
Iterative and parallel methods

for linear systems,
w
ith
a
p
p
lica
tio
n
s
in
circu

it
sim
u
la
tio
n

Wim Bomhof

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Utrecht University Repository

https://core.ac.uk/display/39700279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Iterative and parallel methods for linear systems,
with applications in circuit simulation

Iteratieve en parallelle methoden voor lineaire stelsels,
met toepassingen in circuitsimulatie

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan
de Universiteit Utrecht op gezag van de Rec-
tor Magnificus, Prof.dr. W.H. Gispen, ingevolge
het besluit van het College van Promoties in het
openbaar te verdedigen op woensdag 23 mei 2001
des ochtends te 10.30 uur

door

Christiaan Willem Bomhof

geboren op 1 juli 1969, te Vaassen



Promotor: Prof.dr. H.A. van der Vorst
Faculteit der Wiskunde en Informatica
Universiteit Utrecht

Dit onderzoek maakt deel uit van het ELSIM-project van het Platform HPCN en is een
samenwerkingsverband tussen de Universiteit Utrecht en Philips Research.

Mathematics Subject Classification: 65F10, 65F05, 65F50, 65L10, 65Y05, 94C05.

Bomhof, Christiaan Willem
Iterative and parallel methods for linear systems, with applications in circuit simulation
Proefschrift Universiteit Utrecht – Met een samenvatting in het Nederlands.

ISBN 90-393-2708-4



Contents

1 Introduction 1
1.1 Basic equations in circuit simulation . . . . . . . . . . . . . . . . . . . . 2
1.2 Chapter 2 and 3: linear systems arising in transient analysis . . . . . . . 3

1.2.1 Solving Ax = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Chapter 4: linear systems arising in periodic steady state analysis . . . . 6

1.3.1 Solving periodic steady state matrices . . . . . . . . . . . . . . . . 7
1.4 Chapter 5: linear systems of the form P (B)y = c . . . . . . . . . . . . . 8
1.5 Additional remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A parallel linear system solver 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Properties of circuit matrices . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Outline of the parallel solver . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 The preconditioner for the Schur complement . . . . . . . . . . . . . . . 15
2.5 Switching from direct to iterative . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Finding a suitable block partition . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Pivoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8.1 The preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8.2 Sequential and parallel experiments . . . . . . . . . . . . . . . . . 24

2.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Implementation of a parallel linear system solver 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Parallel block LU factorization . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Parallelization of the solver . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 The partitioning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 A GMRES-type method for p-cyclic matrices 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Existing minimal residual approaches for p-cyclic matrices . . . . . . . . 42

4.2.1 GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 GMRES for a p-cyclic system with a special initial guess . . . . . 44

4.3 p-cyclic GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Orthogonal basis for K̂m . . . . . . . . . . . . . . . . . . . . . . . 48



iv Contents

4.3.2 Computing the approximate solution . . . . . . . . . . . . . . . . 53

4.3.3 The periodic Schur form . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Solving the reduced least-squares problem . . . . . . . . . . . . . . . . . 56

4.4.1 p-cyclic FOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Structured QR factorization . . . . . . . . . . . . . . . . . . . . . 57

4.4.3 Block QR factorization . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.4 Relations between p-cyclic GMRES and p-cyclic FOM . . . . . . . 62

4.5 Convergence analysis for a special case . . . . . . . . . . . . . . . . . . . 64

4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 A linear differential equation: ẏ(t) = Gy(t) + b(t), y(0) = y(T ) . . 69
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Chapter 1

Introduction

Large sparse linear systems
Ax = b , (1.1)

often arise in the simulation of physical and other phenomena. Solving these linear
systems may be expensive in terms of CPU-time. Therefore, it is a good idea to develop
efficient sequential and/or parallel methods for solving (1.1).

In this thesis we focus on numerical methods for solving three types of linear systems
(1.1):

• A mixed direct/iterative parallel method for linear systems arising in transient
analysis of circuits: Chapter 2 and 3.

• A parallelizable iterative method for p-cyclic linear systems, with applications in
periodic steady state analysis of circuits: Chapter 4.

• An iterative method for linear systems of the form P (B)y = c, where P (B) is a
matrix polynomial in B: Chapter 5.

A large part of this thesis deals with linear systems arising in circuit simulation. How-
ever, the methods proposed in this thesis may be useful in other applications as well.

Circuits can be modelled with the differential algebraic equation (DAE)

d

dt
q(x(t)) + j(x(t), t) = 0 , (1.2)

with x ∈ Rn. The DAE character of (1.2) is reflected in the function q. For example,
(1.2) is a DAE, but not an ODE, if n = 2 and q depends only on x1. In Section 1.1
we consider the construction of this DAE briefly. Sections 1.2, 1.3, and 1.4, are an
introduction to Chapter 2/3, Chapter 4, and Chapter 5, respectively.

In transient analysis (1.2) is solved on a certain time interval. The linear systems
arising in transient analysis are derived in Section 1.2. We also give a brief overview of
existing methods for solving these linear systems. In periodic steady state analysis, the
function j in (1.2) is periodic in time t, and a periodic boundary constraint is added
to (1.2). In Section 1.3 we consider the linear systems arising in periodic steady state
analysis. Section 1.4 is an introduction to Chapter 5, where linear systems of the form
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P (B)y = c are considered. These linear systems are not directly related with circuit
simulation, but applications arise in, for example, lattice quantum chromodynamics and
Tikhonov-Phillips regularization [34], and in higher order implicit methods for initial
value problems [37, Ch. 8].

1.1 Basic equations in circuit simulation

Circuits can be modelled with three basic ingredients (see for example [33], [64, Ch. 1]):

• Kirchhoff’s current law (KCL): The algebraic sum of the currents into a node is
zero.

• Kirchhoff’s voltage law (KVL): The algebraic sum of the voltage drops around a
closed loop is zero.

• Branch constitutive equations (BCE): these can be algebraic or differential equa-
tions. For example, a resistor can be modelled by Ohm’s law: i = v/R, and a
linear capacitor can be modelled by i = d

dt
(Cv).

We will illustrate this with an example.

Example We consider the circuit of Figure 1.1.

V (t)

+

−

C R2

R1 va vb

D: IS, VT

Figure 1.1: A simple circuit

This circuit can be modelled with n = 6 circuit unknowns: 4 branch currents IR1 ,
IR2 , ID and IC , and 2 node voltages va and vb. The equations are

• KCL for node a: IR1 = ID .

• KCL for node b: ID = IC + IR2 .

• BCE for resistor R1: IR1 = (V (t) − va)/R1 .
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• BCE for diode D with parameters IS and VT (a simple diode model): ID =
IS(e(va−vb)/VT − 1) .

• BCE for capacitor C: IC = d
dt

(Cvb) .

• BCE for resistor R2: IR2 = vb/R2 .

We have used KVL implicitly by assigning the voltage potentials va and vb to the nodes a
and b, respectively. The above 6 equations form a differential algebraic equation (DAE)
that describes the circuit behaviour. This DAE can be written in the general form (1.2).

�

In general, circuits can be modelled with a DAE of the form (1.2). For example,
resistors, (time dependent) current and voltage sources, and diodes, contribute to the
function j. Capacitors and inductors contribute to the function q. A popular systematic
method for generating this DAE from the KCLs, KVLs, and BCEs is modified nodal
analysis [49], see also [64, Ch. 1], [33]. Other methods may lead to DAEs of larger or
smaller dimension. The numerical properties, such as the index of the DAE, may also
depend on the chosen modelling technique.

1.2 Chapter 2 and 3: linear systems arising in tran-

sient analysis

In transient analysis the DAE

d

dt
q(x(t)) + j(x(t), t) = 0 ∈ R

n , (1.3a)

x(0) = x0 , (1.3b)

is solved for 0 < t ≤ T . We assume that the DAE has consistent initial conditions.
One (simple) method for solving (1.3) numerically is the backward Euler method.

This method approximates the derivative of q(x(t)) with a finite difference:

q(xk) − q(xk−1)
tk − tk−1

+ j(xk, tk) = 0 , k ≥ 1 , (1.4)

here xk is an approximation to x(tk) and t0 = 0 < . . . < tk−1 < tk < . . . ≤ T . The
algebraic equation (1.4) is not necessarily linear. Newton’s method can be used to solve
xk from (1.4). Then for each Newton iteration a linear system of the form

Ax
(i)
k = b(i) , (1.5)

has to be solved, where A is the Jacobian associated with (1.4):

A =
α0
h
C +G , with C =

∂q

∂x

∣∣∣∣
x=x

(i−1)
k

, G =
∂j

∂x

∣∣∣∣
x=x

(i−1)
k , t=tk

, (1.6)
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α0 = 1, and h = tk − tk−1. The backward Euler scheme of (1.4) uses a first order
approximation for the derivative d

dt
q(x). Higher order schemes can be used as well; for

instance
d

dt
q(xk) ≈

∑m
i=0 αiq(xk−i)

tk − tk−1
,

with parameters αi andm < 7. This leads to the so called BDF (backward differentiation
formula) methods. Variable order BDF methods with variable step sizes are often used
in practice in transient analysis of circuits. The linear systems arising in BDF methods
have a structure similar as (1.5), with (1.6), but with a different value of α0. Numerical
problems may arise in the BDF method if the DAE (1.3) is of higher index, see [15,
Ch. 3].

A forward Euler scheme for (1.3) is obtained by replacing j(xk, tk) by j(xk−1, tk−1) in
(1.4). However, in this case the Jacobian A = C/h, is likely to be singular. Therefore,
forward Euler and also other explicit schemes are not suitable for (1.3).

The matrices G and C can be computed by using stamps. Each circuit element, for
example resistor, inductor, and voltage source, has a stamp associated with it. These
stamps describe the contribution of the element to the G and/or C matrices. A stamp
adds nonzeros to G and/or C at specific positions when the circuit element is processed.
This process leads to sparse matrices G and C. The matrix A has some nice properties
if j and q are computed with modified nodal analysis:

• A is symmetric if it contains only non-controlled elements [52, Sect. 4.4].

• A is symmetric positive semidefinite if it contains only non-controlled capacitors,
resistors or current sources [52, Sect. 4.4].

• The average number of nonzeros per row of A is often small, say less than 15; see
Section 2.2.

Controlled elements are elements whose parameters depend on other circuit variables
that do not belong directly to that element, for example: a current source with a current
defined by a voltage difference somewhere else in the circuit. These elements are used
frequently to model transistors. General circuits lead to unsymmetric and indefinite A,
but the nonzero pattern is often rather close to symmetric. In general, the matrix A is
not diagonally dominant, although many rows and columns may have a relatively large
diagonal entry. Therefore, some form of pivoting is necessary if Gaussian elimination is
used for the solution of (1.5).

1.2.1 Solving Ax = b

Traditionally, the linear systems (1.5) arising in transient analysis of circuits are solved
by sparse Gaussian elimination, see for example [57]. This approach is usually rather
efficient because the amount of fill-in in the LU factorization is often small for these
problems if a suitable ordering is applied to the linear system. This can be, for example,
the minimum degree [62] ordering applied to A+AT . State-of-the-art sparse LU meth-
ods, such as SuperLU [22] and UMFPACK [19], often work with dense submatrices in
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order to enable the use of efficient BLAS 2 and BLAS 3 routines. This does not seem
to be very useful for circuit simulation matrices, because the L and U factors of A are
usually too sparse to benefit from this approach, see Section 2.8.2.

Iterative methods for Ax = b are not very popular in circuit simulation. These
methods are usually more expensive than direct methods in terms of CPU-time, because
it is difficult to identify effective preconditioners for Ax = b, see [8], [65]. However,
recent results [59] indicate that ILU-type preconditioned Krylov subspace methods may
be cheaper than direct sparse methods in terms of floating-point operations.

Existing parallel LU codes do not perform well for circuit simulation matrices, see
Section 2.1. In Chapter 2 we will propose a fast sequential and efficiently parallelizable
solver for (1.5). This is done by a tailored combination of sparse direct and precondi-
tioned iterative techniques.

The parallel solver presented in Chapter 2 assumes that (1.5) has the following form:
A00 0 0 A0m

0
. . . 0

...
0 0 Am−1m−1

...
Am0 . . . . . . Amm



x0...
...
xm

 =


b0...
...
bm

 . (1.7)

This form can always be realized by permuting the rows and columns of A in (1.5).
Block Gaussian elimination of x0, . . . , xm−1 in (1.7) leads to a relatively small, and
relatively dense, reduced system

Sxm = ym , (1.8)

with the Schur complement S = Amm−
∑m−1
i=0 AmiA

−1
ii Aim. The unknowns x0, . . . , xm−1

can be computed efficiently with a backward solve, after xm has been solved from (1.8).
The entire process is efficiently parallelizable, except for the solution of the reduced
system (1.8). Solving the reduced system (1.8) with direct elimination may cost up to
80 percent of the total flops for solving (1.7), for the linear systems that we consider
in Section 2.2. However, the Schur complement is often too small for an efficient par-
allelization of a direct LU method. Therefore, the Schur complement forms a potential
bottleneck for parallel computation.

In Chapter 2 the reduced system (1.8) is solved with preconditioned GMRES [76].
This iterative approach is only efficient if a suitable preconditioner is used. We propose
to construct a preconditioner K by discarding entries of S that are relatively small with
respect to the diagonal entries. The number of nonzeros of such a preconditioner K
may be more than 10 times less than the number of nonzeros of S. This preconditioner
is used to transform (1.8) into the preconditioned linear system

K−1Sxm = K−1ym .

The preconditioned matrix K−1S usually has a nice clustering of eigenvalues, which
results in fast GMRES convergence. The most expensive part of preconditioned GMRES
is the well parallelizable matrix-vector product with S. Also matrix-vector products of
the form K−1v have to be computed in preconditioned GMRES This can be done in
a relatively inexpensive way by a direct LU approach. Numerical experiments show
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that the iterative approach for the Schur complement leads to a fast sequential and well
parallelizable method.

The costs for constructing the linear systems (1.5), in transient analysis of circuits,
are not negligible compared with solving these linear systems. For some circuits it may
be even more expensive to construct the linear systems than to solve them. Therefore,
the construction of the linear systems (1.5) should also be parallelized for an efficient
parallel circuit simulator. The construction is relatively easy to parallelize. We will not
consider this further in this thesis.

In Chapter 3 we discuss a number of implementation issues related to the parallel
solver of Chapter 2.

1.3 Chapter 4: linear systems arising in periodic

steady state analysis

A circuit driven by periodic sources, each with the same period T , will usually converge
to a periodic steady state. This periodic steady state is the solution of the DAE (1.3a),
with a periodic boundary constraint:

d

dt
q(x(t)) + j(x(t), t) = 0 ∈ R

n , (1.9a)

x(0) = x(T ) . (1.9b)

We make the following assumptions on (1.9): j(x, t+T ) = j(x, t) for all t, the period T is
not an unknown, and all explicitly time dependent coefficients and sources are periodic
with period T . These assumptions will exclude free running oscillators.

In principle, (1.9) can be solved by transient analysis on a long time interval, because
transient analysis will usually converge to a periodic solution x(t). However, for some
circuits this convergence may be rather slow; it may take more than, say, 1000 periods.
This leads to an excessive amount of CPU-time for the simulation process. Therefore, it
may be more efficient to solve the periodic problem (1.9) with a method that exploits the
periodic structure. This can be done with, for example, the (multiple) shooting method
or the finite difference method, see [7], [52, Ch. 7], [83], [84]. Here we will describe the
finite difference method based on backward Euler.

The periodic DAE (1.9) is discretized on the discrete time points

t0 = 0 < t1 < . . . < tM−1 < tM = T ,

with backward Euler. With xk ≈ x(tk), a system of nM algebraic equations is obtained:

q(xk) − q(xk−̃1)
tk − tk−1

+ j(xk, tk) = 0 , k = 1, . . . ,M , (1.10)

with

k−̃1 ≡
{
k − 1 , if k = 2, . . . ,M ,
M , if k = 1 .
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In (1.10) we have used the periodic boundary constraint (1.9b). Therefore x0 arises not
explicitly in (1.10). The system (1.10) can be solved with Newton’s method. This leads
to a block linear system of the form:

C1

h1
+G1 0 0 −αCM

h1

−C1

h2

C2

h2
+G2 0 0

0
. . .

. . . 0

0 0 −CM−1

hM

CM

hM
+GM



x
(i)
1...
...

x
(i)
M

 =


c
(i)
1...
...

c
(i)
M

 , (1.11)

with

Ck =
∂q

∂x

∣∣∣∣
x=x

(i−1)
k

, Gk =
∂j

∂x

∣∣∣∣
x=x

(i−1)
k , t=tk

,

α = 1, hk = tk − tk−1, and an obvious right-hand side. Similar to transient analysis, the
C and G matrices appear again, see Section 1.2. The linear systems arising in multiple
shooting methods have a similar structure as (1.11), although with a smaller M .

A discretization based on the θ-method [46, Sect. II.7] is also possible. Then j(xk, tk)
in (1.9) is replaced by θj(xk, tk) + (1 − θ)j(xk−1, tk−1). For θ = 1 this is equivalent to
backward Euler. The choice θ = 0.5 is equivalent to the trapezoidal rule. This choice is
not practical, because it can be shown that it leads to a singular system (1.11), if M is
even, C and G are constant, the step size is constant, and if C is singular. In principle,
higher order BDF schemes can be used to discretize d

dt
q(x(t)), but this leads to more

nonzero blocks in (1.11), making the solution method more expensive.

Another application of linear systems of the form (1.11) arises in periodic AC anal-
ysis. In periodic AC analysis the effect of a small noise source on the behaviour of the
circuit is studied. We will now briefly discuss the linear systems arising in periodic AC
analysis; we refer to [85] for more details. The noise source may be modelled with a
perturbation s(t) applied to the DAE (1.9a):

d

dt
q(x(t)) + j(x(t), t) + s(t) = 0 . (1.12)

The noise function s(t) is of the form s(t) = Ue2πifnt, with i =
√
−1, and a constant

vector U ∈ Rn. Usually one is interested in the behaviour of the circuit for several noise
frequencies fn. The solution of (1.12) can be written as x = xpss + xn, where xpss is the
periodic steady state solution of (1.9). Linearizing (1.12) around xpss leads to a linear
DAE for xn. Backward Euler discretization of this DAE results in a linear system of
the form (1.11), with α = e−2πifnT . Periodic AC analysis leads to a multiple right-hand
side problem, because (1.9a) has often to be solved for several noise frequencies fn.

1.3.1 Solving periodic steady state matrices

Direct methods for the solution of (1.11) are considered in, for example, [4] and [7].
Usually these methods are rather expensive: O(n3M) flops if the sparsity of Ck and Gk
is not exploited. Iterative methods may be much more efficient than direct methods,
even when the direct method exploits the sparsity of Ck and Gk, see Section 4.10.
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Our iterative approach of Chapter 4 is based on a reduction of (1.11) to a smaller
p-cyclic linear system

I 0 0 −B1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I



x̂1...
...
x̂p

 =


b̂1...
...

b̂p

 , (1.13)

with p ≤M . This reduced system can be obtained from (1.11) by block diagonal scaling
followed by block Gaussian elimination. Existing iterative methods for p-cyclic linear
systems are not efficient or not efficiently parallelizable, see Section 4.2. Our p-cyclic
GMRES method is often slightly more expensive than existing methods, but in contrast
to these methods the method is efficiently parallelizable on p processors, even if the
p-cyclic matrix has a rather small block size.

The idea behind p-cyclic GMRES is to build p independent search spaces with x̂i ∈
K(m)
i , i = 1, . . . , p (which are not Krylov subspaces in general). The residual norm of

(1.13) is minimized over these search spaces.

1.4 Chapter 5: linear systems of the form P (B)y = c

In Chapter 5 we propose a new iterative approach for solving linear systems of the form

P (B)y = c , (1.14)

where P (B) is a polynomial in B. Applications of P (B)y = c arise in, for example,
lattice quantum chromodynamics and Tikhonov-Phillips regularization [34]. Another
application of P (B)y = c arises in higher order implicit methods for initial value prob-
lems [37, Ch. 8]. Equation (1.14) is not directly related to circuit simulation. We
consider it here because we found that it can be solved by similar techniques as used in
Chapter 4.

In several existing approaches for (1.14), see for example [24], [34], and [88], the
approximate solution y(m) of (1.14) is selected from the Krylov subspace

Km(B, c) = span(c, Bc, . . . , Bm−1c) .

The approximate solution y(m) is chosen such that the residual r(m) = c− P (B)y(m), is
small in some sense. In [24], [88], this is achieved by taking (using Matlab notation)

y(m) = ‖c‖V (m)
∗ P (H(m)

∗ (1:m, 1:m))−1e1 .

Here the Hessenberg matrix H
(m)
∗ and the matrix V

(m)
∗ are defined by the standard

Arnoldi reduction

BV (m)
∗ = V (m+1)

∗ H(m)
∗ ,

associated with the Krylov subspace Km(B, c), see for example [73, Ch. 6].



1.5. Additional remarks 9

Our method for (1.14) is based on an augmented block linear system for (1.14).
Without loss of generality we assume that the matrix polynomial of degree p can be
written as

P (B) = (B + µpI) · . . . · (B + µ1I) + ρI .

The augmented block linear system is defined by
I 0 0 B + µ1I

−(B + µ2I)
. . . 0 0

0
. . . I 0

0 0 −(B + µpI) ρI



x1
x2...
xp

 =


0
...
0
c

 , (1.15)

Block Gaussian elimination of x1, . . . , xp−1 in (1.15) leads to P (B)xp = c, hence xp = y,
and we can focus on solving (1.15) instead of P (B)y = c. The idea of the methods
proposed in Chapter 5 is to take xi ∈ Km(B, c), i = 1, . . . , m, where each xi is chosen
such that the residual norm of (1.15) is minimized. This idea leads to a method called
P (GMRES) for general matrices B, and a method P (MINRES) for the symmetric case.
For P (B) = B these methods reduce to the well known methods GMRES [76] and
MINRES [68]. In comparison with existing methods, the new approach may lead to a
smaller residual norm ‖r(m)‖ = ‖c − P (B)y(m)‖, for the same number of iterations m,
for p > 1. In Chapter 5 this new approach is compared with existing Krylov subspace
methods for P (B)y = c, and the advantages and disadvantages are illustrated with a
few examples.

1.5 Additional remarks

Chapter 2 has been published in an almost identical form as:

C.W. Bomhof, H.A. van der Vorst, A parallel linear system solver for circuit
simulation problems. Numer. Linear Algebra Appl. 7 (2000), pp. 649-665.1

A small part of Chapter 4 appears in the paper:

W. Bomhof, H.A. van der Vorst, A parallelizable GMRES-type method for
p-cyclic matrices, with applications in circuit simulation. To appear in the
proceedings of the SCEE-2000 Workshop, August 20-23, 2000, Warnemünde.

Unless stated otherwise, ‖ · ‖ denotes in this thesis the 2-norm of a matrix or
vector, although some (in)equalities may be valid for other norms as well. The Matlab

colon notation is used frequently to refer to matrix entries. For example A(3, 4 : 6) =
[a34 a35 a36].

1Copyright c© 2000 John Wiley & Sons Limited.





Chapter 2

A parallel linear system solver for
circuit simulation problems

Abstract: In this chapter we present a parallel mixed direct/iterative method
for solving linear systems Ax = b arising from circuit simulation. The systems
are solved by a block LU factorization with an iterative method for the Schur
complement. The Schur complement is usually a relatively small and rather dense
matrix. Nevertheless, direct LU decomposition of the Schur complement takes too
much time in order to achieve reasonable speedup results. Our iterative method for
the Schur complement is often much faster than the direct LU approach. Moreover,
the iterative method is better parallelizable. This results in a fast sequential and
well parallelizable method.

Keywords: preconditioner, parallel iterative method, mixed direct/iterative
method, sparse LU factorization, circuit simulation, iterative solution methods,
Schur complement, GMRES

AMS subject classifications: 65F10, 65F05, 65F50, 65Y05, 94C05

2.1 Introduction

In circuit simulation, often a series of linear systems has to be solved. For example, in
transient analysis, a DAE leads in each time-step to a system of nonlinear equations,
usually solved with the Newton method. For a single Newton step a linear system

Ax = b (2.1)

has to be solved. Most circuit simulators handle this problem using an LU factorization
of A.

Iterative methods for linear systems have been less effective in circuit simulation.
McQuain et al. [65] did experiments with several variants of ILU in combination with
GMRES, BiCGSTAB and other methods. They conclude that none of these iterative
methods have acceptable performance for circuit simulation problems. Efficient parallel
ILU-schemes have been developed recently by, for instance, Hysom and Pothen [53],



12 Chapter 2. A parallel linear system solver

and Karypis and Kumar [56]. Our purpose is to find iterative or hybrid approaches
that compete with direct methods on sequential machines, and that are parallelizable.
Recently, the gap between iterative and direct methods has been narrowed for circuit
simulation problems, for instance by Lengowski [59]. She has successfully used CGS
with an incomplete LU drop tolerance preconditioner. In this approach, very small
drop tolerances and only a few CGS steps are used. Compared to the LU approach
this saves up to about 50 percent floating-point operations (flops). Nguyen1 has used a
block Gauss-Seidel method with a dynamic partitioning. This works well, but only for
some types of circuit simulation problems. Unpreconditioned Krylov methods converge
too slowly in practice.

Existing parallel LU codes do not perform well for circuit simulation matrices. Our
experiments with the shared memory SuperLU code by Demmel et al. [21] showed
no speedup for relevant circuit simulation test problems (the matrices of Section 2.2).
SuperLU uses the column elimination tree of A for coarse grain parallelization. The
column elimination tree of A is the elimination tree of ATA, and for circuit matrices
ATA is often a nearly dense matrix. In that case, the column elimination tree is almost
a single chain and then parallelization on a coarse grain level is not successful. On a fine
grain level, SuperLU parallelizes the computations by pipelining the computations of
the dependent columns. This introduces some parallel overhead, and the poor speedup
indicates that this overhead is too large.

The undocumented sparse LU code PSLDU of Rothberg [72], an SGI product, only
available on SGI platforms, is also not very suitable for circuit simulation matrices.
This code allows no pivoting (shared memory SuperLU has partial pivoting), in order
to make parallelization easier. However, this is not really effective, the speedup results
were unsatisfactory for our test matrices. Also, for our problems, some form of pivoting
is necessary for numerical stability. In the experiments with PSLDU, we preordered A
with a suitable row permutation in order to avoid too small pivots on the diagonal. This
is not very realistic, because in practice a suitable permutation can only be determined
during the LU factorization. However, we were mainly interested in the maximum
attainable speedup for PSLDU.

Recently, progress on parallel sparse LU methods for distributed memory machines
has been made by Li and Demmel [60], by Jiang et al. [54], and by Amestoy et al. [2],
[3]. Li and Demmel use static pivoting instead of partial pivoting in their SuperLU code.
This makes the sparse LU factorization more scalable on distributed memory machines.
The S+ code of Jiang et al. starts with a static symbolic factorization to predict the
nonzero patterns of L and U . In the second step this symbolic factorization is used in
order to make a scalable numerical factorization. For circuit simulation matrices this
approach is not very successful, see our Section 2.8.2. The MUMPS code, developed by
Amestoy et al., uses an asynchronous multifrontal approach with dynamic scheduling of
the computing tasks.

In this chapter, we will propose a block LU factorization with an iterative method
for the Schur complement to solve linear systems Ax = b. An outline of the method
is given in Section 2.3. The preconditioner for the Schur complement is described in

1Personal communication with T.P. Nguyen (Philips Electronics, Eindhoven)
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Section 2.4. In the sequential case there is some freedom in choosing the number of
unknowns for the iterative part of the method. With a suitable choice it is possible
to optimize the method, see Section 2.5. Section 2.6 describes an algorithm to find a
suitable parallel block partition of the matrix. Possible pivot problems are discussed in
Section 2.7. The last section of this chapter describes the numerical experiments.

2.2 Properties of circuit matrices

Matrices from circuit simulation are usually very sparse, e.g. the average number of
nonzeros per row is usually smaller than 15. The nonzero pattern is often nearly sym-
metric. Table 2.1 shows some characteristics of our test matrices, arising from actual
circuit simulation. The matrices are taken at some Newton step during a transient
simulation of a circuit. Modified nodal analysis [49], [64, Ch. 1] was used to model the
circuits. The sparse tableau analysis method [64] for modelling circuits might lead to
matrices that are less suitable for our method.

problem n nnz(A) h flops nnz(L+
×103 ×106 U)× 103

circuit 1 2624 36 131 0.86 41
circuit 2 4510 21 95 0.51 32
circuit 3 12127 48 85 0.54 68
circuit 4 80209 308 308 15.28 461

Table 2.1: Characteristics of test matrices. The dimension of the problem is
n. nnz(A) is the number of nonzeros of A. flops is the number of Matlab

flops for [L,U ] = lu(A, 0.001) and x = U\(L\b). h is the height of the
elimination tree of A + AT (assume no exact numerical cancellation). The
matrices are available from: http://www.math.uu.nl/people/bomhof/.

We will assume that the matrix A already has a fill reducing ordering. The minimum
degree ordering [62] of A + AT is a good ordering for circuit matrices that do not
already have a fill reducing ordering. The minimum degree ordering Q should be applied
symmetrically to A, that is, the permuted matrix is QTAQ. Several other ordering
heuristics for circuit matrices are considered in [71]. There it is shown that a good
(minimum local fill type) ordering heuristic may on average save 30 percent of the
floating-point operations for an LU factorization, in comparison with the minimum
degree ordering. Our approach for solving Ax = b, to be presented in the next sections,
may also benefit from these orderings.

The diagonal pivot is not always a suitable pivot in the LU factorization, and partial
pivoting is necessary for numerical stability. In practice threshold pivoting [25, Sect. 7.8]
with very small thresholds, say 0.001, works fine (see also Section 2.8 and [57]).

Our test problems are rather small. Solving the largest problem takes only a few
seconds on an average workstation. Nevertheless, even for these problems a parallel
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solver is useful because one may have to solve thousands of these systems for one circuit
simulation.

The amount of fill-in in LU factorization is usually very small for circuit simulation
problems. For our test problems nnz(L+U) < 1.6nnz(A), where nnz(A) is the number of
nonzeros of A. Furthermore, the number of floating-point operations per nonzero entry
is small (between 11 and 50). This implies that an iterative method is only cheaper than
a direct method, when the number of iterations is small. Note that one matrix-vector
product costs 2nnz(A) flops, so the third and the fifth column indicate how much room
there is for an iterative method. The height h of the elimination tree gives a rough
indication of the possibilities for parallel elimination of unknowns, see Section 2.6.

2.3 Outline of the parallel solver

The parallel algorithm is based on a doubly bordered block diagonal matrix partition:

Â = P TAP =



A00 0 . . . 0 A0m

0 A11
. . .

... A1m
...

. . .
. . . 0

...

0 . . . 0 Am−1m−1
...

Am0 Am1 . . . . . . Amm

 , (2.2)

where P is a permutation matrix. The block matrix partition (2.2) may also arise in
domain decomposition methods. The permuted linear system is Âx̂ = b̂, with x̂ = P Tx
and b̂ = P T b. For circuit matrices often nm ≡ size(Amm) ≤ n/20, where n is the
dimension of the linear system Ax = b. The matrix Â is suitable for the parallel block
LU linear solver with m processors, presented in Algorithm 2.1.

This is a coarse grained parallel algorithm, which means that the negative influence
of parallel overhead on the speedup will be relatively small. As a part of the system
solve one has to solve the reduced system

Sxm = ym ,

with the Schur complement S. This has to be solved as fast as possible in order to
achieve a reasonable speedup. Solving Sxm = ym directly may cost up to 80 percent
of the total flops for solving Ax = b. So, the Schur complement forms a bottleneck for
parallel computation.

A dense direct (parallelizable) method for the Schur complement may be of interest,
because S is rather dense and the Mflop rates for dense methods are much higher than for
sparse direct methods. In the sequential case (m = 1), this would lead to a method more
or less similar to the (sequential) unsymmetric LU method MA48 [26] of Duff and Reid.
This direct method switches from sparse to dense if the density of the reduced matrix
is more than, say, 50 percent. Our preconditioned iterative method, to be presented in
the next section, usually needs much less flops than the 2/3n3m flops for a direct LU
method. This leads to a fast iterative solver for the Schur complement, although the
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Algorithm 2.1: The parallel linear solver

parallel for i = 0 : m− 1,
Decompose Aii: LiiUii = PiiAii
Lmi = AmiUii

−1

Uim = Lii
−1PiiAim

yi = Lii
−1Piibi

S(i) = LmiUim
z(i) = Lmiyi

end

S = Amm −
∑m−1
i=0 S

(i)

ym = bm −
∑m−1
i=0 z

(i)

Solve parallel: Sxm = ym
parallel for i = 0 : m− 1,
xi = Uii

−1(yi − Uimxm)
end

Mflop rate is low. The most expensive part of the iterative method, the matrix-vector
product, is also well parallelizable.

A nice property of Algorithm 2.1 is that in exact arithmetic the residual norm of
Ax = b is equal to the residual norm of Sxm = ym, if Sxm = ym is solved iteratively
and xi = Uii

−1(yi − Uimxm). This is easy to show.
In Section 2.6 we describe how to identify a permutation matrix P , which permutes

the matrix A into the block form (2.2). Note that a circuit simulator can use the same
permutation for P each Newton step because the sparsity pattern of A does not change.
So, the costs of constructing a suitable P can be amortized over the Newton steps.

2.4 The preconditioner for the Schur complement

Unpreconditioned iterative methods for solving the reduced system Sxm = ym converge
slowly for circuit simulation problems. Preconditioning is a prerequisite for such prob-
lems, but it is difficult to identify effective preconditioners for the Schur complement
S. The diagonal elements of S are often relatively large, but zeros on the diagonal may
occur, so that simple diagonal scaling is not robust. The ratio of the smallest and the
largest eigenvalues of S may be large, 106 or more, and S is likely to be indefinite, that
is, it has both eigenvalues with positive and negative real part. This makes the problem
relatively difficult for iterative solution methods.

