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Chapter 1

Introduction

In a seismic experiment one tries to obtain information about the subsurface from
measurements at the surface, using elastic waves. To this end elastic waves in the
subsurface are generated by sources at the surface. The waves that return to the
surface are observed. We will be interested in reflection seismology, where one uses
the waves that are reflected in the subsurface. From these data one tries to reconstruct
an image of the subsurface. This image can be interpreted to say more about the
geological structure of the subsurface, for instance to aid in petroleum exploration.

Seismic experiments are conducted both on land and at sea. On land the source
of waves may be an explosion or a heavy vibrating object (a vibroseis truck). The
receivers (geophones) are usually placed along a line (to reconstruct a two-dimensional
section of the subsurface), or on a grid (to reconstruct a three-dimensional part of the
subsurface). They may record one component or three components of the movement
of the surface. At sea the source is usually attached to a vessel, while the receivers
are along one or more cables towed by the vessel.

To model the propagation of waves the subsurface is viewed as an acoustic or,
more realistically, as an elastic medium1. Such a medium is described by a number
of parameters that depend on the position. In the acoustic case these can be chosen
for instance as the local wavespeed c(x) and the mass density. In the elastic case
these are the elastic tensor, and the mass density. The medium parameters occur as
coefficients in the partial differential equations that describe the propagation of waves
in the medium.

The waves generated by the source travel downward into the medium. At posi-
tions where the coefficients vary strongly part of the signal is reflected, and part is
transmitted. The reflected signal travels upward and is observed when it hits the re-
ceivers. Often the medium consists of several layers, such that the medium properties
vary little within a layer, but strongly at the interfaces between the layers. In such
cases one can recognize in the data, after some preprocessing, arrivals of the signal

1For the theory of elasticity see Marsden and Hughes [37], or a standard textbook such as Landau
and Lifshitz [35]. Of course this is only an approximation and many effects are not taken into account,
such as dissipation, the presence of cracks, porosity of the rocks and the presence of fluids (water,
oil, natural gas) in the pores.
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reflected at different depths.
We view the subsurface as an elastic or acoustic medium with possibly discon-

tinuous coefficients. Therefore the first question that we ask ourselves is whether in
such media the solutions to the wave equation are still well defined. It turns out that
this is known, and that indeed unique solutions can be found that depend in a stable
manner on the source and the initial conditions. They also depend continuously on
the coefficients, when the latter converge in a suitable sense. This is, with some other
results, described in Chapter 2. Note that this theory does not say very much about
the precise form of the solutions. Propagation of waves in media with singularities is
still not well understood.

So the question is now whether the coefficients of an acoustic or elastic wave
equation can be reconstructed from information the seismic data, that is, from infor-
mation about the solutions at the boundary. This is an example of an inverse problem.
Whereas the forward or direct problem leads to a problem that is well-posed in the
sense of Hadamard, i.e. it has a unique solution that depends in a stable manner
on the parameters, it is not clear whether this is the case for the inverse problem.
Introductory texts about inverse problems are for instance the books by Kirsch [32]
and Isakov [29]. More information about conventional processing techniques can be
found in the books by Aki and Richards [2, 3], Sheriff and Geldart [49], and Yilmaz
[60].

In Chapters 3 and 4 of this thesis we will study the inverse problem under ad-
ditional assumptions, such that high-frequency methods can be used. The high fre-
quencies in the Fourier decomposition correspond to the singularities of a function.
High-frequency methods give very precise information about the solutions of wave
equations in smoothly varying media. To apply such methods to media with singu-
larities, we either assume that the singularities are jump discontinuities along smooth
interfaces, or we use a linearization, the Born approximation introduced below.

In Chapter 3 we study what information about elastic media can be obtained from
the high-frequency part of the data. We give detailed results about the reconstruction
of the ‘high-frequency part’ of the medium coefficients, and indicate how it can be
used to reconstruct the ‘low frequency part’ (the smooth part) of the medium. In
Chapter 4 we study a more subtle problem for the Born approximation in acoustic
media. The analysis is performed using microlocal analysis, that gives a very precise
description of the singular (high-frequency) part of a function. In particular we use
the theory of Fourier integral operators. In seismic data the low frequencies are
absent, and in practice high-frequency methods are commonly applied to all data.

In Section 1.1 we give a short introduction to asymptotic solutions of the wave
equation, microlocal analysis and Fourier integral operators. In Section 1.2 we de-
scribe some important ideas in the modeling and inversion of seismic data for the
case of a relatively simple acoustic medium. In the last section of this introduction
we describe in more detail the contents of Chapters 2 to 4.
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1.1 High-frequency asymptotics and Fourier inte-

gral operators

The high-frequency part of solutions to wave equations can be found using microlocal
analysis and the theory of Fourier integral operators. Other operators that occur in
the analysis of seismic data are also of this type. For this reason we will describe
some of the ideas behind this theory.

As an example we construct asymptotic solutions to the acoustic equation. These
solutions will also be used in the next section. The acoustic equation for a medium
of constant density is given by

Pu :=

(
1

c(x)2

∂2

∂t2
−∆

)
u = f. (1.1)

In this section we assume that c(x) is smooth. Let us try a solution of the form

v(x, t) = A(x, t, τ)eiτψ(x,t), (1.2)

where A(x, t, τ) =
∑

k≥0 Ak(x, t)τm−k is the amplitude and eiτψ(x,t) is an oscillatory
factor with frequency parameter τ . We are interested in the case τ →∞. We find

Pv = (iτ)2

(
1

c2
(
∂ψ

∂t
)2 −

∑
i

(
∂ψ

∂xi
)2

)
Aeiτψ

+ iτ

(
2

1

c2

∂ψ

∂t

∂A

∂t
− 2

∑
i

∂ψ

∂xi

∂A

∂xi
+

1

c2

∂2ψ

∂t2
A−

∑
i

∂2ψ

∂x2
i

A

)
eiτψ

+

(
1

c2

∂2A

∂t2
−
∑

i

∂2A

∂x2
i

)
eiτψ.

We want this to vanish to all orders of τ . Thus if the leading term A0(x, t) in the
amplitude is nonzero, then the phase function must satisfy the equation

1

c(x)2

(
∂ψ

∂t

)2

−
∑

i

(
∂ψ

∂xi

)2

= 0,

called the eikonal equation. The terms in the amplitude satisfy the recursive system
of transport equations

2
1

c2

∂ψ

∂t

∂Ak

∂t
− 2

∑
i

∂ψ

∂xi

∂Ak

∂xi
+

1

c2

∂2ψ

∂t2
Ak −

∑
i

∂2ψ

∂x2
i

Ak + q(Ak−1) = 0, k ≥ 0.

These equations are solved consecutively for k = 0, 1, . . . . For A0 the term q(Ak−1)
is absent. The transport equation describes the growth of the amplitude along the
rays, the solution curves of the dynamical system

∂x

∂λ
=

∂p

∂ξ
(x,

∂φ

∂x
,
∂φ

∂t
),

∂t

∂λ
=

∂p

∂τ
(x,

∂φ

∂x
,
∂φ

∂t
),
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where p(x, ξ, τ) = − 1
c(x)2 τ

2+‖ξ‖2. This shows the connection with geometrical optics,
since it allows for solutions localized around the rays.

The causal Green’s function, which can be used to construct solutions of (1.1) for
general f , can be approximated by an integral of solutions of the form (1.2). The
causal Green’s function G(x, x0, t) is the solution with f given by the Dirac δ-function
δ(x− x0)δ(t), requiring that G(x, x0, t) = 0 when t < 0. The solution for general f is
given by ∫ t

0

G(x, x0, t− t0)f(x0, t0) dx0 dt0.

We will approximate G(x, x0, t) by the following expression, involving an integral
over the frequency τ ∈ R, ∫

A(x, x0, τ)eiτ(t−T (x,x0)) dτ. (1.3)

Here the phase function is given by τ(t−T (x, x0)). The eikonal equation for T (x, x0)
reads in this case

c(x)2
∑

i

(
∂T

∂xi

)2

= 1.

If we require as initial condition that T (x, x0) = 1
c(x)
‖x − x0‖ + O(‖x − x0‖2) when

x→ x0, then the solution is the traveltime from x0 to x. This solution does not always
exist. Let for the moment x(x0, α, t) be the ray originating at x0 with direction α at
time t, then the solution exist as long as the map Sn−1 × R+ 3 (α, t) 7→ x(x0, α, t) is
a diffeomorphism. In other words caustics have to be absent.

When the differential operator P acts on the integrand in (1.3) this expression
decays as τ−N for any N . It follows that PG is smooth when x 6= x0. There remains
to chose m and the initial values for the Ak correctly, such that PG = δ(x− x0)δ(t)
modulo some smooth function. Actually the smooth error term can also be removed
by adding a smooth term to G, but we will not make use of this, because in the
reconstruction problem the problems that occur with smooth terms are much harder
and will not be treated here. By comparing with the constant coefficient case one
finds m = n−3

2
, and an expression for A0(x, x0). All the Ak can be found by a different

method where one writes the solution as an integral with multiple frequency variables
such as given in (1.4), with θ = ξ, the cotangent vector associated with x.

Because m = 0 for n = 3 we have the following expression for G(x, x0, t) in n = 3
dimensions

G(x, x0, t) = (2π)A0(x, x0)δ(t− T (x, x0)) + l.o.t.

As already noted equation (1.3) is valid only when the wavefronts are smooth,
and the rays from x0 do not intersect each other. When this is not the case it turns
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out that we have to consider integrals of the following type∫
A(x, y, θ)eiφ(x,y,θ) dθ (1.4)

where the frequency variable τ ∈ R is replaced by a higher dimensional phase variable
θ ∈ RN . We require that the phase function φ is homogeneous of order 1 in θ, that
is φ(x, ρθ) = ρφ(x, θ), and that φ is nondegenerate. A phase function φ is called
nondegenerate in a cone2 Γ ⊂ X ×RN , where X ⊂ Rn contains the position variable
x, if

∂φ

∂θ
(x, θ) = 0, (x, θ) ∈ Γ ⇒ ∂2φ

∂(x, θ)∂θ
(x, θ) has maximal rank.

A way to see intuitively that (1.3) has to be replaced by an expression of the form
(1.4) is by using Huygens principle. The wave front at some time t is given by an
integral of contributions from each of the points of the wavefront at some earlier time
t0. The additional integration variables can be used as phase variables.

To understand in what sense certain distributions, such as the Green’s function,
can be approximated by expressions of the form (1.4) the concept of wave front set is
required. We will introduce this following the presentation of Hörmander [25], Section
8.1. One can show that a distribution v ∈ D′(Rn) is in C∞0 (Rn), if and only if its
Fourier transform v̂(ξ) decays faster than polynomial when |ξ| → ∞,

v̂(ξ) ≤ CN (1 + |ξ|)−N , N = 1, 2, . . . , ξ ∈ Rn. (1.5)

Therefore there is a natural set of ‘directions’ associated to a distribution with sin-
gularities, consisting of those directions where the Fourier transform does not decay
rapidly. Thus we define the cone Σ(v) of all those η ∈ Rn\0 having no conic neigh-
borhood V such that (1.5) is valid when ξ ∈ V . It is clear that Σ(v) is a closed cone
in Rn\0, and that Σ(v) = ∅ if and only if v ∈ C∞0 . It is shown in Lemma 8.1.1 of
Hörmander [25] that if φ ∈ C∞0 (Rn), then Σ(φv) ⊂ Σ(v). It follows that we can define
for u ∈ D′(X)

Σx(u) =
⋂
φ

Σ(φu), φ ∈ C∞0 (X), φ(x) 6= 0.

The wavefront set of a distribution is now defined as

WF(u) = {(x, ξ) ∈ X × (Rn\0) | ξ ∈ Σx(u)}.

Thus singularities of a distribution u ∈ D′(X) can be localized not only in the
space X (using the singular support), but even in the cotangent space T ∗X\0. This is
called microlocalization. Let Γ ⊂ T ∗X\0 be an open cone. We say u = v microlocally

2By conic set or cone Γ we mean that (x, θ) ∈ Γ, implies that (x, ρθ) ∈ Γ for all ρ > 0.
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in Γ, if WF(u − v) ∩ Γ = ∅. Such microlocal equivalence is always modulo smooth
functions.

Typically an expression such as (1.4), called a local Fourier integral operator,
describes an operator microlocally. The whole operator can be given by a sum of
local Fourier integral operators, modulo an operator with smooth kernel. For example,
using integral operators with a kernel of the form (1.4), distributions can be given
that are equivalent to the solution of a wave equation microlocally in some conic
subset of X × Rn\0.

The theory of Fourier integral operators describes the properties of operators with
a kernel of the form (1.4). An important feature is that the choice of phase function
and amplitude is in general far from unique. Using the method of stationary phase
the number of phase variables can sometimes be reduced, and the phase function and
amplitude can also be changed by applying a coordinate transformation to the phase
variable.

To deal with this nonuniqueness, invariant objects are defined. The invariant
quantity related to the phase function of the operator G is the canonical relation,
that describes the relation between the wave front sets of a distribution f and the
distribution Gf . It is a subset of T ∗X\0× T ∗Y \0. An invariant characterization of
the highest order part of the amplitude A(x, y, θ) is given by the principal symbol.

Using these invariant quantities a calculus can be defined. It shows that under
certain conditions on the canonical relations the composition of two Fourier integral
operators is again a Fourier integral operator, such that the canonical relation of the
composition is simply the composition of the canonical relations.

For further information about Fourier integral operators we refer to the books by
Duistermaat [17], Hörmander [25, 26, 27], Treves [57, 58] and Maslov and Fedoriuk
[38].

1.2 The seismic inversion problem

In this section we discuss some important ideas in the inversion of seismic data. We
discuss the modeling and inversion of seismic data in simple acoustic media. It is
based for a large part on the paper by Beylkin [8].

Before the inversion takes place usually some preprocessing is applied, to remove
unwanted features of the data. So we will assume that the source wavelet is approx-
imately a δ-function. We assume that the influence of the near surface, that varies
strongly from location to location, is removed. We will also assume that the effects
of the boundary in the data are suppressed. Thus surface waves are removed. This
can be done by a cutoff in the Fourier domain. Also data related to waves that have
reflected at the surface are removed. This can be done approximately without knowl-
edge of the medium coefficients. So we assume that in effect the sources and receivers
are located on plane in a medium that extends on both sides of the plane.

Assuming that the discontinuities in the medium coefficients are small, the fol-
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lowing linearization in the medium coefficients can be done. The full soundspeed is
written as a sum

c(x) + δc(x), (1.6)

where the background medium c(x) is smooth and the perturbation δc(x) contains the
singularities. Here and in the sequel we use the classic notation of δc, δP, δG, . . . for
‘small perturbation of c, P, G, . . . ’. The resulting perturbation of the Green’s function
is given by

δG(r, s, t) = −
∫

G(r, x, t− t0) δP G(x, s, t0) dx0 dt0. (1.7)

Here s is the source coordinate, r the receiver coordinate, and t the time. The
second approximation consists of the calculation of the Green’s function in the high-
frequency approximation. Then (1.7) describes singly reflected waves. We will assume
that direct rays from source to receiver are absent, so that (1.7) actually describes all
the data.

These two approximations are often done together and are called ray+Born ap-
proximation. The approximation implies that one assumes separation of scales in the
medium, in the sense that the length scale of the variations in the smooth part should
be much larger than the length scale of the variations in the medium perturbation.
Indeed the wavelength of the reflected signal is of the order of the length scale of the
medium perturbation, while the variations of the smooth part are assumed to be on
a larger scale.

Although the ray+Born approximation gives an efficient way to model scatter-
ing data, it is not quite satisfactory. For instance, it is not clear how accurate the
ray+Born approximation is. Moreover, measurements of real media in boreholes in-
dicate that the assumption of separation of scales need not be satisfied. Propagation
of waves in inhomogeneous media is still an active area of research.

Using expression (1.3) in the equation for the perturbation of the Green’s function
(1.7) we obtain

δG(r, s, t) =

∫
A(x, s, τ̃)A(x, r, τ̂ )τ̃ 2eiτ̂(t−t0−T (x,r))+iτ̃(t0−T (x,s))δ(

1

c(x)2
) dτ̂ dτ̃ dt0 dx.

(1.8)

Define the linearized forward operator F to be the operator that maps the medium
perturbation δ 1

c(x)2 = −2c(x)−3δc(x) (here we take the coefficient in δP , instead of δc

itself) to δG(r, s, t)

F : −2c(x)−3δc(x) 7→ δG(r, s, t)

given by (1.8).
We assume that δc = 0 on a neighborhood of the set of source and receiver

positions. Then a cutoff function can be introduced to smoothly cut off the integral
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at t0 = 0 and t0 = t. The right-hand side of (3.37) can now be simplified by doing
the integral over t0 and one of the τ variables, using the method of stationary phase.
We explain this in detail. The phase in the integral can be rewritten as

(t− T (x, r)− T (x, s))
τ̂ + τ̃

2
+ (t0 + 1

2
(T (x, r)− T (x, s)− t))(τ̃ − τ̂).

Define new variables τ = τ̂+τ̃
2

, σ = τ̃ − τ̂ . We write the right-hand side of (1.8) as

δG(r, s, t) =

∫
B(x, s, r, τ)ei(t−T (x,r)−T (x,s))τ dτ dx,

where we have defined a new amplitude

B(x, s, r, τ) =

∫
A(x, s, τ̃(τ, σ))A(x, r, τ̂(τ, σ))τ̃(τ, σ)2ei(t0+

1
2

(T (x,r)−T (x,s)−t))σ dσ dt0.

The singularities of δG(r, s, t) depend only on the the asymptotic behavior when
ρ→∞ of B(x, s, r, ρτ). This expression reads (changing variables from σ to ρσ)

B(x, s, r, τ) =

∫
A(x, s, ρτ̃(τ, σ)A(x, r, ρτ̂ (τ, σ))(ρτ̃(τ, σ))2

× eiρ(t0+
1
2

(T (x,r)−T (x,s)−t))σ ρ dσ dt0.

We can now apply the stationary phase formula, see e.g. Duistermaat [17], Proposition
1.2.4, with t = ρ, x = (t0, σ). The end result is

δG(r, s, t) = 2π

∫
A(x, s, τ)A(x, r, τ)τ 2eiτ(t−T (x,r)−T (x,s))δ(

1

c(x)2
) dτ dx. (1.9)

One can check that under the condition that incoming and outgoing rays intersect
transversally (i.e. there is no direct ray from source to receiver), the phase function in
(1.9) is nondegenerate and the map −2c(x)−3δc(x) 7→ δG(r, s, t) is a Fourier integral
operator.

In n = 3 dimensions this reads

δG(r, s, t) = −2π

∫
A0(x, s)A0(x, r)δ′′(t− T (x, r)− T (x, s))2c(x)−3δc(x) dx + l.o.t.

Thus the map from δc(x) to the data can be described as follows. One takes the
integral of a second derivative of the data multiplied with some amplitude over a set
of x where the total traveltime is constant T (x, r) + T (x, s) = t, called the isochron.
Because of this integration over surfaces this transformation is sometimes called a
generalized Radon transform (GRT)3.

3We recall the definition of the classical Radon transform. If θ ∈ Sn−1, p ∈ R, then the classical
Radon transform maps a function f of x ∈ Rn to its integrals over hyperplanes in Rn, Rf(θ, p) =∫
〈x,θ〉=p f(x) dx.
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Recall that the data are modeled by the perturbation of the Green’s function
δG(r, s, t). The formulas above show that the data are modeled by a linear operator
F acting on the medium perturbation δc(x), where F depends on the background
medium. Therefore, let us first try to invert for δc(x). The first thing that should
be noticed, is that there is a redundancy in the data. The data are described by
a function of 2n − 1 variables, while the function δc(x) is a function of n variables.
Consider therefore subsets of data with n−1 variables fixed. It is common to fix what
is called the offset coordinate h = r − s. We define Fh to be the operator mapping
δc(x) 7→ δG(s + h, s, t). Let

Sh(s, x, τ) = −τ(T (x, s + h) + T (x, s)),

the phase function minus the factor tτ .
It has been shown by Beylkin [7, 8] that inversion for δc(x) modulo smooth terms

is possible if the following equation is satisfied

det
∂2Sh

∂x∂(s, τ)
6= 0. (1.10)

In that case the map (s, τ) 7→ ∂Sh
∂x

is locally a submersion. We assume that the
condition is satisfied for some open set of x and some open set of s. In that case at
least microlocally (see Section 1.1) an inverse is obtained.

Theorem 1.2.1 (Beylkin) If (1.10) is valid on some open set of (s, x), then Fh is
microlocally invertible around (x, ∂S

∂x
).

Proof The idea of the proof is to show that F ∗hFh is a pseudodifferential operator
with invertible symbol. Then an asymptotic inverse is given by

F−1
h = (F ∗hFh)

−1F ∗h .

For the details we refer to Beylkin [7, 8]. ¤

If this inverse exists for each value of the offset h we obtain in fact an invertible
map that maps seismic data to a function r(x, h) = −2c(x)−3δc(x). The reconstructed
medium perturbation should of course not depend on the offset h that is used. This
will be the case if the background medium is correctly chosen. However, if the back-
ground medium is incorrect there will be some dependence on h. In this way the
redundancy in the data can be used to reconstruct the background medium. We
formulate the result as a theorem.

Theorem 1.2.2 The perturbation of the Green’s function δG(r, s, t) that models the
data, is given by an operator H acting on a function r(x, h)

H : r(x, h) 7→ d(r, s, t).

Here r(x, h) is such that the position of its singularities does not depend on h. The
operator H can be constructed as a Fourier integral operator that is invertible mi-
crolocally. For the Born approximation in acoustic media r(x, h) = −2c(x)−3δc(x).
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To test whether a function r(x, h), obtained from inverting data, does not depend
on h one can take the derivative ∂r

∂h
(x, h). This derivative should be a smooth function

(recall that the inversion is only modulo a smooth function). Conjugating the operator
∂
∂h

with H we obtain an operator on data, that should result in a smooth function.
We formulate this as a corollary.

Corollary 1.2.3 The operator

H
∂

∂h
H−1

is a pseudodifferential operator which microlocally annihilates the data.

A square integral of this operator acting on data may be used as a measure for the
error in the choice of the background medium. The question now arises whether by
minimization of this error the background medium can be found. This procedure is
called differential semblance optimization. It has been discussed by Symes [55]. It
leads to a nonlinear inverse problem that is very different from the reconstruction
problem for the singular part of the medium. This problem will not be discussed in
this thesis.

1.3 Contents of this thesis

1.3.1 Wave equations with discontinuous coefficients

As was explained above, the subsurface can be modeled as an acoustic or elastic
medium, with coefficients that may have discontinuities. In fact measurements of the
local wavespeed in wells indicate that the coefficients are far from smooth and vary
on many scales. Since most textbooks discuss the acoustic and elastic equations only
with smooth coefficients we wondered whether in these cases solutions could still be
defined.

In Chapter 2 we show, following Lions and Magenes [36], that the initial value
problem for wave equations is well-posed when the coefficients are only measurable
and bounded away from zero and infinity. We show that when initial values and
source belong to suitable function spaces, such as the Sobolev space H(1) of order
one, then solutions exist that are continuous w.r.t. time with values in H(1) (for
the space coordinates). To obtain these results the second order partial differential
equation is written as an ordinary equation with values in a Hilbert space. Energy
estimates are given that lead to the mentioned results.

There is a scale of spaces, such that solutions can be found that take their values
in these spaces. These spaces are defined as the domain of the spatial part of the
differential operator and its powers and as the spaces dual to these domains. Here the
coefficient in front of the time derivative is normalized to one. An interesting feature
of the dual spaces is that these are not distribution spaces in the ordinary sense.
For coefficients that are discontinuous on a plane we give an explicit form of these
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spaces, and we relate it to the more conventional formulation involving conditions at
the interface. As far as we know this result is new.

The last two sections are about the dependence of the solutions on the coefficients.
It is known that under certain conditions the solutions depend continuously on the
coefficients, when the perturbation of the latter is measured in a suitable way. This is
used to obtain differentiability of the dependence of the solutions on the coefficients.
We have not seen this last result in the literature. It is of importance to understand
the linearization done in (1.6), (1.7). An interesting feature of the result is that the
solution to a wave equation modeled by linearization converges to the real solution
in the L2 norm, and not in the norm of the space H(1) that contains the solutions.
This suggests (but this should be investigated in more detail) that when using an
iterative procedure to determine the medium parameter c(x) one should minimize
the difference

real data − approximated data

in a norm that is different from the norm of the space that contains the data, unlike
what one might think naievely.

1.3.2 Modeling and inversion of seismic data in anisotropic
elastic media

Chapter 3 contains joint work with M.V. de Hoop [53]. We give a generalization of
Theorem 1.2.2 and Corollary 1.2.3 in two directions: we consider media with caustics,
and we consider elastic media. We discuss modeling using both the Born approxima-
tion introduced above, and the Kirchhoff approximation, where the medium coeffi-
cients are assumed to be piecewise smooth and only have jump discontinuities along
smooth interfaces. We give a high-frequency analysis using Fourier integral operators.
Maximal datasets (sources and receivers on an open part of the boundary) as well
as nonmaximal datasets are treated. We discuss general (isotropic or anisotropic)
media.

The result Theorem 3.7.1 is formulated for elastic media, but because of the
similarities with the acoustic case we first describe the situation for acoustic media.
For acoustic media with caustics there is already a substantial literature, mostly
discussing least-squares inversion for the Born approximation. Rakesh [46] shows that
the linearized forward operator is a Fourier integral operator, Hansen [22] and Ten
Kroode, Smit and Verdel [34], discuss the least-squares inversion (the latter discuss
in detail the conditions that are involved). Nolan and Symes [41] consider the case
where the set of source and receiver positions is not maximal. The reconstruction of
a jump discontinuity at an interface, given the medium above interface, is given by
Hansen [22].

The disadvantage of the least-squares approach is that the redundancy in the
data is not characterized, and is not used fully. In acoustic media the redundancy
is present because reflection occurs for a range of values of the scattering angle (the
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angle between incoming and outgoing rays at the scattering point). Therefore the idea
is to use the scattering angle to describe the redundancy. In Chapter 3 we generalize
Theorem 1.2.2 in the sense that we construct an operator H microlocally that maps
the data to a function r(x, e), where in acoustic media e can always be chosen as the
scattering angle. The function r(x, e) is such that the singular part of the function
essentially does not depend on e. The operator H is invertible. Although the idea
of transforming to the scattering angle domain existed before, such a transformation
was in the presence of caustics only defined for a subset of the data.

The propagation of waves in elastic media is described by a system of partial
differential equations. In a constant coefficient medium one can show that there are
longitudinal and transversal waves that propagate independently, i.e. the system de-
couples. In media with smoothly varying coefficients this decoupling is no longer
exact, but in the high-frequency limit it is in most cases still valid (at least mi-
crolocally, see Taylor [56], Ivrii [30], Dencker [16], this is discussed in more detail in
Section 3.2.1).

In Chapter 3 we first discuss propagation of waves in the Kirchhoff approximation,
i.e. in media with jump discontinuities along smooth interfaces. We then discuss the
Born approximation and give a least-squares approach. We give a new presentation,
different from the one in the paper by De Hoop and Brandsberg-Dahl [24]. In order
to generalize Theorem 1.2.2 (both in the acoustic and the elastic case), the canonical
relation of the modeling operators is analyzed. The canonical relation of the operator
H is constructed, as well as phase functions related to phase functions of the original
operators. Combining the different results then leads to our main result, which is the
equivalent of Theorem 1.2.2 for elastic media, given in Theorem 3.7.1.

It turns out that essentially one can reconstruct, for each pair of elastic modes
(M, N), a reflectivity function rMN(x, e) that is a function of subsurface position
and an additional coordinate describing the redundancy (in many cases, but not
always this can be the scattering angle). Thus the position of a reflector and the
reflection coefficient as a function of direction of incoming and outgoing wave can be
reconstructed. The equivalent of Corollary 1.2.3 is given in Corollary 3.7.3.

1.3.3 Linearized inversion when traveltime injectivity is vio-

lated

Chapter 4 contains the work [52]. It discusses inversion of the high-frequency medium
perturbation of an acoustic medium in the Born approximation (the function δc(x)
in (1.6)). It is shown by Hansen [22] and by Ten Kroode, Smit and Verdel [34] that
under the so called traveltime injectivity condition a least-squares inverse for δc(x)
exists. This condition is a geometrical condition on the rays, explained in detail in
the article by Ten Kroode, Smit, Verdel [34] and also in Section 4.3 of this thesis. In
our work we discuss the situation where the condition is violated.

In the Born approximation the data can be modeled by a Fourier integral operator
F acting on the medium perturbation δc(x). To find a least-squares inverse the normal
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operator N = F ∗F is considered. An inverse for F exists if and only if N is invertible
and in that case the least-squares inverse is given by F−1 = N−1F ∗. It has been
shown that if the traveltime injectivity condition is satisfied, then N is an invertible
pseudodifferential operator of order n−1, where n is the dimension of the subsurface.
If the traveltime injectivity condition is violated, then the normal operator is the sum
of such a pseudodifferential operator and a nonmicrolocal part. Ten Kroode et al.
[34] show that under a certain condition this nonmicrolocal part is a Fourier integral
operator of order n−1

2
.

Our first result is that we simplify this condition. Also we show that it is satisfied
generically. Next we note that although the nonmicrolocal part is of lower order
than the pseudodifferential part, this does not imply that it is also more regular as
an operator between Sobolev spaces. It follows that Theorem 3.2 in Ten Kroode
et al. is too optimistic concerning the regularity of the nonmicrolocal part. Using
known estimates for so called degenerate Fourier integral operators, we analyze the
regularity of the nonmicrolocal part between Sobolev spaces in detail. We construct
examples where the nonmicrolocal part is as singular as the pseudodifferential part,
and the inversion is, at least microlocally, no longer possible. Finally we show that
generically the nonmicrolocal part is more regular than the pseudodifferential part,
so that generically the linearized forward operator still has an asymptotic inverse.





Chapter 2

Wave equations with discontinuous
coefficients

2.1 Introduction

In this chapter we study the propagation of waves in media with discontinuous coeffi-
cients. Examples of the systems that we study are the acoustic and elastic equations.
The reason to devote a chapter to this topic is that most texts on wave equations dis-
cuss only equations with smooth coefficients. In this chapter we present a number of
results that have appeared in the mathematical literature and also some results that
we have not seen elsewhere, and that may be new (mostly in Sections 2.7 and 2.9).

When the coefficients are discontinuous the partial differential equation has to be
interpreted in some weak sense, i.e. by integrating with a test function, to which some
of the differentiations are transposed using partial integration. In Section 2.2 it is
shown that this can be done when the coefficients are in L∞ (measurable and bounded)
and the solutions are in the Sobolev space H(1), which consists of the L2 functions
with derivatives that are also in L2. Moreover, the partial differential equation is then
treated as an ordinary differential equation for a function of the time variable with
values in a Hilbert space of functions of the spatial variables. In Section 2.3 this is
done for domains with a boundary.

If in addition the coefficients are bounded away from zero, then the theory of Lions
and Magenes [36], Section III.8, can be used to show that the initial value problem
is well posed. This is done in Section 2.4. Using the method of energy estimates
we show that there is existence, uniqueness and stability of solutions and that the
solutions are continuous functions of t with values in the Sobolev space H(1). In
Section 2.5 a similar result is shown for more general equations with some weak kind
of time dependence and lower order terms.

In Section 2.6 solutions are discussed with more or less regularity than the so-
lutions given in Section 2.4. For equations with smooth coefficients it is natural to
work in the class of Sobolev spaces H(s). The regularity of solutions to wave equa-
tions depends on the regularity of initial values and of the source. For equations with
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nonsmooth coefficients these Sobolev spaces are replaced by spaces that can roughly
be described as the domain of powers of the space part of the wave operator.

In some sense the simplest way that the coefficients can be discontinuous is when
they have a jump discontinuity at a codimension one hypersurface. This case is
discussed in Section 2.7. It is known that the solutions to such equations should satisfy
certain continuity conditions at the discontinuity. We show how these conditions are
related to the distributional form of the differential equation. This theory is used to
model seismic data in Chapter 3.

In the reconstruction problem, and for the approximation of solutions, it is im-
portant to know how the solutions depend on the coefficients. In Section 2.8 we show
that the solutions (given the initial values and the source) depend continuously on
the coefficients, when the latter converge in measure. In Section 2.9 we show that
the solutions depend differentiably on the coefficients in L∞. So the solutions can
be approximated in some norm by linearization of the coefficients. To model seismic
data often such a linearization is used, see for instance Chapters 3 and 4.

To obtain our results we use the method of energy estimates. Some functional
analysis and integration theory is used. Useful references include Lions and Magenes
[36], Dunford and Schwartz [18], Bourbaki [11], and Hörmander [25].

Some of the results may also be obtained using the theory of semigroups (see
for instance Yosida [61] or Pazy [42]), or their second order version, cosine theory
(see Fattorini [20]). The continuous dependence on the coefficients then follows from
the Trotter-Kato theorem (see Yosida [61], Section 9.12). Another way to obtain
existence and uniqueness results is by regularizing the coefficients and using energy
estimates and an existence result for equations with smooth coefficients. One can use
the theory of Section 2.8 to define the solutions to an equation with coefficients in L∞

as a limit of solutions to equations with smooth coefficients. This is done by Hurd
and Sattinger [28].

2.2 The partial differential equation

In this section we discuss partial differential equations such as the acoustic and elastic
wave equations with very weak assumptions on the coefficients. We only require that
they are in L∞ and bounded away from zero. This will require the use of weak
solutions. We then show how these equations can be seen as an ordinary differential
equation for a function that takes values in a Hilbert space. This will allow us to use
the theory of later sections which shows that the initial value problem is well posed
in the sense of Hadamard.

We will mostly be interested in the following system of equations for a function
uK(x, t) that takes its values in CN

−
∑
i,j,L

∂
∂xi

aij;KL(x) ∂
∂xj

uL(x, t) +
∑

L

∂
∂t

cKL(x) ∂
∂t

uL(x, t) = fK(x, t). (2.1)
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Here i, j denote the component of the spatial coordinate x, K, L indicate the compo-
nent of the vector uK, and (x, t) ∈ Rn×]0, T [ (since the wave equation is symmetric
under time reversal t → −t we could also choose t ∈] − T, T [). The coefficients
aij;KL(x), cKL(x) are selfadjoint for i ↔ j and K ↔ L, aij;KL = aji;LK . We also
assume they are positive definite in the sense that there are constants α, β > 0 such
that for all x ∈ Rn and for all ξi, uK∑

i,j,K,L

aij;KLξiξjuKuL ≥ α‖ξ‖2‖u‖2,∑
K,L

cKLuKuL ≥ β‖u‖2. (2.2)

The acoustic and elastic equations are special cases of this. For the acoustic
equation N = 1, u is the pressure, aij(x) is given by ρ(x)−1δij (ρ(x) the mass density)
and c(x) is given by κ(x), the compressibility. For the elastic system N = n, uK(x, t)
is the displacement vector, aij;KL(x) is given by the elastic tensor ciKjL(x), and cKL(x)
is given by ρ(x)δKL, where again ρ(x) is the mass density.

Since we are especially interested in the situation where the coefficients vary dis-
continuously, this equation should be interpreted distributionally. Hence equation
(2.1) will be understood in the weak sense that∫ (

−
∑

i,j,K,L

vK(x, t) ∂
∂xi

aij;KL(x) ∂
∂xj

uL(x, t) +
∑
K,L

vK(x, t) ∂
∂t

cKL(x) ∂
∂t

uL(x, t)

)
dx dt

=

∫ ∑
K

fK(x, t)vK(x, t) dx dt, (2.3)

for all test functions vK ∈ C∞0 (Rn × [0, T ],CN). By partial integration we find that,
in the case that uL and aij;KL are smooth, this is equivalent to∫ ( ∑

i,j,K,L

aij;KL(x)
∂uL

∂xj

(x, t)
∂vK

∂xi

(x, t)−
∑
K,L

cKL(x)
∂uL

∂t
(x, t)

∂vK

∂t
(x, t)

)
dx dt

=

∫ ∑
K

fK(x, t)vK(x, t) dx dt, (2.4)

for all test functions vK ∈ C∞0 (Rn × [0, T ],CN). The point is that (2.4) also makes
sense for nonsmooth uL and aij;KL, in particular for uL ∈ H̄(1)(Rn×]0, T [), aij;KL

bounded and measurable, and fK ∈ L2(Rn×]0, T [). For this reason we use (2.4)
instead of (2.1) as our equation of motion. Here the Sobolev space H̄(m)(Ω) is defined
for integer order m ≥ 0, and for a domain with a boundary Ω, as

H(m)(Ω) = {u|∂αu ∈ L2(Ω) ∀α, |α| ≤ m}, (2.5)
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where the derivative is taken in the sense of distributions (Sobolev spaces on domains
with a boundary are discussed in more detail in Section 2.3). It is a Hilbert space for
the inner product

〈u, v〉 =
∫ ∑
|α|≤m

∂αu

∂xα
(x)

∂αv

∂xα
(x) dx,

where α is a multi-index xα = (xα1
1 , . . . , xαn

n ).

Remark 2.2.1 In fact the acoustic and elastic equations can be derived in the form
(2.4), by using Lagrange’s variational formulation of classical mechanics.

We are interested in the Cauchy problem, we want to find uK(x, t) that satisfy
(2.4) and the initial conditions

uK(x, 0) = u0,K(x),
∂uK

∂t
(x, 0) = u1,K(x),

with u0,K ∈ H(1)(Rn,CN), u1,K ∈ L2(Rn,CN). Below equation (2.19) we argue that
uK(x, 0), ∂uK

∂t
(x, 0) are indeed well defined.

It turns out to be very useful to view uK(x, t) as a function t 7→ u(t) with values
u(t) : x 7→ uK(x, t) in a Hilbert space of functions in Rn. The Fubini theorem says
that

L2(X × Y ) ∼ L2(X, L2(Y )).

