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Part I

Intr oduction





C H A P T E R 1

Casting and
computer -aided design

systems

Manufacturing[31] is the processof converting raw materials(suchas iron, glassor
polymer)into usefulproducts,rangingfrom goodssuchaskettlesandtelephonesto ma-
chinerysuchasrailway locomotivesandaircrafts. Computer-aideddesign(CAD) and
computer-aidedmanufacturing(CAM) have automatedthesemanufacturingprocesses,
bothin thedesignphaseandtheconstructionphase.Dueto thegeometricnatureof man-
ufacturingprocesses,many geometricproblemsarisein theautomationof manufacturing.
Computationalgeometryarisesatall levelsof manufacturing,from design,modelingand
simulationto processplanning,on-lineverificationandtesting.Thesurvey by Boseand
Toussaint[11, 14] givesan overview of geometricproblemsandalgorithmsrelevant to
manufacturing.

In this thesiswe studysomegeometricaspectsof thecastingprocess, a commonlyused
manufacturingprocessfor plasticandmetalobjects,andgive algorithmsto solve several
geometricproblemsarising in casting. This introductionprovides the necessaryback-
ground,overview, anddefinitionsto appreciatethefollowing chaptersof this thesis.

Section1.1givesa brief introductionto manufacturing,andintroducesseveralprocesses
in themanufacturingindustry. We briefly introducecasting,stereolithography andextru-
sion.

Section1.2introducesthecastingprocess.Weintroducesandcasting,injectionmoulding
anddiecasting.Theadequateprocessis chosendependingonfactorssuchasthematerial,
thefeedingsystemfor thematerial,requiredqualitystandards,whethertheobjectwill be



mass-produced,andsoon.

Section1.3showshow computershavebecomeanessentialelementin themanufacturing
process,from primitive systemsfor 2-dimensionaldrawing anddrafting (the Sketchpad
systemof theearly1960s)to thecurrentsophisticatedsystemsfor 3-dimensionalmodel-
ing andsimulation.

Section1.4 introducesgeometricaspectsof thecastingprocess.The fundamentalques-
tion arisingduringthedesignof anobjectis whethertheobjectcanactuallybemanufac-
turedusingacastingprocess.Wefocusonageometricdecisionatthebasisof theproblem
anddefinetheproblemwe addressin this thesis.We alsobriefly introducefeaturesof an
objectthatfacilitatethegeometricdecisionprocess.

Sections1.5–1.9provide an overview on thefive geometryproblemsthatarestudiedin
Chapters3–7.Wegivedefinitionsof problemsandsummarizeour results.

1.1 Manufacturing processes

Manufacturingindustrieshave beenconsideredone of the competitive technologiesin
today’s economy. Eventhoughtheword manufacture itself comesfrom theLatin words
manusand facere meaning“to make by hand,” mostproductstodayaremass-produced
with thehelpof machines.

Therearemany differentproductionprocessesfor constructingobjectsin the manufac-
turing industry, includinggravity casting,injectionmoulding[15, 21, 45], layeredman-
ufacturing(as,for instance,stereolithography [9]), materialremoval via conventional(or
chemicalor electrical)machining[25], deformation(forging, rolling, extrusion, bend-
ing), composition(asin compositematerials,sinteredceramics,andthe like), andspray
deposition.

The castingprocessis usedextensively to mass-producea wide variety of products. In
theprocess,liquid is fed into a cast(mould)thathasa cavity with theshapeof theobject
to be manufactured.After the liquid hashardened,the castpartsareremoved from the
object.Dependingon thematerialandthefeedingsystemfor themoltenmaterial(either
usinggravity or by force),differentcastingmethodsareused.Moredetailsarediscussed
in Section1.2.

Stereolithography [9] is a layer-depositionmanufacturingprocessusingavesselof photo
sensitive liquid plastic,a tablecontrolledby acomputer, anda laser(seeFigure1.1).The
laserlies above thevesselandshineson thesurfaceof theliquid plastic.At thefirst step
the tablein thevesselis just below thesurfaceof plastic. The lasermoveshorizontally,
solidifying this layerof plastic. This is thebottom-mostlayerof theobject. At thenext
stepthetableis lowereda little bit sothat liquid coversthehardenedlayer, andthelaser
thendraws thenext layer. This processis repeatedfor subsequentlayersuntil theentire
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liquid plastic

laser

vessel

Figure 1.1: Stereolithography

objectis formed.

softened
metal

hydraulic
ram �

die

Figure 1.2: Extrusion

Theextrusionprocessis awidely spreadmanufacturingtechnologyto producepartsused
mainly in theconstructionindustry(suchasPVC window profiles,pipesandtubes),au-
tomotive applications(suchasrubbersealsandgasconducts),biomedicalapplications
(suchasmedicaltubings),etc. Thematerialis softenedby heatprior to extrusion. The
heatedmaterialis placedinto an extrusionpress,wherea powerful hydraulic ram or a
rotatingscrew forcesthesoftenedmaterialthrougha precisionopening,known asa die,
to producethe desiredshape(SeeFigure1.2). Bakers,for example,usea collectionof
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shapednozzlesto decoratecakeswith fancy bandsof icing. They areproducingextruded
shapes.As suggestedby thesenozzles,the shapeof the extrusionis determinedby the
shapeof theopening(die).

1.2 The casting process

The castingprocesshasbeenwidely usedfor a long time to make householdutensils,
kitchenware,worksof art,etc.For example,thebronzestatueof Zeusshown in Figure1.3
wasmadeusingthe castingprocessin 470 BC. Figure1.4 shows the processin which

Figure 1.3: Zeus throwing lightnings, Bronze, ca. 470 BC

this statuewasmadeby hand: A sculptorcarved a prototypeof the statuein wax. The
prototypewascoveredby clay, leaving apin gate.To makeacavity insidetheclaymould,
thewax prototypewasmoltenandpassedaway throughthepin gate.Molten bronzewas
pouredinto thecavity with theshapeof Zeususinggravity asin Figure1.4(c). After the
bronzehadhardenedtheclay mouldwasbroken. As shown in Figure1.4, thecastitself
is brokenat theendof theprocess,andto makeanotherduplicateonehadto restartfrom
thebeginning,makinganew cast.

Today, theprevailing modeof productionis called“massproduction”:onewantsto reuse
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(a) (b)

(c) (d)

Heat

Figure 1.4: The casting process of old days: making a bronze statue of the Zeus: (a) pro-
totype in wax, (b) the prototype is completely covered by clay, after which wax melts and
comes out of the clay cover leaving cavity, (c) molten bronze is poured into the cavity,
(d) the outer clay cover is broken to get the bronze statue.

thecastmany timesto produceidenticalobjects.

The industrialcastingprocessconsistsof two stages.First, liquid is filled into a cavity
formedby two castparts. After the liquid hashardened,onecastpart retracts,carrying
theobjectwith it. Afterwards,theobjectis ejectedfrom theretractedcastpart (seeFig-
ure1.5). In bothretractionandejectionsteps,thecastpartsandtheobjectshouldnot be
damaged,sothatthequality of final objectis guaranteedandthecastpartscanbereused
to produceanotherobject.

Dependingon the materials(iron, aluminum,polymer, zinc, etc.) beingused,the mass
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hydraulic
ram

Figure 1.5: The casting process in the real world

producibility of moulds,and the feedingsystems(gravity or pressure),therearemany
differentmethodsfor theprocess.

Mostcastingsof metals,especiallylargeones,aremadein sandmoulds. In sandcastinga
prototypeof theobjectis first obtained,afterwhichtheprototypeis dividedinto two parts
alonga plane(calleda parting plane). Sand,mixedwith a binderto hold it together, is
pressedaroundtheprototype.Thesandmouldis dividedinto two alongthepartingplane,
andtheprototypeis removed from themould leaving a cavity in the sandmould. Then
two sandmouldpartsareplacedtogetheralongthepartingplane(SeeFigure1.6(c)). To
build anobject,liquid metalis pouredinto thecavity throughthepin gateusinggravity.
After themetalhassolidified,thesandmouldis usuallybrokenandleavestheobject.

Injection moulding is a methodof castingwhereplastic is forced into a mould cavity
underpressure.Thecavity is filled with plastic,andtheplasticchangesphaseto a solid,
resultingin anobject.Becauseof thehighpressuresinvolved,themouldmustbeclamped
shutduringinjectionandcooling.

Largenumbersof small,precisemetalpartsthathave a low meltingpoint, suchaszinc,
aremadeby die castingusingpermanentsteelmoulds. Die castingis accomplishedby
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(a) (b)

(c)

core

cavity
partingplane

pin gate

prototype

sandmold

Figure 1.6: The process of sand casting. (a) the object to be cast, (b) prototype leaves a
cavity, (c) the cross-section of a typical two-part sand mould

forcing moltenmetalalloy into a steelmould underhigh pressure.The heatfrom the
moltenmetalflows by conductioninto the steelmould, which causesthe moltenmetal
to solidify. Theprocessis oftendescribedas“the shortestdistancebetweenraw material
andfinishedproduct.” Unlike sandcasting,die castingis usedfor mass-producinghigh
quality objects,suchashandles,brackets,camerabodiesandtelephoneparts,with high
speed.

1.3 Automated computer -aided design systems

Computer-aidedmanufacturingautomatesmanufacturingprocessesby letting computers
communicateinstructionsdirectly to the manufacturingmachinery. A singlecomputer
cancontrolbanksof roboticmilling machines,lathes,weldingmachines,andothertools,
moving theproductfrom machineto machineaseachstepin themanufacturingprocess
is completed.
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Figure 1.7: A die for die-casting.

Thefirst phaseof manufacturingprocessesis thedesignof aproduct.Computer-aidedde-
sign(CAD) is aform of automationthathelpsdesignerspreparedrawings,specifications,
partslists, andotherdesign-relatedelementsusingspecialgraphicsandcalculationsin-
tensivecomputerprograms.Computer-aideddesignsystemshaveconsiderablysimplified
industrialdesign,thefirst phasein thelife of anew product.

Modeling. The first CAD systemwas the Sketchpad system[51], developedby Ivan
Sutherlandin theearly1960s.AlthoughCAD systemsoriginallyautomated2-dimensional
drawing anddrafting, they now usuallyinclude3-dimensionalmodelingandcomputer-
simulatedoperationof the object. The history of modelingsin CAD systemscan be
summarizedasfollows:

� 2-dimensionalprojections: Entities(line, circle, arc andtext) areprojectedon 2-
dimensionalplanes.Several2-dimensionalviewsrepresenta3-dimensionalobject.
Whenyou modify oneof thesedrawings,you alsoneedto changetheothersman-
ually.� wire-frame: Thefirst modelingin 3-dimensionalspace.Edgesaredefinedby lines
or arcsconnectingpointsin 3-dimensionalspace.This is theeasiestandsimplest
wayof representinga3-dimensionalmodel,but modelsneedto besimpleandclear.
A 2-dimensionalview of anobjectcaneasilybedisplayed.� surfacemodeling: Surfacesinterpolateedgesof wire-frames.Curvedsurfacescan
berepresentedwith shading.Surfacemodelingis widely usedwherethequalityof
surfacesis important,for example,for the surfacesof the externalbodiesof cars
andplanes. It is impossibleto extract physical propertiesof models. Figure1.8
showsanexampleof surfacemodeling:anoilpump.� solid modeling: A solid is a volumeenclosedby surfacesthatarerepresentedas
a quilt of vertices,edges,andfaces. The major representationsof solids include
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constructivesolidgeometry, boundaryrepresentations,andspatialsubdivision rep-
resentations,all of which supportthe unambiguous,algorithmicdeterminationof
point membership:given any point p ��� x � y� z� , theremustbe an algorithmthat
determineswhetherthepoint is inside,outside,or on thesurfaceof thesolid. Solid
modelingmaintainsadditionalinformationon the interior andthe exterior of the
volume.

Solidmodelingis in transition.AsHoffmann[27] writes,classicaldesignparadigms
that concentratedon obtainingone specificfinal shapeare being supplantedby
feature-based,constraint-baseddesignparadigmsthatareorientedmoretowardthe
designprocessanddefineclassesof shapeinstances.Oneof thesenew paradigms
is parametricsolid modelingwhich is a key technologyto defineandmanipulate
solid modelsthroughhigh-level, parameterizedsteps. A parametricsolid canbe
definedasasolid whoseactualshapeis a functionof agivensetof parametersand
constraints.Theshapedesignercandefineentirefamiliesof shapes,not just spe-
cific instances.Hoffmann’ssurvey [28, 27] providesanexcellentoverview of solid
modelingandparametricmodeling.

Figure 1.8: 3-dimensional surface modeling.
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Thereareplenty of commercialCAD packages,suchasAutoCAD1, UniGraphics2,
SolidWorks3, Helix DesignSystem4, SOLIDCAM5 andI-DEAS6, andmostof
them provide integratedfeaturesfor surfacemodelingand solid modeling. Nowadays
thesepackageshave featuresto publishCAD drawingsto theWeb.

Verification and Simulation. Onceanobjecthasbeendesigned,it hasto bemanufac-
turedusingtheintendedtechnique.As BoseandToussaint[11, 14] write, it is desirableto
designtheobjectin sucha way thatmanufacturingcanbeperformedeasilyandcheaply.
A fundamentalquestionarisesconcerningevery type of manufacturingprocess: Given
anobject,canit beconstructedusingaparticularprocess?

Thegeometryof theobject,coupledwith therestrictionsimposedby theparticularman-
ufacturingprocessunderconsideration,playsa vital role in determiningthe answerto
thequestion.To answerthequestion,computer-aideddesignsystemsmustbeaugmented
with a componentthatverifieson-linewhetheranobjectbeingdesignedcanactuallybe
manufacturedusingtheintendedtechniqueslongbeforethefabricationof costlyphysical
models.Algorithmsin suchverificationsystemsneedto deducethefeasibility of manu-
facturingtechniquespurelyon thebasisof a CAD modelof theobject. Not only should
they answerwhetherproductionis feasible,they canprovide moreinformationsuchas
a list of possibleorientationsof the object that canbuild the object in the technique,a
list of possiblesequencesof movementsfor manufacturingparts,anda simulationof the
building process.In casetheobjectis not feasible,they shouldpoint out what is wrong
with theobject.

Suchalgorithmshave beenproposedfor a numberof manufacturingprocesses,suchas
injectionmoulding[15, 21, 45], NC-machining[25], andstereolithography [10].

The importanceof theseverificationcomponentsis quite evident. For example,when
designingan objectto be built usinga certaintechnique,an engineercancheckon-line
whethertheobjectcanbebuilt or not. By employing suchcomponents,computer-aided
designsystemshelpdesignersminimizescraps,reducedesigntimeandeliminatewasted
or redundantoperations.Thesesystemsenableengineersto considerablyreduceproduct-
developmentcostsandgreatlyshortenthedesigncycle.

1.4 Geometric aspects of the casting process

We now concentrateon thecastingprocess.As discussedin theprevioussection,indus-
trial computer-aideddesignsystemscouldaid a partdesignerin verifying alreadyduring

1AutoCAD is a trademarkof Autodesk,http://www.autodesk.com
2UniGraphics is a trademarkof UGS,http://www.ugs.com
3SolidWorks is a trademarkof SolidWorksCorporation,http://www.solidworks.com
4Helix DesignSystem is a trademarkof MicrocadamInc.,http://www.microcadam.com
5SOLIDCAM is a trademarkof CADTECH,http://www.solidcam.com
6I-DEAS is a trademarkof SDRC,http://www.i-deas.com
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thedesignof anobjectwhethertheobjectin questioncanactuallybemanufacturedusing
a castingprocess.At thebasisof this verificationis a geometricdecision:is it possible
to enclosetheobjectin amouldthatcanbesplit into two parts,suchthatthesecastparts
canbe removed from the objectwithout colliding with the objector eachother? These
geometricproblemscangenerallybetermedseparability problems[53]. (We arenot in-
terestedin castingprocesseswherethemouldhasto bedestroyedin orderto remove the
object,but only in situationwherethegivenobjectcanbemass-producedby re-usingthe
samecastparts.)Thecastingprocessmayfail in theremoval of thecastparts:if thecast
is not designedproperly, thenoneor moreof thecastpartsmaybe stuckduring the re-
moval phase,asin Figure1.9. Theproblemswe addresshereconcernthis aspect:Given
a 3-dimensionalobject,is therea castfor it whosepartscanberemovedafter the liquid
hassolidified? An objectfor which this is the caseis calledcastable. Note that this is
a preliminarydecisionmeantto aid in partdesign—tophysically createthemould for a
partoneneedsto take into accountotherfactorssuchasheatflow andhow air canevade
from thecavity.

Figure 1.9: The top part of the cast is stuck.

In Chapter3, 4, and 5, we considerthe castabilityproblemfor threedifferentcasting
models,give completecharacterizationsof castabilityin thosemodels,andobtainalgo-
rithmsto verify theseconditionsfor polyhedralparts.

In manufacturing,featuresof anobjectimply manufacturinginformationthat facilitates
the processof analyzingmanufacturability and the automateddesignof a castfor the
object[44, 23]. Informally, featuresarea product’s genericshapesor characteristicsthat
are associatedwith engineeringknowledgeabout the product [46, 47]. A small hole
or a depressionon the boundaryof an object, for example,restrictsthe setof removal
directionsfor which this objectis castable,sincetheportionof thecastin theholeor in
thedepressionmustberemovedfrom theobjectwithout breakingtheobject.Identifying
suchfeaturesnot only facilitatesthedecisionprocess,but alsoreducesthesearchspace
for castabledirections.Featurescanalsomake theautomateddesignof castmucheasier.
In Chapter6 and 7, we definea geometricfeature,the cavity, which is relatedto the
castabilityof objects,andprovidealgorithmsto extractit from objects.
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Our approachis to extract the geometricessenceof the objectwe designedandanswer
the questionbasedon a purely geometricperspective. Most geometriccomponentsin
commercialCAD packagesserveasfront-endprocessors.OnceCAD modelsarecreated,
geometriccomponentsimport geometricdatafrom CAD models,filter redundantedges,
repairgeometricandtopologicalirregularities,andgeneratemeshes.

1.5 Casting with opposite cast remo val

In Chapter3, we considera castingmodelwherethe cast(mould) consistsof two parts
andthesepartsmustberemovedin oppositedirectionswithoutdamagingthepartsor the
object. This chapteris basedon a paperwith Mark de Berg, ProsenjitBose,Siu-Wing
Cheng,DanHalperin,Jǐrı́ Matoǔsek,andOtfried Schwarzkopf [7].

Contraryto thesandcastingmodelstudiedby Boseet al. [12] wherethepartitionof the
castinto two partsmustbedoneby aplane,thecastis partitionedby apolygonalparting
surface. In this castingmodelall convex polyhedraarecastable. (In the sandcasting
model,evenconvex polyhedraarenot alwayscastable.)

In Section3.2 we considerthe casewherethe orientationof the object in the castand
theremoval direction �d arespecifiedin advance.Theproblemthenis to decidewhether
the object is castablein that direction, that is, whetherthe castcanbe partitionedinto
two partsthatcanberemoved in direction �d and �	�d, respectively. We give a necessary
andsufficient conditionunderwhich sucha partition exists : the object is monotonein
the removal direction �d. In other words,an object 
 is castablein direction �d if and
only if every line with direction �d intersectsthe interior of 
 in at mostoneconnected
component.The classof objectswe allow in this characterizationis moregeneralthan
in previousworks: theobjectneednot bepolyhedralandmayhave arbitrarygenus.We
give a simple way to verify the condition for polyhedralobjectsof arbitrary genus: a
necessaryandsufficient conditionunderwhich a polyhedron� is monotonein direction�d, andthereforecastablein �d is that � hasno reflex silhouetteelementsandits shadow
edgesform a setof non-crossingcurves. Silhouetteelementsaresilhouetteedgesin �d,
edgesparallel to �d, andpartsof facetsparallel to �d. Shadow edgesare the projection
of convex silhouetteelementsontoa planewhosenormaldirectionis parallelto �d. This
conditionleadsto anO � nlogn� time algorithm,wheren is thecombinatorialcomplexity
of thepolyhedron.Wealsogiveanalgorithmthatcomputesapartitioningof thecastinto
two removableparts(providedthepolyhedronis castable,of course).

In Section3.3 we considerthe casewherethe removal directionis not specifiedin ad-
vance. Here the problemis to find all combinatoriallydistinct directionsin which the
objectis castable(wepostponeaformaldefinitionof “distinct directions”to Section3.3).
Oneway of doing this is to generatea large setof sampledirections,and to testeach
directionwith theO � nlogn� algorithm.This is theapproachwe take in theexperimental
section(Section3.4)andit turnsout to work well in practice.Sucha samplingapproach
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is not complete,however: it might erroneouslyreportthat thereareno gooddirections.
Hence,in Section3.3 we give anexactalgorithmthatcomputesall combinatoriallydis-
tinct castingdirectionsin O � n4 � time: If we imaginethe direction �d changingcontin-
uously, thereareeventsthat may influencethe castabilityof the object. Thesecritical
eventscanbe representedby greatcirclesandarcsof greatcircleson the unit sphere.
Thesecurvesform anarrangementof complexity Θ � n4 � in theworstcase.Thealgorithm
makesuseof the fact that thedifferencebetweentwo adjacentfacesin thearrangement
is quite small. It traversesthe arrangement,andupdatesthe castabilityinformation in
constanttime per edgeinvolved, exceptthat the computationat the startingpoint takes
O � n2 logn� time. Wealsoshow thatthereexist polyhedrafor which thereareΩ � n4 � com-
binatoriallydistinct castingdirections.This implies thatour algorithmis optimal in the
worstcaseif wewantto reportall suchdirections.

1.6 Casting with directional uncer tainty

The castingalgorithmsmentionedin the previous sectionassumeperfectcontrol of the
castingmachinery. Whenacastpartis removed,it is requiredthatthepartmovesexactly
in the specifieddirection. In practice,however, this will rarely be the case. As in all
applicationsof robotics,we have to dealwith imperfectcontrolof themachinery, anda
certainlevel of uncertaintyin its movement.Whena facetof theobjector of a castpart
is almostparallelto the directionin which the castpartsarebeingmoved, thenthe two
touchingsurfacesmay damageeachother when the mould is beingopened. This can
make theresultingobjectworthless,or it maywearaway thesurfaceof themouldsothat
it cannotbereusedasoften.

In Chapter4, weconsideracastingmodelthatis identicalto themodelwith oppositecast
removal in Chapter3, except that the castmachineryhasa certainlevel of uncertainty
in its directionalmovement: Given a removal direction �d for a castpart, the part may
move in a direction �d � suchthat the anglebetweentwo directionsis within a certain
level of uncertainty. This chapteris basedon a paperwith Otfried CheongandReńe van
Oostrum[6].

In Section4.3 we considerthe casewherethe orientationof the object,the removal di-
rection �d, andthe level of directionaluncertaintyangleα arespecifiedin advance.The
problemthenis to decidewhethertheobjectis castablein thatdirectionwith uncertainty
α, that is, whetherthecastcanbepartitionedinto two partsthat canberemoved in any
direction �d � and �d � � , respectively, suchthattheanglesbetween �d and �d � , andbetween�	�d
and �d �� aresmallerthanor equalto α. Wegiveanecessaryandsufficientconditionunder
which sucha partitionexists: thepolyhedronis α-monotoneandα-safe. We saythata
polyhedron� is α-monotonein direction �d for anangleα if � is monotonein direction�d � for all directions �d � with �����d ���d � ��� α. A polyhedron� is calledα-safein direction �d if
noneof thenormalsof its facetsmakeanglesβ with �d in therangeπ � 2 � α � β � π � 2 � α.
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Thecastingmodelweconsideris morepracticalthanthemodelsin previousworks,since
mostof theexistingmachinerybearsacertainlevel of uncertainty. Wegiveasimpleway
to verify theconditionfor polyhedralobjectsof arbitrarygenus,leadingto anO � nlogn�
timealgorithm,wheren is thecombinatorialcomplexity of thepolyhedron.Wealsogive
analgorithmthatcomputesapartitioningof thecastinto two removableparts.

In Section4.4 we considerthe casewherethe removal directionis not specifiedin ad-
vance.Dependingon whethertheuncertaintyis specifiedin advanceor not,we consider
two problems.Oneof themis, for givenuncertaintyα, to find all combinatoriallydistinct
directionsin which the object is castablewith directionaluncertaintyα. In Section4.4
we give an exact algorithmthat computesall combinatoriallydistinct castingdirections
in time O � n2 logn� α2 � . We alsoconsideranapproximative solution,andgive a heuristic
thatrunsin timeO � nlogn� for constantα.

Theotherproblemweconsideris to find thebestremoval directionin which theobjectis
castable.In this problemthebestis qualifiedin theway that thedirectionaluncertainty
is aslargeaspossiblewith which theobjectis castable.In Section4.4 we give anexact
algorithm that computesthe bestcastingdirectionsin O � n4 � time. If it is known that� is α-castablefor a certainangleα, we cancomputethe largestfeasibleuncertaintyin
timeO � n2 logn� α2 � . Wealsogiveaheuristicapproachto approximatethelargestfeasible
uncertainty.

1.7 Casting with skewed ejection direction

In mostexisting machinery, theretractionandejectiondirectionsareidenticalasin Fig-
ure 1.5. Previous work on this problemhasalso assumedthis restrictionon casting.
Existingtechnologyfor injectionmoulding,however, alreadyhastheflexibility to accom-
modateanejectiondirectionthat is differentfrom theretractiondirectionof themoving
castpart. Exploiting this possibilityallows to castmoreparts,or to castpartswith sim-
pler moulds. This is a generalizationof theoppositecastingmodelin thesensethat the
restrictionon theremoval directionsof castpartsareremoved.

In Chapter5, we considera castingmodelwherethetwo castpartsareto beremovedin
two givendirectionsandthesedirectionsneednot beopposite.In contrastwith previous
works, theorderingof removal is importantin this castingmodel. This chapteris based
on apaperwith Siu-Wing ChengandOtfriedCheong[2].

Wegiveacompletecharacterizationof castabilityin thiscastingmodel,undertheassump-
tion thatthecasthasto consistof two partsthatareto beremovedin two not necessarily
oppositedirections.We alsogive analgorithmto verify this conditionfor polyhedralob-
jects.We do not assumeany specialseparabilityof thetwo castparts,andallow partsof
arbitrarygenus.Therunningtime of our algorithmfor determiningthecastabilityof an
objectwith agivenpairof directionsis O � n2 logn� .
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All the resultsfor oppositecastpartsremoval in [7, 30, 34] rely on the propertythat
anobjectis castableif its boundarysurfaceis completelyvisible from the two opposite
removal directions.This is not truewhentheremoval directionsarenon-opposite:there
arepolyhedrawhosewholeboundaryis visible from theremoval directionsbut whichare
not castablewith respectto thosedirections[7].

