
The Discrete Acyclic Digraph
Markov Model in Data Mining

Het Discrete, Acyclische, Digraaf Markov Model in Data Mining

(met een samenvatting in het nederlands)

El Model Markovi à Discret Digraf Acı́clic en la Prospecci ó de Dades

(amb un resum en català)

El Modelo Markoviano Discreto Digrafo Acı́clico en la Prospecci ón de Datos

(con un resumen en español)

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit Utrecht

op gezag van de Rector Magnificus, Prof. Dr. W.H. Gispen,
ingevolge het besluit van het College voor Promoties

in het openbaar te verdedigen
op maandag 3 juni 2002 des middags te 12:45 uur

door

Juan Roberto Castelo Valdueza

geboren op 10 juli 1972, te Lleida

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39700287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

promotor: Prof. Dr. A.P.J.M. Siebes

Faculteit Wiskunde en Informatica, Universiteit Utrecht

The research reported in this thesis has been partially carried out at CWI, the Dutch
national research laboratory for mathematics and computer science, within the theme
Data Mining and Knowledge Discovery, a subdivision of the research cluster Information
Systems.

SIKS Dissertation Series No. 2002-4
The research reported in this thesis has been carried out under the auspices of SIKS, the
Dutch Research School for Information and Knowledge Systems.

ISBN 90-393-3020-4

To the memory of my mother
A la memòria de ma mare

Contents

Acknowledgements iii

Samenvatting v

Resum vi

Resumen vii

1 Introduction 1
1.1 The Data Mining perspective on data analysis 1
1.2 The unifying framework of Graphical Markov Models 2
1.3 Graphical Markov Models in Data Mining 3
1.4 Research Objectives . 4
1.5 Outline of this thesis . 4

2 Graphical Markov Models 5
2.1 Introduction . 5
2.2 Conditional Independence . 5
2.3 The Decomposable Graphical Markov Model 9

2.3.1 Background concepts . 9
2.3.2 Markov properties and definition 10

2.4 The Acyclic Directed Graphical Markov Model 11
2.4.1 Background concepts . 11
2.4.2 Markov properties and definition 12
2.4.3 Markov equivalence . 14

2.5 The Essential Graph Markov Model . 15
2.5.1 Markov properties and definition 17

2.6 The Lattice Conditional Independence Markov Model 18
2.6.1 Background concepts . 19
2.6.2 Markov properties and definition 20

2.7 The Tree Conditional Independence Markov Model 21
2.7.1 Background concepts . 22
2.7.2 Moral TDAGs as labeled trees . 23
2.7.3 Moral TDAG models as tree conditional independence ≡ TCI

models . 25
2.7.4 Markov equivalence among TCI models 29

ii CONTENTS

2.7.5 A canonical representation of an equivalence class of TCI models . 30
2.7.6 Marginalization and collapsability in TCI models 31

2.8 Organization and size of the classes . 35
2.9 Concluding Remarks . 41

3 Structural Learning 43
3.1 Introduction . 43
3.2 Bayesian Score Metrics . 44

3.2.1 Score metric for DEC models . 50
3.2.2 Score metric for DAG models . 52

3.3 Neighborhoods and Traversal Operators . 55
3.3.1 The search space of DEC Markov models 56
3.3.2 The search space of DAG Markov models 58

3.4 Graphical Markov model inclusion . 62
3.4.1 Implications in learning . 64

3.5 Heuristic Search . 72
3.5.1 Experimental results on the Alarm dataset 75

3.6 The Markov Chain Monte Carlo Method . 79
3.6.1 MC3 on DEC Markov models . 83
3.6.2 MC3 on DAG Markov Models . 84
3.6.3 Convergence Diagnostics . 86
3.6.4 Experimental results on the Alarm dataset 88

3.7 Concluding Remarks . 98

4 Data Mining 99
4.1 Introduction . 99
4.2 Association Rules . 100
4.3 Association Rules based on Conditional Independencies 101

4.3.1 Experimental Results . 105
4.4 Concluding Remarks . 108

5 Applications 111
5.1 Introduction . 111
5.2 Web Mining . 111
5.3 Coronary Heart Disease . 117
5.4 Market Basket Analysis . 122
5.5 Concluding Remarks . 126

6 Conclusions 129

Bibliography 130

List of Publications 141

Curriculum Vitae 143

Index 145

Acknowledgements

This thesis is a sum of efforts, collaborations, remarks, and many other sort of interac-
tions with a bunch of great people I have met throughout the last four years. Among
them, I’m specially grateful to my supervisor, Arno Siebes, who gave me the opportu-
nity of starting this work. I always had his support and his office door open for sharing
ideas, doubts, problems, solutions, successes, failures and nice chats.

I’m grateful to those with whom I had the privilege of writing a paper: Paolo Giu-
dici, Tomáš Kočka, Nick Wormald, Ad Feelders and, of course, Arno. And others with
whom I haven’t (yet) but my work benefited of insightful discussions with them: Steven
Gillispie, Michael Perlman and Milan Studený. The research work in this thesis is for me
unconceivable without their collaboration.

The European Science Foundation, through the HSSS research programme, provided
the necessary funding for a research visit I gave to Paolo. I would like to thank him for
his hospitality during those two wonderful weeks in Pavia and the enlightening work
we carried out together. The Fields Institute in Toronto also funded a research visit
during three weeks that allowed me to attend a seminar on Conditional Independence
structures, organized by Milan Studený and Frantisek Matús, and a course on graphical
Markov models given by Steen Andersson. Both events have proven a sound source of
inspiration.

I want to express my gratitude to the members of my committee, Linda van der Gaag,
Richard Gill, Paolo Giudici, Bert Kappen and Michael Perlman, for their careful reading
of the manuscript and all their remarks that have substantially improved it.

All this hard work would have been even harder without all the nice people sur-
rounding me first, at CWI in Amsterdam, and later, at Utrecht University. I enjoyed the
relaxed and fun working environment created by all of you. I’m also grateful to all the
people I met, and specially to the good friends I made, throughout these years in Ams-
terdam. Resetting the brain on weekends, and many weekly evenings, made me enjoy
my life very much and go back to work mentally fresh. Regular visits of my friends from
Spain were also fundamental for healing my bit of homesickness.

Finally, I want to thank my family: gracies pare, germana i cunyat per estar sempre quan
us he necessitat.

Barcelona, April 2002.

iii

Samenvatting

Grafische Markov modellen zijn een krachtig gereedschap voor de beschrijving van
ingewikkelde interacties tussen variabelen van een domein. Zij geven een compacte
beschrijving van de gezamenlijke kansverdeling van die variabelen. Deze eigenschap
heeft geleid tot de meest succesvolle toepassing van grafische Markov modellen: als
het hart van probabilistische expertsystemen. De fascinerende theorie achter deze mod-
ellen komt uit drie verschillende disciplines, te weten Statistiek, Grafentheorie en Kun-
stmatige Intelligentie. Deze interdisciplinaire oorsprong heeft geleid tot diep inzicht
vanuit verschillende invalshoeken.

Er zijn twee belangrijke manieren om de structuur van grafische Markov modellen
te ontdekken. De structuur kan worden beschreven door een domeindeskundige of we
leren de structuur uit data. Om de structuur te kunnen leren, moeten we kunnen vergeli-
jken hoe goed verschillende modellen de data beschrijven. Dit is eenvoudig voor bi-
jvoorbeeld acyclische gerichte Markov modellen. Toch is structuurleren moeilijk, omdat
het aantal mogelijke modellen exponentieel groeit met het aantal variabelen.

De belangrijkste bijdragen van dit proefschrift zijn de volgende. Ten eerste wordt er
een nieuwe klasse van grafische Markov modellen geı̈ntroduceerd, te weten de TCI-
modellen. Deze modellen kunnen worden weergegeven als gelabelde bomen en zij
vormen de doorsnijding van twee bekende klassen. Ten tweede wordt de deelverza-
melingsordening van grafische Markov modellen bestudeerd. Uit deze studie worden
twee nieuwe leer-algoritmen afgeleid. Eén om heuristisch te zoeken, de ander voor de
Markov Chain Monte Carlo methode. Beide algoritmen verbeteren de prestaties van
eerdere algoritmen zonder de computationele kosten van het leerproces te vergroten.
Ten slotte worden er nieuwe gereedschappen geı̈ntroduceerd om de convergentie van
de Markov Chain Monte Carlo methode voor structuurleren te kunnen beoordelen. De
resultaten van dit proefschrift worden geı̈llustreerd aan de hand van zowel synthetische
als echte data.

v

Resum

Els models Markovians gràfics són una eina poderosa per la descripció d’interaccions
complexes entre les variables d’un domini. Permeten una descripció compacta de la
distribució conjunta de les variables. Aquesta caracterı́stica els ha dut a la seva aplicació
més pròspera com a component principal als sistemes experts probabilistes. La fascinant
teoria darrera d’aquest tipus de models sorgeix de tres disciplines diferents: l’Estadı́stica,
la Teoria de Grafs i la Inteligència Artificial. Aquest origen interdisciplinari s’ha traduı̈t
en una comprensió més profunda d’aquests models desde perspectives diferents.

Existeixen dues formes principals de trobar l’estructura qualitativa dels models
Markovians gràfics. O be l’estructura es especificada per un expert del domini, o be
s’aplica l’aprenentatge estructural, es a dir, l’estructura és recuperada automàticament a
partir de les dades. Per dur a terme l’aprenentatge estructural, un ha de comparar en
quina mesura els diferents models descriuen bé les dades. Això és senzill, per exemple,
per als models Markovians digrafs acı́clics. No obstant, l’aprenentatge estructural és en-
cara un problema difı́cil perquè el nombre possible de models creix exponencialment en
el nombre de variables.

Les contribucions principals d’aquesta tesi són les següents. En primer lloc, s’ha
introduı̈t una nova classe de models Markovians gràfics, anomenats models TCI. Aque-
sts models poden ser representats per arbres etiquetats i formen la intersecció de dues
classes prèviament conegudes. En segon lloc, s’ha estudiat l’ordre d’inclusió dels
models Markovians gràfics. A partir d’aquest estudi, es deriven dos algorismes nous
d’aprenentatge. Un per cerca heurı́stica i l’altre pel mètode de Markov Chain Monte
Carlo. Tots dos algorismes milloren els resultats de solucions prèvies sense compro-
metre el cost computacional del procés d’aprenentatge. Finalment, s’han introduı̈t di-
agnòstics nous per l’avaluació de la convergència del mètode de Markov Chain Monte
Carlo a l’aprenentatge estructural. Els resultats d’aquesta tesi han estat il.lustrats util-
itzant dades sintètiques i reals.

vi

Resumen

Los modelos Markovianos gráficos son una herramienta poderosa para la de-
scripción de interacciones complejas entre las variables de un dominio. Permiten una
descripción compacta de la distribución conjunta de las variables. Esta caracterı́stica los
ha llevado a su aplicación más próspera como componente principal en los sistemas ex-
pertos probabilistas. La fascinante teorı́a detrás de este tipo de modelos surge de tres
disciplinas diferentes: la Estadı́stica, la Teorı́a de Grafos i la Inteligencia Artificial. Este
origen interdisciplinario se ha traducido en una comprensión más profunda de estos
modelos desde perspectivas diferentes.

Existen dos formas principales de encontrar la estructura cualitativa de los mode-
los Markovianos gráficos. O bien la estructura es especificada por un experto del do-
minio, o bien se aplica el aprendizaje estructural, es decir, la estructura es recuperada au-
tomáticamente a partir de los datos. Para llevar a cabo el aprendizaje estructural, uno
ha de comparar en qué medida los diferentes modelos describen bien los datos. Esto es
sencillo para, por ejemplo, los modelos Markovianos digrafos acı́clicos. Sin embargo, el
aprendizaje estructural es aún un problema difı́cil porque el número posible de modelos
crece exponencialmente en el número de variables.

Las contribuciones principales de esta tesis son las siguientes. En primer lugar, se
ha introducido una nueva clase de modelos Markovianos gráficos, nombrados mode-
los TCI. Estos modelos pueden ser representados por árboles etiquetados y forman la
intersección de dos clases préviamente conocidas. En segundo lugar, se ha estudiado
el order de inclusión de los modelos Markovianos gráficos. A partir de este estudio,
se derivan dos algoritmos nuevos de aprendizaje. Uno para búsqueda heurı́stica y el
otro para el método de Markov Chain Monte Carlo. Ambos algoritmos mejoran los re-
sultados de soluciones previas sin comprometer el coste computacional del proceso de
aprendizaje. Finalmente, se han introducido diagnósticos nuevos para la evaluación de
la convergencia del método de Markov Chain Monte Carlo en el aprendizaje estructural.
Los resultados de esta tesis han sido ilustrados utilizando datos sintéticos y reales.

vii

Chapter 1

Introduction

1.1 The Data Mining perspective on data analysis

Computation is, nowadays, one of the most influential aspects in most fields of scien-
tific research. Until the moment in which computation has obtained such relevance, the
problem of understanding data and its generating mechanisms was, almost exclusively,
tackled in the field of statistics.

Computer science is the scientific area where computation is its main concern. Within
the scope of computer science, areas like artificial intelligence (AI), machine learning
and computational learning theory try to formalize the notion of knowledge and find
systematic ways to acquire and process it. More concretely, knowledge acquisition is the
motivation that leads research efforts towards the problem of learning from data with the
ultimate objective of constructing a machine that learns from its environment.

Machine learning developed within the more general framework of AI and, at the
beginning, the research community was geared to find ways of modeling how humans
learn. In the last 20 years, however, most of the research strive for more specific goals
as the development of algorithms that enable computers to, e.g., recognize patterns or
make predictions from data. This led to an overlap with some of the work that was
developed within the area of statistics, with important differences in particular aspects.
These differences rely basically in the mathematical language used and a substantial
stress on computational aspects in the works from machine learning.

Most researchers in machine learning work in the scope of computer science, which
usually implies that they also have an specific interest in the evolution of computer tech-
nology. The growth of the amount of data stored in computers, and of computing power
as well, takes place at a extremely high rate throughout the years. In the last ten years,
the machine learning community, aware of such circumstance, has identified new chal-
lenges and potential benefits of analyzing these massive datasets with our current, and
always increasing, computing power.

This realization has pushed the creation of an specific area of applied research and
development called data mining, with its own meetings, conferences and journals. Part of
the research developed in data mining tries to scale up conventional statistical methods
and machine learning algorithms to work on massive datasets. Nonetheless, the area
of data mining has also contributed novel methods for the general problem of learning
from data (see (Smyth, 2001) for a summary of them).

2 Chapter 1. Introduction

Almost independently, but also under the umbrella of computer science, the area of
database research has contributed substantially to the rapid growth of data mining. In
a way this is not surprising, since databases is probably the computer science area most
sensitive to the extraordinary evolution of computing power and storage. This makes
database products almost the unique choice in software technology to store and access
massive datasets.

The traditional problems tackled within the database area have been those related
exclusively with the efficient storage and access of data on a computer. However, in the
last years the storage of massive datasets has led to an increasing interest in finding valu-
able nuggets of information in the stored data. This interest, has driven the evolution of
database query languages from simple query capabilities

“Select all clients from Amsterdam.”

through relational on-line analytic processing (ROLAP)

“Select clients from Amsterdam between 20 and 30 years old that spend more
than 100 euros a month on beer in the first trimester of the year.”

to automatic search of interesting patterns in the data

“What is the profile of the clients who spend more money on beer.”

This last step in the evolution of database systems blurs the boundary between data
access and data analysis and has made the database community to become very in-
terested and, at the same time, active, in the data mining area. The involvement of
databases has had two main positive side-effects: to enable, technologically, data analy-
sis in massive datasets and to make data mining enthusiastically embraced by industry.

Thus clearly, data mining is an interdisciplinary area, boosted primarily by research
works in machine learning and databases, but unconceivable without a substantial por-
tion of the statistical language and methodology.

Data mining gives a perspective on data analysis where one not only tries to under-
stand data and its generating mechanisms, but also aims at providing a comprehensive
summary of what is interesting. This actually implies that interpretability of the results
is of primary interest as well as aspects of the visualization of both the results and the
data. Therefore, from a statistical viewpoint, one may see data mining as a computer
automated exploratory data analysis (Friedman, 1997).

The data mining perspective also emphasizes in the computational side of the solu-
tions provided. They should scale up in order to be applied to the data stored nowadays.
As we mentioned, the size of this data may be huge, but for many problems the dimen-
sion, or number of variables, may be an even more challenging aspect.

1.2 The unifying framework of Graphical Markov Models

Graphical Markov models (≡ GMMs) allow us to describe structural properties of a
family of probability distributions using graphs. Most of the evolution of this type of
models has taken place in the last twenty years within the fields of statistics and AI.

1.3 Graphical Markov Models in Data Mining 3

They are the core component in modern expert systems, which is the reason why the AI
community has been involved in their development at large.

The structural properties that GMMs handle are conditional independence restric-
tions. A restriction, or statement, of conditional independence is an assertion of the
form:

“Cholesterol intake is conditionally independent of the chance of a heart at-
tack given the cholesterol blood level.”

This assertion implies that if we know the cholesterol blood level no further informa-
tion concerning what we eat (cholesterol intake) can enhance our knowledge about the
chance of a heart attack. Thus, conditional independence is a formalization of the notion
of irrelevance.

The usual way in which one describes the mechanism that generates some data set
is by enumerating relationships among observed variables, conjecturing their interplay
with other plausible hidden (latent) variables and establishing some independent mea-
surement errors. All these aspects can be formally described using conditional indepen-
dence (Whittaker, 1990). Therefore, the fact that GMMs are a powerful formalism to
summarize and handle conditional independence restrictions, makes them an unifying
framework for data analysis.

1.3 Graphical Markov Models in Data Mining

GMMs are a good example of successful cross-fertilization of ideas from statistics and
computation-related areas. Therefore, one may expect to see them in the toolkit usually
deployed in data mining. In fact, they have been considered for such a role already since
the first years of largest growth of the area (Glymour, 1995; Spirtes and Meek, 1995;
Buntine, 1996a; Heckerman, 1996).

From the many features of GMMs that makes them attractive in data mining (see for
instance (Fayyad et al., 1996; Buntine, 1996a)), we highlight three:

• They allow to represent a broad spectrum of problems by handling complex high-
order interactions among variables.

• Their graphical counterpart eases the description of such complex interactions and
enables the use of graph-theoretic related results from discrete mathematics and
computer science.

• Their capability to summarize a probability distribution make them suitable to be
used in cooperation with other, different, types of models.

Among the different classes of GMMs that exist, the class of acyclic digraph Markov
models, or DAG models, is specially appealing for data mining purposes. The DAG
model, and its subclasses, afford an efficient computation of the likelihood of the model
for a given dataset, which allows the comparison of many models in a very short time.
This feature enables the construction of algorithms that work in a systematic way to
learn this class of models from data. Of course, learning these models from data will
never replace the domain expert, but it can be a valuable source of information.

4 Chapter 1. Introduction

However, if we take a look at the data mining literature, or the algorithms that current
data mining software offer, we will not find the DAG Markov model as often as we
would expect. Other types of models like association rules, decision trees or clustering
are much more popular in data mining. From the possible reasons, we find the following
three as the more fundamental ones:

• Interpretability. Although the graphical representation is quite intuitive, their in-
terpretation becomes difficult when more than a dozen variables are considered.

• Scalability. The current learning algorithms for DAG models have serious compu-
tational problems with more than 15 variables. This has been usually handled by
establishing a causal order among the variables, that substantially reduces the set
of competing models, but that is nearly impossible to elicitate in practice. Those
approaches that do not rely on a causal order have a serious computational burden
to be able to learn a good model.

• Interoperability. Their potential use in cooperation with other types of models has
been poorly exploited.

1.4 Research Objectives

The research carried out in this thesis tackles the previously mentioned issues of inter-
pretability, scalability and interoperability. In concrete, interpretability is enhanced in
two directions. One by identifying a particular subclass of GMMs that affords an easier
representation of highly connected GMMs. Another by exploiting the use of learning di-
agnostics that enrich the output of the learning process. Scalability is enabled by provid-
ing algorithms that can work without the need for any causal order among the variables
without compromising the computational performance of the learning process. Finally,
interoperability is extended by studying the relationship of GMMs and association rules,
and by providing an algorithm for learning association rules using GMMs.

1.5 Outline of this thesis

In the next chapter we will examine the DAG Markov model, and its subclasses. In
particular, we will discuss a new subclass called the TCI Markov model. In chapter 3
we will survey standard methods for learning the structure of these models from data
and two new learning algorithms will be presented. In chapter 4 we will talk again
about data mining, and in concrete we will examine one of the most popular types of
formalism used in this area, association rules, for which a new algorithm will be devised.
In chapter 5, some applications with real data will show the potential use of GMMs in
data mining, and finally, in chapter 6 we will summarize the main points of this thesis
and we will sketch further lines of research.

Chapter 2

Graphical Markov Models

2.1 Introduction

In this chapter we describe Graphical Markov models (GMMs). We focus on a particular
class, the discrete acyclic digraph Markov model. For the interested reader, the books
by Pearl (1988); Whittaker (1990); Cox and Wermuth (1996) and Lauritzen (1996) present
broader and more thorough overviews of GMMs. Similar to those books, we use the
term model to specify an arbitrary family of distributions that satisfy a set of conditional
independence restrictions.

In this thesis we deal with multinomial data only although many of the concepts
and some of the results are independent of this assumption. The discrete acyclic digraph
Markov model will be referred to as the DAG Markov model, or simply the DAG model.
Some authors use instead the more accurate term ADG, for acyclic directed graph, but we
have chosen for the more popular, DAG.

In the context of probabilistic expert systems, and e.g. in the book by Pearl (1988), the
terms Bayesian Network, Belief Network or Bayesian Belief Network are used instead of DAG
Markov model. All terms are perfectly valid but we want to treat the different classes of
GMMs described in this thesis uniformly.

The rest of this chapter is organized as follows. First we will formally introduce the
concept of conditional independence, and we will sketch how it is related to GMMs. In
the following five sections we will describe five different classes of GMMs that belong
to the class of DAG Markov models, yet studied. In particular, section 2.7 introduces a
new type of GMM determined by labeled trees. Finally, in section 2.8 we will discuss the
relationship among the classes and their sizes and in the last section we will highlight
the most relevant points of this chapter. Part of the contents in sections 2.7 and 2.8 have
been published in (Castelo and Siebes, 2001; Castelo and Wormald, 2001).

2.2 Conditional Independence

Conditional independence, CI hereafter, is a fundamental notion in the analysis of inter-
actions among multiple factors. The intuition behind it is that a dependence relationship
between two variables may vanish when a third variable is considered in relation with
the former two.

6 Chapter 2. Graphical Markov Models

For instance, it is widely accepted that there is a strong relationship between the level
of cholesterol in the food we eat and the occurrence of a heart attack. A higher cholesterol
intake in our eating habits increases the risk of suffering a heart attack. However, if we
take a blood sample and analyze the effective cholesterol blood level, we can determine
more accurately how large the risk of a heart attack is. In fact, at the moment we consider
cholesterol blood level (CBL), the cholesterol intake (CIN) becomes irrelevant to the occurrence
of a heart attack (HA). We may say that the dependency between CIN and HA vanishes
when we also consider CBL, or more formally, CIN is conditionally independent of HA given
CBL and denote it by

CIN⊥⊥HA |CBL

The notion of conditional independence is actually defined for finite sets of variables.
The set on which we condition, is called the conditioning set. When the conditioning set is
empty, the conditional independency is a marginal independency which corresponds to
the more commonly known notion of independence between two factors. For example
our typewriting skills are independent of the chance that our favorite national football
team will win the next football world cup.

The formal definition of CI is based on the concept of random variables and a joint
probability distribution over a set of random variables. We will not introduce these con-
cepts here, but the reader may find them described in depth in any standard introductory
textbook on statistics.

We will denote a random variable by an upper case letter, e.g. X, and a set or a
vector of random variables with a boldface upper case letter, e.g. X. Whether X is a
set or a vector will be clear from the context. Often, we will be interested in indexing
random variables to denote their membership to some vector or set, using a number or
a lowercase letter, as in X1, . . . , Xi , . . . , Xn.

Similarly, we will index vectors and sets of random variables to distinguish them, as
e.g. XA, XB, . . . , XZ. For notational convenience, we sometimes use A as a shorthand for
XA or i as a shorthand for Xi.

A set of categorical random variables XV may form a multivariate distribution that
belongs to some family of distributions P defined on a product space X = ×(Xi|i ∈ V).
Any family of probability distributions considered in this chapter, and in the rest of this
thesis, is defined on X . A particular instantiation of a single random variable will be
denoted with a lowercase letter, as Xi = x where x ∈ Xi. An instantiation of a set of
random variables will be denoted with a boldface lowercase letter, as XA = x where
x ∈ XA.

Dawid (1979) formalized the concept of CI and introduced the ternary operator
X⊥⊥Y|Z[P], to denote that X is conditionally independent of Y given Z under P. Where
P refers to some family of probability distributions over some larger set of random vari-
ables V that contains X, Y, Z. The formal definition is as follows.

Definition 2.1. Conditional Independence (CI)
Let V be a finite set of categorical random variables where each X ∈ V has a finite domain. Let
p(V) be a joint probability distribution over the random variables in V, that belongs to some
family of probability distributions P. Let X, Y, Z be any subsets of V such that X, Y are disjoint

2.2 Conditional Independence 7

and non-empty. We say that X is conditionally independent of Y given Z, noted X⊥⊥Y|Z [P],
if for all configurations x, y, z of the variables in X, Y, Z satisfying p(Z = z) > 0, it holds that

p(X = x|Y = y, Z = z) = p(X = x|Z = z).

Very often P will be fixed and we will drop it from the notation writing only X⊥⊥Y|Z.
The previous definition may be seen as a factorization criterion that tells that the condi-
tional probability of X given Y and Z, is in fact a function of Z alone. Because this may
be interpreted as a constraint or restriction, one often uses the term CI restriction to refer
to a CI statement. When Z is trivial, X and Y are marginally independent. This means that

p(X, Y) = p(X)p(Y). (2.1)

Where, for clarity, we have not written the assignments of values explicitly. Anal-
ogously, when the conditioning set Z is not trivial and p(Z) > 0, the joint probability
factorizes as follows,

p(X, Y|Z) = p(X|Z)p(Y|Z), (2.2)

if and only if X⊥⊥Y|Z. Expression (2.2) is a rewrite of (2.1) where the unconditional
probabilities are replaced by conditional ones.

The constraint of positive conditioning probabilities it is necessary in the formulation
above as otherwise the conditionals would not be unique. An alternative interpretation,
without imposing positivity in the conditionals, is that X⊥⊥Y|Z if versions of the condi-
tional distributions p(X|Z) and p(Y|Z) exist such that their product is a version of the
law1 of p(X, Y|Z). More concretely, X⊥⊥Y|Z if and only if one can reproduce the joint law
of p(X, Y, Z) by:

1. sampling from the marginal law of p(Z).

2. sampling X from p(X|Z = z).

3. sampling Y from p(Y|Z = z).

Pearl (1988) provided a sound and complete axiomatization of the concept of CI. It
consists of five logical conditions that constrain the relation of CI between any given set
of random variables (that forms a multivariate distribution of some family P). The first
four logical conditions are as follows:

• Symmetry:

X⊥⊥Y |Z⇐⇒ Y⊥⊥X |Z (CI1)

1In the statistical context, a law is a probability distribution of the probabilities of another probability distri-
bution, i.e. a second-order probability distribution.

8 Chapter 2. Graphical Markov Models

• Decomposition:

X⊥⊥(Y ∪W) |Z =⇒ X⊥⊥Y |Z ∧ X⊥⊥W |Z (CI2)

• Weak Union:

X⊥⊥(Y ∪W) |Z =⇒ X⊥⊥Y | (Z ∪W) (CI3)

• Contraction:

X⊥⊥Y |Z ∧ X⊥⊥W | (Z ∪ Y) =⇒ X⊥⊥(Y ∪W) |Z (CI4)

Any model which satisfies those conditions is called a semi-graphoid. Further, if P is
strictly positive, then the model is called a graphoid, and the following fifth condition
holds:

• Intersection:

X⊥⊥Y | (Z ∪W) ∧ X⊥⊥W | (Z ∪ Y) =⇒ X⊥⊥(Y ∪W) |Z (CI5)

In general, we will find that for many real world domains, the random variables
considered are constrained logically in such a way that the assumption that P is strictly
positive may be unrealistic. Therefore, most of the time one is interested in developing
results that rely on properties that only depend on the semi-graphoid axioms.

Recall from the introduction of this chapter that we use the term model to specify an
arbitrary family of distributions that satisfy a set of CI restrictions. In GMMs, the set of
CI restrictions satisfied by the model are encoded in a graph or, as we shall see later in
section 2.6, any other equivalent algebraic structure. The criterion used to code, or read
off, a CI restriction from a graph is formally defined as a Markov property.

Every type of graph has its own set of Markov properties. For any given type of
graph, its Markov properties will be related such that they may be equivalent or one may
follow from another. Given two Markov properties MP and MP′, such that MP ⇒ MP′,
one says that MP is sharper than MP′. The definition of a particular Markov property
will be used to provide the definition of a particular class of GMM, in the following way.

Definition 2.2. Graphical Markov Model
Let G be a graph of some type. Let MP be the sharpest Markov property for G. The family of prob-
ability distributions that satisfy the Markov property MP relative to G is called the Graphical
Markov Model determined by G, and it will be noted as M(G).

One also says, that the family of probability distributions M(G) are Markov over G, or
are G-Markovian.

In each of the following sections that describes a type of GMM we will introduce the
necessary notation and terminology which is mainly borrowed from Lauritzen (1996)
and Andersson et al. (1995).

2.3 The Decomposable Graphical Markov Model 9

2.3 The Decomposable Graphical Markov Model

2.3.1 Background concepts

A graph is a pair G = (V, E) where V is the set of vertices and E is the set of edges. In
the present context of GMMs, the set of vertices acts as an index set for some collection
of random variables XV = {X1, . . . , Xn} that form a multivariate distribution of some
family P.

The set of edges E is a subset of the set of ordered pairs V ×V that does not contain
loops, i.e. (x, y) ∈ E ⇒ x 6= y, nor multiple edges. Given two vertices a, b, we say that
they form an undirected edge if and only if (a, b) ∈ E and (b, a) ∈ E. An undirected edge is
represented graphically by a solid line joining the two vertices involved, e.g. a–b. When
all the edges in E are undirected we will say that the graph G is an undirected graph (UG).

When two vertices are joined by an undirected edge, these two vertices are called
adjacent. Given a vertex v ∈ V, the boundary of v is bd(v) = {u ∈ V | (u, v) ∈ E}. The
closure of a vertex v is cl(v) = bd(v) ∪ {v}.

A subgraph GS = (S, ES) is given by a subset S ⊆ V and the induced edge set ES =
E∩ (S× S). It will be often said that GS is an induced subgraph of G. An undirected graph
G = (V, E) is said to be complete if and only if every pair of vertices is adjacent. A subset
of vertices is complete if it induces a complete subgraph. A clique is a maximal complete
subgraph. Note that in the standard terminology of graph theory, our definition of clique
is called maximal clique and the term clique is used to denote a complete subgraph.

An undirected path between two vertices a and b is a sequence a = v0, . . . , vn = b of
distinct vertices such that n > 0, (vi−1, vi) ∈ E and (vi , vi−1) ∈ E for i = 1, . . . , n. An
undirected cycle is an undirected path that begins and ends in the same vertex, i.e. a = b.

Given three subsets of vertices A, B, S ⊂ V, it is said that S separates A from B in
an undirected graph if and only if every undirected path between vertices in A and B
intersects S. For instance, in both graphs of Figure 2.1, vertices 3 and 4 separate vertex 5
from vertices 1 and 2, while vertex 4 alone does not separate vertex 2 from vertex 3.

An undirected chordal graph, or chordal graph for short, is an undirected graph with no
chordless2 undirected cycles on more than three vertices. Figure 2.1 shows examples of
chordal and non-chordal undirected graphs. Chordal graphs are also known as decom-
posable, triangulated or rigid circuit graphs, and their properties have been exploited in
many other areas of research as, e.g., in databases (Beeri et al., 1981).

 1

 2

 3

 4

 5 1

 2

 3

 4

 5

(b)(a)

Figure 2.1: Examples of undirected chordal (a) and non-chordal (b) graphs.

As we shall see now, they determine the decomposable graphical Markov model,
2A chord in a graph is an edge joining two vertices already connected by a path.

10 Chapter 2. Graphical Markov Models

DEC Markov model hereafter. The Markov properties that are used in this type of graph
are the ones used for the larger class of UGs.

2.3.2 Markov properties and definition

There are three Markov properties for undirected graphs, and therefore, for undirected
chordal graphs.

Definition 2.3. Undirected pairwise Markov property (UPMP)
Let G = (V, E) be an undirected graph, a probability distribution P is said to satisfy the undi-
rected pairwise Markov property (UPMP) if, for any pair u, v ∈ V of non-adjacent vertices,
P satisfies

u⊥⊥v |V\{u, v} [P].

The UPMP means that two non-adjacent vertices u, v ∈ V are conditionally indepen-
dent given the rest of the vertices.

Definition 2.4. Undirected local Markov property (ULMP)
Let G = (V, E) be an undirected graph, a probability distribution P is said to satisfy the undi-
rected local Markov property (ULMP) if, for any vertex v ∈ V, P satisfies

v⊥⊥V\cl(v) | bd(v) [P].

The ULMP means that a vertex v is conditionally independent of the rest of the vari-
ables without its boundary, given its boundary.

Definition 2.5. Undirected global Markov property (UGMP)
Let G = (V, E) be an undirected graph, a probability distribution P is said to satisfy the undi-
rected global Markov property (UGMP) if, for any triple (A, B, S) of disjoint subsets of V
such that S separates A from B in G and A, B are non-empty, P satisfies

A⊥⊥B | S [P].

The UGMP means that two non-empty subsets of vertices A, B are conditionally in-
dependent given a third subset of vertices S, if and only if S separates A from B.

In (Whittaker, 1990) and (Lauritzen et al., 1990) there is a more thorough discussion of
these Markov properties, in particular about the fact that they are related in the following
way:

UGMP⇒ ULMP⇒ UPMP.

This implies that the UGMP is the sharpest possible rule to read off CI restrictions
from an undirected (chordal) graph. If P is strictly positive, then the properties are
equivalent (Pearl and Paz, 1987). Finally, we can introduce the definition of decom-
posable graphical Markov model.

Definition 2.6. DEC Markov model
Let G be an undirected chordal graph. The set U(G) of all probability distributions that satisfy the
UGMP relative to G is called the decomposable graphical Markov model, or DEC Markov
model, determined by G.

2.4 The Acyclic Directed Graphical Markov Model 11

2.4 The Acyclic Directed Graphical Markov Model

2.4.1 Background concepts

An edge is directed, or also called an arc, if and only if (a, b) ∈ E ⇒ (b, a) 6∈ E. A di-
rected edge or arc between two vertices a and b, such that (a, b) ∈ E, will be represented
graphically by an arrow pointing from a towards b, i.e. a → b. A graph G = (V, E) is
said to be directed if all edges in E are directed edges. For clarity, sometimes we will write
a → b ∈ E to denote that (a, b) ∈ E. As for undirected graphs, two vertices joined by a
directed edge in either direction will be called adjacent.

For a directed edge a → b we distinguish between the two joined vertices by speci-
fying that a is the parent of b, and that b is the child of a. Those parent vertices that have
a common child, will be considered as the parent set of this child vertex, and it will be
noted as pa(v) for any given child vertex v.

A path between two vertices a and b is a sequence a = v0, . . . , vn = b of distinct
vertices such that n > 0 and either (vi−1, vi) ∈ E or (vi , vi−1) ∈ E for i = 1, . . . , n. A
cycle is a path where a = b. In a directed graph, a directed path is formed by directed
edges and is a direction-preserving path. This means that every directed edge in the path
points towards the same direction. A given vertex a is called the ancestor of b if there
is a directed path from a to b. A directed cycle is a directed path where the first vertex
coincides with the last one. An acyclic directed graph, or DAG, is a directed graph without
directed cycles. The skeleton of a DAG is the undirected graph obtained by transforming
the set of directed edges into a set of undirected ones that preserves the same adjacencies.

For any given vertex v, one may consider the set of those vertices that are ancestors
of v, which will be called the ancestor set of v, and noted an(v). Analogously, a vertex
b is called the descendant of a if there is a directed path from a to b, i.e. a is ancestor
of b. The vertices at the end of every directed path that starts at vertex a will form the
descendant set of a, noted de(a). Given a vertex v the non-descendant set of v is defined as
nd(v) = V\{de(v) ∪ {v}}.

For a given DAG G = (V, E) and a subset of vertices A ⊆ V, A is said to be ancestral
if and only if for every vertex v ∈ A, an(v) ⊆ A. Further, for an arbitrary subset of
vertices A ⊆ V, there is always some larger subset that contains A and it is ancestral.
The smallest of the ancestral sets containing A will be called the smallest ancestral set of
A and noted An(A). To avoid confusion, let’s remark the difference between an(v) and
An(A). The former one refers to the set of vertices that are ancestors of the vertex v,
while the latter refers to the smallest subset An(A) ⊆ V that contains A and is ancestral
in G.

An important concept regarding DAGs in this context is the concept of immorality. An
immorality is formed by two non-adjacent vertices with a common child, e.g. a→ b← c.
In the terminology of Cox and Wermuth (1996), an immorality is known as a sink-oriented
V-configuration, where a V-configuration is defined as a triplet of vertices (a, b, c) such that
two of them are adjacent to the third one but they are not adjacent to each other. In
the case a → b ← c, the vertex b is referred as the collision vertex. The terminology of
Cox and Wermuth (1996) allows to define further configurations on three vertices as the
source-oriented V-configuration, e.g. a ← b → c, and the transition-oriented V-configuration,
e.g. a→ b→ c.

A DAG that has no immoralities is said to be moral. In the context of graph theory,

12 Chapter 2. Graphical Markov Models

moral DAGs are known as subtree acyclic digraphs and were characterized by Harary et al.
(1992). A DAG that is not moral can be moralized by marrying those non-adjacent parents
that induce an immorality, i.e. joining them with an undirected edge, and dropping
directions on the rest of the edges in G. The moralized version of a directed graph G will
be noted as Gm.

2.4.2 Markov properties and definition

There are three Markov properties for DAGs.

Definition 2.7. Directed pairwise Markov property (DPMP)
Let G = (V, E) be a DAG, a probability distribution P is said to satisfy the directed pairwise
Markov property (DGMP) if, for any pair u, v ∈ V of non-adjacent vertices such that v ∈
nd(u), P satisfies

u⊥⊥v | nd(u)\{v}[P].

The DPMP means that two-nonadjacent vertices u and v, such that v is non-descendant
of u, are conditionally independent given the non-descendant vertices of u without v.

Definition 2.8. Directed local Markov property (DLMP)
Let G = (V, E) be a DAG, a probability distribution P is said to satisfy the directed pairwise
Markov property (DLMP) if, for any vertex v ∈ V, P satisfies

v⊥⊥{nd(v)\pa(v)} | pa(v)[P].

The DLMP means that a vertex is conditionally independent of its non-descendants,
without its parents, given its parents.

Definition 2.9. Directed global Markov property (DGMP)
Let G = (V, E) be a DAG, a probability distribution P is said to satisfy the directed global
Markov property (DGMP) if, for any triple (A, B, S) of disjoint subsets of V, where A, B are
non-empty, such that S separates A from B in the moralized version of the subgraph induced by
the vertices in An(A ∪ B ∪ S), i.e. in Gm

An(A∪B∪S), P satisfies

A⊥⊥B | S[P].

The DGMP means that two non-empty subsets of vertices A, B are conditionally in-
dependent given a third subset S if and only if S separates A and B in the moralized
subgraph induced by the smallest ancestral set of A ∪ B ∪ S.

An alternative way of reading conditional independencies in a DAG is using the d-
separation criterion of Pearl and Verma (1987), which we review now. Given two vertices
u, v ∈ V and a subset S ⊆ V where u, v 6∈ S, one says that a path between u and v is
active with respect to S if

1. every non-collision vertex in the path is not in S, and

2. every collision vertex in the path is in S or has a descendant in S.

2.4 The Acyclic Directed Graphical Markov Model 13

When a subset S creates an active path between two vertices u and v, then u and v cannot
be conditionally independent given S in G. When a path between two vertices u, v is not
active with respect to S, one says that the path is blocked by S. Given these notions of
active and blocked path, the d-separation criterion is defined as follows.

Definition 2.10. d-separation
Let G = (V, E) be a DAG. For any triple (A, B, S) of disjoint subsets of V, where A, B are non-
empty, A and B are d-separated by S if every path between the vertices in A and B is blocked by
S.

Lauritzen et al. (1990) prove that the d-separation criterion encodes in a DAG exactly
the same CI restrictions as the DGMP. They also prove that the local and global Markov
properties coincide:

DGMP⇔ DLMP.

We may see more clearly the intuition behind the DGMP in Figure 2.2. Given the
DAG G on the lefthand side of the figure, let’s try to find out whether the DGMP holds
for 1⊥⊥6 | 3 in G. The smallest ancestral set of 1,6 and 3 is An({1, 3, 6}) = {1, 2, 3, 5, 6}.

3

5

6

2

1

3

4

5

6

7

8

2

1

G Gm
An({1,3,6})

Figure 2.2: A DAG on the left, and on the right its moralized version over the smallest
ancestral set of {1, 3, 6}.

The moralized version of the graph induced by this subset of vertices is on the right-
hand side of the figure. Since the subgraph over An({1, 3, 6}) contains the immorality
2 → 3 ← 5, 2 and 5 become adjacent at the moment we moralize the graph, creating
therefore, a new path between 1 and 6, which does not intersect the conditioning set
{3}, thus 1⊥⊥6 | 3 does not hold. In the terminology of Pearl and Verma (1987) we would
say that the conditioning set {3} makes the path 1,2,3,5,6 active in G. In order to find
vertex 1 separated from vertex 6, one should add 2 or 5 to the conditioning set, or remove
3.
The definition of DAG Markov model is finally as follows.

