the second
degree of freedom (¢ = 0.75 and the energy E = 5; large values for
illustration purposes). The saddles are connected by heteroclinic cycles
and inside the cycles (islands) are centers.

terms in the normalized Hamiltonian of degree 5. The conclusion is, after the first-
order 2 : l-resonance, the 4 : 1-resonance is the most prominent resonance in the
elastic pendulum. Following the analysis in section 3, we can also determine the
sizes of the resonance manifolds which depend on the lowest degree of resonant
terms in the normal form. We repeat this for cases in which the resonant terms
arise in Hz,...,Hig. The results are summarized in table 2. Note that a low order
resonance as the 3 : 1-resonance figures here at relatively high order.

We checked our result numerically for some of the resonances by constructing
the Poincaré map and by calculating the size of the resonance domain. In the
numerical integrations we vary € and study how this affects the size of the resonance
manifold. We found confirmation for the 4 : 1-resonance and the 6 : 1-resonance,
i.e. the numerical exponents are 0.4971... and 1.4991 ... respectively. As table 2
shows, the numerical integration takes a long time. Figure 4 shows the map for the
6 : 1-resonance. To avoid long computation times, we increased the value of . In
figure 5 we demonstrate the size and visibility of the resonance domain as € increases
for the 6 : 1-resonance. In figure 6 the 4 : 1-resonance and the 6 : 1-resonance are
compared.

6. Conclusion and comments

In nearly all real-life applications symmetries and hidden symmetries play an im-
portant part. We have mentioned a large number of examples. We have shown that
(reflection) symmetry assumptions strongly affect some of the lower order and higher
order resonances in two degrees of freedom Hamiltonian systems. In those cases, the
symmetry assumption on one of the degrees of freedom implies a degeneration of



6 Conclusion and comments 35

15 15

0.5

0.5 15

FIGURE 5. The 6 : 1-resonance. Part of the map in the second degree
of freedom direction for several values of €, the energy F = 5. The top-
left figure is for € = 0.25, the top-right figure is for € = 0.5 and the figure
below is for e = 0.75.

the normal form. This degeneration forces us to extend the normalization as the
resonant terms appear at higher order as compared with the case without symmetry
assumptions. The conclusion is then that some of the lower order resonances behave
like higher order ones. This makes sense since we know that for instance the 1 : 2
resonance can be viewed as 2 : 4 resonance or 4 : 8 resonance etc.

In the general, mathematically generic case, lower order resonance corresponds with
strong interaction between the modes while higher order resonance corresponds with
weak interaction, restricted to resonance domains. This happens for instance in a
model for a Protein Cluster and in the theory of galactic orbits. For symmetric
potential problems in 1 : 2 resonance, we have shown that at a certain critical value
of the energy, localized in phase-space at some distance of equilibrium, the system
behaves like a strong resonance while for other values of the energy it produces
higher order resonance. We note that the presence of this critical energy involves
the detuning parameter. This is an intriguing new phenomenon and more analysis
is needed to see what part this critical energy may play in applications.

In applying the analysis to the elastic pendulum we have found a numerical con-
firmation of our analytic estimates of the size of the resonance domain. Also we
have found a new hierarchy in the resonances due to two reasons. First because of
physical restrictions the m : n resonances with m < n are eliminated. Secondly the
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FIGURE 6. Part of the map in the second degree of freedom direction
for the 4 : 1-resonance (left) and the 6 : 1-resonance (right);e = 0.1 and
the energy E = 5.

symmetry assumption. As is well-known the 2 : 1 resonance is the most prominent
resonance, the next one turns out to be the 4 : 1 resonance. It turns out that the
1 : 1-resonance of the elastic pendulum is a rather trivial case.
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CHAPTER 2

Geometric Numerical Integration Applied to the
Elastic Pendulum at Higher Order Resonance

A joint work with G. R. W. Quispel

ABSTRACT. In this paper we study the performance of a symplectic numerical
integrator based on the splitting method. This method is applied to a subtle
problem i.e. higher order resonance of the elastic pendulum. In order to numer-
ically study the phase space of the elastic pendulum at higher order resonance, a
numerical integrator which preserves qualitative features after long integration
times is needed. We show by means of an example that our symplectic method
offers a relatively cheap and accurate numerical integrator.

Keywords. Hamiltonian mechanics, higher-order resonance, elastic pendulum, symplectic
numerical integration, geometric integration.
AMS classification. 34C15, 37TM15, 65P10, T0HO08

1. Introduction

Higher order resonances are known to have a long time-scale behaviour. From an
asymptotic point of view, a first order approximation (such as first order averaging)
would not be able to clarify the interesting dynamics in such a system. Numerically,
this means that the integration times needed to capture such behaviour are signifi-
cantly increased. In this paper we present a reasonably cheap method to achieve a
qualitatively good result even after long integration times.

Geometric numerical integration methods for (ordinary) differential equations
([2, 10, 13]) have emerged in the last decade as alternatives to traditional methods
(e.g. Runge-Kutta methods). Geometric methods are designed to preserve certain
properties of a given ODE exactly (i.e. without truncation error). The use of
geometric methods is particularly important for long integration times. Examples
of geometric integration methods include symplectic integrators, volume-preserving
integrators, symmetry-preserving integrators, integrators that preserve first integrals
(e.g. energy), Lie-group integrators, etc. A survey is given in [10].

It is well known that resonances play an important role in determining the dy-
namics of a given system. In practice, higher order resonances occur more often than
lower order ones, but their analysis is more complicated. In [12], Sanders was the
first to give an upper bound on the size of the resonance domain (the region where
interesting dynamics takes place) in two degrees of freedom Hamiltonian systems.
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Numerical studies by van den Broek [16], however, provided evidence that the res-
onance domain is actually much smaller. In [15], Tuwankotta and Verhulst derived
improved estimates for the size of the resonance domain, and provided numerical
evidence that for the 4 : 1 and the 6 : 1 resonances of the elastic pendulum, their
estimates are sharp. The numerical method they used in their analysis !, however,
was not powerful enough to be applied to higher order resonances. In this paper we
construct a symplectic integration method, and use it to show numerically that the
estimates of the size of the resonance domain in [15] are also sharp for the 4 : 3 and
the 3 : 1 resonances.

Another subtle problem regarding to this resonance manifold is the bifurcation
of this manifold as the energy increases. To study this problem numerically one
would need a numerical method which is reasonably cheap and accurate after a long
integration times.

In this paper we will use the elastic pendulum as an example. The elastic
pendulum is a well known (classical) mechanical problem which has been studied
by many authors. One of the reasons is that the elastic pendulum can serve as a
model for many problems in different fields. See the references in [5, 15]. In itself,
the elastic pendulum is a very rich dynamical system. For different resonances, it
can serve as an example of a chaotic system, an auto-parametric excitation system
([17]), or even a linearizable system. The system also has (discrete) symmetries
which turn out to cause degeneracy in the normal form.

We will first give a brief introduction to the splitting method which is the main
ingredient for the symplectic integrator in this paper. We will then collect the
analytical results on the elastic pendulum that have been found by various authors.
Mostly, in this paper we will be concerned with the higher order resonances in the
system. All of this will be done in the next two sections of the paper. In the
fourth section we will compare our symplectic integrator with the standard 4-th
order Runge-Kutta method and also with an order 7 — 8 Runge-Kutta method. We
end the fourth section by calculating the size of the resonance domain of the elastic
pendulum at higher order resonance.

2. Symplectic Integration

Consider a symplectic space = R?",n € N where each element £ in € has
coordinate (g,p) and the symplectic form is dg A dp. For any two functions F, G €

C>(Q) define
" (OF 0G  0G OF
F,G} = — = - ) eC®),
{56} le(aqjapj 8qj<9pj> @

which is called the Poisson bracket of F' and G. Every function H € C*({2) generates
a (Hamiltonian) vector field defined by {¢;, H},{pi;, H},i =1,...,n. The dynamics
of H is then governed by the equations of motion of the form

gi ={qi, H}
p; ={pi,H}, i=1,...,n.

1A Runge-Kutta method of order 7 — 8
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Let X and Y be two Hamiltonian vector fields, defined in 2, associated with Hamil-
tonians Hy and H, in C*°(Q) respectively. Consider another vector field [X,Y]
which is just the commutator of the vector fields X and Y . Then [X,Y] is also
a Hamiltonian vector field with Hamiltonian Hy ,, = {H, Hy}. See for example
1, 7, 11] for details.

We can write the flow of the Hamiltonian vector fields X as

Oxit = exp(tX) =T +1X + 5 (tX)* + H(tX)* + - -

(and so does the flow of V). By the Baker-Campbell-Hausdorff formula (see for
example [13]), which yields a power series expansion for Z = Z(X,Y) in terms of X
and Y if exp(Z) = exp(X)exp(Y), there exists a (formal) Hamiltonian vector field
Z such that

(2.1) Z=(X+Y)+ X, Y]+ 5 (X, X, Y]+ [\, Y, X]) + O(t)
and exp(tZ) = exp(tX)exp(tY), where [X, X,Y] = [X,[X,Y]] , and so on. More-
over, Yoshida (in [19]) shows that exp(tX)exp(tY )exp(tX) = exp(tZ), where
(2.2) Z=02X +Y)+ L ([V,Y,X] - [X, X,Y]) + O(t").
We note that in terms of the flow, the multiplication of the exponentials above means
composition of the corresponding flow, i.e. @yt 0 Q1.

Let 7 € R be a small positive number and consider a Hamiltonian system with

Hamiltonian H (&) = Hy (€) + Hy (€), where € € Q, and € = X + Y. Using (2.1) we
have that ¢,.; o ., is (approximately) the flow of a Hamiltonian system

E=(X+Y)+I[X, Y]+ 5 (X, X, Y]+ [V, Y, X]) + O(r%),

with Hamiltonian
H-r :HX + HY + % {HX7HY}

T %; <{HX7HX7HY} + {HYvHYaHX}) + O(TS).

Note that {H, K, F} = {H,{K, F}}. This mean that H — H, = O(r) or, in other
words

(2.3) Pvir © Pxir = Pxyy (1) + O(72).
As before and using (2.2), we conclude that
(2.4) Px;2 OPyv;r OPx; 7 = QOX+Y(7) + 0(73)'

Suppose that 1. and %, are numerical integrators of system S = X and
£ =Y (respectively). We can use symmetric composition (see [8]) to improve the
accuracy of ¥x,v.r. If ¥y, and 9., are symplectic, then the composition forms a
symplectic numerical integrator for X 4+ Y. See [13] for more discussion; also [10]
for references. If we can split H into two (or more) parts which Poisson commute
with each other (i.e. the Poisson brackets between each pair vanish), then we have
H = H,. This implies that in this case the accuracy of the approximation depends
only on the accuracy of the integrators for X and Y. An example of this case is
when we are integrating the Birkhoff normal form of a Hamiltonian system.
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3. The Elastic Pendulum

Consider a spring with spring constant s and length [, to which a mass m is
attached. Let g be the gravitational constant and [ the length of the spring under
load in the vertical position, and let r be the distance between the mass m and the
suspension point. The spring can both oscillate in the radial direction and swing
like a pendulum. This is called the elastic pendulum. See Figure (1) for illustration
and [15] (or [18]) for references.

FIGURE 1. The elastic pendulum.

The phase space is R* with canonical coordinate & = (z, ¢, p.,p,), where z =
(r —1lo)/lo. Writing the linear frequencies of the Hamiltonian as w, = /s/m and
w, = 4/g/l, the Hamiltonian of the elastic pendulum becomes
2

2 2
(2.5) H=4+ (pz + (ziiwl)r") + Zw,? <z + (Z—f) ) — owy?(z + 1) cos p,

where ¢ = mi?. By choosing the right physical dimensions, we can scale out 0. We
remark that for the elastic pendulum as illustrated in Figure 1, we have w, < w,.
See [15] for details. It is clear that this system possesses symmetry

(26) T: (Zagova7p</J7t) = (Za —¥; Pz, _p(,aat)

and the reversing symmetries

Ry : (szovpzvpapvt) = (Za@» 7pz77pnp,7t)v
(2.7)
RQ . (27307p27ptp7t) — (Za -, _pZ7prv_t)~

If there exist two integers ki and ko such that kjw, + kaw, = 0, then we say w,
and w,, are in resonance. Assuming (|k1], |k2|) = 1, we can divide the resonances in
two types, e.g. lower order resonance if |k1| + |k2| < 5 and higher order resonance
if |k1| + |k2| > 5. In the theory of normal forms, the type of normal form of the
Hamiltonian is highly dependent on the type of resonance in the system. See [1].
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In general, the elastic pendulum has at least one fixed point which is the
origin of phase space. This fixed point is elliptic. For some of the resonances,
there is also another fixed point which is of the saddle type, i.e. (2, ¢,p.,p,) =
(—2(wyp/w)?,7,0,0). From the definition of z, it is clear that the latter fixed point
only exists for w, /w, > V2. The elastic pendulum also has a special periodic solu-
tion in which ¢ = p, = 0 (the normal mode). This normal mode is an exact solution
of the system derived from (2.5). We note that there is no nontrivial solution of the

form (0, ¢(t), 0, py (t))-

Now we turn our attention to the neighborhood of the origin. We refer to [15]
for the complete derivation of the following Taylor expansion of the Hamiltonian (we
have dropped the bar)

(2.8) H=Hy+eHy+e?Hy +%Hs + -+ -,
with
Hy = (22 42) + Jos (&7 4 92)
Hj :\;J“% (320 — 2p2)
Hy = (%:—“’zzpi — 2%1(,04)

Hy =~ 7= (529" + 2%’23;7?0)

In [17] the 2 : 1-resonance of the elastic pendulum has been studied intensively.
At this specific resonance, the system exhibits an interesting phenomenon called
auto-parametric excitation, e.g. if we start at any initial condition arbitrarily close
to the normal mode, then we will see energy interchanging between the oscillating
and swinging motion. In [3], the author shows that the normal mode solution (which
is the vertical oscillation) is unstable and therefore, gives an explanation of the auto-
parametric behavior.

Next we consider two limiting cases of the resonances, i.e. when w,/w, — 00
and w./w, — 1. The first limiting case can be interpreted as a case with a very
large spring constant so that the vertical oscillation can be neglected. The spring
pendulum then becomes an ordinary pendulum; thus the system is integrable. The
other limiting case is interpreted as the case where I, = 0 (or very weak spring) 2.
Using the transformation r = I(z + 1), z = rcosy and y = rsing, we transform
the Hamiltonian (2.5) to the Hamiltonian of the harmonic oscillator. Thus this
case is also integrable. Furthermore, in this case all solutions are periodic with
the same period which is known as isochronism. This means that we can remove
the dependence of the period of oscillation of the mathematical pendulum on the
amplitude, using this specific spring. We note that this isochronism is not derived
from the normal form (as in [18]) but exact.

2This case is unrealistic for the model illustrated in Figure 1. A more realistic mechanical
model with the same Hamiltonian (2.5) can be constructed by only allowing some part of the
spring to swing
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All other resonances are higher order resonances. In two degrees of freedom
(which is the case we consider), for fixed small energy the phase space of the system
near the origin looks like the phase space of decoupled harmonic oscillator. A conse-
quence of this fact is that in the neighborhood of the origin, there is no interaction
between the two degrees of freedom. The normal mode (if it exists), then becomes
elliptic (thus stable).

Another possible feature of this type of resonance is the existence of a resonance
manifold containing periodic solutions (see [4] paragraph 4.8). We remark that
the existence of this resonance manifold does not depend on whether the system is
integrable or not. In the resonance domain (i.e. the neighborhood of the resonant
manifold), interesting dynamics (in the sense of energy interchanging between the
two degrees of freedom) takes place (see [12]). Both the size of the domain where
the dynamics takes place and the time-scale of interaction are characterized by e
and the order of the resonance, i.e. the estimate of the size of the domain is

ds -0 (€m+;74)
and the time-scale of interactions is O(e~"2") for w, : wy =m :nwith (m,n) =1. 3
We note that for some of the higher order resonances where w, /w,, =~ 1 the resonance
manifold fails to exist. See [15] for details.

4. Numerical Studies on the Elastic Pendulum

One of the aims of this study is to construct a numerical Poincaré map (P)
for the elastic pendulum in higher order resonance. As is explained in the previous
section, interesting dynamics of the higher order resonances takes place in a rather
small part of phase space. Moreover, the interaction time-scale is also rather long.
For these two reasons, we need a numerical method which preserves qualitative
behavior after a long time of integration. Obviously by decreasing the time step of
any standard integrator (e.g. Runge-Kutta method), we would get a better result.
As a consequence however, the actual computation time would become prohibitively
long. Under these constraints, we would like to propose by means of an example
that symplectic integrators offer reliable and reasonably cheap methods to obtain
qualitatively good phase portraits.

We have selected four of the most prominent higher order resonances in the
elastic pendulum. For each of the chosen resonances, we derive its corresponding
equations of motion from (2.8). This is done because the dependence on the small
parameter e is more visible there than in (2.5). Also from the asymptotic analy-
sis point of view, we know that (2.8) truncated to a sufficient degree has enough
ingredients of the dynamics of (2.5).

The map P is constructed as follows. We choose the initial values &, in such
a way that they all lie in the approximate energy manifold Hy, = F, € R and
in the section ¥ = {§ = (2,¢,p.,py)|z = 0,p. > 0}. We follow the numerically
constructed trajectory corresponding to &€, and take the intersection of the trajectory

3Due to a particular symmetry, some of the lower order resonances become higher order
resonances ([15]). In those cases, (m,n) = 1 need not hold.
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with section . The intersection point is defined as P(&,). Starting from P (&) as
an initial value, we go on integrating and in the same way we find P?(&,), and so
on.

The best way of measuring the performance of a numerical integrator is by
comparing with an exact solution. Due to the presence of the normal mode solution
(as an exact solution), we can check the performance of the numerical integrator in
this way (we will do this in section 4.2) . Nevertheless, we should remark that none
of the nonlinear terms play a part in this normal mode solution. Recall that the
normal mode is found in the invariant manifold {(z, ¢, p.,py|¢ = p, = 0} and in
this manifold the equations of motion of (2.8) are linear.

Another way of measuring the performance of an integrator is to compare it with
other methods. One of the best known methods for time integration are the Runge-
Kutta methods (see [6]). We will compare our integrator with a higher order (7-8
order) Runge-Kutta method (RK78). The RK78 is based on the method of Runge-
Kutta-Felbergh ([14]). The advantage of this method is that it provides step-size
control. As is indicated by the name of the method, to choose the optimal step
size it compares the discretizations using 7-th order and 8-th order Runge-Kutta
methods. A nice discussion on lower order methods of this type, can be found in
[14] pp. 448-454. The coefficients in this method are not uniquely determined. For
RK78 that we used in this paper, the coefficients were calculated by C. Simo from
the University of Barcelona. We will also compare the symplectic integrator (SI) to
the standard 4-th order Runge-Kutta method.

We will first describe the splitting of the Hamiltonian which is at the core of the
symplectic integration method in this paper. By combining the flow of each part of
the Hamiltonian, we construct a 4-th order symplectic integrator. The symplecticity
is obvious since it is the composition of exact Hamiltonian flows. Next we will show
the numerical comparison between the three integrators, RK78, SI and RK4. We
compare them to an exact solution. We will also show the performance of the
numerical integrators with respect to energy preservation. We note that SI are not
designed to preserve energy (see [10]). Because RK78 is a higher order method
(thus more accurate), we will also compare the orbit of RK4 and SI. We will end
this section with results on the size of the resonance domain calculated by the SI
method.

4.1. The Splitting of the Hamiltonian . Consider again the expanded
Hamiltonian of the elastic pendulum (2.8). We split this Hamiltonian into inte-
grable parts: H = H' + H? + H?, where

w 1 1
Hl = Yo 2 21 4 3 4,
QU T g Tty et
3 2
(2.9) H2 oY zpi—&—Ewa—@zQpQ —53&23pi+-~-

\/(,TZ 2w, ® WZ\/('TZ
B = (4 90) + o (6 42).
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Note that the equations of motion derived from each part of the Hamiltonian can be
integrated exactly; thus we know the exact flow ¢1.;, p2.-, and 3., corresponding
to H',H?, and H? respectively. This splitting has the following advantages.

e It preserves the Hamiltonian structure of the system.
e It preserves the symmetry (2.6) and reversing symmetries (2.7) of H.
e H' and H? are of O(g) compared with H (or H?).

Note that, for each resonance we will truncate (2.9) up to and including the degree
where the resonant terms of the lowest order occur.
We define

(21()) Pr = P1;7/2 © P2;7/2 © P3;7 © P2;7/2 © P17 /2-

From section 2 we know that this is a second order method. Next we define v =
1/(2 = V2) and - = @47 0 9(1-24)r © @47 to get a fourth order method. This is
known as the generalized Yoshida method (see [10]). By, Symplectic Integrator (SI)
we will mean this fourth order method. This composition preserves the symplectic
structure of the system, as well as the symmetry (2.6) and the reversing symmetries
(2.7). This is in contrast with the Runge-Kutta methods which only preserves the
symmetry (2.6), but not the symplectic structure, nor the reversing symmetries
(2.7). As a consequence the Runge-Kutta methods do not preserve the KAM tori
caused by symplecticity or reversibility.

4.2. Numerical Comparison between RK4, RK78 and SI . We start by
comparing the three numerical methods, i.e. RK4, RK78, and SI. We choose the 4 :
1-resonance, which is the most prominent higher order resonance, as a test problem.
We fix the value of the energy (Hs) to be 5 and take ¢ = 0.05. Starting at the initial
condition z(0) = 0,¢(0) = 0,p. = 1/5/2, and p,(0) = 0, we know that the exact
solution we are approximating is given by (\/% sin(4t),0,1/5/2 cos(4t),0). We
integrate the equations of motion up to ¢t = 10° seconds and keep the result of the last
10 seconds to have time series Z(t,) and P;(t,) produced by each integrator. Then
we define a sequence s, = 99990 + 5n/100,n = 0,1, ...,200. Using an interpolation
method, for each of the time series we calculate the numerical Z(s,,). In figure 2 we
plot the error function Z(s,) — z(s,) for each integrator.

The plots in Figure in 2 clearly indicate the superiority of RK78 compared with
the other methods (due to the higher order method). The error generated by RK78
is of order 10~7 for an integration time of 10° seconds. The minimum time step
taken by RK78 is 0.0228 and the maximum is 0.0238. The error generated by SI on
the other hand, is of order 107°. The CPU time of RK78 during this integration is
667.75 seconds. SI completes the computation after 446.72 seconds while RK4 only
needs 149.83 seconds.

