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CHAPTER 1

Introduction

Probabilistic networks have become widely accepted as practical representations of knowledge
for reasoning under uncertainty and, more specifically, for decision support. The framework of
probabilistic networks combines a graphical representation of a domain’s variables and the rela-
tions between them, with probabilities that represent the uncertainties in the domain [90]. The
framework offers powerful algorithms for reasoning with these probabilities in a mathematically
correct way. These algorithms allow for causal reasoning, from cause to effect, for diagnostic
reasoning, from effect to cause, and for case-specific reasoning. In a medical context, for ex-
ample, case-specific reasoning amounts to taking data of a specific patient into account when
computing the probability of some outcome.

Applications of probabilistic networks can be found in areas such as (medical) diagnosis and
prognosis, planning, monitoring, vision, information retrieval, natural language processing, and
e-commerce. Examples of fielded systems (see [49]) include Intel’s processor fault diagnosis
system; General Electric’s generator monitoring system; a real-time weapon scheduling system
for the US Navy; the e-commerce product Frontmind; the Vista system used at NASA Mission
Control Center to interpret live telemetry and provide advice on the likelihood of failures of the
space shuttle’s propulsion systems; and the TRACS system used by the UK’s Defence Research
and Evaluation Agency for predicting the reliability of military vehicles. The most widely used
probabilistic networks, however, are probably the ones embedded in Microsoft products, includ-
ing the Answer Wizard of Office 95, the Office Assistant (paperclip) of Office 97, and a number
of technical support troubleshooters.

The list of fielded applications, although impressive, reveals that the majority of probabilistic
network applications are developed for, and no doubt funded by, major industries, and mostly
concern technical domains, describing the (dis)functioning of machines. In such domains the
relationships between the variables are mostly deterministic and, as a result, there are very few
uncertainties. Traditionally, probabilistic networks, and knowledge-based systems in general,
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are more suited to nature-inspired domains such as meteorology, agriculture, and most notably,
medical diagnosis. Examples of scientific applications include the Hailfinder weather forecasting
system; a network for mildew management in wheat; the BOBLO network for blood typing
cattle; the MUNIN system for interpreting electromyocardiograms; and Pathfinder for lymph-
node pathology diagnosis. These and other examples of scientific applications that build on the
framework of probabilistic networks are described in e.g. [1, 2, 4, 30, 54, 61, 62, 68, 70, 78, 91,
95, 113]. For most of these applications only prototype systems have been demonstrated and
very few are known to have been implemented in practice. The main reason for this observation
is probably that building a probabilistic network is a difficult and time-consuming task. The
networks are typically constructed with the help of experts in the domain of application and the
more complex and uncertain the domain, the harder the task of building the network and the
more time the experts involved are required to invest in the project.

Building a probabilistic network for an application domain basically involves three tasks.
The first task is to identify the important domain variables and their possible values. The second
task is to identify the relationships between these variables. The variables and their relationships
are expressed in a directed acyclic graph, with nodes modelling variables and arcs modelling
relationships between the variables. The resulting graph is referred to as the network’s qualitative
part. As the final task, the probabilities that constitute the network’s quantitative part are to
be obtained; local (conditional) probability distributions are required for each variable in the
network. In principle, the three tasks are performed sequentially. However, as with any large
system, the design and construction of a probabilistic network often follows a spiral life-cycle
model, iterating over the tasks until a satisfactory network results [79].

Well-known knowledge-acquisition and engineering techniques for identifying domain vari-
ables, their values, and the relationships between them, can be employed, to at least some extent,
for the construction of the qualitative part of a probabilistic network. Identifying the important
domain variables and their values is typically performed with the help of one or more experts.
The variables are to be expressed as statistical variables with a set of mutually exclusive and col-
lectively exhaustive values. The meanings of the resulting statistical variables and their values
have to be properly documented to avoid any ambiguity in future reference. The relationships
between the variables can be either elicited from the domain experts or learned from data. In
eliciting the relationships from experts, the concept of causality can be used as a heuristic guid-
ing principle; in graphical terms, the direction of causality is used for directing the arcs between
related variables [55]. In data-rich applications, data collections that are large, up-to-date and
reliable can be used to automatically learn the graphical structure of a probabilistic network [14].

Although the construction of the qualitative part of a probabilistic network requires consid-
erable effort, it is generally considered feasible. The qualitative part provides a graphical repre-
sentation of the problem domain that allows for easy communication with experts; even experts
who know little about probability theory or the framework of probabilistic networks are able to
interpret and refine the qualitative part of a network. Quantification, however, is considered a far
harder task and is, in fact, often referred to as a major obstacle in building a probabilistic net-
work [37, 61]. Quantifying probabilistic networks is the focus of this thesis; more in particular,
we will discussqualitativeapproaches to quantifying probabilistic networks.
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Real-life probabilistic networks may comprise tens or hundreds of variables and can easily
require thousands of probabilities. In most problem domains, various sources of probabilistic
information are available that seem usable for quantification of a network. Examples of such
sources are (statistical) data, literature, and human experts. Unfortunately, these sources seldom
provide for ready-made probability assessments. To allow for distilling probability assessments
from data collections, for example, these collections should be up to date and unbiased. Also, the
variables and values that are recorded in the data should match those modelled in the network. In
addition, the collection should be large enough to allow for reliable assessments for the required
probabilities. As for each variable several probability distributions, conditional on the values of
the variable’s parents in the network’s graphical part, need to be specified, only small subsets of
the data can be used to estimate the specific probabilities required. In insufficiently large data
collections, these subsets may be empty or too small to allow for meaningful assessments. To
conclude, a data collection should not have too many missing values. Missing values are due
either to errors or to omission. A value for the result of a diagnostic test that is not performed,
for example, will not be recorded in the data. If the missing values distributed over the data in a
non-random way, they can easily introduce biases in the estimated probabilities.

Literature often provides abundant probabilistic information. For example, the sensitivity
and specificity of medical diagnostic tests, as well as their typical ranges, are often reported in
medical handbooks or journals. However, as probabilistic information found in literature is of-
ten derived from a population with specific characteristics, care should be taken not to use this
information for populations with other characteristics. Another problem with probabilistic infor-
mation reported in literature is that it is seldom directly amenable to encoding in a probabilistic
network: conditional probabilities are sometimes given in a direction opposite to the direction re-
quired for the network, and the information is often incomplete. For example, medical literature
often reports conditional probabilities for the presence of symptoms given a disease, but not for
these symptoms occurring in the absence of the disease. In addition, probabilistic networks often
contain hidden variables, that is, variables for which no value can be observed in the physical
world; probabilistic information concerning such variables will be lacking altogether.

Another source of probabilistic information is the knowledge and experience of domain ex-
perts. The importance of this source in the construction of the quantitative part of a probabilistic
network should not be underestimated. An expert’s knowledge and experience can help, not just
in assessing the probabilities required, but also in fine-tuning probabilities obtained from other
sources to the specifics of the domain at hand, and in verifying them within the context of the
network. Unfortunately, experts are often uncomfortable with having to provide probabilities.
Moreover, the problems of bias encountered when directly eliciting probabilities from experts
are widely known [64]. An expert’s assessments, for example, may not be properly calibrated
and may reflect various biases resulting from the heuristics, or efficient shortcuts, that experts,
often unconsciously, use for the assessment task. Examples of such biases are overestimation,
where an expert consistently gives probability assessments that are higher than the true probabil-
ities, and overconfidence, where assessments for likely events are too high and assessments for
unlikely events are too low. In the field of decision analysis various methods have been devel-
oped to counteract biases during probability elicitation [83, 129]. These methods, however, are
often complicated and their use is very time-consuming; the methods are therefore unsuitable
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for eliciting a large number of probabilities from experts whose time is a scarce and expensive
commodity.

Expert judgement is considered the least objective and least accurate source of probabilistic
information. However, as other sources of probabilistic information seldom provide for all re-
quired probabilities, the knowledge and experience of a domain expert is the single remaining
source that can be exploited for quantifying a probabilistic network [61]. The probabilities with
which a network is quantified are therefore necessarilysubjective, describing the state of an ex-
pert’s knowledge and beliefs [110]. By assuming that probabilities are subjective by nature, it is
in principle possible for a domain expert to give an assessment for the likelihood of any event,
even if he1 knows little about it.

Due to the incompleteness of probabilistic information from data and from literature, and as
a result of partial domain knowledge and biases, the numbers obtained for a probabilistic net-
work are inevitably inaccurate. Whether or not these inaccuracies are problematic, depends on
the extent to which they influence the behaviour of the network. In general, the robustness of the
graphical structure of a probabilistic network, reflecting the independence and relevance relation-
ships between its variables, is considered more crucial than the individual probabilities [35,124].
The accuracy of the individual probabilities will, nonetheless, influence the network’s output. To
investigate the possible effects of the inaccuracies in the network’s probabilities, sensitivity and
uncertainty analyses can be performed [83]. In an uncertainty analysis, the assessments of all
conditional probabilities are varied simultaneously by drawing, for each of them, a value from a
pre-specified distribution; an uncertainty analysis reveals the overall reliability of the network’s
output. Uncertainty analysis of a large real-life probabilistic network for liver and biliary dis-
ease has led to the suggestion that probabilistic networks are highly insensitive to inaccuracies in
their probability assessments [57, 92]. However, in this particular analysis, the average effect of
varying the conditional probabilities was studied, whereas the variance in the effect, rather than
their average value, truly reflects the effects of inaccuracies [25]. In a sensitivity analysis, the
assessments of one or more conditional probabilities are varied simultaneously over a plausible
interval; a sensitivity analysis yields insight into the separate effects of conditional probabilities
on the network’s output. Sensitivity analysis of a real-life probabilistic network for congenital
heart disease revealed large effects of varying conditional probabilities [24]. To be able to draw
any decisive conclusions about the effects of inaccuracies, more research is required; it seems
likely, though, that these effects will vary from application to application.

As domain experts are often the only source of probabilistic information, and probability elic-
itation from experts is known to be problematic, the probabilities obtained from experts should
be taken as rough initial assessments. These rough assessments can be used as a starting point
in an iterative procedure aimed at refining the assessments where necessary. As sensitivity anal-
ysis reveals the effect of varying a single conditional probability on the network’s output, it can
be used in such an iterative procedure [26]. In the first step, a network is quantified with ini-
tial assessments. Then a sensitivity analysis of the network is performed, upon which the most
influential probabilities are refined. Iteratively performing sensitivity analyses and refining prob-
abilities is pursued until the network’s behaviour is satisfactory, or until higher accuracy can no
longer be attained due to lack of resources.

1Anywhere we use a masculine pronoun, the feminine form is obviously understood to be included.
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Aim of the thesis

In this thesis, we address the quantification of probabilistic networks with the help of domain
experts. As probabilistic networks become more popular, they are being applied to problems of
increasing size and complexity. The design of methods tailored to fast and easy elicitation of
large numbers of probabilities is therefore becoming increasingly important. For the first steps in
a step-wise refinement procedure, we feel that the experts should be accommodated by allowing
them to express uncertainties in any format they feel comfortable with [36]. These formats may
be quantitative in nature, such as point estimates or probability intervals, but may also be more
qualitative, such as verbal expressions of uncertainty or statements regarding the influence of one
variable on an other variable. In this thesis, we propose two different qualitative approaches that
can be exploited in quantifying probabilistic networks.

In the first approach, we propose to quantify probabilistic networks with purely qualitative
statements, resulting inqualitative probabilistic networks. These qualitative networks allow for
probabilistic reasoning in a qualitative way. For some application domains, probabilistic rea-
soning with a qualitative network may be specific enough. In domains that require a more fine-
grained level of detail, qualitative probabilistic reasoning can be used for studying the projected
network’s reasoning behaviour, prior to the assessment of the required probabilities. Then, if
the network’s graphical part is considered robust, the qualitative statements can be used as con-
straints on the conditional probability distributions to be assessed [36, 77]. For fast elicitation
of initial assessments for the required probabilities from experts, we propose adding qualitative
ingredients to a method for direct elicitation of numbers.

A qualitative probabilistic network is a qualitative abstraction of a probabilistic network with
the same graphical part [134]. In a quantified probabilistic network, the conditional probability
distributions specified in essence capture the directions and strengths of the influences between
related variables. In a qualitative probabilistic network, in contrast, only the directions of the in-
fluences are captured. These directions are indicated by qualitative signs, which are elicited from
domain experts. To this end, the experts are required to give statements of stochastic dominance,
that is, statements such as “the larger the tumour, the more likely it is that there are metastases”;
expressing their knowledge in such statements requires considerably less effort from the experts
than the specification of numbers [33]. As the stochastic dominance statements have a mathe-
matical foundation, it is possible to reason about these statements in a mathematically correct
way, thereby providing for probabilistic reasoning in a purely qualitative way. As stochastic
dominance statements concern entire probability distributions, they can not be directly translated
into separate probabilities. They can, however, be used as constraints on the distributions to be
assessed.

In a qualitative probabilistic network, the probabilistic relations between the variables are
modelled at a very coarse level of detail. As only the direction of influence between two variables
is modelled and there is no notion of strength, reasoning with a qualitative probabilistic network
often leads to uninformative results. As we envision an important role for qualitative probabilistic
networks in the construction of quantitative probabilistic networks, it is necessary to derive as
much information from them as possible. To this end, we will discuss a number of refinements
of the basic formalism of qualitative probabilistic networks. These refinements, such as adding
a notion of strength and of context, lead to more informative results during qualitative reasoning
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and thus allow for more effectively studying the projected network’s reasoning behaviour. In
addition, the refinements provide stronger constraints on the network’s quantification.

For initial quantification of a probabilistic network, the rate at which probabilities are as-
sessed is more important than their accuracy. For actually obtaining probabilities from domain
experts, we therefore propose using a second qualitative approach. We designed an elicitation
method that is easy to use and understand, thereby allowing for fast assessment of large numbers
of probabilities. In the new method we use a probability scale, which is a well-established, easy
to understand elicitation aid. As a probability scale requires from experts the uncomfortable task
of having to state numbers, we augmented the scale with verbal probability expressions such as
certain andprobable, thereby allowing experts to express uncertainties in either verbal or nu-
merical form. Other ingredients of our method are the use of text-fragments for representing the
required probabilities, and the grouping of probabilities that have to sum to one.

To summarise, we propose two qualitative approaches to quantifying probabilistic networks.
First, we propose to quantify a network with qualitative signs; this results in a qualitative prob-
abilistic network for studying the projected network’s reasoning behaviour and in a set of con-
straints on the required probabilities. Subsequently, we propose to use our elicitation method to
quantify the network with actual probabilities elicited from experts. From these two qualitative
approaches, an initial rough quantification can be obtained, which can then serve as a starting
point for the iterative refinement procedure that we outlined above.

Acknowledging the importance of developing methods to aid the construction of
probabilistic networks in general, and their quantification more specifically, the ob-
jectives of this thesis are, in short

• to refine the basic formalism of qualitative probabilistic networks in order to
arrive at more informative results during qualitative reasoning and, hence, at
more insight into constraints on the network’s quantification;

• to design an elicitation method, tailored to the fast and easy elicitation of prob-
abilities, which allows the use of both verbal and numerical probability expres-
sions.

Outline of the thesis

The thesis is divided into two parts corresponding to the two objectives mentioned above. In
the first part we describe the results of our studies into refining the framework of qualitative
probabilistic networks. To this end, we first present some preliminaries concerning graph theory,
probability theory and probabilistic networks in Chapter 2. The basic framework of qualitative
probabilistic networks is reviewed in Chapter 3. This framework was first introduced by Well-
man [134] and later extended by Henrion and Druzdzel [33, 34, 56]; our review will be more
detailed and more formal than previous presentations so as to provide a solid basis for the refine-
ments of the framework of qualitative probabilistic networks we will propose in Chapter 4. In
Chapter 4, we will discuss refining the level of detail of the set of qualitative properties of a qual-
itative probabilistic network by adding, for example, notions of strength and context. In addition,
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we will discuss extending the standard algorithm for reasoning with a qualitative network in order
to arrive at more informative results. Also, we will propose a new algorithm for isolating trou-
blesome parts of the network. Parts of this chapter also appeared in [100], [102], [103], [104],
and [105].

In the second part of the thesis, we study the design and evaluation of an elicitation method
that combines both verbal and numerical expressions of uncertainty. To this end, Chapter 5
provides a general discussion of issues concerning probability elicitation. This work is also
presented in [98]. The discussion from Chapter 5 serves as a starting point for the design of
our new elicitation method, that is tailored to the fast and easy elicitation of a large number of
probabilities. The experimental studies into the use of verbal expressions of probability under-
lying our method are discussed in Chapter 6, which is a revised version of [106]; this chapter
is concluded with a description of the method. The new elicitation method was used with two
oncologists from the Netherlands Cancer Institute, Antoni van Leeuwenhoekhuis, to quantify
a real-life probabilistic network for oesophageal carcinoma. Our experiences, and those of the
experts, with the use of the method are described in Chapter 7; this chapter also discusses an
evaluation study of the performance of the resulting network. The work of this chapter appeared
partially in [125] and [126].

The thesis is concluded with Chapter 8, which provides a summary of presented results and
some directions for further research. All illustrative examples used throughout the thesis are
highly simplified fragments of the probabilistic network for oesophageal carcinoma; Appendix A
presents a detailed explanation of the network.



Part I

Qualitative Probabilistic Networks

In which we study enhancements of the framework of qual-
itative probabilistic networks. Qualitative probabilistic net-
works allow for studying the reasoning behaviour of an, as
yet, unquantified probabilistic network. Once the network
exhibits satisfactory qualitative behaviour, it reveals con-
straints on the probability distributions that are required for
its quantitative part. As qualitative probabilistic networks
can play an important role in the construction of a proba-
bilistic network and in its quantification more specifically,
it is important to make the formalism as expressive as pos-
sible.





CHAPTER 2

Preliminaries

In this chapter, we review the basic concepts from probability theory and graph theory that are
required to understand the ensuing chapters. In addition, probabilistic networks, as graphical
representations of a probability distribution, are reviewed.

2.1 Probability theory

In this section, we will briefly review the basic concepts from probability theory; more details
can be found in, for example, [107].

We consider a set of variablesU . We assume throughout this thesis that all variables can take
on one value from an exhaustive set of possible values; we refer to these variables as statistical
variables. We will mostly denote variables by uppercase letters, where letters from the end of the
alphabet denote sets of variables and letters from the beginning of the alphabet denote a single
variable; lowercase letters are used to indicate a value, or combination of values, for a variable
or set of variables, respectively. When the value of a variable is known, we say that the variable
is instantiatedor observed; we sometimes refer to the observed value asevidence.

Let A ∈ U be a statistical variable that can have one of the valuesa1, . . . , am, m ≥ 1. The
value statementA = ai, stating that variableA has valueai, can be looked upon as a logical
proposition having either the truth-value true or false. A combination of value statements for
a set of variables then is a logical conjunction of atomic propositions for the separate variables
from that set. A propositionA = ai is also writtenai for short; a combination of value statements
for the separate variables from a setX is writtenx for short. The set of variablesU can now
be looked upon as spanning aBoolean algebraof such logical propositions. We recall that a
Boolean algebraB is a set of propositions with two binary operations∧ (conjunction) and∨
(disjunction), a unary operator¬ (negation), and two constantsF (false) andT (true) which
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behave according to logical truth tables. For any two propositionsa andb we will often writeab
instead ofa ∧ b; we will further writeā for ¬a.

A joint probability distributionnow is defined as a function on a set of variables spanning a
Boolean algebra of propositions.

Definition 2.1 (joint probability distribution) Let B be the Boolean algebra of propositions
spanned by a set of variablesU . LetPr : B → [0, 1] be a function such that

• for all a ∈ B, we havePr(a) ≥ 0, andPr(F) = 0, more specifically,

• Pr(T) = 1, and

• for all a, b ∈ B, if a ∧ b ≡ F thenPr(a ∨ b) = Pr(a) + Pr(b).

Then,Pr is called ajoint probability distributiononU .

A joint probability distributionPr on a set of variablesU is often written asPr(U). For each
propositiona ∈ B, the function valuePr(a) is termed theprobabilityof a. We now introduce the
concept ofconditionalprobability.

Definition 2.2 (conditional probability) Let Pr be a joint probability distribution on a set of
variablesU and letX,Y ⊆ U . For any combination of valuesx for X and y for Y , with
Pr(y) > 0, theconditional probabilityof x giveny, denoted asPr(x | y), is defined as

Pr(x | y) =
Pr(xy)

Pr(y)
.

The conditional probabilityPr(x | y) expresses the amount of certainty concerning the truth ofx
giventhaty is knownwith certainty. Throughout this thesis, we will assume that all conditional
probabilitiesPr(x | y) we specify, are properly defined, that is,Pr(y) > 0. The conditional
probabilitiesPr(x | y) for all propositionsx once more constitute a joint probability distribution
onU , called theconditional probability distribution giveny.

We will now state some convenient properties of probability distributions.

Proposition 2.3 (chain rule) LetPr be a joint probability distribution on a set of variablesU =
{A1, . . . , An}, n ≥ 1. Let ai represent a value statement for variableAi ∈ U , i = 1, . . . , n.
Then, we have

Pr(a1 . . . an) = Pr(an | a1 . . . an−1) · . . . · Pr(a2 | a1) · Pr(a1).

Another useful property is themarginalisation property.

Proposition 2.4 (marginalisation) Let Pr be a joint probability distribution on a set of vari-
ablesU . LetA ∈ U be a variable with possible valuesai, i = 1, . . . ,m; let X ⊆ U . Then, the
probabilities

Pr(x) =

m∑
i=1

Pr(x ∧ ai)

for all combinations of valuesx for X define a joint probability distribution onX.
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The joint probability distributionPr(X) defined in the previous proposition is called themarginal
probability distributiononX.

From the marginalisation property follows theconditioning propertyfor conditional proba-
bility distributions.

Proposition 2.5 (conditioning) Let Pr be a joint probability distribution on a set of variables
U . LetA ∈ U be a variable with valuesai, i = 1, . . . ,m; let X ⊆ U . Then,

Pr(x) =

m∑
i=1

Pr(x | ai) · Pr(ai)

for all combinations of valuesx for X.

The following theorem is known as Bayes’ rule and may be used to reverse the ‘direction’ of
conditional probabilities.

Theorem 2.6 (Bayes’ rule)Let Pr be a joint probability distribution on a set of variablesU .
LetA ∈ U be a variable withPr(a) > 0 for some valuea ofA; let X ⊆ U . Then,

Pr(x | a) =
Pr(a | x) · Pr(x)

Pr(a)

for all combinations of valuesx for X with Pr(x) > 0.

The following definition captures the concept of independence.

Definition 2.7 (independence)LetPr be a joint probability distribution on a set of variablesU
and letX,Y, Z ⊆ U . Letx be a combination of values forX, y for Y andz for Z. Then,x and
y are called(mutually) independentin Pr if

Pr(xy) = Pr(x) · Pr(y);

otherwise,x andy are calleddependentin Pr. The propositionsx andy are calledconditionally
independentgivenz in Pr if

Pr(xy | z) = Pr(x | z) · Pr(y | z);
otherwise,x andy are calledconditionally dependentgivenz in Pr.
The set ofvariablesX is conditionally independentof the set of variablesY given the set of
variablesZ in Pr, denoted asIPr(X,Z, Y ), if for all combinations of valuesx, y, z forX, Y and
Z, respectively, we have

Pr(x | yz) = Pr(x | z);
otherwise,X andY are calledconditionally dependentgivenZ in Pr.

Note that the above propositions and definitions are explicitly stated for all value statements for
a certain variable, or for all combinations of values for a set of variables. From here on, we
will often use a more schematic notation that refers only to the variables involved; this notation
implicitly states a certain property to hold foranyvalue statement or combination of value state-
ments for the involved variables. For example, using a schematic notation, the chain rule would
be written as

Pr(A1 . . . An) = Pr(An | A1 . . . An−1) · . . . · Pr(A2 | A1) · Pr(A1).

If all variables havem possible values, then this schema representsmn different equalities.
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2.2 Graph theory

In this section we review some graph-theoretical notions; more details can be found in, for ex-
ample, [53]. Generally, graph theory distinguishes between two types of graph: directed and
undirected graphs. We will only discuss directed graphs, ordigraphsfor short.

Definition 2.8 (digraph) A directed graphG is a pairG = (V (G), A(G)), whereV (G) is a
finite set ofnodesandA(G) is a set of ordered pairs(Vi, Vj), Vi, Vj ∈ V (G), calledarcs.

When interested in only part of a digraph, we can consider asubgraph.

Definition 2.9 (subgraph) LetG be a digraph. A graphH = (V (H), A(H)) is a subgraphof
G if V (H) ⊆ V (G) andA(H) ⊆ A(G). A subgraphH of G is a full subgraph ifA(H) =
A(G) ∩ (V (H)× V (H)); the full subgraphH is said to beinducedbyV (H).

We will often writeVi → Vj for (Vi, Vj) to denote an arc from nodeVi to nodeVj in G.
Arcs entering into or emanating from a node are said to beincidenton that node. The numbers

of arcs entering into or emanating from a node are termed thein-degreeand theout-degreeof the
node, respectively.

Definition 2.10 (degree)LetG be a digraph. LetVi be a node inG. Then, thein-degreeof Vi
equals the number of nodesVj ∈ V (G) for whichVj → Vi ∈ A(G). Theout-degreeof Vi equals
the number of nodesVj ∈ V (G) for whichVi → Vj ∈ A(G). Thedegreeof Vi equals the sum of
its in-degree and out-degree.

The following definition pertains to the family members of a node in a digraph.

Definition 2.11 (family) LetG be a digraph. LetVi, Vj be nodes inG. NodeVj is a parentof
nodeVi if Vj → Vi ∈ A(G); nodeVi then is achild ofVj. The set of all parents ofVi is written as
πG(Vi); its children are denoted byσG(Vi). Anancestorof nodeVi is a member of the reflexive
and transitive closure of the set of parents of nodeVi; the set of all ancestors ofVi is denoted
π∗G(Vi). A descendantof nodeVi is a member of the reflexive and transitive closure of the set of
children of nodeVi; the set of descendants ofVi is denotedσ∗G(Vi).

The setπG(Vi) ∪ σG(Vi) ∪ πG(σG(Vi)) of nodeVi is called theMarkov blanketof Vi.

As long as no ambiguity can occur, the subscriptG from πG etc. will often be dropped.
Arcs in a digraph model relationships between two nodes. Relationships between more than

two nodes are modelled withhyperarcs.

Definition 2.12 (hyperarc) LetG be a digraph. AhyperarcinG is an ordered pair(V ′, Vi) with
V ′ ⊆ V (G) andVi ∈ V (G).

From a digraph, sequences of nodes and arcs can be read.

Definition 2.13 (simple/composite trail) LetG be a digraph. Let{V0, . . . , Vk}, k ≥ 1, be a set
of nodes inG. A trail t from V0 to Vk in G is an alternating sequenceV0, A1, V1, . . . , Ak, Vk of
nodes and arcsAi ∈ A(G), i = 1, . . . , k, such thatAi ≡ Vi−1 → Vi or Ai ≡ Vi → Vi−1 for
every two successive nodesVi−1, Vi in the sequence;k is called thelengthof the trail t. A trail t
is simpleif V0, . . . , Vk−1 are distinct; otherwise the trail is termedcomposite.
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We will often writeVi ∈ V (t) to denote thatVi is a node on trailt; the set of arcs on the trail will
be denoted byA(t).

Definition 2.14 (cycle) LetG be a digraph. LetV0 be a node inG and lett be a simple trail
fromV0 to V0 in G with length one or more. The trailt is a cycle if Vi−1 → Vi ∈ A(t) for every
two successive nodesVi−1, Vi on t.

Note that a simple trail can be a cycle, but never contains a subtrail that is a cycle.
Throughout this thesis we will assume all digraphs to beacyclic, unless stated otherwise.

Definition 2.15 ((a)cyclic digraph) LetG be a digraph.G is calledcyclic if it contains at least
one cycle; otherwise it is calledacyclic.

We also assume that all digraphs areconnected, unless explicitly stated otherwise.

Definition 2.16 ((un)connected digraph)LetG be a digraph.G is connectedif there exists at
least one simple trail between any two nodes from V(G); otherwiseG is unconnected.

Sometimes the removal of a single node along with its incident arcs will cause a connected
digraph to become unconnected. Such a node is called anarticulation nodeor cut-vertex.

Definition 2.17 (articulation node) Let G be a connected digraph. NodeVi ∈ V (G) is an
articulation nodefor G if the subgraph ofG induced byV (G) \ {Vi} is unconnected.

In subsequent chapters we will require an extended definition for a trail in a digraph. We will
build upon the observation that a simple trail inG, as defined previously, forms a subgraph ofG.

Definition 2.18 (trail) LetG be a digraph. Then,t = ((V (t), A(t)), V0, Vk) is a trail fromV0 to
Vk in G if (V (t), A(t)) is a connected subgraph ofG andV0, Vk ∈ V (t).

Note that as a trailt comprises a digraph, we can define asubtrailof t as comprising a connected
subgraph oft. We will often consider simple trails that specify no more than one incoming arc
for each node on the trail.

Definition 2.19 (sinkless trail) Let G be a digraph. LetV0, Vk be nodes inG and let t be a
simple trail fromV0 to Vk in G. A nodeVi ∈ V (t) is called ahead-to-head nodeon t, if Vi−1 →
Vi ∈ A(t) andVi ← Vi+1 ∈ A(t) for the three successive nodesVi−1, Vi, Vi+1 on t. If no node in
V (t) is a head-to-head node, the simple trailt is called asinkless trail. A composite trailt from
V0 to Vk is sinkless if all simple trails fromV0 to Vk in t are sinkless.

We will now define three operations on trails for determining the inverse of a trail, the concate-
nation of trails, and the parallel composition of trails.

Definition 2.20 (inverse trail) Let G be a digraph and letV0, Vk be nodes inG. Let t =
((V (t), A(t)), V0, Vk) be a trail fromV0 to Vk in G. Then, thetrail inverset−1 of t is the trail
((V (t), A(t)), Vk, V0) fromVk to V0 in G.

The trail concatenation of two trails inG is again a trail inG.



16 Chapter 2. Preliminaries

Definition 2.21 (trail concatenation) LetG be a digraph and letV0, Vk andVm be nodes inG.
Let ti = ((V (ti), A(ti)), V0, Vk) and tj = ((V (tj), A(tj)), Vk, Vm) be trails inG from V0 to Vk,
and fromVk to Vm, respectively. Then, thetrail concatenationti ◦ tj of trail ti and trail tj is the
trail ((V (ti) ∪ V (tj), A(ti) ∪A(tj)), V0, Vm) fromV0 to Vm.

Similarly, the parallel trail composition of two trails inG is again a trail inG.

Definition 2.22 (parallel trail composition) LetG be a digraph and letV0, Vk be nodes inG.
Let ti = ((V (ti), A(ti)), V0, Vk) and tj = ((V (tj), A(tj)), V0, Vk) be two trails fromV0 to Vk
in G . Then, theparallel trail compositionti ‖ tj of trail ti and trail tj is the trail ((V (ti) ∪
V (tj), A(ti) ∪A(tj)), V0, Vk) fromV0 to Vk.

Note that the subgraph constructed for the trail that results from the trail concatenation or par-
allel trail composition of two trails is the same for both operations. However, as the arguments
indicating the beginning and end of a trail are treated differently, we consider these to be two
different kind of operations.

2.3 Graphical models of probabilistic independence

Graph theory and probability theory meet in the framework ofgraphical models. This framework
allows for the representation of probabilistic independence by means of a graphical structure in
which the nodes represent variables and lack of arcs indicates conditional independence. For
the purpose of this thesis, we only consider directed graphical models; more information on
graphical models can be found in [72].

The probabilistic meaning that is assigned to a digraph builds upon the concepts ofblocked
trail andd-separation. The definitions provided here are enhancements of the original definitions
presented in [90], based upon recent insights [124].

Definition 2.23 (blocked and active trail) LetG = (V (G), A(G)) be an acyclic digraph and
letA,B be nodes inG. A simple trailt = ((V (t), A(t)), A,B) fromA toB in G is blockedby a
set of nodesX ⊆ V (G) if (at least) one of the following conditions holds:

• A ∈ X or B ∈ X;

• there exist nodesC,D,E ∈ V (t) such thatD ∈ X andD → C,D → E ∈ A(t);

• there exist nodesC,D,E ∈ V (t) such thatD ∈ X andC → D,D → E ∈ A(t);

• there exist nodesC,D,E ∈ V (t) such thatC → D,E → D ∈ A(t) andσ∗(D)∩X = ∅.

Otherwise, the trailt is calledactivewith respect toX.

When every trail between two nodes is blocked, the nodes are said to bed-separatedfrom each
other.

Definition 2.24 (d-separation) LetG be an acyclic digraph and letX,Y, Z be sets of nodes in
G. The setZ is said tod-separateX fromY in G, written〈X | Z | Y 〉dG, if every simple trail in
G from a node inX to a node inY is blocked byZ.
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The framework of graphical models relates the nodes in a digraph to the variables in a probability
distribution. To this end, each variable considered is represented by a node in the digraph, and
vice versa. As the set of variables is equivalent to the set of nodes, throughout this thesis we
will no longer make an explicit distinction between nodes and variables: if we say that a node
has a value, we mean that the variable associated with that node has that value. Conditional
independence is captured by the arcs in the digraph by means of the d-separation criterion: nodes
that are d-separated in the digraph are associated with conditionally independent variables. The
relation between graph theory and probability theory in a directed graphical model now becomes
apparent from the notion of (directed)independence map(I-map).

Definition 2.25 (independence map)LetG be an acyclic digraph and letPr be a joint proba-
bility distribution onV (G). Then,G is called anindependence map, or I-map for short, forPr
if

〈X | Z | Y 〉dG ⇒ Pr(X | Y Z) = Pr(X | Z),

for all sets of nodesX,Y, Z ⊆ V (G).

An I-map is a digraph having a special meaning: nodes that are not connected by an arc in the
digraph correspond to variables that are independent in the represented probability distribution;
nodes that are connected, however, need not necessarily represent dependent variables. For fur-
ther details, the reader is referred to [90].

2.4 Probabilistic networks

Probabilistic networks are graphical models supporting the modelling of uncertainty in large
complex domains. In this section we briefly review the framework of probabilistic networks,
also known as (Bayesian) belief networks, Bayes nets, or causal networks [90].

The framework of probabilistic networks was designed forreasoning with uncertainty. The
framework is firmly rooted in probability theory and offers a powerful formalism for representing
a joint probability distribution on a set of variables. In the representation, the knowledge about
the independences between the variables in a probability distribution is explicitly separated from
the numerical quantities involved. To this end, a probabilistic network consists of two parts: a
qualitative part and an associated quantitative part. The qualitative part of a probabilistic network
takes the form of an acyclic directed graphG. Informally speaking, we take an arcA → B in
G to represent a causal relationship between the variables associated with the nodesA andB,
designatingB as the effect of the causeA. Absence of an arc between two nodes means that
the corresponding variables do not influence each other directly. More formally, the qualitative
part of a probabilistic network is an I-map of the represented probability distribution. Associated
with the qualitative partG are numerical quantities from the joint probability distribution that is
being represented. With each nodeA a set of conditional probability distributions is associated,
describing the joint influence of the values of the nodes inπG(A) on the probabilities of the values
of A. These probability distributions together constitute the quantitative part of the network.
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We define the concept of a probabilistic network more formally.

Definition 2.26 A probabilistic networkis a tupleB = (G,P) where

• G = (V (G), A(G)) is an acyclic directed graph with nodesV (G) and arcsA(G);

• P = {PrA |A ∈ V (G)}, where, for each nodeA ∈ V (G), PrA ∈ P is a set of (conditional)
probability distributionsPr(A | x) for each combination of valuesx for πG(A).

We illustrate the definition of a probabilistic network with an example.

Example 2.27 Consider the probabilistic network shown in Figure 2.1. The network represents

U L

W

Pr(u) = 0.35 Pr(l) = 0.10

Pr(w | ul ) = 0.27
Pr(w | ūl ) = 0.18

Pr(w | ul̄ ) = 0.10
Pr(w | ūl̄ ) = 0.03

Figure 2.1: TheWall Invasionnetwork.

a small, highly simplified fragment of the diagnostic part of theoesophagus network. NodeU
represents whether or not the carcinoma in a patient’s oesophagus is ulcerating. NodeL models
the length of the carcinoma, wherel denotes a length of10 cm or more and̄l is used to de-
note smaller lengths. An oesophageal carcinoma upon growth typically invades the oesophageal
wall. The oesophageal wall consists of various layers; when the carcinoma has grown through
all layers, it may invade neighbouring structures. The depth of invasion into the oesophageal
wall is modelled by the nodeW , wherew indicates that the carcinoma has grown beyond the
oesophageal wall and is invading neighbouring structures;w̄ indicates that the invasion of the
carcinoma is restricted to the oesophageal wall. Ulceration and the length of the carcinoma are
modelled as the possible causes that influence the depth of invasion into the oesophageal wall.
For the nodesU andL the network specifies the prior probability distributionsPr(U) andPr(L),
respectively. For nodeW it specifies four conditional probability distributions, one for each com-
bination of values for the nodesU andL. These conditional distributions express, for example,
that a small, non-ulcerating carcinoma is unlikely to have grown beyond the oesophageal wall to
invade neighbouring structures. �
A probabilistic network’s qualitative and quantitative part together uniquely define a joint prob-
ability distribution that respects the independences portrayed by its digraph.

Proposition 2.28 LetB = (G,P) be a probabilistic network with nodesV (G). ThenG is an
I-map for the joint probability distributionPr onV (G) defined by

Pr(V (G)) =
∏

A∈V (G)

Pr(A | πG(A)).

Since a probabilistic network uniquely defines a joint probability distribution, any prior or pos-
terior probability of interest can be computed from the network. To this end, various efficient
inference algorithms are available [73, 90]; it should be noted that exact probabilistic inference
in probabilistic networks, based on the use of Bayes’ rule to update probabilities, in general is
NP-hard [22].
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Qualitative Probabilistic Networks

Qualitative probabilistic networkswere designed by M.P. Wellman as qualitative abstractions of
probabilistic networks [134]. A qualitative probabilistic network bears a strong resemblance to
its quantitative counterpart. It comprises a graphical representation of the independences hold-
ing among a set of variables, once more taking the form of an acyclic directed graph. Instead of
conditional probabilities, however, a qualitative probabilistic network associates with its digraph
qualitative probabilistic relationships. In Section 3.1 we formally define the concept of a quali-
tative probabilistic network; in Section 3.2 we will review an elegant algorithm for probabilistic
inference with a qualitative network. While the discussion in Sections 3.1 and 3.2 focuses on
binary nodes, Section 3.3 extends the discussion to non-binary nodes. A discussion of the ad-
vantages and disadvantages of the framework of qualitative probabilistic networks is provided in
Section 3.4.

3.1 Defining a qualitative probabilistic network

A qualitative probabilistic network, as its quantitative counterpart, consists of an acyclic digraph
G = (V (G), A(G)). The set of nodesV (G) again represents the set of variables from the prob-
lem domain under consideration; we assume that for each variable a total order is specified on
its values. The set of arcsA(G) again models the independences holding between the variables,
where independence is once more captured by the d-separation criterion. The digraphG can
thus be considered an I-map of an existing, yet unknown joint probability distributionPr. In
addition to the digraphG, a qualitative probabilistic network, includes a set of hyperarcs forG.
We recall that a probabilistic network, instead, includes a set of conditional probability distri-
butions. The hyperarcs forG capture qualitative probabilistic relationships between variables,
formally defined in terms of the probability distributionPr. We distinguish between three types
of qualitative probabilistic relationship: qualitative influences, additive synergies and product
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synergies. In defining these relationships and their properties, we assume that none of the nodes
in the digraph are observed; observation of nodes will be the subject of Section 3.2.

3.1.1 Qualitative influence

The most important type of qualitative relationship modelled in a qualitative probabilistic net-
work is the qualitative influence. A qualitative influence between two nodes in the network’s
digraphG expresses how the values of one node influence the probabilities of the values of the
other node. For example, apositive qualitative influenceof a nodeA on its childB expresses
that observing higher values for nodeA makes higher values for nodeB more likely, regardless
of any other direct influences onB, where the concept of ‘higher’ refers to the order on a node’s
values. To express the probability that a nodeB has a valuebi or less, we introduce the concept
of cumulative probability.

Definition 3.1 LetU be a set of variables. LetPr be a joint probability distribution onU and let
B ∈ U with valuesb1 < . . . < bn, n ≥ 1. Then, the functionFB : {b1, . . . , bn} → [0, 1] defined
by

FB(bi) = Pr(b1 ∨ b2 ∨ . . . ∨ bi)
is thecumulative probability distribution functionofB.

Given the total order on a nodeB’s values, instead ofPr(b1∨b2∨. . .∨bi) we will write Pr(B ≤ bi)
for short. Cumulativeconditionalprobability distribution functions are defined analogously.

Higher values for a nodeB are more likely given higher values for a nodeA, if the cumulative
conditional probability distributionF ′B|ai of nodeB given ai lies, graphically speaking, below
the cumulative conditional probability distributionFB|aj givenaj, for all valuesai, aj of A with
ai > aj. WhenF ′B|ai lies belowFB|aj for all values ofB, F ′B|ai is said to dominateFB|aj by
first-order stochastic dominance (FSD):

F ′B|ai FSD FB|aj ⇐⇒ F ′B|ai(bi) ≤ FB|aj(bi) for all values bi of B.

We illustrate the concept of dominance by means of an example.

Example 3.2 We consider a nodeB with valuesb1 < b2 < b3 < b4, and a nodeA with valuesai
andaj, ai > aj. The following conditional probability distributions are specified forB, givenA:

Pr(b1 | ai) = 0.25 Pr(b1 | aj) = 0.40
Pr(b2 | ai) = 0.35 Pr(b2 | aj) = 0.40
Pr(b3 | ai) = 0.25 Pr(b3 | aj) = 0.20
Pr(b4 | ai) = 0.15 Pr(b4 | aj) = 0.00

Thecumulativeconditional probability distributions for nodeB givenA then are:

Pr(B ≤ b1 | ai) = 0.25 Pr(B ≤ b1 | aj) = 0.40
Pr(B ≤ b2 | ai) = 0.60 Pr(B ≤ b2 | aj) = 0.80
Pr(B ≤ b3 | ai) = 0.85 Pr(B ≤ b3 | aj) = 1.00
Pr(B ≤ b4 | ai) = 1.00 Pr(B ≤ b4 | aj) = 1.00
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We conclude that the cumulative conditional probability distribution forB given the valueai of
A dominates the cumulative conditional probability distribution forB given the valueaj. Indeed,
we have from the conditional probability distributions specified forB that higher values forB
are more likely forai than foraj. �

The concept of first-order stochastic dominance underlies the definition of qualitative influence.

Definition 3.3 LetG = (V (G), A(G)) be an acyclic directed graph and letPr be a joint proba-
bility distribution onV (G) such thatG is an I-map forPr. LetA,B ∈ V (G) be nodes inG with
A → B ∈ A(G). LetX = πG(B) \ {A}. Then, nodeA positively influencesnodeB along arc
A→ B inG, writtenS+

G(A,B), iff for all valuesbi ofB and all valuesaj , ak ofA, withaj > ak,
we have

Pr(B ≥ bi | ajx) ≥ Pr(B ≥ bi | akx),

for any combination of valuesx for the set of nodesX.

For ease of exposition, we assume from here on that all nodes are binary-valued. Generalising
the definitions we provide to non-binary nodes is straightforward using the definition above as
an example; we will return to non-binary nodes in Section 3.3. A binary nodeA has the possible
valuestrueandfalse, with true> false; as before, we will writea to denote the propositionA =
true andā to denoteA = false. For illustration purposes in examples, binary nodes often have
different values thantrue andfalse; value statements for these nodes, however, are again written
asa and ā, and we will equally assumea > ā. For binary nodes the definition of qualitative
influence can be simplified.

Definition 3.4 LetG, Pr, A,B, andX be as in the previous definition. Then, nodeA positively
influencesnodeB along arcA→ B in G iff

Pr(b | ax) ≥ Pr(b | āx),

for any combination of valuesx for the set of nodesX.

The inequality from Definition 3.4 expresses that the influence of nodeA on nodeB along arc
A→ B is positive regardless of the probability distribution for the set of nodesX.

Lemma 3.5 LetPr,A,B, andX be as before. If nodeA positively influences nodeB along arc
A→ B, then

Pr(b | a)− Pr(b | ā) ≥ 0.

Proof: Suppose that we have

Pr(b | ax)− Pr(b | āx) ≥ 0,

for all possible combinations of valuesx for the set of nodesX. As Pr(x) ≥ 0 for any combina-
tion of valuesx, we have that

∀x Pr(b | ax)− Pr(b | āx) ≥ 0 =⇒
∑
x

Pr(x) · (Pr(b | ax)− Pr(b | āx)) ≥ 0.
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That is,

∀x Pr(b | ax)−Pr(b | āx) ≥ 0 ⇒
(∑

x

Pr(x) · Pr(b | ax)

)
−
(∑

x

Pr(x) · Pr(b | āx)

)
≥ 0.

Exploiting the fact that for the direct influence of nodeA on nodeB, nodeA can be regarded
independent of the set of nodesX, the right-hand side of this implication equals(∑

x

Pr(b | ax) · Pr(x | a)

)
−
(∑

x

Pr(b | āx) · Pr(x | ā)

)
≥ 0,

which is equivalent toPr(b | a)− Pr(b | ā) ≥ 0.

We therefore conclude thatPr(b | a)− Pr(b | ā) ≥ 0. �

The + in the notationS+
G(A,B) for the qualitative influence defined above is called the

sign of the influence of nodeA on nodeB. A negative qualitative influenceof nodeA on its
child B, denotedS−G(A,B), and azero qualitative influenceof A onB, denotedS0

G(A,B), are
defined analogously, replacing≥ in the above formula by≤ and=, respectively. Note that a
zero influence of nodeA on nodeB indicates thatA andB are (conditionally) independent. If
the qualitative influence ofA onB is ambiguous, that is, the influence is eithernon-monotonic
or unknown, we writeS?

G(A,B).
The following example illustrates the concept of qualitative influence by means of the exam-

ple network from Section 2.4.

Example 3.6 We consider the qualitative abstraction of theWall Invasionnetwork from Fig-
ure 2.1. From the network the qualitative influences between the nodes are identified. For exam-
ple, from the conditional probability distributions specified for nodeW we find that

Pr(w | ul ) ≥ Pr(w | ūl ), and Pr(w | ul̄ ) ≥ Pr(w | ūl̄ ).

So,
Pr(w | ux) ≥ Pr(w | ūx),

for any valuex of the other parents of nodeW , that is, other thanU . We conclude that node
U exerts a positive qualitative influence on nodeW : S+

G(U,W ). It is easily verified that node
L also exerts a positive qualitative influence onW . The qualitative probabilistic network that is
thus abstracted from theWall Invasionnetwork is shown in Figure 3.1, depicting just the signs of

U L

W
+ +

Figure 3.1: The direct qualitative influences of the qualitativeWall Invasionnetwork.
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the qualitative influences along the network’s arcs. In this and following examples the qualitative
influences between the nodes are computed from the probability distributions of the original,
fully quantified probabilistic network. We would like to emphasise that in real-life applications
of the framework of qualitative probabilistic networks these stochastic dominance statements are
elicited directly from domain experts. �

In a qualitative probabilistic network, a qualitative influence is associated with each arc of
the network’s digraph. Nodes, however, not only influence each other along arcs, they can also
exert influences on one another indirectly. To captureindirectqualitative influences between two
nodes, Wellman presents a set of reduction rules to collapse all trails between these nodes into
a single arc, and to compute the sign of influence along this one arc from the signs associated
with the collapsed arcs. To allow for reasoning about influences within the original digraph, that
is, without having to reduce it, we take a different approach by defining a qualitative influence
along a trail. To this end, we extend Definition 3.4.

Definition 3.7 LetG, Pr, A, andB be as in Definition 3.3. Lett be a trail fromA to B in G.
LetX = (

⋃
C∈V (t)\{A} πG(C)) \V (t). Then, nodeA positively influencesnodeB along trailt in

G, written Ŝ+
G(A,B, t), iff

Pr(b | ax) ≥ Pr(b | āx),

for any combination of valuesx for the set of nodesX.

A negative qualitative influenceof nodeA on nodeB along trail t, denotedŜ−G(A,B, t), and a
zero qualitative influenceof A onB along trail t, denotedŜ0

G(A,B, t), are defined analogously,
again replacing≥ in the above formula by≤ and=, respectively. If the qualitative influence of
A onB along a trailt is ambiguous, we writeŜ?

G(A,B, t).

Properties of qualitative influences

The set of all direct and indirect qualitative influences between the nodes of a qualitative proba-
bilistic network exhibits various convenient properties [99, 134]. We review the most important
properties, formulating them in terms of trails; the properties are provided with simple proofs to
serve as examples for the more complex proofs to follow. The properties we present allow us to
determine the sign of a qualitative influence along asinklesstrail from the signs of the influences
associated with the arcs on the trail. We will see in Section 3.2 that the properties thereby allow
for an elegant sign-propagation algorithm for qualitative probabilistic inference.

Qualitative influences adhere to the property ofsymmetry. This property states that if a node
A exerts a qualitative influence on a nodeB, then nodeB exerts a qualitative influence of the
same sign on nodeA.

Proposition 3.8 LetG = (V (G), A(G)) be an acyclic directed graph. LetA,B ∈ V (G) be
nodes inG. Let t be a trail fromA toB in G, and lett−1 be its trail inverse. Then,

ŜδG(A,B, t) ⇐⇒ ŜδG(B,A, t−1),

for any signδ ∈ {+,−, 0, ?}.
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Proof: We prove the proposition forδ = +; proofs forδ = −, 0, and? are analogous. Without
loss of generality we now treat the sinkless trailt as if it were a single arc. We take the arc to be
from nodeA to nodeB; similar observations apply if we take the arc to be reversed. LetPr be a
joint probability distribution onV (G) such thatG is an I-map forPr. Let x be any combination
of values for the set of nodesX = πG(B) \ {A}. Then, by definition, we have

Ŝ+
G(A,B, t) ⇐⇒ ∀x Pr(b | ax) ≥ Pr(b | āx)

⇐⇒ ∀x Pr(b | ax)− Pr(b | āx) ≥ 0.

Now, lety be any combination of values for the set of nodesY = πG(A). We observe that, given
A andX, nodeB is independent ofY . Using this property and multiplying byPr(axy)·Pr(āxy),
we find

Ŝ+
G(A,B, t) ⇐⇒ ∀xy Pr(b | axy)− Pr(b | āxy) ≥ 0

⇐⇒ ∀xy Pr(abxy) · Pr(āxy)− Pr(ābxy) · Pr(axy) ≥ 0
⇐⇒ ∀xy Pr(abxy) ·

(
Pr(ābxy) + Pr(āb̄xy)

)
− Pr(ābxy) ·

(
Pr(abxy) + Pr(ab̄xy)

)
≥ 0

⇐⇒ ∀xy Pr(abxy) · Pr(āb̄xy)− Pr(ābxy) · Pr(ab̄xy) ≥ 0.

By multiplying with
1

Pr(bxy) · Pr(b̄xy)
, we find

Ŝ+
G(A,B, t) ⇐⇒ ∀xy Pr(abxy) · Pr(āb̄xy)

Pr(bxy) · Pr(b̄xy)
− Pr(ābxy) · Pr(ab̄xy)

Pr(bxy) · Pr(b̄xy)
≥ 0

⇐⇒ ∀xy Pr(a | bxy) · Pr(ā | b̄xy)− Pr(ā | bxy) · Pr(a | b̄xy) ≥ 0

⇐⇒ ∀xy Pr(a | bxy)− Pr(a | b̄xy) ≥ 0.

We thus have

Ŝ+
G(A,B, t) ⇐⇒ Ŝ+

G(B,A, t−1),

by definition. �

We would like to note that qualitative influences are symmetric only with regard to theirsign.
Thestrengthof a qualitative influence of a nodeA on a nodeB can differ considerably from the
strength of the symmetric influence ofB onA.

Qualitative influences in addition adhere to the property oftransitivity. This property allows
for the construction of the sign of a qualitative influence along a trail from the signs of the
qualitative influences associated with its arcs. For example, we consider three nodesA,B andC
with A → B andB → C, and the trailt from A to C comprising these two arcs. The property
of transitivity then states that the sign of the qualitative influence of nodeA on nodeC along
trail t equals the ‘product’ of the signs of the qualitative influences associated with the two arcs
on t. The ‘product’ operator⊗, called thesign-product, for combining the signs is defined in
Table 3.1. More generally, the property of transitivity applies to indirect qualitative influences
along sinkless simple trails.
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⊗ + − 0 ? ⊕ + − 0 ?
+ + − 0 ? + + ? + ?
− − + 0 ? − ? − − ?
0 0 0 0 0 0 + − 0 ?
? ? ? 0 ? ? ? ? ? ?

Table 3.1: The⊗- and⊕-operators for combining signs.

Proposition 3.9 LetG be an acyclic digraph and letA,B,C be nodes inG. Let ti and tj be
trails fromA toB and fromB toC in G, respectively, such that their trail concatenationti ◦ tj
is sinkless. Let⊗ be the operator defined in Table 3.1. Then,

ŜδiG (A,B, ti) ∧ Ŝ
δj
G (B,C, tj) =⇒ Ŝ

δi⊗δj
G (A,C, ti ◦ tj),

for any signsδi, δj ∈ {+,−, 0, ?}.
Proof: We prove the proposition forδi = δj = +; proofs forδi, δj ∈ {−, 0, ?} are analogous.
Note thatδi⊗δj = +⊗+ = +. Without loss of generality we now treat the (sinkless) trailsti and
tj as if it were single arcs fromA toB andB toC, respectively; similar observations apply with
the arcs reversed, as long as the concatenation remains sinkless. LetPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. Let x andy be any combination of values
for the sets of nodesX = πG(C) \ {B} andY = πG(B) \ {A}, respectively. As we consider the
trailsti, tj and their trail concatenationin isolation, we disregard any influence of nodeA on node
B along trails other thanti andtj. As a result, the set of nodesX can be considered independent
of nodeA, and nodeB is considered independent ofX givenY . Proposition 3.10 will show
how to determine thenet influence of nodeA on nodeB along the parallel trail composition of
all possible trails betweenA andB.