Our preconditioner C is based on discarding small elements of the (explicitly com-
puted) Schur complement S. The elements that are larger than a relative threshold
define the preconditioner:

cij =

{
sij if |sij| > t|sii| or |sij| > t|sjj|
0 elsewhere,

(2.3)
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t is a parameter: 0 ≤ t < 1. t = 0.02 is often a good choice. Note that the preconditioner
C will be symmetric if S is symmetric. The number of nonzeros of C can be much
smaller than the number of nonzeros of S, see Figures 2.1 and 2.2. Construction of the
preconditioner C costs only 3nnz(S) flops and is easy to parallelize.

0 100 200 300

0

100

200

300

Figure 2.1: Nonzero pattern of a Schur complement S of problem circuit 4,
nnz(S) = 26675, nm = size(S) = 346.

For the preconditioner action, it is necessary to solve systems of the form Cz =
r. These systems can be solved efficiently by sparse direct techniques. A sparse LU
decomposition of C will be too expensive, because of a large amount of fill-in. However,
the amount of fill-in will be small after reordering the matrix with the minimum degree
algorithm [62]. For example, the matrix of Figure 2.2 has 1181 nonzeros and the sparse
LU factorization of the reordered matrix has 1206 nonzeros, a fill-in of only 25 elements.

The minimum degree algorithm defines a permutation matrix P , so that we actually
deal with D:

D = P TCP .

The sparse LU factorization is performed with partial pivoting. This leads again to a
permutation matrix, Q:

LU = QD = QP TCP or C = PQTLUP T .

Solving the system Cz = r is straight forward.
Other orderings P for the preconditioner C are possible as well. For example Mat-

lab’s colperm permutation is a very effective ordering for circuit simulation problems.
In this ordering the number of nonzeros per column of D is nondecreasing. This order-
ing is very cheap to generate, because we only have to sort the number of nonzeros per
column. This can be done in only O(nm) (nm ≡ size(S)) operations, which is impor-
tant because the ordering algorithm is part of the sequential bottleneck of the parallel
program. This colperm ordering sometimes gives poor results for non-circuit simula-
tion problems. For instance, for discretized PDE problems the reverse Chuthill Mckee
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Figure 2.2: Left: nonzero pattern of the preconditioner C of the S from
Figure 2.1, with t = 0.02, nnz(C) = 1181. Right: Matrix D, this is C after
the minimum degree ordering.

ordering [41] turns out to be a successful alternative ordering for C (as became evident
from our numerical experiments, not reported here).

In Section 2.8, we show that this preconditioner is very effective. The convergence of
GMRES [76] is not sensitive to the threshold parameter t. The matrix-vector product
Sv is the most expensive part of the GMRES process. For sufficiently large S, it is
sensible to parallelize this matrix-vector product in order to increase the scalability of
the parallel solver.

For the comparison of the direct and the iterative approach for solving Sxm = ym,
we will treat S as a dense matrix. Solving the system with a dense direct LU solver costs
≈ 2/3nm

3 flops. Now, assume that after kG GMRES steps the residual is sufficiently
small and assume that the matrix-vector product flops of the GMRES process are the
CPU-determining costs. Then the GMRES process costs kG · 2nm

2 flops. Under these
assumptions, the iterative approach is cheaper from about nm > 3kG. In terms of
CPU-time this may be different, because the direct flops are likely to be faster than the
iterative flops.

2.5 Switching from direct to iterative

In this section we will propose a criterion for the switch from the direct to the iterative
part. With this criterion we try to minimize the computational costs of the method.

Solving Sxm = ym with a preconditioned iterative method is much more efficient
than with a direct method if S is relatively small (but not too small) and dense. The
iterative method performs badly, compared with the sparse direct method, if S is large
and sparse. Therefore, at some stage of the sparse LU factorization of A, it is more
efficient to switch to the iterative approach. In the following we will try to find a criterion
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for this. In deriving this criterion we will not try to be very precise, since only orders
of magnitude matter. The aim of the derivation is mainly to give some insight in the
differences in costs of the direct and the iterative part of the method. We also want to
show that we have a reasonable criterion to choose between direct and iterative.

Now, suppose that there are k+1 unknowns left at a stage of the Gaussian elimination
(GE) process, so the right lower submatrix in the GE process is an (k + 1) × (k + 1)
matrix T :

T =

[
c dT

e V

]
,

with V an k × k matrix. We will assume that d and e have the same sparsity pattern,
because the sparsity pattern of A is nearly symmetric. So this is a reasonable approxi-
mation. T is a Schur complement and we can take it for system Sxm = ym, to be solved
with an iterative solver. The costs of kG matrix-vector products Sw are approximately

kG ( 4 nnz(e) + 2 nnz(V ) ) flops. (2.4)

We can also decide to perform one more Gaussian elimination step. Then the Schur
complement becomes

S = V − (1/c) edT ,

and kG matrix-vector products plus the Gaussian elimination cost approximately

2 kG nnz(V ) + 2 nnz(e)2 flops , (2.5)

if we assume that edT introduces no extra fill-in in V . The amount in (2.4) is smaller
than in (2.5) if

nnz(e) > 2 kG . (2.6)

This is a motivation to use the number of nonzeros as a criterion for the choice be-
tween the direct and the iterative approach. However, we do not know kG in advance.
Moreover, we have neglected some numbers of flops, that are different for the k and
k + 1 case. For example, the flops for constructing the preconditioner, O(nnz(e)) flops
in (2.5), the flops for the αx + y and xTy operations in GMRES and the flops for the
forward and the backward solve of the preconditioner. Note also that the number of
GMRES steps kG, required to reach a sufficiently small residual, increases slowly with
increasing k. We conclude that criterion (2.6) is of limited use in practice. We use the
criterion nnz(e) > q, with a guessed parameter q instead of 2kG. For the circuit simu-
lation test problems q = 40 turns out to work well. Both CPU-time and the number of
flops to solve the system Ax = b are small for this q, see Section 2.8. The results are
not sensitive to q.

The direct/iterative partition of the unknowns can be made before the actual block
LU factorization takes place. It is based on the symbolic Cholesky factor LC of A+AT .
In the algorithm ci is used for the number the number of nonzeros in column i of LC :

ci = nnz(LC(:, i)) . (2.7)

The nonzero structures of the L and U factors of LU = A (without pivoting) are related
to the nonzero structure of LC : struct(L) ⊆ struct(LC) and struct(U) ⊆ struct(LC

T ).
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The equal sign holds if struct(A) = struct(AT ). The nonzero pattern of A is nearly
symmetric for circuit simulation matrices.

Algorithm 2.2 is the direct/iterative partitioning algorithm.

Algorithm 2.2: Direct/iterative partitioning

input: matrix A, parameter q
output: boolean vector direct

[LC , parent ] = symbolic Cholesky(A+ AT )
direct(1 : n) = true
direct(root) = false
for i = 1 : n

if (ci ≥ q)
j = i
while (direct(j) = true)

direct(j) = false
j = parent(j)

end
end

end

The vector parent is a side product of the symbolic Cholesky algorithm. parent(i) is
the parent of i in the elimination tree of A+AT . direct(i) = false means that unknown
i will be solved iteratively. Once the algorithm marks an unknown i ‘iterative’, all its
ancestors are marked ‘iterative’.

In the parallel case, one has to choose S at least so large that a load balanced
distribution of the parallel tasks is possible, see next section.

2.6 Finding a suitable block partition

In this section we describe briefly how a permutation matrix P , which permutes the
matrix A into form (2.2), can be found. We do not claim that our method to find P is
the best one, but our approach is simple and works well, which is shown by the parallel
experiments of Section 2.8.2.

We use the elimination tree of A + AT and the direct/iterative partition proposed
in Section 2.5, to determine the permutation matrix P . The elimination tree breaks up
into many (one or more) subtrees if we remove the unknowns of the Schur complement
in the elimination tree. These subtrees are independent of each other in the Gaussian
elimination process, see [61]. Grouping the subtrees in m groups (m is the number of
processors), with approximately equal weights, gives the block matrix partition (2.2). A
load balanced partition will not be possible if there are too large subtrees. In that case,
one can easily split these subtrees into smaller ones, by moving more unknowns to the
Schur complement. For some problems this results in a large Schur complement which
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leads to modest parallel speed ups. With a small height h of the elimination tree it is
usually possible to have both a load balanced partition and a small Schur complement.
Circuit simulation matrices often have a small h relative to the number of unknowns n.

We will describe the partition algorithm in more detail in Chapter 3. Other imple-
mentation issues will also be discussed there.

Note that we have found the permutation matrix P in an indirect way. We start
with a fill reducing ordering, then we use the elimination tree to find the independent
blocks. Better parallel orderings might be possible by directly partitioning the graph of
the matrix A into m independent subgraphs instead of partitioning the elimination tree
of A. There exist packages such as METIS [55] and Chaco [47] for this task. It is not
clear whether these packages are suitable for circuit simulation problems or not. The
aim of METIS is to find a load balanced distribution with a Schur complement which
is as small as possible. This does not have to be optimal for our mixed direct/iterative
method where we like to have dense rows and columns in the Schur complement. METIS
can assign weights to vertices and edges of the graph. However, in our case the weights
depend strongly on the elimination ordering which is not known in advance. For a large
number of processors it is desirable to have the Schur complement as small as possible
because the direct part of the method (Algorithm 2.1) parallelizes much better than the
iterative part. In that case packages like METIS and Chaco are useful.

2.7 Pivoting

Threshold pivoting [25, Sect. 7.8] with a small threshold t is used in the local LU
decomposition of [

Aii
Ami

]
.

The diagonal block Aii almost always contains a suitable pivot for circuit simulation
problems. However, in very exceptional cases there might be a suitable pivot only in
the Ami block. Then Aii is nearly singular. This is not allowed, because exchanging
rows of Â destroys the structure of the block matrix (2.2). This problem is solved by
moving the trouble causing unknown to the iterative part of the solver. So, the size of
Aii is decreased by one and the size of S is increased by one. This will not happen very
often for circuit simulation problems. In fact we implemented the method without this
pivot strategy, but that did not cause any stability problems for the circuit simulation
test problems. This pivot strategy is comparable to the delayed pivot strategy which
Duff and Koster [27] use in the multifrontal code. However, they permute large entries
of A to the diagonal before the actual LU factorization.

This strategy can be refined by using two pivot threshold parameters. One for
pivoting inside the diagonal blocks and one much smaller threshold to detect if it is
necessary to move an unknown to the Schur complement. This improves the stability
of the local LU decomposition of the diagonal blocks.

Note that in the sequential case pivoting is not restricted to the diagonal block A00,
partial pivoting without any restrictions is possible.
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Another possibility is to replace small diagonal pivots aii by a suitably large entry
if there is no pivot inside the diagonal block. This is equivalent by making a rank
one correction βeie

T
i to the original matrix A. Afterwards, the local L and U factors

together with the preconditioner C can be used as a preconditioner for the system
Ax = b. A drawback of this approach is that the iterative process for Ax = b is much
more expensive than for Sxm = ym. This is due to the longer vector lengths (n� nm)
and due to the more expensive matrix-vector product. In [60] Li and Demmel do not
use partial pivoting during the LU decomposition at all. Instead, they permute large
entries to the diagonal before the actual LU factorization. During the LU factorization
they replace small pivots by larger ones. Iterative refinement is applied afterwards. This
results in a scalable parallel LU code.

In subsequent Newton steps of a circuit simulation it is often possible to use the
same pivot sequence during a number of Newton steps, as long as the pivots satisfy
the threshold pivot criterion. The local LU factorization can take much advantage of
an unchanged pivot sequence, because of reduction of symbolic overhead which leads
to a faster factorization. Note that the matrices in the local LU factorization are ex-
tremely sparse which implies that the symbolic part of the LU factorization is relatively
expensive.

2.8 Numerical experiments

2.8.1 The preconditioner

In this subsection we report on the preconditioner results for the problems of Section
2.2. We enlarged this set of problems with a number of other circuit simulation and
non-circuit simulation problems. The full set of test problems is given in Table 2.2.

The matrices memplus, orsirr 1, watt 1 and sherman3 are available from the Ma-
trix Market [63]. Matrix memplus is a circuit simulation matrix. The TIx matrices were
kindly provided by Kai Shen. He used these matrices to test a parallel distributed mem-
ory sparse LU code [54]. The TIx matrices are circuit simulation matrices resulting from
a transient simulation. All the matrices from the Matrix Market and the TIx matrices
were permuted symmetrically with Matlab’s minimum degree ordering symmmd [41] of
A + AT . The original ordering of circuit x is already a fine ordering. The matrices
lap . . . are discretized Laplacian operators on the unit square. Matrix lap nd128 is on
a 128 × 128 grid and ordered with nested dissection, lap nd256 is on a finer 256 × 256
grid and lap md128 is ordered with minimum degree. For some problems there was no
right-hand side b available. In that case we used a vector of all ones for b.

Note that the number of flops for an LU factorization of a circuit simulation matrix
is rather sensitive to the ordering that is used. For example Larimore [58] reports for
memplus 5597.6 · 106, 698.5 · 106, and 30.4 · 106 flops, for an LU factorization of A with
the orderings colamd, colmmd, and amdbar. With Matlab’s symmmd only 2.0 ·106 flops
are needed.

Two parameters are fixed for each different problem; the pivot threshold for the
local LU is 0.001 and the GMRES tolerance is 10−7. For circuit simulation problems
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problem n nnz(A) h flops nnz(L+
×103 ×106 U)× 103

circuit 1 2624 36 131 0.86 41
circuit 2 4510 21 95 0.51 32
circuit 3 12127 48 85 0.54 68
circuit 4 80209 308 308 15.28 461
memplus 17758 99 137 2.27 122
TIa 3432 25 249 8.07 100
TIb 18510 145 579 45.30 458
TIc 1588 13 65 0.18 18
TId 6136 53 306 11.63 155
lap md128 16129 80 533 57.24 705
lap nd128 16129 80 368 67.86 902
lap nd256 65025 324 750 589.61 4563
orsirr 1 1030 7 195 2.65 51
watt 1 1856 11 355 11.47 126
sherman3 5005 20 482 22.28 220
heat 6972 28 696 116.11 692

Table 2.2: Characteristics of test matrices, see Table 2.1 for explanation of
the symbols.

we use a preconditioner threshold of t = 0.02, a value of q = 40 for the direct/iterative
parameter, and the colperm fill reducing ordering for C. This ordering is nearly as good
as the minimum degree ordering, but much faster to compute. For non-circuit simulation
problems we use t = 0.005 and the minimum degree ordering on C. The parameter q
is chosen problem dependent: q = max(60, 0.5 maxj(nnz(L(:, j)), with L the symbolic
Cholesky factorization of A+AT . It turns out that these q, t and fill reducing orderings
lead to small CPU-times and a nearly optimal (with respect to different parameter
choices) number of flops. The parameter q is for circuit simulation problems smaller than
for other problems. This can be explained partly by the slower GMRES convergence
of non-circuit simulation problems. Note that the results are not very sensitive to the
value of the parameters q and t. The results are shown in Table 2.3.

Although we developed the method for circuit simulation problems, the methods
also work reasonably well for some other problems. For problems circuit 3 and TIc

parameter q is too large to do anything iteratively. For all the other problems the
GMRES convergence is very fast which leads to a significant reduction of flops compared
with the direct method. For circuit 4 and memplus the number of nonzeros of the
preconditioner C is more than 20 times smaller than the number of nonzeros of S.
Nevertheless, the iterative method converges very well. For circuit 4, TIa, TIb and
TId solving the Schur complement directly costs more than 80 percent of the flops for
solving Ax = b directly. This part can be done much faster with our preconditioned
iterative method. For these problems a fast Schur complement solver is a prerequisite to
have reasonable speedup results. Note that we have nm > 3kG for each problem , which
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parameters flops
problem q t Ord nm nnz(S) nnz(C) kG direct hybrid

×103 ×103 ×106 ×106
circuit 1 40 0.020 col 127 7.5 .7 6 0.86 0.47
circuit 2 40 0.020 col 57 2.5 .3 5 0.51 0.47
circuit 3 40 0.020 col 0 0 0 0 0.54 0.54
circuit 4 40 0.020 col 344 26.8 1.1 6 15.28 3.15
memplus 40 0.020 col 166 10.8 .4 5 2.27 0.94
TIa 40 0.020 col 348 22.2 2.4 5 8.07 0.93
TIb 40 0.020 col 1265 63.0 10.4 12 45.30 7.38
TIc 40 0.020 col 0 0 0 0 0.18 0.18
TId 40 0.020 col 434 28.2 2.6 7 11.63 1.58
lap md128 112 0.005 mmd 1011 138.5 15.8 19 57.24 27.65
lap nd128 95 0.005 mmd 1305 140.3 16.0 17 67.86 30.44
lap nd256 191 0.005 mmd 2649 591.3 32.2 24 589.61 252.81
orsirr 1 60 0.005 mmd 245 19.4 1.4 14 2.65 1.43
watt 1 88 0.005 mmd 432 51.4 9.1 8 11.47 5.26
sherman3 95 0.005 mmd 627 83.9 13.6 11 22.28 15.64
heat 193 0.005 mmd 894 222.6 26.4 18 116.11 56.04

Table 2.3: Solving the Schur complement iteratively. Ord is the symmetric
ordering applied to C. Minimum degree (Matlab’s symmmd) is mmd and
colperm is col. nm is the dimension of the Schur complement S. The num-
ber of GMRES steps is kG. The (Matlab) flop counts are the number of
flops to solve Ax = b by a direct LU method and by our hybrid (mixed
direct/iterative) method.

indicates that it is attractive to use the iterative approach for the Schur complement,
see Section 2.4.

For problem TIb the LU factorization of the permuted preconditioner D is rather
expensive. Considerable savings (in the number of flops) are possible by discarding small
elements during the LU factorization of D. This can be done as follows: Start with the
LU factorization of D and stop when the columns of L become too dense. Take the
Schur complement, discard small entries as described in Section 2.4, and reorder this
approximate Schur complement. Proceed with the LU decomposition until completion.
Now we have a sort of incomplete LU factorization of D which can be used instead
of the exact L and U factors of D. Problem TIb can be solved with only 4.02 · 106

flops by using this approach. This is a reduction of 46 percent compared to our original
mixed direct/iterative method. Most of the test problems reported here are too small
to benefit from this approach.

Our experiments showed that the time step, that the circuit simulator selects in
the circuit simulation process, has almost no influence on the GMRES convergence for
Sxm = ym.
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2.8.2 Sequential and parallel experiments

The parallel method was implemented with multiprocessing C compiler directives for
SGI shared memory systems. The matrix-vector product of the GMRES method was
parallelized. The other parts of the GMRES method are not parallelized. We will
discuss implementation issues in Chapter 3. Note that a distributed memory implemen-
tation is possible as well because we have a coarse grained algorithm that does not need
complicated communication.

The direct solver we used (for the direct part of our method) was our own implemen-
tation of GP-Mod. This is the sparse LU method of Gilbert and Peierls [40] extended
by the symmetric reductions of Eisenstat and Liu [30], [31], see also [22]. The sparse
sequential LU code MA48 [26] uses the same techniques. However, MA48 uses a direct
dense solver (via BLAS routines) for the rather dense reduced system, in contrast to
our iterative approach. Any sparse LU method for the Schur complement is allowed
as a direct solver, including, for example, multifrontal methods. We choosed GP-Mod
because it is relatively easy to implement. Moreover, in [22] it is reported that, for
circuit simulation problem memplus, GP-Mod is faster than SuperLU and also faster
than the multifrontal code UMFPACK [19].

The same parameters are used as in Section 2.8.1. But for the non-circuit simula-
tion matrices Liu’s minimum degree ordering [62] is applied to C instead of Matlab’s
symmmd. The results on the SGI Power Challenge are shown in Table 2.4. Table 2.5
shows the parallel results for the SGI Origin 200. The sequential results in the column
‘direct’ were obtained by setting the direct/iterative parameter q to n+ 1. In this case
the code never switches from direct to iterative. Hence, we have obtained a sparse di-
rect solver. With the Power Challenge we could measure the wall clock time because
we were allowed to run our processes with the highest possible priority. For the Origin
200 we do not report the wall clock time because there were other minor processes on
the system, which made accurate wall clock timing unreliable. Therefore, we measured
the CPU-time, which is close to the wall clock time if the system load is modest. Note
that processes which are waiting for synchronization are still consuming full CPU-time,
so it is fair to measure CPU-time.

Problems circuit 3 and TIc have no iterative part in the sequential case. So they
do not benefit from the mixed direct/iterative approach, as already noticed in Section
2.8.1. In the parallel case, both problems have a small Schur complement, so the work
involved with the Schur complement is only a small fraction of the overall amount of
work, and the method is still parallelizable in this case. Problem circuit 3 has good
speedup results, TIc is too small to have good parallel results.

From the results in Section 2.8.1 one might expect a large reduction in CPU-time
for some circuit simulation problems. But, for example, for circuit 4 the gain is less
than a factor of two. This is easy to explain by an example: Suppose we solve a problem
directly and 80 percent of the flops is in the Schur complement part of the computations.
The other 20 percent are very sparse flops which are much slower. So, suppose that
the 80 percent takes 0.5 seconds and that the 20 percent also takes 0.5 seconds. Now,
suppose we can speedup the Schur complement part by a factor of 10 by using an iterative
method. Then the number of flops reduces from 100 percent to 20+80/10 = 28 percent.
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problem Time (sec.) Speedup
SuperLU direct hybrid 2 4 6 8 10

circuit 1 0.085 0.052 0.051 1.66 2.25 3.83 3.76 5.20
circuit 2 0.082 0.035 0.040 1.88 2.58 3.58 3.29 3.88
circuit 3 0.334 0.084 0.085 1.99 3.94 5.45 5.91 6.98
circuit 4 2.367 1.130 0.709 1.99 3.60 5.94 7.14 9.27
memplus 0.440 0.191 0.168 1.92 3.68 4.69 6.18 8.00
lap md128 1.470 2.096 1.544 1.88 3.34 4.55 4.13 5.65
lap nd128 1.740 2.534 1.643 1.79 2.97 3.95 5.31 4.56
lap nd256 11.364 28.401 11.387 1.49 2.56 3.18 4.72 5.34
orsirr 1 0.076 0.083 0.075 1.42 1.59 2.36 2.27 2.50
watt 1 0.241 0.331 0.354 1.76 1.44 1.75 2.04 1.74
sherman3 0.440 0.662 0.559 1.61 1.85 2.43 2.08 2.10
heat 2.639 5.758 2.671 1.64 1.86 1.65 1.31 1.00

Table 2.4: Parallel results on a SGI Power Challenge with 12 R10000 pro-
cessors at 195 MHz. The time to solve the system by SuperLU [22], by our
own direct solver (see above text) and by our hybrid solver is in columns 2,
3 and 4. The speedup results in the next columns are relative to the results
in the hybrid column.

problem Time (sec.) Speedup
SuperLU direct hybrid 2 3 4

circuit 1 0.080 0.051 0.048 1.57 2.00 2.17
circuit 2 0.074 0.035 0.037 1.80 2.22 2.37
circuit 3 0.285 0.074 0.074 1.86 2.75 3.62
circuit 4 1.781 0.882 0.558 1.89 2.81 3.50
memplus 0.358 0.169 0.143 1.83 2.49 3.19
TIa 0.430 0.254 0.090 1.54 1.57 1.63
TIb 3.198 1.509 0.538 1.53 2.30 2.39
TIc 0.037 0.017 0.017 1.74 2.34 2.45
TId 0.564 0.376 0.151 1.60 1.69 1.87
lap md128 1.289 1.783 1.298 1.77 2.28 2.68
lap nd128 1.557 2.191 1.416 1.67 2.15 2.82
orsirr 1 0.074 0.087 0.074 1.35 1.58 1.81
watt 1 0.209 0.331 0.307 1.61 1.33 1.35
sherman3 0.402 0.641 0.489 1.55 1.72 1.74
heat 2.227 3.905 2.202 1.48 1.73 1.83

Table 2.5: Parallel results on a SGI Origin 200 with 4 R10000 processors at
180 MHz. See also Table 2.4 for explanation.
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The CPU-time reduces only from 1 second to 0.5 + 0.5/10 = 0.55 seconds. Moreover,
the direct Schur complement flops are faster than the iterative ones and the iterative
method introduces some extra overhead due to datastructures, non-flop operations for
reordering the preconditioner C etc. In the worst case (circuit 2) there is even a small
loss in CPU-time.

For reference the results of the SuperLU code [22] are also in the tables. For circuit
simulation problems our direct method is faster than SuperLU. This is not remarkable,
because of the sparsity of circuit simulation problems, see [22]. The difference in time
between our direct implementation and the SuperLU code shows that our direct imple-
mentation is sufficiently efficient although the Mflop rate is low. For circuit 4 we have
only 15.39/1.1297 = 13.6 Mflops which is much lower than the peak performance of 390
Mflops of the SGI R10000 processor. For the mixed direct/iterative solver the Mflops
rate is even worse. This is normal for circuit simulation problems because of, among
other things, the poor cache reuse and the large symbolic overhead for these extreme
sparse problems.

For the non-circuit simulation problems SuperLU is always faster than our direct
sparse LU implementation. However, the speed of our hybrid method is often compara-
ble to the SuperLU method for these problems. This is remarkable because it was not
the intention to solve these kind of problems with our method. SuperLU uses supern-
odes in order to perform most of the numerical computation in dense matrix kernels.
In contrast, our method tries to keep everything sparse. The fast results of our method
were obtained with a q parameter such that a relatively large part of the work is in the
iterative part of the method. As a consequence the parallel speedup results are not ex-
ceptional, because the iterative part is less well parallelizable than the direct part of the
method (only the matrix-vector product of the iterative method has been parallelized).
For non-circuit simulation problems, there is often a significant amount of work in the
other parts of the iterative method. However, for our test problems these parts are too
small for parallelization.

For circuit simulation problems TIa, TIb and TId something similar occurs. The
sequential timings for these problems are up to three times faster than the timings for
the direct method and the parallel speedup results are a bit disappointing. This is
due to the expensive Schur complement system solve. We may conclude that a good
sequential performance often leads to less well parallel results. The best parallel results
are obtained with the three circuit simulation matrices: circuit 3, circuit 4 and
memplus. These problems have a heigth h of the elimination tree which is small relative
to the number of unknowns n, this is good for parallelization, see Section 2.6. The
problems circuit 1, circuit 2 are too small for reasonable speedups.

The overhead for determining the block partition (see Section 2.6) and for memory
allocation is not included in the timings because we assumed that we are in a Newton
process. So these actions have to be done only once and can be reused in the Newton
process.

For all the problems reported here it was possible to find a suitable pivot inside the
diagonal block. However, there exist problems for which this is not possible (for example,
Matrix Market [63] problems lnsp3937 and e20r3000). A solution to this problem is
described in Section 2.7. We have not implemented this in the code. Therefore, we
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had to choose a smaller LU pivot threshold in some cases. For problems circuit 1

and circuit 3 we used a pivot threshold of 0.0001 if there were 5 or more processors.
For TIb we always used a value of 0.0001. These small pivot thresholds do not lead to
stability problems for these problems.

For the CPU-time measurements of the sequential method we used the same pa-
rameters as in the previous subsection. The iterative part of the method is less well
parallelizable than the direct part of the method. Therefore, we increased parameter
q for some non-circuit simulation problems and for the problems TIx if there were 3
or more processors. This results in more direct work and in less iterative work. More-
over we increased the preconditioner threshold t in order to reduce the costs of the not
parallelized preconditioner action and to increase the number of parallel matrix-vector
products. Globally this leads to slightly faster parallel results.

Demmel, Gilbert and Li also report on parallel results for problems memplus and
sherman3 with their shared memory SuperLU code [21]. These results have been copied
in Table 2.6. The speedup results for memplus are much worse than ours. For the
non-circuit simulation problem sherman3 our results are worse.

Speedup
problem 4 proc. 8 proc.
memplus 1.73 (3.68) 1.73 (6.18)
sherman3 2.36 (1.85) 2.78 (2.08)

Table 2.6: Parallel speedups of SuperLU on a SGI Power Challenge with 16
R8000 processors at 90 MHz, from [21]. Our results (from Table 2.4) are
between parentheses.

Jiang, Richman, Shen, and Yang report 12.81 seconds for TIb on 8 processors of a 450
MHz Cray T3E [54] which is not very fast. This is caused by the unlucky combination
of the minimum degree ordering and the ‘S+’ factorisation method for circuit simulation
problems, although a better ordering has not been identified yet. For a number of
non-circuit simulation problems they have very nice results.

2.9 Concluding remarks

In this chapter we have proposed a preconditioned iterative method for the solution of
a Schur complement system for circuit simulation problems. This leads to an efficient
sequential method which is sometimes much faster than direct sparse LU factorization.
Moreover, the method is often well parallelizable which is supported by our parallel
experiments. Note that a good sequential performance does not automatically lead
to good parallel results. The method is not restricted to circuit simulation problems,
although the results for these problems are better than for most other problems.

For the problems considered here, the Schur complement was too small for a full
parallelization of the iterative solver; we only parallelized the matrix-vector product.
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Therefore, for large problems our method is not as scalable as a full parallel direct
method may be. However, for large problems and a small number of processors (say
p ≤ 8) our method is still competitive compared to a full direct method, because our
partly parallelized iterative method for the Schur complement can be as fast as a fully
parallelized direct method.

The sequential bottleneck in the current implementation of our method is due to the
sparse LU decomposition of the permuted preconditioner D = P TCP , the forward and
backward solves with the L and U factors of LU = QD, and the GMRES vector updates
and inner products for the small system. For sufficiently large Schur complements
efficient parallelization of these components is feasible, which will improve the parallel
scalability for large linear systems Ax = b.



Chapter 3

Implementation of a parallel mixed
direct/iterative linear system solver

Abstract: In this chapter we discuss some implementation details of the parallel
mixed direct/iterative linear system solver of Chapter 2. This solver is based on
block LU factorization with an iterative method for the Schur complement. We
discuss an efficient shared memory implementation of the block LU factorization.
Furthermore, the partitioning algorithm which partitions the linear system Ax = b
into load balanced blocks is described.

Keywords: parallel computing, sparse LU factorization, preconditioned iterative
methods

AMS subject classifications: 65F10, 65F05, 65F50, 65Y05, 94C05

3.1 Introduction

In Chapter 2 we presented a parallel mixed direct/iterative method for solving linear
systems Ax = b arising from circuit simulation. In that chapter we stated that the
method is efficiently parallelizable, which was justified by parallel experiments. Here
we will discuss the actual parallel implementation in more detail. The block LU factor-
ization part of the parallel solver will be considered in Section 3.2. We will try to give
some insight into the communication patterns of the shared memory implementation
in Section 3.3. In Section 3.4 we discuss the algorithm which partitions matrix A into
block form (2.2).

This chapter can be seen as a supplement to Chapter 2 because it considers only
topics related to the parallel solver of Chapter 2. We assume that the reader has read
Chapter 2.

3.2 Parallel block LU factorization

The reduced system Sxm = ym is constructed in Algorithm 2.1 of Chapter 2. Here we will
rewrite this algorithm in a slightly different form that is more suitable for parallelization
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and implementation. In order to do this we distribute the rows of Amm and bm over m
matrices and m vectors with the wrap mapping defined by the diagonal matrix Q(i):

A(i)
mm = Q(i)Amm, b(i)m = Q(i)bm, i = 1, . . . , m− 1 ,

with

(Q(i))pq =

{
1 if p = q and pmodm = i ,
0 elsewhere.

Note that
∑m−1
i=0 Q

(i) = I and
∑m−1
i=0 A

(i)
mm = Amm. For example, a 7 by 7 sparse matrix

A33 is split as follows:

A33 =

 � � �
� � � �

� � �
� � �

� � � � �
� � �

� � � �

 = A
(0)
33 + A

(1)
33 + A

(2)
33 =

 � � �

� � �

� � � �

 +

 � � � �

� � � � �

 +

 � � �

� � �

 ,
if zero-based indexing is used for the matrix entries. Now we can write the construction
of the reduced system, see Algorithm 2.1 on page 15, in a slightly different form given
in Algorithm 3.1.

Algorithm 3.1: Construction of Sxm = ym

for i = 0 : m− 1,
Decompose Aii: LiiUii = PiiAii
Lmi = AmiUii

−1

Uim = Lii
−1PiiAim

yi = Lii
−1Piibi

S̄(i) = A
(i)
mm − LmiUim

z̄(i) = b
(i)
m − Lmiyi

end

S =
∑m−1
i=0 S̄

(i)

ym =
∑m−1
i=0 z̄

(i)

In this formulation S̄(i) can be seen as the Schur complement of Aii in[
Aii Aim
Ami A

(i)
mm

]
. (3.1)

The matrices defined in Algorithm 3.1 arise naturally in the partial LU factorization
(with restricted pivoting) of (3.1):[

Lii 0
Lmi I

] [
I 0
0 S̄(i)

] [
Uii Uim
0 I

]
=

[
Pii 0
0 I

] [
Aii Aim
Ami A

(i)
mm

]
. (3.2)
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The vectors z̄(i) and yi follow from[
yi
z̄(i)

]
=

[
Lii 0
Lmi I

]−1 [
Pii 0
0 I

] [
bi
b
(i)
m

]
. (3.3)

The outer product LU factorization method [42, Algorithm 3.2.3] leads to (3.2) if index k
of the outer loop runs from 1 to ni = size(Aii) instead of ni+nm = size(Aii)+size(Amm),
and with pivoting restricted to the Aii block.

