
Bayesian Belief Networks:

From Construction to Inference

Bayesiaanse Belief Netwerken: Van Constructie tot Inferentie

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNI-
VERSITEIT UTRECHT OP GEZAG VAN DE RECTOR MAGNIFICUS,
PROF. DR. J.A. VAN GINKEL, INGEVOLGE HET BESLUIT VAN HET
COLLEGE VAN DECANEN IN HET OPENBAAR TE VERDEDIGEN
OP DINSDAG 13 JUNI 1995 DES OCHTENDS TE 10.30 UUR

door

Remco Ronaldus Bouckaert

geboren op 27 januari 1967
te Haarlem

Promotor: Prof. dr. J. van Leeuwen
Co-promotor: Dr. ir. L.C. van der Gaag

Faculteit Wiskunde en Informatica

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Bouckaert, Remco Ronaldus

Bayesian belief networks : from construction to inference
/ Remco Ronaldus Bouckaert. - Utrecht : Universiteit
Utrecht, Faculteit Wiskunde en Informatica
Thesis University Utrecht. - With summary in Dutch.
ISBN 90-393-0848-9
Subject headings: Bayesian belief networks ; learning /
Bayesian belief networks ; inference.

Acknowledgements

First of all, I want to thank Linda van der Gaag for the tremendous e�ort she
put in making this thesis a more readable document. I would like to thank Jan
van Leeuwen, my promotor, for carefully reading the concept manuscripts and his
constructive comments. Furthermore, I would like to thank the reading-committee
prof. dr. ir. E. Backer, prof. dr. G. Cooper, prof. dr. R. Gill, and prof. dr. J.J.
Meyer for reviewing my thesis. Last but not least, I thank Christien Koeleman for
the graphical design of this thesis.

iii

Contents

1 Introduction 1
1.1 Historical Background : 1
1.2 Bayesian Belief Networks : 2
1.3 Life Cycle of a Bayesian Belief Network : : : : : : : : : : : : : : : : : 4
1.4 Previous Work on Network Structure Learning : : : : : : : : : : : : : 7
1.5 Previous Work on the Use of Belief Networks in Knowledge-Based

Systems : 12
1.6 Overview of this Thesis : 14

2 Preliminaries 17
2.1 Graph Theory : 17
2.2 Probability Theory : 19
2.3 Conditional Independence : 21
2.4 Graphical Representations : 22
2.5 Probabilistic Networks : 26

3 Conditional Dependence 29
3.1 Conditional Dependence : 30
3.2 Undirected Graphs : 34

3.2.1 Conditional Independence in Undirected Graphs : : : : : : : 34
3.2.2 Conditional Dependence in Undirected Graphs : : : : : : : : 38
3.2.3 A Graphical Criterion for Conditional Dependence in Undi-

rected Graphs : 42
3.3 Directed Acyclic Graphs : 45

3.3.1 Conditional Independence in Directed Acyclic Graphs : : : : 45
3.3.2 Conditional Dependence in Directed Acyclic Graphs : : : : : 48
3.3.3 A Graphical Criterion for Conditional Dependence in Di-

rected Acyclic Graphs : 51
3.4 Appendix : 57

4 Learning Bayesian Networks 59
4.1 Basic Assumptions : 60
4.2 Quality Measures : 60

4.2.1 A Bayesian Approach : 61
4.2.2 An Information Criterion Approach : : : : : : : : : : : : : : : 62
4.2.3 A Minimum Description Length Approach : : : : : : : : : : : 65
4.2.4 Comparing Quality Measures : : : : : : : : : : : : : : : : : : 68
4.2.5 Score equivalence : 70
4.2.6 In�nite-Size Database Properties of Quality Measures : : : : : 77
4.2.7 Finite-Size Database Properties of Quality Measures : : : : : 84

4.3 Search Strategies : 89
4.3.1 Search Complexity : 90

i

Introduction

Reasoning with uncertainty is more common than reasoning without. Based on just
a limited number of observed events we decide to perform an action. However, the
events that we observe are in many cases not su�cient to determine in an exact way
the consequences of the action we decided to perform. One is painfully aware of this
process when voting in governmental elections.

The uncertainty involved in decision-making processes originates from various
sources. It may stem from incompleteness of information or arise from imprecise
de�nition of variables. Further, the complexity of relations between variables means
that relations often are approximated such that errors are introduced. All these
sources of uncertainty are almost continuously present in real-life decision making
processes. Humans process uncertain information routinely, and hence appear to be
well equipped for handling uncertainty. However, some decisions have far reaching
consequences. This motivated the development of formalisms to model uncertainty
for the purpose of making optimal decisions.

Historical Background1.1

The �rst and most widely used mathematical formalism for dealing with uncertainty
is probability theory. As early as the sixteenth century [63] probability theory has
been used to describe uncertainty and to help in decision making. The develop-
ment of probability theory was clearly inspired by decision making with far reach-
ing consequences, namely, gambling. There are two main approaches to probability
theory: the frequentist approach and the much later developed subjective Bayesian
approach. The frequentists are willing to accept probabilities only if they are based
on the frequency of occurrence of outcomes in an experiment. Furthermore, it must
be possible to repeat the experiment under the same conditions. The subjective
Bayesians on the other hand are willing to accept numbers based on the subjec-
tive intuition of experts of a domain. For a theoretical foundation of this approach
we refer the reader to [93]. So contrary to frequentists, subjectivists can accept a
probability statement about tomorrow's weather. However, both approaches tend to
coincide for regular cases. Because the subjective Bayesian approach broadens the
scope of application of probability theory to, among other things, computer-assisted
decision making, we follow the subjective Bayesian approach to probability theory
in this thesis.

For decision problems with a small number of variables, probability theory works
satisfactorily. However, as the number of variables increases, straightforward prob-
abilistic reasoning tends to lead to computational problems. The complexity of
relations between events has been behind the motivation to use computers for de-
cision support. However, the introduction of computers, and thus the possibility
of handling complex systems, did not solve the computational burden introduced
by probability theory until the nineteen eighties. Before, in the early nineteen six-
ties, very crude approximations such as the Idiot's Bayes method were proposed.

1
�

In these approaches many assumptions about independence are made in order to
achieve computational e�ciency. In practice, however, these independence assump-
tions often are violated, resulting in large errors in the probabilities obtained by
these methods.

From psychology, an attempt to model human reasoning was made by using
rules of the form `if certain conditions are true, then a conclusion is true' [74].
Because only the conditions have to be checked for each rule to be activated and
there is a limited number of rules, this is exactly the type of formalism that can
be implemented e�ciently on computers. It leads to programs called rule-based
expert systems. However, to model the uncertainty involved in decision making,
rules alone are not su�cient. To this end, among others, the certainty factor model
was introduced [100] which assigns a number to every rule to represent the validity
of the conclusion of the rule. A set of instructions was de�ned to facilitate the
combination of certainty factors in rules. The certainty factor model is not well-
founded from a mathematical point of view. In practice, however, rule-based expert
systems that use them seem to behave satisfactorily [13].

Research proceeded in developing rule-based systems based on the assumption
that in human decision making only available information is taken into account and
assumptions are made about the variables that have not been observed. This led
to the development of non-monotonic logics [87]. In the nineteen eighties, graphical
probabilistic models were introduced [72, 79, 118] for which e�cient algorithms have
been developed [72, 79, 95].

Apart from approaches based on probability theory, other approaches have been
developed in order to model the di�erent types of uncertainty which cannot be
handled with probability theory. For example, fuzzy logic and possibility theory
have been designed to capture linguistic vagueness [122]. To di�erentiate between
uncertainty and ignorance, probability theory was generalized in the Dempster-
Shafer theory [32, 98]. Pearl [81] makes clear that there is no use in di�erentiating
between various sources of uncertainty for making decisions. Furthermore, it has
been argued that statistics is the only sound formalism to model uncertainty when
one is willing to accept a very small rational set of axioms [27]. As a result, it
can be shown that with any other formalism that is not a proper generalization
of probability theory it is possible to arrive at irrational decisions. An overview of
various formalisms and their relationship can be found in [99]. We will not elaborate
on this issue in this thesis.

Bayesian Belief Networks1.2

Bayesian belief networks are known by names such as causal graphs [72], causal
networks [114], belief networks [79], recursive models [118], probabilistic networks
[23] or permutations of two or three of these terms. We will adopt the termBayesian

belief networks in this thesis.
Let V be a set of variables. Then, a Bayesian belief network B over V is a pair

(BS ; BP). BS is a directed acyclic graph with a node for each variable v 2 V , called
the network structure. Informally speaking, an arc between two nodes in the graph
represents an in
uence from the node at the tail on the one at the head. BP is a

2
�

Introduction

��
��

��
��

��
��

��
��

��
��

��
��

�
�

�
�	

@
@
@
@R

�
�

�
�	

@
@
@
@R

�
�

�
�	

@
@
@
@R

g

a

c

rsv

Needs glasses Has cataracts

Vision

Complaints

Vision improved

by squinting

Retinal re
ex

Detectable

Patient's age > 75

Pr(a = T) = 0:1

Pr(c = T ja = F) = 0:01

Pr(c = T ja = T) = 0:40Pr(g = T ja = T) = 0:75

Pr(g = T ja = F) = 0:15

Pr(s = T jg = T; c = T) = 0:95

Pr(s = T jg = T; c = F) = 0:75

Pr(s = T jg = F; c = T) = 0:40

Pr(s = T jg = F; c = F) = 0:05

Pr(v = T jg = T) = 0:80

Pr(v = T jg = F) = 0:05

Pr(r = T jc = T) = 0:25

Pr(r = T jc = F) = 0:95

Figure 1.1: An example of a Bayesian belief network.

set of assessment functions, one for each variable v in V , de�ning a conditional
probability distribution of the variable given the variables that are its parents in
BS . These functions quantify the strength of the dependencies between variables
connected with an arc in the graph.

Figure 1.1 shows an example of a Bayesian belief network taken from [57]. It
models the following binary variables: the patient's age is larger than 75 (a), the
patient needs glasses (g), the patient has cataracts (c), the patient's vision is im-
proved by squinting (v), the patient complains of poor vision (s), and the patient's
retinal re
ex is detectable (r). The presence of the arc between a and g in the
network structure implies that a and g are directly dependent, relative to the other
variables. The absence of an arc between a and s implies that a and s are dependent
through g and c.

The strength of the dependencies between variables is quanti�ed by the assess-
ment functions. For example, the probability of g being true given that a is true,
shown in Figure 1.1 as Pr(g = T ja = T), is 0:75. Note that all conditional probabil-
ities of a variable being false given its parents can be deduced from the conditional
probabilities of the variable being true. Therefore, they have been omitted from the
�gure.

Together, the assessment functions of a Bayesian belief network de�ne a unique
joint probability distribution over V that agrees with the independencies represented
by the network structure. Note that due to the independencies, far fewer probabil-
ities need to be speci�ed than with an exhaustive listing of the joint probability
distribution. It is this joint probability distribution represented by a Bayesian be-
lief network that we can use for decision support; we can enter values of observed

3
�

Introduction

variables and calculate the probabilities of the other variables given the evidence.
For example, if we know that the patient's age does not exceed 75 and the patient
complains about vision, we can calculate the probability Pr(g = T ja = F; s = T)
that the patient needs glasses given these observations. This process is called infer-

ence. The e�ciency of inference algorithms is based on the presence of conditional
independence.

In domains as di�erent as medical diagnosis [4, 5, 54] and oil market prediction
[2], Bayesian belief networks have been applied successfully. This indicates their
practical use. In fact, the number of applications has been increasing dramatically
the last few years1.

Life Cycle of a Bayesian Belief Network1.3

A Bayesian belief network has a qualitative part represented by the network struc-
ture, and a quantitative part, represented by the assessment functions. Apart from
the de�nition of the domain, both these parts have to be speci�ed to obtain a
Bayesian belief network ready for usage as inference engine in a knowledge-based
system. Figure 1.2 illustrates the life cycle of a Bayesian belief network; the blocks
represent stages, the diamonds represent decisions, and the arrows represent what
to perform next. We distinguish four stages in the life cycle of a Bayesian belief
network2:

� de�nition of the domain variables,

� determination of a network structure,

� determination of the assessment functions, and

� usage in a knowledge-based system.

After every stage, there is an evaluation during which it is considered whether the
previous stages were performed satisfactorily. Every time it is found that the results
are not su�cient, one of the previous stages has to be passed through. Otherwise,
one can proceed with the next stage. We call the repeated passing through stages
and evaluations running through the build-test cycle. We like to stress here that
the evaluations are crucial: errors made early in the life cycle can be corrected later
only at large costs.

We will now examine the several components of Figure 1.2 more closely. First of
all, the variables in the domain need to be �xed. In general, it is very di�cult to
determine the domain variables automatically, except possibly in cases where there
is a technical speci�cation at hand, such as a chip-design. Commonly, the only way
to determine the domain variables is by elicitation from a domain expert. It is very
important to give a precise speci�cation of the variables and their values. If this
is not performed properly, misunderstandings may occur easily; the meaning of a
variable may dramatically di�er between various experts, and also between them

1A continuously growing list of applications with Bayesian belief networks is available by anony-
mous ftp from research.microsoft.com:/pub/dtg/bn-apps.ps.

2In the life cycle as used in traditional software engineering other stages such as introduction of
the product and maintenance are distinguished. Since these stages are out the scope of this thesis,
we do not consider them explicitly.

4
�

Introduction

Determine Graphical Structure

Use in Knowledge-Based System

������PPPPPP

PPPPPP������
Evaluate

Determine Assessment Functions

������PPPPPP

PPPPPP������
Evaluate

De�ne Domain Variables

������PPPPPP

PPPPPP������
Evaluate

������PPPPPP

PPPPPP������
Evaluate

?

?

ok

?

?

?

?

?

�

�

�

�

6

6

6

-

ok

not ok

ok

ok

not ok

not ok

not ok

Figure 1.2: Life cycle of a Bayesian belief network.

5
�

Introduction

and the users of the knowledge-based system. In this thesis, we assume that the
set of variables and their domains have been chosen properly and that no further
veri�cation is necessary.

If the set of domain variables is agreed upon by all experts involved, we can
proceed with determining the network structure. Causality is often used as heuristic
for this task: a domain expert is asked to list all direct causes for each variable. The
variables that are causes of a variable v form the parent set of v in the network
structure. Care must be taken not to introduce cycles during this construction. If
cycles occur, we can impose a restriction on the ordering of the variables and let the
expert select for each variable v the smallest set of variables among variables that are
lower ordered than v that make v conditionally independent of its predecessors. This
selection mechanism guarantees a network structure without cycles. Alternatively,
temporal and dynamic Bayesian networks [78, 65] may be used to avoid cycles.

After a network structure has been established, it should be carefully checked if
the network structure captures all dependencies between variables. We can perform
this check by confronting the domain expert with independency statements that are
consequences of his assignment of parent sets. These independency statements are
read from the network structure using a graphical criterion known as d-separation3.
However, it is also possible to read statements about dependence from the network
structure, as we will demonstrate in Chapter 3. If the experts do not agree on the
submitted independency and dependency statements, the network structure has to
be reconsidered.

Knowledge acquisition from experts is di�cult because many domains are ill-
understood and experts have problems in making their knowledge explicit. These
domains are suitable for the application of Bayesian belief networks. Further, in
some domains there are few, if any, experts.

By exploiting databases, the construction time of Bayesian belief networks may
be considerably decreased. Automatically constructed Bayesian belief network may
be used directly for inference (if no expert is available for evaluation of the Bayesian
belief network), or serve as starting point of the build-test cycle where they are
further improved by an expert. Thus, the length of the build-test cycle may be
considerably shortened. The structure of an automatically constructed Bayesian
belief network may give insight in the dependence of the variables in the domain,
which may be applied in automated discovery of dependency relationships. Scienti�c
hypotheses may be tested with the same method; the probabilities of the dependency
structures representing causal relations of various hypotheses can be calculated.

A lot of research e�ort has been invested in the design of methods for learning
Bayesian belief networks, from di�erent perspectives such as computer science [24,
44], statistics [102, 120], and philosophy [47, 103]. We will review these methods in
Section 1.4.

After the network structure of the Bayesian belief network has been obtained, we
can de�ne its associated assessment functions. Unfortunately, human experts are
very ill-equipped for the task of probability estimation. Furthermore, the number
of parameters to be determined to de�ne an assessment function of a variable u

3The notion of d-separation is very important for the theory of Bayesian belief networks. Because
the de�nition of d-separation is rather technical, we return to it in Chapter 2.

6
�

Introduction

grows exponentially with the number of parents of u in the network structure. This
implies that when these numbers are elicitated from an expert, it may be a very
time-consuming and therefore expensive task to de�ne the assessment functions.
Alternative models to describe the relationship between a variable and its parents
in the network structure have been proposed for which fewer parameters need to be
speci�ed, like the noisy-or model [81] and its generalizations [33, 56, 105].

The probabilities also may be obtained from a database of cases over the domain
[24]. This is not only much faster than elicitation from experts, but it also has the
advantage of returning `objective' numbers claimed to be the only valid probabilities
from a frequentist point of view. The assessment functions so de�ned should be
checked carefully, because it may very well be possible that some con�gurations of
variables do not appear in the database. As a result, the estimates are based on very
few data-points and large errors in the estimates may occur. Another approach is
to split the database in two parts; one part is used to learn the assessment functions
and the other part is used for evaluation.

Once a Bayesian belief network is fully de�ned, it can be used in knowledge-based
systems. Diagnosis, planning, and control are but a few of the tasks that can be
supported with a Bayesian belief network. A lot of research is focussed on decreasing
the computational complexity of algorithms for these tasks. Every time a Bayesian
belief network is used in a knowledge-based system, new cases become available that
can be stored in a database for validation of the network [68, 76, 102].

In this thesis, we contribute to the last three of the stages in the life cycle of a
Bayesian belief network and to the evaluation of graphical structures.

Previous Work on Network Structure Learning1.4

In network-structure learning we distinguish three main streams of work: entropy-
based methods, independency-statement based methods, and Bayesian and mini-
mum description length-based methods. We will consider these methods separately.

Entropy-Based Methods

The �rst algorithms developed for learning network structure for Bayesian belief
networks are based on entropy. Entropy can be considered as a non-negative measure
of information in a distribution. The higher the entropy, the less informative the
distribution Pr. Entropy-based learning of Bayesian belief networks amounts to
selecting a Bayesian belief network that represents a distribution with a low entropy:
the network is selected by choosing a network structure and then estimating the
assessment functions from a database. A related measure that gives the distance
between two distributions Pr and Pr0 over V , is the divergence or cross entropy.
The larger the cross entropy, the more Pr and Pr0 di�er. Divergence-based learning
of Bayesian belief networks amounts to selecting a network with a large divergence
compared to a current network, thus visiting a sequence of networks.

Chow and Liu [20] are considered to have developed the �rst method for con-
structing network structures. They only consider trees, so all nodes have at most
one parent. The main idea is to compare di�erent distributions over two variables

7
�

Introduction

in the domain that are estimated from a database. In the �rst distribution, the
two variables are considered dependent. In the second distribution, they are taken
to be independent. The cross entropies of those two distributions over all pairs of
nodes are calculated this way. An undirected graph is formed by starting with a
graph without edges and adding an edge between the two nodes with maximal cross
entropy. Next, an edge is added which has maximal cross entropy associated but
does not introduce a cycle in the graph. This process is repeated until no more
edges can be added. The �nal step consists of assigning directions to the edges in
order to form a tree. Since only tree-like Bayesian belief networks can be recovered
with this method, application is restricted to a small area.

