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Introduction

This thesis is about mathematical optimization. Mathematical optimization in-
volves the construction of methods to solve optimization problems, which can arise
from real-life problems in applied science, when they are mathematically modeled.
Examples come from electrical design, engineering, control theory, telecommunica-
tion, environment, finance, and logistics. The mathematical models are relations
between variables, which can be discrete or continuous, for example, the amount
of men or the time needed for a job, and the relations can be linear equations or
more difficult differential equations. The system of equations usually has multiple
solutions and we try to find an optimal solution within the set of solutions, for ex-
ample, maximal profit, minimal time or minimal amount of energy, the objective.
The goal will always be to find a solution to the system of equations such that the
objective is optimal. The system of equations together with the objective is called
an optimization problem.

This thesis deals with semidefinite optimization problems by first introducing
linear optimization, also called linear programming, and then expanding the theory
to semidefinite optimization, which is also known as semidefinite programming. The
semidefinite optimization problem will then be reformulated so that it is suitable
for large scale optimization, as will be explained later. Semidefinite programming
is a large class of convex optimization problems with convex constraints and these
constraints take the form of linear matrix inequalities, where the matrix variables lie
in a semidefinite cone. The inequalities induce a bound on the eigenvalues of sums
of symmetric or hermitian matrices. Eigenvalues will play an important role if we
reformulate the semidefinite optimization problem.

Applications of semidefinite optimization problems can be found in, for example,
combinatorial optimization, when separating two sets of points by a minimal ellipsoid
[46], see Figure 1, and in engineering, when we are interested in the optimal design
of structures like bridges or the sizing of transistors [6], [46], [47].

Optimization has been used for centuries, but since the 1950’s, at the beginning
of the computer technology, it has become more famous. Computers have made it
possible to apply algorithms to real life applications, which usually involve a large
number of variables and or relations between those variables. The size of the problem
can be in the order of thousands or even millions of variables. In certain applications
the computations must be completed in a fraction of a second, so apart from powerful
computers, efficient algorithms are also needed. In this thesis we will concentrate
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on the design of an efficient solution method for solving semidefinite programming
problems, applicable or extensible to large-scale optimization.

Figure 1 A separating ellipsoid.

In 1984 Karmarkar [24] initiated the field of interior-point methods for linear
programming. These methods are based on a Newton method for solving the op-
timality conditions of the optimization problem. The optimality conditions are the
necessary and sufficient conditions for the solution of the optimization problem to
be optimal. Interior-point methods for linear programming have polynomial time
behavior strongly dependent on the efficiency of the Newton method [31], and the
Newton method has quadratic convergence. A couple of years after Karmarkar had
published his new method Nesterov and Nemirovskii developed an interior-point
method for semidefinite optimization problems that has the same properties as the
interior-point method for linear programming [31], this method soon got a practical
follow-up by Boyd and Vandenberghe [46]. One of the differences between semi-
definite programming problems and linear programming problems is the number of
variables. Semidefinite optimization problems usually are of much larger order, and
therefore need more efficient algorithms. Methods that consume less computation
time are needed, for example, subspace methods that already exist for solving linear
equations, [5], [17], or eigenvalue problems, [4], [36]. Subspace methods project the
data of a specific problem on a much smaller subproblem that can be solved very
fast, and return a good approximation for the solution of the real problem. We do
this by transforming the semidefinite programming problem to a convex non-smooth
optimization problem by writing its constraint as an eigenvalue constraint, and we
develop an algorithm that solves the semidefinite optimization problem for this for-
mulation. The algorithm can be adjusted to apply subspace methods for eigenvalue
problems.
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In the first section of Chapter 1 some basic linear algebra and analysis is ex-
plained. In Section 1.2 a general framework is formulated for convex programming
problems in which the linear and the semidefinite programming problems are then
fitted. The optimality conditions are described and the chapter is ended with some
examples of semidefinite programming problems in Subsection 1.2.4.

In the second chapter we review techniques for the computation of solutions
of convex programming problems. The techniques are first given for the general
framework developed in Chapter 1, then via the techniques for linear programming
problems we fit the semidefinite programming in the general framework. The meth-
ods for finding a solution of convex programming problems are called interior-point
methods, which are similar to Newton methods. In Section 2.3 more details are given
about the implementation of the interior-point methods. In Section 2.4 we propose
to project the convex programming problem to a problem of smaller size for the lin-
ear and semidefinite programming problems such that not too much information is
lost, it becomes clear that for semidefinite programming problems we can formulate
a working strategy, although we do not know in general on what space we should
project. The last subsection gives sufficient inspiration for more investigation on
the projection of semidefinite programming problems onto eigenspaces, which will
be done in Chapter 3.

In Chapter 3 a method is introduced for solving semidefinite programming prob-
lems, using an eigenvalue formulation. In the first section, Section 3.1, the eigenvalue
formulation, properties of a relevant Lagrange multiplier and the derivative of eigen-
value functions are described. In Section 3.2 a method is developed for minimizing
the maximum eigenvalue in case the desired eigenvalue is simple. The method is
illustrated by some examples in Subsection 3.2.6. In Section 3.3 the method for the
simple eigenvalue case is extended to the multiple eigenvalue case. Again the method
is illustrated by some examples in Subsection 3.3.5. In Section 3.4 the most common
ways of computing eigenvalues are shown, and examples are given of a direct and a
reduction method. A subspace principle is developed in Section 3.5 for the meth-
ods described in Section 3.2 and 3.3, we illustrate the subspace procedure by some
examples in Subsection 3.5.1. The connection between the size of the subspace and
the amount of iterations needed to solve the semidefinite optimization problems is
explained in Subsection 3.5.2. Two other methods incorporating the computation
of the minimal maximum eigenvalue are reviewed in Section 3.6. These methods are
the spectral bundle method and Overton’s eigenvalues method. Differences and sim-
ilarities are also included. We conclude Chapter 3 with a discussion and conclusion
in Section 3.7.





CHAPTER 1

Notation and modeling

1.1. Basic linear algebra and analysis

The first section contains some basic linear algebra and analysis. The definitions
mainly serve to introduce notation, that have been included to make this thesis as
self-contained as possible. We will first introduce some well-known theory about
sets, mappings, norms, and inner products. We will use these notions to discuss the
consequences for the special sets of real and complex numbers. After this the set
of symmetric matrices is introduced and, of course, we will discuss some relevant
properties of matrices. Finally we describe convex sets and functions, and a method
to find the zeros of a function.

Throughout this thesis := will denote equality by definition.

1.1.1. Sets, orderings, mappings, spaces, norms, and inner products
Sets and subsets. Let X and Y be sets. We will use standard notations x ∈ X for “x
is an element of X”, X ⊂ Y (or Y ⊃ X) for “X is a subset of Y”, X = Y for “X ⊂ Y
and Y ⊂ X”.

Orderings. An ordering on a set X is a binary relation on X, denoted by ≤,
which is reflective, transitive, and antisymmetric (x ≤ y and y ≤ x imply x = y).
The set X endowed with an ordering is called an ordered set. We write y ≥ x if
x ≤ y.

Mappings. A mapping (or map) f of a subset Df of X into Y is denoted by
f : X → Y. Df is called the domain of f , Im (f) the image of f , and Ker (f) = {x :
f(x) = 0} the kernel of f .

Vector Spaces. Let L be a set, K a field. If there are defined an addition
(x, y) → x + y of L × L into L, and a multiplication (λ, x) → λx of K × L into L,
that satisfies the well-known eight axioms, then L is a vector space over K. See for
example [40, p.9].

From now on K = C, or K = R.
Ordered Vector Space. A vector space L (over K), with ordering ≤, is said to be

ordered, if the ordering is compatible with its vector structure:

(1) x ≤ y implies x + z ≤ y + z for all x, y, z ∈ L,
(2) x ≤ y implies αx ≤ αy for all x, y ∈ L and α ∈ K, α > 0.

See for example [40, p.204].
Norm. A norm ‖ · ‖ on a vector space L over K is a K-valued function with the

following properties:
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(1) ‖αx‖ = |α|‖x‖ for all α ∈ K, x ∈ L,
(2) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ L,
(3) ‖x‖ = 0 implies x = 0 and ‖x‖ ≥ 0 for all x ∈ L.

Inner product. Let ᾱ denote the K conjugate of α ∈ K. Let L be a vector space
over K. An inner product on L is a K-valued function 〈·, ·〉 defined on L× L with the
following properties:

(1) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 and 〈αx, y〉 = α〈x, y〉 for all α ∈ K, x, y, z ∈ L,

(2) 〈x, y〉 = 〈y, x〉 for all x, y ∈ L.
(3) 〈x, x〉 = 0 implies x = 0 and 〈x, x〉 ≥ 0 for all x ∈ L.

If 〈·, ·〉 is an inner product on L then ‖ · ‖, defined by ‖x‖ = 〈x, x〉 1
2 , is a norm on L.

One of the most useful relations between the norm and the inner product is the
Cauchy-Schwarz inequality,

(1) |〈x, y〉| ≤ ‖x‖‖y‖.

1.1.2. Vectors
For K = R or K = C, let L denote an n dimensional Euclidean space over K, that is
L = Kn. An element

x =




x1

...
xn


 ∈ L

is called a vector. The adjoint or transpose or conjugate transpose x∗ of x is defined
as

x∗ =




x1

...
xn




∗

= (x̄1, . . . , x̄n),

and one has (x∗)∗ = x. For all x, y ∈ L, with x = (x̄1, . . . , x̄n)∗ and y = (ȳ1, . . . , ȳn)∗,

(2) 〈x, y〉 := y∗x =
n∑

i=1

ȳixi,

defines the standard inner product. The inner product induces a norm on L:

‖x‖ = 〈x, x〉 1
2 .

Without further indication we will use this inner product and norm on Euclidean
spaces.

A vector x is called orthogonal to a vector y if 〈x, y〉 = 0. A vector x is called
normal or unitary if ‖x‖ = 1.

Denote by R+ the set of nonnegative real numbers and R++ the set of positive
real numbers. In Rn there exists a standard ordering. Take x ∈ Rn and y ∈ Rn,
then

x ≤ y ⇔ xi ≤ yi ∀i ∈ {1, . . . , n}.
We will also consider a standard partial ordering

x < y ⇔ (xi ≤ yi, xi 6= yi) ∀i ∈ {1, . . . , n}.
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By ei we will denote the i-th standard basis element of L, that is,

ei = (0, . . . , 0, 1, 0, . . . , 0)∗,

where 1 is situated on the i-th coordinate of ei. By e ∈ L we will denote the vector
of n ones, that is,

e = (1, 1, . . . , 1)∗.

1.1.3. Matrices
Capitals will denote matrices. We denote by Rm×n the space of real m×n matrices
and by Cm×n the space of complex m × n matrices. Matrices are usually engaged
in multiplying vectors. If F is an m × n matrix and u ∈ Kn then Fu ∈ Km, so
F transforms Kn into Km. The transformation is linear, that is, F (αx + βy) =
αFx + βFy, and any linear transformation of Kn into Km can be represented by
some m × n matrix F . The adjoint F ∗ of F is an n × m matrix that is uniquely
defined by

〈x, F ∗u〉 = 〈Fx, u〉, ∀x ∈ Kn, u ∈ Km.

Whenever the product FG is defined, then G∗F ∗ is defined and

(FG)∗ = G∗F ∗.

A matrix (operator) M is called self-adjoint if

M = M∗.

If a self-adjoint M is an element of Rm×m then M is called symmetric. If M is an
element of Cm×m then M is called Hermitian. The set of m×m self-adjoint matrices
will be denoted by Sm

An m × n matrix P with m ≥ n is called orthonormal if its columns are or-
thonormal, that is, if

P ∗P = I.

Square orthonormal matrices are called unitary. The inner product formula (2) is
preserved under the action of orthonormal matrices:

〈Px, Pu〉 = u∗P ∗Px = u∗x = 〈x, u〉.
Suppose B is an n× n matrix. Then any element z 6= 0 that satisfies

Bz = λz,

is called an eigenvector of B and λ is called an eigenvalue of B. The set of eigenvalues
of B is called the spectrum of B. All eigenvalues of a self-adjoint matrix are real. As
a result we may label the eigenvalues of a self-adjoint matrix M in decreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λn.

The jth largest eigenvalue of M is denoted by λj(M). Any normalized eigenvector
associated with λi is denoted by zi, Mzi = λizi.

A square matrix B is called invertible if there exists a matrix C such that

BC = CB = I.

We will call such a matrix C the inverse of B and denote it by B−1.
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For E, B ∈ Kn×m the following inner product is defined,

〈E, B〉 = trace (B∗E) =
n∑

i=1

m∑

j=1

b̄jieij ,

with (eij)ij := E and (bij)ij := B. The trace of a square matrix is the sum of the
diagonal elements. The norm arising from the (trace) inner product is known as the
Frobenius norm.

‖C‖ := ‖C‖F = 〈C, C〉 1
2 .

These will be our norm and inner product of choice for matrices unless otherwise
stated.

A matrix A is called positive semidefinite (A ≥ 0), if A is self-adjoint and

〈x,Ax〉 ≥ 0 ∀x ∈ Kn.

If in addition A satisfies
〈x, Ax〉 > 0 ∀x 6= 0,

then A is positive definite (A > 0). The subset of positive semidefinite n×n matrices
is denoted by Sn

+ and the positive definite ones by Sn
++. On the space Sn we will use

the ordering induced by the notion of (semi)definiteness, that is for A,X ∈ Sn,

A ≥ X ⇔ A−X ∈ Sn
+, and

A > X ⇔ A−X ∈ Sn
++.

1.1.4. Matrix factorizations
A matrix L := (lij)ij for which

lij = 0, ∀i < j,

is called a lower triangular matrix. Also, a matrix U := (uij)ij for which

uij = 0, ∀i > j,

is called an upper triangular matrix. A matrix B has an LU factorization if there
exists a lower triangular matrix L with lii = 1, for all i, and an upper triangular
matrix U , such that

B = LU.

If L and U exist then L and U can be computed by Gauss elimination.
If A is positive definite, then there exists an unique lower triangular matrix L

with positive diagonal elements, such that

A = LL∗.

Such a factorization is called the Cholesky factorization.
Any m× n matrix B can be written as

B = QR,

with Q an m× r matrix satisfying Q∗Q = I, and with R an upper triangular r × n
matrix with nonnegative diagonal elements, with r the rank of the matrix B. Both
Q and R are unique when B has full rank. This factorization is called the QR
factorization. The QR factorization is the matrix formulation of the Gram-Schmidt
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orthogonalization process for the columns of B. When B has full rank, then L := R∗

is the Cholesky factor of B∗B since

LL∗ = R∗R = R∗Q∗QR = B∗B.

For more information on the QR factorization see, for example, [36, p.98].
A self-adjoint n×n matrix A is similar to a diagonal matrix Λ via an orthonormal

factorization,

A = ZΛZ∗ =
n∑

i=1

λiziz
∗
i ,(3)

and

I = ZZ∗ =
n∑

i=1

ziz
∗
i .(4)

Z = (z1, . . . , zn) consists of orthonormal vectors that are eigenvectors of A. The
diagonal matrix

Λ = diag(λ1, . . . , λn) =




λ1

. . .
λn




consists of the eigenvalues λi of A. This factorization is called the eigenvector de-
composition of A, see for example [36, p.7].

Let N be an (m + n)× (m + n) block matrix

N =
(

A B
C D

)
.

with A ∈ Km×m invertible, B ∈ Km×n, C ∈ Kn×m and D ∈ Kn×n then,

S := D − CA−1B

is called the Schur complement of A in N , and
(

A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 S

) (
I A−1B
0 I

)
.

The following properties holds if A−1 exists and A > 0,
(

A B
C D

)
> 0 ⇔ C = B∗, D = D∗ and S > 0,

as well as,
(

A B
C D

)
≥ 0 ⇔ C = B∗, D = D∗ and S ≥ 0.

Thus the positive (semi) definiteness of a matrix is related to the positive (semi)
definiteness of its Schur complement.
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1.1.5. Convex sets and cones
Suppose x1, x2 ∈ Rn. Then the line through these elements can be represented as
x1 + τ(x2− x1), τ ∈ R. For values of τ ∈ [0, 1] this parameterization corresponds to
the line segment between x1 and x2.

A set S ⊆ Rn is said to be affine if the line through any two distinct elements
in S is contained in S, that is,

∀τ ∈ R, ∀x1, x2 ∈ S ⇒ x1 + τ(x2 − x1) ∈ S.

An element of the form τ1x1 + . . . + τrxr with
∑r

i=1 τi = 1 is called an affine
combination of the elements x1, . . . , xr.

A set C is said to be convex if the line segment through any two elements in C
is in C, that is,

∀τ ∈ [0, 1], x1, x2 ∈ C ⇒ x1 + τ(x2 − x1) ∈ C.

Obviously, every affine set is convex. An element of the form τ1x1 + · · ·+ τrxr with∑r
i=1 τi = 1 and τi ≥ 0 for i = 1, . . . , r is called a convex combination of the elements

x1, . . . , xr.
A set S is called a cone if

∀τ ≥ 0, x ∈ S ⇒ τx ∈ S.

A cone C is convex if

∀τ1, τ2 ≥ 0, x1, x2 ∈ C ⇒ τ1x1 + τ2x2 ∈ C.

Rn
+ is a convex cone. The set of positive semidefinite matrices is a convex cone, since

if A ≥ 0 and B ≥ 0 then τ1A + τ2B ≥ 0 for all τ1, τ2 ≥ 0 because of

〈x, (τ1A + τ2B)x〉 = τ1〈x,Ax〉+ τ2〈x,Bx〉 ≥ 0.

An element of the form τ1x1 + · · · + τrxr with τ1, · · · , τr ≥ 0 is called a conic
combination of the elements x1, . . . , xr. If xi, for i = 1, . . . , r, is in a convex cone C
then every conic combination of these xi is in C as well.

Let C be a convex cone. Then the set

C∗ := {y | 〈x, y〉 ≥ 0, ∀x ∈ C}
is called the dual cone of C. A cone is self-dual if C = C∗.

Rn
+ is self-dual. The cone Sn

+ of positive semidefinite matrices is self-dual:
(
〈X,Y 〉 ≥ 0, ∀X ≥ 0

)
⇔ Y ≥ 0,(5)

since if Y 6≥0 then there exists an x with 〈x, Y x〉 = 〈xx∗, Y 〉 < 0. Hence, there
exists a matrix X = xx∗ with 〈X, Y 〉 < 0 and that shows that Y ≥ 0 is a necessary
condition for equation (5). Second, X ≥ 0 if and only if X = LL∗, thus

〈X, Y 〉 = trace (L∗Y L) =
n∑

i=1

eiL
∗Y Lei ≥ 0 if Y ≥ 0,

which means that Y ≥ 0 is also a sufficient condition.
For more information on convexity, see for example [7].
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1.1.6. Functions and derivatives
Let f : V → W, where V and W are finite dimensional vector spaces with dim V = n
and dim W = m. The function f is said to be (Fréchet) differentiable at x ∈ Df if
Df is a neighborhood of x and there exists a linear transformation D : V → W such
that, DD = V, and

lim
‖h‖→0

‖f(x + h)− f(x)−Dh‖
‖h‖ = 0.

The transformation D is called the derivative of f at x. We say that f is differentiable
if f is differentiable at all x ∈ Df .

If W = R then g ∈ V, such that Dh = 〈g, h〉, is called the gradient of f at x. The
gradient of f at x is often denoted as ∇f(x). The partial derivative with respect to
xi is denoted by

∂

∂xi
f and is defined by

∂

∂xi
f = 〈∇f, ei〉, ∀i = 1, . . . , n.

The affine function of y, given by

f(x) + 〈∇f(x), (y − x)〉,
is called the first order (Taylor) approximation of f at x.

If V = Rn and W = Rm, then D is an m× n matrix. We also use the notation
∇f(x) for D∗ at x, and also call it the gradient of f at x.

The function f : V → R is said to be twice differentiable at x ∈ Df if f is
differentiable at a neighborhood of x, ∇f is continuous in x, and ∃H : V → V such
that

lim
‖h‖→0

‖∇f(x + h)−∇f(x)−Hh‖
‖h‖ = 0.

If H exists, then it is called the Hessian of f at x; H is often denoted as ∇2f(x).
The second order (Taylor) approximation of f at x in y is

(6) f(x) + 〈∇f(x), (y − x)〉+
1
2
〈∇2f(x)(y − x), (y − x)〉.

In our applications V = Rn or V = Sn, that is, f : Rn → R or f : Sn → R. As
an example consider the function f : Sn → R is defined by

f(X) = ln det(X).

Clearly f is smooth on Sn
++. We determine the derivative as follows:

f(X + E) = ln det
(
X(I + X−1E)

)

= ln det(X) + ln(1 + trace
(
X−1E

)
+O(‖E‖2))

= f(X) + 〈X−1, E〉+O(‖E‖2),
and we see that ∇f(X) = X−1. Similarly we find the second derivative:

∇f(X + E) =
(
X(I + X−1E)

)−1

=
(
I −X−1E + F )

)
X−1, with ‖F‖ = O(‖E‖2)

= ∇f(X)−X−1EX−1 + F̂ , with ‖F̂‖ = O(‖E‖2).
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Hence, ∇2f(X)H = −X−1HX−1.

1.1.7. Convex functions
A function f : Rn → R is said to be convex if

(1) Df is a convex set and
(2) ∀x1, x2 ∈ Df and τ ∈ [0, 1]:

f(x1 + τ(x2 − x1)) ≤ f(x1) + τ(f(x1)− f(x2)).

If the inequality is strict for τ ∈ (0, 1) and x1 6= x2, then f is called strict convex.
We say that f is concave if −f is convex.

Suppose that f is differentiable. The gradient of f is a vector in Rn. Then f is
convex if and only if Df is convex and

f(y) ≥ f(x) + 〈∇f(x), y − x〉 ∀x, y ∈ Df .

In addition, suppose that f is twice differentiable. Then f is convex if and only if
∇2f(x) ≥ 0, that is, ∇2f(x) is positive semidefinite.

For more about convex functions, see for example [37].

1.1.8. The Newton method
Suppose we want to solve equation

(7) h(x) = 0,

with h : Rn → Rn. Let x0 be an element in the neighborhood of the solution of
equation (7). The following process solves equation (7) approximately. Make a
linear approximation to the function h in the element x0 :

(8) h0(x) = h(x0) + 〈∇h(x0), (x− x0)〉.
The equation h0(x) = 0 is now an approximate equation with solution

x1 = x0 − (∇h(x0)∗)−1h(x0).

If this process is repeated then the sequence (xi) follows, where

(9) xi+1 = xi − (∇h(xi)∗)−1h(xi).

This process is known as the Newton(-Raphson) method and

∆xi := xi+1 − xi = −(∇h(xi)∗)−1h(xi)

is called the Newton direction at xi.
We will use such a Newton approach in the following situation. Suppose we want

to minimize a convex function f : Rm → R. Determining the minimum is equivalent
to solving ∇f(x) = 0, if f is differentiable and the minimum exists, and we apply
Newton’s scheme to this equation. For ease of reference we give some details.

Take a second order approximation (6) of f at x0 in x,

f0(x) := f(x0) + 〈∇f(x0), x− x0〉+
1
2
〈∇2f(x0)(x− x0), (x− x0)〉,

and solve ∇f0(x) = 0 :

(10) ∇f0(x) = ∇f(x0) +∇2f(x0)(x− x0) = 0.
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Notice the similarity between (10) and (8). Henceforth, assume that ∇2f(x0) is
positive definite. Thus f0 is strictly convex and is minimized by the element x1

satisfying ∇f(x0) +∇2f(x0)(x1 − x0) = 0, or

x1 := x0 −
(
∇2f(x0)

)−1

∇f(x0).

We will also use this approach for functions in a space of matrix functions.

1.1.9. Barrier functions
Suppose we want to minimize a function f : V → W subject to some constraint x ≥ 0,
with V and W ordered vector spaces. We have seen how a Newton method works for
an unconstrained problem in Rn. Now we explain how to solve this minimization
problem subject to a constraint. First rewrite the problem as

minimize f(x) + ind(x),

where ind(x) : V → W is the indicator function of the constraint set, that is,

ind(x) =
{

0 if x ≥ 0,
+∞ otherwise.

We would like to construct an algorithm that computes a sequence of points,

x0, x1, . . . ∈ {x|x > 0},
converging towards x+ that minimizes the optimization problem. We expect to find
the minimum at the boundary of the set {x|x ≥ 0}. The basic idea of barrier methods
is to approximate the indicator function with another function j : V → W such that

• j is smooth and convex,
• Dj = {x|x > 0},
• If xk ∈ Dj and (xk) converges to the boundary of Dj , then (j(xk)) converges

to infinity, that is, j(x) grows without bound as x approaches the boundary
of the set {x|x ≥ 0}.

Using the barrier function j, for any µ > 0, we consider the problem

(11) minimize f(x) + µj(x).

The closer µ is to zero the better µ times the barrier function j(x) approximates
ind(x). One can solve the original problem to any required accuracy solving the
unconstrained problem (11) by, for example, a Newton method [7, Ch. 6]. A popular
barrier function, for V = Rm and W = R, is the logarithmic barrier function, defined
as

j(x) :=
{ −∑m

i=1 ln(xi) if xi > 0, for all i,
+∞ otherwise.

A popular barrier function, for V = Sn and W = R, is a generalization of the
logarithmic barrier function for V = Rm. It is defined by

j(X) :=
{ − ln det(X) if X > 0,

+∞ otherwise.

These logarithmic barrier functions have properties that can be exploited in the
convergence analysis of the Newton method, see for example [31].
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1.2. Convex programming problems

In this section we will formulate the type of convex programming problems that
will play a role in the following chapters. A general framework will be given, followed
by linear programming problems and semidefinite programming problems. We dis-
cuss some practical applications formulated as semidefinite programming problem to
show the significance of semidefinite programming problems, and we introduce some
problems that later on will be used as test problems for the algorithms in Chapter
3. Usually, we cannot find an analytical solution for the formulated optimization
problems, so the problem has to be solved by an iterative algorithm. This is an
algorithm that computes a sequence of points x0, x1, . . . that converges towards a
solution of the optimization problem.

1.2.1. General framework
We consider the following formulation of a convex programming problem. Suppose
that we have convex functions f, h with f : Rm → R and h : Rm → Rn. We want to
solve the following minimization problem.

(12) min f(y)
subject to h(y) ≤ 0.

The function f is called the objective function of (12), and h(y) ≤ 0 represent the
constraints. If y satisfies h(y) ≤ 0 then y is said to be feasible for (12). The set of
feasible elements is the feasible set of (12) and y is called strict feasible for (12) if
h(y) < 0. We say that (12) is solvable if there exists a y+ that solves (12). We call
y+ a solution of (12) or a minimizer of (12) and f(y+) the optimal value of (12).

To solve this minimization problem we eliminate the constraints. First we intro-
duce a so-called vector of slack variables s ∈ Rn to simplify the inequality constraint
in problem (12):

(13) min f(y)
subject to h(y) + s = 0

s ≥ 0.

Then we place the vector of slack variables via a barrier function in the objective,
and this results in the following problem, for s > 0:

(14) min f(y)− µ
∑n

i=1 ln(si)
subject to h(y) + s = 0.

By letting µ go to zero, a family of approximate solutions yµ to (14) converges to a
minimizer of the original convex programming problem (12).