For sparse matrices, a left-looking column oriented LU factorization1 method may
be preferred above an outer product LU factorization method, because such a method
allows for more efficient sparse matrix data structures [40], [22]. Algorithm 3.2 computes
the partial LU factorization 3.2 in a column oriented way. For the ease of presentation we

Algorithm 3.2: Column oriented partial LU factorization without pivoting

Input: A in the form (3.1)
Output: L, S, and U such that LSU = A in the form of equation (3.2),
with Pii = I.

ni = size(Aii)
nm = size(Amm)
n = ni + nm
L = In

S =

[
Ini

0
0 0nm

]
U = 0n
for j = 1 : ni
v = L−1A(:, j)
U(1:j, j) = v(1:j)
L(j + 1:n, j) = v(j + 1:n)/v(j)

end
for j = ni + 1 : n
v = L−1A(:, j)
U(1:ni, j) = v(1:ni)
S(ni + 1:n, j) = v(ni + 1:n)

end
U(ni + 1:n, ni + 1:n) = Inm

have not included pivoting in Algorithm 3.2. The diagonal entries of L are not explicitly
stored in practice, because they all have a value equal to 1. Our sparse implementation
of Algorithm 3.2, with restricted pivoting, is based on the sparse partial pivoting idea’s
of Gilbert and Peierls [40], extended with the symmetric reductions of Eisenstat and
Liu [30], [31]. The sparse sequential LU code MA48 [26] also uses these techniques, but
uses a direct dense solver (via BLAS routines) for the rather dense reduced matrix.

1Column oriented LU factorization is also known as ‘gaxpy’ or ’j k i’ Gaussian elimination [42,
Ch. 3].



32 Chapter 3. Implementation of a parallel linear system solver

3.3 Parallelization of the solver

In this section we will try to give some insight into the actual parallel implementation
and the communication patterns of the solver. We assume that the solver is implemented
on a shared memory parallel computer with m processors, see Figure 3.1.

0 1 m− 1 m processors

cache memory

interconnect

. . . . . .

shared memory

Figure 3.1: A shared memory parallel computer with m processors.

Processor i can communicate with processor j, i �= j by writing data to the shared
memory, followed by a barrier synchronization command. This barrier synchronization
command stops a processor until all the other processors have reached a barrier synchro-
nization command. After such a synchronization processor j reads the data it requires
from the appropriate shared memory locations. In Algorithm 3.3 this is indicated by the
get command. Obviously, communication between different processors is more expensive
than reading data from local cache memory.

We used the multiprocessing C compiler directives for SGI shared memory systems
to parallelize the solver. With this parallel programming model there is no need to
write or read data explicitly to or from the shared memory, because there is one global
address space for the shared memory. This makes parallel programming relatively sim-
ple. Nevertheless, in Algorithm 3.3 we used the get statement in order to make the
communication visible for the reader.

The solver can be implemented equally well on a distributed memory computer,
because the communication patterns are rather simple. In that case explicit send and/or
receive commands are necessary in the computer code.

Algorithm 3.3 is a more detailed description of the parallelized linear solver than Al-
gorithm 2.1. In the following we will give a brief explanation of the algorithm. Between
line (b) and (d) the Schur complement S and the preconditioner C (see Section 2.4) are
constructed in parallel. Between line (e) and (h) the reduced system Sxm = ym is solved
with preconditioned GMRES, where only the matrix-vector product is parallelized. At
line (f) a permutation for C is computed by processor 0, in order to make an efficient LU
factorization possible, see Section 2.4. At line (g) processor 0 solves Sxm = ym with pre-
conditioned GMRES. Processor 0 sends a message to the other processors i if it needs
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Algorithm 3.3: parallel linear solver with communication

Barrier synchronization is denoted by a thick line: .
Comments are in italic.

begin parallel

(a) i=my proc number
compute a partial LU decomposition, see equation (3.2) and (3.3):

(b) [Uii, Uim, S̄
(i), z̄(i), yi] = partial LU(Aii, Aim, Ami, A

(i)
mm, bi, b

(i)
m )

get Schur complement contributions from other processors:
(c) for j = 0 : m− 1

get Q(i)S̄(j) from processor j
end
add Schur complement contributions:
Q(i)S =

∑
j(Q

(i)S̄(j))

get diagonal entries of Schur complement from other processors:
for j = 0 : m− 1

get diag(Q(j)S) from processor j
end
compute contributions to the preconditioner C, see formula (2.3):

(d) Q(i)C = precon(Q(i)S, diag(S), t)

(e) if i = 0
collect the preconditioner in processor 0 and compute ym
for j = 0 : m− 1

get Q(j)C from processor j
get z̄(i) from processor j

end

ym =
∑m−1
j=0 z̄

(j)

compute fill reducing ordering for C:
(f) PC = colperm(C)

make an LU factorization of the permuted C:
[LD, UD, PD] = LU(PC

TCPC)
solve Sxm = ym with GMRES on processor 0:

(g) xm = GMRES(Q(0)S, ym, LD, UD, PD, PC)
else

compute matrix × vector: Q(i)Sv, if GMRES on processor 0
requests for it:

w = matvec(Q(i)S, v)
(h) end

get xm from processor 0
backward solve for xi:

(i) xi = Uii
−1(yi − Uimxm)

end parallel



34 Chapter 3. Implementation of a parallel linear system solver

a matrix-vector product Q(i)Sv. This can be implemented with two synchronization
points per iteration. Note that it is also possible to run GMRES redundantly on each
processor. Then only one synchronization per matrix-vector product is needed, instead
of two.

We see in Algorithm 3.3 that the communication patterns between the different
processors are rather simple: the number of synchonizations and the number of get
commands are low. In the for loop at line (c) in Algorithm 3.3 a relatively large amount
of data is moved from other processors to processor i, compared with other get commands
in Algorithm 3.3.

Note that the first and last synchronizations in Algorithm 3.3 are not necessary.
However in a parallel circuit simulator these synchronizations are needed in order to
separate the construction of the linear system from the solution part, see Algorithm 3.4.

Algorithm 3.4: Parallel circuit simulation

begin parallel
while the simulation is not finished

compute the coefficients of Ax = b (equation (2.1)) (in parallel)

solve the linear system, see Algorithm 3.3 from line (a) to (i)

end
end parallel

3.4 The partitioning algorithm

In this section we will describe the partitioning algorithm, which permutes (2.1) into
the block linear system (2.2), in more detail than in Section 2.6. Our approach is
rather simple. Advanced algorithms for scheduling the parallel Cholesky factorization
are proposed in, for example, [39] and [69]. Variants of these algorithms can also be
used for our partitioning problem. The partitioning algorithm is described in Algorithm
3.5. In the following, we will clarify some parts of Algorithm 3.5.

Algorithm 3.5 starts by identifying the independent subtrees of the elimination tree,
see Section 2.6. These independent subtrees can be identified as follows: The elimination
tree has nodes 1, . . . , n and root . We will try to find an ordered list F = (f1, . . . , fnT

) of
nodes fi with direct(fi) = true and direct(parent(fi)) = false, see also Algorithm 2.2,
Section 2.5. These nodes are the roots of the subtrees T [fi]. In the Gaussian elimination
process the unknowns associated with the subtree T [fi] are independent of the unknowns
associated with T [fj ], if i �= j [61]. The nodes F = (f1, . . . , fnT

) can be found by making
a preorder traversal [1, Ch. 2] through the elimination tree. Each time when a node is
visited with direct(fi) = true and direct(parent(fi)) = false, this node fi is added to
the list F .
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Algorithm 3.5: The partitioning algorithm

identify the root nodes F = (f1, . . . , fnT
) of the independent...

subtrees T [f1], . . . , T [fnT
]

compute the weights w1, . . . , wn
repeat

assign the subtrees using formula (3.7) to the processors i
compute the total weight per processor
if the imbalance H (see formula (3.8) ) is too large

identify the heaviest loaded processor j
choose the best subtree of processor j to split into smaller subtrees

end
until imbalance H is small

Example Algorithm 2.2 (Section 2.5) partitions the elimination tree in a direct and an
iterative part, see the example in Figure 3.2. In this example there are three independent
subtrees: T [5], T [8], and T [12]. �
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Figure 3.2: The subtrees T [5], T [8], and T [12], are independent subtrees in
the elimination tree.

The Gaussian elimination process is parallelized by distributing the subtrees T [fj],
j = 1, . . . , nT and their associated unknowns over the m processors. The subtrees are
distributed such that each processor gets approximately the same amount of work. In the
following we will explain how to do this. The amount of work for eliminating unknown
i is modelled with the cost function

ti = c2i + αci + β ,

with parameters α and β and the ci of (2.7). The c2i is proportional to the number
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of flops needed to eliminate unknown i if we assume that the matrix has a symmetric
structure. The β + αci accounts for the symbolic overhead that is introduced by each
unknown and by each nonzero of L and U . In practice the partitioning results are not
very sensitive to the values of parameters α and β. Gaussian elimination of all the
unknowns in a subtree T [i], i = 1, . . . , n, root , with root i costs

wi = ti +
∑

j∈descendants(i)

tj (3.4a)

= ti +
∑

{j | parent(j)=i}

wj . (3.4b)

All the weights wi, i = 1, . . . , n, root can be efficiently computed in a recursive way by
(3.4b) during one postorder tree traversal [1, Ch. 2] through the elimination tree.

Now each subtree T [fj ], j = 1, . . . , nT has a weight wfj , which is a measure for the
costs of elimination of the unknowns associated with T [fj]. The total weight is

Wtot =

nT∑
j=1

wfj .

The independent subtrees are distributed over the m processors by cutting the ordered
list F = (f1, . . . , fnT

) into m approximately equally weighted sublists (F0, . . . , Fm−1):

F = (f1, . . . , fnT
) = (3.5)

(F0, . . . , Fm−1) = ( (fk0 , . . . , fk0), (fk1, . . . , fk1), . . . , (fkm−1
, . . . , fkm−1

) ) . (3.6)

The subtrees T [fk] are mapped to the m processors in a linear way:

fk ∈ Fi if

⌊
m

( k−1∑
j=1

wfj + wfk/2
)
/Wtot

⌋
= i . (3.7)

The function � · � rounds to the previous nearest integer.
The total weight for processor i is

Wi =

ki∑
k=ki

wfk .

We define the imbalance H of the distribution as

H = max
i=0,...,m−1

Wi/(Wtot/m) − 1 . (3.8)

If the imbalance is large, say H > 0.02, and if processor i is the heaviest loaded processor
then the subtree T [fki

] or T [fki
] is split into smaller subtrees. If the weight wfki

‘fits

better’ on processor i than the weight wfki
, then T [fki

] is split, otherwise T [fki
] is split.

This choice is based on the following criterion: if

∣∣∣m ( kj−1∑
j=1

wfj

)
/Wtot − i

∣∣∣ > ∣∣∣m ( kj∑
j=1

wfj

)
/Wtot − i

∣∣∣ ,
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then T [fkj
] is split, otherwise T [fkj

] is split. A subtree T [i] is split into smaller subtrees
by removing nodes at the root of the subtree until the subtrees breaks into two or more
subtrees.

A better load balance, with the same list of subtrees T [f1], . . . , T [fnT
], is possible

if more general subtree distributions are allowed than (3.5). For example, we may
distribute fi, i = 1, . . . , nT over m subsets Gj , j = 0, . . . , m− 1, such that

max
j

∑
fi∈Gj

wfi (3.9)

is minimized approximately. This is essentially the strategy used in [39]. The next
example shows that this may lead to a better load balanced distribution.

Example We consider a problem with 5 independent subtrees T [f1], . . . , T [f5] with
weights (wf1, . . . , wf5) = (10, 20, 6, 6, 6). The distribution of formula (3.5) leads to F0 =
(f1, f2) and F1 = (f3, f4, f5), with W0 = 30, W1 = 18, and H = 30/24 − 1 = 0.25. An
optimal distribution for (3.9) is G0 = {f1, f3, f4} and G1 = {f2, f5}, with w1+w3+w4 =
22 and w2 +w5 = 26. This leads to a much smaller imbalance: H = 26/24− 1 = 0.083.

�

For circuit simulation problems there is often a large number of relatively light
subtrees. In that case it is easy to find a distribution with a small imbalance, and the
repeat-until loop of Algorithm 3.5 is finished after a very modest number of iterations,
for instance m. For example, for problem circuit 1 in Chapter 2 this loop is never
repeated and the imbalance is rather small: H = 0.0096. For that problem the approach
in (3.9) leads to an imbalance H = 0.00036. Although Algorithm 3.5 is certainly not
optimal, it works sufficiently well in practice, for circuit simulation problems.





Chapter 4

A parallelizable GMRES-type
method for p-cyclic matrices

Abstract: In this chapter we present a GMRES-type method for the solution
of linear systems with a p-cyclic coefficient matrix. The method has similarities
with existing GMRES approaches for p-cyclic matrices, but in contrast to these
methods the method is efficiently parallelizable, even if the p-cyclic matrix has
a rather small block size. Moreover the method has good stability properties.
However, the serial costs of the method may be somewhat higher. Numerical
experiments demonstrate the effectiveness of the method.

Keywords: parallel iterative method, p-cyclic matrix, Krylov subspace methods,
GMRES, periodic steady state
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4.1 Introduction

Linear systems of the form
F1 0 0 −EM
−E1 F2 0 0

0
. . .

. . . 0
0 0 −EM−1 FM



y1...
...
yM

 =


c1...
...
cM

 (4.1)

often arise in the simulation of periodic phenomena. The Ei and Fi are sparse n by n
matrices. Block EM couples the end of the periodic interval with the start. We will
assume that the diagonal blocks Fi are nonsingular; the off-diagonal blocks Ei may be
singular. Moreover, we assume that (4.1) is nonsingular. The matrix in (4.1) is called
an M-cyclic matrix.

If one yi is known, the others can be computed by the forward recursion

yj =


Fj

−1(cj + Ej−1yj−1) if j = i+ 1, . . . ,M ,
Fj

−1(cj + EMyM) if j = 1 ,
Fj

−1(cj + Ej−1yj−1) if j = 2, . . . , i− 1 .
(4.2)
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A backward recursion is in general not possible since Ei may be singular.
Block diagonal scaling of (4.1) with M = diag(F1

−1, . . . , FM
−1) leads to a linear

system that is easier to handle:
I 0 0 −C1

−C2 I 0 0
0

. . .
. . . 0

0 0 −CM I



y1...
...
yM

 =


c′1...
...
c′M

 , (4.3)

with

c′i = Fi
−1ci , (4.4a)

Ci =

{
Fi

−1EM if i = 1 ,
Fi

−1Ei−1 if i = 2, . . . ,M .
(4.4b)

The M-cyclic linear system (4.3) can be reduced by block Gaussian elimination to a
p-cyclic one, with p ≤ M . Note that block Gaussian elimination may be unstable since
no pivoting is used. In order to eliminate blocks, we define a partition of the integers
1, . . . ,M :

(1, 2, . . . ,M) = (q
1
, . . . , q1, . . . , . . . , qp, . . . , qp) . (4.5)

Clearly q
i
≤ qi, for i = 1, . . . p and qi+1 = q

i+1
, for i = 1, . . . , p−1. A reduced system is

obtained by eliminating the unknowns yq
1
, . . . , yq1−1, yq2 , . . . , yq2−1, . . . , yqp, . . . , yqp−1

from (4.3). Hence, the unknowns yq1 , yq2 , . . . , yqp are not eliminated. The reduced
system is

Ax = b , with

A =



I − B1 , if p = 1 ,


I 0 0 −B1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I

 , if p ≥ 2 ,

(4.6)

and
Bi = Cqi · . . . · Cqi , i = 1, . . . , p , (4.7)

x =
[
xT1 , . . . , . . . , x

T
p

]T
, b =

[
bT1 , . . . , . . . , b

T
p

]T
.

The vectors bi are defined by the following recursion:

wq
i

= c′q
i
, (4.8a)

wk = c′k + Ckwk−1, k = q
i
+ 1, . . . , qi , (4.8b)

bi = wqi . (4.8c)

The xi and yj are related via

yqi = xi, for i = 1, . . . , p .
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The other yj, j = 1, . . . ,M , can be computed by the forward recursion (4.2), after the
p-cyclic linear system (4.6) has been solved.

There are several applications of p-cyclic matrices, or equivalentlyM-cyclic matrices.
Nonlinear DAEs with periodic boundary conditions can be solved by, for instance, the
multiple shooting method or the finite difference method, see [7] and Section 1.3. This
leads to linear systems with an M-cyclic structure.

In [82] a parabolic equation with periodic boundary conditions leads to p-cyclic
matrices. Another application with the p-cyclic linear system (4.6), although with non-
constant block sizes, arises in Markov Chain models, see e.g. [66]. In Section 4.13 of this
chapter the numerical methods are applied to p-cyclic matrices arising from periodic
steady state simulation of circuits.

Direct methods for the solution of (4.1) are considered in [4] and [7]. These meth-
ods require usually O(n3M) operations (if the sparsity of the Ej and Fj blocks is not
exploited) to solve the linear system, which is prohibitive if M or the block size n is
large. Parallel direct methods are considered in [4], [6], [32], [92], [93]. The theory of
the SOR iterative method for p-cyclic matrices is well developed, see e.g. [28], [44], [45],
[87, Ch. 4]. A suitably ordered matrix with property A and with non vanishing diagonal
elements is a 2-cyclic matrix of the form (4.1), with M = 2, [94, Ch. 2]. The Chebyshev
method of Golub and Varga [43] for 2-cyclic matrices roughly halves the amount of work
per iteration compared to the standard Chebyshev method applied to the system (4.6),
with p = 2. Reid [70] has shown that similar gains can be achieved for the conjugate
gradients method. A generalization of this result for p-cyclic matrices has been made
by Hochbruck [50, Ch. 5]. This generalization is based on the QMR method.

In order to exploit the sparsity of Ei and Fi in (4.1), the matrices Bi are not formed
explicitly in practice, when an iterative solver is applied to (4.6). Instead, sparse LU
decompositions of the diagonal blocks Fi with partial pivoting, and the formulas (4.4b)
and (4.7) are used to compute a matrix-vector product Biv. Therefore, the matrix-
vector products of an iterative method for (4.6) are relatively expensive compared with
the vector updates, inner products, and other operations of the method.

In Section 4.2 we will discuss existing minimal residual approaches for p-cyclic linear
systems. Usually these methods are either not efficiently parallelizable or converge too
slowly for the type of problems considered here. Section 4.3 presents a GMRES-type
method that is efficiently parallelizable, but the serial costs may be somewhat higher.
This method will be called p-cyclic GMRES. In Section 4.5 the convergence of p-cyclic
GMRES is analysed for a special case. In Sections 4.6 to 4.9 a few related topics are
considered. Costs and efficient parallelization are discussed in Sections 4.10 and 4.11.
The chapter finishes with a few numerical experiments.

Independently and simultaneously with our work, Dekker has developed the P-GM-
RES method [20]. For the special case p = 2, our method is equivalent to P-GMRES.
For p = 1 our method is equivalent to standard GMRES [76].
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4.2 Existing minimal residual approaches for p-cy-

clic matrices

In this section we will discuss minimal residual methods for the iterative solution of the
p-cyclic linear system (4.6).

4.2.1 GMRES

The p-cyclic linear system (4.6) can be solved by applying GMRES method [76] to
it. Another possibility is to eliminate x1, . . . , xp−1 from (4.6) using block Gaussian
elimination and to apply GMRES to the reduced linear system

(I −Bp · . . . · B1)xp = b̂p , (4.9)

where b̂p is defined by the recurrence relation

b̂1 = b1 , (4.10a)

b̂j = bj +Bj b̂j−1 , for j = 2, . . . , p . (4.10b)

Note that the reduced linear system (4.9) is equal to the linear system obtained by block
Gaussian elimination of y1, . . . , yM−1 in (4.3). Hence, (4.9) is also equal to the p-cyclic
linear system (4.6), with p = 1. The matrix I − Bp · . . . · B1 is not explicitly formed in
practice, since only matrix-vector products (I −Bp · . . . ·B1)v are needed by GMRES.

After m GMRES iterations the approximate solution is x
(m)
p and the residual is

r(m)p = b̂p − (I − Bp · . . . · B1)x
(m)
p .

The other unknowns x
(m)
1 , . . . , x

(m)
p−1 follow from (4.6) by a simple forward recursion:

x
(m)
i =

{
b1 +B1x

(m)
p , if i = 1 ,

bi +Bix
(m)
i−1 , if i = 2, . . . ,M .

Simple calculations show that the residual of the large system is

b− Ax(m) =


0
...
0

b̂p − (I −Bp · . . . · B1)x
(m)
p

 =


0
...
0

r
(m)
p

 .
Hence, the norm of the residual of the p-cyclic linear system (4.6) is equal to the norm

of the residual of the reduced system (4.9): ‖b−Ax(m)‖ = ‖r(m)p ‖.
Unfortunately, GMRES usually converges much worse for (4.6) than for the reduced

system (4.9), if p �= 1. The difference in convergence can be explained by the differences
between the eigenvalue distribution in the complex plane of the matrix A in (4.6), and
the matrix I − Bp · . . . · B1, as we will see now.
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Varga [87, page 107] has shown that the eigenvalues of

B̃ =


0 0 0 B1

B2 0 0 0
0

. . .
. . . 0

0 0 Bp 0


and

L1 =


I 0 0 0

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I


−1  0

B1

0
0
0

 =

 0
B1

B2B1...
Bp · . . . · B2B1

 , (4.11)

are related to each other: If µ is an eigenvalue of B̃ , then µp is an eigenvalue of L1. If λ
is a nonzero eigenvalue of the matrix L1 and µp = λ, then µ is an eigenvalue of B̃. From
(4.11) we see a simple relation between the eigenvalues of L1 and Bp · . . . · B1: If λ is a
nonzero eigenvalue of L1, then λ is an eigenvalue of Bp · . . . ·B1. If λ is an eigenvalue of
Bp · . . . · B1, then λ is an eigenvalue of L1.

Now it is obvious how the eigenvalues of A = I − B̃ are related to the eigenvalues of
I −Bp · . . . ·B1. This is illustrated in Figure 4.1 that shows the eigenvalues of a p-cyclic
matrix obtained from the periodic steady state simulation of a specific circuit. Clearly,
the reduced system has a more favourable eigenvalue distribution for GMRES, because
of better clustering of the eigenvalues. In this example the matrix A has block size 22.
The condition number of A in the 2-norm is κ(A) ≈ 56, κ(I −Bp · . . . · B1) ≈ 10.
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Figure 4.1: Left: eigenvalues of a 5-cyclic matrix A. Right: eigenvalues of
the reduced matrix I − B5B4B3B2B1.

Note that reducing the linear system Ax = b to (I −Bp · . . . ·B1)xp = b̂p may cause
stability problems if there are blocks Bi with large ||Bi||. This will be discussed in
Section 4.13.3.
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4.2.2 GMRES for a p-cyclic system with a special initial guess

With a special initial guess considerable savings are possible when applying GMRES to
the p-cyclic linear system (4.6). For the initial guess x(0) we take

x(0) =


b̂1...

b̂p−1
0

 ,
where b̂i is defined in (4.10). Now the initial residual is

r(0) =


0
...
0

b̂p

 .
Since we have an initial guess x(0) we actually deal with the system

I 0 0 −B1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I



x̂1...
...
x̂p

 =


0
...
0

b̂p

 , (4.12)

or Ax̂ = r(0) and the solution of (4.6) is x = x(0) + x̂.
The Krylov subspace associated with (4.12) has a special structure:

Kpm(A, r(0)) = span(


0
...
0

b̂p

 ,

B1b̂p

0
...
0

 ,


0

B2B1b̂p
0
0

 , . . . ,


0
...
0

B̂b̂p

 ,

B1B̂b̂p

0
...
0

 , . . . , . . . ,


0
0

Bp−1 · . . . · B1B̂
m−1b̂p

0

) , (4.13)

with B̂ = Bp · . . . ·B1. Now p GMRES iterations are approximately as expensive as one
GMRES iteration for the p-cyclic linear system (4.6), if this structure is exploited.

This method for solving Ax = b will be called x(0)-GMRES, in the remainder of this
chapter. The idea behind x(0)-GMRES is widely known, for example, it has been used
by Reid [70] for the conjugate gradients method with p = 2. Hochbruck [50, Ch. 5]
has exploited a similar idea for the QMR method with p ≥ 2. For this method both
the initial residual r(0) and the initial ‘shadow residual’ s(0) (the vector s(0) is used for
generating Kpm(AT , s(0)) ) have only one nonzero block.
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Now we will compare x(0)-GMRES for (4.6) with GMRES applied to the reduced
system (4.9) for p ≥ 2. The x(0)-GMRES method minimizes the residual norm over a
Krylov subspace:

x̂(pm) = argmin
x̂∈Kpm(A,r(0))

‖b−Ax̂‖ .

A suboptimal solution for Ax̂ = r(0) is given by ˆ̂x(pm) = N ˆ̂x
(pm)
p , with

N =


B1...

Bp−1 · . . . · B2B1

I

 ,
and

ˆ̂x(pm)p ∈ span(b̂p, B̂b̂p, . . . , B̂
m−1b̂p)

= Km(I − Bp · . . . · B1, b̂p) . (4.14)

Note that the Krylov subspace (4.14) is equal to the Krylov subspace associated with

the reduced system (4.9). The suboptimal solution ˆ̂x(pm) leads to a residual ˆ̂r
(pm)

x(0) with
p− 1 zero blocks:

ˆ̂r
(pm)

x(0) = r(0) −AN ˆ̂x(pm)p =


0
...
0

b̂p − (I − B̂) ˆ̂x
(pm)
p

 .
The norm of the residual after pm iterations of x(0)-GMRES is

‖r(pm)
x(0) ‖ = min

x̂∈Kpm(A,r(0))
‖r(0) − Ax̂‖ (4.15a)

≤ min
ˆ̂xp∈Km(I−Bp·...·B1,b̂p)

‖r(0) −AN ˆ̂xp‖ (4.15b)

= min
xp∈Km(I−Bp·...·B1,b̂p)

‖b̂p − (I −Bp · . . . · B1)xp‖ (4.15c)

= ‖r(m)red ‖ . (4.15d)

Here r
(m)
red is the residual of GMRES applied to the reduced system (4.9), after m itera-

tions. Inequality (4.15b) follows from the suboptimality of ˆ̂x(pm).

In the following, we will derive an upper bound for ‖r(m)red ‖ in terms of r
(pm)

x(0) . After

pm iterations of x(0)-GMRES, the residual is

r
(pm)

x(0) =


r
(pm)
1 ...
...

r
(pm)
p

 =


0
...
0

b̂p

−


I 0 0 −B1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I



x̂
(pm)
1...
...

x̂
(pm)
p

 . (4.16)
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Premultiplying (4.16) with the 1 by p block matrix M , defined by

M = [Bp · . . . · B2 Bp · . . . · B3 . . . Bp I] ,

gives

Mr
(pm)

x(0) = b̂p − [ 0 . . . 0 I −Bp · . . . · B1 ] x̂(pm)

= b̂p − (I − Bp · . . . · B1)x̂
(pm)
p ,

and this will be used in formula (4.17b). The x̂
(pm)
p found by x(0)-GMRES, see formula

(4.16), is a suboptimal solution for the reduced linear system (4.9):

‖r(m)red ‖ = min
xp∈Km(I−Bp·...·B1,b̂p)

‖b̂p − (I −Bp · . . . ·B1)xp‖ (4.17a)

≤ ‖b̂p − (I −Bp · . . . · B1)x̂
(pm)
p ‖ (4.17b)

= ‖Mr(pm)
x(0) ‖ (4.17c)

≤ ‖M‖ ‖r(pm)
x(0) ‖ . (4.17d)

Combining (4.15) and (4.17) shows that asymptotically there is no big advantage of
x(0)-GMRES over GMRES applied to the reduced system (4.9), if ‖M‖ is sufficiently
small:

‖r(pm)
x(0) ‖ ≤ ‖r(m)red ‖ ≤ ‖M‖ ‖r(pm)

x(0) ‖ .
The value of ‖M‖ is often small in practical applications. If ρ is defined by ρ =

max2≤i≤p ‖Bp · . . . · Bi‖, then it is easy to show that ‖M‖ ≤ ρ√p.
Numerical experiments (not reported) indicate that in inexact arithmetic there seems

to be no significant advantage of x(0)-GMRES over GMRES applied to the reduced
system (4.9), see also the numerical experiment in Section 4.13.3. Note that this is
different in the QMR case, at least for the two numerical examples considered in [50,
Ch. 5]. These examples deal with the computation of a unique (up to a scaling factor)
non trivial solution of a singular linear system Ax = 0. For both examples QMR applied
to the reduced system has a stagnation phase in the convergence, while ‘x(0)-QMR’ has
not.

Note that x(0)-GMRES computes x1, . . . , xp, while GMRES applied to the reduced
system (4.9) needs a forward recursion in order to compute x1, . . . , xp−1 after xp has
been solved from (4.9). However, the orthogonalization costs of x(0)-GMRES are ap-
proximately p times higher, in comparison with GMRES applied to (4.9). The costs of
both methods are discussed in Section 4.10.

4.3 p-cyclic GMRES

The x(0)-GMRES method and GMRES applied to the reduced system (4.9) offer good
convergence if both ||Bi|| is sufficiently small and Bi has most of its of eigenvalues close
to zero. However, in practice the matrix-vector products Biv are often hard to parallelize
since Bi is usually not explicitly known, but defined in a sequential way by (4.4b) and
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(4.7). In practice Ei and Fi are often too small for parallelization on a matrix level.
In contrast to these methods, applying GMRES directly to the p-cyclic linear system
(4.6) is efficiently parallelizable because the p matrix-vector products of the form Bivi,
i = 1, . . . , p, are independent of each other. Unfortunately GMRES converges relatively
slowly for (4.6), and even in a parallel environment there is no gain for (4.6), if p �= 1.

The p-cyclic GMRES method, to be presented in this section, is efficiently paralleliz-
able. Moreover it suffers less from instability problems if ||Bi|| is large. The convergence
of p-cyclic GMRES is often slightly poorer than GMRES applied to the reduced linear
system (4.9). The p-cyclic GMRES method is somewhat in the same way related to GM-
RES on a 1 by 1 block reduced system (see previous section) as the multiple shooting
method for boundary value problems is related to the single shooting method [7]. Note
that the multiple shooting method has better parallelization and stability properties
than the single shooting method.

The GMRES method applied to the p-cyclic linear system (4.6) finds an approximate
solution x(m) in the Krylov subspace

Km = span(

 w(1)
1...

w
(1)
p

 ,
 w(2)

1...

w
(2)
p

 , . . . ,
 w(m)

1...

w
(m)
p

) , (4.18)

with

x(m) = argmin
x∈Km

‖b−Ax‖ .

The w
(j)
i are recursively defined by

w
(j)
i =

{
bi if j = 1, i = 1, . . . , p ,

Biw
(j−1)
i−̃1 if j = 2, . . . , m , i = 1, . . . , p .

(4.19)

Here we used the notion −̃1. The definition of −̃1 within the context of p-cyclic matrices
is:

i−̃1 ≡
{
i− 1 , if i = 2, . . . , p ,
p , if i = 1 .

For example, with p = 4 and m = 4, the Krylov subspace is

K4 = span(


b1
b2
b3
b4

 ,

B1b4
B2b1
B3b2
B4b3

 ,

B1B4b3
B2B1b4
B3B2b1
B4B3b2

 ,

B1B4B3b2
B2B1B4b3
B3B2B1b4
B4B3B2b1

) .

The idea of the p-cyclic GMRES method is to decouple the Krylov subspace (4.18)
into p independent subspaces Kmi , each with dimension less than or equal to m:

Kmi = span(w
(1)
i , w

(2)
i , . . . , w

(m)
i ) , i = 1, . . . , p .
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We seek an approximate solution x(m) of the p-cyclic linear system (4.6) in the search
space

K̂m = {x(m) =

 x(m)1...

x
(m)
p

 |x(m)i ∈ Kmi } .

For example, if p = 4, then

x
(4)
2 ∈ K4

2 = span(b2, B2b1, B2B1b4, B2B1B4b3) .

The approximate solution x(m) ∈ K̂m is chosen such that the norm of the residual
‖b− Ax(m)‖ is minimal. In the final form of the p-cyclic GMRES method we will alter
this definition of x(m) slightly, see Section 4.3.2.

It is easily seen that
Km ⊂ K̂m ,

and we have dim(K̂m) ≤ mp. Usually the dimension of K̂m is p times larger than
the dimension of Km and therefore we hope that p-cyclic GMRES achieves a much
faster convergence than GMRES does. The following relation holds for the norm of the
residual:

‖r(m), p-cyclic GMRES‖ ≤ ‖r(m),GMRES‖ , (4.20)

since Km ⊂ K̂m.

4.3.1 Orthogonal basis for K̂m

An orthogonal basis for K̂m is desirable, for a practical and accurate method. Fortu-
nately, we only need an orthogonal basis for each Kmi , i = 1, . . . , p, which immediately

leads to an orthogonal basis for K̂m. Orthogonalization of the w
(j)
i vectors defined in

(4.19), leads to an orthogonal basis for K̂m:

s
(j)
i =

{
b
(1)
i if j = 1, i = 1, . . . , p ,

Biv
(j−1)
i−̃1 if j = 2, . . . , m , i = 1, . . . , p ,

(4.21a)

ŝ
(j)
i = orthogonalize s

(j)
i with respect to {v(1)i , v

(2)
i , . . . , v

(j−1)
i } , (4.21b)

v
(j)
i = ŝ

(j)
i /‖ŝ

(j)
i ‖ . (4.21c)

Step 1 and step 2 of Algorithm 4.1 construct an orthogonal basis in an Arnoldi-like
way. Therefore, we will call these two steps p-cyclic Arnoldi. For p = 1, step 1 and 2
of Algorithm 4.1 reduce to the standard Arnoldi method. In step 3 the approximate
solution with minimal residual norm is computed. For p = 1, Algorithm 4.1 reduces to
standard GMRES with Householder orthogonalization, if the least-squares problem is
replaced by miny1 ‖(Ĩ −H(m)

1 )y1 − δ1e1‖.

