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Chapter 1

Introduction

During the last two decades adaptive estimation has become one of the most active areas
of research in non-parametric statistics. The introduction of different models of adaptive
estimation reflects the existing practical needs for more realistic models and flexible meth-
ods of estimation. Study of these models brought with it new challenging problems which
required creation of new statistical methods and approaches.

The model of statistical estimation starts from the assumption that we have a sample
from an unknown probability measure P on a given measurable space. The probability
measure P ranges over a class P. The goal of the statistician is then to find a method
for approximating the unknown probability P using the given sample. Usually the class of
probability distributions is modeled in the parameterized form P = {Pθ : θ ∈ Θ} and then
the task is reduced to estimating θ or a functional of θ. In the non-parametric problems
of the kind treated in this thesis, the parameter set Θ is usually infinite-dimensional.

How ‘good’ a method of estimation is, usually depends on the class Θ. In the classical
non-adaptive framework this class is assumed to be known. In practice, however, it is
rarely known to the statistician and thus more realistic methods are necessary. By adaptive
methods of estimation we refer to the data-driven methods of estimation that in a sense
adapt to the uncertainty about the actual class Θ, e.g. methods that choose an estimator θ̂
from a sequence of candidates θ̂1, θ̂2, . . . , θ̂n which are the optimal estimators corresponding
to different classes Θ1,Θ2, . . . ,Θn.

In this thesis we study adaptive methods of estimation for two particular types of
statistical problems: regression and density estimation. For all these problems the classes of
probabilities P are parameterized by real-valued functions θ. In each model, the underlying
function θ is assumed to belong to some class Θ of smooth functions. In practice the ‘true’
smoothness of the function θ is unknown and so the actual class Θ is also unknown. Thus,
finding adaptive methods of estimation becomes very important in such problems.

We study different regression problems with fixed discrete designs: regression on the
real line and regression on a bounded interval. Formally, the distinction here lies just in
the definition of the underlying functional classes Θ. The construction of optimal adaptive
procedures however is quite different in these cases. This is underlined by the essential
difference between these two models; namely, in the case of regression models on bounded
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2 CHAPTER 1. INTRODUCTION

observation intervals, the presence of the boundary – the so called boundary effect – has
to be incorporated in the study of optimal statistical procedures.

For each of the three problems: regression on the real line, regression on bounded
intervals and density estimation, we introduce corresponding scales of functional classes Θ
for which exact – up to constants – rates of convergence can be obtained, under the classical
minimax non-parametric framework, i.e. in the case when the classes Θ are known. We
proceed then by constructing adaptive estimators and prove them to be asymptotically
optimal, for the corresponding functional scales.

How well one can do at the boundary of a bounded observation interval depends, in
turn, on the chosen design. We analyze two classical designs on a bounded interval: the
equidistant and the Chebyshev designs. In both cases, the quality of estimation near
the boundary becomes worse than inside the interval. However, while in the case of the
equidistant design this affects the rate of convergence, no severe boundary losses occur in
the case of the Chebyshev design. Therefore, in studying adaptive estimation procedures
on a bounded interval, we restrict ourselves to the case of Chebyshev designs.

1.1 Brief history of adaptive estimation

The modern theory of adaptive methods of estimation was started by Pinsker and Efro-
movich in [1984]. They proved adaptivity up to constants for the problem of regression
in the white noise model, with respect to the L2-optimality criterion. Efromovich [1985]
provided similar results for density estimation.

Since then, several methods of adaptive estimation for different problems have been pro-
posed, primarily dealing with the L2-norms; see Golubev and Nussbaum [1992], Dohono
and Johnstone [1994], Birgé and Massart [1997]. Further literature on adaptive approach
and its applications include: Donoho, Johnstone, Kerkyacharian and Picard [1996], Gol-
ubev and Levit [1996], Goldenshluger and Nemirovski [1997], Tsybakov [1998], Golubev,
Lepski and Levit [2001], Cavalier [2001], Compte [2001].

Lepski [1990], [1991], [1992a], [1992b], was the first to address the problem of finding
adaptive rates of convergence in a broader context, including different norms. He showed
that for point-wise estimation on Hölder and Sobolev classes a loss of logarithmic factor
in the rate of convergence is unavoidable in the Gaussian white noise regression models.
He proposed a method of adaptive estimation achieving the optimal rates in the adaptive
setting which since then is commonly referred to as “Lepski’s method”.

Advancing these ideas still further, Lepski and Spokoiny [1997] elaborating on Yuditsky
[1997], proposed a refinement of the Lepski’s original idea, which for some Hölder classes,
made it possible to achieve adaptive rates, including the exact constants. A comprehensive
discussion of different approaches to non-parametric adaptive estimation and other related
work can be found in Lepski, Mammen and Spokoiny [1997].

It turns out that much more complete solutions can be obtained when the underlying
functional classes comprise entire, analytic or infinitely differentiable functions. Note that
such functional classes are just as good for modeling the real world as classes of finitely
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smooth functions, since, in both cases, such functional classes are everywhere dense among
all continuous functions. Corresponding classes of analytic functions were first introduced
in the statistical theory in Ibragimov and Has’minskii [1983] where optimal rates of con-
vergence were found in estimating analytic density functions.

Later, Golubev and Levit [1996] showed that the class of analytic functions is quite
unique, in the sense that not only optimal rates, but exact asymptotically minimax esti-
mators, even point-wisely, can be explicitly constructed for such classes. Asymptotically
efficient non-parametric regression for such classes was studied in Golubev, Levit and Tsy-
bakov [1996].

Lepski and Levit [1998] introduced larger functional scales of infinitely differentiable
functions in the white noise setting. They proposed asymptotically minimax estimators,
for all of the corresponding functional classes, and, moreover, solved the problem of adap-
tive estimation for them, by properly modifying the adaptive procedure of Lepski and
Spokoiny [1997], originally proposed for the finite smoothness functional classes. The
adaptive estimation procedure proposed in Lepski and Levit [1998] was proved there to
be asymptotically optimal, under most general assumptions. This paper was the primary
motivation for the present work which, for functional scales close to the classes of infinitely
differentiable functions they considered, carries their approach over in Chapters 2 and 3
to corresponding discrete Gaussian white noise models, and in Chapter 4 to the density
estimation problem.

Both types of models we study – discretized regression models and the density estima-
tion – can be approximated by a white noise model. This topic has been recently a subject
of thorough investigation; see Nussbaum [1996], Brown and Low [1996]. The existing re-
sults, however, are primarily concerned with finite smoothness classes and, to the best of
our knowledge, do not cover problems of adaptive estimation.

Our results can also be viewed from this perspective: although, strictly speaking, we do
not establish equivalence relations between the above models, we do, in essence, investigate
when procedures similar to those developed for the white noise model are also optimal for
other models mentioned above. Such results can be interpreted as a “weak” equivalence
between different models. They are useful from a practical point of view and serve as a
good indication of which full type equivalence results for such models one might expect in
the future.

Our study incorporates adaptive estimation for analytic functions observed on a bounded
interval. For the first time such classes have been introduced in the white noise model in
Ibragimov and Has’minskii [1984] where a point-wise asymptotically minimax estimator
was proposed based on Legendre polynomials. Here we study the same type of functions
as in Ibragimov and Has’minskii [1984] but in a more realistic discrete design model. This
leads us to the interesting problem of choosing designs which can enhance the quality of es-
timation at the end-points of the observation interval. The problem of adaptive estimation
for such designs is also studied.

In our last chapter we consider the problem of adaptive density estimation, for a scale
of functional classes of infinitely differentiable densities. Adaptive estimation of density
functions belonging to the scale of Sobolev classes was recently studied in Butucea [1999].
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The number of publications in the area of adaptive estimation is growing very fast
and there are many different approaches. Most of the references study just the optimal
adaptive rates of convergence. The optimal constants for pointwise estimation has been
made possible by introducing classes of infinitely differentiable functions, as in Lepski and
Levit [1998] and [1999]. The goal of this thesis is to bring this idea further in some other
classical statistical problems.

1.2 Scope of the thesis

1.2.1 Adaptive regression on the real line

In Chapter 2 we study non-parametric adaptive regression in a fixed design model in which
an unknown regression function f(x) can be observed on an equidistant grid of the whole
real line. More precisely, for a given bin-width h > 0, we consider the additive model of
observations given by

y` = f(`h) + ξ`, ` = 0,±1,±2, . . . (1.1)

where ξ` are independent centered Gaussian random variables N (0, σ2), with a given vari-
ance σ2 > 0. This model is important because it describes a real observation process.
Often in the statistical literature more advanced results are obtained in the white noise
model

dV (x) = f(x) dx+ ε dW (x), −∞ < x <∞, (1.2)

which is just an approximation to the model (1.1), with ε =
√
σ2h. Here V is the noisy ob-

servation of an unknown regression function f , ε is the resolving noise and W (x) represents
a standard Wiener process.

There exists a huge literature on the equivalence between these two models, cf. e.g. Brown
and Low [1996] and Nussbaum [1996], but this does not cover our main problem here –
adaptive non-parametric estimation. Our approach is greatly influenced by a recent paper,
Lepski and Levit [1998], which was a milestone in adaptive estimation of infinitely differ-
entiable functions, in the white noise model (1.2). Below we will explain main differences
between our approach and that of Lepski and Levit [1998].

Classes of functions are in general described by smoothness parameters. In this chapter
we shall study classes of functions defined in terms of positive parameters γ, β and r whose
interpretation will be explained below. We will study estimation of f in (1.1), under the
assumption that f belongs to the functional class A(γ, β, r) which is the collection of all
continuous functions such that

‖f‖2
γ,β,r :=

∫ ∞

−∞

γ

β2
e2|γt|r |F [f ](t)|2dt ≤ 1. (1.3)

Here F [f ] represents the Fourier transform of f . The collection of all such classes will
be called functional scale. Note that when the parameters are assumed known, we are
dealing with the problem of non-parametric estimation much studied recently, especially
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since the publications, Ibragimov and Has’miskii [1981], [1982], [1983], [1984], Stone [1982],
Ibragimov [2001]. The situation in which neither of these parameters is known a priori is
much more realistic and complex. A real progress in this problem which is usually referred
to as adaptive estimation, has been only achieved in the last decade, most notably since
the publication of Lepski [1990], [1991], [1992a], [1992b]. Further progress was achieved in
Lepski and Levit [1998], [1999].

For all γ, β, r, the class A(γ, β, r) is a class of infinitely differentiable functions, and each
of the parameters affects the smoothness – and the accuracy of the best non-parametric
estimators – in its own way. The parameter γ is some kind of ‘scale’ parameter: one can
verify that f(·) ∈ A(1, β, r) if and only if 1

γ
f( ·

γ
) ∈ A(γ, β, r). Therefore, of all parameters,

it effects the smoothness of f most dramatically. The bigger is γ, the smoother are the
functions of the class.

The parameter β can be interpreted as a ‘size’ parameter and represents the radius of
the corresponding L2-ellipsoid defined by (1.3). Note that f(·) ∈ A(γ, 1, r) if and only if
βf(·) ∈ A(γ, β, r). Therefore the bigger is β, the less smooth are the functions of the class.

Finally, r can be best described as a parameter responsible for the ‘type’ of smoothness.
It is well known that for r = 1 all functions in the class A(γ, β, r) admit bounded analytic
continuation into the strip {z = x + iy : |y| < γ} of the complex plane (Paley-Wiener
theorem), and therefore for all r > 1 the functions in A(γ, β, r) are entire functions (i.e.
functions admitting analytic continuation into the whole complex plane). For r < 1 these
functions are ‘only’ infinitely differentiable, and their smoothness increases together with r.

In the Gaussian white noise model Lepski and Levit [1998] studied adaptive estimation
for even broader classes of functions with rapidly vanishing Fourier transforms F [f ](t).
However, their main conclusions are readily interpretable in the special example of func-
tional classes A′(γ, γ, r) = {f continuous, |F [f ](t)| ≤ γ exp−(γt)r} which are quite similar
to our classes A(γ, γ, r). Let us remind some of these conclusions here, as a starting point
for outlining our main results. For simplicity, we will assume, after Lepski and Levit [1998],
that 0 < r− < r < r+ <∞.

In the adaptive estimation, when the parameters such as γ, β, r are unknown, one is
looking for statistical procedures which can ‘adapt’ to the largest possible scope of these
parameters. As the smoothness of the underlying functions is most notably affected by
the ‘scale’ parameter γ, we will mainly refer to the ensuing uncertainty in the value of
this parameter. More specifically, the accuracy of the best methods of estimation will
be determined by the ‘effective noise’ ε2/γ, where ε is the average noise intensity in the
observation model (1.1).

To realize the whole scope of the problem, it is useful to look at the extreme cases. On
one hand, the situation could be so ‘bad’, that no consistent estimation of the unknown
function would be possible at all, even if the parameter γ was completely known. On
an intuitive level, it is quite clear that such a situation occurs when ε2/γ 6→ 0. We can
exclude this case from consideration on the ground that “nothing can be done” in such
an extreme situation. Thus one can restrict attention to the case γ � ε2. The situation
deteriorates further in the adaptive setting, due to the uncertainty in parameter γ. Ac-
cording to Lepski and Levit [1998], adaptive methods can only work efficiently if γ � ε2−τ ,
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for some 0 < τ < 2. On the other hand, if γ becomes too big, the underlying functions
become unrealistically smooth and can be estimated with accuracy O(ε), i.e. with the
same accuracy which could be achieved if all underlying functions were either constant,
or just included a few unknown parameters. According to Lepski and Levit [1998], such
an off-beat situation occurs only when γ becomes of order log1/r ε−1. Therefore one can
restrict attention to those γ for which ε2−τ � γ � log1/r ε−1, which, in a sense, is the
largest possible range for which adaptive procedure can exist. For all γ in this range, an
efficient adaptive non-parametric procedure has been proposed in Lepski and Levit [1998].
Note that this discussion led us, by the very nature of the statistical problem of adaptation,
to a situation in which the unknown parameter of the scale γ belonged to a region Γ = Γε

depending on the index ε of the model. In other words, our adaptive setting leads us to a
natural assumption that the unknown scale parameter γ may itself depend on the index ε.

Now, in the model we have just discussed the essential role was played by the noise
intensity ε and the scale parameter γ. Our model of discrete regression is more realistic and
also contains more parameters: σ, h, γ, β, r. Since the white noise model (1.2) is known to
approximate the discrete regression model (1.1), one can expect some similarity between the
ensuing results, namely that similar procedure could lead to an efficient adaptive method
of estimation in the discrete regression. Without aiming at precise definitions, one could
speak in this case of a “weak” equivalence between the white noise and discrete time
adaptive regression schemes.

However, just as the relation between the two parameters involved played an important
role in the above discussion, a more complicated relation between all involved parameters
effect the quality of the optimal adaptive procedure in the discrete models. In fact, such
relations become more complex in the discrete case, not only because of additional param-
eters, all of which may be unknown and, therefore vary together with ε, but also due to the
limitations to which the continuous time model (1.2) captures the underlying properties of
the discrete model (1.1). In particular, the obvious naive recipe of just replacing ε in all
the above restrictions by

√
σ2h does not provide a correct answer.

In Sect. 2.4 we study an adaptive procedure closely related to the one proposed in
Lepski and Levit [1998]. Our aim is to describe precisely the conditions under which this
procedure is asymptotically optimal. Using the above terminology, one could say that
these assumptions describe the parameter limitations under which both regression models:
the discrete model (1.1) and the continuous time model, are weakly equivalent.

In Section 2.3, the problem of asymptotic minimax regression is studied first under
the assumption that the class of functions is completely determined by a fixed vector of
parameters (γ, β, r), these parameters being independent of the index of the model h. At
the end of this section we give the first steps towards the adaptive framework by allowing
the parameters of the class depend on the index of the model. In Section 2.4 we consider
the functional scales which are collections of the form

{

A(γ, β, r)
∣

∣ (γ, β, r) ∈ K ⊂ R
3
+

}

,

where K is the scale of the parameters. We define the optimality criteria based on the
classification of the scales in pseudo-parametric (PP) and non-parametric (NP) scales. We
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then prove optimality of the adaptive procedure. Compared to a given class A(γ, β, r) an
additional logarithmic factor in the exact rate of convergence has to be paid as a price for
the uncertainty about the actual class the regression function belongs to, see Theorem 2.3.

1.2.2 Adaptive regression on a bounded interval

In Chapter 3 we study adaptive non-parametric regression models with a fixed design in the
case when the unknown regression function f is analytic in a vicinity V of the observation
interval [−1, 1] of the complex plane. The smoothness of f is then characterized by the size
of V and maxV |f |. A more concise description of such dependence – and more accurate
results – become feasible when V is the region Eγ with boundary

∂Eγ = {z : z = cosh γ cosφ+ i sinh γ sinφ, 0 ≤ φ ≤ 2π}.

This boundary set is the ellipse with foci at the end points of the interval [−1, 1] and the
sum of its semi-axes equal to exp γ. The family of such elliptic areas is natural in the sense
that ∩Eγ = [−1, 1] and ∪Eγ = C. Note, without loss of generality we have assumed that
the regression interval is [−1, 1], but an obvious generalization can be made to any real
interval [a, b].

We will denote by A(γ,M) the set of functions which are analytic and bounded in Eγ

with |f(z)| ≤M in that region. For functions f ∈ A(γ,M) observed in the continuous-time
Gaussian white noise on the interval [−1, 1], Ibragimov and Has’minskii [1982] have demon-
strated point-wise asymptotically minimax estimators based on Legendre polynomials.

We consider the problem of discrete regression in the model

yk = f(xn
k) + ξk, k = 1, . . . , n, (1.4)

where the points xn
k form the design knots and the ξk are independent identically distributed

Gaussian random variables, with zero mean and given variance σ2. Given the observations
y = (y1, y2, . . . , yn), the function f ∈ A(γ,M) can be estimated by the projection-type
estimators

f̂n,N(x,y) =

N−1
∑

r=0

ĉrQr(x), ĉr =
1

n

n
∑

k=1

ykQr(x
n
k),

where Qr are polynomials orthonormal over the design points xn
k . This method is easier to

implement and to study. For instance, if we consider the design of equally spaced knots

xn
k =

2k − n− 1

n
, k = 1, . . . , n, (1.5)

one could use the so called Chebyshev discrete polynomials Cr(x), r = 0, 1, ..., (cf. Bateman
[1953], Sect. 10.23, p. 223). However, for this design we will find it more convenient to use
a family pr(x), r = 0, 1, . . ., of normalized Legendre polynomials which are asymptotically
equivalent to Cr (cf. Bateman, Sect. 10.23, eq. 7). In particular, the normalized Legendre
polynomials pr(x) are asymptotically orthonormal over the design knots (1.5). Thus we
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shall refer to these knots as the Legendre knots or equidistant knots, and to the set of these
knots as the Legendre design or equidistant design.

As intuition suggests, when we use the equidistant design to estimate the unknown
regression function at points which are close to the border of the interval, less information
is gathered than when we are interested in estimation inside the interval. Although it
might seem that the number of observations available at the end-points is just halved, we
shall see that in fact the accuracy of estimation near the border becomes worse by a factor
of order

√
logn, compared to the accuracy obtained inside the interval.

This situation can be improved by using another – non-uniform – design which will
balance the distribution of the design points, in favor of increasing the accuracy of the
estimation at the end-points. A special classical design having this property is specified by
the knots

xn
k = cos

(2k − 1)π

2n
, k = 1, . . . , n, (1.6)

which we will conveniently call the Chebyshev knots and the corresponding design the
Chebyshev design. Remarkably, the classical orthornormal Chebyshev polynomials tr(x),
r = 0, 1, ..., are also orthonormal over the Chebyshev design. As we shall see later, with
this polynomials the same rate of convergence is achieved inside the interval, whilst at the
end-points the rate is only a factor 2 slower. 1

Given that for the equidistant design we use the Legendre polynomials and for the
Chebyshev design we use the Chebyshev polynomials, one can question whether the differ-
ence in rates of convergence is due to the particular method of estimation we are studying
or indeed is property of the design itself. To clarify this, we will demonstrate that in each
of the corresponding designs, our estimators are asymptotically optimal among all possible
estimators, at every point of the interval [−1, 1]. This leads us to the conclusion that the
observed difference in the rates of convergence near the end-points is a direct consequence
of the use of the equidistant design and that this problem does not present itself in the
case of the Chebyshev design.

Several remarkable properties of the functions pr(x) and tr(x) make this approach
attractive for practical purposes. The normalized Legendre polynomials pr(x) are asymp-
totically orthonormal over the equally spaced knots while the normalized Chebyshev poly-
nomials tr(x) are orthonormal over the Chebyshev knots. This makes the evaluation of
the projection polynomials straightforward. At the same time the orthonormality property
allows an easy evaluation of the variance of the corresponding regression estimators in the
statistical framework (1.4). In the case of known classes A(γ,M), the variance can be
easily balanced against the systematic error, thus determining the optimal number N of
polynomials in use.

A property that will play a major role in the application of Legendre or Chebyshev

1Motivated by this study B. Levit (2001) introduced a general theory of Optimal Designs in Non-
parametric Regression.
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design for estimation is the behavior of the functions

1

N

N−1
∑

r=0

t2r(x) and
1

N

N−1
∑

r=0

p2
r(x)

both inside the interval [−1, 1] and near the end-points (see Lemmas 3.1 and 3.2). These
terms appear as variances of the corresponding estimators and to a great extent are im-
portant in shaping the results (see Theorems 3.1 and 3.2).

The structure of Chapter 3 is as follows. In Section 3.1 we introduce the functional
classes A(γ,M) and discuss the Legendre and Chebyshev polynomials. In Section 3.2
we then describe the asymptotically minimax estimators f̂n, n → ∞, are described in
the case when the unknown regression function f belongs to a given fixed class A(γ,M),
using Legendre and Chebyshev polynomials for corresponding designs. In both cases the
polynomial estimates we consider are shown to be point-wise asymptotically efficient, for
their corresponding designs. In Section 3.3 we introduce functional scales and construct
asymptotically optimal adaptive estimators, under the assumption that the parameters γ
and M are unknown.

1.2.3 Adaptive density estimation

In chapter 4 we study adaptive estimation of an unknown probability density function f ,
based on the sample of n independent identically distributed observations X1, . . . , Xn, with
common density f . It is assumed that f belongs to the scale of functional classes A(γ, β, r)
which was introduced before.

The study of asymptotically minimax estimators for the functional classes A(γ, β, r) is
of recent origin. Golubev and Levit [1996] found exact asymptotics for the minimax point-
wise estimation of an unknown density belonging to a class of functions analytic in the
strip {z = x+ iy : |y| < γ} of the complex plane (this corresponds to our class A(γ, β, 1)).
They described asymptotically unbiased and asymptotically efficient estimators with a rate
of convergence only slightly worse than

√
n.

Schipper [1996] studied asymptotically minimax estimators for this same class of den-
sities, under the L2-norm. Belitser [1997] was successful in studying more general classes
A(γ, β, r), 0 < r ≤ 1, in a more difficult setting of density estimation under random
censorship.

In general, the choice of the estimator depends on parameters γ, β, r regulating the
degree of smoothness, which however are rarely known in practice. The use of adaptive
methods of estimation at this stage appears to be an unavoidable evil.

The main goal of Chapter 4 is to generalize the approach proposed for the Gaussian
white noise model in Lepski and Levit [1998], to estimating the unknown density function
f ∈ A(γ, β, r) when the vector of parameters (γ, β, r) of the scale vary in a subset K ⊂
R3

+. Adaptive estimation of a density function belonging to the scale of Sobolev classes
has been recently studied in Butucea [1999] who used methods more closely related to
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Tsybakov [1998]. Although there are some similarities between our study of the functional
scales A(γ, β, r) and Butucea’s work, the technical tools used are quite different.

In general, the problem of density estimation exhibits some similarities and, at the same
time, a few important differences when compared to the Gaussian white noise regression
model

dV (x) = f(x) dx+
1√
n
dW (x), −∞ < x <∞, (1.7)

where V is the noisy observation of an unknown regression function f and W (x) the Wiener
process. These differences affect both the sample study of a chosen estimation procedure,
and the proof of its optimality; that is, they affect both, deriving upper and lower bounds
for the minimax risk. To demonstrate the difference of the first kind, let us assume that a
kernel estimator is used to estimate f(x) in both problems:

fn(x) =
1

n

n
∑

i=1

k(x−Xi)

in the density estimation problem, and

f̄n(x) =

∫

k(x− y) dV (y)

in the model (1.7). Assuming, as usual, that k is a δ-type kernel function, one obtains the
familiar variance-bias decomposition for the mean square error

E
(

fn(x) − f(x)
)2

=
1

n
Vark(x−X1) +

(

Ek(x−X1) − f(x)
)2 ≈

1

n

∫

k2(x− y)f(y) dy+

(
∫

k(x− y)f(y) dy− f(x)

)2

≈

f(x)

n

∫

k2(y) dy +

(∫

k(x− y)f(y) dy− f(x)

)2

. (1.8)

Similarly, using the well-known Itô isometry formula, one obtains

E
(

f̄n(x) − f(x)
)2

= E

(
∫

k(x− y)f(y) dy +
1√
n

∫

k(x− y) dW (y)− f(x)

)2

=

1

n
E

(
∫

k(x− y) dW (y)

)2

+

(
∫

k(x− y)f(y) dy− f(x)

)2

=

1

n

∫

k2(y) dy +

(
∫

k(x− y)f(y) dy− f(x)

)2

. (1.9)

Next, for our classes A(γ, β, r) the kernel k can be chosen in such a way, that the bias
becomes negligible when compared to the variance:

E
(

fn(x) − f(x)
)2 ∼ f(x)

n

∫

k2(y) dy, (1.10)
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and

E
(

f̄n(x) − f(x)
)2 ∼ 1

n

∫

k2(y) dy. (1.11)

Therefore, the mean-square errors in both problems are quite similar, and the effect of the
additional factor f(x) in (1.8) is not significant when the estimated density belongs to a
known class A(γ, β, r), (cf. Section 4.1), since for such classes the optimal choice of the
kernel k, minimizing (1.8), does not depend on the factor f(x), up to a first order.

The situation changes dramatically in the adaptive setting. There, a choice has to be
made between estimators, say fn1 and fn2, related to different kernels k1 and k2 which
correspond to different possible classes A(γ, β, r). Then we have similarly to (1.8)-(1.9):

E
(

fn1(x)− fn2(x)
)2 ≈ f(x)

n

∫

(k1(y)− k2(y))
2 dy+

(
∫

(k1(x− y) − k2(x− y))f(y) dy

)2

,

E
(

f̄n1(x) − f̄n2(x)
)2 ≈ 1

n

∫

(k1(y) − k2(y))
2 dy +

(
∫

(k1(x− y) − k2(x− y))f(y) dy

)2

.

Here again, while the last two terms are exactly the same, in the density estimation problem
and in the white noise model, an additional complication appears in the first term for the
density case. However, in order to make an accurate choice between the two estimators fn1

and fn2, a preliminary estimator of the factor f(x) appearing in the density case, becomes
important.

This complication can be solved in at least two different ways. One could estimate

E
(

fn1(x) − fn2(x)
)2

using the sample estimator

1

n

n
∑

i=1

(

k1(x−Xi) − k2(x−Xi)
)2
. (1.12)

Another possibility is to use, as an estimator of f(x), one of the two estimators fn1 and fn2

themselves. It turns out that this second approach is easier to analyze although in some
cases (1.12) may be better in practical implementations. In Chapter 4 we use this approach
and develop the techniques necessary for analyzing the corresponding adaptive estimator.
Similar approach, using a preliminary estimator, has been used in Butucea [1999]. Note
that this complication, not present in Lepski and Levit’s analysis of the white noise model,
puts some additional restrictions on the density estimation model and on the final results.

Since the asymptotic variance in the density estimation problem depends on the un-
known density f(x), cf. (1.10), in such problems it is more accurate to use the concept
of locally asymptotically minimax estimators. For comparison, since in the white noise
model the asymptotic variance does not depend on f(x), cf. (1.11), the use of globally
asymptotically minimax estimators in such models is more justifiable; cf. Lepski and Levit.
The method of proving locally asymptotically minimax lower bounds in non-parametric
problems, was first proposed by B. Levit as early as 1974, Levit [1974]. The idea, which
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since then was frequently used in non-parametric estimation, is to consider for an arbitrary
density f0 ∈ A(γ, β, r), an fixed x, a parametric sub-family

fθ(y) = f0(y)

(

1 + θ
k(x− y) − Ef0 k(x−X1)
√

Varf0 k(x−X1)

)

.

Here k is the same δ-type kernel function, as has been used in constructing the above
estimators.

To obtain a lower bound for estimating f(x), using this approach, one has to establish,
first, that the resulting family is locally asymptotically normal, i.e. it behaves asymptot-
ically similarly to a normal density with a shift parameter θ (cf. our Definition 4.1 below
on p. 90), and second, that this parametric family belongs to the same class A(γ, β, r), at
least for all sufficiently small θ. The first of these requirements is rather standard (cf. our
Lemma 4.5 on p. 90).

The question of whether fθ belongs to A(γ, β, r), however, is more complicated, since,
in general, the properties f0 ∈ A(γ, β, r) and k ∈ A(γ, β, r) do not imply that f0k ∈
A(γ, β, r), although as Belitser [1997] has demonstrated this is the case, under the ad-
ditional assumption r ≤ 1. In Section 4.3 we propose the following solution. Let f ∈
A(γ, β, r) and let V be an arbitrary vicinity of f in the class A(γ, β, r), described by a
corresponding norm ‖f‖γ,β,r. First of all, we demonstrate that in any such vicinity V,
there exists a density f0 which belongs to the class of the so called entire functions of
an exponential type; equivalently, f0 has a finitely supported Fourier transform F [f0](t).
Now, one can use the density function f0 instead of f to construct the family fθ. It can
be proved then that the resulting family fθ ∈ A(γ, β, r) (see Lemma 4.5), leading to the
required lower bound.

In Sections 4.1–4.3 we recall the model and collect the minimax results for known
functional classes. In Section 4.4 we introduce the adaptive framework, construct the
adaptive estimator, and prove its asymptotic optimality.



Chapter 2

Adaptive regression on the real line

In this chapter we discuss a non-parametric regression model in which the function f(x) is
observed under additive Gaussian perturbations, on an equidistant grid of the whole real
line. This observation model is a discrete version of the white Gaussian noise model; see
e.g. Lepski and Levit [1998].

The unknown function f(x) is assumed to be infinitely differentiable. More precisely,
f(x) is assumed to belong to some non-parametric functional class A(γ, β, r), known
a priori to belong to a family of such classes, parametrized by positive parameters γ, β, r.
Such assumption provides a natural way of covering different types of smoothness, when one
considers different values of the parameters involved. The functions of the class A(γ, β, r)
are infinitely differentiable for all values of the parameter r. They admit, for r = 1, an
analytic continuation into the strip of the complex plane of size 2γ symmetric around the
real line, and are entire functions for r > 1. In practice the parameters of the class are un-
known, thus leading to an interesting and important problem of finding adaptive methods
of estimation, independent of the prior knowledge of the parameters γ, β, r.