We will now measure how well these integrators preserve energy. We start
integrating from an initial condition z(0) = 0, ¢(0) = 1.55, p,(0) = 0 and p.(0)
is determined from H® = 5 (in other word we integrate on the energy manifold
H = 5+ 0O(¢)). The small parameter is ¢ = 0.05 and we integrate for ¢t = 10°
seconds.
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FIGURE 2. Plots of the error function z(s,) — z(s,) against time. The
upper figure is the result of RK4, the middle figure is RK78 and the lower
figure is of SI. The time of integration is 10° with a time step for RK4
and ST of 0.025.
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FIGURE 3. Plots of the energy against time. The solid line represents
the results from SI. The line with '+’ represents the results from RK4
and the line with ’o’ represents the results from RK78. On the left hand
plot, we show the results of all three methods with the time step 0.01.
The time step in the right hand plots is 0.05. The results from RK4 are
plotted seperately since the energy has decreased significantly compared
to the other two methods.

For RK78, the integration takes 667.42 second of CPU time. For RK4 and SI
we used the same time step, that is 1072. RK4 takes 377.35 seconds while SI takes
807.01 seconds of CPU time. It is clear that SI, for this size of time step, is inefficient
with regard to CPU time. This is due to the fact that to construct a higher order
method we have to compose the flow several times. We plot the results of the last
10 seconds of the integrations in Figure 3. We note that in these 10 seconds, the
largest time step used by RK78 is 0.02421. .. while the smallest is 0.02310.... It is
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clear from this, that even though the CPU time of RK4 is very good, the result in
the sense of conservation of energy is rather poor relative to the other methods.

We increase the time step to 0.05 and integrate the equations of motion starting
at the same initial condition and for the same time. The CPU time of SI is now
149.74 while for the RK4 it is 76.07. Again, in Figure 3 (the right hand plots) we plot
the energy against time. A significant difference between RK4 and SI then appears
in the energy plots. The results of symplectic integration are still good compared
with the higher order method RK78. On the other hand, the results from RK4 are
far below the other two.

4.3. Computation of the Size of the Resonance Domain. Finally, we cal-
culate the resonance domain for some of the most prominent higher order resonances
for the elastic pendulum. In Figure 4 we give an example of the resonance domain
for the 4 : 1 resonance. We note that RK4 fails to produce the section. On the
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FIGURE 4. Resonance domain for the 4 : 1-resonance. The plots on
the left are the results from SI while the right hand plots are the results
from RK78. The vertical axis is the p, axis and the horizontal axis is ¢.
The time step is 0.05 and € = 0.05. In the top figures, we blow up a part
of the pictures underneath.

other hand, the results from SI are still accurate. We compare the results from SI
and RK78 in Figure 4. After 5 x 10% seconds, one loop in the plot is completed. For
that time of integration, RK78 takes 34.92 seconds of CPU time, while SI takes only
16.35 seconds. This is very useful since to calculate for smaller values of € and higher
resonance cases, the integration time is a lot longer which makes it impractical to
use RK78.
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In Table 1 we list the four most prominent higher order resonances for the elastic
pendulum. This table is adopted from [15] where the authors list six of them.

Resonance | Resonant | Analytic | Numerical | Error
part log.(d:) | log.(d.)

4:1 Hy 1/2 0.5091568 | 0.01

6:1 H 3/2 1.5079998 | 0.05

4:3 H 3/2 1.4478968 | 0.09

3:1 Hg 2 2.0898136 | 0.35

TABLE 1. Comparison between the analytic estimate and the numerical
computation of the size of the resonance domain of four of the most
prominent higher order resonances of the elastic pendulum. The second
column of this table indicates the part of the expanded Hamiltonian in
which the lowest order resonant terms are found.

55 L L L L
-3 -2.5 -2 -15 -1 -0.5

FIGURE 5. Plots of log(d.) against log(e) for various resonances. The
4 : 1-resonance is plotted using ’—o’, the 3 : l-resonance is using '—+’,
the 4 : 3-resonance is using '—x’ and the 6 : 1 resonance is using '—sx’.

The numerical size of the domain in table 1 is computed as follows. We first draw
several orbits of the Poincaré maps P. Using a twist map argument, we can locate the
resonance domain. By adjusting the initial condition manually, we then approximate
the heteroclinic cycle of P. See figure 4 for illustration. Using interpolation we
construct the function r,(6) which represent the distance of a point in the outer
cycle to the origin and 0 is the angle with respect to the positive horizontal axis. We
do the same for the inner cycle and then calculate maxg |r,(0) — r;(0)|. The higher
the resonance is, the more difficult to compute the size of the domain in this way.

For resonances with very high order, manually approximating the heteroclinic
cycles would become impractical, and one could do the following. First we have to
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calculate the location of the fixed points of the iterated Poincaré maps numerically.
Then we can construct approximations of the stable and unstable manifolds of one
of the saddle points. By shooting to the next saddle point, we can make corrections
to the approximate stable and unstable manifold of the fixed point.

5. Discussion

In this section we summarize the previous sections. First the performance of
the integrators is summarized in table 2.

Integrators
RK4 [ RK78 | SI
CPU time 149.83 sec. | 667.75 sec. | 446.72 sec.
The 4 : 1 | Preservation of H Poor Good Good
resonance | Orbital Quality Poor Very good Good
Section Quality — Good Good
The 6: 1 | Orbital Quality Poor Good Good
resonance | Section Quality — Good Good
The 4:3 | Orbital Quality Poor Good Good
resonance | Section Quality — — Good
The 3:1 | Orbital Quality Poor Poor Good
resonance | Section Quality — — Good

TABLE 2. Summary of the performance of the integrators. A bar —
indicates that it is not feasible to obtain a surface of section for this
resonance using this integrator. For the CPU time we have put At =~
0.025 while integration time is ¢ = 10° sec. The preservation of H is
measured by checking the value of H after ¢t = 10° sec.

As indicated in table 2, for the 4 : 3 and the 3 : 1 resonances, the higher order
Runge-Kutta method fails to produce the section. This is caused by the dissipation
term, artificially introduced by this numerical method, which after a long time of
integration starts to be more significant. On the other hand, we conclude that the
results of our symplectic integrator are reliable. This conclusion is also supported
by the numerical calculations of the size of the resonance domain (listed in Table 2).

In order to force the higher order Runge-Kutta method to be able to produce the
section, one could also do the following. Keeping in mind that RK78 has automatic
step size control based on the smoothness of the vector field, one could manually set
the maximum time step for RK78 to be smaller than 0.02310. This would make the
integration times extremely long however.

We should remark that in this paper we have made a number of simplifications.
One is that we have not used the original Hamiltonian. The truncated Taylor ex-
pansion of (2.5) is polynomial. Somehow this may have a smoothing effect on the
Hamiltonian system. It would be interesting to see the effect of this simplification
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on the dynamics of the full system. Another simplification is that, instead of choos-
ing our initial conditions in the energy manifold H = C, we are choosing them in
H3 = C. By using the full Hamiltonian instead of the truncated Taylor expansion
of the Hamiltonian, it would become easy to choose the initial conditions in the
original energy manifold. Nevertheless, since in this paper we always start in the
section X, we know that we are actually approximating the original energy manifold
up to order £2.

We also have not used the presence of the small parameter € in the system. As
noted in [9], it may be possible to improve our symplectic integrator using this small
parameter. Still related to this small parameter, one also might ask whether it would
be possible to go to even smaller values of €. In this paper we took e 3 < ¢ < 705,
As noted in the previous section, the method that we apply in this paper can not be
used for computing the size of the resonance domain for very high order resonances.
This is due to the fact that the resonance domain then becomes exceedingly small.
This is more or less the same difficulty we might encounter if we decrease the value
of e.

Another interesting possibility is to numerically follow the resonance manifold
as the energy increases. As noted in the introduction, this is a numerically difficult
problem. Since this symplectic integration method offers a cheap and accurate way
of producing the resonance domain, it might be possible to numerically study the
bifurcation of the resonance manifold as the energy increases. Again, we note that
to do so we would have to use the full Hamiltonian.
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CHAPTER 3

Hamiltonian systems with Widely Separated
Frequencies

A joint work with Ferdinand Verhulst

ABSTRACT. In this paper we study two degree of freedom Hamiltonian systems
and applications to nonlinear wave equations. Near the origin, we assume that
near the linearized system has purely imaginary eigenvalues: +iw; and Fiwa,
with 0 < wa/w1 < 1 or wa/w1 > 1, which is interpreted as a perturbation
of a problem with double zero eigenvalues. Using the averaging method, we
compute the normal form and show that the dynamics differs from the usual one
for Hamiltonian systems at higher order resonances. Under certain conditions,
the normal form is degenerate which forces us to normalize to higher degree.
The asymptotic character of the normal form and the corresponding invariant
tori is validated using KAM theorem. This analysis is then applied to widely
separated mode-interaction in a family of nonlinear wave equations containing
various degeneracies.

Keywords. Hamiltonian mechanics, resonance, normal forms, widely separated frequen-
cies .

1. Introduction

The dynamics of two degrees of freedom Hamiltonian systems near stable equi-
librium is relatively well understood; see for instance [3] pp.258-270, [11] pp.212-226.
Resonance is known to play an important role in the dynamics of a system of dif-
ferential equations. The presence of resonance in a system significantly changes the
behavior of the system. Consider for instance the flow on a torus with irrational
slope — which corresponds to the non-resonant case — compared to the flow on a
torus with rational slope. Orbits of the system in the first case are dense while in
the second case, all solutions are periodic.

In two degrees of freedom Hamiltonian systems, one can divide the resonances into
three classes, namely first order resonances (also known as Fermi resonances), sec-
ond order resonances, and higher order resonances (see [24] pp.146-162 for details).
For systems in first order resonance, it is known that they may display parametric
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excitation. This behavior is characterized by energy transfer between the degrees of
freedom. This energy transfer is already apparent on a relatively short time-scale
for almost all solutions (see [26]). However, the presence of a discrete symmetry
may change the situation (see for instance [22, 27]). The higher order resonances
also show some energy exchange but on a much smaller scale and on a much longer
time-scale (see [23, 27]).

In this paper, we consider two degrees of freedom Hamiltonian systems with
widely separated frequencies: the ratio between the frequencies is either very small
or very large. The small parameter ¢ is introduced into the system by rescaling the
variables in the usual way. Such a system can be seen as a Hamiltonian system at
an extreme high order resonance.

One might expect that if the natural frequency ratio is 1 : ¢, then the system
behaves like a non-resonant two degrees of freedom Hamiltonian system. We show
in this paper that this assumption produces somewhat different phenomena than
expected. The phase-space of a non-resonant Hamiltonian system near the origin is
foliated by invariant tori. These tori persist (by KAM theorem) under a Hamiltonian
perturbation. In the case of widely separated frequencies, the phase space is nearly
filled up with unbounded solutions, except for a very small domain near the elliptic
equilibrium point.

For £ = 0 the system is linear with double zero eigenvalues of the equilibrium at
the origin. Broer et. al. in [5] (or in [6] for more explanation), studied this class of
Hamiltonian systems in a more general setting. These systems can be divided into
two cases, i.e. the semi-simple case and the non semi-simple case. Using normal form
theory and singularity theory, the above authors give a bifurcation analysis near the
equilibrium. The codimension of the equilibrium point is 1 for the non semi-simple
case and 3 for the semi-simple case. Their paper also describes the universal unfold-
ing of the equilibrium point. In our paper we consider only the semi-simple case. We
extend the normal form analysis of [5] by considering a number of possible degen-
eracies arising in applications. We are also interested in describing the dynamics (in
time) of the system which, in a sense, also supplements the analysis done in [5] or [6].

In applications, this type of problem arises quite naturally. For instance in the
analysis of a model for atmospheric ultra-low frequency variability in [9], the author
found a case where one of the natural frequencies in the system is as small as the
nonlinear terms. However, there the system is not Hamiltonian. Nayfeh et. al. [19],
[20] and Haller [12] treat comparable cases in mechanical engineering. For a recent
result, see also Langford and Zhan in [16, 17]. We shall return to such problems in
a separate paper.

Lower order resonances produce more spectacular dynamics but higher order
resonances appear more frequently in applications. For instance in wave equations,
cases where the resonances are of the type that we consider in this paper are quite
natural. This fact also motivated our study of this type of Hamiltonian system.

In Section 2 we formulate our problem as one where perturbation theory and nor-
mal forms can be applied to approximate the full system. There are several ways
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to normalize a system of differential equations, namely using Lie-series, averaging,
or using a generating function. For details on normalization using Lie-series, see
[7, 8, 10], while for averaging or using a generating function see [2, 24].

We use the averaging method to compute the normal form. To verify the as-
ymptotic nature of the normal form, the theory of averaging requires that we restrict
ourselves to a domain of bounded solutions. For this, we approximate the locations
of the saddle type equilibria of the system. The distance between these saddle points
(if they exist) to the origin gives an indication of how large the domain of bounded
solutions is. This is done in Section 3. We continue with the normal form compu-
tation to analyze the truncated normal form in Section 4 and 5. For some values
of the parameters we have a degeneracy in the normal form, related to symmetry,
which forces us to normalize to second-order. This situation is analyzed in Section
6 where we still find some nontrivial dynamics. We note that the assumption of the
natural frequency being O(¢) affects the domain of bounded solutions. Keeping this
in mind, we use KAM theory to show the validity of the normal form in Section 7.
In Section 8 we discuss systems with widely separated frequencies which arise from
the spectrum of evolution operators with initial-boundary conditions. Examples of
such systems can be found in conservative nonlinear wave equations. It is shown
that although there is no exchange of energy between the modes, there can be a
strong phase interaction.

2. Mathematical formulation of the problem
Consider a two degrees of freedom Hamiltonian (potential) system with Hamil-
tonian
H =5(p.” +2%) + 3e(py” +y°) = (5012° + azz’y
(3.1) + azzy® + fagy®) — (3bra* + baady + byay?
gy + 1oy") + O, ,22 )" 7).

The Hamiltonian system is defined on R* with coordinates (x,y, ps,p,) and sym-
plectic form dz Adp, +dy Adp,. We assume that ¢ is a small parameter: 0 < e < 1.
We also assume that all of the constants a;,j =1,...,4and b;,j =1,...,5 are O(1)
with respect to €. It is easy to see that for all € > 0, the origin is an elliptic equilib-
rium. We re-scale the variables (and also time) using the small parameter to localize
the system around the origin in the usual way (z = €Z,...). The Hamiltonian (3.1)
then becomes (we use the same notation for the rescaled variables and Hamiltonian)

H =1(p.? + 2?) + 3e(p,® + 3?) — e(ar2® + aga’?y
(3.2) +azry® + jaay®) — (it + baxy + bza®y?
1
+ bazy® + Zb5y4) +0(e%).

Thus, we have a Hamiltonian perturbation of two harmonic oscillators with addi-
tional assumption that the basic frequency ratio in the system is 1 : ¢.
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REMARK 3.1. Two types of systems with widely separated frequencies.
Consider a Hamiltonian systems with Hamiltonian

(3.3) H = sw1 (p? + ar?) + 502 (p2” + a2?) + H

where H, is a polynomial with degree at least three. There are two possibilities
for the system generated by (3.3) to have widely separated frequencies. One might
encounter the situation where wy = O(e) as in the case of Hamiltonian (3.1). By
rescaling the variables the Hamiltonian becomes

(3.4) H= % (p12 + (]12) + %E (p22 + q22) +eHs+e2Hy + .. .

where Hj3 represents the cubic terms, Hy the quartic. etc. We call this situation the
first type of widely separated frequencies.

The other possibility arises when w; = O(1/¢). By rescaling time (and also €)
we derive the Hamiltonian of the form

H = 3(p1? + ¢?) + 3e(p2® + ¢2%) + eH,..

In general, the Hamiltonian system derived from this Hamiltonian is still too compli-
cated to analyze as all the nonlinear terms are of the same order. Thus, we localize
around the origin by rescaling the variables. The asymptotic ordering in this case,
however, is different from the one in (3.2) as the nonlinear terms become O(&?):

(35) H = % (p12 + Q12) + %6 (p22 + QQ2) + €2H3 + 53H4 + ...
We call this situation the second type.

In the unperturbed case, i.e. € = 0, all solutions of the equations of motion derived
from (3.2) are periodic with period 27. Those solutions are of the form

($7y7pwapy) = (TO COS(t + ¢0)7y07 —To Sin(t + Sao)apyo)a

where 7o, ¢0, Yo, and p,, are determined by the given initial conditions. Moreover, all
points of the form (0,y,0,p,) € R* are critical corresponding with equilibria which
is not a generic situation in Hamiltonian systems. We expect that most of these
equilibria will be perturbed away when ¢ # 0. Consequently, most of the periodic
solutions are also perturbed away.

We use the averaging method to compute the normal form of the equations of
motion derived from (3.2). Details on the averaging method can be found in [24].
The analysis is then valid up to order € on the time-scale 1/e at first-order, to
order €2 on the time-scale 1/¢ at second-order. Before carrying out the normal form
computation we first look at the domain where the solutions are bounded.

3. Domain of bounded solutions

The theory of averaging requires the solutions of both the averaged and the
original equations to stay in the interior of a bounded domain, at least for some
time. In that domain, the averaging theorem guarantees the asymptotic character
of the approximations. Thus, the existence of this domain is important.
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The equations of motion derived from (3.2) are

L= pa
Py = —T+ E(a1x2 + 2a0my + a3y2)
(3.6) +e2(bya® + 3bya?y + 2bsay? + bay?)
Y = epy
py = 5(_24 + a2532 + 2a3.ry —+ a4y2)

+€2(b2$3 —+ 2b3:r2y + 3b41’y2 + b5y3)

We will approximate the equilibria of system (3.6). To do that, we set © = x,+ex1+
O(e?) and y = yo + O(e). It is clear that p, = p, = 0 at the equilibria. Substituting
these into (3.6) we have two equilibria if as # 0, i.e. (z,y,pz,py) = (0,0,0,0) and
(—eas/as?,1/a4,0,0) while if ay = 0 up to this approximation we have only one
equilibrium, i.e. (0,0,0,0).

Define the potential function of the Hamiltonian (3.2), i.e.
3.7) V(z,y) =122 +ey?) — 5(%&1333 + agx?y + azry® + %a4y3)
. — e2(bhiat + bax®y + byaPy® + bawy® + 1bsy*) + O(e®).

It is an easy exercise — by checking the second derivatives of (3.7) — to derive the
stability of those equilibria found above. We conclude that (0,0,0,0) is a center
point and in the case where ay # 0 we have (—cag/a4?,1/ay4,0,0) is a saddle point.

The fact that we have a possibility of having a saddle point in an O(g)-neighborhood

of the center point implies the domain of bounded solutions to shrink in measure
(at least as fast as € as € goes to zero). This is in contrast with the cases where all
the natural frequencies are of the same order where the measure of the domain is
independent of ¢.

4. Normal form computation

Consider again the equations of motion in (3.6). The equations for y and p, in
(3.6) are already in the Lagrange standard form. Thus we need only to transform
the first two equations in (3.6).

Putting = = rcos(t + ) and p, = —rsin(t + ¢), the equations of motion (3.6)
become

¢ = —1Lcos(t+ ) (e {arr? cos®(t + @) + 2asr cos(t + @)y
+azy?} + e {byr? cos(t + ¢) + 3bar? cos?(t + )y
+2bsr cos(t + )y* + bay® })
7= —sin(t+ ) (e {a1r? cos?(t + @) + 2azr cos(t + @)y
+azy?} + &2 {bir® cos®(t + @) + 3bar? cos?(t + @)y
+2b37 cos(t + )y + bay®})
Yy = &Py
Py = e(—y+ax(rcos(t—+ )%+ 2azrcos(t + )y + asy?)
+e2(ba(rcos(t + )3 + 2b3(r cos(t + )%y
+3bar cos(t + o)y* + bsy?).

The right hand side of (3.8) is 2m-periodic in t. We note that the transformation
to (p,r) is not a symplectic transformation. However, the averaged equations of
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motion are equivalent to the Birkhoff normal form of the equations of motion of
(3.2).

For some values of the parameters, first order averaging is not sufficient. For this
reason we compute the normal form up to O(e?) using second-order averaging. After
applying the second-order averaging method to (3.2), we transform I = %73,@/1 =
t + ¢. The averaged equations of motion then read

Yo o= 1 —eagy —e? ((2a1? + 3b1) I + (Fa2” + aras + bs) y?)
I =0

(3'9) Y = &Py
Dy = € (fy + agy?® + QQI) +e2 (2 (%(122 + ajas + bg) yl

+ (2@32 + b5) yg) ,

which is a Hamiltonian system with Hamiltonian

(3.10) H=1+eH +e*Ho,
where

(3.11) Hy =1 (y*+py?) —aoly — %a4y3
and

Ho :% (%alz + %bl) I? + (%QQZ +ajaz + b3) yI
+ i (2(132 + b5) y4.
This implies that the total energy H can be approximated by H = I 4+ eH; + e?Hos.
As expected in such an extreme type of higher order resonance, the interaction
between the two oscillators is weak in the sense that up to this approximation,

there is no interchange of energy between the degrees of freedom. However, there is
phase-interaction. In the next section we will first analyze the O(e)-term of (3.9).

(3.12)

REMARK 3.2. As mentioned above, the transformation carrying (x,p.) into
(r,) is not symplectic. Nevertheless, after averaging and transformation to co-
ordinates (I,v¢) we re-gained the symplectic structure. The symplectic form is
dyp A dI + dy A dpy. In the literature the pair (I,v) is known as symplectic po-
lar coordinates.

REMARK 3.3. It is interesting to note that {H, I} = 0 where { , } is the Poisson
bracket. The Hamiltonian (3.10) then can be viewed as a normalized H with respect
to the S'-action defined by the flow of the unperturbed Hamiltonian, X;. Dividing
out this action from the system (or equivalently fixing the value of I) leads to a
reduced system (for reduction see [8]) which corresponds with a Poincaré section for
the flow X7;. This Poincaré section is an approximation of a section of the original
flow Xgy. In contrast with the other cases in this family of Hamiltonian systems,
— those in which the frequencies are of the same order — in this case the reduced
space is R? (for non flat reduced spaces, see for instance [7, 21]).

REMARK 3.4. In applications, symmetries arise naturally in a system. One can
consider for instance the discrete symmetry ¢, @ (z,y, Dz, Py)” — (—2,Y, =Dz, Dy)"
or ¢y : (z,Y,0z,0y)" — (T,—Y, Pz, —py)". If a Hamiltonian system is invariant
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under a symmetry ¢ then we have ¢*H = H o ¢ = H. The symmetry ¢, and
¢, is symplectic (they preserve the symplectic form). In [7] it is proved that the
normalization can be done such that the symmetry ¢, or ¢, is preserved.

For a y-symmetric Hamiltonian, i.e. as = a4 = by = by = 0, the normal
form (3.9) is degenerate up to O(e). However, a non-trivial dynamics is achieved
as the second-order terms are included. On the other hands, for an z-symmetric
Hamiltonian the normal form (3.9) is non-degenerate.

5. First order analysis of the averaged equations

In this section we analyze the Hamiltonian system (3.9) up to order . What
we mean is that we drop all terms of O(g?), i.e.

@g} = 1—cay
(3.13) r=20
Yy = epy
py = e(—y+ay®+al).

The solutions of system (3.13) approximate the solutions of system (3.8) to O(g) on
the time-scale 1/¢. The result of this section agree with [5, 6].

