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CHAPTER 1

Introduction

Over the last decades, the study of climate variability has attracted ample atten-
tion. Temperature records show signs of global warming, starting around the end
of the nineteenth century. The observation of this structural climatic change has
led to questions about its causes and the mechanisms involved. Perhaps the most
important issue is, to what extent climatic change is due to anthropogenic influence,
connected to the industrial revolution, and to what extent to natural variability.
This issue is becoming more and more important, as speculations arise about the
link between climatic change and catastrophes such as floods and droughts. The
task to understand interactions in the complex climate system is particularly diffi-
cult because of the lack of observational data, spanning a period of time typical for
natural climate variability.

One way around this problem is to represent the earth’s climate in a computer
model, as a set of prognostic equations. By means of numerical integration the past
and future climate can then be reconstructed. Also, numerical experiments can be
conducted in which a number of quantities are kept fixed in order to investigate the
sensitivity of the climate system to isolated physical effects.

A disadvantage of this approach is that, if the model under consideration is
to faithfully represent the real climate system, it has to be large in terms of the
number of degrees of freedom. Depending on their extent of realism, so called
General Circulation Models (GCM’s) have from a few thousand up to a few million
degrees of freedom. This puts them out of reach of the ordinary analysis of dynamical
systems theory. Instead, statistical analysis is used to study the model’s output. The
measurement of, for example, correlation coefficients, combined with the physical
theory behind the processes represented in the model may lead to insight into the
mechanism of climatic change and variability. The mathematical structure behind
it, however, remains unclear. As a rule of thumb, the bigger the model, the harder
it is to investigate its dynamics mathematically. Such a mathematical investigation
can validate conclusions drawn on basis of experiments conducted with the model,
as it focusses on stability of its behaviour to perturbations and genericity of its
behaviour in a wider class of models.

The problem, that mathematical analysis is harder for more realistic models,
also frustrates the study of weather, restricted to a time scale of days or weeks.
As weather has a considerable impact on daily life, meteorology dates back to long
before the computer era. Numerous approximations and simplifications have been
devised to render the equations for atmospheric flow solvable by hand. In classical
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studies such as Philips [1954]; Charney [1959]; Lorenz [1960] solutions are obtained
by imposing symmetries, considering limits of physical parameters and exploiting
perturbation theory. Their approach and results are now common knowledge in
meteorology.

Computers made it possible to investigate solutions, out of reach of perturba-
tion theory. At first, however, numerical computations were slow and painstaking.
Forward integration of a set of three prognostic equations was a considerable task.
Edward Lorenz had such a model at hand. He split the forward integration into
parts and had them overlap in order to check the numerics. According to the popu-
lar anecdote this is how he came across the phenomenon of sensitive dependence on
initial conditions, nowadays a major paradigm in meteorology and climatology. On
a present day desktop computer, the whole computation he had in mind would take
less than one second and this sensitive dependence may well go unnoticed.

Thus, the study of the equations governing atmospheric flow, without resort to
massive numerical simulations, has led to many fundamental insights in meteorol-
ogy. The study of extremely simplified climate models, as presented in this thesis,
should likewise lead to an understanding of the mechanisms of climatic change. One
feature climate models share is the presence of widely different time scales. Compo-
nents of the climate system, which can often be considered fixed in the context of
weather forecasts, have to be taken into account explicitly. Throughout this thesis
the emphasis will be on the question to what extent the slow time scales play a role
in the model’s dynamics. In climate models, the slow time scales may be related
to, e.g., ice sheet dynamics, variations in solar heat flux or ocean dynamics. In this
work, the slow time scales will only be related to ocean dynamics and the fast time
scale to atmospheric dynamics. The question is thus if the ocean plays an active or
a passive role in the combined system [Marotzke, 1994].

An important class of extremely simplified models (for a review, see Olbers
[2001]) is formed by Low-Order Models (LOM’s). Low-order refers to the number
of degrees of freedom. In conformance with mathematical literature I will refer to
models of low order as those with a number of degrees of freedom not much greater
than 10. This is a subjective definition which serves its purpose in the context of
this work. The equations governing the dynamics of the atmosphere and the ocean
are partial differential equations, with an infinite number of degrees of freedom. I
will loosely refer to them as Fluid Dynamical (FD) equations, a notion which will
be specified in chapters 2 and 4.

The set of LOM’s can be subdivided in conceptual and scalable models. Con-
ceptual models are formulated in an ad hoc fashion. The terms in the prognostic
equations are chosen such that they represent certain isolated physical processes.
Examples of such models are Stommel’s model for the ocean [Stommel, 1961], in
which the ocean is thought of as a number of boxes, connected by pipes, and the
Daisyworld model [Watson and Lovelock, 1983], in which the face of the earth is
covered by black and white daisies, competing for space. Scalable models are de-
rived from a FD model by means of Galerkin truncation. The variables of the FD
model, such as temperature and velocity fields, are projected onto a finite number
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of basis functions, which describe spatial structures. The expansion coefficients are
the variables of the LOM. Some basis functions, common in fluid dynamics, are:

e Fourier modes, as in Lorenz [1963], a description of the three degrees of
freedom model mentioned above, and in chapter 2 of this thesis,

e orthogonal polynomials, as in Maas [1994], see chapter 4 of this thesis, and

e cigenfunctions of covariance operators, here referred to as Empirical Or-
thogonal Functions (EOF’s), see Preisendorfer [1988].

These sets of basis functions can be ordered by the spatial scale they take into
account. In the case of Fourier functions, for instance, this ordering is simply given
by the wave number. The spatial scales are tied to time scales through the typical
velocity of the fluids or masses of air under consideration. Hence, the reduction
to finite order is, at the same time, a selection of relevant time and spatial scales.
Contrary to conceptual models, the dynamics of scalable models is determined by
the FD model. Also, the number of degrees of freedom of scalable models can be
increased at will in order to investigate the robustness of their behaviour. Thus,
stronger statements about the real climate system can be inferred from the study of
scalable models.

There is no definite answer to the question, to what extent the solutions of a
LOM represent solutions of the parent FD model. In general, experience shows that
the solutions of a FD model settle down on a finite dimensional, attracting set in
phase space. For certain FD models, rigorous analysis yields an upper bound for the
dimension of this set [Temam, 1988]. This means, that the dynamics of the FD model
can at least be captured by a model of finite order. Such upper bounds, however,
are large compared to the definition of low-order put forward here. Therefore, we
can not expect the LOM’s to quantitatively reproduce solutions of the FD model.

The question, how to represent the effect of omitted degrees of freedom in a
LOM is known as the closure problem. Some of the proposed solutions are inclusion
of stochastic forcing terms in the LOM [De Swart and Grasman, 1987], statistical
optimisation of the LOM’s coefficients [Achatz and Branstator, 1999] and approxi-
mation of inertial manifolds by means of a modified Galerkin method [Foias et al.,
1988]. In this thesis, I will not address the closure problem. The LOM’s studied here
are not intended to yield quantitatively correct predictions about the real climate
system. The Galerkin method is regarded as a means to select time and spatial
scales, and thereby the physical processes of interest. It is checked, however, that
the LOM’s output has the right order of magnitude.

As mentioned above, the low-order climate models in this thesis are coupled
ocean-atmosphere models. The atmosphere model, studied here, was introduced
by Lorenz [1984]. Lorenz only hinted at the possibility to derive the model as a
Galerkin truncation of a FD model. In Chapter 2 of this thesis this link is made
explicit. In doing so, the physics behind the model and its scaling are described in
detail. It is shown, that the Lorenz-84 model describes the jet stream in the mid-
latitude atmosphere, and planetary waves, which can grow if the jet stream becomes
dynamically unstable [Peixoto and Oort, 1992, chapter 7]. The typical time scale,
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associated with variability of the jet stream, also called the synoptic scale, is about
one week. In subsequent chapters this will be the fast, atmospheric time scale.

The Lorenz-84 model will be coupled to two different low-order ocean models.
In chapter 3, it is coupled to Stommel’s two box model [Stommel, 1961]. Stommel’s
model mimics the large scale overturning, or thermohaline circulation in the North
Atlantic ocean [Peixoto and Oort, 1992, chapter 8]. The typical time scale of vari-
ability of the thermohaline circulation is of the order of centuries. This will be the
longest time scale in the coupled models.

In chapter 4, the Lorenz-84 model is coupled to an ocean model formulated by
Maas [1994]. Contrary to the two box model, this is a scalable model. Consequently,
considerable effort is put into a physical description of the coupling. Apart from the
overturning circulation, Maas’ model is capable of representing a wind driven gyre.
The coupling works in two ways: through exchange of heat at the surface and through
wind shear forcing. The latter acts on a time scale in between the fast atmospheric
time scale and the slow overturning time scale. The intermediary time scale is set
to about one year.

The LOM’s in this thesis are sets of coupled, nonlinear, Ordinary Differential
Equations (ODE’s) on one, two and three widely separate time scales, respectively.
These can be analysed with the aid of dynamical systems theory [Wiggins, 1990].
The emphasis will be on bifurcation analysis, i.e. the analysis of the dependence of
the qualitative behaviour of the models on their parameters [Kuznetsov, 1998]. Also,
the time scale separation leads to the presence of small parameters in the equations.
The consequences for the behaviour of the coupled models are briefly explored by
means of singular perturbation theory [Wiggins, 1994].

In chapter 2, the bifurcation structure of the Lorenz-84 model is investigated
in some detail. Here, the focus is on the routes to chaotic behaviour in this model.
In the subsequent chapters, the bifurcation structure of the coupled models is then
compared to that of the uncoupled models. Keeping in mind the issue of time
scale interaction, two differences stand out. In both coupled models, prominent
intermittent behaviour is observed. This behaviour occurs near a point in parameter
space at which the stability of periodic motion is lost. The slow subsystem, i.e. the
ocean model, repeatedly pushes the fast subsystem, i.e. the atmosphere model,
through a sequence of bifurcations. Thus, the ocean model plays an active role
in the coupled system. Secondly, in the Lorenz-Maas model a periodic solution is
shown to exist, with a period on the slow, overturning time scale. The atmospheric
variables are at instantaneous equilibrium with the feedback of the ocean, and the
behaviour of the coupled model is thus dictated by internal ocean dynamics. Both
these phenomena occur near a critical point of the coupled system, in agreement
with the general idea that in climate models the slow components can play an active
role near such critical points and are passive otherwise.

There is not much literature on low-order models of ocean-atmosphere interac-
tion. Models, studied in this field, are often extensions of the box-type approach
[Huang and Stommel, 1992; Nakamura et al., 1994; Rivin and Tziperman, 1997; Titz
et al., 2002]. To my knowledge, the Lorenz-Maas model, introduced in chapter 4, is
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the only scalable low-order model which includes overturning and wind driven circu-
lation in the ocean. Accordingly, a number of extensions of this model is proposed,
such as the inclusion of salinity and wave-wave interaction in the atmosphere.

The chapters of this thesis are based on the following papers:

e Chapter 2:
Veen, L. van [2002] “Baroclinic flow and the Lorenz-84 model”, to appear
in the Internat. J. Bifur. Chaos.

e Chapter 3:
Veen, L. van, Opsteegh, T., and Verhulst, F. [2001] “Active and passive
ocean regimes in a low-order climate model”, Tellus 53A., 616-628

e Chapter 4:
Veen, L. van [2002] “Overturning and wind driven circulation in a low-order
ocean-atmosphere model”, submitted to Dyn. Atmos. Oceans.
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CHAPTER 2

Baroclinic low and the Lorenz-84 model

To appear in the Internat. J. Bifur. Chaos.

ABSTRACT. The bifurcation diagram of a truncation to six degrees of freedom
of the equations for quasi-geostrophic, baroclinic flow is investigated. Period
doubling cascades and Shil’nikov bifurcations lead to chaos in this model. The
low dimension of the chaotic attractor suggests the possibility to reduce the
model to three degrees of freedom. In a physically comprehensible limit of
the parameters this reduction is done explicitly. The bifurcation diagram of
the reduced model in this limit is compared to the diagram of the six degrees
of freedom model and agrees well. A numerical implementation of the graph
transform is used to approximate the three dimensional invariant manifold away
from the limit case. If the six dimensional model is reduced to a linearisation of
the invariant manifold about the Hadley state, the Lorenz-84 model is found.
Its parameters can then be calculated from the physical parameters of the quasi-
geostrophic model. Bifurcation diagrams at physical and traditional parameter
values are compared and routes to chaos in the Lorenz-84 model are described.

1. Introduction

The equations for atmospheric flow form one of the most intensely studied dy-
namical systems of the last century. Both their practical importance and their
mathematical richness have attracted much attention. The atmospheric equations
are studied in various forms, depending on the physical domain, and the time and
length scales of interest. The starting point of the analysis in this paper is a model
which describes midlatitude atmospheric flow on a synoptic scale, a few thousand
kilometers in space and a week or so in time. A phenomenological description of the
typical flow patterns in this range can be found in Peixoto and Oort [1992], chapter
7. The model consists of the filtered equations, derived from the basic atmospheric
equations under the assumption of quasi-geostrophic (QG) and hydrostatic balance
(see Holton [1992]).

In the absence of dissipative processes and forcing through solar heating, the fil-
tered equations are energy preserving. The dominant dissipative terms are friction
at the earths surface, internal friction and Newtonian cooling. The solar heating
induces a strong temperature gradient in the meridional direction. Additional tem-
perature gradients in the zonal direction can be induced by, e.g. land-sea contrast.
The response to this forcing is a strong westerly circulation, called the jet stream.
This circulation can become dynamically unstable so that traveling waves develop.
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The jet stream pattern is nearly equivalent barotropic, which means that its
height dependence can be represented by multiplication by a scale function. In other
words, at each surface of constant height, the velocity field has the same shape, but
may have a different amplitude. In contrast, the traveling waves can be baroclinic,
which means that their phase depends on the vertical coordinate. Typically, they
exhibit a westward tilt with height. Theoretical studies of the filtered equations
indicate, that the baroclinicity of these traveling waves changes in the course of their
life cycle [Frisius, 1998]. In the growing, strongly baroclinic, phase, they extract
energy from the jet stream. In the decaying phase, they can become equivalent
barotropic and transfer energy back into the jet stream.

The focus of this study is on the interaction of the jet stream and the baroclinic
waves and its representation in a low order model. With the aid of discretisation in
the vertical and Galerkin truncation in the horizontal coordinates, we approximate
the filtered equations by a finite number of ordinary differential equations (ODE’s).
The discretisation can be done without violating the energy preserving nature of the
filtered equations, as described in Lorenz [1960]. The number of layers is fixed to
two, the minimal number necessary to describe baroclinic waves.

The two layer model is considered on an f-plane, a rectangular domain on
which the Coriolis force is taken to be constant. The partial differential equations
of the two layer model are then projected onto Fourier modes. In each layer, we
use one zonally symmetric pattern, representing the jet stream, and two patterns
which combine to represent a traveling wave. Thus, the ODE model has six degrees
of freedom. The solar forcing is represented by constant terms, which are used as
bifurcation parameters.

The bifurcation diagram is organised by its codimension two points, namely
fold-Hopf, 2:1 resonance and a neutral saddle-focus on a homoclinic bifurcation line.
Two routes to chaos are readily identified: period doubling cascades and a Shil’nikov
type bifurcation. An inspection of the spectra of equilibria and periodic orbits found,
and the calculation of the Kaplan-Yorke dimension of the chaotic attractor, leads
to the conjecture, that there is a three dimensional, globally attracting, invariant
manifold in the phase space of the six dimensional model.

In order to calculate a first approximation of this invariant manifold, a small
parameter is introduced into the equations. In the limit where this parameter tends
to zero, an analytic expression is obtained. This limit has a clear physical inter-
pretation in terms of the energy transfer between the jet stream pattern and the
traveling waves. Numerical evidence for the persistence of the invariant manifold
away from this limit is obtained by the use of techniques introduced by Broer et al.
[1997] and Foias et al. [1988].

Reducing the six dimensional model to the invariant manifold, in the limit where
the small parameter tends to zero, a three dimensional model is obtained. Its bi-
furcation diagram is compared to the corresponding diagram of the six dimensional
model in order to see if the qualitative dynamics is retained. This comparison is
convincing. Particularly, the codimension two points are still present.

If the six dimensional model is reduced to a linearisation of the invariant manifold
about the Hadley state, the Lorenz-84 model emerges. This model was introduced



2. THE QG TWO LAYER MODEL 11

by Lorenz [1984] as the simplest model capable of representing the basic features of
midlatitude, synoptic flow. To the author’s knowledge, no derivation of the Lorenz-
84 model from atmospheric flow equations has been presented before. A rather ad
hoc link was established by Wiin-Nielsen [1992, 1994], but in his work the reduction
to three degrees of freedom is not based on physical or mathematical arguments. The
link established here enables us to calculate the parameters in the Lorenz-84 model
from the physical parameters in the filtered equations. As it turns out, one of the
parameters comes out significantly different from its traditional, yet unmotivated,
value. A continuation in this parameter relates the bifurcation diagram found at the
traditional parameter value, presented in Shilnikov et al. [1995], to the one found
at the physical value. The latter still bears resemblance to the bifurcation diagram
of the six dimensional model, but the neutral saddle-focus transition is no longer
there. Hence the route to chaos through a Shil'nikov type bifurcation is absent. It
is shown, that chaos through period doubling cascades, the Ruelle-Takens scenario
and intermittency does occur in the Lorenz-84 model.

The derivation presented here is not unlike the derivation of the Lorenz-63 model
from the fluid dynamical equations governing Rayleigh-Bénard convection [Saltz-
man, 1962; Lorenz, 1963]. There too, the Galerkin truncation calculated has six
degrees of freedom and can be reduced to a three dimensional invariant manifold.
In that case, however, the invariant manifold is linear.

