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Chapter 1

Introduction

This thesis contains articles about certain random structures in infinite space.
It can be difficult to think about such large systems, but many of the ideas
in this thesis are quite easy to explain, and play with. For this reason the
introduction is interactive, with puzzles and problems for the reader, which I
hope will give some insight into the principles underlying the articles. Some
answers are given at the end of the introduction. Chapters 2, 3 and 4 are
the articles themselves.

1.1 Sum puzzles

Look at Figure 1.1. You see a grid of circles, with a +1 or −1 inside each of
them. I made this picture by flipping a fair coin for each circle. If the coin
came up heads I wrote a +1, if tails a −1.

There is a light grey path through the grid, from the (S) in the bottom
left hand corner to the (F) in the top right. We can follow this path, from
the (S), and add up the +1s and -1s as we go. We find the sums

+1,
+2 = (+1) + (+1),
+1 = (+1) + (+1) + (−1),
+2 = (+1) + (+1) + (−1) + (+1), etc.

The list of all the sums is,

+1, +2, +1, +2, +1, 0,−1,−2,−3,−4,−5,−4,−5,−4,−3,
−4,−3,−4,−3.− 4,−5,−4,−3.

All of these sums are between −5 and +2. We say that all of these sums lie
in the interval [−5, +2].
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Figure 1.1: Fair Coin
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Look at the darker path. If we follow this path and add up the +1s and
-1s we find the sums

+1, 0,−1, 0,−1, 0,−1, 0,−1,−2,−1,−2,−3,−2,−1, 0,
−1, 0, +1, 0, +1, +2, +3, +2, +3, +2, +1.

All of these sums lie in the shorter interval [−3, 3].
Both of these paths are self-avoiding paths. This means that they never

visit the same circle twice. Paths may only go from one circle to another if
the circles touch.

Puzzle 1: Can you find a self-avoiding path with sums in the interval [−1, 1]?
Is there a self-avoiding path with sums in a shorter interval?

Next look at Figure 1.2. You see the same grid of circles, but now there
are more +1s and less -1s. To make this picture I used a biased coin, one
which came up heads roughly six times in seven. We can again add up the
+1s and −1s along the light grey path to give

+1, +2, +1, +2, +3, +2, +3, +4, +5, +4, +3,
+4, +3, +4, +5, +4, +5, +6, +7, +8, +9.

We see that all of the sums lie in the interval [0, +9]. All the sums along the
dark grey path lie in the interval [0, +17].

Puzzle 2: Which self-avoiding path from from (S) to (F) in Figure 1.2 has
sums in the shortest interval?

We see that it is harder to keep our sums in a short interval if the coin is
heavily biased in favour of heads. We are forced to have higher and higher
sums. There just aren’t enough −1s to cancel out all the +1s we have to
meet.

In the first article in this thesis, we explore a larger version of this problem.
We cover an infinitely big table with circles, in the same pattern as before.
Again we flip a coin and put a +1 or −1 in each circle. We choose a circle,
call it the origin, and look at infinitely long self-avoiding paths starting from
there.

Again we add up the +1s and −1s as we go along these paths. We want to
know whether the probability that we can find an infinitely long self-avoiding
path, with all sums in a certain interval, could be more than zero. It turns
out that:

• Whatever the chance that we see a head, we can never have an infinite
self-avoiding path with all its sums in the interval [0, 1].
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Figure 1.2: Biased Coin
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• If the coin is fair or only has a very slight bias, the chance that we see
an infinite self-avoiding path with all its sums in [−21, 21] (for example)
is positive.

• If the chance that the coin lands head side up is very high, then there is
no infinite self-avoiding path with sums in any finite interval, not even
[−10000000000000000, 1000000000000000].

We also explore some variants of this problem. Firstly we can change the
type of path we allow. One other type of path is the directed path. Here
we are only allowed to walk upwards and to the left, through the circles. It
turns out that we see similar behaviour for these paths as for self-avoiding
paths.

Another type of path are those we call the just-visiting paths. These
paths are allowed to visit a circle more than once, but may only visit each
circle finitely many times. These do not include the path that jumps back
and forth forever between the origin and the circle at the left of the origin, for
example, but could include any path that jumps between these circles thirty
times, say, if it then leaves the area forever. Sums along these paths behave
differently to those along self-avoiding paths. As long as the probability that
we throw a head is not 0 or 1, there is always an interval that our sums can
stay in with positive probability. This was not true for self-avoiding paths
when the probability of a head is close to 1.

We also ask whether there exists a self-avoiding path whose sums are 0
infinitely often. If we call the probability we see a head p, then we can show
that there exists a special number, pc, such that

• pc is bigger than 0 and smaller than 1/2,

• If p is smaller than pc or bigger than 1 − pc then there is no infinite
self-avoiding path with sums that are zero infinitely often,

• If p is between pc and 1− pc then there is an infinite self-avoiding path
with sums that are zero infinitely often.

1.2 Telephone problems

Imagine that you are an engineer in a telephone company. You have been
given the task of deciding where to put radio masts. Each radio mast can
send information to, and receive information from, houses within a certain
distance - we say that it communicates with them.
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Alder House

Blossom Cottage

Figure 1.3: a radio mast and two houses

You are given a map of an area, like that in Figure 1.3, Figure 1.6 or
Figure 1.7, on which houses are marked as points. In Figure 1.3 you can see a
radio mast. The grey disc around it shows the area that it can communicate
with. We call this area the covered area. For example Alder House can
communicate with the mast, as it is inside this covered area, but Blossom
Cottage cannot. From now on we will not draw the radio masts but only the
grey discs (covered areas). Whenever you see a grey disc you should imagine
a radio mast at the centre.

Unfortunately you can’t put radio masts wherever you like. Your boss
has given you two very important rules to follow:

The Rules

• Every house should be able to communicate with some radio mast. In
other words every point should be inside some grey disc.

• Every radio mast should be able to communicate with some house. In
other words every grey disc should contain at least one point.

Your boss explains that the first rule ensures all of the customers who live in
the house are able to communicate, and so are made happy. Rule two means
that the telephone company does not build any telephone mast which will
not be used. This saves material and is more environmentally friendly.

Look at Figure 1.4. Here you can see some houses (points), and some
covered areas (grey discs). Note that both rules are satisfied.

Problem 1: Can you use less grey discs to cover the points in Figure 1.4?
How few can you use? How many do you have to use in Figure 1.7?

There is one thing I have not yet mentioned. This is that radio masts
can communicate with each other if their covered areas (grey discs) overlap.
This allows houses in different grey discs to send messages to each other. For
example, in Figure 1.5 Columbine Cottage can send a message to Dogwood
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Figure 1.4: Houses and Covered Areas

House, by first sending the message to radio mast one, which sends it to mast
three, which sends it to mast two, which sends it to Dogwood House.

Problem 2: Look at Figure 1.6. Can you cover the points according to the
rules, so that Elm Cottage can send messages to Feverfew House? How few
discs can you use? Is it possible to cover the points in Figure 1.7, so that
Gorse Cottage can send messages to Hazel House?

Now I want you to suppose that you dislike the inhabitants of Elm Cottage
and Feverfew House. You still have to place radio masts according to the
rules, but you are going to try to your very best to stop them being able to
send messages to each other.

Problem 3: Can you cover all the points in Figure 1.6, according to the
rules, so that Elm Cottage cannot send messages to Feverfew House? What
about if you’re only allowed to use four radio masts?

In the second article we assume the houses have random positions on
an infinite earth, and consider the same kinds of problems. Specifically we
assume that the houses are sited according to a certain random process,
called a Poisson process.

We call an infinite set of houses that can all communicate with each other
an infinite cluster. We show that if the density of houses is very small then
there can be no infinite cluster. If the density is very high we do not have to
make an infinite cluster, unless we have to follow certain extra rules about
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Columbine Cottage

Dogwood House

Mast 1

Mast 3

Mast 2

Figure 1.5: a message is sent

where we may place the radio masts. For example, if we may only place the
masts on a grid then we will have to make an infinite cluster if the density of
houses is large enough. This will also happen if we are only allowed to use a
maximum of m masts in each square of area 1, where m is some number.

We also explain the most economical way to place the radio masts. By
this I mean that there is no other way that uses a smaller density of masts.

1.3 Infinite trouble

Scientists often want to model big systems. By big I mean that the total size
of the system is a lot larger than the things that make up the system. You
could think of water molecules in the ocean, or sand grains in a lump of rock.

If water is slowly absorbed into the grass on a sand dune on the edge
of Ireland, the movement of water molecules in the centre of the Atlantic is
barely affected. Someone kicking Everest doesn’t significantly influence the
chemical reactions in the middle of the mountain. In this type of situation
scientists often choose to pretend that the systems are infinite, in order to
avoid questions about what happens on the boundary (the interaction of the
edge of the mountain with the man kicking it, the absorption of water into
the grass).

One possible problem with this approach is that a model which can be
perfectly described when finite, fails to make sense when infinite. This is not
always obvious from an informal description of it. In this section I will give
three descriptions of systems, and then try to make clear why they don’t
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Feverfew House
Elm Cottage

Figure 1.6: a street

Gorse Cottage

Hazel House

Figure 1.7: countryside
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work when the system is infinite.

An Example

In the high street there is a jeweller’s shop. The owner of the
shop is paranoid about the possibility that someone might steal
his diamonds, and so he allows only one customer in his shop
at a time. The shop is also only open for one hour a day. Any
customer in the shop becomes hypnotised by the diamonds, and
will stay until the shop closes.

One Saturday there are k people who want to visit the shop.
Each has other errands in the town and so arrives at the shop at
a random time in the hour that the shop is open. The time of
arrival of one customer doesn’t influence the others. If someone
arrives at the shop, but sees that there is already a customer
inside, they go away disappointed.

This seems like a fine, if strange, story. Notice that each of the k cus-
tomers has the same chance of being the first to arrive. All of the probabilities
must add up to one, so each customer has chance 1/k of being the first to
arrive. Now suppose that you are one of these customers. The chance that
you are the first is also 1/k. So far so good.

Now let’s let k become infinity. This means that infinitely many customers
want to go to the shop. If k is infinity the probability that you can go into
the shop becomes 1/∞ = 0. No diamonds today. This is also true for any of
the other customers. So who’s in the shop?

Another Example

It’s the university sports day, and k of the students who have
turned up want to join in the three-legged race. For the three-
legged race, students find partners, tie one of each of their legs
together and then the pairs race for a hundred metres. Many of
them will fall over, hilariously.

However one student, X, is very slow, and nobody wants to tie
themselves to X if they have another choice of partner. Can X
join in the race?

If k is odd, then all of the other students can find a partner, without
including X. If k is even one of them must tie themselves to X. If k is infinity,
what happens to X?



1.3. INFINITE TROUBLE 11

1 2 3 4 5 6 7 8 9

Figure 1.8: A row of coins

1 2 3 4 5 6 7 8 9

Figure 1.9: The row of coins after 2, 3 and 4 have flipped

Yet Another Example

Suppose we have a row of k fair coins. Each of the coins is
coloured white on one side and black on the other. To start with
we flip each coin, so that we see the black side of each coin with
probability 1/2. If we don’t see the black side we will see the
white side.

Suppose we see the picture in Figure 1.8, where k is nine. Coin
3 is in a block of three black coins. These three black coins will
all turn white, to give the situation in Figure 1.9, after a random
time with average (1/2)3 = 1/8 seconds, if none of the coins to
either side change colour in this time. In general if there is a block
of n coins, all with the same colour, they all change colour after
a random time with average length (1/2)n seconds, if none of the
coins to either side change colour in this time. In the situation
in Figure 1.9, coin 1 will change colour after an time of average
(1/2)1 seconds, as will coins 8 and 9, and coins 2, 3, 4, 5, 6 and
7 will all change colour together after an average time of (1/2)6

seconds, if none of the neighbours of the respective blocks have
changed.

Notice that the size of a block will increase if it or one of its
neighbouring blocks changes colour, and this will mean that it
changes colour faster thereafter.

The problem with this example is that blocks grow very quickly. It is
possible to show that the average time until a block of length n has grown
to length k (the total number of coins) is at most 2 × (1/2)n seconds. This
means that after a random time, of average length at most 2× (1/2)n, all the
blocks become the same colour. Then after an average time of (1/2)k they
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change colour, and they do this again and again.
If k is finite this is all fine. However if k is infinite, something goes wrong.

When we start we will have blocks of all lengths, but this implies that the
average time until everything becomes one colour is zero. In other words,
at the moment we begin, every coins flips to show the same colour. This is
different behaviour to that described above above.

These examples may seem strange. However it can be difficult to see that
there will be a problem in changing from a finite system to an infinite one
when the description is considerably more complicated. Similarly it can be
hard to show that there is no problem. Fortunately in the third article we
give some conditions under which everything can be made to work.

1.4 Answers

Sum Puzzles

Puzzle 1: There is a self-avoiding path with sums in the interval [−1, 1], but
no self-avoiding path with sums in either of the two possible shorter intervals
[−1, 0] and [0, 1].

Puzzle 2: I can find a self-avoiding path that stays in [0, 6] (a slight variant
of the light grey path), but there might be a better one.

Telephone Problems

Problem 1: You can use less grey discs to cover the points in Figure 1.4 -
there is a covering using five discs. In Figure 1.7 there is a covering using
two discs.

Problem 2: It is possible to cover the points according to the rules, so that
Elm Cottage can send messages to Feverfew House, using four discs. It is,
however, not possible to cover the points in Figure 1.7 so that Gorse Cottage
can send messages to Hazel House.

Problem 3: It is possible to cover all the points in Figure 1.6, according to
the rules, so that Elm Cottage cannot send messages to Feverfew House, but
if you must use four radio masts they will be able to send messages to each
other. This is one of the interesting phenomena we study in Chapter 3 - by
restricting the number of radio masts used, we force communication.



Chapter 2

Infinite paths with bounded or
recurrent partial sums

Lorna Booth and Ronald Meester

This chapter has been published in Probability Theory and Related Fields,
120 (2001), no. 1, 118–142.

We consider problems of the following type. Assign indepen-
dently to each vertex of the square lattice the value +1, with
probability p, or −1, with probability 1− p. We ask whether an
infinite path π exists, with the property that the partial sums of
the ±1s along π are uniformly bounded, and whether there exists
an infinite path π with the property that the partial sums along π
are equal to zero infinitely often. The answers to these question
depend on the type of path one allows, the value of p and the
uniform bound specified. We show that phase transitions occur
for these phenomena. Moreover, we make a surprising connection
between the problem of finding a path to infinity (not necessar-
ily self-avoiding, but visiting each vertex at most finitely many
times) with a given bound on the partial sums, and the classical
Boolean model with squares around the points of a Poisson pro-
cess in the plane. For the recurrence problem, we also show that
the probability of finding such a path is monotone in p, for p ≥ 1

2
.

13
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2.1 Introduction

In this paper we consider a connected, infinite, locally-finite graph, G, with
vertex set V , and edge set E. This will generally be Z2, although many
of our results can be extended to other graphs. One particular vertex is
distinguished and called the origin, 0. To every vertex v ∈ V , we assign a
random variable Xv, which takes value 1 with probability p and value −1
otherwise, independently of the values at other vertices.

A path from a vertex z0 say, is a sequence of vertices π = (z0, z1, z2, . . .)
such that (zi−1, zi) ∈ E for i = 1, 2, . . . For such a path we define the partial
sums Sπ

n =
∑n

i=1 Xzi
for n = 1, 2, . . . , where, for our later convenience, we

do not count the value at the starting point, z0. We are concerned with the
question of whether there exists an infinite path π with either supn{|Sπ

n | <
∞} or with Sπ

n = 0, for infinitely many n. Note that these problems are
symmetric in p around 1

2
. The answers to these questions will depend upon

the types of paths we allow ourselves to use. We will consider three different
types of infinite paths:

Definition On the square lattice, Z2, an oriented path, π = (z0, z1, . . .),
is a path such that zi − zi−1 = e1 or zi − zi−1 = e2, for i = 1, 2, . . ., where
e1 and e2 are the first and second coordinate vectors. A self-avoiding path
is a path whose vertices are all distinct. Finally, a just-visiting path is a
path in which any vertex appears only finitely many times.

All oriented paths are self-avoiding, and all self-avoiding paths are just-
visiting. Note also that the existence of an infinite self-avoiding path with
bounded partial sums starting at some vertex, implies that there exists one
from every other vertex. Such a path can be constructed, for example, by
taking the shortest self-avoiding path from the chosen vertex to the bounded
path and thereafter following it. This also true for just-visiting paths, simi-
larly.

On the integer line (where integers are connected by an edge if their
difference is one), the answers to these questions for self-avoiding paths are
well known, as they refer to the simple random walk. (For information about
this see for example [10].) Here we have that when p = 1

2
we have no bounded

partial sums, but we do have partial sums that are zero infinitely often, almost
surely. At all other values of p we have neither behaviour. If we consider
just-visiting paths, it can be shown that there are no paths with bounded
partial sums, almost surely, for any value of p, but for all p ∈ (0, 1) there are
just-visiting paths with partial sums that are zero infinitely often.

Benjamini and Peres [6], answered both questions (and many other more
general ones), for self-avoiding paths on trees. Given a tree, T , the boundary,
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∂T is the set of rays or infinite self-avoiding paths emanating from the root,
0. If we denote by dim(∂T ) the Hausdorff dimension of this boundary (see
[8] for an explanation of Hausdorff dimension) then their theorem states that
a path from 0 with bounded partial sums exists with positive probability if
and only if dim(∂T )> log( 1

2
√

p(1−p)
). If we denote the packing dimension by

Pdim(∂T ) (see [8]), then they show that for Pdim(∂T )< log( 1

2
√

p(1−p)
) there

are no self-avoiding paths with partial sums returning to zero infinitely often,
almost surely, while for dim(∂T )> log( 1

2
√

p(1−p)
) these exist with positive

probability.

A sufficient condition to have infinite paths with both bounded partial
sums and partial sums that are zero infinitely often, is the existence of AB
percolation, for appropriate parameter values. From our viewpoint AB perco-
lation asks for the almost sure existence of a self-avoiding path with alternate
1s and −1s. Thus the partial sums are zero at every other point along the
path, and never exit either of the intervals [0, 1] or [−1, 0]. It has been shown
(for example) that AB percolation occurs on the triangular lattice for an
interval of values of p around 1/2, see [2]. AB percolation has been shown
not to occur, for any value of p, on the square and hexagonal lattices, see
[3]. We note that AB percolation occurs for self-avoiding paths if and only
if it occurs for just-visiting paths. An interesting feature of AB percolation
is that its probability is not monotonic in p on [1/2, 1] for many graphs, see
[15].

A related, yet weaker, question is whether ρ-percolation occurs, that is,
whether there exists a self-avoiding path π such that lim infn→∞

Sπ
n

n
≥ 2ρ− 1

(see [17]). AB percolation, standard percolation, ρ-percolation and the paths
we investigate are all special cases of the general question of which words
(infinite sequences of −1s and 1s) can be seen along self-avoiding paths in a
percolation configuration (see [5], [12] and [13]).

We end this section with some notation and definitions used throughout.
The product measure described above is denoted by Pp. Denote by Ep the
corresponding expectation operator. We call two vertices adjacent if there is
an edge between them, and we call two edges adjacent if they share a vertex.
We define the distance between two points, v1 = (v1

1, v
1
2), v

2 = (v2
1, v

2
2) ∈ R2

as |v1
1 − v2

1|+ |v1
2 − v2

2|, the L1-distance. An interval in R is said to have size
s if it contains exactly s integers.

The next section in this paper contains our principal results, and the
subsequent sections contain the proofs.
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2.2 Principal results

Our first theorem states that there is a non-trivial phase transition for ori-
ented paths.

Theorem 2.2.1 On the square lattice the following hold.
(a) There are no infinite oriented paths with sums bounded in an interval of
size M ≥ 2, Pp-almost surely, for p in the set:

[
0,

1−
√

1− 1/4 cos2(π/(M + 1))

2

)
∪

(
1 +

√
1− 1/4 cos2(π/(M + 1))

2
, 1

]
.

In particular, for p ∈
[
0, 1

2
− 1

2

√
3
4

)
∪

(
1
2

+ 1
2

√
3
4
, 1

]
, there are no paths with

sums bounded in any interval, Pp-almost surely.
(b) There are, Pp-almost surely, infinite oriented paths with partial sums that
return to zero every 42 steps for p ∈ (0.475, 0.525). This immediately implies
that there are oriented paths with partial sums that are bounded and that
return to zero infinitely often, Pp-almost surely, and thus also self-avoiding
and just-visiting paths with the same properties.

We see here a contrast with AB percolation, which occurs for no values of p
on this lattice.

We need a separate statement to rule out the possibility of infinite self-
avoiding paths with bounded partial sums, or with partial sums that return
to 0 infinitely often, for p close to 0 and 1. We shall formulate the next result
for more general graphs.

For a graph G, let σG(n) be the number of self avoiding walks of length
n, from the origin. Let cG = limn→∞ σG(n)1/n, if this exists. cG is called
the connectivity constant of G. For the integer lattice (and many others),
existence of the connectivity constant follows from subadditivity.

Theorem 2.2.2 Let G be a graph with a well-defined connectivity constant
cG. Then there are, Pp-almost surely, no infinite self-avoiding paths with
partial sums that return to 0 infinitely often or with partial sums that are
bounded in some interval for

p ∈

0,

1−
√

1− 1
c2G

2


 ∪




1 +
√

1− 1
c2G

2
, 1


 .
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For the square lattice it has been shown rigorously that cZ2 ≤ 2.7 (see [1]),
which implies that we have no infinite self-avoiding path with bounded partial
sums for p ∈ [0, 0.035) ∪ (0.965, 1].

For just-visiting paths, the situation is quite different. For every p ∈ (0, 1)
we can define a minimal interval size, I(p) say, to be the minimal integer,
such that there exists a just-visiting path from the origin, with partial sums
bounded in an interval of length I(p), with positive probability.

Theorem 2.2.3 On the square lattice the following hold.
(a) For any p ∈ (0, 1) we have 2 ≤ I(p) < ∞. That is, for any p ∈ (0, 1)
there is, with positive Pp probability (and hence with Pp probability one), an
infinite just-visiting path with bounded partial sums. We can take this path
so that the partial sums are equal to 0 infinitely often.
(b) We have

lim
p→1

I(p) = ∞.

That is, for any interval J on the real line we can find p, close to 1, such
that for this value of p, no just-visiting paths with all partial sums in J exists,
Pp-almost surely.

Our next result gives a connection between two apparently unrelated pro-
cesses, the percolation of just-visiting paths with bounded sums, and the
classical Boolean model.

Consider a Poisson process of rate λ in the plane and centre a diamond
(with fixed orientation) of radius 1/2 at every Poisson point, that is, v is in
the diamond centred at a Poisson point x if the distance between v and x is
at most 1/2. This process is known to have a critical point for percolation
λc, such that for λ ≤ λc there is no percolation (that is, the union of all
diamonds contains no unbounded connected component almost surely), while
for λ > λc percolation occurs. Later we shall need to talk about diamond
processes formed by placing a diamond of radius r at each of the points of
the Poisson process, and we denote the critical point for this model by λc(r).
It can be seen by a simple scaling argument that,

r2
1λc(r1) = r2

2λc(r2) (2.1)

for any two values, r1 and r2. See [16] for information on this type of model,
and the results mentioned above.