By definition, we have

Ŝ+
G(A,B, ti) ∧ Ŝ+

G(B,C, tj) ⇐⇒ ∀y Pr(b | ay) ≥ Pr(b | āy) ∧ ∀x Pr(c | bx) ≥ Pr(c | b̄x),

which implies

(Pr(b | ay)− Pr(b | āy)) ·
(
Pr(c | bx)− Pr(c | b̄x)

)
≥ 0,

for any combination of valuesx andy for X andY , respectively.

We now show, for anyx andy,

(Pr(b | ay)− Pr(b | āy)) ·
(
Pr(c | bx)− Pr(c | b̄x)

)
= Pr(c | axy)− Pr(c | āxy).

By conditioning on nodeB, we find for anyx andy

Pr(c | axy)− Pr(c | āxy) = Pr(c | abxy) · Pr(b | axy) + Pr(c | ab̄xy) · Pr(b̄ | axy)

− Pr(c | ābxy) · Pr(b | āxy) − Pr(c | āb̄xy) · Pr(b̄ | āxy)

= Pr(b | axy) ·
(
Pr(c | abxy) − Pr(c | ab̄xy)

)
− Pr(b | āxy) ·

(
Pr(c | ābxy) − Pr(c | āb̄xy)

)
+ Pr(c | ab̄xy) − Pr(c | āb̄xy).
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We observe that, givenB andX, nodeC is independent of nodesY ∪ {A}; furthermore, node
B is independent ofX givenY . Using these properties, we find

Pr(c | axy)− Pr(c | āxy) = Pr(b | ay) ·
(
Pr(c | bx) − Pr(c | b̄x)

)
+ Pr(c | b̄x)

− Pr(b | āy) ·
(
Pr(c | bx) − Pr(c | b̄x)

)
− Pr(c | b̄x)

= (Pr(b | ay)− Pr(b | āy)) ·
(
Pr(c | bx)− Pr(c | b̄x)

)
,

for anyx andy. We thus have

Ŝ+
G(A,B, ti) ∧ Ŝ+

G(B,C, tj) =⇒ ∀xy (Pr(b | ay)− Pr(b | āy)) ·
·
(
Pr(c | bx)− Pr(c | b̄x)

)
≥ 0

⇐⇒ ∀xy Pr(c | axy)− Pr(c | āxy) ≥ 0

⇐⇒ Ŝ+
G(A,B, ti ◦ tj),

by definition. �

To conclude, qualitative influences adhere to the property ofcomposition. This property
states that the sign of thenet influence of a nodeA on a nodeB along multiple parallel trails
equals the ‘sum’ of the signs of the (indirect) qualitative influences ofA onB along the various
separate trails. The ‘sum’ operator⊕, called thesign-sum, for combining the signs is defined
in Table 3.1. The composition property allows for the construction of the sign of a qualitative
influence along a composite trail from a nodeA to a nodeB from the signs of the qualitative
influences along all sinkless simple trails fromA toB constructed with the transitivity property.

Proposition 3.10 LetG be an acyclic digraph and letA,B be nodes inG. Letti andtj be trails
fromA toB inG such that nodeB is a head-to-head node on the trail concatenationti ◦ t−1

j . Let
ti ‖ tj be the parallel trail composition of the trails. Let⊕ be the operator defined in Table 3.1.
Then,

ŜδiG (A,B, ti) ∧ Ŝ
δj
G (A,B, tj) =⇒ Ŝ

δi⊕δj
G (A,B, ti ‖ tj),

for any signsδi, δj ∈ {+,−, 0, ?}.

Proof: We prove the proposition forδi = δj = +; proofs forδi, δj ∈ {−, 0, ?} are analogous.
Note thatδi ⊕ δj = + ⊕ + = +. Without loss of generality we now treat the (sinkless) trailti
as if it were a single arc from nodeA to nodeB and the (sinkless) trailtj as if it consists of the
arcsA→ C,C → B for some nodeC ∈ V (G); similar observations apply with the arc between
nodesA andC reversed. From̂S+

G(A,B, tj) and the property that trailtj consists of the arcs
A→ C andC → B, we deduce, using the property of transitivity and Table 3.1, that either

(1) S+
G(A,C) ∧ S+

G(C,B), or (2) S−G(A,C) ∧ S−G(C,B).

Suppose that situation(1) holds; similar observations hold for situation(2). Now, letPr be a joint
probability distribution onV (G) such thatG is an I-map forPr. Letx andy be any combination
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of values for the sets of nodesX = πG(B) \ {A,C} andY = πG(C) \ {A}, respectively. Then,
by definition, we have

Ŝ+
G(A,B, ti) ∧ S+

G(A,C) ∧ S+
G(C,B) ⇐⇒ ∀ x, y, ai ∈ {a, ā}, ci ∈ {c, c̄} :

Pr(b | acix) ≥ Pr(b | ācix)

∧ Pr(c | ay) ≥ Pr(c | āy)

∧ Pr(b | aicx) ≥ Pr(b | aic̄x).

From this property, we now have to show that for anyx andy

Pr(b | axy) − Pr(b | āxy) ≥ 0,

as this is, by definition, equivalent tôS+
G(A,B, ti ‖ tj).

We observe that, givenA andC, nodeB is independent ofY ; furthermore, nodeC is independent
of X givenA. By conditioning onC and exploiting these independences, we find

Pr(b | axy)− Pr(b | āxy) = Pr(b | acxy) · Pr(c | axy) + Pr(b | ac̄xy) · Pr(c̄ | axy)

− Pr(b | ācxy) · Pr(c | āxy)− Pr(b | āc̄xy) · Pr(c̄ | āxy)

= (Pr(b | acx)− Pr(b | ac̄x)) · Pr(c | ay) + Pr(b | ac̄x)

− (Pr(b | ācx)− Pr(b | āc̄x)) · Pr(c | āy)− Pr(b | āc̄x),

for any combination of valuesx andy for X andY , respectively. We know that for anyx andy

Pr(b | acx) ≥ Pr(b | ac̄x), and Pr(b | ācx) ≥ Pr(b | āc̄x), and
Pr(c | ay) ≥ Pr(c | āy), and Pr(b | ac̄x) ≥ Pr(b | āc̄x).

These properties, however, do not suffice for determining the sign of

Pr(b | axy)− Pr(b | āxy) = (Pr(b | acx)− Pr(b | ac̄x)) · Pr(c | ay) + Pr(b | ac̄x)

− (Pr(b | ācx)− Pr(b | āc̄x)) · Pr(c | āy)− Pr(b | āc̄x).

We therefore distinguish between the combinations of valuesxi of X for which

Pr(b | acxi)− Pr(b | ac̄xi) ≥ Pr(b | ācxi)− Pr(b | āc̄xi)

and the combinations of valuesxi of X for which

Pr(b | acxi)− Pr(b | ac̄xi) < Pr(b | ācxi)− Pr(b | āc̄xi).

• Suppose thatPr(b | acxi)−Pr(b | ac̄xi) ≥ Pr(b | ācxi)−Pr(b | āc̄xi) for some combina-
tion of valuesxi for X. We then find thatPr(b | axiy)− Pr(b | āxiy) ≥ 0.

• Suppose thatPr(b | acxi) − Pr(b | ac̄xi) < Pr(b | ācxi) − Pr(b | āc̄xi) for some combi-
nation of valuesxi for X. Let p be short forPr(b | axiy)− Pr(b | āxiy). Note thatp is a
linear function inPr(c | ay) andPr(c | āy). We will now show that it is not possible forp
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to be negative. To this end, we consider for which values ofPr(c | ay) andPr(c | āy) the
minimum ofp is attained. The minimum ofp is in principle attained forPr(c | ay) = 0
andPr(c | āy) = 1. However, as nodeC exerts a positive influence on nodeB, we have
the constraint thatPr(c | ay) ≥ Pr(c | āy). We conclude thatp’s minimum is attained for
values ofPr(c | ay) andPr(c | āy) with Pr(c | ay) = Pr(c | āy). As p is a linear function,
p is positive for any value ofPr(c | ay) = Pr(c | āy), if it is positive for the extreme values
Pr(c | ay) = Pr(c | āy) = 0 andPr(c | ay) = Pr(c | āy) = 1. It is easily verified that this
is indeed the case.

Since we have made no assumptions aboutxi, we conclude that

Pr(b | axy)− Pr(b | āxy) ≥ 0,

for anyx andy, and thereforêS+
G(A,B, ti) ∧ Ŝ+

G(A,B, tj) =⇒ Ŝ+
G(A,B, ti ‖ tj). �

The signs of influences along trails are computed from the signs of the arcs on those trails using
the symmetry, transitivity and composition properties. The conditions under which these proper-
ties hold ensure that the sign of an influence along a trail can only be computed for trails between
nodes that are not d-separated from each other.

3.1.2 Additive synergy

In addition to qualitative influences, a qualitative probabilistic network includessynergies. A
synergy models an interaction among the influences between three nodes in a network’s digraph.
We distinguish between two types of interaction, captured by additive and product synergies,
respectively. In this section we focus on additive synergies; product synergies will be discussed
in Section 3.1.3. Anadditive synergyexpresses how the values of two nodesjointly influence
the probabilities of the values of a third node [134]. For example, apositive additive synergy
of nodesA andB on a common childC expresses that the joint influence ofA andB onC is
greater than the sum of their separate influences, regardless of any other direct influences onC.

Definition 3.11 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. LetA,B,C ∈ V (G) be nodes inG with
A → C, B → C ∈ A(G). LetX = πG(C) \ {A,B}. Then, nodesA andB exhibit apositive
additive synergyon nodeC, writtenY +

G ({A,B}, C), iff

Pr(c | abx) + Pr(c | āb̄x) ≥ Pr(c | ab̄x) + Pr(c | ābx),

for any combination of valuesx for the set of nodesX.

As with qualitative influences, if the inequality from Definition 3.11 holds for the nodesA, B,
andC, thenA andB exhibit a positive synergistic effect onC regardless of the probability
distribution for the set of nodesX.

A negative additive synergyexhibited by nodesA andB on their common childC, denoted
Y −G ({A,B}, C), and azero additive synergyof A andB on C, denotedY 0

G({A,B}, C), are
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defined analogously, once more replacing≥ in the above formula by≤ and=, respectively. If
the additive synergy isambiguous, we writeY ?

G({A,B}, C).
The following example illustrates the concept of additive synergy by means of theWall Inva-

sionprobabilistic network.

Example 3.12 We consider once more theWall Invasionnetwork from Figure 2.1. We consider
the additive synergies among the nodes in the network. From the conditional probability distri-
butions specified for nodeW , we have for the joint influence of the various values for nodesU
andL onW that

Pr(w | ul) + Pr(w | ūl̄) = 0.30,
Pr(w | ūl) + Pr(w | ul̄) = 0.28.

So,
Pr(w | ul) + Pr(w | ūl̄) ≥ Pr(w | ūl) + Pr(w | ul̄),

that is, the sum of the joint influences of the ‘same’ values for nodesU andL onW is greater
than the sum of the joint influences of ‘different’ values for these nodes. We conclude that nodes
U andL exhibit a positive additive synergy on nodeW , that is,Y +

G ({U,L},W ). �

In a qualitative probabilistic network, nodes exhibit additive synergies on their common chil-
dren. More generally, two nodesA andB can exhibit indirect additive synergies on a nodeC
along trails fromA to C andB to C, respectively. We briefly review the structural properties
these trails have to adhere to. An additive synergy typically pertains to a head-to-head node. For
an additive synergy ofA andB onC along the trailsti fromA toC andtj fromB toC, we have
that ti andtj should obey the following structural properties:ti andtj are sinkless and share a
nodeD ∈ V (ti) ∩ V (tj) such thatti = t′i ◦ tk and tj = t′j ◦ tk share the subtrailtk from D

to C andD is a head-to-head node on all possible simple trails fromA to B in t′i ◦ t′−1
j . Note

that whentk is empty, nodeD is equivalent to nodeC; otherwise nodeC is a descendant ofD.
The definition of additive synergy is now extended, analogous to the extension of the definition
of qualitative influence, to capture additive synergies along such trails. From here on we will
denote an additive synergy of signδ exhibited by nodesA andB on a nodeC, along the trailsti
fromA toC andtj fromB toC, respectively, bŷY δ

G({A,B}, C, {ti, tj}).

Properties of additive synergies

The set of all direct and indirect additive synergies exhibits, just as the set of qualitative influ-
ences, various convenient properties. We briefly review these properties, formulating them in
terms of trails; further details of the discussed properties can be found in [99,134].

An additive synergy is triviallysymmetric, in the sense that the two nodes that exhibit the
synergy are interchangeable:̂Y δ

G({A,B}, C, {ti, tj}) ⇐⇒ Ŷ δ
G({B,A}, C, {tj , ti}). Additive

synergies also adhere to atransitivityproperty, pertaining to the combination of an additive syn-
ergy with a qualitative influence. The property of transitivity states that the sign of the indirect
additive synergy equals the sign-product of the signs of its ‘building blocks’, that is, the ad-
ditive synergy and the qualitative influence. We distinguish between two types of transitivity:
pre-synergy transitivity and post-synergy transitivity. Inpre-synergytransitivity, an (indirect)
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additive synergy exhibited by two nodesA andB on a nodeC is combined with a (indirect)
qualitative influence from a fourth nodeD on eitherA or B, under the constraint that the re-
sulting trail fromD to C is sinkless. Inpost-synergytransitivity, an (indirect) additive synergy
exhibited byA andB onC is combined with a (indirect) qualitative influence ofC on a fourth
nodeD, under the constraint thatA andB are connected toD by sinkless trails that share the
subtrail fromC to D. Additive synergies further adhere to the property ofcomposition. This
property states that the sign of thenetadditive synergy of two nodes on a third node, along mul-
tiple parallel trails, equals the sign-sum of the signs of the separate additive synergies between
these nodes.

3.1.3 Product synergy

In addition to additive synergies, a qualitative probabilistic network includesproduct synergies
[56]. A product synergy expresses how the value of one node influences the probabilities of the
values of another node upon knowing the value for a common child in the network’s digraph. For
example, anegative product synergyexhibited by nodesA andB with regard to the valuec0 for
a common childC expresses that, givenc0, observing higher values for nodeA renders higher
values for nodeB less likely, regardless of any other influences onB, and vice versa. A product
synergy thus describes the sign of theintercausaldependence between the two causesA andB
that is induced by the observation of the valuec0 for the common effectC; note that, givenc0,
the nodesA andB are no longer d-separated.

For formally defining the concept of product synergy, we address two nodesA andB with a
common childC. We distinguish between two situations:

• NodeC has no parents other thanA andB, or all other parents are instantiated;

• NodeC has uninstantiated parents other thanA andB.

We begin by focusing on the situation where nodeC does not have any uninstantiated parents
other thanA andB. NodesA andB then exhibit a product synergy of type I, orproduct synergy
I for short, with regard to every single value for nodeC.

Definition 3.13 Let G = (V (G), A(G)) be an acyclic directed graph and letPr be a joint
probability distribution onV (G) such thatG is an I-map forPr. LetA,B,C ∈ V (G) be nodes
in G withA→ C, B → C ∈ A(G). LetX = πG(C) \ {A,B} and letxi be the combination of
observed values forX. Then, nodesA andB exhibit anegative product synergywith regard to
the valuec0 of nodeC, writtenX−G ({A,B}, c0), iff

Pr(c0 | abxi) · Pr(c0 | āb̄xi) ≤ Pr(c0 | ab̄xi) · Pr(c0 | ābxi).

Positive, zero, andambiguous product synergiesonce again are defined analogously.
We would like to note that additive and product synergies do not just differ in the addition and

product-operators in their definitions. While an additive synergy exhibited by two nodes pertains
to all values for a common child, a product synergy pertains to asinglevalue for the child. There
thus are as many product synergies as there are values for the child under consideration.

We illustrate the concept of product synergy by means of our running example.
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Example 3.14 Again, we consider theWall Invasionnetwork from Figure 2.1. We focus on the
product synergies among the nodes in the network. From the conditional probability distributions
specified for nodeW we have that

Pr(w | ul ) · Pr(w | ūl̄ ) = 0.0081, and Pr(w | ūl ) · Pr(w | ul̄ ) = 0.018.

So,
Pr(w | ul ) · Pr(w | ūl̄ ) ≤ Pr(w | ūl ) · Pr(w | ul̄ ).

We conclude that nodesU andL exhibit a negative product synergy with regard to the valuew
for nodeW . A similar observation holds with regard to the valuew̄ for nodeW .

U L

W

−,−

+ +
+

Figure 3.2: The qualitativeWall Invasionprobabilistic network.

The qualitative probabilistic network that is thus abstracted from theWall Invasionnetwork is
shown in Figure 3.2. The signs of the qualitative influences once again are shown along the
network’s arcs. The sign of the additive synergy exhibited by nodesU andL on nodeW , as found
in Example 3.12, is indicated over the curve over nodeW . The signs of the product synergies
exhibited by nodesU andL with regard to the different values for nodeW are indicated over the
dashed edge between the associated nodes. �

So far, we have considered product synergies of type I, exhibited by two nodesA andB with
regard to the values for a common childC that has no uninstantiated parents other thanA and
B. We now focus on the more general situation where nodeC does have uninstantiated parents
other thanA andB. Let X be the set of parents ofC. Recall that the signs of qualitative
influences and additive synergies are independent of the probability distribution for the other
nodes involved (see, for example, Lemma 3.5). If the definition of product synergy I would be
adopted for the present situation, in contrast, it would not guarantee that the sign of the product
synergy is independent of the distribution forX, that is, for example

∀x Pr(c0 | abx) · Pr(c0 | āb̄x)− Pr(c0 | ab̄x) · Pr(c0 | ābx) ≤ 0

6=⇒ Pr(c0 | ab) · Pr(c0 | āb̄ )− Pr(c0 | ab̄ ) · Pr(c0 | āb) ≤ 0.

To show this, we observe that

Pr(c0 | ab) · Pr(c0 | āb̄ )− Pr(c0 | ab̄ ) · Pr(c0 | āb)

=

(∑
x

Pr(c | abx) · Pr(x)

)
·
(∑

x

Pr(c | āb̄x) · Pr(x)

)
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−
(∑

x

Pr(c | ab̄x) · Pr(x)

)
·
(∑

x

Pr(c | ābx) · Pr(x)

)
=
∑
xi

∑
xj

Pr(xi)·Pr(xj)·
(
Pr(c0 | abxi)·Pr(c0 | āb̄xj)− Pr(c0 | ab̄xi)·Pr(c0 | ābxj)

)
.

From
∀x Pr(c0 | abx) · Pr(c0 | āb̄x)− Pr(c0 | ab̄x) · Pr(c0 | ābx) ≤ 0

it does not follow, however, that∑
xi

∑
xj

Pr(xi)·Pr(xj)·
(
Pr(c0 | abxi)·Pr(c0 | āb̄xj)− Pr(c0 | ab̄xi)·Pr(c0 | ābxj)

)
≤ 0.

In fact, we have that the sign ofp = Pr(c0 | ab) · Pr(c0 | āb̄ ) − Pr(c0 | ab̄ ) · Pr(c0 | āb) may
be dependent upon the probability distribution for the setX. More specifically,p is aquadratic
function in the probability distribution forX. Now if X is observed, that is, ifPr(x) = 1
for some combination of valuesx, then the sign of the product synergy equals the sign of the
functionp at the appropriate extreme. Product synergy I then correctly describes the sign of the
synergy. IfX is uninstantiated, however, then product synergy I no longer captures the correct
sign ofp: the functionp may not have the same sign for every value ofPr(x), as is illustrated by
Figure 3.3. M.J. Druzdzel and M. Henrion introduced an extended concept of product synergy,
termedproduct synergy II, to capture the correct sign ofp in the presence of uninstantiated
parents [34]. Before formally defining product synergy II, we review the concept ofmatrix half
positive semi-definiteness.
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Figure 3.3:p = Pr(c0 | ab) ·Pr(c0 | āb̄)−Pr(c0 | ab̄) ·Pr(c0 | āb) as a function of the probability
distribution ofX.

Definition 3.15 LetM be a squaren × n matrix,n ≥ 1, and letx be any non-negative vector
of n elements. Then,M is calledhalf positive semi-definiteif xTMx ≥ 0.

The concept of half negative semi-definiteness is defined analogously with≥ replaced by≤. The
following lemma states a useful property of a half positive semi-definite matrix.
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Lemma 3.16 If a squaren×n matrixM , n ≥ 1, is half positive semi-definite, thenMii ≥ 0 for
i = 1, . . . , n.

Proof: Let M be half positive semi-definite. Then, for any non-negative vectorx of lengthn,
we havexTMx ≥ 0. Now suppose there exists ani ∈ {1, . . . , n} such thatMii < 0. Let v be a
non-negative vector that is non-zero only forvi, then we havevTMv = vi ·Mii · vi < 0, which
contradicts the assumption thatM is half positive semi-definite. �

A similar property can be derived for a half negative semi-definite matrix. We now provide the
definition of extended product synergy, termedproduct synergy II.

Definition 3.17 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. LetA,B,C ∈ V (G) be nodes inG with
A → C, B → C ∈ A(G). LetX = πG(C) \ {A,B}. Letm denote the number of possible
combinations of values forX. Then, nodesA andB exhibit anegative product synergywith
regard to the valuec0 for nodeC, iff them×m-matrixD with elements

Dij = Pr(c0 | abxi) · Pr(c0 | āb̄xj)− Pr(c0 | ābxi) · Pr(c0 | ab̄xj)
is half negative semi-definite for all combinations of valuesxi andxj for X.

For a positive or zero product synergy, the matrixD has to be half positive semi-definite or
zero, respectively; if the matrixD does not exhibit any of these properties, the product synergy
is ambiguous. Note that product synergy I is a special case of product synergy II. If the set of
parentsX, other thanA andB, of nodeC is instantiated to a combination of valuesx, we can
regardX as having only one possible value; the matrixD in Definition 3.17 then reduces to a
matrix with a single element:D11 = Pr(c0 | abx) · Pr(c0 | āb̄x)− Pr(c0 | ābx) · Pr(c0 | ab̄x).

In a qualitative probabilistic network, nodes exhibit product synergies with regard to the
values of their common children. More generally, two nodesA andB can exhibit indirect product
synergies with regard to the values of a common descendantC. We briefly review the structural
properties the trails involved have to adhere to. A product synergy typically pertains to the values
of a head-to-head node or of one of its descendants. For a product synergy exhibited byA and
B on the valuec0 of C along the trailsti fromA toC andtj fromB toC, we have thatti andtj
should obey the following structural properties:C is a descendant ofA and ofB on ti and ontj,
respectively, andti andtj share a nodeD ∈ V (ti) ∩ V (tj) such thatti = t′i ◦ tk andtj = t′j ◦ tk
share the subtrailtk from D to C. Note again that whentk is empty, nodeD is equivalent to
nodeC. Also note that nodeD is a head-to-head node on all possible simple trails fromA to
B in t′i ◦ t′−1

j . The definitions of product synergy are now extended, analogous to the extension
of the definition of qualitative influence, to capture such indirect product synergies. From here
on, we writeX̂δ

G({A,B}, c0, {ti, tj}) to denote a product synergy of signδ exhibited by nodes
A andB with regard to the valuec0 for a common descendantC along the trailsti fromA toC
andtj fromB toC, respectively.

Properties of product synergies
The set of all product synergies exhibits, just as the sets of qualitative influences and additive
synergies, various convenient properties. We will briefly review these properties here; further
details can be found in [34,99].
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The properties for product synergies along trails closely resemble the properties for additive
synergies along trails. The properties for product synergies once again includesymmetry, transi-
tivity andcompositionproperties. A product synergy exhibited by nodesA andB with regard to
their common descendantC is trivially symmetric inA andB. For the transitivity property, we
again distinguish betweenpre-synergyandpost-synergytransitivity. In pre-synergy transitivity a
(indirect) product synergy exhibited by nodesA andB with regard to their common descendant
C is combined with a (indirect) qualitative influence of a nodeD on eitherA orB, under the con-
straint thatD is an ancestor ofC on the resulting trail fromD toC. In post-synergy transitivity, a
(indirect) product synergy exhibited by nodesA andB with regard to their common descendant
C is combined with a (indirect) qualitative influence of nodeC on a nodeD, under the constraint
thatD is a descendant of bothA andB on the resulting trails. From the property of pre-synergy
transitivity we have that the sign of the resulting indirect product synergy equals the sign-product
of the signs of its building blocks, that is, the product synergy and the qualitative influence. For
computing the sign of a product synergy resulting from post-synergy transitivity, the sign of the
additive synergy between the nodes involved is also required; we refrain from further detailing
this property here. Finally, product synergies adhere to the property of composition, which states
that the sign of thenetproduct synergy exhibited by two nodes with regard to thesamevalue of a
third node, along multiple parallel trails, equals the sign-sum of the signs of the separate product
synergies among these nodes.

Intercausal reasoning

We mentioned before that the product synergy exhibited by two nodesA andB with regard to
a specific value for a third nodeC, describes the dependence betweenA andB that is induced
by the observation of the value forC. This dependence basically is aninfluencebetweenA and
B; for this reason, we have indicated the signs of the product synergies over a dashed edge in
Figure 3.2. We define the concept of intercausal influence more formally.

Definition 3.18 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. LetA,B,C ∈ V (G) be nodes inG with
A→ C,B → C ∈ A(G). LetX = (πG(B) ∪ πG(C)) \ {A}. Then, given the valuec0 for node
C, nodeA exhibits apositive intercausal influenceon nodeB, writtenZ+

G(A,B, c0), iff

Pr(b | ac0x) ≥ Pr(b | āc0x)

for any combination of valuesx for the set of nodesX.

Negative, zero, andambiguous intercausal influenceagain are defined analogously. From this
definition, it is readily seen that an intercausal influence basically is a qualitative influence; it dif-
fers from a qualitative influence as defined before, only in that it describes an influence between
two nodes along a trail that includes a head-to-head node. The definition of intercausal influence
can be extended to intercausal influences along any trailt from a nodeA to a nodeB that in-
cludes a head-to-head node which is a common descendant ofA andB, and which is instantiated
or has an instantiated descendant; such an intercausal influence is denoted byẐδ

G(A,B, c0, t) for
the instantiationc0. The properties of symmetry, transitivity and parallel composition, as stated
for qualitative influences, hold for intercausal influences as well.
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The sign of the intercausal influence betweenA andB that is induced by the observation of
a value for nodeC equals the sign of the product synergy with regard to that value for nodeC.

Proposition 3.19 LetG, A,B, andC be as in the previous definition. Then, for each valuec0

for nodeC, we have
Xδ
G({A,B}, c0) ⇐⇒ Zδ

G(A,B, c0),

for any signδ ∈ {+,−, 0, ?}.

Proof: We prove the proposition forδ = +; proofs forδ ∈ {−, 0, ?} are analogous. LetPr be a
joint probability distribution onV (G) such thatG is an I-map forPr. Let y be any combination
of values for the set of nodesY = πG(B) \ {A}. To establish the sole effect of the intercausal
influence, we assume there is no arc between nodesA andB. We prove the proposition first for
product synergy I and then for product synergy II.

Let x be the instantiation of the setX = πG(C) \ {A,B}. We have to prove that

Pr(c0 | abx) · Pr(c0 | āb̄x)− Pr(c0 | ab̄x) · Pr(c0 | ābx) ≥ 0

⇐⇒ ∀y Pr(b | ac0xy)− Pr(b | āc0xy) ≥ 0. (3.1)

To this end, we will show that for anyy

Pr(c0 | abx) · Pr(c0 | āb̄x)− Pr(c0 | ab̄x) · Pr(c0 | ābx)

=
(

Pr(b | ac0xy)− Pr(b | āc0xy)
)
· Pr(c0 | axy) · Pr(c0 | āxy)

Pr(b | y) · Pr(b̄ | y)
.

Using Bayes’ theorem and exploiting independence, we find for an arbitrary valueyi of Y

Pr(c0 | abx) · Pr(c0 | āb̄x)− Pr(c0 | ābx) · Pr(c0 | ab̄x)

= Pr(c0 | abxyi) · Pr(c0 | āb̄xyi)− Pr(c0 | ābxyi) · Pr(c0 | ab̄xyi)

=
Pr(b | ac0xyi) · Pr(c0 | axyi)

Pr(b | yi)
· Pr(b̄ | āc0xyi) · Pr(c0 | āxyi)

Pr(b̄ | yi)

− Pr(b | āc0xyi) · Pr(c0 | āxyi)
Pr(b | yi)

· Pr(b̄ | ac0xyi) · Pr(c0 | axyi)
Pr(b̄ | yi)

=
1

Pr(b | yi) · Pr(b̄ | yi)
·
(

Pr(b | ac0xyi) · Pr(c0 | axyi) · Pr(c0 | āxyi)

− Pr(b | ac0xyi) · Pr(c0 | axyi) · Pr(b | āc0xyi) · Pr(c0 | āxyi)
− Pr(b | āc0xyi) · Pr(c0 | āxyi) · Pr(c0 | axyi)
+ Pr(b | āc0xyi) · Pr(c0 | āxyi) · Pr(b | ac0xyi) · Pr(c0 | axyi)

)
=

(
Pr(b | ac0xyi)− Pr(b | āc0xyi)

)
· Pr(c0 | axyi) · Pr(c0 | āxyi)

Pr(b | yi) · Pr(b̄ | yi)
.
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As we have made no assumptions aboutyi, the above holds for any combination of valuesy of
Y . From this equivalence we conclude that Equation 3.1 holds and hence that the proposition
holds for product synergy as defined by product synergy I.

To prove the proposition for product synergy II, we assume, without loss of generality, that the
setX = πG(C) \ {A,B} is uninstantiated. Letx, xi andxj be combinations of values forX.
We now have to show that

the matrix D with Dij = Pr(c0 | abxi) · Pr(c0 | āb̄xj)− Pr(c0 | ab̄xi) · Pr(c0 | ābxj) is
half positive semidefinite ⇐⇒ ∀xy Pr(b | ac0xy)− Pr(b | āc0xy) ≥ 0.

We prove the two implications separately. Let the square matrixD be half positive semi-definite,
then we have from Lemma 3.16 that

∀i Dii = Pr(c0 | abxi) · Pr(c0 | āb̄xi)− Pr(c0 | ab̄xi) · Pr(c0 | ābxi) ≥ 0.

From Equation 3.1 above, we conclude that∀xy Pr(b | ac0xy)− Pr(b | āc0xy) ≥ 0.

Now suppose that for all combinations of valuesx andy, we have

Pr(b | ac0xy)− Pr(b | āc0xy) ≥ 0.

From Lemma 3.5, we then find thatPr(b | ac0) − Pr(b | āc0) ≥ 0. Using Equation 3.1, we
conclude that

Pr(c0 | ab) · Pr(c0 | āb̄ )− Pr(c0 | ab̄ ) · Pr(c0 | āb) ≥ 0.

From the discussion preceding Definition 3.15, we recall that

Pr(c0 | ab) · Pr(c0 | āb̄ )− Pr(c0 | āb) · Pr(c0 | ab̄ ) ≥ 0 ⇐⇒∑
xi

∑
xj

Pr(xi) · Pr(xj) ·
(

Pr(c0 | abxi) · Pr(c0 | āb̄xj)− Pr(c0 | ābxi) · Pr(c0 | ab̄xj)
)
≥ 0,

from which we find
∑
xi

∑
xj

Pr(xi) · Pr(xj) ·Dij ≥ 0. This expression can be written aspTDp ≥

0 for the non-negative vectorp with pk = Pr(xk). Note thatp is an arbitrary non-negative vector
in de (probability) space we are considering. Therefore,D is half-positive semi-definite. We
conclude that the proposition holds for product synergy II. �

Intercausal influences, once induced, allow for reasoning about the dependences between the
(indirect) causes of an observed common effect. This type of reasoning is termed intercausal
reasoning and the most common pattern is known asexplaining away[135]. Explaining away is
evoked by a negative product synergy and describes the situation where one cause is sufficient
to explain the observed effect: the other cause is then explained away. The idea of explaining
away can be seen from the definition of product synergy. A negative product synergy exhibited
by nodesA andB with regard to the valuec0 of their common descendantC can be written as

Pr(c0 | abx)

Pr(c0 | ab̄x)
≤ Pr(c0 | ābx)

Pr(c0 | āb̄x)
.
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The formula states that the proportional increase in the probability ofc0 upon switching the value
of nodeB from falseto true, is smaller in the context ofa than in the context of̄a; the same holds
for A andB reversed. We see, therefore, that the contribution of either cause beingtrue to the
probability ofc0 is greatest when it is the only cause present.

3.1.4 Definition of a qualitative probabilistic network

To conclude this section, we formally define the concept of a qualitative probabilistic network.

Definition 3.20 A qualitative probabilistic networkis a tuple Q= (G,∆), such that

• G = (V (G), A(G)) is an acyclic directed graph with nodesV (G) and arcsA(G);

• ∆ = S ∪ Y ∪ X is a set of hyperarcs for the digraphG where

– S is a set ofqualitative influencesfor G such that

∗ S includes a qualitative influenceSδG(A,B) for every two nodesA,B ∈ V (G)
withA→ B ∈ A(G), and

∗ S is closed under the properties of symmetry, transitivity, and composition;

– Y is a set ofadditive synergiesfor G such that

∗ Y includes an additive synergyY δ
G({A,B}, C) for every three nodesA,B,C ∈

V (G) withA→ C,B → C ∈ A(G), and

∗ Y is closed under the properties of symmetry, transitivity and composition;

– X is a set ofproduct synergiesfor G such that

∗ X includes a product synergyXδ
G({A,B}, c0) for every three nodesA,B,C ∈

V (G) withA→ C,B → C ∈ A(G) and every valuec0 for nodeC, and

∗ X is closed under the properties of symmetry, transitivity and composition.

3.2 Inference in a qualitative probabilistic network

For probabilistic inference with a qualitative probabilistic network, an elegant algorithm is avail-
able, designed by M.J. Druzdzel and M. Henrion [33]. The basic idea of the algorithm is to trace
the effect of observing a node’s value upon the probabilities of the values of all other nodes in
the network by message-passing between neighbouring nodes. In essence, thissign-propagation
algorithm computes the sign of influence along the active trails between the observed node and
all other nodes, using the properties of symmetry, transitivity and composition. All nodes that
are not d-separated from the newly observed node by the set of all previously observed nodes end
up with anode signthat indicates the direction of the shift in the node’s probability distribution
occasioned by the observation.

The sign-propagation algorithm is based on message-passing between neighbouring nodes.
More specifically, a node sends messages to its currentlyactive neighbours. We define the set of
active neighbours for a nodeA that receives a message from a nodeB during inference.
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Definition 3.21 LetG = (V (G), A(G)) be an acyclic digraph. LetA,B ∈ V (G) be nodes inG
such that, upon inference, nodeA receives a message from nodeB. LetO ⊆ V (G) be the set of
observed nodes inG. LetX = {Xi | Xi ∈ σG(A) and σ∗G(Xi) ∩ O 6= ∅} be the set of children
ofA with an observed descendant. Furthermore, let

N =

{
σG(A) ∪ (πG(X) \ {A}) if B → A ∈ A(G);
πG(A) ∪ (σG(A) \ {B}) ∪ (πG(X) \ {A}) if A→ B ∈ A(G).

Then, anactive neighbour ofA is a node fromN \ O.

Note that the set of active neighbours of a nodeA is dynamic as it depends on the node from
whichA receives a message during inference. We also note that nodeA’s current set of active
neighbours is a subset of its Markov blanket: nodes from the setπG(σG(A)) are only included
if they are connected toA by an induced intercausal influence. For ease of exposition, we from
here on assume that induced intercausal influences are added to the digraph as undirected edges.

procedure PropagateObservation(Q,O,sign,Observed):

for eachVi ∈ V (G)
do sign[Vi] ← ‘0’;
PropagateSign(∅,O,O,sign).

procedure PropagateSign(trail,from,to,messagesign):

sign[to] ← sign[to] ⊕messagesign;
trail← trail ∪ {to};
for each active neighbourVi of to
do linksign← sign of (induced) influence betweento andVi;

messagesign← sign[to] ⊗ linksign;
if Vi /∈ trail and sign[Vi] 6= sign[Vi] ⊕messagesign
then PropagateSign(trail,to,Vi,messagesign).

Figure 3.4: The sign-propagation algorithm for probabilistic inference in a qualitative network.

The sign-propagation algorithm takes as input a qualitative probabilistic networkQ, a set
Observed of previously observed nodes, a nodeO for which an observation has become avail-
able, and the signsign of the current observation, that is, either a ‘+’ for the valuetrue or a ‘−’
for the valuefalse. Prior to the propagation of the new observation, the node signs sign[Vi] for
all nodesVi are set to ‘0’. For the currently observed nodeO the appropriate sign is then entered
into the network. The observed node updates its node sign to the sign-sum of its original sign
and the entered sign. It thereupon notifies all its active neighbours that its sign has changed,
by passing to each of them a message containing a sign; this sign is the sign-product of the
node’s current node sign and the signlinksign of the influence associated with the arc or edge
it traverses. In each message it also records the origin of the message. A nodeto that receives
a message, updates its node sign to the sign-sum of its current node sign sign[to] and the sign
messagesign from the message it receives. The node then sends a copy of the message to all
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its active neighbours that need to update their node sign. In doing so, the node changes the sign
in each copy to the appropriate sign and adds itself as the origin of the copy. The information
about the origin of the copy is added to the information about the origin of the message from
which the copy resulted; as this process is repeated throughout the network, therefore, the trails
along which messages have been passed are recorded. As messages travel simple trails only, it is
sufficient to just record the nodes on these trails. The information is exploited in preventing the
passing of messages to nodes that were already visited on the same trail.

During sign-propagation, nodes are only visited if they need a change of node sign. A node
sign can change at most twice, once from ‘0’ to ‘+’, ‘−’ or ‘?’ and then only from ‘+’ or ‘−’ to
‘?’. From this observation we have that no node is ever visited more than twice upon inference
and the algorithm is therefore guaranteed to halt. The time-complexity of the algorithm is linear
in the number of arcs of the digraph.For a proof of the algorithm’s correctness we refer the reader
to [31]. The sign-propagation algorithm for probabilistic inference with a qualitative network is
summarised in pseudocode in Figure 3.4; the basic idea of the algorithm is illustrated with an
example.

Example 3.22 We consider the qualitative probabilistic network shown in Figure 3.5(a). The
qualitative influences between the nodes in the network are indicated over the digraph’s arcs, as
before. We assume that the value of nodeD was observed to betrue and that it has induced a
positive intercausal influence between the nodesC andE, indicated in the figure by the dashed
edge between these nodes. Now suppose that we are interested in the effect of observing the
value true for nodeC upon all the other nodes in the network, in the presence of the previous
observation for nodeD. Prior to the inference, the node signs for all nodes are set to ‘0’, as
depicted in the figure.
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Figure 3.5: An example qualitative probabilistic network with the node signs before, (a), and
after, (b), probabilistic inference.
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To enter the observation for nodeC, the sign ‘+’ is entered into the network. NodeC updates
its node sign to the sign0⊕+ = + and subsequently determines the proper messages to be sent to
its active neighboursB andE. No message will be sent to nodeD as it is observed and therefore
d-separated from nodeC. For nodeB, nodeC computes the sign+⊗+ = +. It thereupon sends
a message containing the computed ‘+’ and the trail [C] to nodeB. Note that in this step of the
algorithm, the property of symmetry of influences is used explicitly. Upon receiving the message
with the sign ‘+’, nodeB updates its node sign to0 ⊕ + = +. It subsequently computes the
sign+ ⊗ − =− to be sent to nodeA; in the message also the trail [C,B] is recorded. Note that
for this purpose, the algorithm exploits the transitivity property of influences. After updating its
node sign to0⊕− =−, nodeA sends a message with the sign−⊗− = + and the trail [C,B,A]
to nodeG, causing it to update its sign to0 ⊕ + = +. No copy of the message originating from
nodeA is passed on by nodeG to nodeF as nodeF is not an active neighbour of nodeG.
For its induced neighbourE, nodeC computes the sign+ ⊕ + = +. NodeC sends a message
containing this sign and the trail [C] to E, causing it to update its node sign to ‘+’. NodeE
does not send any message to nodeD as this node has been observed. The process of message
passing now halts. The result of the inference is depicted in Figure 3.5(b), showing the various
node signs.

Note that if nodeD had not been previously observed, then there would exist two trails
between nodeC and nodeG. If, in addition, the influence associated with the arcC → D
were positive, the two trails would have conflicting signs and entering an observation for nodeC
would then result in the node sign ‘?’ for nodeG. �

3.3 A note on non-binary nodes

In Section 3.1, we provided the general definition of a qualitative influence and its simplification
to binary nodes. For ease of exposition, we from there on assumed all nodes to be binary. Since
all definitions and propositions presented in Section 3.1 can be generalised to non-binary nodes,
our assumption is not a restrictive one. In this section, we will argue that a generalisation to non-
binary nodes does not enhance results upon inference with the basic sign-propagation algorithm,
as the generalisation does not provide us with a finer level of detail.

We recall from Section 3.2 that in the sign-propagation algorithm, an observation is entered
as a ‘+’ or as a ‘−’. Although it is clear what these signs mean for a binary node, the meaning
for a non-binary node is not so obvious. For a non-binary nodeA, a ‘+’ should be entered if ‘a
higher value’ forA is observed. Not only does this assume a total order on the values forA, it
also assumes that we can distinguish between ‘higher’ and ‘lower’ values. To this end, we will
now assume that each node has adummy valuerepresenting an initial ‘medium’ state in case we
do not know the node’s actual value. We illustrate the use of this dummy value with an example.

Example 3.23 We consider the small part of the oesophagus network shown in Figure 3.6; it
describes the extent of the lymph node metastases of an oesophageal carcinoma as an effect of
the depth of invasion into the oesophageal wall. NodeW , modelling the depth of invasion, has
the four valuesT1 < T2 < T3 < T4, whereT1 denotes that the carcinoma has invaded only
the first layer of the oesophageal wall andT4 models that the carcinoma has grown beyond the
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oesophageal wall. NodeL, modelling the extent of the carcinoma’s lymph node metastases, has
the three valuesN0 < N1 < M1, whereN0 indicates that there are no lymph node metastases and
M1 indicates the presence of metastases in distant lymph nodes. From domain experts we know

W L
+

Figure 3.6: TheWall invasionnetwork.

thatT1 andT2 are considered lower values for the depth of invasion andT3 andT4 are regarded
as higher values. The dummy valueTd, which we position betweenT2 andT3 in the ordering,
is now used to denote the ‘medium’ value for nodeW . An observation of eitherT3 or T4 for
nodeW is an observation of a value larger than the dummy valueTd; therefore a ‘+’ is entered
into the network. Similarly, a ‘−’ is entered into the network for the observation of eitherT1 or
T2. Entering a ‘+’ will then cause the values of nodeL that are higher than its dummy value to
become more likely during inference. �

The position of the dummy value for a node is defined by domain experts. To this end, experts
are asked to partition the set of values of a node into two subsets: one subset with ‘high’ values
and one with ‘low’ values. For an arc between two nodesA andB, the partition of the set of
nodeA’s values can, however, depend onA’s influence on nodeB, and vice-versa. For exam-
ple, the depth of wall invasion in the previous example not only influences the extent of lymph
node metastases, but also the extent of haematogeneous metastases. For the influence of node
W on lymph node metastases,T3 andT4 are considered ‘higher’ values forW ; haematogeneous
metastases, however, only occur with a depth of invasionT4, which means thatT4 is then con-
sidered the only ‘higher’ value for nodeW . We can also illustrate this by formally defining, for
an arc between a nodeA and a nodeB, the positions of the dummy values in the orderings of
nodeA’s and nodeB’s values. Let nodesA andB have the valuesa1 < . . . < an, n ≥ 1, and
b1 < . . . < bm, m ≥ 1, respectively. Letad, bd be the dummy values for nodeA and nodeB,
respectively. Suppose nodeA exerts a positive qualitative influence on nodeB; similar observa-
tions apply when the qualitative influence ofA onB is negative. From the information that the
influence ofA onB is positive, we observe that

Pr(B ≥ bk | A > ad) ≥ Pr(B ≥ bk) and Pr(B ≥ bk | A < ad) ≤ Pr(B ≥ bk)

should hold for allk ∈ {1, . . . ,m}. This property can be attained by defining the probabilities
for the separate values of nodeB giventhe dummy valuead of nodeA to be equal to the prior
probability of the value:

Pr(B = bk) = Pr(B = bk | ad).
For each valuebk of nodeB we can now construct a graph similar to the one shown in Figure 3.7;
note thatPr(B ≥ bk | ai) is ascending for higher valuesai becauseA exerts a positive qualitative
influence onB. Now suppose that for a given valuebk of nodeB, we know that

Pr(B ≥ bk) =
∑
i

Pr(B ≥ bk | ai) · Pr(ai) equals p, or equivalently, Pr(B ≥ bk | ad) = p.
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From the graph we can then easily determine the position of the dummy valuead in the ordering
of A’s values. Note that the dummy valuead does not bear any relation with the a priori distri-
bution for nodeA. Exploiting the property of symmetry of qualitative influences, the position of
the dummy valuebd in the ordering of nodeB’s values can be determined in a similar way.

Pr(B ≥ bk | ai)

a2 a3 ana1 ...

p

0

1

ad

Figure 3.7: A graph of the cumulative probabilities for a valuebk of nodeB, given values of
nodeA.

Unfortunately, the position of a node’s dummy value need not be unique. For example, we
consider a nodeA that is connected by two arcs to both nodeB and nodeC. It is possible that
the position of the dummy valuead for nodeA determined from nodeB’s cumulative proba-
bilities differs from the position of the dummy valuea′d determined from nodeC ’s cumulative
probabilities. Now, suppose that nodeA exerts a positive qualitative influence on both nodes
B andC, and suppose thatad > a′d. Then, only observations for values of nodeA larger than
ad will cause higher values of bothB andC to become more likely; similarly, higher values of
bothB andC are ensured to become less likely only for observations of nodeA smaller than
a′d. Consequently, any observation for nodeA that lies betweena′d andad cannot be entered into
the basic sign-propagation algorithm as a ‘+’ or ‘−’ and should be entered as a ‘?’. We would
like to note that an observation betweena′d andad should in fact be propagated as a ‘−’ to node
B and as a ‘+’ to nodeC. The basic sign-propagation algorithm must be adapted to enable the
propagation of two different signs for a single observation.

Using the concept of dummy value it is now possible to determine the sign of an observation
for a non-binary node and to enter it in a qualitative probabilistic network. The observation
is then propagated using the sign-propagation algorithm. During the propagation, however, it
is still only determined whether the observation has a positive or a negative influence on the
different nodes in the network. As a result, sign-propagation with non-binary nodes provides us
with no more information than sign-propagation using binary nodes only. We conclude that with
the current level of detail used in the inference algorithm, a qualitative network including only
binary nodes is just as expressive as one including non-binary nodes. We would like to add to this
observation that for the purpose of quantification, a qualitative probabilistic network modelling
non-binary nodes may nonetheless be preferred, as it may be a more realistic representation of
the problem domain at hand.
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3.4 Discussion

Qualitative probabilistic networks allow for modelling, in a simple and intuitively appealing way,
the qualitative relationships between two nodes, as well as the interactions among more than two
nodes. The probabilistic definitions of qualitative influences and synergies allow for probabilistic
inference in an elegant and mathematically correct way, without having to elicit a large number
of probabilities from domain experts. Despite these advantages, the formalism of qualitative
probabilistic networks is also rather limited.

Qualitative probabilistic networks model the influences between their nodes at a coarse level
of detail: influences are either positive, negative, zero, or ambiguous, without an indication of
their strengths. Although this level of detail will suffice for some domains of application, there
are problems that require a finer level of detail for their solution. One of the major drawbacks
of the coarse level of detail in qualitative networks is the ease with which the uninformative
‘?’-sign arises: once an ambiguous sign is generated during inference, it will spread throughout
most of the network. We can identify two causes for ambiguous signs arising during inference:
the network includes an arc with an associated non-monotonic influence, or the network models
one or more trade-offs. An influence of a nodeA on a nodeB is callednon-monotonicif its sign
depends upon the value of some third node; for non-binary nodes, the order of their values can
also cause non-monotonicity of influences. As non-monotonicity cannot be modelled explicitly
in a qualitative network, these influences are captured by the ‘?’-sign. A network models a
trade-off if two nodes in the network are connected by multiple parallel trails and the signs of
the influences along these trails are conflicting; conflicting influences between two nodes can also
result from induced intercausal influences. As the high level of abstraction does not provide for a
notion of strength of influences and, hence does not provide for weighing conflicting influences,
the net influence between the two nodes is then unknown and a ‘?’ arises.

In the next chapter, we will address the problem of ambiguous signs more thoroughly. We will
extend the formalism of qualitative probabilistic networks to enable the modelling of additional
qualitative information. In addition, we will provide algorithms for handling and, if possible,
preventing ambiguous signs. We feel that it is worthwhile to address this drawback of qualitative
probabilistic networks and make the formalism as expressive as possible, because we believe that
qualitative networks can play an important role in the construction of quantitative probabilistic
networks for real-life application domains. Before assessing all conditional probabilities required
for a probabilistic network, the qualitative probabilistic relationships can be elicited. As these
concern stochastic dominance statements, they are more easily provided by domain experts than
the probabilities required. We can then study the reasoning behaviour of the network under
construction; this allows us to validate, at least to some extent, the network’s structure. When
the network’s graphical structure is considered robust, the qualitative probabilistic relationships
provide constraints on the required probability distributions that can be used as a guideline for
assessing the numerical quantities.



CHAPTER 4

Refining Qualitative Networks

One of the major drawbacks of qualitative probabilistic networks is their coarse level of represen-
tation detail. In a qualitative probabilistic network, the influence between two nodes is quantified
with a sign; this sign is independent of any other influences in the network and has no indication
of the strength of the influence. In Section 3.4 of Chapter 3, we discussed the consequences
of this coarse level of representation detail. For example, a non-monotonic influence cannot be
distinguished from an unknown influence as its sign depends on the value of some third node,
and a trade-off cannot be resolved during inference because modelling the intricacies involved
in weighing its conflicting influences is not possible. As we have argued before, probabilistic
inference with a qualitative network can thus easily result in ambiguous node signs. Ambiguous
results can be averted by refining the formalism of qualitative probabilistic networks to provide
for a finer level of detail. Roughly speaking, the finer the level of detail, the more ambiguous
results can be prevented. However, the finer the level of detail, the closer the network will resem-
ble a fully quantified network, with the risk of losing the computational efficiency of qualitative
reasoning.

In this chapter we propose several extensions to the framework of qualitative probabilistic
networks that provide for stronger results upon inference, yet retain computational efficiency.
Throughout the chapter we assume that additional qualitative properties, resulting from the pro-
posed extensions, are added to the set∆ of qualitative properties of a qualitative probabilistic
network. In Section 4.1 we propose a refinement of the basic formalism of qualitative proba-
bilistic networks that concerns non-monotonic influences. We propose to distinguish between
the representation of non-monotonic and unknown influences. In addition, we present a method
for resolving the non-monotonicity. In Sections 4.2 and 4.3 we propose two well-defined, purely
qualitative approaches to handling trade-offs. The first approach is an enhancement of the ba-
sic formalism of qualitative probabilistic networks that includes a notion of strength. This is
achieved by extending the formalism with double signs++ and−−; these double signs are
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taken to outweigh conflicting+ and− signs and can therefore help to resolve trade-offs. The
second approach allows us to include context-specific information with each sign. In Section 4.4
we propose an algorithm for isolating, from a network, the trade-offs that cannot be resolved
with the previously discussed refinements. If, during inference, an ambiguous node sign results
for some node of interest, the algorithm traces the origin of the ambiguous sign and determines
the additional information that would be required to resolve it. In Section 4.5 we extend the
sign-propagation algorithm to the propagation of multiple simultaneous observations. Contrary
to earlier proposals for handling multiple observations, our extension leads to the strongest pos-
sible results. We conclude the chapter with a brief overview of related work in Section 4.6.

4.1 Exploiting non-monotonic influences

A qualitative probabilistic network basically modelsmonotonicqualitative influences between its
nodes only. We recall from Chapter 3 that a qualitative influence exerted by a nodeA on a node
B results in a shift in the probabilities ofB’s values in a direction that is independent of any other
influences exerted onB. Qualitative influences between nodes, however, need not necessarily
be monotonic in nature: we say that the influence exerted byA onB is non-monotonicif the
resulting direction of shift in the probabilities ofB’s valuesdoesdepend upon the influences of
one or more other nodes.

In a qualitative probabilistic network, a non-monotonic qualitative influence between two
nodes is captured by a ‘?’. The same sign is used to express anunknownqualitative influence, that
is, a probabilistic influence for which the direction of shift is unknown. An unknown qualitative
influence can be viewed as expressing lack of information: there is no information present in the
network to conclude whether the sign of the influence is ‘+’, ‘−’, or ‘0’. A non-monotonic influ-
ence, on the other hand, conveys at least some information by the nature of its non-monotonicity.
A non-monotonic influence can in fact be seen as expressing incomplete knowledge: the sign
of the influence is as yet unknown, but it will be known when the values of some other nodes
are observed. Non-monotonicity of a qualitative influence and lack of information, although ex-
pressed in the same way, are therefore different from a conceptual point of view. In this section
we argue that it is worthwhile to explicitly distinguish between non-monotonic influences and
unknown influences in a qualitative probabilistic network. We show how information that can be
extracted from the non-monotonic influences of a network, can be exploited during probabilistic
inference to prevent unnecessarily weak results.

4.1.1 Non-monotonic influences

A non-monotonic qualitative influence of a nodeA on a nodeB is an influence whose sign
depends on the influences of other nodes onB.

Definition 4.1 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. LetA andB be nodes inG with A →
B ∈ A(G). LetY = πG(B) \ {A}. Then, the qualitative influence of nodeA on nodeB in G is
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non-monotonic, iff there exist combinations of valuesy andy ′ for Y , such that

Pr(b | ay) > Pr(b | āy) and Pr(b | ay ′ ) < Pr(b | āy ′ ).

For ease of exposition, we discuss non-monotonic influences associated with arcs only. General-
isation to trails between nodes is straightforward.

Figure 4.1 illustrates the concept of a non-monotonic influence for three nodesA, B andC
with A → B andC → B. We observe that nodeC exerts a monotonic qualitative influence of
sign ‘−’ on nodeB, for we have

Pr(b | aic) ≤ Pr(b | aic̄),

for each valueai ∈ {a, ā} for nodeA. The influence ofA on nodeB, however, is non-monotonic,
since the sign of the difference

Pr(b | aci)− Pr(b | āci)
depends on the valueci ∈ {c, c̄} for C. More specifically, we observe from the figure that

Pr(b | ac) > Pr(b | āc) and Pr(b | ac̄) < Pr(b | āc̄).