Such functional classes were first introduced (for r = 1) in statistics in Ibragimov
and Has’minskii [1983], where optimal rates of convergence were found in estimating an
unknown density function f ∈ A(γ, β, 1). Later Golubev and Levit [1996] showed (again for
r = 1) that these non-parametric classes are quite unique, in the sense that not only optimal
rates, but exact asymptotically minimax estimators, even point-wisely, can be explicitly
constructed for such classes. Asymptotically efficient non-parametric regression for the
classes A(γ, β, 1) was studied in Golubev, Levit and Tsybakov [1996]. Here we consider
more general classes A(γ, β, r), use kernel-type estimators, different from Golubev, Levit
and Tsybakov [1996] and, more significantly, consider the problem of adaptive estimation.

In the Gaussian white noise model Lepski and Levit [1998] considered still more gen-
eral classes of infinitely differentiable functions, with rapidly vanishing Fourier transforms.
However, the restriction on the Fourier transform of f in their paper was based on the
L∞-, rather than on the L2-norm, as in our case. They have not only proposed asymptot-
ically minimax estimators for all of the corresponding classes, but have also constructed
asymptotically optimal adaptive estimators for the whole scale of such classes.

Since in most applications the information about an unknown function is typically

13
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conveyed by discrete measurements, our model can be viewed as a more realistic approxi-
mation, than the classical white noise model. Therefore our model contains an additional
“discretization” parameter h – the bin-width.

Our goal is to study, to what degree the method of the adaptive procedure proposed
in Lepski and Levit [1998] works in the discrete regression setting. More precisely, we are
seeking to find natural conditions under which our equidistant regression model is weakly
equivalent to the classical white noise model, in the sense that the asymptotically optimal
adaptive estimators proposed for the later model, are still asymptotically optimal in the
equidistant non-parametric regression models.

In Section 2.1 we introduce the model. In Section 2.2 we prove some auxiliary lemmas.
In Section 2.3 we study the problem of asymptotic minimax regression, both for fixed
classes A(γ, β, r) and in the case of parameters which may depend on the level of the noise
σ2 or/and the discretization parameter h. Finally, in Section 2.4 we consider the adaptive
case in which the unknown function f may belong to the whole functional scale of classes
A(γ, β, r) and prove asymptotic optimality of the proposed adaptive estimator.

2.1 The model

For positive γ, β and r we study the problem of estimating a regression function in the
class A(γ, β, r).

Definition 2.1 Let γ, β, r > 0 be given. We denote by A(γ, β, r) the class of continuous
functions f : R → R, whose Fourier transform F [f ] satisfy

‖f‖γ,β,r :=

∫

γ

β2
e2|γt|r

∣

∣F [f ](t)
∣

∣

2
dt ≤ 1. (2.1)

In this study we use the following definition of the Fourier transform and its inverse,

F [f ](t) =

∫

eitxf(x) dx. (2.2)

Note that the Fourier inversion formula

f(x) =
1

2π

∫

e−itxF [f ](t) dt (2.3)

certainly holds under assumption (2.1). It is easy to see that for all γ, β, r > 0, functions
in A(γ, β, r) are infinitely differentiable.

In the definition of the classes A(γ, β, r) each parameter plays a certain role. For
instance, the parameter γ plays role of a scale parameter, since it is easy to see that

f(·) ∈ A(1, β, r) ⇐⇒ 1
γ
f
(

·
γ

)

∈ A(γ, β, r).

Thus, γ affects the smoothness in a most stringent way. Note that the bigger is γ, the
smoother are the functions of the class. The parameter β can be interpreted as the radius
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of the corresponding L2-ellipsoid defined by (2.1). Finally it is known that for r < 1
the functions in the class A(γ, β, r) are infinitely differentiable, while for r = 1 they
admit an analytic continuation in the strip of the complex plane {z = x + iy : |y| < γ}.
Consequently, for r > 1 the functions of this class are entire functions, i.e. they admit an
analytic continuation into the whole complex plane. Similar classes of functions with r = 1
have been considered in Ibragimov and Has’minskii [1981] and Golubev and Levit [1996].
Another property, namely that the functions of A(γ, β, r) and their derivatives are globally
bounded in terms of the parameters of the class can be found in Ch. 4, Lemma 4.1 below.

Now, let us consider the following observation model

y` = f(`h) + ξ`, ` = 0,±1,±2, . . . , (2.4)

where ξ` are i.i.d. Gaussian random variables, N (0, σ2), σ2 > 0. We assume that the
function f belongs to the family A(γ, β, r), for some γ, β, r > 0.

Our purpose is to estimate the unknown function f(x) based on the vector of obser-
vations y = (. . . , y−2, y−1, y0, y1, y2, . . .). We will choose our optimal estimator from the
family of kernel type estimators

f̂h,s(x,y) = h
∞
∑

`=−∞

ks(x− `h) y` (2.5)

where ks, s ≥ 0, is the so-called sinc-function

ks(x) =
sin sx

πx
, (2.6)

and ks(0) = s
π
. This kernel has the property

F [ks](t) = 1 [−s,s](t) (2.7)

and therefore, according to the convolution theorem,

F [f ∗ ks](t) = 1 [−s,s](t)F [f ](t), (2.8)

where * represents the convolution operator.
The kernel ks is just one of many possible, but its very tractable properties make it

an attractive tool: it helps significantly in the search of the most general possible results
and clarifies the underlying ideas. For practical purposes some other kernels, such as de
la Vallée Poussin kernel (cf. Nikol’skĭı [1975], p. 301), may be more relevant and typically
would work better.

The parameter s is called the bandwidth. As we shall see in Sect. 2.3, for any fixed class
there exists an optimum bandwidth s. The optimum bandwidth will depend on parameters
γ, β, r, σ as well as the index of the model h, called the bin-width, which in our asymptotic
study will tend to zero.

Denote by f̃h(x,y) an arbitrary estimator of f(x) based on the observations y. To
shorten the notation we will often write f̃h(x) instead of f̃h(x,y). Let Pf be the distribution
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of the vector y and let Ef and Varf denote the expectation and the variance with respect
to this measure. When there is no possibility of confusion we will simply write P, E and
Var respectively.

Our results in this chapter will refer to the following class of loss functions. Let W be
the class of loss functions w(x), x ∈ R, such that

w(x) = w(−x),

w(x) ≥ w(y) for |x| ≥ |y|, x, y ∈ R,

and for some 0 < η < 1
2

∫

e−ηx2

w(x) dx <∞.

With an appropriate normalizing factor σh to be defined shortly, and w ∈ W, we will
consider the maximum risk, over a fixed functional class A(γ, β, r), given by

sup
f∈A(γ,β,r)

Ef w
(

σ−1
h

(

f̃h(x,y) − f(x)
)

)

as a global measure of the error of the estimator f̃h over the whole class A(γ, β, r). When
the classes A(γ, β, r) are considered fixed, our main goal is to find an estimator such that
the corresponding maximum risk is as small as possible, i.e. achieves (asymptotically) the
minimax risk

inf
f̃h

sup
f∈A(γ,β,r)

Ef w
(

σ−1
h

(

f̃h(x,y) − f(x)
)

)

where f̃h is taken from the class of all possible estimators.

2.2 Auxiliary results

In this section we present, for the reader’s convenience, two auxiliary results which will
be used in the subsequent sections. The aim of the first lemma is to approximate sum-
mation formulas by integrals, with a good approximation error in the case of very smooth
integrands. This result is a version of the celebrated Poisson summation formula. It
has been used in a similar situation in Golubev, Levit and Tsybakov [1996]. Below
A(γ, β, r), γ, β, r > 0 are the functional classes of infinitely differentiable functions defined
by (2.1) and ks(x) is the kernel (2.6).

Lemma 2.1 The following properties hold:

(a) Let f, g be continuous functions in L2(R) such that F [f ],F [g] ∈ L1(R), then
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h
∞
∑

`=−∞

g(x− `h)f(`h− y) =
1

2π

∫

e−it(x−y) F [g](t)F [f ](t) dt +

1

2π

∑

6̀=0

ei
2π`
h

y

∫

e−it(x−y) F [g](t)F [f ]

(

t+
2π`

h

)

dt

=

∫ ∞

−∞

g(x− z)f(z − y) dz +

1

2π

∑

6̀=0

ei
2π`
h

y

∫

e−it(x−y) F [g](t)F [f ](t+
2π`

h
) dt.

(b) For arbitrary numbers s1, s2 (0 ≤ s1 ≤ s2) denote ∆(x) = ks2(x) − ks1(x).
2 Then,

uniformly in γ, β, r, si ≥ 0, i = 1, 2, and f ∈ A(γ, β, r) as h→ 0

h

∞
∑

`=−∞

∆(x− `h)f(`h) =
1

2π

∫

e−itx F [∆](t)F [f ](t) dt+

O
(

e−(2π γ
h)

r
/cr

)

(∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2

,

where cr = max(1, 2r−1).

(c) Let s1, s2 and ∆(x) be as before. Then, uniformly in s1, s2, for h→ 0,

h

∞
∑

`=−∞

∆2(x− `h) =
s2 − s1

π

(

1 +Oh(1) h(s2 − s1)
)

.

Proof. (a) The proof is based on the formula

∞
∑

`=−∞

e2πi `x =

∞
∑

`=−∞

δ(x− `), (2.9)

known in the theory of distributions (cf. e.g. Antonsik et al. [1973], Ch. 9.6). Using the
Fourier inversion formula, the distributional formula (2.9) and with some algebra, one
obtains

h

∞
∑

`=−∞

g(x− `h)f(`h− y) =
h

(2π)2

∞
∑

`=−∞

∫

e−it(x−`h) F [g](t) dt

∫

e−is(`h−y)F [f ](s) ds

2Notice that if we take s1 = 0 and s2 = s then ∆(x) = ks(x).



18 CHAPTER 2. ADAPTIVE REGRESSION ON THE REAL LINE

=
h

(2π)2

∫ ∫

e−itx F [g](t) eisyF [f ](s)

∞
∑

`=−∞

e−i(s−t)`h dt ds

=
h

(2π)2

∞
∑

`=−∞

∫ ∫

e−itxF [g](t) eisyF [f ](s) δ

(

h(s− t)

2π
− `

)

dt ds

=
1

2π

∞
∑

`=−∞

∫

e−itxF [g](t)

∫

eisyF [f ](s) δ

(

s− t− 2π`

h

)

ds dt

=
1

2π

∞
∑

`=−∞

∫

e−itxF [g](t) ei(t+
2π`
h

)yF [f ]

(

t+
2π`

h

)

dt

=
1

2π

∫

e−it(x−y) F [g](t)F [f ](t) dt

+
1

2π

∑

6̀=0

ei
2π`
h

y

∫

e−it(x−y) F [g](t)F [f ]

(

t+
2π`

h

)

dt

=

∫ ∞

−∞

g(x− z)f(z − y) dz

+
1

2π

∑

6̀=0

ei
2π`
h

y

∫

e−it(x−y) F [g](t)F [f ]

(

t+
2π`

h

)

dt.

(b) If f ∈ A(γ, β, r) then f belongs to L2(R) according to the Parseval’s formula. Also,
F [f ] ∈ L1(R) according to (2.1) and the Cauchy-Schwartz inequality. Thus we can apply
the previous result in (a), using g = ∆ and y = 0. Notice that F [∆](t) = 1(s1,s2](|t|). Ap-
plying the Fourier inversion formula, the Cauchy-Schwartz inequality and the cr-inequality,
we obtain after a few transformations

∣

∣

∣

∣

∣

h

∞
∑

`=−∞

∆(x− `h)f(`h) − 1

2π

∫

e−itx F [∆](t)F [f ](t) dt

∣

∣

∣

∣

∣

≤

≤ 1

2π

∑

6̀=0

∣

∣

∣

∣

∫

e−itx F [∆](t)F [f ](t+
2π`

h
) dt

∣

∣

∣

∣

≤ 1

2π

(
∫

γ

β2
e2|γt|r

∣

∣F [f ](t)
∣

∣

2
dt

)1/2
∑

6̀=0

(
∫

∣

∣F [∆](t)
∣

∣

2 β2

γ
e−2|γ (t+ 2π`

h )|rdt

)1/2
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≤ 1

2π

∑

6̀=0

(
∫

1(s1,s2](|t|)
β2

γ
e2|γt|re−2| 2π`γ

h
|r/crdt

)1/2

≤ 1

2π

∑

6̀=0

e−| 2π`γ
h

|r/cr

(

2

∫

1(s1,s2](t)
β2

γ
e2(γt)r

dt

)1/2

=
1

π

(

2

∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2 ∞
∑

`=1

e−(2π` γ
h
)r/cr

≤ 1

π

(

2

∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2 (

e−(2π γ
h
)r/cr +

∫ ∞

1

e−(2π γ
h

x)r/crdx

)

= O
(

e−(2π γ
h
)r/cr

)

(
∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2

, (h→ 0),

where the last asymptotic can be easily derived by partial integration (cf. Lemma 2.2,
eq. (2.10)).

(c) Applying (a) and taking f = g = ∆ and x = y, we see that

h

∞
∑

`=−∞

∆2(x− `h) = h

∞
∑

`=−∞

∆(x− `h) ∆(`h− x)

=
1

2π

∫

(

F [∆](t)
)2
dt+

1

2π

∑

6̀=0

ei 2π`
h

x

∫

F [∆](t)F [∆]

(

t+
2π`

h

)

dt.

Therefore
∣

∣

∣

∣

∣

h
∞
∑

`=−∞

∆2(x− `h) − sj − si

π

∣

∣

∣

∣

∣

≤ 1

2π

∑

6̀=0

∫

F [∆](t)F [∆]

(

t +
2π`

h

)

dt

≤ 1

π

∞
∑

`=1

∫

1(s1,s2](|t|)1(s1,s2]

(

∣

∣

∣
t+

2π`

h

∣

∣

∣

)

dt

≤ 5h(s2 − s1)
2

2π2
= Oh(1) h(s2 − s1)

2,

which completes the proof of the lemma. 2

The following elementary properties will be used below. They will help in bounding
the bias and the approximation errors.
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Lemma 2.2 For any positive γ and r the following inequality holds

∫ ∞

s

e−2(γt)r

dt ≤ s e−2(γs)r

r(γs)r
(2.10)

for all s > t0 where t0 satisfies r(γt0)
r = 1 and

∫ s

0

e2(γt)r

dt =
s e2(γs)r

2r(γs)r
(1 + o(1)) (2.11)

uniformly in r− < r < r+ for γs→ ∞, where r−, r+ > 0 are arbitrary fixed numbers.

For the first inequality see e.g. Lepski and Levit [1998], eqs. (2.8), (2.10). The second
property can be easily proven by partial integration.

2.3 Minimax regression in A(γ, β, r)

2.3.1 Optimality in the case of fixed classes

The first result we present in this section is obtained in the classical framework, i.e. in a
situation where the function f(x) although unknown belongs to a given class. In other
words, the parameter α = (γ, β, r) of the class is known and fixed. Denote for shortness
A(α) = A(γ, β, r). We will prove that asymptotically minimax estimators can be found
among kernel estimators using a specified bandwidth and we will also calculate to a constant
their maximal asymptotic risk, for a variety of loss functions.

Theorem 2.1 Let α > 0 and ω ∈ W. Then for any x ∈ R, the kernel estimator f̂h = f̂h,sh
,

in (2.5) with the bandwidth

sh = sh(α) =
1

γ

(

1

2
log

β2

π γσ2h

)1/r

, (2.12)

satisfies

lim
h→0

sup
f∈A(α)

Ef w

(√

π

σ2hsh

(

f̂h(x) − f(x)
)

)

=

lim
h→0

inf
f̃h

sup
f∈A(α)

Ef w

(√

π

σ2hsh

(

f̃h(x) − f(x)
)

)

= Ew(ξ)

where f̃h is taken from the class of all possible estimators of f and ξ ∼ N (0, 1).
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Proof: Upper bound for the risk. Let us first study the sample properties of the
family of estimators we use. According to the model for the observations (2.4) and the
formula for the estimator (2.5) one can split the error term as follows,

f̂h,s(x) − f(x) =
(

h

∞
∑

`=−∞

ks(x− `h)f(`h) − f(x)
)

+
(

h

∞
∑

`=−∞

ks(x− `h)ξ`

)

= b(f, x, s, h) + v(σ, x, s, h).

For simplicity we shall write below bs = b(f, x, s, h), vs = v(σ, x, s, h). The mean square
error can be decomposed as

E
(

f̂h,s(x) − f(x)
)2

= b2s + Var vs, (2.13)

where bs is the bias and vs is a normally distributed zero mean stochastic term.
First, let us consider the bias. In order to apply Lemma 2.1 we take s1 = 0 and s2 = s.

In this case ∆ = ks. Now, applying Lemma 2.1(b) and the Fourier inversion formula for
f(x) we see that uniformly in f ∈ A(α)

bs =
1

2π

∫

e−itx(F [ks](t) − 1)F [f ](t)dt+O
(

e−(2π γ
h
)r/cr

)

(
∫ s

0

β2

γ
e2(γt)r

dt

)1/2

,

for h → 0. Furthermore, applying Cauchy-Schwartz inequality, property (2.7), and defini-
tion of the class A(γ, β, r) we get

b2s ≤ 2

∣

∣

∣

∣

1

2π

∫

e−itx(F [ks](t) − 1)F [f ](t) dt

∣

∣

∣

∣

2

+O
(

e−2(2π γ
h
)r/cr

)

∫ s

0

β2

γ
e2(γt)r

dt

≤ 1

2π2

∫

|t|>s

β2

γ
e−2|γt|rdt +O

(

e−2(2π γ
h
)r/cr

)

∫ s

0

β2

γ
e2(γt)r

dt

≤ 1

π2

∫ ∞

s

β2

γ
e−2(γt)r

dt+O
(

e−2(2π γ
h
)r/cr

)

∫ s

0

β2

γ
e2(γt)r

dt. (2.14)

Second, let us consider the variance term. From Lemma 2.1(c), with s1 = 0 and s2 = s,
we see that

Var vs = σ2h2
∞
∑

`=−∞

k2
s(x− `h) =

σ2h s

π

(

1 +Oh(1) hs
)

, (2.15)

when h→ 0. For any s denote

σ2
h,s =

σ2hs

π
, (2.16)

so that, with the chosen bandwidth s = sh, the resulting variance becomes

σ2
h = σ2

h(α) =
σ2hsh

π
. (2.17)
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From equations (2.13)–(2.15) we see that the mean square error of the estimator f̂h,s

satisfies

∣

∣

∣
E
(

f̂h,s(x) − f(x)
)2 − σ2

h,s

∣

∣

∣
≤ σ2

h,s

(

O(hs) + (πσh,s)
−2

∫ ∞

s

β2

γ
e−2(γt)r

dt

+ σ−2
h,sO

(

e−2(2π γ
h
)r/cr

)

∫ s

0

β2

γ
e2(γt)r

dt
)

. (2.18)

Now we shall verify that, taking s = sh as defined in (2.12), the term of the right hand side
of the previous equation is equal to σ2

h o(1). Before going into details, let us remark that
the bandwidth sh is precisely the bandwidth that finds a compromise between the main
terms of the bias and the variance in the mean square error, i.e. it minimizes

σ2hs

π
+ π−2

∫ ∞

s

β2

γ
e−2(γt)r

dt

(with respect to s), this is because by (2.12)

e2(γsh)r

=
β2

πγσ2h
. (2.19)

Let us return to equation (2.18). First notice that

hsh → 0, when h→ 0. (2.20)

Second, applying the identity (2.19) and Lemma 2.2, we see that

(πσh)
−2

∫ ∞

sh

β2

γ
e−2(γt)r

dt =
β2

π γσ2h

∫∞

sh
e−2(γt)r

dt

sh

=

∫∞

sh
e−2(γt)r

dt

she−2(γsh)r

≤ 1

r(γsh)r
=

(

r

2
log

β2

πγ σ2h

)−1

= o(1), (2.21)

when h→ 0. Finally, applying the identity (2.19) and the maximum inequality

σ−2
h e−2( 2πγ

h
)r/cr

∫ sh

0

β2

γ
e2(γt)r

dt ≤ π
β2

γ σ2h
e−2( 2πγ

h
)r/cr+2(γsh)r

=

(

β2

γ σ2h

)2

e−2(2π γ
h)

r
/cr = o(1), (2.22)

when h→ 0. Thus, from (2.18) and (2.20)–(2.22) we have that

E
(

f̂h(x) − f(x)
)2

= σ2
h (1 + o(1)), (h→ 0).

Note that when we normalize the error of our estimator by σh, the normalized error term
(f̂h(x) − f(x))/σh has a normal distribution, with mean of order o(1) and variance equal
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to 1 + o(1) where the terms o(1) are small uniformly in f ∈ A(α) when h goes to zero.
Applying dominated convergence

lim
h→0

sup
f∈A(α)

Ef w
(

σ−1
h

(

f̂h(x) − f(x)
)

)

= Ew (ξ). (2.23)

Lower bound for the risk. Consider the parametric family of functions

fθ(z) = θg(z), g(z) =
π

sk
ksh

(z − x).

These functions satisfy fθ(x) = θ, and if we assume that |θ| ≤ θ(h) where

θ2(h) =
s2

h

2π2

(∫ sh

0

γ

β2
e2(γt)r

dt

)−1

(2.24)

then
∫

γ

β2
e2|γt|r

∣

∣F [fθ](t)
∣

∣

2
dt = θ2 π

2

s2
h

∫

γ

β2
e2|γt|r

∣

∣F [ksh
](t)
∣

∣

2
dt

≤ θ2(h)π2

s2
h

∫

γ

β2
e2|γt|r

1 [−sh,sh](t) dt ≤ 1.

Thus fθ ∈ A(α) for all θ such that |θ| ≤ θ(h).
Now, we can apply Kakutani’s theorem using the fact that

∑∞
`=−∞ g2(`h) <∞ accord-

ing to Lemma 4.2(c), and see that

dP
(h)
θ

dP
(h)
0

(y) = exp

{

1

2σ2

∞
∑

`=−∞

(

2θ y` g(`h) − θ2g(`h)
)

}

, (2.25)

where Pθ = Pfθ
(cf. e.g. Hui-Hsiung [1975], Sect. II.2). The statistic

T =

∑∞
`=−∞ y` g(`h)
∑∞

`=−∞ g2(`h)
(2.26)

is sufficient for the parameter θ of the family of distributions Pθ. Obviously T is normally
distributed. Given fθ(`h) = θg(`h), we can easily verify that

T ∼ N
(

θ ,
σ2

∑∞
`=−∞ g2(`h)

)

, (2.27)

and applying Lemma 2.1(c), with s1 = 0 and s2 = sh, we see that

1

σ2

∞
∑

`=−∞

g2(`h) =
π2

σ2hs2
h

(

h

∞
∑

`=−∞

k2
sh

(x− `h)
)

=
π

σ2hsh

(

1 +Oh(1) hsh

)

,
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when h goes to zero. Thus, T can be represented as

T = θ + ϕ ξ where ξ ∼ N (0, 1) (2.28)

and, according to the previous arguments,

ϕ2 =
σ2

∑∞
`=−∞ g2(`h)

= σ2
h

(

1 + o(1)
)

. (2.29)

To derive the required lower bound, let us assume the unknown parameter θ has a prior
density λ(θ); a convenient choice is

λ(θ) =
1

θ(h)
cos2 πθ

2θ(h)
, |θ| ≤ θ(h).

We obtain then, due to the sufficiency of the statistic T ,

inf
f̃h

sup
f∈A(α)

Ef w

(√

π

σ2hsh

(

f̃h(x) − f(x)
)

)

≥ inf
f̃h

sup
|θ|<θ(h)

Ef w

(√

π

σ2hsh

(

f̃h(x) − fθ(x)
)

)

≥ inf
θ̂

sup
|θ|<θ(h)

Eθw

(√

π

σ2hsh

(

θ̂ − θ
)

)

≥ inf
θ̂

∫ θ(h)

−θ(h)

Eθw

(√

π

σ2hsh

(

θ̂ − θ
)

)

λ(θ)dθ

= inf
θ̂(T )

∫ θ(h)

−θ(h)

Eθw

(√

π

σ2hsh

(

θ̂(T ) − θ
)

)

λ(θ)dθ

= Ew

(

ϕ

σh
ξ

)

− ϕ2

θ2(h)

1√
2π

∫

(x2 − 1)w(x)e−
x2

2 dx (1 + o(1)).

Here the last equation follows from Levit [1980]. According to (2.29), ϕ
σh

= 1+o(1), (h→ 0),

while applying identity (2.19) and Lemma 2.2 we see that

σ2
h

θ2(h)
= 2

πγσ2h

β2

∫ sh

0
γe2(γt)r

dt

γsh

=
2
∫ γsh

0
γe2trdt

γshe2(γsh)r ≤ 1

r(γsh)r
→ 0, (2.30)

when h→ 0. Thus we have that

lim inf
h→0

sup
f∈A(α)

Ef w

(√

π

σ2hsh

(

f̂h(x) − f(x)
)

)

≥

lim inf
h→0

inf
f̃h

sup
f∈A(α)

Ef w

(√

π

σ2hsh

(

f̃h(x) − f(x)
)

)

≥ Ew(ξ). (2.31)

Combining the relations (2.23) and (2.31) proves the theorem. 2
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2.3.2 An extension to non-fixed classes

Up till now we assumed that the classes A(α) were fixed, i.e. not depending on the pa-
rameter h, though the function we wanted to estimate could vary freely within the given
class A(α) and, in particular, could depend on h. The possible dependency of f on h
implies that the estimated function could be as ‘bad’ as our model allowed it to be which
justified the minimax approach of Theorem 2.1. To summarize, the assumption that our
functional class A(α) is fixed implies that the smoothness properties of the elements of
the class are fixed. However, we might want to further relax this restriction by allowing
the class itself depend on h. Indeed, there is neither practical justification, nor a logical
requirement, that the smoothness of the underlying function remains the same while the
level of noise decreases and consequently the resolution of the available statistical proce-
dures increases. This will become even more natural in the adaptive setting of Section 2.4
where the smoothness of the underlying function is not known beforehand.

Thus, as a first step towards introducing the adaptive framework, we let the parameters
of the model γ, β and r depend on h. Even so, they still be assumed to be known to
the statistician – this assumption will be abolished later in the adaptive framework of
Section 2.4. This approach will allow us to explore the ‘limits’ of the model where its
parameters are allowed to change freely. Let sh be as defined in Theorem 2.1. Note that
now the optimum bandwidth sh depends on h also through the parameters γ, β and r.
Nevertheless the statement of Theorem 2.1 still holds, as we shall see, under corresponding
assumptions.

Theorem 2.2 Let w ∈ W, and let the parameters β = βh, r = rh, γ = γh and σ = σh be
all positive and such that

0 < lim inf
h→0

r ≤ lim sup
h→0

r <∞, (2.32)

lim inf
h→0

β2

γ σ2h
= ∞, (2.33)

lim sup
h→0

h

γ

(

log
β2

γ σ2h

)1/r

= 0. (2.34)

Then

lim
h→0

sup
f∈A(α)

Ef w

(√

π

σ2hsh

(

f̂h(x) − f(x)
)

)

=

lim
h→0

inf
f̃h

sup
f∈A(α)

Ef w

(√

π

σ2hsh

(

f̃h(x) − f(x)
)

)

= Ew(ξ)

where sh, f̃h and f̂h are the same as in Theorem 2.1.

Remark 2.1 Note that the conditions (2.32) and (2.34) imply hsh → 0 when h → 0.
As a direct consequence of this, we obtain consistency, provided σ2 is bounded, since then
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σ2hsh

π
→ 0. However, our asymptotic optimality result doesn’t require σ2 to be bounded; on

other words they apply even when there is no consistency! There is no contradiction in
that! This situation is similar to having a minimax estimator of the normal means whose
variance may not be small. In other words, the asymptotic optimality (minimaxity) of the
proposed estimator does not hinge on its consistency, although we might prefer to have
both!

Proof: We prove this theorem following the same proof of Theorem 2.1. It is sufficient to
see that relations (2.20)–(2.22) and (2.30) still hold for the class A(γh, βh, rh). The limit
(2.20) follows from (2.32) and (2.34), the limits (2.21) and (2.30) follow from (2.32) and
(2.33). Finally (2.22) follows from the identity

β2

γ σ2h
e−
(

2π γ
h

)r

/cr = exp
{

− c−1
r

(

2π
γ

h

)r(

1 − cr
(2π)r

(h

γ

(

log
β2

γ σ2h

)1/r)r)}

. (2.35)

and conditions (2.32)–(2.34). Notice that h/γ → 0, by (2.33) and (2.34). The rest of the
proof remains the same. 2

The important conclusion which can be drawn from the last result is that in order to
prove asymptotic optimality of our estimation procedure, we do not have to invoke the
assumption – not always realistic – that the smoothness of the estimated function remains
the same, even when the level of noise decreases and, as a consequence, the resolution
of available statistical methods increases. Note that in this more general situation the
corresponding optimal rate of convergence

σ2
h(α) =

σ2h

πγ

(

1

2
log

β2

πγ σ2h

)
1
r

, (2.36)

can be of any order, with respect to any of parameters, h or σ2h, varying from extremely
fast, parametric rates, to extremely slow, non-parametric ones, and even all the way down
to no consistency at all. The problem which we will face in next section, is that in practice
we often do not know the real class at all.

2.4 Adaptive minimax regression

2.4.1 Adaptive estimation in functional scales

As a transition from the classical minimax setting, studied in the previous sections, to the
adaptive setting we introduce functional scales

AK =
{

A(α)
∣

∣ α ∈ K
}

,

corresponding to a subset K ⊂ R3
+ in the underlying parameter space. As our scales AK

can be identified with corresponding subsets K, we will speak sometimes about a scale K,
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instead of AK, when there is no risk that could lead to a confusion. Sometimes we can
think of the scale AK as the collection of functions

{

f ∈ A(α)
∣

∣ α ∈ K
}

.

We will say that some limit exists uniformly in AK to express that it exists uniformly in
f ∈ A(α) for every α and they converge uniformly in α ∈ K.

Our goal is to estimate a function which belongs to A(α) for some α ∈ K. So, we must
find an estimator, which does not depend on α and such that it performs “optimally” well
over the whole scale K. For this new setting a new definition of optimality is necessary.
We use the following definition which was used in Lepski and Levit [1998]. From now on
we will restrict ourselves to the loss functions w(x) = |x|p, p > 0. Let AK be a functional
scale and F a class of estimators f̃h.

Definition 2.2 An estimator f̂h ∈ F is called (p,K,F)-adaptively minimax, at a point
x ∈ R, if for any other estimator f̃h ∈ F

lim sup
h→0

sup
α∈K

supf∈A(α) Ef

∣

∣f̂h(x) − f(x)
∣

∣

p

supf∈A(α) Ef

∣

∣f̃h(x) − f(x)
∣

∣

p ≤ 1.

The simplest example of a scale AK can be obtained when K is a fixed compact subset
of R

3
+. Our results below cover a much broader setting in which the set K itself can depend

on the parameter h. In our approach, such results serve two goals. First of all, they allow
a better understanding of the true scope of adaptivity of statistical procedures, since they
describe the ‘extreme’ situation in which an adaptation is still possible. In fact all what
is needed below is that the assumptions of our ‘non-adaptive’ Theorem 2.2 hold uniformly
on the scale K; below we formulate these assumptions more explicitly.

Definition 2.3 A functional scale AKh
(or the corresponding scale Kh) is called a regular,

or an R-scale if the following conditions are satisfied.