Definition 2.11. DAG Markov model
Let G be a DAG. The set D(G) of all probability distributions that satisfy the DGMP relative to
G is called the acyclic directed graphical Markov model, or DAG Markov model, determined
by G.

14 Chapter 2. Graphical Markov Models

2.4.3 Markov equivalence

Two DAG Markov models D(G) and D(G′) determined by two different DAGs G and
G′ may represent the same restrictions of conditional independence as we can see from
the following example for three random variables XV = {Xa, Xb, Xc}. Let’s consider a
DAG model determined by the following DAG:

G = {a→ b→ c}.

According to the DGMP, this DAG encodes the CI restriction Xa⊥⊥Xc |Xb. But, an-
other different DAG over the same vertex set that would encode this CI restriction would
be

G′ = {a← b→ c},

and yet another one

G′′ = {a← b← c}.

This actually implies that the sets of discrete probability distributions that are Markov
over G, G′ and G′′, are actually the same, thus D(G) = D(G′) = D(G′′). When this
happens, we say that the DAG models D(G), D(G′) and D(G′′) are Markov equivalent, or
simply, equivalent. Note, however, that they are not equivalent to the immorality

a→ b← c,

since this DAG induces the marginal independency between Xa and Xc, i.e. Xa⊥⊥Xc | ∅.
Since an equivalence relation is reflexive, symmetric and transitive, the search space

of DAG Markov models is organized in equivalence classes. Markov equivalence for
DAG models was characterized by Verma and Pearl (1990) in the following theorem.

Theorem 2.1. (Verma and Pearl, 1990)
Two DAGs are equivalent if and only if they have the same skeletons and the same immoralities.

From this theorem it is possible to devise an operational criterion to determine which
edges in a DAG are compelled and which are reversible. The criterion is that a directed edge
that remains in the same direction for all graphs in an equivalence class is compelled.
The others are reversible.

In fact, the canonical representation of an equivalence class of DAG Markov mod-
els is an acyclic partially directed graph, where the edge set may contain directed and
undirected edges with certain characterizing properties. A directed edge represents a
compelled edge, and an undirected edge represents a reversible one. This representa-
tion is known in the literature under different terms as, completed pattern (Verma and
Pearl, 1990), pattern (Spirtes et al., 1993), completed PDAG (Chickering, 1995), or essential
graph (Andersson et al., 1997a).

2.5 The Essential Graph Markov Model 15

Yet, the previous definition of the canonical representation is broader than the type
of graph that we are actually talking about. It corresponds to the definition of chain
graphs that determine the larger class of chain graph Markov models (Frydenberg, 1990a;
Andersson et al., 2001) which will not be treated in this thesis. Throughout this thesis,
we will adopt the term essential graph which was introduced by Andersson et al. (1997a)
and which is described in detail in the following section.

The previous operational criterion to obtain the canonical element of one of the
Markov equivalence classes of DAG models is, in fact, impractical. Luckily several au-
thors (Chickering, 1995; Andersson et al., 1997a) have provided polynomial time algo-
rithms to create the corresponding essential graph of any given DAG.

2.5 The Essential Graph Markov Model

We have seen in the previous section that DAG Markov models are organized in equiva-
lence classes. In this section we will examine the class of GMMs determined by a partic-
ular representation of these equivalence classes. The set of CI models one can represent
in this class are obviously the same as for DAG models, but the graphical representation
is different.

As we shall see in the next chapter, learning procedures for GMMs use the type of
graph that determine the GMM to define the search space. Therefore, alternative graph-
ical representations for a class of GMMs allow the use of different search spaces for the
same learning problem. Often, the learning task will perform differently in each search
space, thus it becomes important to know all possible representations to devise later
better learning algorithms.

Let’s remark that from a causal point of view all DAG Markov models are different as
every arc denotes a cause-effect relationship. However, from a non-causal perspective,
the interpretation of a single DAG becomes somewhat deceptive when we realize that
there are other equivalent DAGs. This problem is solved by using a canonical represen-
tation of the equivalence class, the essential graph.

In order to describe essential graphs in detail we need to generalize the notions of
directed path and directed cycle in the following way. A semi-directed path is either a
directed path or a path which has one or more directed edges pointing towards the same
direction. A semi-directed cycle is a semi-directed path that starts and ends in the same
vertex.

An essential graph (EG), as well as an UG or a DAG, is a specific case of the broader
class of chain graphs. A chain graph (CG) is an acyclic partially directed graph (PDAG)
whose edges set may contain both directed and undirected edges such that there are no
semi-directed cycles. In Figure 2.3 we see examples of CGs as (a) and (b), and examples
that are not CGs as (c) and (d).

Recall that a connected graph is such that has a path between every pair of vertices.
A graph G of any given type is formed by a non-empty set of connected components. A
connected component of a graph G, is an induced connected subgraph G′ such that there
is no other connected subgraph induced from G that contains G′.

Analogously, a CG G is formed by a non-empty set of chain components T (G). The set
of chain components of a CG corresponds to the set of connected components left after
the removal of all directed edges in the CG.

16 Chapter 2. Graphical Markov Models

(a) (b) (c) (d)

Figure 2.3: The graphs in (a) and (b) are chain graphs while the graphs in (c) and (d) are
not.

1 3 5

2 4 6
7

8

9

10

11

1 3 5

2 4 6
7

8

9

10

11

Figure 2.4: A chain graph on the left and its set of chain components on the right.

In Figure 2.4 we see a CG on the left and on the right its set of chain components
T (G) = {{1, 2, 3, 4}, {5, 6}, {7, 8}, {9, 10}, {11}}. As we may observe from this exam-
ple, the set of chain components T (G) forms a chain where the directed edges establish
a partial order among the chain components, hence the name chain graph. In the GMM
that is determined by a CG, the random variables within a chain component are as-
sumed to occur on equal footing. Conversely, the directed edges in the CG represent
some stepwise mechanism generating the data, among the chain components. We will
not examine further this class of GMMs; the interested reader may consult (Frydenberg,
1990a; Andersson et al., 2001).

An EG is a CG with additional characterizing properties. These properties have been
investigated by several authors (Spirtes and Meek, 1995; Chickering, 1995; Andersson
et al., 1997a). We will review only the properties as they were formalized by Andersson
et al. (1997a) in the following theorem:

Theorem 2.2. Essential Graph (EG) (Andersson et al., 1997a, Theorem 4.1)
A graph G = (V, E) is the EG for some DAG D with vertex set V if and only if G satisfies the
following four conditions:

(1) G is a chain graph.

(2) For each chain component τ ∈ T (G), the undirected graph Gτ is chordal.

(3) G has no induced subgraph of the form a→ b–c.

(4) Each arrow a → b in G is strongly protected, that is, it occurs in at least one of the
following configurations as an induced subgraph of G:

2.5 The Essential Graph Markov Model 17

c c c c1

a b a b a b
a b

c2

The notion behind the previous characterizing properties is that there are directed
edges which remain in the same direction throughout all the DAGs that form an equiv-
alence class. One says that these directed edges are essential (Andersson et al., 1997a).
This characterization allows to devise a polynomial time algorithm to convert a DAG
into an EG and viceversa (Spirtes and Meek, 1995; Chickering, 1995; Andersson et al.,
1997a). Note, for instance, that the CG on the left of Figure 2.4 is not an EG because the
subset of vertices {4, 5, 6} induces a subgraph that violates condition (3).

2.5.1 Markov properties and definition

Recall the concepts of boundary bd(v) = {u ∈ V | (u, v) ∈ E} and closure cl(v) =
bd(v) ∪ {v} introduced in the context of undirected graphs. Note that in the context of
DAGs and CGs pa(v) ⊆ bd(v), while bd(v) ∩ de(v) = ∅, where de(v) corresponds to a
more general definition given below.

In a more general sense than for DAGs: the ancestors an(v) of a given vertex v is the
set of vertices from which there is a semi-directed path that ends at v; the descendants
de(v) of a given vertex v is the set of those vertices at the end of every semi-directed path
that starts at v.

Note that these broader definitions of descendants de(v) and ancestors an(v) implic-
itly modify those of non-descendants nd(v) and smallest ancestral set An(A).

Further, we need two new concepts. Let G = (V, E) be a CG with set of chain com-
ponents T (G). Let τ(v) ∈ T (G) be the set of vertices that forms the chain compo-
nent in G that contains v. A subset A ⊆ V is anterior in G iff A is ancestral in G and
v ∈ A ⇒ τ(v) ⊆ A. The subset At(A) ⊆ V denotes the smallest anterior set in G that
contains A.

Markov properties for CGs were originally introduced by Lauritzen and Wermuth
(1989) and Frydenberg (1990a), where the corresponding global Markov property for-
malized in those works is commonly known as the Lauritzen-Wermuth-Frydenberg (LWF)
Markov property. Later Andersson et al. (1996, 2001) provided alternative Markov prop-
erties for CGs, where the corresponding global Markov property is known as the Alter-
native Markov Property (AMP3) Markov property. In the case of EGs, the LWF and AMP
Markov properties are equivalent (Andersson et al., 2001, Theorem 4.3). Therefore we
will review here only the definition for one of them, the LWF, and we refer the interested
reader to the mentioned sources.

Definition 2.12. Chain graph pairwise Markov property (CGPMP)
Let G = (V, E) be a CG, a probability distribution P is said to satisfy the chain graph pairwise
Markov property (CGPMP) if, for any pair u, v ∈ V of non-adjacent vertices such that v ∈
nd(u), P satisfies

u⊥⊥v | nd(u)\{v}[P].
3Note that it admits also the spelling of its author’s names Andersson-Madigan-Perlman.

18 Chapter 2. Graphical Markov Models

The notion of the CGPMP is exactly the same as for the DPMP but in the more general
sense introduced by the definition of de(v) for CGs.

Definition 2.13. Chain graph local Markov property (CGLMP)
Let G = (V, E) be a CG, a probability distribution P is said to satisfy the chain graph local
Markov property (CGLMP) if, for any vertex v ∈ V, P satisfies

v⊥⊥nd(v)\cl(v) | bd(v)[P].

The CGLMP is analogous to the DLMP but here the role of the parents pa(v) is taken
over by the boundary bd(v).

Definition 2.14. Chain graph global Markov property (CGGMP)
Let G = (V, E) be a CG, a probability distribution P is said to satisfy the chain graph global
Markov property (CGGMP) if, for any triple (A, B, S) of disjoint subsets of V, where A, B are
non-empty, such that S separates A from B in the moralized version of the subgraph induced by
the vertices in At(A ∪ B ∪ S), i.e. in Gm

At(A∪B∪S), P satisfies

A⊥⊥B | S[P].

Again the CGGMP is analogous to the DGMP but the role of the smallest ancestral
set An(·) is taken over by the smallest anterior set At(·). Frydenberg (1990a) shows that
the CGGMP is the sharpest possible rule to read off CI restrictions from a CG:

CGGMP⇒ CGLMP⇒ CGPMP.

Finally, the definition of EG Markov model is as follows.

Definition 2.15. EG Markov model
Let G be an EG. The set E(G) of all probability distributions that satisfy the CGGMP relative to
G is called the essential graph Markov model, or EG Markov model, determined by G.

2.6 The Lattice Conditional Independence Markov
Model

The Lattice Conditional Independence (LCI) Markov model was introduced by Andersson
and Perlman (1993) in the context of the analysis of non-nested multivariate missing
data patterns and non-nested dependent linear regression models. Later, Andersson
et al. (1997a, Theorem 4.1) showed that the class of LCI models coincides with the class
of Transitive Acyclic Directed Graph (TDAG) Markov models. The overview of this class
of GMMs is necessary in order to fully understand the material in the next section. We
begin by reviewing the most important background concepts and why finite distribu-
tive lattices (that determine LCI models) are the same mathematical objects as transitive
acyclic digraphs (that determine TDAG models).

2.6 The Lattice Conditional Independence Markov Model 19

2.6.1 Background concepts

A DAG is transitive ≡ TDAG if for every vertex v, pa(v) = an(v). Recall that a subset of
vertices A ⊂ V is ancestral iff for every vertex v ∈ A, an(v) ⊆ A. Since the union and
intersection of ancestral sets is again ancestral, all the different ancestral sets contained
in a DAG G = (V, E) form a ring of subsets of V, which is denoted by A(G).

A partially ordered set (≡ poset) (S,≤) is a set S equipped with an order relation4 ≤.
If the poset is totally ordered, i.e. ∀a, b ∈ S a ≤ b or b ≤ a, then it is a chain. A chain
C in a poset S is called maximal iff, for any chain D ∈ S, C ⊆ D implies that C = D. Let
S be a poset and let x, y ∈ S. We say x is covered by y, and write x ≺ y if x < y and
x ≤ z < y⇒ z = x.

Grätzer (1978, pg. 10) shows that this covering relation determines the partial order-
ing in a given poset in the following way. Let S be a finite poset. Then a ≤ b iff a = b
or there exists a finite sequence of elements x0, . . . , xn−1, such that x0 = a, xn−1 = b, and
xi ≺ xi+1, for 0 ≤ i < n− 1.

A poset (S,≤) has an associated undirected graph (V, E) in which (x, y) ∈ E if x ≺ y
(y covers x). This associated undirected graph is called the covering graph of the poset S.
A Hasse diagram of a poset S is a representation of the covering graph of S in the plane
such that if x < y, then x is below y in the plane.

Analogous to the concept of an ancestral set in a DAG, one may define an ancestral
poset. Let (S,≤) be a poset, a subset (which is again a poset) A ⊆ S is ancestral in (S,≤)
iff ∀a ∈ A it follows that b ∈ S and b < a⇒ b ∈ A.

Given a poset S, a subset H ⊆ S and an element a ∈ S, it is said that a is an upper
bound (lower bound) of H iff for every h ∈ H, h ≤ a (h ≥ a). An upper bound (lower
bound) a of H is the least upper bound (greatest lower bound) of H or supremum (infimum)
of H iff, for any upper bound (lower bound) b of H, we have a ≤ b (a ≥ b), and denote it
by a = sup H (a = inf H).

It is possible to define a lattice in different ways. We will introduce here just one
of them, as follows. A poset L is a lattice iff sup H and inf H exist in L for any finite
nonvoid subset H of L. Grätzer (1978) shows that the concept of a lattice as a poset
is equivalent to the concept of a lattice as an algebra K ≡ K(∧,∨), where ∧ and ∨ are
binary operations on pairs of elements a, b ∈ K, corresponding to inf{a, b} and sup{a, b}
respectively. The operations ∧,∨ are idempotent, commutative and associative, and
satisfy two absorption identities. It has been already mentioned that LCI models are
determined by finite distributive lattices. Birkhoff (Grätzer, 1978, pg. 62) characterized
finite distributive lattices as those isomorphic to a ring of sets.

A finite distributive lattice K has a unique irredundant representation in terms of
a finite poset (J(K),≤), where J(K) ⊆ K is the subset of join-irreducible elements (see
Grätzer, 1978, pg. 62). This poset often is substantially smaller than K, and its elements
are defined in the following way

J(K) = {a ∈ K | a 6= ∅, a = b ∨ c⇒ a = b or a = c}.

In this context, the lattice K can be constructed by unions (∨) and intersections (∧) of
the elements of the set of join-irreducible elements J(K). Davey and Priestley (1990)
characterize a join-irreducible element of a finite distributive lattice as an element which

4Reflexive, antisymmetric and transitive.

20 Chapter 2. Graphical Markov Models

has exactly one lower cover, i.e. it covers exactly one other element. Note that the partial
order ≤ of the finite poset (J(K),≤) is inherited from K: a ≤ b iff a ∧ b = a.

It is possible to establish a one to one correspondence between finite posets and
TDAGs. Given the finite poset (S,≤) we can build a TDAG G = (S, E<), where

E< = {(a, b) ∈ S× S|a < b}.

Given a TDAG G = (V, E), for every pair of vertices a, b ∈ V, a ∈ an(b) ⇔ a < b. Note
that all ancestral subsets of a poset (S,≤) form a ringA((S,≤)) which is identical to the
ancestral ring A((S, E<)) of the TDAG G = (S, E<) defined before.

This correspondence between TDAGs and finite distributive lattices is used by An-
dersson et al. (1997c) to prove that TDAG models and LCI models coincide.

2.6.2 Markov properties and definition

There is only one specific Markov property for LCI Markov models.

Definition 2.16. Lattice conditional independence Markov property (LCIMP)
Let G = (V, E) be a TDAG, a probability distribution P is said to satisfy the lattice conditional
independence Markov property (LCIMP) if, for every pair of ancestral subsets A, B ∈ A(G),
P satisfies

A⊥⊥B|A ∩ B.

Andersson et al. (1997c) defined the LCIMP for the ancestral sets of a DAG. In this
more general case, they prove:

Theorem 2.3. Andersson et al. (1997c, Theorem 2.2,p. 32)
Let G be a DAG. For any probability distribution P, DGMP⇒ LCIMP.

The previous theorem is sharpened for TDAG Markov models as follows.

Theorem 2.4. Andersson et al. (1997c, Theorem 3.1,p. 33)
Let G be a TDAG. For any probability distribution P,

DGMP⇔ DLMP⇔ LCIMP.

The definition of an LCI Markov model is the following.

Definition 2.17. LCI Markov model
Let G be a TDAG. The set L(G) of all probability distributions that satisfy the LCIMP relative
to G is called the lattice conditional independence Markov model, or LCI Markov model,
determined by G.

The fact that there is a one to one correspondence between TDAGs and finite dis-
tributive lattices, and the latter are isomorphic to a ring of sets, leads to an alternative
reformulation of LCI Markov model in terms of posets. Consider a ring K of subsets of
V, such that for every pair of subsets L, M ∈ K, a probability distribution P satisfies

L⊥⊥M|L ∩M,

2.7 The Tree Conditional Independence Markov Model 21

as in the LCIMP. The subsets L, M refer to subsets of random variables XL, XM ⊆ XV
that take values from a larger product space X = ×(Xi|i ∈ V) and L, M ⊆ V. Over
this product space, a family of probability distributions P satisfies the LCIMP, and gives
rise to an LCI model L(K) that, as the notation suggests, is determined by a ring K. For
more details about LCI models determined by rings of subsets, the reader may consult
Andersson and Perlman (1993); Andersson et al. (1997c).

In Figure 2.5a we may see an empty DAG, which represents the fully restricted DAG
model, on the left, and its representation by a Hasse diagram on its right as the fully
restricted LCI model. In Figure 2.5b we may see a complete DAG, which represents the
unrestricted or saturated DAG model, and its representation by a Hasse diagram on its
right as the unrestricted LCI model. Let’s note that for the LCI model on Figure 2.5a,
J(Ka) = {1, 2, 3} and for the LCI model on Figure 2.5b, J(Kb) = {1, 12, 123}. Note that
both DAGs are also TDAGs.

������ ������ ������

(a) (b)

1 2 3

/0

123
12

23

13

1

3
2

1 3
1

/0

123

122

Figure 2.5: Comparison between DAG (TDAG) models and LCI models.

While for the graphical Markov model in Figure 2.5a the restrictions are characterized
by all three vertices being marginally independent: 1⊥⊥2⊥⊥3, the set of restrictions of
the model in Figure 2.5b is empty. In order to read conditional independencies from the
Hasse diagram, we have to take into account that any two elements from this diagram
are conditionally independent given their intersection (LCIMP). For instance, two trivial
cases are those from Figure 2.5. Note that the LCI model in 2.5b is not unique, as we also
have other equivalent complete DAGs (always from a non-causal perspective).

In the next figure, we may see two more sophisticated models. The one on Figure 2.6a
corresponds to the immorality that induces the two non-adjacent vertices marginally in-
dependent, and the one on Figure 2.6b makes the two non-adjacent vertices conditionally
independent given the middle one. On the LCI model of Figure 2.6a, J(Ka) = {1, 3, 123}
and on LCI model of Figure 2.6b, J(Kb) = {2, 12, 23} (recall that an element belongs to
J(K) iff it covers only one other element).

2.7 The Tree Conditional Independence Markov Model

It follows from the known relationships among the different classes of GMMs that the
intersection of the classes of DEC Markov models and TDAG Markov models (or LCI
Markov models) is non-empty. In this section we show that the GMMs in the intersection
can be characterized as labeled trees. This fact leads to the definition of a specific Markov
property for labeled trees and therefore to the introduction of labeled trees as part of the

22 Chapter 2. Graphical Markov Models

(a) (b)

1 3

12 23

/0

13

123

/0

2

123

1 3
2 1 3

2

Figure 2.6: On the left hand side of (a) and (b), two DAGs (TDAGs) representing 1⊥⊥3|∅
and 1⊥⊥3|2 respectively, and on the right hand side of (a) and (b) their corresponding
Hasse diagrams.

family of GMMs.
With the exception of LCI models, GMMs are usually determined by a graph (e.g.

UG, DAG and DEC models) which is interpreted in terms of separation. Separation (see
beginning of this chapter) is a graphical notion that allows one to split the vertex set
of the graph into a triplet that maps to the ternary relationship of conditional indepen-
dence. As we have seen in the previous section, LCI models are not graphical, thus they
do not have a graph-separation interpretation, but another one that manipulates directly
the lattice that determines the model. However, we have also seen in the previous sec-
tion that the LCI representation is equivalent to a graphical representation via TDAGs
that does have a graph-separation interpretation.

In this section we consider another special class of GMMs, namely DEC∩LCI. Ander-
sson et al. (1995) proved that DEC∩LCI 6= ∅ and for this particular class, we introduce an
alternative graphical representation which is not interpreted in graph-separation terms.
The new representation is more economical, in the sense that it affords an easier interpre-
tation of the model of conditional independence, in contrast to its equivalent graphical
counterpart in terms of either TDAGs or chordal graphs, or its equivalent non-graphical
counterpart in terms of finite distributive lattices.

This new representation is based on a characterization of moral TDAGs as labeled
trees, which will be presented first. Afterwards, a Markov property for labeled trees
will be introduced. Finally, the relationship between this new Markov property and the
rest of the existing Markov properties is investigated. From this study follows the new
formalization of the graphical Markov models in DEC∩LCI. Because of the relation be-
tween trees and models for conditional independence, we will refer to DEC∩LCI models
as tree conditional independence ≡ TCI models.

The direct consequence of such a formalization is that it provides a different way
to read the structural information (≡ the conditional independencies) contained in the
model, by using the new associated Markov property.

2.7.1 Background concepts

Most of the background concepts we need here were already introduced in the previ-
ous section for LCI models. We need however, some notions related to trees and a few
remarks regarding TDAGs and posets.

A tree is a connected undirected graph without undirected cycles. In this case there is

2.7 The Tree Conditional Independence Markov Model 23

always a unique path between any two different vertices. A rooted tree is a tree in which a
hierarchy among the vertices is created. One of the vertices of a rooted tree is the root and
it is placed at the bottom of the hierarchy. The leaves of a rooted tree are those vertices
connected to just one other vertex; they are placed at the top of the hierarchy. Under
this convention we will say that the root is below the leaves, and the leaves are above the
root. Note that this convention, inspired in the concept of tree used in natural sciences,
is different from the one used in computer science where the root is at the top, and the
leaves are at the bottom, thus upside-down.

Given a tree T = (V, E) and a vertex u ∈ V, a subtree rooted at u, denoted as Tu, is the
pair Tu = (U, EU), where the vertex set U ⊆ V contains all vertices involved in every
path from u to the leaves above, and the edge set EU = E ∩ (U ×U).

A TDAG is moral if it contains no immoralities. For any moral TDAG and every
vertex v, the induced subgraph {v} ∪ pa(v) ({v} ∪ an(v)) is complete.

An envelope5 E of a poset (S,≤) is a subset E ⊆ S such that for every s ∈ S, there
exists e ∈ E such that s ≤ e. A minimal envelope5E∗ of a poset (S,≤) is an envelope of
(S,≤) such that there is no subset E ⊆ E∗ that is an envelope of (S,≤) too.

2.7.2 Moral TDAGs as labeled trees

In this section we build an isomorphism between moral TDAGs and labeled trees, which
will allow us to represent any given moral TDAG with a unique corresponding labeled
tree. In order to get a first intuition of such mapping, we may see in Figure 2.7 an exam-
ple of three simple moral TDAGs with their corresponding labeled tree representation.

 2 31
 3

 1

 2

31
 2

������������ ���
���
������ ���
���
������

1 3
1 2 3 2

31
 2

(a) (b) (c)

/0
/0

/0

Figure 2.7: From left to right, trees constructed from an empty moral TDAG, a complete
moral TDAG and a moral TDAG where one vertex renders the two other non-adjacent
vertices conditionally independent.

In this section we do not yet discuss Markov models, only purely graph-theoretic
issues. The results in this section will be used later to introduce the new class of graphical
Markov models based on labeled trees.

Lemma 2.1. Let G = (V, E) be a moral TDAG corresponding to the finite distributive lattice
K, which has set of join-irreducible elements J(K). Let A(G) be the ring of ancestral subsets
of V in G, which is identical to the ring of ancestral posets of J(K), A((J(K),≤)). The set of

5Note that envelope and minimal envelope are concepts analogous to those of cover and minimal cover as de-
fined in Hearne and Wagner (1973).

24 Chapter 2. Graphical Markov Models

join-irreducible elements J(K) is the collection of maximal chains

J(K) = (Hi |Hi ⊆ A(G) ∧ Hi maximal chain). (2.3)

Proof. A poset (S,≤) is a tree poset iff for x, y, z ∈ (S,≤), x, y < z⇒ x < y or y < x.
Recall from the previous section that the relation between G = (V, E) and its corre-

sponding poset (J(K),≤) is such that for every a, b ∈ V, a ∈ an(b)⇔ a < b in (J(K),≤).
The fact that G is a moral TDAG implies that for a, b, c ∈ V such that a, b ∈ an(c), either
a ∈ an(b) or b ∈ an(a). Therefore the poset (J(K),≤) is a tree poset.

Consider a decomposition of a poset (S,≤) as a collection of smaller posets
H1, H2, . . . , Hk, Hi ⊆ (S,≤), 1 ≤ i ≤ k, as follows. For every element xi of the mini-
mal envelope of (S,≤), create Hi = {y ∈ S : y < xi in (S,≤)} ∪ {xi}.

Applying the previous decomposition to the poset (J(K),≤) we will obtain a collec-
tion of k posets Hi = {y1, . . . , yq, xi}, 1 ≤ i ≤ k. The tree poset condition of (J(K),≤)
and the fact that y j < xi, 1 ≤ j ≤ q, implies that each Hi is a maximal chain.

Let K be a finite distributive lattice isomorphic to some moral TDAG G. Then the set
of join-irreducible elements J(K) is of the form (2.3) and forms a poset (J(K),≤). Let L
denote the class of such finite distributive lattices. Consider a correspondence µ between
the set of such posets P(L) = {(J(K),≤)|K ∈ L} and the set of labeled trees T(L) =
{(J(K) ∪ {∅}, E≺)|K ∈ L}, defined as follows:

µ : P(L) ←→ T(L) (2.4)
(J(K),≤) ←→ (J(K) ∪ {∅}, E≺)

where for every labeled tree t(K) ≡ (J(K) ∪ {∅}, E≺) ∈ T(L) the vertex set is formed
by the elements in J(K) plus an extra vertex labeled ∅, which acts as the root. Note
that there is a one to one correspondence between J(K) and the set of vertices from the
equivalent moral TDAG. The set of edges of the labeled tree t(K) is defined as follows:

E≺ = {(a, b) ∈ J(K)× J(K)|a ≺ b} ∪ {(∅, a) ∈ {∅} × J(K)| 6 ∃ b ∈ J(K) b ≺ a},

where ≺ is the covering relation on the poset of join-irreducible elements J(K). From
the next three propositions it will follow that the correspondence µ is a bijection between
moral TDAGs and labeled trees.

Proposition 2.1. The correspondence µ is well-defined, i.e., let K be a finite distributive lattice
that coincides with some moral TDAG, the graph µ(K) is a labeled tree.

Proof. From Lemma 2.1 we can decompose J(K) into its maximal chains HC. Every
µ(HC) is a path in µ(K) from the root to a leaf and viceversa. For any two such chains
HC1 and HC2 , µ(HC1) ∩ µ(HC2) is a unique path from the root to a vertex. It follows
directly that µ(K) has no cycles and therefore is a labeled tree.

Proposition 2.2. The correspondence (2.4) is injective.

2.7 The Tree Conditional Independence Markov Model 25

Proof. Let K1,K2 be two finite distributive lattices that coincide with two moral TDAGs.
If µ(K1) = µ(K2), then for every path h ∈ µ(K1), for which we can create a maximal
chain H, there exists a path d ∈ µ(K2), for which we can create a maximal chain D, such
that h = d and H = D. Since then the collection of all H will be the same as the collection
of all D, it follows that J(K1) = J(K2), and the correspondence (2.4) is injective.

Proposition 2.3. The correspondence (2.4) is surjective.

Proof. For convenience, consider labeled trees T where the root is labeled as ∅ and the
rest of the vertices using natural numbers {1, . . . , n}. From the fact that T is a labeled
tree, there is always a unique path from the root to each of its leaves. For every path p
of the tree T, such that p = {∅, x1, . . . , xn}, take out the root ∅, and from the rest of the
path {x1, . . . , xn} construct a chain HC such that HC = {x1, {x1, x2}, . . . , {x1, . . . , xn}}.
From Lemma 2.1 we know that the collection of these chains HC produces a set of
join-irreducible elements J(K) corresponding to a lattice K that coincides with a moral
TDAG.

Finally, we can establish the following result.

Theorem 2.5. The class of moral TDAGs is isomorphic to the class of labeled trees.

Proof. This follows directly from the fact that the mapping (2.4) is a bijection between
moral TDAGs and labeled trees.

2.7.3 Moral TDAG models as tree conditional independence ≡ TCI
models

This section introduces a new class of graphical Markov models called TCI models,
based on labeled trees. Moreover, it is shown that TCI coincides with the class of
DEC∩LCI graphical Markov models.

A graphical Markov model member of the class DEC∩LCI is determined by a TDAG
with no immoralities (Andersson et al., 1995). By Theorem 2.5 we can represent a moral
TDAG using a labeled tree.

One of the features that distinguishes tree structures from other types of graph, used
in the context of graphical Markov models, is that they are connected. In this sense,
they are quite similar to the Hasse diagrams used to represent lattices in LCI models.
Thus, we may observe in Figure 2.7a how a complete disconnected graph turns into
a connected structure, a labeled tree, by using this new, artificially introduced, vertex
labeled ∅.

The intuition behind the root node ∅will become clear from the Markov property for
labeled trees. To define this formally, we need two new concepts regarding labeled trees
and the following proposition.

Proposition 2.4. Let T = (V ∪ {∅}, E) be a tree rooted at ∅. Given any two vertices u, v ∈ V
there is always at least one common vertex (the root ∅) in the two unique paths that lead from u
and v to the root ∅.

Proof. It follows directly from the fact that every vertex in a tree is reachable from the
root by a unique path.

26 Chapter 2. Graphical Markov Models

Given the existence of at least one common element for every two paths from two
given vertices to the root, consider the next two definitions.

Definition 2.18. Meet
Let T = (V ∪ {∅}, E) be a tree rooted at ∅. Let Tu, Tw be two subtrees of T, rooted at vertices
u and w respectively, such that neither is a subtree of the other. The meet is the first common
vertex in the two unique paths from u, w to the root ∅. It will be noted asϕu,w.

Definition 2.19. Meet path
Let T = (V ∪ {∅}, E) be a tree rooted at ∅. Let u, w ∈ V be two vertices inducing subtrees
Tu, Tw, such that neither is a subtree of the other. Letϕu,w be their meet. The meet path is the
set of vertices that forms the common path from the meet to the root, and denoted as mp(ϕu,w) =
{ϕu,w, . . . , ∅}.

As we can see, meet and meet path are intuitive concepts that follow naturally from
the definition of a tree. It is straightforward to identify the meet in a tree for two given
vertices, even if this tree is large. Finally, the new Markov property can be introduced.

Definition 2.20. Tree conditional independence Markov property (TCIMP)
Let T = (V ∪ {∅}, E) be a tree rooted at ∅. A probability distribution P is said to satisfy
the tree conditional independence Markov property (TCIMP) if, for every pair of vertices
u, w ∈ V inducing two subtrees Tu = (U, EU) and Tw = (W, EW) with meet ϕu,w and meet
path mp(ϕu,w), P satisfies

U⊥⊥W |mp(ϕu,w).

This Markov property leads to the following new type of graphical Markov model.

Definition 2.21. TCI Markov model
Let G be a labeled tree rooted at ∅. The set T(G) of all probability distributions that satisfy the
TCIMP relative to G is called the TCI model determined by G.

To illustrate, consider the three TCI models determined by the trees in Figure 2.7. By
the TCIMP, the tree in (a) renders the three vertices marginally independent: 1⊥⊥2⊥⊥3.
From the tree in (b) it is not possible to read off any conditional independencies, thus the
set of restrictions of the model is empty. In (c) we may see that the vertex 2 is the meet of
vertices 1 and 3, thus 1⊥⊥3|2. These restrictions may be read from their corresponding
moral TDAGs using the directed global Markov property (DGMP). Further examples are
provided by Figures 2.8 and 2.9.
In Figure 2.8 we see the different graphical representations for three simple models of
conditional independence, with the independencies as specified. In Figure 2.9 we find
a larger model which may help to understand the TCIMP. For instance, if we pick the
vertices 15 and 21, and apply the TCIMP, we see that the set {15, 18, 19} is conditionally
independent of {21, 22, 23, 24} given {2, 3, 14}. While if we pick the vertices 12 and
13, the TCIMP renders the singletons {12} and {13} conditionally independent given
{1, 7, 11}.

To show that DEC∩LCI coincides with TCI, we first have to investigate the relation-
ship between TCIMP and the well-known Markov properties. To do this, we need some
definitions.

2.7 The Tree Conditional Independence Markov Model 27

������
1

������ ������ ������
2434

234

1234

134

4

/0
(1,2,3,4) ⊥⊥ 53 ⊥⊥ 4|(1,2)

123

12 13

1 3

/0 /0
/0

4

1

2

3 4
5

123
1235

124

12

5

15

125

12451234
12345

/0

(1,3) ⊥⊥ 2|4(1,2) ⊥⊥ 3

1 2 3 3 1

2

43

21
2

1

3

/0

3

2

15

4

Figure 2.8: Three different Markov models represented by a moral TDAG model, a LCI
model and a TCI model.

6 75

8 9 10

12 13

2

3

14

4

15 16 17

21201918

22 23 24

/0

1

11

Figure 2.9: Example of a TCI model for 24 variables.

Definition 2.22. Moral ancestral set
Let G = (V, E) be a DAG. Given a subset A ⊆ V, A is said to be moral ancestral iff for every
vertex v ∈ A, an(v) ⊆ A and an(v) ∪ {v} is complete in G.

Proposition 2.5. Let G = (V, E) be a DAG. Given two moral ancestral subsets A, B ⊆ V, the
union A ∪ B is again moral ancestral in G.

Proof. It is already known that the union of ancestral sets is ancestral. Thus, it is only
necessary to determine whether the union of moral ancestral sets is moral.

Let a, b, c ∈ A∪ B be such that a→ c← b where a and b are non-adjacent. Since a, b ∈
an(c), either a, b, c ∈ A or a, b, c ∈ B, which would contradict the initial assumption that
A and B are moral ancestral.

Proposition 2.6. Let G = (V, E) be a DAG. Given two moral ancestral subsets A, B ⊆ V, the
intersection A ∩ B is again moral ancestral in G.

28 Chapter 2. Graphical Markov Models

Proof. This follows firstly from the fact that the intersection of ancestral sets is again
ancestral. And secondly, since A ∩ B ⊆ A and A ∩ B ⊆ B then A ∩ B should be moral.
Otherwise it would contradict the assumption of A and B being moral ancestral.

From the previous propositions it follows that the moral ancestral sets contained in a
DAG G = (V, E) form a ring of subsets of V, which will be called the moral ancestral ring
of G, and denoted as Am(G). The moral ancestral ring allow us to define the TCIMP in
terms of DAGs.

Definition 2.23. Directed tree conditional independence Markov property (DTCIMP)
Let G = (V, E) be a DAG. A probability distribution P is said to satisfy the directed tree
conditional independence Markov property (DTCIMP) if, for every pair of moral ancestral
subsets A, B ∈ Am(G), P satisfies

A⊥⊥B|A ∩ B.

Theorem 2.6. Let D(G) be a DAG model. For any probability distribution P,

DGMP⇒ LCIMP⇒ DTCIMP⇒ TCIMP.

Proof. The first implication follows from Theorem 2.3. For the second, let A, B ∈ Am(G).
The LCIMP implies the DTCIMP if A, B ∈ A(G), and this follows because Am(G) ⊆
A(G).

The third implication is proved as follows. For any pair A, B ∈ Am(G), the set A ∪ B
induces a moral TDAG GA∪B from G, such that it coincides with a tree TA∪B by Theo-
rem 2.5. The DTCIMP will imply the TCIMP if for each pair of vertices a ∈ A\B and
b ∈ B\A, mp(ϕa,b) = A ∩ B in TA∪B. This equality follows from the fact that the meet
path in TA∪B, for any pair of vertices a ∈ A\B and b ∈ B\A, is formed by those vertices
that are common to A and B, therefore A ∩ B.

Theorem 2.7. Let G be a moral TDAG. For any probability distribution P, TCIMP⇒ DGMP.
Thus, for a moral TDAG,

TCIMP⇔ DGMP⇔ DLMP⇔ LCIMP⇔ DTCIMP

and D(G) = T(T), for some tree T that coincides with the moral TDAG G.

Proof. By Theorem 2.5, there is a unique labeled tree T = (V, E) that coincides with the
moral TDAG G. For any two vertices u, w ∈ V, that induce subtrees Tu = (U, EU), Tw =
(W, EW), the TCIMP in T implies the DGMP in G if U and W are separated by mp(ϕu,w)
in

(GAn(U∪W∪mp(ϕu,w)))m = GAn(U∪W∪mp(ϕu,w)).

This equality follows since G is assumed to be moral. Now, we should find out which
set separates U and W in the graph specified on the right hand of this equality. Con-
sider a path between any two vertices a ∈ U and b ∈ W. Since U, W were induced by
vertices u, w, this path will intersect the sets pa(u) and pa(w), because of transitivity.

2.7 The Tree Conditional Independence Markov Model 29

More concretely, this path will always intersect those vertices x ∈ pa(u) ∩ pa(w). The
set pa(u) ∩ pa(w) in a moral TDAG is equivalent to the definition of meet path, hence
mp(ϕu,w) separates U, W in GAn(U∪W∪mp(ϕu,w)). The second part of the theorem follows
from Theorems 2.4 and 2.6.

Finally, we can establish the following theorem that determines the location of TCI
models, within the family of graphical Markov models.

Theorem 2.8. The class of TCI models coincides with the class of DEC∩LCI models.

Proof. It follows from the fact that D(G) = T(T), for some moral TDAG G and some
labeled tree T, which is proved in Theorem 2.7.

2.7.4 Markov equivalence among TCI models

Recall from subsection 2.4.3 that DAG models are organized in classes of equivalence.
This situation also can occur in the case of TCI models: two different trees T1, T2 may
determine the same TCI model T(T1) = T(T2). We will investigate now the notion of
Markov equivalence among TCI models. Recall the notion of Markov equivalence for
DAG models, which we already saw in this chapter.

Theorem (Frydenberg, 1990a; Verma and Pearl, 1990)
Two DAG models are Markov equivalent if and only if they have the same skeleton and the same
immoralities.

It is possible to decide Markov equivalence for TCI models by simply creating the
corresponding moral TDAG using Theorem 2.5 and applying the previous theorem. The
notion specifically for TCI models is as follows.

Definition 2.24. Let T = (V ∪ {∅}, E) be a labeled tree rooted at vertex ∅. Let l ∈ V be a leaf
in T. We define a branch ending at l as the set of vertices π(l) = {x1, . . . , xn}, where x1 = ∅
and xn = l, present in the unique path between the root ∅ and the leaf l. The set of all branches of
T will be denoted as λ(T).

Theorem 2.9. Two TCI models T(T) and T(T′) are Markov equivalent, i.e. T(T) = T(T′), if
and only if they have the same sets of branches, i.e. λ(T) = λ(T′).

In order to illustrate the notion of Markov equivalence among trees, look at Fig-
ure 2.10. The pairs of trees on part (a) are Markov equivalent because although two
vertices are swapped between the trees, the paths from the leaves to the root remain the
same. The two trees on part (b) are not Markov equivalent because given the swap of
vertices 2 and 4, although it does not change the paths from vertices 5 and 6 to the root
∅, it does it from vertex 3 to the root ∅.

Proof. Theorem (2.9).
(Necessity). Assume that T(T) = T(T′). Then, any TCIMP read from T, holds also in T′.
A TCIMP involves the vertex sets of two subtrees and the vertex set of their meet path.
If a TCIMP holds in T and in T′, then the two vertex sets of the two subtrees and the
vertex set of their meet path in T, should be derived also from T′.

30 Chapter 2. Graphical Markov Models

5 6

/0 /0/0

1

2

3

/0

2

1

4

6

3

5

4

1

2

3

4

65

3

1

4

65

2

(a)

/0

1

2

3 4

5 6

/0

1

4

3 2

5 6

(b)

Figure 2.10: Markov equivalence between TCI models. The two pairs on (a) are Markov
equivalent, while the pair on (b) is not.

Let u, w be two vertices of the tree T = (V, E), with meet ϕu,v, inducing subtrees
Tu = (U∪{∅}, EU), Tw = (W ∪{∅}, EU) such that none of them is subtree of the other. In
order to find the same meet path mp(ϕu,v) for u, v in both trees T and T′, the paths from
u, v to the root must intersect in the same vertices in T and T′. Because this must happen
for every pair of vertices in T and T′, it follows that the only way that the intersections
of all the paths are the same in T and T′, is when λ(T) = λ(T′).
(Sufficiency). Assume that λ(T) = λ(T′). This implies that every possible meet path
from any given two subtrees in T must exist in T′. Because, if there were a meet path
that differs in at least one vertex in T and T′, there would exist some π(l) ∈ λ(T) and
π ′(l) ∈ λ(T′) such that π(l) 6= π ′(l). Therefore, if for every two given subtrees in T,
their meet path is the same in T′, it follows from the TCIMP that the collection of Markov
properties of T hold also in T′, and viceversa.