The Lagrangian is introduced to characterize a solution of the barrier problem
(14). The Lagrangian of (14) is

(15) L(x, y, s) := f(y)− µ

n∑

i=1

ln(si) + 〈x, h(y) + s〉,

where xi ≥ 0, i = 1, . . . , n, are the Lagrange multipliers associated with the equality
constraints. When looking for a minimum of a function, subject to some equality
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constraints, one should add to the function the constraints multiplied by undeter-
mined multipliers and seek for the minimum of the resulting sum as if the variables
were independent. The resulting equations combined with the constraint equations,
will serve to determine all unknowns [27]. This rule is called the Lagrange multi-
plier rule. If we express this rule in mathematical formulas, we obtain the following
conditions for differentiable functions f and h. The first order optimality conditions
for minimizing L for non-trivial x, s ≥ 0 are

h(y) + s = 0, (∇xL(x, y, s) = 0)(16)
∇f(y) + 〈x,∇h(y)〉 = 0, (∇yL(x, y, s) = 0)(17)

xisi − µ = 0, i = 1, . . . , n. (∇sL(x, y, s) = 0)(18)

These conditions are also called the Karush-Kuhn-Tucker (KKT) conditions, see
[21]. We will rewrite equation (18) as

XSe− µe = 0, where X := diag(x), S := diag(s) and e := (1, · · · , 1)∗.

Here diag(x) is the diagonal matrix with elements xi, i = 1, . . . , n.
If (x+

µ , y+
µ , s+

µ ) satisfies conditions (16)-(18), and x+
µ , s+

µ > 0 then, for µ → 0, it
converges to (x+, y+, s+), where (y+, s+) is a solution of optimization problem (13),
[21, p. 12].

The formulation (12) is a simplification of a general convex programming prob-
lem since it does not include equality constraints. In fact the method described in
this section and in the next chapter, can easily be extended to all cases. For example,
an equality constraint

g(y) = 0,

for g : Rm → Rn, leads to an extra constraint g(y) = 0 in (14), an extra term
〈z, g(y)〉 in the Lagrangian (15), and extra terms in the optimality conditions.

A general framework for matrix spaces (where Rm and Rn are replaced by Sm

and Sn) is an analogue of this general framework with appropriate ordering, inner
product and barrier function.

The part I omitted here and will omit for linear and semidefinite programming
as well, are the assumptions that have to be made to find an optimal solution when
incorporation (16)-(18). First of all the objective function has to be convex with
continuous first and second order derivatives in the interior of the feasible set. The
interior of the feasible set has to be nonempty and bounded, as a result (16)-(18)
has to be solvable.

1.2.2. Linear programming problems
A convex programming problem is said to be linear if [49]:

(1) the objective function f is linear,
(2) the inequality and equality constraints are linear.

The standard form of a linear programming problem (LP) is as follows:

(p) min 〈c, x〉
subject to Ax = b

x ≥ 0,
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where c ∈ Rn, b ∈ Rm, and A an m× n matrix are given and we have to minimize
for x ∈ Rn. The standard linear programming problem is called the primal linear
programming problem.

With the standard linear programming problem (p) a dual linear programming
problem (d) is associated

(d) max 〈b, y〉
subject to A∗y ≤ c,

where we have to minimize for y ∈ Rm.
A standard assumption for a linear programming problem to be solvable is that

b ⊥ Ker (A∗), because if b 6⊥Ker (A∗) then there is not a finite maximum for (d).
Another standard assumption is that Im (A) = Rm.

The dual linear programming problem is of standard form (12), but due to
historical reasons (p) is called the standard form.

There exists a duality theory that explains the relationship between (p) and (d),
see [8] or more recently [38]. For example, for any feasible x for (p) and y for (d),
we have that

(19) 〈b, y〉 = 〈Ax, y〉 = 〈x,A∗y〉 ≤ 〈c, x〉.
Hence, any feasible y gives a lower bound 〈b, y〉 for 〈c, x〉 and any feasible x an
upper bound 〈c, x〉 for 〈b, y〉. Moreover, if x+ solves (p) and y+ solves (d), then
we have 〈b, y+〉 = 〈c, x+〉. The nonnegative difference 〈c, x〉 − 〈b, y〉 between the
primal objective value at a primal feasible x and the dual objective value at a dual
feasible y is called the duality gap for x and y. Dantzig initiated the field of linear
programming just after World War II, by formulating linear programming problems
and introducing the simplex method for solving them [8]. The simplex method is out
of scope of this thesis, we will concentrate on the more recently introduced Newton
methods in convex optimization.

Primal-dual algorithm. We will first review a framework for the primal-dual
algorithm, which can be derived from either the primal (p) or the dual programming
problem (d), in combination with the primal or dual logarithmic barrier function.
Here, we will derive it from the dual linear programming problem (d).

In view of the exposition in the Subsection 1.2.1, we use a vector of slack variables
s to simplify the inequality constraint, such that (d) leads to

(20) max 〈b, y〉
subject to A∗y + s = c

s ≥ 0.

For this formulation we introduce a barrier function such that for s > 0 the dual
program (d) leads to the following family of problems associated with (d)

(21) max 〈b, y〉 − µ
∑

i ln(si)
subject to A∗y + s = c,

with (y+
µ , s+

µ ) → (y+, s+) if µ → 0, where (y+
µ , s+

µ ) is a solution of (21) and (y+, s+)
is a solution of (20).
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To characterize a solution of (21) the Lagrangian is defined as,

(22) Lpd(x, y, s) := 〈b, y〉 − µ
∑

i

ln(si) + 〈x, (c−A∗y − s)〉.

Then the first order optimality conditions for a minimum are, for x, s > 0:

A∗y + s− c = 0, (∇xLpd(x, y, s) = 0)(23)
b−Ax = 0, (∇yLpd(x, y, s) = 0)(24)

xisi − µ = 0, i = 1, . . . , n. (∇sLpd(x, y, s) = 0)(25)

If (x+
µ , y+

µ , s+
µ ) satisfies conditions (23), (24), and (25), then (y+, s+) solves (21) and

for µ → 0 converges to (x+, y+, s+), where (y+, s+) is a solution of optimization
problem (20) and x+ solves (p).

The primal-dual algorithm is an iterative method for computing a solution of
(p) and (d). It assumes that a feasible (x, y, s) with x, s > 0 is known, and takes
one Newton iteration for the first order conditions (23), (24), (25), for a fixed value
of µ, to find a new triple (x, y, s) which retains feasibility, after some scaling of the
Newton directions, while reducing the duality gap:

〈c, x〉 − 〈b, y〉 = 〈x, c〉 − 〈Ax, y〉 = 〈x, c−A∗y〉 = 〈x, s〉 = nµ.

Then the value of µ is reduced and the process is repeated until µ is small enough.
This approach will be explained in more detail in Subsection 2.1.2.

Dual algorithm and primal algorithm formulations also exist.

Dual algorithm. The dual algorithm can be derived from the dual problem (d)
with a logarithmic barrier formulation slightly different from the one given in (21).
The algorithm only iterates and updates the dual variable y and does not use a
vector of slack variables s.

In order to eliminate the inequality constraints, a logarithmic barrier function
is introduced such that the dual problem (d) for c−A∗y > 0 leads to

(26) max 〈b, y〉+ µ
∑

i

ln(ci − (A∗y)i),

with y+
µ → y+ if µ → 0, where y+

µ is a solution of (26) and y+ is a solution of (d).
To characterize a solution of (26), a Lagrangian is defined as

Ld(y) := 〈b, y〉+ µ
∑

i

ln(ci − (A∗y)i).

Then the first order optimality condition for minimizing Ld is:

b− µ
∑

i

Aei(ci − (A∗y)i)−1 = 0. (∇yLd(y) = 0)(27)

If y+
µ satisfies conditions (27), then for µ → 0 it converges to y+, where y+ is a

solution of optimization problem (d).
The dual algorithm is an iterative method for computing a solution of (d). The

procedure is similar to the procedure for the primal-dual algorithm, but here for
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feasible y and condition (27). This approach will be explained in more detail in
Subsection 2.1.4.

Note that if we write s := c− A∗y and xi := s−1
i µ, and y solves (27), then x, y

and s are such that (23)-(25) hold. However, in the primal-dual and dual algorithms
the optimality conditions are not solved to full accuracy; only one modified Newton
step is applied, and then the primal and primal-dual algorithms are in general not
equivalent.

Primal algorithm. The primal algorithm will be derived from the primal prob-
lem (p) with a logarithmic barrier function. The algorithm iterates and updates
only the primal variable x.

In order to eliminate the constraint x ≥ 0, we introduce a logarithmic barrier
function such that (p) for x > 0, leads to

(28) min 〈c, x〉 − µ
∑

i ln(xi)
subject to Ax = b,

with x+
µ → x+ if µ → 0, where x+

µ is a solution of (28) and x+ is a solution of (p).
To characterize a solution, a Lagrangian for (28) is introduced.

Lp(x, y) := 〈c, x〉 − µ
∑

i

ln(xi) + 〈y, b−Ax〉.

The first order optimality conditions for minimizing Lp are:

ci − µ(xi)−1 − (A∗y)i = 0, i = 1, . . . , n, (∇xLp(x, y) = 0)(29)
Ax− b = 0. (∇yLp(x, y) = 0)(30)

If (x+
µ , y+

µ ) satisfies conditions (29) and (30) then for µ → 0 it converges to (x+, y+),
where x+ is a solution of optimization problem (p).

The primal algorithm is an iterative method for computing a solution of (p).
Again we follow the same procedure as for the primal-dual algorithm, but here for
feasible x > 0 and conditions (29)-(30). This approach will be explained in more
detail in Subsection 2.1.3.

Note that if we write si := µx−1
i , that is xisi = µ for all i, and x, y solve

(29)-(30), then x, y, and s satisfy (23)-(25).

As noted, the three different barrier models are equivalent to the optimality
conditions (23)-(25) for solving the primal and dual linear programming problem.
However, the approaches are different. The primal-dual approach keeps track of the
primal and dual variable, and therefore the duality gap is known at every step of
the iteration. The duality gap gives a good measure of convergence. The primal-
and the dual approach keep track of the primal- and dual variable, respectively.
For the primal and the dual algorithm usually more steps are needed to assure
appropriate accuracy than for the primal-dual algorithm. The primal-dual method
is popular in practice, because of the convenient possibility to measure progress of
the convergence.
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1.2.3. Semidefinite programming problems
The semidefinite programming problem (SDP) is an extension of the linear program-
ming problem in the sense that an SDP can be viewed as an LP with matrix variables
and a different inner product. The goal is to minimize the inner product 〈C, X〉 over
X under the constraints 〈Ai, X〉 = bi, 1 = 2, . . . , m, and X ≥ 0:

(P) min 〈C, X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . , m ,

X ≥ 0

where C is a given n × n Hermitian matrix and the matrix X is an n × n matrix
variable. The data matrices Ai are given Hermitian n × n matrices and the bi are
given scalars. We will call (P) the standard semidefinite programming problem or
primal semidefinite programming problem.

Associated with (P) is the dual semidefinite programming problem (D)

(D) max 〈b, y〉
subject to

∑m
i=1 yiAi + S = C ,

S ≥ 0

where y ∈ Cm and S ∈ Sn have to be determined. Usually, (P) and (D) are defined
as above (see [1], [26], and [44]), but sometimes (P) is written as a maximization
problem and called the dual problem, and (D) is written as a minimization problem
and called the primal problem (see for example [46]).

For simplicity of notation we introduce a linear operator A : Sn → Cm. The
operator A is defined as

A(X) =



〈A1, X〉

...
〈Am, X〉


 ∈ Cm for some A1, . . . , Am ∈ Sn.

This formulation is consistent with the Riesz representation theorem [16, p.61]. Its
adjoint A∗ : Cm → Sn is determined by 〈A∗(y), X〉 = 〈y,A(X)〉, for all y ∈ Cm and
for all X ∈ Sn, and can be represented as

A∗(y) =
m∑

j=1

yjAj ∈ Sn for y ∈ Cm.

We can now rewrite (P) and (D) as

(P) min 〈C,X〉
subject to A(X) = b ,

X ≥ 0

(D) max 〈b, y〉
subject to A∗(y) + S = C .

S ≥ 0

The nonnegative difference 〈C, X〉 − 〈b, y〉 between the primal objective value
at a primal feasible X and the dual objective value at a dual feasible y is called the
duality gap for X and y.

There is a duality theory that explains the relationship between (P) and (D),
see for example [46] and [1]. There are similarities with the duality theory for the
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linear programming problem. Analogously to (19) for SDP, we have for feasible X
and (y, S) the property that

〈b, y〉 ≤ 〈C,X〉.
There are also differences. For instance, if for LP either the primal or the dual
problem has an optimal solution, then both have optimal solutions and 〈b, y+〉 =
〈c, x+〉, where x+ solves (p) and y+ solves (d). For SDP, the primal problem may be
solvable while its dual is infeasible, or it is feasible but 〈b, y〉 6= 〈C,X〉 at optimality
[46, p.65]. A zero duality gap at optimality is guaranteed if either X > 0 is feasible
and (y, S) with S ≥ 0 is feasible, or if X ≥ 0 is feasible and (y, S) with S > 0 is
feasible.

As for linear programming we see the relationship between (P) and (D) by
inspecting the three barrier formulations of (P) and (D). We will only consider the
analogue of the barrier formulation (22) for (D). In order to eliminate the constraint
S ≥ 0 in (D), we will introduce a logarithmic barrier function such that (D), for
S > 0, leads to

(31) max 〈b, y〉 − µln(det(S))
subject to A∗(y) + S = C ,

with (y+
µ , S+

µ ) → (y+, S+) if µ → 0, where (y+, S+) is a solution of (D). The
singularity at zero of the logarithm keeps the iterates inside the feasible region.

To characterize a solution, the Lagrangian of (31) is introduced:

(32) LPD(X, y, S) = 〈b, y〉 − µ ln det(S) + 〈X, C −A∗(y)− S〉.
The first order optimality conditions for minimizing (32) are for X > 0 and S > 0

A∗(y) + S − C = 0 (∇XLPD(X, y, S) = 0),(33)
A(X)− b = 0 (∇yLPD(X, y, S) = 0),(34)

XS = µI (∇SLPD(X, y, S) = 0).(35)

Note that (35) implies SX = µI and consequently XS + SX = 2µI. The method
based on (35) is called the XS-method in [2]. For practical computations it is some-
times good to have a symmetric form of (35). We can change (35) to a symmetric
form, by a similarity transformation of (35) with some invertible matrix P and by
adding its adjoint:

(36) P (XS)P−1 + P−∗(SX)P ∗ = 2µI.

This form is symmetric since X = X∗ and S = S∗ by definition, so that

P−∗SXP ∗ = (PXSP−1)∗.

In [2] a method based on (36) with P = I is called the XS + SX method.
The primal-dual algorithm is an iterative method for computing a solution of

(P) and (D). It starts with a feasible (X, S) > 0 and makes one iteration step of a
Newton method for the first order conditions (33)-(35) for a fixed value of µ, in an
attempt to find a new triple (X, y, S) that retains feasibility. Then the value of µ is
reduced and the process is repeated until convergence. In the next chapter we will
use the optimality conditions to solve the SDP problem with a Newton method.



1.2. CONVEX PROGRAMMING PROBLEMS 21

1.2.4. Examples of SDP problems
Example 1.2.1. This example is taken from [46]. Combinatorial optimization

problems can often be formulated as quadratic optimization problems. A quadratic
optimization problem has a quadratic objective function, and usually quadratic con-
straints. An example of a (combinatorial) quadratic optimization problem is the
maximum cut problem:

(37) min x∗Qx
subject to xi ∈ {−1, 1}, i = 1, . . . , k .

The diagonal entries of the matrix Q are zero; we will denote this by Diag(Q) = 0 and
0 = (0, . . . , 0)∗. Such a combinatorial optimization problem is known to be NP-hard.
The notion NP-hard refers to the complexity of the problem, see [13, ch.5]. The
constraint xi ∈ {−1, 1} can be written as the quadratic equality constraint x2

i = 1
(or, equivalently, as two quadratic inequalities x2

i ≤ 1 and x2
i ≥ 1, which gives more

algorithmic freedom). Combinatorial optimization problems such as (37) allow for
SDP relaxations. The idea of relaxations is to replace a “difficult” optimization
problem by a simpler one whose maximal/minimal value is at least as large/small
as the original one. The key observation is that

x∗Qx = 〈Qx, x〉 = trace (Qxx∗) = 〈Q, xx∗〉.
The rank one matrix X := xx∗ is vector x. We can therefore relax X = xx∗ to
X ≥ 0.

Note also that Diag(X) = e, where e represents the vector e := (1, 1, · · · , 1)∗.
If we write Ai = eie

∗
i for i = 1, . . . , k, then the constraint Diag(X) = e is equivalent

to the constraint 〈Ai, X〉 = 1 for i = 1, . . . , k. We therefore can state the following
semidefinite programming formulation for the relaxation of (37):

min 〈Q,X〉
subject to Diag(X) = e .

X ≥ 0

(38)

Because we enlarged the set of feasible solutions, the optimal value of (38) has to be
smaller or equal to the optimal value of (37). Goemans and Williamson [15] proved
that the optimal value of (38) is at most 14% suboptimal for (37). In practice this
is a worst case scenario, since optimal values of (38) are usually much closer to the
optimal value of (37).

A relaxation of the original optimization problem has at least one of the following
properties [48, p.24]:

• the set of feasible solutions is enlarged so that one optimizes over a larger
set.

• the objective function is replaced by a function that has the same or a
larger/smaller value everywhere depending on the problem formulation as
maximization or minimization problem.
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Example 1.2.2. This example is just an alternative formulation for a well know
problem. We are interested in the largest eigenvalue of a matrix A ∈ Sn:

Av = λv.

This problem can be formulated as a semidefinite programming problem:

(39a) max 〈A,X〉
subject to trace (X) = 1 ,

X ≥ 0

(39b) min λ
subject to S = λI −A .

S ≥ 0

For more information on this problem formulation see [22].

Example 1.2.3. Let A be an r × r matrix and n a nonnegative integer. The
Chebyshev polynomial of degree n for A is the unique monic polynomial p+

n such that

(40) p+
n = argmin

pn

‖pn(A)‖.

Let {B0, B1, . . . , Bn} be a linearly independent set of matrices in Cr×r. Then prob-
lem (40) is equivalent to the norm minimization problem:

(41) min
z∈Cn

∥∥∥
n∑

k=1

zkBk −B0

∥∥∥,

where B0 = An, Bk = Ak−1, k = 1, . . . , n. If z solves (41) then the elements zk are
the coefficients of the Chebyshev polynomial of A. This norm minimization problem
can be expressed as a semidefinite program [46], [31]. If we define

K :=
n∑

k=1

zkBk −B0,

and use the fact that for K ∈ Cr×r,

(42) ‖K‖ = λmax

(
0 K

K∗ 0

)
,

then the norm minimization problem (41) can be written in the form (39b)

(43)





min
z∈Cn

, λ∈R
λ

subject to S = λA2n+1 + A0 −
∑n

k=1(xkAk + ykAn+k) ,
S ≥ 0

where xk = re(zk), yk = im(zk), and

A2n+1 =
(

I 0
0 I

)
, A0 =

(
0 B0

B∗
0 0

)
,

Ak =
(

0 Bk

B∗
k 0

)
, An+k =

(
0 iBk

−iB∗
k 0

)
, k = 1, . . . , n.



CHAPTER 2

Computational techniques

In this chapter we review some techniques for the computation of solutions for
convex programming problems. A popular method in this context is the Newton
method applied to the first order optimality conditions, see Section 1.2. A Newton
method requires solutions of linear equations, for linear as well as for semidefinite
programming problems. For problems of modest size we can solve the linear equa-
tions by computing a standard LU -factorization. For larger problems we study
sparse variants and subspace methods, because those methods can solve in less com-
puting time when the dimension of the matrices becomes large.

First, we discuss interior-point methods in the general framework for convex
optimization problems. In 2.1.2, 2.1.3, and 2.1.4 we apply the interior-point methods
to linear programming problems. In Section 1.2 we have seen that the three different
barrier formulations for the linear programming problem led to the same optimality
conditions. However, we will also see that if we apply Newton’s method to the three
different problems then the approaches have different properties.

Section 2.2 gives a short discussion on the analogous formulation to LP of the
primal-dual interior-point method for SDP. Section 2.3 deals with computational
details for the primal-dual interior-point method for LP and SDP. We will see that,
especially for SDP, the methods are very inefficient when the problem size is large.
We will discuss new ideas for the projection of convex programming problems onto
subproblems of smaller size in Section 2.4.

2.1. Interior-point methods for convex programming problems

First, the general framework is introduced. Then the general framework is
applied to linear programming problems.

2.1.1. Interior-point methods in the general framework
In Subsection 1.2.1 we introduced a general convex programming problem. Recall
from (16)-(18) the first order optimality conditions for x nonnegative and s > 0:

(44) g(x, y, s) =:




h(y) + s
∇f(y) + 〈x,∇h(y)〉

SXe− µe


 = 0,

where X := diag(x), S := diag(s). The basis for a numerical algorithm for computing
a solution to (44) is a Newton method. We obtain a Newton method if we substitute
xk + ∆xk, yk + ∆yk, and sk + ∆sk into (44), and neglect second and higher order
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terms. We use first order approximations of the functions appearing in the KKT
conditions:

∇f(y + ∆y) = ∇f(y) +∇2f(y)∆y +O(‖∆y‖2),
h(y + ∆y) = h(y) +∇h(y)∆y +O(‖∆y‖2).

With the notation:
H(x, y) := ∇2f(y) + 〈x,∇2h(y)〉,

we obtain the following system:

∇h(yk)∆yk + ∆sk = −h(yk)− sk (=: p)(45)

H(xk, yk)∆yk + 〈∆xk,∇h(yk)〉 = −∇f(yk)− 〈xk,∇h(yk)〉 (=: q)

Sk∆Xke + ∆SkXke = −SkXke + µe (=: r) .

The system of equations (45) can be written in matrix form as

(46)




0 ∇h(yk) I
∇h∗(yk) H(xk, yk) 0

0 Sk Xk







∆xk

∆yk

∆sk


 =




p
q
r


 .

Now it is clear that we have a Newton method for solving g(x, y, s) = 0, because
∇g(xk, yk, sk) equals the matrix at the left hand side of (46), and the Newton di-
rection 


∆xk

∆yk

∆sk


 = −∇g(xk, yk, sk)−1g(xk, yk, sk),

is given by (46). This Newton method finds a solution of optimization problem (12),
it proceeds iteratively from a strictly feasible initial point (x0, y0, s0) through a
sequence of points determined from the search direction (∆xk, ∆yk,∆sk) described
by (46):

xk+1 = xk + αk∆xk,

yk+1 = yk + βk∆yk,

sk+1 = sk + βk∆sk.

The αk and βk are chosen such that xk+1 > 0 and sk+1 > 0. Note that if we start
with a feasible point, we have that p = q = 0 in (46). If we do not have a feasible
starting point, then this process leads to a feasible point, if it exists. For infeasible
points p and q will measure the infeasibility.

The matrix in equation (46) is not symmetric, but it is easily symmetrized in
two steps. First by multiplying the third equation by (Sk)−1, which gives

(47)




0 ∇h(yk) I
∇h∗(yk) H(xk, yk) 0

0 I (Sk)−1Xk







∆xk

∆yk

∆sk


 =




p
q

(Sk)−1r


 .

Since the third equation of (47) can be used to eliminate ∆s without producing
any off-diagonal fill-in in the remaining subsystem, we write

(48) ∆sk = (Xk)−1(r − Sk∆xk),
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and obtain the symmetric reduced system

(49)
( −(Xk)−1Sk ∇h(yk)

∇h∗(yk) H(xk, yk)

)(
∆x
∆y

)
=

( −X−1r + p
q

)
.

in the second step. In some situations it will be convenient to go one step further
and use the lower part of equation (49) for the elimination of the variable ∆xk. Then
∆xk is given by

∆xk = (Sk)−1Xk
(
∇h(yk)∆yk + (Xk)−1r − p

)
.

The resulting equation is,(
H(xk, yk)+∇∗h(yk)(Sk)−1Xk∇h(yk)

)
∆yk = q+∇h∗(yk)(Sk)−1Xk

(
p−(Xk)−1r

)
.

Note that the matrix at the left hand side is equal to the Schur complement of
H(xk, yk) in the matrix on the left hand side of (47).

We will now proceed to linear programming problems. First we will describe
the primal-dual interior-point method, then the primal method, and finally the dual
method.

2.1.2. The primal-dual interior-point method for LP
In Subsection 1.2.2 we introduced linear programming problems. Equations (23)-
(25) are the first order optimality conditions for the primal-dual barrier formulation
of (p), for reference we repeat them here:

(50) g(x, y, s) :=




c−A∗y − s
b−Ax

XSe− µe


 = 0,

where X := diag(x) and S := diag(s).
Under the assumption that there exist strictly feasible x0, y0, and s0, we apply

Newton’s method to (50), as we did in the general setting in Subsection 2.1.1. This
gives the system

(51)
A∗∆y + ∆s = c−A∗y − s (=: p),

A∆x = b−Ax (=: q),
S∆x + X∆s = µe−XSe (=: r).

Note that the only quadratic term that had to be neglected is −∆X∆Se coming
from the last equation of (50). The other two KKT conditions are linear and do not
lead to high order perturbations.

Again we see (as in (45)) that if we start with a feasible x0, y0, and s0, then
p = q = 0 in (51). If we start with an infeasible point (x0, y0, s0), then p measures
the dual infeasibility and q the primal infeasibility, since p and q denote the violation
of the dual and primal constraints, respectively.

Conform the general framework, we write (51) in the same form as (46):

(52)




0 A∗ I
A 0 0
S 0 X







∆x
∆y
∆s


 =




p
q
r


 .
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The matrix on the left hand side is symmetrized by multiplying the third row by S−1.
We can eliminate the third equation without loosing the diagonal block structure of
the matrix. This leads to ∆s = X−1(r − S∆x) and

( −SX−1 A∗

A 0

)(
∆x
∆y

)
=

(
p−X−1r

q

)
.(53)

We construct the Schur complement AS−1XA∗ of SX−1 in (53), which gives

(54)
(AS−1XA∗)∆y = AS−1X(p−X−1r) + q,
∆x = S−1X(A∗∆y + X−1r − p),
∆s = p−A∗∆y.

Note that AS−1XA∗ is symmetric, since X and S−1 are diagonal matrices. As in
the general framework 2.1.1, we start a damped Newton iteration process with a
strictly feasible initial point (x0, y0, s0): we construct the new estimates

xk+1 = xk + αk∆xk,

yk+1 = yk + βk∆yk,

sk+1 = sk + βk∆sk,

with step sizes αk, and βk, such that xk+1 > 0, and sk+1 > 0.
For a damped Newton step (the third equation of (50) is not solved exactly), we

set the value of µk+1 to to

µk+1 = ρ
〈xk+1, sk+1〉

n
,

where ρ ∈ (0, 1) is a given constant. This method is called the primal-dual interior-
point method for LP.

Very popular in interior-point codes is a predictor corrector method proposed
by Mehrotra [29]. This is essentially a second order correction derived directly from
the first order conditions (50). The difference with the usual primal-dual interior-
point method is that the second order term ∆X∆Se is included in (51). Mehrotra
proposes to solve first an affine system and then carry out the correction or centering
step for the ∆X∆Se term. Suppose that one starts with (strictly feasible) x, y, s,

and µ = x∗s
n . Then compute the affine scaling step by solving (52) with right hand

side 


p
q

−XSe (=: r(1))


 .

We denote the solution as (∆x(1), ∆y(1), ∆s(1)).
Construct step sizes α1 and α2 such that x + α1∆x(1) > 0 and s + α2∆s(1) > 0,

and form

µaff =
(x + α1∆x(1))∗(s + α2∆s(1))

n
, and σ =

(
µaff

µ

)3

.
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The σ is a heuristic choice suggested by Mehrotra. We use this to solve (52) with
right hand side 


0
0

σµe−∆X(1)∆S(1)e


 ,

for some small µ ≥ 0. Denote the solution as (∆x(2), ∆y(2), ∆s(2)). Then add the
corrections ∆x = ∆x(1) + ∆x(2), ∆y = ∆y(1) + ∆y(2), and ∆s = ∆s(1) + ∆s(2),
compute step lengths, and finally update x, y and s. In practice, this method
improves the quality of the approximate solution, compared with the usual primal-
dual interior method. This indicates that the neglected second order term may
contain important information.