For completeness,we alsogiveanO � n14 logn� -time algorithmfor finding all combinato-
rially distinctfeasiblepairsof removal directions:weconsidera4-dimensionalparameter
spaceformedby thesetof all pairsof directions,andconstructasetof algebraicsurfaces
which correspondto a numberof critical eventsthatmay influencethecastabilityof the
object.ThereareO � n3 � surfacesandtheirarrangementhascomplexity O � n12 � . Wetestat
mostO � n12 � pairsof directionsusingthealgorithmof timecomplexity O � n2 logn� for de-
terminingthecastability. Thoughtherunningtime is polynomial,thealgorithmis clearly
of theoreticalinterestonly.

1.8 The refle x-free hull

Computationalgeometershave definedmany classesof 2-dimensionalpolygons,but few
classesof 3-dimensionalpolyhedra.Perhapsthe fact that3-dimensionalpolyhedrasup-
port a rich classof topologicalstructurein theform of knotsandlinks hasovershadowed
theidentificationof geometricstructure.

A small hole or depressionon the boundaryof an object, for example,restrictsthe set
of directionsfor which this objectis castable,sincetheportionof thecastin theholeor
thedepressionmustberemovedwithoutbreakingtheobject.Mostpartsusedin industry,
suchasenginerooms,telephonebodies,andsmallpartsfor carsandaircrafts,have such
features.

This suggestsa new approachto castabilityanalysis:For a givenpair of removal direc-
tions,we first identify suchfeatures(holesanddepressions)of anobjectandif any such
featurescannotbeaccomodatedwith thegivenremoval directions,thenwe canconclude
thattheobjectis not castablewith thegivenremoval directions.This ideacandrastically
reducethe sizeof the searchspacefor feasiblecastingdirections. For example,a hole
with theshapeof acylinder in anobjectreducesthesearchspaceinto apairof two oppo-
sitedirectionsparallelto thegeneratorsof thecylinder. Features,furthermore,canalsobe
usedfor computingtheminimumnumberof castingparts.In otherwords,theminimum
numberof additionalcastingparts(calledsidecores), togetherwith two mainparts,can
beobtainedfrom features.

In Chapter6, we studyfeaturesof a polyhedronrelatedto casting,anddefinethreegeo-
metricstructures: plane-cavities, cavities, andthe reflex-freehull. Thesedefinitionscan
alsobe appliedto a 3-dimensionalgeneralshape.This chapteris basedon work with
Siu-Wing Cheng,OtfriedCheong,andJackSnoeyink [4, 5].
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In Section6.3,weshow severalpropertiesof thereflex-freehull of apolyhedron.Oneof
the interestingpropertiesof thereflex-freehull is that its complexity is linear in thesize
of theinputpolyhedron.

We currentlyhave no algorithmsfor constructingthe reflex-free hulls andcavities. In
Chapter7, we show how thesegeometricstructurescanbemadeuseof with application
to casting.

1.9 Coloring algorithm for finding cavities

Basedon thedefinitionof thereflex-freehull andcavities in Chapter7, we considerap-
plicationsof thesegeometricstructuresto casting. Cavities andthe reflex-free hull are
importantfeaturesin applicationssuchasmanufacturingandmolecularanalysis.Unfor-
tunately, wearecurrentlyunableto constructthereflex-freehullsandcavities. Neverthe-
less,weareableto prove thatgivenacastablepolyhedron,theboundingfacesof acavity
necessarilybelongto thesamemouldpart. Sowe canmake useof cavities in automatic
mouldpartconstruction.

In Chapter7, we presentanalgorithmto partitionthefacesof a polyhedroninto disjoint
subsetssuchthateachsubsetmustbelongto thesamemouldpart.Furthermore,weprove
that the boundingfacesof eachcavity belongto the samesubset.Thus,our algorithm
is aneffective methodto restrictthesearchspacefor feasiblecastingdirections.In fact,
we conjecturethatthis algorithmcanbeextendedsothat,in theend,for any two distinct
subsets,there is a feasiblecastingdirection in which the mould is removed from the
correspondingfacesin oppositedirections. This chapteris basedon a paperwith Siu-
Wing Cheng,Otfried Cheong,andJackSnoeyink [3].
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C H A P T E R 2

Preliminaries

In this chapter, we review someof thenotationandterminologyof this thesis.Notation
andterminologyspecificto aparticularchapterwill beintroducedin thechapter.

2.1 The model of the casting process

First we definethe modelof the castingprocessthat is usedin this thesis. In the real
castingprocess,the movablepart retractsfrom the fixed part carrying the object,after
which the object is ejectedfrom the retractedpart as in Figure 1.5. To simplify our
discussion,we will pretendthat it is not the objectthat is ejectedfrom the moving cast
part, but that the castpart is removed from the object. In this way, we have symmetry
betweenthetwo castparts,andbothretractionandejectionaremodelledconceptuallyby
removal of a castpart.To simulatetheretraction,thefixedcastpartwill first beremoved
in a directionoppositeto theretraction.Thento simulatetheejection,theremainingcast
partwill be removed in a directionoppositeto theejection.Thedirectionsin which the
castpartsareremovedarecalledtheremoval directionsor parting directions. Figure2.1
illustratestheprocesson a2-dimensionalexample.

In our castingmodel,we assumethat the cavity with the shapeof the object is already
filled with the moltenmaterial. We areonly interestedin the openingof the castpart
withoutbreakingthepartandtheobject.

We assumethat the outershapeof the cast � is the boundaryof an axis-parallelbox B,
andwe assumethatB is largeenoughsothat theobjectto bemanufacturedis contained
in theinterior of B. This assumptionis necessaryfor producingconnectedcastparts.As
statedin theintroduction,we areinterestedin castsconsistingof two parts.Oneof them
will becalledthe red castpart anddenotedby � r , theotherwill becalledthebluecast
part anddenotedby � b. Two partsonly overlapalongtheir boundaries.Both � r and � b



cavity

(a) (b)

(c) (d)

Figure 2.1: The casting process: simulation. (a) A cast formed by two parts (b) The cavity
filled with the molten material (c) the retraction simulated (d) the ejection simulated

areconnectedsubsetsof B. Theunionof � r and � b equalsB ��
 , where 
 is theobject
to be manufactured. The red castpart is removed in a certaindirection that is called
the red removal direction, denotedby �dr , andthe blue castpart is removed in the other
removal directioncalledtheblueremoval direction, denotedby �db. In ourcastingmodel,
wealwaysremove theredcastpartfirst, afterwhich we remove thebluecastpart.

2.2 Object models and other definitions

Throughoutthis thesis,� denotesa polyhedron,that is, a (not necessarilyconvex) solid
boundedby a piecewise linear surface. The union of vertices,edges,andfacetson this
surfaceforms the boundaryof � , which we denoteby ∂ � . We requirethat ∂ � be a
connected2-manifold. Eachfacetof � is a connectedplanarpolygon,which is allowed
to have polygonalholes. Two facetsof � are called adjacent if they sharean edge.
We assumethatadjacentfacetsarenot coplanar—coplanarfacetsshouldbemergedinto
one—but we do allow coplanarnon-adjacentfacets.A polyhedronpartitionsthe space
into two disjointdomains,theinterior andexterior. Theopeninteriorof thepolyhedron�
is denotedby int ����� , which is enclosedby ∂ � . Thepolyhedronconsistsof theboundary
andits interior, thatis, ��� int ������� ∂ � .

We alsoassumethat � is simple, which meansthatno pair of non-adjacentfacetsshares
a point. Our assumptionsimply that � maycontaintunnels,but no voids—apolyhedron
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with a void is not castableanyway. As this thesisonly dealswith simplepolyhedra,we
will referto themaspolyhedrain theremainderof thethesis.

For a morethoroughdescriptionof polyhedraandsomeof their properties,thereaderis
referredto thebookby PreparataandShamos[40].

A convex edge of a polyhedron� refersto an edgee wherethe dihedralanglethrough
int ����� of both facetssharinge is lessthanπ. Similarly, a reflex edge refersto anedgee
wherethedihedralanglethroughint ����� of bothfacetssharinge is greaterthanπ.

Although we areprimarily concernedwith polyhedralsets,we give moregeneraldef-
initions and the characterizationsof castability. In Chapter3 and Chapter5 we give
characterizationsof castabilitywhich applyto bothpolyhedraandcurvedobjects,andin
Chapter6 we give definitionsof geometricstructureswhich applyto bothpolyhedraand
curved objects. This is importantsincemany industrialpartsarenot polyhedral. More
precisely, we shallbedealingwith objects 
 whoseboundingsurfaceconsistsof a finite
numberof bounded-degreealgebraicsurfacepatches,which meetalongbounded-degree
algebraiccurvesegments.Wefurtherrequirethat 
 betopologicallyequivalentto apoly-
hedron� asdefinedabove: it mustbeasolidwhoseboundaryis aconnected2-manifold.

Wedenotetheinteriorof anobject 
 by int ��
�� , its closureby cl ��
�� , andits boundaryby
∂ 
 . Theprojectionof anobject 
 (usuallytheverticalprojectionontothexy-plane)will
bedenotedby 
 .

By a directionwe meananequivalenceclassof orientedparallellines. A givendirection�d canbespecifiedby apointonaunit spherein thefollowing way. Onaunit spherewith
centero, the origin, let x be a point on the boundaryof the spheresuchthat the vector�ox is parallel to andwith the sameorientationas �d. Thendirection �d is representedby
thepoint x. (SeeFigure2.2)A point that is diametricallyoppositeto x on theunit circle
representstheoppositedirectionto �d andis denotedby �	�d.

z

y

x

x �d

�	�d
o

Figure 2.2: The sphere of directions
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We call an object 
 �d-monotoneif every line with direction �d intersectsthe interior of
 in at mostoneconnectedcomponent.A polyhedral terrain is thegraphof a (possibly
partiallydefined)continuouspiecewiselinearfunctionwith domain 2 andrange . This
meansthatapolyhedralterrainis apolyhedralsurfacewith thepropertythateveryvertical
line intersectsit in at mostonepointor segment.Hence,it is z-monotone.

2.3 Arrang ement

In ourdiscussionwewill referto thesubdivisionof theunit sphere! 2 inducedby acollec-
tion " of greatcirclesandarcsof greatcircles.Wecall this subdivision thearrangement
of " on ! 2 anddenoteit by #$��"%� . Thisarrangementconsistsof facesof dimensions0 � 1,
and2, whicharecalledvertices,edges,andcells,respectively. A vertex of #$��"%� is either
anintersectionpoint of two curvesin " or anendpointof anarcin " . An edgeof #$��"%�
is amaximalconnectedcomponentof acurve in " not intersectingany othercurve in " .
A cell of #&��"$� is amaximalconnectedregionof ! 2 not intersectingany curve in " .

Thecombinatorialcomplexity of thearrangement#&��"$� is the total numberof faces(of
all dimensions)in thearrangement.If Q consistsof n curves,eachbeinga greatcircle or
anarcof a greatcircle, thenthecomplexity of thearrangementis O � n2 � andthereexists
anarrangementwhosecomplexity is Ω � n2 � . We saythat thecurvesin " arein general
position if no threecurvesin " meetat a singlepoint, andno two curvesoverlapin an
arcof non-zerolength(two curvesareintersectingin at mosttwo points).
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Part II

Castability
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C H A P T E R 3

Opposite cast remo val

3.1 Intr oduction

In thischapterweassumethatthecast(mould)consistsof two partsandthesepartsmust
beremovedin oppositedirectionwithoutdamagingthepartsor theobject.In theexample
of Figure3.1, thecastpartsareremovedin oppositedirections.This neednot alwaysbe
possible;sometimesit maybenecessaryto remove themin non-oppositedirections.

Thecastingprocessmay fail in the removal of thecastparts: if thecastis not designed
properly, thenoneor moreof thecastpartsmaybestuckduringtheremoval phase,asin
Figure3.2. Theproblemwe addressconcernsthis aspect:givena 3-dimensionalobject,
is thereacastfor it whosepartscanberemovedaftertheliquid hassolidified?An object
for which this is thecaseis calledcastable.

Clearlynoteveryobjectis castable.Theclassof castableobjectsmaybeenlargedthrough
theuseof so-calledcoresandinserts[20,41, 55]—appendagesto thecastparts,whichare
removedafter the liquid hashardenedandbeforethecastpartsthemselvesareremoved.
Coresandinsertsallow the possibility of building morecomplicatedobjects.However,
their useslows down the manufacturingprocessandmakes it morecostly. We do not
considertheextra possibilitiesof coresandinserts.For theuseof coresandinserts,you
will find someinformationin Chapter6 andChapter7.

Relatedwork. The2-dimensionalversionof our problemhasbeenstudiedby Rappa-
port andRosenbloom[42]. They presentedanO � n� timealgorithmto determinewhether
a simplen-vertex polygoncanbedecomposedinto two monotonechains,which is a suf-
ficientandnecessaryconditionfor thepolygonto becastable.

Hui andTan [30] gave a heuristicapproachto the3-dimensionalproblem. Somecandi-



�d

� �d
Figure 3.1: The cast parts are removed in opposite directions.

dateremoval directionsareheuristicallychosen,ordered,andtested.To testa candidate
removal direction,every point in a samplesetof pointson the boundaryof the object
is checked to seeif it can be removed in the given direction (or its opposite). If this
is the casefor eachsamplepoint, thenthe removal directionis assumedto be feasible.
Kwong [34] gave an algorithmto determinethe feasibility of a given partingdirection.

Figure 3.2: The top part of the cast is stuck.

He reducedtheproblemto thehiddensurfaceremoval problemin computergraphicsby
observingthat if all the facetscanbe completelyilluminatedfrom the partingdirection
andits opposite,thenthepartingdirectionis feasible.

Thealgorithmof Chenet al. [17] first computestheconvex hull of a polyhedralobject,
andthenobtainsthe pocketsof the objectby subtractingit from its convex hull. Chen
et al. observed that if all pockets are completelyvisible in either the parting direction
or its opposite,thenthepartingdirectionis feasible.Their algorithmreturnstheparting
direction that maximizesthe numberof completelyvisible pockets. However, as the
converseof the above observation is not necessarilytrue, the algorithmis not complete
andmaynot find agoodpartingdirectionevenif oneexists.

Hui [29] gave exponentialtime algorithmsthatalsotake coresandinsertsinto account.
Sincethesealgorithmsarebasedon thework of Chenetal. they arenot complete.
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Finally, Boseet al. [12] considereda specialmodelof casting,the sandcastingmodel,
wherethepartitionof thecastinto two partsmustbedoneby aplane.Notethatevencon-
vex polyhedraarenotalwayscastablein thesandcastingmodel[12]. Boseetal.presented
two algorithmsfor decidingwhetherfor a givensimplepolyhedronwith n verticesthere
is a castwhoseconstituentpartscanbe removed in oppositedirections. Onealgorithm
is basedon partitiontrees[38] andusesO � n3' 2( ε � time andspace,1 theotheris basedon
linearprogrammingandusesO � n2 � time andO � n� space.Whennon-oppositedirections
areallowed, the runningtime of their partition-treebasedalgorithmremainsO � n3' 2( ε � ,
whereastherunningtime of their linear-programmingbasedalgorithmincreasesslightly
to O � n2 logn� .
Summary of our results. This chapteris concernedwith thecasewherethedirections
in which the two castpartsmustbe removed areopposite.For this casewe obtainthe
following results.

In Section3.2weconsiderthecasewheretheorientationof theobjectin thecastandthe
removal direction �d arespecifiedin advance.Theproblemthenis to decidewhetherthe
object is castablein that direction, that is, whetherthe castcanbe partitionedinto two
partsthat canbe removed in direction �d and �)�d, respectively. We give a necessaryand
sufficient conditionunderwhich sucha partitionexists. Theclassof objectswe allow is
moregeneralthanin previous works: the objectsneednot be polyhedralandthey may
havearbitrarygenus.Wegiveasimpleway to verify theconditionfor polyhedralobjects
of arbitrarygenus,leadingto anO � nlogn� time algorithm,wheren is thecombinatorial
complexity of thepolyhedron.We alsogive analgorithmthatcomputesa partitioningof
thecastinto two removableparts(providedthepolyhedronis castable,of course).

In Section3.3 we considerthe casewherethe removal directionis not specifiedin ad-
vance. Here the problemis to find all combinatoriallydistinct directionsin which the
objectis castable(wepostponeaformaldefinitionof “distinct directions”to Section3.3).
Oneway of doing this is to generatea large setof sampledirections,andtesteachdi-
rectionwith the O � nlogn� algorithm. This is the approachwe take in the experimental
section(Section3.4)andit turnsout to work well in practice.Sucha samplingapproach
is not complete,however: it might erroneouslyreportthat thereareno gooddirections.
Hence,in Section3.3 we give anexactalgorithmthatcomputesall combinatoriallydis-
tinct castingdirectionsin O � n4 � time. We alsoshow thatthereexist polyhedrafor which
thereareΩ � n4 � combinatoriallydistinct castingdirections. This implies that our algo-
rithm is optimalin theworstcaseif wewantto reportall suchdirections.

1Boseet al. remarkedthatthis canbeimprovedto O * n4 + 3 , ε - . Theparameterε in theseboundsis a positive
constant,which canbechosenarbitrarily small.
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3.2 Testing a direction

In thissectionwepresentacriterionfor testingwhetheragivenobject 
 admitsopposite
castremoval in a givendirection �d. In otherwords,we give a way to determinewhether
a cast � for 
 canbesplit into a redpart � r anda bluepart � b that canbe translatedto
infinity in direction �d and � �d, respectively, so that the interior of � r , � b, and 
 do not
intersectduringthetranslations.If this is thecase,we saythat � r and � b canberemoved
withoutcollisionand 
 is castablein direction �d. Theorderof removing thecastpartsis
irrelevantin this situation.

Throughoutthis section,andwithout lossof generality, we assumethat �d is the verti-
cal direction—thepositive z direction—andwe saythat 
 is castableif it is castablein
the vertical direction. The red castpart hasto be translatedupward, the blue castpart
downward.

Lemma 1 Anobject 
 is castableif andonly if it is vertically monotone.

Proof: Assumethat 
 is castable,and let �.���/� r ��� b � be a two-partcastwhoseparts
are removable. Let 0 be a vertical line intersecting 
 , and let p and q be two points
in 021 int ��
3� . Sincea point r 4&0 in betweenp andq canbe translatedneitherupward
nor downwardwithout colliding with 
 , thepoint r canbe in neither � r nor � b. Hence
r 45
 . We musteven have r 4 int ��
�� ; otherwisetherewould be a point r �2645
 having
a point p� 4)
 above it anda point q� 4)
 below it—this follows from p andq beingin
the interior of 
 —andsucha point r � canbe in neither � r nor � b. This provesthat 
 is
verticallymonotone.

Assumenow that 
 is vertically monotone,and recall that the cast � is madefrom a
rectangularaxis-parallelbox B. Let 
87 be thesolid obtainedby sweeping
 upward to
infinity. Welet � r : �9��
�7:1 B�;�<
 betheredcastpart,andwelet � b : � B �=��
$�>� r � bethe
bluecastpart. Because
 is vertically monotone,� r is connectedandcanbe translated
upward to infinity without intersectingthe interior of 
 , andwithout colliding with � b.
Sinceany point above 
 lies in � r by definition, � b canbetranslateddownwardwithout
colliding with 
 . Because� b is connected,we have constructeda two-partcastwhose
constituentpartscanberemoved.Hence,
 is castable.

Let’s turn our attentionto the specialcaseof a polyhedralobject � . The red andblue
castpartsinducea partitionof ∂ � into a redpartanda bluepart. We call a facetof � an
up-facetif its outwardnormalpointsupward(that is, hasa positive z-component),anda
down-facetif its outwardnormalpointsdownward(that is, hasa negative z-component).
Vertical facetsareneitherup- nor down-facets. If � is castable,thenclearly every up-
facetmustbe completelyred, while every down-facetmustbe blue. The objectshown
in Figures3.3 illustratesthatverticalfacetssometimesneedto becoloredpartly redand
partly blue. In the figure, the facetabcd is coplanarwith the vertical facetsincidentto
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Figure 3.3: A polyhedron with a facet that needs two different colors. (a) A 3D view of
the polyhedron. (b) The projection onto the xy-plane of the polyhedron, with the interior
shaded.

theedgesuv andrs. The line segmentpq is the intersectionof abcdwith a vertical line
throughu. Theconstructionin theproofof Lemma1 colorsall verticalfacetsblue,except
for thefacetabcdwhich is partly blue(namelythepart pqcd) andpartly red(namelythe
partabpq). Thefactthatabcdreceivestwo colorsis notanartifactof theproof: any legal
castfor this objectin theverticaldirectionwill assigntwo colorsto abcd.

The constructionusedin Lemma1 doesnot result in practically useful casts,sinceit
generatesmany verticalwalls betweenthe redandbluecastparts. Sometimestheseare
unavoidable,asfor theobjectin Figure3.3,but it would bepreferableto have a method
thatdoesnotcreateany verticalwalls if they arenotnecessary. Wepresentsuchamethod.

Theorem1 Let � bea vertically monotonepolyhedron with n vertices.It is possibleto
constructa castfor � in O � nlogn� time, such that the two castpartsdo not meetalong
vertical facetsif no vertical line avoiding the interior of � touchestwo non-adjacent
facetsof � .

Proof: Let h beaplanethatis parallelto thexy-planeandcutstheboxB into two halves.
Let R be therectangleh 1 B. We projectall up-facetsof � ontoh andobtaina polygon� with holes. Figure3.4 shows thepolygonwe getwhenwe projectthepolyhedronof
Figure3.3.Notethatcollinearedgesarenotmergedin theprojection,sothateveryvertex
of anup-facetthatprojectsontotheboundaryof � actuallygivesriseto avertex of � . To
computea descriptionof this polygon(in theform of a doubly-connectededgelist [19],
for instance),we needto determinetheunionof theprojectionof theup-facets.This can
bedonein O � nlogn� time with a planesweepalgorithm(seePreparataandShamos[40]
for detailsonplanesweep).

Every pointon ∂ � is theprojectionof apointon ∂ � and,in fact,everyvertex of � is the
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R �

collinearedgesarenotmerged

cut along a diagonal makes the
areaoutside� asimplepolygon

Figure 3.4: The projection of the polyhedron of Figure 3.3, and a triangulation of its com-
plement.

projectionof a vertex of � . With eachvertex v of � , we canthereforeassociatea vertex
v of � thatprojectsontov. If thereis morethanonesuchvertex, wechoosetheonewith
largestz-coordinate.

Sinceevery vertex of � is theprojectionof a vertex of � , thecomplexity of � is O � n� .
Eachof theholesof � is asimplepolygon,whichcanbetriangulatedin lineartime [16].
Thesameis truefor thepartof thecomplement“outside” � . (This is not a simplepoly-
gon,but it canbemadeinto oneby cutting it openalonga diagonalfrom a vertex of �
to a vertex of R, asis illustratedin Figure3.4.) Hence,we obtaina triangulationσ of the
complementof � in O � n� time. Every triangleof this triangulationis now “lifted” into
3-dimensionalspaceby replacingevery vertex v by its associatedvertex v. We obtaina
triangulatedsurfaceσ insidetheboxB. Thesurfaceσ definesthepartitionof thecastinto
two parts,asexplainednext.

First,let’sassumethatnoverticalline avoidingtheinteriorof � touchestwo non-adjacent
facetsof � . Considera triangle t 4 σ that sharesan edgee with � . This edgeis the
projectionof a uniqueedgee of anup-facet f of � , andthelifted versionof t will share
e with f . This impliesthat theunionof σ andtheup-facetsof � is a continuoussurface
σ 7 . We let � r bethepartof B aboveσ 7 , andwelet � b bethepartof B �?� below σ 7 . Note
thatevery vertical line intersectingB will intersectσ 7 in exactly onepoint. This implies
that � r and � b do not meetalongvertical facets.Togetherwith themonotonicityof � it
alsoimpliesthat � r canberemovedupwardandthat � b canberemoveddownward.

Now considerthe generalcase,wheretherecanbe vertical lines that avoid the interior
of � but touchtwo or morenon-adjacentfacetsof � . In this casewe still let � r be the
part of B above σ 7 . However, σ 7 is not continuousanymore. Figure3.5 illustratesthis
for our runningexample. In this figure, theup-facetsaredarkly shadedandσ is lightly
shaded;for clarity, someof the trianglesin σ—the oneslying more in the back—have
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beenomitted. To make σ 7 into a continuoussurfacewe have to addcertainvertical

verticalwallsaddedto restore
continuity

Figure 3.5: A discontinuity in the surface σ 7 .
walls at placeswherea vertical line avoiding theinterior of � touchestwo or morenon-
adjacentfacetsof � . Moreprecisely, weneedto addthefollowing verticalwalls. If edges
of two differentup-facetsoverlapin the projection,thenwe needa rectangularvertical
wall to connecttheportionsof theseedgesthatoverlapin theprojection—seethemiddle
vertical wall addedin Figure3.5. Furthermore,if a triangle t sharesan edgee with a
projectedup-facetbut thelifted versiont doesnot have e asanedgebecauseit waslifted
to a differentheight,thent needsto beconnectedto e with oneor two triangularvertical
walls—seetheleft andright verticalwalls in Figure3.5.After addingtheseverticalwalls,
σ 7 is a continuoussurfacewith thepropertythat its intersectionwith any vertical line is
connected.Togetherwith the monotonicityof � this implies thatboth � r , the part of B
above σ 7 , and � r , thepartof B �?� below σ 7 , areremovable.

To checka polyhedron� for castability, we canuseLemma1 andthe following simple
observation.

Observation 1 A polyhedron � is vertically monotoneif and only if the union of open
up-facetsformsa terrain.

To test if the union of openup-facetsforms a terrain,we canprojectthemonto the xy-
planeandcheckwhetherany pair intersects.This observationis essentiallythebasisfor
Kwong’s algorithm[34]—seeSection3.1—andimmediatelyimpliesTheorem3. How-
ever, weelaboratein somedetailasomewhatdifferentapproachthatdecidesmonotonicity
by only looking at silhouetteedges(which we will definebelow) of thepolyhedron;the
mainreasonbeingthatsilhouetteedgescanbeupdatedefficientlywhenadirectionchange
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occurs.Thus,usingsilhouetteedgesincreasesthe efficiency of thealgorithmpresented
in thenext section,thatgoesover all possibledirectionsin orderto reportthedirections
whereagivenpolyhedronis castable.

We first give a precisedefinition of the silhouetteof an object. This turns out to be
somewhattricky if theobjecthasverticalfacets.

Let 
 beanobject,andconsideraverticalline 0 . Theline 0 intersects∂ 
 in anumberof
maximalclosedintervals.Theseintervalsseparateopenintervalslying eithercompletely
insideor outside 
 . A boundaryinterval that is surroundedon both sidesby intervals
outside 
 is calledaconvex silhouetteinterval. A boundaryinterval thatis surroundedon
bothsidesby intervalsin theinteriorof 
 is calleda reflex silhouetteinterval. Theunion
overall verticallinesof all convex silhouetteintervalsformstheconvex silhouetteandthe
unionof all reflex silhouetteintervalsformsthereflex silhouette. Theunionof theconvex
andreflex silhouettesis calledthesilhouetteof 
 .

