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Chapter 1

Introduction.

In this thesis we study sets of points in the plane and their Voronoi diagrams, in
particular when the points coincide. We bring together two ways of studying point
sets that have received a lot of attention in recent years: Voronoi diagrams and
compactifications of configuration spaces. We study moving and colliding points
and this enables us to introduce ‘limit Voronoi diagrams’. We define several com-
pactifications by considering geometric properties of pairs and triples of points. In
this way we are able to define a smooth, real version of the Fulton-MacPherson
compactification. We show how to define Voronoi diagrams on elements of these
compactifications and describe the connection with the limit Voronoi diagrams.

Voronoi diagrams and supermarkets.

Consider all supermarkets in a city. We divide the city in sectors by considering
the closest supermarket: all people in the sector of some supermarket are closer
to this supermarket than to any other supermarket. The Voronoi diagram of the
supermarkets is this subdivision of the city into sectors. The Voronoi cell of one
supermarket is just the sector of the supermarket. An example of a Voronoi diagram
of six supermarkets, numbered 1 to 6, is given in Figure 1.1.

Figure 1.1: The Voronoi diagram of six supermarkets, labeled 1,2, 3,4, 5, 6.
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In the figure we see some boundaries, for example the boundary between supermarket
1 and supermarket 3. People living on this boundary are at equal distance between
those supermarkets. The boundary is part of a line, the dotted line in the picture,
which is called the bisector of 1 and 3, because on one side of the line people are
closer to supermarket 1 and on the other side people are closer to supermarket 3. So,
the bisector divides the plane into two sectors or half-planes. The sector containing
supermarket 1 is called Voronoi half-plane vh(1,3) and the sector on the other side
of the bisector is Voronoi half-plane vh(3,1). We can express the sector V(1) of
supermarket 1 in terms of these Voronoi half-planes:

V(1) = vh(1,2) Noh(1,3) N vh(1,4) Noh(1,5) Nvh(1,6) (1.1)

Of course this formula just states that you are in the sector of supermarket 1 if you
are closer to supermarket 1 than to 2, closer to supermarket 1 than to 3, etcetera.
If we want to code the bisector of 1 and 3, we need only two ingredients: one point
on the bisector and the angle that the bisector makes with the horizontal line. This
will be important later on.

Driving supermarkets: changing Voronoi diagrams.

In the Dutch countryside food is supplied by little supermarket lorries, or supervans.
These vans drive through the countryside looking for customers. In the part of the
countryside we are considering there are five supervans. If we know their positions
at a certain moment, we can determine the Voronoi diagram of the five vans at
that moment. But, if the vans drive continuously the Voronoi diagram of the vans
changes continuously as well. In Chapter 4 we model these driving supervans and
their changing Voronoi diagrams. For every supervan there is a curve that gives at
any time ¢ the position of the supervan. If we want to know the Voronoi diagram at
time t, we specify ¢ in the curves describing the position of the vans. Using positions
given by the curves we compute the Voronoi diagram.

a b c

Figure 1.2: a. The positions of five driving supervans before collision. b. The Voronoi
diagram of the vans, just before collision, and c. at collision.



There is only one problem. At one day a very unfortunate accident happens: all
vans run into each other at ¢ = 0. How should we define the Voronoi diagram of the
vans at t = 07 In this particular example we decide to analyze the situation just
before the accident happens. That is, we let time run backwards and investigate
what is going on for small negative t. The route covered by the five vans before the
accident is shown in Figure 1.2.a. A Voronoi diagram of the positions of the vans
just before the accident is given in Figure 1.2.b.

Our strategy is to define a Voronoi diagram at ¢ = 0 that is consistent with the
situation just before t = 0. We call such a diagram a ‘limit Voronoi diagram’ and
an example of this that resembles the Voronoi diagram in Figure 1.2.b is shown in
Figure 1.2.c. Compare the two diagrams. Note that the directions of the outgoing
edges in the two diagrams are very similar. The Voronoi cell of van 3, in the middle
of the diagram of Figure Figure 1.2.b seems to have completely disappeared in Figure
1.2.c. These two remarks address questions that we answer in Chapter 4 and the
chapters after that: what information is needed to to create a diagram as shown in
figure 1.2.c? And, can we still say something about the Voronoi cells that seem to
disappear in the limit, like the cell of van 37

Voronoi diagrams for coinciding points.
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Figure 1.3: The Voronoi diagram of two coinciding points.

We restrict ourselves for a moment to the case of two points, p; and p2. The position
of each point at time ¢ is given by a curve. Suppose that the two points meet at
t = 0. Such situation is shown in Figure 1.3.a-c. In Figures 1.3.a and b, the two
points are still distinct. Therefore we can draw the line /15 that passes through both
points. This line makes some angle a5 with the horizontal axis. So this angle a2
is in some sense the angle of the points p; and ps. As the positions of the points
depend on time ¢, the angle a5 also depends on time, that is a2 = aq2(t). The
Voronoi diagram of points p; and py is determined by the line at equal distance
from the points p; and ps. That line is exactly the bisector of p; and ps: the line
perpendicular to line 15 passing through the middle of the line segment 12. If p;
and py coincide, we define the middle of the line segment 12 as the point p; = ps
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itself. And we define the angle a;2(0) as the limit for small negative ¢ of aya(t).
Now we define the bisector at ¢ = 0 in terms of this angle and this middle point.
That is, the bisector of p; = ps is the line passing through p; = ps perpendicular to
the direction ay2(0). But this implies that we have created a Voronoi diagram for
the two coinciding points p; and po!

We drop this particular example but conclude the following: we can define a limit
Voronoi diagram for two coinciding points p; and ps if we know the following infor-
mation:

— the position p; = ps of the coinciding points.

— an angle a12 mod 27.
In this way we can define a limit Voronoi diagram for an arbitrary number of co-
inciding points as well: as long as we have for every pair of coinciding points p;
and p; a position p; = p; and an angle a;;, we can define the bisector of p; and p;.
And, using the bisector we can determine the two Voronoi half-planes vh(p;, p;) and
vh(p;, pi). Now we are done, as any Voronoi cell can be expressed as an intersection
of half-planes, as we saw in Equation 1.1.

We work along these lines in Chapter 4. For example, the curves describing the
positions of the two points p1 = p1(¢) and ps = pa(t) in Figure 1.3 are given by
p1(t) = (12, t +t2 — .3t3) and pa(t) = (t, —t — 3t2 + 2t%). We only allow curves given
by pairs of polynomials in £. We call points described by such curves polynomial
sites. After having defined Voronoi diagrams for polynomial sites we show how to
determine the Voronoi diagrams without having to compute all bisectors.

First we assume that we have a set of n polynomial sites that all coincide at ¢t = 0.
So, this is the situation in Figure 1.2.a, where five polynomial sites cluster together.
Leaving out polynomial site p3(t) in the beginning will not change the shape of the
limit diagram as we see in figure 1.2.c. We show in Section 4.5 which sites exactly
can be left out without changing the boundary of the diagram. So, we want to
characterize those sites that are somehow in the interior of the cluster. Of course
we could as well characterize the sites that are on the exterior of the cluster. This is
done in terms of the convex hull of the sites in the cluster for small enough positive .

a b c

Figure 1.4: Plugging Voronoi diagrams.

For a general set S(¢) of n polynomial sites, the boundary of the Voronoi diagram at



t = 0 is determined by plugging. We demonstrate plugging in Figure 1.4 where we
compute the Voronoi diagram of S(t) = {p1,...,ps}, for psg = (—3,2), pr = (0,—3)
and ps = (3,2). The other polynomial sites form a cluster in the origin. In fact
we used this cluster already for the supervan example in Figure 1.2. The cluster
locations of S(t) at ¢ = 0 are the distinct positions of the sites at ¢ = 0. So, we
have four cluster locations. The Voronoi diagram of the cluster locations is given in
Figure 1.4.a. Next, the cell of every cluster location is filled, if necessary. Three cells
in our example correspond to a single point, so no filling is needed there. The limit
Voronoi diagram of the points clustering in the origin, is shown in Figure 1.4.b. We
simply plug this diagram in the appropriate cell in order to obtain the limit Voronoi
diagram of S(¢). The result is shown in Figure 1.4.c.

The limit Voronoi diagrams are really new diagrams: in general they can not be
realized as classic Voronoi diagrams, for example Figure 1.4.c. In classic Voronoi
diagrams, every Voronoi cell has positive area, for example. This is not true for
limit Voronoi diagrams.

Compactifications of configuration spaces.

A collection of n points in R? is often called a configuration. The configuration space
of n distinct points in R? is just the space that consists of all possible configurations
of n distinct, ordered points. Suppose for example that n = 3. Any element of the
configuration space consists of three lebeled points pi,po, p3 € R? such that: p; is
distinct from ps; p; is distinct from ps; and po is distinct from p3. A natural way of
describing the configuration (p1, pa, ps3) is by listing the coordinates of p1, pa, and ps.
But if we list all six coordinates in single file, we obtain an element ¢ = (p1, pa, p3)
in RY. That is, the configuration space of three distinct point in the plane is part of
a six dimensional space. In fact it is six dimensional, as almost all elements of RS
can be seen as some configuration (p1, pa, p3) of three distinct points.

We are interested in the Voronoi diagram of n points in the plane. That is, we want to
define a Voronoi diagram for every configuration in a configuration space of n points.
We are especially interested in possible Voronoi diagrams for point sets that contain
coinciding points. We call such point sets degenerate configurations. The idea of a
compactification of a configuration space is as follows: we want to construct a space
that encodes all possible configurations of n distinct points, both non-degenerate
and degenerate. Degenerate configurations should be on the boundary of this space.
By adding this boundary the degenerate configurations are incorporated. For a
bounded space, adding the boundary is the same as compactifying, which explains
the name ‘compactification’. One important reason to compactify is the hope to be
able to extend some definition, in our case the definition of Voronoi diagram, to the
degenerate configurations. This extension would give access to limit objects which
in our case are limits of Voronoi diagrams.

We denote the set of ordered n tuples of all pairwise distinct points in the plane by
CONF,,. Although this is not very useful for us, an easy example is the compactifica-
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tion (R?)™ of the configuration space CONF,, itself. The problem with this compact-
ification is that it gives very little information on degenerate configurations: for two
coinciding points p; = ps, the only point that is added by compactifying is the point
(p1,p2). Consider the two points p1(t) and pa(t) where pa(t) = p1(t) +t(cos a, sin a).
If t goes to zero, pa(t) will coincide with py(t). Describe the Voronoi diagram of p; (0)
and po(0) as in Figure 1.3. Then every distinct value of « corresponds to a distinct
direction of the bisector of the points p;(0) and p2(0). But this means that there is
not one Voronoi diagram corresponding to p1(0) = p2(0) but a complete collection
of diagrams, parameterized by a mod 2.

Compactifying using angles.

By now, the attentive reader should be convinced that it is not a strange idea to
use angles for a suitable compactification. In Chapter 5 we may consider all angles
between n points: we start with n distinct, labeled points in the plane. For every
two points p; and p; with ¢ < j we consider the directed line I;; passing through
the two points. This line makes some angle o;; mod 27 with the horizontal axis.
The angle map pa, maps a configuration of n distinct points to the (}) directed
angles o;; with ¢ < j. Let T be a triangle with vertices 1, 2 and 3. If we know
the angles oy, a3 and ass, we know in fact the shape of the triangle T. So,
tpa, (CONF3) describes in a way all distinct triangles on three points. We describe
explicitly this image ¥pa,(CONF3) in Chapter 5. We explain the consequences of
the action of the symmetric group S3 on the labels of the three vertices. Finally
we give geometric interpretations of boundary points of ¢¥pa,(CONF3) in terms of
degenerate configurations.

The first compactification that we encounter is CDA,,, the compactification of di-
rected angles. This space is defined as the closure of the graph of the angle map
YDA, , SO a point v, € CDA, consists of n points and (Z) angles between those
points. If v, is a boundary point of CDA,,, then not all points need to be distinct.
In any case we know for every two points p;, p; € 7, an angle «;; and the position(s)
pi # pj or p; = p;. This implies that for 7,, a Voronoi diagram V'(y,,) is defined.

In Chapter 6 we prove a continuity theorem for Voronoi diagrams of data sets from
CDA,,. Tt states essentially that two data sets ~,,n, € CDA,, that are close in the
Euclidean metric, have Voronoi diagrams whose boundaries are close in the Hausdorff
metric. The Hausdorff metric is very suitable to compare images. Two sets A and
B in the plane are within Hausdorff distance r iff r is the smallest number such that
any point of A is within distance r from some point in B and vice versa.

An algebraic description: from angles to slopes.
The line through the points (21, y1) and (x2, y2) is given algebraically by the equation

y2_y1(
T2 — I

Yy—uy = 33—331) (1.2)
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The quantity % is of course the slope of the line. Instead of writing down the
angle a;; for every two points p; and p;, we consider all slopes a;;. It turns out that
there exists an algebraic relation between the six possible slopes for four distinct
points pg, p1, p2 and p3. This relation is called the siz-slopes formula, compare
Figure 1.5. The formula is given by Agi23 = 0, where

Ap123 = (ag1 — a12)(ao2 — a23)(ags — aiz) — (ap1 — a13)(ao2 — a12)(aps — ass).

We prove in Chapter 5 that there also exists a triangle formula. This is a relation
tij = 0 between slopes and z-coordinates of the points p;, p;, and py. So by now
we have two formulas involving points and slopes: one holds for any three points
and the other holds for any four points. Suppose we have some configuration ¢ of
points and slopes such that all triangle formulas and all six-slopes formulas hold.
A question that we consider in Chapter 5 is the following: is such configuration ¢
always a limit of non-degenerate configurations. To that end we introduce a variety
that consists of exactly those configurations such that all triangle formulas and all
six-slopes formulas hold. That is: the algebraic variety T,, is just the set of zeroes
common to all triangle formulas and all six-slopes formulas. It serves as an algebraic
counterpart of the compactification CUA,, of undirected angles. We prove that T,
is not a smooth variety and give a geometric interpretation for the non-singular
configurations.

ao3 a23
a13

ap1 aio

Figure 1.5: For four distinct points the six-slopes formula holds.

A smooth and clickable compactification.

Look at Figure 1.2 again. On the right, a limit Voronoi diagram of the points
p1,...,ps is displayed. For every point p; a Voronoi cell is visible, except for ps.
One could say that the Voronoi cell V(ps) is so small that we cannot see it. A
solution in this case could be to rescale or magnify the picture somehow until the
cell V(p3) becomes visible. After magnifying enough we would get a picture that is
very similar to Figure 1.2.b In more complicated configurations we might need to
rescale or zoom in several times at several positions in order to distinguish every
cell.

This shows the need of a ‘clickable’ compactification on which we can define ‘click-
able’ Voronoi diagrams. An example is given in Figure 1.6. In the top ‘screen’, six
points are visible. But the two points in the middle are in fact clusters of points.
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9 11

10

Figure 1.6: A clickable Voronoi diagram in a clickable configuration.

One cluster consists of the points ps, p7 and pi2. This can be ‘seen’ by clicking
on the cluster: The bottom left screen appears, displaying these points separately.
The bottom right screen appears after clicking on the other cluster and displays the
points p4, ps, po, p1o and p11.
The Fulton-MacPherson compactification is a well-known compactification of the
configuration space of n distinct labeled points that has such a ‘clickable’ structure.
To analyze Voronoi diagrams we do not need the full generality of this compactifica-
tion. That is why we construct a real version of this compactification, incorporating
some ideas of Kontsevich-Soibelman. Let ¢ € CONF,, be some configuration of
n distinct points. Kontsevich and Soibelman write down both the angles «;; be-
tween any two points, and, for every ordered triple of points (p;,p;, px), the ratio
ij = %. They take the closure of the image of CONF,, under the map that
assigns all angles and ratios to a set of distinct points. This results in a manifold
with corners FMs(n).

In Chapter 7 we show how to adapt their approach so that the resulting compactifi-
cation is a smooth manifold. Instead of just a ratio, we write down a hook for every
triple of points. A hook hﬁf consists of this ratio Bf;‘ together with an angle af?
between the legs of the hook, cf. Figure 1.7. We define a space XAH,, as the closure

of the image of CONF,, under the map

(R/7Z)() x ((~o00, 00] x R/27Z)/ ~y)0(5),

((vij)1<icj<n, (B ,ai¥)), i, 7,k pairwise distinct

Yap : CONF,
(plv s 7pn)

N
N
where ~ denotes the identification of ( ij , 0@;“) with (— Z’f,azf + 7).

Any point x € XAH, that is added to CONF,, by taking the closure has some

ratio Z]k (x) equal to zero. We think of these points as corresponding to degenerate
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Figure 1.7: The hook h%“ = ( j]k , a%’“) hinged at p; from p; to pi. The little arrow
indicates the positive direction.

configurations, that is, configurations that have some coinciding points. We exploit
these zero ratios to define a series of screens corresponding to xz. A screen is just a
copy of the plane R?. In Figure 1.6 for example, there are three screens. We ‘fill’
these screens with the degenerate configuration. We can do it so that any two points
in the configuration are separated in at least one screen. Moreover, the process is
such that it shows how to write XAH,, locally as the graph of a function. This proves
that XAH,, is indeed a smooth manifold.

The close connection between XAH,, and the manifold with corners FM, has two
immediate applications. First of all there is Theorem 7.65 that reveals the corner
structure of FM,: the corners appear automatically if we describe the natural map
from FMs to XAH,,.

Moreover, we can apply this same method of defining and filling screens to the
manifold with corners FMs(n). That is, we add a family of screens to a degenerate
configurations x € FMs(n). But FMs(n) contains all angles mod 27 between two
points. Therefore we can, without ambiguities, define a clickable Voronoi diagram
as shown in Figure 1.6 for every € FMs(n). We conclude Chapter 7 by showing
how to jump between several descriptions and models in this thesis. Suppose we
start with some x € XAH,, for example. We can always construct a set S(t) of
polynomial sites {p1(¢),...,pn(t)} with the following property: if we write down all
angles and ratio’s for the sites in S(t), we exactly obtain z.

Comparing prices: higher order Voronoi diagrams.

In what preceded we have extended Voronoi diagrams by limit Voronoi diagrams.
Another extension or generalization of the classic Voronoi diagrams are the higher
order Voronoi diagrams. We discuss some results on higher order Voronoi diagrams
in Chapter 3.

People in the Netherlands like to compare prices. That is, they have no fixed su-
permarket, but frequent the, say, five closest supermarkets to pick the bargains. For
those people we have to divide the city into different sectors that we call 5-sectors.
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In one 5-sector, the five closest supermarkets are the same. So, if people know which
5-sector they live in, they know the five closest supermarkets. An example is given
in Figure 1.8. In Figure 1.8.a the 6 supermarkets of above are displayed again. In
Figure 1.8.b the four different 5-sectors are drawn. So, in sector 13456, the five
closets supermarkets are supermarkets 1, 3, 4, 5 and 6. Or, if we put it the other
way around: in 5-sector 13456, supermarket 2 is the most far away supermarket.
This diagram is the fifth order Voronoi diagram of the six supermarkets.

13456

a b

Figure 1.8: a. The Voronoi diagram of six supermarkets 1,...,6, and b. the fifth
order Voronoi diagram of the same supermarkets.

Note that in Figure 1.8.b only four distinct 5-sectors are present. This implies
that two supermarkets (which ones?) are nowhere the most far away supermarket.
We can change however the position of the supermarkets in such a way that every
supermarket is somewhere the most far away supermarket. (How to do this? Put the
supermarkets on the vertices of a convex 6-gon.) This shows that if we change the
position of the supermarkets, the set of 5-sectors may change as well. In Chapter 4
we write down all 5-sectors. Moreover, we write down all 4-sectors, all 3-sectors and
all 2-sectors. And we add all 1-sectors and all 6-sectors, although they are trivial
(why?). If we collect everything we get a collection of subsets of {1,2,3,4,5,6}. Or
more general: we start with a set S of n distinct points in the plane. The Voronoi
poset TI(S) consists exactly of those subsets of {1,...,n} that have a non-empty
Voronoi cell.

Although the 5-sectors may change if we change the position of the supermarkets,
there are certain invariants. An invariant is just a number that is independent of the
position of the supermarkets. In Theorem 3.24 we prove for example the following:
suppose the number of supermarkets is odd. Then the number of odd sectors equals
the number of even sectors. Or more formal: for almost every configuration S the
total number of cells in all even order Voronoi diagrams of S equals the total number
of cells in all odd order Voronoi diagrams of .S.



Chapter 2

Voronoi diagrams.

In this chapter we give a short introduction to Voronoi diagrams. Most material
covered in this chapter can be found in good books on computational and discrete
geometry. A very readable general introduction to computational geometry is the
book by De Berg, Kreveld, Overmars and Schwarzkopf, see [BKOS]. The book by
Edelsbrunner, see [Ed], is more in-depth, but less suited as an introduction. Okabe,
Boots and Sugihara wrote a monograph on Voronoi diagrams for a broad audience,
see [OBS]. Most recent is the chapter on Voronoi diagrams written by Aurenhammer
and Klein in the Handbook of Computational Geometry ([AK]). Some concepts
that are used in the rest of this thesis are shortly discussed in an overview paper on
computational topology, cf. [DEG].

Apparently, Dirichlet in 1850 and Voronoi in 1908, cf. [Vo], were the first that used
a notion of Voronoi diagram. They considered Voronoi diagrams of regular point
sets, associated to quadratic forms. Consult [CF] for a recent and recommendable
book on Voronoi diagrams of quadratic forms.

2.1 Convex hull.

A subset A of the plane is convex if for any two points p, ¢ € A the line segment pq
is contained in A as well. The convex hull CH(A) of a set A is the smallest convex
set containing A. Any two non-coinciding points p = (p,,py) and ¢ = (g, g,) define
two hull half-planes hh,, and hhg, where:

hh’pq = {T = (Txary) € RZ ‘ Det(paqu) 2 0}

The determinant Det(p, ¢, ) is given by:

1 ps Dy
Det(p,q,7) = |1 ¢ gy
1 e 1y

15
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Let S be a finite set of distinct points in R?. We can write CH(S) as an intersection
of hull half-planes. More precisely, C H (.S) equals the intersection of those half-planes
defined by points in S that contain all points of S

CH(S) = ﬂ {hpipg : Schpipj}'

pi,p; €S

As a non-empty intersection of half-planes, CH(S) is a convex polygon. We can
represent this polygon by listing its consecutive vertices in clockwise order. In this
way C'H(S) corresponds to a cyclically ordered list of points from S.

4

Figure 2.1: The convex hull of the points 1,...,7.

Example 2.1
In Figure 2.1, CH(S) « {2,4,5,6,7}.

Suppose the points in S start moving around in the plane. Assume that at the start
of the motion, no three points in .S are collinear. A small enough disturbance of the
points in .S does not change the ordered list of points of CH(S). Only when a point py,
passes a convex hull edge p;p;, the list changes (simultaneously Det(p;,p;j,pr) = 0).
We call this change in CH(S) a convex hull event.

2.2 Voronoi diagram.

Start again with a set S = {p1,...,pn} of n distinct points in the plane. The
Voronoi cell V(p;) of a point p; € S is defined as

Vi(p;) :={qeR?®:d(p;,q) <d(pj.q), i+ j}.

Here, d(p, q) denotes the ordinary Euclidean distance between p and ¢. Note that
we define a Voronoi cell as a closed subset of R?, in contrast to the choice made
in [Ed, BKOS]. The Voronoi diagram V(S) of S is the family of subsets of R?
consisting of the Voronoi cells and all of their intersections. The boundary of a
Voronoi cell consists of Voronoi edges and Voronoi vertices. A point ¢ € R? is
on the Voronoi edge e(p;,p;) if d(q,p;) = d(q,p;) and d(q,pr) > d(q,p;) if k # i, 5.
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A point ¢ € R? is a Voronoi vertex if it is present on at least two Voronoi edges.
A circle C is an empty circle with respect to S if there are no points of S inside
the circle. For any three points p;, p;, and pg, that are not collinear, there exists a
unique circle C;j;, passing through p;, p;, and pi. A circle C;j, is a Voronoi circle
if it is an empty circle.

Figure 2.2: The Voronoi diagram of some points 1,...,7.

Lemma 2.2
q € R? is a Voronoi vertez if and only if q is the center of a Voronoi circle.

Proof. [BKOS], Theorem 7.4. |

The bisector B(p;,p;) of two points p; and p; is the line equi-distant to p; and p;.
It is perpendicular to the line segment p;p; passing through %(pl +p;). A point ¢ is
in the Voronoi half-plane vh(p;,p;) if it is not closer to p; than to p;:

vh(pi,p;) = {a€R® | d(g,p;) < d(g,p))}-

As a consequence, the Voronoi half-plane vh(p;,p;) is bounded by the bisector
B(pi,pj). Any Voronoi cell is an intersection of half-planes

V(p) = ()vh(pi,p)-
J#
Therefore, any Voronoi cell V(p;) is convex and is either bounded or unbounded.

Lemma 2.3
V(p;) is unbounded if and only if p; € 6CH(S), where 6CH(S) denotes the boundary
of the convex hull CH(S).

Proof. [OBS], Property V2. |

Lemma 2.4
Let p;, pj and py be three distinct points that are not collinear. Let c be the center
of the circle through p;, p; and py. Then:

¢ = B(pi,p;) N B(pi,pr)-
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Proof. The point c is equi-distant to p;, p; and p. |

2.3 Topological changes.

Figure 2.3: A diagram of type {134,142, 245,354}.

Definition 2.5

Let V(S) be a Voronoi diagram. Represent every vertex x of V(S) as an ordered list
of labels of the points of S on the Voronoi circle C(x) of . The order of the labels
corresponds to the cyclic, clockwise order of the points on C(x). The set of all these
lists is the type of the Voronoi diagram V (S).

Example 2.6
A diagram of type {134, 142,245,354} is depicted in Figure 2.3.

A point set S is in general position iff no three points are collinear and no four
points are cocircular. If S is in general position, then every Voronoi circle has exactly
three points on its boundary. When the points in S start to move around in the
plane, the type of V(S) changes exactly when the configuration of empty circles
changes. This can happen generically in two ways.

Figure 2.4: A circle event.

The first is when two empty circles Cypg and Cheq coincide. This is a circle event,
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see Figure 2.4. Before the event, a, b, ¢, and d define two empty circles Cypq and
Chpeq- If ¢ moves to the left in the leftmost figure, a, b, ¢ and d become cocircular. If
¢ continues moving left, one arrives in the situation of the rightmost figure, where
Cape and Cyeq are the empty circles. The corresponding change in type is given by:

{...,abd,bed,...} — {...,abcd,...} — {...,abc,acd,...}.

N

1
\ | /
\ | /
v a a /a
b b
»C C \ C

Figure 2.5: A convex hull event.

The other way by which the type of a Voronoi diagram can change is by means of a
convex hull event, see Figure 2.5. Consider the circle defined by the points a,b and
c. In the figure on the left, b € 6CH(S). The circle Cyp. contains all other points of
S in its interior. Suppose b moves to the left. At some stage, b passes through the
line segment ab. At this moment, the circle Cyp. swaps over, and becomes empty,
as in the picture on the right. This means that in the type of V(S), an extra term
ach appears.

2.4 Delaunay triangulation.

Figure 2.6: The Delaunay triangulation of the points introduced in Figure 2.2.

Starting from a Voronoi diagram V'(S) we define the Delaunay graph, DG(S), of
S. The vertices of DG(S) are exactly the points in S. Two vertices p; and p; are
connected by an edge in DG(S) exactly if there exists an edge e(p;,p;) of positive
length in the Voronoi diagram V(S). Let D(S) be the straight line embedding of
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the Delaunay graph DG(S). For point sets S that are in general position, D(.S)
triangulates the convex hull CH(S). For this reason, the straight line embedding
D(S) of the Delaunay graph DG(S) is called the Delaunay triangulation of S.
This terminology is also used for point sets S that are not in general position. In
the latter case D(S) is not necessarily a triangulation. An example of a Delaunay
triangulation is presented in Figure 2.6.

The Delaunay triangulation D(S) is dual to the Voronoi diagram V' (S) in the follow-
ing sense: vertices in the Voronoi diagram correspond to faces in the Delaunay tri-
angulation, while Voronoi cells correspond with vertices of D(.S). As a consequence,
the effect of a convex hull event and a circle event on the Delaunay triangulation
D(S) is easily found. At the convex hull event depicted in Figure 2.5 a triangle Tip.
appears in the Delaunay triangulation D(S). Moreover, for any triple of points p;,
pj, and p in a point set S it follows that p;, p;, and py gives a triangle in D(S) if
and only if the circle Cjj;j, is a Voronoi circle. Indeed, in the circle event of Figure
2.4 an edge bd of the Delaunay triangulation flips over in an edge ac. This proves
the following lemma.

Lemma 2.7
Let S be a set of distinct points in R? in general position. The type of the Voronoi
diagram V (S) is the list of triangles in the Delaunay triangulation D(S).

The following characterization of Delaunay triangulations explains why Delaunay
triangulations are often used in the generation of altitude maps and contour plots.
The minimal angle of a triangulation is the smallest angle that occurs in any of the
triangles of the triangulation. In Figure 2.6, the minimal angle is the angle £526.

Lemma 2.8
Let S be a point set in general position. The Delaunay triangulation D(S) is that
triangulation that maximizes the minimal angle over all triangulations of S.

Proof. [BKOS], Theorem 9.9. ]

2.5 Geometric transformations.

2.5.1 The lifting transformation.

There is an easy correspondence between Delaunay triangulations of point sets in
R? and convex hulls in R3: the lifting transformation. This transformation is
established by the map

P R2 — R?’,
(z,y) — (z,y,2° + 7).

It maps a point in the plane onto a point of the paraboloid P defined by z = z2 + 42,
see Figure 2.7. The map ¢ has two properties that are important to us.
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-

Figure 2.7: Lifting (z,y) to (x,y, 2> + y?).

Lemma 2.9
Let C be a circle in the xy-plane.
(i) ¥(C)= PN Hg, where He is a plane in R3.
(ii) A point q is inside C if and only if ¥(q) below Hc.

Proof. The proof follows directly from combining the equation of a circle in the
plane and the equation of the paraboloid P. |

Let S be a set of points in the zy-plane and S’ the set of images of the points in S
on the paraboloid P. By Lemma 2.9, ¥ maps empty circles defined by .S onto faces
of the lower convex hull of S’. Therefore, the projection of the lower hull faces of
CH(S") onto the zy-planes gives exactly the Delaunay triangulation D(S).

Let S be a set of n points in general position. A subset A of k points of S is a k-set
if it can be separated from the complementary set B = S\ A of n — k points by a
plane V4. Here we say that V, separates A from B if V) can be oriented so that
all points in A are on the positive side of A, while all points of B are on the negative
side. Lemma 2.9 shows that any set of k points contained in a circle in R? can be
mapped to a k-set in R3.

2.5.2 Mapping points to planes.

A set of n planes V defines a subdivision of R3 into connected pieces of dimension
0,1,2 or 3. This subdivision is the arrangement A()) of V. Arrangements form
a topic of their own, cf. [OT]. We assume that any point in any plane V; € V for
i=1,...,n can be written as (z,y, fy, (z,y)), for some linear function fy, : R? — R.
That is, V consists of non-vertical planes only. We say that p = (ps,py,p.) € R?
is above plane V; iff p, > fy,(ps,py); similarly for below. The k-level of the
arrangement A()) consists of those points in R* above or in k — 1 planes and below
or in n—k planes of V. The n-level of an arrangement A(V) is also called the upper
envelope of A(V).
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Figure 2.8: Lifting points to planes.

Using the map @ again, we show that we can determine the Voronoi diagram of a set
S of points in R? by computing the boundary of an upper envelope in R3. Consider
Figure 2.8 that demonstrates the principle one dimension lower. To any point p in
a fixed point set S we associate a plane h, in R®. That is, we map p to the unique
plane h), tangent to the paraboloid P at the point ¢)(p). Lemma 2.10 shows that the
set of planes {h, | p € S} completely encodes the relative distances of points g € R?
to points in S.

Lemma 2.10
Let ¢ € R? and let hp(q) be the intersection of the vertical line through q and the
plane hy. Then

d(q,p)* = (q) — hp(q).

Proof. An easy computation or [Ed], Observation 13.3. |

Applying this result, we compute the Voronoi diagram V' (.9) as follows. Let ¢ € R2.
Suppose that ¢ is in the interior V' (p;)° of the Voronoi cell V(p;). By Lemma 2.10
this is equivalent to h,, being the first hyperplane that one encounters from the set
{hp, | pj € S} if one goes downwards in negative vertical direction, starting from
¥(q). But this means that V(S) is exactly the projection of the boundary of the
upper envelope of the arrangement {h,, | p; € S} on R2.

We can connect the Delaunay triangulation D(S) of a point set S with the lower
convex hull of a set S’. Meanwhile the Voronoi diagram V(S) can be obtained from
the upper envelope of an arrangement. Remember that the Delaunay triangulation
D(S) is dual to the Voronoi diagram V' (S). By now it may not come as a surprise,
that there exists a duality transfer from lower convex hulls to upper envelopes and
vice versa. For more information consult [Ed, BKOS].
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A Voronoi poset.

Given a set S of n points in general position, we consider all k-th order Voronoi
diagrams on S, for k = 1,...,n, simultaneously. We recall symmetry relations for
the number of cells, number of vertices and number of circles of certain orders.
We introduce a poset II(S) that consists of the k-th order Voronoi cells for all
k=1,...,n, that occur for some set S. We prove that there exists a rank function
on II(S) and moreover that the number of elements of odd rank equals the number
of elements of even rank of II(.S), provided that n is odd.

3.1 Introduction.

The dynamics of Voronoi diagrams in the plane is well understood. When n — 1
points are fixed and one point is moving continuously somewhere inside the convex
hull, combinatorial changes of the Voronoi diagram correspond to changes in the
configuration of empty circles, see Chapter 1 and [AGMR] for example. Changes
in the configuration of non-empty circles correspond to combinatorial changes of
higher order Voronoi diagrams. Here the k-th order Voronoi diagram associates to
each subset of size k of generating sites that region in the plane that consist of points
closest to these k sites.

We consider all k-th order Voronoi diagrams simultaneously for k& between 1 and n.
We do so by introducing the Voronoi poset I1(S) of a set .S of n distinct sites in the
plane. The poset consists of all sets of labels that correspond to a subset of sites
that defines some non-empty Voronoi cell in some k-th order Voronoi diagram.

Higher order Voronoi diagrams have been investigated by numerous people. Many
results are published in an article by D.T. Lee, see [Le]. A survey is given in Edels-
brunners book on algorithms in combinatorial geometry, see [Ed]. In Chapter 1 we
have introduced k-sets and we have shown that there exists a map 1 that changes
the point inside circle relation in R? into a point below hyperplane relation in R3.

23
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It turns out that these circles containing points serve as a ‘building block’ for higher
order Voronoi diagrams as we discuss in full detail in Section 3.2. As a consequence,
formulas counting k-sets in R3 can be applied in the counting of vertices, edges and
cells of higher order Voronoi diagrams. Instead of considering circles that contain a
fixed number of, say, k points, one can also consider circles that contain at most k
points. This is done in [GHK].

Let T be a set of n points in R? in general position that are the vertices of a convex
polytope. Sharir, [Sh], Lemma 4.4 and Clarkson and Shor, [CS], Theorem 3.5 prove
that the number of k-sets of T' is given by 2(k + 1)(n — k — 2). They prove this
formula using probabilistic methods that we do not discuss here.

Figure 3.1: An invariant for circle configurations.