Theorem 2.2.4 Consider a sequence q1, q2, q3, . . . of numbers in (0, 1) con-
verging to 1.
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(a) If lim supN→∞ 2N2(1 − qN)2 < λc then, for N sufficiently large, there
PqN

-almost surely does not exist an infinite just-visiting path with partial
sums bounded in [0, N ].
(b) If either

λc < lim inf
N→∞

2N2(1− qN)2 ≤ lim sup
N→∞

2N2(1− qN)2 < ∞

or
lim inf
N→∞

2N2(1− qN)2 = ∞,

then for N sufficiently large there exists, with positive PqN
probability (and

hence with Pp probability one), an infinite just-visiting path with partial sums
bounded in [0, N ].

Two remarks are appropriate here. In the first place, we could replace the
interval [0, N ] in this theorem by any sequence of intervals J1, J2, . . ., with
Jk of size k. We chose the above formulation for the sake of simplicity of the
statements. Secondly, the results in (a) and (b) together will imply that we
can strengthen the result of Theorem 2.2.3(b) in the following sense:

Corollary 2.2.5 The interval size I(p) defined before Theorem 2.2.3 satis-
fies

lim
p→1

(1− p)I(p) →
√

λc

2
.

Our next result gives a relationship between paths with partial sums that
return to zero infinitely often and those with partial sums that do not con-
verge to +∞. It is motivated by the question of whether the probability
of an infinite self-avoiding path with bounded partial sums is monotone in
p > 1/2. This we do not know, but we can prove a monotonicity statement
for the probability of having an infinite self-avoiding path with partial sums
equal to zero infinitely often. This quickly follows from the next result.

Theorem 2.2.6 On the square lattice, for any value of p > 1/2 such that
with positive probability, there is an infinite self-avoiding path with partial
sums that do not converge to +∞, there is, with positive probability, an
infinite self-avoiding path with partial sums that return to zero infinitely often.

Corollary 2.2.7 On the square lattice, for p > 1/2, the probability that there
exists an infinite self-avoiding path with partial sums that are equal to zero
infinitely often is monotone decreasing in p.
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2.3 Bounded sums on self-avoiding paths

The first part of Theorem 2.2.1 is proved via a recurrence method, the second
part with a second moment method.

Proof of Theorem 2.2.1(a) We will show that the expected number of
oriented paths of length n, from any point on the line x + y = 0 to a given
point (a, b) (with a + b = n, a, b ∈ Z), with sums bounded in the interval,
tends to zero as n tends to infinity. To see that this suffices, note that for
any interval I, the expected number of paths from the origin of length n
with partial sums in I is equal to the expected number of paths to the point
(a, n− a) from the line x + y = 0 with partial sums in I, for any a ∈ Z.

Given an interval, I, of size M , and a point (a, b) (with a + b > 0) define
V(a,b) to be the random vector with elements v(a,b),i, i ∈ I which record the
number of oriented paths from x + y = 0 to (a, b) which have partial sums
bounded in the interval and final partial sum i.

Let Λ(a,b) be the random M ×M matrix that has entries,

λij =

{
1 i = j − 1,
0 otherwise,

if (a, b) is assigned value +1, and

λij =

{
1 i = j + 1,
0 otherwise,

if (a, b) is assigned value −1.

Then,

V(a,b) = Λ(a,b)(V(a−1,b) + V(a,b−1)).

We now take the expectation of both sides of this equation, noting two things.
The first is that Λ(a,b) is independent of V(a−1,b) and V(a,b−1). The second is
that the expectation of V(a,b) is the same as that of V(c,d) if a + b = c + d.
Thus we may write V̄n to be the expectation of any V(a,b) with a+ b = n. Let
Λ̄ be the expectation of Λ(0,0) (which is also the expectation of Λ(a,b) for any
(a, b), as they are identically distributed). Hence we have that

V̄n = Λ̄(V̄n−1 + V̄n−1) = 2nΛ̄nV̄0.

From this we see that if the largest absolute value of an eigenvalue of 2Λ̄
is less than 1, limn→∞ V̄n will be the zero vector. This then implies that
with probability one the number of infinite paths with sums bounded in the
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interval is zero. Now if we denote the entries of Λ̄ by λ̄ij, we have that,

λ̄ij =





p i = j − 1,
1− p i = j + 1,

0 otherwise.

It can be easily calculated that the largest eigenvalue of this matrix is

2
√

p(1− p) cos(π/(M + 1)),

which gives the result. 2

For the proof of Theorem 2.2.1(b) we need the following combinatorial
lemma, which we will prove at the end of this section. We denote by Nn the
number of oriented paths from (0, 0) to (n, 2n) with final partial sum zero.

Lemma 2.3.1 We have, for n even,

Pp(Nn > 0) ≥
(
3n
n

)2( 3n
3n/2

)2

∑3n
k=1 T (n, k)

∑k
i=0

(
k
i

)(
3n−k

3n/2−i

)2
p−i(1− p)−k+i

,

where

T (n, k) =

3n/2∑
a=0

k∑
m=0

(
3n− 2a

n− a

)
22aC(a,m)

(
k

m

)(
3n− k − 1

3n− 2a− (k −m)

)
,

and C(a,m) is the coefficient of t2a in the series expansion of (1−√1− t2)m.
With n = 14 and p ∈ (0.475, 0.525) this gives us a lower bound of 0.934.

Proof of Theorem 2.2.1(b) Lemma 2.3.1 shows that the probability of
diagonally crossing a n × 2n rectangle, with a final partial sum of zero is
high. We then combine several of these events in a particular way, with
a probability that is still high. Finally we place these rectangles onto a
larger grid in such a way that we can show that this stochastically dominates
supercritical ordinary site percolation on the square lattice. This then implies
the existence, with positive probability, of a path with the required property.

We define, for even n, the event C1 as the event that there exists an
oriented path from (0, 0) to (n, 2n) with final partial sum 0, and C2, . . . , C4

similarly with (0, 0) to (n, 2n) replaced by (0, 0) to (2n, n), (−2n, n) to (0, 0)
and (−n,−2n) to (0, 0) respectively. The event C = C1 ∩ C2 ∩ C3 ∩ C4 then
has probability at least 0.753 > 3/4, for n = 14 and p ∈ (0.475, 0.525) (using
the fact that the events C1 and C2 are independent of C3 and C4). It is
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(2n,n)

(0,0)

(n,2n)

(−2n,−n)

(−n,−2n)

Figure 2.1: The event C, dashed lines indicate paths that cross the rectangles
with final partial sums of zero.
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Figure 2.2: The larger grid; the grey areas are those we consider, heavy lines
indicate the edges of the larger distorted lattice.

illustrated in Figure 2.1. We denote by w + C the event that C occurs, but
translated to w from (0, 0).

We now move to the larger grid formed by the vertices {(2an, an) +
(bn, 2bn) : a, b ∈ Z} with edges from (2an, an) + (bn, 2bn) to
(2(a + 1)n, (a + 1)n) + (bn, 2bn) and (2an, an) + ((b + 1)n, 2(b + 1)n). Note
that this grid is a distorted version of the square lattice, and so has the same
critical point for oriented independent percolation, which is known to be no
more than 3/4 (see [14]). We call a vertex, (2an, an) + (bn, 2bn), on this grid
‘open’ if the event (2an, an) + (bn, 2bn) + C occurs - see Figure 2.2.

A path of open vertices on the large grid then implies a path on the
standard grid with partial sums that are zero every 3n steps. This certainly
happens with positive probability for n = 14 and p ∈ (0.475, 0.525). 2

Proof of Lemma 2.3.1 We shall estimate the probability that Nn > 0 via a
second moment method. The expected number of oriented paths from (0, 0)
to (n, 2n) with final partial sum zero is

(
3n

n

)
×

(
3n

3n/2

)
p3n/2(1− p)3n/2.
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Given two of these paths, if they meet at precisely k vertices (excluding
(0, 0)), we claim that the probability that they both have partial sum zero
at (n, 2n) is

k∑
i=0

(
k

i

)(
3n− k

3n/2− i

)2

p3n−i(1− p)3n−k+i. (2.2)

To see this, we condition upon the sum along the shared portion of the two
paths. The probability this sum is equal to j is

(
k

k+j
2

)
p(j+k)/2(1− p)(k−j)/2,

when (k + j)/2 is an integer, and zero otherwise. The sums along the non-
shared portions of the two paths are independent and each has probability

(
3n−k

3n−k−j
2

)
p(3n−k−j)/2(1− p)(3n−k+j)/2

of being equal to −j. Thus summing over the possible values of j we find
that the probability that both paths have partial sum zero at (n, 2n) is equal
to

k∑
j=−k,

j with same parity as k

(
k

k+j
2

)(
3n− k
3n−k−j

2

)2

p(3n− (k+j)
2

)(1− p)(3n− (k−j)
2

).

If we now substitute i for j+k
2

, we find formula (2.2) above.
Thus to calculate the expected value of N2

n, we need to know only how
many (ordered) pairs of oriented paths from (0, 0) to (n, 2n) there are that
meet in precisely k places (excluding (0, 0)). If we denote this number by
T (n, k) then we have that,

Ep(N
2
n) =

3n∑

k=1

T (n, k)
k∑

i=0

(
k

i

)(
3n− k

3n/2− i

)2

p3n−i(1− p)3n−k+i.

We first show that T (n, k) is equal to the number of paths in Z2 with a certain
property. Consider a pair (π, π′) of oriented paths in Z2 from (0, 0) to (n, 2n).
We map (call this map A) this pair to an undirected path (z0, z1, . . . , z3n)
in Z2 as follows. Start in the origin, that is, z0 = (0, 0). The path is now
constructed sequentially as follows. If π and π′ both make a step to the right,
then z1 = z0 + e1; if π and π′ both make a step upward, then z1 = z0 − e1;
if π goes up, and π′ goes to the right, then z1 = z0 + e2; if π goes to the
right and π′ goes upwards, then z0 = z1 − e2. This procedure is repeated for
each of the steps of π and π′. Here, e1 and e2 denote the unit vectors. For
example, if π = ((0, 0), (1, 0), (1, 1), (1, 2)) and π′ = ((0, 0), (0, 1), (0, 2), (1, 2))
then we find the two dimensional path shown in Figure 2.3. Let us define
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(-1,-1) (0,-1)

(0,0)(-1,0)

Figure 2.3: Path produced from π = ((0, 0), (1, 0), (1, 1), (1, 2)) and π′ =
((0, 0), (0, 1), (0, 2), (1, 2) by map A or from x = (0,−1), y = (0,−1, 0), and
S = (v, h, v) by map B.

a relevant path of length 3n in Z2 to be a series of vertices z0, z1, z2, . . . , z3n

with z0 = (0, 0), z3n = (−n, 0) and ‖zi − zi−1‖ = 1, i = 1, 2, . . . , 3n. Define a
k-path of length 3n as a relevant path of length 3n in which precisely k of the
zi, i = 1, 2, . . . , 3n , have second coordinate 0. The map A described above
maps a pair of paths (π, π′) that meet in k places to a k-path in a bijective
fashion. We conclude that T (n, k) is the number of k-paths of length 3n, and
we shall now explain how we can find this number.

Given two one dimensional sequences, y = (y0, y1, . . . , y2a) (of length
2a) and x = (x0, x1, . . . , x3n−2a) (of length 3n − 2a), both starting in 0,
and making steps of size ±1, and a sequence S = (s1, s2, . . . , s3n), si ∈
{v, h}, i = 1, 2, . . . , 3n containing 2a v’s and 3n − 2a h’s we can construct
a path z = (z0, z1, . . . , z3n) of length 3n, in the following way. Start in the
origin. We copy steps in x to horizontal steps in z and steps in y to vertical
steps in z, and the order in which this is done is governed by the order of
the letters in S. For instance, if we take x = (0,−1), y = (0,−1, 0), and
S = (v, h, v) we again find the path in Figure 2.3. We call this map B. It
is easy to see that every relevant path can be produced from this procedure
given the appropriate choice of x, y and S, and that B is injective.

Map B produces a k-path of length 3n from y = (y0, y1, . . . , y2a), x =
(x0, x1, . . . , x3n−2a) and S if and only if all of the following hold, for some
m ≤ k:

1. y0 = y2a = 0 and m of the steps of y end at zero, that is, the set
{0 < i ≤ 3n− 2a ; yi = 0} contains m elements;
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2. x0 = 0, x3n−2a = −n;

3. k−m of the steps of y either occur after a step of x that ended at zero
but before another step of x, or before any steps of x.

We shall now count how in how many ways this is possible. The probabil-
ity generating function for the first return time for a one dimensional simple
symmetric random walk is given by (1−√1− t2). Thus the probability that
such a random walk returns to the origin for the mth time at time 2a is the
coefficient of t2a in (1−√1− t2)m. Denote this coefficient by C(a,m). There
are 22a such simple symmetric random walk paths of length 2a, and they
are all equally likely. Hence the number of paths y above of length 2a with
precisely m steps that end at zero is is 22aC(a,m).

There are
(
3n−2a
n−a

)
choices for x. Given x and y, we need to find how many

sequences S of h’s and v’s give k-paths. Now S must contain 2a v’s, and we
identify these, in order, with the 2a steps of y and label those that correspond
to steps in y that end at 0 with a star. We need to fit the remaining 3n− 2a
h’s into this sequence, such that k −m of them appear either before any v,
or after a starred v but before any other v, and the other 3n− 2a− (k−m)
appear in other places. We claim that we can do this in

(
k
m

)(
3n−k−1

3n−2a−(k−m)

)

ways. This is the product of the number of ways in which (k−m) h’s can be
fitted into the (m + 1) places that are either before any v, or after a starred
v but before any other v (denote this number by W (k −m,m + 1)) and the
number of ways in which the remaining h’s can be fitted into the remaining
2a − m places. To calculate W (k − m,m + 1) we work out the number of
ways in which the (k−m) h’s could be fitted into the (m+1) places if the h’s
were labelled h1, h2, . . . , hk−m, and then divide by the number of labellings,
(k −m)! We can put h1 into (m + 1) places. There are then (m + 2) places
into which we can put h2, directly to either side of h1 and into the places in
which we did not put h1. There are, similarly, (m + 3) places where we can
put h3, and as we continue in this manner, there will be (m + i) places in
which to put hi. Hence

W (k −m,m + 1) =
(m + 1)(m + 2) . . . (m + (k −m))

(k −m)!
=

(
k

m

)
.

Counting the number of ways in which we can fit the rest of the h’s into the
other places works in exactly the same way. Thus if we sum over m and a
we find the total number of k-paths,

T (n, k) =
n∑

a=0

k∑
m=0

(
3n− 2a

n− a

)
22aC(a,m)

(
k

m

)(
3n− k − 1

3n− 2a− (k −m)

)
.
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Finally, since Nn is non-negative and integer-valued, the second moment
bound

P(Nn > 0) ≥ Ep(Nn)2

Ep(N2
n)

then gives the desired result. 2

2.4 Bounded and recurrent sums

The proofs of Theorems 2 and 3 are not difficult and are based on simple
counting arguments. We will, however, need the following lemma. The proof
of the lemma comes after the proof of the theorem.

Lemma 2.4.1 If, for a given value of p, there is an infinite self-avoiding
path with bounded partial sums, with positive probability, then there is an
infinite self-avoiding path whose partial sums returns to 0 infinitely often,
with positive probability.

Proof of Theorem 2.2.2 We start by noting that if there exists a path with
partial sums that return to 0 infinitely often, with positive probability, then
the expected number of points that can be reached from 0 by a self-avoiding
path with final partial sum 0 must be infinite. However the expected number
of points that can be reached from 0 by a self-avoiding path with final partial
sum 0 is certainly no greater than the expected number of finite self-avoiding
paths that have partial sum 0 on their last step. The number of self-avoiding
paths of length n is σG(n), so this expectation is

∑
n>0, n even

σG(n)

(
n

n/2

)
pn/2(1− p)n/2

≤
∑

n>0, n even
σG(n)2n(p(1− p))n/2 < ∞

for p such that 22c2
Gp(1−p) < 1. Hence for these values of p (which are those

given in the theorem) there can be no path with partial sums that return to
0 infinitely often. The part of the theorem referring to bounded partial sums
then follows immediately from Lemma 2.4.1. 2

Proof of Lemma 2.4.1 We first show that

Pp(∃ a path π with Sπ
n = 0 i.o.) = 0 (2.3)
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implies that for all z ∈ Z,

Pp(∃ a path π with Sπ
n = z i.o.) = 0. (2.4)

To see this, suppose that an integer, z say, exists such that the event in
(2.4) has positive probability. Then there must exist a non-random vertex, x
say, such that with positive probability, there exists a path which has partial
sums that are z infinitely often, passes through x, and has partial sum z at
x. Then we have a path from x that has partial sums that are zero infinitely
often. This contradicts (2.3).

Now, if we have an infinite self-avoiding path with partial sums that
are bounded, then these partial sums must visit some value infinitely often.
Thus, by the previous paragraph, if we have an infinite self-avoiding path
with partial sums that remain bounded, with positive probability, we must
have an infinite self-avoiding path with partial sums that are zero infinitely
often, with positive probability. 2

Proof of Theorem 2.2.3 To prove the first part of this theorem we first
fix p ∈ (0, 1). We can find a box size, m, such that with probability
higher than 3/4 the box B(m) = {(x, y) : x, y ∈ {0, 1, . . . ,m − 1}} con-

tains the configuration

{ −1 1
−1 1

}
. We call this a balancing configura-

tion. Now divide the square lattice into boxes such that (x, y) is in the
box indexed by (a, b), a, b ∈ Z if x ∈ {ma,ma + 1, . . . , m(a + 1) − 1} and
y ∈ {mb,mb + 1, . . . , m(b + 1)− 1}. Call the box indexed by (a, b) ‘open’ if
it contains the above balancing configuration, and ‘closed’ otherwise. These
events are independent and have identical probability for all boxes. The fact
that we have site percolation on the oriented lattice when boxes are open
with probability greater than 3/4 now implies that with positive probability
we have an infinite sequence of adjacent (that is, sharing one boundary edge)
open boxes (see [14]). We now show that this event implies the existence of
a just-visiting path that has bounded partial sums returning to 0 infinitely
often.

Our path takes the shortest route from balancing configuration in one
open box to balancing configuration in the next, in the infinite sequence
of adjacent open boxes. When at a balancing configuration the path moves
about on the -1s or 1s until its partial sum becomes zero. When this happens
it goes to the next open box in the path. The partial sums never leave the
interval [−3m, 3m], so we have our path.

For the second part of the theorem we use the enhanced square lattice,
which is obtained from the ordinary square lattice by adding edges between
all pairs of vertices at Euclidean distance

√
2. We divide the square lattice
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into disjoint boxes, {B(N +1)+((N +1)a, (N +1)b) : a, b ∈ Z}. We call a box
‘open’ if it contains a vertex with a −1 assigned to it, and ‘closed’ otherwise.
Now if there exists a circuit of adjacent closed boxes around the origin then
there can be no path from the origin with partial sums bounded in some
interval of length N . For large enough p (depending on N) the existence of
this circuit follows from standard counting arguments. 2

2.5 Asymptotics

Before we start with the involved proof of Theorem 2.2.4, it is worth explain-
ing why the result is reasonable. When p is close to 1, there will be mostly
+1s around with isolated −1s every now and then. Therefore, partial sums
will typically increase. We can essentially only decrease partial sums along
a just-visiting path, when we see two neighbouring vertices both with label
−1. Therefore, these double −1s play an important role, and the only way to
keep the partial sums bounded is to jump around from one such double −1
to the other. For p close to 1, the spatial distribution of these double −1s will
be close to a Poisson process. Depending on the density of these double −1s
it will or will not be possible for a sequence of partial sums to stay within a
given bound. This is where continuum percolation comes in. If the double
−1s are too far apart from each other, that is, if a certain percolation process
does not percolate, then the bound will be large. If the percolation process
does percolate, then we can use an infinite path in the percolation process
to find a path with partial sums that remain bounded.

A significant amount of work is necessary to turn this idea into a proof.
The connection with continuum percolation is made in Proposition 2.5.1,
Lemma 2.5.2 and Lemma 2.5.6. In Lemma 2.5.3 and Lemma 2.5.7 this is
translated into statements concerning the existence of paths with bounded
partial sums for particular values of the parameter p. In the final proof of
the theorem we then show how we can obtain the general result.

Fix λ > 0. On the grid (Z/N)2 assign the value 1 to each vertex with prob-
ability pN , and the value −1 otherwise, independently of all other vertices,
and where pN is defined as to satisfy

2N2(1− pN)2 = λ. (2.5)

Next we put a point at the centre of every edge of the grid which has −1s
at both ends, and the resulting points form a point process which we call
ΠN . We shall also need the point process Π+

N defined as follows. Consider
an edge which contains a point of ΠN . This point is in Π+

N if and only if the
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parallel edge immediately to the right or above it has +1s at its endpoints.
We call such a configuration of two adjacent −1s with two adjacent +1s to
the right or above it a balancing configuration. Π+

N contains no other points,
hence Π+

N is a subset of ΠN . We write ΠN(S) to denote the number of points
of ΠN in S. The number of points of ΠN in S that are due to edges that are
completely contained in S is denoted by ΠN(S−). Similar definitions apply
to Π+

N .

Proposition 2.5.1 The point processes ΠN converge weakly to a homoge-
neous Poisson process with rate λ when N →∞.

To prove this more or less obvious result, it suffices to prove convergence of
the avoidance function, that is, the probability that a finite union of rectan-
gles contains no points, see [7], Proposition 9.1.IX. This can be done directly
from the definition of the pNs. However, in the proof of the forthcoming
Lemma 2.5.6 we shall need a estimate about weak convergence that is uni-
form for λ in a certain interval. For that estimate we shall use an explicit
Stein-Chen upper bound on the total variation distance between two distri-
butions. To save space later, we also use this Stein-Chen approach in the
following proof of Proposition 2.5.1.