Wevisualizethesedefinitionsfor thecaseof apolyhedron� . If � hasno verticalfacets,
thenthesilhouetteconsistsexactlyof thesilhouetteedgesof � , namelytheedgesewhere
the two facetsincident to e lie on one side of the uniquevertical planethroughe. A
silhouetteedgeis convex if thedihedralanglebetweenthetwo facetsin theinterior of �
is smallerthanπ, otherwiseit is reflex. If � hasvertical facets,thenthesilhouetteis no
longer1-dimensional.For instance,thesilhouetteof theobjectin Figure3.3 consistsof
all verticalfacetsof thepolyhedron.Figure3.6showsanotherobjectwith partof its quite
complicatedsilhouetteshown shaded.Notethatthesegmentsa andb arealsopartof the
silhouette.

a
b

Figure 3.6: The silhouette of a polyhedron with vertical facets.

Thefollowing lemmais straightforward:
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Lemma 2 If the reflex silhouetteof an object 
 is not empty, then 
 is not vertically
monotone.

From now on, we will thereforeonly considerobjectswhosereflex silhouetteis empty.
Thesilhouetteis the convex silhouettein this case,andit consistsof a finite numberof
disjointcurvesor “bands”on∂ 
 , referredto asthesilhouettecurves. Whenthesilhouette
curvesareprojectedvertically ontothexy-plane,we geta collectionof so-calledshadow
curvesin theplane.Theseare1-dimensionalcurves,sincethebandsof thesilhouetteare
vertical.Furthermore,theshadow curvesareclosedcurves.

Thekey stepin ourargumentis thefollowing lemma.

Lemma 3 Let 
 bean objectwith emptyreflex silhouetteandsuch that no vertical line
containstwo silhouetteintervals.Then 
 is vertically monotone.

Proof: Let Sbethesilhouetteof 
 . Sinceno vertical line containstwo silhouetteinter-
vals,theshadow curvesof 
 area collectionof mutuallydisjoint, simple,closedcurves
γ1 � γ2 ��@A@A@B� γk in the xy-planethatpartition the planeinto openregionsR1, R2, . . . , Rk ( 1,
every oneof which is topologicallyequivalentto a discwith a finite numberof holes,as
in Figure3.7. If thereis only onecurve, thelemmaholdstrivially.

If thereis morethanonecurve, thenoneof thecurves,sayγ1, mustcontainall theother
curvesin its interior. Call this curve the outer curve. Let Re be a region containingno
holesboundedby acurve γe thatis not theoutercurve. Sucha regionmustexist sinceall
thecurvesaredisjoint. Let γe separateRe from Rf .

γ1 γ2

γ3

γ4

R1

R2

R3R4R5

R6

γ5

Figure 3.7: A collection of shadow curves, and the regions they define.

For apoint p in thexy-plane,let 0;� p� denotetheverticalline throughp. Theset 0C� p��1D

is a disjoint unionof closedintervals. We numberthoseintervals from bottomto top as
I1 � p� , I2 � p� , . . . , Im � p� . Within eachregion, the numberm is a constant.Betweentwo
regionsseparatedby a curve, the numberm differs by one,sincea curve introducesa

33



new interval in oneof the regions. Let Id � p� be the interval introducedby the curve γe

in region Re. ConsiderthecomponentC ��E p F Re
Id � p� . Sincethesilhouettecurvesare

convex, thereis no pathfrom a point p 45
	� C to a point in C. However, this violates
thefact that 
 is connected.Therefore,therecanonly beonecurve, implying that 
 is
verticallymonotone.

Theconditionin thelemmaaboveis sufficient for anobjectto beverticallymonotone,but
notnecessary. Thiscanbeseenin Figure3.3,whichdepictsaverticallymonotoneobject
for which thereis a vertical line containingtwo silhouetteintervals. That the condition
is not satisfiedcanalsobe seenfrom the fact that the shadow curve is not simple—see
Figure3.3(b). To extendthe lemmato a moregeneralsetting,we have to defineclearly
whatkind of non-simplicityweallow. To thisendweorientall silhouettecurvessuchthat
the interior of 
 lies locally to the left of the curve. This inducesan orientationin the
shadow curves,sothat‘to theleft of ashadow curve’ is well defined.Wesaythatasetof
shadow curvesis non-crossingif a slight shrinkingof every curve—obtainedby moving
everypoint slightly to theleft—resultsin asetof mutuallydisjoint,simplecurves.

shrinking

Figure 3.8: Shrinking the shadow curve of Figure 3.3(b).

Wecannow prove thegeneralizationof thepreviouslemma.

Lemma 4 Let 
 be an object with emptyreflex silhouetteand non-crossingshadow
curves.Then 
 is vertically monotone.

Proof: Assumethat 
 is notverticallymonotone.Thenthereisaverticalline 0 containing
two points p andq in the interior of 
 , anda point r betweenp andq outsideor on the
boundaryof 
 . Let ε G 0 be suchthat the balls of radius2ε centeredat p and q are
containedin 
 . We shrink 
 to obtaina new object 
 � by removing from 
 every point
that hasdistanceat mostε to the complementof 
 . If ε is chosensmall enough,this
resultsin a legal object 
 � , that is, a solid whoseboundaryis a connected2-manifold.
Since p andq lie in the interior of 
 � and r lies outside 
 � andbetweenp andq, the
object 
 � is not vertically monotone.However, if the silhouetteof 
 consistsof non-
crossingconvex silhouttecurves, then the silhouetteof 
 � consistsof disjoint convex
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silhouttecurvesbecauseof theshrinking.But thenLemma3 impliesthat 
 � is vertically
monotone,acontradiction.

Thelemmasabovegiveasufficientconditionfor anobjectto beverticallymonotone.The
next lemmashows thattheconditionis necessary.

Lemma 5 Let 
 beanobjectwith emptyreflex silhouettewhoseshadowcurvesarecross-
ing. Then 
 is not verticallymonotone.

Proof: Let p be a point in the xy-planewherea shadow curve crossesitself or another
shadow curve. A verticalline throughp touchestheboundaryof 
 in two pointsp andp�
lying in two differentsilhouetteintervals.This impliestheexistenceof apoint r between
p and p� that lies outside 
 . A slight perturbationof this line shows that thereexists
a point outside 
 lying betweentwo points in the interior of 
 . Therefore, 
 is not
verticallymonotone.

WesummarizeLemmas2, 4, and5 in thefollowing theorem.

Theorem2 An object 
 is vertically monotone, andtherefore castable, if andonly if its
reflex silhouetteis emptyandits shadowcurvesare non-crossing.

Beforeweoutlineouralgorithmfor testingcastability, wehave to examinethesilhouette
of a polyhedron� in moredetail. This silhouetteconsistsof silhouetteedges,vertical
edgesof thepolyhedron,andpartsof verticalfacets.To find thesilhouetteon thevertical
facetscorrectly, we usetheverticaldecompositionof thesefacets.Every trapezoid∆ of
thedecompositionis boundedfrom aboveandfrom below by (partsof) edgese1 ande2 of� . If bothe1 ande2 areconvex edges,then∆ is partof theconvex silhouetteof � . If both
e1 ande2 arereflex edges,then∆ is part of the reflex silhouette,and � is not castable.
If oneedgeis convex while theotheris reflex, ∆ doesnot belongto thesilhouette.Note
thatcertainverticalextensionsproducedby theverticaldecompositionalsobelongto the
silhouette.Wecanignorethem,however, astheirprojectioncoincideswith theprojection
of theendpointsof the incidentnon-verticaledgesof trapezoids.We call theprojection
of every silhouetteedgeand silhouettetrapezoida shadowedge. By Theorem2, the
polyhedron� is castableif andonly if it hasnoreflex silhouetteelements,andits shadow
edgesform asetof non-crossingcurves.

To decideon castability, we have to beableto testwhethertwo shadow curvescross.If
we examinethepossibleintersectionsof two shadow edgesei andej , we find that there
arefour casesthathave to betreatedascrossings—seeFigure3.9. Thefour casesareas
follows:

(i) theinteriorsof ei andej intersect;

(ii) ei andej overlapandhave thesameorientation;
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(iii) anendpointof ei lieson ej , andei lies to theleft of ej ;

(iv) an endpointof ei coincideswith the destinationof the directededgeej , andei is
containedin thewedgeformedby ej andthenext shadow edgeek on theshadow
curveof ej .

ek

ej

eiei

ej

p

(i) (ii) (iii) (iv)

ei

ej

ei

ej

Figure 3.9: Four different ways in which shadow curves can cross.

Note that the conditionon the orientationin (ii) ensuresthat the shadow curve in Fig-
ure3.8 is correctlylabeledasnon-crossing.

By combiningTheorem2 with the characterizationof crossingedges,we cancompute
efficiently whetherapolyhedronis castable.

Theorem3 Givena polyhedron � with n vertices,wecantestin timeO � nlogn� whether� is verticallymonotoneandtherefore castable.

Proof: We first form theverticaldecompositionof all vertical facetsin O � nlogn� time.
Next we identify all silhouettecurves; a local analysisof all edgesand trapezoidsin
the vertical decompositionof the vertical facetssufficesfor this. If thereareany reflex
silhouetteintervalswecanstopandreportthepolyhedronto benon-castable.Otherwise,
we projectthesilhouetteelementsonto thexy-planeto get theshadow edges.A simple
O � nlogn� time planesweepalgorithmcanthenbeusedto determinewhetherthereis a
crossingin thecollectionof shadow curves. If we detecta crossing,we stopandreport
thepolyhedronnon-castable,andif theplanesweepproceedswithout finding a crossing
thenthepolyhedronis reportedcastable.

3.3 Finding a direction

Wehaveseenhow to testwhetherapolyhedron� is castablein agivendirection �d. In this
sectionwe describeanalgorithmto solve thefollowing problem:Givena polyhedron� ,

36



decidewhetherit canbecastin somedirection �d. In fact,we will solve themoregeneral
problemof findingall directions �d for which � canbecast.

We representevery possibledirectionby a point on the unit sphere! 2 (centeredat the
origin): a point p on ! 2 representsthedirection �dp from theorigin to p. Our goal is to
identify theregionof ! 2 correspondingto directionsin which � is castable.By Lemma1
andObservation1 � is castablein direction �d if andonly if theunionof openup-facets
formsa terrainrelative to �d.

If we imaginethedirection �d changingcontinuously, therearetwo eventsthatmayinflu-
encetheterrain-propertyof theup-facets:First,anup-facetmaybecomeadown-facet,or
vice versa—thesetof thesedirectionsformsO � n� greatcircleson ! 2. Second,thepro-
jectionof avertex v of thepolyhedron� maycrosstheprojectionof anedgeeof � —the
setof thesedirectionscanbedescribedby O � n2 � arcsof greatcircles. Let 
 denotethe
unionof thesecurveswhich represent“critical events.”

Considerthearrangement#$��
�� of O � n2 � greatcirclesandgreatcirclearcson ! 2. Recall
that the arrangementconsistsof facesof dimensions0, 1, and2, which we refer to as
vertices,edgesandcellsrespectively. For simplicity of expositionwefirst assumethatthe
arrangement#&��
�� is in general position(seeSection2.3),andlaterrelaxthisassumption.

It is easilyverified that insideevery faceof the arrangement#$��
�� , the polyhedron�
is either �d-monotonefor every direction �d, or for none. We saythat two directionsare
combinatoriallydistinct if they lie in two differentfacesof thearrangement.We aim to
computeall combinatoriallydistinctdirectionsin which � is castable.

By our definition of castability, if a cell or an edgeof #&��
�� representsdirectionsin
which � is castable,thenany vertex on its boundaryrepresentsa directionin which � is
castable.Thissuggeststhefollowing simplealgorithm.Wecomputeall theverticesof the
arrangement#&��
3� by computingtheintersectionsof all pairsof curvesin 
 . This takes
O � n4 � time. Then for eachvertex (intersectionverticesandarcsendpoints)we test in
O � nlogn� time whether� is castablein thecorrespondingdirectionusingObservation1
andTheorem3. Thetotal runningtime of this algorithmis O � n5 logn� .
Thereareseveralwaysin whichthisstraightforwardapproachcanbeimproved.Notethat
any vertex v in #$��
�� representsa degeneratecastingdirection �dv: eitheronefacetof �
or moreareparallelto �dv, or a line parallelto �dv intersects� in morethanoneconnected
component.Therefore,we maybebetteroff proposingdirectionsin the interior of cells
of #$��
�� , if suchexist. However, we needto considerall facesof #$��
�� insteadof just
cells,becausetheremaybedirectionsof castabilitythatappearonly alongedges(suchas
thesituationdepictedin Figure3.3)or verticesof thearrangement.

Notealsothatthedifferencebetweentwo adjacentfacesin #&��
3� is quitesmall,provided
that #&��
3� is in generalposition.Whengoingfrom onefaceof thearrangementto another,
eitheronefacetof � changesits status(amongdown-facet,up-facetor parallelrelative to
a givendirection)or theprojectionof a vertex of � crossesinto (or over) theprojection
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of anedgeof � .

To exploit thecoherencebetweenadjacentfacesweproceedasfollows. Firstwecompute
thearrangement#$��
�� . We do this with anoutput-sensitive algorithm. Let m denotethe
combinatorialcomplexity of #&��
�� . Thealgorithmis a straightforwardadaptationof the
plane-sweepparadigmto thesphereandits runningtime is O �A� n2 � m� logn� . (We could
alsouseherea randomizedincrementalconstructionalgorithmwhoseexpectedrunning
time is O � n2 logn � m� ; see,e.g., [39].) Its output is a datastructurethat allows for a
traversalof thearrangementfaceby adjacentface(we coulduse,say, thequad-edgedata
structurefor thepurpose[22]).

If we areonly concernedwith worst-caserunningtime, andsincethecomplexity of the
arrangement#&��
�� can be Θ � n4 � in the worst case(seebelow), we can computethe
arrangementin Θ � n4 � time by substitutingeacharc in 
 by the greatcircle containing
it andcomputingthearrangementof theresultingcollectionof greatcircles. (The latter
arrangementis a refinementof #&��
3� from which we could easily obtain the required
output.) Usingcentralprojectionfrom thesphereonto two parallelplanestangentto ! 2

at two antipodalpointswe obtaintwo arrangementsof straightlines. Sucharrangements
canbe computedin Θ � n4 � time each. In fact computingthe arrangementon oneplane
sufficessincethetwo arrangementsaresymmetric,providedsomecautionis exercisedin
choosingtheprojectionplanes:we choosea tangentplaneπ suchthat thegreatcircle γ
parallelto π doesnotfully containacurveof 
 , andsuchthatnovertex of thearrangement
lieson γ. This wayno informationis lost by theprojection.

After #$��
�� hasbeencomputed,we choosea point p insidea faceof the arrangement
arbitrarily andcomputethe silhouetteelementsof � correspondingto the direction �dp.
For eachsilhouetteelementwe checkwhetherit is convex or reflex. We initialize two
counters:how many silhouetteelementsarereflex andhow many pairsof shadow edges
crossoneanother. For the direction �dp, this computationtakesO � n2 logn� time using
a plane-sweepalgorithm. By Theorem2, the polyhedronis castablein direction �dp if
both countersarezero. We move to an adjacentfaceof the arrangement—wetraverse
thearrangementin, say, depth-firstorderon thegraphinducedby theedgesandvertices
of thearrangement.By looking at theedgesof thearrangementthatareinvolved in the
move,weknow how to updatethecountersatconstanttimeperedgeinvolved.At theend
of themovewecheckthecountersandreportcastabilityif they arebothzero.If wereport
castabilityatavertex, wealsoreportcastabilityat its incidentedgesandfaces(in general
this is only true underthe generalpositionassumption).Thus,after the computationat
thestartingpoint p, theentiretraversalof thearrangementtakestimeO � m� . Weconclude
thatall directionsfor whichthereis agoodcastcanbecomputedin O � n4 � time,or in time
O �A� n2 � m� logn� .
Next werelaxthe“generalposition”assumption.Two typesof degeneraciescanoccurin
thearrangement#$��
�� : (i) morethantwo arcsareincidentto avertex of thearrangement,
and(ii) two or morearcsoverlapin a subarc(not just in a point or two). We now show
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thatwecancomputethearrangementandfind all castingdirectionsin asymptoticallythe
sametimeasin thenon-degeneratecase.

Considerfirst a degeneracy of type (i), wherea setQv of morethantwo arcsmeetat a
singlevertex v. How to carry out the line sweepefficiently in this caseis describedin
detail in [19, Chapter2]. It remainsto handleupdateof the countersat v. If every pair
of arcsin Qv crosseachothertransversallyat v, thenv requiresno specialtreatment:if�dv is avalid castingdirectionthenat leastoneof theedgesof thearrangementincidentto
v alsorepresentssuchdirections,andthevalidity of thedirection �dv will follow from its
beinganendpointof thatedge.

The casethat requirescautionis whenin a small neighborhoodof v, the vertex v is the
only point representingavalid castingdirection.Thiscanhappenwhenat leastoneof the
arcsincidentto v hasanendpointat v, or whentwo or morearcsoverlapat andnearv.
Theeffect of overlapis explainedbelow. In any casewhat is neededis carefulcounting
at the vertex v, which canbe carriedout in time proportionalto the numberof incident
edges,andhencecanbe chargedto theseedges.Clearly no edgeis chargedmorethan
twice in this manner.

To handledegeneraciesof type(ii) we carryout thefollowing preprocessingstepaiming
to identify all overlapsamongcurvesin 
 . By working on theprojectionplaneasmen-
tionedabove,wecanassigna slopeto eachgreatcircle supportinganarcin 
 : theslope
of the line it projectsonto. We maintainthe arcssortedby slope. Let Qs be the setof
all arcswith the sameslopes (hencepotentiallyoverlapping).All the arcsin Qs lie on
thegreatcircle Gs. Theendpointsof arcsin Qs partitionGs into maximalintervalssuch
thateachinterval is coveredby the samesetof arcs. Theseintervalsconstitutethe new
curvesthatwe give asinput to thealgorithmthatconstructsthearrangement.By doing
a 1-dimensionalsweepon Gs (with theendpointsof all arcsin Qs in cyclic orderasthe
sweepevents)we candecidefor eachof thenew curveshow thecounterschangeaswe
crossthe curve. We repeatthis for every slope,andobtaina new setof curvesthat are
theninput to thealgorithmfor constructingthearrangement.It mayalsobethecasethat
thereareno endpointsof arcs,whenall thecurvesin asetQs aregreatcircles—theseare
simplyunifiedinto onecurvewith theappropriatecounterupdateinformation.

Of specialinterestarearcswherethecountersarezeroon thearcbut grow whenmoving
out of the arc (that is if we crosssucharc transversally, then locally the countersare
positive just beforeandjust afterthecrossing,but they arezerowhenwe areon thearc).
Thesearcsare interestingbecauseif two of themmeettransversallyat a vertex v, this
vertex v is potentiallyasecluded(singular)valid castingdirection.

Let N denotethe numberof curves in 
 andlet m denoteasbeforethe complexity of
thearrangement#&��
3� . Sortingthearcsby slopetakesO � N logN � time andthis is also
theoverall time to carryout all the1-dimensionalsweepsover theQs’s. Otherthanthat
the algorithm is carriedout asbefore. SinceN � O � n2 � , the asymptoticrunning time
of thealgorithmin thegeneralcaseremainsO �H� n2 � m� logn� . We summarizewith the
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following:

Theorem4 Let � bea simplepolyhedronwith n vertices.All directionsin which there is
a goodcastcanbecomputedin O � n4 � time. Alternatively, all thedirectionsin which there
is a goodcastcanbecomputedin O �A� n2 � m� logn� time, where m is thecombinatorial
complexity of thearrangement#&��
3� , or in expectedtimeO � n2 logn � m� .
Weconcludethissectionby presentingalowerboundconstructionof polyhedrathathave
asmany asΩ � n4 � distinctcastdirections.This impliesthatouralgorithmis optimalin the
worstcase.Thekey ideabehindtheconstructionof suchpolyhedrais to forcetheΩ � n2 �
greatcircle arcs(formedby verticescrossingedges)to interactsuchthatthereareΩ � n4 �
cellsin theresultingarrangement.

Theorem5 There exist polyhedra for which there are Ω � n4 � distinctdirectionsin which
there is a goodcast.

Proof: Figure3.10shows a polyhedronwith two horizontal“legs” anda row of small
(resp. large) “teeth” positionedalongthe upperleg (resp. lower leg). We refer to this
polyhedronasa comb. The schematicdiagramon the left in Figure3.11givesthe top
view showing the interactionof the large andsmall teethin a singlecomb. In the top
view, if wemove from left to right, onelargetoothwill appearin eachof thegapsamong
thesmall teethbeforeanadjacentlargetoothappearsin any gapamongthesmall teeth.
Therefore,if thereareb small teethandc large teeth,thenthereareΩ � bc� distinct and
goodpartingdirectionsfor acomb. For onecomb,eachof thesedistinctandgoodparting
directionslies in adistinctcell in thearrangement,#&��
3� .
The key to increasingthe numberof distinct andgoodpartingdirectionsis to combine
two combs.Theschematicdiagramon the right in Figure3.11shows the top view of a
compositeobjectconsistingof two combs:thelowerleg of theleft combandtheupperleg
of theright combareat thesamelevel, andthetwo shadedboxesrepresenttheprojection
of the two rows of small teeth. Let eachcombhave a row of n� 4 small andlarge teeth.
Therefore,thereis a total of n teethin thecompositeobject.

Thefirst comb,in thecompositeobject,decomposesthesphereof directionsinto Ω � n2 �
cells. For eachof thesecells, the secondcombdecomposesthat cell into Ω � n2 � cells.
Therefore,the numberof distinct andgoodpartingdirectionsfor the compositeobject
canbeaslargeasΩ � n4 � .
3.4 Experimental results

We have implementeda simplified versionof the algorithmof Theorem3 (insteadof a
planesweep,we simply testall pairsof shadow edgesfor crossings).Given an object
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Figure 3.10: A component of the polyhedron having Ω � n4 � distinct cast directions

Figure 3.11: A top view of the lower bound construction

to be cast,we testa randomsetof directions,aswell asheuristicallychosendirections
(currentlythedirectionsof all edges).This is simpleto implementandseemsto work fine
in practice.Figure3.12showsaheart-shapedobject.Thesphererepresentsthesphereof
directions.A blackstippleis plottedon thespherefor everydirectionin which theobject
hasbeenfoundcastable.Two directionshave beenspeciallymarked,oneof theseis an
edgedirection,the otheronea randomlychosendirection. The hearthas75 edgesand
7 edgedirectionswerefoundto be feasible.Of the32� 000randomlychosendirections,
803werefoundto befeasible.Theblackline on theheartshows thesilhouettefor oneof
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Figure 3.12: A heart-shaped object and the sphere of directions depicting the different
casting directions tested

thetwo markeddirections(therandomlychosenone).

Therook from achessgamein Figure3.13had264edgesandthedirectionsof 8 of them
arefeasible.Of thetested32� 000randomdirections,576arefeasible.Silhouettesfor the
two markeddirectionsareshown on theobject.

We have alsotestedthe implementationon many CAD models. In the implementation,
we usedthe commercialsoftwareACIS,2 a 3-dimensionalmodelingtoolkit andlibrary,
whichsupportssolid modelingandsurfacemodeling.

Figure3.14shows a convex polyhedron,which is castablein any direction. In the right
figure,silhouettesfor theobjectwith respectto thegivendirectionareshown. Notethat
thegivendirectionis not feasiblein thesandcastingmodel.

The algorithmworks for objectshaving tunnels. The torusin Figure3.15hasa tunnel,
andsilhouettesof two closedcurveswerefoundwith respectto thegivendirection.

Givenadirection,if thereis areflex edgeor apairof edgesthatcrossin theprojection,the
programnotonly stops,but providesusefulinformationto thedesigneronthecastability:
Figure3.16 shows a bracket. The bracket is not castablein the given direction,anda
shortblacksegmentshown in theright figureis areflex edgein thedirection.Figure3.17
shows an objectwhosetwo edges,coloredblack, crossin the projectioninto the given
direction.

Figure3.18shows a bolt. Insteadof samplingdirectionsrandomly, we chosedirections
parallelto facesof theobject.Of the64chosendirections,38of lightershadearefeasible.

Clearly, further experimentationis necessaryto improve the heuristics. Although the

2ACIS is a trademarkof SpatialTechnologyInc.
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Figure 3.13: A rook and the sphere of directions depicting the different casting directions
tested

Figure 3.14: For a convex polyhedron, in any direction it is castable.

programtakesonly a few secondson theseparts,it would have to befasterto allow on-
line warningsinsidea CAD system(we imaginea systemthat automaticallywarnsthe
designerassoonastheobjectbecomesuncastable).

A naturalextensionwould be to testdirectionsthatareparallelto a pair of facetplanes.
Obviously we could alsotestall O � n4 � verticesof the arrangementon the sphereof di-
rections(seetheprevioussection),but so far it seemsthat this would make theprogram
slowerwithouthelpingmuchin practice.
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Figure 3.15: Torus: the algorithm works for objects having tunnels.

Figure 3.16: A reflex edge inside the bracket for the given direction.

Figure 3.17: A pair of edges(dark) cross in the projection into the given direction

Figure 3.18: Directions parallel to faces of the object: lighter(castable)/darker(not castable)
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C H A P T E R 4

Directional uncer tainty

4.1 Intr oduction

Thecastingalgorithmsthathavebeenproposedsofarassumeperfectcontrolof thecast-
ing machinery. Whena castpart is removed, it is requiredthat the part movesexactly
in the specifieddirection. In practice,however, this will rarely be the case. As in all
applicationsof robotics,we have to dealwith imperfectcontrolof themachinery, anda
certainlevel of uncertaintyin its movements.Whena facetof theobjector of a castpart
is almostparallelto the directionin which the castpartsarebeingmoved, thenthe two
touchingsurfacesmaydamageeachotherwhenthecast(mould) is beingopened.This
canmake the resultingobjectworthless,or it may wearaway the surfaceof the castso
thatit cannotbereusedasoftenasdesirable.

In Figure4.1 (a), thecastcanbeopenedby moving thetwo partsin direction �d and �	�d.
If, however, dueto imperfectcontrol, the upperpart is translatedin direction �d � , it will
destroy the object. The castpartsin (b) are redesignedso that both castpartscan be
translatedwithoutdamagein thepresenceof someuncertainty.

In this chapter, we considerdirectionaluncertaintyin the castingprocess:given a 3-
dimensionalpolyhedralobject, is therea polyhedralcastsuchthat its two partscanbe
removed in oppositedirectionswith uncertaintyα without damageto the objector the
castparts?Wecall suchanobjectcastablewith uncertaintyα.