0 < lim inf
h→0

inf
α∈Kh

r ≤ lim sup
h→0

sup
α∈Kh

r <∞, (2.37)

lim inf
h→0

inf
α∈Kh

β2

γ σ2h
= ∞, (2.38)

lim sup
h→0

sup
α∈Kh

h1−δ

γ

(

log
β2

γ σ2h

)1/r

= 0. (2.39)

for some 0 < δ < 1.

The second goal that can be achieved by considering more general scales Kh is to
introduce the notion of optimality in adaptive estimation, by specifying a natural set of
estimators F in the above Definition 2.2. Note that within a large scale AKh

, unknown
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functions f can vary from extremely smooth ones, allowing parametric rate σ2O(h2), to
much less smooth functions, allowing slower rates σ2O(h2δ), δ > 1, or even extremely slow
rates σ2O(log−1(1/h)). The first possibility is not typical in non-parametric estimation and
only can happen in some extreme cases. These ideas are made more precise by introducing
the following terminology classifying functional scales AKh

into pseudo-parametric (PP)
and non-parametric (NP) scales depending of their global rates of convergence.

Definition 2.4 A functional scale AKh
(or the corresponding parameter scale Kh) is called

(a) pseudo-parametric, or a PP-scale if

lim sup
h→0

sup
α∈Kh

sh(α) <∞,

(b) non-parametric, or an NP-scale if

lim
h→0

inf
α∈Kh

sh(α) = ∞.

We shall call regular pseudo-parametric and regular non-parametric scales respectively
RPP- and RNP-scales.

Since pseudo-parametric scales are not typical, in non-parametric estimation and can
only happen in some extreme cases, we will only require our statistical procedure to achieve
the optimal rate σ2O(h2) for such scales; cf. the Definition of the corresponding classes Fp

below. Note that even with such procedures, a better rate will be achieved, in estimating
functions in any pseudo-parametric scale than in any of the non-parametric scales. Further
a strong evidence suggests that there is hardly much more one can do than require rate
optimality, for any of the pseudo-parametric scales. On the other hand, such an approach
allows to develop natural optimality criteria, for any adaptive procedure in the classes F
in the case of non-parametric scales.

Let Fp = Fp(x) be the class of all estimators f̃h that satisfy

lim sup
h→0

sup
α∈Kh

sup
f∈A(α)

Ef

∣

∣

∣
(σ2h)−1/2

(

f̃h(x) − f(x)
)

∣

∣

∣

p

<∞

for arbitrary RPP functional scales AKh
. Let F0

p = F0
p (x) denote the class of estimators

such that

lim sup
h→0

E0

∣

∣(σ2h)−1/2 f̃h(x)
∣

∣

p
<∞.

It is easy to notice that Fp ⊂ F0
p . In the next subsection we present an adaptive estimator

f̂h ∈ Fp and prove it to be (p,K,Fp)-adaptively minimax for arbitrary RNP functional
scales.
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2.4.2 The adaptive estimator: upper bound

Section 2.4.1 outlined the general adaptive setting, introduced a notion of optimal adaptive
estimation and described regular non-parametric scales of infinitely differentiable functions.
Our first result describes accuracy which can be achieved for such scales. Its proof starts
with the construction of an adaptive estimator achieving this accuracy. In this, the Lepski’s
method will be used, with the recent modification of Lepski and Levit [1998]. Note that
the accuracy of our procedure loses a logarithmic factor compared to the non-adaptive
case where the parameters of the underlying classes are known. In Section 2.4.3 we will
see that this is an unavoidable pay for not knowing the smoothness a priori and we will
prove optimality of the proposed procedure in the sense of Definition 2.2.

Remark 2.2 In principle, one could also study adaptation to the unknown parameter σ2.
This however leads to entirely different problems, and is not considered in this thesis.
Therefore we always assume that σ2 is known, although it can vary with h.

Denote

ψ2
h(α) = p(log sh(α)) σ2

h(α)

where sh(α) and σ2
h(α) were defined in (2.12) and (2.17).

Theorem 2.3 For any p > 0 there exists an adaptive estimator f̂h such that for any x ∈ R

and for any RNP-functions scale AKh
, f̂h ∈ Fp

lim sup
h→0

sup
α∈Kh

sup
f∈A(α)

Ef

∣

∣

∣
ψ−1

h (α)
(

f̂h(x) − f(x)
)

∣

∣

∣

p

≤ 1.

The adaptive estimator. First, let us choose parameters, 1/2 < l < 1, 1/2 < δ < 1,
p1 > 0, l1 = δl, and define the sequence of bandwidths s0 = 0, si = exp(il) for i = 1, . . ..
For each h, we take a subsequence Sh =

{

s0, s1, . . . sIh

}

where

Ih = arg max
i

{

hsi ≤ log−1 1/h
}

, (2.40)

h < 1. Our asymptotic study considers h→ 0 thus without loss of generality we define Ih

just for h < 1.
Now, let us denote

f̂i(x) = f̂h,si
(x), bi = Ef f̂i(x) − f(x),

σ2
i = Var f̂i(x), σ̂2

i =
σ2h si

π
,

σ2
i,j = Var

(

f̂j(x) − f̂i(x)
)

, σ̂2
i,j =

σ2h (sj − si)

π
,
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and define the thresholds

λ2
j = p log sj + p1 logδ sj.

Finally we define

î = min
{

1 ≤ i ≤ Ih :
∣

∣f̂j(x) − f̂i(x)
∣

∣ ≤ λj σ̂i,j ∀j (i ≤ j ≤ Ih)
}

. (2.41)

We will prove below that the estimator

f̂h(x) = f̂î(x)

satisfies both the statements contained in Theorem 2.3.
Let us get first some insight into the algorithm. The sequence of bandwidths sI has

several important properties. First, it is increasing, thus the variance of the corresponding
estimators is also increasing.

Second , according to the definition of R-scales the bandwidths sh(α), see eq. (2.39),
are such that hsh(α) ≤ hδ uniformly in Kh for some δ < 1, and h small enough. Thus,
sIh

is large enough for h small enough, so that for each α, the optimum bandwidth sh(α)
corresponding to A(α), can be sandwiched between two consecutive elements of Sh, i.e.
there exists i(α) = i(α, h) such that

si(α)−1 < sh(α) ≤ si(α).

The sequence is also dense enough so that

lim
i→∞

si+1

si
= 1.

This guarantees that sh(α) and si(α) are asymptotically equivalent since sh(α) → ∞ for
h→ 0 in NP-scales.

The sequence of thresholds λj has been chosen in such a way that, for large i, j
(i(α) ≤ i ≤ j), the probability of the event

∣

∣f̂j(x) − f̂i(x)
∣

∣ > λj Var1/2
(

f̂j(x) − f̂i(x)
)

, (2.42)

is very small since, except for an event of a small probability, this can only occur if the
bias (bj − bi) � Var1/2

(

f̂j(x) − f̂i(x)
)

which is not the case for bandwidths greater than
sh(α) as we will see. Therefore, for any given i and j > i we reject si in favor of the sub-
sequent elements of the sequence Sh, if the event (2.42) occurs. This pairwise comparison
is performed for every i, and from all the accepted si we select the smallest, i.e. we choose
the estimator with the smallest variance. Note that according to the previous argument no
bandwidth si, i ≥ i(α) will be rejected, with high probability. However it is possible that a
bandwidth si, i < i(α) is chosen. In that case the our procedure warrants that, cf. (2.41),

∣

∣f̂î(x) − f̂i(α)(x)
∣

∣ ≤ λi(α) Var1/2
(

f̂î(x) − f̂i(α)(x)
)
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Thus in the worst case the accuracy of f̂h decreases by a factor 1 + λi(α) which is of order
log sh(α) asymptotically as h → 0. In the next subsection we prove that the accuracy of
this algorithm is asymptotically optimal in the adaptive setting, for all RNP-scales subject
to certain mild additional assumptions; see Theorems 2.1 and 2.6.

Now, let us turn to the proof of the theorem. We start with an auxiliary result needed
in the proof where we use the same notations as those used in describing the estimation
procedure.

Lemma 2.3 For h → 0, uniformly with respect to 1 ≤ i, j ≤ Ih and with respect to α
varying in an R-scale,

(a) b2j = o(1)σ̂2
j for all j such that i(α) ≤ j ≤ Ih.

(b) σ2
j = σ̂2

j

(

1 +O(log−1(1/h))
)

.

(c) (bj − bi)
2 ≤ (1 + o(1))σ̂2

i,j for all i, j such that i(α) ≤ i ≤ j ≤ Ih.

(d) σ2
i,j = σ̂2

i,j

(

1 +O(log−1(1/h))
)

.

Proof. (a) Using the bound for the bias given in (2.14), equation (2.19) and Lemma 2.2
we see, with some algebra, that

b2j ≤ 1

π2

∫ ∞

sj

β2

γ
e−2(γt)r

dt+O
(

e−2(2π γ
h
)r/cr

)

∫ sj

0

βγe2(γt)r

dt

≤ σ2hsj

π

β2

πγ σ2h

e−2(γsj)r

r(γsj)r
+O

(

e−2(2π γ
h
)r/cr

) σ2hsj

π

β2

πγ σ2h
e2(γsj)

r

= σ̂2
j

(

e2(γsh)r−2(γsj)r

r(γsh)r
+O

(

e−(2π γ
h
)r/cr+2(γsh)r

e−(2π γ
h
)r/cr+2(γsj)r

)

)

.

Now, given sj ≥ sh(α) and using conditions (2.40) in the definition of the sequence of band-
widths Sh and conditions (2.37)–(2.39) in the definition of R-scales, we obtain b2j = o(1)σ̂2

j

when h→ 0, uniformly with respect to j (i(α) ≤ j ≤ Ih) and with respect to α in Kh. .

(b) This just a reformulation of the asymptotic relation (2.15) using the fact that hsj ≤
log−1(1/h) according to (2.40).

(c) Applying Lemma 2.1(b) taking s1 = si and s2 = sj, and arguing as in (2.14) and in
the proof (a), we see that
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(bj − bi)
2 ≤ 2

∣

∣

∣

∣

1

2π

∫

e−itxF [∆i,j](t)F [f ](t) dt

∣

∣

∣

∣

2

+

O
(

e−2(2π γ
h
)r/cr

)

∫ sj

si

β2

γ
e2(γt)r

dt

≤ 1

π2

∫ sj

si

β2

γ
e−2(γt)r

dt+O
(

e−2(2π γ
h)

r
/cr

)

∫ sj

si

β2

γ
e2(γt)r

dt

≤ σ2h(sj − si)

π

β2

πγ σ2h
e−2(γsi)

r

+

O
(

e−2(2π γ
h
)r/cr

) σ2h(sj − si)

π

β2

πγ σ2h
e2(γsj )r

= σ̂2
i,j

(

e2(γsh)r−2(γsi)r

+O
(

e−(2π γ
h
)r/cr+2(γsh)r

e−(2π γ
h
)r/cr+2(γsj)r

))

= σ̂2
i,j(1 + o(1)), (h→ 0).

(d) It follows directly from Lemma 2.1(c), taking s1 = si and s2 = sj. Here, as in (2.15),
we can verify

σ2
i,j = σ2h2

∞
∑

`=−∞

(

ksj
(x− `h) − ksi

(x− `h)
)2

=
σ2h (sj − si)

π

(

1 +Oh(1) h(sj − si)
)

. (2.43)

and thus, using (2.40), this completes the proof of the lemma. 2

We now proceed with proving Theorem 2.3. For arbitrary f in any R-functional
scale AKh

,

Rh(f) := E
∣

∣f̂î(x) − f(x)
∣

∣

p
= R−

h (f) +R+
h (f)

where

R−
h (f) = E

{

1{î≤i(α)}

∣

∣f̂î(x) − f(x)
∣

∣

p
}

and

R+
h (f) = E

{

1{î>i(α)}

∣

∣f̂î(x) − f(x)
∣

∣

p
}

.
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Let us examine R−
h (f) first. We have
{

î ≤ i(α)
}

⊂
{

∣

∣f̂î(x) − f̂i(α)(x)
∣

∣ ≤ σ̂î,i(α) λi(α)

}

⊂
{

∣

∣f̂î(x) − f̂i(α)(x)
∣

∣ ≤ σ̂i(α) λi(α)

}

,

therefore

R−
h (f) ≤ E

{

1{î≤i(α)}

(

∣

∣ f̂î(x) − f̂i(α)(x)
∣

∣+
∣

∣ f̂i(α)(x) − f(x)
∣

∣

)p }

≤ E
(

σ̂i(α)λi(α) +
∣

∣ f̂i(α)(x) − f(x)
∣

∣

)p

≤ E
(

σ̂i(α)λi(α) + |bi(α)| + σi(α)|ξ|
)p

where ξ ∼ N (0, 1). Now according to Lemma 2.3, (a) and (b), uniformly with respect to
α in any R-scale

σi(α) = σ̂i(α)(1 + o(1)) and |bi(α)| = o(1)σ̂i(α), (h→ 0).

It follows that for h→ 0 uniformly with respect to any RPP-scale

R−
h (f) = O(hp/2), (2.44)

while by the dominated convergence theorem, uniformly in any RNP-scale

R−
h (f) ≤ ψp

h(α)(1 + o(1)). (2.45)

Now let us examine R+
h (f). Consider the auxiliary events

Ai =
{

ω :
∣

∣ f̂i(x) − f(x)
∣

∣ ≤
√

2 σ̂i λi

}

.

Applying Hölder’s inequality we obtain

R+
h (f) = E

{

1{î>i(α)}

∣

∣f̂î(x) − f(x)
∣

∣

p
}

=

Ih
∑

i=i(α)+1

E
{

1{î=i}

∣

∣f̂i(x) − f(x)
∣

∣

p
}

=

Ih
∑

i=i(α)+1

E
{

∣

∣f̂i(x) − f(x)
∣

∣

p (

1{î=i}∩Ai
+ 1{î=i}∩Ac

i

)

}

= R+
h,1(f) +R+

h,2(f),

where

R+
h,1(f) =

Ih
∑

i=i(α)+1

(2σ̂2
i λ

2
i )

p/2 P(̂i = i)
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and

R+
h,2(f) =

Ih
∑

i=i(α)+1

E1/2
∣

∣

∣
f̂i(x) − f(x)

∣

∣

∣

2p

P1/2(Ac
i).

We have

P(̂i = i) ≤ P(̂i ≥ i)

≤
∞
∑

j=i+1

P
(

∣

∣f̂j−1(x) − f̂i−1(x)
∣

∣ > σ̂i−1,j−1 λj−1

)

. (2.46)

By writing f̂j(x) − f̂i(x) = σi,jξ + bj − bi, where ξ ∼ N (0, 1), applying Lemma 2.3(d),
and using the well known bound on the tails of the normal distribution (cf. Feller [1968],
Lemma 2), we find for some C > 0 and all h small enough

P
(

∣

∣f̂j(x) − f̂i(x)
∣

∣ > σ̂i,jλj

)

≤ P
(

|ξ| > σ̂i,j

σi,j
λj −

|bj − bi|
σi,j

)

(2.47)

≤ exp
{

− 1

2

( σ̂i,j

σi,j

λj − C
)2}

≤ exp
{

− 1

2

σ̂2
i,j

σ2
i j

λ2
j + C

σ̂i,j

σi,j

λj

}

≤ exp

{

−1

2
λ2

j + C
σ̂i,j

σi,j
λj +

1

2

(

1 − σ̂2
i,j

σ2
i j

)

λ2
j

}

. (2.48)

Since by Lemma 2.3(c) and (2.40)

σ2
i,j − σ̂2

i,j

σ2
i,j

λ2
j = λ2

j O
(

log−1(1/h)
)

= o(1), (h→ 0),

it follows from the last inequality that for some C1 > 0

P
(

∣

∣f̂j(x) − f̂i(x)
∣

∣ > σ̂i,jλj

)

≤ C1 exp

{

−1

2
λ2

j + 2Cλj

}

for all α, j ≥ i ≥ i(α) and allsufficiently small h.
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Returning to (2.46) we obtain that

P(̂i ≥ i) ≤ C1

∞
∑

j=i+1

exp

{

−1

2
λ2

j−1 + 2Cλj−1

}

= C1

∞
∑

j=i

exp

{

−1

2
λ2

j + 2Cλj

}

= C1

∞
∑

j=i

exp

{

−pj
l + p1j

l1

2
+ 2C

√

pjl + p1jl1

}

≤ C1

∞
∑

j=i

exp
{

− pjl

2
− p1j

l1

3

}

∼ C1
2

pl
i1−l exp

{

− pil

2
− p1i

l1

3

}

= C1
2

pl
i1−ls

−p/2
i exp

{

− p1i
l1

3

}

≤ C2s
−p/2
i exp

{

− p1i
l1

4

}

(2.49)

for some C2 > 0 and all i ≥ i(α), when h is sufficiently small. Therefore uniformly in AKh

R+
1 (f) = O(hp/2)

∞
∑

i=1

ipl/2 exp
{

− p1i
l1/4

}

= O(hp/2), (h→ 0).

In order to obtain a bound on R+
2 (f) we write again f̂i − f(x) = bi + σiξ , ξ ∼ N (0, 1).

Applying Lemma 2.3, (a) and (b), in the same way as before, we have

P(Ac
i) ≤ P

(

|ξ| >
√

2
σ̂i

σi

λi −
|bi|
σi

)

≤ P

(

|ξ| >
√

2
σ̂i

σi

λi −
√

2

)

≤ exp

{

−1

2

(√
2
σ̂i

σi

λi −
√

2

)2
}

≤ C3 exp
{

− λ2
i + 2λi

}

≤ C3 exp
{

− pil − p1i
l1/2

}

= C3s
−p
i exp

{

− p1i
l1/2

}

,

for some C3, all i ≥ i(α) and all α provided h is small enough. Thus,

R+
h,2(f) =

Ih
∑

i=i(α)+1

E1/2
∣

∣f̂i(x) − f(x)
∣

∣

2p
P1/2(Ac

i)

≤
Ih
∑

i=i(α)+1

σ̂p
i E1/2

∣

∣ o(1) + (1 + o(1))ξ
∣

∣

2p
P1/2(Ac

i)

≤ O(1)
(σ2h

π

)p/2
∞
∑

i=1

exp
{

− p1i
r1/4

}

= O
(

hp/2
)

, (h→ 0), (2.50)
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uniformly in AKh
.

We can conclude, uniformly in any RPP-scale Kh, our estimator satisfies

sup
α∈Kh

sup
f∈A(α)

E
∣

∣

∣
h−1/2

(

f̂h(x) − f(x)
)

∣

∣

∣

p

= O(1),

while for any RNP-scale Kh

sup
α∈Kh

sup
f∈A(α)

E
∣

∣

∣
ψ−1

h (α)
(

f̂h(x) − f(x)
)

∣

∣

∣

p

≤ 1 + o(1),

when h→ 0. 2

2.4.3 Lower bound: optimality results

In Section 2.4.2 we have established an upper bound for the risk of adaptive procedures, by
evaluating the quality of a proposed adaptive estimator. In this section we will establish
a lower bound for arbitrary such estimator, which will allow us to establish optimality of
the proposed procedure in the sense of Definition 2.2.

Theorem 2.4 Let p > 0. Let AKh
be an arbitrary RNP-scale. Assume that s̃h = s̃h(α),

s̃h ≤ sh(α), and φ̃h(α) are defined in such a way that for all sufficiently small h and α ∈ Kh

φ̃2
h = φ̃2

h(α) ≤ min( p log s̃h , r(γs̃h)
r/2 ) (2.51)

and

lim
h→0

inf
α∈Kh

φ̃h = ∞. (2.52)

Denote

ψ̃2
h = ψ̃2

h(α) =
σ2h s̃h

π
φ̃2

h.

Then for any estimator f̃h ∈ F0
p (x)

lim inf
h→0

inf
α∈Kh

sup
f∈A(α)

E(h)
∣

∣

∣
ψ̃−1

h (α)
(

f̃h(x) − f(x)
)

∣

∣

∣

p

≥ 1.

Proof. Letting θ = φ̃h −
√

φ̃h consider the following pair of functions:

f0(z) ≡ 0,

f1(z) = θ g̃(z), g̃(z) =

√

σ2h π

s̃h
ks̃h

(x− z). (2.53)
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Note that f1 satisfies

f1(x) = θ

√

σ2h s̃h

π
.

Obviously f1 is a continuous function and using (2.7), definition (2.12) of sh, and Lemma 2.2,
we get

∫

γ

β2
e2|γt|r

∣

∣F [f1](t)
∣

∣

2
dt = θ2σ

2h π

s̃h

∫

γ

β2
e2|γt|r

∣

∣F [ks̃h
](t)
∣

∣

2
dt

= 2 θ2γσ
2h π

β2

∫ s̃h

0
γe2(γt)r

dt

γs̃h

= 2 θ2 e−2(γsh)r

∫ s̃h

0
γe2(γt)r

dt

γs̃h

=
θ2

r(γs̃h)r
e2(γs̃h)r−2(γsh)r

(1 + o(1)) ≤ φ̃2
h

r(γs̃h)r
e2(γs̃h)r−2(γsh)r

(1 + o(1)) (2.54)

≤ 1

2
(1 + o(1)) ≤ 1,

uniformly in Kh for h small enough. Thus f1 ∈ A(α) for all sufficiently small h and every
α ∈ Kh.

Let f̃h ∈ F0
p (x) be an arbitrary estimator and denote f ∗

h = ψ̃−1
h f̃h(x) and L = φ̃−1

h θ;
then

ψ−1
h

(

f̃h(x) − f1(x)
)

= f ∗
h − ψ−1

h f1(x) = f ∗
h − φ̃−1

h θ = f ∗
h − L (2.55)

whereas
√

π

σ2h

(

f̃h(x) − f0(x)
)

=

√

π

σ2h
f̃h(x) =

√

π

σ2h
ψ̃h f

∗
h(x)

=

√

π

σ2h

√

σ2h s̃h

π
φ̃h f

∗
h(x) = s̃

1/2
h φ̃h f

∗
h(x)

= f ∗
h exp

{ log s̃h

2
+ log φ̃h

}

. (2.56)

Denote q = exp
{

− φ̃h

}

so that by (2.52), q → 0 uniformly with respect to α for h → 0.

Now, with the thus defined f1 ∈ A(α), for any f̃h ∈ F0
p (x), uniformly in α ∈ Kh as h→ 0,

we have

R(h) := sup
f∈A(α)

Ef

(

ψ̃−1
h

∣

∣f̃h(x) − f(x)
∣

∣

)

≥ E1

(

ψ̃−1
h

∣

∣f̃h(x) − f1(x)
∣

∣

)

≥ qE0

(
√

π

σ2h

∣

∣f̃h(x) − f0(x)
∣

∣

)

+ (1 − q)E1

(

ψ̃−1
h

∣

∣f̃h(x) − f1(x)
∣

∣

)

+O(q).

(2.57)
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According to (2.51) and (2.55)–(2.57),

R(h) ≥ q exp
{ φ̃h

2
+ p log φ̃h

}

E0

∣

∣f ∗
h(x)

∣

∣

p
+ (1 − q)E1

∣

∣f ∗
h(x) − L

∣

∣

p
+O(q)

≥ (1 − q)E1

(

Z
∣

∣f ∗
h(x)

∣

∣

p
+
∣

∣f ∗
h(x) − L

∣

∣

p
)

+O(q)

≥ (1 − q)E1 inf
x

(

Z|x|p + |x− L|p
)

+O(q) (2.58)

where

Z = q exp
{ φ̃h

2
+ p log φ̃h

} dP
(h)
0

dP
(h)
1

(y).

For each value of Z consider the optimization problem of minimizing the function:

g(x) = Z|x|p + |L− x|p.

As was shown in Lepski and Levit [1998],

min
x
g(x) =











min(Z, 1)Lp if p ≤ 1,

(

1 + Z− 1
p−1

)−(p−1)

Lp if p > 1.
(2.59)

Thus for any p > 0 we can write

min
x
g(x) = χLp, (2.60)

where χ is defined by (2.59) and satisfies 0 < χ ≤ 1.
Now, let us consider the likelihood corresponding to f0 and f1. Using the same argu-

ments that we used in (2.25)–(2.29) we can see that

dP
(h)
0

dP
(h)
1

(y) = exp

{

− 1

2σ2

∞
∑

`=−∞

(

θ2g̃2(`h) + 2θ y` g̃(`h)
)

}

,

= exp

{

(

− θξ − θ2

2

)( π

s̃h

h
∞
∑

`=−∞

k2
s̃h

(x− `h)
)

}

= exp

{

(

− θξ − θ2

2

)(

1 +Oh(1)hs̃h

)

}

where ξ ∼ N (0, 1) with respect to P1. Using the definition of θ and (2.51) and defini-
tion (2.53) we can see that

dP
(h)
0

dP
(h)
1

(y) =
(

1 + o(1)
)

exp

{

−θ
2

2
− θξ

}

, (h→ 0).
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Note that by (2.52)

Z =
(

1 + o(1)
)

exp

{

−φ̃h +
φ̃2

h

2
+ p log φ̃h − ( φ̃h −

√

φ̃h)ξ −
1

2
( φ̃h −

√

φ̃h)
2

}

P1→ ∞.

hence χ
P1→ 1. Also L = 1 + o(1), according to its definition. Therefore according to

equations (2.58)–(2.60), uniformly in α ∈ Kh,

Rh ≥ (1 − q)LpE1χ+O(q) = 1 + o(1), (h→ 0).

2

Corollary 2.1 Let AKh
be an arbitrary RNP-scale such that

lim inf
h→0

inf
α∈Kh

r(γsh)
r

log sh

= ∞ (2.61)

where sh is the optimum bandwidth defined in (2.12). Then for any p > 0 and x ∈ R, the
estimator f̂h of Theorem 2.3 is (p,Kh,Fp(x))-adaptively minimax at x.

Proof. This is a consequence of Theorem 2.3 and 2.4. In order to prove the lower bound
take sh = s̃h and apply the previous theorem. 2

Now, we prove a version of Theorem 2.4 under a weaker condition. It will be used below
to provide an easily verifiable conditions for adaptive optimality of the estimator proposed
in Section 2.4.2.

Theorem 2.5 Let AKh
be an arbitrary RNP-scale such that

lim inf
h→0

inf
α∈Kh

r(γsh)
r

log log sh
= ∞ (2.62)

where the optimum bandwidth sh was defined in (2.12). Then for any estimator f̃h ∈ F0
p (x),

lim
h→0

inf
α∈Kh

sup
f∈A(α)

Ef

∣

∣

∣
ψ−1

h (α)
(

f̃h(x) − f(x)
)

∣

∣

∣

p

≥ 1,

where

ψ2
h(α) = p (log sh)

σ2hsh

π
.

Proof: We prove this theorem in the same way as Theorem 2.4 by choosing φ̃2
h = p log s̃h

and subsequently defining s̃h in such a way that

2p log s̃h

r(γs̃h)r
e2(γs̃h)r−2(γsh)r ≤ 1 (2.63)
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for h small enough. The point here is that condition (2.63) was only needed in proving
(2.54), which now becomes (2.63). We construct an appropriate s̃h asymptotically equiv-
alent to sh that satisfies the previous inequality for h small enough. Let us first, for fixed
α, define the auxiliary bandwidth s̄h as the solution of the equation

2(γsh)
r = 2(γs̄h)

r + log r(γs̄h)
r.

We know that γsh goes to infinity as h goes to zero uniformly in regular scales. Thus from
the previous equation, γs̄h goes to infinity too and we can see that

(

sh

s̄h

)r

= 1 +
log r(γs̄h)

2(γs̄h)r
= 1 + o(1),

uniformly in Kh according to (2.62). Thus the auxiliary bandwidth s̄h is asymptotically
equivalent to sh. It also satisfies (2.62), see that

lim inf
h→0

inf
α∈Kh

r(γs̄h)
r

log log s̄h
= lim inf

h→0
inf

α∈Kh

r(γsh)
r

log log s̄h
(1 + o(1)) ≥ lim inf

h→0
inf

α∈Kh

r(γsh)
r

log log sh
= ∞.

Now, let us define s̃h = ϑs̄h where ϑ (0 < ϑ < 1) is the closest solution to 1 of the equation

2r(γs̃h)
r

log log s̃h

ϑr log ϑ−1 = 1.

We can see that ϑ → 1 as h → 0 thus implying that s̃h is asymptotically equivalent to s̄h

and sh. Now, after few transformations,

−2(γs̃h)
r = −2(γs̄h)

r + 2

∫ s̄h

s̃h

r(γt)rt−1 dt

= −2(γsh)
r log r(γs̄h)

r + 2

∫ s̄h

s̃h

r(γt)rt−1 dt

≥ −2(γsh)
r + log r(γs̄h)

r + 2r(γs̃h)
r

∫ s̄h

s̃h

t−1 dt

= −2(γsh)
r + log r(γs̄h)

r + 2r(γs̄h)
rϑr log ϑ−1

= −2(γsh)
r + log r(γs̄h)

r + log log s̄h

and we see that

e−2(γs̃h)r ≥ e−2(γsh)r

r(γs̄h)
r log s̃h = e−2(γsh)r 2p log s̃h

r(γs̃h)
ϑrr2(γs̄h)

2r/(2p)

≥ e−2(γsh)r 2p log s̃h

r(γs̃h)
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for h small enough. The rest of the proof is the same as for Theorem 2.4. 2

Finally, we prove that the estimator we constructed in Theorem 2.3 is adaptively minimax,
for any RNP-scale satisfying a condition just a little stronger than condition (2.36) used
in the definition of a regular scale.

Theorem 2.6 Let Kh be a RNP-scale such that

lim inf
h→0

inf
α∈Kh

β2

γσ2h1−τ
≥ C

for some τ (0 < τ < 1) and C > 0. Then for any p > 0 and x ∈ R, the estimator f̂h of
Theorem 2.3 is (p,Kh,Fp(x))-adaptively minimax at x.

Proof. The upper bound result was proved in Theorem 2.3. To prove the lower bound we
notice that

r(γsh)
r =

r

2
log

β2

πγσ2h
≥ rτ

2
logCh−1

while according to conditions for R-scales

log log sh = log log
1

γ

(

1

2
log

β2

πγσ2h

)1/r

< log log h−1

thus r(γsh)r

log log sh
goes to infinity when h → 0, uniformly with respect to the scale Kh. The

desired lower bound follows now from Theorem 2.5. 2
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Chapter 3

Adaptive regression on a bounded
interval

In the previous chapter we discussed a regression model in which the unknown function
f(x) was assumed to be analytic on the whole real line. This model required that the
observations of f(x) were made on the the whole line. In practice however observations
of the regression function f(x) are often available only on a bounded interval. This is
exactly the case which will be discussed in the current chapter. To begin with, we will
introduce relative classes A(γ,M) of functions analytic in a vicinity of a given interval
(Section 3.1.1).

Next, an important issue of the observation design will be highlighted. A seemingly
natural, but somewhat naive approach is to use the simplest possible uniform, or equidis-
tant, design. We will see however that such a design loses substantially in accuracy, near
the end-points of the observation interval. We will explain that this is not a drawback of
any specific method of estimation, but rather an in-built defect of the equidistant design
itself.

