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CHAPTER 1

Introduction

A geographic information system (GIS) is a software package for storing geographic data
and performing complex operations on the data. Examples are the reporting of all land
parcels that will be flooded when a certain river rises above some level, or analyzing the
costs, benefits, and risks involved with the development of industrial activities at some
place. A substantial part of all activities performed by a GIS involves computing with
the geometry of the data, such as location, shape, proximity, and spatial distribution. The
amount of data stored in a GIS is usually very large, and it calls for efficient methods to
store, manipulate, analyze, and display such amounts of data. This makes the field of GIS
an interesting source of problems to work on for computational geometers.

In this thesis we give new geometric algorithms to solve four selected GIS problems. This
introduction provides the necessary background, overview, and definitions to appreciate
the following chapters of this thesis.

Section 1.1 introduces the field of geography, the phenomena it studies, the kind of data
that is used to model these phenomena, and the types of maps that are available for dis-
playing the data. Section 1.2 introduces GIS, its functionality, and the data structures used
to deal with geographic data. Readers with a geographic or GIS background may want to
skip or skim the first two sections.

Section 1.3 introduces computational geometry and the basic data structures and tech-
niques from this field that are used extensively in the four following chapters: the doubly-
connected edge list, plane sweep, a number of search structures, and Voronoi diagrams.
This section may be skipped by computational geometers and others familiar with these
structures and techniques.

Section 1.4 introduces the four problems that are studied in Chapters 2–5:

• Subdivision traversal: we give a new method to traverse planar subdivisions with-
out using mark bits or a stack.
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• Contour trees and seed sets: we give a new algorithm for generating acontour tree
for d-dimensional meshes, and use it to determine aseed setof minimum size that
can be used for isosurface generation. This is the first algorithm that guarantees
a seed set of minimum size. Its running time is quadratic in the input size, which
is not fast enough for many practical situations. Therefore, we also give a faster
algorithm that gives small (although not minimal) seed sets.

• Settlement selection: we give a number of new models for thesettlement selection
problem. When settlements, such as cities, have to be displayed on a map, display-
ing all of them may clutter the map, depending on the map scale. Choices have to
be made which settlements are selected, and which ones are omitted. Compared to
existing selection methods, our methods have a number of favorable properties.

• Facility location: we give the first algorithm for computing thefurthest-site Voronoi
diagramon a polyhedral terrain, and show that its running time is near-optimal.
We use the furthest-site Voronoi diagram to solve the facility location problem: the
determination of the point on the terrain that minimizes the maximal distance to a
given set of sites on the terrain.

1.1 Geography: preliminaries

1.1.1 Geography and related disciplines

Geography is the science that describes and analyzes phenomena and processes on the
surface of the earth and the relations between them. We can distinguish between physical
geography and human geography, both of which are broad fields of science that can be
subdivided further into several sub-fields [91].

Physical geography studies the physical state of the earth surface and changes of this state
over time as a result of natural processes, such as formation and deformation of moun-
tains, and changes in the flow of a river. Subfields include geomorphology, hydrology,
and meteorology [109].

Human geography focuses on the spatial aspects of human activities, and the develop-
ment and consequences of these activities in relation to geographic location. A human
geographer may for example investigate why people in a certain region can expect to live
longer than people in some other region. Subfields of human geography include political
geography, economic geography, and urban geography [60, 81].

Cartography is one of the spatial sciences related to geography. It doesn’t deal with de-
scribing and analyzing, but with issues involved in the design and reproduction of maps.
Geographic information can be displayed in many different ways, and decisions have to
be made about what information to display, scale, projection, coordinate system, the use
of colors, and the size and location of text. Other important matters are abstraction, clas-
sification, and generalization [34, 63, 90].
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Geographers and cartographers are not the only professionals dealing with geographic
information. For instance, when a new railroad is planned, decision makers need in-
formation about impact on the existing landscape, the type of soil, and the costs of the
various possible locations. A biologist may be interested in the geographic distribution of
species, or the statistical relations between the presence of a species in certain areas and
the height above sea level of those areas.

1.1.2 Geographic data

Geographic objects can have many properties, but from the geographer’s point of view,
one of these properties plays a special role: the location of the object [55, p. 19 ff.]. Coor-
dinate data is referred to as spatial or geo-referenced data; the other properties of the ob-
ject are non-spatial or attribute data. Locations are usually specified in a two-dimensional
coordinate system [127, p. 182]. In some cases that is not enough; for instance, com-
puter models of the atmosphere as used by meteorologists, contain data about tempera-
ture, air pressure and wind speed at various altitudes, so three-dimensional coordinates
are needed there [88]. The same holds for geological data in different subsurface layers.
The geographic objects themselves, whether specified in two or three dimensions, can be
zero-dimensional (points), one-dimensional (lines and line-segments), two-dimensional
(area), or three-dimensional (volumes; only in the case of a three-dimensional coordinate
system) [67, 90].

Apart from discriminating between spatial and non-spatial data, there is an other impor-
tant classification of the data stored in a GIS or any other information system. We can
distinguish between categorial data, which can be either nominal or ordinal, and continu-
ous data, which can be either ratio or interval [63, 67, 90]. Nominal variables are names
without implicit or explicit order, such as names of countries or kinds of vegetation. Or-
dinal variables are names with an implicit order, such the university ranks of assistant
professor, associate professor, and full professor. Interval variables are also ordered, but
in contrast with ordinal variables, there is a meaning to distances between categories. A
typical example is temperature in◦C. Although it makes sense to talk about the difference
in temperature measured in degrees Celsius, the statement “2◦C is twice as warm as 1◦C”
is meaningless: the degrees Celsius scale does not have a proper zero. Ratio variables are
variables that do have a natural starting point, such as degrees Kelvin, annual rainfall, and
number of elephants per square kilometer.

Geographic data is not static, but may change over time. On some occasions it is not
sufficient to maintain only the most recent data; it may be necessary to record the changes
as well. In agriculture for instance, certain kinds of vegetation can only be grown a limited
number of successive years, to prevent soil exhaustion or the spread of diseases. If a GIS
is used in this kind of situation, then time has to be modeled as well [65, 67, 127].

Two important issues in data quality areaccuracyandprecision[127, p. 148] [67, p. 300].
Accuracy is the degree in which errors are present, while precision or resolution is the
degree of refinement in which a measurement is stated. For example, if the width of a
road is expressed in millimeters, but the value is 20 percent too small, then we have that
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high precision combined with low accuracy. Accuracy may change over time [127, p. 16]:
ten-year old population figures are unlikely to accurately reflect the present situation, but
may have been very accurate when they were acquired.

1.1.3 Geographic maps

Geographic maps are two-dimensional graphic representations of the earth surface, either
on a sheet of paper or on a computer screen. The sizes of geographic objects on a map
are for obvious reasons usually smaller than the sizes in reality; the ratio between these
sizes is called thescaleof the map. Trying to depict every aspect of reality on the map
would render it useless, because it would be unreadable. Instead, most maps arethematic
maps, showing only what is relevant for the intended use of the map. To display the
different kinds of data described in the previous section, the geographer or cartographer
has several types of maps at her disposal [25, 34, 90]: choropleth maps, isoline maps, and
network maps are the most noteworthy types (see Figure 1.1).

Choropleth maps are subdivisions of the displayed part of the earth surface into shaded
or colored regions. Each color or shade represents a value or range of values of the
displayed phenomenon. Higher values are usually darker. Cartograms are a special kind
of choropleth maps, where the regions are deformed such that the ratios of the areas of the
regions conform with the ratios of some numerical aspect of the regions to be displayed.
On a cartogram showing population size for instance, if one region has twice as many
inhabitants as some other, possibly larger region, the regions are deformed such that the
area of the former region is twice the area of the latter region.

Isoline maps are used to display continuous data. Like choropleth maps, they are also
subdivisions of the displayed area into regions, but the emphasis here is on the boundaries
between regions, not on the regions themselves. These boundaries, or isolines, show the
points in the domain that map to a specified set of function values. Examples of isoline
maps are air pressure maps as used in meteorology, and contour maps, showing curves of
equal height in mountainous area.

Network maps, such as railroad maps and maps of piping systems, are in fact graphs
showing geographic objects and the connections between them; the regions in a network
map are meaningless. Precise locations of the objects are not necessarily preserved, al-
though they should globally correspond to the locations of the objects in the real world to
be readable for humans.

1.2 GIS: preliminaries

1.2.1 GIS functionality

The functionality offered by a GIS should at least contain the following elements [55,
107]: data input, preprocessing, data management, basic spatial queries, geographic anal-
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Figure 1.1: A choropleth map (top-left), an isoline map (top-right), and a network map
(bottom).

ysis, and output generation. We will describe these elements briefly in the next para-
graphs, and expand on some selected topics in the next subsection.

Data input There are several ways to acquire data and to put it into a GIS. Most of-
ten, existing data will be used as a source, such as paper maps and public domain or
commercial data files. Paper maps will have to be digitized, and although there are meth-
ods to automate this process, in practice most of the digitizing is done manually [29].
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This is a time-consuming but relatively low-cost process, since the techniques can be
taught to users within hours. Automated digitizing by scanning is only worth considering
for aerial photographs or maps that contain very simple and uncluttered data; otherwise,
the advantages of the automated input will be nullified by the need for clean-up post-
processing [29].

Preprocessing If we want to use data from various sources in a GIS, several prepro-
cessing steps have to be made. Firstly, it is required that all data use the same geographic
reference system, such as latitude-longitude or Universal Transverse Mercator coordi-
nates [90, p. 101 ff.] [107, p. 98 ff]. Secondly, the data has to be converted to a common
raster or vector format [107, p. 77 ff.] (see also Section 1.2.2). Thirdly, errors in the source
data or errors introduced in the digitizing process have to be corrected [107, p. 93 ff.]. For
instance, if in the digitizing of a paper choropleth map two neighboring regions are pro-
cessed separately, then their common boundary may not exactly match (see Figure 1.2,
left). Also, inconsistencies between different data sources have to be dealt with. Aerial
photos may show a perspective distortion as well as a distortion due to the curvature of
the earth surface. Objects crossing the boundary between two such photos of adjacent
regions may be distorted differently on each photo, such that the edges of the object that
cross the boundary don’t match (see Figure 1.2, right). The correction of this kind of error
is callededge matching, and it can be done manually or automated [107, p. 96 ff]. Finally,
if the detail in the source data is greater than we actually need in the GIS, a data reduc-
tion and generalization step has to be made to prevent excessive storage requirements and
processing costs [107, p. 91 ff].

Figure 1.2: Errors introduced in the digitizing process.

Data management Just like any other information system, a GIS should provide the
basic database functionality [55, p. 66 ff.]. The system must perform integrity checks
when data elements are entered or removed from the database [107, p. 129]. For exam-
ple, when in a topological data structure two neighboring polygons merge into one by
removing a common edge, pointers to that edge have to be updated. Also, there should be
mechanisms to allow for concurrent access to the database. The efficiency of data storage
and retrieval is dependent on many factors; one of them is the layout of the data on the
disk. In GISs it may be worthwhile to consider storage schemes that exploit thespatial
coherenceof the queries: geographical objects that are accessed in subsequent queries are
often close to one another in the real world, and they should also be close together on the
disk or on the same disk page, to reduce disk access time [8].
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Basic spatial queries Apart from the basic queries that must be supported by any
database management system, a GIS must also be able to answer spatial queries such
as “what is at location(x,y)?”, and “what is the area of region such-and-so?”. Also, the
calculation of buffers around objects, to answer queries like “how many houses lie within
100 meter from that river?”, must be supported [107, p. 157] (see Figure 1.3). When a cat-
egorial vector model (see Section 1.2.2) is used for a choropleth map, it is often necessary
to traverse all cells in some specified part of the subdivision to collect data for further cal-
culations; this is facilitated by the use of topological data structures. Subdivision traversal
is handled in detail in Chapter 2.

Figure 1.3: A buffer around a polyline.

Geographic analysis The main advantage of a GIS over a collection of paper maps is
the ability to easily combine different kinds of data and to infer relations between them
by overlaying two or more layers of thematic data. No self-respecting GIS can do without
map overlay algorithms [67, 90]. After the map overlay has been done, the data can be
subjected to all kinds of statistical analysis such as the calculation of correlation between
variables [58]. Other statistical operations include the plotting of histograms and the
calculation of the nearest-neighbor index [73, p. 119 ff.] of a set of point objects on a
map. The nearest-neighbor index is a measure of regularity of the data; it is the ratio of
the actual mean distance to the nearest neighbor and the expected mean distance to the
nearest neighbor of a uniformly distributed point set of the same size. A different kind
of geographic analysis is facility planning: the determination of one or more locations
that are suitable for some purpose [55, p. 138 ff.]. To perform this kind of analysis it
must be possible to specify constraints on the locations and optimization factors. For
example, when a new factory is to be built, it should ideally be close to main roads or
railway terminals to facilitate transportation of products and raw materials, close to a
river if cooling water is needed in the production process, but at least at some minimum
distance from urban area. See also Chapter 5, where we give a new algorithm for a facility
location problem in mountainous area.

Output generation The output of a GIS consists mainly of maps, charts, and tables,
either on paper or screen [55, 107]. It is usually not possible to display all the available
data on a specific theme in full detail on the map, for that would render the map unread-
able. Important cartographic generalization operations that should be supported by a GIS
include selection, simplification, and aggregation [19, 90] (see Figure 1.4). Selection is
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the process of choosing what data to display, and what to discard, in order to keep the
map readable (see Chapter 4 for settlement selection). Depending on the target scale of
the map, the level of detail of the displayed data has to be tuned. A road with a large
number of small bends may be simplified to a polyline with fewer bends, and a cluster
of small areas displaying single houses may be aggregated into a single region of urban
area. Another form of complexity reduction is classification of the data. The placement
of labels with names of cities, rivers, and regions on the map is a difficult problem; la-
bels must not overlap, and it must be clear what label corresponds with what object. A
GIS should be able to place text labels automatically. For references to label-placement
literature, see Christensen et al. [23] and Doerschler and Freeman [39].

selection aggregationsimplification

Figure 1.4: Some cartographic generalization operations.

Other examples of GIS output are pie charts showing annual gross income of various
countries, tables of population of all cities in some region, and even single numbers, such
as the nearest-neighbor index for a set of points on a map [73, p. 119 ff.].

1.2.2 GIS data models and structures

In this section we will discuss various data structures for storing and searching the differ-
ent kinds of data that we described in Section 1.1.2. Basically, there are two ways to store
both categorial and continuous data:raster-basedandvector-based[127, p. 15].

Raster and vector models for categorial data A (planar) raster is a two-dimensional
array of equal-sized square cells, discretizing the real world [127, p. 15]. Boundaries
between regions do not cross the interiors of the cells; each cell stores a single value for
each attribute.
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Raster structures are very simple to implement, because arrays are well-supported by
computer architectures and programming languages. For instance, displaying a rectangu-
lar portion of a raster-based map on the computer screen is simply a matter of directly
accessing those cells whosex- andy-coordinates fall between the rectangle boundaries.
The major drawback of raster structures is their size: cell sizes should be small enough to
show the desired detail, and if a high resolution is required, the raster size becomes very
large. Using run-length encoding, or its two-dimensional counterpart block-encoding,
one can reduce the storage requirements of raster structures [127, p. 254 ff.], but at the
same time this greatly reduces their simplicity, since individual cells are no longer directly
accessible.

In contrast with raster structures, which are image-based, vector models take the object-
based approach [127, p. 16]. Points are stored with their coordinates according to some
reference system, line segments by their two end points, and regions are defined by their
bounding line segments. When incidence relations between points, segments, and re-
gions are stored explicitly, we speak of atopological data structure[127, p. 193]. In a
non-topological data structure, each polygon is stored independently as a sequence of ver-
tices. As we have seen in Section 1.2.1 this may result in errors such as gaps and slivers,
when two adjacent polygons do not match exactly. In a topological data structure these
problems are avoided, because each feature (in this case, the common edge between two
adjacent polygons) is stored only once. Also, topological data structures make it possible
to efficiently access adjacent features and to traverse the subdivision.

Raster and vector models for continuous data Just like categorial data, real-valued
functional data can be represented by raster as well as vector models. Although the func-
tion values in continuous data do not necessarily represent height, the termdigital ele-
vation model, or DEM, is commonly used to denote these models [127, p. 162]. We can
distinguish between the raster-basedelevation matrix[127, p. 162] and the vector-based
isoline model[127, p. 163] andtriangulated irregular network[127, p. 206], orTIN (see
Figure 1.5).

The elevation matrix[127, p. 162] is a two-dimensional array of square cells, each cell
storing a height value or elevation. The stored height can be the height at the center of
the cell, or the average height of the cell. In fact, the only difference between an elevation
matrix and a raster structure for categorial data is that the set of values stored in the latter
structure is usually taken from a finite set, while a cell in an elevation matrix may contain
any real (or at least, any number representable by a computer).

The isoline model[127, p. 163] is a way to represent and visualize a real-valued function
defined over the plane. Isolines are curves in the plane that map to the same function
values, and by choosing an appropriate set of isolines for various function values, humans
can get a good overview of the “behavior” of the function. For instance, when using
this model to represent a mountainous terrain, it is easy to determine the pits, peaks, and
passes of the terrain, or to distinguish steep areas from less steep areas. Isolines can be
represented by polylines, and they are either closed loops or they end at the boundary.
To determine the function value of a point in between two isolines, one would have to
interpolate in some way. However, different ways of interpolating may give different
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results, and it is not always clear how to interpolate (see Figure 1.6). Since the isoline
model is a planar subdivision, we can use a topological data structure such as the doubly-
connected edge list [31, 79] (see also Section 1.3.1) to represent it.
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The triangulated irregular network[127, p. 206], orTIN, is a subdivision of the plane in
triangles. The height of the vertices of the triangles is stored explicitly, and the height
of any point in the interior of a triangle can be derived by linear interpolation of the
height values at the vertices of the triangle. The size of the triangles varies (hence the
term “irregular”), and this makes the TIN a memory-efficient data structure for modeling
the surface of the earth: in relatively flat areas we can do with a small number of large
triangles, while smaller triangles are used in areas with a lot of variation in height. Like
the isoline model, we can store a TIN using the doubly-connected edge list [31, 79], or
other topological data structures, tailored towards triangulations.

Indexing structures for raster data A widely-used structure for storing and searching
planar raster data is the quad tree [92–96]. The quad tree recursively subdivides the raster
into four equally-sized quadrants. A quadrant in which all cells have the same attribute
value is not subdivided any further. So, the quad tree is a tree with as root the whole
raster, and each non-leaf node has four children (see Figure 1.7). The main advantage of
the quad tree is that it only recurs in regions with much detail, while large homogeneous
regions are stored efficiently.

Figure 1.7: A raster subdivision, and a quadtree for it. The order of the quadrants is
north-west, north-east, south-west, and south-east.

Indexing structures for vector data Perhaps the most important structures supporting
rectangular search queries in categorial vector data are the R-tree [52] and its relatives.
The R-tree may be seen as a two-dimensional version of the B-tree, and it is designed with
the reduction of disk access and dealing with non-uniformly distributed data in mind. The
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leaf nodes of the R-tree correspond to the smallest enclosing (axis-parallel) rectangles
of the objects to be stored. Each non-leaf node stores the smallest rectangle containing
the rectangles of its children, and the number of children lies between some predefined
minimum and maximum. The root of the tree is the smallest axis-parallel rectangle that
encloses all objects (see Figure 1.8). A rectangular search query is performed by re-
cursively searching the R-tree, descending only in those nodes for which their stored
rectangles intersect the query rectangle. It follows that the rectangles stored in an R-tree
should be as small as possible; the difficult part of constructing an R-tree lies in finding
a grouping of the rectangles that fulfills this requirement. The rectangles stored in the
internal nodes of an R-tree may overlap, and this is undesirable, because it makes search-
ing less efficient. In the R+-tree [108], overlapping of non-leaf nodes is not allowed, and
rectangles are partitioned when necessary to avoid overlapping. The drawback is that it
is difficult to guarantee a minimum on the number of children of a non-leaf node. The
R∗-tree [15] is another variant on the R-tree, where the grouping of rectangles is guided
by some weighted balancing between overlapping of the resulting rectangles and smallest
possible area and perimeter.

Figure 1.8: Vector objects, and an R-tree on them.

1.3 Computational geometry: preliminaries

Computational geometry arose from the field of design and analysis of algorithms and
developed into a discipline of its own in the late seventies. The basic objects of interest
for the computational geometer are points, lines, spheres, rectangles, and the like. Com-
putational geometers are interested in algorithmic versions of questions like “How many
of these line segments intersect?”, “What is the largest circle that will fit in this poly-
gon?”, “Does this point lie in the interior of that rectangle?”, and “Which one of this set
of points is nearest to this query point?”. One reason for the growth of the field is that
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it has applications in many domains. A great many of the basic problems from robot
motion planning, computer aided design, computer graphics, and GIS, to name a few, are
of geometric nature. Another reason of the popularity of computational geometry is the
beauty of many of the problems and the elegance of their solutions. Geometric problems
are often simple to express and to explain to outsiders of the field, and in many cases even
the solutions to these problems are relatively simple to understand for people without a
strong geometric background.

Just like the field of algorithms design and analysis, computational geometry is concerned
with the efficiency of the solutions to its problems: how much time and computer memory
are needed to solve a particular problem? Rather than comparing exact values of time and
memory consumption, algorithms researchers tend to look at theasymptoticbehavior of
algorithms, expressed inO- (“big-oh”) notation: “this algorithm runs inO( f (n)) time” is a
shorthand for “there is a constantN and a constantc such that for input sizen greater than
N, the running time isat most c f(n) time units.” Similarly, lowerbounds are expressed
with Ω-notation: anΩ( f (n)) memory bound means that there are constantsN and c
such that the memory requirements of the algorithm isat least c f(n) memory units for
certain inputs of sizen>N. Finally, when there exist constantsc1, c2 andN such that the
running time or memory usage of the algorithm lies betweenc1 f (n) andc2 f (n) units for
input sizes of at leastN, the bounds are denoted withΘ( f (n)).

In the next four sections we discuss some important data structures and concepts that we
will use in the rest of this thesis. In the description of the algorithms we assume that the
input objects are ingeneral position. This means that no two lines or line segments are
parallel, no three points are collinear, and no four points lie on one circle. This assumption
greatly simplifies the description of the algorithms.

1.3.1 The DCEL structure

A planar subdivisionS is a partition of a two-dimensional manifold into three finite col-
lections of disjoint parts: the vertices, the edges, and the cells. A subdivision isconnected
if its edges and vertices form a connected set. This implies that all bounded cells are
simple polygons without holes.

When working with vector-based subdivisions, one often needs information about the
topological relations between vertices, edges, and cells. A data structure that explic-
itly stores this information is thedoubly-connected edge list (DCEL)(see Muller and
Preparata [79], de Berg et al. [31]). In the DCEL-structure, edges in the subdivision are
represented by two directed half-edges, such that one of the half-edges bounds one cell
incident to the edge and the other half-edge bounds the other cell. If~e is a half-edge, then
twin(~e) denotes the half-edge that is part of the same edge. Every half-edge is oriented in
such a way that the cell to which it is incident lies to its left. In this way, for all bounded
cellsof a connected subdivision, the incident half-edges form a counterclockwise cycle
around the cell. The half-edges that bound the one unbounded cell (theouter cell) form a
clockwise cycle. This is illustrated in Figure 1.9.
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Figure 1.9: A subdivision and the corresponding orientation of half-edges.

The DCEL consists of a table of half-edge records, a table of vertex records, and a table
of cell records.

Any vertex record stores the coordinates of the vertex and a single reference to a half-
edge record of a half-edge that has the vertex as its origin; the other half-edges incident
to this vertex can be accessed by first accessing the referenced half-edge. The primitives
Coordinates(v) and Incident-edge(v) are used for the values of these fields for a vertex
v. Also, non-geometric information may be stored. For the subdivision in Figure 1.9 the
vertex table may look something like this:

Vertex Coordinates Incident-edge

v1 (· · · , · · ·) twin(~e1)
v2 (· · · , · · ·) ~e1

· · · (· · · , · · ·) · · ·

If the edges and vertices of the subdivision form a connected subset of the plane, then
every cell is incident to one cycle of half-edges. In this case, a cell record stores one
reference to a half-edge record of a half-edge incident to that cell, and possibly some
non geometric information. The primitiveOuter-incident-edge(c) is used to access the
half-edge for a bounded cellc, and the primitiveInner-incident-edge(c1) is used for the
unbounded cellc1. The table below shows the cell table for the subdivision in Figure 1.9.

Cell Outer-incident-edge Inner-incident-edge

c1 twin(~e4)
c2 ~e1

c3 ~e2

For any half-edge~e, its record stores one reference to the record of the vertex at which it
originates, a reference to the record of the incident cellc (which lies to its left), a reference
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to the half-edge that precedes~e in the cycle of edges aroundc, a reference to the record
of the half-edge that follows after~e in this cycle, and a reference to the record of the
complementary half-edgetwin(~e):

Half-edge Origin Incident-cell Prev Next twin

· · · · · · · · · · · · · · · · · ·
e5 v1 c2 ~e1 ~e4 twin(~e5)

twin(~e5) v5 c1 twin(~e4) twin(~e1) ~e5

· · · · · · · · · · · · · · · · · ·

The DCEL-primitives can be combined to answer more complex queries. For example,
suppose that we want to know the first outgoing half-edge of vertexv4 that we encounter
if we rotate counterclockwise aroundv4 and start at half-edge~e3 (Figure 1.9). This query
is answered bytwin(prev(~e3)).

The DCEL-structure can easily be extended to deal with unconnected subdivisions as well
(Figure 1.10). Considering the geometric structure of a cell, we observe that a cell is either
unbounded or bounded from the outside by one single cell or component. Furthermore,
the cell may be bounded from the inside by zero or more components.

In the cell record that represents the cell it is convenient to have references to all incident
components. Since the outer component, if it exists, plays a special role there will be a
reference to some half-edge of this component. This reference is empty for the unbounded
cell. For the other components the cell record stores a list of which each element contains
one reference to some half-edge of a component. There is no natural order for these
components so we let the list be unordered. To be able to access the cell record from the
incident half-edges we add one more reference to every half-edge record to the record of
the incident cell. The primitivesOuter-incident-edge(c) andInner-incident-edges(c) are
used to obtain these features.

Figure 1.10: The DCEL-structure can be extended to deal with unconnected subdivisions.



16 Introduction

1.3.2 The sweeping paradigm

A basic geometric operation is the determination of intersections between geometric ob-
jects. Consider for instance the problem of finding all intersections between pairs of
segments from some setSof n line segments in the plane. A simple approach would be to
check all pairs of line segments. This takesΘ(n2) time, regardless of the actual number
of intersections, which can be any number between zero and1

2 ·n(n−1). Using a plane
sweep approach however, determining allk intersections between pairs of segments from
S takes onlyO((n+ k) logn) time. The first algorithms that take this approach are by
Shamos and Hoey [99], Lee and Preparata [68], and Bentley and Ottmann [16].

To simplify the description of the plane sweep algorithm, we will first consider the one-
dimensional variant to the line-segment intersection problem, namely, the determination
of all intersections, or overlaps, between pairs of intervals from some setS′ of n intervals.
Again, it is possible to solve this inΘ(n2) time by testing all pairs of intervals, but it is
not difficult to improve on this: if we sort the endpoints of the intervals, we can treat
them in order from left to right. Imagine that we “sweep” the interval(−∞,∞), that
encloses our setS′, by moving a pointp from left to right. An interval inS′ becomes
activewhen p passes its left endpoint, and it becomes inactive again whenp passes its
right endpoint. The key observation is that two intervals intersect if and only if they
are both active at some time during the sweep withp. So if we keep track of which
intervals are active, we simply report the intersections of all these active segments with a
new one upon its activation. In sweeping terminology, the list of active intervals is called
thestatus structure; it is used to determine the intersections by looking only at intervals
that really matter. The status structure changes upon certainevent points; these are the
left endpoints of the intervals, where an interval becomes active, and the right endpoints,
where an interval becomes inactive. All event points are known in advance in this case,
so the event list, a sorted list of left and right endpoints, can be computed before starting
the actual sweep. If we maintain pointers between the events in the event list and the
status structure, the insertion and removal of an interval in or from the status structure
can be dealt with inO(1) time. The total running time becomesΘ(nlogn+ k), wherek
is the number of reported intersections:Θ(nlogn) time for the sorting,Θ(n) time for the
insertion and removal of intervals in or from the status structure, andΘ(k) time for the
reporting. The running time can still be as high asΘ(n2), but only if the actual number of
intersections isΘ(n2); the algorithm is what we calloutput sensitive.