Instead of using one corrector-step, we may also do several repetitions of the
corrector step, as is suggested in [23]. If we iterate the Mehrotra process then we
obtain

(55) r(j+1) := µe−Xs−∆X(j)∆s(j).

We now solve (52) with right hand side

(56)




p
q

r(j)


 .

Experiments in [23] show that repetitions do not essentially improve the quality of
the approximate solution, compared with the one found by Mehrotra’s method.

2.1.3. The primal interior-point method for LP
We repeat the first order optimality conditions (29)-(30) for the primal barrier for-
mulation of (p):

(57) g(x, y) :=
(

c− µX−1e−A∗y
b−Ax

)
= 0, X := diag(x).

The primal interior-point method is a damped Newton iteration process just
like the primal-dual interior-point method. Now Newton’s method is applied to
(57). This leads to the following system:

(58)
(

µX−2 −A∗

−A 0

)(
∆x
∆y

)
=

(
A∗y + µX−1e− c

Ax− b

)
.

Assuming that we start the iteration process with a strictly feasible (x0, y0), then
we compute the Schur complement µAX2A∗ of µX−2 in (58) and express the search
direction ∆x in terms of this:

(59) ∆x = − 1
µ

XPXc + XPe,

where

(60) P =
(
I −XA∗(AX2A∗)−1AX

)
.
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is the orthogonal projection on span(XA∗)⊥. Note that we can iterate without ex-
plicitly using y; we construct ∆y from ∆x. We compute the new estimate xk+1 =
xk + αk∆xk, where αk is an appropriate step size such that xk+1 > 0 and such
that progress is made. If the barrier parameter µk < ε then stop, otherwise, choose
µk+1 < ρµk.

This method is called the primal interior-point method because it keeps track
of the primal variable x. The method does not give information about the solution
of (d) nor about the reduction of the duality gap.

2.1.4. The dual interior-point method for LP
The dual variant works similar to the primal variant, but now with the optimality
conditions for the dual barrier formulation of (d):

(61) g(y) := b− µ
∑

i

Aei(ci − (A∗y)i)−1 = 0.

For reference we repeat the description from Subsection 2.1.3 applied for y here.
Newton’s method is applied to (61). This leads to the following system:

(62) (AS−2A∗)∆y =
1
µ

b−AS−1e, with S := diag(c−A∗y).

Assuming that we started the iteration process with a strictly feasible y0, we compute
the new estimate yk+1 = yk +βk∆yk, where βk is an appropriate step size such that
c − A∗(yk + βk∆yk) > 0. We stop if the barrier parameter µk < ε, otherwise, we
choose µk+1 < ρµk.

This method is called the dual interior-point method, because it keeps track
of the dual variable y. As for the primal interior-point method, it does not give
information about the reduction of the duality gap.

2.1.5. Comparison of the interior-point methods
For the comparison of the primal-dual approach with the primal, and dual ones, it
is instructive to note that for all approaches we have to solve a system involving a
matrix of the form ADA∗ for some diagonal matrix D. The matrix D varies per
step and per method, but the computational work per step and per method is the
same. Two immediate advantages appear when examining the primal-dual method.

(1) The exact current duality gap 〈c, x〉 − 〈b, y〉 = 〈x, s〉 is always known for
feasible (x, y, s).

(2) Separate step-lengths αk and βk for

xk + αk∆xk and (yk, sk) + βk(∆yk,∆sk)

are allowed, which can significantly reduce the number of iterations to
convergence, probably because for both the primal and dual variables the
maximum possible step sizes are taken, and therefore the largest reduction
per step in objective values of (p) and (d) is attained.
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2.2. Interior-point methods for SDP

In the following subsection we will concentrate on the primal-dual interior-point
method for SDP. It is an analogue of the primal-dual interior-point method for
LP. We only describe the primal-dual variant, because the primal and dual variant
are analogous to the primal and dual interior-point method for LP. They can be
derived using the same principles as in our derivation of the primal-dual interior-
point method in Subsection 2.2.1. Moreover, the primal-dual variant has attractive
properties over the primal- or the dual variant, as we argued in the last subsection.
It is therefore usually the method of choice.

2.2.1. The primal-dual variant
The primal-dual variant is almost the same as the primal-dual variant for LP, but
now for the equations (33)-(35). For reference we repeat them here:

(63) g(X, y, S) :=




C −A∗(y)− S
b−A(X)
XS − µI


 = 0.

Under the assumption that there exist strictly feasible points X0, y0, and S0 we
apply Newton’s method for (63), as we did in Subsection 2.1.2, for (50). This gives
the system

A∗(∆y) + ∆S = C −A∗(y)− S(=: P ),(64)
A(∆X) = b−A(X)(=: q),(65)

∆XS + X∆S = µI −XS(=: R).(66)

Again note that the only quadratic term that had to be neglected is −∆X∆S coming
from the last row in the matrix in equation (63). The other two optimality conditions
in (63) are linear and do not lead to high order perturbations. In general ∆X will
not be symmetric, we have to adjust our computations to get a symmetric ∆X, see
Subsection 2.3.4. We see, as in (51), that if we start with feasible X0, y0, and S0,
that P = 0 and q = 0.

We start a damped Newton iteration process that needs a strictly feasible start-
ing point. In order to obtain feasible iterates, we compute the new estimates
Xk+1 = Xk + αk∆Xk, with αk an appropriate scaling such that Xk+1 > 0, and
yk+1 = yk +βk∆yk, with βk an appropriate scaling such that Sk+1 = Sk +βk∆Sk >
0. The parameters αk and βk are step sizes.

For a damped Newton step we set µk+1 to

µk+1 = ρ
〈Xk+1, Sk+1〉

n
,

where ρ ∈ (0, 1) is a given constant.
This method is called the primal-dual interior-point method for SDP problems.

2.3. Computational details

In this section we discuss some computational details for solving the LP and the
SDP problems with primal-dual interior-point methods. Both the LP and the SDP



30 2. COMPUTATIONAL TECHNIQUES

primal-dual interior-point methods need to compute search directions, ∆x, ∆y, ∆s
or ∆X, ∆y, ∆S, at every iteration step.

In Subsection 2.3.1 we motivate how we will compute the search directions for
LP; there are three options. We will see that the best option is to compute ∆y from

(67) (AS−1XA∗)∆y = AS−1X(p−X−1r) + q.

and then form

∆x = S−1X(A∗∆y + X−1r − p),(68)
∆s = p−A∗∆y.(69)

Subsection 2.3.2 describes the practical implementations for solving (67), taking
into account the size and sparsity of the matrix AS−1XA∗.

Subsection 2.3.3 describes the computational details for SDP. Before we show
how ∆X, ∆y, and ∆S are computed, we introduce notation to bring the correction
equations (64)-(66) into a form similar to (67). That makes them more suitable
for computations. For SDP primal-dual interior-point computations the practical
implementation can be easily described, because we do not have a choice how to
solve ∆X, ∆y, and ∆S. This will be shown in the last part of Subsection 2.3.3.

We finish Section 2.3 with the description of some basic differences of LP and
SDP primal-dual interior-point computations, in Subsection 2.3.4.

2.3.1. Computational details for LP
From Subsection 2.1.2 it is obvious how to compute ∆y from (67) and then form
∆x and ∆s, but more options exist. We will state the different options and describe
their features. We aim at a symmetric, definite and well-conditioned system to solve.

The complete system. The first option is to compute the vector (∆x, ∆y, ∆s)
from the correction equation

(70)




0 A∗ I
A 0 0
S 0 X







∆x
∆y
∆s


 =




p
q
r


 .

We will refer to the 3× 3 block system (70) as the complete system. Unfortunately,
the complete system is non-symmetric, indefinite, and ill-conditioned (see below).
System (70) can be symmetrized by multiplying the last row with S−1, but the in-
definiteness can not be easily repaired. Therefore we will avoid to solve the complete
system and look for a stable, symmetric, and well-defined reduction process.

The reason for the ill-conditioning of (70) is that some components of x and
s tend to zero in the iteration process, when x approaches the optimal point (s
approaches the associated Lagrange multiplier). In finite precision arithmetic this
means that some information may get lost because of cancellation effects, when
multiplying with x or s.

The reduced 2 × 2 systems. Freund et al. [12] propose a symmetric stable
reduction based on two different symmetric 2× 2 block matrix factorizations of the
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complete system (70). The first symmetric 2× 2 block matrix factorization is taken
from Subsection 2.1.2,( −SX−1 A∗

A 0

) (
∆x
∆y

)
=

(
p−X−1r

q

)
.(71)

with ∆s = X−1(r − S∆x), and the second one is obtained by eliminating ∆x from
(70): ( −SX−1 A∗

A 0

) ( −XS−1∆s
∆y

)
=

(
p

r −AS−1q

)
,(72)

with ∆x = S−1(p − X∆s). The matrices in (71) and (72) are both ill-conditioned
for the same reason as (70) is ill-conditioned. We can not see in advance which parts
of x and s are vanishing when approaching optimality, therefore a partitioning of x
and s will be the first step towards a better understanding of the behavior of the
block system.

Partition the vectors x and s into two parts x1, x2 and s1, s2, respectively,
such that x1 ≥ s1 and x2 < s2. For x1, s1 the equation (71) is used and for x2, s2

the equation (72) is used. Following partitioning of x and s, we set the constraint
matrix A to

A = (A1 A2).
Similarly, we partition

p =
(

p1

p2

)
and q =

(
q1

q2

)
.

Using this partitioning and reordering, we combine the matrices of (71) and (72)
into one matrix:

K :=



−S1X

−1
1 0 A∗1

0 −S2X
−1
2 A∗2

A1 A2 0


 .

Similarly, we combine the right hand sides and search directions, so that the two
systems are combined to one new system, written as Kz = d. We have collected
the small components in the (1, 1) block −S1X

−1
1 of K and the large components

in the (2, 2) block −S2X
−1
2 of K. Numerical cancellation is avoided, because for

multiplication only the ‘large numbers’ of x and s (the significant values) are used.
The ill-conditioning is reduced by a rescaling matrix Λ:

Λ =




I 0 0
0 S

−1/2
2 X

1/2
2 0

0 0 I


 ,

for which

ΛKΛ =




ε 0 A∗1
0 −I δ∗

A1 δ 0


 ,

where ε = −S1X
−1
1 and δ = A2S

−1/2
2 X

1/2
2 contains only small numbers. We have

to identify a suitable method that can handle problems of the type ΛKΛ. One
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has to solve ΛKΛz = Λd. Unfortunately, no effective preconditioners are known for
iteratively solving this system, see [12].

The Schur complement of the complete system. We will now describe the
method that is usually implemented in LP interior-point solvers. We reduce the
complete system (70) to (67), with ∆x and ∆y defined by (68) and (69), respec-
tively.

The matrix AS−1XA∗ is symmetric positive definite. Unfortunately, AS−1XA∗

is ill-conditioned for the same reason that the complete system is ill-conditioned.
However, when computing ∆y from (67), the matrix

(AS−1XA∗)−1A∗S−1X

appears. This matrix remains bounded, independent of the value of S−1X, as is
shown by Stewart [43, p.10]. Therefore (67) is used in practical implementations to
compute ∆y (and subsequently ∆x, ∆s). We will proceed with the solution of (67)
and describe the methods for solving this linear system in the following subsection.

2.3.2. Practical computation
In this subsection we will discus methods for solving the linear system

(73) (AS−1XA∗)∆y = AS−1X(p−X−1r) + q.

For ease of notation we set K := AS−1XA∗, x := ∆y, and d := AS−1X(p−X−1r)+
q. We will use different methods for solving Kx = d depending on the size and
sparsity of K. We will now describe the methods that exploit properties of K.

For positive definite matrices of low dimension we prefer a Cholesky factoriza-
tion, as we described in Section 1.1.4. Unfortunately, in practice matrices are not
always of low dimension.

Cholesky and reordering. If K is sparse, then a Cholesky factorization usually
produces fill-in; that is, some lower triangular locations in the Cholesky factor L
contain nonzero elements at locations where the original matrix K has a zero. The
amount of fill-in depends on the ordering of the system, so that we can consider
the permuted system PKP ∗ for some fill-in reducing permutation matrix P. For a
permutation matrix P , we solve the reordered system

(PKP ∗)(Px) = Pd.

In practice we have to reorder the rows and columns of K before performing the
factorization. One of the most effective sparsity preserving orderings for K is called
the minimum degree ordering [14]. At each step, a row and corresponding column
interchange is applied to the part of the matrix remaining to be factored, such that
the product of the number the number of nonzeros in the pivot row and column is
minimal. After n steps of the symbolic factorization the minimum degree ordering is
obtained. This helps to reduce the amount of arithmetics that has to be carried out
in the Gaussian elimination. However, note that the minimum degree ordering does
not take the size of the non-zero matrix-elements into consideration. Therefore,
in order to preserve numerical stability, one must take care to avoid small pivot
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elements. In fact, there should be a balance between minimum fill and numerical
stability. A good survey of implementations of minimum degree ordering can be
found in, for example, [14].

Cholesky and Sherman-Morrison. Most of the interior-point codes use a sparse
Cholesky factorization LL∗ of the sparse matrix K := AS−1XA∗ in every iteration
step of the algorithm. To minimize the fill-in, the columns and rows are reordered as
we described above for Cholesky and reordering. These permutations are determined
at the first iteration, because the sparsity pattern remains the same for any positive
diagonal matrix D := S−1X in K = ADA∗. We will now explain that costly updates
of this factor in each step can be largely avoided too.

Consider the situation where only one entry of D changes. Then the new coef-
ficient matrix K ′ differs from K only by a rank one matrix, so we can write

K ′ = K + uu∗,

for a suitable vector u. With the Sherman-Morrison-Woodbury formula [17, p.50]
we have for the inverse of K ′ that

(74) (K + uu∗)−1 = K−1 − K−1uu∗K−1

1 + u∗K−1u
.

Since only matrix-vector multiplications are involved in (74), the inverse of K ′ can
be calculated from the inverse of K with only O(n2) additional operations. We
generalize this idea to the case where K has a very low number of dense columns,
say l. Split the relatively dense columns (d) of A from the sparse ones (s), that is,
partition

A = [AsAd], and D =
(

Ds 0
0 Dd

)
,

such that we can rewrite K as

(75) K = ADA∗ = AsDsA
∗
s + AdDdA

∗
d = H + UU∗,

where H is the product of sparse matrices and U = AdD
1/2
d is the collection of dense

columns multiplied by the corresponding diagonal elements D
1/2
d . The matrix U will

be of low rank, rank(U) = l.
If H is nonsingular, then with the Sherman-Morrison-Woodbury formula we

have the following form for the inverse of K,

(76) K−1 = (H + UU∗)−1 = H−1 −H−1U(I + U∗H−1U)−1U∗H−1.

The solution of the given linear system Kx = d is

(77) x = [H−1d]−H−1U(I + U∗H−1U)−1U∗[H−1d].

Since U is of low rank, the matrix I + U∗H−1U is square, low dimensional and its
computation requires only a small number of back substitutions once H = LL∗ is
factored. This way of computing the inverse of K is called rank-one updating, since
the update in equation (76) can be viewed as l rank-ones updates.
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Note that if H is ill-conditioned, then (77) gives an instable method, because of
subtracting two almost equal vectors. For this situation we need another strategy
that will be described in the next part.

Iterative methods. Before we continue with the problem of solving Kx = d
when H is ill-conditioned and K is sparse, we introduce the so-called subspace iter-
ation methods for solving linear systems.

Let us take, for example, the starting vector x0 = 0 as a starting vector for
the iteration process, then we define the residual to x0 by r0 := d −Kx0 = d. The
subspace

Ki(K; r0) := {r0,Kr0, . . . , Ki−1r0}
is called the Krylov subspace of order i generated by K and r0. Instead of using the
induced basis vectors for Ki(K; r0), an orthonormal basis is used. The construction
of an orthonormal basis is via Arnoldi’s approach. Start with

v1 := r0/‖r0‖2.
Suppose that we already have an orthonormal basis

v1, . . . , vj .

Define Vj = (v1 · · · vj), that is, the matrix with columns v1, . . . , vj . Then compute

ṽj+1 := Kvj − Vj(V ∗
j Kvj), and normalize vj+1 := ṽj+1/‖ṽj+1‖2.

If we write

hi,j := 〈vi,Kvj〉 for i = 1, . . . j and hj+1,j := ‖ṽj+1‖2,
then we obtain the following algebraic expression for the Arnoldi basis

(78) KVi = Vi+1Hi+1,i.

The (i + 1) × i matrix Hi+1,i is an upper Hessenberg matrix with elements hi,j .
When K is symmetric, then the upper Hessenberg matrix reduces to a tridiagonal
matrix. In that case the procedure is called the Lanczos method with Gram-Schmidt
orthogonalization. In practice, modified Gram-Schmidt is used, in order to improve
the numerical orthogonality [9].

We are actually looking for a solution xi in Ki(K; r0) as an approximate to the
solution x of Kx = d. We can use different approaches to identify a suitable solution
xi. For example

• GMRES determines a minimal residual ‖d−Kxi‖2. This approach is called
the minimal residual approach,

• Conjugate Gradients (CG) determines a minimal residual in K−1-norm.
This approach is called the Ritz-Galerkin approach.

A good survey of subspace methods for linear systems can be found in [9].

Now we return to the problem of solving Kx = d, When H is ill-conditioned,
then we can avoid using (77) by rewriting (75)

(LL∗ + UU∗)x = d,
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matrix properties method
low dimension Cholesky
large + sparse Cholesky + reordering
large + sparse + low rank Cholesky + reordering + Sherman-Morrison
large + sparse + ill-cond. CG + preconditioner
large + dense CG + preconditioner

Table 1 How to solve AS−1XA∗x = d.

as

(79) (I + (L−1U)(L−1U)∗)L∗x = L−1d,

and solve this system L∗x with CG in order to get an approximation for L∗x. The
approximation for x is then obtained with a back-solve.

When H is not sparse and not of low rank, then (79) is not very useful, since
the computation of the factorization H = LL∗ is too expensive. In this situation we
may solve Kx = d by the CG method with a preconditioner, but unfortunately, no
suitable preconditioners are known to us.

We summarize in Table 1 methods that can be used for specific situations solving
Kx = d.

2.3.3. Computational details for SDP
As for the LP primal-dual interior-point method, we will also describe for SDP how
to compute ∆X, ∆y, and ∆S at every step of the primal-dual interior-point method.
Before we give explicit formula’s for ∆X, ∆y, and ∆S we need some notation. We
use this new notation to rewrite (64)-(66) into a form as in (70).

For simplicity of notation, we will assume that all matrices involved are real.
The extension for complex matrices will be obvious.

Let M be an m× n matrix and N be a k× l matrix. The Kronecker product or
Tensor product is a map ⊗ : Rm×n × Rk×l → Rmk×nl defined as

M ⊗N :=




m11N · · · m1nN
...

...
mm1N . . . mmnN


 ,

where M = (mij) ∈ Rm×n.

The vec operator is a map vec : Rm×n → Rmn defined as

vec(M) =




m1

...
mn


 ,

where M is an m×n matrix and m1, . . . , mn are its columns. Let mat be the inverse
of vec. Thus the vec operator stacks the columns of a matrix in a vector, and mat
puts a vector into a matrix of appropriate size.

We list some important properties of the Kronecker product.
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Proposition 2.3.1 ([18]). Let K, L,M, and N be matrices of appropriate sizes.
(1) (M ⊗N)∗ = M∗ ⊗N∗,
(2) (M ⊗N)−1 = M−1 ⊗N−1,
(3) (MK)⊗ (NL) = (M ⊗N)(K ⊗ L),
(4) (M ⊗N)vec(K) = vec(NKM∗),
(5) (I ⊗M + K ⊗ I)vec(N) = vec(MN + NK∗),
(6) 〈M, N〉 = trace (N∗M) = vec(N)∗vec(M) = 〈vec(M), vec(N)〉.

The set of symmetric matrices Sn can be identified with vectors in R
1
2 n(n+1) via

the svec operator. The svec operator is a map defined as

svec(M) :=
(
m11,

√
2m12, . . . ,

√
2m1n,m22,

√
2m23, . . . ,

√
2m2n, . . .

. . . , m(n−1)(n−1),
√

2m(n−1)n,mnn

)∗
,

for M ∈ Sn. The
√

2 for off-diagonal elements ensures for M, N ∈ Sn that

〈M,N〉 = trace (N∗M) = 〈svec(M), svec(N)〉.
The symmetric Kronecker product ⊗s is defined for arbitrary square matrices N, M ∈
Rn×n by its action on the vector svec(K) for a symmetric matrix K ∈ Sn,

(M ⊗s N)svec(K) := svec
(1

2
(NKM∗ + MKN∗)

)
.

We list also some important properties of the symmetric Kronecker product ⊗s.

Proposition 2.3.2 ([18]). Let M and N be matrices of appropriate sizes.
(1) M ⊗s N = N ⊗s M,
(2) (M ⊗s N)∗ = N∗ ⊗s M∗,
(3) (M ⊗s M)(K ⊗s L) = 1

2 (MK ⊗s NL + ML⊗s NK),
(4) M ⊗s I is symmetric if and only if M ∈ Rn×n is symmetric,
(5) (M ⊗s M)−1 = M−1 ⊗s M−1,
(6) if M > 0 and N > 0 then (M ⊗s N) > 0.

With these new definitions we can rewrite (66) as

(S ⊗ I)vec(∆X) + (I ⊗X)vec(∆S) = vec(µI −XS).

With the XS +SX-method, that we described in Section 1.2.3 (below (35)), we can
rewrite (36), with P = I, as

(I ⊗s X)svec(∆X) + (I ⊗s S)svec(∆S) = svec
(
µI − 1

2
(XS + SX)

)
.

We will now show the similarity with the optimality conditions (70) for the
linear programming problem. This will only be done for the XS-method, that was
also described in Section 1.2.3. For the XS + SX-method, the same formulation
can be used as for the XS-method, with the symmetric Kronecker product (⊗s) in
combination with the svec map, instead of the Kronecker product (⊗) with the vec
map.
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Let x := vec(X), s := vec(S), ∆x := vec(∆X), and ∆s := vec(∆S). Define

A :=




vec(A1)∗
...

vec(Am)∗


 ,

and

S := S ⊗ I, X := I ⊗X and I := I ⊗ I.

Then Ax = A(X). Hence, one Newton step for (63), that is, for g(X, y, S) = 0, can
be written as the linear equation

(80)




0 A∗ I
A 0 0
S 0 X







∆x
∆y
∆s


 =




vec(P )
q

vec(R)


 .

This leads to the analogue of (67)

(AS−1XA∗)∆y = AS−1X(vec(P )−X−1vec(R)) + q,

∆x = S−1X(A∗∆y + X−1vec(R)− vec(P )),(81)
∆s = vec(P )−A∗∆y.

From Proposition 2.3.1 property (1)-(3) and the fact that X and S are symmetric, we
see that the matrix AS−1XA∗ is symmetric. To show that the matrix AS−1XA∗ is
positive definite first note that S−1 is positive definite and apply Proposition 2.3.1
property (4). Then for all K

vec(K)∗(X ⊗ S−1)vec(K) = vec(K)∗vec(S−1KX∗) =

trace
(
S−1KX∗K

)
= trace

(
S−1/2KX∗KS−1/2

)
> 0.

and we conclude that S−1X > 0.
The analogue of AS−1XA∗ for the XS +SX-method is not symmetric, but can

be shown to be nonsingular if (XS + SX) > 0, see [41].
For SDP we will always use the system of equations (81) to compute ∆X, ∆y,

and ∆S. The reason is that in contrast to LP the problem size is much larger for
SDP, and therefore systems even larger than AS−1XA∗ are computationally too
expensive to solve. For example the matrix on the left hand side of system (80) has
size (m + 2n2)× (m + 2n2), and the matrix on the left hand side of system (70) has
‘only’ size (m + 2n)× (m + 2n).

A difference with LP is that the matrix AS−1XA∗ is dense. The linear equation

(AS−1XA∗)∆y = AS−1X(vec(P )−X−1vec(R)) + q,

is in practice usually solved by a Cholesky or LU-factorization. Therefore, if the
number m of matrices is larger than 5000 and if the size of the matrices Ai is larger
than n > 500, SDP problems cannot be solved by primal-dual interior-point methods
on a typical workstation within reasonable computing time.
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Figure 2 Boundary of the cone of S2
+ matrices represented in R3.

2.3.4. Comparison of LP and SDP computations

The similarity between the algorithms for LP en SDP is quite clear since we derived
the theory for SDP as an analogue of the theory for LP. However, there are important
differences:

• The cone of positive semi-definite matrices is not finitely generated,1 in
contrast with the cone for a coordinate-wise ordering (and a non-standard
basis) in Rn. Figure 2 shows the boundary of the set of matrices(

x z
z y

)
,≥ 0

represented in R3, and Figure 3 shows the boundary of a cone in R3 for a
coordinate-wise ordering and a non-standard basis.

Hence, checking whether x ≥ 0 is cheaper, in a computational sense,
and less complicated, than checking whether a matrix X is positive semi-
definite X ≥ 0.

• There is a difference in choosing the search direction. In the LP case we
have diagonal matrices X and S, for which XS−1 = S−1X is obvious,
while for symmetric non-diagonal matrices, as in the SDP case, in general
XS−1 6= S−1X. For SDP we do have a choice between symmetry for
∆X, and ∆S, or for XS−1. We usually want to keep the search direction
matrices ∆X and ∆S symmetric. To ensure this, (66) in Subsection 2.2.1
can be symmetrized by using the symmetric equation (36) in Subsection
1.2.3. Then (66) becomes

P (∆XS + X∆S)P−1 + P−∗(S∆X + ∆SX)P ∗ = R,

1A cone is finitely generated if, for some finite set C, each element of the cone is a positive
linear combination of the elements of C.
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where

R = 2µI − P (XS)P−1 − P−∗(SX)P ∗.

If we choose, for example, P = I, then we obtain a search direction called
the Alizadeh-Haeberly-Overton (AHO) direction [2]. If we choose P = S

1
2

then we obtain the Monteiro direction [30], and

P =
(
S−

1
2 (S

1
2 XS

1
2 )

1
2 S−

1
2

)
,

leads to the so-called Nesterov Todd (NT) direction [32].

Figure 3 Boundary of the cone in R3 for coordinate-wise ordering and a non-standard basis.

2.4. Projecting the LP and SDP problem

The methods described in the last section work nicely for linear programming
problems, but for semidefinite programming problems, the computation of AS−1XA
can be very time and memory consuming, when m and n are large. The most natural
way of coping with a large dimension is to project the linear or semidefinite pro-
gramming problem onto a linear or semidefinite programming problem of smaller
size. We will try to identify methods for doing this. The projected linear or semi-
definite programming problem can then be solved directly. First we will describe
projections for linear programming problems and then for semidefinite programming
problems. The framework that we describe, will turn out to be effective for semidef-
inite programming, and will be the inspiration for the methods discussed in Chapter
3.
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2.4.1. LP projections
For k ¿ n consider the following maps:

P : Rn → Rk, J : Rk → Rn,

that, for some (orthonormal) n× k matrix V , are defined by

P (x) = V ∗x, J(z) = V z.

For a matrix A related to the standard LP formulation (p), we can formulate the
following diagram for P and J ,

Rn
A
−→ Rm

P ↓↑ J Id ↓↑ Id

Rk −→
AJ

Rm
.

The primal problem (p) can now easily be projected: write x̃ = V x̄, with x̃ an
approximation for x. This leads to

(82) min 〈V ∗c, x̄〉,
subject to (AV )x̄ = b,

x̄ ≥ 0.

We do not project the dual problem (d), but use the Lagrangian with respect to the
primal problem. Note that this Lagrangian is different from the Lagrangian for the
barrier formulation of (p) (see, for example, equation (28)):

L(x̄, ỹ, s̃) ≡ 〈V ∗c, x̄〉+ 〈ỹ, b−AV x̄〉 − 〈s̃, x̄〉
= 〈ỹ, b〉+ 〈V ∗c− V ∗A∗ỹ − s̃, x̄〉.

