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CHAPTER 1

Introduction and Summary

There is inherent in nature a hidden
harmony that reflects itself in our
minds under the image of simple
mathematical laws. That then is the
reason why events in nature are
predictable by a combination of
observation and mathematical
analysis. Again and again in the
history of physics this conviction,
or should I say this dream, of
harmony in nature has found
fulfilments beyond our
expectations.

HERMANN WEIL

1.1 Introduction

In this computer era, a huge number of images of them emerge from computers1. Computers offer great
advantages for images in the way of derivation, storage, manipulation, multiplication, transmission, and
so on.

1Even the one on the cover of this thesis.



2 Chapter 1. Introduction and Summary

1.1.1 Images

In general, a human inspector knows both the content of the image and its purpose. In this sense images
serve only as additional information of the written story. The contrary, however, is also possible: the
image may be the subject that needs clarification. An intriguing question is whether it is possible to
manipulate the computer data such that its content, or meaning, becomes clearer or more explicit with
as few human-machine interactions as possible. In order to achieve this, several observations have to be
taken into consideration:

• There is “something” in the real world that is captured by the image, for instance persons, planes,
stars, or brain tumours.

• “It” is only digitally present on the computer. Only combinations of “zeros and ones” are present
and organised such that “it” can be visualised.

• “Something” needs to be done with “it”, for example: Emphasise or extract more relevant parts.

• Whatever is done, should be done in a meaningful and reproducible way. It is not difficult to
play around with images, sweep parts out, and draw moustaches, but that is obviously not what is
wanted.

• The outcome of what is done should be presented in a efficacious manner.

The reader is of course free to add extra requirements.
The acquisition of computer data, shortly named image formation, as well as the analysis of the com-

puter data representing “something”, shortly named image analysis, involve interactions with multiple
scientific disciplines, varying from mathematics, via e.g. biology and computer science, to physics. For
instance, in the early years of image analysis most investigation took place on signals like radar and
sonar by the electric engineering society, whereas nowadays medical imaging is topic of a large part of
the research.

1.1.2 Image Formation

How real life scenes are captured by “observation machines”, like CCD cameras, MR scanners, or tele-
scopes, can be described by physical “laws”. These laws are rules dictated by the intrinsic properties of
the observation machine. Generally they do not have any what so ever a priori relation to the real life
scene itself. So although we can take images of everything, the image formation is not related to details
of the outside “scene”.

However, the initial images, also called (raw) data, are obtained by the observation machines and
thus heavily depend on the settings of the parameters inside the observation machine. For instance, a
close-up picture can not be extended to a panoramic picture. The same holds for the opposite if the
same resolution is wanted. The outcome of an MR scan contains extra information, like “T1” or “T2”
weighted, yielding information about the way the measurement is taken. This doesn’t only imply that
physics lies on the base of images, but also generates a loss of information, in the sense that the derived
data only partially represents the real life scene. If the observation machine parameters are set properly,
this is not really something to bother about, although it signals the limited value of further outcomes:
if we want a close-up, we should simply take action beforehand. Another type of loss is implied in
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the wish to obtain the data in an organised, digitised way in order to be able to make them accessible
for computer storage, calculations, and representation. Although all observation machines have their
physical limitations (photographic granularity, photon densities, magnetic spin), usually a fixed specific
resolution and grid is set to obtain such sizes on the data, that they can still be handled. The real life
scene is thus reduced to a set of single measurements nicely ordered on some grid.

1.1.3 Image Analysis

The next stage in a lot of cases is to do something with the data: they are obtained with some purpose.
They are output of an image formation procedure, and in turn input to some image analysis task. So
parts of the data may contain more relevant information than other parts and they need to be restored,
emphasised or extracted. For instance: new milky ways, black holes, or planets with the possibility
of life in astronomic data; brain tumours, aneurysms, or weak bones in medical images; license plates
or possible suspects in forensic data; and so on. Here, obviously, a lot of human understanding and
interpretation comes into sight. Mathematical models based on the assumed distortion of the image, on
the intrinsic properties of the interesting objects, or e.g. on biological or medical knowledge are proposed,
and implemented as computer algorithms. The outcome is validated and either used or rejected. In the
latter case the model is adjusted, implemented, validated, and so on.

Here a remarkable fact comes clear. The validation may signal whether a model is good or bad –
within the framework of the assumptions –, the rejection or usage of the results is often based on the
human interpreter looking at the outcome. This judgement is clearly based on visual inspection of the
resulting data, based on the interpreters skills and experience. For the models to produce well, they
need to meet some kind of coherence to human vision and interpretation. Alternatively, the models
need to simulate the human way of looking and interpreting in some sense. Therefore, also the field
(neuro-)biology contributes in image analysis, investigating which mechanisms are involved in looking,
transporting data to the brains and interpreting these data (and giving feedback to the eyes).

1.1.4 More and More Data

The exponential increase of computing facilities in the last decades of the previous century has led to
a tremendous increase of data, both from observations – the image formation – and from the proposed
models – the image analysis tasks. On the input side several reasons can be found:

• The number of acquisitions increased.

• The size of single acquisitions increased.

• The acquisitions became more complicated.

This was obviously enabled by the continuous increase free amount of storage space. In the field of
medical imaging one can think of increasing number of MR images, with precision increased by a factor
2, 4 or more, and moving from two dimensional images to three dimensional images, and even time-
sequences of them. On the output side also an increase took place. Computing time puts a heavy
constraint on possible algorithms. Consequently, the algorithms in the early years of image analysis
were simple and often based on one-step filters, a single operation on the two dimensional image in a
rectangular grid. One can think of edge detection and noise suppression.
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Increasing CPU speed led to an increasing number of proposed mathematical models and an in-
creased complexity. Instead of one-step filters, multi-step filters were needed to represent the proposed
models: a series of complicated operations on an image yields the output image. The models describe
a desired situation of the image given some constraint(s), for example the requirement of both edge
enhancement and noise suppression.

Also new tasks popped up, based on image retrieval from this tremendous number of available im-
ages. For example: “Find a picture of Rembrandt’s Homecoming of the Prodigal Son on the Internet.”
Or: “Given an image of a needle, find its location (or similar ones) in a (hay) stack of images: an image
database.” This kind of tasks naturally lead to the development of digital image management systems.
Such systems are often referred to as Picture Archiving and Communication Systems (PACS). They are,
for example, emerging in clinical and radiological environments.

Another new task is image matching: Do two images describe the same scene in some pre-described
sense? And in stereo vision: can we reconstruct the three dimensional scene as best as possible given the
two images of the left and the right eye.

1.1.5 About Trees and a Forest

This explosive growth of in- and output data urges for proper and transparent mathematical methods
regulating them and prohibiting wild-grow: everything is possible, but not everything is useful. Even
more (worse?), mathematical models and algorithms have a tendency to function as “black boxes”, whose
output can be tuned with some parameters. Problems rose in several ways. To mention some:

• It is not always clear what kind of behaviour is to be expected when certain models are applied.

• The choice of the parameter tuning depends on the person working with the images and model,
and the relation between the outcome and the parameter setting is not clear.

• It is sometimes not even clear what parameters “mean”, or what a combination of them imply.

• A slight change in the parameters sometimes leads to large differences in the output image.

• The raw data obviously consists of a discrete set of numbers. Thus it is not straightforward to
apply continuous mathematical models to them.

The first three points mention the ad-hoc nature, the fourth item points out the so-called ill-posedness,
and the last one signals a conceptual problem. In the last decade of the previous millennium the number
of mathematicians interested in computer vision grew rapidly, since these problems can typically be
explained by mathematical investigation of the models used. Computer vision appears to be a promising
field of application for mathematics, even when the latter uses highly abstract theories that are not clear
at all for non-mathematicians.

1.1.6 The Combination is More than the Sum of the Parts

Summarising, within the field of image analysis the combination of knowledge from physics, electric
engineering, mathematics, (neuro-)biology and computer science, together with acquaintance of the field
of the application of the particular image analysis task, is necessary to obtain meaningful results. The
reader can guess that this huge area of science can impossibly be covered in one thesis.
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1.2 Summary of this Thesis

In this thesis I restrict myself to the mathematics around the raw data, the initial image, that is digitally
stored. I do not bother how these data are obtained, this is taken for granted. Neither is it known what
they represent or what kind of special items might be present. Consequently, validation of results with
respect to a specified high-level task like segmentation is not applicable, simply because I assume that
there is no specified high-level task. The validation takes place on a different field. The methods and
models used and derived should have a “meaning”. Consequently, the outcome should be predictable and
understandable based on the methods and models. One may call this a specified low-level task based on
the data, not on the image.

The following sections shortly describe the chapters of this thesis. Since the chapters (will) appear
as articles, one will find some overlap in the descriptions of scale space and catastrophe theory in the
“introduction” and “theory” sections of the various chapters. In order to maintain the readability of the
chapters separately this was not altered.

1.2.1 Chapter 2

Chapter 2 discusses in more detail approaches to the last problem mentioned above, about the discrepancy
between discrete data and continuous models. Mathematically this discrepancy is tackled by Schwartz’
“Theory of Distributions”. A physical approach, based on the “Pi theorem”, boils down to the idea of
introducing the necessary parameter scale. Or better: the dis-covery of scale. Points of the image can
only be interpreted, and dealt with, by scale. Under some assumptions, for instance that “nothing is
known about the image”, solutions satisfying the mathematical requirements are found. Since there is no
a priori preferred scale, all possible scales can (and must) be taken into account. The image is therefore
extended with an extra dimension, scale, and this new image forms a scale space.

One of the solutions boils down to convolution of the initial image with a Gaussian profile whose
width is related to scale. This scale space is therefore called Gaussian scale space. Furthermore, taking
scale as a time parameter, this profile is the general solution of the so-called “Diffusion Equation”, or
“Heat Equation”. This equation describes the spread of heat during time when a homogeneous plate is
initially heated at several spots. As one can imagine, at the end (if we wait “infinitely” long) the whole
plate has constant temperature. The same holds for the scale space image: at “infinite” coarse scale the
image has constant value. Increasing scale thus yields blurring. An important property is its linearity, for
which reason this scale space is a linear scale space.

From the end-user’s point of view, when using only single scale images, applying a scale space may
reduce the amount of noise, but it blurs (away) everything, which may make it useless for e.g. segmenting
tasks. Using all scales, on the other hand, is redundant. For this reason, also the other way round is
taken: with the diffusion equation as a starting point, one may investigate its use for image analysis.
Consequently, one may also investigate non-linear versions of it. Task specific information may be used
for modelling, for which this approach is then denominated “geometry driven diffusion”. Going further,
any partial derivative equation (PDE) can be used, yielding the infinite series of PDE-approaches. As
mentioned before, then these approaches merely “are doing something for some purpose” with the data.

Returning to the linear diffusion equation, the relevance with respect to biological modelling of
(stages of) vision comes into question. It appears that in the first stages of vision, light coming into the
eye and the transportation of the visual stimulus to the brain, both Laplacean profiles and blurring occur.
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This signals the possibility of using a Gaussian scale space as model for front-end vision. The scale space
can be visualised by a stack of simplified versions of the image. During simplifying, regions disappear
in a cascading way. Theoretically a hierarchical structure can be found: there are regions within regions.

A short review of some results of investigations of Gaussian scale space with respect to image
analysis and its intrinsic properties in the last decades concludes this chapter. Readers familiar with
(Gaussian) scale space can skip this chapter. In the following chapters I will assume familiarity with the
scale space paradigm.

1.2.2 A Deep Thought on Deep Structure

Knowing that scale is important and that taking one single scale is not appropriate is one thing, it still
doesn’t comprise the notion of scale space. The relevance lies in investing Gaussian scale space itself,
i.e. at all scales simultaneously. This has been called the deep structure of Gaussian scale space. The
task is to investigate – and hopefully understand – what happens between two different scales, what
mechanisms occur in gradually changing scale. That is the subject of the rest of this thesis.

Regarding the image as a height function, I restrict myself to the most elementary properties of this
function: its critical points and some subsets of points with the same value. These points give an adequate
description of an image, cf. a two dimensional image with its critical points (the minima, maxima, and
saddles) and isophotes through the saddles. The latter enclose regions in the image.

1.2.3 Chapter 3

Having said this, one still encounters difficulties on applying mathematical actions (finding its critical
points) on a discrete grid. In chapter 3, a short inter-mezzo, I explain problems that arise when using a
rectangular grid: The horizontal and vertical neighbourhood relation, as well as its extension with the
double diagonal neighbourhood relation give rise to mathematical and practical difficulties. A hexag-
onal grid solves these problems. It is also something that is present within the human vision system.
And consequently something I will use, explaining how the present rectangular grid can be regarded as
hexagonal.

1.2.4 Chapter 4

Once being able to detect critical points, it is time to trace them over scale. An important result coming
from the mathematical field of singularity theory, shows that when increasing scale, spatial critical points
can annihilate only pairwise. In two (and higher) dimensional images also creations of such pairs can
occur. So if we look at a blurred series of images, we see the number of spatial critical points change. The
locations in scale space where these annihilations and creations take place are called catastrophe points.
In chapter 4 the movement of spatial critical points in scale space is investigated. In a single image at
a calculated scale, critical points generally “lie between the grid points” (i.e. sub-pixel) and only their
neighbouring points are found. Ideally, the movement is found using the tangent vector of the scale space
critical path that they traverse. In the discrete case their movement can be estimated using perturbation
theory yielding vectors in scale space pointing to the position of the critical point on a coarser scale with
sub-pixel precision. By using also scale information, the location is predicted more precisely than only
using spatial information. Things get complicated when the catastrophe points are involved. Then the
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formulation used for critical points no longer hold and a more complicated expression is needed and
given.

All expressions are given in an arbitrary co-ordinate system, the covariant formulation. This is
an important notion, since all theoretical results are stated in so-called canonical coordinates. These
coordinates are chosen such, that the system is nice and easy to describe and understand. In reality,
however, one will almost never encounter this situation, because the coordinate system is typically chosen
beforehand and not adapted to the particular local image configuration. Each catastrophe, however, can
locally be transformed to this canonical description. The determinant of the matrix involved in the
expression for finding catastrophe points is at the same time an indicator of whether the catastrophe
point is a creation or an annihilation. Experiments show that the fraction of space where creations are
“allowed” due to this sign of the determinant, is relatively small. This meets intuition, since it is known
that more annihilations than creations are to be expected, due to the fact that all-but-one extrema are to
vanish while increasing scale. Examples of the theory are given for two dimensional images.

1.2.5 Chapter 5

In Chapter 5 these results are used to build critical curves in scale space: the spatial critical points of the
image at increasing scales are calculated and linked, thus forming critical branches of extrema and saddle
points. The branches are connected at the catastrophe points thus forming the critical curves. Within the
scale space image, catastrophe points are regular points. I show that the only critical points in scale space
are scale space saddle points, lying on the saddle branches. Tracing the intensities of the critical points
over scale, one finds that maxima decrease monotonically and minima increase monotonically. Saddle
branches, however, can have local extrema with respect tot the intensity. I show that these local extrema
occur at the scale space saddles.

Using this property that extrema are suppressed due to the diffusion equation, it is obtained that iso-
intensity manifolds in scale space that intersect the extremum branch are dome-shaped. If the manifold
does not intersect a saddle branch, it encapsulates a closed region in scale space with its top at the
intersection of the manifold with the extremum branch. Each extremum branch intersects a manifold
that contains only one saddle, either a spatial saddle at the initial image, or a scale space saddle. This
“critical” manifold forms the boundary of a nesting of closed regions. Consequently, to all extrema that
annihilate a critical region can be assigned.

Due to the nesting property of Gaussian scale space, a hierarchy procedure follows in a straightfor-
ward manner. The regions define a “pre-segmentation” of the initial image. This special segmentation
is obtained without any knowledge of the image in contrast to the usual definition of an arbitrary seg-
mentation. It is a “complete’ segmentation in the sense that all structurally (topologically) meaningful
segments are accounted for. In practice it is typically an “over-segmentation”, since the entire image is
divided into parts and several pre-segments will typically belong to a single “semantical” segments, e.g.
a single tissue type in a MR image. It is conjectured – and this is at the same time its true significance –
that a pre-segmentation is never an “under-segmentation”, for splitting up a pre-segment has no justifica-
tion from the data evidence point of view. Of course, an expert user may impose his / her will by using
external knowledge so as to force such a splitting nevertheless.

Note that the pre-segmentation is solely derived from the fact that a Gaussian scale space follows
from the necessity of scale. I give examples of the described procedure and results.
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1.2.6 Chapter 6

The aforementioned procedure uses the generic catastrophes: events with exactly two critical points.
Sometimes it is necessary to assume that non-generic catastrophes occur, in which multiple critical points
interact. This is the case when of three critical points only one remains, and one is not able to identify
which pair annihilates. Sometimes one doesn’t want to identify them, for instance if the image contains
local symmetry. The extension of the hierarchical algorithm that is able to handle this special case is
presented in chapter 6. Main advantage is that it stabilises the hierarchy tree. More symmetries – think
of a checkerboard – can be implemented in a similar fashion.

I also discuss the irrelevance of the creation of critical points with respect to the tree and the pre-
segmentation. From the notion of critical curves this is clear, since they only form protuberances of the
critical curve in scale space. Finally, modelling non-generic local symmetry reveals that a single saddle
branch can contain multiple scale space saddles. Since the critical region assigned to an extremum is
obtained by the first manifold containing a saddle, of the multiple saddles on a saddle branch only one
is relevant: in case of a minimum, the saddle with the lowest intensity value, in case of an extremum the
one with the highest intensity value.

Some tests show the application of this theory.

1.2.7 Chapter 7

In the previous section I mentioned that creations “only form protuberances of the critical curve in
scale space”. This fact needs a discussion in more detail. For that purpose an important result from
“Catastrophe Theory” is used, namely a list polynomials describing catastrophes and their difficulty. The
latter is represented by a number of parameters needed to remove a catastrophe point. Regarding scale
as a parameter, it is clear that the usual catastrophe in scale space requires exactly one parameter. For
the catastrophes mentioned in the previous section, multiple parameters are needed, e.g. for perturbing
the local symmetry. In chapter 7, I investigate the list and adjust it such, that it satisfies the diffusion
equation and is thus a scale space polynomial expression. The adjustment of polynomials with multiple
parameters yields one special, namely scale. I show that by this adjustment non-generic events in scale
space can be modelled. This yields not only multiple annihilations in case of symmetries, but also a
description of the protuberances of the critical curves.

Moreover, regarding polynomials in spatial variables and one scale parameter, the critical curve itself
is modelled. Now two remarkable facts become clear. Firstly, the protuberances are not very stable: a
small perturbation doesn’t harm them, but a larger one removes them from the critical curve. This is
exactly what intuition tells – when blurring, things disappear, so creations are not really to be expected
–, but what was mathematically proven to be locally wrong for critical points. Secondly, critical curves
can also appear in closed loops, created at some scale and annihilated at some coarser scale. These
curves one would complete miss if one would only trace the critical curves starting at the initial image.
Calculations on images indeed show the predicted behaviour for the critical curves.

1.2.8 Chapter 8

Now it is time to return to the hierarchy structure. In chapter 5, I described the presence of domes in the
scale space image, but there is more. As I mentioned, these domes are the critical “onion skin” around a
series of extremum domes. The critical one contains a saddle, mostly a scale space one, but sometimes a
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spatial saddle – then it is the one in the initial image. In chapter 8, I investigate the other part connected at
the saddle. This easily boils down to investigation the structure of iso-intensity manifolds in scale space
and their nesting. In an ordinary two dimensional image isophotes are nested, circle around extrema
and only intersect themselves at saddles. So a curve through a saddle contains two parts. In scale space
images a similar result holds. On part is known, namely the critical dome. Intriguing question is what
information is held by the other part.

I investigate the behaviour of the manifolds and show that taking into account the other part of the
manifold containing the critical dome, one elegantly obtains an unambiguous scale space intensity based
hierarchy that encapsulates the one mentioned in Chapter 5, but is much more robust. The hierarchy
can be visualised by a binary tree, a tree in which each node has one parent and two children. One of
the children is the dome of Chapter 5, the other child is equal to the parent. It can even be reduced to a
sequence of nestings, where each node is represented by a pair of parentheses. Within the parentheses the
children are put, and the parentheses are labelled by the dome-child. This allows one to apply a “logical
filter”: children in the tree that are less significant in scale space, can be swept out by simplifying the
tree: just cut off the smallest branches. And from the other side of the tree: the most significant scale
space parts are the strongest, the thickest (or largest) branches. One thus obtains a structure of the scale
space image that is implicitly present, but only needs to be extracted.

1.3 Conclusions

This brings us to the end of this thesis. Its main contribution is that it starts the investigation of the
deep structure of Gaussian scale space. In the various chapters it gives novel insights in the behaviour
of spatial critical points under the influence of the scale parameter, yielding critical curves with not only
generic catastrophe points, but also scale space saddle points. Modelling non-generic catastrophes give
insight in the structure of critical curves, e.g. the presence of those forming closed loops.

Another novel insight lies in the iso-intensity manifolds in scale space. An appropriate selection of
them, partially based on those through the scale space saddles, uniquely separate the scale space image
– and thus the original image – in “regions of influence” organised by the spatial extrema. One thus gets
for free a hierarchy of the image and the ability of uncommitted “pre-segmentation”.

Going further, also uncommitted imaging tasks like registration, coding, compression, clustering,
simplification, transmission, and comparison – to mention some – are possible. Keyword in all these
appliciations is uncommitted. The appliciations boil easily down from the fact that a uniquely defined
hierarchy is available.

This is completely different from any user-defined task – which is the general case: the hierarchy is
(implicitly) present in the deep structure of Gaussian scale space images.
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CHAPTER 2

Gaussian Scale Space

Physics is finished, young man. It’s
a dead-end street.

PHILIPP VON JOLLY,
MAX PLANCK’S TEACHER

This chapter shortly reviews Gaussian scale space, its axioms and known properties. The interested
reader may also take a look at some of the present scale space literature.

• Obviously, one can take Koenderink’s first seminal paper [139], as well as some of his tutorials
[141] or his book [145]. He generally takes the physical and geometrical point of view.

• The first “scale space book” is by Lindeberg [174]. It may nowadays already be a bit dated, lacking
the research of the last ten years, but it still gives a lot of information on and insight in the basic
ideas, the transfer of continuous concepts to discrete algorithms, some mathematical properties
and applications.

• A more mathematical point of view is taken by Florack [65], showing nicely how “heavy” math-
ematical equipment is a powerful tool proving that Gaussian scale space is the mathematical way
to deal with images.

• A forthcoming book by Ter Haar Romeny [104] gives a tutorial introduction, using the interactive
software package Mathematica [250], enabling the user to play around with scale space concepts.
A strong emphasis is put on the relation between scale and human vision.

• Weickert [245] discusses the Gaussian scale space in the context of the axiomatics leading to use
partial differential equations in image processing, see also section 2.2.
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• More detailed information can be found in the proceedings of a scale space workshop in 1996
[125], also published as a book [233], and the proceedings of the subsequent scale space confer-
ences in 1997 [106], 1999 [197], and 2001 [136], although these proceedings also contain a lot of
Gaussian-scale-space-related papers, a direct consequence of the results we will discuss in section
2.2.

• Finally, the papers of Salden [221, 222] contain detailed information on the axiomatic view and a
lot of citations.

In the next sections we will use the line of reasoning of some of these authors, although most of the
following arguments is taken from the works by Florack and Ter Haar Romeny. However, it is presented
in a strongly reduced way. For details the reader is referred to the literature mentioned in this chapter.

2.1 Scale Space Basics

In order to understand why at all one should use a (Gaussian) scale space, the underlying concepts of
discrete images, some physics and mathematics are combined yielding unavoidable evidence that a scale
space is a necessary concept to be used when dealing with images.

2.1.1 The Beginning. . .

Scale space in the Western literature started in 1983 by a paper of Witkin [249], discussing the blurring
properties of one dimensional signals. The extension to more dimensional images was made in 1984
by Koenderink [139]. We will summarise this thought in the following. When blurring an image, each
blurred version of the image is caused by the initial image. It is physically not possible that new structures
are created (for instance, dark circles or spots in a white area).

This notion of causality implies the non-enhancement of local extrema: everything is flattened. So
the intensity of maxima decrease and those of minima increase during the blurring process. At these
points, all eigenvalues are negative and positive, respectively. The sum of the eigenvalues equals the trace
of the Hessian, the matrix with all second order derivatives. Taking for simplicity a 2D image L(x, y), the
trace of the Hessian becomes Lxx +Lyy, shortly denoted as ∆L. Then the causality principle states that
at maxima ∆L < 0 (being the sum of the eigenvalues) and Lt < 0 (decreasing intensity for increasing
scale). At minima the opposite holds: ∆L > 0 and Lt > 0. And thus, in all cases, ∆L · Lt > 0.

Obviously, this holds in any dimension. One thus obtains an (n + 1)-dimensional image L(x, t),
with x ∈ IRn. Imposing linearity between ∆L and Lt yields ∆L = αLt, with α > 0 as a possible
(“simplest”) solution. We may take α = 1 without loss of generality1. This results in the differential
equation {

Lt(x, t) = ∆L(x, t)
limt↓0 L(x, t) = L0(x) ,

(2.1)

where L0(x) denotes the original image. This equation has the general solution

L(x, t) =

∫ ∞

−∞

1√
4πt

n exp(−(x− x′)2

4t
)L(x′)dx′. (2.2)

1Although one may also encounter α = 1/2.
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Figure 2.1: An MR image at successive scales t = 1
2e
i, for i = 0, . . . , 4.2 in steps of 0.6.

So the blurred image has to be taken as the convolution of the original image with a Gaussian filter. An
example of a series of blurred images in given in Figure 2.1, showing an MR image at increasing scales.
The set of all blurred images is the Gaussian scale space (image).

. . . and Before

Although the papers of Witkin and Koenderink are the start of scale space in the Western literature, the
idea was already twenty years old, as Weickert et al. describe [245, 247, 248]. The Japanese Iijima [119]
wrote a paper deriving the Gaussian as unique filter. Unfortunately, the paper was in Japanese, as some
more interesting literature [208, 257, 258, 259].

But there is more to say than that a Gaussian is to be used for blurring. This is based on mathematics
and physical properties of the image.

2.1.2 Physical Properties

Before applying any algorithm or whatsoever on images, it is firstly necessary to look at the properties
of the objects to be described themselves. The observation is that physical units have dimensions, like
“meters” or “Candela”. In any equation describing the objects, the dimensions need to be correct.

The Law of Scale Invariance states that the physical laws must be independent of the choice of the
parameters. The Pi Theorem [15] relates the number of independent dimensionless combinations of the
variables and the dimensions of the variables.

As an example, take the flow of some fluid through a pipe. The behaviour of the flow depends
on some of the parameters, like density ρ (in kilogram per cubic meter), the velocity v (in meters per
second), the diameter of the pipe d (in meters) and the viscosity of the fluid µ (in kilogram per meter per
second). In this case the Pi theorem “returns” the combination Re = ρvd

µ , which is the only parameter in
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the so-called Navier-Stokes equation describing the flow through a pipe [15].
One can verify that indeed Re is dimensionless. This number, the Reynolds number, is an indicator

whether the flow will be turbulent or stay laminar. So one can double the velocity and to be assured
that the properties of the flow remain equal, for instance bisect the diameter of the pipe, or double the
viscosity. In both cases Re remains equal. The strength of this property lies in the fact that it is possible
to build and test scaled versions of object with – more or less – the same properties as the real sized
object, e.g. ships or planes.

What happens when we obtain an image? Obviously, we look at some object by virtue of some
light source, through a certain aperture. Then there are the illuminance of the outside world Lo and the
processed image L, both in Candela per squared meter, as well as the sizes of the aperture σ and the
outside word x, both in meters. The Pi theorem returns the scale invariances L

Lo
and x

σ . Clearly, it is
meaningless to say anything about x without specifying σ. That is, ignoring σ boils down to the implicit
meaningless choice σ = 1. And consequently, both fractions are related:

L

Lo
= F (

x

σ
). (2.3)

To determine this relation more precisely, several axioms are imposed. Firstly a mathematical inter-
mezzo is needed, since we deal with discrete data.

2.1.3 Theory of Distributions

The mathematical pre-route to Gaussian scale space follows from Schwartz’ “Theory of Distributions”
[224]. Its relevance becomes clear from the following example: Disturb a function f(x) by a small
perturbation ε sin(δx), |ε| � 1 and δ arbitrary, e.g. 1/ε2. It doesn’t alter f(x) much. The derivative,
however, does: f ′(x) + εδ cos(δx) shows large variations, compared to f ′(x).

This indicates that differentiation is ill-posed (in the sense of Hadamard). An operation is well-posed
if the solution exists, is uniquely determined and depends continuously on the the initial or boundary
data. That means: there is one solution and it is stable. So the problem is not the function, but the
differentiation performed on it. This gets even worse, when dealing with discontinous functions: they
even cannot be differentiated. And in fact, all computer data is discontinuous.

To overcome ill-posedness Schartz introduced the (large) Schwartz space, containing smooth test
functions. These functions are infinitly differentiable and decrease sufficiently fast at the boundaries. A
regular tempered distribution is the correlation of a smooth test function and some function (or: discrete
image). The outcome is that this regular tempered distribution can be regarded as a probing of the image
with some mathematically nice filter. Derivatives are obtained as probing with the derivative of the filter
and indeed depend continuously on the input image.

Having solved the problem of discontinuity, one now needs to find the proper smooth test function
in combination with physical laws and state a number of axioms.

2.1.4 Uncommittedness

Concerning the size of the aperture σ, some axioms about uncommittedness are desirable. The following
axioms state that “we know nothing and have no preference”. We remark that that immediately poses a
restriction cancelling out cases in which we do know something and want to use that.
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• Spatial homogeneity means that all locations in the field of view are a priori equivalent. So there
is no preferred location that should be measured in a different fashion, i.e. there is shift invariance.

• Spatial isotropy indicates that there is no a priori preferred orientation in a point (or collection of
them). Horizontal and diagonal structures are equally measured.

• Spatial scale invariance does not discriminate between large, small, and intermediate objects.
There is no reason to emphasize details or large areas.

• Linearity is imposed, since there is no preferred way to combine observations. Non-linearity in a
system implies “feedback”, i.e. memory, or knowledge.

The axioms of linear shift invariance lead to the observation that the image must be a convolution of the
original image by the aparture function. Since in the Fourier domain a convolution of functions becomes
the product of them, we will turn to it. Stated in Fourier space Eq. (2.3) becomes

L(ω;σ) = L0(ω)F(ω;σ). (2.4)

The Pi theorem states that (ω;σ) is a function of (ω σ). Obviously, there must also be some “hidden”
scale ε in L0 such that its argument is likewise dimensionless, say ωε; this could be something like “pixel
scale”. The spatial isotropy implies that F only depends on the magnitude Ω = ||ω σ||p:

F(ω;σ) = F(Ω) (2.5)

Scale invariance and linearity turn out [65] to require that observing an observed item equals observing
it by an aperture size that is a linear combination of the two aperture sizes:

F(Ω1)F(Ω2) = F(Ω1 + Ω2) . (2.6)

Eq. (2.6) has the solution F(Ω) = exp(αΩ), so Eq. (2.5) becoms

F(ω;σ) = exp(α||ω σ||p). (2.7)

For a fixed ω, the limit for σ to zero has to leave the image un-scaled, which is true. For the limit σ to
infinity it has to fully scale the image, i.e. averaging it completely. So necessarily α < 0. For notational
purposes (in the diffusion equation as will be shown in section 2.2), we take α = − 1

2 , although one
might also encounter α = − 1

4 , the choice of Lindeberg, see e.g. [174] and “followers”.
This leaves only freedom of choosing p. The additional requirement of separability into the spatial

dimensions yields p = 2, although other values for p still bring up linear scale spaces, albeit non-
Gaussian [52]. So we find in the Fourier domain for Eq. (2.7)

F(ω;σ) = exp(−1

2
ω2 σ2) (2.8)

and in the spatial domain the inverse Fouriertransform of Eq. 2.8 gives the kernel

F (x;σ) =
1√

2πσ2
n exp(− x2

2σ2
). (2.9)

Note that Eq. (2.9) is identical to the convolution kernel of Eq. (2.2) when we set t = 1
2σ

2. The name
“Gaussian” scale space is obvious. The Gaussian kernel is an element of the Schwartz space, as being a
smooth test function: it is infinitely differentiable and it decreases sufficiently fast at the boundaries, just
as its derivatives.
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2.1.5 Regularisation

Another route to Gaussian scale space is due to regularisation. For a full treatment the reader is referred to
Nielsen et al. [65, 104, 194, 195, 196]. Here we outline this approach. The task is to find a solution f that
is close in the L2-norm to some signal g, given the constraints that all derivatives of f are also bounded
in the L2-norm. Using so-called Euler-Lagrange multipliers λi, this can be combined to minimisation of
the “energy”-functional

E[f ] =
1

2

∫ ∞

−∞

(
(f − g)2 +

∞∑

i=1

λi(
∂i

∂xi
f)2

)
d x . (2.10)

In the Fourier-domain Eq. (2.10) is simplified to

E[f̂ ] =
1

2

∫ ∞

−∞

(
(f̂ − ĝ)2 +

∞∑

i=1

λiω
2if̂2

)
dω, (2.11)

since the Fourier transform ( ∂
∂xf(x))2 equals (−iωf̂(ω))(̇iωf̂(ω)), the product of the complex func-

tion with its complex conjugate. Also Parsevals theorem is used, stating that the Fourier transform of∫∞
−∞ f

2dx equals
∫∞
−∞ f̂

2dω, with f̂(ω) the Fourier transform of f(x). The solution of Eq. (2.11) is
found by so-called calculus of variations: δE

δf̂
= 0, yielding

f̂ − ĝ +
∞∑

i=1

λiω
2if̂ = 0 . (2.12)

Consequently, Eq. (2.12) gives the linear system ĝ = ĥ−1f̂ . The optimal f̂ is thus the linear filtering of
ĝ by ĥ. Taking λ0 = 1, we find the filter

ĥ−1 =
∞∑

i=0

λiω
2i. (2.13)

The Pi Theorem implies that λi ∝ ω−2i, since ĥ is dimensionless. Assuming the semi-group property
on this filter, such that filters can be added linearly, one obtains λi = ti/i! and thus Eq. (2.13) becomes

ĥ−1 =
∞∑

i=0

ti

i!
ω2i = eω

2t, (2.14)

and the Gaussian filter is again obtained, cf. Eq. (2.8) with t = 1
2σ

2. In this case separability is included.

In fact, a series of regularisation filters e(ω2t)p can be obtained for p ∈ IN . Results hold for multi-
dimensional rotationally invariant regularisation.

2.1.6 Entropy

Nielsen also gave an alternative route, based on the statistics of the aperture function [104, 194]. A
statistical measure for the disorder of this aperture function g(x) is given by the entropy, defined as

H(g) =

∫ ∞

−∞
g(x) log[g(x)]d x , (2.15)
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using the natural logarithm. This measurement states something like “there is nothing ordered, ranked”,
if it takes its maximum. However, there are some constraints: Firstly, measuring a complete image
shouldn’t cause a global enhancement or amplification; the function must be normalised. Secondly,
measuring at some point x0, we do expect the mean of the measurement to be at x0, which we can take
equal to zero, since all points are regarded the same. Thirdly, the function has some size, say σ. So the
standard deviation of g(x) is related to this size. Finally, the aperture, as a real object, is positive. These
constraints yield 




∫∞
−∞ g(x)d x = 1 ,∫∞
−∞ xg(x)d x = 0 ,∫∞
−∞ x

2g(x)d x = σ2 ,
g(x) > 0

(2.16)

Note that the Pi Theorem requires that one replaces g by g/g0 for some dimensionally compatible con-
stant unit g0, but this only yields irrelevant constants in Eq. (2.15), given the first constraint. So just as
in the previous section, it is the task to maximise H(g), Eq. (2.15), given these constraints. This yields,
just as in the previous section an Euler-Lagrange equation:

E[g] =

∫ ∞

−∞

(
g(x) log[g(x)] + λ0 g(x) + λ1x g(x) + λ2 x

2g(x)
)
d x

Again solving δE
δg = 0 gives

1 + log[g(x)] + λ0 + λ1 x+ λ2 x
2 = 0 , (2.17)

so obviously
g(x) = e−(1+λ0+λ1x+λ2 x2) . (2.18)

Checking the constraints, Eq. (2.16), results in λ1 = 0, λ2 = 1
2σ2 , λ0 = −1 + 1

4 log[4π2σ4], yielding

g(x) =
1√

2πσ2
e−

x2

2σ2 . (2.19)

And again we have the Gaussian, Eq. (2.2), which is, from a statistical point of view, not very strange.

2.2 Differential Equations

The previous sections reveals the Gaussian kernel as a non-spurious detail generating filter, as a smooth
test-function, as an uncommitted resultant, as regularisation filter, and as an orderlessness operator. But
one can also investigate it from the point of view of differential equations.

2.2.1 Heat Equation

As shown by Koenderink, convolution of the original image with the Gaussian filter is the general so-
lution of the partial differential equation Lt = ∆L. Such a solution is called the Greens function, or
fundamental solution. It is well-known in the field of physical transport processes. For instance in heat
and thermodynamics, where this equation describes the evolution of the temperature when e.g. a plate is
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locally heated [2]. From this field of physics, the equation has become known as the Heat or Diffusion
Equation.

As a consequence, much effort has been put in investigation of this equation, both theoretically (e.g.
with respect to remaining spatial maxima, the so-called hot spots [13, 14, 30, 34, 123, 182]) and applied-
numerically [2, 28, 254]. Note that “scale” has been replaced by “time”, a minor conceptual change.

One even might put the point of view on this side and take the equation as an axiom for scale space.
Then a scale space image is the result of an initial image under action of time. In general the “converged”
image is the only desired image, the scale space is just the way to reach it.

2.2.2 Partial Differential Equations

A comprehensive investigation of using several different types of partial differential equations (PDEs)
has been made by Weickert [245], where also details can be found. We will only shortly mention some
of them, to explain the role of scale space (the Heat Equation) in relation to PDEs.

From the physical background, the heat equation originates from Ficks law j = −D ·∇L, describing
that a flux is caused compensating some concentration gradient by some tensor D, together with the
continuity equation Lt = −∇ · j, stating that the diffusion only transports heat. The combination yields
Lt = ∇·(D ·∇L). IfD does not depend on the evolving image, the diffusion is called linear. Obviously,
Gaussian scale space is obtained by taking D = 1n. Non-linear diffusion, depending on the image and
its geometry, is also known as geometry driven diffusion. Investigation of these models becomes harder,
since, in general, Greens functions are not known. However, this is not a problem, since usually only the
final, converged, image is of interest. This image is supposed to reveal the best solution to the task the
equation is setup for, for example segmentation and / or denoising [35].

Perona Malik

One of the most well-known and relatively simple (but problematic) non-linear scale spaces is obtained
by the Perona Malik filter [211], where D = g(|∇L|2), for instance g(s2) = 1/(1 + s2/λ2), λ > 0 and
g(s2) = exp(−s2/λ2), λ > 0. The basic idea is that edges should be preserved, while the rest of the
image should be smoothened.

Reaction-Diffusion

These types of PDEs minimise some energy functional under some constraints. Examples leading to
Gaussian scale space were given in sections 2.1.5 and 2.1.6. Reaction-Diffusion equations include an
extra function describing the (desired) behaviour on edges [245].

Total Variation

Related to the previous PDEs are Total Variation methods. They minimise (some function of) the absolute
value of the gradient of the image under certain conditions of the noise (zero mean and given standard
deviation). The converged image is smoothened, while edges are preserved [20].
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Curvature Based

In the image there are isophotes and, perpendicular to them, flow lines. Instead of smoothing both, one
may want to smooth only along the isophotes, ending up with mean curvature motion. The motion of
the curve is known as Euclidean shortening flow, or geometric heat equation [138]. An adapted variant
of it is (among other names) the affine shortening flow. Applications appear in context of active contour
models (“snakes”) [209].

Morphology

Morphology in its oldest form yields probing an image with a binary structuring element, an n × n
window. This is a discrete model applicable to discrete images, as can be found in any elementary book
on image processing, e.g. [115, 231]. Applying morphological elements in a “clever” way, one can obtain
a multi-scale system [1, 192] Using a parabolic structuring element, yields a morphological scale space
equivalent to Gaussian scale space [25, 26, 27, 121, 122]. It has been shown that this equivalence can be
expressed by a combining PDE. Both cases appear to be the limiting cases of this PDE [68].

2.3 Biological Inspiration

The human system is capable of looking around and identifying object of different sizes simultaneously.
We can see a building with windows and bricks at the same time. All these objects have different sizes. So
the eye and the system behind it is capable of working multi-scale [63, 66, 70, 104, 105, 116, 120, 256].
Besides, not only the eye, also our haptic system is a multi-scale system [183].

Models for describing the so-called receptive field in the retina can use Gaussian scale space, as
argued by Lindeberg and Florack [174, 178, 179], and Koenderink [140, 142, 146, 147, 148, 149], cf. ter
Haar Romeny [104].

The Laplacean of the Gaussian, known as the Mexican hat [185], can be used to model the sensi-
tivity profile of a so-called centre surround receptive field. As Ter Haar Romeny states “we observe the
Laplacian of the world” [104].

These observations, and many more that can be found in the literature mentioned, motivate the in-
vestigation of Gaussian scale space from the field of biology. But not only Gaussian scale space. At
some visual stage in the brain a large amount of feedback to the eye is found. This implies the use of
image structure, or memory, or non-linearity. This argues for the use of geometry driven (non-linear)
models [102], as a stage next to linear models.

2.4 Hierarchies

An important notion in image analysis is that of a hierarchy: There is some nesting of several objects
within the image. One can think of a road, containing cars, containing licence-plates, containing numbers
and letters. More generally stated: regions within regions. This nesting of regions can be obtained if the
regions are known, for instance due to edge detection or segmentations.

One way is to focus solely on the image and to try to build a graph [210, 228, 229]. One would like
to end up with a tree, i.e. a graph without the possibility to walk around and visit parts multiple times.
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A tree structure is straightforward and simplifiers the structure. However, this is not always possible
when describing objects within the image, but difficulties can be reduced by using the special technique
of Reeb graphs [18, 19, 81, 137, 226, 227].

Early approaches in image analysis used pyramids, where stacks of images (or image primitives)
of decreasing size are generated, e.g. by averaging four pixels into one in the next level, thus ending
up with pyramidal structures. An example of such a structure based on the Laplacean is due to Burt
and Adelson [31]. The idea is that global structures will live long in the pyramid, and the successive
disappearance of structure returns a hierarchy. In fact, all hierarchy approaches need some stack of
images, or image primitives (like the magnitude of the gradient), that simplifies in some sense going
up in the tree. Therefore scale space methods and hierarchical approaches are strongly related, see e.g.
Nacken [192] and Lester and Arridge [166].

2.4.1 Multi-Scale Watershed

One example of an image primitive is the magnitude of the gradient, yielding a non-linear approach. It is
used in watershed segmentations, a very old principle going back at least one and a half century [32, 187].
The idea is that while flooding a landscape, water will flow into pools. At some specific heights, pools
will merge. In Mathematical Morphology watersheds are commonly used [122].

Olsen [203, 204, 205, 206, 207] generated a multi-scale watershed algorithm based on Gaussian
derivatives: on each scale the watershed is calculated, yielding a watershed space. Interactively a user
can select regions and refine (or coarsen) them [44]. Multi-scale watershed algorithms yield usable
hierarchical (segmentation driven) algorithms [82, 246].

2.5 Two Decades of Linear Scale Space

Since the Gaussian filter has been used for decades in signal processing, i.e. the one dimensional case,
much effort has been made to investigate its properties. The Laplacean gives information with respect
to edges, a reason for investigating its zero crossings (locations where it changes sign) [3, 50, 118, 181,
219, 225, 244, 252]. They can reconstruct the original signal – under certain conditions, see also the
series of papers by Johansen (et al.) [124, 125, 126, 127, 128, 129].