Classical or modified Gram-Schmidt is less suitable for orthogonalization of the vec-
tor Biv̂

(j)
i = Biv

(j)

i−̃1 with respect to v
(1)
i , . . . , v

(j)
i , since Biv

(j)

i−̃1 may be exactly or nearly

in span(v
(1)
i , . . . , v

(j)
i ). This leads to an exact break down of the Gram-Schmidt process,
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Algorithm 4.1: p-cyclic GMRES

1. Initialization:
Choose a random nonzero vector w
for i = 1 : p

Define H
(m)
i = zeros(m+ 1, m)

if ‖bi‖ �= 0

v
(1)
i = bi

else (in practice usually ‖bi‖ �= 0)

v
(1)
i = w

end

[v
(1)
i , dummy, u

(1)
i ] = house orth(v

(1)
i , [ ])

U
(1)
i = u

(1)
i

V
(1)
i = v

(1)
i

δi = v
(1)
i

T
bi

end
2. Iterate:

for j = 1 : m
v̂
(j)
1

v̂
(j)
2...

v̂
(j)
p

 =


v
(j)
p

v
(j)
1...

v
(j)
p−1

 (*)

for i = 1 : p (parallelizable for loop)

[v
(j+1)
i , H

(m)
i (1:j + 1, j), u

(j+1)
i ] = house orth(Biv̂

(j)
i , U

(j)
i )

U
(j+1)
i = [U

(j)
i u

(j+1)
i ]

V
(j+1)
i = [V

(j)
i v

(j+1)
i ]

end
end

3. Finish:
Solve the least-squares problem:

min
y1,...,yp

‖


Ĩ 0 0 −H(m)

1

−H(m)
2 Ĩ 0 0

0
. . .

. . . 0

0 0 −H(m)
p Ĩ



y1...
...
yp

−


δ1e1...

...
δpe1

 ‖

x(m) =

 V (m)
1 y1...

V
(m)
p yp
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or to instabilities in the Gram-Schmidt process. We may expect more stability problems
for p-cyclic GMRES than for standard GMRES, if classical or modified Gram-Schmidt is
used for orthogonalization. This can be explained as follows: A (near) break down in the
Gram-Schmidt process is often no problem for standard GMRES since it has (nearly)
converged in that case. However, this is not necessarily true for p-cyclic GMRES, as we
will see in an example on page 54.

Instead of Gram-Schmidt orthogonalization we use Householder orthogonalization ,
see e.g. [42, Ch. 5], which is known to be more stable, but twice as expensive. Other
stable orthogonalization methods, which are twice expensive as standard Gram-Schmidt
methods, are iterated classical or modified Gram-Schmidt. For parallelization of the
orthogonalization process iterated classical Gram-Schmidt might be preferred above
Householder orthogonalization. However, we aim at parallelizability of Algorithm 4.1
at the block level.

The function

[v
(j+1)
i , H

(m)
i (1:j + 1, j), u

(j+1)
i ] = house orth(Biv

(j)

i−̃1, U
(j)
i )

of Algorithm 4.1, computes v
(j+1)
i and H

(m)
i (1:j + 1, j) such that

Biv
(j)

i−̃1 = [V
(j)
i v

(j+1)
i ]H

(m)
i (1:j + 1, j) , and (4.22a)

I = [V
(j)
i v

(j+1)
i ]T [V

(j)
i v

(j+1)
i ] . (4.22b)

The Householder vectors are stored in U
(j+1)
i . The Householder method leads also to

expansion of V
(j)
i in the special case that

Biv
(j)

i−̃1 ∈ span(v
(1)
i , . . . , v

(j)
i ) or Biv

(j)

i−̃1 = 0 .

In these cases {H(m)
i }j+1,j = 0 or H

(m)
i (1:j+1, j) = 0, respectively, but the Householder

vector u
(j+1)
i is still well defined and v

(j+1)
i is still orthogonal to V

(j)
i . However, then

span(v
(1)
i , . . . , v

(j)
i , Biv

(j)

i−̃1) �= span(v
(1)
i , . . . , v

(j)
i ) .

This is different from a Gram-Schmidt method that would break down in this situation
because, in the final step of the Gram-Schmidt process, there would be a normalization
of a zero vector. It is possible to solve this problem by replacing this zero vector by
an arbitrary vector which is orthogonal to the previous vectors, but the Householder
approach is a more neat solution.

In an actual implementation of Algorithm 4.1 it is not necessary to store both V
(j)
i

and U
(j)
i . In Algorithm 4.1 the column vectors V

(j)
i are needed only once in step 3,

in order to compute x
(m)
i . In the same way as in standard GMRES with Householder

orthogonalization, see [73, Ch. 6] and [91], x
(m)
i can be computed by using U

(j)
i instead

of V
(j)
i . So, V

(j)
i need not be stored and the vector storage requirements are mainly

determined by the matrix with Householder vectors U
(j)
i .
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Equation (4.22a) can be written in matrix form:

BiV
(m)

i−̃1 = V
(m+1)
i H

(m)
i . (4.23)

Here H
(m)
i is a m+ 1 by m Hessenberg matrix. This leads to the following block matrix

relation:
I 0 0 −B1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I



V
(m)
1 0 . . . 0

0 V
(m)
2

...
...

. . . 0

0 . . . 0 V
(m)
p

 =


V

(m+1)
1 0 . . . 0

0 V
(m+1)
2

...
...

. . . 0

0 . . . 0 V
(m+1)
p




Ĩ 0 0 −H(m)
1

−H(m)
2 Ĩ 0 0

0
. . .

. . . 0

0 0 −H(m)
p Ĩ

 , (4.24a)

or more compactly
AV (m) = V (m+1)H(m) , (4.24b)

with the m+ 1 by m matrix defined by

Ĩ ≡
[

I
0 . . . 0

]
. (4.25)

The subspace K̂m is not necessarily equal to the range(V (m)):

Theorem 4.1 The matrix V (m) generated by Algorithm 4.1 satisfies the following prop-
erties:

1. K̂m ⊂ range(V (m)) .

2. K̂m = range(V (m)) if and only if {H(m)
i }j+1,j �= 0, j = 1, . . . , m− 1, i = 1, . . . , p

and bi �= 0, i = 1, . . . , p.

Proof Part 1 will be proved by induction on k, k = 1, . . . , m− 1. For k = 1, we have

K1
i = span(bi) = range(V

(1)
i ), i = 1, . . . , p ,

if bi �= 0, and K1
i = {0} ⊂ range(V

(1)
i ) if bi = 0. Now, suppose

Kki = span(w
(1)
i , . . . , w

(k)
i ) ⊂ range(V

(k)
i ) = span(v

(1)
i , . . . , v

(k)
i ) , (4.26)

for i = 1, . . . , p. We will prove that

Kk+1i ⊂ range(V
(k+1)
i ) .

From (4.26) it follows that

w
(k+1)
i = Biw

(k)

i−̃1 ∈ span(Biv
(1)

i−̃1, . . . , Biv
(k)

i−̃1) .
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Each vector Biv
(j)

i−̃1, j = 1, . . . , k is in range(V
(j+1)
i ) by construction (cf. (4.22a) ), so

span(Biv
(1)

i−̃1, . . . , Biv
(k)

i−̃1) ⊂ range(V
(k+1)
i ) ,

and w
(k+1)
i ∈ range(V

(k+1)
i ). We conclude that w

(j)
i ∈ range(V

(j)
i ), for j = 1, . . . , k + 1,

and

Kk+1i = span(w
(1)
i , . . . , w

(k+1)
i ) ⊂ range(V

(k+1)
i ) ,

which completes the induction step. So Kmi ⊂ range(V
(m)
i ) and therefore we have that

K̂m ⊂ range(V (m)).
For part 2, take K̂m = range(V (m)) and suppose that there is an i with bi = 0. Then

w
(1)
i = 0, but v

(1)
i �= 0, so dim(Kmi ) ≤ m − 1 < dim(range(V

(m)
i )) = m). This implies

that Kmi �= range(V
(m)
i ) and therefore K̂m �= range(V (m)), which is a contradiction, so

bi �= 0 for i = 1, . . . , p. Now suppose that K̂m = range(V (m)) and that there are i and k

such that {H(m)
i }k+1,k = 0. We already have (see part 1)

w
(k+1)
i ∈ span(Biv

(1)

i−̃1, . . . , Biv
(k)

i−̃1) .

Again the vectors Biv
(j)

i−̃1, j = 1, . . . , k − 1 are in the range(V
(j+1)
i ), but Biv

(k)

i−̃1 ∈
range(V

(k)
i ) since {H(m)

i }k+1,k = 0, see (4.22a). Hence, span(Biv
(1)

i−̃1, . . . , Biv
(k)

i−̃1) ⊂
range(V

(k)
i ), which implies that w

(k+1)
i ∈ range(V

(k)
i ) and Kk+1i ⊂ range(V

(k)
i ). The k+1

vectors w
(1)
i , . . . , w

(k+1)
i are not linearly independent because they span Kk+1i , which is

a subspace of the k dimensional subspace range(V
(k)
i ). Obviously, Kmi �= range(V

(m)
i )

and therefore K̂m �= range(V (m)), and we conclude that {H(m)
i }k+1,k �= 0 if K̂m =

range(V (m)).

Finally we will prove that K̂m = range(V (m)) if {H(m)
i }j+1,j �= 0, j = 1, . . . , m − 1

and bi �= 0. Because of part 1 we only have to show that range(V (m)) ⊂ K̂m, and this is

equivalent to range(V
(m)
i ) ⊂ Kmi . This can be shown by induction on k, k = 1, . . . , m−1.

Clearly range(V
(1)
i ) ⊂ K1

i . Suppose that range(V
(k)
i ) ⊂ Kki , then from (4.22a) it follows

that

v
(k+1)
i =

Biv
(k)

i−̃1 − V
(k)
i H

(m)
i (1:k, k)

{H(m)
i }k+1,k

. (4.27)

Here V
(k)
i H

(m)
i (1:k, k) ∈ Kki ; moreover

v
(k)

i−̃1 ∈ Kk
i−̃1 = span(w

(1)

i−̃1, . . . , w
(k)

i−̃1) .

This leads to

Biv
(k)

i−̃1 ∈ span(Biw
(1)

i−̃1, . . . , Biw
(k)

i−̃1) = span(w
(2)
i , . . . , w

(k+1)
i ) ⊂ Kk+1i ,

and from (4.27) it follows that v
(k+1)
i ∈ Kk+1i . Now it is easily seen that range(V

(k+1)
i ) ⊂

Kk+1i , and we conclude that K̂m = range(V (m)). �
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4.3.2 Computing the approximate solution

In step 3 of Algorithm 4.1, the approximate solution of Ax = b is computed in a similar
way as in GMRES. So, we seek an approximate solution x(m) that solves the least-squares
problem

min
x(m)∈range(V (m))

‖b− Ax(m)‖ .

Since x(m) ∈ range(V (m)), we may substitute

x(m) = V (m)y .

This simplifies the least-squares problem:

‖b− Ax(m)‖ = ‖b−AV (m)y‖ (4.28a)

= ‖b− V (m+1)H(m)y‖ ≡ J(y) , (4.28b)

here we have used relation (4.24b). By construction (Algorithm 4.1) we have that

bi = δiv
(1)
i , i = 1, . . . , p, with δi = v

(1)
i

T
bi, and bi is orthogonal to v

(j)
i for j ≥ 2. Hence

bi can be written as
bi = V

(m+1)
i δie1 ,

with e1 = [1, 0, . . . , 0]T . This leads to the following expression for b:

b =

 V (m+1)
1 . . .

V
(m+1)
p

 δ1e1...
δpe1

 = V (m+1)d , with d =

 δ1e1...
δpe1


Now the function J(y) in (4.28b), which has to be minimized, becomes

J(y) = ‖V (m+1)( d − H(m)y )‖ (4.29a)

= ‖d − H(m)y‖ . (4.29b)

Here we have used that V (m+1) is an orthogonal matrix, because the matrices V
(m+1)
i , i =

1, . . . , p are orthogonal. The above results are exploited in step 3 of Algorithm 4.1, with

y replaced by y =
[
yT1 , . . . , y

T
p

]T
. Methods to solve this least-squares problem of size

mp× (m+ 1)p, will be discussed in Section 4.4.
For p = 1 the linear system (I − B1)x1 = b1 reduces to the least-squares problem

miny ‖e1 − (Ĩ −H1)y‖. In this case p-cyclic GMRES is nearly equivalent to GMRES.
The following theorem is useful in order to solve the least-squares problem:

Theorem 4.2 The matrix H (m), defined in (4.24a) and (4.24b), has full rank.

Proof Suppose that H(m) does not have full rank, then there is a y �= 0 such that
H(m)y = 0. In that case AV (m)y = V (m+1)H(m)y = 0. The vector w = V (m)y is nonzero
since V (m) is of full rank (V (m) is orthogonal). But Aw = 0, and this is a contradiction
because A is nonsingular, so H(m) has full rank. �
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Theorem 4.2 implies that the least-squares problem has a unique solution. An im-
mediate consequence is that p-cyclic GMRES cannot break down if m ≤ n. So, even
after convergence, p-cyclic GMRES does not break down. The full rank property of
H(m) leads to the following theorem:

Theorem 4.3 The p-cyclic GMRES algorithm has converged if {H (m)
i }m+1,m = 0 for

all i ∈ {1, . . . , p}.

Proof The rows m+ 1, 2(m+ 1), . . . , p(m+ 1) of H (m) are zero if {H(m)
i }m+1,m = 0

for all i ∈ {1, . . . , p}. The m + 1-st entry of the vector δie1 is also zero. Therefore,
the solution of the least-squares problem (4.29) does not change if we delete the (zero)
rows m + 1, 2(m + 1), . . . , p(m + 1). Now the least-squares problem is reduced to a
linear system of full rank which has a unique solution since H (m) has full rank. So, the
minimum of J(y) in (4.29) is zero and the p-cyclic GMRES algorithm has converged. �

The converse of Theorem 4.3 is not true in general. This is shown by the next
example:

Example In this example 2-cyclic GMRES converges in two steps (m = 2), but

nevertheless {H(m)
1 }m+1,m �= 0:

A =


1 0 0 2 1 3
0 1 0 1 3 0
0 0 1 0 4 1
2 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , b =


1
0
0
1
0
0

 .

The solution of the nonsingular linear system Ax = b is x = 1/3 [1,−1, 0, 1, 0, 0]T .
Algorithm 4.1 generates the matrices

V
(3)
1 =

−1 0 0
0 −1 0
0 0 −1

 , V (3)
2 =

−1 0 0
0 1 0
0 0 1

 , H(2)
1 =

 −2 1
−1 3
0 4

 , H(2)
2 =

 −2 0
0 0
0 0

 .
There is convergence after two steps since

x ∈ range(V (2)) = range


−1 0 0 0
0 −1 0 0
0 0 0 0
0 0 −1 0
0 0 0 1
0 0 0 0

 .

After one step {H(1)
1 }2,1 = 0, but this is not sufficient for convergence. Note that

{H(1)
1 }2,1 = 0 does not imply that one block has converged: After one iteration both

block 1 and 2 of Ax = b have a nonzero residual. �

Theorem 4.3 can be used to show that p-cyclic GMRES converges fast if the matrices
Bi have low rank:
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Theorem 4.4 Let rank(Bi) ≤ k and {H(k)
i }j+1,j �= 0 for i = 1, . . . , p and j = 1, . . . , k,

then p-cyclic GMRES converges in at most k + 1 iterations.

Proof Premultiplying (4.23) with V
(m+1)
i

T
and substituting m = k + 1 yields

H
(k+1)
i = V

(k+2)
i

T
BiV

(k+1)

i−̃1 .

For general matrices M and N with matching row and column dimensions, the relations
rank(MN) ≤ rank(M) and rank(MN) ≤ rank(N) hold. So, for the matrix H

(k+1)
i we

have
rank(H

(k+1)
i ) = rank(V

(k+2)
i

T
BiV

(k+1)

i−̃1 ) ≤ rank(Bi) . (4.30)

In the k + 1-st iteration of p-cyclic GMRES {H (k+1)
i }k+2,k+1 has to be zero, otherwise

rank(H
(k+1)
i ) = k+1, (this is easily seen because H

(k+1)
i is a Hessenberg matrix) which is

not possible because of (4.30). Now we use Theorem 4.3 to show that p-cyclic GMRES
has converged. �

Krylov subspace methods, like BiCGSTAB, GMRES, and QMR, offer the possibility
of taking advantage of a suitably chosen initial guess. Of course, we can do the same
for the methods discussed in this section and in Section 4.2: Suppose the initial guess
is x̄ and the correction is xc, then solve Axc = b̄ ≡ b − Ax̄ with p-cyclic GMRES or a
method of Section 4.2 by replacing b by b̄ in all formulas. The solution of the p-cyclic
linear system (4.6) is x = xc + x̄.

4.3.3 The periodic Schur form

In this section we will discuss the periodic Schur form because of its relation to p-cyclic
matrices and p-cyclic Arnoldi. The standard Arnoldi iteration [74, Ch. 6], [89, Ch. 7],
and variants of it, e.g., [80], are popular methods for computing a partial Schur form of
a general square matrix B: BQk = QkRk, here Qk is an unitary n by k matrix and Rk
is an upper triangular k by k matrix. The columns of Qk are the Schur vectors and the
diagonal elements of Rk are eigenvalues of B.

Bojanczyk, Golub, and Van Dooren introduced the periodic Schur decomposition in
[12], see also [81]. The periodic Schur decomposition can be formulated as follows:

Let the matrices Bi, i = 1, . . . , p be given. Then there exist unitary matrices Qi and
upper triangular matrices Ri, i = 1, . . . , p, such that

I 0 0 −B1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I


 Q1 0 0

0
. . . 0

0 0 Qp

 =

 Q1 0 0
0

. . . 0
0 0 Qp




I 0 0 −R1

−R2 I 0 0
0

. . .
. . . 0

0 0 −Rp I

 , (4.31)
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moreover QHp Bp · . . . ·B1Qp = Rp · . . . ·R1 is upper triangular and the Qi can be chosen
so that the diagonal elements (eigenvalues) of Rp · . . . · R1 appear in any desired order.

A real matrix variant of the periodic Schur form is also possible. Then Ri is block
upper triangular with 1 by 1 or 2 by 2 blocks on the diagonal. In the relation (4.31) we
recognize a more or less similar structure to (4.24a). The periodic QR algorithm [12]
is a direct method for computing this periodic Schur decomposition. A partial periodic
Schur form of order k can be defined as (4.31) by replacing the following matrices:
Qi ← Qi(:, 1:k), Ri ← Ri(1:k, 1:k) and for the right-hand side of (4.31) I ← Ik. This
partial periodic Schur form may be of interest for identifying the slow converging modes
or the unstable modes of a periodic equation or for computing a few eigenvalues of the
p-cyclic matrix.

A (possibly implicitly) restarted p-cyclic Arnoldi method might be useful for com-
puting a partial periodic Schur form of a p-cyclic matrix. This should be done in a
similar way as variants of Arnoldi’s method compute a standard partial Schur form.
Note that such a p-cyclic Arnoldi method will have nice parallelization properties.

4.4 Solving the reduced least-squares problem

In step 3 of Algorithm 4.1, the reduced least-squares problem

min
y

‖d − H(m)y‖ (4.32)

has to be solved. There are several ways for doing this and in this subsection we
will discuss some of these. For each approach we display the approximate costs for
solving (4.32), and discuss other properties. These approximate costs are based on the
assumption that p is relatively small compared with m, say p < m. We will see that
the approach of Section 4.4.3 is preferable if p2 � 2n. The other approaches may be of
interest if p is relatively large compared with m and n. The FOM approach of (4.4.1)
is mainly of theoretical interest because it generalizes the relation between standard
GMRES and FOM.

4.4.1 p-cyclic FOM

In the standard GMRES method, an m+ 1 by m least-squares problem

min
y

‖βe1 −Gmy‖

is solved, with Gm a Hessenberg matrix. An approximate solution to this problem can
be found by dropping the last row of Gm and the last entry of e1. Then the least-
squares problem reduces to a linear system and the resulting method is called FOM
(full orthogonalization method) [76]. In the following we will see that we can apply a
similar trick to (4.32). This gives a relatively inexpensive approximate solution of (4.32).

The FOM approximation for (4.32) is obtained by neglecting the matrix entries

{H(m)
i }m+1,m, i = 1, . . . , p, of H(m). So, we delete the rows m+1, 2(m+1), . . . , p(m+1)
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of (4.32) and an approximate solution yF of (4.32) is found by solving
I 0 0 −H(m,�)

1

−H(m,�)
2 I 0 0
0

. . .
. . . 0

0 0 −H(m,�)
p I

 yF =

 δ1e1...
δpe1

 , (4.33)

where H
(m,�)
i = H

(m)
i (1:m, 1:m), and e1 is the unit vector [1, 0, . . . , 0]T of suitable di-

mension. The p-cyclic FOM solution xF,(m) is defined by

xF,(m) = V (m)yF . (4.34)

Applying block Gaussian elimination to (4.33) leads to a reduced linear system

(I −H(m,�)
p · . . . ·H(m,�)

1 )yFp = rhs ,

and yF can be computed by a forward recursion. Solving (4.33) by block Gaussian
elimination costs approximately

1

3
pm3 +

1

2
p2m2 flops .

The elimination procedure may not be stable if one or more H
(m,�)
i , i = 1, . . . , p, has

large singular values, see for instance [7]. In that case, Gaussian elimination with a
suitable pivot strategy can be used for (4.33), but this may be more expensive. Another
disadvantage is that (4.33) may be singular.

Instead of interpreting (4.33) as an approximation to (4.32) there is another way of
deriving (4.33): We want to solve Ax = b approximately, with x(m) ∈ range(V (m)), so
we write x(m) = V (m)y. The residual is

r(m) = b− Ax(m) = b−AV (m)y.

In the Ritz-Galerkin approach the residual r(m) is orthogonal to the search space: b −
AV (m)y ⊥ range(V (m)). This leads to V (m)T (b− AV (m)y) = 0, or

V (m)TAV (m)y = V (m)Tb , (4.35)

and this equation is precisely the same as (4.33).
In Section 4.4.4 we will derive some relations between the convergence of p-cyclic

GMRES and the convergence of p-cyclic FOM

4.4.2 Structured QR factorization

A common way to solve the least-squares problem (4.32) is by QR factorization of H (m):
Q(m)R(m) = H(m), with an upper triangular R(m) ∈ Rmp×(m+1)p and an orthogonal
Q(m) ∈ R(m+1)p×(m+1)p, and (using Matlab notation)

y = R(m)(1:mp, 1:mp)−1{Q(m)Td}(1:mp) .



58 Chapter 4. A GMRES-type method for p-cyclic matrices

A QR factorization can be constructed by successively applying Householder reflections
Qk, k = 1, . . . , pm toH(m) and d in order to transform H(m) to an upper triangular form,
see [42, Ch. 5]. Fortunately, the Householder vectors vk, which define the reflections
Qk = I − 2vkv

T
k , are sparse (or more precisely, structured) vectors, because of the

special structure of (4.32). The QR factorization for the structured matrix H (m) costs
approximately

8pm3 + 4p2m2 flops , (4.36)

if the special structure of H(m) is exploited. This is much more expensive than the
block Gaussian elimination approach in FOM. However, the QR approach gives the
exact least-squares solution and the QR approach may be more stable. Figure 4.2
shows the nonzero pattern of a matrix H (6), with p = 4, and the nonzero pattern of R(6)

from the QR factorization of H(6).
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Figure 4.2: Left: nonzero pattern ofH(6), with p = 4. Right: nonzero pattern
of R(6), Q(6)R(6) = H(6).

In practice m is not known beforehand, and m will be increased until the least-
squares problem (4.32) can be solved with sufficiently small residual norm. The standard
GMRES method for linear systems updates the QR factorization of the Hessenberg
matrix each iteration. This enables a cheap computation of the residual norm of the
linear system Ax = b without actually computing ‖b − Ax‖. In p-cyclic GMRES this
is slightly more complicated. Updating the QR factorization of H(m), after m has been
increased by one, is possible, but the accumulated costs for the QR factorization of
H(m) would be much higher than 8pm3 + 4p2m2 flops: O(p2m3) flops. However, after
reordering H(m), a cheaper incremental QR factorization is possible, assuming that
m� p. We will discuss this in Section 4.4.3.

In the remainder of this section we will propose a heuristic for an inexpensive estima-
tion of the residual norm of (4.32). A stopping criterion can be based on this heuristic,
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which makes the QR factorization of this section slightly more useful for practical ap-
plications.

Suppose that Bi = B, i = 1, . . . , p, then block Gaussian elimination of x1, . . . , xp−1
in the p-cyclic linear system (4.6) leads to (I − Bp)xp = b̂p. This can also be written

as (I − ν1B) · (I − ν2B) · . . . · (I − νpB)xp = b̂p, with νpi = 1. This system can be

solved by solving successively (I − ν1B)w1 = b̂p, (I − ν2B)w2 = w1, etcetera. Solving

(I − νiB)wi = wi−1 with standard GMRES gives a relative residual norm of miny ‖(Ĩ −
νiGm)y − e1‖, where Gm is the Hessenberg matrix defined by the Arnoldi process for
the Krylov subspace K(B,wi−1).

This suggests that the value of miny ‖(Ĩ − αH(m)
i )y − e1‖ tells something about the

convergence of p-cyclic GMRES. We propose the following heuristic for the residual
norm of (4.6):

‖r(m)‖ = ‖b− Ax(m)‖
≈ χm ≡ ‖b‖

∑
i

max
α∈{−1,1}

min
y

‖(Ĩ − αH(m)
i )y − e1‖ . (4.37)

We compute the maximum for two values of α, with |α| = 1. Other values of α, with
|α| = 1, are possible, but this does not seem to improve the estimation in practice,

because miny ‖(Ĩ−αH(m)
i )y− e1‖ often has a maximum at α = 1 or α = −1. The value

of miny ‖(Ĩ − αH(m)
i )y − e1‖ is easy to compute with a QR factorization of Ĩ − αH(m)

i .
Therefore, the cost of computing (4.37) is relatively small: O(pm2) flops.

For the circuit simulation problems considered in Section 4.13.1, with p ≤ 8, we
found that roughly 0.1χ�1.2m ≤ ‖r(m)‖ ≤ 10χ�0.8m�, with χm defined in (4.37). The
functions � · � and � · � round to the next and previous nearest integer, respectively.

4.4.3 Block QR factorization

In this section we consider the solution of a reordered form of the least-squares prob-
lem (4.32). From equation (4.24b): AV (m) = V (m+1)H(m) it follows that H(m) =

V (m+1)TAV (m). We will define the reordered matrix Ĥ(m) by

Ĥ(m) = V̂ (m+1)TAV̂ (m) , (4.38)

where V̂ (j) is a column permutation of V (j) according to the order in which these columns
are constructed by Algorithm 4.1. So, the reordered matrix V̂ (j) is:

V̂ (j) =


v
(1)
1 0 . . . 0 v

(2)
1 0 . . . 0 . . . v

(j)
1 0 . . . 0

0 v
(1)
2 0 0 v

(2)
2 0 . . . 0 v

(j)
2 0

...
. . .

...
. . . . . .

...
. . .

0 0 v
(1)
p 0 0 v

(2)
p . . . 0 0 v

(j)
p

 . (4.39)

Figure 4.3 shows the nonzero pattern of a matrix Ĥ(6), with p = 4 and the nonzero
pattern of R(6) from the QR factorization of Ĥ(6). The matrix Ĥ(j+1) can be obtained
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Figure 4.3: Left: nonzero pattern of the reordered matrix Ĥ(6), with p = 4.
Right: nonzero pattern of R(6), Q(6)R(6) = Ĥ(6).

in step j + 1 of p-cyclic GMRES by appending p new columns at the right-hand side of
Ĥ(j).

In the standard GMRES method, a sequence of Givens rotations is computed to
eliminate the subdiagonal entries of the Hessenberg matrix. Now observe that Ĥ(m) has
a block Hessenberg form, and instead of a sequence of Givens rotations we can apply a
sequence of 2p by 2p orthogonal transformations to the block rows of Ĥ(m) to transform
Ĥ(m) to an upper triangular matrix.

The reordered least-squares problem is

min
ŷ

‖d̂ − Ĥ(m)ŷ‖ . (4.40)

Here d̂ is the vector [δ1, δ2, . . . , δp, 0, 0, . . . , 0]T of length p(m+ 1). The p-cyclic GMRES

solution is x(m) = V̂ (m)ŷ, where ŷ minimizes (4.40). A block partition of (4.40) with p
by p blocks is defined by:

Ĥ(m) =


H11 H12 . . . H1m

H21 H22
...

H32
...

. . .
...

Hm+1,m

 and d̂ =


d1
0
...
...
0

 .
Algorithm 4.2 solves the least-squares problem (4.40). The m + 1 by m + 1 block

matrix Ωj transforms the subdiagonal blocks Hj+1,j to zero and transforms the diagonal

blocks Hjj to upper triangular matrices: a QR factorization of Ĥ(m) is constructed. The

right-hand side d̂ is also premultiplied by the orthogonal matrix Ωj .
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Algorithm 4.2: Solve the least-squares problem (4.40)

1. Initialization:

Set H [0] = Ĥ(m) and d[0] = d̂
2. Loop:

for j = 1 : m
Make a QR factorization:

Qj Rj =

[
H

[j−1]
jj

Hj+1,j

]
with a 2p by 2p matrix Qj

Define:

Ωj =

 Ip(j−1) Qj
Ip(m−j)


Transform H [j−1] and d[j−1]:
H [j] = ΩTj H

[j−1]

d[j] = ΩTj d
[j−1]

end
3. Finish:

ŷ = {H [m](1:mp, 1:mp)}−1 d[m](1:mp)

Define the orthogonal matrix Q(m)T = ΩTm · . . . · ΩT1 , then at the end of step 2 we
have that

Q(m)T Ĥ(m) = H [m] =


H

[m]
11 H

[m]
12 . . . H

[m]
1m

0 H
[m]
22

...
0

...
. . . H

[m]
mm

0

 and Q(m)T d̂ = d[m] =


d
[m]
1...
...
...

d
[m]
m+1

 ,

where H [m] is an upper triangular matrix. So (4.40) transforms to

min
ŷ

‖d[m] − H [m]ŷ‖ , (4.41)

which is solved in step 3 of Algorithm 4.2. The minimum of (4.41) is equal to ‖d[m]m+1‖.
In summary we have that

min
x(m)∈V (m)

‖b− Ax(m)‖ = min
ŷ

‖d̂ − Ĥ(m)ŷ‖ (4.42a)

= min
ŷ

‖d[m] − H [m]ŷ‖ = ‖d[m]m+1‖ . (4.42b)

In an actual implementation of p-cyclic GMRES the computations of Algorithm 4.2
can be rearranged such that d[j] and the QR factorization of Ĥ(j) are updated at each
iteration. For example, in iteration j, Ω1, . . . ,Ωj−1 are applied to the j-th block column
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of Ĥ(m). Then the QR factorization QjRj is computed in order to transform the j-th
column to upper triangular form. The right-hand side is also transformed with QTj .

The norm of the residual ‖b − Ax(j)‖ can be monitored by computing ‖d[j]j+1‖ at each
iteration. The Matlab code of P (GMRES), see Appendix A and Chapter 5, shows how
to update a QR factorization of a block upper Hessenberg matrix Ĥ(m).

In an efficient implementation of Algorithm 4.2, Qj is not computed explicitly, but
is stored as a sequence of (structured) Householder transformations that exploit the
structure of Ĥ(m).

The matrix H(m) has lower bandwidth p+m, while Ĥ(m) has lower bandwidth p+1,
so for Ĥ(m) fewer lower triangular entries have to be eliminated in the QR factorization.
However, the R factor of Ĥ(m) has much more fill-in, which is shown by Figure 4.3.
Therefore, the QR factorization of Ĥ(m) may be more expensive than the QR factoriza-
tion of H(m), depending on p and m. The QR factorization of Ĥ(m) costs approximately

2p3m2 flops . (4.43)

The costs (4.43) are more expensive than the approach of the previous Section (4.36) if
(to first order) p2 > 4m.

Note that the Householder orthogonalization in Algorithm 4.1 costs approximately

4pm2n flops .

So the costs (4.43) for the least-squares system are negligible compared with the orthog-
onalization if p2 � 2n.

4.4.4 Relations between p-cyclic GMRES and p-cyclic FOM

Relationships between the convergence of standard GMRES and the convergence of
standard FOM have been derived by (among others) Cullum and Greenbaum [18] and
Brown [16]. Deriving generalizations of these relationships for the p-cyclic case is not
always possible as we will see here.

The p-cyclic FOM solution is defined in (4.33) and (4.34). In order to derive a
relationship between p-cyclic GMRES and p-cyclic FOM, the reordering of Section 4.4.3
turns out to be convenient. The reordered reduced FOM system is given by

Ĥ(m,�)ŷF = d̂(1:mp) , (4.44)

where Ĥ(m,�) = Ĥ(m)(1:m, 1:m). The FOM solution is given by xF,(m) = V̂ (m)ŷF.
After step m− 1 and step m of Algorithm 4.2 we have that

H [m−1] =

 . . .
...

0 H
[m−1]
mm

0 Hm+1,m

 , d[m−1] =

 ...

d
[m−1]
m

0

 ,
and

H [m] =

 . . .
...

0 H
[m]
mm

0 0

 , d[m] =


...

d
[m]
m

d
[m]
m+1

 ,
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respectively. Step m− 1 and step m are related by[
Ca Sb
Sa Cb

] [
H

[m−1]
mm

Hm+1,m

]
=

[
H

[m]
mm

0

]
, (4.45)

and [
Ca Sb
Sa Cb

] [
d
[m−1]
m

0

]
=

[
d
[m]
m

d
[m]
m+1

]
, (4.46)

where Ca, Sa, Cb, Sb are defined by a block partition of QTj :

QTj =

[
Ca Sb
Sa Cb

]
.

