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CHAPTER 1

Introduction

A geographic information system (GIS) is a software package for storing geographic data
and performing complex operations on the data. Examples are the reporting of all land
parcels that will be flooded when a certain river rises above some level, or analyzing the
costs, benefits, and risks involved with the development of industrial activities at some
place. A substantial part of all activities performed by a GIS involves computing with
the geometry of the data, such as location, shape, proximity, and spatial distribution. The
amount of data stored in a GIS is usually very large, and it calls for efficient methods to
store, manipulate, analyze, and display such amounts of data. This makes the field of GIS
an interesting source of problems to work on for computational geometers.

In this thesis we give new geometric algorithms to solve four selected GIS problems. This
introduction provides the necessary background, overview, and definitions to appreciate
the following chapters of this thesis.

Section 1.1 introduces the field of geography, the phenomena it studies, the kind of data
that is used to model these phenomena, and the types of maps that are available for dis-
playing the data. Section 1.2 introduces GIS, its functionality, and the data structures used
to deal with geographic data. Readers with a geographic or GIS background may want to
skip or skim the first two sections.

Section 1.3 introduces computational geometry and the basic data structures and tech-
niques from this field that are used extensively in the four following chapters: the doubly-
connected edge list, plane sweep, a number of search structures, and Voronoi diagrams.
This section may be skipped by computational geometers and others familiar with these
structures and techniques.

Section 1.4 introduces the four problems that are studied in Chapters 2-5:

e Subdivision traversalwe give a new method to traverse planar subdivisions with-
out using mark bits or a stack.
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e Contour trees and seed setge give a new algorithm for generatingantour tree
for d-dimensional meshes, and use it to determiseed sebf minimum size that
can be used for isosurface generation. This is the first algorithm that guarantees
a seed set of minimum size. Its running time is quadratic in the input size, which
is not fast enough for many practical situations. Therefore, we also give a faster
algorithm that gives small (although not minimal) seed sets.

e Settlement selectionmve give a number of new models for tkettlement selection
problem When settlements, such as cities, have to be displayed on a map, display-
ing all of them may clutter the map, depending on the map scale. Choices have to
be made which settlements are selected, and which ones are omitted. Compared to
existing selection methods, our methods have a number of favorable properties.

o Facility location we give the first algorithm for computing tlierthest-site Voronoi
diagramon a polyhedral terrain, and show that its running time is near-optimal.
We use the furthest-site Voronoi diagram to solve the facility location problem: the
determination of the point on the terrain that minimizes the maximal distance to a
given set of sites on the terrain.

1.1 Geography: preliminaries

1.1.1 Geography and related disciplines

Geography is the science that describes and analyzes phenomena and processes on the
surface of the earth and the relations between them. We can distinguish between physical
geography and human geography, both of which are broad fields of science that can be
subdivided further into several sub-fields [91].

Physical geography studies the physical state of the earth surface and changes of this state
over time as a result of natural processes, such as formation and deformation of moun-
tains, and changes in the flow of a river. Subfields include geomorphology, hydrology,
and meteorology [109].

Human geography focuses on the spatial aspects of human activities, and the develop-
ment and consequences of these activities in relation to geographic location. A human
geographer may for example investigate why people in a certain region can expect to live
longer than people in some other region. Subfields of human geography include political
geography, economic geography, and urban geography [60, 81].

Cartography is one of the spatial sciences related to geography. It doesn't deal with de-
scribing and analyzing, but with issues involved in the design and reproduction of maps.

Geographic information can be displayed in many different ways, and decisions have to
be made about what information to display, scale, projection, coordinate system, the use
of colors, and the size and location of text. Other important matters are abstraction, clas-
sification, and generalization [34, 63, 90].
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Geographers and cartographers are not the only professionals dealing with geographic
information. For instance, when a new railroad is planned, decision makers need in-
formation about impact on the existing landscape, the type of soil, and the costs of the
various possible locations. A biologist may be interested in the geographic distribution of
species, or the statistical relations between the presence of a species in certain areas and
the height above sea level of those areas.

1.1.2 Geographic data

Geographic objects can have many properties, but from the geographer’s point of view,
one of these properties plays a special role: the location of the object [55, p. 19 ff.]. Coor-
dinate data is referred to as spatial or geo-referenced data; the other properties of the ob-
ject are non-spatial or attribute data. Locations are usually specified in a two-dimensional
coordinate system [127, p. 182]. In some cases that is not enough; for instance, com-
puter models of the atmosphere as used by meteorologists, contain data about tempera-
ture, air pressure and wind speed at various altitudes, so three-dimensional coordinates
are needed there [88]. The same holds for geological data in different subsurface layers.
The geographic objects themselves, whether specified in two or three dimensions, can be
zero-dimensional (points), one-dimensional (lines and line-segments), two-dimensional
(area), or three-dimensional (volumes; only in the case of a three-dimensional coordinate
system) [67, 90].

Apart from discriminating between spatial and non-spatial data, there is an other impor-
tant classification of the data stored in a GIS or any other information system. We can
distinguish between categorial data, which can be either nominal or ordinal, and continu-
ous data, which can be either ratio or interval [63, 67,90]. Nominal variables are names
without implicit or explicit order, such as names of countries or kinds of vegetation. Or-
dinal variables are names with an implicit order, such the university ranks of assistant
professor, associate professor, and full professor. Interval variables are also ordered, but
in contrast with ordinal variables, there is a meaning to distances between categories. A
typical example is temperatureig. Although it makes sense to talk about the difference

in temperature measured in degrees Celsius, the statem@is2wice as warm asIC”

is meaningless: the degrees Celsius scale does not have a proper zero. Ratio variables are
variables that do have a natural starting point, such as degrees Kelvin, annual rainfall, and
number of elephants per square kilometer.

Geographic data is not static, but may change over time. On some occasions it is not
sufficient to maintain only the most recent data; it may be necessary to record the changes
as well. In agriculture for instance, certain kinds of vegetation can only be grown a limited
number of successive years, to prevent soil exhaustion or the spread of diseases. If a GIS
is used in this kind of situation, then time has to be modeled as well [65, 67, 127].

Two important issues in data quality axecuracyandprecision[127, p. 148] [67, p. 300].

Accuracy is the degree in which errors are present, while precision or resolution is the
degree of refinement in which a measurement is stated. For example, if the width of a
road is expressed in millimeters, but the value is 20 percent too small, then we have that
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high precision combined with low accuracy. Accuracy may change over time [127, p. 16]:
ten-year old population figures are unlikely to accurately reflect the present situation, but
may have been very accurate when they were acquired.

1.1.3 Geographic maps

Geographic maps are two-dimensional graphic representations of the earth surface, either
on a sheet of paper or on a computer screen. The sizes of geographic objects on a map
are for obvious reasons usually smaller than the sizes in reality; the ratio between these
sizes is called thecaleof the map. Trying to depict every aspect of reality on the map
would render it useless, because it would be unreadable. Instead, most midyesretc

maps showing only what is relevant for the intended use of the map. To display the
different kinds of data described in the previous section, the geographer or cartographer
has several types of maps at her disposal [25, 34, 90]: choropleth maps, isoline maps, and
network maps are the most noteworthy types (see Figure 1.1).

Choropleth maps are subdivisions of the displayed part of the earth surface into shaded
or colored regions. Each color or shade represents a value or range of values of the
displayed phenomenon. Higher values are usually darker. Cartograms are a special kind
of choropleth maps, where the regions are deformed such that the ratios of the areas of the
regions conform with the ratios of some numerical aspect of the regions to be displayed.
On a cartogram showing population size for instance, if one region has twice as many
inhabitants as some other, possibly larger region, the regions are deformed such that the
area of the former region is twice the area of the latter region.

Isoline maps are used to display continuous data. Like choropleth maps, they are also
subdivisions of the displayed area into regions, but the emphasis here is on the boundaries
between regions, not on the regions themselves. These boundaries, or isolines, show the
points in the domain that map to a specified set of function values. Examples of isoline
maps are air pressure maps as used in meteorology, and contour maps, showing curves of
equal height in mountainous area.

Network maps, such as railroad maps and maps of piping systems, are in fact graphs
showing geographic objects and the connections between them; the regions in a network
map are meaningless. Precise locations of the objects are not necessarily preserved, al-
though they should globally correspond to the locations of the objects in the real world to
be readable for humans.

1.2 GIS: preliminaries

1.2.1 GIS functionality

The functionality offered by a GIS should at least contain the following elements [55,
107]: data input, preprocessing, data management, basic spatial queries, geographic anal-
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Figure 1.1: A choropleth map (top-left), an isoline map (top-right), and a network map
(bottom).

ysis, and output generation. We will describe these elements briefly in the next para-
graphs, and expand on some selected topics in the next subsection.

Data input There are several ways to acquire data and to put it into a GIS. Most of-
ten, existing data will be used as a source, such as paper maps and public domain or
commercial data files. Paper maps will have to be digitized, and although there are meth-
ods to automate this process, in practice most of the digitizing is done manually [29].
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This is a time-consuming but relatively low-cost process, since the techniques can be
taught to users within hours. Automated digitizing by scanning is only worth considering
for aerial photographs or maps that contain very simple and uncluttered data; otherwise,
the advantages of the automated input will be nullified by the need for clean-up post-
processing [29].

Preprocessing If we want to use data from various sources in a GIS, several prepro-
cessing steps have to be made. Firstly, it is required that all data use the same geographic
reference system, such as latitude-longitude or Universal Transverse Mercator coordi-
nates [90, p. 101 ff.] [107, p. 98 ff]. Secondly, the data has to be converted to a common
raster or vector format [107, p. 77 ff.] (see also Section 1.2.2). Thirdly, errors in the source
data or errors introduced in the digitizing process have to be corrected [107, p. 93 ff.]. For
instance, if in the digitizing of a paper choropleth map two neighboring regions are pro-
cessed separately, then their common boundary may not exactly match (see Figure 1.2,
left). Also, inconsistencies between different data sources have to be dealt with. Aerial
photos may show a perspective distortion as well as a distortion due to the curvature of
the earth surface. Objects crossing the boundary between two such photos of adjacent
regions may be distorted differently on each photo, such that the edges of the object that
cross the boundary don’t match (see Figure 1.2, right). The correction of this kind of error

is callededge matchingand it can be done manually or automated [107, p. 96 ff]. Finally,

if the detail in the source data is greater than we actually need in the GIS, a data reduc-
tion and generalization step has to be made to prevent excessive storage requirements and
processing costs [107, p. 91 ff].

B\

Figure 1.2: Errors introduced in the digitizing process.

Data management Just like any other information system, a GIS should provide the
basic database functionality [55, p. 66 ff.]. The system must perform integrity checks
when data elements are entered or removed from the database [107, p. 129]. For exam-
ple, when in a topological data structure two neighboring polygons merge into one by
removing a common edge, pointers to that edge have to be updated. Also, there should be
mechanisms to allow for concurrent access to the database. The efficiency of data storage
and retrieval is dependent on many factors; one of them is the layout of the data on the
disk. In GISs it may be worthwhile to consider storage schemes that explap#il
coherencef the queries: geographical objects that are accessed in subsequent queries are
often close to one another in the real world, and they should also be close together on the
disk or on the same disk page, to reduce disk access time [8].
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Basic spatial queries Apart from the basic queries that must be supported by any
database management system, a GIS must also be able to answer spatial queries such
as “what is at locatiorix,y)?”, and “what is the area of region such-and-so?”. Also, the
calculation of buffers around objects, to answer queries like “how many houses lie within
100 meter from that river?”, must be supported [107, p. 157] (see Figure 1.3). When a cat-
egorial vector model (see Section 1.2.2) is used for a choropleth map, it is often necessary
to traverse all cells in some specified part of the subdivision to collect data for further cal-
culations; this is facilitated by the use of topological data structures. Subdivision traversal

is handled in detail in Chapter 2.

Figure 1.3: A buffer around a polyline.

Geographic analysis The main advantage of a GIS over a collection of paper maps is
the ability to easily combine different kinds of data and to infer relations between them
by overlaying two or more layers of thematic data. No self-respecting GIS can do without
map overlay algorithms [67,90]. After the map overlay has been done, the data can be
subjected to all kinds of statistical analysis such as the calculation of correlation between
variables [58]. Other statistical operations include the plotting of histograms and the
calculation of the nearest-neighbor index [73, p. 119 ff.] of a set of point objects on a
map. The nearest-neighbor index is a measure of regularity of the data; it is the ratio of
the actual mean distance to the nearest neighbor and the expected mean distance to the
nearest neighbor of a uniformly distributed point set of the same size. A different kind
of geographic analysis is facility planning: the determination of one or more locations
that are suitable for some purpose [55, p. 138 ff.]. To perform this kind of analysis it
must be possible to specify constraints on the locations and optimization factors. For
example, when a new factory is to be built, it should ideally be close to main roads or
railway terminals to facilitate transportation of products and raw materials, close to a
river if cooling water is needed in the production process, but at least at some minimum
distance from urban area. See also Chapter 5, where we give a new algorithm for a facility
location problem in mountainous area.

Output generation The output of a GIS consists mainly of maps, charts, and tables,
either on paper or screen [55,107]. It is usually not possible to display all the available
data on a specific theme in full detail on the map, for that would render the map unread-
able. Important cartographic generalization operations that should be supported by a GIS
include selection, simplification, and aggregation [19, 90] (see Figure 1.4). Selection is



Introduction

the process of choosing what data to display, and what to discard, in order to keep the
map readable (see Chapter 4 for settlement selection). Depending on the target scale of
the map, the level of detail of the displayed data has to be tuned. A road with a large
number of small bends may be simplified to a polyline with fewer bends, and a cluster
of small areas displaying single houses may be aggregated into a single region of urban
area. Another form of complexity reduction is classification of the data. The placement
of labels with names of cities, rivers, and regions on the map is a difficult problem; la-
bels must not overlap, and it must be clear what label corresponds with what object. A
GIS should be able to place text labels automatically. For references to label-placement
literature, see Christensen et al. [23] and Doerschler and Freeman [39].

\ \
simplification aggregation
v v

Figure 1.4: Some cartographic generalization operations.

Other examples of GIS output are pie charts showing annual gross income of various
countries, tables of population of all cities in some region, and even single numbers, such
as the nearest-neighbor index for a set of points on a map [73, p. 119 ff.].

1.2.2 GIS data models and structures

In this section we will discuss various data structures for storing and searching the differ-
ent kinds of data that we described in Section 1.1.2. Basically, there are two ways to store
both categorial and continuous dataster-basedndvector-based127, p. 15].

Raster and vector models for categorial data A (planar) raster is a two-dimensional
array of equal-sized square cells, discretizing the real world [127, p. 15]. Boundaries
between regions do not cross the interiors of the cells; each cell stores a single value for
each attribute.
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Raster structures are very simple to implement, because arrays are well-supported by
computer architectures and programming languages. For instance, displaying a rectangu-
lar portion of a raster-based map on the computer screen is simply a matter of directly
accessing those cells whoseandy-coordinates fall between the rectangle boundaries.
The major drawback of raster structures is their size: cell sizes should be small enough to
show the desired detail, and if a high resolution is required, the raster size becomes very
large. Using run-length encoding, or its two-dimensional counterpart block-encoding,
one can reduce the storage requirements of raster structures [127, p. 254 ff.], but at the
same time this greatly reduces their simplicity, since individual cells are no longer directly
accessible.

In contrast with raster structures, which are image-based, vector models take the object-
based approach [127, p. 16]. Points are stored with their coordinates according to some
reference system, line segments by their two end points, and regions are defined by their
bounding line segments. When incidence relations between points, segments, and re-
gions are stored explicitly, we speak ofapological data structurg127, p. 193]. In a
non-topological data structure, each polygon is stored independently as a sequence of ver-
tices. As we have seen in Section 1.2.1 this may result in errors such as gaps and slivers,
when two adjacent polygons do not match exactly. In a topological data structure these
problems are avoided, because each feature (in this case, the common edge between two
adjacent polygons) is stored only once. Also, topological data structures make it possible
to efficiently access adjacent features and to traverse the subdivision.

Raster and vector models for continuous data Just like categorial data, real-valued
functional data can be represented by raster as well as vector models. Although the func-
tion values in continuous data do not necessarily represent height, theligitah ele-

vation modelor DEM, is commonly used to denote these models [127, p. 162]. We can
distinguish between the raster-bagtelvation matri{127, p. 162] and the vector-based
isoline mode[127, p. 163] andriangulated irregular networf127, p. 206], ofTIN (see

Figure 1.5).

The elevation matri{127, p. 162] is a two-dimensional array of square cells, each cell
storing a height value or elevation. The stored height can be the height at the center of
the cell, or the average height of the cell. In fact, the only difference between an elevation
matrix and a raster structure for categorial data is that the set of values stored in the latter
structure is usually taken from a finite set, while a cell in an elevation matrix may contain
any real (or at least, any number representable by a computer).

Theisoline mode[127, p. 163] is a way to represent and visualize a real-valued function
defined over the plane. Isolines are curves in the plane that map to the same function
values, and by choosing an appropriate set of isolines for various function values, humans
can get a good overview of the “behavior” of the function. For instance, when using
this model to represent a mountainous terrain, it is easy to determine the pits, peaks, and
passes of the terrain, or to distinguish steep areas from less steep areas. Isolines can be
represented by polylines, and they are either closed loops or they end at the boundary.
To determine the function value of a point in between two isolines, one would have to
interpolate in some way. However, different ways of interpolating may give different
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Figure 1.5: An elevation matrix, isoline model, and TIN for the same source data.

12
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Figure 1.6: The function value at the dotted location can be obtained by interpolation, but

results are not unique.

results, and it is not always clear how to interpolate (see Figure 1.6). Since the isoline
model is a planar subdivision, we can use a topological data structure such as the doubly-
connected edge list [31, 79] (see also Section 1.3.1) to represent it.
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Thetriangulated irregular networf127, p. 206], ofTIN, is a subdivision of the plane in
triangles. The height of the vertices of the triangles is stored explicitly, and the height
of any point in the interior of a triangle can be derived by linear interpolation of the
height values at the vertices of the triangle. The size of the triangles varies (hence the
term “irregular”), and this makes the TIN a memory-efficient data structure for modeling
the surface of the earth: in relatively flat areas we can do with a small number of large
triangles, while smaller triangles are used in areas with a lot of variation in height. Like
the isoline model, we can store a TIN using the doubly-connected edge list [31, 79], or
other topological data structures, tailored towards triangulations.

Indexing structures for raster data A widely-used structure for storing and searching
planar raster data is the quad tree [92—96]. The quad tree recursively subdivides the raster
into four equally-sized quadrants. A quadrant in which all cells have the same attribute
value is not subdivided any further. So, the quad tree is a tree with as root the whole
raster, and each non-leaf node has four children (see Figure 1.7). The main advantage of
the quad tree is that it only recurs in regions with much detail, while large homogeneous
regions are stored efficiently.

Figure 1.7: A raster subdivision, and a quadtree for it. The order of the quadrants is
north-west, north-east, south-west, and south-east.

Indexing structures for vector data Perhaps the most important structures supporting
rectangular search queries in categorial vector data are the R-tree [52] and its relatives.
The R-tree may be seen as a two-dimensional version of the B-tree, and it is designed with
the reduction of disk access and dealing with non-uniformly distributed data in mind. The
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leaf nodes of the R-tree correspond to the smallest enclosing (axis-parallel) rectangles
of the objects to be stored. Each non-leaf node stores the smallest rectangle containing
the rectangles of its children, and the number of children lies between some predefined
minimum and maximum. The root of the tree is the smallest axis-parallel rectangle that
encloses all objects (see Figure 1.8). A rectangular search query is performed by re-
cursively searching the R-tree, descending only in those nodes for which their stored
rectangles intersect the query rectangle. It follows that the rectangles stored in an R-tree
should be as small as possible; the difficult part of constructing an R-tree lies in finding
a grouping of the rectangles that fulfills this requirement. The rectangles stored in the
internal nodes of an R-tree may overlap, and this is undesirable, because it makes search-
ing less efficient. In the R-tree [108], overlapping of non-leaf nodes is not allowed, and
rectangles are partitioned when necessary to avoid overlapping. The drawback is that it
is difficult to guarantee a minimum on the number of children of a non-leaf node. The
R*-tree [15] is another variant on the R-tree, where the grouping of rectangles is guided
by some weighted balancing between overlapping of the resulting rectangles and smallest
possible area and perimeter.

Figure 1.8: Vector objects, and an R-tree on them.

1.3 Computational geometry: preliminaries

Computational geometry arose from the field of design and analysis of algorithms and
developed into a discipline of its own in the late seventies. The basic objects of interest
for the computational geometer are points, lines, spheres, rectangles, and the like. Com-
putational geometers are interested in algorithmic versions of questions like “How many
of these line segments intersect?”, “What is the largest circle that will fit in this poly-
gon?”, “Does this point lie in the interior of that rectangle?”, and “Which one of this set

of points is nearest to this query point?”. One reason for the growth of the field is that
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it has applications in many domains. A great many of the basic problems from robot
motion planning, computer aided design, computer graphics, and GIS, to name a few, are
of geometric nature. Another reason of the popularity of computational geometry is the
beauty of many of the problems and the elegance of their solutions. Geometric problems
are often simple to express and to explain to outsiders of the field, and in many cases even
the solutions to these problems are relatively simple to understand for people without a
strong geometric background.

Just like the field of algorithms design and analysis, computational geometry is concerned
with the efficiency of the solutions to its problems: how much time and computer memory
are needed to solve a particular problem? Rather than comparing exact values of time and
memory consumption, algorithms researchers tend to look adjmptotidoehavior of
algorithms, expressed - (“big-oh”) notation: “this algorithm runs i®(f(n)) time”is a
shorthand for “there is a constadtand a constart such that for input siza greater than

N, the running time isat most ¢{n) time units.” Similarly, lowerbounds are expressed
with Q-notation: anQ(f(n)) memory bound means that there are consthtmnd c

such that the memory requirements of the algorithmtikast c{n) memory units for
certain inputs of siza > N. Finally, when there exist constargs ¢, andN such that the
running time or memory usage of the algorithm lies betwadrin) andc, f (n) units for

input sizes of at leadt, the bounds are denoted wid( f (n)).

In the next four sections we discuss some important data structures and concepts that we
will use in the rest of this thesis. In the description of the algorithms we assume that the
input objects are imeneral position This means that no two lines or line segments are
parallel, no three points are collinear, and no four points lie on one circle. This assumption
greatly simplifies the description of the algorithms.

1.3.1 The DCEL structure

A planar subdivisiors is a partition of a two-dimensional manifold into three finite col-
lections of disjoint parts: the vertices, the edges, and the cells. A subdivisionngcted

if its edges and vertices form a connected set. This implies that all bounded cells are
simple polygons without holes.

When working with vector-based subdivisions, one often needs information about the
topological relations between vertices, edges, and cells. A data structure that explic-
itly stores this information is theloubly-connected edge list (DCE[(9ee Muller and
Preparata [79], de Berg et al. [31]). In the DCEL-structure, edges in the subdivision are
represented by two directed half-edges, such that one of the half-edges bounds one cell
incident to the edge and the other half-edge bounds the other cit # half-edge, then
twin(g) denotes the half-edge that is part of the same edge. Every half-edge is oriented in
such a way that the cell to which it is incident lies to its left. In this way, for all bounded
cellsof a connected subdivision, the incident half-edges form a counterclockwise cycle
around the cell. The half-edges that bound the one unbounded cediutitiecel) form a
clockwise cycle. This is illustrated in Figure 1.9.
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Figure 1.9: A subdivision and the corresponding orientation of half-edges.

The DCEL consists of a table of half-edge records, a table of vertex records, and a table
of cell records.

Any vertex record stores the coordinates of the vertex and a single reference to a half-
edge record of a half-edge that has the vertex as its origin; the other half-edges incident
to this vertex can be accessed by first accessing the referenced half-edge. The primitives
Coordinate$v) andIncident-edgév) are used for the values of these fields for a vertex

v. Also, non-geometric information may be stored. For the subdivision in Figure 1.9 the
vertex table may look something like this:

| Vertex| Coordinates| Incident-edge]
V1 ( 7) tW|n(§1)

=

Vo (7) =1

If the edges and vertices of the subdivision form a connected subset of the plane, then
every cell is incident to one cycle of half-edges. In this case, a cell record stores one
reference to a half-edge record of a half-edge incident to that cell, and possibly some
non geometric information. The primitiv®uter-incident-edge) is used to access the
half-edge for a bounded ced| and the primitivelnner-incident-edgee; ) is used for the
unbounded celt;. The table below shows the cell table for the subdivision in Figure 1.9.

| Cell | Outer-incident-edged Inner-incident-edgg

C1 twin(&)
C2 &
C3 &

For any half-edgé, its record stores one reference to the record of the vertex at which it
originates, a reference to the record of the incidenta@lihich lies to its left), a reference
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to the half-edge that precedeédn the cycle of edges arourgl a reference to the record
of the half-edge that follows afte# in this cycle, and a reference to the record of the
complementary half-edgevin(g):

| Half-edge| Origin | Incident-cell] Prev | Next | twin |
e 1 C2 g & twin(és)
twin(és) Vs C1 twin(&) | twin(é&) &

The DCEL-primitives can be combined to answer more complex queries. For example,
suppose that we want to know the first outgoing half-edge of vertéixat we encounter

if we rotate counterclockwise aroung and start at half-edgg& (Figure 1.9). This query

is answered bywin(prev&s)).

The DCEL-structure can easily be extended to deal with unconnected subdivisions as well
(Figure 1.10). Considering the geometric structure of a cell, we observe that a cell is either
unbounded or bounded from the outside by one single cell or component. Furthermore,
the cell may be bounded from the inside by zero or more components.

In the cell record that represents the cell it is convenient to have references to all incident
components. Since the outer component, if it exists, plays a special role there will be a
reference to some half-edge of this component. This reference is empty for the unbounded
cell. For the other components the cell record stores a list of which each element contains
one reference to some half-edge of a component. There is no natural order for these
components so we let the list be unordered. To be able to access the cell record from the
incident half-edges we add one more reference to every half-edge record to the record of
the incident cell. The primitive®uter-incident-edge) andInner-incident-edgds) are

used to obtain these features.

>N

Figure 1.10: The DCEL-structure can be extended to deal with unconnected subdivisions.
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1.3.2 The sweeping paradigm

A basic geometric operation is the determination of intersections between geometric ob-
jects. Consider for instance the problem of finding all intersections between pairs of
segments from some sBbf n line segments in the plane. A simple approach would be to
check all pairs of line segments. This tak&&?) time, regardless of the actual number

of intersections, which can be any number between zero%an(h— 1). Using a plane
sweep approach however, determiningkatitersections between pairs of segments from

S takes onlyO((n+ k)logn) time. The first algorithms that take this approach are by
Shamos and Hoey [99], Lee and Preparata [68], and Bentley and Ottmann [16].