Proof of Proposition 2.5.1 Consider a union of rectangles R which, with-
out loss of generality, we will assume has total area 1. We say that en edge e
satisfies e ∈ R if the centre of e is contained in R. We write Ge for the event
that e has −1s on both endpoints. Now ΠN(R) can be written as

ΠN(R) =
∑
e∈R

1Ge .

where 1Ge denotes the indicator function of Ge. This indicator function
is increasing in the number of −1s, and has expectation (1 − pN)2. We
can therefore apply Corollary 2.E.1 in [4] and conclude that the total varia-
tion distance between a Poisson distribution with parameter Ep(ΠN(R)) and
ΠN(R) is bounded above by

1− e−Ep(ΠN (R))

Ep(ΠN(R))

(
Var(ΠN(R))− Ep(ΠN(R)) + 2

∑
e∈R

(1− pN)4

)
. (2.6)

The asymptotic variance of ΠN(R) is easily computed: ΠN(R) is a sum
of (2 + o(1))N2 indicator random variables associated with the edges of the
grid. When these edges are not adjacent, the corresponding indicator random
variables are independent. Each edge (apart from those at the boundary
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which have fewer) has 6 adjacent edges, and the probability that two adjacent
edges both have a point from ΠN is equal to (1 − pN)3. These observations
lead to

EpN
(ΠN(R)2) = (2 + o(1))N2(1− pN)2 + 6(2 + o(1))N2(1− pN)3 +

+(2 + o(1))2N4(1− pN)4

→ λ + λ2,

when N →∞, because λ = 2N2(1− pN)2. Clearly, limN→∞ Ep(ΠN(R)) = λ.
Hence Var(ΠN(R)) converges to λ and since

∑
e∈R

(1− pN)4 = (2 + o(1))N2(1− pN)4 → 0,

for N → ∞, the bound (2.6) above implies that the total variation dis-
tance between the distribution of ΠN(R) and a Poisson distribution with
parameter Ep(ΠN(R)) converges to 0. A Poisson distribution with parame-
ter Ep(ΠN(R)) certainly converges in distribution to a Poisson distribution
with parameter λ, and as convergence in total variation implies convergence
in distribution, we have that ΠN(R) converges in distribution to a Poisson
distribution with parameter λ. 2

Next we centre a diamond with radius 1/2 around each point of ΠN . The
result we shall call the discrete diamond process, to distinguish it from the
continuous diamond process which is similar, but with diamonds centred
around points of a Poisson process. The process obtained by centring dia-
monds around points of Π+

N is called the reduced discrete diamond process.
Recall the definition of λc as the critical density associated with the contin-
uous diamond process. The reason for the slightly larger radius in the next
lemma will become apparent soon.

2.5.1 Proof of Theorem 2.2.4(a)

Lemma 2.5.2 Let λ < λc. There exists ε > 0 such that for all δ > 0 we can
find L sufficiently large such that for all large N , the probability (under PpN

)
that the discrete diamond process with radii 1

2
(1 + ε) connects [0, 3L] × 0 to

[0, 3L]× L within [0, 3L]× [0, L] is at most δ.

Proof Let λ < λc. Then using scaling relation (2.1) we can find ε > 0 such
that λ < λc(

1
2
(1 + ε)). In words, after increasing the radii of the diamonds

by a factor 1 + ε, the continuous diamond process remains subcritical. Now
let δ > 0. Since the continuous diamond process (with increased radii) is
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subcritical, we have from Theorem 3.5 in [16] (stated for balls but the proof
also works for diamonds) that the probability that this continuous diamond
process connects [0, 3L] × 0 to [0, 3L] × L is at most δ/2, for L sufficiently
large. We fix such an L. Choose ε′ so small that if we partition [0, 3L]× [0, L]
into squares with side length ε′, with probability at least 1−δ/2 we have that
(i) a Poisson process with rate λ has at most one point in each of the squares;
(ii) the connectivity structure of the diamonds (of radius 1

2
(1 + ε)) around

these points does not change when we move points of the Poisson process
around in the squares with side length ε′ in which they are contained.

We denote this set of squares with side length ε′ by S. Since ΠN con-
verges weakly to a Poisson process with rate λ (Proposition 2.5.1), the PpN

-
probability that a particular subset of S contains a point of ΠN , converges
to the corresponding probability in a Poisson process with rate λ. Property
(ii) above then guarantees that if the continuous diamond process does not
connect opposite sides, neither does the discrete one. 2

We next turn our previous lemma into a statement about paths with bounded
partial sums.

Lemma 2.5.3 For λ < λc, there exists N ′′ such that for all N > N ′′ there
are PpN

-almost surely no just-visiting paths with partial sums bounded in
[0, N ].

For the proof of Lemma 2.5.3, we need some more propositions. The ε in
the statements that follow is the ε dictated by λ in the statement of Lemma
2.5.2. If the discrete diamond process with increased radii does not connect
the top and bottom sides of [0, 3L] × [0, L], we say that there is a gap in
the long direction, or from 0 × [0, L] to 3L × [0, L]. Other gaps are defined
analogously. Lemma 2.5.2 says that the probability of a gap can be made as
high as desired by taking L large (and large N of course).

Proposition 2.5.4 For δ > 0 and λ < λc there exists L, such that for large
N , with PpN

-probability at least 1 − δ we can construct a (random) pair of
curves, C1 and C2 contained in [0, 3L]× [0, L] such that

1. the curves are self-avoiding and made up of finitely many straight line
segments,

2. the curves start in 0× [0, L] and end in 3L× [0, L],

3. C2 is the locus of points at distance (1 + ε) from C1, above C1,
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4. the conditional (that is, given C1 and C2) joint distribution of the con-
figuration between C1 and C2 is i.i.d. with the original marginals, con-
ditioned on the event that there are no adjacent −1s.

Proof According to the proof of Lemma 2.5.2 there exists L such that the
probability of having an overlapping series of diamonds connecting top and
bottom of the box [0, 3L]× [0, L] is smaller than δ/6, and we fix a large such
L. According to Lemma 2.5.2, we can now choose N ′ such that if we put a
diamond of radius 1

2
(1+ε) at every pair of adjacent −1s, the probability that

these connect top and bottom of [0, 3L]× [0, L] is smaller than δ/2. Thus C1

and C2 with the first three properties above must exist with probability at
least 1− δ/3.

We next show that we can construct such a gap, without finding any
more information about those 1s and −1s in the gap other than that there
are no adjacent pairs of -1s, and possibly that some of the vertices on the
edge of the gap have value 1. We will need to work on the extended rectangle
[−(1+ε), 3L+(1+ε)]× [0, L], to take into account the dependencies between
different areas. The probability that there is a gap crossing this extended
rectangle is greater than 1 − δ for large L. This can be seen by combining
horizontal gaps in [−(1+ε), 3L−(1+ε)]×[0, L] and [+(1+ε), 3L+(1+ε)]×[0, L]
with a vertical gap crossing [0, L]2. Each of these gaps exists with probability
at least 1 − δ/3, which means that the probability that they all exist must
be at least 1 − δ. Any gap crossing this rectangle contains a gap crossing
[0, 3L]× [0, L].

Order the edges in the extended rectangle [−(1+ ε), 3L+(1+ ε)]× [0, L],
in some deterministic way and call this set EL. Until the end of this proof all
edges mentioned are assumed to be in EL. If we have an edge ea with −1s
at both ends, we say that another edge eb is in the cluster of ea if there is
a sequence of adjacent edges (ea = e0, e1, . . . , ek = eb) all having -1s at both
ends.

Set E0
B to be those (random) edges on the horizontal line closest to [−(1+

ε), 3L + (1 + ε)] × 0 with −1s at both ends, along with all the edges in the
clusters containing these edges. Let E0

G be the set of those edges in EL that
lie on the same horizontal line and do not have −1s at both ends, along with
any edges adjacent to those in E0

B yet not in it.
In an inductive fashion, to find Ei+1

G and Ei+1
B from Ei

G and Ei
B do the

following. Take the first edge in Ei
G in the ordering, and check all edges

in EL ∩ (Ei
G ∪ Ei

B)c completely within distance (1 + ε) of this edge to see
if they have −1s at both ends. If such an edge exists, set Ei+1

B to be Ei
B

along with all such edges and any edges in their clusters around them. In
addition, set Ei+1

G to be Ei
G along with any edges sharing a vertex with an
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edge in Ei+1
B , yet not in it. In the case that the first edge in Ei

G has no edges
in EL ∩ (Ei

G ∪ Ei
B)c within distance (1 + ε) with a −1 at both ends, move

through the ordering of edges until either an edge is found that does have
this property or there are no more edges in Ei

G. In the first case proceed
as we would have done for the first edge, except with this edge, and in the
latter case set Ei+1

G and Ei+1
B to be Ei

G and Ei
B.

There must be a value of i for which Ei
G and Ei+1

G are the same, as are Ei
B

and Ei+1
B , if only because there are only finitely many vertices in the box. At

this point either there is an edge in Ei
G which is closer than (1+ ε) to the top

of the box, or not. If this is so there can be no gap of size (1 + ε) in the box
by the manner of our construction, and if this is not so we must have found
a gap (between the locus of points at least (1 + ε) away from all the edges
EG and the points (1 + ε) from this locus back towards the EGs). What do
we know about the points in our gap? The ends of the edges in EG closest
to the edges in EB must have value 1, but apart from this, our construction
method has told us exactly that there are no pairs of −1s in the gap. 2

Proposition 2.5.5 Given δ > 0 and λ < λc there exists N ′′ and L such
that, for all N > N ′′, the probability (under PpN

) that there exists a path
with sums bounded in [0, N ] from [0, 3L]× 0 to [0, 3L]× L in [0, 3L]× [0, L]
is less than δ.

Proof Take N , L so that the probability that a gap exists is at least 1− δ/2.
Then if there is a gap from 0 × [0, L] to 3L × [0, L], then there exist curves
C1 and C2 as in Proposition 4. In order to have a path with sums bounded
in [0, N ] from [0, 3L]× 0 to [0, 3L]× L in [0, 3L]× [0, L], there must exist at
least one path from C1 to C2 with partial sum bounded above by N . Since
there are no adjacent −1s between C1 and C2, if such a path exists, then also
a self-avoiding path from C1 to C2 with this property exists: indeed, in the
absence of adjacent −1s, the final partial sum cannot be made less by adding
loops. Denote the number of self-avoiding paths between C1 and C2 with
partial sums bounded above by N by UN . The standard FKG inequality (see
for instance [9]) implies that, conditioned on the increasing event of having
no adjacent -1s between the curves, the (conditional) probability of the event
{UN > 0} is at most the unconditional probability of the same event, that
is, its probability under PpN

. Note that such a path, of length M say, must
contain at least M−N

2
−1s, if its partial sums are to be bounded above by N .

Hence the conditional probability that UN > 0 is bounded above by

∑

M≥(1+ε)N

3L2(N + 1)24 · 3M−1

M∑

j=(M−N)/2

(
M

j

)
pM−j

N (1− pN)j
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≤
∑

M≥(1+ε)N

3L2(N + 1)24 · 3M−1(1− pN)
M−N

2 2M

=
4L2(N + 1)2(1− pN)εN/26(1+ε)N

1− 6(1− pN)1/2
.

This converges to zero as N →∞. Thus we can find N ′ such that for N > N ′

this is less than δ/2. 2

Proof of Lemma 2.5.3 First choose δ and then define the event that (0, 0) is
closed as the occurrence of a gap in the long direction which is not crossed by a
path with partial sums bounded in [0, N ], in each of the boxes [0, 3L]× [0, L],
[0, L] × [0, 3L], [2L, 3L] × [0, 3L] and [0, 3L] × [2L, 3L]. Note that by the
previous proposition there exists N ′, L, so that this occurs with probability
at least 1− 4δ, for N > N ′. We now ask whether this event occurs at other
points, in particular at {(2aL, 2bL) : a, b ∈ Z}, in which case we say (a, b) is
closed. These events are not independent, but the events ‘(a, b) is closed’ and
‘(c, d) is closed’ are independent if (2aL− 2cL)2 + (2bL− 2dL)2 > 8L2. This
means we can compare this process to a 1-dependent ordinary site percolation
model on the enhanced square lattice. A standard counting argument (see
for instance [11]) shows that for δ sufficiently small, there can be no infinite
self-avoiding path of non-closed points.

Any path with partial sums that are bounded in [0, N ] cannot pass
through gaps without using a section of path that is itself bounded in [0, N ].
Thus it must be contained in the non-closed areas, which are, by the above
argument, almost surely finite. Therefore it cannot be infinite itself, almost
surely. 2

Proof of Theorem 2.2.4(a) If lim supN→∞ 2N2(1−qN)2 < λc, then we can
find N0, and λ such that for all N > N0,

2N2(1− qN)2 < λ < λc.

If we use this λ in Lemma 2.5.3, we see that there can be no paths with partial
sums bounded in [0, N ] for N large enough, almost surely, for the sequence
of pNs, defined by this λ. However for N > N0, pN < qN , which means that
we can couple the two discrete processes with parameters pN and qN in the
natural way, that is, the set of vertices with value −1 under qN is a subset
of the corresponding set under pN . Now it is a matter of carefully inspecting
the proof of Lemma 2.5.3. We first showed that the limit point process ΠN is
a Poisson process. The only place where this fact was used later was to assert
that appropriate gaps exist in the subcritical Boolean model. The coupling
just mentioned implies that point processes Π′

N associated with the qNs will
be stochastically smaller than ΠN . (Note that we do not have information
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about a possible weak limit of the Π′
Ns.) This means that gaps have an even

higher probability to occur with the qNs than with the pNs. The estimate of
the probability to bridge such a gap with bounded partial sums is monotone
in pN for N sufficiently large. 2

2.5.2 Proof of Theorem 2.2.4(b)

The proof of the supercritical part of the theorem must be different as we
will need to consider balancing configurations (recall the definition above) the
occurrence of which, as they contain both 1s and −1s, is neither increasing
nor decreasing in p. We begin by considering percolation of diamonds of the
reduced discrete diamond process. In the next lemma, the uniformity of N1

in λ will be important later on.

Lemma 2.5.6 Given λc < λdown < λup < ∞. There exists N1 such that for
all N > N1 and λ such that λdown < λ < λup the reduced discrete diamond
process percolates under PpN

.

Proof of Lemma 2.5.6 We can choose ε > 0 such that λdown(1− ε)3 > λc.
Rearranging and using scaling relation (2.1) above we find that, λdown(1−ε) >
λc(

1
2
(1− ε)). In words, after decreasing both the rate of the Poisson process

and the radii of the diamonds by a factor 1 − ε, the continuous diamond
process remains supercritical. It is clear that this is also true (with the same
ε) for any λ > λdown.

Now consider the grid (1
4
εZ)2. A square of this grid is called a grid square.

Any diamond of radius 1
2
(1− ε) centred in a grid square is then contained in

any diamond of radius 1
2

centred in that same grid square. For a grid square
S, we denote by FS the event that Π+

N(S−) ≥ 1. We first claim that for
N →∞,

PpN
(FS) → 1− e−λ(ε/4)2 , (2.7)

uniformly in λdown < λ < λup. For this we use the Stein-Chen Poisson
approximation anticipated in the proof of Proposition 2.5.1 to estimate the
total variation distance between the distributions of the number of points in
S from ΠN and that from a Poisson distribution of rate corresponding to the
expected number of such points, Ep(ΠN(S)). As in (2.6), we have that this
total variation distance is at most

1− e−Ep(ΠN (S))

Ep(ΠN(S))


Var(ΠN(S))− Ep(ΠN(S)) + 2

∑

edges in S

(1− pN)4


 .
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A similar albeit somewhat more complicated computation as in the proof of
Proposition 2.5.1 now yields that this is bounded above by

1− e−2(N+1)2( ε
4)

2
(1−pN )2

2N2
(

ε
4

)2
(1− pN)2

×
(
6 · 2

( ε

4

)2

(N + 1)2(1− pN)3 + 2 · 2
( ε

4

)2

(N + 1)2(1− pN)4

)
.

Keeping in mind relation (2.5), this then gives a bound which tends to zero
uniformly in λdown < λ < λup when N →∞. The fact that

( ε

4

)2

λ ≤ Ep(ΠN(S)) ≤
(

N + 1

N

)2 ( ε

4

)2

λ

implies that the null probability of Poisson distribution of rate Ep(ΠN(S))

converges to the null probability of a Poisson distribution of rate
(

ε
4

)2
λ.

Claim (2.7) follows immediately.
Next we want to show that

PpN
({Π+

N(S−) = 0} ∩ {ΠN(S−) > 0}) → 0, (2.8)

uniformly in λdown < λ < λup, as N →∞. The event in (2.8) can only occur
if we see one of the configurations

{ −1
−1 −1

}
,

{ −1
−1 −1

}
,

{ −1 −1
−1

}

somewhere in the grid square. The probability of this is at most 3(εN/4 +
1)2(1 − pN)3 = (εN/4 + 1)2(λ

2
)3/2 1

N3 . This goes to zero uniformly for all
λdown < λ < λup, when N →∞.

According to (2.7) and (2.8), we find that uniformly in λdown < λ < λup,
for all N large enough,

PpN
(FS) > 1− e−λ(1−ε)(ε/4)2 ,

which is the probability that there is a point in the grid square due a Poisson
point from a Poisson process of rate λ(1 − ε). Hence we can couple the
continuous diamond process based on this Poisson process and the reduced
discrete diamond process in such a way that whenever a grid square contains
at least one Poisson point, it also contains at least one point of Π+

N . The
grid size was chosen in such a way that the union of the diamonds (of radius
1
2
(1 − ε)) of the Poisson points, are contained in the union of the diamonds
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(with radius 1
2
) corresponding to Π+

N . The former process is supercritical by
the choice of ε, and therefore also the latter process is supercritical, which is
what we wanted to prove. 2

We next turn this lemma into a statement of paths with bounded partial
sums.

Lemma 2.5.7 Given λc < λdown < λup < ∞ there exists N1 such that for
all N > N1 and λ such that λdown < λ < λup there is a just-visiting path with
partial sums bounded in [0, N + 1] with positive PpN

probability.

Proof of Lemma 2.5.7 Fix λ such that λdown < λ < λup. Recall that
2N2(1 − pN)2 = λ. Then, By Lemma 2.5.6, the origin is contained in an
unbounded connected components of diamonds from the reduced discrete
diamond process with positive probability. If this is the case, we have a self-
avoiding path π = (π0 = 0, π1, . . .) on the grid (Z/N)2 starting at the origin
such that π visits a balancing configuration at least every N steps. We may
assume that if π visits a balancing configuration for the first time at time
n1, say, the partial sums up to that moment are all in [0, N ]. Call this first-
visited balancing configuration W1. ( It is possible that πn is contained in
the intersection of two balancing configurations in which case we just make a
choice and call one of these W1.) Let m1 be the first time m after n1 for which
πm /∈ W1. Define n2 as min{n ≥ m1 : πn visits a balancing configuration}.
Note that it is possible that n2 = m1. The balancing configuration visited
at time n2 is denoted W2, where it is again possible that we have a choice.
Define nk,mk and Wk for k = 1, 2, . . . inductively in this fashion. We will
now construct a just-visiting path π′. π′ will be constructed from π by adding
loops of repeating vertices each time π visits a balancing configuration. More
precisely, π′ follows π up to time n1. Consider the sum of the labels along
π until π visits the next balancing configuration W2, that is, Sπ

k − Sπ
n1

, for
k = n1 + 1, . . . , n2. These numbers are uniformly bounded by N in absolute
value. We construct the next part of π′ as follows. Pass around in the
balancing configuration W1 until you have reached a sum which guarantees
that when we after that travel to W2 along π the partial sums will never be
smaller than 0 or larger than N + 1. When we are in W2 we repeat this
process. 2

Proof of Theorem 2.2.4(b) We consider two possibilities:
(i) lim infN→∞ 2N2(1− qN)2 = ∞,
(ii) lim supN→∞ 2N2(1− qN)2 < ∞.

For case (i) we take a grid square S, and we simply note that the prob-
ability that S contains a balancing configuration converges to 1 as N tends
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to infinity. Thus, with positive probability, there will be an infinite path
of grid squares containing balancing configurations for N sufficiently large.
Hence the diamonds of the reduced diamond process must percolate, and in
the same way as in the proof of Lemma 2.5.7 we can move around between
balancing configurations to find our required path.

In case (ii) we can find λup, λdown such that for all large N ,

λc < λdown < 2N2(1− qN−1)
2q2

N−1 < λup < ∞.

We can then define λN as 2N2(1 − qN−1)
2q2

N−1 and apply Lemma 2.5.7 to
this series of λNs, which immediately gives the result. 2

Proof of Corollary 2.2.5 For this corollary we will show that each of the
following three cases leads to a contradiction:

(i) lim infp→1 2(1− p)2I(p)2 < λc,

(ii) λc < lim supp→1 2(1− p)2I(p)2 < ∞,

(iii) lim supp→1 2(1− p)2I(p)2 = ∞.

In case (i) we can choose a sequence p◦1, p
◦
2, . . ., such that limi→∞ p◦i = 1

and such that lim supi→∞ 2(1 − p◦i )
2I(p◦i )

2 < λc. Now as limi→∞ I(p◦i ) = ∞
the set {I(p◦i ); i = 1, 2, . . .} must be infinite. This means that we can
next define a new sequence, p•1, p

•
2, . . ., which is a ‘more regular’ version

of {p◦1, p◦2, . . .}, in such a way that we can apply Theorem 2.2.4(a). So, if
{p◦i : I(p◦i ) = N} is non-empty, then we choose p•N to be any element of this
set. If it is empty, we set p•N equal to 1.

Then lim supN→∞ 2(1− p•N+1)
2N2 < λc, so by Theorem 4(a) we can find

N ′ such that for all N > N ′, Pp•N -almost surely, there are no paths with
partial sums bounded in any interval of length N . However, from the con-
struction we have that I(p•N) = N for infinitely many N , which contradicts
the definition of I.

In case (ii) we proceed similarly but this time we use Theorem 2.2.4(b).
Now we can choose a sequence p†1, p

†
2, . . ., such that limi→∞ p†i = 1,

lim supi→∞ 2(1− p†i )
2I(p†i )

2 < ∞ and lim infi→∞ 2(1−p†i )
2I(p†i )

2 > λc. Again
we define a new version of this sequence. If the set {p†i : I(p†i ) = N} is non-
empty, then we define p‡N to be any element of this set. If the set is empty,

we set p‡N equal to 1−
√

λc+1
2N2 . Here the term 1−

√
λc+1
2N2 is chosen to make

2(1− p‡N)2N2 = λc + 1 > λc.
Next note that

lim sup
N→∞

2(1− p‡N+1)
2(N − 1)2 < ∞
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and that
lim inf
N→∞

2(1− p‡N+1)
2(N − 1)2 > λc.

Thus by Theorem 2.2.4(b) there exists N ′′ such that for all N > N ′′ there
are, with positive probability, paths with sums bounded in an interval of
length N − 1. Thus, by its minimality, I(p‡N) must be less than or equal to
N − 1, for N > N ′′. However we know that I(p‡N) = N , which gives the
required contradiction.

Case (iii) is proved in the same way as case (ii), by considering in this
case a sequence of ps for which 2(1 − p)2I(p)2 tends to infinity in the limit.
The only necessary modifications are to define p‡N as an arbitrary constant
between 1/2 and 1 for cases where {p†i : I(p†i ) = N} is empty, and to use the
other condition in Theorem 2.2.4(b). 2

2.6 Recurrent sums

Proof of Theorem 2.2.6 We give a proof by contradiction, so we first
assume that there is a value of p > 1/2 such that both,

Pp(∃ a path π for which Sπ
n does not converge to +∞) > 0, (2.9)

and,
Pp(∃ a path π with Sπ

n = 0 i.o.) = 0. (2.10)

In the proof of Lemma 2.4.1 we showed that (2.10) implies that for all z ∈ Z,

Pp(∃ a path π with Sπ
n = z i.o.) = 0. (2.11)

This and (2.9) imply that there exists with positive probability a path πd

with
lim

n→∞
Sπd

n = −∞.