Back to our original problem, the determination of intersections between line segments
in the plane. The one-dimensional sweeping algorithm can be adapted for use in two
dimensions in the following way: instead of sweeping the interval(−∞,∞) with a point,
we sweep the plane with a line from top to bottom (see Figure 1.11).

The status structure is a list of active segments, i.e., those segments that are intersected by
the line. As in the one-dimensional case, two line segments can only intersect if they are
both active at some moment (i.e., if there is a horizontal line intersecting both segments),
but the reverse is not necessarily true in two dimensions: two active segments need not
intersect. So testing all active segments for intersection with a newly active one may not
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Figure 1.11: Sweeping the plane in downward direction. Active segments are fat.

be very efficient, and in fact it is possible to triggerΩ(n2) such tests while there are no
intersections at all, as is illustrated in Figure 1.12.

1
2n lines 1

2n lines

Figure 1.12: Testing all active segments for intersection with a newly active one can lead
to an Ω(n2) running time, even when there are no intersections.

It appears that we need another observation: just before the sweep line reaches an inter-
section between two segmentssi andsj in S, these two segments are neighbors on the
sweepline. This suggests the following approach: we maintain the status structure as a
sortedlist of line segments; the sorting is on thex-coordinate of the intersection of the ac-
tive segments with the sweepline. We only test for intersections between active segments
that are neighbors on the sweepline. The status structure changes on three kinds of events,
which we handle as follows:

• The sweepline reaches the topmost endpoint of a segment. The segment becomes
active, and has to be inserted in the proper place of the status structure. We test
for intersections between the newly active segment and its (at most two) neighbors.
New intersections are reported and inserted in the event list. See Figure 1.13, left.
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• The sweepline reaches an intersection between two active segments. Their order
in the status structure is changed, and they are tested for intersection with their (at
most two) new neighbors. See Figure 1.13, middle.

• The sweepline reaches the bottommost endpoint of an active segment. The segment
becomes inactive and is removed from the status structure. Its neighbors are tested
for intersection. See Figure 1.13, right.

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

Figure 1.13: Three kinds of sweep events.

If we maintain the status structure as a binary search tree, all changes of the status struc-
ture can be done inO(logn) time, since at any time during the sweep at mostn segments
are active.

The event queue is also maintained as a binary search tree; initially it contains only the
endpoints of all segments; intersections are inserted when we find them. Although the
total number of events can beΘ(n2), we can keep the size of the event queue linear by
maintaining only the intersections of segments that are neighbors on the sweepline (see
Brown [17] and Pach and Sharir [83]). This means that some intersections are removed
and reinserted again if the order of the active segments changes (see Figure 1.14). Hence,
all operations on the event queue can be done inO(logn) time.

s1

s2

s3

(a)

(b)

(c)

Figure 1.14: An intersection is added to the event queue at (a), removed again at (b), and
reinserted at (c).

The total running time of this sweep algorithm isO((n+ k) logn) time, wherek is the
number of intersections: there areO(n+ k) events, each of which takesO(logn) time to
handle. Details and a more in-depth analysis can be found in any textbook on computa-
tional geometry (e.g. de Berg et al. [31]).
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1.3.3 Search structures

Another important basic operation in computational geometry is searching for geometric
objects. This problem comes in two varieties. The first is the location of some query
object, for instance, the reporting of the face of a planar subdivision that contains some
query point; this is thepoint location problem[26, 40, 62, 80, 86, 97, 98]. We can also
reverse the problem: given a set of geometric objects, such as points in the plane, and a
query range (for example, a rectangle), report all the objects that lie inside the query range.
This is what we callrange searching(see for instance chapters 5, 10, and 16 of de Berg
et al. [31]). For both searching problems there is an obvious brute-force solution: simply
test all the stored objects with the query object. But there are more efficient solutions, all
of which are in fact based on the same principle as the binary search in the dictionary, as
described above: they all recursively narrow the region in which the search takes place.

Planar point location is used extensively in this thesis, so we will treat it here in somewhat
more detail. LetS be a planar subdivision of the withn edges in total. It is not at all
straightforward to determine without preprocessing whether a query pointp lies inside a
given polygonal region ofS; the region can have a linear number of edges. The problem
becomes easier if the region is a triangle or a convex quadrilateral; three sidedness tests,
or four, respectively, suffice in that case to answer the question: if the DCEL-structure
is used to represent the subdivision, then the point lies in the region if and only if it
lies to the left of the half-edges incident to the region. This motivates us to refine the
subdivision by breaking up the polygonal regions in the following way (see Figure 1.15):
from each vertex we draw vertical segments upward and downward, until we hit an edge
of the subdivision. In the resulting refined subdivision, which is known as thetrapezoidal
map[98], every region is either a triangle or a quadrilateral. The total number of edges
we add is twice the number of vertices in the original subdivision, which isO(n), since
the subdivision is planar. The total number of vertices, edges, and faces in the trapezoidal
map is therefore alsoO(n). If the edges of the original subdivision are in general position,
then each region in the trapezoidal map has one or two vertical sides, and exactly two non-
vertical sides.

A search structure for the trapezoidal map is a directed acyclic graph, and it can be built
with a randomized algorithm (see Seidel [98]). We first determine a bounding box of the
edges in the subdivision, and initialize a trapezoidal map structure and search structure
(consisting of a single node representing the bounding box). Next, we add the edges of the
subdivision in random order. Each time that we add an edge, we update the trapezoidal
map by identifying which trapezoids are replaced by new ones, and these modifications
are reflected in the search structure. The leaf nodes of the resulting search structure repre-
sent the trapezoids of the final trapezoidal map; the internal nodes are eitherx-nodes, rep-
resenting an endpoint of some segment, ory-nodes, representing a segment itself. Search-
ing this structure is done by descending it starting from the root (see Figure 1.16, taken
from [31, p. 127]). At anx-node we compare thex-coordinate of the stored endpoint with
that of the query point to decide whether we have to descend to the left or right child of
thex-node. At any-node, we test whether the query point lies above or below the stored
segment.
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Figure 1.15: Trapezoidal decomposition of a planar subdivision
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Figure 1.16: Search structure for the trapezoidal map.

The expected running time for the construction of the trapezoidal map and the accompa-
nying search structure isO(nlogn); the expected size of the search structure is linear in
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n. Searching with a query point takesO(logn) expected time. Details on the construction
of the trapezoidal map and the search structure, as well as an in-depth analysis of prepro-
cessing time, query time, and memory requirements can be found in Seidel’s paper [98].

For completeness we mention the most important structures that support range queries in
a set ofn geometric objects (see de Berg et al. [31]):

• A kd-tree for a setP of n points in d dimensions can be constructed inO(d ·
nlogn) time. It takesO(d · n) memory, and supports rectangular range queries
in O(n1−1/d +k) time, wherek is the number of reported points.

• A range-treefor a setP of n points ind dimensions takesO(nlogd−1n) storage
and O(nlogd−1n) construction time. It supports range queries inO(logd n+ k)
time, wherek is the number of reported points. Using a technique calledfractional
cascading(see Chazelle and Guibas [20, 21]), the query time can be improved to
O(logd−1n+k).

• An interval treestores a set ofn intervals on a line inO(n) memory, and can be used
to report all the intervals that contain a query point inO(logn+k) time, wherek is
the number of reported intervals. Building an interval tree takesO(nlogn) time.

• A priority search treefor a setP of n points in the plane usesO(n) storage and can
be built in O(nlogn) time. It can be used to report all the points inP that lie in
the unbounded query-range(−∞,qx]× [qy,q′y] in O(logn+ k) time, wherek is the
number of reported points.

• A segment treestores a set ofn intervals on a line inO(nlogn) memory, and can be
used to report all the intervals that contain a query point inO(logn+k) time, where
k is the number of reported intervals. Building an interval tree takesO(nlogn) time.

• A partition treecan be used for triangular range queries. For a set ofn points in the
plane it takesO(n) storage, and it can be constructed inO(n1+ε) time for anyε> 0.
Counting the number of points in a query rectangle takesO(n1/2+ε) time using the
partition tree; reporting the points takes an additionalO(k) time, wherek is the
number of reported points. The query time can be improved toO(n1/2(logn)O(1)).

• a cutting treecan be used to report the number of lines of a set ofn lines in the
plane that lie below a certain query point inO(logn) time; the lines can be reported
in an additionalO(k) time, wherek is the number of reported lines. The structure
takesO(n2+ε) memory and can be constructed inO(n2+ε) time for anyε > 0. The
O(nε) factor in the storage requirements can be removed.

In spite of the query time of the partition tree and the storage requirements of the cutting
tree, which may seem not very attractive, these are very powerful (but complex) struc-
tures. Theirmulti-levelvariants have about the same query time and storage requirements
respectively, but can answer more complex range queries, some of which are impossible
to solve efficiently with the simpler search structures.
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1.3.4 Voronoi diagrams

Suppose that you are walking in the desert, equipped with a GPS device (so you know the
coordinates of your current location) and a thematic map, showing all then oases with
wells in the desert. You are incredibly thirsty, so you would like to identify the nearest
oasis as quickly as possible. Having heared about computational geometry, you suspect
that that there must be a smarter way than to simply calculate your distance to all oases
and pick the one with minimum distance, all in linear time.

You are right: you should have prepared your journey through the desert by subdividing
the map with the oases into regions, such that for all locations within a single region, the
nearest oasis is fixed. Such a subdivision is called theVoronoi diagram[9, 36, 122, 123] of
the oases; an example is shown in Figure 1.17. Having computed the Voronoi diagram [9,
43, 51], you can determine the nearest oasis inO(logn) time by making use of the point
location techniques described in the preceding subsection.

Figure 1.17: Voronoi diagram of a set of points.

More formally, letP be a set ofn points in the plane, and letk be an integer such that
1≤ k≤ n−1. For a pointq 6∈ P in the plane, letP(q,k) ⊂ P be any set ofk points inP
for which the Euclidean distance toq is less than or equal to the Euclidean distance to any
point inP\P(q,k). Theorder-k Voronoi diagram[3, 11] of a setP of n points is a planar
graph that subdivides the plane into open regions such that for any pointq in a region,
P(q,k) is uniquely determined, and such that for any two pointsq andq′ in the same
region,P(q,k) = P(q′,k). The interior of the boundary between two adjacent regions is
anedgeof the order-k Voronoi diagram; it is easy to see that each edge lies on a bisector
of two points inP. The non-empty intersections of the closures of three or more regions
of the order-k Voronoi diagram are itsvertices. We assume that all vertices have degree
three; otherwise, a degeneracy is present.
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The order-1 Voronoi diagram is known as the (standard) Voronoi diagram orclosest-site
Voronoi diagram, and the order-(n−1) Voronoi diagram is also called thefurthest-site
Voronoi diagram. Voronoi diagrams have been well-studied, and they are covered in any
textbook on computational geometry. Interesting varieties include Voronoi diagrams with
different metrics, and Voronoi diagrams of other objects than points, such as line segments
or circles of different sizes.

An interesting structure related to the Voronoi diagram is the Delaunay triangulation [49]:
it is the dual of the Voronoi diagram, obtained by connecting all points whose Voronoi
regions are adjacent (see Figure 1.18). The Delaunay triangulation has some interesting
properties. One of these properties is theempty circleproperty: the circle through three
points that are vertices of the same face in the triangulation contains no points ofP in its
interior, and for any two points inP that form an edge in the triangulation there is a closed
disc that has the two points on its boundary and does not contain any other point ofP.
A second property is that the Delaunay triangulation maximizes the minimum angle over
all triangulations ofP [103]. This second property makes the Delaunay triangulation the
triangulation of choice when long and skinny triangles are undesirable, which is the case
in many applications.

Figure 1.18: The Delaunay diagram is the dual of the Voronoi diagram

The Voronoi diagram can be computed by a sweep algorithm inΘ(nlogn) time (see For-
tune [43]), and given the diagram, the Delaunay triangulation can be constructed easily
in linear time. Another way to compute the Delaunay triangulation is by a randomized
incremental algorithm (see Guibas et al. [49]).
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1.4 Selected computational geometry problems from GIS

In the following four chapters of this thesis we will look in detail into four selected exam-
ple problems that arise in the field of GIS. These four problems are introduced next.

1.4.1 Choropleth map traversal

Choropleth maps (see Section 1.1.3) are frequently dealt with in a GIS, in many different
ways. All kinds of complex operations on these maps can often be carried out by repeat-
edly using a simpler operation that does the job for a single region of the map. Therefore,
a common operation in a GIS is to traverse the map, to retrieve its regions, and to report
their features or the attribute data stored with these features. For instance, if we want to
draw a map showing population sizes of European countries on the screen, the polygons
representing the European countries have to be retrieved and passed on to the graphics
engine of the GIS. Or, if we want to determine the total number of inhabitants of Europe,
we have to traverse all countries and collect information about the number of inhabitants
of each individual country.

The spatial data structures in a contemporary vector-based GIS are basically planar subdi-
visions, and the topological relations between vertices, edges, and cells are stored explic-
itly. The underlying computational geometry problem of the GIS tasks sketched above
is the traversal of such a topological subdivision, and the enumeration of all cells, edges,
and vertices. It is clear that we have to report each relevant cell or its attribute data pre-
cisely once. Reporting a country more than once would lead to inefficient displaying of
the map and an erroneous calculation of the total number of Europeans, while omitting
one or more countries would yield incorrect results in both examples. Somehow we have
to keep track of which cells have been reported, and which cells have not. A common
solution is to usemark bits, which can be seen as auxiliary attributes for recording if the
feature has been reported or not. However, this is not always applicable in practice; if the
GIS at hand does not provide mark bits, we would either have to alter the data structures,
or make a copy of the data in main memory or background storage, which is inefficient if
not impossible. Another disadvantage is that in order to gather information–essentially a
readoperation–we’d have towrite to the database for setting and resetting the mark bits,
thus preventing concurrent access to the database. In Chapter 2 (based on a paper with
De Berget al. [32]) we show how to exploit the topological relations between the zero-,
one-, and two-dimensional features, together with some basic geometric calculations, for
traversing a subdivision without using mark bits. We also address the problem of report-
ing parts of the subdivision, such as windowing queries, where we are only interested in
those cells that intersect a specified rectangle, or the reporting of connected subsets of
cells with an equal-valued attribute. Both operations are common in GIS.
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1.4.2 Isosurface generation

In Section 1.2.2 we have seen three models to represent continuous data in a GIS: the
elevation matrix, the TIN, and the isoline model. To visualize continuous data, different
methods are available, depending on the model used. For the elevation matrix and the
TIN, a perspective view of the model can be generated by the GIS: in that case, the data
is presented to the user as the picture of a mountainous landscape. But probably the most
commonly used method for displaying continuous data is the isoline map (Section 1.1.3).
Isoline maps can be stored directly, but often the data is stored as an elevation matrix
or a TIN, and the isolines have to be generated by the GIS. Suppose that a GIS user
wants to display an isoline map of a certain geographic area, showing the contours of
her favorite set of height levels. A straightforward way to implement this is to traverse
all cells of the elevation matrix or the TIN (perhaps using the techniques of Chapter 2),
and to test for every cell if it is intersected by one or more of the requested contours.
However, in many practical situations one can expect the number of cells intersected by
a particular contour line to be roughlyO(

√
n), wheren is the number of cells. More

efficient methods exist that make use of geometric data structures such as kd-trees or
interval-trees (Section 1.3.3), but the storage requirements of these data structures are
often too large to be worth considering in practical situations. A different approach is
based on the observation that it suffices to find, for each individual contour that has to
be displayed, one cell that is intersected by the contour. Once we have found such a
seed cell, we can use it as a starting point for the traversal of only those cells that are
intersected by that particular contour. It is important to realize that the contour lines of a
given height value may consist of more than one connected component, each of which is
either a closed curve or touches the boundary of the displayed area at both ends. In order
to correctly generate all these contours for a given height value, we need a seed cell for
each component. This leads to the following problem: given a regular or irregular mesh,
find a minimum size seed set, such that every possible contour component intersects at
least one of the cells in the seed set (see Figure 1.19). Once we have found such a seed
set, we can solve the contour generating problem by searching the (hopefully small) seed
set, either brute-force or with the use of the aforementioned search structures, instead of
searching the whole set of cells.

In Chapter 3 (based on a paper with van Kreveld et al. [117]) we give an algorithm to
compute a minimum-size seed set. Unfortunately, its running time isO(n2 logn), where
n is the number of cells, which makes it difficult or impossible to implement in many
real-world situations. Therefore, we also give an approximation algorithm that runs in
O(nlog2n) time, uses sub-linear memory in practical situations, and yields a small seed
set. Implementations show that that the approximation algorithm indeed is applicable
in practical situations, and that it outperforms previous seed set generating algorithms
in terms of seed set size. Our algorithms make use of thecontour tree, a structure that
captures the topology of the contours of certain specific values. Seed sets can be computed
for three-dimensional meshes, such as medical images, as well.
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Figure 1.19: Any contour in the TIN intersects at least one of the seeds (shaded).

1.4.3 Selection for cartographic generalization

The generation of a map is a complex process involving many steps. First, it should be
decided what kinds of thematic data is to be displayed on the map. Depending on the
amount of data stored in these layers and the desired scale of the map, it may be the
case that displaying all geographic objects would result in a heavily cluttered, unreadable
map. One has to decide which objects will actually be displayed, and which ones will be
omitted. After the selection step follows a generalization step, in which groups of small
objects are aggregated into a single region, and the level of detail is reduced to match the
scale of the map.

Chapter 4 (based on a paper with van Kreveld et al. [118]) addresses the problem of
cartographic selection, where we are given a set of geographic objects and the task of
deciding which ones of these to select for displaying. We limit ourselves to point objects,
settlements(see Figure 1.20), for which we assume an importance factor to be given.
For instance, the settlements could be cities, and the importance factor simply the num-
ber of inhabitants. Although in general less important settlements are dropped from the
map in favor of more important ones, it is hardly ever the case that all settlements that
are displayed are more important than all settlements that are omitted. For instance, on
a small-scale map of the United States of America, it may not be possible or desirable
to display both Philadelphia and New York. Firstly, there may simply be not enough
space to display them both, and secondly, one may prefer displaying a small set of evenly
distributed large cities, such as on weather forecast maps, where cities have a reference
function. In both cases, Philadelphia will usually be omitted. Salt Lake City on the other
hand, although smaller than Philadelphia, will be displayed, because there is no larger
city close to Salt Lake City with which to compete for space. So we will have to use some
notion of relative importance, taking proximity of cities into account. In Chapter 4, we



1.4 Selected computational geometry problems from GIS 27

first discuss three existing models for relative importance. Two of these have the property
that when we increase the number of settlements to be displayed, settlements that were
originally displayed may disappear, and reappear again later on in the process, and for all
three models it is not always possible to make a selection of a specified size. We regard
this as an undesirable property of the models, and we give four new models that don’t suf-
fer from this flaw. Our models compute arankingof the settlements, which is a complete
order of the relative-importance factors. The advantage of having a ranking is that, after
computing it once, we can store the ranking in memory linear in the number of settle-
ments. Displaying is then simply a matter of selecting the required number of settlements
in order of rank; upon change of the desired number of settlements, no time-consuming
re-evaluation of relative importance factors needs to be done, as opposed to the existing
models that do not give a ranking. We show how to implement our methods efficiently by
making use of computational geometry data structures and techniques, such as Voronoi
diagrams and point location algorithms. We also implemented both the existing and the
new models and tested them on two datasets, consisting of the 158 largest cities in the
US, and of 139 municipalities in the Netherlands, respectively.

Figure 1.20: Displaying all settlements (left) leads to a cluttered map. Selecting fewer
settlements (right) makes the map more readable.

1.4.4 Facility location in terrains

One of the functionalities of a GIS is geographic analysis. A GIS must be able to combine
information stored in different thematic layers, and to calculate all kinds of statistics such
as correlation between variables. A more complex kind of geographic analysis is the
determination of locations that are suitable for some purpose. Suppose for instance that
a new hospital is to be built for the benefit of several villages in mountainous area. The
location of the hospital should be such that the maximum distance to any of the villages
is minimized. This is an instance of thefacility location problem, which we study in
Chapter 5 (based on a paper with Aronov et al. [6]) in an abstract form. The mountainous
area is modeled as a polyhedral terrain, the villages as point sites on the terrain, and
distances are measured along the surface of the terrain.

In the plane, the facility location problem has been well-studied. The optimal place-
ment of the facility is at the center of the smallest enclosing circle of the sites, and
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the first deterministic linear-time algorithm to determine this circle has been given by
Megiddo [74]. A much simpler randomized algorithm that runs in linear expected time,
is due to Welzl [125]. Despite the simplicity of the planar version of the facility location
problem, it appears to be very hard to solve it on a terrain. This is partly due to the fact
that shortest paths between two points on a terrain are not necessarily unique, and distance
calculations along the terrain are much more expensive than in the plane.

There is a well-known relation between the smallest enclosing circle for a set of points
and the furthest-site Voronoi diagram for the same set. That is, the center of the smallest
enclosing circle lies on an edge or vertex of the diagram. In Chapter 5 we show that the
same relation holds on a terrain, and we give a new algorithm for computing the furthest-
site Voronoi diagram on a terrain. After the diagram has been computed, the optimal
location for the facility can be found by traversing it: the location on the diagram where
the distance to the defining sites is minimized is the location for the facility.



CHAPTER 2

Subdivision Traversal
Without Extra Storage

2.1 Introduction

The basic spatial vector data structure in any geographic information system is the one
that stores the zero-, one- and two-dimensional features of planar subdivisions. Contem-
porary GISs like ARC/INFO [1] and the DIME file [2] use polygon structures that store
the explicit topology as well. This means that from any feature, it is possible to access ad-
jacent features efficiently. Essentially, these structures are similar to the doubly connected
edge list [79] (see also Section 1.3.1) and quad edge structures [50] used in computational
geometry.

A basic algorithmic routine that can be applied to any planar subdivision is its traversal.
The objective of such a traversal can be to report all boundary segments on a map in order
to display them on a computer screen, or to collect numerical information stored with
the cells for further statistical analysis. Unfortunately, to traverse a topological polygon
structure one needs to record what features have been visited, to avoid continuing for-
ever. This means that the zero-, one-, and two-dimensional features must have a mark
bit to capture this information. This is highly undesirable, because mark bits require ex-
tra storage space, or even worse, the data structure at hand may not have such mark bits
with the features. Also, when background storage has to be used because the subdivision
is too large to fit in main memory, using mark bits involves not only read operations,
but also write operations. Another drawback of mark bits in concurrent situations is that
subdivision traversal cannot be performed by two users at the same time.

An algorithm for the traversal oftriangulated subdivisions,or triangulated irregular net-
works,that does not require mark bits to record what triangles have been visited and which
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have not, was developed by Gold et al. [47] (see also Gold and Maydell [48] and Gold and
Cormack[46]). Their method involves choosing one starting point, and defining for each
triangle exactly one incident edge through which the triangle can be entered. With the
correct definitions and choices one can make sure that every triangle in the subdivision is
reported exactly once. In fact, an order is defined on the triangles and the triangles are
reported according to this order. Other work on ordering of triangles was done by De
Floriani et al. [33], who used the order for visibility purposes.

In the field of computational geometry, efficient traversal algorithms have also been stud-
ied. Edelsbrunner et al. [40] showed how to traverse a directed acyclic graph without
using mark bits. Avis and Fukuda [12] gave an algorithm to report the vertices of an
arrangementor aconvex polytopewithout using mark bits in the data structure that repre-
sents the arrangement or polytope. Their description is a rather abstract one and does not
address non-convex subdivisions; see also Fukuda and Rosta [45]. A generic algorithm
for traversing graph-like data structures without storing any information about the visited
parts of the data structure was developed by Avis and Fukuda [13].

In this chapter we extend the result of Gold et al. [47] and Edelsbrunner et al. [40] to
traverse subdivisions without using mark bits. Our ideas are similar to those of Avis and
Fukuda [13] and of Edelsbrunner et al. [40]. Unlike their methods, our algorithm can be
applied to any subdivision of which the vertices and edges form a connected graph. We
prove the correctness of our algorithms for both convex and non-convex subdivisions. The
algorithms are extremely simple; we implemented the algorithm for straight-line subdi-
visions in about 100 lines of C-code and it works fine. We also extend the results to
subdivisions with curved arcs, and we give extensions for the traversal of a connected
part of a subdivision, or the part of a subdivision that lies inside a specified window.
These operations are commonly used by geographic information systems. One usually
doesn’t need the whole subdivision to be traversed, but just some subregion in which the
user is interested. For instance, when a GIS user needs to know the annual rainfall for a
single province of some country represented by a choropleth map, only the cells for that
province need to be traversed to collect the rainfall figures. Also, when she wants to dis-
play a rectangular map of a part of the country, only the cells that intersect the rectangle
need to be displayed. We also address the traversal of the surface of a convex polyhedron
in three-dimensional space, and the traversal of a convex subdivision in three-dimensional
space. In all cases, no mark bits are required in the data structure. Some of our results
have independently been obtained by Snoeyink [105].

We present our algorithms using thedoubly-connected edge list structure[31, 79, 85], a
standard data structure used in computational geometry that stores topology explicitly
(see section 1.3.1). This is not a restriction; simple adaptations to the algorithms can be
made so that they apply to the quad edge structure [50], the fully topological network
structure [18], the ARC/INFO structure [1], the DIME file [2], or any other vector data
structure that stores the topology explicitly.

In the next section we describe the simple traversal algorithm for subdivisions embedded
in the Euclidean planeE2 and prove its correctness. In Section 2.2.3 we show how to adapt
the algorithm such that it can handle TINs and surfaces of three-dimensional polyhedra
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and subdivisions with curved edges. We address the traversal of connected subsets of the
cells in a subdivision and windowing queries in Section 2.2.4. Finally, in Section 2.3 we
extend our results to connected subdivisions in three dimensions.

2.2 Traversing a planar subdivision

2.2.1 The local method

We assume in this section and in Section 2.2.2 that the subdivisionS our algorithm oper-
ates on is embedded in the Euclidean planeE2, that its edges are straight line segments,
and that the edges and vertices ofS form a connected set. In Section 2.2.3 we will show
how to overcome the first two restrictions.

The idea behind our algorithm is to define an order on the cells of the subdivision and
to visit the cells in this order. LetS be the set of cells inS. For every cell inS we de-
fine a unique predecessor, such that the predecessor relationship imposes a directed graph
G(V,E) on the subdivision, withV = {c | c ∈ S} andE = {(c′,c) | c′ is the predeces-
sor of c}. Our algorithm reports the cells ofS in depth-first order, that is, in the order
corresponding to a depth-first order in the graphG. To facilitate this, the predecessor
relationship on the cells ofS needs to be defined such thatG is a tree, rooted at the node
of the starting cellcstart, and all arcs are directed away from the root. GraphG never is
explicitly determined or stored, but it is used to prove the correctness of the algorithm.
The most important step of the proof is showing thatG is a tree. Analogous to graph
terminology, a pathπ in the subdivision from one cellc′ to another cellc is a sequence of
cells(c′ = c0,c1, . . . ,ck = c) such thatcj−1 is the predecessor ofcj for eachj,1≤ j ≤ k.
To show thatG is a directed rooted tree, we must show that for every cellc there is ex-
actly one pathπ from cstart to c. The following definition will prove to be helpful (see
also Figure 2.1):

Definition 1 Let c be a cell ofS, ~e a half-edge incident to c, and p a point not in the
interior of c. We say that~e isexposedto p if there is a point p′ on the interior of~e such
that the interior of the segmentpp′ does not intersect any half-edge of c.