To simplify the description of the plane sweep algorithm, we will first consider the one-
dimensional variant to the line-segment intersection problem, namely, the determination
of all intersections, or overlaps, between pairs of intervals from sonfg eén intervals.
Again, it is possible to solve this i®(n?) time by testing all pairs of intervals, but it is

not difficult to improve on this: if we sort the endpoints of the intervals, we can treat
them in order from left to right. Imagine that we “sweep” the interfrabo, o), that
encloses our s, by moving a pointp from left to right. An interval inS becomes
activewhen p passes its left endpoint, and it becomes inactive again vphegasses its

right endpoint. The key observation is that two intervals intersect if and only if they
are both active at some time during the sweep withSo if we keep track of which
intervals are active, we simply report the intersections of all these active segments with a
new one upon its activation. In sweeping terminology, the list of active intervals is called
the status structurgit is used to determine the intersections by looking only at intervals
that really matter. The status structure changes upon cextaint pointsthese are the

left endpoints of the intervals, where an interval becomes active, and the right endpoints,
where an interval becomes inactive. All event points are known in advance in this case,
so the event list, a sorted list of left and right endpoints, can be computed before starting
the actual sweep. If we maintain pointers between the events in the event list and the
status structure, the insertion and removal of an interval in or from the status structure
can be dealt with irD(1) time. The total running time becom&gnlogn + k), wherek

is the number of reported intersectio®(nlogn) time for the sorting®(n) time for the
insertion and removal of intervals in or from the status structure,@d time for the
reporting. The running time can still be as high@®?), but only if the actual number of
intersections i®©(n?); the algorithm is what we calutput sensitive

Back to our original problem, the determination of intersections between line segments
in the plane. The one-dimensional sweeping algorithm can be adapted for use in two
dimensions in the following way: instead of sweeping the intefvalo, co) with a point,

we sweep the plane with a line from top to bottom (see Figure 1.11).

The status structure is a list of active segments, i.e., those segments that are intersected by
the line. As in the one-dimensional case, two line segments can only intersect if they are
both active at some moment (i.e., if there is a horizontal line intersecting both segments),
but the reverse is not necessarily true in two dimensions: two active segments need not
intersect. So testing all active segments for intersection with a newly active one may not
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Figure 1.11: Sweeping the plane in downward direction. Active segments are fat.

be very efficient, and in fact it is possible to trigg@(n?) such tests while there are no
intersections at all, as is illustrated in Figure 1.12.

1 1
3N lines 3N lines

*—O O6—0 06— 0 o6 —9°

Figure 1.12: Testing all active segments for intersection with a newly active one can lead
to an Q(nz) running time, even when there are no intersections.

It appears that we need another observation: just before the sweep line reaches an inter-
section between two segmergsands; in S, these two segments are neighbors on the
sweepline. This suggests the following approach: we maintain the status structure as a
sortedlist of line segments; the sorting is on tkeoordinate of the intersection of the ac-

tive segments with the sweepline. We only test for intersections between active segments
that are neighbors on the sweepline. The status structure changes on three kinds of events,
which we handle as follows:

e The sweepline reaches the topmost endpoint of a segment. The segment becomes
active, and has to be inserted in the proper place of the status structure. We test
for intersections between the newly active segment and its (at most two) neighbors.
New intersections are reported and inserted in the event list. See Figure 1.13, left.
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e The sweepline reaches an intersection between two active segments. Their order
in the status structure is changed, and they are tested for intersection with their (at
most two) new neighbors. See Figure 1.13, middle.

e The sweepline reaches the bottommost endpoint of an active segment. The segment
becomes inactive and is removed from the status structure. Its neighbors are tested
for intersection. See Figure 1.13, right.

Figure 1.13: Three kinds of sweep events.

If we maintain the status structure as a binary search tree, all changes of the status struc-
ture can be done i®(logn) time, since at any time during the sweep at moségments
are active.

The event queue is also maintained as a binary search tree; initially it contains only the
endpoints of all segments; intersections are inserted when we find them. Although the
total number of events can I®(n?), we can keep the size of the event queue linear by
maintaining only the intersections of segments that are neighbors on the sweepline (see
Brown [17] and Pach and Sharir [83]). This means that some intersections are removed
and reinserted again if the order of the active segments changes (see Figure 1.14). Hence,
all operations on the event queue can be dor@(logn) time.

A s (a)
(b)
©)

Figure 1.14: An intersection is added to the event queue at (a), removed again at (b), and
reinserted at (c).

The total running time of this sweep algorithm@g(n+ k) logn) time, wherek is the
number of intersections: there &¢n+ k) events, each of which tak&logn) time to
handle. Details and a more in-depth analysis can be found in any textbook on computa-
tional geometry (e.g. de Berg et al. [31]).
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1.3.3 Search structures

Another important basic operation in computational geometry is searching for geometric
objects. This problem comes in two varieties. The first is the location of some query
object, for instance, the reporting of the face of a planar subdivision that contains some
query point; this is theoint location problen 26, 40, 62, 80, 86,97,98]. We can also
reverse the problem: given a set of geometric objects, such as points in the plane, and a
query range (for example, a rectangle), report all the objects that lie inside the query range.
This is what we calfange searchingsee for instance chapters 5, 10, and 16 of de Berg

et al. [31]). For both searching problems there is an obvious brute-force solution: simply
test all the stored objects with the query object. But there are more efficient solutions, all
of which are in fact based on the same principle as the binary search in the dictionary, as
described above: they all recursively narrow the region in which the search takes place.

Planar point location is used extensively in this thesis, so we will treat it here in somewhat
more detail. LetS be a planar subdivision of the withedges in total. It is not at all
straightforward to determine without preprocessing whether a query pdieg inside a

given polygonal region af; the region can have a linear number of edges. The problem
becomes easier if the region is a triangle or a convex quadrilateral; three sidedness tests,
or four, respectively, suffice in that case to answer the question: if the DCEL-structure
is used to represent the subdivision, then the point lies in the region if and only if it
lies to the left of the half-edges incident to the region. This motivates us to refine the
subdivision by breaking up the polygonal regions in the following way (see Figure 1.15):
from each vertex we draw vertical segments upward and downward, until we hit an edge
of the subdivision. In the resulting refined subdivision, which is known as#pezoidal
map[98], every region is either a triangle or a quadrilateral. The total number of edges
we add is twice the number of vertices in the original subdivision, whigd(ig, since

the subdivision is planar. The total number of vertices, edges, and faces in the trapezoidal
map is therefore alsO(n). If the edges of the original subdivision are in general position,
then each region in the trapezoidal map has one or two vertical sides, and exactly two non-
vertical sides.

A search structure for the trapezoidal map is a directed acyclic graph, and it can be built
with a randomized algorithm (see Seidel [98]). We first determine a bounding box of the
edges in the subdivision, and initialize a trapezoidal map structure and search structure
(consisting of a single node representing the bounding box). Next, we add the edges of the
subdivision in random order. Each time that we add an edge, we update the trapezoidal
map by identifying which trapezoids are replaced by new ones, and these modifications
are reflected in the search structure. The leaf nodes of the resulting search structure repre-
sent the trapezoids of the final trapezoidal map; the internal nodes arexeitbdesrep-
resenting an endpoint of some segment-apndesrepresenting a segment itself. Search-

ing this structure is done by descending it starting from the root (see Figure 1.16, taken
from [31, p. 127]). At arx-node we compare thecoordinate of the stored endpoint with

that of the query point to decide whether we have to descend to the left or right child of
thex-node. At any-node, we test whether the query point lies above or below the stored
segment.
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Figure 1.15: Trapezoidal decomposition of a planar subdivision

07]

Figure 1.16: Search structure for the trapezoidal map.

The expected running time for the construction of the trapezoidal map and the accompa-
nying search structure 9(nlogn); the expected size of the search structure is linear in
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n. Searching with a query point tak€glogn) expected time. Details on the construction
of the trapezoidal map and the search structure, as well as an in-depth analysis of prepro-
cessing time, query time, and memory requirements can be found in Seidel’s paper [98].

For completeness we mention the most important structures that support range queries in
a set ofn geometric objects (see de Berg et al. [31]):

e A kd-treefor a setP of n points ind dimensions can be constructed @{d -
nlogn) time. It takesO(d-n) memory, and supports rectangular range queries
in O(n*~/9 + k) time, wherek is the number of reported points.

e A range-treefor a setP of n points ind dimensions take@(nlogdfln) storage
and O(nlog®~n) construction time. It supports range queriesdtiog n+ k)
time, wherek is the number of reported points. Using a technique cdibsrtional
cascading(see Chazelle and Guibas [20, 21]), the query time can be improved to
O(log®~1n+k).

e Aninterval treestores a set afintervals on a line if©(n) memory, and can be used
to report all the intervals that contain a query poinGifiogn+ k) time, wherek is
the number of reported intervals. Building an interval tree talg@gdogn) time.

e A priority search tregfor a setP of n points in the plane usé3(n) storage and can
be built in O(nlogn) time. It can be used to report all the pointsRrthat lie in
the unbounded query-range oo, dy] x [gy,qy] in O(logn+k) time, wherek is the
number of reported points.

e A segment trestores a set af intervals on a line irD(nlogn) memory, and can be
used to report all the intervals that contain a query poi@(logn+ k) time, where
kis the number of reported intervals. Building an interval tree t&kedogn) time.

e A partition treecan be used for triangular range queries. For a sepafints in the
plane it take€D(n) storage, and it can be constructedin'*+¢) time for anye > 0.
Counting the number of points in a query rectangle tal@s/2¢) time using the
partition tree; reporting the points takes an additiofgk) time, wherek is the
number of reported points. The query time can be improved(td/2(logn)°(Y).

e acutting treecan be used to report the number of lines of a set tifies in the
plane that lie below a certain query point@flogn) time; the lines can be reported
in an additionalo(k) time, wherek is the number of reported lines. The structure
takesO(n?*¢) memory and can be constructeddin®*¢) time for anye > 0. The
O(nf) factor in the storage requirements can be removed.

In spite of the query time of the partition tree and the storage requirements of the cutting
tree, which may seem not very attractive, these are very powerful (but complex) struc-
tures. Theimulti-levelvariants have about the same query time and storage requirements
respectively, but can answer more complex range queries, some of which are impossible
to solve efficiently with the simpler search structures.
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1.3.4 Voronoi diagrams

Suppose that you are walking in the desert, equipped with a GPS device (so you know the
coordinates of your current location) and a thematic map, showing all teses with

wells in the desert. You are incredibly thirsty, so you would like to identify the nearest
oasis as quickly as possible. Having heared about computational geometry, you suspect
that that there must be a smarter way than to simply calculate your distance to all oases
and pick the one with minimum distance, all in linear time.

You are right: you should have prepared your journey through the desert by subdividing
the map with the oases into regions, such that for all locations within a single region, the
nearest oasis is fixed. Such a subdivision is called/timenoi diagram9, 36, 122, 123] of

the oases; an example is shown in Figure 1.17. Having computed the Voronoi diagram [9,
43,51], you can determine the nearest oasi®(ilmgn) time by making use of the point
location techniques described in the preceding subsection.

Figure 1.17: Voronoi diagram of a set of points.

More formally, letP be a set oh points in the plane, and l&be an integer such that
1<k<n-1. For apoing ¢ P in the plane, leP(q,k) C P be any set ok points inP

for which the Euclidean distance ¢gs less than or equal to the Euclidean distance to any
pointin P\ P(q,k). Theorder-k Voronoi diagranj3, 11] of a sef of n points is a planar
graph that subdivides the plane into open regions such that for any @wird region,
P(g,k) is uniquely determined, and such that for any two pom&ndq’ in the same
region,P(q,k) = P(d, k). The interior of the boundary between two adjacent regions is
anedgeof the orderk Voronoi diagram; it is easy to see that each edge lies on a bisector
of two points inP. The non-empty intersections of the closures of three or more regions
of the orderk Voronoi diagram are itgertices We assume that all vertices have degree
three; otherwise, a degeneracy is present.
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The order-1 Voronoi diagram is known as the (standard) Voronoi diagrartosest-site
Voronoi diagram and the ordefn — 1) Voronoi diagram is also called tHerthest-site
Voronoi diagram Voronoi diagrams have been well-studied, and they are covered in any
textbook on computational geometry. Interesting varieties include Voronoi diagrams with
different metrics, and Voronoi diagrams of other objects than points, such as line segments
or circles of different sizes.

An interesting structure related to the Voronoi diagram is the Delaunay triangulation [49]:
it is the dual of the Voronoi diagram, obtained by connecting all points whose Voronoi
regions are adjacent (see Figure 1.18). The Delaunay triangulation has some interesting
properties. One of these properties is émepty circleproperty: the circle through three
points that are vertices of the same face in the triangulation contains no pois aé
interior, and for any two points iR that form an edge in the triangulation there is a closed
disc that has the two points on its boundary and does not contain any other p&int of

A second property is that the Delaunay triangulation maximizes the minimum angle over
all triangulations of [103]. This second property makes the Delaunay triangulation the
triangulation of choice when long and skinny triangles are undesirable, which is the case
in many applications.

Figure 1.18: The Delaunay diagram is the dual of the Voronoi diagram

The Voronoi diagram can be computed by a sweep algorith®(imogn) time (see For-

tune [43]), and given the diagram, the Delaunay triangulation can be constructed easily
in linear time. Another way to compute the Delaunay triangulation is by a randomized
incremental algorithm (see Guibas et al. [49]).
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1.4 Selected computational geometry problems from GIS

In the following four chapters of this thesis we will look in detail into four selected exam-
ple problems that arise in the field of GIS. These four problems are introduced next.

1.4.1 Choropleth map traversal

Choropleth maps (see Section 1.1.3) are frequently dealt with in a GIS, in many different
ways. All kinds of complex operations on these maps can often be carried out by repeat-
edly using a simpler operation that does the job for a single region of the map. Therefore,
a common operation in a GIS is to traverse the map, to retrieve its regions, and to report
their features or the attribute data stored with these features. For instance, if we want to
draw a map showing population sizes of European countries on the screen, the polygons
representing the European countries have to be retrieved and passed on to the graphics
engine of the GIS. Or, if we want to determine the total number of inhabitants of Europe,
we have to traverse all countries and collect information about the number of inhabitants
of each individual country.

The spatial data structures in a contemporary vector-based GIS are basically planar subdi-
visions, and the topological relations between vertices, edges, and cells are stored explic-
itly. The underlying computational geometry problem of the GIS tasks sketched above
is the traversal of such a topological subdivision, and the enumeration of all cells, edges,
and vertices. It is clear that we have to report each relevant cell or its attribute data pre-
cisely once. Reporting a country more than once would lead to inefficient displaying of
the map and an erroneous calculation of the total number of Europeans, while omitting
one or more countries would yield incorrect results in both examples. Somehow we have
to keep track of which cells have been reported, and which cells have not. A common
solution is to usenark bits which can be seen as auxiliary attributes for recording if the
feature has been reported or not. However, this is not always applicable in practice; if the
GIS at hand does not provide mark bits, we would either have to alter the data structures,
or make a copy of the data in main memory or background storage, which is inefficient if
not impossible. Another disadvantage is that in order to gather information—essentially a
read operation—we’'d have tarrite to the database for setting and resetting the mark bits,
thus preventing concurrent access to the database. In Chapter 2 (based on a paper with
De Berget al.[32]) we show how to exploit the topological relations between the zero-,
one-, and two-dimensional features, together with some basic geometric calculations, for
traversing a subdivision without using mark bits. We also address the problem of report-
ing parts of the subdivision, such as windowing queries, where we are only interested in
those cells that intersect a specified rectangle, or the reporting of connected subsets of
cells with an equal-valued attribute. Both operations are common in GIS.
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1.4.2 lIsosurface generation

In Section 1.2.2 we have seen three models to represent continuous data in a GIS: the
elevation matrix, the TIN, and the isoline model. To visualize continuous data, different
methods are available, depending on the model used. For the elevation matrix and the
TIN, a perspective view of the model can be generated by the GIS: in that case, the data
is presented to the user as the picture of a mountainous landscape. But probably the most
commonly used method for displaying continuous data is the isoline map (Section 1.1.3).
Isoline maps can be stored directly, but often the data is stored as an elevation matrix
or a TIN, and the isolines have to be generated by the GIS. Suppose that a GIS user
wants to display an isoline map of a certain geographic area, showing the contours of
her favorite set of height levels. A straightforward way to implement this is to traverse
all cells of the elevation matrix or the TIN (perhaps using the techniques of Chapter 2),
and to test for every cell if it is intersected by one or more of the requested contours.
However, in many practical situations one can expect the number of cells intersected by
a particular contour line to be roughy(,/n), wheren is the number of cells. More
efficient methods exist that make use of geometric data structures such as kd-trees or
interval-trees (Section 1.3.3), but the storage requirements of these data structures are
often too large to be worth considering in practical situations. A different approach is
based on the observation that it suffices to find, for each individual contour that has to
be displayed, one cell that is intersected by the contour. Once we have found such a
seed cell we can use it as a starting point for the traversal of only those cells that are
intersected by that particular contour. It is important to realize that the contour lines of a
given height value may consist of more than one connected component, each of which is
either a closed curve or touches the boundary of the displayed area at both ends. In order
to correctly generate all these contours for a given height value, we need a seed cell for
each component. This leads to the following problem: given a regular or irregular mesh,
find a minimum size seed set, such that every possible contour component intersects at
least one of the cells in the seed set (see Figure 1.19). Once we have found such a seed
set, we can solve the contour generating problem by searching the (hopefully small) seed
set, either brute-force or with the use of the aforementioned search structures, instead of
searching the whole set of cells.

In Chapter 3 (based on a paper with van Kreveld et al. [117]) we give an algorithm to
compute a minimum-size seed set. Unfortunately, its running tinggnélogn), where

n is the number of cells, which makes it difficult or impossible to implement in many
real-world situations. Therefore, we also give an approximation algorithm that runs in
O(nlog2 n) time, uses sub-linear memory in practical situations, and yields a small seed
set. Implementations show that that the approximation algorithm indeed is applicable
in practical situations, and that it outperforms previous seed set generating algorithms
in terms of seed set size. Our algorithms make use ottimtour tree a structure that
captures the topology of the contours of certain specific values. Seed sets can be computed
for three-dimensional meshes, such as medical images, as well.
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Figure 1.19: Any contour in the TIN intersects at least one of the seeds (shaded).

1.4.3 Selection for cartographic generalization

The generation of a map is a complex process involving many steps. First, it should be
decided what kinds of thematic data is to be displayed on the map. Depending on the
amount of data stored in these layers and the desired scale of the map, it may be the
case that displaying all geographic objects would result in a heavily cluttered, unreadable
map. One has to decide which objects will actually be displayed, and which ones will be
omitted. After the selection step follows a generalization step, in which groups of small
objects are aggregated into a single region, and the level of detail is reduced to match the
scale of the map.

Chapter 4 (based on a paper with van Kreveld et al. [118]) addresses the problem of
cartographic selection, where we are given a set of geographic objects and the task of
deciding which ones of these to select for displaying. We limit ourselves to point objects,
settlementgsee Figure 1.20), for which we assume an importance factor to be given.
For instance, the settlements could be cities, and the importance factor simply the num-
ber of inhabitants. Although in general less important settlements are dropped from the
map in favor of more important ones, it is hardly ever the case that all settlements that
are displayed are more important than all settlements that are omitted. For instance, on
a small-scale map of the United States of America, it may not be possible or desirable
to display both Philadelphia and New York. Firstly, there may simply be not enough
space to display them both, and secondly, one may prefer displaying a small set of evenly
distributed large cities, such as on weather forecast maps, where cities have a reference
function. In both cases, Philadelphia will usually be omitted. Salt Lake City on the other
hand, although smaller than Philadelphia, will be displayed, because there is no larger
city close to Salt Lake City with which to compete for space. So we will have to use some
notion ofrelative importancetaking proximity of cities into account. In Chapter 4, we
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first discuss three existing models for relative importance. Two of these have the property
that when we increase the number of settlements to be displayed, settlements that were
originally displayed may disappear, and reappear again later on in the process, and for all
three models it is not always possible to make a selection of a specified size. We regard
this as an undesirable property of the models, and we give four new models that don’t suf-
fer from this flaw. Our models computeaankingof the settlements, which is a complete
order of the relative-importance factors. The advantage of having a ranking is that, after
computing it once, we can store the ranking in memory linear in the number of settle-
ments. Displaying is then simply a matter of selecting the required number of settlements
in order of rank; upon change of the desired number of settlements, no time-consuming
re-evaluation of relative importance factors needs to be done, as opposed to the existing
models that do not give a ranking. We show how to implement our methods efficiently by
making use of computational geometry data structures and techniques, such as Voronoi
diagrams and point location algorithms. We also implemented both the existing and the
new models and tested them on two datasets, consisting of the 158 largest cities in the
US, and of 139 municipalities in the Netherlands, respectively.

Figure 1.20: Displaying all settlements (left) leads to a cluttered map. Selecting fewer
settlements (right) makes the map more readable.

1.4.4 Facility location in terrains

One of the functionalities of a GIS is geographic analysis. A GIS must be able to combine
information stored in different thematic layers, and to calculate all kinds of statistics such
as correlation between variables. A more complex kind of geographic analysis is the
determination of locations that are suitable for some purpose. Suppose for instance that
a new hospital is to be built for the benefit of several villages in mountainous area. The
location of the hospital should be such that the maximum distance to any of the villages
is minimized. This is an instance of thacility location problem which we study in
Chapter 5 (based on a paper with Aronov et al. [6]) in an abstract form. The mountainous
area is modeled as a polyhedral terrain, the villages as point sites on the terrain, and
distances are measured along the surface of the terrain.

In the plane, the facility location problem has been well-studied. The optimal place-
ment of the facility is at the center of the smallest enclosing circle of the sites, and
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the first deterministic linear-time algorithm to determine this circle has been given by
Megiddo [74]. A much simpler randomized algorithm that runs in linear expected time,

is due to Welzl [125]. Despite the simplicity of the planar version of the facility location
problem, it appears to be very hard to solve it on a terrain. This is partly due to the fact
that shortest paths between two points on a terrain are not necessarily unique, and distance
calculations along the terrain are much more expensive than in the plane.

There is a well-known relation between the smallest enclosing circle for a set of points
and the furthest-site Voronoi diagram for the same set. That is, the center of the smallest
enclosing circle lies on an edge or vertex of the diagram. In Chapter 5 we show that the
same relation holds on a terrain, and we give a new algorithm for computing the furthest-
site Voronoi diagram on a terrain. After the diagram has been computed, the optimal
location for the facility can be found by traversing it: the location on the diagram where
the distance to the defining sites is minimized is the location for the facility.



CHAPTER 2

Subdivision Traversal
Without Extra Storage

2.1 Introduction

The basic spatial vector data structure in any geographic information system is the one
that stores the zero-, one- and two-dimensional features of planar subdivisions. Contem-
porary GISs like ARC/INFO [1] and the DIME file [2] use polygon structures that store
the explicit topology as well. This means that from any feature, it is possible to access ad-
jacent features efficiently. Essentially, these structures are similar to the doubly connected
edge list [79] (see also Section 1.3.1) and quad edge structures [50] used in computational
geometry.

A basic algorithmic routine that can be applied to any planar subdivision is its traversal.
The objective of such a traversal can be to report all boundary segments on a map in order
to display them on a computer screen, or to collect numerical information stored with
the cells for further statistical analysis. Unfortunately, to traverse a topological polygon
structure one needs to record what features have been visited, to avoid continuing for-
ever. This means that the zero-, one-, and two-dimensional features must have a mark
bit to capture this information. This is highly undesirable, because mark bits require ex-
tra storage space, or even worse, the data structure at hand may not have such mark bits
with the features. Also, when background storage has to be used because the subdivision
is too large to fit in main memory, using mark bits involves not only read operations,
but also write operations. Another drawback of mark bits in concurrent situations is that
subdivision traversal cannot be performed by two users at the same time.

An algorithm for the traversal dfiangulated subdivisiongr triangulated irregular net-
works,that does not require mark bits to record what triangles have been visited and which
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have not, was developed by Gold et al. [47] (see also Gold and Maydell [48] and Gold and
Cormack[46]). Their method involves choosing one starting point, and defining for each

triangle exactly one incident edge through which the triangle can be entered. With the
correct definitions and choices one can make sure that every triangle in the subdivision is
reported exactly once. In fact, an order is defined on the triangles and the triangles are
reported according to this order. Other work on ordering of triangles was done by De

Floriani et al. [33], who used the order for visibility purposes.

In the field of computational geometry, efficient traversal algorithms have also been stud-
ied. Edelsbrunner et al. [40] showed how to traverse a directed acyclic graph without
using mark bits. Avis and Fukuda [12] gave an algorithm to report the vertices of an
arrangemenbr aconvex polytopwithout using mark bits in the data structure that repre-
sents the arrangement or polytope. Their description is a rather abstract one and does not
address non-convex subdivisions; see also Fukuda and Rosta [45]. A generic algorithm
for traversing graph-like data structures without storing any information about the visited
parts of the data structure was developed by Avis and Fukuda [13].

In this chapter we extend the result of Gold et al. [47] and Edelsbrunner et al. [40] to
traverse subdivisions without using mark bits. Our ideas are similar to those of Avis and
Fukuda [13] and of Edelsbrunner et al. [40]. Unlike their methods, our algorithm can be
applied to any subdivision of which the vertices and edges form a connected graph. We
prove the correctness of our algorithms for both convex and non-convex subdivisions. The
algorithms are extremely simple; we implemented the algorithm for straight-line subdi-
visions in about 100 lines of C-code and it works fine. We also extend the results to
subdivisions with curved arcs, and we give extensions for the traversal of a connected
part of a subdivision, or the part of a subdivision that lies inside a specified window.
These operations are commonly used by geographic information systems. One usually
doesn’t need the whole subdivision to be traversed, but just some subregion in which the
user is interested. For instance, when a GIS user needs to know the annual rainfall for a
single province of some country represented by a choropleth map, only the cells for that
province need to be traversed to collect the rainfall figures. Also, when she wants to dis-
play a rectangular map of a part of the country, only the cells that intersect the rectangle
need to be displayed. We also address the traversal of the surface of a convex polyhedron
in three-dimensional space, and the traversal of a convex subdivision in three-dimensional
space. In all cases, no mark bits are required in the data structure. Some of our results
have independently been obtained by Snoeyink [105].

We present our algorithms using tHeubly-connected edge list struct&l, 79, 85], a
standard data structure used in computational geometry that stores topology explicitly
(see section 1.3.1). This is not a restriction; simple adaptations to the algorithms can be
made so that they apply to the quad edge structure [50], the fully topological network
structure [18], the ARC/INFO structure [1], the DIME file [2], or any other vector data
structure that stores the topology explicitly.