For the construction we use the spiral πu, shown in Figure 2.4, which covers
all points in the square lattice, and is self-avoiding. We define a spiral circuit
from a point, α, to be that sub-path of πu, starting at α, which passes
around the origin until at Euclidean distance

√
2 from α, see Figure 2.5.

Since p > 1/2, we have that, with probability 1,

lim
n→∞

Sπu

n = +∞.

We next construct from πd and πu a new self-avoiding path with partial sums
that return to zero infinitely often, by moving between the two paths in a



40 BOUNDED SUMS

(0,0)

Figure 2.4: The spiral πu

(0,0)

(1,2)

Figure 2.5: The spiral circuit from the point (1, 2)
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way that ensures that the resulting path does not cross itself. This will then
contradict (2.10).

We will speak of a point on a self-avoiding path as being before another (or
as an earlier point) if it is nearer to the starting point, measuring along the
path. Points that are after others (or later points) are defined analogously.
We note two things:
(a) There are an infinite number of points on any self-avoiding path from the
origin which have the property that no earlier points on the path intersect
later points of the spiral.
(b) There exists a last intersection of a self-avoiding path and any spiral
circuit, in the ordering given by the path.

We construct our new path πn as follows, after starting by following (i.e.
copying the steps of) πd for a little while:

1. Follow πd until a point when both the partial sum of πn is below zero
and none of the points on πu after this point are already in πn. This is
possible by (a), and the fact that the partial sums of πd are only above
or at any value for a finite number of steps.

2. Follow πu until a point when both the partial sum of πn is above zero
and none of the points on πu after this point are already in πn. Note
that πu will never return to earlier points in πn, by the previous step.

3. Find the last intersection between πd and the spiral circuit from the
point where we currently are, and move along πu to this point.

4. Repeat.

Notice that it is always possible to keep passing from path to path in this
manner, and thus the partial sums of πn are zero infinitely often. We have a
contradiction, and so our result. 2

Proof of Corollary 2.2.7 The existence of paths with partial sums which
return to zero infinitely often is clearly a tail event and so has probability 1
or 0, by Kolmogorov’s 0-1 law.

Assign to each vertex v ∈ Z2 a uniform [0, 1] random variable, Uv. We
can use these variables to couple realisations at all parameter values together

such that if

{
Uv ≥ 1− p then Xv = 1,
Uv < 1− p then Xv = −1.

Theorem 2.2.6 states that if with positive probability there is a path
with partial sums not converging to +∞, then there exists with positive
probability, and hence with probability one, a path with partial sums that
return to zero infinitely often. On the other hand, if all paths have partial
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sums converging to +∞, then clearly there does not exist a path with partial
sums that return to zero infinitely often. Hence we have a path with partial
sums that return to zero infinitely often, with positive probability, if and
only if there is a path, with positive probability, whose partial sums do not
converge to +∞. From the coupling described above we see immediately
that the probability of the event that all paths have partial sums converging
to +∞ is monotone in p. It follows that the probability of having a path
with partial sums that return to zero infinitely often is also monotone in p.
2

Acknowledgements We thank Deepak Dhar and Jeffrey Steif for various
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Chapter 3

Covering algorithms,
continuum percolation and the
geometry of wireless networks

Lorna Booth, Jehoshua Bruck, Massimo Franceschetti
and Ronald Meester

Continuum percolation models in which each point of a two-
dimensional Poisson point process is the centre of a disc of given
(or random) radius r, have been extensively studied. In this pa-
per, we consider the generalisation in which a deterministic al-
gorithm (given the points of the point process) places the discs
on the plane, in such a way that each disc covers at least one
point of the point process and that each point is covered by at
least one disc. This gives a model for wireless communication
networks, which was the original motivation to study this class
of problems.

We look at the percolation properties of this generalised model,
showing that an unbounded connected component of discs does
not exist, almost surely, for small values of of the density λ of
the Poisson point process, for any covering algorithm. In general,
it turns out not to be true that unbounded connected compo-
nents arise when λ is taken sufficiently high. However, we iden-
tify some large families of covering algorithms, for which such an
unbounded component does arise for large values of λ.

We show how a simple scaling operation can change the per-
colation properties of the model, leading to the almost sure exis-
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tence of an unbounded connected component for large values of
λ, for any covering algorithm.

Finally, we show that a large class of covering algorithms, that
arise in many practical applications, can get arbitrarily close to
achieving a minimal density of covering discs. We also show (con-
structively) the existence of algorithms that achieve this minimal
density.

3.1 Introduction and motivation

Geometric covering algorithms have been extensively studied in the last 20
years, in the context of computational geometry and combinatorial optimi-
sation (see the survey by Agarwal and Sharir (1998), section 7.1). More
recently, distributed versions of these algorithms have been proposed in the
context of wireless network architectures (see Gerla and Tsai 1995).

Continuum percolation models (also referred to in the literature as Pois-
son Boolean models) were introduced by Gilbert (1961) to model wireless
networks of radio transmitting stations, and they have been extensively in-
vestigated by mathematicians since then. In these models discs of a given (or
random) radius r are centred at each point of a two-dimensional Poisson pro-
cess X. The a.s. (almost sure) existence of unbounded connected components
of discs, for a given density λ of the point process is often considered.

We consider the generalisation in which a deterministic algorithm (given
the points of the point process) places the discs on the plane, in such a way
that each disc covers at least one point of X, and each point is covered by
at least one disc (see Figure 3.1 for a visual example).

Our aim is twofold: on one side we explore the mathematics of the new
model and we answer some very natural questions that arise from a pure
mathematical point of view. On the other side, we note that most of our
results can be applied to rigorously model geometric properties of wireless
communication networks.

Random graphs are the natural tool that is often used to model communi-
cation networks. In such graphs vertices represent communication endpoints
and edges represent two-way channels. In the standard model of Erdős and
Rényi (1959, 1960, 1961a,b), each pair of vertices has some probability (the
same for all pairs of vertices, regardless of their separation) of being joined by
an edge. Therefore, for each natural number n, there is a a probability space
consisting of all graphs with exactly n vertices. Erdős and Rényi proved
that many interesting properties of random graphs occur a.s. as n → ∞.
Their model of random graphs, however, is not suited to accurately repre-
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Continuum Percolation Covering Algorithm

Figure 3.1: Two different disc coverings of a random point process. A
continuum percolation model places a disc at each random point; in our generalised model
a covering algorithm places (possibly fewer) discs to cover all the points, according to
a deterministic rule. We are interested in the almost sure existence of an unbounded
connected component of discs, for a given density of points λ.

sent networks of short-range radio transmitting stations. This motivated
Gilbert (1961) to propose an alternative model in which the range of the
transmitters is a parameter. In his paper, he constructed a random network
by considering a two-dimensional Poisson point process and joining each pair
of points by an edge if discs of radius r centred at those two points intersect.
He was the first to introduce the concept of continuum percolation, identify-
ing a phase transition behaviour, i.e., the existence of a critical value λc for
the density of the Poisson point process, at which an unbounded connected
graph a.s. forms and the network can provide some long distance communica-
tion. His results were later extended, from a purely mathematical standpoint,
by Hall (1985), Menshikov (1986), Roy (1990), Meester and Roy (1994), and
others, leading to a theory of random coverage processes (see the books by
Hall (1988) and Meester and Roy (1996)). In a more applied framework,
Gupta and Kumar (1998, 2000) and Penrose (1997) recently used a similar
model to determine the throughput capacity of a wireless network.

Our model of communication refines the one introduced by Gilbert, con-
sidering a wireless backbone that routes data packets through the network.
In our model, we differentiate between base stations and clients: clients com-
municate between each other by connecting to base stations that forward
their messages to their destinations (see Figure 3.2). If a client is within a
given distance of a base station, it can connect to it and we say that the client
is covered by the base station. Hence, the network appears as a set of circular
cells (base stations broadcast domains) that cover a set of points (clients). A
covering algorithm decides where to place the cells, according to the distri-
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B

A

Figure 3.2: The Wireless Backbone. A connected component of discs forms the
wireless backbone of the network. If a client A wants to communicate to a client B, it
connects to the closest base station and its message is routed through the backbone in a
multi-hop fashion, until it reaches client B.

bution of the clients. The algorithm can be a distributed, self-organising one,
in a model where the entire population of clients elects ‘cluster heads’ and
divides itself into subsets that are covered by the cluster heads (see Gerla
and Tsai, 1995); or a more centralised one, in a model where the clients are
mobile and the base stations are static. In the latter case, the base stations
could be laid on a fixed grid and the covering algorithm could determine
the subset of them that need to be turned on, at any given time, to provide
coverage (see Franceschetti, Cook, and Bruck 2001). The algorithm would
typically try to minimise the number of base stations that need to be turned
on to cover all the clients, or, in the dynamic case, would try to minimise
the base stations movement needed to cover all the clients.

As in Gilbert’s model, we assume a completely wireless network, hence,
base stations can connect to other base stations only up to a limited distance.
We assume two base stations to be connected only if the corresponding discs
overlap (although we will modify this requirement later in the paper). There-
fore, if two clients are in the same connected component of overlapping discs,
they can communicate, because they are reached by a connected path of base
stations of that component.

In percolation theory one is interested in unbounded connected compo-
nents. In our setting, unbounded connected components are of interest be-
cause they represent long-range communication. The almost fully connected
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state of the wireless network is also interesting, and any of the proof tech-
niques we use to prove percolation will also show that most of the clients fall
inside the unbounded connected component and are therefore able to com-
municate, under similar conditions. In this case, a few additional ‘bridge’
stations can be added to connect isolated components to the unbounded one
and achieve the full connectivity of the network.

It may be argued that not allowing transmitters to be further than a
certain distance from a client is an artificial constraint if we are interested in
having long-range communication. However we wish to see when long-range
communication occurs spontaneously, given that the clients require commu-
nication with the base stations and the natural restriction of not placing a
base station where it will not be used.

We informally summarise our main results in the next section; in Sec-
tion 3 we introduce some notation and definitions; Sections 4 is devoted to
existence and non-existence results for unbounded components, for different
covering algorithms; Section 5 considers the effect of varying the base sta-
tions communication radius; Section 6 discusses existence of optimal covering
algorithms; Section 7 contains some open problems.

3.2 Summary of results

Our results can be grouped into four categories: non-existence results, exis-
tence results for different classes of covering algorithms, scaling results, and
results concerning the optimality of certain algorithms. In the following, we
let X be a two-dimensional Poisson point process of density λ. The points
of X represent the clients that are covered by base stations.

Non-existence results. Our first results regard the non-existence of an un-
bounded connected component of covering discs. We show (Theorem 3.4.1)
that for any algorithm covering all the points of X by discs of radius r,
there exists a λ0 > 0 such that for all 0 < λ ≤ λ0, Pλ(there is an infinite
component) = 0. Then we show that the symmetric result, i.e., the a.s. ex-
istence of an unbounded connected component for large values of λ, is not
generally true, but depends on the type of covering algorithm. It is known
that a covering that places a disc centred at each point of X forms a.s. an
unbounded connected component for large values of λ (Gilbert 1961). In
order to show that this result does not generalise to all coverings, we specify
a covering algorithm that does not form an unbounded connected component
for any value of λ.

Existence results. We proceed by identifying different families of covering
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algorithms that form an unbounded connected component a.s. for large val-
ues of λ. One of such coverings, that is practical for our applications, is a
grid covering. We show (Theorem 3.4.3) that for any algorithm covering all
the points of X by discs of radius r centred at the vertices of a grid, there
exists a λ1 < ∞, such that for all λ > λ1, Pλ(there is an infinite connected
component) = 1.

Another family of coverings that we consider are the flat coverings. A
flat covering has the property that the restriction to any box of size n × n
contains at most k(n) discs, for any value of λ. We show in Theorem 3.4.4
that there exists a λ1 < ∞, such that for all λ > λ1, Pλ(there is an infinite
connected component) = 1.

A third class of algorithms that we examine are the shift invariant cov-
erings. These algorithms are defined by the requirement that the covering
commutes with shifts of the points. We ask whether a shift invariant algo-
rithm necessarily forms a.s. an unbounded connected component for large
values of λ, and we answer this question negatively, by constructing a shift
invariant algorithm that does not exhibit this property.

Scaling results. We then introduce a further extension of our model. We
note that when we consider overlapping discs as connected components, then
we implicitly assume, in our model of a wireless network, that the maximum
radius of communication between two base stations is twice as large as the
maximum radius of communication between clients and base stations. This
observation leads to the natural question of what would happen if the ratio
between the two radii is different from two.

In the standard Poisson Boolean model, that places a disc centred at
each point of a Poisson point process X, considering a different radius for
connectivity corresponds to a simple scaling operation, hence it does not
change the basic properties of the model. In our extended model, however,
this leads to more interesting results. Call r the radius of the discs used to
cover the points of X and R the maximum distance sufficient to connect disc
centres. We show (Theorem 3.5.1) that:

• If R/r ≤ 1, then, for any grid G, there is a covering algorithm that
places discs only at the vertices of G, and a.s. does not form an un-
bounded connected component, for any value of λ.

• If 1 < R/r < 2, then, for some given dense grid G, there is a covering
algorithm that places discs only at the vertices of G, and a.s. does not
form an unbounded connected component, for any value of λ.

• If R/r = 2, then, for any grid G, any covering algorithm that places
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discs only at the vertices of G forms a.s. an unbounded connected com-
ponent for large values of λ.

• If R/r > 2, then any algorithm forms a.s. an unbounded connected
component for large values of λ, even if it is not grid-based.

Note that the latter case is useful in practice, because it states that if
base stations can communicate at a distance larger than twice the maximum
communication distance to the clients, an unbounded connected component
forms a.s. for large values of the density of the clients, regardless of the
covering algorithm used to build the cellular network.

Optimality Results. Finally, we show (constructively, in Theorem 3.6.3)
the existence of algorithms that are optimal in achieving a minimal density
of covering discs. We also show that a certain class of practical algorithms
can achieve densities arbitrarily close to the optimal.

3.3 Notation and definitions

Let R2 be the Euclidean plane, let B2 be the σ-algebra of Borel sets in R2 and
let `(·) be Lebesgue measure in R2. Let N be the collection of all counting
measures on (R2,B2), which assign finite measure to bounded Borel sets and
for which the measure of a point is at most 1. In this way, N can be identified
with the set of all configurations of points in R2, without limit points. Let
N be the σ-algebra of N generated by sets of the form {ν ∈ N : ν(A) = k},
for all integers k and bounded Borel sets A. A (planar) point process X
is defined as a measurable mapping from a probability space (Ω,F , P ) into
(N,N ). For A ∈ B2, we denote by X(A) the random number of points inside
A. In this paper, X will always be a Poisson process with density λ > 0. We
sometimes abuse notation and write x ∈ ν, for x ∈ R2 and ν ∈ N , to express
that x is one of the points of ν.

We define a shift operation Tt : R2 → R2 as a translation in R2 over the
vector t ∈ R2, such that Tt(x) = t + x for all x ∈ R2. The shift Tt induces
in a natural way a shift transformation on N , which we also denote by Tt.
Let, for all x ∈ R2 and r ≥ 0, D(x, r) be the disc of radius r centred at x:
D(x, r) = {y ∈ R2 : |y − x| ≤ r}. A circle of radius r centred at x is the set
{y ∈ R2 : |y − x| = r}. The boundary of a set A will be denoted by ∂A.

We call two discs Di, Dj adjacent if Di

⋂
Dj 6= ∅. We write Di ↔ Dj if

there exists a sequence Di1 , Di2 , . . . , Dik of discs such that Di1 = Di, Dik =
Dj, and Dil is adjacent to Dil+1

for 1 ≤ l < k. A (connected) component or
cluster is a set {Di : i ∈ J} of discs which is maximal with the property that
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Di ↔ Dj for all i, j ∈ J . We identify a component with the set of centres of
the discs in it.

We next formally define a covering algorithm: A covering algorithm A
with discs of radius r, is a measurable mappingA : N → N with the following
properties:

1. for all x ∈ A(ν) there exists y ∈ ν such that y ∈ D(x, r),

2. for all y ∈ ν there exists x ∈ A(ν) such that y ∈ D(x, r).

We define the occupied region C of A(ν) as the union
⋃

x∈A(ν) D(x, r).
In this paper, we examine different classes of covering algorithms, which

we define as follows:

1. Grid Algorithms. Let G ⊂ R2 be the set of all vertices of a two dimen-
sional lattice. A grid algorithm A constrains the covering discs to be
centred at the vertices of G. That is, x ∈ A(ν) implies x ∈ G. Natu-
rally we require G to be dense enough that every point can be covered
by a disc centred at some vertex.

2. Flat Algorithms. A flat algorithmA has the property that its restriction
to any box of size n×n contains at most k(n) discs, for some k(n) < ∞.

3. Finite Horizon Algorithms. Let Bn(x) be the box of size n×n centred at
x, and let, for all ν ∈ N , ν|Bn(x) denote the restriction of ν to Bn(x). In
other words, ν|Bn(x) can be identified with the set of points {ν∩Bn(x)}.
We say that a covering algorithm A has finite horizon if there exists a
constant h ≥ 0 (the horizon), so that whenever ν|Bn+2h(x) = ν ′|Bn+2h(x),
we have A(ν)|Bn(x) = A(ν ′)|Bn(x), for all n and x. In words, this means
that changing ν outside Bn+2h(x) does not change the covering inside
Bn(x).

4. Shift Invariant Algorithms. A shift invariant algorithm A is defined by
the property that Tt(A(ν)) = A(Tt(ν)), for all t. In words, this means
that the covering algorithm commutes with shifts of the points.

5. n-Square Algorithms. An n-square algorithm is obtained as follows.
Partition the plane into boxes of size n × n. For each such box Bn,
the covering of the points inside Bn should use the minimal number of
discs possible.

Suppose now that we want to cover the points of X by the covering
algorithm A, that is, we consider the measurable map A◦X : Ω → N . This
Boolean model is denoted by (X,A) = (X, λ, r,A), where λ is the density of



3.4. PERCOLATION 53

X, and r the radius of the covering discs. The law of this process is denoted
by Pλ,r. The standard Poisson Boolean model that places a disc of radius r,
centred at each point of X is obtained when we take A to be the identity,
and is denoted by (X,λ, r). In this model there exists λc(r) such that for
λ ≤ λc(r) we have no infinite cluster a.s., while for λ > λc(r) there is an
infinite cluster with probability 1. We often denote λc(1) by λc and scaling
implies that λc(r) = λc(1)/r2 (see Meester and Roy (1996) for more details).

Next, we define the density of (X,A). Let N(X,A)(n) be the (random)
number of discs centred inside the box Bn(0). The density of (X,A) is given
by

lim
n→∞

N(X,A)(n)/n2,

whenever this limit (i) exists a.s. and (ii) is an a.s. constant.
Finally, we introduce one more piece of terminology. If (X,A) contains an

unbounded component of discs with positive probability, we say that (X,A)
percolates.

3.4 Percolation

In this long section we think of r as being fixed, while λ varies. Accordingly,
we sometimes write Pλ = Pλ,r. We also use P to mean P1,1. The expectation
under P we denote by E.

Our first result deals with the lack of percolation for small values of λ.

Theorem 3.4.1 For any covering algorithm A, there exists a λ0(r) > 0 such
that for all 0 < λ ≤ λ0, (X, λ, r,A) does not percolate.

Proof of Theorem 3.4.1. Assume that, with positive probability, there is
an unbounded connected component of covering discs for (X,λ, r,A). Then
with positive probability, there is an unbounded connected component in the
Poisson Boolean model (X,λ, 2r). That is because two intersecting covering
discs in (X, λ, r,A) cover points that are at a distance of at most 4r to each
other; and the Poisson Boolean model (X, λ, 2r) places discs of radius 2r at
each of the covered points. We then choose λ0 = λc/(2r)

2, so that (X,λ, 2r)
does not form an unbounded connected component a.s. for λ ≤ λ0. 2

A symmetric result to Theorem 3.4.1, i.e., percolation for large values of
λ, depends on the type of covering algorithm used:

Proposition 3.4.2 There exists a covering algorithm A, such that for all λ,
(X,λ, r,A) does not percolate.
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Proof of Proposition 3.4.2. The proof is constructive. Draw circles of
radii {3kr, k ∈ N} around the origin, and notice that a.s. no Poisson point
falls on any of these circles. Then cover the Poisson points, with discs of
radius r, without intersecting these circles. Notice that the circles divide the
plane into finite annuli and, since each cluster of discs resides in at most one
of these finite annuli, each cluster must be bounded, whatever the value of
λ. 2

We next look at families of algorithms that do percolate for large values of
λ, beginning by considering grid algorithms.

Theorem 3.4.3 For any grid covering algorithm A, there exists a λ1 < ∞,
such that (X,λ, r,A) percolates for all λ > λ1.

This theorem can be proved by application of Theorem 3.4.4, as all grid
algorithms are flat. The proof below however is more elegant and offers more
insight into the structure of grid algorithms.

Proof of Theorem 3.4.3. The proof relies on a construction that maps the
covering discs to a discrete site-percolation model. We illustrate the idea by
considering a square lattice and a distance between two neighbouring lattice
vertices of one. Call a covering disc centred at a lattice vertex a grid disc.
Clearly, the radius of a disc must be r ≥

√
2

2
, in order to be able to cover all

possible points on the plane by using only grid discs. For any r ≥
√

2
2

, the
number of grid discs that intersect a lattice square ABCD is finite and they
partition the square into some number kr of small regions Ai (see Figure 3.3).
If at least one point of the Poisson point process falls into each region Ai,
then the entire square ABCD must be covered by grid discs. Now view each
lattice square as a site of a site percolation model. Call the site occupied if
there is at least one point of the Poisson process situated inside each region
Ai, for i = 1 . . . kr. Note that the occupancy of a site is independent of the
occupancy of other sites and the probability of a site being occupied is given

by: p =
kr∏
i=1

(1− e−λ`(Ai)). Moreover, if two adjacent sites are both occupied,

then the corresponding covering discs form a connected component. Thus, if
there is an unbounded component of occupied adjacent sites, then there is an
unbounded connected component of covering discs. Next, we choose λ large
enough so that p > pc, where pc is the critical probability for site percolation
on a square lattice. The a.s. existence of an unbounded connected component
of covering discs immediately follows. 2

Next, we consider flat algorithms. Recall that each such algorithm, A, has
the property that the restriction of A to any box of size n × n contains at
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A B

CD

Figure 3.3: Mapping to the site percolation model. The grid discs partition
the square ABCD into a finite number of small areas.

most k = k(n) discs, for any value of λ. Note that this really is a weak
requirement, since we can completely cover the box using at most αd(n/r)e2
discs, for some α ≤ 1. Any ‘sensible’ algorithm should therefore satisfy the
requirement. Note that k(n) < ∞ for some n, immediately implies that
k(m) < ∞, for any m, as we can cover an m×m square by a finite number
of n× n squares.