This formula can also be derived in the context of k-th order Voronoi diagrams from
Lee’s results as has been observed by several people, see again Clarkson and Shor,
[CS] or Andrzejak et al. , [AAHSW]. We give this derivation explicitly and state in
Theorem 3.18 that

Ci+Cph_j_3 = 2(24’1)(717272),

where ¢; denotes the number of circles defined by a set S of n points in general
position in the plane, containing exactly ¢ points of S. For an illustration, see
Figure 3.1. Moreover we explicitly derive similar formulas for the number of cells
fr in the k-th order Voronoi diagram Vi (S), see Lemma 3.16, and the number of
vertices v, see Lemma 3.17, in Vi (95).

fet fokrn = 2k(n—k+1)+1-n,
Vg + Ut = 4k(n—k).

These ‘symmetry relations’ are independent of the particular position of the sites
in S, provided S is in general position: while the number of cells in some k-th
order Voronoi diagram may change, depending on the configuration, the sum of the
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number of cells in the k-th order diagram and the number of cells in the (n—k-+1)-th
diagram remains constant.

In Section 3.3 we introduce the Voronoi poset mentioned above and prove that
I1(S) has a rank function. As an application of the symmetry relations we prove in
Theorem 3.24 that the number of elements of odd rank in II(S) equals the number
of even rank, provided that n is odd.

The Voronoi poset of a set S of n moving points seems a natural object to study
as changes of the poset occur exactly at those moments where S is not in general
position. As there are tight connections between higher order Voronoi diagrams,
k-levels in certain arrangements in R® and certain k-sets in R?, the study of the
Voronoi poset may have applications in these areas as well.

3.2 Higher order Voronoi diagrams.

3.2.1 Definition of k-th order Voronoi diagram.

Let S = {p1,...,pn} be a set of n distinct points in R? in general position. Let
0 < k < n. For every point p in the plane we ask for the k nearest points from S.
That is, we look for a subset A C S, such that

|A| = E, Vee A, YyeS—A: dp,z) < dp,vy).
For two points in R?, we define a half-plane

h(z,y) = {peR*|d(z,p) <d(y,p)}.

The Voronoi cell of A C S of order |A] is the intersection of half-planes

V(4) = N ),

r€A, yeS—A

whenever this intersection is not empty. As an intersection of half-planes, V(A) is a
convex polygon.

Remark 3.1
It is left as an exercise to the reader to show that assuming general position implies
that a Voronoi cell is not a line segment or a single point.

The k-th order Voronoi diagram is the subdivision of R?, induced by the set
of Voronoi cells of order k. For later purposes, we identify the k-th order Voronoi
diagram with the set of non empty k-th order Voronoi cells.

Vi(S) = {V(A)|ACS, |[Al =k V(A)#0}.
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a. b. c.

Figure 3.2: A first, second and third order Voronoi diagram.

Example 3.2

Let S = {(45,86), (76,40), (40,42),(1,9)}. Figure 3.2.a. shows the first order Vo-
ronoi diagram. The second order diagram is shown in Figure 3.2.b. and the third
order diagram in Figure 3.2.c. All non-empty Voronoi cells are indicated by their
generators. Note that not all possible triples occur.

Remark 3.3

A planar graph that represents a point-face dual of the k-th order Voronoi diagram
can be constructed as follows, cf. [AS]. Write down for every A C S with |A| =k
and Vj(A) # 0 its centroid c(A), defined by c¢(A) = (1/k) >_,c 4 p. Two centroids
C(A) and ¢(B) are connected by an edge exactly iff Vi (A) and Vi (B) share an edge.

3.2.2 Circles and higher order Voronoi diagrams.

In this section, we state some elementary properties of higher order Voronoi dia-
grams. Every edge in Vj(S) is part of some bisector B(a,b), with a,b € S. The
Voronoi vertices are exactly those points that are in the centers of the circles deter-
mined by three points from S. Therefore, under our general position assumption,
every Voronoi vertex has valency three. The following theorem describes the local
situation around a Voronoi vertex. The symbol () denotes the circle passing
through the points a, b, and c.

a,b,c

Theorem 3.4
Let x be the center of (O, p ., for a,b,c € S, let

H = {zeS|dx,z) <d(z,a) },
and let k = |H|. Then z is a Voronoi vertex of Vi11(S) and Vi12(S). The Voronoi

edges and cells that contain x are given in Figure 8.3. Moreover, all Voronoi vertices
are of this form.

Proof. [De], Theorem 1 and Theorem 2. |
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b ,a
V(H U {ab})
a
¢ :/(H U {bh b Voronoi edge of Vi,1(S)
) VHU (@)
b V(H U {beh
¢ V(H U {ac)
C | ~.a
| ¢ o
V(H U {c}h Voronoi edge of Vi,2(S)

Figure 3.3: The Voronoi diagram around .

Let a,b,c and H be as defined in Theorem 3.4. We define the order of a circle
Oupe as [H|. Notation: [©, ;.| = [H|. An order k Voronoi circle (), ;.
is a circle through three points a,b and ¢ from S that contains exactly k points
from S — {a,b,c}. In fact, from all (g) Voronoi circles me,c and all sets Hgpc,
compare Theorem 3.4, almost enough information is provided to construct all k-th
order Voronoi diagrams V;(S) for k=1,...,n — 1.

Algorithm 3.5
Voronoi diagrams of all orders.

Input: set S of n points in general position.
Output: all k-th order Voronoi diagrams Vi (S) for k=1,...,n— 1.
1: Compute all circles (O, b, defined by S.
2: Compute all sets Hy p.c "defined by S.
3. Take all circles of order k£ — 1 and order k — 2. The centers of these circles are
exactly the vertices of V3 (.5).
4: Theorem 3.4 gives for every vertex the three incident edges and the three incident
cells.
5: Two vertices are connected by an edge iff the two vertices have two incident cells
in common. Skip the edge if it is used.
6: Edges that are not skipped are unbounded edges. Their direction and orientation
still have to be computed. The direction is simply the direction of the bisector
containing the edge. The orientation follows from Figure 3.3.

Remark 3.6
Denote the number of circles of order k£ by ¢ and the number of vertices in a k-th
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order Voronoi diagram by vg. As a consequence of Theorem 3.4 we get

Vp = Ck_1 + Cg_o. (3.1)

3.2.3 Counting vertices, edges and cells.

The following theorem shows that the total number of vertices, edges and Voronoi
cells does not depend on the positions of the points in .S, assuming general position.

Theorem 3.7

Let vk, e, and fi, denote the number of vertices, edges and cells in Vi(S) for some
set S of size n in general position. The total number of vertices, edges and cells in
the Voronoi diagram of all orders are as follows.

(i) Yp_ivk = in(n—1)(n—2).
(i) > p_jer = sn(n—1)>%
(iit) > op_, frr = sn(n?®+5).

= N[=

Proof. We prove the three claims.

(i) Every circle center defined by three distinct sites from S is a Voronoi vertex
in some k-th and (k -+ 1)-th order Voronoi diagram. As there are (%) distinct circles,
the first claim follows.

(ii) Consider the arrangement of bisectors A(S). Fix one bisector B(a,b). As S
is in general position, we may assume that the bisector B(a,b) is divided into n — 1
line segments by the Voronoi circle centers abzs,abzy,...,abx,, where we write
S ={a,b,x3,...,2,}. Every line segment is an edge in some k-th order Voronoi
diagram. As there are (}) distinct bisectors, claim (ii) follows.

(iii) The Euler formula, vy — eg + fr = 1, holds for every order. Therefore

n n n
D fe = nHd e=D
k=1 k=1 k=1
which completes the proof. |

The number of vertices, edges and cells in Vi (S) depends on the configuration of
S as the ordinary Voronoi diagram shows. The following theorem gives expressions
for these numbers. Let f° denote the number of unbounded cells in the k-th order
Voronoi diagram. By definition f§* := 0.

Theorem 3.8
Let S be in general position. Then the number of vertices, edges and cells in the k-th
order Voronoi diagram can be expressed as follows.
(i) v =2(fx — 1) = fz°.
(i) ex = 3(fr — 1) = fi°.
(iii) fu = (2k—Dn— (K =1) = Y1, £
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Proof. [Ed, Le]. |

Note that f,, = 1. Substituting £ = n in the expression for f; in Theorem 3.8 yields
the following equation for the total number of unbounded cells:

Zfiofl = n(n-—1). (3.2)

The unbounded cells in the k-th order Voronoi diagram can be characterized as
follows: let pg denote the line segment with endpoints p and ¢ and [, the line
through p and gq.

Property 3.9
A cell V(A) of the k-th order Voronoi diagram Vi(S) is unbounded if and only if
one of the following two conditions holds.

(i) There exists a line | that separates A from S — A.

(ii) There exist two consecutive points p and q, withp,q € S— A, on 6CH(S — A)
such that the points in A —pq are in the open half plane defined by l,, opposite to
CH(S - A).

Proof. [OBS], Property OK4. |

Under the general position assumption, we only need to consider condition () in
Property 3.9. It is clear that in this case the following symmetry holds:

o= e (3.3)

3.2.4 Circle events and hull events.

In Section 2.3 we have discussed the type of a Voronoi diagram in connection with
circle events and convex hull events. We generalize these notions to k-th order
Voronoi diagrams. Let S be a set of points in general position and fix some k €
1,...,n. As in [Le] we call a Voronoi vertex of Vi (S) old if its corresponding circle
has order k£ — 2 and new if its corresponding circle has order £ — 1. We will also use
the words old and new to indicate order k — 2 and order k — 1 circles with respect
to Vk (S)

Example 3.10
In the classic or first order diagram, vertices correspond with empty circles, so all
vertices are new.

Represent every vertex = of Vj(S) as an ordered list of labels of the points of S on
the k — 1 or k — 2 order Voronoi circle C(z) corresponding to z. Order the labels
as in Definition 2.5. The type of a k-th order Voronoi diagram V(S) consists of
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two lists: a list of ordered labels of old vertices and a list of ordered labels of new
vertices.

Example 3.11

Consider the configuration in Figure 3.5.a. The circles 124 and 143 are empty, while
the circles 123 and 243 both contain one point. Therefore, the type of the second
order Voronoi diagram is given by: {{124, 143}, {123,243}}.

Suppose that the points in S start moving. S is in general position, as long a no
four points are cocircular and no three points are collinear. If four points become
cocircular, then two circles Cypg and Cpeq, both surrounding a subset T C S of size
|T| = k, coincide and change into two circles Cype. and Cgcq, see Figure 2.4. This
corresponds to a change of the Voronoi vertices abd and bed into Voronoi vertices abe
and acd in both Vi41(S) and Vi42(S). This is the generalization of a circle event
and is called a k-th order circle event. So, a zero order circle event is just a circle
event.
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Figure 3.4: A k-th order convex hull event.

If three points become collinear, an order k circle abc changes into an order n—k —3
circle abe, see Figure 3.4. This implies that the vertex abc disappears in Viy1(S)
and Vj12(S) and appears in V;,,_j_1(S) and V,,_x_2(S). This is the generalization
of a hull event and is called a k-th order hull event. So, a zero order hull event
is just a hull event. At a k-th order circle event the type of Vi11(S) and Vii2(S)
changes. At a k-th order hull event, the type of Vj11(5), Vit2(S), V—k—1(S) and
Vi—k—2(S) changes.

3.3 The Voronoi poset.

3.3.1 Definition and examples.

Fix a labeling of the sites in S and identify a set of sites A C S that defines a
non-empty Voronoi cell V/(A) with the set of labels L(A) C [n] of the sites in A. A
subset L of [n] may or may not correspond to some Voronoi cell V(Ar). For k =1
we retain the ordinary Voronoi diagram, which implies the correspondence

Vi(s) < {{1}.{2},... {n}}.
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We define V,(S) = {0}. The set {{1,...,n}} corresponds to V,,(S). We consider
the set of all Voronoi cells that appear for a given set S of points and call the set of
corresponding labels the Voronoi poset II(S) of S:

(s) == |J {L(4) | V(4) € () }.
k

This definition also makes sense when we drop the general position assumption.

We order the elements in the poset by set inclusion of the sets L(A). This yields
a partially ordered set. For more on partially ordered sets consult [Zi]. The poset
is bounded since we have the empty set as 0, the unique minimal element, and the
set [n] as 1, the unique maximal element. In general, a poset is called graded if
it is bounded and if every maximal chain has equal length. We show that II(.S) is
graded. Below we give an example showing that II(.S) is in general not a lattice.

Property 3.12
I1(S) is graded.

Proof. We show that r(L(A)) = |L(A)| is a rank function for II(S). A rank
function maps an element x from a poset to a unique level in such a way that the
level corresponds to the length of any maximal chain from z to 0. Let L(A) € II(S),
with |L(A)| = k. Every point € V(A) has all k points from A as its k nearest
neighbors. Order those points with respect to their distance to x. As we assumed
general position it is always possible to change the choice of x in such a way that
this order is strict. By removing at each step the furthest point still available, we
obtain a chain of length & that descends to 0. |

We analyze the two smallest cases, assuming general position.

Example 3.13
For n = 3 there is one poset, the full poset on [3]. That is,

II3(S) = {0,1,2,3,12,13,23,123}.

Example 3.14

For n = 4 there are two essentially distinct posets as is evident from the circles
defined by four points. Since n = 4, Voronoi circles are of order one or two. Eulers
formula rules out four circles of order one. At the same time less than two circles
would not yield enough cells in the first order diagram.

Figure 3.5.a has two empty Voronoi circles. Clearly, subset 23 is the only subset of
[4] missing, leaving us with :

I, (S1) = {0,1,2,3,4,12,13,14, 24, 34,123,124, 134, 234, 1234}.

This example shows that the Voronoi poset is in general not a lattice. A lattice
requires that every two elements of the poset have a unique minimal upper bound.
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a. b.

Figure 3.5: The two distinct first order Voronoi diagrams.

In this example, the elements 2 and 3 have two minimal upper bounds, namely 123
and 234.

In Figure 3.5.b. there are three empty Voronoi circles. The cell 123 cannot appear
in the third order diagram, but all other subsets of [4] do appear, thus:

I14(S2) = {0,1,2,3,4,12,13,14, 23,24, 34,124, 134, 234, 1234}.

3.3.2 The order complex of the Voronoi poset.

The standard way to associate a topological space to a finite poset (P, <) is by
means of the order complex A(P) of the poset, see [Bj, Wa]. The order complex
is the simplicial complex of all nonempty chains of P. A chain of P of length k is
a totally ordered subset

o < 1 < 22 < ... < Tk,

of elements = € P. The well-known geometric realization associates a topological
space with a simplicial complex.

As a Voronoi poset on a set of n points pq,...,p, always has a unique maximal
element {1,...,n}, the geometric realization of the order complex is a cone and
therefore contractible. This shows that the topological space that we have associated
with S is homotopy equivalent with a point, and therefore not very interesting.

More promising is to consider the complement, that is the anti Voronoi poset
aP(S), consisting of those subsets of {1,...,n} that are not in the Voronoi poset.
Another possibility is to consider the arrangement of bisectors.

3.4 Symmetry relations.

Given a set S of sites, we count for every order k the number of vertices vy, the
number of edges e, and the number of non empty Voronoi cells fi. The f-vector
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of TI(S) is the vector {f1, fa,..., fn}. The ¢- and e-vector are defined analogously.
Note that the f-vector of II(S) may change if the position of the sites in S changes.

Example 3.15

Consider the two configurations S; and Sy on four points, presented in Example
3.14. The f-vector of II(S1) equals (1,4, 5,4, 1), while the f-vector of II(S3) equals
(1,4,6,3,1).

3.4.1 Symmetry in the number of cells.

It turns out that a symmetry exists in the f-vectors.

Lemma 3.16
Consider the f-vector of TI(S), where |S| = n. Then fr + fn_k+1 S a constant
independent of the position of the points in S. More precisely,

o+ fockr = 2k(n—k—|—l) +1—n. (34)

Proof. We apply Theorem 3.8 to f; and f,_x11:

k

Je+ fa—ky1 = (2k—1)n7k2+172fi°fl
i=1
n—k+1
+ Cn—k+1)—-1Dn—-(n—k+1)*+1- Z Jiath
i=1
n—k+1

= 2%kn—2k2+2k+1—-n+n(n—1) - Zf;”ﬁ Z £20)

We join the two sums by applying Symmetry Equation 3.3. and evaluate the result
by using Equation 3.2.

n—k+1 n
vaool + Z [ = Zfiofl = n(n-1).
i=1
The lemma follows from combining the two equations above. |

3.4.2 Symmetry in the number of vertices.

A similar equation holds for the number of vertices of a collection of Voronoi diagrams
Vie(S), for k=1,...,n—1.

Lemma 3.17
Let S be a set of points in general position with |S| = n. Let vy, denote the number
of vertices in the k-th order Voronoi diagram. Then:

Vg +Uner = 4k(n—k)—2n. (3.5)



34 Chapter 3. A Voronoi poset.

Proof. Using Theorem 3.8 we write v + v, in terms of numbers of cells. Next we
regroup and apply Symmetry Equation 3.3. After applying Theorem 3.8 we combine
using symmetry again. Finally, using Y ., f°, = n(n — 1) completes the proof.

Ok +Vn—k =2(fk = 1) = fr° + 2(fa—k — 1) — 22,
:2(fk:+fn—k,*27flgo)7

k n—k
=2(n® —2n+2kn — 2k* — O 2+ Y 5 + ),
=1 i=1

=2(n” —2n+2kn — 2k* = Y 7)),
=1
= —2n + 4kn — 4k?,
=4k(n — k) — 2n. [ |

3.4.3 Symmetry in the number of Voronoi circles.

Recall that the order of a Voronoi circle equals the number of points of S contained
in its interior. We define the c-vector of S as the vector

e(S) = {co,c1y-0y0n-3}

where ¢; denotes the number of circles of order 7. The following theorem states that
for n arbitrary points in general position, the number of circles containing exactly 4
points on their inside plus the number of circles containing exactly ¢ points on their
outside is constant. We prove this by applying the above results.

Theorem 3.18
Consider the c-vector of TI(S), where |S| = n. Then ¢; + ¢n—i—3 is a constant
independent of the position of the points in S. More precisely,

Ci+Chj_3z = 2(i+1)(n—2—i), (36)
= 2i(ln—i—-3)+2(n—2).

Proof. We prove the theorem by induction.

[i=0]. We use the lifting transformation. This transformation changes the
point-inside-circle relation in 2-dimensional space in a point-below-plane relation in
3-dimensional space. See also Section 2.5.1. The lifting transformation map ¢ is
defined by
¢o: R — R3
(z,y) = (z,y,2° + ).

It lifts points in the plane to the unit paraboloid in three-space. As every circle
defined by S in the plane contains only three points from S, every hyperplane defined
by ¢(S) contains only three points from ¢(S) as well. The number ¢y of empty
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circles of S in the plane equals the number of facets of the lower hull of ¢(S5) in
three dimensions. At the same time, the number ¢, 3 of circles that contain all
other points of S equals the number of facets of the upper hull of ¢(S). All images
of points in S under ¢ are part of the convex hull of ¢(S). Since the convex hull

of a point set of n points consists of 2n — 4 facets, if every facet is a triangle, see
[BKOS], Theorem 11.1, the claim follows.

[induction step]. We deduce the expression for ¢ + ¢, —r—3 by applying Equation
3.1, followed by combining Lemma 3.17 and the induction hypothesis:

Ck+ Cnk—3= Ch—1+ Ch + Cnp—3+ Cnk—2 — (Ck—1 + Cn_p—2),
= Ugt1 + VU (kg1) — (Cho1 + Cag—2),
=22k+1)—1n—(k+1)—2(k+1)
—2k-1+1)(n—-2-(k-1))),
=2(k+1)(n—2-k). [ |

Let fk = fr+ fa—k+1 apd G; :=¢; + cp_i_3. By the reduced f-vector, denoted f,
we mean the vector of fi’s for all distinct k. That is

f = {f07f1,-~-7fL%J}-

¢ is defined similarly. As a consequence of Lemma 3.16 and Theorem 3.18, f and &
are only dependent on n.

Example 3.19

As an example we present the reduced f- and c-vectors for n € {3,...,12}.
n f c
3 (4,6 (2)
4 (5,9) (4)
5 (6,12, 14) (6, 8)
6 (7,15,19) (8, 12)
7 (8,18, 24, 26) (10, 16, 18)
8 (9,21, 29, 33) (12, 20, 24)
9 (10, 24 34, 40, 42) (14, 24, 30, 32)
10 (11, 27, 39, 47, 51) (16, 28, 36, 40)
11 (12, 30, 44, 54, 60, 62) (18 32, 42, 48, 50)
12 (13, 33, 49, 61, 69, 73) (20, 36, 48, 56, 60)

Remark 3.20

Computer calculations did not suggest any similar symmetry relation for the number
of edges.
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3.4.4 Relations between cells and circles.

Corollary 3.21
fi=fo+é-1 =¢G1+n+1

Proof. This follows directly from Lemma 3.16 and Theorem 3.18. ]

Property 3.22
Let f° denote the number of unbounded cells in the i-th order diagram and let c;
denote the number of circles of order i:

[+ (cim1 —cim2) = 2(n—i). (3.7)

Proof. We prove the property by induction.

[i=1] c_; is zero by definition. The number of vertices vy in the first order Voronoi
diagram equals the number of circles of order zero, c¢yg. The claim follows from
applying Theorem 3.8:

fT¥ 4 (co = 1) = [i° + o,

=2(n—1).

[induction step] Assume we have proved that
£+ (ci1 — i) = 2(’[7, — Z)

We rewrite this, by using induction, as

i+1
cior o= 2mi—i(i+1)=> fi1. (3.8)
k=1
Evaluate ¢; — ¢;_1:
C; — Ci—1 = (Ci + Cifl) - 261'71, (39)

= Vip1 — 2¢i—1,
=2(fir1 — 1) = [F1 — 2¢i-1.

Substituting this expression for ¢; — ¢;—1 and applying Theorem 3.8 and Equation
3.8 proves the claim:

1t (ci—cio1) = 2(fix1 —1—cim1),
= 2(n—i—1). n

Corollary 3.23
The c-vector totally determines the f-vector. The correspondence is given by

fk = n—k+14+cr_s.
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Proof. Applying Equation 3.7 we get

k
ST = (k- 1)@n—k) - s
=1

The claim follows from evaluating Theorem 3.8 using the expression above. ]

3.5 Even versus odd order cells.

Given a grading on a set of objects, it is common to consider the Poincaré polyno-
mial P(t) of the grading. The i-th coefficient of this polynomial equals the number
of objects of grade i. In our case, the objects are the elements of the Voronoi poset
I1(S), while the grading is given by the rank function on the poset. Recall that the
rank of an element x in II(S) is just the order k of the Voronoi diagram in which
x occurs as a cell. The i-th coefficient of the Poincaré polynomial P(t) is given by
fi, as fi gives the number of cells in the i-th order diagram V;(S). So, the Poincaré
polynomial P(t) of II(S) with respect to our rank function is given by

P(t) = fo+ fit+ fot? + -+ fut™

As an application of the symmetry relations we compare the number of cells in the
even order Voronoi diagrams with the number of cells in the odd order diagrams.
In terms of the Poincaré polynomial P(t) of above, the following result can also be
formulated as

P(-1) = o0.

Theorem 3.24

Let S be a set of points in general position with |S| =n > 3. Assume n is odd. In
this case, the number of cells in the even order Voronoi diagrams equals the number
of cells in the odd order Voronoi diagrams.

Proof. Write f; = fi + fn—it1- We show that A = 0, where:

A = —fo+rfi—fot = facr+ fu

So A is the number of cells in the odd order diagrams minus the number of cells in
the even order diagrams:

I
A = —f0+f1+§fnT+1 + tn,

where

n-1
2

t, = Z(_1)1+1fi-
=2
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Clearly, fo = 1, as fo counts the empty set. fl is the number of points in S plus the
number of cells in V,,(5), so fi = n + 1. Applying Equation 3.4 gives:

2
7 nt1n° + 3
f"T'*'1 = _(_]‘) 2 4 .
Straightforward calculations show that:
2
n 3
t, = (_1) -QH z 2— - n,
from which it follows that:
2 2
n 3 n 3
A = —1+n+1—(—1)%nz +( %n: -n = 0. |

The claim of Theorem 3.24 does not hold when n is even. However, the following
result does hold.

Lemma 3.25

Let S be a set of points in general position, with |S| = n > 3. Assume n is even.
Let A(S) denote the number of cells in the odd order Voronoi diagrams minus the
number of cells in the even order diagram. Then:

n=0(4) = A(S) odd.
n=2(4) = A(S) even.

Proof. Similar computations as in the proof of Theorem 3.24. |

Note that as vy, = cx—1 + cx—2 it follows immediately that:

n—1

S (=DFy =0,

k=1

for all n, where vy denotes the number of vertices in the k-th order Voronoi diagram.



Chapter 4

Limits of Voronoi diagrams.

The Voronoi diagram of a set S of n distinct points in R? associates to a point p € S
that part of the plane that is closer to p than to any other point in S. In this chapter
we assume that the position of any of the n points in S = S(¢) is given by a pair
of polynomials in one parameter ¢, such that no two points are represented by the
same pair of polynomials. We call the elements of S(¢) polynomial sites. In this
setup it is possible that sites coincide at, say, t = 0. We define a Voronoi diagram
V(S5(0)) := lim 4o V(S(t)). That is, V(5(0)) is defined as a limit diagram in a
particular sense of the ordinary Voronoi diagram of the positions, at small positive
t, of the polynomial sites. We show how to extend the notion of type to polynomial
sites. This enables us to determine the combinatorics of V(S(0)). It turns out that
in general some sites can be omitted without changing the boundary of the Voronoi
diagram V' (S(0)). We characterize those sites that can not be omitted and present
an efficient algorithm to determine these sites together with the boundary of the
Voronoi diagram.

4.1 Introduction.

Whenever Voronoi diagrams are studied, it is assumed that all points defining the
diagram are distinct. We call these points sites. In the case of dynamic Voronoi
diagrams, where the sites are moving continuously over time, the assumption above
means that sites are not allowed to coincide at any moment. In this chapter we
investigate in one particular setting what happens when we do allow sites to coincide
in the plane.

We consider a set

S(t) = {pl (t)’ s ’pn(t)}a

of n sites in the plane such that the position of site p; at time ¢ is given by a pair
of polynomials in ¢, one for every coordinate. That is, both the movement of the z-

39
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and the y-component are described by a polynomial in R[¢].

In fact we do not have to restrict ourselves to sites described by pairs of polynomials:
the theory developed in this chapter works whenever the movement of both the
z- and y-component of all sites is described by functions that can be expanded
as a convergent Taylor series. For the sake of simplicity we restrict ourselves to
polynomials however.

In Chapter 1 we have described the Voronoi diagram of a set of distinct sites both in
terms of half-planes and of empty circles. To check whether some point ¢ is in a given
half-plane h(p1, p2) or inside a circle ¢(p1, p2, p3) for p1, p2, p3 € R? boils down to eval-
uating the sign of an easy polynomial expression f5(p1, pe,q) or fe(p1,p2,ps,q). The
main idea of this chapter is to replace p; for i = 1,2, 3 and ¢ by p;(t), q(t) € R[t]? and
to evaluate the sign of the coefficient of the lowest degree term in fy, (p1(t), p2(t), ¢(¢))
and fo(p1(t), p2(t),p3(t),q(t)), at t = 0. In this way we define a Voronoi diagram
V(S(t)) at t = 0, even if sites do coincide at t = 0. For a set of sites that coincide
at t = 0 we regard V(S(0)) as the limit diagram lim.o V' (S(€)). We develop this
arithmetic for polynomial sites in all details in Section 4.2.

Here we add a warning: we can define a limit Voronoi diagram at ¢ = 0 that is
consistent with small positive ¢ or small negative ¢. In general these two approaches
give distinct results. Examples will be presented in the main text of this chapter.

There is a similarity between our approach and a well-known technique in computa-
tional geometry that is used to avoid computations involving degenerate input. In
this technique, a set of distinct points that is not in general position is perturbed
slightly in such a way that it is in general position after perturbation. For example,
three points that are collinear before perturbation will not be collinear anymore
after perturbation. As a consequence it is possible for a generic algorithm, that is,
an algorithm that can only handle points in general position, to handle the input
and compute the wished geometric structure, e.g. a Voronoi diagram. Such generic
algorithms are in general much easier than algorithms for arbitrary input as a lot
of degenerated cases can be ignored. In the so-called Simulation of Simplicity tech-
nique, cf. [EM, Ed2], polynomials in the variable e are added to points of a set of
distinct, degenerated points in such a way that evaluation of the new points for small
enough e produces a point set that is in general position. An overview on robust
geometric computation is given in [Yal.

In Section 4.3 we extend the definition of type, see Definition 2.5, to a set of poly-
nomial sites S(t) at ¢ = 0, provided that S(0) fulfills some general position assump-
tions. This type gives us a complete combinatorial structure that matches with the
combinatorial structure of the Voronoi diagram V' (S(¢)) for small enough positive ¢.

In Section 4.4 we define a Voronoi diagram for n not necessarily distinct points in
the plane and (Z) angles between those points. We apply this definition to introduce
Voronoi diagrams for a set of polynomial sites S(¢t) at ¢ = 0. The resulting Voro-
noi diagram or polynomial sites matches with the ordinary Voronoi diagram of the
positions of the sites at small positive ¢. In this section we also give the connection
between half-planes and Voronoi circles defined by S(¢) at ¢t = 0, thereby connecting
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the notion of type to polynomial sites diagrams.

The shape of a Voronoi diagram is defined as the union of the boundaries of the
Voronoi cells. It turns out that in general some sites in a set S(t) of polynomial
sites can be omitted without changing the shape of the Voronoi diagram of S(t).
A question that we pose is how to determine this shape efficiently and how to
characterize those sites that do determine the shape. We answer this question by
splitting up the problem into two parts.

First we consider in Section 4.5 the shape of the Voronoi diagram of one cluster of
polynomial sites at t = 0. By an [-cluster we mean a set of polynomial sites such
that the positions of all sites coincide at one location [ at t = 0. Lemma 4.35 fully
classifies the sites p;(¢) in the cluster such that area(V(p;(0))) > 0 at ¢t = 0.

The second part of the question is solved by Lemma 4.41. This lemma states that
the shape of the Voronoi diagram at ¢ = 0 of an arbitrary set of polynomial sites
can be found as follows. First, compute the ordinary Voronoi diagram of all distinct
locations at ¢ = 0. Second, plug in the cell of location [, the shape of the Voronoi
diagram of the [-cluster.

Section 4.6 shows that a lot of combinatorics can be hidden in the edges of the
shape of the Voronoi diagram. In Section 4.7 we demonstrate the theory developed
in the former section by a somewhat bigger example. We conclude this chapter in
Section 4.9 with some remarks on generalizations to k-th order Voronoi diagrams
and shortcomings of this setup.

4.2 Preliminaries.

We define half-planes and circles for polynomial sites. A polynomial site p(t) =
(p(t)s, p(t),) consists of a pair of polynomials p(t),,p(t), € R[t]. Two polynomial
sites u(t) and v(t) are called distinct if they represent distinct elements in R[t] xR[¢].
Throughout this section assume that S(t) = {p1(?),...,pn(t)}, where every p;(t) a
polynomial site and p;(t) distinct from p;(¢) as a polynomial site whenever ¢ # j.

Remark 4.1

The notions in this section are introduced so that they match the situation for
ordinary points in the plane obtained by substituting a very small positive value of
t in the set S(t) of polynomial sites.

4.2.1 Polynomial lines and their directions.

Let u(t) and v(t) be two distinct polynomial sites. The polynomial line I, (t) is
defined by

Lou(t)e ult)y
ly(t) = 1 v(t)e w(t)y € R[t,z,y].
1 T Y
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The ruling coefficient rc(f(t)) of a polynomial f(t) € R[¢] is the coefficient in its
lowest degree term. The ruling sign rs(f(t)) is the sign of the ruling coefficient
re(f(t)). We define the direction ¢, of the polynomial line l,,(¢) at ¢ = 0 as the
argument of the point

cos sin = lim a(t). d(t)y
( ¢uv7 ¢uv) lth(‘ d(t).L |7 | d(t)y |)

where d(t) = (d(t)s, d(t),) = v(t) —u(t). Note that ¢, is determined up to multiples
of 2. We often use that value of ¢, that lives in (—m,7].

Example 4.2

Let u(t) = (t,t) and v(t) = (—t,t?). Then l,,(t) = t? + t3 + to — t?x — 2ty. Putting
luw (t) equal to zero yields an ordinary line for every ¢ # 0. As d(t) = v(t) — u(t) =
(—2t, —t +t?), we have lim;_o % = % The direction of 1,,(t) at ¢ = 0 is given by
arctan(1) — m, however, as the ruling sign rs(d(t),) equals —1.

Remark 4.3

Note that this definition of ¢,, indeed matches with the direction of the directed
line that passes first through «(¢) and then through v(t) for small positive ¢t. For a
definition that would match with small negative ¢, we should take into account the
odness or evenness of the power of the lowest degree term of 1, (t).

Example 4.4

Let u and v be as in Example 4.2. For small negative ¢, the direction of the line
Ly that passes first through u(t) and then through v(t) is close to arctan(3). If we
multiply both u(t) and v(t) by t, that is change u(t) into u(t) = (t2,¢?) and v(t) into
v(t) = (—t2,t), then the direction of l,, for small negative ¢ and for small positive
t both are close to arctan(3) — .

4.2.2 Collinearity.

Let u(t),v(t) and w(t) be three polynomial sites. As long as the sites do not coincide
we can analyze whether they are collinear. Consider the determinant D(t) given by

1 ou(t)y wu(t)y
D(t) = Dy,w(t) = 1 v(t)e v(t)y
1 w(t)y w(t)y

We call the three sites collinear if D(¢) is the null polynomial. Otherwise let
rs(D(t)) denote the ruling sign of D(t). If rs(D(t)) = 1, we say that w(t) is on the
left of the polynomial line [, (t) at ¢ = 0, and if rs(D(t)) = —1, we say that w(t) is
on the right.

Example 4.5
u(t) = (0,—1), v(t) = (—t,0), w(t) = (t,—2t). Then D(t) =0, so u, v, and w are
collinear at t = 0.
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Example 4.6
Change w to w(t) = (t—t%, —2t). Now D(t) = t3, so w is on the left of the polynomial
line I, (t) at t = 0.

Example 4.7

For small negative t, the site w(t) is on the right of l,,. If we change w(t) into
w(t) = (t — 3, —2t), then w(t) is on the left of l,,(t) for small negative ¢ while it is
still on the right for small positive ¢.

4.2.3 The center of a circle.

Let wu(t), v(t), and w(t) be polynomial sites such that wu(t), v(¢), and w(t) are not
collinear at t = 0. Let D = D(t) be the determinant of above and let d = d(t), and
e = e(t) be the determinants given by

u(t):+ult), u(t)y, 1 u(t): +ult)y  u(t)e 1
d=—v@®):+vt): o), 1|, e=|v®)2+vt)] v(t)e 1
w(t)s +w(t)y w(t), 1 w(t)s +w(t)) w(t), 1

We define the circle center of u(t), v(t), and w(t) at t = 0 as the point ¢ given by
the coordinates
- . o . €

= lmap = lmgs
We allow a circle center to be located at infinity. When leaving out the time de-
pendency, these are of course the ordinary formulas describing a circle center. The
circle C(u(t),v(t), w(t)) is oriented clockwise at ¢ = 0 iff w(t) is on the right of
luy(t) at t = 0. If w(t) is on the left of I,,(¢) at ¢ = 0, then C(u(t),v(t),w(t)) is
oriented counterclockwise.
If ©(0) = v(0) = w(0) = (0,0), then we say that the circle defined by u(t), v(t) and
w(t) has positive radius at ¢t = 0 if and only if

maximum ( |¢z|, |¢y] ) > 0. (4.1)

Example 4.8

Let again u(t) = (0,—t), v(t) = (—t,0), and w(t) = (¢t — t2, —2t). Then a = t> and
d=e=4t3 - 2t* +t°. So ¢ = (-2, —2) and we can conclude that u,v and w define
a circle of positive radius at ¢ = 0. As w(¢) is on the left of 1, (t) at t = 0, the circle
C(u(t),v(t),w(t)) is oriented counterclockwise at ¢ = 0.