Directional uncertaintyhas beenwell studiedby researchersin motion planning and
roboticsin general.A motion planningmodelwith directionaluncertaintywasperhaps
first proposedby Lozano-Ṕerez,MasonandTaylor[36]. An extensivetreatmentof motion
planningwith directionaluncertaintyis givenin thebookby Latombe[35].
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Figure 4.1: (a) Insufficient angle: the upper part of the cast is stuck, (b) A new removal
direction

We generalizethecharacterizationof castablepolyhedrain Chapter3 to incorporateun-
certaintyin thedirectionsin which thecastpartsareremoved.A formal definitionof our
modelis givenin Section4.2. It turnsout thatoneof themaindifficultiesis to guarantee
that the two castpartsarepolyhedral—while this is trivial in the exact case,it requires
approximationof a curvedsurfacein our modelwith uncertainty. We give analgorithm
thatverifieswhethera polyhedralobjectof arbitrarygenusis castablefor a givendirec-
tion of castpartremoval andgivenuncertaintyα G 0. Therunningtime of thealgorithm
is O � nlogn� , wheren is the numberof verticesof the input polyhedron. If the object
is castable,thealgorithmalsocomputestwo polyhedralcastpartswith O � n� verticesin
total.

We thenconsiderthe casewherethe removal directionis not specifiedin advance. We
giveanalgorithmthatfindsall possibleremoval directionsin which thepolyhedralobject
is castablewith uncertaintyα in time O � n2 logn� α2 � .
4.2 Preliminaries

A polyhedron� is monotonein direction �d if every line with direction �d intersectsthe
interior of � in at most one connectedcomponent. We say that � is α-monotonein
direction �d for an angleα with 0 � α K π � 2 if � is monotonein direction �d � for all
directions �d � with �����d �L�d � �M� α,

We saythata facet f of a polyhedron� is α-steepin direction �d if theangleβ between
a normalof f and �d lies in therangeπ � 2 � α � β � π � 2 � α. A polyhedron� is called
α-safein direction �d if noneof its facetsis α-steepfor thatdirection.

We call a polyhedralterrainα-safeif thenormalvectorof thesurfacemakesanangleof
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at mostπ � 2 � α with theverticaldirectionwherever it is defined.

A cast � with openingdirection �d for a polyhedron� is a pair �/� r ��� b � of two polyhedra� r and � b, suchthat the interiorsof � r , � b, and � arepairwisedisjoint and the union� r �N�5�8� b is a rectangularbox with anedgeparallelto �d thatcompletelycontains� in
its interior. Wecall � r and � b theredcastpart andthebluecastpart of � .

A cast � with openingdirection �d is α-feasible,if for eachpair of directions ���dr ���db �
with �����d ���dr �=� α and ���H�	�d ���db �=� α, theredcastpart � r canbetranslatedto infinity in
direction �dr without colliding with � or � b, andthebluecastpart � b canbetranslatedto
infinity in direction �db without colliding with � . Notethattheorderof removing thecast
partsis actuallyirrelevant.

A polyhedron� is α-castablein direction �d if anα-feasiblecastwith openingdirection�d exists.For thespecialcaseα � 0, wesaythat � is castablein direction �d.

Thefollowing simplelemmacharacterizespolyhedracastablein direction �d [7].

Lemma 6 A polyhedron � is castablein direction �d if and only if it is monotonein
direction �d.

The main resultof the presentchapteris a generalizationof this result to α-castability.
Westatetheresulthere—itwill takeusa few morepagesto prove it.

Theorem6 A polyhedron � is α-castablein a direction �d if andonly if � is α-monotone
andα-safein direction �d.

Thefollowing lemmaprovesthenecessityof thecondition.

Lemma 7 If a polyhedron � is α-castablein direction �d, then � is α-monotoneand
α-safein direction �d.

Proof: Assumethat � is not α-safe,soa facet f is α-steepwith respectto �d. A point p
in theinteriorof f canbeneitheron theboundaryof � r noron theboundaryof � b, andso� is not α-castablein direction �d @
On theotherhand,if � is α-castablein direction �d, it is castablein any direction �d � with��� �d � �d � �=� α. By Lemma6, it follows that � is monotonein direction �d � . It follows that� is α-monotone.

4.3 Finding a cast

It remainsto prove the sufficiency of the conditionin Theorem6. We do so by show-
ing how to constructan α-feasiblecastfor any α-monotoneandα-safepolyhedron.To
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simplify thepresentation,wewill assume,without lossof generality, that �d is theupward
verticaldirection(thepositive z-direction).We saythat � is α-castableif it is α-castable
in theverticaldirection.

A facetof � is calledanup-facetif its outwardnormalpointsupwards,andadown-facet
if its outward normal points downwards. Assuming � is α-safe,thereare no vertical
facets,andso eachfacetis either an up-facetor a down-facet. Clearly an up-facetof� mustbe a facetof the red castpart � r , while a down-facetof � mustbe a facetof
the blue castpart � b. The difficulty is finding the separatingsurfacebetween� r and � b

“elsewhere.”

Assumethat � is α-castableandthat ��� r ��� b � is anα-feasiblecastfor � . Againwedenote
by B theaxis-parallelbox that forms theoutsideof thecast.We definetheblueparting
surfaceSb as the commonboundaryof � b and � r �O� , and the red parting surfaceSr

asthe commonboundaryof � r and � b ��� . Any upwardsdirectedvertical line 0 must
intersect� b, � and � r in this order, eachin a singleconnectedcomponentthat canbe
empty. It follows thatboth Sb andSr arepolyhedralterrains.The two terrainscoincide
exceptwherethey boundthe polyhedron� . If we let ! : � Sb 1 Sr , define ! u to be the
unionof all up-facets,and ! d to betheunionof all down-facets,wecanwrite Sr �)!P�Q! u

andSb �R!S��! d. The boundaryof ! is the setof silhouetteedgesof � (an edgeis a
silhouetteedgeif it separatesanup-facetfrom adown-facet).

Constructingacastthereforereducesto theconstructionof theterrain ! . In Chapter3,we
consideredthespecialcaseα � 0, andgave a triangulationmethodfor constructing! as
follows: Let h bea horizontalplanecuttingthebox B in two roughlyequalhalves.Let R
betherectangleh 1 B. Weproject � ontoh andobtaina polygon � , possiblywith holes.
Let T beatriangulationof R � � . Every trianglein T is “lifted” into 3-dimensionalspace
by replacingeachvertex v of � by its originalvertex v of � . Theresulting3-dimensional
surfaceis thedesiredterrain ! separatingtheredandbluecastparts.(Thedescriptionin
Chapter3 is morecomplicatedasit handlesverticalfacets.)

Unfortunately, this constructiondoesnot necessarilyproducean α-feasiblecast,even
whenthepolyhedronis α-castable.Figure4.2 illustratesthis possibility. � is theprojec-
tion of a polyhedron� that is α-monotoneandα-safe. The z-coordinatesof verticesa
andb areidentical(andsothesegmentab is horizontal).Thez-coordinateof c is chosen
suchthatbothac andbc make anangleof α with thevertical direction. Any triangula-
tion of R � � containsthetriangleabc. This implies that themidpoint p of ab lies on ! ,
andthereforeon theboundaryof theredcastpart. However, translatingp upwardswith
uncertaintyα may causeit to collide with the polyhedronat c, and so the cast is not
α-feasible.

Theproblemwith thisapproachis thatevenif thepolyhedronis α-monotoneandα-safe,
theconstructedterrain ! is not: thetriangleabc is in factα-steep.We now prove that it
sufficesto makesurethisdoesnot happen.
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Figure 4.2: The triangulation method fails: the line segment pc is too steep.

Lemma 8 Let B be an axis-parallel box, and let ! be an α-safeterrain separating the
topandbottomfacetsof B. Let � bethepart of B above ! , andlet � � : � B �:� . Let �d bethe
upward vertical direction,andlet �d � besuch that �����d �L�d � �M� α. Then� canbetranslated
to infinity in direction �d � withoutcolliding with � � .
Proof: Assumethe claim wasfalse,andconsidera point p 4D� that whentranslatedin
direction �d � collideswith a point q 4D� � . The line segmentpq lies completelyinsideB,
andso its vertical projectiononto ! is a pathπ. Sincep lies above oneend-pointof π,
q lies below theotherend-point,andtheslopeof pq is at leastπ � 2 � α, theremustbea
segmentonπ wheretheslopeis at leastπ � 2 � α. This is acontradictionto theassumption
that ! is α-safe.

Lemma 9 Let � be an α-safepolyhedron, B an axis-parallel box enclosing� and let! be an α-safepolyhedral terrain boundedby the silhouetteedgesof � . Thenthe cast
definedby thepartingsurfacesSr : �V!&��! u andSb : �5!&��! d is α-feasible.

Proof: Since � is α-safe,both ! u and ! d areα-safeterrains.Since ! is α-safe,bothSr

andSb arethereforeα-safe.Lemma8 now impliesthatthecastis α-feasible.

We will now show how to constructa terrain ! as in Lemma9 by forming the lower
envelopeof a setof cones.Givena point p on anup-facetof � , theα-cone W$� p� of p is
thesolidverticalupwardsorientedconeof angleα with apex p. Formally, if p� is apoint
vertically above p, then W$� p� : ��X x YL��� xpp� �Z� α [ . Let now W 1 be theunionof W$� p�
over all points p 4P! u, andlet \ 1 be the lower envelopeof W 1. Clearly, \ 1 contains! u,
andso ! : �]\ 1 �^! u is boundedby thesilhouetteedgesof � . Since\ 1 consistsof patches
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of α-cones,it is clearly α-safe. It follows that ! fulfills the requirementsof Lemma9,
exceptthatit is not apolyhedralterrain.

We will seebelow thatwe caneasily“approximate”! by a polyhedral,α-safeterrain !_�
that containsall the linearedgesof ! andlies below (or coincideswith) ! everywhere.
(The readermight also rightfully askwhy a casthasto be polyhedral—perhapsa cast
boundedby theconicpatchesresultingfrom our constructionmight work betterin prac-
tice thanthepolyhedralversionwewill constructbelow.)

Theconstructionof ! above appearsto requiretaking theunionof an infinite family of
cones. We now give an alternative definition of ! as the lower envelopeof h objects,
whereh is thenumberof silhouetteedgesof � .

In fact, let pq bea silhouetteedgeof � . The α-region W$� pq� of pq is theconvex hull
of W$� p�`�NW$� q� . The lower envelopeof W$� pq� consistsof threecomponents:two conic
surfacessupportedby the α-conesW$� p� and W$� q� , anda connectingareaconsistingof
two planarfacets.

Let now W 2 be the union of W$� pq� , over all silhouetteedgespq, andlet \a�R\ 2 be the
lower envelopeof W 2. It is easyto seethat \ 1 is in fact thelower envelopeof ! u and \ 2,
andso \ 1 and \ 2 coincide“outside” of � . Thus,if we define ! to bethepartof \S�b\ 2

not lying above ! u, wedefinethesameterrain ! asabove.

The lower envelope \ consistsof O � h� faces, which areeitherplanar, or supportedby a
singleα-cone W$� x� for a vertex x of � . An edgeof \ is eithera silhouetteedgeof � ,
a straightedgeseparatinga conic patchsupportedby an α-cone W$� x � from an adjacent
planarpatchsupportedby anα-region W$� xy� , or is anarcsupportedby the intersection
curve of two α-cones,anα-coneanda plane,or two planes.Sucharcsareeitherstraight
segments,arcsof parabolas,or arcsof hyperbolas.In all cases,they arecontainedin a
plane.Figure4.3shows thetwo typesof conicsectionsarising.

parabola hyperbola hyperbola

Figure 4.3: Types of conic sections: parabola and hyperbola
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We canrepresent\ by its projectionon the xy-plane. The projectionis in fact a planar
subdivision, whosefacesaresupportedby a singleplaneor α-cone.If we annotateeach
facewith the vertex or silhouetteedgeof � whoseα-coneor α-region supportsit, the
resultingmapis acompleterepresentationof \ .

In general,the lower envelopeof m well-behaved,constant-complexity objectscanhave
complexity Θ � m2 � [48]. We will show in the following that our planarsubdivision has
in fact linear complexity. Roughlyspeaking,we interpretthe planarmapasa kind of
Voronoi diagram. Our sitesare the projectionsof silhouetteedgesonto the xy-plane,
additively weightedby the “height” of the edgeabove the xy-plane. (This is, indeed,a
strangenotionof “weight,” asit is not constantfor a givensite. Theconcernedreaderis
askedto wait for theformaldefinitionbelow.) Thisdiagramdoesnotappearto havebeen
studiedbefore,but it doesfit into Klein’s framework of abstract Voronoi diagrams[32],
andhis resultson complexity andcomputationapply.

Considerasilhouetteedgeeof � . Let ebetheprojectionof eonthexy-plane.For apoint
p 4 e, let pz bethez-coordinateof thepoint p �c� px � py � pz �=4 e whoseprojectionon the
xy-planeis p, andlet w � p� bepztanα. Wecannow defineadistancemeasurein theplane
asfollows: For x 4O 2 andp 4 e, wedefine

d � x � p� : �dY xp Ye� w � p���dY xp Yf� pz tanα @
Thedistanceof apointx to asegmente is then

d � x � e� : � min
p F e

d � x � p��@
Lemma 10 Thevertical projectionof the lower envelope \ coincideswith the Voronoi
diagramof theprojectedsilhouetteedgesandverticesunderthedistancefunctiondefined
above.

Proof: Let x be a point in the plane,andlet e be a silhouetteedgeof � . Let x 7 be the
point wherethevertical line throughx intersectstheboundaryof theα-region W$� e� . We
observe thatd � x � e�g�dY xx 7hY tanα. Thelemmafollows.

In thefollowing lemma,weshow somepropertiesof theVoronoidiagram.

Lemma 11 Let � bean α-safeandα-monotonepolyhedron. ConsidertheVoronoi dia-
gramdefinedby theprojectionsof a subsetG� of silhouetteedgesof � with thedistance
functionabove. It hasthefollowingproperties:

� A projectedsilhouetteedgee lies in its ownVoronoi cell.� Givena point x in theVoronoi cell of e. Let y 4 e bethepoint on e minimizingthe
distancefromx. Thenthesegmentxy is containedin theVoronoi cell of e.

51



� Each Voronoi cell is simplyconnected.

� TheVoronoidiagramis anabstractVoronoidiagramasdefinedbyKlein etal. [33].

Proof: Let G� beanon-emptysubsetof silhouetteedges,andlet \ � bethelowerenvelope
of theα-regionsof thesilhouetteedgesin G� .
(i) Theclaim is identicalto statingthat thesilhouetteedgee appearson the lower enve-
lope \ � . If it didn’t, a point p 4 e would have to lie insidethe α-region W$� e� � of some
othersilhouetteedgee� , in contradictionto theassumptionthat � is α-monotone.

(ii) Assumethereis apointz 4 xy suchthatthenearestsitepoint to z is t 6� y. Then

d � x � t �i� Y xt Yf� w � t �2��Y xzYf�]Y zt Yf� w � t �?�jY xzYf� d � z� t �K Y xzYe� d � z� y���dY xzYe�]Y zyYe� w � y���jY xy Yf� w � y�?� d � x � y���
in contradictionto thedefinitionof y. Sothenearestpoint on a site is y, for all pointson
xy, andthesegmentxy is containedin theVoronoicell of e.

(iii) Follows from (i) and(ii).

(iv) TheabstractVoronoi diagramframework by Klein et al. assumesa setof (abstract)
objects,eachpair of which definesa bisectorpartitioningtheplaneinto two unbounded
regions.Thesystemof bisectorshasto adhereto asetof four axioms.It is straightforward
to verify that the bisectorsdefinedby pairsof silhouetteedgesdo fulfill theseaxioms,
using(i)-(iii) andelementarycalculations.

Figure4.4 shows thebisectorof two projectedsilhouetteedgese ande� . Note thedrop-
shapedcurvessurroundingeachedge: thesearecurvesof equaldistancefrom the seg-
ment.

Lemma 12 Let � beanα-monotoneandα-safepolyhedronwith n vertices,andlet \ be
the lower envelopeof theα-regionsof its silhouetteedges. Then \ hascomplexity O � n�
andcanbecomputedin timeO � nlogn� .
Proof: FromLemma10 andLemma11 (i)-(iii), we canconcludethat \ haslinearcom-
plexity.

Wecanidentify theh silhouetteedgesof � in O � n� time by inspectingthenormalsof all
facets.By Lemma11 (iv), theprojectionof \ ontothexy-planecanbecomputedin time
O � hlogh� by therandomizedincrementalalgorithmof Klein et al. [33]. Eachfaceof the
Voronoidiagramcarriesinformationaboutthesitecreatingit, andsowecanconstructthe
envelope\ in lineartimeO � h� .
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Figure 4.4: d � e� x�?� d � e� � x�
We have now seenhow to computeanα-safeterrain \ boundedby thesilhouetteedges
of � in timeO � nlogn� . All thatremainsto bedoneto fulfill theassumptionsof Lemma9
is to turn \ into apolyhedral terrain.Weproceedasfollows.

Theedgesof \ consistaconstantnumberof segmentsof two types:straightline segments
andconicarcs.Let δ � v1v2 besucha conicarc,with endpointsv1 andv2. Its projection
δ separatestwo cellsof theVoronoidiagram,sayof eande� .
We conceptuallyaddfour straightline segmentsto thegraphof theVoronoidiagramby
connectingbothv1 andv2 to thenearestpoint on bothe ande� . We do this for all conic
arcsof \ , addinga linearnumberof “spokes” to theVoronoidiagramgraph.Thespokes
do not intersect,andso we have increasedthe complexity of the diagramby a constant
factoronly. As aresult,any conicarcδ, is now incidentto two constant-complexity faces
in the diagram. Therearetwo cases,depictedin Figure4.5 (a), dependingon whether
thespokesmeeton oneor two sides.Without lossof generality, we canassumethat the
spokesalwaysmeeton e� .
As wehaveseenbefore,theconicarcδ is containedin aplaneΓ. Wenow choosea line 0
in Γ tangentto δ on its convex side,suchthat its projection0 separatesδ from e. (If Γ is
averticalplane,thenδ is a straightsegment,and 0 containsδ.) Let furthermore0 1 and 0 2
bethelinesin Γ tangentto δ in v1 andv2. Let x : �50^1�0 1 andy : �50^1�0 2.

We now constructa new terrain \g� by replacingtheconicarcδ with thepolygonalchain
v1xyv2, and replacingthe conic surfacepatchessupportedby W$� e� � and W$� e� eachby
threetrianglese� v1x, e� xy, e� yv2 (andanalogouslyfor e if thespokesmeeton bothsides).
Figure4.5(b) shows theprojectionof thenew terrain \ � .
We canperformthis operationfor all conicarcsof \ simultanously, resultingin a poly-
hedralterrain \ � . Note that the triangleslie on planesthat aretangentto α-conesW$� e�
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Figure 4.5: Approximation of curved surfaces. (a) adding spokes to the diagram: bisector
of a vertex and an edge (left) and bisector of two vertices (right). (b) in the new terrain \ � ,
conic facets have been replaced by triangles.

or W$� e�k� , andso they arenot α-steep.This implies that \2� is α-safe. By Lemma9, the
terrain \ � definesanα-feasiblecast,andwehave thefollowing result.

Lemma 13 If a polyhedron � is α-monotoneand α-safein direction �d, then � is α-
castablein direction �d.

Thisconcludestheproofof Theorem6; thetheoremfollowsimmediatelyfrom Lemmas7
and13.

Our proof of Theorem6 is constructive: Given an α-safeandα-monotonepolyhedron,
we cancomputea feasiblecastwith uncertaintyα in time O � nlogn� . The construction
usestherandomizedincrementalalgorithmby Klein etal. [33], asin Lemma12.

Thisproceduredoesnotyetallow usto decidewhetherapolyhedronis indeedα-castable,
aswe canonly guaranteethecorrectnessof theenvelopeconstructionif theenvelopeis
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indeedanabstractVoronoidiagram.This is not necessarilythecaseif thepolyhedronis
not α-monotone.Fortunately, it is notdifficult to adda testto eachstageof thealgorithm
by Klein et al. that will detectif � is not α-monotone.This is basedon the following
lemma.

Lemma 14 Let � be α-safeand monotone, and let G� be a non-emptysubsetof the
silhouetteedgesof � . G� isα-monotoneif andonlyif eachedgee 4 G� appearscompletely
on thelower envelopeof theα-regionsof G� .
Proof: Thenecessityof theconditionwasalreadyprovenin Lemma11.

Assumethat G� is not α-monotone.Thenthereare two silhouetteedgese, e� andtwo
points p 4 e andq 4 e� suchthat the slopeof pq is greaterthan2π � α. The point p,
therefore,lies inside the α-region W$� e� � , and so e doesnot appearcompletelyon the
lowerenvelope.

Wecannow augmentthealgorithmby Klein et al. to achieve thefollowing result.

Theorem7 Given a polyhedron � with n verticesand a direction �d, we can test the
α-castabilityof � in �d in time O � nlogn� . If it is α-castable, thenwe can constructan
α-feasiblecastin O � nlogn� time. TheresultingcasthasO � n� vertices.

Proof: We first examineevery facetof � anddecidewhether� is α-safe.If so,we test
whether� is monotonein direction �d, for instanceusingthealgorithmin Chapter3. If
eitherstepfails,we reportthat � is not α-castablein direction �d.

Otherwise,wenow usethealgorithmby Klein etal. [33] to computetheVoronoidiagram
of theprojectedsilhouetteedgesG. Thealgorithmincrementallyconstructsthediagram,
while addingtheprojectingsilhouetteedgesoneby onein randomorder. At eachstep,it
maintainstheVoronoidiagramV � G� � andaso-calledhistorygraphl	� G� � of thesubsetG�
of edgesinsertedsofar. Wheninsertinganew silhouetteedges 4PX G � G� [ , thealgorithm
first computesthe set Es of Voronoi edgesthat are intersectedby the Voronoi region
V � s� in V � G�m�nX s[C� . Thenit constructstheupdateddiagramV � G�m�nX s[;� andtheupdated
historygraphl	� G� �nX s[;� by usingEs. This canbedonein O � Es � time [33].

We know that this procedureworks correctly as long as the subsetG� is α-monotone.
We augmentthealgorithmsuchthat it recognizes,assoonasa new silhouetteedges 4
G � G� is added,whetherG� ��X s[ is no longerα-monotone.ThetestreliesonLemma14.
G�o�pX s[ is not α-monotoneif andonly if thereis s�^4 G� suchthat eithers 1qW$� s��� 6�Rr
or s� 1qW$� s� 6�9r . Thesilhouetteedges� mustparticipatein thedefinitionof theVoronoi
edgesof Es, andso we cantest this in O � Es � time. It now sufficesto verify that Es is
indeedcorrectlycomputedby thealgorithmevenif G� �nX s[ is not α-monotone.
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4.4 Computing feasib le directions

Wenow describeanalgorithmto solvethefollowing problem:Givenapolyhedron� and
anangleα, decidewhetherthereis a direction �d suchthat � is α-castablein direction �d.
In fact,we will solve themoregeneralproblemof finding all directions �d for which � is
α-castable.

We identify thesetof directionswith thesetof pointson theunit sphere! 2 centeredat
theorigin. A point p on ! 2 correspondsto thedirection �dp from theorigin o to p. Our
goalis to identify theregionof ! 2 correspondingto directionsin which � is α-castable.

If we imaginethe direction �d changingcontinuously, therearedirectionswherean up-
facetmaybecomeadown-facet,or viceversa.Thesetof thesedirectionsformsacollec-
tion M of O � n� greatcircleson ! 2. We notethat � is α-safein a direction �dp if andonly
if p hasdistanceat leastα to all greatcirclesin M.

Let C bea cell of thegreatcircle arrangementof M. If �d variesinsideC, thesilhouette
edgesof � remainthesame,but at certaindirectionsthemonotonicityof � changes.In
fact,thishappenswhena line parallelto �d throughasilhouettevertex crossesasilhouette
edge.The setof directionsfor which this occursforms a collectionN of O � n2 � arcsof
greatcircles.We notethat � is α-monotonein direction �dp if andonly if � is monotone
in direction �dp andp hasdistanceat leastα to all thearcsin N.

Insteadof computingthe completearrangementof M � N, we canwork with a setS of
O � 1� α2 � samplingpointson ! 2. ThesamplingpointsSarechosensuchthatany spherical
discof radiusα on ! 2 containsapointof S.

For eachs 4 S, wefirst testwhether� is monotonein direction �ds in timeO � nlogn� , using
the algorithmin Chapter3. If it is, we constructthe cell of the arrangementof M con-
tainings by computingthe intersectionC1 of n hemispheresin time O � nlogn� . We then
computetheO � n2 � arcsof greatcircleswherethemonotonicityof � changeswithin C1,
andcomputethesinglecellC2 containings in theirarrangementin timeO � n2 logn� using
therandomizedincrementalconstructionalgorithmby deBerg et al. [18]. By theobser-
vationsabove, if p 4 C2 then � is α-monotoneandα-castablein direction �d if andonly
if p hasdistanceat leastα to theboundaryof C2. We cancomputethis setof directions
by takingtheMinkowski-differenceof C2 andadiscof radiusα.

It remainsto argue that all feasiblecastingdirectionsare found this way. Let �dp be a
directionin which � is α-castable.Thesphericaldiscwith centerp andradiusα contains
a point s 4 S, anddoesnot intersectany greatcircle arc in M or N. This implies that p
ands arecontainedin thesamecell of thearrangementof M � N. Furthermore,� must
bemonotonein direction �ds. It follows that p will befoundby ouralgorithm.

Finding the dir ectionof maximum uncertainty. It is desirablethatthepartingterrain
of a castis as“flat” aspossible.Sowhile a relatively smalluncertaintyα maybegiven
asa minimum requirementfor manufacturing,we actuallypreferto generatecastswith
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uncertaintyaslargeaspossible.

We caneasilyextendthealgorithmdescribedabove to solve this problem.Again we are
givenanangleα G 0 andwish to testwhether� is α-castable.If theansweris positive,
wenow alsowantto determinethelargestα 7_G α for whichadirection �d existssuchthat� is α 7 -castablein direction �d.

Weproceedasabove: WegenerateasamplingsetSsuchthatany sphericaldiscof radius
α containsa point of S. We then compute,for eachs 4 S, the cell C2 containings.
The direction of largestuncertaintywithin C2 is the centerof the maximuminscribed
(spherical)discfor C2, whichwecomputein O � n2 logn� time. Thelargestinscribeddisc,
over all cells computed,determinesthe largestuncertaintyfor which the object is still
castable.

Theorem8 Let � bea polyhedron with n vertices,andα G 0. All directionsin which �
is castablewith uncertaintyα canbecomputedin O � n2 logn� α2 � time. If such a direction
exists,the largestα 7 G α for which � is castablewith uncertaintyα 7 canbecomputed
within thesametimebound.

A heuristic. If an approximative solution is sufficient, the following heuristiccanbe
applied.It runsin time O � nlogn� for constantα.

Let α � : �c� 1 � ε � α, for someapproximationparameterε G 0. We choosea setSof O � 1�
samplingdirectionson ! 2, sufficiently densesuchthatfor any sphericaldiscD of radius
α thereis apoints 4 Ssuchthatthediscof radiusα � with centers is containedin D.