Theorem 3.4.4 Let A be a flat covering algorithm. Then there exists λ1 <
∞, so that (X, λ, r,A) percolates for all λ > λ1.

At first sight, the statement of the theorem is counterintuitive, since we claim
that we force percolation by restricting the number of discs. The point is that
by restricting the number of discs (independently of λ), the requirement of
covering all points with this restricted number of discs makes percolation
unavoidable.

Another version of this theorem requires an upper bound on the den-
sity of discs, the shift invariance of the algorithm under a pair of linearly
independent shifts and the algorithm to be finite horizon.

Theorem 3.4.5 Let A be a finite horizon covering algorithm such that a
constant δ < ∞ exists such that

lim sup
n→∞

number of discs in Bn

n2
< δ, a.s. ,

and which is stationary under a pair of linearly independent shifts.Then there
exists λ1 < ∞, so that (X, λ, r,A) percolates for all λ > λ1.
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Johan Segers has pointed out that although finite horizon algorithms of
bounded density which are stationary under any pair of linearly independent
vectors must percolate, for a sufficiently high density of points, there exist
finite horizon covering algorithms of bounded density which are stationary
under shifts of one vector, and do not percolate for any λ.

Before we prove Theorems 3.4.4 and 3.4.5, we first state and prove a
preliminary geometric lemma.

Lemma 3.4.6 Consider a collection of discs of radius r, with the property
that at most k(n) < ∞ discs intersect any box of size n × n. Then there
exists an ε = ε(n, r) > 0 with the following property: if there are, either, at
least two clusters that intersect the boundaries of both Bn+r(x) and Bn+2r(x),
or a cluster wholly contained in Bn+2r(x), then there is a disc of radius ε,
contained in Bn+3r(x), which is not intersected by any disc.

Proof of Lemma 3.4.6. We write Bn = Bn(x). All discs that intersect
Bn+3r must be centred inside Bn+5r. Therefore, at most k = k(n + 5r) discs
intersect Bn+3r. Let C be a component that intersects the boundaries of both
Bn+r and Bn+2r. The number of discs in C that intersect Bn+2r is denoted
by l. Note that l ≤ k.

Consider a section AB of the perimeter of C, from the boundary of Bn+r

to the boundary of Bn+2r, which does not intersect either of these boundaries
except at its ends (see Figure 3.5). This section has length at least r/2, and
consists of parts of the boundaries of at most l discs, each of which appears
only once. This latter fact follows from the observation that, since the dis-
tance between the boundaries of the two boxes is only r/2, any disc that
contributes to an arc in AB, must overlap the boundary of at least one box.
Moreover, note that were AB to contain two disjoint arcs from the same disc,
then any disc overlapping that disc in order to make these arcs disjoint, must
overlap the boundary of the box not overlapped by the first disc. Therefore
these arcs would be in disjoint sections of ∂C ∩Bn+2r/(Bn+r ∪ ∂Bn+2r). See
Figure 3.4. It follows that at least one arc in AB is of length at least r/2l.
Call this arc a.

Note that there are at most k − 1 discs intersecting Bn+3r, if we do not
count the one that has a as a part of its boundary, and none of them intersect
a, except at its end points. If we divide a into k arcs of equal size, then each
of these discs will be nearest to one of these smaller arcs - assign this arc to
this disc. One of the smaller arcs (of size at least r/2kl ) will, however, have
no disc is assigned ot it. This means that the space left by discs tangent to
the ends of this smaller arc cannot be covered, and we can choose ε so small
that a disc of radius ε fits into this space (see Figure 3.5). The value of ε
that we have to choose only depends upon r and n.
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r

2

Bn+2rBn+r

C

Figure 3.4: No discs can have two disjoint components in AB. Two disjoint
arcs from the perimeter of one disc, in a component C connecting the two boundaries of
Bn+r and Bn+2r, must be in disjoint parts of ∂C ∩Bn+2r/(Bn+r ∩ ∂Bn+2r).

The same argument applies to a component wholly contained in Bn+2r, by
considering its perimeter rather than its boundary between Bn+r and Bn+2r.
2

Proof of Theorem 3.4.4. Let t, u ∈ Z, and denote the box of size
n × n centred at (tn, un) by Bn(tn, un), as before. Let ε be chosen as in
Lemma 3.4.6. We say that the vertex (t, u) is a neighbour of (t′, u′) if the
boxes Bn(tn, un) and Bn(t′n, u′n) share an edge or corner. We call a vertex
(t, u) good if all discs of radius ε contained in Bn+3r(tn, un) contain at least
one point of the Poisson process. Denote the event that (t, u) is good by
G(t, u). It is clear that when λ → ∞, the probability of G(t, u) converges
to 1. It is also clear that G(t, u) and G(t′, u′) are independent whenever

max{|t− t′|, |u−u′|} ≥ d (3r)
n
e, for n larger than 2r. Hence, the configuration

of good sites is formed through a discrete, finite-range dependent percolation
process, and it follows then from Durrett and Griffeath (1983) that for λ
high enough, the good vertices percolate, i.e., contain an infinite component
of good squares with probability one. What does this mean for our cover-
ing? Consider a good square Bn. By Lemma 3.4.6 any component cannot
be wholly contained in Bn+2r, therefore, a component that covers points in-
side Bn+2r, must also intersect the boundary of Bn+2r. Also by Lemma 3.4.6,
there can be only one component that intersects the boundaries of both Bn+2r

and Bn+r. For n larger than 2ε such component exists and must reach to
within 2ε of all edges of Bn+r, as, by the definition of a good square, there
is no disc of radius ε inside Bn+r without any points of the Poisson process
inside it (see Figure 3.6). Thus, the components associated with adjacent
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r
2

a

A

B

Figure 3.5: Subdividing the arc. An edge AB of a component C connecting the
two boundaries of Bn+r and Bn+2r, has length at least r/2. This edge contains an arc a
of length at least r/2l. Arc a is divided up into k sections, and by one of these we can
place a small disc of radius ε that is not contained in any cluster.
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Figure 3.6: A good square. There is only one component of discs (represented by
the dashed line) that intersects both Bn+2r and Bn+r. This component must reach to
within 2ε of all edges of Bn+r, and will therefore intersect a component of an adjacent
good square.
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good squares must overlap, and we must have an infinite component of discs
with probability one. 2

We thank Johan Segers for the remark that this proof does not depend
upon the algorithm being finite horizon.

Proof of Theorem 3.4.5.
The proof in this case is a little more complicated, but uses the same

idea as that of Theorem 3.4.4. Without loss of generality assume that the
algorithm be stationary under the shifts T(m,0) and T(0,m), for some m. Let
h be the horizon of the algorithm, and assume m > max(1, h + 5r), again
without loss of generality. Choose γ > 0 sufficiently small that 1−γ is strictly
above the critical point for site percolation on the lattice {(tm, tu) : t, u ∈ Z}
with edges between neighbouring sites. Take n, a multiple of m, so large that
the probability that Bn+5r is intersected by more than (δ + 1)(n + 5r)2 discs
is less than γ, uniformly in λ. We then use (δ + 1)(n + 5r)2 as our k in the
lemma, and find an ε such that, if we have at most (δ + 1)(n + 5r)2 discs
intersecting Bn+5r in the way described in the lemma, then we must have a
disc of radius ε empty of Poisson points.

In the proof of the theorem we then call Bn good if Bn+3r has both no
disc of radius ε empty of Poisson points in it and Bn+5r contains at most
(δ +1)(n+5r)2 points. Other boxes are called good analogously. If λ is high
enough, these boxes percolate, and we again have an infinite component of
discs. 2

We have seen that both finite-horizon, shift-invariant algorithms under a
bounded density condition and flat algorithms necessarily percolate for high
enough λ. It is natural to ask whether this always holds for shift invariant
algorithms. It turns out that for these algorithms, large values of the density
λ of the points do not guarantee the a.s. existence of an unbounded connected
component. This is shown by describing a shift invariant covering algorithm
that does not form an unbounded connected component for all λ, thus proving
the following theorem:

Theorem 3.4.7 There exists a shift invariant covering algorithm A of all
the points of X by discs of radius r, such that for all λ, (X,λ, r,A) does not
percolate.

The proof of Theorem 3.4.7 is constructive and rather technical. The
covering we describe will have density λ.

Without loss of generality, consider covering discs of radius r = 1. The
main idea is the following: given a realization of the Poisson point process, we
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Figure 3.7: A potential point A potential point is a Poisson point with at least one
other point in the half-disc of radius 1

2 to the right of it, and no points in the disc of radius
1 centred at it, except in that half-disc.

first build a large structure of circles similar to those obtained in continuum
fractal percolation models. We do this by placing circles of radii 18m, with
m ∈ N, where we see certain configurations of points in the plane. The
resulting structure is composed of clusters that are finite, but contain every
bounded region of the plane. We then derive a shift invariant covering of all
the points of X by discs of radius r = 1, leaving an empty space near to the
boundaries of these clusters.

We illustrate the proof taking the density λ to be 1. The proof for the
covering of a Poisson process of another density follows in the same way (in
the proofs to follow, only the values of the ε’s change).

We define a potential-point to be a Poisson point with at least one other
point in the half-disc of radius 1

2
to the right of it, and no points in the disc of

radius 1 centred at it, except in the aforementioned half-disc (see Figure 3.7).
Notice that the potential points cannot come within distance 1 of each other.

Given a decreasing sequence of positive numbers, b1 = 1
2
, b2, b3 . . ., an

m-point, for m ∈ N, is a potential-point which has its nearest neighbouring
point between bm and bm+1 away.

We start by proving a few lemmas.

Lemma 3.4.8 For ε > 0 sufficiently small, there exists a sequence b1 =
1
2
, b2, b3, . . ., such that the density of m-points is exactly ε18−2m, for each

m ∈ N.

Proof of Lemma 3.4.8. The density of potential points, λp, is calculable.
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Choose ε > 0 so that

∞∑
m=1

ε18−2m = ε
1

182 − 1
≤ λp.

We can now define bi inductively, i.e. given bm we choose bm+1 so that the
density of m-points is exactly ε18−2m. 2

We consider a circle of radius 18m around every m-point. Call such a
circle an m-circle.

Lemma 3.4.9 Every bounded region of the plane is a.s. wholly contained in
some m-circle, for some m.

We will use Proposition 7.3 of Meester and Roy (1994). This states:

Proposition 3.4.10 (Meester and Roy, 1994) Let S be a stationary
point process in Rd, and let ρ be a non-negative random variable. If
E(ρd) = ∞, then in the Boolean model (S, ρ) the occupied component is
a.s. Rd.

Furthermore the proof of the theorem can be adapted to show that, under the
conditions of the theorem, every bounded region of the plane is a.s. wholly
contained in some circle.

Proof of Lemma 3.4.9. Let S be the random collection of m-points, for
all m. S is stationary. Note that the radii associated with points in S are
independent, as the points of S do not come within distance 1 of each other.
Let ρ be the radius distribution of the circles. Then (S, ρ) is a Boolean
model, and the occupied component corresponds to all areas contained in
some circle. In addition

E(ρ2) =
∞∑

m=1

(18m)2ε18−2m = ∞,

so we can apply the proof of Proposition 3.4.10 and conclude that every
bounded region is contained in some circle.

2

Now that we have shown that our circles a.s. contain any bounded region,
we want to show that any cluster of intersecting circles is a.s. finite. To do
this, we give a slight variation of a proof for fractal percolation that is in
the book by Meester and Roy (1996) (Theorem 8.1). Again, we proceed by
proving a series of lemmas but first we need a couple of definitions.
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4 18
m-1
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m

Figure 3.8: Sets of possible dependence.

We define the sets of possible dependence to the square [0, 18m]2 as the
rectangles (I1×I2 : Ii ∈ {[−4×18m−1, 0], [0, 18m]})\[0, 18m]2 (see Figure 3.8).
Sets of possible dependence to other squares of the same size are the natural
translations of this. Call a union of sets of possible dependence to a certain
square, a known region. Define Am to be the number of m-points in the
square [0, 18m]2, and A>m to be the number of k-points, with m < k ∈ N,
within distance 4 of the square. Let CJ

m be the number of m-points in the
known region J to the square.

Lemma 3.4.11 For any δ > 0, we can find m′ and, uniformly in m > m′,
ε > 0, sufficiently small that:

P (Am > 0|A>m = 0 ∩ CJ
m = 0) ≤ δ,

for any known region, J , to the square [0, 18m]2.

Proof of Lemma 3.4.11. We are interested in

P (Am > 0|A>m = 0 ∩ CJ
m = 0) =

P (Am > 0 ∩ A>m = 0 ∩ CJ
m = 0)

P (A>m = 0 ∩ CJ
m = 0)

≤ P (Am > 0)

P (A>m = 0 ∩ CJ
m = 0)

≤ P (Am > 0)

1− P (A>m > 0)− P (CJ
m > 0)

,

if P (A>m > 0) + P (CJ
m > 0) < 1. We recall that, for a non-negative integer-
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valued random variable N , P (N > 0) ≤ E(N), obtaining:

P (Am > 0|A>m = 0 ∩ CJ
m = 0) ≤ P (Am > 0)

1− E(A>m)− E(CJ
m)

≤ E(Am)

1− E(A>m)− E(CJ
m)

.

if E(A>m) + E(CJ
m) < 1.

Now, E(A>m) = (182m + 4(18m + 1))18−2m ε
182−1

, which is the area of
the region within distance 4 of the square multiplied by the total density of
k-points, for all k > m, k ∈ N. Noting that the maximum area of the known
region is (18m(1 + 4/18))2 − (18m)2, we see that

E(CJ
m) ≤ ((18m(1 + 4/18))2 − (18m)2)ε18−2m.

The bound becomes:
P (Am > 0|A>m = 0 ∩ CJ

m = 0) ≤
ε

1− (182m + 4(18m + 1))18−2m ε
182−1

− ((18m(1 + 4/18))2 − (18m)2)ε18−2m
,

which we can make uniformly less than δ by choosing ε small enough. 2

Let H(18n) = [−3
2
× 18n, 3

2
× 18n]2\(−1

2
18n, 1

2
18n)2. Define IH(18n) to be

the maximal connected cluster of (possibly partial) circles and the boundary
of the box [−1

2
18n, 1

2
18n]2, fully contained in H(18n), and define OH(18n) to be

the maximal connected cluster of circles and the boundary of [−3
2
× 18n, 3

2
×

18n]2, fully contained in H(18n). See Figure 3.9.
Let G(18n) be the event that there is a gap in H(18n), i.e. the minimal

distance between IH(18n) and OH(18n) is at least 18.

Lemma 3.4.12 For ε > 0 sufficiently small,

lim
n→∞

P (G(18n)) ≥ 1

2
.

We prove Lemma 3.4.12 in two parts. Let G1(18n) be the event that there is
a gap between IH(18n) and OH(18n) in H(18n), when we consider circles only
of radius 18n−1 or less. The size 18n−1 is chosen because it is a convenient
size comparable to the size of H(18n). Let G2(18n) be the event that no
circles of radius 18n or greater intersects H(18n) at all. Clearly, if G1(18n)
and G2(18n) both occur, then G(18n) does also. Thus, Lemma 3.4.12 follows
from the following two lemmas.
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Figure 3.9: The sets IH(18n) and OH(18n). IH(18n) is shown in dark grey and
OH(18n) in light grey.

Lemma 3.4.13 For ε > 0 sufficiently small,

lim
n→∞

P (G1(18n)) ≥ 3

4
.

Lemma 3.4.14 For ε > 0 sufficiently small,

lim
n→∞

P (G2(18n)) ≥ 3

4
.

Proof of Lemma 3.4.13. This proof closely follows that of Theorem 8.1
of Meester and Roy (1996) for fractal percolation, except for a number of
extra technicalities. We are going to show that we dominate a version of the
process which has more independence.

We first divide H(18n) into 8×182 sub-squares of size 18n−1 in the obvious
way. We call two squares of the same size neighbours if they share an edge
or corner.

Suppose for a moment that the probability that a square of size 18m con-
tains an m-point, is uniformly δ, for all m, independently of the occurrence
of k-points anywhere, with k 6= m, k ∈ N, and independently of the occur-
rence of m-points outside the square. We give our proof initially under this
assumption, and then compare our original process with this.

We consider the 8× 182sub-squares of H(18n), and in an order such that
for any two squares, B and B

′
say, B is considered before B

′
if B is neither
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to the right of nor above B
′
. We examine, in this order, these sub-squares of

size 18n−1, looking for (n− 1)-points, in the following inductive fashion:

• to begin, all squares are declared to be neither corrupt nor bad.

• if a sub-square is not corrupt, then we examine the whole of it, look-
ing for (n − 1)-points. If it contains any, then we call it bad, and its
neighbouring squares of the same level corrupt.

• if a sub-square is corrupt then we do not examine it.

Squares are bad if they contain centres of circles of comparable size to them-
selves, which then may extend into the corrupt squares. Corrupt squares
may or may not contain (n − 1)-points. We are careful not to find out this
information, as it might tell us something about the distribution of points in
the squares we have not yet considered.

We can then divide up each of the good squares (those that are neither
bad nor corrupt) into 182 pieces, obtaining at most 8 × 182×2 squares of
size 18n−2, and we examine those, in an order such those squares nearer the
bottom-left hand corner are considered first, looking for (n−2)-points, in the
same inductive fashion as above. We end up declaring each of the squares of
size 18n−2 that are sub-squares of good squares in H(18n) to be good, bad
or corrupt.

We divide up each of the good squares of size 18n−2 into 182 squares of
size 18n−3, and use the same procedure to declare each good, bad or corrupt.
We can then divide up each of the good squares, and repeat this procedure,
while we still have good squares, and to a minimum square size of 18.

We then work backwards through the squares, starting with the smallest,
to declare each either dreadful or not. A square of size 18 is dreadful if it is
bad. In an inductive fashion, a square of size 18m is dreadful if it is either
a) bad or b) good but contains 2 or more dreadful squares of size 18m−1. We
call H(18n) dreadful if it contains any dreadful squares of size 18n−1.

Under our temporary independence assumption, a square of size 18 is
dreadful with probability δ, conditioned on the fact that it has not been de-
clared corrupt before being checked. Thus, the probability that it is dreadful
is at most δ. Then the probability pm that a square of size 18m is dreadful,
is the probability it is a) bad or b) good but contains 2 or more dreadful
squares of size 18m−1. The probability that it is bad, is, as for a square of
size 18, at most δ. The probability that it is good is at most 1− δ. It may be
that some of the sub-squares of size 18m−1 of this square are corrupt, due to
being neighbours of bad squares of the same size outside this square. Let N
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be the number of such squares. As the probability of a square being dreadful
is maximal when N = 0, it follows that:

pm ≤ δ + (1− δ)((1− pm−1)
182 − 182pm−1(1− pm−1)

182−1) .

Letting

f(p, δ) = δ + (1− δ)(1− (1− p)182 − 182p(1− p)182−1),

this becomes pm ≤ f(pm−1, δ). Note that p1 = δ. If we can now show, for all
δ, that

0 ≤ p ≤ b(δ) implies 0 ≤ f(p, δ) ≤ b(δ),

for some b(δ) ≥ δ, it will follow that pm ≤ b(δ) for all m. We need b(δ) to be
a bound that tends to 0 with δ.

Note that f(p, δ) is continuous in p and δ, that f(0, δ) = δ and that
∂f
∂p

(0, δ) = 0. It follows that f(p, δ) = p has a solution in [0, 1] for δ sufficiently

small. The smallest such solution we call b(δ). Notice that b(δ) ≥ δ, as
f(0, δ) = δ and ∂f

∂p
(p, δ) ≥ 0 on [0, 1]. ∂f

∂p
(p, δ) ≥ 0 on [0, 1] also tells us that

0 ≤ p ≤ b(δ) implies 0 ≤ f(p, δ) ≤ b(δ). Since f(0, 0) = 0, ∂f
∂p

(0, δ) = 0 and

f is continuous, limδ↓0 b(δ) = 0.
We have shown that the probability that a square of size 18m is dreadful

is bounded from above, uniformly in m, by a function of δ that we can
make arbitrarily small by choosing δ small enough. It then follows that the
probability that H(18n) is dreadful (i.e. contains any dreadful squares of size
18n−1) can be made as small as we like by choosing δ sufficiently small. We
choose δ so that this probability is less than 1

4
.

We can now come back to our original process, and give up the indepen-
dence assumption. We make the following comments:

• The probability that a square of size 18m contains an m-point, when we
come to check it, given any of the information we already have found, is
at most δ, by Lemma 3.4.11, and because we never consider a corrupt
square.

• By choosing ε sufficiently small we can make the bound δ as small as
we need.

Let us consider what it means for H(18n) not to be dreadful. We argue that,
in this case, we cannot have a connection by circles, of the appropriate sizes,
from the inside to the outside of the box.

We first note that any m-point in H(18n) is either in a bad or a corrupt
box of size 18m. An m-circle may thus only intersect a box of size 18m, if
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that box is either bad, corrupt, or neighbours a corrupt square of the same
size, unless it neighbours the boundary of H(18n).

We now give a series of definitions. Call a box of size 18m dodgy if
it is either bad, corrupt, neighbours a corrupt square of the same size, is
dreadful, neighbours a dreadful square, or neighbours the border of H(18n).
Call it clean if it is not dodgy. Call two boxes of size 18m adjacent if they
share an edge. Define an m-circuit to be a series of boxes of size 18m,
(B1, B2, B3, . . . , Bk) where Bi is adjacent to Bi+1 for i = 1, 2, . . . , k − 1 and
Bk is adjacent to B1. We also require that the circuit cuts off the origin from
infinity.

A sub-circuit of boxes of size 18j,(Bj
1, B

j
2, B

j
3, . . . , B

j
kj

), of a circuit of

boxes of size 18m (with j < m),(Bm
1 , Bm

2 , Bm
3 , . . . , Bm

km
), is a circuit of boxes

of size 18j inside the circuit of boxes of size 18m, such that there exists
0 = i1, i2, i3, . . . , ikm−1, ikm = kj, such that Bj

il+1, B
j
il+2, B

j
il+3, . . . , B

j
il+1

are

contained in Bm
l . This means that the first few boxes of size 18j are contained

in Bm
1 , the next few are in Bm

2 , and so on.

We say that the property Em holds if any m-circuit consisting of clean
boxes of size 18m contains a sub-circuit of boxes of size 18 that are not
intersected by k-circles, for all k ≤ m. Our objective is to show that Em

holds for m = 1, 2, . . . , n− 1, by induction on m.

If m = 1, we have a 1-circuit of clean boxes. Therefore there can be no
1-circle intersecting any of these boxes, and E1 holds.

The inductive hypothesis is that Em−1 holds. In order to perform the
induction step and prove that Em also holds, consider an m-circuit of clean
boxes of size 18m, as depicted by in Figure 3.10. In this figure, the smallest
squares are of size 18m−1. If we show the existence of a sub-circuit of clean
boxes of size 18m−1 inside the m-circuit, then, by the inductive hypothesis,
the occurrence of Em will follow.