Galerkin truncations of the filtered equations have been studied on various do-
mains and at various truncation numbers, see De Swart [1988] and references therein.
One lesson to be learned from these studies, is that severe truncations, such as the
one studied here, can only be regarded as qualitative models. A quantitative com-
parison to solutions of the filtered equations may be sensible at a truncation number
in the order of a hundred or higher, depending on the basis functions used (see,
e.g., Achatz and Branstator [1999] and Itoh and Kimoto [1996]). Low order models,
however, allow us to isolate a physical process , such as the interaction between the
jet stream and baroclinic waves, and represent it in a simple way. Because of this
conceptual simplicity, and the fact that they are easy to integrate numerically, low
dimensional truncations are widely used for testing and illustrating new ideas in
dynamical systems theory, meteorology and climatology. The Lorenz-84 model for
instance, has been used to investigate low-frequency atmospheric variability [Pielke
and Zeng, 1994], measures of predictability [Gonzélez-Miranda, 1997; Anderson and
Hubeny, 1997], time scale interaction in the climate system [Roebber, 1995; van Veen
et al., 2001] and the influence of periodic forcing [Broer et al., 2001]. It has also been
formulated in the context of symplectic diffusion [Pelino and Pasini, 2001]. The link
with the filtered equations, presented here, validates the use of the Lorenz-84 model
in these contexts.

2. The QG two layer model

As a starting point for the calculations we take the quasi-geostrophic two layer
model, described by Lorenz [1960]. Alternative derivations of this model can be
found e.g. in Holton [1992], chapter 8, or the review article by De Swart [1988].
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In Lorenz’ article the stress is on the energy conserving nature of the nonlinear
interaction terms, in De Swarts review article strong scaling arguments are provided.

2.1. Setup of the model. In the quasi-geostrophic approximation, the dry
atmosphere is described by the velocity field, v, and the temperature field, T'. It is
convenient to use the streamfunction, ¥, the velocity potential, y, and the potential
temperature, O, as variables. As a vertical coordinate we use pressure instead of
height. The velocity and the temperature can then be expressed as

v, =k x VU vqg =Vx

cp—cuy

v =v,+vq+wk TZ@(]f) v (1)

Here v, and v, are the divergence free and the irrotational part of the horizontal
velocity, p is pressure, ps is surface pressure, w = dp/dt is the vertical velocity, k
is the vertical unit vector and ¢, and ¢, are the specific heat of dry air at constant
volume and pressure, respectively.

At the earth’s surface, the lower boundary, we impose that p = p, is constant
and w = 0. At the upper boundary we have p = 0 and w = 0. Discretisation of the
vertical in layers means that we replace each function of three spatial variables by
a number of functions of longitude and latitude only. In the simplest case we take
two layers, the minimal number necessary to describe baroclinic waves.

The two layers are bounded by three isobaric surfaces at pyg = ps, p2 = ps/2 and
pg = 0 (see figure 1). Vertical derivatives are replaced by linear interpolations, e.g.
in the continuity equation:

D=0 L V=0 (@

VQ =0 - Y%
X+ Vix1 — w(p2)

dp

Ow { V2x3 + w(

The streamfunction and the potential temperature in the lower and the upper layer
are denoted by ¥, 3 and O 3, respectively. The pressure in the lower and the upper
layer is set to p1 = 3ps/4 and ps = ps/4. The equations are written in terms of
vertical means and differences, defined as

U =1/2(V5 + ¥,) the barotropic streamfuction,
T=1/2(V5—Uy) the baroclinic streamfuction,
©=1/2(05+61) the mean potential temperature,

oc=1/2(03 —0,) the static stability. (3)

The static stability, o, will be taken constant.

In addition to the conservative dynamics described in Lorenz [1960], we intro-
duce linear damping through friction at the earth’s surface, the terms proportional
to C, friction at the boundary of the two layers, the term proportional to C’ and
Newtonian cooling, the term proportional to hy. The temperature forcing is given
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p=0
Layer 2 Pf% 2%
LP37 93 _1
R= 5 R
Layer 1 =3
ay o] 2 P
V1,01 X1
Py= P,

FIGURE 1. The vertical discretisation in pressure coordinates. If the static
stability, o, is fixed, equations (4) and (5) determine ¥, 7, © and x1.

by ©*. The resulting equations are

0

EVQ\I! = —J(U,V2U + f) — J(1,V?7) — CV*(¥ — 1) (4.1)
%Vzr = —J(1, V2V + ) = J(U, V1) + V- (fVx1) + OV3(¥ — 7) — 2C'V?1

(4.2)

%@ =—J(¥,0)+ V31 — hn(© — 0%) (4.3)

where the Jacobian operator, J, is defined as J(A4,B) = VA - VB x k for any pair
of functions A, B. The Coriolis parameter has been denoted by f.

Furthermore we have the thermal wind equation, relating the shear streamfunc-
tion to the mean potential temperature

be, V2O =V - (fV7) (5)

Where b = %[(%) - (p—ﬁ) ]~ 0.124 results from the discretisation scheme

in the vertical.

2.2. Domain and boundary conditions. The set of equations (4) will be
considered on an f-plane, a rectangular domain centered about a fixed latitude ¢q
on which the Coriolis parameter is approximated by the constant value fy;. This
domain has length L in the zonal direction and D in the meridional direction. On
this plane we will use Cartesian coordinates x € [0, L) and y € [0, D]. In the following
we set ¢g = 45°.

In the zonal direction we take periodic boundary conditions. In the meridional
direction we have

ov 0t 0Oxi3

or Oz Oy
This means that there is no mass flux through the boundaries. The second condition
was put forward by Philips [1954], and imposes that there is no net flow along the

=0 at y=0,D (6.1)
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Length D 5 - 103km
Time PO 7 days
Temperature | R = % 34.3K

Mass M= LR 77100 kg

TABLE 1. Scaling for the synoptic physics described by (4). In the right
column the numerical values used.

boundaries:
Low Lor
—dx = —
o 9y o 9y
It follows from the thermal wind equation (5), and the restriction that there be no
net heat flux through the boundaries, that © satisfies

00 L oe
— =0 / —dz=0 at y=0,D (6.3)
oz o Oy

With these boundary conditions we can consider © to describe deviations from the
spatially averaged potential temperature.

dz =0 at y=0,D (6.2)

2.3. Scaling. Intable (1) the scales, suitable for the synoptic physics are listed.
In the right column the numerical values, used below, are listed. In the following all
quantities are dimensionless, unless otherwise indicated. The dimensionless length
of the domain will be denoted by s = L/D.

2.4. Equations for ¥ and 7. Under the boundary conditions (6), the thermal
wind relation (5) takes the simple form © = 7. This identity can be used to eliminate
the velocity potential x; from equations (4.2) and (4.3). This results in a closed set
of prognostic equations for ¥ and 7

%VQ\I/ = —J(¥,V20) — J(1,V?7) = CV*(¥ — 1) (7.1)

%(1 —aV?) 71 = —J(U,7) + aJ(1,V2U) + aJ (¥, V?7) — hy (T — %)
—aCV3(¥ —7) + 220’V (7.2)

where @ = o/fp and 7 = O*. In this scaling f(;l ~ 1.6 - 1072 is the Rosshy
number. We will study the lowest dimensional nontrivial spectral truncation of
these equations.

2.5. Energy. In the absence of friction and forcing, the prognostic equations
(7) conserve the sum of kinetic and available potential energy, defined respectively
as

1 s 1 s
K= oz/ / (VU .-VU 4+ V7 -Vr)dedy A= / / ©%dzdy (8)
0 0 0 0

in units MD?¥2. The simplified models will be shown to have a corresponding
conserved quantity.
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3. The Galerkin approximation

In order to approximate equations (7) by a finite number of ODE’s we do a
Galerkin projection onto Fourier modes. On this basis the variables are given by

U(x,y,t) = Z ¥(m,n,t) expli(mkx + nly)]

T(x,y,t) = Z O(m,n,t) expli(mkz + nly)] (9)

where k = 27 /s, | = m. The boundary conditions, and the restriction that ¥ and 7
are real variables impose that

Y(m,—n) = —y(m,n) O(m,—n) = —0(m,n) ifm#0
d}(oa TL) = ¢(0, —TL) 9(07 n) = H(Oa —TL)
P(m,n) =Y*(—m, —n) f(m,n) = 0" (—=m, —n) (10)

This Fourier decomposition is equivalent to the introduction of a basis of eigen-
functions of the Laplacian operator on our domain, with the specified boundary
conditions. The eigenfunctions are ¢g, = cosnly for zonal wavenumber zero, and
Gmn = €™FPsinnly otherwise.

If we apply the zonally symmetric forcing 0* = %AT¢01, with temperature
contrast AT between the boundaries, there is an exact solution to equations (7). It
is given by
U=r= %7h hNATZ ,¢01 (11)

N + 2al?C
This solution is called the Hadley state and describes a strong jet in the upper
layer, rising air at the south boundary and sinking air at the north boundary. The
eigenfunctions with nonzero zonal wavenumber describe traveling waves which can
grow if the Hadley circulation becomes dynamically unstable.

The projection of equations (7) is given by

Aeath(c,d) = =AeaC(Y(c,d) — 0(c,d))
+HRLY  Ars(ps — qr)d(p+ 1 — (g + 5 — A){(r, ) (p,q) + 0(r, 5)0(p, q)}

pqgrs

Nedb(e,d) = —h (8(c, d) — 0% (¢, d)) — areaC (e, d) — B(c, d)) + 20C" Aeab(c, d)
+kLY  (ps—qr)d(p+r—c)p(g+s—d){1—a([p® —r?)k* +[¢* = s°J1*) }o (p, )0 (r, )

pqrs

where ¢ is the Kronecker delta, 6* is the Fourier transform of 7% and pu is defined as

1 1 ifa=0
pla) = / eWdy =<0 if @ is even (13)
0 7:721 if a is odd

The eigenvalues of the operators on the left hand side of equations (7) have been
denoted by A\gp = —(a?k? + b%12) and Mgy = 1 — adgp.
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4. The six dimensional truncation

The smallest nontrivial truncation of equations (12) has six degrees of freedom.
We set s = 2 and define

x1 = 2¢(0,1) y1 = 26(0,1) Ty =267(0,1)
zg = 2V2Reyp(1,1)  y2 = 2V2Ref(1,1)  Tb» = 2v2Ref*(1,1)
z3 = 2V2Imy(1,1)  y3=2v2Iml(1,1) Ty =2V2Imf*(1,1)  (14)
These variables satisfy the following equations
i1 =—-C(z1 — 1) (15.1)
Aide = —A1C(z2 — y2) + Mod(z123 + y1y3) (15.2)
Mgz = —A1C(x3 — y3) — Mod(z122 + y192) (15.3)
o191 = —aXg1 (Cxy — [C 420" 1y1) — hn(yr — Th) + 6(23y2 — T2y3) (15.4)
(Cg — [C +2C"y2) — hn(y2 — T2) + 6(Aiox1ys — vioxsyr) (15.5)
Mgz = —adi1(Cas — [C + 2C"ys) — b (ys — Ts) — 6(Aox1y2 — viozay:) (15.6)

AMi¥e = —adi;

where 0 = 8kl/(3m) and ve = 1 + adg. When we put dissipation and forcing to
zero, the ODE system (15) has a conserved quantity L, defined by

L =—alnz] — A1 (23 + 73) + Aoyt + M1 (y3 +v3) (16)

which corresponds to the projection of the sum of kinetic and available potential
energy defined in equation (8). Using L as a Lyapunov function we can show, that
a trapping region for equations (15) is defined by

Lo ST
- (hN — 204)\110/)2
where ||.|| denotes the Ly norm, and we have assumed that 0 < hy < C,0<2C’' < C
and o < 1, a realistic range for the parameters. Note, that the divergence of the
vector field, defined by equation (15), is constant and negative. Therefore, volume
elements always shrink.

(17)

4.1. Bifurcation diagram. In diagram (8)(top) the partial bifurcation dia-
gram of system (15) is shown. This diagram, and all other diagrams below, have
been calculated using the software package AUTO (Doedel et al. [1986]). To obtain
this picture, we varied T} and 7%, setting T5 = 0. Due to a discrete symmetry in
equations (15), given by

x —x' =Rx 1 00
y — y/ = Ry where R= 0 0 -1 ) (18)
T — T/ =RT 0 10

setting T» = 0 and varying 73 yields the same diagram. This symmetry corresponds
to a translation @ — 2’ = 2+ 1/2 in the physical domain. Furthermore, we have set
C =35 hy =0.7,C" =0.5 and 0 = 0.9. This corresponds to a damping time scale
of two days at the earth’s surface and two weeks at the layer interface. The thermal
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damping time scale is ten days and the temperature difference between the layers is
about 34K.

If we put T = 0 and increase T} from zero, at first a stable equilibrium is the
unique limit set in the phase space of system (15). This equilibrium corresponds to
the Hadley state (11). At the Hopf bifurcation line, marked h, this equilibrium be-
comes unstable and a stable periodic orbit is created. This is our model’s baroclinic
instability. The periodic orbit corresponds to a traveling baroclinic wave.

The two line segments fe, joint at cusp point c, denote a fold bifurcation of
the equilibrium. Within the V-shaped region, bounded by curve fe, there are three
equilibria, one of which is stable. At the codimension two point, marked fh, the
Hopf line and the fold line are tangent. At this point an equilibrium exists with one
zero eigenvalue and a complex pair on the imaginary axis. The unfolding of this
point can be found in Kuznetsov [1998], chapter 8. In the following, we will adopt
the notation of this book for normal form coefficients. An algorithm for computing
the normal form coefficients of fold-Hopf points is described in Kuznetsov [1999]
and implemented in the forthcoming release of CONTENT (Kuznetsov and Levitin
[1997]). In this case, we have normal form coefficients s = 1 and 6 < 0.

A torus bifurcation line emerges from point th, and connects to the flip bifurca-
tion line marked f;. Above the torus bifurcation line, the periodic orbit created on
Hopf curve h is unstable, below the torus bifurcation line it is stable and coexists
with a saddle type, two dimensional torus. At the point where the torus and the
flip bifurcation lines meet, the periodic orbit has two Floquet multipliers equal to
minus unity. This point is marked r; for 1:2 resonance. At this point, we have
normal form coefficient s = —1. Connected to the resonance point r; there is torus
bifurcation line of the period doubled orbit, which leads to another 1:2 resonance
point, ro. In fact, flip bifurcation lines f; and f5 are the first two of a period doubling
cascade. There seems to be a accumulation of 1:2 resonance points directly to the
right of ro. Such an accumulation has been described in the context of a biological
model in Kuznetsov [1998], chapter 9.6. Wieczorek et al. [2001] found it in a rate
equation model for a semiconductor laser. They also provide a partial unfolding of
this codimension two phenomenon.

From codimension two point fh two homoclinic bifurcation lines emanate. Both
homoclinic connections are attached to a saddle focus. Along Hs the unstable man-
ifold of the saddle focus is one dimensional and the saddle value, o, is negative.
On this line a stable periodic orbit is created. Along Hj, the saddle focus has a
complex pair of eigenvalues with positive real part. The saddle value is positive
along the larger part H; and another stable periodic orbit is created. However, near
the leftmost turning point of this curve, the saddle value changes sign. On a small
segment it is negative, indicating that Shil'nikov type chaos can occur. In the litera-
ture, this type of Shil’'nikov bifurcation, with complex unstable leading eigenvalues,
is uncommon.

The points, where the saddle value is zero, are called neutral saddle focus,
or Belyakov, transitions. What is known about the unfolding of this transition
is summed up in Champneys and Kuznetsov [1994]. In figure (2) the transition
points are shown in more detail, along with a phase portrait. An infinite number of
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FIGURE 2. Top: detail of bifurcation diagram (8)(top). The neutral saddle
focus transitions have been marked t12. To the left of these transitions the
saddle value is negative and the Shil’'nikov condition is satisfied. Bottom: phase
portrait at (T1,7T2) = (0.6,0.3168). These parameter values have been marked
with a cross in the top picture. Solid: the homoclinic orbit. Dashed: the
periodic solution after four period doublings, i.e. the fifth branch in the top
picture of figure (3). Dotted: points on the chaotic attractor.

0.66
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cusps of fold lines of periodic orbits are expected to accumulate here, corresponding
to the creation of successive folds of the branch of periodic solutions which becomes
homoclinic on H;. However, as described in Glendinning and Sparrow [1984], the
neutral saddle focus transition is continuous, and these cusp bifurcations correspond
to orbits of very high period which are hard to detect numerically. Looking at sec-
tions like in figure (4), the case with negative saddle values cannot be distinguished
from the case with positive saddle value.

In figure (3) a cross section of diagram (8)(top) is shown. We have fixed
Ty = TM and let T, vary as indicated in diagram (8)(top). The top picture shows
a number of branches of the period doubling cascade, as well as the primary homo-
clinic branch corresponding to curve H;. The bottom picture, on the same horizontal
scale, is a limit point diagram. This picture was obtained by calculating the Poincaré
map on the plane S = {(x,y) € Ry, = 0}. After a sufficiently long integration,
to filter out transients, the value of y; was plotted at a number of iterations of the
Poincaré map. The behaviour is chaotic between the accumulation points of the
period doubling cascade and changes qualitatively near the Shil’nikov bifurcation.

The lines marked fp, and fp, denote fold bifurcations of periodic orbits. Near
the cusps of these fold lines, the periodic orbit, created at Hopf line h, and its period
doubled versions, switch branches with periodic orbits that become homoclinic near
H;. This process is illustrated in figure (4). In the top left picture, where we have
Ty = T®, none of the branches of the period doubling cascade are connected to the
homoclinic branch, see also figure (3)(top). For T} > T®), however, the first period
doubled branch becomes homoclinic on curve H;. The period doubled branch and
the homoclinic branch collide in a transcritical bifurcation. This process is repeated
for the branch of the basic cycle, continued from Hopf line h. Therefore, the flip
bifurcation lines f; o . do not simply form a cascade and an inverse cascade. At the
fold lines fp; 5 the simple structure of figure (3)(top) at 71 = T is rearranged.

Summarising, the qualitative dynamics of system (15) is as follows. Left of the
Hopf line h, and within the V-shaped region bounded by fold curve fe, there is a
stable equilibrium. To the right of curve h, and below curve fe, the behaviour is
periodic before crossing flip bifurcation curve f;. When crossing f; near the leftmost
fold of the homoclinic curve H;, where the saddle value is positive, a combination
of period doubling and Shil’'nikov chaos is encountered, as demonstrated in figures
(2) and (3). To the right of the neutral saddle focus transition points, the behaviour
is alternatingly periodic and chaotic. Due to the branch switching, shown in figure
(4), the parameter space is divided into small chaotic and periodic windows.