Example 4.9

Let u(t) = (—t3,2t), w(t) = (3, -2t), and v(t) = (—t*3t%). Then C(u,v,w) is
oriented clockwise at ¢ = 0, while the circle center ¢ of C(u,v,w) is situated at
infinity.
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4.2.4 Cocircularity.

Let u(t), v(t), and w(t) be distinct polynomial sites. Assume that at ¢ = 0 the
sites u(t), v(t), and w(t) are not collinear and that the circle C(u(t),v(t),w(t)) is
oriented clockwise. As long as the sites do not coincide, we can analyze if a fourth
polynomial site ¢(t) is inside or outside of the circle defined by u(t), v(t), and w(t).
Consider the polynomial I(t) € R[t] defined by

ut)e )y, w(t)?4u()y 1
v(t)e  o(t)y  w(t):+o(); 1
IO = w0, wlt), w2+wm? 1
at)e  alt)y a®)?+aqt)? 1

We call the four sites cocircular at ¢t = 0 if I(¢) is the null polynomial. Let otherwise
rs(I(t)) denote the ruling sign of I(¢). If rs(I(t)) = 1, we say that ¢(¢) is outside
of the polynomial circle ¢y (%) at t = 0, and if rs(D(t)) = —1, we say that ¢(t) is
inside the circle. A set of polynomial sites S(t) is in general position at ¢t = 0, iff
no three sites are collinear at ¢ = 0 and no four sites are cocircular at ¢ = 0.

Example 4.10

Let u(t), v(t), and w(t) be as in Example 4.8. Let ¢(t) = (0,0). We check whether
q(t) is inside or outside of the clockwise oriented circle C'(u(t), w(t),v(t)) at t = 0.
As I(t) = 4t* + O(#?), we conclude that () is outside of C(u(t),w(t),v(t)) at t = 0.

Remark 4.11

For small negative ¢, the circle C'(u(t),w(t),v(t)) is oriented counterclockwise. So
the orientation swaps at t = 0. The site ¢(t) is inside the clockwise oriented circle
C(u(t),v(t),w(t)) for small negative t.

4.2.5 Ordering the sites.

The lexicographic ordering for polynomial sites is as follows. Let u(t) and v(t)
be two polynomial sites. First consider the polynomials u, and v, that give the
x-component. If u, # v,, order u(t) and v(¢) according to the coefficients of the
term of lowest degree of u, and v, that are distinct. If u, = v,, then compare the
coeflicients of lowest degree that are distinct of u, and v,. We denote this ordering
by O~.

Example 4.12

Let u(t) = (2t2,t) and v(t) = (¢,t). The first order coefficient of u, equals 0 while
the first order coefficient of v, equals 1. As this is the lowest order coefficient of u,
and v, that is distinct, it follows that u(t) < v(¢) with respect to O..
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4.3 The type of a set of polynomial sites.

Let S(t) = {p1(t),...,pn(t)} be a list of distinct polynomial sites that is in general
position at t = 0. A clockwise polynomial circle ¢y, () with u(t), v(t), and w(t)
in S(t) is a Voronoi circle at t = 0 iff there are no polynomial sites from S(t)
inside ¢y (t) at t = 0. Represent a Voronoi circle ¢(t) by the ordered list of labels
of the polynomial sites u(t), v(¢), and w(t) that define ¢(t). The order of the labels
corresponds to the cyclic, clockwise order of the defining sites on ¢(t) at ¢t = 0,
compare with Section 4.2.3. The set of all these lists is the type of S(t) at ¢t = 0.

2

3
Figure 4.1: The Delaunay triangulation of the sites of Example 4.13 at ¢t = 0.1.

Example 4.13
Let S(t) be the set of polynomial sites given by

q = (2t 263 + ),

@ = (=2t—13,2t),

g3 = (=212 =2t =3t +2t2 -3+ 1),
Qs (2 =263 + 15, —t1).

The relative position of the sites at ¢ = 0.1 is shown in Figure 4.1. The set S(t)
defines at ¢t = 0 the clockwise oriented circles 134,142,132 and 243, where we list only
the labels. The polynomial site g4 is inside the circle 132 at ¢ = 0, while the other
circles are empty at ¢ = 0. Therefore the type of S(t) is given by {142,134, 243}.

Remark 4.14
Note that this definition of type again represents the situation for small positive t.

This is because the type is defined in terms of the ‘inside circle relation’, compare
Section 4.2.4.

4.3.1 Abstract Delaunay graph.

The notion of type enables us to define an abstract Delaunay graph aD(S(t)) of
S(t) at t = 0. In fact, we use Lemma 2.7 as a definition for aD(S(t)). The vertices



46 Chapter 4. Limits of Voronoi diagrams.

of aD(S(t)) at t = 0 are the labels occurring in the type. Two labels are connected
by an edge if both occur in the same Voronoi circle at t = 0. Note that the closed
paths of length three in aD(S(0)) correspond with the Voronoi circles at ¢ = 0. The
multiplicity of an edge is the number of distinct Voronoi circles that contain both
the vertices incident to the edge.

Example 4.15

Consider the type at t = 0 of the set of polynomial sites from Example 4.13. It
defines a abstract Delaunay graph aD(S(t)) with vertex set {1,2,3,4} and edge set
{12,13,14,23,24,34}. The multiplicities of the edges 12, 23, and 13 equal one, those
of the other edges equal two. Compare this to the Delaunay triangulation shown in
Figure 4.1.

Property 4.16
Let po(t) and py(t) be two distinct sites of S(t).

(i) If po(t)pu(t) forms an edge of the convex hull CH(S(t)) for small enough
positive t, then the multiplicity of the edge ab in aD(S(0)) equals one at t = 0.

(ii) If po(t)ps(t) forms an edge of the Delaunay triangulation D(S(t)) but not of
CH(S(t)) for small enough positive t, then the multiplicity of the edge ab in aD(S(0))
equals two att = 0.

Proof. Combine the definition of type and Lemma 2.3. ]

4.3.2 Combinatorial convex hull.

The convex hull of a set of distinct points in the plane can be defined as an inter-
section of half-planes, see Section 2.1. But if a set of sites shrinks to one point,
the convex hull of the sites also shrinks to one point. However, we can define a
combinatorial convex hull of a set of polynomial sites at ¢ = 0 by making use of
half-planes.

Let S(t) be a set of distinct sites in general position. It is not necessary that all sites
coincide in (0,0) at ¢ = 0. Some i is a vertex of the combinatorial convex hull
cCH(S(t)) of S(t) at t = 0 if there exists a polynomial site p;(t) # p;(t) such that
all sites py(t) with &k # 4, j are on the right of the polynomial line I;;(t) at ¢ = 0. We
call such a line a bounding line. T'wo vertices ¢ and j are connected by a directed
edge, notation ¢ — j, iff [;;(¢) is a bounding line of cCH(S(t)) at t = 0.

Property 4.17
Let S(t) be a set of distinct polynomial sites S(t) in general position. Cy denotes the
combinatorial convex hull cCH(S(t)) att =0. Let a,b € Cy and p.(t) € S(t).

(i) Cqy is an abstract directed circuit graph.

(i) The edges of Cy are exactly the edges of multiplicity 1 of the abstract Delaunay
graph aD(S(t)) at t = 0.
(iii) The direction of an edge ab of Cy equals a — b iff the Voronoi circle containing
both a and b is oriented like abc.
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Proof. We prove the claims separately.

(i) A circuit graph is a connected graph that is regular of degree two. For ¢
positive, small enough, the boundary of CH(S(¢)) is an oriented polygon where the
vertices have the same labels as the vertices of cCH(S(t)) at ¢ = 0. The polygon is
oriented so that all points of S(¢) not lying on an edge p;(t)p;(t) of CH(S(t)) are
on the right of the directed line defined by p;(t) and p;(t) that passes first through
p;i(t). This orientation and the connectedness are inherited when ¢ vanishes.

(ii) This follows from Property 4.16.

(iii) If abe is the clockwise orientation of the Voronoi circle defined by p, (), ps(t),
and p.(t), then p.(t)(t) is on the right of I, (¢) at ¢t = 0. [ |

Example 4.18

Consider the ordered set S(t) = {u(t),v(t),w(t)} of polynomial sites introduced in
Example 4.6. As w(t) is on the left of 1,,(t) at t = 0, the combinatorial convex hull
cCH(S(t)) of S(t) at t =0 is given by 132.

Example 4.19
Let S(t) = {q1(t),q2(t), q3(t), qa(t)} as in Example 4.13. Then cCH(S(t)) at ¢t =0
equals 132.

4.4 The Voronoi diagram of a set of points and
angles between the points.

In this section we define the Voronoi diagram of a set of points and angles between
the points. This enables us to introduce a Voronoi diagram for a set of polynomial
sites. Moreover, we connect the notions of polynomial lines and polynomial circles
in the context of Voronoi diagrams.

4.4.1 Definition.

Suppose S = {p1,...,pn} is a set of n not-necessarily distinct points in the plane.
To every pair of points (p;,p;) we add an angle a;; such that the following rule
holds: if two points p; and p; are distinct then there is a unique line though p; and
p; that makes some angle o;; € R/27Z with the z-axis, directed from —oo to oo; if
p; and p; do coincide then we allow every value in R/27Z for a;;.

Let v, be a set of n points p1(Vn), - - -, Pn(Vn) and (Z) angles a2, ..., Q1) that
obey aboves rule. Fix two points p; = p;(v») and p; = p;j(y»). The bisection
point b(p;,p;) is the point %(pl + p;). If p; # pj, the bisection point is just the
middle of the line segment p;p;. If p; = p; then b(p;, p;) coincides with the double
point p; = p;. The perpendicular bisector B(p;,p;) is the line through b(p;,p;)
perpendicular to the angle a;; = a;;(7,). Let n be any non-zero vector, pointing in
the direction «;;. The Voronoi half-plane vh(p;,p;) is the half-plane defined by

n-(x—by,y—>b,) < 0. (4.2)
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The Voronoi cell V(p;) is defined as

V(p) = [)vh(pi.p;)-
i

A point z is on the Voronoi edge e(p;, p;) iff it is on the intersection of the Voronoi
cells V(p;) and V(p;), that is

xz €elp,pj) < z€V(p)NV(py).

The Voronoi diagram is the family of subsets of R? consisting of the Voronoi
cells V(p;) and all of their intersections. The shape or boundary of the Voronoi
diagram is the union of the boundaries of the Voronoi cells.

Remark 4.20
We will always use this definition in a geometric context which imposes restrictions
on the angles a;.

Remark 4.21
We show how to get Equation 4.2. The line given by n - (x,y) = 0 defines the line
through the origin that is perpendicular to n. We have to translate this line over
the bisection point in order to get the bisector B(p;,p;). As n-n > 0, the Voronoi
half-plane vh(p;, p;) is the half-plane bounded by the line B(p;,p;) in the direction
of the tail of n.

Remark 4.22
Taking for n the vector (cosc;j,sinca;j) of length 1 in the direction ¢y;; gives the
inequality (y — by)sina;; < (by — x) cos ay; for the Voronoi half-plane vh(p;, p;).

4.4.2 The Voronoi diagram of a set of polynomial sites.

Let S(t) = {p1(¢),...,pn(t)} be a set of polynomial sites that is in general position
at t = 0. The angle «;;(0) for any two sites p;(t) and p;(t) is just the direction ¢;;
as defined in Section 4.2. We define the Voronoi diagram of the set of polynomial
sites at ¢ = 0 as the Voronoi diagram of the points (p1(0),...,p,(0)) and the angles

@12, -+ -, X(p_1)n-

Remark 4.23
At this stage, we do not define Voronoi vertices: if a Voronoi vertex is defined as
an intersection of three Voronoi half-planes, it can become a complete line, compare
Example 4.26.

Example 4.24

Let S(t) be the set of polynomial sites, introduced in Example 4.13. In Table 4.1
we list the Voronoi half-planes, the directions of the bisectors that bound the half-
planes, and the inequalities defining the half-planes. This results in the Voronoi
diagram V(S(0)), depicted in Figure 4.2. The Voronoi regions V(q1),V(g2) and
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V(gs) all have positive area, while V(g4) = {(0,0)}. This shows that the shape of
the Voronoi diagram of q1, ¢o2, g3, and ¢4 equals the shape of the diagram of ¢1, g2,
and g3, with g4 omitted.

half-plane direction inequality
vhi.o T — arctan% 2¢ >y
vhi.3 arctan% - f%x <y
vhia s x>0
vha.3 —arctan% %x <y
vhoy -1 z<y

s
vhsy 3 y<0

Table 4.1: The half-planes, the directions of the lines bounding the half-planes, and
the inequalities of the half-planes defined by ¢ (t), ¢2(t), g3(t) and q4(¢t) at ¢ = 0.

[\

Figure 4.2: The Voronoi diagram of the points g (), g2(¢), ¢3(t) and q4(t) at t = 0.

Remark 4.25

Given the particular sites in Example 4.24, it is easy to check that the picture of the
Voronoi diagram for small negative values of ¢ is close to the image under the point
reflection in (0,0) of the picture in Figure 4.2.

Example 4.26

Let S(t) be the set of polynomial sites of Example 4.6 and Example 4.8, that is,
u(t) = (0,—t), v(t) = (—t,0), and w(t) = (t —t2, —2t). Then vhy, is given by y < x,
the half-plane vh, ,, by y > z, and vh, . by y > = as well. Therefore, V' (u) is just
the line y = x, while V'(v) is given by y > z, and V(w) by y <z, all at ¢t = 0.

4.4.3 Polynomial bisector.

Let u(t) and v(t) be two distinct polynomial sites. We have introduced the bisector
of w and v at t = 0 as the line passing through the bisection point b(u,v) and
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perpendicular to the direction ¢,,. We can derive directly an equation Bj(u,v) for
the bisector depending on t as follows. We construct two polynomial sites b(t) and
a(t) that lie on the ordinary bisector for every ¢. The point b(¢) is just the bisection
point % (u(t) 4+ v(t)). The other point a(t) is the image of u(t) under the Z rotation
around b(¢), that is,

at) = ((1)_(1)>~(u—b)T+b.

Finally, put Bi(u,v) := lpa(t). We call B¢(u,v) the polynomial bisector of u(t)
and v(t).

Lemma 4.27
Let u(t) and v(t) be two polynomial sites. Let B(u,v) be the perpendicular bisector
of u(t) and v(t) att =0. Then

B(u,v) = ltifg By (u,v).

Proof. By construction, the direction of B:(u,v) at t = 0 is perpendicular to ¢y, .
As B(u,v) and limy )¢ B;(u,v) both pass through the bisection point b(0), the two
lines coincide. |

Example 4.28
Let S(t) = {u(t),v(t), w(t)} be as in Example 4.26. The polynomial bisector By (u,v)
is given by
Bi(u,v) = {(z,y) € R? | y=ua},
while
Bi(u,w) = {(z,y) € R?* | y = =2t +t* — %t3 +x —ta}.

4.4.4 Half-planes and Voronoi circles.

Let S(t) be a set of polynomial sites that is in general position at t = 0. In Section
4.4.1 we have introduced the Voronoi diagram V(S(t)) of S(t) by means of half-
planes, while in Section 4.3 we have defined the type of S(¢) at ¢ = 0 in terms
of Voronoi circles. The following lemma gives a connection between polynomial
bisectors and circle centers.

Lemma 4.29

Suppose that p;(t), p;(t), and pr(t) are distinct non-collinear polynomial sites. De-
note by c the circle center of p;(t), p;(t), and pr(t) at t = 0. Let By(p;,p;) be the
polynomial bisector of p;(t) and p;(t). Then
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Proof. For t positive and small enough, p;(t), p;(t), and px(t) are distinct points
in general position. For such points Lemma 2.4 states that the intersection of the
bisectors of the points is the center of the circle defined by the points. But then it
holds for ¢t = 0 as well. [ ]

Now we are able to define a Voronoi vertex so that a vertex is exactly one point
in the plane, compare with Remark 4.23. Let p;(t), p;(t), and pi(t) be distinct
non-collinear polynomial sites. Let ¢ = ¢;;1(0) be the clockwise oriented polynomial
circle through p;(t), p;(t), and p(t) at ¢ = 0. Let x be the circle center of p;(t),
p;(t), and py(t) at t = 0. Then z is a Voronoi vertex v(p;,p;,px) at t =01if cis a
Voronoi circle at t = 0.

Let u(t), v(t), and w(t) be distinct polynomial sites that coincide in (0,0) at ¢ = 0.
Then the circle center of u(t), v(t), and w(t) is not equal to (0,0) only for special
configurations.

Lemma 4.30

Let u(t), v(t), and w(t) be distinct polynomial sites that coincide in (0,0) at t = 0.
If up Z Guw mod T OF Pyy Z Gy mod m, then the circle center ¢ of u(t), v(t),
and w(t) att =0 equals (0,0).

Proof. We may assume without loss of generality that ¢, #Z ¢y, mod 7. Lemma
4.29 states that ¢ = limy_,o(B¢(u,v) N By(u, w)). From Lemma 4.27 it follows that
¢ € B(u,v) N B(u,w) at t = 0. But then ¢ is the unique intersection point (0, 0) of
two non-parallel lines B(u,v) and B(u,w). |

Example 4.31

Let u(t) = (0,—t), v(t) = (=t,0), and w(t) = (t — 2, —2t). In Example 4.8 we have
shown that w, v, and w define a circle with center ¢ = (=2, —2) at ¢ = 0. We did so
by evaluating the determinants a, d, and e introduced in Section 4.2.3. Alternatively,
we can compute ¢(t) as an intersection of two bisectors, say Bi(u,v) and Bi(u,w).
This gives:

c(t) = Bi(u,v) N By(u,w)

1
(z,z) N (z, f2t+t2—§t3+x7tx)
1
= 5(*4+2t7t2,f4+2tft2).

So ¢ = ¢(0) = (—2,—-2) as expected. We have already computed the equations for
the two bisectors in Example 4.28.

4.5 The positive area cells for one cluster.

In this section we assume we have a set S of polynomial sites that all coincide in the
origin at ¢ = 0. We show that in general some sites can be omitted without changing
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the shape of the Voronoi diagram of S. We characterize those sites that determine
this shape and present an efficient algorithm to compute the shape of the Voronoi
diagram.

4.5.1 The direction hull and positive area cells.

A zero cluster at t = 0 is a set S(t) of polynomial sites in general position such
that p;(0) = (0,0) for every site p;(t) in S(t). We want to know the shape of the
Voronoi diagram of a zero cluster. For this purpose it is enough to determine the
boundary of the Voronoi cells of positive area at ¢t = 0.

Assume that S(t) is a zero cluster at t = 0. Fix some site v(¢) in the combinatorial
convex hull cCH(S(t)) at t = 0. There is one incoming edge and one outgoing edge
in cCH(S(t)) at v(t) at t = 0. Suppose the incoming edge comes from u(t), while
the outgoing edges goes to w(t). Site v(t) is called a corner site of S(¢) at ¢t =0
if the direction of the incoming edge is distinct from the direction of the outgoing
edge, that is, if ¢y, # Ppw. The corner sites of S(t) at t = 0 are by definition the
vertices of the direction hull DH(S(t)) at t = 0. Two vertices u(t) and v(t) are
connected by a directed edge wv if there are no corner sites on the path from u(t)
to v(t) in cCH(S(t)).

Example 4.32
Let S(t) = {q1(t),...,qa(t)} be as introduced in Example 4.13. From Example
4.18 we know that ¢cCH(S(t)) equals 132. Compare Table 4.1. The directions

P13 = arctan3 P30 =T — arctang and ¢91 = farctan% are all distinct. It follows
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that DH(S(t)) = cCH(S(t)) = 132 at t = 0.

Example 4.33

Let S(t) = {q1(t), a2(t), g5(t)} with q1(t) = (=,0), q2(t) = (0,#), and gs(t) =
(t,—t?). Then cCH(S(t)) = 123, while DH(S(t)) = 13, as ¢12 = ¢o3 = 0.

Lemma 4.34
Let S(t) = {p1(t),...,pn(t)} be a zero cluster at t = 0. Then any bisector B(p;,p;)
passes through (0,0) at t = 0.

Proof. The bisector B(p;,p;) passes through the bisection point b(p;, p;) = (0,0)
at t =0. ]

Lemma 4.35
Let S(t) = {p1(t),...,pn(t)} be a zero cluster at t = 0. Then V(p;(0)) has positive
area if and only if p; € DH(S(0)).

Proof. Assume that p; € DH(S(0)). As p; € cCH(S(0)), it follows that p; €
CH(S(t)) for t > 0, small enough. That means that there exists ¢y such that for all
0 <t <ty the Voronoi cell V(p;(t)) is unbounded. Moreover, p; is incident with two
edges e(p;—1,p;) and e(p;, pi+1), say, that are unbounded for all 0 < t < to. But this
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implies that these edges are unbounded at ¢t = 0 as well. The sites p;—; and p; 41 are
the direct predecessor and direct successor of p; on cCH(S(0)). As p; € DH(S(0)),
the directions ¢;_1,; and ¢;.;+1 are distinct at ¢ = 0. But this implies that V' (p;(0))
has two unbounded edges of distinct direction on its boundary and by the convexity
of V(p;(0)) this implies that V' (p;(0)) has positive area.

For the other direction, assume that V(p;(0)) has positive area at ¢t = 0. It follows
from Lemma 4.34 that V(p;(0)) is unbounded, and therefore has two unbounded
edges on its boundary of distinct direction. This implies that p; € DH(S(t)) at
t=0. |

The Voronoi diagram V' (S(0)) of a zero cluster at ¢ = 0 looks as follows:

1. Ifpi(t) € DH(S(t)) at t = 0, then area(V(S(t))) = 0 by Lemma 4.35.

2. Ifpi(t) € DH(S(t)) and if p;_1(¢) and p;1+1(t) are its direct predecessor and its
direct successor at t = 0 in DH(S(t)), then

V(pi(0)) = vho(pi,pi—1) Nvho(pi,pit1)-

Corollary 4.36
The shape of the Voronoi diagram 5V (S(0)) of a zero cluster S(t) equals the shape
of the Voronoi diagram of DH(S(0)).

We conclude that for computing the shape of the Voronoi diagram 6V(S(0)) of a
zero cluster, it is enough to consider sites on the direction hull DH(S(0)) C S(¢
only.

4.5.2 Determining the direction hull at ¢ = 0.

In Section 4.2 we have defined the combinatorial convex hull cCH(S(t)) of a set
of polynomial sites by imitating the characterization of the ordinary convex hull
as an intersection of half-planes. Exploiting this similarity we show how to com-
pute cCH(S(t)) by an adapted version of the convex hull algorithm as presented in
[BKOS], page 6.

The original algorithm is an incremental algorithm: first it sorts the n points in the
input and next it handles the points one by one. The original algorithm sorts the
input points lexicographically. This results in a sequence of points that is ordered
from left to right and then from bottom to top. The algorithm determines the convex
hull in two steps. In the first step the upper hull is determined. The upper hull
is basically that part of the convex hull that is running from the leftmost point to
the rightmost point of the sorted points. It constructs the upper hull by adding one
point at a time and checking if the sequence of points that will be the upper hull
in the end keeps going right. The lower hull is defined and constructed in a similar
way.
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Our ordering O~ mimics the lexicographic ordering. Just think of substituting a
very small positive value of ¢ in the set of polynomial sites and sorting the resulting
points lexicographically. An example is displayed in Figure 4.4 where the position of
some polynomial sites at ¢ = 0.59 is indicated by the labels of the sites. In a similar
fashion we define right turns for polynomial sites: we say that three sites u(t), v(¢),
and w(t) ordered by O~ make a right turn at t = 0, if w(t) is on the right of 1, (t)
at t =0.

Algorithm 4.37
Combinatorial convex hull for polynomial sites.

Input: set S(t) of n polynomial sites in general position.

Output: list L containing the vertices of ¢cCH(S(0)) in clockwise order.

: Sort the sites by O, resulting in a sequence p;(t),...,pn(t).

. Create list Lypper = {P1, P02}

: for every i € {3,...,n} do

Append p; to Lypper-

while Lpper contains more than two sites and the last three sites in Lypper

do not make a right turn, do

6: Delete the middle of the last three sites from Lypper-

7: Construct Ligwer in a similar way and append the result to Lypper. Call the
resulting list L;.

8: return L.

The running time of the algorithm is O(n log n), cf. [BKOS]. Let S(t) be a zero
cluster again. Given its combinatorial convex hull cCH(S(t)) at t = 0, we compute
in O(n) time the direction hull DH(S(t)) at t = 0.

Algorithm 4.38
Direction hull.

Input: combinatorial convex hull cCH(S(0)) of a zero cluster S(t).
Output: direction hull DH(S(¢)) at t = 0.
1: Compute the direction ¢, for every edge uv in cCH(S(t)) at t = 0.
2: if two consecutive edges uv and vw have the same direction, that is, ¢y, = Gy,
then
3:  Delete w and its incident edges.
4:  Create a new edge uw.

4.6 Degenerate Voronoi cells and edges.

Let S(t) be a zero cluster at t = 0. We have seen before that only sites in the direction
hull DH(S(0)) generate a Voronoi cell of positive area. It is possible however that
for a site p; € S(t) \ DH(S(0)) there exists an edge e(p;,p;) that does not collapse
on (0,0) at t = 0. In this section we consider sites p;(¢) € S(t) such that there exists,
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at t = 0, an edge e(p;,p;) with « € e(p;,p;), * # (0,0). We first give an explicit
example of an edge e(p;, p;) where even (0,0) & e(p;,p;), while p; ¢ DH(S(0)).
Next we present an algorithm that determines all edges e(p;, p;) that contain some
x € R? with z # (0,0) for a zero cluster S(t) at t = 0.

A

Figure 4.3: Edge of zero length outside (0,0).

Example 4.39

Let S(t) = (p(t),q(t),r(t),s(t)), where p(t) = (-215,0), Q(t) = (_ta_itz)a T(t) =
(0,0), and s(t) = (2t,2t?). The direction hull at ¢ = 0 consists of the two sites p(t)
and ¢(t), while ¢,, = 0. Therefore the shape of the Voronoi diagram 6V (S(0)) is
just a vertical line through the origin. There are two Voronoi cells of positive area
at t = 0: V(p), whose cell is the left half-plane, and V' (s), whose cell is the right
half-plane.

The type of V(S(t)) however is prq,psr. A schematic picture of the situation is
given in Figure 4.3. From the type it follows that combinatorially, V' (S(t)) consists
of two vertices or circle centers, prq and psr that are connected by an edge e(p,r).
Besides, there are unbounded edges e(p,q) an e(q,r), incident to the circle center
prq and edges e(r, s) and e(p, s), incident to psr. Both circle centers are situated at
the point (0,2). This implies that the length of e(p,r) at t = 0 equals zero, while
the four other edges involved, have infinite length.

Let S(t) be a zero cluster at t = 0. An edge e(p;, p;) with p;,p; € S(t) is an outside
edge at ¢ = 0 if there exists = € e(p;, p;) such that x # (0,0). Here we allow x to
be any point of the form = = (a,b), x = (£o0,b), z = (a,£o0) or = (£o0,+00),
where a,b € R. Allowing these possibilities is motivated by Example 4.8, which
demonstrates that circle centers defined by polynomial sites can be at infinity.

Algorithm 4.40 determines all outside edges of a set of polynomial sites in general
position at ¢t = 0.

Algorithm 4.40
Determining outside edges and their positions.
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Input: a zero cluster S(t).
Output: all outside edges with their endpoints at t = 0.

1: Determine the type T of S(¢) at ¢ = 0.

2: Any edge uv of multiplicity 1 in the abstract Delaunay graph aD(S(0)) corre-
sponds to an unbounded edge e(u, v) in the Voronoi diagram V(S(t)). This edge
e(u,v) starts at the circle center of the unique circle listed in T' that has both
u and v on its boundary. The direction of e(u, v) is perpendicular to ¢,,. Edge
e(u,v) is oriented so that it makes an angle of 7 with ¢.;

Determine those circles in T' that have positive radius;
for a and b two labels occurring in some circle of positive radius do
(We show how to ‘draw’ the edge ab).
Check if we have not drawn ab before in step 2 as an unbounded edge.
if the combination of the labels a and b occurs twice in the list of the circles
of positive radius then

8: there are two circle centers distinct from (0,0). We connect the two circle

centers by an edge ab;

9:  else if the combination of the labels occurs only once then
10: we connect the corresponding circle center c,p to the origin.

Determining the shape of the Voronoi diagram is relatively easy, compare Section
4.5. We have seen in this section, however, that the combinatorial structure on the
boundary itself can get rather complicated.

4.7 Example: 20 polynomial sites.

In this section we analyze a slightly bigger example, illustrating the techniques and
theory developed in the former sections. We consider a set S(t) of 20 polynomial
sites. We determine the shape of the Voronoi diagram V(S(¢)) at t = 0. Next we
focus on the outside edges of V(S(t)) at t = 0. We visualize the polynomial sites and
compare the outcome of the computation to the visualization. First we introduce
the polynomial sites. S(t) is a set of 20 distinct sites (p1(¢),...,p20(t)) such that
pi(t) = (0,0) for i =1,...,20:

2% — 214, =3t + 2t2 — 13 + t4),
2t — t4, 342 4 3¢5 °),

(0,2%), p (-

(0,2t + t* + 2t5), pr2 (-

P3 (2t 23 + 1), p1s (=282 — t47—2t2 + 3t3),

pa (12,2t + 22 —3), pra (=t + 312 — 23 + 3th,t + 312 — 3t5),

ps (= 2754 —t°), p1s (=t —2t°, =363 + 2t%),
( (
( (
(= (
(- (
( (

P1
D2

ps  (3t°, t2 + 213 + 3t°), pre (12 =282 +1°, —t4),

pr (2t +3t2 —2t3 2t —2t2 —13), pyr (33280 7t4)

Ps 2t — 13,21), pig (33 + 3t4 + 2152t — 213 — t1),
Do 2 4 3, —2t — 13), pio (2 +t3+3t° 0)

pro (4 2t% + 213, —t + 3t3), pao  (3t2 4+ 213 + 3t5 t2 4 313 + 2t4).
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We visualize S(t) by considering any p;(t) € S(t) as a plane curve, represented by
a parametrization (p; . (t),pi,y(t)). In Figure 4.4 these twenty curves are plotted for
t € [0,1]. The position of a curve at t = 0.59 is marked by its label.

19

Figure 4.4: The polynomial sites for ¢ € [0, 1].

4.7.1 The positive area diagram.

Recall that the type of S(t) is defined a the set of all Voronoi circles at ¢ = 0.
We have computed it using brute force. That is, for every (%) unordered triples of
polynomial sites p;(t), p;(t) and px(t) we first determine the orientation at ¢ = 0 of
the circle C passing though p;(t), p;(¢) and pi(t). Next we check if any of the n —3
remaining sites of S(t) is contained in C. If not, we conclude that C' is a Voronoi
circle and add the labels i, j and k ordered with respect to the orientation of C' to
the type in the making. It turns out that the type of S(t) is given by:

((1,5,6), (1,17, 5), (1, 6, 17), (2, 8, 4), (2, 4, 18), (2, 14, 8), (2, 18, 14),
(3,20, 7), (3, 11, 10), (3, 10, 20), (4, 7, 18), (5, 13, 6), (5, 17, 13), (6,
13, 15), (6, 15, 14) (6, 14, 20), (6, 16, 17), (6, 19, 16), (6, 20, 19), (7,
20, 18), (8, 12, 9), (8, 14, 12), (9, 13, 11), (9, 12, 15), (9, 15, 13), (10,
11, 13), (10, 13, 20), (12, 14, 15), (13, 17, 16), (13, 16, 19), (13, 19, 20),
(14, 18, 20)).

Counting multiplicities of the edges shows that all edges have multiplicity 2 except
for the edges
(4,8),(3,7),(3,11),(4,7),(8,9),(9,11).
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As site pr is on the right of I 5 at t = 0 the combinatorial convex hull cC' H(S(0))
is given by (8,4,7,3,11,9). The directions of the edges of cCH(S(0)) are ¢g.4 = 0,
a7 =0, P73 = —F, 3,11 = —arctan(%) — 5, ¢11;0 = 5 +arctan 2, and ¢gg = 7.
The directions ¢g.4 and ¢4.7 are equal, so site ps is not a corner site. We conclude
that the direction hull DH(S(0)) is given by (8,7,3,11,9). This outcome can almost
be ‘guessed’ from Figure 4.4 by considering the convex hull of the points p; () to
p2o(t) for small ¢t. Knowing the direction hull and the directions of the edges of the
direction hull, we know in fact the shape of the Voronoi diagram 6V (S(0)). It is
depicted on the left in Figure 4.5.

4.7.2 Combinatorics of the edges outside (0,0).

The only Voronoi circle that has a circle center outside of (0,0) at t = 0 is the
clockwise oriented circle (8,12,9). Its center is at infinity. This means that the
unbounded edge e(8,9) starts at the Voronoi vertex at infinity, while two edges
€(8,12) and e(9, 12) run between vertices situated in (0,0) and this vertex at infinity.
We have seen before that py € cCH(S(0)) with pg its direct predecessor and pr its
direct successor in cC'H (S(0)). As there are no further circle centers situated outside
the origin, there are two unbounded edges e(4, 8) and e(4, 7) that, starting in (0, 0),
both run upwards, but never meet. A schematic picture of the combinatorics of the
edges outside (0,0) is given on the right in Figure 4.5.

8
—e—12
9
11 11

Figure 4.5: The positive area diagram at ¢ = 0 on the left. The combinatorics
outside (0,0) included on the right.

4.8 The shape of a Voronoi diagram at ¢t = 0.

In Section 4.5 we have given a method that determines the shape of the Voronoi
diagram of a zero cluster at ¢ = 0. That is, we assumed that all sites coincide in the
origin at ¢ = 0. In this section we apply this method in order to determine the shape
of a Voronoi diagram at ¢t = 0 for an arbitrary set of polynomial sites in general
position.
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Let S(t) be a set of polynomial sites of size n that is in general position at t = 0.
The cluster locations [(0) = {l1(0),...,0,,(0)} of S(t) at ¢ = 0 are the distinct
positions of the sites in S(¢) at ¢ = 0. An lj-cluster, for I; € R? is a collection
of polynomial sites that coincides at [; at t = 0. Write S(t) = UJL,S;(t), where
S;(t) € S(t) is the set of sites in S(¢) such that pj,(0) = [;(0) for all p;, € S;(t).
That is, we divide S(¢) with respect to the [;-clusters at t = 0.

Lemma 4.41
The shape of the Voronoi diagram 6V (S(t)) at t =0 of S(t) is given by
vsO) = U (V(50) N v(s;0))).
Jj=1,..., m

Proof. First of all, suppose that |S;(0)] = 1, for all j = 1,...,m. In this case
the lemma just states that the Voronoi diagram of distinct points coincides with
the subdivision of the plane into Voronoi cells, see Section 2.2. Next consider an
arbitrary point  in the interior of, say, V'({;)(0). Then x is, by definition, closer to
l; than to any other location I for k # j. The lemma follows from Corollary 4.36
adapted for an [;-cluster S;(t). |

Figure 4.6: Plugging diagrams.