From this we get, for a measurable function u on Rn×]0, T [

u ∈ H̄(1)(Rn×]0, T [,CN) ⇔
{

u ∈ L2(]0, T [, H(1)(Rn,CN)),
u′ ∈ L2(]0, T [, L2(Rn,CN)).

We define the spaces V = H(1)(Rn,CN) and H = L2(Rn,CN).
Let the operators A, C be defined by

A = −
∑
i,j

∂
∂xi

aij;KL(x) ∂
∂xj

, C = cKL(x). (2.6)

As we see in (2.4) there are symmetric sesquilinear forms on V and H , associated
with A and C respectively. We define

a(u, v) =

∫ ∑
i,j,K,L

aij;KL(x)
∂uK

∂xi
(x)

∂vL

∂xj
(x) dx, u, v ∈ V,

c(u, v) =

∫ ∑
K,L

cKL(x)uK(x)vL(x) dx, u, v ∈ H. (2.7)
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We have

〈Au, v〉 = a(u, v) = 〈u, Av〉,

and it follows that A : V → V ′, where V ′ is the dual of V . Also

〈Cu, v〉 = c(u, v) = 〈u, Cv〉.

With these definitions the differential equation in variational form reads∫ T

0

[a(u(t), v(t))− c(u′(t), v′(t))] dt =

∫ T

0

〈f(t), v(t)〉 dt. (2.8)

for all v ∈ C∞0 ([0, T ], V ).
From the estimates (2.2) we obtain that

c(u, u) ≥ β‖u‖2
H, (2.9)

and, for λ > α,

a(u, u) + λ‖u‖2
H ≥ α‖u‖2

V . (2.10)

Often it will be implicit that equations are in a distributional sense. For the PDE
we write in that case simply

Au(t) + C
∂2u

∂t2
(t) = f(t).

2.3 The PDE on domains with a boundary

If the domain X has a boundary ∂X then a boundary condition has to be imposed.
Common conditions are the Dirichlet or Neumann conditions, given by

uK(x, t) = 0 on ∂X, (2.11)

or ∑
i,j,L

νiaij;KL
∂uL

∂xj
= 0 on ∂X, (2.12)

respectively, where νi is the normal to the boundary. Here it is assumed that u is in a
class of distributions such that the restriction to ∂X can be performed. We write the
problem with conditions on a smooth boundary in the form (2.8), where a, c are again
sesquilinear forms satisfying (2.10), (2.9). Here we have to choose suitable Sobolev
spaces V, H . Sobolev spaces can be defined on arbitrary domains in Rn, see Adams
[1], and Lions and Magenes [36]. It follows that the weak form can also be given for
arbitrary domains in Rn.
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Spaces of distributions on the domain X = Rn
+ with boundary ∂X = Rn−1 have

been discussed by Hörmander [26], appendix B.2. If F (Rn) is a space of distributions
then F̄ (X) is defined as the space of restrictions to X of its elements, and Ḟ (X) as
the space of distributions supported by X. For example one can show that C̄∞0 (X)
consists of the elements of C∞(X) that vanish outside a compact set. These functions
can be extended smoothly across the boundary. The space Ċ∞0 (X) is the subspace of
functions vanishing of infinite order at ∂X. For integer k ≥ 0 the space H̄(k)(X) may

be defined as in (2.5). The space C̄∞0 (Rn
+) is dense in H̄(k)(X). The space Ḣ(k)(X)

may be defined as the closure of C∞0 (X) in H̄(k)(X). The spaces Ḣ(−k), H̄(−k) are the

duals of H̄(k), Ḣ(k). These definitions can be extended to the case where X is an open
subset of Rn with smooth boundary and also to the case where X is a manifold with
boundary.

In the Dirichlet case we define

V = Ḣ(1)(X), H = L2(X).

The sesquilinear forms a, c are defined as in (2.7). Our set of test functions in this
case is C∞0 ([0, T ], V ), so they vanish on the boundary. It follows by integration by
parts that the original partial differential equation in weak sense (2.3) is equivalent
to (2.8).

For this case the estimates (2.9), (2.10) are satisfied. In fact if X is bounded
the constant λ can be chosen to be 0. This can be seen most directly in the one
dimensional case. We show that in this case

‖u‖L2 ≤ C‖u′‖L2. (2.13)

Suppose u(x) has support in [0, s], for some s. Clearly

|u(x)| ≤
∫ x

0

|u′(y)| dx

The right hand side can be seen as the L2 inner product between the indicator function
1[0,x] and the function |u′|, so we have

u(x) ≤ ‖1[0,x]‖L2‖u′‖L2 =
√

x‖u′‖L2 ≤
√

s‖u′‖L2 ,

so u(x) is bounded and since the domain is bounded (2.13) follows. This argument
can be extended to the multidimensional case.

For the Neumann boundary condition (2.12) we define

V = H̄(1)(X), H = L2(X),

and the sesquilinear forms a, c are unchanged. In this case it is not clear a priori that
the restriction of

∑
i,j,L νiaij;KL

∂uL
∂xj

to the boundary can be taken. This will be shown
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first. After that we argue that the partial differential equation with the Neumann
boundary condition is equivalent to (2.8).

Using a C1 coordinate transformation we may assume that X is locally given
by Rn

+. Suppose u ∈ H̄(1)(X×]0, T [) satisfies the PDE in weak form with some
f ∈ L2(X×]0, T [). We show that

∑
j,L anj;KL

∂uL
∂xj

can be seen as a continuous function

of xn with values in a space of distributions, so that the restriction to xn = 0 is a well
defined distribution. First note that∑

j,L

anj;KL
∂uL

∂xj

∈ L2(Rn
+×]0, T [) = L2(R+, L2(Rn−1×]0, T [)).

We also have

∑
j,L

∂

∂xn

anj;KL
∂uL

∂xj

= −
n−1∑
i=1

∂

∂xi

aij;KL
∂uL

∂xj

+
∑

L

cKL
∂2uL

∂t2
+ fK

∈ L2(R+, H̄(1)(Rn−1×]0, T [)).

In other words,
∑

j,L anj;KL
∂uL
∂xj

is an element of the anisotropic Sobolev space H(1)(R+,

H̄(−1)(Rn−1×]0, T [)), one can consult for instance Hörmander [26], appendix B for
more information on such spaces. In particular

∑
j,L anj;KL

∂uL
∂xj

is a continuous func-

tion of xn with values in H̄(−1)(Rn−1×]0, T [).
When the PDE (2.1) is satisfied (with sufficiently smooth uL and aij;KL) and

the boundary conditions are satisfied it follows using partial integration that the
partial differential equation in weak form (2.8) is satisfied. By testing with v ∈
C∞0 ([0, T ], Ḣ(1)) and partial integration, (2.8) implies that the PDE is satisfied.

It remains to be shown that (2.8) also implies the boundary condition. To do this
we use a sequence of test functions vm = χm(xn)φK(x′, t), where φK ∈ C∞0 (Rn−1 ×
[0, T ]). We define χ1(xn) = 1 for xn ≤ 0, χ1(xn) = 0 for xn ≥ 1 and smoothly
decreasing between xn = 0 and xn = 1. Let χm(xn) = χ1(mxn). Equation (2.8)
tested with vm gives∫

xn>0

(∑
j,K,L

anj;KL
∂χm

∂xn
φK

∂uL

∂xj
+
∑

i,j,K,L

aij;KLχm
∂φK

∂xi

∂uL

∂xj
−
∑
K,L

cKLχmφKuL

−
∑
K

χmφKfK

)
dx dt = 0. (2.14)

When we take the limit m → ∞ the second, third and fourth term converge to 0.
The first term converges to∫

xn=0

∑
j,K,L

φK(x′, t)anj;KL
∂uL

∂xj

dx′ dt.



22 Chapter 2. Wave equations with discontinuous coefficients

Since φK is arbitrary it follows that
∑

j,L anj;KL
∂uL
∂xj
|xn=0 = 0. Note that by testing

with φK(x′, t)χm(xn − s) one can show that
∑

j,L anj;KL
∂uL
∂xj

is a continuous function

of xn = s with values in a space of distributions.
In Fattorini [20] the more general boundary condition with γu on the right hand

side of (2.12) is discussed, where γ is some L∞ function on the boundary ∂X. In this
case the sesquilinear form a(u, u)+λ‖u‖2 has to be generalized to include an integral
over the boundary, see equation (4.2) in [20]. For this case the estimate (2.10) is
obtained in equation (4.7) in [20].

2.4 Well-posedness for general second order hy-

perbolic equations

Motivated by the examples in the previous sections we will study the existence,
uniqueness and stability of solutions to (2.8). The setup is that of Lions and Magenes
[36], Section III.8. However, our presentation is somewhat different. We start by
giving properties of solutions of (2.8), in particular that the solutions satisfy energy
estimates, and that they are continuous with respect to time. Using these proper-
ties it follows easily that the solutions are unique and depend continuously on initial
values and the source f . Existence of solutions is shown separately.

Let V and H be two Hilbert spaces, V dense in H , let ‖ ‖ denote the norm in
V , let | | denote the norm in H and 〈 , 〉 the sesquilinear scalar product in H . We
identify H with its antidual, then V ⊂ H ⊂ V ′. If f ∈ V ′, v ∈ V then 〈f, v〉 will
denote their scalar product in the antiduality.

Let A : V → V ′ and C : H → H be continuous and symmetric operators.
The operators A and C define sesquilinear forms a(u, v) = 〈Au, v〉 = 〈u, Av〉 and
c(u, v) = 〈Cu, v〉 = 〈u, Cv〉 on V and H respectively. We impose a few conditions on
a, c. We assume that a is positive definite in the sense that for some λ

a(u, u) + λ|u|2 ≥ α‖u‖2, α > 0. (2.15)

For c we assume

c(u, u) ≥ β|u|2, β > 0. (2.16)

It follows that A + λ and C are invertible operators.
Let u be an element of L2(]0, T [, V ) such that u′ ∈ L2(]0, T [, H). We will consider

the following differential equation

Au(t) + Cu′′(t) = f(t). (2.17)

Equation (2.17) will be understood in the following weak sense∫ T

0

[a(u(t), v(t))− c(u′(t), v′(t))] dt =

∫ T

0

〈f(t), v(t)〉 dt. (2.18)
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for all v in C∞0 ([0, T ], V ).
The initial conditions are

u(0) = u0,

u′(0) = u1, (2.19)

with u0 ∈ V , u1 ∈ H . Since t 7→ u(t) is only L2, in general u(0) is not defined in V .
But we are considering u such that u′ ∈ L2(]0, T [, H). From this it follows that (see
[25], Section 4.5)

u(t) is Hölder continuous of order 1
2

with values in H, (2.20)

so u(0) is well defined in H . It follows from the differential equation that u′′ ∈
L2(]0, T [, V ′). Hence

u′(t) is Hölder continuous of order 1
2

with values in V ′, (2.21)

and u′(0) is well defined in V ′. Therefore equations (2.19) make sense.
We will first show that solutions to (2.18) satisfy energy estimates, where the

energy is given by

E(t) = 1
2

(
a(u(t), u(t)) + c(u′(t), u′(t)) + λ|u(t)|2

)
.

Lemma 2.4.1 Suppose a, c are symmetric sesquilinear forms on V, H respectively
that obey (2.15), (2.16). Let u ∈ L2(]0, T [, V ), u′ ∈ L2(]0, T [, H), f ∈ L2(]0, T [, H). If
u satisfies (2.18), then there is a subset I0 of ]0, T [ that differs from ]0, T [ by a set of
measure zero, such that the energy E(t) = 1

2
(a(u(t), u(t)) + c(u′(t), u′(t)) + λ|u|2) is

Hölder continuous of order 1
2

on I0 and it obeys

E(t) ≤ C

(
E(s) +

∫ T

0

|f(σ)|2 dσ

)
, (2.22)

for all s, t ∈ I0, C = C(α, β, λ, T ).

Proof Let ρm, m = 1, 2, . . . be a regularizing sequence, that is

ρm(t) ≥ 0∫
ρm(t) dt = 1

supp ρm → {0}. (2.23)

Let ε > 0. There is an M such that supp ρm ⊂]− ε, ε[ for all m > M .
Set v(t) = ρm(s − t)(ρ′m ? u)(s), then, for s ∈ [ε, T − ε], we have that v ∈

C∞0 ([0, T ], V ). Hence u satisfies (2.18) with this choice of v. But the integral∫ T

0
ρm(s− t)u(t) dt simply equals the convolution product ρm ? u(s), hence

a(ρm ? u(s), ρ′m ? u(s)) + c(ρ′′m ? u(s), ρ′m ? u(s)) = 〈ρm ? f(s), ρ′m ? u(s)〉.



24 Chapter 2. Wave equations with discontinuous coefficients

We will use the following shorthand notation

um(s) = ρm ? u(s), fm(s) = ρm ? f(s),

Em(s) = 1
2

(
a(um(s), um(s)) + c(u′m(s), u′m(s)) + λ|u|2

)
,

Then it follows that

dEm

ds
(s) = Re(〈fm(s), u′m(s)〉+ λ〈um(s), u′m(s)〉). (2.24)

Define u(t) = 0 for t outside [0, T ], then we can define um(t), u′m(t), fm(t) for all
t ∈]0, T [. In the limit m→∞ we have

um → u in L2(]0, T [, V ),

u′m → u′ in L2(]0, T [, H),

fm → f in L2(]0, T [, H).

Hence

Em → E in L1(]0, T [),

〈fm, u′m〉 → 〈f, u′〉 in L1(]0, T [),

〈um(s), u′m(s)〉 → 〈u(s), u′(s)〉 in L1(]0, T [).

Since ε is arbitrary small, equation (2.24) becomes

dE

dt
= Re(〈f, u′〉+ λ〈u(s), u′(s)〉), (2.25)

in L1(]0, T [) and we find that dE
dt

is in L1(]0, T [). It follows that the map t 7→ E(t) is
absolutely continuous on ]0, T [.

Hence there is a subset I0 of ]0, T [ that differs from ]0, T [ by a set of measure zero,
and a subsequence m(l) such that for all t ∈ I0 we have

um(l)(t)→ u(t) in V, u′m(l)(t)→ u′(t) in H, fm(l)(t)→ f(t) in H,

Em(l)(t)→ E(t) in R,
dEm(l)

dt
(t)→ dE

dt
(t) in R, (2.26)

and (2.25).
We show that E(t) is Hölder continuous of order 1

2
. Let t ∈ I0. Since dE

dt
∈

L1(]0, T [), the energy E(t) is bounded. This implies (see (2.15), (2.16)) that ‖u(t)‖
and |u′(t)| are bounded. It follows from (2.25) that (we will denote the various
constants by C, C1, C2)

dE

dt
≤ |f(t)| |u(t)|+ λ|u(t)| |u′(t)| ≤ C1|f(t)|+ C2.
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Integrating this inequality we obtain, for s < t ∈ I0,

|E(t)− E(s)| ≤
∫ t

s

(C1|f(σ)|+ C2) dσ

= C1

∫ T

0

1[s,t] |f(σ)| dσ + C2(t− s)

≤ C1‖1[s,t]‖L2(]0,T [) · ‖f‖L2(]0,T [,H) + C2(t− s)

= C1

√
t− s

[∫ T

0

|f(σ)|2 dσ

]1/2

+ C2(t− s). (2.27)

This shows that E(t) is Hölder continuous of order 1
2

on I0.
Finally we prove (2.22). Let s, t ∈ I0. We obtain by integrating (2.24)

Em(t) ≤ Em(s) +

∫ t

s

1
2
(|fm(σ)|2 + (1 + λ)|u′m(σ)|2 + λ|um|2) dσ.

Using (2.15), (2.16) we obtain

Em(t) ≤ Em(s) +

∫ T

0

|1
2
f(σ)|2 dσ + C

∫ t

s

Em(σ) dσ,

C a constant depending on α, β, λ. Hence, using Gronwall’s lemma we find

Em(t) ≤ C

(
Em(s) +

∫ T

0

1
2
|f(σ)|2 dσ

)
, (2.28)

C depending on α, β, λ, T . Taking the limit for m→∞ we obtain (2.22). ¤

Since the energy is bounded almost everywhere on ]0, T [ it follows from (2.15) and
(2.16) that a solution u of (2.18) satisfies

u ∈ L∞(]0, T [, V ), u′ ∈ L∞(]0, T [, H). (2.29)

Using this we are now going to prove that u and u′ are uniformly continuous in V and
H respectively. This implies that they can be defined on the closed interval [0, T ].
Here we follow Strauss [54].

Theorem 2.4.2 Let the assumptions of Lemma 2.4.1 be satisfied. Then, after mod-
ification of the function t 7→ u(t) on a set of measure zero, we have

u ∈ C([0, T ], V ), u′ ∈ C([0, T ], H). (2.30)

The proof requires a few lemmas. We define a function u from a metric space I
to a Banach space E to be weakly continuous (resp. weakly uniformly continuous) if
the map t 7→ 〈u(t), v〉 is continuous (resp. uniformly continuous) on I for all v ∈ E ′.
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Lemma 2.4.3 Let I be a metric space, provided with a Borel measure, for which
every nonvoid open subset has positive measure. Let E be a Banach space, u ∈
L∞(I, E), D a dense subset of E ′ with respect to the operator norm in E ′, and for
every v ∈ D the map t 7→ 〈u(t), v〉 is uniformly continuous. Then, after modification
on a set of measure zero, the function t 7→ u(t) is weakly uniformly continuous, which
means that for every v ∈ E ′ the mapping t 7→ 〈u(t), v〉 is uniformly continuous.

Proof Let I0 = {t ∈ I| ‖u(t)‖ ≤ ‖u‖L∞}, then I\I0 has measure zero, hence I0 is
dense in I, because of the assumptions on I. Let v ∈ E ′ and ε > 0. There exists
w = w(v, ε) ∈ D such that

‖v − w‖ · ‖u‖L∞ <
ε

2
.

Furthermore, there exists δ > 0 such that

t, s ∈ I, d(t, s) < δ ⇒ |〈u(t), w〉 − 〈u(s), w〉| < ε

2
.

Hence, for t, s ∈ I0

|〈u(t), v〉 − 〈u(s), v〉| ≤ |〈u(t), w〉 − 〈u(s), w〉|+ |〈u(t), v − w〉 − 〈u(s), v − w〉| < ε.

It follows that t 7→ 〈u(t), v〉 is uniformly continuous on I0 hence on the completion of
I0, which contains I. ¤

Lemma 2.4.4 Under the conditions of Lemma 2.4.1, after modification on a set of
measure zero, the solution u of (2.18) (resp. its derivative u′) is a weakly uniformly
continuous mapping [0, T ]→ V (resp. [0, T ]→ H).

Proof We will use Lemma 2.4.3 with I = [0, T ].
Take E = V, D = H . We know from (2.29) that u ∈ L∞([0, T ], V ). By (2.20) u is

Hölder continuous of order 1
2

with values in H . In particular the map t 7→ 〈u(t), v〉
is uniformly continuous for v ∈ H . Hence by the lemma the map t 7→ 〈u(t), v〉 is
uniformly continuous for v ∈ V ′, after modification on a set of measure zero.

Now take E = H, D = V . Again from (2.29) we know that u′ ∈ L∞([0, T ], H)
and by (2.21) u′ is Hölder continuous of order 1

2
with values in V ′. In particular the

map t 7→ 〈u′(t), v〉 is uniformly continuous for v ∈ V . Hence by the lemma the map
t 7→ 〈u(t), v〉 is uniformly continuous for v ∈ H , after modification on a set of measure
zero. ¤
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Proof of Theorem 2.4.2 There is a subset I0 of [0, T ], that differs from [0, T ]
by a set of measure zero, such that the map t 7→ E(t) is uniformly continuous on
I0, u(t) ∈ V , u′(t) ∈ H for t ∈ I0 and t 7→ u(t), t 7→ u′(t) are weakly uniformly
continuous maps on I0.

Let s, t ∈ I0 and

ξ = 1
2

(
a(u(s)− u(t), u(s)− u(t)) + c(u′(s)− u′(t), u′(s)− u′(t)) + λ|u(s)− u(t)|2

)
.

We have

ξ = E(s) + E(t)− a(u(s), u(t))− c(u′(s), u′(t))− λ〈u(s), u(t)〉.

Now take the limit s→ t. By Lemma 2.4.1 the first term converges uniformly to E(t).
By Lemma 2.4.4 the third and fourth terms converge uniformly to −a(u(t), u(t)) and
−c(u′(t), u′(t)) respectively. Because of (2.20) the last term converges uniformly to
−λ|u(t)|2. Hence

ξ → E(t) + E(t)− a(u(t), u(t))− c(u′(t), u′(t))− λ|u(t)|2 = 0,

uniformly for s, t ∈ I0. Since 2ξ ≥ α‖u(s)− u(t)‖2 + β|u′(s)− u′(t)|2, it follows that
the mapping t 7→ u(t) is uniformly continuous from I0 to V hence on its completion
[0, T ]. Similarly the mapping t 7→ u′(t) is uniformly continuous from I0 to H hence
on its completion [0, T ]. This proves the theorem. ¤

We can now prove well-posedness of the problem, i.e. existence, uniqueness and
continuous dependence of the solution on the parameters.

Theorem 2.4.5 Suppose that a is a sesquilinear form on V that obeys (2.15), c is a
sesquilinear form on H that obeys (2.16). Suppose

u0 ∈ V, u1 ∈ H, f ∈ L2(]0, T [, H).

Then the problem (2.18), (2.19) has a solution

u ∈ C([0, T ], V ) ∩ C1([0, T ], H). (2.31)

The solution u is unique in L2(]0, T [, V ) ∩ H̄(1)(]0, T [, H) and depends continuously
on u0, u1 and f .

Proof of the existence The proof of the existence proceeds similarly as in Lions
and Magenes [36].

To simplify matters we will assume that V is separable, which will be the case in
all our applications. Let w1, . . . , wm, . . . form a “basis” for V in the following sense:

for all m, w1, . . . , wm are linearly independent, and,

the combinations
∑
finite

ξkwk, ξk ∈ R, are dense in V .
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Such a basis always exists if V is separable.
We define the approximate solution um(t) of order m of the problem in the fol-

lowing way

um(t) =
m∑

k=1

gkm(t)wk,

the gkm’s being determined so that

a(um(t), wl) + c(u′′m(t), wl) = (f(t), wl), 1 ≤ l ≤ m, (2.32)

gkm(0) = ξkm, g′km(0) = ηkm (2.33)

with

m∑
k=1

ξkmwk → u0 in V as m→∞,

m∑
k=1

ηkmwk → u1 in H as m→∞. (2.34)

Thus, the gkm’s are determined by a linear differential system which admits a
unique solution. The same calculations as in the section on energy estimates above
show that

‖um(t)‖2 + |u′m(t)|2 ≤ constant depending on f, u0, u1, a, c.

Therefore, in particular, um (resp. u′m) remains in a bounded set of L2(]0, T [, V ) (resp.
L2(]0, T [, H)). By (2.32), it follows that u′′m stays in a bounded set of L2(]0, T [, V ′).
Since the unit ball is weakly compact in a reflexive Banach space, we may extract
m(l), so that [18, II.3.26]

um(l) → u weakly in L2(]0, T [, V ),

u′m(l) → χ weakly in L2(]0, T [, H) (2.35)

as l →∞. But χ = u′.
It remains to be shown that the function u constructed in this manner is a solution

of the problem (2.18), (2.19). We first show that u satisfies the differential equation.
To this end we consider the functions

ψ =

m0∑
k=1

φk ⊗ wk, φk ∈ C∞0 ([0, T ]). (2.36)

For m > m0, we deduce from (2.32) (multiplying by φk(t) and summing over k from
1 to m0) that ∫ T

0

[a(um(l), ψ)− c(u′m(l), ψ
′)] dt =

∫ T

0

〈f, ψ〉 dt.
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By taking the limit l →∞ it follows from this that, for all ψ of the form given above,∫ T

0

[a(u, ψ)− c(u′, ψ′)] dt =

∫ T

0

〈f, ψ〉 dt.

But since the wm’s form a basis for V , the set of functions of the form (2.36) is dense
in L2(]0, T [, V ). Hence u satisfies the differential equation.

We show that u satisfies the first inital condition. Now define the following space
of functions

C∞T = {φ|φ ∈ C∞([0, T ]), φ(T ) = φ′(T ) = 0}, (2.37)

and consider the functions of the form

ψ = φ⊗ v, v ∈ V, φ ∈ C∞T ([0, T ]). (2.38)

By partial integration we have∫ T

0

[(u′m, ψ) + (um, ψ′)] dt = −(um(0), ψ(0)).

The right hand side converges to (u0, ψ(0)) if m→∞. The left hand side converges
to ∫ T

0

[(u′, ψ) + (u, ψ′)] dt = (u(0), ψ(0)).

Hence

(u(0), ψ(0)) = (u0, ψ(0)). (2.39)

Using (2.33) it follows that u satisfies the first initial condition.
The differential equation, tested with ψ as in (2.38) has an extra term due to the

partial integration∫ T

0

[a(um(l), ψ)− c(u′m(l), ψ
′)] dt =

∫ T

0

〈f, ψ〉 dt + c(u′m(l)(0), ψ(0)).

Let ψk(t) = χk(t) ⊗ v, v ∈ V , χk as defined above (2.14). By choosing k sufficiently
large the first term can be made arbitrarily small, and (because u is continuous by

Theorem 2.4.2)
∫ T

0
c(u′(t), ψ′k(t)) dt − c(u′(0), ψ(0)) can be chosen arbitrarily small.

Letting l →∞ we find that c(u′m(l)(0), ψ(0))→ c(u′(0), ψ(0)). Using (2.33) it follows
that u satisfies the second initial condition. ¤
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Proof of uniqueness and continuous dependence on parameters Suppose
ũ and ū both satisfy (2.18), (2.19), then their difference u = ũ − ū satisfies the
differential equation with u0 = u1 = 0, f = 0.

By Theorem 2.4.2 u(t) is continuous in V and u′(t) is continuous in H . Hence we
can use estimate (2.22) with s = 0, t arbitrary in [0, T ],

E(t) ≤ C

(
E(0) +

∫ T

0

|f(σ)|2 dσ

)
= C

(
‖u0‖2 + |u1|2 +

∫ T

0

|f(σ)|2 dσ

)
= 0.

Hence by (2.15), (2.16) we have u = 0, and ũ = ū.
Suppose now that we have two neighboring problems ũ0, ũ1f̃ and ū0, ū1, f̄ . Then

u = ũ − ū satisfies the differential equation with u0 = ũ0 − ū0, u1 = ũ1 − ū1 and
f = f̃ − f̄ . By (2.22), with s = 0, t arbitrary in [0, T ] we have

E(t) ≤ C

(
‖ũ0 − ū0‖2 + |ũ1 − ū1|2 +

∫ T

0

|f̃(σ)− f̄(σ)|2 dσ

)
.

Therefore ũ → ū if ũ0 → ū0, ũ1 → ū1 and f̃ → f̄ in V , H and L2(]0, T [, H)
respectively. ¤

2.5 More general differential equations

In this section we will consider a generalization of (2.1), with time dependent coeffi-
cients and lower order terms added∑

L

(
−
∑
i,j

∂
∂xi

aij;KL(x, t) ∂
∂xj

+
∑

i

a
(1)
i;KL(x, t) ∂

∂xi
+ a

(2)
KL(x, t) + bKL(x, t) ∂

∂t

+ ∂
∂t

cKL(x, t) ∂
∂t

)
uL(x, t) = fK(x, t). (2.40)

This equation can be written in abstract form similarly to (2.8), and the techniques
of the previous section can be applied to this equation. The solutions satisfy energy
estimates, and the other results (continuity of the solutions, existence, uniqueness)
follow.

Equation (2.40) can be written in the following form∫ T

0

[a(t; u(t), v(t)) + a1(t; u(t), v(t)) + b(t; u′(t), v(t))− c(t; u′(t), v′(t))] dt

=

∫ T

0

〈f(t), v(t)〉 dt. (2.41)
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for all v ∈ C∞0 ([0, T ], V ). The symmetric sesquilinear form a contains terms involving
the coefficient a(x, t) and the symmetric part of a(2)(x, t). The sesquilinear form a1

(in general not symmetric) contains the remaining terms.
We assume a(t), c(t) are symmetric sesquilinear forms satisfying (2.15) and (2.16)

respectively for each t with constants α, β, λ independent of t. We assume they only
have weak time dependence of the form

the map t 7→ a(t) from [0, T ] to the space of continuous sesquilinear
forms on V is once continuously differentiable,

(2.42)

and

the map t 7→ c(t) from [0, T ] to the space of continuous sesquilinear
forms on H is once continuously differentiable.

(2.43)

The derivatives are denoted a′(t; u, v) and c′(t; u, v). This excludes for instance moving
discontinuities in the coefficients. The sesquilinear form a1(t; u, v) is defined for u ∈
V, v ∈ H , while b is a sesquilinear form on H . We require for the time dependence of
a1, b

the map t 7→ a1(t) from [0, T ] to the space of continuous sesquilinear
forms on V ×H is continuous,

the map t 7→ b(t) from [0, T ] to the space of continuous sesquilinear
forms on H is continuous,

(2.44)

We will show the following energy estimate.

Lemma 2.5.1 Suppose a(t; u, v) is a family of sesquilinear forms on V that obeys
(2.42) and (2.15) for each t. Suppose c(t; u, v) is a family of sesquilinear forms on
H that obeys (2.43) and (2.16) for each t. Suppose a1(t; u, v), b(t; u, v) are families
of bilinear forms with u ∈ V, v ∈ H or u, v ∈ H respectively, that obey (2.44). Let
f ∈ L2(]0, T [, H). Suppose u ∈ L2(]0, T [, V ), with u′ ∈ L2(]0, T [, H), satisfies the
differential equation (2.41). Then there is a subset I0 of ]0, T [ that differs from ]0, T [
by a set of measure zero, such that the energy

E = 1
2
[a(t; u(t), u(t)) + λ|u(t)|2 + c(t; u′(t), u′(t))]

is Hölder continuous of order 1
2

on I0 and it obeys

E(t) ≤ C[E(s) +

∫ T

0

|f(σ)|2 dσ], (2.45)

for all s, t ∈ I0, C = C(a, a1, b, c, T ).
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Proof Let ρm, m = 1, 2, . . . be a regularizing sequence (see (2.23)). Let ε > 0.
There is an M such that supp ρm ⊂]− ε, ε[ for all m > M .

Set v(t) = ρm(s − t)(ρ′m ? u(s)), then, for s ∈ [ε, T − ε], we have that v ∈
C∞0 ([0, T ], V ). Hence u satisfies (2.41) with this choice of v:∫ T

0

[a(t; u(t), ρm(s− t)(ρ′m ? u(s)) + a1(t; u(t), ρm(s− t)(ρ′m ? u(s))

+ b(t; u′(t), ρm(s− t)(ρ′m ? u(s)) + c(t; u′(t), ρ′m(s− t)(ρ′m ? u(s))] dt

=

∫ T

0

〈f(t), ρm(s− t)(ρ′m ? u(s))〉 dt. (2.46)

The first term of (2.46) equals

〈(ρm ? Au)(s), ρ′m ? u(s)〉.

Since the operator A is time dependent is does not commute with the operator ρm?.
However we will show in a separate lemma that the commutator term (that I will call
Ra,m) vanishes in the limit m→∞. So we write the previous expression as

a(s; ρm ? u(s), ρ′m ? u(s)) + Ra,m(s),

where we defined Ra,m(s) by

Ra,m(s) = 〈[ρm ? Au− A(ρm ? u)](s), ρ′m ? u(s)〉.

Let Ra1,m be similarly defined for the second term in (2.46). The third term in (2.46)
equals

b(s; ρ′m ? u(s), ρ′m ? u(s)) + Rb,m(s),

with

Rb,m(s) = 〈[ρm ? Bu′ −B(ρm ? u′)](s), ρ′m ? u(s)〉.

The fourth term in (2.46) equals

c(s; ρ′′m ? u(s), ρ′m ? u(s)) + Rc,m(s),

with

Rc,m(s) = 〈[ρ′m ? Cu′ − C(ρ′m ? u′)](s), ρ′m ? u(s)〉.

In Lemma 2.5.2 it is shown that Ra,m, Ra1,m, Rb,m, Rc,m vanish in the limit m→∞.
We will use the following shorthand notation

um(s) = ρm ? u(s), fm(s) = ρm ? f(s),

Em(s) = 1
2
[a(s; um(s), um(s)) + λ|um(s)|2 + c(s; u′m(s), u′m(s))].
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Then this can be written

a(s; um(s), u′m(s)) + a1(s; um(s), u′m(s)) + b(s; u′m(s), u′m(s)) + c(s; u′′m(s), u′m(s))

= 〈fm(s), u′m(s)〉 − Ra,m(s)−Ra1,m − Rb,m(s)− Rc,m(s).

Since

2 Re a(s; um(s), u′m(s)) = a(s; um(s), u′m(s)) + a(s; u′m(s), um(s))

=
d

ds
a(s; um(s), um(s))− a′(s; um(s), um(s))

(and similarly for c(t; um(t), um(t))), we have

dEm

ds
= Re(〈fm(s), u′m(s)〉 − a1(s; um(s), u′m(s))− b(s; u′m(s), u′m(s))

+ 1
2
a′(s; um(s), um(s)) + 1

2
c′(s; u′m(s), u′m(s)) + λ〈um(s), u′m(s)〉

− Ra,m(s)− Ra1,m(s)− Rb,m(s)− Rc,m(s)). (2.47)

Define u(t) = 0 for t outside [0, T ], then we can define um(t), u′m(t), fm(t) and
Ra,m(t), Ra1,m(t), Rb,m(t), Rc,m(t) for all t ∈]0, T [. In the limit m→∞ we have

um → u in L2(]0, T [, V ),

u′m → u in L2(]0, T [, H),

fm → f in L2(]0, T [, H).

And, by Lemma 2.5.2,

Ra,m, Ra1,m, Rb,m, Rc,m → 0 in L1(]0, T [).

Since ε is arbitrary we can take the limit m→∞ in (2.47). We obtain

dE

dt
(t) = Re(〈f(t), u′(t)〉 − a1(t; u(t), u′(t))− b(t; u′(t), u′(t)) + 1

2
a′(t; u(t), u(t))

+ 1
2
c′(t; u′(t), u′(t)) + λ〈u(t), u′(t)〉), (2.48)

in L1(]0, T [). So the map t 7→ E(t) is absolutely continuous on ]0, T [.
It follows that there is a subset I0 of ]0, T [ that differs from ]0, T [ by a set of

measure zero, and a subsequence m(l), such that for all t ∈ I0 we have

um(l)(t)→ u(t) in V, u′m(l)(t)→ u′(t) in H, fm(l)(t)→ f(t) in H,

Em(l)(t)→ E(t) in R,
dEm(l)

dt
(t)→ dE

dt
(t) in R, (2.49)

and such that (2.48) is valid pointwise.



34 Chapter 2. Wave equations with discontinuous coefficients

We prove that the map t 7→ E(t) is Hölder continuous of order 1
2
. Let t ∈ I0. The

different terms of (2.48) can be estimated as follows (the various constants that arise
are denoted by C, C1, C2, . . . )

〈f(t), u′(t)〉 ≤ |f(t)| · |u′(t)|, a′(t; u(t), u(t)) ≤ C ‖u(t)‖2,

a1(t; u(t), u′(t)) ≤ C ‖u(t)‖ · |u′(t)| b(t; u′(t), u′(t)) ≤ C |u′(t)|2,
c′(t; u′(t), u′(t)) ≤ C |u(t)|2, 〈u(t), u′(t)〉 ≤ |u(t)| · |u′(t)|. (2.50)

Since E(t) is absolutely continuous it is bounded. This implies (see (2.15) and (2.16))
that ‖u(t)‖, |u′(t)| are bounded too, hence we have

dE

dt
(t) ≤ C1|f(t)|+ C2.

Integrating this equation we obtain in the same way as in (2.27), for s, t ∈ I0

|E(t)−E(s)| ≤
√

t− sC1

[∫ T

0

|f(σ)|2 dσ

] 1
2

+ (t− s)C2.

This shows that E(t) is Hölder continuous of order 1
2

on I0.
Finally we prove (2.45). Let s, t ∈ I0. We obtain by integrating (2.47) and using

estimates similar to (2.50)

Em(t) ≤ Em(s) +

∫ t

s

1
2
(|fm(σ)|2 + C1‖um(σ)‖2 + C2|u′m(σ)|2) dσ.

Using (2.15), (2.16) and Gronwall’s lemma as in the derivation of (2.28) we find

Em(t) ≤ C

(
Em(s) +

∫ T

0

1
2
|f(σ)|2 dσ

)
,

C depending on a, a1, b, c, T . Taking the limit m→∞ we obtain (2.45). ¤

The following lemma completes the proof

Lemma 2.5.2 Let a, a1, b, c be as in Lemma 2.5.1 and Ra,m, Ra1,m, Rb,m, Rc,m as in
the proof of Lemma 2.5.1. Then

Ra,m, Ra1,m, Rb,m, Rc,m → 0 in L1(]0, T [). (2.51)

Proof We first show that Ra1,m → 0 in L1(]0, T [). The L1 norm of Ra1,m can be
estimated by using standard inequalities, such as∫

|Ra1,m(s) | ds =

∫
|〈[ρm ? A1u− A1(ρm ? u)](s), ρ′m ? u(s)〉| ds

≤ ‖ρm ? A1u−A1(ρm ? u)‖L2(]0,T [,H) · ‖ρ′m ? u‖L2(]0,T [,H).
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We prove that ρm?A1u−A1(ρm?u)→ 0 in L2(]0, T [, H), then Ra1,m → 0 in L1(]0, T [).
Let s, t ∈]0, T [, then, by (2.44), ‖A1(t)− A1(s)‖V→H → 0 uniformly if t→ s. Hence
for every ε > 0 there is an M such that for m > M we have

ρm(s− t) |((A1(t)− A1(s))u(t)| ≤ ερm(s− t)‖u(t)‖.