The primary goal of Chow and Liu was not to construct Bayesian belief net-
works, since this formalism was not known at that time, but to approximate a joint
probability distribution over a set of variables V by the product of (conditional)
distributions over two variables. This idea has been generalized by Ku and Kull-
back [66], who allowed distributions over any number of variables to approximate
the joint probability distribution over the domain. However, the required number of
cases to get a reliable estimate of the divergence grows exponentially in the number
of variables in the lower-order distributions. Further, for a set of n variables, the
number of cross entropies to calculate is

�
n
k

�
, where k the number of variables in the

lower-order distribution. This number grows exponentially in k. These practical

aws render the method impractical.

In the social sciences, log-linear models and their graphical interpretation gained
popularity in the early nineteen eighties [30]. A log-linear model is a decomposition
of the logarithm of a joint probability distribution over a set of variables V as a
sum of functions of subsets of V . The graphical structure associated with such a
model is an undirected graph that contains an edge between two variables u and v
if there is a function over a set of variables S that includes u and v. Under some
conditions also a directed acyclic graph can be associated with a log-linear model
[118]. Algorithms for the construction of log-linear models generally start with a
model containing functions over single variables only in which the parameters are
estimated from a database. Then the model is extended by adding higher-order
functions that maximize the likelihood (and therefore, the entropy) or the cross
entropy with the current model. Though e�cient methods exist for calculating the
likelihood and cross entropy, the number of log-linear models grows exponentially
with the number of variables. For an excellent overview of log-linear models and
their graphical interpretation, we refer the reader to Whittaker [120].

Rebane and Pearl [86] used the �rst step of the algorithm of Chow and Liu to
recover network structures with a poly-tree topology, that is, a network structure
that does not contain cycles when the direction of the arcs is ignored. For the second
step, the assignment of directions to edges, a di�erent method is employed based
on the d-separation criterion. Essentially, they �rst search for v-nodes and their
parents; a v-node u is a node with two incoming arcs from two non-adjacent nodes.
After all v-nodes have been identi�ed, they direct the other edges such that no new
v-nodes arises. This algorithm works correctly as long as the underlying distribution
can be described by a Bayesian belief network with a network structure that is a
poly-tree. The algorithm has been used in a medical application [40].

The Kutat�o algorithm developed by Herskovits and Cooper [58] is an algorithm

8
�

Introduction

that employs a greedy search among network structures, selecting the one with
the lowest associated entropy and thus the one that represents the most expressive
distribution. An ordering on the variables is assumed to be available. For each node
u, Kutat�o starts with an empty parent set. Then, the parent sets of the variables
are extended, one variable at the time. To extend the parent set of a node u, from
the nodes that are lower ordered than u, the node v is selected that maximally
decreases the entropy of the network structure when v is added to the parent set of
u thus avoiding the introduction of cycles. The node v is added to the parent set
of u if indeed the entropy decreases. This process is repeated until no nodes can
be found that decrease the entropy of the network structure beyond a threshold or
no candidates are left. Though a large number of extra arcs can be expected when
applying this method, experiments suggest that Kutat�o returns network structures
that contain many arcs less than the original network structure [58, 57].

Conditional Independence Based Methods

One of the basic concepts in the theory of Bayesian belief networks is conditional
independence. We say that the sets of variables X and Y are conditionally inde-
pendent given Z, written I(X;Z; Y), if P (XjZY) = P (XjZ) for all possible values
of X, Y and Z. For example, in the joint probability distribution represented by the
network in Figure 1.1, we have I(a; g; v). Conditional independence in the distribu-
tion represented by a Bayesian belief network is encoded in the graphical structure
and can be read from the network structure BS using a graphical criterion called
d-separation.

For the class of learning algorithms based on independency statements it is as-
sumed that a network structure perfectly represents the dependencies and indepen-
dencies in the domain, that is, an independency statement is represented by the
network structure if and only if it is a valid independency statement for the domain.
The validity of an independency statement can be checked by performing a statis-
tical test using a database over the domain. The basic idea of this approach is as
follows. Let V be a set of variables.

1. Start with a complete undirected graph over V .

2. Remove the edge between any two nodes u and v for which a set of variables
S � V nuv can be found such that u and v are conditionally independent given
S.

3. Select edges and nodes and assign a direction to the edges to form a v-node in
the network structure.

4. Assign directions to the remaining edges such that a directed acyclic graph is
formed.

The basic di�erences in the various algorithms are in the way the sets S are found
and the rules of assigning directions.

Geiger, Paz and Pearl [44] proposed an algorithm to recover poly-trees based on
this approach. Using the fact that in a poly-tree, two nodes u and v are not adjacent
if and only if I(u; V nuv; v) or I(u; ;; v), they recover the underlying graph. If the
resulting undirected graph contains a cycle, then the domain cannot be described

9
�

Introduction

by a Bayesian belief network with a network structure that is a poly-tree and the
algorithm terminates. Otherwise, the algorithm proceeds by assigning direction to
the arcs exactly in the way that this is done in the algorithm of Pearl and Rebane.

The SGS-algorithm, named after their inventors Spirtes, Glymour and Scheines,
can learn every possible network structure [47]. From their probabilistic theory of
causality it follows that every causal process that does not involve feedback can
be perfectly represented by a network structure where the direction of the arcs are
interpreted as causal in
uences. In the SGS-algorithm, the �rst and second step are
not speci�ed in further detail than in the framework. In the graph resulting from
the second step, an edge between u and v is replaced by an arc from u to v if a node
w can be found that is adjacent to v and not to u such that a set S � V nuvw exists
for which I(u; S;w) is valid. The remaining edges are given a direction such that no
new v-nodes arise.

The search for a set S such that two nodes u and v are independent given S
as given in the SGS-algorithm is computationally not feasible because any subset
of nodes in the domain not containing u and v need to be considered. Using the
observation that if in a network structure two nodes are not adjacent, then they
are independent given their parents, the inventors of the SGS-algorithm proposed
a more e�cient algorithm [103] called the PC-algorithm. They derived that, given
two nodes u and v, to �nd a set S such that I(u; S; v) holds, only the subsets of the
nodes that are adjacent in the undirected graph at any given moment during the
execution of the algorithm need to be considered for S. This is su�cient, because
all nodes that are parents of a node u remain neighbors of u during the execution
of the algorithm. Further, they proposed an e�ciency improvement by performing
the search for such sets S in separate phases. In each phase, sets S are considered
of a �xed cardinality. This cardinality starts at zero and is increased by one with
each phase.

For determining the direction of an edge between two nodes u and v, a node w
must be found that is adjacent to v and not to u such that a set S � V nuvw exists
and I(u; S;w). Spirtes et al. make clear that if such a set can be found, then any
set of variables that makes u and v conditionally independent has this property. In
the PC-algorithm, for the third step the sets of the second step of the algorithm are
consulted.

To direct the remaining edges in step four, they introduced two simple rules. The
�rst rule is that if u! v is already an arc and v��w is an edge in the graph, then this
edge is directed towards w. The second rule is that if there is a directed path from
u to v and there is an edge between u and v, then this edge is directed towards v. In
the graph returned by the PC algorithm some edges may be left undirected, namely
those edges for which no causal direction can be deduced. To obtain a network
structure from this graph, an edge is randomly selected and randomly assigned
a direction. These rules are iteratively applied until all edges have been given a
direction. Unfortunately, backtracking may be necessary in order to prevent cycles
in the graph.

Verma [115] gave a re�nement of the fourth step in the approach by de�ning
a set of four rules such that it is conjectured that back-tracking is not necessary
anymore. Verma and Pearl [84] proposed a further optimization by preprocessing
the undirected graph before starting the algorithm, thus obtaining a large reduction

10
�

Introduction

of the run-time of the algorithm.
An excellent overview of these algorithms and their theoretical foundation can be

found in Spirtes et al. [104].
Fung and Crawford [36] applied an approach in their program `constructor' that

slightly di�ers from the above approach. Let BS be the network structure that is
to be recovered. Constructor starts by constructing an undirected graph in which
the neighbors of a node u is the Markov boundary of u, that is, the set of nodes
that are parents of u, children of u or parents of the children of u except u itself in
BS . Next, a heuristic search is used to select for each node a parent set from the
neighbors in the obtained undirected graph.

In general, the main drawback of the algorithms based on conditional indepen-
dence information is that a source needs to be available that reliably provides in-
dependency statements. Independency statements can be derived from data using
statistical tests. Especially when there is a weak dependence between two variables,
or when binary variables are involved, those tests require large databases to return
reliable results. Together with the restriction that the independency statements rep-
resented by the network structure are exactly those in the domain, these methods
are in general impractical for small databases with discrete variables.

Bayesian and Minimum Description Length Methods

With the introduction of Kutat�o, it became apparent that currently available tech-
niques from machine learning could be applied to network-structure selection. The
main insight was that a measure can be used for the quality of a network structure
and a database of cases. For Kutat�o, this measure is entropy. However, new mea-
sures based on Bayesian approaches [14, 23, 101] and minimum description length
approaches [8, 69, 109, 117] have been developed based on a more thorough theo-
retical foundation.

Measures based on a Bayesian approach start with a prior probability distribution
over the space of network structures. Given a database of cases, this distribution can
be updated resulting in a posterior distribution over the space of network structures.
Search algorithms for selecting network structures based on this approach explore the
space of network structures and return the structure with the highest probability.
So, the probability of a network structure and the database can be considered a
measure of the quality of the network structures.

Measures based on a minimum description length approach aim at �nding an en-
coding in a string of the database with as few bits as possible. The basic idea is to
compress the database using a probability distribution over all possible databases;
the most likely databases are encoded by short messages, and the least likely are en-
coded by long messages, resulting in an average message length as short as possible.
The distribution is represented by a Bayesian belief network. The encoding consists
of two parts: the description of the Bayesian belief network, and the compressed
string. The minimum description length principle selects for a given database the
Bayesian belief network for which the description length is minimal.

We will elaborate on the foundations of various quality measures in Section 4.2.
For an overview of the literature in this �eld, we refer to [15].

11
�

Introduction

Previous Work on the Use of Belief Networks in Knowledge-Based1.5

Systems

Once a Bayesian belief network is completely speci�ed and evaluated, it can be used
in a knowledge-based system. The main usage of a Bayesian belief network is for
calculating probabilities of a variable taking a value given the observed values of a set
of variables. These observed variables are called evidence variables. We distinguish
two types of inference algorithms: exact methods in which the probabilities are
calculated without error, and approximate methods in which the probabilities are
estimated based on a set of randomly generated con�gurations.

Exact algorithms [72, 79, 95] obtain their e�ciency by exploiting the independen-
cies represented by the network structure. However, exact inference in general with
Bayesian belief networks has been proven to be NP-hard [22]. The computational
complexity of exact methods strongly depends on the topology of the network. Es-
pecially when many loops occur in a network, the runtime of exact methods increases
dramatically. In many applications, exact inference may not be necessary since, due
to inexactness of the probability assessments in the network, approximate beliefs
su�ce. For an overview of exact inference methods we refer the reader to [72, 81].
We will review the various approximate methods for inference here and elaborate
on them in Chapter 5.

Surprisingly, the computational complexity of approximate methods is NP-hard
[29] when demanding a certain accuracy in the estimates of the probabilities. How-
ever, the runtime of approximation algorithms is linear in the number of generated
con�gurations and variables.

The basic idea underlying all approximate algorithms is to generate a sample
consisting of a set of con�gurations and to approximate beliefs in the various variable
values by the frequency of appearance in the sample. To count the frequency of
appearance, for every value of all variables a sample score is recorded. This score is
initially zero and may be updated every time a con�guration has been generated. At
the end of the algorithm, the scores are normalized such that the scores associated
with one variable add to unity. The normalized score of a value of a variable u is
an estimate for the probability of u getting the value. The di�erences between the
methods lie in their way of generating con�gurations and counting the frequency of
occurrence in the sample.

Henrion [55] was the �rst to introduce approximate methods for inference in
Bayesian belief networks with his equiprobable sampling algorithm. In this approx-
imation method, the con�gurations are generated by randomly assigning a value to
each variable that is not an evidence variable. Only the scores associated with values
of variables occurring in the generated con�guration are updated by increasing them
with the probability that the con�guration is generated according to the distribution
represented by the Bayesian belief network. The problem with this method is that
many con�gurations will be generated that hardly have any impact on the scores.
On the other hand, a few of the con�gurations have a dominating in
uence on the
score. Therefore, many con�gurations need to be generated in order to get a good
approximation of probabilities.

Henrion [55] also introduced an alternative method for generating con�gurations,

12
�

Introduction

called logic sampling. This method returns a more representative set of con�gura-
tions. First, a topological ordering on the variables is constructed. The variables
are given a value following this order. The probability used to assign a value to
a variable u is taken from the assessment function of u. In this way, con�gura-
tions that have a large probability of occurrence will be generated more often than
con�gurations that have a low probability of occurrence.

When there are evidence variables, all con�gurations in which the values gen-
erated for these variables do not coincide with the observed values will be thrown
away. This is a weak part of the logic sampling algorithm since, if the probability
of occurrence of the observed values for the evidence variables is very small, many
con�gurations will be generated that do not contribute to the score.

Fung and Chang [37] observed that the fraction of con�gurations in which all
variables but the evidence variables have the same value and therefore is not thrown
away, is proportional to the probability of occurrence of the evidence variables given
the values of their parents in the con�guration. So, they proposed to generate
values in the same way as in logic sampling but only for the variables that are not
evidence variables; the evidence variables get assigned their observed values. Now
the scores are increased with the probability by which the values assigned to the
evidence variables would occur in the logic sampling scheme, instead of by one as
in the logic sampling algorithm. Satisfactory results with this so-called evidence

weighting or likelihood weighing algorithm have been reported [25, 97]. However,
again a problem arises when the probability of occurrence of the observed values of
the evidence variables is very small.

This motivated Shachter and Peot [97] to consider a technique widely studied and
applied in statistics known as importance sampling. They are the �rst who made
an explicit distinction between the distribution represented by the Bayesian belief
network and the sampling distribution, that is, the distribution used for generating
the con�gurations. In importance sampling, the sampling distribution is adjusted
during the generation of con�gurations based on the so far generated con�gurations.
First a number k of con�gurations is generated using likelihood weighing, so the
sampling distribution equals the distribution represented by the Bayesian belief
network. Now, based on the generated con�gurations, the assessment functions are
estimated. These assessment functions are weighted with the assessment functions
in the Bayesian belief network, and these new assessment functions are used to de�ne
the sampling distribution for generating the next k con�gurations. This process is
repeated, until a su�cient number of con�gurations has been generated. Of course,
the scores need to be adjusted accordingly. A disadvantage of importance sampling
is that a lot of parameters are involved that may be chosen arbitrarily but that have
a large impact of the performance. The number of con�gurations k after which the
sampling distribution is updated may not be chosen too small because updating
is computationally expensive. The weighting of the assessment functions in the
Bayesian belief network and the estimated assessment functions must be taken such
that both assessment functions have some in
uence on the sampling distribution,
but none of the two must dominate completely.

All these approximate methods have di�culties with the occurrence of rare evi-
dence. A technique that may be used to handle such evidence is backward-sampling

[38]. In backward sampling, the variables in a parent set of a node u get assigned

13
�

Introduction

values all at once. This can be applied when u already has assigned a value. The
probability with which the parents of u get assigned a value is proportional to the
assessment function of node u in which the value of u is substituted.

The previous approximation algorithms are characterized by the complete inde-
pendence of the generated con�gurations, except for importance sampling where
there is only a slight dependence. Pearl [80] introduced a scheme in which the next
con�guration depends heavily on the previous con�guration. An initial con�gura-
tion is generated with one of the above methods. Then, in random order, the nodes
are assigned a new value with a probability proportional to the product of the as-
sessment functions in the Markov boundary of the node where the values of the
con�guration are substituted. Every time a variable u is assigned a value, the score
of the assigned value is increased by one.

Pearl's algorithm does not have problems with rare evidence, but it does not
perform well when there are very strong dependencies between variables.

Chin and Cooper [19] proposed several forms of graph modi�cation in order to
transform a Bayesian belief network in such a way that Pearl's algorithm and like-
lihood weighing converges faster.

In order to be able to perform an error analysis of approximation algorithms
using techniques for analyzing probabilistic algorithms, Chavez [17] needed very
representative but independently generated con�gurations. He proposed to apply
Pearl's algorithm repeatedly to generate a �xed number of con�gurations, but to use
only the last con�guration for updating scores. This results in an algorithm with
a very long runtime per sample but with a precise, theoretically justi�ed estimate
of the error that has not been given for the other algorithms. Recently [28], also a
Bayesian error analysis for these algorithms has become available.

We refer the reader to [26] for an overview of approximation algorithms for
Bayesian belief networks.

Overview of this Thesis1.6

The organization of this thesis is as follows. In Chapter 2, we introduce terms,
de�nitions and notations of concepts used in the rest of the thesis. In this chapter,
only existing concepts and some related properties are considered; no new theory is
presented.

The following three chapters can be read independently of each other. In Chapter
3, we present a theoretical framework for conditional dependence, the counterpart
of conditional independence. Conditional dependence may be useful for evaluation
of a network structure, that is, the second evaluation as depicted in Figure 1.2. In
this chapter, we develop graphical criteria for reading statements about conditional
dependence from a graph.

In Chapter 4, we investigate the problems of learning a Bayesian belief network
from a database of cases. We consider both learning of network structures, in Figure
1.2 referred to as determination of the graphical structure, and learning of assessment
functions, in Figure 1.2 referred to as de�ning the parameters of a distribution.

We investigate properties of various popular quality measures for both in�nite-size
and �nite-size databases. Further, we consider the complexity of selecting a network

14
�

Introduction

structure with the highest quality. Up to now, only very simple search heuristics
were proposed. We give a generalization of the known heuristics and show how to
apply some general search algorithms to the task of selecting a network structure.

Learning of assessment functions can be performed by direct estimation from
the database. With an alternative technique, known as smoothing, the database is
explored more e�ciently. We show how to incorporate smoothing into search heuris-
tics, yielding a better estimate of assessment functions at a small computational cost.
To obtain insight in the usefulness of the various techniques, we performed various
experiments.

In Chapter 5, we consider approximation methods for inference in Bayesian belief
networks, which is the �nal task in the life cycle of a network as depicted in Figure
1.2. In this chapter, we present a new method for generating con�gurations based on
a popular statistical technique known as strati�cation. We show both theoretically
and experimentally that our method generates the con�gurations faster and results
in a better estimate of probabilities than other approximation methods known.

Finally, in Chapter 6 we list our main contributions, make some �nal concluding
remarks, and point out directions for further research.

15
�

Introduction

Preliminaries

In this chapter the basic concepts that are used throughout this thesis will be intro-
duced. As the theory on probabilistic networks relies heavily on both graph theory
and probability theory, two separate sections have been devoted to them. Section 2.3
addresses the concept of irrelevance, which is formalized by the notion of conditional
independence. In Section 2.4, the graphical representation of conditional indepen-
dence is considered. The chapter is concluded by Section 2.5, which is devoted to
probabilistic networks.

Graph Theory2.1

Some basic concepts from graph theory are reviewed in this section closely following
[120]. For further information on graph theory, the reader is referred to [6, 48].

The following notational conventions will be used for sets of variables. Capital
letters denote sets of variables and lower case letters denote single variables. To
prevent an abundant usage of braces, sometimes u is written to denote fug, XY
to denote the set union X [Y; and uv to denote fu; vg. Set-di�erence, denoted by
the symbol n, is taken to have a lower priority than union and conjunction. So,
Y \ZnXv is interpreted as (Y \Z)n(X [fvg). Usually, lower case letters at the end
of the alphabet are used to denote single variables.

De�nition A graph G is an ordered pair G = (V (G); E(G)), where V (G) is a2.1

non-empty �nite set of variables, called nodes, and E(G) is a set of pairs of nodes
(u; v), u; v 2 V (G), called edges.

There is a directed edge between two nodes u and v, u; v 2 V (G) in G, written
u ! v or v u, if (u; v) 2 E(G) and (v; u) 62 E(G). If u ! v 2 E(G), then u is a
parent of v and v is a child of u. The parent set �u of u is the set of parents of u.
The child set �u of u is the set of children of u.