Example 4.42
Suppose we are given the following sites:

S(t) = ((_67 4)a (_27 _6)7 (_17 -2- St)a (07 _3t)a (3’ 5)7 (Ga _3)7
(—1—3t,—2+ 1), (—2t,—2t), (—2t,21), (2L, 0), (2t,21), (—1 + 2¢, —2)).

The cluster locations at ¢ = 0 are given by

l(O) = ((_65 4)7 (_2’ _6)’ (_17 _2)7 (070)’ (3’ 5)7 (6’ _3))
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The Voronoi diagram V'(I1(0)) of the cluster locations is presented on the left in
Figure 4.6. There are two clusters consisting of more than one point. The shape of
the Voronoi diagram of the zero cluster, given by

Si(t) = ((0,—3t),(—2t,—2t), (—2t,2t), (2t,0), (2t,2t)),

is presented in the top middle of Figure 4.6, while the shape of the Voronoi diagram
of the (—1, —2)-cluster

So(t) = ((=1,-2—38),(—1—3t,—2+1), (—1 +2t,—2)),

is shown in the bottom middle. According to Lemma 4.41, we can plug these two
cluster diagrams in the cluster locations diagram in order to get the shape of the
Voronoi diagram of S(t) at ¢ = 0. This final diagram is depicted on the right in
Figure 4.6.

4.9 Generalizations and conclusion.

4.9.1 Dropping general position.

Throughout this chapter we have assumed that sets of polynomial sites are in general
position. General position is not needed for the methods presented to work. Drop-
ping general position just means that a lot of extra cases have to be checked, which
distracts from the main line. Note that the notion of type as introduced in Section
2.3 is defined for point sets that are not in general position as well. As we can also
compute convex hulls for point sets that are not in general position, there are no
big obstructions for extending the methods to sets of polynomial sites in arbitrary
position.

Recall from Section 4.2 that general position for polynomial sites is defined in terms
of cocircularity and collinearity polynomials: if some set S(t) is not in general posi-
tion at ¢ = 0, then there is at least one cocircularity polynomial I(t) or collinearity
polynomial D(t) that is equal to the null polynomial. This implies that S(¢) is not
in general position for any value of t.

4.9.2 Generalization to higher order Voronoi diagrams.

In the k-th order Voronoi diagram, the plane is partitioned according to the k closest
sites, see Chapter 3. Algorithm 3.5 computes the k-th order Voronoi diagram of a
set S of distinct points in general position, using

e circles through three points of .S,
e points from S inside these circles,

e directions of lines between points of S.
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We have shown in this chapter that these concepts can be generalized to sets S(t)
of polynomial sites. Therefore, Algorithm 3.5 can also be generalized to sets of
polynomial sites in general position. This will give us a combinatorial k-th order
Voronoi diagram.

Figure 4.7: No plugging of second order diagrams.

It is also clear that we cannot directly generalize Lemma 4.41 for obtaining the shape
of a k-th order Voronoi diagrams. That is because the two steps approach, dealing
with cluster locations and clusters apart, is not allowed anymore for k > 1.

Example 4.43

Let S(t) be as in Example 4.7. In Figure 4.7 we show on the left the second order
Voronoi diagrams of the cluster locations [(0) that we have found in Example 4.42.
On the right, the second order Voronoi diagram for S(t), with ¢ = 0.001 is shown.

4.9.3 Polynomial arithmetic.

So far, we did not pay any attention to how to compute efficiently with polynomial
sites: higher order terms can often be skipped without changing the type or the
position of the Voronoi vertices and edges. But at this point we have no rule available
that tells us on forehand when it is allowed to skip higher order terms.

Example 4.44

Let S(t) be as introduced in Example 4.13. Suppose that we change ¢4 in Examples
4.13 and 4.24 from q4 = (t? — 2t3 + 5, —t*) into g4 = (t?, —t*). Then the type of
S(t) at t = 0 and the shape of the Voronoi diagram of S(¢) at ¢ = 0 remains the
same.

This is one reason for considering certain properties of sites or point sets, rather
than the sites themselves. We will do so in the following chapters.
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4.9.4 Conclusion

The polynomial sites model enables us to introduce limit pictures of Voronoi dia-
grams by means of the shape of a Voronoi diagram. Moreover, we have seen that this
model can be used to extend the notion of ‘type’ to sets of points that sometimes
coincide. The type gives us the complete combinatorics of a limit situation.

The methods presented in this chapter however do only visualize the shapes of those
cells that have positive area at ¢ = 0. This demonstrates that not all cells in the
limit Voronoi diagram at ¢t = 0 are treated in an equal way. The ingredient that is
missing is the relation between shape and scale. Informally, think of dividing the
polynomials defining the polynomial sites by powers of ¢ until Voronoi cells that had
zero area at t = 0 before dividing get positive area. That is, we want to zoom in at a
cluster in order to find out the shape of a Voronoi cell of some arbitrary site p;(¢). In
order to solve this problem we will define clickable Voronoi diagrams in a following
chapter. We do so by exploiting properties of point sets, like angles between two
points or hooks between three points.



Chapter 5

Voronoi diagrams and angle
compactifications.

Given a configuration ¢ of n distinct points, one can determine the set a, of angles
of lines through any two points in ¢. We distinguish a,, the set of angles up to
2w, and @, the angles up to m. We analyze in both cases what sets of angles are
possible. We show in which cases it is possible to reconstruct the Voronoi diagram
V(c), knowing the angles only. We compactify the configuration space of distinct
points by taking the closure of the graph of the map that associates the angles to a
configuration. We present a variety 7,, as an algebraic alternative. We analyze the
connection between boundary points of the compactification and singularities of T;,
for small n and give geometric interpretations.

5.1 CDA,: space of angles on n points.

In this section we introduce several spaces that will be important to us later on.
We recall the notion of configuration space of n distinct labeled points in the plane.
Both an introduction on and applications (in robotics!) of configuration spaces can
be found in [AG]. Next we define two spaces by considering, for n distinct points in
the plane, all angles between pairs of points. Here we distinguish angles mod 7 and
angles mod 27.

5.1.1 The angle of two points.
Given two distinct points p; and p;, we determine the angle that the line that passes

through p; and p; makes with the positive z-axis. We distinguish the directed and
undirected line.

63
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Definition 5.1
See also Figure 5.1.

(i) For any two distinct points p; and p; in the plane define the directed angle
a;; € R/27Z as the argument of the point

d, d
]l |

)

vll

where d = (d, dy) := p; — p;. Note that a;; is determined up to multiples of 2.
(11) The undirected angle @&;; is defined as &;; = @j; = a;; mod 7. We often

choose agj € (=%, 5.

(111) If (pj—pi)e # O, then the slope a;; is defined as a;; = g] i;; If (pj—pi)s =

0, then a;; = oo. It holds that a;; € (—o0,00].

(cosa;j,sina;;) = (

Figure 5.1: The directed angle «;; between two points p; and p;.

Example 5.2
Let p; = (1,1) and p; = (—1,0). Then d = p; — p; = (=2,—1), so F* =
angle a;; = arctan(3) + 7 as d <0.

Remark 5.3
If (pj — pi)s # 0, then a;; = tanay; and &;; = arctana;;.

5.1.2 Configuration spaces of n distinct points.

Definition 5.4
The configuration space CONF,,(R?) of n points in R? is the set

CONF,(R*) = {(p1,..-,pn) € R)™ | p; #p; ifi #j}.

Two elements p,q € CONF, (R?) are ~(s,t}-equivalent if they only differ by a scal-
ing, s, combined with a translation, t. The reduced configuration space is the
quotient space conf,, = CONF,,/ ~, ).

conf,, is a smooth manifold. We determine its dimension. A standard represen-
tative for a class in conf,, is constructed as follows. Translate the configuration
in such a way that p; = (0,0). Scale the configuration in such a way that po is at
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distance one from p;. This shows that we need three parameters less than 2n to
describe an element in conf,.

Property 5.5
dimension(conf,) = 2n — 3.

Remark 5.6

Note that conf,, is not compact: take n = 3, then the ratio % is continuous
but not bounded.

Remark 5.7

Let é¢ = {p1,...,Pn} be the standard representative of a class [c] in conf,, and let

¢ = {p1,...,pn} be an arbitrary element of [¢]. Then p; =| p2 — p1 | B + p1. If

we write T,o,¢ for the set of standard representatives of classes in conf,, then

CONF,, = {¢R>0+R? | ¢ € Teonf, }-

5.1.3 Compactification of the graph of the angle map.

For an element ¢ € CONF),, write down for every pair of points p;,p; € ¢, with
i # j, the angle o;; € R/27Z or @;; € R/wZ. This gives (}) angles, one for every
unordered pair of labels ¢ and j.

Definition 5.8 ; ;
DA, = (R/ZWZ)(2) is the space of directed angles; UA,, := (R/WZ)(2) the space of
undirected angles. The directed angle map pa, is the map

Vpa, : CONF,, — DA,
(P1,--spn) (aij) 1<i<j<n-

The undirected angle map Yya, is defined in a similar way.

Remark 5.9
As a direct product of circles DA,, and UA,, are smooth.

Remark 5.10
Ypa, and Yua, are well-defined on conf,,: both mapping are constant on classes of
conf,.

Definition 5.11

The graph of ¥pa, is the set {(c,v¥pa,(c)) € (R*)® x DA, | ¢ € CONF,}.
The compactification CDA,, of the graph of the angle map, is the closure of
graph(vpa, ) in (R?)™ x DA,. The compactification CUA,, is defined in a simi-
lar way.

Remark 5.12
CDA,, is in fact not a compactification as it is not compact: CONF,, is not bounded,
compare Remark 5.6. The projection map from CDA,, to (R?)" is proper however.
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Recall that a map is proper if it is continuous and if the preimage of every compact
set is compact again.

5.2 From angles back to point configurations.

In this section we consider the mappings ¥pa,, : conf, — DA, and u,, : conf, —
UA,,. We describe the fibers of both mappings by showing which configurations ¢
can be reconstructed from knowing the angles ¥pa, (¢) or ¥ya, (¢) only.

5.2.1 Distinct points and angles in R/27Z.

A configuration ¢ € CONF,, is called collinear iff all points in ¢ are collinear. A
class of configurations [c] € conf, is collinear if the class elements are collinear.
Define CLCONEF,, := {c € CONF,, | c collinear}, and similarly clconf,.

Lemma 5.13
The map ¥pa, : conf,\clconf, — DA, is injective.

Proof. We have to show that for [c],[d] € conf,\clconf, with [c| # [d] it holds
that ¥pa, ([¢]) # ¥pa,, ([d]). Let ¢ and d be the standard representative of [c], resp.
[d]. If [c] # [d] then also ¢ # d. Let p;(c) be the i-th point of the configuration ¢ and
let a;j(c) € R/27Z be the angle between p;(c) and p;(c). Note that for standard
representatives p1(c) = p1(d) = (0,0). We show that in any case there exists some
labels u and v such that o, (c) # quw(d).

Let ¢ € {2,...,n} be minimal such that p;(c) # p;(d). If i = 2, then pa(c) # p2(d),
therefore aj2(c) # ai2(d). Assume that ¢ > 2. In this case pa(c) = p2(d) =
(cos aja,sin ay9) for some ajo € (—m, 7). Let m be the line through p; and p;(c).
If pi(d) & m, then ag;(c) # a1:(d). Assume that p;(d) € m. If po & m, then
0427;(6) 75 O[Qi(d).

We are left with the case that py,p2, pi(¢) and p;(d) are all collinear on line m. As
¢,d ¢ CLCONF,,, there exists j such that p;(c) & m. If p;(d) = p;(c) then aj;(c) #
a;;(d). Let I be the line through p; and p;(c). If p;(d) € I, then asj(c) # as;(d).
Finally, if p;(d) € [, then aq;(c) # aq;(d). [ |

Remark 5.14

Suppose we are given an image point a = ¥pa, ([¢]) for some [¢] € conf,\clconf,,.
We construct the standard representative from the angles in a as follows. Put
p1 = (0,0) and py = (cos a12,sin ). A point p; is on the line 15 through p; and
po if and only if

12 = ai; = ag; mod T. (5.1)

As [c] € conf,\clconf,, we know that there exists p; that is not on the line l;5. We
find it by checking Equation 5.1. We construct p; as the intersection of the lines
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l1; and l;. Here l1; is the line that passes through p; and has direction ay; and
ly; is the line that passes through py with direction ay;. Any other point p; of the
standard representative is constructed in a similar way: there is always a pair of
vertices from the non-degenerated triangle pypap; such that the line through these
two vertices does not contain p;.

Let ¢ € CLCONF,. Then all points p1,...,p, from ¢ are on a common line I,
that makes some undirected angle a; € (=%, 5] with the positive z-axis. Order the
labels of the points according to the order of the points on [. as encountered from
left to right, or from bottom to top, in case @; = 5. This defines an ordered n-tuple
o(c). The n-tuple o([c]) is defined as o(c), for some representative ¢ € [c]. Define
an equivalence class ~, , on clconf, as follows: [c] ~qu [d] if and only if both
o = g, and o([c]) = o([d]).

Lemma 5.15
Consider ¥pa, : CLCONF,, — DA,,.
(i) pa, is constant on classes of ~q. .
(i1) The map ¥pa, : cleconf, / ~, ,— DA, is injective

Proof. We prove the two claims.

(i) Let [c],[d] € clconf, such that [c] ~q, [d]. Let p;(c),p;(d) and p;(c), p;(d)
denote the i-th and j-th points of some representatives ¢ and d of the classes [c]
and [d]. Then a;;(c) = ay;(d), as all four points are collinear. Moreover, p;(c)
is on the right of p;(c) whenever p;(d) on the right of p;(d), as o(c) = o(d). So,
() = aij(d).

(ii) Suppose that [c] #a,0 [d]. Let p;i(c),pi(d),p;(c) and p;(d) be as above. If
Q. # ag, then clearly ¥pa,, ([c]) # ¥pa, ([d]). Assume &, = @g. Then o(c) # o(d).
Let ¢ be minimal such that k& := o(c); # o(d); =: | Then ay(c) = ag(d) + .
Therefore 1pa,, ([c]) # ¥pa, ([d]). [ |

We use Lemma 5.13 and Lemma 5.15 to answer the following question. Is it possible,
given some a = Ypa,, (¢), with ¢ € CONF,,, to determine the Voronoi diagram V(¢)?
Let the reduced Voronoi diagram, notation V(c), of a point ¢ € CONF, be
the Voronoi diagram V'(c) up to scaling and translation. A reduced configuration
of points [¢] or a reduced Voronoi diagram V(c) is reconstructible from a list of
angles a iff [¢] resp. V(c) is uniquely determined by a.

Property 5.16

V(c) is independent of the choice of ¢ € [c].

Notation: By V([c]), for [¢] € conf,, the reduced Voronoi diagram of some repre-
sentative ¢ € [c] is indicated. Note that if one can reconstruct the class [¢] € conf,

from ¢DA~H(C), for ¢ € CONF,,, then one can also construct the reduced Voronoi
diagram V([c]).
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Corollary 5.17
Let a = vYpa, ([c]), with [¢] € conf,.
(i) If [c] € conf, \ clconf,, then [c] is reconstructible.
(11) If [c] € clconf,,, then [c] is not reconstructible, except for n = 2.

Proof. The first claim follows from Lemma 5.13 and Remark 5.14. The preimage
wgin([c]) consists of distinct classes of conf,,, except for n = 2, consult Lemma
5.15. This proves the second claim. |

Corollary 5.18
V([c]) is reconstructible if and only if either [c] € conf, \ clconf,, or [¢] € clconf,
andn =2 orn=3.

Proof. From Corollary 5.17 it follows that [¢] is reconstructible in the cases men-
tioned except for [c] € clconf,, in case n = 3. But in this case, V([¢]) consists just of
two parallel bisectors perpendicular to a.. From as = 1pa, ([c]) we can determine
the order of the three points on the line, which gives us the labels of the bisector.
Changing the relative positions of the three points in [c] has no influence on f/(c)
as long as the order of the points is maintained. Suppose, on the other hand that
[c] € clconf,, for n > 3. It is easy to show that in this case mutually distinct classes
of configurations in the fiber 1/’511&,1([0}) correspond with mutually distinct reduced
Voronoi diagrams. |

Figure 5.2: The Voronoi diagram of four collinear points.

Example 5.19

Consider the element d € DA, defined by a1 = 13 = ayq = Qo3 = agg = 0.
Suppose that we try to construct a configuration S of labeled points having those
angles. It is clear that any such configuration consists of four points on a common
horizontal line. An example is given in Figure 5.2. Moreover, it is possible to
reconstruct the order of the points on the line: from left to right we encounter the
points p1, p2, p3 and p4 in that particular order. This shows however that from the
information present in d we cannot determine the ratio |p1pa|/|p1p3| of the lengths
of the line segments pips and pips: whatever this ratio is, the angles a2, a3 and
23 do not change. The Voronoi diagram of p; to ps consists of the three vertical
bisectors B(pi1,p2), B(p1,ps) and B(pa,ps). Again it is impossible to determine
the ratio |B(p1,p2) — B(p2,p3)|/|B(p2, ps) — B(ps, pa)| of the distances between the
bisectors. This shows that it is impossible to associate a unique reduced Voronoi
diagram to d € DAy.
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5.2.2 Distinct points and angles in R/7Z.

Suppose we start with some ¢ € CONF,,. Assume we have determined @ = 9ya,, (¢),
that is, the set of all angles @;; mod 7 between pairs of points (p;,p;) € c. We
introduce another equivalence class on conf,. Let [¢], [d] in conf,. The classes [c]
and [d] are reflection equivalent, notation [¢] ~g [d] if and only if the standard
representative ¢ of [¢] equals the standard representative d of [d] up to a reflection

in p1(c) = p1(d) = (0,0).

Lemma 5.20
The map Yya, : (conf, \ clconf,)/ ~r — UA, is injective

Proof. Proceed as in the proof of Lemma 5.13, but take those standard represen-
tatives that have a(c),a(d) € (=5, §]. It is possible to put mod 7 bars on all a;;’s
that occur in the proof. |

If we take angles between points in R/7Z, all collinear configurations that have their
points on a line with angle @ € (-7, 7] are mapped to the same @ = (@, ..., @) in
UA,,. So it is impossible to reconstruct the original order of the points on the line.

Corollary 5.21
Let a =vya, ([c]), for [c] € conf,.

(i) If [c] € conf,\clconf,, then [c] is reconstructible up to a point reflection.
(i) Iff [] € clconf,, and n = 2, then [c] is reconstructible up to a point reflection.
(iii) Iff [¢] € clconf, and n = 3, then [c] is not reconstructible but the reduced
Voronoi diagram V ([c]) is reconstructible
(i) 1If] [c] € clconf,, and n > 3, then V([c]) is not reconstructible.

Figure 5.3: V(c) reconstructed from angles mod 7.

Example 5.22

Let ¢ = {p1,p2,p3}, with p; = (2,0), p2 = (0,0) and p; = (1,1). The Voronoi
diagram V(c) is shown on the left in Figure 5.3. Then a1s = 7, 13 = 37“ and
a3 = 7. So arz = 0, while a13 = a3 and @23 = az3. We get a ‘reconstructed’
configuration ¢ consisting of pj = (0,0), py = (1,0) and py = (—4,—1). This
configuration ¢’ together with its Voronoi diagram V(c’) is shown on the right in
Figure 5.3.
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5.3 Angle models for small n.

In this section, we analyze the compactifications CDA,, and CUA,, for n = 2. More-
over, we give a complete description of the image ¢pa, (CONF3). For points on the
boundary of ¢pa, (CONF3), we give a geometric interpretation in terms of coinciding
points.

Remark 5.23
D. G. Kendal has introduced the ‘The theory of shape’ in a statistical context. As a

specific example, the shapes of triangles are analyzed. To compare with this result,
consult [Kel] and [Ke2].

5.3.1 n=2.

In the directed case, we have the following diagram:

CONF, C R? x R?
N N
graph(¢¥pa,) C CDAy C R?xR?x R/27Z.

¥pa, maps a configuration ¢ = (p1,p2) € CONF,, to the directed angle ;2. For
simplicity we assume that p; = (0,0). As ¢ € CONFj,, this implies that ps €
R?\ {(0,0)}. This space R? \ {(0,0)} is homeomorphic to a doubly open cylinder:
imagine the omitted point (0,0) as one side of the cylinder and infinity as the other
side.

A classic construction is the following: The blow-up of R? at (0,0) is by definition

the closed subset X C R? x P! of all points (x1,72,y1,y2) € R? x P! such that

T1Y2 = x2y1. The projection 7 : X — R? onto the first factor has the following

properties, compare [Ha].

1. 7 1(p2) consists of a single point, if po € B2\ {(0,0)}.

2. 7 4(0,0)) =P

3. The points of 7=1((0,0)) are in 1-1 correspondence to the set of (undirected)
lines through (0, 0).

We consider CDA,, the closure of graph(ipa, ).

Lemma 5.24
CDA; is homeomorphic to a half-open cylinder times a plane.

Proof. (sketch). The plane comes from varying p;, so assume p; = (0,0). Then
p2 € R2\ {(0,0)}, provided that (p1,p2) € CONF,. Write py = r(cos a, sin a), with
r € Ryg, and o € R/27Z. Any configuration ((0,0), ), is added exactly once in
order to obtain the closure of graph(v¥pa, ), as lim,_,g r(cos a, sin ). The punctured
plane R? \ {(0,0)}, is homeomorphic to a doubly open cylinder. Adding all points
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of the form ((0,0), 12), with a12 € R/27Z means that we attach one full circle to
that end of the open cylinder that corresponds to p, = (0,0). |

Remark 5.25
Lemma 5.24 demonstrates that CDA,, can have a ‘boundary’.

C2 C1

&] C2

Figure 5.4: Antipodal identification.

In the undirected case, we consider CUAs, the closure of graph(¢ua,).

Lemma 5.26
CUA; is homeomorphic to a Mdébius strip times a plane.

Proof. (sketch). Start as in the proof of Lemma 5.24. Write py in polar coor-
dinates, that is, po = r(cosq,sina), with r € Rsg, and o € R/27Z. Any undi-
rected angle a9 is added twice, once for po = lim,_,r(cos,sina) and once for
p2 = lim, g r(cosa + m,sina + 7). This gives the antipodal identification as indi-
cated on the left in Figure 5.4 by the little solid arrows. It is allowed to cut the
space as long as it is eventually pasted back together in the same way as it was
cut. We make two cuts, ¢; and co, through the side of the cylinder. This enables
us to perform the antipodal paste, resulting in the rectangle on the right of Figure
5.4. Pasting back the cuts we have made, results in the Md&bius strip, compare e.g.
[Mu]. |

Remark 5.27
Note that the construction in the proof of Lemma 5.26 is exactly the blow-up of R?
at (0,0) that we have discussed above.

5.3.2 n=3.

We consider the possible angles mod 27 between three distinct points p1, ps and p3
in the plane. That is, we determine the image ¥pa,(CONF3) in DA3. Let [;; denote
the directed line that passes first through p; and last through p;. The triangle with
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vertices p1, p2 and p3 is oriented clockwise if p3 is on the right of l15. The triangle
is oriented anti-clockwise if p3 is on the left of [15.

Lemma 5.28
Let ¢ = (p1,p2,p3) € CONF3. Let A\ denote the triangle with vertices p1, p2 and ps.
For (a2, a13,a23) = ¥pa,(c) the following holds.

(i) If A oriented clockwise, then 0 < ayz — o3 < aqg — ao; <7 mod 27.

(ii) If A oriented anti-clockwise, then 0 < a1 — a3 < aip; — 13 < 7 mod 27.
(i) If p1, po and ps collinear then

Q1p = Q13 = i3 V 1z = Q13 = @32 V Qo1 = Q3 = Q23

Moreover, for any image point (12,13, a23) € Ypa,(CONF3) either (i), (ii), or
(i) holds.

Figure 5.5: The clockwise and anti-clockwise case.

Proof. Note that the differences of angles as they occur in the statements in the
lemma does not change if A is rotated.

(i) Assume A is oriented clockwise. Rotate A such that ay3 = m, compare
the triangle on the left in Figure 5.5. As p; is on the right of lo3 it follows that
o1 < (uogz < T.

(ii) Assume A is oriented anti-clockwise. Rotate A such that a;2 = 7w, compare
the triangle on the right in Figure 5.5. As p; is on the right of I35 it follows that
a3y < agy < . It follows that 1o — ags < a2 — ag; < 7 mod 27, or equivalently,
that ao; — aog < ag; — a3 < ™ mod 27.

(iii) Proof by inspection.

As any triangle on the vertices pi,ps and ps is either oriented anti-clockwise, or
oriented clockwise or degenerate, the lemma follows. |

Boundary points of ¥)pa, (CONF3) are characterized as follows.

Corollary 5.29
Let ag = (a2, @13, aag) be a boundary point of ¥pa, (CONFs).
(i) If a3 = ¥pa,(c) for c € CONF3, then tiiz = Gii3 = Qa3.
(ZZ) ]f as ¢ ¢DA3(CONF3), then Q12 = (13 \Y 13 = (x93 V o3 = (V19 + 7.
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Figure 5.6: Possible values for ay3, @13, aes and @az, in case aqz = T and aqg = 3F.
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Example 5.30
Figure 5.6 shows the possible values of a13 and g3, for ayz = 7, on the left, and,
for ap = 3%, on the right. Note that

(i) Configurations of points that are not collinear are mapped by ¥pa, to the
interior of the triangles and rectangles in the figure.

(ii) Configurations that are collinear are mapped to the vertices of the big central
triangle on the left and on the right.

(iii) Other points on the boundary of the triangles and rectangles do not corres-
pond to configurations in confs.

Example 5.31

The picture in the middle of Figure 5.6 shows the possible values of a7z and @s3 for
a1z = 7. The only configurations in UA3 that are not image points of ¢ya, (CONF3)
are the points where two angles mod 7 coincide but not all three.

Recall that conf; \ clconfs consists of the configurations of three distinct, non-
collinear points up to scalings and transformations.

Corollary 5.32
Let ag = (z,y,2). Then as = Ypa,([c]) for some [c] € confs \ clconfs if and only if

O<z<m y<u; Y >z z >0,
vV O<z<m  y>a; z<z+m y<z,
vV O0<e<m,  y>0; y < T z>x+m z<2m,
V O<z<m z>714x; y> 2z y < 2m,
V m<x<2m y>0; y <z z<zxT—m,
Vo m<x<2m y> z >0 y < 2m; y<x-—m,
V o m<x<2m y>z; z>x—m y<uax,
V o t<a<2m y>a; y < z; z < 2m.

The boundary of Ypa,([c]) with [c] € confs \ clconfs is depicted in Figure 5.7.
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12
s m

2w

o Q23

Figure 5.7: The boundary of ¥pa,([c]) with [¢] € conf; \ clconfs.

Remark 5.33

In Corollary 5.29 we have classified those points ag € DA3 that are on the bound-
ary of ¢¥pa,(CONF3) but not in ¢pa, (CONF3) itself. These triples of angles can
be interpreted as the triples of angles that correspond to configurations of three
points, such that exactly two points coincide. Consider the angles between the
points in the three configurations presented in Figure 5.8. In the leftmost configura-
tion, a1 = g3, in the configuration in the middle, as; = a3, while in the rightmost
configuration, az; = aze. This interpretation holds, as long as the three points are
not collinear, compare the first statement of Corollary 5.29.

Figure 5.8: Configurations for two coinciding points.

Example 5.34

Fix p1 = (0,0) and p; = (1,1). This assures that a;o = §. Suppose that the
position of p3 is given by ps(t) = pa + 1.1(cost,sint), for t € [0,27). So a3 = t.
Then (a13(t),t) is a curve, that is defined for any ¢. It is depicted in Figure 5.9, on
the left.
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Example 5.35

Fix p; = (0,0) and py = (1,1) again. Let p3(t) = v/2(cost,sint). In this case, the
curve (aq3(t),t) is built up out of straight line segments, see Figure 5.9, on the right.
At t = %”, the point p3 passes through p;. At this ¢, the curve is not defined. This
t coincides with a swap a3 = a3 + 7.

23 ’ Q23 y
A A
5m 5m
4 ’r
us
4
Q713
5n 5m
4 4 4

™
4 ‘ 13
s

Al PR

Figure 5.9: Configurations for moving third point.

There are some obvious geometric transformations that relate points in the image
¥pa,(CONFs3). We use these relations for analyzing the structure of ¥pa, (CONF3).
Here we consider DA3 as a quotient of R®. That is, identify points a = (ay, ay,a;)
and b = (by, by, b,) in R? iff a, = b, mod 2 etcetera.

Lemma 5.36

Let (x,y,2) = ¥pas(c), with ¢ = (p1,p2,p3) € CONF5. Let o be an element of the
symmetric group Ss. The consequence of a permutation o of the labels of the points
in c is as follows.

o€ S; o(c) € Ypa,(CONF3) geometric action in DAj
() (z, y, 2)

(12) (m +m, 2 y) T(ﬂ',O,O) © Sa13:0623

(13) (z+m y+m x+m) Tir,m,m) © Sara=as

(23) (yz z, 2+ 77) T(O,0,7r) ° Sa12=a13

(123) (Z, T+ ™Y + 7T) R—%’ © T(O,ﬂ',Tr)

(132) (y + T, Z + , $) R%r © T(‘/r,ﬂ',(])

A ‘T’ indicates a translation over a given vector, an ‘S’ a reflection in a given plane,
while ‘R’ indicates a rotation with respect to the axis through (0,0,0) and (1,1,1)
over a given angle.

Proof. A sketch of the six permutations of the labels of the components of p suffices
to determine o(p). The geometric action that corresponds to applying the three order
two elements on the labels is clear. The following formula, see [Go], gives the image
r" of the rotation of a vector r through an angle ¢ about an axis 7.

/

v = rcosd+n(n-r)(l—cosd)+ (r x ising).
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In our case, 7 is the normalized vector %\/ﬁ(l, 1,1), while r = {z,y, z}. Applying

this formula for ¢ = _2% gives ' = {z,z,y}, while ¢ = %" leads to v’ = {y, z,x}.

This explains the action corresponding to the order three elements of S3. |

Lemma 5.37
If (z,y,2) € Ypa,(CONF3), then also (x + p,y + p, 2+ p) € Ypa,(CONFs) for any
p €10,27).

Proof. A rotation of p € [0, 27) of the baseline, that is the axis with respect to which
angles are measured, corresponds to adding p to all angles a2, a3 and ass. |

Lemmata 5.36 and 5.37 suggest to consider the set of all possible angles between
three distinct points up to the permutations and baseline rotations introduced in
the lemmata. Define @g,r := ¥pa;(CONF3)/ ~¢p 1, the fundamental image of
¥pa,(CONFs), as the image ¢¥pa,(CONF3) up to permutations and rotations.

Corollary 5.38
Ypas,(CONF3) up to baseline rotations is obtained by projecting Ypa,(CONF3) on
the plane a1 + a3 + sz = 0.

Proof. This follows directly from Lemma 5.37, as any vector (p, p, p) is orthogonal
to the plane aj2 + a3 + asg = 0. |

We can actually construct the projection 7, on the plane P : a2 4+ a3 + as3 =0
as follows. u; = (1,-1,0) and uy = (3, 3, —1) form an orthogonal basis of P. Let
e1 and eg be the corresponding unit length vectors. Then m, is given by

m: R} — R2?
c = (<eep >, <ceg >).

7 (Ypa, (CONF3)) is shown on the left in Figure 5.10.

Remark 5.39

7, maps (m,0,0) to p = (A, nB), maps (0,7,0) to ¢ = (—7A,7B) and maps
(0,0,7) to (0,27 B), where A = %\/5 and B = %\/6 As a consequence, any as €
tpa,; (CONF3) has a representative mod 27 that is mapped by 7, in the area shown
on the right in Figure 5.10.

Next lemma is the ‘projected’ version of Lemma 5.36.

Lemma 5.40

Let (iU,y,Z) = 1pDAs((pl»pQ?p?)))7 with ¢ = (p17p27p3) S CONF5 The orbit Of
7 (x,y,2)) under the action of the symmetric group Ss on the labels of p1, pa and
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e N

Qi3 = Ol Q2 = Q23

Q12 = 013

Figure 5.10: 7, (¢)pa, (CONF3)) and six times ®3 .

p3 s given in the following table.

o € S3, geometric action, coordinates.

0 - (A(z —y), B(z +y —22))

(12) T5P+S0¢13=0423 (A(TF-I-LZ? - Z)) B(7T+$—2y-|-2))
(13) Sa12:a23 (A(Z - y)v B(Z +y—- 2$))

(23) T5T + Sa12:¢113 (A(y - LL‘), B(x Ty 2z — 277))
(123) Ry, _2r (A(z—xz—m), Blx+z—2y—m))
(132)  Rg,, 2x (Aly — 2), B@2m 4y + 2z —2x))

Here p,q,r and A, B are as in Remark 5.39 and m is given by m = (—%, —mB).
Moreover, 6 = 1, if the second coordinate of m.(x,y,x) < 0 and 6 = —1, if the second

coordinate of m.(x,y,z) > 0.

Proof. We can easily compute the coordinates of the points in the orbit by pro-
jecting the orbit in 1pa, (CONF3) that we found in Lemma 5.36. Concerning the
geometric action: the reflection matrix .S, for a reflection of a point in the line y = ax

is given by
s - 1 1—a®> 2a
a1 + a? 2a a? -1 ’

It is easy to check that the action of (12) boils down to a translation over p followed
by a reflection in the line a3 = ao3. Similarly for the action of the other two
involutions. The rotation matrix R, for a rotation of a point around the origin is

given by
cosa —sina
R, = . .
sina  cosa
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A rotation of a vector v around an arbitrary center m is given by R, (v —m) 4+ m.
This allows us to check the action of (123) and (132). |

Corollary 5.41
(I);,r is given by the triangle in the picture on the right of Figure 5.10 with vertices
(0,0), —m and p.

Proof. Every element of the orbit of S5 acting on a 7,.(x,y, z) for some (x,y, z) =
Ypa,(c), with ¢ € CONF; lives ‘at the same place’ in its own triangle in the picture
on the right of Figure 5.10: the three order 2 elements map 7,.(x,y, z) on one of the
three gray triangles on the other site of the dotted line cvy2 = aa3. The two order
three elements rotate m,.(x,y, z) clockwise or anti-clockwise into the two adjacent
gray triangles. |

Corollary 5.42
Let P be the plane orthogonal to the vector (1,1,1). Then the 2-dimensional wall-
paper group pém is acting on P Npa,(CONF3).

Proof. There are order 6, order 3 and order 2 rotations, and 6 axes of reflection.
This characterizes the 17-th wallpaper group, see for example [CM]. |

5.4 The triangle variety T,,.

We want to answer the question:
are CUA,, and CDA,, smooth manifolds?

Moreover, we are interested in their algebraic counterparts. In this section we de-
scribe an algebraic variety that is very similar to CUA,. We know that CONF,,
is contained in CUA,,: by definition, CUA,, equals the closure of the graph of the
undirected angle map:

CONF, C CUA, c (R%)" x (R/xZ)().