Hence, by a standard equality for the convolution product, ρm ?A1u−A1(ρm ?u)→ 0
in L2(]0, T [, H).

By replacing A1u by Bu′ one can show similarly that also Rb,m → 0 in L1(]0, T [).
We now show that Ra,m → 0. Consider the map

Tm : v 7→ 〈ρm ? Au− A(ρm?)u, ρ′m ? v〉,

from L2(]0, T [, V ) to L1(]0, T [). We show that Tm → 0 on a dense subspace of
L2(]0, T [, V ), and that the Tm are bounded, then (by Dunford & Schwartz, II.3.6)
Tm(v)→ 0 for v in all of L2(]0, T [, V ), which is what we have to show.

Choose a regularizing sequence of the form

ρm(t) =
1

m
ρ(mt)

supp ρ = [−1, 1], ρ > 0,

∫
ρ dt = 1.

It follows that ∫
|ρ′m(t)| dt = C ·m.

Let s, t ∈]0, T [, then, by (2.42), ‖A(t)− A(s)‖V→V ′ ≤ C|s− t|.

‖[ρm ? Au− A(ρm?)u](s)‖V ′ ≤
∫ s+1/m

s−1/m

ρm(s− t)‖(A(t)−A(s))u(t)‖V ′ dt

≤ Cm−1(ρm ? ‖u‖)(s). (2.52)

It follows that

‖ρm ? Au−A(ρm?)u‖L2(]0,T [,V ′) ≤ Cm−1‖u‖L2(]0,T [,V ).

This implies that Tm → 0 for v in C1(]0, T [, V ), which is a dense subspace of
L2(]0, T [, V ).

We now show that Tm is bounded. The L2 norm of v′ can be estimated by

‖v′m‖L2(]0,T [,V ) ≤ ‖v‖L2(]0,T [,V )

∫
|ρ′m| dt

= Cm‖v‖L2(]0,T [,V ). (2.53)
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Hence

‖Tm(v)‖L1(]0,T [) =

∫ T

0

〈[ρm ? Au−A(ρm?)u](s), ρ′m ? v(s)〉 ds

≤ ‖ρm ? Au− A(ρm?)u‖L2(]0,T [,V ′) · ‖v′m‖L2(]0,T [,V )

= C‖u‖L2(]0,T [,V ) · ‖v‖L2(]0,T [,V )

which shows that Tm is bounded.
Let us consider Rc,m. The idea of the proof will be the same as in the case of

Ra,m. Define

tm(v) = ρ′m ? Cv′ − C(ρ′m ? v′)

and consider the map

Tm : v 7→ 〈tm(v), ρ′m ? u〉.

from L2(]0, T [, V ) to L1(]0, T [). Then Rc,m = Tm(u). We show that Tm → 0 if
v ∈ C∞0 ([0, T ], V ) (dense subspace of L2(]0, T [, V )). We can write out the first factor
in the inner product

tm(v)(s) =

∫
ρ′m(s− t)(C(t)− C(s))v′(t) dt.

Since v is smooth we can partially integrate the derivative off ρ′m. Hence

tm(v)(s) =

∫
(ρm(s− t)(C(t)− C(s))v′′(t) + ρm(s− t)C ′(t)v′(t)) dt.

By an argument that is similar to the ones used above it follows that tm(v) → 0 in
L2(]0, T [, H).

Remains to be shown that Tm is bounded. This can be done by estimates similar
to (2.52), (2.53). ¤

Having proven the energy lemma for this case the other results of the previous
section follow immediately. Indeed we have

u ∈ L∞(]0, T [, V ), u′ ∈ L∞(]0, T [, H),

and therefore Lemma 2.4.4 applies. Using this and the energy lemma we can prove
Theorems 2.4.2, 2.4.5 for this case. The results are stated below. The proofs are
omitted since it can be checked that the arguments used to prove Theorems 2.4.2,
2.4.5 are also valid in this case.

Theorem 2.5.3 Suppose a, a1, b, c are families of sesquilinear forms that satisfy the
assumptions of Lemma 2.5.1. Let

f ∈ L2(]0, T [, H).
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Let u satisfy (2.41), and u ∈ L2(]0, T [, V ), u′ ∈ L2(]0, T [, H). Then, after modifica-
tion on a set of measure zero, we have

u ∈ C([0, T ], V ), u′ ∈ C([0, T ], H). (2.54)

Theorem 2.5.4 Suppose a, a1, b, c are families of sesquilinear forms that satisfy the
assumptions of Lemma 2.5.1. Suppose

u0 ∈ V, u1 ∈ H,

f ∈ L2(]0, T [, H).

Then the problem (2.41), (2.19) has a solution

u ∈ C([0, T ], V ) ∩ C1([0, T ], H). (2.55)

The solution u is unique in the space of u ∈ L2(]0, T [, V ) such that u′ ∈ L2(]0, T [, H),
and depends continuously on u0, u1 and f .

2.6 Solutions in larger or smaller spaces

Wave equations with smooth coefficients have well-defined solutions in Sobolev spaces
H(s) for all orders s ∈ R, see for example Hörmander [26], Chapter 23. We will discuss
a similar result for nonsmooth coefficients. There is a sequence of spaces V(k), k ∈ Z,
such that the differential equation (2.17), with source f ∈ L2(]0, T [, V(k)) and initial
values u0 ∈ V(k+1), u1 ∈ V(k) has a unique solution that is continuous in t with values
in V(k).

To keep the argument simple we discuss the time independent problem without
lower order terms of Section 2.4. We will assume that the operator C is the identity.
This can be obtained by making the following transformation

u|new = C
1
2 u|old, f |new = C−

1
2 f |old,

A|new = C−
1
2 AC−

1
2 |old, V |new = {u ∈ H |C− 1

2 u ∈ V }. (2.56)

Because C is positive definite the operator C
1
2 can be constructed using the spectral

decomposition of the operator C. Note that now the space V depends on C. (For
this reason we did not discuss this simplified system so far.)

A space that is smaller than V is given by the domain D(A) of A

D(A) = {u ∈ V |Au ∈ H}.

With norm given by the norm of the graph

‖u‖2
D(A) = |Au|2 + |u|2
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this is a Hilbert space. Because H is dense in V ′ and A + λ is invertible (for λ large
enough, see (2.15)) the space D(A) is dense in V . It follows that V ′ is a dense subset
of the dual space D(A)′.

Even smaller and larger spaces are defined by (k ≥ 0)

V(2k) = D(Ak), V(2k+1) = {u ∈ V |Aku ∈ V }, (2.57)

and their dual spaces defined as

V(−k) = V ′(k).

We have

. . . ⊂ V(2) ⊂ V(1) ⊂ V(0) ⊂ V(−1) ⊂ V(−2) . . . ,

where each space is dense in the next space. Note that V(1) = V, V(0) = H, V(−1) =
V ′. If λ sufficiently large (see (2.15)) the operator A + λ is an invertible operator
V(k+2) → V(k).

Let u ∈ L2(]0, T [; V(k+1)), u′ ∈ L2(]0, T [; V(k)), f ∈ L2(]0, T [; V(k)). The function u
is a solution to the PDE if∫ T

0

[a(u(t), v(t))− 〈u′(t), v′(t)〉] dt =

∫ T

0

〈f(t), v(t)〉 dt, (2.58)

for all v in C∞0 ([0, T ], V(−k+1)).

The operator (A + λ)
k
2 is an isomorphism from V(l+k) to V(l) that commutes with

the time derivative. It follows that u ∈ L2(]0, T [, V(k+1)), with u′ ∈ L2(]0, T [, V(k))

is a solution to (2.58) if and only if (A + λ)
k
2 u is a solution in L2(]0, T [, V ) with

((A + λ)
k
2 u)′ ∈ L2(]0, T [, H). Therefore the next result follows immediately from

Theorem 2.4.5.

Theorem 2.6.1 Suppose a(u, v) is a sesquilinear forms on V that obeys (2.15). Sup-
pose f ∈ L2(]0, T [; V(k)), u0 ∈ V(k+1), u1 ∈ V(k). Then there exists a unique solution u
of (2.58), (2.19) in L2(]0, T [, V(k+1)), with u′ ∈ L2(]0, T [, V(k)). The solution satisfies
in addition

u ∈ C([0, T ], V(k+1)), u′ ∈ C([0, T ], V(k)).

It depends continuously on f, u0, u1.

Remark 2.6.2 If the coefficients are C∞ then one can use estimates for pseudodif-
ferential operators (see Hörmander [26], Section 18.1) to show that V(k) = H(k)(Rn).
By integration by parts one can show directly that

〈(A + λ)ku, u〉 ≤ C1‖u‖2
H(k)

.

The sharp G̊arding estimate yields that for λ sufficiently large one has

〈(A + λ)ku, u〉 ≥ C2‖u‖2
H(k)

.
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Remark 2.6.3 If A is time dependent but such that D(A(t)) is independent of t and
and isomorphic to D(A(0)), then one can still show a result similar to Theorem 2.6.1,
see for a result in this direction Lions and Magenes [36] Section 9.5. As in the previous
sections the first step is an energy estimate where the energy is now given by

E(t) = 1
2
(〈(A(t) + λ)k+1u(t), u(t)〉+ 〈(A(t) + λ)ku′(t), u′(t)〉).

One can show that there is a set I0 that differs from ]0, T [ by a set of measure zero
such that E(t) is Hölder continuous of order 1

2
on I0 and it obeys

E(t) ≤ C

(
E(s) +

∫ T

0

‖f(σ)‖2
V(k)

dσ

)
, (2.59)

for all s, t ∈ I0, C = C(a, k, T ). Using this result one can show continuity of solutions
and existence and uniqueness.

2.7 Discontinuities at an interface

In this section the theory of Section 2.6 is applied to equation (2.1) in the case that
the coefficients have a smooth jump. By this we mean that the medium coefficients
aij;KL(x), cKL(x) of equation (2.1) are discontinuous across a smooth codimension
one submanifold, called an interface. We assume that on either side the coefficients
are smooth and can be extended smoothly across the interface. We characterize the
spaces V(k) defined in the previous section, that contain the solutions and source and
initial values. If the source fK is not too singular at the interface the solutions are in
Sobolev spaces on either side and satisfy the well known interface conditions. (Note
that a system on both sides of an interface with conditions at the interface can be
viewed as a system of double the size with a boundary. For example if the interface
is at xn = 0 and x′ denotes (x1, . . . , xn−1) this would be the system for the vector
(uK(x′,−xn), uK(x′, xn)) on xn > 0. The interface conditions then become a system
of boundary conditions and results like those of Section 2.3 can be obtained.)

We will assume that the interface is at xn = 0, this can be obtained locally by
a coordinate transformation. In this section the indices K, L in aij;KL, cKL will be
omitted. However, all arguments will be valid for vector valued u, f and matrix valued
coefficients aij, c. After the transformation of equation (2.56) the operator A is given
by

−
∑
i,j

c−
1
2

∂
∂xi

aij(x) ∂
∂xj

c−
1
2 .

and

H = L2(Rn), V = {u ∈ L2(X) | c− 1
2 u ∈ H(1)(Rn)}.
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We will need some function spaces that have not been discussed so far. The
anisotropic Sobolev space H(m,s) is defined as the set of all u ∈ S ′(Rn) with Fourier
transform û(ξ) ∈ L2

loc and

‖u‖2
H(m,s)

= (2π)−n

∫
|û(ξ)|2(1 + |ξ|2)m(1 + |ξ′|2)s dξ <∞.

Thus the elements of H(m,s) have s additional orders of regularity in the x′ coordinates.
In this section Rn

xn 6=0 is viewed as union of two half spaces Rn
+ ∪Rn

−, where Rn
± =

{x ∈ Rn | ± xn > 0}. Hörmander [26, appendix B] describes the relevant spaces of
distributions with a half space as domain. If F is a space of distributions in Rn, then
F̄ (Rn

+) is the space of restrictions to Rn
+ of its elements, and Ḟ (Rn

+) is the space of
elements supported by Rn

+.
For example C̄∞0 (Rn

+) consists of the smooth functions on Rn
+ that can be smoothly

extended across the boundary. One can show that these are precisely the elements
of C∞(Rn

+) that vanish outside a compact set. The space Ċ∞0 (Rn
+) is the subspace of

functions vanishing of infinite order at xn = 0. The space D̄′(Rn
+) (which contains the

Sobolev spaces H̄(m,s)(Rn
+)) consists precisely of the linear forms on Ċ∞0 (Rn

+). The

space Ḋ′(Rn
+) consists of the linear forms on C̄∞0 (Rn

+).
For the characterization of V(k), k ≥ 0 we use the Sobolev space H̄(k)(Rn

+ ∪ Rn
−).

This space can also be viewed as the product H̄(k)(Rn
−) × H̄(k)(Rn

+). If k is a non-
negative integer it consists of the L2 functions on Rn, such that on both sides of the
interface derivatives up to order k are in L2. However, at the interface the function
may be discontinuous. The norm is equivalent to∫

xn<0

∑
|α|≤k

|∂
αu

∂xα
|2 +

∫
xn>0

∑
|α|≤k

|∂
αu

∂xα
|2.

Although at the interface an element u of H̄(k)(Rn
+ ∪ Rn

−) may be discontinuous,

the restrictions ∂ju

∂xjn
|xn=0± are well defined in H(k−j− 1

2
)(Rn−1) (see Hörmander [26],

Theorem B.2.7).
At some point we also use the anisotropic version H̄(k,s)(Rn

+ ∪ Rn
−). For k a

nonnegative integer this space consists of those functions in L2 such that on each side
of the interface ∂ju

∂xjn
, 0 ≤ j ≤ k is an L2 function with values in H(s+k−j)(Rn−1). The

norm is equivalent to∫
xn<0

k∑
j=0

‖∂
ju

∂xj
n

‖2
H(s+k−j)(Rn−1) dxn +

∫
xn>0

k∑
j=0

‖∂
ju

∂xj
n

‖2
H(s+k−j)(Rn−1) dxn.

For V = V(1) we find that

V = {u ∈ H̄(1)(Rn
+ ∪ Rn

−) | c− 1
2 u|xn=0− = c−

1
2 u|xn=0+}.
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In the following theorem we show that the V(k) are similar. Define the interface
differential operators Bj , j = 0, 1, . . . as

B2k = c−
1
2 Ak, B2k+1 =

∑
j

anj
∂

∂xj
c−

1
2 Ak.

Theorem 2.7.1 Let the operator A be as given above, let k ≥ 0. The spaces V(k)

defined in (2.57) are given by

V(k) = {u ∈ H̄(k)(Rn
+ ∪ Rn

−) |Bju|xn=0− = Bju|xn=0+ , j = 0, . . . , k − 1}. (2.60)

Proof In this proof we will use the notation H̄(k) = H̄(k)(Rn
+ ∪ Rn

−). If u ∈ H̄(k)

(k ≥ 2), and c−
1
2 u and

∑
j anj

∂
∂xj

c−
1
2 u are continuous at xn = 0, then Au ∈ H̄(k−2). By

induction it follows that V(k) contains the set of u ∈ H̄(k) that satisfies the conditions
in (2.60).

We show that the elements of V(k) satisfy the interface conditions. If u ∈ V then

c−
1
2 u ∈ H(1) and hence c−

1
2 u is continuous at the interface. If in addition Au ∈ L2

then

n−1∑
i=1

∑
j

∂
∂xi

aij
∂

∂xj
c−

1
2 u ∈ L2(R, H(−1)(Rn−1)). (2.61)

Since
∑

j anj
∂

∂xj
c−

1
2 u ∈ L2 and

∑
j

∂
∂xn

anj
∂

∂xj
c−

1
2 u = Au− (2.61) it follows that∑

janj
∂

∂xj
c−

1
2 u ∈ H(1)(R, H(−1)(Rn−1)),

in particular it must be continuous at the interface. If u ∈ V(2l) then u, Au, . . . , Alu ∈
L2(x1) and u, Au, . . . , Al−1u ∈ V , hence u in this case satisfies the interface condi-
tions. If u ∈ V(2l+1) then in addition Alu ∈ V and also in this case u satisfies the
interface conditions.

It remains to be shown that V(k) is contained in H̄(k). Assume first that k = 2.
Because C̄∞0 is dense in H̄(k) it is sufficient to show that for u ∈ C̄∞0 satisfying the
first two interface conditions

‖Au‖L2 ≥ C1‖u‖H̄(2)
− C2‖u‖H̄(1)

. (2.62)

Let

an
ij = ain(ann)−1anj ,

at
ij = aij − an

ij ,

they represent the ‘normal’ and ‘tangential’ parts of aij respectively. Note that an is
of the form (vt)ivj , the product of a vector v and its transpose vt. It therefore has
a kernel of dimension N(n − 1) (recall that we omitted the K, L indices that are in
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{1, . . . , N}). The tangential part satisfies at
ij = 0 if i = n or j = n, while the part

with i, j ≤ n−1 is positive definite, because it must be positive definite on the kernel
of an.

So we have

‖Au‖2
L2 ≥ C

∫ ∣∣∣∣∣∑
i,j

∂
∂xi

at
ij

∂
∂xj

c−
1
2 u

∣∣∣∣∣
2

dx +

∫ ∣∣∣∣∣∑
i,j

∂
∂xi

an
ij

∂
∂xj

c−
1
2 u

∣∣∣∣∣
2

dx

+ 2 Re

∫ ∑
i,j,k,l

( ∂
∂xi

at
ij

∂
∂xj

c−
1
2 u)( ∂

∂xk
an

kl
∂

∂xl
c−

1
2 u) dx

)
. (2.63)

Let δt
ij = 1 if i = j ≤ n − 1, and 0 otherwise and let ζ > 0 be such that at

ij − ζδt
ij is

still bounded away from zero. The third term can be written as

2 Re

∫ ∑
i,j,k,l

(
(ζδt

ij
∂2

∂xi∂xj
c−

1
2 u)( ∂

∂xk
an

kl
∂

∂xl
c−

1
2 u)

+ ( ∂
∂xi

(at
ij − ζδt

kl)
∂

∂xj
c−

1
2 u)( ∂

∂xk
an

kl
∂

∂xl
c−

1
2 u)
)

dx. (2.64)

The second part of the integral can be estimated by some constant < 1 times the first
two terms of (2.63). Indeed the estimate

∫ ∣∣∣∣∣∑
i,j

∂
∂xi

(at
ij − ζδt

ij)
∂

∂xj
c−

1
2 u

∣∣∣∣∣
2

dx ≤ (1− η)

∫ ∣∣∣∣∣∑
i,j

∂
∂xi

at
ij

∂
∂xj

c−
1
2 u

∣∣∣∣∣
2

dx

(modulo lower order terms) is equivalent to (bringing the left-hand side to the right,
and in the integral)

Re

∫ ∑
i,j,k,l

( ∂
∂xi

((
√

1− η + 1)at
ij − ζδt

ij)
∂

∂xj
c−

1
2 u)

× ( ∂
∂xk

((
√

1− η − 1)at
kl + ζδt

kl)
∂

∂xl
c−

1
2 u) dx ≥ 0,

modulo lower order terms. By partial integration and the sharp G̊arding inequality
(see Hörmander [26], Theorem 18.1.14) it can be seen that the latter estimate is valid.

To estimate the first term of (2.64) we do two partial integrations, moving ∂
∂xk

to the left and ∂
∂xj

to the right. Two boundary terms that arise at the interface due

to the partial integration w.r.t. xn cancel each other (which was the motivation for
(2.64)). So the first term of (2.64) equals

2 Re

∫ ∑
i,j,k,l

ζδija
n
kl(

∂2

∂xixk
c−

1
2 u)( ∂2

∂xjxl
c−

1
2 u) dx + l.o.t. (2.65)

The lower order terms involve integrals with less derivatives.
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It follows that (with a different constant C)

‖Au‖2
L2 ≥ C

∫ [
(
∑
i,j

∂
∂xi

at
ij

∂
∂xj

c−
1
2 u)2 + (

∑
i,j

∂
∂xi

an
ij

∂
∂xj

c−
1
2 u)2

+ 2ζ
∑
i,j,k,l

δt
ija

n
kl(

∂2

∂xixk
c−

1
2 u)( ∂2

∂xjxl
c−

1
2 u)
]
dx + l.o.t.

The result (2.62) follows from this.
For k > 2 we use an induction argument. Suppose V(k−2) ⊂ H̄k−2. Then u ∈ V(k)

implies that u ∈ H̄(k−2) and Au ∈ H̄(k−2). By Hörmander [26], Theorem B.2.9 it is
now sufficient to show that in addition u ∈ H(2,k−2). So it is sufficient to show that

v = (1−
n−1∑
i=1

∂2

∂x2
i
)
k−2

2 u ∈ H̄(2).

The function v satisfies the first two interface conditions modulo lower order terms.
It follows that in (2.65) lower order boundary terms arise. These can be estimated
by lower order Sobolev norms. Therefore estimate (2.62) is valid for v. Therefore
u ∈ H̄(k), and by induction this is true for any k ≥ 0. ¤

The result above characterizes the spaces V(k), k ≥ 0. We now consider the dual

spaces V(−k) = V ′(k). The spaces Ḣ(−k), H̄(−k) are the duals of H̄(k), Ḣ(k). We have

seen that V(k), k ≥ 0 is a closed subspace of H̄(k)(Rn
− ∪ Rn

+). So each linear form
on H(k) is also a linear form on V(k). On the other hand it is a consequence of the
Hahn-Banach theorem that each linear form V(k) can be extended to a linear form on

H̄(k) (see Dunford and Schwartz [18], Theorem II.3.11). So V(−k) is given by Ḣ(−k)

modulo the linear forms in Ḣ(−k) that vanish on V(k). Note that V(−k) may contain
elements that are singular at the interface.

Remark 2.7.2 The text of Elton [19] also discusses hyperbolic differential operators
with coefficients that are discontinuous along the plane xn = 0. He constructs spaces
HA

k , where A is a differential operator, that play the same role as the spaces V(k)

defined above. These spaces are defined as in (2.60) and it is then shown that the
operator A + λ is invertible from V(k+2) to V(k). He then shows (among other things)
existence and uniqueness results for the solutions of wave equations.

An important difference with our work is that he does not use the variational
or divergence form of the operators, where the coefficient is written between the
derivatives. The divergence form has the advantage that it allows more general, L∞

coefficients and that the general theory described in Sections 2.4 and 2.6 can be used.
The V(k) are then defined ‘canonically’ as in (2.60).

Our result Theorem 2.7.1 is also stronger, because Elton did not consider systems
of equations and there is an additional assumption on the coefficients, namely that
they have well-coupled singularities (see Section 2.4 of [19]).
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An element u ∈ Ḣ(−k) defines a linear form on H̄(k) and hence in particular it

defines a linear form on Ḣ(k), i.e. an element of H̄(−k), that we denote by r(u). So r

defines a map from Ḣ(−k) to a subset of H̄(k). If r(u1) = r(u2) then u2−u1 is supported
in the interface, supp(u2 − u1) ⊂ ∂Rn

+ ∪ ∂Rn
−. If follows that u2 − u1 is a linear form

on (v|xn=±0, . . . , ∂k−1v

∂xk−1
n
|xn=±0). On the other hand, if u ∈ H̄(−k) is sufficiently regular

in the xn direction at the interface, e.g. in H(0,−k), it defines a linear form on H̄(k)

and hence an element e(u) of Ḣ(−k).
The next theorem shows that in case f is not too singular towards the interface,

then the solutions can be obtained by solving the PDE on each side of the interface,
and solving interface conditions. We will assume t ∈ R, to avoid complications due
to the initial values. Sometimes the notation Rt is used to indicate that a function
has as variable t.

Theorem 2.7.3 Let f ∈ L2(Rt, V(−k)) and in addition f ∈ L2(R, H̄(−k)(Rn−1 × Rt))
(close to the interface). Then u ∈ L2(Rt, V(−k+1)), u′ ∈ L2(Rt, V(−k)) and

Pu = f, weakly (2.66)

if and only if u = e(ū) and ū ∈ L2(Rt, H̄(−k+1)), ū′ ∈ L2(Rt, H̄(−k)) satisfies

Pu = f, weakly on each side of the interface, (2.67)

Biu|xn=0− = Biu|xn=0+ , i = 0, 1. (2.68)

Proof In this proof the partial differential equation, tested with v is written as

〈u, Av〉+ 〈u,
∂2v

∂t2
〉 = 〈f, v〉, (2.69)

where v ∈ C∞0 (Rt, V(k+1)). For the construction of suitable test functions two se-
quences of functions χm(xn), ψm(xn) are needed. Let χ1(xn) ∈ C∞0 (R) be given by

χ1(xn) =

{
0, |xn| > 1,
1, |xn| < 1

4
,

and suppose that in addition χ1(xn) = χ1(−xn),
∫

χ1(xn) dxn = 1. Let χm(xn) be
given by χ(mxn). Let ψ1(xn) ∈ C∞0 (R) be given by

ψ1(xn) =

{ ∫ xn
0

χ1(σ) dσ, |xn| ≤ 1,
0, |xn| ≥ 2,

and smoothly decreasing on [−2,−1] and [1, 2]. Let ψm(xn) be given by

ψm(xn) =


1
m

ψ1(x− 1 + 1
m

), x < − 1
m

,
1
m

ψ1(mx), − 1
m
≤ x ≤ 1

m
,

1
m

ψ1(x + 1− 1
m

), x > 1
m

.
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Then the second order derivative of ψm(xn) approximates δ(xn− 0−)− δ(xn− 0+) as
m→∞.

We show the ‘if’ statement. Let ū = r(u). Clearly (2.66) implies (2.67). It follows
from Hörmander [26], Theorem B.2.9 that ū ∈ H(2,−k−1). This implies that Biu|xn=0±

is well defined for i = 0, 1.
From the remarks above it follows that u− e(ū) is a distribution with support in

∂Rn
− ∪ ∂Rn

+. This implies that

u = e(ū) +

k−2∑
j=0,±
〈bj,

∂jv

∂xjn
|xn=0±〉,

where the bj are distributions on Rn−1. We show that the bj vanish. Let x′ =
(x1, . . . , xn−1). Define a sequence of test functions vm by

v(x′,±|xn|, t) = xk
na−1

nn(x′, 0±)c
1
2 (x′, 0±)φ(x′, t) + O(xk+1

n ),

vm(x, t) = χm(xn)v(x, t).

By choosing suitable higher order terms the vm can be made to satisfy the interface
conditions up to order k. If m → ∞ all terms in (2.69) go to zero except the term

involving bk−2 acting on ∂
∂xn

ann
∂

∂xn
c−

1
2 vm. So (2.69) gives that

〈bj ,
∂

∂xn
ann

∂
∂xn

c−
1
2 vm|xn=0±〉 → 0.

Therefore bk−2(u) = 0. Choosing v of order xj
n, j = k − 1, k − 2, . . . , 2 successively,

we find by a similar argument that bk−3(u), . . . , b0(u) vanish.
We show that (2.66) implies (2.68). Let φ1 ∈ C∞0 (Rn−1 × Rt) be given. Define

vm(x′,±|xn|, t) = a−1
nn(x′, 0±)c

1
2 (x′, 0±)φ1(x

′, t)ψm(xn) + χm(xn)w(x, t),

where w(x, t) is such that vm satisfies the interface conditions of order 3 and higher
(as far as necessary). Such a w can be found by successively choosing the terms of
order x2

n, x3
n, . . . , as far as necessary. It is of order w = O(x2

n), xn → 0. Use vm as
a test function in (2.69). Taking the limit m → ∞ we see that the only term that
is relevant is the term involving two derivatives w.r.t xn acting on ψm(xn), the other
terms vanish in the limit m→∞, so we have∫

u(x, t) c−
1
2 (x)ann(x)c−

1
2 (x)a−1

nn(x′, 0±)c
1
2 (x′, 0±)φ1(x′, t)

∂2ψm(xn)

∂x2
n

dx dt→ 0.

Since ∂2ψm(xn)
∂x2
n

converges to δ(xn − 0−)− δ(xn − 0+) and since u is continuous in xn

(with values in some distribution space) this equation gives (taking the limit m→∞)∫
(c−

1
2 (x, 0−)u(x′, 0−, t)− c−

1
2 (x, 0+)u(x′, 0+, t))φ1(x′, t) dx′ dt = 0.
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This shows that the first interface condition is satisfied.
By a similar argument equation (2.66) implies the second interface condition. Let

φ2(x
′, t) ∈ C∞0 (Rn−1 ×Rt) be arbitrary, and set

vm(x′,±|xn|, t) = c
1
2 (x′, 0±)φ2(x

′, t)χm(xn) + w(x, t)χm(xn),

where w(x, t) is such that vm satisfies the higher order interface conditions, and w is
of order O(xn), xn → 0. Taking the limit m→∞ we obtain∑

j

〈anj
∂

∂xj
c−

1
2 u, c

1
2

∂vm
∂xn
〉 → 0.

It follows that u satisfies the second interface condition.

We show the ‘only if’ statement. Suppose v is given that satisfies the interface
conditions up to a certain order. We will find vi,m, i = 1, . . . , 4 such that

v = v1,m + v2,m + v3,m + v4,m,

where v4,m is supported in xn 6= 0 and

〈Pu, vi,m〉 → 0 (2.70)

for i = 1, 2 by the interface conditions, and for i = 3 because ‖Pv3,m‖ → 0 in suitable
norm, and

〈Pu, v4,m〉 → 〈v, f〉.

To do this let v1,m be given as in the argument for the first interface condition

above, with φ1(x
′, t) =

∑
j anj

∂
∂xj

c−
1
2 v(x′, 0, t). Let v2,m be as in the second interface

condition with φ2(x
′, t) = c−

1
2 v(x′, 0, t). Let v3,m = χm(v − v1,1 − v2,1) (note that

(v − v1,1 − v2,1) is of order O(x2
n)). Then

v4,m = (1− χm)v + χmv1,1 − v1,m + χmv2,2 − v2,m.

Indeed v4,m is supported in xn 6= 0, and ‖v4,m−v‖L2(R,H(k+1)) → 0. Since (v−v1,1−v2,1)

is of order O(x2
n) it follows that ‖Pv3,m‖L2(R,H(k−1)) → 0. By arguments similar to the

ones used to prove the ‘if’ statement the interface conditions imply that (2.70) holds
for i = 1, 2. This completes the proof. ¤

2.8 Continuous dependence on the coefficients

It is useful to know how the solutions of wave equations depend on changes of the
coefficients, for instance because the coefficients will in general be known only with
some finite precision. This is especially true if one wants to determine the coefficients
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from information about the solutions. In this section certain continuity results will
be discussed. We will show that if a certain series of coefficients is convergent in a
suitable sense, then the corresponding solutions will converge to the solution of the
limiting system.

The coefficients may converge in different sense. We will mainly be interested in
the following type of convergence, for the highest order terms

lim
m→∞

‖(Am − A)v‖V ′ → 0, for all v ∈ V,

lim
m→∞

|(Cm − C)v| → 0, for all v ∈ H. (2.71)

The first result below is also valid when there are lower order terms such that

lim
m→∞

‖(A1,m − A1)v‖V ′ → 0, for all v ∈ V,

lim
m→∞

‖(Bm − B)v‖V ′ → 0, for all v ∈ H. (2.72)

For time dependent coefficients we assume the convergence is uniform in t. Below
we discuss what this means for the coefficients. The following result is about weak
convergence.

Theorem 2.8.1 Let am(t), a1,m(t), bm(t), cm(t) and a(t), a1(t), b(t), c(t) be sesquilin-
ear forms that satisfy the conditions of Lemma 2.5.1 uniformly in m, and such
that am(t), a1,m(t), bm(t), cm(t) converge to a(t), a1(t), b(t), c(t) in the sense of (2.71),
(2.72), uniformly in t. Let um(t) be the solutions of equation (2.41) with sesquilinear
forms (am, a1,m, bm, cm) and initial conditions um(0) = u0 ∈ V, u′m(0) = u1 ∈ H. Let
u(t) be the solution to (2.41) with initial values u0, u1. Then um(t), u′m(t) converge to
u(t), u′(t) weakly in L2(]0, T [, V ) and L2(]0, T [, H) respectively.

Proof First we note that the solutions um exist and are unique by Theorem 2.5.4.
The um, u′m are in a bounded subset of L2(]0, T [, V ) and L2(]0, T [, H) respectively.
Since these spaces are reflexive there is a subsequence m(l) such that

um(l) → ũ weakly in L2(]0, T [, V )

u′m(l) → χ weakly in L2(]0, T [, H)

as l →∞ (cf. [18, II.3.26]). Since the derivative is defined weakly χ = ũ′.
We will show that ũ equals u. Choose v ∈ C∞0 ([0, T ], V ). We show that ũ satisfies

the differential equation (2.41). Consider the first term of this equation. We have

〈Am(l)(t)um(l)(t), v(t)〉 = 〈A(t)u(t), v(t)〉
+ 〈u(t), (Am(l)(t)− A(t))v(t)〉+ 〈u(t)− um(l)(t), A(t)v(t)〉,

where we used that Am and A are symmetric. The second term on the right-hand side
converges to 0 by (2.71), the third term because um(l) → u weakly. Similar arguments
hold for the terms involving A1, B, C. Therefore ũ satisfies the differential equation.
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The limit ũ also satisfies the initial conditions by the arguments given in proof of
the existence in Theorem 2.4.5.

Because the solution u is unique it follows that not only there is a convergent
subsequence, but that in fact um → u weakly. To see this assume that um does
not converge to u, then there is ε > 0, a function v and a subsequence um̃(l) such

that
∫ T

0
〈u−um̃(l), v〉 dt > ε for all l. However this subsequence must contain a weakly

convergent subsequence itself, and by the argument above the limit of this convergent
subsequence must be equal to the unique solution u of the system. Contradiction. ¤

In some cases we can also prove strong convergence. The main step in the proof
is to show that the energy of the solutions um converges to the energy of the solution
u. To prove this we need stronger conditions on the coefficients. We consider the
time independent case without lower order terms. There is an additional condition
that either λ = 0 in (2.15) or the embedding of the space V in H is a compact
map (mapping bounded sets of V into compact sets in H). If V = H̄(1)(X), or

V = Ḣ(1)(X), where X is some open of Rn then this condition is satisfied if X is
bounded, this can be shown using Dunford and Schwartz [18], Theorems IV.8.20 and
IV.8.21. When X = Rn (but this is also true for many other unbounded X), we
may construct a bounded sequence in V that has no convergent subsequence in H by
translating a certain function over a sequence of vectors that goes to infinity.

Theorem 2.8.2 Assume am, cm and a, c are independent of time and a1,m, bm, and
a1, b are zero. Assume in addition that either the embedding of V in H is compact
or that λ = 0 in (2.15). Suppose that am, cm converge to a, c in the sense of (2.71).
Then um → u strongly in C([0, T ], V ) ∩ C1([0, T ], H).

Proof The energy Em of the solution satisfies the energy equality (2.48)

Em(t) =

∫ t

0

Re〈f(s), u′m(s)〉 ds +

∫ t

0

Re λ〈um(s), u′m(s)〉 ds.

Because u′ converges weakly in L2(]0, T [, H) the first term on the right-hand side con-
verges to

∫ t

0
〈f(t), u′m(t)〉 dt. If λ = 0 then the second term is absent. If the embedding

of V in H is compact, then because um is weakly convergent in L2(]0, T [, V ) it is con-
vergent in L2(]0, T [, H) and hence the second term converges to

∫ t

0
λ〈u(s), u′(s)〉 ds.

Therefore Em(t)→ E(t).
Let

ξ(t) := a(u− um, u− um) + λ|u− um|2 + c(u′ − u′m, u′ − u′m).

We have

ξ(t) = E + Em − 2a(u, um)− 2λ〈u, um〉 − 2c(u′, u′m).

Because um → u weakly the last three terms converge to −2E. Therefore ξm(t)→ 0,
and hence um → u strongly if m→∞. ¤
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In the next section the question arises whether this is still true when u is less
regular. In Section 2.6 we have shown existence and uniqueness of solutions in larger
spaces, after transformation of the differential equation. Transforming back to the
original variables, gives that if

u0 ∈ H, Cu1 ∈ V ′, f ∈ L2(]0, T [, V ′),

then there exists a unique solution to the initial value problem with

u ∈ C([0, T ], H), Cu′ ∈ C([0, T ], V ′).

It turns out that in this case statements similar to the ones above hold. Since the
proofs of the these results are very similar to the two proof above we only state the
equivalent of Theorem 2.8.2.

Theorem 2.8.3 Suppose the assumptions of Theorem 2.8.2 are satisfied. Then the
solutions um of the system Am, Cm converge to the solution u of the system A, C in
the sense that for each t

um(t)→ u(t), in H,

Cmu′m(t)→ Cu′(t), in V ′.

Proof From the energy estimates it follows that um, Cmu′m are in a bounded subset
of L2(]0, T [, H), L2(]0, T [, V ′), respectively. Since these spaces are reflexive there is a
subseries m(l) such that

um(l) → ũ weakly in L2(]0, T [, H),

Cmu′m(l) → χ weakly in L2(]0, T [, V ′),

as l →∞ (cf. [18, II.3.26]). But χ = Cũ′.
We show that ũ satisfies the differential equation. Let v be an arbitrary function in

C∞0 ([0, T ], D(A)), let w = (A + λ)v and let vm = (Am + λ)−1w ∈ C∞0 ([0, T ], D(Am)).
It follows from the equation

Am − A = (Am + λ)− (A + λ) = (Am + λ)[(A + λ)−1 − (Am + λ)−1](A + λ)

that

‖vm(t)− v(t)‖V = ‖(Am + λ)−1w(t)− (A + λ)−1w(t)‖V → 0 (2.73)

as m→∞.
The um satisfy the weak differential equation with vm as test function∫ T

0

[
〈Amum, vm〉 − 〈Cmu′m, v′m〉 − 〈f, vm〉

]
dt = 0. (2.74)
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We have ∫ T

0

〈f, vm(l)〉 dt→
∫ T

0

〈f, v〉 dt,∫ T

0

〈Cm(l)u
′
m(l), v

′
m(l)〉 dt→

∫ T

0

〈Cu′, v′〉 dt, (2.75)

because Cm(l)u
′
m(l) → Cu′ weakly and (2.73). The first term of (2.74) is equal to∫ T

0

〈Am(l)(t)um(l)(t), vm(l)(t)〉 dt =

∫ T

0

〈um(l)(t), w − λ(Am(l) + λ)−1w〉 dt.