2.7.5 A canonical representation of an equivalence class of TCI
models

Andersson et al. (1997c) characterized TCI Markov models as those DEC models U(G)
determined by a chordal graph G such that G does not contain the following induced
undirected subgraph:

which is a path on four vertices and denoted as P4. The term P4-free is used in this context
to denote the absence of such induced subgraph. In the graph theory literature Wolk
(1962) gave a first characterization of these graphs, although it was Golumbic (1978) who
described them later in the terms of forbidden subgraphs as above, hence the name “P4-
free chordal”. From this characterization follows a lemma (Wolk, 1965) and a proposition
we derive in section 2.8. We need to introduce them here for our current purposes.

Lemma 2.3 Wolk (1965)
Let G be a connected P4-free chordal graph. Let G have more than one clique. The intersection of
all the cliques of G is non-empty.

2.7 The Tree Conditional Independence Markov Model 31

Proposition 2.8 Castelo and Wormald (2001)
Let G = (V, E) be a connected undirected graph. Let D be the set of vertices of degree |V| − 1.
Then G is P4-free and chordal if and only if it is complete or G − D is a disconnected P4-free
chordal graph.

The P4-free chordal graph characterization of TCI models suggests a canonical rep-
resentation of Markov equivalence classes of TCI models. This representation will have
again the form of a tree, but its nodes will contain, possibly, more than one single ver-
tex (i.e. more than one single random variable). First we show how the cliques of a
connected P4-free chordal graph lead to a tree organization of their intersections. This
allows a representation for the canonical element of an equivalence class of TCI models.
Finally, it will be shown how to extract all the members of the equivalence class from
this canonical representation.

By Lemma 2.3, a connected P4-free chordal graph containing more than one clique
has a non-empty subset of vertices D which correspond to the intersection of all cliques
of the graph. By Proposition 2.8, the resulting graph, after the removal of D, will consist
of k > 1 disconnected components that are again P4-free chordal graphs. Now repeat
the previous operation recursively until no disconnected component contains more than
one clique. At each step of this operation, we will keep track of the different intersecting
sets, and we will draw undirected edges from a given intersecting set, to those intersect-
ing sets derived from the disconnected components that were created. It follows that
such an undirected structure cannot have undirected cycles, thus has the form of a tree.
In Figure 2.11b we may see the P4-free chordal graph corresponding to the TCI model of
Figure 2.11a, which corresponds to one of the subtrees of the TCI model of Figure 2.9. In
Figure 2.11c we may see a first step of the procedure we just described, and in 2.11d we
may see the second and last step, from which we already obtain the canonical represen-
tation.

In graph-theoretic terms, the canonical representation of a TCI model, as for instance
the one in Figure 2.11d, corresponds to homeomorphically irreducible trees (Harary and
Palmer, 1973). Homeomorphically irreducible trees are those trees in which no vertex
has degree of adjacency equal to two.

In order to find the members of the equivalence class, one only needs to perform all
possible permutations on those nodes of the canonical element that contain more than
one vertex. Then build a path for a given permutation, on which the vertices on the
extremes of the path will connect to the adjacent nodes in the canonical element. For a
given TCI model with more than one branch growing from the root ∅ one just applies
this process to each of the branches separately, and plants the bottom roots (the first
intersection set removed) on the root ∅. For a given canonical element with s1, . . . , sk
nodes that contain more than one vertex, the number of trees on that equivalence class
will amount to |s1|! . . . |sk|!. The reason is obvious since it just corresponds to the number
of possible permutations of those nodes that may be exchangeable on the tree.

2.7.6 Marginalization and collapsability in TCI models

GMMs are a powerful tool to understand better the mechanism that generates the data.
However, we are only able to see a small part of this mechanism through the data we

32 Chapter 2. Graphical Markov Models

(b)

(d)(c)

15

19

18

/0

16 20

2 3
14

(a)

171615

18 19 20 21

22 23 24

17

21

22

23
24

2

3

14

15

18

19

16

20

17

21

22

23
24

/0

18 19 22 23 24

15

16 20

17 21

14
2 3

/0

2

3

14

Figure 2.11: (a) A TCI model. (b) Its corresponding P4-free chordal graph. In (c) and (d)
the two steps to obtain the canonical form of the equivalence class are shown.

observe. We may easily neglect to store certain variables, or simply it may be impos-
sible to measure them. Those variables that we do not observe are usually referred to
as hidden variables. The data generated by the set of variables we observe is the result of
marginalizing over those that we do not observe. Very often, the observed variables inter-
act differently when some newly discovered hidden variables are incorporated. Think,
for instance, of the introductory example of conditional independence we saw at the be-
ginning of this chapter. Therefore it is useful to have some idea in advance on how the
mechanism marginalizes over the hidden variables. For such goal, one may study how a
GMM changes after marginalization over an arbitrary subset of variables.

Analogously, one may be interested in finding out whether there is some subset of
variables for which the way they interact is not affected by any marginalization. One
says that such set of variables are collapsible.

Marginalization and collapsability have been already studied in the context of UG
Markov models for discrete data (Asmussen and Edwards, 1983; Frydenberg, 1990a; Stu-
deny, 1997; Castillo et al., 1998). We will first recall the most relevant results to show how
collapsible subsets of variables in a TCI model can be identified. Then we will show how
a tree behaves under marginalization. We begin by reviewing the notions of simplicial sub-
set and simplicial collection.

2.7 The Tree Conditional Independence Markov Model 33

Definition 2.25. Let G = (V, E) be an UG. A subset B ⊂ V is called simplicial in G iff bd(B)
is complete and a simplicial collection in G iff every connected component in B is simplicial in
G.

In this definition we have used the notion of boundary with respect to a set, while so
far we had done that only for a single vertex. The boundary of a given subset of variables
is analogously defined as bd(A) = {v ∈ V | (v, u) ∈ E, u ∈ A, v 6∈ A}. The graphical
characterization of a collapsible subset of vertices in an UG is as follows.

Proposition 2.7. (Frydenberg, 1990b)
Let G = (V, E) be an UG. Let P be any probability distribution Markov over G and PA the
marginalized distribution of P over V\A. The UG G is collapsible onto the subset A ⊂ V and
PA is Markov over GA, iff V\A is a simplicial collection.

This characterization follows from the fact shown in Asmussen and Edwards (1983)
by which in a subgraph GA, obtained by collapsing G onto A ⊂ V, if S separates A1 and
A2 in GA, then they are separated by S in G too.

The characterization of collapsible sets of variables in TCI Markov models is given
by the following theorem.

Theorem 2.10. Let T(G) be a TCI Markov model determined by a labeled tree G = (V ∪
{∅}, E) rooted at ∅. Let TA(G) be the set of probability distributions T(G) marginalized over
V\A. The tree G is collapsible onto the subset A ⊂ V and T(GA) = TA(G), iff for every branch
π(l) ∈ λ(GA) there is a branch π(h) ∈ λ(G) such that π(l) ⊆ π(h).

Proof. Let A ⊂ V be the subset of all collapsed vertices. Let π(v) ⊆ V be the collapsed
vertices of a branch (see Definition 2.24) ending at some vertex v. Let π(l) be the en-
tire set of vertices of the same branch ending at the corresponding leaf vertex l, thus
π(v) ⊆ π(l). The boundary of π(l)\π(v) on G will be exactly π(v) because the vertices
in π(l)\π(v) are higher in the hierarchy than those in π(v). Therefore, in the correspond-
ing chordal graph π(l)\π(v) are connected to those vertices lower in the hierarchy (see
Figure 2.12). The subset π(v) is complete because otherwise it would imply that the cor-
responding TDAG is not moral. Further, for every leaf l, the subset π(l)\π(v) induces
a connected component in the P4-free chordal graph, which is isolated of every other
π(l′)\π(v′) l 6= l′, v 6= v′. Thus, the union of π(l)\π(v) for every leaf l, i.e. V\A, forms
a simplicial collection.

/0

d

ba

f g

ih

b

c

e
b

e d

b

a

c

f

h

g i

Figure 2.12: A TCI model on the left and its equivalent P4-free chordal graph on the right.

34 Chapter 2. Graphical Markov Models

In order to discuss how a TCI model changes after marginalizing over an arbitrary set
of random variables we need to review the following notion. Studeny (1997) introduced
the precollapsability property for discrete UGs models. This property, retained by UG
models, describes how for any given UG G = (V, E) and any subset A ⊂ V, we can
obtain a marginal graph GV\A such that U(GV\A) ⊇ UV\A(G), where UV\A(G) denotes
the set of probability distributions U(G) marginalized over A.

Since TCI models are a subclass of UG models, they also retain the precollapsability
property. Castillo et al. (1998) provide an equivalent notion of precollapsability for UG
and hypergraph6 models.

Let G = (V, E) be an undirected graph and A ⊂ V a subset of variables over which
we marginalize. Let A′ = V\A be the variables of which we obtain the marginal model.
After marginalization we will obtain the graph GA′ = (A′, EA′) where (Studeny, 1997;
Castillo et al., 1998),

u− v ∈ EA′ ⇔ ¬ (u⊥⊥v | A′\{u, v}[G]) .

H

a b dc

a

b

c

d
(a) (b)

Figure 2.13: In (a) an UG Markov model. In (b) the UG Markov model (a) marginalized
over H.

This means, that every pair of variables that were connected by a path intersecting
the marginalized set A, should be joined by an edge in GA′ . In other words, the bound-
ary bd(A) is made complete in the new graph GA′ . In Figure 2.13a we have an UG7

model where a variable H renders the rest conditionally independent between them.
This happens, for instance, when there is some hidden class variable H that makes the
rest of variables independent for a fixed class level. In Figure 2.13b we have the same
UG model after marginalizing over H. In order to introduce an analogous result for TCI
models we need to define the concept of pruning a set of vertices in a tree.

Definition 2.26. Pruning
Let T(G) be a TCI Markov model determined by a labeled tree G = (V ∪ {∅}, E) with set of
branches λ(G). Pruning a subset of vertices A ⊂ V in the tree G is the construction of a new
tree GV\A = ({V\A} ∪ {∅}, EV\A), in the following way.

Let EV\A = E. For every branch π(l) ∈ λ(G), where π(l) = {x1, . . . , xm}, x1 = ∅, xm = l
and l is a leaf in G, such that π(l) ∩ A 6= ∅, consider the vertex xi ∈ π(l) ∩ A for which any
other x j ∈ π(l) ∩ A with j ≤ i ⇒ j = i. Let Gxi = (Vxi , Exi) be the subtree induced by the
vertex xi. Remove Exi from EV\A. Without loss of generality, let Vxi\A = {z1, . . . , zq}. Add the
undirected edge {(zk, zk+1), (zk+1, zk)} to EV\A for 1 ≤ k < q. Finally, add the undirected edge
{(xi−1, z1), (z1, xi−1)} to EV\A.

6We do not talk about hypergraph models in this thesis, but we refer the reader to the given source.
7Note that it coincides with a DEC, a DAG, a LCI and a TCI model.

2.8 Organization and size of the classes 35

The intuition behind Definition 2.26 is that pruning entire subtrees implies only
the removal of the vertices and the edges involved. While pruning arbitrary vertices
throughout the tree implies not only their removal, but also a transformation of the re-
maining branches. In the first case, we obtain a new tree which is a subgraph of the one
we prune, and for that reason we call it a closed pruning. In the second case, we obtain a
new tree which is not a subgraph of the one we prune, and for that reason we call it an
open pruning.

In Figure 2.14 we may see examples of open and closed pruning. The vertices inside
the circles denote the vertices we want to prune (remove).

/0

a

b
c d

e ih j

gf

/0

a

b
e

g

j

i

h

/0

a

b
c d

e ih j

gf

/0

a

b
c d

e h j

closed pruning open pruning

Figure 2.14: The transformation on the left is a closed pruning and the one on the right
is an open pruning.

The following theorem shows that pruning a tree is equivalent to marginalize the TCI
model over an arbitrary set of variables.

Theorem 2.11. Let T(G) be a TCI model determined by a labeled tree G = (V, E). Let TV\A(G)
be the set of probability distributions T(G) marginalized over some subset A ⊂ V. Let GV\A be
the labeled tree after pruning the vertices A from G. Then, TV\A(G) = T(GV\A).

Proof. If the pruning is closed then by Theorem 2.10, V\A is a collapsible subset of
vertices in G. From the definition of collapsible subset it follows immediately that
TV\A(G) = T(GV\A).

If the pruning is open, then every pair of vertices higher in the hierarchy than some
pruned vertex will form part of a single branch. In the corresponding P4-free chordal
graph this implies they will become adjacent. This corresponds to the transformation
performed when marginalizing an UG model, therefore TV\A(G) = T(GV\A).

2.8 Organization and size of the classes

In this chapter we have surveyed some of the different subclasses of GMMs within the
class of the DAG Markov model. In this section we will overview how these classes are
organized and their sizes. The size of a class of GMMs is a valuable information for two
reasons. First, the size up to equivalence allows to distinguish which classes are more

36 Chapter 2. Graphical Markov Models

expressive than others in terms of how many different CI models can they represent.
Second, the size according to the type of the graph that determines the model allows
to distinguish which search spaces will be larger when performing structural learning.
This is relevant as a larger search space leads usually to a harder learning problem. We
will see in the next chapter how the knowledge about the sizes of the classes leads to
certain design choices in the development of a new learning algorithm.

The organization of the classes is an interesting information as it reveals also details
about the search space that may be relevant later in the learning task. In Figure 2.15 we
can see a picture that Andersson et al. (1995) devised in order to describe the location of
LCI models within the scope of models represented by undirected and directed graphs.
Although the class of LCI models appears on the picture as an isolated subclass, Ander-
sson et al. (1995, pg. 38) show that they are in fact interlaced8 through the class of DAG
models. An important characterization also depicted in this figure corresponds to the
definition of those DAG models that are equivalent to some UG model (Wermuth, 1980;
Kiiveri et al., 1984). Thus, undirected and directed graphs in this intersecting class de-
scribe the same model of conditional independence. More concretely those DAG models
determined by moral DAGs are equivalent to some DEC model.

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����
�����

���
���
���
���
���

�����
�����
�����
�����
�����

���
���
���
���
���

DAG DEC UG

LCI≡TDAG (DEC∩LCI)≡TCI

Figure 2.15: Relation among the classes acyclic directed graph models (DAG), undirected
graph models (UG), decomposable models (DEC) and lattice conditional independence
models (LCI).

As we may also see in Figure 2.15, TCI models correspond to DEC∩LCI, which was
formally showed in the previous section. Andersson et al. (1995, pg. 38) claimed that
since every conditional independence statement A⊥⊥B|C is equivalent to a simple LCI
model, then any DAG model is the intersection of all LCI models that contain it. We
can see further that every conditional independence statement A⊥⊥B|C is equivalent to
a simple TCI model, therefore any DAG model is the intersection of all TCI models that
contain it. A remaining question is how TCI models can be combined graphically to
determine the DAG structure of the intersection of TCI models.

The notion of Markov equivalence among GMMs leads to the problem of having to
search for an alternative graphical representation that has a one to one correspondence
with the equivalence classes. When the equivalence class of a given type of graphical
Markov models has a precise graphical definition, one may try to use standard tools

8Every LCI model includes and it is included in at least one DAG model. See section 3.4 in next chapter.

2.8 Organization and size of the classes 37

of graph theory and graphical enumeration to count how many models of conditional
independence may be represented.

The most straightforward case is that of UG models, which are represented by undi-
rected graphs, since there is a one to one correspondence between undirected graphs
and models of conditional independence. Two UG models U(G1), U(G2) are Markov
equivalent, U(G1) = U(G2), iff G1 = G2. Thus, there is the same number of different
models of conditional independence, as different undirected graphs, i.e. 2(n

2) for labeled
graphs with n vertices.

The case of DEC models is also straightforward, since chordal graphs also have a one
to one correspondence with Markov equivalence classes. Connected and disconnected
chordal graphs were counted by Wormald (1985). The sum of these two quantities pro-
vides the number of all chordal graphs, i.e. the number of all different DEC models. We
will treat in this section the derivation of the expression that allows us to compute the
number of all chordal graphs from the numbers of connected chordal graphs. As we
shall see, this expression is related to the computation of Markov equivalence classes of
TCI models.

The case of DAG models is a difficult one. As we saw in this chapter, Markov equiv-
alence classes of DAG models are represented by essential graphs. An efficient way
of enumerating such graphs is not yet known. In (Andersson et al., 1997a) they were
counted up to 5 vertices. Recently, Gillispie and Perlman (2001) developed a computer
program which has calculated the number of essential graphs up to 10 vertices, by enu-
merating DAGs and taking into account the equivalence class to which each DAG be-
longs. We have taken the liberty to extrapolate these numbers up to 12 vertices, such
that we can compare cardinalities of different Markov equivalence classes in Table 2.2.

The basic mathematical tool used in the enumeration of graphs is that of generating
functions. A generating function is a power series. The coefficients of the polynomial
that forms these power series store the counts of the object we intend to enumerate. The
exponents of this polynomial describe some structural feature associated to its attached
coefficient, as for instance, the number of vertices of a graph. In the case of labeled
enumeration, one uses an exponential generating function of the form (2.5). For full insight
into this subject the reader should consult the book of Harary and Palmer (1973).

g(x) = ∑
n=1

an
xn

n!
. (2.5)

Let g(x) be the generating function for connected labeled chordal graphs. Then an
corresponds to the number of such graphs with n vertices. Consider now another expo-
nential generating function to count, not only connected labeled chordal graphs, but all of
them,

G(x) = ∑
n=0

An
xn

n!
. (2.6)

In this generating function, the coefficient An is the number of all chordal graphs with n
vertices, which corresponds to the number of Markov equivalence classes of DEC mod-
els. These two exponential generating functions are related through the following theo-
rem.

38 Chapter 2. Graphical Markov Models

Theorem 2.12. Harary and Palmer (1973, pg. 8)
The exponential generating functions G(x) and g(x) for labeled graphs and labeled connected
graphs satisfy the following relation

1 + G(x) = eg(x). (2.7)

Here the constant 1 refers to the null graph, i.e. the graph with no vertices. In the
way we have expressed the generating function G(x), the constant 1 is included in G(x)
since n starts on 0 vertices. Therefore we may discard the constant 1 in expression (2.7).
Note that Theorem 2.7 holds for every type of labeled graph. As we shall see now, by
differentiating the previous equation and equating coefficients, it is possible to find a
recurrence for both the number of all labeled chordal graphs An and labeled connected
chordal graphs an. First, g(x) is isolated, by taking logarithms on both sides, and after-
wards we can differentiate the equation, which leads to the following relation:

∑∞n=0 n An
n! xn−1

∑∞n=0
An
n! xn

=
∞

∑
n=1

n
an

n!
xn−1.

Now multiply both sides by the polynomial at the bottom-left of the equation, to obtain

∞

∑
n=0

n
An

n!
xn−1 =

∞

∑
n=0

(
n

∑
k=0

(k + 1)
ak+1

(k + 1)!
An−k

(n− k)!

)
xn.

In order to equate coefficients, the exponents of both polynomials should match.
Therefore we are going to move the running indexes on the right-hand side of the equa-
tion. First, move the index k of the inner sum, and then move the index n. Further, the
first term of the sum in the left-hand side may be discarded since it cancels for n = 0.
Thus we obtain

∞

∑
n=0

n
An

n!
xn−1 =

∞

∑
n=0

(
n+1

∑
k=1

k
ak

k!
An+1−k

(n + 1− k)!

)
xn,

∞

∑
n=1

n
An

n!
xn−1 =

∞

∑
n=1

(
n

∑
k=1

k
ak

k!
An−k

(n− k)!

)
xn−1.

We can now equate coefficients, and for our purposes, we will isolate from the sum
the term for k = n. In this term, we can substitute afterwards A0 = 1 since the null-graph
is unique, to obtain

n
An

n!
= n

an

n!
A0

0!
+

n−1

∑
k=1

k
ak

k!
An−k

(n− k)!
.

Finally, by multiplying the whole expression by n! and dividing it by n, we obtain
the recurrence for all chordal graphs for n vertices:

2.8 Organization and size of the classes 39

An = an +
1
n

(
n−1

∑
k=1

k
(

n
k

)
ak An−k

)
. (2.8)

Table 2.1: Number of Markov equivalence classes of DEC models

An n
1 1
2 2
8 3

61 4
822 5

18,154 6
617,675 7

30,888,596 8
2,192,816,760 9

215,488,096,587 10
28,791,414,081,916 11

5,165,908,492,061,926 12

Wormald (1985) provides the numbers an for labeled connected chordal graphs; thus
by using these and the formula (2.8), we obtain the numbers of all labeled chordal
graphs; which equals the number of Markov equivalence classes of DEC models, given
in Table 2.1.

Next we count the Markov equivalence classes of TCI models. We already men-
tioned that TCI models may be determined by P4-free chordal graphs, where P4-free
chordal graphs were defined as those chordal graphs with no path on four vertices as an
induced subgraph. From such characterization Wolk (1962, 1965) derived the following
two lemmas. For a better understanding of this class of graphs, we have rewritten and
included the proofs.

Lemma 2.2. Wolk (1962, Lemma 1)
Let G be a connected P4-free chordal graph. Let G have more than one clique. For every clique C
of G, the intersections of all other cliques with C are nested.

Proof. Let’s assume that the intersections of a given clique C with its adjacent cliques
are not nested. Then, there exist cliques C1 and C2, where C 6= C1 6= C2, and vertices
0, 1, 2, 3, such that: 0 ∈ C1 but 0 6∈ C and 0 6∈ C2; 1 ∈ C1 and 1 ∈ C, but 1 6∈ C2; 2 ∈ C
and 2 ∈ C2 but 2 6∈ C1; 3 ∈ C2 but 3 6∈ C1 and 3 6∈ C. In this way, a forbidden path
0–1–2–3 on four vertices, is introduced.

Lemma 2.3. Wolk (1965)
Let G be a connected P4-free chordal graph. Let G have more than one clique. The intersection of
all the cliques of G is non-empty.

Proof. Let’s consider two cliques C1, C2 from G which do have non-empty intersection.
Let’s consider a third clique C3 that intersects with C2. Since the intersections of C2, with

40 Chapter 2. Graphical Markov Models

C1 and C3, are nested (Proposition (2.2)), they form a poset which is, in fact, a chain
and therefore C1 and C3 have a non-empty intersection. Hence, C1, C2 and C3 have non-
empty intersection.

Inductively, let’s consider k cliques having non-empty intersection. Each of them has
associated a chain Hi , 1 ≤ i ≤ k that contains the intersections with respect to the i clique.
Let’s consider now any k + 1 clique which intersects one of the previous k cliques. This
latter intersection, namely p, must form part of the Hk chain, as well as of the Hk+1. From
the definition of a chain, given any other element q such that q ∈ Hk and q ∈ Hk−1, it
follows directly that either p ⊂ q or q ⊂ p. Therefore p intersects, not only the k clique,
but all of them. Hence this gives k + 1 cliques with non-empty intersection. By induction,
all cliques can be included.

These two properties of P4-free chordal graphs lead to the following proposition.

Proposition 2.8. Castelo and Wormald (2001)
Let G = (V, E) be a connected undirected graph. Let D be the set of vertices of degree |V| − 1.
Then G is P4-free and chordal if and only if it is complete or G − D is a disconnected P4-free
chordal graph.

Proof. We proceed by induction on n = |V|. For n = 1 it is immediate. The complete
case is trivial, so assume that G is a connected P4-free chordal non-complete graph. By
Lemma 2.3, G must have at least one vertex of degree |V| − 1. Let u be a vertex of
maximum degree, and let v be adjacent to u. Let v be adjacent to w which is not adjacent
to u. Then, for any vertex x adjacent to u, the fact that {w, v, u, x} does not form a path,
or a chordless cycle, on four vertices implies that x and v are adjacent. Since G′ = G− v
is an induced subgraph of a P4-free chordal graph, G′ is P4-free chordal too.

If G′ is disconnected, we are done. If G′ is connected, then by induction G′ − D′ is
a disconnected P4-free chordal graph. But clearly G − D = G′ − D′. The proposition
follows.

Consider again the exponential generating functions (2.5) and (2.6) as the ones cor-
responding to connected P4-free chordal graphs, and all P4-free chordal graphs, respec-
tively. The coefficients an will refer to the number of connected P4-free chordal graphs,
and An will refer to the number of all P4-free chordal graphs. Let G be a connected P4-
free chordal graph on n vertices. The removal of the intersection set D from G produces
k > 1 disconnected components, therefore the subset of vertices D has at most n − 2
vertices, otherwise, if D had n− 1 vertices there would be left only k = 1 component.

A subset D of k vertices may be taken in (n
k) ways. For each different set D of size

k, one should count all possible disconnected P4-free chordal graphs on n− k vertices,
which amounts to,

An−k − an−k,

thus, all P4-free chordal graphs minus the connected ones on n− k vertices. Finally, from
the fact that there is always one single complete graph on n vertices, and the above dis-
cussion, it follows a recurrence for computing the number of connected P4-free chordal
graphs:

2.9 Concluding Remarks 41

an = 1 +
n−2

∑
k=1

(
n
k

)
(An−k − an−k). (2.9)

Table 2.2: Numbers of Markov equivalence classes of DAGs, UGs, DECs and TCIs with
n vertices.

DAG (essential) UDG (undirected) DEC (chordal) TCI (P4-free chordal) n
1 1 1 1 1
2 2 2 2 2

11 8 8 8 3
185 64 61 49 4

8,782 1,024 822 402 5
1,067,825 32,768 18,154 4,144 6

312,510,571 2,097,152 617,675 51,515 7
21,213,3402,500 268,435,456 30,888,596 750,348 8

326,266,056,291,213 68,719,476,736 2,192,816,760 12,537,204 9
1,118,902,054,495,975,141 35,184,372,088,832 215,488,096,587 236,424,087 10

≈ 8.53e+21 36,028,797,018,963,968 28,791,414,081,916 4,967,735,896 11
≈ 1.40e+26 73,786,976,294,838,206,464 5,165,908,492,061,926 115,102,258,660 12

By using expression (2.8), we may compute those An we need in (2.9). To initialize
the recurrence, one should know that the number of connected and all P4-free chordal
graph on one vertex is just one (a1 = A1 = 1), and that on two vertices there is one
connected P4-free chordal graph and two P4-free chordal graphs (a2 = 1 and A2 = 2).
We may see the counts in Table 2.2.

As noted before, TCI models may be defined as those graphical Markov models de-
termined by P4-free chordal graphs. From the characterization presented in the previous
section of moral TDAGs as trees, it follows as well that there are (n + 1)n−1 different
moral TDAGs on n vertices. As it has been already said, these quantities on different
graphs may serve to quantify, roughly, difficulty of model selection and expressiveness
of the graphical Markov model. Thus, it may be interesting to look at the plot of the
cardinalities of the different graphs that determine in several forms different types of
graphical Markov models, that we may find in Figure 2.16.

2.9 Concluding Remarks

In this chapter we have surveyed the class of DAG Markov models and some of its
subclasses. The overview of these few GMMs shows how ideas from different research
areas as statistics, artificial intelligence and graph theory, mingle together to provide a
useful tool for the analysis of complex interaction systems through the concept of CI.

In this chapter a new class of GMMs, the TCI Markov model, determined by labeled
trees has been introduced. It has been shown that the class of TCI models coincides with
the intersection class of DEC∩LCI. Moreover, a new Markov property, specific for trees,
has been introduced, and its relationship with the other Markov properties, has been
investigated.

42 Chapter 2. Graphical Markov Models

1

100000

1e+10

1e+15

1e+20

1e+25

1e+30

0 2 4 6 8 10 12

nu
m

be
r

of
 g

ra
ph

s

vertices

dag
tdag
tree
udg
chordal udg
p4free chordal udg
essential graph

Figure 2.16: Cardinalities of the types of graphs that determine different subclasses of
Markov models.

We have sketched the organization of the different classes of GMMs treated here and
studied their sizes. From this study we have provided a recurrence for the number of
P4-free chordal graphs, that have a one-to-one correspondence with equivalence classes
of TCI models. Moreover, we have found out the following facts that, as before, are inter-
esting graph-theoretic results in their own right, and possibly have some consequence,
in our context, from a learning perspective. The canonical representation of an equiva-
lence class of TCI models shows a correspondence between P4-free chordal graphs and
homeomorphically irreducible trees. There are (n + 1)(n−1) moral TDAGs (or in graph-
theoretic terms, transitive subtree acyclic digraphs) on n vertices. From the number of
rooted labeled trees, which is nn−1, it also follows directly that there are nn−1 connected
moral TDAGs (or connected transitive subtree acyclic digraphs).

Chapter 3

Structural Learning

3.1 Introduction

The term structural learning refers to the task of learning the structure of the GMM from
data, i.e. the graphical representation of the model that encodes a set of CI restrictions.
Another important aspect of learning GMMs from data is to learn the parameters of the
model, i.e. the (conditional) probabilities attached to the (in)dependencies that the model
specifies. Learning the parameters will not be treated here; the interested reader may
consult (Lauritzen, 1996; Heckerman et al., 1995; Spiegelhalter et al., 1996).

One approach to structural learning of GMMs is by using an oracle that answers
queries on the validity of a given CI restriction in a domain. Starting from the fully
connected graph, the results of such queries allow the stepwise removal of edges. The
procedure stops when no further CI restrictions can be represented. Some examples of
this approach are given in (Spirtes et al., 1993; D. Geiger and Pearl, 1993; de Campos and
Huete, 1992, 1997).

We will not use oracle-based methods, but rather those we could call model-based
methods. In model-based methods, structural learning is a three component setting
formed by a scoring function, a traversal operator and a search strategy.

The scoring function is a criterion that in the light of data ranks two or more alter-
native models. The traversal operator is a function that given an input model, creates a
set of “neighboring” models. That is, models that differ to some extent from the input
model. The search strategy is an algorithm that applies the traversal operator to a partic-
ular subset of models. The members of this particular subset are considered in relation to
the ranking that the scoring function provides, and some policy that the search strategy
follows.

There are three main model-based approaches to structural learning: simple heuristic
search, evolutionary computation and the Markov Chain Monte Carlo (MCMC) method.
All have the same goal, learning GMMs from data, but the latter is used for a different
purpose than the former two. With simple heuristic search or evolutionary computation,
one usually aims at finding the set of models that maximize a certain criterion (fit with
the data, predictive power, etc.), with the MCMC method one tries to get an accurate
picture of the search space in order to account for the uncertainty of every model con-
sidered and derive quantities of interest from the data by averaging across the models.

44 Chapter 3. Structural Learning

We will not discuss the approach based in evolutionary computation here but the reader
may find related material in (Larrañaga et al., 1996b,a; Etxeberria et al., 1997).

There are different score metrics used as scoring function and we survey in detail
those developed from a Bayesian perspective in the next section. Next, we discuss how
the score metrics are related to the description of GMMs given in chapter 2. Then we
introduce the concept of neighborhood and traversal operators. Next we treat a funda-
mental notion in the class of DAG Markov models, the notion of inclusion, that estab-
lishes a particular order among the GMMs. In this section we recall some recent results
about this particular aspect that we exploit in the following two sections to devise two
efficient new learning algorithms for the DAG Markov model. Finally, we talk about
how to incorporate prior knowledge in the learning process, and we finish with some
concluding remarks in the last section. Parts of the contents in sections 3.3 to 3.6 have
been published in (Giudici and Castelo, 2001b; Kočka and Castelo, 2001; Castelo and
Kočka, 2002).

3.2 Bayesian Score Metrics

In chapter 2 we have seen some of the different subtypes of GMMs within the class
of DAG Markov models. A first clear distinction of the search spaces within this class
is between the search space of those models determined by a directed graph, and the
search space of those models determined by an undirected graph.

In either case, the class of DAG Markov models provides a unique factorization of
the joint probability distribution of the random variables involved, such that closed for-
mulas for the score metrics are available (Whittaker, 1990; Dawid and Lauritzen, 1993;
Heckerman et al., 1995). The derivation of such formulas is possible under a set of as-
sumptions, some of them we enumerate below. A precise introduction of these assump-
tions as well as the entire development of the score metrics is beyond the scope of this
chapter, but the interested reader may find them in the works of Cooper and Herskovits
(1992); Heckerman et al. (1995); Dawid and Lauritzen (1993). The most important of
those assumptions are the following:

• The given dataset D, from which the score metric is computed, is an independent
and identically distributed (iid.) multinomial sample.

• The records in D are exchangeable, that is, shuffling the records in D does not alter
its joint probability distribution. This assumption implies that the mechanism that
generates the data does not change over time.

• The records in D do not contain missing values. One often also says that the dataset
D is complete.

The dataset D contains records from a set of nominal attributes, which we will treat
as a set of categorical random variables XV = {X1, . . . , Xn}, where each Xi takes values
from a finite domain Xi = {xi1, . . . , xir} and r = ri. Thus, an assignment of the kth value
to the variable Xi will be denoted as Xi = xik. As in chapter 2, each random variable Xi
corresponds to a vertex i ∈ V in some graph G = (V, E) that determines a GMM denoted
by M(G).

3.2 Bayesian Score Metrics 45

Every record in D corresponds to some element of the product space XV = ×i∈VXi.
Analogously, we may consider a subset of variables XA ⊆ XV which takes values in the
corresponding product subspace XA = ×i∈AXi. The product subspace XA has

q = qA = ∏
i∈A
|Xi| = ∏

i∈A
ri , (3.1)

elements. Consider an index set I = {1, . . . , q}, where q is defined as in (3.1), such that
there is a one-to-one correspondence between I and XA. This correspondence allows us
to consider the assignment of the kth instantiation of XA to XA, which will be denoted as
XA = xAk, and xAk ∈ XA.

Assume D has N records. Let xl
A denote the assignment of the set of variables XA in

the lth record of D. We will use the term counts to denote the number of times a certain
assignment occurs throughout the N records of D. More formally, we define the counts
NAk for the set of variables XA as the following sum

NAk =
N

∑
l=1
δ(xl

A, xAk) where δ(xl
A, xAk) =

{
1 if xl

A = xAk
0 otherwise

In other words, NAk corresponds to the number of records in D where XA = xAk.
Whenever A is clear from the context we will simply use Nk, and δlk as a shorthand
for δ(xl

A, xAk). The vector of counts η = (N1, . . . , Nq), determined by a given subset
XA ⊆ XV , is usually referred to as the contingency table for XA. From the assumption that
D is an iid. multinomial sample it follows that the counts of a contingency table from D

η = (N1, . . . , Nq),

follow a multinomial distribution with parameters (N,Θ), where every Nk is a nonneg-
ative integer such that

N =
q

∑
k=1

Nk Nk > 0,

and Θ is a vector of probabilities, called itself parameters too, Θ = (θ1, . . . ,θq), where
0 < θk < 1, such that

q

∑
k=1
θk = 1.

Given that the multinomial distribution is closed under marginalization, let’s assume
without loss of generality that D refers to the data coming from the set of random vari-
ables XA for some XA ⊆ XV . The parameters of the multinomial distribution specify the
probability for a particular record of D, corresponding to the kth entry in the contingency

46 Chapter 3. Structural Learning

table. In particular, the assumption about the exchangeability of the records in D implies
that for a fixed set of parametersΘ, the records are independent, from which follows that

p(xl
A = xAk|x1

A, . . . , xl−1
A ,Θ) = θk. (3.2)

Therefore, the likelihood for a given dataset D with N records, of a set of parameters Θ,
is

p(D|Θ) =
N

∏
l=1

q

∏
k=1
θδlk =

q

∏
k=1
θ

Nk
k . (3.3)

Let η denote the contingency table of a dataset D of N records, parametrized by Θ.
The probability function (pf.) of the multinomial distribution of D is

p(η|N,Θ) =
N!

N1! · · ·Nq!
θN1

1 · · ·θ
Nq
q .

In this chapter, as in the rest of this thesis, we use p(·) to denote either the probability
of an event, a joint probability distribution, a probability function (pf.) or a probability
density function (pdf.). Its particular interpretation will be clear from the context. The
score metrics we survey here use a Bayesian approach in order to score a model. In this
context, the uncertainty about the parameters Θ is handled through a prior distribution
which, in combination with the contingency table, results in a posterior distribution using
Bayes’ theorem. Thus, it is necessary to make an assumption about the type of prior
distribution for the parameters Θ. In concrete, as we shall see below, one is interested
in using what is known as a conjugate prior. A prior distribution is conjugate if, when
combined with the data, the posterior has the same functional form.

The usual choice, as made by (Dawid and Lauritzen, 1993; Cooper and Herskovits,
1992; Heckerman et al., 1995), is to assume that the parametersΘ follow a Dirichlet distri-
bution, which is conjugate with a complete multinomial sample. A Dirichlet distribution
over the vector of parameters Θ, requires the specification of a vector of hyperparameters,
also known as pseudo-counts, ϑ = (N′1, . . . , N′q), where N′k > 0, and its pdf. is

p(Θ|ϑ) =
Γ(N′)

Γ(N′1) · · · Γ(N′q)
θ

N′1−1
1 · · ·θN′q−1

q where N′ =
q

∑
k=1

N′k. (3.4)

The somewhat recurrent concept of distribution of a probability distribution, as we
have here in p(Θ|ϑ), is commonly known in the statistics literature as a second order
distribution, or a law for Θ (Dawid and Lauritzen, 1993), which in this particular case is a
hyper-Dirichlet law. Analogously, the term prior law (Dawid and Lauritzen, 1993) denotes
the prior distribution of a probability distribution.

More detailed descriptions of the use and properties of the multinomial and Dirichlet
multivariate distributions may be found in the book by DeGroot (1970). One of such
properties is the simple expression that gives the expectation for a particular assignment
XA = xAk, which is

3.2 Bayesian Score Metrics 47

E(θk) =
N′k
N′

.

By using Bayes’ theorem, the posterior distribution of Θ, given a dataset D, is

p(Θ|D,ϑ) = c · p(D|Θ)p(Θ|ϑ), (3.5)

where c is a normalization constant. By replacing in expression (3.5) the corresponding
terms specified in (3.3) and (3.4), we see explicitly that the Dirichlet prior is conjugate
under multinomial sampling,

p(Θ|D,ϑ) = c
q

∏
k=1
θ

N′k+Nk−1
k , (3.6)

where c is again a normalization constant. It follows then that the posterior expectation
of θk given D is (DeGroot, 1970)

E(θk|D) =
N′k + Nk

N′ + N
. (3.7)

Since the vector of counts η = (N1, . . . , Nq) embodies all the contribution of the data
D to the posterior of the parameters Θ and their expectations, the counts in η are often
also referred as the sufficient statistics for D. More formally, one says that η is sufficient for
Θ because, conditionally on η, any other statistic κ is independent of Θ. Let’s emphasize
that in order to update the parameters Θ in the light of data, it suffices to update its
hyperparameters ϑ by adding up the sufficient statistics.

For the purpose of model comparison, we are interested in computing the marginal
probability of the data unconditional from any particular value of the parameters Θ. In
order to do so, we should marginalize over Θ,

p(D|ϑ) =
∫
Θ

p(D|Θ)p(Θ|ϑ)dΘ. (3.8)

Replacing the likelihood term p(D|Θ) in (3.8) by (3.3) and the prior term p(Θ|ϑ) by
(3.4) we obtain:

p(D|ϑ) =
Γ(N′)

Γ(N′1) · · · Γ(N′q)

∫
· · ·

∫
θk

θ
N′1+N1−1
1 · · ·θN′q+Nq−1

q dθ1 · · · dθq. (3.9)

The multiple integral in (3.9) is solved by taking into account that integral of the pdf.
(3.4) over all proper values of theta should be one:

48 Chapter 3. Structural Learning

∫
Θ

p(Θ|ϑ)dΘ =
Γ(N′)

Γ(N′1) · · · Γ(N′q)

∫
· · ·

∫
θk

θ
N′1−1
1 · · ·θN′q−1

q dθ1 · · · dθq = 1. (3.10)

Therefore, by isolating the multiple integral in (3.10) and replacing its value in (3.9)
we will obtain the closed expression for p(D|ϑ). However, for the purpose of providing
full insight into the expression of the marginal p(D|ϑ) we will carry out the marginaliza-
tion over θ in a stepwise manner through the dataset D. Let’s consider the dataset D as
the collection of records D1, . . . , DN . From the rules of probability it follows

p(D|ϑ) =
N

∏
l=1

p(Dl |D1, . . . , Dl−1,ϑ).

Now, we marginalize over Θ the conditional probabilities,

p(D|ϑ) =
N

∏
l=1

∫
Θ

p(Dl |D1, . . . , Dl−1,Θ)p(Θ|D1, . . . , Dl−1,ϑ)dΘ.

Note that for every record there is only one k for which δlk = 1, thus each record Dl has
a unique predictive probability θk, which we may express in the following way,

p(D|ϑ) =
N

∏
l=1

∫
· · ·

∫
θk

(
q

∏
k=1
θ
δlk
k

)
p(θ1, . . . ,θq|D1, . . . , Dl−1,ϑ)dθ1 · · · dθq.

When δlk = 1 the previous multiple integral will result in the expectation of θk with
respect to the conditional density p(θ1, . . . ,θq|D1, . . . , Dl−1,ϑ). Again, we know we will
obtain one single posterior expectation for each record,

p(D|ϑ) =
N

∏
l=1

q

∏
k=1

E(θk|D1, . . . , Dl−1,ϑ)δlk .