It is clear that I(t) > 0 for all time and up to O(e), it is related to the origi-
nal Hamiltonian through H = I 4+ ¢H;. Instead of fixing the value of H we fix
I =1, € R. Thus, we are looking at the flow of Hamiltonian system (3.13), X3, re-
stricted to the manifold I = I,. The reduced system (after rescaling time to 7 = &t)
is

@ o=
3.14 gr T by
o1y T o= (ytaytal),

which is a Hamiltonian system with Hamiltonian (3.11). In this reduced system, we
might expect to have none, one or two equilibria. See also Remark 3.3.

There are four (three independent) important parameters in the Hamiltonian
system (3.14), namely a4, as, I,, and

(315) D=1- 4@20,4[0.

As mentioned in the previous section, if a4 # 0, in the e-neighborhood of the origin
we have another equilibrium of the saddle type. This equilibrium does not exist if
a4 = 0. Furthermore, the reduced system (3.14) is degenerate if a4 = 0: it becomes a
linear oscillator. Thus, for a; = 0 we need to include quadratic terms in the normal
form. We will do this in the next section. In this section we assume a4 # 0.

Let I, = 0, the flow X degenerates to a point. As a consequence, the flow Xy
in this case lives in a two-dimensional manifold defined by (0,0) x R? (or just R?).
Furthermore, for I, = 0, we have D = 1 > 0. Thus, the dynamics in the manifold
(0,0) x R? is the same as the dynamics of the reduced system for D > 0.

Let us assume that I, > 0. The flow X;, defines a non-degenerate S!-action on the
phase-space of system (3.13). Thus, the flow X7 lives in S* x R2. If ay # 0, there are
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"

D>0 D=0 D<O

FIGURE 1. Dynamics of the Hamiltonian system (3.14) for a4 # 0,
I, # 0, and as # 0. As D passes zero, the equilibrium undergoes
the so-called Hamiltonian saddle-node bifurcation which is related
to fold catastrophe.

three possible phase portraits depending on the parameter D and they are illustrated
in Figure 1. If D > 0, there are two equilibria in the system (3.14): the saddle point
(y°,0) = ((1 +vD)/(2a4),0) and the center point (y¢,0) = ((1 — v/D)/(2a4),0)
(they correspond to H; = hs and H; = h, respectively). The center point (y¢,0) is
surrounded by periodic orbits with period

v 1
(3.16) T = 2/ dy,
vo \/h — 3% + Jasloy + jaay®

where y; and y7 are found by solving H; = h for y if p, = 0. If hy > h. then
he < h < hg. Orbits in which H; > h, are unbounded !. There exists a homoclinic
connection: the component of H; ! (h,) U (y*,0) which forms a closed curve.

To translate this back to the full normalized system, we take the Cartesian prod-
uct with the S'-action generated by X,. At H; = h., we have the stable periodic
solution of the form (/21 cos((1 — eagy®)t + ¢o ), y¢, V2o sin((1 — eaay®)t + o), 0).
The periodic solutions of (3.14) which are found if h, < h < hg, produce quasi-
periodic solutions in the full normalized system. They live in two-dimensional tori
in R* which are the bounded component of H; ' (k) Cartesian product with S'. At
‘H1 = hs, we have the unstable periodic solution of the form (v/21, cos((1 —casy®)t+
©o), Y%, V21, sin((1 — eazy®)t + ¢,),0). This periodic solution has two-dimensional
unstable and stable manifolds which intersect transversally at the periodic orbit,
and are also connected to each other to form a two-dimensional manifold in R* ho-
moclinic to the periodic solution. See Figure 2 for illustration.

Let us consider the cases where D = 0 in equation (3.15) (we still assume ag # 0).
There is only one equilibrium in the system (3.14), that is (1/2a4,0). The linearized

IWe note that the converse does not hold since H171(h) might have two disconnected
components.
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>

FIGURE 2. An illustration for the geometry of the phase space of
system (3.13) up to O(e) in the case where D > 0 in (3.15). In this
picture, the value of I is fixed. The thick lines represent the periodic
orbits: the upper one is stable and the lower one is unstable. The unstable
periodic solution is connected to itself by a 2-dimensional homoclinic
manifold. In the two dimensional Poincaré section ¥, the dynamics is
determined by (3.14).

system of (3.14) has double zero eigenvalues corresponding to a saddle-center bi-
furcation. As the center point and the saddle point of (3.14) coincide, the domain
where the solutions are bounded vanishes. For D < 0, the situation is almost the
same as the case where D = 0 except that there is no equilibrium in the system
(3.14). For the full normalized system, the geometry of the phase-portrait for both
D =0 and D < 0 can be achieved by taking the cross product of the corresponding
phase-portrait in Figure (1) with S1.

Let ap = 0. The system in (3.14) decouples up to O(e) and the sign of D in the
equation (3.15) is positive. We need only to note the existence of infinitely many
periodic orbits of period T" where T'/2kw € N filling up a two dimensional torus
(depending on the period) in phase-space. As we include the higher order terms
in the normal form, these periodic solutions become quasi-periodic. The existence
of the invariant manifold homoclinic to the periodic solution (S; x H;~*(0)) is not
affected by the fact that as = 0.

Another degenerate case occurs when a4 = 0 (think of the y-symmetric Hamil-
tonian). In this case, the system (3.14) has one equilibrium for a fixed value of I,.
The eigenvalues of this equilibrium are purely imaginary, i.e. =i; all solutions of
(3.14) are 2m-periodic. We shall discuss this in the next section.



64 Hamiltonian systems ...

6. Second order averaging if ay =0

Let agy = 0. Then the Hamiltonians (3.11) and (3.12) reads

Hl = % ((y — a21)2 + py2) - %QQIQ
He = % (%alz + %bl) I? + (%(IQZ +ajas + bg) y2I + % (2(132 + b5) y4,
with corresponding equations of motion (after rescaling time)
dy _
1) g — M L2 2 4 be) 4
= = —y+agl+€(2(§a2 +a1a3+b3)yl+(2a3 +b5)y),

which is the reduced system for a fixed value of I. We first look for the equilibrium
of (3.17). Consider the equation

(3.18) Y2 + 71y +72 =0,

where
—1 —+ 5((122 + 2(11&3 —+ 2b3)] d CLQI
= an = ———F"
T =(2a3® + bs) Y2

The discriminant of the equation (3.18) is

(3.19) D3 = (72/2)? + (m/3)°.

For (3.17) we have one, two or three equilibria. If D3 > 0, (3.18) has one real
root. D3 = 0 gives two real roots while D3 < 0 corresponds to three real roots.
We describe the phase-portrait of (3.17) in Figure 3. There are three different
regions in the parameter space ;-2 corresponding to how many equilibria (3.17)
has. Depending on the stability of each equilibrium, we have several possibilities for
the phase-portraits.

The stability of these equilibria can be derived as following. Let y, be a simple
root of the equation (3.18) and write u = 2a3? +bs. If 4 > 0, then (y,,0) is a stable
equilibrium. On the other hand if p < 0, then (y,,0) is a saddle point of the system
(3.17). If y, is a double root, then (y,,0) is an unstable equlibrium.

Since the Hamiltonian of the system (3.17) is a quartic function, one can con-
clude that, if (3.17) has one or three equilibria, then all of them should correspond
to simple roots of (3.18). If it has two equilibria, then one of them corresponds to a
simple root while the other is a double root. From this analysis, we can derive the
stability of each of the equilibria that exist in the system (3.17). We summarize this
in Figure 3.

REMARK 3.5. In the case where u = 2a3? + b5 = 0, the normalized system is
again degenerate, in the sense that the dynamics is nothing but rotation around an
elliptic equilibrium. We should then normalize to even higher degree. We expect
to have more equilibria compared to those we found for the non-degenerate case.
Apart from that, we expect no more complications.

REMARK 3.6. Notes on locations of the equilibria and their bifurcation
One can see that both of v; and ~2 are O(1/e). This implies that some of the
equilibria found in this analysis might also be O(1/¢) and this analysis might not
be applicable since it is far away from the domain where the normal form is a good
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u>0

FIGURE 3. Bifurcation diagram of the system (3.17). The curve
depicted in this figure at the top is the curve (v2/2)%+ (71/3)% = 0.
We draw the possible phase-portraits of the system (3.17) below
this bifurcation diagram. For each region (indicated by the Roman
numbers I, II, and III), we have two possibilities depending on the
sign of u = 2a3? 4 bs. The dashed box indicates the location in the
reduced space where the normal form is a good approximation of
the full system. This situation is related with the one described as
cusp catastrophe in [5, 6].

approximation of the system. In Figure 3 we place a dashed box around a particular
equilibrium in the phase-portraits to indicate the domain where the normal form is
a good approximation of the system.

As stated in the last part of the previous section, in the case where a4 = 0
the first order analysis shows that the system has only one equilibrium. This equi-
librium can be continued to a equilibrium in the system (3.17) (the one inside the
box). During this continuation (by implicit function theorem) the stability of this
equilibrium will not change.
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Another way of looking at the bifurcation is the following. It is clear that v; # 0
since a; and b; are independent of . This fact excludes the possibility of deforming
the cubic equation (3.18) so that it has a single root with multiplicity three.

REMARK 3.7. It should be clear that these equilibria of the reduced system (if
they survive), correspond to periodic orbits in the full system by taking the cross
product of the equilibrium (y,,0) with S*. The stability of these periodic orbits is
the same as in the reduced system. Thus Figure 3 also serves as the bifurcation
diagram for the periodic orbit in the full normalized system.

7. Application of the KAM theorem

The celebrated Kolmogorov-Arnold-Moser (KAM) theorem is one of the most
important theorems in perturbation theory of Hamiltonian dynamics. This theorem
relates the dynamics from the normal form analysis to the dynamics in the full
system, under some non-degeneracy condition. The theorem itself can be stated
in a very general way (see [1] or [3]). As noted previously, the assumption on the
frequencies implies that we can only guarantee the validity of the normal form in
a rather small domain around the origin. However, the normal form of the system
displays structurally stable behavior. Using the KAM theorem, we can validate this
behavior.

Consider a Hamiltonian system defined in a 2n-dimensional, symplectic space M
in the action-angle variables (¢, J) and symplectic form d¢pAdJ. The Hamiltonian of
the system is H = Ho(J)+eH (¢, J). The unperturbed (¢ = 0) Hamiltonian system
is clearly integrable with integrals J;,7 = 1,...,n and the equations of motions are

J =0
¢ = AJ)=dH,(J).

The phase space of the system (3.20) is foliated by invariant tori, parameterized by
Jj :Cj,j: 1,...,n.

The KAM theorem concerns the preservation of these invariant tori as we turn on
the (Hamiltonian) perturbation e Hy (¢, J). The theorem guarantees the preservation
of a large number of the invariant tori under the non-degeneracy condition that the
symmetric n X n matrix dA.J = d?H,(J) is invertible. In applying this fundamental
theorem to a general Hamiltonian system with Hamiltonian H, one has to find
an integrable Hamiltonian which is asymptotically close to H. For two degrees
of freedom Hamiltonian systems, the truncated normal form is integrable. The
asymptotic relation between the original and the truncated, normalized Hamiltonian
system is also clear. Thus, it remains to see if the non-degeneracy condition is
satisfied.

For general two degrees of freedom Hamiltonian systems in higher order reso-
nance (as well as the extreme type of higher order resonance), the non-degeneracy
condition usually is not satisfied. The main difficulty is that the unperturbed inte-
grable system is degenerate.

The version of the KAM theorem stated below is applicable to higher order res-
onance cases. We will follow the discussion in [3].

(3.20)
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Consider the Hamiltonian system with Hamiltonian
(3.21) H = Hoo(1) + eHoi(J) + e Hii (¢, J),

where J = (Jy, J2). This means that Hyg is degenerate. The Hamiltonian (3.21) is
called properly degenerate if

aH()U 82H'Ol
0 and
8Jl # 8J22

The system Hog(J1) + €Ho1(J) is called the intermediate system.

£0.

THEOREM 3.8. In a properly degenerate system, a large subset of the phase-
space of the system generated by Hamiltonian (3.21) is filled by invariant tori which
are close to the invariant tori of the intermediate system: J is constant . The
measure of the set of tori that dissapear under perturbation is exponentially small
(O(exp(—constant/e)) instead of O(\/€) in the nondegenerate case).

REMARK 3.9. In a properly degenerate, two degrees of freedom Hamiltonian
system, the situation is more regular in the sense that for all initial conditions, the
values of the action variables remain forever near their initial values. See [3] for
details and the reference therein.

Applying Theorem 3.8 to our system, we define the intermediate system as H =
I+¢eH,, with Hoo = I. The action and angle variables for the one degree of freedom,
Hamiltonian system generated by H; can be calculated using the generating function
S(J,y) = f;’; pydy. Thus we construct a symplectic transformation to bring (y, p,) to
(J, ¢) such that the equations of motion are of the form (3.20). The non-degeneracy
condition on “the frequency” A(J) follows from the fact that the period function
(3.16) in the case D > 0 in (3.15) and a4 # 0, depends nonlinearly on hp. Thus,
Theorem 3.8 is applicable to our system.

8. Application to nonlinear wave equations

In this section we consider applications of the theory of widely spaced frequencies

to nonlinear wave equations with initial-boundary values. Many studies have been
devoted to such problems, see for instance the survey [28], also [4, 13, 14, 25].
In most of these studies the solution of the continuous system is expanded in an
orthogonal series and then projected on a finite subspace using the Galerkin trunca-
tion method. This results in a finite set of ordinary differential equations. The next
step is then to approximate the solution of this finite system by averaging, see for
instance [14, 25], or multi-time scale methods, see [4]. Until now the applications
have been to low-order resonance cases.

8.1. Formulation of the problem. Let Q = [0, un] and L be a linear, self-
adjoint, elliptic differential operator defined on a dense subset A C H, (), i.e.
L: A— H,(2), where Ho(Q2) is a Hilbert space with an inner product (_,_). It is
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also assumed that L is essentially negative, i.e. its spectrum goes to —oo. Consider
the initial-boundary value problem

v —Lv = ef(v,u
v(0,1)
v(x,0) = ¢
vi(@,0) = W(x),
where p € RT, 0 <e < 1,v=wv(x,t) and f : D — H, (D C Hy x H,, for a Sobolev
space Hy). Important examples to take for L are

Il
1
—~
=
-
= &
Il
o

(3.22)

82
L= 22 the perturbed wave equation
x
82
Ly = ok I, the perturbed dispersive wave equation
x
84
Ls; = i p°l, the perturbed beam equation,
x

with I the identity operator and p € N. In this paper we will be mainly concerned
with the cases L = L1 or L = Ls.

The question of the existence and uniqueness of solutions of problem (3.22) can
be settled in a standard way; see for instance for L = L; and f(u,us,t) = u? in
[14, 25]. In [25], the authors also consider the case where L = Ly. For L = L3 and
f(u,us,t) = u?, the same question is studied in [4]. After applying the Galerkin

truncation method an asymptotic solution of (3.22) is constructed.

Let A\, = —w,? and V,,(z),n = 1,2,--- be the eigenvalues and the correspond-
ing eigenfunctions of L. One of the implications of the assumptions on L is that
the set of eigenfunctions {V,,,n = 1.2.---} form a denumerable, complete set in .A.
Thus, we can write for the solution v(z,?) = >_, a;(t)V;(z). We substitute v(z,?)
into (3.22) to obtain

> (i +wita;) Vi = f (Zaj‘/j,zaj‘/j7t> = f(z,1).
1 1 1

Projecting the last equation to the eigenspace generated by V,,,,m = 1,--- N pro-
duces form=1,--- | N

(3.23) A (1) + W2 am (t) = Vi, £)(), VL.

In [13, 25] it was realized that, choosing the initial condition ¢ and ¢ to be effective
only in some of the N modes, does not excite the other modes dramatically on a
long time-scale. Thus, the eigenspace acts as an almost-invariant manifold. This
observation was analyzed in [15], pp. 23-24, see also [14], where the author studies
and proves the asymptotics of the manifold.

In this section we will not discuss the approximation character of the truncation
and averaging procedure of wave equations. This can be done, see [28], but it needs
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a more detailed analysis which falls outside the scope of the present investigation.
Our purpose in this section is to project (3.22) on a finite-dimensional space spanned
by the eigenfunctions V; and V), of the operator L corresponding to two widely sep-
arated eigenvalues (or modes). The projected system generated by V; and V,, (for
M eN)is

a1 +wi?a ef

3.24 .
( ) Anr +wJV12aM = efu.

We have to choose M such that wy/w,, < 1.

8.2. Scaling procedures. We can think of three different scalings applicable
to problem (3.22): spatial domain scaling, time scaling, and scaling by localization.
Spatial domain scaling is effected by putting Z = z/u and writing v(z, t) as u(Z,t).
This scaling transforms the spatial domain 2 = [0, u7] to Q = [0, 7]. Obviously, we
also have to re-scale the linear operator L, the nonlinear function f, and the initial
conditions ¢ and . The nonlinear function f, and the initial conditions ¢ and
are transformed as v(x,t): by writing new functions f gf) and w In general they will
depend on the parameter p. With respect to the operator, spatial domain scaling
results in scaling the eigenvalues of the operator. The first and second rescaled
operators are Li = L; /p? and Ly = I /u? — 1. Thus, the transformed initial-
boundary value problem becomes (we have dropped the bar)

up —Lu = f (u,u, )
(3.25) Zggto)) zqg;t):o

5
ut(x,O) = 1/’(9”)»

where L is L or Lo.

The time scaling procedure is done by putting 7 = 0;1(¢)t where 0; is an order
function. Time scaling is usually carried out simultaneously with localization scal-
ing: ¥ = d2(e¢)v where Jy is also an order function. It is easy to see that the scaling
in v amounts to scaling in the amplitude a and its time derivative.

Our goal is to use these scaling procedures to get widely separated frequencies in
system (3.24) with main interest in L = Ly or L = Ly. Consider the situation where
@ > 1, a large domain. Let M € N be sufficiently large such that M/u = O(1),
compared to 1/u = 6(g) < 1 (the order function () is to be determined later).
Before projecting to a finite-dimensional space by Galerkin truncation, we apply the
spatial domain scaling which then brings us to (3.25). For the non-dispersive wave
equation we have wy = O(d(¢)) while w,, = O(1), which means we have a system
with widely separated frequencies. Since this does not involve the time rescaling, we
have the first type of widely separated frequencies.

For the dispersive wave equation this approach does not produce a system with
widely separated frequencies since w; = (1 + 1/u) and w,, = (1 + M/u) are both
O(1).
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If 4 = 1, spatial domain scaling makes no sense. Again we choose M > 1, which
implies w,,; /w1 > 1. This case is called the second type of widely separated frequen-
cies in remark 3.1. By rescaling time, 7 = w,,t, the projected equations of motion
become

- w1 )2 _ e _r
(3.26) By e = g
Apr + Ayp = WfM,

in both the dispersive and non-dispersive case. This similarity is interesting. How-
ever, one can see that the nonlinearity in (3.26) is very small (of order O(e/w,,?).
The dynamics in this case, if (3.26) is a Hamiltonian system, would be the same as
the usual higher order resonance describe in [23, 27].

8.3. The Hamiltonian equation u;; — Lu = €f(u). We shall now consider
perturbations such that the wave equation can be put in a Hamiltonian framework.
Note that starting with a Hamiltonian wave equation, it is not obvious that Galerkin
truncation again leads to a Hamiltonian system.

Considering R* as a symplectic space with symplectic form da; A dby + da,, A db,,,
we suppose that the right-hand side of system (3.24) is such that

_ 0H, - O0H,
= — r d = — r
fi 94, and fo 0.
for a function H,. (sufficiently smooth). Thus, system (3.24) has Hamiltonian H
H=1(a,? +w12b12) + 3 (an? +w22b1\42) +eH,,

(we may have to re-scale €). This Hamiltonian is not in the standard form (3.3). To
bring it to the standard form, define a linear symplectic transformation

(3.27) F (a1, an,b1,ba)" = (a1//@01, Gr [ /02, /w1 b1, /w2 bar)” .

This transformation is also known as diagonalization in a Hamiltonian system. For
potential problems, the transformation F transform H, to H, which depends on
wp or wo. This may become a problem with widely separated frequencies. The co-
efficients in H, also depend on the small parameter which changes the asymptotic
ordering of the nonlinear terms.

In this subsection we will consider the typical perturbation f(u) = u® which cor-
responds with a potential problem in the classical sense. It will become clear later
that the transformation F simplifies the dynamics.

First consider (3.25) with: L = Ly, pp > 1, wy = 1/p and w,, = 1. After some
computations one obtains that f(u) = u3 corresponds to the system (3.24) with the
right-hand side functions

(3.28) fi= %al?’ + 3a1ay,2 and fo = %aM?’ + 3a12a,,.
Transforming by F the Hamiltonian becomes

(329) H= ﬁ (bl2 + a12) + % (bM2 + aM2) — € (%/1,26114 + a]\/14 + %MCL12GM2) .
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Recall that 1/p = (). Choosing 0(e)® = &, we can write (3.29) as (we use d(¢) as
the small parameter instead of ¢)

(3.30) H=15() (0" + a1?) + L (b + an?) — 2a1* + 0(3(e)).

By rescaling the variables (localization scaling) by d(¢)a;,d(e)b;, j = 1, M (and then
rescaling time) we arrive at

(3.31) H=15(c) (0> + a1?) + 1 (ba® +an?) — 35(e)%ar + O(5()").

The theory in the previous section (for the degenerate case) can be applied to this
Hamiltonian.

The situation for Lo, g > 1, wy = 1/p and wy = 1, need not be considered.
The spatial domain scaling fails to produce widely separated frequencies. The other
case, if u =1, for both L = Ly or Lo, the same procedure as derived above can be
executed. However, looking carefully at (3.26) we can conclude that it behaves as a
Hamiltonian system with non resonant frequencies. The reason for this is that, ap-
plying the symplectic transformation F has the effect of pushing some of the terms
in the Hamiltonian to higher order in the small parameter.

More in general, the dynamics of this extreme type of higher order resonance for the
perturbation function f(u) with f a polynomial in « will also be trivial as in the
example discussed here.

8.4. The Hamiltonian equation u;; — Lu = eh(z)u? . We will now consider
another type of perturbation of the initial boundary value problem (3.25) by choosing
f(u,ug, t) = h(z)u? with h(z) a sufficiently smooth, odd function, 27-periodic in z.
Fourier decomposition yields h(z) = >~ a; sin(jz).