There is an undirected edge between two nodes u and v, u; v 2 V (G) in G, written
u��v, if both (u; v) 2 E(G) and (v; u) 2 E(G). Let u��v 2 E(G), then u and v are
adjacent in G. The neighborhood �u of u is the set of all adjacent nodes of u.

The elements of V (G) will be interchangely called nodes and variables. As long as
the context makes clear which graph G is meant, V and E are used to denote the
sets V (G) and E(G), respectively. Directed edges will also be called arcs.

De�nition Let G = (V;E) be a graph.2.2

G is an undirected graph if there are only undirected edges in G.
G is a directed graph if there are only directed edges in G.
G is a mixed graph if there are directed or undirected edges in G.
G is a simple graph if it does not contain edges of the form (u; u).

In the sequel, all graphs are taken to be simple.

17
�
�

De�nition Let G = (V;E) be a graph. A path in G is a sequence of nodes2.3

u1; u2; : : : ; um, m � 1, such that (ui; ui+1) 2 E for 1 � i < m. The length of a
path is the number of nodes in a path minus one. um is a descendant of u1 in G
and u1 is a ascendant of um.

A path u1; u2; : : : ; um is simple if all nodes in the path are distinct.
A path u1; u2; : : : ; um, m > 1, is a cycle if u1 = um.

In the sequel, we take all paths to be simple. Usually, Du denotes the set of all
descendants of u and Au the set of all ascendants of u.

De�nition Let G = (V;E) be a graph. G is a directed acyclic graph if G is a2.4

directed graph and contains no cycles.

De�nition Let G = (V;E) be a graph.2.5

A chain in G is a sequence of distinct nodes u1; u2; : : : ; um, m > 1, such that
(ui; ui+1) 2 E or (ui+1; ui) 2 E for 1 � i < m. The length of a chain is the number
of nodes in a chain minus one.

A v-node u in a chain u1; u2; : : : ; um is a node ui, 1 < i < m, in the chain such
that ui�1 ! u and u ui+1 are arcs in G.

De�nition Let G = (V;E) be a graph. A graph G0 = (V 0; E 0) is a subgraph of2.6

G = (E;G) if V 0 � V and E0 � E such that for all (u; v) 2 E0 u; v 2 V 0.

De�nition Let G = (V;E) be a graph and let X � V be a set of nodes.2.7

The subgraph GX induced byX is the graph (X;E(X)) where E(X) is the subset
of E(G) obtained by deleting all edges that have at least one node not in X.

G is complete if for every pair of nodes u; v 2 V (G) (u; v) 2 E(G) or (v; u) 2 E(G).
A clique X in G is a subset of nodes X � V (G) such that X induces a complete

subgraph GX but no superset of X induces a complete subgraph.

De�nition Let G = (V;E(G)) be a graph. The undirected graph GE underlying2.8

G is the graph GE = (V;E(GE)) where (u; v) 2 E(GE) and (v; u) 2 E(GE) if and
only if (u; v) 2 E(G).

The underlying graph GE of G is also called the embedded graph of G.

De�nition Let G = (V;E) be a graph.2.9

G is connected if there is a chain between any pair of nodes u and v, u; v 2 V ;
otherwise, G is disconnected.

G is a tree if G is a connected undirected graph without cycles.
G is a poly-tree if G is a directed graph for which its underlying graph is a tree.

De�nition Let G = (V;E) be a directed acyclic graph. A topological ordering <V2.10

of G is a total ordering on V such that u! v 2 E implies u <V v. We say that G
obeys an ordering <V on V if <V is a topological ordering of G.

It is well-known that there exists a topological ordering for every directed acyclic
graph.

18
�
�

Preliminaries

Probability Theory2.2

Probability theory o�ers a sound mathematical formalism for representing uncer-
tainty. In this section, a short introduction to basic concepts is given. For further
information, the reader is referred to [121].

De�nition Let V be a �nite nonempty set of discrete variables.2.11

The state space
u of a variable u 2 V is a �nite set of values which the variable
u may adopt, where ru = j
uj � 2. A value of u is any element of
u.

Let X be a subset of V: The outcome space
X of X is the Cartesian product
of all state spaces of the variables in X,
X = �v2X
u. An element of
X is called a
con�guration of X.

The event space F of V is the power set of
V .

Usually, elements of
u are denoted by xu, and elements of
X are denoted as
xX = (xu; u 2 X). For the entire set of variables V , the subscript of the outcome
space
V is omitted and the outcome space is written as
. If X is a proper subset
of V; then the outcome space
X is often called a partial outcome space of V of X;
a con�guration of X is then called a partial con�guration of V of X.

To illustrate the notation of con�gurations, consider V = fu; v; wg and X =
fu; vg. Then fV = xV g, fu = xu; v = xv; w = xwg, and fX = xX; w = xwg are
alternative notations that denote that the variables in V have some value de�ned
by xV , xX, etcetera. Further, fX = xXg denotes the set of con�gurations in which
the variables in X are assigned the value xX.

De�nition Let V ,
, and F be as before. A probability distribution Pr over V is2.12

a function Pr : F ! [0::1] satisfying the following conditions:

1. Pr(A) � 0 for each A 2 F ,
2. Pr(A [B) = Pr(A) + Pr(A) for all A;B 2 F such that A \B = ;, and
3. Pr(
) = 1.

Probability distributions for which Pr(A) > 0 for all A 2 F , A 6= ;, are called
positive probability distributions.

Note that a probability distribution Pr over V is uniquely de�ned by the probabil-
ities on the single con�gurations of V . In this thesis, mostly probabilities of single
con�gurations are considered and braces that are induced by set theory are omitted.
For example, Pr(V = xV) and Pr(u = xu; v = xv) is written for Pr(fV = xV g) and
Pr(fu = xu; v = xvg), respectively.

If X � V , then the partial con�guration xX = (x0u; u 2 X) conforms to xV =
(xu; u 2 V) if a con�guration xV nX exists such that fV = xV g = fX = xX; V nX =
xV nXg. Likewise for u 2 V; the value xu conforms to xV for u if a con�guration xV nu
exists such that fV = xV g = fu = xu; V nu = xV nug.

In the sequel, formulas containing more than one partial con�guration over sub-
sets of variables of V will be taken to conform to the con�guration xV . For example,
if V = X [Y; then the formula 8xV 2
; P r(V = xV) = Pr(X = xX) � Pr(Y = xY)
implies that xX conforms to xV and xY conforms to xV .

19
�
�

Preliminaries

Lemma Let V;
, and F be as before, and let Pr be a probability distribution2.1

over V . Let X and Y be proper subsets of V such that V = XY and X \ Y = ;.
Let
X and
Y be the outcome spaces of X and Y respectively, and let FY be the
event space of Y: Then the function Pr0 : FY ! [0 : : : 1] de�ned as

Pr0(Y = xY) =
X

xX2
X

Pr(X = xX; Y = xY):

for all xY 2
Y is a probability distribution over Y:

The probability distribution Pr0 from Lemma 2.1 is usually referred to as amarginal

probability distribution or a marginal for short. To distinguish the distribution Pr
from the marginal distributions, it is called the joint probability distribution. For
ease of notation, we use Pr to denote the joint probability distribution as well as the
marginal distributions derived from it. The argument to Pr will make clear which
distribution is under consideration.

De�nition Let V and F be as before, and let Pr be a joint probability distribution2.13

over V . Let X 2 F . Then, for each Y 2 F , with Pr(Y) > 0, the conditional

probability of X given Y; written Pr(XjY), is

Pr(XjY) =
Pr(X \ Y)

Pr(Y)
:

Note that conditional probabilities Pr(XjY) are only de�ned in the case that Pr(Y) >
0. In the sequel, conditional probabilities are taken to be de�ned. If Y = ;, Pr(XjY)
is taken to be Pr(X). It is easily seen that the function Pr(X = xX jY = xY) de-
�nes a probability distribution which we will refer to as a conditional probability
distribution.

For conditional probabilities, the same notations as for probability distributions
are used. A very useful property of probability distributions that immediately fol-
lows from De�nition 2.13 is the chain rule stated in the following theorem.

Theorem Let V and
 be as before, with V = fu1; : : : ; ung. Let Pr be a joint2.1

probability distribution over V . Then,

Pr(V = xV) =

Pr(un = xnju1 = x1; : : : ; un�1 = xn�1) � � �Pr(u2 = x2ju1 = x1) � Pr(u1 = x1):

for all xV 2
.

De�nition Let V and
 be as before and let Pr be a joint probability distribution2.14

over V: Let X, Y; and Z be subsets of V: Then, X is conditionally independent of
Y given Z in Pr, if

Pr(X = xXjY = xY ; Z = xZ) = Pr(X = xX jZ = xZ);

for all xV 2
.

Other de�nitions of conditional independence exist in the context of other for-
malisms, but these are out of the scope of this thesis.

20
�
�

Preliminaries

Conditional Independence2.3

Conditional independence is the formalization of irrelevance. It can be considered
to be one of the key concepts in di�erent calculi in arti�cial intelligence [107]. In-
dependency models are useful in studying conditional independence.

De�nition Let V be a set of variables. An independency statement is a state-2.15

ment of the form I(X;Z; Y) where X, Y , and Z are disjoint subsets of V . An
independency model M I over V is a set of independency statements.

A statement I(X;Z; Y) should be read as X is independent of Y given Z. In the
sequel, we take that I(X;Z; ;) is in any independency model for X and Z disjoint
subsets of V . In the literature, the term dependency model is often erroneously
used instead of the term independency model [81, 107]; an independency model
contains information about independencies and not necessarily about dependencies.
In Chapter 3, we will return to this observation.

Through conditional independence, every probability distribution Pr induces an
independency model M I .

De�nition Let V be a set of variables, and let Pr be a joint probability distribution2.16

on V . The independency model M I induced by Pr is the set of independency
statements M I = fI(X;Z; Y)j8xX2
X ;xY 2
Y ;xZ2
ZPr(X = xX; Y = xY jZ = xZ) =
Pr(X = xXjZ = xZ) � Pr(Y = xY jZ = xZ); P r(Z = xZ) > 0g.

De�nition Let V be a set of variables. The semi-graphoid axioms are the follow-2.17

ing rules:

symmetry I(X;Z; Y) , I(Y;Z;X),
decomposition I(X;Z;WY)) I(X;Z;W),
weak union I(X;Z;WY)) I(X;ZW;Y), and
contraction I(X;ZW;Y) ^ I(X;Z;W)) I(X;Z;WY),

for any disjoint W;X; Y; Z � V: The graphoid axioms are the semi-graphoid axioms
together with the following rule:

intersection I(X;ZW;Y) ^ I(X;ZY;W)) I(X;Z;WY).

for any disjoint W;X; Y; Z � V:

The previous de�nitions give rise to a classi�cation of independency models.

De�nition Let V be a set of variables, and let M I be an independency model over2.18

V:
M I is semi-graphoid if M I is closed under the semi-graphoid axioms.
M I is graphoid if M I is closed under the graphoid axioms.
M I is stochastic if a joint probability distribution Pr over V exists such that Pr

induces M I .
M I is positive stochastic if a positive joint probability distribution Pr over V

exists such that Pr induces M I .

21
�
�

Preliminaries

The relationship between these types of independency model is given in the following
theorem.

Theorem Every stochastic independency model is semi-graphoid. Every positive2.2

stochastic independency model is graphoid.

positive
stochastic

stochastic

graphoid
semi-

graphoid

Figure 2.1: The relationship between the various classes of independency models.

A proof of the theorem can be found in [31] or in [106]1. The relationship between
the various classes of independency models is illustrated in Figure 2.1. Note that
there are independency models that are both stochastic and graphoid but that are
not positive stochastic. For example, let V = fug,
V = f0; 1; 2g and Pr(V = 0) =
Pr(V = 1) = 1

2, Pr(V = 2) = 0. Then, the independency model induced by Pr is
stochastic and graphoid, but not positive stochastic.

Graphical Representations2.4

Undirected graphs and directed acyclic graphs are a powerful means for representing
independency models [30, 71, 82, 119, 120]. The representation of independency
statements by an undirected graph is de�ned through the concepts of blocking and
separation.

De�nition Let G = (V;E) be an undirected graph.2.19

A path u1; u2; : : : ; um, m > 1 in G is blocked by a set of nodes X, X � V; if the
path has at least one node in common with X.

De�nition Let G = (V;E) be an undirected graph. Let X, Y; Z be disjoint subsets2.20

of V:
Z separates X from Y in G, written hX;Z; Y iG , if every path in G from a node

in X to a node in Y is blocked by Z.

1The theorem holds for independency statements over non-disjoint subsets as well if it is assumed
that I(X;Z;Z) [81].

22
�
�

Preliminaries

A statement of the form hX;Z; Y iG is called a separation statement. In the se-
quel, we omit the subscript G as long as the context makes clear which graph G is
considered.

The following property of separation is known as the global Markov property.

Theorem Let V be a set of variables. Let G = (V;E) be an undirected graph. Let2.3

u 2 V and �u be the neighborhood of u. Then, for every u 2 V , hu; �u; V nu�uiG.
A proof of the theorem can be found in [81]. This theorem states that in an undi-
rected graph, every node u is separated by its neighbors from all other nodes of the
graph. An independency model can be associated with an undirected graph.

De�nition Let V be a set of variables. Let G = (V;E) be an undirected graph.2.21

The independency model M I
G over V corresponding to G is the set of independency

statements I(X;Z; Y) such that hX;Z; Y i in G.

Similar concepts of blocking and separation are de�ned for directed acyclic graphs.

De�nition Let G = (V;E) be a directed acyclic graph.2.22

A chain u1; u2; : : : ; um, m > 1 in G is blocked by a set of nodes X, X � V; if there
is a triple u, v, w of consecutive nodes in the chain such that one of the following
conditions holds:

1. u! v 2 E and v ! w 2 E and v 2 X, or

2. u v 2 E and v ! w 2 E and v 2 X, or

3. u! v 2 E and v w 2 E and v nor its descendants Dv are in X.

1.

v
w

u
v

wu
v

D
v

wu

2. 3.

Figure 2.2: Conditions under which a chain is blocked.

The three conditions under which a chain may be blocked are illustrated in Figure
2.2.

De�nition Let G = (V;E) be a directed acyclic graph. Let X, Y; Z be disjoint2.23

subsets of V:
Z d-separates X from Y in G, written hX;Z; Y iG, if every chain in G between a

node in X and a node in Y is blocked by Z.

In the sequel, we will omit the subscript G from a separation statement as long
as it is clear from the context which graph G is considered. We will use the term
separation instead of d-separation. For separation in directed acyclic graphs, also a
global Markov property is known.

23
�
�

Preliminaries

Theorem Let V be a set of variables. Let G = (V;E) be a directed acyclic graph.2.4

Then, hu; �u; V nu�uDuiG for any u 2 V .

A proof of the theorem can be found in [81]. This theorem states that in a directed
acyclic graph, every node u is separated by the parent set of u from all other nodes
that are non-descendants.

De�nition Let V be a set of variables. Let G = (V;E) be a directed acyclic graph.2.24

The independency model M I
G over V corresponding to G is the set of independency

statements I(X;Z; Y) such that hX;Z; Y i in G.

Theorem Let V be a set of variables. Let G = (V;E) be an undirected graph or2.5

a directed acyclic graph. Let M I
G be the independency model corresponding to G.

Then, M I
G is closed under the graphoid axioms.

Separate proofs of this theorem for undirected graphs and directed acyclic graphs
can be found in [81]. The previous de�nitions give rise to a relation between graphs
and independency models.

De�nition Let V be a set of variables. Let M I be an independency model over V2.25

and let G = (V;E) be a graph.
G is a dependency map, or D-map, ofM I if I(X;Z; Y) 2M I implies hX;Z; Y iG.
G is an independency map, or I-map, of M I if hX;Z; Y iG implies I(X;Z; Y) 2

M I:
G is a minimal I-map of M I if G is an I-map of M I and no proper subgraph

G0 = (V;E0) of G is an I-map of M I:
G is a perfect map, or P-map, of M I if G is both an I-map and a D-map of M I:

In the sequel, often the independency model induced by a joint probability distri-
bution Pr is considered, and a graph G will then be called a D-map, I-map, or
P-map of Pr to denote that G is a D-map, I-map, or P-map, respectively, of the
independency model induced by Pr.

De�nition Let V be a set of variables and let M I be a graphoid independency2.26

model over V:
An independency base LI over M I is a subset of M I such that for each u 2 V;

the set LI contains exactly one independency statement of the form

I(u; hu; V nuhu)
and no others, where hu � V nu, such that I(u; hu; V nuhu) is in M I and for any
proper subset S of hu, I(u; S; V nuS) is not in M I:

A set hu in an element of the independency base LI is called a boundary of u in LI .
A boundary hu is constructed from the independency model M I by initially setting
hu to V nu and then removing variables v from hu for which I(u; V nuv; v) is in M I .

An undirected graph G = (V;E) is associated with the identi�ed independency
base by letting u ��v 2 E if and only if v is in the hu. By this construction,

24
�
�

Preliminaries

the neighborhood �u in G is equal to the set hu. Therefore, we will refer to hu as
the neighborhood of u and we will write �u instead of hu. The constructed graph
is a minimal I-map of M I [81]. The independency model M I

L associated with an
independency base LI is the closure of LI under the independency axioms.

De�nition Let V be a set of variables, let M I be a graphoid independency model2.27

over V; and let <V be a total ordering on V:
A causal input list LI<V overM I is a subset of M I such that for each u 2 V; the

set LI<V contains one and only one independency statement of the form

I(u; pu; Vunpu)

and no others, where Vu = fvjv 2 V; v <V ug and pu � Vu such that I(u; pu; Vunpu)
is in M I and for any proper subset S of pu, I(u; S; VunS) is not in M I:

A causal input list is constructed from an independency model M I by starting with
a set pu = Vu for each node u 2 V: Then for each node v 2 pu, v is deleted from pu
if I(u; Vunv; v) is in M I:

A directed acyclic graph G<V = (V;E) is associated with a causal input list LI<V
as follows. G contains an arc u ! v if and only if u is in the set pu of LI<V . By
construction, the parent set �u is equal to pu. Therefore, we will refer to pu as the
parent set of v and write �u instead of pu. The directed acyclic graph obtained is
a minimal I-map of M I [82]. The independency model M I

L associated with a causal
input list LI<V is the closure of LI<V under the independency axioms.

Unlike for undirected graphs, an independency model need not be uniquely de-
�ned by a given directed acyclic graph; the independency model represented by the
directed acyclic graph G = (fu; vg; u! v) is the same as the independency model
represented by G0 = (fu; vg; u v).

De�nition Let G1 = (V;E(G1)) and G2 = (V;E(G2)) be directed acyclic graphs.2.28

G1 and G2 are equivalent , denoted as G1 � G2, if M I
G1

= M I
G2
.

The equivalence of directed acyclic graphs can easily be checked using the following
property.

Theorem Let G1 = (V;E(G1)) and G2 = (V;E(G2)) be directed acyclic graphs, and2.6

let G0
1 = (V;E(G0

1)) and G0
2 = (V;E(G0

2)) be their underlying graphs, respectively.
Then, G1 and G2 are equivalent if and only if the following conditions hold for

all u; v; w 2 V :

1. u! v; v w 2 E(G1) and u��w 62 E(G0
1) if and only if u! v; v w 2 E(G2)

and u��w 62 E(G0
2), and

2. u��v 2 E(G0
1) if and only if u��v 2 E(G0

2).

A proof can be found in [82]. The two conditions for the equivalence of two directed
acyclic graphs are illustrated in Figure 2.3.

Directed acyclic graphs can be transformed using the reversal of arcs.