It is straightforward to verify that for any cellc of Swith a pointp in its exterior or on its
boundary, at least one half-edge is exposed top. We will use this to define the predecessor
relationship on the cells ofS. First, we choose an arbitrary pointp in the starting cellcstart.
Using p we identify for each cellc except forcstart a special half-edge among the ones
that are exposed top, calledentry(c). The cellc′ incident totwin(entry(c)) is defined
as the predecessor ofc. For any cellc of S, except forcstart, we determine its entry as
follows:

• We calculate the Euclidean distance betweenp and the closures of all the half-edges
of c. We define the half-edge~e of c that has minimum distance to be the entry of
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c

p

Figure 2.1: The fat half-edges of c are exposed to p, the other half-edges are not.

c. In some cases ties have to be broken. Consider the minimum radius circleC
centered atp that intersects the boundary of the cellc. If C intersects the boundary
of c in more than one point, we choose the first of these points onC, clockwise
aroundp, starting in some fixed directionθ (Figure 2.2). Let this point bep′.

– If p′ lies in the interior of a half-edge~e incident toc, then~e is the entry ofc.
Note that~e is exposed top.

θ p1

p2

p3
p4

p5

p6

p7
p8

C
p

Figure 2.2: p1 is the first point on C, starting in direction θ.

– If p′ lies on a vertexv of the boundary ofc, then we must choose between
the two half-edges~eand~e′ incident toc that havev as destination and source,
respectively. If~e is exposed top we choose it as the entry ofc; otherwise,~e′

is exposed top, and we we choose it as the entry ofc.
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Testing whether a half-edge~e is the entry of its incident cell can be done inO(1) time for
convex subdivisions. Note that an edge~e of a convex cell is exposed top if and only if
p lies strictly to the right of the directed line induced by~e (see Figure 2.3, left). Hence,
some simple tests involving onlyp,~e, and the predecessor and the successor of~e suffice
for convex subdivisions:

• if ~e is not exposed top, then it is not the entry of its incident cell.

• Otherwise, if the predecessor~e′ of ~e is exposed top and the distance fromp to ~e′

is less than or equal to the distance fromp to~e, then~e is also not the entry of its
incident cell.

• Otherwise, if the successor~e′′ of~e is exposed top and the distance fromp to ~e′′ is
strictly less than the distance fromp to~e, then~e is also not the entry of its incident
cell.

• Otherwise,~e is the entry of its incident cell.

p
p

e

Figure 2.3: If p lies to the right of the directed line induced by a half-edge of a convex cell,
then the half-edge is exposed to p. For non-convex cells, this condition is not sufficient.

For non-convex subdivisions, determining whether a half-edge~e is the entry of its incident
cell c involves the comparison of the distance betweenp and the closure of~e with the
distance betweenp and the closures of all other half-edges incident toc; this takes time
linear in the number of half-edges incident toc.

Lemma 1 With the predecessor relationship defined as above, for every cell c in S there
is exactly one pathπ from cstart to c.

Proof: It is easy to verify that there cannot be more than one path fromcstart to a cell
c, since every cell has exactly one entry. Now suppose that there exists a non-empty set
S′ = {c | c∈ S and no pathπ exists from cstart to c}. DefineR′ to be the set of closures
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of the cells inS′. Let C be a circle centered at the pointp as defined above, and letC
have radius such that it intersects the boundary ofR′, but not its interior.C intersects the
boundary of at least one cellc in S′.

Let p′ ∈ R′ be the first point onC, clockwise aroundp, starting in directionθ. Choose
one of the cells inS′ that hasp′ on its boundary (observe that there is at least one such
cell), and let this cell bec. We will show that there is a path fromcstart to this cellc, thus
deriving a contradiction, which will prove the lemma.

For the cellc, entry(c) is defined as above. Observe thatp′ lies in the closure ofentry(c).
If p′ lies in the interior ofentry(c), then the predecessorc′ of c, i.e. the cell incident to
twin(entry(c)), intersectsC, and a pathπ′ from cstart to c′ exists. Sincec′ is the predeces-
sor ofc, there is a pathπ from cstart to c via c′ (Figure 2.4).

p p′

c

entry(c)

C

Figure 2.4: The cell incident to twin(entry(c)) intersects C.

On the other hand, suppose thatp′ is one of the endpoints ofentry(c). Assumep′ is
the destination vertex ofentry(c); the case wherep′ is the source vertex ofentry(c) is
analogous. Let~̀ be the directed line tangent toC at p′ and withp to its right. Consider
all half-edges that havep′ as their destination and lie to the left of~̀ (or on the line), as
illustrated in Figure 2.5. Let these half-edges be~e1, . . . ,~ek = entry(c), ~ek+1, . . . , in cyclic
order as in Figure 2.5. The cell incident to~ei is labeledci for 1≤ i ≤ k, and the cell
incident totwin(~e1) is labeledc0. Observe thatci−1 is incident totwin(~ei) for 1≤ i ≤ k.
Also note that a single cell can have more than one label, as illustrated in Figure 2.6. Using
induction oni, we will show that there is a pathπk from cstart to ck. Sinceck = c∈ S′, this
again leads to a contradiction.

• Since no edges lie between~e1 and the tangent toC, c0 must intersectC. It follows
that there is a pathπ0 from cstart to c0.

• Assume there is a pathπi from cstart to all cellsc0,c1, . . . ,ci for some 0≤ i < k. We
can distinguish three cases, which together cover all possibilities:
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p′
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c = c5
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Figure 2.5: Half-edges having p′ as their destination.

p′

c1 = c6

c2 c3

c4
c5

c = c7

c0

C

~̀

Figure 2.6: Cells can have multiple labels.

– If ci+1 6∈ S′ then by definition ofS′ there is a path fromcstart to ci+1 (note that
it is possible for a cell incident top′ to intersectC even if its two half-edges
incident top do not intersectC, as is illustrated in Figure 2.7). Otherwise, If
ci+1∈S′, we can conclude by definition ofC that the cellci+1 doesn’t intersect
the interior ofC, nor can its boundary have a point onC beforep′, starting
clockwise fromθ Figure 2.8.

– ci+1 has another labelcj , with j < i, as illustrated in Figure 2.6. In this case,
there is a pathπi+1 = π j from cstart to cj = ci+1 by the induction hypothesis.
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c1 c2
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c4

Figure 2.7: Cells intersecting the circle C are reachable from cstart.
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c = c5
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c4

p

θ

Figure 2.8: By choice of p′, entry(c4) is incident to p′.

– ci+1 ∈ S′ and it has no other labelcj with j < i. In this case it’s straightfor-
ward to verify thatentry(ci+1) =~ei+1: C is the smallest circle centered atp
intersecting the boundary ofci+1, andp′ is the first point onC and the bound-
ary ofci+1 that is encountered when we rotate clockwise aroundp, starting in
directionθ. Also note that sinceek (the entry ofck) is exposed top, ~ei+1 is
also exposed top.
Since there is a pathπi from cstart to cellci by the induction hypothesis andci

is the predecessor ofci+1, there is a pathπi+1 from cstart to ci+1 via ci .

Since in all cases there is a path toci+1, we conclude by induction that there is a path to
ck = c.
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2.2.2 The algorithm

Using the methods of the previous section for finding the entry of a cellc, we can develop
a very simple algorithm that traverses a subdivisionS in a depth-first manner without
using mark bits or a stack and which reports all cells ofS. We assume that the subdivision
is stored as a doubly-connected edge list; see Section 1.3.1 for the notation.

Algorithm Traverse(S,c)
Input: A planar subdivisionS of which the edges and vertices form a connected set, and

a bounded starting cellc∈ S
1. ~e← Outer-incident-edge[c]
2. ReportIncident-cell[~e]
3. repeat if~e= entry(Incident-cell[~e])
4. then~e← next[twin[~e]] (∗ return from cell∗)
5. else iftwin[~e] = entry(Incident-cell[twin[~e]])
6. then ReportIncident-cell[twin[~e]]
7. ~e← next[twin[~e]] (∗ explore new cell∗)
8. else ~e← next[~e] (∗ next half-edge along current cell∗)
9. until ~e=Outer-incident-edge[c]

Of every half-edge of the counterclockwise cycle of edges around a cellc in S, algo-
rithm Traverseinspects the corresponding twin half-edge, incident to a neighboring cell.
If this half-edge is the entry of the neighboring cell, the algorithm continues in a depth-
first manner in this cell after reporting it. Note that no stack or other memory resources
are needed. Since we start with the successor of the entry-edge of a cell the algorithm is
finished with the counterclockwise cycle of edges of that cell when it encounters the entry
of the cell (line 3). Figure 2.9 shows some snapshots of a run the algorithm.

Let n be the number of edges in the subdivision. Since the subdivision is planar, both the
number of vertices and cells areO(n). In Algorithm Traversethe functionentry is called
at most 4n times, namely at most twice for each half-edge. For convex subdivisions we
can determine inO(1) time whether a half-edge is the entry of its incident cell; it follows
that the running time of AlgorithmTraverseis O(n) for convex subdivisions. For non-
convex subdivisions determining whether a half-edge is the entry of its incident cell takes
time linear in the number of edges of that cell. If the cells have constant complexity, then
the running time of our algorithm isO(n); if the cells are non-convex polygons of which
the complexity is not bounded by a constant, then the running time is bounded by the sum
of the squares of the complexities of all cells, which isO(n2) in the worst case.

Theorem 1 Algorithm Traverse reports all cells, vertices and edges of a connected sub-
divisionS with n edges without using mark bits or a stack. The running time is O(n) if all
cells are convex or if the complexity of each cell is bounded by a constant. Otherwise, the
running time is O(n2).

Algorithm Traversecan easily be adapted to report the edges and the vertices of the sub-
division as well: when a cell is reported in line 6 of AlgorithmTraverse, we list all its
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Figure 2.9: Snapshots of a run of the traversal algorithm. The traversal starts in the cell
with the dot, and lighter cells are visited before darker cells.

half-edges. To prevent a half-edge pair from being reported twice, we only report the one
that has its direction in the range[0,π). Of every half-edge~e that is reported, we report
its source vertexv if and only if~e is the first half-edge withv as the source, in a cyclic
order starting in some fixed directionθ. These tests can be performed in constant time
using standard DCEL-operations. The asymptotic running time of AlgorithmTraverseis
not affected by these adaptations.

2.2.3 Overcoming the restrictions

In Sections 2.2.1 and 2.2.2 we made the assumptions that the subdivision our algorithm
operates on is embedded inE2 and that its edges are straight line segments. In this sec-
tion we will show how to adapt the algorithm such that it can handle polyhedral terrains
represented by TINs, surfaces of three-dimensional convex polyhedra, and subdivisions
with curved arcs.
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Adapting our algorithm so that it can handle a polyhedral terrain is quite simple, if it is
represented by aTriangulated Irregular Network(TIN). A terrain is a two-dimensional
surface in three-dimensional space, with the special property that every vertical line in-
tersects it in a point, or not at all. This means that a pointp with coordinates(x,y,z) on
the terrain can be mapped to a pointp′ ∈ E2 with coordinates(x,y), and that the map-
ping of all points of the terrain toE2 is injective. Calculating theentryof a triangle in a
polyhedral terrain can be done with the method of Section 2.2.1 if we project every edge
and vertex of the triangles onE2 when it is examined; AlgorithmTraverseneeds no fur-
ther adaptations. Since every projection takesO(1) time, the asymptotic running time of
the algorithm is not affected by the projections. For TINs our algorithm is similar to the
algorithm of Gold and Cormack [46].

Corollary 1 Algorithm Traverse can be adapted to report all n triangles of a TIN in O(n)
time without using mark bits or a stack.

Boundaries of three-dimensional convex polyhedra can be dealt with in the same way,
although mapping the vertices and edges toE2 requires a little more effort for a convex
polyhedron than for a polyhedral terrain (see Figure 2.10). We assume that that the poly-
hedron is stored as a topological datastructure as described by Dobkin and Laszlo [38],
such that we can find adjacent faces, edges and vertices efficiently. To traverse and report
these features, we project them on a single facef of the polyhedron as follows: we de-
termine a pointp such that for all verticesv of the polyhedron, except those incident to
f , the line segment betweenp andv intersectsf . This intersection is the projection ofv.
Projections of edges are determined by projecting their incident vertices.

Finding a suitable pointp involves taking a facef of the polyhedron, choosing a point in
the interior of f , and translating it along the normal off to the outside of the polyhedron.
The faces incident to thetwin-edges of the half-edges boundingf determine how little we
should translate the point to the outside of the polyhedron. Testing this takes time linear
in the complexity off . After that, projections take O(1) time for each vertex and edge of
the polyhedron, and we obtain a planar convex subdivision off .

We now can run AlgorithmTraverseon the polyhedron; determining whether an edge is
the entry of a face or not is done by performing the calculations described in Section 2.2.1
on the projected version of the edge. Note that we don’t need to project the whole sub-
division in advance; it suffices to do the projections “on the fly”. Again, the asymptotic
running time of the algorithm is not affected by the projections.

Corollary 2 Algorithm Traverse can be adapted to report all faces, edges, and vertices
of a three-dimensional convex polyhedron with n faces in O(n) time without using mark
bits or a stack.

Algorithm Traversecan also be used to report the cells, arcs, and vertices of subdivisions
with curved arcs instead of straight edges, provided that the arcs have constant description
size and that we can calculate the minimum distance from a pointp to an arc. We assume
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p

Figure 2.10: Projecting the edges and vertices of a convex polyhedron to one of its faces.

that the subdivision is stored as a doubly-connected edge list again, but with half-arcs
instead of half-edges. The entry of a cell is defined almost the same as before: determine
the pointp′ on the boundary of the cell that has minimum distance to the fixed pointp
in the starting cell. Ifp′ is not uniquely defined, choose the one that is encountered first
when we rotate aroundp in clockwise direction, starting in some fixed directionθ. If p
lies on the interior of a half-arc~a, then~a is the entry of the cell. Otherwise, ifp coincides
with a vertexv of the cell that is the destination of~a and the origin of~a′, we have to
choose between~a and~a′. To this end, we need to adapt the notion ofexposed. Intuitively,
a curved half-arc~a is exposed to a pointp with respect to vertexv if close tov, the arc
a has the cell to the one side and faces the pointp to the other side. More formally,~a is
exposed top with respect tov if for all sufficiently small positive real valuesε there is a
point q 6= v on~a in anε-neighborhood ofv such that the interior of the segmentpq does
not intersect the cellc incident to~a in thatε-neighborhood ofv (see Figure 2.11). If both
half-arcs~a and~a′ are exposed top with respect tov, we choose~a, the one that hasv as its
destination, to be the entry of the cell. Otherwise, at least one of~a and~a′ is exposed top
with respect tov, and we choose the one that is exposed.

Corollary 3 Algorithm Traverse can be adapted to report all cells, arcs, and vertices of
a subdivision with n curved arcs of constant description size without using mark bits or
a stack. If the complexity of each cell is bounded by a constant, then the running time is
O(n); otherwise, the running time is O(n2).

2.2.4 Related queries

Sometimes we don’t want the whole subdivisionS to be reported, but just some connected
subsetS ′ ⊆ S, such that all cells inS ′ have the same attribute as the starting cellcstart

(Figure 2.12). For example, suppose that the starting cell lies in a forest; we then may ask
to report all cells that lie in the same forest. We will show how to adapt AlgorithmTra-
versesuch that these queries can answered efficiently as well.
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a

a′

v

p

Figure 2.11: Arc a is exposed to p with respect to v, whereas a′ is not.

Figure 2.12: A connected set of cells with the same attribute as cstart (the cell containing
the dot).

As Figure 2.12 indicates, the connected subsetS ′ of S can contain holes consisting of
cells that do not have the same attribute as the starting cellcstart. Some of the cells in
these holes can be predecessors of cells inS ′. However, we don’t want to visit cells or
half-edges in the holes. Instead, we rather consider each hole as a single cell. To do this,
we need a way to traverse the counterclockwise cycle of half-edges that bound each hole,
without ever visiting half-edges~e for which neither~e nor twin(~e) bounds a cell ofS ′.
If we can achieve this, we can express the running time of the traversal algorithm in the
combinatorial complexity ofS ′, rather than in the complexity of the whole subdivision
S. To treat a hole as one single cell we do the following (Figure 2.13): suppose that
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half-edge~e with destination vertexv is a half-edge of the boundary of a hole. We find its
successor in the counterclockwise cycle of half-edges that bound this hole by inspecting
all outgoing half-edges ofv in counterclockwise order, starting withtwin(~e), until we find
an edge~e′ that is incident to the hole. This half-edge~e′ is the successor of~e. In this
way, we can treat the holes as ordinary cells of the subdivision, except that they are not
reported. Notice that the cells ofS \S ′, not enclosed byS ′, are handled correctly also.
The algorithm won’t even notice the difference between a hole and these outer cells.

What is the effect on the running time of AlgorithmTraverse? Let k be the number of
edges inS ′. Then the total number of edges on the boundary of all holes is at mostO(k).
Each boundary edge of each hole is tested once for being the entry of the hole. Testing an
edge of a hole involves traversing all edges that bound that hole. If we do this as described
above, this takes time linear in the number of edges inS ′ of which the source vertex lies
on the boundary of the hole; this number isO(k) for all holes together. Testing each hole
once takesO(k) time; since each hole is tested at mostO(k) times, all these tests together
take at mostO(k2) time. If we combine this with the analysis in Section 2.2.2 we derive a
running time ofO(k2): the running time depends only on the complexity of the reported
cells and not on the complexity of the whole subdivision. Unfortunately, the running time
is alsoO(k2) if all cells are convex or if the complexity of each cell is bounded by a
constant, because the holes can be non-convex.

~e

v

Figure 2.13: Finding the next edge of the (lightly shaded) hole.

Note that we cannot treat holes and outer cells consisting of cells inS \S′ as single cells
if S ′ is connected but not edge-connected, as depicted in Figure 2.14: we cannot go from
cell c to cellc′ by inspecting the outgoing half-edges ofv in counterclockwise order.

Theorem 2 Algorithm Traverse can be adapted to report all cells, vertices, and edges of
an edge-connected subdivisionS ′ ⊆ S without using mark bits or a stack. The running
time is O(k2), where k is the number of edges inS ′.

Another query that arises often in practice is “given a subdivisionS and a rectangular
windowW, report all cells inS that intersectW” (Figure 2.15).
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c c′
v

Figure 2.14: The shaded cells form a connected subdivision, but this subdivision is not
edge-connected.

W

Figure 2.15: Reporting all cells that intersect a rectangular window.

We solve this query as follows. Normally when we test a half-edgee for being the entry,
we traverse the cycle of half-edges aroundc, keeping track of the edge that has minimum
distance to a predefined pointp in the starting cellc (breaking ties as described in Sec-
tion 2.2.1). We make an adaptation here: before calculating the distance of an edge to the
point p, we clip the edge to the windowW and perform our calculations on the clipped
version of the edge (Figure 2.16). Edges that don’t intersectW disappear; we consider
their distance top to be infinite. We also make a small adaptation in AlgorithmTraverse:
in line 5 we only testtwin[~e] for being the entry of its incident cell iftwin[~e] intersects the
windowW: if it doesn’t it can’t be the entry of its incident cell anyway, and omitting the
test prohibits cells that don’t intersectW to influence the running time of the algorithm.
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It is straightforward to verify that with these adaptations our algorithm is still correct.
Clipping the edges has the effect that cells that intersect the windowW possibly fall apart
into two or more pieces. Each of these pieces has a well-defined entry, and the piece
of which the entry has the minimum distance top determines the entry of the original
(unclipped) cell.

p

W

Figure 2.16: Clipping the edges of a cell to the window.

Clipping to the windowW can be done inO(1) time for each half-edge. Convex cells can
have at most one piece inside a rectangular window; testing a half-edge of a convex cell for
being the entry involves only clipping and comparing its distance top with the distances
of its predecessor and successor top. Combining this with the analysis in Section 2.2.2,
we derive the following result:

Theorem 3 Algorithm Traverse can be adapted to report all cells, edges, and vertices of
a connected planar subdivisionS with n edges that lie in a rectangular query window
W without using mark bits or a stack. If all cells ofS are convex, or if the complexity
of each cell is bounded by a constant, then the running time is O(k), where k is the total
complexity of the cells that intersect W; otherwise, if the cells are non-convex polygons of
which the complexity is not bounded by a constant, then the running time is bounded by
O(k2).

2.3 Extension to three dimensions

Extending our algorithm such that it traverses convex subdivisions in three dimensions
and reports all (three-dimensional) cells, (two-dimensional) faces, edges, and vertices is
straightforward. Dobkin and Laszlo [38] have developed data structures and operations
for handling three-dimensional subdivisions; these are comparable with the DCEL data
structure and operations that we used in the two-dimensional setting.

Again, we need to determine for each cell in the subdivision which one of its neighbors is
its predecessor in the traversal. The entry of a cell is that face of the cell that is incident to
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the predecessor of the cell. Once we are able to determine for each cell which of its faces
is its entry, we can apply the simple scheme of AlgorithmTraverseagain: we enter a cell
c through its entry, and traverse all its faces (which we can do with the method described
in Section 2.2.3, since the cells are convex). During this traversal of the faces, we test
every face on being the entry of the other incident cell. If this is the case we continue in a
depth-first manner on this cell, again without using a stack, as described in Section 2.2.2.
After returning from this cell, we proceed with the next face of the cellc, until we are
back at the entry ofc again; then we return to the predecessor ofc.

Determining the entry of a cellc of a three-dimensional subdivision is analogous to the
two-dimensional case described in Section 2.2.1: we choose an arbitrary pointp in the
starting cellcstart, and define some facef that has minimum distance top to be the entry
of c, for any cellc except for the starting cell. Letp′ be the point in the boundary ofc that
realizes the minimum distance. Ifp′ is not uniquely determined, the candidates for being
p′ lie on a sphere centered atp; we choose the candidate with the highestz-coordinate. If
this still doesn’t uniquely determinep′, the remaining candidates lie on a circle; as in the
two-dimensional case, we choose the one that is encountered first if we rotate around the
center of this circle, starting in some fixed directionθ.

If p′ lies in the interior of a facef of c, then f is the entry ofc. If p′ lies on an edge or
a vertex ofc, we have to make a choice between the faces ofc that are exposed top. We
choose the one that has the smallest angle with the plane that is tangent to the sphereC in
the pointp′. Ties can be broken in various ways, as long as it is done consistently.

2.4 Conclusions and further research

We have developed a simple, flexible, and efficient algorithm for traversing various kinds
of planar subdivisions without using mark bits in the structure or a stack. Our algorithm
reports each cell, edge, and vertex exactly once. The algorithm can handle subdivisions
embedded in the Euclidean planeE2, as well as polyhedral terrains, and boundaries of
convex three-dimensional polyhedra. It can easily be adapted to report a connected subset
of the cells in the subdivision, or to answer windowing queries; both adaptations result
in an output sensitive algorithm. Extending the algorithm to handle convex subdivisions
in three dimensions is straightforward. An implementation of the algorithm for planar
subdivisions with straight edges took about 100 lines of C-code.

A number of problems remains to be solved. We have looked at non-connected subdivi-
sions, that is, subdivisions of which the edge and vertex set is unconnected (Figure 1.10),
but at this moment it is unclear if these can be handled without making use of a stack or
other memory resources to keep track of the components in the subdivision that have been
visited.

Also unsolved is the problem of traversing the boundary of non-convex polyhedra; al-
though these are topologically equivalent to a sphere, which means that they can be pro-
jected toE2, there is no way to determine the projection of a vertex of the boundary of a
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non-convex polyhedron if we are only allowed to use local information: we need to know
the geometry of the whole polyhedron.

Since traversing non-convex three-dimensional subdivisions involves traversing the bound-
aries of its cells which are non-convex polyhedra, there is no use in attacking this problem
before the former problem has been solved.

In many practical situations such as those arising in GISs, the cells in a subdivision repre-
sent geographical entities like countries. It may well be that two adjacent cells have long
chains of edges on their common boundaries. If one of the cells is the predecessor of the
other, then only one edge in the chain is the entry. It would be interesting to find an ele-
gant way to represent chains of edges by “pseudo-edges” between vertices of degree three
and higher, in order to avoid the traversal of all the edges in the chain. This, of course,
would involve modifying the data structures and adapting the definition of theentryof a
cell. We regard this problem as an interesting subject for further research.



CHAPTER 3

Contour Trees and Small Seed
Sets for Isosurface Generation

3.1 Introduction

One of the functionalities of a GIS is to display the stored data by generating tables, charts,
and maps, either on paper or on a computer screen. As we have seen in Chapter 1, several
kinds of maps are available for displaying the different types of data. Choropleth maps
are used to display categorial data, such as different types of vegetation. Network maps,
such as railroad maps, show connections (railways) between geographic objects (stations);
the regions on a network map are meaningless. Finally, isoline maps are very effective
means for displaying scalar data defined over the plane. Such data can be visualized
after interpolation by showing one or more contours: the sets of points having a specified
value. For example, scalar data over the plane is used to model elevation in the landscape,
and a contour is just an isoline of elevation. Contours can be used for visualizing scalar
data defined over the three-dimensional space as well. In that case, the contours are two-
dimensional isosurfaces. For instance, in atmospheric pressure modeling, a contour is a
surface in the atmosphere where the air pressure is constant, an isobar. The use of isolines
or isosurfaces for displaying scalar data is not limited to the field of GIS. In medical
imaging for example, isosurfaces are used to show reconstructed data from scans of the
brain or parts of the body. The scalar data can be seen as a sample of some real-valued
function, which is called a terrain or elevation model in GIS, and a scalar field in imaging.

A real-valued function over a two- or three-dimensional domain can be represented in a
computer using a two- or three-dimensional mesh, which can be regular (all cells have the
same size and shape) or irregular. A terrain (mountain landscape) in GIS is commonly
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represented by a regular square grid or an irregular triangulation. The elements of the
grid, or vertices of the triangulation, have a scalar function value associated to them. The
function value of non-vertex points in the two-dimensional mesh can be obtained by inter-
polation. An easy form of interpolation for irregular triangulations is linear interpolation
over each triangle. The resulting model is known as the TIN model for terrains (Trian-
gulated Irregular Network) in GIS; see Section 1.2.2. In computational geometry, it is
known as a polyhedral terrain. More on interpolation of spatial data and references to the
literature can be found in the book by Watson [124].

One can expect that the combinatorial complexity of the contours with a single function
value in a mesh withn elements is roughly proportional to

√
n in the two-dimensional

case and ton2/3 in the three-dimensional case [70]. Therefore, it is worthwhile to have
a search structure to find the mesh elements through which the contours pass. This will
be more efficient than retrieving the contours of a single function value by inspecting all
mesh elements.

There are basically two approaches to find the contours more efficiently. Firstly, one
could store the two-dimensional or three-dimensional domain of the mesh in a hierar-
chical structure and associate the minimum and maximum occurring scalar values at the
subdomains to prune the search. For example, octrees have been used this way for regular
three-dimensional meshes [126].

The second approach is to store thescalar range, also calledspan, of each of the mesh
elements in a search structure. Kd-trees [70], segment trees [14], and interval trees [24,
116] have been suggested as the search structure, leading to a contour retrieval time of
O(
√

n+ k) or O(logn+ k), wheren is the number of mesh elements andk is the size of
the output. A problem with this approach is that the search structure can be a serious
storage overhead, even though an interval tree needs only linear storage. One doesn’t
want to store a tree with a few hundred million intervals that would arise from regular
three-dimensional meshes. It is possible to reduce the storage requirements of the search
structures by observing that a whole contour can be traced directly in the mesh if one
mesh element through which the contour passes is known. Such a starting element of the
mesh is also called aseed. Instead of storing the scalar range of all mesh elements, we
need only store the scalar range of the seeds as intervals in the tree, and a pointer into the
mesh, or an index, if a (two- or three-dimensional) array is used. Of course, the seed set
must be such that every possible contour of the function passes through at least one seed.
Otherwise, contours could be missed. There are a few papers that take this approach
[14, 59, 116]. The tracing algorithms to extract a contour from a given seed have been
developed before, and they require time linear in the size of the output [7, 57, 59].