Emerging since the papers of Koenderink and Witkin, two dimensional investigations started from
the image algorithmic point of view [12, 38, 39, 253], including topics like robustness [111, 112] and
implementations [21, 22, 23, 24, 213].

In the last decade of the previous century, papers appeared based on the considerations and axioms
described in this chapter, e.g. by Florack (et al.) [67, 69, 75, 76, 77, 78, 79, 80, 107], exploiting the
differential structure of scale space, and relations between linear and non-linear scale spaces [68, 73], by
Lindeberg (et al.), building a hierarchical structure and paying attention to the discrete implementation,
[169, 170, 171, 172, 173, 174], and the detection of image entities [175, 176, 177, 180], and by Griffin
(et al.) [95, 98, 99, 100].

Scale space ideas can also be extended to the uncertainty in grey value detection [92, 96, 97, 150,
151], to optic flow [74], and orientation analysis [133]. Also time can be scaled in a similar fashion
(taking into account that time uses a half-axis: the future cannot be modelled!) [65, 108, 143]. A possible
tracking of surfaces with the same intensity over scale has been described by Fidrich [60, 61]. From the
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mathematical point of view, especially the singularities (special points, to be encountered later on) are
interesting [17, 45, 46, 47, 48, 71, 72, 154, 155].

Applications [103] can be found in various fields, e.g. stochastics [11], statistics [33], clustering [167,
193], recognition [37], segmentation [113, 132], and image enhancement by deblurring [65, 117, 214].
Medical applications of Gaussian scale space can be found in [42, 43, 110, 168, 180, 199, 200, 201, 202,
218, 230, 237] and in the comprehensive overview by Duncan and Ayache [53]. Already in the early
nineties the linear scale space segmentation tool called hyperstack was used for segmentation in medical
context, see e.g. [94, 152, 153, 201, 202, 240, 241, 242, 243]. It should be noted that it also contains
heuristic models in order to provide a segmentation.

Recently, Geusebroek et al. applied Gaussian scale space theory to colour images, yielding good
segmentations [84, 85, 86, 87, 88, 89, 90, 109].

2.5.1 Sub-Structures

Edge detection has been one purpose of image analysis from the beginning. However, edge detection
methods do not always yield desired results [58, 59, 62]. Much research has therefore been done on
the properties of sub-structures, i.e. structure within (scale space) images [134, 234], like curve-linear
ones [236], and relative critical sets, like ridges [36, 54, 55, 56, 57, 83] and its extension cores [49], their
generic properties and their relations to the medial axis [48, 49, 135], obtained by convolving the original
image with −σ2∆G, with G the normalised Gaussian.

2.5.2 Deep Structure

Most research has been done on using scale space, e.g. for selecting some proper scale to derive some
nice result like edge-detection or segmentation. The emphasis is then put on the scale part of scale space.
The scale parameter gives extra information or an extra degree of freedom to “play around” with the
image.

There is, obviously, also the space part of scale space. Then the emphasis is on the extra dimension
that is available due to the scale parameter. The investigation of this extra dimension is the subject of this
thesis. In his original paper, Koenderink called this deep structure: the image at all scales simultaneously
[139].

Related and relevant research that has been done by others on the field of this deep structure, will be
discussed in each of the following chapters.

2.5.3 Poisson Scale Space

Although linear scale space is often the synonym for Gaussian scale space (and vice versa), this is not
true. The Gaussian scale space is an instance of a linear scale space. Recently, Duits et al. [52] showed
that given the axioms of section 2.1.4, also another linear kernel can be used if separability2 is not
required, recall Eq. (2.7). Then there are infinite linear scale spaces, spanned by

F(ω;σ) = exp(α||ω σ||p). (2.20)

2Note that separability is a coordinate-dependent notion and therefore not a fundamental requirement.
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The specific choice p = 1 in n spatial dimensions yields the kernel

F (x;σ) =
Γ(n+1

2 ) σ

π(n+1)/2 (||x||2 + σ2)
n+1

2
)
, (2.21)

where Γ(i) is the Euler gamma function, given by
∫∞
0 ti−1e−td t. Although F is a smooth function, it is

not an element of the Schwartz space. The kernels and the filtered images are harmonic functions, since
Eq. (2.21) is the Greens function of another famous physical equation, given by

∆L+ Lσσ = 0. (2.22)

In mathematics Eq. (2.22) is called “the Poisson equation in half space”, and its kernel “half-space
Poisson kernel” [101] and one consequently obtains a Poisson scale space. Taking all derivatives within
the ∆-operator results in ∆x,σL = 0, the “famous” Laplace-equation with Dirichlet boundary condition,
viz. limσ↓0 L(x, σ) = L(x), is obtained.

Using proper boundary conditions it can be shown that Eq. (2.22) is equivalent to the evolution
equation

∂L

∂σ
= −
√
−∆L , (2.23)

using a fractional power of a derivative operator. In fact, instead of a squareroot, any power between zero
and one can be used, see Duits et al. [52].

This recent discovery of the infinite set of linear scale spaces may give rise to a revival of investigation
of linear scale space properties, both theorethical and practical. Linear scale space isn’t finished. It isn’t
a dead-end street3.

3In 1874, at the age of 16, Max Planck entered the University of Munich. Before he began his studies he discussed the
prospects of research in physics with Philipp von Jolly, the professor of physics there, and was told that physics was essentially
a complete science with little prospect of further developments.



CHAPTER 3

Saddle Points in 2D

On a hexagonal tessellation life is
easier.

BERTHOLD KLAUS PAUL HORN

3.1 Introduction

Mathematically, spatial critical points are defined by the zeros of the gradient. Regarding a discrete grid
on which the image is embedded, these zeros will in general not coincide with the grid points, but lie
somewhere in between them. In this chapter I investigate the influence of the structure of the grid with
respect to detecting all critical points

3.2 Critical Points: Continuous versus Discrete

Many methods, based on continuous functions, can be applied to find the locations of critical points
whit sub-pixel precision, For instance, the method of determining the zero crossings of the gradients,
in which for each pixel the result is “positive” or “negative” for each partial derivative. Or the method
of calculating winding numbers (see e.g. Staal et al. [234] and Kalitzin et al. [131]), based on a local
neighbourhood around each pixel. The change of orientation of the gradient vector field on the boundary
of that neighbourhood determines the type of each point. These approaches, however, only yield evidence
of a pixel being close to (i.e. in the neighbourhood of) a critical point. If all critical point are found and
uniquely assigned to a pixel, all is well. However, it may occur that two neighbouring pixels give alike
output. One (then) may try any sub-pixel precision algorithm, but still need to assign the critical point to
one grid point.
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Assigning extrema to grid points is fairly trivial: the grid point is an extremum if its value is larger
- or, equivalently, smaller - than all its neighbours. For saddle points the situation is more complicated.
Keyword in this observation is neighbourhood, to which we will come back.

3.2.1 The Euler Number

An important topological entity is the Euler number. In two dimensions in binary images it simply equals
the number of objects minus the number of holes, in three dimensions it is more complicated, see Lee
et al. [164, 165]. So for simplicity we restrict ourselves to two dimensions. The Euler number of an
image is related to the winding number [114, 164] mentioned before. It can be expressed in term of
the critical points: Let χ(M) denote the Euler number of a manifold M (say the image), g denote the
genus of the manifold (roughly the number of holes, see e.g. Koenderink [145] and Milnor [190]), m+

the number of maxima, m− the number of minima, and s the number of saddles (assume there are no
catastrophes/singularities), then

m+ − s+m− = 2(1− g) = χ(M)

So calculating the Euler number is just counting the critical points. Another nice property is commonly
used in e.g. combinatorial and computational topology ( [18, 19, 81, 114, 137, 226, 227]). A triangula-
tion of an object, or image, is obtained by taking a number of landmarks (e.g. points) and overlay the
object with triangles that connect three landmarks. A method that is also commonly used in spline rep-
resentations of objects. Obviously, this can be generalised to to a set of vertices, that are connected by
edges thus forming cells (called faces). Then the Euler number is also present here: it equals the number
of faces (F) minus the number of edges (E), plus the number of vertices (V):

χ(M) = F − E + V.

This Euler number, “popping up everywhere” (Koenderink, [145]) gives a powerful requirement with
respect to assigning the critical points of an image to its grid points. Assuming that two adjacent pixels
have different values, it is at fore hand clear what the number of saddle points must be. Furthermore, the
chosen grid (triangulation) should be such, that it does not violate the Euler number.

3.3 Neighbourhoods

Having noticed this, it is necessary to determine what “a neighbourhood” means. Golay pointed out
that only three types of planar, symmetric, isotropic point grids exist, namely square, hexagonal and
triangular ones. The triangular grid can be obtained from the hexagonal one, and is least suited for for
neighbourhood investigations [93]. So the other two remain.

3.3.1 Rectangular Grids

Using a rectangular grid, as is rather common in image analysis, a first idea would be the so-called 4-
neighbour connectivity: For the moment, think of a pixel as a square, connected to its neighbours left,
right, up and down, see Figure 3.1a, where the grey blocks denote the neighbours. An alternative is the
so-called 8-neighbour connectivity, in which also the corners are taken into account (Figure 3.1b).
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Figure 3.1: Different types of connectivity based on neighbours (in grey) of the centre block: a) 4-
neighbour connectivity. b) 8-neighbour connectivity. c) 6-neighbour connectivity.

Here immediately problems rise, as shown by the following example of Deutsch [51]. Assuming that
in Figure 3.1a the centre block is background, we have 4 faces. Each has 4 vertices, so in total there
are 16 vertices (landmarks), since the four faces are disjoint. Furthermore there are 16 edges, leading to
an Euler number of 4 − 16 + 16 = 4, whereas the number of objects minus the number of holes yields
4− 1 = 3. A problem. For the 8-neighbourhood a similar result holds: In the same Figure 3.1a there are
still 4 faces and 16 edges, but now there are 12 vertices. This yields an Euler number of 4−16 + 12 = 0,
but now the part in the middle isn’t a hole: it is connected to the background, so the number of objects
minus the number of holes is 1 − 0 = 1. The problem is solved by assuming 4-neighbour connectivity
for the objects, and 8-neighbourhood for the background (then counting objects yield 4 − 0 = 4) or the
other way round (obtaining a hole in the middle and 1−1 = 0). This duality between 4- and 8-neighbour
connectivity makes it non-trivial to implement it in grey value images instead of binary images.

3.3.2 Hexagonal Grids

The problems mentioned in the previous section are avoid when using an hexagonal grid. An example of
it is shown in Figure 3.1c, where the grey blocks represent the neighbourhood of the block in the middle.
Now there is no problem in connectivity: Assuming again that the centre block is background, we have
24 vertices, 30 edges, and 6 faces so the Euler number V − E + F = 24 − 30 + 6 = 0, equalling one
object minus one hole (the genus is one).

Consequently, from a topological point of view, hexagonal grids (or: lattices) are to be preferred.
Middleton and Sivaswamy state that they have been shown to have better efficiency and less aliasing.
They exploit the oblique effect in human vision. They can be obtained by staggering the individual
square pixels like a brick wall. Generally, a preference has been shown for them in the work due to their
consistent connectivity [188].

3.4 Construction of a Hexagonal Lattice

The idea of the brick wall is shown in Figure 3.2a, where each brick has six neighbours. Obviously, it
takes “the golden way in between” the 4- and 8-neighbourhood connectivity by simply translating rows.
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Figure 3.2: A hexagonal lattice. Staggering the individual square pixels like a brick wall (a) and the
effect on the 8 neighbours due to the translations of Horn (b) and Blom (c).

It remains to select how to translate, and which pair of neighbouring pixels to select (or deselect) in the
original rectangular grid.

3.4.1 Horn

Horn [115] suggests two neighbours on the same diagonal, to be obtained by moving the row above a
particular cell a half cell to the left and the row below a half cell to the right (or the other way round).
An example is shown in Figure 3.2b, where the eight neighbours in the rectangular grid are grey. In this
example the neighbours top-left and bottom-right are removed to obtain 6-neighbourhood connectivity.

3.4.2 Blom

To locate the critical points uniquely Blom [21] used a translation, which is derived from a usual 2-D grid
by shifting each even row a half pixel to the right and leaving odd rows unattached, or of course any sim-
ilar translation. An example of this translation is shown in Figure 3.2c, where the eight neighbours in the
rectangular grid are again grey. In this example the neighbours top-right and bottom-right are removed
to obtain the 6-neighbourhood connectivity. So this translation is in fact only half of Horn’s translation.
The advantage of Blom’s approach is found in its relatively simple algorithmic implementation.

3.4.3 Types of Hexagonal Grid Points

On this grid each point has 6 neighbours. For each of these neighbours the sign of the difference with
respect to the point itself is determined. To determine the class of the point, the number of sign changes
walking clockwise along these six neighbours is counted. This leads to 4 typical cases:

• Zero sign changes: The point is an extremum, a maximum iff all signs are negative, a minimum
iff all are positive. See Figure 3.3a.

• Two sign changes: The point is a regular point, see e.g. Figure 3.3b.

• Four sign changes: the point is a saddle point, see e.g. Figure 3.3c.
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Figure 3.3: The four typical neighbourhoods in a hexagonal lattice. a) An extremum. b) A regular
point. c) A saddle point. d) A degenerate saddle point, a so-called monkey saddle.

Figure 3.4: a) synthetic image. Type of the pixels (black is extremum, grey is regular, white is saddle)
according to: b) Detection at a 6-neighbourhood. c) Detection at a 4-neighbourhood. d) Detection at
an 8-neighbourhood.

• Six sign changes: The point is a degenerated saddle point, a so-called money-saddle, see Figure
3.3d.

The monkey saddle is non-generic, that is: it is generically not to be found. A monkey saddle can
analytically be modelled by the function x3 − 3xy2, which is not stable under a small perturbation.

In the remaining we use Blom’s translation, which, we emphasise, holds the Euler number and thus
finds all saddle points. A close look at the description of the lattice shows that it can be implemented as
the 6 neighbourhood of a point by taking into account the 8 neighbours and disregarding the upper right
and lower right neighbour in the even rows, and the upper left and lower left neighbour in the odd rows.
Or vice versa.

In Figure 3.4a we show an artificial image containing 5 extrema and -thus- 4 saddle points. The
6-neighbourhood connectivity result is shown in Figure 3.4b. The black pixels are of type 0, i.e. extrema,
the grey are of type 2, regular, and the white pixels are of type 4, saddle points. A result as desired.

Figure 3.4c shows the result of the 4-neighbourhood connectivity. Now there is one saddle (a pixel of
type 4) missing in the middle of the image. Obvious since the 4-neighbourhood connectivity is to rough
to detect the saddles. The 8-neighbourhood connectivity is shown in Figure 3.4d. Now the missing
saddle is detected, but not unambiguously. It is assigned to two neighbouring pixels.
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Figure 3.5: Saddle detection: a) Values in the rectangular grid. b) Values in the corresponding hexagonal
grid.

This becomes clear from a more detailed investigation around this pixel. The rectangular grid can
be represented as Figure 3.5a. Using a 4-neighbourhood connectivity on the two pixels in the middle of
the centre row, it becomes evident that both the “3” and the “4” show two sign changes. Starting on top,
the “3” has pattern − + ++, the “4” has pattern + − −+. They are thus qualified are regular points.
Using an 8-neighbourhood connectivity, however, one finds four sign changes for both pixels: the “3”
has pattern −+ + + +−++, the “4” +−−+−+ ++. And thus they are qualified are saddle points.

The corresponding 6-neighbourhood connectivity is shown in Figure 3.5b. Now the “3” has pattern
(starting top left) + + + + +−, thus two sign changes and consequently a regular point. The “4” has
pattern −−+−++ and is thus a saddle. Its neighbour, the “8” is again a regular point.

3.5 Conclusions

Concluding we find that a hexagonal grid is highly preferred in finding saddle points in two dimensions,
since firstly it respects the Euler number, guaranteeing that all saddles are found, and secondly it assigns
the saddles unambiguously to pixels. Quoting Horn [115]: ”On a hexagonal tessellation life is easier”.

A disadvantage is that it is only usable in two dimensions. However, attempts for similar tessalations
using truncated octahedral and rhombic dodecahedral tillings are made [189].



CHAPTER 4

Topological Structure

It is wrong to think that the task of
physics is to find out how nature is.
Physics concerns what we can say
about nature.

NIELS BOHR

abstract We investigate the “deep structure” of a scale space image. The emphasis is on topology,
i.e. we concentrate on critical points—points with vanishing gradient—and catastrophe points—critical
points with degenerate Hessian—and monitor their displacements, respectively generic morsifications
in scale space. Relevant parts of catastrophe theory in the context of the scale space paradigm are
briefly reviewed, and subsequently rewritten into coordinate independent form. This enables one to
implement topological descriptors using a conveniently defined coordinate system. A description in a
user-defined Cartesian coordinate system is stated, as well as results of a straightforward implementation.
The location of a catastrophe can be predicted with sub-pixel accuracy. An example of an annihilation
is given. Also an upper bound is derived for the area where critical points can be created. Theory is
clarified on experimental data of an MR, a CT, and an artificial noise image.

keywords scale space, catastrophe theory, critical points, deep structure, image topology.
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4.1 Introduction

4.1.1 Historical Background

A scale space representation, the embedding of a image into a one-parameter family of images, is a
well-known method to endow an image with a topology. The Gaussian scale space model is one of the
simplest among the possible representations. In this model, the parameter encodes scale. Increasing
scale pertains to blurring the image. It has been proposed by Iijima [119]. His work remained unnoticed
for decades in the English literature, just as other Japanese accounts [208, 257]. A translation of their
motivations, as well as other axiomatic approaches yielding Gaussian scale space, can be found in the
work of Weickert et al. [248, 247].

The introduction into English literature is due to Witkin [249] and Koenderink [139]. Koenderink’s
account gives insight in the process of blurring itself. It appears that the Gaussian scale space model
pertains to topological structure.

4.1.2 Scale and Topology

The fact is that scale provides topology. Scale is a degree of freedom allowing a hierarchy of topologies
that enable transitions between coarse and fine scales. The main problem, a decent topology for images,
has been addressed by the mathematical community before. It turns out that the theory of tempered
distributions by Schwartz [224] and (Gaussian) scale space theory are close-knit, see e.g. [64, 65].

4.1.3 Deep Structure

Both Koenderink and Witkin proposed to investigate the structure at all levels of resolution simultane-
ously, the so-called deep structure of the image. Although this deep structure is still a unsolved problem,
many widely varying applications have been developed using heuristic approaches: The segmentation or
detection algorithms typically use some type of scale selection or linking scheme, cf. Bergholm’s edge
focusing scheme [16], Lindeberg’s feature detection method [174, 175, 176], the scale optimisation cri-
terion used by Niessen et al. [199] and Florack et al. [74] for motion extraction, Vincken’s hyperstack
segmentation algorithm [242], Olsen’s multi-scale watershed segmentation [206], etc. Other approaches
focus on high resolution reconstruction aspects, cf. Hummel and Moniot [118], Johansen [129], and
Nielsen and Lillholm [198].

These results led to an increasing investigation of a general underpinning of deep structure, that may
serve as a common basis for a variety of of schemes. All these bottom-up methods invariably rely on on
catastrophe theory.

4.1.4 Catastrophe Theory

An introduction of Catastrophe Theory as investigated by Thom [238, 239], can be found in several
books [6, 91, 212]. It has been pointed out by Koenderink that Thom’s classification theorem can be
applied to scale space image. This may be expected, since there is one control parameter, the isotropic
inner scale. However, the difficulty rises from the fact that scale space is constrained by the isotropic
diffusion equation, so the control parameter is a special one.



4.2 Theory 31

A comprehensive account on this subject is by to Damon [45] and others, like Griffin [98], Johansen
[124, 125, 129], Lindeberg [170, 174], and Koenderink [140, 144, 145, 146, 147].

4.1.5 Canonical versus Covariant Formalism

The purpose of the present work is threefold: (i) to collect relevant results from the literature on catastro-
phe theory, (ii) to express these in terms of user-defined coordinates, and (iii) to investigate their usage
in practice.

For this purpose covariant expressions for the tangents to the critical curves in scale space, both
through Morse as well as non-Morse critical points will be derived, a covariant interpolation scheme for
the locations of the latter in scale space will be established, and the curvature of the critical curves (again
in covariant form) at the non-Morse critical points will be computed.

The requirement of covariance is a novel and important aspect not covered in the literature. The
reason for this requirement is that in practice one is not given the special, so-called “canonical coor-
dinates1” in terms of which catastrophe theory is formulated in the literature. They give, due to their
simplicity, qualitative insight in understanding the various aspects of the situation, but in the absence of
an operational definition they are of little practical use.

A covariant formalism—by definition—allows us to use whatever coordinate convention whatsoever.
All computations can be carried out in a user-defined coordinate system. In this work this is a Cartesian
coordinate system aligned with the grid of the digital image. This means that in order to carry out the
computations as described, all that is needed is a small number of image convolutions per level of scale,
and some algebraic combinations of the results, as will be clear from the examples.

4.2 Theory

Theory is presented as follows. The general plan of catastrophe theory (Section 4.2.1) is outlined and
considered in the context of scale space theory (Section 4.2.2). An in-depth analysis is presented in
canonical (Section 4.2.3), respectively arbitrary coordinate systems (Section 4.2.4). The first three sec-
tions mainly serve as a review of known facts from literature. The remainder covers novel aspects that
are useful for exploiting these in practice.

4.2.1 Catastrophe Theory

Catastrophe theory is the study of how the critical points –points at which the gradient vanishes– change
as the control parameters change.

Typically, critical points are isolated points where the Hessian has nonzero eigenvalues. The Morse
Lemma states that the qualitative properties of a function at these so-called Morse critical points are
essentially determined by the quadratic part of the Taylor series (the Morse canonical form).

In many practical situations one encounters families of functions that depend on control parameters.
An example of such a control parameter is “scale” in a scale space image.

1The term “canonical coordinates” is taken from Gilmore [91].
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While varying a control parameter continuously, a Morse critical point will move along a critical
curve. At isolated points on such a curve one of the eigenvalues of the Hessian may become zero, so that
the Morse critical point turns into a non-Morse critical point.

In situations with several control parameters, ` eigenvalues of the Hessian may vanish simultane-
ously, leaving n− ` of them nonzero. Then the Thom Splitting Lemma simplifies things: It states that, in
order to study the degeneracies, one can simply discard the n − ` “nice” variables corresponding to the
regular (n − `) × (n − `)-sub-matrix of the Hessian, and thus study only the ` “bad” ones [238, 239].
One can thus split up the function into a Morse and a non-Morse part, and study the canonical forms of
each separately, because the same splitting result holds in a full neighbourhood of a non-Morse function.

The Morse part can –obviously– be canonically described in terms of the quadratic part of the Taylor
series. The non-Morse part can also be put into canonical form, called the catastrophe germ. This is a
polynomial of order 3 or higher.

The Morse part does not change qualitatively after a small perturbation. Critical points may move
and corresponding function values may change, but nothing will happen to their type: if i eigenvalues
of the Hessian are negative prior to perturbation (a “Morse i-saddle”), then this will still be the case
afterwards.

The non-Morse part does change qualitatively due to perturbation. In general, the non-Morse critical
point of the catastrophe germ will split either into a non-Morse critical point that can be described by
a polynomial of a degree that is lower then the polynomial used before the perturbation, and a number
of Morse critical points, or solely into a number of Morse critical points. This state of events is called
morsification.

The Morse saddle types of the isolated Morse critical points involved in this process are characteristic
for the catastrophe. Thom’s Theorem provides an exhaustive list of “elementary catastrophes” (1, . . . , 5
control parameters), with canonical formulas for the catastrophe germs as well as for the perturbations
needed to describe their morsification [238, 239].

4.2.2 Catastrophe Theory and the Scale Space Paradigm

One should not carelessly transfer Thom’s results to scale space, since there is a nontrivial constraint to
be satisfied: Any scale space image, together with all admissible perturbations, must satisfy the isotropic
diffusion equation. Damon has shown how to extend the theory in this case in a systematic way [45].

If we restrict ourselves to generic situations only, and consider only “typical” input images that are
not subject to special conditions such as symmetries, things are actually fairly simple. Then the only
generic morsifications in scale space are creations and annihilations of pairs of Morse hyper-saddles of
opposite Hessian signature: they have opposite sign of the Hessian determinant evaluated at the location
of the critical point; for a proof, see Damon [45].

The description of topological events in Damon’s account follows the usual line of approach in
the literature and relies on an appropriate choice of so-called “canonical coordinates”. These are usu-
ally inconvenient in practice, unless an operational scheme relating them to user-defined coordinates is
provided. Mathematical accounts fail to be operational in the sense that—in typical cases—canonical
coordinates are at best proven to exist. Their mathematical construction often relies on manipulations
of the physically void trailing terms of a Taylor series expansion, in other words, on derivatives up to
infinite order, and consequently lacks an operational counterpart. Even if one were in the possession of
an algorithm one should realize that canonical coordinates are in fact local coordinates, with the fiducial
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origin placed at the point of interest. Each potential catastrophe in scale space would thus require an
independent construction of a canonical frame.

In summary, the canonical formalism is a line of approach that exploits suitably chosen coordinates.
It provides a way to approach topology if neither metrical relations nor numerical computations are of
interest. Thus its role is primarily to understand topology. In the next section we give a self-contained
summary of the canonical formalism for the generic cases of interest.

4.2.3 Canonical Formalism

The two critical points involved in a creation or annihilation event always have opposite Hessian signa-
ture, so that this signature may serve to define a conserved “topological charge” intrinsic to these critical
points.

It is clear (by definition!) that the charge of Morse critical points can never change, as this would re-
quire a zero-crossing of the Hessian determinant, violating the Morse criterion that all Hessian eigenval-
ues should be nonzero. Thus the interesting events are the interactions of charges within a neighbourhood
of a non-Morse critical point.

Definition 1 A Morse critical point is assigned a topological charge q = ±1 corresponding to the sign
of the Hessian determinant evaluated at that point. A regular point has zero topological charge. The
topological charge of a non-Morse critical point equals the sum of charges of all Morse critical points
involved in the morsification.

Definition 2 Denoting x = (x1, . . . , xn) for brevity, and identifying the first coordinate to be the “bad”
one, we define the catastrophe germs

gA(x1; t)
def
= x3

1 + 6x1t ,

gC(x1, x2; t)
def
= x3

1 − 6x1(x2
2 + t) ,

together with their perturbations

f A(x; t)
def
= gA(x1; t) +Q(x; t) ,

fC(x; t)
def
= gC(x1, x2; t) +Q(x; t) .

The quadric Q(x; t) is actually independent of x1 and is defined as follows:

Q(x; t)
def
=

n∑

k=2

εk
(
x2
k + 2t

)
,

in which each εk is either +1 or −1.

Note that germs as well as perturbations satisfy the diffusion equation

∂L

∂t
= ∆L , (4.1)

where L = L(x; t) and the so-called Laplacean ∆
def
= ∂2

x1
+ ∂2

x2
+ . . .+ ∂2

xn .



34 Chapter 4. Topological Structure

In the canonical formalism it is conjectured that, given a generic event in scale space, one can always
set up coordinates in such a way that the qualitative behaviour is summarised by one of the two “canonical
forms” given above. Any non-generic event can be perturbed yielding compounds of these generic
events.

Since one control parameter is present, the quadric does not depend on x1. At the location of the
catastrophe exactly one Hessian eigenvalue vanishes.

The forms fA and fC correspond to an annihilation and a creation event at the origin, respectively.
The latter requires n ≥ 2, so creations will not be observed in 1D signals.

Both types of events are referred to as fold catastrophes, again due to the fact that they both are
obtained be varying one control parameter. The diffusion equation imposes a constraint that manifests
itself in the asymmetry of these two canonical forms. In fact, whereas the annihilation event is relatively
straightforward, a subtlety can be observed in the creation event, viz. the fact that the possibility for
creations to occur requires space to be at least two-dimensional.

The A-Germ

Morsification of the A-germ of Definition 2 entails an annihilation of two critical points of opposite
charge as resolution is diminished.

Result 1 Recall Definition 2. For t < 0 we have two Morse critical points carrying opposite charge, for
t > 0 there are none. At t = 0 the two critical points collide and annihilate. The critical curves are
parametrised as follows:

P± : (x; t)± = (±
√
−2t, 0, . . . , 0; t) .

When defining the velocities of the points by ∂tP±, the rate of spatial displacement per unit t [170], it
follows directly that the critical points collide with infinite opposite velocities before they disappear. At
the origin both branches of critical curves are tangential to the (x1, t)-plane, and in fact approach each
other from opposite spatial directions tangential to t = 0, and—in this canonical case—perpendicular to
the zero-crossing of the Hessian determinant.

Thus one must be cautious and take the parametrisation into account if one aims to link correspond-
ing critical points near annihilation in numerical computations. The corresponding critical points are
separated by a distance of the order O(

√
δt) if δt is the “time-to-collision”, with time in the sense of the

scale evolution parameter of Eq. (4.1).
For 1D signals this summarises the analysis of generic events in scale space. For images there

are other possibilities, which are studied below. In 2D the present case describes the annihilation of a
minimum or maximum with a saddle. Minima cannot annihilate maxima, nor can saddles annihilate
each other. In 3D one has two distinct types of hyper-saddles, one with a positive and one with a negative
topological charge. Also minima and maxima have opposite charges in this case, and so there are various
possibilities for annihilation all consistent with charge conservation. However, charge conservation is
only a constraint and does not permit one to conclude that all events consistent with it will actually
occur. In fact, by continuity and genericity one easily appreciates that a Morse i-saddle can only interact
with a (i − 1)-saddle (i = 1, . . . , n), because one and only one Hessian eigenvalue is likely to change
sign when traversing the non-Morse point (i.e. the degenerate critical point) along the critical curve.
Genericity implies that sufficiently small perturbations will not affect the annihilation event qualitatively.
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It may undergo a small dislocation in scale space, but it is bound to occur. So in 3D images one is likely
to find annihilations of maxima with negative hyper-saddles, minima with positive hyper-saddles, and
positive hyper-saddles with negative hyper-saddles.

The C-Germ

Morsification of the C-germ of Definition 2 shows a creation of two critical points of opposite charge as
resolution is diminished. Note that this event is generic and doesn’t violate the causality principle that
is the core of scale space theory [139]. The event of interest here is the one occurring in the immediate
vicinity of the origin.

Result 2 Recall Definition 2. For t < 0 there are no Morse critical points in the immediate neighbour-
hood of the origin. At t = 0 two critical points of opposite charge emerge producing two critical curves
for t > 0. The critical curves are parametrised as follows:

P± : (x; t)± = (±
√

2t, 0, . . . , 0; t) .

Again charges are conserved, and again the emerging critical points escape their point of creation with
infinite opposite velocities. Genericity implies that creations will persist despite perturbations, and will
suffer at most a small displacement in scale space.

The Canonical Formalism: Summary

To summarise, creation and annihilation events together complete the list of possible generic catastro-
phes. The canonical formalism enables a fairly simple description of what can happen topologically.
However, canonical coordinates do not coincide with user-defined coordinates, and cease to be useful if
one aims to compute metrical properties of critical curves. This limitation led us to develop the covariant
formalism, which is presented in the next section.

4.2.4 Covariant Formalism

In practice the separation into “bad” and “nice” coordinate directions is not given. The actual realization
of canonical coordinates varies from point to point, a fact that might lead one to believe that it requires
an expensive procedure to handle catastrophes in scale space. However, the covariant formalism declines
from the explicit construction of canonical coordinates altogether. It allows us (i) to carry out computa-
tions in any user-defined coordinate system, and (ii) to compute metrical properties of topological events
(angles, directions, velocities, accelerations, etc.). It is often most convenient to employ a Cartesian
coordinate system, adjusted to the grid of the digital image, and we shall do so at the end of this section
in order to illustrate the results obtained. However, wherever we refrain from such an explicit choice the
results are valid using any other type of coordinates, as long as they are admissible in the sense of being
C∞-related to a Cartesian coordinate system by means of a locally defined homeomorphism; for details
cf. Spivak [232]. Note that this excludes, among others, polar coordinates2!

2Although inadmissible in the technical sense, polar coordinates can often be employed without problems due to the rel-
atively harmless singularity at the origin. However, our application of perturbation theory in what follows requires strict
regularity.
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The covariant formalism relies on tensor calculus. The only tensors we shall need are (i) metric tensor
gµν and its dual gµν (the components of which in a Cartesian frame equal the Kronecker symbol δµν , i.e.
1 if µ = ν, otherwise 0), (ii) Levi-Civita tensor εµ1...µn and its dual εµ1...µn in n dimensional space,
and (iii) covariant derivatives of the image. In a Cartesian frame the Levi-Civita tensor is defined as
the completely antisymmetric tensor with ε1,...,n = 1; from this any other nontrivial component follows
from permuting indices and toggling signs. Actually, we will only encounter products containing an even
number of Levi-Civita tensors, which can always be rewritten in terms of metric tensors only (see e.g.
Florack et al. [77] for details). One may substitute “partial derivative” for “covariant derivative” as long
as one sticks to Cartesian frames or rectilinear coordinates. (This is all we need below.) More details on
the abovementioned geometric concepts can be found in Spivak [232]. Wherever possible we will use
matrix notation to alleviate theoretical difficulties, so that familiarity with the tensor formalism is not
necessary.

(Covariant) derivatives at the fiducial origin can be extracted by linear filtering:

Lµ1...µk
def
= (−1)k

∫
dz f(z)φµ1...µk(z) . (4.2)

Here, (−1)k φµ1...µk(z) is the k-th order transposed derivative of the normalised Gaussian φ(z) with
respect to zµ1 , . . . , zµk , tuned to the location and scale of interest (these parameters have been left out
for notational simplicity), dz is the invariant spatial volume element – defined such that

∫
dzφ(z) = 1

irrespective of scale –, and f(z) represents the initial image. In particular, the components of the image
gradient and Hessian are denoted by Lµ and Lµν , respectively.

Distributional differentiation according to Eq. (4.2) is well-posed because it is actually integration.
Well-posedness admits discretisation and quantisation of Eq. (4.2), and guarantees that other sources of
small scale noise are not destructive. Of course the filters need to be realistic; for scale space filters
this means that one keeps their scales confined to a physically meaningful interval, and that one keeps
their differential order below an appropriate upper bound [24]. Equally important is the observation that
Eq. (4.2) makes differentiation operationally well-defined. One can actually extract derivatives from an
image in the first place, because things are arranged in such a way that, unlike with “classical” differenti-
ation and corresponding numerical differencing schemes, differentiation precedes discrete sampling. In
practice one will almost always calculate derivatives at all base points x in the image domain; in that case
Eq. (4.2) is replaced by a convolution: Lµ1...µk(x) = f ∗ φµ1...µk(x)—the minus sign is then implicit.

The ensemble of image derivatives up to k-th order provides a model of local image structure in a
full scale space neighbourhood, known as the local jet of order k [80, 91, 142, 148, 149, 212]. It is
necessary and sufficient to consider structure up to fourth order at the voxel3 of interest (the argument is
given below):

(4)

L (x; t) = L+ Lµ x
µ + 1

2Lµν x
µxν + ∆L t

+1
6Lµνρ x

µxνxρ + ∆Lµ x
µt+ 1

24Lµνρσ x
µxνxρxσ

+1
2∆Lµν x

µxνt+ 1
2∆2L t2 .

(4.3)

Summation convention applies to pairs of upper and lower indices. In particular, the n+1 constraints

3The term “voxel” refers to the volume element that corresponds to a grid point in scale space.



4.2 Theory 37

for the sub-voxel location of a non-Morse critical point can be approximated by




∇

(4)

L (x; t) ≈ 0 ,

det∇∇T
(4)

L (x; t) ≈ 0 .
(4.4)

It is understood that the coefficients of Eq. (4.3) are evaluated at a grid point somewhere near the
non-Morse critical point (such a point is easily found with grid precision, e.g. by the method of zero-
crossings). For a Morse critical point one simply leaves out the determinant constraint, leaving n (ap-
proximate) equations in n unknowns (and 1 scale parameter).

Let us investigate the system of Eqs. (4.3–4.4) in the immediate vicinity of a critical point of interest.
Assume that (x; t) = (0; 0) labels a fiducial grid point near the desired zero-crossings, i.e. the base
point for the numerical derivatives in Eqs. (4.2–4.3). Both gradient as well as Hessian determinant at
the corresponding (or any neighbouring) voxel will be small, though odds are that they are not exactly
zero. Then we know that Eq. (4.4) will be solved for (x; t) ≈ (0; 0), and we may use perturbation theory
for interpolation to establish a lowest order sub-voxel solution. Uniqueness is enforced by linearisation,
a legitimate method provided the assumption of genericity (an isolated creation or annihilation point)
is not violated. (The zero-crossings method, by the way, also tells us when we should look for Morse
critical points and discard the Hessian degeneracy constraint, viz. at voxels containing intersections of
the n gradient zero-crossings, but not on or near a Hessian zero-crossing.)

Returning to the issue of sufficiency and necessity of fourth order, note that (i) higher orders will
not contribute to the linearisation (sufficiency), whereas (ii) any further truncation will either lead to loss
of essential terms in the linear system, or to a violation of the diffusion constraint, Eq. (4.1), cf. [80]
(necessity). This readily follows by inspection of the linearisation procedure, the details of which are as
follows. Introduce a formal parameter ε ≈ 0 corresponding to the order of magnitude of the left hand
sides of Eq. (4.4) at the fiducial origin. Substitute (x; t) = ε (x1; t1) into Eq. (4.4) and collect terms of
order O(ε) (the terms of order zero vanish by construction). Absorbing the formal parameter back into
the scaled quantities the result is the following linear system:

{
Lµν x

ν + ∆Lµ t = −Lµ ,
L̃µνLµνρ x

ρ + L̃µν∆Lµν t = −‖Lµν‖ ,
(4.5)

in which the L̃µν are the components of the transposed cofactor matrix obtained from the Hessian (cf.
the appendix), and ‖Lµν‖ denotes the Hessian determinant4. The determinant constraint (last identity)
follows from a basic result in perturbation theory for matrices:

det(A + εB) = det A + ε tr (ÃB) +O(ε2) .

In Eq. (4.5) the coefficients and data on left and right hand sides can be obtained by any discrete imple-
mentation of the linear filtering of the initial image as defined by Eq. (4.2), so that we indeed have an
operationally defined interpolation scheme for locating critical points within the scale space continuum.
It is important to note that the system of Eq. (4.5) holds in any (admissible!) coordinate system (manifest
covariance), thus in particular in any Cartesian coordinate system.

4This abuse of notation—there are actually no free indices in ‖L µν‖—is common in classical tensor calculus.
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The next goal is to invert the system of Eq. (4.5) while maintaining manifest covariance. This
obviates the need for numerical inversions or the construction of canonical frames for every candidate
voxel in scale space, as is done for instance in Lindeberg’s approach [170]. Also for conceptual reasons
one may prefer explicit solutions over implicit ones that still require an inversion or Hessian eigensystem
analysis. The analytical inversion differs qualitatively for Morse and non-Morse critical points and so
we discuss the two cases separately.

It is convenient to rewrite Eq. (4.5) in matrix form with the help of the definitions

Hµν
def
= Lµν , (4.6)

wµ
def
= ∆Lµ , (4.7)

zµ
def
= LµνρL̃

νρ , (4.8)

gµ
def
= Lµ , (4.9)

c
def
= ∆LµνL̃

µν . (4.10)

Note that

H = ∇g , (4.11)

w = ∂tg , (4.12)

z = ∇det H , (4.13)

c = ∂t det H , (4.14)

i.e. all relevant information is contained in first order spatial and scale derivatives of the image’s gradient
and Hessian determinant, as it should.

With this notation the (n+ 1)× (n+ 1) coefficient matrix of Eq. (4.5) becomes

M
def
=

[
H w
zT c

]
, (4.15)

in terms of which the linear system of Eq. (4.5) can be rewritten as

M

[
x
t

]
= −

[
g

det H

]
. (4.16)

Morse Critical Points

For Morse critical points at fixed resolution the relevant subsystem in the hyper-plane t = 0 is

Hx = −g , (4.17)

but in fact we obtain a linear approximation of the critical curve through the Morse critical point of
interest if we allow scale to vary:

Hx = − (g + w t) . (4.18)

This can be easily generalised to any desired order.
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From Eq. (4.18) it follows that at level t = 0 the tangent to the critical curve in scale space is given
by [

x
t

]
=

[
x0

0

]
+

[
v
β

]
t (4.19)

in which the sub-voxel location of the Morse critical point is given by

x0 = −Hinvg , (4.20)

and its instantaneous scale space velocityby

[
v
β

]
=

[
−Hinvw

1

]
. (4.21)

Scale space velocity is an (n+1)-component quantity to be interpreted in the sense of a combined spatial
displacement per unit of t (first n components) and a scale displacement per unit of t (last component),
i.e. a vector plus a scalar quantity. Note that if scale is identified with t, then the last component reduces
to unity, and the spatial vector coincides with Lindeberg’s “drift velocity” [170]. This is, however, not a
good parametrisation at precisely those points that are of interest here (generic catastrophes).

Note that the path followed by Morse critical points is always transversal to the hyper-plane t = 0,
which is why we can set the scale component equal to unity. In other words, such critical points can never
vanish “just like that”; they necessarily have to change identity into a non-Morse variety. According to
Eq. (4.21), spatial drift velocity v becomes infinite as the point moves towards a degeneracy (odds are
that w remains nonzero), an observation already made by Lindeberg [170].

If we do not identify “time” with scale, but instead re-parametrise t = det H t′, then scale space
velocity—now defined as the displacement per unit of t′—becomes

[
v′

β′

]
=

[
−H̃w
det H

]
. (4.22)

With this refinement of the scale parameter the singularity is approached “horizontally” from a spatial
direction perpendicular to the null-space of the Hessian (note, e.g. by diagonalising the Hessian, that H̃
becomes singular, yet remains finite when eigenvalues of H degenerate). The trajectory of the critical
point continues smoothly through the catastrophe point, where its “temporal sense” is reversed. This
picture of the generic catastrophe captures the fact that there are always pairs of critical points of opposite
Hessian signature that “belong together”, either because they share a common fate (annihilation) or
because they have a common cause (creation). The two members of such a pair could therefore be seen as
manifestations of a single “topological particle” if one allows for a non-causal interpretation, in much the
same way as one can interpret positrons as instances of electrons upon time-reversal. The analogy with
particle physics can be pursued further, as Kalitzin points out, by modelling catastrophes in scale space
as interactions conserving a topological charge [131]. Indeed, charges are operationally well-defined
conserved quantities that add up under point interactions at non-Morse critical points, irrespective their
degree of degeneracy. This interpretation has the advantage that one can measure charges from spatial
surface integrals around the point of interest (by using Stokes’ theorem), thus obtaining a “summary” of
qualitative image structure in the interior irrespective of whether the enclosed critical points are generic
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or not, or even detectable as such. So far, however, Kalitzin’s approach has not been refined to the
sub-voxel domain, and does not give us a local parametrisation of the critical curve.

The perturbative approach can be extended to higher orders without essential difficulties, yielding
a local parametrisation of the critical curve of corresponding order. It remains a notorious problem to
find the optimal order in numerical sense, because it is clear that although the addition of yet another
order will reduce the formal truncation error due to the smaller Taylor tail discarded, it will at the same
time increment the amount of intrinsic noise due to the computation of higher order derivatives. It is
beyond the scope of this chapter to deal with this issue in detail; a point of departure may be Blom’s
study of noise propagation under simultaneous differentiation and blurring [24]. We restrict our attention
to lowest nontrivial order. For Morse critical points this is apparently third order, for catastrophe points
this will be seen to require fourth order derivatives.