25
�
�

Preliminaries

w

v v

u u

1.

w
v w v w

2.

G
iff

G1 2

Figure 2.3: Conditions for equivalence of two directed acyclic graphs.

De�nition Let V be a set of variables and let G be a directed acyclic graph over2.29

V . Let u, v be two nodes in V such that there is no path from v to u nor from u to
v with the possible exception of the path u! v.

Then, arc-reversal is an operation on the nodes u and v and G that results in
a directed acyclic graph G0 over V which equals G if u 62 �v and otherwise it has
parent sets

�0w =

8<
:

�w if w 6= u and w 6= v;
�u [�v [v w = u;
�v [�unu w = v:

We write G0 = arcr(G;u; v) to denote that G0 is the directed acyclic graph obtained
by applying an arc-reversal on u and v in G. If G0 = arcr(G;u; v), then the indepen-
dency model represented by G0 is a subset of the independency model represented
by G and no arcs can be removed from G0 without destroying this property [96].

Probabilistic Networks2.5

Probabilistic networks o�er mathematically sound formalisms for representing un-
certainty in knowledge-based systems. Two kinds of probabilistic networks are con-
sidered in this thesis: Markov networks and Bayesian belief networks. The main
di�erence between the two is that the former are based on undirected graphs and
the latter are based on directed acyclic graphs.

De�nition Let V be a set of variables. AMarkov network B over V is an ordered2.30

pair B = (BS ; BP) such that

1. BS = (V;E) is an undirected graph, called the skeleton of B, containing the
unique cliques C1; : : : ; Cm, m � 1, and

2. BP = fgj :
Cj ! IR+jj = 1; : : : ;mg is a set of non-negative functions, called
potentials.

26
�
�

Preliminaries

The potentials of a Markov network uniquely de�ne a joint probability distribution
Pr over V in which the independency statements represented by the skeleton of the
network hold.

Theorem Let V be a set of variables, and let B = (BS; BP) be a Markov network2.7

over V as in De�nition 2.30. Then,

Pr(V = xV) = � �
mY
j=1

gj(Cj = xCj)

for all xV 2
, where � is a normalizing constant such that
P

xV 2

Pr(V = xV) = 1,

de�nes a joint probability distribution over V such that BS is an I-map of Pr.

A proof of this theorem has been published in [81].

De�nition Let V be a set of variables. A Bayesian belief network B over V is an2.31

ordered pair (BS; BP) such that

1. BS = (V;E) is a directed acyclic graph, called the network structure of B,
and

2. BP = f
u :
u �
�u ! [0::1]ju 2 V g is a set of functions, called assessment

functions.

The assessment functions of a Bayesian belief network uniquely de�ne a joint prob-
ability distribution Pr over V in which the independency statements represented by
the network structure of the network hold.

Theorem Let V be a set of variables, and let B = (BS; BP) be a Bayesian belief2.8

network over V as in De�nition 2.31. Then,

Pr(V = xV) =
Y
u2V

u(u = xuj�u = x�u)

for all xV 2
, de�nes a joint probability distribution over V such that BS is an
I-map of Pr.

A proof of the theorem can be found in [62].

27
�
�

Preliminaries

Conditional Dependence

The concept of irrelevance is one of the key concepts in knowledge-based systems.
Without making assumptions about irrelevance, reasoning in a knowledge-based sys-
tem would be intractable. Irrelevance is equivalent to conditional independence in
a technical context. Conditional independence relations may be represented by in-
dependency models. Conditional independence and independency models are thor-
oughly studied in di�erent calculi of arti�cial intelligence [107].

Since independency models are very large in general, it is not practical to store
them as sets. Instead, a short list of independency statements is used to represent
an independency model. Using the graphoid axioms, every independency statement
in the represented independency model can be derived from such a list. There are
two special kinds of lists of independency statements: the independency base, and
the causal input list. These types of lists are associated with undirected graphs
and directed acyclic graphs, respectively. Graphical criteria are available to read
from the graph independency statements that are in the graphoid closure of the
independency base or causal input list. However, there are independency models
that cannot be perfectly represented by a graph. For any such model, one has to
make the choice of capturing too few or too many independency statements in a
graphical representation. Inference algorithms in knowledge-based systems with a
Markov network or Bayesian belief network obtain their e�ciency by making use of
the represented independencies in their network. So, as many independency state-
ments as possible should be represented in order to have an representation as close
as possible to the true independency model. On the other hand, it is better to rep-
resent too few independency statements than too many, since erroneously assumed
independencies may lead to false conclusions. Therefore, we are interested in min-
imal I-maps, which are graphs that represent a maximum number of independency
statements but not too many.

Given a minimal I-map G of an independency modelM I , the independency state-
ments I(X;Z; Y) such that X and Y are separated by Z in G are valid independency
statements in M I . However, if X and Y are not separated by Z in G, then it is
not clear whether I(X;Z; Y) is an element of M I or not. In general, if an inde-
pendency statement cannot be read from the graph at hand, it does not mean that
the independency statement is not valid. Yet, some independency statements may
be identi�ed that are de�nitely not valid. In this chapter we derive criteria for
identifying such independency statements. More speci�cally, we develop a power-
ful axiomatic characterization of conditional dependence and graphical criteria for
reading conditional dependencies from a minimal I-map.

It should be noted that the presented theory �ts in a logical framework. Because
the theory on conditional independence has been developed from a statistical point of
view, we adopt the historical terminology. Therefore, this section may be confusing
for readers with a background in logic; for example, we use the term `model' for
what is usually called `theory', and we use the term `axiom' for what is usually
called `inference rule'.

In the next section, an axiomatic characterization of conditional dependence is

29
�
�
�

given together with some of its properties. In Section 3.2, we investigate the depen-
dencies that can be derived from an independency base and we de�ne a graphical
criterion to read these dependencies from the undirected graph associated with the
independency base. In Section 3.3 we address the same issues for causal input lists
and directed acyclic graphs.

Conditional Dependence3.1

We are interested in a theory about conditional dependence. In this chapter, we will
consider �nite sets of variables only.

De�nition Let V be a set of variables. Let X, Y , and Z be disjoint subsets of3.1

V such that X 6= ;, Y 6= ;. We call X and Y conditionally dependent given Z,
written D(X;Z; Y), if X and Y are not conditionally independent given Z. The
statement D(X;Z; Y) is called a dependency statement.

The semantics of conditional dependence is determined by the formalism in which
conditional independence is de�ned. In general, D(X;Z; Y) can be interpreted as
saying that knowledge of some variables in Y is relevant for knowledge of some
variables in X when all variables in Z are known. From the de�nition, we have
D(X;Z; Y) , :I(X;Z; Y). To study the properties of sets of dependency state-
ments, we use dependency models.

De�nition Let V be a set of variables. A dependency model MD over V is a3.2

set of dependency statements. The complement of MD is the independency model
M I = fI(X;Z; Y)jX;Z; Y disjoint subsets of V;D(X;Z; Y) 62MDg.

If M I is the complement of MD, then we say that MD is the complement of M I .
Just as conditional dependence is the counterpart of conditional independence, a
dependency model is the counterpart of an independency model. We now classify
dependency models as we have done for independency models in Chapter 2.

De�nition Let V be a set of variables. Let M I be an independency model over V3.3

and let MD be the complement of M I .
MD is semi-graphoid if M I is semi-graphoid.
MD is graphoid if M I is a graphoid.
MD is stochastic if M I is stochastic.
MD is positive stochastic if M I is positive stochastic.

The relationship between these types of dependency model is given in the following
theorem.

Theorem Every stochastic dependency model is semi-graphoid. Every positive3.1

stochastic dependency model is graphoid.

30
�
�
�

Conditional Dependence

I(a; ;; b)0 I(b; ;; a)0 I(c; ab; d)0 I(d; ;; a)0 I(e; acd; b) I(f; abce; d)
I(a; ;; bd)0 I(b; acd; e) I(c; abe; d)� I(d; ab; c)0 I(e; acdf; b) I(f; abe; d)�

I(a; ;; d)0 I(b; acd; ef) I(c; abef; d)� I(d; abce; f) I(e; bc; a) I(f; acd; b)
I(a; b; d)0 I(b; acd; f) I(c; b; d)0 I(d; abe; c)� I(e; bcd; a) I(f; acde; b)
I(a; bc; d) I(b; acde; f) I(c; be; d)� I(d; abe; cf)� I(e; bcdf; a) I(f; ace; b)
I(a; bc; de) I(b; acdf; e) I(c; bef; d)� I(d; abe; f)� I(e; bcf; a) I(f; ace; bd)
I(a; bc; def) I(b; ace; f) I(cf; abe; d)� I(d; abef; c)� I(e; cd; a) I(f; ace; d)
I(a; bc; df) I(b; cd; e) I(cf; be; d)� I(d; ace; f) I(e; cd; ab) I(f; bc; a)
I(a; bc; e) I(b; cd; ef) I(d; b; a)0 I(e; cd; b) I(f; bcd; a)
I(a; bc; ef) I(b; cd; f) I(d; b; ac)0 I(e; cdf; a) I(f; bcde; a)
I(a; bc; f) I(b; cde; f) I(d; b; c)0 I(e; cdf; ab) I(f; bce; a)
I(a; bcd; e) I(b; cdf; e) I(d; bc; a) I(e; cdf; b) I(f; bce; ad)
I(a; bcd; ef) I(b; ce; f) I(d; bce; a) I(ef; acd; b) I(f; bce; d)
I(a; bcd; f) I(b; d; a)0 I(d; bce; af) I(ef; bc; a) I(f; be; d)�

I(a; bcde; f) I(bd; ;; a)0 I(d; bce; f) I(ef; bcd; a) I(f; cd; a)
I(a; bcdf; e) I(bd; ace; f) I(d; bcef; a) I(ef; cd; a) I(f; cd; ab)
I(a; bce; d) I(bd; ce; f) I(d; bcf; a) I(ef; cd; ab) I(f; cd; b)
I(a; bce; df) I(d; be; a)� I(ef; cd; b) I(f; cde; a)
I(a; bce; f) I(d; be; ac)� I(f; cde; ab)
I(a; bcef; d) I(d; be; acf)� I(f; cde; b)
I(a; bcf; d) I(d; be; af)� I(f; ce; a)
I(a; bcf; de) I(d; be; c)� I(f; ce; ab)
I(a; bcf; e) I(d; be; cf)� I(f; ce; abd)
I(a; be; d)� I(d; be; f)� I(f; ce; ad)
I(a; bef; d)� I(d; bef; a)� I(f; ce; b)
I(a; cd; e) I(d; bef; ac)� I(f; ce; bd)
I(a; cd; ef) I(d; bef; c)� I(f; ce; d)
I(a; cd; f) I(d; ce; f)
I(a; cde; f) I(de; bc; a)
I(a; cdf; e) I(de; bcf; a)
I(a; ce; f) I(def; bc; a)
I(a; d; b)0 I(df; bc; a)
I(ab; cd; e) I(df; bce; a)
I(ab; cd; ef)
I(ab; cd; f)
I(ab; cde; f)
I(ab; cdf; e)
I(ab; ce; f)
I(abd; ce; f)
I(ac; b; d)0

I(ac; be; d)�

I(ac; bef; d)�

I(acf; be; d)�

I(ad; bce; f)
I(ad; ce; f)
I(af; bce; d)
I(af; be; d)�

Figure 3.1: The graphoid independency model M I
e obtained by clos-

ing fI(a; ;; ;); I(b; ;; a); I(c; ab; ;); I(d; b; ac); I(e; cd; ab); I(f; ce; abd); I(c; be; d)g un-
der the graphoid axioms.

31
�
�
�

Conditional Dependence

Proof: The properties stated follow directly from De�nition 3.3 and Theorem 2.2.

Note that the relations between the various classes of dependency model are exactly
the same as the relations between the various classes of independency model as
illustrated in Figure 2.1.

Figure 3.1 shows an example of an independency model. It lists the elements
of a graphoid independency model over six variables abcdef . The independency
model is constructed by starting with a short list of independency statements
fI(a; ;; ;); I(b; ;; a); I(c; ab; ;); I(d; b; ac); I(e; cd; ab); I(f; ce; abd); I(c; be; d)g and tak-
ing the closure of this list under the graphoid axioms. All trivial independency
statements are omitted, that is, no independency statements of the form I(X;Z; ;)
is listed. The �gure demonstrates that even for a small number of variables, inde-
pendency models may be very large sets. By construction, the independency model
can be e�ciently represented by only a small set of independency statements. In
general, this need not be the case. In practice, however, most independency mod-
els do have this property [104]. The listed independency model will be used in
subsequent examples and will be referred to as M I

e . Like independency models,
dependency models may become very large. For example, the dependency model
that is the complement of the independency model M I

e in Figure 3.1 contains 2552
elements. Instead of storing all dependency statements, a list of selected dependency
statements is a more structured representation, which makes it easier to derive the-
oretical results. Using a set of rules, every dependency statement in the dependency
model can be derived from the list. For this purpose, the following rules are de�ned.

De�nition Let V be a set of variables. The semi-dependency axioms are the3.4

following rules:

symmetry D(X;Z; Y) ,D(Y;Z;X),
composition D(X;Z; Y))D(X;Z;WY),
weak reunion D(X;ZW;Y))D(X;Z;WY),
extraction D(X;Z;WY) ^ I(X;Z;W))D(X;ZW;Y), and
extraction+ D(X;Z;WY) ^ I(X;ZY;W))D(X;Z; Y)

for any disjoint W;X; Y; Z � V: The dependency axioms are the semi-dependency
axioms together with the following rule:

intersection D(X;Z;WY) ^ I(X;ZY;W))D(X;ZW;Y):

for any disjoint W;X; Y; Z � V:

Note that for every graphoid axiom for conditional independence a complementary
dependency axiom is de�ned. In fact, these axioms are constructed by taking the
`inverse' of the graphoid axioms; assuming that a statement on the right-hand side
of a graphoid axiom is a dependency statement, we conclude that at least one of the
statements on the left-hand side must be a dependency statement. As a result, for
the contraction axiom two complementary axioms are de�ned, namely extraction

32
�
�
�

Conditional Dependence

and extraction+. The same would be expected for intersection. However, the two
resulting rules turn out to be equivalent.

The dependency axioms can be regarded as inference rules for certain dependency
models. The intuition behind symmetry is straightforward. Composition tells that
if Y is dependent of X given Z, then Y together with W also is dependent of X
given Z. Weak reunion is interpreted in a similar fashion; if Y is dependent of X
given ZW , then also Y together with W is dependent of X when only Z is known.

The extraction axiom says that if W and Y are dependent of X given Z, and
furthermore W is independent of X given Z, then X must be dependent of Y when
both Z and W are known. To get an intuition of the extraction+ a same line of
reasoning can be followed; if W and Y are dependent of X when Z is known, and
furthermore W is independent of X when both Z and Y are known, then X must
be dependent on some variables in Y and not in W when Z is known. Note that
extraction+ is the only dependency axiom in which the dependency statement on
the right-hand side contains less variables than the dependency statement on the
left-hand side. So, a stronger statement on dependencies is obtained.

The intuition of the intersection axioms is that if W and Y are dependent of X
given Z, and furthermore W is independent of X given both Z and Y , then X must
be dependent of some variables in Y given both W and Z. The intersection axiom
is the strongest of the dependency axioms in the sense that it gives very speci�c
information on which variables are conditionally dependent. With a relatively weak
statement about conditional dependence and conditional independence, a rather
strong statement about conditional dependence can be derived.

Note that it is necessary to have knowledge of some conditional independency
statements in order to apply the extraction axioms and the intersection axiom.

Theorem Every semi-graphoid dependency model is closed under the semi depen-3.2

dency axioms. Every graphoid dependency model is closed under the dependency
axioms.

Proof: We will only show that the extraction axiom D(X;Z;WY) ^ I(X;Z;W))
D(X;ZW;Y) holds in every semi-graphoid dependency model. The proofs for the
other axioms are analogous.

Let MD be a semi-graphoid dependency model and let M I be the complement of
MD. Assume that D(X;Z;WY) 2MD and I(X;Z;W) 2M I . By de�nition we have
D(X;Z;WY) 2 MD , I(X;Z;WY) 62 M I . Now, suppose that I(Y;ZW;X) 2 M I .
By contraction for graphoid independency models, it follows that I(X;Z;WY) 2
M I . From the contradiction, we conclude that I(X;Z;WY) 62 M I from which it
follows that D(X;ZW;Y) 2MD.

The semi-dependency axioms form a relatively weak set of inference rules. From
now on, we shall only consider graphoid dependency models. Note that, for exam-
ple, stochastic dependency models induced by positive probability distributions are
graphoid. So, we still consider a large class of dependency models.

The following properties show the power of the graphoid axioms and dependency
axioms for deriving new properties.

Lemma Let V be a set of variables, and let M I be a graphoid independency model3.1

33
�
�
�

Conditional Dependence

over V . Let X, Y , and Z be disjoint subsets of V . If I(u;XY Znuv; v) 2 M I for all
u 2 X and v 2 Y , if and only if I(X;Z; Y) 2M I .

Proof: First we show the only if part. We begin by showing that if, for a given
u 2 X, we have that I(u;XY Znuv; v) 2M I for all v 2 Y , then I(u;ZXnu; Y) 2M I .
We prove this property by induction on the cardinality of Y . For jY j = 0 and jY j = 1,
the property holds by de�nition. Now, assume that for some k > 1, the property
holds for all sets Y with jY j = i, 1 � i < k. Consider a set Y = fv1; : : : ; vkg such
that I(u;XY Znuv; v) 2 M I for all v 2 fv1; : : : ; vk�1g. Then from the induction
hypothesis we have I(u;XZvknu; Y nvk) 2M I . By applying the intersection axiom,
we �nd I(u;XZnu; Y) 2M I . This completes the induction.

By symmetry, we have I(Y;XZnu; u) 2M I for all u 2 X, since we can apply the
property above for every u. By a similar argument as above we �nd I(Y;Z;X) 2M I

and hence I(X;Z; Y) 2M I .
The if part of the lemma easily follows from weak union and symmetry.

Corollary Let V be set of variables. Let MD be a graphoid dependency model3.1

over V , and let X, Y , and Z be disjoint subsets of V . Then, D(X;Z; Y) 2 MD if
and only if variables u 2 X; v 2 Y exist such that D(u;XY Znuv; v) 2MD.

Proof: The corollary states the logical negation of Lemma 3.1.

Note that from the corollary it follows that to show that Y is dependent on X given
Z, it su�ces to �nd two variables u 2 X and v 2 Y such that u and v are dependent
given all other variables XY Znuv.

Undirected Graphs3.2

Graphs constitute a powerful representation formalism for dependency and inde-
pendency models. In this section we consider undirected graphs and the way they
represent independency models and dependency models. In the next section we
consider directed acyclic graphs.

Conditional Independence in Undirected Graphs3.2.1

In this subsection, we will review the relationship between a graphoid independency
model, its independency base and its associated undirected graph. We will use the
independency model M I

e listed in Figure 3.1 to illustrate the relationships.
Let M I be the independency model over a set of variables V . The independency

base LI overM I is the set of independency statements LI = fI(u; �u; V nu�u)ju 2 V g
as de�ned in De�nition 2.26. So, the sets �u in LI are the smallest subsets of variables
of V nu that give full information to the variable u: if values for the variables in �u
are known, no knowledge of values of other variables will change the probabilities
for u's values.

Given the independency model M I , the sets �u as described above can be con-
structed based on Lemma 3.1 as follows. Initially �u is set to V nu for a variable

34
�
�
�

Conditional Dependence

M I
e

= the closure under the graphoid axioms of

fI(a; ;; ;); I(b; ;; a); I(c; ab; ;); I(d; b; ac);
I(e; cd; ab); I(f; ce; abd); I(c; be; d)g

LI

= fI(a; bc; def); I(b; acd; ef); I(c; abef; d);
I(d; be; acf); I(e; cdf; ab); I(f; ce; abd)g

M I
L

= the closure under the graphoid axioms of

fI(a; bc; def); I(b; acd; ef); I(c; abef; d);
I(d; be; acf); I(e; cdf; ab); I(f; ce; abd)g

GL

M I
GL

= fI(X;Z; Y)jhX;Z; Y i in GLg
=

Figure 3.2: Relation between independency models, independency base, undirected
graph, and represented independency model for M I

e .