In figure (5) the Kaplan-Yorke dimension of the attractor is shown for T, = 7™
and values of Ty at which complex dynamics arise. Most remarkably, the attractor
dimension does not exceed three. Also, the equilibria and periodic orbits studied in
diagram (8)(top) have a feature in common. They all have three strongly contracting
directions. These observations suggest, that the dynamics of system (15) take place
on a three dimensional invariant manifold. In the next section we will present an
approximate, three dimensional invariant manifold of this system, which enables us
to reduce the model to three degrees of freedom.
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FIGURE 3. Top: continuation of the periodic orbit created on curve h, along
the line 71 = T() in diagram (8)(top). Solid lines denote stable branches,
dotted lines denote unstable branches, Hopf bifurcation point are marked with
dots. Also shown is the primary homoclinic branch corresponding to curve Hj.
Bottom: limit point diagram of the Poincaré map on S.
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FIGURE 4. Cross sections of diagram (8)(top). Dots denote flip bifurcations,
solid lines stable branches and dotted lines unstable branches. The labels fi o
and fp; 5 refer to diagram (8)(top). Top left: Ty = T() = 0.63. The basic
cycle, born on Hopf line h, and its period double version, are not connected
to the homoclinic branch. Top right: T3 = T®) = 0.64. The period doubled
cycle now becomes homoclinic on H;. Bottom left: 77 = T4 = 0.88. The
branch of the basic cycle folds. Bottom right: 77 = T() = 0.98. From one end,
Ts increasing from zero, the branch of the basic cycle ends in a period halving
bifurcation. From the other end, T» decreasing, the branch of the basic cycle
becomes homoclinic on Hj.

4.2. Reduction to an invariant manifold. With the parameters set to the
values, specified in section (4.1), we can scale the constants in equations (15.1)-(15.3)

as
~ dA10 0
C=eC l£—€)\11 =€
where € ~ 1/4 and C ~ k ~ 1. System (15) is then written symbolically as
ex = f(x,y)
y =gxy)

(19)

(20.1)
(20.2)
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FIGURE 5. Numerical estimate of the Kaplan-Yorke dimension, obtained from
an integration during At = 1.5 - 10* at each parameter value Tb, for fixed
T =70,

where f is defined as

f_l = —C'(xl — Y1) (21.1)
fo = =Cl(x3 — y2) + k(z123 + Y1Y3) (21.2)
fs = —Cl(xs — ys) — k(z172 + Y132) (21.3)

We assume, that there exists a globally attracting, three dimensional invariant man-
ifold in system (20), denoted by We. This manifolds is represented as the graph of
a function, ¢., of the baroclinic components:

We = {(x,y) € R°[x = ¢(y)} (22)
and satisfies

f(d)ea Y) = Do - g(¢e7}’) (23)

The solution of (23) can be approximated asymptotically. Substituting the regular
expansion ¢. = ¢g + €p1 + .. ., we find

where A and B are defined as
C? — Ky}
C2 + w2y}

2C Ky

=cosy and B(y1)= G 5 = sin~y. (25)

A(yr) =



4. THE SIX DIMENSIONAL TRUNCATION 23

This zeroeth order approximation has a clear physical interpretation. It describes
a zonally symmetric part of the flow which is equivalent barotropic (i.e. U3 ox Uy)
and a phase shift, v, between the traveling waves in the upper and the lower layer.

The nonlinear terms in equations (15) can be divided into two groups: one rep-
resents advection of waves with the zonally symmetric flow (the terms proportional
to 1) and the other represents energy exchange between waves and the zonally sym-
metric flow. The nonlinear terms in equation (15.4) belong to the second group. If
the phase shift is zero, these terms cancel, and the wave components are decoupled
from the zonally symmetric components. Thus, the function ¢y describes how the
energy transfer depends on the strength of the zonally symmetric flow.

The asymptotic expansion of ¢. can not accurately describe the solution of
equation (23) at the realistic parameter value e = 0.25. Therefore, we use a numerical
algorithm to continue the solution, known analytically in the limit of ¢ | 0. The
algorithm is similar to the graph transform described in Broer et al. [1997]. In
contrast to the systems considered in their work, however, ours is a continuous
time system. Therefore, we apply the graph transform to the map, induced by an
implicit Euler step which approximates the flow of system (20) over a finite time
interval. This approach was already used by Foias et al. [1988] to approximate
inertial manifolds by their modified Galerkin method.

Another difference is the choice of coordinates. Here, we do not represent the
(approximate) invariant manifold as the graph of a section of the normal bundle
of some given approximation. Instead, we globally represent it as the graph of a
function ¢.(y). This can be done provided that D¢, has full rank. For small e
this condition is satisfied, as we have detD¢. = 1 + O(¢). When increasing e the
condition has to be checked numerically.

Suppose that, for some fixed value of ¢, we have an approximation, W, of W,. By
assumption, W, is globally attracting so that the image of W under the flow over a
finite time interval of system (20) lies closer to W, than W. Thus, by approximating
the flow of system (20), we can calculate an improved approximation W. To this
end we use the map E : RS — RS, where (X,y) = E((x,y)) is the solution of

A
%=x+ ~f(%y) (26.1)
€

y=y+Agxy) (26.2)

which defines an implicit Euler time step. The step size, A, is a free parameter. The
improved approximation is then defined as W = E(W).

In order to represent W as the graph of a function ¢(y), we map a point
(6(y),y) € W onto the point (¢(y),y) € W, where ¢ is the solution of

5= oly — Dg(b.y) + “F(5.y) 1)

In other words, for a given vector y we look for the point (¢(y’),y’) € W which
is mapped according to (26) onto (¢(y),y) € W. In figure (6) this procedure is
sketched.
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We

W: x=0(y)

W: x=a(y)

A

FIGURE 6. Schematic picture of the graph transform. Note, that equilibria of
system (20) are intersection points of W, W and W.. The dashed lines represent
the mesh y; ;.

Differentiating equation (27) with respect to y, we find
A - - A -
I- :Dwf + AD¢ly D,g) Dy¢ = Doy (I — ADyg) + ?Dyf (28)

from which we can calculate D,¢, and thus the tangent space T(q;y)V_V, from D, ¢
and the Jacobian of system (20). This enables us to define a local error function.
Let F' = (f/e,g) denote the vector field (20) and P the orthogonal projection onto
the tangent space at (¢,y). Then we define the error function

e(y) = 2 arccos w (29)
™ [F(. ¥)ll
We will represent the approximate invariant manifold on a cubic lattice in R3.
The vertices of this lattice are located at y;;r = d (3,7, k)T, where d is the lattice
spacing and i, j, k are integers. We consider a finite number of lattice points, de-
manding that all points (¢o(yijx),¥ijr) lie within the trapping region defined in
section (4). In fact, inequality (17) is a fairly coarse estimate. In order to reduce
computation time and data storage, we use a sharper estimate, obtained by numer-
ical computation of the eigenvalues of the linear part of equations (15.1)-(15.6). To
an approximate solution ¢ we can then assign the error

€ = max e(yijr) (30)
ij
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FIGURE 7. Time series of the zonally symmetric component, 31, and a wave
component, y3. Solid: solution of system (20) at (T1,7%) = (0.6,0.25) and
e = 0.1. Dashed: solution of y = g(¢¢(y),y), using the approximate solution ¢,
of equation (23) obtained by the graph transform method. Linear interpolation
is used inbetween lattice points.

In order to approximate the invariant manifold for finite €, we will proceed in
steps. First of all, we fix an initial value for e and calculate ¢; and D¢; on each
lattice point. Next, we solve equation7(27)7 by Newton iteration, and subsequently

(28), to find the next approximation ¢ and its derivatives. A suitable initial guess
for the Newton iteration is obtained by linearisation in £ =y’ —y. This yields

/!
<¢(.Y)>:E<¢(X)>%E<¢(y)>+DE.<D¢>,§ (31)
y y y I
from which we can estimate & and, subsequently, ¢. The graph transform is iterated
untill the global error is smaller than a fixed threshold &,,4.. If this is achieved, we
increase epsilon and iterate the process.

When solving equation (27), evaluation of ¢ and D¢ inbetween lattice points is
necessary. This is done by linear interpolation. To this end, each cube in the lattice
is divided into six tetraeders of equal volume. The associated error is expected to
be of order O(d?). At the edge of the domain we consider, it may happen that
evaluation of ¢ outside this domain is required. If so, we solve equation (27), sub-
stituting ¢(y’) — ¢(y) + D¢ - €. The derivatives of ¢ are then calculated by finite
difference. This, however, introduces an error, which disables us to continue the
invariant manifold up to € = 0.25.

For example we approximate the invariant manifold at fixed parameter values
(T1,T>) = (0.6,0.25). The step size is fixed to A = 0.0025 and the increment of
€ is chosen in the range [0.001,0.005]. The maximal error is fixed to Epar = 0.05.
At each value of € about six iterations of the graph transform are needed. The
computations were done with a lattice spacing of d = 0.01, in the trapping region
L < 0.52. Thus, about 5 - 10° points on the manifold are calculated.

In figure (7) the result of this computation is illustrated. Shown are the stable
periodic orbit of system (20) at ¢ = 0.1 and (T1,73) = (0.6,0.25) and a forward
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integration of the system y = g(¢c(y),y). To find the latter integral curve we
approximated every point of ¢.(y) required for numerical integration by linear in-
terpolation inbetween lattice points.

5. The reduced system

In the following, we will describe system (20), reduced to the approximate invari-
ant manifold Wy. This reduction can be done analytically, so that we can compare
bifurcation diagrams. Physically, an argument to study the system reduced to Wy,
rather than to the numerically approximated W, is that the quantitative error, in-
troduced by setting ¢ = 0, is smaller than the error introduced by the Galerkin
approximation. Equations (15) form a qualitative model of one aspect of the atmo-
spheric circulation, namely the interaction between the jet stream and the baroclinic
waves. A further simplification is justified if it keeps the qualitative behaviour in
tact.

Substituting expression (24), we find that the reduced system, y = g(¢o(y),y),
is given by

i =—cyr —di(ys +y3) +Th (32.1)
U2 = —Coyo + c3ys + dayrys + dayrys + To (32.2)
U3 = —Cay3 — C3y2 — dstrys + dovrys + T (32.3)
where we have introduced
c1 = (—2aX01C" + hy) /Ao Ty = hnTi/Xo1 di = 0B/ o1
C2 = (_a)\ll[c(l - A) + 20/] + hN)/j\u TQ = h/NTQ/;\ll dy = 5VB/5\11
C3 = 70&\1103/5\11 Tg = hNT3/5\11 d3 = 5[5\10 - VlOA]/S\ll
(33)
Again, we have a Lyapunov function
A
L=yi+ -3 +13) (34)
V1001
and a trapping region defined by
_ 5
A %
L< (11) | 2” (35)
V1001 1

In contrast to equations (15), the divergence of the vector field of this reduced system
can change sign, so that volume elements are not necessarily shrinking.

As explained in section (4.2), the amplitude of the nonlinear interaction depends
on y; through A and B. In figure (9) the dependence of the interaction coefficient
in (32.1) is shown. This figure illustrates the life cycle of the baroclinic waves.
The linear stability of the Hadley circulation is determined by the effective damping
coefficient of the wave components ys 3, given by co —day;. If this number is positive,
the waves are damped. If it is negative, a perturbation of the Hadley circulation will
lead to growing waves. If y; is small, there is little energy transfer and the waves are
damped. As y; is forced by the meridional temperature gradient, Ty, it grows and



15

0.5

15

0.5

5. THE REDUCED SYSTEM

7
— Hopf 7
— Fold g
7
— Torus fe 7
. /
— Fip /
77777 e " — 4
Homoclinic, dim W, =1 " H1
———  Homodlinic, dim Wy = 2 P i
/ /
/
. / /
/5 ,
Y | 7/
r 7 7 ’ fe
7
fh P
7/ P,
7 .
fp1
c
h
! S 1l
0.5 oy 15
1 3 4) 5,
0@ @ 6
#
ya
/
,7 Hap
4
, 7/
fe o H
/ /
/
fy .7
/7
fy, 7 P
7 /
0.295 ‘7
Yy
/
A
7
4 fe
7 Z / .
7
fh i
0.291
0.523 0.526
fp. fp,
h
1 1
0.5 1 15

T, —

1

FIGURE 8. Top: partial bifurcation diagram of system (15). The dotted lines
at Ty = T(1-5) refer to figures (3)-(5). Bottom: bifurcation diagram of system
(32). The enlargement shows the neutral saddle focus transitions tq 2.

27



28 2. BAROCLINIC FLOW AND THE LORENZ-84 MODEL

1

FIGURE 9. Dashed: the coefficient of interaction, dq, between the jet stream
pattern and the wave patterns. Solid: the effective damping coefficient of y2 3.
If we fix y1 = y; = C/k model (32) is equivalent to the Lorenz-84 model
described in section (6)

the energy transfer increases. Beyond y; &~ 0.276, the effective damping coefficient
is negative, and baroclinic waves can grow. When y; = C'/x = 0.83, the phase shift,
v, is maximal and the waves are optimally baroclinic. They extract energy from
the jet stream and y; decreases. Then the waves decay and become decreasingly
baroclinic in the process.

In order to see, if system (32) behaves qualitatively the same as system (15), we
study the bifurcation diagram. It is shown in figure (8)(bottom). All the bifurca-
tions displayed in diagram (8)(top) are present here, too. Therefore, the qualitative
behaviour of the reduced system (32) is the same as that of the full system (15).
The essence of the extra degrees of freedom in the six dimensional model can be
captured by the variable coefficients in the three dimensional model.

6. Reduction to the Lorenz-84 model

As a final simplification of our model, we fix the coefficients in equations (32).
The choice

A=AC/k)=0 B=B(C/r) =1

maximizes the efficiency of the energy transfer between the baroclinic waves and
the jet stream. The phase shift is fixed to v = 7/2. Equivalently, we can reduce
model (15) to the tangent space T (x+ y+)Wo, where (x*,y*) = (C/k,0,0,C/x,0,0).
In other words, we linearise ¢ around the Hadley state.
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We then scale y and t according to

t:[c2+03%]_1t’ Y1 =di2[62+03%]x—2—2
Y2 = [C2+c3£]¢c;72y Y3 = [C2+C3Zz]\/d11—d2z (36)
and find
i=—y?— 2> —ax+aF (37.1)
y=zy—brz—y+G (37.2)
Z=bry+xz—2z (37.3)

which is the model introduced by Lorenz [1984]. For the parameters we find

d - d _
F = dg[CQ + 63£]72(T1 + %) G =\ dldg[CQ + Cgl]izTQ
d3 d3 d&
d
a=clca + C3d—§]71 b= d—z (38)
With the parameters as specified in section (4.1), we thus obtain
a~0.35 b~ 1.33 (39)

in contrast to the traditional values ¢ = 1/4 and b = 4. Diagram (10)(top) has
been obtained by setting the parameters according to (39). There still is a strong
similarity to diagram (8)(top). However, the neutral saddle focus transitions have
disappeared. Along both homoclinic bifurcation curves only a stable cycle is created.
The accumulation of 1: 2 resonance points is still there and, although homoclinic
curve Hy moves farther away, the branch switching mechanism along fp, works as
described in section (4.1).

6.1. Continuation in ¢ and b. Finally, we continue the bifurcations in dia-
gram (10)(top) in parameters a and b in order to establish the relation to the diagram
at traditional parameter values, presented in Shilnikov et al. [1995].

Changing a to its traditional value, a = 1/4, does not change the bifurcation
diagram qualitatively. When changing b two changes are apparent. Shown in figure
(10)(bottom) is the diagram obtained for a = 1/4 and b = 3.24. The second torus
bifurcation line, try, connecting two 1:2 resonance points in diagram (10)(top), is
now tangent to flip bifurcation line fy at point r and connects to the fold line fp,.
These two meet in a 1:1 resonance points, also called Bogdanov-Takens point.

Also, a pair of cusp points, marked c; 2, has developed on fold line fp,. These
cusps denote creation and vanishing of successive wiggles on the branch of periodic
solutions connected to homoclinic curve Hj.

Figure (11)(top) shows the bifurcation diagram at parameter values a = 1/4
and b = 4. This diagram was presented by Shilnikov et al. [1995]. The torus
bifurcation line try no longer connects to flip bifurcation line fs and, consequently,
has developed an angular degeneracy (Peckham et al. [1995]) at point D. Along
curve try the multipliers of the periodic orbit are given by exp(=i¢), where ¢ is the
phase angle. At point D it has a maximum given by ¢ ~ 0.87.
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FIGURE 10. Top: bifurcation diagram of system (37), with a and b as calcu-
lated from the physical parameters C, C’, hy and «. Bottom: with a = 1/4
and b = 3.24. Torus bifurcation line trg and flip bifurcation line fy are tangent
at point r. trg ends in a 1:1 resonance point, marked bt. The enlargement
shows that extra cusps, c1,2, have developed on saddle node line fp,.



6. REDUCTION TO THE LORENZ-84 MODEL 31

fp2

115

11

1.05

Torus
09 ——— Fip
1:8 Resonance tongue

0.85 ! ! ! ! >
7.4 7.6 7.8 8 8.2 8.4 8.6

F ——
FIGURE 11. Top: bifurcation diagram of system (37) at a = 1/4 and b = 4,
with angular degeneracy point D. Bottom: detail, with boundaries of the 8:1
resonance tongue and a torus and flip bifurcation of the period 8 orbit. The
crosses mark the parameter values of Poincaré sections in figure (12).
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FIGURE 12. Poincaré sections of the Lorenz-84 model with a = 1/4 and
b =4 in the y, z-plane. a: (F,G) = (8,0.9725). Two coexisting invariant tori,
one with the period 8 orbits, one with quasiperiodic dynamics. The thick dots
denote the stable orbit, the crosses the saddle type orbit. b: (F,G) = (8,0.99).
Beyond the torus and flip bifurcations TR and F. Both orbits, marked with
crosses and boxes are now of saddle type.

If the forcing is set to (F,G) = (8,1) the model is known to behave chaoti-
cally (e.g. Lorenz [1984]). An important, unanswered question is how this chaotic
behaviour is brought about. With the derivation of the model and the bifurcation
analysis in mind, we discuss four different possible routes to chaos in the following
subsections.