If one knows the location of the catastrophe point one can find a similar critical curve parametrisation
in terms of the parameter t′, starting out from this catastrophe point instead of a Morse critical point. In
that case we first have to solve the catastrophe point localisation problem. It is clearly of interest to know
the parametrisation at the catastrophe point, since this will enable us to identify the two corresponding
branches of the Morse critical curves that are glued together precisely at this point. Our next objective
will be to find the location of the catastrophe point with sub-voxel precision, as well as geometric prop-
erties of the critical curve passing through. The additional scale degree of freedom obviously becomes
essential, because catastrophe points will typically be located in-between two pre-computed levels of
scale.

Catastrophe Points

For catastrophe points we must consider the full system of Eq. (4.16), since Eq. (4.20) breaks down at
degeneracies of the Hessian. A discrete zero-crossings method for g, respectively g and det H, is to be
preferred as a criterion for extracting the scale space voxels of interest, as it preserves connectivity and
avoids the arbitrariness of setting a threshold.

Recall Eq. (4.15). Let us rewrite the corresponding cofactor matrix, the Cartesian coefficients of
which are defined by (cf. the appendix)

M̃µν def
=

1

n!
εµµ1...µn ενν1...νn Mµ1ν1 . . .Mµnνn ,

into a similar block form:

M̃
def
=

[
H w
zT c

]
. (4.23)

By substitution one may verify that the defining equation M̃M = det M I(n+1)×(n+1) is satisfied iff the
coefficients are defined as follows:

H
µν def

= 1
(n−1)! ε

µµ1...µn−1 ενν1...νn−1 Hµ1ν1 . . .Hµn−2νn−2(
c Hµn−1νn−1 − (n−1) wµn−1zνn−1

)
,

wµ def
= − 1

(n−1)! ε
µµ1...µn−1 ενν1...νn−1 Hµ1ν1 . . .Hµn−1νn−1wν ,

zµ
def
= − 1

(n−1)! ε
µµ1...µn−1 ενν1...νn−1 Hµ1ν1 . . .Hµn−1νn−1zµ ,

c
def
= 1

n! ε
µ1...µn εν1...νn Hµ1ν1 . . .Hµnνn .
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In addition we have

det M =
1

n!
εµ1...µn εν1...νn Hµ1ν1 . . .Hµn−1νn−1 (c Hµnνn − nwµnzνn) .

In coordinate-free notation we have

z = −H̃z , (4.24)

w = −H̃w , (4.25)

c = det H (4.26)

Note that (w; c) = (v′;β′), recall Eq. (4.22). Finally, det M = c det H − tr (H̃wzT). At the location
of a critical point this is proportional to the scale space scalar product of the critical point’s scale space
velocity and the scale space normal to the Hessian zero-crossing (recall Eqs. (4.13–4.14), Eq. (4.22) and
the remark above):

det M = zT w + c c = wT z + c c . (4.27)

Theorem 1 (Transversality) At a catastrophe point the critical curve intersects the Hessian zero-crossing
transversally.

Proof of theorem 1 This readily follows by inspection of the tangent hyper-plane to the Hessian zero-
crossing,

zTx + c t = 0 , (4.28)

and the critical curve’s tangent vector, Eq. (4.22). The cosine of the angle of intersection follows from
Eq. (4.27), which is nonzero in the generic case: det M 6= 0 at catastrophe points; genericity implies
transversality. 2

With the established results it is now possible to invert the linear system of Eq. (4.16); just note that

Minv =
1

det M
M̃ , (4.29)

so that [
x
t

]
= − 1

det M

[
Hg + wc
zTg + c2

]
.

The expression is valid in any coordinate system as required. Note that the sign of det M subdivides the
image domain into regions to which all generic catastrophes are confined. In fact, the following lemma
holds.

Lemma 1 (Creations versus Annihilations) At annihilations we have det M < 0, at creations det M >
0.

One way to see this is to note that it holds for the canonical forms f A and fC of Definition 2. If we now
transform these under an arbitrary coordinate transformation, it is easily verified that the sign of det M
is preserved. An alternative proof based on geometric reasoning is given below.
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Proof of lemma 1 First consider an annihilation event, and recall Eqs. (4.13–4.14), and the geometric
interpretation of Eqs. (4.25) and (4.26) as the scale space velocity given by Eq. (4.22). As the topological
particle with positive charge (i.e. the Morse critical point with det H > 0) moves towards the catastrophe
(towards increasing scale), the magnitude of det H must necessarily decrease. By the same token, as the
anti-particle (det H < 0) moves away from the catastrophe (towards decreasing scale), the magnitude
of det H must decrease as well. But recall that at the catastrophe det M = zT w is just the directional
derivative of det H in the direction of motion as indicated. Therefore det M < 0.

Next consider a creation event. The positive particle now escapes the singularity in the positive scale
direction, whereas the negative particle approaches it in the negative scale direction, so that along the
prescribed path det H must necessarily increase. In other words, det M > 0 at the catastrophe. This
completes the proof. 2

The lemma is a special case of the following, more general result, which gives us the curvature of the
critical curve at the catastrophe.

Theorem 2 (Critical Path) At the location of a generic catastrophe the critical curve satisfies

t =
1

2

1

det M

(
zTx

)2
+O(‖x‖3, ‖x‖ t, t2) .

The curvature of the critical curve at the catastrophe is given by

κcatastrophe =
det M

wTw
.

Proof of theorem 2 Consider the local 3-jet expansion at the location of a generic catastrophe:



∇

(3)

L (x; t) ≈ 0 ,

det∇∇T
(3)

L (x; t) ≈ 0 ,

in which Lµ = 0 and ‖Lµν‖ = 0. From this it follows that along the critical curve through the catastro-
phe

∆Lµt = −Lµνxν−
1

2
Lµνρx

νxρ+O(‖x‖3, ‖x‖ t, t2) .

Contraction with L̃µν and ignoring O-terms yields

L̃µν∆Lµt = −L̃µνLµνxν−
1

2
L̃µνLµνρx

νxρ .

Noting that L̃µνLµν = det H In×n = 0 at the catastrophe and using Eqs. (4.6 - 4.8), and (4.25), we
have

wνt =
1

2
(zρx

ρ)xν .

Contraction with zν , and using Eq. (4.24) yields

zTw tcatastrophe =
1

2

(
zTx

)2
.

Recall that zTw = det M at a catastrophe point, so that the first result follows. Twofold differentiation
in w-direction produces the curvature expression. Note that this is a dimensionless quantity. 2
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Explicit Results from the Covariant Formalism

Having established covariant expressions we have drawn several geometric conclusions that do not follow
from the canonical formalism. Here we give a few more examples, using explicit Cartesian coordinates
in 2D. Then x = (x , y) and

H =

[
Lxx Lxy
Lxy Lyy

]
, (4.30)

w =

[
Lxxx + Lxyy
Lxxy + Lyyy

]
, (4.31)

z =

[
LxxxLyy + LxxLxyy − 2LxyLxxy
LyyyLxx + LyyLxxy − 2LxyLxyy

]
, (4.32)

c = Lxx(Lxxyy + Lyyyy) + Lyy(Lxxxx + Lxxyy)− 2Lxy(Lxxxy + Lxyyy) , (4.33)

and

H̃ =

[
Lyy −Lxy
−Lxy Lxx

]
. (4.34)

Expressions for w, z, M̃, M, and H̃ can be calculated straightforwardly.

Example 1 At any point on the critical curve—including the catastrophe point—any scale space tangent
vector is proportional to the regularised scale space velocity given by Eq. (4.22). In 2D Cartesian
coordinates we have




v′x
v′y
β′


=




(Lxxy+Lyyy)Lxy − (Lxxx+Lxyy)Lyy
(Lxxx+Lxyy)Lxy − (Lxxy+Lyyy)Lxx

LxxLyy − L2
xy


 .

Recall that the prime indicates that velocity is to be interpreted as the displacement in scale space per
unit of re-parametrised scale t′ = t/det H.

Example 2 In 2D the tangent plane to the Hessian zero-crossing in scale space is given by the following
equation in any Cartesian coordinate system:

(LxxxLyy + LxxLxyy − 2LxyLxxy)x+ (LyyyLxx + LyyLxxy − 2LxyLxyy) y+

((Lxxyy + Lyyyy)Lxx + (Lxxxx + Lxxyy)Lyy +−2(Lxxxy + Lxyyy)Lxy) t = 0 .

Example 3 In a full (2+1)D scale space neighbourhood of an annihilation (creation) the following
differential invariant always has a negative (positive) value:

det M =

([Lxxyy+Lyyyy]Lxx + [Lxxxx+Lxxyy]Lyy

−2[Lxxxy+Lxyyy]Lxy)(LxxLyy−L2
xy)

−{Lxx[Lxxy+Lyyy][LyyyLxx+LyyLxxy − 2LxyLxyy]

+Lyy[Lxxx+Lxyy][LxxxLyy+LxxLxyy − 2LxyLxxy]

−Lxy([Lxxx+Lxyy][LyyyLxx+LyyLxxy−2LxyLxyy]

+[Lxxy+Lyyy][LxxxLyy+LxxLxyy−2LxyLxxy])}
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The expressions in Cartesian coordinate systems are a bit complicated, but nevertheless follow straight-
forwardly from their condensed covariant counterparts, which at the same time illustrates the power of
the covariant formalism. Moreover, they are easily computed in terms of basic algebraic combinations
of the outputs of a small number of image convolutions, just recall Eq. (4.2). In the next section we will
apply these results to several images.

4.3 Experimental Results

In our experiments we used a 64 × 64 sub-images of a 256 × 256 MR scan (Figure 4.1, top row), a CT
scan (Figure 4.1, middle row), and a 64 × 64 artificial image containing only N(0,10) Gaussian noise,
i.e. zero mean and standard deviation σ = 10 (Figure 4.1, bottom row).

4.3.1 Visualisation of zT and w

As an example of the vectors w (see Eq. (4.25)) and zT (see Eq. (4.13)) we selected two critical points of
the MR image (Figure 4.1b) at scale σ = 2.46. This image with its critical points is shown in Figure 4.2a.
Extrema (saddle points) are visualised by the white (black) dots. At the upper middle part of this image
a critical isophote generated by a saddle and enclosing two extrema is shown (see also Figure 4.2b). At
a larger scale the saddle point will annihilate with the upper one of these extrema. At these two points
we have calculated the direction and magnitude of the vectors w and zT. The vectors are shown on these
points at two successive scales σ = 2.46 (Figure 4.2c) and σ = 2.83 (Figure 4.2d). Indeed the velocity
(given by w) of the extremum (dark arrow at the white dot) is in the direction of the saddle, and thus in
the direction of the point of annihilation. The velocity vector at the saddle has the same direction, as the
result of the parametrisation by Eq. (4.25).

Furthermore, since the point where the annihilation takes place (at det H = 0) is between the two
critical points, the vector zT, which is the normal vector (recall Eq. (4.15)) to the zero-crossing of det H,
directs from the saddle towards the extremum both at the saddle and the extremum.

Finally, it can be seen that the vectors of zT and w at the critical points have an angle of more than π
2 .

Since det M is the inner product of these vectors at a catastrophe (see Eq. (4.27)), this leads to a negative
sign of det M, indicating that the two critical points approach each other and disappear eventually.

4.3.2 Location of the Catastrophe

Although the location of the critical points at the image can easily be calculated by using the zero-
crossings of the derivatives, the sub-pixel position of the catastrophe point in scale space requires inver-
sion of the complete linear system, Eq. (4.16), yielding Eq. (4.29). As an example we took the same
two critical points as in the previous section. The resulting vectors of 4 successive scales for the MR
sub-image (Figure 4.2c) are shown in Figure 4.3. At each pixel the projection of the vector on the spatial
plane is shown. A bright (dark) arrow denotes a positive (negative) scale-coordinate. The approximate
location of the catastrophe can be found with sub-pixel precision by averaging the arrows as shown in
Table 4.1. The black dot in Figure 4.3 is located at the estimated position of the catastrophe, the ellipse
shows the standard deviation of the estimation.

Below the catastrophe-scale the location is accurate whereas at a scale above it (at σ = 3.32, see
Figure 4.3h) the estimated location turns out to be more uncertain. The estimation of the t-coordinate
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Figure 4.1: Top row: Left) Original 256 × 256 pixel MR image. Right) 64 × 64 pixel sub-image.
Middle row: Left) Original 256 × 256 pixel CT image. Right) 64 × 64 pixel sub-image. Bottom row:
64 × 64 artificial Gaussian N(0,10) noise image.
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Figure 4.2: a) Critical points (extrema white, saddles black) of Figure 4.1b at scale σ = 2.46. At the
field of interest the critical isophote through a saddle is shown; b) sub-image of a, showing the field of
interest more clearly. The saddle is about to annihilate with the upper extremum; c) Sub-image of the
two annihilating critical points and the vectors of w (dark) and zT (bright) at scale σ = 2.46; d) Same,
at scale σ = 2.83.

Figure 4.3: Visualisation of Eq. (4.29) of the vector (x, y); a bright (dark) arrow signifies a positive
(negative) value of the t-component. The black dot is located at the mean value of the inner 15 arrows,
the ellipse shows the standard deviation (see Table 4.1). First row: a: scale σ = 2.34; b: scale
σ = 2.46; c: scale σ = 2.59; d: scale σ = 2.72. Second row: e: scale σ = 2.86; f: scale σ = 3.00;
g: scale σ = 3.16, a catastrophe has occurred; h: scale σ = 3.32.
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scale x-coordinate y-coordinate t-coordinate estimated scale

2.34 0.48 ± 1.27 −0.11 ± 6.54 0.63 ± 3.76 2.60 ± 1.45
2.46 0.87 ± 0.40 1.83 ± 1.27 1.59 ± 0.66 3.04 ± 0.22
2.59 0.89 ± 0.34 1.73 ± 0.80 1.34 ± 0.45 3.06 ± 0.15
2.72 0.92 ± 0.29 1.73 ± 0.58 1.11 ± 0.43 3.10 ± 0.14
2.86 0.96 ± 0.25 1.76 ± 0.43 0.82 ± 0.48 3.13 ± 0.15
3.00 0.99 ± 0.27 1.80 ± 0.50 0.47 ± 0.60 3.16 ± 0.19
3.16 1.02 ± 0.38 1.84 ± 0.92 −0.0057 ± 0.79 3.16 ± 0.25
3.32 1.05 ± 0.60 1.86 ± 1.67 −0.64 ± 1.11 3.12 ± 0.35

Table 4.1: Estimation of the location of the catastrophe, as an average of the 15 arrows in the rectangle
spanned by the two critical points of Figure 4.3a. The origin in the (x, y)-plane is fixed for all figures at
the middle of the saddle (black square) of Figure 4.3a. The average value of the t-direction is positive
below catastrophe scale and negative above it.

is positive below catastrophe-scale and negative above, as expected. The standard deviation is largely
influenced by the cells that are distant from the critical curve, which also can be seen in Fig 4.3h. Since
the relation between scale σ and coordinate t is given by t = 1

2σ
2, we can easily calculate the estimated

scale σest =
√
σ2 + 2tcalc with error δσest = ∂tσest · δtcalc = δtcalc/σest.

By slightly increasing scales the catastrophe is experimentally found between the scales 3.050 and
3.053, which is covered by all estimated scales in Table 4.1. Since the estimation is a linear approxima-
tion of the top of a curve, a small overestimation (here: a tenth of a pixel) is expected and indeed found
in this case. In summary the location of the catastrophe point can be pinched down by linear estimation
with sub-pixel precision.

4.3.3 Fraction of the Area Where det M > 0

Since creations can only occur at det M > 0, we calculated the number of pixels at the three different
images (Figures 4.1a, c and e) where this invariant is positive. If we for the moment assume that all
elements of the matrix M are independent of each other, the distribution of catastrophes is in some sense
random in the image, just as the distribution of extrema and saddle points, discriminated by the areas
det H > 0 and det H < 0, respectively. However, since annihilations are supposed to occur more often
and the derivatives up to third and fourth order are not independent since they have to satisfy the heat
equation, we expect the area where det M > 0 to be small. In the following figures we show this fraction
as a percentage of the total area of the image.

For the MR image we see relative areas up to 0.12 (Figure 4.4, top-left). Furthermore the number of
critical points decreases logarithmically with scale (Figure 4.4, top-right). The slope is −1.76± .01. An
a priori estimation value is -2, see e.g. Florack’s monograph [65].

In Figure 4.5 the image of the sign of det M of the MR-subimage (Figure 4.1b) is shown at four
successive scales. It appears that the locations of the image where det M is positive are relatively small
isolated areas.

For the CT image we see more or less the same results (Figure 4.4, second row): the fraction where
det M is positive is a bit higher at small scales (σ < 2.22, the value 40 at the horizontal axis) and a bit



48 Chapter 4. Topological Structure

0 20 40 60 80
50 Log of scale

0.04

0.06

0.08

0.1

0.12

fr
ac

tio
n

de
tM

>
0

MR image

0 20 40 60 80
50 Log of scale

1.5
2

2.5
3

3.5
4

4.5
5

Lo
g

nu
m

be
r

of
ex

tr
em

a

MR image

0 20 40 60 80
50 Log of scale

0.04

0.06

0.08

0.1

0.12

fr
ac

tio
n

de
tM

>
0

CT image

0 20 40 60 80
50 Log of scale

1.5
2

2.5
3

3.5
4

4.5
5

Lo
g

nu
m

be
r

of
ex

tr
em

a
CT image

0 20 40 60 80 100
50 Log of scale

0.04

0.06

0.08

0.1

0.12

fr
ac

tio
n

de
tM

>
0

Noise image

0 20 40 60 80 100
50 Log of scale

1.5
2

2.5
3

3.5
4

4.5
5

Lo
g

nu
m

be
r

of
ex

tr
em

a

Noise image

Figure 4.4: Results of calculations; scales vary from e1/50 to e90/50; First row: MR image; Second row:
CT image; Third row: artificial noise image. First column: Fraction of det M > 0, ranging from 0.04
to 0.12 for the MR and CT image, and less for the artificial noise image; Second column: Logarithm of
the number of critical points, with slopes −1.76± .01, −1.74± .02, and −1.84± .01, respectively.
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Figure 4.5: In white the area where det M > 0. a) At scale σ = 1.57, corresponding to the value 22.5
on the horizontal axis of Figure 4.4. b) At scale σ = 2.46 (value 45). c) At scale σ = 3.866 (value 67.5).
d) At scale σ = 6.05 (value 90).

smaller at high scales. The slope of graph of the logarithm of the number of critical points at increasing
scale is found to be −1.74± 0.02.

At the noise image the relative area where det M > 0 is significantly smaller than at the MR and CT
images. This might indicate that creations require some semi-global structure (like a ridge), that is very
unlikely in a noise image. The logarithm of the number of extrema has a slope of −1.84 ± .01 (Figure
4.4, bottom-right), which is closer to the expected value -2 than the slope at the MR and CT image. This
might also be caused by the lack of structure in the noise image.

4.3.4 Estimation of the Area Where det M > 0

In the previous section the fraction of the area where det M > 0 was found to be ranging from 0.04 to
0.12. A mathematical survey on the sign of det M might show the expectation of creations. At non-
Morse points this invariant can be simplified considerably. If the Hessian becomes singular, the rows
(or, equivalently the columns) are dependent of each other, i.e. (Lxx , Lxy) = λ(Lxy , Lyy). Therefore5

Lxx = λ2Lyy and Lxy = λLyy. So in general, the Hessian and its transposed co-factor matrix at a
catastrophe can be described by

H =

[
λ2 λ
λ 1

]
Lyy , H̃ =

[
1 −λ
−λ λ2

]
Lyy (4.35)

The second order Taylor expansion of the image now reads 1
2λ

2Lyy x
2 + λLyy x y + Lyy y

2 which
reduces to 1

2Lyy (λx+ y)2. The parameter λ depends on the rotation between the axes of the covariant
and the canonical coordinates. If these coincide we have λ = 0, i.e. both Lxx and Lxy are zero, see
Definition 2). With Eq. (4.35) the explicit form of det M at a catastrophe in 2D reduces significantly to

det M = L2
yy(Lxxx − 3λLxxy + 3λ2Lxyy − λ3Lyyy)(−Lxxx + λLxxy − Lxyy + λLyyy) (4.36)

Equation (4.36) shows that the sign of det M only depends on third order derivatives and the orientation
of the critical curve, as determined by λ. If we assume that all third order derivatives are independent, the

5The choice ofLyy as leading term is of minor importance, we could just as well have chosen µ(Lxx , Lxy) = (Lxy , Lyy),
leading to Lyy = µ2Lxx and Lxy = µLxx, which would be particularly prudent if Lyy is close to zero.
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Figure 4.6: Left: Cosine of the angle of planes given by Eq. (4.37). Right: Fraction of the 4D
(Lxxx, Lxxy, Lxyy, Lyyy)-space where det M is smaller than zero.

zerocrossings of equation (4.36) can be regarded as the union of two linear planes in the 4-dimensional
(Lxxx, Lxxy, Lxyy, Lyyy) space. The planes divide this space into 4 subspaces where the determinant is
either positive or negative, whereas any point on the planes leads to det M = 0. The normal vectors to
these planes are given by n1 = (1,−3λ, 3λ2,−λ3) and n2 = (−1, λ,−1, λ). The factor L2

yy does not
change the sign of the determinant. By definition we then have

cosφ =
n1 · n2

‖n1‖ · ‖n2‖
= − 1 + 6λ2 + λ4

√
(2 + 2λ2)(1 + 9λ2 + 9λ4 + λ6)

(4.37)

This angle is invariant with respect to the transformations λ → −λ and λ → 1
λ . Figure 4.6a shows the

cosine of the angle for different values of λ.

Lemma 2 The fraction µ of the space of third order derivatives where creations can occur is bounded
by 1

π arccos(2
5

√
5) ≤ µ ≤ 1

4 .

Proof of lemma 2 The fraction of the space where annihilations can occur is given by the fraction of
the image where det M < 0 and det H = 0. Since Eq. (4.37) is negative definite and φ ∈ [0 , π],
the fraction φ

π gives the fraction of the space where annihilations can occur. This fraction varies from
3
4 at both λ = 0 and λ → ∞, to 1

π arccos(−2
5

√
5) ≈ 0.852 . . . at λ = 1, which follow directly from

differentiation, see also Figure 4.6b. Equivalently, creations can occur in at most 1
4 of all possible tuples

(Lxxx, Lxxy, Lxyy, Lyyy). 2

The usual generic events, e.g. discussed by Damon [45] and others [124], correspond to the case λ = 0.
In the canonical coordinates the equations Definition 2) are found. Then Eq. (4.36) reduces to det M =
−L2

yy Lxxx (Lxxx+Lxyy) and it can easily be seen that the fraction of the space is 1
4 , i.e. in only a quarter

of the possible values of Lxxx and Lxyy a creation can occur.

4.4 Conclusion and Discussion

We have described the deep structure of a scale space image in terms of an operational scheme to charac-
terise, detect and localise critical points in scale space. The characterisation pertains to local geometrical
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properties of the scale traces of individual critical points (locations, angles, directions, velocities, accel-
erations), as well as to topological ones. The latter fall into two categories, local and bilocal properties.
The characteristic local property of a critical point is determined by its Hessian signature (Morse i-saddle
or catastrophe point), which in turn defines its topological charge. The fact that pairs of critical points
of opposite charge can be created or annihilated as resolution decreases determines bilocal connections;
such pairs of critical points can be labelled according to their common fate or cause, i.e. they can be
linked to their corresponding catastrophe (annihilation, respectively creation). Close to such catastro-
phes, empirically observed properties of the critical points are consistent with the presented theory. The
location of catastrophes in scale space can be found with subpixel accuracy. The approximate location
of an annihilation and the idea of scale space velocity have been visualised.

The possibility to establish links is probably the most important topological feature provided by the
Gaussian scale space paradigm. Because bifurcations in a link-tree ideally reflect the morsifications of
the catastrophes in scale space (as these determine the unfolding of topological structure over scale), the
results of this study can be used to establish a rigorous mathematical underpinning of various multireso-
lution techniques that are used in image analysis.

Conceptually a scale space representation is a continuous model imposed on a discrete set of pixel
data. The events of topological interest in this scale space representation are clearly the catastrophe
points, and the question presents itself whether these discrete events in turn suffice to define a com-
plete and robust discrete representation of the continuous scale space image (possibly up to a trivial
invariance). An important role is played by creations. In general, more annihilations than creations are
observed, because creations need a “special structure” of the neighbourhood. This is also indicated by the
results of the test images. In the 1D case it has been proven to be possible to reconstruct the initial image
data from its scale space catastrophe points, at least in principle [129], but the problem of robustness
and the extension to higher dimensions is still unsolved. The solution to this problem affects multireso-
lution schemes for applications beyond image segmentation, such as registration, coding, compression,
etc. The experimental reconstructions shown by Nielsen and Lillholm [198] are promising results in this
context.

4.5 Appendix: Determinants and Cofactor Matrices

Definition 3 Let A be a square n × n matrix with components aµν . Then we define the transposed
cofactor matrix Ã as follows. In order to obtain the matrix entry ãµν skip the µ-th column and ν-th
row of A, evaluate the determinant of the resulting submatrix, and multiply by (−1)µ+ν (“checkerboard
pattern”). Or, using tensor notation,

Ãµν def
= 1

(n−1)! ε
µµ1...µn−1 ενν1...νn−1 Aµ1ν1 . . .Aµn−1νn−1 .

By construction we have AÃ = det A I. Note that if the components of A are indexed by lower indices,
then by convention one uses upper indices for those of Ã (vice versa). Furthermore, it is important for the
considerations in this chapter to observe that the transposed cofactor matrix is always well-defined, and
that its components are homogeneous polynomial combinations of those of the original matrix of degree
n−1. In the nonsingular case one has Ã = det A Ainv; transposed cofactor matrix equals inverse matrix
times determinant. See e.g. Strang [235].
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CHAPTER 5

Scale Space Hierarchy

It requires a very unusual mind to
undertake the analysis of the
obvious.

ALFRED NORTH WHITEHEAD

abstract We investigate the deep structure of a scale space image. We concentrate on scale space
critical points – points with vanishing gradient with respect to both spatial and scale direction. We show
that these points are always saddle points. They turn out to be extremely useful, since the iso-intensity
manifolds through these points provide a scale space hierarchy tree and induce a “pre-segmentation”: a
segmentation without a priori knowledge. Furthermore, both these scale space saddles and the so-called
catastrophe points form the critical points of the parameterised critical curves – the curves along which
the spatial critical points move in scale space. This enables one to localise these two types of special
points relatively easy and automatically. Experimental results concerning the hierarchical representation
and pre-segmentation are given and show results that correspond to a fair degree to both the mathematical
and the intuitive forecast.

5.1 Introduction

5.1.1 Scale Space

One way to understand the structure of an image is to embed it in a one-parameter family. If a scale-
parametrised Gaussian filter is applied, the parameter can be regarded as the “scale” or the “resolution”
at which the image is observed. The resulting structure has become known as linear, or Gaussian, scale



54 Chapter 5. Scale Space Hierarchy

space. In view of the rich literature on this subject we will henceforth assume familiarity with the basics
of Gaussian scale-space theory [65, 106, 119, 139, 174, 208, 233, 245, 247, 249].

5.1.2 Deep Structure

In their original accounts both Koenderink [139] and Witkin [249] proposed to investigate the “deep
structure” of an image, i.e. structure at all levels of resolution simultaneously. Encouraged by the results
in specific image analysis applications, an increasing interest has recently emerged in trying to establish
a generic underpinning of deep structure. This may serve as a basis for a diversity of multiresolution
schemes. Such bottom-up approaches often rely on catastrophe theory [6, 91, 184, 212, 238, 239],
which is now fairly well-established in the context of the scale-space paradigm.

5.1.3 Related Work

The application of catastrophe theory in Gaussian scale space has been studied by Damon [45]—probably
the most comprehensive account on the subject—as well as by many others [95, 98, 124, 126, 128, 129,
130, 140, 144, 145, 146, 147, 168, 169, 170, 174, 206, 216].

An important stage in using the deep structure is to link image properties of two subsequent res-
olution scales. Although this may seem obvious, it is a non-trivial task in a discrete scale space. For
example, if extrema at different scales correspond to an extremum at the input image, they should be
linked. However, extrema may be annihilated or created. Tracking over scale therefore needs a cautious
approach.

Koenderink [139] mentioned a possible linking strategy using the properties of the Gaussian scale
space. Only a few heuristic attempts have been made to build such multi-scale datastructures.

Vincken et al. constructed a hyperstack segmentation algorithm [242]. Simmons et al. [230] used
the idea of Koenderink’s scheme for building a so-called extremum stack. Their work was an extension
of the results by Lifshitz and Pizer [168], who implemented Koenderink’s scheme, mainly focusing on
heuristics and the performance of the algorithm.

The idea of tracing critical points and using the location where they vanish as input for a hierarchy
tree was also proposed and implemented by Zhao and Iijima [258], cited in [248], and by Wada and
Sato [244].

Olsen implemented a segmentation algorithm based on multi-scale watersheds [204, 206, 207].
These datastructures generally use the property of annihilation of extrema at increasing scale. How-

ever, the possibility of creations is ignored and consequently not implemented.
As an outcome of the use of catastrophe theory, much effort has been put into investigation of

annihilations. It has commonly been accepted that these special points form the crux in understand-
ing the deep structure, although it is not clear how to use them. It has been argued by several au-
thors [113, 139, 168, 170, 174], to use the intensity at the annihilation point. Preliminary results of this
chapter were given by Kuijper and Florack in [157].

5.1.4 Aim

The aim of this chapter is to investigate the deep structure of Gaussian scale spaces. We show that this
results in an unambiguous hierarchical representation of an arbitrary image. For that reason we combine
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knowledge from catastrophe theory, the multi-scale linking strategy as suggested by Koenderink [139],
and properties of linear scale space. For that reason we introduce the so-called scale space saddles. In
section 5.2 we show that these scale space saddles are the key to explore the deep structure of scale
space images. They give rise to an unambiguous multi-scale hierarchy describing the image. Images in
one dimension fundamentally differ from those in higher dimensions, since only in 1D images the scale
space saddles coincide with the catastrophe points. Therefore both cases are discussed separately. In the
appendix we clarify the theory by discussing the generic annihilation event and the appearance of scale
space saddles in its neighbourhood. The scale space saddle approach leads to a non-heuristic hierarchical
multi-scale data structure and a segmentation of images without any a priori knowledge and is presented
in Section 5.3. Several examples of our approach on simple artificial images and a 2D MR image are
shown in Section 5.4. Main conclusions and results are given in section 5.5.

5.2 Theory

The linearity of a Gaussian scale space enables us to treat the scale parameter as a special variable. For
that purpose we describe in this section relevant results known from the literature (Section 5.2.1) and
present new theory based on the critical points in scale space (Section 5.2.2), critical curves (Section
5.2.3), and iso-intensity manifolds (Section 5.2.4), for which purpose we need the following definitions:

Definition 4 L(x),x ∈ IRn, denotes an arbitrary n-dimensional image. We will refer to this image as
the initial image.

Definition 5 L(x; t), (x; t) ∈ (IRn; IR+) denotes the (n + 1)-dimensional Gaussian scale space image
of L(x), i.e. limt↓0 L(x; t) = L(x).

Definition 6 Spatial critical points, i.e. saddles and extrema (maxima or minima), at a certain scale t0
of L(x; t) are defined as the points at fixed scale t0 where the spatial derivatives vanish: ∇L(x; t0) = 0.
We will refer to these points as spatial critical points to distinguish them from scale space critical points,
see Definition 7.

Definition 7 Scale space critical points of L(x; t) are defined as the points where both the spatial deriva-
tives and scale derivative vanish: ∇L(x; t) = 0 and ∂tL(x; t) = 0. Since for Gaussian scale spaces the
diffusion equation holds, the latter equation equals ∆L(x; t) = 0, denoting a zero Laplacean.

Definition 8 A critical curve is a one dimensional manifold in the (x; t) (scale) space on which∇L(x; t) =
0.

Note that the intersection of all critical curves with a certain scale space level t0 results in the spatial
critical points of L(x; t0).

Definition 9 The Hessian is the matrix of second order spatial derivatives: H = ∇∇TL.

Definition 10 A branch of a critical curve is a subset of a critical curve on which the sign of determinant
of the Hessian doesn’t change.

Definition 11 A Iso-intensity manifold is an n-dimensional manifold in the (x; t) scale space on which
L(x; t) = c, c ∈ IR.
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5.2.1 Deep Structure in Gaussian Scale Space

Catastrophe Theory

The behaviour of critical points as the (scale) parameter changes is described by catastrophe theory. As
the parameter continuously changes, the critical points move along critical curves. If the determinant
of the Hessian does not become zero, these critical points are called Morse critical points. In a typical
image these points are extrema (minima and maxima) or saddles. The Morse lemma states that the
topology of a neighbourhood of a Morse critical point can essentially be described by a second order
polynomial. At isolated points on a critical curve the determinant of the Hessian may become zero.
These points are called non-Morse points. As described by Thom’s theorem [238, 239], neighbourhoods
of such points need mth-order polynomial, where m > 2. These polynomials are called the catastrophe
germs. If an image is slightly perturbed, the Morse critical points may undergo a small displacement, but
qualitatively nothing happens to them. A non-Morse point, however, will change. It will split into a non-
Morse point that can be described by a polynomial of lower order and a number of Morse critical points,
or solely into Morse critical points. This event is called morsification. Thom’s theorem provides a list of
elementary catastrophes with canonical formulas1 for the catastrophe germs and the perturbations. The
Thom splitting lemma states that canonical coordinates exist in which these events can be described. In
general, these “curved” coordinates don’t coincide with the user-defined (usually Cartesian) coordinates,
but are used for notational convenience. In Gaussian scale space the only generic events are annihilations
and creations of a pair of Morse points: an extremum and a saddle in the 2D case. All other events can
be split into a combination of one of these events and one “in which nothing happens”. See Damon [45]
for a proof. Canonical descriptions of these events are given by the following formulae:

fA(x; t)
def
= x3

1 + 6x1t+Q(x2, . . . , xn; t) (5.1)

fC(x; t)
def
= x3

1 − 6x1(x2
2 + t) +Q(x2, . . . , xn; t), (5.2)

where for all ai 6= 0, Q is defined by

Q(x2, . . . , xn; t)
def
=

n∑

i=2

ai
(
x2
i + 2t

)

with
∑n
i=2 ai 6= 0 and ai 6= 0, 2 ≤ i ≤ n. Note that Eq. (5.1) and Eq. (5.2), describing annihilation and

creation respectively, satisfy the diffusion equation

∂L

∂t
= ∆L . (5.3)

It can be verified that the form f A(x1,y; t), with y = (x2, . . . , xn), corresponds to an annihilation at
the origin via the critical path (

√
−2t , 0 ; t) , t ≤ 0, and f C(x1,y; t) to a creation via the critical path

(
√

2t , 0 ; t) , t ≥ 0.
Note that creations are generic. They are not sometimes temporarily created, nor false extrema, nor

pathological cases, although it is true that they are not as frequently encountered as annihilations.

In 1-D images only annihilations occur. Then Eq. (5.1) becomes f A(x; t)
def
= x3 + 6xt. See e.g.

Lindeberg [174] for a proof.

1Notation due to Gilmore [91]. Also the terminology normal forms is used in the literature, e.g. by Poston and Steward [212].
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Extremum Principle and Iso-Intensity Manifolds

A consequence of the Gaussian scale space representation is the strong smoothing property, usually men-
tioned for its non-enhancement of local extrema. It corresponds to the extremum principle for parabolic
differential equations:

If at a certain scale t0 > 0 a point x0 is a local maximum (minimum) of the function
L(x; t0), then the Laplacean ∆L(x0; t0) at this point is negative (positive). This means that
∂tL(x0; t0) is strictly negative (positive).

In other words, small local variations will be suppressed. See e.g. Lindeberg [174] or Weickert [245] for
more details.

As a result, the structure of iso-intensity manifolds in scale space close to an extremum is dome-
shaped: At some scale an extremum, e.g. a maximum, is encapsulated by iso-intensity manifolds (isophotes
in 2D), topologically equivalent to spheres (circles in 2D). The intensity of each of these manifolds is
smaller than that of the maximum. Due to the extremum principle the intensity of the maximum de-
creases with increasing scale. At a certain scale the intensity of the maximum will equal the intensity
of some manifold. Alternatively, the shape of the intersection of the image at increasing scales and the
iso-intensity manifold shrinks until it coincides at certain scale with the maximum and then disappears.
In 2D this can easily be visualised by a set of circles contracting to the maximum at increasing scale: that
is, the iso-intensity manifold is dome-shaped. The top of the dome corresponds to the disappearance of
the iso-intensity manifold around this extremum. See Figure 5.1 for an example of various iso-intensity
manifolds.

Since the image at sufficiently large scale contains only one extremum (see [182]), the evolution of
extrema induces a family of iso-intensity domes, nested like onion peels.

5.2.2 Scale Space Critical Points

Since scale provides an extra dimension to the initial image, interesting features are to be expected from
the critical points of the scale space image as defined by Definition 7. In this and the following sections
we present novel theory regarding these points.

The scale space critical points are defined as the points in scale space with zero gradient and zero
Laplacean: {

∇L(x; t) = 0
∆L(x; t) = 0

since ∂tL(x; t)
def
= ∆L(x; t). The type of these scale space critical points is determined by the eigen-

values of the matrix of second order derivatives in scale space, H. We call this matrix the extended
Hessian:

H =

(
H ∆∇L

(∆∇L)T ∆∆L

)
. (5.4)

Here H is the (spatial) Hessian. All derivatives are evaluated at the location of the scale space critical
point of interest. Points are maxima (minima) if all eigenvalues are negative (positive). If at least two
eigenvalues have a different sign, the point is a saddle. H has the following properties:
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• Since the matrix H is symmetric all eigenvalues are real.

• At scale space critical points trH ≡ ∆L = 0, so trH = ∆∆L.

• detH = detH∆∆L −
(
(∆∇L)T H̃∆∇L

)
, where H̃ def

= detH ·H−1, the transposed co-factor
matrix of H . In fact, this matrix is always well-defined, since its components are homogeneous
polynomial combinations of the components of H of degree n − 1, see [72, 154]. So at catas-
trophe points H̃ is generically non-zero, although detH = 0. At these points detH reduces to
−
(
(∆∇L)T H̃∆∇L

)
, which is equal to the generically non-zero invariant −∆Li∆LjH̃ij (sum-

mation convention applies).

• The determinant ofH can also be written as

detH =
(
(∆∇L)T ; ∆∆L

)
·
(
−H̃∆∇L

detH

)

Here the component
(
(∆∇L)T ; ∆∆L

)
is the normal vector of the plane with constant Laplacean.

The component (−H̃∆∇L; detH)T denotes the (scale space) tangent of the critical curve in scale
space at the spatial critical points. It is always finite in value, even at catastrophe points. See
Florack and Kuijper [72, 154] for more details.

• Scale space critical points are always scale space saddle points. See Theorem 3.

Theorem 3 The matrixH has both positive and negative eigenvalues at scale space critical points.

Proof of theorem 3 Let the point (x0; t0) be a scale space critical point of the function L(x; t). Then
(x0; t0) is also a spatial critical point of the function L(x; t0) at scale t0. If (x0; t0) is a scale space
extremum of L(x; t), it is also a spatial extremum of L(x; t0). However, the extremum principle (sec-
tion 5.2.1) states that the Laplacean of a spatial extremum is non-zero, leading to the contradiction
that (x0; t0) cannot be a scale space critical point. Therefore (x0; t0) is a scale space saddle point.
Consequently, H has both positive and negative eigenvalues at scale space critical points. 2

As a consequence, critical points in scale space (∇L = 0 and ∆L = 0) are always saddle points.
These scale space saddle points form a subset of the spatial saddles, viz. those with vanishing Laplacean.

This property of scale space critical points follows directly from the notion of causality, that states
that isophotes in scale space only disappear and never appear (no spurious detail).

The only spatial critical point traversing the scale space saddle is the spatial saddle. Since the man-
ifold ∇L = 0 intersects the manifold ∆L = 0 transversally, the intensity of this spatial saddle has
an extremum at the scale space saddle. Therefore, its intensity first increases and then decreases, or
vice versa. This is exactly the behaviour Lifshitz and Pizer observed, see [168]. We elaborate on this
behaviour in section 5.2.3 and go into details in the appendix.
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5.2.3 Properties of Critical Curves in Scale Space

According to Definition 10, in scale space each critical curve contains branches representing spatial criti-
cal points. Branches are connected at catastrophe points, where two spatial critical points are annihilated
or created. These two spatial critical points differ with respect to the sign of one eigenvalue of the Hes-
sian, that becomes zero at the catastrophe. Of all other eigenvalues the number of positive and negative
signs is equal. Note that a critical curve can contain several catastrophe points if n > 1.

In two-dimensional images the two branches connected at catastrophe points necessarily are a saddle
and an extremum branch, in one-dimensional images they are a maximum and a minimum branch. In
higher dimensions interactions become more complicated, since catastrophes of saddles of different type
are also possible. For writing convenience we will use the terminology appropriate for 2D images: saddle
and extremum (minimum, maximum) branches to distinguish between the two types of spatial critical
points involved at the catastrophe, but results remain valid for other dimensions.

It is known from catastrophe theory that each branch of the critical curve is bounded with respect to
scale: at some scale the spatial critical points annihilate. Spatial critical points are either present from
the initial scale or they are created at a certain (catastrophe) point in scale space. If the coarsest scale is
taken large enough only one extremum remains. Then the scale space image contains one critical curve
bounded by the coarsest scale.

Apart from catastrophe points a second type of points exhibits special behaviour, viz. scale space
saddles.

Scale Space Saddles

On an extremum branch the intensities are damped continuously while increasing scale. Each minimum
(maximum) intensity therefore increases (decreases) monotonically towards the intensity at the annihi-
lation point. At certain spatial and scale distance from the annihilation, the intensity of corresponding
saddle will generally tend to move towards the intensity of extremum, i.e. it decreases (increases) to the
intensity of minimum (maximum). So the signs of the Laplacean of both spatial critical points at that
scale will be opposite. At the catastrophe point, however, they necessarily have the same sign and both
points approach the intensity of the annihilation in a decreasing (increasing) fashion.

This was observed by Griffin, who pointed out that at a catastrophe the saddle and the extremum
necessarily have the same sign of the Laplacean. He distinguished between ridge and trough saddles.
Saddles may change from “ridge” (negative Laplacean) to “trough” (positive Laplacean) or vice versa
with increasing scale and generically occur as “balanced” saddle (zero Laplacean) [95, 98].

Therefore, at the saddle-branch of the critical curves, the saddle will generically pass a point at which
the Laplacean equals zero: a scale space saddle. Since the sign of the Laplacean changes while passing
the scale space saddle, the intensity on the saddle branch has a local extremum.

Parametrisation

A parametrisation of a critical curve leads to a 1D-function of the intensity of the spatial critical points.

Definition 12 Let (x(s); t(s)) be a parametrisation of (x; t), such that∇L(x(s); t(s)) = 0, i.e. (x(s); t(s))
defines a critical curve. Then the intensity of the parametrised curve P (s) is defined by L(x(s); t(s)) for
a compact range s ∈ [smin; smax].
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Note that P (s) can be a combination of several connected parts Pi(si), each defined on a compact
interval [si,min; si,max]. Two parts Pi(si), Pj(sj) are connected at a catastrophe point given by either
si,min = sj,min or si,max = sj,max.

The local extrema of P (s) have the following property:

Theorem 4 For n−D images, n > 1, P (s) has its critical points at the scale space saddle(s) and the
catastrophe point(s). They are extrema.

Theorem 5 If, for 1D images (signals), the critical point of P (s) is located at the interior of [smin; smax],
it is a point of inflection.

Proof of theorem 4 The critical points of P (s) are defined by ∂sP (s) = 0. According to definition 12,
the left part of this equation equals the total differentiation of L(x(s); t(s)) with respect to s, defined by

dL(x(s); t(s))

ds
= ∇L(x(s); t(s)) · xs(s) + ∆L(x(s); t(s)) · ts(s). (5.5)

Here

xs(s)
def
=

dx

ds
, ts(s)

def
=

dt

ds
.