A much more satisfactory design is the Chebyshev design. In Section 3.2 we describe,
pointwisely, the quality of the best attainable accuracy of estimation for both designs. Fi-
nally, in Section 3.3 we will present our main results about adaptive estimation of functions
f ∈ A(γ,M). Here we restrict ourselves only to the Chebyshev designs, in view of their
greater efficiency. Without any loss of generality, we will assume throughout the chapter
that our observation interval is [−1, 1]; a generalization to an arbitrary bounded interval
[a, b] is straightforward; cf. e.g. Timan [1963], Sect. 3.7.

3.1 The building blocks

The purpose of this section is to introduce classes A(γ,M) of analytic functions, as well
as the Legendre and Chebyshev polynomials. We discuss their properties and the relation
between them. Classes A(γ,M) will serve as the underlying functional classes in the
regression problems that we will study, while Legendre and Chebyshev polynomials will be

43
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used, in corresponding designs, for constructing the estimators.

3.1.1 The class A(γ,M)

For γ > 0 let Eγ be the open ellipse in the complex plane, with its boundary defined by

∂Eγ = {z ∈ C : z = cosh γ cosφ+ i sinh γ sin φ, 0 ≤ φ ≤ 2π}.

The ellipses Eγ represent a convenient family of vicinities of the interval [−1, 1], expanding
from [−1, 1] to C, as γ increases from 0 to ∞. One can verify by simple algebra that the
elliptic boundary ∂Eγ has its foci at the end-points of the interval [−1, 1], thus

Eγ = {z ∈ C : |z − 1| + |z + 1| < eγ + e−γ}.

Definition 3.1 We denote by A(γ,M) the class of functions analytic inside Eγ such that
|f(z)| ≤ M , for all z ∈ Eγ.

Denote by ργ the distance from the interval [−1, 1] to the boundary ∂Eγ . From the
integral Cauchy formula for the mth derivative of analytic functions we know that for any
ε > 0 and any ball Bργ−ε of radii ργ − ε centered at x ∈ [−1, 1],

f (m)(x) =
m!

2πi

∫

Bργ−ε

f(z)

(z − x)m+1
dz, m = 1, 2, . . . .

Thus, since ε is arbitrary, one obtains for the derivatives of the functions f ∈ A(γ,M) the
following bounds:

|f (m)(x)| ≤Mm!/ρm
γ (3.1)

for all x ∈ [−1, 1]. An elementary calculation shows that

ργ = cosh γ − 1. (3.2)

Equations (3.1) and (3.2) will be used later in Section 3.2, in obtaining some discrete-type
approximations to analytic functions.

3.1.2 Legendre polynomials

Legendre polynomials form a complete system of orthogonal polynomials in L2([−1, 1]).
Their explicit definition is (cf. Szegö [1975], p. 68)

Pr(x) = 2−r
r
∑

ν=0

(

r

r − ν

)(

r

ν

)

(x− 1)ν(x+ 1)r−ν , (3.3)

and their recurrent form is (cf. Szegö, p. 71)

P0 ≡ 1,
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P1(x) = x,

rPr(x) = (2r − 1)xPr−1(x) − (r − 1)Pr−2(x), r ≥ 2.

In particular, from the definition (3.3), it holds

Pr(1) = 1, Pr(−1) = (−1)r. (3.4)

An important bound for the derivatives of Legendre polynomials can be obtained by com-
bining the A.A. Markov inequality (cf. Timan [1963], Sect. 4.8.8)

|P (m)
r (x)| ≤ r2m max

−1≤x≤1
|Pr(x)|, m = 1, 2, . . . ; (3.5)

with the fact that the maximum of |Pr(x)| is attained at the end points of the interval
(cf. Szegö, Sect. 7.21),

max
−1≤x≤1

|Pr(x)| = |Pr(±1)| = 1. (3.6)

The normalized Legendre polynomials, given by

pr(x) = (2r + 1)1/2Pr(x), r = 0, 1, . . . , (3.7)

satisfy, from (3.5)–(3.7),

max
−1≤x≤1

|p(m)
r (x)| ≤ (2r + 1)1/2r2m m = 1, 2, . . . . (3.8)

The defined normalized Legendre polynomials form an orthonormal basis in the space
L2([−1, 1]) corresponding to the inner product

〈f | g〉 :=
1

2

∫ 1

−1

f(x)g(x) dx.

Besides that, they are asymptotically orthonormal with respect to a “discrete” inner prod-
uct defined below which is a discrete version of the “continuous” inner product just men-
tioned. For a given design, xn

k , k = 1, 2, . . . , n, we define the corresponding discrete inner
product of the functions f and g to be

(f | g) :=
1

n

n
∑

k=1

f(xn
k)g(xn

k).

In this subsection, we consider the discrete inner product with respect to the Legendre
design, for which xn

k represent the equidistant knots

xn
k =

2k − n− 1

n
, k = 1, . . . , n. (3.9)

Let us denote the kernel corresponding to the Legendre family pr by

KN(x, y) :=
N−1
∑

r=0

pr(x)pr(y). (3.10)

Underlying the quality of our estimators will be remarkable properties of the following
type.
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Lemma 3.1 Let N ∈ N. The normalized Legendre polynomials pr satisfy

(a) Uniformly for 0 ≤ r1, r2 ≤ N ,

( pr1| pr2) =
1

n

n
∑

k=1

pr1(x
n
k)pr2(x

n
k) = δr1 r2 +O

(

N6

n2

)

, (n→ ∞). (3.11)

(b) If

α2
N(x) :=

1

N
KN(x, x) =

1

N

N−1
∑

r=0

p2
r(x),

(3.12)
then

α2
N(x) =

2

π
√

1 − x2
(1 + o(1)), (N → ∞), (3.13)

uniformly on any interval [a, b] ⊂ (−1, 1), and α2
N(±1) = N .

Remark 3.1 Note the different behavior of αN inside the interval and at the end-points.
This will explain why the results presented below hold uniformly only on the compact subsets
of (−1, 1) while at the extremes of the interval the accuracy of estimation, based on the
equidistant design, will deteriorate, even to the extent of being of a different order!

The property (b) is illustrated by Figure 3.1.

Proof. (a) The numerical integration method for approximating
∫ b

a
g(x)dx, in which the

interval is divided in n equally spaced sub-intervals and the function is evaluated at the
middle points of the sub-intervals, has the accuracy bounded by

(b− a)2

24n2
max
a≤x≤b

∣

∣

∣

d2

dx2
f(x)

∣

∣

∣
(3.14)

when the function f ∈ C2[a, b] (cf. e.g. Stoer and Bulirsch). Thus, we have

| ( pr1| pr2) − 〈pr1 | pr2〉 | =

∣

∣

∣

∣

∣

1

n

n
∑

k=1

pr1(x
n
k)pr2(x

n
k) − 1

2

∫ 1

−1

pr1(x)pr2(x)dx

∣

∣

∣

∣

∣

≤ 1

3n2
max

−1≤x≤1

d2

dx2
(pr1(x)pr2(x)) . (3.15)

Applying L2-orthonormality and bounds (3.8) for the derivatives of pr(x) we get

| ( pr1| pr2) − δr1,r2 | ≤ 1

3n2
(2r1 + 1)(2r2 + 1)(r2

1 + r2
2)

2 = O

(

N6

n2

)
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Figure 3.1: Sums of squared Legendre polynomials

as n→ ∞.

(b) Using the asymptotic formula of Laplace (cf. Szegö, p. 194)

pr(x) ∼
2

√

π(1 − x2)1/2
cos((r + 1/2)

√
1 − x2 − π

4
) +O(r−1),

r → ∞, |x| < 1 (3.16)

and formula (cf. e.g. Gradshtein and Ryzhik, f. 1.341(1), p. 29)

N−1
∑

r=0

sin(rθ1 + θ2) = sin(
N − 1

2
θ1 + θ2) sin

Nθ1
2

csc
θ1
2

we obtain, with some algebra,

1

N

N−1
∑

r=0

p2
r(x) =

2

π
√

1 − x2

(

1 − 1

N

N−1
∑

r=0

sin((2r + 1)θ) +O(N−1 logN)
)

=
2

π
√

1 − x2
(1 + o(1)), (N → ∞),

uniformly on compacts in (−1, 1). At the end-points

1

N

N−1
∑

r=0

p2
r(±1) =

1

N

N−1
∑

r=0

(2r + 1) = N.

2
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Finally, let us mention the following bound on the growth of the Legendre polynomials
outside the interval [−1, 1]. According to Timan, Theorem 2.9.11, for any polynomial Pr

of order r and any z ∈ C

|Pr(z)| ≤ |Tr(z)| max
−1≤x≤1

|Pr(x)|.

Here Tr(x) are the Chebyshev polynomials which will be discussed in the next section. In
particular we will see that |Tr(z)| ≤ eγr, z ∈ Eγ . Therefore according to (3.8),

|pr(z)| ≤ (2r + 1)1/2eγr (3.17)

for every z ∈ Eγ .

3.1.3 Chebyshev polynomials

Chebyshev polynomials appeared for the first time in the problem of finding polynomials
Tr(x) = xr +a1x

r−1 + · · ·+ar least deviating from zero, in the uniform norm on the interval
[−1, 1]; Chebyshev [1859]. Normed by Tr(1) = 1, they can be represented as

Tr(x) = cos r arccos x, r = 0, 1, . . . , (3.18)

or in the recurrent form

T0(x) = 1,

T1(x) = x,

Tr+1(x) = 2xTr(x) − Tr−1(x), r = 1, 2, ... .

The Chebyshev polynomials are extensively used as an appropriate Fourier basis for
approximating non-periodic functions. Consider the normalized family

tr(x) =







T0(x), r = 0

√
2Tr(x) r 6= 0.

These polynomials constitute an orthonormal system in the weighted L2-space with the
scalar product

〈f | g〉 :=
1

π

∫ 1

−1

f(x)g(x)√
1 − x2

dx, (3.19)

i.e. they satisfy < tr1 | tr2 >= δr1,r2 for all integers r1, r2 ≥ 0.
Denote by

KN(x, y) :=
N−1
∑

r=0

tr(x)tr(y)
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the kernel associated with the polynomials tr(x). For a given function f , the corresponding
Chebyshev-Fourier series is given by

∞
∑

r=0

〈f | tr〉tr(x). (3.20)

This expansion becomes just the classical trigonometric series if the change of variables
x = cos θ is made. The partial sum

fN (x) =

N−1
∑

r=0

〈f | tr〉tr(x) = 〈f |KN(x, ·)〉 (3.21)

provides the best approximation to a function f , with respect to the weighted L2-norm
corresponding to (3.19), among all polynomials of degree less than N . The class A(γ,M)
has the important property that the coefficients of the Chebyshev-Fourier series (3.20)
decrease very fast (cf. Timan, Sect. 3.7.3). For all r = 0, 1, . . ., the inequality

sup
f∈A(γ,M)

|〈f | tr〉| ≤ √
πMe−γr (3.22)

holds. From (3.21),(3.22) and the bound |tr(x)| ≤
√

2 it follows that for every f ∈ A(γ,M)

max
x∈[−1,1]

|fN(x) − f(x)| ≤
∞
∑

r=N

|〈f | tr〉| |tr(x)| ≤
√

2πM

1 − e−γ
e−γN , (3.23)

(cf. Timan, Sect. 3.7.3 and 5.4.1).
The function fN (x) is the polynomial of the best approximation in the weighted L2-space.

Remarkably, for analytic functions of the classes A(γ,M), the approximation fN(x) based
on Chebyshev polynomials is asymptotically also the polynomial of the best uniform
approximation on [−1, 1]. More precisely,

sup
f∈A(γ,M)

lim sup
N→∞

( inf
p∈QN

‖f − p‖∞)1/N = sup
f∈A(γ,M)

lim sup
N→∞

(‖f − fN‖∞)1/N ,

where QN is the class of all the polynomials of the form p =
∑N−1

k=0 akx
k, (cf. Timan,

Sect. 6.5.2).
According to their definition, the Chebyshev polynomials satisfy |tr(x)| ≤

√
2 for all

x ∈ [−1, 1]. Now we shall exhibit an interesting bound that can be obtained in the whole
region Eγ. From the identity

2 cos rt = (cos t+ i sin t)r + (cos t− i sin t)r

it follows that

Tr(x) =
1

2

(

(

x +
√
x2 − 1

)r
+
(

x−
√
x2 − 1

)r
)
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=
1

2
(ωr + ω−r),

where x = 1
2
(ω + ω−1). Further, the transformation z = 1

2
(ω + ω−1) maps the ring

{

ω ∈ C : e−γ < |ω| < eγ
}

into Eγ and therefore Tr(z) = 1
2
(ωr + ω−r). Thus the normalized Chebyshev polynomials

are bounded in Eγ by

|tr(z)| =
√

2 |Tr(z)| ≤
√

2 eγr. (3.24)

Denote the discrete inner product by

( f | g ) :=
1

n

n
∑

k=1

f(xn
k)g(xn

k) (3.25)

where the points xn
k correspond to the Chebyshev design3

xn
k = cos

(2k − 1)π

2n
, k = 1, . . . , n. (3.26)

We can state next a lemma which is similar to Lemma 3.1. The first of the properties
is usually referred to as ‘double-orthogonality’ (cf. e.g. Fox and Parker, Sect. 2.7) and is
closely related to the corresponding property of the classical trigonometric polynomials.
The second property follows from a standard calculation.

Lemma 3.2 The normalized Chebyshev polynomials tr satisfy

(a) For any r1, r2 = 0, 1, ...

( tr1| tr2) =
1

n

n
∑

k=1

tr1(x
n
k)tr2(x

n
k) = δr1 r2 ,

(3.27)

(b) If

β2
N (x) :=

1

N
KN (x, x) =

1

N

N−1
∑

r=0

t2r(x) (3.28)

and we denote x = cos θ then, for N → ∞,

β2
N (x) = 1 +

1

N

cos(Nθ) sin((N − 1)θ)

sin θ

= 1 +
O(1)

N
, (3.29)

uniformly on any [a, b] ⊂ (−1, 1), and β2
N(x) = 2 for x = ±1.

3Given the parallel between our work with Legendre and Chebyshev polynomials we decided to duplicate
some of the notations, e.g. x

n

k
, the inner products, the projection operator KN , etc. The reader must just

keep in mind whether we are working under the Chebyshev or the Legendre setting.
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Remark 3.2 Note the slightly different behavior at the end-points when compared with the
inner points. Compare this with Lemma 3.1.

The second property is illustrated in Figure 3.2.
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Figure 3.2: Averaged sum of squared Chebyshev polynomials

Proof. (a) This is a consequence of the double orthogonality property of the trigonomet-
ric Fourier basis (cf. e.g. Gradshtein and Ryzhik, f. 1.351(1), p. 30).

(b) This is a classical identity (cf. e.g. Gradshtein and Ryzhik, f. 1.351(2), p. 31); compare
with the proof of Lemma 3.1.

2

In the following section we will discuss the use of the Legendre and Chebyshev polyno-
mials in constructing pointwise asymptotically minimax estimators for analytic functions,
in the non-adaptive (known γ,M) setting.

We shall see, in particular, that the best achievable rate of convergence at the end-
points using the Chebyshev design is faster than that in the case of the Legendre design.
Here we have only considered and compared two most important designs: one which is
often appears to be the natural choice – the equidistant design, and one which is actually
more preferable – the Chebyshev design. There are of course many others designs; their
importance and a more comprehensive study has only started recently, partly as a result
of the study presented in this chapter.

In Section 3.3 we shall restrict our study to Chebyshev designs, in constructing minimax
estimator in the adaptive (unknown γ,M) setting. Statistical estimation using the uniform
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norm as the quality criterion of estimators requires a different approach (cf. Golubev, Lepski
and Levit [2001]).

3.2 Minimax regression in A(γ,M)

3.2.1 The statistical setting

Our observation model in this chapter is given by

yk = f(xn
k) + ξk, k = 1, . . . , n, (3.30)

where the random variables ξk are independent identically distributed N (0, σ2) and the
design xn

k is either Legendre and Chebyshev design. Throughout this chapter the unknown
regression function f belongs to A(γ,M). In this section we assume that the parameters γ
and M which determine the class are fixed and known to the statistician. We prove that it
is possible, asymptotically, to have as good minimax risk using projection-type estimators
based on the Legendre-Fourier and Chebyshev-Fourier series, for their respective designs,
as with any other estimator.

Let W be the class of loss functions w : R → R+ such that

w(x) = w(−x),
w(x) ≥ w(y) for |x| ≥ |y|, x, y ∈ R,

and for some 0 < η < 1
2

∫

e−ηx2

w(x) dx <∞.

Let f̃n(x) = f̃n(x,y) be an arbitrary estimator of f(x) based on the observation vector
y = (y1, . . . , yn), and denote by Pf , Ef and Varf the distribution, the expectation and
the variance corresponding to f . Sometimes the sub-index f will be dropped, when there
is no possibility of confusion.

Our main interest will be in the asymptotic behavior of the minimax risk

inf
f̃n

sup
f∈A(γ,M)

Ef w
(

σ−1
n

(

f̃n(x) − f(x)
)

)

where w ∈ W. The parameter σn defining the minimax rate of convergence, for each of
the corresponding designs, Legendre or Chebyshev, will be specified later in Theorems 3.1
and 3.2.

3.2.2 Estimation in the Legendre design

Given the observations y taken at the Legendre knots (3.9), and following the notation
introduced in Section 3.1.2, define the estimator

f̂n,N(x) =
1

n

n
∑

k=1

ykKN (x, xn
k) =

N−1
∑

r=0

(

1

n

n
∑

k=1

ykpr(x
n
k)

)

pr(x). (3.31)
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With a slight abuse of the notation, we will write

f̂n,N(x) = (y |KN(x, ·)) =

N−1
∑

r=0

(y|pr) pr(x). (3.32)

Now consider two auxiliary functions:

fN(x) = 〈f |KN(x, ·)〉 =

N−1
∑

r=0

〈f | pr〉 pr(x), (3.33)

and

fn,N(x) = (f |KN(x, ·)) =

N−1
∑

r=0

(f |pr) pr(x). (3.34)

Notice that the projection-type estimator f̂n,N(x) is an unbiased estimator of the finite
expansion term fn,N(x) which, in turn, approximates the sum fN of the first N terms of
the Legendre-Fourier series.

The following theorem holds.

Theorem 3.1 For any w ∈ W and every x ∈ [−1, 1]

lim
n→∞

sup
f∈A(γ,M)

Ef w

(

α−1
N (x)

√

n

σ2N

(

f̂n(x) − f(x)
)

)

= lim
n→∞

inf
f̃n

sup
f∈A(γ,M)

Ef w

(

α−1
N (x)

√

n

σ2N

(

f̃n(x) − f(x)
)

)

= Ew(ξ)

where αN (x) is defined in (3.12), f̃n is an arbitrary estimator of f , f̂n = f̂n,N is the
projection estimator (3.32) with

N = Nn :=

⌊

1

2γ
logn

⌋

and ξ ∼ N (0, 1). (3.35)

Proof: the upper bound. Let N be given by (3.35). As usual we decompose the mean
square error as

E
(

f̂n,N(x) − f(x)
)2

= Var v2
N(x) + b2N(x) (3.36)

where, according to (3.32) and (3.34),

vN (x) = f̂n,N(x) − fn,N(x) =
1

n

n
∑

k=1

ξkKN(x, xn
k) (3.37)

is a zero-mean stochastic term and

bN (x) =
(

fn,N(x) − fN (x)
)

+
(

fN (x) − f(x)
)

(3.38)
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is the bias.
Let us first analyze the variance of vN(x). Applying Lemma 3.1(a) we get

Var vN (x) =
σ2

n2

n
∑

k=1

K2
N (x, xn

k) =
σ2

n2

n
∑

k=1

(

N−1
∑

r=0

pr(x)pr(x
n
k)

)2

=
σ2

n

N−1
∑

r1=0

N−1
∑

r2=0

pr1(x)pr2(x)
1

n

n
∑

k=1

pr1(x
n
k)pr2(x

n
k)

=
σ2

n

N−1
∑

r1=0

N−1
∑

r2=0

pr1(x)pr2(x)

(

δr1r2 +O

(

N6

n3

))

=
σ2

n

N−1
∑

r=0

p2
r(x) +O

(

N6

n3

) N−1
∑

r1=0

N−1
∑

r2=0

pr1(x)pr2(x). (3.39)

Now, applying the Cauchy-Schwartz inequality we see that

∣

∣

∣

∣

∣

N−1
∑

r1=0

N−1
∑

r2=0

pr1(x)pr2(x)

∣

∣

∣

∣

∣

=

(

N−1
∑

r=0

pr(x)

)2

≤ N
N−1
∑

r=0

p2
r(x)

= N KN(x, x) = N2 α2
N(x). (3.40)

Thus, according to the last two equations and (3.35),

Var vN(x) = α2
N(x)

σ2N

n
(1 + o(1)) (3.41)

for any x ∈ [−1, 1], as n goes to infinity.
Now let us consider the bias. First, we have

fn,N(x) − fN (x) =

N−1
∑

r=0

(

(f | pr) − 〈f | pr〉
)

pr(x). (3.42)

By definition

∣

∣ (f | pr) − 〈f | pr〉
∣

∣ =

∣

∣

∣

∣

∣

1

2

∫ 1

−1

f(x)pr(x) dx−
1

n

n
∑

k=1

f(xn
k)pr(x

n
k)

∣

∣

∣

∣

∣

. (3.43)

Next, applying (3.14), this difference can be bounded by

1

3n2
max

x∈[−1,1]

∣

∣

∣

∣

d2

dx2
f(x)pr(x)

∣

∣

∣

∣

. (3.44)
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Thus, applying the bounds for the derivatives |f (m)(x)| ≤ Mm!/ρm
γ (cf. Sect. 3.1.1) and

|p(m)
r (x)| ≤ (2r + 1)1/2r2m (cf. eq. (3.8)), it follows that

∣

∣ (f | pr) − 〈f | pr〉
∣

∣ ≤ M

3n2
( (2ργ)

−2 + 2ρ−1
γ (2r + 1)1/2r2 + (2r + 1)1/2r4)

= O
( r5

n2

)

, (n→ ∞). (3.45)

Combining Cauchy-Schwartz inequality with the previous bound and using the fact that
N is of order O(logn), cf. eq. (3.35), we find

( fn,N(x) − fN(x) )2 ≤
N−1
∑

r=0

(

(f | pr) − 〈f | pr〉
)2

N−1
∑

r=0

p2
r(x)

= α2
N(x)N

N−1
∑

r=0

(

(f | pr) − 〈f | pr〉
)2

= α2
N(x)O

(N12

n4

)

= α2
N(x)

σ2N

n
O
(N11

n3

)

= o(1)VarvN (x). (3.46)

As demonstrated in Ibragimov and Has’minskii [1981], for functions f ∈ A(γ,M)

|〈f | pr〉| ≤ C1 e
−γr

for some constant C1 > 0. According to the Laplace formula (3.16) the polynomials pr(x)
are uniformly bounded, on any interval [a, b] ⊂ (−1, 1). Thus, from previous inequality,
for some C2 > 0,

(

fN(x) − f(x)
)2 ≤

(

∞
∑

r=N

|〈f | pr〉| |pr(x)|
)2

≤ C2 e
−2γN ∼ C2n

−1 = o(1)VarvN(x). (3.47)

At the end-points of the interval we have |pr(±1)| = (2r + 1)1/2, see eqs. (3.4) and (3.7),
thus for x = ±1

|fN(x) − f(x)| ≤ C1

∞
∑

r=N

(2r + 1)1/2e−γr ≤ C3

∞
∑

r=N+1

r1/2e−γr

≤ C3 e
γ

∫ ∞

N+1

r1/2e−γrdr = C3N
1/2e−γN( 1 + o(1) )

as N → ∞. Therefore for some C4 > 0 and N large enough

(

fN(x) − f(x)
)2 ≤ C4Ne

−2γN ∼ C4
N

n
= o(1)VarvN(x). (3.48)
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From (3.36), (3.41), (3.46) and (3.47) or (3.48) we can conclude that

E
(

f̂n,N(x) − f(x)
)2

= α2
N (x)

σ2N

n
( 1 + o(1) ),

uniformly on [−1, 1]. It follows that

α−1
N (x)

√

n

σ2N

(

f̂n,Nn(x) − f(x)
)

is normally distributed with mean of order o(1) and variance equal to 1 + o(1), when n
goes to infinity, uniformly with respect to f ∈ A(γ,M). Therefore using the dominated
convergence theorem we obtain the following upper bound:

lim sup
n→∞

sup
f∈A(γ,M)

Ef w

(

α−1
N (x)

√

n

σ2N

(

f̂n(x) − f(x)
)

)

= Ew(ξ). (3.49)

Proof of the lower bound for the risk. For fixed x ∈ [−1, 1] and any z ∈ C consider
the following parametric sub-family of functions

fθ(z) = θ

√

σ2

n

KN̄(x, z)
√

KN̄(x, x)
, |θ| < θn = N̄1/2, (3.50)

where we will use
N̄ = N̄n = bNn − 3 logNnc , (3.51)

see (3.35). Note that N̄ is asymptotically equivalent to N = Nn when N → ∞. This
implies, according to Lemma 3.1(b), that

α2
N̄

(x)

α2
N(x)

→ 1, (3.52)

uniformly in [−1, 1], when n→ ∞.
We need the following lemma.

Lemma 3.3 For a given x ∈ [−1, 1] and any z ∈ Eγ, let fθ(z) be defined by (3.50). Then

(a) fθ(x) = θ αN̄ (x)
√

σ2N̄
n

.

(b) fθ ∈ A(γ,M), |θ| < θn, for all n big enough.

(c) The statistic

T =
1

σ
√
n

n
∑

k=1

yk
KN̄(x, xn

k)
√

KN̄(x, x)

has a normal distribution N (θIn, In) under fθ, where In = 1 + o(1).
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(d) The statistic T is sufficient and the log-likelihood Λ := log dPθ

dP0
(y) satisfies

Λ = θT − θ2

2
In

where Pθ and P0 denote the probabilities associated with fθ and f0 respectively.

Proof of lemma.

(a) This follows directly from the definitions of fθ and αN̄(x).

(b) Obviously fθ(z) is analytic in the whole complex plane, thus also in Eγ. Using (3.17),
applying the Cauchy-Schwartz inequality and recalling the definition of N̄ = N̄n, we obtain

|fθ(z)| ≤ θN̄

√

σ2

n

(

K2
N̄

(x, z)

KN̄(x, x)

)1/2

≤
√

σ2N̄

n
K

1/2

N̄
(z, z) =

√

σ2N̄

n

(

N̄−1
∑

r=0

p2
r(z)

)1/2

≤
√

σ2N̄

n

(

N̄−1
∑

r=0

(2r + 1)e2γr

)1/2

= O(1)
N̄√
n
eγN̄ = O(N̄−1/2) ≤ M,

in Eγ for all n large enough.

(c) Denote

In =
1

n

n
∑

k=1

K2
N̄

(x, xn
k)

KN̄(x, x)
.

We can see that T is normally distributed,

ET =
1

σ
√
n

n
∑

k=1

fθ(x
n
k)

KN̄(x, xn
k)

√

KN̄ (x, x)
= θ

1

n

n
∑

k=1

K2
N̄

(x, xn
k)

KN̄(x, x)
= θIn, and

VarT =
1

n

n
∑

k=1

K2
N̄

(x, xn
k)

KN̄(x, x)
= In.

Thus T ∼ N (θIn, In). Now let us show that In → 1 when n → ∞. Using Lemma 3.1(a)
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and the Cauchy-Schwartz inequality, we find obtains

In =
1

n
K−1

N̄
(x, x)

n
∑

k=1

K2
N̄(x, xn

k) =
1

n
K−1

N̄
(x, x)

n
∑

k=1

(

N̄−1
∑

r=0

pr(x)pr(x
n
k)

)2

= K−1
N̄

(x, x)

N̄−1
∑

r1=0

N̄−1
∑

r2=0

(

pr1(x)pr2(x)
1

n

n
∑

k=1

pr1(x
n
k)pr2(x

n
k)

)

= K−1
N̄

(x, x)

N̄−1
∑

r1=0

N̄−1
∑

r2=0

(

pr1(x)pr2(x)

(

δr1 r2 +O

(

N6

n2

)))

= K−1
N̄

(x, x)

N̄−1
∑

r=0

p2
r(x) +O

(

N̄6

n2

)

K−1
N̄

(x, x)

N̄−1
∑

r1=0

N̄−1
∑

r2=0

pr1(x)pr2(x)

= 1 +O

(

N̄6

n2

)

K−1
N̄

(x, x)

(

N̄−1
∑

r=0

pr(x)

)2

= 1 + o(1), (n→ ∞). (3.53)

(d) It is easy to see that the log-likelihood

Λ = log

n−1
∏

k=0

exp

{

− 1

2σ2

(

yk − fθ(x
n
k)
)2

+
1

2σ2
y2

k

}

= − 1

2σ2

n
∑

k=1

(yk − fθ(x
n
k))2 +

1

2σ2

n
∑

k=1

y2
k

= θ
1

σ
√
n

n
∑

k=1

yk
KN̄(x, xn

k)
√

KN̄(x, x)
− θ2

2n

n
∑

k=1

K2
N̄

(x, xn
k)

KN̄ (x, x)

= θ T − θ2

2
In.

This completes the proof of the lemma. 2
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Now we can continue the proof of the theorem. Given α2
N̄

(x) ∼ α2
N(x), see eq. (3.52),

R := inf
f̃n

sup
f∈A(γ,M)

Ef w

(

α−1
N (x)

√

n

σ2N

(

f̃n(x) − f(x)
)

)

(3.54)

= inf
f̃n

sup
f∈A(γ,M)

Ef w

(

α−1
N̄

(x)

√

n

σ2N̄

(

f̃n(x) − f(x)
)

(1 + o(1))

)

(3.55)

≥ inf
f̃n

sup
fθ

Efθ
w

(

(1 + o(1))α−1
N̄

(x)

√

n

σ2N̄

(

f̃n(x) − fθ(x)
)

)

, (N̄ → ∞).

Denote θ̃ = α−1
N̄

(x)
√

n
σ2N̄

f̃n(x). Then applying Lemma 3.3(a)

R ≥ inf
θ̃

sup
|θ|≤θn

Eθ w
(

(θ̃ − θ)(1 + o(1))
)

, (n→ ∞).

Since |θ| ≤ θn, we can restrict ourselves exclusively to estimators such that |θ̃| ≤ θn; other-
wise trimming θ̃, at an appropriate level, will produce a smaller risk. For such estimators
|θ̃ − θ| ≤ 2θn. Now, from equations (3.54) and (3.55), applying Lemma 3.1(b) and defi-
nition (3.51) of N̄ we can verify that the term o(1) in the previous equation is of order
(logN)/N . Thus θno(1) → 0 and therefore the previously mentioned estimators satisfy
|θ̃ − θ|o(1) → 0. Hence

R ≥ inf
θ̃

sup
|θ|≤θn

Eθ w
(

(θ̃ − θ) + o(1)
)

, (n→ ∞).

We can approximate any loss function w ∈ W, by a sequence of bounded uniformly con-
tinuous functions wδ ∈ W such that wδ ↗ w when δ → 0 and see that for any δ

R ≥ inf
θ̃

sup
|θ|≤θn

Eθ wδ

(

(θ̃ − θ) + o(1)
)

= inf
θ̃

sup
|θ|≤θn

Eθ wδ (θ̃ − θ) + o(1).