Let L = Ly and p > 1. Using this in (3.25) and projecting to the eigenspace as
before, we find for the right-hand side of the equations of motion for mode & (9;; is
the Kronecker delta)

fo=% X (20my —Omaiti — Om 2045 + Om2i—j) ja;’+

1
7 2 (Omj—itk + Om,—jtitk — Om jritk — Om,—j—itk
1

+0m,j+i—k) O Qi

Assuming again that the eigenspace forms an almost invariant manifold, we can
isolate two modes from the full eigenfunction expansion.
If M > (N+1)/2, with N sufficiently large, the right-hand sides of the equations of
motion (3.24) are
(3.32)

fi = (31101 + 2v2a1a0 + Y3a0.°) and fo = € (v2a1® + 2v3a1a, + 372a0,2)
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where

Q1 — T12a3) )

)
=
Il

1
g2 — gaMJrz) )

Q
g

1 1
o1 4 §Q2 -1 — §Q2p41) , and
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o

Il
0=~ —

[ N S
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|

g

The system (3.24) together with (3.32) is a Hamiltonian system with Hamiltonian
(after applying transformation F)

H :%58 (b12 + a12) + % (bM2 + GMQ)
— & (a1® + F2a1%an + Y3a1a0> + Y400%)

where 71 = 71/ 62 0 = v2/(8e), and 3 = 73/(v/3:) (recall that J. < 1).

(3.33)

We have seen before that a cubic perturbation gives us trivial dynamics due to
the fact that the transformation F eliminates the important term, necessary to get
nontrivial dynamics. The perturbation that we are considering now depends on the
Fourier coefficients ;. These coefficients can be used to keep the important terms
in our Hamiltonian (3.33).

To keep as many terms as possible in (3.33), we assume v; = 1. and v2 = Y21/0c.
Finally, by choosing ¢ = 6.2, and rescaling the variables (including time) we have
the Hamiltonian

H= 30. (b12 +a1?) + 3 (sz + ay?)
—0. (T1a1® + 2a1%ay + Y3aray?) + O(6:1/0;).
The Hamiltonian (3.34) has the form of (3.1) and hence, the analysis in Section 5 is

applicable to it. Furthermore, compared to the cubic (or polynomial) perturbation
cases, the dynamics of the system generated by the Hamiltonian (3.34) is nontrivial.

(3.34)

The choice of a perturbation of the form h(x)u? is not very restrictive; for instance
in [4], the authors consider more or less the same type of perturbation. However, to
get nontrivial dynamics in the case of widely separated frequencies we have to set
some of the parameters in h to be small. This is in contrast with the perturbation
f = u? where we have not enough parameters to be scaled.

We have mentioned the result in [15] about the asymptotics of the manifolds. The
presence of the parameter «;,j =1,..., N,can also be used to improve this asymp-
totic result by setting some of the a; to be very small. Thus, the function h(z) can
be viewed as a filter for modes which we do not want to be present in the system.

REMARK 3.10. Homoclinic solution of the wave equations
In section 5 we have studied several possibilities that could arise when we have
a Hamiltonian system with widely separated frequencies. In the case of a wave
equation with this special quadratic perturbation, the coefficients of the eigenmodes
1 and M fit in with the analysis in section 5. Let us now try to interpret an interesting
solution found in section 5 in the wave equations setting.
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In section 5, we found a homoclinic orbit for some values of the parameter. Sup-
posed we can choose the parameter in the wave equations such that this homoclinic
orbit exists. Recall that the two-modes expansion of the solution can be written as
u(z,t) = a1 (t)Ur(z) + ap (t)Un (z), where ay and a,, satisfies a Hamiltonian system
with widely separated frequencies.

We conclude that U is a superposition of two periodic wave forms: U; and U,,.
Choosing the initial values at the critical point, we have a; is constant and a,, is
oscillating periodically. On the other hand at the homoclinic orbit, we see that
the superimposed wave forms evolve to the critical positions for both positive and
negative time. We note that during the evolution, the amplitude of a,, remains
constant while the phase is changing.

9. Concluding remarks

In this paper we have analyzed a class of two degrees of freedom Hamiltonian
systems where the linearized system consists of two harmonic oscillators and one of
the characteristic frequencies of these oscillators is of the same magnitude as the
nonlinear terms. In general, the dynamics of this system is shown to be significantly
different from Hamiltonian systems with the usual higher order resonance. We have
shown that although there are no energy interchanges between the degrees of free-
dom, this system has a nontrivial dynamics.

Comparison with higher order resonance.

The first thing to note is the time-scale. A generic system with widely separated
frequencies, shows an interesting dynamics on the 1/¢ time-scale while in higher
order resonances the characteristic time scale is 1/e2 and higher. This results from
one of the oscillators being strongly nonlinear.

The phase-space around the origin of a system with higher order resonance is foliated
by invariant tori. In a system with widely separated frequencies, these tori are
slightly deformed (see Figure 2). Nevertheless, most of these invariant manifolds
contain quasi-periodic motions which is analogous to the higher order resonance
cases.

A system with widely separated frequencies does not have a resonance manifold
which is typical for higher order resonances. However, the phase-space of a system
with widely separated frequencies, contains a manifold homoclinic to a hyperbolic
periodic orbit (see again Figure 2). This is comparable to the resonance manifold in
higher order resonance cases.

The existence of two normal modes in the normal form of Hamiltonian systems in
higher order resonance is typical. For the system with widely separated frequencies,
this is not true in general. An extra condition is needed. This extra condition
eliminates the coupling term between the degrees of freedom from the normal form.
Thus, the interaction between the degrees of freedom in the system with widely
separated frequencies is weak in the sense there are no energy interactions, but
strong in the sense of phase interactions.
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Relation with the results in [5, 6].

The results in this paper are closely related to the results in [5, 6] where the same
problem is treated in a more general manner. The situation in Figure 1 of this paper
is realized as a Fold Catastrophe in [5] while the situation in Figure 3 is realized as
Hyperbolic Umbilic Catastrophe.

Applications to wave equations are analyzed in this paper. We have pointed out
the difficulties of having this kind of systems in a generic potential problem. It
might be interesting to consider a more general problem, i.e. perturbations of the
form f(u,u,t) or even f(u,us, uy,t). In subsection 8.4 we only studied the first type
of widely separated frequencies. For the other type, it can be done in a similar way.
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CHAPTER 4

Widely Separated Frequencies in Coupled
Oscillators with Energy-preserving Quadratic
Nonlinearity

ABSTRACT. In this paper we present an analysis of a system of coupled-oscillators.
We make two assumptions for our system. The first assumption is that the fre-
quencies of the characteristic oscillations are widely separated, and the second
is that the nonlinear part of the vector field preserves the distance to the ori-
gin. Using the first assumption, we prove that the reduced normal form of
our system, exhibits an invariant manifold which, exists for all values of the
parameters and cannot be perturbed away by including higher order terms in
the normal form. Using the second assumption, we view the normal form as
an energy-preserving three-dimensional system which is linearly perturbed. Re-
stricting our selves to a small perturbation, the flow of the energy-preserving
system is used to study the flow in general. We present a complete study of
the flow of energy-preserving system and the bifurcations in it. Using these
results, we provide the condition for having a Hopf bifurcation of one of the
two equilibria. We also numerically follow the periodic solution created via the
Hopf bifurcation and find a sequence of period-doubling and fold bifurcations,
and also a torus (or Naimark-Sacker) bifurcation.

Keywords: High-order resonances, singular perturbation, bifurcation.

1. Introduction

High-order resonances in a system of coupled oscillators tend to get less at-
tention rather than the lower-order ones. In fact, as noticed in [10], the tradition
in engineering is to neglect the effect of high-order resonances in a system. How-
ever, the results of Broer et.al. [1, 2], Langford and Zhan [14, 15], Nayfeh et.al
[16, 17], Tuwankotta and Verhulst [21]. etc., show that in the case of widely sep-
arated frequencies, which can be seen as an extreme type of high-order resonances,
the behavior of the system is different from the expectation.

Think of a system

Ptwllr = f(i,7,y,t)

Zj+wy2y = g(y,x,y,t),
where w, and w, are assume to be positive real numbers, and f and g are sufficiently
smooth functions. If there exists ki, k2 € N such that kjw, — kow, = 0, we called
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the situation resonance. If ky and ko are relatively prime and ky + ko < 5 we call
this low-order resonance (or, also called genuine or strong resonances).

One of the phenomena of interest in a system of coupled oscillators is the energy
exchanges between the oscillators. It is well known that in low-order resonances, this
happens rather dramatically compared to in higher-order ones. For systems with
widely separated frequencies, the behavior is different from the usual high-order
resonances in the following sense. In [10, 16, 17], the authors observed a large scale
of energy exchanges between the oscillators. In the Hamiltonian case, the results in
[1, 2, 21] show that although there is no energy exchange between the oscillators,
there are important phase interactions occurring on a relatively short time-scale.

1.1. Motivations. In this paper we study a system of coupled oscillators with
widely separated frequencies. This system is comparable with the systems which are
considered in [10, 14, 15, 16, 17]. However, we are mainly concerned with the in-
ternal dynamics. Thus, in comparison with [10, 16, 17], there is no time-dependent
forcing term in our system. Our goal is to describe the dynamics of the model using
normal form theory. This analysis can be considered as a supplement to [14, 15]
which are concentrated on the unfolding of the trivial equilibrium and its bifurcation.

Another motivation for studying this system comes from the applications in atmo-
spheric research. In [4], a model for ultra-low-frequency variability in the atmosphere
is studied. In such a study, one usually encounters a system with a large number of
degrees of freedom, which is a projection of the Navier-Stokes equation to a finite-
dimensional space. The projected system in [4] is ten-dimensional and the projection
is done using so-called Empirical Orthogonal Functions (see the reference in [4] for
introduction to the EOF). In that projected system, the linearized system around an
equilibrium has two among five pairs of eigenvalues of A\; = —0.00272154 £¢0.438839
and As = 0.00165548 + 30.0353438. One can see that Im(A;)/Im(Az) = 12.4163. . .,
which is clearly not a strong resonance.

In fluid dynamics, the model usually has a special property, namely the nonlin-
ear part of the vector field (the advection term) preserves the energy. We assume
the same holds in our system. We take the simplest representation of the energy,
that is the distance to the origin, and assume that the flow of the nonlinear part of
the vector field corresponding to our system preserves the distance to the origin.

The relation between a ten-dimensional, or even worse, an infinite-dimensional sys-
tem of differential equations and a system consisting of only two special modes is
an important question. However, it falls beyond the scope of this paper. In this
paper we want to provide, as completely as possible, the information of the dynam-
ics of a two coupled oscillators system having widely separated frequencies and an
energy-preserving nonlinearity.

1.2. Summary of the results. Let us consider a system of first-order ordinary
differential equations in R* with coordinate z = (21, 22, 23, 24). We add the following
assumptions to our system.
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(A1) The system has an equilibrium: z, € R* such that the linearized vector field
around z, has four simple eigenvalues Ay, A1, A2, and Ao, where A1, Ao € C.
Furthermore, we assume that Im()\;) is much larger in size compared to
Im(Az2), Re(A1) and Re(A2).

(A2) The nonlinear part of the vector field preserves the energy which is repre-
sented by the distance to the origin.

In section 2, we will re-state these assumptions in a more mathematically precise
manner.

We use normal form theory to construct an approximation for our system. In The-
orem 4.3, we show that the normal form, truncated up to any finite degree, exhibits
an invariant manifold which exists for all values of parameters. This invariant man-
ifold coincides with the linear eigenspace corresponding to the pair of eigenvalues Ao
and \y.

We simplify the system even more by looking only at the situation where Re(A;)
and Re(\2) are small. In fact, if Re(A\;) = Re(A2) = 0, the system preserves the
energy. The phase space of such a system is fibered by the energy manifolds, which
are spheres in our case. By restricting the flow of the normal form to each of
these spheres, we reduce the normal form to a two-dimensional system of differential
equations parameterized by the value of the energy, which is the radius of the sphere.
As a consequence, each equilibrium that we find on a particular sphere can be
continued to some neighboring spheres. This gives us a manifold of equilibria of the
normal form for Re(A;) = Re(A2) = 0. In fact we have two of such manifolds in our
system. This analysis is presented in sections 5 and 6.

For small values of Re(A1) and Re(\3), the normal form can be considered as
an energy-preserving three-dimensional system which is linearly perturbed. The
dynamics consists of slow-fast dynamics. The fast dynamics corresponds to the
motion on two-spheres described in the above paragraph. The slow dynamics is the
motion from one sphere to another along the direction of the curves of critical points.

In [7], Fenichel proved the existence of an invariant manifold where the slow
dynamics takes place. This slow manifold is actually a perturbation of the manifold
of equilibria which exists for the unperturbed case. The conditions that have to
be satisfied are that the unperturbed manifold should be normally hyperbolic and
compact. Since both of such curves in our system, fail to satisfy these condition, we
cannot conclude that there exists an invariant slow manifold. We illustrate this in a
simple example below.

ExaMPLE 4.1. Consider a system of differential equations
r = a?
€y = Y
with € < 1. This system has an invariant manifold ¥y = 0. The solutions of the
system live in an integral curve defined by

y(x) = yo exp (l%)



80 Widely Separated Frequencies ...

where (2,,yo) is the initial condition. For x, > 0 the limiting behavior is different
from one solution to another. In fact, as  — oo, y /4 0 (in this example z goes to
infinity in finite time). Thus, a unique manifold to which all solutions are attracted
does not exist. However, as € | 0, the solutions become exponentially close to y = 0
for large x. This example is treated carefully in [22].

For an introduction to geometric singular perturbation, see [12]. For a thorough
treatment on the theory of invariant manifolds, see [11] and also [23]. The dynamics
however, is similar apart from the fact that the slow motion is funneling into a very
narrow tube along the curve instead of following a unique manifold. For instance in
the example above, the width of the tube is O(exp(—1/ex,)).

More generally, if in the unperturbed situation the invariant manifold consists
of equilibrium points and its exponentially attracting, then for the perturbed system
the solutions will converge exponentially fast to a locally invariant manifold, with a
velocity of order e, along the invariant manifold, at a distance of order exp(—c/e)
from the invariant manifold, where c is a suitable positive function of order one. If
the solution enters a part of the invariant manifold which in the unperturbed is expo-
nentially unstable, then the solution will (but probably not immediately) leave this
exponentially small neighborhood of the locally invariant manifold when ¢ changes
sign from positive to negative. Such a more refined analysis of the motion along the
locally invariant manifolds will not be carried out here, but might be an interesting
project for future investigations.

The linear perturbation is governed by two parameters: p; (= Re(A1)) and pg (=
Re(A2)). If pype > 0, the system becomes simple in the sense that we have only one
equilibrium, the trivial one. The flow of the normal form collapses to the trivial equi-
librium either in positive or negative time, which implies the non-existence of any
other limit set. In the opposite case: pipe < 0, the trivial equilibrium is unstable.
In a general situation, we have two critical points: the trivial one and the nontrivial
one. There are two situations where the nontrivial equilibrium fails to exist. The
first situation is when we have no interaction between the dynamics of (21, z2) and
(23, 24). The other situation corresponds to a particular instability balance between
the modes. For a large part of the parameter space, we prove that the solutions are
bounded (see section 4). Combining the information of the energy-preserving flow
(section 5) and its bifurcations (section 6), we can derive a lot of information of the
dynamics of the normal form for small p; and ps.

The nontrivial equilibrium that we mentioned above, is a continuation of one of
the equilibria of the fast system. Although we have the explicit expression for the
location of the nontrivial equilibrium, to derive the stability result using lineariza-
tion is still cumbersome. Using geometric arguments, the stability result and also
the bifurcations of this nontrivial equilibrium can be achieved easily.

We show in this paper that the only possible bifurcation for the nontrivial equi-
librium is Hopf bifurcation. This Hopf bifurcation can be predicted analytically.
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This result is presented in section 8. We also study the bifurcation of the peri-
odic solution which is created via the Hopf bifurcation of the nontrivial equilibrium.
However, this is difficult to do analytically. Using the continuation software AUTO
[5], we present the numerical bifurcation analysis of this periodic solution in sec-
tion 9. Numerically, we find torus (Naimark-Sacker) bifurcation and a sequence of
period-doubling and fold bifurcations.

1.3. The layout. In section 2 the system is introduced. The small parameter in
the system is the frequency of one of the oscillators and it is called €. Using averaging
we normalize the system and reduce it to a three-dimensional system of differential
equations. The normalized system is analyzed in section 3. We complete the analysis
of the case where pjps > 0 in this section and assume that pqpue < 0 in the rest of
the paper. In section 4, we re-scale pu; and ps using a new small parameter €. By
doing this we formulate the normal form as a perturbation of an energy-preserving
system in three-dimensional space. There are two continuous sets of equilibria of
the energy-preserving part of the system and they are analyzed in section 5. In
section 6, we use the fact that the phase space of the energy-preserving part of the
system is fibered by invariant half spheres, to project the unperturbed system to
a two-dimensional system of differential equations. The stability results derived in
section 5 are applied to study the bifurcation in the projected system. In section
7, we turn on our perturbation parameter: £ # 0. Using geometric arguments, we
derive the stability results for the nontrivial equilibrium. Furthermore, in section
8 we use a similar argument to derive the condition for Hopf bifurcation of the
nontrivial equilibrium. The bifurcation of the periodic solution which is created via
Hopf bifurcation, is studied numerically in section 9.

2. Problem formulation and normalization

Let 0 < € < 1 be a small parameter. Consider a system of ordinary differential
equations in R* with coordinates z = (z1, 29, 23, 24), defined by:

(4.1) P < o 22 )z+F(z),

where A;, j = 1,2 are two by two matrices, with eigenvalues: éu; &4, and Eug £icw,
w, w1, and po are real numbers. We assume that p; and pe are bounded and w
is bounded away from zero and infinity. The nonlinear function F' is a quadratic,
homogeneous polynomial in z satisfying: z - F(z) = 0. Thus, the flow of the system
%2 = F(z) is tangent to the sphere: 212 + 222 + 232 + 242 = R? where R is the radius.

We re-scale the variables by z +— £z. By doing this we formulate the system
(4.1) as a perturbation problem, i.e.

(4.2) P < %1 8 )z+5F(z),

0 1
-1 0
terms. We normalize (4.2) with respect to the actions defined by the flow of the

with A; = . Note that F' is no longer homogeneous; it contains linear
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unperturbed vector field of (4.2) (that is for £ = 0). This can be done by applying
the transformation
z1 — reos(t+ ), 29— —rsin(t + ¢),z3 — z and 24 — y

to (4.2) and then average the resulting equations of motion with respect to ¢t over
2. See [18] for details on the averaging method.
The averaged equations are of the form

¢ = EGi(r,x,y)+ O(&?)
Fo= EGa(r,x,y) + O(?)
i = EG3(r,x,y)+ O(?)
g = EG4(r,x,y)+ O(?),

where G, = 1,...,4 are at most quadratic. Thus, we can reduce the system to a
three-dimensional system of differential equations by dropping the equation for ¢.
This reduction is typical for an autonomous system. We note that by applying the
averaging method, we can preserve the energy-preserving nature of the nonlinearity.
Furthermore, by rotation we can choose a coordinate system such that the equation
for r is of the form 7 = éGa(r, z) + O(£2).

We omit the details of the computations and just write down the reduced aver-
aged equations (or normal form) after rescaling time by ¢ — £t, i.e.

7 w0 0 r dxr
(4.3) z | = 0 p2 O x |+ Qx,y)y—or? |,
Y 0 0 pe y —Q(z,y)z

where Q(z,y) = w+ ax + By, p1, 2, a, B, w, and § are real numbers. It is important
to note that up to this order, the small parameter € is no longer present in the
normal form, by time reparameterization.

To facilitate the analysis we introduce some definitions. Let a function G : R? — R?
be defined by:

oxr
(4.4) G&) = | Qa,yy—o |,
— Yz, y)x

where & = (r,z,y)7, Q(x,y) = w + ax + By. We also define a function S : R?* — R
by

(4.5) S(&) =1 + 2% + 42
Note that %(8) = 0 along the solution of & = G(&). Lastly, we define
(4.6) S(R)={¢|r*+2*+1y?>=R* R>0}

which is the level set S(¢) = R2.

REMARK 4.2 (Symmetries in the system). We consider two types of transforma-
tions: transformation in the phase space ®; : R* — R?, j = 1,2 and in the parameter
space: ¥ : R6 — RS, Consider ®;(r,z,y) = (-, z,y), which keeps the system (4.3)
invariant. This immediately reduces the phase space to D = {r > 0r € R} x R2



3 General invariant structures 83

Another symmetry which turns out to be important is a combination between
Dy (r,z,y) = (r,—z,—y) and V(a, 5,0, w, p1, p2) = (—a, =0, =6, w, p1, p2). System
(4.3) is invariant if we transform the variables using ®; and also the parameters
using W. It implies that we can reduce the parameter space by fixing a sign for .
We choose 3 < 0. One can also consider a combination involving time-reversal sym-
metry. We are not going to take this symmetry into account because this symmetry
changes the stability of all invariant structures in the system. Thus, we assume:
w > 0.

3. General invariant structures

System (4.3) has exactly two general invariant structures in the sense that they
exist for all values of the parameters. They are the trivial equilibrium (r,z,y) =
(0,0,0) and the invariant manifold » = 0. The linearized system around the trivial
equilibrium has eigenvalues 1, po £ iw. We have three cases: pipe > 0, pips <0
or pype = 0. )

If p11 12 > 0, along the solutions of system (4.3), we have S = 172 + po (22 +3?)
(see (4.5) for the definition of S) is positive (or negative) semi-definite if pq > 0
(or p1 < 0, respectively). Thus, S is a globally defined Lyapunov function. As a
consequence, all solutions collapse into the neighborhood of the trivial equilibrium
for positive (or negative) time , if 3 < 0 (or pg > 0, respectively). Moreover, there
is no other invariant structure apart from this trivial equilibrium and the invariant
manifold » = 0. This completes the analysis for this case.

For pipe < O the trivial equilibrium is unstable. In the case where pu; > 0,
the equilibrium has one dimensional unstable manifold and two dimensional stable
manifold. The stable manifold is the invariant manifold » = 0. The situation is
reversed in the case u; < 0. The global dynamics in this case is not clear at the
moment. We will come back to this question in the sections 7, 8 and 9.

For p1p9 = 0, we have again three different possibilities: p; = 0, or o = 0 or
11 = pe = 0. For the purpose of this paper, we consider only the most degenerate
case: p1 = pe = 0. In this case, S = 0 which means S(R) is invariant under the
flow of (4.3). Thus, the trivial equilibrium is neutrally stable. The phase space of
system (4.3) is fibered by invariant sphere S(R) and hence the flow reduces to a
two-dimensional flow on these spheres.

The second invariant is the invariant manifold » = 0. The following theorem gives
us the existence of this manifold in more general circumstances than for (4.3), where
it is trivial.

THEOREM 4.3 (The existence of an invariant manifold). Consider system (4.1),
1.€.

(4.7) P < o 22 )z+F(z),

with z € R, F : R* — R* is sufficiently smooth with properties: F(0) = 0 and
D,F(0) is a zero matriz. The eigenvalues of Ay are: Euq £+ Lwhile for As are:
Epo £ iéw, where w,p; € R, j =1,2 and 0 < € < 1. Let 2 = Fy(z) be a normal
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form for (4.7), up to an arbitrary finite degree k. The flow of the normal form keeps
the manifold M = {z | 212 + 202 = 0} invariant.