By construction, all the boxes of size 18m in our circuit are clean. This
tells us that none of them intersects an m-circle. It also means that there is
at most one dreadful square inside each box of size 18m in the circuit. These
are depicted in Figure 3.10 as black squares. A dreadful square may cause
a 5 × 5 block of squares of size 18m−1 to be dodgy (grey 5 × 5 blocks in
Figure 3.10). This can happen because the dreadful square can neighbour
a corrupt square, which also has neighbours. Finally, any of the squares of
size 18m−1 neighbouring the edge of the circuit, or the neighbours of these
squares, may be dodgy, due to the proximity of dreadful squares just outside
the circuit. This latter case is depicted in Figure 3.10 by the two grey circuits
of width 2 × 18m−1, along the edges of the m-circuit. These are all the
possibilities for dodgy squares of size 18m−1 in our circuit.
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Figure 3.10: Avoiding dodgy squares. A circuit of squares of size 18m contains a
circuit of squares of size 18m−1, avoiding dodgy squares.

By considering all possible arrangements of the dodgy squares we see that
there must be a circuit of squares of size 18m−1 inside our circuit that avoids
those dodgy squares (see Figure 3.10). Then, by the inductive hypothesis,
there must also be a sub-circuit of squares of size 18, so Em holds.

H18n is a circuit of boxes of size 18n, and if all are clean, by the argument
above, it follows that we must have a sub-circuit of boxes of size 18 that
are not intersected by any m-circles, for m = 1, 2, . . . , n, which is what we
wanted to prove. 2

Proof of Lemma 3.4.14. Let X be the number of circles of radius at
least 18n that intersect [−3

2
× 18n, 3

2
× 18n]2. A circle can only intersect the

boundary of the box if the distance between the centre of the circle and the
centre of the box is within 3×18n× 1√

2
of the circle’s radius (see Figure 3.11).

Now write:

P (X > 0) ≤ E(X)

≤
∞∑

b=n

ε18−2bπ((18b +
3× 18n

√
2

)2 − (18b − 3× 18n

√
2

)2).

We can make this less than 1/4 for all n by our choice of ε, implying that
the probability of a large circle intersecting the box is less than 1/4. 2

We can now prove the finiteness of our clusters. We define a thickened
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Figure 3.11: Intersection between circle and box. A circle of radius at least
18n can touch the boundary of the box [− 3

2 × 18n, 3
2 × 18n]2 only if the distance between

the centre of the circle and the centre of the box is within 3 × 18n × 1√
2

of the circle’s
radius.

cluster as a maximal connected component of points strictly within distance
9 of any circle.

Lemma 3.4.15 All thickened clusters are finite, for ε > 0 sufficiently small.

Proof of Lemma 3.4.15.
By Lemma 3.4.12 there is a gap between [−18m

2
, 18m

2
]2 and

[−3×18m

2
, 3×18m

2
]2, with probability at least 1/2, by our choice of ε, for ev-

ery m.
We now need to show that such a gap exists around the origin a.s. , for

some m. If we can do this then we can conclude, by the stationarity of the
circle configuration, that every point will be surrounded by some gap. We
need to be careful in showing this, so that the negative information gained by
the knowledge that there is no such gap, for a certain m, does not prejudice
our attempts to find one in a later m. We proceed as follows.

We begin by looking whether there is a gap between the boundaries of
[−18

2
, 18

2
]2 and [−3×18

2
, 3×18

2
]2. In order to do this we search for the centres

of the circles that might intersect this area, in order of increasing size. Ei-
ther there is no gap, in which case a (random) K1 < ∞ exists, so that
these boundaries are connected by circles of radius up to 18K1 , or there is
a gap (with probability of at least 1/2). In the latter case we would be

satisfied. In the first case we can find an M1 so large that [−18M1

2
, 18M1

2
]2

and [−3×18M1

2
, 3×18M1

2
]2, cannot be overlapped by any circle of radius up to

18K1 that could also have overlapped [−3×18
2

, 3×18
2

]2. We know nothing about
larger circles.
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We have no information about the circles that may connect [−18M1

2
, 18M1

2
]2

and [−3×18M1

2
, 3×18M1

2
]2; hence, the probability that there is a gap between

them is again at least 1/2. We search for a connection between the boundaries

of [−18M1

2
, 18M1

2
]2 and [−3×18M1

2
, 3×18M1

2
]2, again starting by looking at the

smallest circles. Either there is a gap, or there exists K2 < ∞ such that
there is a connection from one of these boundaries to the other using circles
of size up to 18K2 . In this latter case, we can find an M2 > M1 so large that
[−18M2

2
, 18M2

2
]2 and [−3×18M2

2
, 3×18M2

2
]2, cannot be overlapped by any circle of

radius up to 18K2 that could also have overlapped [−3×18M2

2
, 3×18M2

2
]2.

We now search again for a gap, this time between [−18M2

2
, 18M2

2
]2 and

[−3×18M2

2
, 3×18M2

2
]2, and repeat. At every stage we have a probability of at

least 1/2 of there being a gap, independently of the previous times. If there
is no gap (which happens with a probability of at most 1/2) then we find
this out at some time and search in a larger annulus. It follows that there is
almost surely a gap.

2

Finally, we can now give a proof of Theorem 3.4.7, by describing a shift
invariant covering algorithm that a.s. never forms an unbounded component
of covering discs, for all λ.

Proof of Theorem 3.4.7. We nearly have a covering algorithm, but ev-
erything we have done up to now depends upon λ, the density of points. As
the covering should be a deterministic function of the points, we must first
calculate λ in the realisation of the point configuration. We do this by setting

λ = lim
n→∞

number of points in Bn(0)

n2

if this limit exists and is constant, which happens with probability 1, and
otherwise we take λ = 1. Note that this definition is translation invariant.

Fix ε at half the supremum of all values of ε that allow all our proofs to
work at this particular value of λ.

We construct smooth curves based upon the finite circle clusters. Consider
some maximal set of circles such that, if we take the locus of points at
a maximal distance of 4 from the points in the circles, then this forms a
connected set, and run a disc of radius two around the outside of this set (see
Figure 3.12). The disc traces out a kind of sausage shape around the clusters.
We note that all such sausages must be finite by Lemma 3.4.15. In formulas
we take a maximal set of circles, C, such that

⋃
c∈C{x : |x− y| ≤ 4, y ∈ c} is
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Figure 3.12: Sausages. By sliding a disc of radius 2 along the boundary of some
cluster, we trace a kind of sausage shape.

connected, and then define the sausage to be the set on the exterior of C,

{x : ∃y : |x− y| ≤ 2,∃p ∈
⋃
c∈C

c : |y − p| = 2, {w : |w − y| < 2} ∩
⋃
c∈C

c = ∅}.

We take the inside edge of this sausage as our curve, and note that a
covering disc (of radius 1) can get arbitrarily close to any point of it without
touching it.

We construct these smooth curves for each set of sufficiently close clusters,
noting that they surround every region, are always finite, and never come
within distance 18 of each other.

We finally cover our Poisson points as follows:

• if a point is at a distance more than 2 from every smooth curve, then
we centre a covering disc at the point.

• if a point is within distance 2 of a smooth curve, then we place a disc
so that its perimeter covers the point, and so that the centre of the disc
is at the maximum distance away from the smooth curve. If there are
a number of such possible positions, we choose the leftmost.
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R < 2
r

R >2
r

r

r R/2
R/2

Figure 3.13: Scaling. Points are covered by solid line discs of radius r. Discs centres
are considered connected if their distance is at most R.

It immediately follows that, for any given value of λ, a.s. there is no perco-
lation.

2

3.5 Scaling

In this section we consider an extension that is useful to model the transmis-
sion power in wireless communication networks. We look at the percolation
properties of our model, for different values of the connectivity range of the
base stations and of the clients.

Let r be the clients’ connectivity range and let R be the base stations’
connectivity range. It follows that discs of radius r are used to cover the
points of X and two disc centres are considered connected, if their distance
is less than, or equal to R (see Figure 3.13). We are interested in the a.s. exis-
tence of an unbounded connected component of disc centres, for large values
of the density λ of the Poisson point process. Our result is the following.

Theorem 3.5.1 (The Scaling Theorem) Let G ⊂ R2 be the set of all
vertices of a square lattice in which the distance between two neighbouring
lattice vertices is δ. Call two disc centres connected if their distance is at
most R. We have:

• CASE 1. If R
r
≤ 1 then, for any δ > 0, there exists a grid covering

algorithm A that places discs only at the vertices of G, such that, for
all λ, (X, λ, r,A) does not percolate.

• CASE 2. If 1 < R
r

< 2 then, there exists a δ > 0, depending on R
r
, such

that there exists a grid covering algorithm A that places discs only at



3.5. SCALING 73

the vertices of G and, for all λ, (X, λ, r,A) does not percolate.

• CASE 3. If R
r

= 2 then, for any δ > 0, for any grid covering algo-
rithm A, there exists a λ1 < ∞, such that, for all λ > λ1, (X, λ, r,A)
percolates.

• CASE 4. If R
r

> 2 then, for any covering algorithm A, there exists a
λ1 < ∞, such that, for all λ > λ1, (X, λ, r,A) percolates.

Note that Case 4 of the theorem states that in a wireless network in which
base stations can communicate at a distance larger than twice the maximum
communication distance to the clients, an unbounded connected component
forms a.s. for large values of the density of the clients, regardless of the
covering algorithm used to build the cellular network.

Before giving a proof of Theorem 3.5.1, we discuss an intuitive interpre-
tation of the theorem. Consider a fixed value of R and let r approach zero.
In the limit for r → 0, a covering algorithm needs to place a disc at each
point of X, therefore, any covering algorithm behaves as the standard Poisson
Boolean model {X,λ, R/2}. For this model it is known that an unbounded
connected component a.s. forms, for large values of the density λ.

What Theorem 3.5.1 states is that, when r is small, the covering algorithm
is constrained to place the discs almost as a Poisson point process, therefore
an unbounded connected component a.s. forms, for large values of λ. On the
contrary, when r is large, a covering algorithm has more freedom in placing
the covering discs and percolation can be avoided.

Note that we do not need r ≈ 0, and the covering process to behave
exactly as a Poisson Boolean model, to obtain the percolation property, but
as long as r is small enough that the ratio R

r
is greater than 2, Case 4 of the

theorem applies, and the result on the existence of an unbounded connected
component holds for any covering algorithm.

Proof of Theorem 3.5.1.
Case 1. We can restrict our attention to R

r
= 1. That is because if a grid

covering algorithm does not form an unbounded connected component when
R
r

= 1, then it does not form such a component when R
r

< 1 either.

Note that, for R
r

= 1, two disc centres are considered connected if and only
if the corresponding discs of radius r cover each other’s centres. Moreover,
in order to be able to cover all points on the plane by using only grid discs
of radius r, the grid spacing δ must be at most

√
2r.

We now consider all values of the grid spacing δ ≤ √
2r, subdivided into

intervals.
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δ=r r2δ=

Figure 3.14: Theorem 3.5.1, Case 1. Two tilings of the plane by discs centred on
a grid that do not cover each other’s centres.

• For r < δ ≤ √
2r, any grid covering algorithm places discs on the plane

that do not touch each other’s centres.

• For r√
2

< δ ≤ r, consider the tiling of the plane depicted in the left part
of Figure 3.14. Discs of this tiling do not cover each other’s centres,
therefore, any grid covering algorithm that covers all the points of X
using only the grid discs depicted in the left part of Figure 3.14 does
not form an unbounded connected component, a.s. , for any value of λ.

• For r/2 < δ ≤ r√
2
, consider the tiling depicted in the right part of

Figure 3.14. Discs of this tiling do not cover each other’s centres,
therefore, any grid covering algorithm that covers all the points of X
using only the grid discs depicted in the right part of Figure 3.14 does
not form an unbounded connected component, a.s., for any value of λ.

For the remaining values of δ, we can use the same tiling of the two cases
depicted in Figure 3.14, scaled by the appropriate factor.

Case 2. In this case, two disc centres are considered connected if and only
if the corresponding discs of radius r overlap by a region of measure at least
ε > 0, where the value of ε depends on the ratio R

r
.

We follow a similar construction as that used to prove Proposition 3.4.3.
Draw circles of radii {3kr, k ∈ N} around the origin, and notice that a.s. no
Poisson point falls on any of these circles. Then cover the Poisson points,
each with a disc of radius r, without intersecting these circles. Notice that the
circles divide the plane into finite annuli, whose boundaries are not covered
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P

O

Figure 3.15: Theorem 3.5.1, Case 2. A Poisson point P is covered by a disc
centred at point O, that is within r from P . The covering disc can be moved to a nearby
grid vertex, that is inside the solid disc and is within

√
2δ from O, and still covers point

P .

by discs. We now approximate this covering using a grid covering. Consider a
square grid G and move each disc of the above covering to the nearest vertex
of G that still allows to cover its corresponding Poisson point. Note that
each disc needs to be translated by at most

√
2δ. That is because a Poisson

point is covered by a disc centred within r from it, and there is always a grid
vertex, within radius r from the Poisson point, that is also within

√
2δ from

this centre (see Figure 3.15). By this translation, some discs may intersect
the boundaries of the annuli, that were previously untouched. We then take
the grid size δ so small, that any two discs that intersect these boundaries
do not overlap by an area of measure greater than or equal to ε, and are
therefore not connected.

It immediately follows that, for any given value of the density λ, a.s. there
is not any unbounded connected component for this covering.

Case 3. This case is proven by Theorem 3.4.3.

Case 4. In this case, two discs are considered connected if and only they
are at a distance of at most R− 2r (see right hand side of Figure 3.13).

We construct a mapping from the covering discs to a discrete site perco-
lation model. Consider a partition of the plane into boxes of side length ε√

2
,

with 0 < ε ≤ R
2
− r. Note that if some point of X falls inside a box of the

partition, then it must be covered by a disc of radius r, and therefore the
entire box is covered by a disc of radius R

2
(see Figure 3.16).

Consider now each ε × ε box as a site of a site percolation model. Call



76 COVERING ALGORITHMS

ε

r

R
2

Figure 3.16: CASE 4. If some point of X falls inside a box of side length ε√
2
, then

the entire box is covered by a disc of radius R
2 .

the site occupied, if there is at least a point of X situated inside the box.
Clearly, the occupancy of a site is independent of the occupancy of other
sites, and, if two adjacent sites are both occupied, then the corresponding
covering discs form a connected component. Next, we choose λ large enough
that the probability of a site being occupied is larger than pc, where pc is the
critical probability for site percolation on a square lattice. The a.s. existence
of an unbounded connected component of covering discs immediately follows.
2

3.6 Optimal algorithms

In this section we explore the notion of an optimal algorithm, i.e. one which
uses as few discs as possible. We first consider n-square algorithms, and show
that they are nearly optimal, then we describe an algorithm which really is
optimal. Note that n may take any positive real value. The work in this
section is philosophically close to that in Yukich (1998), for example.

Fix the density of points, λ, and r, and extend the definition of the density
of a covering, A, to be

δA = lim
n→∞

number of discs centred in Bn

n2

if this exists and is a constant a.s., and ∞ otherwise. We then define the
optimal density to be

δopt = inf
A

δA,
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where the infimum runs over all covering algorithms. We are interested in
whether there exists an optimal algorithm, Aopt, for which, a.s. , δopt = δAopt .
We would not expect such an algorithm to have a finite horizon.

First we show that n-square algorithms can get as close as we like to
the optimal density. Define δn to be the density of discs under an n-square
algorithm. By ergodicity δn < ∞ exists. Notice that δn does not depend
upon the particular n-square algorithm we choose.

Theorem 3.6.1 Given ε > 0, there exists nε such that δnε < δopt + ε, and
hence δopt = infn δn.

Proof of Theorem 3.6.1 We prove this theorem by contradiction, so sup-
pose that we can find an ε such that there is no n-square covering with density
between δopt and δopt + ε. We can find another covering, Â say, with density
δÂ ∈ [δopt, δopt + ε/4], by the definition of δopt.

Choose γ > 0 such that (1−γ)(δopt +ε/2)+γ(1+ε/2)/r2 < δopt +ε. Note
that the number of discs necessary to cover an n-square is at most dn/re2.

As δÂ = limn→∞ number of discs centred in Bn

n2 , a.s, we can choose nε > 1
sufficiently large that a) the number of discs centred in Bnε is less than
n2

ε(δ
opt + ε/2) with probability larger than 1 − γ, and b) dn/re2 (1/n)2 ≤

(1 + ε/2)/r2.
Given a finite set of points there are a finite number of distinct possible

coverings of those points, where we call two coverings distinct if there exist a
set of points covered by one disc in one of the coverings but covered by two
or more in the other. Coverings that are not distinct are equivalent. We will
occasionally work with the equivalence classes of theses coverings.

We next define a covering of the box Bnε which is based upon Â but is
independent of the points outside Bnε . Given a point configuration, π, in
Bnε there is a finite set of equivalent classes of coverings of these points. Let
Sπ be the subset of equivalence classes which occur with positive probability
if we use Â to cover π ∪ X|′Bc

nε
, where X|′Bc

nε
is a Poisson process on Bc

nε

independent of π and X. In each equivalence class all coverings use the
same number of discs so we can choose an equivalence class from Sπ in which
the number of discs used is minimal, according to some deterministic rule.
Choose a covering from this class, according to some other deterministic rule.
This is the covering we use to cover Bnε . Note that this is independent of the
actual point process outside Bnε . The expected number of discs required to
cover the points in Bnε under this algorithm can be at most that under Â.

We divide up the plane into squares of size nε, and cover each square
independently using the same algorithm in each as we use on Bnε . For those
squares for which this requires at most n2

ε(δ
opt + ε/2) discs, we use this cov-
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ering. In the other squares we cover optimally, which means that we have a
density of at most (1 + ε/2)/r2 on these squares.

We have created an algorithm that covers each square of size nε indepen-
dently, and which therefore cannot have a density less than δnε . However, the
density of the covering is at most (1−γ)(δopt +ε/2)+γ(1+ε/2)/r2 < δopt +ε,
and we have a contradiction. 2

Next, we prove a proposition that extends the previous theorem and will
be useful later.

Proposition 3.6.2 Let δn be the density of discs under an n-square algo-
rithm. Then

lim
n→∞

δn = δopt .

Proof of Proposition 3.6.2
We know that δopt = infn δn, and that δnn

2 is the expected number of
discs needed to cover an n-square. For the sake of contradiction suppose
that there exist ε > 0 and a sequence {t1, t2, . . .}, limi ti = ∞ such that
δti > δopt + ε for all i. However we can choose α so that δα < δopt + ε/3. We

can also choose i so large that

(
1− ⌊

ti
α

⌋2
(

α
ti

)2
)

λ < ε/3. The reason we

need this will become clear shortly.
We cover the square Bti as follows. We first divide as much of the square

as possible into squares of size α. Each of these we cover optimally. We have

an area of (t2i − α2
⌊

ti
α

⌋2
) left, and each of the points in this area we cover

with one disc. This gives us a covering with expected density,

⌊
ti
α

⌋2 (
α

ti

)2

δα +

(
1−

⌊
ti
α

⌋2 (
α

ti

)2
)

λ ≤ δopt + ε/3 + ε/3.

However, the minimal expected density for any algorithm covering the box
Bti , δti > δopt + ε, so we have a contradiction. 2

Note that it is still not clear a priori that an optimal algorithm should
exist. The existence of an optimal density, defined as the infimum over all
attainable densities, does not have to be attainable itself. However, we have
the following theorem:

Theorem 3.6.3 There exists an optimal algorithm.

We give first the algorithm that we claim is optimal, and then prove that
this is so in a number of steps.
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The algorithm
The basic idea is to recursively find coverings of points in boxes, which are
part of optimal coverings of points in larger boxes, incrementally covering
the whole plane. Consider the boxes Bn, n ∈ N. In each box there is a finite
number of distinct possible optimal coverings of the points in that box, and
from now on we work with the equivalence classes of these coverings.

Let An be an optimal covering of Bn chosen according to some rule, and
let An|m be the covering of the points of Bm induced by An, by which we
mean the covering consisting of all discs of An that cover at least one point of
Bm. Take B1 and consider the sequence of coverings An|1, n ∈ N. There are
only finitely many equivalent coverings of B1, and at least one of these must
appear infinitely many times in An|1, n ∈ N. Choose such an equivalence
class and cover B1 using a covering from this class. Let I1 ⊂ N be the
infinite set of indices, such that An|1, n ∈ I1 is in the chosen equivalence
class. Let J1 be the smallest element of this set that is larger than 1.

We can repeat this exercise to find a covering of BJ1 . We consider the
sequence of equivalence classes of coverings An|J1 , n ∈ I1. Again this set
is finite, so we can find an infinite set I2 ⊆ I1, such that all the coverings
An|J1 , n ∈ I2 are in the same equivalence class. We fix a covering for BJ1 from
this class, which is necessarily consistent with the covering we have already
chosen for B1. Let J2 be the smallest element of I2 that is larger than J1.

We repeat this procedure in the natural way. Every time we fix a covering
of a box corresponding to the lowest element of some index set, and take a
new index set which is an infinite subset of the previous one. We find in this
way a covering of the whole plane.

It is not obvious that this covering should be optimal. We have a sequence
of boxes, {B1, BJ1 , BJ2 , . . .} which contain coverings that are parts of optimal
coverings of larger boxes, but there is no a priori guarantee that the limit

limi→∞ number of discs in Bi

i2
will be δopt. To show that it really is optimal

we need a few definitions and a lemma.
For a bounded subset of the plane, V , let Ṽ be the set {x : ∃y ∈

V such that |x − y| ≤ 2r}. Let NV be the (random) number of discs in
an optimal covering of the points in V . If W ⊇ Ṽ is another such subset
then, given an optimal covering algorithm of W , let NW |V be the number of
discs in the covering of W that also cover points in V .

Lemma 3.6.4 Let A and B be bounded subsets of the plane such that B ⊇
Ã. Fix optimal covering algorithms for Ã and B. Then for every point
configuration NB|A ≤ NÃ.

Proof of Lemma 3.6.4 Notice first that we can find a covering of B by
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covering all the points in Ã optimally and then use an optimal covering of B
to cover the points in B/Ã. This gives us:

NB ≤ NÃ + NB|B/Ã.

Secondly, notice that any point in B/Ã is at least 2r from any point in
A. This implies that each disc used in an optimal covering of B can cover
points in only one of these sets. Thus,

NB|A + NB|B/Ã ≤ NB.

Combining these inequalities gives us the result. 2

Let us take a box, Bt, as A in the lemma, and BJi
as B, where Bt+2r ⊂ BJi

.
Then the lemma says that the number of discs covering points in Bt under
an optimal covering of BJi

is at most the number of discs covering points in
Bt+2r under an optimal covering of this area. We note that this last quantity
is at most the optimal number of discs covering Bt plus the number of points
in Bt+2r/Bt (call this number Pt). Hence,

NBJi
|Bt ≤ NBt+2r ≤ NBt + Pt.