Let’s expand these products through the indexes l and k and we will obtain:

p(D|ϑ) = E(θ1|ϑ)δ11 E(θ2|ϑ)δ12 · · · E(θq|ϑ)δ1q ·
E(θ1|D1,ϑ)δ21 E(θ2|D1,ϑ)δ22 · · · E(θq|D1,ϑ)δ2q ·
E(θ1|D1, D2,ϑ)δ31 E(θ2|D1, D2,ϑ)δ32 · · · E(θq|D1, D2,ϑ)δ3q ·
...
E(θ1|D1, . . . , DN−1,ϑ)δN1 · · · E(θq|D1, . . . , DN−1,ϑ)δNq

Now, let’s replace the posterior expectations by expression (3.7),

3.2 Bayesian Score Metrics 49

p(D|ϑ) =
(

N′1
N′

)δ11

·
(

N′2
N′

)δ12

· · ·
(

N′q
N′

)δ1q

·(
N′1+∑2−1

l=1 δl1

N′+1

)δ21

·
(

N′2+∑2−1
l=1 δl2

N′+1

)δ22

· · ·
(

N′q+∑2−1
l=1 δlq

N′+1

)δ2q

·(
N′1+∑3−1

l=1 δl1

N′+2

)δ31

·
(

N′2+∑3−1
l=1 δl2

N′+2

)δ32

· · ·
(

N′q+∑3−1
l=1 δlq

N′+2

)δ3q

·
...(

N′1+N1−1
N′+N−1

)δN1

·
(

N′2+N2−1
N′+N−1

)δN2

· · ·
(

N′q+Nq−1
N′+N−1

)δNq

Considering again that for each record l there is only one value k for which δlk = 1
we can reorganize the products in the following way:

p(D|ϑ) =
∏q

k=1 N′k · (N′k + 1) · (N′k + 2) · · · (N′k + Nk − 1)
N′ · (N′ + 1) · (N′ + 2) · · · (N′ + N − 1)

. (3.11)

Finally, by multiplying numerator and denominator in expression (3.11) by Γ(N′) and
∏q

k Γ(N′k), we obtain the closed expression for the marginal probability of the data D:

p(D|ϑ) =
Γ(N′)

∏q
k=1 Γ(N′k)

· ∏q
k=1 Γ(N′k + Nk)
Γ(N′ + N)

.

Recall that at the beginning of the section we assumed without loss of generality that
D represents the data generated by some subset of random variables XA ⊆ XV . This
implies that the sufficient statistics are computed by marginalizing over XV\XA, thus in
order to be precise, we will rewrite the formula as

pA(D|ϑ) =
Γ(N′)

Γ(N′ + N)

q

∏
k=1

Γ(N′k + Nk)
Γ(N′k)

, (3.12)

where pA(D|ϑ) indicates explicitly that the counts Nk are marginally computed from
a larger contingency table for XV . In general, we use the notation pS(D) to indicate
marginalizing D over XV\XS.

Expression (3.12) does not contain or assume the existence of any CI restriction
among the random variables in XA. That expression provides the marginal probabil-
ity of XA under the saturated model for XA. In the next subsections we will see how
suitable assumptions about (conditional) independencies in the whole set of variables
XV , in combination with the marginal probability of the data in (3.12), provide the score
metrics for model comparison among GMMs using the following conventions.

From a Bayesian perspective we want to choose a model M according to its posterior
probability given some dataset D,

p(M|D) ∝ p(D|M)p(M). (3.13)

50 Chapter 3. Structural Learning

In expression (3.13) we have used Bayes’ theorem to see that this posterior is propor-
tional to the likelihood of the data D given the model M, times the prior probability of
M. A Bayesian score metric of a model M against some dataset D is the logarithm of the
likelihood times the prior:

sc(M; D) = log [p(D|M)p(M)] .

Therefore, what we are going to see in the next subsections, technically speaking, is
the specification of the likelihood term p(D|M) for DEC and DAG models. Furthermore,
the Bayesian approach we are following requires a specification of each of the hyperpa-
rameters contained in ϑ = (N′1, . . . , N′q). Since ϑmay be very large easily, this assignment
should be carried out in a systematic way. At the same time, the set of possible assign-
ments of ϑ are heavily constrained by the properties we need to retain from the family
of probability distributions we intend to work with. This latter aspect will be treated by
the specification of prior laws for the corresponding model. The prior probability of the
model p(M) in conjunction with the hyperparameters ϑ express our prior knowledge in
the learning process. In this thesis we will not treat the problem of specifying p(M) and
we will assume a uniform distribution over the space of models. The interested reader
may consult (Castelo and Siebes, 2000; Angelopoulos and Cussens, 2001) for a survey in
some of the existing methods to elicitate p(M).

3.2.1 Score metric for DEC models

Given an undirected graph G = (V, E), a pair of subsets A, B ⊂ V form a decomposition
of G if V = A∪ B, A∩ B induces a complete subgraph on G, and A∩ B separates A from
B in G.

Let G = (V, E) be an undirected chordal graph. A probability distribution P = p(XV)
over a set of random variables XV is called Markov (Dawid and Lauritzen, 1993) over G
if for any decomposition of V in A and B,

A⊥⊥B|A ∩ B[P],

where we are using A and B as a shorthand for XA and XB. Given two distributions, p(A)
of A and p(B) of B, we say that they are consistent (Dawid and Lauritzen, 1993) if they
both yield the same distribution over A∩ B, i.e. pA∩B(A) = pA∩B(B). The consistency of
the two distributions p(A) and p(B) implies that (Dawid and Lauritzen, 1993):

1. there exists a unique distribution P = p(A∪ B) such that, its marginal distributions
pA(A∪ B) = ∑B p(A∪ B) and pB(A∪ B) = ∑A p(A∪ B) coincide with the original
distributions, i.e. pA(A ∪ B) = p(A) and pB(A ∪ B) = p(B).

2. A⊥⊥B|A ∩ B[P].

A probability distribution p(XV) is Markov over a chordal graph G = (V, E) if and
only if for any decomposition A, B ⊂ V (Dawid and Lauritzen, 1993):

3.2 Bayesian Score Metrics 51

p(XV) =
pA(XV) pB(XV)

pA∩B(XV)
. (3.14)

The chordal graph G can be represented by the set of all cliques C in G. The cliques
in C can be lined up in a perfect order, e.g. C1, . . . , Cm (Leimer, 1989). This perfect order
on the cliques implies that the subsets Si = {C1 ∪C2 ∪ · · · ∪Ci−1} ∩Ci are complete in G
and they form the set of separators of G, denoted S .

From an inductive argument that uses expression (3.14) and this perfect order on the
cliques, Dawid and Lauritzen (1993) derive the following theorem.

Theorem 3.1. Dawid and Lauritzen (1993)
The unique Markov distribution over a chordal graph G = (V, E) having consistent distributions
as its clique marginals is

p(XV) = ∏C∈C pC(XV)
∏S∈S pS(XV)

.

From the fact that a DEC Markov model M = U(G) is determined by a chordal
graph G and that the Bayesian approach uses a vector of hyperparameters ϑ to handle
the uncertainty concerning the conditional probabilities of the model, the score metric
for DEC Markov models is as follows (Dawid and Lauritzen, 1993):

sc(M; D) = log p(M) + log ∏C∈C pC(D|ϑ)
∏S∈S pS(D|ϑ)

, (3.15)

where pC(D|ϑ) and pS(D|ϑ) should replaced by expression (3.12).

Prior laws

In a DEC model U(G), determined by a chordal graph G with clique set C, we need
to specify a vector of hyperparameters ϑC = {N′C1, . . . , N′Cq} for every clique C ∈ C,
that determines the corresponding prior laws for p(θC|ϑC). In order to have the clique
marginals as consistent distributions in Theorem 3.1, the prior laws for p(θC|ϑC) in every
C ∈ C must also be consistent (also called hyperconsistency).

This constraint implies that for any two cliques C and D such that C ∩ D 6= ∅, and
any given lth assignment x{C∩D}l ∈ X{C∩D}, their corresponding hyperparameters ϑC
and ϑD must satisfy

∑
xCk⊃x{C∩D}l

N′Ck = ∑
xDk⊃x{C∩D}l

N′Dk. (3.16)

A way of specifying ϑC for every C ∈ C correctly, as described by Madigan and York
(1995), is as follows. Identify a perfect order of the cliques {C1, . . . , Cm} (Leimer, 1989).

52 Chapter 3. Structural Learning

Specify initial values in ϑC1 . Then specify ϑC2 such that condition (3.16) is fulfilled. Each
ϑCi+1 is specified such that it matches condition (3.16) with respect to ϑCi .

A computationally cheaper way of obtaining a pairwise consistent hyper-Dirichlet
prior law, is to set

N′Ck =
1
|XC|

, (3.17)

that is, one over the number of levels of the sample subspace of values XC. The hyper-
consistency follows from the fact that the subspaces of values XC for each clique C ∈ C
are induced from a larger space XV where V =

⋃
C∈C C.

As part of our prior knowledge, the hyperparameters specified by expression (3.17)
imply that we do not have any preference among the levels of each of the marginal
contingency tables expressed by the cliques in C. The consequences of such a policy as
prior knowledge for the parameters of the model are best understood by examining the
variance of one of the parameters θi ∈ θ. The variance for θi indicates how much the
mean of θi may vary in the light of new data,

Var(θi) =
N′i (∑k N′k − N′i)
(N′)2(N′ + 1)

, (3.18)

where as before N′ = ∑k N′k. This expression shows that the larger the values in ϑ are, the
smaller the variance, as noted for instance in (Castillo et al., 1997). Since the assignment
in (3.17) is the smallest positive hyperconsistent assignment one can set to the hyperpa-
rameters in ϑ, it follows immediately that we let the data D determine the shapes of the
parameters θ as much as possible. For this reason, this type of assignment is also known
as an uninformative assignment.

Therefore, to compute the score metric for a DEC model with this uninformative as-
signment we have to replace the hyperparameters N′k in expression (3.12) by expression
(3.17). Then, it is only left to replace pC(D|ϑ) and pS(D|ϑ) in expression (3.15) by expres-
sion (3.12).

3.2.2 Score metric for DAG models

Let G = (V, E) be a DAG. Let p(XV) be a joint probability distribution over XV . Lauritzen
et al. (1990) show that by using the conditional probability distributions of every Xi
given Xpa(i) (where pa(i) is the parent set of vertex i ∈ V in G), p(XV) admits a recursive
factorization as follows:

p(XV) = ∏
i∈V

p(Xi|Xpa(i)). (3.19)

The fact that the vertices {i} ∪ pa(i) form a complete subgraph in the moralized ver-
sion of G, i.e. in Gm, implies this factorization and the more interesting fact that p(XV)
obeys the global Markov property relative to Gm (Lauritzen et al., 1990).

3.2 Bayesian Score Metrics 53

An important assumption necessary to go forward for this class of GMMs is that of
global independence (Spiegelhalter and Lauritzen, 1990). Under this assumption we can
handle the conditional probability distributions for each random variable independently.
This means that we can rewrite the factorization (3.19) in terms of marginal probabilities
of the data, similar to what we did for DEC models:

p(D|M) = ∏
i∈V

p{i}∪pa(i)(D|ϑ)
ppa(i)(D|ϑ)

. (3.20)

Where we have used i and pa(i) as a shorthand for Xi and Xpa(i), and again D stands
for the dataset generated from XV . We have assumed the parameters of the model to be
Dirichlet distributed such that a vector of hyperparameters ϑ expresses our prior knowl-
edge regarding the parameters. Note that the terms i and pa(i) come from some DAG
that determines the GMM M.

The marginals of the data D in the numerator and the denominator can be replaced
by the expression we got in (3.12). Since pa(i) ⊆ {i} ∪ pa(i), we see that the term
ppa(i)(D|ϑ) is actually the marginalization over Xi of p{i}∪pa(i)(D|ϑ). From this fact it fol-
lows that the sums of the hyperparameters N′k and the counts Nk in p{i}∪pa(i)(D|ϑ) will
sum exactly the same in ppa(i)(D|ϑ), such that the term Γ(N′)/Γ(N′ + N) will cancel in
both marginals. Finally, by reorganizing indexes and products, we obtain the expression
(Cooper and Herskovits, 1992; Heckerman et al., 1995):

p(D|M) = ∏
i∈V

qi

∏
j=1

Γ(N′i j)
Γ(N′i j + Ni j)

ri

∏
k=1

Γ(N′i jk + Ni jk)
Γ(N′i jk)

. (3.21)

Where the index i jk refers to variable i, level j in the contingency table of the parents
pa(i), and level k of variable i. Recall N′i j = ∑k N′i jk. The score metric for a DAG model
has thus the following form:

sc(M; D) = log p(M) + ∑
i∈V

log

[
qi

∏
j=1

Γ(N′i j)
Γ(N′i j + Ni j)

ri

∏
k=1

Γ(N′i jk + Ni jk)
Γ(N′i jk)

]
. (3.22)

Prior laws

In a DAG model D(G) determined by a DAG G = (V, E) where every vertex i ∈ V
has a set of parent vertices pa(i), we need to specify a vector of hyperparameters ϑi =
{N′i j1, . . . , N′i jri

} for every vertex i ∈ V, where ri = |Xi| (the number of levels of Xi), and
j indexes the levels of Xpa(i).

A first straightforward uninformative assignment for ϑ was given by Cooper and
Herskovits (1992), where they set N′i jk = 0. By replacing these parameters in the likeli-
hood (3.21), we will get the particular form of the likelihood provided in (Cooper and
Herskovits, 1992) and which is often referred to in the literature as the K2 metric1:

1In the same work (Cooper and Herskovits, 1992, p. 342) the authors also elaborate on the assumption of
the parameters being Dirichlet distributed and give the likelihood in (3.21).

54 Chapter 3. Structural Learning

p(D|M) = ∏
i∈V

qi

∏
j=1

(ri − 1)!
(Ni j + ri − 1)!

ri

∏
k=1

Ni jk!. (3.23)

However, this likelihood leads to different scores for equivalent DAG models. In
our context, where we do not intend to handle causal relationships, we need a score
metric that provides equal scores to equivalent DAGs, which is commonly known as an
score equivalent metric (Heckerman et al., 1995) in the context of DAG Markov models.
This requirement constrains, as it happened with hyperconsistency for DEC models, the
spectrum of possible assignments for the hyperparameters in ϑ.

Prior laws for DAG models were investigated in depth in the work of Heckerman
et al. (1995) and they provide the following informative assignment for the hyperparam-
eters:

N′i jk = N′p(Xi = xk, Xpa(i) = xpa(i) j|Gc), (3.24)

where Gc refers to a complete DAG. The idea is that we assess a prior for the density of
θ under the complete DAG Markov model, and from such a complete model we derive
priors for any other DAG. In order to derive this expression the authors in (Heckerman
et al., 1995) make an additional assumption, the assumption of parameter modularity. Un-
der this assumption, given two different DAG models D(G1) and D(G2) over the same
set of random variables XV , such that for some vertex v ∈ V the parent set pa(v) is the
same in G1 and G2, the densities for the parameters p(θv|ϑv) are the same in D(G1) and
D(G2). This implies that the densities p(θv|ϑv) depend only in Xv and Xpa(v).

In expression (3.24) the term N′ refers to the equivalent sample size which is defined
by Heckerman et al. (1995) as the users’ confidence in the prior density p(θ|Gc), where
N′ = 1 implies no confidence.

This specification of the hyperparameters is called informative because we can ex-
press, through the joint density of all the random variables, i.e. the complete DAG model
D(Gc), different priors for parameters in θ. Furthermore, in Heckerman et al. (1995) it is
proven that the prior law implied by expression (3.24) makes the metric score equivalent.
For this reason, the metric in (3.22) with hyperparameters specified as in (3.24) is known
as the Bayesian Dirichlet equivalent, or BDe metric.

The constraint of score equivalence plays such an important role that it has been
proven in (Geiger and Heckerman, 1995) that under this constraint the only possible
choice for the prior density of the parameters is a Dirichlet distribution.

Finally, Buntine (1991) proposed an assignment for the hyperparameters such that
it makes the metric in (3.22) score equivalent too. In contrast with the previous one
in (3.24), this assignment is uninformative, i.e. the parameters in θ are uniformly dis-
tributed, and is as follows:

Ni jk =
1

qi · ri
. (3.25)

As noted in Heckerman et al. (1995), this assignment can be seen as a special case
of the assignment in (3.24) where the levels of the joint density for the complete DAG

3.3 Neighborhoods and Traversal Operators 55

model D(Gc) are equally probable, and the equivalent sample size N′ is set to 1. The
score metric in (3.22) with this prior law is commonly known as the BDeu metric. As
for the prior law we have seen for DEC models in (3.17), this uninformative assignment
provides the largest variance for the parameters in θ, thus it lets the data determine the
parameters θ as much as possible.

In Heckerman et al. (1995) the authors carry out an experimental study where they
compare the BDe metric with different sample sizes against the BDeu metric. Their con-
clusion is that unless we are able to establish prior information that is close to the true
model (BDe metric with informative priors) we better assume complete ignorance in our
prior information (BDeu metric). In the experiments in sections 3.5 and 3.6 we use the
BDeu metric.

3.3 Neighborhoods and Traversal Operators

As we have seen, the class of DAG Markov models allows the derivation of closed for-
mulas that provide the efficient estimation of the goodness of fit of a model against a
given dataset. For other classes of GMMs this is not the case, e.g. the class of UG
Markov models, and iterative procedures must be used. This means that much more
time is needed in order to score a single model.

The advantage thus, of using the DAG model, is that we are able to score and com-
pare many models in a reasonable time, and therefore devise some model search (model
selection) procedure that works in a systematic way in order to find the set of models
that best meet our desired criterion.

Furthermore, the score metrics in the class of DAG Markov models are not only com-
putationally cheap but they can be split up in independent terms such that we can score
any given model by performing only local computations. In Heckerman et al. (1995)
such score metrics are defined as decomposable score metrics, since the global measure
they compute can be written as a product of local measures, where each local measure is
a function of one vertex and its parent set only. The notion of computing the score incre-
mentally is related to the concept of neighborhood. We say that two models are neighbors
if they differ to some bounded extent. In the case of GMMs the differences among mod-
els lie in the set of edges of the corresponding graphs. As we shall see below, the extent
to which GMMs usually differ is bounded by one single adjacency difference.

It is also possible to devise a neighborhood of models that differ in two or more
adjacencies, but this choice will increase the size of the neighborhood exponentially (in
the number of adjacencies that differ). Some research in this direction can be found in
(Xiang et al., 1996).

From the concept of neighborhood, follows the concept of traversal operator. A traver-
sal operator is a function that given an input model returns a neighborhood of models.
By repeatedly applying the traversal operator we can traverse the search space of models,
hence the name.

Another important concept in this context, is that of legal move between GMMs. Let
M(G) be a GMM determined by a graph G such that M(G) belongs to certain classM of
GMMs. A legal move for M(G) is a transformation of G into another graph G′ such that
the GMM determined by G′ remains in the same class, i.e. M(G′) ∈ M. For instance, as
we shall see later, a legal move for DAG Markov models is an addition of a directed arc

56 Chapter 3. Structural Learning

that does not introduce a directed cycle.
Legal moves require a characterization of the circumstances under which one can add

or remove a directed or undirected edge or set of edges. When these characterizations
were not available, the procedure to apply a traversal operator was to transform the
input graph and then check, a posteriori, whether the graph remained in the desired class.
This methodology is more inefficient than one that uses legal moves and luckily, legal
moves have already been characterized for the class of DAG Markov models.

As we shall see below, the characterizations of legal moves use specific (additional)
representations of the graph that determine the model, in order to foresee whether a
move is legal or not. For DEC models this additional representation consists of junction
trees, and for DAG models it consists of ancestor matrices. These representations need to
be updated at each moment the search strategy selects (moves to) a new subset2 of models
to continue the search. The computational cost of this latter step should be bounded such
that the use of legal moves still pays back in comparison with the traditional a posteriori
tests of the validity of neighbors.

Therefore, to provide more concise specifications afterwards, we further divide the
traversing step into proposing and moving (Giudici and Castelo, 2001b) as follows:

1. Proposing. Apply the traversal operator to the current subset of models using the
characterizations of legal moves to efficiently create a neighborhood of models.

2. Moving. Update the current subset of models to those selected by the search strat-
egy to continue searching. Update their additional representations in order to fore-
see legal moves afterwards.

3.3.1 The search space of DEC Markov models

In chapter 2, DEC Markov models were defined as those determined by chordal graphs.
Thus, given a DEC model U(G), the adjacencies in G either have no edge or have an
undirected edge, such that neighboring models are determined by a graph with one arc
more or one arc less. Yet, not all additions or removals of undirected edges are legal. A
legal move in the class of DEC Markov models must keep the graph that determines the
model, chordal.

Proposing

Let U(G) be a DEC Markov model determined by a chordal graph G = (V, E), where V
is its vertex set and E its edge set. Recall from chapter 2 that a path between two vertices
a, b ∈ V is a sequence of vertices a = v0, . . . , b = vk such that (vi , vi+1) ∈ E. A connected
component in G is an induced subgraph GS = (VS, ES) in which there are paths between
all pairs of vertices in VS. The legal moves for the class of DEC Markov models are
defined as follows:

• Addition (Giudici and Green, 1999).
Let vi , v j ∈ V be two non-adjacent vertices. The addition of an edge between vi
and v j is legal if and only if either:

2Very often a singleton.

3.3 Neighborhoods and Traversal Operators 57

– vi and v j belong to different connected components.

– vi and v j belong to the same connected component, and there exists a path
in the associated junction forest, between a clique Ci, that contains vi and a
clique C j, that contains v j, such that Ci ∩ C j is a separator3 in that path.

• Removal (Frydenberg and Lauritzen, 1989).
Let vi , v j ∈ V be two adjacent vertices. The removal of the edge between vi and v j
is legal if and only if this edge belongs to a single clique.

Moving

To move in the context of DEC models means to update the associated junction forest
according to the new organization of the cliques after the graph has been updated. For
this purpose, we have used the maximum cardinality search algorithm from Tarjan and
Yannakakis (1984) in the particular form given by Cowell et al. (1999). We may see the
algorithm in Figure 3.1 and its complexity is of order O(|V| + |E|). An alternative to
rebuild the junction forest entirely, is to update only those parts of the junction forest
that change by additions or removals of edges performed in the chordal graph. Giudici
and Green (1999) have characterized which parts of the junction forest change after an
addition or removal of an edge in the corresponding chordal graph. Deshpande et al.
(2001) have provided an algorithm that using such characterization updates the junction
forest and its complexity is of order O(|V|2).

The algorithm in Figure 3.1 takes as an argument a chordal graph g and returns a tree
t. Following object oriented notation, this algorithm assumes that g and t implement the
following methods:

• g.bd(v) Given a vertex v, this method returns the set of vertices adjacent to v in g.

• g.complete(s) Given a set of vertices s, this method returns true if s forms a com-
plete subgraph in g.

• t.addclique(s) Given a set of vertices s, this method adds to the tree t a node with s.

In Figure 3.2 we may see an example of a chordal graph and its corresponding junc-
tion tree which may be built using the algorithm in Figure 3.1.

A detailed description of the junction tree representation of a chordal graph is be-
yond the scope of this section, but the interested reader may find precise explanations in
(Jensen and Jensen, 1994; Cowell et al., 1999).

Neighborhoods

In the class of DEC Markov models we consider only one single concept of neighbor-
hood, the one formed by all chordal graphs with one edge more and one edge less, such
that the resulting undirected graph is chordal. We will refer to this neighborhood as the
1M1L neighborhood, denoted by N1M1L(G) for any given chordal graph G for which the
mentioned neighborhood is created.

3Note that the term separator refers here to the intersection of two adjacent nodes in the corresponding
junction tree and not to the general concept of separation in graphs.

58 Chapter 3. Structural Learning

algorithm build junction forest(dag g=(V ,E)) returns tree
01 bool ischordal = true
02 tree t = /0
03 int i = 0, c[|V |], n[|V |]
04 set Π[|V |], L = /0
05 for v ∈V do c[v] = 0 endfor
06 while L 6= V and ischordal do
07 setU = V\L
08 n[i] = arg maxv∈U c[v]
09 Π[i] = g.bd(n[i])∩L
10 if ¬g.complete(Π[i]) then
11 ischordal =false
12 else
13 if i > 0 or |V |= 1 then
14 if |Π[i]|< |Π[i−1]|+1 or i = |V |−1 then
15 t.addclique(Π[i−1]∪n[i−1])
16 endif
17 endif
18 for w ∈ g.bd(n[i])∩U do
19 c[w] = c[w]+1
20 endfor
21 L = L∪{n[i]}
22 i = i+1
23 endif
24 endwhile
25 if ¬ischordal then
26 return /0
27 else
28 return t
29 endif
endalgorithm

Figure 3.1: Algorithm to create the junction forest from a chordal graph.

3.3.2 The search space of DAG Markov models

Recall from chapter 2 that DAG Markov models were determined by acyclic digraphs,
which are directed graphs without directed cycles. Therefore, a legal move in the class of
DAG Markov models must keep the directed graph that determines the model acyclic.

Proposing

There are three types of possible moves on a single adjacency: addition, removal and
reversal. In order to foresee efficiently legal moves in the class of DAG models, we make
use of an ancestor matrix. Let M(G) be a DAG Markov model determined by the DAG
G = (V, E), where V is its vertex set and E its edges set. The cardinality of V is n. Let I be
the n× n incidence matrix associated to E such that I(i, j) is set to 1 if v j → vi ∈ E, and 0
otherwise. Recall that to say that v j → vi ∈ E is equivalent to the convention (v j, vi) ∈ E

3.3 Neighborhoods and Traversal Operators 59

1

2

3

4

5

chordal graph junction tree

1 2 4

1 4

1 3 4

3

3 5

Figure 3.2: Example of a chordal graph and its corresponding junction tree representa-
tion.

and (vi , v j) 6∈ E.
An ancestor matrix A associated to the edge set E is a n × n matrix where an entry

A(i, j) is set to 1 if E contains a directed path from the vertex v j to the vertex vi (or in
other words, v j is ancestor of vi), and 0 otherwise. The legal moves are characterized in
the following way (Giudici and Castelo, 2001b):

• Addition.
When we consider the addition of an arc v j → vi, this addition is legal if the entry
A(j, i) is 0. If the entry A(j, i) was 1, this would mean that vi is ancestor of v j and
therefore there would exist a directed path from vi to v j which becomes a directed
cycle when we add v j → vi.

• Removal.
The removal of an arc cannot introduce any directed cycle, thus it is always legal.

• Reversal.
The reversal of an arc is a two-step move, in which first we remove the arc, and
then we add it in the opposite direction. The first step poses no problem since
removals are always legal, but the second step can introduce a directed cycle since
it is an addition.

Let vi → v j be the arc we want to reverse. If this reversal is not legal, the addi-
tion of the arc vi ← v j, after the removal, will introduce a directed path from vi
to v j. We cannot detect that by using the ancestor matrix A in the same way we
did in the case of addition because for the v j row, this matrix describes the ances-
tors including those it inherits from vertex vi which now is not part of its parents
anymore.

If this directed path from vi to v j exists, it means that vi was ancestor of v j by some
directed path that goes through the parent set of vertices of v j. Therefore it suffices
to check the ancestorship of vi through every vertex vk that is parent of v j, with
k 6= i.

To decide whether a move is legal using an ancestor matrix is of a cost O(1) for
addition, and O(n) for reversal. This efficiency is achieved because the computational
costs necessary to search for directed paths are turned into the costs necessary to update
the ancestor matrix. However, updating the data structures that describe the graph is

60 Chapter 3. Structural Learning

part of what we have called here moving. In general, the subset of models to which
a learning algorithm will move will be always substantially smaller than the subset of
models initially proposed for comparison. In this case the overhead for banning illegal
moves is lowered to the minimum in proposing a move.

The optimality of this acyclicity testing overhead for move proposal follows from the
fact that, for additions cost cannot be lower thanO(1), i.e. constant. For reversals, a cost
of O(n), i.e. linear in the number of vertices, is the lowest possible because firstly, the
current ancestor information of the former sink vertex cannot be used. Secondly, if the
reversal introduces a cycle, the former source vertex must have, before the reversal, a
directed path to the former sink vertex, through any of the other parents of this former
sink, thus ancestorship of the former source should be checked for each of those parents.

Moving

To move in the context of DAG models means to update the incidence and ancestor ma-
trices. The updating of the incidence matrix is straightforward. As in the description of
proposing, let I be the incidence matrix and A the ancestor matrix. When an arc vi → v j is
added, then I(j, i) = 1, when the same arc is removed then I(j, i) = 0 and finally, when
the arc is reversed from vi → v j to vi ← v j, two entries in I need to be updated, namely
I(j, i) = 0 and I(i, j) = 1. The updating of the ancestor matrix A is carried out as follows
(Giudici and Castelo, 2001b):

• Addition.
Let vi → v j be the added arc. Firstly, we have to set vi as ancestor in v j. Secondly,
we have to add all the the ancestors of vi as ancestors of v j. And, finally, the ances-
tors of v j must be added to the ancestors of the descendants of v j. The descendants
of v j are all those vertices that have v j as ancestor (i.e. A(k, j) = 1, k = 1, . . . , n).
Since we keep an ancestor matrix the latter step will be performed at most n− 1
times, therefore the cost of the whole operation is of an order linear in the number
of vertices, i.e. O(n).

• Removal.
Let vi → v j be the removed arc. Ancestors cannot be propagated as in the previous
case, but they have to be rebuilt for the sink vertex v j and all the descendants of v j
in topological order. In the first place, the ancestors of v j are set to the parents of v j,
i.e. the updated row of v j in the incidence matrix I. In the second place the ances-
tors of every parent vertex of v j are added to the ancestors of v j. Now, by inspecting
the incidence matrix I we go through all the descendants of v j in topological or-
der, and for each of them we rebuild the corresponding row in the ancestor matrix
in the same way we did with v j but with respect to the corresponding parent set.
Therefore the cost is, at most, of order O(n2).

• Reversal.
Let vi → v j be the arc to be reversed to vi ← v j. In the first place we update a
removal vi → v j, and in the second place we update an addition vi ← v j.

In the usual a posteriori criterion to determine acyclicity of a DAG one searches
through the paths of the DAG for directed cycles. As we see now, this search through

3.3 Neighborhoods and Traversal Operators 61

the paths is translated here into the updating of an ancestor matrix. The advantage of
this latter approach is that it allows us to foresee legal moves (proposing) in an optimal
amount of time.

Markov equivalence

In chapter 2 we saw that two DAG Markov models D(G) and D(G′) determined by
two different DAGs G and G′ may represent the same restrictions of conditional inde-
pendence. Recall that these two equivalent DAGs will have some compelled edges and
some reversible ones.

The fact that an edge is reversible does not imply that it can be reversed immediately.
It just means that at some point it will be possible to reverse it. Those reversible edges
that can be indeed reversed at the same time in a given DAG are called covered and they
were characterized in (Chickering, 1995) in the following way.

Definition 3.1. Covered Edge (Chickering, 1995)
Let G = (V, E) be a DAG. An edge a→ b ∈ E is covered in G if pa(b) = {a} ∪ pa(a).

Therefore, from the previous notion of equivalence and covered edge, it follows that
the reversal of a covered edge will not lead to a different set of conditional independence
restrictions. Conversely, the reversal of a non-covered edge will introduce or destroy
an immorality and therefore it will lead to a different set of conditional independence
restrictions. These two facts were more formally described in (Kočka, 2001) using the
following lemma.

Lemma 3.1. Let D(G) and D(G′) be two DAG Markov models. The following three conditions
are equivalent:

1. D(G) = D(G′)

2. G and G′ have the same skeleton and contain the same immoralities.

3. There exists a sequence L1, . . . , Ln of DAGs such that L1 = G and Ln = G′ and Li+1 is
obtained from Li by reversing a covered arc in Li for i = 1, . . . , n− 1.

The equivalence (1) ⇔ (2) was proven in (Verma and Pearl, 1990; Andersson et al.,
1997a), and in the more general framework of CG Markov models in (Andersson et al.,
1997b, Theorem 3.1)4. The equivalence (1) ⇔ (3) was proven in (Chickering, 1995;
Heckerman et al., 1995; Andersson et al., 1997a).

Neighborhoods

The definition of legal move allows to describe different concepts of neighborhoods in
the following way (Kočka and Castelo, 2001):

• NR (No Reversals) All DAGs with one arc less and one arc more that does not
introduce a directed cycle.

4Frydenberg (1990a) provided a proof before but under the additional condition CI5 (see chapter 2).

62 Chapter 3. Structural Learning

• AR (All Reversals) The NR neighborhood plus all DAGs with one arc reversed that
does not introduce a directed cycle.

• CR (Covered Reversals) The NR neighborhood plus all DAGs with one covered
arc reversed.

• NCR (Non-Covered Reversal) The NR neighborhood plus all DAGs with one non-
covered arc reversed.

For any given DAG G upon which we built its corresponding neighborhood, the
previously described neighborhoods will be noted as NNR(G), NAR(G), NCR(G) and
NNCR(G), respectively. The NR neighborhood is used in MCMC search by the MC3 al-
gorithm of Madigan and York (1995). The NR neighborhood may lead easily to local
maxima in heuristic search, or to an extremely small probability of reaching the most
probable model given the data in MCMC search. This problem may be alleviated by
using an AR neighborhood, which is quite common in many other learning algorithms.
The CR and NCR neighborhoods are variations of the AR neighborhood that are not in-
tended to enhance the AR neighborhood but we use them here for comparison purposes,
as we shall see later.

3.4 Graphical Markov model inclusion

So far, we have seen that structural learning of GMMs involves scoring models and
traversing the search space. In order to traverse the search space one devises efficient
ways of transforming the graph that determines the GMM to create a neighborhood of
candidate models. The scope of models that form a neighborhood depends on which
transformations we apply to the given graph, and so far, the transformations do not
comply with a specific policy, but just to enable reaching any graph of the search space
from any other one.

In this section, we show that there is such a policy which, if followed, it leads to a
better performance of the structural learning process. We study the organization of the
search space from the perspective of a particular order among the GMMs, the inclusion
order. Afterwards, we formalize a traversing policy for the search space of GMMs in the
form of new concepts of neighborhood. From these new concepts of neighborhood, we
introduce in the forthcoming sections 3.5 and 3.6 two new learning algorithms and show
the improvement they afford to the structural learning process on synthetic data.

By graphical Markov model inclusion we denote a particular relation of partial order
among GMMs. A relation of partial order is irreflexive, asymmetric and transitive, and
some pairs of elements may not be related, otherwise it would be a total order. The
intuition behind the graphical Markov model inclusion partial order, or inclusion order
for short, is that one GMM M(G) precedes another GMM M(G′) if and only if all the CI
restrictions encoded in G are also encoded in G′.

Recall from chapter 2 that a GMM M(G) determined by some graph G is the set of
probability distributions that are Markov over G, i.e. the set of probability distributions
that satisfy the CI restrictions encoded by the graph G. Without loss of generality, let’s
assume we are working with DEC Markov models. A DEC model U(G) is determined
by an undirected chordal graph G.

3.4 Graphical Markov model inclusion 63

The complete chordal graph Gc that encodes no CI restriction at all, determines a
DEC model U(Gc) that consists of all possible discrete probability distributions over
the corresponding set of random variables, due to the fact that any such distribution is
Markov over the complete chordal graph Gc.

On the opposite side, we find the empty chordal graph G∅, with no edges, under
which all random variables are marginally independent, such that it encodes all possi-
ble CI restrictions among these random variables from the closure of the semi-graphoid
axioms. The chordal graph G∅ determines a GMM U(G∅) that consists of “only” those
discrete probability distributions under which all the random variables are marginally
independent. Clearly, the set of probability distributions that are Markov over Gc in-
cludes those that are Markov over G∅, therefore

U(G∅) ⊆ U(Gc). (3.26)

However, the CI restrictions encoded by Gc (none!) are included into those encoded
by G∅ (all!), and this latter notion is the one that determines the inclusion order. The
notation used in (3.26) might be somewhat counterintuitive with the idea that U(Gc)
precedes U(G∅) under the inclusion order. Therefore, we will explicitly express the set
of the CI restrictions encoded by a graph G that determines the GMM M(G) as:

MI(G) = {(A, C, B) : A, B 6= ∅ ∧ A⊥⊥B|C[G]}.

Note that MI(G) is a general definition that applies to every class of GMMs. Now, in
order to note the inclusion relationship between the fully restricted DEC model U∅(G∅)
and the unrestricted DEC model Uc(Gc) we may simply write it as:

UI(Gc) ⊆ UI(G∅).

In general, we can decide the inclusion order among DEC models with a rather
straightforward graphical criterion, which we may formalize in the following theorem.

Theorem 3.2. Let U(G1), U(G2) be two DEC Markov models. We say that the model U(G1)
is included in the model U(G2), and we write it as UI(G1) ⊆ UI(G2), if and only if G2 is a
subgraph of G1.

Proof. Necessity. Let’s assume that UI(G1) ⊆ UI(G2). Then, every CI restriction read
off the chordal graph G1 can be read off the chordal graph G2. In this situation, the
undirected global Markov property for DEC models implies that every pair of subsets
of vertices A, B separated by a third subset S1 in G1, must be separated in G2 by a subset
S2 such that S2 ⊆ S1. Otherwise the CI restriction in G would not hold in G2. It follows
immediately that G2 has to be a subgraph of G1.

Sufficiency. Let’s assume that G2 is a subgraph of G1. Then, every two subsets of
vertices A, B separated by a subset S2 in G2, will be separated in G1 by a subset S1 such
that S2 ⊆ S1. From this fact and the undirected global Markov property, it follows
immediately that every CI restriction in G1 holds in G2.

64 Chapter 3. Structural Learning

The notion of inclusion order appeared already in the context of DEC and log-linear
models in the works of Havránek (1984) and Edwards and Havránek (1985), although
we have adopt here a slightly different formulation and notation. Let’s emphasize that
in the particular cases we have seen of Markov equivalence (Theorem 2.1) and Markov
inclusion (Theorem 3.2), GMMs allow us to make quite strong claims among rather com-
plex interaction models by purely graphical criteria.

In the case of DAG models, there is no cheap graphical criterion to decide the inclu-
sion order, but an operational one, as we shall see now. The first attempt to provide nec-
essary and sufficient conditions to characterize the inclusion order among DAG Markov
models was done in (Verma and Pearl, 1988), and in (Kočka, 2001) it is shown that these
conditions are necessary but not sufficient. Later, (Meek, 1997) conjectured the following
operational criterion to decide DAG Markov model inclusion.

Conjecture 3.1. Meek’s conjecture (Meek, 1997)
Let D(G) and D(G′) be two DAG Markov models determined by two DAGs G and G′. The DAG
model D(G) is included in D(G′), DI(G) ⊆ DI(G′), if and only if there exists a sequence of
DAGs L1, . . . , Ln such that G = L1, G′ = Ln and the DAG Li+1 is obtained from Li by applying
either the operation of covered arc reversal or the operation of arc removal for i = 1, . . . , n.

Kočka et al. (2001) have proved Meek’s conjecture for the particular case in which G
and G′ differ in at most one adjacency, providing the following operational criterion.

Lemma 3.2. (Kočka et al., 2001)
Let D(G) and D(G′) be two DAG Markov models determined by two DAGs G and G′ such
that their skeletons differ in at most one adjacency. The DAG Markov model D(G) is strictly
included in D(G′), i.e. DI(G) ⊂ DI(G′), iff there exists a sequence of DAGs L1, . . . , Ln such
that G = L1, G′ = Ln and the graph Li+1 is obtained from Li by applying the operation of
covered arc reversal for i = 1, . . . , j− 1, the operation of arc removal for i = j and the operation
of covered arc reversal for i = j + 1, . . . , n− 1 where j ∈ {1, . . . , n− 1}.

Very recently, Chickering (2002) has been able to prove Meek’s conjecture in its full
scope. This fact gives more relevance to the facts that we uncover later about the learning
problem.

It is easy to realize that the collection of sets of CI restrictions MI(G) ∈ M whereM
is any given class of GMMs, forms a poset that we can represent by means of a Hasse
diagram. In Figure 3.3 we may see this representation for the classes of DEC and DAG
Markov models over three variables. Note that because DAG models are organized in
classes of equivalence, the nodes in Figure 3.3b may contain more than one graph.

3.4.1 Implications in learning

With the Bayesian score metrics we surveyed at the beginning of this chapter, we aim at
recovering the largest set of CI restrictions that our data satisfies and our GMM can rep-
resent. Ideally, these CI restrictions should help us to draw conclusions about the mech-
anism that generated the data, in order to gain a better insight into this data. Therefore,
when we say that this or that algorithm did not learn the right model(s) (got stuck in a
local maximum), we acknowledge the fact that the learned model(s) either reflect a sub-
set of the CI restrictions of the data which is smaller than what our GMM can represent,

3.4 Graphical Markov model inclusion 65

(a)

j j j j j jj j j j j j
j j j j j j

¾ ¾ ¾ - - -

A
AAK

A
AAK A

AAU
A
AAU

A
AAU A

AAK
¢
¢¢̧ ¢

¢¢®
¢
¢¢®

¢
¢¢® ¢

¢¢̧
¢
¢¢̧

'
&

$
%

j j jj j j
j j jA
AAU

A
AAU

¾

¢
¢¢̧

-
¢
¢¢®

j j jj j j
j j j
-

A
AAU ¢

¢¢̧
A
AAK

¾
¢
¢¢®

j j j j j jj j j j j j
j j j j j j

¾ ¾

A
AAK

A
AAK

A
AAK

- -
A
AAU
¢
¢¢®

¢
¢¢® ¢

¢¢̧
¢
¢¢̧

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%
¡

¡
¡¡

@
@
@@

PPPPPPPPPPP

HHHHHHH

©©©©©©©

³³³³³³³³³³³

©©©©©©©

PPPPPPPPPPP

HHHHHHH

³³³³³³³³³³³j j j j j jj j j j j j
j j j j j j

¾ -

A
AAK A

AAU ¢
¢¢̧¢

¢¢®

'

&

$

%

'

&

$

%

'

&

$

%aaaaaaaaaaa

!!!!!!!!!!!j j
j

'
&

$
%

(b)

Figure 3.3: Hasse diagrams for the DEC (a) and DAG (b) Markov models over three
variables.

or they reflect CI restrictions that are not actually satisfied by the data generating mech-
anism. In any of these two scenarios, the learning algorithm performed one or more
moves that led to the current unsatisfactory model(s). This may be caused by, basically,
four reasons (and combinations of them):

1. The data is too sparse.

2. The score metric, incorporating our prior knowledge, is not appropriate.

3. The traversal operator is not appropriate.

4. The search strategy is not appropriate.

The inclusion order is one of the several ways of structuring the search space. But
because the inclusion order determines the poset of models of CI restrictions, it may
help understanding why the traversal operator is not appropriate. Since moving, as part
of traversing the search space, is a deterministic operation, blaming the traversal oper-
ator implies blaming how the traversal operator proposes models. The way models are
proposed depends on the concept of neighborhood that is employed.