PROOF. Let us transform the coordinate by z +— £z. System (4.7) is trans-
formed to
2 = diag(A4,0)z + £F(2;8),
where F' contains also linear term. Consider the algebra of vector fields in R*:
X (R*). Note that we can view the vector field X as a map X : R* — R*. The Lie
bracket in this algebra is the srandard commutator between vector fields, i.e.

(X1, Xo](2) = dXi(2) - Xa(z) — dXa(2) - Xu(2),
where X1, Xy € X(R?*) and z € R*. Let the unperturbed vector field of (4.2) be
denoted by X,. It defines a linear rotation in (z1, z2)-plane. This action keeps all
points in the manifold M = {z|z1? + 2,*> = 0} invariant. We normalize the vector
field corresponding to the system 2z = £F(z) with respect to this rotation. The
resulting normalized vector field truncated to a finite order k: Xz, commutes with
Xo. Thus [X,, Xz] = 0. In particular, for every m € M,
0 = [Xo, Xz](m)

— dXo(m) - X p(m) — dX(m) - Xo(m)

=dXo(m) - Xp(m).
This implies X z(m) € ker(dX,(m)) = M. O

The dynamics in this invariant manifold gives us only a partial information of
the flow. In the next section we re-write (4.3) as a perturbation of a system with a
first integral.

4. The rescaled system

Recall that if y; = pe = 0, system (4.3) has an integral, i.e. S(€). Let € be a
small parameter. We re-scale: pu; = ¢k and pus = —ekg with xK1ko > 0. System
(4.3) becomes

= dxr+err
(4.8) & = Qu-—0r?—ckox
y = —Qx—cekoy,

where @ = w 4+ az + By. We have assumed that w > 0 and § < 0.

LEMMA 4.4. There exists a bounded domain B in phase space such that all
solutions of system (4.8) with 6 > 0, k1 > 0 and kg > 0 enter a bounded domain B
and remain there forever after.

PRrOOF. Consider a function F(§) = r? + 22 + 32 — 2 (Bx — ay) where 7 is a
parameter to be determined later. The level set of F, i.e. F(r,z,y) = c is a sphere,
centered at (r,z,y) = (0,78, —na) with radius \/c + n? (a2 + $2). The derivative of
F along a solution of system (4.8) is

L,F = (2er1 + 21B30) 1% — eko (a:2 + y2) —2n (ax + 6y)2 — L(z,y),
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where L(x,y) is a polynomial with degree at most one. Since k1 > 0, ko > 0 and
0 > 0, we have: 2ex; + 213§ < 0 if and only if n > —ek;/(80) > 0. This means
under the conditions in this Lemma, we can always choose 7 in such a way that the
quadratic part of £,F is negative definite.

Let us fix 7 so that the quadratic part of £, F' is negative definite. Consider (x,y) €
R? and a real number ¢ € R. From equation r2 + (z —na)® + (y +na) = ¢ +
n? (a2 —|—ﬁ2) we can compute r which solves the equation, as a function of x,y,
and c¢: r(x,y;c). Let us define G : R? — R, by assigning to (r,y) the value of
(LeF)(r(z,y;¢),x,y). One can check that G(x,y) has a unique maximum and 9G/0dc
does not depend on x or y. Thus, we can solve dG/dx = 0 and 0G /9y = 0 for (z,y),
and the solution is independent of ¢. Let (2., y,) be the solution of 0G/dx = 0 and
0G /Jy = 0. We can solve the equation G(z, yo; ¢) = 0 for ¢ and let’s call the solution
co. We have G(z,y;co) < 0 for ¢ > ¢,, which implies that £,(F) < 0if F(£) > co. It
follows that every solution enters the ball B = {(r, z,y) | r24(x — n3)*+(y + na)® <
Co + 12 (a2 + 62)} and remains there forever after. O

We cannot apply the same arguments as above if § < 0. In section 7 we will
derive the conditions for bounded solutions in this case. If § = 0, then the dynamics
of r is decoupled from the rest. Moreover, r grows exponentially with a rate: ex;.
Thus, we conclude that all solutions except for those in » = 0, eventually run off to
infinity. If kK1 < 0 and k9 < 0, in the invariant manifold 7 = 0 all solutions run off to
infinity accept for the origin. This motivates us to restrict our self to the case where
k1 > 0 and k2 > 0. To understand system (4.8), first we study the case where € = 0.

FIGURE 1. Three dimensional plot of all of the limit sets of the system (4.9).

5. Two manifolds of equilibria

Recall that we have assumed that w > 0 and 5 < 0 (see remark 4.2). For ¢ = 0,
system (4.8) becomes

r = dxr
(4.9) T = Qy—or?
y = —Qu.

At this point we assume that a # 0, 6 # 0, 8 < 0, and w > 0.
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5.1. A manifold of equilibria in the plane r = 0. There are two manifolds
of equilibria in system (4.9). One of them is the line: Q@ = w4+ az + By = 0 and it
lies in the invariant manifold » = 0. We parameterize this set by y = y., i.e.

(4.10) ) = (0221200 ) g€ (oo,

The eigenvalues of system (4.9) linearized around (4.10), are

6B +@) oy, (02 B B

o @
It is clear that A; is the eigenvalue corresponding to the tangential direction to the
set (4.10). The behavior of the linearized system around the equilibria in (4.10) is
determined by the eigenvalues (4.11). They are presented in figure 2.

(4.11) A =0, =—

A, + i + i -
5<0
A + 3 - 3 -
__Bw Lo %
o + p? B
A, - - ‘ +
5>0
A + - -

FIGURE 2. The above diagram shows the sign of the eigenvalues (4.11)
for a < 0.

REMARK 4.5. If @ = 0 we parameterize the manifold as (r, z,y) = (0, 2., —w/3),
Zo € (—00,+00). Each of these equilibria with 2, > 0 has two positive eigenvalues
(and one zero) and those with z, < 0 have two negative eigenvalues (and one zero).
At z, = 0 we have two extra zero eigenvalues.

5.2. A manifold of equilibria in the plane x = 0. The other manifold of
equilibria of system (4.9) lies in the plane = 0. The manifold is a curve defined
by equation 012 — 8 (y +w/(28))* = —w?/(43), which is an ellipse if § > 0, or
hyperbola if § < 0. This curve (manifold) of equilibria intersects r = 0 at y = 0 and
at y = —w/B. Note that y = —w/[3 is also the intersection point with the line Q =0
which explains why we have an extra zero eigenvalue if y, = —w/f in (4.11).

5.2.1. An ellipse of critical points. Let us now look at the case of § > 0 where
we have an ellipse of critical points. We parameterize the ellipse by v, i.e.

(4.12) (ryx,y) = ( yo(wj;ﬂyo),(),yo>

where 0 < y, < —w/3. The linearized system of system (4.9) around each of these
equilibria has eigenvalues A\; = 0, and Az 3 = 1 (ay. + VD) where

(4.13) D = (ayo)? — 4(w + By) (2(8 + Byo + w)
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The following lemma gives the stability results for these critical points.

LEMMA 4.6. Let o < 0.
(1) If 6 > —B/2 then R(A2,3) < 0 for all except the two end points of the set
of equilibria (4.12).
(2) If 0 < § < —=B/2, then at the equilibrium

B w B+ 26 w
(4.14) (rs, Ts,ys) = <_2(5+ﬁ) H’O’_2(5+ﬂ)>’

A2 = 2ay, < 0 and A3 = 0. Moreover, for the equilibria in (4.12) with
0 < yo < ¥s, R(A23) <0, while for the other equilibria (ys < yo < —w/B),
Ay <0 and A3 > 0.

PRrROOF. Consider D in (4.13) as a quadratic function in y,. If D(y,) < 0
for 0 < yo < —0B/w then the Lemma holds. Let D > 0 and define a function
L(yo) = ((ayo)? — D(yo)) /4 = (w+ Byo)(2(8 + B)yo +w). Note that L(0) =w? >0
and L(—w/B) = 0. If 6 > —3/2 we have L'(—w/B) = —(20 + f)w > 0. Thus we
conclude that D(yo) > (ayo.)?, for 0 < yo < —w/p3.

If § > —3/2, then L'(—w/B) < 0. Thus, there exists 0 < ys < —w/B such that
L(ys) = 0. From the definition of L(y,) we conclude that y, = —w/ (2(6 + 3)).
Since L(ys) = 0 we have D(ys) = (ays)? so that either Ay = 0 or A3 = 0. Moreover,
L'(ys) < 0 so that for 0 < yo < ys, L(yo) > 0. O

5.2.2. A hyperbola of critical points. For the case § < 0, the set of equilibria
(4.12) is a hyperbola with two branches. We call the branch of the hyperbola with
Yo > —w/B: the positive branch and the one with y, < 0: the negative branch.
Recall that the eigenvalues of these equilibria are

ayo + VD ayo — VD

2 2 ’

where D = (ao)? — 4(w + By )(2(8 + B)yo + w). One can see that D is a quadratic
function in y,. It is easy to check that Ao = 0 or A3 = 0 if and only if y, = —w/
of yo = —w/2(6 + ). However, for § < 0 we have 0 < —w/2(d + f) < —w/0.
Thus, we conclude that these equilibria cannot have an extra zero eigenvalue except
for yo = —w/B. Thus, at one of the branches, R(\2,3) are always negative while
at the other branches positive. If a? < 83(§ + ) then for a large value of y,, the
eigenvalues form a complex pair.

A1:0,>\2: ,and>\3:

6. Bifurcation analysis of the energy-preserving system

Since S(R) is invariant under the flow of system (4.9), we reduce it to a two-
dimensional flow on a sphere. Moreover, the upper half of the sphere S(R) is
invariant under the flow of system (4.9). Thus we can define a bijection which
maps orbits of system (4.9) to orbits of a two-dimensional system defined in a disc
D(0,R) = {(x,y)|2®> + y*> < R,?}. This bijection is nothing but a projection from
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the upper half of the sphere S(R) to the horizontal plane. The transformed system
is
i = Qy-06(R?— (22 +4?))

(4.15) J — _Oa

where 2 = w + az + By. Note that the boundary of D(0,R): 2% +y? = R? is
invariant under the flow of system (4.15). We call this boundary the equator.

Let R, = —w/B, R, = w/y/a? + (% and

Rs —_ 26+36

_ w

2(0+08) R
These points are bifurcation points of system (4.15), as we vary R. It is easy to see
that R, < R, < R; if all parameters are nonzero (recall that we have chosen § < 0).

6.1. On the periodic solution of the projected system. For R < Rj,, the
equator is a periodic solution. The period of this periodic solution at the equator is

R
4.16 T(R) =4 L dy.
(4.16) B =4 e

To study the stability of the periodic solution we transform to polar coordinate (p, 0)
in the usual way. System (4.15) is transformed to

p = d(p* — R?)cos(0)

6 = —w—apcos(@)—(ﬁp—%dp—%).

We then compute p’ = dp/df = F(p,0), linearized it around p = R, to have a first
order differential equation of the form p’ = A(#)p. Near the periodic solution (i.e.
p = R), 6(t) is monotonically increasing. Thus, p’ = A(f)p can be approximated by
p' = A°p where

2 2 2
° Antw(—14p°++/1-p2?)
(4.17) A° = OfA(G)de =ad (QQW);;(_HPS) ,

and p = Ry/a2? + (2/w. Thus the periodic solution 2% + y> = R? is unstable if
ad < 0 and stable if ad > 0, respectively. If o # 0, then this periodic solution is the
only periodic solution in the projected system (4.15).

THEOREM 4.7. If a # 0, system (4.15) has no periodic solution in the interior
of D(0, R).

PROOF. Let us fix R < R,. Then there is a unique equilibrium of system
(4.15) in the interior of D(0, R), namely: (0,y,). Define Z = {(0,y)|yo < y < R}
and J = {(0,y)] — R < y < yo}. We write v(x,y) for the velocity vector field
corresponds to system (4.15). If ®(¢;(Z,7)) is the flow of system (4.15) at time ¢
with initial condition (Z,y), we want to show that

for all P € J, there exists t, € (0,00) such that ®(¢t; P) € Z.

Let J’ be a maximal subset of J with such a property. Clearly J’ # () since
®(T;(0,—R)) = (0,R) € T where T < oo is defined in (4.16). Take (0,y) € J’
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arbitrary, writing ®(¢;(0,%)) = (z(t),y(t)), there exists ¢ such that z(f) = 0. If
x(t) = 0, we have ¢(t) = 0, and z(¥) # 0 (otherwise the equilibrium is not unique).
By the Implicit Function Theorem we have: for an open neighborhood A of (0, %)
there exists ¢ (in the neighborhood of t) such that z(¢) = 0. Thus, J' is open in J.
J' is also closed by uniqueness of the equilibrium and the fact that (0,—R) € J.
Thus, we conclude that J' = J (from the definition, J is connected).

Let us define a map X : R? — R? by X(z,y) = (—z,y). Consider I'(t) which is the
trajectory (z(t),y(t)) = ®(t; P), 0 <t < s where P € J and ®(s; P) € Z. Consider
to > 0 such that I'(t,) = (x,y) with « # 0. We have

EXCW)i=te = X ($TO],_,.) = X(EO(te: P) = X (v(x,9)
= —v(-z,y9)+ 2ax(z,—y)"
= VX T(Ol=,) + 202(r, —y)".

Thus the vector field of system (4.15) is nowhere tangent to X (T") accept if o = 0.
Finally, consider the domain with boundary I' U X (I"). The flow of system (4.15)
is either flowing into the domain, or flowing out of the domain. We can make the
domain as small as we want by choosing P close enough to (0, y,) or as big as possible
by choosing P close enough to (0, —R). We conclude that there is no other limit
cycle in the interior of D(0, R).

Let R > R,. If 6 > —[3/2, we can use Poincaré’s theorem that the interior of a
periodic orbit for a planar vector field always contain an equilibrium point, see [19].
He proved this by observing that the index of the vector field along the periodic
orbit is equal to one. This was the first application of his invention, in the same
paper, of the concept of the index of a vector field, which was one of the founding
ideas of algebraic topology. System (4.15) has no other critical points apart from
those in the equator. Thus, the limit cycle could not exists. This idea also applicable
in the case 0 < 6 < —f/2 and R > R,. If R, < R < R, is similar with the case
R < R,. O

COROLLARY 4.8. If o =0 all but the critical solution of (4.15) for R < Ry, are
periodic.

REMARK 4.9. The Bounded-Quadratic-Planar systems

In 1966, Coppel proposed a problem of identifying all possible phase-portrait of the
so-called Bounded-Quadratic-Planar systems. A Bounded-Quadratic-Planar system
is a system of two autonomous, ordinary, first order differential equations with qua-
dratic nonlinearity where all solutions are bounded. The maximum number of limit
cycles that could exists is one of the questions of Coppel. This problem turns out
to be very interesting and not as easy as it seems. In fact, the answer to this prob-
lem contains the solution to the 16th Hilbert problem which is unsolved up to now
(see [6]). System (4.15) is a Bounded-Quadratic-Planar system. From this point of
view, Theorem 4.7 is an important result for our systems. This result enables us to
compute all possible phase portraits of system (4.15).

From the previous section, one could guess that there are three situations for sys-
tem (4.15), i.e. if 6§ > —f/w, 0 < 0 < —w/2, and 6 < 0. For R close to zero but
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positive, the phase portrait of system (4.15), is similar in all three situations. The
equator is an unstable periodic solution and there is only one equilibrium of sys-
tem (4.15). There are three possible bifurcations of the equilibria in system (4.15),
namely simultaneous saddle-node and homoclinic bifurcation, pitchfork bifurcation
and saddle-node bifurcation.

OO0 9%
@@@@@@

@@@@@

FIGURE 3. 1In the upper part of this figure, we present the phase
portraits of system (4.15) as R — oo for the case where § > —f3/2.
Passing through R, one of the equilibria of system (4.15) undergoes a
pitchfork bifurcation. As R passes through R; we have a saddle-node
bifurcation which happens simultaneously with a homoclinic bifurcation.
In the middle part of this figure, we draw the phase portraits of system
(4.15) as R — oo for the case where 6 < —(3/2. In this case, before
pitchfork bifurcation, there is a saddle-node bifurcation at R = Rs. In
the lower part of the figure, there are the phase portraits of system (4.15)
in the case § < 0.

6.2. A simultaneous saddle-node and homoclinic bifurcation. If R passes
the value Ry, system (4.15) undergoes a simultaneous saddle-node and homoclinic
bifurcation (also called Andronov-Leontovich bifurcation, see [13] pp. 250-252). If
R < Ry the equator is a periodic solution. The period of this periodic solution
goes to infinity as R approaches Rj, from below. Exactly at R = R}, the limit cycle
becomes an homoclinic to a degenerate equilibrium (with one zero eigenvalue). This
degenerate equilibrium is created via a saddle-node bifurcation. This is clear since
after the bifurcation (that is when R > Rj) we have two equilibria in the equator
and the homoclinic orbit vanishes.



6 Bifurcation analysis of the energy-preserving system 91

This bifurcation occurs in all three situations of system (4.15). The difference
is that, in the case of § > 0, the limit cycle at the equator is stable while if § < 0
is unstable. This difference has a consequence for the stability type of the two
equilibria at the equator after the saddle-node bifurcation.

6.3. A pitchfork bifurcation. The second bifurcation which occurs also in all
three situation of system (4.15), is a pitchfork bifurcation, which is natural due to the
presence of the symmetry @ : (r,z,y) — (—r,z,y). However, there is a difference
between the cases of § > —f/w, 0 < 0 < —f/w and the cases of § < 0. In the
first cases, the equilibrium which is inside the domain, collapses into the saddle-type
equilibrium at the equator when R = R,,. After the bifurcation (R > R,) a stable
(with two negative eigenvalues) equilibrium is created at the equator. The flow of
system (4.15) after this bifurcation is then simple. We have two equilibria at the
equator, one is stable with two dimensional stable manifold and one is unstable with
two dimensional unstable manifold. The flow simply moves from one equilibrium to
the other. This is the end of the story for the case § > —f/w.

In the second cases (0 < § < —f/w), a saddle-type equilibrium branches out
of the saddle-type equilibrium at the equator, at R = R,. The equilibrium at the
equator then becomes a stable equilibrium with two dimensional stable manifold.

In the third cases (6 < 0), a stable focus branches out of the saddle-type equi-
librium at the equator. After the bifurcation, we have four equilibria, two at the
equator and two inside the domain. Both of the equilibria at the equator are of the
saddle type. One of the equilibria inside the domain is a stable focus while the other
is unstable focus. There is no other bifurcation in the cases where § < 0.

6.4. A saddle-node bifurcation. In the cases where 0 < § < —3/w we have
an extra bifurcation, i.e. a saddle-node bifurcation. Recall after a pitchfork bifur-
cation, inside the domain there is a saddle-type equilibrium. There is also a stable
focus which is always there from the beginning. These two equilibria, collapses to
each other in a degenerate equilibrium, if R = R;. When R > R,, the degenerate
equilibrium vanishes. Therefore, we have a saddle-node bifurcation. We note that
the location of the degenerate equilibrium plays an important role in the analysis of
the normalized system (i.e. for 0 < ¢ <« 1). In the neighborhood of that point we
find a Hopf bifurcation. See section 8.

After the bifurcation, the phase portrait of system (4.15) is again similar with
the cases where § > —3/w. We are left with two equilibria at the equators, one is
stable, with two dimensional stable manifold, and the other is unstable, with two
dimensional unstable manifold.

The phase portraits of system (4.15) are plotted in Figure 3.

6.5. Some degenerate cases. To complete the bifurcation analysis of system
(4.15), let us turn our attention to the degenerate cases. We have three cases, i.e.
a=0,8=0,and § = 0. We only present the analysis for &« = 0. Note that if
a = 0, the vector field corresponding to system (4.9) is symmetric with respect to
the y-axis. Instead of re-doing the whole calculation again, we can also draw the



92 Widely Separated Frequencies ...
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FIGURE 4. The phase portraits of system (4.15) as R — oo for a = 0.
The upper figure is for the case where 6 > —3/2, the middle figure is for
0 < 6 < —p/2, while the lower figure is for 6 < 0.

conclusion by looking at figure 3 and make z-symmetric pictures out ot them. If
a = 0, we have R, = R, which means that the linearized system of system (4.9)
around the equilibrium in the equator is zero when R = R,,. See figure (4) for the
phase-portraits of the system (4.15).

It is quite remarkable to have open domains where all solutions are periodic
and, for some values of the parameters, a complementary open domains in which
all solutions run from a source node to a sink node. In the domain of the periodic
solutions one can construct an integral, an analytic function which is constant along
the orbits and which separates the orbits, whereas in the complementary domain
every integral is constant, equal to its value at the limiting sink and source point.
In this way the x-symmetry leads to an integrability which is only valid in a part of
the phase space. In the periodic domain the solutions of the perturbed system can
be analyzed further by means of the averaging method, which may be an interesting
project for future investigation.

Our next goal is to turn on the perturbation £ to be non zero. An immediate
consequence of this is that S(r,z,y) = R? is no longer invariant under the flow of
system (4.8).
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7. The isolated nontrivial equilibrium

Let us now consider system (4.8) for € # 0, with k1 > 0 and k2 > 0. Recall that
S = 2e(k11? — ko (2% 4+3?)). Putting S = 0 gives us an equation which defines a cone
in D. This cone separates the phase space D into two parts: the inner part where
S < 0 and the outer part where S < 0. If an equilibrium of system (4.8) exists, then
it must lie on the cone.

The location of the nontrivial equilibrium of system (4.8) is

’l”'o(€) _ \/(52(,8/{17§n2)2+(60m175w)2)/{1f42

((Br1—5r2)0)? ,To(e) = —5L,
_ (eaki—dw)k1

and y,(e) = TR
One can immediately see that (4.18) exists if and only if (8k1 — dk2)d # 0.

(4.18)

To facilitate the analysis, let us write (4.18) as &,(¢) = (ro(€), zo(€),yo(€)) and
correspondingly, the variables € = (r,z,y). In the variable & the system (4.8) is
written as € = H(€;¢). Let us also name the cone S = 1172 — ka(22 +32) = 0 as C
and the manifold of critical points (4.12) as €.

Assuming that D¢ H (€,(0)) has only one eigenvalue with zero real part, by the
Center Manifold Theorem, there exists a coordinate system such that around &,(0),
system (4.8) can be written as

(4.19) < ?CL > = ( 1;\1((22 ) + higher-order term,

where A(0) has no eigenvalue with zero real part and A(0) = 0. Let us choose ¢;
small enough such that the real part of the eigenvalues of A(e) remain non zero for
0<e<Le.

Let W. be the invariant manifold of system (4.19) which is tangent to Ej) at
€,(g), where Ej(.) is the linear eigenspace corresponding to A(¢). We note that the
Center Manifold Theorem gives the existence of W,. Also, W} is the center manifold
of £,(0), which is, in our case, uniquely defined and tangent to £ at &,(0). Since &
intersects C at &€,(0) transversally, for small enough 5 we have W,(¢) intersect C at
&, (g) transversally for 0 < e < &5.