In the next section we describe the simple traversal algorithm for subdivisions embedded
in the Euclidean plan®&? and prove its correctness. In Section 2.2.3 we show how to adapt
the algorithm such that it can handle TINs and surfaces of three-dimensional polyhedra
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and subdivisions with curved edges. We address the traversal of connected subsets of the
cells in a subdivision and windowing queries in Section 2.2.4. Finally, in Section 2.3 we
extend our results to connected subdivisions in three dimensions.

2.2 Traversing a planar subdivision

2.2.1 The local method

We assume in this section and in Section 2.2.2 that the subdissaur algorithm oper-
ates on is embedded in the Euclidean pl&Rgthat its edges are straight line segments,
and that the edges and verticesSoform a connected set. In Section 2.2.3 we will show
how to overcome the first two restrictions.

The idea behind our algorithm is to define an order on the cells of the subdivision and
to visit the cells in this order. Leb be the set of cells i5. For every cell inSwe de-

fine a unique predecessor, such that the predecessor relationship imposes a directed graph
G(V,E) on the subdivision, witlV = {c | c € S} andE = {(c,c) | ¢’ is the predeces-

sor of ¢. Our algorithm reports the cells &in depth-first order, that is, in the order
corresponding to a depth-first order in the graph To facilitate this, the predecessor
relationship on the cells & needs to be defined such ti@ais a tree, rooted at the node

of the starting celtsiar, and all arcs are directed away from the root. Gr&hever is
explicitly determined or stored, but it is used to prove the correctness of the algorithm.
The most important step of the proof is showing tats a tree. Analogous to graph
terminology, a pathtin the subdivision from one cedf to another celt is a sequence of
cells(c’ = cp, €1, ... ,Cc = C) such that;_1 is the predecessor of for eachj,1 < j <k.

To show thaiG is a directed rooted tree, we must show that for everyctiere is ex-

actly one pathrt from Cstart to €. The following definition will prove to be helpful (see
also Figure 2.1):

Definition 1 Let c be a cell ofS, & a half-edge incident to ¢, and p a point not in the
interior of c. We say tha& isexposedo p if there is a point pon the interior ofé such
that the interior of the segmenptp’ does not intersect any half-edge of c.

It is straightforward to verify that for any cedlof Swith a pointp in its exterior or on its
boundary, at least one half-edge is exposegl td/e will use this to define the predecessor
relationship on the cells & First, we choose an arbitrary pointn the starting celtsiart.
Using p we identify for each celt except forcsiart @ special half-edge among the ones
that are exposed tp, calledentry(c). The cellc’ incident totwin(entry(c)) is defined
as the predecessor of For any cellc of S, except forcsiart, We determine its entry as
follows:

e We calculate the Euclidean distance betwpamd the closures of all the half-edges
of c. We define the half-edgeof c that has minimum distance to be the entry of



32 Subdivision Traversal Without Extra Storage

Figure 2.1: The fat half-edges of C are exposed to p, the other half-edges are not.

c. In some cases ties have to be broken. Consider the minimum radiusCircle
centered ap that intersects the boundary of the aellf C intersects the boundary
of ¢ in more than one point, we choose the first of these point€,oclockwise
aroundp, starting in some fixed directidh(Figure 2.2). Let this point bg'.

— If p’ lies in the interior of a half-edgéincident toc, then& is the entry ofc.
Note thaté is exposed t@.

Figure 2.2: py is the first point on C, starting in direction 0.

— If p’ lies on a vertew of the boundary ot, then we must choose between
the two half-edges ande incident toc that havev as destination and source,
respectively. I8 is exposed t@ we choose it as the entry of otherwise &
is exposed t®, and we we choose it as the entryoof
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Testing whether a half-edgss the entry of its incident cell can be doneQxl) time for
convex subdivisions. Note that an edgef a convex cell is exposed foif and only if

p lies strictly to the right of the directed line induced 8ysee Figure 2.3, left). Hence,
some simple tests involving only, & and the predecessor and the success8rsaffice
for convex subdivisions:

o if 8is not exposed t@, then it is not the entry of its incident cell.

e Otherwise, if the predecessérof gis exposed tg and the distance frorp to €
is less than or equal to the distance frgno &, thengis also not the entry of its
incident cell.

e Otherwise, if the successet of &is exposed t@ and the distance from to e is
strictly less than the distance fropto € thengis also not the entry of its incident
cell.

e Otherwisegis the entry of its incident cell.

Figure 2.3: If p lies to the right of the directed line induced by a half-edge of a convex cell,
then the half-edge is exposed to p. For non-convex cells, this condition is not sufficient.

For non-convex subdivisions, determining whether a half-&dgéhe entry of its incident
cell c involves the comparison of the distance betwgesnd the closure o€ with the
distance betweep and the closures of all other half-edges incident;tthis takes time
linear in the number of half-edges incidenttto

Lemma 1 With the predecessor relationship defined as above, for every cell c in S there
is exactly one path from Gart to C.

Proof: It is easy to verify that there cannot be more than one path figsn to a cell
¢, since every cell has exactly one entry. Now suppose that there exists a non-empty set
S ={c| ce S and no patht exists from gart to c}. DefineR to be the set of closures
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of the cells inS. LetC be a circle centered at the poiptas defined above, and IEt
have radius such that it intersects the boundar pbut not its interiorC intersects the
boundary of at least one calin S.

Let p' € R be the first point orC, clockwise around, starting in directiorf. Choose
one of the cells ir8 that hasp’ on its boundary (observe that there is at least one such
cell), and let this cell be. We will show that there is a path froa to this cellc, thus
deriving a contradiction, which will prove the lemma.

For the cellc, entry(c) is defined as above. Observe tipaties in the closure oéntry(c).

If p’ lies in the interior ofentry(c), then the predecessofrof ¢, i.e. the cell incident to
twin(entry(c)), intersect<, and a patht from csiart to €’ exists. Since’ is the predeces-
sor ofc, there is a patht from cgiart to ¢ via ¢’ (Figure 2.4).

entry(c)
c \

Figure 2.4: The cell incident to twin(entry(c)) intersects C.

On the other hand, suppose thtis one of the endpoints a#ntry(c). Assumep’ is

the destination vertex adntry(c); the case wher@' is the source vertex antry(c) is
analogous. Lef be the directed line tangent ®at p’ and with p to its right. Consider

all half-edges that havp' as their destination and lie to the left 6{or on the line), as
illustrated in Figure 2.5. Let these half-edgesshe . . , & = entry(c), e 1, ..., in cyclic

order as in Figure 2.5. The cell incident &is labeledc; for 1 <i <k, and the cell
incident totwin(&y) is labeledcy. Observe thati_1 is incident totwin(&) for 1 <i <k.

Also note that a single cell can have more than one label, as illustrated in Figure 2.6. Using
induction oni, we will show that there is a paltfx from Csart to k. Sincecy = c € S, this

again leads to a contradiction.

e Since no edges lie betweeéhand the tangent tG, cyp must intersect. It follows
that there is a pati from Cggart to Co.

e Assume there is a patiy from csiar to all cellscy, ¢, . . . , ¢ for some 0< i < k. We
can distinguish three cases, which together cover all possibilities:
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Figure 2.5: Half-edges having p’ as their destination.

Figure 2.6: Cells can have multiple labels.

— If ¢i.1 € S then by definition ofS there is a path frorsart to ¢ 1 (note that
it is possible for a cell incident tp’ to intersecC even if its two half-edges
incident top do not intersecC, as is illustrated in Figure 2.7). Otherwise, If
¢i.1 € S, we can conclude by definition @fthat the celk; ;1 doesn'tintersect
the interior ofC, nor can its boundary have a point Grbeforep’, starting
clockwise from@ Figure 2.8.

— Ci+1 has another labalj, with j <, as illustrated in Figure 2.6. In this case,
there is a patim_ 1 = 11 from Cstart to Cj = Ci1-1 by the induction hypothesis.
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C
p/q

Figure 2.7: Cells intersecting the circle C are reachable from Cstart.

Figure 2.8: By choice of p/, entry(cs) is incident to p'.

— Gi+1 € S and it has no other labe} with j <i. In this case it's straightfor-
ward to verify thatentry(ci;1) = &11: C is the smallest circle centered jat
intersecting the boundary of, 1, andp’ is the first point orC and the bound-
ary of i1 that is encountered when we rotate clockwise aroprstarting in
direction®. Also note that sincex (the entry ofcy) is exposed tq, &1 is
also exposed tp.

Since there is a patiy from Csiart to cell i by the induction hypothesis arng
is the predecessor of, 1, there is a patht_ ; from Csart to Gy 1 Via g.

Since in all cases there is a pathct;, we conclude by induction that there is a path to
Cck=C.
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2.2.2 The algorithm

Using the methods of the previous section for finding the entry of ace# can develop
a very simple algorithm that traverses a subdivis®m a depth-first manner without
using mark bits or a stack and which reports all cellS.dfVe assume that the subdivision
is stored as a doubly-connected edge list; see Section 1.3.1 for the notation.

Algorithm Travers€S, c)

Input: A planar subdivisiors of which the edges and vertices form a connected set, and
a bounded starting catle S

1. &« Outer-incident-edde]

2. Reportincident-cellg]

3. repeat if 8= entry(Incident-cel[€])

4. then & — nex{twin[g]] (x return from cellx)

5. else iftwin[g = entry(Incident-celltwin[g])

6 then Reportincident-celftwin[g]]

7 & — nextitwin[g]] (x explore new celk)

8 else & — nextg (x next half-edge along current cel)

9. until =0Outer-incident-edge]

Of every half-edge of the counterclockwise cycle of edges around & @ellS, algo-

rithm Traverseinspects the corresponding twin half-edge, incident to a neighboring cell.

If this half-edge is the entry of the neighboring cell, the algorithm continues in a depth-
first manner in this cell after reporting it. Note that no stack or other memory resources
are needed. Since we start with the successor of the entry-edge of a cell the algorithm is
finished with the counterclockwise cycle of edges of that cell when it encounters the entry
of the cell (line 3). Figure 2.9 shows some snapshots of a run the algorithm.

Let n be the number of edges in the subdivision. Since the subdivision is planar, both the
number of vertices and cells a@n). In Algorithm Traversethe functionentryis called

at most 4 times, namely at most twice for each half-edge. For convex subdivisions we
can determine i©(1) time whether a half-edge is the entry of its incident cell; it follows
that the running time of AlgorithnTraverseis O(n) for convex subdivisions. For non-
convex subdivisions determining whether a half-edge is the entry of its incident cell takes
time linear in the number of edges of that cell. If the cells have constant complexity, then
the running time of our algorithm i®(n); if the cells are non-convex polygons of which

the complexity is not bounded by a constant, then the running time is bounded by the sum
of the squares of the complexities of all cells, whiclig?) in the worst case.

Theorem 1 Algorithm Traverse reports all cells, vertices and edges of a connected sub-
divisionS with n edges without using mark bits or a stack. The running timeg Dall

cells are convex or if the complexity of each cell is bounded by a constant. Otherwise, the
running time is @n?).

Algorithm Traversecan easily be adapted to report the edges and the vertices of the sub-
division as well: when a cell is reported in line 6 of Algorithfraverse we list all its
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Figure 2.9: Snapshots of a run of the traversal algorithm. The traversal starts in the cell
with the dot, and lighter cells are visited before darker cells.

half-edges. To prevent a half-edge pair from being reported twice, we only report the one
that has its direction in the rand@, ). Of every half-edg& that is reported, we report

its source vertex if and only if s the first half-edge witlv as the source, in a cyclic
order starting in some fixed directidgh These tests can be performed in constant time
using standard DCEL-operations. The asymptotic running time of Algorittaverseis

not affected by these adaptations.

2.2.3 Overcoming the restrictions

In Sections 2.2.1 and 2.2.2 we made the assumptions that the subdivision our algorithm
operates on is embeddedliR and that its edges are straight line segments. In this sec-
tion we will show how to adapt the algorithm such that it can handle polyhedral terrains
represented by TINs, surfaces of three-dimensional convex polyhedra, and subdivisions
with curved arcs.
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Adapting our algorithm so that it can handle a polyhedral terrain is quite simple, if it is
represented by @riangulated Irregular NetworKTIN). A terrain is a two-dimensional
surface in three-dimensional space, with the special property that every vertical line in-
tersects it in a point, or not at all. This means that a ppintith coordinategx,y, z) on

the terrain can be mapped to a popitc E? with coordinategx,y), and that the map-
ping of all points of the terrain t&? is injective. Calculating thentryof a triangle in a
polyhedral terrain can be done with the method of Section 2.2.1 if we project every edge
and vertex of the triangles di¥ when it is examined; Algorithrifraverseneeds no fur-

ther adaptations. Since every projection ta®¢$) time, the asymptotic running time of

the algorithm is not affected by the projections. For TINs our algorithm is similar to the
algorithm of Gold and Cormack [46].

Corollary 1 Algorithm Traverse can be adapted to report all n triangles of a TIN {n)O
time without using mark bits or a stack.

Boundaries of three-dimensional convex polyhedra can be dealt with in the same way,
although mapping the vertices and edge&faequires a little more effort for a convex
polyhedron than for a polyhedral terrain (see Figure 2.10). We assume that that the poly-
hedron is stored as a topological datastructure as described by Dobkin and Laszlo [38],
such that we can find adjacent faces, edges and vertices efficiently. To traverse and report
these features, we project them on a single facé the polyhedron as follows: we de-
termine a pointp such that for all vertices of the polyhedron, except those incident to

f, the line segment betwegnandv intersectsf. This intersection is the projection of
Projections of edges are determined by projecting their incident vertices.

Finding a suitable poinp involves taking a facd of the polyhedron, choosing a point in

the interior off, and translating it along the normal dto the outside of the polyhedron.

The faces incident to thevin-edges of the half-edges boundifigletermine how little we
should translate the point to the outside of the polyhedron. Testing this takes time linear
in the complexity off. After that, projections take O(1) time for each vertex and edge of
the polyhedron, and we obtain a planar convex subdivisioh of

We now can run AlgorithnTraverseon the polyhedron; determining whether an edge is
the entry of a face or not is done by performing the calculations described in Section 2.2.1
on the projected version of the edge. Note that we don’t need to project the whole sub-
division in advance; it suffices to do the projections “on the fly”. Again, the asymptotic
running time of the algorithm is not affected by the projections.

Corollary 2 Algorithm Traverse can be adapted to report all faces, edges, and vertices
of a three-dimensional convex polyhedron with n faces (in)@me without using mark
bits or a stack.

Algorithm Traversecan also be used to report the cells, arcs, and vertices of subdivisions
with curved arcs instead of straight edges, provided that the arcs have constant description
size and that we can calculate the minimum distance from a pdmain arc. We assume
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Figure 2.10: Projecting the edges and vertices of a convex polyhedron to one of its faces.

that the subdivision is stored as a doubly-connected edge list again, but with half-arcs
instead of half-edges. The entry of a cell is defined almost the same as before: determine
the pointp’ on the boundary of the cell that has minimum distance to the fixed oint

in the starting cell. Ifp’ is not uniquely defined, choose the one that is encountered first
when we rotate aroungd in clockwise direction, starting in some fixed directi®nlIf p

lies on the interior of a half-arg@, thend is the entry of the cell. Otherwise, jif coincides

with a vertexv of the cell that is the destination @ and the origin ofd’, we have to
choose betweesiandd@’. To this end, we need to adapt the notioregposedintuitively,

a curved half-ar@ is exposed to a poinp with respect to vertex if close tov, the arc

a has the cell to the one side and faces the ppittt the other side. More formallg is
exposed tg with respect tov if for all sufficiently small positive real valuesthere is a
pointq # v ondin ane-neighborhood of such that the interior of the segme&m does

not intersect the celt incident tod in thate-neighborhood o¥ (see Figure 2.11). If both
half-arcsd anda’ are exposed tp with respect tos, we choose, the one that hagas its
destination, to be the entry of the cell. Otherwise, at least o@eaaofld’ is exposed tp

with respect tos, and we choose the one that is exposed.

Corollary 3 Algorithm Traverse can be adapted to report all cells, arcs, and vertices of
a subdivision with n curved arcs of constant description size without using mark bits or
a stack. If the complexity of each cell is bounded by a constant, then the running time is
O(n); otherwise, the running time is @?).

2.2.4 Related queries

Sometimes we don’t want the whole subdivis®io be reported, but just some connected
subsetS’ C S, such that all cells ir5’ have the same attribute as the starting cgli
(Figure 2.12). For example, suppose that the starting cell lies in a forest; we then may ask
to report all cells that lie in the same forest. We will show how to adapt Algoritien
versesuch that these queries can answered efficiently as well.
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Figure 2.11: Arc ais exposed to p with respect to v, whereas & is not.

Figure 2.12: A connected set of cells with the same attribute as Cstart (the cell containing
the dot).

As Figure 2.12 indicates, the connected sulsBedf S can contain holes consisting of
cells that do not have the same attribute as the startingcggil. Some of the cells in

these holes can be predecessors of cell§’'inHowever, we don't want to visit cells or
half-edges in the holes. Instead, we rather consider each hole as a single cell. To do this,
we need a way to traverse the counterclockwise cycle of half-edges that bound each hole,
without ever visiting half-edge8 for which neitherg nor twin(€) bounds a cell ofS’.

If we can achieve this, we can express the running time of the traversal algorithm in the
combinatorial complexity ofs’, rather than in the complexity of the whole subdivision

S. To treat a hole as one single cell we do the following (Figure 2.13): suppose that
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half-edgeg with destination vertex is a half-edge of the boundary of a hole. We find its
successor in the counterclockwise cycle of half-edges that bound this hole by inspecting
all outgoing half-edges ofin counterclockwise order, starting wittvin(€), until we find

an edgeg’ that is incident to the hole. This half-edgéis the successor & In this

way, we can treat the holes as ordinary cells of the subdivision, except that they are not
reported. Notice that the cells 6f\ S’, not enclosed bys’, are handled correctly also.

The algorithm won’t even notice the difference between a hole and these outer cells.

What is the effect on the running time of Algorithimavers® Letk be the number of
edges inS’. Then the total number of edges on the boundary of all holes is at@j&st

Each boundary edge of each hole is tested once for being the entry of the hole. Testing an
edge of a hole involves traversing all edges that bound that hole. If we do this as described
above, this takes time linear in the number of edge$'iof which the source vertex lies

on the boundary of the hole; this numbeQgk) for all holes together. Testing each hole
once take®(k) time; since each hole is tested at mogk) times, all these tests together
take at mosO(k?) time. If we combine this with the analysis in Section 2.2.2 we derive a
running time ofO(k?): the running time depends only on the complexity of the reported
cells and not on the complexity of the whole subdivision. Unfortunately, the running time
is alsoO(k?) if all cells are convex or if the complexity of each cell is bounded by a
constant, because the holes can be non-convex.

Figure 2.13: Finding the next edge of the (lightly shaded) hole.

Note that we cannot treat holes and outer cells consisting of cefls i’ as single cells
if S’ is connected but not edge-connected, as depicted in Figure 2.14: we cannot go from
cell cto cell ¢’ by inspecting the outgoing half-edgeswah counterclockwise order.

Theorem 2 Algorithm Traverse can be adapted to report all cells, vertices, and edges of
an edge-connected subdivisiéh C S without using mark bits or a stack. The running
time is Qk?), where k is the number of edgesSh

Another query that arises often in practice is “given a subdiviS@nd a rectangular
windowW, report all cells inSthat intersect” (Figure 2.15).
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Figure 2.14: The shaded cells form a connected subdivision, but this subdivision is not
edge-connected.

il

Figure 2.15: Reporting all cells that intersect a rectangular window.

We solve this query as follows. Normally when we test a half-esifge being the entry,

we traverse the cycle of half-edges arouwnlleeping track of the edge that has minimum
distance to a predefined poiptin the starting celt (breaking ties as described in Sec-

tion 2.2.1). We make an adaptation here: before calculating the distance of an edge to the
point p, we clip the edge to the windoW and perform our calculations on the clipped
version of the edge (Figure 2.16). Edges that don't interdédisappear; we consider

their distance t@ to be infinite. We also make a small adaptation in Algorifhraverse

in line 5 we only testwin[g| for being the entry of its incident cell ifvin[€] intersects the
windowW: if it doesn't it can’t be the entry of its incident cell anyway, and omitting the
test prohibits cells that don’t intersaat to influence the running time of the algorithm.
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It is straightforward to verify that with these adaptations our algorithm is still correct.
Clipping the edges has the effect that cells that intersect the wikld@assibly fall apart

into two or more pieces. Each of these pieces has a well-defined entry, and the piece
of which the entry has the minimum distancepaletermines the entry of the original
(unclipped) cell.

Figure 2.16: Clipping the edges of a cell to the window.

Clipping to the windoww can be done i©(1) time for each half-edge. Convex cells can
have at most one piece inside a rectangular window; testing a half-edge of a convex cell for
being the entry involves only clipping and comparing its distangewath the distances

of its predecessor and successoptdCombining this with the analysis in Section 2.2.2,

we derive the following result:

Theorem 3 Algorithm Traverse can be adapted to report all cells, edges, and vertices of
a connected planar subdivisia$ with n edges that lie in a rectangular query window

W without using mark bits or a stack. If all cells 8fare convex, or if the complexity

of each cell is bounded by a constant, then the running timgkg,@here k is the total
complexity of the cells that intersect W ; otherwise, if the cells are non-convex polygons of
which the complexity is not bounded by a constant, then the running time is bounded by
O(K?).

2.3 Extension to three dimensions

Extending our algorithm such that it traverses convex subdivisions in three dimensions
and reports all (three-dimensional) cells, (two-dimensional) faces, edges, and vertices is
straightforward. Dobkin and Laszlo [38] have developed data structures and operations
for handling three-dimensional subdivisions; these are comparable with the DCEL data
structure and operations that we used in the two-dimensional setting.

Again, we need to determine for each cell in the subdivision which one of its neighbors is
its predecessor in the traversal. The entry of a cell is that face of the cell that is incident to
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the predecessor of the cell. Once we are able to determine for each cell which of its faces
is its entry, we can apply the simple scheme of Algorithraverseagain: we enter a cell

c through its entry, and traverse all its faces (which we can do with the method described

in Section 2.2.3, since the cells are convex). During this traversal of the faces, we test
every face on being the entry of the other incident cell. If this is the case we continue in a

depth-first manner on this cell, again without using a stack, as described in Section 2.2.2.
After returning from this cell, we proceed with the next face of the celintil we are

back at the entry of again; then we return to the predecessas. of

Determining the entry of a cetl of a three-dimensional subdivision is analogous to the
two-dimensional case described in Section 2.2.1: we choose an arbitrarypgaoitie
starting cellcsiart, and define some fadethat has minimum distance foto be the entry

of ¢, for any cellc except for the starting cell. Lgt be the point in the boundary ofthat
realizes the minimum distance. pf is not uniquely determined, the candidates for being

p’ lie on a sphere centered pitwe choose the candidate with the highesbordinate. If

this still doesn’t uniquely determing, the remaining candidates lie on a circle; as in the
two-dimensional case, we choose the one that is encountered first if we rotate around the
center of this circle, starting in some fixed directi&n

If p’ lies in the interior of a facd of c, thenf is the entry ofc. If p’ lies on an edge or

a vertex ofc, we have to make a choice between the facestbét are exposed tp. We
choose the one that has the smallest angle with the plane that is tangent to th&Csphere
the pointp’. Ties can be broken in various ways, as long as it is done consistently.

2.4 Conclusions and further research

We have developed a simple, flexible, and efficient algorithm for traversing various kinds
of planar subdivisions without using mark bits in the structure or a stack. Our algorithm
reports each cell, edge, and vertex exactly once. The algorithm can handle subdivisions
embedded in the Euclidean plafié, as well as polyhedral terrains, and boundaries of
convex three-dimensional polyhedra. It can easily be adapted to report a connected subset
of the cells in the subdivision, or to answer windowing queries; both adaptations result
in an output sensitive algorithm. Extending the algorithm to handle convex subdivisions
in three dimensions is straightforward. An implementation of the algorithm for planar
subdivisions with straight edges took about 100 lines of C-code.

A number of problems remains to be solved. We have looked at non-connected subdivi-
sions, that is, subdivisions of which the edge and vertex set is unconnected (Figure 1.10),
but at this moment it is unclear if these can be handled without making use of a stack or
other memory resources to keep track of the components in the subdivision that have been
visited.

Also unsolved is the problem of traversing the boundary of non-convex polyhedra; al-
though these are topologically equivalent to a sphere, which means that they can be pro-
jected toE?, there is no way to determine the projection of a vertex of the boundary of a
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non-convex polyhedron if we are only allowed to use local information: we need to know
the geometry of the whole polyhedron.

Since traversing non-convex three-dimensional subdivisions involves traversing the bound-
aries of its cells which are non-convex polyhedra, there is no use in attacking this problem
before the former problem has been solved.

In many practical situations such as those arising in GISs, the cells in a subdivision repre-
sent geographical entities like countries. It may well be that two adjacent cells have long
chains of edges on their common boundaries. If one of the cells is the predecessor of the
other, then only one edge in the chain is the entry. It would be interesting to find an ele-
gant way to represent chains of edges by “pseudo-edges” between vertices of degree three
and higher, in order to avoid the traversal of all the edges in the chain. This, of course,
would involve modifying the data structures and adapting the definition oéniny of a

cell. We regard this problem as an interesting subject for further research.



CHAPTER 3

Contour Trees and Small Seed
Sets for Isosurface Generation

3.1 Introduction

One of the functionalities of a GIS is to display the stored data by generating tables, charts,
and maps, either on paper or on a computer screen. As we have seen in Chapter 1, several
kinds of maps are available for displaying the different types of data. Choropleth maps
are used to display categorial data, such as different types of vegetation. Network maps,
such as railroad maps, show connections (railways) between geographic objects (stations);
the regions on a network map are meaningless. Finally, isoline maps are very effective
means for displaying scalar data defined over the plane. Such data can be visualized
after interpolation by showing one or more contours: the sets of points having a specified
value. For example, scalar data over the plane is used to model elevation in the landscape,
and a contour is just an isoline of elevation. Contours can be used for visualizing scalar
data defined over the three-dimensional space as well. In that case, the contours are two-
dimensional isosurfaces. For instance, in atmospheric pressure modeling, a contour is a
surface in the atmosphere where the air pressure is constant, an isobar. The use of isolines
or isosurfaces for displaying scalar data is not limited to the field of GIS. In medical
imaging for example, isosurfaces are used to show reconstructed data from scans of the
brain or parts of the body. The scalar data can be seen as a sample of some real-valued
function, which is called a terrain or elevation model in GIS, and a scalar field in imaging.