6.1.1. Period doubling cascades. The flip bifurcation lines f; 2 in diagram (11)
(top) still are the first of an infinite sequence. However, as explained in section
(4.1), figure (4), a cross section with F' fixed does not show a period doubling cascade
followed by an inverse cascade, due to branch switching along the cusped saddle node
line fp,. The flip bifurcation lines f; 5 .., extending beyond the limits of diagrams
(10) and (11), are closed curves. As can be seen in diagram (10)(top), these curves
form unnested islands. In accordance with the claim to general applicability of the
analysis presented in Wieczorek et al. [2001], the bifurcation diagram of the Lorenz-
84 model has much in common with that of their rate equation model. Chaotic
attractors can be created and destroyed through different routes, including period
doubling cascades, the Ruelle-Takens scenario and intermittency.

6.1.2. Ruelle-Takens scenario. Another possible route to chaos was proposed
by Ruelle and Takens [1971]. In this scenario, an invariant torus is created first.
Then a periodic obit appears on the torus, when crossing the boundary of an Arnold
resonance tongue. If this periodic orbit bifurcates, a chaotic attractor can be created.
This scenario can be observed in the Lorenz-84 model. We will concentrate on
the chaotic behaviour at parameter values (F,G) = (8,1), close to the angular
degeneracy point D.

If we fix F' = 8 and increase G from below try, we find the attracting period two
orbit first, then quasiperiodic behaviour in a small interval, then a period 8 orbit on
the invariant torus. Figure (11)(bottom) shows a detail of diagram (11)(top), with
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the boundaries of the 8:1 resonance tongue and two subsequent bifurcations, a torus
and a flip bifurcation, of the period 8 orbit.

The phase angle crosses the point ¢ = 37/4 twice, at resonance points A; 2. One
edge of the resonance tongue connects these points. It appears that the invariant
torus itself goes through two subsequent fold bifurcations, so that the edge of the
resonance tongue can cross try, and in a narrow band two stable tori coexist. This is
shown in figure (12a). On the inner torus the dynamics is quasiperiodic, on the outer
torus the period 8 orbits exist. If we further increase GG, the period 8 orbit loses its
stability in a torus bifurcation, directly followed by a flip bifurcation, as one of the
multipliers crosses back into the unit circle through —1. Beyond these bifurcations,
a chaotic attractor appears. The corresponding Poincaré section is shown in figure
(12b). The whole picture is more involved, as the tori shown in figure (12)a coexist
with several tori with phase locked orbits of higher period.

Scenarios for the creation of a chaotic attractor through the bifurcation of a
periodic orbit on an invariant torus are described in Broer et al. [1998]. The Ruelle-
Takens scenario in the vicinity of an angular degeneracy was recently found in an
electronic model by Algaba et al. [2001].

6.1.3. Shil’nikov bifurcations. The neutral saddle focus transitions, found in the
six dimensional model, (15), and the approximate reduced model, (32), are not
present in diagrams (10)(top)-(11)(top). Therefore, no Shil'nikov type chaos occurs
in the Lorenz-84 model for these parameter values. We can, however, retrace the
transition points for different values of b. As the continuation package HomCont
(Doedel et al. [1986]) allows for three parameter continuation of codimension two
points on homoclinic curves, it is possible to calculate a curve of neutral saddle focus
transitions in the space of parameters b, F' and G. It turns out, that two transition
points appear on curve Hy if b < 0.419. Just like in diagram (8)(bottom), on a small
segment the saddle value becomes negative. Therefore, for b < 0.419 Shil’nikov type
chaos can be encountered in the Lorenz-84 model.

6.1.4. Intermittency. The last route to chaos described here is through inter-
mittency. If we keep F' = 8 fixed and increase G, we find a periodic window around
G =~ 1.167. At G = 1.16742, the stable periodic orbit undergoes a saddle node
bifurcation. Beyond this point, the behaviour is intermittent. In terms of Pomeau
and Manneville [1980], this is type I intermittency. Two time series in the inter-
mittent regime are shown in figure (13). In Wieczorek et al. [2001] the same type
of intermittency is found and pictures of the stable and unstable manifolds of the
saddle type orbit are shown.

7. Conclusion

The starting point of the analysis in this paper is the truncation to six degrees of
freedom of a QG two level model of atmospheric flow. Period doubling cascades and
Shil'nikov bifurcations are identified as routes to chaos in the bifurcation diagram of
this model. A measurement of the dimension of the chaotic attractor along a section
of the bifurcation diagram reveals that it is less than three dimensional, hinting at
the existence of a three dimensional invariant manifold which captures the dynamics.
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FIGURE 13. Intermittency in the Lorenz-84 model. a: (F,G) = (8,1.16743).
b: (F,G) = (8,1.1675).

In order to approximate this invariant manifold we have introduced a small
parameter, €, into the equations. In the limit of € | 0 an exact solution was presented.
This solution has a clear physical interpretation in terms of energy exchange between
the zonally symmetric jet stream mode and the traveling waves. Numerical evidence
for the existence of this manifold for finite ¢ was found implementing a variant of
the graph transform algorithm of Broer et al. [1997].

We have shown that we can set ¢ = 0 without destroying the qualitative dy-
namics. The bifurcation diagram of the reduced model in this limit agrees well with
the diagram of the six dimensional model. The invariant manifold at ¢ = 0 can be
linearised around the Hadley state. If the six dimensional model is reduced to this
linear approximation of the invariant manifold, the Lorenz-84 model is found. The
parameters of the Lorenz-84 model can then be calculated from the physical pa-
rameters of the QG model. One of them comes out significantly different. We have
compared the bifurcation diagram of the Lorenz-84 model at physical parameters
to that of the six dimensional model and to the diagram at traditional parameter
values, first presented in Shilnikov et al. [1995].

Finally, we have discussed four possible routes to chaos in the Lorenz-84 model.
Period doubling cascades appear both in the six dimensional model and in the
Lorenz-84 model. Shil’nikov bifurcations are only found in the Lorenz-84 model
for parameter values far away from those considered here. A route to chaos not
considered before in this model is the Ruelle-Takens scenario. We have presented
evidence that the creation and destruction of invariant tori and the presence of
resonance tongues lead to chaos in the Lorenz-84 model. Finally, an intermittent
transition has been presented. The overall picture of chaotic attractors being cre-
ated and destroyed via different routes is reminiscent of the dynamics described in
Wieczorek et al. [2001].

The link between a Galerkin truncation of a QG baroclinic model and the
Lorenz-84 model justifies the use of the latter in conceptual studies of atmosphere
and climate dynamics. It is remarkable how much of the bifurcation structure of
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the six dimensional truncation is preserved, notwithstanding rough approximations,
namely setting € = 0 and linearising the three dimensional invariant manifold. Prob-
ably, this is because the six dimensional model isolates one aspect of midlatitude,
synoptic flow: the energy exchange between the jet stream and the baroclinic waves.
When reducing to three degrees of freedom, and subsequently to the Lorenz-84
model, this process is modeled qualitatively correctly.
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CHAPTER 3

Active and passive ocean regimes in a low-order
climate model

Tellus 53A., 2001, 616-627.

ABSTRACT. A low order climate model is studied which combines the Lorenz-84
model for the atmosphere on a fast time scale and a box model for the ocean
on a slow time scale. In this climate model, the ocean is forced strongly by
the atmosphere. The feedback to the atmosphere is weak. The behaviour of
the model is studied as a function of the feedback parameters. We find regions
in parameter space with dominant atmospheric dynamics, i.e. a passive ocean,
as well as regions with an active ocean, where the oceanic feedback is essential
for the qualitative dynamics. The ocean is passive if the coupled system is
fully chaotic. This is illustrated by comparing the Kaplan-Yorke dimension and
the correlation dimension of the chaotic attractor to the values found in the
uncoupled Lorenz-84 model. The active ocean behaviour occurs at parameter
values between fully chaotic and stable periodic motion. Here, intermittency is
observed. By means of bifurcation analysis of periodic orbits, the intermittent
behaviour, and the role played by the ocean model, is clarified. A comparison of
power spectra in the active ocean regime and the passive ocean regime clearly
shows an increase of energy in the low frequency modes of the atmospheric
variables. The results are discussed in terms of itinerancy and quasi-stationary
states observed in realistic atmosphere and climate models.

1. Introduction

On a time scale of days or weeks, the atmospheric component of the earth’s
climate system is dominant. Therefore, for short range weather forecasts, oceanic
variables, such as the sea surface temperature, can often be considered fixed. On
a much longer time scale the ocean’s dynamics can play an important role. It has
to be taken into account when studying for instance decadal climate variability or
anthropogenic influences like the enhanced greenhouse effect. For such purposes
state-of-the-art climate models are often used, which possess millions of degrees of
freedom. The results of experiments with such models are analysed statistically, as
they are out of reach of the ordinary analysis of dynamical systems theory. As much
understanding of atmosphere models has been gained by looking at extremely low
dimensional truncations, our aim is to do the same for coupled models.

The issue we will focus on is the interplay of the short time scale variability of the
atmospheric, intrinsically chaotic, component, and the long time scale of the oceanic
component. In climatological terms, the question is whether the ocean is passive or
active. If it is passive, it simply integrates the atmospheric signal, as if there is a one
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way coupling. If it is active, there are notable feedback effects in the atmospheric
dynamics. Even though the forcing of the atmosphere by the ocean is intrinsically
weak, it may produce, for instance, decadal variability in atmospheric observables.
Whether the ocean really is passive or active is still a matter of debate. Latif and
Barnett [1994] found decadal variability induced by an active ocean. Other studies,
such as Frankignoul et al. [2000], using complex, state-of-the-art climate models,
or Saravanan and Mc Williams [1997] and Selten et al. [1999], who used models
of intermediate complexity, give evidence for a passive ocean. In this paper we
investigate the atmosphere-ocean interaction in a low-dimensional coupled model
applicable to midlatitudes. We will show, that the ocean can be passive or active,
depending on small changes in the coupling parameters. This may explain the
different conclusions reached in studies with more realistic, complex models.

The low-order model studied in this paper is based on a proposal by Roebber
(1995). He coupled the Lorenz-84 model, which is a metaphor for the general circu-
lation of the atmosphere [Lorenz, 1984], to Stommel’s box model for a single ocean
basin [Stommel, 1961]. Roebber uses numerical integrations and power spectra to
characterise the coupled dynamics, without the exploration of bifurcation analysis
and other tools of dynamical systems theory. In the fully coupled system, subject to
periodic forcing, he finds increased energy in low frequency atmospheric modes when
compared to one way coupling, i.e. without oceanic feedback to the atmosphere. In
this paper, we investigate the coupled dynamics in detail.

In sections (2) and (3) the Lorenz-84 model and Stommel’s box model are briefly
introduced. When coupling these models, as described in section (4), we take into
account that experiments with realistic climate models, such as Grotzner et al. [1998],
indicate that the circulation of the ocean is largely driven by atmospheric dynamics
and solar forcing. In contrast, the oceanic feedback to the atmosphere is rather
weak, and only notable on intrinsic time scales of the ocean. Therefore, we assume
that the coupling terms in the ocean model are of the same order of magnitude as its
internal dynamics, while the coupling terms in the atmosphere model are taken to be
small perturbations of the atmosphere’s internal dynamics. Thus, a small parameter
is introduced into the equations. The ratio of time scales of the atmosphere and the
ocean model is a second small parameter. The consequences of the presence of small
parameters, in the light of perturbation theory, are discussed in section (5). The
behaviour of the coupled system is then investigated as a function of the coupling
parameters in the atmosphere model.

In section (6) a bifurcation analysis of the equilibria of the coupled model is
presented. The coexistence of attracting equilibria is inherited from the uncoupled
box model. These equilibria describe two different orientations of the thermohaline
circulation (THC).

For a range of parameter values chaotic attractors exist. In section (7), numerical
estimates of the Kaplan-Yorke dimension and the correlation dimension of these
attractors are given. They are compared to the corresponding quantities for the
uncoupled Lorenz-84 model. It is shown that, in the chaotic regime, the ocean can
be considered passive. It is slaved by the atmospheric forcing.
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A new property of the coupled model is the intermittent behaviour, which is
observed at parameter values between fully chaotic and stable periodic regions in
parameter space. In section (8) this behaviour is studied in detail by means of
bifurcation analysis of periodic solutions. It is shown that the slow dynamics of the
ocean model play an important role here. Therefore, the ocean can be considered
active in this regime.

Finally, in section (9), we compare power spectra of the atmospheric component
of the coupled model in the passive and the active regime. In the active regime, the
spectral power in the low frequency modes, on the intrinsic time scale of the ocean,
is considerably increased.

2. The Lorenz-84 general circulation model

Like the Lorenz-63 model, the Lorenz-84 model is related to a Galerkin trunca-
tion of the Navier-Stokes equations. Where the '63 model describes convection, the
"84 model gives the simplest approximation to the general atmospheric circulation at
midlatitude. The approximation is applicable on an f-plane, placed over the North
Atlantic ocean.

We can give a physical interpretation of the variables of the Lorenz-84 model: x
is the intensity of the westerly circulation, y and z are the sine and cosine components
of a large traveling wave. The time derivatives are given by

i=-y*—2*—ar+alF (1.1)
y=axy—brz—y+G (1.2)
Z=bry+zz—2 (1.3)

where F' and G are forcing terms due to the average north-south temperature con-
trast and the earth-sea temperature contrast, respectively. Conventionally we take
a=1/4 and b= 4.

The behaviour of this model has been studied extensively since its introduction
by Lorenz [1984]. Numerical and analytical explorations can be found in Masoller
et al. [1995] and Sicardi and Masoller [1996], a bifurcation analysis is presented in
Shilnikov et al. [1995]. The bifurcation diagram of this model is quite rich. It brings
forth equilibrium points, periodic and quasi periodic orbits as well as chaotic mo-
tion. Qualitatively the behaviour can be sketched by looking at the energy transfer
between the westerly circulation and the traveling wave. The energy content of the
westerly circulation tends to grow, forced by solar heating. Above a certain value
however this circulation becomes unstable and energy is transferred to traveling
waves, and then dissipated. The energy content of the westerly circulation decreases
rapidly and the cycle repeats itself in a periodic or irregular fashion. In figure (1)
one can see that the orbit tends to spiral around the z-axis towards a critical value
of x, then drops towards the y, z-plane.

At parameter values (F,G) = (6,1) two stable periodic solutions coexist. These
parameter values are called summer conditions. For (F,G) = (8,1) the behaviour
is chaotic (see figure (1)). These parameter values are called winter conditions. As
argued in Lorenz [1990], the north-south temperature contrast, F', is larger during
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FIGURE 1. Chaotic motion in the Lorenz-84 model for (F,G) = (8,1): about
10* points on the attractor.

winters. This results in strong baroclinic wave activity, reflected by chaotic motion
in the Lorenz-84 model. The periodic motion under summer conditions reflects less
turbulent large scale dynamics due to a smaller north-south temperature contrast.

If we fix these forcing parameters to summer conditions in the coupled model,
described below, no complex dynamics arise. When varying the coupling parameters
we see only equilibrium points and periodic solutions. In our investigations we will
take (F,G) = (8,1), i.e. we will consider perpetual winter conditions.

3. The box model for a single ocean basin

The ocean-box model was introduced by Stommel [1961]. It is a simple model
of a single ocean basin, the North Atlantic. This basin is divided in two boxes, one
at the equator and one at the north pole. Within the boxes the water is supposed
to be perfectly mixed, so that the temperature and salinity are constant within each
box but may differ between them. This drives a circulation between the boxes which
represents the THC. Water evaporates from the equatorial box and precipitates into
the polar box. Thus the salinity difference between the boxes is enhanced. The
temperature difference is maintained by the difference in heat flux from the sun.
Thus, the salinity and the temperature difference drive a circulation in opposite
directions. For a suitable choice of parameters, both the circulation driven by salinity
and the circulation driven by temperature occur as stable solutions in this model
[Stommel, 1961]. In contrast to the Lorenz model, no complex dynamics arise.

Figure (2) shows the setting of the model. The volume of water is kept equal,
but its density may differ between the boxes. Using a linearised equation of state
and some assumptions on the damping, dynamical equations for the temperature
difference T' = T, — T}, and the salinity difference S = S. — S, can be derived. They
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FIGURE 2. The two box model. Water evaporates from the warmer equatorial
box on the left and is transported through the atmosphere to the polar box on
the right. The flow f is positive when directed northward.

are
T:ka(Ta_T)_ |f(T78)|T_kwT (2'1)
S=6—|f(T,5)|S — kyS (2.2)
f=wl—=&S (2.3)

where k, is the coefficient of heat exchange between ocean and atmosphere, k,, is
the coefficient of internal diffusion and w and & derive from the linearised equation
of state. The flow, f, represents the THC. It is positive when temperature driven
and negative when salinity driven. The inhomogeneous forcing by solar heating and
atmospheric water transport are given by 7, and §, respectively. When coupling the
box model to the Lorenz-84 model, we will use the estimates in Roebber [1995] for
the parameters in equations (2). The volume of the deep ocean box, not present in
our model, is simply divided between the polar and the equatorial box.

The absolute value in (2.1) and (2.2) was put there by Stommel, arguing that
the mixing of the water should be independent of the direction of the flow. A more
straightforward derivation of the equations of motion of a simple ocean model related
to the box model indicates that this is indeed the case, although the term comes
out quadratic instead of piecewise linear [Maas, 1994]. If we take this term to be
quadratic in the coupled model, described below, the average values of T' and S
change significantly, but we find qualitatively the same behaviour.

4. The coupled equations

Having described these simple models for atmospheric and oceanic circulation,
and the physical interpretation of their variables, we can now identify three mecha-
nisms by which they interact:
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(1) The atmospheric pole-equator temperature contrast is supposed to be in per-
manent equilibrium with the zonal wind strength z, i.e. we put T, oc z. Also,
the forcing of the atmosphere by the north-south temperature contrast in (1.1)
is modified by the ocean temperature contrast, so we put F — Fy+ F1T. This
expresses the simplest geostrophic equilibrium: a north-south temperature
gradient which drives a east-west atmospheric circulation.