Therefore, CUA,, contains a ‘CONF,, part’ that is smooth. The remaining points of
CUA,, lie above the diagonal A C (R?)" consisting of configurations with at least
two coinciding points p; and p;. We make an algebraic description for R/nZ = P!
by taking coordinates (a;; : 1) and (1 : b;;), where

1
tan&ij '

a;; = tan a;;; bij =
For simplicity, we consider only the case where b;; # 0 on each P!, so we work on
the (a;; : 1)-chart. We have transformed ya, in a rational map ¥gope given by

Yi —Yi
Tj — T4

Yslope (20, Y0), - -+ (Tn—1,Yn-1)) = {( ) Yo<i<j<n—1,
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where ((zo,%0),---, (Tn-1,Yn—1)) € CONF,. Without loss of generality we assume
throughout this section that zg = yg = 0. That is, we consider configurations up to
translation. The dimension of CONF,(R?) up to translations equals 2n — 2. The
slope ag;, for i € {1,...,n—1} is denoted short as a;. The triangle T;; is the triangle
with vertices (zo,%0), (%:,¥i), and (x;,y;). The following lemma shows that there
exists a relation between the z-coordinates of the vertices of T;j; and the slopes of
the lines bounding 73;. Let

tij = a;; — aj:vj — a,;jzi + aijxj.
Lemma 5.43
tij = 0 on the (a;; : 1)-chart of CONF,,.

Proof. It holds that y; = a;x;, y; = a;jx;, and y; — y; = a;5(z; — x;). Substitute
the former two equations in the last equation. |

Corollary 5.44
On the (ai; : 1)-chart we have that CUA,, C {t;; =0} for1<i<j<n-—1.

A question is if equality holds. That is, if the closed algebraic set {t;; = 0}1<icj<n—1
is contained in CUA,,. The answer is no. We prove this later on by means of the
six-slopes formula:

ap3 a23
a13

ap1 ai2

Figure 5.11: For four distinct points the six-slopes formula holds.

Lemma 5.45 (six-slopes formula)
Let pg, p1, p2 and ps be distinct points in the plane. Then A = Agi23 = 0, where A
s given by

A = (al - a12)(a2 - 023)(CL3 - a13) - (al - 013)(CL2 - 1112)(03 - CL23)~ (5~2)

Proof. Assume that pg = (0,0) and p; = (1,a1). We compute coordinates for the
points pp and p3. Let [;; be the line through the points p; and p;. The lines lpo and
lp3 are given by

log 1 y2 = aox, loz 1 y3 = asw,
and [12 and l13 by

l12:y—a1 = CL12($—1), llgzy—al = alg(l'—l).
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We compute the intersections (x2,y2) = lo2 Nl12, and (z3,ys) = lpg N l13:

Ty = ai—aiz T3 = ai—ais
as—ai2 a3z—ais
Y2 = Q272 Y3 = asrs
After some formula manipulation the expression follows as ass = fc’i_;zz |

Remark 5.46
Some remarks on Equation 5.2.
(i) Interchanging indices 1 <> 2, etcetera, changes the appearance of the expres-
sion for Agi23, but does not change the expression itself.
(ii) By Ayjr we denote Agieg with 0, 1, 2 and 3 replaced by 1, j, k and .
(iii) If no three points of pg, p1, p2 and p3 are collinear, then we can express ass
as follows in terms of ay, as, as, aj2 and ai3:

_ as(a —a13)(az — arz) — as(ar — arz)(as — as)
we (a1 — a13)(az — a12) — (a1 — a12)(az —ay3) (5.3)

Corollary 5.47
Aijkl =0 on CUAn

Proof. This follows from Lemma 5.45 and the definition of CUA,,. [ |

Instead of just looking at the zeros of ¢;; = 0, we add the condition that all A,
equal zero as well. This leads to the following definition.

Definition 5.48

The triangle variety T, is the set of common zeroes of the polynomials t;; for
1<i<ji<(n—1) and Ajji for 0<i<j<k<l<(n-—1). Any variable, of the
form a;; or x;, takes value in R.

Example 5.49
The zero set of a collection of polynomials f...., f, is indicated by V(f1,..., fn)-
So Ty = V (t12, 13, t23, A123)-

Note that the ideal of the triangle variety 7;, contains: one polynomial ¢;; for every
triangle with vertices po, p; and p;; one polynomial A;ji; for every quadrilateral
with vertices p;, p;, pr and p;. We could consider explicitly triangles with vertices
Di, pj and pg by including:

tijk = aik(xi — l‘k) — aij(:zci — .Tj) — ajk(xj — .Tk)
The following lemma shows that this is not necessary however.

Lemma 5.50
Lijk = tij — tik + k.
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Proof. This follows directly from the following equations:
ti]‘ = a;T; — ;T — Q;5T; + Q505
Lik = GiTi — QT — QikTi + QikTh,

tik = T — QpTE — QjET; + QjRTh. | |

5.4.1 Singularities of T}, for small n.

In this section we determine singularities of the triangle variety 7T, for n = 3 and
n = 4. For this purpose recall the definition of singularity.

Definition 5.51

See [Ha]. LetY C A™ be an affine variety, and let f1,...,f: € A= k[xy,...,x,] be
a set of generators for the ideal of Y. Then Y is nonsingular at a point P € Y
if the rank of the Jacobian matriz ((0f;/0x;)(P)) is n—r, where r is the dimension
of Y. If Y is nonsingular at every point, then Y is nonsingular.

5.4.2 n=3.

Figure 5.12: Three coinciding points with coinciding directions.

Lemma 5.52
An element ¢ = (g, x1, 2,01, a2,a12) € T is singular iff all points and all slopes
coincide. That is:
To = T1 = To, and a; = as = aj2.
The type of this singularity is As.
Proof. T3 = V(t12), with t15 = a121 — asxs — a1aw1 + ajaxs. T3 is singular if the

rank of the Jacobian of t3 is smaller than 5 — 4 = 1, that is if all partial derivatives
of t1o vanish.

variable T To a; ag ai2,
partial derivative a7 —ais a2 —as T —Ty Xo — X7.

Solving this system gives the solutions 1 = 22 = 0 A a; = as = ay2. For the type
of the singularity: note that t13 = (a1 — a12)z1 + (@12 — a2)x2. From this it follows
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that the singular set is given by a; = a; = a;5, and that the singularity is of type
Ao, cf. [Si]. ]

Remark 5.53

Geometrically, the singularities of T3 correspond to degenerated configurations where
both the three points coincide and the directions between the points coincide, see
Figure 5.12.

5.4.3 n—=4.
Lemma 5.54
Define
A1 = (a2 —a12)(az — ag3) — (az — az3)(az — ai3),
Ay = (01 - a12)(a3 - 013) - (a1 - a13)(a3 - 023),
A3 = (az - (123)((11 - alz) - (az - 012)(&1 - 013),
A1z = (a1 —a13)(as — azs) — (a2 — as3)(as — a13),
Az = (a2 —ai2)(az — azs) — (a1 — a12)(az — ass),
Ay = (01 - a13)(a2 - a12) - (a1 - a12)(a3 - 013)'

(i) If Ay #0, then

a2 —a a23 — Qs a2 —a a93 — @
R (¢ Ljf moay) o (o le( 23— a2)
If Ay # 0, then
o = 2 (a12 — a3)(a13 — as); o — 2 (a12 — azs)(aiz — al)_
A2 A2
If A3 #0, then
Lo = T3 (CL23 - a13)(012 - (11); T, = 23 (az3 - (113)(012 - az)'

(ii) g = Aij.

Proof. Astes = 0onT,, it follows that (ass—as)rs = (a23—az)xa. Astio—t13 =0,
we arrive at

(a12 - az)xz - (a13 - a3)$3 = a12%1 — a13%1-

Add (a3 — as) times this last equation to fas and substitute (as3 — ag)zs for (ass —
asg)xs. This gives that Ajze = (a12 — a13)(azs — as)zy, resulting in the formula
for 5. The formula for z3 is obtained by adding (as3 — a2)(fi2 — fi3) to fas and
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substituting (ass — as)xs for (as3 — az)xa. Substitute the expression for zo in fio,
multiply by A; and reorder:

T1a141 + $1(a12 - a2)(a12 - a13)(a23 - Cl3) = =zia1241,
SL’lA = 0.

The last equation holds in two cases. In the first case, x1 = 0. But from the
expressions for xo and z3 it follows that then zo = 0 and 23 = 0 as well, while no
conditions are set on the slopes. In the other case A = 0, while for x5 and z3 the two
formulas in the Lemma hold. The equations in case of Ay # 0 and Az # 0 follow by
relabeling. This proves the first claim. The second claim follows by inspection. H

Corollary 5.55
CUAy # V(t12,t13,t23).

Proof. This follows from the proof of Lemma 5.54: The variety V (t12, t13, t23) con-
tains 0 = 1 = x5 = w3 as a component, without the condition that Agio3 =0. H

Remark 5.56
Corollary 5.55 and its proof explain why we have added the A;jx;’s in the definition
of triangle variety T),, cf. Definition 5.48.

Lemma 5.57
A configuration ¢ € Ty is singular iff, up to relabeling, both xq = 1 = xo and
a); = ag = ai12.

Proof. Consider the Jacobian Jy of Ty and apply Definition 5.51. The Jacobian of
T4 where the nine variables are in the order z1, xo, x3, a1, as, as, a2, a13, a3 is
given by:

a1 —aijz a1z — az 0 X1 —XT2 0 To — X1 0 0

a1 — ais 0 a13 — as X1 0 —XI3 0 r3 — T1 0
0 a9 — a3 Q23 — a3 0 i) —x3 0 0 Tr3 — T2
0 0 0 7A1 7A2 7A3 :|ZA12 :|ZA13 :l:Agg

The dimension of Ty equals 2 -4 — 2 = 6. Therefore, a configuration is singular
iff the rank of its Jacobian is equal to or smaller than 2. Denote by m(i,j, k) the
submatrix of J4 consisting of columns i, j and k where the fourth row is deleted. We
distinguish several cases, by considering the number of distinct clusters of coinciding
points in c.

(i) [> 3 clusters] We may assume that z; # 0, 9 # 0, 23 # 0 and z1 # .
Consider m(5,6,7):

—x2 0 To — X1
m(5,6,7) = 0 —a3 0
i) —I3 0

The determinant of m(5, 6, 7) equals xox3(xo—21) # 0. This implies non-singularity.
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(ii) [2 clusters: (2,2)] We may assume that z; = 0 and that 22 = 3 # 0. In
this case the determinant of m(5,6,7) equals (z2)3, which implies non-singularity .

(iii) [2 clusters: (3,1)] See also Figure 5.13. Assume that for ¢ € Ty it holds
that zop = x1 = z9; that a; = a2 = a12 and that z3 # zg. As a consequence
a3 = aiz3 = asg3. It follows that the first and last row J4 vanishes. Therefore, c
is singular. If we only assume that o = x1 = 2 and that z3 # xg, then the
determinants det(m(1,6,8)) = (z3)%(a1 — a12) and det(m(2,6,8)) = (x3)?(a12 — az)
show that the condition a; = as = ay2 is necessary for a singularity.

(iv) [1 cluster] It holds that zg = x1 = 2 = x5 = 0. Consider J;. First assume
that the last row of J; equals zero. As A = 0 on T} this means that we are looking
for solutions of the system of equations

Al = Ay = A3 = A;p = Az = Az = A = 0.

Applying Mathematica’s Reduce function results in 10 reductions. Each of these 10
reductions contains equations of the form a; = as = a12. We are left with the case
that some A;; # 0. If rank(J;) < 2, then the determinants of all 2 x 2 submatrices
of m(1,2,3) vanish. This gives a system of nine equations that can be reduced to
the six equations of the form a1 = as = a3 = a12 = ai3, that is, five slopes are equal.
Again, each of these equations contains a condition of the form a1 = a3 = a12. W

\°

Figure 5.13: Typical singular configuration: three coinciding, collinear points with
a fourth point.

Remark 5.58

The singularities of Ty are closely related to the singularities of T3. The singularity
in the (3,1) case is of type Ao just as for T5. But if all points coincide a more
complicated singularity occurs as several A, singularities ‘meet’: one can move any
of the four points away in such a way that the three remaining points are as in the
configuration of Lemma 5.52.

It is still an open question whether CUA, = T;. Maybe we need to add some
relations or inequalities to T, to obtain equality?



Chapter 6

Continuity of the Voronoi
map.

In Chapter 4 we have introduced the compactification CDA,, of the graph of the
angle map, applied to n distinct point in the plane. By means of the extended
definition of Voronoi diagram, as introduced in Chapter 3, we are able to consider
the Voronoi diagram V(v,) of a data set v, € CDA,. The main result of this
chapter is Theorem 6.11. It states, up to a compactness condition, that two data
sets v, and 7, in CDA,, that are Euclidean close, have Voronoi diagrams that are
Hausdorff close. That is, the Voronoi diagram generated by a set of not necessarily
distinct points and the angles between those points does not change dramatically if
we perturb both the points and the angles only slightly.

6.1 Introduction.

In Chapters 3 and 4 we have extended the notion of Voronoi diagram to configu-
rations of points together with the angles between the points. This allows us to
consider Voronoi diagrams of point sets that include coinciding points. More pre-
cisely, in Section 5.1.3, we have introduced a compactification CDA,,, as the closure
of the graph of the angle map

¥pa, : CONF,, — DA,.

The angle map ¥pa, maps a set ¢ of n distinct points in the plane to the angles in
R/27Z between the points in c.

In this chapter we call the elements ,, € CDA,,, consisting of n points in R? and (g)
angles in R/277Z, data sets. With any data set v, € CDA,,, we associate a Voronoi
diagram V(7y,) in Section 6.2.

One can wonder whether the data sets are a robust way of storing Voronoi diagrams.

85
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That is, we consider the following question: if we perturb a data set -, € CDA,
slightly, how does the corresponding Voronoi diagram V (+y,,) change? By perturbing
a data set v, € CDA, we mean that both the points components and the angle
components of 7, are allowed to be perturbed slightly, as long as the perturbed data
set 4, is again in CDA,,. A first result is given in Theorem 6.1, that is a kind of one
point continuity theorem. It states that a point x that was on the one-skeleton of a
Voronoi diagram V' (v,,) before perturbing, cannot be too far from the one skeleton
of the Voronoi diagram of the perturbed data set.

Before we are able to give a more general continuity result, we first need a suitable
metric on the set of Voronoi diagrams. A metric that is often used to compare
pictures, is the so-called Hausdorff metric. Two subsets A and B of R? are close
to each other in the Hausdorff metric, iff the maximal Euclidean distance from any
point b € B to the set A is small and vice versa. For a precise definition, see Section
6.4.

In order to prove a continuity theorem with respect to the Hausdorff metric, we
have to add some restrictions to our underlying point configurations. We add four
so-called camera points, points that are very far away around our configuration.
Now we restrict the configurations we are interested in to a relatively small bounded
subset of the plane. If we only change the configurations within this subset, the
camera points guarantee us that the Voronoi diagrams of the configurations are not
changing outside a second, larger bounded subset of the plane. But then we are
ready for proving the main result of this chapter: Theorem 6.11 states that, up to
the compactness condition, two data sets that are Euclidean close, have Voronoi
diagrams that are Hausdorff close. Note that it is essential that the continuity
theorem holds on the whole of the chosen compact subset of CDA,: that is, the
points added to the graph of ¥pa, by taking the closure are essential as there
availability is used in the proof of Theorem 6.11.

6.2 Preliminaries.
Throughout this chapter we compare data sets v, n, € CDA,,. Write

Tn = (pl (’Vn)v cee ,pn(’Yn)v al2(’7n)7 AR a(n—l)n(’Yn))a

and similarly n,,. We say that 7, is within distance § of 7,,, notation d(v,,n,) < d,
iff

max [lpk(yn) —pe(m)l <6 A max floi;(om) = s ()| <o

Here, ||.| denotes the ordinary Euclidean distance on R? and R/277Z.

From Section 4.4 we recall the definition of Voronoi diagram in terms of not necessar-
ily non-coinciding points in the plane and directed angles between those points. This
enables us to define for any 7, € CDA,, a Voronoi diagram V' (7,,). In Section 2.2 we
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have seen that the Voronoi cell of a generator p; can be written as the intersection
of all Voronoi half-planes vh(p;,p;). We use this characterization to introduce the
Voronoi cell of a point p; ().

Fix two points p; = p;(yn) and p; = pj(yn). The bisection point b(p;,p;) is
the point %(pi + pj). If p; # pj, the bisection point is just the middle of the line
segment p;p;. If p; = p; then b(p;, p;) coincides with the double point p; = p;. The
perpendicular bisector B(p;,p;) is the line through b(p;, p;) perpendicular to the
angle «; = ;;(Vs). Let n be any non-zero vector, pointing in the direction «;;.
The Voronoi half-plane vh(p;,p;) is the half-plane defined by

n-(x—by,y—>b,) < 0.

The Voronoi cell V(p;) is defined as

Vipi) = ﬂvh(pz’,pj)-
p

A point z is on the Voronoi edge e(p;, p;) iff it is on the intersection of the Voronoi
cells V(p;) and V (p;), that is

x €elpi,pj) & x€V(p)NV(p)).

The Voronoi diagram is the family of subsets of R? consisting of the Voronoi cells
V(p;) and all of their intersections. The one-skeleton of the Voronoi diagram is the
union of the boundaries of the Voronoi cells. Note that the notion of one-skeleton
equals the notion of shape of a Voronoi diagram, introduced in Section 4.4.1.

6.3 One point continuity.

In this section we prove the following theorem.

Theorem 6.1

Let v, € CDA,, be a set of data representing n generators in R? and (g) angles
in R/27Z between these generators. Suppose that x is on the one-skeleton of the
corresponding Voronoi diagram V (vy,). Then for every e > 0 there exists § > 0,
such that when we perturb 7y, by not more than §, the one-skeleton of any perturbed
diagram is within distance € of x.

In order to prove this theorem, we perform the following steps:

1. We decrease € a finite number of times: for every pair of generators (p, ¢) whose
bisector B(p,q) does not pass through x we decrease ¢, if necessary, in such a
way that

d(z,B(p,q)) > 2e.
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2. For every pair of generators (p,q) we show how to choose d,,. If z € B(p,q)
before perturbing then after perturbing by d,,4,

B(p,q) N Be(z) # 0.

If = ¢ B(p, q) before perturbing then after perturbing by d,,,
B(p, Q) N Be('r) = 0.

Of course this last statement can only hold if we adjust € as indicated above.
3. Set d :=min, 4 6pq.
These steps gives us enough control on the bisectors to complete the proof. We first
show that the bisection point of two generators p and ¢ can not get more perturbed
than the generators themselves.

Lemma 6.2
Let p and q be two points in the plane. Let b(p,q) = (p+4q)/2. If max( ||p—0p|l, ||7—
qll ) <9, then

16(p,q) — b(p. @) < .

Proof. [(p.4) ~ b(p.0)l = 137+ 2) ~ 3w+ )l = (3~ p) + 3@~ )l <
Sl =l + 3l - all <. .

We apply Lemma 6.2 in choosing d,, such that a bisector B(p, ¢) that passes through
x before perturbation still passes through B.(z) after perturbation.

Lemma 6.3
Let p, q and apy be data from vy, € CDA, such that x € B(p,q). Write r =
|z —b(p, @) Let

Ifmax( [|[p—pll, [lG—qll, |@pg—pqll) < Opq then the bisector B(p,q) passes through
B ().

Proof. We treat the perturbation of the bisector angle cy,, and the bisection point
b(p, q) separately and add up the maximal effect. Let l5,, be the image of a rotation
over £0,, around b(p, q) of the line B(p,q). Then x is at distance rsind,q of lg,,
Moreover, from Lemma 6.2 it follows that ||b(p,q) — b(p, q)|| < 0pg. Let d = |jz —
B(p, q)||. Adding up the two effects gives that d < d,q + rsind,,. We want d to be
smaller than €. As d,q is a majorant for sin d,,, we are safe if we ensure, as claimed,
that 6,y < €/(1+ 7). |

The next lemma gives a value of § that ensures that a bisector that misses x before
perturbation, stays away far enough from z after perturbation.
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Lemma 6.4
Let p,q and oy be data from vy, € CDA,,. Let x € R? be such that

le = B(p,q)ll > 2e

Write r = ||z — b(p, @)||. The angle between the bisector B(p,q) and the line through
b(p,q) and x is denoted by y € (0, 3]. Let

yr — 2€
Opg = PR

Ifmax(|[p = pll, 1§ =4l |Gpg = apgll) < 0pq then [l — B(p, )| > e

B(p,q)

b(p,q) r T

Figure 6.1: d is the distance from the bisector B to x.

Proof. First we show that indeed d,q > 0. As 2¢ < rsiny < rv it follows that
yr — 2e > 0. We treat the perturbation of the bisector angle a,,, and the bisection
point b(p,q) separately and add up the maximal effect. Let I, be the image of
a rotation over £4,, around b(p,q) of the line B(p,q). The distance d of = to
la,, s given by rsin3. Here 3 := v — 0,4, see also Figure 6.1. Moreover, from
Lemma 6.2 it follows that ||b(p,d) — b(p,q)|| < dpq This implies that the composite
minimal distance, that is the distance of x to B(p,q) could become as small as
dy = rsin(y — 0pg) — Opg. We want this distance d; to stay bigger than e. As
(7 — 0pq) is a minorant of sin(y — &,,) we are safe if we ensure, as claimed, that

yr — 2e

. [ ]
r—+2

617 q

The following corollary is obvious but useful.

Corollary 6.5
Let x,p,q, apq and 6,q be as in Lemma 6.4. Suppose that (p,q, apq) is perturbed by
a vector of length at most 0,q. For every point y € B(x) it holds that

y € vh(p,q) before perturbation < y € vh(p,q) after perturbation,

where vh(p,q) denotes the Voronoi half-plane of generators p and q containing p.
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We are ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let  be on the 1-skeleton of V'(v,,) before perturbation.
Let € > 0. Adjust € a finite number of times: for every pair of generators (p,q)
whose bisector B(p, q) does not pass through = we set

e = min(e,%d(l‘,B(p,Q)))-

This ensures that for every such pair (p, q) it holds that d(x, B(p,q)) > 2e.

Next determine a d,, for every pair of generators in such a way that i) if x €
B(p,q), then the condition in Lemma 6.3 is fulfilled; ii) if z ¢ B(p,q), then the
condition of Lemma 6.4 is fulfilled. Let ¢ be the minimum of all these d,4, that is,
0 = ming, ) 0pg. Define

P = {pe€~,|V(p) N Bx)#0D, before perturbation}.

Consequently, P has at least two elements. Say P = {p1,...,pm}, for some m > 2.
Before perturbation it holds that

B(z) = _U(wpi) N B(z)).

Suppose that, after perturbation, B.(x) C V(s), for some generator s. We show
that this leads to a contradiction. First note that s € P leads to a contradiction
immediately: we can apply Lemma 6.3. This implies that after perturbation some
bisector b(s,p;) passes through Bc(z). We are left with the case that s ¢ P. Fix
a point y € B(x) such that y is not on any bisector before or after perturbation.
Then

y € V(p1) Dbefore perturbation, say,
y € V(s) after perturbation.

We concentrate on the bisector B(p1, s) now. If x € B(p1, s) before perturbation, we
apply Corollary 6.5: any point in Be(x) stays in the same half-plane vh(p1,s). As
a consequence, y € vh(p1,s) before and after perturbation. This is in contradiction
with our assumption that y € V(s) after perturbation. So = € B(p1,s) before
perturbation. This implies that

B(p1,s) N Be(x) # 0,

after perturbation: a contradiction with our assumption as well. |

6.4 The distance between two Voronoi diagrams.

6.4.1 Hausdorff distance.

If we want to compare two Voronoi diagrams, a suitable notion of distance is the
Hausdorff distance: two sets A and B are within Hausdorff distance r iff r is the
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smallest number such that any point of A is within distance r from some point of B
and vice versa. Let us give this definition more formally. Suppose we have a metric
space (X,d). For A C X and r > 0 we define the open neighborhood N,.(A4) as the
set

N.(A) = {y|dz,y) <r, forsomex € A}.
Think of N,.(A) as the territorial border of A.

Definition 6.6
Let (X,d) be a metric space. The Hausdorff distance h(A < B) between two
subsets A, B C X is defined as h(A, B) :=inf{r: A C N,(B) and B C N,.(A4)}.

The Hausdorff distance h defines a metric on the set of nonempty compact subsets
of (X,d), see [Ca]. Note that

h(A,B)<r & ACN,(B) A BCN,.(A4).

6.4.2 A compactness condition.

In this section we put a compactness condition on the configuration space of data
sets. It consists of two ingredients. Suppose that {p1,...,p,} denotes the underlying
point set of some data set v,, € CDA,,. First we restrict the domain of {p1,...,pn}
to a closed disk U. Moreover, we add four camera points ¢y, ¢z, c3 and ¢4 far away
outside Y. Lemma 6.8 shows that we can choose U and ¢y, ¢, c3 and ¢4 in such a way
that it is guaranteed that the Voronoi diagram of -, , extended with c1,cs,c3 and
¢4, changes inside some compact subset of the plane only, provided that we perturb
{p1,.-.,pn} within U.

For U we choose the unit disk, that is U := {x € R? | ||z|| < 1}.

Definition 6.7
Let v, € CDA,, be a set of data representing n generators {p1,...,pn} inU and (g)
angles in R/277Z between those generators. Let furthermore

01:(7N30)a CQZ(OaN)a
cs = (N,0), ¢4 =(0,—N).

for some N > 1 be the so-called camera points. The Voronoi diagram with
camera points Vi (7y,) is the Voronoi diagram of the data set 7,,, which consists
of the generators {p1,...,pn} U {c1,...,ca} and the (";4) angles between those
generators.

Lemma 6.8
Let N > 2+ 2v/2 and let B := {x € R? | d(x,0) > N}. Then Vy(yn) N B does
not change, provided that v, s perturbed inside U.
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Proof. Let z = R(cos ¢,sin¢) be an arbitrary point in BJC\;. It is enough to show
that z is always closer to at least one camera point than to /. Using the symmetry
we can assume, without loss of generality, that 0 < ¢ < 7. So it is enough to
show that d(z,c3) < d(z,U) or, equivalently, that d(z,U)? — d(z,c3)?> > 0. Now,

d(z,c3)> = RZsin?¢+ (N — Rcos ¢)?,
= R24+ N?—-2NRcoso,

is maximal when ¢ = 7. From now on assume that
d(z,c3)> = R?*+ N?—-V2NR.
As d(z,U) = R — 1, we have to show that
d(z,U)? —d(z,c3)> = (R*-2R+1)— (R*+ N?—-+V2NR) > 0.
Substituting R = N + X, where X > 0, gives that
d(z,c3)? —d(z,U)? = N((V2—-1)N —2)+ (V2N —2)X +1.

Now, (v2 —1)N — 2 > 0, whenever N > 2 4 21/2, while (v2N — 2) > 0 whenever
N > /2. This proves the lemma. |

6.5 Continuity of the Voronoi map.

6.5.1 The Voronoi map.

In our original configuration space, generators live in R2. But under the compactness
condition above, generators all live on the unit disk &/ and we have four additional
camera points, ¢, ¢s, c3 and ¢q. That is, we have a restricted configuration space

CDAZ;L{ = {617...,c4;p1,...,pn;alg,...,a(n+3)(n+4)}, Di eu, O ER/QWZ

Let V(n) C P(R?) be the set of one-skeletons of Voronoi diagrams, defined by data
sets v, € CDAZ,’:. Denote by d be the Euclidean metric on CDAZ and by h the
Hausdorff metric on P(R?). We show that the map fy,

fv+ (CDAY,d)
Yn

—
—

(V(n),h),
V(vn)s

that maps a data set ~, to its Voronoi diagram, is continuous. By definition, this
means that we have to show that

Yy, € CDAY Ve >0, 35 > 0, Vn, € CDAY
d(Vnsmn) <0 = h(V(m), V() <e. (6.1)
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In Theorem 6.1 we have proved that
VY, € V(Yn)), Ve >0, 30 > 0: d(yn,nn) <0 = d(x,V(n,)) <e.

In this formula, § really depends on both the particular position of z on V(v,,) and
the particular diagram V'(vy,,). The uniform version of this claim is given by

Ye>0, 30>0, VY(y,zeV(m)):
d(Vn,n) <0 = d(@,V(n,)) <e (6.2)

Remark 6.9

It is clear that (6.2) does not hold if we regard the one-skeleton of Voronoi diagrams
that correspond with data sets that do not contain the camera points. Suppose for
example that our data consist of two points p and ¢ that are close to each other. If
we fix p, move g slightly, thereby changing a,,, slightly as well, some point that was
far away on the bisector B(p,q) before moving ¢, is on a big distance from B(p, q)
after disturbance.

6.5.2 {(7,x) | x € V(7a))} is closed in CDA,, x R2.

In this section we show that the set {(vn,z) | © € V(v,)} is closed in CDA,, x R2.
Or, equivalently, that the complement {(v,,z) | © & V(v5)} is open. But this means
exactly that we have to prove the following:

VY, € V), >0, 36> 0: d(yn,mm) < 6 = d(z,V(n,)) > e
We do so in the following lemma.

Lemma 6.10

Let vy, be a data set representing n generators in the plane and (g) angles between
those generators. Suppose thal x is in the interior of Voronoi cell V(p), for some
generator p € v,. Then there exists ¢ > 0 and § > 0 such that the following holds:
if we perturb 7y, by not more then §, the one-skeleton of any perturbed diagram is at
distance at least € of x.

Proof. [Determine e.] Start with some € > 0. For every pair of generators (p, q)
whose bisector B(p, q) does not pass through = we set

e = min(e, 3d(z, B(p,q))).

This ensures that d(x, B(p,q)) > 2e for every such pair (p,q).

[Determine 0(¢).] As a consequence, we can apply Lemma 6.4 for every pair of
generators (p,q) whose bisector B(p, q) does not pass through . The lemma gives
us 0pq such that any perturbation of the data by 6,4 implies that d(z, B(p,q)) > €
after perturbation. Let § := min, 4) d,q be the minimum of all these .
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[Show that this § works.] Suppose that the claim of the lemma is not true. This
means that after perturbation there are generators ¢q; and ¢o such that both

Be(z) N V(g) #0,  and  Be(z) N V(ge) #0,

hold. It follows that, after perturbation, B(q1,q2) N Be(z) # (. Because of our
choice of § and e this implies though that € B(qi,¢2) before perturbation. As
x € V(p), before perturbation, we conclude that ¢; # p and g2 # p. But then there
exists y € B(x) such that

y € hip, 1),
before perturbation, and
y € h(q,p),
after perturbation. This in contradiction with Corollary 6.5 however. |

6.5.3 Proof of the continuity.
In this section we prove the following theorem:

Theorem 6.11
Let v, € CDAZ;:. Then the Voronoi diagram V (n,) of any data set n,, € CDAZ that
is Buclidean-close to 7y, is Hausdorff-close to the Voronoi diagram V (y,):

Ve>0, 30 >0, : dyn,m) <6 = h(V(m),V(n)) <e€

Proof. The proof is divided into a number of steps.

Step 1. It is enough to prove the following assertion.

Ye>0, 30>0, Vy,eU, VeeV(yw), VnelU:
d(Ynsmm) <6 = d(z,V(n,)) <e (6.3)

In (6.3) the implication holds for all choices of = on V' (7y,,). This implies that in fact

This together with the fact that we can interchange ~, and 7, defines the Hausdorff
distance and therefore implies the claim of the theorem.

Step 2. Construct a convergent sequence.
Suppose that Assertion 6.3 does not hold. That means that the negation must be
true, where we replace VY by Vm:

Je>0: VmeN, I(vp, 2 € V(n)), I :

6.4
(d(%,nn)ﬁé A d(@, V() > e). o4
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Fix such € and call it ¢g. We can find for every m € N a triple ¢,,

b = (fYrTan ™ e V(’anf% 7777?)7 (6'5>
such that Assertion 6.4 is true.

Step 3. x™ € By, Vm.

Recall that By denotes the disk By = {z € R? | d(z,0) < N}. Suppose that
2™ ¢ By for some 2™ € V()7"). Then Lemma 6.8 tells us that 2™ € V(n,,), for all
N € CDAY. So Assertion 6.4 can never be true.

Step 4. Remarks on compactness.
¥n and 1, both live in the compact set

U™ x {e1, 09, 03,04} x (R)27Z)("27).

We have proved in Lemma 6.10 that the set {(y,,2) | © € V(y,)} is closed. This
means that we get a sequence (t,,) of triples of the form (6.5) that live on a com-
pact set. So, (t,,) has some convergent subsequence t,,(k) that converges to, say,
(A, Z, 7n). Note that Z € V(F,).

Step 5. A contradiction by combining Assertion 6.4 and Theorem 6.1.
Because of convergence, V(%,,) = V(,), so & € V(7). Apply Theorem 6.1 with

o 2 V(i)
e ¢ = %eo.
The theorem gives us a dg such that
A7, 0n) < 60 = d(V(0n),%) < ieo. (6.6)
Choose m so big that the following condition hold:
dC (v 2™ ), (s 7)) < min(do, 3eo). (6.7)

We show that this leads to a contradiction on d(z™, V(nl")).
(i) The sequence t,, is constructed in such a way from Assertion 6.4 that

A", V(') > e (6.8)
(ii) We have chosen m so big, (6.7), that
d(z™, &) < zeo. (6.9)

(ili) But m is also big enough such that d(7,,7") < do. Therefore we conclude
from (6.6), with 6,, := )", that

d(V(m'),z) < szeo (6.10)

Now (6.9) combined with (6.10) gives a contradiction with (6.8).
This proves the theorem. |






Chapter 7

Clickable Voronoi diagrams
and hook compactifications.

We define a compactification space XAH,, of the configuration space of n distinct
points in the plane, by considering data elements of pairs of points and triples of
points. For every pair of points we write down the angle mod 7w between the two
points, and for every ordered triple (p;,pj,pr) of points, we specify a hook hﬁf
This hook expresses how to construct the point p given p; and p;. Now XAH,
is defined as the closure of the image space of all angles and hooks on n distinct
points. We show that configurations that are added by taking the closure have a
natural nested structure, easily revealed by analyzing the hooks. The main result
of this chapter is an explicit construction establishing XAH, as the graph of a
function. This construction shows that XAH,, is a smooth manifold. If we replace
the angles mod 7 by angles mod 27 we get a compactification space XEDAH,,. This
space is isomorphic to the manifold with corners FMs(n), introduced by Kontsevich-
Soibelman. On XEDAH,, we define clickable Voronoi diagrams.

7.1 Fulton-MacPherson related models.

In this chapter we describe a compactification XAH,, of the configuration space of
n distinct points in the plane. The basic idea of the compactification consists of
considering the geometry of all pairs and all triples of distinct points. In section
7.2 we give an overview of the contents of this chapter: it describes in an informal
way the construction and some properties of this compactification XAH,. And it
explains how clickable Voronoi diagrams are related to XAH,,. Sections 7.3 to 7.10
contain the mathematical constructions referred to in Section 7.2, while Section
7.11 is devoted to concluding remarks. We start however in this section by recalling
the famous compactification due to Fulton an MacPherson, and by presenting a
related compactification as described by Kontsevich and Soibelman. These two

97
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compactifications have some important features that we mimic and extend in our
compactification XAH,,.

7.1.1 The Fulton-MacPherson compactification.

The following compactification is defined in terms of a nonsingular algebraic variety.
The authors note however, cf. [FM], page 188/189, that the same constructions
work for complex manifolds, as well as for real manifolds. So, let X be a nonsingular
algebraic variety, and let

CONF,(X) = {(p1,.-..pn) € X" | pi #p;if i #j},

be the configuration space of n distinct labeled points in X, cf. Definition 5.4. For
a subset S of the set of labels {1,...,n}, the small diagonal Ag is given by

As = {(p1,...,pn) € CONF,(X) | pi; = --- = p;,, for any i; € S}.