The objective of this chapter is to present new methods for seed set computation. To
construct a seed set of small size, we use a variation of thecontour tree, a tree that captures
the contour topology of the function represented by the mesh. It has been used before in
image processing and GIS research [44, 46, 64, 104, 110]. Another name in use is the
topographic change tree, and it is related to theReeb graphused in Morse Theory [89,
101, 102, 110]. It can be computed inO(nlogn) time for functions over a two-dimensional
domain [30].
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This chapter includes the following results:

• We present a new, simple algorithm that constructs the contour tree. For two-
dimensional meshes withn elements, it runs inO(nlogn) time like a previous algo-
rithm [30], but the new method is much simpler and needs less additional storage.
For meshes withn faces ind-dimensional space, it runs inO(n2) time. In typical
cases, less than linear temporary storage is needed during the construction, which is
important in practice. Also, the higher-dimensional algorithm requires subquadratic
time in typical cases.

• We show thatΩ(nlogn) is a lower bound for the construction of the contour tree.

• We show that the contour tree is the appropriate structure to use when selecting
seed sets. We give anO(n2 logn) time algorithm for seed sets of minimum size by
using minimum cost flow in a directed acyclic graph [4].

• In practice one would like a close to linear time algorithm when computing seed
sets. We give a simple algorithm that requiresO(nlog2n) time and linear storage
after construction of the contour tree, and gives seed sets of small size.

• The approximation algorithm has been implemented, and we supply test results of
various kinds.

Previous methods to find seed sets of small size didn’t give any guarantee on their size
[14, 59, 116]. Shortly after the results of this chapter were published, Tarasov and Vya-
lyi [111] extended our contour tree construction algorithm and obtained anO(nlogn) time
algorithm for the three-dimensional case. Their algorithm consists of a preprocessing step
with two sweeps, after which our algorithm is used.

3.2 Preliminaries on scalar functions and the contour tree

In this section we provide background and definitions of terms used in the following sec-
tions. On a continuous functionF from d-space to the reals, thecriticalities can be identi-
fied. These are the local maxima, the local minima, and the saddles (or passes). If we con-
sider all contours of a specified function value, we have a collection of lower-dimensional
regions ind-space (typically,(d−1)-dimensional surfaces of arbitrary topology). If we
let the function value take on the values from+∞ to−∞, a number of things may hap-
pen to the contours. Contour shapes deform continuously, with changes in topology only
when a criticality is met (i.e., its function value is passed). A new contour component
starts to form whenever the function value is equivalent to a locally maximal value ofF .
An existing contour component disappears whenever the function value is equivalent to a
locally minimal value.

At saddle points, various different things can happen. It may be that two (or more) contour
components adjoin, or one contour component splits into two (or more) components, or
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that a contour component gets a different topological structure (e.g., from a sphere to a
torus in three dimensions). The changes that can occur have been documented in texts
on Morse theory and differential topology [56, 76]. They can be described by a structure
called the contour tree, which we describe below.

As an example, consider a function modeled by a two-dimensional triangular mesh with
linear interpolation and consider how the contour tree relates to such meshes. For simplic-
ity, we assume that all vertices have a different function value. If we draw the contours
of all vertices of the mesh, then we get a subdivision of the two-dimensional domain into
regions. All saddle points, local minima and maxima must be vertices of the mesh in our
setting. The contour through a local minimum or maximum is simply the point itself. One
can show that every region between contours is bounded by exactly two contours [30].
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Figure 3.1: Two-dimensional triangular mesh with the contours of the saddles, and the
contour tree.

We let every contour in this subdivision correspond to a node in a graph, and two nodes
are connected if there is a region bounded by their corresponding contours. This graph
is a tree, which is easy to show [30, 116], and it is called the contour tree. All nodes in
the tree have degree 1 (corresponding to local extrema), degree 2 (normal vertices), or at
least 3 (saddles). In other words, every contour of a saddle vertex splits the domain into
at least three regions. For each vertex in the triangulation, one can test locally whether
it is a saddle. This is the case if and only if it has neighboring vertices around it that are
higher, lower, higher, and lower, in cyclic order around it. If one would take the approach
outlined above to construct the contour tree,Ω(n2) time may be necessary in the worst
case, because the total combinatorial complexity of all contours through saddles may be
quadratic. AnO(nlogn) time divide-and-conquer algorithm exists, however [30].

In a general framework, we define the contour tree with only few assumptions on the
type of mesh, form of interpolation, and dimension of the space over which functionF is
defined. The input data is assumed to be:

• a meshM of sizen embedded inIRd;

• a continuous real-valued functionF defined over each cell ofM.
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A contour is defined to be a maximal connected piece ofIRd where the function value
is the same. Usually, a contour is a(d−1)-dimensional hypersurface, but it can also be
lower dimensional ord-dimensional. We define the contour treeT as follows.

• Take each contour that contains a criticality.

• These contours correspond to thesupernodesof T (the tree will be extended later
with additional nodes, hence we use the term supernodes here). Each supernode is
labeled with the function value of its contour.

• For each region bounded by two contours, we add a superarc between the corre-
sponding supernodes inT .

The contour tree is well defined, because each region is bounded by two and only two
contours which correspond to supernodes. In fact, it is easy to see that the contour tree is
a special case of the more general Reeb graph in the(d+ 1)-dimensional space obtained
from the domain (the mesh) extended with the function image space [89, 101, 102, 110].
Furthermore, one can show that the contour tree is indeed a tree: the proof for the two-
dimensional case given in [30] can easily be extended tod dimensions.

For two-dimensional meshes, all criticalities correspond to supernodes of degree 1, or
degree 3 or higher. For higher-dimensional meshes there are also criticalities that corre-
spond to a supernode of degree 2. This occurs for instance in three dimensions when the
genus of a surface changes, for instance when the surface of a ball changes topologically
to a torus (Figure 3.2(b)).

Superarcs are directed from higher scalar values to lower scalar values. Thus, supernodes
corresponding to the local maxima are the sources and the supernodes corresponding to
the local minima are the sinks.

To be able to compute the contour tree, we make the following assumptions:

• Inside any face of any dimension ofM, all criticalities and their function values can
be determined.

• Inside any face of any dimension ofM, the range(min,max) of the function values
taken inside the face can be determined.

• Inside any face of any dimension ofM, the (piece of) contour of any value in that
face can be determined.

We assume that in facets and edges of two-dimensional meshes, the items listed above can
be computed inO(1) time. For vertices, we assume that the first item takes time linear in
its degree. Similarly, in three-dimensional meshes we assume that these items takeO(1)
to compute in cells and on facets, and time linear in the degree on edges and at vertices.

In d-dimensional space (ford > 2), a saddle pointp is a point such that for any suffi-
ciently small hypersphere aroundp, the contour ofp’s value intersects the surface of the
hypersphere in at least two separate connected components.
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Figure 3.2: Criticalities in the three-dimensional case.

Possible criticalities in the three-dimensional case are shown in Figure 3.2. When sweep-
ing the function value from∞ to −∞, they correspond to (a) two contours merging or
splitting, but not containing the other, (b) an increment or decrement of the genus of one
contour surface, and (c) two contours merging or splitting, and one containing the other.
More cases can be distinguished when a criticality causes several of these changes to
occur at once, or when the contour ends at the boundary of the mesh.

3.3 Contour tree algorithms

In this section we assume for ease of presentation that the meshM is a simplicial decom-
position withn cells, and that linear interpolation is used. As a consequence, all critical
points are vertices of the meshM. Instead of computing the contour tree as defined in
the previous section, we compute an extension that includes nodes for the contours of all
vertices ofM, also the non-critical ones. So supernodes correspond to contours of critical
vertices and regular nodes correspond to contours of other vertices. Each superarc is now
a sequence of arcs and nodes, starting and ending at a supernode. The algorithm we’ll de-
scribe next can easily be adapted to determine the contour tree with only the supernodes.
But we’ll need this extended contour tree for seed selection in the next section. From now
on, we call the contour tree with nodes for the contours of all vertices the contour treeT .

The supernodes ofT that have in-degree 1 and out-degree greater than 1 are calledbi-
furcations, and the supernodes with in-degree greater than 1 and out-degree 1 are called
junctions. All normal nodes have in-degree 1 and out-degree 1. We’ll assume that all
bifurcations and junctions have degree exactly 3, that is, out-degree 2 for bifurcations
and in-degree 2 for junctions. This assumption can be removed; one can represent all
supernodes with higher degrees as clusters of supernodes with degree 3. For example, a
supernode with in-degree 2 and out-degree 2 can be treated as a junction and a bifurcation,
with a directed arc from the junction to the bifurcation. The assumption that all junctions
and bifurcations have degree 3 facilitates the following descriptions considerably.
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3.3.1 The general approach

To construct the contour treeT for a given mesh ind-space, we let the function value take
on the values from+∞ to −∞ and we keep track of the contours for these values. In
other words, we sweep the scalar value (see Section 1.3.2). For two-dimensional meshes,
one can image sweeping a polyhedral terrain embedded in a three-dimensional space and
moving downward a horizontal plane. The sweep stops at certain event points: the vertices
of the mesh. During the sweep, we keep track of the contours in the mesh at the value of
the sweep function, and the set of cells of the mesh that cross these contours. The cells
that contain a point with value equivalent to the present function value are calledactive.
The treeT under construction during the sweep will be growing at the bottom at several
places simultaneously, see Figure 3.3.
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Figure 3.3: Situation of the sweep of a two-dimensional mesh when the function value is
16.

Each part ofT that is still growing corresponds to a unique contour at the current sweep
value. We group the cells into contours by storing a pointer at each active cell in the mesh
to the corresponding superarc inT . The contours can only change structurally at the event
points, and the possible changes are the following:

• At a local maximum of the mesh (more precisely: of the function), a new contour
appears. This is reflected inT by creating a new supernode and a new arc incident
to it. This arc is also the start of a new superarc, which will be represented. Each
cell incident to the maximum becomes active, and we set their pointer to the new
superarc ofT . At this stage of the algorithm, the new superarc has no lower node
attached to it yet.



54 Contour Trees and Small Seed Sets for Isosurface Generation

• At a local minimum of the mesh, a contour disappears; a new supernode ofT is
created, and the arc corresponding to the disappearing contour at the current value
of the sweep is attached to the new supernode. It is also the end of a superarc. The
cells of the mesh incident to the local minimum are no longer active.

• At a non-critical vertex of the mesh, a new node ofT is created, the arc correspond-
ing to the contour containing the vertex is made incident to the node, and a new arc
incident to the node is created. There is no new superarc. Some cells incident to the
vertex stop being active, while others start being active. The pointers of the latter
cells are set to the current superarc of the contour. For the cells that remain active,
nothing changes: their pointer keeps pointing to the same superarc.

• At a saddle of the mesh, there is some change in topology in the collection of
contours. It may be that two or more contours merge into one, one contour splits
into two or more, or one contour changes its topological structure. A combination
of these is also possible in general. The first thing to do is to determine what type
of saddle we are dealing with. This can be decided by traversing the whole contour
on which the saddle lies.

If two contours merge, a new supernode (junction) is created inT for the saddle,
and the superarcs corresponding to the two merging contours are made incident to
this supernode. Furthermore, a new arc and superarc are created for the contour
that results from the merge. The new arc is attached to the new supernode. All cells
that are active in the contour after the merge set their pointer to the new superarc in
T . If a contour splits, then similar actions are taken.

If the saddle is because of a change in topology of one single contour (i.e., an
increase or decrease of its genus by one), a new supernode is made for one existing
superarc, and a new arc and superarc are created inT . All active cells of the contour
set their pointers to the new superarc.

For the sweep algorithm, we need an event queue and a status structure. The event queue
is implemented with a standard heap structure so insertions and extractions take logarith-
mic time per operation. The status structure is implicitly present in the mesh with the
additional pointers from the cells to the superarcs in the contour tree.

Theorem 4 Let M be a mesh in d-space with n faces in total, representing a continu-
ous, piecewise linear function over the mesh elements. The contour tree of M can be
constructed in O(n2) time and O(n) storage.

Proof: The algorithm clearly takes timeO(nlogn) for all heap operations. If the mesh is
given in an adjacency structure, then the traversal of any contour takes time linear in the
combinatorial complexity of the contour. Any saddle of the function is a vertex, and any
contour can pass through any mesh cell only once. Therefore, the total time for traversal
is O(n2) in the worst case, and the same amount of time is needed for setting the pointers
of the active cells.
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The quadratic running time shown above is somewhat pessimistic, since it applies only
when there is a linear number of saddles for which the contour through them has linear
complexity. We can also state that the running time isO(nlogn+ ∑m

i=1 |Ci |), where them
saddles lie on contoursC1, . . . ,Cm with complexities|C1|, . . . , |Cm|.
We claimed that the additional storage of the algorithm could be made sublinear in prac-
tice. With additional storage we mean the storage besides the mesh (input) and the contour
tree (output). We will show thatO([no. maxima] + max1≤i≤m|Ci |) extra storage suffices.
We must reduce the storage requirements of both the event queue and the status structure.

Regarding the event queue, we initialize it with the values of the local maxima only.
During the sweep, we’ll insert all vertices incident to active cells, as soon as the cell
becomes active. This guarantees that the event queue uses no more additional storage
than claimed above. Considering the status structure, we cannot afford using additional
pointers with every cell of the mesh to superarcs any more. However, we need these
pointers only when the cell is active. We’ll make a copy of the active part of the mesh,
and with the cells in this copy, we may use additional pointers to superarcs inT and to the
corresponding cells in the original mesh. When a cell becomes inactive again, we delete
it from the copy. With these modifications, the additional storage required is linear in the
maximum number of active cells and the number of local maxima. This can be linear in
theory, but will be sublinear for most real-world meshes. The asymptotic running time of
the algorithm is not influenced by these changes.

3.3.2 The two-dimensional case

In the two-dimensional case, the time bound can be improved toO(nlogn) time in the
worst case by a few simple adaptations. First, a crucial observation: for two-dimensional
meshes representing continuous functions, all saddles correspond to nodes of degree at
least 3 inT . Hence, at any saddle two or more contours merge, or one contour splits into
at least two contours, or both. This is different from the situation in three dimensions,
where a saddle can cause a change in genus of a contour, without causing a change in
connectedness. The main idea is to implement a merge in time linear in the complexity
of thesmallerof the two contours, and similarly, to implement a split in time linear in the
complexity of thesmaller resulting contour.

In the structure, each active cell has a pointer to anameof a contour, and the name has a
pointer to the corresponding superarc inT . We consider the active cells and names as a
union-find like structure [75, 112, 115] that allows the following operations:

• Merge: given two contours about to merge, combine them into a single one by
renaming the active cells to have a common name.

• Split: given one contour about to split, split it into two separate contours by renam-
ing the active cells for one of the contours in creation to a new name.

• Find: given one active cell, report the name of the contour it is in.
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Like in the simplest union-find structure, aFind takesO(1) time since we have a pointer
to the name explicitly. AMergeis best implemented by changing the name of the cells in
smaller contour to the name of the larger contour. Let’s say that contoursCi andCj are
about to merge. Determining which of them is the smallest takesO(min(|Ci |, |Cj |)) time if
we traverse both contours simultaneously. We alternatingly take one “step” inCi and one
“step” in Cj . After a number of steps twice the combinatorial complexity of the smaller
contour, we have traversed the whole smaller contour. This technique is sometimes called
tandem search. To rename for aMerge, we traverse this smaller contour again and rename
the cells in it, again takingO(min(|Ci |, |Cj |)) time.

The Split operation is analogous: if a contourCk splits intoCi andCj , the name ofCk

is preserved for the larger ofCi andCj , and by tandem search starting at the saddle in
two opposite directions we find out which ofCi andCj will be the smaller one. This will
takeO(min(|Ci |, |Cj |)) time. (Note that we cannot keep track of the size in an integer for
each contour instead of doing tandem search, because then aSplit cannot be supported
efficiently.)

Theorem 5 Let M be a two-dimensional mesh with n faces in total, representing a contin-
uous, piecewise linear scalar function. The contour tree of this function can be computed
in O(nlogn) time and linear storage.

Proof: We can distinguish the following operations and their costs involved:

• Determining for each vertex of what type it is (min, max, saddle, normal) takes
O(n) in total.

• The operations on the event queue takeO(nlogn) in total.

• Creating the nodes and arcs ofT , and setting the incidence relationships takesO(n)
time in total.

• When a cell becomes active, the name of the contour it belongs to is stored with it;
this can be done inO(1) time, and since there areO(n) such events, it takesO(n)
time in total.

• At the saddles of the mesh, contours merge or split. Updating the names of the
contours stored with the cells takesO(min(|Ci |, |Cj |)) time, whereCi andCj are
the contours merging into one, or resulting from a split, respectively. It remains to
show that summing these costs over all saddles yields a total ofO(nlogn) time.

We prove the bound on the summed cost for renaming by transformingT in two steps
into another treeT ′ for which the construction is at least as time-expensive as forT , and
showing that the cost at the saddles inT ′ areO(nlogn) in total.

Consider the cells to correspond to additionalsegmentsin T as follows. Any cell becomes
active when the sweep plane reaches its highest vertex, and stops being active when the
sweep plane reaches its lowest vertex. These vertices correspond nodes inT , and the cell
is represented by a segment connecting these nodes. Note that any segment connects two
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nodes one of which is an ancestor of the other. A segment can be seen as a shortcut of a
directed path inT , where it may pass over several nodes and supernodes.

The number of cells involved in a merge or split at a saddle is equivalent to the number
segments that pass over the corresponding supernodev in T . The set of segments passing
v can subdivided into two subsets as follows: segments corresponding to cells that are
intersected by the same contour before the merge or after the split at the saddle corre-
sponding tov are in in same subset. The size of the smallest subset of segments passingv
determines the costs for processing the saddle (since we do tandem search).

Figure 3.4: Stretching two segments (dotted) in T .

The first transformation step is tostretchall segments (see Figure 3.4); we simply assume
that a segment starts at some source node that is an ancestor of the original start node,
and ends at a sink that is a descendant of the original end node. It is easy to see that the
number of segments passing any saddle can only increase by the stretch.

The second transformation step is to repeatedlyswapsuperarcs, until no supernode arising
from a split (bifurcation) is an ancestor of a supernode arising from a merge (junction).
Swapping a superarcs from a bifurcationv to a junctionu is defined as follows (see
Figure 3.5): lets′ 6= s be the superarc that hasu as its lower supernode, and lets′′ 6= s
be the superarc that hasv as its upper supernode. The number of segments passing the
superarcss′, s, ands′′ is denoted bya, b, andc, respectively, as is illustrated in Figure 3.5.

a b c

b+c

a+b

a
b+c

a+b c

a+b+c
s′ s s′′

u

v

Figure 3.5: Swapping a superarc.
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These numbers are well-defined, since after stretching, any segment passes a superarc
either completely or not at all. Now shifts′ upward alongs, such thatv becomes its
new lower supernode, and shifts′′ downward alongs, such thatu becomes its new upper
supernode. Note that all edges passings′ and all edges passings′′ before the swap now
also passs.

Before the swap, the time spent in the merge atu and the split atv, is O(min(a,b) +
min(b,c)) wherea,b,c denote the number of segments passing these superarcs. After
the swap, this becomesO(min(a,b+ c) + min(a+ b,c)), which is at least as much. No
segment ends, because all of them were stretched.

It can easily be verified that a treeT ′, with no bifurcation as an ancestor of a junction, can
be derived from any treeT by swaps of this type only. Any segment inT ′ first passes a
sequence of at mostO(n) junctions, and then a sequence of at mostO(n) bifurcations.

We charge the costs of the merge and split operations to the segments that are in the
smallest set just before a merge and just after a split. Now, every segment can passO(n)
junctions and bifurcations, but no segment can be more thanO(logn) times in the smaller
set. Each time it is in the smaller set at a junction, it will be in a set of at least twice the size
just after the junction. Similarly, each time it is in the smallest set just after a bifurcation,
it came from a set of at least twice the size just before the bifurcation. It follows that any
segment is charged at mostO(logn) times. Summing over theO(n) segments, this results
in a total ofO(nlogn) time for all renamings of cells. This argument is standard in the
analysis of union-find structures, for instance [27].

As we noted before, Tarasov and Vyalyi [111] succeeded in extending the ideas above and
obtain anO(nlogn) time algorithm to construct the contour tree for three-dimensional
meshes.

The O(nlogn) time bounds for the contour tree construction are tight: Given a setS of
n numberss1, . . . ,sn, we can construct inO(n) time a triangular mesh withn saddles at
heightss1, . . . ,sn, such that in the corresponding contour tree all the saddles lie in sorted
order along the path from the global minimum to the global maximum.

The mesh is constructed as follows (see Figure 3.6): We placen verticesv1, . . . ,vn equally
spaced on a circleC in the (x,y)-plane with radius 2 and center at a pointc. Now we
elevate eachvi such that itsz-coordinate issi . These vertices will be the saddles in the
terrain. Next, we placen verticesw1, . . . ,wn at a circleC′ with radius 3 and also centered
atc, such that eachwi is collinear withc andvi . We elevate eachwi to height max(S)+1;
these vertices will be the local maxima. At the centerc of C andC′, we place one vertex at
height max(S)+2: the global maximum. Finally, we place a third set of verticesu1, . . . ,un

at a circleC′′ with radius 4 and centered atc, such that each vertexui is radially interleaved
with the verticesvi andvi+1. The height of all these verticesui is min(S)−1; all these
vertices lie on the global minimum. Edges in the terrain are as shown in Figure 3.6, and
the corresponding contour tree is shown in the same figure.

If we could construct the contour tree ino(nlogn) time, then we could effectively sort any
setSof n reals ino(nlogn) time by constructing a mesh for it inO(n) time as described
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{u1, . . . ,un}
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Figure 3.6: Unstructured mesh of which the contour tree contains the sorted sequence of
the input values. The contour through v1 is shown; we must have v2 < v1 < v3.

above, constructing a contour tree for the mesh ino(nlogn) time, and reporting the height
values of the vertices corresponding to the nodes on the path from the global minimum to
the global maximum in the contour tree in linear time.

3.4 Seed set selection

A seed set is a subset of the cells of the mesh. Such a set serves as a collection of
starting points from which contours can be traced, for instance for visualization. A seed
set iscompleteif every possible contour passes through at least one seed. From now
on, we understand seed sets to be complete, unless stated otherwise. Since we assume
linear interpolation over the cells, the function values occurring in one cell form exactly
the range between the lowest and the highest valued vertices. Any cell is represented as a
segmentbetween two nodes of the contour treeT , as in the proof of Theorem 5. Segments
can only connect two nodes of which one is an ancestor of the other. Like the arcs ofT ,
the segments are directed from the higher to the lower value. So each segment is in fact a
shortcut of a directed path inT . We say that the segmentpasses, or covers, these arcs of
T . Let G denote the directed acyclic graph consisting of the contour tree extended with
the segments of all mesh elements. The small seed set problem now is the following graph
problem: find a small subset of the segments such that every arc ofT is passed by some
segment of the subset.



60 Contour Trees and Small Seed Sets for Isosurface Generation

In this section we give two methods to obtain complete and small seed sets. The first gives
a seed set of minimum size, but it requiresO(n2 logn) time for its computations. The
second method requiresO(nlog2 n) time and linear storage (given the contour tree and
the segments), and gives a seed set that can be expected to be small, which is evidenced
by test results.

3.4.1 Seed sets of minimum size in polynomial time

We can find a seed set of minimum size in polynomial time by reducing the seed set
selection problem to a minimum cost flow problem. The flow networkG′ derived fromG
is defined as follows: we augmentG with two additional nodes, asourceσ and asinkσ′.
The sourceσ is connected to all maxima and bifurcations by additional segments, and the
sink is connected to all minima and junctions with additional segments. This is illustrated
in Figure 3.7, left. In the same figure (right) a shorthand for the same flow network has
been drawn: for readability,σ and σ′ have been left out, and the additional segments
incident toσ andσ′ have been replaced by “+” and “−” signs, respectively. From now
on we will use this shorthand notation in the figures.

Costs and capacities for the segments and arcs are assigned as follows: nodes inG are
ordered by the height of the corresponding vertices in the mesh, and segments and arcs
are considered to be directed: segments (dotted) go downward from higher to lower nodes,
arcs (solid) go upward from lower to higher nodes. The sourceσ is considered to be the
highest node, andσ′ the lowest. Segments inG have capacity 1 and cost 1, and arcs have
capacity∞ and cost 0. The additional segments inG′ incident toσ and σ′ also have
capacity 1, but zero cost.

From graph theory we have the following lemma:

Lemma 2 For any tree, the number of maxima plus the number of bifurcations equals the
number of minima plus the number of junctions.

Hence, the number of pluses inG balances the number of minuses. Let this number bef .

Consider the following two related problems, theflow problem(given the networkG′ as
defined above and a valuef , find a flow of sizef from σ to σ′), and theminimum cost
flow problem (find such a flowf with minimum cost). For both problems, a solution
consists of an assignment of flow for each segment and arc inG′. For such a solution, let
the corresponding segment setS be the set of segments inG that have a non-zero flow
assigned to them (the additional segments inG′ from σ to the maxima and bifurcations and
from the minima and junctions toσ′ are not inS). Hence, the cost of anintegral solution,
where all flow values are integer, equals the number of segments inS. We will show
that for any integral solution to the minimum cost flow problem onG′, the corresponding
segment setS is a minimum size seed set forG.

Lemma 3 For any integral solution to the flow problem onG′, the corresponding segment
setS is a seed set forG.
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Figure 3.7: Flow network G′ derived from G, and shorthand for G′.

Proof: Suppose that there is a flow of sizef from σ to σ′ in G′ such that the corresponding
segment setS is not a seed set forG. In other words: there is an arca in G′ such that
none of the segments inG′ coveringa has a non-zero flow assigned to it. We claim that
the number of pluses in the subtree incident to and ‘above’ the highest incident node of
a exceeds the number of minuses by one, and, analogously, that the number of minuses
in the subtree incident to and ‘below’ the lowest incident node ofa exceeds the number
of pluses by one. This can be seen as follows: splitG′ into two subgraphsG′1 andG′2
by cuttinga into a1 anda2 (see Figure 3.8), and creating a new minimum and maximum
v1 andv2 incident toa1 anda2, respectively. Since by Lemma 2 the number of maxima
and bifurcations inG′1 balances the number of minima and junctions inG′1, and there is
no node inG that corresponds to the minimumv1 in G′1, the claim holds for the subtree
incident to and ‘above’ the highest incident node ofa. Similarly, the claim holds for the
subtree incident to and ‘below’ the lowest incident node ofa. Since there is no downward
flow via a or any of its covering segments, the flow fromσ to σ′ can be at mostf −1. But
this contradicts the assumptions that there is a flow of sizef from σ to σ′ in G′ such that
the corresponding segment setS is not a seed set forG, and we conclude that the lemma
holds.

A seed set isminimal if the removal of any segment yields a set that is not a seed set. A
minimumseed set is a seed set of smallest size.
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Figure 3.8: The number of pluses is not equal to the number of minuses within both sub-
graphs incident to a.

Lemma 4 For any minimal seed set S forG, there is a solution to the flow problem onG′
such that the corresponding segment setS for that solution equals S.

Proof: We show this by induction onn, the number of nodes ofG. It is straightforward to
verify that the lemma holds forn≤ 3. Forn> 3, we observe that for any minimal seed set
Sthere is at least one arc inG that is covered by precisely one segments∈S(and possibly
by some segments inG that are not inS); otherwise, removing an arbitrary segment from
Swould yield a smaller seed set, contradicting the minimality ofS. Let a be such an arc
in G that is covered by precisely one segments∈S. If a is not incident to a leaf node ofG,
then we can splitG into two subgraphsG1 andG2 by cuttinga and the segmentscovering
it. This introduces a new minimum for one of the subgraphs, and a new maximum for
the other (Figure 3.9). LetS1 be the set of segments fromS that coverG1, with s∈ S
replaced by the appropriate segment resulting from cuttings into two parts, and defineS2

in a similar way.S1 andS2 are minimal seeds sets forG1 andG2, respectively, and both
subgraphs have fewer thann nodes. Hence, by induction, there is a solution for the flow
problem onG′1 such that the corresponding segment setS1 for that solution equalsS1, and
there is a solution for the flow problem onG′2 such that the corresponding segment setS2

for that solution equalsS2. Note that the sum of the sizes of the flows for both subgraphs
is f +1, since we added a plus and a minus in the splitting process. Given the solutions to
the flow problems for both subgraphs, it is straightforward to construct a flow that solves
the flow problem forG: simply remove the plus and minus that were added in the split,
and undo the cutting ofa ands.