Lastly, £ also intersects S(R) transversally, for |[R— || £,(0) || | < ¢ for some
positive number c. This follows from the assumption that DeH (£,(0)) has only one
zero eigenvalue. Thus, there exists €3, small enough, such that W.(¢) intersects S(R)
transversally for |R— || €,(¢) || | < ¢ and 0 < ¢ < 3. Choosing e* = min{e1,e2,e3},
we have proven the following lemma.

LEMMA 4.10. Let us assume that DgH (£,(0)) has only one zero eigenvalue.
There exists 0 < e < 1 such that, for e € (0,e*), the system (4.19) has an in-
variant manifold W which is tangent to Ex) at §,(¢). This invariant manifold

3 )
intersects the cone & = 0 transversally at &€,(¢). It also intersects the sphere S(R)
transversally, for all R, |R— || £,(0) || | < e.

From system (4.19), we conclude that the dynamics in the manifold W, is slow
since A(e) = O(e) if € € (0,e*). The Lemma 4.10 also gives us the stability result for
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the equilibrium (4.18). If € € [0,£*), then the eigenvalues of A(e) remain hyperbolic.
Thus, we can use the analysis in section 4. For the sign of A(e) we have the following
lemma.

y

FIGURE 5. The continuous set of critical points £ for § < 0 and
[ < 0 is plotted on the figure above. The dashed lines represent the cone
C. It separates the phase-space into two parts, the expanding part (the
shadowed area) and the contracting part. There are also three concentric
circles drawn in this figure. The radius of these circles satisfies: R’ <
R<R".

LEMMA 4.11. Consider the system (4.19). For e € (0,e*), we have A(e) > 0 if
(1) 6 <0 and K26 > K10, or
(2) —ﬁm/(2f€1 + K)Q) << —ﬂ/Z
Also for e € (0,e%), Me) <0 if
(1) 6 <0 and ko0 < K10, or
(2) 6 >—=8/2, or 0 <0 < —FkK1/(261 + Ka2).

PROOF. We only prove the first case of the first part of the lemma. The other
cases can be proven in the same way. From Lemma 4.10, we conclude that W,
intersects the cone C transversally. The situation for § < 0, 8 < 0, and K26 > K13,
is drawn in figure 5. The three concentric circles, marked by R/, R and R”, are
the intersection between the sphere S(R’), S(R), and S(R"”) with the plane z = 0
(respectively). Note that max{|R’ — R|,|R" — R'|,|R” — R|} < e. As ¢ becomes
positive, an open subset of £ which contains £, can be continued with € and form
the invariant slow manifold W, with properties described in Lemma 4.10. Thus, we
conclude that inside the shadowed area, the dynamics is moving from S(R) to S(R").
On the other side, the dynamics is moving from S(R) to S(R'), i.e. M) >0. O

In section 4 we left out a question whether the solutions of system (4.8) are
bounded in the case 6 < 0. Using the same arguments as in Lemma 4.10 and the
proof of lemma 4.11, for € small enough we have the following result.

COROLLARY 4.12. If § < 0, @ < 0 and k20 < k18 then the solution of (4.8) is
bounded.



8 Hopf bifurcations of the nontrivial equilibrium 95

PROOF. If 6 < 0, £ is a hyperbola with two branches: the negative and positive
branches. The negative branch is the one that passes through the origin. For oo < 0,
the positive branch is attracting. Moreover, the positive branch is in the interior of
S < 0. This ends the proof. ]

In the next section we are going to study the behavior near the boundary

Ka/k1 = (86 —2(6 + 3))/0.
8. Hopf bifurcations of the nontrivial equilibrium

The most natural thing to start with in doing the bifurcation analysis is to fol-
low an equilibrium while varying one of the parameters in system (4.8). However,
the analysis in the previous sections shows that we have no possibility of having
more than one nontrivial critical point. Thus, we have excluded the saddle-node
bifurcation of the nontrivial equilibrium of our system. Let us fix all parameters but
6. We will use this parameter as our continuation parameter. Recall that we have
fixed 3 <0, a<0,w>0and x; >0,7=1,2.

Let § > —fk1/(2k1 + k2) and consider the system (4.19). By Lemma 4.6, con-
sidering the chosen value of parameters: 8 < 0, @ <0, w > 0 and x; > 0,5 = 1,2,
we conclude that R(A12) < 0, where \p 2 are the eigenvalues of A(0). Using Lemma
4.10, for small enough e, R(A1 2(¢)) < 0 where A1 2(e) are the eigenvalues of A(e).
If § < —fK1/(2k1 + K2), by Lemma 4.10 we have A(¢) > 0 and by Lemma 4.6, we
have A3 > 0.

Unstable non trivial
critical point

Stable non trivial critical
point

N

Hopf curve

FIGURE 6. In the left figure we draw the illustration for the situation
in Theorem 4.13. W, is the center manifold of (0). The three curves la-
belled by Ri, R2 and R, are the intersection between the center manifold
W, with S(R), where the label is the value of R. In the right figure, we
plot the two parameters numerical continuation of the Hopf point that
we found if § > 0. The numerical data for this continuation are: 5 = —6,
w=3,k1 =05, ke =1and e =0.01.
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See the left figure of Figure 6 where we have drawn an illustration for this situ-
ation. At 6 = —fBk1/(2k1 + Kk2) we have the situation where system (4.8) near &,(0)
has a two-dimensional center manifold We. Locally, W, intersect S(R;) transversally
(thus, so does W, for small enough €). At S(Rz), the analysis in the section 6 shows
that there are only two equilibria which are at the equator. It is easy to check that
the dynamics is as depicted in Figure 6. At S(R;), as a equilibrium of system (4.15),
£,(0) has undergone a saddle-node bifurcation. Thus, it splits up into one stable
equilibrium and one saddle type equilibrium, which are drawn using a solid line and
a dashed line respectively. Again, the dynamics at S(R;) is then verified. For € # 0
but small, all of the dynamics is preserved. As an addition, we pick up a slow dy-
namics moving from one sphere to the other which is separated by the cone C which
is the straight line in Figure 6. This geometric arguments show that in the center
manifold W, around &,(g), we have rotations. Thus, as § passes —Bk1/(2k1 + k2),
generically the nontrivial equilibrium undergoes a Hopf bifurcation.

THEOREM 4.13 (Hopf bifurcation I). Keeping f < 0, o < 0, w > 0 and k; >
0,7 = 1,2 fized, the nontrivial equilibrium (4.18) undergoes a Hopf Bifurcation in
the neighborhood of § = —fk1/(2k1 + K2).

REMARK 4.14. It is suggested by this study that if we singularly perturbed a
saddle-node bifurcation we get a Hopf bifurcation. One could ask a question how
generic is this phenomenon. The answer to this question can be found in the paper
of M. Stiefenhofer [20]. Using blown-up transformations with different scaling (this
is typical in singular perturbation problems), it is proved that this phenomenon is
generic.

We check this with numerical computation for the parameter values: o = —2,
f = -6, w=23 Kk =5, ko =1 and ¢ = 0.01. We found Hopf bifurcation in
the neighborhood of § = 2.81 while our analytical prediction is 2.73. We have to
note that from our analysis it seems that the parameter a does not play any role.
However, the location of the nontrivial equilibrium depends on «. This might be
the explanation for the rather large deviation of our analytical prediction of the
bifurcation value §, compared to the numerical result.

We can also vary 1 while keeping § fixed. Again, we find an agreement with our
analytical prediction. In this experiment, we kept « = =2, = —6, w =3, ky =1
and € = 0.01. For § = 2 we found Hopf bifurcation if k1 ~ 0.9343 (predicted by
Theorem 4.13 at k1 = 1). If § = 1.5, we found k; ~ 0.4861 (predicted at k1 = 0.5)
and if 6 =1 at k1 ~ 0.2472 (predicted at k1 = 0.25).

Another Hopf bifurcation happens in the neighborhood of o = 0. This is obvious
from the bifurcation analysis of the system (4.15). We have the following result.

THEOREM 4.15 (Hopf bifurcation II). If § < 0 orif § > —(/2, keeping all other
parameter fived but «, the nontrivial equilibrium (4.18) undergoes a Hopf Bifurcation
in the neighborhood of o = 0.

On the left figure of Figure 6, we have plotted a two parameters continuation
of the Hopf point in (a,d)-plane. One can see that for a large value of §, a Hopf
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bifurcation occurs in the neighborhood of & = 0. This is in agreement with Theorem
4.15. For § < /2 ~ 3 in our experiment, the Hopf curve is almost independent of
« just as it is predicted by Theorem 4.13. We find also another Hopf bifurcation
close to § = 0. This branch actually belongs to the same curve. However, to see this
bifurcation we need to re-scale the parameter which results in a different asymptotic
ordering. We are not going into the details of this.

9. Numerical continuations of the periodic solution

In this section we present a one parameter continuation of the periodic solution
created via Hopf bifurcation of the nontrivial critical point. This is in general a
difficult task to do analytically. Using the numerical continuation software AUTO
[5], we compute the one parameter continuations of the periodic solution.

9.1. A sequence of period-doubling and fold bifurcations. The numer-
ical data that we use are the same as in the previous section: o« = —2, = —6,
w=23, kL =5, kg =1 and € = 0.01. We start with a stable equilibrium found for
0 = 4 and follow it with decreasing . Recall that in the neighborhood of § = 2.81
we find a Hopf bifurcation where a stable periodic solution is created.

We follow this periodic solution with the parameter §. The periodic solution
undergoes a sequence of period-doubling and fold bifurcations. In Figure 7 we plot §
against the period of the periodic solution. Also we attached the graph of the periodic
solutions. For § in the neighborhood of 1.15, the periodic solution is unstable (except
probably in some very small intervals of §). Moreover, the trivial and the nontrivial
equilibria are also unstable. Since the solution is bounded, by forward integration
we will find an attractor. We plotted the attractor and the Poincaré section of the
attractor in the same figure.

The attractor that we found by forward integrating is non-chaotic. All of its
Lyapunov multipliers are negative. It is not clear at the moment whether the at-
tractor is periodic or not. The Poincaré section that we draw suggests that this is
not a periodic solution.

Although a sequence of period-doubling and fold bifurcations usually leads to
chaos, it seems that in our system it is not the case. In order to understand this, we
do a two parameters continuation of the Hopf point. The parameters that we use
are § and . Recall that we have fixed « = =2, § = —6, k1 = 5, and ko = 1.

In Figure 7, we also plotted the result of the two parameters continuation of
the Hopf point using § and €. One can see that as the value of € increases, the
distance between two Hopf bifurcations in parameter space becomes smaller. The
stable periodic solution that comes out of the nontrivial equilibrium via the first
Hopf bifurcation, collapses back into the nontrivial equilibrium via another Hopf
bifurcation. For several values of € we plot the one parameter continuation of the
periodic solution. This result gives us an indication that the sequence of period-
doubling and fold bifurcations in our case is not an infinite sequence. We remark
though that it is still possible that for € small enough, we might still find an infinite
sequence of these bifurcations. We do not have that for € > 0.025.
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FIGURE 7. On the upper-left part of this figure we plot the sequence
of period-doubling and fold bifurcations of the periodic solution. There
also we have attached the periodic solution for four decreasing values of
6. The attractor for 6 = 1.1 is drawn in the lower-left part of of this figure
while in the upper-right part is the the Poincaré section of the attractor.
The numerical data that we use are « = =2, 8 = —6, w = 3, kK1 = 5,
k2 = 1 and € = 0.01. On the lower-right part of the figure, we plot the
two parameters continuation of the Hopf point using € and é. For several
values of ¢, we do one parameter continuation of the resulting periodic
solution.

REMARK 4.16. It is also interesting to note that, based on these numerical
studies, there is an indication that the behavior of the system (4.8) is actually
much simpler if 7 and po are large. This observation is based on the fact that for
e > 0.114, the nontrivial equilibrium is stable. The flow then collapses into this
critical point, except inside the invariant manifold r = 0.

9.2. The slow-fast structure of the periodic solution. Let us now try to
understand the construction of this periodic solution. From the previous discussion,
one can see that exactly at the Hopf bifurcation point, the center manifold of the
corresponding equilibrium is not tangent to the sphere S(R). This means that the
periodic solution that is created after the bifurcation is a combination of slow and
fast dynamics.

In Figure 8 we have plotted the projections to the (r,y)-plane of the periodic
solution for four values of 6. On each plot, there are two dotted lines through
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5=2.8194 5=1.8868.

5=1.4808 5=1.6834.
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FIGURE 8. In this figure we plot the projections to the (y,r)-plane of
the periodic solution for four different values of §.

the origin. These lines represent the cone C. Thus, the location of the nontrivial
equilibrium is in O(e)-neighborhood of the intersection point between one of the
lines with the ellipse £.

This periodic solution is created via Hopf bifurcation at § ~ 2.81. We draw
the projection of the periodic solution at four values of 4, i.e. 2.8194 ..., 1.8868.. .,
1.6834 ... and 1.4808.... We also plotted the ellipse of equilibria and the cone S=0
using dotted lines. As ¢ decreases, the periodic solution gets more loops which is rep-
resented by the spikes in Figure 8. This fits our analysis in section 6 (see also Figure
3). For ¢ = 0 and R > 0 small enough, the equator of the sphere 72 + 22 + y? = R?
is an unstable periodic solution of system (4.9), since a < 0. However, the equator
becomes less unstable when ¢ decreases (recall that the stability of the equator is
determined by «d, see (4.17)). Thus, the smaller § is, the longer the periodic solution
stays near the invariant manifold r = 0.

Recall that as § decreases, the periodic solution described above also undergoes
a sequence of period-doubling and fold bifurcations. Thus, apart from the periodic
solution above, there are also some unstable periodic solutions with much higher pe-
riod. Moreover, the periodic solution that we plotted in Figure 8 is not necessarily
stable.

9.3. Non-existence of orbits homoclinic to the origin. In the system
(4.8), the condition on the saddle value to have Shilnikov bifurcation can be easily
satisfied (see [9] for the condition). However, we cannot have a homoclinic orbit in
the normal form. The reason is quite straightforward. In Theorem 4.3 we prove
that the plane » = 0 is invariant under the flow of the normal form. It implies that
the two-dimensional stable manifold of the equilibrium at the origin is r = 0. Thus,
there is no possibility of having an orbit homoclinic to this critical point.

Moreover, we cannot perturb the manifold away by including the higher order
terms in the normal form. The existence of an orbit homoclinic to the origin in the
full system is still an open question, which is not treated in this paper. Another
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possibility is to add some term that perturbed the invariant manifold » = 0 away.
This can be done by introducing time dependent perturbation, for instance: peri-
odic forcing term or parametrically excited term. These are subjects of our further
research.
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FIGURE 9. In this figure, on the left part we plot the Torus that we find
by continuing a periodic solution. This periodic solution is created via
Hopf bifurcation at § = 2.81 and a = —2. The torus is computed for the
value of a = 6.8. On the rigth-hand side, we plot the two parameters
continuation of the torus (or Naimark-Sacker) bifurcation point, Hopf
point and one branch of the period-doubling point. The vertical axis is
« while the horizontal is J.

9.4. Naimark-Sacker bifurcation. Another interesting bifurcation that hap-
pens in system (4.3) is a torus bifurcation. Recall that the numerical data that we
use are « = —2, = —6, w =3, k1 =5, ko =1 and € = 0.01. At § = 2.81 we find
a Hopf bifurcation, and if we continue the periodic solution by varying 4, we get a
sequence of fold and period-doubling bifurcations as drawn in Figure 7.

Instead of following the stable periodic solution with ¢, we now follow it using
a. Around a = —0.9, the periodic solution becomes unstable via period-doubling
bifurcation. Around o = —0.2, the periodic regains its stability by the same bifur-
cation. Around « = 6.7, the periodic solution becomes neutrally stable. After this
bifurcation, an attracting torus is created and it is drawn in Figure 9 on the left.
This is also known as Secondary Hopf or Naimark-Sacker bifurcation. See [13].

To complete the bifurcation analysis, in the same figure but on the right, we plot
the two parameters continuation of the torus bifurcation, the Hopf bifurcation and
the two period-doubling bifurcations mentioned above. Note that the two period-
doubling bifurcations are actually connected. On that diagram we have indicated
the region where we have a stable nontrivial critical point. Above the torus curve
(the curve where the periodic solution becomes neutrally stable) we shaded a small
domain. In that domain, we can expect to compute the torus numerically. Further
away from the curve, the torus get destroyed and a new attractor is formed.

The torus curve ends in a codimension two point Cds, since its location is
determined by two equations (which are represented by the two curves). There is
still a lot of work that has to be done to be able to say something more about the
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the behaviour near this point. We are not going to do that in this paper. Also,
near this point there is a lot of period-doubling and fold curves which are close to
each other in the (4, @)-plane. It is indeed interesting to devote some studies to the
neighborhood of the point C'ds.

REMARK 4.17. In doing the numerical continuation, we found that to compute
the two-dimensional torus in our system is cumbersome. The computation become
less cumbersome if the value of k1/k2 is not large. For instance, our computation
which results are plotted in Figure 9 is for x1/ke = 5. If we decrease this value, it
is easier to compute the torus since it survives in a larger set of parameters.

9.5. A heteroclinic connection. For § < 0, the nontrivial equilibrium un-
dergoes a Hopf bifurcation in the neighborhood of v = 0. Continuing this periodic
solution using « as the continuation parameter, we find a Naimark-Sacker bifurca-
tion. Apart from this bifurcation, we do not find another codimension one bifurcation
of the periodic solution.

-04  -04 X

FIGURE 10. Heteroclinic connection between the nontrivial and the triv-
ial equilibria. We plot also the attracting periodic solution by a thick line.

If @ < 0, in the previous analysis we show that negative branch of the hyperbola
is repelling. If we choose, ko0 < k18, by Corollary 4.12 we conclude that the
solutions of system (4.3) are bounded. The trivial and the nontrivial equilibria
are both unstable of the saddle type. The trivial equilibrium has two-dimensional
stable manifold W2 (which is » = 0) and one dimensional unstable manifold which
is exponentially close to the negative branch. On the other hand, the nontrivial
equilibrium has two-dimensional unstable manifold W} which is locally transversal
to the negative branch, and one dimensional stable manifold which is exponentially
close to the negative branch.

Generically, W7 intersects W} transversally in a one-dimensional manifold. This
one-dimensional manifold lies in 7 = 0. However, in our system there is no other
limit set in r = 0 appart from the origin. Thus, we conclude that the two manifolds
do not intersect each other. Since the solutions are bounded, we conclude that W}
does not span to infinity. By these arguments, we numerically find an attracting
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periodic solution to where W' is attracted to. Moreover, the one-dimensional un-
stable manifold of the origin is connected with the one-dimensional stable manifold
of the nontrivial critical point. We illustrate the situation in Figure 10.

10. Concluding remarks

We have discussed in this paper the dynamics of a four-dimensional system
of coupled oscillators with widely separated frequencies. In combination with an
energy-preserving nonlinearity, it creates a system with rich dynamics of the slow-
fast type in three-dimensional space. We do not claim that we have completed
the analysis of the dynamics of such a system. However, in this paper we have
presented a large part of it. The normal form of our system can be viewed as a
three-dimensional energy-preserving system which is linearly perturbed. The flow
of the energy-preserving part lives in two dimensional integral manifolds. These
manifold fiber the phase-space.

We have completed the analysis for the energy-preserving part of the normal
form. Although in a sense it is very special, we note that the energy-preserving part
can be viewed as a Bounded-Quadratic-Planar system which has been extensively
studied but in general still contains a lot of open problems. Extending this analysis
for small perturbations, we can get a lot of information of the normal form.

Although we leave out the forcing terms, there is energy exchange between the
characteristic modes of our normal form. The main ingredient that we need for this
energy exchange is pipo < 0. Physically, this means one of the modes should be
damped while the other is excited. This, however, is not a restrictive condition since
if both modes are damped (or excited), clearly one would need an energy source (or
an absorber) to have energy exchange.

In relation with the results in [8, 24] on how to prove that a three-dimensional sys-
tem of differential equations is non-chaotic, we note that our system is more complex
than theirs. The studies in [8, 24| are concentrated on nonlinear three-dimensional
systems having only at most 5 terms. Our normal form contains 11 terms. So far
in our analysis we don’t find chaotic behavior. It is evident in our system that we
cannot have homoclinic orbits. This excludes the Shilnikov’s scenario for a route to
chaos. Thus, whether our system is chaotic or not is still an open question. It is also
interesting to note that torus (or Naimark-Sacker) bifurcation usually is followed
by a lot of chaos in the system, in the presence of homoclinic tangencies (see for
instance [3]). This may provide us with a way to find chaotic behavior in our system.

We leave out several interesting questions from our analysis. Below we have listed
several open questions.

The invariant manifold » = 0 can be perturbed away by perturbing the systems
with small periodic forcing term or a parametrical excitation term. In the absence
of this invariant manifold, we might find homoclinic orbit that could lead to a lot
of interesting dynamics. The complication is, we have to analyze a 4-dimensional
normal form.
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The behavior (dynamics) of the system near the codimension two point: Cds is not
analyzed in this paper. This type of codimension two point is treated carefully in
the book by Kuznetsov [13]. One could for instance follow the periodic solution
around the point C'dy and compare the result with those studied in [13].

The global dynamics in the case of the absence of the nontrivial equilibrium is also
an interesting case. This will be treated in a sequel to this paper.
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CHAPTER 5

Heteroclinic behaviour in a singularly perturbed
conservative system

ABSTRACT. This paper is a sequel to [17], where a system of coupled oscillators
with widely separated frequencies and energy-preserving quadratic nonlinearity
is studied. However, in this paper we are more concerned with the energy-
preserving nature of the nonlinearity. We also study a singularly perturbed
conservative system in R™, which is a generalization of our system, and derive a
condition for the existence of nontrivial equilibrium of such a system. Returning
to the original system we start with for a different set of parameter values
compared with those in [17]. Numerically, we find interesting bifurcations and
dynamics such as torus (Naimark-Sacker) bifurcation, chaos and heteroclinic-
like behaviour.

Keywords: High-order resonances, singular perturbation, bifurcation.

1. Introduction

In this paper we study a three-dimensional system of ordinary differential equa-
tions. This system is derived from a system of two-coupled oscillators with widely
separated frequencies and quadratic energy-preserving nonlinearity; see [17] for the
derivation.

The assumption of wide separation in the frequencies, implies that the linearized
system of coupled oscillators consists of a slow oscillation (with frequency & < 1)
and a fast oscillation (with frequency 1). We average out the fast oscillation. After
averaging, we can reduce the system to a three-dimensional system of differential
equations, which is typical for autonomous systems. The energy-preserving nature
of the nonlinear terms can be preserved during averaging. These averaged equations
are the equations that we are going to study in this paper.

1.1. Motivations. In [17], we study a system of coupled oscillators with widely
separated frequencies with special attention to the internal dynamics. Studies of such
a system in the literature are lacking. One would find some studies on systems of
coupled oscillators with widely separated frequencies, which are, either, parametri-
cally excited or externally excited. See for instance [14, 15, 11].