(2) The inhomogeneous forcing by land-sea temperature contrast in (1.2) should
decrease with increasing temperature difference T'. It is assumed that in the
polar region the sea water temperature is higher than the temperature over
land, while in the equatorial region it is lower. A higher temperature differ-
ence T thus means a lower land-sea temperature contrast. This influence is
described as a fluctuation upon a fixed forcing: G — Gy + G1 (T, — T).

(3) The water transport through the atmosphere is taken to be linear in the energy
content of the traveling wave: § — g + 01 (y2 + 22).

Combining (1) and (2) with the proposed coupling terms we obtain

i=—9y? -2 —ax+a(Fy+ FT) (3.1)
y=xy—brz—y+Go+Gi1(To, — T) (3.2)
2 =bry+xz—2 (3.3)
T =ko(yz —T) — |f(T,9)|T — kT (3.4)
S =60+ 01(y* + 2%) — |f(T,9)|S — kS (3.5)

with f as in (2.3). With the coupling some new constants have been introduced.
They are T,,, the standard temperature contrast between the polar and the equa-
torial box, -, the proportionality constant of the westerly wind strength and the
north-south temperature contrast and ¢J;, a measure for the rate of water trans-
port through the atmosphere. When exploring the dynamical behaviour of the
model we take F} and G as free parameters. As motivated in the introduction,
we consider small coupling to the atmosphere model. This is the case if we take
(F1,G1) € [0,0.1] x [0,0.1]. In table (1) the parameters are listed. In this scaling,
one unit of time in the model corresponds to the typical damping time scale of the
planetary waves, estimated to be five to ten days.

a |1/4 S |7.8-1077
b |4 ky |1.8-107°
£y |8 k, |1.8-107%
Go |1 £ 1.1-1073
~ |30 w |1.3-107%
5 19.6-107% [ T,, | 30

TABLE 1. The constants of the coupled model. With these constants the
ocean and the atmosphere model have time scales that differ by a factor of
about one thousand. See Roebber [1995].
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5. Perturbation theory

If we denote the atmospheric variables by x € R? and the oceanic variables by
y € R% we can write the system (3) as

x = fo(x) +e1fi(y)
y = €290(x) + €201 (y) (4)

where €; and e, are small parameters. Putting ¢; = e5 = 0 yields the Lorenz-
84 model. Hyperbolic equilibria in the Lorenz-84 equations correspond to a first
approximation of a slow manifold in the full system (4) as a consequence of Fenichel’
theorem [Wiggins, 1994]. In our case the slow manifold is unstable and not physically
interesting.

Instead we focus on periodic and chaotic solutions of the Lorenz-84 equations
and the phenomenon of intermittency in the coupled system. Note, that the ex-
istence of the periodic solutions and their corresponding Floquet spectrum, which
determines the stability properties, is described by the Poincaré expansion theorem
[see Verhulst, 1996]. The Floquet multipliers of periodic orbits in the coupled sys-
tem are expected to be O(eq, €2) pertubations of the corresponding multipliers in the
uncoupled system. This information will be used when describing the intermittent
behaviour.

6. Bifurcations of equilibrium points

The equilibrium points of system (3) can be found after some algebraic manipula-
tions, as roots of a high order polynomial equation. For each set of parameter values,
the equilibria can be calculated along with their spectra. In addition, the bifurca-
tions of these equilibria can be found using the continuation package AUTO [Doedel
et al., 1986]. On a plane in phase space, defined by f = 0, the vector field is not
differentiable. There is an equilibrium point on this plane if

—G(] + \/CL(F() + F1T0 - LU())(]. - 2%0 + (1 + b2)$(2))

with equilibrium values z¢ = (0o+ad1 Fo) (ko +kw )&/ (Whkwkay+ad1€[ka+kw—F1vka])
and Ty = kqyxo/(ke + kw). On the curve in parameter space, defined by (5), a
bifurcation occurs. When crossing it, increasing G, two equilibrium points appear,
one with a positive value of f, and one with a negative value. The latter is stable.
In fact, for any Gy greater than the right hand side in (5) there is an attracting
equilibrium or periodic solution on which f is negative, i.e. the THC is salinity
driven. At such an equilibrium, most of the energy in the atmosphere model is stored
in the wave activity, whereas the jetstream intensity is low (i.e. y? + 22 > x?). This
results in a large freshwater flux through the atmosphere. The ocean’s response is
a weak, inverted, THC, a small negative temperature difference T" and a relatively
large salinity difference S.

The results of the bifurcation and stability analysis are shown in diagram (3).
The stability of the equilibrium points is indicated in the diagram. As can be seen,

G
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FIGURE 3. Saddle node bifurcations (solid lines) and the bifurcation at f = 0,
given by (5) (dashed line). Between brackets the number of equilibria with f > 0
and f < 0, respectively. Between square brackets the corresponding number of
stable equilibria.

only in a small window in parameter space there exists a stable equilibrium with
positive flow. Other stable solutions with positive flow are periodic or chaotic.

7. Chaotic attractors

As mentioned in section (5), the coupled model can be regarded as a perturba-
tion of the Lorenz-84 model. The parameters Fy and Gy of the uncoupled Lorenz-84
model have been chosen in a fully chaotic regime. Therefore, we cannot expect
a complete insight in the bifurcations and the behaviour of the coupled model as
a function of the coupling parameters. Still, through a combination of time inte-
grations and bifurcation analysis, we can clarify our model’s dynamics to a large
extent.

It is found that for many parameter values the behaviour is chaotic. Using the
algorithm described by Wolf et al. [1985] we can approximate the Kaplan-Yorke
dimension of the chaotic attractors. We can also numerically estimate their corre-
lation dimension. A description of the algorithms and a discussion of the physical
interpretation of these dimensions can be found in Nayfeh and Balachandran [1995].

For several parameter values the Kaplan-Yorke dimension is found to be about
4.3, compared to the typical value of about 2.4 for the uncoupled Lorenz-84 model.
The Kaplan-Yorke dimension, however, only characterises the geometry of the at-
tractor. Even though the Kaplan-Yorke dimension is increased by 1.9, there might
be little variability in the oceanic variables. In order to see if the ocean model plays
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FIGURE 4. Intermittent time series z(¢) at parameter values (Fy,G1) = (0.021685,0.01).

an important role, we can calculate the correlation dimension. This quantity is cal-
culated from an orbit on the chaotic attractor, sampled at equal time intervals. If
there is a lower dimensional subset of the attractor which is visited relatively often,
the correlation dimension will be smaller than the Kaplan-Yorke dimension. This is
an indication that the Kaplan-Yorke dimension overestimates the variability of the
system.

Indeed, for the uncoupled Lorenz model the correlation dimension is typically
about 2.3 [Anastassiades, 1995], compared to 3.4 & 0.2 for the coupled model. The
difference in correlation dimension is significantly smaller than the difference in
Kaplan-Yorke dimension. We conclude that the attractor of the coupled system is
much more inhomogeneous than that of the Lorenz-84 system.

The ocean is passive in the chaotic regime. The qualitative behaviour of the
atmospheric variables is similar to the uncoupled behaviour and the inhomogenity
of the attractor shows that there is little variability in the oceanic variables. In the
following we describe a regime in parameter space in which the ocean is manifestly
active, as it dictates the qualitative behaviour of the system.

8. Intermittency

Inbetween fully chaotic and stable periodic regions in parameter space, inter-
mittency can be observed. In figure (4) an example of an intermittent time series of
system (3) is shown. On some time intervals the curve looks chaotic, on the other
time intervals it looks periodic. This behaviour occurs near a bifurcation point at
which a periodic orbit loses its stability. The systematic study of this phenomenon
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FIGURE 5. Continuation of the periodic solution approached during the pe-
riodic interval in (4). The Floquet multipliers are drawn in the complex plane.
The bifurcation points are indicated by SN for saddle node and NS for Neimark-
Sacker. This picture was obtained applying the algorithm described in Simé
[1989]. The stable branch has been marked with dots.

in dynamical systems was initiated by Pomeau and Manneville [1980]. Here, we
describe the underlying bifurcation structure.

Note, that the phenomenon of intermittency is not restricted to alternating pe-
riodic and chaotic motion in low-order models. It is also found in models with
multiplicative noise [Shapiro, 1993] or additive noise [Eckmann et al., 1981]. Fur-
thermore, in so called cycling chaos [Dellnitz et al., 1995] two, or more, chaotic sets
are involved, instead of a chaotic set and a periodic orbit. Our case, described below,
is called type II intermittency [Pomeau and Manneville, 1980].

8.1. The theory of intermittency. In order to explain the intermittent be-
haviour and the role of the slow, oceanic, variables in detail we did a numerical
bifurcation analysis of the relevant periodic orbit. This was done following the al-
gorithm described in Simé [1989]. An approximation of the periodic orbit can be
obtained from a time series such as the one shown in figure (4). This orbit is then fol-
lowed in one parameter by a prediction-correction method. Generically the periodic
orbit will undergo saddle node, period doubling and Neimark-Sacker bifurcations,
at which its stability properties change [see, e.g. Wiggins, 1990, chapter 3].

The result of this analysis is shown in figure (5). At the saddle node bifurcation
(SN) two periodic orbits come into existence. Initially both are unstable. Increasing
parameter F} slightly, the upper branch passes through a Neimark-Sacker bifurcation
(NS), after which all Floquet multipliers lie within the unit circle, indicating that
the periodic orbit is stable. Beyond this point, for F} > Fg, periodic motion sets
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FIGURE 6. The expectation value I of the length of the periodic intervals as
a function of F; for G1 = 0.01. The integration time for each measurement
was At = 5-10% = 9.6 - 10%yr. The bifurcation points of figure (5) have been
labelled Fgn and Fig.

in. For Fgy < F} < Fyg there is no stable periodic orbit for the system to settle
on. Instead the periodic orbit has a stable and an unstable manifold attached to
it [see Wiggins, 1990, chapter 1]. The solution of system (3.1)-(3.5) approaches the
periodic orbit closely following the stable manifold, and moves away from it closely
following the unstable manifold. This is what happens during a periodic interval.
Sufficiently far away from the unstable periodic orbit in phase space, the solution
wanders about chaotically untill it comes close to the stable manifold again and the
cycle repeats.

The intermittent behaviour persists to the left of the saddle node point, i.e. for
Fi < Fspy. This is because both the saddle node and the Neimark-Sacker bifurcation
are local, meaning that some distance away from the bifurcating orbit in phase space,
the vector field remains essentially the same. Although the periodic orbits have
collided and disappeared, their ‘ghosts’ still influence the dynamics.

The farther left of the saddle node point parameter Fj is chosen, the less the
influence of the ghost structure. This can be quantified by measuring the length
of the periodic intervals, or rather its distribution, for a number of parameter val-
ues. To obtain these data, integrations of 5 x 10° in units of ¢ (about 9.6 x 10*
years) were done, during which more than 600 periodic intervals were registered
for each parameter value. The length of the periodic intervals in each integration
run is approximately normally distributed. In figure (6), the expectation value [
has been plotted against parameter F;. Beyond the Neimark-Sacker bifurcation,
for F; > Fxg, the periodic behaviour is stable and therefore [ diverges. The rate
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FIGURE 7. Two parameter continuation of the bifurcations described in sec-
tion (8). The saddle-node lines are dashed and the Neimark-Sacker lines are
solid. In the shaded region intermittency takes place. Directly to the right of
NS1 and below NS2 the behaviour is periodic.

of divergence was numerically estimated by Pomeau and Manneville [1980]. They
found the power law [ o< e, where € is the distance to the bifurcation point, in our
case Fys — F1, and a =~ 0.04. In our experiments we find a = 0.06, in reasonable
agreement.

The Neimark-Sacker bifurcation, at which the behaviour becomes periodic, can
be continued in two parameters in order to find a window in parameter space in
which intermittency takes place. Such a window is shown in figure (7). The saddle-
node and Neimark-Sacker bifurcations of figure (5) have been labeled SN1 and NS1,
respectively. At SN2 another periodic orbit becomes stable, following the same sce-
nario as described above. Directly to the right of NS1 and below NS2 the behaviour
is periodic. In the shaded region the behaviour is intermittent.

8.2. The driven Lorenz-84 model. In order to study the behaviour of the
slow variables, T and S, in the intermittent regime, we made a Poincaré plot
of the coupled system. The plane of intersection in phase space is defined as
S. ={(z,y,2,T,S) € R°|z =1}. In figure (8) the intersection points are shown,
projected onto the T, S-plane. The intersections of the unstable periodic orbit with
S have been marked with crosses. The arrows indicate the direction of the flow in
S, near the intersections of the unstable periodic orbit. The qualitative behaviour,
as described above, is neatly illustrated. On the left hand side of the picture the
solution of equations (3) approaches the periodic solution, closely following its sta-
ble manifold. This happens during a periodic interval. At the top of the picture
the solution moves away from the periodic solution closely following the unstable



8. INTERMITTENCY 51

0.00131

0.001305 -

S

0.0013

0.001295 -

0.00129 -

a
1
i
[
|
|
|
|
|
|
| R R
0001285 1 1 1 ) 1 1y TA\ 1 1 1 1
544 546 548 55 ,’552 554 | 556 558 5.6 562  5.64

T T, T3y T

FIGURE 8. Poincaré section S, at (Fi,G1) = (0.021685,0.01): projection
onto the (T, S)-plane. The intersections of the unstable periodic solution with
Sz have been marked with crosses in the top-left corner. The solid arrows indi-
cate the direction of the flow. 77 2,34 denote the period doubling bifurcations
of the driven Lorenz-84 model.

manifold. The average values of T" and S clearly differ between the periodic and the
chaotic intervals.

It seems natural to study the uncoupled Lorenz-84 model (1.1)-(1.3) with the
effective parameters F' = Fy + FipTesp and G = Go + Gint(Tow — Teys), where Fipy
and G, are coupling parameters for which we observe intermittency. The effective
temperature contrast 7.y can be taken fixed, which would correspond to the limit
of e5 | 0 in section (5), or slowly varying. A bifurcation analysis of the Lorenz-84
model with these effective parameters, and T, ¢ as the bifurcation parameter, yields
an alternative explanation of the intermittency.

If we set T,r¢ equal to the average value of T' during a periodic interval, we
find a stable periodic orbit in the uncoupled Lorenz-84 model. This orbit is strongly
attracting and the transient time from an arbitrary initial condition is short. If we
let T, ¢ vary on the time scale of the ocean model, as a second approximation to
the coupled system, this orbit persists.

If we continue the attracting orbit to higher values of T, ¢ it undergoes a period
doubling cascade, resulting in chaotic behaviour. The first four period doublings have
been marked T 2 3 4 in figure (8). At these period doublings, weakly attracting orbits
of high period are created. The transient time from an arbitrary initial condition
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is rather long. Therefore, these orbits do not persist in the second approximation,
with a slowly varying Tesr. In the second approximation the behaviour is chaotic
beyond the first period doubling.

To the right of the culmination point of the period doubling cascade, close to
T}, the behaviour is chaotic with fixed or slowly varying Tcrs. If Ters follows the
behaviour of T during the intermittency, it repeatedly drives the Lorenz-84 model
through the period doubling bifurcations, into the chaotic region, and back to the
periodic region. This gives an intuitive picture of the intermittent behaviour.

9. Power spectra in the passive and the active regime

An illustrative way to show the influence of the active ocean component on the
coupled dynamics is to look at power spectra. In figure (9) the power spectrum
of the atmospheric variable z, averaged over t,, = 15 &~ 3 months, is shown. The
data have been taken from integrations spanning some 7.7 - 103 yrs. The top picture
shows the spectrum in the passive, chaotic, regime at parameter values (Fy,G1) =
(0.02,0.01). The bottom picture, on the same scale, shows the spectrum in the
active, intermittent, regime, at parameter values (F1,G;) = (0.021685,0.01). The
three sharp peaks on the left are caused by the periodic intervals. Compared to the
spectrum in the passive regime, a lot of energy is present in low frequency modes,
associated with the recurrence of periodic intervals. These are modes on the thermal
damping time scale of the ocean model.

10. Conclusion and discussion

The behaviour of the coupled model has been studied as a function of the cou-
pling parameters in the atmosphere model. A bifurcation analysis of the equilibrium
states reveals that, for a range of parameter values, there exists a stable equilibrium
which describes a salinity driven THC. This property is inherited from the uncou-
pled ocean box-model. Other attractors of the coupled model are chaotic or periodic.
Depending on small changes in the coupling parameters, the ocean can be passive
or active.

The passive behaviour occurs if the coupled model is fully chaotic. Here, the
ocean basically integrates the atmospheric forcing. As illustrated by comparing
attractor dimensions of the coupled model to those of the Lorenz-84 model, there is
not much variability in the oceanic variables in this case.

Active behaviour is found near a bifurcation of the coupled system. On one side
of this bifurcation the behaviour is periodic, on the other side it is intermittent. In
the intermittent regime the slow time scale of the ocean model plays an important
role in the dynamics, as illustrated by the power spectrum of the atmospheric vari-
ables. This can be explained from the theory of intermittency, and the motion along
the stable and unstable manifolds of the periodic orbit. Alternatively, the intermit-
tency can be described as the behaviour of the Lorenz-84 model with slowly varying,
effective parameters. The effective parameters vary on the time scale of the ocean
model and repeatedly push the Lorenz-84 model through a sequence of bifurcations
at which the stability of periodic motion is lost.
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section (4)).
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In order to make a connection to more realistic climate models, two points
should be made clear. First of all, stable equilibria or periodic orbits are not com-
monly found in the state space of realistic, high resolution, models. The invariant
structures in high dimensional state spaces are usually much more complicated. A
useful analogy is provided by the method of Probability Density Functions [PDF’s,
see Molteni et al., 1990, and references therein]. Figure (8) is the analogue of a
bimodal PDF, with one regime near the saddle type periodic orbit (upper left cor-
ner) and one chaotic regime (bottom right corner). In fact, applying the method of
PDEF’s for intermittent parameter values would yield such a bimodal distribution.
The expectation value of the length of the periodic intervals, plotted in figure (6),
then measures the residence time in the regimes. In this context, the intermittency
can be regarded as itinerancy, switching back and forth between climate regimes.
The time scale of motion within each of the regimes is set by the fast, atmospheric,
component of the model while the time scale of migration between the regimes is
set by the slow, oceanic component.