A real-valued function over a two- or three-dimensional domain can be represented in a
computer using a two- or three-dimensional mesh, which can be regular (all cells have the
same size and shape) or irregular. A terrain (mountain landscape) in GIS is commonly
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represented by a regular square grid or an irregular triangulation. The elements of the
grid, or vertices of the triangulation, have a scalar function value associated to them. The
function value of non-vertex points in the two-dimensional mesh can be obtained by inter-
polation. An easy form of interpolation for irregular triangulations is linear interpolation
over each triangle. The resulting model is known as the TIN model for terrains (Trian-
gulated Irregular Network) in GIS; see Section 1.2.2. In computational geometry, it is
known as a polyhedral terrain. More on interpolation of spatial data and references to the
literature can be found in the book by Watson [124].

One can expect that the combinatorial complexity of the contours with a single function
value in a mesh witm elements is roughly proportional tgh in the two-dimensional

case and t@?/3 in the three-dimensional case [70]. Therefore, it is worthwhile to have

a search structure to find the mesh elements through which the contours pass. This will
be more efficient than retrieving the contours of a single function value by inspecting all
mesh elements.

There are basically two approaches to find the contours more efficiently. Firstly, one
could store the two-dimensional or three-dimensional domain of the mesh in a hierar-
chical structure and associate the minimum and maximum occurring scalar values at the
subdomains to prune the search. For example, octrees have been used this way for regular
three-dimensional meshes [126].

The second approach is to store Hualar range also calledspan of each of the mesh
elements in a search structure. Kd-trees [70], segment trees [14], and interval trees [24,
116] have been suggested as the search structure, leading to a contour retrieval time of
O(v/Nn+k) or O(logn+ k), wheren is the number of mesh elements dais the size of

the output. A problem with this approach is that the search structure can be a serious
storage overhead, even though an interval tree needs only linear storage. One doesn't
want to store a tree with a few hundred million intervals that would arise from regular
three-dimensional meshes. It is possible to reduce the storage requirements of the search
structures by observing that a whole contour can be traced directly in the mesh if one
mesh element through which the contour passes is known. Such a starting element of the
mesh is also called seed Instead of storing the scalar range of all mesh elements, we
need only store the scalar range of the seeds as intervals in the tree, and a pointer into the
mesh, or an index, if a (two- or three-dimensional) array is used. Of course, the seed set
must be such that every possible contour of the function passes through at least one seed.
Otherwise, contours could be missed. There are a few papers that take this approach
[14,59,116]. The tracing algorithms to extract a contour from a given seed have been
developed before, and they require time linear in the size of the output [7, 57, 59].

The objective of this chapter is to present new methods for seed set computation. To
construct a seed set of small size, we use a variation aidh®ur tree a tree that captures

the contour topology of the function represented by the mesh. It has been used before in
image processing and GIS research [44,46,64,104,110]. Another name in use is the
topographic change treeand it is related to th&eeb graphused in Morse Theory [89,
101,102, 110]. It can be computeddinlogn) time for functions over a two-dimensional
domain [30].
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This chapter includes the following results:

e We present a new, simple algorithm that constructs the contour tree. For two-
dimensional meshes withelements, it runs i®(nlogn) time like a previous algo-
rithm [30], but the new method is much simpler and needs less additional storage.
For meshes witm faces ind-dimensional space, it runs @(n?) time. In typical
cases, less than linear temporary storage is needed during the construction, which is
importantin practice. Also, the higher-dimensional algorithm requires subquadratic
time in typical cases.

e We show thaf)(nlogn) is a lower bound for the construction of the contour tree.

e \We show that the contour tree is the appropriate structure to use when selecting
seed sets. We give @(n?logn) time algorithm for seed sets of minimum size by
using minimum cost flow in a directed acyclic graph [4].

¢ In practice one would like a close to linear time algorithm when computing seed
sets. We give a simple algorithm that requi@(sﬂog2 n) time and linear storage
after construction of the contour tree, and gives seed sets of small size.

e The approximation algorithm has been implemented, and we supply test results of
various kinds.

Previous methods to find seed sets of small size didn't give any guarantee on their size
[14,59,116]. Shortly after the results of this chapter were published, Tarasov and Vya-
lyi [111] extended our contour tree construction algorithm and obtain€ atogn) time
algorithm for the three-dimensional case. Their algorithm consists of a preprocessing step
with two sweeps, after which our algorithm is used.

3.2 Preliminaries on scalar functions and the contour tree

In this section we provide background and definitions of terms used in the following sec-
tions. On a continuous functiof from d-space to the reals, thegiticalities can be identi-

fied. These are the local maxima, the local minima, and the saddles (or passes). If we con-
sider all contours of a specified function value, we have a collection of lower-dimensional
regions ind-space (typically(d — 1)-dimensional surfaces of arbitrary topology). If we

let the function value take on the values framo to —oco, @ number of things may hap-

pen to the contours. Contour shapes deform continuously, with changes in topology only
when a criticality is met (i.e., its function value is passed). A new contour component
starts to form whenever the function value is equivalent to a locally maximal valée of

An existing contour component disappears whenever the function value is equivalent to a
locally minimal value.

At saddle points, various different things can happen. It may be that two (or more) contour
components adjoin, or one contour component splits into two (or more) components, or



50

Contour Trees and Small Seed Sets for Isosurface Generation

that a contour component gets a different topological structure (e.g., from a sphere to a
torus in three dimensions). The changes that can occur have been documented in texts
on Morse theory and differential topology [56, 76]. They can be described by a structure
called the contour tree, which we describe below.

As an example, consider a function modeled by a two-dimensional triangular mesh with
linear interpolation and consider how the contour tree relates to such meshes. For simplic-
ity, we assume that all vertices have a different function value. If we draw the contours
of all vertices of the mesh, then we get a subdivision of the two-dimensional domain into
regions. All saddle points, local minima and maxima must be vertices of the mesh in our
setting. The contour through a local minimum or maximum is simply the point itself. One
can show that every region between contours is bounded by exactly two contours [30].

21 20
21 10 19
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J g1l
13
20 13
i (14
18 16 4

Figure 3.1: Two-dimensional triangular mesh with the contours of the saddles, and the
contour tree.

We let every contour in this subdivision correspond to a node in a graph, and two nodes
are connected if there is a region bounded by their corresponding contours. This graph
is a tree, which is easy to show [30, 116], and it is called the contour tree. All nodes in
the tree have degree 1 (corresponding to local extrema), degree 2 (normal vertices), or at
least 3 (saddles). In other words, every contour of a saddle vertex splits the domain into
at least three regions. For each vertex in the triangulation, one can test locally whether
it is a saddle. This is the case if and only if it has neighboring vertices around it that are
higher, lower, higher, and lower, in cyclic order around it. If one would take the approach
outlined above to construct the contour tr€én?) time may be necessary in the worst
case, because the total combinatorial complexity of all contours through saddles may be
quadratic. AnO(nlogn) time divide-and-conquer algorithm exists, however [30].

In a general framework, we define the contour tree with only few assumptions on the
type of mesh, form of interpolation, and dimension of the space over which furiEtisn
defined. The input data is assumed to be:

e a meshM of sizen embedded ifRY;

e a continuous real-valued functiof defined over each cell &fl.
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A contouris defined to be a maximal connected pieceR3fwhere the function value
is the same. Usually, a contour i@— 1)-dimensional hypersurface, but it can also be
lower dimensional od-dimensional. We define the contour tréeas follows.

e Take each contour that contains a criticality.

e These contours correspond to thepernodesf 7 (the tree will be extended later
with additional nodes, hence we use the term supernodes here). Each supernode is
labeled with the function value of its contour.

e For each region bounded by two contours, we add a superarc between the corre-
sponding supernodes iA.

The contour tree is well defined, because each region is bounded by two and only two

contours which correspond to supernodes. In fact, it is easy to see that the contour tree is
a special case of the more general Reeb graph indhel)-dimensional space obtained

from the domain (the mesh) extended with the function image space [89, 101, 102, 110].

Furthermore, one can show that the contour tree is indeed a tree: the proof for the two-

dimensional case given in [30] can easily be extendetidimensions.

For two-dimensional meshes, all criticalities correspond to supernodes of degree 1, or

degree 3 or higher. For higher-dimensional meshes there are also criticalities that corre-
spond to a supernode of degree 2. This occurs for instance in three dimensions when the
genus of a surface changes, for instance when the surface of a ball changes topologically
to a torus (Figure 3.2(b)).

Superarcs are directed from higher scalar values to lower scalar values. Thus, supernodes
corresponding to the local maxima are the sources and the supernodes corresponding to
the local minima are the sinks.

To be able to compute the contour tree, we make the following assumptions:

o Inside any face of any dimension i, all criticalities and their function values can
be determined.

¢ Inside any face of any dimension bf, the range€min, max of the function values
taken inside the face can be determined.

e Inside any face of any dimension bf, the (piece of) contour of any value in that
face can be determined.

We assume that in facets and edges of two-dimensional meshes, the items listed above can
be computed if©(1) time. For vertices, we assume that the first item takes time linear in

its degree. Similarly, in three-dimensional meshes we assume that these iter@$tpke

to compute in cells and on facets, and time linear in the degree on edges and at vertices.

In d-dimensional space (fat > 2), a saddle poinp is a point such that for any suffi-
ciently small hypersphere aroumxl the contour ofp’s value intersects the surface of the
hypersphere in at least two separate connected components.
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small sphere (@)
of a saddle

Figure 3.2: Criticalities in the three-dimensional case.

Possible criticalities in the three-dimensional case are shown in Figure 3.2. When sweep-
ing the function value fromxo to —oo, they correspond to (a) two contours merging or
splitting, but not containing the other, (b) an increment or decrement of the genus of one
contour surface, and (c) two contours merging or splitting, and one containing the other.
More cases can be distinguished when a criticality causes several of these changes to
occur at once, or when the contour ends at the boundary of the mesh.

3.3 Contour tree algorithms

In this section we assume for ease of presentation that the Mhésh simplicial decom-
position withn cells, and that linear interpolation is used. As a consequence, all critical
points are vertices of the medh. Instead of computing the contour tree as defined in

the previous section, we compute an extension that includes nodes for the contours of all
vertices ofM, also the non-critical ones. So supernodes correspond to contours of critical
vertices and regular nodes correspond to contours of other vertices. Each superarc is now
a sequence of arcs and nodes, starting and ending at a supernode. The algorithm we’ll de-
scribe next can easily be adapted to determine the contour tree with only the supernodes.
But we'll need this extended contour tree for seed selection in the next section. From now
on, we call the contour tree with nodes for the contours of all vertices the contodr tree

The supernodes df that have in-degree 1 and out-degree greater than 1 are ta&lled
furcations and the supernodes with in-degree greater than 1 and out-degree 1 are called
junctions All normal nodes have in-degree 1 and out-degree 1. We’'ll assume that all
bifurcations and junctions have degree exactly 3, that is, out-degree 2 for bifurcations
and in-degree 2 for junctions. This assumption can be removed; one can represent all
supernodes with higher degrees as clusters of supernodes with degree 3. For example, a
supernode with in-degree 2 and out-degree 2 can be treated as a junction and a bifurcation,
with a directed arc from the junction to the bifurcation. The assumption that all junctions
and bifurcations have degree 3 facilitates the following descriptions considerably.
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3.3.1 The general approach

To construct the contour trég for a given mesh inl-space, we let the function value take

on the values fromroco to —oco and we keep track of the contours for these values. In
other words, we sweep the scalar value (see Section 1.3.2). For two-dimensional meshes,
one can image sweeping a polyhedral terrain embedded in a three-dimensional space and
moving downward a horizontal plane. The sweep stops at certain event points: the vertices
of the mesh. During the sweep, we keep track of the contours in the mesh at the value of
the sweep function, and the set of cells of the mesh that cross these contours. The cells
that contain a point with value equivalent to the present function value are ealfive

The tree7 under construction during the sweep will be growing at the bottom at several
places simultaneously, see Figure 3.3.

7 . pointers from active cells
active cells )

to corresponding contour
. regions already swept component (superarc)

Figure 3.3: Situation of the sweep of a two-dimensional mesh when the function value is
16.

Each part of/ that is still growing corresponds to a unique contour at the current sweep
value. We group the cells into contours by storing a pointer at each active cell in the mesh
to the corresponding superarcdn The contours can only change structurally at the event
points, and the possible changes are the following:

e At a local maximum of the mesh (more precisely: of the function), a new contour
appears. This is reflected #h by creating a new supernode and a new arc incident
to it. This arc is also the start of a new superarc, which will be represented. Each
cell incident to the maximum becomes active, and we set their pointer to the new
superarc of7 . At this stage of the algorithm, the new superarc has no lower node
attached to it yet.
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e At a local minimum of the mesh, a contour disappears; a new superndfdsof
created, and the arc corresponding to the disappearing contour at the current value
of the sweep is attached to the new supernode. It is also the end of a superarc. The
cells of the mesh incident to the local minimum are no longer active.

e At a non-critical vertex of the mesh, a new nod€/ois created, the arc correspond-
ing to the contour containing the vertex is made incident to the node, and a new arc
incident to the node is created. There is no new superarc. Some cells incident to the
vertex stop being active, while others start being active. The pointers of the latter
cells are set to the current superarc of the contour. For the cells that remain active,
nothing changes: their pointer keeps pointing to the same superarc.

e At a saddle of the mesh, there is some change in topology in the collection of
contours. It may be that two or more contours merge into one, one contour splits
into two or more, or one contour changes its topological structure. A combination
of these is also possible in general. The first thing to do is to determine what type
of saddle we are dealing with. This can be decided by traversing the whole contour
on which the saddle lies.

If two contours merge, a new supernode (junction) is created far the saddle,

and the superarcs corresponding to the two merging contours are made incident to
this supernode. Furthermore, a new arc and superarc are created for the contour
that results from the merge. The new arc is attached to the new supernode. All cells

that are active in the contour after the merge set their pointer to the new superarc in

7. If a contour splits, then similar actions are taken.

If the saddle is because of a change in topology of one single contour (i.e., an
increase or decrease of its genus by one), a new supernode is made for one existing
superarc, and a new arc and superarc are creafEdAl active cells of the contour

set their pointers to the new superarc.

For the sweep algorithm, we need an event queue and a status structure. The event queue
is implemented with a standard heap structure so insertions and extractions take logarith-
mic time per operation. The status structure is implicitly present in the mesh with the
additional pointers from the cells to the superarcs in the contour tree.

Theorem 4 Let M be a mesh in d-space with n faces in total, representing a continu-
ous, piecewise linear function over the mesh elements. The contour tree of M can be
constructed in @n?) time and @n) storage.

Proof: The algorithm clearly takes tim@(nlogn) for all heap operations. If the mesh is
given in an adjacency structure, then the traversal of any contour takes time linear in the
combinatorial complexity of the contour. Any saddle of the function is a vertex, and any
contour can pass through any mesh cell only once. Therefore, the total time for traversal
is O(n?) in the worst case, and the same amount of time is needed for setting the pointers
of the active cells.
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The quadratic running time shown above is somewhat pessimistic, since it applies only
when there is a linear number of saddles for which the contour through them has linear
complexity. We can also state that the running tim@falogn+ 5", |Gi|), where them
saddles lie on contoufS, ... ,Cy with complexitiesCy|, ... , |Cml.

We claimed that the additional storage of the algorithm could be made sublinear in prac-
tice. With additional storage we mean the storage besides the mesh (input) and the contour
tree (output). We will show thad([no. maxima+ max<i<m|Ci|) extra storage suffices.

We must reduce the storage requirements of both the event queue and the status structure.

Regarding the event queue, we initialize it with the values of the local maxima only.
During the sweep, we'll insert all vertices incident to active cells, as soon as the cell
becomes active. This guarantees that the event queue uses no more additional storage
than claimed above. Considering the status structure, we cannot afford using additional
pointers with every cell of the mesh to superarcs any more. However, we need these
pointers only when the cell is active. We'll make a copy of the active part of the mesh,
and with the cells in this copy, we may use additional pointers to superafcamu to the
corresponding cells in the original mesh. When a cell becomes inactive again, we delete
it from the copy. With these modifications, the additional storage required is linear in the
maximum number of active cells and the number of local maxima. This can be linear in
theory, but will be sublinear for most real-world meshes. The asymptotic running time of
the algorithm is not influenced by these changes.

3.3.2 The two-dimensional case

In the two-dimensional case, the time bound can be improved(itdogn) time in the

worst case by a few simple adaptations. First, a crucial observation: for two-dimensional
meshes representing continuous functions, all saddles correspond to nodes of degree at
least 3in7. Hence, at any saddle two or more contours merge, or one contour splits into
at least two contours, or both. This is different from the situation in three dimensions,
where a saddle can cause a change in genus of a contour, without causing a change in
connectedness. The main idea is to implement a merge in time linear in the complexity
of thesmallerof the two contours, and similarly, to implement a split in time linear in the
complexity of thesmaller resulting contour

In the structure, each active cell has a pointer tmmeof a contour, and the name has a
pointer to the corresponding superarcZin We consider the active cells and names as a
union-find like structure [75, 112, 115] that allows the following operations:

e Merge given two contours about to merge, combine them into a single one by
renaming the active cells to have a common name.

e Split given one contour about to split, split it into two separate contours by renam-
ing the active cells for one of the contours in creation to a new name.

e Find: given one active cell, report the name of the contour it is in.
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Like in the simplest union-find structure Find takesO(1) time since we have a pointer

to the name explicitly. AMergeis best implemented by changing the name of the cells in
smaller contour to the name of the larger contour. Let’s say that con@pansdC; are
about to merge. Determining which of them is the smallest teKesin(|Ci|, |C;|)) time if

we traverse both contours simultaneously. We alternatingly take one “st&éaimd one

“step” in Cj. After a number of steps twice the combinatorial complexity of the smaller
contour, we have traversed the whole smaller contour. This technique is sometimes called
tandem searchTo rename for derge we traverse this smaller contour again and rename
the cells in it, again takin@(min(|Ci|, |Cj|)) time.

The Split operation is analogous: if a contoGx splits intoC; andC;j, the name ofC,

is preserved for the larger @ andC;j, and by tandem search starting at the saddle in
two opposite directions we find out which 6f andC; will be the smaller one. This will
takeO(min(|Ci|,|Cj|)) time. (Note that we cannot keep track of the size in an integer for
each contour instead of doing tandem search, because t8plit aannot be supported
efficiently.)

Theorem 5 Let M be a two-dimensional mesh with n faces in total, representing a contin-
uous, piecewise linear scalar function. The contour tree of this function can be computed
in O(nlogn) time and linear storage.

Proof: We can distinguish the following operations and their costs involved:

e Determining for each vertex of what type it is (min, max, saddle, normal) takes
O(n) in total.

e The operations on the event queue t&Kelogn) in total.

e Creating the nodes and arcs©fand setting the incidence relationships taRés)
time in total.

e When a cell becomes active, the name of the contour it belongs to is stored with it;
this can be done i@(1) time, and since there af@(n) such events, it taked(n)
time in total.

e At the saddles of the mesh, contours merge or split. Updating the names of the
contours stored with the cells tak€§min(|C;|,|C;|)) time, whereC; andC; are
the contours merging into one, or resulting from a split, respectively. It remains to
show that summing these costs over all saddles yields a to@(rdbgn) time.

We prove the bound on the summed cost for renaming by transforfimgtwo steps
into another tred”’ for which the construction is at least as time-expensive ag f@nd
showing that the cost at the saddlegihareO(nlogn) in total.

Consider the cells to correspond to additiosedments 7 as follows. Any cell becomes

active when the sweep plane reaches its highest vertex, and stops being active when the
sweep plane reaches its lowest vertex. These vertices correspond n@desohthe cell

is represented by a segment connecting these nodes. Note that any segment connects two
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nodes one of which is an ancestor of the other. A segment can be seen as a shortcut of a
directed path i/, where it may pass over several nodes and supernodes.

The number of cells involved in a merge or split at a saddle is equivalent to the number
segments that pass over the corresponding supeknadg. The set of segments passing

v can subdivided into two subsets as follows: segments corresponding to cells that are
intersected by the same contour before the merge or after the split at the saddle corre-
sponding tov are in in same subset. The size of the smallest subset of segments passing
determines the costs for processing the saddle (since we do tandem search).

Figure 3.4: Stretching two segments (dotted) in 7.

The first transformation step is stretchall segments (see Figure 3.4); we simply assume
that a segment starts at some source node that is an ancestor of the original start node,
and ends at a sink that is a descendant of the original end node. It is easy to see that the
number of segments passing any saddle can only increase by the stretch.

The second transformation step is to repeatedigpsuperarcs, until no supernode arising
from a split (bifurcation) is an ancestor of a supernode arising from a merge (junction).
Swapping a superarsfrom a bifurcationv to a junctionu is defined as follows (see
Figure 3.5): lets' # s be the superarc that hasas its lower supernode, and Et# s

be the superarc that hasas its upper supernode. The number of segments passing the
superarcs, s, ands” is denoted by, b, andc, respectively, as is illustrated in Figure 3.5.

Figure 3.5: Swapping a superarc.
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These numbers are well-defined, since after stretching, any segment passes a superarc
either completely or not at all. Now shiff upward alongs, such thatv becomes its

new lower supernode, and shift downward alongs, such thau becomes its new upper
supernode. Note that all edges passhgnd all edges passirgj before the swap now

also pass.

Before the swap, the time spent in the mergel @nd the split aw, is O(min(a,b) +
min(b,c)) wherea, b, c denote the number of segments passing these superarcs. After
the swap, this becomé&3(min(a,b+ ¢) + min(a+ b, c)), which is at least as much. No
segment ends, because all of them were stretched.

It can easily be verified that a tr@€, with no bifurcation as an ancestor of a junction, can
be derived from any tre@ by swaps of this type only. Any segmentTH first passes a
sequence of at mo&(n) junctions, and then a sequence of at mog&t) bifurcations.

We charge the costs of the merge and split operations to the segments that are in the
smallest set just before a merge and just after a split. Now, every segment c&(ppass
junctions and bifurcations, but no segment can be more@fgn) times in the smaller

set. Eachtimeitis in the smaller set at a junction, it will be in a set of at least twice the size
just after the junction. Similarly, each time it is in the smallest set just after a bifurcation,

it came from a set of at least twice the size just before the bifurcation. It follows that any
segment is charged at ma@3flogn) times. Summing over th@(n) segments, this results

in a total ofO(nlogn) time for all renamings of cells. This argument is standard in the
analysis of union-find structures, for instance [27]. Hl

As we noted before, Tarasov and Vyalyi [111] succeeded in extending the ideas above and
obtain anO(nlogn) time algorithm to construct the contour tree for three-dimensional
meshes.

The O(nlogn) time bounds for the contour tree construction are tight: Given & sét

n numberssy, ..., S, we can construct i®(n) time a triangular mesh with saddles at
heightsss, . .. , s, such that in the corresponding contour tree all the saddles lie in sorted
order along the path from the global minimum to the global maximum.

The mesh is constructed as follows (see Figure 3.6): We plaedicesvy, ... ,vy equally
spaced on a circl€ in the (x,y)-plane with radius 2 and center at a pontNow we
elevate each; such that its-coordinate iss. These vertices will be the saddles in the
terrain. Next, we placa verticesws, ... ,w, at a circleC’ with radius 3 and also centered
atc, such that eacty; is collinear withc andv;. We elevate each; to height maxS) + 1;
these vertices will be the local maxima. At the cemtef C andC’, we place one vertex at
height maxS) +2: the global maximum. Finally, we place a third set of vertiggs. . , u,

at a circleC” with radius 4 and centered@tsuch that each vertex s radially interleaved
with the vertices; andvi.1. The height of all these vertices is min(S) — 1; all these
vertices lie on the global minimum. Edges in the terrain are as shown in Figure 3.6, and
the corresponding contour tree is shown in the same figure.

If we could construct the contour treea(nlogn) time, then we could effectively sort any
setSof nreals ino(nlogn) time by constructing a mesh for it i@(n) time as described
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w; abovev;

Vl, e 7Vn
sorted

/{ul,...,un}

Figure 3.6: Unstructured mesh of which the contour tree contains the sorted sequence of
the input values. The contour through V1 is shown; we must have Vo < V1 < V3.

above, constructing a contour tree for the mest(irlogn) time, and reporting the height
values of the vertices corresponding to the nodes on the path from the global minimum to
the global maximum in the contour tree in linear time.

3.4 Seed set selection

A seed set is a subset of the cells of the mesh. Such a set serves as a collection of
starting points from which contours can be traced, for instance for visualization. A seed
set iscompleteif every possible contour passes through at least one seed. From now
on, we understand seed sets to be complete, unless stated otherwise. Since we assume
linear interpolation over the cells, the function values occurring in one cell form exactly
the range between the lowest and the highest valued vertices. Any cell is represented as a
segmenbetween two nodes of the contour tfEgas in the proof of Theorem 5. Segments

can only connect two nodes of which one is an ancestor of the other. Like the &f¢s of

the segments are directed from the higher to the lower value. So each segmentis in fact a
shortcut of a directed path ifi. We say that the segmepassesor covers these arcs of

7. Let G denote the directed acyclic graph consisting of the contour tree extended with
the segments of all mesh elements. The small seed set problem now is the following graph
problem: find a small subset of the segments such that every &rdapassed by some
segment of the subset.
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In this section we give two methods to obtain complete and small seed sets. The first gives
a seed set of minimum size, but it requi®én?logn) time for its computations. The
second method require@(nlog2 n) time and linear storage (given the contour tree and

the segments), and gives a seed set that can be expected to be small, which is evidenced
by test results.

3.4.1 Seed sets of minimum size in polynomial time

We can find a seed set of minimum size in polynomial time by reducing the seed set
selection problem to a minimum cost flow problem. The flow netw@rlerived fromg

is defined as follows: we augmegitwith two additional nodes, sourcec and asinka’.

The sources is connected to all maxima and bifurcations by additional segments, and the
sink is connected to all minima and junctions with additional segments. This is illustrated
in Figure 3.7, left. In the same figure (right) a shorthand for the same flow network has
been drawn: for readabilityg and o’ have been left out, and the additional segments
incident too anda’ have been replaced by+” and “—" signs, respectively. From now

on we will use this shorthand notation in the figures.

Costs and capacities for the segments and arcs are assigned as follows: ngdes in
ordered by the height of the corresponding vertices in the mesh, and segments and arcs
are considered to be directed: segments (dotted) go downward from higher to lower nodes,
arcs (solid) go upward from lower to higher nodes. The soarteconsidered to be the
highest node, and’ the lowest. Segments i have capacity 1 and cost 1, and arcs have
capacityoo and cost 0. The additional segmentsghincident toc and ¢’ also have
capacity 1, but zero cost.