The p by p matrices Ca, Sa, Cb, Sb are generalizations of the sine s and the cosine c
arising in standard GMRES. The orthogonal transformations QT1 , . . . , Q

T
m−1, have put

the linear system (4.44) into upper block triangular form. Therefore, the m-th block of
ŷF,(m) is given by

ŷF,(m)m = H [m−1]
mm

−1
d[m−1]
m . (4.47)

The residual norm of the FOM solution is

‖rF,(m)‖ = ‖d̂− Ĥ(m)ŷF,(m)‖ (4.48a)

= ‖Hm+1,mH [m−1]
mm

−1
d[m−1]
m ‖ (4.48b)

= ‖C−1
b Sad

[m−1]
m ‖ . (4.48c)

The last equality follows from the last block row of (4.45). The p-cyclic GMRES solution
has residual norm

‖rG,(m)‖ = ‖d[m]m+1‖ = ‖Sad[m−1]
m ‖ . (4.49)

Formulas (4.48) and (4.49) lead to the inequality:

‖rG,(m)‖/‖Cb‖ ≤ ‖rF,(m)‖ ≤ ‖rG,(m)‖ ‖C−1
b ‖ .

For p = 1, this simplifies to ‖rG,(m)‖ / |c| = ‖rF,(m)‖, a well known result [16], [18]. Note

that we have assumed that both H
[m−1]
mm and Cb are nonsingular.

The next theorem gives another relation between p-cyclic FOM and p-cyclic GMRES.

Theorem 4.5 If the residual norm of p-cyclic GMRES stagnates, that is ‖rG,(m)‖ =
‖rG,(m−1)‖ �= 0, then the linear system (4.44) is singular, and therefore the p-cyclic
FOM solution is not defined.

Proof The residual norm of p-cyclic GMRES at iteration m− 1 or m is equal to the
minimum value of a least-squares problem:

min
ŷ∈Rpm

‖d̂− Ĥ(m)ŷ‖ = min
ŷ∈Rp(m−1)

‖d̂− Ĥ(m−1)ŷ‖ .
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It follows that

‖d[m]m+1‖ = min
ŷ∈Rpm

‖d̂− Ĥ(m)ŷ‖ = min
ŷ∈Rp(m−1)

‖d̂− Ĥ(m−1)ŷ‖ = ‖d[m−1]
m ‖ . (4.50)

The matrix Qj is orthogonal, so from (4.46) it follows that

‖
[
d
[m−1]
m

0

]
‖ = ‖

[
d
[m]
m

d
[m]
m+1

]
‖ . (4.51)

Combining (4.50) and (4.51) leads to ‖d[m]m ‖ = 0, and therefore d
[m]
m = 0. From the

equality Cad
[m−1]
m = d

[m]
m = 0 we see that Ca is singular (note that d

[m−1]
m �= 0, otherwise

p-cyclic GMRES has converged after m − 1 iterations). The next equation shows that

this implies that H
[m−1]
mm is singular too.

CTa H
[m]
mm = CTa H

[m]
mm + STa 0

= CTa CaH
[m−1]
mm + CTa SbHm+1,m + STa SaH

[m−1]
mm + STa CbHm+1,m

= H [m−1]
mm .

Here we used formula (4.45) and the orthogonality of QTj : CTa Ca + STa Sa = I and

CTa Sb + STa Cb = 0. From (4.47) we see that ŷF is not defined if H
[m−1]
mm is singular. We

conclude that the p-cyclic FOM solution is not defined if p-cyclic GMRES stagnates. �

Brown [16] has proved that the solution of standard FOM is not defined if and only if
standard GMRES stagnates. In the p-cyclic case this is different because the converse
of Theorem 4.5 is not true in general, as can be shown easily by construction.

4.5 Convergence analysis for a special case

It is difficult to analyse the convergence of p-cyclic GMRES, with p > 1, for the general
case of the p-cyclic linear system (4.6), repeated here for convenience:

I 0 0 −B1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I



x̂1...
...
x̂p

 =


b̂1...
...

b̂p

 .
However, p-cyclic GMRES converges at least as fast as standard GMRES, see (4.20).
In this section we will analyse the convergence for a special case:

Bi = B = constant ,

with B diagonalizable, in combination with the initial guess of x(0)-GMRES, see Section
4.2.2. The linear system is:

I 0 0 −B
−B I 0 0
0

. . .
. . . 0

0 0 −B I



x1
x2...
xp

 =


0
...
0

b̂p

 , (4.52)
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or more compactly Ax = b̂. In Algorithm 4.1 we will choose the vector w equal to b̂p.
This simplifies the p-cyclic GMRES process:

V
(m)
i = V (m)

∗ , H
(m)
i = H(m)

∗ , for i = 1, . . . , p .

The following relation holds for V
(m)
∗ and H

(m)
∗ : BV

(m)
∗ =V

(m+1)
∗ H

(m)
∗ . This is the stan-

dard Arnoldi relation associated with the Krylov subspace K(B, b̂p).

We will assume that {H(m)
∗ }j+1,j �= 0, j = 1, . . . , m−1, otherwise the iterative process

has converged because of Theorem 4.3. This assumption implies that range(V
(m)
∗ ) =

K(B, b̂p). The approximate solution x(m) of p-cyclic GMRES satisfies

x
(m)
i ∈ range(V (m)

∗ ) = K(B, b̂p)

= { v | v = Pm−1(B)b̂p, P
m−1 ∈ P

m−1} ,

where Pk is the set of polynomials with degree less than or equal to k.
After m iterations the residual norm of p-cyclic GMRES is

‖r(m)‖ = min
xi∈K(m)

∗

‖b̂− Ax‖ .

We will find an upper bound for ‖r(m)‖ if we select a suboptimal solution x(m):

x(m) =


x
(m)
1...

x
(m)
p−1
x
(m)
p

 =


BPm−p(B)b̂p...

Bp−1Pm−p(B)b̂p
Pm−p(B)b̂p

 ,
(assuming that p ≤ m). For this approximate solution x(m) the residual is

r(m) = b̂− Ax(m) =


r
(m)
1...

r
(m)
p−1
r
(m)
p

 =


0
...
0

b̂p − (I −Bp)Pm−p(B)b̂p

 .
We have assumed that B is diagonalizable: B=WDW−1, with D=diag(λ1, . . . , λn).

This leads to an upper bound for ‖r(m)‖/‖r(0)‖:

‖r(m)‖
‖r(0)‖ =

‖b̂p − (I −Bp)Pm−p(B)b̂p‖
‖b̂p‖

≤ ‖I − (I −Bp)Pm−p(B)‖

= ‖W (I − (I −Dp)Pm−p(D))W−1‖
≤ κ(W )‖I + (Dp − I)Pm−p(D)‖
= κ(W )ε(m) ,

where κ(W ) is defined by: κ(W ) = ‖W‖ ‖W−1‖, and ε(m) is defined by:

ε(m) = min
Pm−p∈Pm−p

max
i=1,...,n

|1 + (λpi − 1)Pm−p(λi)| . (4.53)
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If B is such that the eigenvalues λi, i = 1, . . . , n are real, and 0 ≤ λi ≤ β < 1, i =
1, . . . , n, then we can use Chebyshev polynomials in order to derive an upper bound for
ε(m).

ε(m) = min
Pm−p∈Pm−p

max
i=1,...,n

|1 + (λpi − 1)Pm−p(λi)| (4.54a)

≤ min
P∈Pm−p

max
z∈[0,β]

|1 + (zp − 1)P (z)| . (4.54b)

In Section 4.6.1 we will show that there is an important class of problems for which
0 ≤ λi ≤ β < 1.

The minimization problem (4.54b) can be reformulated as: find a polynomial P̃ (z)
of degree m− p such that

|P̃ (z) − 1

1 − zp |

is small in some sense, for z ∈ [0, β]. This problem can be solved approximately with

Chebyshev approximation theory, see for example [17, Ch. 3], which gives a P̃ that is
a linear combination of m− p shifted and scaled Chebyshev polynomials. However, we
will focus on finding a polynomial

q(z) = 1 + (zp − 1)P (z)

of degree m which is small on [0, β] and

q(zi) = 1 ,

for the roots zi of zp − 1 = 0:

zi = cos(
2πi

p
) + i sin(

2πi

p
), i = 0, . . . , p− 1 , (4.55)

where i =
√
−1. More precisely, the minimization problem (4.54b) is equivalent to

min
q∈P

m

q(zi)=1,i=0,...,p−1

max
z∈[0,β]

|q(z)| .

It is well known that for p = 1 the minimum of problem (4.54b) is reached by the
scaled and shifted Chebyshev polynomial

sm(z) =
Tm(2z

β
− 1)

Tm(2·1
β
− 1)

. (4.56)

For p > 1, the polynomial sm satisfies sm(z0)=1, but in general it is not true that
sm(zi) = 1, i = 1, . . . , p − 1. For a polynomial q which is small on [0, β] and q(zi) = 1
for all i = 0, . . . , p− 1, it is natural to take a linear combination of p scaled and shifted
Chebyshev polynomials:

q(z) =

p−1∑
j=0

sm−j(z)dj . (4.57)
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In general this linear combination will not give us the optimal solution of (4.54b), but
the suboptimal solution is rather close to the optimal solution, as we will see later. The
condition q(zi) = 1 gives a linear system of p equations: sm(z0) . . . sm−p+1(z0)...

...
sm(zp−1) . . . sm−p+1(zp−1)

 d0...
dp−1

 =

 1
...
1

 . (4.58)

The linear system (4.58) has complex coefficients, but surprisingly the solution d =
[d0, . . . , dp−1]

T is real. This can be shown by taking the complex conjugate (denoted by
a ¯) of both the left-hand side and the right-hand side of (4.58): sm(z̄0) . . . sm−p+1(z̄0)...

...
sm(z̄p−1) . . . sm−p+1(z̄p−1)

 d̄0...
d̄p−1

 =

 1
...
1

 . (4.59)

Then note that the roots zi of zp = 1 are related to each other: if zi �∈ R then z̄i = zp−i.
So a simple row permutation of the linear system (4.58) leads to (4.59) with d̄ replaced
by d. This shows that d̄ = d, so that d is real. Here we have assumed that the linear
system has a unique solution. Our numerical experiments (not reported) indicate that
this is a reasonable assumption.

We have computed the solution d of (4.58) for a number of combinations of p, m, and
b, and we always found dj ≥ 0, j = 0, . . . , p− 1. This leads to the following conjecture:

Conjecture 4.6 The linear system (4.58), with zi and sk(z) defined by (4.55) and
(4.56) respectively, 0 < β < 1, and with p ≤ m, is nonsingular and has a positive
solution: dj ≥ 0, j = 0, . . . , p− 1.

For the special case p = 2, we will prove Conjecture 4.6. With p = 2 and sm(z0) =
sm−1(z0) = 1 (note that z0 = 1) formula (4.58) simplifies to[

1 1
sm(−1) sm−1(−1)

] [
d0
d1

]
=

[
1
1

]
.

The solution of this linear system is

d0 =
sm−1(−1) − 1

sm−1(−1) − sm(−1)
, d1 =

sm(−1) − 1

sm(−1) − sm−1(−1)
.

For m even we know that sm(−1) ≥ 1 and sm−1(−1) ≤ 0, and we find 0 ≤ d1 ≤ 1. With
d0 + d1 = 1 it follows that 0 ≤ d0 ≤ 1. Similarly we can prove that di ≥ 0 for odd m,
this proves the conjecture for the special case p = 2.

Now assume that Conjecture 4.6 holds for all p ≥ 1 and observe that the first row of
(4.58) is d0 + . . .+dp−1 = 1. We conclude that the linear combination (4.57) is a convex
combination. The following relation holds if z ∈ [0, β]:

|q(z)| = |d0sm(z) + . . .+ dp−1sm−p+1(z)|
≤ |d0sm(z)| + . . .+ |dp−1sm−p+1(z)|
≤ d0sm(β) + . . .+ dp−1sm−p+1(β) = q(β)

≤ d0sm−p+1(β) + . . .+ dp−1sm−p+1(β) = sm−p+1(β)
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We obtain the following upper bound for the relative residual norm if we combine the
previous results.

‖r(m)‖
‖r(0)‖ ≤ κ(W )q(β) ≤ κ(W )sm−p+1(β) =

κ(W )

Tm−p+1(2/β − 1)
(4.60)

In Section 4.13.2 we will show experimentally that this upper bound is rather sharp.
We already stated that the linear combination q of scaled and shifted Chebyshev

polynomials is suboptimal for the minimization problem (4.54b). The next inequalities
give some insight in the degree of optimality of q:

sm(β) = min
t∈P

m

t(1)=1

max
z∈[0,β]

|t(z)| ≤ min
t∈P

m

t(zi)=1, i=0,...,p−1

max
z∈[0,β]

|t(z)| (4.61a)

≤ max
z∈[0,β]

|q(z)| (4.61b)

= q(β) ≤ sm−p+1(β) (4.61c)

In Figure 4.4, the polynomial q is plotted form = 16, p = 4, β = 0.95, and κ(W ) = 1.
We see that the absolute value of the local extrema of q are close to q(β), which indicates
that the polynomial q(z) is near optimal.

q(
z)

→

0 0.2 0.4 0.6 0.8
-6

-4

-2

0

2

4

6
x10 -3

z →
Figure 4.4: Polynomial q for m = 16, p = 4, and β = 0.95. Some values
of q and s in formula (4.61) are marked in the figure: ×: (e, sm−p+1(β)) =
(0.95, 5.4 · 10−3), ◦: (e, q(β)) = (0.95, 4.4 · 10−3), �: (e, sm(β)) = (0.95, 1.4 ·
10−3).

Now we will compare the upper bound (4.60) for the parallel case with the sequential
case for this specific example (m = 16, p = 4, β = 0.95, and κ(W ) = 1). Suppose that
both in the parallel case and in the sequential case the number of matrix-vector products
per processor is 16. The relative residual norm (4.60) is

‖r(m)par ‖/‖r(0)par‖ ≤ (T13(2/β − 1))−1 = 5.4 · 10−3
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for the parallel case. For the sequential case we have to consider 4 iterations applied to
the reduced linear system (I −B4)x4 = b̂4. The relative residual norm is

‖r(m)seq ‖/‖r(0)seq‖ ≤ (T4(2/β
4 − 1))−1 = 0.050 ,

because the eigenvalues of B4 are in the interval [0, β4], see also formula (4.56). We see
that the parallel case has a more favourable upper bound.

4.6 Examples

4.6.1 A linear differential equation: ẏ(t) = Gy(t) + b(t), y(0) =

y(T )

In this section we consider the linear periodic steady state problem

ẏ(t) = Gy(t) + b(t), y(0) = y(T ), t ∈ [0, T ] , (4.62)

with T > 0. The solution of

˙̂y(t) = Gŷ(t) + b(t), ŷ(0) = 0, b(t+ T ) = b(t) , (4.63)

converges to this periodic steady state under certain conditions. Some simple calcula-
tions show that for t = kT the solution of (4.63) is

ŷ(kT ) = (I − (eGT )k)(I − eGT )−1eGT
∫ T

0

e−Gtb(t)dt . (4.64)

Suppose that G is diagonalizable: G = WDW−1, with D = diag(λ1, . . . , λn), then

(eGT )k = W (eDT )kW−1 = Wdiag(eλ1kT , . . . , eλnkT )W−1 .

It follows that zk(t) = ŷ(kT + t), t ∈ [0, T ], k = 0, 1, . . ., converges to the solution y(t)
of (4.62) for k → ∞, if the spectrum of G satisfies

λ(G) ⊂ {z| real(z) < 0} .

However, the convergence may be very slow if there is an eigenvalue λi with T real(λi) ≈
0. Solving (4.62) numerically with a time stepping method and t→ ∞ is very expensive
in that case, compared with a direct discretization of (4.62). From (4.64) we see that
(4.63) may diverge for k → ∞, if G has one or more eigenvalues with positive real part.
Note that a periodic solution of (4.62) may still exist in this case, but this solution is
unstable.

In the remainder of this example, we solve (4.62) by using p-cyclic matrices. The
solution of

ẏ(t) = Gy(t) + b(t), y(ti) = yi

is

y(t) = eG(t−ti)yi + eG(t−ti)
∫ t

ti

e−G(t
′−ti)b(t′)dt′ .
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A partition of the interval [0, T ] of equation (4.62) into p subintervals [ti, ti+1], i =
0, . . . , p− 1, with 0 = t0 ≤ . . . ≤ tp = T , leads to the p-cyclic linear system

I 0 0 −eG(t1−t0)
−eG(t2−t1) I 0 0

0
. . .

. . . 0
0 0 −eG(tp−tp−1) I



y1...
...
yp

 =


b1...
...
bp

 , (4.65)

with yi = y(ti), i = 1, . . . , p, and

bi = eG(ti−ti−1)

∫ ti

ti−1

e−G(t−ti−1)b(t)dt .

Note that the eGT matrix appears again if y1, . . . , yp−1 are eliminated from (4.65) by
block Gaussian elimination:

(I − eGT )yp = b̂p .

A one step discretization method for (4.62) may lead to a similar p-cyclic system as
(4.65), see Section 4.1. However, then Bi = eG(ti−ti−1)+O(hk) instead of Bi = eG(ti−ti−1),
where k is the global order of discretization and h is the step size. Moreover, the bi of
the p-cyclic linear system (4.6) is not equal to the bi of (4.65), because of discretization
errors. We may expect approximately the same convergence of p-cyclic GMRES for the
exact problem (4.65) and the discretized problem, if the step sizes are sufficiently small.

Now, assume that G is diagonalizable with real eigenvalues λi such that λ1 ≤ . . . ≤
λn < 0 (for example: G is a symmetric negative definite matrix) and assume that
ti = T i/p. Then the Bi in the p-cyclic linear system (4.6) is Bi = B = eGT/p, which has
eigenvalues 0 < eλ1T/p ≤ . . . ≤ eλnT/p ≤ e < 1. The convergence results of Section 4.5
can be used for this problem. Note that (4.64) (and therefore (4.63) ) may converge very
slowly if eλnT/p ≈ 1 and eλn−1T/p � 1. The p-cyclic GMRES method converges well in
this case, because it is easy to find a polynomial such that ε(m) (see formula (4.53) ) is
small. This indicates that computing the periodic steady state of a circuit, as explained
in Section 1.3, may be much more efficient than computing a transient analysis solution
which has converged to a periodic steady state.

4.6.2 Tridiagonalizing a matrix

The p-cyclic GMRES idea presented in Section 4.3 can be used to tridiagonalize a gen-
eral, not necessarily square, matrix. This might be useful in solving linear systems
By = c, or sparse least-squares problems. We will derive a method which has similar-
ities with the LSQR method of Paige and Saunders [67]. We have not found practical
applications where this new method performs better than existing methods. The aim
of this example is to show that a general unsymmetric matrix can be tridiagonalized by
an orthogonal basis of a non-Krylov subspace.

Let us consider the damped least-squares problem

min

∥∥∥∥[ BλI
]
y −

[
c
0

]∥∥∥∥ , (4.66)
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where λ is a parameter. The least-squares problem miny ‖By − c‖ may have a non
unique solution, for example if B has more columns than rows. With a λ > 0, the
least-squares problem (4.66) is guaranteed to have a unique solution. The least-squares
problem (4.66) can be transformed into an augmented linear system:[

−λ2I BT

B I

] [
y
r

]
=

[
0
c

]
. (4.67)

The ‘y’-part of the solution of (4.67) solves the least-squares problem (4.66). Note that
the linear system (4.67) is nonsingular for any B if λ > 0.

The LSQR method method is based on the symmetric Lanczos algorithm applied
to the symmetric system (4.67), in combination with a (stable) QR factorization of
the reduced linear system. Similar to x(0)-GMRES, the Krylov subspace has a special
structure, because the right-hand side of (4.67) has a zero and a nonzero block, see
expression (4.13). This structure is exploited by LSQR. The LSQR method uses short
term recurrences to build the Krylov subspace, just like the symmetric Lanczos process.

Here we will apply p-cyclic Arnoldi (this is step one and two of Algorithm 4.1) to

(4.67), so v
(1)
1 = c/‖c‖ and v

(1)
2 a random nonzero vector of unit length. The p-cyclic

Arnoldi algorithm reduces the matrix in (4.67) to a small matrix:[
−λ2I BT

B I

][
V
(m)
1 0

0 V
(m)
2

]
=

[
V

(m+1)
1 0

0 V
(m+1)
2

][
−λ2Ĩ H

(m)
1

H
(m)
2 Ĩ

]
. (4.68)

With H̄
(m)
i = H

(m)
i (1:m, 1:m) we have[

V
(m)
1 0

0 V
(m)
2

] [
−λ2I BT

B I

][
V
(m)
1 0

0 V
(m)
2

]
=

[
−λ2I H̄

(m)
1

H̄
(m)
2 I

]
. (4.69)

The left-hand side of (4.69) is a symmetric matrix, so that H̄
(m)
1

T
= H̄

(m)
2 . Since both

H̄
(m)
1 and H̄

(m)
2 are Hessenberg matrices, they have to be tridiagonal matrices and H

(m)
1

and H
(m)
2 are tridiagonal too. In Section 4.4.3 we reordered the columns of V (m) in order

to have a small lower bandwidth of Ĥ(m): see expression (4.39) and Figure 4.3. Here
H(m) is a symmetric matrix, so Ĥ(m) is symmetric, and it is easy to see that Ĥ(m) is a
block tridiagonal matrix with 2 by 2 blocks, for instance

Ĥ(4) =


� � �
� � �

� � � �
� � � �

� � � �
� � � �

� � �
� � �

�
�

 .

A QR factorization of Ĥ(m) is useful in order to solve the reduced least-squares problem
(4.40). This QR factorization can be made by applying 4 by 4 orthogonal matrices to
selected rows of Ĥ(m), in the same way as in Section 4.4.3. The 2 by 2 block struc-
ture of Ĥ(m) implies that Biv̂

(j)
i is orthogonal to v

(k)
i , k = 1, . . . j − 2. So we only
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have to orthogonalize Biv̂
(j)
i with respect to v

(j)
i and v

(j−1)
i . In Algorithm 4.1 we have

used Householder orthogonalization, but (iterated) modified Gram-Schmidt orthogo-
nalization is more appropriate here. Householder orthogonalization forms the vector

(I − 2u
(j)
i u

(j)
i

T
) · . . . · (I − 2u

(1)
i u

(1)
i

T
)Biv̂

(j)
i and we do not see if this leads to short recur-

rences. The method can be implemented with short-term recurrences if Gram-Schmidt
orthogonalization is used (just as MINRES [68] can be viewed as a short-term recur-
rence variant of GMRES in the symmetric case). Using these short-term recurrences,
it is possible to implement the method with a fixed amount of work and storage per
iteration.

Now we return to (4.68) and observe that we have tridiagonalized B:

BV
(m)
1 = V

(m+1)
2 H

(m)
2 .

This can be used to solve the least-squares problem (4.66) with λ = 0:

min
y

‖By − c‖ .

With y(m) ∈ range(V
(m)
1 ) we have:

min
y(m)

‖By(m) − c‖ = min
z

‖BV (m)
1 z − c‖

= min
z

‖V (m+1)
2 H

(m)
2 z − V (m+1)

2 ‖c‖e1‖

= min
z

‖H(m)
2 z − ‖c‖e1 ‖ .

A QR factorization H
(m)
2 = QR is easily obtained by applying m Givens rotations to

H
(m)
2 , here R is an upper tridiagonal matrix. This leads to

z = R(1:m, 1:m)−1{QT e1}(1:m)‖c‖

and

y(m) = V
(m)
1 z = V

(m)
1 R(1:m, 1:m)−1{QT e1}(1:m)‖c‖ .

In an actual implementation of the method we apply only one Givens rotation per
iteration and update {QT e1}(1:m)‖c‖ immediately. Similar to GMRES and other Krylov
minimum residual methods, the norm of the residual is equal to

min
y(m)∈range(V (m)

1 )

‖By(m) − c‖ = {QT e1‖c‖}m+1 .

Since R is upper tridiagonal, we can also update V
(m)
1 R(1:m, 1:m)−1 each iteration with

only one new column, which can be computed by a short-term recurrence. This leads to
a method which uses two three-term recurrences for the construction of the search space
for miny ‖By − c‖. We will call the method tri LSQR because of the tridiagonalization
and the similarities with LSQR.



4.7. Block methods 73

Now we consider the case where B is symmetric. Assume that {H (m)
i }j+1,j �= 0 for

i = 1, 2 and j = 1, . . . , m− 1, then

y(m) ∈ range(V
(m)
1 ) = span (w,BT c, BTBw,BTBBT c, BTBBTBw, . . . )︸ ︷︷ ︸

m vectors

,

where w is an arbitrary vector (we avoid using Km1 since b2 = 0). If B is symmetric and
we choose w = c, then

y ∈ range(V
(m)
1 ) = span(c, Bc, B2c, . . . , Bm−1c) ,

and this is the m dimensional Krylov subspace Km(B, c). So we expect a convergence
similar to MINRES [68] in this case.

For matrices B which are close to symmetric in some sense, it is natural to choose
w = c and hope that the iteration process converges nearly as fast as in the symmetric
case. This would be nice since we have a short-term recurrence method for unsymmetric
problems. Unfortunately, numerical experiments, not presented here, show that a small
perturbation of a symmetric problem often leads to a much slower convergence.

We will finish this section with a numerical experiment that shows that tri LSQR may
be less efficient than other Krylov subspace solvers. Recall that the aim of this section
is to show that a general unsymmetric matrix can be tridiagonalized by an orthogonal
basis of a non-Krylov subspace. We consider the linear system circuit 1 of Chapter 2.
This linear system is not symmetric, although A−AT has quite a lot of relatively small
nonzero entries (in absolute value). In order to make the linear system more suitable
for iterative solvers we scaled the matrix: Â = DAD, with D = diag(d1, . . . , dn), and
di = (‖A(:, i)‖1 ‖A(i, :)‖1)−1/4. Figure 4.5 shows the convergence of tri LSQR for the
scaled linear system. We see that tri LSQR does less well than the other methods.

4.7 Block methods

Several block methods are more or less related to p-cyclic GMRES or x(0)-GMRES. In
this section we will discuss this in more detail.

4.7.1 Block Jacobi

We will show that p-cyclic GMRES can be seen as an (optimal) accelerated block Jacobi
process. Take, for example, p = 4, then the Jacobi iteration is:

x(m+1) =


b1
b2
b3
b4

 +


0 0 0 B1

B2 0 0 0
0 B3 0 0
0 0 B4 0

x(m) .
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Figure 4.5: The convergence of problem circuit 1, scaled. The iteration
count is m, and one iteration involves two matrix-vector products.

With an initial guess x(0) = 0, the following iterates are generated:

x(1) =


b1
b2
b3
b4

 , x(2) =


b1 +B1b4
b2 +B2b1
b3 +B3b2
b4 +B4b3

 , x(3) =


b1 +B1(b4 +B4b3)
b2 +B2(b1 +B1b4)
b3 +B3(b2 +B2b1)
b4 +B4(b3 +B3b2)

 , . . . .
Obviously, the space spanned by the iterates x

(j)
i satisfies

span(x
(1)
i , . . . , x

(m)
i ) = Kmi ,

and the p-cyclic GMRES method takes a linear combination of x
(1)
i , . . . , x

(m)
i , such that

‖Ax− b‖ is minimized. This shows that p-cyclic GMRES is an accelerated block Jacobi
process. Note that this conclusion is valid for general p, but for ease of presentation, we
restricted ourselves to p = 4.

4.7.2 Block Gauss-Seidel

We will illustrate the relationship between x(0)-GMRES and the block Gauss-Seidel
method by an example for the special case p = 3. The block Gauss-Seidel iterates are
defined by  I 0 0

−B2 I 0
0 −B3 I

x(m+1) =

 b1b2
b3

 +

 0 0 B1

0 0 0
0 0 0

x(m) ,
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with, e.g., x(0) = 0. In an explicit form this becomes

x(m+1) =

 b̂1b̂2
b̂3

 +

 0 0 B1

0 0 B2B1

0 0 B3B2B1

x(m) ,
where b̂i is defined in (4.10). This leads to

x(1) =

 b̂1b̂2
b̂3

 , x(2) =

 b̂1 +B1b̂3
b̂2 +B2B1b̂3
b̂3 + B̂3B2B1b̂3

 , x(3) =

 b̂1 +B1(b̂3 +B3B2B1b̂3)

b̂2 +B2B1(b̂3 +B3B2B1b̂3)

b̂3 +B3B2B1(b̂3 +B3B2B1b̂3))

 , . . .
(4.70)

x(0)-GMRES finds the m-th iterate in the shifted subspace ‘initial guess+Krylov sub-
space’ b̂1b̂2

0

 + Km(

 I 0 −B1

−B2 I 0
0 −B3 I

 ,
 0

0

b̂3

) =

 b̂1b̂2
0

 + span(

 0
0

b̂3

 ,
 B1b̂3

0
0

 ,
 0

B2B1b̂3
0

 ,
 0

0

B3B2B1b̂3

 ,
 B1B3B2B1b̂3

0
0

 , . . . ,
 CC
C

) .

Comparing this subspace with (4.70), we conclude that x(0)-GMRES is an accelerated
block Gauss-Seidel process.

4.7.3 Block GMRES

We consider the equation
I 0 0 −B1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I

 [x(1), . . . , x(p)] =


b1 0 0
0 . . . 0
0 . . . 0
0 0 bp

 . (4.71)

Postmultiplying (4.71) by [1, . . . , 1] leads to
I 0 0 −B1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I

 (x(1) + . . .+ x(p)) =


b1...
...
bp

 ,
so we can solve the p-cyclic linear system (4.6) by solving (4.71) and computing x =
x(1)+. . .+x(p) afterwards. It is natural to solve (4.71) with a block GMRES method [78].
The search space has a special structure since each right-hand side has only one nonzero
block, this is similar to x(0)-GMRES. Exploiting this structure leads to a method similar
to p-cyclic GMRES.
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4.8 Preconditioning p-cyclic linear systems

Suitable preconditioners have not been identified yet for the p-cyclic linear system (4.6).
In this section we discuss some difficulties in preconditioning (4.6).

Krylov subspace methods for general linear systems By = c are often used in combi-
nation with a preconditionerM . With left preconditioning (for example) a linear system
M−1By = M−1c is solved by the Krylov subspace method, instead of By = c. Here M
is an approximation to B such that, for example ‖M − B‖ is small or M−1B ≈ I, and
Mv = w is easy to solve. The aim is to transform By = c into a linear system which is
easier to solve (faster convergence) by a Krylov subspace method.

One problem of preconditioning (4.6) is that the matrices Bi are often not explicitly
available, see Section 4.1, but that does not stop us investigating some preconditioning
ideas. For a p-cyclic problem Ax = b, it is natural to have a p-cyclic preconditioner M
such that Mv = w is easy to solve. For example, for p = 3 the preconditioned system is

M−1Ax =

 I 0 −D1

−D2 I 0
0 D3 I

−1  I 0 −B1

−B2 I 0
0 B3 I

x =

 I 0 −D1

−D2 I 0
0 D3 I

−1

b .

Unfortunately, M−1A does not have a p-cyclic structure in general. So methods that
exploit the p-cyclic structure of A (the methods of Sections 4.2 and 4.3) cannot be used
here, and we have to use general methods such as GMRES and BiCGSTAB for the
preconditioned system. We conclude that the idea of using a p-cyclic preconditioner
has no practical advantages. Hence, we can use equally well general preconditioners for
Ax = b, such as ILU, sparse approximate inverses etc. However, our aim is to develop
methods that exploit the p-cyclic structure of the problem, so we will not discuss this
further.

Up to now we have not found good preconditioners that preserve the p-cyclic struc-
ture. The preconditioned system (MAM−1)(Mx) = Mb, with a block diagonal matrix
M = diag(D1, . . . , Dp), has a p-cyclic structure, but K̂m(MAM−1,Mb) = MK̂m(A, b),
so we expect the same convergence behaviour for both linear systems. Another attempt
for preconditioning Ax = b can be made by a preconditioner M , with M−1 a p-cyclic
matrix, or the transpose of a p-cyclic matrix. In these cases the p-cyclic structure is lost
too.

Now we consider preconditioning Ax = b with the incomplete block factorization of
the p-cyclic matrix A:

M = LU =


I 0 0 0

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I



I 0 0 −B1

0 I 0 0
0 0

. . . 0
0 0 0 I

 =


I 0 0 −B1

−B2 I 0 B2B1

0
. . .

. . . 0
0 0 −Bp I


The product LU differs from A only outside the block pattern of A, so we have an incom-
plete block factorization of A. It is possible to compute the matrix of the preconditioned
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system M−1Ax = U−1L−1Ax = U−1L−1b explicitly:

L−1A =


I 0 0 −B1

0 I 0 −B2B1

0 0
. . .

...
0 0 0 I − Bp · . . . · B1

 (4.72)

and

U−1L−1A =


I 0 0 −B1Bp · . . . · B1

0 I 0 −B2B1

0 0
. . .

...
0 0 0 I −Bp · . . . · B1


The matrix I − Bp · . . . · B1 also appears in the reduced linear system (4.9) of Section

4.2: (I − Bp · . . . · B1)xp = b̂p, and we do not expect that GMRES converges better
for U−1L−1Ax = U−1L−1b than for (4.9). Moreover, the GMRES inner products and
vector updates are more expensive for U−1L−1Ax = U−1L−1b. An advantage of the
preconditioned case is that x1, . . . , xp are computed instead of only xp. But note that
x1, . . . xp−1 can be computed relative inexpensively by a forward recursion after xp has
been solved from (4.9). We conclude that solving Ax = b with GMRES, preconditioned
by this incomplete block factorization, is not preferable over applying GMRES to the
reduced system (4.9).