66 Chapter 3. Structural Learning

Kočka and Castelo (2001) introduce the following concept in order to formalize later
certain property that neighborhoods must retain.

Definition 3.2. Inclusion Boundary (Kočka, 2001)
Let M(H), M(K), M(L) be three GMMs determined by the graphs H, K, L. Let MI(H) ≺
MI(L) denote that MI(H) ⊂ MI(L) and for no MI(K), MI(H) ⊂ MI(K) ⊂ MI(L). The
inclusion boundary of the GMM M(G), denoted by IB(G), is

IB(G) = {M(H) : MI(H) ≺ MI(G)} ∪ {M(L) : MI(G) ≺ MI(L)}

Intuitively, the inclusion boundary of a given GMM M(G) consists of those GMMs
M(Gi) that induce a set of CI restrictions MI(Gi) which immediately follow or precede
MI(G) under the inclusion order. In the Hasse diagrams we see in Figure 3.3, the inclu-
sion boundary for a given node is formed by those nodes adjacent to it.

current

NR neighborhood

true

initial

Figure 3.4: Example of getting stuck in a local maximum because the concept of neigh-
borhood employed (NR) does not contain the inclusion boundary.

The following definition of inclusion boundary condition establishes a necessary condi-
tion that a traversal operator must satisfy in order to avoid local maxima.

Definition 3.3. Inclusion Boundary Condition (Kočka, 2001)
A learning algorithm for GMMs satisfies the Inclusion Boundary Condition if for every GMM
determined by a graph G, the traversal operator can create a neighborhood N (G) such that
N (G) ⊇ IB(G).

Note that some computational performance may be gained if the traversal operator
creates a neighborhoodN (G) = IB(G), since it already satisfies the inclusion boundary
condition.

3.4 Graphical Markov model inclusion 67

In Figure 3.4 we find a situation, in the context of DAG models, in which the model
highlighted with a thick line is our current model. The model highlighted with a dashed
line is the one that the data reflects (the true model). The rest of the models are the NR
neighborhood of the current one. All models around the current one form its inclusion
boundary. As we may appreciate, because the current neighborhood does not entirely
include the inclusion boundary, it is not possible to reach the true model from the current
one in a single step. In this situation, it may become very difficult for the learning algo-
rithm to reach the true model. Note that we can select easily the current model starting
from the empty one, provided that a score equivalent metric would score equally the
addition of a single isolated arc in either direction.

In the case of DEC models, we introduced only one concept of neighborhood in sub-
section 3.3.1, the 1M1L neighborhood, that consists of all undirected graphs with one
edge more and one edge less that are chordal. It is rather straightforward to see that
such neighborhood coincides with the inclusion boundary for such kind of GMMs.

Theorem 3.3. Let U(G) be a DEC Markov model. Let N1M1L(G) be the set of DEC Markov
models determined by the 1M1L neighborhood for G. Let IB(G) be the inclusion boundary for
U(G). It follows that

N1M1L(G) = IB(G).

Proof. From the definition of 1M1L neighborhood it follows that all DEC models deter-
mined by the immediate subgraphs and supergraphs of G are in N1M1L(G). This fact
and the characterization of Markov inclusion for DEC models in Theorem 3.2 prove the
theorem.

The fact that the 1M1L neighborhood for DEC models coincide with its inclusion
boundary frees the traversal operator of any responsibility of a wrong outcome of the
learning process. The inclusion order for DEC models, and its characterization by Theo-
rem 3.2, was used in the works of Havránek (1984) and Edwards and Havránek (1985).
The authors used a stepwise model selection procedure that would remove edges start-
ing from the unrestricted model until no removal would improve the fit. By knowing
the inclusion order among DEC models, their learning procedure rejects all models that
follow any given rejected one in the inclusion order.

For DAG Markov models, the situation is more complex since they are organized in
equivalence classes, and the inclusion boundary is defined with respect to these equiv-
alence classes, as we saw for three variables in Figure 3.3b. Therefore, it is clear that
the concepts of neighborhoods introduced for this kind of GMM so far (NR, AR, CR and
NCR), do not cover the inclusion boundary. In Figure 3.5 we may find this problem more
clearly illustrated. In the center we have a circle that represents an equivalence class of
DAG models with 16 members determined by graphs G0 to G15. Surrounding this circle
we have other equivalence classes, where those that are shaded represent its inclusion
boundary. Given any of the equivalence classes represented in Figure 3.5, its immediate
neighbors are reachable by a transformation in a single adjacency of the graph.

Consider the equivalence class in the inclusion boundary that is darker shaded. As
it is clear from the figure, only G9, G10 and G11 can reach this neighboring equivalence
class by a transformation in a single adjacency. Therefore, if our learning algorithm does

68 Chapter 3. Structural Learning

G0

G1

G2

G3

G4

G5
G6 G7

G8

G9

G10

G11

G12

G13

G14G15

Figure 3.5: Every member G0, . . . , G15 of an equivalence class cannot reach the entire
inclusion boundary (shaded classes) by a transformation of a single adjacency.

not consider any of G9, G10 or G11, it will not be able to reach that neighbor class in a
single move.

In order to define a neighborhood that coincides with the inclusion boundary we
will take into account the operational criterion defined in the Meek’s conjecture (Conjec-
ture 3.1) and in particular the partial characterization provided by Lemma 3.2.

Let D(G) be any given DAG Markov model that belongs to some equivalence class
C = {D(G1), . . . , D(Gn)}, i.e. D(G1) = D(G2) = · · · = D(Gn). Consider the following
two neighborhoods for D(G):

• ENR (Equivalence class No Reversals) All DAGs with one arc more and one arc
less than every D(Gi) ∈ C.

• ENCR (Equivalence class Non-Covered Reversals) All DAGs with one arc more,
one arc less and one non-covered arc reversed than every D(Gi) ∈ C.

Now, we will investigate the relationships among the ENR and ENCR neighbor-
hoods, and the other neighborhoods defined earlier.

Lemma 3.3. Let D(G) and D(G′) be two DAG Markov models. If G and G′ have the same
number of edges then either the two DAG Markov models are equivalent, i.e. D(G) = D(G′),
or the two DAG Markov models are not in an inclusion relation, i.e. D(G) 6⊂ D(G′) and
D(G) 6⊃ D(G′).

Proof. We will distinguish three cases. First when the two DAGs, G and G′, have differ-
ent skeletons, second when G and G′ have the same skeletons but different immoralities
and third when G and G′ have the same skeletons and the same immoralities.

3.4 Graphical Markov model inclusion 69

In the first case, the two skeletons of G and G′ are different but have the same number
of edges. This implies that there are two distinct vertices u and v such that are adjacent
in G and are non-adjacent in G′. Either v ∈ nd(u) or u ∈ nd(v) holds in G′ as otherwise
there would be a cycle. By the DPMP (see Definition 2.7) there exists a CI restriction
between u and v in G′. This CI restriction cannot hold in G according to the d-separation
criterion because the u and v are adjacent in G. Thus D(G) 6⊃ D(G′). The same argument
applies for D(G) 6⊂ D(G′).

In the second case, G and G′ have the same skeletons but different immoralities. Let
u→ w← v be an immorality formed by three distinct vertices u, v and w which, without
loss of generality, is in G but not in G′. This implies that the subgraph induced in G′ by
u, v and w will be either u ← w ← v or u → w → v or u ← w → v where u and v are
non-adjacent as in G.

Either v ∈ nd(u) or u ∈ nd(v) holds in G′ as otherwise there would be a cycle.
By means of the DPMP (see Definition 2.7), there is a CI restriction u⊥⊥v|C in G′ for
some C where w ∈ C. If w 6∈ C, u⊥⊥v|C would not hold in G′ according to the d-
separation criterion. The same CI restriction u⊥⊥v|C, where w ∈ C, cannot hold in G
because w ∈ C creates an active path between u and v, so they are not d-separated. This
leads to D(G) 6⊃ D(G′). Analogously, for some subset C′ where w 6∈ C′, the CI restriction
u⊥⊥v|C holds in G while it does not hold in G′, therefore D(G) 6⊂ D(G′).

The third case follows from Lemma 3.1, which leads to D(G) = D(G′).

Lemma 3.4. Let D(G) and D(G′) be two DAG Markov models. If D(G) ⊂ D(G′) then G′

has less edges than G.

Proof. We will prove this lemma by contradiction. Assume D(G) ⊂ D(G′) and the two
possibilities: (a) the two DAGs G and G′ have the same number of edges and (b) G′ has
at least one more edge than G.

In (a) the contradiction follows from Lemma 3.3 which forces D(G) and D(G′) to be
either equivalent or not in an inclusion relation.

In (b) the contradiction follows from the fact that there is a pair of vertices u, v which
are non-adjacent in G and adjacent in G′. By the DPMP (see Definition 2.7) there is a CI
restriction u⊥⊥v|nd(u)\v in G which does not hold in G′, i.e. D(G) 6⊂ D(G′).

The following result discusses some of the relationships among the different concepts
of neighborhoods as well as with respect to the inclusion boundary.

Theorem 3.4. Let D(G) denote a DAG Markov model. Let NNR(G), NCR(G), NNCR(G),
NAR(G), NENR(G) and NENCR be the sets of DAG Markov models that form, respectively, the
NR, CR, NCR, AR, ENR and ENCR neighborhoods for D(G). The following statements hold:

1. For all G: NNR(G) ⊆ NENR(G) ⊆ IB(G); NNR(G) ⊆ NNCR(G) ⊆ NENCR(G);
NNR(G) ⊆ NCR(G) ⊆ NAR(G); NNR(G) ⊆ NNCR(G) ⊆ NAR(G); NENR(G) ⊆
NENCR(G).

2. For all G: {NNCR(G)\NNR(G)} ∩ IB(G) = {NAR(G)\NCR(G)} ∩ IB(G) =
{NENCR(G)\NENR(G)} ∩ IB(G) = ∅.

3. For all G: NAR(G) ∩ IB(G) = NCR(G).

4. There exists G such that: NAR(G) 6⊇ IB(G).

70 Chapter 3. Structural Learning

Proof. Statement 1. The partNNR(G) ⊆ NENR(G) follows directly from the fact that ENR
performs all operations that NR does. The same argument applies to the NNR(G) ⊆
NNCR(G), NNCR(G) ⊆ NENCR(G), NNR(G) ⊆ NCR(G), NCR(G) ⊆ NAR(G), NNCR(G) ⊆
NAR(G) and NENR(G) ⊆ NENCR(G).

The relationship NENR ⊆ IB(G) follows from Lemmas 3.1, 3.2 and 3.4. The first
lemma guarantees us that the ENR neighborhood is created by transforming every mem-
ber of an equivalence class. The second lemma proves that the DAG Markov model from
which the ENR neighborhood is created, precedes all DAG Markov models in the ENR
neighborhood under the inclusion order. The third lemma shows that, under the inclu-
sion order, there are no DAG Markov models in between the one from which the ENR
neighborhood is created, and those from the ENR neighborhood, i.e. NENR ⊆ IB(G).

Statement 2. The DAG Markov models in the difference sets {NNCR(G)\NNR(G)},
{NAR(G)\NCR(G)} and {NENCR(G)\NENR(G)} are created by the reversal of a non-
covered arc in G. This statement says that, for any given DAG Markov model D(G),
if we reverse a non-covered arc of G obtaining a new DAG G′, then D(G′) 6∈ IB(G).
We prove this as follows. If an arc is not covered in G, its reversal either introduces or
destroys an immorality in G′ (see Definition 3.1) that yields a non-equivalent model (see
Lemma 3.1), i.e. DI(G) 6= DI(G′). Since the number of edges remains the same, by
Lemma 3.3, DI(G) 6⊂ DI(G′), and therefore DI(G) 6⊆ DI(G′).

Statement 3. It follows from statement 2 and the fact that NAR(G) = NCR(G) ∪
NNCR(G).

Statement 4. Figure 3.5 illustrates this statement.

The intuition behind the previous theorem is that the ENR neighborhood covers a
larger part of the inclusion boundary than any of the previously introduced neighbor-
hoods. In particular, the ENR will coincide with the inclusion boundary under the next
circumstance.

Theorem 3.5. Let D(G) be a DAG Markov model. If Meek’s conjecture holds, then it follows
that

NENR(G) = IB(G).

Proof. From the characterization of the inclusion order provided by Meek’s conjecture
it follows that the inclusion boundary are all DAGs with one arc more and one arc less
than every member of the equivalence class of a given DAG, which coincides with the
definition of ENR neighborhood.

As it follows from its definition, the ENCR neighborhood contains the ENR neigh-
borhood plus other models that are not part of the inclusion boundary. Assuming that
Meek’s conjecture holds, the ENR neighborhood retains already the desired property of
containing the inclusion boundary. Nevertheless, we shall see later on the experiments,
a variation of the ENCR neighborhood seems to be actually very useful, hence we for-
malize now this neighborhood.

A straightforward observation is that both the ENR and ENCR neighborhoods are
not computationally efficient to handle. More concretely, the effort to enumerate the
members of an equivalence class is prohibitive since there is no cheap graphical charac-
terization of those members.

3.4 Graphical Markov model inclusion 71

However, in (Kočka and Castelo, 2001) the authors conjecture that because, as we saw
in chapter 2, the ratio of DAGs per equivalence class seems to be bounded by some con-
stant, it might suffice to simulate somehow the ENR neighborhood. In particular, Kočka
and Castelo (2001) introduce the repeated covered arc reversal algorithm, or RCAR algo-
rithm, that allows to reach any member of the equivalence class with certain probability.
We may see the RCAR algorithm in Figure 3.6.

algorithm g.rcar(int r) is
01 int rr = rnd(0,r)
02 for i = 0 to rr do
03 vector ce = g.covered edges()
04 int j = rnd(0,ce.size()−1)
05 edge e = ce[j]
06 g.reverse edge(e)
07 endfor
endalgorithm

Figure 3.6: RCAR algorithm implemented as a method for an object g that embodies
a DAG and implements a method that returns a vector of the covered edges and an
another method that reverses a given edge.

The algorithm in Figure 3.6 takes a constant r as parameter and iterates some random
number of times between 0 (no iteration) and r. At each iteration, it picks at random a
covered arc and reverses it. Lemma 3.1 guarantees us that the RCAR algorithm reaches
any member of the equivalence class with a positive probability for a sufficiently large
maximum number r of iterations. The bounded ratio of DAGs per equivalence class
suggests that a small number between 4 and 10 should be sufficiently large.

Note that when the number of undirected edges in the corresponding essential graph
is lower or equal to the number of iterations of RCAR, then RCAR is able to reach any
DAG Markov model in its equivalence class. Gillispie and Perlman (2001) show that
the distribution of the sizes of the equivalence classes represented by essential graphs,
follows a very particular pattern. In particular, they make the following observation
(Gillispie and Perlman, 2001):

The pattern of the distribution shows that certain sizes appear more fre-
quently than others. In particular, larger compound numbers occur more of-
ten than larger prime numbers. This is probably due to separate sets of undi-
rected edges in the essential graph acting independently to produce class
sizes that are products of the sizes of their independent components.

In a nutshell, essential graphs, whose graph is disconnected, with many connected
components represent equivalence classes with a large number of members. However,
the size of these connected components is inversely proportional to the number of them.

72 Chapter 3. Structural Learning

This fact allows RCAR to reach a substantial amount of the members of those equiva-
lence classes.

Using the RCAR algorithm, Kočka and Castelo (2001) define the following two new
concepts of neighborhood for DAG Markov models:

• RCARNR (RCAR+NR) Perform the RCAR algorithm and then create a NR neigh-
borhood, denoted by NRCARNR(G).

• RCARR (RCAR+NCR) Perform the RCAR algorithm and then create a NCR neigh-
borhood, denoted by NRCARR(G).

The RCARNR neighborhood may be seen as a simulation, or an approximation, of the
ENR neighborhood, and analogously between the RCARR and ENCR neighborhoods.
We can establish the following property for the RCARNR and RCARR neighborhoods.

Theorem 3.6. Let D(G) be DAG Markov model. For a sufficiently large maximum number
of iterations r of the RCAR algorithm, D(G′) ∈ NENR(G) ⇒ D(G′) ∈ NRCARNR(G) and
D(G′) ∈ NENCR(G)⇒ D(G′) ∈ NRCARR(G), with probability p > 0.

Proof. It follows directly from Lemma 3.1 and the definitions of ENR, ENCR, RCARNR
and RCARR neighborhoods.

3.5 Heuristic Search

The problem of learning a DAG model, or a set of DAG models, that maximize the
Bayesian Dirichlet metric (3.22) is proven to be NP-complete (Chickering, 1996a). For
that reason, heuristic methods are suitable in order learn models that are close to the
optimal solution. There is a large variety of heuristic algorithms to learn DAG Markov
models, more popularly known as algorithms to learn Bayesian Networks. We may find
surveys on these learning algorithms in (Bouckaert, 1995; Buntine, 1996b; Sangüesa and
Cortés, 1997). Most of them, are basically a modification of the well-known K2 algorithm
of Cooper and Herskovits (1992), which is shown in Figure 3.7.

The K2 algorithm implements a loop through the variables of the dataset from which
it learns the model. At each iteration it adds the edge that maximizes the scoring function
g(i, πi), where i refers to a given vertex and πi to its parent set in the DAG, which is as
follows:

g(i, πi) =
qi

∏
j=1

(ri − 1)!
(Ni j + ri − 1)! ∏ Ni jk!.

This scoring function corresponds to the Bayesian Dirichlet metric with uninforma-
tive hyperparameters N′i jk = 0 we already saw in expression (3.23), which assigns dif-
ferent scores to equivalent DAG models. As we may see in line 9 of the K2 algorithm,
the number of parent vertices is constrained by some constant u. Also the possible addi-
tions of arcs are constrained by a causal ordering of the variables that bans adding an arc
a → b if b precedes a in the ordering. This is implemented in the K2 algorithm through

3.5 Heuristic Search 73

algorithm K2 is
01 input: a set of n nodes, an ordering on the nodes,
02 an upper bound u on the number of parents of any node,
03 a database D containing N cases
04 output: for each node, a printout of the parents of the node
05 for i:=1 to n do
06 πi := /0
07 Pold := g(i,πi)
08 OkToProceed :=true
09 while OkToProceed and |πi|< u do
10 let z ∈ Pred(xi)−πi be the node that maximizes g(i,πi∪{z})
11 Pnew := g(i,πi∪{z})
12 if Pnew > Pold then
13 Pold := Pnew

14 πi := πi∪{z}
15 else
16 OkToProceed :=false
17 endif
18 endwhile
19 write(’node ’,xi,’ parents ’,πi)
20 endfor
endalgorithm

Figure 3.7: The K2 algorithm from Cooper and Herskovits (1992)

the function Pred(xi), used in line 10, which returns those variables that precede xi in the
ordering. Here xi refers to one of the random variables.

The usual extension of the K2 algorithm is to replace the loop through the variables
by a loop that iterates until the scoring function does not improve. The scoring function
is evaluated throughout a NR or an AR neighborhood at each iteration. This type of
algorithm is commonly known as a hill-climber or greedy search.

In more general terms, a hill-climber creates a neighborhood of candidate models,
scores them using some scoring function, and iterates by picking up the model that pro-
vides the highest increase in the scoring function. If no model provides any increase then
the hill-climber stops and returns the current model.

The NR or AR neighborhoods for DAG models have been traditionally restricted by
a maximum number of parents and a causal ordering because otherwise the hill-climber
would not find a model of a reasonable quality or the algorithm would not scale to a
larger number of variables. Therefore, some of the existing algorithms assume that the
causal ordering is known, or they search for a good causal ordering that can be used later
(Bouckaert, 1992; Singh and Valtorta, 1993; Larrañaga et al., 1996a; Friedman and Koller,
2000).

However, the causal ordering reduces the already small part of the inclusion bound-
ary that was reachable using a NR or AR neighborhood. Therefore, errors in the ordering
may easily lead to very bad local maxima, as shown in (Chickering et al., 1995). The same
reasoning holds for the number of parents.

Heuristic algorithms that do not use any form of causal ordering may be found in
Spirtes and Meek (1995); Chickering (1996b, 2001). These algorithms search directly in

74 Chapter 3. Structural Learning

the space of equivalence classes of DAG Markov models. They outperform all previous
algorithms but at the computational cost of switching continuously between the space
of essential graphs and the space of DAGs, in order to score the models. However, in
this thesis we argue that the better results obtained by the use of the search space of
equivalence classes are not merely a consequence of using the one to one representation
(essential graphs) only, but by the side-effect that essential graphs respect the inclusion
order better. Therefore, a sensible approach is to try to devise a way to use the space of
DAGs, which is computationally cheaper, and account for the inclusion order.

Following this approach, we introduce a new heuristic algorithm (Kočka and Castelo,
2001) that partially accounts for the inclusion order and we show empirically that it is
able to perform as good as the ones working on the space of essential graphs.

algorithm hcmc(int r, bool ncr) returns dag
01 dag g = emptydag
02 bool local maximum = false
03 int trials = 0
04 while (¬local maximum) do
05 g.rcar(r)
06 set nh = g.neighborhood(ncr)
07 dag g′ = g.score and pick best(nh)
08 local maximum = (g′.score() < g.score())
09 if (¬local maximum) then
10 g = g′

11 trials = 0
12 else if (trials < MAXTRIALS) then
13 g.rcar(r)
14 local maximum = false
15 trials = trials+1
16 endif
17 endwhile
18 return g
endalgorithm

Figure 3.8: Hill-Climber Monte Carlo algorithm

The algorithm we propose is given in Figure 3.8. It consists of a usual hill-climber that
iterates through lines 4 to 17. It contains two modifications. One, on line 5, is to perform
the RCAR algorithm from Figure 3.6 on the current DAG. The other is to perform again
the RCAR algorithm when a local maximum is reached, as in line 13. This last step
is performed a limited number of times (MAXTRIALS). If within this limited number
of times, it has not been possible to escape from that local maximum, then the RCAR
algorithm is not called again and the hill-climber will stop iterating.

The first of the two modifications, on line 5, is followed by the creation of an NR or
NCR neighborhood, depending on the truth value of the parameter ncr. In this way, a

3.5 Heuristic Search 75

RCARNR or RCARR neighborhood will be employed. Afterwards, on line 7, the method
g.score and pick best(nh) scores all members of the neighborhood and returns the one
that provides the highest score, which is assigned to g′.

The second of the two modifications, on lines 12 to 16, resembles in a way the iterative
hill-climber introduced in Chickering et al. (1995), which consists of perturbing randomly
the current model once a local maximum is reached. This is done in line 13 as well but
the perturbation is constrained to a move within the equivalence class of the current
model. Due to the random nature of the new steps introduced in the hill-climber, we call
this algorithm the Hill-Climber Monte Carlo, or HCMC for short.

3.5.1 Experimental results on the Alarm dataset

In order to show the effectiveness of the HCMC algorithm we have applied it to the
Alarm dataset (Beinlich et al., 1989), which is a synthetic dataset that has become a stan-
dard benchmark for the assessment of learning algorithms for DAG models on discrete
data. The Alarm dataset was sampled from the Bayesian Network in Figure 3.9, which
was designed for a monitoring system in the context of intensive care unit ventilator
management.

 1 2 3

25 18 26

17

 6 5

28

 7

 4

19

10

20

27

29

 8 9

30

31

21

3211

15

3534

12

33 14

23

1322

36

24

37

16

Figure 3.9: The Alarm Network Beinlich et al. (1989): 37 vertices and 46 edges.

The Alarm dataset, originally employed by Herskovits (1991), contains 20000 records.
From this dataset the first 10000 records where used by Cooper and Herskovits (1992) to
assess the K2 learning algorithm. We will use here this latter dataset of 10000 records.
From this 10000 records we have sampled six different datasets of two different sizes:
three of 1000 records and three of 5000 records. The experiments reported on 10000
records regard only the single dataset of the first 10000 records. As reported by Cooper
and Herskovits (1992), this dataset of 10000 records does not support the arc between
vertices 12 and 32 (see Figure 3.9).

The assessment has been done as follows. On each of the seven datasets, the HCMC
was run ten times for four different cardinalities of RCAR (2, 4, 7 and 10) and three

76 Chapter 3. Structural Learning

different neighborhoods (AR, RCARR and RCARNR). The traditional hill-climber that
uses an AR neighborhood will be referred here as RCAR 0. In all the runs the HCMC
has employed the BDeu score metric (expression (3.22) with prior law (3.25)). We have
also considered an uniform prior p(M) over the space of GMMs.

The reason for running the HCMC several times is obvious since this new hill-climber
performs random moves that may lead to different results in different runs. The maxi-
mum number of trials for escaping local maxima (MAXTRIALS) is set to 50. The results
have been averaged over ten runs and 95% confidence intervals for the means of score
and structural difference, have been included. The results are given in Tables 3.1 and 3.2.

Table 3.1: Results (1st part) of the HCMC learning algorithm over the Alarm dataset.
Performance is averaged over RCARR and RCARNR.

smpl rcar performance score struct diff
steps sec/st RCARNR RCARR RCARNR RCARR

1ka 0 55 0.27 -11480.47 -11480.47 29 29
2 58 0.40 -11491.52±15.12 -11470.46±15.79 18.90±3.06 16.50±2.00
4 55 0.44 -11484.69±19.29 -11473.41±14.18 18.00±3.28 16.30±2.18
7 54 0.43 -11469.06±07.88 -11470.75±14.67 15.50±1.55 15.60±1.88

10 53 0.43 -11470.43±15.94 -11464.03±11.00 14.80±2.15 15.20±1.78
1kb 0 60 0.28 -11115.13 -11115.13 28 28

2 58 0.40 -11113.50±19.07 -11105.10±20.62 18.10±2.77 14.70±3.87
4 56 0.42 -11121.49±24.64 -11090.15±08.51 17.90±4.41 11.10±2.35
7 53 0.42 -11095.19±12.38 -11083.13±05.07 13.40±2.55 10.00±1.47

10 53 0.43 -11095.87±11.25 -11094.17±18.72 12.40±2.05 11.50±2.11
1kc 0 62 0.61 -11530.80 -11530.80 37 37

2 60 0.41 -11451.58±14.23 -11453.70±15.75 18.20±2.23 15.90±3.10
4 59 0.43 -11438.31±08.01 -11436.65±07.46 14.90±2.95 13.40±1.94
7 56 0.67 -11431.02±06.23 -11427.84±03.62 11.80±1.61 10.80±0.81

10 53 0.86 -11440.88±10.78 -11428.89±08.95 13.70±2.13 11.00±1.17
5ka 0 69 1.54 -55249.43 -55249.43 46 46

2 66 2.50 -55072.99±67.61 -54993.41±08.70 11.60±6.70 7.20±2.23
4 57 2.09 -55051.93±40.93 -54992.40±10.92 7.90±2.12 5.20±1.38
7 56 2.14 -55024.53±48.12 -54989.70±10.12 7.10±2.17 4.90±1.37

10 56 2.08 -55025.19±43.49 -54985.99±06.68 6.10±1.95 5.10±2.49
5kb 0 57 0.92 -54732.19 -54732 33 33

2 57 2.02 -54679.46±34.06 -54641.27±60.60 12.50±6.25 6.10±4.08
4 56 1.35 -54610.82±15.24 -54607.60±14.34 5.20±3.93 3.80±1.38
7 53 1.29 -54611.85±25.63 -54602.77±10.93 4.50±1.52 3.70±1.31

10 52 1.28 -54602.98±10.85 -54606.47±12.48 4.00±1.26 4.10±1.32
5kc 0 59 0.88 -54454.16 -54454.16 36 36

2 63 1.19 -54340.02±16.48 -54335.27±32.25 10.20±3.97 8.00±2.18
4 59 1.20 -54335.49±19.99 -54326.25±11.15 8.60±1.91 8.40±2.05
7 55 1.25 -54331.19±12.09 -54315.06±07.33 8.50±1.55 7.70±1.35

10 55 1.28 -54363.17±52.63 -54329.40±11.13 10.00±2.18 8.50±1.85
10k 0 56 1.86 -108697.78 -108697.78 21 21

2 56 2.23 -108495.65±68.33 -108463.65±46.17 4.90±2.20 5.40±4.10
4 54 2.28 -108549.53±63.63 -108437.83±35.72 6.80±2.25 1.60±0.90
7 50 2.29 -108477.50±52.06 -108485.55±58.14 5.50±3.22 2.80±1.11

10 50 2.41 -108468.56±53.07 -108477.98±51.65 4.20±1.34 3.30±1.17

The information in Table 3.1 regards two aspects, the performance of the algorithm
and the accuracy of the learned models with respect to the true one (Figure 3.9). The
performance is provided in terms of number of steps, i.e. local transformations of a

3.5 Heuristic Search 77

DAG, that the HCMC performs before stopping and the average time per step. This is
meant to be a timeless way of assessing performance since we would only need to scale
the average time per iteration as the hardware performance improves. In this case, we
have run the experiments on a Pentium-III processor machine with 512Mbytes of RAM
running Linux (kernel version 2.2.14). The software implementing the algorithms has
been developed as a module on top of the main-memory database system Monet (Boncz
and Kersten, 1995, http://www.cwi.nl/ ∼monet).

The accuracy of the learned models is measured in terms of the score metric, where
the higher is the better and the structural difference5 between the essential graph of the
learned DAG and the essential graph of the true model of Figure 3.9. In summary, these
are the measures taken:

• steps: number of steps (g = g′ in the algorithm) of the HCMC.

• sec/st: speed of the HCMC in seconds per step.

• score: confidence interval of the mean of the score.

• struct diff: confidence interval of the mean of the structural difference.

As we may appreciate, there is a substantial difference in using RCAR within the
hill-climber. The structural differences, throughout all the seven samples, for the stan-
dard hill-climber (RCAR 0) fall far away outside the confidence intervals for any of the
different cardinalities of RCAR, which are nicely centered at much lower values than the
values for RCAR 0.

Regarding the score, on samples of 1000 records, RCAR 7 and 10 show a significantly
higher score than RCAR 0, since the latter does not fall into their confidence intervals.
At 5000 and 10000 records, the score for RCAR 0 falls outside the intervals for any of the
cardinalities of RCAR.

The highest accuracy of the learned models is achieved when a RCARR neighbor-
hood is used. The most striking evidence lies in the case of 10000 records and RCARR.
There, an average of only 1.6 structural differences is achieved in about 54 steps. As its
confidence interval already suggests, we note the fact that on eight out of ten of those
runs, there was only one structural difference, corresponding to the missing arc not sup-
ported by the data. In some of those eight times, the result was reached in 49 steps and
the same result was reached for RCAR 7 and 10 even in 48 steps, which is extremely
close to the optimal path of the right result (46 additions).

In order to gain further insight into the HCMC algorithm and discuss its perfor-
mance, we have taken further measures given in Table 3.2:

• models considered: accumulated number of models that have improved the score at
each step of the learning algorithm.

• escapes/trials: number of escapes of local maxima performed by doing RCAR and
average number of trials per escape.

As we did with the scores, confidence intervals at a level of 95% are provided for
the number of models considered. Although all of them are quite wide, they show that

5Number of adjacencies that differ.

http://www.cwi.nl/~monet

78 Chapter 3. Structural Learning

Table 3.2: Results (2nd part) of the HCMC learning algorithm over the Alarm dataset.
Performance is averaged over RCARR and RCARNR.

smpl rcar models considered escapes/trials struct diff
RCARNR RCARR RCARR RCARNR RCARNR RCARR

1ka 0 6505 6505 0 0 29 29
2 6037±137.1 6061±131.4 2.40/7.72 2.30/6.82 18.90±3.06 16.50±2.00
4 5856±117.2 5936±145.9 1.60/6.55 2.00/3.80 18.00±3.28 16.30±2.18
7 5810±71.4 5862±113.5 1.60/4.47 1.70/2.92 15.50±1.55 15.60±1.88

10 5723±63.6 5816±111.6 1.20/3.00 1.70/3.45 14.80±2.15 15.20±1.78
1kb 0 6460 6460 0 0 28 28

2 5940±79.7 5956±131.7 1.70/5.07 2.20/11.36 18.10±2.77 14.70±3.87
4 5933±97.3 5861±120.1 2.00/10.53 1.60/6.17 17.90±4.41 11.10±2.35
7 5800±89.7 5810±109.9 0.20/4.00 0.70/6.00 13.40±2.55 10.00±1.47

10 5787±59.0 5794±67.0 0.40/1.33 0.60/16.33 12.40±2.05 11.50±2.11
1kc 0 6760 6760 0 0 37 37

2 5943±101.6 6123±141.5 5.40/8.68 2.50/2.02 18.20±2.23 15.90±3.10
4 5903±127.5 5928±126.8 3.70/4.66 3.50/6.10 14.90±2.95 13.40±1.94
7 5904±94.7 5782±80.0 1.80/3.02 1.40/3.10 11.80±1.61 10.80±0.81

10 5823±53.0 5711±43.6 1.70/3.52 1.90/1.96 13.70±2.13 11.00±1.17
5ka 0 8307 8307 0 0 46 46

2 6956±153.5 7346±236.5 4.70/9.08 6.10/6.80 11.60±6.70 7.20±2.23
4 6849±82.7 6921±188.8 1.30/7.94 1.80/7.99 7.90±2.12 5.20±1.38
7 6784±97.8 6733±160.6 1.60/10.39 1.50/5.87 7.10±2.17 4.90±1.37

10 6760±197.5 6678±88.3 0.90/7.21 1.00/3.97 6.10±1.95 5.10±2.49
5kb 0 7418 7418 0 0 33 33

2 6881±171.4 6704±217.4 4.20/7.11 2.10/15.12 12.50±6.25 6.10±4.08
4 6552±158.9 6565±159.8 2.70/6.18 2.50/7.68 5.20±3.93 3.80±1.38
7 6414±116.3 6464±160.6 1.60/7.64 1.50/7.28 4.50±1.52 3.70±1.31

10 6305±114.7 6417±129.5 0.80/7.71 1.30/5.96 4.00±1.26 4.10±1.32
5kc 0 7560 7560 0 0 36 36

2 7165±149.5 7081±149.5 4.70/6.45 3.70/7.65 10.20±3.97 8.00±2.18
4 6931±159.9 6905±178.2 1.70/5.10 2.40/3.42 8.60±1.91 8.40±2.05
7 6873±122.4 6803±114.8 1.30/7.94 0.70/7.22 8.50±1.55 7.70±1.35

10 6846±44.8 6783±111.8 1.20/3.60 0.60/2.33 10.00±2.18 8.50±1.85
10k 0 7774 7774 0 0 21 21

2 6915±184.6 6908±185.0 2.80/14.25 2.20/8.93 4.90±2.20 5.40±4.10
4 6865±199.1 6874±163.5 1.30/5.57 2.60/12.57 6.80±2.25 1.60±0.90
7 6695±111.4 6790±147.5 0.80/4.83 1.30/7.91 5.50±3.22 2.80±1.11

10 6682±140.0 6784±78.1 1.00/6.56 1.20/7.22 4.20±1.34 3.30±1.17

the HCMC algorithm considers significantly less models to achieve a better result. This
means that the HCMC algorithm makes better choices during the search process which,
provided its greedy nature, implies that the way HCMC traverses the search space is
definitely better.

The number of escapes and trials, provide an idea of how effective the RCAR algo-
rithm is in avoiding local maxima. We may see that a higher number of RCAR implies
a lower number of times that the HCMC escapes from a local maxima achieving a simi-
lar result. We may appreciate that with the RCARR neighborhood the number of times
HCMC is able to escape from local maxima is slightly higher. In preliminary experiments
not reported here, we noted that this difference is more significant if the maximum num-
ber of trials (MAXTRIALS) is smaller. This fact may be one of the reasons why RCARR
seems to perform slightly better than RCARNR.

3.6 The Markov Chain Monte Carlo Method 79

Finally, let’s highlight the computational trade-off that this approach affords. We
want to know what is the overhead of using the RCAR operation as in the HCMC algo-
rithm in front of the usual hill-climber. We can see that by comparing the seconds taken
per step in RCAR 0 with respect to any other cardinality of RCAR. This information is
in Table 3.1, and we may see that the HCMC algorithm is, at most, two times slower than
the usual hill-climber.

In the three papers6 that develop heuristic algorithms that work directly in the search
space of essential graphs and provide experimental results, one of them (Chickering,
1996b) reports that the algorithm is about 20 times slower than the usual hill-climber
in the space of DAGs for a 10000 record dataset sampled from the Alarm network. In
(Spirtes and Meek, 1995) only absolute times on a specific platform are provided for
a dataset of the same size sampled also from the Alarm network, thus comparison is
not possible. However, both algorithms rely on the transformation of DAG to essential
graph, and essential graph to DAG, in order to score the models. Therefore we conjecture
that the trade-off of the algorithm in (Spirtes and Meek, 1995) will be similar to the one
in (Chickering, 1996b). This fact allows us to conclude that our algorithm is an order of
magnitude faster than these two works, and yields the same result.

In the third paper (Chickering, 2001), the author provides a set of traversal operators
in the space of essential graphs that always yield local changes in the score, such that
they are as efficient as the usual traversal operators in the space of DAGs. No exper-
iments with the Alarm dataset are reported and therefore, direct comparison with our
approach is not possible, as in (Spirtes and Meek, 1995; Chickering, 1996b). Neverthe-
less, the approach in (Chickering, 2001) does not account for the inclusion order and may
easily suffer of bad local maxima as in the situation illustrated in Figure 3.4. Therefore
we may assert that our approach is also fully competitive with this learning algorithm.

3.6 The Markov Chain Monte Carlo Method

In section 3.2 we reviewed Bayesian score metrics which are used to rank models. In
particular, expression (3.13) shows us that computing the likelihood times the prior of
the model, suffices to rank models from a Bayesian perspective. Applying heuristic pro-
cedures, as the one we saw in the previous section (Figure 3.8), we obtain a model (or a
set of them) that maximizes (up to local maxima) the Bayesian score metric. However,
we still may not be completely satisfied for the following two reasons:

1. We can see from the ranking which models are better, but we cannot figure out
from this ranking to which extent they are supported by the data.

2. We need to draw conclusions, or compute some quantity of interest, conditioning
on the best models. Nevertheless, because conclusions or quantities may differ
substantially among models, we need to weigh somehow the different alternatives
and a ranking of the models does not provide such information.

These two problems arise from the same source: the need to account for the uncer-
tainty of the models (Draper, 1995). From the Bayesian perspective, that requires the

6This is all the competition I’m aware of.

80 Chapter 3. Structural Learning

computation of the normalizing constant such that we obtain the full posterior p(M|D).
Recall Bayes’ theorem:

p(M|D) =
p(D|M)p(M)

p(D)
,

where

p(D) = ∑
M∈M

p(D|M)p(M). (3.27)

Once we account for the uncertainty of the models, it is possible to weigh competing
conclusions and quantities of interest, by averaging over all the models in the following
way:

p(∆|D) = ∑
M∈M

p(∆|M, D)p(M|D), (3.28)

where ∆ refers to the quantity of interest and p(∆|D) is its posterior distribution given
the data D as the notation suggests. We know from chapter 2 that the size of any class
M of GMMs prohibits enumerating all the models. In other words, it is not feasible to
compute the sums in (3.27) and (3.28).

The Markov chain Monte Carlo (MCMC hereafter) method solves this problem by
sampling directly from the posterior distributions p(M|D) and p(∆|D), thus performing
the summations implicitly. The MCMC method has its origins in a sampling method
introduced by Metropolis et al. (1953) within the context of statistical physics. However,
it was Hastings (1970), who generalized this sampling method for statistical problems,
by using the theory of Markov chains, introducing the well known Metropolis-Hastings
algorithm.

The scope of application of the MCMC method is very broad and in this section we
will focus on its use for structural learning in GMMs. The interested reader may find
insightful explanations, different applications as well as useful extensions of the method
in (Smith and Roberts, 1993; Chib and Greenberg, 1995; Carlin and Chib, 1995; Green,
1995; Brooks, 1998; Chib and Jeliazkov, 2001).

The Metropolis-Hastings algorithm was adapted for structural learning of GMMs by
Madigan and York (1995), who called it the Markov Chain Monte Carlo Model Composition,
or MC3 algorithm for short.

LetM denote the class of GMMs under consideration. For each GMM M ≡ M(G) ∈
M, let N (G) be the set of neighbor models of M. Let q be a transition matrix such that
for some other M′ ≡ M(G′) ∈ M, q(M → M′) = 0 if M′ 6∈ N (G) and q(M → M′) > 0
if M′ ∈ N (G). Using the transition matrix q we build a Markov chain M(t, q), t =
1, 2, . . . , n, with state spaceM.

Let the chain M(t, q) be in state M and let’s draw a candidate model M′ from q(M→
M′). The proposed model M′ is accepted with probability

α(M′, M) = min
{

1,
|N (G)|p(M′|D)
|N (G′)|p(M|D)

}
, (3.29)

3.6 The Markov Chain Monte Carlo Method 81

where |N (G)| refers to the cardinality of the set of neighbors of the model M. If M′ is not
accepted, M(t, q) remains in state M. The underlying idea is that a Markov chain M(t, q)
built in this way, has p(M|D) as its equilibrium distribution. This means that, after the
chain has run long enough, the draws can be regarded as a sample from the target density
p(M|D), and one says that the chain has converged.

The convergence of the Markov chain to the target density p(M|D) is guaranteed un-
der two regularity conditions:

1. Irreducibility. There is a positive probability that the chain moves from any model
M ∈ M to any other model M′ ∈ M in a finite number of steps.