From graph theory we have the following lemma:

Lemma 2 For any tree, the number of maxima plus the number of bifurcations equals the
number of minima plus the number of junctions.

Hence, the number of plusesdhbalances the number of minuses. Let this numbef.be

Consider the following two related problems, tth@wv problem(given the networlg’ as
defined above and a valde find a flow of sizef from o to ¢’), and theminimum cost
flow problem (find such a flowf with minimum cost). For both problems, a solution
consists of an assignment of flow for each segment and &t iRor such a solution, let
the corresponding segment sétbe the set of segments éhthat have a non-zero flow
assigned to them (the additional segment®'iffom o to the maxima and bifurcations and
from the minima and junctions ' are not inS). Hence, the cost of antegral solution
where all flow values are integer, equals the number of segmerfls We will show
that for any integral solution to the minimum cost flow problemdnthe corresponding
segment sef is a minimum size seed set f6r

Lemma 3 For any integral solution to the flow problem ¢#, the corresponding segment
setS is a seed set fof.
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Figure 3.7: Flow network G’ derived from G, and shorthand for G’'.

Proof: Suppose that there is a flow of sizérom ¢ to ¢’ in G’ such that the corresponding
segment sef is not a seed set f@§. In other words: there is an aecin G’ such that

none of the segments @ coveringa has a non-zero flow assigned to it. We claim that
the number of pluses in the subtree incident to and ‘above’ the highest incident node of
a exceeds the number of minuses by one, and, analogously, that the number of minuses
in the subtree incident to and ‘below’ the lowest incident noda exceeds the number

of pluses by one. This can be seen as follows: gpliinto two subgraphgj; and g,

by cuttinga into a; anday (see Figure 3.8), and creating a new minimum and maximum
v, andvy incident toa; anday, respectively. Since by Lemma 2 the number of maxima
and bifurcations irnG; balances the number of minima and junctiongjin and there is

no node inG that corresponds to the minimuwa in G, the claim holds for the subtree
incident to and ‘above’ the highest incident nodeaofSimilarly, the claim holds for the
subtree incident to and ‘below’ the lowest incident node.dsince there is no downward

flow via a or any of its covering segments, the flow franto ¢’ can be at most — 1. But

this contradicts the assumptions that there is a flow of §ifztem ¢ to ¢’ in G’ such that

the corresponding segment sgts not a seed set f@/, and we conclude that the lemma
holds.

A seed set isninimalif the removal of any segment yields a set that is not a seed set. A
minimumseed set is a seed set of smallest size.
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G1

V2 e +

G

Figure 3.8: The number of pluses is not equal to the number of minuses within both sub-
graphs incident to a.

Lemma 4 For any minimal seed set S fgr, there is a solution to the flow problem gh
such that the corresponding segment&éor that solution equals S.

Proof: We show this by induction on, the number of nodes @f. It is straightforward to
verify that the lemma holds for < 3. Forn > 3, we observe that for any minimal seed set
Sthere is at least one arc ¢hthat is covered by precisely one segmeatS (and possibly

by some segments i that are not ir5); otherwise, removing an arbitrary segment from
Swould yield a smaller seed set, contradicting the minimalit$.ofet a be such an arc

in G that is covered by precisely one segmeatS. If ais not incident to a leaf node ¢f,

then we can spli§ into two subgraphg§1 andg- by cuttinga and the segmeistcovering

it. This introduces a new minimum for one of the subgraphs, and a nhew maximum for
the other (Figure 3.9). Le$ be the set of segments frogithat coverGy, with se€ S
replaced by the appropriate segment resulting from custingp two parts, and defing

in a similar way.S; and$, are minimal seeds sets fGi andG,, respectively, and both
subgraphs have fewer thamodes. Hence, by induction, there is a solution for the flow
problem ong; such that the corresponding segment%éor that solution equal$;, and

there is a solution for the flow problem @i§ such that the corresponding segmentet

for that solution equal$S,. Note that the sum of the sizes of the flows for both subgraphs
is f +1, since we added a plus and a minus in the splitting process. Given the solutions to
the flow problems for both subgraphs, it is straightforward to construct a flow that solves
the flow problem forG: simply remove the plus and minus that were added in the spilit,
and undo the cutting af ands.

This only works ifais not incident to a leaf node 6f, otherwise the split operation results
in two subtrees, one with 2 nodes and one withodes, and we cannot apply induction.
As noted before, there is at least one atbat is covered by precisely one segmeatS,
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Figure 3.9: Splitting G at an internal arc.

and by zero or more segments that aré tout not inS. So suppose that all arcs covered by
only one segment are incident to a minimum or maximum.alet one of those arcs, and
assume tha is incident to a maximum of G (the case that is incident to a minimum is
analogous). Let the other endpointdfe . As stated before, we cannot apply induction
directly. Instead, we transforg by shortening some of its edges, such tBa¢mains a
minimal seed set and can be split into two subgraplds andg, with fewer tham nodes
and with corresponding minimal seed s8tsand$,. By the induction hypothesis, there
is a flow forG; for which S; is the corresponding segment set, and a flowgfoior which

S is the corresponding segment set. Because of the simplicity of the reductiorgFfrom
to G1 and@y, it is straightforward to construct a flow féf corresponding t&, given the
flows forG; andgs.

We distinguish four cases:

e v andy lie on the same superarc gf(see Figure 3.10). In that case, we transform
g into G1 by retracting all segments that pas§.e., Lis made their highest incident
node), and by removing, s and all arcs and segments betwgesndv (the latter
segments are the ones that have their lower endpoint inbetwaedyl, or incident
to . Now S\ {s} is a minimal seed set for the resulting gra@h which has

fewer thann nodes, and by the induction hypothesis, there is a solution to the flow

problem ong; for which the corresponding segment set eq@&\ss}. In this
caseG» is the empty graph. It is straightforward to construct a solution to the flow
problem forg’, given a solution to the flow problem fe#.

e The first supernode on the path franto uis a bifurcation (see Figure 3.11). The
segments passing that bifurcation that go into the same subtsze@sin as they
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Figure 3.10: Retracting segments to the lower endpoint L of S.

are; the ones that go into the other subtree are retracted to the bifurcatmosplit

into two subgraphgi andgG, by cutting off the subtree below the bifurcation and
not containing. LetS; andS, be the subsets @as defined in the first paragraph
of the proof.S; andS; are minimal seed sets for the two resulting subgraphs, both
of which have fewer than nodes. By the induction hypothesis, there is a solution
to the flow problem org; for which the corresponding segment set eq$ajsand
there is a solution to the flow problem ¢ for which the corresponding segment
set equal$,. From these solutions, a solution for the flow problemdofor which

the corresponding segment seSisan easily be derived.

Vet Vet

Figure 3.11: Retracting segments to a bifurcation.

e The first supernode on the path framo [ is a junction, andiis not a minimum
of G for which sis the only segment i§incident to it (see Figure 3.12Y; is split
into G1 andG» by separating the superarc fromto the junction. The subgraph
containingv is G1, and the other subgraphds. Segmensis retracted to end at
the junction and is only used ifl;. The segments originating iy and ending
in G, are retracted to start at the junctiof; andS, are defined as before. Note
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thats is the only segment i1%;; the only other segments ity are the ones that
both started and ended on the superarc incident Tdhese segments were notSn
before the modification af, because they were completely coveredghbience 5

is a minimal seed set f@};. All segments irS\ {s} cover only arcs ifj,, since the
segments B\ {s} that originated irg; were retracted to the junction. Furthermore,
S\ {s} is a seed set faF», since any arc i, that was covered bybefore the split
was covered by some other segmenak well, and these segments still cover the
same arcs i, after the split. FinallyS\ {s} is a minimal seed set f@: if any
segment’ could be removed fror8\ {s}, such thaS\ {s,s'} would be a seed set
for G, thenS\ {s'} would be a seed set f@f, contradicting the minimality o&.

G1 andg, both have fewer nodes thgh Hence, by the induction hypothesis, there
is a solution to the flow problem of for which the corresponding segment set
equalsS;, and there is a solution to the flow problem @f for which the cor-
responding segment set equ8ls From these solutions, a solution for the flow
problem forG’ for which the corresponding segment seSisan easily be derived.

Figure 3.12: Retracting segments to a junction.

e The first supernode on the path fronto [ is a junction, andi is a minimum of
G for which s is the only segment ii$ incident to it (see Figure 3.13). In this
case, we cannot retrastto the junction as in the previous case, since that would
leave the arc incident tp uncovered. If the last supernode on the path fjom
to v is a junction, the situation is symmetric to the second case; this can be seen
by turning G ‘upside-down’ and reversing the roles wlandp, and of the pluses
and the minuses. Otherwise, if the last supernode on the pathifranv is a
bifurcation, we transforng into G; by removings, v, the superarc incident to,
and all segments that start and end on this superarc. The segments that start in the
removed superarc and pass the first junction on the pathvranp are retracted to
start at the junction. Symmetrically, we remquehe superarc incident {g and all
segments that start and end on this superarc. Segments that pass the last bifurcation
on the path fronv to p are retracted to end at the bifurcation. In this cageis
the empty graph. Note thats the only segment that we removed fr@rall other
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segments that we removed are the ones that both started and ended in the superarc
incident tov, or top. These segments were not$rbefore the modification of,
because they were completely coveredsbyAll segments inS\ {s} cover only
arcs ingGj, since the segments i\ {s} that originated in the superarc incident
to v were retracted to start at the first junction on the path froto p, and the
segments irs\ {s} that ended in the superarc incidenitwere retracted to end at
the last bifurcation on the path fromto p. FurthermoreS\ {s} is a seed set for
g1, since any arc iigj; that was covered bybefore the split was covered by some
other segment dbas well, and these segments still cover the same ags after
the split. Finally,S\ {s} is a minimal seed set fa¥;: if any segment’ could be
removed fronS\ {s}, such thaS\ {s,s'} would be a seed set f¢h, thenS\ {s'}
would be a seed set f¢t, contradicting the minimality o8.

G1 has fewer nodes tha®, and by the induction hypothesis, there is a solution to
the flow problem org} for which the corresponding segment set eq&alsFrom
this solution, a solution for the flow problem fg¢¥ for which the corresponding
segment set iScan easily be derived.

Figure 3.13: Removing a segment between a local maximum and a local minimum.

Combining Lemmas 3 and 4 gives the following result:

Theorem 6 The minimum seed set selection problemdotan be solved by applying

a minimum cost flow algorithm t@’ that gives an integral solution. Such a solution is
guaranteed to exist, and the corresponding segment set for that solution is an optimal
seed set fog.

The minimum cost flow problem can be solved with a successive shortest path algo-
rithm[4, pp. 320-324]. Starting with a zero flow, this algorithm determines at every step
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the shortest patitfrom o to o’, where the length of an arc or segment is derived from its
cost. The arc or segment with the lowest capacity this shortest pathidetermines the
flow that is sent frono to ¢’ alongT. Then theresidual networks calculated (costs and
capacities alongr are updated), and the algorithm iterates until the desired flow &om
to @’ is reached, or no additional flow can be sent froto o’ along any path.

In our caseg is always 1 and the algorithm terminates aftaterations. If we use Dijk-
stra’s algorithm to find the shortest path in each iteration, the algorithm r@@friogn)
time on our graplyy’, and use©(n) memory.

Theorem 7 An optimal seed set f@ can be found in @?logn) time, using @n) mem-
ory.

3.4.2 Efficient computation of small seed sets

The roughly quadratic time requirements for computing optimal seed sets makes it rather
time consuming in practical applications. We therefore developed an algorithm to com-
pute a seed set that, after constructing the contouffiyeses linear storage aﬁl}{nlog2 n

time in any dimension. The seed sets resulting from this algorithm can be expected to be
small, which is supported by test results.

As before we will describe the algorithm in the simplified situation that each critical
vertex of the mesh is either a minimum, maximum, junction, or bifurcation. In the case
of a junction or bifurcation, we assume that the degree is exactly three. These simplifying
assumptions make it easier the explain the algorithm, but they can be removed as before.

Our algorithm is a simple greedy method that operates quite similar to the contour tree
construction algorithm. We first construct the contour tYeas before. We store with

each node off two integers that will help determine fast whether any two nodes of

have an ancestor/descendant relation. The two integers are assigned as follows. Give
T some fixed, left-to-right order of the children and parents of each supernode. Then
perform a left-to-right topological sort to number all nodes. Then perform a right-to-left
topological sort to give each node a second number. The numbers are such that one node
uis an ancestor of another nodd and only if the first number and the second number

of u are smaller than the corresponding numbeng @ke Figure 3.14).

This preprocessing of the contour tree tak¥n) time, and afterwards, we can determine
in O(1) time for any two nodes whether one is a descendant or ancestor of the other.

Next we add the segments, one for each cell of the mesh, to the contodr toeeform

the graphG. Then we sweep again, now in the mesh and in the géagimultaneously.

During this sweep the seeds are selected. At each event point of the sweep algorithm (the
nodes of7), we test whether the arc incident to and below the current node is covered

by at least one of the already selected seeds. If this is not the case, we select a new seed.
The new seed will always be the greedy choice, that is, the segment (or cell) for which
the function value of the lower endpoint is minimal. To determine if a new seed must

be chosen, and to be able to make a greedy choice, a few data structures are needed that
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Figure 3.14: The numbering of 7.

maintain the currently chosen seed set and the candidate seeds that may be chosen next.
As before, we call the cells that contain the current sweep \adtige The segments

and seeds of currently active cells are also called active. Similar, the superarcs for which
the higher supernode has been passed, but the lower one not yet, are called active. We
maintain the following sets during the sweep:

e A setS of currently chosen seeds. Initially, this set is empty; at the end of the
algorithm,S contains a complete set of seeds.

e For an active superag; let$, be the set of active seeds (already chosen) that cover
a or part of it. We store a subs&; C &, that only contains the “deepest going”
seeds ofs,. More preciselys € S, if and only if for all s’ € &, # s, we have that
the lower endpoint o§is not an ancestor of the lower endpoinishf

e For each active superaa(;letéa be a set of of active candidate seeds that cawer
part of it. We store a subs€} C C, that only contains the deepest going candidates
of C4, and only if they go deeper than seedsSpf More preciselyc € C, if and
only if for all ¢’ € éa,d # ¢, and for alls € S;, we have that the lower endpoint of
cis not an ancestor of the lower endpointbbr s.

The algorithm must be able to determine if the next arc to be swept of supeiarc
covered by some chosen seed. The susitexactly the subset of non-redundant seeds
of S.. Similarly, the algorithm needs to maintain candidates that can be chosen if the next
arc to be swept is not covered. The é‘gtcontains the active candidates, but the subset
C4 contains only those candidates that could possibly be chosen. We’ll show ne®{ that
andC; can simply be stored in balanced binary trees.

The sets5, andC, correspond to a set of points in the plane whose coordinates are the two
numbers assigned to the lower endpoints of the segmeigsandC,, see Figure 3.15.

Since there are no ancestor/predecessor relationships between the endpoints of the seg-
ments in one set, none of the corresponding points lies to the right and above (or to the
left and below) any other point in the same set; the points form a so-cal&dase This
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Figure 3.15: Just before the sweep reaches node Vv, the staircases of the active, chosen
seeds in §; (dashed) and of the active candidates in C4 (dotted).

means that, andC, can each be maintained as a balanced binary search tree, ordered
on the first number assigned to the lower endpoints of the segments aloramcAstor
querywith a point(x,y) asks if the set contains a poifit j) for whichx > i andy > j.
Answering such a query is done by finding the point with maximum first numbemland
testing if this point has its second numbkey. Similarly, we can determine easily whether

a query pointx,y) has both numbers smaller than some point in the tredesaendant
query. Since the sorted order on the first number suffices, queries on, insertions in, and
deletions frons, andC, can be done in time logarithmic in the size of the set.

We also maintain a heap on the €gt or rather, on the lower endpoints of the candidates

in Cy, with cross-pointers between corresponding nodes in the heap and the binary tree
for C4. The heap allows us to extract efficiently the candidate segment with the lowest
lower endpoint fronC,.

We will now describe the sweep algorithm that computes a small seed set, and analyze
the total running time. We initialize the global <etf seeds to be empty. Then we sweep
the nodes iry” from high to low values. The following events can occur:

e Source: Initialize empty set®, andC, for the superare starting at this node. This
takesO(1) time. Next, proceed as if the current node were a normal node.

e Normal nodev: First, update the sd&t, of candidate seeds for the superaron
which the current nodelies. For each segmesthat starts at, we determine how
it affects the se€,. Letu be the lower endpoint of segmestPerform an ancestor
query on the tree storing,; if u is ancestor of the lower endpoint of any seed in
S, we don’t need the segmesias a candidate seed. In Figure 3.15, the queries are
performed with the segments that have lower endpoin(8,47) and(6,10). If u
is not an ancestor for any lower endpoint fr&@ perform an ancestor query with
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uonC,. If uis an ancestor of the lower endpoint of any of the candidat€g,iwe

also don't need the segment as a candidate. Otherwise, perform a descendant query
with u. If uis the descendant of the lower endpoint of some candidalg {there

is at most one such candidate), then replace this candidate seed with the segment
s. If u has no ancestor or descendant relation, then the query segment becomes
a candidate seed; it is inserted in the binary tree and the hedp, foNote that

we never have to worry about candidate seeds no longer being active; they will be
replaced by newer candidates before this happens.

Next, test whether the arc @f starting atv is covered by any of the active seeds

in S;. This is surprisingly easy: ifS;| > 1, the lower endpoints of the segments

in S, lie in different subtrees rooted at one or more bifurcations below the current
node, since there are no ancestor/descendant relations between the endpoints of the
segments irg,. This means that the arc incident to and and below the current node
is surely covered. On the other hand Sf| = 1, we check in constant time whether

the segment irg; ends at the current node. If that is the case, we have to remove
the only segment fror; and choose a new seed, otherwise we are done. Choosing
a new seed is also easy: Extract the candidate with the lowest lower endpoint using
the heap o1€,, and remove this candidate from the binary tre€gas well, using

the cross-pointers between the nodes in the heap and the binary tree. Next, insert
this candidate as a seedSgpand in the global set of seefs

The total time needed for all queries, replacements, and insertions atvisde
O(dlogn), whered is the degree of in G.

Sink: Remove the se§, andC,.

Junction: First, for the two incoming aresandb at the junction, we determine
which of the two values is smallefS;| + |Ca| or |S| + |Cp|. This takedO(1) time

if we keep track of the size of the sets. Suppose without loss of generality that
the first of the two sums is the smallest. Then, for each saadS,;, we do the
following. Letu be the lower endpoint af. Perform an ancestor and descendant
qguery onS, with u. If uis ancestor, we do nothing; ifis descendant of the lower
endpoint of som&’ € §,, we replaces’ by sin the tree orfy,. Otherwise, there are
no ancestor/descendant relations and we issethe tree orfy,. If sis stored inS,,

it may be thas renders at most one of the candidate€jiredundant: we perform

a descendant query withon Cy, to discover this, and if there is a candidate whose
lower endpoint is ancestor sfwe remove this candidate froBy. The time needed
for this step of the merge B(klogn), wherek = min(|Sa| + |Cal, |S| + |Cp|). The
merged set of active seeds is dendigd.

Next, we do something similar for the two sets of candidate seeds. For each candi-
datec in Cy, letu be the lower endpoint af. Perform an ancestor query withon

the setS; , to test ifc still is a valid candidate. Ifi is ancestor of the lower endpoint

of some seed, then we discardOtherwise, we quer§, to see ifu is an ancestor

or descendant of the lower endpoint of a candidate C,. If uis the ancestor,

we discardc; if u is the descendant, we replac’eby c. Otherwise, there are no
ancestor/descendant relations and we inserC,.

Finally, we proceed as if the current node were a normal node.
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Note that we cannot independently insert the seeds of the smaller SganflS,
in the larger, and the candidates of the smaller s&,cdndCy, in the larger; we
have to compare the seeds3pwith the candidates iy, and the seeds i&, with
the candidates ;.

e Bifurcation: We have to split the set of active se&jsn two sets§, andS,, the
sets of active seeds for the left avcand the right ard’ below the bifurcation,
respectively. Note that the lower endpoint of any segme®}, ihas a smaller first
number assigned in the left-to-right topological sort/othan the lower endpoint
of any segment ifgy. Also note that we can test (1) time for a lower endpoint
u of a segment ir, in which of the two subtrees df rooted at the bifurcation
u lies, by comparings with the highest nodes in the two subtrees. So, if we test
the segments i, simultaneously from low to high and from high to low values
of their lower endpoints, we can determined(min(|S,|, |Sy|)) time which of the
two resulting sets will be the smaller one. Once we know this, we can split the tree
for S into trees for§, and Sy in O(min(|Sy|, |Sy|)logn) time, by extracting the
seeds that will go in the smaller set frd& and inserting them in a new set. For
the seC, of candidates, we do exactly the same to obtain theGgandC,y .

Next, we process the bifurcation twice as a normal node, once for the arc and the
segments that go into the left subtree of the bifurcation, and once for the arc and
the segments that go into the right subtree.

Itis easy to verify that the total time needed to process all sources, sinks and normal nodes
is O(nlogn); the time needed for the junctions and bifurcations can be analyzed much the
same way as in Section 3.3.2, where we analyzed the running time for the construction of
T for a two-dimensional mesh. In this case we get a bour@(nfog?n), which is also a

bound on the overall running time.

At any stage of the sweep, the memory requirements are proportional to the size of the
binary trees of all active superarcs, whictOf) worst-case.

Test results, presented in the next section, show that the seed sets resulting from the greedy
algorithm are small. This doesn’t surprise us; in fact, for a contour tree that only has
maxima, junctions, and one single minimum, the greedy strategy is optimal. This is easy
to show by a standard replacement argument:3;gtoe an optimal seed set, I8be the
chosen seed set, and assusig Spr. Lets e S — Sbe the segment that ends highest.
Let a be the highest arc &f such that coversa but no other seed d&,,; does so. Such

ana must exist otherwis&p: \ {S} also covers all off’, contradicting the optimality of

Sopt- SinceSandS, are the same for the subtree abayéhe greedy algorithm makes its
choice only when it reaches the upper noda.d8uppose the greedy choicesist s. Then

s has its lower node on or below the lower nodeso$inceZ doesn’t have bifurcations.

It follows that{s'} U S\ {s} is also an optimal seed set, but one which has one more
segment in common witB.

For a contour tree with bifurcations, the greedy algorithm may choose segments that are
not in an optimal seed set. This happens when the algorithm must choose a seed from a
set of candidates that all pass some bifurcation. In that case, it is not guaranteed that the
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candidate with the lowest lower endpoint is the optimal one. However, we suspect that
the non-optimal choices that the algorithm may make in these cases do not increase the
size of the resulting seed set by a large factor, compared to the size of an optimum seed
set.

3.5 Testresults

In this section we present empirical results for generation of seed sets using the method
of Section 3.4.2 (the method of Section 3.4.1 has not been implemented). In Table 3.5
results are given for seven data sets from various domains, both two-dimensional and
three-dimensional. The data used for testing include:

e Heart: a two-dimensional regular grid of MRI data from a human chest;
e Function: a smooth synthetic function sampled over a two-dimensional domain;
e Bullet: a three-dimensional regular grid from a structural dynamics simulation;

e HIPIP: a three-dimensional regular grid of the wave function for the high potential
iron protein;

e LAMP: a three-dimensional regular grid of pressure from a climate simulation;

o LAMP 2d: a two-dimensional slice of the three-dimensional data which has been
coarsened by an adaptive triangulation method;

e Terrain: a two-dimensional triangle mesh of a height field.

The tests were performed on a Silicon Graphics In8ligdPACT with 128Mb memory

and a single 250MHz R4400 processor. Presented are the total number of cells in the
mesh, in addition to seed extraction statistics and comparisons to a previously known
efficient seed set generation method. The method presented in Section 3.4.2 represents
an improvement of 2 to 6 times over the method of [14]. The presented storage statistics
account only for the number of items, and not the size of each storage item (a constant).
Note that the seed set method presented here has, in general, greater storage demands,
though storage remains sublinear.

3.6 Conclusions and further research

This chapter presented the first method to obtain seed sets for contour retrieval that are
provably small in size. We gave @(n?logn) time algorithm to determine the smallest
seed set, and we also gave an algorithm that yields small seed sets arﬂ(mlogﬁ n)

time for functions over a two-dimensional domain a@@?) time for functions over
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Data total # seeds| storage| time (s) | # seeds| storage| time (S)
cells of [14] | of [14]
Structured data sets
Heart 256x256 | 5631 | 30651 | 32.68 | 12214 255 0.87
Function 64x64 80 664 1.23 230 63 0.15
Bullet 21x21x51 8 964 2.74 47 1000 0.30
HIPIP 64x64x64| 529 8729 | 121.58 | 2212 3969 3.24
LAMP 3d || 35x40x15| 172 9267 6.82 576 1360 0.33
implicial data sets

LAMP 2d 2720 73 473 0.69 - - -
Terrain 95911 188 2078 13.67 - - -

0

Table 3.1: Test results and comparison with previous techniques.

higher-dimensional domains. In typical cases, the worst case quadratic time bound seems
too pessimistic. The algorithms make use of new methods to compute the so-called con-
tour tree.

Test results indicate that seed sets resulting from the methods described here improve on
previous methods by a significant factor. Storage requirements in the seed set computation
remain sublinear, as follows from the test results.

Our work may be extended in the following directions. Firstly, it may be possible to give
worst case subquadratic time algorithms for four and higher-dimensional meshes; the
three-dimensional case was solved recently [111]. Secondly, it is important to study what
properties an interpolation scheme on the mesh should have to allow for efficient contour
tree construction and seed set selection. Finally, we strongly suspect that the algorithm
presented in Section 3.4.2 yields a seed set of at most twice the set of an optimum seed
set, but the problem of finding a proof is still open.






CHAPTER 4

Efficient Settlement Selection
for Interactive Display

4.1 Introduction

The generation of a digital map on a computer screen is a process involving many steps.
Decisions have to be made on, for instance, the target scale of the map, the kind of map
(choropleth, isoline or network map; see Section 1.1.3), which thematic layers to display,
which features of a specific layer to include or exclude, the use of colors, and the position
of the labels. Some of these steps need to be taken only once or a limited number of
times, and the decisions involved in these steps may be made by the GIS user. Other
steps may be taken repeatedly and may involve a lot of computation. It is desirable that
those steps can be performed automatically and efficiently by the GIS. An example of
such a step is the generalization process. Even when only a few thematic map layers
are selected, displaying all data in full detail is often unwanted, because it would result
in a cluttered and unreadable map. Important cartographic generalization operations are
aggregation and simplification. In aggregation, individual map features are replaced by
one or more regions representing groups of those features; for instance, individual houses
by may be replaced by a single region depicting urban area. Simplification is the reduction
of detail; for example, a polyline representing a river may be displayed with fewer line
segments, such that only the global shape of the river is maintained. More information on
generalization can be found in Robinson et al. [90] and other textbooks on cartography,
e.g. [19, 28, 63].