Itinerancy and the related notion of quasi-stationary states [see, e.g. Marshall
and Molteni, 1993], have been proposed as a possible mechanism generating low
frequency variability. Itoh and Kimoto [1996] found evidence for itinerancy in an
atmosphere model up to fairly high resolution (T21). In their case the transitions
between regimes are noise-induced, as described in De Swart and Grasman [1987],
and describe internal low-frequency variability of the atmosphere. Schopf and Suarez
[1988] found vacillation in a coupled model, generating variability on a time scale of
years, related to the transit time of traveling waves in the ocean models rectangular
domain. In our case, the long time scale is set by fluctuations in the THC, generating
decadal variability.

The second point is that, in our model, the coupling of the ocean to the atmo-
sphere is on a conceptual level and depends only on two parameters. In reality, the
ocean-atmosphere feedback is highly complex, which results in a large amount of pa-
rameterisations in realistic models. This makes it very hard to identify the relevant
parameters for a sensitivity experiment. The goal of such an experiment would be to
find transitions from unimodal to multimodal PDF’s, analogous to the bifurcation
scheme presented in section (8.1). Alternatively, an experiment in the fashion of
section (8.2) might be conducted, in which the dependence of the atmospheric PDF
on prescribed Sea Surface Temperature (SST) patterns is tested.

In classical studies such as Palmer and Sun [1985], the response of the atmo-
spheric circulation to SST anomalies is measured in terms of time mean quantities.
However, in order to detect a qualitative change in behaviour, namely a crossover
to another regime, it may be necessary to extract more information, in the form of
PDFE’s. In the experiment we propose, the atmospheric PDF, projected onto a few
relevant indicators, should be measured as a function of the amplitude of a typi-
cal SST anomaly pattern. Relevant indicators can be, for instance, the amplitudes
of the leading empirical orthogonal functions of surface pressure. If a qualitative
change in the PDF is detected at a reasonable amplitude of the SST anomaly forc-
ing, this indicates that the atmosphere is sensitive to oceanic feedback. Whether or
not itinerancy, and the associated variability on oceanic time scales, will be found
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in a subsequent coupled integration depends on the forcing of the ocean by the at-
mosphere in the preferred flow regimes. If, in an ocean only run, driven by one of
the centroids of the atmospheric PDF, the amplitude of the SST anomaly is driven
through its critical value, the feedback loop is complete and itinerancy can occur in
a fully coupled integration.

Evidence for sensitivity of the atmospheric PDF to SST anomalies was found
in Selten et al. [1999]. In an atmosphere only run they found that a North Atlantic
Oscillation (NAO) related SST anomaly induced a preference for one sign of the
model’s NAO pattern. Also, Kharin [1995] showed that SST can have a nonlinear
effect on the atmospheric circulation.

The discussion about the active or passive role of the ocean in coupled climate
models and in the real climate systems is still going on [for a review, see Latif, 1997].
We think, that the description of intermittent behaviour in a low-order climate model
and the analogy to itinerancy in realistic models gives a possible explanation for the
different results in recent literature. An experiment as proposed above might re-
veal that active and passive ocean behaviour can occur in one model at different
parameter values. Recent sensitivity studies, such as performed by Rahmstorf and
Ganopolsky [1999], indicate that at critical values of coupling parameters major cli-
matic changes can occur. It is at such critical points that coupling of the atmosphere
to other components of the climate system can be crucial.
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CHAPTER 4

Overturning and wind driven circulation in a
low-order ocean-atmosphere model

Submitted to Dyn. Atmos. Oceans.

ABSTRACT. A low-order ocean-atmosphere model is presented which combines
coupling through heat exchange at the interface and wind stress forcing. The
coupling terms are derived from the boundary conditions and the forcing terms
of the constituents. Both the ocean and the atmosphere model are based on
Galerkin truncations of the basic fluid dynamical equations. Hence, the cou-
pled model can readily be extended to include more physics and more detail.
The model presented here is the simplest of a hierarchy of low-order ocean-
atmosphere models. The behaviour of the coupled model is investigated by
means of geometric singular perturbation theory and bifurcation analysis. Two
ways are found in which the slow time scales can play a role in the coupled
dynamics. In the first scenario, a limit cycle on the overturning time scale is
created. The associated oscillatory behaviour is governed by internal ocean dy-
namics. In the second scenario intermittent behaviour occurs between periodic
and chaotic regimes in parameter space.

1. Introduction

Until recently, the study of ocean models of low order has been restricted to a
rather conceptual level. A variety of models have been constructed using the idea
of Stommel [1961], dividing the ocean, or rather a meridional plane, into compart-
ments. Within each compartment, the temperature and salinity of the sea water are
constant and the flux of these quantities is based on diffusion-like dynamics. Such
models are used to investigate the stability of the overturning circulation. Coexist-
ing equilibria then represent different orientations of the overturning. Extensions of
Stommel’s model have been constructed to allow for oscillatory behaviour [Welander,
1982; Titz et al., 2002] and to mimic wind driven circulation [Huang and Stommel,
1992]. Low-order climate models usually rely on Stommel type ocean models, such
as in Nakamura et al. [1994]; Roebber [1995]; van Veen et al. [2001]. Distinct disad-
vantages of such models are that they cannot be derived from the physical equations
by means of Galerkin truncation and they cannot include rotation.

The wind driven circulation has also been investigated by means of low-order
models. Veronis [1963], for instance, studied multiple equilibria and oscillatory be-
haviour in a model with four degrees of freedom. His findings were validated by
comparison to a model of intermediate complexity [lerley and Sheremet, 1995]. In
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that work the two dimensional Navier-Stokes equations govern the flow. Conse-
quently the overturning ciculation is absent.

The Maas [1994] model, in contrast, allows for the study of both overturning
and wind driven circulation in a low-order setting. Also, its formulation in terms of
a Galerkin truncation of the angular momentum and density fields links it directly
to the governing fluid dynamical equations.

We couple the angular momentum based ocean model to the Lorenz-84 model
for the atmosphere. As shown in van Veen [2002], the latter model approximates the
dynamics of a baroclinic atmosphere model. The physical processes thus represented
in the coupled model are thermally induced overturning, wind driven gyre circulation
and, in the atmosphere, baroclinic wave activity.

The aim of this paper is twofold: firstly to describe the scaling and the coupling
of the model in some detail and secondly to explore the dynamics of the coupled
system by means of perturbation theory and bifurcation analysis.

In section (2) the ocean-atmosphere interaction terms are calculated from the
surface integrals which appear in the ocean’s boundary conditions and the atmo-
sphere’s forcing terms. The difference in time scales between the wind driven, the
overturning and the atmospheric dynamics, as well as the coupling strengths, follow
from the physically relevant scaling. The coupled model, presented here, is in a sense
the simplest of a family of low-order ocean-atmosphere models. In the concluding
section a number of possible extensions is listed.

In section (3), we explore the behaviour of the model by means of Fenichel theory,
or, more specifically, Geometric Singular Perturbation (GSP) theory. A bifurcation
analysis is conducted in section (4). In this analysis, the focus is on the question how
the slow dynamics of the ocean model can show up in the dynamics of the coupled
model.

GSP theory is applied in the regime where the atmosphere is in an equilibrium
state. In this case, no instabilities are excited in the ocean model, except when
the atmosphere’s equilibrium is nearly critical. In that case, a Hopf bifurcation can
occur which produces a weakly unstable cycle on the overturning time scale. The
occurrence of this Hopf bifurcation is connected to the presence of a Bogdanov-
Takens point at nearby parameter values. The unfolding of this point and the
consequences for the coupled dynamics are discussed in section (4.1). The oscillatory
behaviour induced by the cycle is generated by internal ocean dynamics.

A window in parameter space is shown to exist where the behaviour is chaotic,
with tiny periodic intervals. In the fully chaotic regime the climatology of the model
is studied. The physical processes represented in the model are simulated to rea-
sonable accuracy. Near the boundary of stable periodic motion, intermittency can
occur. Here, the slow subsystem, i.e. the ocean, can cause the fast subsystem,
i.e. the atmosphere, to pass through a sequence of bifurcations repeatedly. This
phenomenon was already observed in the Lorenz-Stommel model [van Veen, 2002].
Thus, the slow time scale shows up in the transition time between regimes of quali-
tatively different behaviour. This is a second way for the slow dynamics to influence
the behaviour of the coupled system.
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To the author’s knowledge, no low-order ocean-atmosphere model which com-
bines wind driven and overturning circulation has been studied before. The model
analysis presented here is far from exhaustive. The presence of small parameters in
the model suggests the use of perturbation theory, also in the regime where the at-
mosphere is not in equilibrium. Such a perturbation theory involves averaging over
the fast time scale [Rodenbeck et al., 2001]. In future research, this technique will be
applied to the Lorenz-Maas model [Arnold and Olbers, 2002]. Also, the coupled sys-
tem might be compared to the Maas model with stochastic forcing [Monahan, 2001].
The computation of Lyapunov exponents and attractor dimensions might reveal to
what extent chaotic, deterministic forcing is different from forcing by noise.

2. Description of the model

The ocean model was formulated in Maas [1994, 2002]. The atmosphere model
is due to Lorenz [1984] and was provided with a physical basis in van Veen [2002].
Here, we will show how the coupling terms and multiple time scales are introduced.

2.1. Scaling of the low order models. The ocean model is valid in a rectan-
gular domain with width and length L and height H. This basin is assumed to have
a rigid lid. We choose Cartesian coordinates about the basin’s geometric centre. The
fluid motion is governed by the Navier-Stokes equations in the Boussinesq approxi-
mation on an f-plane. It is described by the basin averaged angular momentum and
the linear variations of the density field, p, defined respectively as

1 _ JxpadVv ~ Jypdv _ Jzpdv
L’V/Xxudv Pe=Tprav T Tpeav FT av (1)

Here V = L?H is the volume of the domain, u is the velocity of the fluid and the
density field is defined as p = (p.—po)/dp, i.e. the difference between the dimensional
field, p. and a constant reference field, pg, scaled by a typical fluctuation, dp. The
salinity of the ocean is not taken into account, so that the density is determined
by the temperature alone. We define the non-dimensional temperature by T =
(T, — Tp)/dp, where « is the thermal expansion coefficient. Thus, we have

p=aps+ypy+zp. and T =-—p. (2)

In this approximation the model has six degrees of freedom. In a scaling appropriate
for overturning dynamics, however, we see that the inertia of the horizontal angular
momentum can be neglected.
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The dynamical equations for L and p, , . are

d H?¢§ ) .

L= _gk “ L+ 12i0p(—,0y1 + p2i) = (raLy, Lo, 7o L3)T + T (3.1)
2 d 1 1
Z =L “Lop. — Kppy + F@ 3.2
12at” g 8Py T ghaps = Bnpe (3:2)
L2 d 1 1
L e 1y ZLap, — K F® 3.3
g’ = Tgtpe T g tele T Knpy &2
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P “Lip, — K. F®) 3.4
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where i, j, k are the unit vectors in the z,y and z direction, f is the Coriolis parame-
ter, g is the acceleration of gravity, r;, and r, are the horizontal and vertical Rayleigh
damping coefficients and Kj and K, are the horizontal and vertical eddy diffusivity
constants. The forcing terms T and F stand for the wind stress torque and the
buoyancy flux at the surface. In the following we will assume that F(®) = F(2) =0
and Ty = T = 0. The remaining forcing terms, F*) and T3 represent meridional
differential heating and wind shear forcing, respectively.

The Cartesian coordinates will be scaled as [z, vy, z] = [L, L, H|, and the density
fluctuations as [dp] = [12porn K /gH]. The time scale of interest is different for the
overturning, the wind driven and the atmospheric dynamics in the coupled model.
As described below, this difference of time scales leads to the introduction of a small
parameter in the model.

A typical time scale for the overturning dynamics, described by the horizontal
components of the angular momentum, L, o, is given by Efl = L?/Ky. Lett; = 1t
and let primes denote non-dimensional quantities, then we find from equation (3.1)
that

1 d

=L =8 — L

Prdt, 1=["Ly P Py 1
) (4)
P’I”dtl *

where f’ = f/2ry, is the scaled Coriolis parameter and Pr = rj, L?/ K}, is the Prandtl
number. A realistic value of Pr is O(10%). Therefore, we consider the limit Pr — oo,

obtaining
Lll — 6/)/ f/ -1 p!p (5)
Ly 1+ 1L f Py

The vertical component of the angular momentum is driven by wind shear forcing.
Therefore, we introduce a second time scale, reasonable for the ocean’s boundary
layer. It is given by Z;l = r;l. With L} = Lg/L2El and t5 = Yot we have

d
where T4 = T3/ L?¥1%, is the dimensionless torque due to wind stress. Note, that
we have scaled Ls by a factor ¥; and its tendency by a factor ¥5. This hybrid
formulation is necessary to make up for the absence of an explicit boundary layer
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in the model. The wind shear directly drives the basin averaged vertical angular
momentum. In reality, the influence of the wind stress is manifest in a boundary
layer of thickness h, and rapidly decreases below that. Therefore, we will include a
factor of h/H in the forcing strength, as discussed below.

In order to get rid of the numerical factors in equations (3.2-4) we rescale t; by
a factor 1/12, u by a factor 2 and set ¢’ = 2 . Then, using relation (5) to eliminate
L1 2, we obtain

d , /T 1 / VAN ’

= —o L - - — 7.1
d , ’r 1 1 AN ’ ()
— =L —— — — FW 7.2
d / /2 /2 /

= o _ — 7.3
TR S A (7.3)

Where 1 = K,L?/K,H?. The set of equations (6) and (7) forms the ocean model.
It will be coupled to the atmosphere model through the wind stress torque, T3 and
the differential heating term F®). The coupling will be discussed in section (2.2)

The horizontal spatial scale of the atmosphere model is identical to that of the
ocean model. The time scale of the Lorenz-84 model is set to E;l, the damping
time scale of baroclinic waves. The model’s equations are

X=-Y2-2%2—aX+aF (8.1)
Y =XY -bXZ-Y+G (8.2)
Z=bXY+XZ-2Z (8.3)

where F stands for forcing by differential heating in the meridional direction and G
in the zonal direction, e.g. through land-sea contrast. The damping time scale of
the zonally symmetric westerlies with respect to that of the baroclinic waves is set
by a while b determines the strength of passive advection relative to the exchange
of energy between the baroclinic waves and the westerlies, i.e. the jet stream.

As shown in van Veen [2002], equations (8.1-3) approximate the dynamics of a
severe truncation of a quasi-geostrophic two layer model on an f-plane. The mean
and shear streamfunctions, ¥ and 7, consist of a zonally symmetric part, representing
the jet stream, and a sinusoidal wave. They are related to X, Y and Z through

U = —Xsinmy' 4+ V2cosmy (Y sinwa' + Z cosma') (9.1)
' = —Xsinmy' +V2cosmy (Zsinnz' —Y cosma') (9.2)
with ¥ and 7/ in units [L?33] and (2/,y') € [-1,1] x [-1/2,1/2]. The jet stream
pattern is equivalent barotropic whereas the wave is optimally baroclinic. The mean
potential temperature, ©, can be calculated from the shear stream function using

the thermal wind relation. Let ©® = O, + 0, where O, is the average potential
temperature over the whole domain, and 6 is the local departure. Then we have

0 =1 (10)
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with 6’ in units [©] = [f¥3L?/dc]. Here, ¢} is the specific heat of dry air at
constant pressure and the non-dimensional constant d = 0.124 results from the
vertical discretisation. The vertical gradient of potential temperature, o, is kept
constant. The feedback to the atmosphere will be represented by a modulation of
the meridional heating gradient, induced by heat exchange at the ocean’s surface.

2.2. Coupling terms. We consider two kinds of interaction between ocean and
atmosphere: wind driven circulation and heat flux at the ocean’s surface. The former
interaction is represented by the forcing term T35 in equation (6) for the evolution
of the vertical angular momentum. The latter is represented by a modification of
the forcing terms representing differential heating in the meridional direction, F®)
in equation (7.2) and F in equation (8.1). The effect of baroclinic waves in the
atmosphere on the wind driven circulation is excluded, and so is the effect of the
zonal gradient of heat exchange.

The angular momentum-based ocean model is capable of representing a single,
wind driven gyre. We associate it with the larger, clockwise gyre in the Atlantic
basin, south of the gulf stream. Under winter conditions, the centre of this gyre is
located at about 30° N. The maximum of the jet stream intensity is located at about
30°N and 10km height. At the earth’s surface, however, the maximum intensity of
the zonal wind is located at about 40°N [Peixoto and Oort, 1992]. Therefore, it
drives the ocean gyre in a clockwise direction.

The height dependence of the maximal intensity of the zonal wind is not resolved
in the two layer model, nor is the atmospheric boundary layer. Therefore we pose a
diagnostic relation to obtain the surface winds from the mean streamfunction, con-
sistent with the observed climatology. As the zonally symmetric pattern, i.e. the jet
stream, is equivalent barotropic, we include a scale factor, s, to tune the magnitude
of the surface winds. The maximum of the zonal wind is displaced northward by a
distance A. This yields

Ul = —saiy/\il’(xﬂyl — A"y =msX cosm(y — A') (11)
where Uj is the zonal wind component at 10m height and bars denote zonal averages.
This setup is sketched in figure (1). The easterlies along the southern lower boundary
of the domain may be thought of as subtropical trade winds. From equation (11)
we can calculate the wind stress, 71, which in turn determines the forcing torque T3
in equation (6). The wind stress is related to the surface winds through

T = &CdU*Us (12)
Po
where p, is the atmospheric density, Cy is the non-dimensional drag coefficient and
U, is the typical (time and zonal average) magnitude of the zonal wind component
at the surface.
The forcing due to the wind stress,, is given by

- 2 L ,
Ty = — // ym dedy = —;Z—OCdsXUiEZgLQ sin TA’ (13)
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FIGURE 1. Sketch of the geometry of the coupled model. The centre of the jet
stream is displaced northward by a distance A with respect to the geometrical
centre of the ocean basin. Thus, the zonally averaged zonal wind, U drives a
clockwise circulation in the ocean basin, indicated with dashed lines. Also shown
is the profile of 0, the zonally averaged departure from the average potential
temperature Ogy .