For eachs 4 Swe testwhether� is α-castableusingthealgorithmof Section4.3. If we
aresuccessful,we report � to be α-castable.If not, we testeachdirections 4 S again,
this timewith uncertaintyα � . If no feasiblecastingdirectionwith uncertaintyα � is found,
we reportthat � is not castablewith uncertaintyα. This is trueby thechoiceof S. If a
feasibledirectionfor uncertaintyα � is found,we reporta “maybe” answer:� is castable
with uncertainty� 1 � ε � α, andmayor maynotbecastablewith uncertaintyα.

The sameideacanbe usedto approximatethe largestfeasibleuncertainty. We can,for
instance,setα � : � α � 2, andkeepdoublingα until � is no longerα-castable.
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C H A P T E R 5

Skewed ejection direction

5.1 Intr oduction

In this chapterwe studythe casewherethe castpartsneednot be removed in opposite
directions. In mostexisting machinery, the retractionandejectiondirectionsareidenti-
cal, andpreviouswork on this problemhasassumedthis restrictionon casting.Existing
technologyfor injectionmoulding,however, alreadyhastheflexibility to accommodate
an ejectiondirection that is different from the retractiondirection of the moving cast
part. Exploiting this possibility allows to castmoreparts,or to castpartswith simpler
moulds,andis thesubjectof thepresentchapter. Figure5.1 illustratestheprocesson a
2-dimensionalexample.

Figure 5.1: The casting process

To summarize,in our modelof casting,thetwo castpartsareto beremovedin two given
directionsand thesedirectionsneednot be opposite. Contraryto the caseof opposite



removal directions,theorderingof removal is important.

Thecastpartsshouldberemovedfrom theobjectwithout destroying eithercastpartsor
theobject.This ensuresthatthegivenobjectcanbemassproducedby re-usingthesame
castparts.Thecastingprocessmayfail in theremoval of thecastparts:if thecastis not
designedproperly, thenoneor moreof the castpartsmay be stuckduring the removal
phase,asin Figure5.2. The problemwe addresshereconcernsthis aspect:Given a 3-
dimensionalobject,is therea castfor it whosetwo partscanberemovedafter theliquid
hassolidified?An objectfor which this is thecaseis calledcastable.

Figure 5.2: The top part of the cast is stuck.

Separatinga castin two arbitraryremoval directionsfor 2 dimensions[45] andin some
specialcasesfor 3 dimensionshave beenstudiedbefore[13]. While in practicethe two
castpartsareremovedin oppositedirections,coresandinsertscanbeusedto enlargethe
classof objectsmanufacturableby casting[20, 41, 55]. Coresandinsertsareappendages
to thecastpartsthatareremovedin arbitrarydirections.Thus,our techniquefor handling
two arbitrary removal directionsmay shedsomelight on the problemof incorporating
coresandinserts.

In this chapterwe give a completecharacterizationof castability, underthe assumption
that the casthasto consistof two partsthat areto be removed in not necessarilyoppo-
site directions. Our characterizationof castabilityappliesto generalobjects 
 . This is
importantsincemany industrialpartsarenot polyhedral. We alsogive an algorithmto
verify thisconditionfor polyhedralobjects.Wedonotassumeany specialseparabilityof
thetwo castparts,andallow partsof arbitrarygenus.Therunningtime of our algorithm
for determiningthe castabilityof a polyhedralobjectwith a given pair of directionsis
O � n2 logn� , wheren is thecombinatorialcomplexity of thepolyhedron.

All the resultsfor oppositecastpartsremoval in [7, 30, 34] rely on the propertythat
anobjectis castableif its boundarysurfaceis completelyvisible from the two opposite
removal directions.This is not truewhentheremoval directionsarenon-opposite:there
arepolyhedrawhosewhole boundaryis visible from the removal directionsbut which
arenot castablewith respectto thosedirections[7]. Considerthe polyhedron� and
the removal directionsdepictedin Figure5.3. Theshadedfacetsof � togetherwith the
bottomfacetsform thebluecastpartof theboundary;theremainingfacetsform thered
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�dr

�db
p

Figure 5.3: The whole boundary is visible from the removal directions but which are not
castable with respect to those directions

castpart. Both the red and the blue castpart are terrainsin their respective removal
directions.Thereis no goodcast,however, for theseremoval directions:thepoint p will
intersecttheinterior of � bothwhenit is movedin direction �db andwhenit is movedin
direction �dr , soit canneitherbein thebluenor in theredcastpart.This meansthatthere
is no goodcastfor thedirections �dr and �db. By pokingtwo thin holesinto theobject,as
in Figure5.3,we canensuretherecannotbea goodcastfor any otherpair of directions
either.

For completeness,we alsogiveanO � n14 logn� -time algorithmfor finding all combinato-
rially distinctfeasiblepairsof removaldirections.Thoughtherunningtimeis polynomial,
thealgorithmis clearlyof theoreticalinterestonly.

5.2 A characterization of castability

Wecall anobject 
 castablewith respectto apairof direction ���dr ���db � if wecantranslate
the red castpart � r to infinity in direction �dr without collision with 
 andint �/� b � , and
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thentranslatethebluecastpart � b to infinity in direction �db withoutcollisionwith 
 . The
orderof removal is important.

Imaginethatwe illuminate 
 with two sourcesof parallellight. Theredlight sourceis at
infinity in direction �dr andthebluelight sourceis at infinity in direction �db. Wesaythata
point p in spaceis illuminatedby redlight if a redray from theredlight sourcecanreach
p without intersecting
 . Thedefinition for a point p beingilluminatedby blue light is
similar. Notethatweassumethata light ray will not stopwhenit grazestheboundaryof
 .

Wedenoteby B anaxis-parallelboxwhoseboundaryis theoutershapeof thecast.There
is a(possiblydisconnected)subsetof B �s
 not illuminatedby redlight. Wecall it thered
shadowvolumeanddenoteit by t r . Similarly, thereis a subsetof B �u
 not illuminated
by bluelight. Wecall it theblueshadowvolumeanddenoteit by t b. Notethattheobject
 is a closedsetand ��� r �N� b � is anopenset. If we sweept b to infinity in direction �dr ,
thenwe will encountera setof pointsin B andwe denotethis setof pointsby t>7b . Note
that t 7b includest b itself.

Lemma 15 If 
 is castable, then t r v � b and t>7b v � r .

Proof: By definition,B ��
 is containedin � r �8� b andsoboth t r and t b arecontained
in � r �N� b. Take any point p in t r . If we move p in direction �dr to infinity, then p will
be stoppedby 
 as p doesnot receive any red light. So p cannotbe a point in the red
castpart � r . Thus, t r v � b. By similar analysis,t b v � r . Since 
 is castable,� r canbe
translatedfirst to infinity in �dr without colliding with 
 andint ��� b � . Since t b v � r , we
concludethat t 7b v � r .

We are now readyto prove the necessaryand sufficient condition for an object to be
castable.

Theorem9 Given an object 
 , 
 is castableif and only if t r lies in one connected
componentof B �s��tQ7b �&
3� .
Proof: First, we prove that the condition is necessary. Since 
 is castable,t>7b v � r

and t r v � b by Lemma15. Since � b � B �w�/� r �%
�� , we have t r v � b � B �_�/� r �%
�� v
B �_��t>7b �$
�� . Therefore,if t r doesnot lie in oneconnectedcomponentof B �s��t>7b �$
3� ,
then � b doesnoteither. This impliesthat � b is not connected,acontradiction.

Second,weprovethesufficiency of thecondition.Without lossof generality, let �dr bethe
positive verticaldirection. Let f bethetop facetof B. Let M bea thin layerof B below
f andabove 
 . Thereexistsa layerM as 
 lies strictly in theinterior of B. Let R bethe
connectedcomponentof B �s��t>7b �&
�� thatcontainst r . Definethebluecastpart � b to be
R � M. Thendefinetheredcastpart � r to beB �s��
a��� b � .
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We first arguethateachcastpart is connected.SinceR is connected,we canensurethat� b is connectedby adjustingthe thicknessof M. Sinceboth � r andM arecompletely
illuminatedby redlight, every connectedcomponentof � r overlapswith M andhence� r

is connected.

We now show that thecastpartscanberemovedin order. Since� r is completelyillumi-
natedby redlight, � r canbetranslatedto infinity in direction �dr withoutcolliding with 
 .
We alsoclaim thatthis translationof � r cannotbeobstructedby � b. Otherwise,a point p
in � r canseeapointq in � b in direction �dr . If theline segmentpq containsapoint in t>7b ,
thenq alsobelongsto t>7b . Since� b 18t>7b �xr , q doesnot belongto � b, a contradiction.If
theline segmentpq doesnot containany point in t>7b , thenpq lies in B �s��t>7b �$
3� . Since
q 4p� b, p alsobelongsto theconnectedcomponentof B �_��t 7b �$
3� containingt r . Thus,
p 4O� b, a contradiction.

After removing � r , � b canberemovedto infinity in �db without colliding with 
 because� b doesnot containany point in t b by definition.

Theconditionin Theorem9 alsoimpliesthat t r 18t b is empty. However, unlike thecase
wherethe two removal directionsareoppositesof eachother, the emptinessof t r 1nt b

doesnotguaranteecastability. Figure5.4showsanobjectthatis notcastable,eventhought r 18t b is empty.

Dependingon thecastingtechnologyused,theconstructionusedin Theorem9 maynot
resultin usefulcasts,sinceit generateswalls between� r and � b thatareparallelto �dr or�db. Sometimestheseareunavoidable,but it wouldbeniceto haveamethodthatdoesnot
createthemif they arenot necessary. Let t be � b �gt r . Onemight try to exploit that t
canalsobetranslatedin �dr without colliding with 
 . Thus,partsof t maybe included
in � r to removewallsparallelto �dr or �db. Somewallsparallelto �db (resp. �dr ) between� b

(resp. � r � andtheobjectcanalsoberemovedby doingthis.

5.3 Feasibility test for a pol yhedr on

In this section,we presentan O � n2 logn� -time algorithmfor testingthe feasibility of a
pairof removal directions � �dr � �db � for agivenpolyhedron� . Throughoutthissection,we
assumethat �dr is thepositiveverticaldirectionandthat � liesabovethexy-plane.Weuse0C� p� to denotetheverticalline throughapoint p.

Theredshadow, denotedby ! r , is thecomplementof thesetof pointson ∂ � thatcanbe
illuminatedby red light from infinity in direction �dr without beingobscuredby int ����� .
Theblueshadow, denotedby ! b, is thecomplementof thesetof pointson∂ � thatcanbe
illuminatedby blue light from infinity in direction �db without beingobscuredby int ����� .
Their intersection! r 1�! b is calledtheblack shadow.

For eachpolyhedronedgee, let hb � e� denotetheplanethrougheandparallelto �db. Then
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sweepingy b in zdr

t r t b

red light

blue light

t r

tQ7b
�dr

�db

Figure 5.4: An object 
 and its shadow volumes. t r intersects two connected components
of B �?t>7b �&
 .

e is abluesilhouetteedge if it satisfiestwo requirements.Thefirst requirementis thatthe
two facetsincidentto e lie in aclosedhalfspaceboundedby hb � e� andthedihedralangle
throughint ����� is lessthanπ. The secondrequirementis that if a facetincidentto e is
parallelto �db, thene shouldbebehindthat facetwhenviewing from infinity in direction�db. A lower blue silhouetteedge is a blue silhouetteedgee where � lies above hb � e�
locally at e. Similarly, anupperbluesilhouetteedge is a bluesilhouetteedgee where �
liesbelowhb � e� locally at e.

For eachlowerbluesilhouetteedgee, imaginethate is a neontubeshootingblueraysin
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direction � �db. We tracethe“sheet”of blueraysemanatingfrom e until they hit int ����� ,
or hit anedgeor facetparallelto �db andbelow int ����� locally, or reachinfinity in direction�	�db. The union of theseinterceptedor uninterceptedblue raysdefinesa subsetof the
planehb � e� calleda lower bluecurtain. Notethata lower bluecurtainmaypassthrough
a facetof � parallelto �db. Sucha facetmustthenbelocally above int ����� .
For eachupperbluesilhouetteedgee, wedefineanupperbluecurtainsymmetrically. We
tracethe “sheet” of blue raysemanatingfrom e until they hit int ����� , or hit an edgeor
facetparallelto �db andabove int ����� locally, or reachinfinity in direction �)�db. Theunion
of theseinterceptedor uninterceptedblueraysformsanupperbluecurtain.Notethatan
upperbluecurtainmaypassthrougha facetof � parallelto �db. Sucha facetmustthenbe
locally below int ����� .
Given a blue silhouetteedgee, we useΓ � e� to denotethe blue curtaindefinedby e. If
Γ � e� is nonempty, thenit is boundedby a silhouetteedgee calledthe head, two edges
parallelto �db andincidentto theendpointsof e calledthesideedges, edgesparallelto �db

but not incidentto theendpointsof e calledthefinger edgesanda setξ � e� of polygonal
chainsoppositeto ecalledthetail. Notethattheheadandtail of abluecurtainlie on ∂ �
We divide castabilitytestinginto threesteps.We first verify that the boundaryof � is
completelyilluminatedby redandbluelight. That is, ! r 18! b is empty. Oncethis testis
passed,we thencheckwhethert r 1Nt b is empty. If this testis passed,thenwe construct
theredandbluecastpartsandverify thatthey areconnected.

5.3.1 Testing emptiness of the black shado w

Theemptinessof ! r 18! b canbetestedin O � n2 logn� time asfollows. We put a horizon-
tal planeH above � andcomputethe projectionof � onto H with the hiddenportion
removed. Theresultingarrangementis known asthevisibility map.We projectthis vis-
ibility mapvertically downward on the boundaryof � . This tells us which part of ∂ �
is illuminatedby red light. An edgein the visibility mapis the projectionof a polyhe-
dronedge.A vertex in thevisibility mapis theprojectionof a polyhedronvertex or the
intersectionbetweentheprojectionsof two polyhedronedges.Clearly, thesizeof thevis-
ibility mapis O � n2 � . It canbecomputedin O � n2 logn� timeusingaplanesweepover the
projectionof all polyhedronedgesto remove thehiddenline segments.Output-sensitive
algorithmsfor visibility mapcomputationarealsoknown [1]. Thus,determiningtheparts
of ∂ � illuminatedby redlight canbedonein O � n2 logn� . Similarly, wecandeterminethe
partsof ∂ � illuminatedby bluelight in O � n2 logn� . We canthendecidewhether! r 18! b

is emptyby testingthe intersectionseparatelyon every facetof ∂ � , for instancewith a
planesweepalgorithm.In total, this testtakestime O � n2 logn� .
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5.3.2 Testing emptiness of the black shado w volume

Oncewe know that ! r 1�! b is empty, we candetermineif the black shadow volumeis
emptyby examiningthe lower envelope,denotedby \ , of blueshadow facetsandlower
bluecurtains.This is moreefficient thancomputingt r 1qt b directly. We show how this
is donein thefollowing.

Lemma 16 Let \<7 be the set of points in B encountered while we sweep\ to infinity
vertically upward. Then\<7Z� cl ��t>7b � .
Proof: Let p beapoint in \<7 , andlet q bethepoint 0;� p�h18\ . By definition,q is eitheron
ablueshadow facetor a lowerbluecurtain.Thereforeq is in cl ��t b � andp is in cl ��t>7b � .
Let q bea point in cl ��t>7b � , andlet p be the lowestpoint of 0C� q�`1 cl ��tQ7b � . By definition,
p is on a facetσ of cl ��t b � which boundscl ��t b � from below. Sincecl ��t b � is bounded
by blue shadow facetsor blue curtains,σ is eithera blue shadow facetor a lower blue
curtain.Thereforep is in \ andq is in \<7 .
Theemptinessof theblackshadow volumeis now determinedby thenecessaryandsuf-
ficient conditionstatedin Lemma18. Wefirst needa technicallemma.

Lemma 17 Supposethat t r 1qt b is empty. Thenfor anytwo bluesilhouetteedgese and
f , andpointsp 4 esuch that 0;� p��1 int � Γ � f �H� 6�br , p is notabove 0;� p��1 Γ � f � .
Proof: Assumeto thecontrarythatthereis apoint p 4 esuchthatp is above 0C� p�h1 Γ � f � .
We canshift 0;� p� slightly to anothervertical line 0 suchthat 0 stabsthe interior of Γ � f �
andafacetincidentto e. Thus,0 intersectsint ����� above 0{1 Γ � f � . If Γ � f � is anupperblue
curtain,thenthis impliesthatashortsegmenton 0 below 0^1 Γ � f � doesnot receive redor
blue light. If Γ � f � is a lower bluecurtain,thena shortsegmentabove 0?1 Γ � f � doesnot
receive redor bluelight. In eithercase,t r 18t b would benonempty, acontradiction.

Lemma 18 Supposethat ! r 1u! b is empty. Thent r 1�t b is non-emptyif andonlyif for two
lowerbluesilhouetteedgeseand f , andfor somepoint p 4 esuch that 0C� p�|1 int � Γ � f �A� 6�r or 0C� p��1 int � ξ � f �A� 6�xr , p is notbelow 0C� p��1 Γ � f � .
Proof: Weprovesufficiency first. Supposethatp 4 e isapointsuchthat 0C� p�L1 int � Γ � f �H� 6�r andp is not below 0;� p��1 Γ � f � . By Lemma17, p is alsonot above 0;� p��1 Γ � f � . Thus,
p �)0C� p�;1 Γ � f � . Theinteriorof Γ � f � wouldcontainthepoint p. By definition,nobound-
arypointof � below int ����� locally canlie in theinteriorof abluecurtain,acontradiction.

The remainingalternative is that 0C� p� intersectsξ � f � wherep is not below 0C� p�`1 Γ � f � .
If we shift 0C� p� slightly in direction �db to a vertical line 0 , we claim that 0 mustintersect
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the interior of a facetσ incidentto e. Otherwise,sincee is a lower bluesilhouetteedge,
a facetincident to e would facedownward anddirection �	�db, andso this facetwould
containapoint in blackshadow, acontradiction.Observethat 0 alsointersectstheinterior
of Γ � f � . By definition,theinteriorof σ cannotlie onint � Γ � f �A� since� is aboveσ locally.
This implies that thereis a shortsegmenton 0 above int � Γ � f �H� thatdoesreceive neither
rednor bluelight, which contradictstheemptinessof t r 18t b.

We now prove necessity. Since ! r 1q! b is empty, any facetof cl ��t r 1�t b � is parallel to�dr or �db. At leastone facetσ of cl ��t r 1Ot b � is parallel to �db and boundscl ��t r 1Ot b �
from below, otherwisecl ��t r 1Nt b � would beunbounded.Thefacetσ cannotreceive any
red light asit boundsthe black shadow volume. Thus,σ mustreceive someblue light,
otherwiseσ would be in black shadow which is supposedto be empty. Therefore,σ
mustlie on somelower bluecurtainΓ � f � . Let z be a point in int � σ � . If we shoota ray
upward from z, the ray hits ∂ � at a point v � z� . Supposethatwe move z in thedirection�	�db. Theheightof v � z� from Γ � f � is monotonicallydecreasingandremainsnon-negative.
Otherwise,therewould bea positionsuchthatv � z� becomesa point in theblackshadow
whichis impossible(SeeFigure5.5(a).) Beforeor justwhen 0C� z� stabsanedgeg of ξ � f � ,
v � z� reachesanedgee suchthat � lies locally on onesideof a verticalplanethroughe.
Otherwise,a facetadjacentto g would containa point in black shadow, a contradiction
(SeeFigure5.5(b).) Observe thate is alsoa lowerbluesilhouetteedge,and 0C� z��1 e does
not lie below 0C� z��1 Γ � f � (SeeFigure5.5(c).) Clearly, 0;� v � z�H�g�50;� z� eitherintersectsthe
interiorof Γ � f � or ξ � f � , andv � z� is not below theintersectionpoint.

To testtheconditionin Lemma18, we identify all lower bluesilhouetteedgesandcon-
structthelowerbluecurtains.Thenweidentify all blueshadow facetsandconstruct\ , the
lower envelopeof all lower bluecurtainsandall blueshadow facets.While we construct\ wecancheckwhethert r 18t b is empty.

We show below that thelower envelope \ formedby all lower bluecurtainsandall blue
shadow facetshasO � n2 � complexity. Wefirst needa technicallemma.

Lemma 19 If ! r 1�! b is empty, thenfor any blue shadowfacets f1 and f2, and points
p 4 int � f1 � , 0C� p��1 int � f2 � is empty.

Proof: Assumeto thecontrarythatthereis a point p 4 int � f1 � suchthat 0;� p��1 int � f2 � is
not empty. Without lossof generality, assumethat p is below 0C� p�`1 f2. Since f2 v ∂ � ,
all pointsof 0C� p� lying below 0C� p��1 f2 cannot getany redlight. Thus,p is a blackpoint
whichcontradictsemptinessof ! r 1�! b.

Lemma 20 Supposethat ! r 1�! b is empty. Thenthelowerenvelope\ formedbyall lower
bluecurtainsandall blueshadowfacetshascomplexity O � n2 � .
Proof: We have threedifferentkindsof edges:shadow facetedgesincludingheadsand
tails of lower blue curtains,sideedgesandfinger edges.The complexity of \ is deter-
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v � z�
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�db

Γ � f �

0C� z�

σ
g

z

�db

0;� z�

Γ � f �
p

σz

e

�db

0C� z�

Γ � f �
Figure 5.5: (a) v � z� in the black shadow, (b) A point p in the black shadow, and (c) A lower
silhouette edge e, where 0C� z��1 e does not lie below 0;� z��1 Γ � f �
minedby thenumberof theseedgesandnew verticesgeneratedby theseedges.

By Lemma19,shadow facetedgesdo not crosseachotherin theprojection,thatis, they
do not introduceany new vertex in \ .

Now considera finger edgeof a lower blue curtain Γ � e� . It canbe divided into O � n�
segmentsof two types: segmentslying on facetsof � which are parallel to �db, and
segmentslying on theotherbluecurtains.Figure5.6 shows segmentsof eachtype. The
segmentsof the former type areshadow facetedgesand thereareO � n2 � of them. So
we only considerthe segmentsof the latter type. A segmentof the latter type is the
intersectionof Γ � e� andanotherbluecurtain,sayΓ � f � . If Γ � f � is a lower bluecurtain,
thenoneof two facetsσ incidentto f is a redshadow facet. Sincea lower bluecurtain
Γ � e� intersectσ, σ containsa blackpoint, which contradicts! r 1N! b �Rr . SoΓ � f � must
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beanupperbluecurtain.Sincepointsin theinterior of upperbluecurtainsdo not appear
in \ , weconcludethatfingeredgesdonot introduceany new vertex in \ .

Now we only needto checkhow many new verticesare generatedby side edgesand
shadow facetedges.Let e beasideedgeof a lower bluecurtainandh beaverticalplane
containinge. Thenh intersectsashadow facet fi in a line segment,denotedby si . Sincea
shadow facetedgeis eitheranedgeof � or theprojectionof anedgeof � on ∂ � in � �db

direction,h intersectsO � n� shadow facetsin O � n� nonintersectingline segments.Now it
becomesa 2-dimensionalproblemof computinglower envelopeof si ’s ande on h. The
lower envelopeof si ’s ande haslinearcomplexity. Since � hasO � n� sideedges,\ has
O � n2 � verticesin total.

Γ * e-
f

Γ * f -
e

ss�

Figure 5.6: A finger edge consisting of two segments : s lying on a facet parallel to �db, and
s� lying on Γ � f � .
Now we show below how to construct\ in O � n2 logn� time if t r 1qt b is empty. In the
process,we alsoverify whethert r 1Nt b is empty. This impliesthatwe canconstructthe
sweptvolume t 7b in timeO � n2 logn� by computingthis lowerenvelope.

Lemma 21 Supposethat ! r 1�! b is empty. Thenwecantestemptinessof t r 18t b, andift r 18t b is emptywecanconstruct\ in O � n2 logn� time.

Proof: To construct\ , we first projectall shadow facets! b on a horizontalplaneh, and
partitionh into slabsby drawing linesparallelto �db throughall projectedverticesof � .
All blueshadow facetscanbeidentifiedin O � n2 logn� timeby computingthecomplement
of thepartof ∂ � whichis illuminatedby bluelight. Edgesof blueshadow facetsareedges
or partsof edgesof � , or edgesin thetailsof bluecurtains.Sinceaverticalplaneparallel
to �db intersectsO � n� edgesof � andO � n� edgesin the tails of blue curtains,the above
constructionresultsin asubdivisionof complexity O � n2 � .
A slabconsistsof two typesof regions: theprojectionof blueshadow facets,andtherest
including two unboundedregions. We call regionsof the latter type ”empty”. We label
theseregionsin sortedorderin � �db, that is, theregion unboundedto infinity in �db is ∆1,
the next is ∆2, andso on. We denotethe boundarybetweentwo consecutive regions∆i

and∆i } 1 by ζi . Each∆i belongsto aprojectedshadow facetor is empty.
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Thelowerbluesilhouetteedgescanbeidentifiedin O � n� time. To constructits lowerblue
curtainwe intersecta planewith � in O � nlogn� time sowe canconstructall lower blue
curtainsin time O � n2 logn� time. For eachslab,we traverseeachregion startingfrom ∆1

andmaintainadictionary[49] of lowerbluecurtainsorderedby their heights.

At aregion∆i , otherthan∆1, wefirst identify all new lowerbluecurtains,andthenwetest
theemptinessof t r 18t b. We pick a point p in int � ζi � . If p lies in theprojectionof some
lowerbluesilhouetteedges,thenweinsertall thecurtainsof theseedgesto thedictionary,
andby Lemma18,we testwhethert r 1Nt b is emptyasfollows: If ζi is theprojectionof
lower bluesilhouetteedges,thenlet e bethe lowestoneamongthem.We pick a point q
in e of which verticalprojectionis in int � ζi � , andshoota ray downwardfrom q. If there
is any lowerbluecurtainsbelow q then t r 18t b is not empty. Oncewe find t r 1Nt b is not
empty, we stopandreportthat � is not castable.Otherwise,if p lies on theprojectionof
edgesin tailsof lowerbluecurtains,thenwedeleteall thesecurtainsfrom thedictionary.

After updatingthedictionary, weshootarayupwardfrom p, andreportthelowestcurtain
hit by the ray. This canbe donein O � logn� time by queryingthe dictionary. Thenwe
fill the region with the projectionof the lowestcurtain. Figure5.7 shows part of a slab
consistingof two blueshadow regionsandfour curtainregions. At ζi } 1, we insertΓ � f �
to the dictionary. Now the dictionary hasΓ � e� and Γ � f � . Then we fill ∆i } 1 with the
projectionof Γ � f � . Thenat ζi , we deleteΓ � f � from thedictionary. At ζi ( 1, we shoota
rayupward,find theΓ � e� asthelowestcurtain,andfill ∆i ( 1 with theprojectionof Γ � e� .
ThereareO � n� slabs,andeachslabhasO � n� regions.ThereareO � n� lowerbluecurtains
andfor eachslab,eachcurtainis insertedinto anddeletedfrom thedictionaryatmostonce
in O � logn� time. Sothetotal dictionaryupdatetime for all slabsis O � n2 logn� . At each
region we identify the lowestcurtainandtestthe emptinessof black shadow volumein
O � logn� time. Thuswecantestthetheemptinessof blackshadow volumein O � n2 logn�
time in total. If blackshadow volumeis empty, we have obtainedin O � n2 logn� time the
portion of the lowestblue curtainabove eachemptyregion in eachslab. They form \
togetherwith theblueshadow facets.