35
�
�
�

Conditional Dependence

a

dc

b

f

e

Figure 3.3: The undirected graph GL induced by the independency base L in Figure
3.2.

u 2 V . Then, M I is consulted for every independency statement I(u; V nuv; v) with
u 2 V , v 2 V nu. If the independency statement is inM I , then v is removed from the
neighborhood �u. This process is repeated for every variable u 2 V . The procedure
is depicted below in pseudo code. In practical applications, a domain expert acts as
an oracle that can provide answers about independency statements.

Independency Base Construction for M I

for all u 2 V do �u V nu
for all u 2 V do

for all v 2 V do
if I(u; V nuv; v) 2M I then �u �unv

return fI(u; �u; V n�u)ju 2 V g

For example, consider the independency model M I
e listed in Figure 3.1. Then

the set �a is found by starting with V na = bcdef . As I(a; cdef; b) and I(a; bdef; c)
are not in M I

e , b and c cannot be removed from �a. But I(a; bcef; d) is in M I
e

so d can be removed from �a resulting in bcef . Furthermore, as I(a; bcdf; e) and
I(a; bcde; f) are in M I

e , e and f can be deleted from �a resulting in �a = bc. For
variables a, the statement I(a; bc; def) is added to the independency base. Ap-
plying this construction for the other variables gives the independency base LI =
fI(a; bc; def); I(b; acd; ef); I(c; abef; d); I(d; be; acf)I(e; cdf; ab); I(f; ce; abd)g. LI is
also listed in Figure 3.2.

Note that there is a kind of symmetry in the neighborhoods; if u 2 �v then
v 2 �u. For example, in the independency base in Figure 3.2 we have b 2 �a and
a 2 �b. The rationale behind this property is that dependence between two variables
is symmetric. If a is dependent on b, then b is dependent on a.

The undirected graph GL induced by an independency base LI has an edge u��v
between u and v if and only if u is in the neighborhood �v of v. The undirected
graph associated with the independency base listed in Figure 3.2 is shown in Figure
3.3. Since �a = bc, there are edges a��b and a��c in GL.

With the undirected graph GL, an independency model M I
G over V is associated

36
�
�
�

Conditional Dependence

containing the independency statements I(X;Z; Y) if and only if X and Y are sepa-
rated by Z in GL. For example, for the graph GL in Figure 3.3 we have that ha; cd; fi
since all paths in G from a to f contain c or d. Therefore, M I

G contains I(a; cd; f).
So, a graph represents an independency model through separation. As separation
obeys the graphoid axioms, the represented model M I

G is a graphoid independency
model. The relationship between the graph GL associated with the independency
base LI and the independency model M I is given by the following theorem.

Theorem Let V be set of variables. Let M I be a graphoid independency model3.3

over V and let LI be the independency base of M I . Let GL be the undirected graph
associated with LI . Then, GL is a minimal I-map of M I:

A proof of the theorem can be found in [83] and [81].As a consequence, we have the
following property.

Corollary Let V be set of variables. Let M I be a graphoid independency model3.2

over V and let LI be the independency base of M I . Let GL be the undirected graph
associated with LI . Then, M I

G �M I :

The reverse M I � M I
G does not necessarily hold. For example, consider once more

the independency modelM I
e listed in Figure 3.2 and the undirected graph GL shown

in Figure 3.3 associated with the independency base LI of M I
e . From M I

e , we have
that I(a; ;; b) 2 M I

e . In GL, however, ha; ;; bi does not hold. So, I(a; ;; b) 62 M I
G.

The independency statements from M I
e that are not represented by GL are marked

with a prime in Figure 3.1. Note that all but sixteen independency statements are
represented by GL, indicating that undirected graphs indeed o�er a powerful way of
representing independency models.

The independency base LI induces an independency model. This independency
model M I

L is the closure of LI under the graphoid axioms. For example, let LI be
the independency base in Figure 3.2. The independency statement I(a; bc; def) is in
LI so I(a; bc; def) is in M I

L. Using weak union and symmetry, we get I(ef; bcd; a) 2
M I

L. The independency statements I(b; acd; ef) is in LI . Using symmetry and
intersection on the last two independency statements we get I(ef; cd; ab) 2M I

L and
using symmetry and decomposition we have I(a; cd; f) 2 M I

L. So, I(a; cd; f) is in
M I

L. Note that I(a; cd; f) is also in the independency model M I
G associated with the

graph GL induced by LI . This is no coincidence, considering the following property.

Theorem Let V be a set of variables. Let M I be a graphoid independency model3.4

over V . Let LI be the independency base of M I and let M I
L be the graphoid closure

of LI . Let GL be the undirected graph associated with LI and let M I
G be the

independency model of GL. Then,

M I
G =M I

L:

Proof: We show that M I
L �M I

G and M I
G �M I

L.
First, we show that M I

L �M I
G by demonstrating for all independency statements

I(X;Z; Y) that if I(X;Z; Y) 2 M I
L then I(X;Z; Y) 2 M I

G. Consider any indepen-
dency statement I(u; �u; V nu�u) 2 LI . By construction of GL and the de�nition of

37
�
�
�

Conditional Dependence

separation, we have that hu; �u; V nu�uiGL . So, I(u; �u; V nu�u) 2 M I
G. We conclude

that LI � M I
G. Since M I

G is closed under the graphoid axioms by Theorem 2.5,
every independency statement I(X;Z; Y) 2M I

L is in M I
G. Hence I(X;Z; Y) 2M I

G.
Next, we show that M I

G � M I
L by proving for all independency statements

I(X;Z; Y) that if I(X;Z; Y) 2 M I
G then I(X;Z; Y) 2 M I

L. Assume that hX;Z; Y i
holds in GL. Then for all u 2 X and v 2 Y , u and v are non-adjacent. We con-
clude that, for all u 2 X the set Y n�u is empty. So, for all u 2 X the statement
I(u; �u; V nu�u) 2 LI can be written as I(u; �u; Y (V nu�uY)). Using decomposition
we can derive I(u; �u; Y (Zn�u)) and using weak union we can derive I(u;ZXnu; Y)
for all u 2 X. By applying Lemma 3.1, I(X;Z; Y) can be derived using these
statements. So, I(X;Z; Y) 2M I

L.

So, all independency statements that can be derived from an independency base LI

using the graphoid axioms are also represented in the graph induced by LI and vice
versa.

The relationships among the above concepts is depicted in Figure 3.2. In the
�gure, a directed arrow between two rectangles means that the object at the tail of
the arrow is su�cient to construct the object at the head of the arrow.

Conditional Dependence in Undirected Graphs3.2.2

In the previous subsection, it was shown that the representation of an independency
model by an undirected graph is equivalent to the representation of this indepen-
dency model by its independency base. In this subsection, we will derive a similar
property for dependency models.

De�nition Let V be a set of variables. Let M I be a graphoid independency model3.5

over V , and let LI be the independency base ofM I . The dependency base LD ofM I

is a set of dependency statements such that for each u 2 V , LD contains dependency
statements of the form

D(u; �unv; v)
for each v 2 �u, where �u is such that I(u; �u; V n�uv) 2 LI .
Consider once more the independency model M I

e listed in Figure 3.1. For variable
a, LI contains the independency statement I(a; bc; def). So, LD contains the depen-
dency statements D(a; c; b), and D(a; b; c). Figure 3.4 shows the entire dependency
base for the independency model M I

e listed
For the dependency base as de�ned above, we can show that the dependency

statements that are in the dependency base indeed are in the complement of M I ,
and hence are valid statements about dependence.

Lemma Let V be a set of variables. Let M I be a graphoid independency model3.2

over V , and let MD be its complementary graphoid dependency model. Let LD be
the dependency base of M I . Then

LD �MD:

38
�
�
�

Conditional Dependence

Proof: The property will be proved by contradiction. Suppose that for some u; v 2
V , D(u; �unv; v) 2 LD and D(u; �unv; v) 62 MD. From D(u; �unv; v) 62 MD, we have
by de�nition that I(u; �unv; v) 2 M I . Now, let LI be the independency base of
M I . By construction of LD we know that I(u; �u; V nu�u)MI 2 LI and hence that
I(u; �u; V nu�u)MI 2 M I . Applying the contraction axiom to I(u; �unv; v)MI and
I(u; �u; V nu�u)MI gives I(u; �unv; V n(u�unv)) 2 M I . Now observe that if this last
statement is in the independency model M I , then �u is not the smallest set such
that I(u; �u; Vunu�u) 2 M I . But then, LI cannot be the independency base of M I .
From this contradiction we conclude that LD �MD.

We can associate a dependency model with a dependency base in a similar way as
we associated an independency model M I

L with an independency base LI .

De�nition Let V be a set of variables. Let M I be a graphoid independency model3.6

over V and let LI be the independency base of M I . Let M I
L be the independency

model associated with LI . Let LD be the dependency base of M I . The dependency
modelMD

L associated with LD is the closure of LD under the six dependency axioms,
where the independency statements used are elements of M I

L.

Note that in applying the dependency axioms for calculating the closure of LD, the
independency statements used can be easily read from the undirected graph GL

associated with LI , as M I
G = M I

L.

Theorem Let V be a set of variables. Let M I be a graphoid independency model3.5

over V , and let MD be its complementary graphoid dependency model. Let LD be
the dependency base of M I and let MD

L be its associated dependency model. Then

MD
L �MD:

Proof: By Lemma 3.2, we have that LD �MD. From Theorem 3.2 we have that any
graphoid dependency model is closed under the dependency axioms. The property
stated in the theorem now follows from the de�nition of MD

L .

The dependency model MD
L can be viewed as the counterpart of the independency

model M I
L. We now take the dependency pool M over V as the set of all triples

(X;Z; Y) where X, Y , and Z are disjoint subsets of V . For a given independency
base LI , we can divide the pool M into four disjoint sets: M I

L, M
D
L , M

InM I
L and

MDnMD
L . Figure 3.5 illustrates this basic idea. Given an independency base, of

the statements in the last two sets we cannot tell whether they are independency
statements or dependency statements unless we have extra information.

For example, consider a memory chip with eight bits b1; : : : ; b8 and a parity bit
p, that is, consider the set of variables V = fb1; : : : ; b8; pg; the parity bit takes
the value 1 if an even number of bits is one, otherwise it takes the value 0. The
independency base LI over V with these functional dependencies is fI(bi; V nbi; ;)ji =
1; : : : ; 8g [fI(p; V np; ;)g. So, there are no independency statements in the associated
independency modelM I

L that are not trivial, that is, for all independency statements

39
�
�
�

Conditional Dependence

MD
e

= fD(X;Z; Y)jI(X;Z; Y) 62 M I
e g

LD

=fD(a; c; b);D(a; b; c);D(b; cd; a);D(b; ad; c);
D(b; ac; d);D(c; bef; a);D(c; aef; b); D(c; abf; e);
D(c; abe; f); D(d; b; e);D(d; e; b);D(e; df; c);
D(e; cf; d); D(e; cd; f);D(f; e; c);D(f; c; e)g

MD
L

= the closure under the dependency axioms of

fD(a; c; b);D(a; b; c);D(b; cd; a);D(b; ad; c);
D(b; ac; d); D(c; bef; a);D(c; aef; b);D(c; abf; e);
D(c; abe; f);D(d; b; e);D(d; e; b); D(e; df; c);
D(e; cf; d); D(e; cd; f);D(f; e; c); D(f; c; e)g

GL

MD
GL

= fD(X;Z; Y)jiX;Z; Y h in GLg
=

Figure 3.4: Relationship between dependency models, dependency base, undirected
graph, and represented dependency model for M I

e .

40
�
�
�

Conditional Dependence

M

M M

LM
D

D I

I
L

Figure 3.5: Division of the dependency pool

I(X;Z; Y) in M I
L at least one of X and Y is an empty set. The dependency base LD

constructed from LI contains only dependency statements of the form D(u; V nuv; v).
Now observe that only the symmetry and weak reunion axioms can be applied to
these statements; the other dependency axioms cannot be used for deriving new
dependency statements from LD. So, the dependency model MD

L associated with
LD contains only statements D(X;Z; Y) for which XY Z = V and MD

L is relatively
small. As a result, the set of statements in the dependency pool that cannot be
identi�ed as independency statements or dependency statements, that is, the set
MnM I

LM
D
L , may be very large.

We showed that the consequences of a dependency base under the dependency
axioms are valid dependency statements. Since the above example illustrates that
the dependency base MD

L associated with a dependency base LD may be very small,
one may ask whether extending LD with more dependency statements would result
in a larger MD

L . These dependency statements should be easily obtainable from
the independency base LI , since we do not want to consult external sources of
information about dependence. The following argument shows extending LD is not
useful. The only way to show that a dependency statements D(X;Z; Y) is valid is
by contradiction. We know of any neighborhood �u in LI that no proper variable
v of �v exists such that I(u; �unv; V nuv�u) is valid. The contradiction that needs to
be derived is that under the assumption that I(X;Z; Y) is valid, such a variable v
does exist. The derivation uses the graphoid axioms. Now, using the dependency
axioms, a complementary derivation can be constructed starting with D(u; �unv; v)
and ending with D(X;Z; Y). The dependency axiom used in the kth derivation
step is the complement of the graphoid axiom used in the n � kth derivation with
independency statements. So, every dependency statement that can be derived
by contradiction using the independency base LI and the independency model M I

L

can be derived from the dependency base. Therefore, it is not useful to extend
the dependency base with other dependency statements if only knowledge of the
independency base LI may be used.

41
�
�
�

Conditional Dependence

A Graphical Criterion for Conditional Dependence in Undirected Graphs3.2.3

Recall from the theory on conditional independence that for a given independency
base LI , all statements in its associated independency model M I

L can be read from
the undirected graph GL associated with LI using the separation criterion. The
notion of coupling o�ers a graphical criterion for dependency statements in MD

L .

De�nition Let V be a set of variables. Let G = (V;E) be an undirected graph, and3.7

let X, Y , and Z be disjoint subsets of V . We call X and Y coupled given Z in G,
written iX;Z; Y hG, if two nodes u 2 X, v 2 Y or u 2 Y , v 2 X exist such that

1. u��v is an edge in G, and

2. �u � XY Z where �u is the neighborhood of u in G.

A statement iX;Z; Y hG is called a coupling statement. In the sequel, we will omit
the subscript G from coupling statements whenever the context makes it clear which
graph G is considered.

To illustrate the notion of coupling, we consider the undirected graph of Figure
3.3. In this graph we have ia; c; bh, because a and b are adjacent and the boundary
of a, �a = bc, is a subset of abc. Likewise, we have iad; ;; bceh. In the graph, the
statement ia; bd; eh does not hold, as a and e are not adjacent. Also the statement
ia; ;; ch does not hold in G as neither �a = bc nor �c = abef are subsets of ae.

Coupling has the property that if X and Y are coupled by Z in a minimal I-map,
then X and Y are conditionally dependent given Z. So using coupling, one can read
valid dependency statements from graphs that are minimal I-maps.

Lemma Let V be a set of variables. Let M I be a graphoid independency model3.3

over V , and let GL = (V;E) be an undirected graph that is the minimal I-map of
M I . Let LD be the dependency base of M I . Let MD

L be the dependency model
associated with LD. Then

iX;Z; Y hGL) D(X;Z; Y) 2MD
L ;

for all disjoint subsets X;Y;Z � V .

Proof: We have to show that if iX;Z; Y hGL then D(X;Z; Y) can be derived from
the dependency base LD using the dependency axioms. Note that an undirected
graph that is a minimal I-map of a graphoid independency model is unique and
thus that GL is the graph associated with the independency base LI of M I . Let
iX;Z; Y hGL for some disjoint X;Y;Z � V . Without loss of generality, let u 2 X
and v 2 Y such that u and v ful�ll the properties mentioned in the de�nition of
coupling. Since u ��v in GL, we know that D(u; �unv; v) 2 LD. So, by Lemma 3.2
we have

D(u; �unv; v) 2MD
L :

Using the composition axiom with Zn�u gives

D(u; �unv; v(Zn�u)) 2MD
L :

42
�
�
�

Conditional Dependence

From LI , we have that I(u; �u; V n(u�u)) 2 M I
L. By using decomposition, we �nd

I(u; �u; Zn�u) 2M I
L. Applying the intersection axiom with this gives

D(u;Z�unv; v) 2MD
L :

By composition and symmetry we obtain

D(Xn�u; Z�unv; v(Y n�u)) 2MD
L :

We now apply weak reunion and symmetry and get

D(X;Z; Y) 2MD
L :

In addition, coupling has the property that if X and Y are conditionally dependent
given Z in MD

L , then X and Y are coupled by Z in the minimal I-map GL.

Lemma Let V be a set of variables. Let M I be a graphoid independency model3.4

over V , and let GL = (V;E) be an undirected graph that is the minimal I-map of
M I . Let LD be the dependency base of M I . Let MD

L be the dependency model
associated with LD. Then

D(X;Z; Y) 2MD
L)iX;Z; Y hGL ;

for all disjoint subsets X;Y;Z � V .

Proof: Let D(X;Z; Y) 2 MD
L be an arbitrary dependency statement for some dis-

joint sets X;Y;Z � V . It follows by de�nition that a derivation �1

1
)�2

2
) : : :
k)�k+1

exists such that �i, 1 � i � k, is a clause of the form D(A;B;C) or D(A;B;C) ^
I(D;E;F), �k+1 is D(X;Z; Y), and
j , 1 � j � k, is one of the dependency axioms.
In the derivation, �1 is of the formD(u; �unv; v) where �u is the boundary of u in LD.
We prove the lemma by induction on the length k of the derivation of D(X;Z; Y).

For k = 0, D(X;Z; Y) is of the form D(u; �unv; v). Note that an undirected graph
that is a minimal I-map of a graphoid independency model is unique and thus that
GL is the graph associated with the independency base LI of M I . By construction
of GL and de�nition of coupling, it is follows that iu; �unv; vhGL holds.

Now, assume that D(X;Z; Y) 2 MD
L)iX;Z; Y hGL holds for all statements

D(X;Z; Y) derived from LD in k � 1 steps. Then, a statement that can be de-
rived in the kth step is constructed from a statement derived in k� 1 steps and one
of the six dependency axioms. This leads to the following cases.

� Let
k be the symmetry (D(X;Z; Y), D(Y;Z;X)), composition (D(X;Z; Y))
D(X;Z;WY)) or weak reunion axiom (D(X;ZW;Y)) D(X;Z;WY)). Then,
the condition for coupling holds for the right-hand side of the axiom, if it holds
for its left-hand side.

� Let
k be the extraction axiom (D(X;Z;WY) ^ I(X;Z;W)) D(X;ZW;Y)).
By the induction hypothesis D(X;Z;WY) 2 MD implies that iX;Z;WY hGL .

43
�
�
�

Conditional Dependence

Then, the second property for the condition of coupling is obvious for the
right-hand side D(X;ZW;Y). We now consider the �rst property.

Let u 2 X and v 2 WY such that u��v and �u � WXY Z. Suppose that v 2 W .
Then I(X;Z;W) cannot be represented by GL since a node in X is adjacent
to W , because of the edge u ��v. Therefore, v 2 Y and the �rst property
for the condition of coupling remains valid on the right-hand side. A similar
argument applies when u 2 WY and v 2 X such u��v and �v � WXY Z.