Since∇L(x(s); t(s)) = 0, the critical points of Eq. (5.5) are given by ∆L(x(s); t(s))·ts(s) = 0. The
scale space saddles are defined as the spatial critical points where ∆L(x(s); t(s)) = 0. The catastrophes
take place at the location where the saddle and the extremum “meet” in scale space, i.e. where the
parametrisation of scale has its local extrema. These points are given by ts(s) = 0.

The critical points of P (s) are extrema, since at the catastrophe point the Laplacean is non-zero for
n-D images, n > 1. 2

Proof of theorem 5 For 1D images the zero-Laplacean and the catastrophe point coincide, so if the
critical point lies in the interior of [smin; smax], the solution of ts(s) = 0 equals that of ∆L = 0. 2

Although these results holds for any parametrisation of the critical curves, in practice the intensities
of spatial critical points are obtained at the calculated scales of the scale space. In other words, they are
measured as a function of scale. Then t = s, so ts = 1 and P (s) is obtained as the union of parts Pi(si)
containing the branches of critical points. Each branch is defined on a open interval s1 < s < s2, where
s1 is either the initial or the creation scale, and s2 is the annihilation scale of the spatial critical point.
The branches are connected at the catastrophe points, emphasising that the detection and use of creations
is essential to build accurate critical paths.

In the appendix we clarify these theorems using generic events in scale space.

Number of Scale Space Saddles

As argued in section 5.2.3, we may generally assume that the intensity at the annihilation of an extremum-
saddle pair lies between the intensities of both spatial critical points at a certain scale below the anni-
hilation scale. Then the spatial critical points have opposite signs of Laplacean and the saddle passes
a scale space saddle with increasing scale. The number of scale space saddles on a saddle branch of a
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critical curve is, however, undetermined and the saddle branch of a critical curve can contain zero, one,
or multiple scale space saddles.

This was also observed by Lindeberg [170, 174] who investigated the locations of Laplacean zero-
crossings in combination with the (annihilation of) critical points concluding that in two and higher
dimensions there is no absolute relation between locations of the Laplacean zero-crossing curves and the
local extrema of a signal. Intuitively the case without scale space saddles can be made clear by imagining
an image of an extremum and a saddle with (already) the same sign of Laplacean. Multiple scale space
saddles on a saddle branch are caused by changing structure in the image nearby the saddle point.

Examples of this varying number of scale space saddles on a single branch can be found in section
5.4.2.

5.2.4 The Structure of Iso-Intensity Manifolds

The iso-intensity manifolds of a 2D image are formed by the isophotes. These isophotes generally are
Jordan curves, i.e. non-intersecting curves. If they don’t end on the boundary they are closed, e.g. the
isophotes around an extremum. There exist a finite number of non-Jordan curves. These curves do
intersect themselves in the (spatial) saddle points of the image. Generically these curves have but one
point of self-intersection. Consequently, the image is separated into regions in which all isophotes are
Jordan curves by the isophotes through the saddle points. This separation can be extended to arbitrary
dimension.

The extension to scale space images leads to the necessity of scale space saddle points, as defined
in the previous section. The iso-intensity manifolds through these points form the natural separation of
parts of the scale space image. Each spatial extremum can be assigned to a spatial saddle by means of
an extremum-saddle catastrophe, and consequently it can be assigned to the scale space saddle corre-
sponding to the spatial saddle, if the saddle branch contains one, see section 5.3.1 for more details. Each
spatial extremum is encircled by iso-intensity manifolds of which the one through the scale space saddle
forms the “critical” manifold. That is: all iso-intensity manifolds beneath the critical manifold form a
closed segment in scale space.

Definition 13 A scale space segment is defined as a part of a scale space image that is bounded by the
dome part of the iso-intensity manifold through a scale space saddle; the top of the dome is the spatial
extremum to which the scale space saddle has been assigned.

There are four essentially different types of iso-intensity manifolds shown in Figure 5.1 and explained
hereafter:

• Iso-intensity manifolds are dome-shaped and don’t intersect themselves. Each dome has its open
ends towards finer scale. The top of the dome lies on the extremum branch of the critical curve.
Consequently, these domes encapsulate a bounded region in scale space. The dome doesn’t inter-
sect nor touch the saddle branch, see Figure 5.1a.

• The iso-intensity manifold through a scale space saddle consists of two parts, separated by the
scale space saddle. One part is dome-shaped around the spatial extremum connected to the scale
space saddle by the critical curve. At the scale space saddle this manifold touches another having
the same intensity, see Figure 5.1b.
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• Iso-intensity manifolds with intensities between the scale space saddle and the catastrophe point
are still dome-shaped around the spatial extremum, but have a “hole in the roof” around the scale
space saddle. Consequently, the maximum scale at which the iso-intensity manifold occurs is not
determined by the spatial extremum, see Figure 5.1c. The saddle branch is intersected twice by
the iso-intensity manifold. In fact, the manifold transforms from dome-shaped to horseshoe as
described in the next item.

• The iso-intensity manifold through a catastrophe point has a horseshoe shape, as is known from
catastrophe theory. It touches the critical curve at the catastrophe point, see Figure 5.1d.

As a dual expression it follows that starting from the initial image, spatial extrema on a extremum
branch of a critical curve form the top of a dome-shaped iso-intensity manifold in scale space that doesn’t
intersect itself and is present at all scales beneath the scale at which the spatial extremum occurs, until its
intensity equals that of a scale space saddle on the saddle branch of the critical curve. Increasing scale,
i.e. tracking the extremum further on the extremum branch, the iso-intensity manifold through the spatial
extremum transforms to a horseshoe shape at the annihilation. In case of a minimum (maximum) there
are only a pure domes at intensities smaller (larger) than the intensity of the scale space saddle.

5.3 Scale Space Hierarchy and Pre-Segmentation

In the previous section we have given a theoretical framework in which iso-intensity manifolds defined
scale space segments. The manifolds through scale space saddles can be regarded as separatrices of
these segments. By definition, each of the scale space segments contains at least one extremum. If a
segment contains multiple extrema, it obviously contains subsegments. Consequently, the set of scale
space saddles and their iso-intensity manifolds induce both a hierarchy and a segmentation of the scale
space image. These two properties are discussed in detail in the following subsections.

5.3.1 Scale Space Hierarchy

A natural hierarchy results as scale space segments are defined by the regions encapsulated by the
iso-intensity manifolds through the scale space saddles. This hierarchy avoids problems arising when
defining a straight-forward and non-multiscale hierarchy of an image based solely on the nesting of iso-
intensity contours through the spatial saddle points in the initial image. Although this nesting defines a
hierarchy at some scale, it is not scale independent. Generically, spatial saddles have different intensities
in the initial image since they are Morse-saddles. When scale is increased the nesting can change: At
some scale levels intensities of saddles become equal. Then, for example, the isophote through a saddle
contains another saddle and encircles three extrema. They form the so-called Maxwell set. Increasing
scale, the nesting of the saddles swaps, see e.g. Lindeberg [174].

Since scale space saddles generically have different intensities, a unique scale space hierarchy is
found using the nesting of the scale space saddle, as described by the following algorithm:

Scale Space With the input of an n-D image, build a scale space consisting of k+1 levels, t = 0, 1, . . . , k
.
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Figure 5.1: Intersections of 2D iso-intensity surfaces and the critical curve. Top left: Dome-shaped –
one intersection. Top right: Through the scale space saddle, two touching manifolds – two intersections.
Bottom left: Dome-with-hole: intensities between the scale space saddle and the catastrophe point –
three intersections. Bottom right: Horseshoe surface through the catastrophe point – two intersections.
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Extremum and Saddle Stacks Find the extrema and the saddle points at each level t together with their
intensities and put them in two separate stacks.

Extremum and Saddle Branches Link each critical point location at level t to its corresponding loca-
tion at level t + 1, t = 0, . . . , k − 1 and vice versa, as long as this successive location is found.
This results in doubly linked lists of critical points in each stack.

Connected Critical Paths For each list in the extremum stack find a list in the saddle stack and combine
them pairwise to critical curve lists by means of these catastrophe points.

Scale Space Saddles Find the scale space saddles and their intensities along each critical curve, i.e. find
the intensity extrema of each saddle list.

Hierarchical Tree Sort the extremum branches containing the catastrophe points from appearance at
coarse to fine scales and construct the hierarchy tree starting at highest scale. While descending
in scale, each successive catastrophe denotes a critical curve with a scale space saddle and thus
defines a new segment of the hierarchy tree as a sub-segment of an existing segment. That is, one
branch of the tree is split into two branches in a unique way.

In the following sections these items will be explained and illustrated.

Scale Space

Input is a discrete image of arbitrary size and dimension. Only for the sake of illustration we consider
the one- and two-dimensional cases. Images of higher dimension are comparable to the two-dimensional
ones, albeit that they allow saddle-saddle pairs at catastrophes. These pairs, however, behave equivalently
to saddle-extremum pairs.

A scale space image is obtained by convolving the input image with a normalised Gaussian filter of
variable size. The intermediate levels are sampled logarithmically, see e.g. [65, 102, 106, 139, 145, 174,
197, 233].

Extremum and Saddle Stacks

Each level in scale space is a blurred image. Its spatial critical points can be calculated by various meth-
ods, e.g. zero-crossings of the derivatives, winding-numbers (see [130]), or neighbourhood-relations.
The latter has several implementations. For 2-D images Bloms method [21, 24] may be preferred. This
method uses a hexagonal lattice based scheme, in which the intensity of each point is compared to its 6
neighbours. The advantage of this scheme is that it finds all the saddle points and “respects” the Euler
number. Common pixel-based methods like the 4- and 8-neighbourhood schemes sometimes miss sad-
dles or cluster them. However, the generalisation of Bloms method to higher dimensions is non-trivial.

Critical point locations and their intensities are stored in two stacks, one containing the saddles and
one containing the extrema.
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Extremum and Saddle Branches

Since critical points can be annihilated and created, they inherit both movement in increasing scale di-
rection and spatial drift. This scale space movement can be calculated accurately by means of derivatives
up to third order, see e.g. [72, 154] and gives the expected location of the spatial critical point at the next
scale.

So to each spatial critical point xi,t at level t its expected location xei,t+1 at level t + 1 is assigned.
To link spatial critical points at two subsequent levels, the point sets xi,t and xei,t+1 are compared to the
critical points xj,t+1 at the next level. We define the distance matrices d1

i,j and d2
i,j by

{
d1
i,j = || xi,t − xj,t+1 ||,
d2
i,j = || xei,t+1 − xj,t+1 || ,

and set di,j = min(d1
i,j , d

2
i,j). Next, we take mini,j di,j , establishing a link, and remove the row and

column containing this value. The linking continues until either all points at level t + 1 are linked (and
the matrix d has zero rank), or min di,j exceeds scale. The intensities of the points at both levels can be
used for verification.

The outcome of this procedure are two stacks each containing doubly linked lists. The head of each
list corresponds with the creation of the critical point (or the initial scale), its tail with the annihilation.

Connected Critical Paths

Since the annihilation of an extremum involves a saddle, each tail of an extremum list at a certain scale
t corresponds to a tail of some saddle list at the same scale t. The same holds for creations in relation to
the heads of the lists. The intensities can be used for verification.

Note that at catastrophes the spatial drift becomes undetermined since detH = 0. Then the move-
ment of a critical point can still be accurately predicted, see [72, 154].

Relating saddle and extremum lists results in chains of extremum-saddle sets, viz. critical curves.

Scale Space Saddles

Scale space saddles have the property that they are the local extrema of the parametrised intensity-curve,
obtained by taking the intensity along the saddle branches as function of scale, as argued in section
5.2. They are easily found by a list-operation on the saddle lists. Saddle lists can have zero or multiple
extrema with respect to intensity.

If no extrema are found then the Laplaceans of the extremum and the saddle have either the same or
the opposite sign at all scales on which their are found. The former signals that there was no scale space
saddle in the range of used scales. One might say that it is located at a scale that is smaller than the scale
of the first image of the scale space stack. To identify a segment with the extremum, the intensity of
the saddle in that first image can be taken. The latter case represents a scale space saddle located closer
to the catastrophe point than resolutions allows to be measured. Then the saddle at the coarsest scale is
assigned as scale space saddle.

If multiple scale space saddles are found within one saddle list, the one with maximum (minimum)
intensity in case of a minimum (maximum) is chosen.
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Since each extremum list is linked to a saddle list, each extremum is linked to a scale space saddle
containing the global intensity extremum in the saddle list. Equivalently, the iso-intensity manifold
through the scale space saddle encapsulates the corresponding extremum.

Hierarchical Tree

The annihilations –and consequently each extremum branch– are sorted from coarse to fine scale. Each
scale space saddle defines an iso-intensity manifold around an extremum: the part of the image encapsu-
lated by this manifold is a segment of the image at that scale. Segments may have sub-segments, defined
by scale space saddles within the segment.

At the coarsest scale only one extremum remains. Since it has no corresponding saddle branch
containing a scale space saddle, it doesn’t have an a priori critical dome. Without the presence of a
saddle the iso-intensity manifolds through an extremum is obviously dome-shaped. Therefore the iso-
intensity manifold of the remaining extremum can be chosen having the intensity of the extremum at the
coarsest scale. Since the heat equation under suitable boundary conditions (e.g. periodic or reflecting
ones) is energy preserving, it preserves the average grey value of the image. It is then known that the
input image converges to an image of constant value equalling the average value of the input image.
Consequently the value of the iso-intensity manifold of the remaining extremum can be set to this value.

The hierarchy tree contains as nodes the locations of the annihilations in scale space, together with
their corresponding scale space saddles and their intensities. The branch to the parent corresponds to the
scale space segment in which the scale space saddle is located. The branches to the children of the tree
are formed by the original segment and the new segment defined by the scale space saddle. The root of
the tree is defined as the one remaining extremum.

5.3.2 Segmentation

A natural segmentation of scale space is thus obtained by the iso-intensity manifolds of the scale space
saddles with their corresponding extrema. Consequently, a spatial segmentation, or rather “pre-segmenta-
tion”, of the image at any scale t is found by the intersection of the scale space segmentation and the
image at this fixed scale t. A full (partial) pre-segmentation of the initial image is found by taking into
account the intensities of all (a subset of all) scale space saddles. The word “pre-segmentation” is used to
distinguish between the proposed separation of the image into topologically different parts and the com-
monly user-defined (and user-verified) segmentations. The latter introduce by definition prior knowledge
and are therefore definitely different from our proposed pre-segmentation.

At a partial segmentation each selection of scale space saddles defines segments of the image within
some grey-level range in the part of the image enclosed by the iso-intensity manifold. Knowledge of the
grey-level distribution of the image may then lead to a semantical choice of scale space saddles and their
corresponding segments and thus using the pre-segmentation as a pre-stage for the “real” user-defined
segmentation. This partial segmentation is easily obtained by elementary tree operations, e.g. selecting
or deselecting subtrees, contracting nodes in the tree, etc.

Finally, to obtain a rough segmentation, that is a segmentation based on the large structures, only the
upper part of the tree with large scales can be taken into account.
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Figure 5.2: 1D signal at increasing scale: a) Initial signal b) After the first catastrophe, c) after the
second catastrophe, d) and after the last catastrophe.

5.4 Applications

In this section we apply the algorithm as described in the previous section to a 1D signal and to two 2D
images. We present the obtained hierarchy trees and show pre-segmentations. We also give an illustration
of the effect of tree operations on the pre-segmentation.

5.4.1 1D Signals

As first example we use the part of a 1D signal shown in Figure 5.2a. As can be seen directly, it contains
three minima and three maxima, so the scale space image contains three scale space saddles (equiva-
lently: catastrophes, annihilations). The four topologically different appearances of this signal in scale
space after successive catastrophes are shown in Figure 5.2a-d.

The scale space hierarchy tree is shown in Figure 5.3. At high scales there is only one segment S0:
the whole image from boundary to boundary, as shown on the top-right side of Figure 5.3. Decreasing
scale, one reaches scale space saddle 3, from which point the image contains two segments: S1 and the
complement of S1: the parts that range from the boundaries to S1. Continuing the descent one reaches
scale space saddle 2, from which point segment S1 contains a subsegment, viz. S2. Decreasing scale
even more one ends up with scale space saddle 1, from which point a new segment S3 is obtained from
the boundary part.

Interpreting Figure 5.3 the other way round one concludes that starting with the pre-segmentation
where S2 ⊂ S1 ⊂ S0, S3 ⊂ S0 at increasing scale firstly segment S3 vanishes at the boundary, secondly
S2 is “gulped down” by S1 , and finally S1 disappears.

The notion of disappearing of structure at annihilation points gave rise to the gist that the essence of
segmenting images should be based on catastrophe points instead of scale space points. This misinter-
pretation is caused by the coincidence of scale space saddles and catastrophe points in 1D.

5.4.2 2D Images

As 2D examples we firstly took an 81x81 artificial image, built up by the combination of four Gaussian
blobs, see Figure 5.4a. Note that the four maxima induce one minimum. The simplicity of this image
enables a quantitative check of the outcome. Subsequently we took a 2D slice from an artificial MR
image shown in Figure 5.4b to illustrate the use and possibilities of the hierarchy tree. This image is
taken from the Brain Web [40, 41, 163], web site http://www.bic.mni.mcgill.ca/brainweb.
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Figure 5.3: Left: Hierarchy tree of Figure 5.2a, at the top coarsest scale. The three “Saddles” denote the
subsequent topological changes (catastrophes, annihilations) of the image as scale increases. The vertical
branches denote the distinguished segments present at these scales. The stack of images at the right show
the shape of the signal, changing at the three scale space saddle scales, and their pre-segmentations. Note
that the lowest two are zoomed as to show clearly the distinct pre-segmentations.

Figure 5.4: 2D test images Left: Artificial image built by combining four maxima and one minimum.
Right: 181 x 217 artificial MR image.
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Artificial Image

The 81 x 81 artificial image contains five extrema. Since the image at (very) large scale contains only
one blob, four extrema must be annihilated. To obtain the scale space hierarchy a scale space consisting
of 113 levels was built. Levels were calculated at scales ei/32, i = 2, . . . , 114 and at each level the spatial
critical points were calculated. Figure 5.5 shows 15 levels of the stack at increasing scales together with
the calculated spatial critical points.

Next, the spatial critical points of subsequent scales were linked resulting in the critical paths. Figure
5.6 shows the locations of spatial critical points in scale space. For visualisation purposes this 81x81x113
scale space was reduced to a 41x41x113 volume of interest space, since the critical points evolve in the
middle of the image so a spatial border of 20 pixels was omitted. Dark grey points correspond to extrema,
light grey points to saddle points. We note that at three isolated scales a pair of created and directly
annihilated critical points were detected. The algorithm is able to detect these points and proposes the
right linking.

The parametrised critical paths, viz. the intensities of the critical curves containing the branches of
saddle and extremum branches, are shown in Figure 5.7. The top row shows the branches of the saddles
(left) and the extrema (right). The extrema and saddle points were pairwise grouped by means of their
catastrophe points. Annihilations occur at t = 48, 55, 66, 77, i.e. at scales 4.48, 5.58, 7.87, and 11.1.
The four catastrophes are visible as the end of two branches of critical points. At these points saddle and
extremum branches are connected forming the critical paths, see the bottom row of Figure 5.7. On the
left all critical curves are shown, on the right one saddle-extremum pair is taken apart.

The scale space saddles are derived from the saddle branches. It can be seen that the upper three
saddle branches shown in Figure 5.7, although containing multiple local extrema with respect to the
intensity, have a global maximum, viz. the scale space saddle of interest. The fourth saddle branch
is monotonically increasing, just as its corresponding minimum. Therefore the intensity of the spatial
saddle at the first level is chosen as value for the minimum encapsulating manifold.

Finally, an unambiguous hierarchy based on the catastrophe points and the scale space saddles, just
as in the 1D case, can be made. The presence of 5 extrema results in 5 inner regions Si, i = 1, . . . , 5
and a boundary region S0. The first region is defined by the remaining extremum. The scale space
dome defined by this maximum is the iso-intensity manifold valued by the intensity of the extremum
at coarsest scale. Since the diffusion equation is energy preserving, it thus preserves the grey value.
Consequently, the value of the remaining extremum converges (down, in this case of a maximum) to the
average intensity of the initial image. This convergence can also be seen in Figure 5.7b. The projection
of this segment S1 and its dual S0 onto the initial image are shown in Figure 5.8a.

To find the next segment, scale is decreased until the second extremum appears. From the fourth row
of Figure 5.5 it can be seen that this segment S2 is located at the top left part of the image. The value
of the iso-intensity manifold is obtained from the scale space saddle of the spatial saddle corresponding
to this extremum. The intersection of this manifold with the initial image is shown in Figure 5.8b. The
other segments are found in the same way, resulting in the pre-segmentation of the image as shown in
Figure 5.8f.

This image, although it follows from a well-defined mathematical concept, might be counterintuitive
in view of the assumed absence of a small closed region around the extremum of segment S1. From
Figures 5.4a and 5.7b it is clear that this extremum has almost the same intensity as the extremum of
segment S2, so one might expect the size of segment S1 to be approximately the same as S2. However,
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Figure 5.5: Images from the scale space stack of Figure 5.4a. Scale increases from left to right, top to
bottom. Dark dots denote extrema, bright dots saddle points.
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Figure 5.6: Spatial critical points of Figure 5.4a in (x, y; t) scale space. Dark grey points correspond to
extrema, light grey points to saddle points.
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Figure 5.7: Intensities of the critical paths shown in Figure 5.6 parametrised by scale. Top left: Intensities
of all saddle points. Top right: Intensities of all extrema. Bottom left: Intensities of all critical points.
Bottom right: Intensities of one specific saddle-extremum pair.
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Figure 5.8: Segments of Figure 5.4a as defined by the catastrophe points and the scale space saddles. a:
Segments S1 and S0 projected to the initial image. b: Segment S2. c: Segment S3. d: Segment S4. e:
Segment S5. f: Pre-segmentation of the initial image.
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Figure 5.9: Hierarchy tree of Figure 5.4a. Segments are labelled corresponding to Figure 5.8. Segments
S2, . . . , S5 are subsegments of segment S1, but annihilate in the sequence S4, S5, S3, S2 at increasing
scale.

the domes defined by the scale space saddles are nested, so essentially S2 ⊂ S1 and from Figure 5.7 is it
clear which saddle-extremum pair annihilates. Although the correct annihilating extrema can be found,
it may be desirable – based on prior knowledge of the image and / or of human perceptive characteristics
– to add this extra iso-intensity manifold and thus extra segment. In the next section we give an example.

Furthermore, the hierarchy tree associated with this pre-segmentation is given by the successive
annihilations in scale space, shown in Figure 5.9. The nesting of segments is given by (S2, S3, S4, S5) ⊂
S1 and the whole image is given by S0 ∪ S1

MR Image

Having a hierarchical description tree of the image, one can disregard parts of the tree. Combined with
knowledge of the image one can thus obtain a pre-segmentation useful for e.g. further segmentation.
Figure 5.4b shows a 2D slice from a simulated MR brain image.

This input image has 812 extrema and consequently at least 813 separate regions. Obviously, most
of these are only defined on a small range of scales. In order to investigate the large structures of this 2D
image, we focused on the part of the scale space from scales 8.37 to 33.1, exponentially sampled by 89
scales. The image on scale 8.37, which can be seen in Figure 5.11a, contains seven extrema of which six
annihilate in the range unto scale 33.1. The parametrised critical paths in this scale range are shown in
Figure 5.10a, the saddle branches are taken apart in Figure 5.10b.

The seven extrema define the eight segments of Figure 5.11b in a similar fashion as in the previous
subsection. This pre-segmentation of Figure 5.11a contains only four levels. The four segments S1, S3,
S4, and S5 correspond to the four maxima located within the most white part of the image. Segment S2

and its subsegments S6 and S7 correspond to the three minima in the interior. The hierarchical structure
of this image is shown in Figure 5.12. To visualise the role of Segment S1 compared to the other maxima
– the part of the tree with catastrophes 2,3, and 4 – the critical intensity of segment S3 (the adjoined
segment by catastrophe 2) was assigned to it. The pre-segmentation with this extra segment is shown in
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Figure 5.10: Parametrised intensities of the critical points of the scale space of Figure 5.11a; 89 scales
exponentially sampled from 8.37 to 33.1 Left: All 15 critical points. Right: Intensities of the six spatial
saddles.
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Figure 5.11: a) MR Image of Figure 5.4b on scale 8.39. b) Segments of the 7 extrema of a. c) Idem,
with the iso-intensity manifold of S1 chosen equally to S3.
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5.4 Applications 75

Figure 5.13: Intersection of the initial image, Figure 5.4a, with various scale space parts (see text). a)
The bright region. b) The dark region. c) Hierarchy simplified to four parts.

Figure 5.11c.
As an (other) example of a tree operation on Figure 5.12, recall that the four segments S1, S3, S4, and

S5 correspond to the four maxima located within the most white part of Figure 5.11a. We can therefore
simplify the tree by clustering these four segments to one region of interest, “the bright region”. The iso-
intensity manifolds have the intensity of the scale space saddle defining segment S3. Similarly, Segment
S2 and its subsegments S6 and S7 correspond to the three minima in the interior of Figure 5.11a, the dark
region in the middle, and can be clustered to one region, “the dark region”.

The part in scale space bounded by the intensity of the scale space saddles is found by a 3D region
growing algorithm. The intersection of the simplified bright and dark region with the initial MR image,
Figure 5.4b, are shown in Figure 5.13a-b. The pre-segmentation of the initial image with respect to these
two parts together with the segments S0 and S1 is shown in Figure 5.13c.

With the simulated MRI (again shown in Figure 5.14a), also the probabilistic distributions of the
white matter (Figure 5.14b) and the gray matter (Figure 5.14c) are given as ground-truth images with
values ranging from 0 to 255.

Comparing Figures 5.13a and 5.14b shown that the intensity defining the scale space segment of
the bright region is a good estimator of the threshold value to the white matter. However, this region
is connected whereas the white matter distribution also contains isolated regions. To overcome this
difference, we compare the given distributions the initial image thresholded on the values of the scale
space saddles.

Figure 5.14d shows a direct intersection of the original image, Figure 5.14a, with all the iso-intensity
manifolds equalling the intensities of the 7 extrema of the parametrised critical curves. So the range of
values is reduced from 0, . . . , 255 in the initial image to 0, . . . , 8.

The original image thresholded on the intensity defining segment S3 is shown in Figure 5.14e. The
difference with Figure 5.13a yields four isolated regions, three in the middle and one in the bottom-right
part of the image.

Furthermore, the gray matter can be estimated by subtraction of the bright and the dark regions, as
Figure 5.13c indicates. The original image thresholded on the values of these bright and dark regions is
shown in Figure 5.14f.

To compare the Figures 5.14b-c with the Figures 5.14e-f we used the similarity measure of two
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Figure 5.14: Top row: a) Simulated MR brain image, Figure 5.4b. b) Ground-truth distribution of white
matter. c) Ground-truth distribution of grey matter. Bottom row: d) Segmentation by the isophotes
with the value of the 7 extrema. e) Segment thresholded on the value of the bright region. f) Segment
thresholded on the values of the bright and dark regions.
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segments A and B defined by 2A∩BA+B . Since the Figures 5.14b-c are probabilistic segmentations, they
are made binary by thresholding them on the value 128. Then the similarity of the Figures 5.14b and
5.14e is 96.6% and of the Figures 5.14c and 5.14f is 68.1%. The similarity of the unions of Figures
5.14b+c and of Figures 5.14e+f is 89.9%. The error is mainly caused by pixels included only in the
segmentation of the ground truth. In other words, Figures 5.14e and 5.14f give an underestimation of the
probabilistic distributions. The regions found by the tree simplification may be used as an initialisation
of a post-processing step to obtain a more accurate segmentation based on the geometry of the image.
The latter is obviously not present in the hierarchy tree.

5.5 Conclusions and Discussion

We developed a method to calculate the hierarchical structure of an arbitrary input image. The method
is based on the scale space image of the input image and the critical paths within it. The latter exist
of branches of spatial extrema and spatial saddle points. The range of scales at which these branches
exist follow from their catastrophe points in scale space. These points essentially describe annihilations
or creations of pairs of spatial critical points. To each spatial extremum an iso-intensity manifold is
assigned. The value of this manifold equals that of the global intensity extremum of the saddle branch
that is connected by the annihilation with the extremum branch containing the spatial extremum. This
global intensity extremum is located at either the initial scale or at a scale space saddle, a critical point
in scale space. The iso-intensity manifold encapsulates the extremum in scale space. The manifolds
through the extrema are nested and non-intersecting and thus form a hierarchy.

In contrast to what has been described in the literature we showed that these manifolds necessarily
should be chosen such that they go through the scale space saddle instead of the annihilation point.

As application, this structure can be visualised as a pre-segmentation by the intersection of the
iso-intensity manifolds with the image at a specified scale or with the input image. The word “pre-
segmentation” is chosen, since it is not a task-specified segmentation, but only a division of the image
in several topologically defined parts without any a priori knowledge about the contents of the image
itself. It may be thus used as an initial segmentation for further post-processing. Other applications may
include e.g. clustering and data compression.

The proposed algorithm has two main advantages. Firstly, it has a severe mathematical underpin-
ning which encourages and facilitates future improvements, and admits reproducible, predictable, and
provable segmentation results. Secondly, it has the potential to include semantics enabling an intelligent
choice of the nodes, either by deterministic, statistic or probabilistic means.

Experimental results based on artificial images and simulated MRI with respect to the hierarchy and
pre-segmentation were given. They clarified the theory and showed results that correspond to a fair size
to both the mathematical and the intuitive forecast.

5.6 Appendix: Critical Curves and Manifolds

We clarify the theory presented in section 5.2 by discussing the appearance of scale space saddles at the
generic catastrophe event in scale space describing an annihilation. This event, called a Fold catastrophe,
is known from catastrophe theory (see e.g. [6, 8, 29, 81, 91, 184, 212, 238, 239]) and applied to and
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Figure 5.15: a) Parametrised intensity of a fold catastrophe in 1D with respect to scale. b) (x, t, L(x; t))
scale space surface of the fold catastrophe with iso-intensity curves L(x; t) = c. c) Segments of b),
defined by the scale space saddle intensity L(x; t) = 0: for t < 0 four segments exist, for t > 0 two
remain.

used in scale space (see e.g. [45, 46, 47, 72, 126, 128, 129, 130, 131, 154]). Firstly, an example on one-
dimensional images is given, because scale space saddles coincide with the catastrophe points. Secondly,
the results on a multi-dimensional image is discussed.

1D Images

In 1D images the iso-intensity manifolds (or separatrices) are given by the isophotes through the catastro-
phes points, since these points are identical to the scale space saddles: H = Lxx and Lt = ∆L = Lxx.
The extended Hessian, Eq. (5.4), reads

H =

(
0 Lxxx
Lxxx Lxxxx

)
.

It is generically non-zero at scale space saddles and detH = −L2
xxx < 0. The generic annihilation is

described by
L(x; t) = x3 + 6xt

and has a scale space saddle if both derivatives are zero, that is, Lx = 3x2 + 6t = 0 and Lt = 6x = 0.
So it is located at the origin with intensity equal to zero. The parametrisation of the critical curve
with respect to the scale t is (x(s); t(s)) = (±

√
−2s; s), s ≤ 0 and the parametrised intensity reads

P (s) = ±4s
√
−2s, s ≤ 0, see Figure 5.15a. This parametrisation has its local extremum at s = 0,

the right boundary of the interval on which the branches are defined. An alternative parametrisation of
the critical curve, based on the position of the critical points, reads (x(s); t(s)) = (s;− 1

2s
2), ∀s. Then

P1(s) = −2s3 and its critical point s = 0 is a point of inflection.
The dome defined by the scale space saddle is given by the isophotes L(x; t) = 0 through the origin,

so (x; t) = (0; t) and (x; t) = (x;− 1
6x

2). Figure 5.15b shows isophotes in the (x, t, L(x; t))-space,
where the isophote L = 0 gives the annihilation point with the separatrices. The separation curves in the
(x; t)-plane are shown in Figure 5.15c.

At the catastrophe point the isophotes of the scale space saddle form a pitchfork. Due to the causality
principle it has 3 branches downwards and only one upward, i.e. at the scale space saddle four separate
regions change to two separate regions. Locally the isophotes are described by L(x; t) = Lxt(

1
6x

3 +
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Figure 5.16: 2D Surface trough a scale space saddle; see text for further details.

xt)
def
= 0, so the horizontal traversing branches of the scale space saddle isophote necessarily have

negatively oriented branches by t = − 1
6x

2.

n-D Images, n > 1

In higher dimensions the structure is more complicated, since the scale space saddle does not coincide
with the catastrophe point. For n-D images, n > 1, it suffices to investigate scale space critical points in
2D, see e.g. [45, 46, 47, 91, 212, 238, 239].

If we assume Lyy = −Lxx as to satisfy ∆L = 0, the extended Hessian, Eq. (5.4), becomes

H =



Lxx Lxy Lxt
Lxy −Lxx Lyt
Lxt Lyt Ltt


 .

The determinant is −Ltt
(
L2
xx + L2

xy

)
+ Lxx

(
L2
xt − L2

yt

)
+ 2 LxtLxyLyt and the trace simplifies

to Ltt, which are both generically non-zero.
The annihilation germ reads

L(x, y; t) = x3 + 6xt+ α(y2 + 2t), (5.6)

where α = ±1. Positive sign describes a saddle – minimum annihilation, negative sign a saddle –
maximum one. Without loss of generality we take α = 1. Then Lx = 3x2 + 6t, Ly = 2y, Lt = 6x+ 2,
and detH = 12x, so the catastrophe takes place at the origin with intensity equal to zero and the scale
space saddle is located at (x, y; t) = (− 1

3 , 0;− 1
18) with intensity − 1

27 . The surface L(x, y; t) = − 1
27 is

shown in Figure 5.16. It has a local maximum at (x, y; t) = ( 1
6 , 0;− 1

72): the top of the extremum dome.
The iso-intensity surface through the scale space saddle can be visualised by two surfaces touching

each other at the scale space saddle. One part of the surface is related to the corresponding extremum of
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Figure 5.17: Intensity of the critical curve at fold catastrophe in 2D, parametrised by a) the t-coordinate
and b) the x-coordinate. Both show at the origin an annihilation, at the minimum the scale space saddle.

the saddle. The other part encircles another – currently unknown – segment of the image. The surface
belonging to the extremum forms a dome. The critical curve intersects this surface twice. The saddle
branch has an intersection at the scale space saddle, the extremum branch at the top of the dome.

The parametrisation of the critical curve with respect to t (that is: a parametrisation of the branches
of the critical curve) is given by (x(s), y(s); t(s)) = (±

√
−2s, 0; s), s ≤ 0.

The intensity of the critical curve (shown in Figure 5.17a) then reads P (s) = 2s± 4s
√
−2s, s ≤ 0,

with ∂st(s) = 1 and ∂sP (s) = 2 ± 6
√
−2s = ∆L · ts(s). The critical points of P (s) are given by the

scale space saddle, located at s = − 1
18 , and the catastrophe, located at s = 0, the boundary of the interval

on which the branches are defined. These points are visible in Figure 5.17a as the local minimum of the
parametrisation curve and the connection point of the two curves (a local maximum). The upper branch
represents the spatial saddle, the lower one the minimum.

This image led Lifshitz and Pizer [168] to the observation that the intensity of the saddle point
decreased even below the annihilation intensity resulting in theoretically problematic linking due to the
escape of non-extremum paths from the extremal region they originate in.

This is, however, a generic property of scale space images and shows in an elegant way the necessity
of limiting the extremal region by the critical iso-intensity manifold formed by the scale space saddle
intensity.

An alternative parametrisation of the critical curve is given by s = x, so (x(s), y(s); t(s)) =
(s, 0;−1

2s
2), that is: a parametrisation of both branches of the critical curve simultaneously, based on

the spatial position of the critical points. Then the intensity of the critical curve is given by P1(s) =
−2s3−s2. Now ∂st(s) = −s and ∂sP1(s) = −6s2−2s = (6s+2)(−s) and the latter is still equivalent
to ∆L · ts(s). The critical points of P1(s) are given by s = 0, the catastrophe point, and at s = − 1

3 , the
scale space saddle. These points are visible in Figure 5.17b as the extrema of the parametrisation curve.
The branch s < 0 represents the saddle point, the branch s > 0 the minimum.



CHAPTER 6

The Application of Catastrophe Theory

Insofar as mathematics is about
reality, it is not certain, and insofar
as it is certain, it is not about reality.

ALBERT EINSTEIN

abstract The understanding of the behaviour of critical points under the influence of blurring opens
the ability of investigation of the deep structure of Gaussian scale space images. The mathematical
framework of catastrophe theory can be used to describe the various different types of events that can
occur. For that purpose we investigate the generic and non-generic annihialtions of critical points, as
well as the creation of them. We show how this knowledge can be exploited in a scale space hierarchy
tree for the purpose of pre-segmentation. We clarify the theory with an artificial image and a simulated
MR image.

6.1 Introduction

The presence of structures of various sizes in an image demands almost automatically a collection of
image analysis tools that is capable of dealing with multiple scales simultaneously. Various types of
multi-scale paradigms have been developed [220]. They can be divided into two groups: linear and
non-linear scale spaces.

6.1.1 Scale Space

The concept of (linear) scale space has been introduced in the Western world by Witkin [249] and Koen-
derink [139]. They showed that the natural way to represent an image at finite resolution is by convolving
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it with a Gaussian of various bandwidths, thus obtaining a smoothened image at a scale determined by
the bandwidth. This approach has lead to the formulation of various invariant expressions – expressions
that are independent of the coordinates – that capture certain features in an image at distinct levels of
scale [53, 65, 76, 77, 78, 79, 80].

Under convolution with a Gaussian features are blurred and their locations change as a function of
scale, as long as they remain well-defined. To avoid this a much as possible, non-linear scale spaces have
been introduced, in which e.g. the blurring on parts with a high gradient (i.e. edges) is much smaller than
in the rest of the image [75, 211, 245].

Multi-scale approaches are nowadays becoming more and more common and are being integrated
with methods using PDEs, variational approaches and mathematical morphology [1, 27, 68, 73, 102,
106, 122, 193, 197].

6.1.2 Deep Structure

We focus on linear Gaussian scale space. This has the advantage that each scale level only requires
the choice of an appropriate scale; and that the image intensity at that level follows linearly from any
previous level. It is therefore possible to trace the evolution of certain image entities over scale. The
exploitation of various scales simultaneously has been referred to as deep structure by Koenderink [139].
It pertains to information of the change of the image from highly detailed – including noise – to highly
smoothened. Furthermore, it may be expected that large structures “live” longer than small structures (a
reason that Gaussian blur is used to suppress noise). The image together with its blurred version was
called “primal sketch” by Lindeberg [170, 171, 174]. Since multi-scale information can be ordered, one
obtains a hierarchy representing the subsequent simplification of the image with increasing scale. In one
dimensional images this has been done by several authors [124, 128, 129, 244], but higher dimensional
images are more complicated as we will discuss below.

6.1.3 Related Work

An essentially unsolved problem in the investigation of deep structure is how to establish meaningful
links across scales. This linking can be region-wise, that is: all points that belong to a certain region are
identified with that region and are connected to a similar region at a larger scale, cf. multi-scale watershed
segmentation [82, 122, 204, 205, 207]. A disadvantage is that one firstly needs to define these regions.

Another way is to link points if they satisfy some constraint. Vincken et al. [152, 240, 242] built the
so-called hyperstack, based on a linear scale space, but with linking essentially based on the “affection”
between two potentially corresponding points. It appeared that this line of approach also worked well if
non-linear scale spaces were used. A drawback of the hyperstack is the counter-intuitively linking in a
fine-to-coarse direction.

A well-defined and user-independent strategy is obtained by linking points that satisfy a topological
constraint. This approach has been used in 2-D images by various authors [99, 168, 230]. They linked
extrema, but noticed that sometimes new extrema occurred, disrupting a good linking.

This creation of new extrema in scale space has been studied in detail by Damon [45, 46, 47], proving
that these creations are generic in images of dimension larger than one. That means that they are not
some kind of artifact, introduced by noise or numerical errors, but that they are to be expected in any
typical case. This was somewhat counterintuitive, since blurring seemed to imply that structure could
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only disappear, thus suggesting that only annihilations could occur. Damon, however, showed that both
annihilations and creations are generic catastrophes. Whereas Damons results were stated theoretically,
application of these results were reported in e.g. [98, 154, 168, 170].

The main consequence is that in order to be able to use the topological approach one necessarily
needs to take into account these creation events. This has been done in previous work by Kuijper et
al. [157, 161, 162].

Apart from the aforementioned catastrophe points (annihilations and creations) there is a second type
of topologically interesting points in scale space, viz. scale space critical points. These are spatial critical
points with vanishing scale derivative. This implies a zero Laplacean in linear scale space. Although
Laplacean zero-crossings are widely investigated (the “Laplacean of Gaussian” as edge-detector), the
combination with zero gradient has only been mentioned occasionally, e.g. [98, 144, 168].

Several authors investigated the shape of iso-intensity manifolds [98, 113, 139] in scale space. Ob-
viously, at annihilations some structure disappears. However, these points are not the only special points
in relation to the iso-intensity manifolds as we showed in [157]. In contrast, in [157] we proved that the
critical points in scale space also form special points as these define so-called critical iso-intensity man-
ifolds, i.e. iso-intensity manifolds with self-intersection encapsulating an extremum, see Section 6.2.4.

Scale space critical points, together with annihilations and creations allow us to build a hierarchical
structure that can be used to obtain a so-called pre-segmentation: a partitioning of the image in which
the nesting of iso-intensity manifolds becomes visible.

6.1.4 Aim

In the aforementioned articles [157, 161, 162] we also showed that it is sometimes desirable to use higher
order (and thus non-generic) catastrophes to describe the change of structure. It has a direct relation to
the hierarchy tree and the pre-segmentation, in the sense that two or more regions can be endowed with
the same critical iso-intensity manifold. In this chapter we describe these catastrophes in scale space and
show the implications for both the hierarchy tree and the pre-segmentation.

In section 6.2 theory on Gaussian scale space, catastrophe theory and a brief outline of the hierarchy
tree is given. Catastrophes in scale space in generic coordinates and their effects on the hierarchy are
discussed in section 6.3. We give some applications in section 6.4 and end with a summary and discussion
in section 6.5.

6.2 Theory

In [157] we presented a uniquely defined hierarchical structure describing a scale space image. In section
6.2.4 we shortly outline the basic steps. In order to understand the essential elements, we define a
Gaussian scale space in section 6.2.1. The structure depends on the evolution of spatial critical points as
the scale changes. The locations of these points in scale space form one dimensional manifolds, the so-
called critical curves, containing two types of special points. The first type is formed by the scale space
saddles, discussed in section 6.2.2. The second type are the catastrophe points, presented in section 6.2.3.
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6.2.1 Gaussian Scale Space

Definition 14 L(x) denotes an arbitrary n-dimensional image. We will refer to this image as the initial
image.

Definition 15 L(x; t) denotes the (n+ 1)-dimensional Gaussian scale space image of L(x).

The Gaussian scale space image is obtained by convolution of an initial image with a normalised
Gaussian kernel of zero mean and standard deviation

√
2t:

L(x; t) = G(x; t)⊗ L(x) =

∫
1√

4πt
n e
− |x−y|2

4t L(y) dy .

Consequently, L(x; t) satisfies the diffusion equation:

∂tL(x; t) =
n∑

i=1

∂2

∂x2
i

L(x; t)
def
= ∆L(x; t) . (6.1)

Here ∆L(x; t) denotes the Laplacean. Differentiation is now well-defined, since derivatives of the image
up to arbitrary order at any scale are obtained using

∂

∂xi
L(x; t) =

∂

∂xi
(G(x; t)⊗ L(x)) =

(
∂

∂xi
G(x; t)

)
⊗ L(x).