As explained in section (2.1), we need to include a factor of h/H, the relative depth
of the mixed layer in the ocean, in the non-dimensional torque T5. The rescaling of
u introduces a factor of 1/2. This finally results in

— sinA’ (14)

The buoyancy forcing consists of a constant part, F , due to solar heating , and a

part due to exchange of sensible heat with the atmosphere Fl(y). It is given by the
surface integral

K Op
F(y>:7v// 9
v )]V

where ¢ is the specific heat of the ocean and (5Ap is the scale of density variations in
the mixed layer. The flux of sensible heat, directed out of the ocean, Fsy, and the
solar heat flux, Q, are in units [W/m?2]. We assume that Q = —yQ.q/L, i.e. the
solar heating is linear in the latitude with amplitude Q)sq, where Q5 is a scale for the
meridional gradient in solar heating and ¢ is the non-dimensional forcing strength.

This yields

xdy = // Q+Fgp)dady = F(y)—|—F(y) (15)
V5PPOC°

pw’ _ 1 L oGy

= = 1

In terms of the temperature difference between the top of the ocean and the bottom
of the atmosphere, Fsy is given by

FSH = _paC;CHU*(@s - @O) (17)
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where p, is the atmospheric density at the surface and C'y is the dimensionless heat
transfer coefficient. For the potential temperature at the 10m level, ©,, and the
surface potential temperature of the ocean, ©°, we substitute

Qs = Oy + 0 = Oy + [O]7 (18.1)
o o H o H
0% =To = [0%p(w,y. 5) = To = [O°](wps +ypy + 5 p:) (18.2)
where [0°] = &)/a is the scale of temperature perturbations in the mixed layer.

Using equations (9.2), (18) and (17) we can evaluate the surface integral in equation
(15). The result is

s’ LpecCyle 2 0] 1

T H pocg SiL Fie ~ 1 (19)

Note, that we assume a dry atmosphere, and Fl(y) describes sensible heat flux. How-
ever, in reality the latent heat flux is larger, of the same order of magnitude as the
direct solar forcing. Thus, the flux Fl(y) must be thought of as the sum of sensible
and latent heat flux, although there is no explicit evaporation and precipitation in
the model.

Finally, there is a feedback term in the atmospheric equations. The forcing term
in equation (8.1) consists of a constant part, Fp, representing the meridional gradient
in solar heating, and F}, forcing due to heat exchange with the ocean. We assume
that the mass in a unit column of air is given by M/L? where M = pyL?f /29330’
is the mass scale, defined in van Veen [2002]. Thus, the rate of change of the
atmospheric temperature due to heat exchange at the ocean’s surface is given by
LQFSH/C;M. By the thermal wind relation, (10), this yields a forcing term in the
tendency of the shear stream function, 7. The non-dimensional projection onto the
zonally symmetric pattern is given by

21 _ L2p.CrU, 2 [0° , 1

In table (1) we have listed all physical constants along with their value in SI units.
The scales for length, time, density and temperature have been listed in table (2).
With these parameters, the forcing terms (14), (15) and (20) are approximately
given by

Ty~ —-X
F®' ~ 4,69 +21.7(X — 0.06p],)
Fy %~ 0.02(0.06p), — X) (21)
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Finally, we redefine the density gradients, dividing them by a factor of 1 + f/ 2,
Dropping the primes, the resulting dimensionless equations are

d
Q= rlst (pz + f'py)ps — pa (22.1)
d
a, Py = pels - (f'pe = py)p= — py + k1q + k2(X — k3py) (22.2)
P N (22.3)
dt, v~ Py
d
= Ly=—Ls— kX 22.4
dty ° 8T (22.4)
d
= X= ~Y?2 - Z? —aX +aFy + €1 (kspy, — X) (22.5)
3
%Y:XY—bXZ—Y—i—G (22.6)
3
4 xvixz-z (22.7)
dts

where f' = 3.65, k1 = 0.32, ko = 1.5, k3 = 0.86, ky = 1 and ¢; = 0.02. The
parameters of the atmosphere model are set to a = 1/4, b = 4 and G = 1. The
forcing terms ¢ and Fy and the coupling strength e; will be used as bifurcation
parameters.

In equations (22.1-7) we have written derivatives with respect to different time
variables. They are related by

d 1 d d d 3o d d

— = =€— — === — =e3— (23)
where we have introduced two more small parameters, € 3, alongside the coupling
parameter €;. In section (3) an asymptotic analysis will be presented, exploiting the
time scale separation and the weak feedback.

System (22) has a feature common for Galerkin truncations of fluid dynamical
equations. The linear terms are dissipative, the nonlinear terms are quadratic and
conserve the quadratic sum of variables and the forcing terms are constant. A
suitable Lyapunov function is given by

L=pi+p+p+X+Y?>+ 27 (24)
A trapping region is then given by
1
L< E—(quQ + F} +G*) = R? (25)
2

Note, that the vertical angular momentum, L3, is not taken into account. This is
because the coupling term in equation (22.4) has no counterpart in equation (22.5).
This is reasonable because the atmospheric loss of energy due to wind shear forcing
is small compared to the heat flux. However, from equation (22.4) it follows that
L% < kIR? (26)

defines a trapping region for L3. Hence, all solutions of system (22) are bounded.
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Parameter Meaning Value Unit
L Length of the basin 5-10° m
H Depth of the basin 5-103 m
h Depth of the mixed layer 50 m
f Coriolis parameter 7.3.107° 571
g Acceleration of gravity 10 ms—2
a Thermal expansion coefficient 0.14 kgm—3K—1!
s Specific heat of the dry atmosphere 103 Jkg 1Kt
cp Specific heat of the ocean 4.19-10® Jkg 'K!
Do Atmospheric pressure at the surface 10° Pa
Pa Atmospheric density at the surface 1.2 kgm™3
Po Reference density in the ocean 103 kgm™3
Th Horizontal Rayleigh damping coefficient 1075 s7!
Ty Vertical Rayleigh damping coefficient 3-1078 s71
Ky Horizontal eddy diffusivity coefficient 102 m2s~!
K, Vertical eddy diffusivity coefficient 1074 m2s~!
A Displacement of the zonal jet at the surface 10° m
Cq Surface drag coefficient 1.3-1073
Cy Heat transfer coeflicient 1.3-1073
U. Typical zonal wind velocity at the surface 10 ms!
Qs Meridional difference in solar heating 200 W m™2
5 Vertical scale factor of the zonal wind 0.2
Static stability of the atmosphere 22 K

TABLE 1. Parameters in the coupled model. Numerical values taken from
Maas [1994], van der Schrier and Maas [1998] and Peixoto and Oort [1992].
Note, that rj, has been chosen large in order to yield a realistic density scale.
In van der Schrier and Maas [1998] 7, is smaller, but the scaling factor 1+ f/2

is of order 103, so that a comparable effective density scale is used.

3. Asymptotic analysis with a passive atmosphere

As we have seen, the weak feedback to the atmosphere and the difference in
time scales introduce small parameters in the coupled model. For simplicity, we

scale them with a single small parameter:

6=2-1002=0() €©=3-10°=0() e=2-102=0(¢) (27)

System (22) can than be written as

d
—Y =g(Y,L3,X
dtl g( s 143 1)

d
— L3 =—L3 — kX
edtl 3 3 — RgXy
d
e —

I = fo(X) + efy (Xl, Yg)
1

(28)
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Length
horizontal L 5103 km
vertical H 5km
Time
overturning 7' = L2/12K), 500 years
wind driven %5 =7t 1 year
atmospheric X3 ! 7 days
Density variations
interior [0p] = 12por1, K1/ gH 2.4-107% kgm=3
mixed layer [&)] = astL2/p0gc;h2 0.5kgm=3
Temperature
atmosphere  [0] = fX3L%/dc, 24K
mixed layer [©°] = 5,;/04 3.6 K
Mass

atmosphere M = pyL?f[0]/29%30  7.7-108 kg

TABLE 2. Scales for the ocean and the atmosphere model. The atmospheric
time scale is the damping time scale of baroclinic waves due to Hamiltonian
cooling and interlayer friction, see van Veen [2002]. In the right column the
order of magnitude.

where we have introduced Y = (p,, py, p-)T and X = (X,Y, Z)T. As a consequence
of Fenichel’s theorem [Wiggins, 1994], hyperbolic equilibria of the system with ¢ = 0
give a first approximation of a slow manifold in the system with nonzero €. In order
to asymptotically approximate the dynamics on the slow manifold, we substitute
the regular expansion

Ls=LY +eLP ... X=XO 4x® 4 (29)

In the limit € | 0 we find
(X Fp) =0 (30)

Thus, a three dimensional slow manifold of equations (28) is approximated by the
equilibria of the uncoupled Lorenz model. The solutions of equation (30), and their
linear stability, can be found explicitly as the roots of a third order polynomial
equation [Sicardi and Masoller, 1996; Shilnikov et al., 1995]. In figure (2) the branch
of equilibria is shown. Two saddle node bifurcations occur, so that there is one
equilibrium or there are three. The Hopf bifurcation, labeled HB, represents the
baroclinic instability in the Lorenz model. Away from the saddle node bifurcations,

fy can locally be inverted so that we can write X(©) = o(Fp), with £f5(¢; Fo) = 0. On

)

the intermediary time scale Léo relaxes towards an equilibrium with X(©| given by

LY = —kyx (¥ (31)

Together, equations (30) and (31) approximate an extended, four dimensional slow
manifold of the coupled system.
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The slow dynamics is described by Y = g(Y, —kad1,¢1). A familiar form of
these equations is obtained if we first shift Y3 — Y3 = Y3 + ks¢1/f’ and subse-
quently scale time and Y by a factor 1+ ky¢1/f’. This yields

d _ _
7 Y1 = Y1+ Y1 Y5+ BY,Y; (32.1)
1
d _ _
7 Yo = Yot Yo¥5 - BY1 Y3+ G- CY, (32.2)
1
d - _
7 Vs = ~Y? -Y; - AY3+ AF (32.3)
1

Apart from the extra damping term in equation (32.2), these are the equations of
the Lorenz model (8), with parameters depending on ¢ according to

_ f'u - ['kaks _ Jkiq + f'kadpy
[+ kyy [+ ks [+ ks
B={ F= k‘;f?l (33)

The similarity between the ocean model and the Lorenz model was already pointed
out in Maas [1994]. There, the choice of parameters guaranteed that no complex
behaviour occurred. Here, this is not clear from the outset as we have an extra
damping term and forcing that depends on the atmospheric parameters through ¢;.
Because of the extra damping term we cannot exactly solve for the equilibria of
system (32), as this involves finding roots of a fifth order polynomial equation. We
can, however, check numerically what kind of dynamics arise as we vary Fy, thereby
altering the atmosphere’s equilibrium state, ¢. Continuation, by means of software
package AUTO [Doedel et al., 1986], indicates that a stable equilibrium state is the
unique limit set of system (32) for 0 < Fy < 100 and ¢ = 1. This equilibrium state
corresponds to a statically stable state of the ocean, i.e. p, < 0.
The first order terms are given by

LV 4 kX =0 X® = —DE; (61, Ys) (34)

Here, the inverse of the Jacobian matrix at ¢ enters the equations. As long as X1
is of order one, the dynamically and statically stable equilibrium state of the ocean
model, found in the lowest order approximation, will persist. If, however, Fj is
chosen near a saddle node bifurcation of the atmospheric equilibrium, Dfy becomes
nearly singular and the ocean’s equilibrium state might bifurcate. In this situation
the feedback loop in system (22), otherwise weak because of the small parameter
€1, becomes strong due to the sensitive dependence of the atmosphere’s equilibrium
state on the feedback, f;.

Thus, GSP analysis shows that we have four possibilities for the behaviour of
the coupled model, depending on the equilibria of the Lorenz-84 model, labeled 1 to
4 in figure (2):

(1) There is one stable equilibrium. This equilibrium corresponds to a stable slow
manifold in the coupled system. The dynamics on this slow manifold consists
of a relaxation towards a statically stable equilibrium state in the ocean model.
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FIGURE 2. Continuation of the equilibria of the Lorenz-84 model for G = 1.
The numbers 1 to 4 denote the different cases listed in section 3. Solid branches
are stable and dashed branches are unstable.

There are three equilibria, one is of saddle type whereas the other two are
stable. Each of these equilibria corresponds to a slow manifold in the coupled
system, two of which are stable. The dynamics on a slow manifold consists of
a relaxation towards a statically stable equilibrium state in the ocean model.
Only if the corresponding atmospheric equilibrium is nearly critical, the ocean
model’s equilibrium can bifurcate and periodic oscillations can occur on the
slowest time scale. This situation is described in section (4.1).

There are three equilibria, one of which is stable whereas the other two are of
saddle type. This situation occurs beyond Hopf bifurcation HB, where a stable
cycle is produced. Depending on the initial conditions, the coupled system can
either settle on the slow manifold corresponding to the stable equilibrium or
be attracted to the stable cycle on the fast time scale. As shown in section
(4), no bifurcations of the ocean model’s equilibrium occur on the stable slow
manifold.

There is one equilibrium of saddle type. The corresponding slow manifold is
unstable and the coupled system is attracted to the stable cycle on the fast
time scale. For higher values of Fp, this cycle bifurcates and more complex
behaviour sets in, as shown in section (4.2).
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FIGURE 3. Continuation of the equilibrium state of the Lorenz-Maas model.
Solid lines represent stable branches, dashed lines represent unstable branches.
Hopf bifurcations have been labeled HB1 2.

4. Bifurcation analysis of the coupled system

In figure (3) the branch of equilibria of the coupled system (22) is shown. We
have fixed ¢ = 1 and ¢; = 0.02 and increased F; from zero. On the vertical axis
we have plotted the meridional gradient of the heat flux at the ocean’s surface.
In the lower, stable, branch of equilibria this flux strengthens the zonal jet in the
atmosphere, i.e. F; > 0. In the upper branch it weakens the zonal jet, i.e. Fy < 0.
The latter situation agrees with the annual mean distribution of sensible heat flux
at the surface [Peixoto and Oort, 1992, chapter 10].

The first Hopf bifurcation, labeled HB1, occurs near a saddle node bifurcation
and is not present in the uncoupled Lorenz model. It corresponds to case 2 discussed
in section (3). Here, an unstable cycle with a period of order one in units 7' is
created. In section (4.1) it is shown that the presence of this Hopf bifurcation near
the saddle node bifurcation is connected to a Bogdanov-Takens point, at which the
equilibrium has two zero eigenvalues.

The rightmost Hopf bifurcation, labeled HB5, represents the atmosphere model’s
baroclinic instability. It produces a cycle with a period of order one in units Z;l,
which represents a traveling baroclinic wave. If the forcing is increased this cycle
bifurcates and complex behaviour arises. The route to chaos through bifurcations
of the cycle and intermittent behaviour are described in sections (4.2) and (4.2),
respectively.
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FIGURE 4. Bifurcation scenario along the branch of equilibria of the Lorenz
model (I) and the Lorenz-Maas model (II): eigenvalues in the complex plane.
The saddle node (fold) bifurcation has been labeled SN and the Hopf bifurcation
HB. In scenario II only the leading eigenvalues are shown. Compare to figures

(2) and (3).

4.1. The Bogdanov-Takens singularity. At Hopf bifurcation HB; a cycle
is created with a period of about 500 years, the overturning time scale 21—1' The
behaviour of the eigenvalues along the branch of equilibria, shown in figure (3), is
portrayed in figure (4). The periodic orbit exists to the right of HB; and has one
unstable multiplier. If Fj is increased slightly, it becomes homoclinic to the saddle
type equilibrium. This can be understood from the unfolding of the Bogdanov-
Takens singularity which occurs if the fold and Hopf bifurcations in scenario II
coincide. The unfolding of this singularity is described in Kuznetsov [1998], chapter
8. As predicted by the asymptotic analysis of section (3), the distance between the
bifurcation points in parameter space is rather small, about 2 - 10~° and thus of
the order of e5. The clearest picture is obtained by unfolding the codimension two
singularity in parameters g and €1, i.e. the solar forcing in the ocean model and one
coupling parameter, as shown in figure (5). When increasing €; from zero, at first
there is no Hopf bifurcation. Scenario I is followed when we continue the equilibrium
in parameter q. At the critical value of €; a pair of zero eigenvalues appears. This
is the codimension two Bogdanov-Takens point. At this point a Hopf curve and
a homoclinic bifurcation curve originate. If we increase €; further, scenario II is
followed.

Along the homoclinic bifurcation line, the saddle value, i.e. the sum of the
unstable eigenvalue and the (real part of the) leading stable eigenvalue, is small
(< 1072) but positive. Therefore, the homoclinic connection and the periodic orbit
that connects to the Hopf line are weakly unstable. In figure (6) the homoclinic
connection is shown, along with an 50.000 year integration, started near the saddle
type equilibrium. On the long time scale, 3 ! the system relaxes towards the stable
focus on the upper branch in diagram (3), with the realistic surface flux. In terms
of phase relations between the density gradients p, ., this damped oscillation is
similar to the oscillatory cycle found in the uncoupled Maas model [Maas, 1994]. In
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FIGURE 5. Unfolding of the Bogdanov-Takens singularity in ¢ and €1, for
Fp = 1.21374. On the Hopf line an unstable periodic orbit is created which
becomes homoclinic to the saddle type equilibrium, i.e. the middle branch in
figure (3).
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FIGURE 6. Damped oscillation on the time scale Z;l, for e; = 0.0217 and
q = 2. The solid line is the homoclinic connection, the dashed line is forward
integration. The saddle, in the top left corner, and the stable focus, in the
bottom right corner, have been marked with crosses. The integration time was
Aty = 100.
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FIGURE 7. Continuation of the cycle produced at HB>. Solid lines denote
stable branches, dashed lines denote unstable branches. Period doubling bifur-
cations have been marked PD; 2 and Neimark-Sacker bifurcations NS; 2. For
values of Fj between bifurcation points NS; and NS2 the behaviour is chaotic,
periodic with high period (O(10) [£3']) or intermittent.

one phase of the oscillation the meridional density gradient, p, is relatively low, and
the zonal density gradient, p,, relaxes due to friction and dissipation. The overturn-
ing circulation weakens. In the second phase, the differential solar heating builds
up the meridional density gradient, which strengthens the overturning through the
geostrophic coupling to p,.. The overturning circulation then weakens the meridional
gradient and the cycle is closed. It might be expected that this cycle can not occur
if the coupling through the vertical angular momentum, L3, is strong. In that case,
the horizontal components of the density gradient will be mixed and the interplay
between the damped overturning circulation and the forcing due to meridional dif-
ferential heating will be destroyed. Indeed, if k4 is increased to about 1.5, the Hopf
bifurcation HB; disappears. As prescribed by GSP theory, discussed in section (3),
the fast, atmospheric, variables are slaved during the oscillation, in instantaneous
balance with the feedback term fj.