� Let
k be the extraction+ axiom (D(X;Z;WY)^I(X;ZY;W)) D(X;Z; Y)).
By the induction hypothesis D(X;Z;WY) 2MD

L implies that iX;Z;WY hGL .
Let u 2 X and v 2 WY be such that u��v and �u � WXY Z. Assume v 2 W .
Then I(X;ZY;W) cannot be represented byGL. Therefore, v 2 Y and the �rst
property for the condition of coupling remains valid. Assume a node w 2 W is
in �u. Again, I(X;ZY;W) cannot be represented by GL. Therefore, no node
w 2 �u is in W and the second property for the condition of coupling remains
valid for the right-hand side. A similar argument applies when u 2 WY and
v 2 X exist such that u��v and �v � WXY Z.

� Let
k be the intersection axiom (D(X;Z;WY)^I(X;ZY;W)) D(X;ZW;Y)).
For this axiom, an argument analogous to that of extraction holds.

We conclude that for each dependency statement D(X;Z; Y) that is derived in k
steps from LD by the dependency axioms implies that iX;Z; Y hGL . This completes
the induction and, hence, the proof of the lemma.

From Lemmas 3.3 and 3.4 we conclude the following important property.

Theorem Let V be a set of variables. Let M I be a graphoid independency model3.6

over V , and let G = (V;E) be an undirected graph that is the minimal I-map of
M I . Let LD be the dependency base of M I . Let MD

L be the dependency model
associated with LD. Then

iX;Z; Y hG, D(X;Z; Y) 2MD
L ;

for all disjoint subsets X;Y;Z � V .

Separation and coupling are powerful criteria for reading independency and depen-
dency statements from an undirected graph that is known to be a minimal I-map
of some independency model. For stochastic independency models, the given ax-
iomatic characterization of independency statements is not complete [106]. So, as
the axiomatization of dependency statements is based on this axiomatization of in-
dependencies, it cannot be complete for stochastic dependency models either. It
may be that more statements can be read from the structure of undirected graphs
when extra restrictions, such as being closed under other axioms [81], are imposed
on the dependency model.

44
�
�
�

Conditional Dependence

Directed Acyclic Graphs3.3

Another representation formalism for dependency and independency models is the
directed acyclic graph. In this section, we will investigate directed acyclic graphs in
the same way as we did for undirected graphs.

Conditional Independence in Directed Acyclic Graphs3.3.1

In this section, we review the relationship between a graphoid independency model,
its causal input list for a given ordering, and its associated directed acyclic graph.

Let M I be an independency model over a set of variables V and let <V be a
total ordering on V . The causal input list LI<V over M I is a set of independency
statements LI<V = fI(u; �u; Vun�u)ju 2 V g where for each variable u, Vu is the set of
all variables less than u according to <V . The set �u in I(u; �u; Vun�u) 2 LI<V is the
smallest subset of Vu such that I(u; �u; Vun�u) 2 M I . For graphoid independency
models, the sets �u are unique for a given ordering.

In practice, the ordering <V on the variables will be a `causal ordering'. If a
variable u has a causal in
uence on the value of variable v, then u will occur earlier
in the ordering than v. For example, consider a medical domain with diseases and
symptoms. As diseases cause symptoms, diseases will typically occur earlier in the
ordering than their associated symptoms. Time is a good heuristic for detecting
causal in
uences in a domain. If u takes a value only after v does, then u cannot be
a cause of v. In this case u will be placed higher in the ordering than v. Identifying
causal in
uences in a domain is typically a task for an expert in this domain. If the
ordering <V can be interpreted as a causal ordering, then a set �u in a causal input
list LI<V can be interpreted as the set of all direct causes of the variable u. In fact,
this property gives the causal input list its name. If u causes v and v causes w then
u causes w. For an ordering u < v < w, u is not a direct cause of w, so u need not
be in the parent set of w. However, for the ordering u < w < v, u is an element of
the parent set of w. This example makes it clear that the ordering <V has a great
in
uence on the resulting causal input list.

Given the independency modelM I and a total ordering <V , the sets �u in L
I
<V

as
described above can be constructed as follows. Initially, �u is set to Vu for each vari-
able u 2 V . Then, M I is consulted for every independency statement I(u; Vunv; v)
with v 2 Vu. If I(u; Vunv; v) is in M I , then v is removed from the set �u of u. This
process is repeated for every variable u 2 V . The algorithm is given in pseudo code
below. In practical applications, a domain expert acts as an oracle to reveal this
kind of information.

Consider the independency model M I
e shown in Figure 3.1 and consider the or-

dering <V = a < b < c < d < e < f . The set �e of the variable e is constructed by
starting with �e = abcd. Since I(e; bcd; a) is in M I

e , a is removed from �e. Likewise,
the variable b is removed. Because I(e; abd; c) and I(e; abc; d) are not in M I

e , it is
concluded that �e = cd. Applying this construction to all variables in V gives the
causal input list LI<V listed in Figure 3.6.

The directed acyclic graph G<V associated with a causal input list has an arc
u! v from u to v if and only if u is an element of the parent set of v. The directed
acyclic graph G<V associated with the causal input list LI<V from Figure 3.6 is shown

45
�
�
�

Conditional Dependence

M I
e

= the closure under the graphoid axioms of

fI(a; ;; ;); I(b; ;; a); I(c; ab; ;); I(d; b; ac);
I(e; cd; ab); I(f; ce; abd); I(c; be; d)g

<V

= a < b < c < d < e < f

LI<V
= fI(a; ;; ;); I(b; ;; a); I(c; ab; ;); I(d; b; ac);

I(e; cd; ab); I(f; ce; abd)g

M I
<V

= the closure under the graphoid axioms of

fI(a; ;; ;); I(b; ;; a); I(c; ab; ;); I(d; b; ac);
I(e; cd; ab); I(f; ce; abd)g

G<V

M I
G<V

= fI(X;Z; Y)j < X;Z; Y > in G<V g
=

Figure 3.6: Relationship between independency models, order, causal input list,
directed acyclic graph, and represented independency model, with an example.

46
�
�
�

Conditional Dependence

a

dc

b

f

e

Figure 3.7: Directed acyclic graph induced by causal input list in Figure 3.6.

Causal Input List Construction for M I <V

for all u 2 V do �u Vu
for all u 2 V do

for all v 2 Vu do
if I(u; Vvnv; v) 2M I then �u �unv

return fI(u; �u; Vun�u)ju 2 V g

in Figure 3.7. For example, in LI<V we have that �e = cd. So, in G<V there is an arc
c! e and an arc d ! e.

With the directed acyclic graph G<V , an independency model M I
G<V

over V is

associated containing for every X;Z; Y 2 V the independency statement I(X;Z; Y)
if and only if X and Y are separated by Z in G.

For example for the graph G<V in Figure 3.7 we have that ha; bc; di: the chain
a; c; e; d is blocked in G<V since it satis�es the �rst condition of blocked chains (see
De�nition 2.22) because of node c; the chain a; c; b; d is blocked since c b !
d satis�es the second condition; the chain a; c; f; e; d is blocked because the third
condition is satis�ed with node f . So, M I

G<V
contains the independency statement

I(a; bc; d).

Theorem Let V be a set of variables, let <V be a total ordering on V; and let M I3.7

be a graphoid independency model over V: Let LI<V be the causal input list over
M I and let G<V be the directed acyclic graph associated with LI<V . Then, G<V is a
minimal I-map of M I:

A proof of the theorem can be found in [82]. A well-known and useful property is
that for a graphoid independency model M I , the directed acyclic graph G that is a
minimal I-map ofM I and obeys a total ordering, is unique. As a direct consequence
of Theorem 3.7, we have the following property.

Corollary Let V be a set of variables, let <V be a total ordering on V; and let M I3.3

be a graphoid independency model over V: Let LI<V be the causal input list overM I

and let G<V be the directed acyclic graph associated with LI<V . Then M I
G<V
�M I .

47
�
�
�

Conditional Dependence

However, the converse of Theorem 3.7 does not hold. For example, I(c; be; d) is
in the independency model M I

e listed in Figure 3.1 while it is not in M I
G<V

with
<V as before. The independency statements that are not represented by the di-
rected acyclic graph in Figure 3.7 are marked with an asterisk in Figure 3.1. Only
twenty-eight independency statements in the original independency model M I

e are
not represented by the directed acyclic graph. This illustrates the power for directed
acyclic graphs of representing independency models.

A causal input list LI<V also induces an independency model M I
<V

. This indepen-
dency model M I

<V
is the closure of LI<V under the graphoid axioms.

For example, let LI<V be the causal input list in Figure 3.6. The independency
statement I(d; b; ac) is in LI<V so I(d; b; ac) 2 M I

<V
. Using weak union, we have

I(d; bc; a) 2 M I
<V

. Note that I(d; bc; a) also is element of the independency model
M I

G<V
associated with LI<V . This is no coincidence, considering the following prop-

erty.

Theorem Let V be set of variables. Let <V be an ordering on V . Let M I be a3.8

graphoid independency model over V . Let LI<V be the causal input list overM I and
let M I

<V
be the independency model of LI<V . Let G<V be the directed acyclic graph

associated with LI<V and let M I
G<V

be the independency model of G<V . Then

M I
G<V

= M I
<V
:

A proof is published in [82]. So, all independency statements that can be derived
from a causal input list LI<V using the graphoid axioms are also represented in the
graph induced by LI<V and vice versa.

The concepts described above can be illustrated using the independency model
M I

e listed in Figure 3.1. The relationship between the concepts is depicted in Figure
3.6. In the �gure, a directed link between two rectangles means that the object at
the tail of the arrow is su�cient to construct the object at the head of the arrow.

Note that the classes of independency models represented by undirected graphs
and by directed acyclic graphs respectively are not equal. For example, the directed
acyclic graph in Figure 3.7 represents I(a; ;; b) while no undirected graph exists that
is an I-map of M I

e in which ha; ;; bi. On the other hand, the undirected graph in
Figure 3.3 represents both I(b; cd; e) and I(c; be; d) while no directed acyclic graph
exists that represents both these statements and is an I-map of M I

e .

Conditional Dependence in Directed Acyclic Graphs3.3.2

In the previous subsection, it was shown that the representation of an independency
model by a directed acyclic graph is equivalent to the representation by a causal
input list. In this subsection, we will derive a similar property for dependency
models.

De�nition Let V be a set of variables. Let <V be a total ordering on V . Let M I be3.8

an independency model over V and let LI<V be the causal input list over M I . The

48
�
�
�

Conditional Dependence

dependency base LD<V of M I is the set of dependency statements such that for each
u 2 V , LD<V contains dependency statements of the form

D(u; �unv; v)
for each v 2 �u, where �u is the parent set u such that I(u; �u; Vun�uu) 2 LI<V .

Consider once more the independency modelM I
e listed in Figure 3.1 and the ordering

<V = a < b < c < d < e < f . For the variable c, the causal input list LI<V contains
the independency statement I(c; ab; ;). So, D(c; a; b) and D(c; b; a) are in LD<V . Note
that the dependency base LD<V does not contain dependency statements of the form
D(a;X; Y) because �a = ;. Figure 3.8 shows the entire dependency base for M I

e .
The motivation of the choice of the dependency base associated with a causal

input list is the same as for dependency bases associated with an independency
base. Namely, for minimal I-maps of a graphoid independency model M I we know
that the dependency statements fD(u; �unv; v)ju 2 V; v 2 �ug are in the complement
of M I .

Lemma Let V be a set of variables. Let M I be a graphoid independency model3.5

over V , and let MD be its complementary graphoid dependency model. Let <V be
an ordering on V . Let LD<V be the dependency base of M I with <V . Then

LD<V �MD:

Proof: The theorem will be proved by contradiction. Suppose that for some
u; v 2 V , D(u; �unv; v) 2 LD<V but D(u; �unv; v) 62MD. From D(u; �unv; v) 62MD we
have by de�nition that I(u; �unv; v) 2 M I . By construction of LD<V we know that
I(u; �u; Vun�u) 2 LI<V and thus I(u; �u; Vun�u) 2 M I . From I(u; �unv; v) 2 M I and
I(u; �u; Vun�u) 2M I we conclude that I(u; �unv; Vun(�unv)) 2M I using the contrac-
tion axiom. But then there is a proper subset S of �u such that I(u; S; VunS) 2M I

and, hence, LI<V cannot be the causal input list of M I . From the contradiction we
conclude that LD<V �MD.

The given proof is similar to that of Lemma 3.2. We can associate a dependency
model with a dependency base LD<V in a similar way as we associated an indepen-
dency model M I

<V
with a causal input list LI<V .

De�nition Let V be a set of variables. Let M I be a graphoid independency model3.9

over V and let <V be an ordering on V . Let LI<V be the causal input list ofM I and let
M I

<V
be the independency model associated with LI<V . Let L

D
<V

be the dependency
base of M I . The dependency model MD

<V
associated with LD is the closure of LD

under the six dependency axioms, where the independency statements used are
elements of M I

<V
.

Note that for determining MD
<V

, derivations with independency statements may oc-
cur. Only independency statements contained inM I

<V
are used for these derivations.

Note that not M I is used as source of independency statements since M I cannot be

49
�
�
�

Conditional Dependence

e�ciently represented. Also note that, because the independency model M I
G<V

is

equal to M I
<V

(Theorem 3.8), these are exactly the independency statements that
can be read from G<V using the separation criterion.

No extra dependency statements need to be added to the dependency base LD<V
to get a larger associated dependency model MD

<V
, since all dependency statements

that can possibly be derived given a causal input list of an unknown independency
model M I using the dependency axioms, can be derived from the dependency base.

MD
e

= fD(X;Z; Y)jI(X;Z; Y) 62 M I
e g

<V

= a < b < c < d < e < f

LD<V
= fD(c; a; b);D(c; b; a);D(d; ;; b);D(e; c; d);

D(e; d; c);D(f; c; e); D(f; e; c)g

MD
<V

= the closure under the dependency axioms of

fD(c; a; b);D(c; b; a);D(d; ;; b); D(e; c; d);
D(e; d; c); D(f; c; e);D(f; e; c)g

G<V

MD
G<V

= fD(X;Z; Y)jiX;Z; Y h in G<V g
�

Figure 3.8: Relationship between dependency models, dependency base, directed
acyclic graph, and represented dependency model, with example.

Theorem Let V be a set of variables. Let M I be a graphoid independency model3.9

over V and let MD be its complementary graphoid dependency model. Let <V be

50
�
�
�

Conditional Dependence

a total ordering on V . Let LD<V be the dependency base of M I and let MD
<V

be its
associated dependency model. Then

MD
<V
�MD:

Proof: From Lemma 3.5, we have that LD<V � MD. From Theorem 3.2, we have
that any graphoid dependency model is closed under the dependency axioms. The
theorem now follows from the de�nition of MD

<V
.

So, all dependency statements derived from a dependency base are valid dependency
statements.

A Graphical Criterion for Conditional Dependence in Directed Acyclic Graphs3.3.3

In Section 3.2.1 we argued that all independency statements in the independency
model M I

<V
associated with a causal input list LI<V can be read from the directed

acyclic graph G<V constructed from LI<V using the separation criterion. In this
section we investigate a graphical criterion for reading dependency statements from
the graph G<V . Again, the concept of coupling o�ers such a criterion.

De�nition Let V be a set of variables. Let G = (V;E) be a directed acyclic graph.3.10

Let X, Y and Z be disjoint subsets of V . We say that X and Y are coupled given
Z in G, written iX;Z; Y hG, if two nodes u 2 X, v 2 Y or u 2 Y , v 2 X exist such
that the following conditions hold:

1. v ! u is an arc in G,

2. �u � XY Z, where �u is the parent set of u in G, and

3. a set Q with Z � Q � XY Znuv exists such that hu;Q; vi in the directed acyclic
graph G0 = (V;E 0) where E0 = En(v; u).

a b

c

e

d

f f

a b

dc

e

Figure 3.9: The nodes b and c are separated by a and by de.

A statement iX;Z; Y hG is called a coupling statement. In the sequel, we will omit
the subscript G from coupling statements as long as the context makes it clear which

51
�
�
�

Conditional Dependence

graph G is considered. The third property in the de�nition can be read as `a set Q
with Z � Q � XY Znuv can be found such that u and v are d-separated by Q in the
graph G0, where G0 is equal to G with the arc v! u removed.

To illustrate the notion of coupling, we consider the directed acyclic graph shown
in Figure 3.7. In this directed graph, we have ic; a; bh since b ! c is an arc in the
graph, �c � abc and all chains between c and b not containing b! c, that is, c; e; d; b
and c; f; e; d; b, are blocked by Q = a as the graph in Figure 3.9 on the left-hand
side makes clear. Likewise we have iac; e; bdh since b ! c is an arc in the graph
and �c � abcde and further hb; de; ci in the network structure when the arc b ! c
is removed, as Figure 3.9 on the right-hand side makes clear. For the graph, the
statement ic; ae; bh does not hold since the chain c; e; d; b is not blocked by ae after
removal of the arc b! c. Similarly, the statement ic; de; bh does not hold since �c is
not a subset of bcde.

Coupling has the property that if X and Y are coupled by Z in a minimal I-map,
then X and Y are conditionally dependent given Z.

Lemma Let V be a set of variables. Let M I be a graphoid independency model3.6

over V . Let <V be a total ordering on V . Let LD<V be the dependency base of
M I and <V and let G<V be its associated directed acyclic graph. Let MD

<V
be the

dependency model associated with LD<V . Then

iX;Z; Y hG) D(X;Z; Y) 2MD
<V
;

for all disjoint subsets X;Y;Z � V .

Proof: We have to show that if iX;Z; Y hG<V then D(X;Z; Y) 2MD
<V

.
Let iX;Z; Y hG<V for some X;Y;Z � V . Without loss of generality, let u 2 X and

v 2 Y be nodes such that u and v ful�ll the properties mentioned in the de�nition
of coupling, that is, v ! u is an arc in G<V , �u � XY Z and Q the set such that
Z � Q � XY Znuv and hu;Q; vi in G<V when the arc v! u is removed.

From Lemma 3.5 we know that

D(u; �unv; v) 2MD
<V
:

Let Qd � Q be the set of nodes from Q that are descendants of u in G<V and let
Qa = QnQd�u. Applying the composition axiom, we �nd that

D(u; �unv; vQa) 2MD
<V
:

Now observe that by the global Markov property, we have hu; �u; V nu�uDui where
Du is the set of descendants of u. This implies I(u; �u; V nu�uDu) 2 M I

G<V
by

de�nition. Since Qa � V nu�uDu, we can apply the decomposition axiom to get
I(u; �u; Qa) 2M I

G<V
. By applying intersection with D(u; �unv; vQa) 2MD

<V
we get

D(u;Qa�unv; v) 2MD
<V
:

Now we prove that D(u;Q�unv; v) 2 MD
<V

by successively adding nodes from Qd to

3.1

Qa�unv, using Lemma 3.8 which can be found in the appendix. If the arc v ! u
is deleted from G<V , all chains in the modi�ed graph between u and v blocked by

52
�
�
�

Conditional Dependence

Qanv are also blocked by Qa�unv. Let z 2 Qd be the node that is minimum in <V ,
that is, for all v 2 Qdnz, z<V v. Then we can use Lemma 3.8 and know that either
I(u;Qa�u; z) or I(v; uQa�unv; z). So, either we apply composition with z on Formula
3.1 and we get

D(u;Qa�unv; vz) 2MD
<V
:

Then, intersection with I(u;Qa�u; z) gives

D(u; zQa�unv; v) 2MD
<V
:

Or, we apply symmetry �rst on Formula 3.1 and then composition with z, and we
get

D(v;Qa�unv; uz) 2MD
<V
:

Now, intersection with I(v; uQa�unv; z) again gives

D(v; zQa�unv; u) 2MD
<V
:

Repeat this derivation with Qa = Qa [z and Qd = Qdnz until Qd = ;. Observe that
if all chains between u and v not containing v! u are blocked by a set D then they
are also blocked by a set Dnp where p is a descendant of u that has no descendants
in D. Therefore, Lemma 3.8 applies every time the derivation is repeated.