With standard duality theory we obtain the following dual problem for (82):

(83) max 〈b, ỹ〉,
subject to V ∗A∗ỹ + s̃ = V ∗c,

s̃ ≥ 0.

The observation is that the optimization problem (p) is transformed to an optimiza-
tion problem of non-standard form (with x̃ = V x̄) :

min 〈c, x̃〉,
subject to Ax̃ = b,

x̄ ≥ 0.

If we want to use the projection procedure for solving (p), a simple embedding tech-
nique will not return an x̃ ≥ 0, because the projection returns a high dimensional
generated cone described by x̄ ≥ 0. In Figure 4 we plotted an example of a 6 di-
mensional cone. We impose the condition x̃ ≥ 0 by rewriting (82). The first step is
to reformulate the inequality constraint as an equality constraint by introducing an
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Figure 4 Boundary of a 6 dimensional generated cone in R3.

extra slack variable t:

min 〈V ∗c, x̄〉,
subject to (AV )x̄ = b,

V x̄ = t,
t ≥ 0.

The second step is to eliminate the ‘free’ variable x̄, by expressing x̄ as the difference
of two nonnegative vectors x+ and x−, that is, x̄ = x+−x−, x+, x− ≥ 0. We obtain

min 〈V ∗c, x+〉 − 〈V ∗c, x−〉,
subject to (AV )x+ − (AV )x− = b,

V x+ − V x− = t,
x+, x−, t ≥ 0.

This is of standard LP form (p) and (d) with

x =




x+

x−

t


 , c =




V c
-V c
0


 , A =

(
AV -AV 0
V -V -I

)
and b =

(
b
0

)
.

This rewritten standard form of the projected problem is not attractive, because its
dimension is even bigger than for the original problem. This is a drawback for the
idea of projecting the linear programming problem. We will now discuss how these
considerations work out for semidefinite programming problems.
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2.4.2. SDP projections
For k ¿ n, we consider the maps:

P : Sn → Sk, J : Sk → Sn,

that, for some orthonormal n× k matrix V , are defined by

P(X) = V ∗XV, J (H) = V HV ∗.

For ` ¿ m, we consider the maps:

P : Rm → R`, J : R` → Rm.

that, for some orthonormal m× ` matrix W , are defined by

P (x) = W ∗x, J(y) = Wy.

For the operator A involved in the standard SDP formulation (P), we formulate the
following diagram for P and J , P and J ,

Sn
A
−→ Rm

P ↓↑ J P ↓↑ J

Sk −→
PAJ

R`
.

The map PAJ can be represented as

PAJ (H) =



〈Ã1,H〉

...
〈Ã`,H〉


 ,

with the matrices

Ãi :=
m∑

j=1

wji V ∗AjV, W = (wij)ij , (i = 1, . . . , `).

An important observation is that the projected problem is still a standard SDP
problem, because of the property

H ≥ 0 ⇔ X = V ∗HV ≥ 0.

This is in contrast to the LP projected problem.
We give an example.

Example 2.4.1. We are interested in the largest eigenvalue λmax of a matrix
A ∈ Sn. The primal (and dual) problem read as:

max 〈A,X〉
subject to trace (X) = 1

X ≥ 0

min λ
subject to S = λI −A .

S ≥ 0

The solution X of the primal problem is given by X = uu∗, with u the normalized
eigenvector associated with the largest eigenvalue λmax. This λmax is the solution



2.4. PROJECTING THE LP AND SDP PROBLEM 43

of the dual problem. For H = V XV ∗, with V orthonormal, the projected problem
has the following form:

max 〈V ∗AV,H〉
subject to trace (H) = 1

H ≥ 0

min µ
subject to Z = µI − V ∗AV .

Z ≥ 0

The remaining problem is the construction of V. Although, we will not try to
identify an appropriate V for the SDP projection framework, example 2.4.1 gives
inspiration for further investigation of the projection idea for eigenspaces, as we will
do in the next chapter. While writing this manuscript, work by Oliviera et al. [33]
came to our attention. They also use the SDP projection framework, made it work
for specific SDP approximations of graph partitioning problems.





CHAPTER 3

The eigenvalue approach

In this chapter we introduce a method for solving semidefinite programming
problems using an eigenvalue formulation. The approach is based on rewriting a
semidefinite constraint as an eigenvalue constraint. It uses a second order approx-
imation of the objective function in combination with a Newton method, so fast
convergence may be expected. The method may be, because of the properties of
eigenvalues, “sparsified” and therefore could be very attractive for solving large
sparse semidefinite optimization problems. For dense matrices the method appears
to be not more expensive than standard interior-point methods for semidefinite pro-
gramming problems. Since the method works with projections onto the space of
orthonormal eigenvectors it can be the basis for a subspace algorithm for solving
large semidefinite programming problems. The combination with subspace reduc-
tion methods lead to a form of the above-mentioned method that is computationally
cheaper than the standard primal-dual interior-point method described in Section
2.2.

3.1. Semidefinite programs and eigenvalue computation

In the first section we will describe the eigenvalue formulation, properties of a
relevant Lagrange multiplier, and derivatives of eigenvalue functions.

3.1.1. Eigenvalue formulation for (D)
We return to the semidefinite programming problem formulations (P) and (D), de-
fined in Subsection 1.2.3. We make some assumptions on the solvability of the
problem, namely we assume that both (P) and (D) are solvable and that at least
one of (P) and (D) has a strictly feasible solution. As a consequence we then have
a zero duality gap at optimality (see Subsection 1.2.3). Thus for a primal optimal
solution X+ and any dual optimal solution pair (y+, S+) we have, that

(84) 〈C,X+〉 − 〈b, y+〉 = X+S+ = 0.

Since X+, S+ ≥ 0, all eigenvalues of X+, S+ are (real and) greater than or equal to
zero. Moreover, X+S+ = 0 ⇔ S+X+ = (S+)∗(X+)∗ = (X+S+)∗ = 0∗ = 0, and
therefore the optimal solutions X+ and S+ commute.

We will focus on the problem formulation (D). Problem (D) can be reformulated
as an eigenvalue optimization problem by modeling S ≥ 0 as λmax(−S) ≤ 0. We
assume that the optimal solution of the primal problem (P) is nontrivial: X+ 6= 0.
Therefore, the condition λmax(−S) ≤ 0 can be rewritten as an equality constraint
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λmax(−S) = 0 since S+ has to be singular on account of (84). This leads to the
following equivalent formulation2,

(DE) min 〈b, y〉,
subject to λmax(C −A∗(y)) = 0.

The Lagrangian for this problem is

L(y, a) = aλmax(C −A∗(y)) + 〈b, y〉.
The eigenvalue function y → λmax(C −A∗(y)) is a convex non-smooth function.

To show the convexity, we first note that for A ∈ Sn the Rayleigh quotient form of
A → λmax(A) is

λmax(A) = max
x∗x=1

x∗Ax.

Now we check the definition (1) and (2) in Section 1.1.7 for convex functions:
(1) Sn is a convex set and
(2) ∀A1, A2 ∈ Sn and τ ∈ [0, 1] such that

λmax(A1 + τ(A2 −A1)) = max
x∗x=1

x∗A1x + τx∗(A2 −A1)x

= max
x∗x=1

(1− τ)x∗A1x + τx∗(A2)x

≤ max
x∗x=1

(1− τ)x∗A1x + max
x∗x=1

τx∗(A2)x

= λmax(A1) + τ(λmax(A1)− λmax(A2)).

Hence, λmax is indeed convex, and since y → C −A∗(y) is affine, we may conclude
that y → λmax(C−A∗(y)) is convex. Non-smoothness will be discussed in Subsection
3.1.2.

The Lagrange multiplier rule, see Subsection 1.2.1, assures that the minimum
of the Lagrangian,

(E) min
y∈Rm

aλmax(C −A∗(y)) + 〈b, y〉,

combined with the constraint equation determines all unknowns, if the function
is differentiable. The optimal value of (E) will be equal to the optimal value of
(DE). It states that there is a multiplier a+ for which ∇yL(y, a) = 0 in the point
(y+, a+). Since L(y, a) is non-smooth, we will go into detail about the meaning of
the gradient of L(y, a) in the following subsection. If L(y, a) is non-differentiable,
in case of multiple eigenvalues, we will concentrate directly on (E). Now, combined
with the constraint equation we find the first order conditions for a solution of (DE),

∇y

(
a+λmax(C −A∗(y+)) + 〈b, y+〉

)
= 0,

λmax(C −A∗(y+)) = 0.
(85)

In general we do not know the correct value for a+ in advance. However, if

(86) ∃z : A∗(z) = I, then a+ = 〈b, z〉.
2The most natural equivalent formulation of (D) would be to maximize 〈b, y〉 such that

λmax(A∗(y) − C) = 0, but since in literature, [20], [19],[34], [18], and [39], (DE) is used, we
adept this form.
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To see this, assume that A∗(z) = I. Then

(87)

min
y∈Rm

L(y, a) = min
ε,y∈Rm

aλmax(C −A∗(y + εz)) + 〈b, y + εz〉 =

min
ε,y∈Rm

aλmax(C −A∗(y)− εI) + 〈b, y〉+ ε〈b, z〉 =

min
ε,y∈Rm

aλmax(C −A∗(y)) + 〈b, y〉+ ε(〈b, z〉 − a).

Hence, the minimum of (87) is finite only if 〈b, z〉 − a = 0 (since the optimal value
of (E) equals the optimal of value (DE)).

In [20] Helmberg and Rendl use formulation (E) to construct a method, the
so-called spectral bundle method, for solving semidefinite programming problems by
projecting on eigenspaces, we will also use (E) to construct our method that projects
on eigenspaces. For a comparison between the spectral bundle method and ours, see
Subsection 3.6.1.

3.1.2. Derivatives of eigenvalue functions
If we want to solve the new problem formulation (E) by exploiting second order
approximations, then we encounter first order and second order derivatives of the
function λmax, or to be more specific of the function

aλmax(C −A∗(y)) + 〈b, y〉.
This section will be devoted to first and second order derivatives of the eigenvalues
of the function A∗(y).

Recall that A∗(y) is of the form

A∗(y) =
m∑

i=1

yiAi, with Ai ∈ Sn.

Denote the eigenvalues of A∗(y) in by

(88) λ̂1(y) ≥ · · · ≥ λ̂n(y),

and the orthonormal eigenvectors by

û1(y), . . . , ûn(y).

The eigenvalue functions λ̂i(y) are continuous in y [25]. The ordering is natural for
us since we are interested in λmax(C −A∗(y)). The numbering of the eigenvalues is
simple but not always convenient, because the λ̂i(y) are not necessarily differentiable.
For example, consider the graphs of the eigenvalues of A∗(y0 + td) as functions of
t ∈ R. The graphs may cross each other at some value of t. If such a crossing takes
place, the graph of λ̂i(C−A∗(y)) jumps from one curve to another, making a corner
at the crossing point. Summarizing, λ̂i(C − A∗(y)) depend continuously on y, but
not necessarily differentiable. Note that with this ordering

λmax(A∗(y)) := λ̂1(A∗(y)).

However, if we define an ordering of the eigenvalues λi(A∗(y)) = λi(y) in y =
y0 + td for t = 0 by

(89) λ1(y0) ≥ · · · ≥ λn(y0)
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and the orthonormal eigenvectors by

u1(y0), . . . , un(y0),

then the eigenvalues λi(A∗(y0 + td)) and the eigenvectors ui(A∗(y0 + td)) can be
selected to be analytic functions over t [25, Thm 6.1, p.120] with in t = 0 as
prescribed in (89). The ordering depends on y0 and d. We will call y0 a (starting)
point, t the step size, and d the direction. The analytic functions λi(A∗(y0 + td))
over t will be the eigenvalue curves of λi, and if eigenvalue curves cross in t̄ then t̄
is the crossing (point). Note that in this situation

λmax(A∗(y0 + td)) := max
i

(λi(A∗(y0 + td))),

which we will refer to as the maximum eigenvalue curve. Define

Λ := diag(λ1, . . . , λn) and U := (u1, . . . , un).

If we consider the eigenvalues of A∗(y) as functions of y, then we will use the
ordering (88) for the eigenvalues λ̂i(y), and denote λ̂i(y) by λi(y) (or by λi(A∗(y))),
and the eigenvectors ûi(y) by ui(y).

If we consider the eigenvalues of A∗(y) in y = y0 + td as functions of t, then
we will use the ordering (89) defined in y = y0 for the eigenvalues λi(y0 + td), and
denote the eigenvalues by λi in y = y0 and λi(A∗(y0 + td)) in y = y0 + td, and the
eigenvectors ui(y0) by ui.

Note that λi = λi(y) in y = y0.

Lemma 3.1.1. Suppose λi is simple for all i. Then the pseudo inverse of A(y)−
λi(y)I at y = y0 is given by

(
A∗(y0)− λiI

)†
=

∑

r 6=i

uru
∗
r

λr − λi
.

Proof. With (3), (4), and the observations that

u∗rU = e∗r and e∗r
(
Λ− λiI

)†
= (λr − λi)−1e∗r ,

we see that,
(
A∗(y0)− λiI

)†
= U(Λ− λiI)†U∗

=
n∑

r=1

uru
∗
rU(Λ− λiI)†U∗

=
∑

r 6=i

uru
∗
r

λr − λi
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Lemma 3.1.2. If λi is simple, then the formulae for the first and second order
partial derivatives at y = y0 are

(90)
∂λi(y0)

∂yk
= u∗i Akui.

(91)
∂2λi(y0)
∂yk∂yl

= 2Re(
∑

r 6=i

u∗i Akuru
∗
i Alur

λi − λr
)

Proof. Note that ∂
∂yk

(A∗(y)) = Ak and ∂2

∂yk∂yl
(A∗(y)) = 0. Since we have the

eigenvalue assumption

(92) (A∗(y)− λi(y)I)ui(y) = 0,

Equation (90) can be derived in the following way. We see that

(93) 0 =
∂

∂yk

(
(A∗(y)− λi(y)I)ui(y)

)
=

(
Ak − ∂λi(y)

∂yk
I
)
ui(y) +

(
A∗(y)− λi(y)I

)∂ui(y)
∂yk

.

Multiply on the left side with u∗i (y), then the second term equals zero by (92), and
we are left with

(94) u∗i (y)
(
Ak − ∂λi(y)

∂yk
I
)
ui(y) = 0.

Equation (90) follows immediately.
For the derivation of (91), we look at the partial derivative ∂

∂yl
of (94) at y = y0,

this leads to:

0 = −u∗i
(∂2λi(y0)

∂yk∂yl
I
)
ui+

(95) +u∗i
(
Ak − ∂λi(y0)

∂yk
I
)∂ui(y0)

∂yl
+ u∗i

(
Al − ∂λi(y0)

∂yl
I
)∂ui(y0)

∂yk
+

(96) +u∗i
(
A∗(y0)− λiI

)∂2ui(y0)
∂yk∂yl

+

(97) +
(∂ui(y0)

∂yl

)∗[(
Ak − ∂λi(y0)

∂yk
I
)
ui +

(
A∗(y0)− λiI

)∂ui(y0)
∂yk

]
.

The term (96) is zero by assumption (92), the terms (97) sum up to zero because
they satisfy (93) if ∂ui(y0)

∂yl
6= 0. We derive from (93) the equality

∂ui(y0)
∂yk

= −
(
A∗(y0)− λiI

)†[
Ak − ∂λi(y0)

∂yk
I
]
ui.

If we plug this in the terms of (95), we see that

0 = −u∗i
(∂2λi(y0)

∂yk∂yl
I
)
ui+
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−u∗i
∂

∂yk

(
A∗(y0)− λi(y0)I

)[
A∗(y0)− λiI

]† ∂

∂yl

(
A∗(y0)− λi(y0)I

)
ui

−u∗i
∂

∂yl

(
A∗(y0)− λi(y0)I

)[
A∗(y0)− λiI

]† ∂

∂yk

(
A∗(y0)− λi(y0)I

)
ui

= −2Re
[
u∗i

∂

∂yk

(
A∗(y0)− λi(y0)I

)[
A∗(y0)− λiI

]† ∂

∂yl

(
A∗(y0)− λi(y0)I

)
ui

]
.

We observe that u∗i
(

∂
∂yl

λi(y0)I
)
ur = 0, if i 6= r, and we apply Lemma 3.1.1:

∂2

∂yk∂yl
λi(y0) =

−2Re(
∑

r 6=i u∗i
∂

∂yk

(
A(y0)

∗ − λi(y0)I
)

uru∗r
λr−λi

∂
∂yl

(
A∗(y0)− λi(y0)I

)
ui) =

−2Re(
∑

r 6=i u∗i Ak
uru∗r

λr−λi
Alui) =

2Re(
∑

r 6=i
u∗i Akuru∗i Alur

λi−λr
).

3.2. A Newton-type method for solving (E): simple eigenvalue case

In this section we introduce an iterative approach for solving (E). Suppose we
are in a point y0 with

φ+ := aλmax(C −A∗(y0)) + 〈b, y0〉.
We are interested in locating a descent direction d, that is a direction d for which

(98) aλmax(C −A∗(y0 + td)) + 〈b, y0 + td〉 < φ+,

for some step size t > 0. If td is such that (98) holds, we say that we made progress
for the update td in the process. We construct a, if possible, local second order
approximation of the function aλmax(C −A∗(y)) + 〈b, y〉, derive a descent direction
d from this local approximation, and an estimate for the Lagrange multiplier a, and
then compute a step size t such that progress is made for td.

The difficulty in minimizing the maximum eigenvalue of a sum of matrices is
that the maximum eigenvalue function may not be differentiable in all of its points,
since the eigenvalues as functions of y are not differentiable quantities at points were
they coincide. The approach that we will introduce for the multiple eigenvalues is
more complex than the approach for the simple eigenvalues. The conclusions drawn
for the simple eigenvalue case will more clear; we will see that there is more choice for
computing, for example, the step size t. Therefore we believe that it is easier for the
reader to understand the framework if we assume in this section that the maximum
eigenvalue is simple at y = y0, and refer to this section as the simple eigenvalue case.
In the next section we will describe the so-called multiple eigenvalue case.

We proceed with the organization of this section. In Subsection 3.2.1 we will
describe the computation of a step size, that is, we compute a t+ > 0 such that for
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Figure 5 z = λmax(C − xA1 − yA2).

a given direction d and a given constant for the Lagrange multiplier a

(99) t+ = argmin
t

aλmax(C −A∗(y0 + td)) + 〈b, y0 + td〉.

We start with the computation of the step size instead of the computation of a
search direction d, because computing a step size t is much simpler than computing
a search direction d. In the first place, because the computation of t involves a
1-dimensional minimization problem, while the computation of d involves an m-
dimensional optimization problem. The arguments that involve the solution of the
1-dimensional minimization problem for t will also play an important role in the
solution of the m-dimensional minimization problem for the direction d. Moreover,
for the computation of t we will assume that we have already a value for the Lagrange
multiplier.

We motivate why we need a step size t. The step size t for a Newton update
is known. Since any Newton step will be based on a local approximation of the
function λmax as a function over t, we do not know in advance if the Newton step
size has also global relevance. The behavior of aλmax(C −A∗(y0 + td)) + 〈b, y0 + td〉
as a function of t may be very wild: the neglected high order terms could be playing
an important role, and other eigenvalue curves could cross the eigenvalue curve of
λ1, see Subsection 3.1.2.

If the curve λmax(C − A∗(y0 + td)) as a function of t has a quadratic term
equal to zero we will call d a linear direction. So, if the second order term of our
approximation is zero we are left with a linear direction for which we do not know
what a reasonable value of t is since an optimal t for a linear approximation will
probably be minus infinity.

To show that linear directions indeed exist, we give the following example.
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Figure 6 Field of gradients of λmax(C − xA1 − yA2).

Example 3.2.1.

C :=
(

0 −1
−1 0

)
, A1 :=

(
1 0
0 0

)
, and A2 :=

(
0 0
0 1

)
.

We compute

z := λmax(C − xA1 − yA2) = λmax

( −x −1
−1 −y

)
,

which is plotted in Figure 5, and the field of gradients of λmax(C − xA1 − yA2) in
(x, y), which is plotted in Figure 6. In Figure 6, we see a linear direction from the
top right angle to the bottom left angle, this is the trench that can be spotted in
Figure 5.

We will compute the step size iteratively and with high accuracy.

Subsection 3.2.2 contains the construction of a second order local approximation
of aλmax(C−A∗(y0 +d))+ 〈b, y0 +d〉 as a function of d. This approximation consists
of a linear and a quadratic term, and the optimality condition is a linear equation in
d and a. With the properties of this equation an approximated Lagrange multiplier
and two candidate search directions d are determined in Subsection 3.2.3. The
strategy is based on keeping the next step y0 + td as near as possible to y0, by using
a and the best possible direction d. The last part of Subsection 3.2.3 consists of
some practical notes about implementing the strategies.

From the two candidate search directions in Subsection 3.2.3, we have to se-
lect the best one every step of the iterative procedure. Therefore, we motivate in
Subsection 3.2.4, which one we will select in what situation.

Our method finds an approximate optimal value for (E) that is also an approx-
imate optimal value for (D), but the argmin ŷ for (E) computed by our eigenvalue
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method has not by definition the property that λmax(C − A∗(ŷ)) = 0, thus is not
by definition a solution to (D). Subsection 3.2.5 describes the computation of an
approximate optimal y+, for optimization problem (D).

In Subsection 3.2.6 we illustrate the approach followed in the other subsections,
by solving some examples. The conclusions indicate the need for Section 3.3.

3.2.1. Computation of the step size t

For ease of notation we introduce new matrices Ĉ and F̂ :

Ĉ := aC − aA∗(y0) + 〈b, y0〉I, F̂ := −aA∗(d) + 〈b, d〉I,

and use that λ(A + αI) = λ(A) + α. Note that the term 〈b, y0〉I does not play any
role in the minimization process, we included it here for completeness of notation.
Suppose that we have computed a direction d and that we have a value for a. We
are interested in a step size t such that

(100) t = argmin
t

λmax(Ĉ + tF̂ ).

The first step is: set tit = 0, and construct an eigenvalue decomposition (3) of Ĉ,

Ĉ = UΛU∗, U∗U = I.

The matrix Λ is a diagonal matrix diag(λ1, . . . , λn) with eigenvalues λ1 > λ2 ≥ · · · ≥
λn of Ĉ on its diagonal. The matrix U = (u1, . . . , un) consists of the orthonormalized
eigenvectors of Ĉ. We use this decomposition to rewrite Ĉ + tF̂ as

ρ := λmax(Ĉ + tF̂ ) = λmax(UΛU∗ + tF̂ ) = λmax(Λ + tU∗F̂U).

We define F = (fij)n
i,j=1 := U∗F̂U and proceed with the following partitioning

(101) Λ + tF =:
(

λ1 0
0 Λ̂

)
+ t

(
µ1 e∗

e R̂

)
=

(
λ1 + tµ1 te∗

te R

)
,

where µ1 is the element f11 of the matrix F . The vector e is a column-vector,
e = (f21, . . . , fn1)∗. The matrix R can be expressed as R = Λ̂ + tR̂, with Λ̂ =
diag(λ2, . . . , λn), and the matrix R̂ is the (n− 1)× (n− 1) matrix (fij)n

i,j=2. We are
looking for the minimal maximum eigenvalue ρ of the matrix Λ + tF as a function
of t. If the first element of the eigenvector corresponding to ρ is nonzero:

(102)
(

λ1 + tµ1 te∗

te R

)(
1
z

)
= ρ

(
1
z

)
.

If in addition ρ is not in the spectrum of R, then this system leads to the following
equations,

λ1 + tµ1 + te∗z = ρ,(103)
(R− ρI)z = −te.(104)

Note that ρ = λ1 + tµ1, if e = 0. Substituting (104) into (103) gives

(105) ρ− (λ1 + tµ1) = −t2e∗(R− ρI)−1e.
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To make (105) suitable for numerical computation, we have to eliminate the variable
ρ in the right hand side of (105). We first make an approximation of (R− ρI)−1 by
expanding it around λ1 + tµ1 :

(106) (R− ρI)−1 = (R− (λ1 + tµ1)I)−1 +O(ρ− (λ1 + tµ1)).

If we substitute this into (105) and take absolute values at both sides, then

|ρ− λ1 − tµ1| = | − t2e∗(R− (λ1 + tµ1)I)−1e +O(t2|ρ− (λ1 + tµ1)|)|
≤ c1 · t2 + c2 · t2|ρ− (λ1 + tµ1)|, with ci ≥ 0, i = 1, 2.

Hence, for |t| small
|ρ− (λ1 + tµ1)| ≤ ct2

This makes it possible to rewrite (106):

(107) (R− ρI)−1 = (R− (λ1 + tµ1)I)−1 +O(t2) (t → 0).

We define the matrix Γ as

Γ := diag(λ1 − λ2, . . . , λ1 − λn).

Since we assumed that λ1 is simple, we see that Γ is invertible. Furthermore, we
want to avoid explicit computation of (R− (λ1 + tµ1)I)−1. This is circumvented by
a Neumann series

(R− (λ1 + tµ1)I)−1 = (−Γ + tR̂− tµ1I)−1

= −Γ−1(I − t(R̂− µ1I)Γ−1)−1

= −Γ−1 − tΓ−1(R̂− µ1I)Γ−1 +O(t2) (t → 0).(108)

After substitution of (108) and (107) in (105), we find a third-order approximation
of the maximum eigenvalue ρ of Λ + tF :

(109) ρ = λ1 + tµ1 + t2e∗Γ−1e + t3e∗Γ−1(R̂− µ1I)Γ−1e.

With this local approximation of λmax(Ĉ + tF̂ ) we can approximate t by

(110) t̂ = argmin
t

(
λ1 + tµ1 + t2e∗Γ−1e + t3e∗Γ−1(R̂− µ1I)Γ−1e

)
.

This is equivalent to computing the zeros of the derivative of the function under the
minimum in (110),

(111) µ1 + 2te∗Γ−1e + 3t2e∗Γ−1(R̂− µ1I)Γ−1e = 0.

The computation of the zeros of (111) can be done analytically:

t1,2 =
−e∗Γ−1e±

√
(e∗Γ−1e)2 − 3µ1e∗Γ−1(R̂− µ1I)Γ−1e

3e∗Γ−1(R̂− µ1I)Γ−1e
.

To determine whether t̂ = t1 or t̂ = t2 is a minimum of (110), we compute the second
derivative of the function under the minimum in (110) and check whether the second
derivative is positive in t1 and t2 :

2e∗Γ−1e + 6tie
∗Γ−1(R̂− µ1I)Γ−1e ≥ 0 for i = 1, 2.
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We have to check if we made any progress for t̂:

λmax(Ĉ + t̂F̂ ) < λmax(Ĉ),

if so, we update Ĉ ← Ĉ + t̂F̂ and tit ← tit + t̂, and start again.

If any eigenvalue curve crosses the eigenvalue curve of λ1, in say t = t+, then
there is a change of eigenvector for λ1 at t = t+, and we are certain that the
approximation of λ1 is inappropriate for t ≥ t+, since the approximation is based
on the eigenvector of the maximum eigenvalue at t = 0. So, if we did not make
any progress we could be in this situation sketched in Figure 7. On the horizontal
axis are the values for t. The lines indicate eigenvalue curves, t → λi(Ĉ + tF̂ ). We
approximate the maximum eigenvalue curve around t = 0 with a second or third
order curve, and start in ◦ (t = 0). We see in this figure that we did not make any
progress in the minimum ¤ of the “parabola”, the actual maximum eigenvalue is ∗,
which is larger than ◦. At + the eigenvalue curves cross. We have to check if any
eigenvalue curve (λi, ui) crosses the eigenvalue curve (λ1, u1) for t ∈ [0, t̂].

We estimate the crossing of eigenvalue curves by approximating the eigenvalues
by linear functions in t, and compute their intersections (at t̃):

λ1 + t̃u∗1Fu1 = λi + t̃u∗i Fui ⇒ t̃ =
λ1 − λi

u∗i Fui − u∗1Fu1

If one of the computed t̃’s is in the interval t̃ ∈ [0, t̂], we set t̂ = t̃, and compute
if we made any progress for t̂. If we made progress, we update Ĉ ← Ĉ + t̂F̂ and
tit ← tit + t̂, and start again.