That is, an arbitrary derivative of the image is obtained by the convolution of the initial image with the
corresponding derivative of a Gaussian.

Definition 16 Spatial critical points, i.e. saddles and extrema (maxima or minima), at a certain scale t0
are defined as the points at fixed scale t0 where the spatial gradient vanishes: ∂

∂xi
L(x; t0) = 0 ∀i, that

is, ∇L(x; t0) = 0. We will refer to these points as spatial critical points to distinguish them from scale
space critical points, see Definition 19.

The type of a spatial critical point is given by the eigenvalues of the Hessian H , the matrix with the
second order spatial derivatives, evaluated at its location.

Definition 17 The Hessian matrix at a certain scale t0 is defined by H def
= ∇∇T L(x; t0), where each

element of H is given by

Hi,j =
∂2

∂xi∂xj
L(x; t).

The trace of the Hessian equals the Laplacean. For non-degenerate critical points at maxima (minima)
all eigenvalues of the Hessian are negative (positive). At a spatial saddle point H has both negative and
positive eigenvalues.

Since L(x; t) is a smooth function in (x; t)-space, spatial critical points are part of a one dimensional
manifold in scale space by virtue of the implicit function theorem.

Definition 18 A critical curve is a one-dimensional manifold in scale space on which ∇L(x; t) = 0.

Consequently, the intersection of all critical curves in scale space with a plane of certain fixed scale
t0 yields the spatial critical points of the image at that scale.
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6.2.2 Scale Space Saddles

Definition 19 The scale space saddles of L(x; t) are defined as the points where both the spatial gradient
and the scale derivative vanish: ∇L(x; t) = 0 and ∆L(x; t) = 0.

In Definition 19 we used Eq. (6.1). Note that it describes the critical points of L(x; t) in scale
space. In [157] it is proven that these points are indeed always saddle points, a result of the well-known
maximum principle.

Definition 20 The extended Hessian H of L(x; t) is matrix of second order derivatives in scale space
defined by

H =

(
∇∇TL ∆∇L
(∆∇L)T ∆∆L

)
.

Here∇∇TL is the Hessian.

Note that the elements ofH are purely spatial derivatives. Again, this is possible by virtue of the diffusion
equation, Eq. (6.1).

The fact that scale space critical points are always saddles implies that the extended Hessian has both
positive and negative eigenvalues at scale space critical points. Furthermore, in [157] we have proven
that if the intensity of the spatial saddle points on a critical curve is parametrised by scale, scale space
saddles are in fact the extrema of the parametrisation.

6.2.3 Catastrophe Theory

The spatial critical points of a function with non-zero eigenvalues of the Hessian are called Morse crit-
ical points. The Morse Lemma states that at these points the qualitative properties of the function are
determined by the quadratic part of the Taylor expansion of this function. This part can be reduced to the
Morse canonical form by a slick choice of coordinates.

If at a spatial critical point the Hessian degenerates, so that at least one of the eigenvalues is zero, the
type of the spatial critical point is not defined.

Definition 21 The catastrophe points ofL(x; t0) are defined as the points where both the spatial gradient
and the determinant of the Hessian vanish: ∇L(x; t0) = 0 and detH(x; t0) = 0.

The term catastrophe was introduced by Thom [238, 239]. It denotes a (sudden) qualitative change
in an object as the parameters on which this object depends change smoothly. This behaviour was
already known by the terms perestroika, bifurcation and metamorphosis. The name catastrophe theory
was suggested by Zeeman [255] to unify singularity theory, bifurcation theory and their applications and
gained wide popularity. A thorough mathematical treatment on singularity theory can be found in the
work of Arnol’d [5, 6, 7, 8, 9, 10]. More pragmatic introductions and applications are widely published,
e.g. [29, 81, 91, 184, 212, 255].

The catastrophe points are also called non-Morse critical points, since a higher order Taylor expan-
sion is essentially needed to describe the qualitative properties. Although the dimension of the variables
is arbitrary, the Thom Splitting Lemma states that one can split up the function in a Morse and a non-
Morse part. The latter consists of variables representing the k “bad” eigenvalues of the Hessian that
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name nickname CG PT
A2 Fold x3 λ1x
A±3 Cusp ±x4 λ1x+ λ2x

2

A4 Swallowtail x5 λ1x+ λ2x
2 + λ3x

3

A±5 Butterfly ±x6 λ1x+ λ2x
2 + λ3x

3 + λ4x
4

D+
4 Hyperbolic Umbilic x2y + y3 λ1x+ λ2y + λ3x

2

D−4 Elliptic Umbilic x2y − y3 λ1x+ λ2y + λ3x
2

D±5 Parabolic Umbilic x2y ± y4 λ1x+ λ2y + λ3y
2 + λ4x

2

Table 6.1: Description of non-Morse critical points for maximal 4 different perturbation parameters.
Each contain a catastrophe germ (CG) and corresponding perturbation term (PT).

become zero. The Morse part contains the n − k remaining variables. Consequently, the Hessian con-
tains a (n − k) × (n − k) sub-matrix representing a Morse function. It therefore suffices to study the
part of k variables. The canonical form of the function at the non-Morse critical point thus contains two
parts: a Morse canonical form of n − k variables, in terms of the quadratic part of the Taylor series,
and a non-Morse part. The latter can by put into canonical form called the catastrophe germ, which is
obviously a polynomial of degree 3 or higher.

Since the Morse part does not change qualitatively under small perturbations, it is not necessary
to further investigate this part. The non-Morse part, however, does change. Generally the non-Morse
critical point will split into a non-Morse critical point, described by a polynomial of lower degree, and
Morse critical points, or even exclusively into Morse critical points. This event is called a morsification.
So the non-Morse part contains the catastrophe germ and a perturbation that controls the morsifications.

Then the general form of a Taylor expansion f(x) at a non-Morse critical point of an n dimensional
function can be written as (Thom’s Theorem):

f(x;λ) = CG(x1, . . . , xk) + PT (x1, . . . , xk;λ1, . . . , λl) +
n∑

i=k+1

εix
2
i , (6.2)

where CG(x1, . . . , xk) denotes the catastrophe germ, PT (x1, . . . , xk;λ1, . . . , λl) the perturbation germ
with an l-dimensional space of parameters, and in the Morse part εi = ±1. In Table 6.1 the germs of the

generic families in l parameters, with l ≤ 4, are listed. In 2D these form, together with A±1
def
= ±x2± y2

and taking D+
4 and D−4 together as D±4 , the so-called Thom’s seven.

These germs are the starting point of the infinite set of so-called simple real singularities, whose

catastrophe germs are given by the infinite series A±k
def
= ±xk+1, k ≥ 1 and D±k

def
= x2y ± yk−1, k ≥ 4,

and the three exceptional singularities E6
def
= x3 ± y4, E7

def
= x3 + xy3, and E8

def
= x3 + y5. The germs

A+
k and A−k are equivalent for k = 1 and k even.

Catastrophes and Scale Space

In Definition 21, the number of equations defining the catastrophe point equals n + 1 and therefore it
is over-determined with respect to the n spatial variables. Consequently, catastrophe points are gener-
ically not found in typical images. In scale space, however, the number of variables equals n + 1 and
catastrophes occur as isolated points.
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Although the list of catastrophes starts very simple, it is not trivial to apply it directly to scale space
by assuming that scale is just one of the perturbation parameters.

For example, in one-dimensional images the Fold catastrophe reduces to x3 + λx. It describes the
change from a situation with two critical points (a maximum and a minimum) for λ < 0 to a situation
without critical points for λ > 0. See e.g. Figure 6.1 in Section 6.3.1 for an example of such an annihi-
lation sequence. This event can occur in two ways. The extrema are annihilated for increasing λ, but the
opposite – creation of two extrema for decreasing λ – is also possible.

In scale space, however, there is an extra constraint: the germ has to satisfy the diffusion equation.
Thus the catastrophe germ x3 implies an extra term 6xt. On the other hand, the perturbation term is given
by λ1x, so by taking λ = 6t scale plays the role of the perturbing parameter. This gives a directionality
to the perturbation parameter, in the sense that the only remaining possibility for this A2-catastrophe in
one-dimensional images is an annihilation.

In higher dimensional images also the opposite – i.e. a Fold catastrophe describing the creation of
a pair of critical points – is possible. Then the perturbation λ = −6t with increasing t requires an
additional term of the form −6xy2 in order to satisfy the diffusion equation, see Definition 22.

The transfer of the catastrophe germs to scale space has been made by many authors, [45, 46, 47,
72, 126, 128, 129, 130, 131, 154, 157, 161, 162, 170, 174], among whom Damon’s account is probably
the most rigorous. He showed that the only generic morsifications in scale space are the aforementioned
Fold catastrophes describing annihilations and creations of pairs of critical points. These two points
have opposite sign of the determinant of the Hessian before annihilation and after creation. All other
events are compounds of such events. It is however possible that one may not be able to distinguish these
generic events, e.g. due to numerical limitations, coarse sampling, or (almost) symmetries in the image.

Definition 22 The scale space catastrophe germs are defined by

f A(x; t)
def
= x3

1 + 6x1t+Q(x; t) ,

fC(x; t)
def
= x3

1 − 6x1t− 6x1x
2
2 +Q(x; t) .

The quadratic term Q(x; t) is defined

Q(x; t)
def
=

n∑

i=2

εi(x
2
i + 2t),

where
∑n
i=2 εi 6= 0 and εi 6= 0 ∀i.

Note that the scale space catastrophe germs f A and fC, and the quadratic term Q satisfy the diffusion
equation. The germs fA and fC correspond to the two qualitatively different Fold catastrophes at the
origin, an annihilation and a creation respectively. From Definition 22 it is obvious that annihilations
occur in any dimension, but creations require at least 2 dimensions. Consequently, in 1D signals only
annihilations occur. Furthermore, for images of arbitrary dimension it suffices to investigate the 2D case
due to the Splitting Lemma.

The Annihilation Germ

Spatial critical points at any scale t for f A follow directly from∇fA(x; t) = 0:
{

3x2
1 = −6t

2εixi = 0, i ≥ 2
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Then the critical curve is parametrised by (±
√
−2t, 0, . . . , 0; t), t ≤ 0. At the origin a catastrophe takes

place. The determinant of the Hessian is given by detH = cx1, with the constant c = 3 · 2nΠn
i=2εi.

So two critical points with opposite sign approach the origin as t increases to zero. Note that trH =
6x1 +

∑n
i=2 2εi, which is generically non-zero at catastrophe points. This explains the constraints on the

εi in Definition 22.

The Creation Germ

The creation germ is a bit more complicated. Spatial critical points at any scale t for f C follow from
∇fC(x; t) = 0: 




3x2
1 − 6x2

2 = 6t
2x2(ε2 − 6x1) = 0

2εixi = 0, i ≥ 3

Since we look in the neighbourhood of the origin, we take x2 = 0. Then the critical curve is parametrised
by (±

√
2t, 0, . . . , 0; t), t ≥ 0. At the origin a catastrophe takes place. The determinant of the Hessian

is given by detH = cx1(ε2 − 6x1) − 12cx2
2, with the constant c = 3 · 2nΠn

i=3εi, so two critical
points with opposite sign leave the origin as t increases from zero. Note that this catastrophe is a Fold
catastrophe since it describes the creation of two critical points, although there is a striking resemblance
to the description of the Elliptic Umbilic catastrophe. Furthermore, the description of the catastrophe is
essentially local: If t is taken too large, the (non-generic) degeneration of the Hessian at x1 = 1

6ε2 has to
be taken into account. We will elaborate on these items in Section 6.3.

6.2.4 Scale Space Hierarchy

From the previous section it follows that each critical curve in (x; t)-space consists of separate branches,
each of which is defined from a creation event to an annihilation event. We set #C the number of creation
events on a critical path and #A the number of annihilation events. Since there exists a scale at which
only one spatial critical point (an extremum) remains (see Loog et al. [182]), there is exactly one critical
path with #A = #C , whereas all other critical paths have #A = #C + 1. That is, all but one critical
paths are defined for a finite scale range.

One of the properties of scale space is non-enhancement of local extrema. Therefore, iso-intensity
manifolds (isophotes in 2D) in the neighbourhood of a spatial extremum at a certain scale t0 move
towards the spatial extremum at coarser scale until at some scale t1 the intensity of the extremum equals
the intensity of the manifold. The iso-intensity surface in scale space forms a dome, with its top at the
extremum at scale t1. Since the intensity of the extremum is monotonically in- or decreasing (depending
on whether it is a minimum or a maximum, respectively), all such domes are nested. Retrospectively,
each extremum branch carries a series of nested domes, defining increasing regions around the extremum
in the input image.

In [157] we have proven that these regions are uniquely related to one extremum as long as the
intensity of the domes does not reach that of the so-called critical dome. The latter is formed by the iso-
intensity manifold with its top at the extremum and containing a scale space saddle (see section 6.2.2)
that is part of the same critical curve. An example of a critical dome and its related critical curve is
shown in Figure 6.6 in Section 6.3.2.
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In this way a hierarchy of regions of the input image is obtained, which can be regarded as a kind
of pre-segmentation. It also results in a partition of the scale space itself. Details can be found in
[157, 161, 162].

The crucial role is played by the scale space saddles and the catastrophe points. As long as only
annihilation and creation events occur, the hierarchy is obtained straightforwardly. However, sometimes
higher order catastrophes are needed to describe the local structure, viz. when two or more catastrophes
happen to be almost incident and cannot be segregated due to coarse sampling, numerical imprecision,
or (almost) symmetries in the image. In the next section we describe these higher order events.

6.3 Scale Space Catastrophes and Scale Space Saddles

In this section we discuss the appearance of catastrophe events in scale space and the effect on scale
space saddles. Firstly, results on one-dimensional images are given, because in this particular case scale
space saddles coincide with catastrophe points. Secondly, multi-dimensional images are discussed.

6.3.1 1D Images

In 1D images the critical iso-intensity manifolds (or separatrices) are given by the isophotes through the
catastrophes points, since these points are identical to the scale space saddles: H = Lxx and Lt = ∆L =
Lxx. At such points the extended Hessian, Definition 20, reads

H =

(
0 Lxxx
Lxxx Lxxxx

)
.

It is generically non-zero at scale space saddles and detH = −L2
xxx < 0. In one dimensional images

only cuspoid catastrophes (the Ak-type of Table 6.1) occur, of which we will discuss the Fold A2 and the
Cusp A3.

Fold Catastrophe

The generic annihilation is called a Fold and is defined by (see Definition 22 and further)

L(x; t) = x3 + 6xt .

The only perturbation parameter is given by t after the identification λ1 = 6t. The intensity for increasing
scales is shown in Figure 6.1. It has a scale space saddle if both derivatives are zero, that is,

{
Lx = 3x2 + 6t = 0
Lt = 6x = 0

So it is located at the origin with intensity equal to zero. The determinant of the extended Hessian
equals −36, indicating a saddle. A possible parametrisation of the critical curve is (x(s); t(s)) =
(±
√
−2s; s), s ≤ 0 and the corresponding parametrised intensity reads P (s) = ±4s

√
−2s, s ≤ 0,

see Figure 6.2a.
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Figure 6.1: Fold catastrophe for increasing scales a) t=-1: Two extrema. b) t=0: Catastrophe at the origin.
c) t=1: No extrema.
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Figure 6.2: a) Parametrised intensity of the Fold catastrophe. b) 1+1D intensity scale space surface of the
Fold catastrophe in (x, t, L(x; t)) space. c) Segments of b), defined by the scale space saddle intensity.

The critical dome is given by the isophotes L(x; t) = 0 through the origin, so (x; t) = (0; t) and
(x; t) = (x;−1

6x
2). Figure 6.2b shows isophotes L = constant in the (x; t, L(x; t))-space, where

the self-intersection of L = 0 gives the annihilation point. This isophote gives the separatrices of the
different parts of the image. The separation curves in the (x; t)-plane are shown in Figure 6.2c. For
t < 0, four regions exist, for t > 0 two remain (compare to Figure 6.1a-c).

At the catastrophe point the isophotes of the scale space saddle form a pitchfork. Due to the causality
principle it has 3 branches downwards and only one upward, i.e. at the scale space saddle four separate
regions change to two separate regions. Locally the isophotes are described by L(x; t) = Lxt(

1
6x

3 +

xt)
def
= 0, so the horizontally traversing branches of the scale space saddle isophote necessarily have

branches given by t = − 1
6x

2, describing the disappearance of two regions.

Cusp Catastrophe

Although all catastrophes are generically described by fold catastrophes, one may encounter higher order
catastrophes, e.g. due to numerical imprecision or symmetries in the signal, for instance when a set of
two minima and one maximum change into one minimum, but one is not able to detect which minimum
is annihilated.

The first higher order catastrophe describing such a situation is the Cusp catastrophe. The scale space
representation of the catastrophe germ reads ±(x4 + 12x2t+ 12t2), the perturbation term was given by
λ1x + λ2x

2, see Table 6.1. Obviously, scale can fulfil the role of the perturbation by λ2. Therefore the
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Figure 6.3: Parametrised intensity of the Cusp catastrophe a) ε = 0 b) 0 <| ε |� 1
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Figure 6.4: Critical paths in the (x; t)-plane. a) ε < 0 b) ε = 0 c) ε > 0 d) detection of the critical
paths around the origin with uncertainty represented by the oval.

scale space form is given by

L(x; t) =
1

12
x4 + x2t+ t2 + εx,

where the two perturbation parameters are given by t for the second order term and ε for the first order
term. Scale space critical points are given by

{
Lx = 1

3x
3 + 2xt+ ε = 0

Lt = x2 + 2t = 0

If ε = 0 the situation as sketched above occurs. The catastrophe takes place at the origin, where two
minima and a maximum change into one minimum for increasing t. At the origin also Lxxx = 0, result-
ing in a zero eigenvalue of the extended Hessian. Note that this degeneration is automatically induced
by the Cusp catastrophe. The parametrised intensity curves (L1(0; s) = s2,∀s and L2(±

√
−6s; s) =

−2s2, s ≤ 0) are shown in Figure 6.3a. Note that at the bottom left the two branches of the two minima
with equal intensity, given by L2, coincide. The case 0 <| ε |� 1, where a morsification has taken
place, is visualised in Figure 6.3b. This Figure shows the remaining Fold catastrophe of a minimum and
a maximum (compare to Figure 6.2a), and the unaffected other minimum.

It is this splitting that may not be discernible in practice, although it is the generic situation. De-
pending on the value and sign of ε one can find the three different types of catastrophe shown in Figure
6.4a-c. With an uncertainty in the measurement they may coincide, as shown in Figure 6.4d, where the
oval represents the possible measure uncertainty.

With the degeneration of the extended Hessian at the origin if ε = 0, also the shape of the isophotes
changes as shown in Figure 6.5. Since one eigenvalue is zero, the only remaining eigenvector is parallel
to the x-axis. So there is no critical isophote in the t-direction, but both parts pass the origin horizontally.
Consequently, three regions disappear. Furthermore the annihilating minimum cannot be distinguished
from the remaining minimum.
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Figure 6.5: Critical isophotes in the (x; t)-plane. a) ε < 0 b) ε = 0 c) ε > 0

Higher Order Cuspoids

One can easily verify that higher order Cuspoids, Ak, k > 3, correspond to the annihilation of k regions
simultaneously. Morsification per perturbation parameter leads toAl, l < k catastrophes, and a complete
morsification yields only Fold catastrophes.

6.3.2 n-D Images, n > 1

In higher dimensions the structure is more complicated, since generically scale space saddles do not
coincide with catastrophe points. For n-D images, n > 1, it suffices to investigate scale space critical
points in 2+1D, since the first seven elementary catastrophes can locally be written in 2 dimensions.
Apart from the in one dimension determined cuspoid catastrophesAk causing annihilations, also umbilic
catastrophes Dk occur, requiring 2 variables (see Table 6.1). The first two types are the hyperbolic D+

4

and the elliptic D−4 umbilic catastrophes.

If we assume Lyy = −Lxx so that ∆L = 0, the extended Hessian, Definition 20, becomes

H =



Lxx Lxy Lxt
Lxy −Lxx Lyt
Lxt Lyt Ltt


 .

The determinant is −Ltt
(
L2
xx + L2

xy

)
+ Lxx

(
L2
xt − L2

yt

)
+ 2 LxtLxyLyt and the trace simplifies

to Ltt. Both are generically non-zero.

In this section we subsequently describe the scale space representations in 2+1D of the cuspoid
catastrophes A2 and A3, and the umbilic catastrophes D+

4 and D−4 , together with their morsifications,
the appearances of scale space saddles and the possibilities with respect to the degeneration ofH.

Fold Catastrophe

The first type of catastrophes is given by the Fold catastrophe, which follows directly from Table 6.1 and
Eq. (6.2) and was given in n-D in Section 6.2.3:

L(x, y; t) = x3 + 6xt+ α(y2 + 2t), (6.3)
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Figure 6.6: The critical curve contains a catastrophe point (bright dot) and a scale space saddle (dark
dot). The iso-intensity surface through the scale space saddle contains two parts touching each other at
the scale space saddle. One part is dome-shaped and intersects the critical curve at the top of the dome.

where α = ±1. Positive sign describes a saddle – minimum annihilation, negative sign a saddle –
maximum annihilation. Without loss of generality we take α = 1. Then





Lx = 3x2 + 6t
Ly = 2y
Lt = 6x+ 2

detH = 12x
detH = −72,

so the catastrophe takes place at the origin with intensity equal to zero and the scale space saddle is
located at (x, y; t) = (− 1

3 , 0;− 1
18) with intensity − 1

27 . The surface L(x, y; t) = − 1
27 through the scale

space saddle is shown in Figure 6.6. It has a local maximum at (x, y; t) = ( 1
6 , 0;− 1

72): the top of the
extremum dome. Recall that the coordinates have no quantitative significance.

The iso-intensity surface through the scale space saddle can be visualised by two surfaces touching
each other at the scale space saddle. One part of the surface is related to the extremum corresponding to
the scale space saddle. The other part encircles some other segment of the image. The surface belonging
to the extremum forms a dome. The critical curve intersects this surface twice. The saddle branch has an
intersection at the scale space saddle, the extremum branch at the top of the dome, as shown in Figure
6.6.

A parametrisation of the two branches of the critical curve is given by

(x(s), y(s); t(s)) = (±
√
−2s, 0; s), s ≤ 0.

The intensity of the critical curve reads L(s) = 2s ± 4s
√
−2s, s ≤ 0 (with ∂st = 1 and ∂sL =

∆L · ∂st = 2 ± 6
√
−2s). The scale space saddle is located at s = − 1

18 , the catastrophe at the local
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Figure 6.7: Intensity of the critical curve, parametrised by a) the x-coordinate and b) the t-coordinate.
Both showing at the origin an annihilation, at the minimum the scale space saddle.

maximum, the connection of the two intensity-curves, s = 0. These points are visible in Figure 6.7a as
the local minimum of the parametrisation curve and the connection point of the two curves, the upper
branch representing the spatial saddle, the lower one the minimum.

Note that an alternative parametrisation of both branches of the critical curve simultaneously is given
by (x(s), y(s); t(s)) = (s, 0;− 1

2s
2). Then the intensity of the critical curve is given by L(s) = −2s3 −

s2. Now ∂st = −s and ∂sL(s) = −6s2 − 2s = (6s+ 2)(−s) and the latter is still equivalent to ∆L · ts.
The catastrophe takes place at s = 0, the saddle at s = − 1

3 . These points are visible in Figure 6.7b as the
extrema of the parametrisation curve. The branch s < 0 represents the saddle point, the branch s > 0
the minimum.

Cusp Catastrophe

With the similar argumentation as in the one-dimensional case it is also interesting to investigate the
behaviour around the next catastrophe event. The higher-dimensional cusp catastrophe in scale space
follows directly from Table 6.1 and Eq. (6.2). It is the 2-D scale space extension of the catastrophe
discussed in section 6.3.1 and is defined by

L(x, y; t) =
1

12
x4 + x2t+ t2 + α(2t+ y2) + εx

where, again, α = ±1. If ε 6= 0 a fold catastrophe results. Then




Lx = 1
3x

3 + 2xt+ ε
Ly = 2αy
Lt = x2 + 2α+ 2t

detH = 2α(x2 + 2t)
detH = 4α(2t− x2).

The critical curves in the (x; t)-plane at ε = 0, y = 0 are shown in Figure 6.8a. They form a so-called
pitchfork bifurcation at the origin, the catastrophe point.

Critical points are on the curves given by (x(s), y(s); t(s)) = (0, 0; s) and (x(s), y(s); t(s)) =
(±
√
−6s, 0; s), s ≤ 0.

The intensities are given by L1(s) = L(0, 0; s) = s2 + 2αs with its extremum at s = −α and
L2(s) = L(±

√
−6s, 0; s) = −2s2 + 2αs, s ≤ 0. The latter has an extremum at s = 1

2α. Since s ≤ 0,
these scale space saddles only occur if α < 0. It is therefore essential to distinguish between the two
signs of α.
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Figure 6.8: a) Critical paths. b) Critical paths with the zero-Laplacean curve (thin), the catastrophe point
(dark) and the scale space saddle (bright) if α > 0. c) Intensity of the critical paths. The part bottom-left
represents two branches ending at the catastrophe point. The intensity takes a local minimum at the scale
space saddle

Figure 6.9: 2D Surface trough the scale space saddle at a Cusp catastrophe, α > 0.

The Case α > 0 For positive α, the curve (x, y; t) = (0, 0; s) contains saddles if t < 0 and minima
if t > 0. The other curve contains minima on both branches. At the origin a catastrophe occurs, at
(x, y; t) = (0, 0,−α) a scale space saddle, see Figure 6.8b. The intensities of the critical curves are
shown in Figure 6.8c; The two branches of the minima for t < 0 have equal intensity. The iso-intensity
manifold in scale space forms a double dome since the two minima are indistinguishable, see Figure 6.9.

A small perturbation (0 <| ε |� 1) leads to a generic image containing a Fold catastrophe and thus
a single cone. However, as argued in section 6.3.1 this perturbation may be too small to identify the
annihilating minimum. We will use this degeneration in Section 6.4 to identify multiple regions with one
scale space saddle.

The Case α < 0 If α is negative, the curve (x, y; t) = (0, 0; s) contains a maximum if t < 0 and a
saddle if t > 0, while the curve (x, y; t) = (±

√
−6s, 0; s), s < 0 contains saddles. Now 3 scale space

saddles occur: at (x, y; t) = (0, 0;−α) and (x, y; t) = (±
√
−3α, 0; 1

2α), see Figure 6.10a. The corre-
sponding intensities are shown in Figure 6.10b, where again the intensities of the two saddle branches
(and thus the scale space saddles) for t < 0 coincide.
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Figure 6.10: a) Critical paths (thick curves) with zero-Laplacean (thin curve),the catastrophe point (dark)
and scale space saddle (bright points) if α = −1. b) Intensity of the critical paths. The part bottom-left
represents two branches ending at the catastrophe point. The intensity has local extrema at the scale
space saddles. c) Critical paths (thick) with α < 0 , 9ε2 < −16α3, zero-Laplacean (thin), catastrophe
point (dark) and scale space saddles (bright).

Figure 6.11: 2D iso-intensity manifold trough the scale space saddles a) at t = − 1
2 and b) at t = 1

The iso-intensity surfaces through the scale space saddles are shown in Figure 6.11. The scale space
saddles at t = 1

2α both encapsulate the maximum at the t-axis. The scale space saddle at t = −α is void,
i.e. it is not related to an extremum. This is clear from the fact that there is only one extremum present.

If a small perturbation (0 <| ε |� 1) is added the three scale space saddles remain present in the
generic image. Their trajectories in the (x; t)-plane are shown in Figure 6.10c. Now a Fold catastrophe
is apparent, but also a saddle branch containing two (void) scale space saddles, caused by the neighbour-
hood of the annihilating saddle-extremum pair.

Degeneration of detH The extended Hessian degenerates if its determinant vanishes, i.e. if 4α(2t −
x2) = 0. This implies 2t = x2. Then Lx = 0 reduces to 4

3x
3 + ε = 0. For ε = 0 the degeneration

takes place at the origin, that is, at the cusp catastrophe. But then x = 0, t = 0 and Lt = 0 implies
α = 0, which is non-generic. For other arbitrary values of ε, Lt = 0 implies x2 = −α, so it is located at
(x, y; t) = (−sgn (ε)

√−α, 0,−1
2α), where α < 0 and 9ε2 = −16α3.

This special value is located at the non-annihilating saddle branch where the two scale space saddle
points coincide, i.e. where the saddle branch touches the zero-Laplacean. This case is non-generic, since
the intersection of the critical curve and the hyper-plane ∆L = 0 at this value is not transverse. This
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value describes the transition of the case with two void scale space saddles to the case without scale space
saddles: For | ε |< 4

3

√
−α3 two void scale space saddles occur on the non-annihilating saddle branch

as shown in Figure 6.10c. For | ε |> 4
3

√
−α3 none occur since the saddle branch does not intersect

the zero-Laplacean. In other words: a Fold catastrophe in scale space occurs, regarding two scale space
critical points (i.e. saddles) with different signs of detH and controlled by the perturbation parameter ε.

Hyperbolic Umbilic Catastrophe

The hyperbolic umbilic catastrophe germ is given by x3 + xy2. Its scale space addition is 8xt. The
perturbation term contains three terms: λ1x + λ2y + λ3y

2. Obviously scale takes the role of λ1. The
scale space hyperbolic umbilic catastrophe germ with perturbation is thus defined by

L(x, y; t) = x3 + xy2 + 8xt+ α(y2 + 2t) + βy

where the first three terms describe the scale space catastrophe germ. The set (α, β) form the extra
perturbation parameters. Then





Lx = 3x2 + 8t+ y2

Ly = 2xy + 2αy + β
Lt = 8x+ 2α

detH = 12x(x+ α)− 4y2

detH = −128(x+ α).

One can verify that at the combination (α, β) = (0, 0) four critical points exist for each t < 0. At t = 0

the four critical curves given by (x, y; t) = (±
√
−8

3 t, 0; t) and (x, y; t) = (0,±
√
−8t; t) annihilate

simultaneously at the origin (see e.g. Kalitzin [130]). This is non-generic, since this point is a scale space
saddle and also detH = 0.

Morsification takes place in two steps. In the first step one perturbation parameter is non-zero. If
α 6= 0 and β = 0, the annihilations are separated. At the origin a Fold catastrophe occurs with critical

curves (x, y; t) = (−
√
−8

3 t, 0; t). On one of these curves both a scale space saddle at (x, y; t) =

(−α
4 , 0;−3α2

128 ), and the other catastrophe at (x, y; t) = (−α, 0;− 3
8α

2) are located. At the latter the
critical curves (−α,±

√
−3α2 − 8t; t), t < −3

8α
2 annihilate in a (non-generic!) Cusp catastrophe.

If α = 0 and β 6= 0, the double annihilation breaks up into two Fold annihilations with symmetric
non-intersecting critical curves. A scale space saddle is not present.

Finally, if both α and β are non-zero, this complete morsification results in the generic case with two
critical curves, each of them containing a Fold annihilation. One the two critical curves contains a scale
space saddle, located at (x, y; t) = (− 1

4α,−
2β
3α ;−3α2

128 −
β2

18α2 )

The extended Hessian degenerates for x = −α. Then it follows from Lt = 0 that x = α = 0, and
from Ly that then also β = 0, which is a non-generic situation.

Elliptic Umbilic Catastrophes

The elliptic umbilic catastrophe germ is given by x3 − 6xy2. Its scale space addition is −6xt. The
perturbation term contains three terms: λ1x + λ2y + λ3y

2. Obviously scale takes the role of λ1. The
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scale space elliptic umbilic catastrophe germ with perturbation is thus defined by

L(x, y; t) = x3 − 6xy2 − 6xt+ α(y2 + 2t) + βy (6.4)

where the first three terms describe the scale space catastrophe germ. The set (α, β) form the extra
perturbation parameters. Now





Lx = 3x2 − 6t− 6y2

Ly = −12xy + 2αy + β
Lt = −6x+ 2α

detH = 12x(α− 6x)− 144y2

detH = −72(α− 6x).

The combination (α, β) = (0, 0) gives two critical points for all t 6= 0 on the critical curves
(x, y; t) = (0,±√−t; t), t < 0 and (x, y; t) = (±

√
2t, 0; t), t > 0. At the origin a so-called scatter

event occurs: the critical curve changes from y-axis to x-axis with increasing t. Just as in the hyperbolic
case, in fact two Fold catastrophes take place; in this case both an annihilation and a creation.

The morsification for α = 0, β 6= 0 leads to the breaking into two critical curves without any
catastrophe: detH = 0 implies x = y = 0, but then Ly = β 6= 0.

The morsification for α 6= 0, β = 0 leads to only one catastrophe event at the origin: the Fold
creation. The sign of α determines whether the critical curve contains a maximum – saddle pair or a
minimum – saddle pair. Without loss of generality we may choose α = 1. For the moment we assume
β = 0 to compare this case with the Fold annihilation. Then the generic creation germ is defined as

L(x, y; t) = x3 − 6xt− 6xy2 + y2 + 2t (6.5)

The scale space saddle is located at (x, y; t) = ( 1
3 , 0; 1

18) and its intensity is L( 1
3 , 0; 1

18) = 1
27 . The

surface L(x, y; t) = 1
27 has a local saddle at (x, y; t) = (− 1

6 , 0; 1
72), see Figure 6.12. At creations newly

created extremum domes cannot be present, which is obvious from the non-creation of new level-lines.
Whereas annihilations of critical points lead to the annihilations of level-lines, creations of critical points
are caused by the rearrangement of already existing level-lines.

This fact becomes clearer if we take a closer look at the structure of the critical curves. The critical
curve containing the creation is given by (x, y; t) = (±

√
2t, 0; t). The other critical curve given by

(x, y; t) = (1
6 ,±

√
1
72 − t; t) represents two branches connected at the second catastrophe, see Figure

6.13a. This point is located at (x, y; t) = ( 1
6 , 0; 1

72), is an element of both curves and obviously degener-
ates the extended Hessian. At this point two saddle points and the created extremum go through a Cusp
catastrophe resulting in one saddle. Note that ignoring this catastrophe one would find a sudden change
of the extremum into a saddle point while tracing the created critical points. Obviously this catastrophe is
located between the creation catastrophe and the scale space saddle. The latter therefore does not invoke
a critical dome around the created extremum.

The intensity of the creation pair is given by L(s) = 2s ± 4s
√

2s, s ≥ 0, the intensity of the other
pair by L(s) = 1

216 + s, s ≤ 1
72 . The intensities of both paths are shown in Figure 6.14a. A close-up

around the catastrophe points is given in Figure 6.14b.
Note that the intensity curve at the bottom-left of Figure 6.14a-b contains two saddle branches with

equal intensity. Figure 6.14b shows that at the catastrophe in the origin two curves are created. The
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Figure 6.12: Iso-intensity surface of the scale space saddle of the creation germ.
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Figure 6.13: Critical curves of Eq. (6.4) with α = 1 in (x, y; t)-space. a) β = 0: Degeneration at the
connection of the two critical paths b) 0 < ‖β‖ < 1

32

√
6: Morsification with two catastrophes on one of

the critical curves. c) ‖β‖ > 1
32

√
6: Morsification without catastrophes on the critical curves.
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Figure 6.14: a) Intensities of critical paths, β = 0. b) Close-up at both catastrophes, β = 0. c) Intensities
of critical paths, β = 1

24

√
2. d) Close-up at both catastrophes, β = 1

24

√
2.

saddle curve (the left curve) remains, the extremum one (the lower curve) is annihilated at the second
catastrophe with one of the two saddle branches with equal intensity. The other saddle branch continues
and contains a scale space saddle.

A complete morsification by taking 0 < ‖β‖ � 1 resolves the scatter. It can be shown that the
Hessian has two real roots if and only if ‖β‖ < 1

32

√
6. At these root points subsequently a creation and

an annihilation event take place on a critical curve as shown in Figure 6.13b. If ‖β‖ > 1
32

√
6 the critical

curve doesn’t contain catastrophe points, see Figure 6.13c.
If we take β = 1

24

√
2 the creation is approximately at (0.013,−0.032;−0.00094) and the annihi-

lation is at (x, y; t) = (1/12,−1/24
√

2; 0). The intensity curves at this situation are visible in Figure
6.14c-d. Figure 6.14c shows that the two saddle curve have different intensities and do not coincide.
One curve doesn’t contain catastrophes, but only one scale space saddle. The other curve contains two
catastrophes. A close-up around the catastrophes is shown in Figure 6.14d.

Due to this morsification the two critical curves do not intersect each other. Also in this perturbed
system the minimum annihilates with one of the two saddles, while the other saddle remains unaffected.
The scale space saddle remains on the non-catastrophe-involving curve. That is, the creation – annihila-
tion couple and the corresponding saddle branch are not relevant for the scale space saddle and thus the
scale space segmentation.

The iso-intensity surface of the scale space saddle due to the creation germ does not contain a dome-
shaped surface connected to some other surface, but shows only two parts of the surface touching each
other at a void scale space saddle, recall e.g. Figure 6.12.

Higher Order Umbilics

One can verify that of the higher order Umbilic catastrophes, D±k , k > 4, the D+
k describe the various

annihilations in two dimensions, the compound of (several) Fold catastrophes. The D−k introduce com-
plicated scatter-like behaviour which also morsify into Fold catastrophes, but now a combination of both
annihilations and creations.

6.3.3 Morsification Summary

All non-Fold catastrophes morsify to Fold catastrophes. The morsification gives insight in the structure
around the catastrophe point regarding the critical curves and the scale space saddles. In one dimensional
images, catastrophes and scale space saddles coincide. Therefore, at higher catastrophes the extended
Hessian necessarily degenerates. These catastrophes, however, give insight in the case where more than
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Figure 6.15: 2D test images a: Artificial image built by combining two identical blobs and additive noise.
b: 181 x 217 artificial MR image.

two critical points are involved in a complicated annihilation or at several annihilations at almost the
same scale space position, without having the ability of distinguish between the Fold pairs.

In higher dimensional images, the cuspoid catastrophes (the Ak) give the same insight, but also
allow the assignment of a scale space saddle, and consequently a scale space segment, to more than one
extremum. Furthermore the morsification of the Cusp catastrophe showed that it is generic to encounter
scale space saddles that are not connected to some dome shaped iso-intensity manifold: the so-called
void scale space saddles.

The morsified D−4 catastrophe describes the creation of two critical points and the annihilation of
one of them with another critical point. So while tracing the critical branches of a critical curve both an
annihilation and a creation event are traversed.

6.4 Applications

In this section we give some examples to illustrate the theory presented in the previous sections. To
show the effect of a cusp catastrophe in 2D, we firstly take a symmetric artificial image containing two
Gaussian blobs and add noise to it. This will make the non-generic symmetric image generic, but in a
sense “almost non-generic”. This image is shown in Figure 6.15a. Secondly, the effect is shown on the
simulated MR image of Figure 6.15b. Note that also in this case an almost symmetric, thus non-generic,
situation occurs. This image is taken from the web site http://www.bic.mni.mcgill.ca/brainweb.

6.4.1 Artificial Image

Of the noisy image of Figure 6.15a, a scale space image was built containing 41 scales ranging expo-
nentially from e

10
8 to e

20
8 . The calculated critical paths are presented in Figure 6.16a. Ignoring the paths

on the border, caused by the extrema in the noise, the paths in the middle of the image clearly show the
pitchfork-like behaviour, typical of a non-generic Cusp catastrophe, recall Figure 6.4. Note that since
the symmetric image is perturbed, instead of a cusp catastrophe a fold catastrophe occurs. The scale
space saddle on the saddle branch and its intensity define a closed region around the lower maximum,
see Figure 6.16b. For details on how the hierarchy and the segmentation is obtained, cf. the algorithm
presented in [157]. However, if the noise were slightly different, one could evidently have found the
region around the upper maximum instead. Knowing that the image should be symmetric and observing
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Figure 6.16: Example of a Cusp catastrophe: a: Critical paths in scale space. b: Segment according to a
Fold catastrophe. c: Segment according to a Cusp catastrophe.
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Figure 6.17: a) Image on scale 8.4 b) Segments of the 7 extrema of a, assuming that only generic
catastrophes occur, which is the actual case in fact. c) Idem, with the iso-intensity manifold of S1

chosen equally to S3, i.e. after changing the label of a generic event into a non-generic one.

that the critical paths indeed are pitchfork-like, it is thus desirable to label the catastrophe as a Cusp
catastrophe. Then the scale space saddle (and its intensity) defines the two regions around both involved
extrema, see Figure 6.16c. This image one would rather expect given Figure 6.15a.

6.4.2 Simulated MR Image

Subsequently, we took the 2D slice from an artificial MR image shown in Figure 6.15b. The scale space
image at scale 8.37 with the large structures remaining is shown in Figure 6.17a. Now 7 extrema are
found, defining a hierarchy of the regions around these extrema as shown in Figure 6.17b. In this case is
it visually desirable to identify a region to segment S1 with more or less similar size as region S3. This
is done by assigning a Cusp catastrophe to the annihilation of the extremum of segment S3, in which the
extremum of segment S1 is also involved. Then the value of the scale space saddle defining segment S3

also defines an extra region around the extremum in segment S1. This is shown in Figure 6.17c, reflecting
the symmetry present in Figure 6.17a. We note that in this example several creation – annihilation events
occurred, as described by the morsification of the D−4 catastrophe.
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6.5 Summary and Discussion

In this chapter we investigated the (deep) structure on various catastrophe events in Gaussian scale space.
Although it is known that pairs of critical points are annihilated or created (the latter if the dimension
of the image is 2 or higher), it is important to describe the local structure of the image around these
events. The importance of this local description follows from its significance in building a scale space
hierarchy. This algorithm depends on the critical curves, their catastrophe points and the space space
saddle points. We therefore embedded the mathematically known catastrophes as presented in section
6.2 in the framework of linear scale space images.

Firstly, annihilations of extrema can occur in the presence of other extrema. In some cases it is
not possible to identify the annihilating extremum due to numerical limitations, coarse sampling, or
symmetries in the image. Then the event is described by a Cusp catastrophe instead of a Fold catastrophe.
This description is sometimes desirable, e.g. if prior knowledge is present and one wishes to maintain the
symmetry in the image. The scale space hierarchy can easily be adjusted to this extra information. We
gave examples in section 6.4 on an artificial image and a simulated MR image. We discussed the A3 and
the D+

4 for this purpose, but the higher order catastrophes in the sequences Ak, k > 3 and D+
k , k > 4

can be dealt with in a similar fashion.
Secondly, the morsification of theD−4 catastrophe was discussed, showing the successive appearance

of a creation – annihilation event on a critical curve. This doesn’t influence the hierarchical structure nor
the pre-segmentation, but is only important with respect to the movement of the critical curve in scale
space. We showed that this appearance heavily depends on the morsification parameters.

The theory described in this chapter extends the knowledge of the deep structure of Gaussian scale
space. It embeds higher order catastrophes within the framework of a scale space hierarchy. It explains
how these events can in principle be used for segmentation, interpreted and implemented, e.g. if prior
knowledge is available.
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CHAPTER 7

Modelling Non-Generic Events

Everything that you could possibly
imagine, you will find that nature
has been there before you.

JOHN BERRILL

abstract In order to investigate the deep structure of Gaussian scale space images, one needs to un-
derstand the behaviour of spatial critical points under the influence of blurring. We show how the math-
ematical framework of catastrophe theory can be used to describe and model the behaviour of critical
point trajectories when various different types of generic events, viz. annihilations and creations of pairs
of spatial critical points, (almost) coincide. Although such events are non-generic in mathematical sense,
they are not unlikely to be encountered in practice. Furthermore the behaviour leads to the observation
that fine-to-coarse tracking of critical points doesn’t suffice, since trajectories can form closed loops in
scale space. The modelling of the trajectories include these loops. We apply the theory to an artificial
image and a simulated MR image and show the occurrence of the described behaviour.