Now let us fix an arbitrary prior density λ on (−θn, θn) with a finite Fisher information
I(λ). Then

inf
θ̃

sup
|θ|≤θn

Eθ wδ (θ̃ − θ) ≥ inf
θ̃

∫ θn

−θn

Eθ wδ (θ̃ − θ)λ(θ)dθ

= inf
θ̃(T )

∫ θn

−θn

Eθ wδ (θ̃(T ) − θ)λ(θ)dθ

given that T is sufficient for θ, according to Lemma 3.3(c). Applying results presented in
Levit [1980], we get that

inf
θ̃

sup
|θ|≤θn

Eθ wδ (θ̃ − θ) ≥ E wδ(ξ) +O(θ−2
n ), (n→ ∞),
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where ξ ∼ N (0, 1). Thus lim infn→∞R ≥ Ewδ(ξ). Applying the dominate convergence
theorem for δ → 0 we get

lim inf
n→∞

inf
f̃n

sup
f∈A(γ,M)

Ef w

(

α−1
N (x)

√

n

σ2N

(

f̃n(x) − f(x)
)

)

≥ Ew(ξ). (3.56)

Finally, from (3.49) and (3.56) the theorem is proved. 2

Corollary 3.1 For any [a, b] ⊂ (−1, 1), uniformly in x ∈ [a, b],

lim
n→∞

inf
f̃n

sup
f∈A(γ,M)

E w

(√

(1 − x2)1/2
πn

σ2Nn

(

f̃n(x) − f(x)
)

)

= lim
n→∞

sup
f∈A(γ,M)

E w

(√

(1 − x2)1/2
πn

σ2Nn

(

f̂n(x) − f(x)
)

)

= Ew(ξ)

where f̃n and f̂n are as in the Theorem 3.1. For x = ±1,

lim
n→∞

inf
f̃n

sup
f∈A(γ,M)

Ef w

(
√

n

σ2N2
n

(

f̃n(x) − f(x)
)

)

= lim
n→∞

sup
f∈A(γ,M)

Ef w

(
√

n

σ2N2
n

(

f̂n(x) − f(x)
)

)

= Ew(ξ).

3.2.3 Estimation in the Chebyshev design

Consider now the design given by the Chebyshev knots (3.26). Following the notation of
Section 3.1.3 define the estimator

f̂n,N(x) =
1

n

n
∑

k=1

ykKN(x, xn
k) =

N−1
∑

r=0

(

1

n

n
∑

k=1

yktr(x
n
k)

)

tr(x). (3.57)

As before, we will write, with a slight abuse of the notation

f̂n,N(x) = (y |KN(x, ·)) =

N−1
∑

r=0

(y|tr) tr(x), (3.58)

and consider the two functions

fN(x) = 〈f |KN(x, ·)〉 =

N−1
∑

r=0

〈f | tr〉 tr(x), (3.59)

and

fn,N(x) = (f |KN(x, ·)) =
N−1
∑

r=0

(f |tr) tr(x); (3.60)

see the footnote on page 50 with regards to these notations. Then the following result
holds.
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Theorem 3.2 For any w ∈ W and every x ∈ [−1, 1]

lim
n→∞

sup
f∈A(γ,M)

Ef w

(

β−1
N (x)

√

n

σ2N

(

f̂n(x) − f(x)
)

)

=

lim
n→∞

inf
f̃n

sup
f∈A(γ,M)

Ef w

(

β−1
N (x)

√

n

σ2N

(

f̃n(x) − f(x)
)

)

= Ew(ξ)

where f̃n is an arbitrary estimator of f , f̂n = f̂n,N is the projection estimator (3.58) with

N = Nn :=

⌊

1

2γ
log
(

M2 γ (1 − e−γ)−2n
)

⌋

, (3.61)

β2
N(x) is defined by (3.28) and ξ ∼ N (0, 1).

Remark 3.3 Note that β2
N(x) plays the same role in the present context of estimation

using Chebyshev design as played by α2
N(x) in the previous Legendre case.

Proof: the upper bound. The proof of this theorem is similar to the proof of the
equivalent result for Legendre polynomials, Theorem 3.1. However, notice that in the case
of Chebyshev polynomials we have exact orthogonality, and not just asymptotic orthogo-
nality, as for the Legendre polynomials; compare the Lemmas 3.1(a) and 3.2(a). This will
make some computations more straightforward. Some steps in this proof will be presented
somewhat differently; we will keep track of the dependency in the variance and the bias on
the parameters of the class, γ and M . This will be used in the next section for adaptive
estimation.

Let N ∈ N. Applying the same decomposition as in Theorem 3.1, cf. (3.37) and (3.38),
we have

E(f̂n,N(x) − f(x))2 = Var v2
N(x) + b2N (x). (3.62)

Let us first analyze the variance of vN (x). As before (cf. eq. (3.39)), applying Lemma 3.2(a)
we obtain

Var vN(x) =
σ2

n

N−1
∑

r1=0

N−1
∑

r2=0

tr1(x)tr2(x)δr1r2 = β2
N(x)

σ2N

n
(3.63)

for any x ∈ [−1, 1].
Now let us consider the bias

bN (x) =
(

fn,N(x) − fN(x)
)

+
(

fN(x) − f(x)
)

. (3.64)

Using Cauchy-Schwartz inequality we see that

(

fn,N(x) − fN(x)
)2 ≤

N−1
∑

r=0

(

(f | tr) − 〈f | tr〉
)2

N−1
∑

r=0

t2r(x)

= N β2
N (x)

N−1
∑

r=0

(

(f | tr) − 〈f | tr〉
)2
. (3.65)
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If we rewrite the inner products as

(f | tr) =
1

π

n
∑

k=1

f
(

cos(k − 1/2)
π

n

)

cos
(

r(k − 1/2)
π

n

) π

n

and

〈f | tr〉 =
1

π

∫ π

0

f(cos ζ) cos(rζ)dζ

(cf. eqs. (3.19) and (3.25)), we can apply the same arguments that we used in (3.43)–(3.45).
Using the bounds for the derivatives of f given in eq. (3.1) we find that

∣

∣(f | tr) − 〈f | tr〉
∣

∣ ≤ π

24

(π

n

)2

max
ζ

∣

∣

∣

∣

d2

dζ2
f(cos ζ) cos(rζ)

∣

∣

∣

∣

≤ π3

24n2
M

(

r2 +
(2r + 1)

ργ

+
2

ρ2
γ

)

≤ π3(r + 1)2

6n2
M max(1, ρ−1

γ , ρ−2
γ ) = MCγ

(r + 1)2

n2
(3.66)

where, using (3.2), one can verify that

Cγ = O(1 − e−γ)−4, (3.67)

both at γ = 0 and γ = ∞ and it is bounded when γ is varying in compact subsets of (0,∞).
Thus, both for γ → 0 and for γ → ∞, uniformly in N

(

fn,N(x) − fN(x)
)2

= β2
N (x)O

(

M2 (1 − e−γ)−8N
6

n4

)

. (3.68)

If we choose N = Nn

(

fn,N(x) − fN(x)
)2

= o(1)VarvN (x), (n→ ∞). (3.69)

In the previous section we saw that in order to bound the truncation error term fN(x)−f(x)
it was necessary to consider separately two cases: |x| < 1 and |x| = 1 (cf. eqs. (3.47)
and (3.48)). Now, one can see that both cases can be considered simultaneously. From
(3.23) one can see that for any x and N = Nn

(

fN (x) − f(x)
)2 ≤ 2πM2(1 − e−γ)−2 e−2γN = O

( 1

γn

)

(3.70)

= β2
N(x)

σ2N

n
O
( 1

γN

)

= o(1)VarvN (x), (3.71)
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when n→ ∞. From (3.62)–(3.64), (3.69) and (3.71) we have proved that

E
(

f̂n,N(x) − f(x)
)2

= β2
N (x)

σ2N

n
(1 + o(1)), (n→ ∞),

which holds uniformly on [−1, 1]. It follows that

β−1
N (x)

√

n

σ2N

(

f̂n,N(x) − f(x)
)

is normally distributed with mean of order o(1) and variance equal 1 + o(1), n→ ∞, uni-
formly with respect to f ∈ A(γ,M). Therefore using the dominated convergence theorem
we obtain the upper bound:

lim
n→∞

sup
f∈A(γ,M)

Ef w

(

β−1
N (x)

√

n

σ2N

(

f̂n(x) − f(x)
)

)

= Ew(ξ). (3.72)

Proof of the lower bound for the risk. We can follow the same proof of the lower
bound we did in Theorem 3.1. For fixed x ∈ [−1, 1] and any z ∈ C consider again the
parametric sub-family of functions

fθ(z) = θ

√

σ2

n

KN̄(x, z)
√

KN̄(x, x)
|θ| < θn = N̄1/2 (3.73)

where KN̄ is now defined in terms of the Chebyshev polynomials and

N̄ = N̄n = bNn − 3 logNnc (3.74)

(cf. definition of Nn in eq. (3.61)).

Lemma 3.4 The following properties are satisfied for any x ∈ [−1, 1]:

(a) fθ(x) = θ βN̄ (x)
√

σ2N̄
n

.

(b) fθ ∈ A(γ,M), |θ| < θn, for n big enough.

(c) The statistic

T =
1

σ
√
n

n
∑

k=1

yk
KN̄(x, xn

k)
√

KN̄(x, x)

has the normal distribution N (θ, 1) under fθ, i.e. it can be represented as

T = θ + ξ (3.75)

where ξ ∼ N (0, 1).
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(d) The statistic T is sufficient and the log-likelihood satisfies

Λ := log
dPθ

dP0
= θT − θ2

2
. (3.76)

where Pθ and P0 denote the probabilities associated with fθ and f0 respectively.

Proof of the lemma. The proof is the same as that of Lemma 3.3. Nevertheless, a couple
of remarks can be made. First, the bound (3.17) for Legendre polynomials is also a bound
for the Chebyshev polynomials, thus the proof of (b) remaines the same. Second, in the
present case, In = 1 given exact orthogonality of Chebyshev polynomials (cf. eq. (3.53)).
The rest of the proofs of the lemma and the theorem remain the same and we get

lim inf
n→∞

inf
f̃n

sup
f∈A(γ,M)

Ef w

(

β−1
N (x)

√

n

σ2N

(

f̃n(x) − f(x)
)

)

≥ Ew(ξ). (3.77)

The theorem follows from (3.72) and (3.77). 2

Corollary 3.2 For any [a, b] ⊂ (−1, 1) uniformly in x ∈ [a, b]

lim
n→∞

sup
f∈A(γ,M)

Ef w

(√

n

σ2Nn

(

f̂n(x) − f(x)
)

)

=

lim
n→∞

inf
f̃n

sup
f∈A(γ,M)

Ef w

(√

n

σ2Nn

(

f̃n(x) − f(x)
)

)

= Ew(ξ)

where f̃n and f̂n are as in the previous Thorem. For x = ±1,

lim
n→∞

sup
f∈A(γ,M)

Ef w

(√

n

2σ2Nn

(

f̂n(x) − f(x)
)

)

=

lim
n→∞

inf
f̃n

sup
f∈A(γ,M)

Ef w

(√

n

2σ2Nn

(

f̃n(x) − f(x)
)

)

= Ew(ξ)

Till now we have proved, first, that the polynomial estimators we proposed, with
the order of polynomials adequately chosen, are asymptotically minimax for fixed classes
A(γ,M). Secondly, we have seen that the optimal rate of convergence may be affected by
the chosen design; in particular the rate of convergence at the end-points of the interval is
worse for the Legendre design as compared to the Chebyshev design. For that reason, we
will restrict ourselves to the study of the regression problem on a bounded interval under
the Chebyshev design. In the next subsection we will make necessary steps towards the
adaptive framework.
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3.2.4 Estimation for non-fixed classes

In order to create an adaptive framework we follow the same procedure as in the previous
chapter. This procedure is based on the ideas introduced in Lepski and Levit [1998]. The
basic underlying idea is to allow the parameters of the model – in our case γ and M – take
values from the broadest possible set, pushed to its ‘limits’. Such ‘limits’ can be taken to
be the extreme values for which either there is no consistency or, on the other hand, a
parametric rate O(n−1) is possible. Since in both cases these extreme values are not some
fixed values (γextr,M extr), but rather should be thought as some sequences (γextr

n ,M extr
n ),

our first step towards the adaptive framework will be to look for corresponding results in
the situation where the parameters of the model, though known, are allowed to depend
on n.

Thus we will assume in this subsection that although the parameters γ = γn > 0 and
M = Mn > 0 are still known, they may depend on the number of observations n. As we
saw in the previous chapter, this is not yet a proper adaptive framework. However it will
allow us to explore the ‘limits’ of the model if the parameters have more freedom. Let
Nn be as it was defined in Theorem 3.2. The dependence of Nn on n comes also from the
parameters γ,M in the present situation. Nevertheless, the statement of Theorem 3.2 will
still hold provided the appropriate assumptions are fulfilled.

Theorem 3.3 Let w ∈ W, γ = γn, M = Mn and let N = Nn be as defined in (3.61). If
the following conditions are satisfied

lim
n→∞

γN = ∞, (3.78)

lim
n→∞

M2(1 − e−γ)−8N5 n−3 = 0, (3.79)

lim
n→∞

N = ∞, (3.80)

then

lim
n→∞

sup
f∈A(γ,M)

Ef w

(

β−1
N (x)

√

n

σ2N

(

f̂n(x) − f(x)
)

)

=

lim
n→∞

inf
f̃n

sup
f∈A(γ,M)

Ef w

(

β−1
N (x)

√

n

σ2N

(

f̃n(x) − f(x)
)

)

= Ew(ξ),

for all x ∈ [−1, 1]. Here f̃n is an arbitrary estimator of f and f̂n = f̂n,N is the projection
estimator (3.58).

Proof. Note that the previous conditions were automatically fulfilled in the case of fixed
classes. The proof in the general case is similar to the proof of Theorem 3.2, and consists
in checking that the conditions (3.78) and (3.79) guarantee asymptotic unbiasness of the
optimal estimator (cf. eqs. (3.68) and (3.71)), while (3.80) allow us to prove the lower
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bound result. The rest of the proof is the same. 2

Though conditions (3.78)–(3.80) are sufficient to prove optimality results in non-fixed
classes, it may be more convenient to express them explicitly in terms of the parameters γ
and M , as is done in the following theorem.

Theorem 3.4 Let w ∈ W and the parameters γ = γn and M = Mn be such that

lim sup
n→∞

M2

log n
= 0, (3.81)

lim inf
n→∞

M2 logn = ∞, (3.82)

lim sup
n→∞

γ

log logn
= 0, (3.83)

lim inf
n→∞

γ logn = ∞, (3.84)

then, with N = Nn defined by (3.61),

lim
n→∞

sup
f∈A(γ,M)

Ef w

(

β−1
N (x)

√

n

σ2N

(

f̂n(x) − f(x)
)

)

=

lim
n→∞

inf
f̃n

sup
f∈A(γ,M)

Ef w

(

β−1
N (x)

√

n

σ2N

(

f̃n(x) − f(x)
)

)

= Ew(ξ),

for all x ∈ [−1, 1]. Here f̃n is an arbitrary estimator of f and f̂n = f̂n,N is the projection
estimator (3.58).

Proof. In order to prove the theorem, we only need to verify that hypothesis of the
Theorem 3.3 are satisfied, i.e. we just need to assure that the limits (3.78)–(3.80) are still
valid (cf. eqs. (3.68) and (3.71)). If γ and M are bounded then trivially (3.78)–(3.80) hold.
Let us consider the two extreme cases γ → 0 and γ → ∞. Remember that

N = Nn =

⌊

1

2γ
log
(

M2 γ(1 − e−γ)−2n
)

⌋

.

Case γ → 0 : Applying some asymptotics and conditions (3.82) and (3.83), we see that for
n large enough

M2γ(1 − e−γ)−2n ∼ M2γ−1n ≥ γ−1 log n → ∞.

Thus γN and N go to infinity. Using (3.81) and (3.84)

M2(1 − e−γ)−8N5n−3 = O
(

M2γ−13n−3 log5(M2γ−1n)
)

= O
(

n−3 log14 n log5(n log2 n)
)

= o(1).
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Case γ → ∞: Applying (3.82) and (3.83)

N ≥ logM2n

2γ
= O

(

log n

log logn

)

→ ∞, (n→ ∞),

thus N and γN go to infinity. From (3.81) and (3.84)

M2(1 − e−γ)−8N5n−3 = O
(

M2γ−5n−3 log5(M2γn)
)

= O
(

n−3 log n log5(n log n)
)

= o(1), (n→ ∞).

Thus the theorem is proved. 2

3.3 Adaptive minimax regression

3.3.1 Adaptive estimation in functional scales

In the previous section we described asymptotically minimax estimators for classes A(γ,M)
where the parameters γ andM were known. However, in practice we do not usually know to
which class the unknown function belongs, in other words we do not know the smoothness
parameters. A data-dependent method for choosing an estimator in the presence of the
unknown smoothness parameters is then necessary. We follow here the same procedure that
we used in the previous chapter in order to create the adaptive framework in a situation
where γ and M are unknown.

Let υ = (γ,M) where υ belongs to the region Γn ⊂ R2
+. Let A(υ) = A(γ,M) and

define the functional scale AΓn ,

AΓn :=
{

A(υ)
∣

∣ υ ∈ Γn

}

,

corresponding to the parameter class Γn. As our scales AΓn can be identified with corre-
sponding subsets Γn, we will speak sometimes about a scale Γn, instead of AΓn , when there
is no risk it could lead to a confusion.

From now on we will restrict ourselves to the loss functions w(x) = |x|p, p > 0. Let
AΓn be a functional scale, and F a class of estimators f̃n, both possibly depending on n.

Definition 3.2 An estimator f̂n ∈ F is called (p,Γn,F)-adaptively minimax, at a point
x ∈ R, if for any other estimator f̃n ∈ F

lim sup
n→∞

sup
υ∈Γn

supf∈A(υ) Ef |f̂n(x) − f(x)|p

supf∈A(υ) Ef |f̃n(x) − f(x)|p
≤ 1.

As it was discussed in the previous chapter, this property depends crucially on which
classes Γn and F are considered. The rate of convergence in estimating f(x) over the
whole scale AR2

+
can be of any order; it can vary from extremely fast parametric rates to
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extremely slow non-parametric ones, even to no consistency at all. We thus define a type
of scales, so-called regular-pseudo-parametric scales, for which the parametric rate n−1/2

can be achieved, consider estimators which are rate efficient on these scales and build an
adaptive minimax estimator in regular-non-parametric ones.

Definition 3.3 A functional scale AΓn (or the corresponding scale Γn) is called a regular,
or an R-scale if the condition

lim
n→∞

sup
υ∈Γn

M2(1 − e−γ)−8N5
n(υ)n−3 = 0, (3.85)

where Nn(υ) was defined in (3.61), is satisfied.

The previous condition is aimed to guarantee that the approximation arguments which
were used in (3.68) and (3.69) are still applicable. Let us remark that in this condition the
powers of the terms are not so relevant as far as we have Nn(υ) of orden logn at most.

We shall restric our study to regular scales. Two special cases of regular scales are:

Definition 3.4 A functional scale AΓn (a scale Γn) is called a regular-pseudo-parametric,
or RPP-functional scale (regular-pseudo-parametric, or RPP-scale) if there exit finite con-
stants M+and C+ such that for all (γ,M) ∈ Γn uniformly

lim sup
n→∞

sup
υ∈Γn

M ≤M+, and (3.86)

lim sup
n→∞

sup
υ∈Γn

γ−1 log n ≤ C+. (3.87)

Regular-pseudo-parametric scales are regular, in the sense of Definition 3.3, and uni-
formly on them, we have parametric rates, i.e. the rate n−1/2 is achieved given

lim sup
n→∞

sup
υ∈Γn

Nn(υ) <∞. (3.88)

Definition 3.5 A functional scale AΓn (a scale Γn) is called a regular-non-parametric, or
RNP-functional scale (regular-non-parametric, or RPP-scale) if

lim sup
n→∞

sup
υ∈Γn

M2

logn
= 0, (3.89)

lim inf
n→∞

inf
υ∈Γn

M2 log n = ∞, (3.90)

lim inf
n→∞

sup
υ∈Γn

γ

log logn
= 0, (3.91)

lim inf
n→∞

inf
υ∈Γn

γ log n = ∞. (3.92)
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Note that conditions for regular-non-parametric scales require that the assumptions of
Theorem 3.4 hold uniformly on RNP-scales. Thus, according to the proof of Theorem 3.4,
the conditions of Theorem 3.3 also hold uniformly in RNP-scales; in particular

lim inf
n→∞

inf
υ∈Γn

Nn(υ) = ∞. (3.93)

Also notice that regular-non-parametric scales are regular, in the sense of Definition 3.3.
Let Fp = Fp(x) be the class of all estimators f̃n that satisfy

lim sup
n→∞

sup
υ∈Γn

sup
f∈A(υ)

Ef

∣

∣

∣
n1/2

(

f̃n(x) − f(x)
)

∣

∣

∣

p

<∞

for any RPP-functional scales AΓn and let F0
p = F0

p (x) be the class of all estimators such
that

lim sup
n→∞

E0

∣

∣

∣
n1/2 f̃n(x)

∣

∣

∣

p

<∞.

One can see that Fp ⊂ F0
p , since f ≡ 0 belongs to any of the classes A(γ,M). Below

we present an adaptive estimator f̂n ∈ Fp and prove an upper bound on the quality of
the estimator in RNP-functional scales. Then we prove a lower bound with the same
rate for any estimator in F 0

p . Finally we shall conclude that our adaptive estimator is
(p,Γn,Fp)-adaptive minimax for RNP-functional scales.

3.3.2 Upper bound on the quality of adaptive estimators

Theorem 3.5 For any p > 0 there exists an adaptive estimator f̂h such that for any x ∈ R

and for any RNP-functional scale AΓn, f̂n ∈ Fp and

lim sup
n→∞

sup
υ∈Γn

sup
f∈A(υ)

Ef

∣

∣

∣
ψ−1

n (υ)
(

f̂n(x) − f(x)
)

∣

∣

∣

p

≤ 1.

Here

ψ2
n(υ) = p (logNn) · β2

Nn
(x)

σ2Nn

n

where Nn was defined in (3.61) for any υ ∈ Γn.

The estimator. Let us first describe our adaptive estimator. Fix the parameters,
1/2 < l < 1, 1/2 < δ < 1, p1 > 0, l1 = δl and consider the sequence of truncation or-
ders N0 = 0, Ni = bexp(il)c for i = 1, 2, . . .. Two consecutive elements of this sequence
satisfy

Ni+1 −Ni ∼ l(logNi)
1− 1

l Ni → ∞ (i→ ∞) (3.94)

but, at the same time, they are close enough so that they are asymptotically equivalent,

Ni+1

Ni
∼ elil−1 ∼ 1 (i→ ∞). (3.95)
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For each n we will consider the subsequence Sn =
{

N0, N1, . . . , NIn

}

, where

In = arg max
i

{

Ni ≤ n1/2
}

. (3.96)

Since for any δ, (0 < δ < 1/2) and for n large enough, Nn(υ) ≤ n1/2−δ for all υ in any
RPP scale as well as any RNP scales, one can always find i(υ) ≤ In such that

Ni(υ)−1 < Nn(υ) ≤ Ni(υ). (3.97)

Let us denote

f̂i(x) = f̂n,Ni
(x), bi = Ef f̂i(x) − f(x),

σ2
i = Varf f̂i(x), σ̂2

i = β2
Ni

(x)
σ2Ni

n
,

σ2
i,j = Varf

(

f̂j(x) − f̂i(x)
)

, σ̂2
i,j = σ̂2

j − σ̂2
i ,

and define the sequence of thresholds

λ2
j = p logNj + p1 logδ Nj.

Adaptive procedure. Define

î = min
{

1 ≤ i ≤ In :
∣

∣f̂j(x) − f̂i(x)
∣

∣ ≤ λj σ̂i,j ∀j (i ≤ j ≤ In)
}

.

We will prove that the estimator
f̂n(x) = f̂î(x)

satisfies Theorem 3.5. First, however, we derive some inequalities which are necessary for
the proof.

Lemma 3.5 Using the previous notation, uniformly with respect to υ in any RPP or
RNP-scale, and uniformly with respect to 1 ≤ i, j ≤ In, as n→ ∞,

(a) b2j = o(1) σ̂2
j for all j such that i(υ) ≤ j ≤ In;

(b) σ2
j = σ̂2

j for all j;

(c) (bj − bi)
2 = O(1) σ̂2

i,j for all i, j such that i(υ) ≤ i ≤ j ≤ In;

(d) σ2
i,j = σ̂2

i,j for all i, j.
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Proof of lemma. (a) As we saw before

b2j ≤ 2
(

fn,Nj
(x) − fNj

(x)
)2

+ 2
(

fNj
(x) − f(x)

)2
.

From equations (3.68), (3.96), and conditions for RPP scales, or as well, conditions for
RNP-scales (cf. Definitions 3.4 and 3.5), we have

(

fn,Nj
(x) − fNj

(x)
)2 ≤ β2

Nj
(x)

σ2Nj

n
O
(

M2(1 − e−γ)−8N5
j n

−3
)

≤ β2
Nj

(x)
σ2Nj

n
O
(

M2(1 − e−γ)−8n−1/2
)

= o(1) σ̂2
j .

From (3.71),

(

fNj
(x) − f(x)

)2 ≤ 2πM2(1 − e−γ)−2 e−2γNj ≤ 2πM2(1 − e−γ)−2 e−γNn

= O
( 1

γn

)

= O
( 1

γNj

)

σ̂2
j .

In RPP-scales γ goes to infinity uniformly, thus γNj goes to infinity uniformly for all
Nj ≥ N1. In RNP-scales γNj ≥ γNn → ∞. Thus

(

fNj
(x) − f(x)

)2
= o(1) σ̂2

j ,

as n → ∞. Thus from previous equations we have that b2j = o(1) σ̂2
j for all j ≥ i(υ),

uniformly in RPP- as well as RNP-functional scales.

(b) From (3.63), taking N = Nj, we obtain

σ2
j = Var f̂j(x) = β2

Nj
(x)

σ2Nj

n
= σ̂2

j .

(c) We have

(

bj − bi
)2

=
(

fn,Nj
(x) − fn,Ni

(x)
)2

≤ 2
(

(fn,Nj
(x) − fNj

(x)) − (fn,Ni
(x) − fNi

(x))
)2

+ 2
(

fNj
(x) − fNi

(x)
)2

:= 2 b21(x) + 2 b22(x).

Now,

b1 =
(

fn,Nj
(x) − fNj

(x)
)

−
(

fn,Ni
(x) − fNi

(x)
)

=

Nj−1
∑

r=Ni

(

(f |tr) − 〈f | tr〉
)

tr(x).
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Applying the Cauchy-Schwartz inequality, (3.66) and (3.67) we see that, as we did in (a),

b21 = O
(

M2(1 − e−γ)−8N5
j n

−4
)

(Nj−1
∑

r=0

t2r(x) −
Ni−1
∑

r=0

t2r(x)

)

= O
(

M2(1 − e−γ)−8n−1/2
)

(

β2
Nj

(x)
σ2Nj

n
− β2

Ni
(x)

σ2Ni

n

)

= o(1) (σ̂2
j − σ̂2

i ), (n→ ∞).

Also, applying the Cauchy-Schwartz inequality,

b22 ≤
(Nj−1
∑

r=Ni

|〈f | tr〉| |tr(x)|
)2

≤
∞
∑

r=Nn

|〈f | tr〉|2
Nj−1
∑

r=Ni

t2r(x),

where using (3.22), the definition (3.61) of Nn and condition (3.92) one can verify that

∞
∑

r=Nn

|〈f | tr〉|2 = O
(

M2 e−2γNn

1 − e−2γ

)

= O
( (1 − e−γ)2

γ(1 − e−2γ)

) 1

n
= O(1)

1

n
.

Now,

b22 = O(1)
1

n

(

Nj−1
∑

r=0

t2r(x) −
Ni−1
∑

r=0

t2r(x)
)

= O(1)
(

β2
Nj

(x)
σ2Nj

n
− β2

Ni
(x)

σ2Ni

n

)

= O(1) (σ̂2
j − σ̂2

i ), (n→ ∞).

Thus
(

bj − bi
)2

= O(1) (σ̂2
j − σ̂2

i )

for any x ∈ [−1, 1], when n→ ∞.

(d) Applying again the Cauchy-Schwartz inequality together with Lemma 3.2(a) we see
that

Var
(

f̂j(x) − f̂i(x)
)

=
σ2

n2

n
∑

k=1

(

KNj
(x, xn

k) −KNi
(x, xn

k)
)2

=
σ2

n

Nj−1
∑

r1=Ni

Nj−1
∑

r2=Ni

(

tr1(x)tr2(x)
1

n

n
∑

k=1

tr1(x
n
k)tr2(x

n
k)
)
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=
σ2

n

Nj−1
∑

r1=Ni

Nj−1
∑

r2=Ni

tr1(x)tr2(x)δr1r2 =
σ2

n

Nj−1
∑

r=Ni

t2r(x)

= σ̂2
j − σ̂2

i .

2

Proof of the theorem. For arbitrary scales of parameters Γn and for any f ∈ A(υ) for
some υ ∈ Γn,

Rn(f) = E
∣

∣

∣
f̂î(x) − f(x)

∣

∣

∣

p

= E
{

1{î≤i(υ)}

∣

∣f̂î(x) − f(x)
∣

∣

p
}

+ E
{

1{î>i(υ)}

∣

∣

∣
f̂î(x) − f(x)

∣

∣

p
}

:= R−
n (f) +R+

n (f).

Let us examine R−
n (f) first. We have that
{

î ≤ i(υ)
}

⊂
{

∣

∣f̂î(x) − f̂i(υ)(x)
∣

∣ ≤ σ̂î,i(υ) λi(υ)

}

⊂
{

∣

∣f̂î(x) − f̂i(υ)(x)
∣

∣ ≤ σ̂i(υ) λi(υ)

}

,

given the definition of î and the property σ̂2
i,j = σ̂2

j − σ̂2
i . Therefore

R−
n (f) ≤ E

{

1{î≤i(υ)}

(

∣

∣f̂î(x) − f̂i(υ)(x)
∣

∣ +
∣

∣f̂i(υ)(x) − f(x)
∣

∣

)p}

≤ E
(

σ̂i(υ)λi(υ) +
∣

∣f̂i(υ)(x) − f(x)
∣

∣

)p

≤ E
(

σ̂i(υ)λi(υ) + |bi(υ)| + σi(υ)|ξ|
)p

(3.98)

where ξ ∼ N (0, 1).
In RPP-scales, the family of Nn(υ), the optimum bandwidths, is uniformly bounded

with respect to υ. Thus, the families of Ni(υ) and λi(υ) are also uniformly bounded in Γn,
and we can see that the variance satisfies

σ2
i(υ) =

σ2

n

Ni(υ)−1
∑

r=0

t2r(x) ≤ 2
σ2Ni(υ)

n
= O(n−1), (3.99)

uniformly in such scales, when n → ∞. From Lemma 3.5 we know that b2i(υ) = o(1) σ̂2
i(υ),

thus b2i(υ) = o(n−1). Using the above in (3.98) we have that for any RPP-scale, uniformly,

sup
f∈A(υ)

R−
n (f) = O(n−p/2), (n→ ∞). (3.100)
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From (3.98), applying Lemma 3.5, the dominated convergence theorem and asymptotic
(3.95), uniformly in any RNP-scale

sup
f∈A(υ)

R−
n (f) ≤ ψp

n(υ)
(

1 + o(1)
)

, (n→ ∞). (3.101)

Now let us examine R+
n (f). Consider the auxiliary event

Ai =
{

ω :
∣

∣f̂i(x) − f(x)
∣

∣ ≤
√

2 σ̂i λi

}

.