If we did not make any progress for t̂, we start with t̂ a bisection procedure:
take t̂ = 1

2 t̂, if any progress is made, we update Ĉ ← Ĉ + t̂F̂ and tit ← tit + t̂, and
start again, if not we repeat the bisection.

We will continue the process of determining the step size until t̂ < ε, then our
approximated step size is tit

Note that the process for locating t is a computationally expensive process, due
to the computation of full sets of eigenvalues and eigenvectors. Later on, when we
introduce a subspace procedure in Section 3.5, we will see that the computation
of full sets of eigenvalues and eigenvectors can be restricted to a low dimensional
matrix.

3.2.2. Computation of a direction d
The idea behind computing a direction is the same as the idea behind computing
the step size t.

Start again with computing an eigenvalue decomposition of Ĉ. Then define a
partitioning of −Â∗(d) + b∗dI and finally construct an approximation of the maxi-
mum eigenvalue in terms of d. The minimization of this approximation is equivalent
to a Newton method with some dependency on the Lagrange multiplier a.
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Figure 7 Crossing eigenvalue curves.

Suppose we are in the situation as sketched for (98): we have some given y0, for
which λmax(Ĉ) is simple, and some given a > 0,3 and we search a d such that

(112) d = argmin
d

λmax(aĈ − aA∗(d) + b∗dI),

where

(113) Ĉ := C −A∗(y0) +
1
a
〈b, y0〉I.

Note that Ĉ is slightly different. Since a is part of the problem, we want to keep a
visible. We do not know a correct value for a in general, in the next Subsection we
will compute an estimate for a based on the philosophy to keep the maximal change
of

aλmax(C −A∗(y0 + td)) + 〈b, y0 + td〉
as small as possible and minimize the effect of unwanted directions.

Again in the minimization problem the term 〈b, y0〉I does not play any role, and
we could have omitted it, but we kept it for completeness of notation.

The first step is to construct an eigenvalue decomposition of Ĉ:

Ĉ = UΛU∗ =
n∑

i=1

λiuiu
∗
i , with I = U∗U =

n∑

i=1

uiu
∗
i .

3We assume a > 0, in our experiments we never encountered a < 0, therefore we did not build
any procedure for this situation.
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We use this decomposition to for

aρ := λmax(aĈ − aA∗(d) + b∗dI) = λmax(aΛ− aU∗A∗(d)U + b∗dI).

We introduce the following matrix partitioning for

(114) −aU∗A∗(d)U + (b∗d)I :=
( −af∗d + b∗d −a(Ed)∗

−aEd R̂

)
.

Since it is not immediately clear what the meaning is of the several new characters in
expression (114), we will explain this first. Construct an n×m matrix F = (fij)

n,m
i,j=1

such that,

F := (U∗A1u1, . . . , U
∗Amu1) .

It is now easy to see how f is defined:

f = (u∗1A1u1, . . . , u
∗
1Amu1)

∗ = F ∗e1.

The matrix E is the (n− 1)×m matrix (fij)
n,m
i=2,j=1.

We want the minimal maximum eigenvalue ρ of the matrix aΛ− aU∗A∗(d)U +
(b∗d)I as a function of d. If the first element of the eigenvector corresponding to aρ
is nonzero we have a formula for aρ,

(
aλ1 − af∗d + b∗d −a(Ed)∗

−aEd R

)(
1
z

)
= aρ

(
1
z

)
,

where R = aΛ̂ + R̂ with Λ̂ = diag(λ2, . . . , λn). Note that te = −Ed and tµ1 =
(−f + 1

ab)∗d in the notation of Subsection 3.2.1. If aρ is not in the spectrum of R,
then

aλ1 + (−af∗ + b∗)d− ad∗E∗z = aρ,(115)
(R− aρI)z = aEd.(116)

A combination of (115) and (116) leads to

(117) a(ρ− λ1) = (−af∗ + b∗)d− a2d∗E∗(R− aρI)−1Ed.

Note that d ∈ Ker(E) implies that

(118) aρ = aλ1 + (−af∗ + b∗)d,

thus aρ depends linearly on d in this case. To make (117) useful for computation, we
eliminate the variable aρ in the right hand side of (117). With the same arguments
as for (106) and (107), we see that

(119) (R− aρI)−1 = (R− aλ1I)−1 +O(a‖d‖) (‖d‖ → 0).

As before

Γ := diag(λ1 − λ2, . . . , λ1 − λn).
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Furthermore, we want to avoid the explicit computation of (R − aλ1I)−1. This is
circumvented by a Neumann series:

(R− aλ1I)−1 = −(aΓ− R̂)−1

=
−1
a

Γ−1(I − 1
a
R̂Γ−1)−1

=
−1
a

Γ−1 − 1
a2

Γ−1R̂Γ−1 +O(
1
a3
‖d‖3) (‖d‖ → 0).(120)

By substituting (120) and (119) in (117), we obtain the following expression for the
maximum eigenvalue of aΛ− aU∗A∗(d)U + (b∗d)I:

(121) aλ1 + (−af∗ + b∗)d + ad∗E∗Γ−1Ed +O(‖d‖3) (‖d‖ → 0).

The direction d and Lagrange multiplier a in (112) can now be estimated from

(122) d = argmin
d

(
aλ1 + (−af∗ + b∗)d + ad∗E∗Γ−1Ed

)
.

The optimality condition for (122) is

(123) (−af + b) + 2aE∗Γ−1Ed = 0

The matrix E∗Γ−1E is positive definite, because Γ has only positive elements on
the diagonal. In the next subsection we will study this linear system, for example,
E∗Γ−1E can be singular, which is an interesting situation.

3.2.3. Solving the linear system in (123)
Before solving the linear system

(124) E∗Γ−1Ed = −1
2
(−f +

b

a
),

it is useful to study properties of the matrix H := E∗Γ−1E. Note that Ker (H) =
Ker (E), and that

Im (H) = Ker (H∗)⊥ = Ker (H)⊥.

The matrix E is an n×(m−1) rectangular matrix depending on the order (n×n) and
the amount (m) of the input data Ai, for example, in all combinatorial optimization
problems that have been used for testing the spectral bundle method in [20] n = m.

We can immediately identify two different types of search directions:
• d ∈ Ker (E),
• d ⊥ Ker (E).

A search direction d ∈ Ker (E) is a linear direction, since the quadratic part of
(121) is zero (see (118)). Define f := fE + fE⊥ , b := bE + bE⊥ , where fE, bE are
the components of f, b in Ker (E) and fE⊥ , bE⊥ the components of f, b ⊥ Ker (E).
The direction of this type that leads locally to the largest decrease of (98) can be
computed as

(125) d1 =
afE − bE

‖afE − bE‖ .

We call this direction the steepest linear direction. Unfortunately, we do not always
know a beforehand. We consider the linear directions as undesirable, since they
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are likely to lead to large updates td. We can try to minimize the effect of linear
directions by some suitable choice of the Lagrange multiplier. We have two strategies
to keep the next step as near as possible to y0, by using a and the best direction d:

(a) choose a Lagrange multiplier a+ such that the maximal change of

aλmax(C −A∗(y0 + td)) + 〈b, y0 + td〉
is as small as possible.

(b) choose the Lagrange multiplier a+ to minimize the potential dangerous
linear directions: if, for example, there exists an z such that A∗(z) = I
then z ∈ Ker (E), thus z is purely linear and the eigenvalues curves are all
parallel in z. We will call z a potential dangerous direction.

Let us take a closer look at strategy (a). The largest change in aλmax(C −
A∗(y0 + td)) + 〈b, y0 + td〉 is for given a and Ker (E) 6= 0, equal to:

|t| max
d∈Ker(E),‖d‖=1

|(−af∗ + b∗)d|+O(t2).

So, we will concentrate finding an a that minimizes

max
d∈Ker(E),‖d‖=1

(−af∗ + b∗)d.

Because we are looking for a direction d, and not for a specific update td we assumed
that ‖d‖ = 1. Since (see (125))

(126) max
d∈Ker(E),‖d‖=1

(−af∗ + b∗)d = 〈 −afE + bE

‖ − afE + bE‖ ,−af + b〉 = ‖ − afE + bE‖,

we see that ‖ − afE + bE‖ is minimal with respect to a if −afE + bE ⊥ fE:

(127) a+ = argmin
a

‖ − fE +
bE

a
‖ ⇒ a+ =

〈bE, fE〉
‖fE‖2 .

It is important to check that ‖fE‖ is of ‘reasonable’ size, because a large a+ can
effect the accuracy. In our examples this did never occur.

A direction of the type d ⊥ Ker (E) can be computed as

(128) d2 = −1
2
(E∗

E⊥ΓEE⊥)†(−fE⊥ +
bE⊥

a+
).

How this is done is explained in the last part of this Subsection.
For a non-singular E we did not yet propose any strategy. However, for a non-

singular E the solution of (121) can be approximated by the solution of the quadratic
part of (121) (the Gauss-Newton approach). This should give us a descent direction
d:

(129) E∗Γ−1Ed =
−1
2

(−f +
b

a
),

Again we follow strategy (a), we choose a, for given d as in (129), such that

(130) a+ = armin
a

〈−af + b, d〉.



60 3. THE EIGENVALUE APPROACH

To tackle this minimization problem we first solve d with respect to f and b,

E∗Γ−1Edf = 1
2f,

E∗Γ−1Edb = 1
2b.

Then determine a, as in (130), such that

(131) a = argmin
a

〈−af + b, df − db

a
〉 ⇒ a =

√
b∗db

f∗df
.

We finally form d2 = df − db

a . This completes the description of our strategy, we will
now discuss some specific cases.

Specific cases. Note that if dim(Ker (E)) = 1, then

bE − a+fE = 0 and (−a+f + b) ∈ Ker (E)⊥ = Im
(
E∗Γ−1E

)
.

If A∗(z) = I then z ∈ Ker (E), thus if dim(Ker (E)) = 1, then

〈b− a+f, z〉 = 0 and a+ =
〈b, z〉
〈f, z〉 .

Now recall that f∗ = (u∗1A1u1, . . . u
∗
1Amu1), whence

〈f, z〉 =
m∑

j=1

u∗1Aju1zj = u∗1(
m∑

j=1

Ajzj)u1 = 1.

Which proves that in this case a+ = 〈b, z〉 (see (86)), thus our strategy is consistent
with the properties of the Lagrange multiplier a.

For dim Ker (E) = 2, we have an alternative based on strategy (b). We first
introduce some notation:

−aU∗A∗(d)U + (b∗d)I :=



−af∗d + b∗d −a(Ed)∗

−aEd
−ag∗d + b∗d −a(Gd)∗

−aGd R̄


 .

Recall that
f = e∗1

(
U∗A1u1, . . . , U

∗Aku1

)
,

and we see that
g = e∗2

(
U∗A1u2, . . . , U

∗Aku2

)
.

If we had the property that
∃z : A∗(z) = I,

then the Lagrange multiplier a would be a constant a+ = b∗z. So, if that specific z
would exist, then clearly f∗z = g∗z = 1, by construction of f and g, and Ez = 0. A
consequence is that z ∈ Ker (E). Unfortunately, we do not know if such a z exists,
but we can use the above information to motivate the following approach. We would
like to drive (f − g)∗d to zero. Therefore, consider the space orthogonal to (f − g):

(f − g)⊥ = ((f − g)⊥ ∩ Ker (E))⊕ ((f − g)⊥ ∩ Ker (E)⊥).
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If ((f − g)⊥ ∩ Ker (E)) = {d0} is 1-dimensional, then d0 = z, and we can compute
d0 immediately, because of two properties for d0 :

(f − g)⊥ ∈ Ker (E) and (f − g) ⊥ d0.

The next step is estimating the Lagrange multiplier a from

−af∗d0 + b∗d0 = 0.

This reveals immediately the similarity with the dimKer (E) = 1 case. Note that
we have made the potential dangerous linear direction zero. When we have found
a, we can compute the direction d with a quadratic approximation, restricted to the
space H = ((f − g)⊥ ∩ Ker (E)⊥) :

d = −1
2
(E∗

HΓEH)−1(−fH +
bH

a
).

We did not encounter the situation dimKer (E) > 2 in our experiments.

Practical notes. Let us return to the direction of the type d ⊥ Ker (E) in (128).
For practical implementations, the computation of d seems to be quite complicated.
We suggest to make a QR-factorization of E∗ : E∗ = QR, with Q an unitary
matrix and R an upper triangular matrix. Write E = LQ, with L = R∗ a lower tri-
angular matrix. We now write Ed = L(Qd), thus f∗d = F ∗(Q∗(Qd)) = (Qf)∗(Qd),
and (124) then becomes

L∗Γ−1L(Qd) = −1
2
(−Qf +

Qb

a
).

The singularity of E corresponds to a non-trivial kernel of E, which corresponds to
columns LE in L that contain zero elements. The column vectors QE⊥ in Q that
correspond to the nonzero elements of L are the vectors that are perpendicular to
Ker (E). In practice we would like to use small instead of zero, therefore we used an
approach based on error analysis in the QR-factorization and based on numerical
experiments. A simpler formulation, in the computational sense, for expression the
direction d2 in (128) is, when using the ideas above:

d2 = −1
2
QE⊥(L∗

E⊥ΓLE⊥)−1(−QfE⊥ +
QbE⊥

a+
).

3.2.4. How to select d
The discussion about computing the search direction d in the Subsections 3.2.2 and
3.2.3, implicate that we have two candidates:

(1) the direction d1 in Ker (E) and ‖d1‖ = 1,

(2) the direction d2 in Ker (E)⊥,

Each step of our method that approximates the optimal value of (E), we have to
select the “best” direction available.

For search direction d2 we have a very good guess of the progress we will make,
since we approximate the eigenvalue curve with a “parabola”. Therefore, if the
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progress is less than ε, with ε as in the stopping criterion for the change in the
iterates,

λmax(C −A∗(yk))− λmax(C −A∗(yk+1)),
then we select d1. If this is not the case, we select the steepest direction. To find
out what the steepest direction is, we compute 〈b− af, d1〉 and 〈b−af,d2〉

‖d2‖ , and select
search direction d1 if

〈b− af, d1〉 >
〈b− af, d2〉

‖d2‖ .

We are well aware of the fact that this is a rather weak criterion, but for our tested
examples, the chosen search direction seams to work nicely. Future research is
necessary. For example, a two-dimensional search to find the optimal combination
of d1 and d2 could be an interesting solution.

For the selected d we will compute a step size t as explained in Subsection 3.2.2.

3.2.5. Approximating a solution of (D)
Our method finds an approximate optimal value for (E) that is also an approximate
optimal value for (D). The argmin ŷ for (E) computed by our eigenvalue method
may not be a solution to (D), since we did not try to drive λmax(C−A∗(ŷ)) towards
zero, as we should have done according to the optimality conditions (85).

In order to find a solution y+ of (D), we take the linear approximation of the
gradient of L(y) = aλmax(C −A∗(y)) + 〈b, y〉, in ŷ (see (121)),

(132) 0 = ∇yL(ŷ) = −af + b.

Starting with y = ŷ, we want to drive aλmax(C − A∗(y)) as quickly as possible to
zero. Therefore, we select a correction of ŷ in the direction orthogonal to the level
set

{y|λmax(C −A∗(y)) = λmax(C −A∗(ŷ))}
This direction is given by the gradient of λmax(C −A∗(y)) in ŷ, that is,

∇yaλmax(C −A∗(ŷ)) = −af = b,

because of (132). From ŷ we compute the new iterate y1 = ŷ − ε̄b, such that

(133) aλmax(C −A∗(ŷ)) + (∇yaλmax(C −A∗(ŷ))(−ε̄b) = 0,

using the first order approximation of λmax(C −A∗(ŷ − ε̄b)). Then

ε̄ = − a

‖b‖2 λmax(C −A∗(ŷ)).

In general y1 will not be a solution to (D), since the linear estimate for λmax(C −
A∗(ŷ − ε̄b)) induces an error of order O((ε̄‖b‖)2). However, we may use this y1

in our iterative eigenvalue method as a new starting point. If, after running our
method with this new starting point we have returned to this procedure, we stop if
|ε̄| is smaller than machine precision, to be sure of an accurate approximation of a
solution of (D).

We are now in the position to formulate Algorithm 3.2.1, that summarizes the
approach of the last subsections.
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(0) input
• a vector b, matrices Ai and C,
• an initial point y0 ∈ Rm, an ε for termination, and set

k = 0
(1) search direction compute the eigenvalues of C−A∗(yk) and

compute d (and a) following the strategy of Section 3.2
(2) step size compute step size t according to Subsection 3.2.1
(3) update compute yk+1 = yk + td
(4) termination compute λmax(C −A∗(yk+1))

• if λmax(C −A∗(yk))− λmax(C −A∗(yk+1)) ≤ ε goto (5)
• else k = k + 1, goto (1)

(5) solution to (D) compute yk+1 = yk+1 − ε̄b (see (133)).
• If ε̄ < ε stop
• else k := k + 1, goto (1)

Algorithm 3.2.1 The simple eigenvalue case.

3.2.6. Examples to illustrate the Newton method
In this section we apply our approach to some of the SDP problems described in
Section 1.2.4. The examples are of low size, and the output that we obtained are
printed in Table 2, 3, and 4. The tables are divided into six columns:

• column 1 shows the iteration step k,
• column 2 shows the approximated Lagrange multiplier,
• column 3 shows the step size t computed in point (2) of Algorithm 3.2.1

for normalized d,
• column 4 shows the solution yk+1 found after termination in point (4) of

Algorithm 3.2.1,
• column 5 shows the step size ε̄ computed in point (5) of Algorithm 3.2.1,
• column 6 shows the approximate objective value after termination in point

(4).

The true optimal value, solution and Lagrange multiplier are known beforehand.
Therefore, we did not use the value ε of Algorithm 3.2.1 for termination. We stopped
if the approximated objective value did not differ more than 1e − 5 of the known
objective value, and the approximated Lagrange multiplier did not differ more than
1e− 12 of the actual Lagrange multiplier.

Example 3.2.2. The first example is an optimization problem of the form (38),
a so-called SDP-relaxation of a Max-Cut problem.

The data for n = m = 3 are given by

C =




0 −1 0
−1 0 −1

0 −1 0


 ,
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iter. a step size t y∗ ε̄ obj. value
0 3 1.060660 4.0000000
1 3 0.000000 [−1/3, 2/3, −1/3] −1.3333 4.0000000
2 3 0.000000 [1, 2, 1] 4.0000000

Table 2 Output for Example 3.2.2. Empty spaces in the table are non-applicable outputs.

A1 =




1 0 0
0 0 0
0 0 0


 , A2 =




0 0 0
0 1 0
0 0 0


 , A3 =




0 0 0
0 0 0
0 0 1


 ,

and b = [1 1 1]∗. The solution for this problem is y = [1 2 1]∗, with objective
b∗y = 4. Since A∗(z) = I, for z = (1, 1, 1)∗, the Lagrange multiplier a for this
problem is the constant b∗z = 3. With the approach of Algorithm 3.2.1, we obtain
the output represented in Table 2. For this problem, E of (124) has a 1-dimensional
kernel and all directions are selected according to the Newton approach.

After iteration step 0, we have already found the optimal value. Interesting is
that the step size for the first update equals almost 1. This shows that our approx-
imation of the maximum eigenvalue function is very accurate. Another observation
is that the approximate Lagrange multiplier a is accurate from the first step. We
conclude that for this example the strategy for solving the linear equation (124) by
constructing the best direction d using the Lagrange multiplier a is working per-
fectly. The first iteration is necessary to check the stopping criterion, and applies to
the approach of point (5) of Algorithm 3.2.1. Note that this approach is also very
accurate, although we only used a linear approximation to drive λmax(C − A∗(ŷ))
to zero. The second step is again necessary to check the stopping criterion. This
example shows the ideal situation for our approach; all approximations are accurate,
therefore the approach seems very promising.

Example 3.2.3. We will now illustrate the strategy in Algorithm 3.2.1 for the
trivial kernel case of matrix E in (124), that we included in Subsection 3.2.3.

We use the same problem as in Example 3.2.2, to illustrate the strategy, except
that we perturb, with parameter δ > 0, and extend the matrices Ai, i = 1, . . . , 3,
and C, with one column and row such that dim Ker (E) := 0, for example, C, A1, A2

and A3 will be extended to



0 · · · 0
... C
0


 +




− 1
δ δ δ δ
δ δ δ δ
δ δ δ δ
δ δ δ δ


 ,

and [
z̄1 0
0 A1

]
,

[
z̄2 0
0 A2

]
,

[
z̄3 0
0 A3

]
,

with z, such that
3∑

i=1

ziAi = I thus, z̄i =
zi

〈z, z〉 .
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iter. a step size t y∗ ε̄ obj. value
0 3 0.998000 4.0010000
1 3 0.000000 [−.998, 0.00, −.998] −1.9990 4.0010000
2 3 0.000000 [1.001, 1.999, 1.001] 4.0010000

Table 3 Output for Example 3.2.3. Empty spaces in the table are non-applicable outputs.

The extension of Ai with z̄i is necessary to guarantee the existence of the same
Lagrange multiplier as before for the new enlarged system. With this example we
will show that we obtain the same output as for the dimKer (E) = 1 strategy, in
order to illustrate the equivalence of these two strategies for the computation of the
direction d. With δ = 1e − 3, we obtain the output represented in Table 3. The
output in Table 3 is indeed almost the same as the output in Table 2: after iteration
0 we are already in the optimum; iteration 1 is necessary to check the stopping
criterion, and to find the y+ for which λmax(C −A∗(y+)) = 0. The objective seems
to be optimal: b∗y+ − δ = 4. The approximation for the Lagrange multiplier is
already accurate in iteration 0. This reveals that the strategy for the case where E
is non-singular seems as promising as for the case where E is singular.

Example 3.2.4. This example illustrates that the strategy is not robust.
The example is again of the form (38). We take n = m = 5 :

C =




1
2 − 1

4 − 1
4 0 − 1

4
− 1

4
1
2 0 − 1

4 − 1
4

− 1
4 0 1

2 0 0
0 − 1

4 0 1
2 0

− 1
4 − 1

4 0 0 1
2




The 5× 5 matrices Ai, i = 1, . . . , 5 are defined by

Ai := eie
∗
i , i = 1, . . . , 5,

thus Ai is filled with zeros, except on the (i, i)-th entry there is a one. The vector
b is equal to b = [1 1 1 1 1]∗. The solution for this problem is y = [1 1 3

4
3
4

3
4 ]∗,

with objective b∗y = 4 1
4 . The Lagrange multiplier a is the constant a = 5, and

dim Ker (E) = 1 in iteration 0 and 1, the search directions were selected according
to the Newton approach in Subsection 3.2.3. In iteration 2 the dimKer (E) = 2,
and the direction was selected by the alternative approach for dimKer (E) = 2, in
Subsection 3.2.3.

We obtain the output represented in Table 4. We see that the first two iterations
converge nicely, then a breakdown occurs in iteration 2. Note that the step sizes
printed in column 3 do not equal 1 in this situation, but our quadratic approximation
of the search direction in combination with the computation of the Lagrange mul-
tiplier is accurate. This indicates that the maximum eigenvalue function is indeed
other than a pure quadratic function, but we still have extreme fast convergence.
Inspection of the breakdown in iteration 2 reveals that one of the diagonal elements
of the matrix Γ = diag(λ1 − λ2, . . . , λ1 − λn) equals zero, thus Γ is not invertible
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iter. a step size t y∗ ε̄ obj. value
0 5 0.250000 4.3750000
1 5 0.111803 4.2500000
2 5 0.000000 [.15 .15 − .1 − .1 − .1] 4.2500000
3 NaN NaN NaN

Table 4 Output for Example 3.2.4. Empty spaces in the table are non-applicable outputs.

as it should be for the approach of Subsection 3.2.2. We conclude that one of the
eigenvalues is multiple. This example shows that we need a strategy for the case
that the maximum eigenvalue is multiple, this will be the subject of the next section.

Let us repeat some of the important observations taken from the last three ex-
amples. Although the algorithm constructs a local approximation for the maximum
eigenvalue, λmax, the behavior of the output for the above examples shows fast global
convergence: that the algorithm finds the minimum in almost 1 step and that the
step size factor equals 1, for two of the three examples, as should be asymptotically
with a classic Newton method. This is, of course, a very special situation, in general
we do not expect this global behavior. Another observation was that the approxi-
mated Lagrange multiplier is very accurate from the first iteration. The approach
to approximate a solution to (D) as described in Subsection 3.2.5 is also accurate.
We see that our approach seems very promising.

3.3. A Newton-type method for (E): multiple eigenvalue case

Section 3.2 discussed the simple eigenvalue case. As we have seen in the examples
difficulty arises when eigenvalues are multiple. Nevertheless, the formulation of
an approach with local quadratic properties is still possible. Therefore, we will
construct in this section a method for the multiple eigenvalue case. The main idea
is the same as for the simple eigenvalue case, namely based on a matrix partitioning
like (114); this time not only with respect to u1 (the eigenvector corresponding to
the simple largest eigenvalue) but with respect to u1, . . . , ul, the set of eigenvectors
corresponding to the multiplicity l of the maximum eigenvalue. We will assume that
we have already an approximation of the Lagrange multiplier. In all our experiments
it was possible to find a direction for which the maximum eigenvalue function λmax

was simple, or the Lagrange multiplier was known beforehand.
In Subsection 3.3.1 we construct a block matrix eigenvalue problem that gives

an analogue of the local approximation of λmax in formula (109) for the simple
eigenvalue case.

From this local approximation of the function λmax in the direction d, we identify
two types of search directions. Based on the properties of the local approximation
and the situations that can occur for a solution y+ of (E).

The first type of search directions are analogous to the search directions for
the simple eigenvalue case, and will be discussed in Subsection 3.3.2. These search
directions arise from local second order approximations of the maximum eigenvalue
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function. Within these search directions we can construct again two sub-types of
search directions in the same way as we did in Subsection 3.2.2.

The second type of search directions, discussed in Subsection 3.3.3, will lead to,
if they exist, a minimal maximum eigenvalue with multiplicity l. We can derive a
local first order approximation of λmax in the direction d, and we will shortly point
out how to compute a direction d from this first order approximation iteratively, by
identifying the combination of two matrices for which the maximum eigenvalue is
minimal.

In Subsections 3.3.2 and 3.3.3 we come up with three different search directions.
In Subsection 3.3.4 we motivate how we select the “best” search direction every
iteration step. In the last part of Subsection 3.3.4, we explain how to determine a
new update td using the step size procedure of Subsection 3.2.1. Subsection 3.2.5 is
again used to find an approximate solution for (D).

To illustrate the approach for the multiple eigenvalue case we give some examples
in Subsection 3.3.5.

3.3.1. Block matrix eigenvalue system
In this section we will construct a block matrix to develop a Newton-type method
for solving (E), if the maximum eigenvalue is multiple. We will use the notation of
Section 3.2. Let us return to problem (100). We are interested in a second order
approximation of the function λmax(Ĉ + tF̂ ), with respect to t. The first step is to
construct an eigenvalue decomposition of Ĉ,

Ĉ = UΛU∗, U∗U = I, Λ = diag(λ1, . . . , λn).

Suppose that the eigenvalues are ordered in the following way,

λ1 = · · · = λl > λl+1 ≥ · · · ≥ λn.

We use Λ1 for the diagonal matrix Λ1 := diag(λ1, . . . , λl), Λ2 for the diagonal ma-
trix Λ2 := diag(λl+1, . . . , λn), and Γ for the diagonal matrix Γ := λ1I − Λ2. The
matrix U = (u1, . . . , un) consists of the orthonormalized eigenvectors of Ĉ. With
decomposition:

λmax(Ĉ + tF̂ ) = λmax(UΛU∗ + tF̂ ) = λmax(Λ + tU∗F̂U).