2. Aperiodicity. There is a positive probability of remaining in the current model.

In depth discussion of these conditions is beyond the scope of this section, but the
reader may consult (Smith and Roberts, 1993). In our particular case, we should take care
on how a new candidate graph is proposed, in order to retain those regularity conditions.
We shall see later the concrete cases of DEC and DAG Markov models.

Given output M(t, q) = {Mt=1, Mt=2, . . . , Mt=n} of the Markov chain, the regularity
conditions allow us to derive the following asymptotic results (Chung, 1967; Hastings,
1970; Smith and Roberts, 1993; Madigan and York, 1995):

Mt=n
n→∞−→ M ∼ p(M|D) (3.30)

1
n

n

∑
t=1

g(M(t, q)) n→∞−→ E(g(M)) (3.31)

Which imply that, when the Markov chain M(t, q) converges:

• the draws from the Markov chain mimic a random sample from p(M|D). There-
fore, in order to get an estimate of p(M|D), it suffices to account for the frequency
of visits of each model M and divide it by the number iterations n,

and

• the average of the realizations of any function of the model, g(M), is an estima-
tor of the expectation of g(M). Therefore, by setting g(M) = p(∆|M, D) we will
approximate the sum in (3.28) (Madigan and York, 1995),

respectively. In Figure 3.10 we see the pseudocode of the MC3 algorithm, which requires
the specification of the following five parameters:

• init: some arbitrary GMM from which the Markov chain starts.

• n: number of iterations that the Markov chain will perform.

• g: function that takes a GMM as input and gives an integer number as output,
which indexes some quantity of interest of the model.

• q: function that takes a GMM as input and gives a GMM as output, drawn from an
irreducible transition matrix.

82 Chapter 3. Structural Learning

algorithm MC3(gmm init, int n, int(gmm) g, gmm(gmm) q,
int burn in) returns {flt[],flt[]}

01 gmm M = init
02 int i = 0
03 flt p[]
04 flt d[]
05 while (i < n) do
06 gmm M′ = q(M)
07 flt r = U(0,1)
08 if (r ≤ α(M,M′)) then M = M′ endif
09 if (i > burn in) then
10 p[M] = p[M]+1
11 d[g(M)] = d[g(M)]+1
12 endif
13 i = i+1
14 endwhile
15 for M = p.fst() to p.lst() do p[M] = p[M]/n enddo
16 for i = 1 to d.size() do d[i] = d[i]/n enddo
17 return {p,d}
endalgorithm

Figure 3.10: The MC3 algorithm.

• burn in: number of iterations we want to discard before the algorithm starts ac-
counting for the frequency of visits to the models.

The algorithm uses two vectors p and d to store the estimated posteriors p(M|D) and
p(∆|D), which are the result that the algorithm returns.

The Markov chain iterates through lines 5 to 14. In line 6, it draws a candidate model
M′, which is accepted in line 8 with probability specified by the acceptance ratio in (3.29).
If the current iteration is larger than the burn-in period (line 9), then the current state of
the Markov chain is stored in lines 10 and 11.

Finally, in lines 15 and 16, the averages of the stored quantities p and d are computed
and they are returned in line 17.

In subsection 3.3 we introduced the notions of neighborhood and of traversing the
search space. In particular, we formalized this latter notion into two steps, namely,
proposing and moving.

These two steps correspond in the MC3 algorithm to lines 6 and 8, respectively, in
Figure 3.10. That is, to draw a candidate model, and to accept it with certain probability.
However, while in section 3.3, proposing requires the creation of an entire neighbor-
hood of models, here proposing is picking up a single model from that neighborhood
randomly.

In the following two subsections, we tackle particular aspects of proposing and mov-
ing for DEC and DAG Markov models, as well as their implications into the irreducibil-
ity of the Markov chain. Afterwards, we provide insight into the question: for how long
should we run the Markov chain?. To conclude this section, we show some experimental
results regarding convergence, using the improvements proposed in subsection 3.6.2 for

3.6 The Markov Chain Monte Carlo Method 83

the MC3 algorithm on DAG Markov models.

3.6.1 MC3 on DEC Markov models

In subsection 3.3.1 we specified the conditions for a legal move in the class of DEC
Markov models. These legal moves consisted of adding and removing one undirected
edge such that the new graph remains chordal. By performing these legal moves on
every adjacency, we obtained the 1M1L neighborhood, noted N1M1L(G).

We want to pick at random a model in N1M1L(G), such that the Markov chain is
irreducible. Define q(M) as follows:

1. Let M ≡ U(G) be the DEC Markov model given as parameter, and therefore G is a
chordal graph.

2. Let G = (V, E) where V is the vertex set and E the edge set. Pick two different
vertices u, v ∈ V at random.

3. If u–v 6∈ E then check whether G′ = (V, E ∪ {u–v}) is chordal. If the addition is
legal (G′ is chordal) then return U(G′), otherwise go to 2.

4. If u–v ∈ E then check whether G′ = (V, E\{u–v}) is chordal. If the removal is legal
(G′ is chordal) then return U(G′), otherwise go to 2.

.
Frydenberg and Lauritzen (1989, Lemma 5) proved that adding and removing legal

edges at random in this way is sufficient to achieve irreducibility. Once the proposed
move is accepted (line 8 in Figure 3.10), we proceed moving as specified in subsection
3.3.1.

As specified also in line 8 of the MC3 algorithm in Figure 3.10, the acceptance of a
move depends on the acceptance ratio (3.29). This ratio is in fact the product of the
following two ratios:

• the ratio of the cardinalities of the neighborhoods, |N (G)|/|N (G′)|, which is
known as the candidate-generating ratio (Chib and Greenberg, 1995).

• the ratio of two posterior probabilities that belong to the posterior distribution
from which we intend to sample, p(M′|D)/p(M|D).

Although the chordality condition of the graphs here constrains the set of edges one
may remove or add for each graph, it is reasonable to assume that |N (G)| = |N (G′)|
given that G and G′ differ in one single adjacency. In that case one says that we are
assuming a symmetric candidate-generating density (Chib and Greenberg, 1995).

In this way, the acceptance ratio (3.29) involves only p(M′|D)/p(M|D). Because the
normalizing constant appears in both the numerator and denominator, the calculation of
(3.29) does not require this constant. The acceptance ratio corresponds then to the Bayes
factor

α(M′, M) =
p(D|M′)p(M′)
p(D|M)p(M)

, (3.32)

84 Chapter 3. Structural Learning

where each of the factors corresponds to the product of the likelihood of the model times
the model prior, which we already saw in section 3.2, expression (3.15). Because the two
graphs that determine the models M and M′ differ in one single adjacency, the ratio
(3.32) requires only a few local computations.

Let u–v be the edge in G′ (M′ ≡ M′(G′)) that is not in G (M ≡ M(G)). Let C be the
clique in G′ that contains the edge u–v. Let Cu = C\{v}, Cv = C\{u} and C0 = C\{u, v}.
The Bayes factor in (3.32) of M′ against M can be expressed as (Dawid and Lauritzen,
1993):

α(M′, M) =
pC(D|ϑ)pC0 (D|ϑ)p(M′)
pCu (D|ϑ)pCv (D|ϑ)p(M)

, (3.33)

where each of the four terms corresponds to the marginal of the data as in (3.12). If,
conversely, the edge u–v is in M and not in M′, then the acceptance ratio is simply the
inverse of expression (3.33).

3.6.2 MC3 on DAG Markov Models

In subsection 3.3.2 we specified the conditions for legal additions, removals and arc re-
versals. Moves in this class are legal as long as acyclicity of the directed graph is retained.
As argued by Madigan and York (1995), legal addition and removal of arcs, at random,
suffices to make the Markov chain irreducible. Since, we also include arc reversal, propo-
sition is specified as follows (q function called in line 6 of the MC3 algorithm):

1. Let M ≡ D(G) be the DAG Markov model given as parameter, and therefore G is
an acyclic digraph.

2. Let G = (V, E) where V is the vertex set and E the edge set. Pick an ordered pair
of vertices (i, j) ∈ V ×V at random.

3. If j → i 6∈ E then check whether G′ = (V, E ∪ { j → i}) is acyclic. If the addition is
legal (G′ is acyclic) then return D(G′), otherwise go to 2.

4. If j→ i ∈ E then pick one of these two possibilities at random:

(a) G = (V, E\{ j→ i}). Return D(G′).

(b) if G′ = (V, {E\{ j → i}} ∪ { j ← i}) remains acyclic then return D(G′), other-
wise go to 2.

Analogous to the case of DEC Markov models, we assume here a symmetric
candidate-generating density, i.e. |N (G) = |N (G′)|. Again this is reasonable because
G and G′ differ in one single adjacency. Therefore, as we saw in expression (3.32), only
likelihoods and model priors are involved. We also take advantage here of the single
adjacency difference to compute the Bayes factor in the following way.

From the likelihood expression in (3.21), let pi(D|M) be the ith term of the outmost
product.

3.6 The Markov Chain Monte Carlo Method 85

pi(D|M) =
qi

∏
j=1

Γ(N′i j)
Γ(N′i j + Ni j)

ri

∏
k=1

Γ(N′i jk + Ni jk)
Γ(N′i jk)

. (3.34)

Let M′ be the result of proposing either an addition or a removal of an arc j→ i to/of
M. The acceptance ratio involves only those sets of parent vertices that differ, that is

α(M′, M) =
pi(D|M′)p(M′)
pi(D|M)p(M)

, (3.35)

where pi(D|M′) and pi(D|M) correspond to the expression in (3.34). If M′ is the
result of proposing the reversal of the arc j → i into j ← i, then the acceptance ratio
involves four different sets of parent vertices, as follows

α(M′, M) =
pi(D|M′)p j(D|M′)p(M′)
pi(D|M)p j(D|M′)p(M′)

. (3.36)

An enhanced MC3 algorithm for DAG Markov models

In section 3.4 we introduced the concept of graphical Markov model inclusion and dis-
cussed its relevance to structural learning of GMMs from data. In the same section we
described two new neighborhood concepts, namely RCARNR and RCARR, based on the
RCAR algorithm (see Figure 3.6).

The benefit of using these two neighborhood concepts was shown in section 3.5
within the context of heuristic search, by extending the usual hill-climber. In the same
vein, we are going to incorporate the RCAR operation in the MC3 algorithm.

The modification is very simple. The MC3 algorithm (see Figure 3.10) for DAG
Markov models, as introduced by Madigan and York (1995), only considered additions
and removals of arcs. Using the terms introduced in section 3.3, the MC3 algorithm picks
a model randomly from an NR neighborhood. We propose here that the MC3 algorithm
picks a model randomly from either an RCARNR or an RCARR neighborhoods (Kočka
and Castelo, 2001). Thus modifying the function q(M) in the following way:

1. Let M ≡ D(G) be the DAG Markov model given as parameter, and therefore G is
an acyclic digraph. Let ncr be a boolean variable that is true if q(M) should pick a
model from an RCARR neighborhood and false if q(M) should pick a model from
an RCARNR neighborhood. Let r be the maximum number of iterations that the
RCAR algorithm should perform.

2. Let G = (V, E) where V is the vertex set and E the edge set.

3. Perform the RCAR operation over G, i.e. call G.rcar(r) (see algorithm in Figure 3.6).

4. Pick an ordered pair of vertices (i, j) ∈ V ×V at random.

5. If j → i 6∈ E then check whether G′ = (V, E ∪ { j → i}) is acyclic. If the addition is
legal (G′ is acyclic) then return D(G′), otherwise go to 2.

86 Chapter 3. Structural Learning

6. If j→ i ∈ E and ncr =false then G′ = (V, E\{ j→ i}). Return D(G′).

7. If j→ i ∈ E and ncr =true then pick one of these two possibilities at random:

(a) G′ = (V, E\{ j→ i}). Return D(G′).

(b) if j → i is not covered in E and G′ = (V, {E\{ j → i}} ∪ { j ← i}) is acyclic
then return D(G′), otherwise go to 2.

As we see, in order to obtain the RCARNR neighborhood, a pair of ordered vertices
should be picked at random and an arc added or removed, after the RCAR algorithm
has been applied to the current model M. Hereafter, we will refer to this modified MC3

algorithm as the enhanced or eMC3.
Additionally, to obtain the RCARR neighborhood within the MC3 algorithm, we

should also consider the possibility of reversing the arc, when it exists between the two
randomly chosen vertices. However, this arc should be reversed only if it is non-covered.
Thus, performing a non-covered reversal (see section 3.3). We shall see experimentally
the benefits of incorporating these two new neighborhoods in subsection 3.6.4.

3.6.3 Convergence Diagnostics

At the beginning of this section, we pointed out the necessary condition of the Markov
chain to converge to the equilibrium distribution, in order to regard the learned models
as samples from that distribution. We briefly reviewed the regularity conditions under
which this convergence is guaranteed. However, these conditions do not determine how
long the Markov chain should run in order to converge. This is for MCMC methods in
general, a difficult empirical question, for which specific notions and techniques need to
be devised in each different implementation.

The literature regarding convergence diagnostics for GMMs is rather small. We will
discuss four convergence diagnostics introduced by Giudici and Green (1999) and Giu-
dici and Castelo (2001b). In the next subsection, their use will be illustrated through
experiments with synthetic data.

As pointed out by Smith and Roberts (1993, pg. 9), a sensible approach to assess
convergence consists of monitoring ergodic averages of selected scalar quantities for
stationarity. In the case of GMMs, this means to monitor the mixing of the simulation
over the graphs, through a summary measure of each of them. For instance, the average
number of edges (Giudici and Green, 1999).

This average can be easily implemented by accumulating in some integer variable,
the sum of the number of edges present in the current model M, in each iteration of the
Markov chain. This sum would be carried out at the level of line 13 in the MC3 algorithm
in Figure 3.10. Then, dividing this quantity by the current iteration i, we obtain the
running average number of edges.

The rationale behind monitoring the average number of edges is that those GMMs
with higher posterior will be sampled more often, and therefore the average number of
edges of these GMMs should be approached by the running average number of edges.
If we are assessing convergence at some moment during the Markov chain run, and this
average shows some slope (it is not straight), it is most likely that the Markov chain has
not converged.

3.6 The Markov Chain Monte Carlo Method 87

The next convergence diagnostic for GMMs is to monitor the approximated marginal
likelihood of the data p(D) (Giudici and Castelo, 2001b). In Bayes’ theorem, we can swap
terms and obtain the following expression for this marginal:

p(D) =
p(D|M)p(M)

p(M|D)
.

Note that this equality holds for any given GMM M. Obviously, when the posterior
p(M|D) is approximated by MCMC, only an approximate marginal likelihood p̂(D) can
be obtained. Such an approximation will be better for models in an area of high probabil-
ity in the posterior distribution. As Kass and Raftery (1995) point out, small likelihoods
may have large effects on the final approximation and make the resulting estimator p̂(D)
very unstable. This suggests that we compute the approximate marginal likelihood as
an average of the approximations from the models with highest posteriors only.

Let p̂(M|D) be the current estimated posterior for model M give data D. Let p(D|M)
be the current likelihood of the model M. The marginal likelihood p̂(D) can be estimated
as:

p̂(D) =
1
|B| ∑B

p(D|M)p(M)
p̂(M|D)

M ∈ B, (3.37)

where B is a set formed by the models M with highest posterior probability in each
iteration of the MC3 algorithm. In our experiments below, we have chosen B as the best
5 models. Again, this running average can be implemented at the level of line 13 in
Figure 3.10.

Another interesting average to monitor is the ratio between the number of accepted
and rejected proposed models (Giudici and Castelo, 2001b). If this ratio does not stabi-
lize around some constant value, it is likely that the Markov chain is within an area of
low posterior probabilities, and is jumping uphill (accepting very often) in order to reach
an area of higher posterior distribution. Similarly, when this area of high posterior prob-
abilities is reached, it will take some iterations to stabilize the average of this ratio. The
calculation of this ratio should be implemented in the same place as the previous two
diagnostics.

Finally the last convergence diagnostic corresponds to the posterior distribution of
the total number of edges present (Giudici and Castelo, 2001b). More formally, let n
be the number of vertices of the graphs that determine the GMMs. Let W be the ran-
dom variable that takes as value, the number of edges of the graph at each iteration
of the Markov chain. The integer random variable W will take values in the range
[0, 1, 2, . . . , n(n − 1)/2)], which are all possible cardinalities of an edge set of either an
undirected chordal graph or an acyclic digraph on n vertices.

The quantity to monitor is p(W|D), which is computed as in the general case of any
quantity of interest ∆ (see beginning of this section). We have noticed in our experiments
that this posterior distribution has a normal shape, and it is centered close to the cardi-
nality of the model for which the Markov chain gives the highest posterior. If the center
of the normal shape shifts through longer runs, it means that the Markov chain has not
converged.

88 Chapter 3. Structural Learning

As a final remark regarding convergence we will discuss the issue of the starting
point of the Markov chain (the init parameter by the MC3 algorithm in Figure 3.10). It
is of general agreement within the MCMC literature that the run of the Markov chain is
often sensitive to the starting point. Therefore it makes sense to try several runs from
different starting points chosen at random.

However, within the context of random generation of acyclic digraphs, Melançon
et al. (2000) point out that starting the process on the empty graph gives an effective way
of achieving a good mixing rate of the chain. They explain such effect as follows:

Observe that the maximal distance between any two acyclic digraphs is
bounded by n(n− 1), since an obvious (but far from optimal) path connect-
ing them goes through the empty graph (by first deleting all edges from the
first graph and then adding the edges of the second graph).

We consider that in our context, where the distribution of the graphs (determining
the GMMs) is not uniform, it still makes sense to follow that advice because one may
reason analogously in terms of graphical Markov model inclusion.

In addition, we will consider as good starting points those GMMs of a high like-
lihood, as they are close to the mode of the distribution and therefore it may acceler-
ate convergence of the chain. One may obtain GMMs with a high likelihood by using
heuristic procedures as those explained in section 3.5. Note that, however, the heuristic
procedures do not guarantee to find the model that maximizes the score. Hence, starting
the Markov chain from such points may also give a bias in that the Markov chain can
miss an important area of the posterior.

3.6.4 Experimental results on the Alarm dataset

In this subsection we illustrate the benefit of extending the MC3 algorithm with the
RCARNR and RCARR neighborhoods (using the eMC3 algorithm), by using the con-
vergence diagnostics previously introduced. At the same time we will see these diag-
nostics working. The set up of the experiments will be the same as in the corresponding
subsection for heuristic search, section 3.5.

A further aspect we consider here is the effect on the outcome of starting the eMC3

algorithm from a different point than the empty DAG model (determined by an acyclic
digraph with no edges). We have started most of the experiments from the empty DAG
model, but for some we take the output of the HCMC algorithm as starting point. Recall
from section 3.5 that this output was the true Alarm network with one arc missing which
was not supported by the data. We will refer to this Alarm network as the almost true
Alarm network and it will be noted with an asterisk in the legends.

As for heuristic search, we will be using here the BDeu metric (see section 3.2) in its
form as a Bayes factor explained before (see expression (3.36)). Because this metric gives
equal scores to equivalent DAG Markov models, the posterior distribution of DAG mod-
els as well as other derived quantities, are transformed into quantities or distributions
indexed by essential graphs. For that purpose, we have used the algorithm of Chickering
(1995) that obtains the corresponding essential graph of a given DAG.

We have run the eMC3 algorithm for 105 iterations over each of the seven samples of
the Alarm dataset, and for the 10000 records sample we ran the chain starting from the

3.6 The Markov Chain Monte Carlo Method 89

Table 3.3: Mobility of the Markov chain and Kullback-Leibler distance per essential
graph.

size AR CR NCR RCARR RCARNR
number 1k 1764 1622 1632 1898 2017
essential 5k 830 780 660 991 955
graphs 10k 561 470 526 727 654

10k* 553 485 612 577 626
K-L 1k 4.36525 4.46228 4.37798 4.33639 4.38295
per 5k 3.78184 3.78113 3.95602 3.66680 3.75692
e.g. 10k 3.73537 4.05203 3.97652 3.53715 3.75776

10k* 2.70025 2.70035 2.70018 2.70029 2.70046

almost true Alarm network. We do not provide all the results for every sample, since for
some combinations the conclusions are the same.

A first aspect we are going to look at, is the mobility of the Markov chain. The mobility
is a relevant aspect because the higher the mobility, the lower the chance that the approx-
imated posterior distribution does not reflect an important area of the search space.

In Table 3.3 we can see the averages across the samples and across the RCAR cardi-
nalities of 2,4 and 10 of the different essential graphs visited during the process. We see
the average Kullback-Leibler distance (Kullback and Leibler, 1951) per essential graph
as well. It is clear that RCAR yields a higher mobility of the Markov chain since more
essential graphs were visited when RCAR was used.

This higher mobility results in a better choice of the DAG Markov models during
the process, as can be seen from the lower Kullback-Leibler ratios for the cases where
RCAR was used. The asterisk in Table 3.3 denotes the case where we used the output of
the HCMC algorithm as starting point. In this latter situation, the Kullback-Leibler ratio
does not show a gain while using RCAR. This is because the Markov chain starts from a
good point and all the neighboring models to where the chain jumps still provide a good
Kullback-Leibler distance.

The main point we want to show in fact, is that the RCAR operation improves the
convergence of the MC3 algorithm. First we will look at the behavior of the running
average number of edges. We have monitored this diagnostic on the MC3 algorithm
starting from the empty DAG model and using the standard neighborhoods AR, CR and
NCR, and the newly introduced RCARNR and RCARR (eMC3 algorithm). In the case of
these two latter ones, we have run the experiments with three different parameter values
for the RCAR algorithm (see Figure 3.6), namely 2,4 and 10.

In contrast with the experiment about the mobility of the chain, we will not show
here the results for all samples, but only for the 104 records sample, as it already shows
all the points we want to make.

We have plotted the AR, CR and NCR neighborhoods against RCARNR and RCARR,
for each of the three cardinalities, 2, 4 and 10, in Figure 3.11. Recall that the true Alarm
network has 46 edges (see Figure 3.9). Therefore we should expect that the average
number of edges converges towards that number. We have run the Markov chain for
105 iterations and we may see in all these three plots that all lines still have some slope
downwards at the last iteration. According to this convergence diagnostic, it implies that

90 Chapter 3. Structural Learning

0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

av
er

ag
e

nu
m

be
r

of
 e

dg
es

iterations

Convergence average number of edges

NCR
CR
RCARR2
AR
RCARNR2

(a)

0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

av
er

ag
e

nu
m

be
r

of
 e

dg
es

iterations

Convergence average number of edges

RCARNR4
NCR
CR
AR
RCARR4

(b)

0

10

20

30

40

50

60

70

80

90

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

av
er

ag
e

nu
m

be
r

of
 e

dg
es

iterations

Convergence average number of edges

NCR
CR
AR
RCARNR10
RCARR10

(c)

Figure 3.11: Convergence average number of edges for the 10k dataset. Legends are
ordered with lines.

3.6 The Markov Chain Monte Carlo Method 91

the chain has not converged. However, it is already possible to observe which approach
has a faster convergence.

In all three plots, the fastest convergence is obtained by using either an RCARR or an
RCARNR neighborhood. We may appreciate that the larger the cardinality of RCAR is,
the larger the difference between the use of RCAR and any of the other non-RCAR neigh-
borhoods. In the particular case of cardinality 4, although RCARR4 clearly outperforms
the rest, RCARNR4 shows the slowest convergence. This may be due to a sequence
of jumps that led the Markov chain into an area of local maxima from which it is very
improbable to escape.

0.001

0.01

0.1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

ac
c/

re
j

iterations

Convergence acc/rej ratio

AR
RCARR4
RCARR10
CR
RCARNR10
RCARNR4
NCR

Figure 3.12: Convergence accepts/rejects ratio for the 10k dataset. Legends are ordered
with lines.

We can see this effect by examining the convergence of the ratio of accepts over re-
jects, in Figure 3.12, where RCARNR4 has one of the lowest ratios, only larger than NCR.
We did not include RCARR2 and RCARNR2 but they are larger than RCARNR4. Note
from this convergence diagnostic that the lines still have some slope, so we can also
conclude from this diagnostic that the chain did not converge.

The next convergence diagnostic, the marginal of the data p(D) (in log form), is in
Figure 3.13. In Figure 3.14 we will find the same plots with the marginal range zoomed
for the higher values. Here a larger p(D) indicates that the Markov chain moves in an
area of a higher posterior and therefore yields faster convergence. Again RCARR and
RCARNR outperform CR, NCR and AR neighborhoods. We observe that for the RCAR
4, the slow convergence shown in plot 3.11b is in agreement with a low log p(D).

Another interesting fact is in the slope of the curve for the AR neighborhood when we
look at the entire length of the Markov chain (left plots). We may appreciate that using
the AR neighborhood, p(D) increases faster than any of the others. This means that the
AR neighborhood performs larger steps in the search space, but then later seems to get
stuck in worse local maxima than using RCARR or RCARNR neighborhoods.

92 Chapter 3. Structural Learning

-200000

-190000

-180000

-170000

-160000

-150000

-140000

-130000

-120000

-110000

-100000

1 10 100 1000 10000 100000

lo
g

p(
da

ta
)

iterations

Convergence marginal log p(data)

RCARNR2
RCARR2
NCR
CR
AR

(a)

-200000

-190000

-180000

-170000

-160000

-150000

-140000

-130000

-120000

-110000

-100000

1 10 100 1000 10000 100000

lo
g

p(
da

ta
)

iterations

Convergence marginal log p(data)

RCARR4
NCR
CR
AR
RCARNR4

(b)

-200000

-190000

-180000

-170000

-160000

-150000

-140000

-130000

-120000

-110000

-100000

1 10 100 1000 10000 100000

lo
g

p(
da

ta
)

iterations

Convergence marginal log p(data)

RCARR10
RCARNR10
NCR
CR
AR

(c)

Figure 3.13: Convergence of the marginal of the data (entire marginal range). Compari-
son between AR, CR, NCR, RCARNR and RCARR. Legend is ordered with lines.

3.6 The Markov Chain Monte Carlo Method 93

-116000

-115000

-114000

-113000

-112000

-111000

-110000

-109000

-108000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

lo
g

p(
da

ta
)

iterations

Convergence marginal log p(data) - zoomed

RCARNR2
RCARR2
NCR
CR
AR

(a)

-116000

-115000

-114000

-113000

-112000

-111000

-110000

-109000

-108000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

lo
g

p(
da

ta
)

iterations

Convergence marginal log p(data) - zoomed

RCARR4
NCR
CR
AR
RCARNR4

(b)

-116000

-115000

-114000

-113000

-112000

-111000

-110000

-109000

-108000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

lo
g

p(
da

ta
)

iterations

Convergence marginal log p(data) - zoomed

RCARR10
RCARNR10
NCR
CR
AR

(c)

Figure 3.14: Convergence of the marginal of the data (zoomed marginal range). Com-
parison between AR, CR, NCR, RCARNR and RCARR. Legend is ordered with lines.

94 Chapter 3. Structural Learning

0

0.05

0.1

0.15

0.2

0.25

0.3

40 45 50 55 60 65 70 75 80 85 90

p(
#e

dg
es

|d
at

a)

#edges

Posterior of the number of edges

AR

CR
NCR

AR*

CR*

NCR*

AR
CR
NCR
AR*
CR*
NCR*

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

40 50 60 70 80 90 100

p(
#e

dg
es

|d
at

a)

#edges

Posterior of the number of edges

RCARR4

RCARNR4

RCARR10

RCARNR10

RCARR4*
RCARNR4*

RCARR10*
RCARNR10*

RCARR4
RCARNR4
RCARR10
RCARNR10
RCARR4*
RCARNR4*
RCARR10*
RCARNR10*

(b)

Figure 3.15: Comparison convergence ability.

In Figure 3.15 we have the posterior distribution of the different numbers of edges.
In this case, we have started the Markov chain from both the empty DAG model and the
almost true Alarm network, which has been noted with an asterisk next to the name of
the corresponding neighborhood. In plot 3.15a we can see the runs for the AR, CR and
NCR neighborhoods. Clearly, those that started at the almost true Alarm network show
a faster rate of convergence than those that did not.

In plot 3.15b we see the runs for cardinalities 4 and 10 of the RCARNR and RCARR
neighborhoods. In contrast with the previous case, here two of them, namely RCARR4
and RCARR10, are able to provide distributions quite similar to those of the ones that
started in the almost true alarm network. With this diagnostic, we end the analysis of
the convergence of the MC3 algorithm and we can conclude that the RCAR operation
improves substantially the rate of convergence of the MC3 algorithm.

A further interesting outcome of our experimentation arises from looking at the num-

3.6 The Markov Chain Monte Carlo Method 95

1

10

100

1000

10000

0 50 100 150 200 250 300 350 400 450 500

da
gs

essential graphs

Number of dags per essential graph (CR)

MCMC estimation
lower bound

(a)

1

10

100

1000

10000

0 100 200 300 400 500 600 700

da
gs

essential graphs

Number of dags per essential graph (NCR)

MCMC estimation
lower bound

(b)

1

10

100

1000

10000

0 100 200 300 400 500 600

da
gs

essential graphs

Number of dags per essential graph (AR)

MCMC estimation
lower bound

(c)

1

10

100

1000

10000

0 100 200 300 400 500 600

da
gs

essential graphs

Number of dags per essential graph (RCARR4)

MCMC estimation
lower bound

(d)

Figure 3.16: DAGs per essential graph.

ber of members of each equivalence class of DAG Markov models, visited by the Markov
chain during the 105 iterations. For comparison, we have computed a lower bound on
the size of each equivalence class, as follows.

Let M(G) be a DAG Markov model. Let E(G∗) be its corresponding EG Markov
model, i.e. M(G) = E(G∗), where G∗ is the essential graph representation of G. Let G∗

have m connected components, where each of them has ρi reversible edges. The lower
bound on the number of members of the equivalence class represented by G∗ is

m

∏
i=1

(ρi + 1).

In Figure 3.16 we see the plots of these numbers for the runs that started on the
almost true Alarm network. In plots (a) and (b) we see CR and NCR, where in this latter
case there are no more than two members visited due to the nature of the non-covered
reversal operation.

In plots (c) and (d) we see that AR visits a similar amount of members per class as
the CR neighborhood and RCARR4 can estimate the number of members of each equiv-
alence class much better. This is the empirical evidence for Theorem 3.4, which explains

96 Chapter 3. Structural Learning

46

47

48

49

50

51

52

0 200000 400000 600000 800000 1e+06

av
er

ag
e

nu
m

be
r

of
 e

dg
es

iterations

Convergence average number of edges

RCARR10
AR
RCARR4
RCARR2
RCARNR10
RCARNR2
RCARNR4

(a)

-108455

-108450

-108445

-108440

-108435

-108430

-108425

-108420

-108415

-108410

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

lo
g

p(
da

ta
)

iterations

Convergence marginal log p(data)

RCARNR2
RCARNR4
RCARNR10
RCARR10
RCARR4
AR
RCARR2

(b)

0

0.05

0.1

0.15

0.2

0.25

46 48 50 52 54 56 58

p(
#e

dg
es

|d
at

a)

#edges

Posterior distribution of the number of edges

RCARNR2
RCARNR4
RCARNR10
RCARR2
RCARR4
RCARR10
AR

(c)

Figure 3.17: Convergence diagnostics for a Markov chain of length 106 iterations, starting
from the almost true Alarm network. Legends are ordered with lines.

3.6 The Markov Chain Monte Carlo Method 97

why the RCAR operation enhances both heuristic search and the MCMC method.
The length of Markov chain we have used (105 iterations) is long enough as to clearly

distinguish among different rates of convergence. However, all the diagnostics show
lack of convergence of the chain. We have run a longer chain for 106 iterations starting
from the almost true Alarm network. The convergence diagnostics are in Figure 3.17.

In this case we do not include the CR and NCR neighborhoods for comparison. In
plot 3.17a we find the average number of edges during the run. In plot 3.17b we find the
convergence of the marginal of the data. In plot 3.17c we find the posterior distribution of
the cardinalities of the corresponding sets of edges. In all these three diagnostics we can
distinguish two groups that converge at a different rate. One formed by AR, RCARR10,
RCARR4 and RCARR2, and another by RCARNR10, RCARNR2 and RCARNR4. The
second group shows better convergence.

In a way, this is surprising because, as we had seen so far, RCARR was outperform-
ing RCARNR. Now, it is clear that starting from the almost true Alarm network and
running that long, RCARNR converges faster. Nevertheless, this behavior should not be
surprising to us, if we assume that Meek’s conjecture (see Conjecture 3.1) holds. As we
saw in Theorem 3.4, the ENR neighborhood provides the largest portion of the inclusion
boundary among all concepts of neighborhood presented here. Recall that the RCARNR
is an approximation of the ENR neighborhood. Thus, in theory we had no reason to be-
lieve that any of the other neighborhoods would improve the RCARNR neighborhood.
Only we could see empirically that when starting from the empty Alarm network, the
RCARR neighborhood converges faster.

We may conclude that when the Markov chain is close to the model with largest
likelihood, the non-covered reversal operation in the RCARR neighborhood leads the
chain to local maxima that slows down the convergence. The accepts over rejects ratios,
which we don’t show here, are lower for RCARR neighborhoods, meaning precisely this
effect, that there is a very low probability of escaping from where the chain is. This might
be happening because the non-covered reversal always makes the chain jump to a model
out of the inclusion boundary (see Theorem 3.4).

We conjecture that probably a better strategy would combine, during the run of the
Markov chain, both the RCARR and RCARNR neighborhoods.

Finally, we will take a look at the computational overhead produced by the use of the
RCAR operation within the MC3 algorithm. In Figure 3.18 we have plotted the average
number of iterations (lines 5 through 14 in Figure 3.10) per second. This plot corresponds
to the runs of length 105 iterations. In addition to the legend, we have labeled the lines
with their corresponding neighborhood and also included the total average ratio of ac-
cepts and rejects. A lower ratio speeds up the chain as it is making, on average, less
moves.

For clarity we only report comparison between AR, RCARR4 and RCARR10, as the
differences are similar for other combinations. Examining separately the runs that start
from the empty DAG model and those that start from the almost true Alarm network,
we see that, in both cases, using the RCAR operation is between two and three times
slower than not using it.

This cost is similar to the one we observed for heuristic search, and we consider
it to be a very good trade off. Madigan et al. (1996) extended the MC3 algorithm to
work directly in the space of equivalence classes of DAG models. They do not show the

98 Chapter 3. Structural Learning

0

10

20

30

40

50

60

70

80

90

100

110

0 20000 40000 60000 80000 100000

sp
ee

d
(it

er
/s

ec
)

iterations

Performance MCMC

7.95e-03 AR*

5.87e-03 RCARR4*

6.15e-03 RCARR10*

8.54e-03 AR

8.12e-03 RCARR4

7.87e-03 RCARR10

AR*
RCARR4*
RCARR10*
AR
RCARR4
RCARR10

Figure 3.18: Performance.

computational overhead with respect to the space of DAG models. However, the fact
that their Markov chain modified two adjacencies at a time, to guarantee irreducibility,
suggests that their method is computationally more expensive than ours.

3.7 Concluding Remarks

In this chapter we have studied the problem of structural learning of DEC and DAG
Markov models. We have surveyed the corresponding Bayesian score metrics and two
of the most important model-based approaches to structural learning: heuristic search
and the MCMC method.

The two main problems that a learning algorithm has to face are the sparseness of the
data, and the local maxima in the search space for the combination of traversal operator
and scoring function used in the learning process. While restricting ourselves to work
with a higher amount of data alleviates the first problem, it may aggravate the second
one. The way in which a learning algorithm traverses the search space is fundamental for
the success of the algorithm in front of the previously mentioned problems. In order to
investigate ways to improve current traversal operators we have introduced the notion
of graphical Markov model inclusion and carried out a thorough study of the inclusion
order in the class of DAG Markov models.

In this study we showed the relevance of the inclusion order to structural learning
of GMMs. In the particular case of DAG models, this study combined theoretical results
(Kočka, 2001) with a specific policy (Kočka and Castelo, 2001, the RCAR algorithm) that
partially accounts for the inclusion order, to provide two new learning algorithms, the
HCMC and the eMC3.

The experiments with synthetic data show that the new algorithms improve the cur-
rent approaches without compromising the computational performance.

Chapter 4

Data Mining

4.1 Introduction

In the first chapter we have mentioned that the database area has played an important
role in the growth of data mining. This has been clearly the case in one of the most
popular data mining algorithms: association analysis.

There is a trend in business to provide a personalized service to customers, by means of
using barcodes, and many other mechanisms, that identify our transactions. This trend
materializes in the storage of large amounts of information in the so-called transactional
databases.

Transactional databases (see for instance (Han and Kamber, 2001)) store records
formed by a unique transaction identifier and a list of items members of that transac-
tion. A traditional example of a transaction is our shopping basket in a supermarket,
when we use a customer loyalty card at the moment we pay such that, our identity and
the list of products we buy, are registered.

Association analysis (Han and Kamber, 2001) is the discovery of association rules. An
association rule, as we shall see in depth later, is a set of attribute-value conditions that
occur frequently enough that these conditions become an interesting observation about
what is stored in the database and, thus, what happens in the store.

This is an instance of one of the main differences between the models used in data
mining, and those used in statistics. While in the former tend to describe local patterns
also, the latter try to construct a global model only.

The induction of association rules poses several difficult problems regarding the com-
putational complexity of extracting such rules from large databases. Many algorithms
have been developed for such purpose and in this chapter we will see how GMMs pro-
vide a new perspective for this problem. This new perspective opens new ways of tack-
ling the problem of retrieving association rules from databases. The approach is interest-
ing in the sense that combines the use of a global model to guide the process of finding
an interesting local pattern.

In the next section we will describe in detail what association rules are, and existing
algorithms for their retrieval, and in section 3 we will introduce a new algorithm for
such purpose (Castelo et al., 2001). Finally, we will summarize the important points of
this chapter.

100 Chapter 4. Data Mining

4.2 Association Rules

Let U = {I1, I2, . . . , Im} be a finite set of available items. A transaction is a subset Ti ⊆ U
uniquely identified by some index i, which may correspond, for instance, to a shop-
ping basket purchased in a supermarket. Given two disjoint non-empty subsets of items
A,B ⊆ U , an association rule A → B indicates cross-sell effects on the items in A and B
across the transactions T1, T2, . . . , TN .

For each item consider a binary random variable Zi which, in a given transaction,
will take the value 1 if the ith item belongs to the transaction, and 0 otherwise. In this
way we can represent a particular set of items by a particular assignment Z = z, where
as in previous chapters, Z represents a set of variables and z is some instantiation of the
product space ×Zi, Zi = {0, 1}. Now, we can write an association rule as

X = x→ Y = y,

where X, Y ⊂ Z. For simplicity, we will neglect the instantiated values x and y from the
previous notation when their presence is not relevant in the discussion, thus just writing
X→ Y.

In general terms, the problem of finding interesting association rules corresponds to
the problem of finding assignments Z = z, that provide a high probability density in
the joint probability distribution p(Z). As pointed out in Hastie et al. (2001), this may
be viewed as a problem of “mode finding” or “bump hunting” which reveals that the
problem, as formulated, is intractable.

In order to provide a tractable solution to the problem of finding interesting associa-
tion rules, one does not try to seek these particular assignments z1, . . . , zm that concen-
trate the density of p(Z). Instead one tries to find regions in the product space ×Zi that
provide a high probability relative to the amount of transactions that fall within those
regions.

The proportion of transactions that fall within a particular region of the product space
×Zi, Z = z, is called the support of the items present throughout these transactions, and
noted sup(Z = z). A set of items, or itemset, X = x is said to be frequent if its support
exceeds some predefined support t, i.e. sup(X = x) ≥ t. Analogously, for a given
association rule X = x → Y = y, one says that the support of this rule is the proportion
of transactions that contain all items in X and Y, noted sup(X = x → Y = y). Using the
concept of support, the confidence of a rule is defined as:

cnf(X = x→ Y = y) =
sup(X = x→ Y = y)

sup(X = x)
. (4.1)

Association rules were introduced by Agrawal et al. (1993) who provided the Apriori
algorithm to learn them from data. Given some fixed support and confidence thresholds,
t and c respectively, 0 < t, c < 1, the Apriori algorithm works by creating a collection of
frequent itemsets which are used later as building blocks to find interesting association
rules whose confidence exceeds the corresponding threshold c.

More concretely, it begins by creating all single frequent itemsets. Then, the algorithm
creates all frequent itemsets of size two using the single frequent itemsets previously
created. The algorithm works in this way systematically, using previously encountered
itemsets and discarding those newly created that do not meet the fixed threshold on

4.3 Association Rules based on Conditional Independencies 101

support t. This strategy follows from the realization that if an itemset is not frequent,
then no superset of this itemset can be frequent.

Once we have a collection F of frequent itemsets, then the association rules are gen-
erated as follows:

1. For every frequent itemset F ∈ F , create all non-empty subsets of F.

2. For every non-empty subset S of F, let S = (X = x) and F\S = (Y = y). If
cnf(X = x→ Y = y) > c, then output the rule X = x→ Y = y.

Since the antecedent and the consequent of the rule are derived from a single fre-
quent itemset, it follows immediately that the rule also satisfies the minimum support
threshold t. A further measure typically used in this context to rank and filter interesting
rules is an estimate of the association between the antecedent and the consequent, which
is known as the lift and computed as follows:

lft(X = x→ Y = y) =
cnf(X = x→ Y = y)

sup(Y = y)
. (4.2)

The lift is a positive quantity that has value 1 if there is no association between the
antecedent and the consequent, and we will be interested in those association rules with
a high lift.

Examples of the application of the Apriori algorithm, more detailed explanations and
enhancements for improving performance may be found in (Agrawal et al., 1995; Han
and Kamber, 2001). A different approach for rule extraction, may be found in (Goodman
et al., 1992).

4.3 Association Rules based on Conditional Indepen-
dencies

The support pruning by Apriori poses a serious problem when applying association
rules in practice. Rules with high support are in general already known, while using a
(very) low support threshold causes two problems. Firstly, it results in very many rules,
most of which are uninteresting. The second, as pointed out by Hastie et al. (2001, pg.
444), is that the number of frequent itemsets and their sizes can grow exponentially.