7.1 Introduction

The presence of structures of various sizes in an image requires image analysis tools capable of dealing
with multiple levels of resolution. Various multi-scale paradigms have been developed [220], giving rise
to several new topics of interest. For instance, can specific properties at some scale be related to similar
properties at other scales? And if so, what can be said about the way such properties change over scale.
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7.1.1 Scale Space History

The introduction in the English image literature of the concept of the linear Gaussian scale space is
due to Witkin [249] and Koenderink [139], showing that the natural way to represent an image at finite
resolution is by convolving it with a Gaussian, thus obtaining a smoothened image at a scale determined
by the bandwidth. Weickert et al. [247, 248] showed that the concept of scale space was introduced
in Japan about twenty years earlier [119, 208]. Due to the fact that these papers were in Japanese,
they remained unnoticed in the Western world. In their papers Weickert et al. give an overview of the
several axioms leading to the paradigm of linear scale space. This approach has led to the formulation of
various expressions that are independent of the coordinates and that capture certain features in an image
at distinct levels of scale [53, 65, 76, 77, 78, 79, 80, 134]. Such invariant features are potential candidates
that one would like to trace over scale and the topological changes of which one would like to investigate,
e.g. splitting, merging, creation or vanishing. Nowadays, (properties of) scale spaces are widely used in
image analysis, segmentation, clustering and statistical analysis [125, 106, 197, 136]. Introductions to
scale space can be found in several books [65, 174, 233].

7.1.2 Deep Structure

Gaussian scale space has the advantage of linearity. As a consequence, the calculation of any scale level
requires only the choice of the appropriate scale. Furthermore, the image intensity at any level follows
linearly from any previous level. This enables one to trace the evolution of certain image entities, like
spatial critical points, over scale. Koenderink referred to the exploitation of all scales simultaneously
as deep structure [139]. It pertains to the dynamic change of the image from highly detailed to highly
smoothened. It has been proven that in one dimensional images critical points can only vanish pairwise.
Several authors have investigated these locations [17, 38, 124, 128, 129, 244, 257, 258, 259]. However,
in higher dimensional images also pairwise creations of critical points can occur, as we will see below.

7.1.3 Related Work

A well-defined and user-independent method for establishing meaningful links across scales is obtained
by linking points that satisfy some topological constraint, for example that maxima are linked to maxima,
etc. This yields so-called critical curves. This extrema linking approach has been used in 2-D images by
various authors [99, 168, 230]. However, they noticed that sometimes new extrema emerged, disrupting
a good linking.

Damon studied this creation of new extrema in scale space in detail [45, 46, 47] and showed that
both annihilations and creations of pairs of critical points are generic catastrophes. Furthermore, in [45]
he gave a complete list of local perturbations of these generic events. Johansen [127] derived the same
results by investigating the behaviour of critical curves in scale space. Griffin [96] investigated critical
point events in an affine scale space.

Application of Damon’s theoreticay results were reported in e.g. [98, 113, 154, 168, 170]. Kalitzin
[130] gave artificial examples to show that the methodology of winding numbers (used for detecting
critical and degenerated points) was able to detect more complicated catastrophes. Also the generic
catastrophes for specified features in an image have been studied [56, 135, 204, 205, 206, 215, 216, 217].

The research on the generic events shown that in order to be able to use the topological approach
of linking critical points, one necessarily needs to take into account both the annihilation and creation
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events. This has been done in previous work by Kuijper et al. [156, 157, 158, 159, 160, 161, 162].

7.1.4 Aim

In images the location of critical points can be found up to the numerical precision of the image. The
same holds for the location of catastrophe points in scale space. So although the appearance of catas-
trophe events can be uniquely separated in annihilations or creations of pairs of critical points, due to
e.g. numerical limitations, (almost) symmetries in the image, or coarse sampling also indistinguishable
compounds of these annihilation and creation events can be found in practise. In this way a couple of
nearby generic events may well look like a single, non-generic one.

In this chapter we describe these so-called non-generic catastrophes in scale space. The investigation
is based on the description of the evolution of critical points in scale space, called (scale space) critical
curves, in the neighbourhood of the catastrophe point(s). The compounds of generic events can be
modelled using descriptions of “Catastrophe Theory”. Obviously, the models obey the property that
assuming infinite precision, in non-generic compounds the generic events can be distinguished.

Furthermore we investigate the appearance of creations as described by these models in more detail
and explain why they are, albeit generic, rarely found, probably the reason for current applications to
simply ignore them.

The chapter is organised as follows: In section 7.2 relevant theory on Gaussian scale space and
catastrophe theory is given, as well as the way to combine them. Non-generic catastrophe models in
scale space in generic coordinates and their impact on the critical curves are discussed in section 7.3. We
give some applications in section 7.4 and end with a summarising discussion in section 7.5.

7.2 Theory

We define a Gaussian scale space in section 7.2.1. The topological change as the scale varies, is called
Catastrophe Theory. A summary of relevant theory is presented in section 7.2.2. The embedding of
Catastrophe Theory in scale space and the generic events are discussed in section 7.2.3.

7.2.1 Gaussian Scale Space

Definition 23 L(x) denotes an arbitrary n-dimensional image. We will refer to this image as the initial
image.

Definition 24 L(x; t) denotes the (n+ 1)-dimensional Gaussian scale space image of L(x).

The Gaussian scale space image is obtained by convolution of an initial image with a normalised
Gaussian kernel G(x; t) of zero mean and standard deviation

√
2t:

L(x; t) = (G ∗ L) (x; t)
def
=

∫
1√

4πt
n e
− |x−y|2

4t L(y) dy .

Differentiation is now well-defined. By using multi-index notation for α = (α1, . . . , αn+1), αk ∈ N ,
take |α| =

∑n+1
k=1 αk and ∂α = ∂α1

1 ∂α2
2 . . . ∂

αn+1

n+1 , and derivatives of the image up to arbitrary order |α|
at any scale t are given by

∂αL = ∂α (G ∗ L) = (∂αG) ∗ L.
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That is, an arbitrary derivative of the image is obtained by the convolution of the initial image with the
corresponding derivative of a Gaussian. Consequently, L(x; t) satisfies the diffusion equation:

∂tL(x; t) = ∆L(x; t) . (7.1)

Here ∆L(x; t) denotes the Laplacean.

Definition 25 Spatial critical points, i.e. saddles and extrema (maxima or minima), at a certain scale t0
are defined as the points at fixed scale t0 where the spatial gradient vanishes: ∇L(x; t0) = 0. We will
refer to these points as spatial critical points.

The type of a spatial critical point is given by the eigenvalues of the Hessian H , the matrix with the
second order spatial derivatives, evaluated at its location.

Definition 26 The Hessian matrix at a certain scale t0 is defined by H def
= ∇∇T L(x; t0), where each

element of H is given by

Hi,j =
∂2

∂xi∂xj
L(x; t).

The trace of the Hessian equals the Laplacean. For non-degenerate maxima (minima) all eigenvalues of
the Hessian are negative (positive). At a spatial saddle point H has both negative and positive eigenval-
ues.

Since L(x; t) is a smooth function in (x; t)-space, spatial critical points are part of a one dimensional
manifold in scale space by virtue of the implicit function theorem.

Definition 27 A critical curve is a one-dimensional manifold in scale space on which ∇L(x; t) = 0.

Consequently, the intersection of all critical curves in scale space with a plane of certain fixed scale
t0 yields the spatial critical points of the image at that scale.

7.2.2 Catastrophe Theory

The spatial critical points as defined above can be divided into two types, depending on the eigenvalues
of the Hessian. If they are all non-zero, the spatial critical points are called Morse critical points. It
is stated by the Morse Lemma that the quadratic part of the Taylor expansion at these points determine
the qualitative properties. It can be reduced to the Morse canonical form if the coordinates are chosen
properly.

At the second type, at least one of the eigenvalues of the Hessian equals zero. These points are called
non-Morse critical points or catastrophe points. At these points obviously the Hessian degenerates.
Since this situation requires n+ 1 equations for the n variables, one generically doesn’t encounter these
type of points. The situation is different if extra parameters are present. Then (some types of) catas-
trophes can occur. The essence of catastrophe points lies in the fact that at these points a discontinuous
effect occurs due to a continuous change of some parameter(s).

The term catastrophe is due to Thom [238, 239]. A thorough mathematical treatment can be found in
the work of Arnol’d [5, 6, 7, 8, 9, 10]. More pragmatic introductions and applications, “from the physical
point of view”, are widely published, e.g. [29, 81, 91, 184, 212, 251, 255].
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The catastrophe points essentially need a Taylor expansion of order 3 or higher to describe the qual-
itative properties. Regardless the dimension of the variables, one can split up the function with k zero
eigenvalues, into an (n − k)-dimensional Morse and a k-dimensional non-Morse part, as stated by the
Thom Splitting Lemma. The Hessian then contains two distinct submatrices: an (n− k)× (n− k) sub-
matrix representing the Morse function, and a k × k sub-matrix representing the non-Morse function.
The (n− k)-dimensional Morse part of the expansion – the Morse canonical form – obviously does not
change qualitatively under small perturbations. Further investigation of this part is therefore not neces-
sary and it is enough to study the k-dimensional non-Morse part. It also can be put into a canonical form,
called the catastrophe germ.

This catastrophe germ changes qualitatively under small perturbations. Let l be the number of dif-
ferent pertubation parameters that achieve the distinct perturbations. Then applying a perturbation germ
containing k variables and l parameters will cause the non-Morse critical point to split. If all parameters
are non-zero, it will result in solely Morse critical points, otherwise it will split up into a non-Morse crit-
ical point, described by a polynomial of a degree lower than before the split, and Morse critical points.
This splitting-event is called morsification. Consequently, the non-Morse part contains the catastrophe
germ and a perturbation germ that controls the morsifications.

Then the general form of a Taylor expansion f at a non-Morse critical point of an n dimensional
function can be written as a combination of the non-Morse part, containing the catastrophe germ and a
perturbation germ, and the quadratic Morse part, a result known as Thom’s Theorem):

f(x;λ) = CG(x1, . . . , xk) + PT (x1, . . . , xk;λ1, . . . , λl) +
n∑

i=k+1

εix
2
i , (7.2)

where CG(x1, . . . , xk) denotes the k-dimensional catastrophe germ and PT (x1, . . . , xk;λ1, . . . , λl) the
k-dimensional perturbation germ with an l-dimensional space of parameters. In the quadratic Morse part
εi = ±1.

For situations with at most two vanishing eigenvalues of the Hessian it suffices to investigate the
known catastrophes in IR2, the so-called simple real singularities in 2D, see Arnol’d [5, 6, 7, 8, 9, 10].
They have catastrophe germs given by the two infinite series

• A±k
def
= ±xk+1, k ≥ 1. The germs A+

k and A−k are equivalent for k = 1 and k even,

• D±k
def
= x2y ± yk−1, k ≥ 4, which we will rewrite to xk−1 ± xy2 for notational convenience,

and furthermore three exceptional singularities occur:

• E6
def
= x3 ± y4,

• E7
def
= x3 + xy3, and

• E8
def
= x3 + y5.

7.2.3 Catastrophes and Scale Space

In an n-dimensional image, the number of equations defining the catastrophe point equals n+ 1. Conse-
quently, the set of equations is over determined and catastrophes are generically not to be encountered.
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The (n + 1)-dimensional scale space containes an extra “parameter”, scale, so generically single catas-
trophes occur as isolated points. But it is not trivial to apply the list of catastrophes directly to scale space
by assuming that scale is just one of the perturbation parameters. As Damon [45, 47] points out:

“There are significant problems in trying to directly apply Morse theory to solutions of to the
heat equation. First, it is not clear that generic solutions to the heat equation must be generic
in the Morse sense. Second, standard models for Morse critical points and their annihilation
and creation do not satisfy the heat equation. How must these models be modified? Third,
there is the question of what constitutes generic behaviour. This depends on what notion of
local equivalence one uses between solutions to the heat equation.”

Example 4 The catastrophe and perturbation germ of the A2 catastrophe are given by x3 + λx. It
describes the change from a situation with two critical points for λ < 0 to a situation without critical
points for λ > 0 in both directions: the extrema are annihilated for increasing λ, and created for
decreasing λ.

Scale space, however, has an extra constraint: the germ has to satisfy the diffusion equation. Thus
the catastrophe germ x3 implies an extra term 6xt. On the other hand, the perturbation term is given
by λx, so by choosing λ = 6t, scale plays the role of the perturbing parameter. This “answers” the
second problem. At the same time it may signal that the only remaining possibility for this adjusted
A2-catastrophe is an annihilation, since t is a directional parameter and can only increase. Since only
Fold catastrophes depend on one control parameter, one thus comes to the wrong conclusion that only
annihilations are generic in scale space, a commonly spread misunderstanding. This is a direct conse-
quence of ignoring the third problem Damon stated. In n-dimensional images, n > 1, also the opposite
– i.e. an A2 catastrophe describing the creation of a pair of critical points – is possible as we will see.

Damon showed that the only generic morsifications in scale space areA2 catastrophes describing an-
nihilations and creations of pairs of critical points [45, 46, 47]. Many authors have used and investigated
these resultes [72, 126, 128, 129, 130, 131, 154, 157, 161, 162, 170, 174].

Definition 28 The scale space catastrophe germs are defined by

f A(x; t)
def
= x3

1 + 6x1t+Q(x; t) ,

fC(x; t)
def
= x3

1 − 6x1t− 6x1x
2
2 +Q(x; t) .

The quadratic term Q(x; t) is defined

Q(x; t)
def
=

n∑

i=2

εi(x
2
i + 2t),

where
∑n
i=2 εi 6= 0 and εi 6= 0 ∀i.

The scale space catastrophe germs f A and fC, and the quadratic term Q satisfy the diffusion equation.
The germs describe the two qualitatively different A2 catastrophes at the origin, f A an annihilation and
fC a creation. One can verify that annihilations occur in any dimension using Definition 28. In contrast,
creations require at least 2 dimensions: the x2 involved is essential.
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The Annihilation Germ

The critical curve and the catastrophe point for the annihilation germ f A follow from




Lx1 = 3x2
1 + 6t

Lxi = 2εixi, i ≥ 2
detH = 3 · 2nΠn

i=2εix1

So the critical curve is parametrised by (±
√
−2t, 0, . . . , 0; t), t ≤ 0. Two critical points with opposite

sign approach the origin as t increases to zero and meet transversally to the Hessian zero-crossing in a
catastrophe.

The Creation Germ

For the creation germ f C the critical curve and the catastrophe point follow from




Lx1 = 3x2
1 − 6x2

2 − 6t
Lx2 = 2x2(ε2 − 6x1)
Lxi = 2εixi, i ≥ 3

detH = 3
(
x1(ε2 − 6x1)− 12x2

2

)
2nΠn

i=3εi

Since we look at a catastrophe in the neighbourhood of the origin, we must take x2 = 0 and disregard
ε2 = 6x1. Then the critical curve with a catastrophe at the origin is parametrised by (±

√
2t, 0, . . . , 0; t),

t ≥ 0, so two critical points with opposite sign leave the origin as t increases from zero, again transver-
sally to the Hessian zero-crossing.

Two related remarks must be made

1. This germ only gives a local description of the catastrophe. If t is taken too large, the (non-generic)
degeneration of the Hessian at x1 = 1

6ε2 has to be taken into account.

2. This catastrophe – at the origin – is anA2 catastrophe, since it describes the creation of two critical
points due to exactly one scale-“parameter”. One may notice, however, that the description of the
creation germ is alike the description of the D−4 catastrophe, which is given by x3 − xy2.

We will come back to these items in Section 7.3. The crux lies in the behaviour of critical curves due to
the morsification of non-generic events.

Non-Generic Events

Altough two Fold events are the only generic events, one may sometimes not be able to distinguish
compounds of generic events, e.g. due to numerical limitations, coarse sampling, or (almost) symmetries
in the image.

Example 5 If at some scale three nearby critical points, e.g. two extrema and a saddle are present, but
at the subsequent scale only one extremum, obviously one pair of critical points is annihilated. However,
Figure 7.1 illustrates the case that one is not able to identify the annihilating extremum at the former
scale. On the left the critical paths are shown, together with a grey area representing the uncertainty in
determining the catastrophe location. On the right the non-generic model of this event is displayed.
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Figure 7.1: Left: Annihilation of two critical points in the neighbourhood of a third critical point. The
grey area represents the uncertainty in determining the catastrophe. Right: Non-generic representation
and model of this event.

This gives rise to the demand of using descriptions that model the behaviour of critical curves around
non-generic catastrophes, as well as their perturbations. Obviously, the latter must lead to critical curves
containing only the generic events.

7.3 Scale Space Catastrophe Models

In this section we describe how the following catastrophes (with nicknames and perturbation germs)
can be used to model events in (2 + 1)-dimensional scale space. The catastrophes describe in canonical
coordinates how critical curves pass the origin yielding compounds of annihilations and / or creations of
pairs of critical points.

• A2 Fold catastrophe: x3 + λ1x± y2.

• A3 Cusp catastrophe: ±x4 + λ1x+ λ2x
2 ± y2.

• D+
4 Hyperbolic Umbilic catastrophe, x3 + xy2 + λ1x+ λ2y + λ3y

2.

• D−4 Elliptic Umbilic catastrophe: x3 − xy2 + λ1x+ λ2y + λ3y
2.

• D±5 Parabolic Umbilic catastrophe: x4 ± xy2 + λ1x+ λ2y + λ3y
2 + λ4x

2.

• D+
6 Second Hyperbolic Umbilic catastrophe: x5 + xy2 + λ1x+ λ2y + λ3x

2 + λ4y
2 + λ5x

3.

• D−6 Second Elliptic Umbilic catastrophe: x5 − xy2 + λ1x+ λ2y + λ3x
2 + λ4y

2 + λ5x
3.

The ± signs at the A3 and D5 denote “dual” possibilities with similar geometry.
The germs in this list will be adjusted such that they satisfy the heat equation. Furthermore, by

choosing the perturbation terms non-zero and adjusting them in the same way, descriptions of critical
curves in scale space will be obtained. These critical curves only contain the generic Fold annihilation(s)
and/or creation(s).

Again we emphasise that this list not a complete list as can be found in [45], containing al the relevant
mathematical details. However, the germs mentioned above are related to the perturbations of the generic
annihilation and creation given in [45]. We will see that although most of these catastrophes are non-
generic, they may still be relevant for modelling compounds of generic events that one is not capable of,
or willing to, segregate as such. Recall, for example, Figure 7.1.
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Figure 7.2: Critical paths of the Cusp catastrophe. The catastrophe is located at the dot. a) λ1 = 1. b)
λ1 = 0. c) λ1 = −1. Note that if the perturbation is very small, these three distinct cases may very well
be confused.

7.3.1 A2 Fold Catastrophe

The Fold catastrophe in scale space is given by

L(x, y; t) = x3 + 6xt+ δ(y2 + 2t) ,

where δ = ±1. Critical curves and the catastrophe point follow from




Lx = 3x2 + 6t
Ly = 2δy

detH = 12δx .

One can verify that at the origin a saddle and an extremum (a minimum if δ = 1, a maximum if δ = −1)
moving in the y = 0 plane meet and annihilate while increasing the scale parameter t.

7.3.2 A3 Cusp Catastrophe

The Cusp catastrophe germ is given by x4. Its scale space addition is 12x2t+12t2. The perturbation term
contains two terms: λ1x + λ2x

2. Obviously, scale can take the role of λ2. Taking the dual Cusp gives
the same geometry by changing the sign of λ1, or by setting x = −x. The scale space Cusp catastrophe
germ with perturbation is thus defined by

L(x, y; t) = x4 + 12x2t+ 12t2 + λ1x+ δ(y2 + 2t) ,

with δ = ±1. Again, the critical curves and the catastrophe point follow from




Lx = 4x3 + 24xt+ λ1

Ly = 2δy
detH = 24δ(x2 + 2t) .

Morsification by the perturbation λ1 6= 0 yields one Fold catastrophe and one regular critical curve, see
Figure 7.2a,c. The differences in behaviour depending on the sign of δ is studied in detail in [156]. It
suffices here to note that if λ1 = 0, at the origin three critical points transform to one critical point while
increasing scale, see Figure 7.2b.

One can verify that the Ak, k > 3 catastrophes describes the (non-generic) simultaneous annihi-
lations of critical points in one dimension under the influence of blurring, albeit in more complicated
appearances.
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Figure 7.3: Critical paths of the D+
4 -catastrophe in (x, y; t)-space. a) Unperturbed. b) Perturbed. Again,

if the perturbation is small we may not be able to tell which configuration is the actual one.

7.3.3 D±4 Umbilic Catastrophes

The D±4 Umbilic catastrophe germs are given by x3 + δxy2, where δ = ±1. The scale space addition is
(6 + 2δ)xt, yielding x3 + xy2 + 8xt for the Hyperbolic Umbilic catastrophe, and x3 − xy2 + 4xt for
the Elliptic Umbilic catastrophe. The perturbation contains three terms: λ1x+ λ2y + λ3y

2. Obviously,
scale can take the role of λ1.

D±4 Hyperbolic Umbilic Catastrophe

The scale space D+
4 Hyperbolic Umbilic catastrophe germ with perturbation is thus defined by

L(x, y; t) = x3 + xy2 + 8xt+ λ3(y2 + 2t) + λ2y .

The critical curves and catastrophe points follow from




Lx = 3x2 + 8t+ y2

Ly = 2xy + 2λ3y + λ2

detH = 12x(x+ λ3)− 4y2.

In the unperturbed situation four critical points exist for each t < 0 on the x- and y-axes. At t = 0
the four critical curves annihilate simultaneously at the origin, see Figure 7.3a. Taking perturbation into
account, the curves are separated into two critical curves each containing a Fold catastrophe, see Figure
7.3b.

D−4 Elliptic Umbilic Catastrophes

The scale space elliptic Umbilic catastrophe germ with perturbation is given by

L(x, y; t) = x3 − xy2 + 4xt+ λ3(y2 + 2t) + λ2y . (7.3)

Again, the critical curves and the catastrophe points follow from




Lx = 6x2 + 4t− y2

Ly = −2xy + 2λ3y + λ2

detH = 12x(2λ3 − 2x)− 4y2.
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Figure 7.4: Critical paths of theD−4 -catastrophe in (x, y; t)-space. a) Unperturbed. b) Small perturbation.
c) Large perturbation.

The unperturbed equation gives two critical points for all t 6= 0. At the origin a so-called scatter event
occurs: the critical curve changes from y-axis to x-axis with increasing t, see Figure 7.4. Just as in the
hyperbolic case, in fact two Fold catastrophes take place; in this case both an annihilation and a creation.
The morsification is shown in Figure 7.4b. The critical curve on the right does not contain catastrophe
points. The critical curve on the left, however, contains two Fold catastrophe points: a creation and an
annihilation. Both are studied in detail in [156]. A brief sketch was given in section 7.2, where we could
set λ2 = 0, since only the creation at the origin was investigated.

So while increasing scale one will find two critical points, suddenly two extra critical points appear, of
which one annihilates with one of the already existing ones. Finally, one ends up with again two critical
points. Clearly, if the samples in scale are taken too large, one could completely miss the subsequent
catastrophes, see e.g. Figure 7.4c. The properties of the creations will be discussed in the next section.

Creations

As we showed, a creation event occurs in case of a morsified elliptic Umbilic catastrophe. In most
applications, however, creations are rarely found, giving rise to the (false) opinion that creations are
caused by numerical errors and should be disregarded. The reason for their rare appearance lies in
the specific requirements for the parameters in the (morsified) Umbilic catastrophe germ. Its general
formulation is given by

L(x, y; t) = 1
6Lxxxx

3 + 1
2Lxyyxy

2 + Lxtxt
+1

2Lyy(y
2 + 2t) + Lyy

(7.4)

In general, the spatial coefficients do not equal the derivatives evaluated in the coordinate system of the
image. They follow from the alignment of the catastrophe in the plane defined by y = 0 and can have

arbitrary value. Furthermore, the diffusion equation implies Lxt
def
= Lxxx + Lxyy. Then the scale space

evolution of the critical curves follow from




∂xL = 1
2Lxxxx

2 + Lxtt+ 1
2Lxyyy

2

∂yL = Lxyyxy + Lyyy + Ly
detH = Lxxxx(Lxyyx+ Lyy)− L2

xyyy
2.

Firstly we consider the case Ly = 0. Then Eq. (7.4) describes a Fold catastrophe (either annihilation or
creation) at the origin, where the critical curve is positioned in the (x, t)-plane. A creation necessarily
requires the constraint LxxxLxt < 0 at the catastrophe point. This constraint is sufficient.
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Figure 7.5: a) The fraction of the space of the third order derivatives in which creations can occur as a
function of the dimension according Theorem 6. b) Intersections of the curves detH = 0 and ∂yL = 0
with different values forLy. For the value given by Theorem 7 the curves touch. c) Difference in intensity
between the creation and the annihilation event for Ly increasing from 0 to its critical value.

Theorem 6 At a catastrophe point in two spatial dimensions, if the third order derivatives of the general
local form as given by Eq. (7.4) with Ly = 0, are uncorrelated, the number of creations has an a priori
likelihood of 1/4 relative to the total number of catastrophes. In n dimensions it is 1

π arccos 1√
n

.

Proof of theorem 6 The requirement LxxxLxt < 0 can be rewritten to Lxxx(Lxxx + Lxyy) < 0. In the
(Lxxx, Lxyy)-space this constraint is satisfied by all point sets in the area spanned by the lines through
the origin with direction vectors (1, 0) and (1,−1), which is a quarter of the plane. For n−D this extends
to the area Lxxx(Lxxx+Lxy1y1 + . . .+Lxyn−1yn−1) < 0 in (Lxxx, Lxyiyi)-space, with dim(y) = n−1.
This representing two intersecting planes with normal vectors (1, 0, . . . , 0) and (1,−1, . . . ,−1). They
make an angle of φ radians, given by

cosφ =
(1, 0, . . . , 0) · (1,−1, . . . ,−1)

| (1, 0, . . . , 0) | · | (1,−1, . . . ,−1) | =
1√
n

Then the fraction of the space follows by taking twice this angle and dividing by the complete angle of
2π, i.e. 1

π arccos 1√
n

. 2

Note that if n = 1, the fraction of the space where creations can occur is zero, for n = 2 it is a
quarter. The also interesting case n = 3 yields a fraction that is slightly more than a quarter, whereas for
n → ∞ the fraction converges to a half, see Figure 7.5a. That is: the higher the dimensions, the easier
critical points can be created.

The reason that in practice in two dimensional images the number of creations observed is (much)
smaller than a quarter, is caused by the role of the perturbation parameters. It is possible to give a tight
bound to the perturbation of Equation (7.4) in terms of Ly:

Theorem 7 A creation and subsequent annihilation event occur in Equation (7.4) if and only if

| Ly |≤
3

16
L2
yy

√
−3Lxxx
L3
xyy

(7.5)
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Proof of theorem 7 The catastrophes satisfy ∂xL = ∂yL = detH = 0. Since the solution of the system

∂yL = Ly + y(Lyy + Lxyyx) = 0
detH = Lxxxx(Lyy + Lxyyx)− L2

xyyy
2 = 0

(7.6)

only contains spatial coordinates, their intersections define the spatial coordinates of the catastrophes.
The catastrophe points form the local extrema of the critical curve in (x, y; t)-space, i.e. at these points
the tangent vector has no scale component. If the curves given by Eq. (7.6) touch, there is only a point
of inflection in the critical curve, i.e. the critical curve in (x, y; t)-space has a (Fold) catastrophe point.
At this point of inflection, the spatial tangent vectors of the curves defined by Eq. (7.6) are equal.

Solving the system Eq. (7.6) with respect to y results in

y = − Ly
Lyy + Lxyyx

= ± 1

Lxyy

√
Lxxxx(Lyy + Lxyyx) .

The equality of the tangent vectors at the point of inflection xi, yi yields

∂

∂x

(
− Ly
Lyy + Lxyyx

)
|xi,yi=

∂

∂x

(
± 1

Lxyy

√
Lxxxx(Lyy + Lxyyx)

)
|xi,yi

Solving both equalities results in

(xi, yi, Ly) = (− Lyy
4Lxyy

,±
√√√√−3LxxxL2

yy

16L3
xyy

,∓ 3L2
yy

16Lxyy

√
−3Lxxx
Lxyy

) ,

which gives the boundary values for Ly. 2

Note that Eq. (7.5) has only real solutions if LxxxLxyy < 0, i.e. at the D−4 (morsified) catastrophe.
As a consequence of Theorem 7, creations only occur if the perturbation is small enough. Again, this
perturbation occurs in the coordinate system, obtained by the alignment of the catastrophe in the plane
defined by y = 0.

Example 6 Taking Lxxx = 6, Lxyy = −12, Lyy = 2 yielding L = x3 − 6xy2 − 6xt + y2 + 2t + Ly,
we obtain the “generic creation example” as given in section 7.2 with perturbation. Then Theorem 7
gives | Ly |≤ 1

32

√
6 as a – relatively small compared to the other derivative values– bound for the

occurrence of a creation – annihilation couple. In Figure 7.5b the ellipse detH = 0 is plotted, together
with the curves ∂yL = 0 for Ly = 0 (resulting in two straight lines at y = 0 and x = 1

6 , intersecting at
(x, y) = (1

6 , 0)), and Ly = 2−i
√

6, i = 4, . . . , 7. For i > 5, the perturbation is small enough and the
intersection of ∂yL = 0 and detH = 0 contains two points. Thus a creation-annihilation is observed. If
i = 5, Ly has its critical value and the curves touch. For larger values the curves do not intersect each
other.

Obviously the perturbation Ly can be larger if Lyy increases. If so, the structure becomes more
elongated. It is known by various examples of creations given in literature that elongated structures play
an important role. In fact, the quintessential property is scale anisotropy.

Another reason that creations are rarely found is that their lifetime is rather limited: with increasing t
the created critical points annihilate. If the scale steps are taken too large, one simply misses the creation
– annihilation couple. This may be regarded as a dual expression for the previous explanation. In the
chosen coordinate system this can be calculated explicitly.
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Theorem 8 The maximum lifetime of a creation given by Equation (7.4) is

tlifetime =
−LxxxL2

yy

2L2
xyy(Lxxx + Lxyy)

.

The difference in intensity of the critical point that is created and subsequently annihilated is

Lxxx(2Lxxx − Lxyy)L3
yy

6L3
xyy(Lxxx + Lxyy)

.

Proof of theorem 8 Observe that the lifetime is bounded by the two intersections of ∂yL = 0 and
detH = 0, see Figure 7.5b. As | Ly | increases from zero, the two points move towards each other
over the arch detH = 0 until they reach the value given by theorem 7 with lifetime equal to zero. The
largest arch length is obtained for Ly = 0. Then the spatial coordinates are found by

∂yL(x, y; t) = y(Lxyyx+ Lyy) = 0

and
detH = Lxxxx(Lxyyx+ Lyy)− L2

xyyy
2 = 0,

i.e. (x, y) = (0, 0) and (x, y) = (− Lyy
Lxyy

, 0) The location in scale space is given by

∂xL(x, y; t) =
1

2
Lxxxx

2 − 1

2
Lxyyy

2 + Lxtt = 0.

Consequently, the first catastrophe takes place at the origin - since also t = 0 - with zero intensity. The
second one is located at

(x, y; t) = (− Lyy
Lxyy

, 0;
−LxxxL2

yy

2L2
xyy(Lxxx + Lxyy)

)

with intensity

Lcat =
Lxxx(2Lxxx − Lxyy)L3

yy

6L3
xyy(Lxxx + Lxyy)

.

Then the latter is also the maximum difference in intensity. 2

Example 7 To show the effect of the movement along the arch detH = 0, see Figure 7.5c. Without
loss of generality we took again Lxxx = 6, Lxyy = −12, Lyy = 2. Firstly, the two solutions to ∇L =
0∧detH = 0 were calculated as function of Ly. Secondly, the difference of the intensity of the solutions
was calculated for 766 subsequent values of Ly, Ly ∈ [0, . . . , 1

32

√
6]. It is clearly visible that the

intensity decreases monotonously with an increase of Ly. For this example we find that the lifetime is 1
72 ,

the difference in intensity 1
18 .

From the proof of Theorem 8 it is again apparent that Lyy plays an important role in enabling a
(long)lasting creation. To observe this in more detail, note that the curve

detH = 0⇔ Lxxxx(Lxyyx+ Lyy) = L2
xyyy

2
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is an ellipse (see also Figure 7.5b). Replacing x by x− Lyy
2Lxyy

, it is centred at the origin:

Lxxx(x− Lyy
2Lxyy

)Lxyy(x+
Lyy

2Lxyy
) = L2

xyyy
2 .

And consequently

LxxxLxyy(x
2 − L2

yy

4L2
xyy

) = L2
xyyy

2 .

Setting Lxyy = 1
b and LxxxLxyy = − 1

a2 , we find

detH = 0⇔ x2 +
a2

b2
y2 = L2

yy

b2

4
.

Assuming that we have a creation, a2 > 0. The ellipse is enlarged with an increase of L2
yy. Obviously,

at the annihilations of the Hyperbolic Umbilic catastrophe a2 < 0, so detH = 0 then describes a
hyperbola.

7.3.4 D±5 Parabolic Umbilic Catastrophes

In the previous section we saw that the geometry significantly changed by taking either the term −xy2,
or the term +xy2. Let us therefore, ignoring the perturbation terms λ1, λ2, and λ3, define the scale space
Parabolic Umbilic catastrophe germ by

L(x, y; t) =
1

4!
x4 +

1

2!
x2t+

1

2!
t2 + δ(

1

2
xy2 + xt) (7.7)

where δ = ±1 and t is taking the role of λ4. Its critical curves and catastrophes follow from




Lx = 1
6x

3 + xt+ δ(t+ 1
2y

2)
Ly = δxy

detH = δx(1
2x

2 + t)− y2

So two catastrophe points are located at the origin and a third at (x, y; t) = (− 3
2δ, 0;−9

8δ
2). The latter

is a simple annihilation (a fold catastrophe), the former is a cusp catastrophe (three critical point change
into one) for both values of δ, see Figure 7.6a-b. Indeed the geometry of the D5 and its dual are not sig-
nificantly different. Adding small perturbations by choosing the parameters λ1, λ2, and λ3, the morsified
Cusp catastrophe remains, see Figure 7.6c-d. The critical curves at the Cusp breaks up into two curves,
one with a Fold catastrophe, one without a catastrophe.

7.3.5 D±6 Second Umbilic Catastrophes

Ignoring the perturbation terms λ1, . . . , λ4 for the moment, the scale space expression of the D±6 -
catastrophes are given by

L(x, y; t) =
1

5!
x5 +

1

3!
x3t+

1

2!
xt2 + δ(

1

2
xy2 + xt) , (7.8)
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Figure 7.6: Critical paths of the D±5 -catastrophe in the (x, y; t)-space. a) Unperturbed, δ = −1. b)
Unperturbed, δ = 1. c) Perturbed, δ = −1. d) Perturbed, δ = 1.

where t is taking the role of λ5 and δ = ±1. Its critical curves and catastrophes follow from




Lx = 1
4!x

4 + 1
2x

2t+ 1
2 t

2 + δ(t+ 1
2y

2)
Ly = δxy

detH = 1
6δx

2(x2 + 6t)− y2

Setting y = 0, several catastrophes occur: At (x, y; t) = (±
√
−6δ, 0; δ) two Fold annihilations if

δ = −1, at the origin a creation and at (x, y; t) = (0, 0;−2δ) again an annihilation, see Figure 7.7a for
δ = 1 and Figure 7.7b for δ = −1.

It is clear that the morsification by t of the D+
6 yields a D−4 scatter followed (while increasing scale)

by a D+
4 double annihilation at the origin. The D−6 shows a D−4 scatter at the origin, followed by again

a D−4 scatter at some higher scale. Both images show that a part of the critical curve forms a loop: The
created critical points annihilate with each other.

So if the perturbations are small (or if the measurement contains some uncertainty), one might not
be able to distinguish between the involved Fold catastrophes. However, the scale space representation
causes a separation into two non-generic catastrophes already mentioned. Further morsification gives
more insight in the way critical curves can behave.

By taking λ1, . . . , λ4 6= 0, the generic critical curves shown in Figure 7.7c-d are obtained. The mor-
sification of theD+

6 shows two critical curves behaving in an aesthetic way, combining the morsifications
of the D±4 catastrophes, i.e. containing Fold annihilations and creations. Both created critical points on
the right critical curve in Figure 7.7c annihilate at some larger scale.

The morsification of theD−6 , on the other hand, still shows the loop close to the origin. Consequently,
in contrast to the elliptic Umbilic catastrophe, now both created branches annihilate with each other: the
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Figure 7.7: Critical paths of the D±6 -catastrophe in (x, y; t)-space. a) Unperturbed, δ = 1. b) Unper-
turbed, δ = −1. c) Perturbed, δ = 1. d) Perturbed, δ = −1.
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critical curve in the centre of Figure 7.7d is a closed loop in scale space.

On Generic Loops

The perturbation term of the second Umbilic catastrophes in scale space is given by

λ1x+ λ2y + λ3(x2 + 2t) + λ4(y2 + 2t) .

If we assume that the image contains the catastrophe at the origin, we may set λ1 = λ2 = λ3 = 0.
Furthermore, if it contains an elongated structure at the creation, |λ4| > 0. This perturbation causes the
non-generic scatter event, visible in Figure 7.7b, to break up. While increasing |λ4| the two parabolae in
the x = 0-plane move along the critical loop, until the meet each other and the change into two critical
curves without a catastrophe, as shown in Figure 7.7d.

Setting λ4 = 2Lyy we get

L(x, y; t) = Lxtt(
1

5!
x5 +

1

6
x3t+

1

2
xt2) + Lxt(xt+

1

2
xy2) + Lyy(

1

2
x2 + t) ,

where Lxtt = Lxxxxx and Lxt = Lxyy in absence of other third and fifth order derivatives. Consequently,




∂xL = Lxtt(
1
4!x

4 + 1
2x

2t+ 1
2 t

2) + Lxt(t+ 1
2y

2)
∂yL = Lxtxy + Lyyy

detH = Lxtt(
1
6x

3 + xt)(Lxtx+ Lyy)− Lxty2

One can verify that the solution x = −Lyy
Lxt

of ∂yL = 0 describes the non-genericity on the loop if

L2
yy ≤ (−3 +

√
3)

L3
xt

Lxtt
by solving ∂xL = 0, so Lyy needs to be large enough and LxttLxt < 0, i.e. only

the morsified D−6 pertains its loop. Now at the origin the creation takes place. Note that there ∂tL 6= 0.
The successive annihilation follows from x = y = 0 and ∂xL = Lxtt

1
2 t

2 + Lxtt = 0 and takes place
at (x, y; t) = (0, 0;− 2Lxt

Lxtt
). So the lifetime of the scale space loop is tl = −2Lxt

Lxtt
. Furthermore, the

difference in intensity between creation and annihilation yields Lyytl. The loop can therefore pertain
over a certain range of scales. We will come back to these parameter setting and coordinate choice in
section 7.4.

7.3.6 Other Non-Generic Catastrophes

The catastrophes, their scale space formulation, and their morsifications, as treated in the previous sec-
tions, are only the beginning of an infinite set of possible descriptions on the behaviour of critical curves.
Due to extreme local symmetries and inaccuracies – think of a large checkerboard pattern – one might
encounter non-generic events to be described with higher other catastrophe models. These models follow
straightforward from the route we described.

From the point of view of distinct appearances of critical curves, this expose suffices. Since the
only possible generic catastrophes on critical curves are creations and annihilations of pairs of critical
points, the possibilities are limited. Given an critical curve, it either originated from the initial image
and the curve can contain several protuberances, i.e. sequences of successive creations and annihilations,
or it didn’t originate from the initial image and it forms a loop, perhaps also with protuberances. Both
possibilities are described by the aforementioned catastrophe models. The scale space formulation of the
“three exceptional catastrophes” don’t yield any extra information, as one can verify.
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7.3.7 Morsification Summary

All non-Fold catastrophes morsify to Fold catastrophes and Morse critical points. The morsification
gives insight in the structure around the catastrophe point regarding the critical curves.

The morsification of the Umbilic catastrophes (the Dk) show that the trajectories in scale space of
the created critical points fall into several classes.

The morsified D+
4 -catastrophes describes two Fold annihilations. The morsified D−4 catastrophe

describes the creation of a pair of critical points and the annihilation of one of them with another critical
point. So while tracing a critical branch of a critical curve both an annihilation and a creation event are
traversed.

The morsified D+
6 catastrophe describes the creation of a pair of critical points and the annihilation

of both of them with two other critical points. So while tracing a critical branch of a critical curve
successively an annihilation, a creation and again an annihilation event are traversed.

The morsified D−6 -catastrophe describes an isolated closed critical curve, appearing ex nihilo with
two critical branches that disappear at some larger scale.

So the morsified D−4 (and its extension, the D+
6 ) and D−6 -catastrophes describe essentially different

creation events. An important result lies on the area of tracing critical points. If one traces only critical
points starting from the initial image, one will find the “D−4 ” creations, since they emerge as the starting
point of a part of a critical curve that annihilates with one of the initial critical points. However, one will
miss the “D−6 ” loops that occur somewhere in scale space, since they have no relation whatsoever to the
critical points in the initial image. So fine-to-coarse tracing of critical points will not always yield the
right result.

Note that the full morsification of the non-generic catastrophes always yields the generic Fold anni-
hilations and creations and Morse critical points.

7.4 Applications

In this section we give some examples to illustrate the theory presented in the previous sections. We
will focus on the critical curves emerging from a creation event. An example of desired symmetry in an
image and consequently modelling by a Cusp catastrophe has been presented elsewhere [156].

Firstly, appearance of the morsified D−4 -catastrophe on critical paths is shown using the artifi-
cial MR image of Figure 7.8a. This image is taken from the “Brain Web” [40, 41, 163], web site
http://www.bic.mni.mcgill.ca/brainweb.

Secondly, an example of creation ex nihilo, the morsified D−6 -catastrophe, is shown by means of the
classic “bridge”-image of Figure 7.11a, and the aformentioned MR image.

7.4.1 D−4 Catastrophe

The artificial MR image of Figure 7.8a was used as initial image for the scale space image. For visual-
isation purposes, we restricted to the scale range 8.37 − 33.1. The image at scale 8.37 (with only the
large structures remaining) is shown in Figure 7.8b. This image contains 7 extrema.

The scale space image in this scale range contains 161 logarithmically sampled scales. At all scales
the spatial critical points were calculated and connected, forming the critical paths. Figure 7.9 shows
these critical paths in the (x, y; t)-space. The bright curves represent the extrema, the dark ones the
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Figure 7.8: a: 181 x 217 artificial MR image. b) Image on scale 8.37

saddles. At the (approximate) catastrophe locations the curves are connected. Globally, the image shows
annihilating pairs of critical points. Locally, however, the presence of extra branches of critical curves is
visible.

A close-up of one of the critical paths is shown in Figure 7.10a. It clearly shows a critical curve
containing two subsequent Fold annihilation – creation events. The critical curve evidently shows the the
appearance of an annihilation-creation-pair described by the D−4 morsification. Note that the creation
events would have been missed if the sampling was taking coarser, yielding one critical curve without
protuberances in scale direction. Sampling without connecting critical paths yields the observation of
temporarily created extrema (and saddles), cf. Simmons et al. [230].

7.4.2 D−6 Catastrophe

Figure 7.11a shows the classical “bridge”-image: two mountains of different height (blobs with different
intensity) connected by a small ramp and a deep valley between the mountains. This image was described
by Lifshitz and Pizer [168] as possible initial image yielding a creation event in scale space.

• Firstly, there is only one maximum of the left blob. The right blob is not a maximum, since it is
connected to the other blob by the ramp.

• Secondly, at some scale the ramp changes into a bridge with a deep dip in it due to the surrounding
deep valleys: a maximum (right blob) – saddle (dip of the bridge) pair is created.

• Finally, at a large scale a saddle – extremum annihilation occurs.