As l →∞ it converges to∫ T

0

〈u(t), w − λ(A + λ)−1w〉 dt =

∫ T

0

〈A(t)u(t), v(t)〉 dt.

It follows that ∫ T

0

[
〈Aũ, v〉 − 〈Cũ′, v′〉 − 〈f, v〉

]
dt = 0,

so ũ satisfies the differential equation.
By arguments similar to the ones in the proof of the existence in Theorem 2.4.5

it follows that ũ satisfies the correct initial conditions. Using the arguments of Theo-
rem 2.8.1 it follows that there is not only a convergent subsequence, but that in fact
um → u, weakly.

The energy in this case is

E(−1),m(t) = 〈Cmum, um〉+ 〈(Am + λ)−1Cmu′m, Cmu′m〉.

It satisfies the following differential equation

dE(−1),m

dt
= Re〈(A + λ)−1Cmu′m, f〉+ Re λ〈(A + λ)Cmu′m, um〉.

From the transformation (2.56), and equation (2.25) for (A+λ)−
1
2 u|new it follows that

the energy E(1) of a solution u satisfies the following differential equation

dE(−1)

dt
= 〈(A + λ)−1f, Cu′〉+ λ〈(A + λ)−1Cu′, Cu〉.

Using similar arguments as above it follows that E(−1),m converges to E(−1)(t). To-
gether with the weak convergence this implies that

〈C(u− um), u− um〉+ 〈(Am + λ)−1(Cu− Cmu′m), Cu− Cmu′〉 → 0.

This completes the proof. ¤

We give sufficient conditions on the coefficients for the operators Am, Cm to con-
verge in the sense of (2.71) defined above.
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Definition 2.8.4 Suppose (E, B, µ) is a measure space, rm a series of measurable
functions on (E, B) then we say rm → 0 in µ-measure if limm→∞ µ(Eε

m) = 0, for all
ε, where Eε

m = {x ∈ E| |rm(x)| > ε}.

In case rm in addition is bounded, it follows by splitting the function rm as in the
second line of (2.77) that this equivalent to rm → 0 in Lp, for any p. The following
lemma states that if am;ij;KL → aij;KL, cm;KL → cKL in measure, then Am, Cm defined
in (2.6) convergence in the sense of (2.71). This lemma shows in particular that the
functions am;ij;KL, cm;KL can be chosen as smooth approximations to aij;KL, cKL.

Lemma 2.8.5 Let (E, B, µ) be a measure space, let rm, fm be measurable functions
on (E, B), such that ‖rm‖L∞(µ) < R and ‖fn‖L2(µ) < F bounded, and rm → 0 in
µ-measure. Then for each g ∈ L2(µ) we have that

lim
m→∞

∫
E

rm(x)fm(x)g(x)µ(dx) = 0. (2.76)

Proof Suppose (2.76) is not true, then there is an η > 0 and a subseries m(l)↗∞
such that for all l

|
∫

E

rm(l)(x)fm(l)(x)g(x)µ(dx)| ≥ η.

On the other hand we have the estimate

|
∫

E

rm(x)fm(x)g(x)µ(dx)|

≤
∫

E\Eεm
|rm(x)| |fm(x)g(x)|µ(dx) +

∫
Eεm

|rm(x)| |fm(x)g(x)|µ(dx)

≤ ε

∫
E

|fmg|µ(dx) + R

∫
Eεm

|fmg|µ(dx)

≤ εF‖g‖L2(µ) + RF

(∫
Eεm

|g(x)|2µ(dx)

) 1
2

(2.77)

Set 0 < ε < η
F ‖g‖L2(µ)

. The assumption that rm → 0 in µ-measure implies that there

is a subseries l(k)↗∞ , for which µ(Em(l(k))) ≤ 2−k. This implies that

µ(
⋃

k>K

Eε
m(l(k))) ≤ 2−k → 0 if k →∞.

Hence the characteristic functions χk of the sets Eε
m(l(k)) converge to zero µ-nearly

everywhere for k →∞. Now χk|g|2 ≤ |g|2 ∈ L1(µ), χk|g|2 → 0 nearly everywhere, so
by Lebesgue’s dominated convergence theorem we conclude that

lim
k→∞

∫
Eε
m(l(k))

|g(x)|2µ(dx) = 0.



52 Chapter 2. Wave equations with discontinuous coefficients

It follows that

η ≤ lim sup
k→∞

|
∫

E

rm(l(k))fm(l(k))gµ(dx)|

≤ εF‖g‖L2(µ) + RF lim sup
k→∞

(∫
Eε
m(l(k))

|g(x)|2µ(dx)

) 1
2

= εF‖g‖L2(µ) < η

Contradiction. ¤

Convergence in the sense above can be compared with other types of convergence.
We mention three other types of convergence following Spagnolo [51], Section 4. He
discusses the case V = Ḣ(X), X some open subset of Rn, N = 1 (scalar equations)
and c = 1 (no coefficient in front of the time derivative).

A stronger type of convergence is convergence in operator norm or

‖(Am − A)φ‖′V → 0, uniform for ‖φ‖V ≤ 1.

This is equivalent to the following equation for the coefficients

‖am;ij − aij‖L∞ → 0,

see Spagnolo [51].
A weaker type of convergence is called G-convergence, defined as

‖(Am + λ)−1f − (A + λ)−1f‖H → 0, for all f ∈ V ′.

Colombini and Spagnolo [15] show that in case the operator A is given by (2.6) and
c = 1 then um → u weakly in L2(]0, T [, Ḣ(X)) and strongly in L∞(]0, T [, L2(S))
for any compact subset S of X (compare this with the condition that the injection
V → H is compact, this is the case for finite domains). This type of convergence has
applications to homogenization.

Weak convergence of the Am is defined as

〈(Am − A)φ, ψ〉 → 0, for all φ, ψ ∈ V.

According to Spagnolo [51] there exist sequences Am that converge weakly and in the
sense of G-convergence to different limits, see Example 4, p. 661 in [50]. Therefore
this type of convergence is too weak to lead to convergence of solutions.

2.9 Derivative with respect to coefficients

In this section we study the derivative of a solution u of (2.1) with respect to the

coefficients. The coefficients a
(0)
ij;KL(x), c

(0)
KL(x) are replaced by

a
(1)
ij;KL(X) = a

(0)
ij;KL(x) + εαij;KL(x), c

(1)
KL(X) = c

(0)
KL(x) + εγKL(x).
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Let u(j) be the solutions to the initial value problem with coefficients a
(j)
ij;KL(x), c

(j)
KL(x),

for some source f and initial values u0, u1. The Gateaux or directional derivative of
the solution with respect to the coefficients is defined as

lim
ε→0

u(1) − u(0)

ε
.

We show that it can be defined for a
(0)
ij;KL(x), c

(0)
KL(x) ∈ L∞ and direction (of the

derivative) αij;KL(x), γKL(x) ∈ L∞.
Let

P
(j)
KL = −

∑
i,j

∂
∂xi

a
(j)
ij;KL(x) ∂

∂xj
+ ∂

∂t
c

(j)
KL(x) ∂

∂t
,

and let V, H be as above (2.6). Let u(j) denote the solution of the partial differential

equation with coefficients a
(j)
ij;KL(x), c

(j)
KL(x), with initial values u0 ∈ V, u1 ∈ H , and

source f ∈ L2(]0, T [, H). It follows that

P (1)(u(1) − u(0)) = −(P (1) − P (0))u(0). (2.78)

If αij;KL(x), γKL(x) are bounded then the right hand side of (2.78) is bounded by Cε
in L2(]0, T [; H(−1)). Because of energy estimates we have

‖u1 − u0‖L2(]0,T [,H) < Cε.

If ε < ε0, for ε0 small enough then C depends only on ε0 and P0, because the energy
estimates depend only on bounds for the coefficients. This gives convergence uniform
for initial values and source f in some bounded set. However compared to the con-
vergence result of the previous section (which was not uniform) the convergence is
weaker by one order.

Dividing equation (2.78) by ε gives

P (1) u
(1) − u(0)

ε
= −P (1) − P (0)

ε
u0. (2.79)

The formal derivative w.r.t. the coefficients in the direction αij;KL(x), γKL(x) is given

by the value of u(1)−u(0)

ε
when P (1) on the left-hand side is replaced by P (0). It is given

by the solution v to

P (0)v = − P (1) − P (0)

ε
u(0),

v(0) = 0, v′(0) = 0.

It follows from Theorem 2.8.3, that (if the assumptions of the theorem are satisfied)

u(1) − u(0)

ε
→ v, in C([0, T ], H) if ε→ 0. (2.80)

Thus in this case the solution has a well defined Gateaux derivative w.r.t. the coeffi-
cients.
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Remark 2.9.1 Although there is a well defined derivative of the solution w.r.t the
coefficients one should note that the convergence in equation (2.80) is in a norm that
is one order weaker than the norm of the space containing u. This suggests that,
when the coefficients are determined from the solutions using an iterative procedure,
one should minimize the difference between real and approximated data in a norm
that is different from the norm of the space that contains the data, unlike what one
might think naively.

If the initial values u0, u1 or the source f are in larger spaces (as in Section 2.6),
that is u0 ∈ H , Cu1 ∈ V ′ or f ∈ L2(]0, T [, V ′), then u ∈ C([0, T ], H) and the right
hand side of (2.78) is not in L2(]0, T [, D(A1)). Hence the argument used above is not
valid anymore.

The argument above works for fixed initial values u0, u1 and fixed source f . A
different question is whether there is some derivative of the map (u0, u1, f) 7→ u(t),
in other words whether

u(1) − u(0)

ε
− v → 0, (2.81)

uniformly for ‖u0‖ ≤ 1, |u1| ≤ 1, ‖f‖L2(]0,T [,H) ≤ 1. This is relevant for seismic
problems because data is in general taken with a large number of sources.

From equation (2.79) it follows that the left hand side of (2.81) satisfies

P (1)

(
u(1) − u(0)

ε
− v

)
= −(P (1) − P (0))v.

If the coefficients of P (0) and P (1) are in W 1,∞ (that is the coefficients themselves and
the first order derivatives are in L∞), then the right hand side is bounded by Cε in
L2(]0, T [, H(−2)(Rn)), and using the results of Section 2.6 it follows that∥∥∥∥u(1) − u(0)

ε
− v

∥∥∥∥
L∞(]0,T [,V ′)

≤ Cε, (2.82)

uniformly for ‖u0‖ ≤ 1, |u1| ≤ 1, ‖f‖L2(]0,T [,H) ≤ 1. Note however that the convergence
is in a norm that is one order weaker.

Seismic data in general involve the distribution kernel of the operator mapping the
source to the solutions. An interesting question is whether this distribution kernel can
be approximated by linearization in a different norm, for instance a Sobolev norm.
Bao and Symes [5] and Bao [4] discuss this is in some detail for the case of an acoustic
medium with constant sound speed, where the coefficient of the lower order term is
varied.



Chapter 3

Modeling and inversion of seismic
data in anisotropic elastic media

Abstract

Seismic data is modeled in the high-frequency approximation, using the techniques
of microlocal analysis. We consider general, anisotropic elastic media. Our methods
are designed to allow for the formation of caustics. The data is modeled in two ways.
First, we give a microlocal treatment of the Kirchhoff approximation — where the
medium is assumed to be piecewise smooth, and reflection and transmission occurs
at interfaces. Second, we give a refined view on the Born approximation — based
upon a linearization of the scattering process in the medium parameters around a
smooth background medium. The joint formulation of Born and Kirchhoff scattering
allows us to take into account general scatterers as well as the nonlinear dependence
of reflection coefficients on the medium parameters. The latter allows the treatment
of scattering up to grazing angles.

The outcome of the analysis is a characterization of the singular part of seismic
data. We obtain a set of pseudodifferential operators that annihilate the data. In
the process we construct a Fourier integral operator, and a reflectivity function, such
that the data can be represented by this operator acting on the reflectivity function.
In our construction this Fourier integral operator becomes invertible. We give the
conditions for invertibility for general acquisition geometry. The result is also of
interest for inverse scattering in acoustic media.

3.1 Introduction

In the seismic experiment one generates elastic waves in the Earth using sources at
the surface. The waves that return to the surface of the Earth are observed (in fact
sources and receivers are not always on the surface of the Earth, this case is also
considered). The problem is to reconstruct the elastic properties of the subsurface
from the data thus obtained.
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The subsurface is given by an open set X ⊂ Rn. In practice n = 2 or 3, but we
leave it unspecified. Subsurface position is denoted by x. Sources and receivers are
contained in the boundary ∂X of X. Their position is denoted by x̃, x̂. Measurement
of data takes places during a time interval ]0, T [. The set of (x̂, x̃, t) for which data is
taken is called the acquisition manifold Y ′; we assume that coordinates y′ on Y ′ are
given. We assume that the displacement of the waves is measured for point sources
at x̃, t = 0 with all its components, both at the source and at the receiver. Thus we
assume that (after preprocessing) the data is given by the Green’s function Gil(x̂, x̃, t),
for (x̂, x̃, t) ∈ Y ′.

We refer to the codimension of the set of Y ′ ∈ ∂X×∂X×]0, T [ as the codimension
of the acquisition manifold and we denote it by c. For example, in marine data the
receivers may lie along a line behind the source, in which case we have n = 3, c = 1,
∂X = {x ∈ Rn | x3 = 0}, Y ′ = {(x̂, x̃, t) ∈ R3×R3×]0, T [ | x̂3 = x̃3 = x̂2− x̃2 = 0}. So
the data is a function of 2n−1− c variables. From this data we aim at determining a
function of n variables, hence there is a redundancy in the data of dimension n−1−c.

Our approach follows the work of Beylkin [8, 7], and other authors (see the refer-
ences below), applying microlocal analysis to the seismic inverse problem. Microlocal
analysis and the theory of Fourier integral operators is described in the books by,
Hörmander [25, 26, 27], Duistermaat [17], Treves [57, 58].

Beylkin [8] considered the seismic inverse problem in acoustic media with constant
density. The data was modeled using the Born approximation, where the scattering is
linearized using a linearization in the medium coefficients. The medium perturbation
δc(x) acts as a distribution of scatterers in a smooth background medium c(x). Given
the background medium c(x) an operator was given to reconstruct δc(x) microlocally
from an n-dimensional subset of the data (from data that is a function of n variables).
This was done under certain conditions on the rays. In particular the situation where
the wave fronts form caustics was excluded.

When the data is redundant in the sense that the available data is function of more
than n variables, then the data can be seen as a family of n-dimensional datasets,
where the different n-dimensional subsets in the family are distinguished by part of
the coordinates, that we refer to as e (in practical applications this may be the offset
coordinate x̂ − x̃). For each value of e the inversion can be performed. The result
of the inversion, let us call this the reflectivity r(x, e), should not depend on e. This
is the criterion that must be used to determine the background medium from the
data, see e.g. Symes [55]. Thus under the Assumptions made by Beylkin [8], there is
microlocally an invertible map, mapping seismic data to a reflectivity function r(x, e),
of which the singular part should not depend on e.

In this chapter we will generalize this result in two directions. First we allow for
the presence of caustics. Such a transformation from data to a reflectivity function
r(x, e) was previously not defined for data in the neighborhood of a caustic from
the scattering point, even in acoustic media. Using Fourier integral operators this
restriction is removed. Second we consider general elastic media instead of acoustic
media. The propagation of elastic waves is described by a system of partial differential
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equations. In a constant coefficient medium one can show that there are different
modes of propagation, that are independent from each other, i.e. the system decouples.
In smoothly varying media this decoupling is no longer exact, but in many cases the
system can still be decoupled microlocally, see Taylor [56], Ivrii [30], Dencker [16].
Scattering takes place between the different modes of propagation.

The fact that we consider general elastic media makes the result technically more
complicated, and may make it more difficult to see some of the essential ideas, that can
also be applied to the acoustic case. On the other hand, there are several good reasons
why the results are particularly useful in elastic media. For instance caustics occur
much easier in elastic media, they may even occur in elastic media with constant
coefficients. Also for elastic media the dependence of reflection coefficients on the
scattering angle is more complicated, and it is more important to use this information
in the inversion of seismic data.

The data is modeled in two ways. In Section 3.3 we assume that the medium
consists of different pieces with smooth interfaces between the different pieces. The
medium parameters are assumed to be smooth on each piece, and smoothly extendible
across each interface, but they vary discontinuously at the interface. We discuss
how to model the high frequency part of the data using Fourier integral operators,
following the approach of Taylor [56]. In this way we construct a generalization of the
Kirchhoff approximation. In Section 3.4 we discuss the Born approximation. This is
essentially a linearization, where the medium parameters are written as the sum of a
background medium and a perturbation that is assumed to be small. It is assumed
that the background is smooth and that the perturbation contains the singularities
of the medium.

The main result is the characterization of seismic data in Theorem 3.7.1. We
assume that we have decoupled data for a pair of elastic modes (M, N), where M and
N refer to the modes at the receiver and the source respectively. This data can be
written as an invertible Fourier integral operator HMN acting on a ‘reflectivity’ distri-
bution rMN(x, e), that is a function of subsurface position x and an additional variable
e, essentially parameterizing the scattering angle and azimuth. The position of the
singularities of rMN(x, e) does not depend on e. In the Kirchhoff approximation for
elastic media the function rMN(x, e) equals to highest order RMN (x, e)‖∂zn

∂x
‖δ(zn(x)),

where RMN(x, e) is the appropriately normalized reflection coefficient for the pair of
elastic modes (M, N) and ‖∂zn

∂x
‖δ(zn(x)) is the singular function of the interface. For

the Born approximation rMN(x, e) is given by pseudodifferential operators that take
into account the radiation patterns acting on the medium perturbation.

The result is new even for acoustic media. In that case the coordinate e can be
chosen as scattering angle and azimuth. A result in this direction is given in the paper
by Xu, Chauris, Lambaré and Noble [59] where such a map is constructed to highest
order only for data at acquisition points satisfying a no caustics assumption. They
assumed that, given the scattering point, there is a locally diffeomorphic map from
the source and receiver coordinates (x̂, x̃) ∈ ∂X × ∂X to the dip and the scattering
angle/azimuth (in the notation of Section 3.5 given by (ξ/‖ξ‖, e)).
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The new step in the proof that is needed to deal with the presence of caustics is
given in Section 3.5. The coordinate e is a priori only defined on the coisotropic subset
L of the cotangent acquisition space T ∗Y ′\0 that contains the wave front set of the
data. To construct an invertible Fourier integral operator from data to the function
rMN(x, e), the coordinate e has to be defined on an open part of T ∗Y ′\0. This is done
in Lemma 3.5.1, where we construct an extension of the coordinate function e from
L to an open neighborhood of L in T ∗Y ′\0. The extension is not unique. Under the
no caustics assumption mentioned above there is a ‘natural’ choice of this extension,
which is made implicitly by Xu et al. [59].

The result holds microlocally away from points in the cotangent space T ∗Y ′\0 that
violate our Assumptions 1 to 5, introduced in the main text. The assumptions exclude
certain degenerate ray (bicharacteristic) geometries. For example Assumptions 1, 2, 3
exclude rays that go through a singularity of the slowness surface, rays tangent to
an interface, and direct rays from source to receiver, respectively. In general, the set
of (y′, η′) ∈ T ∗Y ′\0 where the assumptions are violated has lower dimension than
the dimension of T ∗Y ′\0. The data associated to such (y′, η′) can be muted using a
pseudodifferential cutoff.

As a consequence of Theorem 3.7.1 we obtain results about the reconstruction of
the medium parameters. Given the medium above the interface the function rMN(x, e)
and hence the position of the interface and the reflection coefficients can be recon-
structed by acting with the inverse H−1

MN on the data, see Corollary 3.7.2. For the
Born approximation a similar result holds, but an inverse is also obtained directly in
Theorem 3.4.5.

When the data is redundant (c sufficiently small) there is in addition a criterion
to determine whether the medium above the interface (the background medium in
the Born approximation) is correctly chosen. The position of the singularities of the
function rMN(x, e), obtained by acting with H−1

MN on the data, should not depend on
e. There exist pseudodifferential operators WMN(y′, Dy′) that, if the medium above
the interface is correctly chosen, annihilate the data, see Corollary 3.7.3. This allows
one to do differential semblance optimization [55] in elastic media in the presence of
caustics.

We discuss some of the literature on this subject. There have been many publi-
cations about high-frequency methods to invert seismic data in acoustic media. The
reconstruction of the singular component of the medium coefficients in the Born ap-
proximation, without caustics, has been done in the papers by Beylkin [8, 7]. Bleistein
[10] discusses the case of a smooth jump using Beylkin’s results. It has been shown by
Rakesh [46] that the modeling operator in the Born approximation is a Fourier inte-
gral operator. Hansen studied the inversion in an acoustic medium with multipathing
for both the Born approximation and the case of a smooth jump. Ten Kroode, Smit
and Verdel [34] also treat the case of seismic imaging in the presence of multipathing.
They discuss in more detail the assumptions (most importantly Assumption 5ii) be-
low) that are made about the geometry of the rays underlying the scattering. Stolk
[52] discusses the case when Assumption 5ii) is violated. Nolan and Symes [41] discuss
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the imaging with different acquisition geometries. The article by Symes [55] discusses
the reconstruction of the background medium in the Born approximation.

The mathematical treatment of systems of equations, such as the elastic equations,
in the high-frequency approximation has been given by Taylor [56]. This fundamen-
tal paper also discusses the interface problem. Beylkin and Burridge [9] discuss the
imaging of seismic data in the Born approximation in isotropic elastic media, under
a no caustics assumption. De Hoop and Bleistein [23] discuss the imaging in general
anisotropic elastic media, using a Kirchhoff-type approximation. The Born approxi-
mation in anisotropic elastic media allowing for multipathing is discussed by De Hoop
and Brandsberg-Dahl [24].

We give an overview of this chapter. In Section 3.2 we discuss the propagation
of waves in smooth, elastic media. First we discuss how asymptotically the elastic
system can be decoupled by conjugating with appropriately chosen pseudodifferential
operators (a technique that is common in mathematics, but not in the seismic liter-
ature). Then we discuss the construction of asymptotic solutions for the decoupled
equations using Fourier integral operators. In Section 3.3 we discuss the reflection
and transmission of waves at a smooth interface. We explicitly construct Fourier
integral operators describing reflected and transmitted waves. These solutions where
already discussed, but not explicitly constructed, by Taylor [56]. Thus we prove di-
rectly the validity of the Kirchhoff approximation, which is not obvious from e.g. De
Hoop and Bleistein [23]. In Section 3.4 we discuss the modeling and inversion of
seismic data in the Born approximation. This is important both in its own right and
for the reconstruction problem if we model using a smooth jump. We give a compre-
hensive presentation for the case of general anisotropic media with general acquisition
geometry. We discuss in detail the assumptions that are needed. In Section 3.5 we
characterize the geometry of the wave front set of the data. Under the assumptions of
Section 3.4 this set is contained in a coisotropic submanifold L of the cotangent space
T ∗Y ′\0. We discuss the extension of symplectic coordinates on L to a neighborhood
of L in T ∗Y ′\0. In Section 3.6 we establish microlocally a correspondence between
the Kirchhoff approximation and the Born approximation. After the preparations of
Sections 3.2 to 3.6 the derivation of our main result in Section 3.7 is relatively simple.
We discuss a characterization of seismic data and some consequences, in particular
the reconstruction of the position of the interface and the reflection coefficients given
the medium above the interface. Finally we construct pseudodifferential operators
that annihilate the high-frequency part of the data. In principle these can be used for
the reconstruction of the smoothly varying medium parameters above the interface
(or of the background medium in the Born approximation).
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3.2 Propagation of elastic waves in smoothly vary-

ing media

3.2.1 Decoupling the modes

The elastic wave equation is given by

∑
l

(
ρ δil

∂2

∂t2
−
∑
j,k

∂

∂xj

cijkl
∂

∂xk

)
(displacement)l = (volume force density)i. (3.1)

Here ρ(x) is the volume density of mass and cijkl(x) is the elastic stiffness tensor, and
i, j, k, l = 1, . . . , n.

In order to diagonalize this system, thus decoupling the modes of propagation, it
is convenient to remove the x-dependent coefficient ρ in front of the time derivative.
Thus we introduce the equivalent system∑

l

Pilul = fi, (3.2)

where

ul =
√

ρ(displacement)l, fi =
1
√

ρ
(volume force density)i, (3.3)

and

Pil = δil
∂2

∂t2
−
∑
j,k

∂

∂xj

cijkl

ρ

∂

∂xk
+ l.o.t. (3.4)

is the partial differential operator. Here, we use that ρ is smooth and bounded away
from zero. Both systems (3.1) and (3.2) are real, time reversal invariant, and satisfy
reciprocity.

We describe how the system (3.2) can be decoupled by transforming it with appro-
priate pseudodifferential operators, see Taylor [56], Ivrii [30] and Dencker [16]. The
goal is to transform the operator Pil by conjugation with a matrix-valued pseudod-
ifferential operator Q(x, D)iM , D = Dx = −i ∂

∂x
, to an operator that is of diagonal

form, modulo a regularizing part,∑
i,l

Q(x, D)−1
Mi Pil(x, D, Dt) Q(x, D)lN = diag(PM(x, D, Dt) ; M = 1, . . . , n)MN ,

(3.5)

Dt = −i ∂
∂t

. Here, the indices M, N denote the mode of propagation. In fact for the
construction of Fourier integral operator solutions as in the scalar case, it is sufficient
to transform the partial differential operator to block-diagonal form, where each of the



3.2 Propagation of elastic waves in smoothly varying media 61

blocks PM(x, D, Dt) has scalar principal part (proportional to the identity matrix).
In this case we will use the indices M, N to denote the block, and we will omit indices
for the components within each block. Let

uM =
∑

i

Q(x, D)−1
Miui, fM =

∑
i

Q(x, D)−1
Mifi. (3.6)

The system (3.2) is then equivalent to the uncoupled equations

PM(x, D, Dt)uM = fM . (3.7)

The time derivative in Pil is already on diagonal form, hence we only have to
diagonalize its spatial part,

Ail(x, D) = −
∑
j,k

∂

∂xj

cijkl

ρ

∂

∂xk
+ l.o.t. .

So we have to find QiM and AM such that (3.5) is valid with Pil, PM replaced by
Ail, AM . The operator PM is then given by

PM(x, D, Dt) =
∂2

∂t2
+ AM(x, D).

In view of the properties of stiffness, the principal symbol Aprin
il (x, ξ) of Ail(x, D)

is a positive symmetric matrix, so it can be diagonalized by an orthogonal matrix.
On the level of principal symbols, composition of pseudodifferential operators reduces
to multiplication. Therefore, we let Qprin

iM (x, ξ) be this orthogonal matrix, and we let
Aprin

M (x, ξ) be the eigenvalues of Aprin
il (x, ξ), so that∑

i,l

Qprin
Mi (x, ξ)−1Aprin

il (x, ξ)Qprin
lN (x, ξ) = diag(Aprin

M (x, ξ))MN . (3.8)

The principal symbol Qprin
iM (x, ξ) is the matrix, that has as its columns the orthonor-

malized polarization vectors associated with the modes of propagation.
If the multiplicities of the eigenvalues Aprin

M (x, ξ) are constant then the principal
symbol Qprin

iM (x, ξ) depends smoothly on (x, ξ) and microlocally equation (3.8) carries
over to an operator equation. Taylor [56] has shown that if this condition is satisfied
then decoupling can be accomplished to all orders, where each block corresponds to
a different eigenvalue. In fact he proved the following slightly more general result.

Lemma 3.2.1 (Taylor) Suppose the pseudodifferential operator QiM(x, D) of order
0 is such that∑

i,l

Q(x, D)−1
MiA(x, D)ilQ(x, D)lN =

(
A(1)(x, D) 0

0 A(2)(x, D)

)
MN

+ a(x, D)MN ,
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where the symbols A(1)(x, ξ), A(2)(x, ξ) are homogeneous of order 2, and a(x, ξ)MN is
polyhomogeneous of order 1. Suppose the spectra of A(1)(x, ξ), A(2)(x, ξ) are disjoint
on a conic neighborhood of some (x0, ξ0) ∈ T ∗X\0. Then by modifying Q with lower
order terms the system can be transformed such that

a(x, D)MN =

(
a(1)(x, D) 0

0 a(2)(x, D)

)
MN

+ smoothing remainder,

microlocally around (x0, ξ0).

This implies that if the multiplicity of a particular eigenvalue Aprin
M (x, ξ) is con-

stant, then the system can be transformed such that the part related to this eigen-
values decouples from the rest of the system, modulo a smoothing remainder. In this
work we will assume that at least some of the modes decouple (microlocally). This
is stated as Assumption 1 below. At that point we will also discuss whether this
assumption is satisfied in relevant cases.

We now give an alternative characterization of the quantities Aprin
M (x, ξ) and

Qprin
iM (x, ξ). The values τ = ±

√
Aprin

M (x, ξ) are precisely the solutions to the equa-
tion

det P prin
il (x, ξ, τ) = 0. (3.9)

The multiplicity of Aprin
M (x, ξ) is equal to the multiplicity of the corresponding root

of (3.9). The columns of Qprin
iM (x, ξ) satisfy

Qprin
iM ∈ ker P prin

il (x, ξ,

√
Aprin

M (x, ξ)).

Since P prin
il (x, ξ, τ) is homogeneous in (ξ, τ), one may choose to use the slowness vector

−τ−1ξ instead of the cotangent or wave vector ξ in calculations. The set of −τ−1ξ
such that (3.9) holds is called the slowness surface, which can be easily visualized.
A section of the slowness surface for the case of a transversely isotropic medium in
3 dimensions is given in Figure 3.1a. Note that the slowness surface need not be
convex. The multiplicity of the eigenvalues changes at the points (directions) were
the different sheets intersect.

The second-order equations (3.7) clearly describe the decoupling of the origi-
nal system into different elastic modes. In addition, equations (3.7) inherit the
symmetries of the original system. It is easy to see that they are time reversal
invariant. The operators QiM (x, D), AM(x, D) can be chosen in such a way that
QiM (x, ξ) = −QiM (x,−ξ), AM(x, ξ) = AM (x, ξ). Then QiM , AM are real. We ar-
gue that equations (3.7) also satisfy reciprocity. For the causal Green’s function
Gij(x, x0, t− t0) reciprocity means that Gij(x, x0, t− t0) = Gji(x0, x, t− t0). We show
that such a relationship also holds (modulo smoothing operators) for the Green’s
function GM(x, x0, t − t0) associated with (3.7). The transpose operator Q(x, D)t

Mi

(obtained by interchanging x, x0 and i, M in the distribution kernel QiM(x, x0) of
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QiM (x, D)) is also a pseudodifferential operator, with principal symbol Qprin(x, ξ)t
Mi.

As noted before for the principal symbol, it follows from the fact that At
ij = Aij that

we can choose Q orthogonal, i.e. such that
∑

M Q(x, D)iMQ(x, D)t
Mj = δij . From the

fact that

GM(x, x0, t− t0) = Q(x, D)−1
MiGij(x, x0, t− t0)Q(x0, Dx0)jM

it then follows that microlocally GM is reciprocal, i.e. GM(x, x0, t−t0) = GM(x0, x, t−
t0), modulo smoothing operators.

Remark 3.2.2 We already observed that if an eigenvalue Aprin
M (x, ξ) has constant

multiplicity mM > 1, then uM is an m-dimensional vector and (3.7) is a mM ×mM

system, with scalar principal symbol. For such a system a microlocal solution can be
constructed in the same way as for scalar systems, see the next subsection. In this case
all kinematic quantities, such as bicharacteristics, phase functions, canonical relations
depend only on M . Other quantities such as uM and QiM(x, D) will have multiple
components. The Green’s function GM and its amplitude AM , to be introduced above
(3.20), then are mM ×mM matrices. To simplify notation we do not take this into
account explicitly. However, the reader can check that the results of this work can be
generalized to this case.

3.2.2 The Green’s function

To evaluate the Green’s function we use the first-order system for uM that is equivalent
to (3.7). It is given by

∂

∂t

(
uM
∂uM
∂t

)
=

(
0 1

−AM (x, D) 0

)(
uM
∂uM
∂t

)
+

(
0

fM

)
. (3.10)

This system can be decoupled also. Let BM(x, D) =
√

AM(x, D), which is a pseu-
dodifferential operator of order 1 that exists because AM (x, D) is positive definite.

The principal symbol of BM(x, D) is given by Bprin
M (x, ξ) =

√
Aprin

M (x, ξ). We find

that then (3.10) is equivalent to the following two first-order equations(
∂

∂t
± iBM(x, D)

)
uM,± = fM,±, (3.11)

upon transforming

uM,± = 1
2
uM ± 1

2
iBM(x, D)−1 ∂uM

∂t
,

fM,± = ± 1
2
iBM(x, D)−1fM . (3.12)

We construct operators GM,± with distribution kernel GM,±(x, x0, t) that solve the
initial value problem for (3.11). Then using Duhamel’s principle we find that

uM,±(x, t) =

∫ t

0

GM,±(x, x0, t− t0)fM,±(x0, t0) dx0 dt0.
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Figure 3.1: (a) Section of a slowness surface (the characteristic surface) for a trans-
versely isotropic medium in n = 3 dimensions. (b) Set of velocities associated to the
slowness surface in a). Note the caustics that occur due to the fact that one of the
sheets is not convex.

It follows from (3.12) that the Green’s function for the second-order decoupled equa-
tion is then given by

GM(x, x0, t) = 1
2
iGM,+(x, x0, t)BM(x0, Dx0)

−1 − 1
2
iGM,−(x, x0, t)BM(x0, Dx0)

−1.
(3.13)

The operators GM,± are Fourier integral operators. Their construction is well
known, see e.g. Duistermaat [17], Chapter 5. The singularities are propagated along
the bicharacteristics, that are determined by Hamilton’s equations generated by the
principal symbol (factor i divided out) τ ±Bprin

M (x, ξ) of (3.11). These equations read

∂x

∂λ
= ± ∂

∂ξ
Bprin

M (x, ξ),
∂t

∂λ
= 1,

∂ξ

∂λ
= ∓ ∂

∂x
Bprin

M (x, ξ),
∂τ

∂λ
= 0. (3.14)

The solution may be parameterized by t. We denote the solution of (3.14) with the
+ sign and initial values x0, ξ0 by (xM(x0, ξ0, t), ξM(x0, ξ0, t)). The solution with the
− sign is found upon reversing the time direction, in other words, it is given by
(xM (x0, ξ0,−t), ξM(x0, ξ0,−t)). Observe that the group velocity (the velocity ∂x

∂t
of

the bicharacteristic) is orthogonal to the slowness surface. Where the slowness surface
fails to be convex, caustics may arise instantly from a point source. An example is
shown in Figure 3.1b.

The canonical relation of the operator GM,± is given by

CM,± = {(xM(x0, ξ0,±t), t, ξM(x0, ξ0,±t),∓BM,±(x0, ξ0); x0, ξ0)}. (3.15)
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A convenient choice of phase function is described in Maslov and Fedoriuk [38]. They
state that one can always use a subset of the cotangent vector components as phase
variables. Let us choose coordinates for CM,+ of the form

(xI , x0, ξJ , τ), (3.16)

where I ∪ J is a partition of {1, . . . , n}. It follows from Theorem 4.21 in Maslov and
Fedoriuk [38] that there is a function SM,+(xI , x0, ξJ , τ), such that locally CM,+ is
given by

xJ = − ∂SM,+

∂ξJ
, t = − ∂SM,+

∂τ
,

ξI =
∂SM,+

∂xI
, ξ0 = − ∂SM,+

∂x0
. (3.17)

Here we take into account the fact that CM,+ is a canonical relation, which introduces
a minus sign for ξ0. A nondegenerate phase function for CM,+ is then found to be

φM,+(x, x0, t, ξJ , τ) = SM,+(xI , x0, ξJ , τ) + 〈ξJ , xJ〉+ τt. (3.18)

On the other hand, the canonical relation CM,− is given by

CM,− = {(x, t,−ξ,−τ ; x0,−ξ0) | (x, t, ξ, τ ; x0, ξ0) ∈ CM,+}.

Thus a phase function for CM,− is φM,−(x, x0, t, ξJ , τ) = −φM,+(x, x0, t,−ξJ ,−τ). We
may define the canonical relation for GM as CM = CM,+∪CM,− and a phase function
φM = φM,− if τ > 0, φM = φM,+ if τ < 0.

We have to assume that the decoupling is valid microlocally around the bichar-
acteristic. In that case Theorem 5.1.2 of Duistermaat [17] implies that the operator
GM,± is microlocally a Fourier integral operator of order −1

4
. Hence, microlocally we

have an expression for GM,± of the form

GM,±(x, x0, t) = (2π)−
|J|+1

2
− 2n+1

4

∫
AM,±(xI , x0, ξJ , τ)eiφM,±(x,x0,t,ξJ ,τ) dξJ dτ. (3.19)

The factors of (2π) in front of the integral are according to the convention of Treves
[58] and Hörmander [27].