This only works ifa is not incident to a leaf node ofG, otherwise the split operation results
in two subtrees, one with 2 nodes and one withn nodes, and we cannot apply induction.
As noted before, there is at least one arca that is covered by precisely one segments∈ S,
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Figure 3.9: Splitting G at an internal arc.

and by zero or more segments that are inG but not inS. So suppose that all arcs covered by
only one segment are incident to a minimum or maximum. Leta be one of those arcs, and
assume thata is incident to a maximumν of G (the case thata is incident to a minimum is
analogous). Let the other endpoint ofsbeµ. As stated before, we cannot apply induction
directly. Instead, we transformG by shortening some of its edges, such thatS remains a
minimal seed set andG can be split into two subgraphsG1 andG2 with fewer thann nodes
and with corresponding minimal seed setsS1 andS2. By the induction hypothesis, there
is a flow forG′1 for whichS1 is the corresponding segment set, and a flow forG′2 for which
S2 is the corresponding segment set. Because of the simplicity of the reduction fromG
to G1 andG2, it is straightforward to construct a flow forG′ corresponding toS, given the
flows forG′1 andG′2.

We distinguish four cases:

• ν andµ lie on the same superarc ofG (see Figure 3.10). In that case, we transform
G intoG1 by retracting all segments that passµ (i.e.,µ is made their highest incident
node), and by removingν, s and all arcs and segments betweenµ andν (the latter
segments are the ones that have their lower endpoint inbetweenν andµ, or incident
to µ). Now S\ {s} is a minimal seed set for the resulting graphG1, which has
fewer thann nodes, and by the induction hypothesis, there is a solution to the flow
problem onG′1 for which the corresponding segment set equalsS\ {s}. In this
case,G2 is the empty graph. It is straightforward to construct a solution to the flow
problem forG′, given a solution to the flow problem forG′1.

• The first supernode on the path fromν to µ is a bifurcation (see Figure 3.11). The
segments passing that bifurcation that go into the same subtree ass remain as they
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Figure 3.10: Retracting segments to the lower endpoint µ of s.

are; the ones that go into the other subtree are retracted to the bifurcation.G is split
into two subgraphsG1 andG2 by cutting off the subtree below the bifurcation and
not containingµ. Let S1 andS2 be the subsets ofSas defined in the first paragraph
of the proof.S1 andS2 are minimal seed sets for the two resulting subgraphs, both
of which have fewer thann nodes. By the induction hypothesis, there is a solution
to the flow problem onG′1 for which the corresponding segment set equalsS1, and
there is a solution to the flow problem onG′2 for which the corresponding segment
set equalsS2. From these solutions, a solution for the flow problem forG′ for which
the corresponding segment set isScan easily be derived.
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Figure 3.11: Retracting segments to a bifurcation.

• The first supernode on the path fromν to µ is a junction, andµ is not a minimum
of G for which s is the only segment inS incident to it (see Figure 3.12).G is split
into G1 andG2 by separating the superarc fromν to the junction. The subgraph
containingν is G1, and the other subgraph isG2. Segments is retracted to end at
the junction and is only used inG1. The segments originating inG1 and ending
in G2 are retracted to start at the junction.S1 andS2 are defined as before. Note
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that s is the only segment inS1; the only other segments inG1 are the ones that
both started and ended on the superarc incident toν. These segments were not inS
before the modification ofG, because they were completely covered bys. Hence,S1

is a minimal seed set forG1. All segments inS\{s} cover only arcs inG2, since the
segments inS\{s} that originated inG1 were retracted to the junction. Furthermore,
S\{s} is a seed set forG2, since any arc inG2 that was covered bysbefore the split
was covered by some other segment ofSas well, and these segments still cover the
same arcs inG2 after the split. Finally,S\ {s} is a minimal seed set forG2: if any
segments′ could be removed fromS\{s}, such thatS\{s,s′} would be a seed set
for G2, thenS\{s′} would be a seed set forG, contradicting the minimality ofS.

G1 andG2 both have fewer nodes thanG. Hence, by the induction hypothesis, there
is a solution to the flow problem onG′1 for which the corresponding segment set
equalsS1, and there is a solution to the flow problem onG′2 for which the cor-
responding segment set equalsS2. From these solutions, a solution for the flow
problem forG′ for which the corresponding segment set isScan easily be derived.
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Figure 3.12: Retracting segments to a junction.

• The first supernode on the path fromν to µ is a junction, andµ is a minimum of
G for which s is the only segment inS incident to it (see Figure 3.13). In this
case, we cannot retracts to the junction as in the previous case, since that would
leave the arc incident toµ uncovered. If the last supernode on the path fromµ
to ν is a junction, the situation is symmetric to the second case; this can be seen
by turningG ‘upside-down’ and reversing the roles ofν andµ, and of the pluses
and the minuses. Otherwise, if the last supernode on the path fromµ to ν is a
bifurcation, we transformG into G1 by removings, ν, the superarc incident toν,
and all segments that start and end on this superarc. The segments that start in the
removed superarc and pass the first junction on the path fromν to µ are retracted to
start at the junction. Symmetrically, we removeµ, the superarc incident toµ, and all
segments that start and end on this superarc. Segments that pass the last bifurcation
on the path fromν to µ are retracted to end at the bifurcation. In this case,G2 is
the empty graph. Note thats is the only segment that we removed fromS; all other
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segments that we removed are the ones that both started and ended in the superarc
incident toν, or to µ. These segments were not inSbefore the modification ofG,
because they were completely covered bys. All segments inS\ {s} cover only
arcs inG1, since the segments inS\ {s} that originated in the superarc incident
to ν were retracted to start at the first junction on the path fromν to µ, and the
segments inS\{s} that ended in the superarc incident toµ were retracted to end at
the last bifurcation on the path fromν to µ. Furthermore,S\ {s} is a seed set for
G1, since any arc inG1 that was covered bys before the split was covered by some
other segment ofSas well, and these segments still cover the same arcs inG1 after
the split. Finally,S\ {s} is a minimal seed set forG1: if any segments′ could be
removed fromS\{s}, such thatS\{s,s′} would be a seed set forG1, thenS\{s′}
would be a seed set forG, contradicting the minimality ofS.

G1 has fewer nodes thanG, and by the induction hypothesis, there is a solution to
the flow problem onG′1 for which the corresponding segment set equalsS1. From
this solution, a solution for the flow problem forG′ for which the corresponding
segment set isScan easily be derived.
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Figure 3.13: Removing a segment between a local maximum and a local minimum.

Combining Lemmas 3 and 4 gives the following result:

Theorem 6 The minimum seed set selection problem forG can be solved by applying
a minimum cost flow algorithm toG′ that gives an integral solution. Such a solution is
guaranteed to exist, and the corresponding segment set for that solution is an optimal
seed set forG.

The minimum cost flow problem can be solved with a successive shortest path algo-
rithm[4, pp. 320–324]. Starting with a zero flow, this algorithm determines at every step
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the shortest pathπ from σ to σ′, where the length of an arc or segment is derived from its
cost. The arc or segment with the lowest capacityc on this shortest pathπ determines the
flow that is sent fromσ to σ′ alongπ. Then theresidual networkis calculated (costs and
capacities alongπ are updated), and the algorithm iterates until the desired flow fromσ
to σ′ is reached, or no additional flow can be sent fromσ to σ′ along any path.

In our case,c is always 1 and the algorithm terminates afterf iterations. If we use Dijk-
stra’s algorithm to find the shortest path in each iteration, the algorithm runs inO(n2 logn)
time on our graphG′, and usesO(n) memory.

Theorem 7 An optimal seed set forG can be found in O(n2 logn) time, using O(n) mem-
ory.

3.4.2 Efficient computation of small seed sets

The roughly quadratic time requirements for computing optimal seed sets makes it rather
time consuming in practical applications. We therefore developed an algorithm to com-
pute a seed set that, after constructing the contour treeT , uses linear storage andO(nlog2n)
time in any dimension. The seed sets resulting from this algorithm can be expected to be
small, which is supported by test results.

As before we will describe the algorithm in the simplified situation that each critical
vertex of the mesh is either a minimum, maximum, junction, or bifurcation. In the case
of a junction or bifurcation, we assume that the degree is exactly three. These simplifying
assumptions make it easier the explain the algorithm, but they can be removed as before.

Our algorithm is a simple greedy method that operates quite similar to the contour tree
construction algorithm. We first construct the contour treeT as before. We store with
each node ofT two integers that will help determine fast whether any two nodes ofT
have an ancestor/descendant relation. The two integers are assigned as follows. Give
T some fixed, left-to-right order of the children and parents of each supernode. Then
perform a left-to-right topological sort to number all nodes. Then perform a right-to-left
topological sort to give each node a second number. The numbers are such that one node
u is an ancestor of another nodev if and only if the first number and the second number
of u are smaller than the corresponding numbers ofv (see Figure 3.14).

This preprocessing of the contour tree takesO(n) time, and afterwards, we can determine
in O(1) time for any two nodes whether one is a descendant or ancestor of the other.

Next we add the segments, one for each cell of the mesh, to the contour treeT to form
the graphG. Then we sweep again, now in the mesh and in the graphG simultaneously.
During this sweep the seeds are selected. At each event point of the sweep algorithm (the
nodes ofT ), we test whether the arc incident to and below the current node is covered
by at least one of the already selected seeds. If this is not the case, we select a new seed.
The new seed will always be the greedy choice, that is, the segment (or cell) for which
the function value of the lower endpoint is minimal. To determine if a new seed must
be chosen, and to be able to make a greedy choice, a few data structures are needed that
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Figure 3.14: The numbering of T .

maintain the currently chosen seed set and the candidate seeds that may be chosen next.
As before, we call the cells that contain the current sweep valueactive. The segments
and seeds of currently active cells are also called active. Similar, the superarcs for which
the higher supernode has been passed, but the lower one not yet, are called active. We
maintain the following sets during the sweep:

• A set S of currently chosen seeds. Initially, this set is empty; at the end of the
algorithm,Scontains a complete set of seeds.

• For an active superarca, let Ŝa be the set of active seeds (already chosen) that cover
a or part of it. We store a subsetSa ⊆ Ŝa that only contains the “deepest going”
seeds of̂Sa. More precisely,s∈ Sa if and only if for all s′ ∈ Ŝa,s′ 6= s, we have that
the lower endpoint ofs is not an ancestor of the lower endpoint ofs′.

• For each active superarca, letĈa be a set of of active candidate seeds that covera or
part of it. We store a subsetCa⊆ Ĉa that only contains the deepest going candidates
of Ĉa, and only if they go deeper than seeds ofSa. More precisely,c∈Ca if and
only if for all c′ ∈ Ĉa,c′ 6= c, and for alls∈ Sa, we have that the lower endpoint of
c is not an ancestor of the lower endpoint ofc′ or s.

The algorithm must be able to determine if the next arc to be swept of superarca is
covered by some chosen seed. The subsetSa is exactly the subset of non-redundant seeds
of Ŝa. Similarly, the algorithm needs to maintain candidates that can be chosen if the next
arc to be swept is not covered. The setĈa contains the active candidates, but the subset
Ca contains only those candidates that could possibly be chosen. We’ll show next thatSa

andCa can simply be stored in balanced binary trees.

The setsSa andCa correspond to a set of points in the plane whose coordinates are the two
numbers assigned to the lower endpoints of the segments inSa andCa, see Figure 3.15.
Since there are no ancestor/predecessor relationships between the endpoints of the seg-
ments in one set, none of the corresponding points lies to the right and above (or to the
left and below) any other point in the same set; the points form a so-calledstaircase. This
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Figure 3.15: Just before the sweep reaches node v, the staircases of the active, chosen
seeds in Sa (dashed) and of the active candidates in Ca (dotted).

means thatSa andCa can each be maintained as a balanced binary search tree, ordered
on the first number assigned to the lower endpoints of the segments alone. Anancestor
querywith a point(x,y) asks if the set contains a point(i, j) for which x≥ i andy≥ j.
Answering such a query is done by finding the point with maximum first number≤ x, and
testing if this point has its second number≤ y. Similarly, we can determine easily whether
a query point(x,y) has both numbers smaller than some point in the tree—adescendant
query. Since the sorted order on the first number suffices, queries on, insertions in, and
deletions fromSa andCa can be done in time logarithmic in the size of the set.

We also maintain a heap on the setCa, or rather, on the lower endpoints of the candidates
in Ca, with cross-pointers between corresponding nodes in the heap and the binary tree
for Ca. The heap allows us to extract efficiently the candidate segment with the lowest
lower endpoint fromCa.

We will now describe the sweep algorithm that computes a small seed set, and analyze
the total running time. We initialize the global setSof seeds to be empty. Then we sweep
the nodes inT from high to low values. The following events can occur:

• Source: Initialize empty setsSa andCa for the superarca starting at this node. This
takesO(1) time. Next, proceed as if the current node were a normal node.

• Normal nodev: First, update the setCa of candidate seeds for the superarca on
which the current nodev lies. For each segments that starts atv, we determine how
it affects the setCa. Let u be the lower endpoint of segments. Perform an ancestor
query on the tree storingSa; if u is ancestor of the lower endpoint of any seed in
Sa, we don’t need the segmentsas a candidate seed. In Figure 3.15, the queries are
performed with the segments that have lower endpoints at(3,17) and(6,10). If u
is not an ancestor for any lower endpoint fromSa, perform an ancestor query with
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u onCa. If u is an ancestor of the lower endpoint of any of the candidates inCa, we
also don’t need the segment as a candidate. Otherwise, perform a descendant query
with u. If u is the descendant of the lower endpoint of some candidate inCa (there
is at most one such candidate), then replace this candidate seed with the segment
s. If u has no ancestor or descendant relation, then the query segment becomes
a candidate seed; it is inserted in the binary tree and the heap forCa. Note that
we never have to worry about candidate seeds no longer being active; they will be
replaced by newer candidates before this happens.

Next, test whether the arc ofT starting atv is covered by any of the active seeds
in Sa. This is surprisingly easy: if|Sa| > 1, the lower endpoints of the segments
in Sa lie in different subtrees rooted at one or more bifurcations below the current
node, since there are no ancestor/descendant relations between the endpoints of the
segments inSa. This means that the arc incident to and and below the current node
is surely covered. On the other hand, if|Sa|= 1, we check in constant time whether
the segment inSa ends at the current node. If that is the case, we have to remove
the only segment fromSa and choose a new seed, otherwise we are done. Choosing
a new seed is also easy: Extract the candidate with the lowest lower endpoint using
the heap onCa, and remove this candidate from the binary tree onCa as well, using
the cross-pointers between the nodes in the heap and the binary tree. Next, insert
this candidate as a seed inSa and in the global set of seedsS.

The total time needed for all queries, replacements, and insertions at nodev is
O(d logn), whered is the degree ofv in G.

• Sink: Remove the setsSa andCa.

• Junction: First, for the two incoming arcsa andb at the junction, we determine
which of the two values is smaller:|Sa|+ |Ca| or |Sb|+ |Cb|. This takesO(1) time
if we keep track of the size of the sets. Suppose without loss of generality that
the first of the two sums is the smallest. Then, for each seeds in Sa, we do the
following. Let u be the lower endpoint ofs. Perform an ancestor and descendant
query onSb with u. If u is ancestor, we do nothing; ifu is descendant of the lower
endpoint of somes′ ∈ Sb, we replaces′ by s in the tree onSb. Otherwise, there are
no ancestor/descendant relations and we inserts in the tree onSb. If s is stored inSb,
it may be thats renders at most one of the candidates inCb redundant: we perform
a descendant query withu onCb to discover this, and if there is a candidate whose
lower endpoint is ancestor ofs, we remove this candidate fromCb. The time needed
for this step of the merge isO(k logn), wherek = min(|Sa|+ |Ca|, |Sb|+ |Cb|). The
merged set of active seeds is denotedSa,b.

Next, we do something similar for the two sets of candidate seeds. For each candi-
datec in Ca, let u be the lower endpoint ofc. Perform an ancestor query withu on
the setSa,b to test ifc still is a valid candidate. Ifu is ancestor of the lower endpoint
of some seed, then we discardc. Otherwise, we queryCb to see ifu is an ancestor
or descendant of the lower endpoint of a candidatec′ in Cb. If u is the ancestor,
we discardc; if u is the descendant, we replacec′ by c. Otherwise, there are no
ancestor/descendant relations and we insertc in Cb.

Finally, we proceed as if the current node were a normal node.
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Note that we cannot independently insert the seeds of the smaller set ofSa andSb

in the larger, and the candidates of the smaller set ofCa andCb in the larger; we
have to compare the seeds inSa with the candidates inCb, and the seeds inSb with
the candidates inCa.

• Bifurcation: We have to split the set of active seedsSa in two setsSb andSb′ , the
sets of active seeds for the left arcb and the right arcb′ below the bifurcation,
respectively. Note that the lower endpoint of any segment inSb has a smaller first
number assigned in the left-to-right topological sort ofT than the lower endpoint
of any segment inSb′ . Also note that we can test inO(1) time for a lower endpoint
u of a segment inSa in which of the two subtrees ofT rooted at the bifurcation
u lies, by comparingu with the highest nodes in the two subtrees. So, if we test
the segments inSa simultaneously from low to high and from high to low values
of their lower endpoints, we can determine inO(min(|Sb|, |Sb′ |)) time which of the
two resulting sets will be the smaller one. Once we know this, we can split the tree
for Sa into trees forSb andSb′ in O(min(|Sb|, |Sb′ |) logn) time, by extracting the
seeds that will go in the smaller set fromSa and inserting them in a new set. For
the setCa of candidates, we do exactly the same to obtain the setsCb andCb′ .

Next, we process the bifurcation twice as a normal node, once for the arc and the
segments that go into the left subtree of the bifurcation, and once for the arc and
the segments that go into the right subtree.

It is easy to verify that the total time needed to process all sources, sinks and normal nodes
is O(nlogn); the time needed for the junctions and bifurcations can be analyzed much the
same way as in Section 3.3.2, where we analyzed the running time for the construction of
T for a two-dimensional mesh. In this case we get a bound ofO(nlog2 n), which is also a
bound on the overall running time.

At any stage of the sweep, the memory requirements are proportional to the size of the
binary trees of all active superarcs, which isO(n) worst-case.

Test results, presented in the next section, show that the seed sets resulting from the greedy
algorithm are small. This doesn’t surprise us; in fact, for a contour tree that only has
maxima, junctions, and one single minimum, the greedy strategy is optimal. This is easy
to show by a standard replacement argument: LetSopt be an optimal seed set, letSbe the
chosen seed set, and assumeS 6= Sopt. Let s∈ Sopt−Sbe the segment that ends highest.
Let a be the highest arc ofT such thats coversa but no other seed ofSopt does so. Such
ana must exist otherwiseSopt\ {s} also covers all ofT , contradicting the optimality of
Sopt. SinceSandSopt are the same for the subtree abovea, the greedy algorithm makes its
choice only when it reaches the upper node ofa. Suppose the greedy choice iss′ 6= s. Then
s′ has its lower node on or below the lower node ofs, sinceT doesn’t have bifurcations.
It follows that{s′}∪Sopt\ {s} is also an optimal seed set, but one which has one more
segment in common withS.

For a contour tree with bifurcations, the greedy algorithm may choose segments that are
not in an optimal seed set. This happens when the algorithm must choose a seed from a
set of candidates that all pass some bifurcation. In that case, it is not guaranteed that the
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candidate with the lowest lower endpoint is the optimal one. However, we suspect that
the non-optimal choices that the algorithm may make in these cases do not increase the
size of the resulting seed set by a large factor, compared to the size of an optimum seed
set.

3.5 Test results

In this section we present empirical results for generation of seed sets using the method
of Section 3.4.2 (the method of Section 3.4.1 has not been implemented). In Table 3.5
results are given for seven data sets from various domains, both two-dimensional and
three-dimensional. The data used for testing include:

• Heart: a two-dimensional regular grid of MRI data from a human chest;

• Function: a smooth synthetic function sampled over a two-dimensional domain;

• Bullet: a three-dimensional regular grid from a structural dynamics simulation;

• HIPIP: a three-dimensional regular grid of the wave function for the high potential
iron protein;

• LAMP: a three-dimensional regular grid of pressure from a climate simulation;

• LAMP 2d: a two-dimensional slice of the three-dimensional data which has been
coarsened by an adaptive triangulation method;

• Terrain: a two-dimensional triangle mesh of a height field.

The tests were performed on a Silicon Graphics Indigo2 IMPACT with 128Mb memory
and a single 250MHz R4400 processor. Presented are the total number of cells in the
mesh, in addition to seed extraction statistics and comparisons to a previously known
efficient seed set generation method. The method presented in Section 3.4.2 represents
an improvement of 2 to 6 times over the method of [14]. The presented storage statistics
account only for the number of items, and not the size of each storage item (a constant).
Note that the seed set method presented here has, in general, greater storage demands,
though storage remains sublinear.

3.6 Conclusions and further research

This chapter presented the first method to obtain seed sets for contour retrieval that are
provably small in size. We gave anO(n2 logn) time algorithm to determine the smallest
seed set, and we also gave an algorithm that yields small seed sets and takesO(nlog2n)
time for functions over a two-dimensional domain andO(n2) time for functions over
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Data total # seeds storage time (s) # seeds storage time (s)
cells of [14] of [14]

Structured data sets
Heart 256x256 5631 30651 32.68 12214 255 0.87

Function 64x64 80 664 1.23 230 63 0.15
Bullet 21x21x51 8 964 2.74 47 1000 0.30
HIPIP 64x64x64 529 8729 121.58 2212 3969 3.24

LAMP 3d 35x40x15 172 9267 6.82 576 1360 0.33

Simplicial data sets
LAMP 2d 2720 73 473 0.69 – – –

Terrain 95911 188 2078 13.67 – – –

Table 3.1: Test results and comparison with previous techniques.

higher-dimensional domains. In typical cases, the worst case quadratic time bound seems
too pessimistic. The algorithms make use of new methods to compute the so-called con-
tour tree.

Test results indicate that seed sets resulting from the methods described here improve on
previous methods by a significant factor. Storage requirements in the seed set computation
remain sublinear, as follows from the test results.

Our work may be extended in the following directions. Firstly, it may be possible to give
worst case subquadratic time algorithms for four and higher-dimensional meshes; the
three-dimensional case was solved recently [111]. Secondly, it is important to study what
properties an interpolation scheme on the mesh should have to allow for efficient contour
tree construction and seed set selection. Finally, we strongly suspect that the algorithm
presented in Section 3.4.2 yields a seed set of at most twice the set of an optimum seed
set, but the problem of finding a proof is still open.





CHAPTER 4

Efficient Settlement Selection
for Interactive Display

4.1 Introduction

The generation of a digital map on a computer screen is a process involving many steps.
Decisions have to be made on, for instance, the target scale of the map, the kind of map
(choropleth, isoline or network map; see Section 1.1.3), which thematic layers to display,
which features of a specific layer to include or exclude, the use of colors, and the position
of the labels. Some of these steps need to be taken only once or a limited number of
times, and the decisions involved in these steps may be made by the GIS user. Other
steps may be taken repeatedly and may involve a lot of computation. It is desirable that
those steps can be performed automatically and efficiently by the GIS. An example of
such a step is the generalization process. Even when only a few thematic map layers
are selected, displaying all data in full detail is often unwanted, because it would result
in a cluttered and unreadable map. Important cartographic generalization operations are
aggregation and simplification. In aggregation, individual map features are replaced by
one or more regions representing groups of those features; for instance, individual houses
by may be replaced by a single region depicting urban area. Simplification is the reduction
of detail; for example, a polyline representing a river may be displayed with fewer line
segments, such that only the global shape of the river is maintained. More information on
generalization can be found in Robinson et al. [90] and other textbooks on cartography,
e.g. [19, 28, 63].

When cities and towns have to be displayed, choices have to be made which of them to
include and which to omit; this is called settlement or place selection (Flewelling and
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Egenhofer[42]; Kadmon[61]; Langran and Poiker[66]; Töpfer and Pillewizer[114]). It
is intuitively clear that a large city should take precedence over a smaller one when the
two have to compete for space on the computer screen. However, it is not necessarily
true that each of the selected cities is larger than any of the cities that are not selected
for display. A large city close to a yet larger city may be excluded, and a smaller city
not in the neighborhood of any other larger city may be included because of itsrelative
importance.

Settlement selection is performed just prior to generalization, although it can be consid-
ered as part of the generalization procedure as well. It has to be performed when a car-
tographer is in the process of interactively designing a map from a geographic database,
or when a GIS user is panning and zooming in or out on a small scale map. Especially in
the latter case it is necessary, or at least strongly desirable, that the selection process can
be performed automatically by the GIS. To minimize the delay in screen updates, efficient
methods for settlement selection are needed.

This chapter discusses models that have been described for settlement selection. We also
propose a new model and three variations and discuss the advantages of our models over
the existing ones. We implemented several of the models for comparison, and we provide
figures and statistics on the output of several test runs on two different data sets. In the
process of interactive map design, it is useful if the cartographer has control over things
like number of cities selected, and the degree in which clustering is allowed. We have
included these controls in the interface of the implementation.

4.1.1 Previous work

Several decades ago, Töpfer and Pillewizer[114] formalized a means to determine how
many features should be retained on a map when the scale is reduced and generalization
is performed. Settlement selection itself starts by assigning an importance value to all
settlements. The importance can simply be the population, but also a combination of
population, industrial activities, presence of educational institutions, and so on.

Langran and Poiker[66] report five different methods for the selection of settlements.
Most of them are incremental: cities are considered for display from most important to
least important, and the addition to the map is performed only if some spatial condition
is not violated. In two of the models,settlement-spacing ratioanddistribution-coefficient
control, the selection of a settlement is determined by only one, more important settlement
close by. In thegravity-modelingmethod, selection is dependent on several settlements
in the neighborhood. Theset-segmentationand quadrat-reductionmethods use recur-
sive subdivision of the plane, and a direct application of the radical law by Töpfer and
Pillewizer[114].

Flewelling and Egenhofer[42] discuss a number of factors that influence the selection of
settlements. Following Mark[72], they assume that an importance attribute is assigned to
the map features to allow for intelligent selection. Then they give a global discussion of
ranking of settlements on non-spatial properties.
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4.2 Existing and new models

Before describing the four models for settlement selection that we developed, we first dis-
cuss in Section 4.2.1 below three existing models, reported by Langran and Poiker[66]:
settlement-spacing ratio, gravity modelinganddistribution-coefficient control. The other
two methods that Langran and Poiker[66] describe,set-segmentationandquadrat-reduction,
require too much human intervention to be suitable for automated, or interactive, map de-
sign.

A disadvantage of the three existing models is that they don’t directly give arankingof
the base set of settlements. A ranking is a display order; after computing a ranking of the
base set beforehand, selecting any number of cities is simply a matter of choosing them
in order of rank. For methods that don’t determine a ranking, changing the number of
selected settlements involves recomputation.

Adaptations can be made to the existing models to control the number of selected settle-
ments from the base set, but this may have strange effects. For example, when selecting
more settlements, it can happen that one of the chosen settlements is no longer selected,
but instead a couple of others are. When selecting even more settlements, these discarded
settlements can reappear. We say that a settlement-selection model has themonotonic-
ity property if any selection of settlements necessarily includes the settlements of any
smaller selection. Since our new selection models are based on a complete ranking of the
settlements, they have the monotonicity property.

Although ranking facilitates the selection process, a model that produces a complete rank-
ing is not necessarily better than a model that doesn’t. The quality of a final selection
depends on the data set used and the purpose of the resulting map. The quality of the
existing models and our new ones can be assessed by comparing figures and statistics of
selections (Section 4.4) and by visual inspection based on our implementation available
on the World Wide Web.