If the saddle annihilates with the left extremum, it can be modelled by the D−4 catastrophe, as in the
previous section. However, as shown by Figure 7.11b, it can also annihilate with the newly created ex-
tremum. This figure shows the critical paths of the scale space image of 7.11a. The left string represents
the extremum of the brightest blob, the loop represents the created and annihilated maximum-saddle pair.
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Figure 7.9: Critical paths of the MR image in scale range 8.37− 33.1.
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Figure 7.10: a) Close-up of one of the critical paths of the MR image, showing a subsequent annihilation
– creation event. b) Close-up, showing subsequent annihilation – creation events and loop events.

Figure 7.11: a: Artificial bridge image. b) Critical paths of the bridge image.
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Since the structure is built up as discussed in section 7.3.5, the loop remains over a relatively large
number of scales. Due to mirror symmetry we know that the x-direction is the one indeed corresponding
to that used in the previous canonical models. Numerical calculations show a very strong response on
the fraction Lxyy

Lxxxxx
close to the scale space location of the creation, as predicted by the model as measure

for the lifetime of the loop.
The same behaviour is observed at the MR scale space image. Figure 7.10b shows a close-up of

one of the critical curves. Besides several aforementioned subsequent Fold annihilation – creation events
along the critical curve, here clearly also several “loop events” occur.

7.5 Discussion

In this chapter we investigated the (deep) structure on various catastrophe events in Gaussian scale space.
Although it is known that pairs of critical points are annihilated and created (the latter if the dimension
of the image is 2 or higher), it is important to describe also the local structure of the image around the
non-generic events. These events might be encountered in practical usage of scale spaces and the non-
generic catastrophes can be used to model these occurrences. We therefore embedded catastrophes in
scale space. Scale acts as one of the perturbation parameters. The morsification of the catastrophes yields
generic Fold annihilations and creations of pairs of critical points.

The Ak series can be used to model (almost) simultaneous annihilations of pairs of critical points at
a location (or indistinguishable region) in scale space. If k is even, it models the annihilation of k critical
points, if k is odd, it models the collision of k critical points where k − 1 annihilate and one remains.

For creations the Dk series can be used. Creations occur in different types. Critical paths in scale
space can have protuberances, a subsequent occurrence of an annihilation and a creation. In scale space
images this is visible by the creation of an extremum-saddle pair, of which one critical point annihilates
at some higher scale with an already present critical point, while the other remains unaffected. It is also
possible that critical paths form loops: the created pair annihilates at some higher scale. The possibility
for both types to occur in practice was shown in the artificial MR image. This phenomena is known from
physics, where it is used to describe the creation and successive annihilations of “virtual” elementary
particles (and even the universe), see e.g. [4, 186, 191].

Furthermore we showed that the protuberances in the critical paths, expressed in canonical coordi-
nates, occur only in case of a small local perturbation. In addition, creations are less likely to happen
due to a special constraint on the combination of third order derivatives and local perturbation. We gave
a dimension dependent expectation of this event and an upper bound for the perturbation in canonical
coordinates.

The lifetime of a created pair is enlarged if the local structure is elongated. This was derived from
the canonical formulation and visualised by the example of the bridge image in section 7.4.

Since the number of possible catastrophes is infinite, there is an infinite number of possible non-
generic constellations in which (“infinite”) critical points are annihilated and created. We restricted
ourselves to the situations in which at most 6 critical points annihilate and in which critical points are
created, the latter divided into models representing protuberances and loops.

Finally, the calculations were based on the canonical coordinates. In general, it is not trivial to
transform the local coordinate system to these nice formulated catastrophe germs. In that sense, the
numerical values have no direct meaning. They do describe, however, the qualitative behaviour of the
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critical curves close to the location of the catastrophes and can therefore be used to model the type of
behaviour encountered in practical usage of a scale space. We gave examples of the appearances of this
behaviour in section 7.4 based on an artificial MR image.

The theory described in this chapter extends the knowledge of the deep structure of Gaussian scale
space, especially with respect to the behaviour of critical curves in the vicinity of creation events and
the scale space lifetime of the created critical points. It emphasises the relevance of investigating the
complete scale space image, instead of a series of images at different scales.



CHAPTER 8

Logical Filtering

Causality may be considered as a
mode of perception by which we
reduce our sense impressions to
order.

NIELS BOHR

abstract Using a Gaussian scale space, one can use the extra dimension, viz. scale, for investigation
of “built-in” properties of the image in scale space. We show that one of such induced properties is the
nesting of special iso-intensity manifolds, that yield an implicit present hierarchy of the critical points
and regions of their influence, in the original image. Its very nature allows one not only to segment the
original image automatically, but also to apply “logical filters” to it, obtaining simplified images. We
give an algorithm deriving this hierarchy and show its effectiveness on two different kinds of images,
both with respect to segmentation and simplification.

8.1 Introduction

The paradigm of linear scale space has been introduced by Witkin [249] and Koenderink [139]. They
noted that a single image contains objects or parts with various sizes. One way to exploit this fact is by
observing the image with filters capturing these a priori unknown sizes, or scales. Assuming that these
filters should be invariant with respect to location, scale and rotations and that they should be linear, one
finds the set of Gaussian filters as a plausible solution.

From the field of distribution theory [224] it is known that these filters also allow one to take deriva-
tives up to any order of non-continuous functions, solving the question of how to define proper derivatives
of a discrete set (e.g. an image [65]) in a well-posed way.
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Nowadays, Gaussian filters are widely used to calculate derivatives of images. However, in calculat-
ing these derivatives, one needs to specify the scale, or standard deviation, of the Gaussian. One way to
avoid this, is by calculating the differential properties of interest at a range of scales [76] and selecting
the one with the highest (or best) response according to some pre-defined criterion.

This approaches in some sense the concept of “deep structure”, defined by Koenderink as “investi-
gation of the image at all scales simultaneously” [139]. In essence, this implies full investigation of the
n-dimensional image in (n+ 1)-dimensional scale space as opposed to a “slice-by-slice” approach.

Most of the research in scale space is focused on the selection of pre-defined invariants [77, 78, 107]
at several scales with highest response (see e.g. [37, 176, 175, 177]). Some results have been obtained by
examining the deep structure, e.g. in the behaviour of spatial critical points under blurring, using ideas
from the field of catastrophe (or: singularity) theory [48, 72, 98, 132]. Alerted by outcome of results
by Lifshitz and Pizer [168], Koenderink [144] mentioned the presence of spatial critical points in scale
space with zero scale derivative and investigated their neighbourhood structure. In an earlier paper [157]
we investigated the deep structure yielding a hierarchy tree representing the image, based on its spatial
extrema at all scales, their disappearances with saddle points and the critical points in scale space found
by tracing the spatial saddle points at all scales. This tree could be used to obtain a user-independent
“pre-”segmentation of the image. In [160] we discussed the stability of the hierarchy tree and the ability
to add a priori and a posteriori known symmetry to it, and showed the effect on the pre-segmentation.

In this paper we extend the results mentioned in [157] and explore the n+ 1 dimensional scale space
with respect to its critical points and its iso-intensity manifolds. We show that the latter introduce a
unique hierarchy which can be used as a so-called logical filter. Consequently, a unique partitioning of
the scale space is obtained, which yields, if projected to the initial image, a partitioning of the image
without prior knowledge.

8.2 Theory

The idea of logical filtering in scale space was introduced by Koenderink in [139]. In section 8.2.3 we
will describe this idea. In order to understand the essential elements, we firstly define a Gaussian scale
space in section 8.2.1 and the idea of the hierarchical structure in section 8.2.2. The structure depends on
the evolution of spatial critical points as the scale changes. The locations of these points in scale space
form one dimensional manifolds, the so-called critical curves, containing two types of special points, viz.
scale space saddles and catastrophe points.

8.2.1 Gaussian Scale Space

Definition 29 L(x) denotes an arbitrary n dimensional image. We will refer to this image as the initial
image. L(x; t) denotes the n+ 1 dimensional Gaussian scale space image of L(x).

The isotropic Gaussian scale space image is obtained by convolution of an initial image with a nor-
malised Gaussian kernel:

L(x; t)
def
= Gt ? L(x)

def
=

∫
1√

4πt
n e
− |x−y|2

4t L(y) dy
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L(x; t) satisfies the diffusion equation:

∂tL(x; t) =
n∑

i=1

∂2

∂xi2
L(x; t)

def
= ∆L(x; t) (8.1)

Here ∆L(x; t) denotes the Laplacean. Furthermore, differentiation is now well-defined, since any deriva-
tive of the image is given by the convolution of the image with the corresponding derivative of the Gaus-
sian. The (discrete) initial image is now extended to a continuous scale space image, L(x; t) ∈ IRnxIR+

with limt↓0 L(x; t) = L(x).

Spatial critical points

Definition 30 Spatial critical points, i.e. saddles and extrema (maxima or minima), at a certain scale
t0 are defined as the points at fixed scale t0 where the spatial derivatives vanish: ∇L(x; t0) = 0. We
will refer to these points as spatial critical points to distinguish them from scale space critical points, see
Definition 34.

The type of the spatial critical points is given by the eigenvalues of the Hessian H , the matrix with
the second order spatial derivatives.

Definition 31 The Hessian matrix is defined by H
def
= ∇∇T L(x; t0), where each element of H is given

by

Hi,j =
∂2

∂xi∂xj
L(x; t).

The trace of the Hessian equals the Laplacean. For maxima (minima) all eigenvalues of the Hessian are
negative (positive). At a spatial saddle point H has both negative and positive eigenvalues.

Since L(x; t) is a continuously differentiable (even smooth) function in the (x; t)-space, spatial crit-
ical points are defined for any value t0 and, according to the implicit function theorem, constitute a one
dimensional manifold in scale space.

Definition 32 A critical curve is a one dimensional manifold in (x; t) (scale) space on which∇L(x; t) =
0.

Consequently, the intersection of all critical curves with an image at a certain scale t0 results in the
spatial critical points of the images at scale t0.

If at a spatial critical point the Hessian degenerates, that is: at least one of the eigenvalues is zero,
the type of the spatial critical point cannot be determined using Definition 31.

Definition 33 The catastrophe points of L(x; t) are defined as the points where both the spatial deriva-
tives and determinant of the Hessian vanish: ∇L(x; t) = 0 and detH(x; t) = 0.

In scale space the catastrophe points are isolated points and form the top of critical curves in case of
annihilations, and the starting point in case of a creation. The latter requires a spatial dimension of at
least two.
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Scale Space Saddles

Definition 34 The scale space saddles of L(x; t) are defined as the points where both the spatial deriva-
tives and scale derivative vanish: ∇L(x; t) = 0 and ∂tL(x; t) = 0. Since for Gaussian scale spaces the
diffusion equation holds, the latter equation equals ∆L(x; t) = 0.

Note that Definition 34 describes the critical points of L(x; t) in scale space. In [158] it is proven
that these points are always saddle points. This is a direct consequence of the notion of causality (or: the
non-enhancement of local extrema, or: the prohibition of “spurious detail”, or: the maximum principle).

Definition 35 The extended HessianH of L(x; t) is matrix of the second order derivatives in scale space
defined by

H =

(
∇∇TL ∆∇L
(∆∇L)T ∆∆L

)
. (8.2)

where ∇∇TL is the Hessian.

Note that in Equation (8.2) the elements ofH are purely spatial derivatives. This is possible by employing
of the diffusion equation, Equation (8.1).

The appearance of only saddles in scale space leads to the consequence that the extended Hessian
has both positive and negative eigenvalues at scale space critical points. Furthermore, in [158] we have
proven that if the intensity of the spatial saddle points is parametrised by scale, the scale space saddles
form the extrema of the parametrised intensity along the critical curve.

8.2.2 Scale Space Hierarchy

From the previous section it follows that each critical curve in (x; t)-space is formed by branches of
critical points, where each branch is defined from a creation event or the initial scale to an annihilation
event. We set #C the number of creation events on a critical path and #A the number of annihilation
events. Since there exists a scale on which only one spatial critical point (an extremum) remains, there
is one critical path with #A = #C , whereas all other critical paths have #A = #C + 1. That is, all but
one critical paths are defined for a finite scale range. This widely accepted “folklore theorem” holds for
L1−integrable images that are non-negative and have finite compact support, see Loog et al. [182].

One of the properties of scale space is the non-enhancement of local extrema. Therefore, isophotes
in the neighbourhood of an extremum at a certain scale t0 appear to move towards the extremum at
coarser scale until at some scale t1 the intensity of the extremum equals the intensity of the isophote.
The extension of an isophote into scale space is called iso-intensity manifold:

Definition 36 A iso-intensity manifold Ic, c ∈ R, is an n-dimensional manifold in (n+ 1)-dimensional
scale space satisfying L(x; t) = c.

It is often implicitly understood that we consider connected components only. The iso-intensity
surface in scale formed by these isophotes form a dome, with its top at the extremum.

Since the intensity of the extremum is monotonically in- or decreasing (regarding a minimum or a
maximum, respectively), all these domes are nested. Retrospectively, each extremum branch carries a
series of nested domes, defining increasing regions around the extremum in the input image. In [158]
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we have proven that these regions are closed as long as the intensity of the domes does not equal that
of the dome through (the extremum and) a scale space saddle (see section 8.2.1) on the saddle branch
that is connected with the extremum branch in an annihilation event. In this way a hierarchy of regions
of the input image is obtained, which can be regarded as a kind of pre-segmentation. It also results in a
partitioning of the scale space itself.

8.2.3 Logical Filtering

Since the iso-intensity manifolds are nicely nested, they can be used to form logical filters, as pointed
out by Koenderink [139]: The requirement that in two “successive” derived images, say L(x; t) and
L(x; t+ δt) (with x variable), corresponding points have equal illuminance and are as close as possible,
yields a simple rule of projection between images: the orbits of the projection are the integral curves of
the vector field

(
ẋ
ṫ

)
=

(
∇L∆L
−||∇L||2

)
. (8.3)

This follows from the fact that the point x + dx in the image at scale t + dt that is connected on a
iso-intensity manifold to the point x at scale t, must satisfy

0 = δL = ∇L · dx + ∂tLdt = ∇L · dx + ∆Ldt . (8.4)

Taking the direction of steepest decent, i.e. in the direction of ∇L, we obtain

dx

dt
= − ∆L

∇L · ∇L · ∇L

Noting that ∇L · ∇L ≥ 0, and that the singularities of the vector fields given by the Eqs. (8.3) and
(8.4) coincide, namely if∇L = 0, the integral curves of the vector fields are the same.

Since the projection of a region of the image at some scale to the initial image cannot reach all points
in the latter image, some regions are blanked out. These regions are described through the integral curves
that pass through the extremum and those through the saddle that do reach the initial image. In Figure 8.6
one can see examples of iso-intensity manifolds formed by these integral curves. The region enclosed
by each manifold cannot be reached. These regions are topologically equivalent to balls. Koenderink
proposed to call these regions the “ranges” of the extrema, that can be taken to define the light and dark
blobs defined by the extremum-saddle-point-pairs [139]. The ranges sweep out tube-like volumes,that
are closed on one side. Constructing these ranges for all extrema, the image can be described as a
superposition of light and dark blobs. A sub-family may be defined for each sub-image and the original
family is just the superposition of the sub-families.

We will show that the top of the tube-like volumes are found by the integral curves that pass the scale
space saddles. Firstly a further investigation of the vector field Eq. (8.3) is presented.

8.3 Properties of the Vector Field

The vector field given by Eq. (8.3) uniquely defines integral curves, except for those points where the
gradient vanishes. To investigate the local behaviour of the vector field nearby critical points, a local



134 Chapter 8. Logical Filtering

(Gaussian) Taylor expansion of L is used. As we will see, it suffices to take the ensemble of derivatives
up to fourth order, the so-called local jet of order 4 [77, 80]. Using the Einstein convention for repeated
indices this reads

(4)

L (x; t) = L0 + Li x
i + 1

2Lij x
ixj + ∆L t+ 1

6Lijk x
ixjxk + ∆Li x

it+
1
24Lijkl x

ixjxkxl + 1
2∆Lijx

ixjt+ 1
2∆∆Lt2 .

(8.5)

Note that the local jet satisfies the Diffusion Equation. Locally the vector field given by Eq. (8.3) can
be expressed by

(
ẋ
ṫ

)
=

(
v0

w0

)
+

(
v1

w1

)
+

(
v2

w2

)
+ . . . (8.6)

where the sub-indices denote the total order of the expansion in spatial variables. In terms of components
we thus have

•
(
vi0
w0

)
=

(
∆LLi
−L2

i

)
,

•
(
vi1
w1

)
=

(
(Lij∆L+ Li∆Lj)x

j

−2LiLij x
j

)
,

•
(
vi2
w2

)
=

(
1
2(Lijk∆L+ 2Lij∆Lk + Li∆Ljk)x

jxk + (∆Li∆L+ Li∆∆L) t
−(LikLij + LiLijk)x

jxk − 2Li∆Li t

)
,

• and so on, with increasing complexity of the terms.

At spatial critical points Li = 0 reducing this expansion significantly. Then the zeroth order terms vanish

•
(
vi0
w0

)
=

(
0
0

)
,

•
(
vi1
w1

)
=

(
(Lij∆L)xj

0

)
,

•
(
vi2
w2

)
=

(
1
2(Lijk∆L+ 2Lij∆Lk)x

jxk + (∆Li∆L) t
−(LikLij)x

jxk

)
,

and linear terms suffice. If also the Laplacean vanishes, a further reduction of terms is established:

•
(
vi0
w0

)
=

(
0
0

)
,

•
(
vi1
w1

)
=

(
0
0

)
,

•
(
vi2
w2

)
=

(
(Lij∆Lk)x

jxk

−(LijLik)x
jxk

)
.

Consequently, a second order scheme is needed.
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8.3.1 Local Environment

On a local environment of the vector field at critical points, reducing Eq. 8.6 to its first non-zero compo-
nent, yields a linear system. Since w1 = 0, t is constant and can be disregarded. So a linear system with
only spatial coordinates remains and its behaviour is given by the scale-independent vector field

ẋi = Lij∆L xj . (8.7)

The matrix Lij ∆L in the linear system of Eq. 8.7 consists of two parts. The first term, Lij , is
equal to the Hessian matrix usually denoted by H. The Laplacean term ∆L reads, apart from the scale
derivative of the image, also the trace of the Hessian, since ∆L = Lii = tr(H). At the critical curve
four possibilities can occur, see Figure 8.1:

1. Both the trace and the determinant of the Hessian are non-zero, i.e. the critical point is a Morse
critical point;

2. The determinant of the Hessian is zero, i.e. a catastrophe takes place (annihilation or creation);

3. The trace of the Hessian is zero, i.e. a non-topological change of the saddle;

4. Both the trace and the determinant of the Hessian are zero.

The last possibility is only generic in one-dimensional images. In higher dimensions it will therefore
be disregarded.

8.3.2 Morse Critical Points

At Morse critical points it is convenient to reformulate Eq. 8.7 to

ẋ = tr(H) H x = Ĥ x. (8.8)

Note that the vector field given by Eq. 8.8 is a specially scaled extension of the usual vector field of
L that is given by ẋ = H x.

The characteristics of the Ĥ vector field follows from its eigenvalues. Let (λi) be the set of eigen-
vectors of H, sorted on value. Then the eigenvectors of Ĥ are given by

λ̂i =
∑

j

λjλi , (8.9)

where we used tr(H) =
∑
j λj . Consequently, away from catastrophes, saddles remain saddles and

extrema remain extrema. Then the following dependencies follow straightforwardly from Eq. (8.9):

det Ĥ = tr(H)n det H , (8.10)

tr (Ĥ) = tr(H)2 , (8.11)

where n is the dimension of x.
Since the trace of the Hessian equals the sum of the eigenvectors, Eq. (8.11) shows that all eigenvalues

of Ĥ are positive definite. Consequently, the extrema of Ĥ are always minima of the vector field, i.e. the
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Det H = 0

Tr H = 0

extremum

saddle

saddle

Figure 8.1: Possibilities of critical points in scale space on a critical curve, together with the local
vector field. The left branch of the critical curve represents an extremum branch, the right one a saddle
branch. Generically, critical points are somewhere on one of these branches (case 1). At the top, where
det H = 0, a catastrophe takes place (case 2). The saddle point exhibits an extra degeneration, viz. where
tr H = 0 (case 3). At this point the type of saddle changes. Only in one dimensional images the cases 2
and 3 coincide generically.
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vectors point outward. Degenerations take place if det Ĥ = 0. According to Eq. (8.10) this implies the
degenerations of H (the catastrophe points) or the zero-crossings of the trace of H.

As a result, the Ĥ vector field has only minima and corresponding saddles. When we recall the full
equation of the vector field, Eq. 8.3, it is clear that the scale component is negative at non-critical points.
The flow lines infinitesimally close to the extrema move downward in scale.

8.3.3 Critical Points at Catastrophes

At catastrophes, Eq. 8.7 loses (generically) one degree of freedom, since the Hessian becomes singular,
or, to put it differently, the determinant of H equals zero.

The degeneration of det Ĥ is only caused by the vanishing determinant of H; its trace will be non-
zero iff n > 1. Since this is generically an event of co-dimension one, also the point where det Ĥ
vanishes has also co-dimension one. The trace of Ĥ at this point is always positive definite. The ar-
gumentation of the previous section can be repeated to conclude that a catastrophe due to H causes a
catastrophe in Ĥ. Again, while the H vector field shows all sorts of catastrophes, the Ĥ vector field
comprises only vector fields of catastrophes involving minima.

Consequently, at a catastrophe point the vector field of Ĥ is topologically equivalent to that of H at
a horseshoe surface.

8.3.4 Critical Points with Vanishing Laplacean

If the critical curve intersects the plane where the Laplacean of L is zero, the linear approximation Eq.
8.7 vanishes. A local vector field is found by examining the second order approximation of Eq. 8.6:

(
ẋi

ṫ

)
=

(
(Lij∆Lk)x

jxk

−(LijLik)x
jxk

)
. (8.12)

Although this expression is quite complicated, we still make the observation that a zero-Laplacean
can only occur due to negative and positive eigenvalues of the Hessian, i.e. the critical point is always
a saddle, albeit degenerate. Since the vector field involves the scale, see Eq. (8.12), the surface of zero-
Laplacean will generically intersect the image transversally.

8.3.5 Non-Critical Points with Vanishing Laplacean

Although it may be clear form Eq. (8.3), it is emphasised that at non-critical points with zero Laplacean
the vector field is non-degenerate, since it contains a non-zero scale component. If only spatial coordi-
nates are investigated, the degeneracy is visible as a curve reversing the spatial orientation of the vectors.

8.3.6 Examples

One Dimensional Images

As already described, in one-dimensional images the determinant is equal to its trace. Therefore, at a
catastrophe the critical curve also intersects the line where the Laplacean is zero. Since only annihilations
occur, it suffices to investigate the generic annihilation in one dimension:

f(x, t) = x3 + 6xt . (8.13)
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Figure 8.2: Vector field of a one dimensional scale space image around an annihilation at the origin,
Eq. 8.13. The critical curve contains a catastrophe at the origin. The y-axis coincides with the zero
Laplacean, reversing the spatial orientation of the vectors.

The corresponding vector field is plotted in Figure 8.2. The parabola is the critical curve, at its top (the
origin), a minimum (the branch x > 0) and a maximum annihilate. As argued in section 8.3.2, the
Ĥ-vector fields of −f and f are topologically equivalent. The extrema in H-vector field both become
minima in the Ĥ-vector field, so the vector field is directing away from the critical points downwardly
on both sides. The line where the Laplacean is zero, i.e. the line x = 0, acts as a mirror. This follows
directly from section 8.3.5. For t < 0 the zero-Laplacean is an attracting asymptote and for t > 0 it is a
diverging one. This is caused by the change of sign on traversing the critical curve at the origin.

Two Dimensional Images

The generic annihilation in two dimensions is give by the function

f(x, t) = x3 + 6xt+ y2 + 2t . (8.14)

It contains an annihilation at the origin, and a scale space saddle at (−1/3, 0;−1/18). The zero-
Laplacean is given by the plane x = −1/3. Although this is non-generic, it suffices for our visualisation
purposes.

Spatial Components of the Vector Field The vector field around Morse critical points (given by y = 0
and x2 = −2t) for subsequent scale levels around the scale space saddle and the catastrophe point are
shown in Figure 8.3 for the spatial components.
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Figure 8.3: Vector field of the generic annihilation in two dimensions, Eq. 8.14, showing the spatial
components for subsequent scale levels. The vertical line is the zero-Laplacean. Top-left: At t < −1/18.
Top-right: At t = −1/18, around the scale space saddle. Bottom-left: At−1/18 < t < 0. Bottom-right:
At t = 0, around the catastrophe point.
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Figure 8.4: Vector field of the generic 2D annihilation, Eq. (8.14) in the (x;t) plane with t vertically,
together with the critical curve and the scale space saddle. At the top of the curve the two critical points
annihilate.

Firstly, the case for t < −1/18 is shown in Figure 8.3 top-left. On the left a typical field around a sad-
dle is visible, on the right the same for a minimum. Between the spatial critical points the zero-Laplacean
is visible as a straight line, attracting and inverting the direction of the spatial vector components.

The situation around the scale space saddle (t = −1/18) is shown in Figure 8.3 top-right, clearly
showing the special second order behaviour.

The vector field for−1/18 < t < 0, i.e. between the scale space saddle and the catastrophe, is shown
in Figure 8.3 bottom=left. Now the zero-Laplacean is diverging.

Finally, Figure 8.3 bottom-right shows the behaviour around the catastrophe, a combination of a
saddle (on the left) and a minimum.

A Spatial and a Scale Component of the Vector Field Since the plane y = 0 only acts as a mirror,
the situation in the (x, t)-plane is shown in Figure 8.4, together with the critical curve and the scale
space saddle. The fact that the scale space saddle doesn’t coincide with the catastrophe point forces iso-
intensity manifolds that intersect the critical curve between the scale space saddle and the catastrophe
point, to intersect the critical curve a second time on the right.

Obviously iso-intensity manifolds through scale space saddles form the interesting ones. In the next
section we will discuss the properties of the iso-intensity manifolds.
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8.4 Deep Structure

In this section we investigate the nature of manifolds of co-dimension 1 in scale space, form (n + 1)-
dimensional segments in scale space, give examples that also illustrate the definitions, and show how this
route can be used to build the hierarchy embedded in the scale space image.

8.4.1 Manifolds and Segments

Recalling Definition 36, it follows directly from Koenderink’s vector field, Eq. (8.3) that at the top of
the tube-like structure the iso-intensity manifold Ic reduces to an extremum at that scale. From Loog’s
argument it follows that one extremum remains, so there exist a maximum end scale at which each Ic
reduces to an extremum at that scale:

Lemma 3 Given a certain Ic, there exists exactly one point (x, σ) ∈ (IRnxIR) with L(x, σ) ∈ Ic and
∇L(x, σ) = 0 such that ∀ε > 0 L(x, σ + ε) /∈ Ic.

Proof of lemma 3 Let (y, σ) ∈ (IRn x IR) and L(y, σ) ∈ Ic. Then for all sets ((x, σ), (y, σ)), the sys-
tem x 6= y ∧∇L(y, σ) = 0 ∧∇L(x, σ) = 0 ∧L(y, σ) = c ∧L(x, σ) = c yields 2n+ 2 equations with
2n+ 1 variables, and is over-determined. So necessarily x = y.
Furthermore, let (P, S) be the set of points (yi, σyi) ∈ (IRn x IR) satisfying ∇L(yi, σyi) = 0 ∧
L(yi, σyi) ∈ Ic. Then σyi 6= σyj for i 6= j, and it suffices to take the point (yi, σyi) ∈ (P, S) with
σyi = max(S). 2

Obviously, there may be multiple iso-intensity manifolds with the same intensity that are disjunct in
the scale space image. So the first thing to do is to relate each iso-intensity manifold to a single extremum
branch. Since a single iso-intensity manifold can contain multiple extrema, but has a unique one with
the highest scale, it makes sense to uniquely assign it to that extremum.

Definition 37 A critical curve is built up of extremum and saddle branches, which are connected at
catastrophe points. The set of all k extremum branches in the scale space image is given by (e1 . . . ek).

Definition 38 An extremum iso-intensity manifold Ic(ei) is the iso-intensity manifold with as global top
the extremum on extremum branch ei.

Examples of extremum iso-intensity manifolds are given in Figure 8.5, in which two critical curves
are visualised by thick curves and five subsequent iso-intensity manifolds are drawn. It is clear that mul-
tiple types are present. To distinguish between extremum iso-intensity manifolds with multiple extrema
on it, and those with only one, it is convenient to define a subset of the extremum iso-intensity manifolds:

Definition 39 An extremum manifold Mc(ei) is an extremum iso-intensity manifold intersecting of all
extremum branches only the extremum branch ei.

This type of extremum iso-intensity manifolds is shown in Figure 8.5a and 8.5e. A nesting of ex-
tremum iso-intensity manifolds is directly obtained, since the intensity of the extremum changes mono-
tonically (either increases in case of a minimum, or decreases in case of a maximum). As a consequence,
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Figure 8.5: Critical curves (dashed curves, on the left one extremum branch e1, on the right a saddle
branch and extremum branch e2, annihilating in the top point, see Definition 37) with subsequent iso-
intensity manifolds (thick curves) c1, . . . , c5. a) Two distinct extremum iso-intensity manifolds, see
Definition 38, Ic1(e1) and Ic1(e2) with their top of the cones at the extremum branch. At the same time
they are both extremum manifolds, see Definition 39, Mc1(e1) and Mc1(e2). b) The two touching
extremum iso-intensity manifolds Ic2(e1) and Ic2(e2) are not extremum manifolds. They form the man-
ifolds Uc2(e1) and Uc2(e2), see Definition 40. c) The extremum iso-intensity manifold Ic3(e1) (with its
top of the cone at the extremum branch e1) is not an extremum manifold, since it intersects e2. d) The
extremum iso-intensity manifold Ic4(e1) forms the manifold Lc4(e1). It touches e2 at the annihilation
point. e) The extremum iso-intensity manifold Ic5(e1) is again an extremum manifold Mc5(e1).

each manifold exists for a scale interval [t0, tmax]. Recall that there is no creation of level lines, one of
the (implicit) axioms leading to the diffusion equation. Consequently, each manifold transversally inter-
sects the initial image, cf. Koenderink’s “open end of the tube-like structure”. The top of this structure
is located at tmax: by construction the spatial extremum on the branch i forms the top of the scale space
dome.

Before turning to (n + 1)-dimensional segments, we first define to special types of extremum iso-
intensity manifolds.

Definition 40 An upper limiting manifold Uc(ei) is an extremum iso-intensity manifold Ic(ei), such that
Ic+δε(ei) = Mc+δε(ei), 0 < ε � 1 and δ = 1 if ei is a maximum and δ = −1 if ei is a minimum, but
Ic(ei) is not an extremum manifold. If the maximum (minimum) branch ei intersects n upper limiting
manifolds, they are ordered on decreasing (increasing) intensity and labeled Ucj (ei) for j = 1, . . . , n.

A lower limiting manifold Lc(ei) is an extremum iso-intensity manifold Ic(ei), such that Ic+δε(ei) =
Mc+δε(ei), 0 < ε � 1 and δ = −1 if ei is a maximum and δ = 1 if ei is a minimum, but Ic(ei) is not
an extremum manifold. If the maximum (minimum) branch ei intersects n lower limiting manifolds, they
are ordered on decreasing (increasing) intensity and labeled Ucj (ei) for j = 1, . . . , n.

An example is given in Figure 8.5. The extremum iso-intensity manifolds Uc2(e1) and Uc2(e2) are
shown in Figure 8.5b. Manifolds below these two limiting manifolds (e.g. those in Figure 8.5a) are
extremum manifolds. The extremum iso-intensity manifold Lc4(e1) is shown in Figure 8.5d. Manifolds
above this limiting manifold (e.g. the one in Figure 8.5e) are extremum manifolds.

The next definitions construct (n+ 1)-dimensional segments out of the n-dimensional iso-manifolds
using the two limiting manifolds.

Definition 41 The extremum segment E1(ei) is the volume in the scale space image under upper limit-
ing manifold Uc1(ei).
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The extremum segment Ej(ei), j > 1, is the volume in the scale space image under upper limiting
manifold Ucj (ei) and above lower limiting manifold Lcj−1(ei).

For 0 < j < n, Ij(e1) is the scale space volume bounded by Ej(e1) and Ej+1(e1).

In Figure 8.5, the extremum segments E1(e1) and E1(e2) are formed by the area beneath the mani-
folds Uc2(e1) and Uc2(e2), respectively. Note that in Figure 8.5, if e1 would intersect at some intensity
level c6 a second upper limiting manifold Uc6(e1), the area between Lc4(e1) and Uc6(e1) would also
form an extremum segment, E2(e2). Then the area between Lc4(e1) and Uc2(e1) forms the scale space
volume I1(e1).

So this definition yields Koenderink’s tubes, but not only them. Extremum branches may intersect
multiple extremum segments: From the “extremum branch point of view”, starting at the initial image
the branch ei firstly intersects extremum manifolds until for some intensity c the iso-intensity manifold
Ic(ei) contains a (scale space) saddle and becomes the union of two juxtaposed iso-intensity manifolds
that intersect non-transversal. Note that at this point the manifold generated from ei equals Uc(ei). Call
the other part Uc(ej).

Continuing, two things can happen. The manifold Uc(ei) ∪ Uc(ej) is either Ic(ei) or Ic(ej). If the
extremum branch ei vanishes, i.e. it annihilates with the saddle branch containing the aforementioned
saddle, the remaining part of the branch is no longer global top of a manifold, but part of the iso-intensity
manifold Ic(ej). If it remains, ej annihilates with intensity ca, and the branch intersects the closed set
of manifolds [Ic(ei), . . . , Ica(ei)] and additionally again extremum manifolds. Here Ica(ei) equals L(ei)
for a second extremum segment, cf. Figure 8.5 and the branches e1 and e2.

Note that there is no third possibility, since then the iso-intensity manifold through the saddle must
contain two global extrema at the same scale. This was proven to be non-generic. This observations lead
to the following definition.

Definition 42 The scale space segment SSS(ei) of an extremum branch ei intersecting n extremum
segments is

SSS(ei) =
(
∪nj=0 ∪Ej(ei)

)
∪
(
∪n−1
j=0 I

j(ei)
)
.

The critical manifold C(ei) is the boundary of SSS(ei).

Recalling Figure 8.5, the right extremum branch e2 has one extremum segment, being the scale space
segment, bounded by Uc2(e2) = C(e2). The left extremum branch has no scale space segment, since the
second series of extremum manifolds starting above Lc4(e1) is unbound. Assuming again a second upper
limiting manifoldUc6(e1) at intensity level c6, e1 intersects two extremum segments. ThenUc6(e1) forms
the critical manifold C(e1). This manifold encapsulates C(e2). Then SSS(e2) = E1(e1) ∪ E2(e1) ∪
I1(e2), the complete area beneath the manifold Uc6(e1) and in this example SSS(e2) ⊂ SSS(e1).

By definition, C(ei) is Ucn(ei), the supremum of the possible values c for whichMc(ei) exists. Since
all but one extremum in the initial image annihilate with spatial saddle points, all but one extremum
branch define critical manifolds. The critical manifold contains one spatial saddle, that can be located
either in scale space (and thus being a scale space saddle) or at the initial image. This saddle obviously
relates the extremum branch to another extremum branch, namely the one to which it is secondary in the
intensity hierarchy. It is convenient to denominate this remainder of the iso-intensity manifold.
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Definition 43 Let C(ei) ⊂ Ic(ek) and (x; t) be the saddle on C(ei). Then the dual critical manifold
D(ei) is defined as

D(ei) ∪ C(ei) = Ic(ei) ,
D(ei) ∩ C(ei) = (x; t) .

Note that in this definition the critical curves ek and ei do not coincide. Recalling Figure 8.5, D(e2)
is formed by Uc2(e1). In the following we will use this route to derive a unique algorithm deriving the
hierarchy enclosed in the scale space image. Firstly, we will give some examples to clarify the definitions
and notation.

Example

Consider a part of the scale space image in which a catastrophe takes place, together with a second
extremum in the neighbourhood. Furthermore, take the scale range such that also a scale space saddle is
present. So this part contains two critical curves, of which one contains a catastrophe point and a scale
space saddle. For simplicity we assume the two extrema are maxima. Reasoning for minima is alike.
An example is given in Figure 8.6. Note that this image is the extension of Figure 8.5 with an extra
dimension.

The dark lines show the critical curves in scale space. The right curve contains two branches of
critical points, on the left spatial saddles, on the right spatial extrema (er). The left curve contains an
extremum curve without catastrophe points (el).

• Figure 8.6a shows the case with some “large” intensity c1. Both extremum branches inersect
extremum manifolds, Mc1(el) and Mc1(er).

• Decreasing the intensity, both manifolds intersect non-transversal, as shown in Figure 8.6b. Now
the manifolds belonging to el and er have become U(el) and U(er), respectively. The point
of intersection is the scale space saddle. Since er is the vanishing extremum branch, U(er) is
defined as the critical manifoldC(er), and U(el) is its dualD(el). The parts enclose the extremum
segments E(el) and E(er), respectively. The volume enclosed by C(er), i.e. E(er), is the scale
space segment SSS(er).

• Decreasing intensity further, the manifold has el as its global top, as is visible in Figure 8.6c. Note
that altough er still exists, there is no extremum iso-intensity manifold assigned to it. However, its
influence on el is that for this intensity el is only an extremum iso-intensity manifold, and not an
extremum manifold: This manifold intersects both extremum branches; also the saddle branch is
intersected twice.

• This situation remains until the intensity is decreased to that of the annihilation of the right ex-
tremum. From that intensity, el is again an extremum manifold, as shown in Figure 8.6d. So the
annihilation intensity forms L(el) for a potential second extremum segment E2(el).

There is one scale space segment: SSS(er). The left extremum branch doesn’t define a scale space
segment, since there is – in this example – no limit to the manifolds Mc(el) for decreasing c. Only if it
is assumed that this image is part of a larger image, an upper limiting manifold resulting in the segment
E2(el), and a scale space segment SSS(el) may be found.
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Figure 8.6: Subsequent iso-intensity manifolds and critical curves. Top-left: The extremum manifolds
intersect the extremum branches, cf. Figure 8.5a. Top-right: The extremum iso-intensity manifolds
touch at the scale space saddle, cf. Figure 8.5b. Bottom-left: The extremum iso-intensity manifold
has its top on the left extremum branch, but intersects also the other extremum branch, cf. Figure 8.5c.
Bottom-right: The extremum manifold intersects only the left extremum branch, cf. Figure 8.5e.
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Figure 8.7: Nesting of iso-intensity manifolds and critical curves. See text for details.

It is clear that the left extremum branch contains two disjoint intensity intervals on which extremum
manifolds are defined. The boundaries of these intervals are given by the intensities of the scale space
saddle and the annihilation.

The nesting of the iso-intensity manifolds is shown in Figure 8.7.

A More Complicated Example

A more complicated example involving two scale space saddles and two annihilations, is visualised in
Figure 8.8, showing the hierarchy of the two manifolds induced by the intensities c1 and c2 of the scale
space saddles.

Again the dark lines show critical curves, from left to right extremum 1, saddle 1, extremum 2,
saddle 2, and extremum 3. Extremum 2 annihilates with saddle 2, extremum 3 annihilates with saddle 1.
Extremum 1 remains.

In Figure 8.9 the two manifolds through the scale space saddles are shown seperately. In the left
image, the iso-intensity manifold around e2 and e3 is plotted: Ic1(e2) = Ic1(e3). The left part of the
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Figure 8.8: Iso-intensity manifolds and critical curves. See text for details.

Figure 8.9: Iso intensity manifolds and critical curves. See text for details.
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manifold equals C(e2), the right part D(e2). In contrast to the previous example, here also extremum e3

annihilates, inducing another critical manifold, C(e3), shown in the right image, together with the dual
D(e3).

Now the critical manifold C(e3) encapsulates Ic1(e2) and consequently both C(e2) and D(e2).
Therefore, it may (and in this case: does) split into two disconnected spatial regions if it is traced into
negative scale direction due to the intersection of the saddle branch of saddle 2. Here the scale space seg-
ment SSS(e3) exists of two connected “legs” encapsulating the extrema 2 and 3. The critical manifold
C(e3) forms the “trousers” with two open ends at the initial image.

8.4.2 Hierarchy Algorithm

The previously described hierarchy of manifolds entails a uniquely defined description of the image,
based on the critical and dual manifolds. This description is obtained by executing the following steps
(that are followed by an example based on the image of the previous section):

1. Initializing:

(a) Build a scale space.

(b) Find the critical points at each scale level.

(c) Construct the critical branches.

(d) Find the catastrophe points.

(e) Construct and label the critical curves, including the one remaining extremum.

(f) Find the scale space saddles.

2. Determining the manifolds

(a) For each annihilating extremum ei, find its critical iso-intensity manifold C(ei).

(b) Construct the dual manifolds D(ei).

3. Label to each extremum branch the dual manifolds it intersects, sorted on intensity.

4. Build a tree:

(a) Start with the remaining extremum at the coarsest scale as root.

(b) Trace to finer scale until at some value it is labeled to a dual manifold.

(c) Split into two branches, one the branch containing the existent extremum and assigned to the
dual manifold, the other containing the extremum assigned to the critical manifold.

(d) Continue for all branches / extrema until all extrema are added to the tree.

5. Bonus step: return a segmentation

(a) Based on the binary combinations of region belonging to each defined C(ei).

(b) Based on the binary combinations of region belonging to each defined C(ei) ∪D(ei).
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We note that step 1 has been exploited by the authors in [158]. The other steps follow straightfor-
wardly from the previous exercise and examples. Regarding step 3, the intensities of all extrema either
increase or decrease monotonically, and so do the dual manifolds that each intersects.

The tree that is obtained is a binary tree. All annihilating extremum branches intersect a critical man-
ifold, and each critical manifold implies a dual manifold that intersects an extremum branch underneath
its own critical manifold. Therefore, all extremum branches are linked in the tree.

The creation of pairs of critical points and their influence has been dealt with elsewhere by the
authors. They are not of relevance to the iso-intensity hierarchy, since scale space implies non-creation
of new level lines!

As a kind of bonus, one obtains a “knowledgeless” segmentation, solely based on the hierarchy tree.
This can be the concatenation of the scale space segments, or one of the scale space segments together
with their dual segments.

Example – continued

Returning to the second example of the previous section, recall Figure 8.8.

1. Obviously, step 1 has been taken.

2. The algorithm yields in step 2a the two cones C(e2) and C(e3). Step 2b yields the dual cones
D(e2) (intersecting e3) and D(e3) (intersecting e1).

3. Step 3 gives the lists e1 → D(e3), e3 → D(e2).

4. The tree is built by tracing down as root the remaining extremum, e1. At some scale level it
intersects D(e3), so a node is added and the tree splits into two branches e1 and e3. Extremum e1

doesn’t intersect any dual manifolds and doesn’t split anymore. Extremum e3 intersects D(e2), so
a node and a new branch (e2) is created.

Altough the hierarchy dependency is obtained by the dual manifolds, we will use the critical mani-
folds for labeling the tree, since they identify a unique part of the scale space image to an extremum. The
(binary) hierarchy tree can be collapsed into one single one-dimensional expression. The nodes of the
tree are replaced by (ei, ej)C(ej), stating that ei is both parent and child, and ej is child due to the fact
that its dual manifold is assigned to ei. So we have, starting at the root, firstly (e1, e3)C(e3), and secondly
the replacement of e3 by (e2, e3)C(e2). Consequently, the tree reduces to

(
e1, (e2, e3)C(e2)

)
C(e3)

This is to be read as “extrema 2 and 3 are related by means of the intensity of the critical manifold of
extremum 2. Extremum 2 annihilates and extremum 3 is (then) related to extremum 1 by means of the
intensity of the critical manifold of extremum 3”. This parentheses formula can be extended at liberty.