Applying the Hölder and Cauchy-Schwartz inequalities we obtain

R+
n (f) = E

{

1{î>i(υ)}

∣

∣f̂î(x) − f(x)
∣

∣

p
}

=
In
∑

i=i(υ)+1

E
{

1{î=i}

∣

∣f̂i(x) − f(x)
∣

∣

p
}

=
In
∑

i=i(υ)+1

E
{

∣

∣f̂i(x) − f(x)
∣

∣

p (

1{î=i}∩Ai
+ 1{î=i}∩Ac

i

)

}

≤
In
∑

i=i(υ)+1

E
{

∣

∣f̂i(x) − f(x)
∣

∣

p
1{î=i}∩Ai

}

+

In
∑

i=i(υ)+1

E
{

∣

∣f̂i(x) − f(x)
∣

∣

p
1Ac

i

}

:= R+
n,1(f) +R+

n,2(f).

where

R+
n,1(f) =

In
∑

i=i(υ)+1

(2σ̂2
i λ

2
i )

p/2 P(̂i = i)

and

R+
n,2(f) =

In
∑

i=i(υ)+1

E1/2
∣

∣f̂i(x) − f(x)
∣

∣

2p
P1/2(Ac

i).

We have that

P(̂i = i) ≤ P(̂i ≥ i)

≤
∞
∑

j=i+1

P
(

∣

∣f̂j−1(x) − f̂i−1(x)
∣

∣ > σ̂i−1,j−1 λj−1

)

, (3.102)

but f̂j(x) − f̂i(x) = σi,jξ + bj − bi, where ξ ∼ N (0, 1). Therefore applying Lemma 3.5, (c)
and (d), and a well known bound for the tails of the normal distribution (cf. Feller [1968],
Lemma 2) we find that

P( | f̂j(x) − f̂i(x)| >σ̂i,jλj ) ≤ P

(

|ξ| > λj −
|bj − bi|
σ̂i,j

)

≤ exp

{

−1

2
(λj − C1)

2

}

≤ exp

{

−1

2
λ2

j + C1λj

}

,
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for some C1 > 0 and n large enough. Returning to (3.102) we obtain that

P(̂i ≥ i) ≤
∞
∑

j=i+1

exp

{

−1

2
λ2

j−1 + C1λj−1

}

=

∞
∑

j=i

exp

{

−1

2
λ2

j + C1λj

}

=
∞
∑

j=i

exp

{

−pj
l + p1j

l1

2
+ C1

√

pjl + p1jl1

}

≤
∞
∑

j=i

exp
{

− pjl

2
− p1j

l1

3

}

∼ 2

pl
i1−l exp

{

− pil

2
− p1i

l1

3

}

=
2

pl
i1−lN

−p/2
i exp

{

− p1i
l1

3

}

≤ C2N
−p/2
i exp

{

− p1i
l1

4

}

(3.103)

for some C2 > 0 and all i ≥ i(υ), when n is sufficiently large. Therefore uniformly in Γn

sup
f∈A(υ)

R+
1 (f) = O(n−p/2)

∞
∑

i=1

ipl/2 exp
{

− p1i
l1/4

}

= O(n−p/2), (3.104)

when n→ ∞. In order to bound R+
2 (f) note that f̂i − f(x) = bi +σiξ , ξ ∼ N (0, 1). Then

applying Lemma 3.5, (a) and (b), in the same way as before, we have

P(Ac
i) ≤ P

(

|ξ| >
√

2λi −
|bi|
σi

)

≤ P
(

|ξ| >
√

2λi −
√

2
)

≤ exp

{

−1

2

(√
2 λi −

√
2
)2
}

≤ exp
{

− λ2
i + 2λi

}

≤ exp
{

− pil − p1i
l1/2

}

∼ N−p
i exp

{

− p1i
l1/2

}

,

for all i ≥ i(υ), n large enough. Thus, applying again Lemma 3.5, (a) and (b), and previous
bound

R+
n,2(f) =

In
∑

i=i(υ)+1

E1/2
∣

∣

∣
f̂i(x) − f(x)

∣

∣

∣

2p

P1/2(Ac
i)

≤
In
∑

i=i(υ)+1

σ̂p
i E1/2

∣

∣

∣
o(1) + ξ

∣

∣

∣

2p

P1/2(Ac
i)

= O
(

β2
Ni

σ2

n

)p/2
∞
∑

i=1

exp
{

− p1i
r1/4

}

and finally
sup

f∈A(υ)

R+
n,2(f) = O

(

n−p/2
)

. (3.105)
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Finally we can conclude from (3.100), (3.101), (3.104) and (3.105) that f̂n ∈ Fp(x) and

lim sup
n→∞

sup
υ∈Γn

sup
f∈A(υ)

E
∣

∣

∣
ψ−1

n (υ)
(

fn(x) − f(x)
)

∣

∣

∣

p

≤ 1,

in RNP-scales, thus ending the proof of the theorem.

3.3.3 Lower bound

Theorem 3.6 Let p > 0. Let AΓn be an arbitrary RNP-functional scale. For each υ ∈ Γn,
define

ψn(υ) = σn(υ)φn(υ)

where

σ2
n(υ) = β2

Nn
(x)

σ2Nn

n
, φ2

n(υ) = p logNn,

and Nn is the same as in Theorem 3.5. Then, for any estimator f̃n ∈ F0
p (x)

lim inf
n→0

inf
υ∈Γn

sup
f∈A(υ)

E
∣

∣

∣
ψ−1

n (υ)
(

f̃n(x) − f(x)
)∣

∣

∣

p

≥ 1.

Proof. This proof is similar to the proof of Theorem 2.5 in Ch. 2. Denote for shortness
ψυ = ψn(υ), φυ = φn(υ) and συ = σn(υ). Choose N̄ as it was defined in (3.74), and define
ψ̄υ = σ̄υφ̄υ where

σ̄2
υ = β2

N̄ (x)
σ2N̄

n
and φ̄2

υ = p log N̄ .

Define f0 ≡ 0 and f1 = fθ for θ = φ̄υ − φ̄υ
1/2

, where fθ belongs to the parametric family
defined in (3.73). Notice that |θ| < N̄1/2 for all n big enough. According to Lemma 3.4,
f1 ∈ A(υ) and

f1(x) = θ βN̄(x)

√

σ2N̄

n
.

For an arbitrary estimator f̃n ∈ F0
p (x) denote f ∗

n = ψ̄−1
υ f̃n(x) and L = φ̄−1

υ θ. Then

ψ̄−1
υ

(

f̃n(x) − f1(x)
)

= f ∗
n − ψ̄−1

υ f1(x) = f ∗
n − φ̄−1

υ θ = f ∗
n − L (3.106)

whereas
√
n

σ

(

f̃n(x) − f0(x)
)

=

√
n

σ
ψ̄υ f

∗
n(x) =

√

N̄ φ̄υ f
∗
n(x)

= f ∗
n exp

{ log N̄

2
+ log φ̄υ

}

. (3.107)

Denote P0 and P1 the probabilities associated with f0 and f1 respectively. From equations
(3.75) and (3.76),

dP0

dP1

(y) = exp

{

−θ
2

2
− θξ

}

(3.108)
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with respect to P1, where ξ
P1∼ N (0, 1). Denote q = exp

{

− φ̄υ

}

so that q → 0 since

N̄ → ∞ (n → ∞) in NP-scales. Now, given f1 ∈ A(υ), for any f̃n ∈ F0
p (x), uniformly in

υ ∈ Γn as n goes to infinity, we have

R̄ := sup
f∈A(υ)

E(n)
∣

∣

∣
ψ̄−1

υ

(

f̃n(x) − f(x)
)

∣

∣

∣

p

≥ E1

∣

∣

∣
ψ̄−1

υ

(

f̃n(x) − f1(x)
)

∣

∣

∣

p

≥ qE0

∣

∣

∣

√
n

σ

(

f̃n(x) − f0(x)
)

∣

∣

∣

p

+

(1 − q)E1

∣

∣

∣
ψ̄−1

υ

(

f̃n(x) − f1(x)
)

∣

∣

∣

p

+O(q). (3.109)

According to (3.106)–(3.109),

R̄ ≥ q exp
{ φ̄υ

2
+ p log φ̄υ

}

E0

∣

∣

∣
f ∗

n(x)
∣

∣

∣

p

+ (1 − q)E1

∣

∣

∣
f ∗

n(x) − L
∣

∣

∣

p

+O(q)

≥ (1 − q)E1 (Z | f ∗
n(x) |p + | f ∗

n(x) − L |p ) +O(q)

≥ (1 − q)E1 inf
x

(Z |x|p + | x− L |p ) +O(q) (3.110)

where

Z = q exp
{ φ̄υ

2
+ p log φ̄υ

}dP0

dP1
.

From (3.108) and definition of θ we have

Z = exp
{

− φ̄υ +
φ̄2

υ

2
+ p log φ̄υ −

(

φ̄υ − φ̄1/2
υ

)

ξ − 1

2

(

φ̄υ − φ̄1/2
υ

)2
}

P1→ ∞

given φ̄υ → ∞. Now consider the same optimization problem as before:

min
x

{g(x) := Z|x|p + |L− x|p}.

We saw in the previous chapter that

g(xmin) = χLp (3.111)

where χ
P1→ 1. Therefore according to equations (3.110) and (3.111), uniformly in υ ∈ Γn,

R̄ ≥ (1 − q)LpE1χ+O(q) = 1 + o(1).

Finally, uniformly in Γn

sup
f∈A(υ)

E(n)
∣

∣

∣
ψ−1

υ

(

f̃n(x) − f(x)
)

∣

∣

∣

p

= sup
f∈A(υ)

E(n)
∣

∣

∣
ψ̄−1

υ

(

f̃n(x) − f(x)
)

∣

∣

∣

p

(1 + o(1))

≥ 1 + o(1).

This completes the proof of the theorem. 2
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Corollary 3.3 Let AΓn be an arbitrary RNP-scale. Then for any p > 0 and x ∈ R, the
estimator f̂n of Theorem 3.5 is (p,Γn,Fp(x))-adaptively minimax at x.

Proof. This is a consequence of Theorems 3.5 and 3.6. 2



Chapter 4

Adaptive density estimation

Until now we have been concerned with the problem of adaptive estimation in regression
models. The problem of adaptive estimation of a probability density function is no less
important. The problem of density estimation can be seen as one of the basic problems of
statistics. Here, as before, adaptivity appears given the uncertainty about the actual class
of functions. In this study we assume that the unknown density function belongs to some
of the classes A(γ, β, r) that we considered in Chapter 2.

As we shall see all through this chapter, a few important differences make the solution to
this problem technically different when compared with the regression problems previously
considered. For example, in this case the optimum bandwidth depends on f(x), so that an
asymptotic equivalent bandwidth has to be used. The optimal rate of convergence will also
depend on f(x), this will require the results be presented in restricted classes where the
function f(x) will be bounded away from zero from below. In the studied regression models,
we had normality of the estimators; in this case, we have local asymptotic normality. In
the density estimation problem, under the non-adaptive framework, we can prove local
minimax results which is better than the typically global minimax results. In other words
we can proof more precise results. The fact that the optimal rates depend on f(x) will
also make the proof of the adaptive procedure more complicated.

4.1 The model

Let X1, X2, . . . , Xn be i.i.d. random variables having common density function f . We
assume f belongs to the class A(α) = A(γ, β, r) which is the family of continuous density
functions whose Fourier transform satisfy

‖f‖2
α :=

∫

γ

β2
e2|γt|r

∣

∣F [f ](t)
∣

∣

2
dt ≤ 1. (4.1)

In Section 4.3 we shall prove local asymptotic optimality in neighborhoods of the topology
generated by the norm ‖·‖α. Recall the definition for the Fourier transform and its inverse,
in equations (2.2) and (2.3). We saw, in Chapter 2, the relation between the parameters

79
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of the class A(α) and the smoothness of its elements. Lemma 4.1 in this section also
illustrates the relation between the derivatives of the elements of A(α) and the parameters
γ, β and r.

For x ∈ R, our goal is to estimate f(x) based on the observation X = (X1, X2, . . . , Xn).
For the purpose of this study we use the family of kernel type density estimators

f̂n,s(x) = f̂n,s(x,X) =
1

n

n
∑

i=1

ks(x−Xi) (4.2)

where ks is the already known sinc-function

ks(x) =
sin sx

πx
. (4.3)

for x 6= 0 and ks(0) = s
π
. Let us recall the properties

F [ks](t) = 1 [−s,s](t) (4.4)

and
F [f ∗ ks](t) = 1 [−s,s](t)F [f ](t) (4.5)

where * represents the convolution operator.
Let W be the class of loss functions w : R → R, such that for x, y ∈ R

w(x) = w(−x),

w(x) ≥ w(y) for |x| > |y|,
and for some q > 0 and δ (0 < δ < 2)

w(x) ≤ q e|x|
2−δ

.

Denote by f̃n(x,X) an arbitrary estimator of f(x) based on X. Let Pf be the distribu-
tion of the vector X and let Ef and Varf denote expectation and variance with respect to
this measure. To shorten the notation we write f̃n(x) instead of f̃n(x,X) and we shall not
make explicit reference, in the notation of P, E and Var, to the dependence on f and n,
unless it could lead to misunderstandings.

For each n and fixed α we can define a bandwidth

sn = sn(α) =
1

γ

(

1

2
log

β2n

2πγ

)1/r

(4.6)

which helps to describe both the efficient estimator and its asymptotic variance. Using
this bandwidth we define

ρn(α) = min
{

sn, r(γsn)r
}

and, for fixed x, consider the restricted class of functions such that for some fixed 0 < ν < 1
and C > 0

A(n)
α = A(n)

α (x) =
{

f ∈ A(α) : f(x) ≥ Cρν−1
n (α)

}

. (4.7)
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Note that ρn(α) ∼ C̃ logmin(1,1/r) n, where C̃ is is a constant, and thus ρν−1
n (α) → 0 when

n→ ∞. Using the bandwidth sn for the estimator (4.2) we prove the asymptotic optimum
rate

σ2
n =

f(x)sn

πn

when optimizing the minimax risk

inf
f̃n

sup
f∈A

(n)
α

Ew
(

σ−1
n

(

f̃n(x) − f(x)
)

)

in the class of all possible estimators, for a fixed w ∈ W, cf. Theorem 4.1.
Before stating any estimation results we shall prove a couple of useful lemmas. Some

of these results will be presented in a form that will be useful in Sections 4.3 and 4.4;
particularly to evaluate the accuracy of the estimates in the Section 4.3 and to compare
estimates pairwise in Section 4.4.

4.2 Auxiliary results

The following lemma gives us a bound for any function f ∈ A(α) and its derivatives.

Lemma 4.1 Let f ∈ A(α) and denote by f (m) the mth-derivative of f (m = 0, 1, . . .).
Then there exists a constant Cr,m which does not depend on γ and β such that

∣

∣f (m)(x)
∣

∣ ≤ Cr,m
β

γm+1
.

Proof. Applying the Fourier Inversion formula (2.3), properties of the Fourier transform
of derivatives of f , Cauchy-Schwartz inequality and (4.1),

|f (m)(x)| =
1

2π

∣

∣

∣

∣

∫

(−it)me−itxF [f ](t)dt

∣

∣

∣

∣

≤ 1

2π

(
∫

|t|2mβ
2

γ
e−2|γt|rdt

)1/2(∫
γ

β2
e2|γt|r |F [f ](t)|2dt

)1/2

=
1

2π

(
∫

|t|2mβ
2

γ
e−2|γt|rdt

)1/2

=
β

2πγm+1

(∫

|t|2me−2|t|rdt

)1/2

= Cr,m
β

γm+1
. (4.8)

The following lemma gives some properties of the kernel ks(x) as well as some proper-
ties of the random variable ks(x − X). Those properties will prove to be very useful in
characterizing the kernel estimator (4.2).
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Lemma 4.2 Let f ∈ A(α) and let X be a random variable with distribution density f .
For x ∈ R and arbitrary bandwidths s1, s2 (0 ≤ s1 ≤ s2) denote

∆(x) = ks2(x) − ks1(x),
4 (4.9)

Then the following properties hold:

(a)

∣

∣∆(x)
∣

∣ ≤ s2 − s1

π
;

(b)

E2 ∆(x−X) ≤ 1

2π2

∫ s2

s1

β2

γ
e−2(γt)r

dt;

(c)

(

E ks1(x−X) − f(x)
)2 ≤ 1

2π2

∫ ∞

s1

β2

γ
e−2(γt)r

dt;

(d) there exists Cα > 0 such that

∣

∣

∣

∣

E∆2(x−X) − f(x)(s2 − s1)

π

∣

∣

∣

∣

≤ Cα .

Proof. (a) From the definition of ks we easily see that

∣

∣∆(x)
∣

∣ =
∣

∣ks2(x) − ks1(x)
∣

∣

=

∣

∣

∣

∣

sin s2x− sin s1x

πx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

cos
(

(s2 + s1)x/2
)

sin
(

(s2 − s1)x/2
)

πx/2

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

sin
(

(s2 − s1)x/2
)

πx/2

∣

∣

∣

∣

∣

≤ s2 − s1

π
.

4Note that if we take s1 = 0 and s2 = s then ∆(x) = ks(x).
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(b) Applying the Fourier inversion formula (2.3), properties (4.4) and (4.5), and Cauchy-
Schwartz inequality, we see that

E2 ∆(x−X) =

∣

∣

∣

∣

∫

(

ks2(x− y) − ks1(x− y)
)

f(y)dy

∣

∣

∣

∣

2

=

(

1

2π

∣

∣

∣

∣

∫

e−itx
(

F [ks2](t) − F [ks1](t)
)

F [f ](t)dt

∣

∣

∣

∣

)2

≤ 1

4π2

(
∫

s1≤|t|≤s2

∣

∣F [f ](t)
∣

∣dt

)2

≤ 1

2π2

∫

γ

β2
e2|γt|r

∣

∣F [f ](t)
∣

∣

2
dt

∫ s2

s1

β2

γ
e−2(γt)r

dt

≤ 1

2π2

∫ s2

s1

β2

γ
e−2(γt)r

dt.

(c) This proposition is proven in the same way as the previous one.

(

E ks1(x−X) − f(x)
)2

=

(

1

2π

∣

∣

∣

∣

∫

e−itx
(

F [ks1](t) − 1
)

F [f ](t)dt

∣

∣

∣

∣

)2

≤ 1

2π2

(
∫ ∞

s1

∣

∣F [f ](t)
∣

∣dt

)2

(4.10)

≤ 1

2π2

∫ ∞

s1

β2

γ
e−2(γt)r

dt.

(d) Applying the symmetry of ks, Parseval’s formula, property (4.4) and the infinite
differentiability of f

∣

∣

∣
E∆2(x−X) − f(x)(s2 − s1)

π

∣

∣

∣
=

∣

∣

∣

∣

∫

∆2(x− y)f(y) dy− f(x)

∫

∆2(y) dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∆2(u)(f(x+ u) − f(x)) du

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

|u|≤1

u2∆2(u) h(u) du

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

|u|>1

∆2(u)(f(x+ u) − f(x)) du

∣

∣

∣

∣

where h(u) = u−2(f(x+u)−f(x)−f ′(x)u). Using the Fourier representation of h in terms
of the Fourier transform of f , Cauchy-Schwartz inequality, and (4.1) one can bound h(u)
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as follows:

|h(u)| =
1

2π

∣

∣

∣

∣

∫

e−it(x+u) − e−itx + itue−itx

u2
F [f ](t)dt

∣

∣

∣

∣

≤ 1

2π

∫
∣

∣

∣

∣

e−itu − 1 + itu

u2
F [f ](t)

∣

∣

∣

∣

dt

≤ 1

4π

∫

t2|F [f ](t)|dt ≤ 1

4π

(
∫

β2

γ
t2e−2(γt)r

dt

)1/2

= Cr,1
β

2γ2
.

(cf. Lemma 4.1 for definition of Cr,m). Thus

∣

∣

∣
E∆2(x−X) − f(x)(s2 − s1)

π

∣

∣

∣
≤

Cr,1
β

2γ2

∫

|u|≤1

∆2(u)u2 du + 2 max
x

|f(x)|
∫

|u|>1

∆2(u) du

= Cr,1
β

2γ2

∫

|u|≤1

(

2

π
sin
(

(s2 − s1)u/2
)

)2

du+ Cr,0
2β

γ

∫

|u|>1

(

sin
(

(s2 − s1)u/2
)

πu/2

)2

du

≤ 4

π2

β

γ

(

Cr,1

γ
+ 4Cr,0

)

= Cα. (4.11)

2

4.3 Minimax density estimation in A(γ, β, r)

Theorem 4.1 Let w ∈ W . For any x ∈ R, the following global risk bound holds

lim sup
n→∞

sup
f∈A

(n)
α

Ef w

(√
πn
∣

∣f̂n,sn(x) − f(x)
∣

∣

√

f(x)sn

)

≤ Ew(ξ). (4.12)

where f̂n,sn is the projection estimator (4.2) with the bandwidth sn, defined in (4.6), and
ξ ∼ N (0, 1).

For any estimator f̃n and any non-empty vicinity V ⊂ A(α)

lim inf
n→∞

inf
f̃n

sup
f∈V ∩A

(n)
α

Ef w

(√
πn
∣

∣f̃n(x) − f(x)
∣

∣

√

f(x)sn

)

≥ Ew(ξ). (4.13)

The vicinity V corresponds to the topology generated by the norm ‖ · ‖α in A(α).
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From (4.12) and (4.13) we can conclude that the proposed estimator f̂n,sn is locally
asymptotic minimax.

lim
n→∞

sup
f∈V ∩A

(n)
α

Efw

(√
πn
∣

∣f̂n,sn(x) − f(x)
∣

∣

√

f(x)sn

)

lim
n→∞

inf
f̃n

sup
f∈V ∩A

(n)
α

Efw

(√
πn
∣

∣f̃n(x) − f(x)
∣

∣

√

f(x)sn

)

= Ew(ξ).

Proof of the upper bound. As usual we decompose the mean square error as the sum
of the bias and the variance terms. Using the estimator defined on (4.2) the mean square
error can be decomposed in the following way,

E
(

f̂n,s(x) − f(x)
)2

= E

(

1

n

n
∑

i=1

ks(x−Xi) − f(x)

)2

=
1

n
σ2

s + b2s (4.14)

where
σ2

s = Varks(x−X) (4.15)

and
bs = Eks(x−X) − f(x). (4.16)

Here X represents any of the random variables X1, . . . , Xn and thus has density function f .
Let us sketch the proof: First we show that using the bandwidth sn the estimator f̂n,sn

is asymptotically unbiased to the variance uniformly in A(n)
α . More precisely we prove that

σ2
sn

=
f(x)sn

π
(1 + o(1)) and b2sn

=
1

n
σ2

sn
o(1).

Secondly we prove that there exists δ̃ (0 < δ̃ < 1) and Cw,δ̃ > 0 such that

Ew1+δ̃(ηn) < Cw,δ̃

and we prove that uniformly with respect to f ∈ A(n)
α

ηn =

√

πn

f(x)sn

(

f̂n,sn(x) − f(x)
) d→ ξ.

where ξ ∼ N (0, 1). From the last two statements and taking a sequence of uniformly

continuous functions wδ that approximate w when δ → 0 we show that uniformly in A(n)
α ,

Ef wδ(ηn) → Ewδ(ξ) and thus the desired upper bound when δ → 0.
Now let us continue the proof. First let us consider the variance. Applying Lemma

4.2(d) taking s1 = 0 and s2 = sn we have
∣

∣

∣

∣

σ2
sn

− f(x)sn

π

∣

∣

∣

∣

≤ E2ksn(x−X) +

∣

∣

∣

∣

Ek2
sn

(x−X) − f(x)sn

π

∣

∣

∣

∣

≤ E2ksn(x−X) + Cα.
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Now, from Lemma 4.2(b), taking s1 = 0 and s2 = sn we can see that there is a constant

C̃α = Cr,0
β
γ

such that Eksn(x−X) ≤ C̃α for any f ∈ A(n)
α . Thus uniformly in A(n)

α

σ2
sn

=
f(x)sn

π

(

1 + o(1)
)

, (n→ ∞). (4.17)

Note that this asymptotic property is also valid for any bandwidth s̃n such that
f(x)s̃n → ∞ uniformly in A(n)

α .
Now let us consider the bias. We know from Lemma 4.2(c), taking s1 = sn , that

b2sn
≤ 1

2π2

∫ ∞

sn

β2

γ
e−2(γt)r

dt. (4.18)

Using the Lemma 2.2, definition of sn, and condition (4.7) for functions on the class A(n)
α ,

we get that uniformly in A(n)
α

b2sn
≤ f(x)sn

πn

1

f(x)r(γsn)r
=

f(x)sn

πn
o(1), (n→ ∞). (4.19)

Using the same tools one can verify that this property also holds for any bandwidth
s̃n ≥ sn.

Lemma 4.3 Let f ∈ A(n)
α and let sn be defined as before by (4.6). Let w ∈ W be a loss

function, then there exist δ̃ > 0 and C > 0 such that

Ew1+δ̃

(
√

πn

f(x)sn

(

f̂n,sn(x) − f(x)
)

)

< C. (4.20)

Proof. For any w ∈ W there exists δ̃ such that w1+δ̃ ∈ W. So, without loss of generality,
we just prove that for any w ∈ W there exists a constant C such that

Ew

(
√

πn

f(x)sn

(

f̂n,sn(x) − f(x)
)

)

< C. (4.21)

To prove that, it is sufficient to show that for any λ and any δ (0 < δ < 2), there is a
Cλ,δ > 0 such that for all sufficiently large n and all y

P

(
√

πn

f(x)sn

∣

∣f̂n,sn(x) − f(x)
∣

∣ > y

)

≤ Cλ,δ e
−λy2−δ

. (4.22)

According to Lemma 4.1 the functions f ∈ A(α) are uniformly bounded. Thus, for all
sufficiently large n, say n > n0, given sn goes to infinity then supf∈A(α) supx |f(x)| ≤ sn.

Since |ks| ≤ s, according to Lemma 4.2(a), it follows that |f̂n,sn(x)| ≤ sn and thus f̂n,sn(x) ≡
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f̄n(x). From the asymptotic unbiasness of f̂n,sn to the variance which was shown in (4.19)
follows that for n big enough

P

(
√

πn

f(x)sn

∣

∣f̂n,sn(x) − f(x)
∣

∣ > y

)

≤ P

(

1√
n

∣

∣

∣

∣

∣

n
∑

i=1

ksn(x−Xi) − Eksn(x−Xi)

∣

∣

∣

∣

∣

>
y

2

√

f(x)sn

π

)

.

According to Bernstein’s inequality(see Appendix), Lemma 4.2(a) and asymptotic (4.17)
this does not exceed

2 exp















− y2π−1snf(x)

8

(

σ2
sn

+ 1
3

2sn

π

√

f(x)sn

πn
y
2

)















= 2 exp















−1

8

y2

(

(1 + o(1)) + 1
3

√

sn

πf(x)n
y

)















≤















2e−
y2

24 ≤ Cλ,δ e
−λy2−δ

if y ≤ 3
2

√

πf(x)n
sn

2e−
1
8

√

πnf(x)
sn

y ≤ 2e−λy2−δ

if 3
2

√

πf(x)n
sn

≤ y ≤ 2
√

πnsn

f(x)

since for any δ (0 < δ < 2) and any λ > 0, for n large enough

1

8

√

πf(x)n

sn
y ≥ 3

16
πn =

3 (2δ)

64

(

f(x)1−δ/2nδ/2

s
1−δ/2
n

)(

2

√

πnsn

f(x)

)2−δ

≥ λy2−δ.

From (4.22), taking λ = 2, and conditions for w ∈ W, we see
∫

w(y)dP

(
√

πn

f(x)sn

∣

∣f̄n(x) − f(x)
∣

∣ ≤ y

)

≤
∫

qey2−δ

dP

(
√

πn

f(x)sn

∣

∣f̄n(x) − f(x)
∣

∣ ≤ y

)

=

∫
(

1 − P

(
√

πn

f(x)sn

∣

∣f̄n(x) − f(x)
∣

∣ ≤ y

))

q(2 − δ)y1−δey2−δ

dy

=

∫

P

(
√

πn

f(x)sn

∣

∣f̄n(x) − f(x)
∣

∣ > y

)

q(2 − δ)y1−δey2−δ

dy

= q (2 − δ)Cλ

∫ ∞

0

y1−δe−y2−δ

dy ≤ C.

Thus, the lemma is proved. 2

For the purpose of this section we need the following result just for the bandwidth sn.
However, this property will be used for a wider collection of bandwidths along this section
and the next, so we consider a more general bandwidth s̃.
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Lemma 4.4 Let f ∈ A(n)
α and let s̃ = s̃n be a bandwidth such that s̃ → ∞ and s̃

f(x)n
→ 0

as n→ ∞ uniformly in A(n)
α . Let us define

ξn =
1√
n

n
∑

i=1

Yi

σs̃

where

Yi = ks̃(x−Xi) − Ef ks̃(x−X),

and σ2
s̃ = Varks̃. Then uniformly w.r.t. f ∈ A(n)

α (cf. Ibragimov and Has’minskii [1981],
Def. on p. 365)

ξn
d→ ξ

where ξ ∼ N (0, 1).

Proof. We have that Yi, i = 1, . . . , n are i.i.d. random variables. Suppose they distribute
as a random variable Y . We see that EY = 0. We prove that

E

(

Y 2

σ2
s̃

1

{ |Y |
σs̃

> ε
√
n

})

n→∞

−→ 0 (4.23)

thus, as a consequence of Lindenberg’s theorem (cf. Ibragimov and Has’minskii [1981]), the
lemma will be proved. Applying Lemma 4.2(a) and asymptotic (4.17) we have

E

(

Y 2

σ2
s̃

1

{ |Y |
σs̃

> ε
√
n

})

= E

(

Y 2

σ2
s̃

1

{ |ks̃(x−Xi) − E ks̃(x−X)|
σs̃

> ε
√
n

})

≤ E

(

Y 2

σ2
s̃

1

{

2 max |ks̃(x)|
σs̃

> ε
√
n

})

= E

(

Y 2

σ2
s̃

1

{

2s̃

σs̃π
> ε

√
n

})

= E

(

Y 2

σ2
s̃

1

{

4s̃2

σ2
s̃π

2
> ε2n

})

= E

(

Y 2

σ2
s̃

1

{

4

π
(1 + o(1))

s̃

f(x)n
> ε2

})

when n→ ∞. By hypothesis s̃
f(x)n

→ 0 as n goes to infinity thus

E

(

Y 2

σ2
s̃

1

{ |Y |
σs̃

> ε
√
n

})

= 0 ∀n big enough.