Set F := U∗F̂U, and we proceed with the following partitioning:

(134) Λ + tF :=
(

Λ1 + tR1 tE∗

tE Λ2 + tR2

)
= λ1I +

(
tR1 tE∗

tE −Γ + tR2

)
.

Compute an eigenvalue decomposition of R1:

R1 = XΣX∗, X∗X = I, Σ = diag(σ1, . . . , σl).

We define the function diagΣ(X∗ ·X) : Sl → Sl as

diagΣ(X∗KX)ij =
{

(X∗KX)ij if σi = σj

0 everywhere else .
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Now we can state the following lemma, which will lead to an extension of the ap-
proach for the computation of the step size t in Subsection 3.2.1, Equation (110).
We will show this after the lemma. This lemma can be derived from [25, Ch. 2].

Lemma 3.3.1. Consider the block matrix (eigenvalue) problem

(135)
(

tR1 tE∗

tE −Γ + tR2

)(
I + tG

tZ

)
=

(
I + tG

tZ

)
tD,

where E, R1, R2 are defined as before and G,Z, D are matrix valued functions de-
pending on t. Then

(136) tD = tR1 + t2diagΣ(X∗E∗Γ−1EX) +O(t3), for t → 0.

Proof. Assume that t 6= 0. After computing the first and second block coordinates
of (135), and after dividing by t we obtain the equations

R1 + tR1G + tE∗Z = D + tGD,(137)
(−Γ + tR2)Z+ = tZD − E − tEG.(138)

Now suppose that Z, G, D are smooth and differentiable for t → 0 ([25, Thm
6.1,p.120]), then

(139) Z = Z0 + tZ1 +O(t2), G = G0 + tG1 +O(t2), D = D0 + tD1 +O(t2).

We may conclude from (137) that D0 = R1, and from (138) that Z0 = Γ−1E. If we
substitute this into (137), then we see that

tR1G0 + tE∗Γ−1E = tD1 + tG0R1 +O(t2) (t → 0),

so that,
R1G0 −G0R1 ≈ D1 − E∗Γ−1E.

We will now apply the similarity transformation with X and take the “diagΣ”:

diagΣ(X∗R1G0X −X∗G0R1X) = diagΣ(ΣX∗G0X −X∗G0XΣ) = 0.

From this we conclude that diagΣ(X∗D1X) = diagΣ(X∗E∗Γ−1EX). Thus there
exists a G0 such that R1G0 −G0R1 = D1 −E∗Γ−1E. Choose G0 = 0 and use (139)
to conclude that

tD = tD0 + t2D1 +O(t3) (t → 0)
= tR1 + t2diagΣ(X∗E∗Γ−1EX) +O(t3) (t → 0).

This lemma is an extension of the simple eigenvalue case, because if l = 1 then
tR1 coincides with tµ1 and tE coincides with te in (102), note that diagΣ reduces
to a 1 × 1 matrix, thus (135) coincides with (102), and we see that the linear and
quadratic part of the approximation in (110) follow from (136).

We will use this lemma to get more insight in computing a search direction d
for the multiple eigenvalue case (just as we used step size (102) as inspiration for
a suitable approximation (110) for the search direction d in the simple eigenvalue
case).
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Suppose that we know the Lagrange multiplier a explicitly, and that we are in
the situation as sketched for (98). We have some given y0 and we search a d such
that (112) is solved. We consider again the matrix Ĉ (see 113)),

Ĉ = C −A∗(y0) +
1
a
〈b, y0〉I,

We represent the problem of computing λmax with respect to the basis (u1, . . . , un),

λmax(aĈ − aA∗(d) + (b∗d)I) = λmax(aΛ− aU∗A∗(d)U + (b∗d)I),

and introduce a matrix partitioning, based on (134),

(140) aΛ− aU∗A∗(d)U + (b∗d)I = aλ1I +
(

R̂1(d) E(d)∗

E(d) −aΓ + R2(d)

)
,

where

R̂1(d) =




q̂∗11d · · · q̂∗1ld
...

...
q̂∗l1d · · · q̂∗lld


 and E(d) = (E1d, . . . , Eld).

It is not difficult to see that the elements of the matrix R̂1(d) can be represented as
q̂∗ijd, since

q̂ij =
{ −a(u∗i A1uj , . . . , u

∗
i Amuj)∗ if i 6= j

−a(u∗i A1uj , . . . , u
∗
i Amuj)∗ + b if i = j

We find the expression for E(d) in the same way, define

Fkd :=
(
− aU∗A∗(d)U + (b∗d)I

)
ek

then

Ek = (Fk)n,l
i=l+1,j=1.

We will now apply Lemma 3.3.1 for the matrix on the right hand side of (140) to
obtain a suitable approximation for the function λmax:

aλ1Il + R̂1(d) + diagΣ(X∗E(d)∗aΓ−1E(d)X)

= aλ1Il +




q̂∗11d · · · q̂∗1ld
...

...
q̂∗l1d · · · q̂∗lld


 + diagΣ(X∗E(d)∗aΓ−1E(d)X).(141)

We would like to have the trace of the matrix R̂1(d) as a function of d zero for reasons
that will be explained later. To have the trace of a new matrix R1(d) = (q∗ijd)ij ,

based on the matrix R̂1(d), equal to 0, we define

p =
1
l

∑

i

q̂ii and qij =
{

q̂ij if i 6= j
q̂ij − p if i = j

.
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Furthermore, we split p into two parts, p1, p2, such that p1 ∈ span{qij} and p2 ⊥
span{qij}. This splitting is convenient, when we divide the optimization problem
into two parts at the end of this subsection. Equation (141) gets the following form,

(142) aλ1Il + p∗1dI + p∗2dI +




q∗11d · · · q∗1ld
...

...
q∗l1d · · · q∗lld


 + diagΣ(X∗E(d)∗aΓ−1E(d)X).

Define y+ as the solution of (E), thus λmax(C − A∗(y+)) = 0. Then the maximum
eigenvalue λmax(C −A∗(y+ + td)) as a function of t has a minimum in t = 0 for any
direction d. This minimum can be a minimum of an eigenvalue curve of C−A∗(y++
td) as a function of t, or a crossing of eigenvalue curves of C − A∗(y+ + td) as a
function of t, in the second case C−A∗(y+ + td) for t = 0 has a multiple eigenvalue.

We identify two possible types of search directions for equation (142). Set Q :=
span{qij}. Then the two types are characterized by

(a) d ⊥ Q,
(b) d ∈ Q.

For each part we will develop a different method and a different approximation.
Consider (a), For d ⊥ Q equation (142) transforms to

(143) aλ1 + p∗2d + λmax

(
diagΣ(X∗E(d)∗aΓ−1E(d)X)

)
,

For the a search direction determined by (143) we see that we have linear and non-
linear eigenvalue curves as functions of t in the direction d. Therefore, we see that
the minimal maximum eigenvalue can either be a crossing of some eigenvalue curves
or a minimum for one eigenvalue curve. This is equal to the situations considered
in Section 3.2, because we can use the higher order terms of (143) to approximate
the eigenvalue curves as functions of t as we will do in Subsection 3.3.2.

For search directions of type d ∈ Q equation (142) transforms to

(144) aλ1 + p∗1d + λmax

(



q∗11d · · · q∗1ld
...

...
q∗l1d · · · q∗lld




)
.

Consider λmax(C − A∗(y+ + td)) for d ∈ Q as a function of t. The minimum is
attained for t = 0 where the multiplicity of λmax will probably be l, because:

(145)




q∗11d · · · q∗1ld
...

...
q∗l1d · · · q∗lld




is symmetric and has by definition a trace equal to zero for all d, thus has positive and
negative eigenvalues. Furthermore, we started in y0, where the maximum eigenvalue
had multiplicity l, and want to compute a search direction d such that (144) is
minimal, we know that for optimality the maximum eigenvalue of (145) equals zero.
Thus the eigenvalue curves of (145) in y0 + td as functions of t will be increasing and
decreasing and have to cross somewhere. Zero trace and zero maximum eigenvalue
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show that all l eigenvalues have to be zero at optimality. Note that we will not use
any information from the higher order terms. We discuss part (b) in Subsection
3.3.3.

3.3.2. Computation of a suitable direction d ⊥ Q
In this subsection we concentrate on part (a). Let us focus on (143). d ⊥ Q implies
that Σ := p∗2dI = R1 (tR1 of (134)), and X := I, thus

diagΣ(X∗E(d)∗aΓ−1E(d)X) := aE(d)∗Γ−1E(d),

and (143) transforms to

d+ = argmin
d⊥Q

aλ1 + p∗2d + aλmax

(
E(d)∗Γ−1E(d)

)
.

λmax(E(d)∗Γ−1E(d)) depends in a complicated way on d, therefore we will approxi-
mate it by

1
l
trace

(
E(d)∗Γ−1E(d)

)
.

We choose for the trace, because
(1) the trace depends in a controllable way on d,
(2) the trace is l times the average of the eigenvalues. Moreover, all eigenvalues

are positive and we know that in the optimum the trace has to be zero,

λmax(E(d)∗Γ−1E(d)) = 0 ⇔ 1
l
trace

(
E(d)∗Γ−1E(d)

)
= 0.

Therefore, we hope that if we minimize 1
l trace we find a useful search

direction d,
(3) in the l = 1 case, the simple eigenvalue case, this formulation coincides

with the Newton approach of Subsection 3.2.2;
(4) in the (to below discussed) examples, we see that this approach does inherit

fast convergence.
Note that

1
l
trace

(
E(d)∗Γ−1E(d)

)
=

l∑

i=1

e∗i E(d)∗Γ−1E(d)ei =
l∑

i=1

d∗EiΓ−1Eid.

For ease of notation we set H := 1
l

∑l
i=1 E∗

i Γ−1Ei. Then we are left with the fol-
lowing optimization problem

(146) min
d⊥Q

p∗2d + ad∗Hd,

The argmin of (146) has to satisfy the following optimality condition:

(147) 0 =
1
a
p2 + Hd, (for d ⊥ Q).

The matrix H is positive definite by construction. As for the simple eigenvalue case
in Subsection 3.2.2, where we had to solve (124), we have to solve a linear equation,
(147).

We again immediately identify two possible types of search direction d ⊥ Q,
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• d ∈ Ker (H),
• d ⊥ Ker (H).

Note that a search direction d ∈ Ker (H) is again a linear direction. We will call the
steepest linear direction d1. Thus we can apply the strategies in Subsection 3.2.3 on
(147), to minimize the linear directions and to determine the Lagrange multiplier a.

There is a practical difference between solving (124) and (147), because in (147)
there is an additional restriction to keep d ⊥ Q. Therefore, we give the following
notes.

Practical notes. We assume that d ⊥ Ker (H) and use the following strategy.
First orthogonalize the vectors qij . We only have to orthogonalize l(l+1)

2 vectors,
since by construction qij = qji.

We orthogonalize by making a QR-factorization B = QR of the (m × l(l+1)
2 )

matrix B with

(148) B :=
(
q11, . . . , q1l, q22, . . . , q2l, . . . , qll

)
.

With this orthogonalization we try to find a solution d+. Optimality of the opti-
mization problem (146) at d+ is the same as stating that for all ε > 0, ε ¿ 1 and
every direction f, f ⊥ Q, ‖f‖ = 1:

p∗2(d + εf) + (d + εf)∗H(d + εf) ≥ p∗2d + d∗Hd ∀ε > 0,

⇔ |p∗2f + 2d∗Hf | ≤ ε|f∗Hf | ∀ε > 0,

thus p∗2f + 2d∗Hf = 0 ∀f ⊥ Q, ‖f‖ = 1.(149)

We have to determine a d ⊥ Q such that (149) holds. This is equivalent to determine
a d ⊥ Q such that

f∗(2Hd + p2) = 0 ∀f ⊥ Q

⇔ ∃y such that 2Hd + p2 = Qy

If H is invertible, then

(150) d =
1
2
(H−1Qy −H−1p2)

such that d ⊥ Q. Unfortunately, H will not be invertible. Therefore, we will use
the strategy written in the Practical Notes part of Subsection 3.2.3, to locate the
singular and non-singular part of H, and thus, the part HE of H in the kernel and
HE⊥ perpendicular to the kernel. We will not repeat this here. We do the same
splitting for p2 = pE

2 + pE⊥
2 . We proceed with the parts in Ker (H)⊥. Since Q∗d = 0,

we can write

Q∗d =
1
2
(Q∗(H−1

E⊥Qy −H−1
E⊥pE⊥

2 )) = 0 ⇔ y = (Q∗H−1
E⊥Q)−1Q∗H−1

E⊥pE⊥
2 .

By inserting (151) into (150), we find the following expression for the direction d,

(151) d :=
1
2
(H−1

E⊥Q(Q∗H−1
E⊥Q)−1Q∗H−1

E⊥pE⊥
2 −H−1

E⊥pE⊥
2 ).

We will call this direction d2.
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3.3.3. Computation of a suitable direction d ∈ Q
We will now describe part (b), where we want to determine an appropriate search
direction d ∈ Q from (144). We use the QR-factorization of the matrix B in (148).
The columns rij of R correspond to the columns qij of B such that qij = Qrij , then
q∗ijd = r∗ij(Q

∗d). Thus we are looking for a d̂ = Q∗d, such that d̂ minimizes

(152) min
bd∈Q,‖bd‖=1

λmax(




(r∗11 + p∗1)d̂ · · · r∗1ld̂
...

. . .
...

r∗l1d̂ · · · (r∗ll + p∗1)d̂


).

We assume that ‖d̂‖ = 1. This is acceptable because we are in the situation of
crossing eigenvalue curves and try to find a search direction d and not an update td
for which the length does matter. Define the matrix function C(y) as

C(y) :=




(r∗11 + p∗1)y · · · r∗1ly
...

. . .
...

r∗l1y · · · (r∗ll + p∗1)y


 ,

and we write Cy0 instead of C(y0) for fixed y = y0 to express that C(y0) is a constant
matrix.

We will solve the optimization problem (152) by an iterative method. Suppose
that we are in a search direction d̂0 ∈ Q and we are interested in a better search
direction d̂1 ∈ Q. Then

d̂1 = cos(φ)d̂0 + sin(φ)h for some h ∈ Q, h ⊥ d̂0, ‖h‖ = 1, φ ∈ [0, i2π],

and (152) transforms to

(153) min
h⊥bd0,φ,‖h‖=1

λmax

(
C(cos(φ)d̂0) + C(sin(φ)h)

)
.

We will not estimate (153) at once, but split it into two parts, first construct h and
then φ. By concentrating on the situation that |φ| ¿ 1, we are able to formulate an
approach to find a suitable direction h.

λmax

(
cos(φ)Cbd0 + sin(φ)C(h)

)
≈ λmax

(
Cbd0 + εC(h)

)
≈ λmax

(
Cbd0 + C(εh)

)
.

Thus we can approximate h by the method “Computation of the update d” described
in Section 3.2.2, then set h := h

‖h‖ , and then compute φ from

(154) φ = argmin
φ

λmax

(
cos(φ)Cbd0 + sin(φ)Ch

)
,

and set the new direction d̂1 = cos(φ)d̂0 + sin(φ)h, for which we can repeat the
process, until ‖d̂k+1 − d̂k‖ ≤ ε, which is our stopping criterion. We will call the
approximated search direction d3.
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Computation of φ. We describe how to compute φ from (154). Optimization
problem (154) can be solved by a method analogue to the method described for the
optimization problem (100) in Section 3.2.1. The difference will be that we have two
variables cos(φ), sin(φ) instead of one variable t. For completeness of this thesis we
will derive the formula’s for the approximation of φ. The first step is, as usual, to
construct an eigenvalue decomposition (3) of Cbd0 ,

Cbd0 = UΛU∗, U∗U = I.

The matrix Λ is a diagonal matrix diag(λ1, . . . , λl) with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λl on its diagonal. The matrix U = (u1, . . . , ul) consists of the orthonormalized
eigenvectors. We use this decomposition to rewrite λmax as

λmax

(
cos(φ)Cbd0 + sin(φ)Ch

)
= λmax

(
cos(φ)Λ + sin(φ)U∗ChU

)

= λmax

(
cos(φ)Λ + sin(φ)F

)
.

This allows to rewrite (154) as

s = argmin
s

{λmax(cΛ + sF ) | c2 + s2 = 1}.

We proceed with the following partitioning:

cΛ + sF :=
(

cλ1 + sµ1 se∗

se R

)
,

which is almost the same as partitioning (101). We again obtain a formula for the
new minimal maximum eigenvalue ρ:

(155)
(

cλ1 + sµ1 se∗

se R

)(
1
z

)
= ρ

(
1
z

)
.

If ρ is not in the spectrum of R, and if the first element of the eigenvector corre-
sponding to ρ is nonzero, this linear system leads to the following equations

cλ1 + sµ1 + se∗z = ρ,(156)
(R− ρI)z = −se.(157)

Substitute (157) into (156), then

ρ = cλ1 + sµ1 − s2e∗(R− ρI)−1e

= cλ1 + sµ1 − s2e∗(R− (cλ1 + sµ1)I)−1e +O(s4) (s → 0).(158)

Call the diagonal elements of the matrix F : µ1, . . . , µl. Define the matrices Γ and
N by

Γ := diag(λ1 − λ2, . . . , λ1 − λl), N := diag(µ1 − µ2, . . . , µ1 − µl).

Then we have that

(R− (cλ1 + sµ1)I)−1 = (−cΓ + s(R̂−N))−1 = −Γ−1

c
(I − s

c
Γ−1(R̂−N))−1

= −Γ−1

c
+

s

c2
Γ−1NΓ−1 +O(s2) (s → 0).(159)
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(1) initialization choose initial d̂0, for example d̂0 := p1
‖p1‖ , and

tolerance ε
(2) update determination compute

h = argmin
h⊥bdk

λmax(Cbdk + C(h))

by the method “Computation of the update d” described in
Section 3.2.2, and set h := h

‖h‖ .

(3) find new iterate compute the new iterate d̂k+1 by first solv-
ing

φ = argmin
φ

λmax

(
cos(φ)Cbdk + sin(φ)Ch

)
,

and then setting d̂k+1 = cos(φ)d̂k + sin(φ)h.
(4) termination

• if ‖d̂k+1 − d̂k‖ ≤ ε, set d := Qbdk+1

‖Qbdk+1‖ stop

• else k = k + 1, goto (2)

Algorithm 3.3.2

All this formula manipulating was necessary to avoid the explicit computation of the
inverse of a non-diagonal matrix R. For c and s we have the following properties:
c2 = 1− s2, c = 1− 1

2s2. Apply these properties to (159):

(R− (cλ1 + sµ1)I)−1 = −Γ−1 + sΓ−1NΓ−1 +O(s2) (s → 0),

and finally equation (158) gets the following form,

ρ = cλ1 + sµ1 + s2e∗Γ−1e− s3e∗Γ−1NΓ−1 +O(s4) (s → 0)

= λ1 + sµ1 + s2(e∗Γ−1e− 1
2
λ1) +O(s3) (s → 0).(160)

We have found a local approximation for λmax(cΛ + sF ). The φ that we need for
(154) can now be computed by solving the second order approximation of λmax :

s = argmin
s

λ1 + sµ1 + s2(e∗Γ−1e− 1
2
λ1).

This optimization problem is similar to (110), and solved following the strategy in
Subsection 3.2.1.

We can now formulate an algorithm for solving (152) iteratively. The approach
of this subsection is described in Algorithm 3.3.2.

3.3.4. How to select d and, how to compute the step size t.
Subsection 3.3.2 and 3.3.3 describe the computation of a search directions d for three
different situations, We repeat them here:

(1) the direction d1 ⊥ Q, d1 ∈ Ker (H), and ‖d1‖ = 1,
(2) the direction d2 ⊥ Q, and d2 ⊥ Ker (H),
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(3) the direction d3 ∈ Q, and ‖d3‖ = 1.

From the three different directions we have to select the “best” one, every it-
eration step of our algorithm. We will first compare the direction d1 to d3, both
are linear directions; we did not consider high order terms for the computation of
d3, because we do not know how to handle them. Thus both associated eigenvalue
curves in t of λmax approach minus infinity, when minimizing in these directions, un-
less they are ‘stopped’ by a crossing eigenvalue curve. Thus, it seems reasonable to
check whether one of the directions is steeper than the other one, that is, checking if
|p∗2d1| > |p∗1d3| then take d1 otherwise take d3. We can call this strategy the strategy
of the largest progress. In all the tests we ran, this led to a choice for the direction
d3.

Now suppose that we selected d3. Then we still have to make a choice between
d2 and d3. For search direction d2 we have a very good guess of the progress we
will make, since we approximate the eigenvalue curve with a “parabola”. So, if the
progress is less than ε, with ε as in the stopping criterion for the change in the
iterates

λmax(C −A∗(yk))− λmax(C −A∗(yk+1)) < ε,

then we select d3. Otherwise, as we observed in our numerical examples, we select
the steepest direction. This is clearly not a very sophisticated strategy, but it is the
only one available to us at the time of writing this thesis. In all the examples we
tested, this led to a choice for d2. With this direction our method seems to work
fine, see also the discussion in Subsection 3.2.4. Future research is necessary. For
example, a two-dimensional search to find the optimal combination of d2 and d3

could be an interesting solution.
Another point, that we did not discuss, is the computation of the step size t

for the search direction d. For the computation of the step size we use the strategy
as discussed in the last part of Subsection 3.2.1. The quadratic or higher order
approximation for the step size t given in Subsection 3.2.1 does not apply here, since
the matrix Γ is not invertible. Therefore, we cannot use the quadratic approximation
of λmax as a function of t for finding effective estimates for t. We will use linear
approximations, and try to find eigenvalue curves that cross the eigenvalue curve of
λ1 as a function of t as in Subsection 3.2.1, or use a bisection method starting with
a certain t0, for example t0 < 10, and check whether progress is made . In all the
numerical examples this strategy works fine. Although more research is required
here.

We are now in a position to write the approach of this section in an algorithm,
Algorithm 3.3.3.

3.3.5. Examples to illustrate the effect of Algorithm 3.3.3
In this section we apply our approach to some of the SDP problems described in
Section 1.2.4.

The output for the first example is printed in Table 5. This table is divided into
6 columns, like we did in Subsection 3.2.6.
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(0) input
• a vector b, matrices Ai and C,
• an initial point y0 ∈ Rm, an ε for termination, and set

k = 0
(1) search direction compute the eigenvalues of C−A∗(yk) and

check the multiplicity l of λmax

• if l = 1 compute d (and a) following the strategy of Sec-
tion 3.2

• else compute d (and a) following the strategy of Section
3.3

(2) step size compute step size t according to Subsection 3.2.1
(3) update compute yk+1 = yk + td
(4) termination compute λmax(C −A∗(yk+1))

• If λmax(C −A∗(yk))− λmax(C −A∗(yk+1)) ≤ ε goto (5)
• else k = k + 1, goto (1)

(5) solution to (D) compute yk+1 = yk+1 − ε̄b (see (133))
• If ε̄ < ε stop
• else k := k + 1, goto (1)

Algorithm 3.3.3 The multiple eigenvalue case.

For the second example we took different input data for the same optimization
problem taken from [45], the solutions of the problems as computed in [45] are
printed in Table 6. The objective values will be used as reference to the output we
obtained in Table 7.

The organization of Table 7 is:

• column 1 shows the name of the problem,
• column 2 shows the total amount of iterations to converge,
• column 3 shows how many times point (5) of Algorithm 3.3.3 is applied,
• column 4 shows the approximated Lagrange multiplier,
• column 5 shows the relative error of the approximated objective value com-

pared to the objective value printed in Table 6,
• column 6 shows the approximated minimal maximum eigenvalue,
• column 7 shows the approximated objective value.

The true optimal value, solution and Lagrange multiplier are known beforehand.
Therefore, we did not use the value ε of Algorithm 3.3.3 for termination. We stopped
if the approximated objective value did not differ more than 1e − 5 of the known
objective value, and the approximated Lagrange multiplier did not differ more than
1e− 12 of the actual Lagrange multiplier. In practice we will hardly ever encounter
an exact multiple eigenvalue λ1 =: λ2, because of the approximated and rounded
values we use. Therefore, we will call an eigenvalue multiple in our implementation
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iter. a step size t y∗ ε̄ obj. value
0 5 0.250000 4.3750000
1 5 0.111803 4.2500000
2 5 0.000000 [.15 .15 − .1 − .1 − .1] −0.8500 4.2500000
3 5 0.000000 [1 1 .75 .75 .75] 4.2500000

Table 5 Output for Example 3.2.4. Empty spaces in the table are non-applicable outputs.

name ‖p+
8 (A)‖

Grcar 1766.31353
Ellipse 7710.27116

Bull’s head 1239.41861
Lemniscate1 1.00000000
Lemniscate2 834.738575

Table 6 Solutions for the problems of Example 3.3.3 by [45] with relative accuracy less than
1e− 11. Thus all digits shown are correct.

of Algorithm 3.3.3 if
λ1 − λ2

λ1
≤ ε (λ1 6= 0).

We took ε := 1e− 08 for our examples.

Example 3.3.2. We consider again Example 3.2.4. Recall that the solution for
this problem is y = [1 1 3

4
3
4

3
4 ]∗ with objective b∗y = 4 1

4 . The Lagrange multiplier
a is a constant a = 5. For the improved algorithm we obtain the output in Table 5.
With the improved algorithm, we find an optimum, and the optimal value y+. It
takes two iteration steps to find the optimal objective b∗y+. Iteration step 2 is needed
to verify whether we are in an optimum. Until this iteration step, we used the same
approach as for Example 3.2.4. When we are in the situation of simple eigenvalues,
this approach is the default. In iteration step 3 we had a break-down, when we
applied the simple eigenvalue approach. Now the iterates converge nicely. The new
approach conveniently handles the multiple eigenvalue that appears in iteration step
3. The termination check of point (4) in Algorithm 3.3.3 is fulfilled and in point (5)
λmax(C−A∗(ŷ)) is driven to zero, which is done very accurately as can be concluded
from iteration 3, where the iteration process has converged. The nice behavior we
observed by the simple eigenvalue approach also extends to the multiple eigenvalue
approach. The multiple eigenvalue approach seems very promising.

Example 3.3.3. These optimization problems are taken from [45]. They involve
problems of the type (40): Chebyshev polynomials of matrices A. We use the same
size as in [45] so that we can compare our results with those in Table 6 (taken
from [45]). We try to compute ‖p+

8 (A)‖ for matrices of order (48 × 48). The sizes
in the SDP formulation for these problems are the following: n = 96, m = 17. The
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Lagrange multiplier is 1 for all problems and the vector b is of size (2m + 1), such
that b = [0 · · · 0 − 1]∗.

The problem Grcar:

A =




−1 1 1 1

−1 1 1
. . .

−1 1
. . . 1

−1
. . . 1 1
. . . 1 1

−1 1
−1




.

The problem Ellipse:

A =




0 3
2 0 3

2 0
. . .

2
. . . 3
. . . 0 3

2 0




.

The problem Bull’s head:

A =




0 0 1 .7

2i 0 0 1
. . .

2i 0 0
. . . .7

2i 0
. . . 1 .7

2i
. . . 0 1
. . . 0 0

2i 0




.

The problem Lemniscate1:

A =




1 1
−1 1

1 1

−1
. . .
. . . 1

1 1
−1




.
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The problem Lemniscate2:

A =




α
1 α

5 α

5
. . .
. . . α

1 α
5 α

5




.

with α = (256/27)1/3.

The start vector y0 is taken at random. The results are shown in Table 7,
this are average results of several runs to make sure that there is no effect of the
starting vector on the converging process. For all of the above-mentioned problems
we encounter multiple eigenvalues in the iterates for the maximum eigenvalue. All
the problems are solved to the desired precision, as we see from column 5 and 6 of
Table 7. Note that this example has complex-valued input data, we corrected our
algorithm to handle complex eigenvectors, and to keep directions and eigenvalues
real.