For any such S with at least two points, let Bla(X®) be the blow-up of X along
Ag. For the definition of blow-up, consult [Ha]. There is a natural embedding

CONF,(X) c X"x [] Bla(x¥®).
|S|>2

The Fulton-MacPherson compactification X|[n] is defined as the closure of
CONF,,(X) in this product. We list some properties that are stated respectively
as Theorems 1, 2 and 3 in [FM]. The definition of divisor can be found in [Ha].

1.  X|[n] is nonsingular.
2. For n > 2, X[n] is the closure of CONF,,(X) in the product of the Bla(X*)
for S C {1,...,n} of cardinality 2 and 3.
3. For each S C {1,...,n} with at least two elements, there is a nonsingular
divisor D(S) C X|[n] such that
(i) The union of these divisors is X [n]\CONF,,(X).
(ii) An intersection of divisors D(S1) N--- N D(S,) is nonempty iff the sets
S, are nested in the sense that each pair S; and S; is either disjoint or one is
contained in the other.

Important for us is the ‘first geometric description’ of X [n], as presented in Section 1
of [FM]. A configuration in X[n] is called degenerate, if not all points in the
configuration are distinct. Any such configuration ¢ is described by a set of data
given the locations of the points, and if two or more points coincide at say x, then a
screen is specified for the set S C {1,...,n} of labels of the coinciding points. The
data elements describing a screen for S at x consist of a labeled set of points z, in
the tangent space T, of x, such that not all points in z, are equal. This process is
repeated for z, until all points in the configuration ¢ are separated in some screen.
Think of repeatedly zooming in at clusters of points until all points are separated,
cf. Figure 7.9. The divisor D(S) of X[n], mentioned in the property above consists
of all configurations ¢ in X [n] that have a screen that contains exactly the points z,
for @ in S.
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7.1.2 The Fulton-MacPherson operad.

In [Ko] and [KS] the Fulton-MacPherson operad FM, is discussed. A definition
of operad can be found in [Ko]. As we consider only point configurations in R?, we
set d = 2 in the sequel. The operad FMy = {FMs(n)}>o is defined as follows, cf.
[KS]:

1.  FMy(0):=0

2. FM5(1) := point.

3. FM3(2) := conf, = S*.

4.  For n > 3, the space FMs(n) is a manifold with corners, its interior is conf,,,

and all boundary strata are certain products of copies of conf, for n’ < n.

A manifold with corners is a topological space that is locally homeomorphic with
RY,. The space FM; (n), n > 2 is defined explicitly as follows.

Definition 7.1
For n > 2, the manifold with corners FMa(n) is the closure of the image of conf,

7

in the compact manifold (Sl)(;) x [0, +oo]6(3L) under the map

[(P1,--,pn)] = ((Oéij)1gi<j§mﬁff),

where i, j, and k are pairwise distinct indices, o;; € R/2nZ, and Z’f = %.

i Pj
That is, Kontsevich and Soibelman define the space FM, in terms of data elements
for pairs and triples of points in any reduced configuration ¢ € conf,: for any pair
of points they write down the directed angle between the two points, while for every
ordered triple (p;,p;,pr) of points they specify the ratio ﬂ}f of the line segments

pipr; and p;p;.

7.1.3 Combining the models.

From the Fulton-MacPherson compactification we borrow the screen model, while
from Kontsevich-Soibelman we borrow the angles and ratios. We extend, however,
the ratios to hooks, by marking both the ratio ij of the line segment p;p;, and p;p;
and the angle aﬁ? between the line segments. In this way every hook has two repre-
sentatives. One with a positive ratio ,é’jjk and one with a negative ‘ratio’ ﬂfj’“ . In the
latter case we just add 7 to the hook angle 04%? . These two distinct representatives
are identified by an equivalence relation ~. This will be important for getting a
smooth model. Another adjustment that we make for obtaining smoothness is that
we write down the angle between two distinct points up to multiples of 7 instead of
up to 2w. To summarize, we get a map

Yap, cconf,(R?) — AH, = (R/7Z)(3) x (([~00,00] x R/27Z)/ ~i)°(),

and define XAH,, as the closure of the image of conf,, in AH,. The data elements
and spaces introduced so far are discussed in detail in Section 7.3. In section 7.4 we
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show that we can associate with any € XAH,, a nested set of subsets of {1,...,n}.
This is done by analyzing the ratios. It turns out that for degenerate configurations
certain ratios equal zero. If BZ’;“ is close to zero, then the length of the line segment
pipk is very small compared to the length of the line segment p;p;. We then say that
p; and py coincide with respect to p;.

Combinations of compactifications of configuration spaces and combinatorics receive
a lot of attention in recent years. Elegant examples can be found in [Del] and [De2].

7.2 Informal introduction.

In this section we introduce most of the terminology that we use in the rest of the
chapter, in a more intuitive setting.

7.2.1 Screens, clusters and nests.

Suppose we are looking at a plane containing n > 2 sites. By sites we mean points,
but in order to be able to use points in other contexts, we prefer the word sites.
When we see all n sites at first glance we are happy, but when we seem to see fewer
sites we tend to look more closely. That is, we zoom in at a site in order to see if it
is really one site, or in fact consists of a number of sites. At the same time we will
lose sight of other sites. We repeat this procedure until we have found all n sites.

Imagine that the plane is in fact a computer screen. If some sites coincide, that is,
if they form a cluster, we click on the cluster. Another screen pops up that contains
exactly the sites in the cluster. If we click on a site and nothing happens, we know
that at the level we are looking at, this site does not coincide with another site. So
every non-trivial cluster corresponds to a screen. By continuing to click we always
find all n sites. Label the sites with labels from 1 to n and write down the labels
that are visible in every screen. This produces a nest, a nested set of subsets of
{1,...,n}, i.e. the clusters. If no sites coincide the nest consists of the set {1,...,n}
only.

The top screen is the first screen we see. It contains all sites, but maybe not all
sites are separated. We organize things in such a way that every screen contains at
least 2 non-coinciding sites. That is, in every screen at least two sites are separated.
We are not interested where in the plane a screen focuses. But we do want to know
the exact relative position of the sites. We conclude that we consider site sets up to
scaling and translation.

7.2.2 Pinpointing sites.
We want to describe such a family of screens filled by sites. A naive approach is

by listing the screens together with the coordinates of the sites that occur in each
screen. This may describe the situation well when the sites do not move, but assume
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that two sites p; and p; that did coincide first in some screen start moving apart.
This could change the relative positions of the sites in all screens were both p; and
p; occur, but it is not at all clear how a change in coordinates in one screen should
influence coordinates in other screens.

Figure 7.1: The hook hzf = ( j]k , aif) hinged at p; from p; to py. The little arrow
indicates the positive direction.

Instead of marking coordinates of the sites involved, we mark the angle «;; between
any two sites p; and p; and the hook hjf between any ordered triple (p;,pj,pr) of
sites. A hook hﬁ consists of an angle aﬁ? and a ratio ij Consider Figure 7.1.
Suppose that the sites p; and p;, thus the leg p;p; have been constructed. If we
rotate p; by angle aﬁ? with respect to center of rotation p; and multiply the image
ik
ij )

of the rotation by we get pg.

Using these hooks and angles we can fill a screen with sites. Suppose that for a
set of distinct sites p1,...,p, we know all hooks and angles between the sites. We
show how to fill a screen with the sites. We put p; in the origin, as we do not care
about translation. As we do not care about scaling either, we put ps at distance 1
of p1. We use the angle a5 to assure that the line through p; and p; has the right
direction, that is, we set po = (cosaya,sinagz). All other sites p;, for i € 3,...,n,
can be constructed as in Figure 7.1 by a hook hl}.

7.2.3 Degenerate configurations.

Let CONF,, be the configuration space of n distinct sites in the plane and let ) 4 H,

be the map that maps an element ¢ € CONF,, to the (g) angles and the 6(2) hooks
between the sites. In fact we embed the image space in a slightly bigger space AH,,,
allowing also negative ratios. The space that we are really interested in is the closure
of the image of CONF,, in AH,,. We call this space XAH,,. Most points x € XAH,

can be realized as image points of a configuration ¢ € CONF,, that is z =g g (c).

We call a point € XAH,, degenerate if z € Y4 (CONF,)\¢gg (CONF,). It
turns out that the degenerate points are exactly those points z € XAH,, such that
at least one ratio coordinate SiF (x) = 0.

We go back to the nests and screens. By analyzing the set of all ﬁjjk (z) in some point
ik

r € XAH,, we can associate a nest C'(z) with x. If no 8 (z) = 0, we think of z as
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the image of a configuration where all sites are distinct, and in this case we associate
the nest {{1,...,n}} with z. And with this nest we associate exactly one screen
where all n sites occur and are distinct. In the other case at least one jjk (x) = 0.
As we can introduce 3 = % for distinct sites, we think of 3¥ (z) = 0 as if
p; is very close to py as seen from p;. But this means exactly that p; and pj form
a cluster with respect to p;. In fact, one can prove that the set C(x) consisting
basically of all sets Cy; = {k | B} # 0} U{i, j} defines a nest on {1,...,n}. So C(x)
is the nest that corresponds to x € XAH,. For every cluster in C(x) with at least
two elements we define a screen as a copy of the plane.

7.2.4 Factorizing XAH,.

Fix some z € XAH,,. By analyzing the C;; as explained above, we associate a family
of screens with = denoted by x-screens. Our next goal is to fill the z-screens. The
main idea of working with screens is as follows: the site set p1, ..., p, that we think of
as corresponding to some degenerate configuration ¢ € XAH,,, should be separated
completely, somewhere in the hierarchy of x-screens. This puts a requirement on
those points ¢ € XAH,, that we can use to fill the z-screens with: the point ¢ should
not be more nested than z itself, in the following sense: if ﬂfjk () # 0, 00, then also

i
stratification with respect to the coincidence of sites. We do not need all (Z) + 6(’;)
data elements

(q) # 0,00. Another way to put this: we are not allowed to move down in the

(i (@) 1<i<j<ns hif (9)), i, J, k, pairwise distinct indices,

for filling the z-screens with sites p1(q),...,pn(q), given some suitable ¢ € XAH,,.
We just need enough data elements to pinpoint each site once. By exploiting the
nested structure of x, we can avoid bad choices in picking the data elements. We do
not want to be confronted with legs of length 0- oo for example. These prerequisites
result in a factor Dom,(z) of data elements of XAH, that are both suited and
enough to fill the x-screens, given some suitable ¢ € XAH,,. Note that the choice of
the data elements depends on x, although we use of course the data elements of ¢
itself in order to fill the z-screens with sites p1(q), ..., pn(q).

7.2.5 The hooked tree.

Again by using the nested structure of our fixed x € XAH,,, we can define a partial

order on the labels 1,...,n. This partial order tells in which order exactly we have
to add the g-sites p1(q),...,pn(q) in the x-screens. It turns out that with every
label ¢ € 1,...,n we can associate an x-tag l,(p;). Such an z-tag is a pointer to

one coordinate of Dom,,(x) C XAH,. As any such coordinate is either an angle
or a hook, we conclude that every label i corresponds to a geometric construction
(construct p; as the end of a line segment of a given angle, or construct p; as the
end point of a given hook) that tells how to construct p;.



7.2. Informal introduction. 103

Figure 7.2: The hooked tree for the nest < {1,2,6},{3,5} >.

We store the set of x-clusters in a tree. The vertices of the tree are exactly the
x-clusters. Two z-clusters are connected by an edge if one cluster is maximal in the
other. Some edges are labeled by z-tags. This is done in such a way that if going
up in the tree from leaf i, the first x-tag encountered points exactly to that hook
or angle that is used to construct p; in the set of z-screens. This tree is called the
hooked tree.

7.2.6 Filling screens.

We discuss the use of the partial order a bit further. Our setup is such that in each
x-screen separation occurs. Fix some z-screen S. As mentioned above, any z-screen
S corresponds to some x-cluster C's. Assume that all z-screens T', such that the
cluster Cr contains Cg, have already been filled. We say that such screens T are
above S. The z-screen S should exactly contain the sites with labels in the z-cluster
Cyg after filling. Moreover, the sites corresponding to the maximal subclusters of S
are separated in the x-screen S. Let C7 be the maximal subcluster of S with smallest
minimal label 7 and let C5 be the maximal subcluster with second smallest minimal
label. The first site we put in S is the site p;, that we place at the origin. The second
site to construct is the site p;, that we place at distance 1 of p;. The angle that the
line segment p;p; makes with the positive axis is the so-called screen orientation
Og of S. Tt is defined recursively in terms of the screens above S. Note that by now
we have constructed one leg p;p; in S. All other sites in S can be constructed using
hooks.

Suppose, for instance, that we want to construct all sites in some maximal subcluster
Cy # C1, Co, where k is the minimal label of C}, and therefore k > i, j. We construct
pr by means of a hook hzf One can think of this hook as a hook on scale, as
pi,p; and pj, are separated at the same level. Note that £ is automatically minimal
in the maximal subcluster of C} that has smallest minimal label. Let m € Cj, with
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m > k, be minimal in the second maximal subcluster of C. We construct p,, using
h’,g;” This is a different type of hook as px and p,, are separated one step deeper
in the nest structure. Think of this type of hook as a explosion hook: for x itself
|BE™ (z)] = 0, as px and p,, ‘coincide with respect to p;’. If we take an arbitrary
point ¢ € Dom,, then |38 (q)| > 0, and if |38 (¢)] > 0 we could say that an
explosion occurs, as suddenly px and p,,, do not coincide anymore with respect to p;.

7.2.7 XAH, is locally the graph of a function.

One purpose of this setup is to minimize the dimension of the factor Dom,, (), that
is, we want to use as few data elements of XAH,, for filling the z-screens as possible.
That we cannot do better is shown by Lemma 7.31 that proves that the dimension of
the factor Dom,, (z) equals the dimension of the reduced configuration space conf;,.
Given a set of filled z-screens, we can just read off angles and hooks from the
screens. Theorem 7.58 proves that filling screens using data elements is consistent
with reading off data elements, in the sense that we get back the data elements that
we started with. Note that besides the data elements in the Dom,, (x) factor, we can
also read off the data elements in the complementary factor Rng,,(z) of Dom,,(x)
in the space of all angles and hooks on n points, AH,. This shows that XAH,
can be written as the graph of some function read : Dom,(z) — Rng,(z). As a
consequence, we can prove in Theorem 7.61 that XAH,, is a smooth manifold. In fact
there are some extra requirements on the structure presented to obtain smoothness
that we did not discuss here. Details can be found in Sections 7.3 to 7.9.

7.2.8 Connection with Kontsevich-Soibelman.

In [KS], see also Section 7.1.2, Kontsevich and Soibelman describe a manifold with
corners FMs(n) that is closely related to our smooth manifold XAH,. The exact
relation is given in Theorem 7.65 that describes a map f : FMy(n) — XAH,, together
with the fibers of f. Due to this close relation we can use the construction of the
filled z-screens for points € FMy(n) as well. This is important in the following
application. For an overview of the compactifications introduced so far, consult
Table 7.1.

7.2.9 Adding Voronoi diagrams in the x-screens.

We apply the construction of filled z-screens to the analysis of Voronoi diagrams
of points sets that may include coinciding points. We proceed by associating a
Voronoi diagram to any point x € FMs(n). First, consider some non-degenerate
point & € FMy(n). Then by definition, as in the XAH,, case, x can be expressed as
image of some configuration ¢ € CONF,,. As no jjk (z) = 0 for a non-degenerate
x € FMsy(n), there is exactly one z-screen associated with x, the top screen, that
contains all sites p;(z),...,pn(z) in such a way that all sites are distinct. The
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angles angles

mod 27 mod T
clickable «— FMy(n) — XAH, angles
Voronoi and
diagrams hooks
Voronoi «— CDA, —  CUA, angles
diagrams and

points

Table 7.1: Overview of compactifications.

Voronoi diagram Vg (x) associated to x in this case is the Voronoi diagram of the
n sites in the top screen.

Next assume that z is a degenerate element of FMs(n). Suppose that we have filled
the z-screens with the z-sites py (z), ..., pn(z) as described above. In this case, there
is more then one z-screen, but it is guaranteed that in any x-screen S exactly those
clusters are separated that are maximal subclusters of the cluster Cs. We define a
Voronoi diagram Vg () in terms of the a-filled z-screens in two steps. In the first
step we add the classic Voronoi diagram of the maximal subclusters of C's to any
z-screen S. This is called the initialization step. In the so-called completion step we
recursively add the completed diagrams of all screens below S to S for all x-screens
S. This is done as follows. A non-trivial cluster is a cluster that consists of at least
two sites. Any non-trivial maximal cluster M of S corresponds to an z-screen Sys
that is directly below S. We paste the completed Voronoi diagram Veas(Sar) of S
into the Voronoi cell of M in the initialized Voronoi diagram V(.5).

This gives us a clickable Voronoi diagram Vg (x) for any @ € FM,. By clicking
on a non-trivial maximal cluster, if present, a screen appears. This screen contains
the sites in the cluster and the Voronoi diagram of the sites. Recall the polynomial
sites from Chapter 4. By computing ratios and angles we can associate an element
xg € FMs to a set S(t) of polynomial sites. Then the completed Voronoi diagram
Veum (T) of the top screen T for xg matches the limit Voronoi diagram of S(t) at
t=0.

7.3 Angles and hooks.

We start this section by recalling and introducing data elements defined on pairs
and triples of distinct points in R?. These data elements form the basis of the
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compactification of a suitable quotient of the configuration space of n distinct points
in the plane that we define later on in this section.

7.3.1 Data elements of pairs and triples of points.

Given two distinct points p; and p;, we can determine the angle between the line
through p; and p; and the positive z-axis. We have done this in Definition 5.1.
There we have introduced the directed angle o;; € R/27Z and the undirected angle
@;; € R/nZ. We store information on the geometry of three distinct points in hooks,
see Figure 7.3.

Figure 7.3: The angle a%? from p; to py hinged at p;. The small arrow indicates the
positive direction.

Definition 7.2

Let p;, pj, and py be three distinct points in the plane. The angle ozﬁf from p; to
pr hinged at p; is given by oz;:? ‘= oy — oy; mod 2m. The ratio szk from p; to px
hinged at p; is given by

ik Ipi — pxl ik

= 7€ (0,00).

17 |p2 . pj| 1] ( )

The hook hjf from p; to pr hinged at p; equals the ratio together with the angle:
hj? = ( j]k,ozjf) The point p; is the hinge point of the hook h;? while the line
segments p;p; and p;py form its legs .

Note that one triple of distinct points gives six hooks.

Remark 7.3

An alternative is to consider hooks in the complex plane. Let p;, p;, and pix be
distinct points in C. Note that a;; = (p; — p;)/|pi — p;|. It is easy to check that,
with I = +/—1, it holds that

L . ik
Di — Pk :;(; e]oé;j .
Pi — Dy
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7.3.2 Geometric interpretation of the hook A".

Notation 7.4

Let p and ¢ be points in the plane and « € [—m,7) an angle. By rot, ,(¢) denote
the image of ¢ under the anti-clockwise rotation around p by angle a. We abbreviate
rot, (0,0) by rot,.

Suppose we are given two distinct points p; and p;, together with a hook hzf The

hook h;f can be seen as a prescription that tells how to construct the point py.

Using aé’;, we first construct p}, the image of the rotation I'Otagf p:» applied to p;:
p’j = rota%_c i (D)

The half-line that starts in p; and passes through pg contains pg. The ratio ijk fixes
the distance from py to p;, thereby fixing py itself:

Pk = ff (p} —pi) +Dpi-

Summary: we interpret a hook hzf as a point rotation followed by a vector multi-
plication. As a result the leg p;p; is transformed into the leg p;py.

7.3.3 Negative ratios.

Figure 7.4: The local coordinate axis A;;.

In this section we give sense to ‘negative ratios’, as illustrated by Figure 7.4. Think
of the line through the points p; and p;v as a local coordinate axis A;;:. The origin
on this axis is p; and the point with coordinate 1 is p;-. The position of p; on this
axis is given by the coordinate 3;5 . In this setting, any value of 5}} in the interval
(—00, 00) is meaningful: it just indicates the point with coordinate ;]k on the A;j;-
axis. Suppose we allow the full interval (—oo, c0) for values of Z’f . Then there are
two different ways to construct a point py by a hook hf?, given the points p; and
pj- The hooks (BiF,ai%) and (—giF ,ai¥ + m) both result in the same point py. If
identifying —oo with co, we have by now described a map
bijr : CONF3(R?) — P! xR/2nZ
(pispjspe) = ( chazc)v
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under the identification

B i)~ (=657 aly + 7). (7.1)
Recall that CONF5(R?) denotes the configuration space of three distinct points in
the plane. P! denotes the projective line. It can be defined as S' with antipodal
points identified. A point on the projective line can be seen as the coordinate g of
a third point on an axis with respect to two fixed points 0 # 1. A homeomorphism
from the circle to the line RU{oc} given by stereographic projection is shown in
Figure 7.5. A line through P intersects the circle in another point, @, and hits the
z-axis in a point R. When P and @ coincide, this line is horizontal, so P is mapped
to R = oo, cf. also [R].

P
Q
R
Figure 7.5: Stereographic projection yields a homeomorphism between the circle S!
and the projective line RP' = R U occ.

7.3.4 Klein bottle Kfj’“

Figure 7.6: The Klein bottle is obtained by identifying sides a and b according to
the arrows.

The Klein bottle is the quotient space obtained from a rectangle by identifying
opposite sides, see Figure 7.6; see also [Mu]. In Figure 7.7 we have depicted another
rectangle, but this time we add a description of the axes. For the horizontal axis
we take the projective line P'. The vertical axis is R/27Z. Recall the identification
(B, alk) ~ (=B, alf +7) introduced in 7.1.

Lemma 7.5

The quotient space P* x R/2w7Z | ~. defines a Klein bottle.
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Proof. Consider Figure 7.7. Any class in P* x R/27Z/ ~; has a representative in
[0, 00] x [0,27]. On [0, 00] x [0,27], there are three identifications.
(i) The periodicity of directed angles in R/27Z is indicated by >>.
(ii) The identification (0, ai¥) ~y (0,F + 7) is indicated by A.
(ili) If (0, ai¥) ~x (0,ai¥ + 7) holds on the compact set P! x R/27Z/ ~, then
k ik

also (0o, ) ~p. (00, alf + ), as any B/¥ = 0 corresponds to f3;;, = oo. This gives

the third identification, indicated in Figure 7.7 by A.

For identifying the quotient space we are allowed to cut along ozﬁ? =, if we even-
tually paste back again along the same cut. This cut is indicated by . We do cut
and paste the bottom half on the top half, applying A and A. This results in the
cylinder shown on the right of Figure 7.7. On the top of the cylinder, > and o are
directed clockwise, while on the bottom they are directed counterclockwise. This

shows that we are in the situation of Figure 7.6. |
ot
27
e ---F---
VN :
- ! A\
¢
N
0 _ gik
i
—00 0 %)

Figure 7.7: The identification (8{, aik) ~p (=%, aik + ).

What is essential for us is that the Klein bottle is a smooth manifold. Note that

with every ordered triple (4, j, k) we have associated a Klein bottle K| fjk as the target

space of ¢;j,. We can write ¢;;;, as a composition: ¢; i = ¢;jk © hijr. The map hyj

maps an ordered triple of distinct points to its hook (85 ,ai¥), where gi¥ > 0.
ik

i aik) to its class [(B%,ai¥)] under the

The second map, c¢;j;, maps a hook ( 1 ags

equivalence relation ~;. We have:

ik (BONAgp " [0,00] x R/27Z ¥ (|00, 00] x R/27Z)/ ~p,
(pispjspK) (81, aik) — [(BF , ik,

Proposition 7.6
The map

¢t ([-oo,00] x R/27Z) )~  — [0,00] x R/27Z,

ijk -

is 2 to 1 if ijk equals 0 or 00 and 1 to 1 else.
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Proof. The inverse images of c¢;j;, are as follows:

(i) ¢ z]k( [0, a”“)] ) = {(0,af}), (0, +m)};

(i) ¢ z]k( [(c0 )] ) = {(00,af}), (00, aff +m)};

(iii) ¢ ”k( [(—o0,aff)] ) = {(00,aff ), (00, aff +m)};

(iv) ¢ ”k([( i ”)])=(Z§“, ajf), if 0 < Bf < oo;

(V) cn( LB, aif)] ) = (=B ,alf +m), if —oo < BiF < 0. u
Remark 7.7

Consider the image on the right in Figure 7.7. If we cut along ﬂfj’“ = 0, that is,
along A, we obtain a Mobius strip with j;“ = 0 on the boundary. Cutting along
ﬂjjk = 00, that is, along A, leaves us with two pieces joined along . This results
in a cylinder with ij = 0 on one boundary component and {Jk = 0o on the other
component.

7.3.5 The data map from conf, to AH,.

In this section we describe a map from a set of distinct points in the plane to all
angles and hooks between pairs and triples of those points. Recall that in Definition
5.4 we have introduced the reduced configuration space conf,, as the space of n
distinct points in the plane up to scaling and translations. For a representative ¢ of
a class [c] € conf,,, write the following data: for every pair of points Di,Pj € C, 1 # 7,
the undirected angle @;; = @j;; for every triple p;, p;, pi, of points in ¢, the six hooks
hﬁf, hzi, h;f, h%, h’,j;, and h:g This gives (%) unordered angles and 6(%) hooks.
Note that the angles and hooks that we obtain are independent of the choice of a
representative of a class ¢ € conf,,.

Definition 7.8
AH,, is the space of hooks and angles on n points:

AH, = ®R/72)5) x (P! x (R/21Z) ] ~)°6),
where ~y, denotes the identification defined in 7.1.

Remark 7.9
Being a direct product of circles and Klein bottles, AH,, is smooth.

In the next definition, we introduce a compactification of the reduced configuration
space conf,,.

Definition 7.10
The data map wAHn is the map

VAH, conf, — AH,,
Yap, .  conf,  — (R/7Z)E) x (P x (R/20Z)/ ~p )°0),

(p1,...,pn)] — ((@5)i<i<j<n, ( U’“, Z’“) | i, 4, k pairwise distinct),
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and XAH, is the closure of the image of conf,, in AH,.

Alternatively we could allow non-negative ratios only, construct a data map from
conf, to (R/WZ)(Z) x ([0,00] x (R/27Z) )G(Q)7 and define XAH,, as the closure
of conf,, in this product. In this approach, however, ‘jumps’ occur in every hook
h;f Indeed, suppose that p; # py are fixed while p; moves ‘through’ pi. Then the
ratio 35 stays close to zero, but ¥ jumps to ¥ + 7 at collision, as a;; changes
direction, while «;; stays the same.

7.3.6 Example: a smooth compactification of confs.

Consider three points p1, p2, and p3 in the plane. Their configuration space is given

by confy = {(p1,p2,p3) | pr # pP2,p1 # ps,p2 # p3}. Then confy is mapped by
Y A[ to arather big space:

) 13 12 23 21 32 31
Yag, : confs —  Sio X Si3 xSy X Ky X Ky5 x K37 X K3 X K57 X K35

Indeed, we can make a smooth compactification of conf; by mapping it to a much
smaller space:

Lemma 7.11
Let 1) be the map ¢ : confs — Sio x K{3 given by (p1,p2,p3) — (a2, 315 ). Then
Ylconfs] = S1a x K13 . Moreover, S12 x Ki3 is smooth.

Proof. We have to show that for every point y € S1ox K13 and every neighbourhood
U of y it holds that U N[confs] # (). Any point y € S1o x K{3 has coordinates:

y = (o12(y). 615 (y), 15 ().

If 0 < |83 (y)| < oo, then (c1a(y), 513 (y), 13 (y)) = ¥(p1,p2,ps), where p; =
(0,0), p2 = (cosar2,sina2), and p3 = 5113 (cos(az + O‘%% ),sin(a2 + 0&% ). If ratio

13 (y) = 0,00, then in any neighbourhood of y there exists a point z such that
0 < |83 (2)] < 00, s0 z € Y[confs]. =

Later on we prove that XAH[3] is another smooth compactification of conf;. Map-
ping of conf3 into AH,, has the advantage that there are no preferred labels.

7.4 Nests and screens.

The main result of this section is Theorem 7.21 that associates a nested set of subsets
of {1,...,n} to an element € XAH,,. This is done by analyzing those ratios 5;;“ (z)
that are equal to zero.
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7.4.1 Clusters, nests, and screens.

Definition 7.12
Let Z be a collection of sets.

(i) Z is nested iff either AC B or B C A or AN B =0 for any two elements
A, BeZ.

(ii) A set U is a maximal subset of a set W, w.r.t. some nested set Z iff
UWeZ, UCW and there exists noV € Z withU CV C W.

(iii) A mnest Z on {1...n} is a nested set of subsets of {1,...,n} that includes the
set {1,...,n} itself and all singleton sets {i}, where i =1,...,n.

(iv) The elements of a nest are called clusters. The singleton sets are called the
trivial clusters.

Example 7.13

The set Z = {{1,2,3,4,5,6},{1,2,6},{3,5}, {1},{2}, {3}, {4}, {5}, {6} } is a nest on
{1...6}. For simplicity, we often write only the non-obvious elements of Z. The
obvious elements are the singleton sets and the total set {1,...,n}. We indicate this
by using the (,) brackets. In our example we would write Z = ({1, 2,6}, {3,5}).

Let Z(n) be a nest. Associate a copy S¢ of the plane to every non-trivial cluster
C € Z(n). Every copy is labeled by its corresponding cluster. In this way we get a
family of screens Sz = {S¢ | C € Z, C non-trivial}, associated to the nest Z. In
case there is only one non-trivial cluster, we have exactly one screen, Sp,,j, where [n]
stands for {1,...,n}. In Example 7.13 we have screens S, S1,2,6,, and S3 5.

In this section we show how to associate a nest Z to a point x € X AH|[n]. In the
following sections we describe how to fill the family of screens Sy corresponding to
a nest Z in a meaningful way.

7.4.2 Properties of ratios.

Lemma 7.14
Let pi, pj, pr, and p; be distinct points in the plane. Then the following relations
hold:

(i) Bif € (0,00);
(ii) By =1/Biy;
(iii) B + 55 > 1;

() -5 = B
(v) B B =B85 By -
Proof. .

(i) Follows directly from the definition.
3 _ Di — Pr .

G va = BB = g

lpi — pjl
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(iii) This is in fact the triangle inequality:

. . R R R + P
. Ipi = el | i —pel _ |pi = pel + |pj = prl

> 1.
lpi — il Ipi — pjl Ipi — pjl -
iv ij | gk _ lpi — pj ) lpi — Pl _ lpi — Pl — gik
() B - 55 lpi — il |pi — Dyl lpi — P i
v) Apply the definition. | |
(v) Apply

Corollary 7.15
Forx € XAH[n] and i, j, k, | distinct labels we have

(i) |5¥] € [0,00];

(ii) |8ik) = 1/1i%1;

(idi) 16|+ 162] > 1; )

(iv) Ifmax( 5], [ ) < oo, then |53 |- 6| = |5F |

Proof. The claims follow from Lemma 7.14 by taking limits, but notice that for

x € XAH,, some ff can be negative, see Definition 7.8. |

7.4.3 Separating clusters.

Remark 7.16
For the rest of this section, we identify a site p; with its label 1.

Set -
Cij = {pr | 1B | >0} U{i,j}. (7.2)

Intuitively, think of the following. Recall the geometric interpretation of a hook hiff
given in Section 7.3.2. Suppose we use hzf to draw a point p; in the plane, given the
points p; and pi. The ratio |ﬁfi| gives the distance between the points p; and p;,
compared to the unit distance p;py. Imagine an observer situated at p;,. When | ﬂ;i
gets very small, p; moves very close to p;. But as long as |ﬁfi | > 0, the observer at
pi. still can distinguish p; and p;. Therefore one could say in this setting that Cj;
consists of all points pj such that p; # p; w.r.t. p. We call C;; the separating
cluster of p; and p;.

Lemma 7.17
We have Cij = C]z

Proof. Let us start with a heuristic proof: consider Figure 7.8. Note that I =
Ipr — pjl, J = |pr — pi| and K = [p; — p;|. Therefore |} | = K/J and |3}, | = K/I.
We have to show that K/J > 0 implies that K/I > 0 as well. K/J > 0 only excludes
that p; and p; coincide w.r.t. py. But this is also the only way to make K/I small.
More formally: we have to prove that |ﬁfi | > 0 implies that |ﬁj;€ | > 0. First of all:
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Dj

bi J Pk

Figure 7.8: The triangle p;p;p.

asllﬂfﬂ > 0 it follows that [3{}'| < co. Now suppose that |ﬂjf€| = 0. Then also
18551 - 8% | = [BFi| = 0. This contradicts the triangle inequality applied to |G |
and |67, |. [

Lemma 7.18
If pr € Cij and py & Cij, then py & Cix, Cj.

Proof. First, p; € C;; implies that |ﬁjjk| < o00. Secondly, as p; & Cj; it follows
that |3 | = 0. So both |37 | and |81 | are finite, which means that we can apply
Corollary 7.15 and get |3if | = |84 [|8] = 0. [

Lemma 7.19
Let i,j and k be distinct labels. Then

pr € Cyy = Cy C Gy,
Pk € Cij = Cij C Cip.

Proof. If p;, € Cjj, then Cy, C Cj; by Lemma 7.18. We are left with the case
pr & Cij. We prove that in this case Cj; C Cj,. For this purpose, we fix p; €
C;; and show that p; € Cy,. Since pi € Cij, it follows that |6Zi| = 0. Due to
p1 € Cjj, one has |ﬂflj| > 0, and in particular \6};\ is finite. By Corollary 7.15,
|5f,l€| = \ﬂ;i : |5Z’; = 0. As a consequence |ﬂjlk | >0, so indeed p; € Cig. |

Lemma 7.20
If pa,po € Cij, then Cqp C Cjj.

Proof. If p, € Cj,, it follows from Lemma 7.19 that Co, C Cy, C Cy5. Suppose that
Py & Ciq. Then Lemma 7.19 gives C;, C Cjp. This implies that p, € C;,. Therefore,
Cwp CCiyp C CZ] |
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7.4.4 The clusters form a nest.

Theorem 7.21
Fiz x € XAH,. Let C(z) := {Cij}1<icj<n U {{1},...,{n}}. Then C(z) is a nest

onn.

Proof. We have to show that for any clusters Cy; and Cj; either Cs, N Cy; = 0 or
one of them is contained in the other. Lemma 7.19 deals with the case s = i: it
shows that the nest condition is fulfilled for Cj;; and C;j. When Cy N Cj; = 0 the
nest condition is fulfilled as well. So, assume that s, ¢, 7, and j are all distinct and
that p,, € Cs: N C;;. We have proved in Lemma 7.19 that the following inclusions
hold:

Cim * Csm
N N
Ci J Cst
@] @]
Cj * Ctm

The inclusions x and * are still open. There are four possibilities:

NN~
U U
Un w
NnuU s

*

In the first case, p; and p; are in Cy. So, Cjj C Cs by Lemma 7.20. In the second
case, Cs; C (5. Concentrate on the case 3 now.

Cim C Csm = Di S Cst»
ij ODCun = pi € Cl]

If p; € Csyy,, then p; € Cy4, so both p; and p; are in Cy;. This implies that C;; C C.
When p; & Csy,, we can apply Lemma 7.18 as p; € Cs,y, and conclude that Cys C Cj;.
But this implies that ps € Cy;. As py € Cj; as well, it follows that Cs; C Cj;. The
fourth case follows from the third by relabeling. |

From Theorem 7.21 we obtain an important corollary.

Corollary 7.22
If x € XAH][n], then C = C(z) forms a nest.

For x € XAH,, we call a cluster C € C(z) an z-cluster. By now, the following
statements are obvious.