Let Mt be the number of discs in the covering that we claim is optimal
that cover points in Bt. Note that Mt = NBj

|Bt for all j > t + 2r with
j ∈ {J1, J2, . . .}. Therefore we can write:

NBt

t2
≤ Mt

t2
≤ NBt + Pt

t2
.

Notice that Pt

t2
goes to 0 as t goes a.s. to infinity, as follows from, for example,

Chebyshev’s inequality.
It follows that to prove Theorem 3.6.3 it is enough to show:

Lemma 3.6.5

lim
t→∞

NBt

t2
= δopt, a.s.

Proof of Lemma 3.6.5 We use a continuous sub-additive ergodic theorem.
See Akcoglu and Krengel (1981), in particular Theorem 2.8, for more details.

Let NR be the minimum number of discs required to cover all the points
in the rectangle R, and suppose we have two disjoint rectangles, R1 and R2.
Then we note that:

NR1∪R2 ≤ NR1 + NR2 .
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It then follows that

lim
t→∞

NBt

t2

exists and is a constant, a.s. Proposition 3.6.2 together with the fact that
NBt/t

2, t > t′ is bounded above by d t
r
e2 1

t2
, for any t′ > 0, gives by dominated

convergence that this limit is δ. 2

3.7 Open problems

We would like to mention a number of open problems:

• For which classes of algorithms does there exist a critical density? By
this we mean a a critical value λc, such that percolation occurs for
λ > λc and does not occur for λ < λc.

• For which classes of algorithms is the infinite cluster unique? In other
words, when do we have either 0 or 1 infinite cluster, a.s.?

• We have shown in Theorem 3.4.5 that if we have an algorithm with a
finite horizon, which is shift invariant under two linearly independent
shifts and has a bounded density of discs, then we must have percolation
for λ high enough. We have also shown in Theorem 3.4.7 that we can
have a completely shift invariant covering algorithm with an unbounded
density of discs and no finite horizon that does not percolate, even for
high values of λ. Do we have percolation for λ high enough for a finite
horizon algorithm invariant under a pair of shifts, with an unbounded
density of discs? Do we necessarily have percolation for λ high enough
if we have a bounded density of discs and shift invariance but no finite
horizon?
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[6] P. Erdős and A. Rényi (1961). On the Evolution of Random Graphs.
Bulletin of the International Institute of Statistics of Tokio, 38, 343-
347.
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[12] P. Gupta and P.R. Kumar (2000). The Capacity of Wireless Networks.
IEEE Transactions on Information Theory, 46(2), 388-404.

[13] P. Hall (1985). On Continuum Percolation. The Annals of Probability,
13(4), 1250-1266.

[14] P. Hall (1988). Introduction to the Theory of Coverage Processes. J.
Wiley and sons, New York.

[15] M. Penrose (1997). The longest edge of the random minimal spanning
tree. The Annals of Applied Probability, 7(2), 340-361.

[16] H. Kesten (1980). Percolation Theory for Mathematicians, Birkhäuser.
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Chapter 4

On the construction of
ZZd

-valued systems with
unbounded transition rates

Lorna Booth and Corrie Quant

We construct certain particle systems on ZZd
. These systems

start in configurations given by a stationary, ergodic law, such
that the expectation of the absolute number of particles per site
is finite. Particles are added and removed at rates which are
functions of the configuration of particles. These functions are of
bounded variation and are such that the rate at which particles
are added at each is site is almost surely finite. Negative numbers
of particles are allowed.

4.1 Introduction

Interacting particle systems are often used to model aspects of the physical
world, but mathematicians and physicists have different approaches to these
systems. Sometimes physicists discuss the invariant measure of a certain sys-
tem, while mathematicians are worrying whether the system even exists, and
trying to construct a model fitting the informal description of the physicists.

The construction of systems with bounded local transition rates has been
widely studied, in for example Liggett [4, 5]. Examples of constructions of
particle systems with unbounded and non-local transition rates can be found

85
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in Liggett [3], Andjel [1], Maes et al. [6] and Meester and Quant [7]. These
constructions use the monotonicity of the systems.

In this paper we consider the existence of certain infinite particle systems
on Z, although our results can easily be extended to systems on Zd. The pre-
cise result can be found in Section 4.2. We allow ourselves to have negative,
as well as positive, numbers of particles. The systems we construct are not
necessarily nearest-neighbour systems or monotone systems and may have
unbounded rates. We will give conditions under which such a system with
a given formal generator (which comes down to a given informal description
of the transition rates) can be constructed. Negative particles allow us to
model an interface, where the height differences are interpreted as particles.
In Section 4.4 we give an example of the construction of a system that we
can handle in this way (under certain restrictions): the bricklayer model of
Balàzs [2].

Informally described, we let our systems start from an initial configuration
chosen according to an ergodic stationary measure, for which the expectation
of the absolute value of the number of particles per site is finite. Particles
are added to or removed from a configuration with a rate that is a function
of bounded variation of the configuration of particles already present. This
is done in a spatially stationary way. The rate at which particles are added
and removed at each site will then be finite, a.s.

In Section 4.3 we consider the class of rate functions we allow, Section 4.4
contains the bricklayer example, and finally Section 4.5 contains the proof of
our result.

4.2 Notation and results

We write Ω for the subset of configurations of ZZ for which

lim sup
n→∞

|ω(−n)|+ · · ·+ |ω(n)|
2n + 1

< ∞.

The set Ω will be the state space of our system, which we equip with the
product topology and Borel σ-algebra. Given ω ∈ Ω, we denote its lth
component by ω(l). The shift T : Ω → Ω is defined by Tω(l) = ω(l − 1), for
all l ∈ Z, and, logically enough, T jω(l) = ω(l − j), for j, l ∈ Z. Whenever
we talk about stationarity, it will be with respect to the shift. Define |z|
to be the sum of the absolute values of the components of z ∈ RZ. Let
||z||(l) = |z(l)|, for all l ∈ Z, giving ||z|| components that are the absolute
values of those of z. For a constant c, c+ = c {c≥0} and c− = −c {c<0}, where

A is the indicator of the event A. Similarly the positive and negative parts of
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i ∈ ZZ, i+ and i−, are defined by i+(l) = i(l)+ and i−(l) = i(l)− respectively.
Given a, b ∈ ZZ, we write the inner product of a and b as a ·b =

∑
l∈Z a(l)b(l),

when this is well defined. Let 1l ∈ ZZ be given by 1l(l) = 1 and 1l(q) = 0,
for q 6= l. If we say that x ≤ y for x, y ∈ ZZ, we mean that x(l) ≤ y(l),
for all l. A process with arrival rates that are monotone increasing (in the
configurations) we call a monotone process. This is slightly stronger than
the standard definition of monotonicity (also known as attractivity) in the
literature.

Let ν be an ergodic stationary measure on Ω with

Eν(|ω(0)|) :=

∫

Ω

|ω(0)| dν(ω) < ∞,

and suppose that I is a countable subset of ZZ, with the property that the
elements of I have only finitely many non-zero coordinates. For each i ∈ I we
have an associated rate function fi : Ω → R≥0, satisfying certain conditions,
which we specify later. We start with an initial configuration ω ∈ Ω, chosen
according to ν. Informally the dynamics of the system can be described as
follows. For all j ∈ Z, i ∈ I we add i ∈ I at position j (that is we add
T ji), with rate fi(T

−jω) to give w + T ji. We do not require that i ∈ I are
uniformly 0 outside a certain interval, that I is finite, or that fi depends only
upon finitely many coordinates. We write ν∗ for the law of the process when
the initial configuration is chosen according to ν.

The description above is informal in the sense that it it does not a priori
give rise to a well defined particle system on Ω. The rates need not be
bounded which might cause problems. However we will construct such a
system, and make precise what we mean by this in Theorem 4.2.1.

To get some feeling for the systems we can construct, we give an example.
We could take:

i1(l) =




−1 l = 3
4 l = 5
0 otherwise

and

i2(l) =




−2 l = 1
−2 l = 2
0 otherwise,

with rates functions given by

fi1(ω) =
∑

j∈Z

ω(j)

j2 + 4
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0 1 32-1-2

-3-4

-5-6
0

Figure 4.1: Adding i1 at −5: the original configuration is shaded, while the
new configuration is given by the thick grey line

and
fi2(ω) = 3

√
|ω(2) + ω(15)|.

The effect of the addition of i1 at−5 is shown in Figure 4.1. Another example,
the bricklayer model, is given in Section 4.4.

The class of functions from which we will choose our rate functions we
call F , and we will specify it exactly in the next section. The sub-class of
F possibly of most use are the functions of bounded variation. A function
f(ω) is of bounded variation if there exists k ∈ RZ≥0, |k| < ∞ such that,

|f(ω + 1j)− f(ω)| ≤ k(j),

for all configurations ω ∈ Ω and j ∈ Z. A collection of such functions
{fi : i ∈ I} is allowed if they fulfill certain conditions, which will imply that
expected total rate at which particles at a site are added and removed is
finite, when we start with a finite expected absolute number of particles per
site and a stationary, ergodic configuration. We will make this precise in
Section 4.3.

We can now state the main theorem:

Theorem 4.2.1 Let ν be an ergodic stationary measure on Ω with
Eν(|ω(0)|) < ∞ and let h : Ω → R and z ∈ RZ≥0, |z| < ∞, be such that
for all j ∈ Z, ω ∈ Ω,

|h(ω + 1j)− h(ω)| ≤ z(j).

Let I ⊂ ZZ be countable and let FI := {fi : i ∈ I} be nice, as defined in
Section 4.3. Let the formal generator G for functions g : Ω → R and ω ∈ Ω
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be defined by

Gg(ω) =
∑

i∈I, j∈Z
fi(T

−jω)(g(ω + T ji)− g(ω)).

Then, ν-almost surely, there exists a Markov process (ωt)t≥0 on Ω with semi-
group S(t) defined by

S(t)h(ω) := E(h(ωt)).

Moreover,

ν∗
(

lim
m↓0

S(m)h(ωt)− h(ωt)

m
= Gh(ωt) for all t

)
= 1.

We prove this theorem in Section 4.5, using the following idea. We call
the Markov process (ωt)t≥0 the original system. We will first construct a
more complicated system than the original system, which we call the political
system. It has two types of particles, red and blue, but is easier to construct as
it will have monotonicity in its rates, and it will only have positive particles.
We will show that, under suitable conditions, the number of particles at each
site in this system is finite, using a comparison with a spatial branching
process. Our original system will be defined as the difference between the
number of red and the number of blue particles in the political system, which
is then well defined.

The relationship between the semigroup and generator can then be shown
by coupling this political process to another, simpler system. This part of
the proof is quite technical.

4.3 The class F
Let Ω+ be the subset of NZ consisting of elements x for which

lim sup
n→∞

x(−n) + · · · x(n)

2n + 1
< ∞.

A function f : Ω → R≥0 is in F if there exist a pair of functions
f r, f b : (Ω+ × Ω+) → R≥0 and a constant c ∈ R such that

• For all x, y ∈ Ω+, f(x− y) = c + f r(x, y)− f b(x, y),

• f r(x, y) and f b(x, y) are monotone increasing in every coordinate for
x, y ∈ Ω+,



90 CONSTRUCTION

• there exists k ∈ NZ, with |k| < ∞, such that f r(x, y) ≤ k · (x + y) and
f b(x, y) ≤ k · (x + y), for all x, y ∈ Ω+.

When we write fi(x − y) = ci + f r
i (x, y) − f b

i (x, y) for fi ∈ F , i ∈ I, the
associated k is denoted by ki.

These conditions might seem strange, but recall that we will define the
original process as the difference of two monotone processes of red and blue
particles. The functions c+

i + f r
i (x, y), i ∈ I, will be the growth rates of the

red particles and c−i +f b
i (x, y), i ∈ I, of the blue. If we let the changes in the

red and blue processes occur at the same times (when possible), the changes
in the original process will occur according to the “correct” rates.

We say that a collection of rate functions FI = {fi : i ∈ I} is nice if

• FI ⊂ F ,

• for each function fi a ki can be found as above, and
κ =

∑
i∈I |ki||i| < ∞,

• γ = 2
∑

i∈I |ci||i| < ∞, with the constants ci, i ∈ I as above.

The last two conditions will imply that the expected rate of addition and
removal of particles at any site is finite under the appropriate starting con-
ditions.

Which functions are in F? The definition of the class given above may
seem complicated, but is not as restrictive as it might seem. We explore the
class a little, starting with an example.

Take the function fi(ω) =
√

ω(0) {ω(0)>0}. We can write

fi(x− y) =
√

(x(0)− y(0)) {x(0)−y(0)>0}

= (
√

(x(0)− y(0)) {x(0)−y(0)>0} + 10.y)− (10.y)

for (x, y) ∈ Ω+ × Ω+. Note that the terms in the last expression in brackets
are monotone in x and y, and less than 10 · (x + y). This tells us that this
function is in F .

In this example we were able to express the function of interest as the
difference of monotone increasing functions by both adding and subtracting
a linear function of x and y. This technique can be extended to functions of
bounded variation, in the following way.

A function of bounded variation satisfying |f(ω +1j)−f(ω)| ≤ k∗(j), for
all ω ∈ Ω, j ∈ Z and some k∗ ∈ RZ≥0 such that |k∗| < ∞, we can write as

f(ω) = f 1(ω)− f 2(ω) + c,
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where f 1(ω) = k∗ · ω and f 2(ω) = k∗ · ω − f(ω) are monotone increasing,
f 1(0) = f 2(0) = 0 and such that |f 1(ω + 1j) − f 1(ω)| = k∗(j) and |f 2(ω +
1j)− f 2(ω)| ≤ 2k∗(j).

If we set k(j) = 2k∗(j) we can then write

f r(x, y) = (f 1(x− y) f1(x−y)≥0 + k · y) + (−f 2(x− y) f2(x−y)≤0 + k · x) + c+

f b(x, y) = (−f 1(x− y) f1(x−y)≤0 + k · x) + (f 2(x− y) f2(x−y)≥0 + k · y) + c−

Note that each of the terms in brackets is monotone increasing in x and y
and that f r(x, y)− f b(x, y) = f(x− y).

4.4 The bricklayers model - an example

In Balàzs [2] a bricklayer model is introduced, which is a process on ZZ. The
system is a nearest neighbour system with unbounded rates. Balàzs does
not construct this system, but (under the assumption it exists) he achieves
various results on the invariant measure of the process, which turns out to
be a product measure. These include interesting shock solutions. We can
construct the system if the rate functions do not grow too fast.

Configurations of the process are denoted by ω ∈ Ω and the random state
of the process at time t and with initial configuration ω is denoted by ωt. We
can construct the model in the case that the rates are of bounded variation,
and the initial configuration is chosen according to an ergodic stationary
measure such that the expectation of |ω(0)| is finite (in this case the process
will a.s. concentrate on Ω).

We begin by giving an informal description of the bricklayer process. Let
r : Z→ R≥0 be a monotone increasing function that is of bounded variation,
i.e. there should exist a κ < ∞ such that |r(z + 1)− r(z)| ≤ κ, for all z ∈ Z,
and that has the property that for all l ∈ Z,

r(l)r(−l + 1) = 1.

The dynamics of the process can be described as

(ω(l), ω(l + 1)) → (ω(l)− 1, ω(l + 1) + 1) at rate r(ω(l)) + r(−ω(l + 1)).

The process can be interpreted as a bricklayer process in the following sense.
Think of an infinite wall, built of bricks, as in Figure 4.2. We identify the
surface of the wall with ω ∈ Ω, where ω(l) denotes the height difference
between the column of bricks between the sites (l − 1) and l and the sites l
and (l + 1).
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-2 -1 0 1 2 43 5 6 7 8 9 10 11

ω (1)

ω (3)

ω (6)

ω (7)

ω (0)

Figure 4.2: Bricklayer process

Imagine that you take a walk along the top of this wall, from right to left.
Then the height difference is positive if you go up, and negative if you go
down. For example, in Figure 4.2, ω(0) = 1, ω(1) = 3, ω(3) = 2, ω(6) = −1
and ω(7) = 3. At each site l, a bricklayer is present, putting a brick to his
right at rate r(ω(l)) and to his left at rate r(−ω(l)).

Define i by

i(j) =




−1 if x = 0,
+1 if x = 1,
0 if x 6= 0, 1,

the function fi by
fi(ω) = r(ω(0)) + r(−ω(1)),

and write I = {i}. Note that |i| = 2 < ∞. Define ki = 10 +11 and note that
fi(ω) ≤ ki · ||ω||. This means that |ki||i| = 2 × 2 < ∞, so our function is in
F and FI is nice. Then the formal generator G̃ of the bricklayer process is,
for g : Ω → R, given by

G̃g(ω) =
∑

j∈Z
fi(T

−jω)(g(ω + T ji)− g(ω)).

Since the rates are of bounded variation and can be dominated as in
Section 4.3, we can construct this model using our technology.

4.5 Proofs

In this section we will eventually construct a Markov process (ωt)t≥0 meeting
the conditions of Theorem 4.2.1. As mentioned in Section 4.2, we do this
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by constructing the monotone political system with red and blue particles
at each site, and then defining the original system as the difference between
the two. The construction of the monotone political system is similar to the
construction in Andjel [1].

Suppose we have a set I ⊂ ZZ and a nice collection of rate functions FI .
This means that for every i ∈ I we have a function fi in the class F , with
corresponding functions f r

i and f b
i and constants ci. We use these to give an

informal description of the political process on Ω+ × Ω+. The evolution of
this process is slightly more complicated than that of the original process.
The state of the political system at time t with initial configuration (x, y) is
denoted by (xt, yt), where the number of red particles is given by xt and the
number of blue by yt. For each configuration (x, y), position j ∈ Z and i ∈ I
we define the following addition rates:

Rrb
i,j(x, y) = f b

i

(
T−j(x, y)

)
+ c−i ,

Rr
i,j(x, y) = f r

i

(
T−j(x, y)

)
+ c+

i −Rrb
i,j(x, y).

The formal generator of the political process is then, for functions
g : Ω+ × Ω+ → R,

Gpg(x, y) =∑

i∈I,j∈Z
Rrb

i,j(x, y)
(
g(x + T ji+ + T ji−, y + T ji+ + T ji−)− g(x, y)

)

+Rr
i,j(x, y)

(
g(x + T ji+, y + T ji−)− g(x, y)

)
.

We can interpret this as follows. Particles are added according to T j(i+, i−)
with rate f r(T−jx, T−jy) + c+

i , and according to T j(i−, i+) with rate
f b(T−jx, T−jy) + c−i . However, as many as possible of these births occur
at the same times. The rate Rr

i,j(x, y) therefore corresponds to the addi-
tion of just T j(i+, i−) and Rrb

i,j(x, y) to the addition of T j(i+ + i−, i+ + i−).
Notice that Rr

i,j(x, y) is always positive. This follows from the fact that
fi(x, y) = (c+

i + f r
i (x, y))− (f b

i (x, y) + c+
i ) ≥ 0.

We will give a formal construction of the political process. Our strategy
will be as follows. We first define a series of so called political n-processes, for
n ∈ N. Each of these processes will involve only a finite number of particles
up to each time t and will be easy to define. Then we make a coupling of
these processes, such that the limit of the (coupled) political n-processes is
well defined. We define the political process as this limit.

Definition of the political n-processes
Let n ∈ N be fixed, let I ⊂ ZZ and FI be a nice collection of rate functions,
and write

rr
n,i,j(x, y) := f r

i (T−j(x, y)) + c+
i {j∈[−n,n]},
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and
rb
n,i,j(x, y) := f b

i (T
−j(x, y)) + c−i {j∈[−n,n]},

The political n-process with initial configuration (x, y) ∈ Ω+ × Ω+ is
defined as follows.

We start with some configuration of red and blue particles, but at time 0,
all particles at sites in Z \ [−n, n] are removed. Then the political n-process
evolves according to the following dynamics. Suppose the system is in state
(u, v). For all j ∈ Z, i ∈ I we add T j(i+ + i−, i+ + i−) at rate

rb
n,i,j(u, v),

and T j(i+, i−) at rate
rr
n,i,j(u, v)− rb

n,i,j(u, v).

We denote the state of the political n-process at time t and with initial
configuration (x, y) by (xt, yt)n or (xn,t, yn,t). Observe that this description
indeed gives rise to a process on Ω+ × Ω+ since the expectation of the total
number of particles in the political n-process is finite for any time t > 0.

Coupling of the political n-processes
We write N+ = {1, 2, . . .}. Let for j ∈ Z, i ∈ I, l ∈ N+, Xi,j,l(t) be inde-
pendent Poisson processes with parameter 1, with an independent standard
uniform random variable attached to each birth. We denote the state space
of these Poisson processes and uniform random variables by Ωp and write ρ
for the associated measure. Typically, we denote an element of Ωp by χ.

We use these processes to define a coupling ((x̂t, ŷt)n)n∈N of the processes
(xt, yt)n,t≥0, n ∈ N. In this coupling, when something is added in a political
n-process, it is also added in all political m-processes with m ≥ n. To be
precise, in the political n-process, if the configuration at a certain moment
is (u, v), for j ∈ Z, i ∈ I we add T j(i+, i−) if a Poisson arrival occurs in one
of the processes

Xi,j,1(t), . . . , Xi,j,brr
n,i,j(u,v)c(t),

or if a Poisson arrival occurs in the process

Xi,j,drr
n,i,j(u,v)e(t),

and the associated uniform random variable is less than

rr
n,i,j(u, v)− brr

n,i,j(u, v)c.
Similarly, we add T j(i−, i+) if a Poisson arrival occurs in one of the processes

Xi,j,1(t), . . . , Xi,j,brb
n,i,j(u,v)c(t),
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or if a Poisson arrival occurs in the process

Xi,j,drb
n,i,j(u,v)e(t),

and the associated uniform random variable is less than

rb
n,i,j(u, v)− brb

n,i,j(u, v)c.
Observe that we use the same set of Poisson processes and associated uni-
form random variables for all political n-processes and to decide whether
we add T j(i+, i−) or T j(i−, i+). This ensures that T j(i+ + i−, i+ + i−) and
T j(i+, i−) are added with the required rates. In the coupling described above,
we denote the state of the political n-process at time t and with initial con-
figuration (x, y) by (x̂t, ŷt)n, or (x̂n,t, ŷn,t). Sometimes, if we want to stress
the dependence on the realisation of the Poisson and uniform processes, we
write (x̂t, ŷt)n(χ).

Observe that by the monotonicity of the rates (both in the configuration
and in the parameter n) we have that if (x, y) ≤ (u, v) then (x̂t, ŷt)n ≤
(ût, v̂t)n, and that for n ≥ 1, (x̂t, ŷt)n ≤ (x̂t, ŷt)n+1.

Definition of the political process
We define the political process with initial configurations in Ω+×Ω+ and con-
figurations at time t > 0 in (N∪{∞})Z× (N∪{∞})Z. Let (x, y) ∈ Ω+ × Ω+.
We use the coupling described above to define (xt, yt) ∈ (N ∪ {∞})Z×
(N ∪ {∞})Z by

(xt, yt) := lim
n→∞

(x̂t, ŷt)n

This is well defined, because of the monotonicity of the n-processes in the
parameter n. We define (xt, yt)t≥0 to be the political process.