As we see in column 2, the amount of iterations needed to get the desired
precision of the optimal value, is larger than the amount of iterations observed by
the other examples. We observed a lot of steps with a Newton direction for which the
step size was, nevertheless, a lot smaller that 1. This reveals that the local quadratic
information that was used for the computations of the search direction was far from
complete. An explanation is that the input matrices Ai form an ill-conditioned
system, although we applied a strategy for better conditioning as explained in [45],
the matrices stay very sensitive to perturbations: the local behavior of the maximum
eigenvalue function is very complicated. Therefore, we think that probably any
local strategy will fail for this set of problems. This behavior makes these problems
suitable test problems for validation of our method. In view of the large number
of iteration steps one may wonder whether it is not better to use a local linear
approximation as a default approach instead of the Newton approach for the search
direction. The Newton approach is, per step, a lot more expensive than the linear
approach. Since we do not know beforehand if we are solving such a difficult problem,
we rather take the Newton method as default that can lead to fast convergence.
Another reason is that in our examples, linear approximations lead to even worse
convergence properties.

Even though we had less good converging speed as for the other examples,
because of ‘wild local’ behavior of the maximum eigenvalue function, our approach
works fine.

The most expensive part of the improved Algorithm 3.3.3 is the computation
of the complete eigenvalue decomposition of the matrix C − A∗(y) every iteration
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name #iters #upd. a error |λmax| ‖p+
8 (A)‖

Grcar 65 13 1 6.0e− 07 1.1e− 07 1766.31766
Ellipse 26 6 1 1.1e− 06 2.5e− 08 7710.31826

Bull’s head 44 3 1 3.3e− 06 2.3e− 06 1239.43899
Lemniscate1 31 3 1 1.7e− 09 3.1e− 06 1.00000001
Lemniscate2 48 3 1 4.5e− 06 9.8e− 06 834.754681

Table 7 Results for the problems of Example 3.3.3.

of the algorithm. Specifically for large matrices C and Ai this is a very time con-
suming operation. Therefore, we will develop a subspace procedure that will only
make use of a small number, say 20, of eigenvalues and eigenvectors per iteration of
Algorithm 3.3.3. The subspace procedure will be inspired by the projection method
for SDP described in Subsection 2.4.2. If we only need a couple of eigenvalues
per iteration step, then we can use an iterative method for computing eigenvalues.
These methods are computationally not so expensive as direct methods and there-
fore are attractive for our algorithm when encountering large matrices C and Ai.
The following section will describe some methods for computing eigenvalues.

3.4. Computation of eigenvalues

In this section we will describe the most popular ways of computing eigenval-
ues to give some insight in the computation of eigenvalues in the improved Algo-
rithm 3.3.3, and how we could do better when encountering large matrices.

The computation of eigenvalues of matrices is equivalent with determining the
zeros of a polynomial. For general matrices of order 5 or higher there exists no
finite algorithm to compute the zeros and therefore the eigenvalues are computed
iteratively to a certain precision. There are iterative methods that converge quadrat-
ically or even cubic. These are so fast that they are usually referred to as direct
methods. For matrices of order n direct methods need O(n3) elementary operations
to compute the set of eigenvalues and eigenvector to high precision. For storage
O(n2) amount of memory is needed. For large matrices these methods are to time
consuming.

For larger problems reduced matrix techniques come in the picture. These meth-
ods reduce the original large system to a system of low size. The eigenvalues of the
reduced matrix turn out to be good approximations of the wanted eigenvalues of
the original matrix. If all eigenvalues are needed, the reduced methods would also
be very time consuming and would therefore be no option. In Subsection 3.4.1 we
give an example of a direct method and in Subsection 3.4.2 we give an example of a
reduction method.

3.4.1. Direct methods
Direct methods are for example the Power method and the QR method [17], [36].
We will briefly review the idea of the QR method. We first need the definition of a
Schur form of a matrix.
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Theorem 3.4.1 ([17, p.313]). If A ∈ Cn×n, then there exists a unitary Q ∈
Cn×n such that

Q∗AQ = R̂ = D + N

where D := diag(λ1, . . . , λn) and N strictly upper triangular. Furthermore Q can be
chosen so that the eigenvalues λi appear in any prescribed order along the diagonal.

Q is called the matrix of Schur vectors of A. If the matrix A is complex, then
the matrices R̂ and Q may also be complex. It can be advantageous to work in real
arithmetic. Therefore, we define a real Schur form.

Theorem 3.4.2 ([17, p.341]). If A ∈ Cn×n, then there exists a orthogonal
Q ∈ Rn×n such that

Q∗AQ = R =




R11 R11 · · · R1m

0 R22 · · · R2m

...
...

. . .
...

0 0 · · · Rmm




where Rii is either a real 1×1 matrix or a real 2×2 matrix having complex conjugate
eigenvalues.

An eigenvector x of A corresponding to λ follows from the solution of Ry = λy with
x = Qy.

We will describe an iterative procedure to compute the Schur form of a matrix
A. Suppose that the matrix A has real eigenvalues. Start with a complete set of
orthonormalized independent vectors u1, . . . , un. Define U0 := (u1, . . . , un). We could
for example take U0 = I.

With A0 := A we compute a QR-factorization of

(A0U0 =)A = U1R1.

Set Q1 := U1. Then the matrix A1 can be computed as

A1 := Q∗1A0Q1 = R1Q1.

A1 is a similarity transformation of the matrix A0, and hopefully more in the direc-
tion of the Schur form of A, than A0 = A itself.

The next step will be to form AQ1 and compute a QR-factorization AQ1 = U2R2

of this in order to find a new iterate A2 that is even more in the direction of the
Schur form of A, than A1. But since A = Q1R1 we see that

AQ1 = Q∗1R1Q1.

If we now factor R1Q1 as R1Q1 = Q2R2, then we see that

(161) AQ1 = Q1Q2R2.

Apparently, Q2 can be viewed as the orthogonal transformation that corrects Q1 to
U2. From (161) we conclude that

R1Q1 = A1 = Q∗
1AQ1 = Q2R2,
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Start with A0 := A, and k = 1,

(1) factor Ak−1 = QkRk,
(2) compute Ak = RkQk,
(3) • if converged, then Rk = D + N where D =

diag(λ1, . . . , λn) are the eigenvalues of A, xi = Qyi are
the eigenvectors of A, where yi solve Rkyi = λiyi.

• else k = k + 1, goto (1)

Algorithm 3.4.4 The QR method.

and thus that the factor Q2 had also been obtained if continued with the iteration
with A1. We set

A2 := Q∗2A2Q2 = Q∗2Q
∗
1AQ1Q2,

and start again. The iterates Ai will converge to the Schur form of A, and the
product Q1Q2Q3 · · ·Qi of the correction matrices converges to the matrix of Schur
vectors corresponding to A. This approach is summarized in Algorithm 3.4.4.

3.4.2. Reduction methods
In this section we briefly review one of the iterative methods for computing some
of the eigenvalues. Iterative methods are for example Lanczos [28], Arnoldi [3],
Jacobi-Davidson [42], described in [17], [36], [10] and [11]. We will describe Jacobi-
Davidson. For a standard eigenvalue problem, Jacobi-Davidson selects an approx-
imate eigenvector from a subspace U that is extended in each step. So instead of
a complete set of independent vectors as for direct methods we start with a or-
thonormal basis {u1, . . . , ul} of the subspace U with l ¿ n. Define the matrix U as
U := (u1, . . . , ul). Each step consists of two parts. In the first part the projected
eigenvalue problem

(U∗AU − θU∗U)v = 0,

is solved and a solution (θ, v) is selected. The value θ and q = Uv are an approximate
eigenvalue and eigenvector, respectively. The residual is

r := (A− θI)q, with ‖q‖ = 1.

We see that q ⊥ r. In the second part the subspace U is extended by a vector u ⊥ q.
This vector u has to solve the correction equation approximately,

(162) q ⊥ u and (I − qq∗)(A− θI)(I − qq∗)u = −r.

The subspace U is extended with the vector u, that is, U := span{U, u} such that
its matrix representation U is U = (U, u) with U∗U = I. The columns of the
matrix U are not automatically orthonormal, we have to apply a Gram-Schmidt
orthogonalization process on the columns of the matrix U . If the value θ is an
eigenvalue, then its eigenvector is contained in span{U, u}, that is, its eigenvector is
contained in the subspace U and in the solution of the correction equation (162). If
θ is not close to the wanted eigenvalue, then it is often more efficient to replace it
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by a fixed target close to the wanted eigenvalue. In this way we circumvent that θ
converges to an undesired eigenvalue.

The main difference of the direct and the iterative method is the subspace. The
subspace projection leads to problems of low size, which are computationally cheap
to solve. If only a small amount of eigenvalues are wanted of large system, this is
the way to compute them rather cheaply.

3.5. The subspace principle

As we already pointed out, the most expensive part of the Algorithm 3.3.3 is
the computation of a full set of eigenvalues and eigenvectors at every iteration step.
Now that we introduced in the last subsection a method that is computationally
not so expensive for computing some eigenvalues and eigenvectors, we need some
ideas for using only a couple of eigenvalues every iteration step, and still converge
to an optimum. Therefore, we introduce the following projection inspired by the
Subsection 2.4.2. This projection will not reduce the whole of the optimization
problem to a reduced problem, but only the eigenvalue constraint λmax(C −A∗(y)).

We explain how to incorporate subspaces in the procedure of Algorithm 3.3.3.
Suppose we compute the s largest eigenvalues, λ1 ≥ . . . ≥ λs, of the matrix Ĉ :=
aC−aA∗(y0)+〈b, y0〉I at y0, and s ¿ n, with one of the reduction methods for eigen-
value computation in Subsection 3.4.2. Define the n × s matrix P := (u1, · · · , us)
of the orthonormal eigenvectors corresponding to the s largest eigenvalues ui of Ĉ,
and define the subspace U := span{u1, · · · , us}.

For s ¿ n, we consider the maps:

P : Sn → Ss, J : Ss → Sn,

that are defined by

P(X) = P ∗XP, J (H) = PHP ∗.

Note that

P ∗ĈP = diag(λ1, . . . , λs).

Instead of incorporating the search direction procedure of Algorithm 3.3.3 im-
mediately, that is, instead of following the procedure to find an approximation to
d+ from (112),

d+ = argmin
d

λmax(aĈ − aA∗(d) + b∗dI),

we introduce the following projection procedure on the subspace U:

(163) (aĈ − aA∗(d) + b∗dI) → (aP ∗ĈP − aP ∗A∗(d)P + b∗dI).

Define Âi := P ∗AiP (i = 1, . . . m), then

P ∗A∗(d)P =
m∑

i=1

diP
∗AiP =

m∑

i=1

diÂi,
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and approximate d+ by d̂

(164) d̂ = argmin
d

λmax

(
a




λ1

. . .
λs


− a

m∑

i=1

diÂi + b∗dIs

)
.

This equation is of low size s and can be solved relatively quickly by the procedures
explained in the Subsections 3.2.2, 3.3.2, and 3.3.3.

The next part of the procedure is to find the appropriate step size for the direc-
tion d. Again we will use a system of low size for this. Let us return to problem (100):

t+ = argmin
t

λmax(Ĉ + tF̂ ).

After incorporating the projection onto the subspace U, spanned by orthonormal
eigenvectors;

(165) Ĉ + tF̂ → P ∗ĈP + tP ∗F̂P,

we are left with finding a step size t such that,

(166) t̂ = argmin
t

λmax(P ∗ĈP + tP ∗F̂P ).

This equation is of low size s and can be solved relatively quickly by the procedures
explained in the Subsections 3.2.1.

We have to consider some new situations that can occur. Since we have lost
information by projecting on only s eigenvalues instead of using the full set of eigen-
vectors and eigenvalues. For the full set of eigenvectors and eigenvalues we assumed
that there existed a finite solution. Thus whatever search direction is selected, we
know that a finite solution will be found for this situation, if the Lagrange multiplier
exists. The following situations can occur when solving the subproblem:

(1) the procedure written in Subsection 3.2.1 is not able to come up with a finite
step size t, because all the eigenvalue curves of the chosen s eigenvalues
are increasing or decreasing. Thus the optimization problem has no finite
solution in the subspace U. See Figure 8, Situation 1, here s = 2 and,
the horizontal axis represent the step size to some computed direction d,
and the vertical axis represent the eigenvalues. The solid lines are the
eigenvalue curves for the projected matrix P ∗ĈP + tP ∗F̂P as a function of
t. And the dashed line is an eigenvalue curve of Ĉ + tF̂ that is not included
in P ∗ĈP + tP ∗F̂P. We start at t = 0 in ◦, where all eigenvalue curves are
decreasing, no finite solution is found. since the crucial crossing eigenvalue
curve −− is not in the subsystem. We are not able to find the minimum
∗,

(2) the new objective value of the full system has increased, although the
objective value of the projected system shows decrease, that is,

λmax(aP ∗ĈP − aP ∗A∗(td)P + tb∗dI) < λ1,

but
λmax(aĈ − aA∗(td) + tb∗dI) > λ1.
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This situation gives a too large step in the direction of the update td. See
Figure 8, Situation 2, here s = 1. We start at t = 0 in ◦ and approximate the
maximum eigenvalue curve with a “parabola”, which has minimum ¤. If
we had started with the full set of eigenvalues and eigenvectors, the crucial
crossing eigenvalue curve (−−) would not have been omitted, and we would
have spotted that the eigenvalue in ¤ is not the maximum eigenvalue,
actually in ∗ is the maximum eigenvalue which is clearly larger than the
maximum eigenvalue in ◦.
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Figure 8 Illustration of the problems occurring when solving a projected system.

Situation (1). An infinite step size means that all computed eigenvalues curves
are decreasing. If we detect an infinite step size t when running the step size pro-
cedure of Subsection 3.2.1, we propose to extend the subspace U by a new vector
v1 ⊥ U with v1 the normalized eigenvector corresponding to the maximum eigenvalue
θ1 of the matrix F̂ = aA∗(d) + b∗dI,

F̂ θ1 = θ1v1, and ‖v1‖ = 1.

Clearly, the computed v1 will not automatically be perpendicular to U, we have to
apply a Gram-Schmidt orthogonalization process to orthogonalize v1 with respect
to the columns of the matrix P . The new projection matrix P̂ will be P̂ = (P, v1).
This is a natural choice to extent the subspace U, since for large t the matrix F̂ will
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determine the maximum eigenvalue of Ĉ + tF̂ , this maximum eigenvalue curve is
decreasing for t ↓ 0. Since we assumed that a solution of the problem (D) exists this
will guarantee us that t is finite. Therefore, the maximum eigenvalue curve of tF̂

has to cross the maximum eigenvalue curve of Ĉ + tF̂ for t ↓ 0. We approximate the
step size t by

t = argmin
t

λmax(P̂ ∗ĈP̂ + tP̂ ∗F̂ P̂ ).

Note that a finite t is still not a guarantee that λmax(aĈ−aA∗(td)+tb∗dI) is smaller
than λ1. If indeed λmax has not decreased we follow the instructions in Situation
(2).

Situation (2). Situation (2) is detected when we are computing λmax(aĈ −
aA∗(td) + tb∗dI) at the termination step of Algorithm 3.3.3. We propose to extend
the subspace U by a new vector w1 ⊥ U such that w1 is the normalized eigenvector
corresponding to λmax(aĈ − aA∗(td) + tb∗dI). Again, the computed w1 will not
automatically be perpendicular to U, we have to apply a Gram-Schmidt orthogo-
nalization process to orthogonalize v1 with respect to the columns of the matrix P .
The new projection matrix P̄ will be P̄ = [P, w1]. And a new step is computed:

t̂ = argmin
t

λmax(P̄ ∗ĈP̄ + tP̄ ∗F̂ P̄ ).

This decreases the value of t, but still does not give any guarantee that λmax(aĈ −
aA∗(t̂d) + t̂b∗dI) has decreased: we could have missed another eigenvalue curve, see
Figure 8, Situation 2, where s = 1. The solid line is the eigenvalue curve for the
projected problem, the dashed line is the extra eigenvalue curve coming from the
extension with v1 and the dashed .−−. is the eigenvalue curve that determines the
minimal maximum eigenvalue of the full system.

Therefore, if it happens again, we repeat the procedure and extend span{U, w1}
by a new vector w2 ⊥ span{U, w1} such that w2 is the normalized eigenvector
corresponding to λmax(aĈ − aA∗(t̂d) + t̂b∗dI), etc. We iterate this procedure until t
is such that

(167) λmax(aĈ − aA∗(td) + tb∗dI) ≤ λ1.

(We have the guarantee that this will happen, because in a finite amount of steps
our subspace will be the same as our complete space, for which (167) is true.)

Some extra notes are in place. Every iteration step we start with a new set of
s eigenvalues and eigenvectors. Up until now we did not use any information from
previous steps. This seems to be feasible and could be an interesting field for further
research. The value of s should be selected, such that, the amount of work needed
to compute the s eigenvalues does not dominate the total amount of work needed
every step of the method.

With these modifications we are able to formulate Algorithm 3.5.5.
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(0) input
• a vector b, matrices Ai and C,
• an initial point y0 ∈ Rm, an ε for termination, set k =

0, and set s at a reasonable value, for example, in our
examples s := 20,

(1) search direction compute the s largest eigenvalues of C −
A∗(yk) by a reduction method and perform projection

(aĈ − aA∗(d) + b∗dI) → (aP ∗ĈP − aP ∗A∗(d)P + b∗dI).

check the multiplicity l of the maximum eigenvalue
• if l = 1 compute d (and a) following the strategy of Sec-

tion 3.2 for the projected problem,
• else compute d (and a) following the strategy of Section

3.3 for the projected problem,
(2) step size perform projection

Ĉ + tF̂ → P ∗ĈP + tP ∗F̂P

compute step size t according to Subsection 3.2.1 for the pro-
jected problem,
• if t is finite follow Situation 2 in Section 3.5, and goto (3)
• else follow Situation 1 in Section 3.5, and goto (3)

(3) update compute yk+1 = yk + td
(4) termination compute λmax(C −A∗(yk+1))

• if λmax(C −A∗(yk))− λmax(C −A∗(yk+1)) ≤ ε goto (5)
• else k = k + 1, goto (1)

(5) solution to (D) compute yk+1 = yk+1 − ε̄b (see (133))
• If ε̄ < ε stop
• else k := k + 1, goto (1)

Algorithm 3.5.5 The subspace eigenvalue method.

3.5.1. Examples to illustrate the subspace Newton method
The modification with the subspace approach described in Section 3.5 is based on a
very simple idea. We would like to apply this to show the possibility to decrease the
problem size and therefore the computation time for large optimization problems.
Our implementation of the multiple eigenvalue subspace procedure is done only
to check the validity of the constructed theoretical framework, for simple and low
size testing problems. The current numerical implementation is not applicable to
large-scale real-life optimization problems. Therefore, we are not able to check the
gain in computation-time, that reduction methods can show in comparison to direct
methods for the computation of eigenvalues for large-scale problems. Nevertheless,
we can observe the behavior of the iteration process, that is most likely the same
for large-scale problems. Therefore, we do some tests with the subspace procedure
on the examples we used in Subsection 3.3.5. We used a direct method for the
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computation of the eigenvalues, since the direct methods are in practice just as fast
or even faster than the reduction methods for the problem sizes of the examples
that we tested. The results for different examples are printed in Table 8 and 9. The
Tables are divided like those in Subsection 3.3.5. Since we know the true optimal
value, solution, and Lagrange multiplier we did not use the value ε of Algorithm
3.5.5 for termination, we stopped if the approximated objective value did not differ
more than 1e − 4 of the known objective value, and the approximated Lagrange
multiplier did not differ more than 1e − 12 of the actual Lagrange multiplier. We
will call an eigenvalues multiple in our implementation of Algorithm 3.5.5 if

λ1 − λ2

λ1
≤ ε (λ1 6= 0).

We took ε := 1e− 06 for our examples.

Example 3.5.1. This example is an extension of Example 3.2.2. Our data for
n = m = 100 is the following,

C =




0 −1 0
−1 0 −1

. . . . . . . . .
−1 0 −1

0 −1 0




,

The Lagrange multiplier a is equal to a = 100, the vector b is of size m such that
b = [1 · · · 1]∗, and the n× n matrices Ai, i = 1, . . . , m, are filled with zeros except
on the (i, i)-th entry there is a one. We used a subspace with s = 20 eigenvectors
each iteration. The known optimal solution is b∗y = 198 with y = [1 2 2 . . . 2 2 1]∗.
The results are printed in Table 8.

Although we observe a slower iteration process, that can be explained by the
use of only 20 eigenvectors instead of the complete eigenvalue decomposition, the
iteration process is constant. In the first 10 iteration steps, where we find an approx-
imate value with an accuracy of less than 1e-3, although the approximate Lagrange
multiplier and approximated solution are not yet accurate. It takes another thirty
steps to get these also very accurate. That the Lagrange multiplier is not immedi-
ately accurate can be explained by the behavior of the local linear approximation of
only 20 eigenvectors. We also tested this example with the approximated Lagrange
multiplier set to a := 100 during all iteration steps. The output was similar to
the output in Table 8. When starting with s = 100, the algorithm converges in 3
iterations.

By investigating the eigenvalue curves we discovered that after approximately
15 iterations eigenvalues start clustering near the maximum eigenvalue, the more we
approach optimality the more eigenvalues behave like this. The subspace of the 20
eigenvectors is not accurate enough any more, and we see that the iteration process
slows down. For higher accuracy of the solution we need to investigate subspaces
that can handle the problem of clustering, or even better, that can predict that a
specific eigenvalue becomes important in the next iteration. Perhaps, this can be
established by using information from previous steps.
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#iters #upd. a error |λmax| obj. value
1 0 96.9 2.7e− 02 2.0e + 00 1.926952e + 02

10 1 99.8 5.1e− 04 1.3e− 01 1.981009e + 02
30 3 100.0 9.7e− 07 5.7e− 07 1.980002e + 02
52 10 100.0 9.8e− 11 1.1e− 16 1.980000e + 02

Table 8 Output for Example 3.5.1.

In none of the iteration steps we detected an infinite step size nor an increase
of the objective value as described in the two situations of Section 3.5. In the
next subsection we will discuss whether there is any dependency of s on m,n, or
dependency between s and the convergence rate.

We conclude that the subspace procedure is promising in general, although we
see that our approach of using every iteration 20 new eigenvectors to project on can
be improved.

Example 3.5.2. The optimization problems are those of Example 3.3.3.
We know that multiple eigenvalues can occur as we experienced in previous

tests, therefore we used a subspace with s = 20+ l eigenvectors every iteration step.
We have every iteration step information of 21 different eigenvalues, thus we can
compare the results per iteration step.

The start vector y0 is again taken at random. The results are printed in Table 9.
They are average results of several runs to make sure that there is no effect of the
starting vector on the converging process.

Problem Grcar is solved with an equal amount of iteration steps as in Table
7. This is the only problem that did not need more iterations to converge. Usu-
ally, we would expect that using a subspace, and therefore less information for the
computation of the update, would lead to more iterations. For the Grcar problem,
all the important information to compute an accurate update, is stored in the s
eigenvectors that form the subspace projection.

For the other problems we observe in Table 9 an increase of the iteration steps
compared to the amount of iterations in Table 7. This is the same observation as
for Example 3.5.1, it leads to the same conclusions.

What we can not see in Table 8, but what did occur is that most of the problems
needed subspace extensions. At the start of the iteration process we encountered
often an infinite step size as discussed in situation 1 of Subsection 3.5 occurred
a couple of iterations. This can be explained by the fact that the eigenvectors
belonging to the 21 largest eigenvalues in the starting point have no connection to
those in the optimal solution if the starting points are not near the optimal solution.
This difficulty cannot be overcome.

At the end of the iteration process the increase of the objective value, as dis-
cussed in situation 2 of Subsection 3.5, occurred quite often. Also we observed that,
as for the results in Table 8, that after approximately 15 iterations eigenvalues start
clustering near the maximum eigenvalue, the more we approach optimality the more
eigenvalues behave like this. Both observations point out that the subspace is not
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name #iters #upd. a error |λmax| ‖p+
8 (A)‖

Grcar 65 10 1 4.0e− 07 5.9e− 06 1766.31424
Ellipse 57 5 1 2.4e− 05 1.0e− 06 7710.45862

Bull’s head 93 6 1 6.2e− 06 5.0e− 06 1239.42482
Lemniscate1 42 5 1 3.2e− 07 5.1e− 06 1.00000514
Lemniscate2 87 20 1 6.7e− 04 9.4e− 06 835.300777

Table 9 Results for the problems of Example 3.5.2.

good enough to find accurate updates. Thus, more information than this subspace
contains is needed to solve with higher accuracy. We discussed already in Example
3.3.3 that these problems are difficult. The local behavior of the maximum eigen-
value function is very complicated. Thus, when using even less information this does
not help to increase the accuracy of the local approximation. Especially for Exam-
ple Lemniscate2 this is the case, after 15 iterations we have already an accuracy of
1.8e− 03. This explains also the rather slow convergence after 15 steps.

Reconsidering all the observations, we conclude that the results that are shown
in Table 9 are actually rather promising. The convergence rate for the full set of
eigenvalues and eigenvectors was slow, and it did not slow-down dramatically by
using our subspace approach.

3.5.2. Subspace dimension
In this subsection we will discuss the relation between the dimension of the subspace
and the amount of iterations needed to solve the optimization problem.

In Table 10 we printed the results for solving Example 3.5.1 with problem size
m = n = 120. We used 6 different subspace sizes, size s = 10, 20, 40, 60, 90, and 120.

In Table 11 we printed the results for solving Example 3.5.1 with subspace size
s = 20 and problem sizes equal to n = m = 30, 60, 90, 120 and 240.

With the help of the known true optimal values, solutions and Lagrange mul-
tipliers, the algorithm is terminated as soon as the Lagrange multiplier, a, has an
accuracy of 1e − 12 and the relative error of the objective function with respect to
the optimal solution is less than 1e− 5.

In the two tables we recognize linear behavior between the subspace size and the
amount of iterations, this is a bit disappointing. If the problem size is doubled than
also the amount of iterations is doubled. But, there is also other behavior of the
iteration process that is not visible in the Tables 10 and 11. Typically our method
shows very fast initial convergence and a strong tailing off effect as the iterates
approach the optimal solution. One of the reasons is the clustering of eigenvalues
near zero, when approaching the optimal solution. If only a rough guess is needed
of the optimal solution, the algorithm finds a guess with relative error 1e − 3 in
less than 16 iterations. The convergence speed may then not be quadratic, but the
amount of operations needed to compute the solution is very low (O(s · n2) versus
O(n3) per step).
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subspace size #iters a error
10 65 120 8.0e− 07
20 25 120 2.4e− 06
40 20 120 1.5e− 06
60 20 120 8.4e− 07
90 10 120 8.8e− 07
120 3 120 1.0e− 12

Table 10 Output for Example 3.5.1 with m = n = 120 and with relative error < 1e− 5.

problem size #iters a error
30 8 30 8.8e− 06
60 17 60 2.2e− 07
90 25 90 9.6e− 07
120 25 120 2.4e− 06
240 67 240 3.1e− 06

Table 11 Output for Example 3.5.1 with subspace size 20, with relative error < 1e − 5 and
with n = m = problem size.

To select the optimal size of the subspace, we have to consider the time needed
to compute a set of eigenvalues, the expected total amount of iterations and, the
amount of clustered eigenvalues near the minimal maximum eigenvalue. The most
expensive part of the algorithm is the computation of eigenvalues every iteration of
the algorithm, so the time needed to compute the eigenvalues times the expected
amount of iterations should be minimal.

3.6. Other methods for minimizing the maximum eigenvalue

In this section we will briefly discuss two other iterative methods, that rely
on minimizing the maximum eigenvalue. The first method is the spectral bundle
method by Helmberg and Rendl [20]. This method is specially designed to solve large
scale combinatorial optimization problems of which the relaxation can be written
as semidefinite programming problems (D) (cf. Example 1.2.1, Section 1.2.4). The
second method is developed by Overton [35] and searches for the minimal maximum
eigenvalue in magnitude, of a symmetric matrix valued function.