For the first problem, many intestingness measures, such as the lift, have been de-
fined, that can be used to filter or order the resulting association rules. The computa-
tional problem, however, has proven to be more difficult. In fact, the support threshold
was introduced for computational reasons because a high support threshold substan-
tially reduces the number of possible frequent itemsets.

From a purely data analysis point of view, pruning on support is therefore an arti-
ficial device unrelated to what the data may reflect. A sensible approach is to devise
algorithms that do not rely on support pruning to find interesting association rules. Two
recent works in this direction are (Silverstein et al., 1998; Cohen et al., 2001). In this
section we will introduce another approach that does not rely on support pruning.

We propose to use the relationships of conditional independence among the random
variables representing the items, to make the discovery of association rules computation-
ally feasible. As we already discussed in previous chapters, conditional independence

102 Chapter 4. Data Mining

plays an important role in the mechanism that generates the data, therefore it is an ap-
pealing way to restrict the set of association rules considered.

Recall the definition of conditional independence (see Definition 2.1), under which
two non-empty sets of variables X and Y are said to be conditionally independent given
a third set Z if for all configurations x, y, z satisfying p(Z = z) > 0, it holds that

p(X = x|Y = y, Z = z) = p(X = x|Z = z). (4.3)

This relationship was noted as X⊥⊥Y |Z, and the notion behind is that if we know Z,
any further information about Y cannot enhance the current state of information about
X, i.e. given Z, Y becomes irrelevant to X.

Since the support for a given itemset X = x is defined as the proportion of transac-
tions that contain the items in X = x, it can be interpreted as an estimate of the proba-
bility of X = x, p(X = x) = sup(X = x). The support of a rule is then also an estimate
of the joint probability of the antecedent and consequent, p(X = x, Y = y) = sup(X =
x→ Y = y).

Consequently, the confidence (4.1) of a rule is an estimate of the conditional proba-
bility p(Y = y|X = x) = cnf(X = x → Y = y). Finally, the lift (4.2) of a rule is therefore
an estimate of the following ratio,

lft(X = x→ Y = y) =
p(Y = y|X = x)

p(Y = y)
. (4.4)

.
If we know that X⊥⊥Y |Z, then by the factorization in (4.3), we know that the previous

ratio for the rule {X = x, Z = z} → Y = y can be rewritten as follows

lft({X = x, Z = z} → Y = y) =
p(Y = y|X = x, Z = z)

p(Y = y)
=

p(Y = y |Z = z)
p(Y = y)

.

In a nutshell, the lift does not rise by adding knowledge about X, X is irrelevant to Y
given Z. Or, if we have an association rule for Y with X and Z on the lefthand side, we
might as well filter X out.

This is interesting if Z shields Y from all other variables, i.e. if Y⊥⊥U\(Y∪Z) |Z where
U denotes the entire set of variables. Because then we only have to consider association
rules whose lefthand side is within Z. All of this is even more interesting if Z is minimal,
i.e. if we remove an element from Z it no longer shields Y from the rest. Such a minimal
set is called a Markov blanket of Y (Pearl, 1988).

To keep our discussions simple, we will assume that the consequent of the association
rule is a singleton, as X = x→ Y = y. The ideas and procedures explained here are easy
to adapt afterwards to association rules with a consequent of an arbitrary cardinality.

We want to build an oracle that can answer queries over the validity of CI statements
of the form Y⊥⊥U\(Y ∪ Z) |Z in a given dataset. Or more precisely, whether Z is the
Markov blanket of Y for a given dataset. The problem that immediately arises is that we
do not have the probability distribution but a dataset sampled from it. Thus, there is an
implicit uncertainty in the validity of such a CI restriction.

4.3 Association Rules based on Conditional Independencies 103

In order to account for this uncertainty we adopt a Bayesian approach and use as
oracle a posterior distribution over the set of possible Markov blankets of a given conse-
quent Y for a rule, i.e. CI restrictions of the form Y⊥⊥U\(Y ∪ Z) |Z.

To carry out this idea we will make use of DEC Markov models to handle CI restric-
tions and the MCMC method to compute the posteriors. For a given vertex v in a DEC
Markov model, its Markov blanket corresponds to its boundary bd(v) (see chapter 2).
So, we can compute the posterior of a CI statement I ≡ Y⊥⊥U\(Y ∪ Z) |Z given the data
as follows:

p(I|D) = ∑
M∈M

p(I|M, D)p(M|D),

which corresponds to the computation of a quantity of interest ∆ as indicated in expres-
sion (3.28). In the present context,M corresponds to the class of DEC Markov models,
which we use here as a device to handle CI restrictions.

The general procedure to learn association rules is as follows. First, we build an
oracle which consists of pairs (I, p) where I is a CI restriction of the form Y⊥⊥U\(Y ∪
Z) |Z and p is its posterior probability given the data. These pairs will be obtained from
the MCMC output.

Second, for every variable, we consider some maximum number of Markov blan-
kets from the corresponding posterior distribution. For each of the Markov blankets, we
generate association rules with a subset of the Markov blanket as lefthand side. There
are further details to take into account which we will explain now. The complete algo-
rithm, called Mambo (Maximum A posteriori Markov Blankets using an Oracle), is in
Figure 4.1. The Mambo algorithm takes the following four parameters:

• nmb: maximum number of Markov blankets.

• Y: set {Y1, . . . , Yn} of random variables from the dataset.

• dc: minimum improvement in confidence for a superrule.

• dl: minimum improvement in lift for a superrule.

It has a main loop that goes through lines 1 to 11. At each iteration it will create all
possible association rules with the variable Yi on the righthand side. The association
rules created in each iteration are temporarily stored in pres, which is initialized in line
3. In line 4 the function oracle(·) is called which returns a set of, at most nmb, Markov
blankets for the variable Yi.

The loop that iterates through lines 5 to 9 considers each of these nmb Markov blan-
kets, noted Z. The inner loop iterates through all possible subsets of the Markov blanket
Z, i.e. the power set P(Z) without the empty set. Each of those subsets is noted as X and
is used to generate association rules of the form X = x → Yi = yi for all possible values
x ∈ X and yi ∈ Yi. In this context X is the product space ×Xi where Xi are the levels of
variable Xi and Yi are the levels of variable Yi. All these association rules are stored in
the set pres.

The set {Z1, . . . , Znmb} of nmb Markov blankets for a particular righthand side
variable Yi, may contain two Markov blankets Zi = {X1, . . . , Xm} and Z j =

104 Chapter 4. Data Mining

algorithm mambo(int nmb, set Y, flt dc, flt dl) returns set
01 set res = /0
02 for Yi ∈ Y do
03 set pres = /0
04 set O = oracle(Yi,nmb)
05 for Z ∈ O do
06 for X ∈ P (Z)\{ /0} do
07 pres = pres∪{(X = x → Yi = yi) |x ∈ X ,yi ∈ Yi}
08 enddo
09 enddo
10 res = res∪filter(pres,dc,dl)
11 enddo
12 return res
endalgorithm

Figure 4.1: The Mambo algorithm.

{X1, . . . , Xm, W1, . . . , Wk}, thus Zi ⊂ Z j. This may lead to generate the following two
association rules:

R1 : X = x→ Y = y
R2 : {X = x, W = w} → Y = y

In this circumstance we will say that R2 is a superrule of R1. Given an association
rule, not all of its superrules are necessarily of interest. In particular, if they have similar
confidence and lift. Then, we will prefer the smaller rule since it is more general. For this
reason, in line 10 of the Mambo algorithm, we call the function filter(·) which removes
from the initial set pres all those superrules that do not improve confidence and lift in the
given quantities dc and dl. The resulting filtered set is added to the final set of association
rules res, which after all iterations of the main loop is returned. The filtering algorithm
is specified in Figure 4.2 and takes three parameters:

• S: set of association rules to filter.

• dc: minimum improvement in confidence for a superrule.

• dl: minimum improvement in lift for a superrule.

The algorithm first copies the input set of association rules into the set F on which
the filtering (removal) operations will take place. It has a main loop from line 2 till line
31 that goes through every association rule in F. It starts by storing the confidence and
lift of the current association rule X = x → Y = y in c∗ and l∗ respectively, which are
used later on.

From lines 5 till 15 it checks whether the association rule X = x → Y = y is a
superrule in F that does not improve confidence and lift in dc and dl. In such case the
boolean variable sr takes the truth value and then in line 17 this rule is removed from the

4.3 Association Rules based on Conditional Independencies 105

algorithm filter(set S, flt dc, flt dl) returns set
01 set F = S
02 for (X = x → Y = y) ∈ F do
03 flt c∗ = cnf(X = x → Y = y)
04 flt l∗ = lft(X = x → Y = y)
05 bool sr =false
06 set Q = {(Z = z →W = w) ∈ F |W = Y ∧w = y}
07 for (Z = z →W = w) ∈ Q and ¬sr do
08 if Z ⊆ X and z ⊆ x then
09 flt c = cnf(Z = z →W = w)
10 flt l = lft(Z = z →W = w)
11 if c∗− c ≤ dc and l∗− l ≤ dl then
12 sr =true
13 endif
14 endif
15 endfor
16 if sr then
17 F = F\{X = x → Y = y}
18 else
19 set R = /0
20 for (Z = z →W = w) ∈ S do
21 if Z ⊇ X and z ⊇ x then
22 flt c = cnf(Z = z →W = w)
23 flt l = lft(Z = z →W = w)
24 if c− c∗ ≤ dc and l − l∗ ≤ dl then
25 R = R∪{Z = z →W = w}
26 endif
27 endif
28 endfor
29 F = F\R
30 endif
31 endfor
32 return F
endalgorithm

Figure 4.2: The filtering function for the Mambo algorithm.

set F. Otherwise, the rule will remain in F but all other rules in F that are superrules of
this one, and do not improve confidence and lift in dc and dl, should be removed from
F. This is implemented in lines 19 through 29 where the set R stores such rules and it is
finally removed from F in line 29.

4.3.1 Experimental Results

We have run the Apriori and Mambo algorithms over a dataset in order to show the
differences between our approach and a minimum support driven approach. The com-
parison is not intended to show that one is “better” than the other, but rather to illustrate
where the differences lie with our conditional independence driven approach.

We used the insurance company benchmark of the COIL 2000 challenge, available
from the UCI KDD archive (http://kdd.ics.uci.edu). This dataset contains informa-
tion about the customers of an insurance company, and consists of 86 variables concern-
ing product ownership and socio-demographic characteristics derived from postal area

http://kdd.ics.uci.edu

106 Chapter 4. Data Mining

codes. For this experiment we ignored the socio-demographic variables (1-43). The re-
maining variables consist of the target variable of the original challenge (whether or not
someone owns a caravan policy) and variables concerning the ownership (number of
policies) and contribution (money amount) for 21 other insurance products.

In order to make the data suitable for the analysis with binary association rules, we
considered only the product ownership variables coding with a value of 1 if the product
is owned and 0 otherwise. This leaves us with a dataset consisting of 22 binary variables
for a total of 5822 customers. Table 4.1 provides a description of the variables and the
corresponding relative frequencies of product ownership.

Table 4.1: Variables in the insurance dataset.

Var. Description Freq.
1 private third party insurance 0.402
2 third party insurance (firms) 0.014
3 third party insurance (agriculture) 0.021
4 car policy 0.511
5 delivery van policy 0.008
6 motorcycle/scooter policy 0.038
7 lorry policy 0.002
8 trailer policy 0.011
9 tractor policy 0.025

10 agricultural machines policy 0.004
11 moped policy 0.068
12 life insurance policy 0.050
13 private accident insurance policy 0.005
14 family accidents insurance policy 0.007
15 disability insurance policy 0.004
16 fire policy 0.542
17 surfboard policy 0.001
18 boat policy 0.006
19 bicycle policy 0.025
20 property insurance policy 0.008
21 social security insurance policy 0.014
22 mobile home insurance policy 0.060

In the analysis with the Apriori algorithm we used a minimum support of t = 0.01
that corresponds to 59 records. All rules with 1 item on the righthand side were gener-
ated from the frequent itemsets found. This yielded a total of 102 association rules.

The oracle was created by running the MC3 algorithm on the class of DEC Markov
models defined on the 22 variables, through 106 iterations which seemed to be sufficient
to achieve convergence.

We have run the Mambo algorithm with a number of variations in the parameter val-
ues in order to illustrate the effect of these different parameters. In the most basic run we
selected for each variable only the Markov blanket with highest posterior probability, i.e.

4.3 Association Rules based on Conditional Independencies 107

nmb = 1 (see Figure 4.1). Furthermore we only consider positive rules for the moment,
i.e. rules of type X = 1 → Y = 1. In general however, values in the antecedent and
consequent of the rule may be either 0 or 1. For an initial comparison with the Apriori
results we further selected only those rules with support at least 0.01. It is important to
note that this was done afterwards, since the minimal support is not used in Mambo to
constrain the search.

In order to consider the effect of filtering the superrules that do not improve confi-
dence and lift, we performed the initial analysis without filtering them. This yielded a
total of 72 rules, 30 less than Apriori (since we selected rules with support at least 0.01, all
72 rules were also found by Apriori). To illustrate why some rules generated by Apriori
were not considered by Mambo we look to an example.

For variable 9 we found that the Markov blanket with highest posterior probability
(0.4) is {3, 10}. One of the rules found with Apriori is {3, 16} → 9 (we use this notation
as a shorthand for {3 = 1, 16 = 1} → 9 = 1) with confidence 0.64, lift 26 and support
0.013. This rule was not found with Mambo since the antecedent contains variable 16
which does not belong to the best Markov blanket. The rule 3→ 9 with confidence 0.62,
lift 25 and support 0.013 was found by Mambo because its antecedent is a subset of the
best Markov blanket.

If we filter superrules that do not improve confidence by 0.05 and lift by 0.1, the
number of rules is reduced from 72 to 60. For example, one of the 72 rules found is
{4, 3} → 16 with a lift of 1.83. There exists a subrule 3 → 16 however, with a lift 1.80.
Therefore the superrule is filtered out from the ruleset.

Now, as mentioned, with Mambo we can find interesting rules regardless of their
support. For example, the best rule for product 4 found with Apriori is {1, 6, 22} → 4
with a confidence of 0.88 and lift 1.7. With Mambo (without any support restrictions) we
find the rule {21, 1} → 4, with confidence 0.96, lift 1.9, and support 0.008 (46 records).
This rule has higher confidence and lift than the best rule found with Apriori, but does
not meet the minimum support requirement of 0.01.

Table 4.2: The number of rules found by Mambo for different values of nmb, with re-
moval of superrules. Only rules with support at least 0.005 have been counted. The last
row also counts rules with zero values in the antecedent or consequent.

nmb
ruletype 1 2 5
positive 78 78 85
all 518 549 750

It is interesting to note that setting the maximum number of Markov blankets nmb
to 5 instead of 1, does not lead to a dramatic increase of the number of rules (see Ta-
ble 4.2). For example, if we consider only positive rules and remove superrules that
do not meet the minimum improvement requirements previously specified, we obtain
a total of 78 rules with nmb set to 1 (selecting only the rules that have support at least
0.005). If we use the same settings, but select the 5 most probable Markov blankets, we
obtain a total of 85 rules. The 7 additional rules found are of high quality in the sense

108 Chapter 4. Data Mining

that they all have a lift larger than 1. One of the additional rules found with nmb = 5 is
{16, 21} → 1, with confidence 0.72, lift 1.8 and support 0.007. This rule was not found
with nmb = 1 since the Markov blanket for 1 with highest posterior probability (0.78) is
{2, 3, 4, 11, 12, 16}, i.e. it does not contain 21. However, the Markov blanket with third
highest posterior probability (0.036) is the same set with 21 added (see Figure 4.3). Fur-
thermore, {16, 21} → 1 is not pruned by a subrule since it improves the lift as required
on the subrules 16→ 1 (lift 1.6) and 21→ 1 (lift 1.5).

{3,4,11,12,16} 0.015

+{2} 0.78

+{9} +{20} +{21}

0.01 0.11 0.036

Figure 4.3: The 5 best Markov blankets for variable 1. Only additional elements to the
set on top are shown. Posterior probability is shown to the right of or below a set.

Looking at Figure 4.3 we can understand why not very many rules are added when
nmb is increased from 1 to 5. For example, the set at the top is a subset of the best
blanket, and can therefore not generate any additional rules. The sets at the bottom have
one element additional to the best set and could generate additional rules. Many of these
rules are removed however because they are only slightly better, or even worse, than one
of their subrules. For example, {4, 16} → 1 (lift: 1.9) is generated from the best Markov
blanket. Later the rule {4, 16, 21} → 1 (lift: 1.9) is considered through the third best
Markov blanket but immediately filtered because it has the same lift as the subrule just
mentioned.

4.4 Concluding Remarks

Selecting interesting association rules is a very difficult problem as in large databases the
amount of them, meeting frequency thresholds, can be huge. As Hand et al. (2001) point
out, the use of significance testing methods to distinguish interesting rules is problem-
atic.

We have presented an algorithm for the discovery of association rules that is driven
by conditional independence relations between the variables rather than minimum sup-
port restrictions. We consider this to be an interesting alternative because for some ap-
plications minimum support is a rather artificial constraint primarily required for com-
putational reasons.

Making use of conditional independencies is an intuitively appealing way to restrict
the set of association rules considered, because CI restrictions are part of the mechanism
that generates the data. Furthermore, the information concerning conditional indepen-
dencies between variables may be of interest in its own right.

4.4 Concluding Remarks 109

We have analyzed an insurance dataset with Mambo and illustrated the differ-
ences with a minimum support driven approach. It is ultimately an empirical question
whether rules based on CI restrictions or rules based on minimum support restrictions
are to be preferred for a particular application. If the rules are used exclusively for de-
scriptive purposes, it makes sense to consult domain experts for the assessment of rule
quality. If the rules are used for predictive purposes as well one can compare the predic-
tive accuracy of the rules obtained with the different approaches.

110 Chapter 4. Data Mining

Chapter 5

Applications

5.1 Introduction

In this chapter we will show three applications on real-world data of the Bayesian ap-
proach to learning DEC models. In particular we will be using the MC3 algorithm in-
troduced in chapter 3. We have not used DAG models as it is difficult to assess what
variables occur on different footing for these datasets. Therefore, we take a more con-
servative approach and assume that the data generating mechanism sets all variables on
equal footing.

The first application (Giudici and Castelo, 2001a) is on data that comes from the
world wide web. The second (Giudici and Castelo, 2001b) on data from a medical do-
main. The third (Giudici and Castelo, 2001b), and last one, is on data from a supermar-
ket. We will see that the three datasets have an increasing degree of sparseness which
implies an increasing degree of difficulty in the analysis. The Bayesian approach used
here, however, can be used in all three scenarios in the same way and, as we shall see, it
provides a great insight into the analyzed data.

5.2 Web Mining

The term Web Mining refers to the task of analyzing data that describes the accesses
through the internet to a website. The explosion of the electronic commerce through the
internet has made this particular type of data an invaluable source of corporate informa-
tion about customers. For a given company with presence on the internet, its competitors
may be just one click away from the pages of its website. Therefore, it becomes crucial
to understand how users visit the pages that form the website in order to improve the
so-called customer relationship management, or CRM.

We consider a model-based approach to Web Mining, in order to carry out an explo-
rative study that will help understand the way people interact with a website. With the
exception of webcrawlers there is usually a person involved so we may assume there is
a purpose in the visit to the website and it makes sense to believe there is a correlation
between the hits registered. An analysis of pairwise correlations, as done in a typical
association analysis, provides some information about how people access the website.

112 Chapter 5. Applications

Still more information may be gathered by examining higher order correlations and con-
ditional independencies.

The dataset we have used corresponds to all visited pages on the web
site http://www.microsoft.com by a total population of 5000 anonymous visi-
tors, randomly chosen. This dataset is available through the UCI KDD archive
(http://kdd.ics.uci.edu). Each visitor is identified with a number going from 10000
to 15000 and no personal information is given. For each visitor the number of visits to
each page of the site in a week of February 1998 is recorded. Site pages are identified
with a number, which corresponds to an address (e.g. 1057 corresponds to ”MS Power
Point News”). This data does not contain information about the click order of the visitor.

For illustrative purposes, we report here a piece of the log-file. The codes for for
visitors are denoted by C, and for vroots (pages) denoted by V.

C, "10908", 10908
V, 1108
V, 1017
C, "10909", 10909
V, 1113
V, 1009
V, 1034
C, "10910", 10910
V, 1026
V, 1017

This log-file in particular is practically ready to analyze, but in general, log-files con-
sist of an much more entangled amalgamation of codes and identifiers. Their transfor-
mation into a clear format that can be processed by some mining algorithm is in itself a
very difficult task.

Note that a client typically visits only a few different pages; in fact the average num-
ber of visited pages per client is four. This leads to a rather sparse contingency table,
when the data is arranged according to all categorical variables corresponding to the
pages (vroots). Indeed, to alleviate the problem, we have eliminated all clients who had
visited only one page from the dataset.

This data was first analyzed by Breese et al. (1998) with the purpose of establishing a
comparison among different predictive algorithms for collaborative filtering. As stated
in that paper, collaborative filtering uses previously stored information about user pref-
erences, to predict possible future user behavior.

It is not our goal here to mine data from the web in order to predict web usage, but
rather to gather insight into the way that users access the website. This will be achieved
by means of two types of exploratory graphical modeling strategies, based respectively
on a the frequentist and the Bayesian statistical approach.

The use of GMMs for Web Mining has also been illustrated by Heckerman et al.
(2000), but in the framework of dependency networks and greedy search.

If pages are arranged by absolute frequency of visits, their distribution is heavily
asymmetric. In Figure 5.1, the most visited page is number 1008, “Free Downloads”. To
understand associations between different pages determined by the visits of the clients,
we build up a contingency table that has, as leading descriptors, as many random vari-
ables as considered pages. However, given the very high number of pages in the site,

http://www.microsoft.com
http://kdd.ics.uci.edu

5.2 Web Mining 113

0

200

400

600

800

1000

1200

1400

1600

1800

hi
ts

pages

Figure 5.1: Frequency distribution of the pages.

and the low average number of different visited pages, we need to group pages into
homogeneous categories, in order to avoid a very sparse contingency table.

By organizing the data in a contingency table we are losing the information about
the order in which the pages were seen, which might be highly interesting. In order
to analyze such information, one should use some other technique for sequence rule
analysis.

Grouping may be done in several ways, for instance statistically (see Breese et al.,
1998). On the other hand, we considered a grouping that is logically sensible, and we
identified eight groups: Programs, Catalogue, Internet, Entertainment, Office, Develop-
ment, Windows and Initials.

We also binarized the variable corresponding to the grouped page, with the level 1
indicating that the group has been visited at least once, and level 0 indicating that the
group of pages was not visited during the week. Of course, in so doing, there is a loss of
information, but there is an advantage in ease of analysis and understanding.

The cross-classification of the 5000 clients into the eight groups of pages, with two
levels per group (visited/not visited) produces a 28 contingency table. The marginal
association between groups is measured by the marginal pairwise odds ratio. For each
odds ratio we have calculated, besides the maximum likelihood estimate, an approxi-
mate 95% confidence interval. Two variables are declared significantly associated if a
value of 1 for the odds ratio, corresponding to marginal independence, falls outside the
confidence interval.

To illustrate the marginal associations, one can draw a graph whose nodes corre-
spond to the groups and where edges are inserted between a pair of nodes if the two
corresponding groups are significantly associated. Such a graph is not a GMM (in the

114 Chapter 5. Applications

WINDOWS PROGRAM

CATALOG

INITIALS

OFFICE ENTERTAINMENT

INTERNET

DEVELOPMENT

Figure 5.2: The exploratory graph: positive and negative associations are represented
respectively by solid and dashed lines.

sense that no high order CI restriction is encoded in the graph), but a marginal indepen-
dence graph, with no separation properties. However it sets a framework for subsequent
analysis. Such a marginal independence graph is depicted in Figure 5.2.

In this figure, solid lines represent positive associations and dashed lines negative as-
sociations. Those positive associations with an odds ratio greater than three, describing
a strong association, are highlighted with a thick solid line. Note that the total number
of edges estimated to be present is 14.

The preceding exploratory analysis is based on marginal independencies, as it con-
siders all marginal two-way contingency tables corresponding to each pair of variables
separately. A more correct study of the associations must consider directly the 28 joint
contingency table with all variables being simultaneously analyzed. To achieve this we
need a more structured, model based approach such as the one that GMMs provide. We
are going to explore the approximate posterior distribution of the space of DEC Markov
models on the eight groups of pages of the website.

The posterior distribution on the space of models allows us to see how frequently the
most likely model is better than the rest of the models. Also, it is interesting to see which
parts of the model remain unchanged across those models that account for the largest
portion of the distribution. Logically, these unchanged parts deserve a higher degree of
confidence in the information they provide.

We have run the MC3 algorithm for 105 iterations that provided convergence accord-
ing to the diagnostics, which we do not show here. Figure 5.3a shows the posterior
distribution of the models given the data. Next to it, in Figure 5.3b, we find this distri-
bution accumulated, by ordering the models from larger to smaller probabilities. This
latter plot allows to see the concentration of the distribution, and in this case we may see
that only three models account for more than 90% of the distribution.

Figure 5.4 shows, from (a) to (c) in increasing probability, the three DEC Markov
models that account for more than 90% of the probability distribution. These three mod-

5.2 Web Mining 115

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

p(
m

od
el

|d
at

a)

model

Distribution of the models

(a)

0

10

20

30

40

50

60

0.7 0.75 0.8 0.85 0.9 0.95 1

#m
od

el
s

sum p(model|data)

Cumulative distribution of the models

(b)

Figure 5.3: Posterior and cumulative posterior distribution of the models.

els show that the page groups Internet (INT), Windows (WIN), and Office (OFF) sepa-
rate Catalog (CAT) and Entertainment (ENT) from everything else in each of the graphs.
Thus

{CAT, ENT}⊥⊥V\{CAT, ENT, INT, WIN, OFF} | {INT, WIN, OFF}.

This means that to understand the behavior of the users in the pages under Catalog
and Entertainment, consider what the users do in the pages under these groups plus
the pages under Internet, Windows and Office. Everything else does not influence their
behavior in Catalog and Entertainment. This does not mean that there is no correla-
tion between, for instance, Entertainment and Development, but it does mean that this
correlation becomes irrelevant in light of what happens on the pages under Internet,
Windows and Office.

116 Chapter 5. Applications

INITIALS

ENTERTAINMENTDEVELOPMENT

INTERNET

WINDOWS

PROGRAM

CATALOG

OFFICE

log p(g,x) = −13580.84842
 p(g|x) = 7.380960e−01

(a)

INITIALS

ENTERTAINMENTDEVELOPMENT

INTERNET

WINDOWS

PROGRAM

CATALOG

OFFICE

 p(g|x) = 1.135700e−01
log p(g,x) = −13581.92259

(b)

INITIALS

ENTERTAINMENTDEVELOPMENT

INTERNET

WINDOWS

PROGRAM

CATALOG

OFFICE

 p(g|x) = 6.787000e−02
log p(g,x) = −13585.00241

(c)

Figure 5.4: Three most probable models given the data. They differ in how hits on pages
under Initials and Entertainment interact with hits on pages under Windows and Office.

To fully understand why this is so, it would be necessary to know the exact layout of
all the pages of the website, since this might be the effect of the structure of the website
itself. Let us assume that this has to do with user tastes and preferences. For instance,
assume that we would like to increase the hits on certain pages under the group Enter-
tainment.

Since what users do in Entertainment is related to everything else through their be-
havior in Windows, Internet and Office, it makes sense to concentrate efforts on increas-
ing the hits to Entertainment by making some design decisions in the pages belonging
to the three groups Windows, Internet, and Office. Of course, global major changes in
the structure of the website will change the way users navigate, but we are discussing
the implementation of less drastic options.

The conclusions we draw are not, in any case, the result of a causal interpretation of
the associations. They are rather the result of using the notion of conditional indepen-
dence to make reasonable assumptions about how our data is generated in order to try
to shed some light on decisions we may need to take.

The scope of this data limits the conclusions we can draw. Nevertheless, we believe
that this methodology could be more profitable if applied to more complete data where
hits are linked to user profiles or marketing campaigns on the web.

The Bayesian approach implemented through the MCMC method allows to compute
quantities of interest by averaging across the models. For this dataset we have compute
the posterior probability of the edges which we may see in Table 5.1.

We may appreciate that the edges can be grouped in two sets, one above the threshold
of 0.8, and another below. The significant pairwise associations detected in the frequen-

5.3 Coronary Heart Disease 117

Table 5.1: Posterior distribution of the edges given the data.

edge p(edge|data)
INTERNET−CATALOG 9.999600e-01

INTERNET−ENTERTAINMENT 9.999100e-01
DEVELOPMENT−INTERNET 9.998800e-01

INTERNET−OFFICE 9.998600e-01
INITIALS−DEVELOPMENT 9.998200e-01

OFFICE−PROGRAM 9.993100e-01
INTERNET−WINDOWS 9.990900e-01
INTERNET−PROGRAM 9.990800e-01
CATALOG−WINDOWS 9.990700e-01

OFFICE−WINDOWS 9.990500e-01
WINDOWS−PROGRAM 9.989600e-01

WINDOWS−DEVELOPMENT 9.951900e-01
OFFICE−CATALOG 9.616900e-01

ENTERTAINMENT−OFFICE 9.154200e-01
WINDOWS−ENTERTAINMENT 8.925100e-01

WINDOWS−INITIALS 8.634300e-01
CATALOG−DEVELOPMENT 1.079600e-01

CATALOG−PROGRAM 3.790000e-02
DEVELOPMENT−ENTERTAINMENT 4.780000e-03

OFFICE−DEVELOPMENT 3.880000e-03
ENTERTAINMENT−INITIALS 2.990000e-03

INTERNET−INITIALS 5.600000e-04
PROGRAM−DEVELOPMENT 5.200000e-04

tist analysis carried out before, basically agree with those edges in the group of higher
probability.

5.3 Coronary Heart Disease

This set of data, well known in the statistical literature, was introduced by Edwards
and Havránek (1985). It concerns 1, 841 cross-classified men, according to six binary
coronary heart disease factors. The random variables of interest are:

A smoking

B strenuous mental work

C strenuous physical work

D systolic blood pressure

E ratio of β andα proteins

F family anamnesis of coronary heart disease

118 Chapter 5. Applications

The aim of the analysis is to investigate the association structure among such risk fac-
tors. Several authors have also analyzed this dataset, as Madigan and Raftery (1994) who
consider model search over the spaces of DEC and DAG Markov models. Madigan et al.
(1996) extend the analysis considering model search over Markov equivalence classes of
DAG models. Dellaportas and Forster (1999) consider a reversible jump MCMC algo-
rithm over the broader class of hierarchical loglinear models.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100 120 140 160 180 200

p(
m

od
el

|d
at

a)

model

Distribution of the models

(a)

0

20

40

60

80

100

120

140

160

180

200

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#m
od

el
s

sum p(model|data)

Cumulative distribution of the models

(b)

Figure 5.5: Posterior and cumulative posterior distribution of the models.

We have analyzed this dataset with DEC Markov models, running the Markov chain
for 105 iterations, without burn-in, and starting from the empty graph where all variables
are marginally independent. This setup showed convergence according to the diagnos-
tics which we do not show here.

In Figure 5.5a we have the posterior distribution of the models given the data. In
this plot we see that three models have a posterior substantially larger than the rest.
In Figure 5.5b we have the cumulative distribution from which we see that these three

5.3 Coronary Heart Disease 119

models have 50% of the distribution.
Before we show the most probable models from this posterior distribution let’s look

first at the models selected in the earlier papers that have already analyzed this data. In
Figure 5.6 we see two models selected by Edwards and Havránek (1985) and Madigan
and Raftery (1994).

The classical stepwise procedure of Edwards and Havránek (1985) selected two UG
models. Recall that DEC models form a subclass of UG models. Our results, and those
from Madigan and Raftery (1994), reported here, use the space of DEC models. Never-
theless, it is possible to see that most of the two-way interaction terms coincide. More
concretely, Madigan and Raftery (1994) select two DEC Markov models following a step-
wise Bayesian procedure using an Occam’s window.

(a) (b)

E

A

D

FC

BE

A

D

FC

B E

A

D

FC

BE

A

D

FC

B

92% 8%

Edwards and Havránek Madigan and Raftery

Figure 5.6: UG Markov models selected by Edwards and Havránek (1985) and DEC
Markov models selected by Madigan and Raftery (1994).

We depart from these two approaches to model selection by sampling a substantial
part of the probability distribution of the models given the data. This leads to the result
we see on Figure 5.7 on which the four most probable models account for 57% of the
distribution, while Madigan and Raftery (1994) restrict the distribution only to those
models that fall in the Occam’s window and their best model alone accounts for 92% of
the distribution.

E

A

D

FC

B E

A

D

FC

B E

A

D

FC

B E

A

D

FC

B

6%29% 11% 11%

0.
99

0.
82

0.99

0.71

0.77

Figure 5.7: Four most probable DEC models for the CHD dataset.

The three most probable models of Figure 5.7 differ in the way the systolic blood
pressure (D) interacts with the ratio ofα and β proteins (E) and smoking (A). They have
a similar support with a preference for the ratio of α and β proteins (E) as the factor
that better predicts systolic blood pressure (D). This feature remains in the fourth model,
that accounts for a 6% of the probability, but this latter model differs from the previous
three in the presence of the edge B–E and the absence of the edge C–E, i.e. the way the
ratio of α and β proteins (E) are directly related to strenuous mental or physical work
(B or C). This disagreement coincides with the one between the two models selected
by Edwards and Havránek (1985) and, as they point out, it may be caused by the high

120 Chapter 5. Applications

negative association between strenuous mental and physical work, i.e. strenuous work
is either physical or mental but not both at the same time. A feature common to all
models selected in the earlier and our current work, is the marginal independence of the
family anamnesis of coronary heart disease (F).

A feature that holds throughout the four models in Figure 5.7, is the conditional
independence of smoking (A) from strenuous mental work (B) given strenuous physical
work (C). This CI restriction is also supported by the posterior distributions of the CI
restrictions of the form v⊥⊥V\cl(v) | bd(v). These posteriors are computed by setting
p(v⊥⊥V\cl(v) | bd(v)|M, D) = 1 if such CI restriction can be read in M, and 0 otherwise,
in expression (3.28). We may see the posteriors that account for more than 95% of the
distribution of CI restrictions in Table 5.2.

Table 5.2: Posterior distributions of conditional independencies.

A p(⊥⊥ |data) B p(⊥⊥ |data)
⊥⊥ BDF |CE 0.48 ⊥⊥ ADEF |C 0.78
⊥⊥ BF |CDE 0.32 ⊥⊥ ADE |CF 0.11
⊥⊥ BDEF |C 0.12 ⊥⊥ ADF |CE 0.09
⊥⊥ BEF |CD 0.04 ⊥⊥ AD |CEF 0.01

C p(⊥⊥ |data) D p(⊥⊥ |data)
⊥⊥ DF | ABE 0.76 ⊥⊥ ABCF | E 0.54
⊥⊥ DEF | AB 0.22 ⊥⊥ BCEF | A 0.20

⊥⊥ ABCEF | AE 0.16
⊥⊥ ABC | /0 0.07

E p(⊥⊥ |data) F p(⊥⊥ |data)
⊥⊥ BF | ACD 0.49 ⊥⊥ ABCDE | /0 0.76
⊥⊥ BDF | AC 0.18 ⊥⊥ ACDE | B 0.12
⊥⊥ BCF | AD 0.07 ⊥⊥ ABCD | E 0.05
⊥⊥ ACF | BD 0.07 ⊥⊥ ABCE | D 0.02
⊥⊥ ABF |CD 0.04 ⊥⊥ BCDE | A 0.02
⊥⊥ BCDF | A 0.03 ⊥⊥ ABDE |C 0.01
⊥⊥ B|ACDF 0.03
⊥⊥ ACDF | B 0.03
⊥⊥ ABDF |C 0.02

We believe that A⊥⊥B |C may follow from the fact that smoking may be more com-
mon for physical work than for mental work. This conditional independence statement
is in one of the models of Edwards and Havránek (1985) and in the model of Madigan
and Raftery (1994) that accounts for the 92% of the probability distribution.

Madigan et al. (1996) show some of these posteriors as well, computed using the
posterior distribution of Markov equivalence classes of DAG models. Specifically,
their method assigns probability 0.77 to F⊥⊥ABCDE|∅, 0.60 to D⊥⊥ABC|E and 0.35 to
B⊥⊥E|C. From the properties of conditional independence (Pearl, 1988), it follows that
D⊥⊥ABCF|E ⇒ D⊥⊥ABC|E and that B⊥⊥ADEF|C ⇒ B⊥⊥E|C. As we see from Ta-

5.3 Coronary Heart Disease 121

ble 5.2, these statements have here the probabilities 0.76, 0.54 and 0.78 respectively. Note
that the first two have very similar values to those from Madigan et al. (1996), although
they have been computed using quite a different method and type of model. On the
other hand, this is not surprising from the fact that these posteriors are unconditional on
the model.

A final observation common to all the analyses discussed here is the inability of
smoking (A), as a single factor, to render strenuous physical work (C) conditionally in-
dependent from the ratio of α and β proteins (E). Table 5.2 shows that this conditional
independence statement is not supported by the data. It does not fall under the 95% of
the distribution for statements separating C, and among those separating E it just has a
3% of support. This may be interpreted as if, in a situation of physical work, smoking
does not suffice to predict the ratio of α and β proteins. It is also necessary to know
whether this physical work is carried out under strenuous conditions or not.

Some authors (e.g. Dellaportas and Forster, 1999), point out that even in this ap-
parently small model selection exercise, one should look not only at the most probable
graphs, as a considerable number of models may be quite alike in terms of support, but
also at the posterior probabilities of edge presence1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A-B A-C B-C A-D B-D C-D A-E B-E C-E D-E A-F B-F C-F D-F E-F

p(
ed

ge
|d

at
a)

edge

Posterior probabilities of the edges

Figure 5.8: Posterior distribution of the edges given the data.

We see the posterior probabilities of the edges plotted in Figure 5.8. The highest
probability of presence (0.99) is associated to the edges (B, C) and (A, C), followed by
(A, E) (0.83), (C, E) (0.77), (D, E) (0.71) and, finally, by (A, D) (0.37). The remaining
estimated posterior probabilities of arc presence are very low. The probabilities on the
edges may help to confirm some of the conclusions one draws from the models, as for in-
stance the low probabilities of edges where variable F is involved, support the marginal
independency of variable F. Also the very low probability of the edge A–B supports the
CI restriction A⊥⊥B |C.

1As we already did in the previous section with Web Mining.

122 Chapter 5. Applications

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1e+06

#a
cc

ep
te

d/
#r

ej
ec

te
d

sweep

Convergence of the acc/rej ratio

Figure 5.9: Convergence of the ratio of accepts/rejects for the MBA dataset.

A way of improving the interpretability of the posterior in Figure 5.8 is by taking
those edges above a certain threshold and drawing them as a graph. This graph shows
marginal relationships of a certain strength, therefore no independencies may be read
off from such graph.

In the plot in Figure 5.8 we may see that there are five edges above 0.7 and the rest lie
below 0.4. We have taken 0.7 as a threshold, and this set of edges coincides with the set
of edges of the most probable DEC model we report in Figure 5.7. Since the graph is the
same in both cases we have written in Figure 5.7 the probabilities of these five edges. Of
course, one can expect that that the most probable edges appear in those DEC models
that account for the largest part of the posterior distribution.

As we may see, the Bayesian analysis of this data using DEC Markov models has
allowed us to discuss the relationships between the variables and make reasonable as-
sumptions about the mechanism that generated the data.

5.4 Market Basket Analysis

The term market basket analysis refers to the application of data analysis techniques to
databases that store transactions from consumers buying choices of different products
inside a specific unit, such as a supermarket. The aim of the analysis is to understand
the association structure between the sales of the different products available. Once the
associations are found, they may help planning marketing policies. For instance, if two
products turn out to be heavily associated, it should be sufficient to put only one of them
on discount to increase sales on both. This is the type of data typically analyzed with
association rules (see chapter 4). In this section we will analyze it using DEC Markov
models.

Our available data consists of the sales of a sample of 26 products (grouping different

5.4 Market Basket Analysis 123

brands for the same good) in 52 periods of one week each, for the year 1997, in one large
Italian supermarket (about 12,000 square meters), in the Piedmont region. All products
are food and have been chosen from those most sensitive to promotional effects. For each
week, data are summarized in 26 binary variables indicating whether a certain product
was sold above or below the median of the year.

-1000

-990

-980

-970

-960

-950

-940

-930

-920

1 10 100 1000 10000 100000 1e+06

p(
da

ta
)

sweep

Convergence of the marginal likelihood

(a)

0

5

10

15

20

25

30

1 10 100 1000 10000 100000 1e+06

av
er

ag
e

#e
dg

es

sweep

Convergence of the #edges

(b)

Figure 5.10: Convergence of the marginal of the data (a) and of the average number of
edges (b).

The classical analysis of this very sparse dataset, using an UG model over the 26 bi-
nary variables available, has led to a rather complex model, containing 44 significant
edges, 9 of which describe negative associations. More details on this analysis are con-
tained in (Giudici and Passerone, 2001) to which we refer for further details.

As in the previous sections, we have started the Markov chain from the empty graph
and we have used no burn-in iterations. Because of the large sparseness of this dataset as
well as the large number of competing DEC models, we have run a long Markov chain

124 Chapter 5. Applications

of 106 iterations to achieve a good degree of convergence, according to the diagnostics
we see in Figures 5.9, 5.10 and 5.11.

In Figure 5.9 we have the ratio of accepted over rejected models that converges to
0.3. In plot 5.10a we have the convergence of the marginal likelihood of the data, which
does not show a degree of convergence as good as the other diagnostics but seems to
stabilize for the last 200, 000 iterations. In plot 5.10b we have the convergence of the
average number of edges. Finally, in Figure 5.11 we have the posterior distribution of
the number of edges that takes a normal shape, as expected, centered around 26 edges.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35 40

p(
#e

dg
es

|d
at

a)

#edges

Distribution of #edges

Figure 5.11: Convergence of the distribution of the numbers of edges.