Another motivation comes from applications in atmospheric research, where one usu-
ally encounters the Navier-Stokes equation as a model; see [3]. A finite-dimensional
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system of ordinary differential equations can be derived from the Navier-Stokes equa-
tion, using for instance the Galerkin projection or using Empirical Orthogonal Func-
tions. The projected system is a system of coupled oscillators, where we could have
interactions between oscillators with any frequency combination.

The nonlinear terms in our system are assumed to have an energy-preserving prop-
erty. It is then natural to view the system as a perturbation of a conservative system.
It is singularly perturbed since after the perturbation the system has no longer a
conserved quantity. Obviously, the perturbation should be small in order to see
the relation with the unperturbed situation. In our case, the perturbations are the
linear dissipation terms. Thus, it is natural to consider small (positive or negative)
damping in fluid dynamics.

1.2. Comparison with [17]. We have presented a complete analysis of the
energy-preserving part of the system in [17]. A relevant part of that analysis will be
presented again in this paper for reasons of completeness. Based on the analysis in
[17], there are two important bifurcation parameters in the system: « and §. The
parameter « is one of the parameters which measures the self interaction in the slow
oscillator (or slow modes). This parameter is also the symmetry breaking parameter:
if & = 0 the energy-preserving system has a miror symmmetry. The parameter §
measures the interaction between the slow and the fast modes.

Apart from the trivial equilibrium, we have in general a unique nontrivial equi-
librium. This nontrivial equilibrium does not exist if there is no interaction between
the slow and the fast modes (thus ¢ = 0), or in the presence of a particular insta-
bility balance between the modes'. In [17], we have neglected these two cases. The
reason for neglecting the first case is obvious. In the absence of modes interactions,
we could not expect to have energy exchange. As a consequence, the damped mode
will die out and the other will explode, eventually. This case is also neglected here;
although we have realized that if § is small something else might occur.

For § > 0, we have described the dynamics and the bifurcations in the normal
form in details in [17]. In this paper, we consider the other case: ¢ < 0. The
difference between the two is that in the case of § > 0 and § < 0 the unperturbed
system has an ellipse and a hyperbola of equilibria, respectively. It seems not much
of a difference, but in this paper we show that this has some other interesting
consequences for the dynamics.

1.3. The layout. In section 2 the three-dimensional system of ordinary differ-
ential equations is introduced. We generalize this system in section 3. In this general
system, we present a general statement on the existence of nontrivial equilibrium.
Sections 4 and 5 are the results from [17] which are relevant with the setting of this
paper. The main results of this paper are presented in section 6, where we have
done numerical exploration of the system using the numerical continuation software
AUTO [5]. We end this paper with some concluding remarks and open problems.

IWe will clarify what we mean by this in section 6
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2. Problem formulation

Consider R? with coordinate & = (r,x,%). In R3, a system of ordinary differential
equations is defined, i.e.

(5.1) £=G()+DE,
where
dxr
G&)=| Qa,yy—or* |, Qa,y)=w+az+ Py,
7Q(I,y)ﬂj

D is a three by three diagonal matrix: diag(p1, pe, p2), 1, p2, &, 3, w, and § are real
numbers. The phase space of system (5.1) is actually D = {& | » > 0}. This is
due to the fact that system (5.1) is symmetric under the transformation: (r,x,y) —
(—r,z,y) and r = 0 is invariant under the flow of system (5.3). We assume that 5 <
0. This is not restrictive since the system (5.3) is invariant under the transformation:
(r,x,y) — (r,—x, —y) in combination with the transformation: (a, 83,9, w, 1, ug) —
(—0[, _/87 _57 W, K1, ﬂ2)

By a straightforward computation, it is easy to see that: £&7G(£) = 0. This
means that the function:

(5.2) SE) =r*+2*+y%

is invariant under the flow of € = G(€). Thus, the phase space of £ = G(£) is fibered
by invariant spheres which are the level sets of the function S(&).

Based on these observations, it is natural to consider p; and ps to be small
compared to the other parameters. We re-scale: pu; = ex; and pus = —eka, where
g < 1. The system (5.1) becomes

(5.3) & = G(€) + e diag(r1, —k2, —k2) &,

where k1K > 0. The choice of : ps = —eks is made due to the following reason. If
pip2 > 0 then % (8) along the solutions of (5.3) is either negative or positive semi-
definite everywhere in phase space. Thus, it defines a global Lyapunov function for
the trivial critical point. As a consequence, all solutions are attracted to the trivial
critical point either for positive or negative time. To avoid this trivial dynamics, we
assume puqpue < 0. Furthermore, we assume that both k; and ko are positive. This
is due to the fact that if ko < 0, in the manifold r = 0 all solutions except the origin
are unbounded.

Let K = diag(x1, —k2, —2) and we define a function: K(£) = €T K€. The zero
level set: K(€) = 0 defines a two dimensional manifold if xk1k2 > 0 and & # 0. This
manifold separates the phase space into: D+ and D~. In DT we have % (S) along
the solutions of (5.3) is positive. Respectively, in D we have 4 (S) is negative.
System (5.3) is a linearly perturbed conservative system (with S as the conserved
quantity). In the next section, we generalize this and derive some properties of such

a system.
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3. On singularly perturbed conservative systems

Consider R™ with coordinate & = (£1,...,&,). Let X and Y be smooth vector
fields which are defined in R™, satisfying: X (0) = Y (0) = 0. Consider a function
H : R™ — R (which is at least twice continuously differentiable) with properties:
H(0) = 0, dH(0) = 0 and d>H(0) is negative definite, where d is derivation with
respect to €. Consider a system of first-order differential equations

(5.4) &= X(€) +Y(8),

where ¢ < 1. We assume that: dH (€ - X (&) = 0 (where “” denote the dot product
in R™).

Locally near 0, by Morse Lemma, there exists a transformation & = @(é), such
that H (&) = H(®(€)) =|| € |2, where || - || is the Euclidean norm in R™. This
nonlinear coordinate transformation brings system (5.4) to

(5.5) €= X(&) +V(€),

where é . X’(é) = 0. This also means that, in an open neighborhood of 0, the phase
space of (5.4) for e = 0 is regularly fibered by invariant manifolds H (&) = h which
are diffeomorphic to S"~!, except for the origin where the fiber is a point. We
restrict ourselves to the domain: U where the fibers are regular and the origin has
been included.

Let us define a function G : R — R by
(5.6) G(§) = dH(E) - Y ().

Note that the time derivative of the function H(&) along the solutions of system
(5.4) is eG(&). Let the zero set of the function G be

(5.7) C={£]G(E) =0}

We assume that C\{0} is not empty. This assumption is natural because otherwise,
the time derivative of H (&) along the solutions of system (5.4) is sign definite which
implies that there is no other limit set apart from the origin. Secondly, we assume
that dG (&) # 0,V€ € U\{0}. This guarantees that C\{0} is an (n — 1)-dimensional
manifold. The manifold C separates U into U™, where the time derivative along
the solutions of system (5.4) is positive, and U ~, where the derivative is negative.
Furthermore, we assume that the manifold C\{0} intersects the level sets of H
transversally in U : dH (&) - dG(€) # 0 at every € € (U UC) \{0}.

For ¢ = 0, system (5.4) is a conservative system with H as its conserved quan-
tity. The system is singularly perturbed. Locally at every point in phase space, we
can choose the coordinate (h, ), such that system (5.4) can be written as

}11' = €Yh(h’a C)
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where h is the coordinate on the transversal direction to the level sets of H(£) and
¢ is the coordinate on the level sets. The motion on each level set of H is our fast
dynamics while the slow dynamics is the motion from one level set to the other.

Let € = 0. Let us write the level set H(&) = h as Lj,. This level set is diffeo-
morphic to S"~!, and therefore it is compact. For a vector field in S"~!, we can
use the theory of the degree of vector fields to conclude that if (n — 1) is even, then
every vector field on S™~! vanishes somewhere. See for instance [7, 10]. Let p, be
a critical point of X, for a fix h. Since Lj is compact, there exists m; such that
I € ||< my for all & € Ly. Since mp, — 0 as h — 0, then || p,, ||— 0 as h — 0.
It interesting to note that the above discussion does not lead to the existence of a
connected set of equilibria going through the origin. One need somewhat more than
just the topological property in order to prove the existence of such a set.

Let us now turn on our perturbation parameter: £ # 0. The following theorem
gives the existence of a nontrivial equilibrium of system (5.4).

THEOREM 5.1. Let £° be a connected open subset of € consisting of of critical
points of the vector field X in system (5.4) which are hyperbolic in the corresponding
level sets of H. If C (which is defined in (5.7)) is a codimension one manifold in
R™ and the intersection (which is not at the origin) between E° and C is transversal,
then system (5.4) has a nontrivial equilibrium in the neighborhood of the intersection
point.

PRrROOF. Let &,(0) # 0 be the intersection point between £° and C. Then &,(0) is
hyperbolic on the corresponding level set of H(&). By the Center Manifold Theorem
(see [13] pp. 157-162) there exists a one-dimensional center manifold of &,(0) which
persists also for small ¢ # 0. Clearly the center manifold for ¢ = 0 is tangent to £°
at €,(0). Therefore the center manifold for small enough ¢ intersects C transversally.
The intersection point between the center manifold for e # 0 and C is an equilibrium
of system (5.4), because a part of the center manifold lies in &/ while the other part
isinU~. (|

If the intersection between £° and C is not transversal, in general we cannot
prove the existence of a nontrivial equilibrium. This situation could also correspond
to the existence of two equilibria which collapse to each other as € goes to zero.
Let &, be an equilibrium of system (5.4) which depends smoothly on €. In other
words, we assume that the limit as € goes to zero exists. It is reasonable to assume
this since if it is not the case, then the unperturbed system has no information about
the behavior near that particular equilibrium. That kind of situations are not of our
interest.

COROLLARY 5.2. The nontrivial equilibrium of system (5.4), &, goes to the
intersection point £° N C as € goes to zero, provided the limit as € goes to zero is
finite.

PROOF. Since 4 (|| &,(¢) |*) = 0, Ve then &,(¢) € C, Ve. Therefore the limit
lim, o+ £,(c) = £,(0) € C. Since €,(0) € £° then £,(0) € £° N C. 0
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Back to system (5.1). The conserved quantity H (&) in system (5.1) is the function
S(&). The function G is the function K. The domain U is the whole phase space
D. Since n = 3 in our case, the set of equilibria of system (5.3) for € = 0 can be
computed explicitly. There are two sets of equilibria of system (5.3) for e = 0. One
of them contains the origin. We will describe this in details in the next section.

4. The fast dynamics

In this paper we assume that § < 0, w > 0 and 8 < 0. Since the dimension of the

FIGURE 1. In this figure, the limit sets of system (5.3) for € = 0, are
presented. Rj and R, are two bifurcation values. See the text for the
definitions.

system is low (n = 3), we can explicitly compute the sets of equilibria of system (5.3)
for e = 0. One of these sets is determined by the equation: 672 — 3 (y + w/(28))* =
—w?/(4/3), which is a hyperbola and is denoted by H. There is another set of
equilibria characterized by equation: 2 = w + ax + Sy = 0 which is a line in the
manifold » = 0. The stability result of each of these equilibria can be obtained by
studying the linearized system around the particular equilibrium and it is done in
[17].

Using the same technique as in [17], we can project the system (5.3) for e = 0, to
a two-dimensional system of differential equations defined on D(0, R) = {(x,y)|2? +
y? < R?} to itself:
T = Qy—é(RQ— (x2+y2))

(5.8) P~ on

by transforming (r,z,y) — (R,z,y) with R? = 72 + 22 + y2. Usually, such a
transformation does not define a one to one transformation. In our case it does
since our phase space is D = {£|r > 0}. Since R =0, we consider R as a parameter
in our projected system. There are two bifurcation points: R, = —w/3 and Ry =
w/+/a? 4+ 32, corresponding to the values of R where an equilibrium of system (5.8)
undergoes a pitchfork bifurcation, and simultaneous homoclinic and saddle-node
bifurcation, respectively.
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PR

R,- R,

FIGURE 2. The complete the phase portraits of the projected system
(5.8). In the upper part of this figure are the phase portrait if @ < 0 and
in the lower part are for a = 0.

The hyperbola of equilibria H consists of two branches: the positive branch H™
and the negative branch H~. If a < 0, the positive branch is attracting while the
negative branch is repelling. In [17], we prove that there is no periodic solution
in the interior of D(0,R) if @ # 0. By this, we achieve the complete pictures of
dynamics of system (5.8). The phase portraits of system (5.8) for various values of
R, are drawn in figure 2.

5. Nontrivial equilibrium

Let us now consider system (5.3) for € # 0, with x1 > 0 and k2 > 0. Recall that
K(&) =¢"KE, and K(&) = 0 gives us a cone: C, which separates the phase space D
into two parts: the part where S < 0 and the part where S <0.

The intersection (which is not the origin) between the hyperbola of equilibria
‘H and C is transversal. Moreover, as a critical point of system (5.8), all except
those which are in r = 0 of the equilibria in H are hyperbolic. By Theorem 5.1,
there exists a nontrivial equilibrium of system (5.3). The location of this nontrivial
equilibrium is given by
role) = O S P,

To(e) = —e%, and yo(e) = %.

Clearly, (5.9) exists if and only if (Sk; — dk2)d # 0 which correspond to the situa-
tion where the intersection of the sets of equilibria and the cone C is only the trivial
equilibrium.

(5.9)

Following the analysis in [17], we can use the Center Manifold Theorem around
&,(0) to write system (5.3) as

(5.10) ( ?: ) = ( 1;\1({32 ) + higher-order term,
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where A(0) has no zero eigenvalue and A(0) = 0. Using transversality of the inter-
section between H and C, in [17] we proved the following lemma.

r

-w/B

FIGURE 3. The continuous set of critical points H for § < 0 and
08 < 0 is plotted on the figure above. The dashed lines represent the cone
C. It separates the phase space into two parts, the expanding part (the
shadowed area) and the contracting part. There are also three concentric
circles drawn in this figure. The radius of these circles satisfies: R’ <
R<R".

LEMMA 5.3. Consider the system (5.10). There ezists €* such that for ¢ €
(0,e%), we have either X\(€) > 0 if kod > k13, or Me) < 0 if ked < k13. Moreover,
if @« <0 and k20 < k18 then all solutions of (5.3) are bounded.

The idea of the proof is based on the Center Manifold Theorem: there exists
a center manifold W, which intersects the cone C transversally (since Wy which is
equal to either H* of H~, intersects C transversally) for small enough €. A part of
W, is in DT and a part of it is in D~. See figure 3 for an illustration of the case:
ko0 < k1. Since inside the shadowed area, the dynamics is moving from smaller
spheres to bigger spheres, we can conclude as it is stated in the lemma.

If ko8 < k13, HT is in the interior of D~. If « < 0, KT consists of equilibria cor-
responding to global attractors of the projected system for large value of R. Again,
we can argue that for small enough e this hyperbolic property can be preserved.
As a consequence, for large R the flow collapses to a neighborhood of H* and then
follows the slow dynamics to go to smaller spheres. Thus, all solutions are bounded.

6. Bifurcation analysis

Now we introduce a new parameter v into the system (5.3) by setting:
L

K2

The idea of introducing this parameter comes from the following observation. In
[17] we recognized a manifold in the parameter space where the system (5.3) has no
nontrivial equilibrium. This manifold is characterized by the equation: k90 — k108 =

(5.11) 5=
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0. Recall that k1 and k5 are the two parameters that measure the damping in the fast
oscillation, and the energy input to the slow oscillation, respectively. The parameter
6 measures the interaction between the fast and the slow oscillations, while 3 is one
of the parameters that measures the self interaction in the slow oscillation. What we
mean by a particular instability balance in the introduction, is the situation when
ko0 — k13 = 0 holds.

The trivial equilibrium, on the other hand, is unstable. By Lemma 5.3 we know
that the solutions of system (5.3) are bounded for small . Thus, it is interesting to
study system (5.3) if ¥ = 0. One of the goal of this paper is to study the behavior of
system (5.3) when v = 0. Recall that we assume that 6 < 0. Thus, v < —fk1/ke.
In fact, we should not let v become to close of —(k1/k2 because it corresponds to
the neighborhood of 6 = 0.

There are other possibilities of introducing the parameter v apart from what is
defined in (5.11). We could have eliminate 8 instead of §. If we do that, when we
vary v we also implicitly vary 8. Recall that the minimal distance between H* and
H™ is —w/B. Thus, when we vary 3 we either push HT away from or pull it closer
to H~. We could also eliminate one of the x;, j = 1,2. This amounts to increasing
or decreasing the angle 6 in Figure 3. By eliminating d, as we vary v we vary the
eccentricity of the hyperbola. This is convenient for our purpose. This fits in with
the study in [17] which shows that J is an important parameter in system (5.3).

We start with both a and ~ negative. In Figure 4, we are in the shaded domain
labeled by I. In this domain we have a stable nontrivial equilibrium. We can follow
this equilibrium using ~. As v approaches zero, this equilibrium goes to infinity
without undergoing any bifurcation. This is also the case if we start in the shaded
domain I'V where we have an unstable equilibrium instead.

6.1. Hopf bifurcation. Let us follow the equilibrium using the second param-
eter: a. We follow the stable equilibrium from I to IT in Figure 4. For the numerical
data, we have used: f = —2, k1 = 2, ko = 1, w = 3 and ¢ = 0.025. As noted in
[17], the nontrivial stable equilibrium undergoes a Hopf bifurcation near o = 0.
For v < 0, a stable periodic solution is branching off this stable equilibrium. The
equilibrium then becomes of a saddle type with one-dimensional stable manifold and
two-dimensional unstable manifold.

On the other hand, following the nontrivial equilibrium with « from domain
IV to IIIb, it also undergoes a Hopf bifurcation. However, an unstable periodic
solution is branching off the unstable equilibrium. The equilibrium then becomes of
a saddle type with two-dimensional stable manifold and one-dimensional unstable
manifold.

We have mentioned that it is not of our interest to follow the equilibrium using
v to cross v = 0. However, this is not the case with the periodic solution created via
Hopf bifurcation. So far, we know that in domain I71b we have an unstable periodic
solution created after Hopf bifurcation. On the other hand, in domain I we have
a stable periodic solution. The first question is, are these two periodic solution
actually connected (and therefore we can continue one into the other)? Secondly, if
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Hopf bifurcation 7
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FIGURE 4. In this figure we draw the situation in (v, a)-space. In the
domain labeled as I, we have a unique nontrivial equilibrium which is
stable. Crossing the line labeled as Hb, into region II. this equilibrium
undergoes a Hopf bifurcation. In region I, near the line labeled as NS,
one would find an unstable torus and a strange attractor. The unstable
torus collapses into the periodic solution in the line labeled as NS via a
Torus bifurcation and collapses into the strange attractor as v becomes
smaller. Crossing v = 0 the nontrivial equilibrium goes to infinity and
returns by another branch of H. Crossing the line Hb again, the unstable
periodic solution collapses into the equilibrium via Hopf bifurcation. In
1V, we have unstable equilibrium and no periodic solution.

they do connect, then there must be a bifurcation happening in between when we
follow the periodic solution from domain I to I11.

6.2. Torus bifurcation and an unstable torus. We follow the periodic so-
lution created via this Hopf bifurcation from domain I7 to I1] using v. We found
a torus bifurcation which is also known as a Secondary Hopf or Naimark-Sacker bi-
furcation. We continue this point using two parameters continuation with « and 7.
The result is a curve which is drawn using a thickened line and labeled as N S.

Crossing the curve NS from I1 to I11a, the periodic solution undergoes a torus
bifurcation. It changes it stability from stable into unstable periodic solution. Then
there are two possibilities. Either a stable (attracting) torus is created and lives in
the domain I11a, or an unstable torus collapses into the stable periodic solution and
therefore, the unstable torus lives in the domain /7. It turns out that the latter is
the situation in our case.

For illustration, we study the situation for « = —1. Starting in the neighborhood
of the stable periodic solution, we do backward integration. We end up in the nearest
negative attractor. This attractor is plotted in Figure 5, for several values of . The
unstable torus appears as a close loop in the figure. Until v = —2.5 we are still able



6 Bifurcation analysis 117
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FIGURE 5. Poincaré section of the unstable Torus in system (5.3) for
different values of =y, while « is fixed: @« = —1. At v = —3.5 the unstable
torus has been deformed.

to see that the unstable torus persists. For smaller v, for example v = —3.5, the
unstable torus is deformed.

6.3. A strange attractor. The two-dimensional unstable torus separates the
phase space into two parts. The stable periodic solution is in the inner part of the
torus. Therefore, the stable periodic solution cannot be a global attractor. However,
all solutions are bounded. Thus, near the unstable torus but in the outer part of
it, the solutions are pushed away from the torus. By forward integration, we find

strange attractor

o
04 \\
unstable torus

stable periodic
solution

07 07 06 -03

FIGURE 6. In the right-hand figure we draw the strange attractor, the

unstable torus and the stable periodic solution for the case v = —2 and
a = —1. In the left-hand figure, we draw the Poincaré section of these
objects.

another attractor of the system (5.3).

See for instance in Figure 6 where we have plotted the situation for v = —2.
From the plot of the Poincaré section near the periodic solution (see the right-hand
figure of Figure 6), one can see that the attractor is not a torus but more complicated.
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We compute the Lyapunov exponent of the attractor and find one positive exponent.
Thus we have found a chaotic strange attractor.

a=—1,~v= -2 -0.5 0 2
Positive Exponent 0.0090... | 0.0088... | 0.0085... | 0.0061...
Kaplan-Yorke Dimension | 2.7390... | 2.5851... | 2.5333... | 2.3051...
v=0,a= —10 -2 —0.5 —0.1
Positive Exponent 0.0037... ] 0.0052...|0.0111... | 0.0133...
Kaplan-Yorke Dimension | 2.1192... | 2.3704... | 2.6148... | 2.7483...

TABLE 1. In this table we listed the positive exponent and the Kaplan-
Yorke dimension of the strange attractor for different values of the pa-
rameters. The upper part of the table is for fixed « = —1 while the lower
is for fixed v = 0.

6.3.1. The creation and the destruction of the strange attractor. A strange at-
tractor is usually defined as the closure of the intersection between the unstable
manifold of the existing invariant structures. Recall that in domain I7, the non-
trivial equilibrium is of the saddle type, with one dimensional stable manifold and
two-dimensional unstable manifold. The center manifold of the Hopf bifurcation (at
a = 0) is tangent to the sphere. Thus, the unstable manifold of the nontrivial equi-
librium intersects the cone C transversally. Moreover, since all solutions are bounded
(by Lemma 5.3), this invariant manifold is not spanned to infinity. Apart from the
unstable equilibrium, in domain I7 we might also have a co-existing unstable torus.
If these two unstable invariant structures co-exist then a strange attractor is created.