3.6.1. The spectral bundle method
This subsection is based on the article [20] by Helmberg and Rendl. The spectral
bundle method assumes that (D) can be written as (E)

(E) min
y∈Rm

aλmax(C −A∗(y)) + 〈b, y〉,

and in addition that the Lagrange multiplier a is explicitly known and constant.
They also assume, like we do in Subsection 3.1.1, that both (P) and (D) are solv-
able and that at least on of (P) and (D) has a strictly feasible solution. Their
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method consists of two basic parts, the bundle concept and the proximal point idea.
The Bundle concept derives information from a bundle (subspace) collected from
previous iterates. The proximal point idea determines a new iterate by solving
a convex problem with a penalty term, to ensure local minimization. The spec-
tral bundle method is implemented in C by Helmberg, and the code is available at
http://www.zib.de/helmberg.

Bundle concept. They developed a method for minimizing f(y), where

f(y) := aλmax(C −A∗(y)) + 〈b, y〉.
Let

(168) F (W,y) := a〈C −A∗(y),W 〉+ 〈b, y〉.
Then f(y) can be formulated as the semidefinite program

(169) f(y) = max
W
{F (W, y) : W ≥ 0, trace (W ) = 1}.

Remark 3.6.1. To prove the equivalence, take u1 the normalized eigenvector
corresponding to the largest eigenvalue of C −A∗(y) in the solution y = y+. Then
the argmax of (169) is W = u1u

∗
1.

In order to reduce the size of the optimization problem (169), they consider only
W from some subcone V of Sn

+. They start with a local model of the function f at
current iterate y = ŷ. Let

P ∗(C −A∗(ŷ))P = diag(λ1, . . . , λk) with P ∗P = I,

and represent the eigenvalue decomposition with respect to the k largest eigenvalues
λ1 ≥ · · · ≥ λk of C −A∗(ŷ). Define V := {PV P ∗ : V ≥ 0, trace (V ) = 1}. P will be
called the bundle. Now, define the local minorant of f by,

f̂(y) := max
W
{F (W, y) : W ∈ V}.

Thus F (W, y) is maximized over a subcone of Sn
+ for f̂ . Then

(1) f(y) ≥ f̂(y), ∀y,

(2) f(ŷ) = f̂(ŷ),

Proximal point idea. In order to determine a new iterate y = ŷ + d from the
current iterate ŷ, they solve

(170) min
d

f̂(ŷ + d) +
u

2
〈d, d〉, for some chosen parameter u.

Thus they minimize, the local minorant f̂ , locally around ŷ. The term u
2 〈d, d〉 is

some kind of barrier function or penalty function to keep the update d near the
current iterate ŷ. They call this the proximal point idea. The parameter u controls
the size of acceptable updates d: they use u to quantify ‘the notion of local’.

Substituting the definition of f̂ in expression (170) yields,

(171) min
d

max
W∈V

F (W, ŷ + d) +
u

2
〈d, d〉,
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Up till now only local information is used from the current iteration point ŷ. In the
general situation there is available a ‘bundle’ of vectors from the previous iterates.
Those vectors are, for example, the eigenvectors of previous iterates. To use more
than only local information from the current iteration point ŷ, they collect the
interesting vectors in a matrix, and denote by P an orthonormal basis of its span.
To keep the dimension of the subspace of all positive semidefinite matrices small,
they aggregate some information from previous iterates into a single matrix W with
trace

(
W

)
= 1, once the number of columns of P exceeds some limit, and they set

V := {αW + PV P ∗ : α + trace (V ) = 1, α ≥ 0, V ≥ 0}.
Expression (171) be simplified, because there is no explicit restriction on d. Note
that

F (W, ŷ + d) = a〈C −A∗(ŷ),W 〉+ 〈b, ŷ〉+ 〈b− aA(W ), d〉,
thus ∇dF = b− aA(W ). Therefore, they get

min
d

max
W∈V

F (W, ŷ + d) +
u

2
〈d, d〉,

= max
W∈V

min
d

F (W, ŷ + d) +
u

2
〈d, d〉,

= max
W∈V,b−aA(W )+ud=0

F (W, ŷ + d) +
u

2
〈d, d〉,

= max
W∈V

a〈C −A∗(ŷ),W 〉+ 〈b, ŷ〉 − 1
2u
〈aA(W )− b, aA(W )− b〉.

The first equality is interchanging min and max, this is difficult to prove but can be
done by using that there exist a finite solution for both (P) and (D). The second
equality follows using that for given W the minimum over d is such that b−aA(W )+
ud = 0. Since for the inner minimization with respect to d and for given W the first
order optimality for

min
d

F (W, ŷ + d) +
u

2
〈d, d〉,

is equal to

(172) 0 = ∇d

[
F (W, ŷ + d) +

u

2
〈d, d〉

]
⇔ d =

1
u

(aA(W )− b).

It is now clear that the computation of the update d for (171) will be done in
two steps, first solve (172), and then compute d by (172). They motivate that the
computation of a solution to (172) can be done by a standard interior-point method
for convex programming problems, this is a rather expensive procedure, but still
cheaper than the computation of the eigenvalues and eigenvectors every iteration
step.

Details. The solution of expression (172) is unique, and is of the form

W ∗ = α∗W
k

+ P kV ∗(P k)∗.

Let QΛQ∗ be an eigenvalue decomposition of V ∗. Then the important part of the
spectrum of W ∗ is spanned by the eigenvectors associated with the large eigenvalues
of V ∗. Now split Q into two parts Q = [Q1Q2], with (corresponding eigenvalues



3.6. OTHER METHODS FOR MINIMIZING THE MAXIMUM EIGENVALUE 95

iter. ‖d‖ λmax obj. value
1 0.343 0.85498 4.2749135
3 0.0373 0.85011 4.2505677
6 3.77e− 05 0.85001 4.2500410
9 2.36e− 05 0.85000 4.2500158
12 1.47e− 05 0.85000 4.2500060
15 1.16e− 05 0.85000 4.2500031

Table 12 Output for Example 3.2.4 computed by the spectral bundle method, Algorithm 3.6.6.

also put into two matrices: Λ1, Λ2), Q1 containing the eigenvectors associated to
large eigenvalues of V ∗ and Q2 the remaining. Now the next P k+1 is computed to
contain P kQ1 and in the other columns at least the eigenvector corresponding to
the maximal eigenvalue of C − A∗(yk+1), and the next matrix W

k+1
is defined to

be

(173) W
k+1

= α∗W
k

+
P kQ2Λ2Q

∗
2(P

k)∗

(α∗ + trace (Λ2))
.

The spectral bundle algorithm is now formulated in Algorithm 3.6.6.

We will discuss the properties of the spectral bundle algorithm and compare
these with our approach.

The spectral bundle method is a linear approximation method, in the sense that
it uses first order information from the maximum eigenvalue function. Therefore,
fast or quadratic convergence cannot be expected. This is visible in Table 12, that
reports on the solution of Example 3.2.4. This is different from our method that does
inherit fast convergence as is clearly visible in the output for the same example in
Table 4. The spectral bundle method is especially designed for large-scale combina-
torial optimization problems. It is only applicable if the correct Lagrange multiplier
is known beforehand, which is usually the case for combinatorial optimization prob-
lems. Probably, the most sophisticated part of the spectral bundle method is the
subspace procedure. The method does use a penalty function to to keep the update
near the last iterate, which is necessary since the approximation of this function is
only local. This penalty function approach a different than the step size approach
that we use. But the goal of keeping the update near the last iterate is the same.

We apply a step size procedure because of the second order approximations,
that give a good guess of the progress that we will make. Linear approximations do
lead to large updates, and therefore do not give any guess of the progress.

3.6.2. Overton’s maximum eigenvalue minimization
This subsection is based on the article [35] by Overton. We will review the method
to minimize the maximum eigenvalue, in magnitude, of an affine real and symmetric
matrix function. This method can be applied to the optimization problem (E).
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(1) input an initial point y0 ∈ Rm, a normalized eigenvector
v0 corresponding to λmax(C − A∗(y0)), an ε for termina-
tion, an improvement number mL ∈ (0, 1

2 ), a weight u > 0,
an upper bound R ≥ 1 on the number of columns of P .

(2) initialization
• k = 0
• x0 = y0

• P 0 = v0

• W
0

= v0(v0)∗

(3) direction
• solve

max a〈C −A∗(xk),W 〉+ 〈b, xk〉 − 1
2u 〈aA(W )− b, aA(W )− b〉

subject to W = αW
k

+ P kV (P k)∗

α + trace (V ) = 1
α ≥ 0, V ≥ 0

which gives you the maximum, W ∗, V ∗ and α∗

• determine yk+1 = xk + 1
u (aA(W ∗)− b)

• decompose V ∗ : V ∗ = Q1Λ1Q
∗
1 + Q2Λ2Q

∗
2 with

rank(Q1) ≤ R−1, and Q1 containing the eigenvectors
associated to large eigenvalues Λ1 of V ∗ and Q2 the
remaining eigenvectors associated to the remaining
eigenvalues of Λ2.

• compute

W
k+1

= α∗W
k

+
P kQ2Λ2Q

∗
2(P

k)∗

(α∗ + trace (Λ2))
.

(4) evaluation
• compute λmax(C −A∗(yk+1)) and eigenvector vk+1

• construct the columns of P k+1 containing an or-
thonormal basis of the space spanned by P kQ1 and
vk+1.

(5) termination If f(xk) − f̂k(yk+1) ≤ ε stop that is,
aλmax(C − A∗(xk)) + 〈b, xk〉 − a〈C −A∗(yk+1),W ∗〉 −
〈b, yk+1〉 ≤ ε stop

(6) serious step

• If f(yk+1) ≤ f(xk)−mL(f(xk)− f̂k(yk+1)) then set
xk = yk+1 and goto (7)

• otherwise goto (6)
(7) null step xk+1 = xk

(8) increase k = k + 1, return to (2)

Algorithm 3.6.6 The spectral bundle method.
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Formulation. Suppose we want to minimize the maximum eigenvalue of the
affine real and symmetric matrix function C −A∗(y):

(174) min
y∈Rm

ψ(y),

where
ψ(y) = max

i≤n
|λi

(
C −A∗(y)

)
|.

We assume that the eigenvalues λi are ordered, λ1 ≥ · · · ≥ λn. The problem (174)
may be written as the following differentiable optimization problem:

(175) max ω

subject to −ω ≤ λi

(
C −A∗(y)

)
≤ ω, i = 1, · · · , n,

or also,

(176) min ω
subject to ωI + C −A∗(y) ≥ 0,

ωI − C +A∗(y) ≥ 0.

One goal of the algorithm that will be described here is adjusting the multiplicity
of the extreme eigenvalues while obtaining a reduction of the objective ψ(y). A
correct value for the multiplicity of the maximum eigenvalue in the optimal solution
is required. Write

(177)

min
ω∈R,y∈Rm

ω

subject to λi

(
C −A∗(y)

)
= ω, i = 1, . . . t,

λi

(
C −A∗(y)

)
= −ω, i = n− s + 1, . . . n,

where as a consequence of the minimization process, it is established that ω =
max(λ1,−λn), with

(178) ω = λ1 = · · · = λt > λt+1 ≥ · · · ≥ λn−s > λn−s+1 = · · · = λn = −ω.

Thus t and s are the multiplicities of the maximum and minimum eigenvalue respec-
tively. Let {q1(y), . . . qn(y)} be a corresponding set of orthonormal eigenvectors to
λ1, . . . λn, and let Q1 := (q1, · · · , qt) and Q2 := (qn−s+1, · · · , qn).

Optimality conditions. The following theorem states the optimality condition
for solving (174).

Theorem 3.6.2. [35, Thm. 3.2] A necessary and sufficient condition for y
to solve (174) is that there exist matrices U and V of dimension t × t and s × s,
respectively, with U = U∗ ≥ 0 and V = V ∗ ≥ 0, such that

trace (U) + trace (V ) = 1,(179)
trace ((Q∗

1AkQ1)U)− trace ((Q∗2AkQ2)V ) = 0, k = 1, . . . ,m,(180)

where t, s,Q1, Q2 are defined by (178).
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For a proof, see the proof of Theorem 3.2 in [35].
The matrices U, V will play the role of Lagrange multipliers as will become clear

later. An application of theorem 3.6.2 on problem (177) under the assumption that
t and s are known leads to

min
ω∈R,y∈Rm

ω

subject to ωIt −Q∗
1(y)(C −A∗(y))Q1(y) = 0,(181)

ωIs + Q∗
2(y)(C −A∗(y))Q2(y) = 0.

We can apply a Newton method to this nonlinear problem (see [35, p.261]). Then
the appropriate subproblem to solve at each step of the Newton method, is the
quadratic program:

min
ω∈R,y∈Rm

ω +
1
2
d∗Wd

subject to ωIt −Q∗1(y)(C −A∗(y + d))Q1(y) = 0,(182)
ωIs + Q∗2(y)(C −A∗(y + d))Q2(y) = 0.

where W should be the Hessian, with respect to y, of the Lagrangian of the opti-
mization problem (181),

L(ω, y, U, V ) = ω − 〈U, ωIt −Q∗
1(y)(C −A∗(y))Q1(y)〉+

−〈V, Is + Q∗2(y)(C −A∗(y))Q2(y)〉,
where U = U∗, V = V ∗. We see that the first order optimality conditions ∇ωL = 0,
and ∇yL = 0, for y to solve (181), are that there exist symmetric matrices U and V
such that the equations in Theorem 3.6.2 hold. It can be shown [35] that the exact
expression for W is the following,

Wjk = 〈U,Gj,k
1 〉 − 〈V,Gj,k

2 〉,
with

Gj,k
1 = 2Q1(y)∗AkQ1(y)

(
ωIn−t − Λ1(y)

)−1

Q1(y)∗AjQ1(y)

Gj,k
2 = −2Q2(y)∗AkQ2(y)

(
ωIn−s + Λ2(y)

)−1

Q2(y)∗AjQ2(y)

The columns of Qi(y) consist of all eigenvectors q1(y), . . . , qn(y) that are not columns
of Qi(y) (i = 1, 2). The matrix Λi(y) is a diagonal matrix with entries λ1, . . . , λn

except those corresponding to Qi(y) (i = 1, 2).
Since each step of the Newton method we have to solve (182), we need estimates

of the matrices U and V , this is for example done by minimizing the 2-norm of the
residual of (179), (180). When solving (182) it is likely that the initially largest
eigenvalue is reduced way below the others. Therefore, incorporate into (182) the
following inequality constraints

(183) −ω ≤ q∗i (y)(C −A∗(y + d))qi(y) ≤ ω for t + 1 ≤ i ≤ n− s,

on the other eigenvalues. A reasonable strategy is to increase t by the number of
constraints which are at their upper bound, and to increase s by the number at their
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iter. y∗ obj. value
1 6.541381
2 4.817767
3 [0.0 2.0e− 15] 1.000000

Table 13 Output for Example 3.6.3 computed by Overton’s method, Algorithm 3.6.7, initial
y∗ = [1 2]. Empty spaces in the table are unknown values.

(0) input an initial point y0 ∈ Rm, starting multiplication esti-
mates t, s,

(1) initial evaluation compute λi(yk) and qi(yk)
(2) direction derivation Solve the optimization problem (182)

with (183) and (184). And use some estimates of U and V to
define W .
• if (182) becomes infeasible goto (3b)
• if ‖d‖ ≤ ε goto (4)

(3) evaluation compute λi(yk + d) if ψ(yk + d) < ψ(yk)
(3a) increase t and s, by the number of upper and lower bounds

which are active in (183). and set yk+1 = yk + d, double
ρ, and goto (2)
else

(3b) reduce t and s to some acceptable values, and divide ρ by
2 and goto (2)

(4) termination
• If U ≥ 0 and V ≥ 0 then stop
• else obtain a reduction by adjusting U (cf. [35, Section

5]), goto (2)

Algorithm 3.6.7 Overton’s eigenvalue method.

lower bound. However, some caution should be used, since if s and t become too
large problem (181) will become infeasible (see [35, p.262] for details).

We insist that a reduction of ω is obtained each step. The reduction is obtained
by incorporating into (182) a bound constraint on d,

(184) |di| ≤ ρ, 1 = i, . . . m

where ρ is during the iteration process adjusted.

Example 3.6.3. This example is a little bit different from the other examples
we have seen up till now, since it is not solving a problem of the form (D). We would
like to minimize the maximum eigenvalue, in magnitude, of the following function.

min
y∈Rm

max
1≤i≤n

|λi

(
C −A∗(y)

)
|,
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iter. y∗ obj. value
1 [4.3 0.37] 5.792694
2 [4.4 − 0.63] 5.047499
3 [1.0e− 15 − 2.2e− 16] 1.000000

Table 14 Output for Example 3.6.3, initial y∗ = [1 2].

We take m = n = 2 and

C =
(

1 0
0 1

)
, A1 =

( −1 0
0 1

)
, A2 =

( −1 −3
−3 −4

)
.

This example is taken from [35], and will be used for comparing our method to
Overton’s approach. We did not have the code of Overton’s method, therefore we
adjusted our algorithm for this problem for which the minimal maximum eigenvalue
in magnitude equals the minimal maximum eigenvalue. The output of Table 14 is
from our method. The output of Overton’s approach is copied from [35] in Table 13.

Overton’s eigenvalue method is a quadratic method, it inherits quadratic con-
vergence as can be observed from Table 13. This table shows the solution process for
Example 3.6.3. Our method does also have fast convergence for the same example
as is visible in Table 14. A drawback of Overton’s eigenvalue method is that it needs
beforehand information of the multiplicity of the minimal maximum eigenvalue. It is
also, in this form, not applicable to large-scale optimization problems, especially the
computation of a complete eigenvalue decomposition every step of the algorithms
is computationally too expensive. However, it should be noted that is was never
designed to solve large scale optimization problems.

3.7. Discussion and conclusions

In this chapter we created a new method for solving semidefinite programming
problems, by means of an eigenvalue method. The semidefinite constraint is lifted
into the objective function, when written as an eigenvalue constraint. The method
is based on a second order approximation of the maximum eigenvalue function. It
can handle both simple and multiple maximum eigenvalues. The method should
especially be interesting for large semidefinite programming problems, that is, if the
problem contains large matrix variables or a huge number of constraints for which
classical interior-point methods, see Section 2.2, grow very slow and consume a huge
amount of memory. We discussed in Subsection 2.2.1, the primal-dual interior-point
method for SDP. This method requires in each iteration the factorization of the dense
matrix AS−1XA∗ in system (81), of size equal to the number of constraints, and
it requires one to three factorizations of the positive semidefinite matrix variables,
to find an appropriate step size, see Section 2.2.1. Therefore, if the amount m of
matrices is larger than 5000 and if the size of the matrices Ai is larger than n > 500,
SDP problems cannot be solved with the primal-dual interior-point method on a
typical workstation in reasonable computing time. The method we developed in
Chapter 3 uses a subspace procedure, which reduces the size of the matrix variables
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dramatically. As a consequence for the reduced problems, all computations can
be done without restriction on the memory or computation time when setting the
subspace size to a small number. The most expensive part of Algorithm 3.5.5 is the
computation of a small amount, say s, of eigenvalues every iteration. The value of
s is considerably smaller than m, the amount of constraints, and n, the size of the
matrix variable in the semidefinite programming problem. By using an appropriate
iterative eigensolver for the computation of the eigenvalues we expect a large gain in
the computing time and for memory requirements. In Tables 2, 5, and 14 we have
seen that our algorithm inherits fast convergence. With the subspace procedure we
lost the fast convergence, which was to be expected, since we lost information by
restricting the optimization problem to a low dimensional subspace.

In Section 3.6 we described two other approaches for solving semidefinite pro-
gramming problems incorporating eigenvalues: the spectral bundle method and
Overton’s eigenvalue method. The difference between the spectral bundle method
and our method is that the spectral bundle method is a linear method and has there-
fore no fast convergence properties. It also needs the correct value of the Lagrange
multiplier beforehand. It therefore restricts the set of semidefinite programming
problems (to semidefinite programming problems with a fixed trace of the primal
matrix variable X, see [20]). The most attractive part of the spectral bundle method
is the use of a sophisticated subspace procedure, this is in contrast to the rather basic
one that we used in Algorithm 3.5.5. More research is needed to develop a sophisti-
cated subspace procedure for Algorithm 3.5.5, in order to get a less tailing off effect,
that should give a reductions in the total amount of iterations used to solve the
semidefinite programming problems.

The other method described in Section 3.6 is Overton’s eigenvalue method, this
method is a quadratic method, but is not applicable to large scale semidefinite
programming problems, since it uses a full eigenvalue decomposition every iteration
step and is therefore not less expensive than the classical interior-point methods.
Another problem is that it needs the multiplicity of the maximum eigenvalue of the
solution of the semidefinite programming problem beforehand.

Concluding, we have developed a promising method with ‘quadratic’ convergence
properties. Further work should be done in the following directions to make the
proposed method more efficient and applicable to large instances.

In the first place the algorithm should be implemented in a stable manner and
sparse form, so that it can handle large inputs.

At each iteration step of our approach, for the simple eigenvalue case we need
to select one direction out of the two directions, and for the multiple eigenvalue
case one out of the three directions. Our method to select the direction, described
in Subsection 3.2.4 and 3.3.4, does work fine in our tests, but further research is
necessary. For example, a two-dimensional search to find the optimal combination
of two directions could be an interesting option.

Further investigations into an efficient subspace procedure is needed, for exam-
ple, to collect ‘interesting’ information from previous iterates, like the one described
for the spectral bundle method in Subsection 3.6.1.
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Another point of investigation is the iterative eigensolver. The eigensolver should
be tuned for the matrices that appear during the iteration process. For example, we
can consider starting vectors for the eigensolver from previous iterates or construct
a preconditioner for structured matrices appearing in the process, designed for the
specific eigensolver.
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Samenvatting

Het belangrijkste onderwerp van dit proefschrift is semidefiniete optimalisatie.
Semidefiniete optimalisatie bestaat uit het analyseren en oplossen van optimalisa-
tiemodellen die een ingewikkeldere structuur hebben dan de algemeen bekende line-
aire programmeringsproblemen (LP). Semidefiniete optimalisatieproblemen (SDP)
komen bijvoorbeeld voort uit de wereld van de telecommunicatie, logistiek, elektro-
techniek en constructie-bouw. Stel dat er een brug moet worden gebouwd. Er volgt
een ontwerp en men wil graag weten welk deel van de constructie dikke balken nodig
heeft en hoe de kabels zo gespannen kunnen worden dat er zo min mogelijk staal
nodig is. Maar de brug moet ook heel blijven in geval van storm, sterke stroming
van de rivier en tijdens de spits. Het mathematisch model van zo’n praktijkprobleem
bestaat over het algemeen uit een grote hoeveelheid variabelen en is daardoor niet
binnen redelijke tijd met een computer door te rekenen. Voor dit soort problemen
is een effic̈ıente oplosmethode nodig, ook wel algoritme genoemd. In dit proefschrift
wordt een algoritme gepresenteerd dat toepasbaar en uitbreidbaar is voor grootscha-
lige SDP. Het basisprincipe bestaat uit het verkleinen van het SDP, zodanig dat er
niet te veel informatie verloren gaat en binnen redelijke tijd een benaderde oplos-
sing kan worden berekend. Het hier gepresenteerde algoritme is vrij eenvoudig en
doorstaat tests met veelbelovend resultaat.

In hoofdstuk 1, sectie 1.1 wordt basis lineaire algebra en analyse beschreven. In
sectie 1.2 wordt een algemeen raamwerk geschetst voor convexe optimalisatiepro-
blemen. Vanuit dit raamwerk worden LP en SDP beschreven. Hierna komen de
optimaliteitscondities aan bod en wordt er afgesloten met een paar voorbeelden van
SDP.

In het tweede hoofdstuk wordt gekeken naar bestaande technieken om convexe
optimalisatieproblemen op te lossen. Deze technieken worden eerst weer beschreven
binnen het algemene raamwerk en daarna gelijk toegepast op LP in sectie 2.1. In
sectie 2.2 komen de technieken voor SDP aan bod. De technieken zijn Newton
methoden en heten binnen de optimalisatiegemeenschap inwendige-puntmethoden.
Sectie 2.3 gaat verder in op de implementatie van inwendige-puntmethoden en in
sectie 2.4 wordt een voorstel gedaan om SDP te projecteren op kleinschalige SDP.
Deze sectie opent de weg naar de projectie van SDP op eigenruimten. Eigenruimten
zullen in hoofdstuk 3 een belangrijke rol spelen.

Sectie 3.1 bevat de introductie van een eigenwaardeformulering van een SDP.
Verder wordt een relevante Lagrange multiplier bepaald en worden afgeleiden van
eigenwaardefuncties gëıntroduceerd. In sectie 3.2 wordt een methode beschreven om
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de maximale eigenwaarde te minimaliseren van sommen van symmetrische matrices,
als deze eigenwaarde enkelvoudig is. De methode wordt gëıllustreerd aan de hand
van voorbeelden. Sectie 3.3 bevat de uitbreiding van laatstgenoemde methode voor
een meervoudige eigenwaarde. Ook deze aanpak wordt gëıllustreerd door voorbeel-
den op te lossen. Sectie 3.4 beschrijft de meest gebruikelijke oplosmethoden voor
eigenwaardeproblemen. Deze zullen worden toegepast in sectie 3.5, waarin tevens
een deelruimteprocedure beschreven wordt die bedoeld is voor de methoden van de
secties 3.2 en 3.3. Conclusies over de afmeting van de deelruimten, een beschrijving
van twee bestaande methoden om de maximale eigenwaarde te minimaliseren en de
vergelijking met de nieuwe methode komen hier ook aan bod.

In hoofdstuk 3 is een aanpak geschetst om SDP efficiënt op te lossen met be-
hulp van een eigenwaardemethode. Deze methode bezit de mooie eigenschap dat
hij “sneller” is dan de gebruikelijke primal-dual inwendige-puntmethode voor SDP.
De primal-dual inwendige-puntmethode, beschreven in hoofdstuk 2, factoriseert na-
melijk iedere iteratiestap een matrix met een afmeting die gelijk is aan het aantal
constraints. Tevens benut de inwendige-puntmethode één tot drie factorisaties van
matrices ter grootte van de inputmatrices, om een geschikte stapgrootte te bepalen.
Als het aantal constraints groter is dan 5000 en de afmeting van de inputmatrices
groter is dan 500 kunnen de SDP niet meer in een redelijke tijd worden opgelost met
behulp van de primal-dual inwendige-puntmethode. De eigenwaardemethode maakt
daarentegen gebruik van een deelruimteproces dat de afmetingen van het SDP pro-
bleem drastisch reduceert. Voor het gereduceerde probleem kunnen alle operaties in
een korte tijd worden uitgevoerd. Het meeste werk van deze aanpak is dat er iedere
iteratiestap s eigenwaarden en eigenvectoren berekend moeten worden. In het alge-
meen zal s een stuk kleiner zijn dan het aantal constraints. Daarom is er een grote
tijdwinst ten opzichte van de primal-dual inwendige-puntmethode te verwachten, als
gebruik gemaakt wordt van een geschikte oplosmethode voor eigenwaardeproblemen.
Het nadeel van de deelruimteaanpak is dat vrijwel zeker snelle convergentie verloren
gaat.

Dit proefschrift leidt tot de volgende conclusies en aanbevelingen. De beschreven
methode kan snel convergentie-gedrag vertonen, maar verliest dit gedrag als deel-
ruimteprocedures worden toegevoegd. Er moet nader gekeken worden naar het keu-
zeproces voor een geschikte zoekrichting. Bovendien is nader onderzoek nodig naar
efficiëntere deelruimteprocedures en moeten iteratieve methoden voor eigenwaar-
deberekening verder worden aangepast voor de specifieke gestructureerde matrices
die voorkomen in SDP toepassingen. Daarbij moet gedacht worden aan startvecto-
ren en preconditionering. Verder zal de ontwikkelde methode goed moeten worden
gëımplementeerd, zodat hij direct toepasbaar is op grootschalige SDP.
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