4.2. Bifurcations of limit cycles and chaos. In diagram (7), the continu-
ation of the cycle, originating at HBo, is shown. Initially it is stable. At the first
period doubling bifurcation, labeled PDq, a stable cycle of twice the period is cre-
ated. This cycle becomes unstable through a Neimark-Sacker bifurcation, labeled
NS;. The period doublings PD; > and Neimark-Sacker bifurcation NS; are also
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FIGURE 8. Power spectra of py from a 15.000 year integration in the chaotic
regime with Fy = 8.25. Top: k4 = 0, middle: k4 = 1, bottom: difference. Note,
that the vertical scales are almost the same. The horizontal scale is logarithmic,
spanning 10 — 100 [E;l] ~ 10 — 100 yrs.

present in the uncoupled Lorenz model [Shilnikov et al., 1995]. In van Veen [2002]
it was shown that beyond NS; a sudden transition to chaos occurs following the
Ruelle-Takens scenario [Ruelle and Takens, 1971]. This also happens in the coupled
model. The behaviour becomes chaotic, with tiny periodic intervals in parameter
space. This behaviour is similar to that of the Lorenz-Stommel model, as described
in Roebber [1995]; van Veen et al. [2001]. In the chaotic regime, there is very little
variability in the slow subsystem. Therefore, it can be characterised as a regime
with a passive ocean.

The regime with a chaotic atmosphere and a passive ocean can be regarded as
the model’s representation of the real climate. Therefore, we list a number of average
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FIGURE 9. Intermittency in the Lorenz-Maas model. The meridional density
gradient, py, and the vertical angular momentum, L3, against ¢1.

physical quantities to validate the model. The average values were obtained from
a 15.000 year integration at Fy = 8.25. The vertical mean intensity of the zonal
jet is about 26ms~!, which yields a maximal zonal wind at the surface of about
5.2ms~! with an associated surface wind stress of about 8.1 Pa. The meridional
density difference in the ocean’s mixed layer is about 4.3 kgm ™3, corresponding to
a difference in sea surface temperature of about 30 K. The meridional difference in
heat flux into the atmosphere is about 260 W. Finally, a measure for the overturning
circulation is given by \/L? + L3 ~ 1.1-10* m2s~!. These values agree reasonably
well with climatological means [Peixoto and Oort, 1992], although the zonal jet
intensity and the sea surface temperature difference are exaggerated by of factor of
about 1.2. Considering the few degrees of freedom of the coupled model it reproduces
the climatological values well.

The deviation from the mean value of the meredional sea surface temperature
difference is slightly underestimated: typically about 0.2 K compared to a measured
standard deviation induced by synoptic-scale eddies of 0.5 K. The deviation from
the mean value of the vertical mean zonal jet intensity agrees with the measured
value of about 8 ms~1.

In order to investigate the influence of the coupling through the wind driven cir-
culation in this regime, we produced power spectra of a 15.000 year integration with
ks =1 and k4 = 0, shown in figure (8). In the latter case only the coupling through
heat exchange remains. As L3 forces the density gradients through advection, we
expect to see an increase in the spectral power of p, on a decadal time scale if the
coupling is switched on. This is best visible in the bottom picture, the difference of
the spectra with and without wind driven circulation. The difference is of the same
order of magnitude as the power in the individual spectra.
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FIcURE 10. Bifurcation scenario along a branch of periodic solutions of the
Lorenz-84 model (I) and the Lorenz-Maas model (II): Floquet multipliers in the
complex plane. The saddle node (fold) bifurcation has been labeled SN and the
Neimark-Sacker bifurcation NS. In scenario II only the leading multipliers are

shown.

4.3. Ocean-atmosphere interaction through intermittency. The ocean
plays an active role near the boundaries of the periodic intervals, where intermit-
tency can occur. Ample discussion of this behaviour was given in van Veen et al.
[2001]. In figure (9) we show an intermittent time series of the Lorenz-Maas model,
obtained from a 5.000 year integration. As in the Lorenz-Stommel model, the inter-
mittency is of type II in terms of the classification by Pomeau and Manneville [1980],
meaning that the periodic orbit involved loses its stability through a Neimark-Sacker
bifurcation. In the coupled model, Neimark-Sacker bifurcations tend to occur close
to fold bifurcations. This scenario is illustrated in figure (10). In the uncoupled
Lorenz model, scenario I, a single, real Floquet multiplier crosses the unit circle. In
the coupled model, scenario II, a real multiplier crosses the unit circle in the opposite
direction and forms a complex pair with the unstable multiplier. The complex pair
crosses back into the unit circle, causing a Neimark-Sacker bifurcation. The distance
in parameter space between the fold and the Neimark-Sacker bifurcations is typi-
cally of the same order of magnitude as the ratio of time scales eg = ¥3/3; = 1075,
This scenario is also followed around bifurcation point NSy, on the second branch of
periodic orbits in figure (7). The long time scale, Ef17 shows up in the intermittent
dynamics because the rate of convergence to, and departure from the saddle type
periodic orbit is set by the leading multipliers, two of which are associated with the
slow subsystem.

The bifurcation scenarios for periodic orbits, shown in figure (10), are analogous
to those of equilibria, discussed in section (4.1). Again, the ocean can play an active
role in the coupled dynamics near a bifurcation point of the model.
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5. Conclusion

We have presented a low-order ocean-atmosphere model which combines wind
driven and overturning circulation. The coupling terms, both through wind torque
forcing and heat exchange at the interface, have been derived from the boundary
conditions of the ocean model. The model describes the clockwise gyre, south of the
gulf stream in the North Atlantic, coupled to a midlatitude, geostrophic atmosphere
with baroclinic waves.

Due to the difference in time scales of wind driven, overturning and atmospheric
dynamics, as well as to the weak feedback to the atmosphere, small parameters ap-
pear in the model. By means of GSP theory, the coupled model is reduced to an
approximate slow manifold. Analysis of the reduced dynamics shows that, as long
as the atmospheric equilibrium is not near a saddle-node bifurcation, only relax-
ation towards a dynamically and statically stable equilibrium can occur in the ocean
model. If the atmospheric equilibrium becomes nearly critical, a Hopf instability
can be induced in the slow dynamics.

At this Hopf bifurcation a cycle, with a period on the overturning time scale, is
created. A bifurcation analysis in two parameters leads to a Bogdanov-Takens point,
where the saddle-node and the Hopf bifurcations coincide. The unfolding of this
codimension two point shows, that the Hopf bifurcation disappears if the feedback
parameter is smaller than a critical value and if the coupling through wind driven
circulation is stronger than a critical value. It also shows, that the cycle, created
at the Hopf bifurcation, becomes homoclinic if the forcing is increased slightly. The
homoclinic connection is weakly unstable, and integrations show damped oscillations
towards a stable equilibrium on the slow (overturning) time scale. During these
oscillations the atmospheric variables are passive, in instantaneous balance with the
ocean’s feedback.

If the solar forcing parameter in the atmosphere model is increased, its equi-
librium state becomes unstable through a Hopf bifurcation which represents the
baroclinic instability. A stable cycle is created with a period of the order of one
week. The continuation of this cycle to higher values of the solar forcing shows that,
in a window in parameter space, chaotic behaviour arises. Some averaged physical
quantities, obtained from a forward integration in the chaotic regime, are compared
to their observed climatological means. In spite of its simplicity, the coupled model
reproduces the observed values well. The intensity of the zonal jet in the atmosphere
and the meridional sea surface temperature difference are slightly exaggerated. A
comparison of power spectra with and without wind driven circulation reveals that
the coupling through wind stress forcing adds to the energy in decadal modes of the
ocean’s variables.

Typically, tiny windows of periodicity exist amidst the chaos. Near the boundary
of stability of such windows, intermittency is observed. This situation is very similar
to the one found in van Veen [2002]. In the fully chaotic regime, the ocean can
be considered passive. The slow variables have very small amplitude and merely
integrate the atmospheric forcing. During the intermittent behaviour, the ocean
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plays an active role, as it repeatedly pushes the atmosphere through the boundary
of periodic and chaotic behaviour.

The low-order climate model presented here can readily be extended to include
more physics and more detail. In contrast to, e.g. Nakamura et al. [1994] and van
Veen [2002], both constituents of the model are scalable, i.e. based on Galerkin
truncation. Extensions of the model, to be studied in future research, include:

e Taking into account salinity in the ocean model, after van der Schrier and Maas
[1998], allowing for a study of the full thermohaline circulation. A parameter-
isation of water vapour transport in the atmosphere then has to be designed.
Thus, the effect of the meridional profile of precipitation can be studied. Also,
the ocean model with salinity can display chaotic behaviour and thus play a
more active role in the coupled dynamics.

e Adding more modes to the atmosphere model, allowing for more complex in-
ternal atmosphere dynamics such as vacillation [De Swart, 1989]. The internal
dynamics of the atmosphere then includes a wider range of time scales, over-
lapping with the time scale of wind driven circulation.

e Adding more modes to the ocean model in order to extend it to a double gyre or
two hemispheres. Inclusion of nonlinear modes is, however, not straightforward
in view of the treatment of the pressure torque [Maas, 2002].

e Explicitly representing the ocean’s mixed layer such as to avoid some of the
parameterisations in section (2.2). This may lead to a better description of the
coupling between wind driven and overturning circulation through advection of
sea surface temperature anomalies.

Thus, a family of low-order models is set up which allows for the mathematical
analysis of important feedback loops in the climate system.
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Samenvatting

Onderzoek naar klimaatvariabiliteit heeft in de afgelopen decennia veel aandacht
getrokken. De observatie van een globale temperatuurstijging, die rond het begin
van de twintigste eeuw inzette, vraagt om een verklaring. Het ligt voor de hand,
een verband te leggen met de industrieele revolutie en de daarmee samenhangende
milieubelasting. Volgens welke mechanismen deze menselijke invloed zich kan doen
gelden is echter slechts ten dele bekend. Daarnaast rijst de vraag, tot op welke
hoogte klimaatverandering door menselijk ingrijpen onderscheiden kan worden van
natuurlijke variabiliteit. Helaas gaan metingen niet veel verder terug in de tijd dan
honderd jaar, zodat het ondoenlijk is de gemeten temperatuurstijging op significantie
te beoordelen aan de hand van empirie.

Als mogelijke oplossing van dit probleem kunnen we een model van het klimaat
opstellen en dit representeren als computerprogramma. De fysische basisvergelij-
kingen voor zo’n model zijn klassieke vergelijkingen uit de stromingsleer, eventueel
aangevuld met een beschrijving van chemische processen, dynamica van ijsmassa’s,
enzovoorts. Met behulp van de computer kunnen we het klimaat in het model naar
believen voor- en achteruit in de tijd laten evolueren. Zo kan worden getest, of het
model meetwaarden goed reproduceert en kunnen voorspellingen worden gedaan.

Probleem is, dat het model in de computer discreet gerepresenteerd is. Met
andere woorden: relevante grootheden, zoals temperatuur en windsnelheid, worden
op een eindig aantal roosterpunten berekend en ook in de tijd worden discrete stap-
jes gezet. Dit introduceert een fout, aangezien de structuur van, bijvoorbeeld, het
temperatuurveld op kleine schaal verwaarloosd wordt. Deze fout is inherent aan het
doen van numerieke berekeningen. De keuze van een rooster, en daarmee van het
oplossend vermogen, van het computermodel bepaald mede met welke fysische ef-
fecten rekening moet worden gehouden bij het opstellen van de modelvergelijkingen.
Processen die zich afspelen op een schaal, kleiner dan de roosterafstand, worden niet
beschreven.

Over het algemeen zal de fout in de berekeningen kleiner zijn als gekozen wordt
voor een fijner rooster en een navenant groter aantal opgeloste fysische processen.
Deze keuze brengt met zich mee, dat het computermodel groter wordt. Het aantal
variabelen, en daarmee het aantal vergelijkingen dat bij iedere stap in de bereken-
ing simultaan moet worden opgelost, groeit snel met het aantal roosterpunten. Dit
geeft twee problemen. Het eerste is dat berekeningen aan een groot model een zware
wissel trekken op de computer. Dit probleem kunnen we voor ons uit schuiven door
steeds snellere computers met grotere geheugens te bouwen. Het tweede probleem,
dat in de ijver het eerste vooruit te schuiven soms vergeten wordt, is dat data,
gegenereerd door een groot model, moeilijk interpreteerbaar zijn. Door de veelheid
aan wisselwerkingen raken causale verbanden ondergesneeuwd. Zulke data worden
dan ook doorgaans geanalyseerd met behulp van statistische methoden. Zo wor-
den gemiddelden en spreidingen berekend, alsmede correlaties tussen verschillende
variabelen. Door afwisselend aan verschillende parameters te draaien, zoals CO2-
uitstoot, zonnestraling en degelijke, wordt gepoogd de fysische mechanismen die
leiden tot structurele klimaatverandering te destilleren.
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Een volledige wiskundige beschrijving van het gedrag van zo’n groot model is
ondoenlijk. Daardoor blijft de vraag, hoe robuust conclusies zijn waartoe model-
berekeningen leiden, onbeantwoord. Maar al te vaak blijken voorspellingen voor
het toekomstige klimaat kritiek afthankelijk van het model of de analysetechniek die
wordt gebruikt. De studie van lage orde modellen is een poging dit probleem te
vermijden. Lage orde wil zeggen dat het oplossend vermogen van het model bewust
laag wordt gehouden. Zodoende wordt de fijnstructuur niet beschreven en worden
veel kleinschalige processen verwaarloosd. De vereenvoudiging van het model houdt
daarmee een selectie in van de relevante tijdschalen en ruimtelijke schalen. Zon-
der de pretentie een realistische beschrijving van het klimaat te geven kan in lage
orde modellen worden gezocht naar causale verbanden en kwalitatief gedrag met een
zekere mate van universaliteit.

Een voorbeeld van universeel gedrag, dat voor het eerst werd beschreven met
behulp van lage orde modellen, is chaos. Edward Lorenz ontdekte chaotisch gedrag,
oftewel gevoelige afhankelijkheid van begincondities, in een lage orde model voor
atmosferische stroming. Ofschoon het model, dat hij bestudeerde, zo sterk vereen-
voudigd was dat geen meteoroloog het serieus kan nemen, leidde zijn ontdekking tot
een nieuw paradigma in de meteorologie. De studie van lage orde klimaatmodellen,
zoals betracht in dit proefschrift, is een poging universeel gedrag op te sporen dat
generiek is voor het klimaatsysteem.

Een pregnante eigenschap van klimaatmodellen, van welke complexiteit dan ook,
is de aanwezigheid van sterk uiteenlopende tijdschalen. De atmosferische gesteldheid
verandert van dag tot dag, terwijl bijvoorbeeld de grootschalige oceaanstroming pas
op een tijdschaal van maanden varieert. De typische tijdschaal van variabiliteit
loopt op tot eeuwen als we kijken naar stroming in de diepe oceaan en dynamica van
ijskappen. Ten opzichte van weersvoorspelling brengt dit een nieuwe vraag met zich
mee: hoe kunnen processen, die zich op zulke uiteenlopende tijdschalen voordoen,
elkaar beinvloeden?

De lage orde klimaatmodellen, die hier bestudeerd worden, zijn oceaan-atmosfeer
modellen. De oceaan is de langzame component en de atmosfeer is de snelle com-
ponent. Is er geen essenti€le interactie tussen de componenten, dan noemen we de
oceaan passief. Forcering van de oceaan door de atmosfeer is dan niet te onder-
scheiden van forcering door witte ruis. Het kan voorkomen, dat de koppeling tussen
de componenten een belangrijke rol speelt. In dat geval noemen de oceaan actief.
Processen die zich in de oceaan afspelen drukken dan hun stempel op de evolutie
van het klimaat.

In hoofdstuk 2 van dit proefschrift wordt een lage orde atmosfeermodel afgeleid,
dat in hoofdstukken 3 en 4 aan twee verschillende oceaanmodellen wordt gekoppeld.
Met behulp van bifurcatie-analyse wordt gezocht naar mechanismen door welke het
oceaanmodel een actieve rol kan spelen. Bifurcatie-analyse beschrijft de afhanke-
lijkheid van het gedrag van een model van zijn parameters. Deze parameters zijn
geassocieerd met fysische grootheden als de instraling van zonnewarmte en wrijving
aan het aardoppervlak. Een kwalitatieve verandering van het gedrag van een model
dient zich aan op een bifurcatiepunt, oftewel bij kritieke waarden van de parameters.
De algemene conclusie, die kan worden getrokken uit hoofdstukken 3 en 4, is dat
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juist in de buurt van zo’n kritiek punt de langzame component, de oceaan dus, een
actieve rol kan spelen. Op afstand van zo’'n kritiek punt is de oceaan passief.

De implicaties van deze conclusie voor grote modellen zijn niet direct duidelijk.
Hoewel er de laatste tijd grote vooruitgang is geboekt is het nog steeds niet haalbaar
om realistische modellen van hoge orde met bifurcatie-analyse te ontleden. Wel zijn
er studies verricht met hoge orde modellen die het hier geschetste beeld bevesti-
gen. Er zijn zekere realistische keuzes van de parameters bij welke het model zeer
gevoelig is voor de koppeling tussen langzame en snelle componenten. Door de on-
derliggende bifurcatiestructuur van dit fenomeen te beschrijven in een hiérarchie
van modellen met een toenemend aantal variabelen, kan uiteindelijk wellicht een
verklaring worden gegeven voor de verschillen in prognoses verkregen met actuele,
realistische klimaatmodellen.
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