This results eventually in D(u;Q�unv; v). So,

D(u;Q�unv; v) 2MD
<V
:

To this dependency statement we apply the composition axiom and the symmetry
axiom, to get

D(u(XnQ�u); Q�unv; v(Y nQ�u)) 2MD
<V
:

Using weak reunion and symmetry we now �nd

D(X;Z; Y) 2MD
<V
:

The lemma implies that coupling provides a su�cient condition for reading depen-
dency statements from a minimal I-map. However, it does not provide a neces-
sary condition. For example, consider once more the directed acyclic graph from
Figure 3.7 which is a minimal I-map of the independency model M I

e . We know
from the dependency base that D(c; a; b) 2 MD

<V
. So, by the symmetry axiom

and the composition axiom, we �nd D(b; a; cef) 2 MD
<V

. From the graph we read
that I(b; ace; f) 2 M I

<V
using the separation criterion. D(b; a; cef) 2 MD

<V
and

I(b; ace; f) 2 M I
<V

now imply D(b; af; ce) 2 MD
<V

using the intersection axiom.
However, the coupling statement ib; af; ceh does not hold for the graph G<V from
Figure 3.7.

Since MD
<V
� MD, we have the following theorem as a consequence of Lemma

3.6.

53
�
�
�

Conditional Dependence

Theorem Let V be a set of variables. Let M I be a graphoid independency model3.10

over V , and let MD be its complementary dependency model. Let G be a directed
acyclic graph that is a minimal I-map of M I . Then

iX;Z; Y hG) D(X;Z; Y) 2MD;

for all disjoint subsets X;Y;Z � V .

Proof: Let <V be an ordering on V such that G associated with the dependency
base LD<V of M I is equal to G. Note that any topological ordering on the nodes
in G is such an ordering. Let LD<V be the dependency base of M I and <V and
let MD

<V
be the dependency model associated with LD<V . Then, by Lemma 3.6 we

have iX;Z; Y hG) D(X;Z; Y) 2 MD
<V

. The theorem now follows from the fact that
MD

<V
�MD.

The question arises whether a mathematically appealing and not too complex graph-
ical criterion exists that provides both a su�cient and a necessary condition to read
all dependency statements in MD

<V
from a minimal I-map G<V . We do not believe

that such a criterion exists because of the following reason. Consider a directed
acyclic graph G<V constructed from a causal input list LI<V over an independency
model M I . Let D(X;Z; Y) be a dependency statement in MD

<V
. Then, a derivation

exists starting with D(u; �unv; v) and ending with D(X;Z; Y). By structural induc-
tion it can be shown that in every step of this derivation the following property is
preserved. If D(X 0; Z 0; Y 0) is the result of one step in the derivation, then two nodes
u 2 X 0 and v 2 Y 0 or u 2 Y 0 and v 2 X 0 exist such that v! u and �u � XY Z. So,
any graphical criterion for reading dependency statements from a minimal I-map
must satisfy this property.

Lemma Let V be a set of variables. Let M I be a graphoid independency model3.7

over V and let MD be its complementary graphoid dependency model. Let <V be
a total ordering on V . Let LD<V be the dependency base of M I and <V and let
G<V be its associated directed acyclic graph. Let MD

<V
be the dependency model

associated with LD<V . Then, a necessary condition for a graphical criterion that holds
for any triple (X;Z; Y) where X, Y , and Z are disjoint subsets of V if and only if
D(X;Z; Y) 2 MD

<V
is the following: there exist two nodes u 2 X, v 2 Y or u 2 Y ,

v 2 X such that

1. v ! u is an arc in G<V , and

2. �u � XY Z in G<V .

Proof: Let D(X;Z; Y) 2 MD
<V

for some disjoint sets X;Y;Z 2 V . It follows by
de�nition that a derivation �1

1
)
�2

2
)
: : :
k

)
�k+1 exists such that �i, 1 � i � k, is a

clause of the form D(A;B;C) or D(A;B;C) ^ I(D;E;F), �k+1 is D(X;Z; Y), and

j , 1 � j � k, is one of the dependency axioms. In this derivation, �1 is of the
form D(u; �unv; v) 2 LD<V . We prove the lemma by induction on the length k of the
derivation of D(X;Z; Y).

For k = 0, D(X;Z; Y) is of the form D(u; �unv; v). It is easily veri�ed that v ! u
is an arc in G<V and �u � XY Z.

54
�
�
�

Conditional Dependence

Now assume that the lemma holds for all statements that can be derived in less
than k steps for some k � 1. Then, a statement D(X;Z; Y) that can be derived in
the kth step is constructed from a statement derived in k � 1 steps and
k is one of
the six dependency axioms. This leads to the following cases.

� Let
k be the symmetry axiom (D(X;Z; Y)) D(Y;Z;X)). By the induction
hypothesis, we may assume without loss of generality that there are nodes
u 2 X and v 2 Y such that v ! u is an arc in G<V and �u � XY Z. In the
statement �k+1 = D(Y;Z;X) we have that u 2 Y , v 2 X such that v ! u is
an arc in G<V and �u � XY Z. So if
k is the symmetry axiom, the property
stated in the lemma holds for �k.

Similar observations hold if
k is the composition or weak reunion

� Let
k be the extraction+ axiom (D(X;Z;WY)^I(X;ZY;W)) D(X;Z; Y)).
By the induction hypothesis, the lemma holds for D(X;Z;WY). Now, let u 2
X and v 2 WY such that v! u is an arc in G<V and �u � WXY Z. Suppose
that v 2 W . Then, hX;ZY;W i does not hold in G<V since v ! u in G<V

implies that X andW are not separated in G<V . But then, I(X;ZY;W) cannot
have been used in the kth step of the derivation. From this contradiction, we
conclude that v must be in Y . Now, consider �k+1 = D(X;Z; Y). It will be
evident that there are two nodes u 2 X and v 2 Y such that v ! u is an arc
in G<V .

It remains to be shown that for these nodes �u � XY Z holds. Suppose that
a node w 2 �u exists such that w 2 W . Then, hX;ZY;W i does not hold in
G<V . But then, I(X;ZY;W) can not have been used in the kth step of the
derivation. From the contradiction, we conclude that �u � XY Z.

Now consider the case where u 2 WY and v 2 X such that v ! u is an arc
in G<V and �u � WXY Z. Using a similar argument as before, we �nd that
u 62 W and hence u 2 Y .
Suppose that a node w 2 �u exists such that w 2 W . Then, there is a chain
v ! u w in G<V . So, hX;ZY;W i does not hold. But then, I(X;ZY;W) can
not have been used in the kth step of the derivation. From the contradiction
we conclude that �u � XY Z.

� Let
k be the extraction axiom (D(X;Z;WY) ^ I(X;Z;W)) D(X;ZW;Y))
or the intersection axiom(D(X;Z;WY) ^ I(X;ZY;W)) D(X;ZW;Y)). For
these axioms, an argument analogous to that for extraction holds.

We conclude that the lemma holds for every dependency statement D(X;Z; Y) that
is derived in k steps from LD<V by the dependency axioms.

Obviously, the coupling criterion given in De�nition 3.10 satis�es these two condi-
tions. Furthermore, a criterion that identi�es all dependency statements must be
able to identify the following dependency statements. As we saw in the previous
example, D(b; af; ce) is in MD

<V
of Figure 3.8. However, D(be; af; c) can not be de-

rived using the dependency axioms and the independency statements in the directed

55
�
�
�

Conditional Dependence

acyclic graph. This example shows that the derivation depends on the place of the
variable e in the statement. As a consequence, we can have that D(u;Z; vY) is an
element of MD

<V
while D(uY;Z; v) is not. A graphical criterion must reckon with

this possibility.
For dependency statements D(X;Z; Y) where X and Y consist of single variables

this problem does not arise. We have the following result.

Theorem Let V be a set of variables. Let M I be a graphoid independency model3.11

over V , and let MD be its complementary graphoid dependency model. Let <V be
an ordering on V . Let LD<V be the dependency base of M I and <V and G<V the
associated directed acyclic graph. Let MD

<V
be the dependency model associated

with LD<V . Then,

iu;Z; vhG<V, D(u;Z; v) 2MD
<V
;

for every u; v 2 V and Z � V .

Proof: The property iu;Z; vhG<V) D(u;Z; v) 2 MD
<V

for all u; v 2 V , Z � V nuv
follows immediately from Theorem 3.10.

We prove D(u;Z; v) 2 MD
<V
)iu;Z; vhG<V by contradiction. Suppose that there

are two nodes u; v 2 V and a set Z � V nuv such that D(u;Z; v) 2 MD
<V

and not
iu;Z; vhG<V .

By Lemma 3.8, we know that either u ! v and �u � vZ in G<V or v ! u and
�v � uZ in G<V . Without loss of generality, we assume the former. Since u and v are
not coupled by Z in G<V , we conclude that a chain p = u; : : : ; v must exist that does
not contain v! u and that is not blocked by any set Q such that Z � Q � uvZnuv,
that is, by Z.

Since p is not blocked by Z and �u � vZ, p cannot contain an arc to u from one
of its parents. So, p must contain an arc from u to one of its children. The chain p
therefore contains a v-node c. Since p is not blocked by Z, we have that Z contains
c or one of its descendants. Let w 2 Z be such a node (such that length of the path
from c to w is minimal).

Now consider the statement D(u;Z; v). From D(u;Z; v) 2 MD
<V

. It follows by
de�nition that a derivation �1

1
)
�2

2
)
: : :
k

)
�k+1 exists such that �i, 1 � i � k, is a

clause of the form D(Ai; Bi; Ci) or D(Ai; Bi; Ci) ^ I(Di; Ei; Fi), �k+1 is D(u;Z; v),
and
j , 1 � j � k, is one of the dependency axioms. In this derivation, �1 is of
the form D(u; �unv; v) 2 LD<V . By induction, it can be easily shown that for all
dependency statements D(Ai; Ci; Bi) derived from D(u0; �u0nv0; v0) we have either
u0 2 A and v0 2 B or u0 2 B and v0 2 A. We conclude that D(u;Z; v) is derived
from �1 = D(u; �unv; v).

On the other hand, if a derivation �1

1
)�2

2
) : : :
k)�k+1 exists, then also a deriva-

tion �0k+1

0
k
)�

0
k

0
k�1
) : : :

0
1

)�
0
1 exists where �0i, 1 � i � k + 1, is I(A;B;C) if �i is

D(Ai; Bi; Ci) and I(Ai; Bi; Ci) ^ I(Di; Ei; Fi) if �i is D(Ai; Bi; Ci) ^ I(Di; Ei; Fi). So,
�0k+1 = I(u;Z; v), �01 = I(u; �unv; v). Further,
0j , 1 � j � k is the graphoid axiom
corresponding to the dependency axiom
j .

To make this last derivation, the variable w, which is in Zn(�unv), must be
removed from a clause �i = I(Ai; Ci; Bi). The only axiom with which this can be
be performed is decomposition. But for decomposition, w must be in Bi. However,
in �0k+1 we have that w is in Ck+1. The only axioms with which the variable w can

56
�
�
�

Conditional Dependence

be move from Ci to Bi+1 is contraction with an independency statements of the
form I(Ai; Cinw;w) where either u or v in Ai or intersection with an independency
statements of the form I(Ai; CiBinw;w).

However, regarding trail p in G<V , we have that if Ci � Z, no statement
hAi; Cinw;wi can hold in G<V (note that introducing nodes to Ci that are not in Z
would give rise to the same problem that we want to solve). Therefore, we conclude
that D(u;Z; v) cannot be derived unless iu;Z; vh.

This theorem says that at least all dependency statements inMD
<V

concerning single
nodes can be read from the graph. So, for this class of dependency statements, the
coupling criterion provides both a su�cient and a necessary condition. These are
exactly the kind of dependency statements we may be interested in when evaluating
a network structure.

In summary, we de�ned a graphical criterion for reading dependency statements
from directed acyclic graphs that are minimal I-maps. This criterion does not iden-
tify all dependency statements one may possibly know, given the information that
the graph is a minimal I-map. However, all statements in the interesting class of
dependency statements of the form D(u;Z; v) that can be known, can be identi�ed
by the criterion.

Appendix3.4

For the proof of Theorem 3.10 we use the following lemma.

Lemma Let V be a set of variables. Let G = (V;E) be a directed acyclic graph.3.8

Let u; v 2 V be two nodes such that v ! u in G. Let Z � V nuv be a set of nodes
such that �u � Zv. Let c 2 V nZ be a node that is a descendant of node u and has
no descendants in Z. Furthermore, let every chain between u and v not containing
v ! u be blocked by Zc. Then, either hv; Zu; ci or hu;Zv; ci.

Proof: We prove the lemma by contradiction.
Suppose that p = u; : : : ; c is a chain in G such that p is not blocked by Zv (see

right-hand side of Figure 3.10). Now suppose that p is blocked by Z. Then, p
contains a v-node w such that v is a descendant of w and the chain u; : : : ; w is not
blocked by Z. But then, a chain u; : : : ; w; : : : ; v not containing v ! u exists in G
that is not blocked by Zc. From the contradiction we conclude that p is not blocked
by Z (see center picture of Figure 3.10).

Now suppose that q = v; : : : ; c is a chain in G such that q is not blocked by
Zu. Suppose that q is blocked by Z. Then, q contains a v-node w such that u is
a descendant of w. For node u, we have �u � Zv. So, a node u 2 Zv would exist
that is a descendant of w and q would not be blocked by Zc either. So, if q is not
blocked by Zu, then q is also not blocked by Z (see left-hand side of Figure 3.10).

Since c does not have any descendants in Z both chains p and q have an incoming
arrow into c. It follows that the chain r composed of p and q is not blocked by Zc.
But then, there is a chain u; : : : ; c; : : : ; v not containing v ! u that is not blocked

57
�
�
�

Conditional Dependence

c

Z

p q

u

v
p

u

c

v

w

q
u

c

v

w

Figure 3.10: Possible chains in G.

by Zc. From the contradiction, we conclude that either all chains between u and c
are blocked by Zv or all chains between v and c blocked by Zu.

58
�
�
�

Conditional Dependence

Learning Bayesian Networks

The task of constructing a Bayesian belief network is twofold: constructing the
network structure and de�ning the set of assessment functions.

Construction of a Bayesian belief network with domain experts is a di�cult and
time-consuming task. In many domains are ill-understood. As a result, experts have
problems in making causal relations explicit troubling the construction of network
structures. It is this kind of domains where Bayesian belief networks are likely to be
applied. In other domains where Bayesian belief networks are likely to be applied,
there are few experts if any. Even if the causal relations in the domain can be made
available easily, the de�nition of the assessment functions remains a time consuming
task; human experts are good in judging qualitative relations but they are not good
in quantizing these relations [112]. Therefore, the build-test cycle may need to be
performed many times.

By exploiting information contained in databases, the construction time of
Bayesian belief networks may be considerably decreased. An automatically con-
structed Bayesian belief network may be used directly for inference or considered
as a starting point for the build-test cycle. In addition, the structure of an auto-
matically constructed Bayesian belief network may give insight in the dependencies
among the variables in the domain.

In learning a network structure, several network structures are generated and
compared to decide which one is the `best' structure, given the database. For the
purpose of comparing structures a quality measure is used: the better the network
�ts the database, the higher the quality. The basic idea is that a network structure
with a higher quality is preferred over a network structure with lower quality. In
the literature, several quality measures have been proposed, building on di�erent
theories. In Section 4.2, we will investigate properties of the most popular quality
measures.

For constructing network structures, a search algorithm is employed that selects
network structures that are likely to be of high quality from the space of all possible
structures. As the number of network structures grows exponentially in the number
of variables, searching for a network structure with the highest quality may be a
time-consuming task. Therefore, generally heuristics are applied. In Section 4.3,
the complexity of this task will be investigated and several search algorithms are
considered.

Once a network structure with high quality has been selected, the assessment
functions for the structure can be estimated. This can be performed by direct
estimation from the database. The accuracy of these estimates indicates how well the
represented probability distribution captures the `real' probability distribution. In
most real-life applications, databases are relatively small compared to the number of
probabilities that have to be estimated and a large error in the assessment functions
can be expected. In Section 4.4, we will explore a technique that utilizes data more
e�ciently.

The theory developed in this chapter has been extensively tested in experiments
with synthetical databases. The results of these experiments are presented in Section

59
�
�
�
�

4.5. However, we shall �rst list our basic assumptions in the following section.

Basic Assumptions4.1

For learning a Bayesian belief network from data a database is used. We introduce
the concept of a database and give some notational conventions.

De�nition Let V = fv1; : : : ; vng be a set of variables. A database D over V is a4.1

multi-set of con�gurations of V: The con�gurations of V comprised in the database
D are referred to as cases.

In the de�nition of a database, there are several implicit assumptions. First of all,
the variables involved are discrete: a database consists of con�gurations and con�g-
urations are de�ned for discrete variables only. Very little is known about quality
measures for networks and databases over continuous variables. The most widely
used technique to deal with databases with continuous variables is to transform
the continuous variables into discrete variables. An alternative approach, based on
the assumption that the underlying distribution is multivariate normal, is given by
Geiger and Heckerman [43].

Another assumption is that there are no cases in a database for which there are
variables for which a no value is speci�ed. This assumption certainly does not hold
for most real-world databases. The basic techniques for handling missing values is
to treat a missing value of a variable as if it were an extra value for the variable, or
to estimate a distribution over the variable's values to �ll in the missing values in
the database. Spiegelhalter et al. [101] give a survey of methods to circumvent this
assumption.

Also, since a database is a multi-set of cases, no ordering exists on the cases in
the database and all cases are independent of each other, given the model. So, it
is assumed that the process that generated the data is time-independent. Methods
that assume the existence of time dependence label the cases with a weighing factor
that is smaller as the cases are obtained a longer time ago [76, 102].

Note that we allow databases with an in�nite number of cases.
In this chapter, we will use a shortened notation. Let vi be a variable in V . We

write �i instead of �vi to denote the parent set of vi and ri instead of rvi to denote
the cardinality of
vi. We use qi to denote

Q
uj2�i

rj. Note that qi equals the number

of con�gurations of the parent set �i which is one if �i = ;. The elements of
vi and

�i will be ordered xi1; : : : ; xiri and x�i1; : : : ; x�iqi, respectively. Now, let xik denote
the kth value of the variable vi and x�ij the jth con�guration of the parent set �i of
vi. Then, we write N to denote the cardinality of the database D, we write Nijk to
denote the number of cases in D where vi = xik and �i = x�ij, and we write Nij to
denote the number of cases where �i = x�ij .

Quality Measures4.2

Quality measures can be built on various di�erent approaches. In the sections 4.2.1
up to 4.2.3, we review the quality measures built on a Bayesian approach, an informa-
tion criterion approach, and a minimum description length approach, respectively.

60
�
�
�
�

Learning Bayesian Networks

We compare the three measures in Section 4.2.4. In Section 4.2.5 we study whether
these measures assign the same quality to equivalent network structures. The section
is concluded with an investigation of the properties of the various quality measures
for in�nite-size databases in Section 4.2.6 and for �nite-size databases in Section
4.2.7. But to �x the term quality measure, we will �rst give its de�nition.

De�nition Let V be a set of variables, and let D be the set of all possible databases4.2

over V . Let BS be the set of all possible network structures over V . Then, a quality
measure Q : BS �D ! (�1; 0] is a non-positive real-valued function.