In the models to be described next, we assume that an importance value is known for
each settlement. The model defines which settlements are selected when their geographic
location is incorporated as well.

4.2.1 Existing models

Settlement-spacing ratio

In the settlement-spacing ratio model, circles are placed centered at the settlements, and
the size of each circle is inversely proportional to the importance of its corresponding
settlement. More precisely, the radius isc/i wherei is the importance andc> 0 is some
constant (the same for all settlements). Settlements are tested in order of importance,
starting with the most important one. A settlement is only accepted if its circle contains
none of the previously accepted settlements. In other words: small settlements will only
be accepted if they are isolated.
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Langran and Poiker[66] don’t discuss how to influence the number of selected settlements.
Since on small scale maps distances between settlements are smaller than on large scale
maps of the same area, one can generally expect the number of displayed settlements to
increase when the scale is increased and the constant of proportionality is kept the same.
However, when a cartographer is not satisfied with the number of displayed settlements
at a given scale, there should be a means to increase or decrease this number. Selecting
fewer settlements can be as simple as stopping when the desired number is reached, but
it is impossible to increase the number of settlements this way. Alternatively, one can
tune the constant of proportionalityc. This constant determines how many settlements
are accepted; smaller values forc mean smaller circles and this generally leads to more
settlements being selected for display. This is, however, not always the case, as is illus-
trated in Figure 4.1: settlements A is accepted, B is rejected, and C and D are accepted.
But if c were slightly smaller, the circle of B would not contain settlement A anymore.
So settlements A and B are accepted, but C and D are rejected, since their circles contain
settlement B. If we continue to decreasec, settlements C and D will reappear. Note that
decreasingc while keeping the scale fixed is equivalent to keepingc fixed and increasing
the scale.

A

B
C

D

Figure 4.1: The settlement-spacing-ratio method doesn’t satisfy the monotonicity property.

The example above shows that this method doesn’t have the monotonicity property and
that a complete ranking of the cities cannot be calculated. In fact, it can be that no value
of c gives a desired number of settlements. It is also possible that two different selections
have the same size. This is all caused by the fact the the monotonicity property is not
respected by the model.

Gravity modeling

In thegravity-modelingmethod, a notion ofinfluenceis introduced: the influence of one
settlement on another one is computed by dividing the importance of the first one (the
selected one) by the distance to the other. Settlements are tested in decreasing order
of importance, and a settlements is only accepted if its importance is greater than the
summed influence of all already selected settlements ons.

As in the previous model, the number of selected settlements is fixed for a given scale.
This can be overcome by adapting the original model as follows: in the selection process,
the next settlement under consideration is accepted if the summed influence of the already
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accepted settlements on the candidate is less thanc times the importance of the candidate.
By controlling the tuning factorc, the number of selected settlements can be adjusted.
However, if we adapt the model in this way, it doesn’t respect the monotonicity property
and doesn’t give a complete ranking. Consider the following example (see Figure 4.2):

• The set of settlements consists of three settlementsA, B, andC, with importance
values of 4, 3, and 1, respectively;

• The three settlements are collinear, andB lies in betweenA andC;

• The distance betweenA andB is 1, and the distance betweenB andC is 3.

A B C

34 1

1 3

Figure 4.2: The gravity-modeling method doesn’t satisfy the monotonicity property.

In this case, the influence fromA on B is 4, the influence fromA on C is 1, and the
summed influence fromA andB onC is 2. Hence, if 0< c≤ 1 then onlyA is selected; if
1< c≤ 4/3 thenA andC are selected; if 4/3< c≤ 2 thenA andB are selected; ifc> 2
thenA, B, andC are all selected.

Distribution-coefficient control

The third method,distribution-coefficient control, uses thenearest-neighbor indexfor the
selection process. The nearest-neighbor index is the ratio of the actual mean distance to
the nearest neighbor and the expected mean distance to the nearest neighbor for a uni-
formly distributed set of settlements in a square region. The expected mean distance is
1/(
√

2p), wherep is the number of settlements per unit area. Again, settlements are
processed in decreasing order of importance. Starting with a small set of largest ones,
settlements are only accepted if their addition to the already accepted set doesn’t decrease
the nearest neighbor index. The number of settlements in the final selection is fixed and
is even independent of scale, but can be controlled again by introducing a tuning factor: a
settlement is accepted if the nearest neighbor index after its addition is at leastc times the
nearest neighbor index before its addition. Asc is lowered, more and more settlements
are selected. However, there can be values ofc for which a jump in the number of selected
settlements occurs: ifc is lowered below one of these thresholds, the acceptance of the
next settlement causes the nearest neighbor index to drop, which in turn causes the next
settlement to be selected also, and so on. Test results of our implementation show that
this cascading effect can occur in practice. This model also does not respect the mono-
tonicity property when a tuning factorc is introduced. Consider the following example
(see Figure 4.3):
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• The set of settlements consists of four settlementsA, B, C, andD, with importance
values 4, 3, 2, and 1, respectively;

• The four settlements are collinear,B, andC lie in betweenA andD, andC lies
inbetweenB andD;

• The distance betweenA andB is
√

3, the distance betweenB andC is 3
√

2−
√

3
2 − ε,

and the distance betweenC andD is ε, for ε> 0 sufficiently small.

34

√
3 3

√
2−
√

3
2 − ε

A B C D

ε

12

Figure 4.3: The distribution-coefficient control method doesn’t satisfy the monotonicity
property.

For the expected distance to the nearest neighbor we have 1/
√

2p = 1/(c′
√

k), wherek is
the number of selected settlements andc′ a constant depending on the area of interest.

The nearest-neighbor index for the initial set of settlements{A,B} is c′
√

2
√

3. If c is set
to 1, thenC cannot be added to the set of selected settlements, since the average distance
to the nearest neighbor for{A,B,C} is (

√
3+ 3

√
2−
√

3−2ε)/3 =
√

2−2ε/3, and the
nearest-neighbor index for{A,B,C} is c′(

√
2
√

3− 2ε/
√

3) < c′
√

2
√

3. Similarly, the
nearest-neighbor index for{A,B,D} is c′

√
2
√

3, so if the tuning factorc is set to 1, then
A, B, andD will be selected. If we make another selection, starting with{A,B}, and with
c lowered to 1−2ε/(3

√
2), thenC can be added to the selection, but for sufficiently small

values ofε, D cannot be added. Finally, for very small values ofc, all four settlements are
selected. It follows that in this example the monotonicity property is not respected.

Another disadvantage of the model is that the actual importance of a settlement is only
used in the order of processing, and not in the test whether the settlement should be
selected or not.

4.2.2 New models

Circle growth

In our first model, thecircle-growthmethod, a ranking of the settlements is determined
as follows: for each settlement a circle is drawn with a radius that is proportional to the
importance of the settlement. The initial constant of proportionalityc is such that no
two circles overlap. The next step is to increasec, causing all circles to grow, until the
circle of some settlement fully covers the circle of some other one. The former is said to
dominatethe latter; the latter has the lowest rank of all settlements and is removed. This
process is repeated while assigning higher and higher ranks, until only the most important
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settlement remains. For two settlementss1 ands2 with importance valuesI1 andI2, I1> I2,
and distanced(s1,s2), the circle ofs1 covers that ofs2 for c≥ d(s1,s2)/(I1− I2).

This method satisfies two important conditions:

• When two settlements compete for space on the map, the most important one of the
two will survive.

• Settlements of low importance will be displayed on the map if there are no settle-
ments of higher importance in their proximity.

The drawback of this method is that a settlement with very high importance can have
a global effect on the map: its neighborhood is a large part of the map, and too many
settlements near to it are suppressed. At the same time, in large regions with no settlement
of high importance several settlements are selected. One way of resolving this is instead
of giving each settlement a circle with a radius proportional to its importancei, letting the
radius of the circle be proportional toiα, with 0≤ α≤ 1. By tuningα the influence of the
importance of the settlements on the selection can be reduced.

Circle-growth variation I

The drawback of the (unmodified) circle-growth model led to the observation that set-
tlements with a very high importance have too much influence on the selection, and this
resulted in the opposite of preserving density locally. Our second method, a variation on
the circle-growth method, doesn’t have this problem. We’ll rank from first to last this
time, and as soon as a settlement is ranked, it receives a circle of the same size as the
other settlements that are already ranked. All settlements that are not ranked yet have a
circle of a radius proportional to their importance.

The complete ranking is calculated as follows: the settlement with the highest importance
is assigned the highest rank. Next, the settlement that is second in rank is determined by
applying the circle-growth idea. We choose the settlement whose circle is covered last
by the circle of the settlement with the highest rank, and set its importance to that of its
dominating settlement. This process is iterated, ranking a next settlement when its circle
is covered last by any one of the ranked settlements.

With this method the distribution of the selected settlements can be expected to be more
even than the distribution of the selection resulting from the circle-growth method, since
in our second method the size of the circles is the same for all selected settlements. Indeed,
our implementation verifies this; an evenly distributed selection is the result.

Although this method may seem far more time-consuming than the original circle-growth
method, it can actually be implemented more efficiently than the original method. We
will discuss this in Section 4.3.2.

Circle-growth variation II

In the previous two methods, all calculations are done with absolute importance values of
the settlements. Our third method makes qualitative rather than quantitative comparisons.
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First, the settlements are sorted by importance from low to high. Each settlement receives
as a number the position in the sorted order. This number replaces the importance value,
after which the ranking is computed as in variation I. Circles of selected settlements have
equal size, and the size of the circles of the not-yet-selected settlements is proportional to
their position in the list sorted on importance. In all our models, the domination of one
settlement over another one is determined by the importance of the settlements and the
distance between them. Compared to the previous model, the influence of the importance
values on the selection of a settlement is reduced in favor of an isolated location, and
therefore one can expect an even more evenly distributed selection than in the previous
model, but with a lower total importance. Our experiments show that this is indeed the
case.

Circle-growth variation III

In circle-growth variation I, we gave all selected settlements a circle of the same size,
proportional to the importance of the most important settlement. In this model, circle-
growth variation III, the selected settlements also get equal-sized circles, but this time the
size of the circles isc times the size of the circle of the most-important not-yet-selected
settlement for somec> 1. For the remainder, the circle-growth principles are applied in
the same way as in circle-growth variation I. This means that each time that a settlement
is selected, the size of the circles of the selected settlements decreases. The outcome of
this model depends on the value ofc. For large values ofc, we expect evenly distributed
selections with relatively low total importance values; for values ofc very close to one, the
settlements will be ranked in order of importance, which results in unevenly distributed
selections with high total importance values.

4.3 Implementation

To be able to test our models, to collect some statistical data on the different selections,
and to compare our new models with the existing ones, we implemented the discussed
models in Java, and made our implementation accessible through the World Wide Web
(seehttp://www.cs.uu.nl/˜rene/settlement/). This enables others to experiment with the
models and to validate our results.

4.3.1 User interface

The user interface is depicted in Figure 4.4: a large portion of the screen is reserved for
displaying the settlements. Below the display area are the controls: buttons for selecting
which of the seven implemented methods to use, or simply ranked by importance; buttons
for displaying names and importance values with the settlements; and buttons to set the
number of displayed settlements for the four new models. When the user selects one of the
existing selection methods, this latter group of buttons is replaced by a slider for adjusting
the tuning factor used in the three existing models (see Section 4.2.1). Statistics that are
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displayed are the total number of selected settlements, the total population of the selected
settlements (in thousands), and the average distance to the nearest neighbor (in pixels). In
our experiments, we used the population of the settlements as importance values.

Figure 4.4: The user interface

4.3.2 Algorithms and data structures

In the implementation of the models, we didn’t pay much attention to the efficiency of the
algorithms, since our focus was on the outcome of the models rather than on speed. All
models were implemented with a straightforwardO(n2) time algorithm, or worse. Recall
that for the new models, computing a ranking is preprocessing; once a ranking has been
computed, making a selection withk settlements is simply a matter of outputting the first
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k settlements in order of rank. For completeness, we discuss some ideas to improve on
the running time of a straightforward implementation for some of the models.

Both circle-growth variation I and II can be implemented by incrementally constructing
the Voronoi diagram of the ranked settlements (see Figure 4.5). We start with one ranked
settlement, the most important one; its Voronoi cell is the whole plane. Since in both
models the circles of all ranked settlements have the same size, all non-ranked settlements
are dominated by their nearest ranked neighbor. That is, their circle will be covered first
by the circle of the nearest ranked settlement. We exploit this by maintaining for each
Voronoi cell a list of non-ranked settlements that lie in that cell. One of the settlements
in each list is the last to be dominated, and it is a candidate for the next settlement to be
chosen. Each Voronoi cell gives one candidate, unless there are no non-ranked settlements
in the cell. We maintain all these candidate settlements in a heap, which makes it possible
to determine inO(1) time the next settlement to be added to the set of ranked settlements.
The algorithm repeatedly takes the following steps until all settlements have been ranked:

1. Determine the next settlements to be ranked by extracting it from the heap.

2. Determine in which Voronoi cells lies. This can be done efficiently if we store a
pointer with each candidates to the cell in which it lies.

3. Create a new cell fors in the Voronoi diagram. This involves modifying a number
of existing cells, i.e., the neighbors of the new cell ofs.

4. Inspect the lists of non-ranked settlements of all modified cells; some of the non-
ranked settlements lie in the Voronoi cell ofs. These settlements are removed
from their original list and inserted in the (new) list ofs, and the pointers of these
settlements are updated. If any of the moved settlements was a candidate for its
original cell, it is removed from the heap. A new candidate is determined for that
cell, and inserted in the heap.

5. Determine which one of the non-ranked ranked in the list ofs is the last that is
covered bys. This is a new candidate, and it is inserted in the heap.

This algorithm resembles the randomized incremental construction algorithm of Guibaset
al. [49] for computing the Delaunay triangulation ofn points inO(nlogn) expected time.
Given the Delaunay triangulation of a point set, the Voronoi diagram can be constructed in
O(n) time. The main differences of our algorithm with the one from of Guibaset al. [49]
are:

• The order in which the settlements are ranked is not random in our algorithm. In the
analysis of the algorithm of Guibaset al. [49], it is essential that the order in which
the points are inserted into the Delaunay triangulation is random. If the order of
insertion is not random, one can only prove aθ(n2) upper bound on the worst-case
running time.
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selected settlements

not selected settlements

Figure 4.5: Maintaining the Voronoi diagram of the selected settlements

• At each iteration of our algorithm, the lists of non-ranked settlements are inspected.
The total length of these lists can be linear during a linear number of iterations, even
if the settlements were ranked in random order. This also leads to anΘ(n2) running
time in the worst case.

Because of these differences, we can only prove a worst-case running time ofΘ(n2)
for our algorithm. However, under the condition that the number of Voronoi neighbors
of the settlement that is ranked in thek-th iteration isO(1) in most iterations, and that
after a constant number of iterations the non-ranked settlements are distributed more or
less evenly among the cells of the ranked settlements, the running time will probably be
closer toO(nlogn) than toO(n2). These conditions seem realistic to us, and comparable
experiments with real-world data [41, 53, 54], in which points are inserted in non-random
order, showed running times that are considerably better thanθ(n2).

Using Voronoi diagrams isn’t helpful in our first method, the unmodified circle-growth
model. The ranked settlements don’t have equal-sized circles, and this means that we
would have to use multiplicatively weighted Voronoi diagrams [10, 82], a variation of the
standard Voronoi diagram that uses a different metric. Unfortunately, noo(n2) algorithm
for the construction of such Voronoi diagrams is known.

In our last model, circle-growth variation III, Voronoi diagrams aren’t helpful either. Since
the size of the circles of the ranked settlements may change in a linear number of itera-
tions, the order in which the non-ranked settlements are dominated may also change a
linear number of times, and we would have to inspect all lists of non-ranked settlements
to test for new candidates. This would lead to anΩ(n2) running time.

Of the existing methods, the settlement-spacing ratio method can also be implemented by
incrementally constructing the Voronoi diagram of the selected settlements; a settlement
is only accepted if its circle does not contain its nearest neighbor, which we find by doing
point location in the Voronoi diagram of the selected settlements. Since settlements are
added in order of importance, we don’t need to maintain lists of non-selected settlements
for each Voronoi cell. As before, we can only guarantee aΘ(n2) worst-case running
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time, but under the assumption that the number of Voronoi neighbors of the settlement
that is ranked in thek-th iteration isO(1) in most iterations, the running time will be
closer toO(nlogn) than to quadratic. Note however that only one complete selection is
computed inO(nlogn) time, not a complete ranking. So if more settlements are needed,
the algorithm has to be started all over with a different constant of proportionality.

For the gravity-modeling method, computing even one selection takesO(n2) time. It is
not clear how to improve the performance of this model.

In the distribution-coefficient control method, testing each settlement involves determin-
ing its nearest neighbor, and determining for which of the already selected settlements the
new settlement becomes the new nearest neighbor. With a straightforward algorithm this
will take O(n2) time in total, but this can be improved toO(nlogn) time under the same
assumptions as before by incrementally constructing the Voronoi diagram of the selected
settlements. Again, this is the time needed for computing a single selection of settlements.

4.4 Test results

We tested the three existing and the four new models on two data sets that we retrieved
from the World Wide Web, one consisting of 156 cities of the USA with population figures
of 1990, and the other consisting of 139 municipalities in the Netherlands with more
recent population figures. The population of the cities was used as the importance, and
in each of the new models we made selections of sizes 10 to 60 in steps of 10. Circle-
growth variation III involves a tuning factor, and we ran that model with four different
values for the factor. For the existing models, making a selection of a specified size is
not always possible. To allow for comparison, we made selections of sizes as close as
possible to the sizes of the selections made with the new models. The results are listed in
Tables 4.1 and 4.2. Note that for the US data set, it was impossible to make selections of
any size between 10 and 55 with the distribution coefficient control method. The visual
appearance of selections of about 15 cities made with the different models is shown in
Figures 4.6–4.9.

In general, it is difficult to define what constitutes a good selection. The degree of clus-
tering can be one of the criteria, but a selection that is considered too clustered in one
situation may be perfectly acceptable in another situation. On maps where cities fulfill a
reference function, like on weather charts, clustering is undesirable, but on maps where
for instance state boundaries have a reference function, clustering need not be avoided.
The total importance of the selected settlements can be another criterion. For two selec-
tions with about the same degree of clustering, the one with the larger total importance
can be considered the better one.

To compare the different models, we included figures on the total population size of the
selected cities and the average distance to the nearest neighbor in Tables 4.1 and 4.2. From
these tables we can conclude that circle growth variation I generally gives better results
than the (standard) circle growth method; in most cases, variation I combines a larger
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Number of selected settlements
Model 10 20 30 40 50 60

Ranking by Population 20886 27304 31899 35488 38518 40858
Population Avg. NND 32 25 36 27 22 19
CG Population 17491 21562 24942 28072 30663 32972

Avg. NND 80 54 41 32 27 24
CG Var. I Population 17182 21803 25617 28014 31512 35002

Avg. NND 119 67 50 39 35 30
CG Var. II Population 10751 13774 16937 21811 24011 26811

Avg. NND 121 70 51 42 37 31
CG Var. III Population 13701 16249 19329 23183 25468 29757
factor: 5.0 Avg. NND 116 69 51 41 36 30
CG Var. III Population 17182 22064 26247 29239 33892 36805
factor: 2.0 Avg. NND 119 70 50 39 34 29
CG Var. III Population 17182 23188 26247 32099 34492 37172
factor: 1.5 Avg. NND 119 64 50 39 34 29
CG Var. III Population 20885 26867 31885 35156 38178 40134
factor: 1.05 Avg. NND 34 49 38 31 25 25

SSR No. settlements 10 19 30 40 50 59
Population 18280 23747 28983 32982 35999 38029
Avg. NND 99 65 48 38 32 29

GM No. settlements 12 22 31 40 50 59
Population 20910 27212 31635 34890 37853 39922
Avg. NND 61 43 33 28 25 24

DCC No. settlements 10 – – – 55 68
Population 18185 – – – 24512 26657
Avg. NND 95 – – – 23 18

Table 4.1: Results of test runs with a data set of 156 US cities. Population is in thousands,
summed over all selected settlements. Average distance to the nearest neighbor is in
pixels. For the existing models, it is not always possible to make a selection of a specified
size.

total population size with a greater average distance to the nearest neighbor. Variation
II gives the lowest total importance values and large distances to the nearest neighbor,
and is outperformed by variation III with factor 5.0, that gives about the same amount
of clustering but higher population sizes. Variation III with factor 2.0 is comparable
with variation I. Lowering the factor increases the total population sizes and increases the
amount of clustering.

Of the existing models, the settlement spacing ratio method combines higher total pop-
ulation values with smaller average nearest neighbor distances, compared to our circle
growth variation I. Gravity modeling favors high importance values even more, at the cost
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Number of selected settlements
Model 10 20 30 40 50 60

Ranking by Population 2986 4267 5246 5992 6634 7181
Population Avg. NND 54 35 27 22 21 18
CG Population 2647 3464 4037 4656 5080 5631

Avg. NND 50 33 31 24 23 22
CG Var. I Population 2558 3687 4278 4803 5493 5999

Avg. NND 84 53 42 36 31 27
CG Var. II Population 1414 1963 2370 2972 3324 3976

Avg. NND 100 58 43 37 31 26
CG Var. III Population 1802 2333 2803 3358 3877 4889
factor: 5.0 Avg. NND 94 59 44 36 32 28
CG Var. III Population 2014 3385 4283 4855 5470 6096
factor: 2.0 Avg. NND 95 57 42 35 31 26
CG Var. III Population 2148 3772 4538 5262 5811 6266
factor: 1.5 Avg. NND 93 50 40 33 29 26
CG Var. III Population 2977 4256 5245 5946 6613 7172
factor: 1.05 Avg. NND 57 34 28 27 23 19

SSR No. settlements 7 19 29 40 50 59
Population 2090 3695 4739 5501 5973 6575
Avg. NND 87 57 36 30 28 24

GM No. settlements 12 20 31 41 49 61
Population 3202 4143 5103 5784 6328 6938
Avg. NND 53 37 32 23 22 20

DCC No. settlements 13 20 28 40 47 70
Population 2859 3238 3487 3800 4191 4832
Avg. NND 67 51 43 34 30 20

Table 4.2: Results of test runs with a data set of 139 municipalities in the Netherlands.
Population is in thousands, summed over all selected settlements. Average distance to
the nearest neighbor is in pixels. For the existing models, it is not always possible to make
a selection of a specified size.

of a higher degree of clustering. But despite the fact that both of these models give quite
good individual selections, there is little coherence between selections of different sizes,
and some selection sizes are even impossible to obtain. Our methods, which are based on
ranking of the settlements, do not suffer from these drawbacks. Finally, the distribution
coefficient control method does not seem to give very good results: in most cases, it com-
bines a low total importance value with a small average distance to the nearest neighbor.
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Figure 4.6: Sample output of the existing methods for the dataset of US cities.

4.5 Conclusions and further research

We developed four new models for the settlement-selection problem and compared them
with three existing models. While the existing models compute a single selection, the
new models determine a complete ranking of the settlements. After ranking, selecting any
number of settlements is easy. Moreover, when selecting more settlements, all previously
selected settlements remain selected, which is not the case in the existing models. Using
our models, a cartographer can balance between a large total importance and an even
distribution of the selected settlements.

One of the topics for further research is the effects of panning and zooming on the selec-
tion. It would also be interesting to develop methods for selection of map features that
are not represented by points, such as roads, lakes, and rivers (see also [71, 84, 113, 119,
120]).



90 Efficient Settlement Selection for Interactive Display

Circle Growth

Seattle Spokane

Portland

Los Angeles

Denver

Albuquerque

El Paso Dallas

Houston

New York
Chicago

Oklahoma City

Amarillo

Circle Growth Var. I

New York

Atlanta

Miami

MemphisTulsa

Chicago

Houston

Denver

El PasoPhoenix

Los Angeles

San Francisco

Seattle

Circle Growth Var. II

New York

Seattle

San Diego

Sacamento

El Paso

Salt Lake City
Colorado Springs

Houston

Minneapolis

Miami

Chattanooga

Flint

Tulsa

Seattle

Los Angeles

Detroit
New York

Miami

Atlanta

Chicago

Tulsa

Houston

Memphis

El Paso

Minneapolis

Circle Growth Var. III

San Francisco

Phoenix

Denver

Figure 4.7: Sample output of the new methods for the dataset of US cities.
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Figure 4.8: Sample output of the existing methods for the dataset of Dutch municipalities.
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CHAPTER 5

Facility Location on Terrains

5.1 Introduction

The main advantage of a GIS over a collection of paper maps is the ability to combine
the data stored in different layers, and to do all sorts of automated analysis. Geographic
analysis is a broad subject, ranging from computing simple numbers such as population
densities of the regions of a choropleth map, to complex optimization procedures to de-
termine one or more suitable geographic locations for some specific purpose. Suppose for
example that a group of physical geographers are planning to do field studies in moun-
tainous area: where will they set up a base camp and several satellite camps? The actual
research is done in day trips to the satellite camps, and in the evening they return to the
base camp to eat and sleep. They want to find a location for the base camp that minimizes
the maximum distance from the base camp to any of the satellite camps. This is an ex-
ample of thefacility location problem, and in this chapter we address this problem in its
abstract form. We model the mountainous area as a polyhedral terrain, or a TIN, defined
by n triangles (see Section 1.2.2), and assume that a set ofm point siteson the TIN is
given. We assume throughout this chapter thatm≤ n. The distance between two points
on the terrain is the minimum length of any path between those points that lies on the
TIN. The facility centerof the sites is the point on the TIN that minimizes the maximum
distance to a site. To avoid problems involving the boundary of the TIN, we show how to
extend the TIN to a polyhedron, such that for any two pointsp andq on the original TIN,
any path betweenp andq that leaves the original TIN cannot be a shortest path. This also
enables us to use the results of others on shortest paths on polyhedra.
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5.1.1 Previous work and new results

In the Euclidean plane, the facility center, or the center of thesmallest enclosing discof a
set ofmpoint sites, can be determined inO(m) time. Several algorithms attain this bound.
Megiddo [74] gave the first deterministic linear-time algorithm, and a much simpler, linear
expected time algorithm was found by Welzl [125].

There is a close connection between the facility center and the furthest-site Voronoi di-
agram of the sites. Namely, the facility center must lie at a vertex or on an edge of this
diagram. In the plane, with Euclidean distance, the furthest-site Voronoi diagram has cells
only for the sites on the convex hull of the set of sites, and all cells are unbounded.

It appears that on a polyhedron, some of the properties of furthest-site Voronoi diagrams
in the plane no longer hold. For instance, a bisector on the polyhedron is generically
a closed curve consisting of as many asΘ(n2) straight-line segments and/or hyperbolic
arcs, in the worst case. In general, it may also contain two-dimensional portions of the
surface of the polyhedron.

Mount [78] showed that thenearest-neighborVoronoi diagram ofm sites on (the surface
of) a polyhedron withn faces withm≤ n has complexityΘ(n2) in the worst case; he also
gave an algorithm that computes the diagram inO(n2 logn) time. We do not know of any
previous work on furthest-site Voronoi diagrams on a polyhedron.

The problem of computing the shortest path between two points along the surface of a
polyhedron has received considerable attention; see the papers by Sharir and Schorr [100],
Mitchell, Mount and Papadimitriou [77], and Chen and Han [22]. The best known algo-
rithms [22, 77] compute the shortest path between two given points, the sources and
destinationt, in roughlyO(n2) time. In fact, these algorithms compute a data structure
that allows us to compute the shortest path distance between the sources to any query
point p in O(logn) time. The algorithm of Mitchell et al [77] is a continuous version of
Dijkstra’s algorithm for finding shortest paths in a graph [35], while Chen and Han [22]
solve the problem by determining shortest paths in anunfoldingof the polyhedron; see
also [5].

In his master’s thesis, van Trigt [121] gave an algorithm that solves the facility location
problem on a polyhedral terrain inO(m4n3 logn) time, usingO(n2(m2 +n)) space.