Thus the lemma is proved. 2

Now, let us go back to the proof of the theorem. Define

ηn =

√

πn

f(x)sn

(

f̂n,sn(x) − f(x)
)
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then

ηn =

√

πn

f(x)sn

(

1

n

n
∑

i=1

ksn(x−Xi) − E ksn(x) + bsn(x)

)

=

√

πn

f(x)sn

(

σsn√
n

(

1√
n

n
∑

i=1

Yi

σsn

)

+ bsn(x)

)

=

(

πσ2
sn

f(x)sn

)1/2

ξn +

(

πnb2sn
(x)

f(x)sn

)1/2

= an ξn + bn.

From (4.17) and (4.18) we have that an
n→∞−→ 1 and bn

n→∞−→ 0, uniformly in A(n)
α , while from

Lemma 4.4, ξn
d→ ξ as n goes to infinity. Thus, applying Slutsky’s Theorem (cf. Bickel

and Doksum [1977], p. 461), we conclude that ηn
d→ ξ where ξ ∼ N (0, 1). Given ηn → ξ

in distribution then w(ηn) → w(ξ) for any function w continuous almost everywhere. The
loss functions w ∈ W are monotone in the real semiaxes then they are continuous almost
everywhere, since they can have only countable number of jumps. Converge in distribution
implies convergence in probability thus w(ηn) → w(ξ) also in probability. We also proved

in Lemma 4.3 that there exist δ̃ and C > 0 such that Ew1+δ̃(ηn) < C. Now, applying
the last two arguments we get, as a consequence of the Lr-convergence Theorem (cf. Loève
[1977], Corollary 2, p. 166), that Ew(ηn) → Ew(ξ), and thus

lim
n→∞

sup
f∈A

(n)
α

Ew

(
√

πn

f(x)sn

(

f̂n,sn(x) − f(x)
)

)

= Ew(ξ). (4.24)

Proof of the lower bound for the risk. In order to prove the lower bound let us define
a couple of auxiliary bandwidths which are smaller than sn but asymptotically equivalent
to it. So, let us denote

s̄n = γ−1 ((γsn)r − vr log(γsn))1/r , and (4.25)

s̃n = s̄n − log s̄n (4.26)

where v satisfies r(v + 1) > 1.
Our proof of the lower bound will be based on exhibiting a special parametric sub-

family in any given neighborhood V ⊂ A(α) defined by the topology corresponding to the
norm ‖ · ‖α. We will choose such a family of the form

fθ(y) = f0(y)

(

1 + θ

√

π

f0(x)s̃nn

(

ks̃n(x− y) − k̄s̃n(x)
)

)

, |θ| ≤ θn = s̃1/4
n (4.27)

where
k̄s̃n(x) = Ef0ks̃n(x−X).
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Definition 4.1 Let P
(n)
θ be the joint distribution of the sample X = (X1, X2, . . . , Xn),

given by n i.i.d observations corresponding to the marginal common density fθ, (θ ∈ Θn).

Assume that P
(n)
θ is absolutely continuous w.r.t. P

(n)
0 (for a more general case cf. Ibragimov

and Has’minskii [1981]). Let the log-likelihood

L(θ) = log
dP

(n)
θ

dP
(n)
0

(X).

We say P
(n)
θ is locally asymptotically normal (LAN) at θ = 0 as n→ ∞ if the log-likelihood

function L(θ) satisfies

L(θ) = θ∆n − 1

2
θ2 + rn,θ

where ∆n
d→ N (0, 1) and rn,θ

p→ 0 with respect to P
(n)
0 as n goes to infinity.

Lemma 4.5 Let x ∈ R, then for any neighborhood V in A(α) there exist a function f0

such that f0(x) > 0 and a parametric family of functions {fθ}, as it was defined in (4.27)
such that

(a) fθ(x) = f0(x) + θ
√

f0(x)s̃n

πn
(1 + o(1)) as n→ ∞.

(b) fθ(y) = f0(y)(1 + o(1)) as n→ ∞.

(c) fθ ∈ V , for all |θ| ≤ θn and n sufficiently large.

(d) The family P
(n)
θ corresponding to the densities fθ is LAN at θ = 0.

Proof. Let us sketch the proof. There exists a density function f ∈ V , ‖f‖α < 1 such that
f(x) > 0. Rescaling f we build a function f1 ∈ V , which is close enough to f , f1(x) > 0
and

∫

γ

β2
|t|2e2|γt|r

∣

∣F [f1](t)
∣

∣

2
dt <∞. (4.28)

Then we build a function f0 ∈ V such that f0(x) > 0 and F [f0] has finite support. We
will use this chosen f0 in (4.27) and prove (a)–(d).

To do so, consider the density function f1(x) = 1
a
f(x

a
). First, it is continuous. Second,

we know that F [f1](t) = F [f ](at). For a given a > 1

∫

γ

β2
e2|γt|r

∣

∣F [f1](t)
∣

∣

2
dt ≤

∫

γ

β2
e2|aγt|r |F [f1](t)|2dt

=
1

a

∫

γ

β2
e2|γat|r

∣

∣F [f ](at)
∣

∣

2
d(at) ≤ 1

a
< 1. (4.29)



4.3. MINIMAX DENSITY ESTIMATION IN A(γ, β, R) 91

Thus f1 ∈ A(α). The function f is continuous thus F [f ](at) → F [f ](t) for all t when
a→ 1. From this, (4.1) and (4.29), by dominated convergence theorem we see that

‖f1 − f‖2
α =

∫

γ

β2
e2|γt|r

∣

∣F [f ](at) −F [f ](t)
∣

∣

2
dt→ 0, (a→ 1).

Thus, the parameter a can be taken close enough to 1, such that f1 ∈ V and f1(x) > 0.
We know that for every a > 1 there exist a Ca such that

|t|2e2(γt)r ≤ Cae
2(aγt)r

,

thus

C1 :=

∫

γ

β2
|t|2e2|γt|r

∣

∣F [f1](t)
∣

∣

2
dt ≤ Ca

∫

γ

β2
e2|aγt|r

∣

∣F [f1](t)
∣

∣

2
dt

=
Ca

a

∫

γ

β2
e2|aγt|r

∣

∣F [f ](at)
∣

∣

2
a dt ≤ Ca

a
.

Now, for a given M > 0 let us define f0 = f1 ∗ gM where gM is the density function

gM(x) =
1 − cos2(Mx)

πMx2
.

The Fourier transform of gM is known to be

F [gM ](t) =
(

1 −M−1|t|
)

1 [−M,M ](t).

Thus the Fourier transform of the function f0, which satisfies F [f0] = F [f1]F [gM ], cf. (4.5),
has finite support in the interval [−M,M ]. Note that F [f0] ≤ F [f1] thus ‖f0‖α ≤ ‖f1‖α ≤ 1,
therefore f0 ∈ A(α). Let us show that f0 ∈ V and f0(x) > 0, at least if M is big enough.
See that

F [f1](t) −F [f0](t) = F [f1](t) −
(

1 −M−1|t|
)

F [f1](t) = M−1|t|F [f1](t)

for all |t| < M then, using (4.30),

‖ f1 − f0 ‖2
α =

1

M2

∫

|t|<M

γ

β2
|t|2e2|γt|r

∣

∣F [f1](t)
∣

∣

2
dt+

∫

|t|>M

γ

β2
e2|γt|r |F [f1](t)|2dt

≤ C1

M2
+

∫

|t|>M

γ

β2
e2|γt|r |F [f0](t)|2dt → 0, (M → ∞).

So we can fix an M such that f0 ∈ V . Moreover, given continuity and boundness of f1 we
know that

f0(x) =

∫

f1(x− y)gM(y)dy → f1(x), (M → ∞),

thus, we can take M big enough such that f0(x) ≥ f1(x)
2

> 0.
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We are now ready to prove the lemma for the function fθ defined in (4.27).

(a) We know that ks̃n(0) = s̃n

π
and k̄s̃n → f0(x) when s̃n goes to infinity. From equations

(4.25) and (4.26) one can see that s̃n goes to infinity when n goes to infinity, hence

ks̃n(0) − k̄s̃n(x) =
s̃n

π
(1 + o(1)), (n→ ∞). (4.30)

Now, if we substitute this in the definition (4.27), taking y = x, we get the desired result.

(b) Using Lemma 4.2(a) and the value of θn, given in (4.27), we can see that

∣

∣

∣

∣

θ

√

π

f0(x)s̃nn

(

ks̃n(x− y) − k̄s̃n(x)
)

∣

∣

∣

∣

≤ 2 θn

√

πs̃n

f0(x)n
(1 + o(1))

≤ 2

√

πs̃
3/2
n

f0(x)n
(1 + o(1)) = o(1) (4.31)

when n goes to infinity. Thus fθ(y) = f0(y)(1 + o(1)).

(c) From the previous result the function fθ(y) is non-negative for all y for n sufficiently
large. Obviously

∫

fθ(y)dy =

∫

f0(y)dy = 1.

We then conclude that fθ is a density function for all θ, |θ| ≤ θn, for n big enough. As we
saw before f0 is continuous so fθ is continuous too.

Let us first evaluate the α-norm of the function ψ(y) = f0(y) ks̃n(x− y). Note that

F [ψ](t) =
1

2π

∫

eixuF [f0](t + u)F [ks̃n](u) du

thus

‖ψ‖α =
1

2π

(

∫

γ

β2
e2|γt|r

∣

∣

∣

∣

∫

eixuF [f0](t+ u)F [ks̃n](u) du

∣

∣

∣

∣

2

dt

)1/2

.
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Given F [f0](t + u) = 0 when |t + u| > M and F [ks̃n](u) = 0 for u > s̃n one can see that
F [f0](t + u)F [ks̃n](u) = 0 for |t| > s̃n +M then

‖ψ‖α ≤ 1

2π

(

∫

|t|≤s̃n+M

γ

β2
e2|γt|r

(∫

∣

∣F [f0](t+ u)F [ks̃n](u)
∣

∣ du

)2

dt

)1/2

≤ 1

2π

(

∫

|t|≤s̃n+M

γ

β2
e2|γt|r

(
∫

∣

∣F [f0](t+ u)
∣

∣ du

)2

dt

)1/2

≤ C2

2π

(
∫

|t|<s̃n+M

γ

β2
e2|γt|rdt

)1/2

≤ C2

2π

(

2γ

β2

∫ s̃n+M

0

e2(γt)r

dt

)1/2

.

Now we see that s̃n +M ≤ s̃n + log s̄n for n large enough, given s̄n → ∞ when n goes to
infinity (cf. eqs. (4.25) and (4.26)). Thus, applying Lemma 2.2 we get

‖ψ‖α ≤ C2

2π

(

2γ

β2

∫ s̃n+log s̄n

0

e2(γt)r

dt

)1/2

=
C2

2π

(

2γ

β2

∫ s̄n

0

e2(γt)r

dt

)1/2

≤ C2

2π

(

(γs̄n)−r(v+1)+1 n

2πγr

)1/2

= C3n
1/2

given r(v + 1) > 1. Now

‖ fθ − f0 ‖α ≤
√

π

f0(x)s̃nn
θn

(

‖ψ‖α + ‖f0‖αk̄s̃n(x)
)

≤
√

π

f0(x)s̃
1/2
n n

(

O(n1/2) +O(s̃n)
)

= o(1), (n→ ∞).

(d) Now we prove the last part. Denote

Yi = ks̃n(x−Xi) − k̄s̃n(x). (4.32)

Using the Taylor expansion, the log-likelihood w.r.t. f0 can be expressed as

L(θ) =

n
∑

i=1

log

(

1 + θ

√

π

f0(x)ns̃n
Yi

)

= θ

√

π

f0(x)ns̃n

n
∑

i=1

Yi −
θ2

2

π

f0(x)s̃n

1

n

n
∑

i=1

Y 2
i +O(1)

θ3

f
3/2
0 (x)n3/2s

1/2
n (n)

n
∑

i=1

Y 3
i

= θ∆n − θ2

2
+ rn (4.33)
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where

∆n =
1√
n

n
∑

i=1

Yi
√

f0(x)s̃n

π

,

and

rn =
θ2

2

(

π

f0(x)s̃n

1

n

n
∑

i=1

Y 2
i − f0(x)

)

+O(1)
θ3

f
3/2
0 (x)n3/2s̃

3/2
n

n
∑

i=1

Y 3
i .

Using (4.17), Lemma 4.4 and Slutsky’s theorem we have that ∆n → N (0, 1) in distribution
with respect to f0. By the Law of Large Number

π

f0(x)s̃n

1

n

n
∑

i=1

Y 2
i − 1

P
(n)
0−→ 0

where P
(n)
0 is the distribution of X1, X2, . . . , Xn corresponding to f0 and

rn ≤ o
P

(n)
0

(1) +
O(1)θ3

n
3
2 s̃

3
2
n

n
s̃3

n

π3
= o

P
(n)
0

(1) + o(1)
s̃
3/2
n

n1/2
= o

P
(n)
0

(1), (n→ ∞).

Thus the family {fθ} is locally asymptotically normal and the lemma is proved. 2

Once we have the Local Asymptotic Normality we are ready to apply the following re-
sult, (see Ibragimov and Has’minskii [1981], Sect. II.2). Let a family of density fθ, |θ| ≤ θn

which satisfies LAN property at θ = 0, such that for any K > 0, θn > K for all n sufficiently
large, then for any quasi-convex loss function W (u), u ∈ R

lim
K→∞

lim inf
n→∞

inf
Tn

sup
|θ|<K

EθW (Tn − θ) ≥ EW (ξ) (4.34)

where Tn is an arbitrary estimator of θ and ξ ∼ N (0, 1). We can approximate any loss
function by a sequence of uniformly continuous functions wδ ∈ W such that wδ ↗ w when
δ → 0. Recall that sn is asymptotically equivalent to s̃n. Now for any element wα of the
mentioned sequence we can see that

Rδ(V ) = lim inf
n→∞

inf
f̃n

sup
f∈V ∩A

(n)
α

Ewδ

(
√

πn

f(x)sn

(

f̃n(x) − f(x)
)

)

= lim inf
n→∞

inf
f̃n

sup
f∈V ∩A

(n)
α

Ewδ

(
√

πn

f(x)s̃n

(

f̃n(x) − f(x)
)(

1 + o(1)
)

)

but from the previous lemma we know that the family {fθ} ⊂ V for n big enough. Also

as fθ(x) >
1
2
f0(x) > 0, fθ(x) > ρν−1

n (α) → 0 and so fθ ∈ A(n)
α for all |θ| < θn for large n.
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Thus applying Lemma 4.5(a)

Rδ(V ) ≥ lim inf
n→∞

inf
f̃n

sup
fθ

Efθ
wδ

(
√

πn

fθ(x)s̃n

(

f̃n(x) − fθ(x)
)(

1 + o(1)
)

)

= lim inf
n→∞

inf
Tn

sup
|θ|≤θn

Eθwδ

(

(

Tn − θ
)(

1 + o(1)
)

)

.

Given θn → ∞ for n→ ∞ we can see that

Rδ(V ) ≥ lim inf
n→∞

inf
Tn

sup
|θ|≤K

Eθwδ

(

(

Tn − θ
)(

1 + o(1)
)

)

≥ lim inf
n→∞

inf
T̃n

sup
|θ|≤K

Eθwδ

(

(

T̃n − θ
)(

1 + o(1)
)

)

.

for any K and taking the trimmed estimator T̃n = Tn 1(Tn ≤ K). Now we can apply
uniform continuity and (4.34) for W (u) = wδ(u). Finally,

lim inf
n→∞

inf
f̃n

sup
f∈V ∩A

(n)
α

Ew

(
√

πn

f(x)sn

(

f̃n(x) − f(x)
)

)

≥ lim
δ→0

Rδ(V )

≥ lim
δ→0

Ewδ(ξ) = Ew(ξ). (4.35)

Finally, from (4.24) and (4.35), the Theorem 4.1 is proved. 2

4.4 Adaptive density estimation

4.4.1 The adaptive setting

Now we follow the same procedure as in the previous chapters in order to create the
adaptive framework. We define first the scale of functions corresponding to a class of
parameters K, then we classify the functional scales with respect to the behavior of the
optimum bandwidths sn(α), corresponding to the different parameters α of the scale K.
Finally we introduce the adaptive estimator and prove optimality results.

In previous chapters we considered functional scales of the type

AK =
{

A(α)
∣

∣ α ∈ K
}

. (4.36)

However, we saw in the previous section of this chapter that in the case of density estimation
a new problem arises. This is the problem of performing estimation in points where the
density is very small. We thus consider ε-restricted functional scales. For ε > 0, define the
ε-restricted class

Aε
α = Aε

α(x) =
{

f ∈ A(α)
∣

∣ f(x) ≥ ε
}

. (4.37)
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Note that Aε
α ⊂ A(n)

α for n sufficiently large. The parameter ε can be taken as small as
necessary. Note, from Lemma 4.1, that ε at least must satisfy ε < Cr,0

β
γ
.

Let K be any subset of parameters in R3
+ and consider the corresponding ε-restricted

functional scale
Aε

K = Aε
K(x) =

{

Aε
α(x)

∣

∣ α ∈ K
}

. (4.38)

We shall study adaptive estimation in ε-restricted functional scales.
As in the previous chapters we shall restrict our adaptive study to the loss functions

ω(x) = |x|p, p > 0 and consider the optimality criteria given in the following definition.
Let K, be a parameter class, possibly depending on n, and let F be a class of estimators
f̃n.

Definition 4.2 An estimator f̂n ∈ F is called (p, ε,K,F)-adaptively minimax, at a point
x ∈ R, if for any other estimator f̃n ∈ F

lim sup
n→∞

sup
α∈K

supf∈Aε
α
Ef

∣

∣f̂n(x) − f(x)
∣

∣

p

supf∈Aε
α
Ef

∣

∣f̃n(x) − f(x)
∣

∣

p ≤ 1.

As we have seen before this property depends on the classes K and F involved. The
rate of convergence in estimating f(x) over the whole scale A

R
+
3

can be of any order, thus
certain restrictions to the class of parameters K are necessary.

Definition 4.3 A functional scale Aε
Kn

(a scale Kn) is called a regular, R-scale if

0 < lim inf
n→∞

inf
α∈Kn

r ≤ lim sup
n→∞

sup
α∈Kh

r <∞,

0 < lim inf
n→∞

inf
α∈Kn

β

γ
≤ lim sup

n→∞
sup
α∈Kh

β

γ
<∞,

A regular scale is called a

(a) regular-pseudo-parametric or RPP-scale if

lim sup
n→∞

sup
α∈Kh

1

γ

(

log
β2n

γ

)1/r

<∞,

(b) regular-non-parametric or RNP-scale if

0 < lim inf
n→∞

inf
α∈Kn

γ ≤ lim sup
n→∞

sup
α∈Kh

γ <∞.

One can see that any RPP-scale satisfy

lim sup
n→∞

sup
α∈Kn

sn(α) <∞ (4.39)
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while RNP-scales are non-parametric in the sense that

lim
n→∞

inf
α∈Kn

sn(α) = ∞ (4.40)

and the corresponding rates of convergence are slower than parametric rates. Note that
sn(α) goes uniformly to infinity at a logarithmic speed in RNP-scales when n → ∞
(cf. eq. (4.6)).

Let Fp = Fp(x) be the class of all estimators f̃n that satisfy

lim sup
n→∞

sup
α∈Kn

sup
f∈Aε

α

Ef

∣

∣

∣
n1/2

(

f̃n(x) − f(x)
)

∣

∣

∣

p

<∞ (4.41)

for RPP-functional scales AKn.

In the next theorem we present an adaptive estimator f̂n ∈ Fp and prove it to be
(p, ε,Kn,Fp)-adaptively minimax for RNP-scales of functions.

4.4.2 The adaptive estimator and the upper bound

Theorem 4.2 Let ε > 0 and Kn be any RNP-scale. Consider the corresponding functional
scale Aε

Kn
. Then for all p > 0 there exists an adaptive estimator f̂n, no depending on α,

such that for any x ∈ R, f̂n ∈ Fp(x) and

lim sup
n→∞

sup
α∈Kn

sup
f∈Aε

α

Ef

∣

∣

∣
ψ−1

n (α)
(

f̂n(x) − f(x)
)

∣

∣

∣

p

≤ 1

where

ψ2
n(α) = p

(

log sn(α)
)f(x)sn(α)

πn
.

The estimator. Let us fix some parameters, 1/2 < l < 1, 1/2 < δ < 1, p1 > 0, l1 = δl
and consider the sequence of bandwidths s0 = 0, si = exp(il). For fixed n let us take the
subsequence of bandwidth Sn =

{

s0, s1, . . . , sIn

}

where

In = arg max
i

{

si < n1/2
}

. (4.42)

One can verify that for both, RPP and RNP-scales, sn(α) � n1/2, thus for each α we can
define i(α) such that

si(α)−1 < sn(α) ≤ si(α). (4.43)

Consider the sequence of estimators f̂i = f̂n,si
defined in (4.2). As we have seen before, in

Lepski’s algorithm the selection of the adaptive estimator from the sequence of candidates
f̂i is based upon the comparison of f̂j − f̂i with τjVar1/2(f̂j − f̂i) where τj = O(log sj).
Now,

Var(f̂j − f̂i) =
1

n
Var

(

ksj
(x−X) − ksi

(x−X)
)

.
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Two natural estimators of this quantity come to mind immediately. One is

σ̂2
i,j =

1

n2

n
∑

`=1

(

ksj
(x−X`) − ksi

(x−X`)
)2
.

The other estimator follows from Lemma 4.2(d) and the application of the estimator f̂j(x)
of f(x),

σ̃2
i,j =

(sj − si)

πn

∣

∣f̂j(x)
∣

∣. (4.44)

It turns out that σ̃i,j results in more theoretical results. It appears however that σ̂i,j may
be better in some practical implementations. Now, let us define the sequence of thresholds

λi,j = τjσ̃i,j (4.45)

where
τ 2
j = p log sj + p1 logδ sj

and
î = min

{

1 ≤ i ≤ In :
∣

∣f̂j(x) − f̂i(x)
∣

∣ ≤ λi,j ∀j (i ≤ j ≤ In)
}

. (4.46)

We will prove that the estimator
f̂n(x) = f̂î(x)

satisfies Theorem 4.2.
Before proceeding with the proof let us define some new notation that will allow us to

write more succinctly

ki = ksi
(x−X) k`

i = ksi
(x−X`) σ2

ki
= Varf ki

∆i,j = kj − ki ∆`
i,j = k`

j − k`
i σ2

∆i,j
= Varf ∆i,j

bi = Efki − f(x).

Auxiliary lemmas. In order to prove the theorem we need the following lemmas.

Lemma 4.6 Let ε > 0 and let Kn be any R-scale, then uniformly with respect to f ∈ Aε
α

and α ∈ Kn, and uniformly with respect to i, j when n→ ∞

(a) b2j = o(1)
f(x)sj

πn
for all j such that i(α) ≤ j ≤ In.

(b) (bj − bi)
2 = O(1)

f(x)(sj − si)

πn
, for all j such that i(α) ≤ i ≤ j ≤ In.

(c) σ2
kj

=
f(x)sj

π

(

1 + o(1)
)

when sj → ∞.
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(d) σ2
∆i,j

=
f(x)(sj − si)

π

(

1 + o(1)
)

when (sj − si) → ∞.

Proof.

(a) From Lemma 4.2(c) taking s1 = sj we know that

b2sj
≤ 1

2π2

∫ ∞

sj

β2

γ
e−2(γt)r

dt,

thus, given sj ≥ sn, using the Lemma 2.2, definition of sn, and restriction f(x) > ε, we get
that uniformly

b2sj
≤ f(x)sj

πn

e2(γsn)r−2(γsj)
r

f(x)r(γsn)r
=

f(x)sj

πn
o(1), (n→ ∞).

(b) Applying Lemma 4.2, (b) and (d), taking s1 = si and s2 = sj, the definition of sn,
condition f(x) > ε, and the maximum inequality we get

(bj − bi)
2 ≤ 1

2π2

∫ sj

si

β2

γ
e−2(γt)r

dt ≤ (sj − si)

πn

β2n

2πγ
e−2(γsi)r

≤ ε−1f(x)(sj − si)

πn
e2(γsn)r−2(γsi)r

= O(1)
f(x)(sj − si)

πn
.

(c) It follows from Lemma 4.2, (c) and (d), taking s1 = 0 and s2 = sj, condition f(x) > ε,
and conditions for RNP-scales. The procedure is the same as in (4.17). Note that the
constants Cα and C̃α which were used there are bounded in R-scales.

(d) It follows from Lemma 4.2, (b) and (d), condition f(x) > ε, and conditions for R-
scales in the same way as in (c).

2

Lemma 4.7 Let Kn be any R-scale and consider the corresponding functional scale. Let
p > 0, and i ≤ i(α) then, uniformly in any RPP-scale,

E
∣

∣

∣
σ̃i,i(α)

∣

∣

∣

p

= O
(

n−p/2
)

.

Let ε > 0, then uniformly in any ε-restricted RNP-scale Aε
Kn

E
∣

∣

∣σ̃i,i(α)

∣

∣

∣

p

≤
(

f(x)(si(α) − si)

πn

)p/2

(1 + o(1)).
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Proof. First let us remind that according to definition (4.44)

E
∣

∣σ̃i,i(α)

∣

∣

p
=

(

si(α) − si

πn

)p/2

E
∣

∣

∣

1

n

n
∑

`=1

k`
i(α)

∣

∣

∣

p/2

.

We know that si(α) is uniformly bounded in RPP-scales Kn, cf. (4.39). It follows by
Lemma 4.2(a) and the previous argument that ki(α) is also uniformly bounded there. Thus,
uniformly in RPP-scales

E
∣

∣σ̃i,i(α)

∣

∣

p
= O

(

n−p/2
)

.

Now, let us consider the RNP-scales. For the case 0 < p < 2: Applying cr-inequality
(p/2 < 1) and some transformations

E
∣

∣σ̃i,i(α)

∣

∣

p ≤
(

f(x)(si(α) − si)

πn

)p/2(
π

f(x)n

)p/2

E
∣

∣

∣

n
∑

`=1

(

k`
i(α) + E ki(α)

)

∣

∣

∣

p/2

+

(

si(α) − si

πn
E ki(α)

)p/2

. (4.47)

Denote Z`
i(α) = k`

i(α)−Eki(α). Let us first analize the first term of the previous equation. For

some fixed p′ (2 < p′ < 4), applying the inequality for the moments and Bretagnolle-Huber
inequality (0 ≤ p/2 ≤ 1), see Appendix,

(

f(x)n
)−p/2

E
∣

∣

∣

n
∑

`=1

Z`
i(α)

∣

∣

∣

p/2

≤
(

f(x)n
)−p/2

(

E−p′/2
∣

∣

∣

n
∑

`=1

Z`
i(α)

∣

∣

∣

p′/2
)p/2

≤
(

f(x)n
)−p/2

(

C2/p′

p′ σki(α)
n1/2

)p/2

≤ Cp

(

f(x)n
)−p/2

σ
p/2
ki(α)

np/4.

Now, applying Lemma 4.6(c) and condition f(x) > ε

(

f(x)n
)−p/2

E
∣

∣

∣

n
∑

`=1

Z`
i(α)

∣

∣

∣

p/2

≤ Cp

(

f(x)n
)−p/2

(

f(x)si(α)

π

)p/4
(

1 + o(1)
)

np/4

= O
(si(α)

n

)p/4
(

1 + o(1)
)

= o(1).

On the second term of equation (4.47), E ki(α) = f(x)(1 + o(1)) when si(α) → ∞, thus

E
∣

∣σ̃i,i(α)

∣

∣

p ≤
(

f(x)(si(α) − si)

πn

)p/2

(1 + o(1)).
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When p > 2 we can apply λ-inequality (cf. Appendix) and see that

E
∣

∣σ̃i,i(α)

∣

∣

p ≤ 1

λp/2−1

(

f(x)(si(α) − si)

πn

)p/2(
π

f(x)n

)p/2

E
∣

∣

∣

n
∑

`=1

Z`
i(α)

∣

∣

∣

p/2

+
1

(1 − λ)p/2−1

(

si(α) − si

πn
E ki(α)

)p/2

.

The value of λ is taken small enough at our convenience. Using again the fact that
E ki(α) = f(x)(1 + o(1)) when si(α) → ∞

E
∣

∣σ̃i,i(α)

∣

∣

p ≤ 1

λp/2−1

(

f(x)(si(α) − si)

πn

)p/2(
π

f(x)n

)p/2

E
∣

∣

∣

n
∑

`=1

Z`
i(α)

∣

∣

∣

p/2

+
1

(1 − λ)p/2−1

(

f(x)(si(α) − si)

πn

)p/2
(

1 + o(1)
)

.

Now we do as before but we must make first a distinction between the following two sub-
cases.

The case 2 < p ≤ 4 is in principle similar to the previous one, except that it was necessary
to apply the λ-inequality. We take λ → 0 as slow as required in order to get the desired
result. The rest is the same.

For p > 4 we see that applying Bretagnolle-Huber inequality (p/2 ≥ 2) using the bound
given in Lemma 4.2(a), Lemma 4.6(c) and condition f(x) > ε

(

f(x)n
)−p/2

E
∣

∣

∣

n
∑

`=1

Z`
i(α)

∣

∣

∣
≤

(

f(x)n
)−p/2

(

Cp,1 f(x)ns
p/2−1
i(α) + Cp,2 σ

p/2
ki(α)

np/4
)

≤ Cp,1

(

si(α)

f(x)n

)p/2−1

+ o(1) = o(1).

Taking an appropriate λ such that it goes to zero slow enough we conclude that

E
∣

∣σ̃i,i(α)

∣

∣

p ≤
(

f(x)(si(α) − si)

πn

)p/2

(1 + o(1)).

2

Proof of the theorem. The idea of the proof is the same as the proofs of the equivalent
theorems in the previous chapters. For fixed α ∈ Kn, we consider two major mutually
exclusive events, î ≤ i(α) and î > i(α). For the case î ≤ i(α) we can see that the difference
f̂i(α)− f̂î is bounded by λî,i(α). If f belongs to a RPP -scale this bound is of order O(n−1/2),

while for f in a RNP-functional scale it is of order O( sn

n
log sn)1/2. For the case î > i(α)

we prove that no bandwidth si, i > i(α) will be rejected with high probability cause in
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those cases the bias is of small order with respect to the variance. Thus the risk in that
case, will be proved to be of order O(n−p/2), uniformly in RPP as well as RNP-scales.

For any f in a functional scale AKn,

Rn(f) := Ef

∣

∣f̂î − f(x)
∣

∣

p

= Ef

{

∣

∣f̂î − f(x)
∣

∣

p
1{î≤i(α)}

}

+ Ef

{

∣

∣f̂î − f(x)
∣

∣

p
1{î>i(α)}

}

= Rn
−(f) + Rn

+(f).

Let us examine Rn
−(f) first. For the case p ≥ 1: Applying the λ-inequality for p ≥ 1

Rn
−(f) ≤ E

{[

1

(1 − λ)p−1

∣

∣f̂î(x) − f̂i(α)(x)
∣

∣

p
+

1

λp−1

∣

∣f̂i(α)(x) − f(x)
∣

∣

p
]

1{î≤i(α)}

}

≤ 1

(1 − λ)p−1
E
∣

∣f̂î(x) − f̂i(α)(x)
∣

∣

p
1{î≤i(α)} +

1

λp−1
E
∣

∣f̂i(α)(x) − f(x)
∣

∣

p

≤ 1

(1 − λ)p−1
E
∣

∣λi(α)σ̃î,i(α)

∣

∣

p
+

1

λp−1
E
∣

∣f̂i(α)(x) − f(x)
∣

∣

p
.