The amplitude AM,±(xI , x0, ξJ , τ) satisfies a transport equation along the bichar-
acteristics (xM(x0, ξ0,±t), ξM(x0, ξ0,±t)). Properties of amplitudes are described for
instance in Treves [58], Section 8.4. The amplitude is an element of MCM ⊗Ω1/2(CM),
the tensor product of the Keller-Maslov bundle MCM and the half-densities on the
canonical relation CM . If the subprincipal part of AM(x, D) is a matrix, then the am-
plitude is also a matrix, see Remark 3.2.2. The Keller-Maslov bundle gives a factor ik,
where k is an index, which we will absorb in the amplitude. So the amplitude should
be seen as a function on the canonical relation CM,±, coordinatized by (xI , x0, ξJ , τ),
see (3.16). It is possible to choose a Maslov phase function with a different set of
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phase variables, for instance ξJ̃ (and not τ), where (Ĩ, J̃) is a partition of {1, . . . , n}
and CM,± is parameterized by (xĨ , x0, t, ξJ̃). In that case the transformed amplitude
ÃM,±(xĨ , x0, t, ξJ̃) contains a Jacobian factor to the power one half, i.e.∣∣∣ÃM,±(xĨ , x0, t, ξJ̃)

∣∣∣ = |AM,±(xI , x0, ξJ , τ)|
∣∣∣∣∂(xI , x0, ξJ , τ)

∂(xĨ , x0, t, ξJ̃)

∣∣∣∣ 1
2

, (3.20)

where in the Jacobian both sets of variables are coordinates on CM,±.
We will calculate the left-hand side of (3.20). For this purpose, consider the

Green’s function GM,±(x, x0, t − t0) with t and t0 = 0 fixed. It can be viewed as an
invertible Fourier integral operator, mapping the displacement at t = 0, u|t=0 ∈ E ′(X)
to the displacement at t, u|t ∈ D′(X), with phase φ̃M,±(x, x0, t, ξJ̃) and amplitude
ÃM,±(xĨ , x0, t, ξJ̃). To highest order the energy at time t is given by∫

|BM(x, D)uM,±(x, t)|2 dx.

Conservation of this quantity is reflected by the relation

GM,±(t)∗BM(x, D)∗BM(x, D)GM,±(t) = BM,±(x0, Dx0)
∗BM,±(x0, Dx0),

where the left-hand side denotes a composition of Fourier integral operators and ∗

denotes the adjoint. Since the left-hand side is a product of invertible Fourier integral
operators, we can use the theory of Section 8.6 in Treves [58]. We find that to highest
order ∣∣∣(2π)−

1
4 ÃM,±(xĨ , x0, t, ξJ̃)

∣∣∣2 =

∣∣∣∣det
∂ξ0

∂(xĨ , ξJ̃)

∣∣∣∣ ∣∣∣∣BM(x0, ξ0)

BM(x, ξ)

∣∣∣∣2 .

The value of BM(x, ξ) equals the frequency τ and is conserved along the bicharacter-
istic. Recall that (x0, ξ0, t) are valid coordinates for CM,± (cf. (3.15)). The Jacobian∣∣∣ ∂(x0,ξ0,t)
∂(xI ,x0,t,ξJ)

∣∣∣ is equal to the factor
∣∣∣det ∂ξ0

∂(xI ,ξJ )

∣∣∣. It follows that to highest order

∣∣∣ÃM,±(xĨ , x0, t, ξJ̃)
∣∣∣ = (2π)

1
4

∣∣∣∣det
∂(x0, ξ0, t)

∂(xĨ , x0, t, ξJ̃)

∣∣∣∣ 1
2

. (3.21)

From (3.20) it now follows that

|AM,±(xI , x0, ξJ , τ)| = (2π)
1
4

∣∣∣∣det
∂(x0, ξ0, t)

∂(xI , x0, ξJ , τ)

∣∣∣∣ 1
2

. (3.22)

We give our result about the Green’s function for (3.7), collecting the results
of this section, and using equations (3.12) and (3.22), to obtain a statement about
the amplitude. We will assume that microlocally around the relevant bicharacteris-
tics the decoupling is valid. Let Char(PM) be the characteristic set of PM given by
{(x, t, ξ, τ) |P (x, ξ, τ) = 0}. The Green’s function is such that precisely the singular-
ities of fM at Char(PM) propagate (see Hörmander [26], Theorem 23.2.9). Thus we
have
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Assumption 1 On a neighborhood of the bicharacteristic the multiplicity of the ei-
genvalue Aprin

M (x, ξ) in (3.8) is constant.

Lemma 3.2.3 Suppose that for the bicharacteristics through WF(fM) ∩ Char(PM)
Assumption 1 is satisfied. Then uM is given microlocally, away from WF(fM), by

uM(x, t) =

∫
GM(x, x0, t− t0)fM(x0, t0) dx0 dt0, (3.23)

where GM(x, x0, t) is the kernel of a Fourier integral operator with canonical relation
CM and order −11

4
, mapping functions of x0 to functions of (x, t). It can be written

as

GM(x, x0, t) = (2π)−
|J|+1

2
− 2n+1

4

∫
AM(xI , x0, ξJ , τ)eiφM (x,x0,t,ξJ ,τ) dξJ dτ. (3.24)

For the amplitude AM(xI , x0, ξJ , τ) we have to highest order

|AM(xI , x0, ξJ , τ)| = (2π)
1
4 1

2
|τ |−1

∣∣∣∣det
∂(x0, ξ0, t)

∂(xI , x0, ξJ , τ)

∣∣∣∣ 1
2

. (3.25)

The implications of Assumption 1 for elastic media depend on which class of media
one is interested in. By a class of media we mean a set of media parameterized by a
number of parameters. From a physical point of view one may be interested in media
where the elastic tensor is characterized by certain symmetry properties.

Isotropic media are characterized by the mass density ρ and the Lamé parameters
λ and µ. The matrix Aprin

il (x, ξ) has two eigenvalues, Aprin
1 (x, ξ) = λ+2µ

ρ
‖ξ‖2 with

polarization vector proportional to ξ (referred to as the P-mode), and Aprin
2 (x, ξ) =

µ
ρ
‖ξ‖2 with polarization space normal to ξ (the two S-modes). Thus this system can

be decoupled.
If the matrix Aprin

il (x, ξ) of an isotropic medium is perturbed by a small amount,
then one eigenvalue of the perturbed matrix will be close to the P-eigenvalue of the
isotropic medium, and two eigenvalues will be close to the S-eigenvalue. The two
eigenvalues close to the S-eigenvalue of the isotropic medium will not coincide in
general, but may coincide for certain values of (x, ξ). So in elastic media sufficiently
close to an isotropic medium there will still be a quasi-P mode that decouples from
the other modes, but the two quasi-S modes will in general not decouple.

The elastic system for generic elastic media has been investigated by Braam and
Duistermaat [12]. The set of singular points is generically of codimension three (thus
one lower than one would expect naively), and is of conical form in the neighborhood
of the singular point. They give a normal form for such systems and investigate the
behavior of its associated bicharacteristics and polarization spaces. In this case the
system cannot be decoupled. However, in a generic elastic medium there cannot be
an open set of bicharacteristics that pass through a singular point, since the singular
points form a set of codimension 3. In this sense the set of bicharacteristics that have
to be excluded is small.
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In case the elastic tensor has symmetries it is determined by less than 21 coeffi-
cients. The characteristic sets of such media are analyzed by Musgrave [40]. In this
case the singularities can be of different types. For instance, in some classes of media,
such as transversely isotropic media, the determinant factors into smooth factors. In
that case the multiplicities of the eigenvalues Aprin

M (x, ξ) can vary on a larger (codi-
mension 2) subset of T ∗X\0. Since the bicharacteristics are curves on a codimension
1 surface, Assumption 1 can be violated on an open set of bicharacteristics.

3.3 Reflection at an interface: Microlocal analysis

of the ‘Kirchhoff’ approximation

A particular way to model the subsurface is to assume that it consists of different
layers that have different physical properties, in our case the elastic coefficients cijkl

and the density ρ. In this section, we will model the reflection of waves at a smooth
interface between two such layers with smoothly varying medium parameters.

The amplitude of the scattered waves is determined essentially by the reflection
coefficients, and implicitly by the curvature of the interface. It is well known how to
calculate these for two constant coefficient media and a plane interface (see e.g. Aki
and Richards [2], Chapter 5). In the case of smoothly varying media they determine
the scattering in the high-frequency limit, see Taylor [56] for a treatment of reflection
and transmission of waves using microlocal analysis. For the acoustic case, see also
Hansen [22].

Mathematically the reflection and transmission of waves is formulated as a bound-
ary value problem. The displacement ul must satisfy the partial differential equation
and initial conditions. In addition the displacement and the normal traction have to
be continuous at the interface. Denote by ν the normal to the interface. The following
equations must hold∑

l

Pilul = fi away from the interface,

ul = 0 for t < 0, (3.26)

while

ρ−1/2ul is continuous at the interface,∑
j,k,l

νjcijkl
∂

∂xk
(ρ−1/2ul) is continuous at the interface. (3.27)

Here, we have the factors ρ because of our normalization (3.3). We assume that the
source vanishes on a neighborhood of the interface. That this is a well-posed problem
can for instance be shown using energy estimates (see e.g. Lions and Magenes [36],
Section 3.8).
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Figure 3.2: Incoming and outgoing rays

The solutions to the partial differential equation with f = 0 follow from the theory
discussed in Section 3.2. The singularities are propagated along the bicharacteristics,
curves in T ∗(X ×R)\0, given by

(xM (x0, ξ0,±t), t, ξM(x0, ξ0,±t),∓BM (x0, ξ0)).

This is the bicharacteristic associated with the M,± constituent of the solution, see
Section 3.2. We define a bicharacteristic to be incoming if its direction is from inside
a layer towards the interface for increasing time. We define a bicharacteristic to be
outgoing if its direction is away from the interface into a layer for increasing time, see
Figure 3.2.

Assume that the incoming bicharacteristic stays inside a layer from t = 0 until
it hits the interface, then the solution along such a bicharacteristic is determined
completely by the partial differential equation and the initial condition. On the
other hand, the solution along the outgoing bicharacteristics is not determined by the
partial differential equation and the initial condition: We will show that the solution
along the outgoing bicharacteristics is determined by the partial differential equation
and the interface conditions in (3.27).

Let us consider the consequences of the interface conditions. Assume for the
moment that the interface is located at xn = 0. We denote x′ = (x1, . . . , xn−1), x =
(x′, xn) and similarly for ξ. The wavefront set of the restriction of ul to xn = 0 satisfies

WF(ul|xn=0) = {(x′, t, ξ′, τ) | there is ξn with (x′, 0, t, ξ′, ξn, τ) ∈WF(ul)}.

It follows that a solution traveling along a bicharacteristic that intersects the bound-
ary at some point (x′, 0, t) interacts with any other such solution as long as the asso-
ciated values for ξ′, τ in their wavefront sets coincide (Snell’s law). This is depicted
in Figure 3.3.

Depending on the boundary coordinate x′ and the ‘tangential’ slowness −τ−1ξ′,
the number of interacting bicharacteristics may vary. For large values of −τ−1ξ′ there
will be no incoming nor outgoing modes; for small values there are n incoming and n
outgoing modes. The situation where the vertical line in Figure 3.3 is tangent to the
slowness surface corresponds to rays tangent to the interface. Such rays are associated
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Figure 3.3: 2-dimensional section of an n = 3-dimensional slowness surfaces at some
point of the interface, for the medium on both sides of the interface. The slownesses of
the modes that interact (i.e. reflect and transmit into each other) are the intersection
points with a line that is parallel to the normal of the interface. The group velocity,
which is normal to the slowness surface, determines whether the mode is incoming or
outgoing.

with head-waves and are not treated in our analysis. Equation (3.9) implies that the
incoming and the outgoing modes correspond to the real solutions ξn of

det Pil(x
′, 0, ξ′, ξn, τ) = 0.

This equation has 2n real or complex conjugated roots. The complex roots correspond
to ‘evanescent’ wave constituents. To number the roots we use an index µ.

In the following theorem we show that if none of the rays involved is tangent,
there exists a pseudodifferential operator type relation between the different modes
restricted to the surface xn = 0; we calculate its principal symbol in the proof. Let
x 7→ z(x) : Rn → Rn be a coordinate transformation such that the interface is
given by zn = 0. The corresponding cotangent vector is denoted by ζ , and satisfies

ζi(ξ) =
∑

j

(
∂z
∂x

)−1

ji
ξj.

Assumption 2 There are no rays tangent to the interface zn = 0 microlocally at
(z′, t, ζ ′, τ).
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Theorem 3.3.1 Suppose the roots τ of (3.9) have constant multiplicity and Assump-
tion 2 is valid microlocally on some neighborhood in T ∗(Z ′ × R)\0. Let uin

N(ν) be
microlocal constituents of a solution describing the ‘incoming’ modes, and suppose
GM(µ) refers to an ‘outgoing’ Green’s function (3.19). Microlocally, the single re-
flected/transmitted constituent of the solution related to uin

N(ν) is given by

uM(µ)(x, t) =

∫
zn=0

GM(µ)(x, x(z), t− t0)2iDt0

(
Rµν(z, Dz′ , Dt0)u

in
N(ν)(x(z), t0)

)
×
∣∣∣∣det

∂x

∂z

∣∣∣∣ ∥∥∥∥∂zn

∂x

∥∥∥∥ dz′ dt0, (3.28)

where Rµν(z, Dz′ , Dt) is a pseudodifferential operator of order 0.

In the proof we derive the explicit form of Rprin
µν (z, ζ ′, τ), see Remark 3.3.2 below.

The integral
∣∣det ∂x

∂z

∣∣ ∥∥∂zn
∂x

∥∥ dz′ is the surface integral over the surface zn = 0 with
Euclidean measure in x.

Proof For the moment we assume z(x) = x, i.e. that we have a reflector at xn = 0,
and smooth coefficients on either side. We show that at the interface there is a relation
of the type

uout
M(µ)(x

′, 0, t) = R0
µν(x

′, 0, D′, Dt)u
in
N(ν). (3.29)

We will use the notation cjk;il = cijkl and also (cjk)il = cijkl. The partial differential
equation (3.1) reads in this notation

∑
l

(
ρδil

∂2

∂t2
−
∑
j,k

cjk;il
∂2

∂xj∂xk

)
(ρ−1/2ul) + l.o.t. = 0.

This equation can be rewritten as a first-order system in the variable xn for the vector
Va of length 2n that contains both the displacement and the normal traction (normal
to the surface xn = constant)

Va =

(
ρ−1/2ui∑

k,l cnk;il
∂(ρ−1/2ul)

∂xk

)
, i = 1, . . . , n (3.30)

in preparation for the boundary value problem (3.26), (3.27). Here, a is an index in
{1, . . . , 2n}. The first-order system then is

∂Va

∂xn

= i
∑

b

Cab(x, D′, Dt)Vb,

where Cab is a matrix partial differential operator given to highest order by

Cab(x, D′, Dt) = −i

(
−
∑n−1

q=1

∑n
j=1(cnn)−1

ij cnq;jl
∂

∂xq
(cnn)−1

il

−
∑n−1

p,q=1 bpq;il
∂2

∂xp∂xq
+ ρδil

∂2

∂t2
−
∑n−1

p=1
∂

∂xp
cpn;ij(cnn)−1

jl

)
ab

.
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Here, bpq;il = cpq;il −
∑n

j,k=1 cpn;ij(cnn)−1
jk cnq;kl.

The next step is to decouple this first-order system microlocally similarly as in
Section 3.2.1. This means that we want to find scalar pseudodifferential operators
Cµ(x, D′, Dt) and a matrix pseudodifferential operator Laµ(x, D′, Dt) such that

Cab(x, D′, Dt) =
∑
µ,ν

Laµ(x, D′, Dt) diag(Cµ(x, D′, Dt))µν L−1
νb (x, D′, Dt).

The principal symbols Cprin
µ (x, ξ′, τ) are the solutions for ξn of

det P prin
il (x, (ξ′, ξn), τ) = 0. (3.31)

In fact it is sufficient if the transformed operator (the matrix diag(Cµ(x, D′, Dt))µν)
is blockdiagonal with a block for each different real root of (3.31), a block with
eigenvalues with positive imaginary part, and a block with eigenvalues with negative
imaginary part. This has also been discussed by Taylor [56]. Under the assumptions
of the lemma this situation can be obtained, since when varying ξ′, τ , the multiplicity
of a real eigenvalue only changes when the multiplicity of the corresponding root of
(3.9) changes, or when two real eigenvalues become complex. The number of complex
eigenvalues with positive or negative imaginary part changes only when two real
eigenvalues become complex or vice versa. The latter case occurs only when there are
tangent rays, and is hence excluded. The 2n×2n principal symbol Lprin

aµ (the columns
appropriately normalized) is given by

Lprin
aµ (x, ξ′, τ) =

(
Qprin

iM(µ)(x, (ξ′, Cprin
µ (x, ξ′, τ)))∑

k,l cinkl(−i(ξ′, Cprin
µ (x, ξ′, τ))k)Q

prin
lM(µ)(x, (ξ′, Cprin

µ (x, ξ′, τ)))

)
aµ

.

(The polarization vector QiM(x, ξ) can also be defined for complex ξ). We define
Vµ =

∑
a L(x, D′, Dt)

−1
µa Va. (The index mapping µ 7→ M(µ) assigns the appropriate

mode to the normal component of the wave vector).
If the principal symbol of Cµ(x, ξ′, τ) is real, the decoupled equation for mode µ is

of hyperbolic type. It corresponds to an outgoing wave or to an incoming wave,
depending on the direction of the corresponding ray. If the principal symbol of
Cµ(x, ξ′, τ) is complex, the decoupled operator for mode µ is of elliptic type. De-
pending on the sign of the imaginary part it corresponds to a mode that grows in the
n-direction, a backward parabolic equation, or one that decays, a forward parabolic
equation. The growing mode has to be absent, see for instance Hörmander [27],
Section 20.1.

The matrix Laµ is fixed up to normalization of its columns. For the elliptic modes
(Im Cprin

µ (x, ξ′, τ) 6= 0) the normalization is unimportant. For the hyperbolic modes
the normalization can be such that the vector Vµ =

∑
a L(x, D′, Dt)

−1
µa Va agrees mi-

crolocally with the corresponding mode uM,± defined in Section 3.2. To see this
assume Vµ refers to the same mode as uM,±. In that case there is an invertible pseu-
dodifferential operator ψ(x, D, Dt) of order 0 such that Vµ = ψuM,±. Now we can
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define Vµ,new = ψ−1Vµ,old. Because ψ may depend on ξn, this factor cannot directly
be absorbed in L. However, since Vµ,old satisfies a first-order hyperbolic equation the
dependence on ξn can be eliminated and the factor ψ−1 can be absorbed in L.

In this proof let the in-modes be the modes for which the amplitude is known,
that is the incoming hyperbolic and the growing elliptic modes. Denote by L

(1)
aµ , L

(2)
aµ

the matrix Laµ on either side of the interface. We define the 2n× 2n matrix Lin such

that it contains the columns related to incoming modes out of L
(1)
aµ , L

(2)
aµ , i.e.

Lin
aµ =

(
L(1),in −L(2),in

)
aµ

,

and define Lout
aµ similarly (so, here, µ is slightly different). The interface conditions

(3.27) now read ∑
µ

(Lout
aµ V out

µ + Lin
aµV in

µ ) = 0.

If we set R0
µν = −

∑
a(L

out)−1
µa Lin

aν (for the question whether the inverse exists, see the
remark after the proof) then the part referring to the hyperbolic modes gives (3.29).

By (3.29) the uout
M are determined at the interface; finding how they propagate

away from the interface is a (microlocal) initial value problem similar to the problem
for GM,± above, where now the xn variable plays the role of time. The solution is again
a Fourier integral operator, with canonical relation generated by the bicharacteristics.
It follows that we can use φM,±(x, t − t0, x0, ξJ , τ) as phase function (take care that
n /∈ J). The amplitude AM,±(xI , x0, ξJ , τ) satisfies the transport equation as before.
However, the restriction of the Fourier integral operator to the ‘initial surface’ xn = 0
so constructed is a pseudodifferential operator that is not necessarily the identity. Let
us assume

uout
M (x, t) =

∫
x0,n=0

GM,±(x, (x′0, 0), t− t0)ψ(x, Dx′0
, Dt0)u

out
M (x′0, 0, t0) dx′0 dt0, (3.32)

where ψ(x, D′, Dt) is to be found such that the restriction of this representation to
xn = 0 is the identity. The ± sign is chosen such that GM,± is the outgoing mode.
We can use again Section 8.6 of Treves [58] to find that the principal symbol of this
pseudodifferential operator should be

ψ(x, ξ′, τ) =

∣∣∣∣∂BM

∂ξn
(x, ξ′, Cprin

µ (ξ′, τ))

∣∣∣∣ =

∣∣∣∣∂xM,n

∂t
(x, ξ′, Cprin

µ (ξ′, τ), 0)

∣∣∣∣ , (3.33)

i.e. the normal component of the velocity of the ray, the group velocity. We now
replace GM,± by (the relevant part of) GM , using that GM = 1

2
iGM,+BM(x, D)−1 −

1
2
iGM,−BM(x, D)−1. Taking this into account, and the fact that Bprin

M (x, ξ) = ∓τ , we
have now obtained (3.28) for the case that z = x (no coordinate transformation).

We argue that (3.28) is also true when z(x) is a general coordinate transfor-
mation. This follows from transforming the equations (3.26), (3.27) to z coordi-
nates. To highest order the symbol of (pseudo)differential operators transforms as
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ψtransf(z, ζ, τ) = ψ(x(z),
(

∂z
∂x

)t
ζ, τ). Tracing the steps of the proof we find the follow-

ing equivalent of (3.29)

uout
M(µ)(x(z′, 0), t) = R0

µν(z
′, 0, Dz′, Dt)u

in
N(ν)(x(z′, 0), t). (3.34)

When the interface is at zn = 0 we can obtain (3.32) in z coordinates instead of
x coordinates. Transforming GM , uM back to x coordinates we find that for x away
from the interface

uM(x) =

∫
zn=0

GM(x, x(z), t− t0)

∣∣∣∣∂zM,n

∂t
(z, Dz′, Dt0)

∣∣∣∣ uout
M (x(z), t0)

∣∣∣∣det
∂x

∂z

∣∣∣∣ dz′ dt0.

Here
∣∣∣∂zM,n

∂t
(z, Dz′ , Dt)

∣∣∣ is the transformed version of (3.33). Thus expression (3.28)

follows, with

Rµν(z, ζ
′, τ) =

∣∣∣∣∂zM,n

∂t
(z, ζ ′, τ)

∣∣∣∣ ∥∥∥∥∂zn

∂x

∥∥∥∥−1

R0
µν(z, ζ

′, τ).

¤

Remark 3.3.2 The principal symbol R0,prin
µν (z, ζ ′, τ) that occurs in the proof is simply

the reflection coefficient for the amplitudes. The principal symbol Rprin
µν (z, ζ ′, τ) is

obtained by multiplying R0,prin
µν with the normal component of the velocity of the ray,

given (for z(x) = x) by (3.33). The reflection coefficients satisfy unitary relations, see
Chapman [14] and Kennett [31] (the appendix to Chapter 5). These follow essentially
from conservation of energy. It follows that the matrix of reflection coefficients is well
defined and in particular that the inverse of Lout

aµ exists. Chapman [14] also gives a
direct proof of the reciprocity relations for the reflection coefficients.

Remark 3.3.3 We have shown that the reflected/transmitted wave is given by a
composition of Fourier integral operators acting on the source. In the case of multi-
ple reflections or transmissions (for instance in a medium consisting of a number of
smooth domains separated by smooth interfaces) this is also the case (cf. Frazer and
Sen [21]). It follows that microlocally the solution operator describing the reflected
solutions is itself a Fourier integral operator, where the canonical relation is given
by the generalized bicharacteristics (i.e. the reflected and transmitted bicharacter-
istics) and the amplitude is essentially the product of the ray amplitudes and the
reflection/transmission coefficients. The integration over z′ accounts for the effects
associated with the interface’s curvature.

3.4 The Born approximation

We discuss the modeling and inversion of seismic data in the Born approximation. The
medium parameters are written as the sum of a smooth background and a singular
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perturbation. This is important in its own right, and it will also be a motivation for
our approach to the model with smooth jumps described in the previous section.

The Born approximation has been discussed by a number of authors. In the
acoustic case, allowing for multipathing (caustics), see Hansen [22] and Ten Kroode
et al. [34]. For the acoustic problem with nonmaximal acquisition geometry, see Nolan
and Symes [41]. For the elastic case with maximal acquisition geometry (and from
a more applied point of view), see De Hoop and Brandsberg-Dahl [24]. We extend
their results, and give an efficient, novel presentation. Also, we discuss in detail the
different assumptions that are needed for the modeling and inversion of seismic data.

3.4.1 Modeling: Perturbation of the Green’s function

In the Born approximation one assumes that the total value of the medium parameters
cijkl, ρ can be written as the sum of a smooth background constituent ρ(x), cijkl(x)
and a singular perturbation δρ, δcijkl, viz.

cijkl + δcijkl, ρ + δρ.

This decomposition induces a perturbation of Pil (cf. (3.4)),

δPil = δil
δρ

ρ

∂2

∂t2
−
∑
j,k

∂

∂xj

δcijkl

ρ

∂

∂xk
.

We denote the causal Green’s operator associated with (3.2) by Gil and its distribution
kernel by Gil(x, x0, t − t0). The first-order perturbation δGil of Gil is derived by
demanding that the first-order term in

∑
j(Pij + δPij)(Gjk + δGjk) vanishes. This

results in the representation

δGil(x̂, x̃, t) = −
∑
j,k

∫ t

0

∫
X

Gij(x̂, x0, t− t0) δPjk(x0, Dx0, Dt0) Gkl(x0, x̃, t0) dx0 dt0.

(3.35)

Here, x̃ denotes a source location, x̂ a receiver location, and x0 a scattering point.
Because the background model is smooth the operator δGil contains only the single
scattered field.

We use the decoupled equations (3.7). Omitting the pseudodifferential operators
QiM (x̂, Dx̂), Q(x̃, Dx̃)

−1
Nl at the beginning and end of the product, we obtain an ex-

pression for the perturbation of the Green’s function δGMN (x̂, x̃, t) for the pair of
modes M (scattered) and N (incident)

δGMN (x̂, x̃, t) = −
∑
i,l

∫ t

0

∫
X

GM(x̂, x0, t− t0)Q(x0, Dx0)
−1
Mi

×
(

δil
∂

∂t0

δρ

ρ

∂

∂t0
−
∑
j,k

∂

∂x0,j

δcijkl

ρ

∂

∂x0,k

)
Q(x0, Dx0)lNGN(x0, x̃, t0) dx0 dt0.

(3.36)
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Microlocally we can write GM as in (3.24), with appropriate substitutions for its
arguments. For GN we use in addition the reciprocity relation GN(x0, x̃, t0) =
GN(x̃, x0, t0). The product of operators GMQ(x0, Dx0)

−1
Mi

∂
∂x0,j

is a Fourier integral

operator with the same phase as GM , and amplitude that to highest order equals the
product AM(x̂Î , x0, ξ̂Ĵ , τ)Q(x0, ξ̂0)

−1
Miiξ̂0,j , where ξ̂0 = ξ0(x̂Î , x0, ξ̂Ĵ , τ). Assuming that

the medium perturbation vanishes around x̂ and x̃ a cutoff is introduced for t0 near 0
and t. In the resulting expression one of the two frequency variables τ̂ , τ̃ can now be
eliminated using the integral over t0 (see for instance Duistermaat [17], Section 2.3).
In this case the result can be obtained readily by noting that the integral over t0 can
be extended to the whole of R (the phase is not stationary for t0 outside [0, t]), and
then using that

∫∞
−∞ eit0(τ̂−τ̃) dt0 = 2πδ(τ̂ − τ̃). The resulting formula for δGMN is,

modulo lower order terms in the amplitude,

δGMN (x̂, x̃, t) = (2π)−
3n+1

4
− |Ĵ|+|J̃|+1

2

∫
BMN (x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , x0, τ)

×
(∑

i,j,k,l

wMN ;ijkl(x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ)
δcijkl(x0)

ρ(x0)
+ wMN ;0(x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ)

δρ(x0)

ρ(x0)

)
× eiΦMN (x̂,x̃,t,x0,ξ̂

Ĵ
,ξ̃J̃ ,τ) dx0 dξ̂Ĵ dξ̃J̃ dτ. (3.37)

Here (see (3.18) for the construction of φM , φN),

ΦMN (x̂, x̃, t, x0, ξ̂Ĵ , ξ̃J̃ , τ) = φM(x̂, x0, t, ξ̂Ĵ , τ) + φN(x̃, x0, t, ξ̃J̃ , τ)− τt. (3.38)

The amplitude factors BMN are given by

BMN (x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ) = (2π)−
n−1

4 AM(x̂Î , x0, ξ̂Ĵ , τ)AN(x̃Ĩ , x0, ξ̃J̃ , τ). (3.39)

We will refer to the factors wMN ;ijkl, wMN ;0 as the radiation patterns. They are given
by

wMN ;ijkl(x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ) = QiM (x0, ξ̂0)QlN(x0, ξ̃0) ξ̂0,j ξ̃0,k, (3.40)

wMN ;0(x̂Î , x̃Ĩ , x0, ξ̂Ĵ , ξ̃J̃ , τ) = −QiM(x0, ξ̂0)QiN(x0, ξ̃0) τ 2 (3.41)

where ξ̂0 = ξ0(x̂Î , x0, ξ̂Ĵ , τ), ξ̃0 = ξ0(x̃Ĩ , x0, ξ̃J̃ , τ). The scattering is depicted in Fig-
ure 3.4.

We investigate the map (
δcijkl

ρ
, δρ

ρ
) 7→ δGMN (x̂, x̃, t) induced by (3.37). We use

the notation CφM to indicate the subset of the global canonical relation CM that is
associated to a phase function φM (cf. (3.15)).

Lemma 3.4.1 Assume that if (x̂, t̂, ξ̂, τ ; x0, ξ̂0) ∈ CφM , (x̃, t̃, ξ̃, τ ; x0, ξ̃0) ∈ CφN then

ξ̂0 + ξ̃0 6= 0. Then the map (
δcijkl

ρ
, δρ

ρ
) 7→ δGMN (x̂, x̃, t) given by (3.37) is a Fourier

integral operator E ′(X)→ D′(X ×X×]0, T [). Its canonical relation is given by

Λ0,MN = {(x̂, x̃, t̂ + t̃, ξ̂, ξ̃, τ ; x0, ξ̂0 + ξ̃0) |
(x̂, t̂, ξ̂, τ ; x0, ξ̂0) ∈ CφM , (x̃, t̃, ξ̃, τ ; x0, ξ̃0) ∈ CφN}. (3.42)
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x0

ξ̂0
ξ̃0

ξ̂0 + ξ̃0 x̃x̂

ξ̂ ξ̃

Figure 3.4: The scattering cotangent vectors.

Proof We show that ΦMN (x̂Î , x̃Ĩ , t, x0, ξ̂Ĵ , ξ̃J̃ , τ) is a nondegenerate phase function.
The derivatives with respect to the phase variables are given by

∂ΦMN

∂τ
= − t̂(x̂Î , x0, ξ̂Ĵ , τ)− t̃(x̃Ĩ , x0, ξ̃J̃ , τ) + t

∂ΦMN

∂ξ̂Ĵ

= − x̂Ĵ (x̂Î , x0, ξ̂Ĵ , τ) + x̂Ĵ

∂ΦMN

∂ξ̃J̃

= − x̃J̃ (x̃Ĩ , x0, ξ̃J̃ , τ) + x̃J̃ ,

where x̂Ĵ(x̂Î , x0, ξ̂Ĵ , τ), x̃J̃ (x̃Ĩ , x0, ξ̃J̃ , τ) are as defined in (3.17), for the receiver side
and the source side respectively. The derivatives of these expressions with respect
to the variables (x̂Ĵ , x̃J̃ , t) are linearly independent, so ΦMN is nondegenerate. From
expression (3.38) it follows that the canonical relation of this operator is given by
(3.42). By the assumption it contains no elements with ξ̂0 + ξ̃0 = 0, so it is continuous
as a map E ′(X)→ D′(X ×X×]0, T [). ¤

We show that the condition in Lemma 3.4.1 is violated if and only if M = N and
there exists a ‘direct’ bicharacteristic from x̃, ξ̃ to x̂,−ξ̂. From the symmetry of the
bicharacteristic under the transformation ξ → −ξ, t→ −t it follows that indeed in this
case the condition is violated. On the other hand, we have BM(x0, ξ̂0) = BN(x0, ξ̃0) =
±τ . If ξ̂0 = −ξ̃0 then we must have M = N , because BM(x0, ξ̂0) = BM(x0,−ξ̂0) and
the condition that the eigenvalues in (3.8) are different for different modes. If M = N
and ξ̂0 = −ξ̃0 then we have the mentioned direct bicharacteristic.

3.4.2 Restriction

The data are assumed to be representable by δGMN (x̂, x̃, t) for (x̂, x̃, t) in the ac-
quisition manifold. To make this explicit, let y 7→ (x̂(y), x̃(y), t(y)) be a coordinate
transformation, such that y = (y′, y′′) and the acquisition manifold is given by y′′ = 0.
Assume that the dimension of y′′ is 2 + c, where c is the codimension of the geometry
(the 2 enforces ‘remote sensing’). Then the data are given by

δGMN (x̂(y′, 0), x̃(y′, 0), t(y′, 0)). (3.43)
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It follows that the map (
δcijkl

ρ
, δρ

ρ
) to the data may be seen as the compose of the map

of Lemma 3.4.1 with the restriction operator to y′′ = 0. The restriction operator that
maps a function f(y) to f(y′, 0) is a Fourier integral operator with canonical relation
given by Λr = {(y′, η′; (y′, y′′), (η′, η′′)) ∈ T ∗Y ′ × T ∗Y | y′′ = 0}. The composition of
the canonical relations Λ0,MN and Λr is well defined if the intersection of Λr ×Λ0,MN

with T ∗Y ′\0× diag(T ∗Y \0)× T ∗X\0 is transversal. In this case we must have that
the intersection of Λ0,MN with the manifold y′′ = 0 is transversal.

Let us repeat our assumptions, and state the final result of this subsection.

Assumption 3 There are no elements (y′, 0, η′, η′′) ∈ T ∗Y \0 such that there is a
direct bicharacteristic from (x̂(y′, 0), ξ̂(y′, 0, η′, η′′)) to (x̃(y′, 0),−ξ̃(y′, 0, η′, η′′)) with
arrival time t(y′, 0).

Assumption 4 The intersection of Λ0,MN with the manifold y′′ = 0 is transversal.
In other words,

∂y′′

∂(x0, ξ̂0, ξ̃0, t̂, t̃)
has maximal rank. (3.44)

In the following theorem we parameterize (3.42) by (x0, ξ̂0, ξ̃0, t̂, t̃) using the pa-
rameterization of CφM given by (3.15). Thus we let τ = ∓BM(x0, ξ̂0) and

x̂ = xM (x0, ξ̂0,±t̂), x̃ = xN(x0, ξ̃0,±t̃),

ξ̂ = ξM(x0, ξ̂0,±t̂), ξ̃ = ξN(x0, ξ̃0,±t̃).

We suppose that (y′(x0, ξ̂0, ξ̃0, t̂, t̃), η
′(x0, ξ̂0, ξ̃0, t̂, t̃)) is obtained by transforming (x̂, x̃,

t̂ + t̃, ξ̂, ξ̃, τ) to (y, η) coordinates.

Theorem 3.4.2 If Assumptions 3, 4 are satisfied then the operator FMN ;ijkl (resp.

FMN ;0) that maps the medium perturbation
δcijkl

ρ
(resp. δρ

ρ
) to the data as a function

of y′ (3.43) is microlocally a Fourier integral operator with canonical relation given
by

ΛMN ={(y′(x0, ξ̂0, ξ̃0, t̂, t̃), η
′(x0, ξ̂0, ξ̃0, t̂, t̃); x0, ξ̂0 + ξ̃0) |

BM(x0, ξ̂0) = BN(x0, ξ̃0) = ±τ, y′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0}. (3.45)

The order equals n−1+c
4

. The amplitude is given to highest order (in coordinates
(y′I , η

′
J , x0) for ΛMN , where I, J is a partition of {1, . . . , 2n− 1− c}) by the product

BMN (y′I , η
′
J , x0)wMN ;ijkl(y

′
I , η
′
J , x0) (resp. BMN(y′I , η

′
J , x0)wMN ;0(y

′
I , η
′
J , x0)), where

|BMN(y′I , η
′
J , x0)| = 1

4
τ−2(2π)−

n+1+c
4

×
∣∣∣∣det

∂(x̂, x̃, t)

∂y

∣∣∣∣− 1
2

∣∣∣∣∣det
∂(x0, ξ̂0, ξ̃0, t̂, t̃)

∂(x0, y
′
I , y
′′, η′J , ∆τ)

∣∣∣∣∣
1
2

∆τ=0,y′′=0

(3.46)

Here we define ∆τ = τ̂ − τ̃ , so that the first constraint in (3.45) reads ∆τ = 0. The
map (x0, ξ̂0, ξ̃0, t̂, t̃) 7→ (x0, y

′
I , y
′′, η′J , ∆τ) is bijective.
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Proof The first statement has been argued above. The order of the operator is
given by

χ +
K

2
− dim X + dim Y ′

4
,

where χ is the degree of homogeneity of the amplitude and K is the number of phase
variables. The factors {wMN ;ijkl, wMN ;0} are homogeneous of order 2 in the ξ and τ
variables; the degree of homogeneity of the factor BMN follows from (3.22). We find

order FMN ;ijkl = 2 + (−2− |Ĵ |+ |J̃ |+ 2

2
+ n) +

|Ĵ |+ |J̃ |+ 1

2
− 3n− 1− c

4

=
n− 1 + c

4
.

We calculate now the amplitude of the Fourier integral operator in Lemma 3.4.1.
The factor wMN ;ijkl is simply multiplicative. Suppose we choose coordinates on Λ0,MN

to be (x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ̂ , τ̃ , x0), with ultimately τ̂ = τ̃ . Define τ = τ̂+τ̃
2

, ∆τ = τ̂ − τ̃ .