Note that the qualitative influence of nodeA on nodeB becomes monotonic, as soon as an
observation for nodeC is available.

A

C

Pr(b)

c

c̄
ā a

Figure 4.1: A non-monotonic influence of nodeA on nodeB provoked by nodeC.

As mentioned before, both non-monotonic influences and unknown influences are denoted
by the sign ‘?’ in a qualitative probabilistic network. Now, in Chapter 3 we saw that the sign
‘?’ gives rise to ambiguous results during probabilistic inference in a qualitative network. It is
therefore worthwhile to deal with the ‘?’-signs that are specified in the network by extracting as
much information from them as possible. To this end, we explicitly distinguish between non-
monotonic and unknown qualitative influences, by capturing a non-monotonic influence by the
new sign ‘∼’.

To deal with a non-monotonic qualitative influence of a nodeA on a nodeB, we observe
that the influence is not positive, negative, zero, or unknown, but that its sign depends on the
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value of one or more other nodes. We use the termprovokersto denote the nodes on whose
combination of values an influence’s signs depends; we say that the non-monotonicity of the
influence isprovokedby this set of nodes. The fact that the non-monotonicity of an influence is
provoked by a set of nodesP is indicated with the augmented sign ‘∼P ’. We will subsequently
discuss non-monotonic influences with a single provoker, with two provokers, and with larger
provoking sets.

One provoker

We formally define the concept of a single provoker of a non-monotonicity.

Definition 4.2 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. LetA,B,C be nodes inG with A →
B,C → B ∈ A(G) such thatA exerts a non-monotonic influence onB. Let Y = πG(B) \
{A,C}. Then, nodeC is the provokerof the non-monotonicity of the influence of nodeA on
nodeB in G, iff for someci, cj ∈ {c, c̄}, ci 6= cj, we have that

Pr(b | aciy) ≥ Pr(b | āciy) and Pr(b | acjy) ≤ Pr(b | ācjy),

for any combination of valuesy for Y .

From the previous definition we have that for eachck ∈ {c, c̄}, eitherPr(b | acky) ≥ Pr(b | ācky)
for any combination of valuesy for Y , or Pr(b | acky) ≤ Pr(b | ācky) for any suchy.

To avoid an abundance of braces, we will write ‘∼C ’ instead of ‘∼{C}’ to indicate the sign of
a non-monotonic influence with a single provokerC. The concept of a non-monotonicity that is
provoked by a single node is illustrated with an example.

Example 4.3 We consider the probabilisticCervical Metastasesnetwork and its qualitative ab-
straction shown in Figure 4.2. The network represents a small, highly simplified fragment of the

L M

C

Pr(l) = 0.9 Pr(m) = 0.4

Pr(c | lm) = 0.35
Pr(c | l̄m) = 0.95

Pr(c | lm̄) = 0
Pr(c | l̄m̄) = 1.0

L M

C

+,−

− ∼L
+

Figure 4.2: TheCervical Metastasesnetwork.

oesophagus network, pertaining to lymphatic metastases of a carcinoma. The nodeL represents
the location of an oesophageal carcinoma in a patient’s oesophagus. The fact that the tumour
resides in the lower two-third of the oesophagus is represented byl; l̄ expresses that the tumour
is located in the oesophagus’ upper one-third. An oesophageal carcinoma upon growth typically
gives rise to lymphatic metastases. NodeM represents the extent of these metastases. If the dis-
tant lymph nodes are affected by cancer cells this is indicated bym; m̄ denotes that just the local
and regional lymph nodes are affected. Which lymph nodes are local or regional and which are
distant depends on the location of the primary tumour in the oesophagus. The lymph nodes in the
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neck, or cervix, for example, are regional for a tumour in the upper one-third of the oesophagus
and distant otherwise. NodeC represents the presence or absence in a patient of metastases in
the cervical lymph nodes.

From the conditional probabilities specified for nodeC, it is readily verified that nodeL
exerts a negative qualitative influence onC. The influence of nodeM onC is non-monotonic.
The non-monotonicity of the influence is provoked by nodeL, the location of the carcinoma.
Furthermore, we observe that nodesL andM exhibit a positive additive synergy onC and either
value for the nodeC induces an intercausal influence betweenL andM . For the valuec this
intercausal influence is captured by a positive product synergy and for the valuec̄ the influence
is captured by a negative synergy. �

From the definition of a single provokerC of the non-monotonicity of the influence of nodeA on
nodeB, we have more specifically that for all combinations of valuesy for the setY of parents
of B other thanA andC, either

Pr(b | acy) ≥ Pr(b | ācy) and Pr(b | ac̄y) ≤ Pr(b | āc̄y),

or Pr(b | acy) ≤ Pr(b | ācy) and Pr(b | ac̄y) ≥ Pr(b | āc̄y),

with strict inequalities for at least one pair of combinations of valuesx = cy andx ′ = c̄y for the
setX of parents ofB other thanA. It is now readily seen that once a value for the provoking
nodeC is observed, the non-monotonic influence ofA onB reduces to a monotonic influence.
We say that the observationresolvesthe non-monotonicity ofA’s influence onB.

When an observation for its provoking node reduces a non-monotonic influence between two
nodes to a monotonic influence, the sign of the resulting influence can be determined from the
additive synergy defined for the nodes concerned.

Proposition 4.4 LetQ = (G,∆) be a qualitative probabilistic network. LetA,B,C be nodes
in G withA→ B,C → B ∈ A(G). Then, for anyci ∈ {c, c̄},

S∼C (A,B) ∧ Y δ({A,C}, B) ∧ C = ci =⇒ Sδ⊗sign[ci](A,B),

for all δ ∈ {+,−, 0, ?}, wheresign[ci] = + if ci = c andsign[ci] = − if ci = c̄.

Proof: Let Pr be a joint probability distribution onV (G) such thatG is an I-map forPr. Suppose
that nodesA andC exhibit a positive additive synergyY +({A,C}, B) on nodeB, that is, we
have

Pr(b | acy) + Pr(b | āc̄y) ≥ Pr(b | ac̄y) + Pr(b | ācy),

for any combination of valuesy for the set of parents of nodeB other thanA andC. From the
non-monotonicity of the influence ofA onB andC being its provoker, we now conclude that

Pr(b | acy) ≥ Pr(b | ācy) and Pr(b | ac̄y) ≤ Pr(b | āc̄y)

must hold for all combinations of valuesy, with strict inequalities for at least one pair of combi-
nations of valuesx = cy andx ′ = c̄y for the setX of parents ofB other thanA.
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Now, suppose that the valuec is observed for the provoking nodeC. We then find

Pr(b | ax) ≥ Pr(b | āx)

for any combination of valuesx, including the observationc, for the setX. We observe that,
after resolving the non-monotonicity involved, nodeA exerts a positive qualitative influence on
B. Alternatively, upon observation of̄c, nodeA exerts a negative influence onB. A negative
additive synergy exhibited byA andC onB leads to an analogous result. We conclude that the
sign of the qualitative influence fromA on B after resolving its non-monotonicity equals the
sign-product of the sign of the additive synergy involved and the sign of the observation for the
provoking node. �

The resolution of the non-monotonicity of an influence that is provoked by a single node, is
illustrated with an example.

Example 4.5 We consider once again theCervical Metastasesnetwork from Figure 4.2. From
the probabilities specified for nodeC it is readily seen that, given a tumour in the upper one-third
of a patient’s oesophagus, that is, givenl̄, nodeM exerts a negative qualitative influence onC;
givenl,M exerts a positive influence onC. In the network, the sign of the influence ofM onC
after resolution bȳl is computed to be the sign-product of the sign ‘+’ of the additive synergy of
M andL onC and the sign ‘−’ of the observation forL, that is,+ ⊗ − = −. After resolution
by l, the sign of the influence ofM onC is computed to be+ ⊗ + = +. �

For probabilistic inference in a qualitative probabilistic network that explicitly distinguishes
between non-monotonic and unknown influences, basically the same algorithm can be used as
for probabilistic inference within a regular qualitative network. The only difference lies in the
traversal of a non-monotonic qualitative influence: before propagating over a non-monotonic
influence, it is investigated whether or not the influence’s non-monotonicity is resolved by the
available observations. If the non-monotonicity is resolved, the sign of the resulting influence as
described above is used in the propagation; otherwise, the ambiguous sign ‘?’ is propagated. The
extended algorithm, generalised to an arbitrary set of provokers, is given in Figure 4.3.

Two provokers

So far we have focused our discussion on non-monotonicities provoked by a single node. The
concept of provoker, however, can easily be extended to sets of nodes. We first consider a set of
two provokers.

Definition 4.6 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. LetA,B,C,D be nodes inG with A →
B,C → B,D → B ∈ A(G) such that nodeA exerts a non-monotonic influence onB. Let
Y = πG(B) \ {A,C,D}. Then, the nodesC andD are the provokersof the non-monotonicity
of the influence of nodeA on nodeB in G, iff there exists adk ∈ {d, d̄ } such that for some
ci, cj ∈ {c, c̄}, ci 6= cj,

Pr(b | acidky) ≥ Pr(b | ācidky) and Pr(b | acjdky) ≤ Pr(b | ācjdky),



4.1. Exploiting non-monotonic influences 51

and there exists ack ∈ {c, c̄ } such that for somedi, dj ∈ {d, d̄ }, di 6= dj,

Pr(b | ackdiy) ≥ Pr(b | āckdiy) and Pr(b | ackdjy) ≤ Pr(b | āckdjy),

for any combination of valuesy for the setY .

From this definition we have that for each combination of valuesz for the setZ = {C,D}, either
Pr(b | azy) ≥ Pr(b | āzy) holds for any combination of valuesy for Y , or Pr(b | azy) ≤ Pr(b |
āzy) for any suchy. In addition, we note that neither nodeC nor nodeD is a provoker of the
non-monotonicity by itself. We therefore may need a value forbothprovokers to unambiguously
determine the sign of the influence. To illustrate the difference between a non-monotonicity
provoked by a single node and a non-monotonicity provoked by two nodes, we consider a node
B with three parents,A, C andD. Suppose that for these nodes the following inequalities hold:

Pr(b | acd) > Pr(b | ācd) and Pr(b | acd̄ ) > Pr(b | ācd̄ ) and
Pr(b | ac̄d) < Pr(b | āc̄d) and Pr(b | ac̄d̄ ) < Pr(b | āc̄d̄ ),

then we have that

Pr(b | acdi) > Pr(b | ācdi) and Pr(b | ac̄di) < Pr(b | āc̄di),
for any valuedi ∈ {d, d̄ } of D. The set of nodes for which a value is needed to unambiguously
determine the sign of the influence of nodeA on nodeB consists therefore only of nodeC: node
C is the single provoker of the non-monotonicity betweenA andB. If, on the other hand, the
following inequalities hold:

Pr(b | acd) > Pr(b | ācd) and Pr(b | acd̄ ) < Pr(b | ācd̄ ) and
Pr(b | ac̄d) < Pr(b | āc̄d) and Pr(b | ac̄d̄ ) > Pr(b | āc̄d̄ ),

then the sign of the difference

Pr(b | acidj)− Pr(b | ācidj)
depends onboth the valueci ∈ {c, c̄} of C and the valuedj ∈ {d, d̄ } of D. The set of nodes
for which a value is required to unambiguously determine the sign of the influence of nodeA
on nodeB consists therefore of both nodesC andD. It is readily seen that once values for the
provokersC andD are observed, the non-monotonic influence ofA onB reduces to a monotonic
influence.

Additive synergies can again serve to determine the sign of a resolved influence, once values
for the provokers of its non-monotonicity are known. However, in contrast to non-monotonic
influences with a single provoker, the additive synergies involved do not always suffice. The
following proposition reveals the conditions under which additive synergies do suffice to unam-
biguously determine the sign of a resolved influence.

Proposition 4.7 LetQ = (G,∆) be a qualitative probabilistic network. LetA,B,C,D be nodes
in G withA→ B,C → B,D → B ∈ A(G). Then, for anyci ∈ {c, c̄}, dj ∈ {d, d̄ },

S∼{C,D}(A,B) ∧ Y δi({A,C}, B) ∧ Y δj({A,D}, B) ∧ C = ci ∧ D = dj

=⇒ S(δi⊗sign[ci])⊕(δj⊗sign[dj ])(A,B),

for all δi, δj ∈ {+,−, 0, ?}, wheresign[z] = + andsign[z̄] = − for z ∈ {c, d}.
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Proof: Let Pr be a joint probability distribution onV (G) such thatG is an I-map forPr, and
let Y = πG(B) \ {A,C,D}. Suppose that the nodesA andC, respectivelyA andD, exhibit
positive additive synergiesY +({A,C}, B) andY +({A,D}, B) onB, that is, we have

Pr(b | acdiy) + Pr(b | āc̄diy) ≥ Pr(b | ac̄diy) + Pr(b | ācdiy),

for all valuesdi ∈ {d, d̄ } of D, and

Pr(b | adciy) + Pr(b | ād̄ciy) ≥ Pr(b | ad̄ciy) + Pr(b | ādciy),

for all valuesci ∈ {c, c̄} of C; these inequalities hold for any combination of valuesy for Y .

FromZ = {C,D} being the set of provokers for the non-monotonicity of the influence ofA on
B, we further have that there exist combinations of valuesz andz ′ for Z such that

Pr(b | azy) ≥ Pr(b | āzy) and Pr(b | az ′y) ≤ Pr(b | āz ′y), (4.1)

for all combinations of valuesy for Y , with strict inequalities for a least one pair of combinations
of valuesx = zy andx ′ = z ′y for the setX = πG(B) \ {A}. Now, there are four possible
combinations of values for bothz andz ′. For eachy there are24 − 2 = 14 possible sets of
four inequalities each that satisfy Equation (4.1). Only ten of these sets of inequalities comply
with the fact that neitherC norD is a provoker by itself. Given that both additive synergies are
positive, only two sets of inequalities can hold for each combination of valuesy for Y :

{ Pr(b | acdy) ≥ Pr(b | ācdy), { Pr(b | acdy) ≥ Pr(b | ācdy),
Pr(b | acd̄y) ≤ Pr(b | ācd̄y), Pr(b | acd̄y) ≥ Pr(b | ācd̄y),
Pr(b | ac̄dy) ≤ Pr(b | āc̄dy), and Pr(b | ac̄dy) ≥ Pr(b | āc̄dy),
Pr(b | ac̄d̄y) ≤ Pr(b | āc̄d̄y) } Pr(b | ac̄d̄y) ≤ Pr(b | āc̄d̄y) }.

We observe that for the combinations of valuescd and c̄d̄ both sets show the same sign for the
resolved influence. Given the observationsc andd, the sign of the influence ofA onB is

(sign[c]⊗ δi)⊕ (sign[d]⊗ δj) = (+⊗+)⊕ (+⊗+) = +.

Similarly, given the observations̄c andd̄ the sign of the influence ofA onB is

(sign[c̄]⊗ δi)⊕ (sign[d̄ ]⊗ δj) = (−⊗+)⊕ (−⊗+) = −.

The two sets, however, reveal opposite signs for the combinations of valuescd̄ andc̄d, indicating
that the additive synergies do not resolve the non-monotonicity of the influence ofA onB. For
these combinations of values, the above calculations will result in a ‘?’: the sign of the resolved
influence cannot be determined. We conclude that the sign of the qualitative influence ofA on
B after resolving of its non-monotonicity equals the sign-sum of the sign-products of the sign of
the additive synergy involved and the sign of the observation, for the separate provoking nodes
from the set of provokers. �

From the previous proposition we have that additive synergies serve to unambiguously determine
the sign of a resolved non-monotonic influence, as long as the sign-products, calculated for each
provoker, of the sign of the additive synergy and the sign of the observation, are not conflicting.
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Any number of provokers

We have shown that generalising the concept of a single provoker to a set of two provokers is
straightforward; we will now further extend the concept to provide for any number of provokers.

Definition 4.8 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. LetA,B ∈ V (G), P ⊂ V (G) be nodes in
G withA → B,Pi → B ∈ A(G), for all Pi ∈ P such thatA exerts a non-monotonic influence
onB. LetY = πG(B) \ ({A} ∪ P ). Then,P is the provoking setof the non-monotonicity of the
influence of nodeA on nodeB in G, iff for eachPi ∈ P there exists a combination of valuesz
for the set of nodesZ = P \ {Pi} such that for somepij, pik ∈ {pi, pi}, pij 6= pik, we have

Pr(b | apijzy) ≥ Pr(b | āpijzy) and Pr(b | apikzy) ≤ Pr(b | āpikzy),

for any combination of valuesy for Y .

Note that the definitions of a single provoker and of a set of two provokers are special cases
of this definition. From the definition we have that no subset ofP is a provoking set of the
non-monotonicity and that any observed combination of values forP serves to resolve the non-
monotonicity.

Without proof, we generalise the proposition that states that the sign of a resolved influence
can, under certain conditions, be unambiguously determined from the signs of the resolving
observations and the signs of the additive synergies for the nodes involved.

Proposition 4.9 LetQ = (G,∆) be a qualitative probabilistic network, and letA,B, andP be
as in the previous definition. Then, for any valuepij ∈ {pi, pi} of nodePi ∈ P ,

S∼P (A,B) ∧
∧
Pi∈P

Y δi({A,Pi}, B) ∧ P =
∧
Pi∈P

pij =⇒ S⊕Pi∈P (δi⊗sign[pij ])(A,B),

for all δi ∈ {+,−, 0, ?}, wheresign[pij] = + if pij = pi, andsign[pij] = − if pij = pi.

4.1.2 Probabilistic inference revisited

In the previous section, we briefly described how to extend the basic sign-propagation algo-
rithm from Chapter 3 to allow for propagating observations in a qualitative probabilistic network
that explicitly distinguishes between non-monotonic and unknown influences: before propa-
gating a sign over a non-monotonic influence, it is investigated whether or not the influence’s
non-monotonicity is resolved by the available observations. We recall that a non-monotonicity
is ensured to be resolved if an observation is available for each of its provokers. If the non-
monotonicity is resolved, the sign of the resolved influence is determined from the signs of the
appropriate observations and additive synergies; the resulting sign is subsequently propagated.
If observations are not available for each provoker, the ambiguous sign ‘?’ is propagated. The
pseudocode summarising this algorithm is given in Figure 4.3.

In our extended algorithm, we attempt to resolve a non-monotonic influence the moment it is
encountered during inference. If not enough observations are available to ensure that the influ-
ence’s non-monotonicity is resolved, a ‘?’ is propagated. Another option would be to propagate
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procedure PropagateSign(trail,from,to,messagesign):

sign[to] ← sign[to] ⊕messagesign;
trail ← trail ∪ {to};
for each active neighbourVi of to
do linksign← sign of (induced) influence betweento andVi;

if linksign ≡ ‘∼P ’
then if P ⊆ Observed

then linksign← ⊕j(sign[Pj ] ⊗δj)
whereδj is determined fromY δj ({to, Pj}, Vi)

elselinksign← ‘?’;
messagesign← sign[to] ⊗ linksign;
if Vi 6= trail and sign[Vi] 6= sign[Vi] ⊕messagesign
then PropagateSign(trail,to,Vi,messagesign)

Figure 4.3: The sign-propagation algorithm extended for resolving non-monotonicity of influ-
ences.

the ‘∼P ’-sign; it is possible to construct tables for the⊕-operator and the⊗-operator that in-
clude this sign. The outcome of sign-propagation then includes the ‘∼P ’-sign. If the user does
not know the actual values of the provokers, however, the fact that the result is non-monotonic
may not be too informative, although the fact that it is non-monotonicin P may be insightful. If
the user does happen to have a clue about the actual values of the provokers, sign-propagation can
be repeated with these values entered as observations, thereby resolving the non-monotonicity.
We will not discuss the propagation of ‘∼P ’-signs in further detail.

To conclude, we would like to note that, in our extended algorithm, the sign of a qualitative
influence whose non-monotonicity is resolved is determined during inference; the resulting sign
is passed on by the algorithm’s variablelinksign. As a result, in propagating subsequent obser-
vations the signs of previously resolved influences will be determined over and over again. To
prevent these unnecessary calculations, the sign of a non-monotonic influence after resolving its
non-monotonicity can also be inserted in the network.

4.1.3 Discussion

A qualitative probabilistic network in essence serves to capture monotonic probabilistic influ-
ences between its nodes only. We have argued that it is worthwhile to explicitly capture informa-
tion about non-monotonic influences, as this information can be exploited in probabilistic infer-
ence to prevent, at least to some extent, unnecessarily weak, ambiguous results. To explicitly cap-
ture non-monotonicity, a domain expert must identify the influences that are non-monotonic and
indicate the provokers of the non-monotonicity. Any combination of observations for the provok-
ing set then serves to resolve the non-monotonicity of the influence. We have proposed the use
of additive synergies for subsequently determining the sign of the influence after its resolution.
An advantage of using additive synergies is that a domain expert merely has to specify the pro-
vokers of a non-monotonicity. The signs of the influence, after resolving its non-monotonicity,



4.1. Exploiting non-monotonic influences 55

for different combinations of values for the provoking set are not required from the expert: these
signs are determined from the signs of the appropriate synergies. A drawback of using additive
synergies is that, when the non-monotonicity of an influence is provoked by two or more nodes,
the synergies do not always provide enough information to calculate an unambiguous sign for
the resolved influence. In Section 4.3 we will show how to circumvent this problem by having
the domain expert specify additional information in the form of signs of influences per context.

In this section we focused attention on non-monotonic influences between binary nodes. We
will now briefly discuss a generalisation to non-monotonic synergies, non-monotonic intercausal
influences, and to non-monotonic influences between non-binary nodes. The definition of non-
monotonicity of additive synergies is quite straightforward. Consider, for example, the network
shown in Figure 4.4. Suppose that nodesB andC exhibit an additive synergy on nodeD that is
non-monotonic, caused by the single provokerE. Then, for someei, ej ∈ {e, ē}, ei 6= ej, this
non-monotonicity is described by

Pr(d | bcei) + Pr(d | b̄c̄ei) > Pr(d | bc̄ei) + Pr(d | b̄cei) and

Pr(d | bcej) + Pr(d | b̄c̄ej) < Pr(d | bc̄ej) + Pr(d | b̄cej).

At present, we see no way of resolving the non-monotonicity of an additive synergy. Also, as
additive synergies are not used upon inference for any other purpose than for resolving non-
monotonic influences, we refrain from further investigation.

A B C

DE

Figure 4.4: An example network.

Non-monotonicity of product synergies and intercausal influences is more interesting, yet
also more complicated. We again consider Figure 4.4, showing a product synergy for the nodes
B andC with regard to values for their common childD. As the intercausal influence induced
by a product synergy is quite similar to a regular qualitative influence, non-monotonicity of the
intercausal influence between two nodesB andC would, on first thought, be provoked by another
parent of eitherB orC, such as nodeA in Figure 4.4. However, the intercausal influence between
the nodesB andC is induced by the product synergy exhibited by these nodes with respect to
a specific value of nodeD, andD is independent ofA given B. The product synergy can
therefore not be non-monotonic inA and hence cannot induce an intercausal influence that is non-
monotonic inA. Another possibility is that a non-monotonic intercausal influence is described
by a non-monotonic product synergy whose non-monotonicity is provoked by another parent of
the node on which the synergy is exhibited, such as nodeE in the figure. The non-monotonicity
of the product synergy can then be defined in a similar way as for additive synergies. Note that
only product synergies of type II and their induced intercausal influences can be non-monotonic.
We suspect that additive synergies can again be used to resolve the non-monotonicity of an
intercausal influence, but further research is still required.

So far, we have focused our discussion on binary nodes. We recall from the discussion in
Chapter 3 that our assumption of all nodes being binary is not a restrictive one, since the basic
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sign-propagation algorithm does not allow for a finer level of detail. We would, however, like to
give an indication of how to extend the concept of non-monotonicity and its resolution to non-
binary nodes. We have from our definition of provoker for binary nodes that a non-monotonic
influence becomes monotonic once values for its provokers are available. Building upon this
idea, we should have for a non-monotonic influence of a non-binary nodeB on a non-binary
nodeD that is provoked by binary nodeC, as in Figure 4.4, that for all valuesdi of D, and all
valuesbj > bk of B, either

Pr(D ≥ di | bjcx) ≥ Pr(D ≥ di | bkcx) and Pr(D ≥ di | bj c̄x) ≤ Pr(D ≥ di | bkc̄x), or

Pr(D ≥ di | bjcx) ≤ Pr(D ≥ di | bkcx) and Pr(D ≥ di | bj c̄x) ≥ Pr(D ≥ di | bkc̄x),

with strict inequalities for at least one pair of combinations of valuesy = cx andy ′ = c̄x for
Y = {X} ∪ {C} whereX = E. Note that we still assume the provoking node to be binary.
The method of resolving non-monotonic influences through the use of additive synergies now
applies straightforwardly because there are only two possible values for the provoking node; we
therefore know that the resolved influence is negative for one value and positive for the other.
With a set of provokers, we have one additive synergy per provoker, which again provides us
with only two possibilities. A possible idea for handling non-binary provokers is to split each
provoker into a set of binary nodes, but this idea awaits further investigation.

4.2 Enhanced qualitative probabilistic networks

Ambiguous signs during inference with a qualitative probabilistic network not only result from
the presence of non-monotonic influences, but are also generated from trade-offs in the network.
A network models a trade-off if it contains multiple parallel trails such that the signs of the in-
fluences along these trails are conflicting. To adequately deal with trade-offs, we have designed
the formalism of enhanced qualitative probabilistic networks in which we distinguish between
strong and weak qualitative influences. By introducing a qualitative notion of relative strength,
several trade-offs can be resolved during inference by building upon the idea that strong influ-
ences dominate over conflicting weak influences. For this purpose, we have generalised the
sign-propagation algorithm for regular qualitative networks to apply to enhanced networks.

4.2.1 The enhanced formalism

In aquantitativeprobabilistic network, the net result from conflicting influences between a node
A and a nodeB along multiple parallel trails is computed from the conditional probabilities
specified for the nodes on the trails. The conditional probabilities can be regarded as specifying
the strengths of the influences in a quantitative network. The coarse level of representation detail
of a qualitative probabilistic network, however, does not provide for an indication of the strength
of an influence. As a consequence, if a qualitative network models a trade-off, the composition
of the conflicting influences will result in the generation of a ‘?’ during inference; we say that
the trade-off remainsunresolved. The following example illustrates a trade-off.
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Example 4.10 We consider the probabilisticRadiotherapynetwork and its qualitative abstrac-
tion in Figure 4.5. The network represents a highly simplified fragment of the prognostic part of
the oesophagus network. NodeL models the life-expectancy of a patient after therapy, wherel
indicates that the patient will survive for at least 6 weeks. NodeT models the therapy instilled;

S R

L

TPr(t) = 0.65

Pr(s | t ) = 0.10
Pr(s | t̄ ) = 0.01 Pr(r | t̄ ) = 0.35

Pr(r | t ) = 0.85

Pr(l | sr ) = 0.70
Pr(l | s̄r ) = 0.75

Pr(l | sr̄ ) = 0.15
Pr(l | s̄r̄ ) = 0.17

S R

L

T
+ +

− +

+,+
−

Figure 4.5: TheRadiotherapynetwork.

we focus on whether or not a patient receives radiotherapy, modelled byt and t̄ , respectively.
The effect to be attained from radiotherapy is the reductionr of the tumour in the patient’s oe-
sophagus, modelled by nodeR. A complication associated with radiotherapy is a build up of scar
tissue, called stenosis, causing narrowing of the oesophagus; the presence or absence of stenosis
is modelled by nodeS. If the patient receives radiotherapy, his life expectancy may decrease due
to stenosis. His life expectancy will on the other hand increase if the tumour is reduced. From the
probabilities in the quantitative network, we have that the effect of stenosis on life expectancy is
much smaller than the effect of tumour reduction. The fact that the influence ofS onL is much
weaker than the influence ofR onL is, however, not apparent from the qualitative abstraction.
During inference, therefore, the trade-off cannot be resolved. �

To allow for resolving trade-offs in a qualitative way, we enhance the formalism of qualitative
probabilistic networks by introducing a notion of relative strength of influences. If, for example,
a positive influence is known to be stronger than a conflicting negative one, we may then con-
clude that the combined influence is positive, thereby resolving the trade-off. In anenhanced
qualitative probabilistic network, we distinguish to this end between strong and weak influences.
Intuitively, a strong influence of a nodeA on a nodeB is an influence that is stronger than any
weak influence in the network, that is

|Pr(b | ax)− Pr(b | āx)| ≥ |Pr(d | cy)− Pr(d | c̄y)|,

for all nodesC andD with a weak influence between them; the inequalities should hold for each
combination of valuesx for the set of parents ofB other thanA and for each combination of
valuesy for the set of parents ofD other thanC. The basic idea now is to partition the set of all
influences of a network into two disjoint sets of influences in such a way that any influence from
the one subset is stronger than any influence from the other subset. To this end, acut-off value
α is introduced. This value serves to partition the set of all qualitative influences into a set of
influences that capture an absolute difference in probabilities larger thanα and a set of influences
that model an absolute difference smaller thanα. An influence from the former subset will be
termed astrong influence; an influence from the latter subset will be termed aweak influence.
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Definition 4.11 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. LetA,B be nodes inG, withA → B ∈
A(G). LetX = π(B) \ {A} and letα be a cut-off value. The influence of nodeA on nodeB is
strongly positive, denotedS++(A,B), iff it is a positive qualitative influence with

Pr(b | ax)− Pr(b | āx) ≥ α,

for any combination of valuesx for the setX. The influence of nodeA on nodeB is weakly
positive, denotedS+(A,B), iff it is a positive qualitative influence with

Pr(b | ax)− Pr(b | āx) ≤ α,

for any combination of valuesx for X.

Strongly negative qualitative influences, denotedS−−, and weakly negative qualitative influ-
ences, denotedS−, are defined analogously;zero qualitative influencesandambiguous qualita-
tive influencesare defined as in regular qualitative probabilistic networks.

We would like to note that, in our enhanced formalism, the meaning of the sign of a qualitative
influence has slightly changed. While in a regular qualitative probabilistic network, the sign of
an influence represents the sign of a difference in probabilities only, in an enhanced qualitative
network a sign in addition captures the relative magnitude of the difference.

Upon abstracting a quantified probabilistic network to an enhanced qualitative probabilistic
network, the cut-off valueα needs to be chosen explicitly. This cut-off value will typically vary
from application to application. We would like to note that it is always possible to choose a
cut-off value, as the valueα = 1 yields a trivial partitioning of the set of influences. In real-life
applications of enhanced qualitative probabilistic networks, however, a cut-off value doesnot
have to be established explicitly. The partitioning into strong and weak influences then is elicited
directly from the domain experts involved in the construction of the network.

Example 4.12 We consider again theRadiotherapynetwork from Figure 4.5. Suppose that we
choose for our cut-off valueα = 0.45. For the influence of nodeT on nodeR, we now find that

Pr(r | t )− Pr(r | t̄ ) ≥ 0, and |Pr(r | t )− Pr(r | t̄ )| = 0.50 ≥ α.

We therefore conclude thatS++(T,R). We further find thatS+(T, S), S−(S,L), andS++(R,L).
The resulting enhanced qualitative probabilistic network, showing only the qualitative influences
involved, is depicted in Figure 4.6. �

4.2.2 Properties of enhanced qualitative influences

We recall from Section 3.2 that the sign-propagation algorithm for probabilistic inference builds
on the idea of propagating signs throughout a qualitative network and combining them with the
⊗- and⊕-operators. We further recall that the algorithm exploits the properties of symmetry,
transitivity, and composition of influences. To generalise the idea of sign-propagation to in-
ference with an enhanced qualitative probabilistic network, we begin by enhancing the⊗- and
⊕-operators to provide for the properties of transitivity and composition of strong and weak
influences; after doing so, we focus on the property of symmetry.
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Figure 4.6: The enhancedRadiotherapynetwork.

Enhancing the⊗-operator

For propagating qualitative signs along trails of nodes in an enhanced qualitative probabilistic
network, we enhance the⊗-operator that is defined for this purpose for regular qualitative net-
works, to apply to strong and weak influences. In a regular qualitative probabilistic network, an
influence basically captures a difference between probabilities. Combining two influences with
the property of transitivity amounts to determining the sign of the product of two such differ-
ences. In our formalism of enhanced qualitative probabilistic networks, we have associated an
explicit notion of relative strength with influences. It will be evident that these relative strengths
need to be taken into consideration when multiplying signs.

To address the sign-product of two signs in an enhanced qualitative probabilistic network, we
consider the network fragment shown in Figure 4.7. The fragment includes the nodesA, B and

A B C

X Y

Figure 4.7: A fragment of a network.

C; in addition,X denotes the set of all parents ofB other thanA, andY is the set of all parents
of C other thanB. From the proof of Proposition 3.9 in Section 3.1, we have that

Pr(c | axy)− Pr(c | āxy) =
(
Pr(c | by)− Pr(c | b̄y)

)
·(Pr(b | ax)− Pr(b | āx)) , (4.2)

for all combinations of valuesx for the set of nodesX andy for the setY . The differences
Pr(c | axy) − Pr(c | āxy) give an indication of the relative strength of the indirect influence of
A onC. We now consider the possible combinations of signs for the influences associated with
the arcs in the network fragment under consideration, and their sign-products. Suppose that both
qualitative influences are strongly positive, that is, we haveS++(A,B) andS++(B,C). Let α
be the cut-off value used for distinguishing between strong and weak influences. From Equation
(4.2) stated above, we find that

Pr(c | axy)− Pr(c | āxy) ≥ α2

for any combination of valuesxy for the set of nodesX ∪ Y . Sinceα ≤ 1, we haveα2 ≤ α.
Upon multiplying the signs of two strong influences, therefore, a sign results that expresses an
indirect influence that is not necessarily stronger than a direct weakly positive influence. Similar
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observations apply for strongly negative influences. Now suppose that both qualitative influences
in the network fragment from Figure 4.7 are weakly positive, that is, we haveS+(A,B) and
S+(B,C). For the indirect influence of nodeA on nodeC, we find that

0 ≤ Pr(c | axy)− Pr(c | āxy) ≤ α2

for any combination of valuesxy for the setX ∪ Y . Similar observations apply for weakly
negative influences.

From the previous observations, we conclude that while the indirect influence resulting from
the product of two strong influences cannot be compared to a direct weak influence, the indirect
influence is always at least as strong as an indirect influence resulting from the product of two
weak influences. To provide for comparing indirect qualitative influences along different trails
with respect to their strength, as required for trade-off resolution, we therefore will retain the
length of the trail over which influences have been multiplied. To this end, we augment every
influence’s sign by a superscript, called the sign’smultiplication index. We would like to note
that the multiplication index is only used for the purpose of computation and we do not intend
to output signs augmented with these indices to the user. The following definition describes the
meaning of an influence with an augmented sign.

Definition 4.13 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. LetA andB be nodes inG and lett be a
trail from A toB in G. LetX = (

⋃
C∈V (t)\{A} πG(C) \ V (t)). Then, the qualitative influence of

nodeA on nodeB along trail t is strongly positive with multiplication indexi, i ∈ N, written
Ŝ++i(A,B, t), iff

Pr(b | ax)− Pr(b | āx) ≥ αi

for every combination of valuesx for the set of nodesX. The qualitative influence ofA onB
along trail t is weakly positive with multiplication indexi, i ∈ N, written Ŝ+i(A,B, t), iff

0 ≤ Pr(b | ax)− Pr(b | āx) ≤ αi

for every combination of valuesx for the set of nodesX.

Weakly and strongly negative influences with a multiplication index are again defined analo-
gously. The signs of the influences associated with the arcs of the digraph of an enhanced
qualitative network are interpreted as having a multiplication index equal to 1. Building on
the concept of multiplication index, Table 4.1 now defines the enhanced⊗-operator. From the
table, it is readily seen that the ‘+’, ‘−’, ‘ 0’, and ‘?’ signs combine as in a regular qualitative
probabilistic network; the only difference is the handling of the multiplication indices. The fol-
lowing two lemmas show that the sign-product, as specified in Table 4.1, of two signsδi andδj
indeed corresponds to the sign of the transitive combination of the influences with the signsδi
andδj. The previous observations with respect to strongly positive influences are summarised in
the following lemma.
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⊗ ++j +j 0 −j −−j ?

++i ++i+j +j 0 −j −−i+j ?
+i +i +i+j 0 −i+j −i ?
0 0 0 0 0 0 0
−i −i −i+j 0 +i+j +i ?
−−i −−i+j −j 0 +j ++i+j ?

? ? ? 0 ? ? ?

Table 4.1: The enhanced⊗-operator.

Lemma 4.14 LetQ = (G,∆) be an enhanced qualitative probabilistic network. LetA,B, and
C be nodes inG, and letti andtj be trails inG fromA toB and fromB toC, respectively, such
that their trail concatenationti ◦ tj is sinkless. Then,

Ŝ++i(A,B, ti) ∧ Ŝ++j (B,C, tj) =⇒ Ŝ++i+j(A,C, ti ◦ tj).

From this lemma we see that for strongly positive influences the enhanced⊗-operator indeed
correctly captures the sign++i ⊗ ++j = ++i+j of their transitive combination. Similar obser-
vations hold for the transitive combination of two weak or two strong influences, be they positive
or negative.

The following lemma provides for the transitive combination of a weak and a strong influ-
ence.

Lemma 4.15 LetQ,A,B,C, ti andtj be as in the previous lemma. Then,

Ŝ+i(A,B, ti) ∧ Ŝ++j(B,C, tj) =⇒ Ŝ+i(A,C, ti ◦ tj).

Proof: Let Pr be a joint probability distribution onV (G) such thatG is an I-map forPr. Let
α be the cut-off value used for distinguishing between strong and weak influences. The weakly
positive influencêS+i(A,B, ti) of nodeA on nodeB expresses that

0 ≤ Pr(b | ax)− Pr(b | āx) ≤ αi,

for every combination of valuesx for the setX of relevant ancestors of nodeB. The strongly
positive qualitative influencêS++j (B,C, tj) of nodeB on nodeC further expresses that

Pr(c | by)− Pr(c | b̄y) ≥ αj ,

for every combination of valuesy for the setY of relevant ancestors of nodeC. We observe that
αj ≤ 1. For the influence ofA onC along the trail concatenationti ◦ tj, we now find that

Pr(c | axy)− Pr(c | āxy) ≤ αi · αj ,

for every combination of valuesxy for the setX ∪ Y . Fromαi · αj ≤ αi, we conclude that
Ŝ+i(A,C, ti ◦ tj). �
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From the above lemma we conclude that for a weakly and a strongly positive influence the
enhanced⊗-operator indeed correctly captures the sign+i ⊗++j = +i of their transitive com-
bination. Similar observations hold for the transitive combination of any weak and any strong
influence, be they positive or negative.

Enhancing the⊕-operator

For combining multiple qualitative influences between two nodes along parallel trails in an en-
hanced qualitative network, we enhance the⊕-operator that is defined for this purpose for regular
qualitative probabilistic networks, to apply to strong and weak influences. When addressing the
enhanced⊗-operator, we have argued that the product of two influences may yield an indirect
influence that is weaker than the influences it is built from. We will now see that the sum of two
influences, in contrast, may result in a stronger influence.

A

B

C

X

Y

Figure 4.8: Another network fragment.

To address the sign-sum of two signs in an enhanced qualitative probabilistic network, we
consider the network fragment shown in Figure 4.8. The fragment includes the nodesA, B and
C; in addition,X denotes the set of all parents ofB other thanA, andY is the set of all parents
of C other thanA andB. From the proof of Proposition 3.10 in Section 3.1, we recall that

Pr(c | axy)− Pr(c | āxy) =
(
Pr(c | aby)− Pr(c | ab̄y)

)
·Pr(b | ax) + Pr(c | ab̄y)

−
(
Pr(c | āby)− Pr(c | āb̄y)

)
·Pr(b | āx)− Pr(c | āb̄y), (4.3)

for all combinations of valuesx for the set of nodesX andy for the setY . The differences
Pr(c | axy) − Pr(c | āxy) give an indication of the difference between the relative strengths of
the direct influence and the indirect influence between nodeA and nodeC. If all arcs in the figure
are associated with a weakly positive influence, we find thatPr(c | axy)−Pr(c | āxy) ≤ α+α2;
we will prove this property shortly. From the inequality, we observe that the parallel composition
of two weakly positive influences may result in an indirect influence that is stronger than a direct
weakly positive influence; note that the strength of the net influence is expressed as a sum of
different powers of the cut-off value. The addition of a positive and a negative influence will
result in an influence that is weaker than the strongest influence added, and stronger than the
weakest influence added; the strength of the net influence can then be expressed as a difference
in powers of the cut-off value.

As the relative strength of a composite influence depends on the relative strengths of the
influences it is built from, the multiplication indices of the signs of the added influences have
to be incorporated into the multiplication index of the resulting influence’s sign. To this end,
the sign of the composite influence is augmented with alist of multiplication indices. Since the
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power of the cut-off valueα can only be positive, we can indicate subtraction of powers ofα
by a negative multiplication index. For example, the sign of an influence with strength less than
or equal toα − α2 will be denoted by+1,−2. We now formally define the meaning of a list of
multiplication indices.

Definition 4.16 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. Let A andB be nodes inG and let
t = t1 ‖ . . . ‖ tk be a composite trail fromA toB in G. LetX = (

⋃
C∈V (t)\{A} πG(C) \ V (t)).

Then, the qualitative influence of nodeA on nodeB along trail t is strongly positive with the list
of multiplication indicesi1, . . . , ik, k ≥ 1, ij ∈ Z, j = 1, . . . , k, written Ŝ++i1,...,ik (A,B, t), iff

Pr(b | ax)− Pr(b | āx) ≥
∑
ij>0

αij −
∑
ij<0

α|ij |

for any combination of valuesx for the set of nodesX. The qualitative influence of nodeA on
nodeB along trail t is weakly positive with the list of multiplication indicesi1, . . . , ik, written
Ŝ+i1,...,ik (A,B, t), iff

0 ≤ Pr(b | ax)− Pr(b | āx) ≤
∑
ij>0

αij −
∑
ij<0

α|ij |

for any combination of valuesx for X.

Strongly and weakly negative influences with a list of multiplication indices are again defined
analogously.

⊕ ++j +j 0 −j −−j ?

++i ++i,j ++i ++i a) ? ?
+i ++j +i,j +i ? d) ?
0 ++j +j 0 −j −−j ?
−i b) ? −i −i,j −−j ?
−−i ? c) −−i −−i −−i,j ?

? ? ? ? ? ? ?

a) ++i,−j, if i ≤ j; ?, otherwise

b) ++−i,j, if j ≤ i; ?, otherwise

c) −−i,−j, if i ≤ j; ?, otherwise

d) −−−i,j, if j ≤ i; ?, otherwise

Table 4.2: The enhanced⊕-operator.

Building upon the concept of a list of multiplication indices, Table 4.2 defines the enhanced
⊕-operator. From the table, it is readily seen that the ‘+’, ‘−’, ‘ 0’, and ‘?’ signs combine as in
a regular qualitative probabilistic network; the only difference is in the handling of the multipli-
cation indices. The following three lemmas show that the sign-sum, as specified in Table 4.2, of
two signsδi andδj indeed corresponds to the sign of the composition of the influences with the
signsδi andδj.

Lemma 4.17 LetQ = (G,∆) be an enhanced qualitative probabilistic network. LetA,C be
nodes inG and letti andtj be parallel trails inG fromA toC. Then

Ŝ+i(A,C, ti) ∧ Ŝ+j(A,C, tj) =⇒ Ŝ+i,j(A,C, ti ‖ tj).
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Proof: Let Pr be a joint probability distribution onV (G) such thatG is an I-map forPr. Let
α be the cut-off value used for distinguishing between strong and weak influences. For ease
of exposition, we assume that trailti consists of a single arc and trailtj consists of the arcs
A → B, B → C for some nodeB; we recall that with each arc is associated an influence with
multiplication index1. Equation (4.3) gives the net influence of nodeA on nodeC; we can write
this equation as the difference between two functionsf andg:

Pr(c | axy)− Pr(c | āxy) = (Pr(c | aby)− Pr(c | ab̄y))·Pr(b | ax) + Pr(c | ab̄y)

− (Pr(c | āby)− Pr(c | āb̄y))·Pr(b | āx)− Pr(c | āb̄y)

= f( Pr(b | ax) )− g( Pr(b | āx) ),

for all value combinationsx andy for the setX of parents ofB other thanA and the setY of
parents ofC other thanA andB, respectively. If we assume that the positive influence along
trail tj is composed of two positive influences, then we have that the functionsf and g are
linearly increasing functions, similar to the ones shown in Figure 4.9; the fact that in the figure
the gradient of functionf is larger than that of functiong is an arbitrary choice. From the positive
direct influence of nodeA on nodeC we have thatf(0) ≥ g(0) andf(1) ≥ g(1); the functions,
therefore, do not intersect. If the influences along trailtj are negative, the functionsf andg will
be decreasing and similar observations will apply.

0 1 0 1

f g

Pr(b | ax) Pr(b | āx)

Pr(c | aby)

Pr(c | āb̄y)Pr(c | ab̄y)

Pr(c | āby)

(a) (b)

Figure 4.9: Possible functionsf , (a), andg, (b).

To determine the sign of the composite influence of nodeA on nodeC, we have to consider
the sign of the difference between the functionsf andg. Although the functionsf andg are
expressed in terms of different parameters, these parameters cannot be varied independently as
their difference is restricted by the sign of the qualitative influence of nodeA on nodeB. It
is therefore allowed to compare the function values off andg for different values from their
respective domains. For ease of comparison, we depict for this purpose the two functionsf and
g in a single figure, Figure 4.10.

We now assume that the positive influence along trailtj is composed of two positive influ-
ences, for which we have three possibilities:S+1

(A,B) andS++1
(B,C), or S++1

(A,B) and



4.2. Enhanced qualitative probabilistic networks 65

S+1
(B,C), or S+1

(A,B) andS+1
(B,C). Here, we only consider the latter case; proofs for the

other two cases are similar. As the influence of nodeA on nodeB is weakly positive, we have
that 0 ≤ Pr(b | ax)− Pr(b | āx) ≤ α. Therefore, when investigating the difference betweenf
andg, we have to satisfy the following constraints:

• the domain valuePr(b | ax) for f should be greater than or equal to the domain value
Pr(b | āx) for g;

• the difference between the two domain values may not be greater thanα.

0 1 0 1

1 1
f

g

f

g

1− α α

(a) (b)

Figure 4.10: The functionsf( Pr(b | ax) ) andg( Pr(b | āx) ) depicted in a single graph, with
gradient( f ) > gradient( g ), (a), andgradient( g ) > gradient( f ), (b).

We now show that, under these constraints, the differencef(Pr(b | ax)) − g(Pr(b | āx)) is
greater than or equal to zero and that the maximal difference has an upper bound expressed in
terms ofα. To this end, we consider the graph from Figure 4.10(a); similar observations hold for
the graph from Figure 4.10(b). Under the constraints mentioned above, we have that the minimal
difference betweenf(Pr(b | ax)) andg(Pr(b | āx)) is attained forf(0) andg(0). We find that

Pr(c | axy)− Pr(c | āxy) = f(0)− g(0) = Pr(c | ab̄y)− Pr(c | āb̄y) ≥ 0.

The minimal difference is positive as a result of the direct influence ofA onC being positive.
The sign of the net influence of nodeA on nodeB is therefore positive. The maximal difference
betweenf(Pr(b | ax)) andg(Pr(b | āx)) is attained forf(1) andg(1− α). Again exploiting the
information that the signs of the direct influences are all weakly positive, this maximal difference
is:

Pr(c | axy)− Pr(c | āxy) = f(1)− g(1− α)

= Pr(c | aby)− Pr(c | āb̄y)−
(
Pr(c | āby)− Pr(c | āb̄y)

)
·(1− α)

= Pr(c | aby)− Pr(c | āby) + α·
(
Pr(c | āby)− Pr(c | āb̄y)

)
≤ α+ α · α = α + α2.

We conclude that the composite influence of nodeA on nodeC is weakly positive with the list
of multiplication indices1, 2, that is, we conclude that̂S+1,2

(A,C, ti ‖ tj). �



66 Chapter 4. Refining Qualitative Networks

From the above lemma, we conclude that for two weakly positive influences the enhanced⊕-
operator correctly captures the sign+i ⊕ +j = +i,j of their composition. Similar observations
hold for the composition of two strongly positive signs, two strongly negative signs and two
weakly negative signs.

The next lemma addresses the combination of a strongly positive and a weakly positive in-
fluence.

Lemma 4.18 LetQ,A,C andti andtj be as in the previous lemma. Then,

Ŝ++i(A,C, ti) ∧ Ŝ+j(A,C, tj) =⇒ Ŝ++i(A,C, ti ‖ tj).

Proof: The proof proceeds in a similar fashion as the proof of Lemma 4.17, up to the point
where the minimal difference betweenf(Pr(b | ax)) and g(Pr(b | āx)) is considered. The
minimal difference betweenf(Pr(b | ax)) andg(Pr(b | āx)) is again attained forf(0) andg(0)
and we thus have,

Pr(c | axy)− Pr(c | āxy) = f(0)− g(0) = Pr(c | ab̄y)− Pr(c | āb̄y).

Since the direct influence of nodeA on nodeC is strongly positive, we have thatPr(c | axy)−
Pr(c | āxy) ≥ α. We conclude that the composite influence of nodeA on nodeC is strongly
positive with multiplication index1, that is, we conclude that̂S++1

(A,C, ti ‖ tj). �

From the above lemma, we deduce that for a weakly and a strongly positive influence the en-
hanced⊕-operator correctly captures the sign++i ⊕ +j = ++i of their composition. Similar
observations hold for the composition of a strongly negative and a weakly negative influence.

The next lemma provides for the combination of conflicting influences using the enhanced
⊕-operator.

Lemma 4.19 LetQ,A,C, ti andtj be as in the previous lemma and leti andj be multiplication
indices such thati ≤ j. Then,

Ŝ++i(A,C, ti) ∧ Ŝ−
j

(A,C, tj) ⇒ Ŝ++i,−j(A,C, ti ‖ tj).

Proof: Let Pr, α, trail ti and trail tj be as in the proof of Lemma 4.17. Equation (4.3) once
again gives the net influence of nodeA on nodeC. As in the proof of Lemma 4.17, we construct
two functionsf andg. Depending on the sign of the influence of nodeB on nodeC, we once
again have that the functionsf andg are either linearly increasing functions as in Figure 4.10 or
linearly decreasing functions. From here on we consider the graph from Figure 4.10(a); similar
observations apply to the situation in whichf andg converge, as illustrated in Figure 4.10(b).

We assume that the negative influence along trailtj is composed of a negative influence ofA on
B and a positive influence ofB onC, that is, we have either

1. S−
1
(A,B) and S+1

(B,C), or

2. S−−
1
(A,B) and S+1

(B,C), or

3. S−
1
(A,B) and S++1

(B,C).
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The indirect transitive influence of nodeA on nodeC now has sign ‘−2’ in situation (1) and sign
‘−1’ in the situations (2) and (3). Similar observations hold for a positive influence of nodeA on
nodeB and a negative influence ofB on nodeC.

We first consider the situations (1) and (3) described above. Since the influence of nodeA on
nodeB is weakly negative, we have to satisfyPr(b | ax) ≤ Pr(b | āx) andPr(b | āx) − Pr(b |
ax) ≤ α when investigating the difference betweenf and g. From Equation (4.3), we find
that the minimal difference betweenf andg is now attained forf(0) andg(α); this minimal
difference is:

Pr(c | axy)− Pr(c | āxy) = f(0)− g(α)

= Pr(c | ab̄y)− Pr(c | āb̄y)−
(
Pr(c | āby)− Pr(c | āb̄y)

)
·α.

In situation (1) we have thatPr(c | axy)−Pr(c | āxy) ≥ α−α ·α and we conclude that the net
influence of nodeA on nodeC is strongly positive with the list of multiplication indices 1,−2,
that is,Ŝ++1,−2

(A,C, ti ‖ tj). For situation (3) we find thatPr(c | axy)−Pr(c | āxy) ≥ α−1 ·α
and we concludêS++1,−1

(A,C, ti ‖ tj).

We now consider situation (2) described above. Given the strongly negative influence of node
A on nodeB, we must satisfy:Pr(b | ax) ≤ Pr(b | āy) andPr(b | āy) − Pr(b | ax) ≥ α
when investigating the difference of the functionsf andg. From Equation (4.3), we find that the
minimal difference betweenf andg is now attained forf(0) andg(1); this minimal difference
is:

Pr(c | axy)− Pr(c | āxy) = f(0)− g(1)

= Pr(c | ab̄y)− Pr(c | āby).

From the strongly positive direct influence of nodeA on nodeC, we have thatPr(c | ab̄y) −
Pr(c | āb̄y) ≥ α and from the weakly positive influence of nodeB on nodeC we find Pr(c |
āby)−Pr(c | āb̄y) ≤ α. We thus have thatPr(c | axy)−Pr(c | āxy) ≥ α−α and we conclude
that the net influence of nodeA on nodeC is strongly positive with the list of multiplication
indices 1,−1, that is,Ŝ++1,−1

(A,C, ti ‖ tj). �

From the above lemma, we conclude that for a strongly positive influence with multiplication in-
dexi and a weakly negative influence with multiplication indexj, i ≤ j, the enhanced⊕-operator
correctly captures the sign++i ⊕−j = ++i,−j of their composition. Similar observations apply
to other combinations of strong and weak conflicting influences. From the lemma we have that,
under certain conditions, the composition of conflicting strong and weak influences leads to an
unambiguous result. The enhanced⊕-operator thus serves to resolve certain trade-offs.

We would like to note that the enhanced⊕-operator defined in Table 4.2 is non-associative.
We find, for example, that:(

++i ⊕ +i
)
⊕ −i = ++i ⊕ −i = ++i,−i;

++i ⊕
(
+i ⊕ −i

)
= ++i ⊕ ? = ?

Heuristics, such as separately adding all positive and all negative signs, must be designed to
prevent unnecessary ambiguous results from sign-addition.
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The operators revisited We have seen that sign addition can result in signs with a list of mul-
tiplication indices. To provide for adding signs with lists of multiplication indices, the⊕-table
needs to be generalised to situations wherei = i1, . . . , in andj = j1, . . . , jm. The generalisation
is quite straightforward, only the combinations a) through d), describing the combination of a
strong and a conflicting weak influence, deserve some special attention.