Telichevesky et al. [83] propose preconditioning (4.1) with the block lower triangular
part of (4.1) (diagonal blocks included). It is easily seen that this leads to a matrix of
the form (4.72), with p = M . For this approach the same conclusion as for incomplete
block factorization holds.

4.9 Multiple right-hand sides

In periodic AC analysis equations of the form (4.73) have to be solved for the frequencies
fk, k = 1, . . . , nf , see Section 1.3, [85].

F1 0 0 −e−2πifkTEM
−E1 F2 0 0

0
. . .

. . . 0
0 0 −EM−1 FM



y1...
...
yM

 =


γk,1U...

...
γk,MU

 , (4.73)

with γk,i = −e2πifkti , i = 1, . . . ,M . The matrices Ei and Fi, i = 1, . . . ,M , do not
depend on k. In this section we will discuss a few ideas for solving (4.73).

Block diagonal scaling of (4.73) leads to the M-cyclic linear system
I 0 0 −e−2πifkTC1

−C2 I 0 0
0

. . .
. . . 0

0 0 −CM I



y1...
...
yM

 =


γk,1F

−1
1 U...
...

γk,MF
−1
M U

 (4.74)



78 Chapter 4. A GMRES-type method for p-cyclic matrices

Block Gaussian elimination of y1, . . . , yM−1 leads to

(I − e−2πifkTB1)x1 = bk,1 , (4.75)

where the right-hand side depends on fk, see also Section 4.1. An efficient direct ap-
proach for (4.75) can be based on the Schur decomposition of B1: B1 = QRQH , with
an unitary matrix Q and an upper triangular matrix R. With this Schur decomposition
(4.75) transforms to Q(I − e−2πifkTR)QHx1 = bk,1, which is easy to solve for different
values of fk. Computing the Schur decomposition costs O(n3) flops. See Section 4.10
for the costs of Block Gaussian elimination.

Telichevesky et al. [85] propose solving (4.75) with GCR [29]. Vuik [90] has developed
a similar approach for solving linear systems with multiple right-hand sides. With GCR
it is rather simple to reuse the search space, which is built for solving (4.75) with right-
hand sides b1,1, . . . , bk−1,1, for solving (I − e−2πifkTB1)x1 = bk,1, k = 2, . . . , nf . This
leads to an efficient method for solving the multiple right-hand side problem (4.75). A
disadvantage of this approach is that it is not efficiently parallelizable because of the
serial nature of the matrix-vector product, see formula (4.7). This is similar to GMRES
applied to the reduced system (4.9).

In the remainder of this section we will discuss parallelizable iterative approaches
for (4.74). For parallelizability a reduction of (4.74) to a p-cyclic linear system

I 0 0 −e−2πifkTB1

−B2 I 0 0
0

. . .
. . . 0

0 0 −Bp I



x1...
...
xp

 =


bk,1...

...
bk,p

 , (4.76)

with 1 < p � M , seems to be more useful than the reduction of (4.74) to (4.75).
Parallelism might be obtained by combining the p-cyclic GMRES idea with the GCR
idea. However deriving such a GCR-type method for p-cyclic linear systems seems to be
less straightforward than deriving p-cyclic GMRES. We will not discuss this promising
approach further here.

Another approach for solving (4.74) with multiple right hand sides can be obtained
by taking p = M , as we will see now. The subspace K̂m generated by p-cyclic GMRES,
with p = M , is independent of the values of θ and fk, if γk,i �= 0. Therefore, all the linear
systems for different values of fk can be solved simultaneously by p-cyclic GMRES. Only
the least-squares problem (4.32) differs for different values of fk, because of the e−2πifkT

term. For an accurate DAE discretization, the value of M (= p) should be sufficiently
large. However, in practice we often see that p-cyclic GMRES converges poorly for
large p. For example, for an average problem (4.73) arising in circuit simulation with
a modest M , say M = 100, about n p-cyclic GMRES iterations may be needed for a
sufficiently small residual, while p-cyclic GMRES applied to the reduced system (4.76),
with a small p, say p ≤ 8, may converge very well. In this case (M = p) the cost of
orthogonalization and the least-squares problem are very large and p-cyclic GMRES
seems to have no advantages over a direct method for (4.73).
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For standard linear systems with multiple right-hand sides, block generalizations
of standard GMRES can be used, see (among others) [78]. A block generalization of
p-cyclic GMRES is also possible.

4.10 Costs for solving the linear system

In this section, we compare the costs of several methods for the M-cyclic linear system
(4.1). The costs of the minimal residual methods of Sections 4.2 and 4.3 are presented in
Table 4.1. In this table, K2 = nnz(Ej−1) + nnz(Lj) + nnz(Uj) is the number of nonzeros
of Ej−1, Lj , and Uj , where LjUj = Fj is an LU factorization of Fj . Computing a LU
factorization LjUj = Fj costs K1 flops. For the circuit simulation problems considered
in Section 4.13.1 these costs are relatively small (one LU factorization costs much less
than O(n3)), but not negligible, see also Section 4.13.1. We assume that K1 and K2 are
independent of j. The costs for solving the p-cyclic system (4.6), instead of (4.1), can
be obtained by substituting M = p, K1 = 0, and K2 = nnz(Bi).

The costs of the matrix-vector products needs some more explanation. These costs
consist of:

I. The preprocessing phase: recursions (4.8) and, or (4.10).

II. The iterative process.

III. The post processing phase: compute the missing yj with recursion (4.2).

Obviously, for GMRES applied to the reduced linear system (4.9) and x(0)-GMRES it is
possible to combine the recursions (4.8) and (4.10). Note that (4.9) is equal to the p = 1
case of the p-cyclic linear system (4.6). This preprocessing phase costs M − 1 matrix-
vector products of the form F−1

j Ej−1v. The preprocessing phase of p-cyclic GMRES
corresponds only to recursion (4.8), and costs M−p matrix-vector products. For all the
methods, the iteration process costs mM matrix-vector products. The post processing
phase of p-cyclic GMRES and x(0)-GMRES costsM−pmatrix-vector products, GMRES
applied to (4.9) needs M − 1 matrix-vector products.

A direct method for (4.1) is obtained if the reduced system (4.9) is solved by LU
factorization, with partial pivoting, instead of GMRES. In this case it is necessary to
compute the matrix in (4.9) explicitly. This can be done by computing n matrix-vector
products with the standard unit vectors e1, . . . , en. In some cases considerable savings
are possible if zero columns of EM are exploited. Only nE matrix-vector products (with
ei) are needed to compute the matrix in (4.9) explicitly, if EM has nE nonzero columns.
Solving (4.9) via LU factorization takes 2/3n3E flops. The pre and post processing phase
requireM−1 matrix-vector products each. The total computational costs for this direct
method are

MK1 + 2(nEM + 2(M − 1))K2 + 2/3n3E flops . (4.77)

This direct approach is relatively expensive compared with the iterative approach be-
cause in practice usually m � nE . Other direct approaches for (4.1), see for example
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[4], which do not exploit the sparsity of the Ei and Fi matrices require often O(Mn3),
which may be much more than (4.77).

In Section 4.13.1 we compare the computational costs for several methods and two
different linear systems.

4.11 Parallelization of p-cyclic GMRES

In this section we consider the parallel solution of (4.1) by applying p-cyclic GMRES to
the reduced p-cyclic linear system (4.6). In order to make an efficient parallelization on a
p processor distributed memory computer possible, we assume the following distribution
of the M-cyclic system (4.3): processor i contains the matrices Cq

i
, . . . , Cqi and the

vectors c′q
i
, . . . , c′qi. Moreover we assume that q

i
−qi is constant; this leads to an optimal

load balance of the parallel computer. The distribution of ci, Ei, and Fi in the p-cyclic
linear system (4.6) follows from formula (4.4). In p-cyclic GMRES processor i stores bi
and U

(j+1)
i and computes the matrix-vector multiplication with Bi.

Another type of parallelism can be obtained by parallelizing the matrix-vector prod-
ucts with Ei and Fi. However, in practice the block size n is often too small for efficient
parallelization. Therefore we aim at parallelizability at a block level.

We will consider the parallelization of the following steps, which are needed to solve
(4.1).

I. LU factorizations of the diagonal blocks Fi

II. Reducing (4.1) to a p-cyclic linear system (4.6) with recurrence (4.8).

III. Algorithm 4.1, initialization.

IV. Algorithm 4.1, m iterations of p-cyclic GMRES, with an update to the QR fac-
torization of Ĥ(m) at each iteration, see Section 4.4.3.

V. Solve the transformed least-squares problem (4.41).

VI. Algorithm 4.1, compute the approximate solution x(m).

VII. Recursion (4.2) for computing the missing yj.

Step I, II, and III are trivially parallelizable without any communication.

In step IV each processor i−̃1 sends an n-vector to processor i for the operation
(*) in Algorithm 4.1: v̂

(j)
i = v

(j)

i−̃1. Furthermore, communication is needed in step IV in

order to update the QR factorization of Ĥ(m). Two different approaches for this QR
factorization are:

A. Compute the same QR factorization of Ĥ(m) on each processor.

B. Parallelize the QR factorization of Ĥ(m).
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In approach A, solving the least-squares problem costs 2p3m2 flops per processor. Or-
thogonalization of the v

(j)
i vectors costs 4m2n flops per processor Therefore, the compu-

tational costs of the QR factorization are negligible if p3 � 2n. In approach A, 1/2pm2

elements are broadcast by each processor. The costs of this broadcast are negligible
with sending m times an n-vector v

(j)

i−̃1 from processor i−̃1 to processor i if pm � 2n.

Approach B, may be of interest if the computational costs and/or communication costs
are not negligible.

We will briefly discuss an efficient parallel implementation of Approach B. In this
implementation each processor has its own copy of the right-hand side d̂. It is not
necessary to redistribute the entries of Ĥ(m) over the processors. In iteration j, each
processor broadcasts its own portion of H

[j−1]
jj and Hj+1,j to each other processor. No

other communication is necessary for the parallel QR factorization of Ĥ(m). One syn-
chronization step per iteration is needed, but this synchronization step can be combined
with the synchronization which is needed for sending the n-vector v

(j)

i−̃1 from proces-

sor i−̃1 to processor i. Each processor can compute its own copy of the orthogonal
transformation Qj because each processor has a copy of H

[j−1]
jj and Hj+1,j. Hence, each

processor can monitor the convergence of p-cyclic GMRES with ‖d[j]j+1‖. The amount of
communication per processor per iteration is approximately p2 elements, because Hj+1,j
has only one nonzero per column. The total amount of communication per processor for
m iterations is p2m. Note that each processor has a copy of the (triangular) diagonal
blocks of H [m]. The other nonzeros of H [m] have a column wise distribution. Therefore
step V requires another p2m elements to be sent per processor plus m synchronization
steps.

No communication is required for step VI. In step VII processor i needs x
(m)

i−̃1 in order
to compute yq

i
, . . . , yqi−1.

Note that the communication for the least-squares problem is global, all the other
communication is local: from processor i−̃1 to processor i. For some parallel computer
architectures local communication is less expensive than global communication.

The communication overhead of p-cyclic GMRES is usually much smaller than the
communication overhead of parallelized standard GMRES. Parallelized standard GM-
RES with modified Gram-Schmidt orthogonalization needs j synchronization steps in
iteration j in order to compute the inner products. The p-cyclic GMRES method (with
approach A for the least-squares problem) needs only one synchronization step per it-
eration.

In order to get some insight into the costs of the parallel case compared with the
costs of the sequential case we use a simple cost model, similar to a BSP [86] cost model
proposed in [10]. In the cost model, the costs of sending k elements from one processor to
another processor, and the costs of performing kg floating-point operations, are equal.
The costs of barrier synchronization of the processors are modelled with l flops. For
example, for a Cray T3E computer g ≈ 2 and l ≈ 350, if p = 4, see [48]. With this cost
model, the parallel costs of solving (4.1) with approach B for the least-squares system
are approximately
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Cm,p =
MK1 + 2(mM + 2M − 2p)K2

p
+ 4m2n+ 2p2m2 + (2p2m+mn)g+ 2ml , (4.78)

if p ≥ 2. These costs should be compared to the costs of solving (4.1) by applying
GMRES to the reduced system (4.9), see Table 4.1.

Cm,1 = MK1 + 2(mM + 2M − 2)K2 + 2m2n (4.79)

The theoretical speedup of the parallel algorithm is given by

Sp = Cm1,1/Cmp,p , (4.80)

where mp is the number of p-cyclic GMRES iterations and m1 is the number of GMRES
iterations on the reduced system (4.9). In practice mp often needs to be slightly larger
than m1 for a sufficiently small residual norm, see Section 4.13.1.

For linear systems (4.1) arising in discretizations of periodic differential equations,
the convergence of p-cyclic GMRES is mainly determined by the properties of the under-
lying differential equation, see also Section 4.6.1. The number of discretization pointsM
has only a very small influence on the convergence of p-cyclic GMRES. This is confirmed
by a few (not reported) numerical experiments. A largeM leads to an accurate solution
of the differential equation. For M → ∞ the theoretical speedup (4.80) is given by

SM→∞,p = p
m1 + 2

mp + 2
,

if costs for the LU factorizations of diagonal blocks Fj are neglected. The speedup is
larger if these costs are included.

4.12 Cache efficient sequential p-cyclic GMRES

In this section we will show that the p-cyclic GMRES idea can be used to derive a cache
efficient sequential method for p-cyclic matrices. With this cache efficient method higher
Mflop rates are possible on cache based computer systems, in comparison with p-cyclic
GMRES, x(0)-GMRES, and GMRES applied to the reduced system (4.9).

Formula (4.21) indicates that v
(j)
i depends only on v

(j−1)
i−̃1 and {v(1)i , v

(2)
i , . . . , v

(j−1)
i }.

This allows a different order for the computation of the v
(j)
i vectors than that of Algo-

rithm 4.1. This new ordering is presented in Figure 4.6 for the special case p = 3. The
generalization for other p is straightforward.

Similar to (4.39) we can define a matrix Ṽ (j), for example

Ṽ (3) =

 v
(1)
1 0 0 0 0 0 v

(2)
1 v

(3)
1 v

(4)
1 0 0 0

0 v
(1)
2 v

(2)
2 0 0 0 0 0 0 v

(3)
2 v

(4)
2 v

(5)
2

0 0 0 v
(1)
3 v

(2)
3 v

(3)
3 0 0 0 0 0 0

 . (4.81)
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1: v
(1)
1 4: v

(2)
1 v

(3)
1 v

(4)
1 7: v

(5)
1 v

(6)
1 v

(7)
1 · · ·

2: v
(1)
2 v

(2)
2 5: v

(3)
2 v

(4)
2 v

(5)
2 · · ·

3: v
(1)
3 v

(2)
3 v

(3)
3 6: v

(4)
3 v

(5)
3 v

(6)
3 · · ·

Figure 4.6: Cache efficient computational sequence for the computation of
v
(j)
i . The numbers 1, . . . , 7 indicate the order of computation.

The approximate solution of Ax = b is chosen such that x(m) ∈ Ṽ (m). In example (4.81)
this leads to a 4 dimensional search space for x1, a 5 dimensional search space for x2,
and a 3 dimensional search space for x3. This shows that the cache efficient method is
not a special case of p-cyclic GMRES, although there are a lot of similarities. Similar to
p-cyclic GMRES, minimizing ‖b−Ax‖ with x ∈ Ṽ (m), leads to a least-squares problem

miny ‖H̃(m)y− d̃‖. The structure of H̃(m) is shown in Figure 4.7. A QR factorization of

H̃(m), which is useful to solve miny ‖H̃(m)y− d̃‖, can be computed efficiently since H̃(m)

has a lower bandwidth of only p.
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Figure 4.7: Nonzero pattern of H̃(6), with p = 3.

In order to compute, for example, v
(3)
2 , v

(4)
2 and v

(5)
2 , the matrix-vector products

B2v
(2)
1 , B2v

(3)
1 and B2v

(4)
1 are needed. Computing

B2

[
v
(2)
1 v

(3)
1 v

(4)
1

]
can be done in a cache efficient way: each entry of B2 that is read into cache memory
is used p = 3 times instead of one time for the methods discussed in the previous
sections. The same cache advantage appears if Bi is not explicitly available, but defined
as a product of matrices Ej and F−1

j = U−1
i L

−1
i , as in Section 4.1. Some experiments
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on a Sun Ultra 5 computer (270 MHz) showed that computing B2

[
v
(2)
1 v

(3)
1 v

(4)
1 v

(5)
1

]
(for the p=4 case) at once can be up to twice as fast as computing B2v

(2)
1 , B2v

(3)
1 ,

B2v
(4)
1 and B2v

(5)
1 separately. However, the results strongly depend on the computer

architecture, the compiler optimization options, and the way in which the sparse matrix
times dense vector/vectors operations are coded. Therefore, we will not present more
detailed numerical experiments here.

In Section 4.13 we observe that usually the convergence of p-cyclic GMRES slows
down with increasing p. On the contrary, the cache advantage increases with increasing
p. So, there is a problem dependent pay off between these two effects. For some
problems, p has to be sufficiently large because of stability reasons, see Section 4.13.3.
The cache efficient approach is always advantageous in this situation, compared to
Algorithm 4.1.

4.13 Numerical experiments

4.13.1 Periodic steady state problems arising in circuit simu-
lation

In this section we demonstrate the effectiveness of the p-cyclic GMRES method for a
number of (relatively small) circuit simulation test problems. These problems of the
form (4.1) arise in periodic steady state analysis of a circuit, see Section 1.3

Table 4.2 shows the problem sizes of the linear systems (4.1). Transient analysis
of d

dt
q(x(t)) + j(x(t), t) = 0 converges very slowly to the periodic solution for these

problems. The matrices are taken from the first Newton step of the nonlinear system
solution process.

iterations
problem M n Mn p = 1 p = 2 p = 4 p = 8 p = 16
pss 1 64 22 1408 5 5 6 7 8
pss 2 128 22 2816 9 10 11 11 11
pss 3 64 54 3456 12 12 12 12 12
pss 4 32 904 28928 1 2 2 4 6
pss 5 128 424 54272 34 36 43 52 67

Table 4.2: Convergence of p-cyclic GMRES for periodic steady state test
problems. M is the number of time points, n is the number of unknowns
per time point. Mn is the dimension of the linear system. The number of
iterations needed to satisfy the stopping criterion (4.82) is displayed in the
last 5 columns, for different values of p.

Section 4.1 describes how to reduce (4.1) to a p-cyclic system. The integer partition
(4.5) is chosen such that q

i
− qi = constant. This is possible since both p and M are
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powers of 2 here. Note that in a parallel environment it is desirable to have q
i
− qi =

constant, for a good load balance. We apply p-cyclic GMRES for the reduced p-cyclic
system. The stopping criterion is based on the residual of (4.1), which makes a fair
comparison possible between the different values of p. So, at each iteration the recursion
(4.2) is used to compute the missing blocks yi and then the residual of (4.1) is computed.

Note that in practice a stopping criterion based on ‖d[j]j+1‖ is more efficient, see Section

4.4.3. Let r
(m)
pss denote the residual of (4.1) after m iterations of p-cyclic GMRES. The

stopping criterion is relative to the norm of the right-hand side c =
[
cT1 , . . . , . . . , c

T
M

]T
from (4.1):

‖r(m)pss ‖
‖c‖ < 10−10 . (4.82)

The convergence results of p-cyclic GMRES are in Table 4.2. The convergence of problem
pss 5 is plotted in Figure 4.8. We see that usually the speed of convergence decreases
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p
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Figure 4.8: Convergence of p-cyclic GMRES for pss 5.

with increasing p, but it decreases only slowly relative to the increase in p. In Figure 4.8
we see that the convergence of ‖r(j)pss‖ is not monotonic. The p-cyclic GMRES method
applied to the p-cyclic linear system (4.6) converges monotonically, but this does not
imply that the residual of (4.1) converges monotonically.

The convergence of p-cyclic GMRES depends on the time dependent circuit com-
ponents. For example, a circuit with only k capacitors and no other time dependent
components will usually converge in at most k + 1 iterations. This can be seen as fol-
lows: Discretization of the periodic DAE with backward Euler leads to matrices Ei with
rank(Ei) ≤ k. The result follows from Theorem 4.4.

Very small capacitors, in comparison with associated resistors in the circuit, will
play only a role on a time scale much smaller than the period T . These components
will only have a small influence on the convergence. In practice, a circuit often has only
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a few slow components and many fast components. This leads to a fast convergence of
the iterative methods considered here.

In order to get more insight into the computational costs for solving (4.1) and the
parallelizability of p-cyclic GMRES, we compare the costs, derived in Sections 4.10 and
4.11, for the specific cases pss 4 and pss 5. The results are in Table 4.3. The costs of the
direct method, see Section 4.10 formula (4.77), are 51.4 · 106 flops for pss 4 (nE = 256)
and 281.2 · 106 flops for pss 5 (nE = 366). The iterative methods of Table 4.3 are much
cheaper.

Method GMRES to (4.9) x(0)-GMRES p-cyclic GMRES
problem pss 4 pss 5 pss 4 pss 5 pss 4 pss 5

m 1 34 1 34 2 43

Computational costs (106 flops)
LU of Fj , 0.415 2.96 0.415 2.96 0.415 2.96
Matrix × vector 0.454 24.02 0.439 24.00 0.579 29.99
Orthogonalization 0.002 0.98 0.007 3.92 0.058 12.54

QR of Ĥ(m) 0.000 0.00 0.000 0.06 0.001 0.24
Total 0.870 27.96 0.861 30.94 1.052 45.73

Communication costs (106 flops)
(2p2m+mn)g, see (4.78) 0.004 0.04
2ml (synchronization) 0.001 0.03

Parallel costs (106 flops) p = 1 p = 4
Total/p 0.263 11.43
Cm,p, see (4.79), (4.78) 0.870 27.96 0.268 11.50

Parallel speedup
Sp, see (4.80) 3.24 2.43

Table 4.3: Estimated computational costs and speedup for periodic steady
state problems pss 4 and pss 5, see Table 4.2. The column p-cyclic GMRES
is based on 4 processors: p = 4.

The communication overhead of p-cyclic GMRES has only a small influence on the
estimated speedup. The non optimal estimated speedup of pss 4 and pss 5 is mainly
caused by the increased number of iterations, and by the increased orthogonalization
costs, in comparison with the sequential case. Note that for more accurate discretizations
(M large) the orthogonalization costs are relatively smaller.

4.13.2 Convergence upper bound

In this section we will compare the convergence upper bound derived in Section 4.5 with
the actual convergence of a test problem.
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We consider the problem (4.52) with p = 4, n = 100,

B = diag(λ1, . . . , λn) ,

λi = 2/5(1 + cos( (i − 1)/(n − 1) π)) and b̂p a random vector with entries between −1
and 1, scaled to unit norm. Matrix B has eigenvalues between 0 and 4/5 = β, with a
relatively dense spectrum near 0 and 4/5. This makes the minimization problem (4.53)
relatively difficult. We will refer to this problem as problem mod 0. For this problem
the convergence bound (4.60) is ‖r(j)‖ ≤ 1/Tj−p+1(3/2).

The convergence of p-cyclic GMRES applied to mod 0 and this upper bound are
plotted in Figure 4.9. The upper bound has a delay of about 4 (= p) iterations compared
to the actual convergence. Apparently some bounds used in Section 4.5 are not very
sharp. The residual norm reduction factor per iteration is predicted quite well by the
upper bound. The convergence is much worse if the right-hand side of (4.52) does not
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Figure 4.9: Convergence of test problems mod 0 (−−−−−−−−−), mod 1 (· − · − · − ·),
and upper bound (4.60) for mod 0 (− − − − −).

have p − 1 zero blocks. This is shown in Figure 4.9 by the modified problem mod 1,
which has a different right-hand side: bi, i = 1, . . . , 4 is a random vector with entries
between −1 and 1, scaled to unit norm.

4.13.3 An unstable problem

In this section we will demonstrate that the p-cyclic GMRES method is very suitable
for unstable problems. Free running oscillators, for example, may lead to linear systems
which are locally unstable. We define the problem unstable; this is the linear system
(4.1) with M = 16, n = 100, Fi = I, Ei = QeDQT (eD is the matrix exponential of
D) D = diag(2,−0.04,−0.06,−0.08, . . . ,−1.98,−2), ci = [1, 0, . . . , 0]T/i, and Q = I −
2[1, . . . , 1]T [1, . . . , 1]/n is an orthogonal matrix. The diagonal matrix D is transformed
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with the orthogonal matrixQ in order to have an average rounding error behaviour. This
linear system may arise in an exact discretization of ẏ = QDQTy+b(t), x(0) = x(16) for
some particular b(t). Note that a transient analysis with t→ ∞ does not converge to the
periodic solution, but diverges. Therefore this problem is called an unstable problem.
Ei has one relatively large eigenvalue e2 with eigenvector q1 = Q(:, 1) (the first

column of Q). This leads to vectors with a very large component in the direction of q1
in recursions (4.8) and (4.2), if p is small. Moreover, Bi (in the p-cyclic linear system
(4.6)) multiplied by an arbitrary vector has a very large component in the q1 direction
if p is small. These large components in the q1 direction cause a large relative rounding
error (in inexact arithmetic) in the other directions, which leads to an inaccurate solution
of (4.1). For large p these instability problems are less serious, because the recursions
are much shorter. In this case the instability problems are transfered to the reduced
least-squares problem (4.32) which is solved in a stable way by a QR factorization. In
Figure 4.10, we see that for small p it is not possible to obtain an accurate solution of
(4.1).

For comparison we mention the residual norm of two direct methods here: Block
Gaussian elimination of y1, . . . , yM−1 in (4.3) with LU factorization (partial pivoting) of
the reduced system leads to a residual norm of 3.2·10−2 for (4.1). An LU factorization of
(4.1) with partial pivoting gives a residual norm of 9.3 ·10−15. This is almost as accurate
as p-cyclic GMRES, with p = 16, which stagnates at a residual norm of 1.6 · 10−15. For
p = 1 the residual of p-cyclic GMRES stagnates at 1.2 · 10−1. The residual of x(0)-
GMRES (with modified Gram-Schmidt two times) applied directly to (4.1) stagnates at
4.7 · 10−2.

It is not remarkable that x(0)-GMRES and p-cyclic GMRES with p = 1 lead to
a residual norm of the same order. For both methods the initial residual norm is
‖b̂p‖ = ‖r(0)‖ = 1.1 · 1013. The numerical experiments were performed on a Sun Ultra
5 with a relative machine precision of approximately 10−16. Hence we may not expect
that an iterative method reduces the initial residual by more than a factor of 1016. This
explains the inaccurate results of x(0)-GMRES and p-cyclic GMRES with p = 1.
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Figure 4.10: Convergence of problem unstable. r
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pss is the residual of (4.1)
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Chapter 5

New GMRES/MINRES-type
methods for P (B)y = c

Abstract: We propose a new approach for solving linear systems of the form
P (B)y = c. P (B) is a matrix polynomial in B. The approximate solution y(m)

of P (B)y = c is in the Krylov subspace Km(B, c) = span(c,Bc, . . . , Bm−1c). The
new approach is based on an augmented block linear system, with blocks of the
form B + µiI. For unsymmetric B this leads to a method called P (GMRES).
We will derive a short recurrence method called P (MINRES)S for the case where
B is a symmetric matrix. If P (B) = B, these methods are equivalent to GM-
RES and MINRES, respectively. The new approach is compared with existing
Krylov subspace methods for P (B)y = c, and the advantages and disadvantages
are illustrated with a few examples.

Keywords: Krylov subspace methods, GMRES and MINRES methods, matrix
polynomial, rational matrix function

AMS subject classifications: 65F10

5.1 Introduction

Krylov subspace methods have become very popular over the last few decades for solving
linear systems By = c. In this chapter we consider generalizations of standard Krylov
subspace methods to linear systems of the form

P (B)y = c . (5.1)

Here P (B) is a matrix polynomial in B of degree p and the linear system (5.1) is of
dimension n.

To our knowledge there are currently no applications of P (B)y = c in circuit sim-
ulation. The linear system P (B)y = c is considered here because an idea more or less
similar to the p-cyclic GMRES idea of Chapter 4 is applicable for P (B)y = c, as we will
see in this chapter. Applications of P (B)y = c arise in, for example, lattice quantum
chromodynamics and Tikhonov-Phillips regularization [34]. Linear systems of the form
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P (B)y = c may also arise in higher order implicit methods for initial value problems
[37, Ch. 8].

A Krylov subspace method for equation (5.1) computes an approximation y(m
′) ∈

Km′
(P (B), c) = span(c, P (B)c, . . . , P (B)m

′−1c), such that r(m
′) = c−P (B)y(m

′) is small
in some sense. In [24], [34], and [88], it is argued that it may be more efficient (at
least in terms of matrix-vector products) to solve (5.1) by building a Krylov subspace
Km(B, c) = span(c, Bc, . . . , Bm−1c), with m ≤ pm′, and choosing y(m) ∈ K(B, c) such
that r(m) = c− P (B)y(m) is small.

The SLDM method proposed by van der Vorst [88], and later refined by Druskin and
Knizhnerman [24], exploit this idea for solving P (B)y = c. These methods construct

the polynomial for the reduced matrix H
(m,�)
∗ . The SLDM approximation y(m) for (5.1)

is:
y(m) = ‖c‖V (m)

∗ P (H(m,�)
∗ )−1e1 . (5.2)

Here H
(m,�)
∗ is defined by H

(m,�)
∗ = H

(m)
∗ (1:m, 1:m) (using Matlab notation), and V

(m)
∗

and the Hessenberg matrix H
(m)
∗ are defined by the standard Arnoldi reduction

BV (m)
∗ = V (m+1)

∗ H(m)
∗ , (5.3)

associated with the Krylov subspace

Km(B, c) = span(c, Bc, . . . , Bm−1c) ,

see, e.g., [73, Ch. 6]. The columns v
(1)
∗ , . . . , v

(m)
∗ of V

(m)
∗ span the Krylov subspace

Km(B, c). The Arnoldi reduction (5.3) associates the large linear system (5.1) with a

relatively small ( usually m� n ) linear system: P (H
(m,�)
∗ )−1e1.

The approximate solution y(m) of the SLDM method is not defined if P (H
(m,�)
∗ ) is

singular. Such a break down may happen even if P (B) and B are both symmetric
positive definite matrices. For example

B =

[
2 1
1 2

]
, P (B) = (B − 2I)2, and V (1)

∗ =

[
1
0

]
,

then H
(1,�)
∗ = V

(1)
∗

T
BV

(1)
∗ = 2 and P (H

(1,�)
∗ ) = 0. The matrices

P (B) =

[
1 0
0 1

]
and B are symmetric positive definite. We will prove the next theorem which states
that the SLDM method cannot break down before convergence, if certain conditions are
satisfied.

Theorem 5.1 Let B be a real symmetric matrix with minimum eigenvalue λmin and
maximum eigenvalue λmax, and let P be a polynomial with P (z) > 0 on the interval

z ∈ [ λmin, λmax ]. Then P (H
(m,�)
∗ ) is nonsingular, which implies that SLDM cannot

break down before convergence.
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Proof The matrixH
(m,�)
∗ is symmetric and therefore diagonalizable with an orthogonal

matrix Q: H
(m,�)
∗ = QDQT . The diagonal entries of D = diag(θ1, . . . , θm) are the Ritz

values of B and they satisfy θi ∈ [ λmin, λmax ], for i = 1, . . . , m, see, e.g., [42, Ch. 9].

The following relation holds for P (H
(m,�)
∗ ):

P (H(m,�)
∗ ) = QP (D)QT = Q diag(P (θ1), . . . , P (θm))QT .

The condition P (z) > 0 for z ∈ [λmin, λmax] yields P (θi) > 0, and this implies that

P (H
(m,�)
∗ ) is nonsingular. �

Fiebach [34], [35] has proposed several ‘pol’ methods for P (B)y = c. These meth-
ods are different from the SLDM method. The method polGMRES [35] computes an

approximate solution y
(m)
polG by solving the minimization problem

y
(m)
polG = argmin

y∈range(V (m)
∗ )

‖c− P (B)y‖ . (5.4)

The polMINRES method [34] is the short recurrence variant of polGMRES for symmet-
ric matrices B. The polCG method [34] for symmetric positive definite matrices P (B)

computes an approximation y
(m)
polCG that minimizes the residual in the P (B)−1 norm:

y
(m)
polCG = argmin

y∈range(V (m)
∗ )

‖c− P (B)y‖P (B)−1 .

Our approach, to be presented in this chapter, is slightly different from all those
mentioned before. It computes an approximate solution by minimizing the residual norm
of an augmented linear system over a certain subspace. The solution method for the
augmented linear system is related to the p-cyclic GMRES method, which was discussed
in Chapter 4. The p-cyclic GMRES method uses the block matrix relation (4.24a) to
reduce a p-cyclic linear system to a small least-squares problem. A more or less similar
reduction is presented here for the augmented block linear system. In order to keep the
presentation short, we will refer frequently to the results of Chapter 4. The augmented
linear system idea will be introduced in Section 5.2. In Section 5.3, a number of residual
norm inequalities are derived in order to be able to compare Fiebach’s polGMRES
method with our new P (GMRES) method. The P (GMRES) method simplifies for
the symmetric case. A short recurrence variant of P (GMRES), called P (MINRES)S,
is derived in Section 5.4. The storage requirements and the computational costs are
discussed in Section 5.5.