The sparseness of the data implies usually a lack of strong support towards a par-
ticular model, and we may see this effect in the cumulative posterior distribution in
Figure 5.12a.

As we see, we need more than 50000 models to account for the 60% of the probability
distribution. This leads to a huge number of models with similar support from the data,
which makes it infeasible to discriminate between them on the basis of their posterior
probabilities. However, if we take a look to the posterior of the edges given the data, in
Figure 5.12b, we may conclude that sensible conclusions can be drawn from the two-way
interactions.

There is a limited number of edges, out of the 325 possible ones, which have a high
probability of being present. For instance if we set a threshold at 0.7, only 10 edges have a
higher probability. We have put them together in what we call, the representative graph,
which has no interpretation in terms of conditional independence, and which appears in
Figure 5.13.

The representative graph of Figure 5.13 breaks up in five disconnected components,
corresponding to different consumer behaviors. All associations are positive (i.e. with
an odds ratio greater than 1) with the exception of three, plotted with a dashed line and
are negative.

The first cluster to the left identifies milk, cookies and rice. The association between

5.4 Market Basket Analysis 125

0

50000

100000

150000

200000

250000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#m
od

el
s

sum p(model|data)

Cumulative distribution of the models

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(
ed

ge
|d

at
a)

edges

Posterior distribution of edges

(b)

Figure 5.12: Cumulative distribution of models (a) and posterior distribution of the
edges (b).

milk and cookies is clear, less interpretable is that with rice products. A possible reason
is that these products have quite stable sales across the year. We remark that our dataset
was built by simultaneously considering whether, in each week of the given year, prod-
ucts were sold below or above the median. This introduces a latent explanatory variable
in the model, which may induce the observed associations.

The second cluster to the bottom left identifies fruit juices and beer. This association
reflects a common use of these drinks in the household. Both of these products have
very variable sales along the year.

The third cluster, at the right bottom of the figure, associates soft drinks, mayonnaise
and frozen fish. This connected component, contains products which are quite occasion-
ally bought, for instance to organize parties (soft drinks) or to have quick meals (this is
the case of the frozen fish and the mayonnaise).

126 Chapter 5. Applications

SOFT
CHEESE

CRACKERS

0.9216

SOUP
TOMATO

MULTIPACK
ICECREAMS

TAKEAWAY
ICECREAMS

OIL
OLIVE

0.9257

0.8852

RICE

COOKIES

MILK

JUICES BEER
0.8172

0.9816

FROZEN
FISH

0.7587

DRINKS
SOFT

MAYONNAISE

0.9994

0.86500.9985

0.7053

BRANDY

Figure 5.13: Representative graph for the MBA dataset.

The fourth cluster to the top right also identifies a category of fast-food customers,
associating soft cheese and crackers.

Finally, the biggest cluster contains 5 nodes, describing seasonal sales, where four
out of the five product interact only with multipack icecreams. The other nodes are
take away icecreams, tomato soup, brandy and olive oil. Tomato soup, brandy and
olive oil are negatively associated with multipack icecreams, reflecting different peak
buy seasons.

For further information we should look at, are the posterior distributions of CI restric-
tions, as we did in the previous section. The 45 largest posterior probabilities are given
in Table 5.3. One of the ways of using such information in the context of market basket
analysis is, by focusing on products with a positive relationship. Among these products
we can find out for which combinations, an increase of sales, obtained for instance by
setting a price discount, may potentially increase the sales of another product.

For instance, we knew from the edge posterior probabilities that soft cheese and
crackers were strongly related. If we look at the posteriors on CI restrictions, we may see
that considering crackers and frozen fish together we almost double the chance that we
can increase the sales of soft cheese in an indirect way.

5.5 Concluding Remarks

In this chapter we have shown three applications of the Bayesian approach to learn DEC
Markov models, described in chapter 3 using the MC3 algorithm. The possibility of
approximating posterior probabilities provides us with a way to handle the uncertainty
of the models discovered. In problems such as those tackled in this chapter, this becomes
crucial as we do not know which mechanism generates the data with certainty.

The notion of conditional independence explains part of this mechanism. The possi-
bility of manipulating CI restrictions using GMMs and accounting for the uncertainty of
both, GMMs and consequently CI restrictions, is a powerful device for the extraction of

5.5 Concluding Remarks 127

Table 5.3: Forty-five most probable conditional independencies for the MBA dataset. The
set V refers to the whole set of products.

U ⊥⊥V\C|C variable (U) conditioning set (C)

4.647010e-01 BEER JUICES
4.199370e-01 TA-ICECREAM MP-ICECREAM
3.826470e-01 TOMATO SOUP MP-ICECREAM
3.765420e-01 OLIVE OIL MP-ICECREAM
3.333900e-01 SOFT-CHEESE CRACKERS
3.302110e-01 TUNA-FISH SODAS
3.103860e-01 SOFT-CHEESE CRACKERS F-FISH
3.000540e-01 F-VEGETABLES MILK
2.989510e-01 CRACKERS SOFT-CHEESE
2.926120e-01 RICE COOKIES
2.491750e-01 COFFEE BRANDY
2.046430e-01 SOFT-DRINKS MAYONNAISE
2.000360e-01 YOGURT CRACKERS
1.912180e-01 BRANDY MP-ICECREAM
1.839820e-01 MOZZARELLA /0
1.710120e-01 TIN-MEAT MP-ICECREAM
1.672330e-01 JUICES BEER COOKIES
1.654170e-01 MAYONNAISE SOFT-DRINKS F-FISH
1.648010e-01 TIN-MEAT RICE
1.612000e-01 MINERAL-WATER /0
1.599890e-01 RICE TIN-MEAT COOKIES
1.534770e-01 CRACKERS SOFT-CHEESE YOGURT
1.477690e-01 PASTA /0
1.439260e-01 SODAS TUNA-FISH
1.365680e-01 MINERAL-WATER MP-ICECREAM
1.361750e-01 MILK COOKIES
1.327520e-01 JUICES BEER
1.300640e-01 PARTY SAUSAGES /0
1.299300e-01 BRANDY COFFEE MP-ICECREAM
1.280260e-01 PASTA MILK
1.272230e-01 MILK COOKIES F-VEGETABLES
1.178720e-01 YOGURT /0
1.152760e-01 PARTY SAUSAGES SOFT-DRINKS
1.135050e-01 PARTY SAUSAGES MILK
1.007980e-01 MP-ICECREAM TOMATO-SOUP BRANDY

OLIVE-OIL TA-ICECREAM
1.005020e-01 MAYONNAISE SOFT-DRINKS SODAS F-FISH
9.947400e-02 MP-ICECREAM TIN-MEAT TOMATO-SOUP

BRANDY OLIVE-OIL TA-ICECREAM
9.736600e-02 F-FISH SOFT-CHEESE MAYONNAISE
9.607600e-02 CRACKERS SOFT-CHEESE F-FISH
9.380700e-02 SODAS MAYONNAISE F-FISH
9.262100e-02 TUNA-FISH /0
8.995700e-02 MOZZARELLA PASTA
8.856300e-02 COOKIES MILK RICE
8.790000e-02 SODAS MAYONNAISE TUNA-FISH F-FISH
8.742100e-02 BEER JUICES F-FISH

useful knowledge from databases.
The extraction of useful knowledge from databases is a substantial part of the goals

that the area of data mining sets. In the problems typically tackled in data mining there
is often little subject-matter knowledge on which models are substantially important
and, therefore, it is advisable to report conclusions from more than one model. Hence,
a model averaging procedure, as the one that the Bayesian approach provides, is neces-
sary.

128 Chapter 5. Applications

Chapter 6

Conclusions

The analysis of high-order interactions among variables, by using GMMs, is a powerful
tool to gather insight into our data and uncover potentially useful relationships that may
be unknown before the analysis. However, the number of competing GMMs grows ex-
ponentially in the number of variables considered. Similar problem arises, for instance,
with association rules, and a first approach is to introduce constraints such that the prob-
lem becomes tractable and the results still may be of interest.

In the case of the DAG Markov model, a first approach to make the problem tractable
was to restrict the models considered by using a fixed causal order among the variables.
Nevertheless, in contrast with the case of association rules, this constraint is difficult to
elicitate and a wrong setting may lead to very deceptive results. Other approaches that
avoid to use such constrain represent a heavy computational burden, that makes them
unattractive for their use in a data mining context.

In the same vein, the implementation of the Bayesian approach to structural learning
of GMMs using the MCMC method lacks of a substantial body of literature treating
some kind of methodology to assess the convergence of such an iterative method. The
assessment of convergence is important to enable the Bayesian learning approach to be
used in a more systematic way.

We identify these circumstances as part of the reasons that make difficult the deploy-
ment of GMMs in data mining. This thesis provides important contributions to alleviate
these problems and improve the current state of the art in structural learning of GMMs.

We have thoroughly described some of the different subclasses of the DAG Markov
model providing an unified view of them, and identified a new subclass, the TCI Markov
model. We have gathered substantial new insight into the problem of structural learning
of DAG models by studying in depth the graphical Markov model inclusion order. From
this study followed the introduction of two new algorithms, in the context of heuristic
search and the MCMC method, that outperformed earlier work and do not compromise
the computational cost of the learning process.

We have shown how the notion of conditional independence in general, and GMMs
in particular, provide an appealing way to tackle the problem of learning association
rules from data. The approach taken is interesting as it combines the discovery of local
patterns with the use of a global modeling methodology as GMMs.

There are, of course, lots of work to be done. From a non-causal point of view, we
ultimately want to use equivalence classes of DAG models. The manipulation of these

130 Chapter 6. Conclusions

equivalence classes is still not easy nor computationally cheap. Although we have an
operational criterion (Conjecture 3.1 partially proved by Kočka et al. (2001), and fully
proved by Chickering (2002)) to decide the inclusion order among equivalence classes
of DAG models, we still lack of a cheap graphical characterization of such order, as
well as an efficient enumeration of the equivalence classes in general, and the inclusion
boundary in particular.

Despite our contribution, it remains a challenge to keep scaling up the structural
learning algorithms as we are confronted with massive datasets from, for instance, the
biological domain, where the dimension of the datasets easily reaches an order of 103

variables.

Bibliography

Agrawal, R., Imilinski, T., and Swami, A. (1993). Mining association rules between sets
of items in large databases. In Proceedings ACM SIGMOD, pages 207–216.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. (1995). Fast dis-
covery of association rules. In Advances in Knowledge Discovery and Data Mining, Cam-
bridge, MA. AAAI/MIT Press.

Andersson, S., Madigan, D., and Perlman, M. (1996). An alternative Markov property
for chain graphs. In Jensen, F. and Horvitz, E., editors, Proc. of the Conf. on Uncertainty
in Artificial Intelligence, pages 40–48. Morgan Kaufmann.

Andersson, S., Madigan, D., and Perlman, M. (1997a). A characterization of markov
equivalence classes for acyclic digraphs. Annals of Statistics, 25:505–541.

Andersson, S., Madigan, D., and Perlman, M. (1997b). On the markov equivalence of
chain graphs, undirected graphs, and acyclic digraphs. Scandinavian Journal of Statis-
tics, 24:81–102.

Andersson, S., Madigan, D., and Perlman, M. (2001). Alternative Markov properties for
chain graphs. Scandinavian Journal of Statistics, 28:33–85.

Andersson, S., Madigan, D., Perlman, M., and Triggs, C. (1995). On the relation between
conditional independence models determined by finite distributive lattices and by di-
rected acyclic graphs. Journal of Statistical Planning and Inference, 48:25–46.

Andersson, S., Madigan, D., Perlman, M., and Triggs, C. (1997c). A characterization of
lattice conditional independence models. Annals of Mathematics and Artificial Intelli-
gence, 21:27–50.

Andersson, S. and Perlman, M. (1993). Lattice models for conditional independence in a
multivariate normal distribution. Annals of Statistics, 21:1318–1358.

Angelopoulos, N. and Cussens, J. (2001). Markov chain monte carlo using tree-based
priors on model structure. In Breese, J. and Koller, D., editors, Proc. of the Conf. on
Uncertainty in Artificial Intelligence, pages 16–23. Morgan Kaufmann.

Asmussen, S. and Edwards, D. (1983). Collapsability and response variables in contin-
gency tables. Biometrika, 70(3):567–578.

132 BIBLIOGRAPHY

Beeri, C., Fagin, R., Maier, D., Mendelzon, A., Ullman, J., and Yannakakis, M. (1981).
Properties of acyclic database schemes. In Proc. of the Thirteenth Annual ACM Sympo-
sium on Theory of Computation, pages 355–362.

Beinlich, I., Suermondt, H., Chavez, R., and Cooper, G. (1989). The alarm monitoring
system: A case study with two probabilistic inference techniques for belief networks.
In Proc. of the Second European Conference on Artificial Intelligence in Medicine, pages 247–
256. Springer-Verlag.

Boncz, P. and Kersten, M. (1995). Monet: An Impressionist Sketch of an Advanced
Database System. In Proceedings Basque International Workshop on Information Technol-
ogy, San Sebastian, Spain.

Bouckaert, R. (1992). Optimizing causal orderings for generating dags from data. In
Dubois, D., Wellman, M., D’Ambrosio, B., and Smets, P., editors, Proc. of the Conf. on
Uncertainty in Artificial Intelligence, pages 9–16. Morgan Kaufmann.

Bouckaert, R. (1995). Bayesian Belief Networks: from Construction to Inference. PhD thesis,
University of Utrecht.

Breese, J., Heckerman, D., and Kadie, C. (1998). Empirical analysis of predictive algo-
rithms for collaborative filtering. In Proc. of the Conf. on Uncertainty in Artificial Intelli-
gence. Morgan Kaufmann.

Brooks, S. (1998). Markov chain monte carlo method and its application. The Statistician,
47:69–100.

Buntine, W. (1991). Theory refinement on Bayesian networks. In B. D’Ambrosio, P. S. and
Bonissone, P., editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 52–
60. Morgan Kaufmann.

Buntine, W. (1996a). Graphical models for discovering knowledge. In Fayyad, U.,
Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., editors, Advances in Knowledge
Discovery and Data Mining, pages 59–82. AAAI Press.

Buntine, W. (1996b). A guide to the literature on learning probabilistic networks from
data. IEEE Transactions on Knowledge and Data Engineering, 8(2):195–210.

Carlin, B. and Chib, S. (1995). Bayesian model choice via Markov chain monte carlo
methods. Journal of the Royal Statistical Society B, 57(3):473–484.

Castelo, R., Feelders, A., and Siebes, A. (2001). Mambo: Discovering association rules
based on conditional independencies. In Hoffmann, F., Hand, D., Adams, N., Fisher,
D., and Guimarães, G., editors, Proceedings 4th Symposium on Intelligent Data Analysis,
volume 2189 of Lecture Notes in Computer Science, pages 289–298. Springer.

Castelo, R. and Kočka, T. (2002). Towards an inclusion driven learning of Bayesian net-
works. Technical Report UU-CS-2002-05, Institute for Computing and Information
Sciences, University of Utrecht, The Netherlands. Submitted to the Journal of Machine
Learning Research.

BIBLIOGRAPHY 133

Castelo, R. and Siebes, A. (2000). Priors on network structures. biasing the search for
Bayesian networks. International Journal of Approximate Reasoning, 24(1):39–57.

Castelo, R. and Siebes, A. (2001). A characterization of moral transitive acyclic directed
graph Markov models as labeled trees. Journal of Statistical Planning and Inference, to
appear.

Castelo, R. and Wormald, N. (2001). Enumeration of P4-free chordal graphs. Technical
Report UU-CS-2001-12, Institute for Computing and Information Sciences, University
of Utrecht, The Netherlands. Submitted to the Journal of Graphs and Combinatorics.

Castillo, E., Ferrandiz, J., and Sanmartin, P. (1998). Marginalizing in undirected graph
and hypergraph models. In Cooper, G. and Moral, S., editors, Proc. of the Conf. on
Uncertainty in Artificial Intelligence, pages 69–78. Morgan Kaufmann.

Castillo, E., Hadi, A., and Solares, C. (1997). Learning and updating of uncertainty in
dirichlet models. Machine Learning, 26:43–63.

Chib, S. and Greenberg, E. (1995). Understanding the metropolis-hastings algorithm.
American Statistician, 49(4):327–335.

Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the metropolis-hastings out-
put. Journal of the American Statistical Association, 96(453):270–281.

Chickering, D. (1995). A transformational characterization of equivalent Bayesian net-
works. In Besnard, P. and Hanks, S., editors, Proc. of the Conf. on Uncertainty in Artificial
Intelligence, pages 87–98. Morgan Kaufmann.

Chickering, D. (1996a). Learning Bayesian networks is NP-complete. In Fisher, D. and
Lenz, H.-J., editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121–
130. Springer-Verlag.

Chickering, D. (1996b). Learning equivalence classes of Bayesian network structures. In
Horvitz, E. and Jensen, F., editors, Proc. of the Conf. on Uncertainty in Artificial Intelli-
gence, pages 150–157. Morgan Kaufmann.

Chickering, D. (2001). Learning equivalence classes of Bayesian-network structures.
Technical report, Microsoft Research.

Chickering, D. (2002). Personal Communication.

Chickering, D., Geiger, D., and Heckerman, D. (1995). Learning Bayesian networks:
Search methods and experimental results. In Proc. of the Int’l. Workshop on Artificial
Intelligence and Statistics, pages 112–128.

Chung, K. (1967). Markov Chains with Stationary Transition Probabilities (2nd ed). Springer-
Verlag.

Cohen, E., Datar, M., Funjiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman, J., and
Yang, C. (2001). Finding interesting associations without support pruning. IEEE Trans-
actions on Knowledge and Data Engineering, 13(1):64–78.

134 BIBLIOGRAPHY

Cooper, G. and Herskovits, E. (1992). A Bayesian method for the induction of probabilis-
tic networks from data. Machine Learning, 9:309–405.

Cowell, R., Dawid, A., Lauritzen, S., and Spiegelhalter, D. (1999). Probabilistic Networks
and Expert Systems. Springer-Verlag, New York.

Cox, D. and Wermuth, N. (1996). Multivariate Dependencies – Models, Analysis and Inter-
pretations. Chapman & Hall, London.

D. Geiger, A. P. and Pearl, J. (1993). Learning simple causal structures. International
Journal of Intelligent Systems, 8:231–247.

Davey, B. and Priestley, H. (1990). Introduction to Lattices and Order. Cambridge Univer-
sity Press, Cambridge.

Dawid, A. (1979). Conditional independence in statistical theory (with discussion). Jour-
nal of the Royal Statistical Society B, 41(1):1–31.

Dawid, A. and Lauritzen, S. (1993). Hyper-Markov laws in the statistical analysis of
decomposable graphical models. Annals of Statistics, 21(3):1272–1317.

de Campos, L. and Huete, J. (1992). Efficient algorithms for learning simple belief net-
works. Technical report, DECSAI, Universidad de Granada, Departamento de Cien-
cias de la Computacion e Inteligencia Artificial.

de Campos, L. and Huete, J. (1997). Algorithms for learning decomposable models and
chordal graphs. In Geiger, D. and Shenoy, P., editors, Proc. of the Conf. on Uncertainty
in Artificial Intelligence, pages 46–53. Morgan Kaufmann.

DeGroot, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill.

Dellaportas, P. and Forster, J. (1999). Markov chain monte carlo model determination for
hierarchical and graphical log-linear models. Biometrika, 86(3):615–633.

Deshpande, A., Garofalakis, M., and Jordan, M. (2001). Efficient stepwise selection in de-
composable models. In Breese, J. and Koller, D., editors, Proc. of the Conf. on Uncertainty
in Artificial Intelligence. Morgan Kaufmann.

Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal
Statistical Society B, 57:45–97.

Edwards, D. and Havránek, T. (1985). A fast procedure for model search in multidimen-
sional contingency tables. Biometrika, 72(2):339–351.

Etxeberria, R., Larrañaga, P., and Pikaza, J. (1997). Analysis of the behaviour of the
genetic algorithms when searching Bayesian networks from data. Pattern Recognition
Letters, 18(11–13):1269–1273.

Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From data mining to knowl-
edge discovery: An overview. In Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and
Uthurusamy, R., editors, Advances in Knowledge Discovery and Data Mining, pages 1–34.
AAAI Press.

BIBLIOGRAPHY 135

Friedman, J. (1997). Data mining and statistics: What’s the connection? In Proc. of the
29th. Symposium on the Interface: Computing Science and Statistics, Houston, Texas.

Friedman, N. and Koller, D. (2000). Being Bayesian about network structure. In Boutilier,
C. and Goldszmidt, M., editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence.
Morgan Kaufmann.

Frydenberg, M. (1990a). The chain graph Markov property. Scandinavian Journal of Statis-
tics, 17:333–353.

Frydenberg, M. (1990b). Marginalization and collapsability in graphical interaction mod-
els. Annals of Statistics, 18(2):790–805.

Frydenberg, M. and Lauritzen, S. (1989). Decomposition of maximum likelihood in
mixed interaction models. Biometrika, 76(3):539–555.

Geiger, D. and Heckerman, D. (1995). A characterization of the dirichlet distribution with
application to learning Bayesian networks. In Besnard, P. and Hanks, S., editors, Proc.
of the Conf. on Uncertainty in Artificial Intelligence, pages 999–999. Morgan Kaufmann.

Gillispie, S. and Perlman, M. (2001). Enumerating Markov equivalence classes of acyclic
digraph models. In Breese, J. and Koller, D., editors, Proc. of the Conf. on Uncertainty in
Artificial Intelligence, pages 171–177. Morgan Kaufmann.

Giudici, P. and Castelo, R. (2001a). Association models for Web Mining. Journal of Data
Mining and Knowledge Discovery, 24(1):39–57.

Giudici, P. and Castelo, R. (2001b). Improving Markov chain monte carlo model search
for data mining. Machine Learning, 50(1/2).

Giudici, P. and Green, P. (1999). Decomposable graphical gaussian model determination.
Biometrika, 86(4):785–801.

Giudici, P. and Passerone, G. (2001). Data mining of association structures to model
consumer behaviour. Journal of Computational Statistics and Data Analysis, to appear.

Glymour, C. (1995). Available technology for discovering causal models, building bayes
nets, and selecting predictors: The tetrad ii program. In Fayyad, U. and Uthurusamy,
R., editors, Proc. of the Int’l. Conf. on Knowledge Discovery and Data Mining, pages 130–
135, Montreal, Quebec.

Golumbic, M. (1978). Trivially perfect graphs. Discrete Mathematics, 24:105–107.

Goodman, R., Smyth, P., Higgins, C., and Miller, J. (1992). Rule-based neural networks
for classification and probabity estimation. Neural Computation, 4(6):781–804.

Grätzer, G. (1978). General Lattice Theory. Birkhäuser Verlag, Basel.

Green, P. (1995). Reversible jump Markov chain monte carlo computation and Bayesian
model determination. Biometrika, 82(4):711–732.

Han, J. and Kamber, M. (2001). Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco.

136 BIBLIOGRAPHY

Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. MIT Press, Cam-
bridge, MA.

Harary, F., Kabell, J., and McMorris, F. (1992). Subtree acyclic digraphs. Ars Combinatoria,
34:93–95.

Harary, F. and Palmer, E. (1973). Graphical Enumeration. Academic Press, New York.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning.
Springer.

Hastings, W. (1970). Monte carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109.

Havránek, T. (1984). A procedure for model search in multidimensional contingency
tables. Biometrics, 40:95–100.

Hearne, T. and Wagner, C. (1973). Minimal covers of finite sets. Discrete Mathematics,
5:247–251.

Heckerman, D. (1996). Bayesian networks for discovering knowledge. In Fayyad, U.,
Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., editors, Advances in Knowledge
Discovery and Data Mining, pages 273–305. AAAI Press.

Heckerman, D., Chickering, D., Meek, C., Rounthwaite, R., and Kadie, C. (2000). Depen-
dency networks for inference, collaborative filtering and data visualization. Journal of
Machine Learning Research, 1:49–75.

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20:194–243.

Herskovits, E. (1991). Computer-Based Probabilistic Network Construction. PhD thesis, Med-
ical Information Sciences, Stanford University.

Jensen, F. and Jensen, F. (1994). Optimal junction trees. In de Mantaras, R. L. and Poole,
D., editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 360–366. Mor-
gan Kaufmann.

Kass, R. and Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association,
90(430):773–795.

Kiiveri, H., Speed, T., and Carlin, J. (1984). Recursive causal models. J. Austral. Math.
Soc. Ser. A, 36:30–52.

Kočka, T. (2001). Graphical Models: learning and applications. PhD thesis, Faculty of Infor-
matics and Statistics, University of Prague.

Kočka, T., Bouckaert, R., and Studený, M. (2001). On characterizing inclusion of Bayesian
networks. In Breese, J. and Koller, D., editors, Proc. of the Conf. on Uncertainty in Artifi-
cial Intelligence, pages 261–268. Morgan Kaufmann.

BIBLIOGRAPHY 137

Kočka, T. and Castelo, R. (2001). Improved learning of Bayesian networks. In Breese, J.
and Koller, D., editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages
269–276. Morgan Kaufmann.

Kullback, S. and Leibler, R. (1951). On information and sufficiency. Annals of Mathematical
Statistics, 22:79–86.

Larrañaga, P., Kuijpers, C., Murga, R., and Yurramendi, Y. (1996a). Learning Bayesian
network structures by searching for the best ordering with genetic algorithms. IEEE
Transactions on System, Man and Cybernetics, 26(4):487–493.

Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R., and Kuijpers, C. (1996b). Struc-
ture learning of Bayesian networks by genetic algorithms: A performance analysis
of control parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(9):912–926.

Lauritzen, S. (1996). Graphical Models. Oxford University Press, Oxford.

Lauritzen, S., Dawid, A., Larsen, B., and Leimer, H. (1990). Independence properties of
directed Markov fields. Networks, 20:491–505.

Lauritzen, S. and Wermuth, N. (1989). Graphical models for association between vari-
ables, some of which are qualitative and some quantitative. Annals of Statistics, 17:31–
57.

Leimer, H. (1989). Triangulated graphs with marked vertices. Annals of Discrete Mathe-
matics, 41:311–324.

Madigan, D., Andersson, S., Perlman, M., and Volinsky, C. (1996). Bayesian model av-
eraging and model selection for markov equivalence classes of acyclic digraphs. Com-
munications in Statistics (theory and methods), 25(11):2493–2512.

Madigan, D. and Raftery, A. (1994). Model selection and accounting for model uncer-
tainty in graphical models using occam’s window. Journal of the American Statistical
Association, 89(428):1535–1546.

Madigan, D. and York, J. (1995). Bayesian graphical models for discrete data. Interna-
tional Statistical Review, 63:215–232.

Meek, C. (1997). Graphical models, selecting causal and statistical models. PhD thesis,
Carnegie Mellon University.

Melançon, G., Dutour, I., and Bousquet-Melou, M. (2000). Random generation of dags
for graphs drawing. Technical report, Centrum voor Wiskunde en Informatica.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equations
of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087–
1092.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Mateo, California.

138 BIBLIOGRAPHY

Pearl, J. and Paz, A. (1987). Graphoids: A graph-based logic for reasning about relevancy
relations. In Boulay, B. D., editor, Advances in Artificial Intelligence-II. North-Holland.

Pearl, J. and Verma, T. (1987). The logic of representing dependencies by directed graphs.
In Proc. of the Conf. of the American Association of Artificial Intelligence, pages 374–379.

Sangüesa, R. and Cortés, U. (1997). Learning causal networks from data: a survey and a
new algorithm for recovering possibilistic causal networks. AI Communications, 10:31–
61.

Silverstein, C., Brin, S., and Motwani, R. (1998). Beyond market baskets: Generalizing
associations rules to dependence rules. In Data Mining and Knowledge Discovery.

Singh, M. and Valtorta, M. (1993). An algorithm for the construction of Bayesian network
structures from data. In Heckerman, D. and Mamdani, A., editors, Proc. of the Conf. on
Uncertainty in Artificial Intelligence, pages 259–265. Morgan Kaufmann.

Smith, A. and Roberts, G. (1993). Bayesian computation via the gibbs sampler and
related Markov chain monte carlo methods. Journal of the Royal Statistical Society B,
55(1):3–23.

Smyth, P. (2001). Data mining at the interface of computer science and statistics (invited
chapter). In “Data Mining for Scientific and Engineering Applications”.

Spiegelhalter, D. and Lauritzen, S. (1990). Sequential updating of conditional probabili-
ties on directed graphical structures. Networks, 20:579–605.

Spiegelhalter, D., Thomas, A., and Best, N. (1996). Computation on Bayesian graphical
models. In Bernardo, J., Berger, J., Dawid, A., and Smith, A., editors, Bayesian Statistics
5, pages 407–425, Oxford, UK. Clarendon Press.

Spirtes, P., Glymour, C., and Scheimes, R. (1993). Causation, Prediction and Search.
Springer-Verlag, New York.

Spirtes, P. and Meek, C. (1995). Learning Bayesian networks with discrete variables from
data. In Fayyad, U. and Uthurusamy, R., editors, Proc. of the Int’l. Conf. on Knowledge
Discovery and Data Mining, pages 294–299, Montreal, Quebec. AAAI Press.

Studeny, M. (1997). On marginalization, collapsability and precollapsability. In Benes, V.
and Stepan, J., editors, Distributions with Given Marginals and Moment Problems, pages
191–198, Dordrecht. Kluwer.

Tarjan, R. and Yannakakis, M. (1984). Simple linear time algorithms to test chordality
of graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs.
SIAM Journal of Computing, 13:566–579.

Verma, T. and Pearl, J. (1988). Influence diagrams and d-separation. Technical report,
Cognitive Systems Laboratory, UCLA.

Verma, T. and Pearl, J. (1990). Equivalence and synthesis of causal models. In Bonissone,
P., Henrion, M., Kanal, L., and Lemmer, J., editors, Proc. of the Conf. on Uncertainty in
Artificial Intelligence, pages 255–268. Morgan Kaufmann.

BIBLIOGRAPHY 139

Wermuth, N. (1980). Linear recursive equations, covariance selection, and path analysis.
Journal of the American Statistical Association, 75:963–972.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley, New York.

Wolk, E. (1962). The comparability graph of a tree. Proc. Am. Math. Soc., 13:789–795.

Wolk, E. (1965). A note on “the comparability graph of a tree”. Proc. Am. Math. Soc.,
16:17–20.

Wormald, N. (1985). Counting labeled chordal graphs. Graphs and Combinatorics, 1:193–
200.

Xiang, Y., Wong, S., and N.Cercone (1996). Critical remarks on single link search in
learning belief networks. In Horvitz, E. and Jensen, F., editors, Proc. of the Conf. on
Uncertainty in Artificial Intelligence, pages 564–571. Morgan Kaufmann.

List of Publications

Castelo, R., Feelders, A., and Siebes, A. (2001). Mambo: Discovering association
rules based on conditional independencies. In Hoffmann, F., Hand, D., Adams, N.,
Fisher, D., and Guimarães, G., editors, Proceedings 4th Symposium on Intelligent Data
Analysis, volume 2189 of Lecture Notes in Computer Science, pages 289–298. Springer.

Castelo, R. and Kočka, T. (2002). Towards an inclusion driven learning of Bayesian
networks. Technical Report UU-CS-2002-05, Institute for Computing and Infor-
mation Sciences, University of Utrecht, The Netherlands. Submitted to the Journal of
Machine Learning Research.

Castelo, R. and Siebes, A. (2001). A characterization of moral transitive acyclic
directed graph markov models as labeled trees. Journal of Statistical Planning and
Inference, to appear.

Castelo, R. and Wormald, N. (2001). Enumeration of P4-free chordal graphs. Tech-
nical Report UU-CS-2001-12, Institute for Computing and Information Sciences,
University of Utrecht, The Netherlands. Submitted to the Journal of Graphs and Com-
binatorics.

Giudici, P. and Castelo, R. (2001). Association models for Web Mining. Journal of
Data Mining and Knowledge Discovery, 24(1):39–57.

Giudici, P. and Castelo, R. (2003). Improving markov chain monte carlo model
search for data mining. Machine Learning, 50:1/2.

Kočka, T. and Castelo, R. (2001). Improved learning of bayesian networks. In
Breese, J. and Koller, D., editors, Proc. of the Conf. on Uncertainty in Artificial Intelli-
gence, pages 269–276. Morgan Kaufmann.

141

Curriculum Vitae

Robert Castelo, born in 1972 in Lleida, Spain, graduated on 1994 in Computer Engineer-
ing (Bachelor’s level) by the University of Lleida and on 1997 in Computer Engineering
(Master’s level) by the Technical University of Catalonia, in Barcelona. He spent his last
year as undergraduate doing his Master’s thesis at CWI, the Dutch national research
center for mathematics and computer science, in Amsterdam. From 1997 till 2000 he re-
mained at CWI as PhD student under supervision of Prof. Arno Siebes. On September
2000, jointly with Prof. Arno Siebes, he moved to the University of Utrecht where, till
December 2001, he followed his work to complete this PhD thesis.

He is currently working as a postdoc at the Research Group on Biomedical Informat-
ics from the Pompeu Fabra University, in Barcelona.

143

Index

P4-free, 30
eMC3 algorithm, 86

adjacent, 9, 11
Alarm dataset, 75
ancestor, 11
ancestral set, 11, 19
aperiodicity, 81
arc, see directed edge
association rules, 100

Bayes factor, 83
Bayesian Network, 5
Bayesian score metric, 44
boundary, 9

candidate-generating ratio, 83
chain, 19

graph, see chain graph
maximal, 19

child, 11
CI restriction, 7
clique, 9
closure, 9
collapsability, 31
collision vertex, 11
conditional independence, 3, 5
confidence, 100
convergence, 81

diagnostics, 86
counts, 45
covering relation, 19
cycle, 11

directed, 11
undirected, 9

d-separation, 13
DAG, see acyclic directed graph

model, see graphical Markov model
moral, 11
transitive, 19

data mining, 1
DEC model, see graphical Markov

model
decomposable score metric, 55
descendant, 11
distribution

Dirichlet, 46
multinomial, 45

edge
covered, 61
directed, 11
undirected, 9

EG model, see graphical Markov model
envelope, 23

minimal, 23
equivalent DAGs, 14

generating function, 37
GMM, see graphical Markov model
graph, 9

chain, 15
chordal, 9

P4-free, 30
complete, 9
decomposable, see chordal graph
directed, 11

acyclic, 11
null, 38
undirected, 9

graphical Markov model, 5–42
acyclic directed DAG, 11–15
decomposable DEC, 9–10
essential graph EG, 15–18
labeled tree TCI, 21–35

146 INDEX

lattice LCI, 18–21
graphoid, 8

Hasse diagram, 19
HCMC algorithm, 75
hyperparameters, 46

immorality, 11
inclusion

boundary, 66
boundary condition, 66
order, 62

irreducibility, 81
itemset, 100

frequent, 100

join-irreducible element, 19

lattice, 19
finite distributive, 19

LCI model, see graphical Markov model
leaf, 23
legal move, 55
lift, 101
likelihood, 46

Mambo algorithm, 103
marginalization, 31
market basket analysis, 122
Markov blanket, 102
Markov equivalence, 14, 29, 61
Markov property, 8

chain graph global, 18
chain graph local, 18
chain graph pairwise, 17
directed global, 12
directed local, 12
directed pairwise, 12
undirected global, 10
undirected local, 10
undirected pairwise, 10
lattice conditional independence,

20
tree conditional independence, 26

MC3 algorithm, 80
MCMC method, 80
meet, 26

path, 26
mobility, 89
moral ancestral set, 27
moralize, 12
moving, 56

neighborhood, 55, 61
non-descendant, 11

parent, 11
set, 11

path, 11
directed, 11
undirected, 9

poset, 19
ancestral, 19

precollapsability, 34
prior law, 46
probability function, 46
proposing, 56
pruning, 34
pseudo-counts, 46

RCAR, 71
recursive factorization, 52
root, 23

scoring function, 43
search strategy, 43
semi-graphoid, 8
separation, 9
simplicial

collection, 33
vertex, 33

skeleton, 11
smallest ancestral set, 11
structural learning, 43
subgraph, 9

induced, 9
subtree, 23
subtree acyclic digraph, 12
sufficient statistics, 47
support, 100

rule, 100
symmetric candidate-generating den-

sity, 83

TCI model, see graphical Markov model

INDEX 147

TDAG, 19
traversal operator, 43, 55
traversing, 56
tree, 22

homeomorphically irreducible, 31
rooted, 23

Web Mining, 111

Titles in the SIKS Dissertation Series

98-1 Johan van den Akker,DEGAS - An Active, Temporal Database of Autonomous Objects.
98-2 Floris Wiesman, Information Retrieval by Graphically Browsing Meta-Information.
98-3 Ans Steuten, A Contribution to the Linguistic Analysis of Business

Conversations within the Language/Action Perspective.
98-4 Dennis Breuker, Memory versus Search in Games.
98-5 Eduard Oskamp, Computerondersteuning bij Straftoemeting.
99-1 Mark Sloof, Physiology of Quality Change Modelling: Automated

modelling of Quality Change of Agricultural Products.
99-2 Rob Potharst, Classification using decision trees and neural nets.
99-3 Don Beal, The Nature of Minimax Search.
99-4 Jacques Penders, The practical Art of Moving Physical Objects.
99-5 Aldo de Moor, Empowering Communities: A Method for the Legitimate

User-Driven Specification of Network Information Systems.
99-6 Niek Wijngaards, Re-design of compositional systems.
99-7 David Spelt, Verification support for object database design.
99-8 Jacques Lenting, Informed Gambling: Conception and Analysis of a

Multi-Agent Mechanism for Discrete Reallocation.
2000-1 Frank Niessink, Perspectives on Improving Software Maintenance.
2000-2 Koen Holtman, Prototyping of CMS Storage Management.
2000-3 Carolien Metselaar, Sociaal-organisatorische gevolgen van

kennistechnologie; een procesbenadering en actorperspectief.
2000-4 Geert de Haan, ETAG, A Formal Model of Competence Knowledge for

User Interface Design.
2000-5 Ruud van der Pol, Knowledge-based Query Formulation in Information Retrieval.
2000-6 Rogier van Eijk, Programming Languages for Agent Communication.
2000-7 Niels Peek, Decision-theoretic Planning of Clinical Patient Management.
2000-8 Veerle Coupé, Sensitivity Analysis of Decision-Theoretic Networks.
2000-9 Florian Waas, Principles of Probabilistic Query Optimization.

2000-10 Niels Nes, Image Database Management System Design
Considerations, Algorithms and Architechture.

2000-11 Jonas Karlsson, Scalable Distributed Data Structures for Database Management.
2001-1 Silja Renooij, Qualitative Approaches to Quantifying Probabilistic Networks.
2001-2 Koen Hindriks, Agent Programming Languages: Programming with Mental Models.
2001-3 Maarten van Someren, Learning as problem solving.
2001-4 Evgueni Smirnov, Conjunctive and Disjunctive Version Spaces with

Instance-Based Boundary Sets.
2001-5 Jacco van Ossenbruggen, Processing Structured Hypermedia: A Matter of Style.
2001-6 Martijn van Welie, Task-based User Interface Design.
2001-7 Bastiaan Schonhage, Diva: Architectural Perspectives on Information Visualization.
2001-8 Pascal van Eck, A Compositional Semantic Structure for Multi-Agent Systems Dynamics.
2001-9 Pieter Jan ’t Hoen, Towards Distributed Development of Large

Object-Oriented Models, Views of Packages as Classes.
2001-10 Maarten Sierhuis, Modeling and Simulating Work Practice BRAHMS: a

multiagent modeling and simulation language for work practice analysis and design.
2001-11 Tom M. van Engers, Knowledge Management: The Role of Mental Models

in Business Systems Design.
2002-01 Nico Lassing, Architecture-Level Modifiability Analysis.
2002-02 Roelof van Zwol, Modelling and searching web-based document collections.
2002-03 Henk Ernst Blok, Database Optimization Aspects for Information Retrieval.
2002-04 Robert Castelo, The Discrete Acyclic Digraph Markov Model in Data Mining.

	Acknowledgements
	Samenvatting
	Resum
	Resumen
	Introduction
	The Data Mining perspective on data analysis
	The unifying framework of Graphical Markov Models
	Graphical Markov Models in Data Mining
	Research Objectives
	Outline of this thesis

	Graphical Markov Models
	Introduction
	Conditional Independence
	The Decomposable Graphical Markov Model
	Background concepts
	Markov properties and definition

	The Acyclic Directed Graphical Markov Model
	Background concepts
	Markov properties and definition
	Markov equivalence

	The Essential Graph Markov Model
	Markov properties and definition

	The Lattice Conditional Independence Markov Model
	Background concepts
	Markov properties and definition

	The Tree Conditional Independence Markov Model
	Background concepts
	Moral TDAGs as labeled trees
	Moral TDAG models as tree conditional independence TCI models
	Markov equivalence among TCI models
	A canonical representation of an equivalence class of TCI models
	Marginalization and collapsability in TCI models

	Organization and size of the classes
	Concluding Remarks

	Structural Learning
	Introduction
	Bayesian Score Metrics
	Score metric for DEC models
	Score metric for DAG models

	Neighborhoods and Traversal Operators
	The search space of DEC Markov models
	The search space of DAG Markov models

	Graphical Markov model inclusion
	Implications in learning

	Heuristic Search
	Experimental results on the Alarm dataset

	The Markov Chain Monte Carlo Method
	MC3 on DEC Markov models
	MC3 on DAG Markov Models
	Convergence Diagnostics
	Experimental results on the Alarm dataset

	Concluding Remarks

	Data Mining
	Introduction
	Association Rules
	Association Rules based on Conditional Independencies
	Experimental Results

	Concluding Remarks

	Applications
	Introduction
	Web Mining
	Coronary Heart Disease
	Market Basket Analysis
	Concluding Remarks

	Conclusions
	Bibliography
	List of Publications
	Curriculum Vitae
	Index