We extend the constraint a) for the sum of++i and−j in Table 4.2. We now make the
following observations from Table 4.2:

• negative multiplication indices can only result from the combination of a strong sign having
multiplication indexi, with a conflicting weak sign having multiplication indexj ≥ i;

• the combination of a strong sign with an arbitrary other sign never results in a weak sign.

From these observations we observe that weak signs cannot have negative multiplication indices.
When a strongly positive sign is added to a weakly negative sign, therefore, we must check
whether the positive multiplication indices of the strong sign outweigh the multiplication indices
of the weak sign.

Supposei andj are lists of multiplication indicesi1, . . . , in, respectivelyj1, . . . , jm such that
i1 ≤ . . . ≤ in andj1 ≤ . . . ≤ jm. Then, we can add the weakly negative sign with multiplication
index list j to the strongly positive sign with multiplication index listi, if the strongly positive
influence is definitely stronger than the weakly negative influence. This is ensured if

• the strongly positive influence is greater than zero, that is, if∑
k

ik > 0;

• for every index in the listj of (positive) indices, there is a smaller positive index ini, or
more formally, there exists an indexik > 0 in i, such that

ik ≤ j1, ik+1 ≤ j2, . . . , ik+m−1 ≤ jm.

The constraints b) through d) in Table 4.2 are extended analogously.
We will illustrate adding signs with lists of multiplication indices with some examples.

• ++1,2 ⊕−1,3 = ++1,2,−1,−3, since1 ≤ 1 and2 ≤ 3

• ++1,2 ⊕−1,1 = ?, since1 ≤ 1 but then2 > 1

• ++−2,1 ⊕−2 = ?, since−2 + 1 ≤ 0

• ++−2,1,2 ⊕−2 = ++−2,1,2,2, since−2 + 1 + 2 > 0 and1 ≤ 2

We would like to note that as multiplication indices represent powers of the cut-off value, lists
of multiplication indices can often be simplified. For example,++1,2,−1,−3 can be simplified to
++2,−3, since an influence with sign++1,2,−1,−3 lies betweenα + α2 − α − α3 and1 and the
term inα equalsα2 − α3.



4.2. Enhanced qualitative probabilistic networks 69

Now that we have extended the definition of the enhanced⊕-operator to handle lists of mul-
tiplication indices, we concentrate again on the⊗-operator. In Table 4.1 we used single multipli-
cation indicesi andj. Building upon the meaning of the indices in terms of cut-off values, the
table can be easily generalised to situations wherei andj are lists of multiplication indices. For
example, suppose we have influencesS++i1,i2 (A,B) andS++j1 (B,C), that is, we have

Pr(b | ax)− Pr(b | āx) ≥ αi1 + αi2 and Pr(c | by)− Pr(c | b̄y) ≥ αj1

for all combinations of valuesx andy for the set of nodeB’s parents other thanA and nodeC ’s
parents other thanB, respectively. We then find that

Pr(c | axy)− Pr(c | āxy) ≥ (αi1 + αi2)·αj1 = αi1 ·αj1 + αi2 ·αj1 = αi1+j1 + αi2+j1 .

Thus, the sign of the transitive influence ofA onC is ++i1+j1,i2+j1. Similar observations apply
to the other sign-products in Table 4.1.

The property of symmetry

The basic sign-propagation algorithm for inference with a regular qualitative network explicitly
builds on the properties of symmetry, transitivity, and parallel composition of influences. So
far, we have addressed the⊗- and⊕-operators and have thereby guaranteed the transitivity and
parallel-composition properties of influences in an enhanced qualitative network. We now focus
on the property of symmetry of influences in an enhanced network. In a regular qualitative prob-
abilistic network, the property of symmetry guarantees that, if a nodeA exerts an influence on a
nodeB, then nodeB exerts an influence of the same sign on nodeA. In an enhanced qualitative
network, as in a regular qualitative network, an influence and its reverse are both positive or both
negative. The symmetry property, however, does not hold with regard to the relative strengths of
an influence and its reverse: the reverse of a strongly positive qualitative influence, for example,
may be a weakly positive influence, and vice versa. One way of ensuring that during inference
in an enhanced qualitative network signs can be propagated in both directions of an arc, is to
specify the signs of all reversed influences can be specified explicitly; these signs will then have
to be elicited from the domain experts involved in the network’s construction. An alternative
way is to introduce an additional sign: as the relative strength of the reverse of an influence is
unknown, the reverse is taken to have an ambiguous strength. The reverse of a positive influence
would then be ambiguously positive, denoted by the new sign ‘+?’. The ⊗- and⊕-tables can
be easily extended to incorporate this additional sign; for details the reader is referred to [102].
Much useful information is however lost using these ambiguous signs and we therefore opt for
explicitly specifying the signs of reverse influences.

4.2.3 Probabilistic inference revisited

In the previous section, we have shown that the properties of transitivity and parallel composition
of influences hold in an enhanced qualitative probabilistic network. The property of symmetry
holds for the basic signs, but not with respect to the strengths of influences. In essence there
is therefore no property of symmetry. We argued however that such a property can be easily



70 Chapter 4. Refining Qualitative Networks

enforced by specifying two influences per arc. The basic sign-propagation algorithm from Sec-
tion 3.2 is therefore generalised straightforwardly to apply to enhanced qualitative networks:
instead of the regular⊗- and⊕-operators, the enhanced operators are now used for propagating
and combining signs. Observations have to be entered as either++0 or−−0 instead of+ or−
to prevent unnecessary loss of information during the first multiplication of the sign of the ob-
servation and the sign of the influence it traverses. We illustrate the application of the algorithm
by means of our running example.

Example 4.20 We consider once again the qualitativeRadiotherapynetwork from Figure 4.5 in
Section 4.2.1. We begin by illustrating the application of the basic sign-propagation algorithm.
Suppose that we enter the sign+ for nodeT . NodeT propagates this sign towards nodeS. Node
S receives the sign+ ⊗ + = +. It thereupon computes the sign+ ⊗ − = − and sends it to
nodeL. NodeL does not pass on a sign to nodeR, since the trail fromT via L toR is blocked.
NodeT also sends a positive sign to nodeR, which passes it on to nodeL. NodeL therefore
in addition receives the sign+ ⊗ + = +. The two signs that enter nodeL are combined and
result in the ambiguous sign−⊕+ = ?. Note that the ambiguous sign arises from the trade-off
represented for nodeL.

Now, consider the enhancedRadiotherapynetwork from Figure 4.6. We enter the sign++0

for nodeT , reflecting the positive observation forT . We once again apply the sign-propagation
algorithm, this time using our enhanced operators. Recall that initially all influences associated
with arcs in the digraph have signs with a multiplication-index of1. NodeT computes the sign
++0 ⊗+1 = +1 and sends it towards nodeS. NodeS in turn computes the sign+1 ⊗−1 = −2

and sends it to nodeL. NodeL therefore receives the sign−2. NodeT also computes the sign
++0⊗++1 = ++1 and sends it to nodeR. NodeR thereupon computes the sign++1⊗++1 =
++2 and passes it on to nodeL. NodeL thus receives the additional sign++2. Combining the
two signs that enter nodeL results in the sign++2 ⊕−2 = ++2,−2 indicating that the net result
is positive. Note that, while in the regular qualitative network the represented trade-off cannot be
resolved and results in an ambiguous sign, the trade-off is resolved in the enhanced qualitative
probabilistic network. �

4.2.4 Discussion

To provide for trade-off resolution, we enhanced the formalism of qualitative probabilistic net-
works by distinguishing between strong and weak influences. We enhanced the multiplication
and addition operators to guarantee the transitivity and parallel-composition properties of influ-
ences. To handle the asymmetry of an influence’s strength we have proposed specifying two in-
fluences for each arc. With these enhancements we have generalised the basic sign-propagation
algorithm to apply to enhanced qualitative networks. We have shown that our formalism pro-
vides for resolving at least some trade-offs, in a qualitative way, that is, without having to resort
to numerical computation.

To provide for trade-off resolution in qualitative probabilistic networks, we have added addi-
tional signs and augmented the signs with multiplication indices. Now, probabilistic inference in
an enhanced qualitative network with many parallel trails may result in signs with long lists of
multiplication indices. As it is hard to interpret the meaning of such lists of indices, it is not our
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intention to output the augmented signs: the multiplication indices are merely used internally for
trade-off resolution. The output, as in a regular qualitative network, is a basic sign for each node
that indicates whether the net influence of an observation is positive or negative.

When the sign-propagation algorithm is used with the enhanced operators, it becomes less
efficient than with the standard operators. Although a node’s enhanced sign can change at most
three times, the multiplication indices associated with the sign may change each time the node is
visited. Therefore, the sign of a node may change as many times as the number of simple active
trails from the node to the observed node. The runtime of the algorithm on an enhanced network
is therefore of the order of the number of active simple trails emanating from the observed node
in the network’s digraph; for dense graphs this can be exponential in the number of nodes. It is
more efficient to use the enhanced formalism only for those parts of the network where trade-
offs are encountered during inference; this will be especially effective for networks with sparse
graphs that model only few trade-offs. How to identify the trade-offs in a network will be dis-
cussed in Section 4.4. Another advantage of such local computation is that it requires only local
specification of enhanced signs. During the elicitation of signs, domain experts then only have to
compare differences in strengths for small sets of influences. As correctly specifying strengths
will be harder for experts than correctly specifying the basic sign for an influence, local speci-
fication of enhanced signs will make the resulting signs less prone to error. An additional level
of relative strength can be added by introducing, for example, ‘+ + +’ and ‘− − −’ signs with
an extra cut-off value. This, however, would require domain experts to be able to distinguish
between three levels of relative strength and it would render the necessary⊗− and⊕-operators
more complicated.

As with regular qualitative influences, we have specified the sign of an enhanced influence
of a nodeA on a nodeB to be independent of other nodesX in the network. As a consequence,
comparable to non-monotonic influences that embed a positive influence for one combination of
values forX and a negative influence for another combination, a qualitative influence can, for
example, be weakly positive for one combination of values forX and strongly positive for an-
other combination of values, given a specific cut-off value. Such an influence is neither strongly
positive nor weakly positive and in the current formalism another cut-off value has to be used. In
the next section on context-specific influences we will address this issue.

In enhancing qualitative probabilistic networks, we have so far focused on the distinction
between strong and weak influences. We will now briefly discuss further extending the formalism
with strong and weak synergies and intercausal influences. We recall from Section 4.1 that
additive synergies are used for resolving non-monotonicity of influences. A distinction between
strong and weak additive synergies is necessary for distinguishing between strong and weak
influences after resolving such non-monotonicities in an enhanced network. As an example, we
consider a nodeC with two parentsA andB. Suppose that the influence of nodeB on nodeC
is non-monotonic with provokerA and suppose thatA andB exhibit a positive additive synergy
onC, that is,

Pr(c | abx) + Pr(c | āb̄x) ≥ Pr(c | ābx) + Pr(c | ab̄x),

for all combinations of valuesx for the setX of parents ofC other thanA andB. We can write
this inequality in terms of the influences ofB onC for the different values of provokerA:(

Pr(c | abx)− Pr(c | ab̄x)
)

+
(
Pr(c | āb̄x)− Pr(c | ābx)

)
≥ 0.
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If both these influences are weak, that is, smaller than the cut-off valueα, then the above equation
is positive, but smaller than2α. If one influence is strong and one is weak, then the equation
yields a value betweenα and1 + α. If both influences are strong, the result lies between2α
and2. Note that these intervals overlap, since1 + α ≥ 2α becausea ≤ 1. As a consequence,
we can only ensure that a resolved influence is weak if both possible influences are weak and
the equation yields a value smaller thanα; a resolved influence is ensured to be strong if both
possible influences are strong and this value is greater than or equal to1 +α. Building upon this
observation, a possible definition fora weakly positive additive synergyis

Y +({A,B}, C) ⇐⇒ ∀x 0 ≤ Pr(c | abx) + Pr(c | āb̄x)− Pr(c | ābx)− Pr(c | ab̄x) ≤ α,

for all value combinationsx for the setX. A strongly positive additive synergyis then defined as

Y ++({A,B}, C) ⇐⇒ ∀x Pr(c | abx) + Pr(c | āb̄x)− Pr(c | ābx)− Pr(c | ab̄x) ≥ 1 + α,

for all value combinationsx for the setX. Additive synergies that are neither weak nor strong
do not provide for resolving non-monotonicity as far as the relative strength of the resulting
influence is concerned. A possible solution to provide for extracting at least the basic sign of the
resulting influence is to introduce the aforementioned ‘+?’ for additive synergies.

We recall from Chapter 3 that a product synergy associated with a head-to-head node de-
scribes the sign of the intercausal influence induced between two of its parents upon observation
of that node. At first thought, a reasonable definition for, for example, a strongly positive product
synergy of type I exhibited by nodesA andB with respect to the valuec0 of their common child
C, would be

X++({A,B}, c0) ⇐⇒ Pr(c0 | ab) · Pr(c0 | āb̄)− Pr(c0 | āb) · Pr(c0 | ab̄) ≥ α.

Now, the following relation holds between product synergy I and the intercausal influence it
induces:

Pr(c0 | ab) · Pr(c0 | āb̄)− Pr(c0 | āb) · Pr(c0 | ab̄)

= (Pr(b | ac0)− Pr(b | āc0)) · Pr(c0 | a) · Pr(c0 | ā)

Pr(b) · Pr(b̄)
.

As we cannot determine whether the fraction in this equation is greater or smaller thanα, the
proposed definition for a strong product synergy of type I does not necessarily describe a strong
intercausal influence between nodesA andB. From this observation, we conclude that the rela-
tive strength of an intercausal influence cannot be derived from the associated product synergy.
We observe however that an intercausal influence between two nodes is just a regular qualitative
influence. Astrongly positive intercausal influencecan therefore be defined just as a strongly
positive influence;strongly negative intercausal influencesand weak intercausal influences are
defined analogously. Instead of specifying product synergies, a domain expert will now have to
specify signs of intercausal influences for all possible observations of their common children.
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4.3 Context-specific sign-propagation

Probabilistic networks provide, by means of a digraph, for a qualitative representation of the con-
ditional independence relation that is embedded in a joint probability distribution. The digraph
captures independences between nodes only, that is, the digraph models independences regard-
less of values. Additional independences that hold only for certain values of nodes are captured
by the conditional probabilities associated with the nodes in the network. A qualitative prob-
abilistic network captures only the independences portrayed by the digraph: information about
additional independences for specific combinations of values of nodes is lost. As these addi-
tional independences are qualitative in nature, we should be able to capture them in a qualitative
network.

For probabilistic networks a notion ofcontext-specific independencehas been formalised
[9, 137] to denote independences that hold only for certain values of nodes. Context-specific
independence can be exploited to speed up probabilistic inference as it allows further decompo-
sition of conditional probabilities resulting in a finer-grained factorisation of the joint probability
distribution. Context-specific independence occurs often enough that some well-known tools for
the construction of probabilistic networks have incorporated special mechanisms to allow the
user to more easily specify the conditional probability distributions for the nodes involved [9].

Motivated by these observations, we introduce a notion of context-specific independence,
and of context-specific signs more in general, for qualitative networks. We extend the basic for-
malism of qualitative networks by providing for the inclusion of context-specific information for
influences and show that exploiting this information upon inference can prevent unnecessarily
weak results. In addition, we show that context-specific information can be incorporated in en-
hanced qualitative probabilistic networks, as discussed in Section 4.2, as well, thereby providing
for a notion of context-specificity of strengths of influences.

4.3.1 Context-independent signs

We have argued that context-specific independences cannot be expressed in a qualitative net-
work’s structure. These independences are in fact hidden in the qualitative influences in the
network: if the influence of a nodeA on a nodeB is positive for one combination of values
for B’s other parentsX and zero for all other combinations of values ofX, then the influence is
modelled as a positive influence and the embedded zero influences remain hidden. Note that zero
influences are hidden due to the fact that the inequality in the definition of qualitative influence
is not strict. We present an example illustrating hidden zeroes.
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Figure 4.11: The qualitativesurgerynetwork.
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Example 4.21 Figure 4.11 represents a highly simplified and adapted fragment of the prognostic
part of the oesophagus network. NodeL models the life expectancy of a patient after therapy,
wherel indicates that the patient will survive for at least one year. NodeT models the therapy
instilled; here we consider surgery, modelled byt, and no treatment, modelled byt̄, as the only
options. The effect to be attained from surgery is a radical resection of the primary tumour, mod-
elled by nodeR. The most life-threatening condition after surgery is a pulmonary complication,
modelled by nodeP ; the occurrence of this complication is heavily influenced by whether or not
the patient under consideration is a smoker, which is modelled by nodeS.

The probability of attaining a radical resection upon surgery, that isPr(r | t), equals0.45;
if no surgery is performed, there can be no radical resection and, hence,Pr(r | t̄ ) = 0. From
these probabilities we have that nodeT exerts a positive qualitative influence on nodeR. The
probabilities of a pulmonary complication occurring are given in the following table:

Pr(p) s s̄
t 0.75 0.00
t̄ 0.00 0.00

From these probabilities, we have that bothT andS exert a positive influence on nodeP . The
fact that, for example, the influence of nodeT onP is actually zero in the context of the values̄
for nodeS is not apparent from the influence’s sign: in the qualitative abstraction of the original
probabilistic network this information is lost. Note that the zero influence is not caused by the
zero probabilities themselves, but rather by the zero difference between these probabilities.

For the sake of completeness, we also specify the conditional probabilities for life-expectancy
given either value ofR andP :

Pr(l) p p̄
r 0.15 0.95
r̄ 0.03 0.50

NodeR exerts a positive influence onL, whereas the influence ofP on L is negative. Note
that, for example, the influence ofP onL is quite strong, although this is not apparent from the
qualitative signs. �

From the example above it is apparent that the high level of abstraction provided by qualitative
probabilistic networks can cause loss of information and, as a result, may unnecessarily lead to
uninformative answers upon probabilistic inference. For example, if a patient is not a smoker,
we know that performing surgery has a positive influence on his life expectancy; due to the two
conflicting trails from nodeT to nodeL, however, entering the observationt for nodeT will
result in the ‘?’-sign for nodeL.

We recall that the definition of qualitative influence requires that the sign of an influence
from a nodeA on a nodeB is independent of the values of the other parentsX of B. As
a consequence, the initial ‘?’ of a non-monotonic influence hides the information that nodeA
has a positive influence on nodeB for some combination of values ofX and a negative influ-
ence for another combination. In Section 4.1, we resolved this problem by explicitly specifying
the fact that the influence was non-monotonic and by specifying the nodes provoking the non-
monotonicity; we then used the sign of the additive synergy involved to determine the sign of
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the resolved influence for a combination of values for the provoking nodes. Recall that the use
of additive synergies does not always serve to unambiguously determine the sign of an influence
whose non-monotonicity is resolved. Another option is to look upon the non-monotonic influ-
ence as specifying different signs for the influence for different contexts. We briefly recapture
theCervical metastasesexample from Section 4.1 to illustrate this observation.

L M

C
− ?

Figure 4.12: The qualitativeCervical metastasesnetwork.

Example 4.22 Figure 4.12 represents the previously discussedCervical metastasesnetwork.
The probabilities specified for the presence of cervical metastases in a patient given values for
bothL andM are:

Pr(c) l l̄
m 0.35 0.95
m̄ 0.00 1.00

We recall that nodeL has a negative influence on nodeC; the influence of nodeM on C is
non-monotonic:

Pr(c | ml) > Pr(c | m̄l), but Pr(c | ml̄ ) < Pr(c | m̄l̄ ).

NodeL is the provoker of the non-monotonicity of the influence of nodeM on nodeC. An
observation of nodeL will therefore resolve the non-monotonicity, upon which the sign of the
resolved influence can be determined. Another way of looking upon the non-monotonic influence
is as hiding a ‘+’ for the valuel of provokerL and a ‘−’ for the valuel̄ of L. �

From the two examples we see that information about zero influences and non-monotonicities
that is present in the conditional probability distributions of a probabilistic network, is lost upon
abstracting the network in terms of the basic qualitative signs. In the remainder of Section 4.3,
we will show that context-specific signs can help to restore some of this information without
having to resort to numerical probabilities.

4.3.2 Exploiting context-specific information

The high level of abstraction imposed by qualitative probabilistic networks enforces qualitative
influences to be context-independent. As a result, we cannot encode context-dependent informa-
tion. In this section we present a refinement of the formalism of qualitative networks that allows
for associating context-specific signs with qualitative influences.
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Context-specific signs

Before introducing context-specific signs, we formally define the notion of context.

Definition 4.23 LetG = (V (G), A(G)) be an acyclic digraph. LetX ⊆ V (G) be a set of nodes
in G called context nodes. A context cX for X is a combination of values for a set of nodes
Y ⊆ X; whenY = ∅ we say that the context isempty, written εX . The set of all possible
contexts forX is called thecontext setfor X and is denoted byCX .

The subscriptX for the empty contextε will often be omitted when no confusion is possible.
To be able to compare different contexts for the same set of context nodes, we define an

ordering on contexts.

Definition 4.24 LetG = (V (G), A(G)) be an acyclic digraph and letX ⊆ V (G) be a set of
context nodes. LetcX andc ′X be combinations of values forY ⊆ X andY ′ ⊆ X, respectively.
Then,cX > c ′X iff Y ⊃ Y ′ andcX andc ′X specify the same combination of values forY ′.

A context-specific signδ is a sign that may vary from context to context and can thus be looked
upon as a functionδ : CX → {+,−, 0, ?} from contexts for a set of nodesX to signs.

Definition 4.25 LetQ = (G,∆) be a qualitative probabilistic network and letX ⊆ V (G). A
context-specific signδ(X) is a functionδ : CX → {+,−, 0, ?} with the following constraint for
any two contextscX andc ′X with cX > c ′X :

δ(c ′X) = δi, δi ∈ {+,−, 0} =⇒ δ(cX) ∈ {δi, 0}.

To avoid an abundance of braces, we will writeδ(A) instead ofδ({A}) to indicate a context-
specific sign for a single context nodeA.

We associate context-specific signs with qualitative influences. A qualitative influence whose
sign is context-specific will be called a context-specific influence.

Definition 4.26 LetG = (V (G), A(G)) be an acyclic digraph and letPr be a joint probability
distribution such thatPr is an I-map forG. LetA,B be nodes inG withA→ B ∈ A(G) and let
X ⊆ πG(B)\{A}. Then, nodeA exerts aqualitative influence of signδ(X) on nodeB, denoted
Sδ(X)(A,B), iff for each contextcX for X we have

• δ(cX) = + iff Pr(b | acXy) ≥ Pr(b | ācXy) for any combination of valuescXy for X;

• δ(cX) = − iff Pr(b | acXy) ≤ Pr(b | ācXy) for any such combination of valuescXy;

• δ(cX) = 0 iff Pr(b | acXy) = Pr(b | ācXy) for any such combination of valuescXy;

• δ(cX) = ?, otherwise.

We defined a context-specific influence for an arc between two nodesA andB only with respect
to context nodes that belong to the set of parents ofB. This restriction of the set of context nodes
is not essential and can be lifted whenever desirable.

A context-specific signδ(X) has to specify a basic sign from{+,−, 0, ?} for each possible
combination of values in the context set. From the constraint that the signδ(X) has to adhere to,
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however, we have that it is not necessary for a domain expert to explicitly indicate a basic sign
for each combination. For example, suppose that for the influence of a nodeA on a nodeB the
set of context nodesX consists of nodesD andE. Further suppose thatδ(X) is defined as

δ(ε) = ?, δ(d) = +, δ(d̄ ) = −, δ(e) = ?, δ(ē) = +,
δ(de) = +, δ(dē) = +, δ(d̄e) = −, δ(d̄ē) = 0.

It suffices to specify this function only for the smaller contexts, if the larger contexts have the
same sign; the function is therefore specified by

δ(ε) = ?, δ(d) = +, δ(d̄ ) = −, δ(ē) = +, δ(d̄ē) = 0.

Note that the signδ(X) describes a non-monotonic influence.
The concept of context-specific qualitative influence extends straightforwardly to intercausal

influences by providing for a context-specific product synergy.

Probabilistic inference revisited

As we will show shortly, the use of context-specific signs allows us to exploit additional infor-
mation hidden by regular qualitative influences, whenever an appropriate context is observed.
The basic sign-propagation algorithm for probabilistic inference with a qualitative network is
easily adapted to apply to both influences with regular and context-specific signs. The adap-
tion of the sign-propagation algorithm is similar to the one we proposed for propagating over
non-monotonic influences in Section 4.1: before propagating a sign over an influence, it is inves-
tigated whether or not the influence’s sign is context-specific. If the sign is context-specific, we
determine the appropriate context from the observed nodes and propagate the sign specified for
this context. If no observations are available for the context nodes, then the sign specified for the
empty context is used. The adapted algorithm is given in Figure 4.13.

procedure PropagateSign(trail,from,to,messagesign):

sign[to] ← sign[to] ⊕messagesign;
trail ← trail ∪ {to};
for each active neighbourVi of to
do linksign← sign of (induced) influence betweento andVi;

if linksign ≡ δ(X)
then linksign← δ(cX) for observationscX ;
messagesign← sign[to] ⊗ linksign;
if Vi /∈ trail and sign[Vi] 6= sign[Vi] ⊕messagesign
then PropagateSign(trail,to,Vi,messagesign)

Figure 4.13: The extended sign-propagation algorithm for handling context-specific signs.
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Context-independent versus context-dependent signs

In Section 4.3.1 we argued that context-specific independences can be hidden in the signs of
a qualitative network’s influences. Revealing these hidden independences and exploiting them
during probabilistic inference can be worthwhile. First of all, the information that an influence
is zero for a certain context can be used to improve the running time of the sign-propagation
algorithm because propagation of a message can be stopped once a zero influence is encountered.
Secondly, the context information can help to resolve trade-offs during inference and will thereby
forestall unnecessarily weak results.

Example 4.27 We reconsider theSurgerynetwork from Figure 4.11. Suppose that a patient is
undergoing a surgical removal of his oesophagus. Applying the basic sign-propagation algorithm
after entering the observationt into the network results in the sign ‘?’ for nodeL: we do not have
enough information to resolve the trade-off among the two conflicting trails from nodeT to node
L. We now extend theSurgerynetwork with the context-specific signδ(S) for the influence of
T onP , which is defined by

δ(s) = +, δ(s̄) = 0 δ(ε) = +.

That is, we have included the additional information that non-smoking patients are not at risk of
suffering from pulmonary complications. The thus extended network in shown in Figure 4.14.
Now, suppose that the patient undergoing surgery is a non-smoker. Sign-propagation of a ‘+’
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δ(s̄) = 0

Figure 4.14: A hidden zero revealed by a context-specific sign.

for nodeT in the context of the observation̄s with the adapted algorithm from Figure 4.13, now
results in the sign(+ ⊗ +) ⊕ (0 ⊗ −) = + for nodeL, that is, we find that surgery is likely to
increase the life expectancy for this patient. �
The example demonstrates that the formalism of context-specific influences provides for reveal-
ing hidden zeroes in an elegant way.

In Sections 4.1 and 4.3.1, we discussed that for non-monotonic influences initial ‘?’s are
specified. We argued that it is important to resolve non-monotonic influences to prevent the
spreading of ‘?’s throughout the network during inference. Now that we have extended the
formalism of qualitative networks to deal with context-specific information, we have a more
direct way of dealing with initially specified ‘?’s.

Example 4.28 We reconsider theCervical metastasesnetwork from Figure 4.12 and illustrate
how the non-monotonicity involved can be captured by a context-specific sign. We recall that the
influence of nodeM on nodeC is non-monotonic, as is apparent from

Pr(c | ml) > Pr(c | m̄l), and Pr(c | ml̄ ) < Pr(c | m̄l̄ ).
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These inequalities indicate a positive influence ofM onC for contextl, whereas the influence is
negative for the context̄l. Our enriched formalism allows us to capture the influence of nodeM
on nodeC by the signδ(L), which is defined by

δ(l) = +, δ(l̄ ) = −, δ(ε) = ?.

The thus enriched network is depicted in Figure 4.15. �

L M

C
− δ(L)

δ(ε) = ?
δ(l) = +
δ(l̄) = −

Figure 4.15: A non-monotonicity captured by a context-specific sign.

4.3.3 Extension to enhanced qualitative networks

In the formalism of enhanced qualitative probabilistic networks introduced in Section 4.2, a dis-
tinction is made between strong and weak influences. To this end, the set of all influences is par-
titioned into two disjoint sets of influences using a cut-off valueα. Our notion of context-specific
sign for regular qualitative probabilistic networks can be easily extended to apply to enhanced
qualitative probabilistic networks. To distinguish between regular positive and negative signs and
weakly positive and negative signs, we use ‘+?’ and ‘−?’ to denote the former. A context-specific
sign for a set of context nodesX then is a functionδ : CX → {++,+?,+,−,−?,−−, 0, ?} with
the constraints that a strongly positive sign for a contextc ′X must be strongly positive for all
larger contextscX , a weakly positive sign for a contextc ′X must be weakly positive or zero for
all larger contexts, and a regular positive sign forc ′X may be strongly positive, weakly positive,
or zero for larger contexts; similar constraints apply to negative signs. Context-specific signs are
once again associated with influences, as in regular networks.

We recall that for distinguishing between strong and weak qualitative influences in an en-
hanced network, we have to choose a cut-off valueα such that forall strong influences of a node
A on a nodeB we have

|Pr(b | ax)− Pr(b | āx)| ≥ α,

for all combinations of valuesx for the set of nodeB’s parents other than nodeA, and forall
weak influences we have

|Pr(b | ax)− Pr(b | āx)| ≤ α,

for all such combinations of valuesx. If, for a specific cut-off value, there exists an influence of
nodeA on nodeB such that|Pr(b | ax)−Pr(b | āx)| > α and|Pr(b | ax ′)−Pr(b | āx ′)| < α
for some combinations of valuesx andx ′, then a different cut-off value must be chosen:α must
be shifted towards 0 or 1 and may even end up being 0 or 1. The use of context-specific signs
for enhanced influences can prevent this shifting to be necessary, as is illustrated in the following
example.
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Figure 4.16: Context-specific signs in enhanced qualitative networks.

Example 4.29 We consider once again the example network from Figure 4.11. In the enhanced
qualitative network formalism we would like to distinguish between strong and weak influences.
Choosing a cut-off value of, for example,α = 0.46, we can model the fact that pulmonary
complications strongly influence life expectancy, that is, we can specifyS−−G (P,L). For this
cut-off value, however, the influence of nodeT on nodeS is neither strongly positive nor weakly
positive; in fact, the influence is strongly positive for the values of nodeS and zero for̄s. The
cut-off valueα = 0.46, therefore, does not serve to partition the set of influences in two distinct
subsets. To ensure that all influences in the network are either strong or weak, the cut-off value
should be either 0 or 1. Using the context-specific signδ(S) defined by

δ(s) = ++, δ(s̄) = 0, δ(ε) = +?

for the influence of nodeT on nodeP , we can now explicitly specify the otherwise hidden strong
and zero influence. The thus extended network is shown in Figure 4.16.

In Example 4.27 we saw that for non-smoking patients the effect of surgery on life expectancy
is positive. For smokers, the effect could not be determined. Using the distinction between strong
and weak signs, we can now determine the effect of surgery on life expectancy for smokers to be
negative: upon propagating the observationt for nodeT in the context of the informations for
nodeS, the sign

(+1 ⊗+1)⊕ (+ +1 ⊗−−1) = −2,−2

results for nodeL. �

4.3.4 Discussion

In this section we have introduced the notion of context-specific signs for qualitative probabilistic
networks. By doing so, we have provided for a finer level of representation detail than in regular
qualitative networks. In regular networks, an influence between two nodes can only be unam-
biguous if it has the same sign regardless of the values of any other nodes in the network, that is,
if the influence is context-independent. As a consequence, context-specific information, that is,
context-specific ‘+’s, ‘−’s and ‘0’s, remain hidden. Our extension allows us to explicitly specify
such context-specific signs. We have shown that exploiting this information can forestall unnec-
essary ambiguous node signs during inference. Incorporating the notion of context-specificity
into enhanced qualitative probabilistic networks renders even more expressive power. The fact
that zeroes and double signs can now be specified context-specifically allows them to be specified
more often, in general. We have shown that these zeroes and double signs can be very powerful
for resolving trade-offs.
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We have extended the formalism of qualitative probabilistic networks with the concept of
context-specific signs for influences and product synergies. The concept of context-specificity
can also be extended to additive synergies. The concept of context-specific additive synergy,
however, is not very interesting as additive synergies are only used to determine the sign of a
resolved non-monotonic influence. We recall from Section 4.1 that only the provoking nodes
for a non-monotonic influence had to be specified; observations for the provokers then served to
resolve the non-monotonicity, using the signs of the appropriate additive synergies to determine
the sign of the resolved influence. If the concept of context-specific sign were to be used, not
only the provokers, that is, the context nodes, of a non-monotonic influence had to be specified,
but also the sign of the resolved influence for the different combinations of values for the provok-
ers. From the context-specific signs specified, the sign of the influence after resolution follows
immediately and additive synergies are not required. The use of context-specific signs for deter-
mining the sign of a resolved non-monotonic influence should not be automatically preferred to
the use of additive synergies. Although, with two or more provokers, additive synergies do not
always serve to establish the sign of a resolved non-monotonic influence, it may be easier for
domain experts to indicate provokers and specify the synergistic effects between nodes, than it is
to specify signs forcombinations of valuesof nodes.

Recall that the notion of context-specific independence was introduced for probabilistic net-
works as a concept that can be exploited to speed up probabilistic inference. Generally, a proba-
bilistic network’s conditional probability distributions have to be inspected to determine the pres-
ence of context-specific independences [9]. An additional advantage of using context-specific
signs in qualitative networks is that, once the network is quantified, context-specific indepen-
dence information is readily available.

Finally, although our presentation has focused on binary nodes only, we have made no as-
sumptions that would disallow the use of context-specific signs in networks including non-binary
nodes.

4.4 Pivotal pruning of trade-offs

In the previous two sections we have detailed two refinements of the formalism of qualitative
probabilistic networks that provide for resolving trade-offs during probabilistic inference. With
these refinements, it is still possible trade-offs remain unresolved, giving rise to an uninformative
result upon inference. In this section we propose a different approach to dealing with trade-offs.
We propose to isolate the unresolved trade-offs and identify from the network theinformation
that would serve to resolve them, rather than resolving them by providing an even finer level of
detail. We present an algorithm for dealing with unresolved trade-offs that builds upon the idea
of zooming in on the part of a qualitative probabilistic network where the actual trade-offs reside.
After a new observation is entered into the network, probabilistic inference will provide the sign
of the influence of this observation on a node of interest, given previously entered observations.
If this sign is ambiguous, then there are trade-offs present in the network. In fact, a trade-off
must reside along the active trails, or reasoning chains, between the observation and the node of
interest. Our algorithm now isolates these reasoning chains to constitute the part of the network
that is relevant for addressing the trade-offs present. From this relevant part, an informative result
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is constructed for the node of interest in terms of values for the nodes involved and the relative
strengths of the influences between them.

4.4.1 Outline of the algorithm

If a qualitative probabilistic network models one or more trade-offs, it will typically yield am-
biguous results upon inference with the basic sign-propagation algorithm. Once an ambiguous
sign is introduced, it will spread throughout most of the network and an ambiguous sign is likely
to result for a specific node of interest. By zooming in on the part of the network where the actual
trade-offs reside and identifying the information that would serve to resolve these trade-offs, a
more insightful result can be constructed. We illustrate the basic idea of our algorithm to this
end.
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Figure 4.17: The example qualitative probabilistic network.

As our running example, we consider the qualitative probabilistic network from Figure 4.17;
for ease of exposition, only the qualitative influences in the network are shown. Suppose that the
valuetrue is observed for nodeH and that we are interested in its influence on the probability
distribution of nodeA. Tracing the influence of the sign ‘+’ for the observation for nodeH on
every other node’s distribution by means of the sign-propagation algorithm, results in the node
signs shown in Figure 4.18. The ‘?’-sign for nodeA reveals that at least one trade-off must reside
along the reasoning chains between the observed nodeH and the node of interestA. These
reasoning chains together constitute the part of the network that is relevant for addressing the
trade-offs that gave rise to the ambiguous result for nodeA; we call this part therelevant network.
For the example, the relevant network is shown in Figure 4.19 below the dashed line. Our
algorithm isolates this relevant network for further investigation by deleting from the network
all nodes and arcs that are connected to, but no part of the reasoning chains fromH toA.

A relevant network for addressing trade-offs typically includes many nodes with ambiguous
node signs. Often, however, only a small number of these nodes are actually involved in the
trade-offs that gave rise to the ambiguous result for the node of interest. Figures 4.18 and 4.19,
for example, reveal that, while the nodesA,B, andC have ambiguous node signs, the influences
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Figure 4.18: The result of propagating ‘+’ for nodeH.

between them are not conflicting. In fact,every possibleunambiguous node signsign[C] for node
C would result in the unambiguous signsign[C]⊗ ((+⊗−)⊕−) = sign[C]⊗− for nodeA.
For addressing the trade-offs involved, therefore, the part of the relevant network between node
C and nodeA can be disregarded. NodeC in fact separates the part of the relevant network that
contains trade-offs from the part that does not. We call nodeC the pivot nodefor the node of
interest.
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Figure 4.19: The relevant network, below the dashed line.

In general, the pivot node in a relevant network is a node with an ambiguous node sign for
which every possible unambiguous sign would uniquely determine an unambiguous sign for the
node of interest; in addition, no other node having this property resides on an active trail from the
observed node to the pivot node, that is, the pivot node is the node with this property “closest” to
the observed node. Note that the node of interest may itself obey the properties of a pivot node;
every network therefore includes a pivot node. Our algorithm now selects from the relevant
network the pivot node for the node of interest.
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From the definition of pivot node, it can be shown that there must be two or more different
active trails in the relevant network from the observed node to the pivot node; the net influences
along these trails, moreover, must be conflicting or ambiguous. To resolve the ambiguity at the
pivot node, the relative strengths of the various influences as well as the signs of some of the
nodes involved need be known. From Figures 4.18 and 4.19, for example, we have that nodeI
lies at the basis of the ambiguous sign for the pivot nodeC. Note that it receives an ambiguous
node sign itself as a result of two conflicting (non-ambiguous) influences. An unambiguous
node sign for nodeI, however, would not suffice to fix an unambiguous sign for nodeC. Even
knowledge of the relative strengths of the two conflicting influences from nodeI on the pivot
node would not suffice for this purpose: a positive node sign for nodeI, for example, would still
cause nodeG, residing on one of the active trails fromI to C, to receive an ambiguous node
sign, which in turn gives rise to an ambiguous influence onC. NodeG therefore also lies at the
basis of the ambiguity at the pivot node. Every combination of unambiguous node signs for the
nodesG andI would render the separate influences on the pivot node unambiguous: knowledge
of the relative strengths of these influences would suffice to determine an unambiguous sign for
the pivot node. We call a minimal set of nodes having this property theresolution frontierfor the
pivot node.

C

D G
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δ3 = + δ4 = −

δ1 = + δ2 = +

Figure 4.20: The construction of a sign for nodeC.

In terms of signs for the nodes from the resolution frontier, our algorithm constructs a (con-
ditional) sign for the pivot node by comparing the relative strengths of the various influences
exerted on it upon inference. In the example network, the nodes from the resolution frontier
exert two separate influences on the pivot nodeC: the indirect influence from nodeI via nodeD
onC and the direct influence fromG onC. For the signδ of the influence of nodeI via nodeD
onC we find that

δ = sign[I]⊗ δ1 ⊗ δ3 = sign[I]⊗+

and for the signδ ′ of the influence ofG onC we find that

δ ′ = sign[G]⊗ δ4 = sign[G]⊗−,

whereδi, i = 1, 3, 4, are as in Figure 4.20. For the node signsign[C] of the pivot node, the
algorithm now constructs and reports the following result:

if |δ| ≥ |δ ′|, then sign[C] = δ, else sign[C] = δ ′;

where|δ| denotes the strength of the signδ. So, if the two influences on nodeC have opposite
signs, then their relative strengths will determine the sign for nodeC. The sign of the node of
interestA then follows directly from the node sign ofC.
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4.4.2 Splitting up and constructing signs

In this section we detail some of the issues involved in our algorithm for pivotal pruning of
trade-offs. In doing so, we assume that a qualitative probabilistic network does not include any
ambiguous influences, that is, ambiguous node signs upon inference result only from unresolved
trade-offs. We further assume that observations are entered into the network one at a time and
that sign propagation resulted in an ambiguous sign for the network’s node of interest. For ease
of reference, Figure 4.21 summarises the pivotal-pruning algorithm in pseudocode.

procedurePivotalPruning(Q):

Qrel ← ComputeRelevantNetwork(Q);
pivot← ComputePivot(Qrel );
ConstructResults(Qrel ,pivot)

Figure 4.21: The basic algorithm for pruning trade-offs.

In detailing the algorithm, we focus attention on identifying the relevant part of a qualitative
probabilistic network along with its pivot node and on constructing from these an informative
result for the node of interest.

Identifying the relevant network

Our algorithm identifies from a qualitative probabilistic network the relevant part for addressing
the trade-offs that resulted in an ambiguous sign for the node of interest. We begin by formally
defining the concept of relevant network.

Definition 4.30 LetQ = (G,∆) be a qualitative probabilistic network. LetO ⊆ V (G) be the
set of previously observed nodes, letE ∈ V (G) be the node for which new evidence has become
available, and letI ∈ V (G) be the network’s node of interest. Therelevant networkfor E andI
givenO is the qualitative probabilistic networkQrel = (G ′,∆′) such that

• V (G ′) consists of all nodes that occur on an active trail fromE to I;

• A(G ′) = (V (G ′)× V (G ′)) ∩ A(G); and

• ∆′ consists of all influences and synergies from∆ involving nodes fromG ′ only.

Various notions of relevance have been introduced, most notably for quantitative probabilistic
networks [35,112]. We briefly review some of these notions and illustrate their differences. For
a node of interestI, previously observed nodesO, and a newly observed nodeE, we say that a
nodeN is

• structurally relevantto I, if N is not d-separated fromI givenO ∪ {E};

• computationally relevantto I, if the (conditional) probabilities forN are required for com-
puting the posterior probability distribution forI given the observations forO ∪ {E}; and
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• dynamically relevantto I andE, if N partakes in the impact ofE on I in the presence of
the observations forO.

In the example qualitative network from Figure 4.17, nodeD is structurally relevant, compu-
tationally relevant, and dynamically relevant to the node of interestA. NodeE is structurally
relevant to nodeA, yet neither computationally nor dynamically relevant. NodeJ is structurally
irrelevant to the observed nodeH, as is also evidenced by its node sign ‘0’ upon inference; it is
both structurally and computationally relevant to the node of interestA, yet dynamically irrele-
vant. The newly observed nodeH is d-separated fromA by its being observed. It therefore is not
structurally relevant toA; it is computationally as well as dynamically relevant toA, however.
NodeM , to conclude, is neither structurally nor computationally or dynamically relevant to the
node of interestA.

The concept ofdynamic relevancewas introduced to denote all nodes constituting the reason-
ing chains between a newly observed node and a node of interest in a probabilistic network [35].
The concept of dynamic relevance closely resembles our concept of relevance; in fact, the set
of all nodes in a network’s digraphG that are dynamically relevant to the node of interestI and
the newly observed nodeE, given the previously observed nodesO, induces the digraphG′ of
the relevant network forE andI givenO as defined in Definition 4.30. To identify the relevant
network for a newly observed nodeE and a node of interestI given the previously observed
nodesO, therefore, it is sufficient to compute the nodes that are dynamically relevant toE and
I. The dynamically relevant nodes are identified by first determining all nodes that are compu-
tationally relevant to the node of interestI and then removing thenuisancenodes that are not on
any reasoning chain from the newly observed nodeE to I [35]. For computing the set of all com-
putationally relevant nodes, the efficientBayes-Ballalgorithm is available from R.D. Shachter
(1998). The algorithm takes for its input a probabilistic network, the set of all observed nodes
O ∪ {E}, and the node of interestI; it returns, among other things, the sets of nodes that are
computationally relevant, orrequisite, to I. From the set of computationally relevant nodes, all
nuisance nodes forE andI, that is, all nodes that are not on any reasoning chain from the newly
observed nodeE to the node of interestI, need to be identified. An efficient algorithm is avail-
able for identifying these nodes [75]. The algorithm takes for its input a computationally relevant
network, the set of previously observed nodesO, the newly observed nodeE, and the node of
interestI; it returns the set of nuisance nodes forE andI. The algorithm for computing the
relevant part of a qualitative probabilistic network is summarised in pseudocode in Figure 4.22.

Identifying the pivot node

After establishing the relevant part of a qualitative probabilistic network for addressing the trade-
offs present, our algorithm identifies the pivot node. We recall that the pivot node serves to sep-
arate the part of the relevant network that contains the trade-offs that gave rise to the ambiguous
sign for the node of interest, from the part that does not contain such trade-offs. The pivot node
will thus allow for further focusing. We define the concept of pivot node more formally.

Definition 4.31 LetQ = (G,∆) be a relevant qualitative probabilistic network for the newly
observed nodeE and the node of interestI, given the previously observed nodesO. Then, the
pivot nodefor I andE is a nodeP ∈ V (G) \O for which we have that
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function ComputeRelevantNetwork(Q): Q

requisites← BayesBall(G,O ∪ {E}, I);
V (G)← (V (G) \ requisites) ∪ {E};
A(G) ← (V (G)× V (G)) ∩A(G);
nuisances← ComputeNuisanceNodes(G);
V (G)← V (G) \ nuisances;
A(G) ← (V (G)× V (G)) ∩A(G);
∆← {all influences and synergies from∆ in G};
return Qrel = (G,∆)

Figure 4.22: The algorithm for computing the relevant network.

• Ŝ?(E,P, ti) ∈ ∆, whereti is the parallel trail composition of all simple trails inG fromE
to P ;

• Ŝδ(P, I, tj) ∈ ∆ for someδ 6= ‘?’, wheretj is the parallel trail composition of all simple
trails in G fromP to I; and

• no nodeP ′ with the above properties exists that resides on an active trail fromE to P .

Note that in the previous definition the composite trail composed ofti andtj comprises all simple
trails from nodeE to nodeI. We now have that the pivot node is a node with an ambiguous node
sign for which every possible unambiguous sign would uniquely determine an unambiguous sign
for the node of interest.

The pivot node in a relevant qualitative probabilistic network has various convenient proper-
ties that allow for its easy identification. One of these properties is that the pivot node is shared
by all active trails from the observed node to the node of interest. If we assume that intercausal
influences induced by previous observations are added to the network’s digraph as undirected
edges, then the graph’s articulation nodes have the same property. To see this, we recall from
Chapter 2 that an articulation node is a node that upon removal along with its incident arcs, makes
the digraph fall apart into various separate components. In the digraph of our example network,
as shown in Figure 4.17, the articulation nodes are the nodesC,D,H, I, andL. For the relevant
network, depicted in Figure 4.19, nodeC is the only articulation node; nodeC also happens to
be the pivot node. Note that, in general, the node of interest cannot be an articulation node in a
relevant network, whereas it can be the pivot node. Propositions 4.32 now states that the pivot
node is either an articulation node or the node of interest.

Proposition 4.32 LetQ = (G,∆) be a relevant qualitative probabilistic network for the newly
observed nodeE and the node of interestI, given the previously observed nodesO. The pivot
node forI andE is either the node of interestI or an articulation node inG.

Proof: From the definition of pivot node, we have that every possible unambiguous node sign
for the pivot node determines an unambiguous sign for the node of interestI. It will be evident
that nodeI itself satisfies this property. Either the node of interestI or another node on an active
trail from E to I, therefore, is the pivot node. Now, suppose that nodeI is not the pivot node.
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As a sign for the pivot node uniquely determines the sign forI, we conclude that all influences
exerted uponI must traverse the pivot node. Every active trail fromE to I, therefore, must
include the pivot node. As the relevant network consists of only active trails fromE to I and
the pivot node is an unobserved node, removing the pivot node along with its incident arcs will
cause the network to fall apart into separate components. We conclude that the pivot node is an
articulation node of the relevant network. �

As the pivot node is the node with an unambiguous influence on the node of interest closest to
the newly observed node, the pivot node is unique.

Proposition 4.33 LetQ = (G,∆) be a relevant qualitative probabilistic network for the newly
observed nodeE and the node of interestI, given the previously observed nodesO. The pivot
node forI andE is unique.

Proof: From Definition 4.30 we have that the relevant network consists of only nodes that reside
on an active trail from the newly observed nodeE to the node of interestI. From the definition
of articulation node we further have that every such trail must include all articulation nodes in
the relevant network. In fact, every active trail fromE to I visits the articulation nodes in the
same order. From the last condition in Definition 4.31 we have that no pivot node can reside on
the active trail from another pivot node to the node of interest. We conclude that the pivot node
is unique. �

Articulation nodes are identified using a depth-first search algorithm; for details and an al-
gorithm, we refer the reader to [50]. For identifying the pivot node we now observe that the
articulation nodes in a relevant network allow a total ordering, as already indicated in the proof
of Proposition 4.33. We number the articulation nodes, together with the node of interestI, from
1, for the node closest to the newly observed node, tom, for the node of interest. The pivot
node then is the node with the lowest ordering number for which an unambiguous sign would
uniquely determine an unambiguous sign for the node of interest. Our algorithm for determin-
ing the pivot node starts with investigating the articulation node closest to the node of interest;
this node is numberedm − 1. The algorithm investigates whether an unambiguous sign for this
candidate pivot node would result in an unambiguous sign for the node of interest upon sign
propagation. By propagating a ‘+’ from the candidate pivot node to the node of interestI, the
node sign resulting forI is the sign of the net influence of the candidate pivot node onI. If this
sign is ambiguous, then the node of interest itself is the pivot node. Otherwise, the algorithm
proceeds by investigating the articulation node numberedm− 2. This process is continued until
the articulation nodei is found such that nodei has an unambiguous influence on the node of
interest and nodei − 1 has an ambiguous influence on the node of interest. The algorithm is
summarised in pseudocode in Figure 4.23.

Constructing results

From its definition, we have that there must be two or more different reasoning chains in the
relevant network from the newly observed node to the pivot node; the net influences along these
reasoning chains are conflicting or ambiguous. Our algorithm focuses on the ambiguity at the
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function ComputePivot(Q): node

candidates← {I} ∪ FindArticulationNodes(G);
order the nodes fromcandidatesfrom 1 tom;
return FindPivot(m − 1);

function FindPivot(i): node

PropagateSign(∅, node i, node i, ‘+’)
if sign[node i+ 1] = ‘ ?’
then return node i+ 1;
elseFindPivot(i − 1)

Figure 4.23: The algorithm for computing the pivot node.

pivot node and identifies the information that would serve to resolve it. For this purpose, the
algorithm zooms in on the part of the relevant network between the newly observed node and the
pivot node; we call this part thepruned relevant network. The pruned relevant network consists
of all active trails between the newly observed nodeE and the pivot nodeP from the relevant
network. Note that the pruned relevant network is readily computed by exploiting the property
that the pivot node is an articulation node. From the pruned relevant network, the algorithm first
selects the so-calledcandidate resolvers.

Definition 4.34 LetQ = (G,∆) be a relevant qualitative probabilistic network for the newly
observed nodeE and the node of interestI, given the previously observed nodesO. LetP be
the pivot node forI andE. Now, letQpru = (G ′,∆′) be the pruned relevant network forP . A
candidate resolverfor P is a nodeRi ∈ V (G ′), Ri 6= P , such that

• Ri = E, or

• sign[Ri ] = ‘?’ and in-degreeG ′ [Ri ] ≥ 2.

The candidate resolvers for the pivot node are easily identified from the pruned relevant network.
In our example network, as shown in Figure 4.19, the candidate resolvers for the pivot nodeC
are the nodesH, I, andG.

From among the candidate resolvers in the pruned relevant network, our algorithm now con-
structs the resolution frontier. We recall that the resolution frontier is a minimal set of nodes for
which unambiguous node signs would uniquely determine the signs of the separate influences on
the pivot node.

Definition 4.35 LetQ = (G,∆) be a pruned relevant qualitative probabilistic network for the
pivot nodeP , the newly observed nodeE and the node of interestI, given the previously observed
nodesO. LetR be the set of candidate resolvers forP . Theresolution frontierF for P is the
maximal subset ofR, with respect to set inclusion, such that for each candidate resolverRi ∈ F
there exists an active trail from nodeE via nodeRi to P for which no other candidate resolver
Rj ∈ R resides on the subtrail fromRi to P .
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In Figure 4.19, the resolution frontier for the pivot nodeC consists of the nodesI andG.
Proposition 4.36 states that the resolution frontier for a pivot node is unique.

Proposition 4.36 Let Q = (G,∆) be a pruned relevant qualitative probabilistic network for
pivot nodeP , the newly observed nodeE and node of interestI, given the previously observed
nodesO. The resolution frontierF for P is unique.

Proof: Suppose that we have two different resolution frontiersF andF ′ for P . We now show
that this assumption leads to a contradiction. From the definition of resolution frontier we have
that for each nodeFi ∈ F there exists an active trail fromE via Fi to P for which no other
candidate resolver resides on the subtrail fromFi toP ; a similar observation holds for each node
in F ′. For eachFi ∈ F ∪ F ′ then, the same property holds. FromF andF ′ being resolution
frontiers, we have that both sets are maximal with respect to set inclusion. However, the set
F ∪ F ′ is a larger subset of the candidate resolvers that obeys the properties of a resolution
frontier forP . This contradicts the assumption thatF andF ′ are resolution frontiers. From the
contradiction we conclude that the resolution frontier for the pivot node is unique. �

The resolution frontier for a pivot node can be easily constructed by recursively traversing the
different active trails from the pivot node back to the observed nodeE and checking whether the
visited nodes are candidate resolvers. As soon as a candidate resolver is found on an active trail,
the traversal of the trail is halted.

Once the resolution frontier is computed from the pruned relevant network, the algorithm
constructs a (conditional) sign for the pivot node in terms of signs for the nodes from the frontier.
Let F be the resolution frontier for the pivot nodeP . For each resolverRi ∈ F , let sij, j ≥ 1,
denote the signs of the different active trails fromRi to the pivot node. For each combination of
node signssign[Ri],Ri ∈ F , the sign of the pivot node is reported to be

if
∣∣∣⊕(sign[Ri]⊗sij)=+

(
sign[Ri]⊗ sij

)∣∣∣ ≥ ∣∣∣⊕(sign[Ri]⊗sij)=−
(
sign[Ri]⊗ sij

)∣∣∣
then sign[P ] = +, else sign[P ] = −, (4.4)

where|δ| once again is used to denote the strength of the signδ. We would like to note that
as, in general, the resolution frontier includes a small number of nodes, the number of signs to
be computed for the pivot node is limited. In addition, we note that the process of constructing
informative results can be repeated recursively for the nodes in the pivot node’s resolution fron-
tier, until the newly observed node is reached. The basic algorithm for constructing results is
summarised in pseudocode in Figure 4.24.