This chapter gives anO(mn2 log2mlogn) time algorithm to compute the furthest-site
Voronoi diagram and find the facility center for a setS of m sites on the surface of a
polyhedron withn faces. Given the linear-time algorithm for finding the facility center
in the plane, this bound may seem disappointing. However, the algorithm for computing
the furthest-site Voronoi diagram is near-optimal, as the combinatorial complexity of the
diagram isΘ(mn2).
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5.2 Extending a TIN to a polyhedron

In many practical situations, a TIN is defined over a rectangle. More precisely, it is the
graph of a piecewise linear function defined over[xleft,xright]× [ybottom,ytop]. To avoid
complications involving the boundary of the TIN, and to be able to use results of others
on shortest paths and Voronoi diagrams on polyhedra, we extend the terrain to the surface
of a polyhedron.

Any TIN consisting ofn triangles can be extended withO(n) additional triangles to the
surface of a polyhedron that is homeomorphic to a sphere, such that for any two points
p,q on the triangles of the original TIN, any path fromp to q that leaves the original TIN
cannot be a shortest path on the polyhedron. The construction is as follows:

The polyhedron will be shaped somewhat like a box, with the original TIN ‘on top’ (see
Figure 5.1). Letd be an upper bound on the length of the shortest path between two
points on the original TIN. First, we extend the domain of the TIN to[xleft−d,xright +
d]× [ybottom−d,ytop+d]. From each vertex on the original boundary of the TIN, we start
a new edge, perpendicular to this boundary, and ending at the new boundary. We let all
these new edges be horizontal, in other words, normal to thez-axis. Next, the resulting
new rectangles are triangulated by adding a diagonal edge. So far, we have constructed
the top of the polyhedron. (Note that the edges on the new boundary are not all horizontal,
unless the edges on the original boundary are horizontal.)

Let zlow be thez-value of the lowest vertex in the terrain. The ‘bottom’ of the polyhedron
is the rectangle([xleft−d,xright +d]× [ybottom−d,ytop+d],zlow−1).

From the vertices on the boundary of the top of the polyhedron, we start edges parallel
to thez-axis, and ending at the boundary of the bottom rectangle. The resulting vertical
rectangles are triangulated by adding diagonal edges. Finally, we place a vertex in the
interior of the bottom rectangle, and connect it with edges to all vertices on the boundary
of the bottom rectangle. The resulting polyhedron is highly degenerate, but our algorithm
is not influenced by these degeneracies.

Because of the dimensions of the top of the polyhedron, no shortest path fromp to q, both
on the original TIN, can cross a triangle on the sides or the bottom of the polyhedron.
For any path fromp to q that only crosses triangles on the top of the polyhedron, the
maximal sub-paths that cross only new triangles on top of the polyhedron can be replaced
by shorter paths along the boundary of the original TIN.

5.3 The complexity of the furthest-site Voronoi diagram
on a polyhedron

Previous papers on shortest paths on polyhedra [22, 77, 100, 121] use a number of impor-
tant concepts that we’ll need as well. We review them briefly after giving the relevant
definitions.
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Figure 5.1: Extending a TIN (shaded) to the top of a ‘box-like’ polyhedron.

In the remainder of this chapter,P is (the surface of) a polyhedron. As stated before, we
only allow polyhedra homeomorphic to a ball, so that their surfaces are homeomorphic
to a sphere. For two pointsp and p′ on the surface ofP, we define the distance d(p, p′)
to be the length of the shortest path fromp to p′ along the surface ofP. Let Sbe a set of
m point sites onP. Consider first a single sites∈ P. For any pointp on P we consider
a shortest path fromp to s; note that in general such a path need not to be unique. Such
a shortest path has a number of properties. First, if it crosses an edge ofP properly, then
a principle of refraction holds. This means that if the two incident triangles were pivoted
about their common edge to become co-planar, then the shortest path would cross the
edge as a straight-line segment. This principle is calledunfolding. For any vertex on the
polyhedron, we define itstotal angleas the sum of the angles at that vertex in each of the
triangles incident to it. The shortest path cannot contain any vertex for which the total
angle is less than 2π, except possibly at the sourcep and the targets.

Any shortest path crosses a sequence of triangles, edges, and possibly, vertices. If two
shortest paths on the polyhedron cross the same sequence (in the same order), we say that
these paths have the sameedge sequence. If a shortest path fromp to s contains a vertex
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of the polyhedron, the vertex reached first fromp is called thepseudorootof p. If the path
does not contain any vertex, then sites is called the pseudoroot ofp.

Theshortest path map (SPM) of sis defined as the subdivision ofP into connected regions
where the shortest path tos is unique and has a fixed edge sequence. For non-degenerate
placements ofs, the closures of the regions coverP, so the portion ofP outside any region,
where more than one shortest path tos exists, consists of one-dimensional pieces. When
two pseudoroots have the same distance tos, the exterior of the regions of the SPM may
have two-dimensional parts.

It is known that the shortest path map of a site has complexityO(n2); this bound is tight in
the worst case. The SPM restricted to a triangle is actually the planar Euclidean Voronoi
diagram for a set of pseudo-sites with additive weights (see Figure 5.2). The pseudo-sites
are obtained from the pseudoroots. The coordinates of the pseudo-sites are obtained by
unfolding the triangles in the edge sequence to the pseudoroot so that they are all co-
planar. The weight of a pseudo-site is the shortest-path distance from the corresponding
pseudoroot to the sites. It follows that the boundaries of regions in the SPM within
a triangle consist of straight-line segments and/or hyperbolic arcs. For any point on a
hyperbolic arc or a segment there are two shortest paths toswith different pseudoroots.

10

11

14

12

Figure 5.2: The SPM restricted to a triangle is the Euclidean Voronoi diagram for a set of
sites with additive weights.

Given two sitess andt on the polyhedron, thebisectorβ(s, t) is the set of those points
p on the polyhedron whose shortest path tos has length equal to the shortest path tot.
The bisector consists of straight-line segments, hyperbolic arcs, and may even contain
two-dimensional regions. Such regions occur only when two sites have exactly the same
distance to some vertex ofP. For simplicity, we assume that these degeneracies don’t
occur.

Theclosest-site Voronoi diagramof a setSof msites onP, denoted by VD(S), is a planar
graph embedded inP that subdividesP into maximal open regions associated with the
sites inS, with the property that a pointp∈ P lies in the region of a sites∈ S if and only
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if d(p,s)< d(p,s′) for eachs′ ∈ Swith s′ 6= s. The interior of the boundary between two
adjacent regions is anedgeof the Voronoi diagram; it is easy to see that each edge lies on
a bisector of two sites inS. The non-empty intersections of the closures of three or more
regions of the Voronoi diagram are itsvertices. We assume that all vertices have degree
three; otherwise, a degeneracy is present.

The furthest-site Voronoi diagramof a setSof m sites onP is a similar subdivision ofP
into maximal open regions. The difference is that a pointp∈ P lies in the region of a site
s∈ S if and only if d(p,s) > d(p,s′) for eachs′ ∈ Swith s′ 6= s. In this chapter, we give
a new algorithm for computing the furthest-site Voronoi diagram of a setSof sites on a
polyhedron. We denote it by FVD(S), and refer to it more loosely asthe diagram. The
region of a sites∈ S, either VD(S) or FVD(S), is denoted byR(s).

The following facts are crucial for the algorithm below to work and for the analysis to
hold. Lemmas 5, 6, and 7 are similar to the lemmas in Leven and Sharir [69]; they are
general statements about a large class of metrics and hold under very general conditions.

Lemma 5 In the closest-site Voronoi diagram of a set S of sites on P, the regionR(s) of
a site s∈ S is connected.

Proof: Let p be a point inR(s), let π(p,s) be a shortest path fromp to s, and letp′ be
an arbitrary point onπ(p,s). The sub-pathsπ(p, p′),π(p′,s) ⊂ π(p,s) are also shortest
paths, and d(p,s) = d(p, p′)+d(p′,s). It follows that d(p′,s)< d(p′, t) for anyt ∈S, t 6= s;
otherwise, there would be a path fromp to t via p′ that is shorter than d(p,s), contradicting
the fact thatp is closer tos than tot. Hence, any pointp′ on π(p,s) lies inR(s), and any
two pointsp andq inR(s) are connected viasby a path that lies completely inR(s).

Lemma 6 Bisectorβ(s, t) is connected and homeomorphic to a circle.

Proof: Consider the closest-site Voronoi diagram of{s, t}. The closures ofR(s) andR(t)
in this Voronoi diagram cover the whole surface of the polyhedron, and, by the previous
lemma, bothR(s) andR(t) are connected. SinceP is homeomorphic to a sphere,β(s, t),
which is the boundary betweenR(s) andR(t), must be connected and homeomorphic to
a circle.

Lemma 7 For any three distinct sites s, t, and u, bisectorsβ(s, t), andβ(s,u) intersect at
most twice.

Proof:

Consider the closest-site Voronoi diagram of{s, t,u}. At an intersectionχ of β(s, t) and
β(s,u), we have that d(χ,s) = d(χ, t) = d(χ,u). Therefore,χ also lies on the third bisector
β(t,u), andχ is a vertex of the Voronoi diagram of{s, t,u}, incident toR(s), R(t) and
R(u).
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Now suppose that the bisectorsβ(s, t) andβ(s,u) (and consequentlyβ(t,u)) intersect at
least three times. Let these intersections beχ1, χ2, andχ3. Look at theε-neighborhoods
of the three intersections. We can chooseε small enough to assert that none ofs, t or u
lies in anyε-neighborhood. Each of the intersections is incident toR(s),R(t) andR(u),
and, by Lemma 5, these regions are connected. Therefore, there is a shortest path froms
to each ofχ1, χ2, andχ3, and the interior of each of those shortest paths lies completely in
R(s). The same holds fort andu. But no two of the nine shortest paths may cross, which
is impossible, since aK3,3 is not realizable as a planar graph (see Figure 5.3). Hence, it
follows that bisectorsβ(s, t), β(s,u) intersect at most twice.

s t u

χ1 χ2 χ3

Figure 5.3: Shortest paths from s, t, and u to χ1, χ2, and χ3.

Any family of simple closed curves (in this case, on a topological sphere) of which every
pair crosses at most twice is called afamily of pseudocircles.Thus for every fixeds∈ S,
the bisectors{β(s, t) : t 6= s} form a set of pseudocircles. Every pseudocircle in such a
set partitions the surface of the polyhedron into two connected two-dimensional regions,
or pseudodisks. We call the region that containss the interior (with respect tos) of a
pseudocircle; the region not containings is called theexterior.

Lemma 8 LetB be a set of pseudocircles on the surface of a simple polyhedron P. If the
common interior of the pseudocircles inB is non-empty, then the common exterior of the
pseudocircles inB is connected.

Proof: Suppose for the sake of contradiction that the common interior of the pseudocir-
cles inB is non-empty, and that the common exterior of the pseudocircles inB is not
connected. LetB′ ⊆ B be a minimal subset of pseudocircles such that the common exte-
rior of the pseudocircles inB′ consists of at least two connected regionsR1,R2. Observe
thatR1 must be incident to all pseudocircles inB′. Otherwise, the removal of a pseudo-
circle not incident toR1 would leaveR1 unchanged and can only enlargeR2, but it cannot
join the two regions, and this contradicts the minimality ofB′. Analogously,R2 must be
incident to all pseudocircles inB′. Also observe that all pseudocircles inB′ must inter-
sect: a pseudocircle that lies completely in the interior of another one is not incident toR1
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andR2, and can be removed without affecting the two regions. Again, this contradicts the
minimality of B′.
Let p1 andp2 be two arbitrary points in the interiors ofR1 andR2, respectively. The fact
that p1 andp2 lie in different components of the common exterior of the pseudocircles in
B′ means that there exists a closed path in the union of the interiors of the pseudocircles
in B′ that separatesp1 and p2. Indeed, the situation must be as depicted in Figure 5.4:
each pseudocircle can intersect at most two other pseudocircles. Otherwise, if the inci-
dence graph of the pseudocircles would contain a chord, we could drop at least one of
the pseudocircles and still find a closed path in the union of the interiors of the remain-
ing pseudocircles that separatesp1 and p2. On the other hand, the incidence graph of
the pseudocircles inB′ must be a complete graph, since their common intersection is
non-empty and no pseudocircle inB′ lies in in the interior of another one.

p1

p2

Figure 5.4: Pseudocircles separating p1 from p2.

It follows that the number of pseudocircles inB′ is at most three, and inspection of all
topologically different arrangements of at most three pseudocircles shows that it is not
possible for the pseudocircles to attain a common exterior of two or more connected
regions if their common interior is non-empty.

Lemma 9 Bisectorβ(s, t) consists of O(n2) straight-line segments and hyperbolic arcs.

Proof: The claim follows directly from the fact that the Voronoi diagram ofm sites on a
polyhedron withn faces withm≤ n has complexityθ(n2) in the worst case; see the paper
by Mount [78].

Since the edges of the closest- and furthest-site Voronoi diagram lie on the bisectors of
two sites inS, each edge also consists ofO(n2) line segments and hyperbolic arcs. To
simplify our exposition, the intersections between two adjacent segments or arcs on the
edges are referred to asbreakpoints, as opposed to theverticesof the diagram that we
defined before. We consider the point where a bisector crosses an edge ofP also to be a
breakpoint.
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Lemma 10 The furthest-site Voronoi diagram FVD(S) of a set S of m sites on a polyhe-
dron has O(m) cells, vertices, and edges.

Proof: LetRs>t be the region of points that are further away froms than fromt, for s, t ∈
S. In this notationR(s) =

⋂
t∈S,t 6=sRs>t . From Lemma 7 it follows that this intersection

is the common exterior of set of pseudo-disks that all contains. From Lemma 8 it follows
that this common exterior is connected. So we have at most one cell (region) for each
site inS, and each vertex of the diagram has degree at least three. By Euler’s relation for
planar graphs, the number of vertices and edges of FVD(S) is alsoO(m).

We define thetotal complexityof FVD(S) to be the sum of the number of vertices and
breakpoints in FVD(S).

Lemma 11 The maximum total complexity of FVD(S) is Θ(mn2).

Proof: Each edge of FVD(S) is part of some bisectorβ(s, t) for two sitess, t ∈ S. Conse-
quently, the upper bound follows from Lemmas 10 and 9.

As for the lower bound, we describe a construction that shows that FVD(S) for a setSof
m point sites on a non-convex polyhedronP with O(n) edges can have total complexity
Ω(mn2). The construction will focus on proving anΩ(mn)-bound for a single edge ofP.
It is described for point sites in the plane with obstacles. This can then be “lifted” to a
non-convex polyhedron.

First we will describe the location of the sites, then the obstacles. Assume that|S| is even;
we splitS into S1 andS2 with k = m/2 points each. Figure 5.5 shows the configuration of
the sitesS1 = {s1, . . . ,sk} (in the figure,k = 5). For ease of description, we also specify
two additional pointss0 andsk+1; these arenot sites. The sitess1, . . . ,sk ∈ S1 and the
pointss0 andsk+1 are placed equally spaced on the lower semi-circle of a circleC1. For
1≤ i ≤ k+ 1, let bi−1 be the point where the bisectorβ(si−1,si) meets the upper semi-
circle ofC1. Note that any point on the arc of the upper semi-circleC1 betweenbi−1 and
bi is further away fromsi than from any other site inS1. Let γi denote the cone originating
at sitesi that is bounded by the rays ray(si ,bi−1) and ray(si ,bi). The portion of the cone
γi that lies outsideC1 is further away fromsi than from any other site inS1. Figure 5.5
only shows the conesγ2, γ3 andγ4.

Let ` be a horizontal line lying some distance above the circleC1. The second set of sites
S2 = {s′1, . . . ,s′k} is obtained by reflecting the setS1 through`. That is,s′i is such that̀ is
the bisector ofsi ands′i . The points inS2 lie on a circleC′1 which is the reflection ofC1.
The coneγ′i is defined analogously and is the reflection ofγi . Let `i be the intersection of
coneγi and`. Note that̀ i is also the intersection ofγ′i and`.

We have specified the point sites. Now we will specify the location of the obstacles. The
important fact is that the conesγi , . . . ,γk have a common intersection around the center
of circle C1. Let C2 be a small circle lying within this common intersection, and let the
segmentab be the horizontal diameter ofC2. Figure 5.5 (detail) shows the circleC2 and
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Figure 5.5: The configuration of S1 and the obstacles in C2 (detail).

the segmentab. Let a′b′ be the reflection ofab through`. Our obstacle set will be the
segmentsab anda′b′ minus a number of narrow holes (through which a path can pass).
The segmentab has an evenly spaced seth1, . . . ,hn of narrow holes. The segmenta′b′

also has an evenly spaced seth′1, . . . ,h
′
n of narrow holes; the only difference is that these

holes are slightly shifted to the left.

We specified all the points and obstacles. Now, we will argue that the line` is intersected
by k = m/2 edges of FVD(S), each of which crosses̀Ω(n) times. Let us focus on the
portion`i of the line`. Since any point iǹ i is further away fromsi (resp.s′i ) than from
any other site inS1 (resp.S2), si ands′i are the only relevant sites for FVD(S) near`i . We
will now argue thatβ(si ,s′i) crosses̀ Ω(n) times. For 1≤ j ≤ n, let pi, j (resp. p′i, j ) be
the point of intersection of the line throughsi (resp.s′i ) andhj (resp.h′j ) and the linè .

Because of the horizontal shift of the holes ina′b′, the points occur interleaved on`i as
the sequencep′i,1, pi,1, p′i,2, pi,2, . . . , p′i,n, pi,n. This is illustrated in Figure 5.6 for̀2. For
1≤ j ≤ n, sincesi can “see”pi, j whereass′i cannot, there is a neighborhood aroundpi, j

that is closer tosi than tos′i . By symmetric reasoning, there is a neighborhood aroundp′i, j
that is closer tos′i than tosi . It follows that the bisectorβ(si ,s′i) must cross̀ i between
p′i, j and pi, j , and also betweenpi, j and p′i, j+1. Thus,β(si ,s′i) crosses̀ i Ω(n) times, as
illustrated in Figure 5.6.

One getsΩ(kn) = Ω(mn) crossings for linè , since one getsΩ(n) crossing for each̀i .
The pattern can be repeated onn lines parallel tò and sufficiently close tò. This gives
Ω(mn) crossings for each of then lines. The sites and the obstacles can be perturbed to
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p2,2p2,1 p2,3 p2,4 p2,5

p′2,2p′2,1 p′2,3 p′2,4 p′2,5
`2

β(s2,s′2)

Figure 5.6: Detail of β(s2,s′2).

a general position without affecting the lower bound complexity. By treating the lines as
edges on a polyhedron, and ‘raising vertical cylinders’ with the obstacles as bases, we can
get theΩ(mn2) bound for the total complexity of FVD(S) on a polyhedron.

The facility center ofScan be found by traversing the edges of FVD(S), and determining
for each elementary arc or line segment of each edge the maximum distance to the two
sites of the regions on both sides of the edge. These distances can be computed inO(1)
time, and the maximum of all these distances determines the location of the facility center.
Since FVD(S) has maximum total complexityO(mn2), we obtain the following.

Corollary 4 Given FVD(S), the facility center of S can be computed in O(mn2) time.

5.4 Computing the furthest-site Voronoi diagram

In this section, we describe our algorithm for computing the furthest-site Voronoi diagram
of the given setSof msites on the surface of polyhedronP, consisting ofn triangles. Our
algorithm uses ideas from the algorithm of Ramos [87] for computing the intersection of
unit spheres in three dimensions. We first give an outline of the algorithm, and get into
the details in the subsequent subsections.

The algorithm for computing FVD(S) works as follows:

• If |S|= 1, then FVD(S) is the whole surface of the polyhedron. If|S|= 2, compute
the closest-site Voronoi diagram (which is equivalent to the furthest-site Voronoi
diagram) with the algorithm of Mount [78] inO(n2 logn) time.

• Otherwise, if|S| ≥ 3, subdivideS into two subsetsR (thered sites) andB (theblue
sites) of about equal size, i.e.,|R|= b|S|/2c, and|B|= d|S|/2e.

• Recursively compute FVD(R) and FVD(B).

• Merge FVD(R) and FVD(B) into FVD(R∪B) = FVD(S) as follows:

– Determine the set of sitesR0 ⊆ R that have a non-empty region in FVD(R),
i.e., FVD(R) = FVD(R0). Observe that the remaining sites inR\R0 don’t
influence the final diagram. Similarly, computeB0⊆ B.



104 Facility Location on Terrains

– Determine anlow-degree independent set R′0⊂R0, which is a subset with the
property that the region of a sites∈ R′0 has at most 9 neighbors in FVD(R0),
and no two sitess,s′ ∈ R′0 are neighbors in FVD(R0). (Two sites are said to
be neighborsif their regions share an edge of the diagram.) ComputeR1 =
R0 \R′0 and FVD(R1), and repeat this step to generate a Dobkin-Kirkpatrick
hierarchy [37]R0 ⊃ R1 ⊃ . . . ⊃ Rk and their furthest-site Voronoi diagrams,
such thatRk has only a constant number of sites. Do the same for the blue
sites to achieveB0 ⊃ B1 ⊃ . . . ⊃ Bl and their furthest-site Voronoi diagrams.
See Section 5.4.2 for details.

– Compute FVD(Ri ∪Bl ) for 0≤ i ≤ k, exploiting the fact thatBl has only a
constant number of sites. Similarly, compute FVD(Rk ∪Bj) for 0≤ j ≤ l .
This is thebasic merge step. See Section 5.4.3 for details.

– Compute FVD(Ri ∪Bj) from FVD(Ri ∪Bj+1) and FVD(Ri+1∪Bj). This is
thegeneric merge step, which when repeated gives FVD(R0∪B0) = FVD(S).
See Section 5.4.4 for details.

During the construction of FVD(S), we create standard and furthest-site Voronoi diagrams
of subsets ofS as intermediate structures. We maintain FVD(S) and these intermediate
structures as doubly connected edge lists (see Section 1.3.1), to be able to efficiently de-
termine and preserve topological relations between Voronoi regions, edges, and vertices.

5.4.1 Edge tracing

Several stages of the algorithm for constructing FVD(S) involve the computation of new
Voronoi cells of FVD(S′) for S′ ⊆S, or the modification of existing Voronoi cells. A basic
step is the generation of Voronoi edges or parts of Voronoi edges. Recall that the edges
of FVD(S′) lie on the bisectors of sites inS′, and consist ofO(n2) hyperbolic arcs and/or
straight line segments. To generate an edgee that is incident to the regions ofsi ,sj ∈ S′,
we need to know a starting point of the edge (i.e., the location of one of the vertices of
FVD(S′) incident toe), and an endpoint (i.e., the location of the other vertex incident to
e). We calculate the bisectorβ(si ,sj) in O(n2 logn) time using the algorithm of Mitchell
et al. [77]. We store it as a doubly linked list of hyperbolic arcs and straight line segments,
such that we can traverse it in two directions. Next, we traverseβ(si ,sj), until we reach
the starting point ofe. From that point on, we output the hyperbolic arcs and straight line
segments of whiche consists, until we reach the endpoint ofe. Traversingβ(si ,sj) takes
O(n2) time, and testing whether we have reached the starting point or the endpoint ofe
can be done inO(1) time for each elementary hyperbolic arc or straight line segment.
Hence, the total time needed to generate an edge of FVD(S′) is O(n2 logn). The amount
of memory needed is bound by the size of the shortest path maps ofsi andsj , and of
β(si ,sj), which isO(n2). These results are summarized in the following lemma:

Lemma 12 Given a set of sites S on a polyhedron P with n triangles and the two vertices
incident to an edge e of FVD(S′) for S′ ⊆ S, e itself can be computed in O(n2 logn) time
using O(n2) memory.
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Suppose that we have generated all the edges of the region ofsi ∈ S′, including e, the
common edge of the regions ofsi andsj . Later on in the algorithm, we may have to
generate the edges of the region ofsj , including e. This poses two problems. First, it
means that we have to compute the bisector ofsi andsj again. However, since each edge
is incident to two regions, this doesn’t influence the asymptotic running time and memory
requirements of the algorithm. A more serious problem is thatewould be generated twice.
We avoid that by calculating the bisector of two sitessi andsj only once, and storing a
pointer to it in a two-level binary search tree; the first level is a binary search tree on the
smallest index of the two sites that constitute the bisector, and the second level is a binary
search tree on the largest index of the two sites. Now, if we have to generate an edgee
that lies on the bisector ofsi andsj , with i < j, we first search fori in the highest level
of the search tree; if there is an entry fori, we search forj in the next level. If there
is an entry forj in the second level, this gives us a pointer toβ(si ,sj). If we don’t find
the bisector, we calculate it as described above, and insert a pointer to it in the search
structure. The total size of the search structure is linear in the number of bisectors that we
compute; we will show this to beO(mlogm). Hence, querying the search structure and
inserting new pointers can be done inO(logm) time per operation. Since we assume that
m< n, generating an edge still takesO(n2 logn) time usingO(n2) memory, regardless of
whether we have to calculate its supporting bisector, or simply look it up in the search
structure.

Keeping the bisectors serves a second purpose: when we output a hyperbolic arc or
straight line segment during the edge generation, we set pointers from the arc or seg-
ment on the edge to the corresponding arc or segment on the bisector, and vice versa.
This means that we can access the neighbors of a region in FVD(S′) in O(1) time via
the supporting bisectors of their common edges, which facilitates maintaining the proper
topological relations between regions during the construction of the Voronoi diagrams.

In some cases we need a variation on the edge tracing procedure. As before, we compute
a bisector of two sites or look it up, traverse it until we find the starting point of the edge
that is to be generated, and output hyperbolic arcs and straight line segments from that
moment on. The difference is that we don’t have a single endpoint at which we stop the
tracing, but a constant number of candidate endpoints, and we stop when we have reached
the first of these. Testing whether we have reached any of the candidate endpoints takes
O(1) time per hyperbolic arc or straight line segment, and this edge tracing variation also
requiresO(n2 logn) time andO(n2) memory per Voronoi edge.

5.4.2 Constructing the hierarchy for R0 and B0.

We describe how to compute the hierarchyR0 ⊃ R1 ⊃ . . . ⊃ Rk and their furthest-site
Voronoi diagrams; forB0, this is done analogously. The computation is similar to the
Dobkin-Kirkpatrick hierarchy construction [37].

Let G0 be the dual graph of FVD(R0), i.e.,G0 = (R0,E0), with (si ,sj) ∈ E0 for si ,sj ∈R0

if the regions ofsi andsj share an edge in FVD(R0). Note that FVD(R0) andG0 are planar
graphs. Anindependent setof vertices in a graphG = (V,E) is a setV ′ ⊂ V such that
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there is no edge(vi ,vj) in E for anyvi ,vj ∈V ′. Snoeyink en van Kreveld [106] showed
that for any planar graphG = (V,E) with n vertices, an independent setV ′ of vertices of
degree at most 9 with|V ′| ≥ |V|/6 can be found inO(n) time. We apply this toG0 to
find an independent setR′0⊂ R0 in O(|R0|) time. A sites∈ R′0 has at most 9 neighbors in
FVD(R0), no two sitess,s′ ∈ R′0 are neighbors in FVD(R0), and|R′0| ≥ |R0|/6.

To compute FVD(R1) = FVD(R0 \R′0), we remove the sites inR′0 one at a time fromR0

and update the diagram after the removal of each site. Lets0 be such a site inR′0, and let
p be a point that lies in the region in FVD(R0) of s0. After updating the diagram,p must
lie in the region of a sites′ that is a neighbor ofs0 in FVD(R0). So the region ofs0 is
divided among its neighbors, of which there are only a constant number, and all diagram
edges in that region lie on the bisectors of those neighbors (see Figure 5.7).

(1) (2) (3)

Figure 5.7: Removing a site s0, and dividing its region among its neighbors.

Let v1, . . . ,vk be the at most 9 vertices of the region ofs0 in clockwise order. Lete1, . . . ,ek

be the edges ofR(s0), with ei incident tovi andvi+1 for 1≤ i < k, and withek incident to
vk andv1. Finally, letsi be the neighbor ofs0 whose region is incident toei for 1≤ i ≤ k.
See Figure 5.8.