When cities and towns have to be displayed, choices have to be made which of them to
include and which to omit; this is called settlement or place selection (Flewelling and
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Egenhofer[42]; Kadmon[61]; Langran and Poiker[66hpfer and Pillewizer[114]). It

is intuitively clear that a large city should take precedence over a smaller one when the
two have to compete for space on the computer screen. However, it is not necessarily
true that each of the selected cities is larger than any of the cities that are not selected
for display. A large city close to a yet larger city may be excluded, and a smaller city
not in the neighborhood of any other larger city may be included becauserefatwe
importance

Settlement selection is performed just prior to generalization, although it can be consid-
ered as part of the generalization procedure as well. It has to be performed when a car-
tographer is in the process of interactively designing a map from a geographic database,
or when a GIS user is panning and zooming in or out on a small scale map. Especially in
the latter case it is necessary, or at least strongly desirable, that the selection process can
be performed automatically by the GIS. To minimize the delay in screen updates, efficient
methods for settlement selection are needed.

This chapter discusses models that have been described for settlement selection. We also
propose a new model and three variations and discuss the advantages of our models over
the existing ones. We implemented several of the models for comparison, and we provide
figures and statistics on the output of several test runs on two different data sets. In the
process of interactive map design, it is useful if the cartographer has control over things
like number of cities selected, and the degree in which clustering is allowed. We have
included these controls in the interface of the implementation.

4.1.1 Previous work

Several decades agoppfer and Pillewizer[114] formalized a means to determine how
many features should be retained on a map when the scale is reduced and generalization
is performed. Settlement selection itself starts by assigning an importance value to all
settlements. The importance can simply be the population, but also a combination of
population, industrial activities, presence of educational institutions, and so on.

Langran and Poiker[66] report five different methods for the selection of settlements.
Most of them are incremental: cities are considered for display from most important to
least important, and the addition to the map is performed only if some spatial condition
is not violated. In two of the modelsettiement-spacing ratianddistribution-coefficient
control, the selection of a settlement is determined by only one, more important settlement
close by. In thegravity-modelingmethod, selection is dependent on several settlements
in the neighborhood. Thseet-segmentatioand quadrat-reductiormethods use recur-

sive subdivision of the plane, and a direct application of the radical lawdpfer and
Pillewizer[114].

Flewelling and Egenhofer[42] discuss a number of factors that influence the selection of
settlements. Following Mark[72], they assume that an importance attribute is assigned to
the map features to allow for intelligent selection. Then they give a global discussion of

ranking of settlements on non-spatial properties.
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4.2 Existing and new models

Before describing the four models for settlement selection that we developed, we first dis-
cuss in Section 4.2.1 below three existing models, reported by Langran and Poiker[66]:
settlement-spacing ratjgravity modelinganddistribution-coefficient controlThe other

two methods that Langran and Poiker[66] descrile¢;segmentatioandquadrat-reduction
require too much human intervention to be suitable for automated, or interactive, map de-
sign.

A disadvantage of the three existing models is that they don't directly grealéng of

the base set of settlements. A ranking is a display order; after computing a ranking of the
base set beforehand, selecting any number of cities is simply a matter of choosing them
in order of rank. For methods that don’t determine a ranking, changing the number of

selected settlements involves recomputation.

Adaptations can be made to the existing models to control the number of selected settle-
ments from the base set, but this may have strange effects. For example, when selecting
more settlements, it can happen that one of the chosen settlements is no longer selected,
but instead a couple of others are. When selecting even more settlements, these discarded
settlements can reappear. We say that a settlement-selection model haanthtenic-

ity propertyif any selection of settlements necessarily includes the settlements of any
smaller selection. Since our new selection models are based on a complete ranking of the
settlements, they have the monotonicity property.

Although ranking facilitates the selection process, a model that produces a complete rank-
ing is not necessarily better than a model that doesn’t. The quality of a final selection
depends on the data set used and the purpose of the resulting map. The quality of the
existing models and our new ones can be assessed by comparing figures and statistics of
selections (Section 4.4) and by visual inspection based on our implementation available
on the World Wide Web.

In the models to be described next, we assume that an importance value is known for
each settlement. The model defines which settlements are selected when their geographic
location is incorporated as well.

4.2.1 Existing models

Settlement-spacing ratio

In the settlement-spacing ratio model, circles are placed centered at the settlements, and
the size of each circle is inversely proportional to the importance of its corresponding
settlement. More precisely, the radiusj$ wherei is the importance and> 0 is some
constant (the same for all settlements). Settlements are tested in order of importance,
starting with the most important one. A settlement is only accepted if its circle contains
none of the previously accepted settlements. In other words: small settlements will only
be accepted if they are isolated.
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Langran and Poiker[66] don't discuss how to influence the number of selected settlements.
Since on small scale maps distances between settlements are smaller than on large scale
maps of the same area, one can generally expect the number of displayed settlements to
increase when the scale is increased and the constant of proportionality is kept the same.
However, when a cartographer is not satisfied with the number of displayed settlements
at a given scale, there should be a means to increase or decrease this number. Selecting
fewer settlements can be as simple as stopping when the desired number is reached, but
it is impossible to increase the number of settlements this way. Alternatively, one can
tune the constant of proportionality This constant determines how many settlements

are accepted; smaller values fomean smaller circles and this generally leads to more
settlements being selected for display. This is, however, not always the case, as is illus-
trated in Figure 4.1: settlements A is accepted, B is rejected, and C and D are accepted.
But if ¢ were slightly smaller, the circle of B would not contain settlement A anymore.

So settlements A and B are accepted, but C and D are rejected, since their circles contain
settlement B. If we continue to decreasesettlements C and D will reappear. Note that
decreasing while keeping the scale fixed is equivalent to keepiriiged and increasing

the scale.

L

V

Figure 4.1: The settlement-spacing-ratio method doesn’t satisfy the monotonicity property.

The example above shows that this method doesn'’t have the monotonicity property and
that a complete ranking of the cities cannot be calculated. In fact, it can be that no value
of c gives a desired number of settlements. It is also possible that two different selections
have the same size. This is all caused by the fact the the monotonicity property is not
respected by the model.

Gravity modeling

In the gravity-modelingnethod, a notion aiihfluencels introduced: the influence of one
settlement on another one is computed by dividing the importance of the first one (the
selected one) by the distance to the other. Settlements are tested in decreasing order
of importance, and a settlemesnts only accepted if its importance is greater than the
summed influence of all already selected settlements on

As in the previous model, the number of selected settlements is fixed for a given scale.
This can be overcome by adapting the original model as follows: in the selection process,
the next settlement under consideration is accepted if the summed influence of the already
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accepted settlements on the candidate is lessatiares the importance of the candidate.
By controlling the tuning factoc, the number of selected settlements can be adjusted.
However, if we adapt the model in this way, it doesn’t respect the monotonicity property
and doesn’t give a complete ranking. Consider the following example (see Figure 4.2):

e The set of settlements consists of three settlem&nB andC, with importance
values of 4, 3, and 1, respectively;
e The three settlements are collinear, &liks in betweerA andC;

e The distance betweehandB is 1, and the distance betweBrandC is 3.

A B c

@ © @

%/_JL _J
1 3

Figure 4.2: The gravity-modeling method doesn'’t satisfy the monotonicity property.

In this case, the influence frow on B is 4, the influence fromA on C is 1, and the
summed influence frotA andB onC is 2. Hence, if 0< ¢ < 1 then onlyA is selected; if
1< c<4/3thenAandC are selected; if A3 < ¢ < 2 thenA andB are selected,; i€ > 2
thenA, B, andC are all selected.

Distribution-coefficient control

The third methoddistribution-coefficient controlises thenearest-neighbor indefor the
selection process. The nearest-neighbor index is the ratio of the actual mean distance to
the nearest neighbor and the expected mean distance to the nearest neighbor for a uni-
formly distributed set of settlements in a square region. The expected mean distance is
1/(v/2p), wherep is the number of settlements per unit area. Again, settlements are
processed in decreasing order of importance. Starting with a small set of largest ones,
settlements are only accepted if their addition to the already accepted set doesn’t decrease
the nearest neighbor index. The number of settlements in the final selection is fixed and
is even independent of scale, but can be controlled again by introducing a tuning factor: a
settlement is accepted if the nearest neighbor index after its addition is at teass the
nearest neighbor index before its addition. @is lowered, more and more settlements

are selected. However, there can be valuesfof which a jump in the number of selected
settlements occurs: @ is lowered below one of these thresholds, the acceptance of the
next settlement causes the nearest neighbor index to drop, which in turn causes the next
settlement to be selected also, and so on. Test results of our implementation show that
this cascading effect can occur in practice. This model also does not respect the mono-
tonicity property when a tuning factaris introduced. Consider the following example

(see Figure 4.3):
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e The set of settlements consists of four settlemén®, C, andD, with importance
values 4, 3, 2, and 1, respectively;

e The four settlements are collined, andC lie in betweenA andD, andC lies
inbetweerB andD;

e The distance betweehandB is v/3, the distance betwedhandC is M%ﬁ —€,
and the distance betwe@nandD is ¢, for € > 0 sufficiently small.

A B C D
—® © @@
—_ I Jgr_J
3v2—v3
V3 VB e e

Figure 4.3: The distribution-coefficient control method doesn'’t satisfy the monotonicity
property.

For the expected distance to the nearest neighbor we hay2d= 1/(c'v/k), wherek is
the number of selected settlements ahd constant depending on the area of interest.

The nearest-neighbor index for the initial set of settlem¢At8} is ¢’/2v/3. If cis set

to 1, thenC cannot be added to the set of selected settlements, since the average distance
to the nearest neighbor f¢A, B,C} is (v/3+3v2 - v/3—2¢)/3=/2—2¢/3, and the
nearest-neighbor index fgA, B,C} is ¢'(v2v/3 - 2¢/1/3) < ¢/v/2V/3. Similarly, the
nearest-neighbor index fdA, B,D} is ¢/v/2/3, so if the tuning factoc is set to 1, then

A, B, andD will be selected. If we make another selection, starting WikhB}, and with
clowered to 1- 2¢/(3v/2), thenC can be added to the selection, but for sufficiently smalll
values ofe, D cannot be added. Finally, for very small valuesddll four settlements are
selected. It follows that in this example the monotonicity property is not respected.

Another disadvantage of the model is that the actual importance of a settlement is only
used in the order of processing, and not in the test whether the settlement should be
selected or not.

4.2.2 New models

Circle growth

In our first model, theeircle-growthmethod, a ranking of the settlements is determined
as follows: for each settlement a circle is drawn with a radius that is proportional to the
importance of the settlement. The initial constant of proportionality such that no

two circles overlap. The next step is to increaseausing all circles to grow, until the
circle of some settlement fully covers the circle of some other one. The former is said to
dominatethe latter; the latter has the lowest rank of all settlements and is removed. This
process is repeated while assigning higher and higher ranks, until only the most important
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settlement remains. For two settlemestands, with importance valuelg andly, 11 > 1o,
and distancel(si, ), the circle ofs, covers that of; for ¢ > d(s1, ) /(11— 12).

This method satisfies two important conditions:

e When two settlements compete for space on the map, the most important one of the
two will survive.

e Settlements of low importance will be displayed on the map if there are no settle-
ments of higher importance in their proximity.

The drawback of this method is that a settlement with very high importance can have
a global effect on the map: its neighborhood is a large part of the map, and too many
settlements near to it are suppressed. At the same time, in large regions with no settlement
of high importance several settlements are selected. One way of resolving this is instead
of giving each settlement a circle with a radius proportional to its importateting the

radius of the circle be proportional it, with 0 < a < 1. By tuninga the influence of the
importance of the settlements on the selection can be reduced.

Circle-growth variation |

The drawback of the (unmodified) circle-growth model led to the observation that set-
tlements with a very high importance have too much influence on the selection, and this
resulted in the opposite of preserving density locally. Our second method, a variation on
the circle-growth method, doesn’t have this problem. We'll rank from first to last this
time, and as soon as a settlement is ranked, it receives a circle of the same size as the
other settlements that are already ranked. All settlements that are not ranked yet have a
circle of a radius proportional to their importance.

The complete ranking is calculated as follows: the settlement with the highest importance
is assigned the highest rank. Next, the settlement that is second in rank is determined by
applying the circle-growth idea. We choose the settlement whose circle is covered last
by the circle of the settlement with the highest rank, and set its importance to that of its
dominating settlement. This process is iterated, ranking a next settlement when its circle
is covered last by any one of the ranked settlements.

With this method the distribution of the selected settlements can be expected to be more
even than the distribution of the selection resulting from the circle-growth method, since
in our second method the size of the circles is the same for all selected settlements. Indeed,
our implementation verifies this; an evenly distributed selection is the result.

Although this method may seem far more time-consuming than the original circle-growth
method, it can actually be implemented more efficiently than the original method. We
will discuss this in Section 4.3.2.

Circle-growth variation Il

In the previous two methods, all calculations are done with absolute importance values of
the settlements. Our third method makes qualitative rather than quantitative comparisons.
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First, the settlements are sorted by importance from low to high. Each settlement receives
as a number the position in the sorted order. This number replaces the importance value,
after which the ranking is computed as in variation I. Circles of selected settlements have
equal size, and the size of the circles of the not-yet-selected settlements is proportional to
their position in the list sorted on importance. In all our models, the domination of one
settlement over another one is determined by the importance of the settlements and the
distance between them. Compared to the previous model, the influence of the importance
values on the selection of a settlement is reduced in favor of an isolated location, and
therefore one can expect an even more evenly distributed selection than in the previous
model, but with a lower total importance. Our experiments show that this is indeed the
case.

Circle-growth variation Ill

In circle-growth variation |, we gave all selected settlements a circle of the same size,
proportional to the importance of the most important settlement. In this model, circle-
growth variation I, the selected settlements also get equal-sized circles, but this time the
size of the circles i times the size of the circle of the most-important not-yet-selected
settlement for some > 1. For the remainder, the circle-growth principles are applied in
the same way as in circle-growth variation I. This means that each time that a settlement
is selected, the size of the circles of the selected settlements decreases. The outcome of
this model depends on the valuemfFor large values of, we expect evenly distributed
selections with relatively low total importance values; for valueswary close to one, the
settlements will be ranked in order of importance, which results in unevenly distributed
selections with high total importance values.

4.3 Implementation

To be able to test our models, to collect some statistical data on the different selections,
and to compare our new models with the existing ones, we implemented the discussed
models in Java, and made our implementation accessible through the World Wide Web
(seehttp:/iwww.cs.uu.nl/"rene/settlement/). This enables others to experiment with the
models and to validate our results.

4.3.1 User interface

The user interface is depicted in Figure 4.4: a large portion of the screen is reserved for
displaying the settlements. Below the display area are the controls: buttons for selecting
which of the seven implemented methods to use, or simply ranked by importance; buttons
for displaying names and importance values with the settlements; and buttons to set the
number of displayed settlements for the four new models. When the user selects one of the
existing selection methods, this latter group of buttons is replaced by a slider for adjusting

the tuning factor used in the three existing models (see Section 4.2.1). Statistics that are



4.3 Implementation 83

displayed are the total number of selected settlements, the total population of the selected
settlements (in thousands), and the average distance to the nearest neighbor (in pixels). In
our experiments, we used the population of the settlements as importance values.

u Zwol e

u Amzter-dam

w Den Hazg | Utrecht

» Rotterdam

a Mlissingen

Figure 4.4: The user interface

4.3.2 Algorithms and data structures

In the implementation of the models, we didn’t pay much attention to the efficiency of the
algorithms, since our focus was on the outcome of the models rather than on speed. All
models were implemented with a straightforw&h?) time algorithm, or worse. Recall

that for the new models, computing a ranking is preprocessing; once a ranking has been
computed, making a selection wiktsettlements is simply a matter of outputting the first



84

Efficient Settlement Selection for Interactive Display

k settlements in order of rank. For completeness, we discuss some ideas to improve on
the running time of a straightforward implementation for some of the models.

Both circle-growth variation | and Il can be implemented by incrementally constructing
the Voronoi diagram of the ranked settlements (see Figure 4.5). We start with one ranked
settlement, the most important one; its Voronoi cell is the whole plane. Since in both
models the circles of all ranked settlements have the same size, all non-ranked settlements
are dominated by their nearest ranked neighbor. That is, their circle will be covered first
by the circle of the nearest ranked settlement. We exploit this by maintaining for each
Voronoi cell a list of non-ranked settlements that lie in that cell. One of the settlements
in each list is the last to be dominated, and it is a candidate for the next settlement to be
chosen. Each Voronoi cell gives one candidate, unless there are no non-ranked settlements
in the cell. We maintain all these candidate settlements in a heap, which makes it possible
to determine irD(1) time the next settlement to be added to the set of ranked settlements.
The algorithm repeatedly takes the following steps until all settlements have been ranked:

1. Determine the next settlemesiio be ranked by extracting it from the heap.

2. Determine in which Voronoi cell lies. This can be done efficiently if we store a
pointer with each candidates to the cell in which it lies.

3. Create a new cell fain the Voronoi diagram. This involves modifying a number
of existing cells, i.e., the neighbors of the new celkof

4. Inspect the lists of non-ranked settlements of all modified cells; some of the non-
ranked settlements lie in the Voronoi cell af These settlements are removed
from their original list and inserted in the (new) list gfand the pointers of these
settlements are updated. If any of the moved settlements was a candidate for its
original cell, it is removed from the heap. A new candidate is determined for that
cell, and inserted in the heap.

5. Determine which one of the non-ranked ranked in the list sf the last that is
covered bys. This is a new candidate, and it is inserted in the heap.

This algorithm resembles the randomized incremental construction algorithm of @tiibas
al. [49] for computing the Delaunay triangulationmpoints inO(nlogn) expected time.
Given the Delaunay triangulation of a point set, the Voronoi diagram can be constructed in
O(n) time. The main differences of our algorithm with the one from of Guitea. [49]

are:

e The order in which the settlements are ranked is not random in our algorithm. In the
analysis of the algorithm of Guiba al.[49], it is essential that the order in which
the points are inserted into the Delaunay triangulation is random. If the order of
insertion is not random, one can only prové(a?) upper bound on the worst-case
running time.
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o selected settlements
o not selected settlements

Figure 4.5: Maintaining the Voronoi diagram of the selected settlements

e At each iteration of our algorithm, the lists of non-ranked settlements are inspected.
The total length of these lists can be linear during a linear number of iterations, even
if the settlements were ranked in random order. This also leads@gr&n running
time in the worst case.

Because of these differences, we can only prove a worst-case running ti@@gf

for our algorithm. However, under the condition that the number of Voronoi neighbors
of the settlement that is ranked in tkeh iteration isO(1) in most iterations, and that

after a constant number of iterations the non-ranked settlements are distributed more or
less evenly among the cells of the ranked settlements, the running time will probably be
closer toO(nlogn) than toO(n?). These conditions seem realistic to us, and comparable
experiments with real-world data [41, 53, 54], in which points are inserted in non-random
order, showed running times that are considerably better@fa.

Using Voronoi diagrams isn't helpful in our first method, the unmodified circle-growth
model. The ranked settlements don’t have equal-sized circles, and this means that we
would have to use multiplicatively weighted Voronoi diagrams [10, 82], a variation of the
standard Voronoi diagram that uses a different metric. Unfortunatelymfo algorithm

for the construction of such Voronoi diagrams is known.

In our last model, circle-growth variation Ill, Voronoi diagrams aren't helpful either. Since
the size of the circles of the ranked settlements may change in a linear number of itera-
tions, the order in which the non-ranked settlements are dominated may also change a
linear number of times, and we would have to inspect all lists of non-ranked settlements
to test for new candidates. This would lead tam?) running time.

Of the existing methods, the settlement-spacing ratio method can also be implemented by
incrementally constructing the Voronoi diagram of the selected settlements; a settlement
is only accepted if its circle does not contain its nearest neighbor, which we find by doing
point location in the Voronoi diagram of the selected settlements. Since settlements are
added in order of importance, we don’t need to maintain lists of non-selected settlements
for each Voronoi cell. As before, we can only guarante®(a®) worst-case running
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time, but under the assumption that the number of Voronoi neighbors of the settlement
that is ranked in thé-th iteration isO(1) in most iterations, the running time will be
closer toO(nlogn) than to quadratic. Note however that only one complete selection is
computed inO(nlogn) time, not a complete ranking. So if more settlements are needed,
the algorithm has to be started all over with a different constant of proportionality.

For the gravity-modeling method, computing even one selection faked time. It is
not clear how to improve the performance of this model.

In the distribution-coefficient control method, testing each settlement involves determin-
ing its nearest neighbor, and determining for which of the already selected settlements the
new settlement becomes the new nearest neighbor. With a straightforward algorithm this
will take O(n?) time in total, but this can be improved @nlogn) time under the same
assumptions as before by incrementally constructing the Voronoi diagram of the selected
settlements. Again, this is the time needed for computing a single selection of settlements.

4.4 Test results

We tested the three existing and the four new models on two data sets that we retrieved
from the World Wide Web, one consisting of 156 cities of the USA with population figures

of 1990, and the other consisting of 139 municipalities in the Netherlands with more
recent population figures. The population of the cities was used as the importance, and
in each of the new models we made selections of sizes 10 to 60 in steps of 10. Circle-
growth variation IIl involves a tuning factor, and we ran that model with four different
values for the factor. For the existing models, making a selection of a specified size is
not always possible. To allow for comparison, we made selections of sizes as close as
possible to the sizes of the selections made with the new models. The results are listed in
Tables 4.1 and 4.2. Note that for the US data set, it was impossible to make selections of
any size between 10 and 55 with the distribution coefficient control method. The visual
appearance of selections of about 15 cities made with the different models is shown in
Figures 4.6—4.9.

In general, it is difficult to define what constitutes a good selection. The degree of clus-
tering can be one of the criteria, but a selection that is considered too clustered in one
situation may be perfectly acceptable in another situation. On maps where cities fulfill a
reference function, like on weather charts, clustering is undesirable, but on maps where
for instance state boundaries have a reference function, clustering need not be avoided.
The total importance of the selected settlements can be another criterion. For two selec-
tions with about the same degree of clustering, the one with the larger total importance
can be considered the better one.

To compare the different models, we included figures on the total population size of the
selected cities and the average distance to the nearest neighbor in Tables 4.1 and 4.2. From
these tables we can conclude that circle growth variation | generally gives better results
than the (standard) circle growth method; in most cases, variation | combines a larger



4.4 Test results

87

Number of selected settlements
Model 10 | 20 | 30 ] 40 | 50 | 60
Ranking by | Population 20886 | 27304 | 31899 | 35488 | 38518 | 40858
Population | Avg. NND 32 25 36 27 22 19
CG Population 17491 | 21562 | 24942 | 28072 | 30663 | 32972
Avg. NND 80 54 41 32 27 24
CG Var. | Population 17182 | 21803 | 25617 | 28014 | 31512 | 35002
Avg. NND 119 67 50 39 35 30
CG Var. Il Population 10751 | 13774 | 16937 | 21811 | 24011 | 26811
Avg. NND 121 70 51 42 37 31
CG Var. lll | Population 13701 | 16249 | 19329| 23183 | 25468 | 29757
factor: 5.0 | Avg. NND 116 69 51 41 36 30
CG Var. lll | Population 17182 | 22064 | 26247 | 29239 | 33892 | 36805
factor: 2.0 | Avg. NND 119 70 50 39 34 29
CG Var. lll | Population 17182 | 23188 26247 | 32099 | 34492 | 37172
factor: 1.5 | Avg. NND 119 64 50 39 34 29
CG Var. lll | Population 20885 | 26867 | 31885| 35156| 38178 | 40134
factor: 1.05| Avg. NND 34 49 38 31 25 25
SSR No. settlementg 10 19 30 40 50 59
Population 18280 | 23747 | 28983 | 32982 | 35999 | 38029
Avg. NND 99 65 48 38 32 29
GM No. settlementg 12 22 31 40 50 59
Population 20910 27212 | 31635 34890 | 37853 | 39922
Avg. NND 61 43 33 28 25 24
DCC No. settlementg 10 - - - 55 68
Population 18185 - - — | 24512 | 26657
Avg. NND 95 - - - 23 18

Table 4.1: Results of test runs with a data set of 156 US cities. Population is in thousands,
summed over all selected settlements. Average distance to the nearest neighbor is in
pixels. For the existing models, it is not always possible to make a selection of a specified
size.

total population size with a greater average distance to the nearest neighbor. Variation
Il gives the lowest total importance values and large distances to the nearest neighbor,
and is outperformed by variation Il with factor 5.0, that gives about the same amount
of clustering but higher population sizes. Variation Ill with factor 2.0 is comparable
with variation |. Lowering the factor increases the total population sizes and increases the
amount of clustering.

Of the existing models, the settlement spacing ratio method combines higher total pop-
ulation values with smaller average nearest neighbor distances, compared to our circle
growth variation |. Gravity modeling favors high importance values even more, at the cost
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Number of selected settlements
Model 10] 20] 30| 40] 50| 60
Ranking by | Population 2986 | 4267 | 5246 | 5992 | 6634 | 7181
Population | Avg. NND 54 35 27 22 21 18
CG Population 2647 | 3464 | 4037 | 4656 | 5080 | 5631
Avg. NND 50 33 31 24 23 22
CG Var. | Population 2558 | 3687 | 4278 | 4803 | 5493 | 5999
Avg. NND 84 53 42 36 31 27
CG Var. Il | Population 1414 | 1963 | 2370 | 2972 | 3324 | 3976
Avg. NND 100 58 43 37 31 26
CG Var. Il | Population 1802 | 2333 | 2803 | 3358 | 3877 | 4889
factor: 5.0 | Avg. NND 94 59 44 36 32 28
CG Var. Il | Population 2014 | 3385| 4283 | 4855 | 5470 | 6096
factor: 2.0 | Avg. NND 95 57 42 35 31 26
CG Var. Il | Population 2148 | 3772 | 4538 | 5262 | 5811 | 6266
factor: 1.5 | Avg. NND 93 50 40 33 29 26
CG Var. Il | Population 2977 | 4256 | 5245 | 5946 | 6613 | 7172
factor: 1.05| Avg. NND 57 34 28 27 23 19
SSR No. settlements 7 19 29 40 50 59
Population 2090 | 3695 | 4739 | 5501 | 5973 | 6575
Avg. NND 87 57 36 30 28 24
GM No. settlementg 12 20 31 41 49 61
Population 3202 | 4143 | 5103 | 5784 | 6328 | 6938
Avg. NND 53 37 32 23 22 20
DCC No. settlementg 13 20 28 40 47 70
Population 2859 | 3238 | 3487 | 3800 | 4191 | 4832
Avg. NND 67 51 43 34 30 20

Table 4.2: Results of test runs with a data set of 139 municipalities in the Netherlands.
Population is in thousands, summed over all selected settlements. Average distance to
the nearest neighbor is in pixels. For the existing models, it is not always possible to make
a selection of a specified size.

of a higher degree of clustering. But despite the fact that both of these models give quite
good individual selections, there is little coherence between selections of different sizes,
and some selection sizes are even impossible to obtain. Our methods, which are based on
ranking of the settlements, do not suffer from these drawbacks. Finally, the distribution
coefficient control method does not seem to give very good results: in most cases, it com-
bines a low total importance value with a small average distance to the nearest neighbor.
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Figure 4.6: Sample output of the existing methods for the dataset of US cities.