Time complexity of the algorithm

Our algorithm for pruning a qualitative probabilistic network for trade-offs, basically consists of
three steps: computing the relevant network, computing the pivot node, and constructing results.

• The relevant networkQrel = (G′,∆′) is computed from a qualitative networkQ = (G,∆)
using the BayesBall algorithm and the algorithm for identifying nuisance nodes. Both
these algorithms have a time complexity ofO(|V (G)|+ |A(G)|).
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procedure ConstructResults(Q,pivot):

Qpru ← ComputePrunedNetwork(Q,pivot);
candidates← ComputeCandidates(Qpru ,pivot);
output ComputeResults(Qpru ,pivot,candidates)

function ComputeResults(Qpru ,pivot,candidates): text

frontier← ComputeFrontier(pivot,∅,candidates);
for all Ri ∈ frontier
do determinesij , j ≥ 1;
for all Ri ∈ frontier andsign[Ri] = +,−
do return statement (4.4);

function ComputeFrontier(pivot,frontier, candidates): set of nodes

for all Vi such thatVi → pivot ∈ A(Gpru) or pivot→ Vi ∈ A(Gpru)
do if Vi ∈ candidates

then frontier← frontier ∪ {Vi}
elseComputeFrontier(Vi,frontier,candidates)

Figure 4.24: The algorithm for constructing results.

• The pivot node is determined by computing all articulation nodes in the relevant net-
work and performing a number of sign propagations. Finding the articulation nodes takes
O(|V (G′)| + |A(G′)|) time; sign-propagation is done for each articulation node at most
and therefore takesO(m · |A(G′)|), wherem is the number of articulation nodes.

• Constructing the results amounts to computing the pruned relevant networkQpru = (G′′,
∆′′) and from that the candidate resolvers and the resolution frontier. For the nodes in the
resolution frontier the final output is computed. The pruned network can be computed in
O(|V (G′)| + |A(G′)|) time. Identifying the candidate resolvers takesO(|V (G′′)|) time,
whereupon the resolution frontier is determined inO(c) time. wherec is the number of
candidate resolvers. Finally, for computing the results, we have to determine the sign of
influence of each node in the resolution frontier on the pivot node; this takesO(f ·|A(G′′)|)
time, wheref is the number if nodes in the resolution frontier.

Under the assumption that the number of articulation nodes and the number of nodes in the
resolution frontier is bound by a constant, we conclude that the runtime complexity of the pivotal-
pruning algorithm isO(|V (G)|+ |A(G)|).

4.4.3 Discussion

We have presented a new algorithm for dealing with trade-offs in qualitative probabilistic net-
works. Rather than resolve trade-offs by providing for a finer level of representation detail, our
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algorithm identifies from a qualitative probabilistic network theinformationthat would serve to
resolve the trade-offs present. For this purpose, the algorithm zooms in on the part of the network
where the actual trade-offs reside and identifies the pivot node for the node of interest. The sign
of the pivot node uniquely determines the sign of the node of interest. For the pivot node, a more
informative result than ambiguity is reported in terms of values for the node’s resolvers and the
relative strengths of the influences upon it. This process of constructing informative results can
be repeated recursively for the pivot node’s resolvers.

We would like to note that for computing informative results for a relevant network’s pivot
node, the pruned network can be even further restricted. To this end, a so-calledboundary node
can be identified for the newly observed node. The boundary node is the articulation node closest
to the node of interest that has an unambiguous node sign after propagation of the new observa-
tion. Constructing results can then focus on the part of the relevant network between the pivot
node and the boundary node. Moreover, if the thus pruned network includes many articulation
nodes, it may very well be that trade-offs exist between the articulation nodes numberedk − 1
andk, but not betweenk andk+ 1. Distinguishing between these components is straightforward
and allows for further focusing on the actual trade-offs involved in inference.

In this section, we have made no assumptions about the type of node, binary or non-binary,
in the network. Our pivotal-pruning algorithm can be applied to any qualitative probabilistic
network by applying the dummy-value approach introduced in Chapter 3 for sign-propagation.

Our concepts of pivot node and resolution frontier for zooming in on trade-offs and con-
structing insightful results for a network’s node of interest is a very powerful concept to study
the reasoning behaviour of qualitative probabilistic networks as well as for enabling explanation
of complex reasoning processes in quantitative probabilistic networks. The use of qualitative
probabilistic networks for explanation purposes was proposed before [32, 56]. Explanation was
explored, for example, using the concept ofknotsto explain the propagation of evidence from
knot to knot [118]. Knots are nodes in a dynamically relevant network that are shared by all
active trails between an evidence node and a node of interest, with the exception of head-to-head
nodes with (indirect) evidence. These knots in fact coincide with the articulation nodes in a
network where induced intercausal influences are added as edges. As our algorithm builds on
concepts related to knots, it can be seen as an interesting extension of existing work in the field
of explanation.

4.5 Propagating multiple simultaneous observations

In the previous sections, we addressed the propagation of a single observation through a qualita-
tive probabilistic network. The signs computed for the nodes in the network indicate the direction
of shift in a node’s probability distribution occasioned by this single observation, in the light of
previously entered observations. In real-life applications, often the simultaneous, joint effect of
multiple observations is of interest. Multiple observations can in essence be dealt with by the ba-
sic sign-propagation algorithm in two ways [31]. The first approach is to enter and propagate the
observations one after the other; the results of the successive propagations then are combined to
yield their joint effect. The other approach is to create a single dummy nodeD and arcsOi → D
for each observed nodeOi; the sign of the influence associated with a newly created arcOi → D
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corresponds to the sign of the observation for nodeOi. Running the sign-propagation algorithm
with the single observation ‘+’ for the dummy nodeD will now yield the joint effect of all the
observations.

For the first approach, the order in which multiple observations are entered into the qualitative
network can influence the net result. The differences originate from the dynamics of the set of
influences that are exploited for the propagation of signs: at any time during inference, this set
of influences is determined by the network’s digraph and the previously entered observations.
Also, depending on the order in which the observations are entered, propagation of multiple
observations can yield results that are weaker than necessary, that is, an ambiguous sign results
instead of ‘+’, ‘−’ or ‘0’. For the second approach, the node sign of the dummy node is fixed;
the node signs of the truly observed nodes on the other hand are not fixed and can therefore
change during inference. Again inference can lead to unnecessarily weak results as, for example,
a node with a positive observation could now receive a negative sign and update its node sign to a
‘?’-sign. Since upon propagation of multiple observations more influences tend to be combined
than for a single observation, more ambiguous signs are likely to result with both approaches.

In this section, we address propagation of multiple observations in a qualitative probabilistic
network and focus on the problem of ambiguous signs. We will show that knowledge about the
dynamics of the set of influences that is used during sign-propagation of each observation can
be exploited to yield stronger and, hence, more informative results upon propagation of multiple
observations.

4.5.1 Dynamics of influences and sign-propagation

During probabilistic inference in both qualitative and quantitative probabilistic networks, prob-
abilistic independences between the nodes are exploited using the d-separation criterion. Upon
entering an observation, nodes that were d-separated can become dependent given the new ev-
idence and nodes that were not d-separated can become independent [123]. So, trails in the
digraph that were once blocked can become unblocked, and vice versa. We give some examples
to illustrate the possible effects of these dynamics on the results of propagating multiple obser-
vations. We discuss the situation in which blocked trails become unblocked and the opposite
situation separately.

Unblocking blocked trails

When using the approach of propagating multiple observations sequentially, the order in which
they are entered can affect the net result and yield a result weaker than necessary. The literature
on the sign-propagation algorithm is not very explicit in stating whether or not an intercausal
influence that is induced by an observation, is usedimmediatelyupon sign propagation, that is,
whether or not an observation for a node is passed on to its parents only through direct influences
or also through the intercausal influence just induced. We will show that regardless of whether
or not the intercausal influence is used immediately, the order in which observations are entered
can affect the net result.
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Example 4.37 We consider theWall invasionnetwork from Figure 3.2 in Chapter 3. Suppose
that a patient’s tumour is longer than10 cm and has grown beyond the oesophageal wall, invading
neighbouring structures. We enter the two observations one after the other and investigate the
results yielded upon inference.
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Figure 4.25: The separate effects of subsequently entering a ‘+’ for L, (a), andW , (b), and their
joint effect (c).

Figure 4.25 shows the result from first entering the observation that the tumour is longer
than10 cm and then the fact that it has grown beyond the oesophageal wall. Upon entering the
observation for the tumour’s length, the probability that neighbouring structures are invaded in-
creases: after a ‘+’ is entered for nodeL, it sends a ‘+’ to nodeW . As ulceration and a tumour’s
length are independent causes of wall invasion,U ’s probability distribution is not affected by the
observation. Then, a ‘+’ is entered for nodeW to indicate the observation of invaded neigh-
bouring structures. NodeW sends a ‘+’ to both U andL. The probability of an ulcerating
tumour increases. As the tumour’s length has been established,L’s probability distribution is not
affected by the observation. Note that the intercausal influence induced betweenU andL does
not have any effect, regardless of whether or not it is used immediately. The joint effect of the
observations shows an increase in the probability of an ulcerating tumour.
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Figure 4.26: The separate effects of entering a ‘+’ forW , exploiting, (a), or disregarding, (b),
the intercausal influence, and subsequently entering a ‘+’ forL, (c), and their joint effect, (d).

Figure 4.26 shows the result from first entering the observation that neighbouring structures
are invaded and then the observation of the tumour’s length. Upon entering the observation
for wall invasion, the probabilities of its two causes increase. The observation, however, also
induces a negative intercausal influence betweenU andL. If this intercausal influence is used
immediately,U andL propagate a ‘−’ to one another over this influence, resulting in a ‘?’ for
both; otherwise both their signs remain positive. Subsequently entering the observation for the
tumour’s length will now cause the probability of an ulcerating tumour to decrease: nodeL sends
a ‘−’ over the intercausal influence toU . It further sends a ‘+’ to W , but, as wall invasion has
been observed,W will not change sign. The joint effect of the observations reveals that the net
effect on nodeU ’s probability distribution is unknown. �



4.5. Propagating multiple simultaneous observations 95

The previous example shows that the order in which multiple observations are entered into a
qualitative network can lead to different node signs upon inference; moreover, the node signs
yielded can be weaker than necessary. In the example, the difference in results can be attributed
to the intercausal influence and the moment it is effectuated. Upon propagating an observation
for nodeL in Figure 4.25, the trailL → W ← U is blocked. In Figure 4.26, however, the
blocked trail has become unblocked due to the observation of the head-to-head nodeW . The set
of influences used during the propagation of an observation for nodeL therefore differs in the
two situations.

The induced intercausal influence also leads to different results when using the dummy-node
approach for propagating signs, as illustrated by the following example.
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Figure 4.27: Propagating observations using the dummy node approach and disregarding (a), or
exploiting (b) the intercausal influence.

Example 4.38 We consider once again theWall invasionnetwork and observationsl for nodeL
andw for nodeW . For propagating these observations, we add a dummy node to the network
with incoming arcs from the two observed nodes. The signs along the arcs correspond to the
signs of the corresponding observations. A ‘+’ is then entered, as the observation for the dummy
node. Figure 4.27 shows the results from propagating with and without exploiting the intercausal
influence induced by the observation for the dummy. �

The example illustrates a typical problem of the dummy-node approach: as the observations for
nodeL and nodeW are entered as an observation for the dummy node, the signs of nodeL and
nodeW can change during inference, which may cause additional spreading of ‘?’s.

Blocking unblocked trails

When using the approach of propagating multiple observations sequentially, the order in which
observations are entered influences the order in which trails are blocked. This, in turn, may
affect the set of influences over which each subsequent observation is propagated. We again
show the effect of entering multiple observations in different orders and of using the dummy-
node approach.

Example 4.39 We consider the highly simplified fragment of the oesophagus network from Fig-
ure 4.28(a). The fragment again pertains to the invasion of a carcinoma into the oesophageal
wall, modelled by nodeW , and one of its causes, the length of the tumour, modelled by nodeL.
Another effect of the tumour’s length is whether or not the tumour is circular, modelled by node
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Figure 4.28: The separate effects of subsequently entering a ‘+’ for L (a) a ‘−’ for C (b), and
their joint effect (c).

C. The longer a tumour is, the higher the probability that it is a circular tumour. Suppose that a
patient’s tumour is longer than10 cm, but that it is not circular. We enter the two observations
one after the other and investigate the results yielded upon inference.

Figure 4.28 shows the result from first entering the observation that the tumour is longer
than10 cm and then the information that it is not circular. Upon entering the observation for
the tumour’s length, the probabilities of a circular tumour and of an invasion of neighbouring
structures increase. Then, a ‘−’ is entered for nodeC to indicate the observation that the tumour
is not circular. As nodeL is observed, its sign is not changed; in addition, as nodeL blocks the
trail from nodeC to nodeW , it does not pass on any signs toW and the sign of nodeW remains
unaffected. The joint effect of the two observations shows an increase in the probability that the
carcinoma has grown beyond the oesophageal wall.
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Figure 4.29: The separate effects of subsequently entering a ‘−’ for C (a) a ‘+’ for L (b), and
their joint effect (c).

Figure 4.29 shows the result from first entering the observation that the tumour is not circular
and then the information that it is longer than10 cm. The joint effect of the observations reveals
that the net effect on nodeW ’s probability distribution is ambiguous. Finally, Figure 4.30 shows
the result from entering the two observations by means of a dummy node.

? ? ?

+

C L W
+ +

− +

Figure 4.30: The effect of entering a ‘+’ for L and a ‘−’ for C using the dummy node approach.

We would like to note that if we would have had an additional arcC → X with a posi-
tive influence associated with it, then it would have had a positive sign with the approach of
subsequently entering observations, but again a ‘?’-sign with the dummy-node approach. �
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Summary

When propagating multiple observations by sequential propagations of the separate observations
and adding the results, the order in which the observations are entered can influence the results.
The differences can be attributed to the dynamics of the set of influences over which signs are
propagated. By entering observations, influences are removed from this set as a consequence
of trails being blocked; also, influences are added to the set as a result of intercausal influences
being induced. In Section 4.5.2, we will show that by predicting the dynamics that will be caused
by a set of observations before propagating them, we can guarantee sign-propagation of multiple
observations to result in the strongest possible sign. In addition, in Section 4.5.3 we will show
that direct influences always dominate over intercausal influences, which means that the latter
can be disregarded when propagating multiple simultaneous observations. As the dummy node
approach requires changes to the network’s digraph and, in addition, seems to always result in
the weakest signs we will from here on only consider the approach of sequentially propagating
observations and combining signs.

4.5.2 Exploiting the dynamics

When a single observation is entered into a qualitative network, its sign is propagated to each
node that is not d-separated from the observed node, given previously observed nodes. Suppose
we have two simultaneously observed nodesO1 andO2, and no previous observations; we prop-
agate the observations sequentially. If the observation for nodeO1 is entered first, its sign is
propagated to all nodes that are not d-separated from nodeO1. Subsequently, the sign of the ob-
servation forO2 is propagated to all nodes that are not d-separated fromO2 givenO1. Similarly,
entering the observation forO1 after the observation forO2 results in the propagation ofO1’s
sign to all nodes that are not d-separated fromO1 givenO2. To ensure that the order in which
these observations are entered has no effect on the outcome, the sign of an observation should
be propagated only along trails that will not be blocked by subsequent observations. To this end,
for each observed nodeOi in a setO of multiple simultaneously observed nodes, we need to
determine the nodes that are not d-separated fromOi given all observations forOj ∈ O, i 6= j.

Definition 4.40 Let G = (V (G), A(G)) be an acyclic digraph. LetP ⊆ V (G) be a set of
previously observed nodes and letO ⊆ V (G) \P be the set of multiple simultaneously observed
nodes. Then, for eachOi ∈ O, theexclusion setX(Oi) is the setX of all nodesXk for which
〈{Oi} | (O ∪ P ) \ {Oi} | {Xk}〉dG holds.

The following proposition states that any node in the exclusion set of a nodeOi is probabilisti-
cally independent ofOi given(O ∪ P ) \ {Oi}.

Proposition 4.41 LetG, P , andO be as in the previous definition. LetPr be a joint probability
distribution onV (G) such thatG is an I-map forPr. Then, for eachOi ∈ O,

Pr(X(Oi) | O ∪ P ) = Pr(X(Oi) | (O ∪ P ) \Oi).

Proof: The proof follows directly from the definition ofX(Oi) and Definition 2.25. �
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From the above proposition, we have that for propagating observations for a set of nodesO, the
propagation of the observation for nodeOi ∈ O should be restricted to all nodes in the digraph
that are not included inX(Oi); in doing so, we prevent the order of entering multiple observations
to affect the net result. A node’s exclusion set can be computed with the Bayes-Ball algorithm
mentioned in Section 4.4. The algorithm returns for a probabilistic network with a set of observed
nodes and a node of interest, the set of nodes that are computationally relevant for the node of
interest given the observed nodes, as well as the set of nodes that arestructurally irrelevantfor
the node of interest given the observed nodes [112]. The set of structurally irrelevant nodes for
an observed nodeO given all other observations, is our exclusion set forO.

The idea of propagating observations only to nodes that are not in de exclusion set of the
current observation can also be exploited for solving a problem with the dummy node approach.
Recall that a problem of the dummy-node approach is that the node signs of observed nodes can
change as the observations are entered as an observation for the dummy node. We can remedy
this by adapting the sign-propagation algorithm so that it only sends those signs to observed
nodes that originate directly from the dummy node.

4.5.3 Dominance of direct over intercausal influences

In the previous section, we showed how to prevent the order in which multiple observations
are entered into a qualitative network from affecting the net result of probabilistic inference.
In this section, we focus on the intercausal influences that are added to the set of influences
as a consequence of entering observations. We show that these intercausal influences can be
disregarded during inference, yielding possibly stronger results.

In Section 4.5.1 we mentioned that the current literature does not specify whether or not an
induced intercausal influence should be used for propagation of the observation that induced it.
We show that, upon propagating multiple observations, we can disregard the intercausal influ-
ences induced by these observations.

Proposition 4.42 LetQ = (G,∆) be a qualitative probabilistic network. LetA,B,C be nodes
in G such thatA → C andB → C ∈ A(G). Let nodeC be observed and letδC be the sign of
the observation; letδA be the sign computed for nodeA after propagation of the observation for
nodeC. Then,

Sδ(A,C) =⇒ δA = δC ⊗ δ.

Proof: We will prove the proposition forδ = + andδC = +, that is, we assume that we have
observed the valuec for nodeC; proofs for other combinations ofδ andδC are analogous. Let
X = πG(C) \ {A,B} be the set of all parents ofC other thanA andB. Let Pr be a joint
probability distribution such thatG is an I-map forPr, then

S+(A,C) ⇐⇒ ∀ x Pr(c | ax)− Pr(c | āx) ≥ 0.

The sign computed for nodeA captures the change inA’s probability distribution occasioned by
the observation for nodeC and therefore equals the sign of the differencePr(a | c)− Pr(a). By
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applying Bayes’ rule toPr(a | c), we find that for all combinations of valuesx for the setX,

Pr(a | cx)− Pr(a) =
Pr(c | ax) · Pr(a)

Pr(c | x)
− Pr(a) =

(Pr(c | ax)− Pr(c | x)) · Pr(a)

Pr(c | x)
.

By conditioning, in the numerator, onA andB, we find that for allx

Pr(a | cx)− Pr(a) =

Pr(a) · Pr(ā)

Pr(c | x)
·
(
(Pr(c | abx)− Pr(c | ābx)) · Pr(b) + (Pr(c | ab̄x)− Pr(c | āb̄x)) · Pr(b̄)

)
.

FromS+(A,C) we conclude thatPr(a | c)− Pr(a) ≥ 0 and, hence, thatδA = δC ⊗ δ. �

In the proposition we have assumed that an observation had been obtained for a childC of
A. The proposition, however, also holds for an indirect observation of nodeC, that is, for an
observation of a descendantD of C. The node sign for nodeA is then determined by the sign
of the observation of nodeD and the sign of the influencêSδ(A,D, t) along the parallel trail
composition of all active trails fromA toD.

From the proposition above, we have that the intercausal influence induced by an observation
can be disregarded when propagating that observation. We will now show that if the observation
pertains to a node from a set of simultaneously observed nodes, then the intercausal influence
induced by the observation can also be disregarded when subsequently propagating the other
observations; more specifically, we will show that direct influences always dominate over inter-
causal influences.

Dominance of direct over intercausal influences was already suggested in the Ph.D. thesis of
M.J. Druzdzel in Section 6.4.3 [31]. The section focuses on the situation where a head-to-head
node and one of its parents are observed. In this situation, the effect of the observation of the
head-to-head node on the unobserved parent is larger than the effect of the observation for the
other parent via the intercausal influence induced. Druzdzel claims that this dominance property
is captured by the following statement:

For parentsA,B of C, andA, C of D, the qualitative influence ofD onB solely
depends on the qualitative influence ofD onC and that ofC onB.

In the network described, there are two simple trails fromD to B, one consisting ofD ← A
→ C ← B and one consisting ofD ← C ← B. The latter trail is the only active trail, which
renders the statement correct. Unfortunately, the statement does not mention observed nodes nor
induced intercausal influences and therefore cannot capture the dominance property. Note that if
nodeD, a descendant of the head-to-head nodeC, is observed, then an intercausal influence is
induced between nodesA andC and the trail fromA toB viaC becomes active. In our opinion,
there is no way of qualitatively showing that the (intercausal) influence along this latter trail can
be disregarded.

We now prove that the dominance property of direct over intercausal influences indeed holds.
We start by formally defining the concept of dominance of one influence over the other.
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Definition 4.43 LetG = (V (G), A(G)) be an acyclic digraph. LetA,B,C be nodes inG, such
thatA→ C, andB → C ∈ A(G). Then, the influence of nodeA on nodeC is dominatedby the
influence of nodeB onC iff, for all observationsai ∈ {a, ā} ofA andbi ∈ {b, b̄ } ofB, we have

|Pr(c | bi)− Pr(c)| ≥ |Pr(c | ai)− Pr(c)|.

The definition states that the influence of nodeB on nodeC dominates the influence of nodeA
onC, if propagation of an observation forB has a larger effect on the probability distribution for
nodeC than propagating an observation forA.

We are now interested in whether direct influences dominate over intercausal influences;
more specifically, we are interested in the situation where the signs of the messages sent across
these influences during sign-propagation are conflicting. The following proposition states that,
in this situation, the direct influence dominates over the intercausal influence.

Proposition 4.44 LetQ = (G,∆) be a qualitative probabilistic network. LetA,B,C be nodes
in G such thatA → C, B → C ∈ A(G). Letδdirect be the sign of change computed for nodeA
given an observation for nodeC and letδinter be the sign of change computed for nodeA given
a subsequent observation for nodeB. Let δA be the node sign computed for nodeA given both
observations. Then,

δdirect = −⊗ δinter =⇒ δA = δdirect.

Proof: We will prove the proposition forδdirect = +; more in particular, we prove the proposition
for S+(A,C) and observationc for nodeC. We suppose thatZ−(A,B, c). In addition, we
suppose that the observationb for B is obtained so thatδinter is negative. Proofs for the other
situations are analogous.

The sign of changeδdirect in nodeA’s probability distribution occasioned by the observation for
nodeC equals the sign of the differencePr(a | c)−Pr(a). The sign of changeδinter in nodeA’s
probability distribution occasioned by the subsequent observation for nodeB equals the sign of
Pr(a | bc) − Pr(a | c). The node signδA that is computed for nodeA after propagating both
observations equals the sign of the difference

Pr(a | bcx)− Pr(a) = Pr(a | cx)− Pr(a) + Pr(a | bcx)− Pr(a | cx),

for all combinations of valuesx for the setX = πG(C) \ {A,B}. By applying Bayes’ rule to
Pr(a | bcx), we find that

Pr(a | bcx)− Pr(a) =
Pr(c | abx) · Pr(a | bx)

Pr(c | bx)
− Pr(a).

By exploiting independence ofA andB and by rearranging terms, we find that

Pr(a | bcx)− Pr(a) =
(Pr(c | abx)− Pr(c | bx)) · Pr(a)

Pr(c | bx)
.

By conditioningPr(c | bx), in the numerator, onA, we find that

Pr(a | bcx)− Pr(a) = (Pr(c | abx)− Pr(c | ābx)) · Pr(a) · Pr(ā)

Pr(c | bx)
.
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FromS+(A,C) we have thatPr(c | abx) − Pr(c | ābx) ≥ 0 for all x and, therefore, for allx
Pr(a | bcx)− Pr(a) ≥ 0. We conclude thatδA = δdirect. �

The proposition also holds for indirect observations for nodeC. We note that when the two
signs are not conflicting, the two combine into a unique, informative sign. From the dominance
property, we now have that during the sequential propagation of multiple simultaneous observa-
tions, intercausal influences induced by any of these observations can be disregarded.

4.5.4 Probabilistic inference revisited

In the previous sections, we showed that observations for the nodesOi from a setO of ob-
served nodes can be propagated only to the nodes that are not d-separated fromOi given all other
observed nodes; in addition, we showed that upon propagating multiple simultaneous observa-
tions we can disregard the intercausal influences induced by these observations. The basic sign-
propagation algorithm can be easily adapted to incorporate these properties. To this end, we first
ensure that messages are sent over trails that are active with respect to the previously entered ob-
servations; intercausal influences induced by previous observations are thereby exploited. From
there on, any new intercausal influence that is induced by the current set of observations is dis-
regarded. In addition, for each subsequent observation propagation is restricted to nodes that are
not in the exclusion set of the node to which the observation pertains. The resulting algorithm is
summarised in pseudocode in Figure 4.31.

procedurePropagateObservations(Q,Obs,signs,OldObs):

for eachVi do sign[Vi] ← ‘0’;
for eachOi ∈ Obs
doX(Oi)← Bayes-Ball(G, (Obs ∪OldObs) \Oi,Oi);

PropagateSign(∅,Oi,Oi,signi)

procedurePropagateSign(trail,from,to,messagesign):

sign[to] ← sign[to] ⊕messagesign;
trail ← trail ∪ {to};
for each neighbourVi of to that is active givenfrom andOldObs
do linksign← sign of (induced) influence betweento andVi;

messagesign← sign[to] ⊗ linksign;
if Vi /∈ trail and Vi /∈ X(Oi)

and sign[Vi] 6= sign[Vi] ⊕messagesign
then PropagateSign(trail,to,Vi,messagesign)

Figure 4.31: The adapted sign-propagation algorithm for sequentially propagating multiple si-
multaneous observations.

To determine the exclusion sets for each observed node, the Bayes-Ball algorithm is executed.
This algorithm takesO(|V (G)|+ |A(G)|) time for each execution. Sign-propagation of a single
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observation takesO(|A(G)|) time. Propagation of multiple simultaneous observations therefore
takesO(m · (|V (G)|+ |A(G)|)) time, wherem is the number of observations that is propagated.

We illustrate the impact of disregarding intercausal influences and using exclusion sets upon
propagating multiple observations with an example.

Example 4.45 We consider the highly simplified fragment of the oesophagus network shown
in Figure 4.32(a). The figure pertains to the diagnostic part of the network. NodesGL andGS

model the outcomes of a gastroscopic examination with regard to the location of the tumour in the
patient’s oesophagus, modelled by nodeL, and the macroscopic shape of the tumour, modelled
by nodeS, respectively. The outcomes of this examinination depend on how deep the scope
can be entered into the patient’s oesophagus; the ease with which the scope can be entered is
directly related to how well the patient is able to swallow food, modelled by nodeP . The shape
of the carcinoma influences the possibility of decay of tissue, or necrosis, occuring, modelled
by nodeN ; it further determines the depth of invasion of the tumour into the oesophageal wall,
modelled by nodeW . The depth of invasion in turn has effect on the presence of haematogenous
metastases, modelled by nodeH, which can be found in, for example, the lungs and the liver;
the presence of metastases in the lungs and the liver are modelled by the nodesLu andLi,
respectively.
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Figure 4.32: Propagation of multiple observations in a fragment of the oesophagus network (a),
using the original sign-propagation algorithm (b) and the adapted algorithm (c).

Figure 4.32(b) shows the result of using the original sign-propagation algorithm, after en-
tering the subsequent observationsGS = true, GL = true, P = false, andW = false, and
combining the results. Note that the nodesL andS receive a ‘?’ as a result of the negative sign
propagated over the intercausal links induced by the observations ofGS andGL. Since the ob-
servation for nodeW is entered last, it has not blocked the propagation of these ‘?’-signs toH,
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Li andLu. Figure 4.32(c) shows the result of using the adapted algorithm on the set of observa-
tions; the intercausal influences are disregarded and the fact that nodeW d-separates the set of
nodes{H,Li, Lu} from the other observed nodes is exploited. �

4.5.5 Discussion

The basic algorithm for probabilistic inference with a qualitative network was designed to deter-
mine the effect of a single observation on the nodes’ probability distributions given all previously
entered observations. Handling multiple observations by applying the basic algorithm for each
observation separately and combining the results into their joint effect, can yield results that are
weaker than necessary; furthermore, the results may depend on the order in which the observa-
tions are entered. As the cause of this problem, we identified the dynamics of the set of influences
over which signs are propagated upon inference. We showed that the intercausal influences that
are added to this set as a result of entering observations are always dominated by direct influences
and can therefore be disregarded upon inference. Note that the fact that an induced intercausal
influence can be disregarded when propagating the observation that has induced it, can be ex-
ploited in the original sign-propagation algorithm as well. In addition, we showed that we can
prevent propagation of an observation to nodes that will be d-separated from that observed node
given subsequent observations, by computing an exclusion set for each observed node. By means
of an example, we demonstrated that exploiting these properties yields stronger results, and that
the order in which observations are entered no longer influences the net result.

The results presented in this section are not restricted to networks containing binary nodes
only; the proofs presented in this section can be easily generalised to networks including non-
binary nodes.

4.6 Related work

In this chapter we presented various refinements of the formalism of qualitative probabilistic
networks, that aim at preventing ambiguous results upon probabilistic inference as far as possi-
ble. We discussed the representation and resolution of non-monotonic influences and we added
notions of strength and context to resolve trade-offs modelled in the network. In addition, we
presented algorithms for isolating trade-offs and subsequently identifying the information nec-
essary to resolve them, and for propagating multiple simultaneous observations in qualitative
probabilistic networks. In this section we provide a brief comparison with related work.

Non-monotonic influences

In [134], M.P. Wellman notes that one of the limitations of the formalism of qualitative prob-
abilistic networks is that they can only express monotonic influences between nodes. To the
best of our knowledge, Wellman is the only researcher who has ever referred to the problem of
non-monotonic influences and we are the first to propose a solution for it.

S. Parsons addressed a different type of non-monotonicity, in which the influence of a node
A on a nodeB has different signs for different values of nodeB. To handle this type of non-
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monotonicity, Parsons introduces the concept of qualitative derivative, that allows for specifying
a sign for each separate value of nodeB, instead of specifying one sign based upon the cumula-
tive distribution of the values ofB [88]. Note that this concept is only of interest for non-binary
nodes.

Trade-off resolution

In the context of trade-off resolution, Parsons introduced the concept of categorical influence [88].
A categorical influence is a qualitative influence that serves either to increase a probability to 1
or to decrease a probability to 0, disregarding all other influences. A categorical influence thus
serves to resolve any trade-off in which it is involved, but can only capture deterministic rela-
tionships between nodes; in real-life applications few to none of such relationships will exist.

Parsons also studied the use of both relative and absolute order-of-magnitude reasoning in
the context of qualitative probabilistic networks [88]. Relative orders of magnitude can be used
to relate different qualitative influences to each other. Using the relative order-of-magnitude sys-
tem ROM[K] [27], one qualitative influence can be specified as beingnegligiblewith respect to,
distantfrom, comparableto, or closeto another influence. The use of relative orders of magni-
tude thus serves to relate the strengths of different influences, but it requires the specification of a
relation between pairs of influences, instead of a notion of strength per influence. In addition, the
relations used seem to be ill-defined, which makes reasoning with them anything but intuitive.
For absolute order-of-magnitude reasoning, Parsons proposes a method that revolves around the
propagation of interval probability values. The arcs in a network’s graph are labelled as being
strongly positive, weakly positive, etc., where a probability interval is associated with each label.
Interval comparison is done using≥int, where [a, b] ≥int [c, d] iff a ≥ c andb ≥ d. Qualitative
probabilistic reasoning can be arrived at by just providing the labels for the arcs and not actually
quantifying the boundaries of the probability intervals; this approach is comparable to our treat-
ment of the cut-off value introduced in Section 4.2. The method of interval comparison, however,
can lead to considerable loss of information.

κ-calculus [29] can be considered another absolute order-of-magnitude system. Usingκ-
calculus, probabilities can be abstracted toκ-values, where aκ-value ofn indicates that the
associated probability has the same order of magnitude asεn for some infinitesimal numberε.
Drawbacks of the use ofκ-calculus [29] are that it is not concerned withchangesin probabili-
ties, but rather with the probabilities themselves, and that it has been designed for infinitesimal
probabilities only.

Categorical influences, order-of-magnitude reasoning andκ-calculus are of a purely qualita-
tive nature, yet serve for resolving only some trade-offs. C.-L. Liu and M.P. Wellman designed
methods for resolving trade-offs based upon the idea of reverting to numerical probabilities
whenever necessary [76]. The methods presented by Liu and Wellman provide for incremen-
tally applying numeric inference to the point where qualitative reasoning can produce a decisive
result. Their methods thereby resolve any trade-off present in the network, but require a fully
specified, numerical probabilistic network.

The approaches described above with respect to trade-off resolution have a number of draw-
backs; they are either applicable only in networks that model a specific type of relationship, are
based on ill-defined relationships, or even require a full numerical specification. In this chapter
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we proposed refinements that can easily compete with a number of the above approaches, and
can be considered complementary to others.

Trade-off isolation

One of the steps in our algorithm for isolating trade-offs in a qualitative probabilistic network,
is the identification of reasoning chains and the nodes these chains have in common. A similar
step is used in an algorithm designed for explanation of probabilistic networks [118]. To the best
of our knowledge, however, no earlier attempts were made at designing algorithms for isolating
trade-offs and subsequently identifying the information required to resolve them.

Propagating multiple observations

The two earlier approaches we discussed for propagating multiple simultaneous observations in
a qualitative network, the use of a dummy node and adding the results of subsequent propaga-
tions, were proposed by M.J. Druzdzel [31]. Druzdzel, however, does not identify the problems
associated with these approaches.

In our discussion of propagating multiple observations, we have taken observations to be
only positive or negative and we have not taken into account the fact that one observation can be
stronger than another. Parsons, in his discussion of the use of order-of-magnitude approaches,
does allow for relating the strengths of multiple observations.



Part II

Probability Elicitation

In which we design and evaluate an elicitation method tai-
lored to fast elicitation of a large number of probabili-
ties. Existing probability elicitation methods are designed
to elicit unbiased assessments; these methods are often
complicated and time-consuming. Elicitation of the large
number of probabilities required for a probabilistic network
calls for an elicitation method that accommodates, as much
as possible, the experts in the assessment task.





CHAPTER 5

The Elicitation Process

For quantification of a probabilistic network, one often has to rely on domain experts to pro-
vide the necessary probabilities. Extensive psychological research has shown that people, even
experts, tend to find it difficult to assess probabilities: to simplify the task they use heuristics,
most often leading to poorly calibrated and biased assessments [64]. From the field of decision
analysis, several methods are available for the elicitation of probabilities [20, 83, 129]. These
methods are designed for the elicitation of probabilities in general and not tailored to probability
elicitation for probabilistic networks. Most of these methods were designed to overcome, or at
least suppress, the problems of bias and poor calibration [64]. However, these methods tend to
be so time-consuming that it is infeasible to apply them when hundreds or thousands of proba-
bilities are to be assessed. Faster elicitation methods are available, but are prone to even more
biased answers. Before undertaking a large elicitation task, it is therefore important to be aware
of the advantages and drawbacks of these methods.

In the field of probabilistic networks, it is well-known that probability elicitation is a problem.
We feel, though, that the knowledge about why it is a problem is less wide-spread; it is also less
known that there exist various methods, designed especially for probability elicitation. Besides
being aware of problems of bias, the builder of a network has to take into consideration not only
the method to use, but also, for example, which expert to choose, how to motivate and train the
expert, and how to perform the actual elicitation. In this chapter we will give an overview of the
entire elicitation process and the available methods, discussing issues to be aware of and to take
into consideration when faced with the task of probability elicitation.

This chapter is organised as follows. In Section 5.1 we will first discuss the process of prob-
ability elicitation, including motivating and training the expert, the actual elicitation phase, and
the verification of the probabilities obtained. Then, in Section 5.2, we will consider the different
ways an expert can be presented with the probabilities required and the representation formats
that experts can use for indicating their assessment. In Section 5.3 we will discuss various elicita-
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tion methods found in, for example, the decision analysis literature, along with their benefits and
their drawbacks. As our main concern is probability assessment for probabilistic networks, we
will only consider methods for elicitingdiscreteprobability distributions. We are interested in
point probabilities and will therefore not consider elicitation methods for interval probabilities.
Finally, in Section 5.4 we will discuss some matters concerning elicitation methods in general,
and draw some conclusions.

5.1 The elicitation process

Research in experimental psychology has shown that simply asking a person to provide a (nu-
merical) probability results in biased probability judgements [64]. To overcome biases, it seems
necessary to have a well-structured process for probability elicitation. Such a process is called
anelicitation process[39,43,80]; it can be roughly divided into five stages:

1. select and motivate the expert

2. train the expert

3. structure the questions

4. elicit and document the expert judgements

5. verify the results.

We will further detail these stages in the following subsections, after devoting a subsection to the
biases that call for a well-structured elicitation process.

5.1.1 Heuristics and biases

A bias is a systematic tendency to take into account factors that are irrelevant to the task at hand,
or to ignore relevant facts, thereby failing to make an inference that any appropriate normative
theory, for example probability theory, would classify as necessary [42]. Two types of bias can
be distinguished: motivational bias and cognitive bias [114].Motivational biasesare caused
by personal interests and circumstances of the expert. For example, an expert makes careful
assessments if he believes that his job depends on the success of the current project; he will
be too confident about his assessments, because he, being an expert, feels he should not be
uncertain about them. Motivational biases can often be overcome by explaining the expert that
an honest assessment is requested, not a promise.Cognitive biasesarise during the processing of
information by the expert and are typically the result of using heuristics [64]. Cognitive biases
can be suppressed by informing the expert of their existence and by using different elicitation
methods.

When people are asked to make complicated judgements such as probability assessments,
they oftensubconsciouslyuseheuristics, or rules of thumb, to simplify the task. Four heuristics,
among others, are commonly found: availability, anchoring, representativeness, and control [64].
Availability is a heuristic with which an expert assesses the probability of an event by the ease
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with which occurrences of the event are brought to mind. The idea behind the heuristic is that
frequent events are more available, and therefore an event that is easily brought to mind will
have a high probability. Often this heuristic works quite well, but it can become a misleading
indicator of the frequency with which certain events occur. If, for example, plane crashes are
head-line news more often than car crashes, people willoverestimatethe probability of a plane
crash andunderestimatethe probability of being involved in a car crash. The process of assessing
a probability by choosing an initial value, termed the anchor, and then adjusting up or down from
this value, is called the heuristic ofanchoring and adjustment. Assessments acquired this way
are typically biased towards the starting value, due to insufficient adjustment. The resulting bias
is termedanchoring bias.

Therepresentativenessheuristic describes the process where people use the similarity of two
events to estimate the degree to which one event is representative of the other. Consider the
following well-known example from a study by Tversky and Kahneman [64]:

Linda is 31 years old, single, outspoken and very bright. She majored in philosophy.
As a student, she was deeply concerned with issues of discrimination and social
justice, and also participated in anti-nuclear demonstrations. Please check off the
most likely alternative:

� Linda is a bank teller.

� Linda is a bank teller and is active in the feminist movement.

From this description, most people find it likely that Linda is a feminist and conclude that it is
more likely that Linda is a feminist bank teller, than just a bank teller. The example illustrates
how a description representative of a feminist can trick people into choosing the less likely event.
The cognitive bias, here introduced by the representativeness heuristic, is called theconjunction
fallacy. A more detailed description seems to be more representative, though the conjunction of
two events can never be more likely than the probability of either event alone. Other well-known
biases introduced by the representative heuristic are thegambler’s fallacyandbase-rate neglect.
The gambler’s fallacy is the belief that when a series of trials all have the same outcome then soon
an opposite outcome will follow. This belief originates from the idea that random sequences of
outcomes seem more representative of a sample space. Base-rate neglect is neglecting the relative
frequency with which an event occurs. This is again illustrated by an example from Tversky and
Kahneman, where a group of participants is presented with the following description of a person
whom they know stems from a population of 30 engineers and 70 lawyers:

Dick is a 30-year-old man. He is married with no children. A man of high ability
and high motivation, he promises to be quite successful in his field. He is well liked
by his colleagues.

This description is entirely uninformative with respect to Dick’s profession. However, when
participants were asked to indicate the probability of Dick being an engineer, the participants
gave a median probability estimate of 50%, whereas the correct answer would have been 30%.
The participants ignored the base-rate and simply judged the description as equally representative
of an engineer or a lawyer.
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Thecontrol heuristic represents the tendency of people to act as if they can influence a situ-
ation over which they actually have no control. For example, people value a lottery ticket they
selected themselves more highly than an arbitrary one given to them, even though the probability
of winning a prize is the same for both tickets [3]. Thisillusion of controlcan cause overestima-
tion of probabilities.

We have seen that the use of heuristics can introduce cognitive biases in probability assess-
ments. The most prevalent biases are said to be overconfidence and base-rate neglect [5]. Over-
confidence is especially a problem with extreme probabilities, that is probabilities close to 0% or
100%. People find extreme probabilities hard to assess; they are less likely to be overconfident
about probability judgements that lie more in the centre of the0%− 100% range [129].

5.1.2 Selection and motivation

Ideally, for probability elicitation, an expert should be selected who has the necessary domain
knowledge and who is familiar with assessing probabilities. However, due to the nature of ex-
pertise (it is by definition a scarce commodity), there is often not a very large pool of experts to
choose from. When eliciting probabilities for probabilistic networks, it is best to select an expert
who has also been involved in building the structure of the network, to prevent errors due to the
possible existence of different definitions for certain variables. It is also better to have more than
one expert involved [18, 129], since different experts have different kinds of knowledge, all of
which should be incorporated in the assessment. Assessments by more than one expert can be
handled in two ways: collect the assessment of each expert and combine the assessments into
a single one, or have the experts come to a consensus. The first approach has the mathemati-
cal advantage of enlarging the sample space, but assumes that nothing is gained from sharing
knowledge and thought among the experts. With the second approach, group interaction prob-
lems, such as dominance of one expert over the other or pressure for conformity, can influence
the assessment. Research on the subject of group assessment suggests that an optimal number of
experts is around three [18].

Once the experts are selected, the elicitation task is introduced and its purpose is explained.
The elicitation task will often be part of a larger process of step-wise refinement [26], where the
experts are first asked to provide only initial assessments. With these assessments, a sensitivity
analysis of the probabilistic network is performed revealing the most sensitive parts of the net-
work; the most sensitive probabilities can then be refined, and so on. Refinement of the most
sensitive probabilities is done by using additional information obtained from other sources than
the experts involved, such as research reports or other experts. It has been observed that experts
may feel that the assessments they are asked to provide are not subjective opinions, but numbers
that can be checked in every-day practice [126]. They then have the uncomfortable feeling that
the assessments they provide should be “correct” and this makes them less willing to cooperate.
It is therefore important to convince the experts that their assessments need only be accurate in
the sense that they should represent the knowledge and judgement of the expert: there are no
right and wrong answers. Also, it may reassure the experts when it is explained to them that their
initial assessments will be subjected to a sensitivity analysis and that they can thereupon refine
their assessments.
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Experts should also be informed about the biases discussed in the previous subsection; knowl-
edge of their existence might help in counteracting them.

5.1.3 Training

Once an expert has been selected and is willing to cooperate, he has to learn the art of probability
assessment. To this end, the expert should first of all become familiar with the concept of proba-
bility and should learn to express his knowledge in the format required by the elicitation method
used. Part of the training is done with probabilities for events whose frequencies can be checked.
This allows for exposing biases in the expert’s assessments and to practice the elicitation method.
Several elicitation methods and representation formats can be tried to see which best fit the task,
the experience and preferences of the expert.

Feedback of the true frequencies of the events or which probabilities are assessed will help
experts calibrate their responses [5], that is, will teach them to make assessments as close as pos-
sible to reality. However, care should be taken to not discourage the experts by the confrontation
with their frequent mistakes. The events for which probabilities need to be assessed in a proba-
bilistic network are often unobservable, making feedback impossible. The expert must, however,
also become an expert at making probability judgements in this domain and part of the training
should therefore be done with probabilities from the domain of the probabilistic network [39].

The amount of time spent on training depends on available time and other constraints. At the
end of the training period, however, the expert should fully understand and feel comfortable with
the methods to be used.

5.1.4 Structuring

Before the actual elicitation takes place, several issues need to be addressed. The definitions of
the variables and values for which probabilities are to be assessed should be documented so that
this information can be easily and promptly conveyed to the expert during the elicitation. For
probabilistic networks this documentation will already be available from the construction of the
graphical part of the network. Since probability elicitation is often done with the expert who was
also involved in the construction of the graphical part, the expert will already be familiar with
these definitions; it is, however, always a good idea to keep the documentation of definitions of
variables and their values at hand during the elicitation interviews.

After the important variables and values are determined, the conditioning circumstances that
influence a variable’s uncertainty need to be determined. For probabilistic networks, these con-
ditioning contexts follow directly from the structure of the network. For each probability to be
assessed, a question describing this probability should be prepared. To suppress overconfidence
and overestimation, questions should be prepared for assessment of an event’s probability as well
as for its complement(s).

In addition to the choice of elicitation method, the elicitor is faced with the choice of how
to present the expert with the questions describing the probabilities that need to be assessed and
what format to use for the expert’s answers. Whatever representation is used to describe the prob-
abilities to be assessed, the associated questions should be clear and structured in such a way that
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there is no doubt about the variable a probability pertains to and the conditioning contexts. An
attractive format should be prepared for the questions and, if possible, a graphical format for the
answers. Experience shows that experts dislike writing numbers for subjective probabilities [20],
since numbers suggest an accuracy that experts feel they cannot provide. The experts prefer to
check scales, or place a ‘×’ in a box, etc. We will address the issue of presentation of both ques-
tions and answers in further detail in Section 5.2. The preparation of the questions and answering
format may require a large amount of time on the elicitor’s part, but it is certainly time well-spent
(see Chapter 7).

5.1.5 Elicitation and documentation

Various people will be present during the actual elicitation interviews. First of all, there will be
one or more experts involved, interacting during elicitation [129]. There should be at least one,
but preferably two, elicitors present during the elicitation, not in the least to show the experts that
the task has sufficient priority for the expert to take it seriously. The elicitor has several tasks:

• He has to clarify the inevitable problems of the experts with the interpretation of questions,
definitions of variables and values, etc.

• He has to record all information stated by the experts that cannot be expressed in the an-
swering format, but may still be of use. For example, if an expert is allowed to express
trendsbetween conditioning contexts (see Chapter 7), such as “the conditional probabil-
ities for this variable given this context are 10% higher than for that context”, it should
be carefully recorded what is meant by this trend. Also, if the expert has overestimated
the probabilities that pertain to a single conditional probability distribution, such that their
sum exceeds 100%, possible information he has stated on the range within which the prob-
abilities should lie, can serve to adjust them.

• It may turn out that certain conditioning contexts necessary to estimate the probabilities of
certain variables are incomplete, or that certain contexts turn out to be unnecessary. For
probabilistic networks, this indicates that changes have to be made to the structure of the
network; it is important to carefully record this information.

• For some probability assessments, the elicitor may expect that certain biases are easily
introduced; he should then once more make the experts aware of the biases.

• The elicitor should watch the clock: the elicitation is more taxing for the expert than for
the elicitor and therefore sessions should not exceed one hour [20].

Despite the mentioned tasks, the elicitor should avoid coaching the expert and taking too much
control [20, 129]; the expert should feel relaxed, not challenged, for he is the expert and the
elicitor is not. The elicitation method that is used should be straightforward, easy to handle, and
not difficult to learn [127]. The various elicitation methods commonly used will be discussed in
some detail in Section 5.3.
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5.1.6 Verification

When all required probabilities have been assessed, the elicitor should verify them. Verification is
the process of checking whether the probabilities provided by the expert are well-calibrated (con-
form to observed frequencies), obey the laws of probability (are coherent) and are reliable [43].
Checking whether the assessments are conform “reality”, is often impossible, since the events
for which the probabilities are assessed are often unobservable. Regarding coherence, we can
check whether all probabilities that should sum to 100% indeed do so. It is convenient to do this
check during the elicitation.

Test-retest reliability [39] tests whether the expert agrees with his own assessments, that is,
whether the expert would provide the same estimates when asked for the same probabilities
again. However, when dealing with probabilistic networks, the number of probabilities to be
assessed is so large, that it is infeasible to assess them more than once. Instead of testing the
reliability of separate assessments, entire probability distributions can be considered. As most
probabilities are conditional, the expert can be shown the assessed probability distributions for
a certain variable given different conditioning contexts and be asked to check whether the rela-
tionships for these different contexts are as he would expect. If not, the expert can adjust some
of the assessments. Edwards [40] calls this anantecedent conditions checkand he experienced
that when his expert took these relationships into account during elicitation, the probabilities
had a high test-retest reliability. We observed that our experts spontaneously mentioned these
relationships, or trends, during elicitation (see Chapter 7).

An indication of the validity of the assessments can also be obtained by entering observations
into the probabilistic network and computing the effect of the observations on the probabilities
for certain variables of interest. The outcomes for these variables can then be checked against
available data or presented to the expert.

5.2 Presentation

The presentation issues to be addressed for probability elicitation concern the representation
format of the required probabilities, the description format of the questions to be asked and
the answering format. Although we are interested in probabilities, the probability format is
not necessarily required for the communication with the expert. The experts can, for example,
be asked to provide odds or log-odds, or the most familiar competitor of numerical probability,
verbal communication of uncertainty, can be used. When dealing with relatively probable events,
probabilities or percentages may be intuitively convenient to experts, but in dealing with rare
events, odds or log-odds may be easier because they avoid very small numbers.

Regardless of the format used for uncertainty, the required assessment can be described to
the expert in different ways. The description format used should be conceptually simple and
compatible with the expert’s abilities. When probabilities are chosen as the format for uncer-
tainty representation, the required probabilities can be described, for example, in mathematical
notation.

Example 5.1 Consider the domain of oesophageal carcinoma. We focus on the probabilities
concerning the length of the tumour in the oesophagus of an arbitrary patient presented with
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oesophageal carcinoma. In mathematical notation, the probability that an arbitrary patient with
oesophageal carcinoma has a tumour longer than10 cm would be presented as:

Pr(Length > 10).

�
However, only experts who are very familiar with this notation will be able to completely un-
derstand it, especially when considering conditional probabilities where the meaning of what is
represented on either side of the conditioning bar can be confusing.

Example 5.2 Again, consider the domain of oesophageal carcinoma. We now focus on the
probabilities concerning the passage of food through the patient’s oesophagus, which depends
on the length of the carcinoma, its shape, and whether or not it is circular. In mathematical
notation, the probability that an arbitrary patient with oesophageal carcinoma can swallow only
liquid food, given that he has a polypoid, circular oesophageal carcinoma of more than10 cm
would be presented as:

Pr(Passage = liquid | Circ = circular ∧ Shape = polypoid ∧ Length > 10).

�
People unfamiliar with the notation of conditional probability can easily get confused about the
meaning of what is represented on either side of the vertical bar.

Another way of describing the required probability to an expert is to use the frequency for-
mat [46]. This format builds on the observation that registering occurrences of events is a fairly
automatic cognitive process requiring little conscious effort. The basic idea is to transcribe prob-
abilities in terms of frequencies, thereby converting abstract mathematics into simple manipula-
tions on sets that are easy to recall and visualise.

Example 5.3 The probability presented in the example above using mathematical notation is
described using the frequency format in the following way:

Imagine 100 patients with a circular, polypoid oesophageal carcinoma of more than
10 cm. How many of these patients will be able to swallow only liquid food?

�

Gigerenzeret al. argue that cognitive biases are merely artifacts of the presentation format and
that the frequency format serves to suppress biases such as base-rate neglect, overconfidence,
and the conjunction fallacy [46]. Overestimation of probabilities is reduced by assessing them
as frequencies, because then people are more likely to be aware whether the sum of their assess-
ments exceeds 100. The conjunction fallacy tends to disappear, because the frequency format
appears to help people avoid choosing the most plausible description. For example, when asked
“Out of 100 people like Linda, how many are bank tellers?” and “Out of 100 people like Linda,
how many are bank tellers and active in the feminist movement?” (see also Subsection 5.1.1),
most people correctly answered the latter with a smaller number.

Although the frequency format is easier for people to understand and apparently less liable
to lead to mistakes, it is not always intuitively appealing. This is, for example, the case in
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domains where experts find it impossible to imagine 100 occurrences of a rare event. The domain
of oesophageal carcinoma is such a problem domain. Since oesophageal carcinoma is a low
incidence disease in the Netherlands, the experts consulted often found it impossible to imagine
100 patients having the same characteristics.

Although the frequency method cannot always be applied, the idea of transcribing probabili-
ties in words can be exploited in various other ways.

Example 5.4 The probability presented in the example above using the frequency format is tran-
scribed without frequencies in the following way:

Consider a patient with a circular, polypoid oesophageal carcinoma of more than
10 cm. How likely is it that this patient will be able to swallow only liquid food? �

The final presentation issue concerns the format in which experts are required to give their an-
swer. This format not only depends on the choice of uncertainty representation, but also on the
choice of elicitation method. As we will see in the next section, some methods will require a
verbal response, whereas others require an expert to, for example, mark a scale.