Using (3.25) and (3.39) we find that the amplitude BMN (x0, x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ) is given
by

|BMN(x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ, x0)| = 1
4
τ−2(2π)−

n−1
4

∣∣∣∣∣det
∂(x0, ξ̂0, ξ̃0, t̂, t̃)

∂(x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ, x0, ∆τ)

∣∣∣∣∣
1
2

The transformation from (x̂, x̃, t) to y coordinates in Fourier integral (3.43), in-

duces an additional factor | det ∂(x̂,x̃,t)
∂y
|− 1

2 (note that for the Fourier integral operators

it would be more natural to transform as a half-density). The amplitude transforms
as a half-density on the canonical relation, and we obtain the factor∣∣∣∣∣det

∂(y′I , y
′′, η′J)

∂(x̂Î , ξ̂Ĵ , x̃Ĩ , ξ̃J̃ , τ)

∣∣∣∣∣
1
2

.

The additional factor (2π)−
2+c

4 arises from the normalization. We find (3.46). ¤

Natural coordinates for the canonical relation are given by (x0, ξ̂0, ξ̃0, t̂, t̃) such that
BM(x0, ξ̂0)−BN(x0, ξ̃0) = 0, y′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0. There is a natural density directly
associated with this set, the quotient density. The Jacobian in (3.46) reveals that
the amplitude factor |BMN (y′I , η

′
J , x0)| is in fact given by the associated half-density

times 1
4
τ−2(2π)−

n+1+c
4

∣∣∣∂(x̂,x̃,t)
∂y

∣∣∣− 1
2

.

If c = 0 and there are no rays tangent to the acquisition manifold, i.e.

rank
∂y′′

∂(t̂, t̃)
= 2, (3.47)

then a convenient way to parameterize the canonical relation is found using the phase

directions α̂ = ξ̂0

‖ξ̂0‖
, α̃ = ξ̃0

‖ξ̃0‖
∈ Sn−1 and the frequency τ .
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3.4.3 Inversion

Let us now consider the reconstruction of
(

δcijkl
ρ

, δρ
ρ

)
from the data. We simplify the

notation, and collect the medium perturbations into

gα =

(
δcijkl

ρ
,
δρ

ρ

)
.

The forward operator (FMN ;ijkl, FMN ;0) in the Born approximation is represented
byFMN ;α.

Let us consider data from a single pair of modes (M, N) (the general case is
discussed at the end of this section). The standard procedure to deal with the fact
that this inverse problem is overdetermined is to use the method of least squares.
Define the normal operator NMN ;αβ as the product of FMN ;α and its adjoint F ∗MN ;α,

NMN ;αβ = F ∗MN ;αFMN ;β. (3.48)

If NMN ;αβ is invertible (as a matrix-valued operator with indices αβ), then

F−1
MN ;α =

∑
β

(NMN)−1
αβF ∗MN ;β (3.49)

is a left inverse of FMN ;α that is optimal in the sense of least squares1.
The properties of the compose (3.48) depend on those of ΛMN . Let πY ′ , πX be

the projection mappings of ΛMN to T ∗Y ′\0, T ∗X\0 respectively. We will show that
under the following assumption, NMN ;αβ is a pseudodifferential operator, so that
the problem of inverting NMN ;αβ reduces to a finite-dimensional problem for each
(x, ξ) ∈ πX(ΛMN).

Assumption 5 The projection πY ′ of ΛMN on T ∗Y ′\0, is an embedding, i.e. it is
i) immersive
ii) injective
iii) proper .

This assumption implies that the image of πY ′ is a submanifold, L say, of T ∗Y ′\0.
Let us discuss these requirements, starting with the first. Using that ΛMN is a
canonical relation we have

Lemma 3.4.3 The projection πY ′ of ΛMN on T ∗Y ′\0 is an immersion if and only if
the projection πX of ΛMN on T ∗X\0 is a submersion. In this case the image of πY ′

is locally a coisotropic submanifold of T ∗Y ′\0.
1Equation (3.48) is for the case where one minimizes the difference with the data δGMN in L2

norm ‖δGMN−FMN ;αgα‖. It can easily be adapted to the case where one minimizes a Sobolev norm
of different order, or a weighted L2 norm. This would introduce extra factors in the amplitude.
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Proof This is a property of Lagrangian manifolds. It follows from Lemma 25.3.6 in
Hörmander [27]. We give an independent proof.

The symplectic forms σX , σY ′ on T ∗X\0, T ∗Y ′\0 can be viewed as 2-forms on
ΛMN . Because ΛMN is a canonical relation, σY ′ = σX on ΛMN , and in particular
rank σY ′ = rankσX . Now consider πX . Clearly rank σX = 2n if and only if πX is
submersive.

Consider πY ′ . If this projection is immersive then the image has dimension n+m,
assuming dim T ∗Y ′\0 = 2m (in this proof m = dim Y ′ = 2n− 1− c). Then rank σY ′

is at least 2n, so it must be equal to 2n. On the other hand, if rank σY ′ = 2n, then
the tangent space of ΛMN at that point is given by the span of a set vectors of the
form

{(v1, w1), . . . , (v2n, w2n), (0, w2n+1), . . . , (0, wn+m)}.

The wi, i ∈ {1, . . . , 2n} must be linearly independent because rank σY ′ = 2n. For
wi, wj, i ≤ 2n, j > 2n we have σY ′(wi, wj) = 0, so the wj are linearly independent
from the wi. The wi, i > 2n must be linearly independent, because (0, wi) are basis
vectors for the tangent space to ΛMN . So if rank σY ′ = 2n then πY ′ is an immersion.
Because rank σY ′ = 2n in that case, the image is locally a coisotropic submanifold. ¤

As a consequence, if part i) of Assumption 5 is satisfied then we can use (x, ξ) ∈
T ∗X\0 as (local) coordinates on ΛMN . In addition, we need to parameterize the sub-
sets of the canonical relation given by (x, ξ) = constant; we denote such parameters
by e. The new parameterization of ΛMN is (identifying x0 with x)

ΛMN = {(y′(x, ξ, e), η′(x, ξ, e); (x, ξ))}. (3.50)

The results do not depend on the precise definition of e. As noted before, if
the variables (t̂, t̃) can be solved from the second constraint in (3.45) (cf. equation
(3.47)), then ΛMN can be parameterized using (x, α̂, α̃, τ), where (α̂, α̃) are phase
directions. In that case (x, ξ, e) should be related by a coordinate transformation
to (x, α̂, α̃, τ). In acoustic media (where ‖ξ̂0‖ = ‖ξ̃0‖) a suitable choice is the pair
scattering angle/azimuth, given by(

arccos(α̂ · α̃),
−α̂ + α̃

2 sin(arccos(α̂ · α̃)/2)

)
∈ ]0, π[×Sn−2,

cf. Burridge and Beylkin [13]. The azimuth, the second component, defines together
with ξ the plane spanned by (α̂, α̃). It is not difficult to show that in elastic media the
scattering angle (the first component) can be used as coordinate when the slowness
sheets are convex, but not always when one of the slowness sheets fails to be convex.

Remark 3.4.4 We show that the first part of Assumption 5 implies that ∂BM
∂ξ

(x, ξ̂0)+
∂BN
∂ξ

(x, ξ̃0) 6= 0, in other words the group velocities at the scattering point do not
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add up to 0. We have seen in Theorem 3.4.2 that ΛMN may be parameterized by
(x, ξ̂0, ξ̃0, t̂, t̃), where (ξ̂0, ξ̃0) are such that

BM(x0, ξ̂0) = BN(x0, ξ̃0) = ±τ

(and we have the additional constraint y′′(x0, ξ̂0, ξ̃0, t̂, t̃) = 0). The projection πX is
given by (x, ξ̂0 + ξ̃0). Consider tangent vectors to ΛMN given by vectors vξ̂0

, vξ̃0
. They

must satisfy

vξ̂0
· ∂BM

∂ξ
(x, ξ̂0) = vξ̃0

· ∂BN

∂ξ
(x, ξ̃0) = ±vτ . (3.51)

So if ∂BM
∂ξ

(x, ξ̂0) = −∂BN
∂ξ

(x, ξ̃0), then (3.51) implies that (vξ̂0
+vξ̃0

) · ∂BM
∂ξ

(x, ξ̂0) = 0, so

that the projection of ΛMN on T ∗X\0 is not submersive. If c = 0, and rank ∂y′′

∂(t̂,t̃)
= 2

(no tangent rays), then the constraint y′′ = 0 may be used to solve for the parameters
t̂, t̃ and (3.51) is the only condition on (ξ̂0, ξ̃0). In that case ∂BM

∂ξ
(x, ξ̂0) 6= −∂BN

∂ξ
(x, ξ̃0)

implies that the projection is submersive. In other cases the set of (ξ̂0, ξ̃0) is in general
a smaller subset of T ∗x X\0× T ∗xX\0.

Let us now discuss the second and third parts of Assumption 5. The second part
is a well known condition, see Hansen [22] and Ten Kroode et al. [34]. Essentially the
condition is that there are no two different singularities in gα mapped to the same
position in T ∗Y ′\0. For an analysis of the case where this condition is violated, see
Stolk [52].

The definition of proper is that the preimage of a compact set is a compact set.
So assume we have a compact subset of T ∗Y ′\0. The elements of ΛMN correspond
to those ‘points’ where the source and receiver rays intersect. The set of these points
can be written as a set on which some continuous function vanishes. Therefore this
set is closed. It is also bounded, and hence it is compact. So the third part of the
assumption is automatically satisfied.

When constructing the compose (3.48) there is a subtlety that we have to take into
account, namely that the linearized forward operator is only microlocally a Fourier
integral operator. To make it globally a Fourier integral operator, we apply a pseudo-
differential cutoff ψ(y′, Dy′) with compact support. Due to the third part of Assump-
tion 5, the forward operator is then a finite sum of local Fourier integral operators.

Theorem 3.4.5 Let ψ(y′, Dy′) be a pseudodifferential cutoff with conically compact
support in T ∗Y ′\0, such that for the set

{(y′, η′; x0, ξ0) ∈ ΛMN | (y′, η′) ∈ supp ψ} (3.52)

Assumptions 3, 4, 5 are satisfied. Then

F ∗MN ;βψ(y′, Dy′)
∗ψ(y′, Dy′)FMN ;α (3.53)



3.4 The Born approximation 83

is a pseudodifferential operator of order n− 1. Its principal symbol is given by

NMN ;βα(x, ξ) =
1

16
(2π)−n

∫
|ψ(y′(x, ξ, e), η′(x, ξ, e))|2τ−4wMN ;β(x, ξ, e)wMN ;α(x, ξ, e)

×
∣∣∣∣det

∂(x̂, x̃, t)

∂y

∣∣∣∣−1
∣∣∣∣∣det

∂(x, ξ̂0, ξ̃0, t̂, t̃)

∂(x, ξ, e, y′′, ∆τ)

∣∣∣∣∣
∆τ=0,y′′=0

de, (3.54)

where τ = τ(x, ξ, e).

Proof We use the clean intersection calculus for Fourier integral operators (see e.g.
Treves [58]) to show that (3.53) is a Fourier integral operator. The canonical relation
of F ∗MN ;α is given by

Λ∗MN = {(x, ξ; y′, η′) | (y′, η′; x, ξ) ∈ ΛMN}.

Let L = Λ∗MN × ΛMN and M = T ∗X\0× diag(T ∗Y ′\0)× T ∗X\0. We have to show
that the intersection of L ∩M is clean, i.e.

L ∩M is a manifold, (3.55)

TL ∩ TM = T (L ∩M). (3.56)

It follows from Assumption 5 ii) that L ∩M must be given by

L ∩M = {(x, ξ, y′, η′, y′, η′, x, ξ) | (y′, η′; x, ξ) ∈ ΛMN}. (3.57)

Because ΛMN is a manifold this set satisfies (3.55). The property (3.56) follows from
the assumption that the map πY ′ is immersive. The excess is given by

E = dim(L ∩M)− (dim L + dim M − dim T ∗X\0× T ∗Y ′\0× T ∗Y ′\0× T ∗X\0)

= n− 1− c. (3.58)

Taking into account the pseudodifferential cutoff ψ(y′, Dy′), it follows that (3.53) is a
Fourier integral operator. The canonical relation Λ∗MN ◦ ΛMN of F ∗MN ;βψ

∗ψFMN ;α is
contained in the diagonal of T ∗X\0× T ∗X\0, so it is a pseudodifferential operator.
The order is given by 2 orderFMN ;α + E

2
= n− 1 (note that c drops out).

We write ψ(y′, Dy′)
∗ψ(y′, Dy′) =

∑
i χ

(i)(y′, Dy′), where the symbols χ(i)(y′, η′)
have small enough support, so that the distribution kernel of χ(i)(y′, Dy′)FMN ;α can
be written as the oscillatory integral

χ(i)(y′, Dy′)FMN ;α(y′, x) = (2π)−
3n−1−c

4
− |J|

2

∫
χ(i)(y′I , η

′
J , x)

× BMN(y′I , η
′
J , x)wMN ;α(y′I , η

′
J , x)ei(S

(i)
MN (y′I ,x,η′J)+〈η′J ,y′J 〉) dη′J , (3.59)

where ψ(i)(y′I , η
′
J , x) = ψ(i)(y′I , y

′
J(y′I , η

′
J , x), η′I(y

′
I , η
′
J , x), η′J), and we used that we can

write Φ
(i)
MN(y′, x, η′J) = S

(i)
MN(y′I , x, η′J)+〈η′J , y′J〉, (cf. (3.18),(3.38)). We do not indicate
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the dependence of J on i explicitly. The distribution kernel of the normal operator
is then given by a sum of terms∫

(ψ(y′, Dy′)FMN ;β(y′, x))(ψ(y′, Dy′)FMN ;α(y′, x0)) dy′

= (2π)−
3n−1−c

2
−|J |

∑
i

∫
χ(i)(y′I , η

′
0,J , x0)

× BMN (y′I , η
′
J , x)BMN(y′I , η

′
0,J , x0)wMN ;β(y

′
I , η
′
J , x)wMN ;α(y′I , η

′
0,J , x0)

× ei(S
(i)
MN (y′I ,x0,η′0,J )−S

(i)
MN (y′I ,x,η′J)+〈η′0,J ,y′J 〉−〈η′J ,y′J〉) dη′0,J dη′J dy′.

We now apply the method of stationary phase, and integrate out the variables y′J , η′0,J .
For the remaining variables we use that

S
(i)
MN (y′I , x0, η

′
J)− S

(i)
MN(y′I , x, η′J) = 〈x− x0, ξ(y

′
I , η
′
J , x0)〉+ O(|x− x0|2).

Thus we find (to highest order)

(2π)−
3n−1−c

2

∑
i

∫
χ(i)(y′I , η

′
J , x)2|BMN(y′I , η

′
J , x)|2wMN ;β(y′I , η

′
J , x)wMN ;α(y′I , η

′
J , x)

× ei〈x−x0,ξ(y′I ,η
′
J ,x0)〉 dη′J dy′I .

We now change of variables (x, y′I , η
′
J)→ (x, ξ, e), and use (3.46). We sum over i, and

arrive at

NMN ;βα(x, x0) =
(2π)−2n

16

∫
|ψ(y′(x, ξ, e), η′(x, ξ, e))|2τ−4wMN ;β(x, ξ, e)wMN ;α(x, ξ, e)

×
∣∣∣∣det

∂(x̂, x̃, t)

∂y

∣∣∣∣−1
∣∣∣∣∣det

∂(x, ξ̂0, ξ̃0, t̂, t̃)

∂(x, ξ, e, y′′, ∆τ)

∣∣∣∣∣
∆τ=0,y′′=0

ei〈x−x0,ξ〉 dξ de. (3.60)

It follows that the principal symbol of NMN ;βα is given by (3.54). ¤

So far we focused on inversion of data from one pair of modes (M, N). Often data
will be available for some subset S of all possible pairs of modes. Define the normal
operator for this case as

Nαβ =
∑

(M,N)∈S

F ∗MN ;αFMN ;β =
∑

(M,N)∈S

NMN ;αβ.

If all the NMN ;αβ are pseudodifferential operators then Nαβ is also a pseudodifferential
operator. A left inverse is now given by

N−1
αβ F ∗β ,

where F ∗β is the vector of Fourier integral operators containing the F ∗MN ;β, (M, N) ∈ S.
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3.5 Symplectic geometry of the data

In the previous section we saw that the wavefront set of the modeled data cannot be
arbitrary. This is due to the redundancy in the data: in the Born approximation the
singular part of the medium parameters is a function of n variables, while the data
is a function of 2n− 1− c variables. This redundancy is employed in the parameter
reconstruction, and is important in the reconstruction of the background medium (or
the medium above the interface in the case of a smooth jump) as well. This will be
explained below.

Consider again the canonical relation ΛMN . Suppose Assumption 5 is satisfied.
Denote in this section by Ω the map

Ω : (x, ξ, e) 7→ (y′(x, ξ, e), η′(x, ξ, e)) : T ∗X\0× E → T ∗Y ′\0

introduced above (3.50). This map conserves the symplectic form of T ∗X\0. That

is, if wxi = ∂(y′,η′)
∂xi

and similarly for wξi, wei, we have

σY ′(wxi, wxj) = σY ′(wξi, wξj) = 0,

σY ′(wξi , wxj) = δij ,

σY ′(wei, wxj) = σY ′(wei, wξj) = σY ′(wei, wej) = 0. (3.61)

The (x, ξ, e) are ‘symplectic coordinates’ on the projection of ΛMN on T ∗Y ′\0, which
is a subset L of T ∗Y ′\0.

The image L of the map Ω is coisotropic, as noted in Lemma 3.4.3. The sets
(x, ξ) = constant are the isotropic fibers of the fibration of Hörmander [26], Theorem
21.2.6, see also Theorem 21.2.4. Duistermaat [17] calls them characteristic strips (see
Theorem 3.6.2). We have sketched the situation in Figure 3.5. The wavefront set of
the data is contained in L and is a union of fibers.

Using the following result we can extend the coordinates (x, ξ, e) to symplectic
coordinates on an open neighborhood of L.

Lemma 3.5.1 Let L be an embedded coisotropic submanifold of T ∗Y ′\0, with coor-
dinates (x, ξ, e) such that (3.61) holds. Denote L 3 (y′, η′) = Ω(x, ξ, e). We can
find a homogeneous canonical map G from an open part of T ∗(X × E)\0 to an open
neighborhood of L in T ∗Y ′\0, such that G(x, e, ξ, ε = 0) = Ω(x, ξ, e).

Proof The ei can be viewed as (coordinate) functions on L. We will first extend
them to functions on the whole T ∗Y ′\0 such that the Poisson brackets {ei, ej} satisfy

{ei, ej} = 0, 1 ≤ i, j ≤ m− n, (3.62)

where m = dim Y ′ = 2n−c−1. This can be done successively for e1, . . . , em−n by the
method that we describe now, see Treves [58], Chapter 7, the proof of Theorem 3.3, or
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ΛMN

πX (submersion) πY (immersion)

T ∗X\0
ε

T ∗Y ′\0

(x, ξ)eL
πX ◦ π−1

Y

Figure 3.5: Visualization of the symplectic structure of ΛMN (cone structure omitted).

Duistermaat [17], the proof of Theorem 3.5.6. Suppose we have extended e1, . . . , el,
we extend el+1. In order to satisfy (3.62) el+1 has to be a solution u of

Heiu = 0, 1 ≤ i ≤ l,

where Hei is the Hamilton field associated with the function ei, with initial condition
on some manifold transversal to the Hei. For any (y′, η′) ∈ L the covectors dei,
1 ≤ i ≤ l restricted to T(y′,η′)L are linearly independent, so the Hei are transversal to
L and they are linearly independent modulo L. So we can give the initial condition
u|L = el+1 and even prescribe u on a larger manifold, which leads to nonuniqueness
of the extensions ei.

We now have m − n commuting vectorfields Hei that are transversal to L and
linearly independent on some open neighborhood of L. The Hamilton systems with
parameters εi read

∂y′j
∂εi

=
∂ei

∂η′j
(y′, η′),

∂η′j
∂εi

= −∂ei

∂y′j
(y′, η′), 1 ≤ i, j ≤ m− n.

Let G(x, e, ξ, ε) be the solution for (y′, η′) of the Hamilton systems combined with
initial value (y′, η′) = Ω(x, ξ, e) with ‘flowout parameters’ ε. This gives a diffeomorphic
map from a neigborhood of the set ε = 0 in T ∗(X ×E)\0 to a neighborhood of L in
T ∗Y ′\0. One can check from the Hamilton systems that this map is homogeneous.

It remains to check the commutation relations. The relations (3.61) are valid for
any ε, because the Hamilton flow conserves the symplectic form on T ∗Y ′\0. The

commutation relations for ∂(y′,η′)
∂εi

follow, using that ∂(y′,η′)
∂εi

= Hei. ¤

Let MMN be the canonical relation associated to the map G we just constructed,
i.e. MMN = {(G(x, e, ξ, ε); x, e, ξ, ε)}. We now construct a Maslov-type phase function
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for MMN that is directly related to a phase function for ΛMN . Suppose (y′I , η
′
J , x) are

suitable coordinates for ΛMN (ε = 0). For ε small, the constant-ε subset of MMN

can be coordinatized by the same set of coordinates, thus we can use coordinates
(y′I , η

′
J , x, ε) on MMN . Now there is (see Theorem 4.21 in Maslov and Fedoriuk [38])

a function SMN(y′I , x, η′J , ε) such that MMN is given by

y′J = − ∂SMN

∂η′J
, η′I =

∂SMN

∂y′I
,

ξ = − ∂SMN

∂x
, e =

∂SMN

∂ε
.

Thus a phase function for MMN is given by

ΨMN(y′, x, e, η′J , ε) = SMN(y′I , x, η′J , ε) + 〈η′J , y′J〉 − 〈ε, e〉. (3.63)

A Maslov-type phase function for ΛMN then follows as

ΦMN(y′, x, η′J) = ΨMN(y′, x, ∂SMN

∂ε
|ε=0, η

′
J , 0) = SMN(y′I , η

′
J , x, 0) + 〈η′J , y′J〉.

In the absence of caustics there is natural choice for the symplectic coordinates
given by the map G in Lemma 3.5.1, using that the time variables plays a special role.
We explain this for codimension c = 0, where y′ = (x̂, x̃, t) ∈ ∂X × ∂X×]0, T [, and
assuming that equation (3.47) is satisfied. Under a no caustics assumption (x̂, x̃, x)
can be used as local coordinates on L, i.e. we set y′I = (x̂, x̃). Here we assume that,
for given x the map (ξ/‖ξ‖, e) 7→ (x̂, x̃) ∈ ∂X × ∂X is a local diffeomorphism. Then
e is given on L by a map (x̂, x̃, x) 7→ e(x̂, x̃, x). This map defines e also on an open
neighborhood of L in T ∗Y ′\0, which by the second part of the proof of Lemma 3.5.1,
leads to a choice of symplectic coordinates on a neighborhood of L. For the Maslov-
type phase function this choice simply means that SMN(y′I , η

′
J , x, ε) does not depend

on ε.

3.6 Modeling: Joint formulation

In this section we match the expression for the data modeled using the smooth jump
(Kirchhoff) approximation to the expressions for the Born modeled data we obtained
in Section 3.4. The smooth medium above the interface plays the role of the back-
ground medium in the Born approximation.

From Theorem 3.3.1 it follows that reflection of an incident N -mode with covector
ξ̃0 into a scattered M-mode with covector ξ̂0 can take place if the frequencies are
equal and ξ̂0 + ξ̃0 is normal to the interface. In other words, ξ̂0 + ξ̃0 must be in the
wavefront set of the singular function of the interface, δ(zn(x)). Given ξ̃0, ξ̂0 one can
identify µ(M), ν(N), and define (at least to highest order) the reflection coefficient
as a function of (x, ξ̂0, ξ̃0), Rprin

MN(x, ξ̂0, ξ̃0) = Rprin
µ(M),ν(N)(z

′(x), ζ ′(ξ̃0), τ). This factor

can now be viewed as a function of coordinates (y′I , x, η′J) or of coordinates (x, ξ, e)
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on ΛMN (strictly speaking only defined for x in the interface, and ξ normal to the
interface). To highest order it does not depend on ‖ξ‖ and is it simply a function
of (x, e). We obtain the following result, which is a generalization of the Kirchhoff
approximation. The normalization factor ‖∂zn

∂x
‖ of the δ-function is such that integral∫

‖∂zn
∂x
‖δ(zn(x)) dx is an integral over the surface zn = 0 with Euclidean surface

measure in x coordinates.

Theorem 3.6.1 Suppose Assumptions 1, 2, 3, 4 are satisfied, microlocally for the
relevant part of the data. Let ΦMN(y′, x, η′J),BMN(y′I , x, η′J) be phase and amplitude
as in Theorem 3.4.2, but now for the smooth medium above the interface. The data
modeled with the smooth jump model is given microlocally by

Grefl
MN(y′) = (2π)−

|J|
2
− 3n−1−c

4

∫
(BMN (y′I , x, η′J)2iτ(η′)RMN (y′I , x, η′J) + l.o.t.)

× eiΦMN (y′,x,η′J)

∥∥∥∥∂zn

∂x

∥∥∥∥ δ(zn(x)) dη′J dx. (3.64)

i.e. by a Fourier integral operator with canonical relation ΛMN and order n−1+c
4
− 1

acting on the distribution ‖∂zn
∂x
‖δ(zn(x)).

Proof We write the distribution kernel of the reflected data (3.28) in a form similar
to (3.37). First recall the reciprocal expression for the Green’s function (3.24),

GN (x(z), x̃, t0) = (2π)−
|J̃|+1

2
− 2n+1

4

∫
AN(x̃Ĩ , x(z), ξ̃J̃ , τ)eiφN (x̃,x(z),t0,ξ̃J̃ ,τ) dξ̃J̃ dτ.

By using Theorem 3.3.1, and doing an integration over a t and a τ variable one finds
that the Green’s function for the reflected part is given by

Grefl
MN(x̂, x̃, t) = (2π)−

|Ĵ|+|J̃|+1
2

−n

×
∫

zn=0

(
2iτAM(x̂Î , x(z), ξ̂Ĵ , τ)AN(x̃Ĩ , x(z), ξ̃J̃ , τ)Rµ(M)ν(N)(z, ζ

′, τ) + l.o.t.
)

× eiΦMN (x̂,x̃,t,x(z),ξ̂
Ĵ
,ξ̃J̃ ,τ)

∣∣∣∣det
∂x

∂z

∣∣∣∣ ∥∥∥∥∂zn

∂x

∥∥∥∥ dξ̂Ĵ dξ̃J̃ dτ dz′, (3.65)

where ζ ′ depends on (x(z), ξ̃0) (the indices µ, ν for the reflection coefficients have been
explained in Section 3.3). The integration

∫
dz′ is now replaced by

∫
δ(zn)dz. The

latter can be transformed back to an integral over x. Thus we obtain

(2π)−
|Ĵ|+|J̃|+1

2
−n

×
∫ (

2iτAM(x̂Î , x, ξ̂Ĵ , τ)AN(x̃Ĩ , x, ξ̃J̃ , τ)Rµ(M)ν(N)(z(x), ζ ′(ξ̃J , x), τ) + l.o.t.
)

× eiΦMN (x̂,x̃,t,x,ξ̂
Ĵ
,ξ̃J̃ ,τ)

∥∥∥∥∂zn

∂x

∥∥∥∥ δ(zn(x)) dξ̂Ĵ dξ̃J̃ dτ dx. (3.66)
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This formula is very similar to (3.37), only the amplitude is different and
δcijkl(x)

ρ(x)
, δρ(x)

ρ(x)

is replaced by the δ-function ‖∂zn
∂x
‖δ(zn(x)). Also the factors wMN ;ijkl, wMN ;0 depend

only on the background medium, while Rµ(M)ν(N) depends on the total medium. The
phase function ΦMN now comes from the smooth medium above the reflector.

The data is modeled by Grefl
MN(x̂, x̃, t) with (x̂, x̃, t) in the acquisition manifold, as

is explained below Lemma 3.4.1. We follow the approach of Section 3.4, and do a
coordinate transformation (x̂, x̃, t) 7→ (y′, y′′), such that the acquisition manifold is
given by y′′ = 0. It follows that under Assumptions 3, 4 the data is the image of a
Fourier integral operator acting on ‖∂zn

∂x
‖δ(zn(x)) and that it is given by (3.64). ¤

3.7 Inverse scattering revisited

In this section we present the main results of this chapter. We first construct a Fourier
integral operator and a reflectivity function, which is a function of subsurface position
and the additional coordinate e. The data is modeled by letting the Fourier integral
operator act on the reflectivity. The construction is such that this Fourier integral
operator is invertible. We discuss its inverse. Finally a set of pseudodifferential
operators is constructed that annihilates the data if the smooth part of the medium
above the reflector is correctly chosen.

3.7.1 Invertible transformation into subsurface coordinates

We now construct the reflectivity function and the operator that maps it to seismic
data. This is done by applying the results of Section 3.5 to the Kirchhoff modeling
formula (3.64), and its equivalent in the Born approximation (3.37).

Theorem 3.7.1 Suppose microlocally Assumptions 1, 2, 3, 4, 5 are satisfied. Let
HMN be the Fourier integral operator with canonical relation given by the extended
map (x, ξ, e, ε) 7→ (y′, η′) constructed in Section 3.5, and with amplitude to highest
order given by (2π)

n
2 (2iτ)BMN(y′I , x, η′J , ε), such that BMN (ε = 0) is as given in The-

orem 3.4.2. Then the data, in both Born and Kirchhoff approximations, is given by
HMN acting on a distribution rMN (x, e) of the form

rMN(x, e) = (pseudo)(x, Dx, e)(distribution)(x), (3.67)

For the Kirchhoff approximation this distribution equals ‖∂zn
∂x
‖δ(zn(x)), while the prin-

cipal symbol of the pseudodifferential operator equals RMN(x, e), so to highest or-
der rMN(x, e) = RMN (x, e)‖∂zn

∂x
‖δ(zn(x)). For the Born approximation the function

rMN(x, e) is given by a pseudodifferential operator acting on
(

δcijkl(x)

ρ(x)
, δρ(x)

ρ(x)

)
α
, with

principal symbol (2iτ(x, ξ, e))−1wMN ;α(x, ξ, e), see (3.39).
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Proof We do the proof for the Kirchhoff approximation using (3.64); for the Born
approximation the proof is similar. Since Assumption 5 is satisfied, the projection
πY ′ of ΛMN into T ∗Y ′\0 is an embedding, and the image is a coisotropic submanifold
of T ∗Y ′\0. Therefore we can apply Lemma 3.5.1. Formula (3.63) implies that the
phase factor eiΦMN can be written in the form

eiΦMN (y′I ,x,η′J ) = ei(SMN (y′I ,x,η′J ,0)+〈y′J ,η′J 〉)

= (2π)−(n−1−c)

∫
ei(SMN (y′I ,x,η′J ,ε)+〈y′J ,η′J 〉−〈e,ε〉) dε de;

we define

ΨMN(y′, x, e, η′J , ε) = SMN(y′I , x, η′J , ε) + 〈y′J , η′J〉 − 〈e, ε〉.

Thus the number of phase variables is increased by making use of a stationary phase
argument. Let BMN (y′I , x, η′J , ε) be as described. Then we obtain

Grefl
MN(y′) = (2π)−

|J|+n−1−c
2

− 2n−1−c
2

∫ (
(2π)

n
2 2iτ(η′)BMN(y′I , x, η′J , ε)RMN(x, e) + l.o.t.

)
× eiΨMN (y′,x,e,η′J ,ε)

∥∥∥∥∂zn

∂x

∥∥∥∥ δ(zn(x)) dη′J dε dx de. (3.68)

In this formula the data is represented as a Fourier integral operator acting on
‖∂zn

∂x
‖δ(zn(x)) considered as a function of (x, e). Multiplying by H−1

MN gives a pseu-
dodifferential operator of the form described acting on ‖∂zn

∂x
‖δ(zn(x)). Thus we obtain

the result. ¤

3.7.2 The inversion operator

The operator HMN is invertible. A choice of phase function and amplitude for its
inverse is given by (see Chapter 8 of Treves [58])

−ΨMN(y′, x, e, η′J , ε), BMN (y′I , x, η′J , ε)−1

∣∣∣∣det
∂(y′, η′)

∂(y′I , x, η′J , ε)

∣∣∣∣ ,
respectively. Thus microlocally an explicit expression for rMN(x, e) in terms of the
data is given by

rMN(x, e) =

∫
BMN(y′I , x, η′J , ε)−1

∣∣∣∣det
∂(y′, η′)

∂(y′I , x, η′J , ε)

∣∣∣∣
× e−iΨMN (y′,x,e,η′J ,ε)dMN(y′) dη′J dε dy′. (3.69)

Since the function rMN(x, e) is to highest order equal to the product of reflection
coefficient and the singular function of the reflector surface, this reconstruction of the
function rMN(x, e) leads to the following result for Kirchhoff data.
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Corollary 3.7.2 Suppose that the medium above the reflector is given, and that it
satisfies Assumptions 1, 2, 3, 4, 5. Then one can reconstruct the position of the
interface and the angle dependent reflection coefficient Rµν(x, e) on the interface.

The motivation for Lemma 3.5.1 can be explained in case e is chosen to be the
scattering angle/azimuth. Suppose there is high-frequency data that is not from a
given model. In the Kirchhoff case this may be because the medium above the inter-
face is not correctly chosen, or because the data cannot be modeled at all by Kirchhoff
modeling. To such data there is no natural value of the scattering angle/azimuth as-
sociated. So to transform it to (x, e) coordinates the value of e must be chosen. This
is precisely the choice that we have in the proof of Lemma 3.5.1, where the function
e(y′, η′) on T ∗Y ′\0 is chosen.

3.7.3 Annihilators of the data

The result of the previous subsections gives information on the problem of recon-
structing the smooth background medium (or, in the Kirchhoff approximation, the
smooth medium parameters above/in between the interfaces). If n−1−c > 0 there is
a redundancy in the data through the variable e. If the smooth medium parameters
(above the interface) are correct, then applying the operator H−1

MN of Theorem 3.7.1
to the data results in a reflectivity function rMN(x, e), such that the position of the
singularities does not depend on e. The fact that the inverted data should ‘line up’
in the variable e can be used as a criterion to assess the accuracy of the background
medium.

One way to measure how well the data line up is by taking the derivative with
respect to e. If rMN(x, e) depends smoothly on e as in (3.67), then ∂

∂e
rMN(x, e) is

one order less singular than if it would not have this smooth dependence on e (for
instance a δ function versus its derivative in the Kirchhoff case). Taking also the
factor in front of the δ function of rMN into account, see (3.67), we obtain that to the
highest two orders (

RMN (x, e)
∂

∂e
− ∂Rprin

MN

∂e
(x, e)

)
rMN(x, e) = 0. (3.70)

If RMN (x, e) is nonzero then the lower order terms can be chosen such that this
equation is valid to all orders.

Conjugating the differential operator of (3.70) with the invertible Fourier integral
operator HMN we obtain a pseudodifferential operator on D′(Y ′). Thus we obtain
the following corollary of Theorem 3.7.1

Corollary 3.7.3 Let the pseudodifferential operators WMN(y′, Dy′) be given by

WMN(y′, Dy′) = HMN

(
RMN(x, e)

∂

∂e
− ∂RMN

∂e
(x, e)

)
H−1

MN .
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Then for Kirchhoff data dMN(y′) we have to the highest two orders

WMN(y′, Dy′)dMN(y′) = 0. (3.71)

For values of e where RMN(x, e) 6= 0 the operator WMN(y′, Dy′) can be chosen such
that (3.71) is valid to all orders.

In principle the operators WMN(y′, Dy′) can be used to obtain a quantitative
criterion of how well the data line up. Symes [55] discusses such criteria for acoustic
media using the offset coordinate.
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Notation

We use the notation Q(x, D) for a pseudodifferential operator with symbol Q(x, ξ),
Q(x, x0) for its distribution kernel and Qprin(x, ξ) for its principal symbol.

General

δij Kronecker delta
n p. 56
x p. 56
X ⊂ Rn p. 56
t p. 56
Y ′, y′ ∈ Y ′ p. 56
z = (z′, zn) p. 70
e ∈ E p. 81
ξ, η, ζ, τ, ε cotangent vectors

with x, y, z, t, e
πX , πY ′ p. 80

Subscripts

i, j, k, l p. 55,60
M, N p. 60
I, J p. 65
xI p. 65
a p. 71
µ, ν p. 71

Field quantities

ρ(x) p. 60
cijkl(x) p. 60
δcijkl(x), δρ(x) p. 75
gα(x) p. 80
ui(x, t) p. 60
fi(x, t) p. 60
uM(x, t), fM(x, t) p. 61
uM,±(x, t), fM,±(x, t) p. 63
Va(x, t) p. 71
Vµ(x, t) p. 72
dMN(y′) p. 90
rMN(x, e) p. 89

(Pseudo-)differential operators

Pil p. 60
Ail p. 61
QiM(x, D) p. 60
PM(x, D) p. 61
AM(x, D) p. 61
BM(x, D) p. 63
R0

µν(z, Dz′, Dt) p. 71
Rµν(z, Dz′, Dt) p. 71
NMN ;αβ(x, D) p. 80
WMN(y′, Dy′) p. 91

FIOs and related quantities

xM(x0, ξ0, t),
ξM(x0, ξ0, t) p. 64

CM,±, CM p. 64,65
φM,±, φM p. 65
AM,± p. 66
AM p. 67
GM p. 62
GM,± p. 63
δGil, δGMN p. 75
FMN ;ijkl, FMN ;0 p. 78
FMN ;α p. 80
ΦMN p. 76
BMN p. 76
wMN ;ijkl, wMN ;0 p. 76
Λ0,MN p. 76
ΛMN p. 78
L p. 80
MMN p. 86
ΨMN p. 87
HMN p. 89





Chapter 4

Linearized inversion when
traveltime injectivity is violated

Abstract

In this chapter we analyze the seismic inverse problem for acoustic media in the pres-
ence of multipathing. The problem is to determine the acoustic wavespeed in the
interior of the medium from measurements at the boundary. We make two approxi-
mations. First a highfrequency approximation. Secondly we perform a linearization
or Born approximation where the wavespeed is written as the sum of lowfrequency
background c(x) and a highfrequency perturbation δc(x). We analyze the problem of
reconstructing the highfrequency component given the lowfrequency background.