45 Conclusions and further research

We developed four new models for the settlement-selection problem and compared them
with three existing models. While the existing models compute a single selection, the
new models determine a complete ranking of the settlements. After ranking, selecting any
number of settlements is easy. Moreover, when selecting more settlements, all previously
selected settlements remain selected, which is not the case in the existing models. Using
our models, a cartographer can balance between a large total importance and an even
distribution of the selected settlements.

One of the topics for further research is the effects of panning and zooming on the selec-
tion. It would also be interesting to develop methods for selection of map features that
are not represented by points, such as roads, lakes, and rivers (see also [71, 84,113,119,
120)).
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Figure 4.7: Sample output of the new methods for the dataset of US cities.
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CHAPTER 5

Facility Location on Terrains

5.1 Introduction

The main advantage of a GIS over a collection of paper maps is the ability to combine
the data stored in different layers, and to do all sorts of automated analysis. Geographic
analysis is a broad subject, ranging from computing simple numbers such as population
densities of the regions of a choropleth map, to complex optimization procedures to de-
termine one or more suitable geographic locations for some specific purpose. Suppose for
example that a group of physical geographers are planning to do field studies in moun-
tainous area: where will they set up a base camp and several satellite camps? The actual
research is done in day trips to the satellite camps, and in the evening they return to the
base camp to eat and sleep. They want to find a location for the base camp that minimizes
the maximum distance from the base camp to any of the satellite camps. This is an ex-
ample of thefacility location problemand in this chapter we address this problem in its
abstract form. We model the mountainous area as a polyhedral terrain, or a TIN, defined
by n triangles (see Section 1.2.2), and assume that a setpafint siteson the TIN is

given. We assume throughout this chapter that n. The distance between two points

on the terrain is the minimum length of any path between those points that lies on the
TIN. Thefacility centerof the sites is the point on the TIN that minimizes the maximum
distance to a site. To avoid problems involving the boundary of the TIN, we show how to
extend the TIN to a polyhedron, such that for any two pop#sdq on the original TIN,

any path betweep andq that leaves the original TIN cannot be a shortest path. This also
enables us to use the results of others on shortest paths on polyhedra.
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5.1.1 Previous work and new results

In the Euclidean plane, the facility center, or the center obthallest enclosing disaf a

set ofmpoint sites, can be determined@jm) time. Several algorithms attain this bound.
Megiddo [74] gave the first deterministic linear-time algorithm, and a much simpler, linear
expected time algorithm was found by Welzl [125].

There is a close connection between the facility center and the furthest-site Voronoi di-
agram of the sites. Namely, the facility center must lie at a vertex or on an edge of this
diagram. In the plane, with Euclidean distance, the furthest-site Voronoi diagram has cells
only for the sites on the convex hull of the set of sites, and all cells are unbounded.

It appears that on a polyhedron, some of the properties of furthest-site Voronoi diagrams
in the plane no longer hold. For instance, a bisector on the polyhedron is generically
a closed curve consisting of as many@@?) straight-line segments and/or hyperbolic
arcs, in the worst case. In general, it may also contain two-dimensional portions of the
surface of the polyhedron.

Mount [78] showed that theearest-neighbo¥oronoi diagram ofm sites on (the surface
of) a polyhedron witm faces withm < n has complexityd(n?) in the worst case; he also
gave an algorithm that computes the diagrar®in?logn) time. We do not know of any

previous work on furthest-site Voronoi diagrams on a polyhedron.

The problem of computing the shortest path between two points along the surface of a
polyhedron has received considerable attention; see the papers by Sharir and Schorr [100],
Mitchell, Mount and Papadimitriou [77], and Chen and Han [22]. The best known algo-
rithms [22, 77] compute the shortest path between two given points, the soaruwk
destinatiort, in roughly O(n?) time. In fact, these algorithms compute a data structure
that allows us to compute the shortest path distance between the sdoreay query

point p in O(logn) time. The algorithm of Mitchell et al [77] is a continuous version of
Dijkstra’s algorithm for finding shortest paths in a graph [35], while Chen and Han [22]
solve the problem by determining shortest paths inuafolding of the polyhedron; see

also [5].

In his master’s thesis, van Trigt [121] gave an algorithm that solves the facility location
problem on a polyhedral terrain @(m*n®logn) time, usingO(n?(? + n)) space.

This chapter gives aﬁ)(mnzlog2 mlogn) time algorithm to compute the furthest-site
Voronoi diagram and find the facility center for a &bf m sites on the surface of a
polyhedron withn faces. Given the linear-time algorithm for finding the facility center

in the plane, this bound may seem disappointing. However, the algorithm for computing
the furthest-site Voronoi diagram is near-optimal, as the combinatorial complexity of the
diagram isQ(mr?).
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5.2 Extending a TIN to a polyhedron

In many practical situations, a TIN is defined over a rectangle. More precisely, it is the
graph of a piecewise linear function defined oy, Xright] X [Ybottom Ytop].- TO avoid
complications involving the boundary of the TIN, and to be able to use results of others
on shortest paths and Voronoi diagrams on polyhedra, we extend the terrain to the surface
of a polyhedron.

Any TIN consisting ofn triangles can be extended wi@(n) additional triangles to the
surface of a polyhedron that is homeomorphic to a sphere, such that for any two points
p, q on the triangles of the original TIN, any path frgorto g that leaves the original TIN
cannot be a shortest path on the polyhedron. The construction is as follows:

The polyhedron will be shaped somewhat like a box, with the original TIN ‘on top’ (see
Figure 5.1). Letd be an upper bound on the length of the shortest path between two
points on the original TIN. First, we extend the domain of the TINXgx — d, Xright +

d] x [Ybottom— d, Ytop + d]. From each vertex on the original boundary of the TIN, we start

a new edge, perpendicular to this boundary, and ending at the new boundary. We let all
these new edges be horizontal, in other words, normal ta-thes. Next, the resulting

new rectangles are triangulated by adding a diagonal edge. So far, we have constructed
the top of the polyhedron. (Note that the edges on the new boundary are not all horizontal,
unless the edges on the original boundary are horizontal.)

Let zoy be thez-value of the lowest vertex in the terrain. The ‘bottom’ of the polyhedron
is the rectanglé[Xef — d, Xiight + d] X [Yoottom— d, Ytop + d], Zow — 1).

From the vertices on the boundary of the top of the polyhedron, we start edges parallel
to the z-axis, and ending at the boundary of the bottom rectangle. The resulting vertical

rectangles are triangulated by adding diagonal edges. Finally, we place a vertex in the
interior of the bottom rectangle, and connect it with edges to all vertices on the boundary
of the bottom rectangle. The resulting polyhedron is highly degenerate, but our algorithm
is not influenced by these degeneracies.

Because of the dimensions of the top of the polyhedron, no shortest patip taogn both

on the original TIN, can cross a triangle on the sides or the bottom of the polyhedron.
For any path fromp to g that only crosses triangles on the top of the polyhedron, the
maximal sub-paths that cross only new triangles on top of the polyhedron can be replaced
by shorter paths along the boundary of the original TIN.

5.3 The complexity of the furthest-site Voronoi diagram
on a polyhedron

Previous papers on shortest paths on polyhedra [22, 77,100, 121] use a number of impor-
tant concepts that we’ll need as well. We review them briefly after giving the relevant
definitions.
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Figure 5.1: Extending a TIN (shaded) to the top of a ‘box-like’ polyhedron.

In the remainder of this chapte®,is (the surface of) a polyhedron. As stated before, we
only allow polyhedra homeomorphic to a ball, so that their surfaces are homeomorphic
to a sphere. For two poingzand p’ on the surface o, we define the distance g, p’)

to be the length of the shortest path frgnto p’ along the surface d®. Let Sbe a set of

m point sites orP. Consider first a single sitee P. For any pointp on P we consider

a shortest path frorp to s; note that in general such a path need not to be unique. Such
a shortest path has a number of properties. First, if it crosses an eBgaaperly, then

a principle of refraction holds. This means that if the two incident triangles were pivoted
about their common edge to become co-planar, then the shortest path would cross the
edge as a straight-line segment. This principle is callefdlding For any vertex on the
polyhedron, we define it®tal angleas the sum of the angles at that vertex in each of the
triangles incident to it. The shortest path cannot contain any vertex for which the total
angle is less thant® except possibly at the sourpeand the targes.

Any shortest path crosses a sequence of triangles, edges, and possibly, vertices. If two
shortest paths on the polyhedron cross the same sequence (in the same order), we say that
these paths have the saerige sequencéf a shortest path fronp to s contains a vertex
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of the polyhedron, the vertex reached first frpns called thgpseudoroodf p. If the path
does not contain any vertex, then sitis called the pseudoroot gk

Theshortest path map (SPM) ofsdefined as the subdivision Bfinto connected regions
where the shortest path $ds unique and has a fixed edge sequence. For non-degenerate
placements of, the closures of the regions coWrso the portion oP outside any region,
where more than one shortest patls &xists, consists of one-dimensional pieces. When
two pseudoroots have the same distancg the exterior of the regions of the SPM may
have two-dimensional parts.

Itis known that the shortest path map of a site has compléXity); this bound is tight in

the worst case. The SPM restricted to a triangle is actually the planar Euclidean Voronoi
diagram for a set of pseudo-sites with additive weights (see Figure 5.2). The pseudo-sites
are obtained from the pseudoroots. The coordinates of the pseudo-sites are obtained by
unfolding the triangles in the edge sequence to the pseudoroot so that they are all co-
planar. The weight of a pseudo-site is the shortest-path distance from the corresponding
pseudoroot to the site It follows that the boundaries of regions in the SPM within

a triangle consist of straight-line segments and/or hyperbolic arcs. For any point on a
hyperbolic arc or a segment there are two shortest pathwiit different pseudoroots.

Figure 5.2: The SPM restricted to a triangle is the Euclidean Voronoi diagram for a set of
sites with additive weights.

Given two sitess andt on the polyhedron, thbisectorf3(s,t) is the set of those points

p on the polyhedron whose shortest patlstoas length equal to the shortest path.to

The bisector consists of straight-line segments, hyperbolic arcs, and may even contain
two-dimensional regions. Such regions occur only when two sites have exactly the same
distance to some vertex & For simplicity, we assume that these degeneracies don't
occur.

Theclosest-site Voronoi diagrawof a setSof msites onP, denoted by VIDS), is a planar
graph embedded iR that subdivided® into maximal open regions associated with the
sites inS, with the property that a poirg € P lies in the region of a site € Sif and only
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if d(p,s) < d(p,s) for eachs’ € Swith §' # s. The interior of the boundary between two
adjacent regions is aedgeof the Voronoi diagram; it is easy to see that each edge lies on
a bisector of two sites i6. The non-empty intersections of the closures of three or more
regions of the Voronoi diagram are itertices We assume that all vertices have degree
three; otherwise, a degeneracy is present.

Thefurthest-site Voronoi diagrarof a setS of msites onP is a similar subdivision oP
into maximal open regions. The difference is that a ppiatP lies in the region of a site
se Sifand only if d(p,s) > d(p,s) for eachs € Swith ' £ s. In this chapter, we give
a new algorithm for computing the furthest-site Voronoi diagram of é&a#tsites on a
polyhedron. We denote it by FM[3), and refer to it more loosely dabe diagram The
region of a sites € S, either VI(S) or FVD(S), is denoted byR(s).

The following facts are crucial for the algorithm below to work and for the analysis to
hold. Lemmas 5, 6, and 7 are similar to the lemmas in Leven and Sharir [69]; they are
general statements about a large class of metrics and hold under very general conditions.

Lemma 5 In the closest-site Voronoi diagram of a set S of sites on P, the régishof
a site se S is connected.

Proof: Let p be a point inR(s), let i(p,s) be a shortest path frompto s, and letp’ be
an arbitrary point orm(p,s). The sub-pathsi(p, p’),(p’,s) C 1(p,s) are also shortest
paths, and tb,s) =d(p, p’) +d(p’,s). Itfollows thatd p’,s) < d(p/,t) foranyt e St £,
otherwise, there would be a path frgnot via p’ that is shorter than(gh, s), contradicting
the fact thatp is closer tos than tot. Hence, any poinp’ onTi(p,s) lies in R(s), and any
two pointsp andq in R(s) are connected viaby a path that lies completely iR(s).

Lemma 6 Bisectorf(s,t) is connected and homeomorphic to a circle.

Proof: Consider the closest-site Voronoi diagran{sft}. The closures oR(s) andR (t)

in this Voronoi diagram cover the whole surface of the polyhedron, and, by the previous
lemma, bothR (s) andR(t) are connected. Sindeis homeomorphic to a spheifgs,t),

which is the boundary betweé(s) andR(t), must be connected and homeomorphic to
acircle.

Lemma 7 For any three distinct sites§ and u, bisector§(s,t), and3(s,u) intersect at
most twice.

Proof:

Consider the closest-site Voronoi diagram{sft,u}. At an intersectiory of (s,t) and
B(s,u), we have that ¢k,s) = d(x,t) = d(x,u). Thereforey also lies on the third bisector
B(t,u), andy is a vertex of the Voronoi diagram d&,t, u}, incident toR(s), R(t) and
R(u).
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Now suppose that the bisectdés,t) andp(s,u) (and consequentl@(t,u)) intersect at

least three times. Let these intersectiongbex2, andys. Look at thee-neighborhoods

of the three intersections. We can choesamall enough to assert that nonespf or u

lies in anye-neighborhood. Each of the intersections is inciderfe{s), R(t) andR(u),

and, by Lemma 5, these regions are connected. Therefore, there is a shortest path from
to each ofg1, X2, andys, and the interior of each of those shortest paths lies completely in
R(s). The same holds farandu. But no two of the nine shortest paths may cross, which

is impossible, since K33 is not realizable as a planar graph (see Figure 5.3). Hence, it
follows that bisector§(s,t), B(s,u) intersect at most twice.

Figure 5.3: Shortest paths from s, t, and U to X1, X2, and X3.

Any family of simple closed curves (in this case, on a topological sphere) of which every
pair crosses at most twice is calledaanily of pseudocirclesThus for every fixeds € S,

the bisectordB(s,t) : t # s} form a set of pseudocircles. Every pseudocircle in such a
set partitions the surface of the polyhedron into two connected two-dimensional regions,
or pseudodisks. We call the region that contairtle interior (with respect tos) of a
pseudocircle; the region not containiags called theexterior.

Lemma 8 LetB be a set of pseudocircles on the surface of a simple polyhedron P. If the
common interior of the pseudocircles/this non-empty, then the common exterior of the
pseudocircles irB is connected.

Proof: Suppose for the sake of contradiction that the common interior of the pseudocir-
cles inB is non-empty, and that the common exterior of the pseudocirclésisinot
connected. LeB’ C B be a minimal subset of pseudocircles such that the common exte-
rior of the pseudocircles i8’ consists of at least two connected regi&®isR,. Observe
thatR; must be incident to all pseudocircles/#. Otherwise, the removal of a pseudo-
circle not incident td?; would leaveR; unchanged and can only enlafgg but it cannot

join the two regions, and this contradicts the minimality®f Analogously,R, must be
incident to all pseudocircles if’. Also observe that all pseudocircles/ must inter-

sect: a pseudocircle that lies completely in the interior of another one is not incidgnt to
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andRy, and can be removed without affecting the two regions. Again, this contradicts the
minimality of 5'.

Let p; andpy be two arbitrary points in the interiors 8 andRy, respectively. The fact

that p; andp; lie in different components of the common exterior of the pseudocircles in
B’ means that there exists a closed path in the union of the interiors of the pseudocircles
in B’ that separatep; and p,. Indeed, the situation must be as depicted in Figure 5.4:
each pseudocircle can intersect at most two other pseudocircles. Otherwise, if the inci-
dence graph of the pseudocircles would contain a chord, we could drop at least one of
the pseudocircles and still find a closed path in the union of the interiors of the remain-
ing pseudocircles that separatgsand p;. On the other hand, the incidence graph of
the pseudocircles 8’ must be a complete graph, since their common intersection is
non-empty and no pseudocirclefifi lies in in the interior of another one.

Figure 5.4: Pseudocircles separating p1 from po.

It follows that the number of pseudocirclesf# is at most three, and inspection of all
topologically different arrangements of at most three pseudocircles shows that it is not
possible for the pseudocircles to attain a common exterior of two or more connected
regions if their common interior is non-empty.

Lemma 9 Bisectorf(s,t) consists of @n?) straight-line segments and hyperbolic arcs.

Proof: The claim follows directly from the fact that the Voronoi diagranmosites on a
polyhedron withn faces withm < n has complexityd(n?) in the worst case; see the paper
by Mount [78].

Since the edges of the closest- and furthest-site Voronoi diagram lie on the bisectors of
two sites inS, each edge also consists ©fn?) line segments and hyperbolic arcs. To
simplify our exposition, the intersections between two adjacent segments or arcs on the
edges are referred to aseakpoints as opposed to theerticesof the diagram that we
defined before. We consider the point where a bisector crosses an efdgésofto be a
breakpoint.
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Lemma 10 The furthest-site Voronoi diagram F\(B) of a set S of m sites on a polyhe-
dron has @m) cells, vertices, and edges.

Proof: Let Rt be the region of points that are further away frethan fromt, for s;t €

S In this notatiorR(s) = (estsRs=t- From Lemma 7 it follows that this intersection

is the common exterior of set of pseudo-disks that all corgaitom Lemma 8 it follows

that this common exterior is connected. So we have at most one cell (region) for each
site inS, and each vertex of the diagram has degree at least three. By Euler’s relation for
planar graphs, the number of vertices and edges of (SY[3 alsoO(m). Hl

We define theotal complexityof FVD(S) to be the sum of the number of vertices and
breakpoints in FVDS).

Lemma 11 The maximum total complexity of FV§) is ©(mr?).

Proof: Each edge of FVIE) is part of some bisectdi(s,t) for two sitess,t € S. Conse-
quently, the upper bound follows from Lemmas 10 and 9.

As for the lower bound, we describe a construction that shows that EMDr a setS of

m point sites on a non-convex polyhedrBrwith O(n) edges can have total complexity
Q(mr?). The construction will focus on proving & (mn)-bound for a single edge &.

It is described for point sites in the plane with obstacles. This can then be “lifted” to a
non-convex polyhedron.

First we will describe the location of the sites, then the obstacles. Assun|8tisagven;
we splitSinto S andS, with k= m/2 points each. Figure 5.5 shows the configuration of
the sitesS; = {s1,...,} (in the figure k = 5). For ease of description, we also specify
two additional pointssy andsy1; these arenot sites. The sites;,...,s € § and the
pointssy ands, 1 are placed equally spaced on the lower semi-circle of a ditcld-or
1<i<k+1, leth_1 be the point where the bisectB(s_1,5) meets the upper semi-
circle of C1. Note that any point on the arc of the upper semi-citildetweeny;_1 and

b; is further away frong than from any other site if;. Lety; denote the cone originating
at sites that is bounded by the rays @y bi_1) and rays,bi). The portion of the cone
yi that lies outside’; is further away fronms than from any other site i6;. Figure 5.5
only shows the conep, y3 andy;.

Let ¢ be a horizontal line lying some distance above the cifgleThe second set of sites
S ={s,,...,5} is obtained by reflecting the st through?. That is,§ is such that is
the bisector of ands. The points in$; lie on a circleC; which is the reflection of’.
The coney is defined analogously and is the reflectioryofLet ¢ be the intersection of
coney; and/. Note that/; is also the intersection gf and/.

We have specified the point sites. Now we will specify the location of the obstacles. The
important fact is that the conegs ... ,yx have a common intersection around the center
of circle C1. LetCz be a small circle lying within this common intersection, and let the
segmenib be the horizontal diameter 6b. Figure 5.5 (detail) shows the cirale and
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Co

Figure 5.5: The configuration of S; and the obstacles in C> (detail).

the segmenab. Let 2/ be the reflection ofb through/. Our obstacle set will be the
segmentsab anda’/ minus a number of narrow holes (through which a path can pass).
The segmen&b has an evenly spaced dat ... , h, of narrow holes. The segmeatt’

also has an evenly spaced bgt. .. , hy, of narrow holes; the only difference is that these
holes are slightly shifted to the left.

We specified all the points and obstacles. Now, we will argue that the Isymtersected
by k = m/2 edges of FVIDS), each of which crossesQ(n) times. Let us focus on the
portion¢; of the line/. Since any point irf; is further away frons (resp.s) than from
any other site ir§; (resp.S), s ands are the only relevant sites for F(B) near(;. We
will now argue tha3(s,s/) crossed Q(n) times. For 1< j <n, let p; j (resp. pi ;) be
the point of intersection of the line through(resp.s) andh; (resp.h}) and the line’.
Because of the horizontal shift of the holesafy’, the points occur interleaved dnas
the sequence, 1, pi1. B 5, Pi2,---, P, Pin. This is illustrated in Figure 5.6 fof,. For
1< j <n, sinces can “'see”pi,j whereass cannot, there is a neighborhood aroymg
that is closer t than tos. By symmetric reasoning, there is a neighborhood arq1§|’rj]d
that is closer tag than tos. It follows that the bisectof(s,s) must crosd; between
pi’ﬁj andp; j, and also betweep; ; and p{’jH. Thus,B(s,s) crossed; Q(n) times, as
illustrated in Figure 5.6.

One get(kn) = Q(mn) crossings for line, since one get®(n) crossing for eaclt.
The pattern can be repeatedmhines parallel to and sufficiently close té. This gives
Q(mn) crossings for each of thelines. The sites and the obstacles can be perturbed to
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P21 P52 P23 P24 P25 B(s2, SIZ)K
2

Figure 5.6: Detail of B(s,S,).

a general position without affecting the lower bound complexity. By treating the lines as
edges on a polyhedron, and ‘raising vertical cylinders’ with the obstacles as bases, we can
get theQ(mr?) bound for the total complexity of FV[$) on a polyhedron. Hl

The facility center ofScan be found by traversing the edges of R@D and determining

for each elementary arc or line segment of each edge the maximum distance to the two
sites of the regions on both sides of the edge. These distances can be comg@(ted in
time, and the maximum of all these distances determines the location of the facility center.
Since FVD(S) has maximum total complexi®(mr?), we obtain the following.

Corollary 4 Given FVI(S), the facility center of S can be computed itn@?) time.

5.4 Computing the furthest-site Voronoi diagram

In this section, we describe our algorithm for computing the furthest-site Voronoi diagram
of the given sefof msites on the surface of polyhedrBnconsisting oh triangles. Our
algorithm uses ideas from the algorithm of Ramos [87] for computing the intersection of
unit spheres in three dimensions. We first give an outline of the algorithm, and get into
the details in the subsequent subsections.

The algorithm for computing FV5) works as follows:
e If |§ =1, then FVOOS) is the whole surface of the polyhedron|¥ = 2, compute

the closest-site Voronoi diagram (which is equivalent to the furthest-site Voronoi
diagram) with the algorithm of Mount [78] i®(n?logn) time.

e Otherwise, if|§ > 3, subdivideSinto two subset® (thered sites) andB (theblue
sites) of about equal size, i.¢R| = ||9/2], and|B| = [|S/2].

e Recursively compute FVR) and FVD(B).
e Merge FVOR) and FVD(B) into FVD(RUB) = FVD(S) as follows:

— Determine the set of sitd®y C R that have a non-empty region in FVB),
i.e., FVD(R) = FVD(Ry). Observe that the remaining sitesR\ Ry don't
influence the final diagram. Similarly, compug C B.
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— Determine arow-degree independent sef R Ry, which is a subset with the
property that the region of a site= Rj has at most 9 neighbors in F\(Ry),
and no two sites, s’ € R are neighbors in FV[Ry). (Two sites are said to
be neighborsif their regions share an edge of the diagram.) Comte-
Ro \ Ry and FVO(Ry), and repeat this step to generate a Dobkin-Kirkpatrick
hierarchy [37]Ry D Ry O ... D R¢ and their furthest-site Voronoi diagrams,
such thatR¢ has only a constant number of sites. Do the same for the blue
sites to achiev®p D By O ... D By and their furthest-site Voronoi diagrams.
See Section 5.4.2 for detalils.

— Compute FVDR UBy) for 0 <i <k, exploiting the fact thaB, has only a
constant number of sites. Similarly, compute R\RRU B;) for 0 < j < 1.
This is thebasic merge steSee Section 5.4.3 for details.

— Compute FVOIR UB;) from FVD(R UBj;1) and FVOR 1 UB;j). This is
thegeneric merge stepvhich when repeated gives F{YRyUBp) = FVD(S).
See Section 5.4.4 for details.

During the construction of FV[5), we create standard and furthest-site Voronoi diagrams

of subsets oS as intermediate structures. We maintain R@Dand these intermediate
structures as doubly connected edge lists (see Section 1.3.1), to be able to efficiently de-
termine and preserve topological relations between Voronoi regions, edges, and vertices.

5.4.1 Edge tracing

Several stages of the algorithm for constructing K8Dinvolve the computation of new
Voronoi cells of FVOS)) for S C S, or the modification of existing Voronoi cells. A basic
step is the generation of Voronoi edges or parts of Voronoi edges. Recall that the edges
of FVD(S) lie on the bisectors of sites i, and consist 00(n?) hyperbolic arcs and/or
straight line segments. To generate an eelfet is incident to the regions &f,s; € S,

we need to know a starting point of the edge (i.e., the location of one of the vertices of
FVD(S) incident toe), and an endpoint (i.e., the location of the other vertex incident to
€). We calculate the bisect@i(s, s;) in O(n?logn) time using the algorithm of Mitchell
etal. [77]. We store it as a doubly linked list of hyperbolic arcs and straight line segments,
such that we can traverse it in two directions. Next, we travB(ses;), until we reach

the starting point oé. From that point on, we output the hyperbolic arcs and straight line
segments of whicle consists, until we reach the endpointefTraversingB(s,s;j) takes
O(n?) time, and testing whether we have reached the starting point or the endpeint of
can be done if0(1) time for each elementary hyperbolic arc or straight line segment.
Hence, the total time needed to generate an edge of(BY» O(n?logn). The amount

of memory needed is bound by the size of the shortest path magpsantls;, and of
B(s,sj), which isO(n?). These results are summarized in the following lemma:

Lemma 12 Given a set of sites S on a polyhedron P with n triangles and the two vertices
incident to an edge e of FI) for S C S, e itself can be computed ini@logn) time
using Qn?) memory.
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Suppose that we have generated all the edges of the regigred®, including e, the
common edge of the regions gfands;j. Later on in the algorithm, we may have to
generate the edges of the regionspfincludinge. This poses two problems. First, it
means that we have to compute the bisectay ahds; again. However, since each edge

is incident to two regions, this doesn't influence the asymptotic running time and memory
requirements of the algorithm. A more serious problem isemaiuld be generated twice.