5.3 Methods

With the termprobability elicitation method, we denote any aid that is used to acquire a prob-
ability from an expert. Generally, a distinction is made betweendirect and indirect methods.
With direct methods, experts are asked to directly express their degree of belief as a number, be
it a probability, a frequency or an odds ratio. For expressing probabilities, however, people find
words more appealing than numbers. This is probably because the vagueness of words captures
the uncertainty they feel about their probability assessment; the use of numerical probabilities
can produce considerable discomfort and resistance among those not used to it [129]. Since, in
addition, directly assessed numbers tend to be biased, various indirect elicitation methods have
been developed. With these methods an expert is asked not for a direct assessment but for a
decision from which his degree of belief is inferred; the use of an indirect method avoids having
to explicitly mention probabilities for those who do not have clear intuitions about them [83].
For most methods, visual aids have been developed to make the elicitation easier on the experts.

In this section, we review the most commonly used methods for the elicitation of probabili-
ties. These methods can be roughly divided into three categories:

• probability-scale methods;

• gamble-like methods;

• probability-wheel methods.

A probability-scale method is a direct method, where the expert is asked to indicate his degree
of belief on a scale. The probability-wheel and gamble-like methods are indirect methods, since
they require a decision instead of a number from the expert. We will devote a subsection to each
of these categories and another subsection to some less known methods for probability elicitation
we encountered in the literature.



118 Chapter 5. The Elicitation Process

5.3.1 Probability scales

A well-known direct method of elicitation is the use of a numerical probability scale such as the
one shown in Figure 5.1. A probability scale can be a horizontal or vertical line with several
anchors. In Figure 5.1, we have anchors denoting0%, 25%, 50%, 75%, and100% probability.

0 25 50 75 100

Figure 5.1: A numerical probability scale

For each probability that is to be assessed the expert is asked to mark the “correct” position on the
scale. A separate scale is used for each probability. The indicated probability can be determined
by measuring the distance between the mark and0% on the scale. The expert should mark the
scale in such a way that it is clear what position on the scale he is indicating, for example by
using a small line or a carefully centred ‘×’, instead of circling the scale. The basic idea of the
scale is to support experts in their assessment task by allowing them to think in terms of visual
proportions rather than in precise numbers.

In addition to the horizontal probability scale, there exist also vertical scales and scales with
a different number of anchors. Advantages of using a probability scale are that it is easy to
understand and use and provides a fast method of elicitation, thereby allowing for elicitation
of large numbers of probabilities. However, assessments made using a probability scale tend
to be inaccurate and prone to scaling biases such as centering and spacing effects [129]. The
centering effectdescribes the tendency of people to use the middle of the probability-scale; if
people aesthetically divide their responses over the scale, this is termedthe spacing effect. The
spacing effect seems to originate from people’s tendency to organise perceptual information so
as to optimise visual attractiveness. Note that the spacing effect cannot occur if a different scale
is used for each separate assessment. Also note that the probability scales discussed are linear
scales and therefore do not allow for elicitation of very large or very small probabilities. The use
of a logarithmic scale would solve this problem. It should be kept in mind, however, that experts’
subjective scales are naturally equal-interval linear scales, not logarithmic scales [136].

5.3.2 Gamble-like methods

When people find it hard to express their degree of belief about some event as a number, their
judgemental probability can be inferred from their behaviour in a controlled situation [5]. In-
direct methods of probability elicitation such as, for example, the gamble-like methods are de-
signed to represent such a controlled situation. The gamble-like methods for eliciting probabili-
ties originate from theStandard Gambleintroduced by Von Neumann and Morgenstern [128] as
an indirect method for utility elicitation. The basic idea behind a gamble-like method is that the
expert is presented with a choice between two lotteries. For one of the lotteries, the probability
of winning corresponds to the probability of the event to be assessed; the probability of winning
in the other lottery is set by the elicitor. The latter probability, or the associated price, is varied
until the expert is indifferent about the two lotteries, whereupon the probability of the event to
be assessed can be determined.
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With a gamble-like method an expert is not required to give a probability assessment, but may
instead compare a complicated concept with an event that does have meaning such as winning
a lottery or a bet. We can distinguish two types of gamble. In thecertain-equivalentgamble,
a sure thing, that is, a 100% chance of winning, is compared to a lottery; thelottery-equivalent
gamble consists of comparing two lotteries. From the choices made by the expert, the subjective
probability for the associated event is inferred. Gamble-like methods can be presented to the
expert graphically with the help of a decision tree depicting the possible alternatives, probabili-
ties, and outcomes. The concept of decision trees, along with the symbols used, will have to be
explained to the expert. When the expert fully understands the drawings, the elicitation process
can proceed.

We will give an example of both variants of the gamble-like method. For each example we
will explain what choices the expert has and how to determine the desired probability from his
answers. In the first example we will also briefly explain the decision tree.

Example 5.5 Again consider the domain of oesophageal carcinoma. We focus on the probabili-
ties to be elicited from the domain expert concerning the length of the tumour in the oesophagus
of an arbitrary patient presented with oesophageal carcinoma. For ease of exposition we take
the variableLengthto be a binary variable with values≤ 6 cm and> 6 cm. The probabilities
required are the probability of a patient having a tumour with a length of6 cm or less, and the
complementary probability of the patient having a tumour longer than6 cm.

$10, 000
p

$1
1− p

$ x

Figure 5.2: A certain-equivalent gamble

We will first consider a gamble with a certain equivalent, as depicted in Figure 5.2. Here the
domain expert is presented with the following choice, indicated by a box (the decision node) in
the figure:

• either enter a lottery where the pay-off ($10, 000, resp.$1) depends on the “true” proba-
bility p of an arbitrary patient having a tumour of more than6 cm,

• or accept a certain amount of moneyx set by the elicitor, instead.

The circle in the above figure indicates an uncertain event: with probabilityp the expert will earn
$10, 000, and with a probability of1 − p only $1. The idea is that the elicitor varies the amount
of moneyx in the certain equivalent until, for some valuex

′
the expert is indifferent about the

two alternative choices. In that case it is assumed that the expected value for both alternatives is
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the same. We can then compute the probabilityp that the patient has a tumour of more than6 cm
from x

′
= 10, 000·p+ 1·(1− p). �

A major drawback of this version of the gamble-like method is that elicited probabilities tend
to be highly influenced by therisk-attitudeof the expert. Some people are risk-seeking in the
sense that they tend to choose a less probable alternative if it has a potentially more favourable
outcome; other people tend to be risk-averse and will, for example, be more inclined to go for
the certain outcome. Always going for the “sure thing” is known as thecertainty effect[74].

A gamble with a lottery equivalent is less influenced by risk-attitudes. With this version of
the gamble-like method, the expert is asked to choose between two lotteries; the price received
upon winning (or losing) is equivalent for both lotteries.

Example 5.6 Consider again the example from the domain of oesophageal carcinoma, dealing
with the elicitation of probabilities concerning the length of the tumour in an arbitrary patient
with oesophageal carcinoma.

a two-week holiday
p

a chocolate bar
1− p

a two-week holiday
tumour length> 6 cm

a chocolate bar
tumour length≤ 6 cm

Figure 5.3: A lottery-equivalent gamble

When presented with a lottery equivalent gamble, the domain expert has the following choice:

• either enter the lottery where the outcome depends on some probabilityp set by the elicitor,

• or enter the lottery where the outcome depends on the probability of an arbitrary patient
having a tumour of more than6 cm.

In this lottery-equivalent gamble the probabilityp is varied until the expert is indifferent about
the two alternatives. Again assuming that in that case the expected value of both alternatives is
the same, we compute the probabilityp that the patient has a tumour of more than6 cm from

p · value(a two− week holiday) + (1− p) · value(a chocolate bar)
=
Pr(tumour length > 6 cm) · value(a two− week holiday)+
Pr(tumour length ≤ 6 cm) · value(a chocolate bar)

wherevalue is a subjective measure of how valuable the outcome is to the expert. When the
expert is indifferent,p directly represents the probability of a patient having a tumour longer
than6 cm, that is,p = Pr(tumour length > 6 cm). �
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An advantage of this latter gamble over the former is that it directly presents the probability of in-
terest and is less bothered by risk-attitudes. In addition, rewards can be expressed in terms other
than money. As the gamble-like method does not require an expert to provide a probability as-
sessment, it is considered to suppress some of the cognitive biases described in Subsection 5.1.1.
However, the certain-equivalent gamble is easily influenced by risk-attitudes, which causes the
probability derived from this method to be unequal to the expert’s subjective probability, thus
introducing a bias.

Gamble-like methods are not very expert-friendly methods. The methods are complicated
to learn as they do not correlate with experts’ usual cognitive processes. Also, experts may feel
confronted with lotteries that are hard to conceive because of the rare and unethical situations
they represent, like, for example, winning a two-week holiday if a patient dies [126]. Another
drawback is that these methods are very time-consuming; they tend to take a lot of time per
probability which makes them less suitable for assessing the thousands of probabilities required
for probabilistic networks.

Studies that used the discussed elicitation methods for utility elicitation, report the consistent
finding that numbers elicited with a probability scale are significantly lower than those elicited
with the Standard Gamble [108, 115, 122]. Also, values obtained with the certain-equivalent
gamble are consistently lower than for the lottery-equivalent gamble [74]. We are unaware of
similar studies using the elicitation methods for probability elicitation.

5.3.3 Probability-wheel methods

An indirect method that is not influenced by risk-attitudes is the probability-wheel method. A
probability wheel is a wheel-of-fortune-like wheel with two differently coloured sections. The
sizes of these sections are adjustable and there is a pointer attached to the center of the wheel.
An example of a probability wheel is shown in Figure 5.4.

Example 5.7 Using the same example as before, the expert is now asked which of the following
events he considers most likely:

• the length of the tumour of an arbitrary patient with oesophageal carcinoma is more than
6 cm,

• or, after spinning the pointer, it will land in the red section.

The size of the red section of the probability wheel is adjusted by the elicitor until the expert
considers the two events to have equal probability. The probability of an arbitrary patient having
a tumour longer than6 cm now equals the proportion of the probability wheel that is coloured
red. �

The probability-wheel method has several drawbacks. The method tends to be very time-
consuming, even infeasible when hundreds or thousands of probabilities are needed, as for
probabilistic networks. Also, the method is quite close to direct estimation as the expert may
recognise that the judgements he is asked to make are disguised assessments of the proportion
of red showing on the wheel [129]; the advantage of suppressing judgemental biases, therefore,



122 Chapter 5. The Elicitation Process

GREEN

RED

Figure 5.4: A probability wheel

may disappear. The method is not suitable for assessing very large or very small probabilities,
for it will be difficult for an expert to distinguish between a very small red section and an even
smaller red section. The advantage of probability wheels could be that they help experts visualise
probabilities, but definitive conclusions from research on this are lacking [5].

5.3.4 Other methods

In this subsection we will briefly describe two other, very different and less-known methods for
probability elicitation encountered in the literature. With the first method, experts are allowed
to express their knowledge about uncertainties in any form they prefer and not necessarily in
numbers. The second method requires experts to make pair-wise comparisons between events.

Druzdzel and Van der Gaag [36] presented a method for probability elicitation where experts
are allowed to provide both qualitative and quantitative information, whichever they are most
comfortable with. The assumption underlying this method is that in the hyperspace of all possible
probability distributions over the set of variables under consideration, one of these distributions is
the “true” one. The information provided by the experts can be looked upon as a set of constraints
used to diminish the hyperspace of possible distributions. These constraints are put in a canonical
form resulting in a system of (in)equalities with constituent probabilities as unknowns. From
these inequalities an upper and lower bound can be computed for any probability of interest. For
the interval between upper and lower bound a second-order distribution is computed to determine
the point within the interval that is most likely to be the actual probability. This second-order
distribution is found by sampling from the distribution hyperspace and checking for each selected
distribution whether it is a solution for the system of (in)equalities.

Another method, originally designed for utility elicitation, is theanalytical hierarchy pro-
cess[109]. With this method an expert is presented with all possible combinations of pairs of
events for which utilities are to be assessed. When the method is used for probability elicita-
tion, the expert is asked to compare, for each pair, the two events and to indicate the relative
likelihood of eventsA andB using the scores shown in Table 5.1. This method has the ad-
vantage that experts are not required to explicitly state probabilities. Another advantage is that
consistency of the expert’s statements can be easily checked, for the result from the comparisons
should be a transitive ordering of events. However, using this method for probability elicitation
for probabilistic networks poses two problems:
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• The number of comparisons to be made exceeds, by far, the number of probabilities to be
assessed. For example, the assessment of a mere 100 probabilities would require an expert
to make

(
100
2

)
= 4950 pairwise comparisons of events.

• A lot of the events will differ so much that they are hard to compare for an expert.

Besides the problem of the great number of comparisons to be made, rather uninsightful sta-
tistical methods are required to compute the probabilities from the results of the comparisons.

score relative likelihood
1 A andB are equally likely
2 undecided between 1 and 3
3 A is weakly more likely thanB
4 undecided between 3 and 5
5 A is strongly more likely thanB
6 undecided between 5 and 7
7 A is very strongly more likely thanB
8 undecided between 8 and 9
9 A is absolutely more likely thanB

Table 5.1: The scale for pair-wise comparisons

5.4 Discussion

We discussed various issues that are to be taken into consideration when faced with the task of
probability elicitation. We saw that probability judgements are prone to bias and that several
elicitation methods have been developed to aid an expert in assessing probabilities, thereby sup-
pressing, to some extent, these biases. It is clear that an important motivation for choosing a
particular probability elicitation method is the ease with which both elicitor and expert under-
stand and use the method. Moreover, the time an expert has available can limit the choice of
methods. There will often be a trade-off between available time and the precision required, since
the methods that are said to provide the most precise results are also the most time-consuming.
Some people doubt however, that this trade-off really exists [63]: the use of gambles might not
result in assessments that are as good as is believed, and faster methods such as the probability-
scale methods might produce results that are better than believed.

While some of the phenomena reported in the heuristics and biases literature are real, reliable
and reproducible, they may not be relevant, that is, they may not apply to the situation in which
thousands of probabilities need to be assessed for a probabilistic network. For example, some
biases, such as the conjunction fallacy, cannot arise during elicitation of probabilities for proba-
bilistic networks [3]. Edwards [39] gives another three arguments why some of the phenomena
may be irrelevant to probability elicitation for probabilistic networks. The first is domain ex-
pertise: for the elicitation of probabilities, experts are used who presumably know all there is to
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know about the subject matter of the probabilities being judged. The studies concluding that hu-
mans are typically overconfident when providing probability estimates, arrive at that conclusion
using general knowledge (almanac) questions and student participants that are often not trained
in estimating probabilities. It is not at all clear that these results can be generalised to experts
making assessments pertaining to their expert knowledge. Weather forecasters, for example, turn
out to be very well calibrated indeed [38]. Another argument is probability judgement expertise:
judging probabilities is something that can be learned. An expert who has done some training in
estimating probabilities will find it easier to translate his knowledge and experience into prob-
ability judgements. The third reason is the possibility of consistency checks such as the sum
checks and antecedent checks discussed in Subsection 5.1.6. These checks can be used during
elicitation to provide the expert with information based on which he can, if necessary, reconsider
his judgements.

When probability elicitation is seen as part of a stepwise refinement procedure, fast elicitation
methods can be used to get initial rough estimates of the desired probabilities; sensitivity analysis
methods [26] are then used to determine to which variables in the network the outcome is very
sensitive. The focus of precise probability elicitation can then be put on the most sensitive parts
of the network. Another important issue to keep in mind is that the networks are used to support
a decision maker. They should at least improve the situation in which they are to be used, which
means they do not always have to be100% correct [39].

We are unaware of any systematic experimental evaluation studies of the different elicitation
methods, especially in view of probabilistic networks; the results of the considerable number of
empirical comparisons of methods do not show great consistency [83]. It is clear that a lot of
research necessary to be able to decide on the best elicitation method, still has to be done. What
is lacking are large multi-method studies where experts are asked to assess a large number of
probabilities with every single method. It is important to get ecologically valid results, that is,
results based on behaviour that is relevant to a real-world situation. Such results can provide for
a meta-analysis about when to use which method and what methods not to use at all.



CHAPTER 6

Designing a New Elicitation Method

In Chapter 5 we reviewed a number of probability elicitation methods that were designed to
overcome, to at least some extent, the difficulties people experience when assessing probabilities.
These methods, unfortunately, are often complicated and time-consuming. In this chapter we will
present a new probability elicitation method tailored to fast assessment of rough initial estimates.
The method is intended, in combination with sensitivity analysis procedures, to be part of a
stepwise refinement procedure [26].

To be able to elicit a large number of probabilities in little time, probability assessment should
be made easy on the experts. To this end, we look at their natural way of expressing probabilistic
information. Except in situations where probabilities are objectively measurable, most people
feel more at ease with verbal probability expressions than with numbers: when people commu-
nicate probabilistic information, they frequently do so in words rather than in numbers. In the
assessment task, experts should therefore be allowed to communicate probabilistic information
in words. Yet, it has often been argued that numbers are to be preferred over words. Words are
more variably interpretable, the meaning being influenced by, among other things, context and
personal opinions. In addition, verbal expressions are too vague, since different people translate
the same verbal expression into different numerical expressions. Two assumptions underlie this
argumentation against the use of words: the assumption that the correct way to interpret a verbal
expression is by use of a numerical expression of probability and the assumption that numerical
probability expressions are always interpreted in the same way. Uncertainty, however, is always
dealt with within a context. This context can be either explicit, or people will implicitly think
of one. Context not only influences the interpretation of verbal probability expressions, it also
influences the interpretation of numerical probability expressions. The interpretation of both
verbal and numerical probability expressions is based on actions and consequences related to the
stated probabilities. For example, if ‘a low probability of infection’ and ‘a low probability of
death’ are interpreted differently as a result of the consequences involved, then so will ‘a23%
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chance of infection’ and ‘a23% chance of death’. In addition, numerical expressions often act as
categorical descriptions such as ‘70 - 80%’, or as anchors for ordinal descriptions, for example
‘less than a half percent’, rather than as real numbers [71]. For expressing uncertainty, numbers
may therefore be just as vague as words.

From these considerations, we conclude that experts should be allowed to state their assess-
ments in whichever mode, verbal or numerical, they prefer. However, as probabilistic networks
require numbers, all verbal assessments need a numerical translation. To ensure that for each
context this translation is agreed upon by the expert, we propose the use of a response scale
similar to a probability scale but with both verbal and numerical anchors. To design this scale,
we studied the relation between verbal and numerical probability expressions. As we are not the
first to study this relation, we will start by reviewing other researchers’ empirical studies on the
use of probability expressions in Section 6.1. Results in favour of numbers as well as results in
favour of words will be reported. Although no unequivocal conclusions can be drawn from these
studies, they do provide us with several considerations, summarised in Section 6.2, to take into
account when allowing the use of verbal probability expressions in communicating uncertain
information. We took these considerations into account in our own studies, described in Sec-
tion 6.3, in which we, unlike other researchers, never asked subjects to directly translate words
into numbers or vice versa. From these studies a scale with both verbal and numerical anchors
emerged, that constitutes the basis of the new elicitation method described in Section 6.4.

6.1 Modes of probability expression: previous studies

Many researches have studied the relationship between numerical and verbal expressions of un-
certainty. In this section we review previous empirical studies on the use of probability expres-
sions. Section 6.1.1 deals with the advantages of numbers over words for expressing probabili-
ties. Subsequently, the advantages of words over numbers are discussed in Section 6.1.2.

6.1.1 Numbers versus words

Numbers have a persuasive advantage over words in the sense that they are precise, allow cal-
culations, and have a fixed rank-order. Words are, in comparison, vaguer, do not allow calcu-
lations, and are more variably interpretable [131]. This disadvantage of words is apparent from
the results of substantial empirical research studying numerical versus verbal probability expres-
sions in general [12, 13], and studying the influence of context [8, 10, 84, 130] and severity of
consequences [133] on the numerical interpretation of verbal probability expressions, more in
particular. In these studies, student subjects, as well as experts were asked to translate numerical
expressions into words and vice versa.

The empirical studies, for example, report the quite consistent finding of a great between-
subject variability in the numerical values assigned to verbal probability expressions and a great
overlap between the interpretations given for different words (cf. [8, 130]). Within-subject vari-
ability was however found to be small [12]. These results hold for both student and expert sub-
jects, independent of whether or not a context was provided. Similar observations were found
when subjects were asked to transcribe a graphical representation of a probability: much less
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between-subject variability was found in the numerical probability expressions subjects used,
than in the verbal expressions they gave. Within-subject variability in the use of expressions was
again found to be small for both the numerical expressions and the verbal expressions [13].

Studies focusing on the influence of context on the interpretation of verbally expressed prob-
abilities reported that the interpretation is indeed context-dependent, resulting in an even greater
between-subject variability than when verbal expressions were presented without context. If
winning a lottery is ‘possible’, entering the lottery may generally be considered a good decision
to take, while if encountering a much disliked person at a party is ‘possible’, going to that party
is generally not judged to be wise. Moreover, personal opinions about the consequences of the
events referred to in the context presented result in individual variations in the meanings assigned
to probability expressions. Some people may not mind meeting a disliked person or even enjoy
the confrontation, others may definitely wish to avoid it.

Physicians are no exceptions to the above observations. When physicians were asked to
translate verbal expressions into numerical expressions [11], they regularly gave different inter-
pretations. When probabilities were communicated by verbal expressions, interpretations were
also found to be highly variable, presumably because these were influenced by the severity of
the consequences associated with the communicated information [81]. For example, ‘low prob-
ability of infection’ was interpreted differently than ‘low risk of death’. Most of the authors
of the studies referred to in this subsection conclude that physicians should use numerical, not
verbal, expressions of probability (see also [85]): as verbal probability expressions may lead to
confusion, numbers should be used.

6.1.2 Words versus numbers

Verbal expressions of probability are generally perceived as more natural than numerical prob-
abilities, easier to understand and communicate, and better suited to convey the vagueness of
opinions [131]. An interesting phenomenon, termed the ‘communication mode preference para-
dox’ was detected [41], however, when student and expert subjects in a study preferred to receive
precise, that is numerical, information, yet preferred to express their own opinions in, vaguer, ver-
bal terms. This preference was, however, not very strong, as subjects were willing and able to
use both modes of expression (see also [94]). Other researchers found that one (student) subject
out of three prefers numbers for both expressing and receiving information, saying that numbers
are more precise, the second prefers words for both, and the third indeed exhibits the mentioned
paradox [132].

Physicians rarely reason using numerical probabilities. As the use of numbers may wrongly
suggest a precision of opinion [12], physicians prefer to use words in communicating probabil-
ities to their patients [10, 71, 81]. In their communication, a variation of the preference paradox
was found [10]: while physicians preferred to use words, thinking that their patients would un-
derstand words more easily, the patients preferred to receive information in numbers. Yet, when
patients were given numerical information, they appeared to not understand the numbers as in-
tended by the physicians. For example, a physician could state a35% probability of having a
disease and thereby intend to communicate a moderate probability; some patients might then
understand that they had a considerable probability of indeed having the disease and be more
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alarmed than the physician meant them to be, while others would understand it as less than fifty
percent chance and overestimate their well-being (cf. [19]). Therefore, numbers should not self-
evidently be preferred to words [10]. The two modes of communicating probability can both be
used, as the argument that verbal expressions are too vague in meaning to be used in medicine is
counter-balanced by indications that numbers have very little meaning for the average member
of the public [86].

The between-subject variability found in the interpretation of verbal probability expressions
varies from expression to expression. Expressions for the extremes of the probability range, that
is: impossible and certain, are much less variably interpreted than expressions towards the mid-
dle of the range, such as possible or likely [66,67,84]. The use of qualifiers such as ‘very’ seems
to introduce additional variability [116]. Comparison of a number of studies addressing the inter-
pretation of verbal probability expressions led to the conclusion that, regardless of the population
of subjects, the format of questions, instructions, and the context, for most verbal expressions the
variation of mean assigned values was modest [84,86]. A study among medical subjects, more-
over, concluded that although context influences the assignment of numbers to verbal probability
expressions, it does not influence the rank order of the expressions [67]. In fact, an encouraging
between-subject consistency was found in the rank ordering of verbal probability expressions by
general practitioners [86] and individuals were found to have a relatively stable rank ordering
of verbal probability phrases over time [12, 67]. When subjects were asked to assign numerical
interpretations to verbal expressions in a meaningfully ordered list, these assignments were less
variable than their assignments to expressions in a randomly ordered list [52].

Taking into account the above experimental results, it seems justifiable to allow experts to
continue to use verbal expressions if they prefer to, but enforcing more consistency of termi-
nology [81]. Another argument that words are as suitable to express probabilities as numbers
is found in the way information is processed. Whether people receive probabilistic information
in verbal or in numerical form, appears not to influence the subsequent thought processes or ac-
tions based on the information. For example, when subjects were asked to provide answers for
almanac questions and to indicate how confident they were of the correctness of their answers,
the overall quality of these correctness forecasts in the two communication modes as well as the
judgement processes were found to be similar [131]. The results for the communication modes
did differ, however, in that with numbers, the50% category was used much more often than the
toss-up category was used in the verbal mode. Overconfidence was further found to be system-
atically more prominent with verbal than with numerical probability expressions. The overall
conclusion seems to be that there are no grounds to prefer either numerical or verbal probability
expressions as the better communication medium (cf. [13,41,48,87,117]).

6.2 Design considerations and goals

From the review in the previous section, we feel that there is sufficient justification for an elic-
itation method which allows the use of both numerical and verbal expressions of probability
(cf. [60]). To prevent experts from using verbal expressions for which the variation in inter-
pretation is found to be high, their choice of words should be limited to a pre-selected list. In
designing such a list, we may take into account that differences in interpretation of verbal ex-
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pressions may be reduced when the expressions are offered in a pre-defined rank order. Other
studies addressing the relation between verbal and numerical probability expressions used lists
of 18 expressions [13] or19 [12, 52] or34 in a long list and14 in a shorter version [10], as few
as two [48] or as many as52 [84]. These lists were compiled by the researchers conducting the
studies, which does not guarantee that people would actually use them. In fact, Zimmer [138]
found that when subjects were asked directly for verbal descriptions of probability, the mean
number of expressions used was5.44. As it is easier to distinguish between a small number of
expressions (“seven plus or minus two” [82]) than it is to demarcate the meanings of a long list
of expressions [121], it is advisable to limit the number of verbal expressions used to a carefully
selected list [12,96]. For our elicitation method we will construct such a short list of rank ordered
verbal expressions.

As the purpose of an elicitation method is the elicitation ofnumericalprobability expressions,
we have to find a way to translate the verbal expressions used by the experts into numbers. Other
researchers have suggested the use of a table with translations between verbal expressions and
their numerical meaning [44, 52]. We, however, do not want to fix the numerical interpretations
of the verbal expressions to an explicitly specified number; we do want to provide a numerical
translation for each verbal expression, but at the same time allow the expert to slightly adjust
this numerical translation such that it better suites his opinion. In addition, we want to allow
the expert to provide any numerical estimate, if he feels comfortable doing so. In Chapter 5, we
saw that probabilityscalesare used as an aid for probability elicitation. As these scales allow
for fast elicitation, we feel that when probabilities are elicited from experts, the experts should
be shown a scale, depicted graphically as a vertical line with numerical anchors on the one side
and words on the other. When experts are more comfortable with numbers, they may refer to the
numerical side of the scale and when they prefer to express their opinions in words, they may
refer to the verbal anchors. The same scale may also be offered as reference for the interpretation
of the output of a probabilistic network. Although probabilities elicited with a probability scale
tend to be inaccurate (see Chapter 5), they are very useful as a first step in a step-wise refinement
procedure.

In the following section we will describe the studies we undertook to arrive at a scale with
both verbal and numerical anchors. In these studies, we took into account that the context in
which expressions are elicited and presented may influence their interpretation. Unlike other
researchers, in our studies we never asked subjects to directly translate words into numbers or
vice versa, as we think that having to give such a translation is an artificial task, not true to
actually performed cognitive processes (cf. [17]). Since our newly designed method was to be
tested with medical experts, we included subjects with a medical background. The result of our
studies is a set of expressions, whose numerical meaning is agreed upon and which together
cover the whole range from zero to a hundred percent probability; this set of expressions is then
used for the anchors on our response scale.

6.3 Our study

In this section we describe a series of four successive studies and discuss their results. The stud-
ies were set up to develop a set of verbal probability expressions, to be used in combination with
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a numerical probability scale. The goal of the first study was to arrive at a list of commonly used
verbal probability expressions. To this end, we asked subjects to generate such expressions. The
second study was designed to check whether a stable rank order existed for the most commonly
used expressions. We therefore asked (other) subjects to rank order the expressions from the first
study. The third study was designed to determine the distances, or dissimilarities, between the
expressions. This was done by asking subjects to make pairwise comparisons between each pair
of expressions. The resulting distances were then used to determine how the words should be
projected on a numerical probability scale. In the fourth study, we tested whether the translations
that had resulted from the previous three studies for the verbal expressions were acceptable. To
accomplish this, we did not ask subjects whether they thought that, for example, ‘a low probabil-
ity’ equals ‘23%’; instead, we tested if, in a certain context, they interpreted ‘low probability’ the
same as ‘23%’, that is, we tested whether people reacted the same to the verbal and the numerical
expressions In the fourth study, we therefore presented subjects with situations that required de-
cisions; we then tested whether their decisions were influenced by the mode, verbal or numerical,
in which probability information was presented. Examples of the questionnaires we used in the
various studies are given in Appendix C.

6.3.1 The first study

In the first study we aimed at a list of commonly used verbal probability expressions. Most
researchers use a dictionary or published articles to come up with a list of probability expressions.
Since we had no reason to assume that such sources contain only the expressions most commonly
used and, in fact, felt that these sources are more likely to list all linguistic possibilities, we
designed a questionnaire.

Subjects There were53 subjects in the study. Of these,47 were students (Computer Science,
Psychology, and Artificial Intelligence) and6 faculty members;23 were female and30 male.
The ages of the subjects ranged between18 and54 with a mean of23 (SD = 8.7).

Procedure The subjects received the questionnaire. In the first paragraph they were asked for
their cooperation in generating a list of commonly used verbal terms expressing (im)probability.
Examples of the use of verbal probability expressions were given, such as “it is unlikely that I
will pass my exam” or “I will probably go to Amsterdam this weekend”, to illustrate the basic
idea. Instructions were given, in the second paragraph, to write down a list of terms judged
suitable in situations where one wishes to express a degree of (im)probability. Subjects were
reminded to only list expressions they thought were common, and to try them out for themselves
in different virtual situations.

Results The53 subjects together generated144 different expressions. A mean of8.2 expres-
sions were given per subject (SD= 4.1). Of these144 expressions,108 (75%) were built from a
probability term plus a modifier such as ‘very’ or ‘reasonably’. Some modifiers seemed synony-
mous, e.g. ‘almost possible’ and ‘nearly possible’, but we counted the phrases containing such
modifiers as different phrases. Ninety-five expressions (66%) were used by only a single subject
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and another17 (11%) by only two subjects. Table 6.1 lists translations of the seven expressions
that were used by15 or more subjects (30%). The translations stem from the original Dutch
phrasesmogelijk, waarschijnlijk, onwaarschijnlijk, zeker, onzeker, te verwachten, andon-
mogelijk. The next often used term was given by11 subjects, a couple of expressions were
given by nine and eight subjects respectively, the remaining expressions had a frequency near
one. Disregarding the modifiers in the composite expressions as a check of common use, that
is, counting ‘almost possible’ and ‘nearly possible’ as ‘possible’ etc., the difference in frequency
between the seven mentioned expressions and the remaining ones was even greater.

expressions frequency
possible 38
probable 30
improbable 28
certain 25
uncertain 21
expected 18
impossible 15

Table 6.1: Verbal probability expressions and the number of times these were given by subjects
in the first study (n = 53).

Discussion In studies into the use of verbal probability expressions, most other researchers
used lists of expressions they compiled themselves by scanning literature or borrowing from
others. Clark [17] proposed the method we used, that is, to ask subjects to generate lists of
commonly used expressions. He had fewer subjects (20), who generated more expressions each,
with a mean of12.9, than our53 subjects, with a mean of8.2. The most frequently used expres-
sions in his study werecertain, possible, likely, definite, probable, unlikely, andimpossible.
So, he also found seven expressions, quite comparable to ours. He also found more ‘positive’
expressions, that is, fromfifty-fifty towardscertain, than ‘negative’ ones, that is, fromfifty-fifty
towardsimpossible.

In their attempt at translating verbal probability expressions into numbers, Mosteller and
Youtz [84] advised to use the expressionsimpossible andcertain for the two extremes, and
even chance for the mid-point. To cover the rest of the range, they advisedprobable with
modifiers. However, expressions with modifiers may give more rise to ambiguity than one-word
expressions [116]. We therefore decided to use for our listpossible, probable andcertain plus
their negations, andexpected because that was used relatively often by our subjects.

We used the thus compiled list of seven frequently generated expressions for the next studies.
As we wanted a term representing the center of the probability range, we addedundecided (in
Dutchonbeslist), to express fifty-fifty probability. This list of eight expressions neatly kept us
within the advised range of seven plus or minus2 [82]. We expected to resolve the asymmetry
between the number of positive versus negative expressions in our next ranking and scaling
studies.



132 Chapter 6. Designing a New Elicitation Method

6.3.2 The second study

The second study was set up to determine if a single, stable rank order existed for the eight verbal
probability expressions found in the first study. In this study we only focused on a rank order.
Distances between the expressions were established in the third study.

Design Subjects were asked to rank order the eight verbal probability expressions presented
to them. We had a context and a no-context group. In the no-context group, the expressions
were offered in isolation. In the context group, the probability expressions were embedded in a
(Dutch) sentence describing a medical situation (for example: “It is certain that young people do
not get varicose veins”).

Subjects Of the no-context groups, one group (group 1) consisted of15 female and11 male
medical students. Their ages ranged from19 to 45 years, with a mean of21 (SD = 5). A second
group (group 2) consisted of19 female and7 male social sciences students. Their ages ranged
from 18 to 29, with a mean of21 (SD = 2.5). Of the context groups, one group (group 3)
consisted of13 female and8 male medical students whose ages ranged from19 to 32, with a
mean of22.5 (SD = 5). The second group (group 4) consisted of19 female and3 male social
sciences students; their ages ranged from19 to 26, with a mean of21 (SD = 1.6).

medical subjects other subjects
no context group 1,n = 26 group 2,n = 26
context group 3,n = 21 group 4,n = 22

Table 6.2: The subjects in the second study, with numbers of subjects per group.
Note that in both the context and the no-context groups, we had medical students and other
(social sciences) students (see Table 6.2).

Procedure The subjects received a one-page questionnaire. At the top of the page, the task
was introduced to them and instructions were given. The instructions were the same for both
conditions, that is, the subjects were instructed to order the eight expressions, be they presented
in isolation or embedded in a sentence, by assigning a ranking number to each of them. The num-
ber1 was to be given to the expression denoting the highest level of probability and subsequent
numbers to expressions denoting subsequently less probability. Assignment of the same ranking
number to more than one expression was allowed (cf. [17]). Following these instructions, the
eight expressions or sentences were presented, listed vertically. The presentation order was arbi-
trarily set topossible, impossible, uncertain, certain, probable, improbable, expected and
undecided in the no-context condition and toprobable, improbable, possible, undecided,
impossible, uncertain, expected andcertain in the context condition.

Data analysis A simple method of testing for differences in rank orderings provided by med-
ical versus other subjects and for the context versus no-context groups, is to compute, for each
group, the mean rank number assigned to a probability expression and to compare these means
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by analysing variance (SD2). For each of the eight verbal probability expressions, we analysed
the between-group variance of the mean ranking numbers with a one-way ANOVA (ANalysis
Of VAriance). Because we found significant differences in the means, we further analysed the
data with PRINCALS (PRINcipal Components analysis by Alternating Least Squares), designed
specifically for handling ordinal data.

no context context
(n = 48) (n = 42)

certain 1.15 (0.94) 2.26 (2.46)

probable 2.70 (0.78) 3.29 (1.89)

expected 2.65 (0.85) 3.57 (1.49)

possible 3.81 (0.52) 4.56 (1.76)

undecided 5.69 (1.22) 5.40 (1.56)

uncertain 5.96 (0.87) 5.50 (1.46)

improbable 6.44 (0.84) 5.13 (2.16)

impossible 7.61 (0.99) 6.29 (2.33)

Table 6.3: Mean ranking numbers (and standard deviations) of the eight probability expressions,
by the subjects in the no-context group (groups 1 and 2) and the subjects in the context group
(groups 3 and 4).

For each dimension exposed in the data, PRINCALS can reveal a single ordering of the eight
verbal expressions, that underlies the orderings provided by the different subjects. We assumed
that all subjects gave their ordering along a single dimension, the level of probability. To test this
assumption, we computed with PRINCALS a solution for two dimensions. If our assumption
was correct, then the solution would have a high quality on only one dimension; on the other
dimension the quality would be low enough to discard it. The quality of a solution, on a certain
dimension, indicates how good the ordering computed by PRINCALS, for that dimension, rep-
resents the different orderings given by the subjects. For each dimension, PRINCALS indicates
the quality of this ‘fit’ for every separate subject, as well as summarises the quality of a solu-
tion over all subjects. More detailed information on ANOVA and PRINCALS can be found in
Appendix B.

ANOVA results The data of four subjects from group 1 and of one subject from group 4 had
to be excluded from the ANOVA analyses, because the given ordering was incomplete. All rank
orders were transformed to range from one to eight, where multiply used ranking numbers were
encoded with their mean value, i.e. ‘1, 2, 2, 3, 3, 3, 4, 5’ was changed into ‘1, 21

2
, 21

2
, 5, 5, 5, 7, 8’,

as the two2s occupy positions 2 and 3, and the3s occupy positions 4 through 6. The ANOVA
analysis revealed that the four groups of subjects had assigned significantly different mean rank-
ing numbers to five of the eight terms:possible, impossible, improbable, expected andcer-
tain. Post hoc tests using Tukey’s HSD-procedure showed that, for these five expressions, only
the with-context and without-context group means differed significantly atα = .05; there were
no significant differences between medical subjects and other subjects for any of the expressions.
We present the mean ranking numbers found in Table 6.3; since the only factor that contributed
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to differences in means was context, the mean ranking numbers for the two no-context groups
(groups 1 and 2), and for the two context groups (groups 3 and 4), are taken together.

Discussion From the ANOVA results, we concluded that context did indeed influence the
rank order of the eight verbal expressions. The medical subjects and the others did not differ in
the rank orders they produced. Our results are comparable to the results found in four related
studies that did not include context (see Table 6.4).

no context Tavana Budescu Clark
(this study) study 5.4 study 5.2
(n = 48) (n = 30) (n = 32) (n = 16) (n = 16)

certain 1.15 (0.94) 1.05 – – 1.36
probable 2.70 (0.78) – 2.80 2.83 2.56
expected 2.65 (0.85) – – 2.62 –
possible 3.81 (0.52) 5.29 4.71 3.61 3.62
undecided 5.69 (1.22) – – – –
uncertain 5.96 (0.87) – 4.94 5.38 5.94
improbable 6.44 (0.84) – 6.22 6.45 6.83
impossible 7.61 (0.99) 8.00 – 7.87 7.90

Table 6.4: Mean ranking numbers (and standard deviations) of the eight probability expressions
by the subjects in the no-context group (groups 1 and 2) and as reported by Tavana et al. [120],
by Budescu & Wallsten [12] and by Clark [17], studies 5.4 and 5.2.

Considering that the data are ordinal, we feel uncomfortable with just the mean ranking
numbers. For example, the high standard deviations for the mean ranking numbers given by the
context group are difficult to explain by just looking at the means. A possible explanation of
this phenomenon would be that the subjects did not rank the expressions on the single dimen-
sion of probability, but on another dimension as well. To check this, we perform an additional
PRINCALS analysis.

PRINCALS results The data of none of the subjects had to be excluded from the PRINCALS
analysis, as they had been from the ANOVA analyses, because PRINCALS can handle missing
data. For both no-context groups, PRINCALS found a high-quality solution in one dimension
(see Appendix B). Most subjects in these groups had provided rank orders along this one dimen-
sion; for two medical subjects and one other subject a second dimension was exposed. Because
on inspection of their rank orders, there seemed to be no logical explanation for their order, we
presumed that these three subjects had misunderstood the task and we excluded their data. The
rank orders for the probability expressions given by the rest of the subjects in the groups 1 and 2
were quite the same.

For the two context groups, a solution in two dimensions was found. Upon inspection of the
quality of the solution for the individual subjects, we found that12 of the medical subjects scored
high on the first dimension and had given comparable rank orderings; nine medical subjects
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scored high on the second dimension. An additional PRINCALS analysis of the group of12
subjects resulted in a one-dimensional high-quality solution. Inspection of the quality of the
solution for the individual subjects from group 4 revealed that11 of the 22 subjects had given
comparable rank orderings and scored high on the first dimension; the other11 subjects scored
high on the second dimension. In an additional PRINCALS analysis of the11 subjects scoring
high on the first dimension, a one-dimensional high-quality solution was found.

On close examination of the rank orders given, the nine medical subjects and11 others who
scored high on the second dimension appeared to have judged the probability that the sentences
in which the expressions were embedded were truthful statements, instead of judging the expres-
sions themselves. As an illustration, one of these subjects judgedimprobable in the sentence
“It is improbable that someone with tonsillitis does not have a sore throat” to express the highest
level of probability andpossible in the sentence “It is possible that someone faints from the heat”
to express the lowest level of probability. Taking together the rank orders given by these appar-
ently sentence-ranking subjects did not reveal an understandable pattern, however. We speculate
that another factor had influenced these rank orders, possibly familiarity with the complaint for
the medical subjects and everyday beliefs about such complaints for the other subjects.

Since the ANOVA analyses had shown that there were no differences between medical sub-
jects and others, we did another PRINCALS analysis, taking these two groups together. For the
resulting no-context group a high-quality solution was found in one dimension. The associated
order of the verbal expressions is presented in the first column of Table 6.5. Taking the medical
subjects and the others in the context groups together, and excluding the subjects who seemed
not to have followed our instructions to rank order the expressions, we found a high quality one-
dimensional solution; the expressions were ordered as shown in the second column of Table 6.5.

To conclude the study, we performed a final analysis over all four groups in the two conditions
who had ranked the expressions on one dimension (n = 72). Their rank orders could indeed be
summarised in one dimension. The associated order of expressions is shown in the third column
of Table 6.5.

no-context group context group all subjects
(groups 1 and 2) (groups 3 and 4)

(n = 49) (n = 23) (n = 72)
certain 1 1 1
probable 3 2.5 2
expected 3 2.5 3
possible 3 4 4
improbable 5.5 6 6
uncertain 5.5 6 6
undecided 8 6 6
impossible 7 8 8

Table 6.5: Rank order of the eight expressions of probability for the subjects in the no-context
group (groups 1 and 2) and the subjects in the context group (groups 3 and 4), and all subjects
together.
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Discussion Surprisingly, the termundecided we had introduced to express fifty-fifty proba-
bility was ranked last by the subjects in the no-context group. The calculated means for this
expression reveal a high standard deviation. Clearly, the interpretation of the expressionun-
decided is not unambiguous. An explanation may be the order in which the expressions were
presented to the subjects:undecided was the last expression in the list.

Our PRINCALS analysis showed that not all subjects in the context group rank-ordered the
expressions: almost half of them gave rank orderings on a second dimension. This phenomenon
was not found for the subjects in the no-context group. We therefore conclude that context does
not highly influence the rank ordering of the expressions themselves, but context does seem to
distract subjects from the actual task.

For ordinal data, the order of numbers is far more essential than the distances between the
numbers. Computing means for ordinal data can, therefore, give a distorted impression of the
data: atypical ranking numbers provided for an expression may affect the mean ranking number
more than it affects the PRINCALS solution. Therefore, in our opinion, the PRINCALS analysis
is more appropriate than the analysis of mean rank orderings. To conclude, we summarise the
results of our second study as revealing the following rank order of our eight verbal probability
expressions:certain andimpossible at the extremes, withprobable, expected andpossible,
in that order, expressing less probability from the certain-side down, anduncertain, improb-
able andundecided toward the impossible-side. This rank order is stable over all groups and
independent of context.

6.3.3 The third study

As we were constructing a scale to be used in a probability elicitation method, and therefore
required numerical translations of our verbal expressions, an order of the expressions alone was
not sufficient. We had to establish the ‘distances’ between the expressions, that is, we had to
establish whether two (or more) expressions were taken to mean almost the same or were quite
distinguishable in meaning. To this end, we set up a third study, in which we asked subjects to
rate differences between expressions. We expected to find thatcertain andimpossible would be
judged as extremely different, whileuncertain, improbable andundecided might be judged as
rather similar.

Subjects In the study we had two groups of subjects, again one group with a medical back-
ground (group 1) and one comparable group with another background (group 2). The subjects in
group 1 were28 students from the Department of Medical Biology.12 of them were female and
16 were male. Their ages ranged from19 to 25, with a mean of20 (SD = 1.5). The subjects in
group 2 were56 Computer Science students.13 of them were female and43 were male; their
ages ranged from20 to 53, with a mean of24 (SD = 4).

Procedure In the study we asked subjects for pairwise comparison, that is, for similarity judge-
ments for all pairs of verbal probability expressions. For the eight expressions, there were28
pairs. A similarity judgement was made by putting a mark for each pair of expressions on a
10 cm line, using for the extremes the expressions ‘exactly the same’ and ‘completely different’
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as anchors. Each judgement was made on a separate sheet of paper. The order of presentation
of pairs was random across subjects and, for a pair AB, half the subjects received the pair with
A listed first, while the other half received B first. Subjects performed four trial runs before
commencing with the real judgements.

Data analysis The judgement of (dis)similarity for each pair of expressions from each subject
was scored in millimetres, read from a ruler placed against the10 cm line. For each subject an
8 × 8 data matrix was constructed, in lower triangular form with zeros on the diagonals. The
matrices were analysed with ALSCAL (Alternating Least-Squares SCALing). ALSCAL takes
a matrix of distances between objects and computes the positions (coordinates) of the objects
in somen-dimensional space, using Euclidean distance. ALSCAL can also compute a single
solution for all matrices together. Since all probability expressions seemed to be comparable, we
did an analysis in only one dimension. ALSCAL produces a list ofx-coordinates for the eight
probability expressions. These coordinates are computed such that their fit with the distances
between the expressions given by the different subjects is as good as possible. More detailed
explanation of ALSCAL can be found in Appendix B.

We mapped the coordinates of the expressions yielded by ALSCAL onto a scale, with as
anchors the expressions (certain and impossible) representing100% and0% probability, re-
spectively, and then using a linear transformation to calculate the probabilities of the other ex-
pressions (compare [120]).

ALSCAL results The initial ALSCAL analysis of the matrices of the medical subjects from
group 1 showed that the matrices of two subjects deviated considerably from the calculated
coordinates. Upon inspection of the matrices of these two subjects, the deviation seemed to be
the result of a judgement ofcertain and impossible as very similar (a distance of1 mm on
the10 cm line, where one would expect the full10 cm). We removed the data from these two
subjects and performed another analysis with the remaining26 matrices. The coordinates of the
eight expressions, returned by ALSCAL, are given in the left half of the leftmost double column
of Table 6.6; the right half of this double column presents a linear mapping of these coordinates
onto a probability scale from one to zero. The initial analysis of the matrices of the subjects from
group 2 showed that the matrices of four subjects had to be removed because of their poor fit.
The analysis with the remaining52 matrices resulted in the coordinates of the eight expressions
as given in the left half of the middle double column of Table 6.6. The right half of this column
again presents a linear mapping of these coordinates onto a probability scale. We performed a
final analysis over the78 matrices from the two groups together. The right double column of
Table 6.6 presents the results of this analysis, again with calculated probabilities.

Discussion The probabilities calculated for the expressionsprobable andpossible are close
to one another in the final analysis. Moreover, these probabilities are different, and inverted, for
the two groups. We concluded from these observations that they could be taken as referring to the
same range on the scale and that one of them can be removed. We left outpossible, because its
interpretation differs most between the two groups. The probabilities calculated forundecided
are very different for the two groups as well. Since the expression was again (cf. study 2) not
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group 1 group 2 all subjects
(n = 26) (n = 52) (n = 78)

coord. prob. coord. prob. coord. prob.
certain 1.1950 1.00 1.2952 1.00 1.2738 1.00
possible 1.0897 0.96 0.8284 0.84 0.9105 0.86
probable 0.8409 0.87 0.9252 0.87 0.9043 0.86
expected 0.7239 0.82 0.7211 0.80 0.7133 0.79
undecided −0.5972 0.32 −0.3730 0.41 −0.4394 0.38
uncertain −0.7210 0.28 −0.8139 0.26 −0.7939 0.25
improbable −1.0741 0.14 −1.0435 0.17 −1.0610 0.16
impossible −1.4572 0.00 −1.5394 0.00 −1.5075 0.00

Table 6.6: Coordinates and calculated point probabilities for the eight expressions as given by
the subjects from group 1, from group 2, and by all subjects together.

interpreted as intended, that is, for the mid-point of the probability scale, we decided to leave
out this term as well. As this left us with a scale without a mid-point, we decided to add one
term that can hardly be misunderstood,fifty-fifty, although it is arguable whether this is a verbal
probability expression.

Upon close inspection of the matrices, we noticed that the positive-negative pairscertain-
uncertain andpossible-impossible were judged by most subjects as100% dissimilar. Taking
all expressions into consideration,uncertain andpossible may be expected to be at some dis-
tance from the extremesimpossible andcertain. Our method of eliciting pair-wise dissimilarity
judgements, however, seemed to have had artificially forced interpretation of the expressions to-
wards the endpoints of the scale. We therefore feel justified to slightly reinterpret the calculated
probabilities towards the mid-point, resulting in the list of seven verbal expressions with their
point probabilities, presented in Table 6.7.

verbal expression probability
certain 100%
probable 85%
expected 75%
fifty-fifty 50%
uncertain 25%
improbable 15%
impossible 0%

Table 6.7: The final seven verbal probability expressions plus their calculated probabilities.

6.3.4 The fourth study

Our fourth study was designed to test the translations of the verbal probability expressions into
the numerical probabilities as established in the third study. To this end, we compared the de-
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cisions subjects made when offered probability information in verbal form, to their decisions
when presented with the information in numerical form. If the calculated point probabilities in-
deed have the same meaning as the verbal probability expressions, subjects will make similar
decisions regardless of the mode of presentation. Not only the decisions subjects make will give
an indication of how similar they think the verbal and numerical expressions are, but also their
confidence in the correctness of their decision. For example, we expect that when subjects de-
cide, with high confidence, to cancel an appointment when they are informed that rail-workers
will ‘probably’ continue their strike, they also decide, highly confidently, to cancel their appoint-
ment when rail-workers continue their strike with85% probability.

Subjects In the study, we had123 subjects, being students and faculty members of the depart-
ments of Computer Science, Psychology, Artificial Intelligence, and Medicine. Of these subjects,
59 were female and64 were male. The ages of the subjects ranged from18 to 61, with a mean
of 28 (SD = 9.7).

Procedure The subjects received a two-page questionnaire, with an introduction to the task
they had to perform, followed by six decision situations. Each decision situation was described
in two or three lines, such as:

Ms. T. has a non-serious physical complaint, which does however need treatment.
The probability that Ms. T. is allergic to the usually prescribed drug H. is about. . . .
Alternative drugs for her complaint are available, but these are less effective. Do you
prescribe drug H. ?

Each of the six situations was followed by a table that contained either the seven verbal proba-
bility expressions or the seven numerical probabilities from Table 6.7. Each of the seven items
was followed by “decision: yes/no” (to be circled) and by a 2-cm line on which subjects were to
mark their measure of confidence in their decision (from complete to none). The subjects were
instructed to mentally write, on the dots in the description, each of the expressions in turn, to
make a yes/no decision for that hypothetical situation and to mark their confidence. Each subject
thus made seven decisions plus confidence marks for each of the six situations.

We had four versions of the questionnaire. Version one started with three decision situations
A, B and C, with verbal expressions, followed by three situations D, E and F, with the list of
numerical probabilities. Version two contained the same six situations in the same order, but
now with situations A, B and C with numerical probabilities and situations D, E and F with
verbal expressions. In versions three and four the six situations were given in the order D, E, F
followed by A, B, C, with version three starting with verbal expressions and version four with
numerical probabilities. The tables of expressions and probabilities, each of which occurred
three times in a questionnaire, were first given in the order we had determined in the third study,
then twice in a different random order. A description of the six decision situations can be found
in Appendix C.

Data analysis For each of the six decision situations we had a verbal and a numerical answer-
ing mode. In each mode, a yes or no decision was made for seven expressions. With these three
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variables, that is, Mode, Decision and Expression, we constructed a2 × 2 × 7 matrix for each
situation. The fields of the matrices specify the total number of subjects who made a certain
decision in a certain mode for a certain category. For example:34 subjects decided ‘no’ in the
verbal mode for ‘fifty-fifty’. Similar matrices were constructed for the subjects’ confidence. We
measured the confidence subjects had in their decisions by scoring their marks on the confidence
line. Complete confidence was scored as1.0, no confidence as0.0. We computed both the sum
of the confidences of all subjects together and the mean confidence for each mode-decision-
category combination. This resulted in another two sets of six matrices with in each field the
total and the mean confidence, respectively. We analysed our matrices using HILOGLINEAR, a
log-linear analysis method. A log-linear model describes the (in)dependences between variables.
For example, the modelExpression×Decision×Mode describes a possible three-way depen-
dence between all three variables; the modelExpression×Decision + Mode indicates that
only Expression and Decision may be dependent, but that Mode is certainly unrelated to them.
More detailed explanation of a log-linear analysis can be found in Appendix B.

Results We performed separate analyses for the decisions and for the confidence. We had
to remove the data from12 of the 123 subjects, because these subjects had misunderstood the
assignment and had made a decision for only one expression in each situation. Of the110 subjects
left, 52 answered version1 or version3 of the questionnaire and58 subjects answered version2
or version4.

For five of the six decision situations, the best log-linear model fitting the data wasEx-
pression×Decision + Mode. In other words, the decisions were related to the probability
expression used, but not related to the mode, verbal or numerical, in which the expression was
given. For the sixth situation, the only model that fit the data wasExpression×Decision×
Mode. Knowing that variables are independent is more valuable than knowing that variables
arepossiblydependent. A model making no independence assumptions, such asExpression×
Decision×Mode, contains no valuable knowledge and will therefore always fit the data. To
account for small field frequencies, we performed a continuity correction on our data. With the
corrected data, the same model as for the other five situations resulted, but it was not convincing.
Upon close examination of the fields, we traced the sub-optimality to a single expression: the
proportion of ‘yes’ to ‘no’ decisions differed by a factor4 between the numerical expression25%
and the verbal expressionuncertain.