Still in domain 17, further away from the Torus bifurcation line: NS, the unsta-
ble torus is deformed. What is happening in our system in general, as the unstable
torus is deformed is not clear at the moment. Further investigation is necessary.
However, for a = —1 and v = —3.25, the unstable torus is already deformed into a
strange repellor (or a strange attractor for negative time). The Lyapunov exponents
of this strange repellor are 1.4050...-1074, —2.9685...-10~% and —8.6427...-1075,
with Kaplan-Yorke dimension of 2.1822. ... It is interesting to note that, the strange
repellor inherits the property of the unstable torus: being the separatrix between
the domain of attraction of the stable periodic solution and the domain of attraction
of the strange attractor. Moreover, it has a fractal structure. Because this strange
repellor has a positive Lyapunov exponent, it is also chaotic. However, we note that
the positive exponent is close to zero. For illustration, see Figure 7.

In Table 1, we listed the positive Lyapunov exponent of the attractor for several
combination of parameters. Keeping « fixed: o = —1, this positive exponent de-
creases to zero as y decreases. We suspect that this is due to the fact that for smaller
~ the unstable torus is deformed into the negative strange attractor and after that,
the strange attractor and the strange repellor collide and vanish. The flow might
stay in the neighborhood where the strange attractor used to be for some time, it
shows a transient chaotic behaviour, before the solutions escape from it and go to
the periodic solution.
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FIGURE 7. Poincaré section of the strange attractor (o) and the strange
repellor (x). This figure is computed for @ = —1 and v = —3.25.

In contrast with the situation for v < 0, in the other side (domain ITIb) it is
not very clear what is the fate of the strange attractor. The solutions of system
(5.3) for v > 0 are not all bounded. We still managed to compute the strange
attractor for v = 2 and its positive Lyapunov exponent. The construction of this
strange attractor is also different. The unstable invariant structures in this case are:
an unstable periodic solution and two equilibria. We have to note, that in domain
IIIa the nontrivial equilibria is unstable with two dimensional unstable manifold.
In domain I11b, the nontrivial equilibria is also unstable, but with one dimensional
unstable manifold. We also present a study when v = 0, where we only have on
unstable equilibrium. See Table 1.

Another way of destroying the strange attractor is by crossing o = 0. However,
we have to make sure that we are still close enough to the N.S line. This is possible
if we are near the point (a,y) = (0,0). The evidence that we found from our numer-
ics indicates that in the neighborhood of a = 0, if the strange attractor still exists,
then the size (dimension) is large. In Table 1, for example, we can see that the size
of the strange attractor for y = 0 and o« = —0.1, is large: 2.7483.... For v = —1 and
a = —0.1, the Kaplan-Yorke dimension of the attractor is even larger: 2.9085....
Further study is needed to clarify the relation between o and the dimension of the
strange attractor.

6.3.2. Heteroclinic-like strange attractor. Let us set v = 0. Thus, we are in the
situation where system (5.3) has only one equilibrium, which is of a saddle type.
Moreover, from the analysis above one can see that the other limit set: the periodic
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solution, is also unstable. After some time, the flow of system (5.3) stays in the
neighborhood of the strange attractor.

For several values of a we compute the Lyapunov exponent. The results are
listed in Table 1. At o = 0.1 we find a strange attractor which has a relatively
large positive Lyapunov exponent; see 1. Thus, near that point the system is most
chaotic. When we decrease «, the positive exponent gets smaller. The shape of the
attractor is changed and looks almost like a heteroclinic orbit between two saddles.
See Figure 8. In the right-hand figure of Figure 8 we draw the graph of log(r) against

log(r)

FIGURE 8. The heteroclinic-like strange attractor for v = 0 and o = —10.

V22 + y2. We have similar phenomena as found in [17]. In [17] we found an orbit
which is very close to a homoclinic orbit but is not a homoclinic orbit. We like to
underline that, although numerically the values of log(r) in the figure look unreli-
able (they seem to be below the machine precision), they are reliable. The reason
is because what we numerically integrate is the system (5.3) after transformation

(r,z,y) = (p =log(r),z,y).

To understand the creation of this heteroclinic-like attractor, we need to study the
relation between the parameter o with the dimension of the strange attractor. Recall
that « corresponds to the real part of the eigenvalues of equilibria of the unperturbed
system.

Let us consider the solutions of system (5.3) which are, neither fixed by the
flow nor periodic. They will get attracted to the neighborhood of HT (because it
corresponds to stable equilibria for ¢ = 0). They will flow into the neighborhood
of the origin (because H™ C D~). After sometime, they will get into D and start
moving outward from the origin; this time they follow H~. Eventually, they will
lift off from the neighborhood of H~ and return to the neighborhood of HT. How
long they stay in near H~ depends on how close they were to the plane r = 0 and
how small (or large) oo < 0 is. The longer they stay near H ™, the higher the value
of r that they reach. However, since the solutions are bounded, we know that there
exists a maximum value for r. If « is close to zero (but negative), the manifolds
H~ and HT are less repelling and less attracting, respectively. As a consequence,
it is much easier for the solutions to lift off from H~. Thus, we expect to have a
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large attractor and vice versa. As we mentioned earlier, a further study is needed
to clarify this.

REMARK 5.4. One might wonder how the situation would be in the case when
H is normally hyperbolic. Using Fenichel theory ([6]), we could derive the existence
of an invariant slow manifold. One would then be able to prove the existence of
homoclinic and heteroclinic orbits. See for example [9].

7. Concluding remarks

7.1. Regimes transitions in the atmosphere. As we have mentioned, the
physical origin of our system is in atmospheric research. The phenomena of regime
transitions is relatively well-known since around 1979. The mechanism of this be-
haviour, however, is not clearly understood. Up to now, there is no mechanism for
this regimes behaviour which is generally accepted among atmospheric scientists.
Some believe that it is due to the noise in the model (stochastical approach). In [4]
it is shown that the model investigated there could produce the desired behaviour.
The key observation in [4] is the existence of a heteroclinic connection.

In relation with this question, this paper supports the idea that this regime
transition can be produced by a deterministic model. Even more, in this paper we
provide evidence that the heteroclinic-like behaviour could still be profound although
there are no longer two saddle equilibria of the system. The ingredients that we need
to create this behaviour are wide separation in the frequencies and energy-preserving
nonlinearity.

Furthermore, the heteroclinic-like behaviour in our system occurs in large open
set of the parameter values. This means that it is quite easy to achieve such a
behaviour. Thus, it is worth while to consider the dynamical system approach to
understand regimes transition.

7.2. Open problems. Apart from open problems that we stated in the previ-
ous section, we will list other open questions which are subject for further investi-
gation.

7.2.1. The nature of chaos in the system. These preliminary results that we have
presented in this paper are far from complete. For instance, we have not clarified
the nature of chaotic dynamics in our system. We suspect that it is due to the
bifurcation of the invariant torus. in order to get more information on this, we
would like to compute the resonance tongue which is attached to the NS line in
Figure 4.

7.2.2. The size of the Lyapunov exponents. It is interesting to study the relation
between the size of the Lyapunov exponents of the strange attractor with the size
of the perturbation: e. Clearly, when ¢ = 0, we have no strange attractor. In
Figure 9, we plot the Lyapunov exponents: x1, X2, and xs (see the left-hand side
figure); as well with the Kaplan-Yorke dimension (the right-hand side figure). We
have computed them, for three different data sets: the solid lines are for v = —1
and « = —0.1 (Data I), the dashed lines are for y = —1 and « = —1 (Data II),
and the dotted lines are for « = —1 and v = —2 (Data II]). Since the system
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FIGURE 9. The size of the Lyapunov exponents, and the Kaplan-Yorke
dimension of the strange attractor, as a function of €. The solid line is
for data set Data I: a« = —0.1 and v = —1, the dashed line is for data
set DATA II: @ = —1 and v = —1, and the dotted line is for data set
Data III: « = —1 and v = —2.

is autonomous, one of the exponents is zero. This provides us with a test for the
accuracy of the numerics. The size of y3 in our numerics is between 10~° and 1076,

For these data sets, the strange attractor exists for e < € < 9, where 1 < 0.01
and €5 < 0.05. Can we compute an estimate for £; and €57 Are those estimates
dependent on « and ~y, or maybe other parameters?

Another interesting question is about the Lyapunov exponent. In Table 1 one can
see that the positive Lyapunov exponent is of O(g). Is this generic? How does the
size of the strange attractor change (if it is changed) as we vary €?
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Appendix

Additional reference to Chapter 1

The estimate for the size of the resonance domain which is derived in Section 3

of Chapter 1, can also be extracted from the paper

Duistermaat, J.J.,Bifurcations of periodic solutions near equilib-

rium points of Hamiltonian systems, in L. Salvadori (ed.): Bifur-

cation Theory and Applications, Lecture Notes in Mathematics

1057, Springer-Verlag, Berlin etc., 1984, pp. 57-105,
if one translates the expressions in terms of asymptotics. Introducing the small
paramater € which is proportional with \/Hs, from that paper one can also derive
the exact expression for the constant in front of the power of €. Both the constant
and the exponent of the power of ¢ are expressed as functions of the linear energy
Hs, the detuning parameter, and the resonance it self. Thus, our result is actually
contained in the result of Duistermaat.






Samenvating

Stel je een slinger voor die van links naar rechts en terug beweegt. Zo’n beweging
heet oscillatie. De tijd die nodig is voor een volledige beweging van links naar
rechts en terug, heet de periode van de oscillatie. De frequentie van de oscillatie is
daarentegen gelijk aan één gedeeld door de periode. De maximale afwijking van de
slinger ten opzichte van de verticale rustpositie heet de amplitude van de oscillatie.
Deze hangt af van de energie van het systeem.

Als de amplitude klein is, dan is de oscillatie lineair. Bij lineaire oscillatie zijn
zowel de frequentie als de periode onafhankelijk van de energie. In werkelijkheid
is de oscillatie van een slinger echter niet lineair. Denk nu eens aan twee slingers
waarvan de ophangpunten aan elkaar verbonden zijn, zoals in onderstaande figuur.

\
N

Wanneer de frequenties van de slingers (w; en ws) aan een zekere voorwaarde
voldoen, dan kan energie van de ene slinger op de andere worden overgedragen.
Men observeert dan bijvoorbeeld dat wanneer men de ene slinger een zetje geeft, de
andere na zekere tijd vanzelf ook gaat bewegen. Dit verschijnsel heet resonantie: we
zeggen dat de frequenties w; en wy resonant zijn wanneer er twee positieve gehele
getallen m en n bestaan waarvoor mw; — nws = 0. De orde van de resonantie is
de kleinst mogelijke waarde van m + n waarvoor dit geldt. Wanneer de orde van
de resonantie laag is, bijvoorbeeld 3 of 4, dan kan men veel interactie tussen de
slingers verwachten. Maar wanneer de resonantie van hogere orde is, dan zal de
energie-uitwisseling vrij klein zijn en de interactie subtieler.

In dit proefschrift worden hoge orde resonanties bestudeerd in dynamische sys-
temen zoals het tweetal slingers dat hierboven beschreven is. Daarnaast kijken we
naar systemen met een zeer kleine frequentieverhouding: wq/we < 1.
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Naast de asymptotische energie-overdracht tussen oscillatoren is de bifurcatie
een belangrijk onderwerp in onze analyse. Eenvoudig gezegd is er sprake van een bi-
furcatie wanneer iets in een dynamisch systeem dramatisch verandert doordat we een
van de parameters een klein beetje veranderen. Zo kunnen door variatie van parame-
ters plotseling evenwichtstoestanden en periodieke banen ontstaan uit andere, reeds
aanwezige evenwichtstoestanden. Wanneer we de parameter nog verder varieren,
dan zouden de zojuist ontstane evenwichten of periodieke banen zelf opnieuw een bi-
furcatie kunnen ondergaan. Een stabiele periodieke baan kan bijvoorbeeld onstabiel
worden en er kan een stabiele torus uit tevoorschijn komen of erin verdwijnen.

In dit proefschrift is geprobeerd een aantal dynamische systemen met hoge orde
resonantie zo uitvoerig mogelijk te onderzoeken. Daarvoor is gebruik gemaakt van
de technieken van de normaalvormtheorie en de asymptotische analyse. Wanneer de
analyse te ingewikkeld werd, zijn numerieke methoden toegepast om te proberen de
dynamica te begrijpen.



Ringkasan

Diberikan dua buah bandul (dengan lengan yang kaku) yang dapat bergerak secara
bebas. Kedua bandul tersebut tidak dipengaruhi oleh gaya lain selain gaya gravi-
tasi. Diasumsikan bahwa kedua ujung yang tak bebas dari kedua bandul tersebut
dihubungkan satu sama yang lain (misalkan dengan sebuah tali) sehingga getaran
bandul yang satu dapat berpengaruh terhadap getaran bandul yang lain. Misalkan
simpangan bandul ke j, 7 = 1,2, terhadap arah vertikal sebagai fungsi terhadap
waktu dinyatakan oleh x;(t). Untuk simpangan yang kecil, ;(¢t) memenuhi per-
samaan gerak yang dinyatakan oleh suatu sistem persamaan diferensial berderajat
dua

(81) x] +w32x3 = €fj($1am2ai17j2)7j = 172a

dengan w; = 4/¢/l menyatakan frekuensi alami dari bandul ke j, ¢ < 1 dan fungsi
f;j sebagai fungsi empat peubah memenuhi f;(0) = 0, df;(0) = 0. Sistem seperti ini
disebut sistem getaran tak linear sebab fungsi f; diasumsikan tak linear.

Sistem persamaan di atas merupakan suatu contoh dari sistem dinamik yang dipela-
jari pada tesis ini. Pada tiga bab pertama, dipelajari sistem getaran tak linear
khusus yang dikenal dengan sebutan sistem Hamilton. Pandang R* dengan koor-
dinat & = (z1,x2,y1,y2). Sistem Hamilton dengan dua derajat kebebasan adalah
sistem dinamik yang didefinisikan oleh suatu fungsi H : R* — R, sebagai

(8.2) &= JdH(§),

dimana J adalah matriks simplektik baku. Sistem Hamilton yang berkorespondensi
dengan sistem getaran (8.1) didefinisikan oleh fungsi H (€) yang memiliki deret Tay-
lor: H(&) => 5" e972H;(€) dengan

2

Hy(&) = w; (2,7 +y;%) -

1
Dapat ditunjukkan (dengan menghitung turunan dari fungsi H terhadap waktu se-
panjang solusi dari sistem Hamilton (8.2)) bahwa fungsi H(§) bernilai konstan se-
panjang solusi dari sistem Hamilton (8.2). Hal ini menyebabkan solusi dari suatu
sistem Hamilton senantiasa berada di dalam salah satu permukaan ketinggian dari
fungsi Hamiltonnya. Selain konservasi dari fungsi Hamilton (sering juga disebut
konservasi energi), solusi dari suatu sistem Hamilton juga mempertahankan suatu
“bentuk bilinear” (bilinear form), dalam hal ini Zf dz; A dy;.
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Dinamik dari sistem getaran Hamilton sangat dipengaruhi oleh frekuensi alami
dari getaran-getaran linearnya. Jika persamaan mw; — nwe = 0 tidak memiliki
solusi di dalam himpunan bilangan asli, maka dinamik dari sistem Hamilton terse-
but dikatakan regular. Dalam hal ini (wq,ws) dikatakan tidak beresonansi. So-
lusi dari sistem Hamilton yang dibatasi pada suatu permukaan ketinggian H, be-
rada pada suatu torus berdimensi dua yang diparameterisasi oleh energi linear dari
masing-masing getaran. Akibatnya, torus-torus berdimensi dua di mana solusi sis-
tem Hamilton berada memfibrasi ruang fase pada suatu permukaan ketinggian yang
tetap; kecuali jika permukaan ketinggian tersebut adalah suatu titik, yaitu titik
origin. Dalam situasi seperti ini, tidak terjadi perpindahan energi antar derajat
kebebasan. Situasi ini identik dengan dinamik pada sistem getaran Hamilton linear.

Dalam hal persamaan mw; — nws = 0 memiliki solusi di dalam himpunan bi-
langan asli, situasi ini disebut resonansi dan bilangan m + n menyatakan tingkat
dari resonansi tersebut. Jika m = 2 and n = 1 dikatakan (w;,ws) dikatakan se-
bagai resonansi tingkat pertama. Jika m =1 and n =1 ataum =3 dann =1
maka (w1,ws) dikatakan resonansi tingkat kedua. Selain dari itu, (w1, ws) dikatakan
resonansi tingkat tinggi.

Untuk resonansi tingkat pertama dan kedua, telah banyak yang kita ketahui.
Berbeda dengan kasus tak beresonansi, pada resonansi tingkat pertama dan kedua
terjadi perpindahan energi antar derajat kebebasan. Secara umum, fibrasi ruang
fase pada suatu permukaan ketinggian oleh torus-torus di mana solusi berada, sa-
ngat berbeda. Dalam situasi resonansi tingkat tinggi, fibrasi ruang fase pada suatu
permukaan ketinggian oleh torus kembali regular kecuali pada suatu domain ter-
tentu di ruang fase. Lokasi dari domain ini dapat ditentukan dari persamaan gerak
sistem getaran yang telah dinormalisasi. Lokasi tersebut berkorespondensi dengan
titik di mana persamaan gerak tersebut degenerate.

Bab satu dan dua pada tesis ini mempelajari masalah sistem getaran Hamilton
pada resonansi tingkat tinggi. Selain itu juga dipelajari pengaruh keberadaan suatu
simetri yang diskret pada sistem tersebut, misalkan simetri pencerminan dan simetri
waktu. Pada bab satu ditunjukkan bahwa kedua simetri ini mampu menyebabkan
beberapa resonansi tingkat pertama dan kedua berubah menjadi resonansi tingkat
tinggi. Hal ini juga berkorespondensi dengan bentuk normal yang degenerate karena
adanya simetri tersebut.

Pembahasan pada bab satu juga meliputi masalah estimasi ketebalan domain
di mana fibrasi dari ruang fase pada suatu permukaan ketinggian oleh torus tidak
sederhana. Dalam domain itu terjadi interaksi antara kedua derajat kebebasan
berupa pertukaran energi. Pembahasan pada bab satu mempertajam estimasi yang
telah ada. Perbaikan ini kemudian diujikan (secara numerik) pada suatu model
klasik sistem Hamilton yang memuat simetri pencerminan maupun simetri waktu,
yaitu bandul elastik. Pada bab kedua, diterapkan suatu metode lain untuk mem-
berikan konfirmasi numerik dari teori yang dibangun pada bab satu. Metode ini
perlu di- terapkan karena metode integrasi baku yang diterapkan pada bab satu
tidak lagi mampu menghasilkan hasil yang dapat dipercaya. Hal ini disebabkan
karena lamanya waktu integrasi sehingga disipasi numerik dari integrator pada bab
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satu menjadi signifikan.

Bab tiga membahas sistem getaran Hamilton di mana salah satu frekuensi alaminya
diasumsikan sangat kecil (sekecil €) atau sangat besar (sebesar 1/¢). Sistem ini
dapat dipandang sebagai perturbasi dari sistem getaran Hamilton di mana titik
kesetimbangan di titik origin memiliki nilai eigen linear nol bermultiplisitas dua.
Pada kasus ini tidak terjadi perpindahan energi antar derajat kebebasan. Meskipun
demikian terjadi interaksi fase secara tak linear. Teori ini kemudian diterapkan pada
persamaan diferensial parsial eliptik, contohnya persamaan gelombang di mana dite-
mukan suatu solusi menarik yang terkait dengan solusi yang homoklinik terhadap
suatu solusi periodik.

Pada dua bab yang terakhir, ditinjau sistem getaran yang non Hamilton. Sistem
seperti ini memuat suku linear yang terkait dengan gaya gesekan, namun besarnya di-
asumsikan cukup kecil dibandingkan dengan getaran murninya. Diasumsikan bahwa
bagian tak linear dari medan vektor yang mendefiniskan sistem getaran ini memenuhi
konservasi energi. Akibatnya sistem ini dapat dilihat sebagai perturbasi dari sistem
yvang memiliki konservasi energi. Jika parameter perturbasi dibuat nol, ruang fase
dari sistem tersebut terfibrasi oleh permukaan ketinggian dari fungsi energi. Dalam
tesis ini, permukaan ketinggian tersebut adalah permukaan (atau kulit) bola di ruang
berdimensi tiga.

Sistem ini dibahas secara analitik dan secara numerik. Khususnya untuk solusi
kesetimbangan dan dinamik di sekitarnya, pembahasan dilakukan secara analitik.
Hal ini dilakukan dengan melakukan dekomposisi sistem menjadi dua sistem dengan
skala waktu yang berbeda. Dinamik dengan waktu yang cepat dapat dihampiri
dengan dinamik sistem yang konservatif pada kulit bola, sedangkan dinamik dengan
waktu yang lambat terjadi pada arah yang transversal terhadap kulit bola. Dinamik
yang lambat akan mendominasi ketika medan vektor yang konservatif dekat ke nol.
Ini terjadi misalkan di sekitar titik kritis stabil dari medan vektor yang konservatif.

Pembahasan secara numerik diterapkan pada solusi periodik. Solusi periodik ini
terjadi pada sistem ketika salah satu dari parameter dalam sistem diubah. Fenomena
ini dikenal dengan bifurkasi, dalam hal ini bifurkasi Hopf. Ketika parameter yang
sama (atau yang lain) diubah, solusi periodik yang didapat setelah bifurkasi Hopf
juga mengalami beberapa macam bifurkasi. Pada tesis ini diperlihatkan bahwa so-
lusi periodik tersebut mengalami dua macam bifurkasi. Yang pertama adalah yang
dikenal dengan penggandaan periode (period-doubling), yaitu terciptanya solusi pe-
riodik lain dengan periode yang dua kali periode dari solusi periodik semula ketika
parameter bifurkasi melewati titik bifurkasi. Dalam kasus yang dibahas pada tesis
ini, bifurkasi ini terjadi berulang-ulang sehingga menghasilkan barisan berhingga
dari bifurkasi penggadaan periode. Bifurkasi kedua yang terjadi pada solusi pe-
riodik dalam kasus ini adalah ketika parameter lain dalam sistem diubah, solusi
periodik tersebut kehilangan kestabilan melalui bifurkasi Hopf. Bifurkasi ini dikenal
dengan nama bifurkasi Hopf sekunder, atau juga bifurkasi Naimark-Sacker atau juga
disebut bifurkasi torus.
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Pembahasan pada kedua bab terakhir pada tesis ini memberikan kontradiksi
yang kuat tentang pendapat di kalangan pakar ilmu rekayasa yang seringkali menga-
baikan efek dari resonansi tingkat tinggi dalam sistem yang mereka analisis. Ana-
lisis pada tesis ini memberikan suatu indikasi bahwa dinamik dari sistem getaran
pada resonansi tingkat tinggi sangat variatif. Bahkan dalam tesis ini diperlihatkan
adanya solusi yang chaotic pada sistem ini.

Tesis ini disajikan dalam bentuk kumpulan karangan ilmiah yang dapat dibaca se-
cara terpisah. Beberapa bagian dari tesis ini telah dipublikasikan ke jurnal ilmiah
internasional, sedang dalam proses pemeriksaan oleh dewan juri dari beberapa jur-
nal ilmiah internasional, dan juga telah dipresentasikan dalam beberapa seminar
ilmiah internasional, nasional di negeri Belanda maupun di Indonesia.
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