The linear system f(B)y = c, with an analytic matrix function f(B), is a generaliza-
tion of P (B)y = c. In (among others) [38], [51], and [88], Krylov subspace methods are
discussed for f(B)y = c, where f is the exponential operator: f(B) = eB. This equation
arises in the context of ordinary differential equations. In Section 5.7 we will show that
the P (GMRES) idea can also be used for eB. Other variants of the P (GMRES) idea are
proposed in Section 5.6. One of these variants deals with the equation R(B)y = c, where
R(B) is a rational matrix function. The chapter is concluded with several numerical
experiments.
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In order to keep the presentation similar to Chapter 4 we use the notation V
(m)
∗ and

H
(m)
∗ for the matrices generated by the Arnoldi process, see (5.3). The matrices V

(m)
∗

and H
(m)
∗ are strongly related to the V

(m)
i and H

(m)
i , i = 1, . . . , p, matrices of Chapter

4, as we will see. We assume that the Arnoldi process does not break down before the
m-th iteration, so that Km(B, c) = range(V

(m)
∗ ). This is not a restriction in practice,

because the method proposed in Section 5.2 has converged in that case (this is called a
lucky break down), as we will see there.

5.2 An augmented linear system for P (B)y = c

Without loss of generality we will assume that the coefficient for Bp in P (B) is 1, so
that the polynomial P (B) of degree p can be written as

P (B) = (B + µpI) · . . . · (B + µ1I) + ρI . (5.5)

The product (B+µiI)(B+µjI) is commutative and therefore the ordering of the factors
B + µiI can be chosen freely. With ρ = 0 we have a unique factorization, but ρ �= 0
may be useful if one prefers to avoid complex µi. For example, if p = 2 we may write
B2 + γB + δI = (B + 0I)(B + γI) + δI. In order to solve P (B)y = c we consider the
augmented linear system

I 0 0 B + µ1I
−(B + µ2I)

. . . 0 0
0

. . . I 0
0 0 −(B + µpI) ρI



x1
x2...
xp

 =


0
...
0
c

 , (5.6)

or more compactly
Ax = b . (5.7)

Block Gaussian elimination of x1, . . . , xp−1 in (5.6) leads to P (B)xp = c, hence xp = y,
and we can focus on solving (5.6) instead of P (B)y = c.

The linear system (5.6) has quite a similar structure to the p-cyclic linear system
discussed in Chapter 4. Instead of choosing different search spaces for each xi (see
Chapter 4), it is natural to choose

x
(m)
i ∈ Km(B, c) = range(V (m)

∗ ) ,

because, in contrast to Chapter 4 all the matrices involved are equal. Now xi can be
written as xi = V

(m)
∗ zi and for x we have

x =

 x1...
xp

 =

 V (m)
∗

. . .

V
(m)
∗

 z1...
zp

 ,
or more compactly

x = V (m)z .
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An approximate solution for (5.7) is found by minimizing the norm of the residual of
(5.7):

x(m) = argmin
x∈range(V (m))

‖b− Ax‖ (5.8a)

= V (m)argmin
z

‖b− AV (m)z‖ . (5.8b)

In order to solve (5.8b) an expression similar to (4.24a) is useful:


I 0 0 B + µ1I

−(B + µ2I)
. . . 0 0

0
. . . I 0

0 0 −(B + µpI) ρI



V
(m)
∗ 0 . . . 0

0 V
(m)
∗

...
...

. . . 0

0 . . . 0 V
(m)
∗

 =


V

(m+1)
∗ 0 . . . 0

0 V
(m+1)
∗

...
...

. . . 0

0 . . . 0 V
(m+1)
∗




Ĩ 0 0 H
(m)
∗ + µ1Ĩ

−(H
(m)
∗ + µ2Ĩ)

. . . 0 0

0
. . . Ĩ 0

0 0 −(H
(m)
∗ + µpĨ) ρĨ

 ,
(5.9a)

or in compact notation
A V (m) = V (m+1) H(m) . (5.9b)

The matrix Ĩ is defined in (4.25). Relation (5.9) immediately follows from the Arnoldi
reduction (5.3) and V (m) = V (m+1)Ĩ.

Now the approximate solution can be computed as explained in Section 4.3.2. This
leads to a small least-squares problem with solution z(m):
z
(m)
1...
...

z
(m)
p

 = argmin
z

‖


Ĩ 0 0 H

(m)
∗ + µ1Ĩ

−(H
(m)
∗ + µ2Ĩ)

. . . 0 0

0
. . . Ĩ 0

0 0 −(H
(m)
∗ + µpĨ) ρĨ



z1...
...
zp

−


0
...
0

e1‖c‖

 ‖ ,

(5.10a)
also denoted by

z(m) = argmin
z

‖d̃ − H(m)z‖ . (5.10b)

The approximate solution x(m) of Ax = b is x(m) = V (m)z(m), so y(m) is

y(m) = x(m)p = V (m)
∗ z(m)p . (5.11)

Methods for the least-squares problem (5.10a) are discussed in Section 4.4. Here we
will follow the approach of Section 4.4.3 (Algorithm 4.2), where H (m) is reordered in
order to allow for an efficient QR factorization, if p is not too large.

Similar to the methods discussed in the introduction to this chapter, we have derived
a method which solves P (B)y = c by generating a Krylov subspace Km(B, c) (but
our method uses (5.6) ). The method has a number of similarities with the standard
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GMRES method [76] for By = c. Therefore, we will call our method P (GMRES). For
the case p = 1, P (GMRES) is equivalent to standard GMRES. We will use the Arnoldi
process with modified Gram-Schmidt orthogonalization to compute an orthogonal basis
for Km(B, c). Usually modified Gram-Schmidt orthogonalization will be sufficiently
reliable to compute an orthogonal basis for Km(B, c) in inexact arithmetic. Appendix
A presents a Matlab implementation of P (GMRES).

An advantage of P (GMRES) over SLDM is that it cannot break down before conver-
gence, if P (B) is nonsingular. This can be seen as follows: block Gaussian elimination
of x1, . . . , xp−1 in (5.6) gives P (B)xp = c, so the matrix A in (5.7) is nonsingular if and
only if P (B) is nonsingular. We can use the same argument as in the proof of Theo-
rem 4.2 (Section 4.3.2) to show that H(m) has full rank if A is nonsingular. Therefore,
the least-squares problem (5.10) has a unique solution. The P (GMRES) method can
only break down if the Arnoldi process with modified Gram-Schmidt orthogonalization
breaks down. In this case {H(m)}m+1,m = 0 and analogous to Theorem 4.3, we may
conclude that the solution has converged in this case: a lucky break down. In Section
4.3.2 we argued that p-cyclic GMRES cannot break down if m ≤ n. It is different
here because modified Gram-Schmidt orthogonalization is used instead of Householder
orthogonalization.

The P (GMRES) method can easily be adapted so that (5.2) holds (although we do
not recommend this if the conditions of Theorem 5.1 are not satisfied). This can be done
by computing an approximate solution zF of (5.10a) in a ‘FOM’-like way, as discussed in
Section 4.4.1, see formula (4.33). Block Gaussian elimination of zF1 , . . . z

F
p−1 in the FOM

alternative of (5.10a) leads to (5.2): the SLDM method. This ‘FOM’-system (4.33)
can be derived by a Ritz-Galerkin approach, see formula (4.35). So, we observe that a
Ritz-Galerkin approach may lead to SLDM. Note that Block Gaussian elimination of
zF1 , . . . z

F
p−1 may be an unstable process, whereas the QR factorization of H (m) is a stable

process.

In numerical experiment 3, Section 5.8, we show that (a symmetric variant of)
P (GMRES) may give more accurate results than Fiebach’s polMINRES method, if
P (B) is ill-conditioned.

5.2.1 Scaling of the block linear system

The P (GMRES) method is not invariant under scaling. We will illustrate the effects
of scaling with an example. Consider the linear system B2y = c, with a symmetric
(nonsingular) matrix B. This problem can be solved by solving the augmented linear
system [

I αB
−αB 0

] [
x1
x2

]
=

[
0
α2c

]
, (5.12)

with a scaling parameter α. The effects of scaling parameters on augmented linear
systems, associated with least-squares problems, are discussed in [5], [11], and [77]. In
that case nonsquare matrices are involved with the augmented linear system. Our case
is slightly different, because the blocks in (5.12) are square. Moreover, the nonzero
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structure of the right-hand side differs.
The scaling parameter α affects the way in which the residuals r

(m)
1 and r

(m)
2 are

weighted:

1

α2

[
r
(m)
1

r
(m)
2

]
=

[
0
c

]
−

[
I/α2 B/α
−B/α 0

] [
x
(m)
1

x
(m)
2

]
.

Obviously, the approximate solution x ∈ range(V (m)) with minimum residual norm
depends on α. In Section 5.8, experiment 3, the influence of the scaling parameter α is
illustrated by a numerical experiment.

The effect of rounding errors also depends on α, as we will now see. It is easy to
show that the condition number κ of the augmented matrix is

κ(

[
I αB

−αB 0

]
) =

1 +
√

1 + 4(ασmax(B))2

−1 +
√

1 + 4(ασmin(B))2
≈


σmax(B)

σmin(B)
= κ(B) if |α| is large,

1

(ασmin(B))2
if |α| is small.

The values σmin(B) and σmax(B) denote the smallest and largest singular value of the
symmetric matrix B, respectively. The condition number of the augmented linear system
(5.12) decreases monotonically, when α increases. The condition number may be smaller
than the condition number of B2, since the condition number of B2 is κ(B2) = κ(B)2.
So, a large α leads to a relatively small condition number. This suggests that we should
choose a (very) large α in order to reduce the effects of rounding errors in the numerical
solution process. However, this does not lead to an accurate solution of B2y = c,
because a large α effectively (if rounding errors play a role) decouples the first and the
second block rows of (5.12). Obviously, this coupling is an essential part of the solution
method. In numerical experiments (not reported) we observed that a very small or very

large α may lead to a stagnation of the norm of the true residual ‖c − B2x
(m)
p ‖ at a

relatively high level. We advise scaling (5.12) so that σmin(αB) < 1 < σmax(αB). A
similar remark applies to the off-diagonal blocks B + µiI of the general case (5.6).

5.3 Convergence of minimal residual methods for

P (B)y = c

A disadvantage of Fiebach’s method polGMRES is that it has a startup phase of p− 1
iterations. During the startup phase it is not possible to compute approximate solutions
of (5.1). In contrast to this, P (GMRES) generates approximations starting with the
first iteration. P (GMRES) may also be advantageous after the startup phase. This
can be explained as follows. It costs m − 1 matrix-vector products to generate the
Krylov subspace Km(B, c) = span(V

(m)
∗ ). In order to minimize ‖c− P (B)V

(m)
∗ z‖ for z,

polGMRES has to compute P (B)V
(m)
∗ in some implicit way, this costs p extra matrix-

vector products. So, m+ p− 1 matrix-vector products are needed by polGMRES if the
solution is taken from the m dimensional Krylov subspace Km(B, c). P (GMRES) also
needs m − 1 matrix-vector products to generate the Krylov subspace Km(B, c). One
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additional matrix-vector product is necessary in order to solve (5.8a). This leads to a
total of m matrix-vector products.

The polGMRES method minimizes ‖c− P (B)y(m)polG‖ for y(m) ∈ Km(B, c). With
the same amount of matrix-vector products P (GMRES) minimizes (5.8a) for xi ∈
Km+p−1(B, c). In practice we often see that the P (GMRES) residual ‖c−P (B)x

(m+p−1)
p ‖

is smaller than the polGMRES residual ‖c− P (B)y
(m)
polG‖. Therefore, P (GMRES) may

be slightly more efficient in terms of matrix-vector products. This potential advantage
is nicely illustrated with the next example:

Example Consider the equation B2y = c, with

B =

 1 0 0
0 0.75 0
0 0 0.5

 , c =

 1
1
1

 .
Suppose we want to solve this equation approximately by doing two matrix-vector prod-
ucts. For polGMRES this implies that we seek a solution in the subspace K1(B, c) =

span(c). Hence, y
(1)
polG = αc and the minimization problem is minα ‖c− B2αc‖. For the

optimal value of α we obtain ‖r(1)polG‖ = ‖c− B2αoptc‖ ≈ 0.786.

The search space of P (GMRES) for x1 and x2 is K2(B, c): x
(2)
1 = α1c + α2Bc and

x
(2)
2 = α3c + α4Bc. This leads to the minimization problem

min
α1,α2,α3,α4

‖
[

0
c

]
−

[
I B

−B 0

] [
α1c+ α2Bc
α3c+ α4Bc

]
‖ .

For the optimal values of αi the norm of the residual is ‖r(2)‖ = ‖c − B2(α3,optc +
α4,optBc)‖ ≈ 0.266. This is 3 times smaller than polGMRES’ residual norm, for the
same number of B evaluations. �

Now we will compare the residuals of polGMRES and P (GMRES). We define the
1 by p block matrix

M ≡
[
p∏
i=2

(B + µiI) . . .

p∏
i=p

(B + µiI) I

]
.

Premultiplying the residual b− Ax of (5.6) with M leads to

M(b− Ax) = c− P (B)xp ,

where we made use of the fact that products (B+µiI)(B+µjI) are commutative. Recall

that x(m) is defined by (5.8a) and y
(m)
polG is defined by (5.4). The following relationship

holds:

‖c− P (B)y
(m)
polG‖ ≤ ‖c− P (B)x(m)p ‖ (5.13a)

≤ ‖M‖ ‖b− Ax(m)‖ , (5.13b)
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because x
(m)
p ∈ Km(B, c) is a suboptimal solution of the minimization problem (5.4).

In order to derive other insightful inequalities for the residuals, we extend the pol-
GMRES solution y

(m)
polG to an approximate solution x

(m)
polG of Ax = b:

x
(m)
polG = Ny

(m)
polG , with N ≡


−

∏1
i=1(B + µiI)...

−
∏p−1
i=1 (B + µiI)
I

 .
The residual associated with x

(m)
polG is

b−Ax(m)polG =


0
...
0

c− P (B)y
(m)
polG

 .
From y

(m)
polG ∈ Km(B, c) it follows that x

(m)
polG ∈ Km+p−1(B, c). However, the approximate

solution x(m+p−1) ∈ Km+p−1(B, c) of Ax = b (defined by (5.8a-b) ) has a smaller residual

than x
(m)
polG:

‖b−Ax(m+p−1)‖ ≤ ‖b− Ax(m)polG‖
= ‖c− P (B)y

(m)
polG‖ .

Together with (5.13) this leads to

‖b− Ax(m+p−1)‖ ≤ ‖c− P (B)y
(m)
polG‖ (5.14)

≤ ‖c− P (B)x(m)p ‖ (5.15)

≤ ‖M‖ ‖b− Ax(m)‖ . (5.16)

From (5.14) we conclude that polGMRES and P (GMRES) have asymptotically the same
speed of convergence.

In the remainder of this section we will derive an upper bound for ‖b − Ax(m)‖ in
terms of P (z) and the eigenvalues of B. This analysis is adapted from the analysis
of Section 4.5. We assume that B is diagonalizable: B = Wdiag(λ1, . . . , λn)W

−1,
D = diag(λ1, . . . , λn). Furthermore, we define κ(W ) = ‖W‖ ‖W−1‖. The norm of the
residual r(m) = b−Ax(m) (with x(m) defined by (5.8a) ) can be bounded by

‖r(m)‖ = ‖b− Ax(m)‖ ≤ ‖b− ANQm−p(B)c‖ (5.17a)

= ‖c− P (B)Qm−p(B)c‖ (5.17b)

≤ ‖c‖ ‖I − P (B)Qm−p(B)‖ (5.17c)

≤ ‖r(0)‖ κ(W ) ‖I − P (D)Qm−p(D)‖ (5.17d)

= ‖r(0)‖ κ(W ) max
i=1,...,n

|1 − P (λi)Q
m−p(λi)| . (5.17e)
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Here Qm−p is an arbitrary matrix polynomial of maximum degree m − p. Therefore,
NQm−p(B)c ∈ range(V (m)). For an optimal polynomial Qm−p, formula (5.17) leads to

‖r(m)‖
‖r(0)‖ ≤ κ(W ) min

Q∈Pm−p
max
i=1,...,n

|1 − P (λi)Q(λi)| . (5.18)

For polynomials of the form P (B) = Bp − I and λi ∈ [0, β] with β < 1, we can use the
results of Section 4.5. For other polynomials P and/or eigenvalues λi of B, Conjecture
4.6 may not be valid and the suggested linear combination of Section 4.5:

q(z) = 1 − P (z)Qm−p(z) =

p−1∑
j=0

sm−j(z)dj ,

may be less suitable. In [34], Fiebach gives an upper bound for an optimization problem
of the form (5.18), with p = 2, by using Chebyshev polynomials. This leads to a bound
in terms of the roots of P and the smallest and largest eigenvalues of B.

For P (B) = B (5.18) reduces to

‖r(m)‖
‖r(0)‖ ≤ κ(W ) min

Q∈Pm−1
max
i=1,...,n

|1 − λiQ(λi)|

= κ(W ) min
Q̃∈Pm,Q̃(0)=1

max
i=1,...,n

|Q̃(λi)| ,

a well known GMRES convergence result [73, Ch. 6].

5.4 The symmetric case: P (MINRES)

For symmetric matrices B the standard Arnoldi reduction BV
(m)
∗ = V

(m+1)
∗ H

(m)
∗ leads

to a tridiagonal matrix H
(m)
∗ , where H

(m,�)
∗ is symmetric. The symmetric Lanczos

algorithm exploits this symmetry in order to generate a H
(m)
∗ and a V

(m+1)
∗ that satisfy

BV
(m)
∗ = V

(m+1)
∗ H

(m)
∗ . This leads to a large reduction of the number of inner products

and vector updates, which can be exploited in a symmetric variant of P (GMRES). In
the remainder of this section, we discuss how the symmetry can be exploited in the
other parts of the P (GMRES) method. We will compare the computational costs of the
unsymmetric and the symmetric methods for P (B)y = c in Section 5.5. We refer to [73,
Ch. 6] for a description of the Lanczos algorithm. In this chapter we assume that B is
real. The generalization for the complex Hermitian case is straightforward.

In order to solve the least-squares problem (5.10), H(m) is reordered as described in
Section 4.4.3. The reordered least-squares problem is denoted by

min
ẑ

‖d̂ − Ĥ(m)ẑ‖ . (5.19)

It is easily seen that the vector d̂ is given by

d̂k =

{
v
(1)
∗
T
c , if k = p ,

0 , if k �= p ,
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where v
(1)
∗ is the first column vector of V

(m+1)
∗ . Figure 5.1 shows the nonzero pattern of

a matrix Ĥ(m) and its upper triangular factor of the QR factorization Ĥ(m) = Q̂(m)R̂(m).
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Figure 5.1: left: nonzero pattern of Ĥ(m) in the least-squares problem (5.19)
for p = 4 and m = 6. right: the nonzero pattern R̂(m)

The matrix Ĥ(m) has a block tridiagonal structure. Therefore, the QR factoriza-
tion of Section 4.4.3 simplifies because there is no need to apply the orthogonal trans-
formation ΩTj to blocks Hij which are zero. Only orthogonal transformations ΩTj−2,
ΩTj−1 and ΩTj need to be applied to the column H1j , . . . , Hj+1,j. This QR factorization

Ĥ(m) = Q̂(m)R̂(m) leads to a block upper tridiagonal R̂(m) with bandwidth 2p+ 1.
Now we have derived an inexpensive symmetric variant of P (GMRES), which we will

call P (MINRES)L. The L in stands for ‘long’, in contrast to a ‘short’ variant which we
will discuss in the remainder of this section. MINRES refers to the standard MINRES
method for indefinite symmetric linear systems By = c, by Paige and Saunders [68].

A disadvantage of P (MINRES)L is that it is necessary to store the whole matrix

V
(m)
∗ , because y(m) is computed after the reduced least-squares problem (5.19) is solved.

In the following we will show that it is not necessary to store V
(m)
∗ if the computations

are rearranged. This leads to the method called P (MINRES)S. In the j-th iteration
of P (MINRES)S the approximate solution y(j−1) is updated to y(j) by using short-term
recurrence relations.

We define the matrix R̂(j,�) = R̂(j)(1:pj, 1:pj). The approximate solution of (5.7)
after j iterations is given by

x(j) = V̂ (j) R̂(j,�)−1 {Q̂(j)T d̃}(1:pj) .

However we are only interested in y(j) = x
(j)
p , therefore

y(j) = x(j)p = V̂ (j)(1 + (p− 1)j:pj, :) R̂(j,�)−1 {Q̂(j)T d̃}(1:pj) .
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This can be computed with

y(j) = V̂ (j)(1 + (p− 1)j:pj, :)
(
R̂(j,�)−1 {Q̂(j)T d̃}(1:pj)

)
, (5.20a)

or

y(j) =
(
V̂ (j)(1 + (p− 1)j:pj, :) R̂(j,�)−1

)
{Q̂(j)T d̃}(1:pj) . (5.20b)

Formula (5.20a) leads to P (MINRES)L and formula (5.20b) leads to P (MINRES)S.

From the QR factorization of Section 4.4.3 it follows that the vector {Q̂(j)T d̃}(1:pj)
grows at each iteration by p new entries, the other elements do not change:

{Q̂(j)T d̃}(1:pj) =

[
{Q̂(j−1)T d̃}(1:p(j − 1))

{Q̂(j)T d̃}(1 + p(j − 1):pj)

]
. (5.21)

Now we consider
W (j) ≡ V̂ (j)(1 + (p− 1)j:pj, :) R̂(j,�)−1 . (5.22)

A recurrence relation for the columns of W (j) can easily be derived from

W (j)R̂(j,�) = V̂ (j)(1 + (p− 1)j:pj, :) (5.23a)

=
[

0, . . . , 0, v(1)∗︸ ︷︷ ︸
p

, 0, . . . , 0, v(2)∗ , . . . , 0, . . . , 0, v(j)∗
]
, (5.23b)

by comparing the columns of the left-hand side and the right-hand side in (5.23a). The
recurrence relation defined by (5.23a) is a 2p + 1-term recurrence, because R̂(j,�) is an
upper triangular matrix with bandwidth 2p+ 1.

In order to see the similarities to MINRES [68], the recurrence can also be seen
as a block three-term recurrence. In the j-th iteration only the columns p(j − 3) +
1, . . . , p(j − 1) of W (j−1) are needed to compute the p new columns p(j − 1) + 1, . . . , pj
of W (j). These p columns are appended to W (j−1):

W (j) =
[
W (j−1) W (j)(:, p(j − 1) + 1:pj)

]
. (5.24)

Formula (5.20b) can be simplified by using the relations (5.21), (5.22) and (5.24). This
leads to

y(j) = W (j) {Q̂(j)T d̃}(1:pj)

=
[
W (j−1) W (j)(:, p(j − 1) + 1:pj)

] [ {Q̂(j−1)T d̃}(1:p(j − 1))

{Q̂(j)T d̃}(1 + p(j − 1):pj)

]
= y(j−1) +W (j)(:, p(j − 1) + 1:pj){Q̂(j)T d̃}(1 + p(j − 1):pj) .

We see that only the last p columns of W (j) are needed in order to update the approxi-
mate solution from y(j−1) to y(j). This point of view helps to save storage. A Matlab

implementation of P (MINRES)S is presented in Appendix A.
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For p = 1 we have that W (j) = V
(j)
∗ R(j)−1 and it is easily seen that P (MINRES)S

reduces to MINRES [68] in this case.

Unfortunately, P (MINRES)S needs many (if p is large) more vector updates per
iteration than P (MINRES)L, as we will see in Section 5.5. The main advantage of
P (MINRES)S over P (MINRES)L is the reduced storage requirements (see also Section
5.5).

The rounding error behaviour of P (MINRES)L and P (MINRES)S are not the same.
Sleijpen, van der Vorst, and Modersitzki [79] show that MINRESL has a better round-
ing error behaviour than MINRESS, for ill-conditioned indefinite symmetric linear sys-
tems By = c. (Obviously MINRESS refers to the three-term recurrence method and
MINRESS, and MINRESL refers to the variant which stores all the Lanczos vectors.)
We may expect a similar behaviour for P (MINRES)S and P (MINRES)L.

In inexact arithmetic, the orthogonality of the vectors generated by the Lanczos
process is often lost due to rounding errors, as the iteration proceeds. Druskin, Green-
baum, and Knizhnerman [23] have shown that convergence of the SLDM method is still
possible in spite of this loss of orthogonality. The numerical experiments of Section
5.8 indicate that this is also true for the P (MINRES) methods. A detailed analysis is
beyond the scope of this thesis.

5.4.1 Lanczos two times: P (MINRES)2

The storage requirements of P (MINRES)L can also be reduced by using an idea proposed
by Bergamaschi and Vianello [9] for the SLDM method. The idea is to run the Lanczos
process twice. The first run of the Lanczos process is used to compute the tridiagonal
matrix H

(m)
∗ , and to compute a solution ẑ(m) of the least-squares problem (5.19). In

the second run of the Lanczos process, y(m) is computed as a linear combination of
Lanczos vectors: y(m) = V

(m)
∗ z

(m)
p (this is formula (5.11) ), where z

(m)
p = ẑ(m)(p:p:pm).

In this approach it is not necessary to store more than three Lanczos vectors, but twice
as many matrix-vector products are needed in comparison with P (MINRES)L. The
Lanczos process of the second run is slightly cheaper than the Lanczos process of the
first run, because H

(m)
∗ can be reused. This saves two inner products per iteration. The

costs of P (MINRES)2 and other minimal residual methods for P (B)y = c are considered
in the next section.

5.5 Costs of minimal residual methods for P (B)y = c

In this section we consider the storage requirements and computational costs of the
P (GMRES) method and the symmetric variants, polGMRES and polMINRES. These
costs are summarized in Table 5.1.

The storage requirements and computational costs may depend slightly on implemen-
tation details. For the QR factorization of Ĥ(m) we assumed that Ĥ(m) is transformed
to upper triangular form by sparse Householder transformations. In the Matlab im-
plementation of Appendix A the 2p by 2p orthogonal transformations (which transform
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Ĥ(m) to upper triangular form) are computed explicitly; this is more expensive but easier
to program.

For Table 5.1 we assumed that the coefficients µi and ρ in (5.6) are real. Complex
coefficients lead to higher costs. A reduction of the costs is possible if the coefficients
µi occur in complex conjugate pairs, as we will see later in this section. We see that
P (MINRES)S is always more expensive than P (MINRES)L in terms of flops. For large
p, P (MINRES)S is relatively very expensive and in that case P (MINRES)S is only of
interest if 3p+ 5 vectors can be stored in computer memory, but m+ 3 vectors cannot.
The P (MINRES)2 method is cheaper than P (MINRES)S if one matrix-vector product
is cheaper than 4p2n flops. The P (MINRES)2 method always needs less storage than
P (MINRES)S and P (MINRES)L.

For standard GMRES, the costs of storing and factorizing the Hessenberg matrix
are usually negligible. For large p and a relatively small n this is not necessarily true
for P (GMRES), as we see in Table 5.1.

The costs of Fiebach’s methods polGMRES and polMINRES increase less fast than
that of P (GMRES) and P (MINRES)S, as p increases. This suggests that, for large p,
it may be beneficial to mix Fiebach’s approach with our approach, in order to mix the
advantages and the disadvantages of both approaches. Suppose, for example, that p
is an even number, then block Gaussian elimination of the odd numbered unknowns
x1, x3, . . . , xp−1 in (5.6) leads to a p/2 by p/2 block linear system with blocks of the
form (B + µiI)(B + µi+1I) = B2 + (µi + µi+1)B + µiµi+1I, for i = 1, 3, , p− 1. For the
blocks B2 + (µi + µi+1)B + µiµi+1I we can derive a relationship similar to (5.3):

(B2 + (µi + µi+1)B + µiµi+1I)V
(m)
∗

= V (m+2)
∗ (H(m+1)

∗ H(m)
∗ + (µi + µi+1)Im+2,m+1H

(m)
∗ + µiµi+1Im+2,m) .

The generalization of (5.9b) is AV (m) = V (m+2)H(m), where H(m) has m+2 by m blocks.
Other mixed variants of Fiebach’s approach and our approach can be obtained by

elimination of other combinations of unknowns from the set of unknowns {x1, . . . , xp−1}.
However, note that block Gaussian elimination may be unstable, see numerical experi-
ments 3 and 5 in Section 5.8.

Elimination of the odd numbered unknowns has an attractive side effect if the µi
occur in complex conjugate pairs: µ̄i = µi+1 for i = 1, 3, , p − 1. In that case (B +
µiI)(B + µi+1I) = B2 + (µi + µ̄i)B + µiµ̄iI, i = 1, 3, , p− 1, is a polynomial with real
coefficients. So, complex arithmetic can be avoided.

5.6 Other variants of P (GMRES)

In this section we propose some other ideas for solving P (B)y = c or related problems.

5.6.1 The matrix polynomial P (B) = γ0I + γ1B + . . .+ γpB
p

Up until now we have assumed that P (B) has the form P (B) = (B+µpI)·. . .·(B+µ1I)+
ρI. It is always possible to write a polynomial P (B) = γ0I+γ1B+. . .+γp−1B

p−1+1Bp in
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such a form, but this may lead to complex µi. Moreover, the problem of finding µ1, . . . , µp
for given scalars γ0, . . . , γp−1 and parameter ρ, may be ill-conditioned (although one may
try to avoid ill-conditioning by choosing a good ρ). On the other hand, computing γi
for a given polynomial P (B) = (B + µpI) · . . . · (B + µ1I) + ρI may lead to very large
γi if p is large and |µj| is modest. For example, B = diag(9, 9.001, 9.002, . . . , 9.1) and
P (B) = (B − 10I)40. These polynomials P (B) with large γi are not suitable for the
numerical method proposed in this section. We conclude that the best form for P (B)
is problem dependent.

Now we will propose a real arithmetic method for P (B)y = c, where P (B) is an
arbitrary polynomial of the form

P (B) = γ0I + γ1B + . . .+ γpB
p , (5.25)

with γi ∈ R and B ∈ Rn×n.
We consider the linear system

I 0 0 γpB
−B . . . 0

...
0

. . . I γ2B
0 0 −B γ1B + γ0I



x1...
xp−1
xp

 =


0
...
0
c

 , (5.26)

abbreviated by Ax = b. Block Gaussian elimination of x1, . . . , xp−1 in (5.26) leads to
P (B)xp = c. Hence, the problem P (B)y = c is solved by the block matrix equation
(5.26). It is possible to derive other block matrix equations associated with P (B)y = c,
but we restrict ourselves to (5.26).

Analogous to (5.9), an expression AV (m) = V (m+1)H(m), can be derived. The matrix
H(m) can be obtained by replacing the block entries in the block matrix A of (5.26):

I ← Ĩ, B ← H
(m)
∗ and the square zero matrices 0 are replaced by another zero

matrix 0 of suitable dimensions. Now the derivation of an iterative method which solves
P (B)y = c approximately (with P(B) of the form (5.25) ), can be done in a similar way
to P (GMRES). The reordering of H(m), described in Section 4.4.3, again leads to a
block Hessenberg matrix Ĥ(m). The costs of methods based on (5.26) are approximately
equal to the costs presented in Section 5.5. Only lower order terms may differ, as we
will see now for the symmetric case.

If B is symmetric, then Ĥ(m) is a block tridiagonal matrix. The QR factorization
of Ĥ(m) leads to O(mp) more fill-in entries in the block upper tridiagonal matrix R̂(m)

than in Section 5.4. Therefore, the short recurrence method for (5.25) needs O(pm)
more vector updates than the short recurrence method P (MINRES)S.

5.6.2 A QMR-type method for P (B)y = c

In this section we will show that it is possible to derive a QMR-type method for
P (B)y = c, based on the unsymmetric Lanczos process. The QMR method [36] is
a short recurrence Krylov subspace method for unsymmetric linear systems By = c.
The method is based on the unsymmetric Lanczos process, see e.g., [73, Ch. 7]. The
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unsymmetric Lanczos process constructs an m + 1 by m tridiagonal matrix T
(m)
∗ and

matrices V
(j)
∗ = [v

(1)
∗ , . . . , v

(j)
∗ ], with v

(1)
∗ = βc, such that relationship

BV (m)
∗ = V (m+1)

∗ T (m)
∗ , (5.27)

holds. The matrix V
(m+1)
∗ is not orthogonal in general, but it is biorthogonal with respect

to a matrix W
(m+1)
∗ : W

(m+1)
∗

T
V
(m+1)
∗ = I. We refer to [73, Ch. 7] for a description of

the unsymmetric Lanczos process. Here we will only use the relationship (5.27).
With equation (5.27) we can derive a relationship analogous to (5.9). The differences

from (5.9) are that H
(m)
∗ is replaced by T

(m)
∗ : AV (m) = V (m+1) T (m), and that V (j) is not

orthogonal. We seek an approximate solution of (5.7) of the form x(m) = V (m)z. The
residual is

b−Ax(m) = b− AV (m)z

= V (m+1)(d̃− T (m)z) .

The matrix V (m+1) is not orthogonal, so, in general ‖b − Ax(m)‖ �= ‖d̃ − T (m)z‖, but
a small ‖d̃ − T (m)z‖ may lead to a small ‖b − Ax(m)‖. Hence, a suitable approximate
solution of (5.7) is given by

x = V (m) argmin
z

‖d̃ − T (m)z‖ . (5.28)

The least-squares problem in formula (5.28) can be solved by a QR factorization of
T (m). Reordering T (m) as described in Section 4.4.3 leads to a block tridiagonal matrix
T̂ (m) that has the same nonzero structure as the matrix Ĥ(m) used in P (MINRES), see
Figure 5.1.

Similar to Section 5.4 it is possible to derive short recurrences in order to update
x(m) at every iteration. This leads to a method that needs a fixed amount of memory
and flops per iteration. Note that the memory requirements and the orthogonalization
costs of methods based on the Arnoldi process increase in successive iterations.

We do not claim that the idea presented in this section leads to a reliable method
for P (B)y = c. Our only aim was to show that it is in principle possible to combine the
idea of Section 5.2 with the unsymmetric Lanczos process. Note that it is well known
that the unsymmetric Lanczos process may suffer from (near) break downs, and so may
this approach.