It is well known that under quite general conditions the linearized forward oper-
ator F : δc 7→ data is a Fourier integral operator (FIO). If the so called traveltime
injectivity condition is satisfied then the normal operator N = F ∗F is an invertible
pseudodifferential operator and (asymptotically) a least squares inverse exists.

Our main question is whether F is still invertible if the traveltime injectivity
condition is violated. In that case the normal operator is the sum of an invertible
pseudodifferential operator and a nonmicrolocal part. We first give conditions when
this nonmicrolocal part is an FIO. After that we investigate when the nonmicrolocal
part is less singular than the pseudodifferential part, in which case F is still invertible.
In the usual imaging method the nonmicrolocal terms would lead to artifacts, for
which we obtain estimates. We give an example where the nonmicrolocal part is as
singular as the pseudodifferential part of N . We show also that in generic smooth
media the nonmicrolocal part is less singular.

4.1 Introduction

In this chapter we study seismic imaging in the presence of multipathing. In particular
we study whether it is possible to obtain a correct image in certain situations where
the rays do not satisfy the so called traveltime injectivity condition. We first describe
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some of the ideas in seismic imaging in the presence of multipathing. Our main
reference for this topic is Ten Kroode, Smit and Verdel [34]. For elastic media this
theory is also described in Section 3.4.

The propagation of sound waves in a medium with soundspeed c(x) and constant
density is described by the acoustic wave operator

P =
1

c2(x)

∂2

∂t2
−

n∑
i=1

∂2

∂x2
i

.

The acoustic velocity field u(x, t) due to a source f(x, t) satisfying f(x, t) = 0 if t < 0
is given by the solution to the linear partial differential equation

Pu = f

that satisfies the initial conditions u(x, 0) = 0, ∂u
∂t

(x, 0) = 0. If the source is a delta
function f(x, t) = δ(x−s)δ(t), where s is the source position, then the solution is the
fundamental solution or Green’s function and denoted by G(x, s, t).

In the idealized seismic experiment we assume we have an acoustic medium X,
with boundary ∂X. Often the medium is the subsurface described by {x ∈ Rn | xn >
0} with boundary ∂X = Rn−1, where n = 2 or 3. One measures the signal due
to different sources, at a number of receivers during some time interval It =]0, T [.
Sources and receivers are distributed over source and receiver manifolds Σs, Σr that
are assumed to be open parts of the boundary ∂X. The idealized seismic dataset is
the set

D = {G(r, s, t) | r ∈ Σr, s ∈ Σs, t ∈ It}.

Essentially one is interested in determining the soundspeed c(x) in the medium from
the data.

To model and invert the data we make two important approximations. The first
is a highfrequency approximation. This allows us to use the techniques of microlocal
analysis. The main idea of microlocal analysis is that the singularities or highfre-
quency part of a function f(x) can be localized both with respect to position x as
with respect to wavevector ξ, which is an element of the cotangent space T ∗xX\0. In
particular this allows one to resolve the multipathing.

The second approximation is that we do a linearization or Born approximation
in the medium coefficients. The full soundspeed is written as the sum of a smooth
(lowfrequency) background velocity c and a perturbation δc, that contains the singu-
larities (highfrequency part). The Green’s function is written as G + δG, where

δG(r, s, t) = −
∫

G(r, x, t− t′) δP G(x, s, t′) dx dt′. (4.1)

The map F : δc(x) 7→ δG(r, s, t) is called the linearized forward map. We assume
that, after preprocessing, the data contains only singly reflected waves (no direct



4.1 Introduction 97

σ ρξ

αβ
x

s r

θ

Figure 4.1: Picture of the scattering and the different coordinates

waves and no multiple reflection), which implies that δG describes all the data. The
problem that we address here is the reconstruction of the singular part δc(x), given
the smooth background velocity c(x).

Under quite general conditions (see Ten Kroode, Smit and Verdel [34]) the lin-
earized forward operator F is a Fourier integral operator (FIO), that is, it has a kernel
of the form

F (r, s, t, x) =

∫
A(r, s, t, x, Θ)eiΦ(r,s,t,x,Θ) dΘ.

(see Duistermaat [17], Hörmander [27], Treves [58]). This was proved by Rakesh [46],
Hansen [22], while in the present setting it was proved by Ten Kroode, Smit and Verdel
[34]. For elastic media this result is given in Theorem 3.4.2. Let Y ′ = Σr×Σs×It. The
positions in T ∗Y ′\0 where F maps the singularities of δc are given by the canonical
relation Λ ⊂ T ∗Y ′\0×T ∗X\0. It can be parametrized conveniently by position of the
scattering point x, frequency τ and the phase directions of the incoming and outgoing
rays at the scattering point α and β, that were denoted by α̂ and α̃ respectively in
the previous chapter (see below equation (3.47)). Using these parameters we have

Λ = {(r(x, α), s(x, β), φr(x, α) + φs(x, β), ρ(x, α, τ), σ(x, β, τ), τ,

x,− τ

c(x)
(α + β)) | x ∈ X, τ ∈ R, α, β ∈ Sn−1}. (4.2)

Here r(x, α), s(x, β) are the receiver and source coordinates respectively, in other
words the positions where the (x, α) or (x, β) ray hits the receiver or source surface.
By ρ(x, α, τ), σ(x, β, τ) we denote the corresponding cotangent vectors, and φr, φs are
the traveltimes from x to the receiver and the source respectively. Sometimes we
will also use the tangential slowness vectors pr = −τ−1ρ, ps = −τ−1σ ∈ Rn−1 (Note
that the notation differs from the notation in [34, 52]). A picture of the scattering
and the different coordinates is given in Figure 4.1. It describes the scattering due
to a singular component of δc with coordinates x, ξ = − (α+β)τ

c(x)
. A highfrequency

component with coordinates s, σ leads to a signal that propagates along a uniquely
determined ray. At x it interacts with δc (the multiplication in (4.1)), leading to a
scattered signal that propagates along a different ray to the receiver.

To find an inverse for F we use the method of least squares, since there is a
redundancy in the data. The operator F has a left inverse if and only if the normal
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operator N = F ∗F is invertible. In that case a left inverse is given by

N−1F ∗. (4.3)

The operator N plays therefore an important role. Beylkin [8] has shown that if there
are no caustics on the rays connecting source and receiver points to the scattering
points, then the normal operator is an invertible pseudodifferential operator of order
n−1. Ten Kroode e.a. [34] have shown that this result still holds when the no-caustics
assumption is replaced by the less restrictive traveltime injectivity condition (part ii)
of Assumption 5, we will say more about this assumption in Section 4.3 below).
The medium satisfies the traveltime injectivity condition if, given a ray defined by
receiver coordinate and slowness and another ray defined by source coordinate and
slowness and the travel time, one can uniquely solve for the intersection point if the
rays intersect. A pseudodifferential operator of order n − 1 is a continuous map
H(s) → H(s−(n−1)). It can be inverted asymptotically, provided that the amplitude is
nonzero, so in this case the operator F has an asymptotic left inverse. See also Nolan
and Symes [41], who discuss the case of lower dimensional acquisition manifolds, and
Section 3.4 of this thesis, where the case of elastic media is discussed for general
acquisition manifolds.

So if the traveltime injectivity condition is satisfied there is an inverse for the
linearized forward map F . What if it is not satisfied? This is the subject of the
present chapter. It has been discussed by Ten Kroode e.a. [34]. However, there is
more to say about this subject, and we show that one of their results (Theorem 3.2)
is actually incorrect.

Examples of rayconfigurations that cause this situation are given in Figure 4.2 in
Section 4.3. In this case one cannot distinguish between scattering at x and x̄ using
data for this value of the scattering angle θ. Often by using data related to different
values of θ one can still make the distinction, so that inversion is still possible. In
some cases this is not possible.

We will analyze the problem of inversion in such situations using the normal
operator. Ten Kroode e.a. [34] showed that the normal operator is the sum of a pseu-
dodifferential part Nψdo and a nonmicrolocal part Nnml (we call it the nonmicrolocal
part and not the nonlocal part, because nonmicrolocal refers to the highfrequency
part, which is nonlocal on the cotangent bundle T ∗X\0). If the nonmicrolocal part is
less singular than the pseudodifferential part then N can still be inverted asymptoti-
cally, treating Nnml as a perturbation. This approach also gives an idea of the artifact
(error) that arises when we use N−1

ψdo instead of N−1 in (4.3), i.e. when we ignore the
nonmicrolocal part.

We give an overview of the rest of the chapter. The first step is to check when
the normal operator is a Fourier integral operator. This is the subject of Section 4.3,
using some of preliminaries that are explained in Section 4.2. We simplify a condition
obtained by Ten Kroode e.a. [34] for the nonmicrolocal part to be a Fourier integral
operator of order n−1

2
.
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Next we note that this does not imply that Nnml is continuous H(s) → H(n−1
2

).

The question between which Sobolev space Nnml is continuous is in general quite
difficult. It involves the study of so called degenerate Fourier integral operators (see
e.g. Hörmander [27], Seeger [47, 48], Phong and Stein [43, 44]). We discuss this in
Section 4.4. The nonmicrolocal part is at most as singular as the pseudodifferential
part. We give conditions when it is less singular than the pseudodifferential part.
Using results of Seeger [47] we derive detailed estimates for the case n = 2.

In Section 4.5 we start with an example of this singular behavior. We also give
an example where the nonmicrolocal part is less singular than the pseudodifferential
part and an example where the condition of Section 4.3 is violated.

In Section 4.6 we show that in generic smooth media (i.e. media with no special
properties such as symmetries) the nonmicrolocal part is less singular than the pseu-
dodifferential part. We use results on the perturbation of rays when the medium is
perturbed, that are given in Appendix 4.A. We end with a discussion of the results.

4.2 Preliminaries, the linearized forward operator

In this section the construction of rays, traveltimes and of the derivatives of rays is
discussed. After that we explain precisely the statement that F is an FIO.

The rays can be found by solving a Hamilton system in T ∗X, with parameter t.
The Hamiltonian is given by H(x, ξ) = c(x)‖ξ‖, the system is

∂xi

∂t
=

∂H

∂ξi
(x, ξ) = c(x)

ξi

‖ξ‖ ,

∂ξi

∂t
= −∂H

∂xi
(x, ξ) = − ∂c

∂xi
(x)‖ξ‖. (4.4)

The mapping (x0, ξ0, t) 7→ (x(x0, ξ0, t), ξ(x0, ξ0, t)), that maps initial values x0, ξ0 to
the solution of (4.4) at time t is called the Hamilton flow. The Hamilton flow is
homogeneous in ξ0, ξ and it conserves the Hamiltonian. If we let α0 = ξ0

‖ξ0‖ , α = ξ
‖ξ‖ ,

then the Hamilton flow gives a map (x0, α0, t) 7→ (x(x0, α0, t), α(x0, α0, t)).

The Jacobi matrix ∂(x,ξ)
∂(x0,ξ0)

(t) satisfies an ordinary differential equation along the

ray. By differentiating (4.4) we obtain the Jacobi or neighboring ray equations

∂

∂t

∂xi

∂(x0, ξ0)
=
∑

j

(
∂2H

∂ξi∂xj

∂xj

∂(x0, ξ0)
+

∂2H

∂ξi∂ξj

∂ξj

∂(x0, ξ0)

)
,

∂

∂t

∂ξi

∂(x0, ξ0)
=
∑

j

(
− ∂2H

∂xi∂xj

∂xj

∂(x0, ξ0)
− ∂2H

∂xi∂ξj

∂ξj

∂(x0, ξ0)

)
. (4.5)

The Jacobi matrix is symplectic.

We will now investigate the map (x0, α0) 7→ (r, pr, φr), that maps a pair (x0, α0) in
the medium to receiver coordinate r, receiver slowness pr and traveltime φr. For the
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map (x0, β0) 7→ (s, ps, φs) the same results are valid. If (x0, α0, t) 7→ (x, α) denotes
the Hamilton flow to a neighborhood of the receiver point, and xn is the coordinate
normal to the surface, then this map is obtained by solving the traveltime to the
receiver φr(x0, α0) from

xn(x0, α0, φr) = 0

and then setting

r(x0, α0) = (x1(x0, α0, φr(x0, α0)), . . . , xn−1(x0, α0, φr(x0, α0))),

pr(x0, α0) =
1

c(x(x0, α0))
(α1(x0, α0, φr(x0, α0)), . . . , αn−1(x0, α0, φr(x0, α0))).

In this way we can define φr provided there are no rays that come in tangent to the
surface (so called grazing rays). The derivatives of this map are

∂φr

∂(x0, α0)
= −

(
∂xn

∂t

)−1

· ∂xn

∂(x0, α0)

∂r

∂(x0, α0)
=

∂(x1, . . . , xn−1)

∂(x0, α0)
− ∂(x1, . . . , xn−1)

∂t

(
∂xn

∂t

)−1
∂xn

∂(x0, α0)
.

∂pr

∂(x0, α0)
=

∂

∂(x0, α0)

(
α1

c(x)
, . . . ,

αn−1

c(x)

)
−
(

∂

∂t

α1

c(x)
, . . . ,

∂

∂t

αn−1

c(x)

)(
∂xn

∂t

)−1
∂xn

∂(x0, α0)
. (4.6)

It is not difficult to show that ∂(r,pr,φr)
∂(x0,α0)

is invertible, so that the map (x0, α0) 7→
(r, pr, φr) is a diffeomorphism. One more property of ∂(r,pr ,φr)

∂(x0,α0)
will be needed. The

derivative of (r, pr) with respect to x along the ray vanishes∑
i

∂(r, pr)

∂x0,i

α0,i = 0, (4.7)

while the derivative of the traveltime φr along the ray satisfies∑
i

∂φr

∂x0,i

α0,i = − 1

c(x0)
. (4.8)

We discuss the linearized forward operator F . Ten Kroode e.a. have shown that
under certain conditions it is an FIO. This property is essentially microlocal. Suppose
a ray determined by s, ps and a ray determined by r, pr intersect in some point x,
suppose the rays intersect source resp. receiver surface transversally (no grazing rays)
and the scattering angle 6= π. This leads to a contribution to F that is microlocally
an FIO. Since the two rays have at most a finite number of intersections with the



4.3 Conditions for the normal operator to be a FIO 101

same traveltime tr + ts there is for a small enough neighborhood of (r, s, tr + ts, ρ, σ, τ)
in T ∗Y ′\0 a finite number of such contributions.

Recall that we define Y ′ = Σr × Σs × It, let y′ = (r, s, t) ∈ Y ′ and denote
the corresponding cotangent vector by η′. Let K ⊂ T ∗Y ′\0 be the set of points
where one of the rays is tangent or scattering over π occurs. This set is closed,
so F is microlocally an FIO on an open set (T ∗Y ′\0)\K. The linearized forward
operator F can be made into a globally defined Fourier integral operator by applying
a pseudodifferential cutoff ψ(y′, Dy′). Here ψ(y′, η′) is a homogeneous symbol of order
0 that vanishes outside some compact subset V1 ⊂ (T ∗Y ′\0)\K, and is equal to 1 on
a compact subset V2 ⊂ V1. The operator ψ(y′, Dy′) ◦ F is now a finite sum of local
Fourier integral operators.

Another way of dealing with scattering over π and grazing rays is to assume that
it is absent, in other words that the set K is empty. This is done by Ten Kroode e.a.
[34] and Nolan and Symes [41]. In this case we have to be careful at the boundary
of T ∗Y ′\0. Although microlocally F is an FIO, the microlocal contributions do not
satisfy uniform estimates, and therefore they may diverge at the boundary. Strictly
speaking this situation should be taken into account in [34, 41]. It is for instance not
clear that the symbol of the normal operator (expression (64) in [34]) is finite.

4.3 Conditions for the normal operator to be a

FIO

The condition under which the normal operator is a Fourier integral operator were
derived by Ten Kroode e.a. [34]. It turns out that these conditions can be simplified
and have a geometrical interpretation. We also give a characterization of the canonical
relation of this Fourier integral operator. This is important since the continuity of the
normal operator between Sobolev spaces depends on the properties of the canonical
relation.

The adjoint F ∗ is a Fourier integral operator of the same order as F with canonical
relation

Λ∗ = {(x, ξ; y′, η′) | (y′, η′; x, ξ) ∈ Λ}.

We discuss the composition of canonical relations Λ∗ ◦ Λ. Let L = Λ∗ × Λ, M =
T ∗X\0× diag(T ∗Y ′\0)× T ∗X\0. The compose Λ∗ ◦ Λ is given by the projection of
L ∩M on T ∗X\0× T ∗X\0, in other words

Λ∗ ◦ Λ = {(x̄, ξ̄; x, ξ) | there is (y′, η′) with (y′, η′; x, ξ) ∈ Λ, (y′, η′; x̄, ξ̄) ∈ Λ}.

If L and M intersect cleanly (this will be explained below), then the compose is
again a canonical relation, see e.g. Hörmander [26], Theorem 21.2.14, or Treves [58]
paragraph 8.5.
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In the present case the condition that L and M intersect is that there are x, α,
β, τ, x̄, ᾱ, β̄, τ̄ , such that

y′(x, α, β, τ) = y′(x̄, ᾱ, β̄, τ̄)

η′(x, α, β, τ) = η′(x̄, ᾱ, β̄, τ̄ ). (4.9)

These equations say that

1. Both x, x̄ are on the ray determined by r, pr and α, ᾱ are the directions of the
ray at x resp. x̄.

2. Both x, x̄ are on the ray determined by s, ps and β, β̄ are the directions of the
ray at x resp. x̄.

3. If x 6= x̄ then the equality φr(x, α) + φs(x, β) = φr(x̄, ᾱ) + φs(x̄, β̄) implies that
the (r, pr)-ray hits x first and then x̄, while the (s, ps) ray first hits x̄ and then
x. The traveltimes from x to x̄ along the two rays are equal.

4. τ = τ̄ .

In other words this means that there are two rays originating in x̄, in the directions
ᾱ, resp. −β̄, that intersect in x at the same traveltime. Therefore (4.9) is satisfied if
and only if there is t such that

∆x(x̄, ᾱ, β̄, t) := x(x̄, ᾱ, t)− x(x̄, β̄,−t) = 0, (4.10)

and

x = x(x̄, ᾱ, t),

α = α(x̄, ᾱ, t),

β = β(x̄, β̄,−t). (4.11)

The compose Λ∗ ◦ Λ is then given by

{(x̄, ξ(x̄, ᾱ, β̄, t, τ̄)), (x, ξ(x, α, β, t, τ)) | equations (4.10), (4.11) are satisfied}. (4.12)

There are two types of solutions to these equations, that we will call solutions of
type 1 resp. type 2. First there is the solution where t = 0 and (x, α, β) = (x̄, ᾱ, β̄).
Secondly there may be solutions such that t 6= 0 and in general (x, α, β) 6= (x̄, ᾱ, β̄).
These give a contribution to the normal operator that is in general not microlocal
(i.e. (x, ξ) 6= (x̄, ξ̄)).

Such a configuration is quite special, i.e. most rays that intersect each other do
not give such a situation, because the traveltimes are different (see Figure 4.2a). In
Figure 4.2b,c we give two situations that have a nonmicrolocal term. An example of
a nonmicrolocal term with no special properties is given in Figure 4.2b. An example
where x = x̄ is given in Figure 4.2c. In general in the situation of Figure 4.2c one
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Figure 4.2: Ray configuarations where the Traveltime Injectivity Condition holds (a),
is violated in a generic way (b), resp. in a special way such that x = x̄ (c).

has ξ 6= ξ̄, but we may even have α+β
‖α+β‖ = ᾱ+β̄

‖ᾱ+β̄‖ , so that ξ/‖ξ‖ = ξ̄/‖ξ̄‖, or (in n = 3

dimensions) α + β = ᾱ + β̄, so that ξ = ξ̄, i.e. a selfintersection of Λ.

The intersection of the manifolds L and M defined above is called clean if

L ∩M is a manifold, and for each element of L ∩M

TL ∩ TM = T (L ∩M). (4.13)

This is equivalent to the statement that L and M intersect transversally in a sub-
manifold of T ∗X\0 × T ∗Y ′\0 × T ∗Y ′\0 × T ∗X\0. For solutions of type 1 we show
below that this is automatically the case. For solutions of type 2 we require that the
intersection is transversal (clean with excess 0). This means that the matrix

M =


∂r
∂x

∂r
∂α

0 ∂r
∂x̄

∂r
∂ᾱ

0
∂pr
∂x

∂pr
∂α

0 ∂pr
∂x̄

∂pr
∂ᾱ

0
∂s
∂x

0 ∂s
∂β

∂s
∂x̄

0 ∂s
∂β̄

∂ps
∂x

0 ∂ps
∂β

∂ps
∂x̄

0 ∂ps
∂β̄

∂φ
∂x

∂φ
∂α

∂φ
∂β

∂φ
∂x̄

∂φ
∂ᾱ

∂φ
∂β̄

 .

coming for linearizing (4.9) has maximal rank (we omit the part relating to τ, τ̄ since
it is trivial). In the following lemma we show that in fact it is sufficient to consider
the much smaller matrix

C =
(

∂x(x̄,ᾱ,t)
∂x̄

− ∂x(x̄,β̄,−t)
∂x̄

∂x(x̄,ᾱ,t)
∂ᾱ

−∂x(x̄,β̄,−t)

∂β̄

∂x(x̄,ᾱ,t)
∂t

+ ∂x
∂t

(x̄, β̄,−t)
)

. (4.14)
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coming from linearizing (4.10). Note that this parallels the simplification of the
system (4.9) to (4.10). It implies that the relation of the normal operator (4.12) is a
manifold, as of course it should be.

Lemma 4.3.1 Suppose x̄, ᾱ, β̄, x, α, β, t are such that equations (4.10) and (4.11) are
satisfied. Then the rank of the matrix M satisfies

rank M = 3n− 3 + rankC. (4.15)

In particular rank M is maximal if and only if rank C is maximal.

Proof Let the assumption of the lemma be satisfied. We write the matrix M as
a product of two factors, where one factor contains the derivatives ∂(r,pr,φr)

∂(x,α)
, ∂(s,ps,φs)

∂(x,β)

and the other factor relates (x, α, β) to (x̄, ᾱ, β̄). Here we use that the map

(x̄, ᾱ) 7→ (r(x̄, ᾱ), pr(x̄, ᾱ), φr(x̄, ᾱ))

equals the composition of the maps

(x̄, ᾱ) 7→ (x(x̄, ᾱ, t), α(x̄, ᾱ, t)),

(x, α) 7→ (r(x, α), pr(x, α), φr(x, α) + t).

The first map is the transport of (x̄, ᾱ) over time t using the Hamilton system. This
time t needs to be added to the traveltime φ(x(x̄, ᾱ, t), α(x̄, ᾱ, t)) to obtain the travel-
time from (x̄, ᾱ) to the surface. The map (x̄, β̄) 7→ (s(x̄, β̄), ps(x̄, β̄), φs(x̄, β̄)) can be
decomposed in a similar, where the role of the variables (α, ᾱ, r, pr) and (β, β̄, s, ps)
is interchanged and t↔ −t. It follows that

∂(r, pr, φr)

∂(x̄, ᾱ)
(x̄, ᾱ) =

∂(r, pr, φr)

∂(x, α)
(x, α) · ∂(x, α)

∂(x̄, ᾱ)
(x̄, ᾱ, t),

∂(s, ps, φs)

∂(x̄, β̄)
(x̄, β̄) =

∂(s, ps, φs)

∂(x, β)
(x, β) · ∂(x, β)

∂(x̄, β̄)
(x̄, β̄,−t).

This can also be seen from expression (4.6) above. Thus the matrix M can be de-
composed as follows

M = A ·M ′,

where A and M ′ are (4n− 3)× (4n− 2) resp. (4n− 2)× (6n− 4) matrices given by

A =


∂(r,pr)
∂(x,α)

(x, α)
∂(s,ps)
∂(x,β)

(x, β)
∂φr

∂(x,α)
(x, α) ∂φs

∂(x,β)
(x, β)

 ,

M ′ =


In

∂x
∂x̄

(x̄, ᾱ, t) ∂x
∂ᾱ

(x̄, ᾱ, t)

In−1
∂α
∂x̄

(x̄, ᾱ, t) ∂α
∂ᾱ

(x̄, ᾱ, t)

In
∂x
∂x̄

(x̄, β̄,−t) ∂x
∂β̄

(x̄, β̄,−t)

In−1
∂β
∂x̄

(x̄, β̄,−t) ∂β
∂β̄

(x̄, β̄,−t)

 . (4.16)
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The matrix A has maximal rank since the matrices

∂(r, pr, φr)

∂(x, α)
(x, α),

∂(s, ps, φs)

∂(x, β)
(x, β)

are invertible. But it has a nonzero kernel. To find this kernel we note that

∂(r, pr)

∂(x, α)
(x, α) ·

(
c(x) α

0

)
= 0,

∂φr

∂(x, α)
(x, α) ·

(
c(x) α

0

)
= −1.

The same is true with r, pr, α and s, ps, β interchanged. Hence

ker A = span(c(x) α, 0,−c(x) β, 0).

Now basic linear algebra says that

rank M = rankM ′ − dim(range M ′ ∩ ker A). (4.17)

By trying to solve w in the system v = M ′ · w one finds that v = (vx,1, vα, vx,2, vβ) ∈
range M ′ if and only if vx,1 − vx,2 ∈ rangeC ′, where

C ′ =
(

∂x(x̄,ᾱ,t)
∂x̄

− ∂x(x̄,β̄,−t)
∂x̄

∂x(x̄,ᾱ,t)
∂ᾱ

−∂x(x̄,β̄,−t)

∂β̄

)
.

Hence rank M ′ = 3n− 2 + rankC ′ and

dim(rangeM ′ ∩ ker A) = dim(range C ′ ∩ span(c(x)α + c(x)β)).

Using (4.17) and the fact that

rank C = rankC ′ + 1− dim(rangeC ′ ∩ span(c(x)α + c(x)β))

the result (4.15) follows. ¤

We summarize the properties of the intersection of L and M in the following
lemma. We use the notation p = (x, α, β, τ). To parametrize Λ, the parameter p
varies in some open subset P ⊂ X × Sn−1× Sn−1×R. It is important to understand
that Λ is an immersed manifold, it is the image of an immersion. So although it may
have selfintersections the intersecting parts will be disjoint in the preimage.

Lemma 4.3.2 The set L ∩M is a union of a microlocal part

{(x, ξ, y′, η′, y′, η′, x, ξ) | (y′, η′; x, ξ) ∈ Λ} (4.18)

and a nonmicrolocal part

{(x(p̄), ξ(p̄), y′(p̄), η′(p̄), y′(p), η′(p), x(p), ξ(p)) | (y′(p̄), η′(p̄)) = (y′(p), η′(p)), p̄ 6= p}.
(4.19)

For the microlocal part the intersection is clean with excess n − 1. For the nonmi-
crolocal part the intersection is transversal if and only if rank M is maximal, if and
only if rank C is maximal. If Λc ⊂ Λ is a conically compact subset of Λ, and we
replace L by Lc = Λ∗c ×Λc, then the microlocal and the nonmicrolocal part of Lc ∩M
are both conically compact.
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Proof The projection πY ′ of Λ on T ∗Y ′\0 is immersive. So for any point (x, ξ, y′, η′)
∈ Λ there is a small open neighborhood Λ0 ⊂ Λ such that πY ′ acting on Λ0 is an
embedding, and hence Λ∗0×Λ0∩M = {(x, ξ, y′, η′, y′, η′, x, ξ) | (y′, η′, x, ξ) ∈ Λ0}. Since
(y′, η′, x, ξ) is arbitrary we can find subsets Λi ⊂ Λ, with i in some index set I such
that πY ′ acting on Λi is an embedding. Let

Lml =
⋃
i∈I

Λ∗i × Λi,

then Lml ∩M consists precisely of the solutions of (4.9) of type 1. For each i the
intersection Λ∗i ×Λi ∩M is transversal in the submanifold T ∗X\0× (diag πY ′(Λi))×
T ∗X\0, so the intersection is clean with excess given by codim πY ′(Λi) = dim Y ′ −
dim X = n− 1.

Let Lnml = L\Lml. Clearly the elements of Lnml ∩M precisely correspond to the
solutions to (4.9) of type 2. By definition the intersection is transversal if and only if
rank M is maximal which by Lemma 4.3.1 is equivalent to rank C is maximal.

If Λc is a compact subset of Λ, then Lc is closed and we may replace M by
some conically compact subset of Mc ⊂ M . From the formula (4.18) it follows that
Lc;ml ∩Mc is conically compact. Also Lc;nml = Lc\Lc;ml is conically compact, and
hence Lc;nml ∩Mc is conically compact. ¤

From the lemma it follows that in parameterspace P the microlocal and nonmi-
crolocal terms are well separated. So if Λc is some compact subset of Λ we can choose
a finite number of Λi, such that Λc ⊂

⋃
i Λi and the compose Λ∗i ◦ Λj is either fully

diagonal, or it is empty, or it only has a nonmicrolocal contribution. After applying a
pseudodifferential cutoff described in Section 4.2 the linearized forward operator can
be written as a finite sum (ψ(y′, Dy′)F ) = Fi, where the Fi have canonical relation Λi.
For each of the products F ∗i Fj we can apply the calculus of Fourier integral operators,
see for instance Hörmander [27] Theorem 25.2.3 and the preceding discussion. The
order of the compose also follows from the calculus, it satisfies

order F ∗i Fj = order F ∗i + order Fj +
e

2
=

n− 1

2
+

e

2
,

where e is the excess. So we have the following result.

Theorem 4.3.3 Let C be as defined in (4.14). Suppose that rank C is maximal on
L∩M . Let ψ(y′, Dy′) be a pseudodifferential cutoff as described in Section 4.2. Then
N = (ψ(y′, Dy′)F )∗(ψ(y′, Dy′)F ) is the sum of a pseudodifferential operator Nψdo of
order n−1 and a Fourier integral operator Nnml of order n−1

2
. The canonical relation

Cnml of Nnml is given by (4.10), (4.11), (4.12), taking only solutions with t 6= 0.

The new aspect is the simple characterisation using the matrix C. In Section 4.5
we discuss when this condition is violated and we construct an example of such a
situation.
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Note that the fact that the nonmicrolocal part has lower order does not imply that
it is less singular as an operator between Sobolev spaces. This will be the subject of
the next section.

If there are no solutions to equations (4.10) such that the rays hit the receiver
resp. source manifold, then the normal operator is purely pseudodifferential. This
case has been discussed by Ten Kroode e.a. [34] and by Nolan and Symes [41].

4.4 Sobolev estimates for the nonmicrolocal part

and invertibility

In the previous section it is shown that under certain conditions the normal operator
is the sum of a pseudodifferential operator Nψdo of order n − 1 and a nonmicrolocal
Fourier integral operator Nnml of order n−1

2
. The pseudodifferential part is an invert-

ible operator H(s) → H(s−n+1). In this section we discuss for what values of m the
nonmicrolocal part is continuous H(s) → H(s−m). If this is the case with m < n − 1
then the nonmicrolocal part is less singular then the pseudodifferential part and their
sum is asymptotically invertible. The infimum of the set

{m |Nnml is continuous H(s) to H(s−m)}

will be called the Sobelev order of Nnml.
We first show that the nonmicrolocal part is at most as singular as the pseudod-

ifferential part.

Theorem 4.4.1 The operator F is continuous H(s) → H(s−(n−1)/2), and hence N is
continuous H(s) → H(s−n+1).

Proof We can write F as a finite sum F =
∑

k Fk, where the Fk have canonical
relation Λk ⊂ Λ such that Λ∗k ◦Λk is contained in the diagonal of (T ∗X\0)× (T ∗X\0).
Then F ∗k Fk is a pseudodifferential operator of order n − 1 and hence continuous
H(s) → H(s−n+1). Therefore the Fk are continuous H(s) → H(s−(n−1)/2). The “off
diagonal” terms can be estimated by the diagonal terms

2〈Fku, Flu〉 ≤ ‖Fku‖2 + ‖Flu‖2.

This implies that F is also continuous H(s) → H(s−(n−1)/2). ¤

Some basic facts about the calculation of the Sobolev order for general Fourier
integral operators E ′(X̄)→ D′(X) are described in Hörmander [27], Section 25.3 (here
X̄ is a copy of X such that x̄ ∈ X̄). It is well known that if the canonical relation C
is the graph of a bijective canonical map T ∗X\0 → T ∗X̄\0, then the Sobolev order
equals the order of the Fourier integral operator. In that case the projections of C
on T ∗X̄\0, T ∗X\0 are both bijective. If A is such a Fourier integral operator of order
m then A∗A is a pseudodifferential operator of order 2m and hence A is a continuous
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map H(s) → H(s−m). If the principal symbol of such an operator is invertible it is
called elliptic.

If the canonical relation is not the graph of a bijective canonical map, then the
projections π̄, π of C on T ∗X̄\0, resp. T ∗X\0 are not bijective. Denote by λ̄, λ the
corank of these projections at some point in C. Because dim X̄ = dim X it follows
from Hörmander [27] Lemma 25.3.6 that λ̄ = λ. The number λ plays an important
role in estimates of the Sobolev order. In fact Theorems 25.3.8, 25.3.9 in Hörmander
[27] give the estimate

maxC λ

6
≤ Sobolev order − order ≤ maxC λ

2
. (4.20)

If λ is constant over C (the projection is “vertical”) the right hand equality is valid.
If the projection is singular only in a lower dimensional subset of C then in general
the Sobolev order is better. An example where the projection is singular only in a
lower dimensional subset is when both projections π̄, π have a singularity of fold type,
in this case the left hand equality is valid.

Let us now calculate λ in the case at hand. It is convenient to use new coordinates
ν, θ instead of α, β, sometimes referred to as GRT coordinates. They are defined by
the following map Sn−1 × Sn−1 → Sn−1 × (]0, π[×Sn−2), see Burridge and Beylkin
[13]

ν =
α + β

‖α + β‖ ∈ Sn−1,

θ =

(
arccos(α · β),

−α + β

2 sin(arccos(α · β)/2)

)
∈]0, π[×Sn−2. (4.21)

Note that our definition is different from the usual definition because usually the
second component of θ is denoted by ψ, and the letter θ is used only for the first
component, that we will denote by θ1. The motivation for this transformation is that
ν now denotes the direction of the vector ξ, that is given in the new coordinates by

ξ(x, ν, θ, τ) = −2τ cos(θ1/2)

c(x)
ν. (4.22)

Recall the definition of the nonmicrolocal part of the canonical relation Cnml, see
(4.10), (4.11), (4.12). We assume that t 6= 0 in these equations, so that we are on
the nonmicrolocal part and that rankC is maximal so that Cnml is a manifold. Let
∆x(x̄, ν̄, θ̄, t) be the function ∆x with α, β transformed to ν, θ, let

V = {(x̄, ν̄, θ̄, t) |∆x(x̄, ν̄, θ̄, t) = 0}. (4.23)

From the assumption that rankC is maximal it follows that V is a submanifold of
X̄ × Sn−1 × (]0, π[×Sn−2) × R. Let x(x̄, ν̄, θ̄, t), ξ(x̄, ν̄, θ̄, t, τ) be the values of x, ξ
for the point in Cnml given by (x̄, ν̄, θ̄, t, τ) (see (4.11), (4.12)), and let ξ̄(x̄, ν̄, θ̄, τ) be
given by (4.22). Then Cnml is obtained by mapping V into T ∗X̄\0×T ∗X\0 as follows

Cnml = {(x(x̄, ν̄, θ̄, t), ξ(x̄, ν̄, θ̄, t, τ); x̄, ξ̄(x̄, ν̄, θ̄, τ) | (x̄, ν̄, θ̄, t) ∈ V, τ ∈ R}. (4.24)
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It turns out that λ equals the corank of the projection of V on x̄, ν̄ coordinates.
To see this let V be parametrized by coordinates p = (x̄′, ν̄ ′, θ̄′), that are a subset of
(x̄, ν̄, θ̄, t). Then Cnml can be parametrized by p, τ and the corank of the projection π̄ is

given by λ = corank ∂(x̄,ξ̄)
∂(p,τ)

. Using first that the map ξ̄ → (ν̄, ‖ξ̄‖) is a diffeomorphism

and then that ∂‖ξ‖
∂τ
6= 0, ∂(x̄,ν̄)

∂τ
= 0 one obtains

λ = corank
∂(x̄, ξ̄)

∂(p, τ)
= corank

∂(x̄, ν̄, ‖ξ‖)
∂(p, τ)

= corank
∂(x̄, ν̄)

∂p
. (4.25)

We state the resulting estimate as a theorem.

Theorem 4.4.2 Let the function ∆x, V and the coordinates p for V be as defined
above. The corank λ(p) of the projection π̄ of Cnml on T ∗X̄\0 at p is given by (4.25).
It is also given by λ = corank ∂∆x

∂(θ̄,t)
(p). The Sobolev order of Nnml satisfies

n− 1

2
+

maxp λ(p)

6
≤ Sobolev order Nnml ≤

n− 1

2
+

maxp λ(p)

2
.

Proof We only have to prove the new formula for λ. Let p = (x̄′, ν̄ ′, θ̄′), be coordi-
nates for V , denote the remaining variables by (x̄′′, ν̄ ′′, θ̄′′, t). We have

∂(x̄, ν̄)

∂p
=

∂(x̄′, ν̄ ′, x̄′′, ν̄ ′′)

∂(x̄′, ν̄ ′, θ̄′)
=

(
I 0

∂(x̄′′,ν′′)
∂(x̄′,ν̄′)

∂(x̄′′,ν̄′′)
∂θ̄′

)
. (4.26)

On the other hand, by the implicit function theorem we have(
∂∆x

∂(x̄′′, ν̄ ′′, θ̄′′, t)

)−1

· ∂∆x

∂(θ̄′, θ̄′′, t)
=

(
∂(x̄′′,ν̄′′)

∂θ̄′
0

∂(θ̄′′,t)
∂θ̄′

I

)
. (4.27)

It follows that both corank ∂(x̄,ν̄)
∂p

and corank ∂∆x
∂(θ̄,t)

are equal to corank ∂(x̄′′,ν̄′′)
∂(θ̄′)

. ¤

Note that if at some value of (x, ν) the projection is maximally degenerate, then
for all values of the scattering angle traveltime injectivity is violated. So indeed in
that situation it is possible that two reflectors lead to data that overlap (the wavefront
sets overlap). An example is given in the next section.