Corollary 7.23

Let C be a nest. Then
(i) Cij; is the smallest cluster of C that contains both i and j;
(ii) i and j belong to distinct clusters in the screen Sc,;.
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Definition 7.24
Fiz x € XAH,.

(i) Let M = {i1,...,im}, for m in 2,...,n, be a subset of {1,...,n}. The
separating cluster Cy; of M in x is the smallest cluster of C(z) that contains
i1,.--,%9m-. The separating screen Sy, is the unique screen that contains eractly
the elements of M.

(i) Let C(z) be as in Theorem 7.21. The x-screens are the screens Sc¢ for C €
C(z).

7.5 The hooked tree.

Suppose we are given a point € XAH,,. By determining the clusters C;; for =, we
find the nest C(x) for . From the nest, we get a list of screens S¢, the z-screens. In
this section we introduce a data structure that enables us to fill the x-screens, the
hooked tree. The hooked tree ht(x) encodes both the nest C(z) of  and the relative
positions of the underlying point set py, ..., p, of 2. We define ht(z) recursively.

7.5.1 Definition of hooked tree.

Definition 7.25

The hooked tree ht(z) of a point x € XAH, is a rooted tree. Some of its edges
have tags. The vertices of ht(x) are the clusters of the nest C(x). The root is
the cluster {1,...,n}. The leaves are the clusters {1},...,{n}. Two clusters are
connected by an edge if one of the clusters is maximal in the other.

The x-tags refer to hooks and angles in AH,,. Fizx a cluster S. Order the mazximal
subclusters in S according to the smallest label in each mazximal subcluster. Suppose
S has maximal subclusters cy, ..., cp with minimal labels

J1 < jo < ... < Jg-

If S is not the top cluster [n], there exists a cluster T that contains S as one of its
maximal subclusters. Suppose that T its maximal subclusters have minimal labels

11 < 12 < ... < Um-.
Tag the edges from cluster S to its mazimal subclusters as follows.

Edge to cq. If S is the top cluster [n] then the edge from S to ¢; is tagged top.
Else: no tag.
Edge to cs.
(i) If S is the top cluster [n] then the edge to cy is tagged o j,. Such tag is
called an x-type 2.a tag. o
(i) Else if ji > i1 then tag the edge from S to cy by hij}i*. This is an
z-type 2.b tag.
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(i) Else if j; = iy then tag the edge to ca by hﬁfi This is an z-type 2.c
tag.

Edge to c;, for t > 3. The edge from S to ¢;, fort > 3, is tagged h}\7. . This is
an r-type 3 tag.

The tag a;; in z-tags does not stand for the value a;;(x), but rather for a map
AH, — R/7nZ. The indices i and j indicate which particular factor of the form
R/7Z in AH,, is meant.

Definition 7.26

Fix x € XAH,,. Let q be an arbitrary point in AH,,. A gq-coordinate h;gf (q), respec-
tively, o;(q), aéf (q), f]k (q) is a x-type 2 hook, respectively, angle, angle, ratio
iff hﬁ?, o, aﬁ? or ﬁff occurs in x-tags; x-type 3 hooks, angles, and ratios are
defined in a similar way.

7.5.2 The hooked path.

In this section we associate a unique z-tag to every site p;. Moreover, we show that
the hooked tree ht(z) induces a partial ordering on the labels 1,...,n.

Definition 7.27
Fiz x € XAH,.

(i) To any site p;, for i = 1,...,n we associate an x-tag l,(p;): it is the first
x-tag that one encounters when going up in ht(x), starting from the leaf i.

(ii) The predecessor p,(p;) of p; with respect to x, fori=2,...,n is defined as
follows:

1. p1 has no predecessor.
2. Ifl.(pi) is an x-type 2 tag then i = jo in Definition 7.25.
e In case of x-type 2.a, p(p;) = p1.
o In case of z-type 2.b, p,(p;) = pj, -
o In case of x-type 2.c, pz(pi) = Dis, -
3. Ifly(p;) is an x-type 8 tag then i = j, in Definition 7.25 and py(p;) = pj, -
(ii) To a site p;, fori=1,...,n we associate a hooked path L, (p;):

L L) = ).
2. L.(p;) equals Ly(px(p;)) with p; prepended.

If a site p; occurs in Ly(p;), then we say that p; is x-above p;. If p; = py(p;) or
Di = pz(pj), then we call p;p; an z-leg.

Lemma 7.28
The predecessor relation gives a partial order on the set p1,...,Dp.-

Proof. We have to show that there are no loops. For this purpose we define the
depth of a site p; as the number of edges from the root in ht(z) to the node where the
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edge that has [, (p;) as its a-tag starts. Consider site p;. Site p; has no predecessor.
Assume that ¢ # 1 and that p; is its predecessor: p; = p,(p;). We claim that either
depth(p;) < depth(p;), or depth(p;) = depth(p;) and j < i. Indeed, if I,(p;) is
of z-type 3, then the last case holds. And if I,(p;) of a-type 2, then depth(p;) =
depth(p;) + 1. ]

Lemma 7.29
There is a 1 to 1 correspondence between the sites p1,...,p, and the x-tags.

Proof. In Definition 7.27 we have associated an x-tag with every site p;: the z-tag
l.(p;) associated with p; is the first tag one encounters going up from the leaf p; in
the hooked tree ht(x). To finish the proof, we turn around the association: we show
that for every z-tag [ there is a unique path to a leaf of the hooked tree such that
no other z-tag is encountered. If the edge tagged [ is itself incident with a leaf we
are done. So assume that the edge tagged [ does not end in a leaf. Then it ends in
a vertex of the hooked tree corresponding to a cluster S of at least two elements.
By Definition 7.25 only the edge from S to its maximal subcluster M with minimal
label j; has no tag. j; will also be the minimal label of every subcluster of M that
contains ji. Therefore there is a unique path without labels to pj,. |

7.5.3 Dom,(z) and Rng, ().
The z-tags define a factor of XAH,,.

Definition 7.30
Fiz x € XAH,.

(i) The factor Dom,(z) is the factor of AH, that corresponds to the angles
and hooks in x-tags. The factor of AH,, complementary to Dom,(x) is denoted by
Rng,, ().

(ii) By tv,, denote the projection of AH,, onto Dom,(z); ‘tv’ stands for tree
values. The projection of AH,, onto Rng,,(z) is denoted by ctv,,, the complementary
tree values.

The following lemma states that dim( Dom,,(x)) = dim( conf,). This shows that
the hooked tree is optimal in the sense that it refers to as many coordinates of AH,,
as the dimension requires.

Lemma 7.31
Let © € XAH,,. Then dim(Dom,,(z)) = 2n — 3.

Proof. The dimension of Dom,,(z) is given by the sum of the degrees of freedom in
the hooks and angles referred to by z-tags. Every hook is defined by one angle az?
and one ratio 6;;“ , so the dimension of one hook equals 2. The dimension of a single
angle a;; equals 1. The dimension of ‘top’ is zero. From Lemma 7.29 it follows that

the z-tags refer to n — 2 hooks and 1 angle as there are n sites and one ‘top’ tag. W
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7.5.4 Example of a hooked tree.

Figure 7.9: The screens for the nest ({1,2,6},{3,5}).

Figure 7.10: The hooked tree for the nest ({1,2,6},{3,5}).

Example 7.32

Let us consider again, as in Example 7.13, the nest Z = ({1,2,6},{3,5}). A re-
alization of Z consists of the three filled screens Sig), S1.2,6 and S35. Recall that
6] = {1,...,6}. A possible realization is given in Figure 7.9. The hooked tree
corresponding to Z is given in Figure 7.10. Note that the dimension of Dom,,(z) is
indeed 9.

The first column of Table 7.2 gives all sites in Z. The z-tags corresponding to each
site are shown in the second column. The third column gives for every z-tag its
a-type. The fourth column gives tv,(x) coordinates corresponding to the way the
x-screens are filled in Figure 7.9. How this filling is done exactly, and the meaning
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of the fifth and sixth column will be explained later in this chapter.

From the data for the tv,(z) coordinates it follows, for example, that the length of
the leg 12 is zero with respect to the length of the leg 13. And as the length of the
leg 16 is of the same order as the length of the leg 12, it must vanish with respect
to the length of the leg 13 too. Continuing in this way reveals the complete nest
structure.

site x-tag x-type  tug(x) q € Dom,(x) representatives
1 top top
3 oq 3 2.a —7° 69° same
2 (B 13, al?) 2.c (0, 71°) (.35, —91°) (—.35, 89°)
4 (B 13, ats) 3 (1.5,50°)  (—1.92, 4°) same
5 (3 31 ,ad) 2b (0,44°)  (—.34,170°) (.34, —10°)
6 (BIS, adf) 3 (1, =37°) (.91, —11°) same

Table 7.2: z-tags and values.

7.6 Filling x-screens.

In this section we present a method for filling z-screens, given a suitable point
q € Dom,,(x).

7.6.1 Standard form of x € XAH,.

First we put a fixed x € XAH, in standard form: if necessary we change some
representatives in Klein bottles Kf]k and/or change the representative for the top
angle o, (z) modulo m. We only use the Dom,, (x) factor of AH,, in order to fill
the z-screens. Therefore we only have to choose standard representatives for those
angles and hooks that are referred to in z-tags.

Definition 7.33
x € XAH, is represented in standard form iff

° o, aﬁ? of z-type 2 = (), aﬁf (z) € [-7/2,7/2) and
o 3% of z-type 3 = Bi¥ (x) > 0.

)

By the following, we do not have to make a sign choice for any x-type 2 ratio fj’“ (z).
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Lemma 7.34
Fiz x € XAH,. o
(i) If Ry, is an z-type 2 hook, then 3i11® (x) = 0.

(1) If hﬁﬁ; is an z-type 3 hook, then 0 < |651137; (x)] < o0.

Proof. Follow the notation of Definition 7.25. We give a proof for the z-type 2.b
case. The z-type 2.c case is similar and is omitted. From Definition 7.25 we know
that there exists an z-screen S such that p; ,p;, € S but p;; € S. The claim follows
from the definition of separating cluster, see in particular Equation 7.2. If ﬂjjllj; is
of z-type 3, then p;, € Cj,;,, so |ﬂ3115; (z)| > 0. Suppose that |ﬂ3113; (z)| = 0o. Then

| ;1153 ()| =0, but this would imply that p;, & C;,;,. That is a contradiction. W

Changing an z-type 3 ratio ff (z) from negative to positive involves of course a
swap ol (x) = aif (z) + 7 for the corresponding z-type 3 angle: we have to oblige
the Klein bottle identification 7.1.

Remark 7.35

We also refer to z-type 3 hooks, angles and ratios as hooks on scale, etc. The
unique z-type 2.a angle is referred to as top angle. Hooks, angles and ratios of
xz-type 2.b or 2.c are also called explosion hooks, etc.

An explanation for these names can be found in the geometric interpretation of a
hook hi¥ | given in Section 7.3.2. Think of what changes in the hook h¥ as we start
from the fixed value x € XAH, and move away from this point in some general
direction inside AH,,. If hzf is of a-type 2, then ﬁj]k () = 0. Perturbing z to &
implies in general that | Z]k ()] > 0. In the geometric interpretation, this has the
effect of an explosion. If hi¥ is of 2-type 3, then 0 < |3/ ()| < oo and shifting z in
general direction does not change this. In our geometric interpretation this means
that the transformed leg, before and after perturbation, has finite but positive length.
This explains the name ‘hook on scale’. The name ‘top angle’ refers to the place of
the z-tag ‘top’ in the hooked tree hi(x).

Definition 7.36
Let x € XAH,, be in standard form. A point ¢ € Dom,,(z) is valid with respect to
x iff the following two conditions on the coordinates of q hold:

non-orthogonality: no explosion angle is orthogonal to the corresponding angle
a7l (x). The top angle aqj,(q) is not orthogonal to the top angle onj,(x).

finiteness: |ﬁ:i (¢)| < oo for all ratio coordinates ﬁ;i (q)-

Remark 7.37
tv,(x) is valid with respect to x..
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Proof. The non-orthogonality is obvious, while the finiteness follows from Lemma
7.34. |

7.6.2 Example: ordering the sites for the drawing process.

1

6

Figure 7.11: The poset induced by the predecessor relation.

Example 7.38

Figure 7.11 depicts the poset induced by the predecessor relation in our running
example, see also Examples 7.13 and 7.32. This poset tells us, for example, that in
order to draw pg in the top screen, we should draw pi, ps, and po first and in that
order and, moreover, that we can ignore py and ps. So, the hooked path L, (pg) is
given by Lz (ps) = (6, P2, P3, P1)-

This hooked path L. (pg) tells us how to draw pg in the top z-screen using ht(z).
First p; is placed in the origin. Then p3 is drawn using I, (p3) = a13. As by now the
leg p1p3 exists, we can apply I, (p2) = hi2 in order to add the leg p1ps. Finally, the
leg p1pe is formed by applying I, (pg) = hiS.

7.6.3 The construction draw,(q).

Construction 7.42 indicates how to fill z-screens with sites p1,...,p,, given a valid
point ¢ € Dom,,(z). First we define an ordering on the z-screens.

Definition 7.39
An xz-screen T is above an x-screen S iff the set of labels of S is a subset of the set
of labels of T.

The following lemmas relate the z-type of a hook to clusters C' in C(z).

Lemma 7.40
Let hﬁf be an x-tag.
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(i) If z-type( h;? ) =3 then C;j = Ciji, = Ci.
(ii) If z-type( hzf ) =2 then Ci; # Ci, and moreover, Cy; is directly above Cyy.

Proof. We prove the two claims in the Lemma.
(i) By construction, an z-type 3 hook involves the minimal labels of the first, the
second, and another maximal cluster in a fixed cluster. Therefore

Ci; = Ciji = Cip.

(ii) Analyzing the cases in Definition 7.25 shows that ¢ points to the minimal
label in some cluster S and k points to the second lowest label in S. Moreover, i is
a minimal label for one of the maximal clusters of T, the cluster directly above S,
while j is the minimal label of one of the other maximal clusters in T. Therefore

Lemma 7.41

Let C be a x-cluster. Let pp,, and py,, be the sites with minimal labels in the first,
resp., the second maximal cluster of C. Let pr, € C, but pr # Dmy,Pm,, ond let
h%“ = ly(px). Then p;,p; € C.

Proof. Let My, Ms, ..., My be the maximal subclusters of C. Suppose that p, € M;
for 1in {1,...,s}. Suppose that x—type(hﬁ?) = 3. By Definition 7.25, there are two
possibilities. Either p; has minimal label in M;, and in this case | > 2, p; = pm,,
and p; = pm, O, P, p; and p; belong all three to M;. We are left with the case
x—type(hﬁ?) = 2. According to Definition 7.25, py has minimal label in the second
maximal cluster of some cluster D. As py # pm,, this means that either D equals M,
or D is a subcluster of M. It follows from Lemma 7.40 that in both cases p;,p; € C,
since these two sites are contained in the cluster directly above D. |

Construction 7.42 ( drawx(q) ).
Filling x-screens.

Input: a-screens, valid ¢ € Dom,, (z).
Output: z-screens filled with ¢, prescription draw,(q).

Step 1. Choosing representatives. B
Choose representatives for the top angle o, (¢) and the explosion angles o] (¢) in
ht(q). Do so by changing the present value, if necessary, to the value modulo 27 most
close to the corresponding value vy, (x) or agj (x) in tv(z). This choice is unique
because of the non-orthogonality condition in Definition 7.36. See also Figure 7.12,
which demonstrates that there always exists a value of a(q) within distance 7 /2 of
a(z).

Zj’“ (¢) whenever you change the
explosion angle by oz%“ (q) = aﬁ? (q)+m. Otherwise the K;Jk Klein bottle identification
7.1 is not obliged.

Simultaneously, change the sign of an explosion ratio
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Figure 7.12: Non-orthogonality condition.

Step 2. Screen orientation.

We define the screen orientation of an z-screen S = S¢ by induction on the
‘above’ relation introduced in Definition 7.39. Assume that the screen orientation is
defined for all z-screens above S. Let T be the screen directly above S. Following
the labeling in Definition 7.25, the screen orientation Og is defined by

Og

Q1jy, S is a top screen,
OTJrOé]iZj, o=,
= O —|—aﬁff+7r jl = iQ, (73)
Or +aifl +ap? +m ji = i, t=3,....m, Bl >0,
Op + Mt 4 gJ1i2 Ji =i t=3,...,m, B <0

2122 J11?

Step 3. Drawing the sites.
The recipe for drawing a site p; in a screen S = S¢ for i € C,| is given inductively, by
induction on the predecessor relation. Below, T denotes the screen directly above

S.
1:

10:
11:

Site pp is the first site in every path L,(p;) and is drawn in ‘the origin’ in any
screen where p; occurs.

Next suppose that i # 1 and that all sites p,, above p; with m € C have already
been drawn.

. if p; is the first site in the first cluster of C' then

p; is drawn in the origin of S.

else if p; is the first site in the second cluster of C' then

put p; at (cos Og,sin Og)

else

lo(pi) = hjk7 where p; and py are above p;. By the induction hypothesis,
the leg p;py is already present in S, see also Lemma 7.41. The leg p;p; is
constructed as follows:

Rotate p;py over aj; around pj-

Scale the result by a factor 37, with respect to p;.
To summarize,

P = rotaﬂ (px — pj) + ;- (7.4)



7.6. Filling z-screens. 125

12: By induction, the length of the leg p;p; is finite. The finiteness condition in
Definition 7.36 assures that the resulting leg p;p; is finite as well.

Remark 7.43
Note that the legs p;p; constructed in draw,(g¢) while filling the screens are exactly
the z-legs.

Some drawings are better than others.

Definition 7.44
A walid ¢ € Dom,,(x) is accepted with respect to x iff in any x-screen S filled by
draw,(q), g-sites that belong to distinct mazimal x-clusters of S do not coincide.

Remark 7.45
Suppose that ¢ € Dom,, () is valid and accepted. If type,( Z]k) = 3, then | j;“ (@) >
0.

Definition 7.46

Every valid and accepted ¢ € Dom,,(z) gives a filling of the x-screens consisting of
n sites. The set of all filled z-screens that can be obtained in this way is denoted by
Scr,(z).

7.6.4 Example: filling z-screens.

Figure 7.13: z-screens filled with some ¢ € Dom,, ().

Example 7.47
In Figure 7.13 we have filled the z-screens of our running example, see Examples
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7.13, 7.32 and 7.38, with the g-values present in the the fifth column in Table 7.2.
The chosen representatives for the g-values are given in the last column. According
to Step 2 in Construction 7.42, we have changed the representatives for hi2 and
h33. Let us look more carefully at the relative positions of the sites p1, p2, and pg
in the top screen Sjg and the screen Sy 6. It seems like the complete cluster 1,2,6
has been rotated over m w.r.t. site p; in the bottom screen. In order to find an
explanation, we compute the coordinates of py in both S and S126. The hooked
path L,(p2) equals (pa,p3,p1). In both screens p; = (0,0). In the top screen,

p3 = (cos OS[@] ,sin (’)5[6] ), where 05[6] = a13. We determine the position of ps in the
top screen, using Equation 7.4:
p2(Sig) = Biirotasz (ps) = i3 (cosars + i3, sinais + ai3).

In 51,26, however, p; is the first site in the second cluster, so
p2(S1,26) = (cosOgs,, 4,5 0s, ,,).
According to Step 2 in Construction 7.42,
Os,.6 = Osy —&—a%% = a3 —&-a%%,

asi; = 1,4 = 3 and j; = 1,jo = 2. We conclude that the only difference between
the argument of p3 in Sig and Si 26 can be caused by (12 this ratio is used in
drawing py in Sgg but not used in drawing ps in Si26. Indeed, sign(f]3 ) = —1

which causes a 7 shift in arg(ps) from the top screen to the screen Sy 2.6.

)

7.7 Reading off data elements from filled screens.

Let ¢ € Dom,(z). Suppose we have filled the z-screens with ¢-sites by applying
draw,(q). In this section we tell exactly how to read off angles and hooks coor-
dinates from the g-filled x-screens. More precisely, we explain how to determine
every angle @;; between two sites p;(¢) and p;(¢) and every hook h}] between three
sites p;(q), pj(¢), and px(q). Basically we read off lacking coordinates in a suitable
z-screen. Recall the notions of separating clusters and separating screens that were
introduced in Definition 7.24. These notions are used for fixing the z-screens used
for determining the angles and hooks coordinates.

Remark 7.48
The separating screen S;;(x) is the only z-screen in which it is guaranteed that
pi(q) # p;(q) for ¢ being valid and accepted.

7.7.1 Determining hooks and angles from draw,(q).

Definition 7.49
Let ¢ € Domy(z) be valid and accepted. From draw,(q) we determine a point
G =read,(q) € AH,, as follows.
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(1) i;(G) € R/2nZ is the angle of the directed line through p;(q) and p;(q) in the
g-filled screen S;;(x).

(ii) afy (@) = ai(q) — i (@)
(i11) Read off all sites coordinates in screen Siji. If pi(q) # pj(q) in Sijk, then

oo we(@) = pi(a) - (Pi(a) — pi())
b = 7,(0) — pila) P ’ (7:5)

where
pi(@) = oty (pi(a) —pi(a)) +pi(a). (7.6)
Else, Bi¥ (q) = 1/8i1 (d)-

Note that by definition of separating screen, not all three sites p;, p;, and p;, coincide
in Si;i. Therefore p;(q) = p;(q) in S;;r implies that p;(q) # pr(q).

Figure 7.14: Determining ;5 .

Remark 7.50

We give a geometric explanation for Definition 7.49. It is rather straightforward to
read off a;;(§) and ai¥ (§), so let us focus on 5¥ (§). Go to the separating screen
Sijk(x). Write down the coordinates of p;(¢), p;(q), and pg(g) in this screen. First
consider the case where p;(q) # pr(q). If proceeding through the definition in the
right order, we know by now aﬁ? (). See also Figure 7.14. Use aﬁ? () in order to
rotate the leg p; — p; onto the line l;;, through p; and py, thereby fixing a point
p}. Finally determine the coordinate of py on the ij’-axis with respect to the ‘unit
vector’ p; — p; as follows. Let x = pi, —p;, ¥y = p;- — pi, and @ the angle between
x and y. From the definition of dot product x -y = |z||y| cos 6, it follows that the

|z|

quantity [+ cos f we look for is given by (z-y)/|y|?. Note that in our case 0 always

equals either O or 7.

Proposition 7.51
The components of read,(q) are infinitely often differentiable (C*°) on the set of
valid and accepted ¢ € Dom,, ().

Proof. The main problem is the continuity of read,(q), so this is stressed in the
proof. To make the proof complete, replace every occurrence of ‘continuous’ by C'°.
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(i) AH, is smooth as a direct product of circles and Klein bottles. Dom,,(x)
is a factor of AH, and is a product of circles and Klein bottles as well. read,(q)
determines a point in AH,.

(ii) We restrict ourselves to valid ¢ € Dom,, (x). This means that we have imposed
two conditions on ¢: the non-orthogonality condition, which is is an open condition
as it assures that one point of a circle S! is avoided. The finiteness condition is open
as well, as one point, infinity, of P! is avoided.

(iii) For valid ¢ € Dom,,(z), the construction draw,(q) is defined. The construc-
tion consists of three steps. First of all representatives are chosen for the top angle
and explosion angles. The chosen representatives depend continuously on ¢. No
jumps can occur due to the non-orthogonality condition. In step 2 screen orienta-
tions Og are defined. The formulas presented in Equation 7.3, depend continuously
on the chosen representatives for ¢q. In the third step, points are drawn in the screen.
The positions of these points depend continuously on the screen orientation Og and
the ¢ coordinates, compare Equation 7.4.

(iv) Filled screens that are not accepted are thrown away. A filled screen is not
accepted when certain clustering between sites occurs. Avoiding clustering is yet
another open condition.

(v) For valid and accepted ¢ € Dom,,(z), the point read,(q) € AH, is defined.
The formulas for the coordinates of read, (q) are given in Definition 7.49. All equa-
tions depend continuously on the position of the sites in accepted draw,(q). |

7.7.2 Example: reading off hooked tree elements.

Example 7.52

Applying Definition 7.49, we read off the values of the angle and hooks in Dom,, (z)
from Figure 7.13. These values are presented in Table 7.3. Next to the data elements
to read off, the read off screen is given. Compare the values in Table 7.3 with the
values of ¢ € Dom,,(z) in Table 7.2 used above to fill the z-screens. Note that
these two sets of values are indeed the same but only up to identification in the
appropriate Klein bottle.

angle screen value angle value ratio screen value

a3 S[G] 69°

a2 S1,2,6 157° a%g 88° %3% 5[6] -39
ars  Sg  —107° ald —176° 4 S 192
as5 S35 —123° gy —12° 30 Ste] 34
a1 Siag  146° ol 110 15 Si2e 91

Table 7.3: Read off values.
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7.8 Consistency Theorem.

In this section we show that our construction of filling screens by means of hooked
tree data is consistent with the procedure of reading off data from the filled screens.

7.8.1 Managing z-type 3 hooks.
Lemma 7.53

Let g € Dom,,(z) be valid and accepted and put § = read,(q) € AH,,. Suppose that
type, (hi%) = 3. Then

az_k ((j) — O‘ZC (Q)u Ll;f ((]) >0,
Y alf(q)+m, B (q) <0.

i td

2 2

/ \$‘, OS :” \$’, OS
aib (@ | aib (@ /1
\?' 23 \\?‘ 27
¢t /

Figure 7.15: ﬂﬁﬁ (¢) > 0 and ,6’5115; (q) <O.

Proof. Follow the labeling in Definition 7.25: i = ji, j = j2, and k = j;. For
convenience we set j; = 1, jo = 2 and j; = t. By Lemma 7.40, all evaluations take
place in z-screen S = S1o2 = S19; = S1¢. For an illustration of the proof, see Figure

7.15. As p; = (0,0) and ps = (cos Og, sin Og) it follows that
a1y (@) = a1e(q) — ar2(q) = arg(pe) —arg(p2) = arg(p:) — Os.

If Bt (q) > 0, then arg(p;) = Og + alb(q), so ail(§) = ail(q). If, on the other
15 (q) +m as

hand, {5 (q) < 0, then arg(p;) = Og + aib (q) + 7. So, all(§) = ol
required. |
Lemma 7.54
Let ¢ € Domy, () be valid and accepted. Set ¢ := read,(q) € AH,,. Suppose that
typey ( ff) =3. Then

(i) 1855 (@) = 1855 (a)]-

(ii) Bif (@) > 0.
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Proof. As in the proof of Lemma 7.53 set i = 1,57 = 2,k = ¢ and conclude from
Lemma 7.40 that the read off screen is given by screen S = Sy = Si;. We use
Equation 7.5 for determining 55115; (), while remembering that p; = (0,0).

1t Pt P

= . 7.7

ph is given by

Py = rotayps = (cos|Os +alh (), sinOs + alk ().

Therefore |py| = 1, so 815 (G) reduces to Bi5(§) = pi - ph. Observe that py =
(cos Og,sin Og) and apply Lemma 7.53. If ﬂ (q) > O then alt () = aib(q) and
by evaluating Equation 7.7 it follows that (1% (q) ( ). If, on the other hand,
H(q) < 0, then ol (§) = afl(q) + m, so pr = —B1%(q)ph, which implies that
15(q) = —B14 (g), as claimed. [ ]

Example 7.55

In the hooked tree in our running example, see Examples 7.13, 7.32, 7.38, 7.47 and
7.52, two x-type 3 hooks occur, hi3 and hi§. The g-values, that are those values
that where used to fill the a-screens, and the read,.(q)-values, the values that where
read off from the filled x-screens, are collected in Table 7.4.

q coordinate  read,(q) coordinate

his  ( —1.92,4°) (1.92,-176° )
RS (.91,-11°) (.91,-11°)

Table 7.4: Swap of representatives for type, 3 hooks.

Note that 313 (¢) < 0. According to Lemmas 7.53 and 7.54 this implies that the
representative in K{j swaps. Indeed, 315 changes sign, while ai3 (§) = ai3 (¢) + 7.
Ratio (S (q) is positive so here nothing should change and this is reflected in the
values in the table.

7.8.2 Managing z-type 2 hooks.

Next lemma shows that in case of a xz-type 2 hook, the representative in the Klein
bottle stays the same.

Lemma 7.56
Let ¢ € Dom,, () be valid and accepted. Put ¢ = read,(q) € AH,. Suppose that
z-type(hi%) = 2. Then

(B (@), (@) = (B (), aif (@)
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Proof. Throughout the proof, we label as in Definition 7.25. The screen orientations
Og for the different cases are defined in Equation 7.3. Set k = j; and i = j;. We
distinguish three possibilities for the hinge point p;,.

(i) ji =i1. In this case, j = is. First we show that a/'? (7 ) = ai'/?(¢). In
order to determine «;,;,(q), we need the coordinates p;, (T') = (0,0) and p;,(T) =
(cos Op,sinOp) in T = S;,4,. It follows that «y,i,(q) = arg(pi,) = Or. For deter-
mining o, ;,(§) = a;,4,(§) we compute in screen S the coordinates of p;, (S) = (0,0)
and:

pjy(S) = (cos Og,sinOg) = (cos Op + a7 sin O + a7?).

1192 ) Q142
We get that ;32 (9) = Or +aiif (¢) = Or = aiji? (a)-
Next we determine /6’;111]22 (). For this purpose we compute the coordinates of p;,,
Pigs D}, and pj, in S; 4,5, = T. We gave the first two above, the latter two are given

by
’ _ i1j2 3 i1J2
pi,(T) = (cosOr + a;liZ ,sinOr + a;l3% ),
P, (T) = B,

By substituting those coordinates in Equation 7.5 we obtain that 5i1j2 (@) =

v ivia
5172 (q), as claimed.

Figure 7.16: 52! (§) = 2"! (q). In the picture, 321! (¢) < 0.

1272
(ii) j1 = i2. In this case, j = i;. Again we start by showing that ang (q) =
azgff (¢). For an illustration of what happens in screen T' = S;,;,, consult Figure
7.16. As in the case j; = 41 it holds that «a;,;,(¢§) = Or. Therefore, o, (§) =
Or + 7. Angle a,;,(§) = ¢, ;,(¢) is determined from p;, (S) = (0,0) and p;,(S) =
(cos Og,sin Og) in S = Sj,;, = S: screen orientation Og is given by Og = Or +
I+ w. Therefore oy, ;,(¢) = arg(p;,) = Or + o2'? + 7. So

RN Jii1

@22 (@) = ip(@) = i (@) = Or+all? +7—Or+7 = ali?? (q).

1221 Jit1 Jit1

For determining ﬁ;;gf (), which occurs in the a-screen T, we apply Equations 7.5
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and 7.6 directly:

(Pj, — Pis) - (P}, — Diy)

sl = :
2 ‘pél — Diy ‘2
= (pJ2 plz) ’ (p;l _piz)’

i2J2

= (51211 ( )(pzl _plz) +p22 _piz) : (p;l _pi2)7
= B2 (@), — i) - (0, — i),
= 61 (a)-
(i) j1 =4t = 3,...m. In this case j = i;. We start by analyzing «; ”2. For

determining a,4, (§) we compute in T' = S;,;, coordinates p;, (T') = (0,0), plz( ) =
(cos Or,sin Or), and

pi,(T) = Bl (q)rot ol (g ) (Pis),
= Biit(@)(cos(Or + it (9)),sin(Or + ot (9)))-
Therefore,
@) = {0T+a;;;; @,  Bli@ >0,
Or +agit (@) +m, Bt (a) < 0.

We use the coordinates, p;, (S) = pj, (S) = (0,0) and p,,(S) = (cos Og,sin Og) in
S =358,,j, = Sj, for determining «, ;,(¢). From Equation 7.3 it follows that

0s Or +ailit () +apl? () +7, Bili(a) > 0,

Or + atit (q) + aif? (), Biris (@) < 0.

112 Jit

itj2

After subtracting it follows that aiiff (@) = a;'7? (q). We only have to show that

B2 (§) = BI#* (g). We do so by filling in coordinates in Equation 7.5. The relevant
coordinates in screen S;,;, 5, = 1" are as follows.

b, = (070),
pi, = (cosOp,sinOr),
pi, = /81111;; (q)rOta?I?t (pi2 7p1'1> + Diys
i1in
= /62112; (q)rOta’:’l?t (piQ)v
ilig
pi, = 10t i (Diy = Pi,) + Piis
ipiq
= rot i (—=pi,) + Pis
'Lt'bl
Pin = BiZrot s (pi, —pi,) + i
iris

= Bidirot i (=pi) + pi-

1



7.9. XAH,, is smooth. 133

Therefore

g gy _ i Orota (i) wotay (i),
i (= rot i (=pi,) - 10t s (—Pi,) - D

igi1 iy

Example 7.57

In our running example we have two type,2 hooks, hi3 and h3}. The reader is
invited to check that the representatives computed for read,(q) in Ki2 and K3}
that are the same as those for q itself. See in particular Example 7.47 and Example
7.52.

7.8.3 Consistency theorem for hooked tree elements.

Theorem 7.58
Fiz v € XAH,. Let ¢ € Dom,(z) be valid and accepted. Then

Dom,(z) — Secr,(z) —  AH, — Dom,(z),

tvg
—

q — draw,(¢) +— read.;(q) q.

is the identity map.

Proof. We analyze the three types of data elements present in ht(z), see Definition
7.25. The type, 3 hooks are dealt with in Lemma 7.53 and the type, 2 hooks in
Lemma 7.56. We are left with the type, 2.a angle between the top screen and its
second maximal cluster. In Definition 7.25 this angle is labeled a;,. The separating
screen of p; and pj, is the top screen S}, so we have to read off in this screen. The
coordinates of p; and pj, in Sp,) are p1 = (0,0) and p;, = (cos aij,(q),sinayy,(q)).
The read off value a1j,(¢) equals arg(p;,) = a1j,(g). This completes the proof of
the theorem. |

7.9 XAH, is smooth.

Lemma 7.59
Fiz x € XAH,,. Let q € XAH,, be such that:
(i) tvy(q) is valid and accepted;
(i) a=vaq, ([cq]) for some [cy] € conf,.
Then q = read (tv,(q)).

Proof. The consistency theorem, Theorem 7.58, proves the claim for those g coor-
dinates that belong to Dom,,(x). In the rest of the proof, we analyze c;; mod 7
and h;] . Write ¢ := read, (tv,(q)).
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First we show that a,p(q) = aup(q) for a,b € 1,...,n, with a # b. Definition 7.49
tells that we have to determine a,;(q) in the screen Sy,. Let j; and jo be the first
label in the first cluster and the first label in the second cluster of screen Sg,. Then
pj, and pj;, are the sites drawn first and second in Construction 7.42. If a # j1, jo,
then p, was constructed out of the z-leg p;, ;, by repeatedly applying hooks from
ht(x) in the order indicated by the hooked path L, (p,). The same holds for p;,. For
hooks h;f that are referred to in ht(z) one has hi% (q) = h;f (¢)- As a consequence,
the positions of p, and p; relative to p;, and p;, are the same in Sy, as in any
configuration ¢, € [¢,].

The angle of the directed line passing first through p;, and then through pj, in Sq
is exactly the screen orientation Og,, = Og, ; . Writing out any screen orientation
according to the recursion in Equation 7.3 gives a list of data elements corresponding
exactly to the hooked path L.(pp). As all angles occurring in the screen orienta-
tion definition are coordinates of Dom,,(x), Theorem 7.58 applies again. At any
type 2 angle 04%“ however a 7 switch can occur: the corresponding type 2 ratio @’f
is not used in the definition. Moreover, representatives might swap in Step 1 of

Construction 7.42. It follows that

Osj0 = { 13:0)

Q5o (q) +m

To show that hi% (¢) = hi¥ (¢) is easy now. The proof consists of three observations:

(i) Any g¢-filled z-screen S is just a copy of the original configuration, due to
the Consistency Theorem. But, it also satisfies the following: points not belonging
to cluster C(S) corresponding to screen S are omitted; points in S are scaled such
that the distance from p;, to p;, equals one; points in S' are possibly rotated over 7
according to Construction 7.42, Step 1.