8.4.3 Visualisation and Simplification

The binary tree can easily be visualised. One way to do this, is by only displaying the scale space
segments at the initial image. This has been done by the authors in [158]. A disadvantage is that the
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remaining extremum does not induce a scale space segment, and is thus not visible. Here we propose a
visualisation strategy based on the critical manifolds together with their duals. Of both approaches we
give examples.

As advantage of the latter method, now the remaining extremum is visualised. Also “more or less”
symmetries appear, as we will see. Implementation is straightforward, by using a (n + 1)-dimensional
region growing algorithm with as seed point the saddle point connecting the critical manifold and its
dual.

Simplification of the structure, or “logical filtering”, is done by sweeping out parentheses from inside
to outside. Equivalently one can sweep from the leaves of the tree inwardly. The closer to the root, the
more significant parts of the image are represented. The “details” are stored in the leaves ( [139]). Then,
for instance, example 2 could be simplified as follows:

(
e1, (e2, e3)C(e2)

)
C(e3)

→ (e1, e3)C(e3)

That is, Figure 8.8 is reduced to the Figure 8.9b.
Note that in this hierarchy the nodes connect regions regardless of scale. For example, a small region

may vanish at fine scale, but at a small intensity value. If the dual manifold encapsulates a maximum as
final parent, the top of this dual dome may be achieved at very coarse scale. If it encapsulates several
extrema, the logically filtered image at the initial image shows several dual regions: these dual regions
necessarily encapsulate these extrema, but do not need to be connected. Examples will pop up in more
realistic images in the next section.

8.5 Results

The hierarchical algorithm and the possible application of logical filtering are investigated on two test
images. As an artificial image allowing algebraic verification, firstly the 81 x 81 image is built by adding
four blobs. This image is shown in Figure 8.10a. Secondly we used the artificial MR image Figure 8.14a,
taken from the Brain Web [40, 41, 163], web site http://www.bic.mni.mcgill.ca/brainweb.

8.5.1 Blob Image

The scale space of this image was built by taking 113 scales, ei/32 i = 1, . . . 113. The initial image
contains five extrema and four saddles. One extremum, the minimum in the middle, is induced by the
four extrema. Within the scale space, three scale space saddles were found: They connect cones around
each vanishing extremum to the final remaining extremum. These three scale space saddles are located
on saddle branches annihilating with the maximum branches. The saddle branch annihilating with the
minimum branch does not contain a scale space saddle, so the value of the saddle at the initial image
yields the intensity for the critical manifold encapsulating the minimum.

The labelling of the extrema and saddles is shown in Figure 8.10b. At coarsest scale, extremum e4

remains. It thus forms the root. It is found that only this extremum branch belongs to dual manifolds,
yielding the hierarchy tree shown in Figure 8.11.

The Koenderink-parentheses-formula is
(
e5,

(
e3,
(
e1, (e4, e2)C(e2)

)
C(e1)

)

C(e3)

)

C(e5)
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Figure 8.10: Left: Artificial image built by combining four maxima and one minimum. Right: Labelling
of the critical points.
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Figure 8.11: Hierarchy tree belonging to the artificial blob-image.
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Logical filtering implies firstly removing the minimum e5, the maximum e3 (the least brightest), and
so on.

The area in the initial image belonging to the scale space segments, encapsulated by the critical
manifolds, and those encapsulated by the dual manifolds, is shown in Figure 8.12. Each row shows the
areas encapsulated by C(ei), C(ei) ∪ D(ei), and D(ei), for i = 1, 2, 3 for the first, second and third
row, respectively. As can be seen, e3 yields a dual manifold containing three other extrema: the “critical
intensity” of the scale space saddle is the lowest of all three scale space saddles. At increasing scale
firstly D(e2) is intersected, secondly D(e1) and thirdly D(e3), as follows directly for the hierarchy tree
of Figure 8.11.

Figure 8.13b shows the segmentation obtained when only the area of critical cones are plotted: the
four regions belonging to the four annihilating extrema. Note that the minimum does not have a critical
cone through a scale space saddle, but through the saddle at the initial image. Figure 8.13a extends
Figure 8.13b by showing also the area of the dual manifolds. This elegantly shows the remaining blob
e4, but also the hierarchy: the area around e3 is less bright than that around e1, which in turn is less bright
than that around e2 and e4. This effect is due to the number of encapsulating dual manifolds.

8.5.2 MR Image

The MR image, shown in Figure 8.14a, contains 812 extrema. For visualisation purposes we take as
initial scale t = 8.39, yielding the image shown in Figure 8.14b.

This image contains 7 extrema, as labelled in the image. The scale space image in the scale range
t ∈ (8.39, 33.1) is exponentially sampled by 89 scales. This yields the following annihilating cou-
ples: (e1, s3), (e2, s2), (e3, s4), (e5, s6), (e6, s1), and (e7, s5). On the saddle branches of the saddles
s1, s2, s3, s5 scale space saddles are found. The saddle branches s4 and s6 have their global extremal
intensity at the initial scale (8.39). The intersections of the image at scale t = 8.39 and the manifolds
C(ei) and D(ei) for i ∈ [1, . . . , 7]) (except, of course, e4) are shown in Figure 8.15, labelling from left
to right, top to bottom. Note that the critical manifold and its dual can appear both juxtaposed and nested.
The top row represents the regions belonging to the maxima in the initial image, the bottom row to the
minima.

The labelling of extrema to dual manifolds gives the following sequences:

e4 → {D(e6),D(e2),D(e3)}
e6 → {D(e7),D(e5)}
e2 → {D(e1)}

The hierarchy tree belonging to it is shown in Figure 8.16.
The corresponding segmentation based on the binary combinations of region belonging to each de-

fined C(ei) ∪ D(ei), i ∈ [1, . . . , 7] is shown in Figure 8.17a. The close nesting of the intersection
manifolds is visualised in Figure 8.17b. This suggests that for the sake of a “meaningful” segmentation,
certain extrema are less important than others, or even redundant altogether. Taking into account all
extrema may in some sense result in an “over-segmentation”.

One target for logical filtering could be identifying all minima regions and all maxima regions. For
the tree this would imply removing the leaves e5, e7 and e1, e2, e3, respectively. The parentheses formu-
lation is simplified from
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Figure 8.12: Each row: Regions at the initial image encapsulated by the following manifolds for i = 1
(top row), i = 2 (middle row), and i = 3 (bottom row): Left:C(ei), Middle: C(ei) ∪ D(ei), Right:
D(ei).
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Figure 8.13: Left: Segmentation based on the binary combinations of region belonging to each defined
C(ei)∪D(ei), i ∈ [1, . . . , 5]. Right: Segmentation based on the binary combinations of region belong-
ing to each defined C(ei), i ∈ [1, . . . , 5].

e4

e6

e2

e1 e3
e7

e5

s1

s2

s3 s4
s5

s6

Figure 8.14: Left: 181 x 217 artificial MR image. Right: MR image at scale t = 8.37.
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Figure 8.15: Contours of the critical and dual manifolds at the MR image at scale 8.39. Top row: Left)
C(e1) (lower contour) and D(e1). Middle) C(e2) (left contour) and D(e2). Right) C(e3) (upper part
of the contour) and D(e3). Bottom row: Left) C(e5) (top left part of the contour) and D(e5). Middle)
C(e6) (inner contour) and D(e6). Right) C(e7) (small circle) and D(e7).
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Ce1 De1 Ce3 De3 Ce5 De5

Ce2 De2 De7 Ce7

De6 Ce6

R

e1 e2 e3 e4 e5 e6 e7

Figure 8.16: Hierarchy tree for the MR image.



8.5 Results 157

Figure 8.17: Example of logical filtering. Top row: Segmentation based on the binary combinations of
region belonging to each defined C(ei) ∪ D(ei), from left tot right according to a) Eq. (8.15), b) Eq.
(8.16), c) Eq. (8.17). Bottom row, d-f): Nesting of the corresponding contours as shown in the top row
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((
(e1, e2)C(e1) , (e3, e4)C(e3)

)
C(e2)

,
(
(e5, e6)C(e5) , e7

)
C(e7)

)

C(e6)
(8.15)

via (for example!) (
(e2, e4)C(e2) , (e6, e7)C(e7)

)
C(e6)

(8.16)

to
(e4, e6)C(e6) (8.17)

This sequence of simplification is visualised in Figure 8.17. The top row shows the simplification of
the binary combinations of regions belonging to selected manifolds, the bottom row shows the involved
isophotes (intersections of the manifolds with the images at scale 8.37). The left couple of Figure 8.17
visualise Eq. (8.15). The first reduction of Eq. (8.16) is shown by the middle pair of images of Figure
8.17. The final simplification of Eq. (8.17) yields the right set of images in Figure 8.17. This illustrates
the remark on “redundancy” quite neatly.

8.6 Summary and Discussion

In this chapter we investigated the deep structure of Gaussian scale space. A scale space image is ob-
tained by convolution of an initial image with a normalised Gaussian with variable width, or scale. We
showed that the critical curves, obtained when increasing scale, provide useful information for deriving
a hierarchy structure that solely depends on intrinsic entities of the scale space.

Firstly, we investigated the mathematical properties of the vector field proposed by Koenderink. We
showed that its characteristic behaviour is well-defined on all non-critical points. On Morse critical
points a linear expansion suffices to derive the local vector field. It is always topologically equivalent
to a vector field containing only minima (source nodes) and corresponding saddles. Non-Morse critical
points are separated into two groups in n-D images, n > 1, namely those where the determinant of the
Hessian vanishes (catastrophe points) and those where the Laplacean is zero (scale space saddles). The
first group can easily be evaluated, the second group is more difficult to examine and the structure of
iso-intensity contours through them gives more insight in the local structure around these points. In one
dimensional images these groups coincide. It appears that the vector field proposed by Koenderink is a
powerful tool in understanding the structure of an image at all levels of resolution simultaneously.

Secondly, we investigated the properties of the manifolds obtained by the integral curves of the vector
field. We showed that to each extremum uniquely a scale space segment can be assigned. To this segment
a natural extension can be made by means of its “dual” segment. Both segments have an manifold of co-
dimension one as boundary with the same intensity. Their intersection contains one point, either a scale
space saddle with the scale space image, or a spatial saddle point in the initial image. The maximum
(or causality) principle guarantees that all iso-intensity manifolds in scale space behave proper, i.e. they
are nicely nested and, they form surfaces that are closed above (at high scale) and have open ends in the
initial image. No new manifolds are created upon coarsening.

The dual manifold, as boundary of the dual segment, provides the information needed for automatic
building a (binary) hierarchy tree, that can be represented as a nested sequence (parentheses formulation)
of related extrema and their linking saddle. This reduced representation of the image allows one to “filter
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logically”. Parts of the tree, or sub-parentheses structures can be filtered out. It merely boils down to
filter out certain preselected parts of the image.

We gave a theoretical expose to derive a self explanatory algorithm. This algorithm was applied to
two test images, showing the usefulness of the conceptual ideas behind it.

Again we emphasise that the structure obtained is without any a priori information and is solely
derived from the fact that convolution with a Gaussian (as test, or regularisation function in mathematical
sense) is necessary in order to be able to perform well-defined continuous operations on a discrete image.
The proposed hierarchy is thus induced by this mathematical concept.

As possible applications one can think of – besides of course user-independent segmentation and im-
age simplification – image storage using compressed information, transmission by means of “significant
data first”, image comparison, both searching in databases as stereo images, and so on.
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Inleiding en Samenvatting

Inleiding

In dit tijdperk van de computer komt een enorme hoeveelheid afbeeldingen voort uit computers1. Com-
puters bieden grote voordelen voor afbeeldingen op het gebied van acquisitie, opslag, manipulatie, ver-
menigvuldiging, verzenden, etc.

Beelden

In het algemeen weet de menselijke gebruiker zowel de inhoud van een beeld2 als de betekenis. In
deze vorm fungeren afbeeldingen alleen maar als toegevoegde informatie bij het geschreven verhaal. Het
tegenovergestelde is echter ook mogelijk: de afbeelding kan het subject zijn dat verduidelijkt dient te
worden. Het is een intrigerende vraag of het mogelijk is de computer data zodanig te manipuleren dat
de inhoud, de bedoeling, duidelijker of meer expliciet wordt met een zo klein mogelijk aantal interacties
tussen de mens en de computer. Om dit te bereiken moeten verschillende observaties in overweging
worden genomen:

• Er is “iets” in de werkelijke wereld dat onderdeel is van het beeld, zoals personen, vliegtuigen,
sterren of hersentumoren.

• “Het” is slechts digitaal aanwezig op de computer. Er zijn alleen maar “enen en nullen” die zo zijn
gecombineerd dat “het” gevisualiseerd kan worden.

• Er moet “iets” gedaan worden met “het”, bijvoorbeeld het benadrukken of het eruit halen van
belangrijke delen.

1Ook de afbeelding op de voorkant van dit proefschrift.
2In het vervolg gebruik ik het woord “beeld” in plaats van afbeelding als vertaling van “image”.
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• Datgene wat er gedaan is, moet in een betekenisvolle en reproduceerbare manier gedaan zijn. Het
is niet zo moeilijk met beelden te spelen, delen te wissen en snorretjes te tekenen, maar het moge
duidelijk zijn dat dat niet de bedoeling is.

• De uitkomst van de hetgeen gedaan is, dient op een zinvolle manier gepresenteerd te worden.

De lezer voele zich natuurlijk vrij extra eisen toe te voegen.
Beeldacquisitie en de analyse van computer data die “iets” voorstelt, kortweg beeldanalyse, kennen

interactie met verschillende wetenschappelijke disciplines, die variëren van wiskunde, via (bijvoorbeeld)
biologie en informatica, tot natuurkunde. Zo vond in het begin van de beeldanalyse het meeste onder-
zoek plaats op signalen, zoals radar en sonar, door de elektrotechnische gemeenschap. Tegenwoordig is
daarentegen medische beeldbewerking het onderwerp van een groot deel van het onderzoek.

Beeldacquisitie

Hoe situaties in het werkelijke leven worden vastgelegd door “observatie machines” als digitale camera’s,
MR scanners of telescopen, kan beschreven worden met fysische “wetten”. Deze wetten zijn regels die
opgelegd worden door de intrinsieke eigenschappen van de observatie machine. In het algemeen hebben
ze totaal geen a-priori relatie met de situatie in het werkelijke leven zelf. We kunnen dus wel afbeeldingen
van alles en nog wat maken, maar de manier waarop het beeld wordt verkregen, is ongerelateerd aan de
buiten wereld.

De initiële beelden, ook wel ruwe data genoemd, zijn echter verkregen door de observatie machine
en ze hangen dus sterk af van de keuzes van de parameters binnen in de observatie machine. Een close-
up opname bijvoorbeeld, kan niet worden omgezet in een panorama opname. Hetzelfde geldt voor het
omgekeerde, als dezelfde resolutie gewenst is. Ook de uitkomst van een MR scan bevat extra informatie,
zoals “T1” of “T2” gewogen, hetgeen informatie geeft over de manier waarop de meting is verricht. Dit
houdt niet alleen in dat fysica aan de basis van beelden ligt, maar zorgt tevens voor een verlies aan infor-
matie, in de zin dat de verkregen data slechts gedeeltelijk de situaties in het werkelijke leven voorstellen.
Als de parameters in de observatie machine goed gekozen zijn, is dat niet zo erg, hoewel het de beperkt-
heid van verdere resultaten aangeeft. Als we een close-up willen, moeten we daar gewoon van tevoren
op inspelen. Een andere type verlies ligt in de wens de data op een georganiseerde, digitale manier te
verkrijgen. Op die manier is er de mogelijkheid de data geschikt te maken voor opslag, berekeningen
en representatie op een computer. Hoewel alle observatie machines hun fysische grenzen hebben (foto-
korrels, dichtheid van fotonen, magnetische spin), wordt meestal een vaste, bepaalde resolutie gekozen,
zodat de data handelbare afmetingen heeft. De situaties van het werkelijke leven worden dus gereduceerd
tot een verzameling van losse metingen die netjes geordend zijn op een bepaald raster.

Beeldanalyse

In vele gevallen is de volgende stap iets doen met de data: ze zijn immer verkregen met een bepaald
doel. Ze is de uitkomst van een beeldacquisitie procedure en op hun beurt weer de invoer van een
beeldanalyse taak. Gedeeltes van de data kunnen dus meer relevante informatie bevatten dan andere delen
en dienen ontstoord, benadrukt of eruit gehaald worden, zoals: nieuwe melkwegstelsels, zwarte gaten of
planeten met de mogelijkheid van leven in astronomische data; hersentumoren, slagaderlijke zwellingen
of zwakke botten in medische beelden; kentekenplaten of mogelijke verdachten in forensische data,
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etc. Hier komt duidelijk veel menselijk inzicht en interpretatievermogen om de hoek kijken. Wiskundige
modellen die gebaseerd zijn op de veronderstelde verstoring in het beeld, op de intrinsieke eigenschappen
van de interessante objecten, of op bijvoorbeeld biologische of medische kennis, worden voorgesteld en
geı̈mplementeerd in computer algoritmen. De uitkomst wordt gevalideerd en gebruikt – of niet. In het
laatste geval wordt het model aangepast, geı̈mplementeerd, etc. Hier wordt iets opmerkelijks duidelijk.
De validatie kan aangeven of een model goed of slecht is – binnen het raamwerk van de aannames –,
maar de verwerping of het gebruik van het resultaat is vaak gebaseerd op de mens die interpreterend naar
de uitkomsten kijkt. Het oordeel is duidelijk gebaseerd op een visuele inspectie van de gegenereerde
gegevens, op grond van de kundigheid en ervaring van de interpreterende mens. Wil een model het goed
doen, dan moet het een zekere coherentie hebben met het menselijk visuele en interpretatievermogen.
Een andere manier om dat te verwoorden, is dat het model het menselijk visuele en interpretatievermogen
op één of andere manier dient te simuleren. Daarom is er binnen beeldanalyse ook een rol weggelegd
voor (neuro-)biologie, dat onderzoekt welke mechanismen betrokken zijn bij kijken, het transporteren
van data naar de hersenen en het interpreteren van deze data (en het vervolgens weer terugkoppelen naar
de ogen).

Meer en Meer Data

De exponentiele groei van computer faciliteiten in de laatste tientallen jaren heeft geleid tot een gewel-
dige groei in data, zowel door de observaties – het verkrijgen van beelden – als door de voorgestelde
modellen – de beeldanalyse taken. Aan de invoerkant kunnen verschillende redenen worden gevonden:

• Het aantal acquisities groeide.

• Het formaat van een acquisitie groeide.

• De acquisities werden gecompliceerder.

Dit was duidelijk het gevolg van de groter wordende opslag capaciteit. Binnen de medische beeldanalyse
kan men denken aan een groeiend aantal MR beelden, met een factor 2, 4 of meer gedetailleerd, en de
overgang van twee naar drie dimensionale beelden, en zelfs naar tijdreeksen ervan. Aan de uitkomsten
kant vond ook een groei plaats. Rekentijd legt een zware voorwaarde op mogelijke algoritmen. Als een
gevolg daarvan waren de algoritmes in de begintijd van de beeldanalyse eenvoudig en vaak gebaseerd op
éénstaps filters, enkelvoudige operaties op een twee dimensioneel beeld op een rechthoekig raster. Men
kan daarbij denken aan randdetectie en aan ruisreductie.

De stijgende CPU snelheid leidde tot een stijgend aantal voorgestelde wiskundige modellen en een
stijgende complexiteit ervan. In plaats van éénstaps filters waren meerstaps filters nodig om de voor-
gestelde modellen te representeren: een opeenvolging van dezelfde ingewikkelde operatie op een beeld
levert de uitkomst. De modellen beschrijven een gewenste situatie van het beeld, gegeven een aantal
randvoorwaarden, zoals de eis van zowel randdetectie als ruis onderdrukking.

Ook ontstonden nieuwe taken gebaseerd op beeld herkenning binnen deze enorme hoeveelheid be-
schikbare beelden. Bijvoorbeeld: “Vind een afbeelding van Rembrandt’s Thuiskomst van de Verloren
Zoon op internet”, of: “Gegeven een afbeelding van een naald, vind z’n plaats (of vind soortgelijke
afbeeldingen) in een beeld database, een (hooi)berg van afbeeldingen.” Dit soort taken leidde tot de ont-
wikkeling van digitale beeldbeheer systemen, ook wel “afbeeldingopslag en -communicatie systemen”
genoemd. Ze zijn bijvoorbeeld in opkomst in klinische en radiologische omgevingen.
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Een andere nieuwe taak is beelden vergelijken: beschrijven twee beelden hetzelfde op een voor-
geschreven manier? En bij stereo beelden: kunnen we de drie dimensionale situatie zo goed mogelijk
reconstrueren gegeven de twee beelden van het linker- en rechteroog (of camera).

Over Bomen en een Bos

Deze explosieve groei van data aan de invoer- en de uitvoerkant vereist duidelijke en transparante wis-
kundige methoden die ze reguleren en wildgroei voorkomen: alles is mogelijk, maar niet alles is nuttig.
Sterker nog, wiskundige modellen en algoritmen hebben de neiging te functioneren als “zwarte dozen”,
waarvan de uitkomsten met een paar parameters geregeld kunnen worden. Verschillende problemen
doken op. Om er een paar te noemen:

• Het is niet altijd duidelijk wat voor soort gedrag verwacht kan worden als bepaalde modellen
toegepast worden.

• De keuzes bij het vaststellen van de parameterwaardes hangen af van de persoon die met de beelden
werkt en de relatie tussen de keuzes en de uitkomst is niet duidelijk.

• Het is soms niet duidelijk wat de parameters “voorstellen”, of wat een combinatie ervan inhoudt.

• Een kleine verandering in de parameters leidt soms tot grote veranderingen in het uiteindelijke
beeld.

• De ruwe data bestaat uiteraard uit een discrete verzameling van getallen. Het is dus niet triviaal
om continue wiskundige modellen erop toe te passen.

De eerste drie punten benoemen de ad hoc natuur, het vierde punt laat de zogeheten slechte gesteldheid
zien en het laatste item duidt een conceptueel probleem aan. De laatste tijd is het aantal wiskundigen dat
geı̈nteresseerd is in beeldanalyse sterk gegroeid, omdat bovengenoemde problemen verklaard kunnen
worden door de gebruikte modellen wiskundig te onderzoeken. Beeldanalyse blijkt een veelbelovend
toepassingsgebied van de wiskunde te zijn, zelfs als gebruik gemaakt wordt van sterk abstracte theorieën
die voor niet-wiskundigen totaal niet duidelijk zijn.

De Combinatie is Meer dan de Som der Delen

Samenvattend: binnen het gebied van de beeldanalyse is de combinatie van natuurkunde, elektrotechniek,
wiskunde, (neuro-)biologie en informatica, samen met kennis van toepassingsgebieden van specifieke
beeldanalyse taken, noodzakelijk om zinvolle resultaten te bereiken. De lezer kan wel raden dat dit
gigantische wetenschapsgebied onmogelijk in één proefschrift omvat kan worden.

Samenvatting van dit Proefschrift

In dit proefschrift beperk ik mij tot de wiskunde rond de ruwe data, het initiële beeld, dat digitaal op-
geslagen is. Hoe de beelden verkregen zijn, is voor kennisgeving aangenomen en verder niet relevant.
Het is ook niet bekend wat ze voorstellen of welke speciale objecten er aanwezig zouden kunnen zijn. Als
een gevolg daarvan is validatie van de resultaten met betrekking tot een hooggespecificeerde taak, zoals
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segmentatie, niet van toepassing, omdat ik eenvoudigweg veronderstel dat er geen hooggespecificeerde
taak is. De validatie vindt plaats op een ander vlak. De methoden en modellen die gebruikt en afgeleid
worden, dienen een “betekenis” te hebben. De uitkomst dient dus voorspelbaar en begrijpbaar zijn op
grond van de methoden en modellen. Men kan dit een laaggespecificeerde taak noemen die gebaseerd is
op de data en niet op de afbeelding.

De volgende paragrafen beschrijven in het kort de hoofdstukken van dit proefschrift. Omdat de
hoofdstukken als artikelen (zullen) verschijnen, vindt er enige overlapping plaats in de beschrijving van
schaalruimte en catastrofe theorie in de “introductie” en “theorie” delen van de verschillende hoofdstuk-
ken. Om deze hoofdstukken leesbaar te houden, is hierin geen verandering gebracht.

Hoofdstuk 2

Hoofdstuk 2 bespreekt meer gedetailleerd het laatste probleem dat hierboven genoemd is, over het ver-
schil tussen discrete data en continue modellen. Dit verschil is wiskundig opgelost door Schwartz’
“Distributie Theorie”. Een fysische benadering, gebaseerd op het “Pi Theorema”, komt neer op het idee
om de noodzakelijke parameter schaal te introduceren. Of beter: om die te ont-dekken. De punten in
een beeld zijn erdoor gerelateerd en kunnen alleen daardoor geı̈nterpreteerd en gebruikt worden. Onder
bepaalde aannames, zoals dat “er niets van het beeld bekend is”, worden er oplossingen gevonden die aan
de wiskundige voorwaarden voldoen. Omdat er geen a-priori te prefereren schaal is, kunnen (en moeten)
alle mogelijke schalen gebruikt worden. Het beeld wordt daarom uitgebreid met een extra dimensie,
schaal, en dit nieuwe beeld vormt een schaalruimte.

Een van de eerdergenoemde oplossingen houdt in dat het oorspronkelijke beeld geconvolueerd wordt
met een Gaussisch profiel, waarvan de breedte gerelateerd is aan de schaal. Deze schaalruimte heet
daarom Gaussische schaalruimte. Tegelijkertijd is dit profiel de algemene oplossing van de zogenoemde
Diffusie Vergelijking, of Warmte Vergelijking als schaal wordt opgevat als tijdparameter. Deze vergelij-
king beschrijft de verspreiding van warmte over tijd als een homogene plaat in het begin op verschillende
plekken wordt verwarmd. Zoals men kan voorstellen heeft de plaat aan het einde (als we “oneindig” lang
wachten) een constante temperatuur. Hetzelfde geldt voor het schaalruimte beeld: op een “oneindig”
grote schaal heeft het beeld een constante waarde. Het vergroten van schaal leidt dus tot vervaging. Een
belangrijke eigenschap is lineariteit, waardoor deze schaalruimte een lineaire schaalruimte is.

Vanuit het oogpunt van de eindgebruiker die slechts let op de individuele beelden, zal het toepas-
sen van een schaalruimte de hoeveelheid ruis wel verminderen, maar ook alles vervagen, waardoor het
onbruikbaar kan worden voor bijvoorbeeld segmentatie taken. Het gebruiken van alle schalen is daar-
entegen redundant. Daarom wordt ook wel de omgekeerde route genomen: met de diffusie vergelijking
als uitgangspunt kan het nut voor beeldanalyse onderzocht worden. Men kan dus ook niet-lineaire ver-
sies ervan bestuderen. Taakspecifieke informatie kan gebruikt worden bij het modelleren, waardoor deze
aanpak geometrisch gedreven diffusie wordt genoemd. Een stap verder is het gebruik van elke partiële
differentiaal vergelijking (PDE), hetgeen de oneindige reeks van de PDE-benaderingen oplevert. Zo-
als al eerder opgemerkt, geldt voor deze benaderingen dat ze met de data “iets doen met een bepaalde
bedoeling”.

Naar de lineaire diffusie vergelijking terugkerend, komt de vraag op wat de relevantie met betrek-
king tot biologisch modelleren van (onderdelen van) het visuele systeem is. Het blijkt dat in de eerste
momenten van het visuele systeem, als licht in het oog valt en visuele stimuli naar de hersenen getrans-
porteerd worden, zowel Laplaceaanse profielen als vervaging optreedt. Dit geeft de mogelijkheid aan
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om een Gaussische schaalruimte te gebruiken als model voor dit stadium van zien. De schaalruimte kan
gevisualiseerd worden door een stapel gesimplificeerde versies van het beeld. Gedurende de simplifica-
tie verdwijnen gebieden in een opeenvolgende manier. Theoretisch kan dus een hiërarchische structuur
worden gevonden: er zijn gebieden binnen gebieden.

Een kort overzicht van enige resultaten van onderzoek van Gaussische schaalruimte met betrekking
tot beeldanalyse en de intrinsieke eigenschappen van de laatste jaren besluiten dit hoofdstuk. Lezers
die reeds bekend zijn met (Gaussische) schaalruimte, kunnen dit hoofdstuk overslaan. In de volgende
hoofdstukken veronderstel ik bekendheid met het schaalruimte concept.

Een Diepe Gedachte over Diepe Structuur

Weten dat schaal belangrijk is en dat het nemen van een enkele schaal niet geschikt is, is één ding. Het
bevat nog niet de notie van schaalruimte. De relevantie ligt in het onderzoek van Gaussische schaalruimte
zelf, dat wil zeggen, alle schalen tegelijk. Dit wordt de diepe structuur van Gaussische schaalruimte
genoemd. Het is de taak om te onderzoeken – en hopelijk te begrijpen — wat er gebeurt tussen twee
verschillende schalen en welke mechanismen optreden als de schaal geleidelijk wordt veranderd. Dat is
het onderwerp van dit proefschrift.

Hiervoor beschouw ik het beeld als een hoogtefunctie. Ik beperk mij tot de meest basale eigenschap-
pen van deze functie: de kritieke punten en enige deelverzamelingen van punten met dezelfde waarde.
Deze punten geven een adequate beschrijving van een beeld, denk bijvoorbeeld aan een twee dimensi-
onaal beeld met zijn kritieke punten (minima, maxima en zadels) en de isofoten door de zadels. Deze
laatsten omsluiten gebieden in het beeld.

Hoofdstuk 3

Op dit punt ontmoet men nog steeds problemen bij het toepassen van wiskundige handelingen (het vinden
van kritieke punten) op een discreet raster. In hoofdstuk 3, een kort intermezzo, leg ik de problemen uit
die voortkomen uit de keuze voor een rechthoekig raster: De horizontale en verticale nabuurrelaties en de
uitbereiding ervan naar de dubbele diagonale nabuurrelaties, geven wiskundige en praktische problemen.
Een zeshoekig raster lost het probleem op. Tevens is het in het menselijk gezichtsvermogen aanwezig.
Ik zal dit gebruiken door het rechthoekige raster als zeshoekig te beschouwen.

Hoofdstuk 4

Nu het mogelijk is kritieke punten te detecteren, is het tijd ze over schaal te volgen. Een belangrijk resul-
taat dat uit het wiskundige gebied van singulariteiten komt, laat zien dat bij vergrotende schaal spatiële
kritieke punten allen in paren kunnen verdwijnen (annihilatie). In twee (en hogere) dimensies kunnen
zulke paren ook ontstaan (creatie). Als we dus naar een serie vervagende beelden kijken, zien we het
aantal kritieke punten veranderen. De locaties in schaalruimte waar deze annihilaties en creaties plaats
vinden, worden catastrofepunten genoemd. In hoofdstuk 4 wordt de beweging van spatiële kritieke pun-
ten onderzocht. In een enkel beeld op een bepaalde schaal liggen kritieke punten in het algemeen “tussen
de raster punten” (sub-pixel) en alleen de omliggende punten worden gevonden. Idealiter wordt de bewe-
ging gevonden door gebruik te maken van de tangent vector aan het schaalruimte kritieke pad waarover
ze bewegen. In het discrete geval kan de beweging worden geschat met behulp van storingsrekening.
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Dit levert vectoren in schaalruimte op, die met sub-pixel precisie wijzen naar de locatie van het kritieke
punt op een grotere schaal. Wordt ook schaal informatie gebruikt dan kan de locatie preciezer worden
berekend. De zaak wordt gecompliceerd als catastrofepunten betrokken zijn. Dan is de formulering die
gebruikt wordt voor kritieke punten niet langer geldig en een ingewikkelder expressie is noodzakelijk.
Deze wordt dan ook gegeven.

Alle expressies worden gegeven in een willekeurig coördinaten systeem, de co-variante formule-
ring. Dit is een belangrijke notie, daar alle theoretische resultaten in zogenoemde canonieke coördinaten
worden gegeven. Deze coördinaten zijn zo gekozen, dat het stelsel eenvoudig en simpel te beschrijven
en te begrijpen is. In de werkelijkheid komt men echter zo een situatie bijna nooit tegen, omdat het
coördinaten systeem meestal van te voren vastgesteld is en niet aangepast is aan de lokale configuratie
van het beeld. Elke catastrofe is daarentegen wel weer lokaal op zo een eenvoudige wijze te beschrijven.
De determinant van de matrix die in de expressie voor het vinden van catastrofepunten voorkomt, is
tegelijkertijd een indicator of het catastrofepunt een annihilatie of een creatie is. Experimenten laten zien
dat de fractie van de ruimte waar creaties “toegestaan” zijn door het teken van deze determinant, relatief
klein is. Dit sluit aan bij de intuı̈tie dat er meer annihilaties zijn te verwachten dan creaties, omdat op één
na alle extrema annihileren. Voorbeelden van de theorie worden gegeven op twee dimensionale beelden.

Hoofdstuk 5

In hoofdstuk 5 worden deze resultaten gebruikt om kritieke curven in schaalruimte te maken. De spa-
tiële kritieke punten van het beeld worden voor toenemende schaal berekend en aan elkaar gekoppeld,
waardoor ze kritieke takken van extrema en zadelpunten vormen. De takken worden in de catastrofepun-
ten aan elkaar gekoppeld, waarmee de kritieke curven worden gevormd. In het schaalruimte beeld zijn
catastrofepunten reguliere punten. Ik laat zien dat de enige kritieke punten in schaalruimte schaalruimte
zadelpunten zijn, welke liggen op de zadeltakken. Als de intensiteit van de kritieke punten over schaal
wordt gevolgd, dan dalen maxima monotoon en stijgen minima monotoon. Zadeltakken kunnen daaren-
tegen lokale extrema met betrekking tot de intensiteit hebben. Ik laat zien dat deze lokale extrema plaats
vinden in de schaalruimte zadels.

Gebruik makend van het feit dat extrema onderdrukt worden dankzij de diffusie vergelijking, wordt
bereikt dat oppervlakken met gelijke intensiteit in schaalruimte een koepelvorm hebben als ze een extre-
mumtak snijden. Als het oppervlak geen zadeltak snijdt, omsluit het een gesloten gebied in schaalruimte,
waarbij de top samenvalt met het snijpunt van de extremumtak en het oppervlak. Elke extremumtak snijdt
een oppervlak dat een zadel bevat. Dit is ofwel een spatiëel zadel in het oorspronkelijke beeld, of een
schaalruimte zadel. Dit kritieke oppervlak vormt de grens van een serie van om elkaar vallende gesloten
gebieden. Aan alle annihilerende extrema kan zo een kritiek gebied worden toegekend.

Door deze nestende eigenschap van Gaussische schaalruimte volgt een hiërarchische procedure recht
toe, rechtaan. De gebieden definiëren een “pre-segmentatie” van het oorspronkelijke beeld. Deze speci-
ale segmentatie wordt verkregen zonder enige kennis van het beeld, in tegenstelling tot de gebruikelijke
definitie van een willekeurige segmentatie. Het is een “complete” segmentatie in de zin dat alle struc-
turele (toplogische) betekenisvolle segmenten betrokken zijn. In de praktijk is het typisch een “over-
segmentatie”, omdat het gehele beeld opgedeeld is, terwijl verschillende pre-segmenten typisch tot een
“semantisch” segment zullen behoren, bijvoorbeeld een enkel weefsel type in een MR beeld. Gesteld
wordt daarentegen – hierin ligt de ware betekenis – dat een pre-segmentatie nooit een “ondersegmen-
tatie” is, omdat het opdelen van een pre-segment niet gerechtvaardigd wordt van de kant van de data.
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Natuurlijk kan een ervaren gebruiker met behulp van externe kennis toch een opdeling opleggen.
Merk op dat de pre-segmentatie alleen wordt verkregen doordat een Gaussische schaalruimte volgt

uit de noodzakelijkheid van schaal. Ik geef voorbeelden van de beschreven procedure en resultaten.

Hoofdstuk 6

De eerdergenoemde procedure gebruikt generieke catastrofes: gebeurtenissen met precies twee kritieke
punten. Soms is het nodig te veronderstellen dat ook niet-generieke gebeurtenissen voorkomen, als
meerdere kritieke punten samenkomen. Dit is het geval als van drie kritieke punten er één over blijft,
maar men is niet in staat het annihilerende paar te identificeren. Soms wil men die identificatie niet
maken, bijvoorbeeld als het beeld lokaal symmetrisch is. De uitbereiding van het hiërarchische algoritme
dat in staat is om met dit speciale geval om te gaan, wordt gegeven in hoofdstuk 6. Het grote voordeel is
dat het de hiërarchische boomstructuur stabiliseert. Meerdere symmetrieën – denk aan een schaakbord
– kunnen op een soortgelijke manier geı̈mplementeerd worden.

Ik bespreek tevens de irrelevantie van de creatie van kritieke punten met betrekking tot de boom-
structuur en de pre-segmentatie. Vanuit het idee van de kritieke curven is dit duidelijk, omdat ze slechts
uitstulpingen van de kritieke curve in schaalruimte vormen. Tenslotte laat het modelleren van lokale
symmetrie zien dat een zadeltak meerdere schaalruimte zadels kan bevatten. Omdat het kritieke gebied
dat aan een extremum is toegekend, bereikt wordt door het eerste oppervlak dat een zadel bevat, is er
slechts één van relevant. In het geval van een minimum betreft het het schaalruimte zadel met de laagste
intensiteit, in het geval van een maximum is het degene met de hoogste intensiteit.

Testen laten de toepassing van deze theorie zien.

Hoofdstuk 7

In de vorige paragraaf noemde ik dat creaties “slechts uitstulpingen van de kritieke curve in schaal-
ruimte vormen”. Dit vraagt om een meer gedetailleerde uitleg. Daarvoor wordt een belangrijk resultaat
uit “Catastrofe Theorie” gebruikt, namelijk een lijst met polynomen die catastrofes en hun moeilijk-
heid beschrijft. Dat laatste wordt zichtbaar in het aantal parameters dat nodig is een catastrofepunt te
verwijderen. Als schaal wordt opgevat als een parameter, is het duidelijk dat de gebruikelijke cata-
strofe in schaalruimte één parameter vereist. De catastrofes die in het vorige deel werden genoemd,
hebben meerdere parameters nodig, bijvoorbeeld om de lokale symmetrie te verstoren. In hoofdstuk 7
onderzoek ik de lijst en pas die zó aan, dat de polynomen aan de diffusie vergelijking voldoen en dus
schaalruimte polynomen worden. De aanpassing van polynomen met meerdere parameters leidt tot één
speciale parameter, namelijk schaal. Ik laat zien dat met deze aanpassing non-generieke gebeurtenissen
in schaalruimte gemodelleerd kunnen worden. Dat houdt niet alleen de meervoudige annihilaties in het
geval van symmetrieën in, maar ook een beschrijving van de uitstulpingen van de kritieke curven.

Als de polynomen in de spatiële variabelen en een schaal parameter worden beschouwd, leveren
ze een modellering van de kritieke curven zelf. Hier komen twee opmerkelijke zaken aan het licht.
Allereerst zijn de uitstulpingen niet erg stabiel: een kleine verstoring doet ze geen kwaad, maar een iets
grotere verwijdert ze van de kritieke curve. Dit is precies volgens intuı̈tie – bij het vervagen verdwijnen
dingen, dus creaties zijn niet echt te verwachten. Maar wiskundig was ervan al bewezen dat het lokaal
onjuist was voor kritieke punten. Ten tweede kunnen kritieke curven ook voorkomen als gesloten lussen,
op een bepaalde schaal gecreëerd en op een grotere schaal geannihileerd. Deze curven zal men compleet
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missen als alleen de kritieke curven volgt die in het originele beeld starten. Berekeningen aan beelden
laten inderdaad het voorspelde gedrag voor de kritieke curven zien.

Hoofdstuk 8

Het is nu tijd om terug te keren naar de hiërarchische structuur. In hoofdstuk 5 beschrijf ik de aanwezig-
heid van koepels in het schaalruimte beeld, maar er is meer over te zeggen. Zoals al genoemd omvatten
de kritieke oppervlakken een hele reeks oppervlakken en bevatten ze een zadel, soms een schaalruimte
zadel, soms een spatiëel zadel – in dat geval in het originele beeld. In hoofdstuk 8 onderzoek ik het an-
dere deel van het oppervlak dat door het zadel gaat. Dit komt er eenvoudigweg op neer de structuur van
de oppervlakken met gelijke intensiteit in schaalruimte en hun “uienschil”-structuur te onderzoeken. In
een gewoon twee dimensionaal beeld zijn de isofoten genest, cirkelen rondom een extremum en snijden
zichzelf in zadelpunten. Een curve door een zadel bevat dus twee delen. Voor schaalruimte beelden geldt
iets soortgelijks. Een deel is reeds bekend, namelijk de kritieke koepel. De prangende vraag is wat voor
informatie er in het andere deel bevat is.

Ik onderzoek het gedrag van de oppervlakken en laat zien dat als het andere deel van het oppervlak
dat de kritieke koepel bevat, wordt meegenomen, op een elegante manier een eenduidige, op intensiteit
gebaseerde schaalruimte hiërarchie wordt verkregen, die degene genoemd in hoofdstuk 5 omvat, maar
veel robuuster is. De hiërarchie kan gevisualiseerd worden door een binaire boomstructuur, een structuur
waarin elke knoop een ouder en twee kinderen heeft. Een van de kinderen is de koepel uit hoofdstuk 5,
het andere kind is equivalent aan de ouder. Ze kan zelfs gereduceerd worden tot een verzameling van
in elkaar vallende onderdelen, waarin elke knoop wordt gerepresenteerd door een paar haken. Binnen
de haken staan de kinderen en de haken worden gelabeld met het kind dat de koepel bevat. Dit stelt
men tegelijkertijd in staat een “logisch filter” te gebruiken: Kinderen in de boomstructuur die minder
significant zijn, kunnen weggeveegd worden door de kleine takken te snoeien. En vanaf de andere kant
bekeken: de meest significante schaalruimte delen zijn de sterkste, dikste (of grootste) takken. Men
verkrijgt dus een structuur van het schaalruimte beeld dat impliciet aanwezig is, maar nog wel eruit
gehaald moest worden.

Conclusie

Dit brengt ons bij het einde van het proefschrift. De belangrijkste bijdrage is dat het het onderzoek van
de diepe structuur van Gaussische schaalruimte start. In de verschillende hoofdstukken geeft het nieuwe
inzichten in het gedrag van spatiële kritieke punten onder de invloed van de schaal parameter, hetgeen
kritieke curven met niet alleen generieke catastrofepunten, maar ook schaalruimte zadelpunten oplevert.
Het modelleren van niet-generieke catastrofes geeft inzicht in de structuur van kritieke curven, zoals de
aanwezigheid van kritieke curven die gesloten lussen vormen.

Een ander nieuw inzicht ligt in de oppervlakken met gelijke intensiteit in schaal ruimte. Een geschikte
selectie ervan, gedeeltelijk gebaseerd op die door de schaalruimte zadels, delen het schaalruimte beeld –
en dus het originele beeld – uniek in “gebieden van invloed”, geregeld door de extrema. Men krijgt dus
gratis een hiërachie van het beeld en de mogelijkheid tot een onvoorwaardelijke “pre-segmentatie”.

Verder zijn ook onvoorwaardelijke beeldanalyse taken mogelijk, zoals registratie, codering, com-
pressie, clusteren, vereenvoudiging, transmissie en vergelijking – om er enige te noemen. Het sleutel
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woord in al deze toepassingen is onvoorwaardelijk. De toepassingen volgen eenvoudigweg uit het feit
dat een unieke gedefiniëerde hiërarchie beschikbaar is.

Dit is volslagen verschillend van elke gebruikergedefinieerde taak, hetgeen meestal het geval is. De
hiërarchie is (impliciet) reeds aanwezig in de diepe structuur van Gaussische schaalruimte beelden.
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