For the matrices with the total confidence per cell, again, the modelExpression×Decision
+ Mode was the best fitting model for four of the six decision situations. In other words, the
confidence subjects had in their decisions, was related to the probability expression, but not
related to the mode in which the expression was given. For one of the two remaining situations,
the modelExpression×Decision + Mode×Decision was significantly better. However, after
a continuity correction on our data the sameExpression×Decision + Mode model was found
to be the best model. For the other situation, the only fitting model wasExpression×Decision
×Mode. Performing a continuity correction did not result in another model. In this situation, we
again found a large difference in the proportion of ‘yes’ to ‘no’ decisions between the two modes
of one expression,25% anduncertain. Deletion of this expression and a continuity correction
again resulted inExpression×Decision + Mode for the best model.
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Analysis of the matrices with mean confidence per cell did not provide us with very strong
results; as field frequencies were so close together, almost any model would fit the data. From
close examination of the matrices, we conclude that for the six decision situations there seemed to
be no difference in the subjects’ mean confidence in their decisions and no difference between the
subjects’ mean confidence for decisions in the verbal mode and in the numerical mode. Subjects
seemed consistent in their confidence judgements over situations as well as in the two modes.

Discussion Our analysis showed that the decisions subjects made, for the six situations pre-
sented to them, depended only on the expressions used in the description of a situation and that
the decisions were not influenced by the mode in which the expressions were presented. We did
experience that one expression,25% or uncertain, was causing problems with finding a good
fitting model for some decision situations. This could indicate that to some subjectsuncertain
and ‘25%’ have different interpretations and are not considered to be two different modes for the
same expression. Indeed, to some peopleuncertain may mean anything less than a100% cer-
tain, others could interpretuncertain as a50% certainty. However, this problem only occurred
in the situations where the expressions were presented in random order: it did not occur when the
expressions were presented in order. In fact, the best fit was found for the best fitting models for
the situations in which the ordered lists were presented. We conclude that when the probability
expressions are presented in an ordered list, they will be interpreted as intended.

From the results of our analysis, we conclude that context influences the decisions people
make. However, because we only found differences in decisions between decision situations and
not per situation between the verbal or numerical mode, we conclude that the two modes are
interchangeable. Our results therefore suggest that the agreement between the calculated point
probabilities and the verbal probability expressions, as given in Table 6.7, is reliable.

6.3.5 Overall summary of results

The first three studies we performed, resulted in an ordered list of seven commonly used verbal
probability expressions, which together span the whole probability range. Numerical equivalents
for the verbal probability expressions were computed using the dissimilarities between expres-
sions provided by subjects in the third study. Our studies differed from others in an important
aspect: we did not ask people to translate numerical expressions into numbers or vice versa. In
our opinion, asking for such a translation forces subjects to use two different mental representa-
tions of probability at the same time and to look for a mapping between the two. We addressed
only one representation, thereby avoiding possible confusion. The fourth study was designed to
test the validity of the computed translations. The finding that subjects made the same decisions,
with the same confidence, irrespective of communication mode, justifies the tentative conclusion
that this translation is acceptable.

There are some shortcomings to our study. The subjects used were Dutch and consequently
we used Dutch words, which we translated into English for this thesis. Although we made no
choices for the English words because dictionaries only give the one translation for each term, we
cannot be sure that the connotations of the Dutch and the English words are similar. A replication
with native English speaking subjects could verify this point. We are not satisfied with the way
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the expression for the midpoint of the probability range was determined. Because our subjects
did not write down such a term, we first introducedundecided. Its literal meaning may be fifty-
fifty, but our subjects did not appear to interpret it this way. We then replaced it byfifty-fifty,
which seems cheating on what may count as verbal. Moreover, because we introduced this term
later, the assumed distance to the other terms was not established as it had been for the other
terms.

6.4 The new elicitation method

The studies in the previous section were conducted with the intention of finding a small set
of verbal probability expression, with numerical translations, that could be used as anchors on
a response scale. This response scale would then be used as part of a probability elicitation
method. In this section, we present the resulting response scale and discuss how we incorporated
the various presentation issues, reviewed in Section 5.2, into our method. The use of the method
in an actual elicitation process will be commented upon in Chapter 7.

Our method for probability elicitation from domain experts combines various ideas. Al-
though several of these ideas were presented before by others, we combined and enhanced them
to yield a novel and, as we will argue in the next chapter, effective elicitation method. The most
important ingredients of our method are the response scale we present to domain experts, result-
ing from the studies in the previous section, and the presentation format of the event for which a
probability needs to be assessed.

Recall from Section 5.2, that there are three presentation issues to consider in a elicitation
process: the representation format of the probabilities, the description format of the questions
presented to the experts, and the answering format. As representation format of the probabili-
ties we use likelihoods. Using likelihoods rather than the often suggested frequencies helps to
forestall difficulties with the assessment of a conditional probability for which the conditioning
context is quite rare. The questions regarding the required probabilities are presented to the ex-
perts as fragments of text transcribing the probability to be currently assessed. Using a fragment
of text to denote a probability circumvents the need to use mathematical notation. Especially for
experts who are less familiar with the mathematical notation as in

Pr( Invasion = T2 | Shape = polypoid ,Length < 5 cm),

we propose transcribing the requested probability with a fragment of text that should be under-
standable to them:

Consider a patient with apolypoid oesophageal carcinoma; the carcinoma has a
length ofless than 5 cm. How likely is it that this carcinoma invades themuscularis
propria (T2) of the patient’s oesophageal wall, but not beyond?

From this fragment it can bee seen that experts are required to make a statement about likelihood.
As we want to allow experts to make such likelihood statements using either verbal or numerical
probability expressions, we present them with the expressions resulting from our studies in the
previous section. We had chosen the probability scale as a fast method of elicitation; the expres-
sions from Table 6.7 are put as anchors on a vertical probability scale. Experts are now allowed
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to mark their assessment right next to a word or at any point between two words on the scale.
Since the verbal probability expressions were explicitly intended as independent anchors on the
scale rather than as fixed translations for the numerical probabilities, we decided to position the
verbal probability expressions close by rather than simply beside the numerical anchors. We fur-
ther decided to add the moderator “(almost)” to the most extreme verbal expressions to indicate
the positions of very small and very large probabilities. The resulting response scale is the scale
shown in Figure 6.1.
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Figure 6.1: The response scale with both verbal and numerical anchors as used with our new
method.

Having discussed the process of assessing a single probability, we will now discuss how
we accommodate the assessment of a number of probabilities. To this end, domain experts are
presented with a separate figure for every probability that needs to be assessed. On the right of the
figure, our response scale is depicted; to the left of the scale is a fragment of text transcribing the
probability to be assessed. By using a separate response scale for each assessment we can prevent
the centering effect mentioned in Section 5.1.1. The figures pertaining to the various probabilities
are grouped in such a way that the probabilities from the same conditional distribution can be
taken into consideration simultaneously; they are presented in groups of two or three, if necessary
on consecutive single-sided sheets of paper. An example is shown in Figure 6.2. Explicitly
grouping related probabilities has the advantage of reducing the number of times a mental switch
of conditioning context is required of the domain experts during the elicitation. It also allows the
experts to immediately check the coherence of their judgements, for the assessed probabilities
have to sum up to one, thereby possibly reducing overconfidence (see Section 5.1.1).
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Invasion | Shape, Length(1)

Consider a patient with a polypoid
oesophageal carcinoma; the carci-
noma has a length of less than 5
cm. How likely is it that this car-
cinoma invades into the lamina
propria (T1 ) of the patient’s oe-
sophageal wall, but not beyond?
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Consider a patient with a polypoid
oesophageal carcinoma; the car-
cinoma has a length of less than
5 cm. How likely is it that this
carcinoma invades into the mus-
cularis propria (T2 ) of the pa-
tient’s oesophageal wall, but not
beyond?
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Invasion | Shape, Length(2)

Consider a patient with a polypoid
oesophageal carcinoma; the car-
cinoma has a length of less than
5 cm. How likely is it that this
carcinoma invades into the adven-
titia (T3 ) of the patient’s oe-
sophageal wall, but not beyond?
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Consider a patient with a polypoid
oesophageal carcinoma; the car-
cinoma has a length of less than
5 cm. How likely is it that this
carcinoma invades into the neigh-
bouring structures (T4 ) of the pa-
tient’s oesophagus?
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Figure 6.2: Two pages with all figures pertaining to the probability distribution forInvasiongiven
apolypoidcarcinoma with a length ofless than5 cm.

6.5 Conclusions

In this chapter, we discussed the design of a new elicitation method tailored to the fast elicitation
of probabilities. With our new method, we present domain experts with a response scale with
both verbal and numerical probability expressions as anchors. This allows experts to choose the
representation mode that best matches their normal way of thinking in the situations described.
We expect that during elicitation experts will prefer verbal probability expressions when they
are more uncertain and that they will use numerical probability expressions when they feel safe
doing do. By presenting (conditional) probability questions in text format, grouped together
in such a way that experts are facilitated to make coherent judgements, and by presenting a
verbal-numerical response scale for each response, we took as much care as we could to ensure
the ecological validity of the task and the response mode. Experiences with the method in an
actual elicitation process are discussed in the next chapter. Still, a more systematic study into the
benefits of the use of the new method is called for.

Besides using our response scale as part of an elicitation method, we also envision it as a
useful tool in the explanation of a system’s output and reasoning-process.
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Experiences with our Elicitation Method

To evaluate the quality of a newly designed method, it must be established what the purpose of
the method is and to what extent this purpose is met in practice. The purpose of a probability
elicitation method is to extract an expert’s subjective beliefs. A probability elicitation method
is a good elicitation method if the assessments provided by an expert indeed correspond to his
subjective beliefs. Ideally, experts are well-calibrated and their subjective belief in a certain event
corresponds to the frequency with which that event occurs in the physical world (whether or not
this can be measured). In an ideal situation, a good probability elicitation method will therefore
elicit well-calibrated assessments. When quantifying a probabilistic network, we consider the
calibration of assessments to be of more importance than their correspondence to the expert’s
subjective beliefs. The purpose ofusingan elicitation method therefore conflicts with the purpose
of the method itself. Therefore, to evaluate the quality of our new elicitation method described
in Chapter 6, we will consider whether or not the purpose of the method’s use is met, that is, we
will evaluate the quality of the obtained probabilities.

Our elicitation method has been used with two domain experts from the Netherlands Can-
cer Institute, Antoni van Leeuwenhoekhuis, to quantify the network on oesophageal carcinoma
described in Appendix A. Thus far, we have focused our elicitation efforts on the diagnostic
part of the network which constitutes a coherent and self-supporting probabilistic network and
currently includes 42 nodes with a total of 932 probability assessments. To assess the quality of
these probabilities obtained with our new elicitation method, we conducted an evaluation study
of the oesophagus network, using data, from the Antoni van Leeuwenhoekhuis, from 185 pa-
tients diagnosed with oesophageal carcinoma. The evaluation study focused on the diagnostic
part of the network that provides for establishing thestageof a patient’s carcinoma. This stage
summarises the carcinoma’s characteristics, its depth of invasion, and the extent of its metastasis,
and is indicative of the likely outcome of treatment. We would like to note that the characteristics,
depth of invasion, and extent of metastasis themselves are of interest rather than the stage derived
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from them; focusing on the summarising stage, however, serves for gaining overall insight in the
diagnostic part of the network.

In this chapter, we will discuss our overall experiences with the new elicitation method. To
compare the use of our method with that of existing methods, we describe our initial experiences
with probability elicitation for the oesophagus network in Section 7.1. In Section 7.2 we evaluate
the use of our method in the construction of the oesophagus network; more specifically, we
comment on the observations made by our domain experts. In Section 7.3 we present the results
of the evaluation study of the network. Some concluding observations are given in Section 7.4.

7.1 Initial experiences with probability elicitation

In the construction of the oesophagus network, probability elicitation soon proved to be a major
obstacle. As in many problem domains, numerous sources of probabilistic information seemed
to be readily available. We collected data from historical patient records and we performed a
literature review. Unfortunately, the Netherlands being a low-incidence country for oesophageal
carcinoma, we were not able to compose an up-to-date, large and rich enough data collection
to allow for reliable assessment of all probabilities required; after due consideration, we de-
cided to save the collected data for evaluation purposes. Literature review also did not result in
ready-made assessments. Although the literature provided abundant probabilistic information,
it seldom turned out to be directly amenable to encoding in our network. Research papers, for
example, often reported conditional probabilities of the presence of symptoms given a cause,
but not always the probabilities of these symptoms occurring in the absence of the cause. Also,
conditional probabilities were often given in a direction opposite to the direction required. For
example, the statement “70% of the patients with oesophageal cancer are smokers” specifies
the probability of a patient being a smoker given that he or she is suffering from oesophageal
cancer, while for the network the probability of oesophageal cancer developing in a smoker was
required. Another problem was that the characteristics of the population from which the informa-
tion was derived were not properly specified or deviated seriously from the characteristics of the
population for which the oesophagus network is being developed. Because of these and similar
problems, hardly any results reported in the literature turned out to be usable for our network.
The knowledge and personal clinical experience of the two domain experts involved, therefore,
was the single remaining source of probabilistic information.

In Chapter 5, we discussed various methods from the field of decision analysis that were de-
veloped for the elicitation of probabilities from experts. As these methods have found widespread
use in the construction of decision-analytic models, we decided to employ them in our efforts to
elicit probabilities for the oesophagus network. We focused on the use of a probability scale for
marking assessments, on different presentation formats for the probabilities to be assessed, and
on the use of gambles. Before commenting on our experiences with these methods, we would
like to emphasise that, prior to the construction of the oesophagus network, the domain experts
had little or no acquaintance with expressing their knowledge and clinical experience in terms of
probabilities.

The probability scale we used with our domain experts for the oesophagus network was a
horizontal line with the three anchors 0, 50, and 100. We asked the domain experts to mark the
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assessments forall conditional probabilities pertaining to a single node in the network, given
a single conditioning context, on the same scale. For example, for the context of a polypoid,
circular carcinoma of more than 10 centimeters, the experts were asked to mark their assessments
for the probabilities of the passage of solid food, for the passage of pureed food at best, of liquid
food, and of no passage at all; the experts thus had to indicate four assessments on a single scale.
We chose to follow this procedure as it would allow the experts to compare and verify their
assessments, thereby reducing the risk of overestimation. Contrary to expectation, however, the
experts indicated that they felt quite uncomfortable working with the probability scale: it gave
them ‘very little to go by’. The request to mark several assessments on a single line further
appeared to introduce a bias towards aesthetically distributed marks; this spacing effect was also
described in Chapter 5, page 118.

Another problem in our first elicitation effort turned out to be that the probabilities to be as-
sessed for the oesophagus network were communicated to the domain experts in mathematical
notation as described on page 115. Our experts experienced considerable difficulty understand-
ing conditional probabilities in this presentation format. Especially the meaning of what is rep-
resented on either side of the conditional bar appeared to be confusing. As a result, the experts
had difficulties constructing a mental model of the situation referred to and could not focus on
just the assessment task at hand.

The frequency format, described on page 116, is generally easier to understand for experts
than the mathematical notation and has been reported to be less liable to biases. With the fre-
quency method, the domain experts were asked to envisage a population of one hundred patients
suffering from an oesophageal carcinoma with certain characteristics. They were asked to as-
sess the number of patients from among this population who would show a characteristic under
study. Unfortunately, our experts had difficulties visualising the numbers of patients mentioned
in the fragments of text: since oesophageal carcinoma has a low incidence in the Netherlands,
visualising one hundred patients with a certain combination of characteristics turned out to be a
demanding, if not impossible, task.

The use of lotteries for probability elicitation (see Section 5.3.2), was unfortunately also
hampered by several difficulties. The experts indicated that they often felt that the lotteries were
very hard to conceive because of the rare or unethical situations they represented. Moreover, the
use of lotteries tended to take so much time that it soon became apparent that the elicitation of
several thousands of conditional probabilities was quite infeasible in this way.

7.2 Evaluation of the elicitation method

In this section, we evaluate the use of our new method for probability elicitation. We will com-
ment upon the observations made by the domain experts and the elicitors involved.

7.2.1 Using the method

In the first interview with our two domain experts, we informed them of the basic ideas under-
lying the new elicitation method. The general format of the fragments of text was demonstrated
and the intended use of the response scale was detailed. We explained the way in which the
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fragments of text and associated scales were grouped and instructed the experts to simultane-
ously take into consideration the probabilities from the same conditional probability distribution
by spreading out in front of them the various sheets of paper pertaining to these probabilities.
Finally, we explained to the experts that their probability assessments would be subjected to a
sensitivity analysis that would reveal the sensitivity of the network’s behaviour to the various
assessments, and that, if necessary, we would try to refine the most influential ones later on.
The basic idea of sensitivity analysis was explained in some detail to reassure the experts that
rough assessments for the requested conditional probabilities would suffice at this stage in the
construction of the network.

The elicitation of all conditional probabilities required for the diagnostic part of the oesoph-
agus network outlined in Appendix A took five interviews of approximately two hours each over
a period of fifteen months. Each interview focused on a small coherent part of the network. Prior
to each interview, the elicitors spent some ten hours preparing the fragments of text and associ-
ated response scales to be presented to the experts. After the interview, it took the elicitors two
to five hours to process the obtained assessments. The new method allowed the domain experts
to give their assessments at a rate of150 to 175 probabilities per hour; the remaining time was
spent on explanation and instruction.

In the last interview, the domain experts were asked to evaluate the use of the new method of
probability elicitation. For this purpose, we prepared a written evaluation form so as to not influ-
ence their observations. A translated version of this evaluation form is presented in Appendix C.
The domain experts were asked whether or not the different ingredients in the method had helped
them in the assessment task. Also, we asked for their opinion of the specific anchors on the re-
sponse scale. The domain experts indicated that overall they had felt very comfortable with the
method. They found the method most effective and much easier to use than any method for prob-
ability elicitation they had been subjected to before. Before commenting on their observations
in more detail, we would like to point out that during the earlier, rather unsuccessful elicitation
efforts, our domain experts had acquired some proficiency in expressing their knowledge and
personal clinical experience in probabilities. As a result, they now appeared less daunted by the
assessment task.

We recall from Chapter 6 that one of the ideas underlying our elicitation method is the use
of a fragment of text, stated in terms of likelihood, to communicate a conditional probability
to be assessed to the domain experts. During the interviews the elicitors had noticed that these
fragments of text worked very well as additional explanation of the requested probabilities was
seldom necessary. The two domain experts confirmed this observation and indicated that they
had had no difficulties understanding the described probabilities. The elicitors had further noted
that the characteristics described in the fragments of text served to call to mind specific patients
or cases from scientific papers. Although the experts could not visualise a large group of patients
with certain specific characteristics, their extensive clinical experience with cancer patients in
general and their knowledge of reactive growth of cancer cells, along with information recalled
from literature, enabled them to provide the required assessments without much difficulty.

With respect to the response scale used for marking assessments, the domain experts in-
dicated that they had found the presence of both numerical and verbal anchors quite helpful.
They mentioned that, when thinking about a conditional probability to be assessed, they had
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used words as well as numbers. Depending on how familiar they felt with the characteristics
described in the fragment of text, they preferred using the verbal or numerical expressions for
marking their assessment on the scale. For example, the more uncertain they were about the
probability to be assessed, the more they were inclined to think in terms of words. The verbal
anchors on the scale then helped them to determine the position that they felt expressed the prob-
ability they had in mind. The elicitors noticed in the consecutive interviews that it became more
and more easy for the experts to express their assessments as numbers. In the first few interviews
they often stated a verbal expression and then encircled the appropriate anchor or put a mark
close to the anchor on the scale. In the later interviews, they considered the entire response scale,
marked their assessment, and subsequently wrote a number next to their mark.

The two domain experts further mentioned that they had felt comfortable with the specific
verbal anchors used on the response scale. They indicated, however, that the expression “impos-
sible” is hardly ever used in oncology. Especially in their communication with patients, oncol-
ogists seem to prefer the more cautious expression “improbable” to refer to almost impossible
events. As a consequence, our domain experts tended to interpret the expression “improbable”
as a 5% or even smaller probability rather than as a probability of around 15%. However, since
the response scale provided both words and numbers, they had no difficulty indicating what they
meant to express. The experts also mentioned that an extra anchor for40% would have been
useful. Note that these observations pertain to the lower half of the scale only. We would like to
add that our response scale hardly accommodates for indicating extreme probability assessments,
that is, assessments very close to0% or 100%. There are no anchors close to zero and one hun-
dred percent probability since only very few subjects in the first study from Chapter 6 generated
extreme verbal expressions. The domain experts never seemed to want to express such extreme
assessments either. When asked about this, they confirmed the correctness of our observation.

Another ingredient of our method is the grouping of the fragments of text in such a way that
the probabilities from the same conditional distribution are taken into consideration simultane-
ously. As mentioned before, the domain experts were advised to spread out on the table in front
of them the various sheets of paper pertaining to these probabilities. They were encouraged to
focus first on the probabilities from a conditional distribution that were the easiest to assess, and
then to use these as anchors for distributing the remaining probability mass over the more diffi-
cult ones. This turned out to be a most effective heuristic for eliciting assessments for nodes with
more than two or three values. Especially in later interviews, the domain experts were able to
verify the coherence of their assessments for the same conditional distribution without help, and
adjusted them whenever they thought fit.

7.2.2 The use of trends

During the elicitation interviews with our domain experts, the concept oftrendemerged. We use
the term ‘trend’ to denote a fixed relation between two conditional probability distributions. To
illustrate the concept of trend, we address the nodeInvasionthat models the depth of invasion of
an oesophageal carcinoma into the wall of a patient’s oesophagus. This node can take one of the
valuesT1, T2, T3, andT4; the higher the number indicated in the value, the deeper the carcinoma
has invaded into the oesophageal wall and the worse the patient’s prognosis. For the nodeInva-
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sion, several conditional probabilities were required, pertaining to differing shapes and varying
lengths of the carcinoma. Upon assessing these probabilities, the domain experts started with the
probabilities for the depth of invasion of apolypoidoesophageal carcinoma with a length of less
than 5 centimeters. They subsequently indicated that patients withulcerating tumours of this
length were 10% worse off with regard to the depth of invasion of the carcinoma than patients
with similar polypoid tumours. They thus explicitly related two conditional probability distri-
butions to one another. As trends appeared to be a quite natural way of expressing probabilistic
information, we encouraged our domain experts to provide trends wherever appropriate.

We designed a generic method for dealing, in an intuitively appealing and mathematically
correct way, with the trends provided by our domain experts. The method is best explained in
terms of the example trend given above. Suppose that, given apolypoidoesophageal carcinoma
of less than 5 centimeters in length, the probabilities for the four different values of the node
Invasionare assessed atx1, x2, x3, andx4 — xi being the probability assessment for the value
T i. The probabilitiesxi, i = 1, 2, 3, 4, constitute theanchor distributionthat is to be adjusted
by the indicated trend to compute the probabilities for the related distribution. After consultation
with our domain experts, we interpreted the specified trend as follows:10% of the patients with
a polypoid tumour of less than 5 centimeters withT i for its depth of invasion would have had
T i+ 1 for the depth of invasion if the tumour would have been an ulcerating tumour, i = 1, 2, 3.
The basic idea of the interpretation of the trend is depicted in Figure 7.1. For the probability

T1 T2 T3 T4

10%

10%

10%

Figure 7.1: An schematic representation of handling trends.

assessmentsy1, y2, y3, andy4 for the different values of the nodeInvasiongiven anulcerating
oesophageal carcinoma of less than 5 centimeters, we find

y1 ← x1 − 0.10 · x1

y2 ← x2 − 0.10 · x2 + 0.10 · x1

y3 ← x3 − 0.10 · x3 + 0.10 · x2

y4 ← x4 + 0.10 · x3

It is readily verified thaty1, y2, y3, andy4 lie between 0 and 1, and together sum up to1. In
addition, it will be evident that this method for handling trends can easily be generalised to
nodes with an arbitrary number of values and to trends specifying other percentages and other
directions of adjustment.

7.3 Evaluation of the elicited probabilities

To assess the quality of the probabilities obtained with our new elicitation method, we conducted
an evaluation study of the oesophagus network. In the study, we used data from patients from the
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Antoni van Leeuwenhoekhuis diagnosed with oesophageal carcinoma. In Section 7.3.1, we anal-
yse the probabilities obtained; we compare them with the data in Section 7.3.2. In Section 7.3.3,
we study the probabilities in the context of the network. For this purpose, we entered for each
patient, all diagnostic symptoms and test results available and computed the most likely stage of
the patient’s carcinoma from the network; we then compared the computed stage with the stage
recorded in the data.

7.3.1 The obtained probabilities

When we set out to quantify the diagnostic part of the oesophagus network it included 39 nodes,
requiring a total of 900 probabilities. The number of probabilities to be assessed per node ranged
from 3 to 144, constituting a total of 267 (conditional) probability distributions. Many of the
assessments we obtained from our domain experts equalled either 0 or 1: the experts gave 312
zeroes and 100 ones, together amounting to 46% of the network’s probabilities. We would like
to note, however, that 144 of these probabilities pertain to the deterministic node that models
a carcinoma’s stage, that is, 35% of the zeroes and ones constitute the (degenerate) conditional
probability distributions for asinglenode. The domain experts further specified many probabil-
ities on the lower half of the response scale: 72% of the assessments were less than or equal to
0.50.

For 12 of the 39 nodes from the network, the domain experts indicated trends, as discussed
in the previous section. Using these trends, 241 probabilities were computed from other assess-
ments. Of the total of 900 probabilities, therefore, 73% were assessed directly and 27% indirectly
by adjustment of other probabilities. The indirect assessments pertained to 65 different condi-
tional probability distributions. The trends indicated by the domain experts ranged fromequalto
the anchor distribution to a20% shift, in either direction, from this distribution.

To study the overall distribution of the assessments obtained with our elicitation method,
we performed a frequency count. Figure 7.2(a) summarises the frequencies of all assessments
obtained, be it directly or indirectly; we restricted the figure to the assessments not equal to zero
or one. Figure 7.2(b) shows the frequencies of the assessments that were specified directly by
the domain experts; once again we excluded zero and one from the figure. The two tables from
Figure 7.3 show the ten most frequently specified assessments, counted over all assessments and
over the direct assessments only.

We recall from Chapter 6 that the response scale used with our elicitation method specifies
seven numerical anchors: 0, 15, 25, 50, 75, 85, and 100, or 0, 0.15, 0.25, 0.50, 0.75, 0.85, and
1.00, alternatively. By comparing our experts’ assessments with these anchors, we find that 54%
of all assessments and 63% of all direct assessments coincide with anchors. Focusing on the
non-extreme assessments, that is, excluding 0 and 1, we find that 16% of all assessments and
20% of the direct assessments are anchors. The frequency counts from Figure 7.3 further reveal
that among the ten most often specified assessments, there are four anchors from the response
scale: 0, 0.15, 0.85, and 1.00. Among the ten most frequently specified direct assessments, there
even are six anchors: 0, 0.15, 0.25, 0.75, 0.85, and 1.00. These findings are consistent with
the often reported observation that the external stimulus used, in our case the response scale,
plays a dominant role in the elicitation process. To conclude our discussion of the probabilities
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obtained, we observe that, while the experts indicated that an extra anchor for 0.40 would have
been helpful, they gave this assessment only seven times.
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Figure 7.2: The distribution of all assessments obtained, (a), and of the assessments that were
specified directly, (b), zeroes and ones excluded.

7.3.2 A comparison with the data

As described in Section 7.1, we had not been able to compose a large and rich enough data
collection to allow for reliable assessment of the probabilities required for the oesophagus net-
work. Our efforts to compose such a data collection, however, had resulted in data from histor-
ical records of 185 patients diagnosed with oesophageal cancer from the Antoni van Leeuwen-
hoekhuis. As these data had not been used for probability assessment, we could now exploit
them for evaluation purposes. In this section, we compare the probabilities given by our domain
experts with estimates from these data. Before doing so, however, we would like to note that the
data collection does not constitute a fully independent source of information, as the collection
consists of data from patients treated by our domain experts. Since the historical records dated
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assessment frequency
0 312
1.00 100
0.02 46
0.10 45
0.05 41
0.85 25
0.01 21
0.90 21
0.04 18
0.15 18

(a)

assessment frequency
0 272
1.00 92
0.05 33
0.10 31
0.02 20
0.15 16
0.25 13
0.75 13
0.90 13
0.85 12

(b)

Figure 7.3: The ten most frequent assessments, (a), and the ten most frequent direct assessments,
(b).

back to between 1978 and 1985, and the experts did not scrutinise the data prior to assessing
the required probabilities, we concluded that the data were independent enough to render the
evaluation results meaningful.

We estimated, from our data collection, as many probabilities for the oesophagus network
as possible. For only 26 of the 39 nodes involved, however, probabilities estimates could be
computed: the remaining 13 nodes were not recorded in the data. Furthermore, for the nodes
that were recorded, not all probabilities required could be estimated, as several combinations of
values were missing in the data collection. The data provided for the estimation of 368, or 41%,
of the network’s probabilities, pertaining to 125 conditional distributions.

To investigate whether or not the probability assessments provided by our domain experts
matched the estimates that we obtained from the data, we computed a95% confidence interval
for each of the 368 probability estimates. The 95% confidence interval of a specific estimate is
the interval in which the ‘true’ probability lies with 95% certainty; the length of the confidence
interval thus quantifies the uncertainty in the estimate. The most common equation for computing
a 95% confidence interval for a probability estimatep is the Wald approximation:

p± (1.96 ·
√
p · (1− p)

n
),

wheren is the number of patients whose data were used in the computation of the estimate
p. Note that the larger the number of patients on which the estimate is based, the smaller the
estimate’s 95% confidence interval. The confidence intervals that we thus obtained for our prob-
ability estimates were rather large as a result of data sparseness: the intervals had an average
length of 0.25. For 250 of the 368 estimates, the 95% confidence interval included the assess-
ment that we had elicited from the experts. So, from the assessments that could be compared
with the data, 68% more or less matched the probability estimates computed from the data.

As discussed before, our domain experts had indicated trends for 12 nodes, pertaining to 65
different conditional probability distributions. For 23 of these 65 trends, we could compare the
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probabilities from both the specified anchor distribution and the distribution computed from the
anchor, with probability estimates from the data. To determine the goodness of fit of a specific
estimated distribution on the same distribution specified by the experts, we conducted a number
of χ2-tests. Theχ2-test is described on page 181 of Appendix B. To compare an estimated
distribution with the same distribution specified by the experts, we took asobserved frequencies
the probabilities specified for the different values in the estimated distribution, and asexpected
frequenciesthe different probabilities from the distribution specified by the experts. Figure 7.4
summarises the results of the variousχ2-tests that we conducted.

anchor computed both
distribution distribution distributions

match 15 13 8
no match 8 10 3

Figure 7.4: The number of matching anchor and indirectly computed distributions.

For 15, or 65%, of the 23 trends the anchor distribution given by the experts did not signif-
icantly differ (α = 5%) from the same distribution estimated from the data. Also, for eight of
these 15 trends, the probability distribution that was computed from the anchor distribution by
adjustment did not significantly differ from the distribution estimated from the data. For 35%
of the trends specified by the experts, therefore, both the anchor distribution and the computed
distribution closely matched the data. Of the eight trends of which the anchor distribution given
by the experts differed significantly from the distribution estimated from the data, we found for
three of them that also the computed distribution did not match the data. For 13% of the trends,
therefore, both the anchor distribution and the computed distribution differed significantly from
the distributions estimated from the data.

For the eight trends of which both the anchor distribution and the computed distribution
closely matched the data, we may conclude that the direction as well as the percentage of adjust-
ment that were indicated by our domain experts are correct. For the three trends of which both
the anchor distribution and the computed distribution did not match the data, we investigated
whether or not the specified trend was correct. For this purpose, we applied the trend, not to the
anchor distribution given by the experts, but to the same distribution estimated from the data.
For one of these trends, the thus computed probability distribution closely matched the data.
We conclude that for a total of 9 trends, that is, for 39% of the trends specified by the domain
experts, the indicated direction and percentage of adjustment are correct. Alternatively, 61% of
the trends appear to be incorrect. Upon examining the fourteen apparently incorrect trends, we
found that for four of them the basic idea underlying the trend seemed to be reflected in the data:
for either an opposite direction or a weaker percentage of adjustment, the computed distribution
matched the data. We would like to note that for many of the trends given by our experts only
very few patient data were available as a basis for comparison. As a consequence, no conclusive
statements with regard to the correctness of the specified trends can be made.
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7.3.3 The quality of the network

To conclude our evaluation of the elicited probabilities, we conducted a study of the oesophagus
network with data from 185 patients diagnosed with oesophageal carcinoma from the Antoni van
Leeuwenhoekhuis. The study once again focused on the diagnostic part of the network that pro-
vides for establishing the stage of a patient’s carcinoma; the stage of an oesophageal carcinoma
can be either I, IIA, IIB, III, IVA, or IVB, in the order of progressive disease. Unfortunately, for
29 patients from our data collection the stage of their carcinoma was not recorded, leaving us
with 156 patients for evaluation.

In a first evaluation of the oesophagus network, we entered for each patient from the data
collection all diagnostic symptoms and test results available. We then computed the most likely
stage of the patient’s carcinoma from the network and compared it with the stage recorded in the
data. Table 7.1 shows the results from this first evaluation. For 80 of the 156 patients, the stage
of the carcinoma recorded in the data matched the stage that was computed from the network
to have the highest probability. Assuming that the stages recorded in the data are correct, we
concluded that the network established the correct stage for 51% of the patients. We would
like to note that it is not uncommon to find a percentage in this range in initial evaluations of
knowledge-based systems [7].

network
I IIA IIB III IVA IVB total

I 2 0 0 0 0 0 2
IIA 0 34 0 3 0 0 37

data IIB 0 3 0 3 0 0 6
III 1 16 1 24 1 1 44
IVA 1 9 2 23 6 1 42
IVB 0 2 0 8 1 14 25
total 4 64 3 61 8 16 156

Table 7.1: The results from the first evaluation.

Taking the results from the first evaluation as a point of departure, we carefully examined
the data of the patients for whom the probabilistic network returned a stage different from the
recorded one. We identified three major sources of mismatch which could largely be attributed
to the data. For 10 patients, the stage recorded in the data was acknowledged by the domain
experts to be incorrect on retrospection. Various anomalies in the data constituted the second
source of mismatch. For example, for some patients a deeper invasion of the carcinoma into the
oesophageal wall was found during surgery than conjectured from endosonographic findings.
For these patients, thepre-surgicalfindings and thepost-surgicalstage were recorded in the
data. Because only the findings had been entered into the network, a stage different from the
recorded one was established. The third major source of mismatch was found in the way findings
had been entered into the patients’ medical records. Often no distinction was made between
facts and findings from diagnostic tests. For example, for many patients the medical record
stated the presence of metastases in the cervical lymph nodes without indicating how this fact
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had been established. Without explicitly stated test results the network could not establish the
presence of these metastases, which resulted in an incorrect stage. The network so far included
a single diagnostic test for establishing the presence or absence of metastases near the truncus
coeliacus. This diagnostic test, a laparascopic procedure, is rather invasive and has only recently
been introduced into clinical practice. As it was very unlikely that this test had been performed
for the majority of the patients from our data collection, we concluded that some nodes modelling
diagnostic tests were missing from the network.

Building upon the above observations, we decided to perform a second evaluation of the
network. For this purpose, we first extended the network with three extra nodes pertaining to
diagnostic tests. In close consultation with our domain experts, we had identified two additional
nodes for establishing the presence of metastases in the lymph nodes near the truncus coelia-
cus and one for establishing the presence of lymphatic metastases in the neck. In addition, we
corrected the erroneous stages in the data, that is, as far as they had been identified in the first
evaluation of the network.

In the second evaluation of the oesophagus network, we entered for each patient the available
symptoms and test results, as before. If no tests were explicitly specified for facts with regard
to lymphatic metastases in the neck or near the truncus coeliacus, we entered these facts as test
results for the newly included nodes. In addition, we entered for each patient the facts stated in
the data for which an indication of the performed test was missing; on average, 0.4 additional
facts were entered per patient. The overall results of the second evaluation are shown in Table 7.2.
Figure 7.5 summarises the results per stage. Figure 7.5(a) shows, per stage from the data, the
percentage of patients for whom the network computed the same stage; these percentages can be
interpreted as the sensitivity per stage of our network to the patient data. Figure 7.5(b) shows,
per stage computed from the network, the percentage of patients for whom the data records the
same stage; these percentages constitute the predictive value per stage of the network’s outcome.
Table 7.2 reveals that for 132 of the 156 patients, the stage of the carcinoma recorded in the
(modified) data matched the stage computed from the network. Again assuming that the stages
recorded in the data are correct, the network established the correct stage for 85% of the patients.

network
I IIA IIB III IVA IVB total

I 2 0 0 0 0 0 2
IIA 0 37 0 1 0 0 38

data IIB 0 1 0 3 0 0 4
III 1 11 0 35 0 0 47
IVA 0 0 0 4 35 0 39
IVB 0 0 0 3 0 23 26

3 49 0 46 35 23 156

Table 7.2: The results from the second evaluation study.
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stage from matched by
data network
I 100%
IIA 97%
IIB 0%
III 74%
IVA 90%
IVB 88%

(a)

stage from matched by
network data
I 67%
IIA 76%
IIB –
III 76%
IVA 100%
IVB 100%

(b)

Figure 7.5: The detailed results from the second evaluation.

7.4 Concluding observations

We used our new elicitation method for eliciting the probabilities required for the oesophagus
network and evaluated its use with the domain experts involved. The experts indicated that they
found the method much easier to use than any method for probability elicitation they had been
subjected to before. Moreover, the method allowed the domain experts to give their assessments
at a rate of over 150 probabilities per hour.

Using data from 185 patients, we evaluated the oesophagus network. A first evaluation re-
vealed various sources of mismatch between the stage of a patient’s carcinoma as recorded in
the data and the one computed from the network. To a large extent, the mismatches could be
attributed to anomalies in the data. We feel that this is not uncommon in evaluation studies like
the present one. In addition, the first evaluation served to identify a small number of nodes miss-
ing from the network. After correcting the anomalies in the data and providing for the missing
nodes, we found that a correct stage was established by the network for 85% of the patients.
Given that the probabilities used are rough initial assessments and that the patient data require
further cleaning up, the results from the study are quite encouraging. We are currently investi-
gating the network’s ability to predict the outcome of treatment and we hope to report the results
in the near future.

For the construction of the oesophagus network, our newly designed elicitation method meant
a major breakthrough. Prior to the use of our method, we had spent over a year experimenting,
on and off, with other methods for probability elicitation, without success. Using our elicitation
method, the probabilities for a major part of the oesophagus network were elicited in just two
months’ time. Our method seems to be well suited for eliciting the large number of probabilities
that are typically required for a realistic probabilistic network. Although our method tends to ask
considerable time from the elicitors for preparing the interviews with the experts, we feel that
the ease with which probabilities can subsequently be elicited with the method makes this time
certainly well spent.
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Conclusions

In this thesis we have focused on the quantification task involved in the construction of prob-
abilistic networks. More specifically, we have studied the use of qualitative approaches in the
quantification process. The objectives of this thesis have been twofold: to refine the basic formal-
ism of qualitative probabilistic networks and to design an elicitation method that permits the use
of both verbal and numerical probability expressions. A summary of and conclusions from our
studies pertaining to these two objectives are briefly presented in Sections 8.1 and 8.2, respec-
tively; more in-depth discussions can be found in the different preceding chapters. Section 8.3
summarises open ends and outlines general directions for future research.

8.1 A qualitative approach to probabilistic reasoning

We have adopted the framework of qualitative probabilistic networks as a qualitative approach
to probabilistic reasoning. Qualitative probabilistic networks serve three major purposes. First,
as qualitative probabilistic networks allow for reasoning with a probabilistic network in a purely
qualitative way, they can play an important role during the construction of a probabilistic net-
work: they can be used to investigate the robustness of the structure before the network is quan-
tified. Second, in a qualitative probabilistic network influences between nodes are represented
by mathematically defined signs; using the underlying definitions, these signs can be used as
constraints on the possible probability distributions during later quantification. And third, we
envision the use of qualitative probabilistic networks as an important tool for explanation of
probabilistic networks. For these three purposes, it is important to have a formalism that is as
expressive as possible.

In the basic formalism of qualitative probabilistic networks, influences are modelled at a very
coarse level of detail: an influence is either positive, negative, zero or ambiguous. More specific
information, such as the strength of influences, influences that hold only in certain contexts, influ-
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ences that are non-monotonic in the values of either the nodes involved in the influence or a third
node, cannot be expressed in the formalism. As a result, upon reasoning, any non-monotonic
influence and any trade-off modelled in a network will cause spreading of uninformative results
throughout large parts of the network. In Chapter 4, we proposed refinements for the framework
of qualitative probabilistic networks that attempt to solve these problems.

In Chapter 4 we have mainly considered binary nodes, only briefly touching upon the subject
of non-binary nodes. In Section 8.1.1 we summarise the refinements that attempt to tackle the
shortcomings arising from the coarse level of representation detail associated with qualitative
probabilistic networks including only binary nodes. In Section 8.1.2 the problems associated
with non-binary nodes are addressed. Two real-life probabilistic networks are abstracted to qual-
itative probabilistic networks in Section 8.1.3. Finally, in Section 8.1.4, we will discuss what we
have achieved with our proposed refinements.

8.1.1 Refinements for binary nodes

The lack of information about strength, context and non-monotonicity in the original framework
of qualitative probabilistic networks, may give rise to unnecessarily weak results upon reasoning
with a network. However, with binary nodes, non-monotonicity of an influence can only be
caused by the values of a third node and not by the values of the nodes directly involved in the
influence. In Chapter 4, we showed that explicitly distinguishing between non-monotonic and
unknown signs allows for resolving the non-monotonicity. One way of determining the sign of
a resolved non-monotonicity is with the help of additive synergies. Non-monotonic influences
are in essence influences that are positive in one context and negative in another; an alternative
for resolving non-monotonicity is therefore to specify different signs for an influence in different
contexts. Context-specificity of influences, in addition, can help to reveal hidden zero influences
and to specify influences with different strengths in different contexts. We have added a notion
of strength to the original framework of qualitative probabilistic networks by introducing an
additional level of detail. This allows us to distinguish between strong and weak influences,
where a strong influence is any influence that is stronger than all weak influences.

The proposed refinements serve for modelling influences at a more fine-grained level of de-
tail. As a result, fewer ‘?’s will be present in the network and, during reasoning, fewer ‘?’s will
be generated as a result of trade-offs. If the proposed refinements do not resolve all trade-offs in
a qualitative probabilistic network, the remaining trade-offs can be isolated from the network by
the pivotal pruning algorithm presented in Section 4.4. The algorithm subsequently identifies all
information that is necessary to resolve the trade-off.

The original sign-propagation algorithm is designed to investigate the effect of propagating a
single observation in light of previous observations. In practice, however, one is often interested
in the effect of multiple simultaneous observations. Section 4.5 presented an elegant algorithm
that can propagate multiple observations without producing unnecessary uninformative results.

8.1.2 Refinements for non-binary nodes

In qualitative probabilistic networks including non-binary nodes, influences can be present that
are non-monotonic in the values of the nodes directly involved in the influence. We will illustrate
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this with an example. Suppose we have a qualitative influence between two nodesA andB
having three values each. Let

Pr(b1 | a1) = 0.5 Pr(b1 | a2) = 0.4 Pr(b1 | a3) = 0.3
Pr(b2 | a1) = 0.1 Pr(b2 | a2) = 0.4 Pr(b2 | a3) = 0.5
Pr(b3 | a1) = 0.4 Pr(b3 | a2) = 0.2 Pr(b3 | a3) = 0.2

Now suppose that the orders of the values of the nodes are as follows:b1 > b2 > b3 and
a1 > a2 > a3. Then,Pr(B ≥ b1 | ai) ≥ Pr(B ≥ b1 | aj) for all ai > aj, but for allai > aj
we have thatPr(B ≥ b2 | ai) ≤ Pr(B ≥ b2 | aj). The influence of nodeA on nodeB is
therefore non-monotonic and the non-monotonicity is due to the order of the values ofB. The
influence would be positive ifb1 > b3 > b2, however. Now suppose thatb1 > b3 > b2 and
a2 > a1 > a3, thenPr(B ≥ bi | a2) ≤ Pr(B ≥ bi | a1) for all bi, but also for allbi we have that
Pr(B ≥ bi | a1) ≥ Pr(B ≥ bi | a3). The non-monotonicity of the influence ofA onB is now
due to the order of the values ofA. Non-monotonicity of an influence can also be caused by the
order of the values of both nodes involved.

The non-monotonicity just described can be easily resolved by changing the order of values.
Changing the order of values on which a natural order exists, for example the values of a tumour’s
length, will lead to counter-intuitive results. In addition, changing the order of a node’s values
will have effect on the signs of all influences in which the node is involved and can therefore
easily lead to new non-monotonic influences.

In addition to the presence of an additional form of non-monotonicity, qualitative probabilis-
tic networks including non-binary nodes have the same shortcomings as networks with binary
nodes only. In the discussion that concludes each of the sections from Chapter 4 in which we
propose a refinement of the basic formalism of qualitative probabilistic networks, we have de-
scribed how the refinement applies to networks with non-binary nodes. Extension to non-binary
nodes is mostly straightforward using the dummy-value approach proposed in Chapter 3. For
qualitative probabilistic networks enhanced with a notion of strength, however, it is still unclear
how to extend the definition to the non-binary case. The most obvious option for defining a
strongly positive influence between a nodeA and a nodeB,

Pr(B ≥ bi | ai)− Pr(B ≥ bi | aj) ≥ α, ∀ bi, ai > aj ,

is not possible asPr(B ≥ b0 | ai) = 1 for b0 < bi, i 6= 0 and all valuesai of A. Finding a
suitable definition, therefore, still calls for further investigation.

8.1.3 Qualitative abstractions of probabilistic networks

Qualitative probabilistic networks can be used for reasoning with an, as yet, unquantified proba-
bilistic network. Qualitative probabilistic reasoning allows for investigating the effects of chang-
ing the network’s structure and for testing the structure’s robustness before quantification is
commenced. Qualitative probabilistic networks, however, have not yet been used for this pur-
pose with real-life probabilistic networks. To give an impression of a qualitative probabilis-
tic network for a real-life application, we computed qualitative abstractions of the well-known
ALARM -network [6] and of the diagnostic part of the oesophagus network. We will compare
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the difference in expressiveness of the networks, using just the original formalism of qualitative
probabilistic networks, and using the formalism refined with a notion of strength, context and
explicit non-monotonicity.

The ALARM -network is a probabilistic network that simulates an anaesthesia monitor. The
acronymALARM stands for “A Logical Alarm Reduction Mechanism”. TheALARM -network
consists of 37, mostly non-binary, nodes and 46 arcs. The number of influences associated with
arcs in the network therefore equals 46. The oesophagus network is described in Appendix A.

# regular influences where signδ is:
+ − 0 ∼ ? total

ALARM 17 9 0 5 15 46
oesophagus 32 12 0 0 15 59

Table 8.1: The number of positive, negative, zero and ambiguous regular influences for the
ALARM -network and the diagnostic part of the oesophagus network, respectively.

Table 8.1 summarises for both theALARM -network and the oesophagus network, the number
of influences that are positive, negative, zero or ambiguous according to the regular definition
of qualitative influence. The two networks do not specify any unknown signs. Ambiguous
influences are therefore non-monotonic in either their own values, indicated by a ‘?’, or in the
values of a third node, indicated by ‘∼’.

Using context-specific signs, hidden zeroes can be revealed, as well as positive and negative
influences underlying the ambiguous influences that are non-monotonic. To give an indication
of the number of influences for which a context-specific sign provides additional information,
we identify for each regular qualitative influence the number of maximal contexts for which the
influence’s sign can be specified. For a regular qualitative influenceSδ(A,B) associated with the
arcA→ B, we take this number of contexts to be 1 (the empty context) if nodeB has no parents
X = π(B) \ {A} other than nodeA; otherwise the number of contexts is taken to be the number
of possible combinations of values for the set of nodesX. With each context underlying a regular
qualitative influence is associated a context-specific influence. For each set of regular qualitative
influences with the same sign, Table 8.2 presents the total number of contexts cπ covered by the
regular influences, and the number of contexts for which the context-specific sign is positive,
negative, zero or still ambiguous. From this table we have, for example, that the 17 regular
influences with signδ = + from theALARM network together cover 59 different contexts, of
which 38 are positive and 21 are actually zero. We would like to note that we computed the
non-monotonic influences and context-specific signs by hand; it is therefore not guaranteed that
we have found all those present in the network.

From Table 8.1 we have that in theALARM -network, 35% of the regular qualitative influences
are positive, 17% negative, and 48% ambiguous. Distinguishing between influences that are
non-monotonic in a third node’s values and influences that are otherwise ambiguous, we find
that 32% of the ambiguous influences are actually non-monotonic. When using context-specific
influences, Table 8.2 displays that 32% of the influences are positive, 31% negative, 20% zero,
and 17% remain ambiguous. It is possible that a number of the influences that remain ambiguous
can be resolved by changing the order of the values of the nodes involved. This has not been tried
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ALARM # cπ with sign:
δ: + − 0 ? total
+ 38 – 21 – 59
− – 40 11 – 51
0 – – – – 0
∼ 10 15 4 – 29
? 24 9 8 28 79

total 72 64 44 28 218

oesophagus # cπ with sign:
δ: + − 0 ? total
+ 74 – 8 – 82
− – 36 8 – 44
0 – – – – 0
∼ – – – – 0
? 6 3 2 38 49

total 80 39 18 38 175

Table 8.2: The number of contexts cπ with positive, negative, zero and ambiguous context-
specific influences, covered by the regular influences with positive, negative, zero or ambiguous
signδ, for theALARM -network and the diagnostic part of the oesophagus network, respectively.

since the values of the nodes in theALARM -network all have a natural ordering upon them.
For the oesophagus network, Table 8.1 shows that 54% of the regular qualitative influences

are positive, 21% negative, and 25% ambiguous. From Table 8.2 we have that, using context-
specific signs, 46% of the influences are positive, 22% negative, 10% zero, and 22% remain
ambiguous. To obtain these results the order of the values of the nodes ‘Shape’ and ‘Invasion-
organs’ (see Figure A.3) were changed into ‘scirrheus< polypoid< ulcerating’ and ‘none<
mediastinum< diaphragm< heart< trachea’, respectively.

We observe that in theALARM -network and in the oesophagus network, the use of context-
specific signs serves to reveal a considerable number of zero influences, and to decrease the
number of ambiguous influences. Adding a notion of context thus largely enhances the expres-
siveness of both theALARM -network and the oesophagus network.

α ∈
[0, 0.12] 〈0.12, 0.25] 〈0.25, 0.75] 〈0.75, 0.83] 〈0.83, 0.85] 〈0.85, 1]

# δ = ++ 6 5 4 3 2 0

Table 8.3: The number of strongly positive influences for different cut-off valuesα in a small
fragment of the oesophagus network.

We will now briefly describe the effects of adding a notion of strength. To this end, we
investigate a small fragment of the oesophagus network, the subgraph with the node ‘Haema-
metas’ as root, consisting of binary nodes only. The fragment contains seven nodes and six arcs;
with each arc is associated a positive qualitative influence. Table 8.3 summarises the number
of influences that are strongly positive for different values for the cut-off valueα. We note that
choosing a cut-off value of around0.80 results in a nice balance between the number of strong
and weak influences.

By abstracting theALARM -network and the oesophagus network to qualitative networks, we
have given an impression of the expressiveness of our refined formalism for qualitative proba-
bilistic networks. With respect to the use of qualitative probabilistic networks for actual trade-off
resolution, it will be more interesting to use theprognosticpart of the oesophagus network when
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that is completed. The prognostic part models numerous trade-offs between the desirable effects
of different therapies and their complications.

8.1.4 Evaluation of our achievements

We have proposed to adopt the framework of qualitative probabilistic networks as a qualitative
approach in the quantification process for constructing probabilistic networks. More specifi-
cally, we have proposed to use qualitative probabilistic networks for testing the robustness of
the structure of a probabilistic network before quantification, and for supplying constraints on
the probability distributions required for quantification. To make the formalism of qualitative
probabilistic networks as expressive as possible, we described several refinements.

As the refinements we have proposed are all mathematically well-founded, probabilistic rea-
soning with a qualitative probabilistic network incorporating these refinements will always yield
correct results. Theoretically, our refinements allow for revealing information about the relation-
ships between variables that is abstracted away in the original formalism. Due to the additional
information now present in a qualitative probabilistic network, reasoning with a network will
more often lead to informative results, thus enabling us to more effectively test the robustness of
the network’s structure. In addition, the extra information provides stronger constraints on the
probability distributions required for the probabilistic network under construction.

Since we have started our research into refinements for the framework of probabilistic net-
works, we have not been actively involved in the construction of the qualitative part of a real-life
probabilistic network from scratch. We have therefore not been able to test the usefulness of the
refinements in practice, except in the construction of small toy examples. However, qualitative
abstractions of real-life probabilistic networks, such as the two discussed in the previous section,
have convinced us that real-life networks most certainly contain non-monotonic influences, hid-
den zero influences and, obviously, influences of different strengths. We therefore believe that the
proposed refinements are necessary extensions required for effective qualitative reasoning with
real-life networks. In retrospect, we also believe that qualitative reasoning with the oesophagus
network would have served to identify a number of missing nodes and a number of modelling
errors in the network’s structure. These modelling errors now remained undetected until the
probability elicitation phase, and some even until the network was evaluated with real-life data.

From the described experiences we conclude that the ability to reason with a probabilistic
network before it is quantified is very useful. Qualitative probabilistic networks are a tool that
allow for doing this; when applied to real-life probabilistic networks, our proposed refinements
are indispensable.

8.2 A qualitative approach to probability elicitation

When the process of constructing a probabilistic network has reached the actual quantification
phase and probabilities have to be elicited from experts, these experts can be accommodated by
using a probability elicitation method. Such a method should be used as part of an elicitation
process, as described in Chapter 5. Chapter 5 also discusses the various elicitation methods cur-
rently available, their advantages and their drawbacks. A problem with these standard methods
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is that they may work well for eliciting a few probabilities, but when hundreds or thousands of
probabilities are required, they become too time-consuming. Some of these standard methods
are, in addition, very complicated to understand.