5.3.3 Cast par t construction

Finally, we show how to constructthe red andblue castparts. In the process,we also
verify whetherthecastpartsareconnected.

Pointson blue shadow facetsandpointscloseto andabove lower blue curtainsarenot
illuminated by blue light. So they can only be removed in direction �dr . Other points
encounteredwhile translatingthesepoints towardsinfinity in �dr shouldthenbelongto� r too. This is exactly the subset\=7 of B sweptby the lower envelope \ of lower blue
curtainsandblue shadow facetsin direction �dr . \<7 may be disconnected.Since � is
strictly containedin B, we cantake a layerof materialM beneaththe top facetof B and
above � anduseM to connectall thecomponentsin \ 7 . By Lemma21,wecancompute
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Figure 5.7: (a) A part of a slab, and (b) Content of the dictionary at each region

\ in O � n2 logn� time andso \<7?� M canthenbe computedin thesametime. \<7?� M is
our potentialredcastpart. All thepointsin cl � B �w��\<7�� M �A� areremovablein direction�db. Socl � B �s��\ 7 � M �H� is our potentialbluecastpart.However, cl � B �s��\ 7 � M �H� maybe
disconnected.Thus,wewill try to attachsomecomponentsin cl � B �Z��\=7�� M �A� to \<7{� M
instead.

Sucha processis guidedby theconditionin Theorem9. Observe that cl � B �_��\<7�� M �H�
is a subsetof B �u��t>7b �n��� . From the above analysis,any blue castpart andhencet r

lies insidecl � B �u��\ 7 � M �A� . Thus,we canattachevery componentof cl � B �u��\ 7 � M �H�
not containingany point in t r to \<7^� M. Thesecomponentsareremovablein direction�dr asthey do not containpointsin t r . In addition,if therearemorethanoneremaining
componentof cl � B �_��\=7?� M �H� containingt r , thenwe canabortandreportthat � is not
castable.Otherwise,wehave thecastparts.

It isunnecessaryto computet r . Everyfacetboundingt r is connectedtosomeredshadow
facet.Theredshadow facetscanbecomputedin O � n2 logn� time usingvisibility maps.
Eachred shadow facetlies on a facetboundingcl � B ����\=72� M �A� . We identify the set
of facetsboundingcl � B �w��\=7�� M �H� that containthe red shadow. Thenwe testwhether
this setof facetslie in thesamecomponentof cl � B �s��\ 7 � M �A� usinga linear-time graph
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traversal.

Theorem10 Let � be a simplepolyhedron with n vertices.Givena pair of directions,
wecandeterminecastabilityandconstructcastparts,if castable, of � in O � n2 logn� time
andO � n2 � space. ThecastpartsconstructedhaveO � n2 � complexity.

(a)

(b)

�dr

�db

(c)

i j

γ * i � j -

Figure 5.8: (a) A polyhedron with five vertical legs and four small holes, (b) The visibility
map from infinity in direction �db, and (c) The visibility map from infinity in direction �dr

The optimality of the boundfollows from the examplein Figure5.8. The polyhedron
shown in Figure5.8 (a) hasa row of vertical “legs”. Behindtheselegs,thereis a row of
smallholessuchthatpartsof thecastinsidetheholescanonly beremoved in direction�db. The polyhedronhasseven thin rectangularfacetsbelow the holes. Figure5.8 (b)
shows thevisibility mapfrom thebluelight source.If therearen� 8 vertical legsandn� 8
horizontallylong retangles,thenthemaphasΘ � n2 � complexity, whichshows that t b has
Θ � n2 � complexity. It follows thatthelower envelope \ of all thelower curtainsandblue
shadow hascomplexity Ω � n2 � . This shows that the analysisof the castpart sizeof our
constructionis tight. Figure5.8 (c) shows a top view of the polyhedronwith the blue
shadow.

Sincepartsof the castinsidethe holesarered shadow volumes,they needto be in the
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bluecastpart,which is oneconnectedcomponent.It is clearthattheblueshadow on ∂ �
mustbelongto � r . Thus,in any castconstruction,thereexists a pathγ � i � j � connecting
any pair of the red shadow volumesi � j insidethe holesthroughint �/� b � . Figure5.8 (c)
shows a pathγ � i � j � connectingredshadow volumesi � j insidetheholes. Let γ 7C� i � j � be
theprojectionof thepathon ∂ � in �	�dr . Thenall pointsin γ 7C� i � j � belongto thebluecast
part.Otherwise, thereis apoint p 48� r in γ 7 � i � j � whichimpliesthatthepoint 0;� p�|1 γ � i � j �
wouldbelongto � r , acontradiction.For asimilar reason,γ 7C� i � j � cannotintersecttheblue
shadow of the object. Note that γ 7C� i � j � intersectsall the thin rectangularfacetsbelow
theholes.Therefore,theredandbluecastpartsintersectthesequenceof thin rectangular
facetsalternately, which resultsin Ω � n2 � complexity of thecastpart. It follows that the
sizeof thecastproducedby ourconstructionis worst-castoptimal.

5.4 Finding a pair of directions

Wehaveseenhow to testwhetherapolyhedron� is castablein agivenpairof directions
( �dr , �db). In thissectionwedescribeanalgorithmto solve thefollowing problem:Givena
polyhedron� , decidewhetherthereis apairof directions( �dr , �db) in which � is castable.
In fact,we will solve themoregeneralproblemof finding all pairsof directions( �dr , �db)
for which � canbecast.

Thesetof all pairsof directionsforms a 4-dimensionalparameterspaceΨ. We choose
anappropriateparameterizationthatgivesriseto algebraicsurfacesin Ψ, seefor instance
Latombe’s book [35]. Our goal is to computethat part of Ψ that correspondsto pairs
of directionsin which � is castable.As we have proven before,castabilitydependson
a numberof simple combinatorialproperties: the emptinessof the black shadow, the
configurationof thecurtainprojections,andtheconnectednessof thebluecastpart. We
will computeanarrangementof algebraicsurfacesin Ψ thatincludesall pairsof directions
whereoneof thesepropertiescouldpossiblychange.The following lemmaenumerates
all relevantsituations.

Lemma 22 Let γ1 andγ2 betwo pairs of directions,such that � is castablein γ1 but not
in γ2. Let π be any path in 4-dimensionalconfiguration spaceΨ connectingγ1 and γ2.
Thenon π there is a pair of directions( �dr , �db) such that oneof the following conditions
holds:

(i) A facetof � is parallel to �dr or �db.
(ii) Theprojectionin direction �dr of a vertex v coincideswith the projectionof an
edge e. Here edgesandverticesare edgesandverticesof � or of theblueshadow! b.

(iii) Two polyhedron verticeslie in a planeparallel to the planedeterminedby �dr

and �db.
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Proof: As weprovedbefore,castabilityof � dependson threefactors:

� Theblackshadow on thesurfaceof � is empty.� Theprojectionof thebluecurtainsformsa legal arrangement.� Thebluecastpartis connected.

Let’s first considerthe blacksurfaceshadow: It is emptyif andonly if thebluesurface
shadow is completelyvisible from the red direction. The blue surfaceshadow changes
combinatoriallyif andonly if the visibility mapof � in �db changes.This canhappen
only whena facetbecomesparallelto �db, or whena vertex or edgeof � passesin front
of anotheredgeor vertex. Thesepossibilitiesareincludedin cases(i) and(ii). We now
arguethat thecombinatorialstructureof thevisibility mapof � and theblueshadow in�dr canchangeonly if a vertex or edgeof � passesin front of anedgeor vertex of either� or !sl b. Again this is includedin case(ii).

If the black surfaceshadow is empty, it remainsto verify whetherthe projectionof the
bluecurtainsandtheblueshadow formsa legal configuration.Considerthearrangement
of all thebluecurtains.This arrangementcanonly changewhenthe intersectionpattern
of two curtainchanges.Theedgesin the tails of thecurtainsareblueshadow edges,so
any changein their projectionsleadsto a situationasin case(ii) of thelemma.Theonly
remainingpossibility for the intersectionpatternof two curtainsto changeis whenthe
projectionof a polytopevertex passesover a polytopeedges(case(ii) again),or over the
projectionof thesideedgeof a curtain.Sincethesideedgeof a curtainis determinedby
anothervertex of thepolytopeandthebluedirection �db, this leadsto case(iii).

We have now seenthat if noneof cases(i), (ii), (iii) happens,thecombinatorialstructure
of the surfaceshadows andof the projectionof the curtainscannotchange. Sincethe
redcastpart is definedasthe volumeabove the lower envelopeof the blueshadow and
the blue curtains,it follows that the combinatorialstructureof the red castpart cannot
changewithout leadingto a configurationaspostulatedin the lemma. In particular, the
combinatorialstructure,andthereforethetopology, of theunionof theobjectandthered
castpart cannot change.Sincethe blue castpart is the complementof these,it cannot
changefrom beingconnectedto beingdisconnectedwithout a situationasprescribedin
thelemma.

Wecannow turn this characterizationinto analgorithm.

Theorem11 Given a polyhedral object � with n verticesand edges, we can in time
O � n14 logn� constructa setof all possiblepairs of directionsin which � is castable.

Proof: As mentionedbefore,weconsidera4-dimensionalparameterspace,andconstruct
a setof algebraicsurfaces.Thesesurfacescorrespondto thecaseslisted in theprevious
lemma.
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Clearly, thereareO � n� surfacesfor case(i), andO � n2 � surfacesfor case(iii). For case(ii),
we observe that thereareO � n� verticesandedgesof � , while therecanbeO � n2 � edges
andverticesof the blue shadow. We createO � n2 � surfaceswherean objectvertex lies
in theplanedefinedby anobjectedgeandoneof thedirections �db, �dr . We createO � n3 �
surfacesdefinedby an objectedge,an object facet,andan objectvertex (the setof all
directionpairswheretheprojectionof thevertex alongonedirectionon thefacetlies in
the projectionof the edgealongthe otherdirection). Finally, we make O � n3 � surfaces
definedby threeobjectedges.

We have now arrivedat a setof O � n3 � algebraicsurfacesin our 4-dimensionalconfigu-
rationspace.All pairsof directionsleadingto a situationasin the lemmalie on oneof
thesurfaces.Consequently, it is sufficient to sampleoneconfigurationin everycell of the
arrangementof thesurfaces.

The arrangementof O � n3 � surfaceshascomplexity O � n12 � , and so thereare at most
O � n12 � pairsof directionsthatwe cantestusingthealgorithmfrom theprevioussection.
Sinceeachcell in thearrangementtakesO � n2 logn� time,we concludethatall directions
for which thereis agoodcastcanbecomputedin O � n14 logn� time.
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Part III

The Reflex-free hull and Cavities
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C H A P T E R 6

The refle x-free hull

6.1 Intr oduction

Computationalgeometershave identified many classesof 2D polygons(convex, star-
shaped,L-convex, externallyvisible,edge-visible,LR-visible,street,person.. . [50, 54]),
but few classesof 3D polyhedra.Perhapsthefactthat3D polyhedrasupportrich classes
of topologicalstructurein the form of knotsandlinks hasovershadowed the identifica-
tion of geometricstructure.In applicationssuchasmanufacturingor molecularanalysis,
however, geometricstructuressuchascavities or dockingsitesareimportant.

In theplane,thedifferencebetweena simplepolygonandits convex hull is a numberof
simple,polygonalbays,from which onecanobtaina naturaldescriptionof a polygonas
atreeof unionsanddifferencesof convex pieces[52]. In space,it hasbeensuggestedthat
thesameapproachbeusedto definepocketsin asearchfor castingdirections[17], but in
fact thedifferencebetweena polyhedronandits convex hull neednot have a naturalde-
composition,andmayhave morecomplicatedtopologythantheoriginal polyhedron[7]:
subtractinganobjectfrom its convex hull in 3D mayleaveonecomponentwith complex,
non-manifoldtopology. In fact, therearecastablepolyhedrafor which thealgorithmof
Chenat al. [17] will not find a feasibledirection.To our knowledge,we arenot awareof
previouswork in computationalgeometryconcerningtheidentificationof depressions.

In this chapter, we proposea hull operatorthatallowsusto definea 3D analogueto bays
in polygons. Section6.2 definesthe notion of reflex-freesetsandcavities. Section6.3
definesthe reflex-freehull, Rfh, andSection6.4 establishessomebasicresultsaboutthe
Rfh of polyhedralsets,includingthefact that theRfh haslinearcomplexity eventhough
it allowsarich setof topologicaltypes.Section6.5showsthatthereflex-freehull bounds
thelimit of aprocessof filling cavities,but thatobtainingit computationallyin this man-



nerwouldbechallenging.Finally, Section6.6relatesthereflex-freehull to otherpossible
hull definitionsthateitherhave highcomplexitiesor limited topologies.

6.2 Preliminaries

Webegin with basicgeometricandtopologicaldefinitionsandnotation[8, 26] for thesets
thatwe considerin three-dimensionalspace,IR3. We classifyboundarypointsgeometri-
cally, anddefinereflex-freesets.

A k-simplex is theconvex hull of k � 1 affinely independentpoints.In IR3, wehavepoints,
line segments,triangles,andtetrahedraasthe0-,1-, 2-,and3-simplices,respectively. The
emptysetis considereda �B� 1� -simplex. Notice that theboundaryof a simplex is a col-
lectionof lower dimensionalsimplices.A simplicial complex is a collectionof simplices
with disjoint interiorsthatis closedundertheoperationsof intersectionandtakingbound-
aries.

For our purposesin this chapter, a polyhedron is the union of the simplicesin a finite
simplical complex. A polyhedral set is homeomorphicto a polyhedron.We restrictour
discussionto polyhedralsetsto avoid wild topologicalbeastieslike theAlexanderhorned
sphere[26]. Section6.4furtherrestrictsthediscussionto polyhedralsetswhenit investi-
gatescombinatorialpropertiesof reflex-freehulls.

A setis closedif andonly if it containsall of its limit points;theclosure of a set,cl � S� ,
is the union of S with its setof limit points. The complementof a setS � IR3 � S. For
any vectorv 4 IR3, we definethe v-planehv � p�<�jX q Y�� q � p��� v � 0 [ , andthe closed
v-halfspaceh }v � p�g�RX q YC� q � p��� v � 0 [ . We maysuppresssubscriptsor argumentsand
write h andh } whenthey canbeunderstoodfrom context.

WeusetheEuclideanmetricin IR3, anddenotethedistancebetweentwo pointsby d � p � q�
andbetweentwo setsby d � A � B�M� lim supX d � a � b�_Y a 4 A � b 4 B [ . For ε G 0, the open
ε-ball is Bε � p�?�xX q Y d � p � q�gK ε [ . Theinterior of aset 
 , denotedint ��
3� , arethepoints
of 
 for which we can find an ε G 0 suchthat Bε � p�u��
 . The boundaryis defined
∂ 
]�j
S� int ��
3� .
If every boundarypoint hasa neighborhoodthat is homeomorphicto a half-ball, then 

is calleda three-manifoldwith boundary. Wecannotrestrictourselvesto manifolds,since
non-manfoldsetscanariseasreflex-free hulls in degenerateconfigurations.Examples
of polyhedralsetsthat arenot three-manifoldsincludeany pair of tetrahedrajoined at
a vertex or alongan edge,andany finite union of oneandtwo dimensionalsimplices.
Pointsthatdo nothave ball or half-ball neighborhoodsarecalledsingular.

Weclassifyeachboundarypointof a polyhedralset,p 4	
 , basedintuitively on whether
 or 
 canbeorientedto holdwaterat p. Non-manifoldsetscomplicatethesedefinitions.
For example,a singularpoint p appearson theboundarymorethanoncewhen 
 is not
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connectedin theneighborhoodof p. We call a connectedcomponentC � Bε � p�`1 
 an
appearanceof p on 
 if p 4 cl � C � , anddefinethe neighborhoodof an appearanceas
Bε � p��� C.

For any ε G 0andvectorv 4 IR3, wedefinethehemisphereHv� ε � p�:� Bε � p�L1 h }v � p�L1 X p [ .
To simplify classification,Hv� ε � p� doesnot containp or the boundarypointsof Bε � p� .
Again,wesuppresssubscriptsor argumentwhenthey canbeunderstoodfrom context.

We classifyanappearanceof point p 4 ∂ 
 basedon therelationof a hemisphereto the
neighborhoodof theappearance,which wedenote� . Wesaythat p appearsasa� reflex point if thereis a hemisphereat p inside the neighborhood� . That is, if

thereexistsavectorv andε G 0 suchthatHv� ε � p�M� int ���c� .� convex point if thereis ahemisphereoutside� . Thatis, if thereexistsHv� ε � p��� � .� flat point if thereexistsanε G 0 andv 4 IR3 suchthatHv� ε � p�2�%� andH } v� ε � p�2�
cl � �d� .� nearlyreflex point if p is neitherreflex nor flat andthereexistsHv� ε � p�M�S� .� nearlyconvex point if p is neitherconvex norflat andthereexistsHv� ε � p�2� cl � �d� .� saddlepoint otherwise.That is, for every ε G 0 andvectorv, hemisphereHv� ε � p�
intersectsboththeinteriorandthecomplementof � .

flat

nearly reflex

refle� x

saddle
nearly convex

convex

Figure 6.1: Classifying

For anexample,we canclassifypointson theboundaryof a three-manifoldpolyhedron.
Pointson facesareflat, pointson edgesarenearlyreflex or nearlyconvex (or flat in the
degeneratecaseof a dihedralangleof 180� ), andpointsat verticesareconvex, reflex, or
saddle(exceptin degeneratecasesof incidentcoplanarfaces/edges).In acoffeemug,the
reflex pointsareat thebottomof thebowl.

Given a closedhalf-spaceh } , we call any boundedconnectedcomponentof 
	1 h } a
plane-cavity. A plane-cavity is maximal if no planeparallel to h definesa plane-cavity
thatcontainsit. It is not hardto seethatyou canfill a plane-cavity until it spills over at a
saddle,in general,or at convex or nearlyconvex pointsin degeneratecases.

Lemma 23 A polyhedral set 
 hasa plane-cavity
a1 h } for somehalf-spaceh } if and
only if there is a reflex point in ∂ 
 .
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Proof: Assumea point p 4 ∂ 
 appearsasa reflex point, which meansthat thereis a
neighborhood� of thisappearanceof p andahemispheresuchthatHv� ε � p�g� int ���c� . In
theplanehv � p� thatdefinesthehemisphere,chooseacircleγ centeredat p with radiusless
thanε. Becauseevery point of γ is in theinterior of � , and � is compact,thereis some
δ G 0 sothat translatingγ to γ � δv remainsstrictly inside � . Thehalfspaceh }v � p � δv�
thuscutsoff aboundedconnectedcomponentfrom 
 .

For the inverse,let X bea plane-cavity of h } 1 
 for somehalf-spaceh } . Take a large
sphereS thatcontainsX strictly in its interior. Now, move Suntil S touchestheboundary
of X; by makingSsufficiently large, thecontactbetweenSandX will bea singlepoint
p 4 ∂ 
 thatis not in theplaneh. Let v beavectorfrom p towardsthecenterof thesphere
S. Wemaychooseε G 0 and� to betheneighborhoodof theappearanceof p onX, and
form ahemisphereHv� ε � p�2� int ���c� . Thus,p is a reflex point of 
 .

Wesaythat 
 is a reflex-freesetif f 
 is apolyhedralsetthathasno reflex points.By the
previouslemma,apolyhedralsethasno plane-cavities if andonly if it is reflex-free.The
reflex-freesetsareclosedunderintersection,providedthey remainpolyhedral.

Lemma 24 Let X�
 α [ bea familyof reflex-freesetswhoseintersectionis polyhedral. The
intersection��
 α is alsoreflex-free.

Proof: Supposethatsomepoint p is in a plane-cavity of � 
 α definedby half-spaceh } .
By Lemma23, it is sufficient to show thatfor someα, point p is alsoin aplane-cavity of
set 
 α.

Notice that the plane-cavities of the intersectioncanbe written asa union of individual
planecavities: ��� 
 α � 1 h } �9��� 
 α 1 h }M� @
Since p is in a boundedconnectedcomponentof the union, point p mustbe in a con-
nectedcomponentof h } 1 
 α, for someα. This componentmustbebounded,sincethe
componentin theunionis bounded.

We canuseintersectionsto sculptreflex-freesets.For example,drilling a holethrougha
reflex-freesetkeepsthesetreflex-free.

Lemma 25 Let 
 bea reflex-freesetandX bea polyhedral set.If no reflex pointof X is
in int ��
3� , thentheintersection 
S1 X is reflex free.

Proof: Considera point p on theboundaryof 
a1 X: eitherp 4 ∂ 
 or p 4 ∂X 1 int ��
3� .
In thefirst case,weknow thatnohemisphereH � p�g� int ��
3� , andin thesecondweknow
thatnohemisphereH � p�?� int � X � . Thus,therecanbenohemispherein their intersection.

82



6.3 The refle x-free hull

DefineRfh( 
 ), the reflex-freehull of a set 
 , as the intersectionof all reflex-free sets
that contain 
 . For example,the reflex-free hull of a torusis itself; the reflex-free hull
of a coffee cup would fill the cup but preserve the handle. The reflex-free hull of a set
of discretepointswould be thesepoints,becauseany union of balls aroundthe points
is reflex free. The motivation for definingthe reflex-free hull is to find a structurethat
surroundsaset,but fills in depressionsor dockingsites.Weshow thatthereflex-freehull
is idempotent.

Theorem12 For a closedset 
 , the reflex-free hull Rfh ��
3� satisfiesRfh � Rfh ��
��H�s�
Rfh ��
�� .
Proof: Since 
 v Rfh ��
3� , thesetswhoseintersectiondefinesRfh � Rfh ��
3�A� area subset
of thosethatdefineRfh ��
�� . Thus,it is clearthatRfh ��
3� v Rfh � Rfh ��
3�A� . We prove the
reverseinclusion. By thedefinitionof Rfh ��
�� , if a point p is not in Rfh ��
�� , thenthere
is a reflex-freesetRp that includes 
 andnot p. SinceRp participatesin theintersection
definingRfh ��
�� , we alsoknow that Rfh ��
�� v Rp. But thenRp alsoparticipatesin the
intersectiondefiningRfh � Rfh ��
��H� . Thus,p is not in Rfh � Rfh ��
��A� .
Wecanusesculptingto prove thefollowing technicallemma.Definetheε-tubefor a line
segmentsas � ε � s���9X x Y d � x � s�2K ε [ .
Lemma 26 SupposethatY is a reflex-freesetandthatY containsa pointq in theconvex
hull of a finitesetof pointsoutsideofY, namelyX p1 � p2 �A@A@A@H� pk [�� Y. For someε G 0, the
setY � E 1 � i � k � ε � piq� is reflex free.

Proof: We maychooseε G 0 sothat theballsBε � pi � do not intersectY. Theunionof ε-
tubes,X �xE 1 � i � k � ε � piq� is anopenset;its complementX is aclosedsetthathasreflex
pointsonly on ball boundaries∂Bε � pi � . By Lemma25, the intersectionY 1 X is reflex
free.

We useLemma26 to show that the reflex-free hull Rfh ��
�� inherits its convex, nearly
convex, andsaddlepointsfrom theunderlyingset 
 .

Lemma 27 For a closedset 
 , everyconvex, nearlyconvex, or saddlepoint p of Rfh ��
��
is a point of 
 . In particular, convex pointsof Rfh ��
3� are convex pointsof 
 , nearly
convex points of Rfh ��
3� are convex or nearly convex points of 
 , and saddlepoints
of Rfh ��
�� are convex, nearlyconvex or saddlepointsof 
 .

Proof: Because
9� Rfh ��
�� , thepointsinside 
 areclearlyinteriorpointsof Rfh ��
�� .
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Considera point p 4 Rfh ��
3� that is outsideof 
 . We may chooseε G 0 suchthat the
ball Bε � p� doesnot intersect 
 . The differenceY � Bε � p�{�>
 mustbe convex, since
otherwisewecouldfind two, three,or four pointsin Y whoseconvex hull containsapoint
q 4 Rfh ��
�� andthenapplyLemma26to obtainasmallerreflex-freesetthatstill contains
 . It is readilycheckedthatfor aconvex, nearlyconvex, or saddlepoint p, thedifference
Y is not aconvex set.

Therefore,aconvex, nearlyconvex, or saddlepoint p 4 Rfh � Q� mustcomefrom ∂ 
 . By
checkingthehemispheresof p with respectto Rfh( 
 ) and 
 , we observe thata convex
point of Rfh ��
�� is a convex point of 
 , a nearlyconvex point of Rfh ��
3� is a convex or
nearlyconvex point of 
 , anda saddlepoint p of Rfh ��
3� is a convex, nearlyconvex, or
saddlepointof 
 .

6.4 The refle x-free hull of a pol yhedr on

In this section,we considerthe reflex-freehull of a polyhedron.We definethesizeof a
polyhedronto bethenumberof vertices,edges,andfaceson its boundary. We show that
thereflex-freehull of a polyhedronis a polyhedronof thesameasymptoticsize.We find
this surprisingin light of thehigh complexity of otherdefinitionsof hulls thatwe sketch
in thenext section.

Theorem13 The reflex-free hull of a polyhedron of sizen is a reflex-free polyhedron
whosesizeis O � n� .
Weuse� asourpolyhedronandestablishasequenceof lemmasbeforeformally proving
this theorem.We first wish to show that the boundaryof Rfh( � ) consistsof flat faces,
straightsegmentedges,andpoint vertices.Sincetheconvex, nearlyconvex, andsaddle
pointsof Rfh( � ) comefrom � by Lemma27, our main task is to show in Lemma28
thatthenearlyreflex pointsform line segments.Next we observe in Lemma29 thateach
convex edgeof � contributesat mosttwo verticesto Rfh( � ). This allows usto establish
thatRfh( � ) is a polyhedronin Lemma30. Finally, we establishthetheoremby relating
thesizeto genus,andboundingthegenusof Rfh( � ).

Lemma 28 For a polyhedral set � , let R bethesetof nearlyreflex pointsof Rfh( � ) that
do not lie at verticesor on edgesof � . Theconnectedsubsetsof Rare line segments.

Proof: Let p 4 R be a nearlyreflex point of Rfh ����� that is not a vertex of � . Choose
ε G 0 sufficiently smallthattheonly facetsof � thatintersectBε � p� arethoseincidenton
p. Let h } bethehalfspacethatcontainsthehemispherethatshows that(this appearance
of) p is nearlyreflex.
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Figure 6.2: Sculpt with tetrahedron abcdor rotate h.