On one hand, from Lemma 4.7 we know that for RPP-scales

E
∣

∣

∣
σ̃i,i(α)

∣

∣

∣

p

= O
(

n−p/2
)

.

On the other hand, applying Lemma 4.2(a) we see that σ2
ki(α)

is uniformly bounded in

RPP-scales, while according to Lemma 4.6(a) we have that b2i(α) = o(1)σ2
ki(α)

so

E
∣

∣f̂i(α)(x) − f(x)
∣

∣

p
= O

(

n−p/2
)

uniformly in RPP-scales and thus

Rn
−(f) = O

(

n−p/2
)

, (n→ ∞).

Now, from Lemma 4.7 we know that uniformly in RNP-scales

E
∣

∣

∣
σ̃î,i(α)

∣

∣

∣

p

<

(

f(x)si(α)

πn

)p/2

(1 + o(1))

and from Lemma 4.6(a) we see that in RNP-scales there exists Cp such that

E

∣

∣

∣

∣

√

πn

f(x)si(α)

(

f̂i(α)(x) − f(x)
)

∣

∣

∣

∣

p

≤ Cp.
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Thus, if we apply the dominated convergence theorem for an appropriate λ going to zero,
and the asymptotic equivalence si(α) ∼ sn(α), we get that uniformly in RNP-scales

Rn
−(f) ≤

(

p
(

log sn(α)
) f(x)sn(α)

πn

)p/2
(

1 + o(1)
)

, (n→ ∞). (4.48)

The case 0 < p < 1 is proved, in the same way, using the cr-inequality.

In order to bound Rn
+(f) let us define the following event:

Bi =
{

ω :
∣

∣f̂i(x) − f(x)
∣

∣ < τi

√

2n−1 E k2
si

}

∀i, (4.49)

One can see after applying (4.49), Cauchy-Schwartz inequality and Lemma 4.2(d) that

Rn
+(f) = E

{

∣

∣f̂î(x) − f(x)
∣

∣

p
1{î>i(α)}

}

=
In
∑

i=i(α)+1

E
{

∣

∣f̂i(x) − f(x)
∣

∣

p
1{î=i}

}

=
In
∑

i=i(α)+1

E
{

∣

∣f̂i(x) − f(x)
∣

∣

p (

1{î=i}∩Bi
+ 1{î=i}∩Bc

i

)

}

≤
In
∑

i=i(α)+1

(

τi

√

2n−1E k2
si

)p

P(̂i = i)

+

In
∑

i=i(α)+1

E1/2
∣

∣

∣
f̂i(x) − f(x)

∣

∣

∣

2p

P1/2(Bc
i ).

Applying Lemma 4.6, after few transformations, we get that

Rn
+(f) ≤ O

(

n−p/2
)

In
∑

i=i(α)+1

(

E k2
si

si

)p/2

(τ 2
i si)

p/2P(̂i = i)

+

In
∑

i=i(α)+1

(

f(x)si

πn

)p/2

E1/2

∣

∣

∣

∣

√

πn

f(x)si

(

f̂i(x) − f(x)
)

∣

∣

∣

∣

2p

P1/2(Bc
i )

≤ O
(

n−p/2
)





In
∑

i=i(α)+1

(si log si)
p/2 P(̂i = i) +

In
∑

i=i(α)+1

s
p/2
i P1/2(Bc

i )



 .

The rest of the proof is just to show that both sums are of order O(1) when n goes to
infinity. We shall show that for i > i(α) the probabilities of the events {î = i} and Bc

i are
exponentially small.

From definition of î (cf. eq. (4.46)) one can see that

P(̂i = i) ≤
In
∑

j=i+1

P
(

∣

∣f̂j−1(x) − f̂i−1(x)
∣

∣ > λi−1,j−1

)

.
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Applying Lemmas 4.6, (b) and (d), we can see that for some C > 0

P
(

∣

∣f̂j(x) − f̂i(x)
∣

∣ > τj σ̃i,j

)

≤ P





∣

∣

∣

∣

1

n

n
∑

`=1

∆`
i,j

∣

∣

∣

∣

> τj

√

√

√

√

sj − si

πn2

∣

∣

∣

n
∑

`=1

k`
j

∣

∣

∣





≤ P





∣

∣

∣

∣

1√
n σ∆i,j

n
∑

`=1

(∆`
i,j − E∆i,j)

∣

∣

∣

∣

> τj
(

1 + o(1)
)

√

√

√

√f(x)−1
1

n

∣

∣

∣

n
∑

`=1

k`
j

∣

∣

∣
−

√
n|bj − bi|
σ∆i,j





≤ P





∣

∣

∣

∣

1√
n σ∆i,j

n
∑

`=1

(∆`
i,j − E∆i,j)

∣

∣

∣

∣

> τj
(

1 + o(1)
)

√

√

√

√f(x)−1
1

n

∣

∣

∣

n
∑

`=1

k`
j

∣

∣

∣
− C



 (4.50)

For j > i(α) define the event

Cj :=

{

ω :

∣

∣

∣

∣

1

n

n
∑

`=1

k`
j − f(x)

∣

∣

∣

∣

≤ εn f(x)

}

, (4.51)

where the sequence εn = o(1), (n → ∞). Considering the conditional probability on the
event Cj

P
(

∣

∣f̂j(x) − f̂i(x)
∣

∣ > λi,j

)

≤ P
(

∣

∣f̂j(x) − f̂i(x)
∣

∣ > λi,j

∣

∣

∣
Cj

)

+ P (Cc
j ).

When the event Cj is true, 1
n

∣

∣

∑n
`=1 k

`
j

∣

∣ ≥ (1 − εn)f(x). Thus, if we substitute this in
eq. (4.50),

P
(

∣

∣f̂j(x) − f̂i(x)
∣

∣ > λi,j

∣

∣

∣
Cj

)

≤

≤ P

(

∣

∣

∣

∣

1√
nσ∆i,j

n
∑

`=1

(∆`
i,j − E∆i,j)

∣

∣

∣

∣

> τj
(

1 + o(1)
)

(1 − εn) − C

)

= P

(

∣

∣

∣

∣

1√
n σ∆i,j

n
∑

`=1

(∆`
i,j − E∆i,j)

∣

∣

∣

∣

> τj
(

1 + o(1)
)

− C

)

.

Now, applying Bernstein’s inequality,

P

(

∣

∣

∣

∣

1√
nσ∆i,j

n
∑

`=1

(∆`
i,j − E∆i,j)

∣

∣

∣

∣

> τj
(

1 + o(1)
)

− C

)

≤ exp

{

−(τj
(

1 + o(1)
)

− C)2

2(1 + Fn)

}

where using B∆i,j
=

2(sj−si)

π
as a bound of ∆i,j −E∆i,j (cf. Lemma 4.2(a)), the asymptotic

σ2
∆i,j

=
f(x)(sj−si)

π

(

1+ o(1)
)

(cf. Lemma 4.2(d)), condition f(x) > ε and definition of τj, we
have

Fn =
B∆i,j

(τj(1 + ε̃n) − 1)

3σ∆i,j

√
n

= O
((sj − si) log sj

n

)1/2

= o(1), (n→ ∞).
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Thus one can see that after few transformations

P

(

∣

∣

∣

∣

1√
n σ∆i,j

n
∑

`=1

(∆`
i,j − E∆i,j)

∣

∣

∣

∣

> τj
(

1 + o(1)
)

− C

)

≤ 2 exp

{

−1 + o(1)

2
( τj − C1 )2

}

≤ 2 exp

{

−1 + o(1)

2
(
√

pjl + p1jl1 − C1 )2

}

≤ 2 exp

{

(

1 + o(1)
)

(

−pj
l + p1j

l1

2
+
√

pjl + p1jl1

)}

≤ 2 exp

{

(

1 + o(1)
)

(

−pj
l

2
− p1j

l1

3

)}

for large enough ī, and all i > max(̄i, i(α)). Now,

P(̂i = i) ≤ 2

∞
∑

j=i

exp

{

(

1 + o(1)
)

(

−pj
l

2
− p1j

l1

3

)}

+

In
∑

j=i

P(Cc
j ),

but for some C2 > 0 this is

P(̂i = i) ≤ C2i
1−l exp

{(

−pi
l

2
− p1i

l1

3

)}

+
In
∑

j=i

P(Cc
j )

≤ C2i
1−ls

−p/2
i exp{−p1i

l1/3} +

In
∑

j=i

P(Cc
j )

≤ C3s
−p/2
i exp{−p1i

l1/4} +

In
∑

j=i

P(Cc
j ).

On the other hand doing some transformations and applying Lemma 4.6(c) we obtain

P(Cc
j ) = P

(

∣

∣

∣

∣

1

n

n
∑

`=1

k`
j − f(x)

∣

∣

∣

∣

> εnf(x)

)

≤ P

(

1

n

∣

∣

∣

∣

n
∑

`=1

k`
j − E kj

∣

∣

∣

∣

> εn f(x) − |bj|
)

= P

(

1√
nσkj

∣

∣

∣

∣

n
∑

`=1

k`
j − E kj

∣

∣

∣

∣

>
εnf(x)

√
n

σkj

−
(n b2j
σ2

kj

)1/2
)

= P

(

1√
nσkj

∣

∣

∣

∣

n
∑

`=1

k`
j − E kj

∣

∣

∣

∣

>
εnf(x)

√
n

σkj

− 1

)
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where, using Bkj
=

2sj

π
as a bound of centered kj, the asymptotic σ2

kj
=

f(x)sj

π

(

1 + o(1)
)

,

condition f(x) > ε and sj ≤ n1/2 we have

P(Cc
j ) ≤ 2 exp

{

−ε
2
nf(x)n

Csj

}

≤ 2 exp

{

− ε2nεn

Cn1/2

}

.

Thus, taking εn = O(log−1 n)

P(Cc
j ) ≤ 2 exp

{

−n1/3
}

for n large enough. Finally we see that

In
∑

i=i(α)+1

(si log si)
p/2 P(̂i = i) ≤

In
∑

i=i(α)+1

logp/2 si exp{−p1i
l1/4}

+
In
∑

i=i(α)+1

(si log si)
p/2

In
∑

j=i

P(Cc
j )

≤
∞
∑

i=1

ilp/2 exp{−p1i
l1/4} +

In
∑

i=i(α)+1

2In s
p
i exp{−n1/3}

≤ Cp,p1 + 2I2
n n

p exp{−n1/3} = O(1)

for n→ ∞.

P(Bc
i ) = P

(

∣

∣

∣
f̂i(x) − f(x)

∣

∣

∣
≥ τi

√

2
1

n
E k2

i

)

= P

(

∣

∣

∣

∣

1

n

n
∑

`=1

k`
i − f(x)

∣

∣

∣

∣

≥ τi

√

2
1

n
E k2

i

)

≤ P

(

∣

∣

∣

∣

1

n

n
∑

`=1

(k`
i − Eki)

∣

∣

∣

∣

≥ τi

√

2
1

n
σ2

ki
− |bi|

)

≤ P

(

1√
n σki

∣

∣

∣

∣

n
∑

`=1

(k`
i − Eki)

∣

∣

∣

∣

≥
√

2τ 2
i −

(nb2i
σ2

ki

)1/2
)

but applying Lemma 4.6(c) and Bernstein’s inequality we see that

P(Bc
i ) ≤ P

(

1√
n σksi

∣

∣

∣

n
∑

`=1

(k`
i − Eki)

∣

∣

∣
≥
√

2τ 2
i − 2

)

≤ 2 exp

{

−(
√

2 τ 2
i − 2)2

2(1 + Fn)

}
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where, using Bki
= 2si

π
as a bound of centered ki, the asymptotic σ2

ki
= f(x)si

π

(

1 + o(1)
)

,
and condition f(x) > ε we then have

Fn = O

(

Biτi
n1/2σki

)

= O

(

si log si

f(x)n

)1/2

= O

(

si log si

εn

)1/2

= o(1).

Applying the continuity of the exponential

P(Bc
i ) ≤ 2 exp

{

−1 + o(1)

2

(

√

2 (pil + p1il1) − 2
)2
}

≤ 2 exp
{

(

1 + o(1)
)

(

−pil − p1i
l1 + 2

√

2 (pil + p1il1)
)}

≤ 2 exp
{(

1 + o(1)
) (

−pil − p1i
l1/2

)}

= C4 s
−p
i exp

{

−p1i
l1/2

}

.

for some C4. Thus

In
∑

i=i(α)+1

s
p/2
i P1/2(Bc

i ) ≤ O(1)

∞
∑

i=i(α)+1

exp
{

−p1i
l1/4

}

= O(1).

2.

4.4.3 Lower bound: optimality results

Theorem 4.3 Let ε > 0 and Kn be any RNP-scale. For each α ∈ Kn and f ∈ Aε
α consider

sn = sn(α), as defined in (4.6), and denote

ψ2
n(α) = p

(

log sn(α)
)f(x)sn(α)

πn
. (4.52)

Then for any estimator f̃n ∈ Fp(x)

lim
n→∞

inf
α∈Kn

sup
f∈Aε

α

E
∣

∣

∣
ψ−1

n (α)
(

f̃n(x) − f(x)
)

∣

∣

∣

p

≥ 1. (4.53)

Proof. First we show that it is possible to find a function f0 ∈ Aε
α(x), for every α ∈ Kn,

for which there exists an estimator with a parametric rate of convergence. Let us take the
density function

fa(y) =
1 − cos2 y

πy2

and consider the rescaling of fa

f0(y) =
1

m
fa

(

y − x

m

)

.
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The Fourier transform of the function f0 satisfies

F [f0](t) = 1 − |mt| for |t| ≤ 1

m

and is zero otherwise. Thus for any bandwidth s0 > 1
m

the kernel estimator (4.2) is
unbiased, see equation (4.10). Our goal now is to prove that there exists m = m(α) such
that 1

m
is uniformly bounded in Kn and f0 ∈ Aε

α. First we can easily make the norm ‖f0‖α

less than 1. According to the definition of RNP-scales there exist finite positive constants
γ0, γ1, β0, β1, r0, r1 such that for n big enough Kn ∈ [γ0, γ1] × [β0, β1] × [r0, r1]. Now,

‖f0‖α =

∫

γ

β2
e2|γt|r |F [f0](t)|2dt ≤

∫ 1/m

−1/m

γ

β2
e2|γt|rdt

≤ 2

β2

∫ γ/m

0

e2trdt ≤ 2

β2
0

∫ γ1/m

0

e2tr1dt.

Denote c0 = γ1

m
and take it small enough such that

2

β2
0

∫ c0

0

e2tr1dt < 1.

Moreover by definition,

f0(x) =
1

m
fa(0) =

1

2πm
=

c0
2π

min

(

1,
1

γ

)

.

Therefore both the conditions f0(x) > ε and ‖f0‖α < 1 are satisfied if 2πε ≤ 1
m

≤ c0
γ1

.
Hence, with this choice of m, f0 ∈ Aε

α.
Now, let us take s̃ = s̃n(α) as it was defined in (4.26) and define φ̃α = p log s̃. For

θ = φ̃α −
√

φ̃α, let us consider the function f1 given by

f1(y) = f0(y)

(

1 + θ

√

π

f0(x)ns̃

(

ks̃(x− y) − E0ks̃(x−X)
)

)

,

where E0 denotes the expectation with respect to f0. Note that f1 belongs to the family
defined in (4.27). From (4.52) one can see that θ ≤ s̃1/4 for n big enough. Thus, as we saw
in Lemma 4.5(a)

f1(y) = f0(y)
(

1 + o(1)
)

, (n→ ∞), (4.54)

and f1 ∈ Aε
α(x) for all n big enough. Next we can derive a representation for the log-

likelihood

L(θ) = log
dP

(n)
1

dP
(n)
0

just as we did in Lemma 4.5(c). If we denote

Ȳi = ks̃(x−Xi) − E1ks̃(x−X),
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and

Yi = ks̃(x−Xi) − E0ks̃(x−X),

we can verify that

Yi = Ȳi +
(

E1ks̃(x−X) − E0ks̃(x−X)
)

= Ȳi +

∫

ks̃(x− y)
(

f1(y) − f0(y)
)

dy

= Ȳi + θ

√

π

f0(x)ns̃
Var0 ks̃(x−X) = Ȳi + θ

√

f0(x)s̃

πn

(

1 + o(1)
)

, (n→ ∞).

As in Lemma 4.5(c), cf. (4.33), we find

L(θ) =

n
∑

i=1

log

(

1 + θ

√

π

f0(x)ns̃n
Yi

)

=
n
∑

i=1

log

(

1 + θ

√

π

f0(x)ns̃

(

Ȳi + θ

√

f0(x)s̃

πn

(

1 + o(1)
)

)

)

=

n
∑

i=1

log

(

1 + θ

√

π

f0(x)ns̃
Ȳi +

θ2

n

(

1 + o(1)
)

)

= θ

√

π

f0(x)ns̃

n
∑

i=1

Ȳi + θ2
(

1 + o(1)
)

− θ2

2

π

f0(x)s̃

1

n

n
∑

i=1

Ȳ 2
i + rn

= θ

√

π

f0(x)ns̃

n
∑

i=1

Ȳi +
θ2

2
+
θ2

2

(

1 − π

f0(x)s̃

1

n

n
∑

i=1

Ȳ 2
i

)

+ rn + o(1)

= θ∆̄n +
θ2

2
+ r̃n, (4.55)

where, applying (4.17), Lemma 4.4, and Slutsky’s theorem,

∆̄n =

√

f1(x)

f0(x)

1√
n

n
∑

i=1

Ȳi
√

f1(x)s̃
π

d→ N (0, 1)

with respect to f1 and r̃n = oP1(1). Here we use the same arguments as in (4.33) but this
time with respect to f1. Note here that Lindenberg theorem which was applied in Lemma
4.4 can also be applied in this situation and the bound for rn here remains the same as
before.

ψ̃α,1 = φ̃α

√

s̃f1(x)

πn
.
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Let f̃n ∈ F0
p (x) be an arbitrary estimator. If we denote

f ∗
n = ψ̃−1

α,1(f̃n(x) − f0(x))

and
L = ψ̃−1

α,1(f1(x) − f0(x))

then

ψ̃−1
α,1(f̃n(x) − f1(x)) = ψ̃−1

α,1(f̃n(x) − f0(x)) − ψ̃−1
α,1(f1(x) − f0(x))

= f ∗
n − L, (4.56)

whereas

√

πn

f0(x)
(f̃n(x) − f0(x)) = s̃1/2φ̃α

√

f1(x)

f0(x)
f ∗

n

= exp

{

log s̃

2
+ log φ̃α

}

√

f1(x)

f0(x)
f ∗

n. (4.57)

Denote
q = exp(−φ̃α)

so that q → 0 (n→ ∞), according to (4.52). Now

R̃ := sup
f∈A

(n)
α

Ef

(

φ̃−1
α

√

πn

f(x)s̃
| f̃n(x) − f(x) |

)p

≥ E1

(

ψ̃−1
α,1 | f̃n(x) − f1(x) |

)p

≥ qE0

(
√

πn

f0(x)
| f̃n(x) − f0(x) |

)p

+ (1 − q)E1

(

ψ̃−1
α,1 | f̃n(x) − f1(x) |

)p

+O(q)

≥ q exp

{

φ̃2
α

2
+ p log φ̃α

}

E0

(

(f1(x)

f0(x)

)p/2

| f ∗
n(x) |p

)

+ (1 − q) E1| f ∗
n(x) − L |p +O(q)

due to f̃n ∈ Fp(x) and equations (4.56) and (4.57). Therefore

R̃ ≥ exp

{

−φ̃α +
φ̃2

α

2
+ p log φ̃α

}

E1

(

exp{−L(θ)}
(f1(x)

f0(x)

)p/2

| f ∗
n(x) |p

)

+(1 − q)E1| f ∗
n(x) − L |p +O(q)

≥ (1 − q)E1

(

Z | f ∗
n(x)|p + | f ∗

n(x) − L |p
)

+O(q)



4.4. ADAPTIVE DENSITY ESTIMATION 111

where L(θ) is the log-likelihood and

Z = exp

{

−φ̃α +
φ̃2

α

2
+ p log φ̃α − L(θ)

}

(f1(x)

f0(x)

)p/2

.

From the definition of θ and (4.55) we can see that

exp

{

−φ̃α +
φ̃2

α

2
+ p log φ̃α − (φ̃α −

√

φ̃α) ∆̄n − 1

2
(φ̃α −

√

φ̃α)2 − r̃n

}

P1−→ ∞.

As we saw in the previous chapters

min
x

{g(x) = Z|x|p + |L− x|p} =







min(Z, 1)Lp if p ≤ 1,

Lp
(

1 + Z− 1
p−1

)−(p−1)

if p > 1.

Thus for any p > 0
min

x
g(x) = χLp,

where 0 < χ ≤ 1, χ
P1−→ 1. As a last step, note that

L = φ̃−1
α

√

πn

s̃f1(x)
(f1(x) − f0(x))

= φ̃−1
α

√

πn

s̃f1(x)
f0(x) θ

√

π

ns̃f0(x)

(

ks̃(0) − E0ks̃(x)
)

= φ̃−1
α (φ̃α −

√

φ̃α)

√

f0(x)

f1(x)

π

s̃

(

s̃

π
− f0(x)

(

1 + o(1)
)

)

= 1 + o(1).

Therefore according to the previous arguments, uniformly in α ∈ Kn,

sup
f∈A(α)

E(n)
∣

∣

∣
ψ−1

α

(

f̃n(x) − f(x)
)

∣

∣

∣

p

= sup
f∈A(α)

E(n)
∣

∣

∣
ψ̃−1

α

(

f̃n(x) − f(x)
)

∣

∣

∣

p

(1 + o(1))

≥ (1 − q)LpE1χ +O(q) = 1 + o(1), (n→ ∞).

Thus the theorem is proved. 2

Corollary 4.1 Let AKn be an arbitrary RNP-scale. Then for any p > 0, ε > 0 and x ∈ R,
the estimator f̂n of Theorem 4.2 is (p, ε,Kn,Fp(x))-adaptively minimax at x.

Proof. This is a consequence of Theorems 4.2 and 4.3. 2
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Appendix

A.1 Fundamental inequalities

Bernstein’s inequality, Pollard [1984], p. 193

Let X1 , ..., Xn be independent identically distributed random variables with
EXi = 0 , EX2

i = σ2 and bounded ranges: |Xi| ≤ B . Then for each c > 0 ,

P

(

1

σ
√
n

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

≥ c

)

≤ 2 exp















− c2

2

(

1 +
Bc

3σ
√
n

)















,

or, equivalently,

P

(

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

≥ c

)

≤ 2 exp















− c2

2

(

σ2n +
Bc

3

)















.

or

P

(

1√
n

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

≥ c

)

≤ 2 exp















− c2

2

(

σ2 +
Bc

3
√
n

)















,

and for 0 < c < 3δ
√
n/B, δ > 0,

P

(

1√
n

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

≥ c

)

≤ 2 exp

{

− c2

2 (σ2 + δ)

}

.

Bretagnolle-Huber’s inequality, Bretagnolle and Huber [1979]

Let X1 , ..., Xn be independent identically distributed random variables with
EXi = 0 , EX2

i = σ2 and bounded ranges: |Xi| ≤ B . There exist constants Cp, such that

113
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E
∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

p

≤ Cp n
p/2σp, 1 ≤ p ≤ 2.

E
∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

p

≤ Cp

(

nσ2Bp−2 + np/2σp
)

, p ≥ 2

A.2 Elementary inequalities

cr-inequality, Loève [1977], p. 157

For r > 0, and

|a+ b|r ≤ cr|a|r + cr|b|r,
where cr = max(1, 2r−1).

λ-inequality

Let a, b ∈ R. For p ≥ 1, and 0 < λ < 1

|a+ b|p ≤ 1

(1 − λ)p−1
|a|p +

1

λp−1
|b|p.

This inequality follows from the convexity inequality by taking f(x) = |x|p and setting
x = a/(1 − λ), y = b/λ.
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de Convergence, Constante Exact et Résultats Numeriques PhD thesis, These de Doc-
torat de la Université Paris VI, [1999].
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Samenvatting

De afgelopen twintig jaar heeft de adaptieve schatting zich ontwikkeld tot één van de meest
actieve onderzoeksgebieden in de niet-parametrische statistiek. De vraag uit de prak-
tijk naar realistischere modellen en flexibere schattingsmethoden leidde tot de introductie
van verschillende modellen. Bij de bestudering van deze modellen ontstonden uitdagende
vraagstukken, die om nieuwe statistische modellen en benaderingen vroegen.

Statistische schatting begint met de aanname dat we een steekproef hebben volgens
een onbekende kansmaat P op een gegeven maatruimte. De kansmaat P behoort tot een
zekere klasse P. Het doel van de statisticus is nu een methode te vinden om de onbekende
kansmaat P te schatten, daarbij gebruikmakend van de gegeven steekproef. Gewoonlijk
modelleren we de klasse kansverdelingen in de geparametriseerde vorm P = {Pθ : θ ∈ Θ}
en de taak van de statisticus komt dan neer op het schatten van θ of een functie van θ.
Voor het soort niet-parametrische problemen dat we in dit proefschrift behandelen, is de
parameter-verzameling Θ meestal oneindig-dimensionaal.

Hoe ‘goed’ een schattingsmethode is, hangt meestal van de klasse Θ af. In het klassieke
geval wordt aangenomen dat deze klasse bekend is. In de praktijk is dit echter zelden het
geval, wat realistischere methoden noodzakelijk maakt. Met adaptieve schattingsmethoden
bedoelen we schattingsmethoden die gebaseerd zijn op data en zich in zekere zin aanpassen
aan de onzekerheid over de echte klasse Θ. Een voorbeeld is een methode die een schatting
θ̂ uit een rijtje kandidaten θ̂1, θ̂2, . . . , θ̂n kiest, die de optimale schattingen zijn behorend
bij de verschillende klassen Θ1,Θ2, . . . ,Θn.

In dit proefschrift bestuderen we adaptieve schattingsmethoden voor twee speciale
soorten statistische problemen: regressie en dichtheidsschatting. Voor deze problemen
wordt de klasse van kansmaten P geparametriseerd door reëelwaardige functies θ. In ieder
model nemen we aan dat de onderliggende functie θ tot een bepaalde klasse Θ van gladde
functies behoort. In de praktijk is de ‘echte’ gladheid van de functie θ onbekend, evenals de
klasse Θ. Dus bij dit soort problemen is het ontwikkelen van adaptieve schattingsmethoden
erg belangrijk.

We bestuderen verschillende regressie-problemen met een vaste discrete opzet, namelijk
regressie op de reële rechte en regressie op een begrensd interval. Hoewel het onderscheid
tussen deze problemen slechts ligt in de definitie van de onderliggende functieklassen Θ, is er
een groot verschil in de constructie van optimale adaptieve procedures in deze twee gevallen.
Dit wordt veroorzaakt door het essentiële verschil tussen deze twee modellen: in het geval
van regressie-modellen op begrensde observatie-intervallen moet namelijk de aanwezigheid
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van de rand – het zogenaamde rand-effect – meegenomen worden in de bestudering van
optimale statistische procedures.

Voor elk van de drie problemen (regressie op de reële rechte, regressie op begrensde
intervallen en dichtheidsschatting) introduceren we overeenkomstige “schalen” van klassen
Θ, van analytische functies. Voor deze Θ’s kunnen we de convergentiesnelheid, op een
constante na, bepalen in het klassieke niet-parametrische minimax raamwerk, waarin de
klassen Θ bekend zijn. We vervolgen dan met het construeren van adaptieve schattingen
en bewijzen dat deze asymptotisch optimaal zijn.

Hoe goed men een schatting kan geven op de rand van een begrensd observatie-interval,
hangt af van de gekozen opzet. We analyseren twee klassieke methoden op een begrensd
interval: de equidistante en de Chebyshev opzet. In beide gevallen is de kwaliteit van de
schatting dicht bij de rand slechter dan in het interval. Terwijl dit in het geval van de
equidistante opzet de convergentiesnelheid bëinvloedt, blijft bij de Chebyshev opzet het
verlies van convergentiesnelheid aan de rand beperkt. Bij het bestuderen van adaptieve
schattingsprocedures beperken we ons daarom tot de Chebyshev opzet.
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to thank the organizers, for providing me with a grant to attend, and in particular to
Alexandre Tsybakov, for his invitation to this event.

I want to thank the Statistical Department at Queen’s University, Kingston, Canada,
for hosting me during a three month visit to my supervisor Boris Levit.

I want to thank Lorna Booth for reading the manuscript and suggesting possible im-
provements. I also want to thank Damien White, Silvia Caserta and Corrie Quant in
this regard.

Not all I have done in The Netherlands is mathematics. I have also been lucky and
have good friends and colleagues, with whom I spent a great time.

I want to thank the family van Heeswijk, including David, and specially Tineke. They
were the first to introduce me in the Dutch culture with a gezellige Christmas dinner and
later there was more – nice talks, skiing holidays, a chance to try diving, etc.

I had a great time in the Mathematical department of Utrecht University. I enjoyed
very much the time with the people of the “7de verdieping” – Menno Verbeek, Lennaert
van Veen, Martijn van Manen, Theo Tuwankotta, Barbara van den Berg, Mischja van
Bossum and Bob Rink. To Menno and Martijn thanks for their help and contribution to
the computer freaky side of the moon.

To other friends who were always close to me, in a way or another – Marisela Mainegra,
Alejandro León, Ernesto Reinaldo, Stephanie Godey, Eric Porras, Adán Simón, and many
others – thanks.

My parents and my brother have been fara way from here, but I have always felt as if
they were very close. For their love, thanks.

Lastly and very specially I want to thank Alina for her lovely smile and company during
all these years.

121



122



Curriculum Vitae

Luis M. Artiles Mart́ınez was born in Santa Clara, Cuba, on 8 June 1970. During his
secondary and high-school studies he took part in National Mathematics Olympiads where
he obtained some prizes, including a first and a second position. He also took part in the
28th International Mathematics Olympiad as a member of the Cuban team.

Between September 1988 and July 1993 he followed studies of Mathematics at Havana
University where he graduated with honors.

From September 1993 he worked for three years as an Instructor at the Faculty of
Physics, Mathematics and Computer Science at the Central University of Las Villas, Santa
Clara, Cuba.

During the academic year 1996/97 he attended the Master Class program “Stochastics
and Operational Research” organized by the Mathematical Research Institute (MRI) in
the Netherlands.

After the Master Class he received a fellowship from Utrecht University to conduct the
PhD research that resulted in the present thesis.

123


	title-contents.pdf
	Trial by fire
	Postfire development of a tropical dipterocarp forest
	Mark G.L. van Nieuwstadt

	Trial by fire
	Postfire development of a tropical dipterocarp forest

	De vuurproef
	Ontwikkeling van een tropisch dipterocarp bos na brand

	Percobaan oleh kebakaran
	Pembangunan paska-kebakaran hutan dipterocarp tropis
	
	Mark Geerten Lambertus van Nieuwstadt



	Contents
	Chapter  Page