5.6.3 R(B)y = c with a rational matrix function R(B)

The SLDM method can also be used for problems f(B)y = c, where f is an analytic

function: y(m) = ‖c‖V (m)
∗ f(H

(m,�)
∗ )−1e1. The P (GMRES) method cannot be generalized

to general analytic matrix functions f , because the block linear system (5.6) has to be
finite dimensional in practical applications. However, the linear system f(B)y = c can be
solved approximately with P (GMRES) or a P (GMRES)-like method by approximating
the analytic function f by a polynomial or rational function of suitable order, for example
a truncated Taylor series or a Padé approximation.
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In order to keep the computational costs and the storage requirements of this ap-
proach low, a small p is desirable, see Section 5.5. Therefore, Chebyshev or rational
Chebyshev approximations may be more suitable in practice. Padé and rational Cheby-
shev approximations lead to a rational matrix function R(B).

We will briefly indicate in which sense R(B) should approximate f(B). Suppose
that f(B)y = c is solved approximately by R(B)y = c, then the error is

xR − xf = R(B)−1c− f(B)−1c

= (R(B)−1 − f(B)−1)c ,

and the residual is

r = c− f(B)xR = c− F (B)R(B)−1c

= (I − F (B)R(B)−1)c .

Therefore, we suggest choosing the approximating rational function R(z) so that

max
z∈Ω

|R(z)−1 − f(z)−1|

is small, or so that
max
z∈Ω

|1 − f(z)/R(z)|

is small, where Ω denotes the field of values of C:

Ω = {z ∈ C | z =
xHAx

xHx
, x ∈ C

n} .

For the SLDM method this condition is reasonable, because the eigenvalues of H
(m,�)
∗

are in Ω and therefore R(H
(m,�)
∗ ) ≈ f(H

(m,�)
∗ ). For P (GMRES) this condition is also

reasonable, because SLDM and P (GMRES) are more or less related to each other, see
the last paragraph of Section 5.2. In the next section, the error in the solution is analysed
for the special case f(B) = eB, where eB is approximated by a truncated Taylor series.

In the remainder of this section, we will show that the augmented linear system
idea, proposed in Sections 5.2 and 5.6.1, is also applicable for linear systems of the form
R(B)y = c. We will assume that the rational matrix function R(B) has the following
form:

R(B) = P p(B)
(
Qp−1(B)

)−1
, (5.29)

with the polynomials P p(B) and Qp−1(B):

P p(B) = (µ1pI + ν1pB)(µ21I + ν21B) · . . . · (µp,p−1I + νp,p−1B) ,

Qp−1(B) = (µ11I + ν11B) · . . . · (µp−1,p−1I + νp−1,p−1B) .

The only restriction for the coefficients µij and νij is that P p(B) and Qp−1(B) should
be nonsingular. In order to solve R(B)y = c we introduce the block linear system

µ11I + ν11B 0 0 µ1pI + ν1pB
−(µ21I + ν21B)

. . . 0 0
0

. . . µp−1,p−1I + νp−1,p−1B 0
0 0 −(µp,p−1I + νp,p−1B) 0



x1
x2...
xp

=


0
...
0
c

 . (5.30)
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Block Gaussian elimination of x1, . . . , xp−1 in (5.30) leads to R(B)xp = c. Obviously,
an iterative method can be derived for R(B)y = c, in a similar way to that in Sections
5.2 and 5.6.1.

The linear system P p(B)(Qp−1(B))−1y = c can also be solved by computing c̃ =
Qp−1(B)c (this costs p − 1 matrix-vector products), followed by solving P p(B)y = c̃
with P (GMRES). However, P p(B)(Qp−1(B))−1y = c may converge much faster than
P p(B)y = c̃, for example if P p(B)(Qp−1(B))−1 ≈ I.

In the symmetric case, R(B)y = c can be solved with short recurrences, analogous
to Section 5.4.

5.7 Example: eBy = c

In this example we show that the approach of the previous sections is applicable for the
linear system eBy = c. Krylov subspace methods for eBy = c are studied by (among
others) [24], [38], [51], [75], and [88] Except for the corrected schemes in [75], all these
methods are based on the SLDM approach:

y(m) = ‖c‖V (m)
∗ (eH

(m,�)
∗ )−1e1 .

Note that eH
(m,�)
∗ is always nonsingular, so that this is not a reason to apply the idea

of the previous sections to eBy = c. However the case eBy = c nicely illustrates the
possibilities of the P (GMRES) method and its variants.

The equation eBy = c is often associated with ordinary differential equations [38]
and [51]. The relationship between eBy = c and ODEs can be illustrated by the ODE

u′ = −Bu, u(0) = u0 . (5.31)

The solution of (5.31) is u(t) = e−Btu0 and the solution u1 = u(1) can be found by
solving the linear equation eBu1 = u0.

The method proposed in this example is based on the p by p block linear system
I 0 . . . . . . 0 I/(p− 1)

−B/(p− 2)
. . .

. . .
...

...
0

. . . I
. . .

...
...

...
. . . −B/2 I 0 I/2

...
. . . −B I I

0 . . . . . . 0 −B I




x1
x2...
...
...
xp

 =


0
...
...
...
0
c

 . (5.32)

Block Gaussian elimination of x1, . . . , xp−1 leads to ẽBxp = c, where

ẽB ≡ I +B +
B

2!
+ . . .+

Bp−1

(p− 1)!
,

is the p− 1-st order truncated Taylor series of eB. Analogous to Sections 5.2 and 5.6, it
is obvious how to derive an iterative method for (5.32). Note that the block Gaussian
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elimination process may be unstable if B has large eigenvalues. Nevertheless, xp may
still be a good approximation of e−Bc in finite arithmetic, as we will see in experiment
5 of Section 5.8.

In order to analyse the method we will make the following assumption: B is a
symmetric matrix with eigenvalues λi ≥ 0. This is a reasonable assumption for the
case where B is associated with an ordinary differential equation with non-increasing
solution components. Moreover, by scaling the problem eBy = c it is always possible to
obtain positive eigenvalues, because the scaling of eBy = c shifts the eigenvalues of B:
eσI = eσI and therefore eσIeBy = eσIc is equivalent to eσI+By = eσc.

Now we will derive an upper bound for the norm of the error in y(m) in terms of
the norm of the residual r(m) = b − Ax(m). Note that ‖r(m)‖ can be computed very
efficiently during the iteration process, see Section 4.4.3. In order to derive the upper
bound we use the fact that the exact solution of eBy = c is y = e−Bc and that the exact

solution of Ax = b is x = A−1b, with xp = ẽB
−1
c. Recall that the approximate solution

of ẽBy = c at the m-th iteration is y(m) = x
(m)
p . The norm of the error is bounded by

‖x(m)p − e−Bc‖ = ‖x(m)p − ẽB
−1
c+ (ẽB

−1
− e−B)c‖ (5.33a)

≤ ‖x(m)p − xp‖ + ‖ẽB
−1

− e−B‖ ‖c‖ . (5.33b)

The vectors x
(m)
p and xp are one block of the larger vectors x(m) and x:

‖x(m)p − xp‖ ≤ ‖x(m) − x‖
= ‖A−1(Ax(m) − b)‖
≤ ‖A−1‖ ‖r(m)‖ .

Matrix B is diagonalizable with an orthogonal matrix Q∗: B = Q∗diag(λ1, . . . , λn)Q
T
∗ ,

D = diag(λ1, . . . , λn). We define the block diagonal matrix Q = diag(Q∗, . . . , Q∗). The
matrix QTAQ has n uncoupled p by p submatrices Mλ1 , . . . , Mλn with

Mγ =


1 0 . . . 0 1/(p− 1)

−γ/(p− 2)
. . .

. . .
...

...
0

. . . 1 0 1/2
...

. . . −γ 1 1
0 . . . 0 −γ 1

 , (5.34)

when a suitable reordering is applied to QTAQ. We use Q to simplify the norm of A−1:

‖A−1‖ = ‖QTA−1Q‖
= ‖(QTAQ)−1‖
= max

λi

‖M−1
λi

‖

≤ sup
γ≥0

‖M−1
γ ‖ .

Numerical experiments with different values of γ and p lead to the following conjecture:
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Conjecture 5.2 The 2-norm of M−1
γ , with Mγ defined by (5.34), is bounded:

sup
γ≥0

‖M−1
γ ‖ ≤ p− 1 , if p ≥ 3 .

A much weaker result, supγ≥0 ‖M−1
γ ‖ ≤ √

pp2, for p ≥ 2, can be proved by deriving
upper and lower bounds for each vector entry si in s = M−1

γ t, with −1 ≤ ti ≤ 1.

Now we will simplify the term ‖ẽB
−1

− e−B‖ in (5.33b).

‖ẽB
−1

− e−B‖ = ‖
(
p−1∑
i=1

Bi/i!

)−1

− e−B‖

= ‖
(
p−1∑
i=1

Di/i!

)−1

− e−D‖

= max
j

|
(
p−1∑
i=1

λij/i!

)−1

− e−λj |

≤ max
z≥0

|ẽz−1 − e−z| ≡ ξp

The value of ξp indicates how accurate the approximation of e−z, by the inverse of a
truncated Taylor series, is. Computing ξp for different values of p is straightforward.
For example, ξ20 = 1.6 · 10−7 and ξ30 = 1.3 · 10−10. We found that

ξp ≤ 0.25 · 0.50p, for 10 ≤ p ≤ 80 .

Note that a value ξp smaller than the machine precision is not of practical interest
because of rounding errors. Therefore, only p ≤ 51 is of interest when standard IEEE
754 double precision arithmetic is used (64 bits for one floating-point number).

Combining the previous results gives an upper bound for the error norm in terms of
‖r(m)‖:

‖y(m) − e−Bc‖ ≤ (p− 1)‖r(m)‖ + 0.25 · 0.50p‖c‖ , 10 ≤ p ≤ 80 , (5.35)

assuming Conjecture 5.2. The error bound (5.35) may be useful for a stopping criterion
of the iterative method. In Section 5.8 we will give an illustration of (5.35) by a numerical
experiment.

Three obvious variants (see Sections 5.2 and 5.4 ) of the method discussed in this
section are: eGMRES for the unsymmetric case based on Arnoldi, eMINRES

S with short
(2p + 1) term recurrences for the symmetric case, based on the symmetric Lanczos
process, and eMINRES

L for the symmetric case without short recurrences, based on the
symmetric Lanczos process. The computational costs and storage requirements of these
methods are nearly equal to the corresponding methods mentioned in Section 5.5.

For unsymmetric B the eigenvalues are not necessarily on the positive real axis.
Outside the positive real axis the truncated Taylor series may be less accurate, both in
exact and inexact arithmetic. From calculus we know that for p→ ∞ the p−1-st order
truncated Taylor series of ez converges to ez for all z ∈ C. However, from numerical
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mathematics we know that in inexact arithmetic this may not be true, for example,
1 + (−20) + (−20)2/2! + (−20)3/3! + . . . does not converge to e−20, due to cancellation.
Here, the linear system (5.32) may be ill conditioned if B has eigenvalues far away from

the positive real axis [0,∞[. Numerical experiments (not reported) indicate that ẽz
−1

is
a good approximation for e−z in the complex plane around the positive real axis, if p is
sufficiently large, even in inexact arithmetic. Recall that scaling the problem shifts the
eigenvalues of B. This can be used to obtain a suitable eigenvalue distribution for B.

5.7.1 The function ϕ(z) = (ez − 1)/z

The function φ(z) = (ez−1)/z arises in the context of ordinary differential equations. In
[51] Hochbruck and Lubich propose an ODE solver of Rosenbrock-Wanner type, which
is based on Krylov subspace approximations to y = ϕ(γhJ)c. Here J is the Jacobian of
the ODE x′ = f(x), h is the step size, and γ is a parameter. In this section we will show
that the method of Section 5.7 is also applicable here, but with a different right-hand
side for (5.32).

Instead of γhJ , we will use −B. So, locally non-increasing solution components of
x′ = f(x) are associated with positive eigenvalues of B. We are interested in computing
y = ϕ(−B)c or

y = (e−B − I)(−B)−1c . (5.36)

The matrix function ϕ(−B) = (e−B − I)(−B)−1 is only defined for nonsingular B.
The definition of ϕ(−B) can be extended to singular B by the Taylor series ϕ(−B) =∑
i≥0(−B)i/(i+ 1)!. Premultiplying both hand sides of (5.36) by eB leads to

eBy = (eB − I)B−1c . (5.37)

We already know how to handle the left-hand side of (5.37). The right-hand side is
treated analogously:

I 0 . . . . . . 0 I/(p− 1)
−B/(p− 2)

. . .
. . .

...
...

0
. . . I

. . .
...

...
...

. . . −B/2 I 0 I/2
...

. . . −B I I
0 . . . . . . 0 −B I




x1
x2...
...
...
xp

 =


0

c/((p− 1)(p− 2))
c/((p− 2)(p− 3))

...
c/(2 · 1)
c


Block Gaussian elimination of x1, . . . , xp−1 leads to

ẽBxp = (ẽB − I)B−1c . (5.38)

Hence, eB in (5.37) is replaced by the p − 1-st order Taylor approximation ẽB and we
conclude that xp is an approximation of y = ϕ(−B)c.

Note that the same approximation for y = ϕ(−B)c is given by −xp−1 in equation
(5.32), because block Gaussian elimination of x1, . . . , xp−2, and xp in (5.32), leads to
(5.38).
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5.8 Numerical experiments

In this section we present several numerical experiments to illustrate the possibilities
of the approach proposed in the previous sections. For the numerical experiments we
have only used diagonal matrices B. For the methods used in this section this is not
restriction, because each symmetric problem can be transformed to a diagonal form
which has the same convergence behaviour as the original problem. This is a well
known property for Krylov subspace methods, and follows from the fact that symmetric
matrices are diagonalizable with an orthogonal matrix. Note that the behaviour in
inexact arithmetic may be slightly different for diagonal matrices [79]. An advantage
of diagonal matrices is that the eigenpairs are explicitly known, which may be helpful
in understanding the convergence behaviour. Moreover, the experiments are easy to
reproduce by other researchers.

In the numerical experiments, we compare three different methods: SLDM, polMIN-
RES and P (MINRES)L. For the problems considered here, P (GMRES) and P (MIN-
RES)S lead to practically the same results as P (MINRES)L. The polMINRES method
uses short recurrences for the update of the approximate solution at every iteration.
We used a simple variant of polMINRES which computes the approximate solution as
a linear combination of Lanczos vectors at every iteration. The convergence results for
several problems and several methods are plotted in Figures 5.2 to 5.7. These conver-
gence plots have the number of matrix-vector products k on the horizontal axis and the
norm of the error or residual on the vertical axis, see Table 5.2.

SLDM polMINRES P (MINRES)L

‖c− P (B)y(k)‖ (a)
− · − · − · − · − − − − − − − − −−−−−−−−−−−−−

‖P (B)−1c− y(k)‖(a) − · − · + · − · − − − − + − − − −−−−−−+−−−−−−

‖b− Ax(k)‖ (b)
−−−−−−−•−−−−−−−

Table 5.2: Legend of the Figures 5.2 to 5.4 and Figure 5.7, see Table 5.3
for Figure 5.6. After k matrix-vector products the approximate solution of
P (B)y = c and Ax = b is y(k) and x(k), respectively. (a) ‖c − P (B)y(k)‖ is
the true residual norm and ‖P (B)−1c− y(k)‖ is the true error norm. (b) The
residual norm ‖b−Ax(k)‖ is computed as the norm of a recursively updated
vector of dimension p, see formula (4.42).

Experiment 1 In this experiment we consider B2y = c, where B is a scaled version of
the matrix in example 4 of van der Vorst’s paper on f(A)x = b [88]. The scaled matrix
is B = 10D = 10 diag(λ1, . . . , λ900), with λ1 = 0.034 < λ2 < . . . < λ900 = 1.2. The
right-hand side is c = B2[1, 1, . . . , 1]T . The spectrum of D mimics roughly the spectrum
of some incomplete Cholesky preconditioned matrix. We scaled the matrix in order
to have a convergence phase where polMINRES is clearly better than P (MINRES)L.
P (MINRES)L uses the following parameters for the block linear system (5.6): µ1 = 0,
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Figure 5.2: Experiment 1. Convergence plot; see Table 5.2 for legend.

µ2 = 0 and ρ = 0. The convergence for the three methods is plotted in Figure 5.2. After
30 matrix-vector products P (MINRES)L is slightly better than polMINRES.

Experiment 2 Again we consider B2y = c, but now with B = diag(1 + 1/1, 1 +
1/2, 1 + 1/3, . . . , 1 + 1/99, 0.01) and c = [1, 1, . . . , 1, 0.0001]T . A near stagnation phase
in the convergence of P (MINRES)L and polMINRES is created by chosing the entries
B100,100 and c100 smaller than the others, see Figure 5.3.

For linear systems By = c, Brown [16] showed that FOM breaks down if GMRES
stagnates: y(j) = y(j+1). Furthermore, FOM has a relatively large residual if GMRES
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Figure 5.3: Experiment 2. Convergence plot; see Table 5.2 for legend.
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nearly stagnates, see Cullum and Greenbaum [18]. We see a similar behaviour here:
SLDM has a large residual if the minimal residual approach P (MINRES)L nearly stag-
nates, see also Section 4.4.4 for an explanation of this phenomenon.

In terms of matrix-vector products P (MINRES)L is the winner in this experiment.
For a polynomial P (B) of degree p, the maximal gain of P (MINRES)L compared with
polMINRES is p − 1 matrix-vector products. This maximal gain of 1 matrix-vector
product is asymptotically almost attained in this example, see Figure 5.3.

Experiment 3 In this experiment, we consider a problem for which Block Gaussian
elimination of x1, . . . , xp−1 in (5.6) is not a stable process. The problem is B4y = c, with
B = diag(0.5, 0.51, 0.52, . . . , 1.99, 2, 500) and c a random vector, with entries between
−1 and 1, scaled to unit norm. The parameters of (5.6) are µ1 = µ2 = µ3 = µ4 = ρ = 0.

The polMINRES method explicitly forms the matrix H
(m+3)
∗ H

(m+2)
∗ H

(m+1)
∗ H

(m)
∗ for

the solution of B4y = c. This matrix is ill-conditioned because B4 is ill-conditioned: its
condition number is κ(B4) = 1012. This leads to less accurate results, as we will see.
P (MINRES)L deals with the much better conditioned matrixH(m) of (5.9). The residual
norms ‖c−P (B)y(k)‖ of polMINRES and P (MINRES)L stagnate at approximately 10−6,
see Figure 5.5. However, the error norm of polMINRES stagnates, while P (MINRES)L
is still converging. The residual norm ‖b − Ax(k)‖ of (5.7) also converges to a small
value.

0 5 10 15 20 25 30 35 40
10-15

10-10

10-5

100

105

k →
Figure 5.4: Experiment 3. Convergence of polMINRES and P (MINRES)L.
Vertical axis: the norm of a residual or error, see Table 5.2

Experiment 4 This experiment shows that the convergence of P (MINRES)L depends
mildly on the scaling of the problem. We consider the problem B2y = c. The matrix
B and vector c are defined in example 5 in [88]: B = diag(λ1, . . . , λ900), with λ1 =
214.827 > λ2 > . . . > λ900 = 1.0 and c = B2[1, 1, . . . , 1]T .

For the linear system (5.12) we used two different scaling parameters α: α = 1/10
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and α = 1/100. For α = 1/100 the convergence is slightly smoother than for α = 1/10,
see Figure 5.5. But for α = 1/10 the residual is often smaller. Note that the norm of
the residual ‖b − Ax(k)‖ of the block linear system (5.7) is non-increasing. This does
not imply that ‖c− P (B)y(k)‖ is non-increasing too, as we see in this experiment.
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Figure 5.5: Experiment 4. Convergence of P (MINRES)L for different scaling
parameters. The solid line −−−−−−− is the residual for α = 1/10. The circled
line −−−−◦−−−− is for α = 1/100.

Experiment 5 We consider the linear system eBy = c, with a diagonal matrix
B = 1/100 diag(0, 4, 8, , . . . , 4000) and c a random vector, with entries between −1
and 1, scaled to unit norm. This is an example taken from [51]. The matrix eB is very
ill-conditioned: κ(eB) = 2.3 · 1017. However, we will see that y = e−Bc can be computed
accurately by SLDM and the eMINRES

L method proposed in Section 5.7. This is not
caused by the fact that B is a diagonal matrix, because SLDM and eMINRES

L work with a
reduced matrix H

(m)
∗ that is not a diagonal matrix. The method eMINRES

L approximates

eB implicitly with a polynomial ẽB of degree p − 1. In this experiment we used p =

40. This polynomial ẽB is not suitable for polMINRES, because it is ill-conditioned.

SLDM computes an approximate solution with y(m) = ‖c‖V (m)
∗ (e−H

(m,�)
∗ )e1. In inexact

arithmetic this is much more accurate than computing y(m) = ‖c‖V (m)
∗ (eH

(m,�)
∗ )−1e1,

because eH
(m,�)
∗ is ill-conditioned.

The convergence of SLDM and eMINRES
L is plotted in Figure 5.6. We see that the

residual norm ‖c−eBy(k)‖ is very large for this problem, but the true error ‖e−Bc−y(k)‖
converges rather well. Note that the error due to the Taylor approximation of eB by ẽB

is included in the true error. The results of SLDM are slightly better than the results
for eMINRES

L. The upper bound (5.35) for ‖e−Bc−y(k)‖ is rather sharp for this problem.
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SLDM eMINRES
L

‖c− eBy(k)‖ − · − · − · − · − −−−−−−−−−−−−−

‖e−Bc− y(k)‖ − · − · + · − · − −−−−−−+−−−−−−

(5.35) (a)
−−−−−−−×−−−−−−−

Table 5.3: Legend of Figure 5.6. y(k) is the approximate solution of eBy =
c after k matrix-vector products. (a) This is the upper bound (5.35) for
‖y(m) − e−Bc‖.
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Figure 5.6: Experiment 5. Convergence of SLDM and eMINRES

L. Vertical
axis: the norm of a residual or error, see Table 5.3.

Experiment 6 This artificial experiment confirms that P (MINRES)L is more suitable
for solving P (B)y = c than SLDM, if the factorized polynomial (5.5), with ρ = 0, has
indefinite factors. The symmetric indefinite linear system is B(B + 9/17I)y = c, with

B = diag(n/(n+ 1), . . . , 3/4, 2/3, 1/2, −1/2, −2/3, −3/4, . . . , −n/(n + 1)) ,

and n = 50. The right-hand side c is c = [1, 1, . . . , 1]T . The parameters of P (MINRES)L
for the block linear system (5.6) are: µ1 = 0, µ2 = 9/17 and ρ = 0. The matrix
polynomial P (B) = B(B + 9/17I) has one negative eigenvalue and 2n − 1 positive
eigenvalues. The conditions of Theorem 5.1 are not satisfied in this experiment. In
exact arithmetic the solution of SLDM is not defined for each odd iteration. In inexact
arithmetic this causes extremely large residual norms for the odd iterations, see Figure
5.7.

For any problem P (B)y = c, we may see locally a similar convergence behaviour
for SLDM as in this experiment, if the factorized polynomial (5.5), with ρ = 0, has
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indefinite factors. The SLDM solution is not defined if H
(m,�)
∗ − µj, j = 1, . . . , p, is

singular. This may happen frequently, depending on the right-hand side c, if (5.5) has
indefinite factors.
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Figure 5.7: Experiment 6. Convergence of SLDM and P (MINRES)L for an
indefinite problem; see Table 5.2 for legend.



Appendix A

Matlab implementations of methods
for P (B)y = c

In this appendix, we present Matlab implementations of two methods proposed in
Chapter 5: P (MINRES)S and P (GMRES). Other variants, like P (MINRES)L and
eMINRES

L, are easy to adapt from these two implementations.
The structure of the Matlab implementation of P (MINRES)S is displayed in Al-

gorithm A.1.

Algorithm A.1: Structure of P (MINRES)S

Initialization
While not converged

Compute a Lanczos vector

Put the Lanczos coefficients in Ĥ(j)

Update the QR factorization of Ĥ(j)

Update the approximate solution y(j)

End

The Matlab code of P (MINRES)S on page 120 is able to handle (complex) Her-
mitian matrices: BH = B ∈ Cn×n. The vector c and the polynomial coefficients µ and
ρ are also allowed to be complex. The matrix polynomial P (B) does not need to be
Hermitian.

The structure of the Matlab implementation of P (GMRES) is displayed in Algo-
rithm A.2. The inputs B, c, µ and ρ of the Matlab P (GMRES) function on page 121
are allowed to be complex.
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Algorithm A.2: Structure of P (GMRES)

Initialization
While not converged

Compute an Arnoldi vector

Put the Arnoldi coefficients in Ĥ(j)

Update the QR factorization of Ĥ(j)

End
Compute the approximate solution y(m)

MATLAB code of P (MINRES)S

function [y,rnrm]=pminress(B,c,mu,rho,tol,m);
p=length(mu);
n=size(B,1);
W=zeros(n,3*p);
rnrm=zeros(m+1,1);
d=zeros(2*p,1);
d(p)=norm(c);
v=c/d(p);
rnrm(1)=abs(d(p));
j=1;
beta_old=0;
v_old=zeros(n,1);
y=zeros(n,1);
Q_old_old=eye(2*p); Q_old=eye(2*p);
while (j<=m) & (rnrm(j)>tol),
R=zeros(4*p,p);
v_new=B*v-beta_old*v_old;
alpha=v_new’*v;
v_new=v_new-alpha*v;
beta=norm(v_new);
v_new=v_new/beta;
H=[beta_old;alpha;beta];
for i=1:p,

if i==1,
R(i+p:p:i+3*p,p)=H;
R(i+2*p,p)=R(i+2*p,p)+mu(1);

else
R(i+p:p:i+3*p,i-1)=-H;
R(i+2*p,i-1)=R(i+2*p,i-1)-mu(i);

end;
if i==p,
R(i+2*p,i)=R(i+2*p,i)+rho;
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else
R(i+2*p,i)=R(i+2*p,i)+1;

end
end;
R(1:2*p,:)=Q_old_old’*R(1:2*p,:);
R(1+p:3*p,:)=Q_old’*R(1+p:3*p,:);
[Q,R(1+2*p:4*p,:)]=qr(R(1+2*p:4*p,:));
d=Q’*d;
Q_old_old=Q_old; Q_old=Q;
for i=1:p-1,

W(:,2*p+i)=-(W(:,i:2*p-1+i)*R(i:2*p-1+i,i))/R(2*p+i,i);
end;
W(:,3*p)=(v-(W(:,p:3*p-1)*R(p:3*p-1,p)))/R(3*p,p);
y=y+W(:,2*p+1:3*p)*d(1:p);
rnrm(j+1)=norm(d(p+1:2*p));
v_old=v;
v=v_new;
beta_old=beta;
W(:,1:2*p)=W(:,p+1:3*p);
d=[d(1+p:2*p) ; zeros(p,1)];
j=j+1;

end;

MATLAB code of P (GMRES)

function [y,rnrm]=pgmres(B,c,mu,rho,tol,m);
p=length(mu);
n=size(B,1);
Q=cell(m,1);
rnrm=zeros(m+1,1);
d=zeros((m+1)*p,1);
d(p)=norm(c);
v=c/d(p);
V=v;
rnrm(1)=abs(d(p));
j=1;
R=[ ];
while (j<=m) & (rnrm(j)>tol),
Rc=zeros((m+1)*p,p);
v=B*v;
[v,H]=mgs(V,v);
V=[V v];
for i=1:p,

if i==1,
Rc(i:p:i+j*p,p)=H;
Rc(i+(j-1)*p,p)=Rc(i+(j-1)*p,p)+mu(1);
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else
Rc(i:p:i+j*p,i-1)=-H;
Rc(i+(j-1)*p,i-1)=Rc(i+(j-1)*p,i-1)-mu(i);

end;
if i==p,
Rc(i+(j-1)*p,i)=Rc(i+(j-1)*p,i)+rho;

else
Rc(i+(j-1)*p,i)=Rc(i+(j-1)*p,i)+1;

end
end;
for k=1:j-1,

Rc((k-1)*p+1:(k+1)*p,:)=Q{k}’*Rc((k-1)*p+1:(k+1)*p,:);
end;
[Q{j},Rc((j-1)*p+1:(j+1)*p,:)]=qr(Rc((j-1)*p+1:(j+1)*p,:));
R=[R Rc(1:m*p,:)];
d((j-1)*p+1:(j+1)*p)=Q{j}’*d((j-1)*p+1:(j+1)*p);
rnrm(j+1)=norm(d(j*p+1:j*p+p));
j=j+1;

end;
j=j-1;
z=R(1:j*p,1:j*p)\d(1:j*p);
y=V(:,1:j)*z(p:p:j*p);

function [q,y]=mgs(Q,q)
k=size(Q,2);
y=[];
for i=1:k,
a=Q(:,i)’*q;
q=q-Q(:,i)*a;
y=[y;a];

end
a=norm(q);
q=q/a;
y=[y;a];
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Samenvatting

Bij het ontwerp van elektronische schakelingen, die gebruikt worden in bijvoorbeeld CD-
spelers en mobiele telefoons, maakt de ontwerper veelvuldig gebruik van circuitsimulatie.
Bij circuitsimulatie wordt het gedrag van een schakeling (circuit) doorgerekend met een
computer. Hierdoor wordt het maken van dure prototypes grotendeels overbodig. Ook
zou zonder deze simulaties het ontwerpen van complexe gëıntegreerde schakelingen, met
vele duizenden transistoren, condensatoren, weerstanden en dergelijke, niet mogelijk
zijn. Om snel een circuit te kunnen ontwerpen is het voor de ontwerper van belang dat de
simulatie niet te veel (computer-)rekentijd kost. Met snellere (slimmere) rekenmethoden
en ook met snellere computers, kan de rekentijd verkort worden.

Dit proefschrift gaat grotendeels over methoden die tot doel hebben de rekentijd voor
het simuleren van een circuit korter te maken. De nieuwe methoden die we ontwikkeld
hebben zouden echter ook nuttig kunnen zijn bij de simulatie van andere verschijnselen,
zoals bijvoorbeeld vloeistofstromingen en chemische processen.

Bij het simuleren van circuits wordt de meeste rekentijd gebruikt voor het oplossen
van grote stelsels lineaire algebräısche vergelijkingen. Een stelsel van 2 vergelijkingen
met 2 onbekenden, x en y, is bijvoorbeeld{

3x+ 5y = 14
2x− 3y = 3 ,

met als oplossing x = 3 en y = 1. Bij circuitsimulatie kunnen de stelsels zeer veel,
bijvoorbeeld meer dan 50000, vergelijkingen hebben en evenveel onbekenden. Deze
stelsels hebben dan wel een ‘ijle’ structuur. Dat wil zeggen dat er veel vergelijkingen
zijn die slechts van een klein aantal onbekenden afhangen. Door op een slimme manier
gebruik te maken van deze structuur kan er veel rekentijd bespaard worden. Na het
inleidende eerste hoofdstuk beschrijven we in de hoofdstukken 2 en 3 een gecombineerde
directe en iteratieve methode voor het oplossen van deze stelsels vergelijkingen.

Bij een directe methode worden onbekenden weggewerkt door een geschikt veelvoud
van een vergelijking bij een andere vergelijking op te tellen. Op deze manier kan uitein-
delijk de oplossing van het grote stelsel uitgerekend worden. Bij een iteratieve methode
gebeurt ongeveer hetzelfde, maar de hoeveelheid rekenwerk wordt sterk beperkt door op
geschikte plaatsen in het proces coëfficiënten te verwaarlozen. Het resultaat is dan wel
een benadering van de oplossing in plaats van de exacte oplossing. Men tracht de fout
in de oplossing te verkleinen door een correctie op de oplossing aan te brengen. Deze
correctie wordt gevonden door een vergelijking voor de fout op te stellen en deze even-
eens bij benadering op te lossen. Dit wordt herhaald totdat een voldoend nauwkeurige
oplossing gevonden is.
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In de praktijk maken circuitsimulatie-programma’s vooral gebruik van directe metho-
den, omdat deze sneller bleken te zijn dan de tot nu toe bestaande iteratieve methoden.
In hoofdstuk 2 laten we zien dat een gecombineerde directe en iteratieve methode wel
drie keer sneller kan zijn dan een directe methode. Een prettige bijkomstigheid van deze
aanpak is dat hij ook geschikt is voor ‘parallelle’ computers. Dat zijn computers waarin
twee of meer processoren samenwerken. Met deze computers kan het rekenwerk verder
versneld worden met een factor die kan oplopen tot het aantal processoren.

Hoofdstuk 4 gaat over het oplossen van lineaire stelsels vergelijkingen die optreden
bij het simuleren van de periodieke stabiele toestand van een circuit. Het gaat hierbij om
circuits waarvan alle spannings- en stroombronnen periodiek zijn in de tijd. Dit heeft
tot gevolg dat alle spanningen en stromen in het circuit zich na een bepaalde periode
herhalen. Simulatie van deze circuits geeft lineaire stelsels met een cyclische structuur.
Bestaande methoden voor dit soort stelsels zijn niet zo goed geschikt voor parallelle
computers. De methode die we in hoofdstuk 4 voorstellen is dat wel. De totale hoeveel-
heid rekenwerk is bij deze methode iets groter dan bij de bestaande methoden, maar
dankzij het parallellisme kunnen de stelsels vergelijkingen op een parallelle computer
toch beduidend sneller worden opgelost.

Hoofdstuk 5 gaat over een iteratieve methode voor lineaire stelsels vergelijkingen
waarbij de coëfficiëntenmatrix een polynoom is van een andere matrix. Dit type lineaire
stelsels komt onder andere voor bij een toepassing in de natuurkunde. Er zijn (nog) geen
toepassingen in circuitsimulatie. Door de speciale structuur van het stelsel uit te buiten
verkrijgen we een efficiënte methode. De nieuwe methode geeft vaak iets nauwkeuriger
resultaten dan de bestaande methoden voor dit soort stelsels.
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