Figure 6.2 illustratesthe disk D � h 1 Bε � p� that is containedin Rfh( � ), drawn with
shadingwhereD intersectsthe interior int � Rfh �����A� . Notice that the pointsR 1 D serve
as the boundarybetweenshadedand unshaded,that is, betweenD 1 int � Rfh �����A� and
D 1 ∂Rfh ����� .
Choosea andb aspointsof R 1 Bε � p� , asin Figure6.2. We observe that thesegmentab
cannotintersectthe interior int � Rfh �����A� : Constructanopentetrahedronτ asthe interior
of theconvex hull of a, b, andtwo otherpoints,c � d 4 Bε � p�C� Rfh ����� sothata, b, c, andd
arenotcoplanar. Thereflex verticesof τ area, b, c, andd, whicharenot in theinteriorof
Rfh( � ). Theopentetrahedronτ doesnot intersect� , sincec andd lie outsideanda andb
lie onor outsidetheonefacetof � in Bε � p� . Thus,Rfh �����C1 τ is reflex freeby Lemma25.
But this sculptingoperationcannotremove pointsfrom Rfh( � ), so thesegmentab does
not intersecttheinterior int � Rfh �����A� .
Now, considertheconvex hull of thenearlyreflex pointsRwithin diskD. Thishull cannot
containapointof theinterior, D 1 int � Rfh �����H� , by thepreviousparagraph.Sincep is not
flat, thereare interior points in any neighborhoodof p, so p mustbe on the boundary
of the hull. If we rotatethe planeh arounda tangentto the hull at p anddefinea new
hemisphereH � p� asindicatedby the dashedline in Figure6.2, thenwe canseethat p
must lie on a line segmenton this hull, or we would observe a reflex point at p. This
concludestheproof of thelemma.

We next observe that an edgefrom � appearsat mostonceasa nearlyconvex edgeon
Rfh( � ).

Lemma 29 If p andq are nearlyconvex pointsof Rfh( � ) that comefromthesameedge
eof � , thenthesegmentpq consistsentirely of nearlyconvex pointsof Rfh( � ).

Proof: Let p and q be points satisfyingthe hypothesisof the lemma. Chooseε G 0
sufficiently small that the ε-tube � ε(pq) doesnot intersectany facetsof � exceptthose
incidenton segmentpq. At theleft sideof Figure6.3,wedraw two ε disksaroundp and
q, andshadetheir intersectionswith � (dark)andRfh( � ) (light).

Wemaychoosepointsa andb outsideof Rfh( � ) sothatthesegmentab is parallelto pq:
simply choosea andb in theantipodesof theregionsintersecting� in thetwo disks,as
in themiddleof Figure6.3. Wemaythenchoosec andd outsideof Rfh( � ) sothat � apc
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Figure 6.3: Sculpting Rfh ����� between two nearly convex points p and q of an edge e of� .

is obtusein thedisk containingp and � bqd is obtusein thedisk containingq, andc and
d lie onoppositesidesof theplanethroughabpq.

Now, form thesculptingregion X astheclosureof thecomplementof thetwo tetrahedra
acpqandbdpq, asat theright of Figure6.3.Thereflex pointsof X, whicharea, b, c, and
d, areall outsideof Rfh( � ), soby Lemma25weknow thatRfh �����2� X. Sinceall points
of pqareone � Rfh ����� , wecanfind hemispheresto show thatthey areall nearlyconvex
pointsof Rfh( � ).

Wesummarizewhatweknow aboutRfh( � ) thusfar.

Lemma 30 Thereflex-freehull of a polyhedronof sizen is boundedbya polyhedronwith
O � n� vertices.

Proof: Let � bea polyhedronof sizen, andclassifythepointsof ∂Rfh ���n� . By Lemmas
27and28,thenearlyconvex andnearlyreflex pointsmaybeorganizedinto line segments.
Theseline segmentsmustendat verticesthatareconvex or saddlepoints,sincethereare
no reflex points. But eachsuchvertex lies on a nearlyconvex edgeof � , andeachedge
cancontributeat mosttwo verticesby Lemma29. Theremainingpointsareflat points,
which may thereforebe groupedinto polygons. A finite numberof polygonsmay be
formedon n vertices,soRfh( � ) is apolyhedron.

We cannow completetheproof of Theorem13, andshow that, for a polyhedron� the
reflex-freehull Rfh ����� is apolyhedronof thesameasymptoticsize.

Proof: FromLemma30weknow thatRfh ����� is apolyhedronwith O � n� vertices,where
n is thesizeof � . Wehave only to boundthenumbersof facesandedges.

From the Euler-Poincaŕe formula (due to Poincaŕe 1899), we know that V � E � F �
2 � 2g, whereV, E, F , and g are the numberof vertices,edges,faces,and genusof
Rfh ����� . Since3F � 2E, wededucethatV � E � 3 � 2 � 2g andsoE � 3V � 6g � 6. Since
V 4 O � n� , wehave only to boundthegenusg 4 O � n� to completetheproof.

Curvatureis definedat all points on a surface,and the sum of curvatureover Rfh( � )
equals� 4π � g � 1� . For a polyhedron,pointson facesor edgeshave curvaturezero,and
thecurvatureof a vertex v equals2π minusthesumof theanglesof facesincidenton v.
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Thus,4πg equals2π plus thesumof all faceanglesat all verticesof Rfh( � ). Sincethe
genusof � is lessthann by theEuler-Poincareformula,we boundtheincreaseof genus
by boundingtheincreasein thesumof faceangleswhenwego from � to Rfh ����� .
Threetypesof changesto verticesoccurwhenwego from � to Rfh ����� :

1. avertex v of � maydisappearinto theinteriorof Rfh ����� ,
2. anew vertex v maybecreatedon Rfh( � ), or

3. avertex v of � maybecomeincidenton new faces.

Wecanboundhow eachtypeof changeincreasesthesumof faceangles.

1. Whenavertex v of � disappears,it no longercontributesto thesumof faceangles.

2. A new vertex v is incidenton exactly oneconvex edge,sincev is not reflex andis
notavertex in � . Thesumof anglesof thetwo facesincidentto theconvex edgeis
lessthan2π, andthesumof anglesof theremainingfacesincidentto v is lessthan
2π. Soanew vertex increasesthesumof faceanglesby lessthan4π.

3. SinceRfh( � ) is a polyhedron,we mayorganizethefacesincidentto v into oneor
more topologicaldisks. At mostoneof thesedisksmay be flat, contributing an
angleof 2π. Any othermusthaveat leastoneconvex edge.

Lemma27 impliesthatnonew convex edgecanbecreatedincidentto v. Thus,this
changereplacesthefacesbetweentwo convex edges(possiblyidentical)by a new
setof facesthatarejoinedby reflex edges.This decreasesthesumof faceangles,
exceptpossiblywherea new faceangleof greaterthanπ is createdincidentto v.
Thisnew faceaddslessthan2π, but alsoconsumesonequarterof theneighborhood
of v. Theincreasein faceanglesat v will belessthan8π.

Hence,themaximumincreasein faceanglesis 8πn, andtheincreasein genusof Rfh �����
is thusO � n� . Thiscompletestheproof of Theorem13.

6.5 The refle x-free hull and cavities

Recallthat for a closedpolyhedralset 
 andhalfspaceh } , we defineda plane-cavityas
aconnectedcomponentof 
S1 h } . Wecanenlargeaplane-cavity by translatingits plane
h unlessh containsa saddlepoint or nearlyconvex points. We saythat a plane-cavity
is limited if its planecontainsthreesaddlepointsor a closedcurve of convex andnearly
convex points.

Lemma 31 Anyplane-cavityis containedin theunionof four limitedplane-cavities.
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Proof: Consideraplane-cavity C � 
D1 h } . Wemaytranslateh to enlargeC unlessdoing
sowould causeC to beconnectedto theunboundedcomponentof 
 . This mayhappen
if h containsaclosedchainof (nearly)convex pointssatisfyingthelemma.

Otherwiseh containsoneor moresaddlepoints. If h containstwo saddlepoints,a and
b, thenwe may duplicateh androtatethe two copiesin oppositedirectionsaroundthe
line ab. We stopeachrotationwhena third saddlepoint or chainof nearlyconvex points
is reached.If thereis a singlesaddle,we again duplicateandrotateh aroundsomeline
throughthesaddleuntil wehit asecondsaddleandreduceto two instancesof theprevious
case.

If we iteratively fill up planecavities for a polyhedron� , thenwe obtaina sequenceof
interestingsets.We describethis processpreciselyasfollows. Let � 0 �]� . Givensome
plane-cavity Ck of � k, we form theunion � k � Ck to obtaina new polyhedron� k ( 1. We
may chooseour plane-cavities by always choosingthe onewith largestvolume,or by
alwayschoosingfour limited plane-cavities thatenclosethelargestvolume.

We call a connectedcomponentof � k �2� a cavity. We believe, but have not beenable
to formally prove, that in the limit we can obtain the reflex-free hull by filling cavi-
ties. Equivalently the cavities of a closedpolyhedron� arethe connectedcomponents
of Rfh ���n���?� .

Theorem14 For a closedpolyhedron � , the limit of the processof filling cavitiesis a
subsetof thereflex-freehull, Rfh( � ).

Proof: We show by inductionthat thecavities identifiedby thefilling processareinside
all reflex-freesetsthat contain � . Specifically, we prove that any polyhedralset 
 that
contains� , but doesnot contain� k, hasa reflex point.

Thebasecase,k � 0, is trivial; no setcontaining� canomit apointof � 0 �]� .

For the inductive step,we assumethe inductionhypothesisfor somek � 0, andprove it
for k � 1. Thus,assumethat 
 is a polyhedralsetthat contains� but doesnot contain� k ( 1. If 
 doesnot contain � k, thenthe inductionhypothesisappliesimmediately, so
we assumethat 
 contains� k. Theboundaryof 
 thereforeintersectstheplane-cavity
Ck �]� k( 1 �g� k. But since∂ 
 canonly escapethroughtheplanedefiningCk, if at all, 

hasaplanecavity in Ck. Lemma23 saysthat 
 hasa reflex point.

Unfortunately, we do not know how to turn this definition into anefficient procedureto
computethereflex-freehull of apolyhedron.Theprocessof filling in onereflex vertex can
createothersat reflex edges.Figure6.4 illustratesoneexamplein which filling cavities
mustbetakento thelimit to attainthereflex-freehull.

Startwith thecube  �� 5 � 5¡ 3 andsubtractthefollowing sets: X�� x � y� z�MY x 4% �� 1 � 1¡¢� z GRY y Y [ ,X�� x � y� z�wY`Y x Y;4�  1 � 3¡f� z G£Y y Y��]Y x YH� 1 [ , X�� x � y� z�uY x 4�  3 � 5¡f� z G y� 2 � 1 [ , and X�� x � y� z�wY
x 4	 ¤� 3 �A� 5¡¢� z GR� y� 2 � 1 [ , to obtainanobjectillustratedin Figure6.4. Therearefour
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Figure 6.4: Each filling step creates reflex and saddle points

labeledlines that are relevant in this example. We parameterizethem by z. Two are
pivots, α �RX��H� 3 � 2z � 2 � z�A[ andδ �¦X�� 3 � 2 � 2z� z�A[ , andtwo linesendat saddlepoints,
β ��X��B� 1 � z� z��[ , andγ �¦X�� 1 �A� z� z�A[ . With a little algebra,we observe thata planethat
containsδ andintersectsβ at z � t intersectsγ at z �d� t � 2�A� 6. By symmetry, theplane
throughα and � 1 �A� t � t � intersectsβ at z �c� t � 2�H� 6.

Initially, therearetwo reflex verticeswith coordinates�f§ 3 � 0 ��� 3� . We caneliminatethe
first by filling thecavity definedby theplanethroughpivot δ andthesaddlepointatz0 � 0
on β; this planeintersectsγ at z1 � 2� 6. We eliminatethesecondby filling to theplane
throughα andsaddlepoint � 1 � z1 � z1 � ; this planeintersectsβ at z2 � 7� 18, andcreatesa
new reflex vertex wherethe two filling planesmeet. From now on, we fill from a pivot
line to asaddleatzi �R� zi } 1 � 2�H� 6. Thereflex-freehull for thisexamplehasareflex edge
alongtheline through �B� 1 � 2� 5 � 2� 5� and � 1 ��� 2� 5 � 2� 5� , whichhappensto betheunique
line incidentto α, β, γ, andδ. Thus,weapproach,but never reachthereflex-freehull.

If reflex edgesincidenton four polyhedronedgeswere the worst that could occur, we
couldstill hopefor a polynomial-timealgorithmfor thereflex-freehull by inspectingall
4-tuplesof edgesto seeif they supporta commonline. Unfortunately, however, reflex
edgesmaybedefinedby linesthathit only two polyhedronedges.Figure6.5showssuch
an examplemadeof eight spheres,which could be approximatedby polyhedra. In it,
we have a sequenceof eightgeodesictrianglesthatsharethe thick segments,which are
reflex edgesof thehull. Theextensionsof reflex edges(dash-dotted)intersectwithin the
incidentgeodesictriangles.The readerwho would like to find analgorithmto compute
reflex-freehulls is advisedto build similarexamplesfrom modelingclay.
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Figure 6.5: Part of the reflex hull of an appropriately placed set of eight spheres. The
planes determining the new boundaries of this hull are defined by a sequence of saddles
in such a way that if any saddle is moved then all plane equations change.

6.6 Other hulls

The fact that the reflex-free hull haslinear complexity may not at first seemsurprising.
In this section,we considersomeothernaturaldefinitionsfor hulls that have far worse
complexities.

For a closedsetS, we mayobtainthe convex hull, CH � S� , by removing halfspacesthat
do not intersectS or by taking the intersectionof halfspacesthat containsS. We may
obtainthereflex-freehull, Rfh � S� , by sculptingaccordingto Lemma25,or by takingthe
intersectionof reflex-free setsthat contianS. In a similar manner, we candefinea line
hull, LH � S� , by removing lines that do not intersectS, or moreformally by taking the
intersectionof setscontainingS thatarethecomplementsof lines.

Lemma 32 For a polyhedral setS, wehaveS v Rfh � S� v LH � S� v CH � S� . In general,
all inclusionsare strict.

Proof: It follows immediatelyfrom thedefinitions. Thecomplementof a line is reflex-
free,anda halfplanecanberepresentedasthe intersectionof thecomplementsof lines.

In the plane,the line hull of a connectedset is the sameasits convex hull, but the line
hull of adisconnectedpolyhedralsetof sizen mayhaveΘ � n4 � complexity, asit is related
to anarrangementof theΘ � n2 � linestangentto pairsof verticesof S(SeeFigure6.6.) In
IR3, the line hull is boundedby piecesof ruledsurfaces,includinghyperboloids.Sergei
Bespamyatnikh,in privatecommunication,describedanexampleof a connectedpolyhe-
dral setS of sizen whoseline hull hasΘ � n9 � complexity. Begin with thesix facesof a
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Figure 6.6: Line hull of 18 black segments

large,axis-alignedcube,andcut a smallsquarehole in thecenterof eachface.Nearthe
centerof thiscubewehavethreefamiliesof lines,eachroughlyparallelto oneof thethree
axes.Block thelinesparallelto thex-axiswith threesquaresparallelto theyzplane,and
cutn parallelslits in differentdirectionseachsquaresothatthelinesthatdopassthrough
theseslits form Ω � n3 � hyperboloidsnearthecenterof thecube.Repeatthis for they- and
z-axes,sothatthesehyperboloidshave Ω � n9 � intersections.

Someothernaturalhull definitionssuffer from similar complexities. Onecould define
thestar hull, SH� S� , of S asthe intersectionof all star-shapedpolyhedrathat containS.
Eachpoint p that is not in the starhull is excludedfrom somestar-shapedpolyhedron,
which saysthat p hasa ray to infinity thatdoesnot intersecttheinterior of S. Thus,one
coulddefinetheray hull astheintersectionof setscontainingS thatarethecomplements
of openrays.We saythata point p of a closedsetX is externallyvisible if thereis a ray
from p thatdoesnot intersecttheinteriorof X. A setX is externallyvisible if everypoint
on its boundaryis externallyvisible. Thus,onecoulddefinetheexternallyvisiblehull of
a closedsetS to be the intersectionof all externallyvisible setsthatcontainS. It is not
difficult to seethatthestarhull, rayhull, andexternallyvisiblehull areidentical,andthat
S v SH� S� v LH � S� , with strict inclusionfor many setsS. The reflex-freehull andstar
hull cannotalwaysbe orderedby inclusion: The boundaryof the starhull containsany
reflex verticesfrom Sthatareexternallyvisible. Theboundaryof thereflex-freehull may
containpointsthatarenot externallyvisible, ascanbeseenin anexampleof nestedtori
rotatedaboutacommonaxissothey form asphericalshell.

A minormodificationof Bespamyatnikh’sconstructionshows thatthestarhull canagain
beboundedby hyperboloids,andmayhave Ω � n9 � complexity.
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C H A P T E R 7

Cavities and castability
analysis

7.1 Intr oduction

Featurerecognitionhasbeenconsideredan importantresearchareain computer-aided
designandcomputer-aidedmanufacturing[43, 44,24]. Informally, featuresareproduct’s
genericshapesor characteristicsthat areassociatedwith properties,attributes,anden-
gineeringknowledgeaboutthe product[46, 47]. Manufacturingfeaturesaregeometric
structuresof an object,suchasholesor depressions,which have engineeringmeanings
relatedto manufacturingoperations.A holeof anobject,for example,mayhaveanengi-
neeringmeaning“drilling” or “assemblingsite”.

In applicationssuchasmanufacturingandmolecularanalysis,geometricstructuressuch
ascavities or dockingsitesareimportant. In manufacturing,featuresof a CAD model
imply manufacturinginformation, which facilitatesthe processof analyzingmanufac-
turability [44, 23].

A small hole or a depressionon the boundaryof an object, for example,restrictsthe
setof directionsfor which this object is castable,becausethe portion of the castin the
hole or in the depressionmustbe removed from the objectwithout breakingthe object.
Most industrialpartssuchasenginerooms,telephonebodies,andsmallpartsfor carand
aircraft have suchfeatures. This suggestsa new approachto castabilityanalysis: For
givenpartremoval directions,insteadof examiningthewholeboundaryof anobject,we
identify suchfeatures(holesand depressions)which play key roles in the preliminary
decisionprocess. If any suchfeaturescontradictsthe removal directions,we canstop
andconcludethatthesedirectionsarenot feasible,or thattheobjectneedsadditionalcast



parts.So identifying featuresnot only facilitatesthedecisionprocessandtheautomated
designof a cast,but alsogreatlyreducesthesearchspacefor feasiblecastingdirections.
Whenwe searchfor thesetof all feasiblecastingdirections,featurescangreatlyreduce
thesearchspace.A holewith theshapeof cylinder in anobject,for example,reducesthe
searchspaceto a pair of two oppositedirectionsparallelto thegeneratorof thecylinder.
Features,furthermore,canbeusedto minimize thenumberof castingparts(calledside
cores).

Basedon thedefinitionsof the reflex-freehull andcavities in Chapter6, in this chapter
we considerapplicationsusingcavities asa geometricfeaturein castabilityanalysis.We
assumethat thecast(mould)consistsof two partsandthat thesepartsmustberemoved
in oppositedirectionwithoutdamagingthepartsor theobject.

Wepresentanalgorithmwhich is usefulfor castinganalysis.Thealgorithmpartitionsthe
facesof � into disjointsubsets,suchthateachsubsetmustbelongto oneof thetwo mould
parts.Furthermore,weprovethattheboundingfacesof acavity belongto asinglesubset.
By basingthealgorithmonfaces,weobtainafinite process.Ouralgorithmis aneffective
methodto restrictthesearchspacefor feasiblecastingdirections.In fact,we conjecture
thatthisalgorithmcanbeextendedsothat,in theend,for any two distinctsubsets,thereis
a feasiblecastingdirectionin which themouldis removedfrom thecorrespondingfaces
in oppositedirections.

7.2 Definitions and assumptions

Recalltheprocessof iteratively filling plane-cavities of Section6.5. We denotethis pro-
cessby ���p� σk � , whereσk is any sequenceof k plane-cavities. A connectedcomponent
of � k �2� is a cavity of ���p� σk � . A face f of � boundsa cavity

�
of ���p� σk � if f lies

partially or completelyon theboundaryof
�

. For therest,we follow thedefinitionsand
thenotationsin Section6.2.

We make oneassumptionfor robustness:removal directionsparallel to facesof � are
not allowed. Thus,whenthe two partsof a mould for � meetalonga parting surface,
this partingsurfacemeetstheboundaryof � alonga closedcurve calledtheparting line
that consistsof polyhedronedges.This is a practicalconsiderationin mould designas
well, sincecastingimperfectionson the objectmay occuralongthe partingline, andif
the partingline crossesa facethenadditionaltreatmentandpolishingmay be required.
For furtherinformation,seeSection4.1.
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(a)

(b)

Figure 7.1: Cavities. (a) A container object, and (b) Filling process.

7.3 Theorems for coloring faces

In this sectionwe show how to color the facesof � suchthat faceswith thesamecolor
mustappearin thesamepartof a two-partmould.

Thisalgorithmis basedontwo geometricobservations:Everypolyhedronfacebelongsto
oneof thetwo mouldpartsof any cast,andthetwo polyhedronfacesincidentto a reflex
edgemustbelongto thesamemouldpartof any cast.

Lemma 33 Theboundingfacesof a cavityof ���p� σk � for anyσk mustbelongto thesame
mouldpart of anycast.

Proof: Givenacavity
�

of ���p� σk � , theboundaryof cl � � � canbedividedinto two parts:
onesharedwith � andonenot sharedwith � . We call thepartnot sharedwith � the lid
of
�

. It sufficesto prove thatno two pointsat theboundarybetween� anda cavity can
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beremovedin oppositedirections.

Assumethat two distinct points on the boundingfacesof
�

are removed in opposite
directions.Insidethecavity the two castpartsmeetalonga commonboundarysurface.
Thenany line 0 throughthe interior of the surfaceandparallelto the removal direction
doesnot intersect� . Sincethereflex-freehull of � doesnotcontaintheintersectionpoint
between0 andthesurface,� k is notasubsetof thereflex-freehull of � , whichcontradicts
Theorem14.

We needa few definitionsin order to describeour algorithm. Let ! be the sphereof
directions. Given a face f , we denoteby cone� f � the setof directionson ! that have
positive projectionon the normalof f . Note that if we translatef suchthat f passes
throughthecenterof ! , thencone� f � is anopenhemispheredefinedby a planethrough
f . Symmetrically, we definecone� f � to be thesetof directionson ! thathave negative
projectiononthenormalof f . Wedenotethedoubleconecone� f �L� cone� f � bydcone� f � .
We generalizethe notationto reflex edges.Given a reflex edgee with incidentfacesf
andg, definecone� e�{� cone� f �C1 cone� g� , cone� e��� cone� f �;1 cone� g� , anddcone� e�{�
cone� e��� cone� e� . Notethatcone� e� is thesetof removal directionsfor f andg. (Recall
that f andg mustbelongto thesamemouldpartby assumption.)

Our algorithmworks by assigninga color anda positive or negative sign to eachface.
Facesof thesamecolor (regardlessof thesign)form a color group. Givena color group
G, we defineits coneof directions, cone� G� , to be the commonintersectionof cone� f �
for all positive faces f 4 G and cone� g� for all negative facesg 4 G. Symmetrically,
cone� G� is thesetof directionsoppositeto thosein cone� G� . Thedoubleconedcone� G�
is cone� G��� cone� G� .
Thealgorithmconsistsof two phases.Initially, eachfaceis assignedapositivesignanda
distinctcolor, andthereforeformsacolorgroupby itself. In thefirst phase,werepeatedly
recolortwo groupsG1 andG2 of facesby onecommoncolor if G1 andG2 meetalong
somereflex edge. In thesecondphase,we repeatedlyrecolortwo groupsG1 andG2 of
facesby onecommoncolor if dcone� G1 ��1 dcone� G2 � consistsof exactly two connected
components.We mayalsoupdatethesignsof facesin G1 � G2 andtherearetwo cases:
(1) cone� G1 �;1 cone� G2 � 6�Vr andcone� G1 �C1 cone� G2 �{�Vr , (2) cone� G1 �C1 cone� G2 ���5r
andcone� G1 ��1 cone� G2 � 6�xr . In case(1), we preserve thesignsof all facesin G1 � G2.
In case(2), weflip thesignof eachfacein G2.

Lemma 34 For anycolor groupG, all positivefacesin G mustberemovedin a common
directionin cone� G� , andall negativefacesin G in a commondirectionin cone� G� , with
respectto anymould.

Proof: Weprovethisby induction.In thefirst phase,two facesf andg incidentto areflex
edgemustberemovedin thesamedirectionby our assumptionthatno faceis parallelto
a castingdirection.In thesecondphase,supposewedecideto combinetwo color groups
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G1 andG2. By inductionassumption,all positive (resp. negative) facesin G1 mustbe
removed in a commondirectionin cone� G1 � (resp. cone� G1 � ) with respectto any cast,
andthesameholdsfor G2.

Supposethatcone� G1 �h1 cone� G2 �^�Vr . Thenpositivefacesin G1 cannotberemovedin a
directionin cone� G2 � andviceversa.Thus,positive facesin G1 � G2 mustberemovedin
acommondirectionwith respectto any cast,andthis setof commondirectionsis clearly
cone� G1 ��1 cone� G2 � . A symmetricstatementholds for negative facesin G1 � G2 and
cone� G1 ��1 cone� G2 � .
Supposethatcone� G1 ��1 cone� G2 �g�9r . Thenpositive facesin G1 cannotberemovedin
a directionin cone� G2 � andvice versa.Thus,positive facesin G1 andnegative facesin
G2 mustberemovedin acommondirectionin cone� G1 �h1 cone� G2 � . Sincesignsof faces
in G2 areflipped in merging, the lemmais satisfied. A symmetricstatementholds for
negative facesin G1 andpositive facesin G2.

Lemma 35 Let � be a castablepolyhedron. Let f and g be two boundingfacesof a
cavityof ���p� σk � for someσk. Supposethat f andg belongto two differentcolor groups
G1 andG2 at somepoint during thecoloring algorithm. If f andg haveidenticalsigns,
thencone� G1 ��1 cone� G2 � is nonempty. Otherwise, cone� G1 ��1 cone� G2 � is nonempty.

Proof: Let � be a two-partmould for � . By Lemma33, f andg belongto the same
partof � . If f andg have identicalsign,thenLemma34 impliesthatfacesin G1 � G2 of
the samesign belongto the samepart of � . Thus,the removal directionof the positive
facesin G1 � G2 belongsto cone� G1 ��1 cone� G2 � whichmustthenbenonempty. If f and
g have oppositesigns,thenLemma34 implies thatpositive (resp.negative) facesin G1

andnegative (resp.positive) facesin G2 belongto thesamepartof � . Thus,theremoval
directionof positivefacesin G1 andnegative facesin G2 belongsto cone� G1 �;1 cone� G2 �
whichmustthennonempty.