It is desirable to improve the result in Theorem 4.4.2. However, the mathematical
theory needed to give sharp Sobolev estimates is complicated and when this work
was done there were few results, mainly for n = 2. Phong and Stein [44, 43] give very
precise estimates for certain Fourier integral operators with analytic phase functions
that also possess a certain translation symmetry. Seeger [47] obtains somewhat weaker
results in the case that is relevant for us, with C∞ phase function that does not have
this translation symmetry. After this work was finished we learned about the paper
[48] that gives more general results, also for n > 2.
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We describe the result of Seeger [47] and apply it to the nonmicrolocal part of the
normal operator in the case n = 2. Seeger gives estimates for Fourier integral oper-
ators with relation C that is the conormal bundle of a codimension one submanifold
M of X̄ ×X. It is assumed that M is given by Φ(x̄, x) = 0. The projections of M on
X, X̄ are submersive (note that these projections are not π, π̄). The projections π̄, π
are singular if and only if the Monge-Ampere determinant defined by

I(x, x̄) := det

(
∂2Φ
∂x∂x̄

(
∂Φ
∂x

)t
∂Φ
∂x̄

0

)
.

vanishes. This can be checked for instance by choosing coordinates such that M is
the graph of a function of x̄1, x̄2, x1.

Because the projection of M on X̄, X is submersive the sets

Mx̄ = {x ∈ X | (x̄, x) ∈ M},
Mx = {x̄ ∈ X̄ | (x̄, x) ∈ M} (4.28)

are smooth immersed curves. Let

Ix̄(x) = I(x̄, x), x ∈Mx̄,

Ix(x̄) = I(x̄, x), x̄ ∈Mx. (4.29)

Now M is said to satisfy a left finite type condition of order m, m ∈ {3, 4, . . .} if for
every x̄ ∈ X̄ the function Ix̄ vanishes of order at most m− 2. Similarly M satisfies a
right finite type condition of order m, m ∈ {3, 4, . . .} if for every x ∈ X the function
Ix vanishes of order at most m−2. From Theorem 1.1 in Seeger [47] using the theory
of interpolation of function spaces (see e.g. Bergh and Löfström [6]) the following for
us relevant result follows

Lemma 4.4.3 Suppose m ≥ 3 and suppose that C satisfies both a left and a right
finite type condition of order m. Then a Fourier integral operator N of order µ is
continuous H(s) → H(s−µ−1/2+1/m−ε).

We apply this to our problem. In our situation not the canonical relation C but the
set C ′ obtained by setting ξ → −ξ (i.e. C ′ = {(x̄, ξ̄; x,−ξ) | (x̄, ξ̄; x, ξ) ∈ C}) can be
a conormal bundle. This doesn’t change the conclusions. Because C ′ is Lagrangian
some open part of C ′ is the conormal bundle of such a manifold M if the rank of
the projection from C ′ to the base space X̄ × X is 3 (the maximal value, since the
projection vanishes along the conic direction). For the moment we assume this is the
case. Violation of this condition is comparable to what happens at a caustic, this is
discussed below.

Let us give the finite type condition for our case. Seeger parametrizes C ′ by
x̄, x in M and a parameter for the conic direction, while we use x̄, ν̄, θ̄, t ∈ V and
the parameter τ for the conic direction. Instead of Mx̄, M

x we can thus define the
subsets Vx̄, V

x ⊂ V of V with constant value of x̄ resp. x(x̄, ν̄, θ̄, t). These are also
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smooth immersed curves. The function I(x̄, x) can be replaced by the product of this
function with any smooth function bounded away from zero. This is a consequence
of Leibnitz rule. In this way one can derive that I(x̄, x) can be replaced by det ∂(x̄,ν̄)

∂p

and, using equations (4.26), (4.27) also by J(x̄, ν̄, θ̄, t) = det ∂∆x
∂(θ̄,t)

. We therefore have

the following improved estimate.

Theorem 4.4.4 The canonical relation Cnml satisfies a left resp. right finite type
condition of order m, m ∈ {3, 4, . . .} if for all x̄ resp. x the function J(x̄, ν̄, θ̄, t)
defined above vanishes of order at most m− 2 on Vx̄, resp. V x. If Cnml satisfies both
a left and a right condition of order m then

Nnml is continuous H(s) → H(s−n/2+1/m−ε).

Let us now discuss what happens when the projection of Cnml on X̄ ×X is lower
than 3. In that case we the result is slightly modified. According to Hörmander [27],
lemma 25.3.7 one can apply a symplectic coordinate transformations on X̄ and/or X
such that C ′ is a conormal bundle. Such coordinate transformations correspond to
application of elliptic FIO’s which leave the Sobolev L2 estimates unchanged. Becuase
of the transformation we obtain different sets of curves instead of Vx̄, V

x, and using
these curves the theorem is still valid.

4.5 Examples

We have seen above that there are in general two problems with the normal operator.
First it may not be a Fourier integral operator. Second the nonmicrolocal part may
be as singular as the pseudodifferential part and then it is not clear whether the
normal operator, and hence the linearized forward operator, is still invertible. In this
section we give examples. In a situation with translation symmetry in a part of the
medium the projections π̄, π of the previous section may be maximally degenerate.
We discuss in how far F is not invertible. We then present numerical examples of such
a situation. After that we give an example where the conditions of Theorem 4.3.3
are violated. We end the section with an example of a nonmicrolocal contribution
such that the nonmicrolocal part of the normal operator is less singular than the
pseudodifferential part.

In our examples we only consider a part of the subsurface that contains the two
scattering points of a nonmicrolocal contribution. The rest of the medium is not of
interest, it can be chosen such that the rays that are involved reach the source/receiver
surfaces. In the numerical examples we give a plot of the soundspeed c(x) and of
some rays that lead to nonmicrolocal contributions. For the first and third example
we also also give two reflectors that are mapped onto each other by nonmicrolocal
contributions and we give the traveltime for both reflectors as a function of say the
receiver coordinate, with source coordinate fixed (on the vertical axes bounding the
region of interest, these can be mapped to the traveltimes for the real source and
receiver coordinates).
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Assume that in a part of the subsurface the soundspeed depends only one coor-
dinates, say xn, c(x) = c(xn) Suppose that this function c(xn) has a minimum some-
where. Such a configuration acts as a waveguide, rays that are shot not too far from
the minimum under small angles with the plane xn = constant will be deflected back
towards the minimum of c. Suppose that a certain ray, shot from x0 = (0, . . . , 0, h)
with an angle α, hits the plane xn = h again at time T = T (h, α). It follows from
equations (4.5) that the quantities c(x)‖ξ‖ and ξ1, . . . , ξn−1 are conserved so then
ξ(T ) = ξ(0). Hence the ray is periodic in the sence that (x(t + kT ), ξ(x + kT )) =
(x(t) + k(x(T )− x(0)), ξ(t)). The curve obtained by reflecting the ray in the vertical
line is also a solution to the ray equations. Let β = R · α, α reflected in the vertical
line. Then x(x0, β,−T ) = x(x0, α, T ). It follows that the manifold defined by (4.10)
is given by

β̄ = R · ᾱ, t = T (x̄n, ᾱ).

So all elements of the set V defined in (4.23) satisfy ν̄ = (0, . . . , 0, 1) and the projec-
tion of V on the (x̄, ν̄) variables is singular of order n−1, it is maximally singular. It
follows that the nonmicrolocal part has Sobolev order n−1. According to Hörmander
[27] it is continuous H(s) → H(s−(n−1))), it is as singular as the local part.

The fact that Nnml is as singular as the local part does not imply that recon-
struction is impossible. This would be the case if there are δc1 6= δc2 such that
Fδc1 = Fδc2. This seems to be difficult to obtain globally, however it can be the case
for r, s in and open subsets of Σr, Σs, as we now show.

Theorem 4.5.1 Let the medium c(x) be as described above. There is some open set
in U ⊂ T ∗Y ′ and two contributions δc1, δc2, such that WF(F · δc1) ∩ U = WF(F ·
δc2) ∩ U 6= ∅, and WF(F · (δc1 − δc2)) ∩ U = ∅.

Proof Assume the source and receiver surface are located inside the medium where
it is still translationally symmetric, at xn is h. This is not a restriction. Suppose we
have s0, ps,0, r0, pr,0, x̄0, ξ̄0, x0, ξ0 in the situation described above (4.10). Let δc1 be
supported on a neighborhood of x̄, and only depend on xn around x̄. Let δc2 be δc1

translated to a neighborhood of x. By symmetry

F · δc1 = F · δc2 (4.30)

close to s0, r0. To see this consider a reflection such that r ↔ s.

(F · δc)(r, s, t) = (F · δcrefl)(rrefl, srefl, t)

= (F · δcrefl)(s, r, t)

= (F · δcrefl)(r, s, t).

Now only the microlocal properties of δc around the scattering point matter. Clearly
for s, r in small neighborhoods of s0, r0 we have δc1,refl = δc2 close to the scattering
point x. So (4.30) follows. This proves the theorem. ¤
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Let us now give a numerical examples of the situation described above in n = 2
dimensions. Suppose the soundspeed is given by c(x1, x2) = 1 + x2

2. The soundspeed
c(x) and some rays that lead to nonmicrolocal contributions are given in Figure 4.3a,b.
Reflectors with ν vertical now lead to nonmicrolocal terms, two reflectors that are
connected by a nonmicrolocal contribution are given in the Figure 4.3b. In Figure 4.3c
we have drawn the arrivaltimes for a fixed source at position (0, .5) and a set of
receivers along a vertical line at x1 = 6. Indeed the traveltime curves overlap.

We give an example where the condition rankC = maximal of Theorem 4.3.3 is
violated. Assume again that we are in two dimension, that c(x) = c(x2) and that
this function has a minimum somewhere such that a waveguide occurs. It is possible
that the wavefront leaving x̄ forms caustics. Part of this caustic may intersect the
line x2 = h, say for an angle ᾱ and time t. At the caustic points we have

∂x

∂ᾱ
(x̄, ᾱ, t) = 0.

Define β̄ by reflecting ᾱ in the x2 axis. Then the direction β̄ gives a caustic at the
same point on the x1 axis for time coordinate −t. So

∂x

∂β̄
(x̄, β̄,−t) = 0.

Due to the translation symmetry we have

∂x

∂x̄
(x̄, ᾱ, t) = I2 =

∂x

∂x̄
(x̄, β̄,−t).

So in this case only the last column of C is nonzero and rank C = 1. A picture of the
situation is given in Figure 4.4.

We construct an example where the projections π, π̄ have maximal corank, see
Figure 4.5. We choose c(x) similar to the previous example, but we add a term
that is not translation invariant. We have chosen c(x1, x2) = 1 + x2

2 + 0.25x4
2 +

0.25x2 sin(x1). One can determine the set V of (4.23) and except for some isolated
points the projection of V on the (x̄, ν̄) variables has maximal rank. Indeed we see
that the traveltime curves are approximately tangent.

4.6 Generically the normal operator is invertible

Suppose c(x) ∈ C∞(X) is a medium for which the normal operator is not an FIO
or it is not invertible. We show that by perturbing the medium with a function
δc(x) ∈ C∞(X) the property that the normal operator is an invertible FIO in general is
restored. Thus it is “unlikely” to encounter a medium for which the normal operator is
not an invertible FIO, unless one only considers media with certain special properties
(such as symmetries).
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Figure 4.3: Situation with two reflectors that lead to the same arrivaltimes, i.e. the
projections π, π̄ of Section 4.4 are degenerate. (a) The soundspeed c(x1, x2) = 1+x2

2.
(b) Some rays that lead to a nonmicrolocal contribution, two reflectors. (c) Arrival
times for a source at (0, 0.5) and receiver at (6, r) as a function of r. The arrival times
for both reflectors exactly overlap.
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Figure 4.4: A situation where the condition of Theorem 4.3.3 is violated. (a) The
soundspeed c(x1, x2) = 1 + .7x2

2 + .5x3
2 + .3x4

2. (b) Ray trajectories. Intersecting
caustics are formed.

Let S be the set of media c ∈ C∞(X) with the property that the normal operator
is a Fourier integral operator and that it is invertible. The statement is that the
set S contains “almost all” of C∞(X). Such a property is called generic. Because
C∞(X) is only a topological space and there is no measure on C∞(X), that means
that S contains a countable intersection of open dense sets (see e.g. Klingenberg [33],
p. 108).

We first discuss the question whether N is a Fourier integral operator. To do this
we construct a function that tests whether the criteria of Theorem 4.3.3 are satisfied.
Let

u = (x̄, ᾱ, β̄, t, v) ∈ U,

U = X × {(α, β) ∈ Sn−1 × Sn−1 |α + β 6= 0} × It × Sn−1. (4.31)

and let

w(u; c) = (x(x̄, ᾱ, t)− x(x̄, β̄,−t), v · C) ∈ R4n−1.
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Figure 4.5: Situation with a nondegenerate nonmicrolocal contribution. (a) The
soundspeed c(x1, x2) = 1 + x2

2 + 0.25x4
2 + 0.25x2 sin(x1). (b) Some rays that lead to a

nonmicrolocal contribution, two reflectors. (c) Arrival times for a source at (0,−0.16)
and receiver at (6, r) as a function of r. The arrival times for both reflectors are
approximately tangent.
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The vector v is just to test whether the rank of C is maximal. To make the dependence
of w on c = c(x) explicit in the notation we write w = w(u; c). According to (4.12) and
Theorem 4.3.3 the normal operator is an FIO if w(u; c) 6= 0 for all u ∈ U . Actually
since we apply a microlocal cutoff to the data (see Section 4.2) the condition is that
w(u; c) 6= 0 for all u in some compact subset Ũ of U .

The image of the map u 7→ w(u; c) is a subset of R4n−1 of “dimension at most
4n-2”. Intuitively it is clear that such a subset in general doesn’t intersect the set
{0}. The important result is now Lemma 4.6.2 which shows that if intersection does
occur then indeed it disappears when the coefficients are perturbed. That this is in
fact the correct condition follows from the following lemma of Mather, [39], Lemma
3.2, which says so much as “transversal intersection is generic”.

Lemma 4.6.1 Let F be a topological space. Let U, W be manifolds, and V a subman-
ifold of W . Let for each f ∈ F there be a mapping U →W : u 7→ w(u; f). Suppose for
each f ∈ F there exists an integer k and a continuous k-parameter family Rk 3 p 7→ fp

in F , fp0 = f , such that on a neighborhood of p0 the map (u, p) 7→ w(u; fp) is C∞

and transversal to V . Then

{f ∈ F | u 7→ w(u, f) is transversal to V }

is dense in F .

In the present case we take F = C∞(X) and V = {0}. Because dim U + dim V =
4n − 2 < dim W = 4n − 1 transversal intersection of the map u 7→ w(u; c) with V
means that w(u; c) 6= 0 for u ∈ U . We show that in this case the assumption of
Lemma 4.6.1 is satisfied.

Lemma 4.6.2 If w(u0; c) = 0 then for suitably chosen small perturbations δci of c
the perturbations δwi(u0; c) together with the ∂w

∂uj
(u0; c) span R4n−1.

Proof We first show the following. There is a finite set of variations δc1, . . . , δcn

such that δ(x(x̄, ᾱ, t)− x(x̄, β̄,−t)) can be any element of Rn. To prove this consider
variations δc supported around the α ray, away from the β ray. The statement now
follows from Lemma 4.A.1.

Now we show that if v · C = 0 then there is a finite set δc1(x), . . . , δck(x) of
perturbations of c(x), that leave the (x̄, ᾱ) and (x̄, β̄) rays unchanged, while

v · δC ′

can be any element of R3n−2. Here C ′ is defined as the matrix C with the last column
omitted. The last column C ′′of C is always nonzero, so we can choose δv such that
δv · C ′′ is nonzero. To prove that v · δC ′ can be any element of R3n−2 note that the
inner product of v with the last column of C is v · (α + β) = 0. It follows that v has
a nonzero component orthogonal to α, and also a nonzero component orthogonal to
β. Denote these, in Fermi coordinates by vF,α, vF,β. By Lemma 4.A.1 we can find δc
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around the α and δc around the β ray such that vF,α · δ
(

∂(xF,α)
∂x̄F

)
, vF,β · δ

(
∂(xF,β)

∂x̄F

)
can

take any values in R2n−2. We transform back to the original coordinates using the
Ei, i = 1, . . . , n − 1. Since the Ei corresponding to the α ray together with the Ei

corresponding to the β ray span Rn it follows that v · δC ′ can be any vector in R3n−2.
¤

We can now give a mathematical proof that the property that N is a FIO is
generic.

Theorem 4.6.3 If Ũ is a compact subset of U (defined in (4.31)), then the set of
media c ∈ C∞(X) such that w(u; c) 6= 0 for all u ∈ Ũ is open and dense. Hence
genericly the normal operator is a Fourier integral operator.

Proof of Theorem 4.6.3 Let u0 ∈ U . It follows from Lemma 4.6.2 that there is
an open neighborhood U0 of u0 and parameters p such that the map (u, p) 7→ w(u; cp)
intersects {0} transversally for u ∈ U0, p ∈ P . By Lemma 4.6.1 this implies that
the set SU0 of c ∈ C∞(X) that satisfy w(u; c) 6= 0 on U0 is dense. Since the map
(c, u) 7→ w(u; c) is continuous it is also open. The set SŨ of c(x) that satisfies w(u) 6= 0
on Ũ is a finite intersection of such SU0 . Therefore it is also open and dense. ¤

Next for the case n = 2 we apply the same procedure to the question whether
N is invertible, i.e. for the question whether the nonmicrolocal part of the normal
operator has Sobolev order less than n − 1 = 1. We use the result of Theorem 4.4.4
and the theory described in that section. If m ∈ {3, 4, . . .} is sufficiently large then
generically Cnml will satisfy both a left and a right finite type condition of order m.
We first construct a function to test whether Cnml satisfies a left finite type condition
of order m. Let

u = (x̄, ν̄, θ̄, t) ∈ U,

U = X × S1×]0, π[×]0, Tmax[. (4.32)

Here ν̄, θ̄ are coordinates as in (4.21). Let J(x̄, ν̄, θ̄, t) = det ∂∆x
∂(θ̄,t)

(x̄, ν̄, θ̄, t), and let

vL be a vectorfield on U that is parallel to Vx̄ (so it depends on V and hence on the
medium coefficients c(x)). The vectorfield vL has components (vL

x̄ , vL
ν̄ , vL

θ̄
, vL

t ), and by
(vL)k · J we mean k times acting with vL on J (the k-th derivative in the direction of
vL). Finally let

w(u; c) =
(
∆x, J, vL · J, . . . , (vL)m−2 · J

)
∈W = Rm+1 (4.33)

According to Theorem 4.4.4 the canonical relation of Nnml satisfies a left finite type
condition at u if w(u; c) 6= 0. By interchanging the roles of x̄, x it also satisfies a right
finite type condition, and therefore if w(u; c) 6= 0 for all u in some compact subset Ũ
of U then the nonmicrolocal part has Sobolev order smaller than n− 1 = 1 and the
normal operator is invertible. We show that for m sufficiently high, in fact m = 5,
this property is generic.
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We need to prove that if w(u; c) = 0 then its perturbation caused by some pertur-
bation δc(x) can take a sufficiently large set of values. This is done in the following
lemma.

Lemma 4.6.4 For suitably chosen perturbations δci of c the associated perturbations
δwi(u0; c), together with the ∂w

∂uj
(u0; c) span Rm+2.

Proof Let k ∈ {0, . . . , m − 1}. It follows from Lemma 4.A.1 that by suitable
perturbations of c(x), that are supported around the two rays, and vanish of order
k + 1 on the ray we can obtain an arbitrary value of the vector

δ
∂k ∆x

∂θ̄k
,

while perturbations of lower derivatives vanish.
In the case k = 0, we can have arbitrary ∆x(x̄, ν̄, θ̄, t). For k = 1 we see that

J = ∂∆x1

∂θ̄
∂∆x2

∂t
− ∂∆x2

∂θ̄
∂∆x1

∂t
can have a nonzero perturbation. We use the case k > 1 to

perturb (vL)k−1 · J . One can check from the theory of Section 4.4 that when J = 0
then vL

x̄ = vL
ν̄ = 0, and (vL

θ̄
, vL

t ) ∈ ker ∂∆x
∂(θ̄,t)

. To δ(vL)k−1J only the term involving the

highest order derivatives contributes, it is given by

δ
∑

i1,... ,ik−1

(vθ̄, vt)i1 . . . (vθ̄, vt)ik−1

∂

∂(θ̄, t)i1

. . .
∂

∂(θ̄, t)i1

(
∂∆x1

∂θ̄

∂∆x2

∂t
− ∂∆x2

∂θ̄

∂∆x1

∂t

)
.

This term can be made nonzero. So by successively choosing perturbations vanishing
of order k = 0, . . . , m− 1 we can have all components of δw arbitrary. ¤

Now for m = 5 the image of the map u 7→ w(u; c) is of lower dimension then
the space W = Rm+1. The following theorem states the N is generically invertible.
The proof is omitted, because it parallels that of Theorem 4.6.3 with Lemma 4.6.2
replaced by Lemma 4.6.4

Theorem 4.6.5 Let m = 5. If Ũ is some compact subset of U (defined in (4.32))
then the set of media c ∈ C∞(X) such that w(u; c) 6= 0 for u ∈ Ũ is open and dense.
This implies that generically the normal operator is asymptotically invertible.

4.7 Discussion

Let us discuss how we have improved the understanding of the nonmicrolocal terms
to the normal operator.

First recall from the introduction and Section 4.5 that in the case of nonmicrolocal
contributions there can be scatterers at different positions in the subsurface such
that the diffractorsurfaces (the singular support of the data) are tangent, see e.g.
Figures 4.3, 4.5. By imaging straightforwardly the data corresponding to one scatterer
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may be imaged to the position of the other scatterer. Often this artifact will be smaller
then the correct image, because of “stacking”, i.e. an integration over the redundant
direction, that suppresses events that do not “line up”. The results of Section 4.4
in fact quantify this effect of stacking, at least the highfrequency behavior. If the
diffractorsurfaces overlap then the artifact can have same order of magnitude as the
correct image.

There were two main steps. First we proved under which conditions the nonmi-
crolocal part of the normal operator Nnml is an FIO. This allows us to analyze it. It
is essentially determined by the function ∆x(x̄, ᾱ, β̄, t) defined in (4.10), and we did
not have to consider different type of caustics as in Ten Kroode e.a. [34]. Secondly
we analyzed the Sobolev regularity of Nnml. The Sobolev regularity is essentially
determined by the set V defined in (4.23) and the projection of V on the variables
x̄, ν̄ (in other words by the θ dependence of the nonmicrolocal terms).

The examples give more insight in when nonmicrolocal terms can occur and in
how far they are relevant. It seems that in previous work people haven’t realized that
in the example of Figure 4.3 the nonmicrolocal terms (artifacts) are in fact of the
same size as the pseudodifferential part (the correct image).

It would be interesting to see whether in partial acquisition geometries (see Nolan
and Symes [41]) such degerate examples occur more often. In this case the imaging
could be affected more severely, because there is less redundancy than in our case.

4.A Perturbations of a ray due to medium pertur-

bations

In Section 4.6 it is necessary to know how the rays and its derivatives are changed
when the medium is perturbed. This will be discussed in this appendix. This material
is not new, but we couldn’t find a reference that describes such results for acoustic
media. A discussion for the case where the soundspeed c(x) is replaced by a general
Riemannian metric can be found in Klingenberg [33], Section 3.3. We use some
Riemannian geometry, so in this section we will use upper indices for the coordinates,
and lower indices for the cotangent vectors.

The rays are the geodesics corresponding to the metric gij = c(x)2δij . This is a
conformal metric (proportional to δij). The rays can be calculated by solving the

Hamilton system associated to the Hamiltonian H(x, ξ) =
√∑

i,j gijξiξj = c(x)‖ξ‖,
see (4.4). The square root is taken in the definition of H so that the parameter t is
the traveltime (the arclength). The solution with initial values x0, ξ0 and parameter
t will be denoted by (x(x0, ξ0, t), ξ(x0, ξ0, t)).

The derivative ∂m(x,ξ)
∂(x0,ξ0)m

(x0, ξ0, t) can be calculated by solving the ordinary differ-
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ential system

∂

∂t

∂m(x, ξ)

∂(x0, ξ0)m
(x0, ξ0, t) =

∂m

∂(x0, ξ0)m

(
∂H

∂ξ
(x(x0, ξ0, t), ξ(x0, ξ0, t)),

− ∂H

∂x
(x(x0, ξ0, t), ξ(x0, ξ0, t))

)
. (4.34)

By applying the derivatives we see that this is a linear system with homogeneous
term similar to the ordinary Jacobi equation(

∂2H
∂ξ∂x

∂2H
∂ξ2

−∂2H
∂x2 − ∂2H

∂x∂ξ

)
· ∂m(x, ξ)

∂(x0, ξ0)m
.

The inhomogeneous term consists of products of lower derivatives ∂k(x,ξ)
∂(x0,ξ0)k

with higher

derivatives of H . The Jacobi equations (4.5) hence play a special role, and will
discussed first, before we look at the the effect of perturbations of c.

The Jacobi equations can be simplified considerably by using coordinates that are
centred around the ray, so called Fermi coordinates1. Fermi coordinates are described
for instance in Klingenberg [33]. The new coordinates consist of a coordinate s that
denotes the time along the ray and coordinates x1

F, . . . , xn−1
F that denote the distance

from the ray, in units of time. To define them let E0, . . . , En−1 be a set of orthonormal
vectors (with respect to gij) in Tx0X, such that E0 = ∂x

∂t
(x0, ξ0, 0). Denote by Ei(t)

the Ei parallel transported along the ray. Consider now the map

Ψ : (s, x1
F, . . . , xn−1

F ) 7→ expx(x0,ξ0,s)(
n−1∑
i=1

Ei(s)x
i
F).

When the xi
F are sufficiently close to 0 this map defines a set of coordinates around

the ray. The transformation matrix can be written

∂xi

∂s
(s, 0) = Ei

0(s),
∂xi

∂xj
F

(s, 0) = Ei
j(s),

where Ei
j denotes the i-th component of Ej . The corresponding cotangent vectors

will be denoted by σ, ξF
i . Note that if ξ is close to ξ0 then σ is approximately equal

to the length of ξ, while while
ξF
i

σ
parametrizes the angle with ξ0. From the definition

it follows that for the new metric gF
ij

gF
ij(s, 0) = δij ,

∂gF
ij

∂xk
F

(s, 0) = 0,

∂2gF
00

∂xi
Fxj

F

(s, 0) = − 2RF
0i0j(s, 0), (4.35)

1In the geophysical literature one can find so called ray centred coordinates that have similar
properties, see e.g. Popov and Ps̆enc̆́ık [45].
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where the index 0 corresponds to the s coordinate and Rijkl is the Riemann curvature
tensor.

To obtain the ray and its derivatives in the new coordinates we can just set

H(s, xF, σ, ξF) =
√∑n−1

i=0 gij
F ξF

i ξF
j . Obviously the ray is given by s(t) = t, σ(t) =

σ0, xF(t) = 0, ξF(t) = 0. We set σ0 = 1. When we now do the calculation for the
Jacobi equations we find that the nonzero parts of the Jacobi matrix are ∂s

∂s0
= 1,

∂σ
∂σ0

= 1 and ∂(xF,ξF)
∂(xF,0,ξF,0)

that satisfies the following ODE along the ray

∂

∂t

∂(xF, ξF)

∂(xF,0, ξF,0)
(t) =

(
0 In−1

A(t) 0

)
∂(xF, ξF)

∂(xF,0, ξF,0)
(t), (4.36)

where

Aij(s) = 1
2

∂2gF
00

∂xi
F∂xj

F

= −RF
i0j0(s, 0).

To obtain an expression for the matrix Aij in terms of the original quantity c(x)
one first computes the Riemann curvature in the original coordinates. Then the
transformation rules are used to obtain the curvature in the new coordinates. This
leads to the following result

Aij = −δijc
−1 ∂2c

∂s2
− c−1 ∂2c

∂xi
F∂xj

F

+ lower derivatives of c.

So we now have a precise description of the matrix ∂(s,xF)
∂(s0,xF,0)

.

Now assume that the soundspeed is perturbed by some smooth function that
we denote by δc(x) (this is not the same as the highfrequency δc(x) of the Born
approximation). We investigate the corresponding first order perturbations δs(t),
δxF(t), δξF(t). To simplify the notation we define zκ = (x1

F, . . . , xn−1
F , ξF

1 , . . . , ξF
n−1),

Jκλ =

(
0 In−1

−In−1 0

)
.

Lemma 4.A.1 A perturbation deltapc(x) of the medium that is nonzero on the ray
results in a nonzero perturbation δs(t). One can obtain arbitrary δs(t) by choosing δc
suitably. A perturbation that vanishes of order m+1 on the ray (m = 0, 1, . . . ) results

in a perturbation δ∂mz
∂zm0

, while δs(t) = 0 and δ∂kz
∂zk0

= 0 for k < m. Let v1, . . . , vm ∈
R2n−2 and let (v1, . . . , vm) ·δ∂mz

∂zm0
∈ R2n−2 be some contraction of δ∂mz

∂zm0
with the vectors

v1, . . . , vm. One can obtain arbitrary values of (v1, . . . , vm) · δ∂mz
∂zm0

(t) ∈ R2n−2 by

choosing δc(x) suitably.

Proof If we have a perturbation δc(x), then

δgij = 2c δc δij, δgij
F =

∑
k,l

∂xi
F

∂xk

∂xj
F

∂xl
2c δc δkl,
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and

δH =
1

2
√∑

i,j gij
F ξF

i ξF
j

∑
k,l

ξF
k ξF

l δgkl
F .

Now suppose we set

δc(s, xF) = c(s, xF) δA(s),

close to the ray, going smoothly to zero away from the ray. In that case we find
∂
∂t

δs(t) = δc(s)
c(s)

, and hence

δs(t) =

∫ t

0

δA(t′) dt′.

So by this choice of δc it is possible to obtain an arbitrary perturbation in the direction
along the ray.

Next suppose δc is of the form

δc(s, xF) = c(s, xF)
∑

k1,... ,km+1

δAk1...km+1(s)x
k1
F . . . x

km+1

F , (4.37)

close to the ray, again going smoothly to zero away from the ray. For the perturbation
δ ∂mz

∂z0
m we find

∂

∂t
δ

∂mzκ

∂z0,λ1 . . . ∂z0,λm

=
∑

µ,ν1,... ,νm

Jκµ
∂m+1δH

∂zµ∂zν1 . . . ∂zνm

∂zν1

∂z0,λ1

. . .
∂zνm

∂z0,λm

+

+
∑
µ,ν

Jκµ
∂2H

∂zµ∂zν

δ
∂mzν

∂z0,λ1 . . . ∂z0,λm

. (4.38)

There are no other nonzero contributions since δ ∂kz
∂z0

k vanishes for k < m and ∂kδH
∂zk

vanishes for k < m + 1. The only nonzero part of ∂m+1δH
∂zm+1 is when all the derivatives

are with respect to xF and they all act on δc, so

∂m+1δH

∂zµ1 . . . ∂zµm+1

= δAµ1...µm+1 ,

where we define δAµ1...µm+1 to be 0 if any of the indices µi > n− 1. Let Φκλ(t, t
′) be

the fundamental solution to (4.36). The solution of the differential equation is

δ
∂mzκ

∂z0,λ1 . . . ∂z0,λm

(t) =

∫ t

0

∑
µ,ν1...νm,ρ

Φκµ(t, t′)JµρδAρν1...νm

m∏
i=1

Φνiλi(t
′, 0) dt′. (4.39)
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By choosing δAk1...km+1 in different ways a large set of values δ ∂mz
∂z0

m can be obtained.
To see this rewrite the solution as

∂mzκ

∂z0,λ1 . . . ∂z0,λm

(t) =
∑

σ1,ν1,... ,νm

δZκν1...νm

m∏
i=1

Φνiλi(t, 0),

δZκλ1...λm =

∫ t

0

∑
µ,ρ,ν1,... ,νm

Φκµ(t, t
′)JµρδAρν1...νm(t′)

m∏
i=1

Φνiλi(t
′, 0) dt′. (4.40)

If t− t′ is small then

Φ(t, t′) =

(
In−1 (t− t′)In−1

(t− t′)A(t) In−1

)
.

up to higher order terms (by this we mean that for each subblock there may be
higher order terms of different order). Now suppose that δA is supported in a small
interval (t1, t). Then, to highest order, we can give an explicit expression for δZ.
In the following we write κ = k + α(n − 1), λi = li + βi(n − 1), α, βi ∈ {0, 1},
k, li ∈ {1, . . . , n − 1} to indicate whether κ, λi refer to x or to ξ coordinates. With
this notation

δZκλ1...λm = −
∫ t

t1

(−1)1+β1+...+βm(t− t′)1−α+β1+...+βmδAkl1...lm(t′) dt′.

The tensor δZ is not the general tensor, but it follows from this equation that at least
the contraction of δZ with m vectors ∈ R2n−2 is the general element of R2n−2. It
follows that the same is true for δ∂mz

∂zm0
(t). This proves the lemma. ¤
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Samenvatting

In een seismisch experiment probeert men door metingen aan het aardoppervlak een
beeld van de ondergrond te verkrijgen. Hiertoe worden met bronnen aan het opper-
vlak elastische golven in de ondergrond opgewekt. Als bronnen kunnen een explosie
of een zwaar trillend voorwerp (een vibroseis truck) worden gebruikt. Vervolgens
worden de golven die terugkeren naar het oppervlak geregistreerd. Het probleem is
nu om uit de verkregen data een beeld van de ondergrond te reconstrueren. In dit
proefschrift onderzoeken we enkele wiskundige problemen die hieruit voortkomen.

Om de data te modelleren beschouwen we de aarde als een akoestisch of als een
elastisch medium. Zo’n medium wordt beschreven door mediumparameters, die in
het algemeen van de positie afhangen. In het akoestische geval zijn dat de lokale
geluidssnelheid en de dichtheid, in het elastische geval de elasticiteitstensor en de
dichtheid. De toestand van het medium wordt beschreven door de akoestische of
elastische golfvergelijking, waarin de parameters als coëfficiënten voor komen. De
meetgegevens kunnen nu ruwweg als volgt worden verklaard. Vanuit de bron planten
de golven zich voort de ondergrond in. Op posities waar de coëfficiënten van het
medium sterk variëren wordt een gedeelte van de energie gereflecteerd, terwijl een
ander deel doorgaat. Wanneer de gereflecteerde signalen weer bij het oppervlak komen
worden ze geregistreerd.

We nemen aan dat de mediumcoëfficiënten discontinu kunnen variëren, bijvoor-
beeld bij een overgang tussen twee lagen. De eerste vraag die we onszelf stellen is
of de akoestische en elastische golfvergelijkingen oplossingen hebben in dat geval.
Het blijkt uit bestaande literatuur dat dit inderdaad het geval is, dat de oplossingen
uniek zijn en dat ze stabiel van de bronfunctie en de beginwaarden afhangen. De
oplossingen hangen bovendien continu af van de coëfficiënten. Dit wordt beschreven
in hoofdstuk 2. Daarnaast geven we enkele nieuwe resultaten voor het geval waar
de coëfficiënten glad zijn, behalve langs een glad oppervlak waar ze een sprongdis-
continüıteit hebben. We onderzoeken ook de afgeleide van de oplossingen naar de
coëfficiënten.

De vraag is nu of uit de data de in het algemeen discontinue coëfficiënten bepaald
kunnen worden. In hoofdstukken 3 en 4 gebruiken we hoogfrequente asymptotiek,
in het bijzonder de theorie van Fourier-integraaloperatoren, om dit probleem aan te
pakken. In de hoogfrequente limiet, en als het medium voldoende glad is, planten
de golven zich voort langs stralen. Hierop gebaseerde methoden worden al succesvol
toegepast. We geven nieuwe resultaten voor elastische media en voor het geval dat
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de golffronten caustieken (brandfiguren) vormen. Dat wil zeggen dat de stralen die
vanuit een punt in verschillende richtingen worden weggeschoten elkaar snijden.

In hoofdstuk 3 beschouwen we elastische media. We modelleren de data zowel
met de Born- als met de Kirchhoff-benadering. In de Born-benadering worden de
mediumparameters geschreven als de som van een glad achtergrond medium, en
een singuliere (hoogfrequente) verstoring. De reflecties worden dan beschreven door
de corresponderende verstoring van de Greense functie. In de Kirchhoff-benadering
neemt men aan dat het medium stuksgewijs glad is, met sprongen langs gladde op-
pervlakken. Aan de sprongoppervlakken wordt een gedeelte van de inkomende golven
gereflecteerd. Onder bepaalde aannames kunnen we in deze gevallen het singuliere
deel van de mediumcoëfficiënten reconstrueren. We geven ook de relatie met de re-
constructie van het gladde deel van de mediumcoëfficiënten (snelheidsanalyse).

In hoofdstuk 4 beschouwen we akoestische media waarbij we er vanuit gaan dat
niet is voldaan aan de aanname die in de literatuur bekend staat als reistijdinjec-
tiviteit. We gaan er vanuit dat bronnen en ontvangers zich op een open deel van
de rand van het medium bevinden. De data worden gemodelleerd met de Born-
benadering. We laten zien dat in sommige gevallen inversie voor de singuliere medi-
umverstoring niet mogelijk is. Echter, generiek bestaat de inverse wel. We lichten dit
toe met voorbeelden.
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