A probability elicitation method that is suitable for eliciting the large number of probabilities
required for a real-life probabilistic network should be easy to understand, easy to use, and
should allow for eliciting a large number of probabilities in little time. We have developed such a
method. The method combines various well-known ideas, such as describing the probability to be
elicited in a fragment of text instead of using a mathematical notation, grouping the probabilities
from the same conditional probability distribution, and presenting the experts with a separate
probability scale for marking each assessment. The probability scale we use, however, is unique.
We conducted a study into the use of verbal probability expressions. The result of this study is
a list of seven distinguishable, commonly used verbal probability expressions, that have a stable
rank order over subjects. The distances between these expressions as indicated by subjects, were
used to project the verbal expressions onto a numerical probability scale resulting in a response
scale with both verbal and numerical anchors. This scale is used in our probability elicitation
method. A description of the studies, the results and the method was given in Chapter 6.

While we are still in the process of conducting a systematic study into the use of our new
elicitation method, the method has already been used with two experts in oncology from the
Netherlands Cancer Institute/Antoni van Leeuwenhoekhuis for quantifying the oesophagus net-
work. Chapter 7 describes our experiences, and those of the experts, with probability elicitation
using our new method, compared to standard methods. The experts felt very comfortable using
the new method and were able to assess over 170 probabilities per hour. We also performed
an evaluation of the behaviour of the oesophagus network quantified with probabilities obtained
with the new elicitation method. The evaluation shows that, even though the assessments are only
initial rough assessments, the network establishes the correct diagnosis for 85% of the patients
in the patient database. The next step in quantifying the oesophagus network will be to perform
a sensitivity analysis and refine only the most influential probabilities. This will be done either
by using a third expert and/or by using more elaborate probability elicitation methods.

We have developed an elicitation method that has provided a major breakthrough in probabil-
ity elicitation with our domain experts and our domain of application. The results of evaluating
the initial assessments obtained with our method are also quite encouraging. We conclude that,
although the method requires further evaluation, our experiences so far are very promising.

8.3 Directions for future research

In this section, we will present some directions for further research into reasoning with uncer-
tainty and decision making under uncertainty, along the same lines as the research presented in
this thesis.

8.3.1 Reasoning under uncertainty

We briefly indicate some general directions for future research with respect to qualitative ap-
proaches to elicitation and explanation, and for the framework of qualitative probabilistic net-
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works; more detailed directions for further research concerning this latter subject were given in
the different sections of Chapter 4.

The framework of qualitative probabilistic networks The refinements we proposed for the
formalism of qualitative probabilistic networks still lack a definition for strong and weak influ-
ences in the non-binary case. In addition, in the first few sections of Chapter 4 we assumed that
the sign-propagation algorithm is used for propagating only a single observation at a time. In
that case, uninformative results arising from trade-offs are caused by trade-offs present in the
network. In the last section of Chapter 4 we presented an extension of the sign-propagation
algorithm that can be used for propagating multiple simultaneous observations. As a result of
this extension, uninformative results can arise not only from trade-offs in the network, but also
from conflicting observations. It will be interesting to investigate how the possibility to prop-
agate multiple observations affects the other refinements proposed. For example, in qualitative
probabilistic networks enhanced with a notion of strength, not only the strengths of influences
are of importance, but also the strength or impact of the different observations will have to be
taken into account.

We have taken the formalism of qualitative probabilistic networks introduced by Wellman and
extended by Henrion and Druzdzel as a point of departure, taking the definitions of qualitative
influence, additive synergy and product synergy for granted. It is however possible that still
other definitions and other types of interaction can be found. In addition to refinements within
the formalism, it would also be of interest to look into combining the formalism of qualitative
probabilistic networks with other methods for qualitative reasoning. A number of more or less
logical formalisms exist for reasoning with uncertainty in a qualitative way [47,69,93,97]; these
formalisms are however not designed for exploiting graphical structures of the domain under
study. A first step towards combining such logical formalisms with a probabilistic network’s
graphical part has already been taken [88,89].

Qualitative approaches and elicitation We have introduced qualitative probabilistic networks
as a means of reasoning with a probabilistic network before it is actually quantified. Qualitative
probabilistic networks, however, have not yet been used for this purpose with real-life networks.
During the first attempts to quantify the oesophagus network, our experts were asked to indicate
positive and negative signs for the arcs in a small part of the network. The signs seemed to
come quite natural and the experts even produced ‘double’ signs on their own initiative. More
experience with using a qualitative probabilistic network in the first step of quantifying a real-life
probabilistic network is, however, required. When qualitative reasoning has led to the conclusion
that the structure of a probabilistic network under construction can be considered robust, the
actual probabilities are to be assessed. The qualitative relations from the qualitative network can
be used as constraints on the possible probability distributions. Initial rough assessments for
these probability distributions can be obtained with our, still to be systematically evaluated but
promising, new elicitation method. A tool could be developed that includes the elicitation method
as well as knowledge about a network’s qualitative relationships. The constraints imposed by
these relationships can be used as additional guidance for the experts during elicitation.
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Qualitative approaches and explanation Qualitative probabilistic networks can be useful,
not only during the construction of a probabilistic network, but also for explanation purposes.
The ability of a probabilistic network to explain its output is perhaps the most important feature
required for the acceptance of such networks. However, relatively little research has been done
into the subject of explaining probabilistic networks. A discussion of the research that addressed
this subject can be found in [118]. We believe that qualitative probabilistic networks, and in
particular our pivotal pruning algorithm, can be used for explaining the reasoning process of a
probabilistic network to its user. The actual output of a network can, in addition, be explained
with the help of our response scale with both verbal and numerical anchors. The use of verbal
probability expressions for explanation has been suggested before [32]. Research into the use of
our response scale as an explanation tool is still required.

8.3.2 Decision making under uncertainty

Decision making under uncertainty is concerned with the problem of determining the best se-
quence of decisions to be made in the light of the uncertainties in the domain and the uncertain
consequences of these decisions. Decision making under uncertainty involves both reasoning
under uncertainty and reasoning about preferences. The framework of probabilistic networks, as
discussed in this thesis, is tailored to reasoning under uncertainty and builds on the mathemat-
ical foundation of probability theory. The mathematical basis for reasoning about preferences
is utility theory. To make the framework of probabilistic networks more suitable for decision
support, it must incorporate not just uncertainty reasoning, but also reasoning about preferences
and the possible decisions. As we therefore believe decision making to be a valuable addition to
mere reasoning under uncertainty, we will briefly discuss a formalism for representing decision
problems, theinfluence diagram[58].

Influence diagrams

An influence diagram can be seen as an extension of a probabilistic network, encoding not only
a joint probability distribution, but also the various possible decisions that a decision maker can
make and the desirability of the, uncertain, consequences of these decisions. As a probabilistic
network, an influence diagram consists of a qualitative part and an associated quantitative part.
The qualitative part of an influence diagram once again is an acyclic digraph. The set of nodes
in the digraph is now partitioned into three different sets of nodes, having different meanings in
the decision problem that is being represented. A node representing a domain variable is termed
a chance node. A decision nodemodels the various decision alternatives or actions that are at
a decision maker’s disposal; the value of a decision node is under direct control of the decision
maker. The third type of node in the digraph is thevalue node, representing the desirability of
the consequences that may arise from the various decisions alternatives; it may be looked upon
as a real-valued, deterministic chance node. The value node is unique and does not have any
outgoing arcs in the digraph.

The set of arcs in the digraph of an influence diagram is equally partitioned into different sets.
The arcs between the chance nodes encode the independences among the represented variables.
An arc from a decision node into a chance node expresses an influence on the chance node exerted
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by the decision maker through his decision for the decision node at hand. The incoming arcs of a
decision node together capture the information that is available at the time the decision is made.
The digraph captures the basic assumption that, upon making a decision, all previously made
decisions and previously available information are known to the decision maker. To conclude,
an incoming arc of the value node expresses an influence on desirability.

The quantitative part of an influence diagram associates with each chance node a set of con-
ditional probability distributions. In addition, with the value node is associated autility function,
that describes the desirability of each combination of values for the value node’s parents. An
influence diagram thus uniquely represents a decision problem. A solution to the represented
problem is a decision or, in case of multiple decision nodes, a sequence of decisions thatmax-
imisesdesirability of the consequences. To compute a solution, for each decision or sequence of
decisions, the utilities of its various uncertain consequences are weighted with the probabilities
that these consequences will occur. Efficient algorithms are available for computing from an
influence diagram a solution for the represented decision problem, either by recursively reduc-
ing the diagram and combining probabilities and utilities [111], or by transforming an influence
diagram into a probabilistic network and subsequently performing probabilistic inference [21].

In constructing an influence diagram the same problems are encountered as in the construc-
tion of a probabilistic network, and more: an influence diagram not only requires a large number
of conditional probabilities, but also a possibly even larger set of utilities. While the prior and
conditional probabilities in a network are fixed, the utilities will vary from user to user and thus
have to be elicited for each user. For quantifying an influence diagram it is therefore again im-
portant that the structure of the diagram is considered robust, and that utility elicitation is made
easy on the users. Another thesis can be filled with research into qualitative abstractions of in-
fluence diagrams and utility elicitation methods. Here, we will briefly discuss utility elicitation
andqualitative influence diagrams.

Utility elicitation Utility elicitation has been studied extensively in the field of decision anal-
ysis [65, 129]. In fact, a number of probability elicitation methods described in Chapter 5 were
originally designed for utility elicitation. There are two common approaches to utility elici-
tation [15]. The first is to base the utility functions on qualitative preferences elicited from the
user. The second makes assumptions about the form and decomposability of the utility functions;
decomposed functions are easier to understand and elicit.

Whereas utility elicitation methods were designed to elicit utilities fordecision trees, they
are now being applied for eliciting utilities for influence diagrams. Influence diagrams, however,
tend to be much larger in size and, hence, require many more utilities. Utility elicitation using
the standard methods thus becomes infeasible and other methods are called for. Recently, utility
elicitation has started to receive attention in artificial intelligence. Attention has focused on the
use of a combination of previously elicited utility functions and knowledge of the prevalence
of these functions in the population of users for guiding the process of utility elicitation for a
new user [15], and on the elicitation of partial utility models. For partial evaluation, an incre-
mental approach was proposed [51], as well as an approach that includes uncertainty about a
user’s utilities [16]. The latter approach assumes a density function over possible utility values
and applies statistical estimation techniques to learn such a density function from a database of
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partially elicited utility functions. Focusing on eliciting only partial elicitation functions and ap-
plying techniques such as mentioned here may be the way to proceed. To investigate the effect
of inaccuracies on the optimal decision, again sensitivity analysis can be used [23].

Qualitative influence diagrams Qualitative influence diagramsare qualitative abstractions of
influence diagrams [134]. As a qualitative probabilistic network, a qualitative influence dia-
gram bears a strong resemblance to its quantitative counterpart. It comprises the same graphical
representation of the nodes involved in a decision problem, along with their different interrela-
tionships. As with qualitative probabilistic networks, a qualitative influence diagram associates
with the arcs between its chance nodes qualitative influences, additive synergies, and product
synergies. As seen in Chapter 3, these qualitative relationships adhere to the properties of sym-
metry, transitivity, and parallel composition. Qualitative influences and synergies can also be
specified between decision nodes and chance nodes. In addition, a qualitative influence diagram
specifies variousqualitative preferential relationshipsfor the value node of the digraph. These
preferential relationships are qualitative influences on utility and additive synergies on utility.
The qualitative relationships together constitute a set of hyperarcs for the network’s digraph.

For decision making in qualitative influence diagrams, an algorithm was designed based on
the idea of recursively reducing a diagram [134]. However, this algorithm tends to create more
ambiguities than necessary as a result of information loss during the reductions employed and,
hence, is not able to compute a preferred decision in all situations where such a decision can
be derived. In [101], we proposed a new, elegant algorithm, based on the sign propagation
algorithm, that creates fewer unnecessary ambiguities and is therefore able to solve more decision
problems. As a qualitative influence diagram embeds a qualitative probabilistic network for
representing the qualitative relationships among its chance nodes, the original sign-propagation
algorithm can be applied straightforwardly to the diagram’s probabilistic part. In addition, the
algorithm can be used to trace the effect of evidence on the value node, indicating the sign of
change in expected utility. The sign-propagation algorithm, however, cannot be used for the
decision nodes in the diagram, as it would ignore the control of the decision maker. To provide
for these nodes, we adapted the algorithm so that it does not pass signs into decision nodes.
The preferred decision alternatives are those that have a positive effect on expected utility. This
is, if we should make a decision, enter this decision as evidence and use the sign propagation
algorithm, then the value node should receive a ‘+’. To determine the decisions that have this
effect, we work in the opposite direction and propagate a ‘+’ from the value node towards every
decision node, regardless of the sign of the influence on utility of the evidence. For more details
on decision-making in qualitative influence diagrams, the reader is referred to [101].
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The Oesophagus Network

The Netherlands Cancer Institute, Antoni van Leeuwenhoekhuis, in the Netherlands is a spe-
cialised center for the treatment of cancer patients. Every year some eighty patients receive treat-
ment foroesophageal carcinomaat the center. These patients are currently assigned to a therapy
by means of a standard protocol that includes a small number of prognostic factors. Based upon
this protocol, 75% of the patients show a favourable response to the therapy instilled; one out of
every four patients, however, develops serious complications as a result of the therapy. To arrive
at a more fine-grained protocol with a higher favourable response rate, a decision-support system
is being developed for patient-specific therapy selection for oesophageal carcinoma. The kernel
of the system is a probabilistic network for diagnosis and prognostication; we will refer to this
probabilistic network as theoesophagus network. The system is constructed and refined with
the help of two experts in gastrointestinal oncology from the Netherlands Cancer Institute and is
destined for use in clinical practice.

The illustrative examples used throughout this thesis, mostly comprise of simplified frag-
ments from the oesophagus network. In addition, the network was used in a case study of our
newly designed probability elicitation method described in Chapter 6; the results of the study,
including an evaluation of the network, are provided in Chapter 7. Here, we will provide some
background on the oesophagus network’s structure, its probabilities, and the domain knowledge
captured. The overall structure of our probabilistic network for oesophageal carcinoma is shown
in Figure A.1.

Domain knowledge

A carcinoma may develop in a patient’s oesophagus as a consequence of a lesion of the oe-
sophageal wall, for example as a result of frequent reflux or associated with smoking and drink-
ing habits. Due to the presence of an oesophageal carcinoma, a patient will often have difficulty
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Figure A.1: The overall structure of the probabilistic network for oesophageal carcinoma.

swallowing food and may, as a consequence, lose weight. The extent to which a patient suffers
from these complaints depends on the characteristics of the carcinoma, such as its location in
the oesophagus and its histological type, length and macroscopic shape. These characteristics
influence the carcinoma’s prospective growth. An oesophageal carcinoma typically invades the
oesophageal wall upon growth. When the carcinoma has grown through all three layers of the
oesophageal wall, it may invade neighbouring structures such as the trachea and bronchi, the
heart, the mediastinum, or the diaphragm, depending upon the location of the tumour in the oe-
sophagus. In due time, the carcinoma may give rise to lymphatic metastases in, for example, the
patient’s cervical lymph nodes and to haematogenous metastases in, for example, the lungs and
the liver. The characteristics, depth of invasion, and extent of metastasis are summarised in the
carcinoma’s stage; these factors, together with a patient’s physical condition, largely influence a
patient’s life expectancy and are indicative of the effects and complications to be expected from
the different therapeutic alternatives. To establish these factors in a patient, typically a number
of diagnostic tests are performed, ranging from multiple biopsies of the primary tumour to gas-
troscopic and endosonographic examination of the oesophagus and a CT-scan of the patient’s
chest and liver. The tests differ considerably in their sensitivity and specificity characteristics.
For example, for establishing the presence or absence of metastases in the loco-regional lymph
nodes endosonography has a low sensitivity and specificity whereas gastroscopy for establishing
the carcinoma’s shape has considerably better sensitivity and specificity characteristics.

Whereas establishing the presence of an oesophageal carcinoma in a patient is relatively
straightforward, the staging of the carcinoma and especially the selection of an appropriate ther-
apy are far harder tasks. In the Antoni van Leeuwenhoekhuis, different therapeutic alternatives
are available, ranging from surgical removal of the oesophagus, to radiotherapy and positioning
a prosthesis in the oesophagus. The effects aimed at by instilling a therapy include removal or
reduction of the patient’s primary tumour to prolong life expectancy and an improved passage of
food through the oesophagus. The therapies available differ in the extent to which these effects
can be attained. For example, where the aim of surgical removal of the oesophagus is to achieve
a better life expectancy for a patient, positioning a prosthesis in the oesophagus is aimed merely
at relieving the patient’s problems with swallowing food. Instillation of a therapy is expected
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to be accompanied not only by beneficial effects but also by complications; these complications
can be very serious and may in fact result in death. It will be evident that the possible effects and
complications require careful balancing before a therapy is decided upon.

Description of the oesophagus network

The kernel of our decision-support system is a probabilistic network of oesophageal carcinoma,
comprising of a diagnostic part and a prognostic part. The diagnostic part describes the various
characteristics of an oesophageal carcinoma and the pathophysiological processes underlying its
invasion into the oesophageal wall and its metastasis. This part of the model further captures
the sensitivity and specificity characteristics of the diagnostic tests that are typically performed
to assess a carcinoma’s stage. The prognostic part describes seven possible therapies along with
their possible effects and complications. This part further specifies the extent to which the effects
and complications associated with each therapy influence life expectancy and the patient’s ability
to swallow food. When a patient’s complaints and test results are entered, the diagnostic part
of the network provides for establishing the stage of the patient’s carcinoma; the prognostic
part provides for subsequently predicting the most likely outcomes of the different treatment
alternatives.

The probabilistic network of oesophageal carcinoma is being constructed and refined with the
help of two domain experts. In a sequence of eleven interviews of two to four hours each, over
a period of two years, the experts identified the relevant diagnostic and prognostic factors to be
captured as nodes in the network, along with their possible values. The influential relationships
between the nodes were elicited from the experts using the notion of causality: typical questions
asked by the elicitors during the interviews were “What could cause this effect?” and “What
manifestations could this cause have?”. The thus elicited causal relationships were expressed
in graphical terms by taking the direction of causality for directing the links between related
nodes. Once the graphical structure of the network was considered robust, attention turned to
the elicitation of the required probabilities. The author of this thesis was not involved in the
network’s construction until the second attempt at quantifying the network, using the newly
designed elicitation method.

Our probabilistic network currently includes 66 nodes. Of these, 42 nodes pertain to the
diagnostic part of the network and the remaining 24 nodes are used for prognostication. For
the nodes, a total of 4009 (conditional) probabilities have been specified. For the purpose of
this thesis, we will focus our attention on the diagnostic part of the network, which constitutes a
coherent and self-supporting probabilistic network. The overall structure of the diagnostic part of
the network is shown in Figure A.2; it is depicted in more detail in Figure A.3, showing the prior
probability distribution per node. For each group of nodes from the diagnostic part, Table A.1
summarises the number of nodes,n, and the number of (conditional) probabilities,p, specified.
The table, in addition, specifies for each group the mean, maximum, and minimum number of
valuesv per node, number of incoming arcsi per node, and number of outgoing arcso per
node. The 42 nodes involved require 279 (conditional) probability distributions, with a total of
932 probabilities. The node requiring the largest number of conditional probability distributions,
24, and probabilities, 144, models the stage of the carcinoma; this node is a deterministic node.
The non-deterministic node requiring the largest number of probability distributions, 20, is the
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Figure A.2: The overall structure of the diagnostic part of the oesophagus network.

node describing the result of an endosonographic examination of a patient’s mediastinum. The
non-deterministic node requiring the largest number of probabilities is the node describing the
result of an endosonogram of a patient’s oesophagus with respect to the depth of invasion of the
carcinoma in the oesophageal wall; it requires 80 probabilities.

n p v i o
v̄ max min ı̄ max min ō max min

Physical complaints 2 84 3.5 4 3 2 3 1 5.5 11 0
Diagnostic tests 23 470 2.7 5 2 1.4 2 1 0 0 0
Characteristics 5 24 2.8 3 2 0.4 1 0 3.2 5 1
Depth of invasion 4 140 3.3 5 2 2 2 2 3.5 6 1
Metastases 7 70 2.1 3 2 1.4 2 1 2.6 4 2
Stage 1 144 6 6 6 3 3 3 0 0 0
total 42 932 3.4 6 2 1.7 3 0 2.5 11 0

Table A.1: Some statistics concerning the number of nodesn, the number of (conditional) proba-
bilities,p, the mean, maximum, and minimum number of valuesv per node, in-degreei per node
and out-degreeo per node, for the diagnostic part of the oesophagus network.
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Figure A.3: The diagnostic part of the oesophagus network.



APPENDIX B

Statistical Methods

Analysis of variance (ANOVA)

ANOVA is an acronym for ANalysis Of VAriance. It is a method for testing for significant differ-
ences between mean values of a certain variable measured in samples from different populations,
by analysing variance (SD2). We briefly review the details necessary for understanding the re-
sults presented for the second study in Chapter 6. More details can be found in any textbook on
statistical analyses (see e.g. [59]).

In the study concerned, we performed eight ANOVA analyses, one for each verbal proba-
bility expression. For each analysis, we considered samples from four populations:26 ranking
numbers provided by medical subjects in the no-context group,26 ranking numbers provided by
other subjects in the no-context group,21 ranking numbers from medical subjects in the context
group, and22 ranking numbers from other subjects in the context group. We were interested in
whether the mean ranking numbers of the samples differed between the populations.

ANOVA tests the null hypothesis that all population means are equal by comparing two
estimates of variance. The Mean Square Error (MSE) estimate is an estimate of variance that
captures variability of the data within the population samples. The Mean Square Between (MSB)
estimate captures the variability between population samples. If the null hypothesis is true, then
MSE and MSB should be approximately the same. To test the null hypothesis, therefore, the
ratioF = MSB

MSE
is used. This ratioF has a probability distribution known as theF-distribution.

From theF -distribution, the probabilityp of obtaining a value forF as large as or larger than the
one calculated from the data can be determined. Ifp is lower than a pre-specified significance
level α, then the ratio of the two variance estimates is significantly greater than1 and the null
hypothesis is rejected.
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The function describing anF -distribution is defined by two parameters: the degrees of free-
dom of the numerator (dfn) and the degrees of freedom of the denominator (dfd), where the
number of degrees of freedom is the number of parameters which may be independently varied.
In the simplest case of ANOVA, we take

dfn = number of populations− 1
dfd = overall sample size− number of populations

As our study included four populations with a total of90 subjects providing one ranking number
per expression, we are concerned with theF (3, 86)-distribution. Using this distribution, ANOVA
computed from our ranking number data for the expressionpossible the value4.018 for F , which
differs significantly from1 (p = .01). We summarise the results for other expressions with
mean ranking numbers differing significantly over groups: forimpossible F (3, 86) = 4.605,
p = .005, for improbable F = 5.684, p = .001, for expected F = 4.481, p = .006 and for
certain F = 4.390, p = .006.

When the two estimates of variance differ significantly and the null hypothesis is rejected,
then the only conclusion that can be drawn is that at least one population mean substantially
deviates from at least one other population mean. ANOVA does not reveal which population
means differ from which others. Upon finding significant variance differences, therefore, further
analyses are usually conducted to investigate where the differences lie precisely. Such analyses
are called post hoc tests. An example post hoc test is Tukey’s HSD procedure for testing all
pairwise comparisons of the means among the groups.

Principal component analysis (PRINCALS)

PRINCALS, an acronym for PRINcipal Components analysis by Alternating Least Squares, is a
non-linear principal component analysis method developed at Leiden University. PRINCALS is
capable of handling ordinal data. A principal component analysis describes a number of variables
with a smaller number of variables, termed the principal components, that still contain as much
information, exhibited in the original variables, as possible. We will briefly review PRINCALS;
more details can be found in [45].

As an example, suppose we have ten different variables pertaining to restaurant character-
istics. Suppose that half of these variables are concerned with the quality of the food and the
service, and the other half concern the atmosphere in and around the restaurant. The informa-
tion incorporated in these ten variables may therefore be summarised with only two variables.
These two variables are then called the principal components or thedimensionsof the problem.
Suppose we would like to compare the quality of food and service, and the atmosphere for a
number of restaurants, then analysing for all restaurants the summarised values of the principal
components is much easier than analysing the values for all original variables. For each dimen-
sion and each observation object (the restaurants), PRINCALS computes a summarised value,
called anobject score; the total set of object scores is thesolution. In addition, PRINCALS pro-
vides several measures of fit to indicate the quality of the solution, that is, how good the object
scores represent the original variables’ values. We will discuss two of these fitness measures.
Thegoodness-of-fitof the entire solution is given by aneigenvalue(between0.0000 and1.0000)
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for each dimension. The eigenvalue gives the proportion of variance in the original variables
accounted for by the principal component. With two dimensions, a high eigenvalue on one di-
mension and a low eigenvalue on the other dimension indicates a one-dimensional solution. If
the eigenvalues on both dimensions are high, this indicates at least a two-dimensional solution.
PRINCALS also provides a measure of fit for each original variable, indicating for each dimen-
sion how good the object scores represent that variable’s values; this fitness measure is termed
thecomponent loading.

In our second study in Chapter 6, subjects were asked to provide ranking numbers for eight
verbal probability expressions. We were interested in comparing the ranking numbers for the ex-
pressions, summarised over all subjects. Therefore, the subjects in our study are the variables for
the PRINCALS analysis and the eight expressions are the observation objects; each variable has
a single value for each observation object, being the ranking number a subject has provided for
that expression. If the subjects are all ordering the expressions from the same perspective, then
the solution should be one-dimensional, that is, the rank orders of all subjects can be summarised
in a single order. A high-quality solution will be found if all subjects have given comparable rank
orders. If some of the subjects have ordered the expressions from a different perspective, then the
data will contain more than one principle component; a two-dimensional solution, for example,
would indicate that within two groups of subjects the orderings are comparable, but between the
two groups they are not. From the component loadings provided for the subjects, it can be de-
rived which subject is summarised in which principal component. The eigenvalues we found for
the different PRINCALS analyses we described for our second study, are presented in Table B.1.

no-context context
group 1 group 2 group 3 group 4

Analysis 1 # subjects 26 26 21 22
eigenvalue dim. 1 0.9675 0.9300 0.8182 0.6572
eigenvalue dim. 2 – – 0.1484 0.2986

Analysis 2 # subjects 24 25 12 11
eigenvalue 0.9175 0.9500 0.9550 0.9515

Analysis 3 # subjects 49 23
eigenvalue 0.9504 0.9652

Analysis 4 # subjects 72
eigenvalue 0.9658

Table B.1: Eigenvalues found for the different analyses for the second study in Chapter 6.

Alternating least-squares scaling (ALSCAL)

ALSCAL is an acronym for Alternating Least-squares SCALing. It takes a set of distances be-
tween objects and “recreates the map” by computing the coordinates of the objects. Compare this
with creating a map of Europe given the distances between each pair of cities. ALSCAL can com-
pute coordinates in as many dimensions as necessary, in such a way that the Euclidean distances
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between the coordinates will correspond as closely as possible to the originally provided object
distances. As close as possible means that the difference (error) between the squared coordinate
distances and the object distances is as small as possible. This error is provided by ALSCAL
for its solution as a measure of fit; it is termeds-stressand ranges from1 (worst possible fit) to
0 (perfect fit). Another fitness measure isRSQ, the squared correlation coefficient between the
object distances and the coordinate distances; it ranges from0 (worst) to1 (best) and indicates
the proportion of variance of the data that is accounted for by the coordinate distances. More
detailed information on ALSCAL can be found in [119].

In our third study in Chapter 6, we constructed for each subject a matrix with distances
between each pair of verbal probability expressions. We used a replicated version of ALSCAL
to be able to compute a single solution for a set of matrices together. We computed one solution
for the26 medical subjects, one solution for the52 other subjects, and one solution for the total
group of78 subjects. We treated our data as continuous ordinal data and as matrix-conditional,
that is, we took into account that the meaning of the numbers in a matrix is conditional on the
subject. Since our previous studies had indicated that all probability expressions seemed to be
comparable, we did an analysis in only one dimension. The coordinates computed by ALSCAL
for the eight expressions in the three groups can be found in Table 6.6; these coordinates are
standardised to have a zero mean and a variance of one. Mean s-stress and RSQ values over all
matrices in a group are presented in Table B.2.

group 1 group 2 all subjects
(n = 26) (n = 52) (n = 78)

s-stress 0.45425 0.40965 0.42827
RSQ 0.536 0.635 0.602

Table B.2: Fitness measures for the ALSCAL solutions for the subject groups from the third
study in Chapter 6.

Log-Linear Analysis (HILOGLINEAR)

HILOGLINEAR is a log-linear analysis method. It is designed for analysing tables for three or
more variables; the cells of the tables contain frequencies. A log-linear analysis is used to find a
model of the dependencies between or interactions among variables. Here we present the details
necessary for understanding the results described for the fourth study in Chapter 6. More details
can be found in e.g. [28].

In our fourth study, we constructed2 × 2 × 7 matrices with the number of subjects that
made a certainDecisionfor a situation described, using one of two presentationModesfor a
probability Expression. These matrices can be represented by three-way tables with two rows
and 14 columns. If no dependencies exist among the table’s variables, then the frequencies
in each cell of the table should proportionately reflect the total frequencies. For example, the
proportion of ‘yes’ to ‘no’ decisions should be the same regardless of representation mode or
expression, and should therefore equal the proportion of all subjects having answered ‘yes’ to all
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subjects having answered ‘no’. Therefore, if all variables are independent, then

expected cell frequency =
column total× row total

N
,

whereN is the total sum of frequencies. This can be written as

log(expected cell frequency) = log(column total) + log(row total)− log(N),

showing that by taking the logarithm, the expected cell frequency is a linear function of the other
values involved. Such a model of expected cell frequencies reflecting certain (in)dependence
assumptions is called alog-linear model.

The assumption of independence puts constraints on the expected cell frequencies. In fact,
the above model is the most constrained model possible and, using the variables from our study,
is denoted byExpression + Decision + Mode. Without any independence assumptions, there
is no difference between expected frequencies and the actually observed frequencies and the
model will always perfectly match the data. As a model matching any data gives no information
about independences present in the data, this model is called informationless; it is denoted by
Expression×Decision×Mode. Informally speaking, in a log-linear model, an ‘×’ denotes
(possible) dependence and a ‘+’ denotes independence. Any combination of variables with+s
and×s is a possible model. The modelExpression×Decision + Mode, for example, indicates
that only the variables Expression and Decision are dependent and that Mode is independent of
either.

Finding the log-linear model that best describes the data is a two-step process. The first
step is testing the expected cell frequencies for all possible models for significant deviations
from the data. All models for which expected cell frequencies and observed frequencies do not
significantly differ are said to fit the data and are subsequently compared with each other to find
the best one. To determine whether a model fits the data and what the goodness of this fit is, a
χ2-testis performed. The null-hypothesis for this test is that the expected cell frequencies equal
the observed frequencies. To test this hypothesis, the following measure is used:

χ2 =
∑

table cells

(observed frequency− expected frequency)2

expected frequency

This measure has aχ2-distribution; the function describing the distribution is defined by a single
parameter, the degrees of freedom (df ). Here, we takedf to be(#rows− 1)× (#columns− 1).
From theχ2-distribution, the probabilityp of obtaining a value forχ2 greater or equal to the
one calculated from the data can be determined. Ifp is smaller than the significance level of
0.05, then the fit is too bad and the model should be rejected. The best model is the simplest,
non-informationless, model with the highestp-value and the lowest value forχ2; the smaller
theχ2 value, with a minimum of0, the smaller the difference between expected and observed
frequencies and therefore, the better the fit.

It is known that theχ2-tests are somewhat too liberal, finding differences more significant
than they actually are; this is especially the case if some expected cell frequencies are small.
It is therefore suggested to correct the observed frequencies before computing the fit [28]. This
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continuity correction consists of adjusting each value of the observed frequencies by0.25 towards
its own expected frequency. In our study, we used this correction in situations where no simple
model would fit the data and we thought this could be caused by small cell frequencies.

Table B.3 presents theχ2 values computed for the results presented for our fourth study in
Chapter 6. Separate results are given for the analysis of the number of subjects making a decision
and the analysis of the total confidence they had in the correctness of the decision. In all cases,
we eventually foundExpression × Decision + Mode to be the best fitting model; in most
cases this model was found for the original data, in two cases it was found after a continuity
correction and in one case it was found after deleting the probability expression represented by
either25% or uncertain. The first listedχ2 in the two columns, is the value found for the data
from the decision situation in which the probability expressions were rank ordered. The number
of degrees of freedom (df ) is 11 for the table with deleted data;df = 13 for all other tables.

decision tables confidence tables
original dataset χ2 = 2.876 p = 0.998 χ2 = 2.574 p = 0.999

χ2 = 15.468 p = 0.279 χ2 = 12.541 p = 0.484
χ2 = 16.085 p = 0.245 χ2 = 7.520 p = 0.873
χ2 = 9.438 p = 0.739 χ2 = 9.208 p = 0.757
χ2 = 9.261 p = 0.753

corrected dataset χ2 = 20.342 p = 0.087 χ2 = 13.138 p = 0.437

reduced dataset χ2 = 15.287 p = 0.170

Table B.3: Goodness-of-fit for the results presented for the fourth study in Chapter 6.
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Questionnaires and Evaluation Forms

On all questionnaires subjects were asked to provide their sex (m/f), year of birth and their
profession or studies; they were then thanked for their cooperation. The following questionnaire
was used for the first study of Chapter 6.

Expressing Uncertainty

People are used to coping with uncertain information when reasoning and making decisions.
This information can contain uncertainty about the occurrences of certain events, about the con-
sequences of events, or about the consequences of a decision, etc. Events are not simply “certain”
òr “uncertain”: we are capable of distinguishing degrees of uncertainty. In doing this, we often
use verbal expressions as “possible”, “probable”, “uncertain”, etcetera. One can, for example,
say “It is possible that I will pass my exam”, or “It is highly likely that I will go to Amsterdam
tomorrow”. With this experiment we want to find out what verbal expression are commonly
used.

We would like you to write down a list of expressions that, in your opinion, could be applied in
situations in which you want to express a degree of uncertainty. To help you with this, we present
a few example sentences:

• It is . . . . . . that it will rain tomorrow.

• It is . . . . . . that there will be a railway strike next week.

• It is . . . . . . that I will find a job this summer.
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Please write down all expressions that you think arecommonly usedfor expressing a degree of
uncertainty and that are meaningful in the above contexts. Do not restrict yourself to terms that
express what you expect will actually happen.

The following questionnaire was used in the second study of Chapter 6. We only present the
context version; for the no-context version the probability expressions are presented in isola-
tion in the order: possible, impossible, uncertain, certain, probable, improbable, expected, and
undecided.

Ordering Verbal Probability Expressions

People are used to coping with uncertain information when reasoning and making decisions. This
information can contain uncertainty about the occurrences of events, about the consequences
of events, or about the consequences of a decision, etc. Events are not simply “certain”òr
“uncertain”: we are capable of distinguishing degrees of probability.

Below we present a list of eight expressions, each denoting a degree of certainty. We ask you
to order the expressions, that is, the expressions themselves, not the credibility of the sentence!
Order the expressions by providing a number for each one of them. Start with a1 for the highest
degree of certainty and a subsequent number for each expression with a lower degree of certainty.
If you find that some expressions denote the same level of certainty, you can indicate this by
annotating them with the same number.

• It is probable that someone who must urinate often has a bladder infection.

• It is improbable that someone with inflamed tonsils has no sore throat.

• It is possiblethat someone faints from the heat.

• It is undecidedwhether a crick of the back is caused by cramps or is related to a “slipped
disc”.

• It is impossibleto prevent influenza.

• It is uncertain whether or not a broken bone will heal completely.

• It is expectedthat a stressed person will get a gastric ulcer.

• It is certain that young people do not get varicose veins.
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The following questionnaire was used in the third study of Chapter 6. The subjects were given
a page with instructions, a page with four trial runs, and a booklet with all28 possible pairs of
expressions, each on a separate page. We will only present the instructions and one booklet page
as an example.

Pairwise Comparisons of Verbal Probability Expressions

In this experiment you are asked to judge the comparability of a number of verbal probability
expressions. Each form you have received contains two expressions. You are asked to compare
these two expressions and indicate how similar or different you think these expressions are in
meaning.

On each form you will find a line with the wordsexactly the sameon one end andcompletely
differenton the other end. If, in your opinion, there is no difference in meaning between the two
expressions, then place a mark at the beginning of the line atexactly the same. If you think there
is a difference in meaning, place a mark somewhere on the line, indicating how much you think
the expressions differ in meaning.

We would like to remind you that different people judge things differently. Two expressions that
are similar to one person can be quite different to another person. This means that there are no
right or wrong answers.

You will find one form for each pair of expressions. All you have to do is mark the line to indicate
how similar or dissimilar you think a pair is. Wait about 5 seconds before proceeding to the next
form and do not look back at the forms you have already filled in. The32 pairs of expressions
will require about ten minutes of your time.

To get used to the scoring procedure you will first be presentedfour trial pairs. After these, the
real experiment starts.

possible - uncertain

exactly the same completely different
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The following questionnaire was used in the fourth study of Chapter 6. Each questionnaire
consists of a instruction page, followed by six decision situations (A-F), each accompanied by
a table similar to the one given in the instructions. We will present the instruction page and list
the decision situations without the accompanying tables. For the decision situations listed, A, B
and C are each presented with a table with numerical probability expressions. For situation A
the expressions are ordered as in the table in the instructions, for situations B and C the order is
25, 85, 100, 15, 0, 75, 50, and 75, 25, 85, 50, 0, 100, 15, respectively. The situations D, E, and
F are presented with a table with verbal probability expressions. The order of verbal expressions
equals the order of their numerical translations used for the first three situations. Half of the
subjects were given this version of the questionnaire; for the other half of the subjects situations
A, B and C are combined with the tables with verbal probability expressions and D, E and F with
the numerical expressions.

Decision Making under Uncertainty

In this experiment you will be presented with a number of hypothetical situation sketches. For
each situation sketch there are eight different numerical or verbal expressions denoting the prob-
ability of occurrence of a certain event. In each case you are asked to make a certain decision
and indicate how confident you are that this decision is correct. We will give an example:

The probability that someone who doesn’t get enough sleep at night will have concentration
problems is about . . . %. You have an exam in the morning but are tired of studying. Will you
go out for a while, tonight?

. . . % Decision: Confidence in this decision:
100 % yes/no complete ———– no
85 % yes/no complete ———– no
75 % yes/no complete ———– no
50 % yes/no complete ———– no
25 % yes/no complete ———– no
15 % yes/no complete ———– no
0 % yes/no complete ———– no

Fill in each of the probabilities from the table on the dots in the sentence, and circle “yes” or
“no” for each alternative to indicate whether or not you would go out. Then indicate how much
confidence you have in that decision by placing a mark on the horizontal line somewhere in
the range of complete – no. We would like to remind you that different people judge things
differently. This means that there are no right or wrong answers. All you have to do is circle
“yes ” or “no” for each alternative and mark the line that represents your confidence in the
decision. There are 6 situation sketches, each with 8 alternatives that will require, in total, about
ten minutes to answer.
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A) The probability that the railway-strike will be over tomorrow is about . . . %. Tomorrow,
you have an important appointment in another city. Will you cancel the appointment?

B) The probability that it will rain tomorrow is about . . . %. You have planned a big garden
party for tomorrow. Will you cancel the party?

C) Ms. T. has a non-serious physical complaint, which does however need treatment. The
probability that Ms. T. is allergic to the usually prescribed drug H. is about . . . %. Alter-
native drugs for her complaint are available, but these are less effective. Do you prescribe
drug H. ?

D) It is . . . that/whether your patientX has broken his ankle. No x-ray can be made until
tomorrow. Will you immobilise the patient in a plaster cast right now?

E) It is . . . that/whether you have a cavity in one of your teeth. It is not bothering you. Will
you visit a dentist?

F) It is . . . that/whether an average student passes an exam without practising exercises. Sup-
pose you are an average student and you want to pass the exam, but the practise group is
at an inconvenient time. Will you join the practise group?

The following evaluation form was given to each of our domain experts and used for evaluating
the elicitation method described in Chapter 6; the evaluation is described in Chapter 7. With each
question, we left room for remarks or explanation.

Questions about the elicitation process

Please indicate the most suitable answer. Sometimes more than one alternative is possible. For
each question there is room for remarks or an explanation.

• How did you experience assessing probabilities?

� easy
� efficient
� natural
� artificial
� difficult

• How did you experience assessing probabilities compared to previous experiences?

� easier
� no difference
� harder
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• Is the use of text fragments a good way to indicate which probability is to be assessed?

� yes
� no, the following method would be better: . . .

• Is the use of text fragments helpful in assessing the probability itself?

� yes
� makes no difference

• The order of the required probabilities is such that the ones that should add up to 100% are
grouped together. Does this aid the assessment of the probabilities?

� yes, it is necessary
� yes, it does make it easier
� it makes no difference

• When asked to provide a probability, do you think in words or in numbers?

� merely in words
� merely in numbers
� sometimes in words, sometimes in numbers

• When assessing a probability, what determines whether you do this in words or in num-
bers?
� how sure I am of the answer
� how familiar I am with the situation described
� how hard it is for me to assess the probability
� known values from the literature
� something else, namely . . .
� question is not applicable

• When estimating a probability, do you first think about what it should be and then mark
the scale, or do you directly mark the scale at what seems the right position and then check
whether the meaning is as intended?

� first think, then mark
� first mark, then check
� I do something completely different, namely . . .

• Which part of the scale do you use to determine the position of the mark?

� merely the words
� merely the numbers
� always both
� sometimes words, sometimes numbers, sometimes both
� other, namely . . .
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• What is your opinion on thenumberof wordson the scale?

� sufficient
� too few
� too much

• What is your opinion on thespecific wordsthat are on the scale?

� these are the words I use
� I never use the following words: . . .
� the following words are missing: . . .

• What is your opinion on thepositionof thewordson the scale?

� the positions are fine
� the position of the following words differ from what I would expect: . . .

• What is your opinion on thenumberof numbersthat are on the scale?

� sufficient
� too few
� too much

• What is your opinion on thespecific numbersthat are on the scale?

� these are fine as anchors
� the following numbers are superfluous: . . .
� the following numbers are lacking: . . .

• Does it matter whether the scale is depicted vertically or horizontally?

� a vertical scale is better, because . . .
� a horizontal scale is better, because . . .
� there’s no difference
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[25] V.M.H. Couṕe and L.C. van der Gaag. Properties of sensitivity analysis of Bayesian belief
networks.Annals of Mathematics and Artificial Intelligence, 2000. To appear.
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Samenvatting

Probabilistische netwerkenworden veelvuldig toegepast voor het modelleren van onzekere in-
formatie, en voor het redeneren met die onzekere informatie. Een probabilistisch netwerk is
opgebouwd uit een kwalitatief deel en een kwantitatief deel. Het kwalitatieve deel bestaat uit
een gerichte graaf waarin de knopen de belangrijke variabelen in het domein modelleren en de
pijlen de afhankelijkheden tussen de variabelen aangeven. Voor elke variabele gerepresenteerd in
de graaf zijn conditionele kansverdelingen gespecificeerd, die de kans vastleggen op een waarde
van de variabele gegeven de verschillende waarde combinaties van zijn ouders in de graaf; deze
verzameling van kansverdelingen vormt het kwantitatieve deel van een probabilistisch netwerk.

Het construeren van een probabilistisch netwerk begint gewoonlijk met de graaf: de belang-
rijke domein variabelen en hun waarden, tezamen met de afhankelijkheden tussen de variabelen,
worden gëıdentificeerd. Hiervoor wordt meestal de kennis van domein experts gebruikt. Alhoe-
wel het construeren van een graaf veel tijd kost, is het toch een taak die als doenlijk beschouwd
wordt. De graaf structuur van een probabilistisch netwerk legt vast welke kansverdelingen er ge-
schat moeten worden. Voordat het netwerk gekwantificeerd wordt is het daarom van belang dat
er een grote mate van zekerheid bestaat over de correctheid van de structuur. In dit proefschrift
stellen we voor om de correctheid van de structuur te testen door er op een kwalitatieve manier
mee te redeneren: alle pijlen in de graaf kunnen worden voorzien van een+ of −-teken dat aan-
geeft of de ene variabele een positief of een negatief effect heeft op een andere variabele; deze
tekens kunnen vervolgens door het netwerk gepropageerd worden. Op deze wijze kunnen we op
een kwalitatieve manier de invloed van iedere willekeurige variabele op iedere andere willekeu-
rige variabele bekijken; tevens kunnen de effecten van veranderingen in de structuur bestudeerd
worden. Een ongekwantificeerd probabilistisch netwerk dat is voorzien van tekens op de pijlen
heet eenkwalitatief probabilistisch netwerk. In een kwalitatief probabilistisch netwerk zijn de
tekens formeel gedefiniëerd in termen van de nog onbekende kansverdeling over de variabelen
in de graaf; daarmee leggen de tekens, gegeven door domein experts, een verzameling eisen op
aan de nog te verkrijgen kansverdelingen.
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Het bepalen van de kansverdelingen voor de variabelen gerepresenteerd in de graaf, ofwel
het kwantificeren van de graaf, vormt echter vaak een groot probleem. In veel domeinen lijkt
er een enorme hoeveelheid probabilistische informatie voorhanden te zijn, maar in het algemeen
moet het grootste deel van de kansen in het netwerk geschat worden door domein experts. Voor
het eliciteren van kansen bestaat er een scala aan kans-elicitatie methoden. Deze methoden zijn
echter vaak erg complex en tijdsintensief in gebruik en daardoor ongeschikt voor het eliciteren
van de duizenden kansen voor een probabilistisch netwerk. In dit proefschrift ontwerpen we een
kans-elicitatie methode die het mogelijk maakt om in een hoog tempo een groot aantal kansen
te schatten. Deze kansschattingen hoeven niet noodzakelijkerwijs nauwkeurig te zijn: er bestaan
methoden om de gevoeligheid van het netwerk voor onnauwkeurigheden in de schattingen te
bepalen; het tijdrovende proces van het schatten van nauwkeurige kansen kan beperkt worden tot
die kansen waarvoor het netwerk erg gevoelig is.

In dit proefschrift stellen we twee kwalitatieve benaderingen voor voor het kwantificeren van
probabilistische netwerken. De eerste benadering is het gebruik van kwalitatieve probabilistische
netwerken om tot een robuuste netwerk structuur en een verzameling eisen aan de benodigde
kansverdelingen te komen. Het formalisme van kwalitatieve probabilistische netwerken is een
bestaand formalisme, maar heeft een dusdanig hoog abstractie niveau dat eenvoudig nietszeg-
gende antwoorden (‘?’-tekens) worden afgeleid tijdens het redeneren. We stellen daarom in het
eerste deel van het proefschrift verschillende uitbreidingen van dit formalisme voor, die de uit-
drukkingskracht van de kwalitatieve netwerken vergroten. In het tweede deel van het proefschrift
ontwikkelen we een nieuwe elicitatie methode. We breiden een bestaande elicitatie methode uit
met een aantal kwalitatieve componenten, zodat het eenvoudiger wordt voor mensen om kansen
te schatten en we daardoor in een hoog tempo een groot aantal kansen kunnen eliciteren. Deze
elicitatie methode is de tweede kwalitatieve benadering die we voorstellen te gebruiken bij het
kwantificeren van probabilistische netwerken.

Het eerste deel van het proefschrift gaat over kwalitatieve probabilistische netwerken en uit-
breidingen ervan. In Hoofdstuk 2 geven we een overzicht van de kansrekening en de graaf-theorie
die nodig is voor het begrip van kwalitatieve probabilistische netwerken. Kwalitatieve probabi-
listische netwerken worden besproken in Hoofdstuk 3. Een kwalitatief probabilistisch netwerk
assocïeert kwalitatieve invloeden met de pijlen in zijn graaf. Voor een pijlA → B tussen een
knoopA en een knoopB geeft een positieve kwalitatieve invloed aan dat voor hogere waar-
den van de variabele behorende bij knoopA, hogere waarden vanB waarschijnlijker worden,
onafhankelijk van de waarden van andere variabelen. Kwalitatieve invloeden tussen twee va-
riabelen zijn dus gedefiniëerd onafhankelijk van andere variabelen gerepresenteerd in de graaf;
kwalitatieve invloeden kennen bovendien alleen een notie van richting.

In Hoofdstuk 4 stellen we een aantal uitbreiding van het formalisme van kwalitatieve net-
werken voor. De eerste uitbreiding is het expliciet maken van invloeden die niet monotoon zijn.
Een invloed van een knoopA op een knoopB is niet monotoon als hij, bijvoorbeeld, positief
is voor de ene waarde van een andere knoopC en negatief voor een andere waarde vanC. In
kwalitatieve probabilistische netwerken kunnen zulke invloeden alleen met een ‘?’ aangeduid
worden. Door expliciet te specificeren dat een invloed niet monotoon is en aan te geven welke
knopen hiervan de oorzaak zijn, is het soms mogelijk om de non-monotonie op te lossen. De
tweede uitbreiding is het toevoegen van een notie van sterkte: we maken onderscheid tussen
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sterke en zwakke invloeden. Als er twee ketens in de graaf te vinden zijn tussen een knoopA en
een knoopB zodat langs de ene keten de invloed positief is en langs de andere keten negatief,
dan is het teken van de netto invloed vanA opB onbekend: ‘?’. Weten we echter, bijvoorbeeld,
dat de positieve invloed een sterke invloed is en de negatieve een zwakke, dan moet het netto
resultaat positief zijn. De derde uitbreiding is het toevoegen van een notie van context. Door het
gebruik van contexten kunnen we het teken van een kwalitatieve invloed af laten hangen van de
waarden van knopen die niet rechtstreeks bij de invloed betrokken zijn. Zo kunnen we voor non-
monotone invloeden niet alleen aangeven welke knoop de non-monotonie veroorzaakt, maar ook
voor welke waarden, of contexten, de invloed positief dan wel negatief is. Dit geeft ons tevens
de mogelijkheid om context-specifieke onafhankelijkheden expliciet te maken. Door dit soort
uitbreidingen is het mogelijk om meer kennis in de netwerken te verwerken, waardoor er minder
‘?’-tekens resulteren tijdens het redeneren. Voor het geval er toch nog ‘?’s ontstaan tijdens het
redeneren, hebben we een algoritme ontworpen dat kan achterhalen waar deze ‘?’s ontstaan zijn
en welke informatie we nodig hebben om ze op te lossen. Tevens geven we een algoritme dat niet
alleen het effect van een enkele observatie op de variabelen in het netwerk kan berekenen, maar
ook het netto effect van meer observaties tegelijk. Dit algoritme is zo ontworpen dat onnodige
‘?’s voorkomen worden.

Het tweede deel van het proefschrift gaat over het eliciteren van kansen van domein experts.
In Hoofdstuk 5 geven we een overzicht van bestaande elicitatie methoden en wat er zoal komt
kijken bij het eliciteren van kansen van experts. Hoofdstuk 6 bespreekt het onderzoek dat we
verricht hebben naar het gebruik van verbale kansuitdrukkingen zoals ‘waarschijnlijk’ en ‘on-
mogelijk’. We hebben proefpersonen een lijst met verbale kansuitdrukkingen laten genereren.
Vervolgens hebben we een andere groep proefpersonen de meest genoemde uitdrukking laten
rang ordenen en hebben we een groep de ‘afstand’ tussen de verschillende uitdrukkingen laten
aangeven. Met behulp van de resultaten van dit onderzoek hebben we een kansschaal ontwikkeld
waarop zowel verbale als numerieke kansexpressies staan. In onze nieuwe elicitatie methode
combineren we deze schaal met een stuk tekst dat de te schatten kans beschrijft. Daarnaast zor-
gen we ervoor dat alle kansen die betrekking hebben op dezelfde voorwaardelijke kansverdeling
op een of twee opeenvolgende blaadjes aan de experts voorgelegd worden. Op deze wijze is het
makkelijk te controleren of de gespecificeerde kansen wel tot 100% optellen. De methode, be-
staande uit de combinatie van deze elementen, is met succes gebruikt met twee domein experts
van het Nederlands Kanker Instituut/Antoni van Leeuwenhoekhuis voor het schatten van de kan-
sen voor een probabilistisch netwerk voor slokdarm kanker. Een evaluatie van het gebruik van de
methode, de verkregen schattingen en het gedrag van het netwerk is beschreven in Hoofdstuk 7.
De evaluatie laat zien dat de methode erg goed bevalt, gemiddeld 170 kansen per uur oplevert en
tot grove initïele schattingen leidt die vrij goed zijn.

In Hoofdstuk 8 vatten we kort samen wat we bereikt hebben. We hebben het formalisme
van kwalitatieve probabilistische netwerken dusdanig uitgebreid dat we vaak sterkere resultaten
af kunnen leiden tijdens het redeneren. We laten aan de hand van kwalitatieve abstracties van
het slokdarm kanker netwerk en het bekendeALARM netwerk zien dat het gebruik van noties
van sterkte en context de uitdrukkingskracht van ‘echte’ netwerken beduidend vergroot. Door
de voorgestelde uitbreidingen zijn we beter in staat de robuustheid van de graaf te testen voordat
het netwerk gekwantificeerd wordt, en verkrijgen we een grotere verzameling eisen aan de nog
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te schatten kansverdelingen. Voor het daadwerkelijk kwantificeren van probabilistische netwer-
ken met behulp van domein experts hebben we een nieuwe kans-elicitatie methode ontwikkeld.
Deze methode maakt het experts mogelijk om een grote hoeveelheid initiële kansen in korte tijd
te schatten. Hoofdstuk 8 geeft tevens wat richtlijnen voor verder onderzoek in de richting van
kwalitatieve netwerken en kans-elicitatie. Daarnaast is er nog veel onderzoek vereist naar uitleg
van probabilistische netwerken; wellicht kan ons algoritme voor het achterhalen waar ‘?’s ont-
staan daar aan bijdragen. Tenslotte gaan we kort in op beslissingsondersteuning met behulp van
probabilistische netwerken. Als we de door ons beschouwde netwerken uitbreiden met ‘beslis-
knopen’, die mogelijke beslissingen modelleren, en een ‘utiliteitsknoop’, die de wenselijk van
bepaalde beslissingen in een bepaalde context aangeeft, dan krijgen we eeninfluence diagram.
Voor een influence diagram moeten ook utiliteiten voor de utiliteitsknoop geschat worden; dit
laatste is zo mogelijk nog moeilijker dan het schatten van kansen. Een kwalitatieve abstractie
van een influence diagram is een mogelijke eerste stap in de richting van het kwantificeren van
influence diagrams.
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