We will prove that the boundingfacesof a cavity of ���p� σk � for any k will receive the
samecolor. Theproof is by inductionon k. Sincea face f will residein differentcolor
groupsG duringthecoloringalgorithm,thesetof removal directionsfor f changesasG
changes.For easeof exposition,we disregard the groupthat f belongsto. Instead,we
saythatdifferentconesof directionsD areassociatedwith f atdifferenttimesduringthe
coloringalgorithm.

Furthermore,in makingtheinductive argument,we needto work with plane-cavity with
respectto a nearlyreflex vertex insteadof a reflex vertex. Recallthatv is a nearlyreflex
vertex if v is neitherreflex norflat, andall facesincidentto v lie within aclosedhalfspace
whoseboundingplanepassesthroughv andlies locally inside � at v.

Definethestar of avertex v, St� v� , to betheunionof v andtheinteriorof facesandedges
incidentto v. WeuseSt� v� to denotetheclosureof St� v� . Thelink of v, denotedby Lk � v� ,
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v

St � v�

πv� d � v� πv� d � St � v�A�

Figure 7.2: The closure, St� v� , of the star of a reflex vertex v and the spherical polygon
πv� d � St� v�A� on the sphere, where d is the upward vertial direction.

is definedto be St� v�:� St� v� . Let v be a reflex or nearly reflex vertex. Let d be any
feasiblecastingdirectionfrom which v is visible. Note that all facesincidenton v are
visible from directiond. Putv at thecenterof the sphereof direction. First, we stretch
St� v� radially away from v so that thestretchedlink of v lies on thesphere.This yields
a polygonwith curved boundaryinsidethe sphere.Second,we projectv in directiond
ontothesphere.Weuseπv� d to denotethecompositemappingfrom St� v� to thespherical
polygonon thesphere.Notethatπv� d � v� is in thekernelof πv� d � St� v�A� . Thus,πv� d � St� v�A�
canbetriangulatedinto sphericaltrianglesby drawing greatcirculararcsfrom πv� d � v� to
verticesof πv� d � St� v�A� . Clearly, πv� d mapsthe circular arcsincident to πv� d � v� to edges
incidentto v, andthesphericaltrianglesto triangles.Also, theangleatavertex πv� d � x� of
πv� d � St� v�A� is exactly theexterior dihedralangleat theedgevx.

Lemma 36 Let v bea reflex or nearlyreflex vertex. Let vaandvbbetwo reflex edgesin-
cidentto v. LetDva v cone� va� andDvb v cone� vb� betwoconesof directionsassociated
with thetwo facesincidentto vaandvb,respectively. If cone� va� andcone� vb� lie on the
samesideof a greatcircle throughπv� d � a� andπv� d � b� , thenDva 1 Dvb is empty.

Proof: Figure 7.3 illustratesthe situation. It follows from the fact that cone� vx� and
cone� vx� for any reflex edgevx lie on oppositesidesof any greatcircle that doesnot
intersectcone� vx� (suchagreatcirclemustpassthroughπv� d � x� ).
Lemma 37 Letv bea reflex or nearlyreflex vertex. Letd bea feasibleremoval direction
fromwhich v is visible. Let va, vb, andvx bethreereflex edgessuch that πv� d � vx� lies in
thesmalleranglebetweenπv� d � va� andπv� d � vb� . Supposethatcone� vα � doesnotcontain
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πv̈ d © aª πv̈ d © bª πv̈ d © aª πv̈ d © bª

Figure 7.3: The bold curves are parts of great circles. The left picture shows the case
where vaand vbare incident to the same face. The right picture shows the case where they
are not. The area of darker shade represents cone� va� and cone� vb� . The area of lighter
shade represents cone� va� and cone� vb� . Since cone� va� and cone� vb� lie opposite sides
of the great circle, they cannot intersect. The same is true for cone� va� and cone� vb� .

πv� d � a� πv� d � b�
πv� d � x �

Figure 7.4: The dotted curves are great circles through πv� d � a� and πv� d � x� , and πv� d � b�
and πv� d � x � .
πv� d � β � for all α � β 4&X a � b � x [ . ThenD 1 Dx is empty, whereD v cone� va�h1 cone� vb� is a
commonconeof directionsassociatedwith thefacesincidentto va andvb,andDx is the
coneof directionsassociatedwith thefacesincidentto vx.

Proof: Sinceπv� d � v� lies in thekernelof πv� d � St� v�H� , cone� vx� andcone� va� cannotlie on
oppositesidesof thegreatcirclethroughπv� d � a� andπv� d � x � . Thesameholdsfor cone� vx�
andcone� vb� . If cone� vx� andcone� va� lies on thesamesideof thegreatcircle through
πv� d � a� andπv� d � x � , thenLemma36impliesthatD 1 Dx is empty. Weobtainthesamecon-
clusionif cone� vx� andcone� vb� lies on thesamesideof thegreatcircle throughπv� d � b�
and πv� d � x� . The remainingpossibility is that cone� vx� containscone� va�^1 cone� vb�
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which is a supersetof D. SeeFigure7.4. Thus,D cannotintersectcone� vx� which is
asupersetof Dx.

We arereadyto prove that the boundingfacesof a cavity of ���p� σk � for any σk receive
the samecolor and sign. We will restrict σk to simplify the analysiswithout loss of
generality. Specifically, we wantto refineσk to a sequenceof specialplane-cavities such
thatthefilling of eachspecialplane-cavity correspondsto sweepingaplanefrom areflex
or nearlyreflex vertex until a vertex in thecavity is encountered.Givenσk, wecanrefine
it asfollows: Whenwe fill theplane-cavity σk � σk } 1 of � k } 1 to produce� k, theplane-
cavity canbedecomposedinto severalsteps.Take theplaneHk definingtheplane-cavity
σk � σk } 1. SweepHk towardsthe interior of σk � σk } 1 until it hits a vertex w of the
plane-cavity. Recordthe volumesweptover asonespecialplane-cavity. Continuethe
sweepingto the next vertex in the planecavity anddefineanotherspecialplane-cavity.
During the sweeping,we may needto split at the vertex encountered.In this case,we
continuethesweepingof thedifferentpartsindependently. Figure7.5showsanexample.
Werepeattheabovesweepinguntil novertex in σk � σk } 1 remains.Now, wecanthink of
thegrowing of � k } 1 to � k asfilling thespecialplane-cavities obtainedin reverseorder.

u

w

v

specialplane-cavities

Figure 7.5: The topmost patch of lightest shade bounds a plane-cavity. This plane-cavity
can be refined into a sequence of three special plane-cavities. The first two are the volume
swept from u and v to w respectively. The third is the volume swept from the nearly reflex
vertex w.

Theorem15 Let � bea castablepolyhedron. Theboundingfacesof a cavityof ���p� σk � ,
for anysequenceσk of specialplane-cavities,receivethesamecolor andsign.

Proof: We prove this by inductionon k. Thebasisstepinvolvessweepinga planefrom
a reflex vertex v of � until a new vertex in thecavity is encountered.We show that the

100



facesincidentto v (i.e., facessweptover) will receive thesamecolor andsign. Let d be
a feasibleremoval directionfrom which v is visible. Without lossof generality, we can
assumethateachface f is assignedapositivesignif cone� f � containsd.

Eachextremevertex of thesphericalconvex hull of πv� d � St� v�H� is πv� d � x� for somereflex
edgevx. Considertwo neighbouringextremeverticesπv� d � a� andπv� d � b� . Let Dva and
Dvb be the conesof directionsfor the color groupscontainingthe facesincident to va
andvb, respectively. By Lemma35,Dva 1 Dvb is nonempty. By Lemma36,Dva 1 Dvb is
empty. Thus,thetwo color groupscontainingthefacesincidentto va andvb areeligible
for merging. By applyingthisargumentto everypairof neighbouringextremeverticesof
theconvex hull, we concludethat thefacesincidentto vx for all extremeverticesπv� d � x �
will receive thesamecolor.

Next, we arguethat the facesthatareincidentto reflex edgesbetweenneighbouringex-
tremeverticesπv� d � a� andπv� d � b� will alsoreceive thesamecolor. Theportionof Lk � v�
betweenva andvb projectsto a bayof πv� d � St� v�A� . Let D bethecommonconeof direc-
tionsassociatedwith thefacesincidentto vaandvb.

First, pick out all reflex edgesvx betweenva andvb suchthatcone� vx� doesnot contain
πv� d � a� andπv� d � b� , andneithercone� va� nor cone� vb� containsπv� d � x � . By Lemma37,
D 1 Dx is emptywhereDx is theconeof directionsassociatedwith the facesincidentto
vx. By Lemma35, D 1 Dx is nonempty. Thus, the coloring algorithmwill eventually
assignthesamecolor for facesincidentto va, vb, andall suchreflex edgesvx.

Therearefour kindsof remainingreflex edgesunaccountedfor. Thefirst two kinds in-
clude reflex edgesvx suchthat πv� d � x � lies outsidecone� va�{� cone� vb� , and cone� vx�
containseitherπv� d � a� or πv� d � b� . Theothertwo kinds includereflex edgesvx suchthat
πv� d � x� lies insidecone� va��� cone� vb� .

π (a)v,d π ( )v,d b

π (v,d x)

π (v,d x )1

π (v,d x )2

Figure 7.6: cone� vxk � does not contain πv� d � b�
Supposethatπv� d � x � liesoutsidecone� va�C� cone� vb� andcone� vx� containsπv� d � b� . Then
examinethereflex edgevx1 aftervx. Notethatπv� d � x1 � lies outsidecone� va��� cone� vb� ,
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andcone� vx1 � doesnotcontainπv� d � a� . If cone� vx1 � alsocontainsπv� d � b� , thenweexam-
ine thenext reflex edgevx2 andsoon. Thus,we obtaina sequencevx� vx1 �A�A�A�C� vxk such
thatcone� vxk � doesnot containπv� d � b� in its interior asin Figure7.6. Sothe facesinci-
dentto vxk arein thesamegroupfor vaandvb. By construction,Lemma37 is applicable
to va, vxk } 1, andvxk. Thus,togetherwith Lemma35,weconcludethatthefacesincident
to vxk } 1 will receive thesamecolorasthoseincidentto va. Now, repeattheargumentfor
va, vxk } 2, andvxk } 1, andsoon. Eventually, the facesincidentto vx� vx1 �A�A�A�C� vxk } 1 will
receivethesamecolorasthoseincidentto vaandvb. Similarargumentworksfor thecase
whereπv� d � x� lies outsidecone� va��� cone� vb� andcone� vx� containsπv� d � a� . This takes
careof thefirst two kindsof remainingreflex edges.

Take a successive pair of reflex edgesvy1 andvy2 that we have alreadyput in the same
groupfor va andvb. Note that cone� vy1 � doesnot containπv� d � y2 � andcone� vy2 � does
not containπv� d � y1 � . We canapplythepreviousreasoningto color facesincidentto each
reflex edgevx betweenvy1 andvy2 suchthat πv� d � x� lies outsidecone� vy1 �`� cone� vy2 � .
By repeatingthis overall argument,we will assignthe samecolor to facesincident to
reflex edgesbetweenvaandvbasthoseincidentto vaandvb.

Now, all theedgesbetweena successive pair of reflex edgesvx andvy areconvex. Thus,
if f is a faceincidentto sucha convex edge,thencone� f � containscone� vx��1 cone� vy�
andhencecone� f � containsthe commonconeof directions,sayD, for all reflex edges
betweenva andvb. Thus,D 1 cone� f � is empty. SeeFigure7.7. So if D f is the cone
of directionsassociatedwith f , D 1 D f is alsoemptyasD f v cone� f � . By Lemma35,
D 1 D f is nonemptyandso f will alsoreceive thesamecolor asthosefacesincidentto
vaandvb.

(cone )f

π (v,d

π (v,d

)

)y

x

Figure 7.7: The bold polygonal chain is the projection of the link of v between vx and vy.

Theabove establishesthe basiscaseof the induction. To proceedto the inductionstep,
weneedto associateconesof directionsto thenew facesintroducedafterfilling aspecial
plane-cavity from a reflex or nearly reflex vertex v. Thesenew facesare not original
polyhedronfacesandwe call themartificial faces.Let D bethe intersectionof conesof
directionsassociatedwith (artificial or original) facesincidentto v. We make D thecone
of directionsfor all artificial facesintroducedafterfilling this specialplane-cavity. Then
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in the inductionstep,we will sweepa planefrom a nearlyreflex vertex w to fill another
specialplane-cavity. We canusethe sameargumentfor the basiscaseto show that the
conesof directionsassociatedwith the(artificial or original) facesincidentto w satisfythe
conditionsfor receiving thesamecolor. Sincetheconesof directionsfor artificial faces
arederivedinductively from intersectionof conesof directionsfor original facessweptin
thepast,we concludethat theoriginal facesincidentto w will receive thesamecolor as
otheroriginal facessweptin thepast.

7.4 An implementation for coloring faces

Thefirst phaseof thealgorithmmergescolor groupsat reflex edges.This canbeeasily
donein O � n� time by traversingtheboundaryof � .

In phase2, wemergegroupsG1 andG2 wheneverdcone� G1 �;1 dcone� G2 � consistsof ex-
actly two connectedcomponents.Therearetwo cases:(1) cone� G1 ��1 cone� G2 � 6�br and
cone� G1 ��1 cone� G2 �M�¦r , (2) cone� G1 ��1 cone� G2 �=�Rr andcone� G1 ��1 cone� G2 � 6�¦r .
Recall that the coneof a group is the intersectionof conesfor eachfacein the group.
In case(1), the conditioncould alsobe statedthat thereexists a directionwith positive
projectionon all facenormalsin G1 andG2, andthereis no directionwith positive pro-
jectionon thenormalsin G1 thathasnegativeprojectionon thenormalsin G2. Similarly,
the condition in case(2) could alsobe statedthat thereexists a directionwith positive
projectionon the normalsin G1 that hasnegative projectionon the normalsin G2, and
thereis no directionwith positiveprojectionon all facenormalsin G1 andG2.

To identify a mergeablepair, we build thearrangementof conesandtheir complements
by building anarrangementof then greatcirclesthatcontributeto thecurrentsetof cones
andtheir complements.Two sphericalconvex polygonsA andB representingconeshave
oneof four relationships:eithertheir boundariesintersect,A is insideB, B is insideA,
or they aredisjoint. For a given coneA, all boundaryintersectionscanbe detectedby
walking theboundaryof A in thearrangement.All conesincludingA canbefoundwhile
building the arrangementby determiningwhich conesincludeany chosenvertex of the
boundaryof A. Onceall conesincludingconesareknown, thenthereverserelationship
is alsoknown, andthedisjoint pairsarethosethat remain. If therearepairsthatcanbe
merged,at leastonepair will be identifiedafterO � n2 � steps.Givena mergeablepair, it
is not difficult to mergethemin time O � n2 � . Thus,in O � n3 � time we cancolor all faces.
Sincemuchof theabove computationcanbereusedin subsequentsteps,we suspectthat
this canbeimproved.

Theorem16 Givena castablepolyhedron � of sizen, the coloring algorithm assigns
color and signsto facesof � in O � n3 � time so that facesof the samecolor and sign
belongto samemouldpart. Moreover, boundaryfacesof a cavity of ���p� σk � , for any
sequenceσk of plane-cavities,receivethesamecolor andsign.
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Uponcompletion,the coloring algorithmwill returnseveraldoubleconesof directions,
andany feasiblepairof oppositeremoval directionsbelongsto suchadoublecone.After-
wards,aneminentlypracticalapproachto identify afeasibleremoval directionis to select
a randomsampleof directionsfrom eachconeandtest the feasibility of theseselected
directionsusingtheO � nlogn� -time algorithmof Chapter3

7.5 Fur ther applications to casting

Objectsto be manufacturedmay alsobe non-castable.For example,a cubewith a de-
pressionon eachfaceis not castableusingtwo mould parts. Sucha problemis usually
resolvedby usingside-cores. A side-coreis anadditionalpart.For theexampleof acube
with adepressiononeachface,wecanintroducefour side-coresto occupy thedepression
on eachvertical face.Thetwo mainmouldpartsarein contactwith therestof thecube.
During objectejection,the four side-coresare removed first, and the two main mould
partscanthenberemovedwithoutblockage.

Thereis an alternative way to defineplane-cavities that facilitatesthe handlingof side-
cores. Sweepa planefrom a reflex vertex of � until a saddlevertex (with respectto
the sweepingdirection) is encountered.We call the volume swepta restrictedplane-
cavityof � . Considertheunionof restrictedplane-cavities of � . Our techniquescanbe
carriedover to show thatboundingfacesof a connectedcomponentin theunionmustbe
removedin thesamedirection.Furthermore,our coloringalgorithmwill assignthesame
color andsign to suchboundingfaces.It is naturalto assertthatboundingfacesof one
suchconnectedcomponentshouldbeoccupiedby aside-coreor amainmouldpart.Thus,
this helpsusto identify whereto useside-coresaswell astheir retractiondirections.
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Conc luding remarks

We have studiedtheproblemof determiningwhetherthereis a two-partcastfor a given
objectsuchthat the two castpartscanberemovedwithout collision. We consideredthe
casewherethe removal directionsmustbe opposite,andgave necessaryandsufficient
conditionsunderwhichacastexists.Wealsodevelopedanalgorithmto computethecast
for polyhedralobjects,andthe variantof this algorithmthat we implementedperforms
fairly well in practice.

Wehavealsostudiedtwo variantsof thetwo-partcastproblem:Oneof themis identicalto
thetwo-partcastproblem,exceptthatthecastmachineryhasacertainlevel of uncertainty
in its directionalmovement. In the otherone, two castpartsareto be removed in two
givendirectionsandthesedirectionsneednot beopposite.For bothproblems,we gave
completecharacterizationsunderwhichacastexists,andobtainalgorithmsto verify these
conditionsfor polyhedralparts.

We defineda geometricfeature,the cavity, which facilitatesthe processof analyzing
manufacturability and the automateddesignof a castfor the object. We also provide
algorithmsto extractit from objects.

Thereareseveralinterestingdirectionsfor furtherresearch.

While our implementationperformswell on mediumsizemodels,moreexperimentation
is necessaryto develop a robust, practically useful, efficient heuristic implementation.
Many objectsin reallife arenotpolyhedral,sothealgorithmshouldbeextendedto handle
moregeneralobjectboundaries,suchascubicB-splinepatches.

In Section5.4,we providedanalgorithmto constructa setof all possiblepairsof direc-



tionsin which thegivenpolyhedralobjectis castablein time O � n14 logn� . We considera
4-dimensionalparameterspace,andconstructasetof O � n3 � algebraicsurfaceswhosear-
rangementhascomplexity O � n12 � . CurrentalgorithmtakesO � n2 logn� time for eachcell
in thearrangementto testthecastability. It would bea challengeto exploit thepotential
coherencebetweenneighboringcellsin orderto reducethecomplexity ratherthanpaying
O � n2 logn� percell.

Anotherinterestingissueis to studytheextra possibilitiesthatcoresandinsertsgive.

Finally, it is desirableto maximizethe“flatness”of thepartingsurfacebetweenthe two
castparts.Majhi et al. [37] consideredthis problemfor convex polyhedralobjects.They
proposeda “flatness”measureandgave an O � n2 � time algorithmto find a castthat op-
timizesthis measure,wheren is the numberof vertices. It would be interestingto see
whetherouralgorithmfor computingall directionsof castabilitycanbeadaptedsothatit
reportsthedirectionallowing theflattestpartingsurface.
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[1] P. K. Agarwal andJ.Matoǔsek. Rayshootingandparametricsearch.In Proc.24th
Annu.ACM Sympos.TheoryComput., pages517–526,1992.

[2] H.-K. Ahn, S.-W. Cheng,andO. Cheong.Castingwith skewedejectiondirection.
In Proc. 9th Annu.Internat.Sympos.AlgorithmsComput., volume1533of Lecture
NotesComput.Sci., pages139–148.Springer-Verlag,1998.

[3] H.-K. Ahn, S.-W. Cheng,O. Cheong,and J. Snoeyink. Cavities and castability
ananlysis.Tech.report,Instituteof InformationandComputingSciences,Utrecht
University, 2001.

[4] H.-K. Ahn, S.-W. Cheng,O. Cheong,andJ.Snoeyink. Thereflex-freehull. In Proc.
13thCanadianConferenceonComputationalGeometry, pages9–12,2001.

[5] H.-K. Ahn, S.-W. Cheng,O. Cheong,andJ. Snoeyink. Thereflex-freehull. Tech.
report,Instituteof InformationandComputingSciences,UtrechtUniversity, 2001.

[6] H.-K. Ahn, O. Cheong,andR. vanOostrum. Castingwith directionaluncertainty.
Tech.report,Instituteof InformationandComputingSciences,UtrechtUniversity,
2001.

[7] H.-K. Ahn, M. de Berg, P. Bose, S.-W. Cheng,D. Halperin, J. Matoǔsek, and
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Samenvatting

Bij hetindustrieelvervaardigenvanallerlei gebruiksvoorwerpen,variërendvankookpot-
tentot telefoons,envanmachineszoalslocomotievenenvliegtuigenof onderdelendaar-
van,wordenverschillendetechniekengebruikt.Gietenis daaréénvan,endezetechniek
wordt met nametoegepastwanneerde te maken objectenvan metaalof kunststofzijn.
Het gietprocesbestaatuit tweestappen.Eerstwordt vloeibaarmateriaalin eenuit twee
delenbestaandemal gegoten. Daarna,wanneerhet materiaalgestoldis, wordt één van
detweedelenvandemal verwijderd,waarbijhetobjectwordt meegenomenentenslotte
uit het verwijderdedeel van de mal wordt gehaald. Zowel bij het verwijderenvan de
mal met daarinhet object als bij het uitnemenvan het object uit de mal moet ervoor
gezorgd wordendatnochhetobject,nochdedelenvandemal beschadigdraken,zodat
dekwaliteit vanhetobjectgegarandeerdis endemal opnieuwgebruiktkanworden.Er
zijn verschillendevormenvan het gietproces,ondermeerafhankelijk van de gebruikte
materialen(ijzer, aluminium,polymeren,zink, enzovoorts),deproductievandemal zelf
(metdehandof in massaproductie),endemaniervanvullen vandemal (onderinvloed
vanzwaartekrachtof onderdruk).

Het onderzoeksgebiedvandegeometrischealgoritmenis ontstaanalseenonderdeelvan
de theoretischeinformaticaen heeftzich ontwikkeld tot eenzelfstandigedisciplinedie
zich bezighoudtmet algoritmenen datastructurenvoor geometrischeobjecten. Daarbij
ligt de nadrukop algoritmendie exact zijn en eenasymptotischsnellelooptijd hebben.
Het gebiedheeftzich in deloop dertijd in verschillenderichtingenontwikkeld, enheeft
raakvlakkenmetgebiedenalscomputergraphics,wetenschappelijkevisualisatie,geografis-
cheinformatiesystemen(GIS),geometrischemodelleringencomputer-ondersteundever-
vaardiging(CAD/CAM), robotica,virtual reality, enzovoorts.Degeometrischevraagstukken
uit deverschillendetoepassingsgebiedenvereisenzorgvuldigontwikkeldealgoritmenom
tot goedeenefficiënteoplossingente komen.

Computer-ondersteundontwerp(CAD) is eenvorm van automatiseringdie ontwerpers
ondersteuntbij het vervaardigenvan tekeningen,specificaties,lijsten van onderdelen,
en anderemet het ontwerp-processamenhangendetaken, met behulpvan grafischeen
rekenintensievecomputerprogramma’s.CAD-systemenhebbenhetmakenvaneenindus-
trieelontwerp,deeerstefasein hetontstaanvaneennieuwproduct,aanmerkelijk vereen-



voudigd.Deproductenkunnenvariërenvanprintplaten,machine-onderdelenenmeubels
tot completegebouwen.In alle gevallen is het resulterendeproductte beschouwenals
eengeometrischobject, en het is te verwachtendat zich allerlei vraagstukken van ge-
ometrischeaardvoordoen.

Door de geometrischeaardvan het industrïele gietprocesrijzen er veel geometrische
vraagstukkenbij deautomatiseringervan. CAD-systemenkunneneenonwerpervaneen
onderdeelhelpenom al in deontwerpfasete verifiërenof hetonderdeeldaadwerkelijk te
makenis metbehulpvanhetgietproces,zonderdathetnodigis omvoordieverificatieeen
prototypete maken.Aandebasisvandeverificatieligt eengeometrischbeslissingsprob-
leem: is het mogelijk om eenmal te construerenvoor het te maken onderdeel,zodanig
dat de tweedelenvan de mal verwijderdkunnenwordenzonderschadetoe te brengen
aanhet onderdeelof aanelkaar?De geometrievan het onderdeelspeelt,samenmet de
door het gietprocesopgelegdebeperkingen,en belangrijke rol in het beantwoordenvan
dezevraag.Het zoukunnenzijn dat,wanneerdemal niet zorgvuldig is ontworpen,één
of beidedelenvandemalnietverwijderdkunnenworden.Devraagstukkenwaarwenaar
kijkenhoudenzich hiermeebezig: gegeveneendrie-dimensionaalobject,bestaater een
malwaarvandedelenverwijderdkunnenwordennadathetgegotenobjectis gestold.Een
objectwaarvoor dit hetgeval is noemenwecastable(gietbaar).

In dit proefschriftbestuderenwehetcastabilityproblem(gietbaarheids-vraagstuk)in drie
verschillendemodellenvoor gietenmet gebruikvan eenuit tweedelenbestaandemal.
In heteerstemodelmoetendetweedelenvandemal in tegenovergestelderichting wor-
den verwijderd. We onderscheidentwee gevallen, afhankelijk van het al dan niet van
tevorengespecificeerdzijn van de richting van verwijdering. Het tweedemodel is vri-
jwel identiekaanhet eerste,maarheeftals verschildat er zekerematevan spelingzit
in de richting waarinde delenvan de mal wordenverwijderd. Ook nu maken we weer
het onderscheidtussende gevallen waarinde richting van verwijderingal danniet van
tevorenis opgegeven. In het derdemodelhoeven de richtingenwaarinde delenvan de
malwordenverwijderdniet tegenovergesteldtezijn. Vooralledriedemodellengevenwe
voorwaardenvoor castability, enontwikkelenwe algoritmenom polyhedraleobjectente
testenop hetvoldoenaandezevoorwaarden.

Bepaaldeeigenschappenvan eente vervaardigenobjectkunnenvan invloed zijn op de
analysevandecastablilityervan,enop hetautomatischontwerpenvaneenmal voor het
object. Zo beperkteengat of deukin het oppervlakvan het objectde verzamelingvan
richtingenwaarindedelenvandemal verwijderdkunnenworden.Immers,hetgedeelte
vandemaldatin hetgatof dedeuksteektmoetverwijderdkunnenwordenzonderhetob-
ject te beschadigen.Het herkennenvandergelijke eigenschappenkandezoekruimtevan
richtingenwaarindedelenvandemalverwijderdkunnenwordenaanzienlijkverkleinen,
enopdezemanierhetautomatischontwerpenvaneenmalvereenvoudigen.Wedefinïeren
eengeometrischeeigenschap,de cavity (holte),die gerelateerdis aande castabilityvan
objecten,enwegevenalgoritmenomcavities in objectenteherkennen.
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