We avoid that by calculating the bisector of two sigesinds; only once, and storing a
pointer to it in a two-level binary search tree; the first level is a binary search tree on the
smallest index of the two sites that constitute the bisector, and the second level is a binary
search tree on the largest index of the two sites. Now, if we have to generate a@ edge
that lies on the bisector af ands;, with i < j, we first search for in the highest level

of the search tree; if there is an entry forwe search forj in the next level. If there

is an entry forj in the second level, this gives us a pointefi{s;, s;). If we don’t find

the bisector, we calculate it as described above, and insert a pointer to it in the search
structure. The total size of the search structure is linear in the number of bisectors that we
compute; we will show this to b®(mlogm). Hence, querying the search structure and
inserting new pointers can be donedflogm) time per operation. Since we assume that

m < n, generating an edge still tak€n?logn) time usingO(n?) memory, regardless of
whether we have to calculate its supporting bisector, or simply look it up in the search
structure.

Keeping the bisectors serves a second purpose: when we output a hyperbolic arc or
straight line segment during the edge generation, we set pointers from the arc or seg-
ment on the edge to the corresponding arc or segment on the bisector, and vice versa.
This means that we can access the neighbors of a region if®YmD O(1) time via

the supporting bisectors of their common edges, which facilitates maintaining the proper

topological relations between regions during the construction of the Voronoi diagrams.

In some cases we need a variation on the edge tracing procedure. As before, we compute
a bisector of two sites or look it up, traverse it until we find the starting point of the edge
that is to be generated, and output hyperbolic arcs and straight line segments from that
moment on. The difference is that we don’t have a single endpoint at which we stop the
tracing, but a constant number of candidate endpoints, and we stop when we have reached
the first of these. Testing whether we have reached any of the candidate endpoints takes
O(1) time per hyperbolic arc or straight line segment, and this edge tracing variation also
requiresO(n?logn) time andO(n?) memory per Voronoi edge.

5.4.2 Constructing the hierarchy for  Rgp and Bp.

We describe how to compute the hierardRy > Ry O ... D R and their furthest-site
Voronoi diagrams; foBy, this is done analogously. The computation is similar to the
Dobkin-Kirkpatrick hierarchy construction [37].

Let Go be the dual graph of FV[Ry), i.e.,Go = (Ro, Eo), with (s, ) € Egfor s,sj € Ro
if the regions of ands; share an edge in FV([Ry). Note that FV}Ry) andGy are planar
graphs. Anindependent setf vertices in a grapls = (V,E) is a setv’ C V such that
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there is no edgévi,v;) in E for anyv;,vj € V'. Snoeyink en van Kreveld [106] showed
that for any planar grap = (V, E) with n vertices, an independent &€t of vertices of
degree at most 9 witfv’| > |V|/6 can be found irO(n) time. We apply this td5g to
find an independent s&, C R in O(|Ry|) time. A sites € R; has at most 9 neighbors in
FVD(Ry), no two sitess, s’ € R are neighbors in FV[Ry), and|R;| > |Rol/6.

To compute FVDR;) = FVD(Ro \ R;), we remove the sites iR}, one at a time fronRy

and update the diagram after the removal of each sitesge¢ such a site iR, and let

p be a point that lies in the region in F\(Bp) of s9. After updating the diagranp must

lie in the region of a site’ that is a neighbor ofy in FVD(Rp). So the region of is
divided among its neighbors, of which there are only a constant number, and all diagram
edges in that region lie on the bisectors of those neighbors (see Figure 5.7).

1) ) ®3)

.’\_/

Figure 5.7: Removing a site Sy, and dividing its region among its neighbors.

Letvy,..., Vi be the at most 9 vertices of the regiorsgfn clockwise order. Leg, ... &
be the edges dR(s0), with g incident tov; andvi;1 for 1 <i < k, and withey incident to
vk andvs. Finally, lets be the neighbor afy whose region is incident tq for 1 <i <k.
See Figure 5.8.

We will describe how to reconstru®(s;) after the removal ofy; for R(sp),...,R()
this is similar. Edges; is no longer an edge d%(s;), and it is removed. Verticeg and
v, are also removed; the edges®is:) incident to these verticeg/( ande,) have to be
extended into the region &h. Recall thate] lies on the bisectof(s,s«) of 51 ands,
ande, lies onP(st,s2). We extendg] by tracing(si, ) as described in Section 5.4.1,
starting at the location of;. At some pointp on the bisector, the distance betwgen
ands; and the distance betwegnands, equals the distance betweprand some other
neighbors of 5. At this point p we reach a new vertex 62(s;). Note that this vertex
is also a vertex of the standard Voronoi diagransgfsc ands. We have finished the
reconstruction o] at this point, record the new vertex &(s;), and proceed with the
next edge ofR(s;) by tracingB(sy,s). This is repeated until we finally tra@s;,s;) and
end up at the location ak, which concludes the reconstruction®fs; ).

To determine whether we have reached a vertex during the edge tracing, we precompute
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Figure 5.8: The reconstruction of R(s) after the removal of Sp.

all the pointsp that are equidistant to three neighborsgfFor a fixed triple of neighbors

of 5, these pointp are theO(1) vertices of the standard Voronoi diagram of the triple,
which can be computed i®(n?logn) time again with the techniques from Mitchell et

al. [77] and Mount [78]. Computing the Voronoi diagrams for all triples of the at most

9 neighbors ofsy takes asymptotically the same amount of time. We trace a constant
number of edges, and for each hyperbolic arc or straight edge on these edges we determine
in constant time (by testing th@(1) precomputed vertices of the Voronoi diagrams of
triples of neighbors o) whether we have reached the endpoint of the edge that we are
generating. It follows that the removal of a single site and the reconstruction involved
takesO(n?logn) time.

Atfter all the sites inR;, have been removed froR, and FV(R;) has been constructed,
we recursively repeat the procedure of removing an independent set of sites to create
FVD(Ry),...,FVD(Ry). The total number of diagrams we construct this wa@(®gm).

Sincez!‘:0|Ri| is a geometric series, the total time for computing all independent sets is
O(m). The the reconstruction of the diagram after the removal of a single site from takes
O(nlogn) time, and the total number of sites removed is less thatt follows that the
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construction of the the hierarciy D Ry O ... D R¢ and their furthest-site Voronoi dia-
grams take©(mr?logn) time in total. By Lemma 11, the size of F\B;) = O(|R |?).
Therefore, the total size of all bisectors and diagrams construc@(his’).

5.4.3 The basic merge step

In the basic merge step, we compute RRDUB)) for 0 <i <k, and FVOXR(UB;) for

0 < j <I. We will exploit the fact thaB, andRy contain only a constant number of sites.
We will only describe the computation of F(R, UB)) for a fixedi; all other diagrams
are computed similarly.

e For each site € R andb € Bj, we compute the region afin FVD({r,b}). To
do this, we compute thelosest-sitévoronoi diagram for sites andb using the
O(n?logn) algorithm of Mitchell et al. [77, 78]. The region ofin FVD({r,b}) is
clearly the region ob in the closest-site diagram. The total time for all paiend
bis O(|R|n’logn), since there are oniQ(|R|) pairs.

o Next, we compute the region of each site R, in FVD({r} UB;) by successively
intersecting the regions ofin FVD({r,b}) over allb € B with a line-sweep. We
do this separately for each triangle®fthat is intersected by an edge of either of
the two regions that are to be intersected. The total number of intersection compu-
tations for a single site € R; is |B|| — 1, which is bounded by a constant. Since
B, has only a constant number of siteshas a constant number of neighbors in
FVD({r} UB’) for any B’ C B, and the complexity of the region ofin any of
these diagrams i®(n?). This means that the intersections can be computed in
O(n?logn) time for a single red site € R.. The time taken for all the sites R is
O(|R|n?logn).

e Next, we compute the region of each site R in FVD(R UB;) by intersecting its
regions in FVO{r} UB,) and FVOR;) with a line-sweep in a similar way as in the
previous step. Since the complexity of the region of FVD (R UB) ) is O(n?) and
the complexity of the region afin FVD(R)) is O(N; - n?), whereN; is the number
of neighbors ofr in FVD(R)), the time needed to compute the region of a single
siter in FVD(R UB) is O(nzlogn- N, logN;). Summing this over all € R; gives

O(n’logn S N;logN)

rerj

We have thatNr <mfor allr € R, andy,cg Nr = |IR|. The time needed to
compute the region of each sitec R, in FVD(R UB)) is therefore bounded by
O(|Ri|n?logmlogn).

e To complete the computation of F\B; UB), it remains to compute the regions
of the blue sites. We have computed the regions of all red sites, and carefully
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maintained topological relations between each region of a red site and its neighbors.
Using the topological information, we do a depth-first traversal of the regions in
FVD(R UB) (that is partially constructed), starting in the region of a red site.
When a region of a blue site is visited for the first time, it has to be constructed.
At least one of its edges has already been computed, namely, the edge incident
to its predecessor in the traversal. Zero or more of the other edges of the region
are incident to red regions; these have also been computed already. We still have
to trace these edges, namely to find the starting points for the edges that have not
been computed yet. These dkeie edgesthe edges between two blue regions.

All blue edges are sub-edges of the edges of FB(R of which there are only a
constant number. The endpoints of these edges are either vertices ¢BFVar

they are vertices of a red region. The latter vertices can be determi@¢Rin?)

time by traversing the edges of all regions of red sites, and reporting the vertices
that are incident to blue edges. The total number of endpoints of blue edges is
bounded byO(|Bj|), which is a constant, so we can exploit the techniques described
in Section 5.4.1 to trace the blue edge©ifn?logn) time per edge. The total time

for computing the regions of the blue site<J§Ri|n?logn).

Putting everything together, computing F#® U B;) takesO(|Ri|n?logmlogn) time,

and computing FVDR, U B;) takesO(|B;j|n?logmlogn) time. Since bothz}‘:0|Ri| and

5o |Bj| are bounded by(m), the time needed for computing all the diagrams in the
basic merge step ®(mr?logmlogn). The amount of memory needed in the basic merge
step is linear in the complexity of all bisectors and diagrams that we computed, which is

o(mr?).

5.4.4 The generic merge step

The generic merge step is the computation of KR B;) from FVD(R UBj;1) and
FVD(R 11 UB;j), which eventually gives the required FVRyU Bp) = FVD(S). First

some terminology: we call the sitesR, 1 theold red sites, and the sitesi®\ R;1 the
newred sites. Similarly, the sites Bj 1 are theold blue sites, and the sites By \ Bj1

are thenewblue sites. Now consider any verteof FVD(R UBj). The important fact

is that not all three Voronoi regions incident to that vertex correspond to new sites; there
must be at least one old red or blue site whose face is incidenthecause new red
(blue) regions form an independent set in R (resp. FVOB;)). So to determine all

the vertices of FVIDR UB;), it suffices to compute the regions in FVRUB;) of all old

red and blue sites.

Consider an old red site The region of in FVD(R UBj1) contains all points that are
further fromr than from any other site iR UBj 1, and the region af in FVD(R;1 UB;)
contains all points that are further fromthan from any other site iR 1 UBj. The
region ofr in FVD(R UB;) is therefore the intersection of its regions in F\RPUB; ;1)

and FVOR ;1 UBj). We can compute this intersection for each face of the polyhedron
separately by a line-sweep of the regiong @i FVD(R UBj+1) and FVO(R 11 U Bj).

The time needed for computing the vertices of R¥RDU B;) is therefore bounded by
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O(ClogC), whereC = max(n?|R UBj1/,n?|R+1 UBj|,n?|R UB;|), which in turn is at
mostn?(|R| + |Bj|). Hence, computing the vertices of FYR U B;j) takesO(n?(|Ri| +

IBj|) log(n?(|Ri| +|Bj|))) = O(n*(|R | +|Bj|) logn) (recall thatm < n).

The edges of FVLR UB;) are either edges incident to the faces of old red or blue sites
(which we already computed), or edges between the faces of two new sites of the same
color (these edges are sub-edges of edges in(RJDor FVD(B;), and can easily be
traced), or they are edges between the faces of a new red and a new blue site. For the
latter category of edges we already have the incident vertices computed, and we can
trace the edges after computing the bisector of the new red and new blue site. The to-
tal number of bisectors we have to compute and trace is boundéig byB;|, so this
takesO(n?logn(|R/| +|Bj|)) time. We conclude that computing FYR U B;) from
FVD(R UBj;1) and FVOR;;1 UB;j) takesO(n?logn)(|R |+ [B;|)) time.

Summing this over all & i <k, 0< j < gives time

ko1
O(n’logn (IR[+1Bj]))
2,2, (RI* 18
We have

k |1 k
> 3 [8il =03 8ol) = OlkiBol) = O(miogm)
i=0]=

and similarlys¥ o 5\ _o(|R|) = O(mlogm). It follows that the total time spent in all the
iterations of the generic merge stegdémr? logmlogn).

5.4.5 Total running time and memory requirements

The time for merging FVIDR) and FVO(B) into FVD(RUB) is dominated by the generic
merge step, which required(mr?logmlogn) time; the total running time satisfies the
recurrence

T = O(1)

T(2) = O(n’logn)
T(m) = T(|m/2])+T([m/2])+O(mrflogmlogn)

which solves tarl (m) = O(mr?log? mlogn).

The memory requirements of the algorithm are linear in the size of all diagrams that are
constructed in the process, whichOgmr?logm).

Theorem 8 The complexity of the furthest-site Voronoi diagram of m sites on the surface
of a polyhedron with n triangles has complex@mr?). The diagram can be computed
in O(mrélog? mlogn) time, using @mrélogm) memory.
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5.5 Conclusions and further research

We have shown that the furthest-site Voronoi diagram of &sétn sites on the surface of
a polyhedrorP with n triangles has complexit®(mr?), and we have given an algorithm
for computing the diagram i@(mnzlogzmlogn) time. Once the diagram has been com-
puted, the facility center, which is the point &that minimizes the maximum distance
to a site inS, can be found iO(mr?) time by traversing the edges of the diagram.

The merge step in our divide-and-conquer approach for the computation of3y\VD

quite complicated, and it would be pleasant to find a simpler method. Merging the recur-
sively computed diagrams by sweeping seems natural, but the number of intersections of
edges of both diagrams can be superlineamjinwhile only a linear number of them can

end up as a vertex of the resulting diagram.

It would be a challenge to find an output-sensitive algorithm, i.e., an algorithm that takes
time proportional to the number edges/vertices in the diagram plus the number of their
intersections with the edges Bf Even more ambitious would be the computation of the
diagram without explicitly representing all intersections of furthest-site Voronoi edges
and edges of the polyhedron.

Another interesting issue is approximation: findgimre) time) a point with the property
that the distance to the furthest site is at mdst-€) times the radius of the smallest
enclosing circle.

Finally, it is worth investigating whether the facility location problem can be solved with-
out constructing the furthest-site Voronoi diagram. Recall that the facility location prob-
lem in the plane can be solved using techniques related to fixed-dimensional linear pro-
gramming [74, 125].
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EenGeografisch Informatiesysteewf GIS, is een systeem van hard- en software voor

het opslaan, verwerken en analyseren van ruimtelijke gegevens. De hoeveelheid opge-
slagen informatie is dikwijls groot, en de aard van de informatie zeer divers. Een GIS
wordt onder andere gebruikt door de overheid, bijvoorbeeld voor het plannen van nieuwe
infrastructuur zoals de Betuwelijn. Om het meest gunstige traject te bepalen moet er in-
formatie voorhanden zijn over de verschillende bodemsoorten in het gebied waarbinnen
het traject moet komen te liggen; verschillende bodemsoorten brengen verschillende aan-
legkosten met zich mee. Ook zal er bij de planning rekening gehouden moeten worden
met geluidsoverlast in bewoonde gebieden, met schade aan de natuur, met de kosten van
schadeloosstelling bij onteigening van grond en onroerende goederen, en met vele andere
criteria. Waar het handmatig doorrekenen van alle alternatieven een ondoenlijke zaak is,
kan men met behulp van een GIS relatief eenvoudig cijfermateriaal, kaartjes en tabellen
genereren die de kosten en gevolgen van de alternatieven overzichtelijk maken. Andere
gebieden waarin een GIS wordt toegepast zijn bijvoorbeeld geologie, meteorologie en
cartografie.

Veel basisvraagstukken die een GIS moet oplossen zijn meetkundig van aard, zoals het
rekenen aan afstanden. Het alledaagse afstandsbegrip “de kortste weg tussen twee punten
is een recht lijnstuk” is niet in alle situaties bruikbaar. Bij routeplanning over het we-
gennetwerk is er zelden tot nooit een rechtlijnige verbinding tussen het vertrekpunt en de
bestemming, maar moeten er verschillende mogelijke routes worden doorgerekend. Com-
puters zijn daar goed in, getuige de vele routeplannings-programma’s die voor personal
computers verkrijgbaar zijn. Wanneer we de wegen mogen verlaten en ons ook door wei-
land, bos of zandvlakten gaan verplaatsen wordt het berekenen van de kortste weg van
naarB (waarbij afstand wordt uitgedrukt in de tijd die het kost om YamaarB te komen)

ineens een stuk lastiger. Terwijl we op een kruising van wegen slechts een handvol keu-
zen hebben, is er op de grens van twee bodemsoorten van verschillende begaanbaarheid
een oneindig aantal richtingen waarin we verder kunnen trekken. Ook in bergachtig ge-
bied is het rekenen aan afstanden vaak lastig, zelfs wanneer we de zaak vereenvoudigen
door te stellen dat we ons overal met dezelfde snelheid kunnen voortbewegen, ongeacht
bodemsoort of de helling van het terrein. Wanneer we dergelijke vereenvoudigende aan-
namen maken in vlak terrein komen we weer uit bij het rechte lijnstuk als kortste weg
tussen begin- en eindpunt. In de bergen echter hebben we onder andere de keuze om over
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de berg te gaan, of eromheen, zowel linksom als rechtsom. Afhankelijk van het aantal
pieken en dalen in het gebied kan het aantal mogelijke routes fors toenemen.

Binnen het onderzoeksgebied van@eometrische Algoritmemoudt men zich bezig met

onder andere dit soort vraagstukken. In plaats van oplossingen te forceren door middel
van brute kracht (lees: grote, snelle computers), probeert men slimme rekenmethoden
(algoritmen) te ontwerpen. Zo is het vaak mogelijk om, in plaats van alle mogelijke op-
lossingen na te gaan, al vroegtijdig een ruwe selectie te maken tussen kansloze en kans-
hebbende oplossingen. Door de selectie telkens te verfijnen en alleen verder te rekenen
met de kanshebbende oplossingen, komt men uiteindelijk uit bij “het goede antwoord”.
Het gebied van de Geometrische Algoritmen heeft vele praktische toepassingen, onder
andere in de Robotica, Computer Graphics, CAD/CAM, en GIS.

Dit proefschrift is een bundeling van een viertal artikelen, in elk waarvan een specifiek
GIS-vraagstuk wordt opgelost met behulp van bestaande en nieuwe technieken uit de
Geometrische Algoritmen.

Het eerste hoofdstuk is een inleiding op de vier artikelen, en voorziet de lezer van de
achtergrondinformatie, globale kennis en literatuurverwijzingingen die nodig zijn om de
vier volgende hoofdstukken te kunnen waarderen.

Het tweede hoofdstuk geeft een nieuwe methode om een zogenaalndigisieaf te

lopen. Men kan hierbij bijvoorbeeld denken aan bepaalde typen landkaarten, waarbij
een gebied is onderverdeeld in vlakjes, en waarbij bij ieder vlakje extra informatie is
opgeslagen, bijvoorbeeld het aantal olifanten per vierkante kilometer. Een GIS kan ver-
schillende bewerkingen op een dergelijke kaart uitvoeren, zoals het afbeelden van (een
gedeelte van) de kaart, of het berekenen van het totale aantal olifanten in een gedeelte
van het beschreven gebied. Bij dergelijke bewerkingen moeten de vlakjes van de kaart
afgelopen worden, om (bij het laatste voorbeeld) de gegevens over de olifantenpopulatie
te verzamelen. Daarbij is het van belang dat elk relevant vlakje préeresaal wordt
behandeld; het overslaan of het meerdere malen behandelen van vlakjes zou resulteren
in foute uitkomsten. Een veelgebruikte oplossing hiervoor is om expliciet bij te houden
welke vlakjes al behandeld zijn. Dit heeft echter het nadeel dat het computergeheugen
kost en, afhankelijk van de methode van bijhouden, verhindert dat meerdere gebruikers
gelijktijdig met dezelfde gegevens kunnen werken. De methode die we in hoofdstuk twee
presenteren heeft die nadelen niet. Hoewel we niet expliciet bijhouden welke vlakjes
al behandeld zijn, kunnen we toch garanderen dat onder alle omstandigheden elk vlakje
preciesténmaal behandeld wordt.

Het derde hoofdstuk is gericht op het effint visualiseren van twee- en drie-dimensionale
gegevens met behulp van zogenaaisdecontourenin het twee-dimensionale geval kan

men denken aan de welbekende contourlijnen op landkaarten, die naburige locaties van
gelijke hoogte met elkaar verbinden. Dicht op elkaar liggende contourlijnen geven een
steile helling aan, terwijl in relatief vlak gebied de contourlijnen ver uit elkaar liggen.
Voor het drie-dimensionale geval kan men denken aan medische beelden verkregen uit
CT-scans. De iso-contouren zijn hier aaneengesloten twee-dimensionale oppervlakten in
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een drie-dimensionale ruimte. Om de iso-contouren van een bepaalde waarde (hoogte-
waarde, of een waarde die een bepaald type weefsel aangeeft) af te beelden, zou men het
hele twee- of drie-dimensionale plaatje kunnen aflopen, om alleen die locaties te rappor-
teren die de gevraagde waarde hebben. Dat is echter nieéefficimdat de gezochte
iso-contouren doorgaans slechts een klein deel van het plaatje omvattenenkdfics

het om beginpunten van alle mogelijke iso-contouren op te slaan, in die verzameling be-
ginpunten te zoeken naar de gevraagde waarden, en dan de contouren in het plaatje af te
lopen. Die beginpunten wordeseedggenoemd. In een ideale situatie is het aantal seeds

zo klein mogelijk, maar wel zodanig dat alle mogelijke contouren gevonden kunnen wor-
den. In dit hoofdstuk geven we een nieuwe methode voor het bepalen van een zo klein
mogelijke verzameling seeds; de structuur die we hiervoor gebruikendsrdeur tree

en de methode voor het bouwen van deze structuur is eveneens nieuw. De looptijd van de
methode voor het bepalen van de kleinste verzameling seeds is echter in de praktijk niet
efficient genoeg. Daarom geven we daarnaast een tweedesrmfie@ methode, waarbij

de opgeleverde verzameling seeds niet de kleinst mogelijke is, maar wel klein genoeg.
Deze tweede methode maakt eveneens gebruik van de contour-tree.

Het vierde hoofdstuk houdt zich bezig met het afbeelden van steden op kaarten (al dan
niet op een computerscherm). Het aantal steden dat kan worden afgebeeld is onder meer
afhankelijk van de gekozen schaal van de kaart. Het afbeelden van alle steden die in
de GIS zijn opgeslagen op een kleinschalige kaart leidt doorgaans tot een onoverzichte-
lijke brij van punten. Er zal in dergelijke gevallen een selectie gemaakt moeten worden.
Intuitief zou men misschien denken dat het kiezen van de top-zoveel van grootste steden
een logische en goede keuze is. Dat hoeft echter niet zo te zijn: een grote stad kan bij
een bepaalde schaal te dicht bij een nog grotere stad liggen, terwijl een klein dorpje dat
tamelijk gésoleerd in landelijk gebied ligt wel probleemloos afgebeeld kan worden. Men
zou kunnen zeggen dat het kleine dorgglatief belangrijkis ten opzichte van de grote

stad die niet afgebeeld kan worden. In dit hoofdstuk geven we een viertal nieuwe mo-
dellen om relatieve belangrijkheid uit te drukken, en we vergelijken onze modellen met
drie bestaande modellen. Onze modellen hebben het voordeel dat ze een zogenaamde
ranking van de steden bepalen. Dat heeft als voordeel dat er slechts eenmaal gerekend
hoeft te worden, waarna het afbeelden van de steden eenvoudigweg in volgorde van ran-
king plaatsvindt totdat het gewenste aantal steden is bereikt. Bij de bestaande modellen
moet bij verandering van het gewenste aantal steden telkens opnieuw gerekend worden,
waarbij er bovendien vreemde “sprongen” kunnen optreden. Zo is het bij de bestaande
methoden niet noodzakelijk zo dat een selectie van bijvoorbeeld vijfentwintig steden alle
steden bevat die in een selectie van vierentwintig steden zitten. Het kan bijvoorbeeld ge-
beuren dat er, wanneer we van vierentwintig naar vijfentwintig steden gaan, drie steden
verdwijnen en vier nieuwe steden bijkomen. Bij onze methode treedt dat verschijnsel niet
op, omdat er wordt geselecteerd in volgorde van de (van te voren berekende) ranking.

Het vijfde hoofdstuk is gericht op het vinden van een optimale locatie voor een service-
centrum of dienstverlenende instantie, bijvoorbeeld een voedsel-distributiecentrum. We
gaan er daarbij vanuit dat het aantal “klanten” van het service-centrum (bijvoorbeeld de
supermarkten die bevoorraad worden vanuit het distributiecentrum) vastligt, evenals hun
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locatie, en daéén en ander gesitueerd is in bergachtig gebied. De optimale locatie voor
het service-centrum is in ons model de locatie waarvandaan de maximale afstand tot de
klanten zo klein mogelijk is. Om die locatie te kunnen bepalen maken we gebruik van
een structuur die in de Geometrische Algoritmen al langer bekend is, namelijk het zoge-
naamddurthest-site Voronoi diagranHet nieuwe aan dit hoofdstuk is dat we het eerste
algoritme geven dat deze structuur effiti berekent voor modellen voor bergachtig ge-
bied.
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