We will describe how to reconstructR(s1) after the removal ofs0; for R(s2), . . . ,R(sk)
this is similar. Edgee1 is no longer an edge ofR(s1), and it is removed. Verticesv1 and
v2 are also removed; the edges ofR(s1) incident to these vertices (e′1 ande′2) have to be
extended into the region ofs0. Recall thate′1 lies on the bisectorβ(s1,sk) of s1 andsk,
ande′2 lies onβ(s1,s2). We extende′1 by tracingβ(s1,sk) as described in Section 5.4.1,
starting at the location ofv1. At some pointp on the bisector, the distance betweenp
ands1 and the distance betweenp andsk equals the distance betweenp and some other
neighborsi of s0. At this point p we reach a new vertex ofR(s1). Note that this vertex
is also a vertex of the standard Voronoi diagram ofs1, sk andsi . We have finished the
reconstruction ofe′1 at this point, record the new vertex ofR(s1), and proceed with the
next edge ofR(s1) by tracingβ(s1,si). This is repeated until we finally traceβ(s1,s2) and
end up at the location ofv2, which concludes the reconstruction ofR(s1).

To determine whether we have reached a vertex during the edge tracing, we precompute
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Figure 5.8: The reconstruction ofR(s1) after the removal of s0.

all the pointsp that are equidistant to three neighbors ofs0. For a fixed triple of neighbors
of s0, these pointsp are theO(1) vertices of the standard Voronoi diagram of the triple,
which can be computed inO(n2 logn) time again with the techniques from Mitchell et
al. [77] and Mount [78]. Computing the Voronoi diagrams for all triples of the at most
9 neighbors ofs0 takes asymptotically the same amount of time. We trace a constant
number of edges, and for each hyperbolic arc or straight edge on these edges we determine
in constant time (by testing theO(1) precomputed vertices of the Voronoi diagrams of
triples of neighbors ofs0) whether we have reached the endpoint of the edge that we are
generating. It follows that the removal of a single site and the reconstruction involved
takesO(n2 logn) time.

After all the sites inR′0 have been removed fromR0 and FVD(R1) has been constructed,
we recursively repeat the procedure of removing an independent set of sites to create
FVD(R2), . . . ,FVD(Rk). The total number of diagrams we construct this way isO(logm).

Since∑k
i=0 |Ri | is a geometric series, the total time for computing all independent sets is

O(m). The the reconstruction of the diagram after the removal of a single site from takes
O(n2 logn) time, and the total number of sites removed is less thanm. It follows that the
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construction of the the hierarchyR0 ⊃ R1 ⊃ . . . ⊃ Rk and their furthest-site Voronoi dia-
grams takesO(mn2 logn) time in total. By Lemma 11, the size of FVD(Ri) = O(|Ri |n2).
Therefore, the total size of all bisectors and diagrams constructed isO(mn2).

5.4.3 The basic merge step

In the basic merge step, we compute FVD(Ri ∪Bl ) for 0≤ i ≤ k, and FVD(Rk∪Bj) for
0≤ j ≤ l . We will exploit the fact thatBl andRk contain only a constant number of sites.
We will only describe the computation of FVD(Ri ∪Bl ) for a fixedi; all other diagrams
are computed similarly.

• For each siter ∈ Ri andb ∈ Bl , we compute the region ofr in FVD({r,b}). To
do this, we compute theclosest-siteVoronoi diagram for sitesr andb using the
O(n2 logn) algorithm of Mitchell et al. [77, 78]. The region ofr in FVD({r,b}) is
clearly the region ofb in the closest-site diagram. The total time for all pairsr and
b is O(|Ri |n2 logn), since there are onlyO(|Ri |) pairs.

• Next, we compute the region of each siter ∈ Ri in FVD({r}∪Bl ) by successively
intersecting the regions ofr in FVD({r,b}) over allb∈ Bl with a line-sweep. We
do this separately for each triangle ofP that is intersected by an edge of either of
the two regions that are to be intersected. The total number of intersection compu-
tations for a single siter ∈ Ri is |Bl | −1, which is bounded by a constant. Since
Bl has only a constant number of sites,r has a constant number of neighbors in
FVD({r} ∪B′) for any B′ ⊆ Bl , and the complexity of the region ofr in any of
these diagrams isO(n2). This means that the intersections can be computed in
O(n2 logn) time for a single red siter ∈ Ri . The time taken for all the sites inRi is
O(|Ri |n2 logn).

• Next, we compute the region of each siter ∈ Ri in FVD(Ri ∪Bl ) by intersecting its
regions in FVD({r}∪Bl ) and FVD(Ri) with a line-sweep in a similar way as in the
previous step. Since the complexity of the region ofr in FVD(Ri ∪Bl ) is O(n2) and
the complexity of the region ofr in FVD(Ri) is O(Nr ·n2), whereNr is the number
of neighbors ofr in FVD(Ri), the time needed to compute the region of a single
siter in FVD(Ri ∪Bl ) is O(n2 logn·Nr logNr). Summing this over allr ∈ Ri gives

O(n2 logn ∑
r∈Ri

Nr logNr)

We have thatNr ≤ m for all r ∈ Ri , and ∑r∈Ri
Nr = |Ri |. The time needed to

compute the region of each siter ∈ Ri in FVD(Ri ∪Bl ) is therefore bounded by
O(|Ri |n2 logmlogn).

• To complete the computation of FVD(Ri ∪Bl ), it remains to compute the regions
of the blue sites. We have computed the regions of all red sites, and carefully
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maintained topological relations between each region of a red site and its neighbors.
Using the topological information, we do a depth-first traversal of the regions in
FVD(Ri ∪Bl ) (that is partially constructed), starting in the region of a red site.
When a region of a blue site is visited for the first time, it has to be constructed.
At least one of its edges has already been computed, namely, the edge incident
to its predecessor in the traversal. Zero or more of the other edges of the region
are incident to red regions; these have also been computed already. We still have
to trace these edges, namely to find the starting points for the edges that have not
been computed yet. These areblue edges, the edges between two blue regions.
All blue edges are sub-edges of the edges of FVD(Bl ), of which there are only a
constant number. The endpoints of these edges are either vertices of FVD(Bl ), or
they are vertices of a red region. The latter vertices can be determined inO(|Ri |n2)
time by traversing the edges of all regions of red sites, and reporting the vertices
that are incident to blue edges. The total number of endpoints of blue edges is
bounded byO(|Bj |), which is a constant, so we can exploit the techniques described
in Section 5.4.1 to trace the blue edges inO(n2 logn) time per edge. The total time
for computing the regions of the blue sites isO(|Ri |n2 logn).

Putting everything together, computing FVD(Ri ∪Bl ) takesO(|Ri |n2 logmlogn) time,
and computing FVD(Rk∪Bj) takesO(|Bj |n2 logmlogn) time. Since both∑k

i=0 |Ri | and

∑l
i=0 |Bj | are bounded byO(m), the time needed for computing all the diagrams in the

basic merge step isO(mn2 logmlogn). The amount of memory needed in the basic merge
step is linear in the complexity of all bisectors and diagrams that we computed, which is
O(mn2).

5.4.4 The generic merge step

The generic merge step is the computation of FVD(Ri ∪Bj) from FVD(Ri ∪Bj+1) and
FVD(Ri+1∪Bj), which eventually gives the required FVD(R0∪B0) = FVD(S). First
some terminology: we call the sites inRi+1 theold red sites, and the sites inRi \Ri+1 the
newred sites. Similarly, the sites inBj+1 are theold blue sites, and the sites inBj \Bj+1

are thenewblue sites. Now consider any vertexv of FVD(Ri ∪Bj). The important fact
is that not all three Voronoi regions incident to that vertex correspond to new sites; there
must be at least one old red or blue site whose face is incident tov, because new red
(blue) regions form an independent set in FVD(Ri) (resp. FVD(Bj)). So to determine all
the vertices of FVD(Ri ∪Bj), it suffices to compute the regions in FVD(Ri ∪Bj) of all old
red and blue sites.

Consider an old red siter. The region ofr in FVD(Ri ∪Bj+1) contains all points that are
further fromr than from any other site inRi ∪Bj+1, and the region ofr in FVD(Ri+1∪Bj)
contains all points that are further fromr than from any other site inRi+1 ∪Bj . The
region ofr in FVD(Ri ∪Bj) is therefore the intersection of its regions in FVD(Ri ∪Bj+1)
and FVD(Ri+1∪Bj). We can compute this intersection for each face of the polyhedron
separately by a line-sweep of the regions ofr in FVD(Ri ∪Bj+1) and FVD(Ri+1∪Bj).
The time needed for computing the vertices of FVD(Ri ∪Bj) is therefore bounded by
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O(C logC), whereC = max(n2|Ri ∪Bj+1|,n2|Ri+1∪Bj |,n2|Ri ∪Bj |), which in turn is at
mostn2(|Ri |+ |Bj |). Hence, computing the vertices of FVD(Ri ∪Bj) takesO(n2(|Ri |+
|Bj |) log(n2(|Ri |+ |Bj |))) = O(n2(|Ri |+ |Bj |) logn) (recall thatm< n).

The edges of FVD(Ri ∪Bj) are either edges incident to the faces of old red or blue sites
(which we already computed), or edges between the faces of two new sites of the same
color (these edges are sub-edges of edges in FVD(Ri) or FVD(Bj), and can easily be
traced), or they are edges between the faces of a new red and a new blue site. For the
latter category of edges we already have the incident vertices computed, and we can
trace the edges after computing the bisector of the new red and new blue site. The to-
tal number of bisectors we have to compute and trace is bounded by|Ri ∪Bj |, so this
takesO(n2 logn(|Ri |+ |Bj |)) time. We conclude that computing FVD(Ri ∪ Bj) from
FVD(Ri ∪Bj+1) and FVD(Ri+1∪Bj) takesO(n2 logn)(|Ri |+ |Bj |)) time.

Summing this over all 0≤ i ≤ k, 0≤ j ≤ l gives time

O(n2 logn
k

∑
i=0

l

∑
j=0

(|Ri |+ |Bj |))

We have

k

∑
i=0

l

∑
j=0
|Bj |= O(

k

∑
i=0
|B0|) = O(k|B0|) = O(mlogm),

and similarly∑k
i=0 ∑l

j=0(|Ri |) = O(mlogm). It follows that the total time spent in all the
iterations of the generic merge step isO(mn2 logmlogn).

5.4.5 Total running time and memory requirements

The time for merging FVD(R) and FVD(B) into FVD(R∪B) is dominated by the generic
merge step, which requiresO(mn2 logmlogn) time; the total running time satisfies the
recurrence

T(1) = O(1)
T(2) = O(n2 logn)
T(m) = T(bm/2c)+T(dm/2e)+O(mn2 logmlogn)

which solves toT(m) = O(mn2 log2 mlogn).

The memory requirements of the algorithm are linear in the size of all diagrams that are
constructed in the process, which isO(mn2 logm).

Theorem 8 The complexity of the furthest-site Voronoi diagram of m sites on the surface
of a polyhedron with n triangles has complexityΘ(mn2). The diagram can be computed
in O(mn2 log2 mlogn) time, using O(mn2 logm) memory.
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5.5 Conclusions and further research

We have shown that the furthest-site Voronoi diagram of a setSof msites on the surface of
a polyhedronP with n triangles has complexityΘ(mn2), and we have given an algorithm
for computing the diagram inO(mn2 log2mlogn) time. Once the diagram has been com-
puted, the facility center, which is the point onP that minimizes the maximum distance
to a site inS, can be found inO(mn2) time by traversing the edges of the diagram.

The merge step in our divide-and-conquer approach for the computation of FVD(S) is
quite complicated, and it would be pleasant to find a simpler method. Merging the recur-
sively computed diagrams by sweeping seems natural, but the number of intersections of
edges of both diagrams can be superlinear (inm), while only a linear number of them can
end up as a vertex of the resulting diagram.

It would be a challenge to find an output-sensitive algorithm, i.e., an algorithm that takes
time proportional to the number edges/vertices in the diagram plus the number of their
intersections with the edges ofP. Even more ambitious would be the computation of the
diagram without explicitly representing all intersections of furthest-site Voronoi edges
and edges of the polyhedron.

Another interesting issue is approximation: find (ino(mn2) time) a point with the property
that the distance to the furthest site is at most(1+ ε) times the radius of the smallest
enclosing circle.

Finally, it is worth investigating whether the facility location problem can be solved with-
out constructing the furthest-site Voronoi diagram. Recall that the facility location prob-
lem in the plane can be solved using techniques related to fixed-dimensional linear pro-
gramming [74, 125].
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[3] P. K. Agarwal, M. de Berg, J. Matoušek, and O. Schwarzkopf. Constructing levels
in arrangements and higher order Voronoi diagrams.SIAM J. Comput., 27:654–
667, 1998.

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[5] B. Aronov and J. O’Rourke. Nonoverlap of the star unfolding.Discrete Comput.
Geom., 8:219–250, 1992.

[6] B. Aronov, M. van Kreveld, R. van Oostrum, and K. Varadarajan. Facility location
on terrains. InAlgorithms and Computation, Proc. 9th Int. Symp. (ISAAC’98),
volume 1533 ofLecture Notes Comput. Sci., pages 19–28. Springer-Verlag, 1998.

[7] E. Artzy, G. Frieder, and G. T. Herman. The theory, design, implementation, and
evaluation of 3-d surface detection algorithms.Comput. Graph. Image Process.,
15:1–24, 1981.

[8] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-filling curves
and their use in the design of geometric data structures.Theoret. Comput. Sci.,
181(1):3–15, July 1997.

[9] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data
structure.ACM Comput. Surv., 23(3):345–405, Sept. 1991.

[10] F. Aurenhammer and H. Edelsbrunner. An optimal algorithm for constructing the
weighted Voronoi diagram in the plane.Pattern Recogn., 17:251–257, 1984.



114 Bibliography

[11] F. Aurenhammer and O. Schwarzkopf. A simple on-line randomized incremen-
tal algorithm for computing higher order Voronoi diagrams.Internat. J. Comput.
Geom. Appl., 2:363–381, 1992.

[12] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enu-
meration of arrangements and polyhedra.Discrete Comput. Geom., 8:295–313,
1992.

[13] D. Avis and K. Fukuda. Reverse search for enumeration.Discrete Appl. Math.,
65:21–46, 1996.

[14] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast isocontouring for improved
interactivity. InProc. 1996 ACM/IEEE Symposium on Volume Visualization, pages
39–46, Oct. 1996.

[15] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient
and robust access method for points and rectangles. InProc. ACM SIGMOD Conf.
on Management of Data, pages 322–331, 1990.

[16] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric
intersections.IEEE Trans. Comput., C-28(9):643–647, Sept. 1979.

[17] K. Q. Brown. Comments on “Algorithms for reporting and counting geometric
intersections”.IEEE Trans. Comput., C-30:147–148, 1981.

[18] P. A. Burrough. Principles of Geographical Information Systems for Land Re-
sourses Assessment. Oxford University Press, New York, 1986.

[19] B. P. Buttenfield and R. B. McMaster, editors.Map Generalization: Making Rules
for Knowledge Representation. Longman, Harlow, 1991.

[20] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique.
Algorithmica, 1(3):133–162, 1986.

[21] B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications.Algorithmica,
1:163–191, 1986.

[22] J. Chen and Y. Han. Shortest paths on a polyhedron.Internat. J. Comput. Geom.
Appl., 6:127–144, 1996.

[23] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for
point-feature label placement.ACM Trans. Graph., 14:202–232, 1995.

[24] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosurface extrac-
tion from irregular volume data. InProc. 1996 ACM/IEEE Symposium on Volume
Visualization, pages 31–38, 1996.

[25] K. C. Clarke. Analytical and Computer Cartography. Prentice Hall, Englewood
Cliffs, NJ, 2nd edition, 1995.



Bibliography 115

[26] R. Cole. Searching and storing similar lists.J. Algorithms, 7:202–220, 1986.

[27] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

[28] R. G. Cromley.Digital Cartography. Prentice Hall, Englewood Cliffs, 1992.

[29] J. Dangermond. A review of digital data commonly available and some of the
practical problems of entering them into a GIS. In D. J. Peuquet and D. F. Marble,
editors, Introductory Readings in Geographic Information Systems, pages 222–
232. Tayler & Francis, London, 1990.

[30] M. de Berg and M. van Kreveld. Trekking in the alps without freezing or getting
tired. Algorithmica, 18:306–323, 1997.

[31] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[32] M. de Berg, M. van Kreveld, R. van Oostrum, and M. Overmars. Simple traversal
of a subdivision without extra storage.International Journal on Geographical
Information Science, 11:359–373, 1997.

[33] L. De Floriani, B. Falcidieno, G. Nagy, and C. Pienovi. On sorting triangles in a
Delaunay tessellation.Algorithmica, 6:522–532, 1991.

[34] B. D. Dent. Cartography – Thematic Map Design. WCB/McGraw-Hill, Boston,
fifth edition, 1999.

[35] E. W. Dijkstra. A note on two problems in connexion with graphs.Numerische
Mathematik, 1:269–271, 1959.
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Samenvatting

EenGeografisch Informatiesysteem, of GIS, is een systeem van hard- en software voor
het opslaan, verwerken en analyseren van ruimtelijke gegevens. De hoeveelheid opge-
slagen informatie is dikwijls groot, en de aard van de informatie zeer divers. Een GIS
wordt onder andere gebruikt door de overheid, bijvoorbeeld voor het plannen van nieuwe
infrastructuur zoals de Betuwelijn. Om het meest gunstige traject te bepalen moet er in-
formatie voorhanden zijn over de verschillende bodemsoorten in het gebied waarbinnen
het traject moet komen te liggen; verschillende bodemsoorten brengen verschillende aan-
legkosten met zich mee. Ook zal er bij de planning rekening gehouden moeten worden
met geluidsoverlast in bewoonde gebieden, met schade aan de natuur, met de kosten van
schadeloosstelling bij onteigening van grond en onroerende goederen, en met vele andere
criteria. Waar het handmatig doorrekenen van alle alternatieven een ondoenlijke zaak is,
kan men met behulp van een GIS relatief eenvoudig cijfermateriaal, kaartjes en tabellen
genereren die de kosten en gevolgen van de alternatieven overzichtelijk maken. Andere
gebieden waarin een GIS wordt toegepast zijn bijvoorbeeld geologie, meteorologie en
cartografie.

Veel basisvraagstukken die een GIS moet oplossen zijn meetkundig van aard, zoals het
rekenen aan afstanden. Het alledaagse afstandsbegrip “de kortste weg tussen twee punten
is een recht lijnstuk” is niet in alle situaties bruikbaar. Bij routeplanning over het we-
gennetwerk is er zelden tot nooit een rechtlijnige verbinding tussen het vertrekpunt en de
bestemming, maar moeten er verschillende mogelijke routes worden doorgerekend. Com-
puters zijn daar goed in, getuige de vele routeplannings-programma’s die voor personal
computers verkrijgbaar zijn. Wanneer we de wegen mogen verlaten en ons ook door wei-
land, bos of zandvlakten gaan verplaatsen wordt het berekenen van de kortste weg vanA
naarB (waarbij afstand wordt uitgedrukt in de tijd die het kost om vanA naarB te komen)
ineens een stuk lastiger. Terwijl we op een kruising van wegen slechts een handvol keu-
zen hebben, is er op de grens van twee bodemsoorten van verschillende begaanbaarheid
een oneindig aantal richtingen waarin we verder kunnen trekken. Ook in bergachtig ge-
bied is het rekenen aan afstanden vaak lastig, zelfs wanneer we de zaak vereenvoudigen
door te stellen dat we ons overal met dezelfde snelheid kunnen voortbewegen, ongeacht
bodemsoort of de helling van het terrein. Wanneer we dergelijke vereenvoudigende aan-
namen maken in vlak terrein komen we weer uit bij het rechte lijnstuk als kortste weg
tussen begin- en eindpunt. In de bergen echter hebben we onder andere de keuze om over
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de berg te gaan, of eromheen, zowel linksom als rechtsom. Afhankelijk van het aantal
pieken en dalen in het gebied kan het aantal mogelijke routes fors toenemen.

Binnen het onderzoeksgebied van deGeometrische Algoritmenhoudt men zich bezig met
onder andere dit soort vraagstukken. In plaats van oplossingen te forceren door middel
van brute kracht (lees: grote, snelle computers), probeert men slimme rekenmethoden
(algoritmen) te ontwerpen. Zo is het vaak mogelijk om, in plaats van alle mogelijke op-
lossingen na te gaan, al vroegtijdig een ruwe selectie te maken tussen kansloze en kans-
hebbende oplossingen. Door de selectie telkens te verfijnen en alleen verder te rekenen
met de kanshebbende oplossingen, komt men uiteindelijk uit bij “het goede antwoord”.
Het gebied van de Geometrische Algoritmen heeft vele praktische toepassingen, onder
andere in de Robotica, Computer Graphics, CAD/CAM, en GIS.

Dit proefschrift is een bundeling van een viertal artikelen, in elk waarvan een specifiek
GIS-vraagstuk wordt opgelost met behulp van bestaande en nieuwe technieken uit de
Geometrische Algoritmen.

Het eerste hoofdstuk is een inleiding op de vier artikelen, en voorziet de lezer van de
achtergrondinformatie, globale kennis en literatuurverwijzingingen die nodig zijn om de
vier volgende hoofdstukken te kunnen waarderen.

Het tweede hoofdstuk geeft een nieuwe methode om een zogenaamdesubdivisieaf te
lopen. Men kan hierbij bijvoorbeeld denken aan bepaalde typen landkaarten, waarbij
een gebied is onderverdeeld in vlakjes, en waarbij bij ieder vlakje extra informatie is
opgeslagen, bijvoorbeeld het aantal olifanten per vierkante kilometer. Een GIS kan ver-
schillende bewerkingen op een dergelijke kaart uitvoeren, zoals het afbeelden van (een
gedeelte van) de kaart, of het berekenen van het totale aantal olifanten in een gedeelte
van het beschreven gebied. Bij dergelijke bewerkingen moeten de vlakjes van de kaart
afgelopen worden, om (bij het laatste voorbeeld) de gegevens over de olifantenpopulatie
te verzamelen. Daarbij is het van belang dat elk relevant vlakje precieséénmaal wordt
behandeld; het overslaan of het meerdere malen behandelen van vlakjes zou resulteren
in foute uitkomsten. Een veelgebruikte oplossing hiervoor is om expliciet bij te houden
welke vlakjes al behandeld zijn. Dit heeft echter het nadeel dat het computergeheugen
kost en, afhankelijk van de methode van bijhouden, verhindert dat meerdere gebruikers
gelijktijdig met dezelfde gegevens kunnen werken. De methode die we in hoofdstuk twee
presenteren heeft die nadelen niet. Hoewel we niet expliciet bijhouden welke vlakjes
al behandeld zijn, kunnen we toch garanderen dat onder alle omstandigheden elk vlakje
precieśeénmaal behandeld wordt.

Het derde hoofdstuk is gericht op het efficiënt visualiseren van twee- en drie-dimensionale
gegevens met behulp van zogenaamdeiso-contouren. In het twee-dimensionale geval kan
men denken aan de welbekende contourlijnen op landkaarten, die naburige locaties van
gelijke hoogte met elkaar verbinden. Dicht op elkaar liggende contourlijnen geven een
steile helling aan, terwijl in relatief vlak gebied de contourlijnen ver uit elkaar liggen.
Voor het drie-dimensionale geval kan men denken aan medische beelden verkregen uit
CT-scans. De iso-contouren zijn hier aaneengesloten twee-dimensionale oppervlakten in
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een drie-dimensionale ruimte. Om de iso-contouren van een bepaalde waarde (hoogte-
waarde, of een waarde die een bepaald type weefsel aangeeft) af te beelden, zou men het
hele twee- of drie-dimensionale plaatje kunnen aflopen, om alleen die locaties te rappor-
teren die de gevraagde waarde hebben. Dat is echter niet efficiënt, omdat de gezochte
iso-contouren doorgaans slechts een klein deel van het plaatje omvatten. Efficiënter is
het om beginpunten van alle mogelijke iso-contouren op te slaan, in die verzameling be-
ginpunten te zoeken naar de gevraagde waarden, en dan de contouren in het plaatje af te
lopen. Die beginpunten wordenseedsgenoemd. In een ideale situatie is het aantal seeds
zo klein mogelijk, maar wel zodanig dat alle mogelijke contouren gevonden kunnen wor-
den. In dit hoofdstuk geven we een nieuwe methode voor het bepalen van een zo klein
mogelijke verzameling seeds; de structuur die we hiervoor gebruiken is decontour tree,
en de methode voor het bouwen van deze structuur is eveneens nieuw. De looptijd van de
methode voor het bepalen van de kleinste verzameling seeds is echter in de praktijk niet
efficiënt genoeg. Daarom geven we daarnaast een tweede, efficiëntere methode, waarbij
de opgeleverde verzameling seeds niet de kleinst mogelijke is, maar wel klein genoeg.
Deze tweede methode maakt eveneens gebruik van de contour-tree.

Het vierde hoofdstuk houdt zich bezig met het afbeelden van steden op kaarten (al dan
niet op een computerscherm). Het aantal steden dat kan worden afgebeeld is onder meer
afhankelijk van de gekozen schaal van de kaart. Het afbeelden van alle steden die in
de GIS zijn opgeslagen op een kleinschalige kaart leidt doorgaans tot een onoverzichte-
lijke brij van punten. Er zal in dergelijke gevallen een selectie gemaakt moeten worden.
Intüıtief zou men misschien denken dat het kiezen van de top-zoveel van grootste steden
een logische en goede keuze is. Dat hoeft echter niet zo te zijn: een grote stad kan bij
een bepaalde schaal te dicht bij een nog grotere stad liggen, terwijl een klein dorpje dat
tamelijk gëısoleerd in landelijk gebied ligt wel probleemloos afgebeeld kan worden. Men
zou kunnen zeggen dat het kleine dorpjerelatief belangrijkis ten opzichte van de grote
stad die niet afgebeeld kan worden. In dit hoofdstuk geven we een viertal nieuwe mo-
dellen om relatieve belangrijkheid uit te drukken, en we vergelijken onze modellen met
drie bestaande modellen. Onze modellen hebben het voordeel dat ze een zogenaamde
ranking van de steden bepalen. Dat heeft als voordeel dat er slechts eenmaal gerekend
hoeft te worden, waarna het afbeelden van de steden eenvoudigweg in volgorde van ran-
king plaatsvindt totdat het gewenste aantal steden is bereikt. Bij de bestaande modellen
moet bij verandering van het gewenste aantal steden telkens opnieuw gerekend worden,
waarbij er bovendien vreemde “sprongen” kunnen optreden. Zo is het bij de bestaande
methoden niet noodzakelijk zo dat een selectie van bijvoorbeeld vijfentwintig steden alle
steden bevat die in een selectie van vierentwintig steden zitten. Het kan bijvoorbeeld ge-
beuren dat er, wanneer we van vierentwintig naar vijfentwintig steden gaan, drie steden
verdwijnen en vier nieuwe steden bijkomen. Bij onze methode treedt dat verschijnsel niet
op, omdat er wordt geselecteerd in volgorde van de (van te voren berekende) ranking.

Het vijfde hoofdstuk is gericht op het vinden van een optimale locatie voor een service-
centrum of dienstverlenende instantie, bijvoorbeeld een voedsel-distributiecentrum. We
gaan er daarbij vanuit dat het aantal “klanten” van het service-centrum (bijvoorbeeld de
supermarkten die bevoorraad worden vanuit het distributiecentrum) vastligt, evenals hun
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locatie, en dat́eén en ander gesitueerd is in bergachtig gebied. De optimale locatie voor
het service-centrum is in ons model de locatie waarvandaan de maximale afstand tot de
klanten zo klein mogelijk is. Om die locatie te kunnen bepalen maken we gebruik van
een structuur die in de Geometrische Algoritmen al langer bekend is, namelijk het zoge-
naamdefurthest-site Voronoi diagram. Het nieuwe aan dit hoofdstuk is dat we het eerste
algoritme geven dat deze structuur efficiënt berekent voor modellen voor bergachtig ge-
bied.
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