We next prove that if this process starts in a configuration such that the
expected number of particles per site is bounded, then this is also true at
any later time.

Lemma 4.5.1 Let ν̃ be a stationary ergodic measure on NZ × NZ, with
∫

NZ×NZ
(x(0) + y(0)) dν̃(x, y) < ∞.

Let I ⊂ ZZ, let FI be a nice collection of rate functions and let µ = ν̃ × ρ.
Then for all q ∈ Z,

∫

(Ω+×Ω+)×Ωp

(xt(q) + yt(q)) dµ < ∞,

and
µ

(
((x, y), χ) : (xt, yt) ∈ Ω+ × Ω+,∀t ≥ 0

)
= 1.



96 CONSTRUCTION

Proof of Lemma 4.5.1 We first sketch the idea of the proof. We will
make a comparison with another process, which we call the growth process
(to be defined), with initial configurations in Ω+ ×Ω+ and configurations at
time t in ((N ∪ {∞}) × (N ∪ {∞}))Z. We make a coupling of this growth
process and the political process, with the property that, at every site, the
number of red and blue particles in the political process is not larger than
the number of red and blue particles at the same site in the growth process.
Then we show that, under a suitable initial measure, the growth process will
always stay in Ω+×Ω+, almost surely, and the expected number of particles
per site will stay finite. We do this by reinterpreting the growth process
as a spatial branching process. The growth process dominates the political
process, which leads to the desired result for the political process.

We begin by giving an informal description of the growth process. In this
process, for all j ∈ Z, i ∈ I and ξ = (ξ1, ξ2) ∈ Ω+×Ω+, T j(||i||, ||i||) is added
at rate

ki · (T−j(ξ1 + ξ2)) + |ci| =
∑

l∈Z
ki(l)(ξ1(l − j) + ξ2(l − j)) + |ci|.

The formal definition of the growth process proceeds via a limit of growth n-
processes and is completely analogous to the formal definition of the political
process. We leave the details to the reader.

If we let the transitions in the growth process be governed by the same
Xi,j,l(t) and associated uniform random variables as in the political process,
we obtain a coupling of the growth process and the political process. In this
coupling, we denote the state of the growth process at time t and with initial
configuration ξ by ξt. We find that in this coupling, if the growth process
starts with the same number of particles per site as the political process, for
each site the number of particles in the political process is at most the number
of particles at the corresponding site in the growth process. In formulas, if
(x, y) ∈ Ω+ × Ω+ and if ξ = (x, y), then (xt, yt) ≤ ξt.

To prove the lemma, it suffices to show that for all q ∈ Z and for all t > 0,
∫

(NZ×NZ)×Ωp

(xt(q) + yt(q)) dµ < ∞. (4.1)

To prove (4.1) we use the coupling with the growth process mentioned above,
and we can show that

Eµ(ξ1
t (q) + ξ2

t (q)) :=

∫

NZ×Ωp

ξ1
t (q) + ξ2

t (q) dµ < ∞, (4.2)

we are done. To prove (4.2), we explain how the growth process can be
interpreted as a spatial branching process with immigration. For all j ∈ Z,
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and i ∈ I, T j(||i||, ||i||) is added at rate |ci|. This is the immigration part of
the process. Further each particle at site j gives birth to children distributed
according to T j(||i||, ||i||) at rate ki(j − l), for each i ∈ I, l, j ∈ Z. Notice
that the expected birth rate per particle is κ =

∑
i∈I 2|ki||i| < ∞, and the

expected immigration rate per site is γ < ∞.

We can now find an upper bound for the expected number of particles at
a site, in the growth process, if the initial measure is ν̃. Write

λ :=

∫

NZ
(ξ1(0) + ξ2(0)) dν̃(ξ) < ∞.

Define the earliest ancestor of a particle to be either the particle at time
0 that has the particle as descendent, or the earliest immigrant ancestor of
the particle. Let vt(j, l) be the number of particles at position j at time t
which had an ancestor at position l. Noting that the expected number of
immigrants per site up to time t is γt and using the (spatially) stationarity
of the branching process, we see that the expected number of particles in the
growth process at time t and position q, ξ1

t (q) + ξ2
t (q), satisfies:

Eµ(ξ1
t (q) + ξ2

t (q)) =
∞∑

l=−∞
Eµ[vt(q, l)]

=
∞∑

l=−∞
Eµ[vt(l, q)]

≤ (λ + γt)eκt < ∞.

¤
We are nearly ready to prove Theorem 4.2.1, but to prove the relationship

between S(t) and G we will need the corresponding equation for the political
process, and for this we will need the same connection in the growth process.
These relations are given in the following two lemmas, the somewhat technical
proofs of which can be found after the proof of Theorem 4.2.1.

Lemma 4.5.2 Let h∗(ξ1, ξ2) : Ω+ × Ω+ → R≥0 be a monotone increasing
function such that h∗(ξ1 + 1j, ξ

2) − h∗(ξ1, ξ2), h∗(ξ1, ξ2 + 1j) − h∗(ξ1, ξ2) ≤
z(j), for some z with |z| ≤ ∞. Let Gg and Sg be the formal generator and
semigroup for the growth process and let ν̃ be a stationary, ergodic measure
on Ω+ × Ω+ such that

∫

Ω+×Ω+

(ξ1(0) + ξ2(0)) dν̃(x, y) < ∞.
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Let µ = ν̃ × ρ. Then,

µ

(
lim
m→0

Sg(m)h∗(ξ1
t , ξ

2
t )− h∗(ξ1

t , ξ
2
t )

m
= Ggh∗(ξ1

t , ξ
2
t ) for all t

)
= 1.

Lemma 4.5.3 Let h∗(x, y) : Ω+ × Ω+ → R≥0 be a monotone increasing
function such that h∗(x+1j, y)−h∗(x, y), h∗(x, y +1j)−h∗(x, y) ≤ z(j), for
some z with |z| ≤ ∞. Let Gp and Sp be the formal generator and semigroup
for the political process and let ν̃ be a stationary, ergodic measure on Ω+×Ω+

such that ∫

Ω+×Ω+

(x(0) + y(0)) dν̃(x, y) < ∞.

Let µ = ν̃ × ρ. Then,

µ

(
lim
m→0

Sp(m)h∗(xt, yt)− h∗(xt, yt)

m
= Gph∗(xt, yt) for all t

)
= 1.

Proof of Theorem 4.2.1 Let ν, I and FI and h be as in the theorem.
Let f r

i and f b
i be the associated monotone rate functions, for all i ∈ I. For

ω ∈ Ω, define (x, y) := (ω+, ω−) and consider the political process with initial
configuration (x, y). Let ν̃ be the law of (x, y), if ω is chosen according to ν.
Observe that ν̃ is ergodic, as it is a factor of an ergodic measure, and that

∫

Ω+×Ω+

(x(0) + y(0)) dν̃(x, y) < ∞.

By Lemma 4.5.1 we find

(ν × ρ)
(
(ω, χ) ∈ Ω× Ωp : xt, yt ∈ NZ,∀t

)
= 1.

We define ωt := xt − yt if this exists in Ω and ωt = [ otherwise, and observe
that

(ν × ρ) ((ω, χ) : ωt 6= [, ∀t ≥ 0) = 1.

Note that ν∗ is the marginal measure of ν×ρ for the original process (ωt)t≥0.
Given Lemma 4.5.3, the proof of the theorem follows fairly quickly. We

can write

h(x− y) = hr(x, y)− hb(x, y)

where hr and hb are monotone increasing, positive functions such that for
every (x, y) ∈ Ω+ × Ω+,

h∗(x + 1j, y)− h∗(x, y), h∗(x, y + 1j)− h∗(x, y) ≤ z(j), for ∗ = r, b.
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Note that, for ω ∈ Ω,

S(m)h(ωt)− h(ωt)

m
=

Sp(m)h(xt − yt)− h(xt − yt)

m

=
Sp(m)hr(xt, yt)− hr(xt, yt)

m

−Sp(m)hb(xt, yt)− hb(xt, yt)

m
.

Lemma 4.5.3 tells us that, for all t, the last part of this equation converges
to

Gphr(xt, yt)−Gphb(xt, yt) = Gph(xt − yt) = Gh(ωt)

as m tends to zero, with µ-probability 1, by the definition of the original
process in terms of the political process.

Notice that all the rates are “correct”. This follows from fact that if both
red and blue particles appear at the same time then this is not seen in the
difference, and the careful choice of rates. For example, the rate with which
we add only (i+, i−) is,

f r
i (x, y) + c+

i − (f b
i (x, y) + c−i ) = f(x− y)

¤
Proof of Lemma 4.5.2 Notice that,

0 ≤ Sg(m)h(ξ1
t , ξ

2
t )− h(ξ1

t , ξ
2
t )

m
−Ggh(ξ1

t , ξ
2
t )

≤ Sg(m)(z · (ξ1
t + ξ2

t ))− z · (ξ1
t + ξ2

t )

m
−Gg(z · (ξ1

t + ξ2
t )), (4.3)

by the domination of any increase in h at site j by z(j). This last term will
be dominated by the corresponding expression for a simpler process on R≥0,
the simple process, which we define informally as follows.

Let θ(j) = k(j) + z(j), and notice that φ =
∑

j∈Z θ(j) < ∞. Let α(i,j) =

θ · T j(2||i||), and notice that α =
∑

i∈I,j∈Z α(i,j) < ∞. Notice also that
σ =

∑
j∈Z,i∈I α(i,j)ci < ∞. Let a be a positive real number. At rate a + ci,

a changes to a + α(i,j), for all j ∈ Z, i ∈ I. We can define this process using
its monotonicity as for the political process. Let Gs be the generator of the
simple process and Ss the semigroup. Then we claim that

lim
m↓0

Ss(m)a− a

m
= Gsa.

To prove this claim we first define an n-process, an
t . This allows additions

of αi,j only if j ∈ [−n, n] and i is in the first n elements of some fixed listing
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of I = {i1, i2, . . .}. We will define at = limn→∞ an
t . Let the generator and

semigroup of the n-process be given by Gs
n and Ss

n(m). Notice that

lim
m↓0

Ss
n(m)a− a

m
= Gs

n(a),

and that
Gs

n(a) =
∑

j∈[−n,n],l=1,...,n

α(i,j)(a + cil) ≤ αa + σ.

Therefore

Ss
n(m)at =

∞∑
p=0

mp(Gs
n)pa

p!
.

Observe that by monotone convergence

Ss(m)a = lim
n→∞

∞∑
p=0

mp(Gs
n)pa

p!

=
∑

p∈Z

mp(Gs)pa

p!

by dominated convergence. The claim follows. Note that at is finite for all t,
almost surely.

The simple process can be coupled to z · (ξ1
t + ξ2

t ). We begin with a given
by θ · (ξ1 + ξ2), where (ξ1, ξ2) is distributed according to ν̃. Note that a < ∞
µ-almost surely. We couple additions of T j(||i||, ||i||) in the growth process
with additions of αi,j in the simple process. This means that we always add
more to a than z · (ξ1

t + ξ2
t ), and at a faster rate, because θ(j) ≥ z(j) and

θ(j) ≥ k(j) respectively. Therefore, for all t,

µ(lim
m↓0

Ss(m)at − at

m
= Gsat for all t) = 1

as at is µ-almost surely finite and well defined.
By the coupling, for all t,

Sg(m)h(ξ1
t , ξ

2
t )− h(ξ1

t , ξ
2
t )

m
−Ggh(ξ1

t , ξ
2
t ) ≤

Ss(m)at − at

m
−Gsa

µ-almost surely. This combined with Equation 4.3 proves the lemma. ¤
Proof of Lemma 4.5.3 Note that by our coupling, for all t,

0 ≤ Sp(m)h∗(xt, yt)− h∗(xt, yt)

m
−Gph∗(xt, yt)

≤ Sg(m)h∗(ξ1
t , ξ

2
t )− h∗(ξ1

t , ξ
2
t )

m
−Ggh∗(ξ1

t , ξ
2
t )
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µ-almost surely. By Lemma 4.5.2 we know that the last term converges to 0
as m tends to zero, with µ-probability one. Lemma 4.5.3 follows immediately.

¤

4.6 Remarks

In this section we mention a couple of possible extensions to this theory and
outline an alternative approach, suggested by Bálint Tóth.

• In this article we have been able to define a process by defining it as the
difference of two monotone coupled processes. We could do this as both
of these processes were shown to have finitely many particles per site at
any given time, almost surely. We were able to prove this by comparison
with a branching process. We cannot make this comparison if the rate
functions grow faster than linearly but we conjecture that if both the
processes grow at most polynomially then the same construction should
work. In this case we would have to have to restrictions upon higher
moments of w(0) in order that the growth rate be finite.

• It would also be possible to use this construction technique if only one
of the processes was constrained to be finite. We would then have the
possibility of having ∞ or −∞ particles at some sites, but not both.

• While we have here defined our process as the difference of two pro-
cesses, it might be possible to define certain other processes as some
other function of two (or more) processes.

An Alternative Approach
The alternative approach to the construction problem involves an alterna-
tive political process. We again set (x0, y0) = (ω+, ω−) and but now add
T j(i+, i−) to (x, y) with rate fi+,i−(T−j(x, y)) = fi(T

−j(x − y)). As in the
earlier approach, if we can define this process we can define our original pro-
cess by wt = xt− yt. However the rates in the political process are no longer
necessarily monotone.

We can still dominate this alternative political process by our growth
process, and this means that we can “thin” the n-growth processes to give
alternative n-political processes. Up to any time t, and for any block [−m,m],
there almost surely exists a finite block (of random size), which contains all
ancestors of the particles in [−m,m] in the growth process. This means that
we can define the alternative political process as the limit of the alternative
n-processes, and thus retrieve the original process. The relationship between
semigroup and generator still holds.
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Samenvatting

Dit proefschrift bevat drie artikelen over drie verschillende modellen. Alle
artikelen gaan over kansrekening in oneindig grote ruimten. Oneindig grote
systemen lijken vaak ingewikkeld. Toch is het mogelijk intüıtie voor dit soort
systemen op te bouwen zonder alle technische details te begrijpen. Hier volgt
een globale uitleg van de modellen met behulp van interactieve raadsels en
een samenvatting van de resultaten.

∞ ∞ ∞ ∞

Een realisatie van het eerste model is te zien in Figuur 1.1. Voor elke
cirkel die je ziet, heb ik een eerlijke munt opgegooid. Staat in de cirkel +1,
dan kwam kop boven, bij −1 kwam munt boven. In de figuur kunnen we
over het lichtgrijze pad van S naar F lopen. Tijdens onze wandeling tellen
we de getallen op die we tegenkomen. Alle uitkomsten van de optellingen
(de partiële sommen) langs het pad liggen tussen −5 en +2, ofwel in het
interval [−5, 2]. Als we langs het donkergrijze pad lopen, zien we dat de
partiële sommen in het kortere interval [−3, 3] liggen. De twee grijze paden
worden zichzelf ontwijkende paden genoemd, omdat je iedere cirkel hoogstens
één keer tegenkomt als je over het pad loopt.

Raadsel Bestaat er een zichzelf ontwijkend pad van S naar F in Figuur 1.1
met partiële sommen in het interval [−1, 1]? Is er een pad met partiële
sommen in een kleiner interval?

Vervolgens bekijken we Figuur 1.2. Om deze figuur te maken, heb ik een
oneerlijke munt opgegooid waarbij de kans dat kop bovenkomt (en dus +1)
6/7 is.

Raadsel Voor welk zichzelf ontwijkend pad van S naar F in Figuur 1.2
liggen alle partiële sommen in een zo klein mogelijk interval?

In Hoofdstuk 2 bestuderen we hetzelfde soort problemen, maar dan op
een oneindig groot rooster van cirkels. Daarbij vragen we ons af of er een
oneindig lang zichzelf ontwijkend pad bestaat met sommen in een bepaald
interval. Als de kans op kop dichtbij 1/2 ligt, blijkt dat er inderdaad een
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oneindig lang pad kan zijn met sommen in een zeker interval, namelijk in
het interval [−21, 21]. Als de kans op kop dicht bij 1 ligt, bestaat er echter
geen interval waarin de sommen zullen blijven. Dit soort fenomenen noemt
men een fase-overgang. Deze resultaten gelden ook voor zogenaamde gerichte
paden waarbij alle stappen omhoog of naar rechts genomen worden.

We onderzoeken ook of er paden bestaan waarin de sommen oneindig
vaak nul zijn; hierbij treedt ook een fase-overgang op. Verder tonen we
een verbazingwekkend verband aan tussen het probleem om een pad naar
oneindig te vinden (het pad hoeft niet zelf-ontwijkend te zijn, maar mag
ieder roosterpunt slechts eindig vaak bezoeken) met partiële sommen in een
bepaald interval en het klassieke Boolese model met vierkanten om de punten
van een zogenaamd Poisson proces in het vlak.

∞ ∞ ∞ ∞

Telecommunicatie-bedrijven kiezen waar ze hun zendmasten plaatsen aan
de hand van de locaties van hun klanten. We modelleren dit proces in Hoofd-
stuk 3 en beschouwen de gevolgen van locale regels. In Figuur 1.4 zie je een
aantal klanten (punten) en ontvangstgebieden van zendmasten (schijven).
Een overdekking met zendmasten voldoet aan twee eisen. Ten eerste moet
elke klant zich binnen het ontvangstgebied van een zendmast bevinden. Ten
tweede moet elke zendmast een klant binnen zijn ontvangstgebied hebben.
Een voorbeeld van een overdekking is te zien in Figuur 1.4.

Raadsel Hoeveel zendmasten heb je minimaal nodig om de klanten in
Figuur 1.4 en Figuur 1.7 te overdekken?

Zendmasten kunnen met elkaar communiceren als hun ontvangstgebieden
overlappen. Hierdoor kunnen klanten communiceren over een langere afs-
tand, zoals in Figuur 1.5 te zien is.

Raadsel Kun je de klanten in Figuur 1.6 overdekken, zodat Elm Cot-
tage met Feverfew House kan communiceren? Hoeveel zendmasten heb je
minimaal nodig? Kun je een overdekking maken zodat Elm Cottage niet
met Feverfew House kan communiceren? Kun je dit doen met slechts 4
zendmasten? Is het mogelijk de klanten in Figuur 1.7 te overdekken zodat
Gorse Cottage berichten aan Hazel House kan sturen?

In Hoofdstuk 3 nemen we aan dat de klanten een willekeurige locatie op
een oneindig grote aarde hebben, of wiskundig gezegd, dat de klanten volgens
een Poisson proces in het vlak geplaatst worden. We bekijken nog steeds
hetzelfde soort problemen. Als er een oneindig grote groep klanten is die
allemaal met elkaar kunnen communiceren, noemen we dit een oneindige tros.
Als de dichtheid mensen heel klein is, laten we zien dat er geen oneindige tros
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kan zijn. Maar we laten ook zien dat als de dichtheid klanten heel groot is,
er niet automatisch een oneindige tros hoeft te bestaan. Dit geldt ook als de
manier waarop we de zendmasten plaatsen onafhankelijk van verschuivingen
is. Dat wil zeggen dat als alle klanten over een zekere afstand in een bepaalde
richting verschuiven, de posities van de zendmasten in de nieuwe overdekking
precies de verschoven posities van de oorspronkelijke overdekking zijn.

Als alle zendmasten echter op een roosterpunt geplaatst moeten worden
en de dichtheid van klanten groot genoeg is, bestaat er wel een oneindige tros.
Dit is ook zo in een n-vierkant overdekking, waarbij het vlak opgedeeld is in
vierkanten van zijde n en we in elk van deze vierkanten de minimaal mogelijke
hoeveelheid zendmasten plaatsen. De laatste twee soorten overdekkingen zijn
voorbeelden van zogenaamde platte overdekkingen waarbij er een maximale
hoeveelheid zendmasten per vierkante meter is. Voor alle platte overdekkin-
gen wordt er een oneindige tros gevormt als de dichtheid klanten groot genoeg
is.

We bekijken ook het geval waarin de zendmasten met elkaar kunnen com-
municeren als hun onderlinge afstand kleiner of groter is dan twee maal
de straal van de ontvangstgebied. Als deze afstand groter is, moet er een
oneindige tros bestaan als de dichtheid klanten maar groot genoeg is.

Met n-vierkant overdekkingen kunnen we willekeurig dicht bij de min-
imaal benodigde dichtheid zendmasten komen. Er bestaat zelfs een
overdekkings-algoritme met deze minimale dichtheid.

∞ ∞ ∞ ∞

Het laatste artikel gaat over het bestaan en de definitie van oneindige
deeltjes-systemen. Waarom het nodig is om over het bestaan van zulke sys-
temen na te denken, kan misschien het beste uitgelegd worden aan de hand
van een voorbeeld van een oneindig systeem dat niet bestaat.

Een rij van k eerlijke munten ligt op tafel. Elke munt heeft een zwarte
en een witte kant. Om te beginnen gooien we alle munten op. Een mogelijke
uitkomst is te zien in Figuur 1.8. Munt 1 bevindt zich in een blokje van
3 zwarte munten. Deze drie zwarte munten veranderen van kleur na een
stochastische tijd van gemiddeld

(
1
2

)3
= 1

8
seconde. In het algemeen veran-

dert een blok van n munten van dezelfde kleur, van kleur na gemiddeld
(

1
2

)n

seconde, onafhankelijk van wat er gebeurt met andere blokken. Een blok
van dezelfde kleur groeit als een van de buur-blokken van kleur verandert,
of als het zelf van kleur verandert. Het is mogelijk te laten zien dat, als we
aan het begin een blok van grootte n hebben, het gemiddelde niet langer
dan 2× 2−n seconde duurt totdat het hele systeem dezelfde kleur heeft. Met
andere woorden: alle munten worden dezelfde kleur na een tijd die korter
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wordt naar mate het grootste blok groter wordt. Voor eindige k is dit geen
probleem. Als er echter oneindig veel munten zouden zijn, zouden we op tijd-
stip 0 blokjes van elke lengte op tafel zien. Dit betekent dat op het ogenblik
dat we beginnen alles direct dezelfde kleur zou moeten worden. Dat is een
heel ander gedrag dan hierboven beschreven werd.

In het laatste hoofdstuk geven we een aantal condities waaronder zulke
rare verschijnselen gelukkig niet optreden. Wiskundig gezegd, we construeren
deeltjes-systemen op een rooster, Zd, waarbij er geen beperking is op het aan-
tal deeltjes per roosterpunt. Deze systemen beginnen in configuraties gekozen
volgens een stationaire, ergodische maat, waarbij het verwachte aantal deelt-
jes per roosterpunt eindig is. Deeltjes worden toegevoegd en weggenomen
met snelheden die functies van de configuraties zijn. Deze functies zijn van
begrensde variatie en zijn zo dat de snelheid waarmee deeltjes toegevoegd of
weggenomen worden eindig is. Negatieve aantallen deeltjes zijn toegestaan.
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