(ii) By Definition 7.49, aﬁf (§) = air(§) — i;(G). From the proof of part 1. of this
lemma it follows that the angle o¥ (¢) equals «¥ (¢) up to .

(ili) In case ai¥ (§) = «i¥ (¢) + = this m-switch is automatically corrected by the
ik ik

sign of ;7 , as a;; (¢) is used in Equation 7.6. |

Lemma 7.60
Fiz x € XAH,,. Let U C AH,, be the set of points in AH,, such that tv,(u) is valid
and accepted for alluw € U. Then

XAH,NU = graph(ctvy(read,)). (7.8)

Proof. We prove the two inclusions. First let y € XAH,, N U. Then its projection
qy = tv,(y) € Dom,,(x) is valid and accepted with respect to z. There always exist
points z € XAH,NU of the form z = ¢ g g ([c.]), for [c.] € conf),, that are arbitrary
close to y. For such points z expression (7.8) holds by Lemma 7.59. So these points
can be expressed as the image of a configuration consisting of non-coinciding points.
Therefore these points z belong to the graph of graph(ctv,(read,)). This implies
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that y itself belongs to the graph as well, as y can be constructed as limit point of
points of the form z =1 o ([c:]), for [c.] € conf, in XAH,.

Secondly, suppose we start with a point g, on the graph. This implies that ¢ =
tvz(g4) € Dom,, () is valid and accepted. As both conditions (valid, accepted) are
open conditions, there exists € with 0 < € << 1, such that if we replace all g-ratios
that vanish by € that then g(e) is still valid and accepted. But this means that
draw,(q(€)) produces a filling of the z-screens in which all sites in the top screen
are distinct. Writing down the coordinates gives a class [cq(.)| € conf,,. Then

Yam, (cqol) = (q(e); ctvz(reads (gq(e))))-

The claim follows by observing that XAH,, is the closure of AH, (conf,) in AH,.
[ |

Theorem 7.61
XAH, is a submanifold of AH,.

Proof. Being a submanifold of a manifold can be determined locally, see [BG],
section 6.2. Lemma 7.60 shows that XAH,, can locally be written as the graph of a
function, and this is one of the characterizations of submanifold. See [BG], Theorem
2.1.2. notably part (iv). |

7.10 Voronoi diagrams in the x-screens.

So far in this chapter we have introduced the space XAH,, in order to model config-
urations of coinciding sites in the plane. We have seen that we can associate with
every x € XAH, a family of z-screens. Moreover, for almost all ¢ € XAH,,, we can
fill the z-screens with g-sites so that for any two g sites p;(¢) and p;(gq) there exists
an a-screen where p;(q) and p;(q) are distinct.

In this section we add Voronoi diagrams to the x-screens. As in any z-screen at least
two sites are distinct, we could apply the ordinary definition of Voronoi diagram.
But there is an ambiguity in the screen model, as we take angles «;; between pairs
of points in R/7Z and allow negative ratios 5% .

Example 7.62
Recall Example 7.47. This example demonstrates that ¢-clusters can get rotated
over 7 in distinct z-screens.

7.10.1 Connection with Kontsevich-Soibelman space.

We nail down the clusters in such a way that they cannot get swapped over 7 in
distinct z-screens. We do this by taking angles between pairs of points in R/277Z
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ik

and allowing ratios fj € [0, 00] only. That is, we consider the map

vEpAH, ©  conf,  — (R/2nZ)(3) x ([0,00] x R/272Z)°(3),
[(p1,---pn)] = ((@ij)iici<n, (BF, alk)).

where 7, j, and k are pairwise distinct indices. Denote by EDAH,, the product
(R/272) (%) x ([0, 00] x R/27Z)°(). Recall the manifold with corners FMs(n) intro-
duced by Kontsevich and Soibelman, see [KS] and described in Section 7.1.2.

Proposition 7.63
Let XEDAH,, denote the closure of U’EDAHn (conf,) in EDAH,. Then

XEDAH, = FMs(n).
Proof. FM, is defined as the closure of the image of conf,, under the map
{p1, - opm}] = (@ig)icici<n: Bi) ),

where i, j, and k are pairwise distinct indices and ij = %.
i~ DPj
the claim follows directly. ]

ik _
As = Qi — g,

Figure 7.17: The Voronoi diagram of p;(t), p2(t) and p3(¢). On the left for negative
t, on the right for positive t.

Example 7.64

Consider p;(t) = t(1,0), p2(t) = t(—3,2/3), and p3(t) = t(—3,—3v/3). We com-
pare the angles associated to pi, pa, and p3 in XAH[3] and FM>(3) for positive and
negative ¢. First we consider XAH[3]. The undirected angles a1z = —%, a3 = %
and az3 = § do not change at ¢t = 0. In FM;(3), however, angles a2, a3 and a3
change by m at t = 0. Think of this as moving into another corner in the manifold
with corners. In Figure 7.17 the Voronoi diagram of p;(t), p2(t) and ps(t) is shown.
On the left for any negative value of ¢, on the right for any positive value of t. Note
the jump in the diagram at ¢ = 0. It demonstrates the need of the directed angles
in the screen model if we want to use it for displaying Voronoi diagrams.
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FM2 (n)

Lf

XAH,

Figure 7.18: The manifold with corners FMz(n) above the smooth manifold XAH,,
with @, 8, and §’ in Dom,,(z). That slice is presented where all coordinates are
fixed except for 8 and 3.

Theorem 7.65
See also Figure 7.18. Consider the map

f: FMs(n) —  XAH,, o
((aij)1§i<j§n7 (ﬂzz;c7a2§)) = ((@1Si<j§n)7 [( zljk 7O‘§§ )])a

where [.] denotes the class of [( szk , 042:? )] in the Klein bottle Kfjk with respect to the
equivalence relation ~y. Fizx € XAH,. Let m be the number of jjk (x) in Dom,, (x)

such that ff () =0. Then

@) = 2t

Proof. Fix a class [(8F (), ai¥ (x))] such that 8iF (x) = 0. Any such class has two
elements, (0,a!%) and (0,ai¥ + 7). By Lemma 7.60, XAH, can be written as the
graph of a function on Dom,,(z). Therefore those ﬁff components that are not
in Dom,,(z) are a function of those components that are in Dom,, (z). Moreover,
read,(z) even determines the representative for those j]k components that are
not in Dom,,(x). For any ﬂj]k € Dom,,(z), the two representatives correspond to
two distinct pieces of the boundary in FMs(n). We conclude that we can use the
signvector of those G{F (x) € Domy(z) with i} (x) = 0 as a coordinate system
pointing to the distinct corners in the fiber of the map f. The additional 1 in 2m+!
comes from the two representatives of the unique «;;-component in Dom,,(z). W
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Example 7.66
Consider x € XAHj3 given by

@y @z axs (B13,q3) (837,03Y) (837,03])
% % % (170) ( a_%) (07 fTZ)

Theorem 7.21 associates to = the nest ({1,2,3}, {2, 3}). The factor Doms(x) consists

of the two components a2(z) and h33 (z). The standard form of x restricted to
Domy(z) is given by the representatives aiz(z) = § and o3} (r) = —3%, compare

Definition 7.33. The fiber f~!(z) consists exactly of those points in FM>(3) that are
mapped on the same standard form in XAH,,. We obtain these points by analyzing

the four distinct representatives for ajs and a33. Choose for example ajz = —%”
and a = —?—Té It follows from the nest structure that a1z = a2, while as3 =
a3l + 0421 = —% + § = —7. The four points fi,..., fy in FM(3) obtained in this
way with coordlnates (12,013, an3, 315, B5% , B35, are given by

fl (%7%7%717()’0)7

f2 = (%7%5_%7170’0)7

f3 = (7%7757727%715070)7

f4 (7%a7€732—7170 0)
Remark 7.67

In Chapter 5 we have encountered a similar situation in comparing the spaces CUA3
and CDAj of undirected and directed angles on three points. Recall particularly
Examples 5.30 and 5.31.

We can define and fill z-sreens in FMy(n) as well. Fix a point # € FMs(n). The
set of vanishing ratios ij (z) for = defines a family of z-clusters and corresponding
x-screens by applying the methods of Section 7.4. A stripped version of Construc-
tion 7.42 fills the x-screens, given some ¢ € Dom,(z). In short, we discuss the
adaptations in Construction 7.42.

Ad Step 1. We do not have representatives in EDAH,,, so we skip Step 1.

Ad Step 2. The definition of Og still holds, but negative ratios ﬁm do not occur
in EDAH,,.

Ad Step 3. In Step 3 nothing changes.

7.10.2 Adding Voronoi diagrams in the x-screens.

In this section we define a Voronoi diagram Vg (z) for © € FMy(n).

Definition 7.68

Let x € FMs(n). The Voronoi diagram Ve (x) is defined in terms of the x-screens
filled by drawy(z). Fiz an x-screen T filled by drawy(x). Let C be the cluster cor-
responding to T. Its mazximal subclusters are denoted by Cy,...,Cy,. Suppose that
the coordinates of Cq,...,Cy, in T are given by t1,...,tn,.
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Initialization. V(T) is defined as the Voronoi diagram V ({t1,...,tm}).

Completion. This is a recursive step from the screens displaying single sites up
to the top screen. Assume that the maximal subscreens Si, ..., Sy of T have
been completed. Denote the completed diagram in S; by Vrar(S;). After the
ingtialization step, any cluster C; lives in a Voronoi cell V(t;) in T. Define

Vem(ti) = V(t:) N Venm(Si),
and
Ven(T) = |J Veu(ti)

The Voronoi diagram Ve (x) is the rooted tree of all Vp (T), where T runs over all
x-screens. The ordering on Vpp (T) is inherited from the ordering on the x-screens.

Figure 7.19: Constructing Veas(x): on the left, initialization; on the right, comple-
tion.

Example 7.69
Recall Example 4.42. In this example we consider an ordered set of sites in R[t] x R[¢]
given by
Sit) = ((-6,4),(—2,-6),(—1,—2 — 3t), (0, —3¢), (3,5), (6, —3),
(=1 —3t,—2+1t), (=2t,—2t), (—2t,2t), (2t,0), (2t,2t), (—1 + 2t, —2)).
For any pair of sites p;(t) and p;(t) we have defined an angle or direction a;(t) at
t = 0. In a similar way we can define a ratio
. i (1) — pi(t
tlo [pi(t) = p;(®))|
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This establishes a map x from a set S(t) of n sites in R[t] x R[t] to a point z :=
x(S(0)) € FMs. We construct the Voronoi diagram Vs (z) by applying Definition
7.68. The nest of x is given by ({3,7,12},{4,8,9,10,11}). Figure 7.19 shows on
the left the three filled screens together with the Voronoi diagrams added in the
initialization step. On the right the diagram Vi (x) is shown. It is constructed by
adding the two diagrams corresponding to clusters 3,7,12 and 4,8,9,10,11 in the
cells of those clusters in the top screen.

Example 7.70
We analyze an example where the maximal depth of a site equals 2. We start with
the ordered set of sites in R[¢] x R[] given by S(t) = {p1, p2, p3, p4}, where

p1 = (0,0),

p2 = t(cos 3,sin g),

p3 = p2+t2(cos%,sin%),
ps = ps+t3(cosF,sinf).

As in Example 7.69, one can construct a point y = x(5(0)) € FMs. The nest of y
is given by (234, 34). In Figure 7.20 the tree of filled screens for y is shown: on the
left after the initialization step but before the completion step of Definition 7.68;
on the right after the completion step. In this example one can see clearly how
the Voronoi diagram Vg (T) of the top screen T is built up recursively out of the
screens corresponding with the subclusters of {1,2,3,4}.

Remark 7.71
Note the compatibility with the construction of limit Voronoi diagram for sites in
R[t] x R[] as constructed in Chapter 3. Compare also Examples 7.69 and 7.70.

7.11 Conclusion.

7.11.1 An easy model to remember.

In this chapter we have presented a real version of the Fulton-MacPherson compact-
ification X[n]. An advantage of our approach is that we do not need any machinery
from algebraic geometry neither in constructing our compactification space XAH,,
nor in proving that it is a smooth manifold. Instead of algebraic blowups we have
used the angles between two points and the hooks between three points. This idea
was already proposed by Kontsevich and Soibelman. We have shown how to adapt
their approach so that the resulting modified compactification space is a smooth
manifold instead of just a manifold with corners. Moreover, we have shown that an
explicit analysis of the ratios on triples of points gives a combinatorial counterpart of
Fulton-MacPherson’s description of degenerated configurations in terms of screens.

Because of its nature, the construction and description of the space XAH,, can serve
as a illustrative example to the theory of configuration spaces that has attracted a
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o4 o4

o3 o3

Figure 7.20: Constructing Vpps(y): on the left, initialization; on the right, comple-
tion.

lot of interest in recent years. The setup in terms of screens can serve as a general
framework for studying properties of point sets in the plane. Especially for point
sets that contain almost coinciding points, a description by angles and hooks can be
a more robust alternative for storing the relative positions of the points. Another
advantage of working with hooks and angles is that translations and scalings are
already eliminated. That is, one concentrates on point configuration up to affine
transformations.

[FM], Theorem 2 states that the Fulton-MacPherson compactification X [n] equals
the closure of CONF,, in the product of those Bla(X®) for S C {1,...,n} of car-
dinality 2 and 3. Note that our model also supports this ‘three is enough’ motto:
we only consider properties of pairs of points (the angles) and triples of points (the
hooks).

7.11.2 Relation to earlier chapters.

A first application is given by studying limits of Voronoi diagrams: we have intro-
duced a method to associate a collection of filled z-screens to a point x € XAH,,. In
the final sections it turned out that this method can be ported to the manifold with
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corners FMs(n), introduced by Kontsevich-Soibelman. Just because of its corners,
the screen structure associated to a point x in FMy(n) is well suited for modeling
a possibly degenerated Voronoi diagram for xz. Recall the description of Voronoi
diagrams of polynomial sites, presented in Chapter 4: we have by now two notions
of degenerated Voronoi diagram that match both combinatorially and according to
shape with the notion of classic Voronoi diagram.

From a set S(t) of n distinct sites {p1(t),...,pn(t)} in R[t] x R[t] we can construct
a point s € XAH, at t = 0, compare Example 7.69. A construction in the other
direction can be made as well. Suppose we are given some = € XAH,,. And suppose
the z-screens are filled by z-sites p1(z),...,pn(z). Define the depth of a screen S
as:

depth(S) = 14 # screens above S.

Let p; be the site directly above p; with respect to the predecessor relation defined
in Definition 7.27. The polynomial site p;(t) representing p;(x) is defined as:

pl(t) = (070)7
pi(t) = pj(t) + t4PhSu) (coordinates(p;(x)) in Syj).

Mapping a set S(t) of polynomial sites to a point s € XAH,, and back results in this
way in a normal form for S(t).

In Chapters 5 and 6 we have studied the compactification CDA,,. This compactifica-
tion is the closure of the graph of the directed angle map, cf. Definition 5.11. One of
the drawbacks of considering only directed angles is that collinear configurations can
not be reconstructed from just these angles, compare Section 5.2. This problem is
solved in the compactification XAH,, by adding the hooks between triples of points.

In Chapter 6, Theorem 6.11 we prove essentially that two data sets ~,,n, € CDA,,
that are Euclidean close have Voronoi diagrams V'(v,),V(d,) that are Hausdorff
close. As there is an obvious continuous map (forget all ratios) from FMsy(n) to
CDA,,, this continuity result also holds for the top screen of the Voronoi diagram
Vem(x). More precisely: suppose we have some z € FMs(n). Fill the top screen
Sy by x. The coordinates of the sites p1(x),...,pn(7) can be read off from S,
while the directed angles between pairs of sites are part of x. These data together
determine a point «,, € CDA,,. This establishes a map f : FMy — CDA,,. We have
the following situation:

FMs(n) EN CDA,, Voronoj map diagram space,
z = In = V().

As both f and the ‘Voronoi map’ are continuous, the composition is continuous as
well. In this short analysis, we have left out the incorporation of the compactness
condition on the Voronoi map. This is left as an exercise to the reader.



Bibliography

[AAHSW] Andrzejak, A., Aronov, B., Har-Peled, S., Seidel, R., Welzl, E. — Results
on k-sets and j-facets via continuous motions, in: Proc. 14th Annual ACM
Symposium on Computational Geometry, (1998) 192-199.

[AG] Abrams, A., Ghrist, R. — Finding Topology in a Factory: Configuration Spaces,
American Math. Monthly, 109, no 2, (2002), 140-150.

[AGMR] Albers, G., Guibas, L.J., Mitchel, J.S.B., Roos, R. — Voronoi Diagrams of
Moving Points, Internat. J. Comput. Geom. Appl., 8 (1998), 365-380.

[AK] Aurenhammer, F., Klein, R. — Voronoi diagrams, in: Handbook of Computa-
tional Geometry (eds. J. Sack, J. Urrutia), Elsevier, (2000).

[AS] Aurenhammer, F., Schwarzkopf, O. — A Simple On-Line Randomized Incre-
mental Algorithm for Computing Higher-Order Voronoi Diagrams, Interna-
tional Journal of Computational Geometry & Applications 4, (1992), 363-381.

[BKOS] De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O. — Compu-
tational Geometry, Springer, (1997).

[BG] Berger, M., Gostiaux, B. — Differential Geometry: Manifolds, Curves, and
Surfaces, Springer, (1988).

[Bj] Bjorner, A. — Topological Methods, in: Handbook of Combinatorics (eds. R.
Graham, M. Grotschel, L. Lovéasz), Elsevier, (1995).

[Ca] Cain, G.L. — Introduction to General Topology, Addison-Wesley, (1994).

[CF] Conway, J.H., Fung, F.Y. — The Sensual (Quadratic) Form, Math. Assoc.
America, (1997).

[CM] Coxeter, H.S.M., Moser, W.0O.J. — Generators and Relators for discrete groups,
Springer, (1957).

[CS] Clarkson, K.L., Shor, P.W. — Applications of Random Sampling in Computa-
tional Geometry II, Discrete and Computational Geometry, 4 (1989), 387-421.

143



144 BIBLIOGRAPHY

[De] Dehne, F. — An O(n*) algorithm to construct all Voronoi diagrams for k-nearest
neighbor searching in the Euclidean plane, Proc. Int. Col. on Automata, Lan-
guages and Programming, Barcelona(Spain), (1983), Springer, Lecture Notes
in Computer Science, Vol 154.

[Del] Devados, S.L., — Tessellations of Moduli Spaces and the Mosaic Operad, Con-
temporary Mathematics 239 (1999), 91-114.

[De2] Devados, S.L., — A Space of Cyclohedra, Discrete and Computational Geom-
etry, submitted, (2001).

[DEG] Dey, T.K., Edelsbrunner, H., Guha, S. — Computational topology, invited
paper in Advances in Discrete and Computational Geometry, eds. B. Chazelle,
J.E. Goodmann and R. Pollack. Contemporary Mathematics, AMS, (1998).

[Ed] Edelsbrunner, H. — Algorithms in Combinatorial Geometry, Springer, (1987).

[Ed2] Edelsbrunner, H. — Geometry and Topology of Mesh Generation, Cambridge
University Press, (2001).

[EM] Edelsbrunner, H., Miicke, E.P. — Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms, ACM Transactions on Graphics,
9 (1990), 66-104.

[FM] Fulton, W., MacPherson, R. — A compactification of configuration spaces,
Annals of Mathematics, 139 (1994), 183-225.

[Go] Goldstein, H. — Classical Mechanics, 2nd ed., Addison-Wesley, (1980).

[GHK] Gudmundsson, J., Hammar, M., Van Kreveld, M. — Higher order Delaunay
Triangulations, Comput. Geom. Theory Appl., accepted.

[Ha] Hartshorne, R. — Algebraic Geometry, Springer, (1977).

[Kel] Kendall, D. G. — A survey of the statistical theory of shapes, Statistical Sci-
ence, Vol. 4, No. 2, 87-120, (1989).

[Ke2] Kendall, W.S. — Geometry, statistics and shape, in: Geometry in present-
day science (eds. O.E.Barndorff-Nielsen, E.B. Vedel Jensen), World Scientific,
(1999).

[Ko] Kontsevich, M. — Operads and Motives in Deformation Quantization,
xxx-QA/9904055, (1999).

[KS] Kontsevich, M., Soibelman, Y., — Deformation of algebras over operads and
Deligne’s conjecture, xxx-QA/0001151, (2000).

[Kr] Kreyszig, E. — Advanced Engineering Mathematics, 8th edition, Wiley, (1999).

[Le] Lee, D.T. - On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans.
Comput., C-31: 478-487, 1982.



BIBLIOGRAPHY 145

[Ma] Mathematica, version 4, Wolfram Research, Inc., Champaign, IL (1999).
[Mu] Munkres, J.R. — Elements of Algebraic Topology, Addison-Wesley, (1984).
[OBS] Okabe, A., Boots, B., Sugihara, K. — Spatial Tessellations, Wiley, (1992).
[OT] Orlik, P., Terao, H. — Arrangements of Hyperplanes, Springer, (1992).

[R] Rees, E.G. — Notes on Geometry, Springer, Corrected 2nd printing, (1988).
[Sh] Sharir, M. — k-Sets and random hulls, Combinatorica, 13 (1993), 483-495.

[Si] Siersma, D. — Isolated line singularities, Proc. Symp. Pure Mathematics Vol.
40, part 2, (1983), 485-496.

[Vo] Voronoi, G. — Nouvelles applications des parametres continus a la théorie
des formes quadratiques. Deuxieme mémoire. Recherches sur les parallélloedres
primitifs. J. Reine Angew. Math. 136, 198-287, (1909).

[Wa] Walker, J. W. — Homotopy Type and Euler Characteristic of Partially Ordered
Sets, Europ. J. Combinatorics, 2 (1981), 373-384.

[Ya] Yap, C.K. — Robust geometric computation, CRC Handbook in Discrete and
Computational Geometry (eds. J.E. Goodman and J. O’Rourke), CRC Press,
(1997).

[Zi] Ziegler, G. M. — Lectures on Polytopes, Springer, (1994).






Index

above, 21, 122

abstract Delaunay graph, 45
accepted, 125

AH,, 110

anti Voronoi poset, 32
arrangement, 21

below, 21

bisection point, 47, 87
bisector, 17

blow-up, 70
boundary, 48
bounding line, 46

c-vector, 34
camera points, 91
CDA,, 65
centroid, 26
chain, 32
circle

center, 43

empty, 17

event, 18

order k, 30

order, 27
clickable, 105
cluster, 112

location, 59
cocircular, 44
collinear, 42, 66
combinatorial convex hull, 46
compactification, 65, 110
CONEF,,, 64
conf,, 64
configuration space, 64
convex, 15

147

convex hull, 15
event, 16
corner site, 52
ctug, 118
CUA,, 65

DA,, 65
data map, 110
degenerate, 98
Delaunay graph, 19
Delaunay triangulation, 20
depth, 117, 142
diagonal, 78
directed angle, 64
map, 65
direction, 42
direction hull, 52
distance, 86
distinct, 41
Dom,,(z), 118
draw,(q), 123
dual, 20

explosion hooks, 121

f-vector, 32
reduced, 35
FM2 (n), 99
Fulton-MacPherson
compactification, 98
operad, 99
fundamental image, 76

general position, 18

polynomial sites, 44
geometric realization, 32
graded, 31



148

graph, 65

Hausdorff distance, 90
hinge point, 106
hook, 106
hooked path, 117
hooked tree, 116
hooks on scale, 121
hull event

order k, 30
hull half-planes, 15

inside, 44

k-level, 21
k-set, 21
Klein bottle, 108

left, 42
leg, 106
length, 32

lexicographic ordering, 44
lifting transformation, 20, 34

manifold with corners, 99

minimal angle, 20
multiplicity, 46

[n], 112

nest, 112
nested, 98, 112
new, 29

old, 29
one-skeleton, 87
order, 25, 27
order complex, 32

oriented clockwise, 43, 72
oriented counterclockwise, 43

outside, 44
outside edge, 55

perpendicular bisector, 47, 87

Poincaré polynomial, 37
polynomial
bisector, 50

INDEX

line, 41
polynomial site, 41
positive radius, 43
predecessor, 117
projective line, 108
proper, 66

rank function, 31

ratio, 106

read,(q), 126
reconstructible, 67

reduced configuration space, 64
reduced Voronoi diagram, 67
reflection equivalent, 69
right, 42

right turn, 54

Rng,, (x), 118

rot, ,(¢), 107

ruling coefficient, 42

ruling sign, 42

Scr,(z), 125

screen, 98

screen orientation, 124
separates, 21

separating cluster, 113
separating screen, 116
shape, 48

singularity, 81

six-slopes formula, 79
slope, 64

standard form, 120
standard representative, 64
stereographic projection, 108

T,, 80

top, 116

top angle, 121
tree values, 118
triangle variety, 80
trivial cluster, 112
tu,, 118

type, 18, 29, 45

UA,, 65
undirected angle, 64



INDEX 149

upper envelope, 21
upper hull, 53

valid, 121
Voronoi cell, 16, 25
order k, 25
Voronoi circle, 17, 45
order k, 27
Voronoi diagram, 16
order k, 25
Voronoi edges, 16
Voronoi half-plane, 17, 47, 87
Voronoi poset, 31
Voronoi vertex, 16, 51

x-above, 117
z-cluster, 115
x-leg, 117
x-screens, 116
z-tags, 116
z-type

2.a, 116

2.b, 116

3, 117
XAH,, 111

zero cluster, 52






Samenvatting.

Voronoi diagrammen.

Stel je alle supermarkten in een stad voor. De stad is te verdelen in sectoren door
naar de dichtstbijzijnde supermarkt te kijken: alle mensen die wonen in de sector
van een bepaalde supermarkt wonen dichter bij die supermarkt dan bij welke andere
supermarkt dan ook. Het Voronoi diagram van de supermarkten is de onderverdeling
van de stad in zulke sectoren. Een voorbeeld van een Voronoi diagram van zes su-
permarkten, genummerd 1 t/m 6, wordt gegeven door de doorgetrokken lijnstukken
in Figuur 7.21.

Figuur 7.21: Het Voronoi diagram van zes supermarkten, genummerd 1 t/m 6.

Dit proefschrift gaat over Voronoi diagrammen. Daarom bekijken we Figuur 7.21
wat preciezer. In de afbeelding zien we grenzen, zoals de grens tussen de sector 1 en
sector 3. Mensen die op deze grens wonen, wonen net zo dicht bij supermarkt 1 als
bij supermarkt 3. We zien dat de grens op een gestippelde lijn ligt. Deze lijn heet
de bisector van de punten 1 en 3. Aan de ene kant van de lijn wonen de mensen
dichter bij supermarkt 1, terwijl mensen aan de andere kant van de lijn dichter bij
supermarkt 3 wonen.

Met behulp van deze bisectoren kunnen we bijvoorbeeld sector 1 beschrijven: mensen
wonen in sector 1 precies als ze aan de goede kant van alle bisectoren tussen super-
markt 1 en elk van de andere supermarkten wonen. Op deze manier kunnen we alle
sectoren beschrijven en daarmee ook het Voronoi diagram.
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Limieten van Voronoi diagrammen.

Na het voorafgaande zal het niemand verbazen dat Voronoi diagrammen veel toege-
past worden buiten de wiskunde, bijvoorbeeld bij planningsproblemen, maar ook
bij het tekenen van hoogtelijnen op stafkaarten. In Hoofdstuk 2 worden een aantal
bekende feiten over Voronoi diagrammen en verwante constructies op een rijtje gezet.
Zoals uit de titel blijkt, willen we in dit proefschrift limieten van Voronoi diagrammen
beschrijven. Deze introduceren we met behulp van SRV-wagens.

2 /4
a b C

Figuur 7.22: a. Vijf SRV-wagens op weg naar een botsing. b. Het Voronoi diagram
van de SRV-wagens vlak voor de botsing. c. Het limiet Voronoi diagram tijdens de
botsing.

In Figuur 7.22.a zien we de routes die vijf SRV-wagens op zekere dag afleggen.
Zolang de SRV-wagens op verschillende plekken in het land zijn, zoals in Figuur
7.22.b, kunnen we het Voronoi diagram van de SRV-wagens bepalen, net als we
eerder met de supermarkten hebben gedaan. Maar wanneer de SRV-wagens op een
ongelukkig moment botsen, is het niet zo duidelijk wat het Voronoi diagram van
de SRV-wagens op dat moment is. In Hoofdstuk 4 laten we zien hoe we toch een
Voronoi diagram kunnen uitrekenen op het moment van de botsing als we maar
weten met welke relatieve snelheid en onder welke hoek ze botsen. Op die manier
verkrijgen we een limiet Voronoi diagram zoals in Figuur 7.22.c.

Hoe een limiet is opgebouwd, wordt geillustreerd in Figuur 7.23. Twee punten (SRV-
wagens) vallen samen. Zolang de twee punten verschillen, zoals in Figuren 7.23.a
en 7.23.b, is het Voronoi diagram van de punten 1 en 2 precies de bisector van de
twee punten. Maar zodra twee punten samenvallen is de bisector en dus het Voronoi
diagram niet gedefiniéerd. We lossen dit probleem eenvoudigweg op door op het
samenvalmoment toch een bisector te definiéren: dit is de lijn die enerzijds door de
twee samenvallende punten gaat en anderzijds loodrecht staat op de hoek waaronder
de twee punten botsen. Bovendien geven we de lijn een richting, bijvoorbeeld zo dat
punt 1 links van de lijn ligt vlak voor de botsing.

Ook als we meerdere punten hebben, zoals in Figuur 7.22, kunnen we op deze manier
een bisector definiéren tussen elk tweetal punten. Eerder hebben we al gezien dat
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elke Voronoi sector en daarmee dus ook het Voronoi diagram volledig wordt bepaald
door alle bisectoren.

le / /
/ / /
1/ ]_./ 1 '
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s 9 2.
\ \ \
\ \ \
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\ \ \
\ \ \
\ \ \
a b [¢

Figuur 7.23: Een Voronoi diagram van twee samenvallende punten.

Compactificaties van configuratie ruimten.

Een verzameling verschillende punten in het vlak wordt vaak een configuratie ge-
noemd. En de configuratie ruimte is het object waarin alle verschillende configu-
raties te vinden zijn. Een element van de configuratie ruimte is dus een verzameling
verschillende punten. Voor zo’n element kunnen we alle hoeken tussen deze punten
opschrijven. Zo verkrijgen we een uitgebreid element, bestaande uit zowel punten als
hoeken. Al deze uitgebreide elementen brengen we onder in een punten- en hoeken-
ruimte. Deze punten-en hoeken-ruimte is een object met veel dimensies dat randen
heeft, denk aan de rand van een tafel. Elementen die op zo’n rand leven, corres-
ponderen met gedegenereerde configuraties. Dit zijn configuraties waarin sommige
punten samenvallen en zulke configuraties behoren dus niet a priori tot de punten-
en hoeken-ruimte. De compactificatie van de de punten- en hoeken-ruimte is nu juist
de oorspronkelijke punten- en hoeken-ruimte waaraan alle randen zijn toegevoegd.

In Hoofdstuk 5 definiéren we zo'n punten- en hoeken-compactificatie en gaan we
voor kleine configuraties na welke hoeken mogelijk zijn tussen punten. Bovendien
bekijken we een algebraische variant van de punten- en hoeken-compactificatie door
te rekenen met de bekende vergelijking ¥y = ax + b van een lijn. Door elk tweetal
punten van een configuratie van verschillende punten kunnen we immers een lijn
trekken.

Met behulp van de bisector methode kunnen we voor elk element van de punten-
en hoeken-compactificatie een Voronoi diagram definiéren. In Hoofdstuk 6 bewijzen
we dat de representatie van een Voronoi diagram door middel van punten en hoeken
in zekere zin robuust is. Namelijk, als twee elementen dicht bij elkaar liggen in de
punten- en hoeken-compactificatie, dan lijken de Voronoi diagrammen van deze twee
elementen ook erg op elkaar.
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Klikbare Voronoi diagrammen.

In het limiet Voronoi diagram in Figuur 7.22.c is de sector van SRV-wagen 3 niet
meer terug te vinden. In feite bestaat deze sector uit één punt. Als we deze sector
toch beter willen bekijken, zullen we het plaatje oneindig moeten uitvergroten. Dit
is mogelijk als we met klikbare configuraties werken. Een nieuw voorbeeld is gegeven
in Figuur 7.24. In het top scherm zijn zes punten zichtbaar. Echter, twee punten in
het midden zijn geen losse punten maar clusters van punten: door op het onderste
van die clusters te klikken verschijnt een scherm dat de punten 3, 7 en 12 toont.
Merk op dat in alle drie de schermen verschillende punten zichtbaar zijn. Dit maakt
het mogelijk in elk scherm het Voronoi diagram van die verschillende punten toe te
voegen. De Voronoi diagrammen uit de onderste twee schermen zijn in het klein
zichtbaar in de corresponderende sectoren in het top scherm.

9 11

10

Figuur 7.24: Een klikbaar Voronoi diagram in een klikbare configuratie.

In Hoofdstuk 7 definiéren we klikbare Voronoi diagrammen met behulp van een
hoeken- en haken-compactificatie. Ten opzichte van de vorige twee hoofdstukken
zijn nu de punten in de punten- en hoeken-ruimte vervangen door haken. Zo’n haak
is te zien in Figuur 7.25. Deze haak geeft aan waar punt 3 getekend moet worden,
gegeven de punten 1 en 2. Daartoe draaien we eerst de poot 12 over een hoek a3
en verlengen (of verkorten) de aldus verkregen poot met een ratio 3{5. Stel nu dat
de ratio 313 gelijk is aan nul. Poot 13 krijgt dan lengte nul en dus vallen de punten
1 en 3 samen.

Voor een configuratie bestaande uit louter verschillende punten kunnen we alle haak
ingrediénten, bestaande uit hoeken en ratio’s, zo opschrijven. Door te compactifi-
ceren worden elementen bestaande uit hoeken en haken corresponderend met con-
figuraties die samenvallende punten bevatten toegevoegd. Door slim te compac-
tificeren kunnen we zelfs een hoeken- en haken-compactificatie verkrijgen die als
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Figuur 7.25: De haak die uit de punten 1 en 2 het punt 3 construeert.

hoog-dimensionaal object glad is, en dus geen scherpe randen bevat. Het bewijs
van die gladheid is tegelijk een constructie die aangeeft hoe schermen als in Figuur
7.24 te definiéren en vervolgens te vullen met punten. Onze compactificatie is ver-
want aan een aantal bekende andere compactificaties en deze verbanden worden ook
besproken.

Hogere order Voronoi diagrammen.

Hoofdstuk 3 staat qua inhoud enigszins los van de rest van dit proefschrift. Hier
gaat het om hogere order Voronoi diagrammen. Bij het tweede orde Voronoi diagram
bijvoorbeeld, kijken we niet alleen naar de dichtstbijzijnde supermarkt, maar naar
de twee dichtstbijzijnde supermarkten. Deze hogere order diagrammen kunnen ook
worden gedefiniéerd in termen van bisectoren. Wij beschouwen voor een vaste con-
figuratie van punten alle mogelijke zoveelste orde Voronoi diagrammen: het gewone,
eerste orde diagram, het tweede orde, het derde orde, enzovoort.
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