A Bayesian Approach4.2.1

The Bayesian approach is a well-founded and practical method for selecting statisti-
cal models given a database. In the context of Bayesian belief network learning, the
statistical model is a network structure. The basic idea of this approach is to use
the posterior probability of a network structure given the database as a measure of
the quality of the structure. These posterior probabilities are computed as follows.
First, a prior distribution over all network structures is de�ned. Then, for each
structure, the probability of the database given the structure is computed. Using
Bayes' theorem, the posterior probability of the structure given the database is cal-
culated. In order to compare the posterior probabilities of two network structures
BS1 and BS2 we can calculate P (BS1 jD)=P (BS2 jD)1 by

P (BS1 jD)

P (BS2 jD)
=

P (BS1 ;D)

P (D)

P (BS2 ;D)

P (D)

=
P (BS1 ;D)

P (BS2 ;D)
:

So, it su�ces to calculate P (BS ;D) for all network structures BS .
Cooper and Herskovits [24] have proposed a quality measure based on the Bayesian

approach. For this purpose, they have derived a formula for computing the proba-
bilities P (BS;D), based on the assumption that no set of assessment functions BP

is preferred for a given network structure before the database has been inspected.
This assumption implies that the prior probability distribution over the values of
the assessment functions is uniform. We will return to this assumption in Section
4.2.5. They derive the following formula for P (BS;D):

P (BS ;D) = P (BS) �
nY
i=1

qiY
j=1

(ri � 1)!

(Nij + ri � 1)!
�

riY
k=1

Nijk!:

A derivation of Formula 4.1 can be found in [24]. Note that if Nij = 0 then also

4.1

Nijk = 0 for k = 1; : : : ; ri, and
(ri�1)!

(Nij+ri�1)!
�Qri

k=1Nijk! = 1.

In the right-hand side of Formula 4.1, the term P (BS) denotes the prior probabil-
ity of the network structure BS. In this term, information about the `real' network
structure prior to observation of the database can be incorporated. For example,
if a domain expert suggests existence of a speci�c arc or a speci�c direction of an
arc, then network structures that adhere to this suggestion are given a higher prior

1We use P (BS1 jD) as a short notation for Pr(the network structure = BS1 j the database = D).

61
�
�
�
�

Learning Bayesian Networks

probability. If no prior information is available, P (BS) is chosen to be a uniform
distribution. The other terms in the right-hand side of Formula 4.1 represent how
well the network structure BS �ts the database based on the number of appearances
of cases; however, these terms are not very intuitive.

In applications of the Bayesian measure proposed by Cooper and Herskovits,
generally the logarithm of Formula 4.1 is used for pragmatical reasons: even for
small databases with N cases, numbers like N ! tend to give computational problems
(note that 100! � 10160).

De�nition Let V be a set of variables, and let D be the set of all possible databases4.3

over V . Let BS be the set of all possible network structures over V . Then, the
Bayesian measure is the function BS �D ! IR de�ned by

B(BS;D) = log P (BS;D)

for all BS 2 BS and D 2 D, where P (BS;D) as in Formula 4.1.

Note that the Bayesian measure is a quality measure, since for each network structure
BS and each database D the probability P (BS;D) is a value in the unit interval and
the logarithm of this value is not positive.

Related Bayesian measures have been proposed [14, 52, 53, 102]. Basically, in
these approaches it is assumed that the distribution over the assessment functions is
a Dirichlet distribution. Since they seem to have a marginal in
uence on the quality
measure derived and they rely too much on statistics, we will restrict ourselves in
this thesis to the assumption of Cooper and Herskovits.

An Information Criterion Approach4.2.2

As opposed to the Bayesian approach to model selection, the information criterion
approach stems from a frequentist point of departure. The basic idea is to take
the network structure with the best �t to the database penalized by the number
of values that have to be speci�ed to de�ne assessment functions for the network
structure.

The �t of a network structure BS and a database D is taken to be proportional to
the probability that the database was generated by the distribution represented by
the Bayesian belief network B = (BS ; BP); the assessment functions in BP are taken
to be frequentist estimates calculated from the database, that is, for every variable
vi we have

vi(vi = xikj�i = x�ij) =
Nijk

Nij

for all values xik and con�gurations x�ij. The probability of the database D given

4.2

the Bayesian belief network B therefore is

P (DjB) =
Y
xV 2D

Pr(V = xV);

where Pr is the joint probability distribution represented by B. This probability
equals

P (DjB) =
Y
xV 2D

nY
i=1

vi(vi = xvij�i = x�i):

62
�
�
�
�

Learning Bayesian Networks

By reordering terms, we can write this probability as

P (DjB) =
nY
i=1

qiY
j=1

riY
k=1

vi(vi = xikj�i = x�ij)
Nijk :

Substitution of the probability estimates from Formula 4.2 gives

P (DjB) =
nY
i=1

qiY
j=1

riY
k=1

�
Nijk

Nij

�Nijk

;

where by convention 0
0

0
= 1. Taking the logarithm gives

logP (DjB) = N �
nX
i=1

qiX
j=1

riX
k=1

Nijk

N
log

Nijk

Nij
;

where by convention 0 log 0 = 0. The result equals �N �H(BS;D) where H(BS ;D) is

4.3

the entropy of BS andD. Entropy is a non-negative measure of uncertainty. Entropy
is maximal when uncertainty is maximal and zero when there is complete knowledge
as to its value [67]. Intuitively, the more information is given by the database, that
is, the closer the probabilities estimated from the database are to 1, the lower the
entropy. Note that in general a network structure BS with large parent sets will
have a lower entropy than network structures that are subgraphs of BS with small
parent sets since a probability distribution can be more accurately described with
Bayesian belief networks containing these network structures; the larger a parent
set, the less cases in the database there are per estimated probability, and the more
often a probability is estimated as 1.

The number of probabilities that have to be estimated from the database to
de�ne the assessment function for a single variable increases exponentially with
the cardinality of its parent set. With every estimate, an error is introduced in
the assessment function. This error will be larger when the amount of data the
estimate is based on is smaller, and the more estimates have to be made the smaller
the average number of cases in the database these estimates can be based on. To
model this e�ect, a penalty term is added to the entropy term. This penalty term
depends on the number of probabilities that have to be estimated to de�ne all
assessment functions for the network structure under consideration. Let BS be a
network structure over V . To de�ne an assessment function for variable vi with ri
values and no parents in the network structure, only ri�1 values have to be speci�ed.
Because the assessment function of vi has to sum to unity for a given con�guration
of the parent set, the rith value follows directly. If the parent set is not empty, it
su�ces to specify ri�1 values qi times to de�ne the assessment function for variable
vi. So, the number of values to be speci�ed for B is

K =
nX
i=1

(ri � 1) � qi:

We will refer to K as the number of parameters of B. We also write that K is the
number of parameters of BS to denote the number of parameters of B. Since the

63
�
�
�
�

Learning Bayesian Networks

entropy term �N � H(BS ;D) increases with increasing database sizes, the penalty
term may be compensated. In the penalty term, K is multiplied by a non-negative
penalty function f that is a function of the database size N . For f(N) > 0, the
penalty term in general is larger when the network structures contain larger parent
sets.

To incorporate prior information about network structures, a term P (BS) may
be added to the entropy and the penalty term to obtain the information criterion.

De�nition Let V be a set of variables, and let D be the set of all possible databases4.4

over V . Let BS be the set of all possible network structures over V . Let ri, qi, Nijk,
and Nij be as before. Then, the information criterion with penalty function f is
a function BS �D ! IR de�ned by

If (BS;D) = log P (BS)�N �H(BS ;D) �K � f(N);

where H(BS;D) =
Pn

i=1

Pqi
j=1

Pri
k=1�Nijk

N
log

Nijk
Nij

, K =
Pn

i=1(ri � 1) � qi, and f is a

4.4

non-negative real-valued function.

Many di�erent penalty functions have been proposed in the literature. With f(N) =
0, we get the maximum likelihood information criterion. The information criterion
with penalty function f(N) = 1 is known as the Akaike information criterion, or
simply AIC [3]. The information criterion with penalty function f(N) = 1

2 logN is
known as the BIC or Schwarz criterion [94] and coincides with the measure based
on the minimum description length principle that we will review in the next section.
Hannan and Quinn [51] suggest f(N) = c log logN for some positive constant c.
Basically, to get a consistent information criterion, it has been suggested that for
N approximating in�nity, f(N) should approximate in�nity, and f(N)=N should
approximate zero [12, 75]. Based on empirical evidence, however, practical values
of f(N) between 2 and 6 have proven to perform well in model-selecting tasks [35].

In the prior probability of the network structure information about the `real'
network structure can be incorporated again, in the same way as for the Bayesian
measure. Since frequentist statisticians usually do not model such information, this
term is often omitted in literature [3, 21, 94]. We have decided to add this term
to the information criterion because it allows for modeling prior information on the
one hand and makes comparison with the Bayesian measure more convenient on the
other hand.

The information criterion consists of three terms:

� the prior probability of the network structure;

� the entropy of the network structure and the database; and

� a penalty.

Figure 4.1 shows the interaction between these terms in the situation that no prior
information is available, that is, where P (BS) is constant for all network structures
BS . The x-axis shows the number of parameters K and the y-axis the various
components of an information criterion. For small values of K, the value of the
penalty term is small and the entropy term �N �H(BS;D) is large. With increasing
K, the entropy term usually increases and the penalty term linearly decreases. Note

64
�
�
�
�

Learning Bayesian Networks

. .

?

-

If (BS; D)

K

�K:f(N)

�N �H(BS;D)

logP (BS)

Figure 4.1: In
uence of various components in an information criterion varying with
the number of parameters K.

that the slope of the line �K � f(N) depends on the speci�c choice of f and is
arbitrarily chosen in the �gure. As long as the entropy term increases more than
the penalty term decreases, the information criterion will increase up to a point
where the increase in entropy is dominated by the penalty term.

Note that the information criterion is a quality measure, because it assigns a non-
positive value to each network structure and a database. This observation follows
from the fact that all three terms in Formula 4.4 are non-positive. Other selection
criteria exist that resemble Formula 4.4 but have, for example, another term added
to it [61]. These criteria are out of the scope of this thesis.

A Minimum Description Length Approach4.2.3

Another approach to measure the quality of a network structure and a database is
the minimum description length principle [89, 90]. This principle stems from coding
theory where it is used for encoding a string of symbols with as few bits as possi-
ble. The basic idea is to compress the string using a probability distribution over
all possible strings; the most likely strings are encoded by short messages, and the
least likely are encoded by long messages resulting in an as short as possible average
message length. The encoding then consists of two parts, the description of the
probability distribution Pr used for compression, and the compressed string. The
description length of the string of symbols is the sum of the lengths of the distribu-
tion and the compressed string. The minimum description length principle selects
for a given string of symbols the probability distribution for which the description
length is minimal. To apply this principle to network structure learning from data,
we consider encoding a database D by compressing it using the distribution repre-
sented by a Bayesian belief network. We then simply select the network structure
BS for which the description length of D using the distribution represented by the

65
�
�
�
�

Learning Bayesian Networks

be added to the entropy and the penalty term to obtain the complete information
criterion.

The description length of a database D using the probability distribution de�ned
by the Bayesian belief network B is now given by in the following de�nition.

De�nition Let V be a set of variables, and let D be the set of all possible databases4.5

over V . Let BS be the set of all possible network structures over V . Let ri, qi, Nijk,
and Nij be as before. Then, the description length is the function BS � D ! IR
de�ned by

L(BS ;D) = logP (BS)�N �H(BS ;D)� 1

2
K � logN;

where H(BS ;D) =
Pn

i=1

Pqi
j=1

Pri
k=1�Nijk

N
log

Nijk
Nij

and K =
Pn

i=1(ri � 1) � qi.

4.5

Though it does not stem from the minimum description length principle, the �rst
term logP (BS) is included to capture prior knowledge and to make comparison
with the Bayesian measure more convenient. Note that the length of the description
of the network structure BS is omitted from the description length, because it is
a constant for a given set of variables and therefore for the database and we are
mainly interested in the di�erence of description length of various structures. Also
note that the description lengths are preceded by a minus sign because we want to
maximize the minimum description length with the objective of maximizing quality
of network structures and databases.

Like information criteria, the description length consists of three terms:

� the prior probability of the network structure;

� the description length of the database encoded; and

� the description length of the encoding distribution.

The three terms of the description length interact with each other as depicted in
Figure 4.1. Assume that no prior information is available, that is, assume that the
prior on the network structures Pr(BS) is constant. The fewer arcs are comprised in
the network structure BS, the shorter the description of the assessment functions.
However, in a Bayesian belief network containing a network structure with only a few
arcs not much detailed information can be represented in the assessment functions.
Therefore, the fewer arcs are comprised in BS, the longer the description of the
database. On the other hand, the more arcs there are in the network structure, the
longer the description of the assessment functions and the shorter the description of
the database.

Note that the description length is a quality measure because it assigns a non-
positive value to each network structure and database. This observation follows
from the fact that all three terms in Formula 4.5 are non-positive. In the sequel, we
will refer to the description length measure as the MDL measure.

67
�
�
�
�

Learning Bayesian Networks

Comparing Quality Measures4.2.4

In this section, we compare the quality measures proposed in the previous sections
with each other, to get an insight in the resemblance and di�erences in the behavior
of these quality measures. If measures share the same behavior, then it can be
justi�ed that they can replace each other. For example, for hypothesis testing there
is a Bayesian justi�cation to apply the Bayesian measure. If it turns out that other
quality measures show the same behavior, then it can be justi�ed to use these quality
measures for hypotheses testing as well.

Though the philosophy of the minimum description length principle is completely
di�erent from that of the information criterion, the two measures bear a close re-
semblance. In fact, the description length is equal to the information criterion with
penalty function f(N) = 1

2
log(N).

Because of the similarity of the information criterion and the MDL measure, we
will focus on the relation between the Bayesian measure and the MDL measure. The
following theorem tells that for any network structure and some databases these two
measures yield approximately equal values.

Theorem Let V be a set of variables. Let BS be a network structure over V , and4.1

let D be a database over V such that each con�guration of every parent set of BS

occurs in the database. Let B(BS;D) be the Bayesian measure of BS and D, and
let L(BS;D) be the MDL measure of BS and D. Then,

L(BS;D) = B(BS;D) +O(1)

where the O(1) is with respect to N .

4.6

Proof: Let ri, qi, Nijk, and Nij be as before. By the de�nition of B(BS;D), we have

B(BS;D) = logP (BS) +
nX
i=1

�iX
j=1

(
log(ri � 1)!� log(Nij + ri � 1)! +

riX
k=1

logNijk!

)
;

where �i is the number of unique con�gurations of the parent set �i that occur in

4.7

the database. From the condition stated in the theorem we have that �i equals qi.
However, to show where the Bayesian measure and the MDL measure di�er if the
condition does not hold, we write �i for the moment. Now, consider the contribution
of one variable vi and one con�guration of its parent set �i to the double summation
in the right-hand side of the above equality which equals

log(ri � 1)!� log(Nij + ri � 1)! +

riX
k=1

logNijk!:

This contribution can be written as,

log(ri � 1)!� log ((Nij + 1) � : : : � (Nij + ri � 1))� logNij ! +

riX
k=1

logNijk!:

We now apply Stirling's formula x! � p2�x(x
e
)x to the last two terms of Expression

4.8

68
�
�
�
�

Learning Bayesian Networks

4.8, giving

� log
p

2�Nij

�
Nij

e

�Nij

+

riX
k=1

log
p

2�Nijk

�
Nijk

e

�Nijk

:

Note that, since the approximation
p
2�x(x

e
)x has a relative error of about 1

12x
[49],

4.9

we introduce an O(1) error with respect to N . Expression 4.9 equals

�1

2
log 2� �

�
Nij +

1

2

�
logNij +Nij log e +

riX
k=1

�
1

2
log 2� +

�
Nijk +

1

2

�
logNijk �Nijk log e

�
:

By exploiting that
Pri

k=1Nijk = Nij by de�nition and subsequently grouping terms,
the log e terms cancel out, and we �nd

riX
k=1

1

2
logNijk � 1

2
logNij +

riX
k=1

Nijk log
Nijk

Nij
+
ri � 1

2
log 2�:

For a large enough database, that is, for N large enough, the last term of this
expression is negligible; we therefore omit this term, once more introducing an O(1)
error. Substitution of the result for the last two terms of Expression 4.8 gives

log(ri�1)!�log(Nij+1)�: : :�(Nij+ri�1)+
riX
k=1

1

2
logNijk� 1

2
logNij+

riX
k=1

Nijk log
Nijk

Nij
:

The log(ri � 1)! term is also negligible for a large enough database; we delete this

4.10

term, again introducing an O(1) error.
Now consider the term � log(Nij+1) : : : (Nij+ri�1) of Expression 4.10. This term

can be approximated by � logN ri�1
ij . By this approximation, an error

Pri�1
p=1 log

Nij+p

Nij

is introduced. Using log Nij+p
Nij

< log p � log(ri � 1), for 1 � p � ri � 1 we �nd for

this error that
Pri�1

p=1 log Nij+p

Nij
< (ri � 1) � log(ri � 1). Since (ri � 1) � log(ri � 1) is a

constant with respect to N , the approximation of � log(Nij +1) : : : (Nij + ri� 1) by
� logN ri�1

ij introduces yet another O(1) error.
Expression 4.10, therefore, can be approximated by

� logN ri�1
ij +

riX
k=1

1

2
logNijk � 1

2
logNij +

riX
k=1

Nijk log
Nijk

Nij

= log

pQri
k=1Nijk

N ri�1
ij

p
Nij

+

riX
k=1

Nijk log
Nijk

Nij

= log

0
B@
qQri

k=1
Nijk
N�

Nij
N

�ri� 1

2

� N
1

2
ri

N ri�
1

2

1
CA+

riX
k=1

Nijk log
Nijk

Nij

=

riX
k=1

1

2
log

Nijk

N
�
�
ri � 1

2

�
log

Nij

N
+

riX
k=1

Nijk log
Nijk

Nij
� ri � 1

2
logN

�
riX
k=1

Nijk log
Nijk

Nij
� ri � 1

2
logN

69
�
�
�
�

Learning Bayesian Networks

The last approximation is allowed, since by the strong law of large numbers
Nijk
N

approximates a probability Pr(vi = xik; �i = x�ij) and
Nij
N

approximates Pr(�i =
x�ij). Note that such probability exists by the basic assumption that all cases in a
database are independent. These terms are negligible for N large enough. By this
approximation, again an O(1) error is introduced.

Recall that, so far, we performed the approximation for a speci�c value of i and
j. Summation over j of the above expression gives,

N �
�iX
j=1

riX
k=1

Nijk

N
log

Nijk

Nij
� �i(ri � 1)

2
logN:

Further summation over i gives

N

nX
i=1

�iX
j=1

riX
k=1

Nijk

N
log

Nijk

Nij
�

nX
i=1

�i(ri � 1)

2
logN:

Now recall from the conditions of our theorem that all possible con�gurations of

4.11

the parent sets of BS occur in the database and therefore, �i = qi. Expression 4.11
therefore equals

�N �H(BS ;D) � 1

2
K � logN;

from which the desired result is obtained. We would like to stress once more that
every approximation made in the course of the derivation has introduced an error
of O(1) with respect to N .

From this theorem and the de�nition of the MDLmeasure, we have that the Bayesian
measure and MDL measure will yield approximately the same results for databases
where all con�gurations of parent sets occur at least once. So, if the Bayesian
measure prefers a network structure BS over BS0 , then the MDL measure will prefer
BS over BS0 most of the time.

Note, however, that the two measures will not always prefer the same network
structures due to the constant CBS;D, which may di�er among network structures
and therefore makes the measures slightly di�erent. Also, for databases in which not
all possible con�gurations of the parent sets of a network structure occur, di�erent
results will be obtained. Further, from the approximation of logNijk and logNij by
logN , it is easily seen that the MDL measure assigns a larger weight to the cost of
estimating parameters (the 1

2
K logN-term) than the Bayesian measure. When not

all con�gurations of all parent sets occur in the database, still all these con�gurations
are accounted for by the MDLmeasure but not by the Bayesian measure. As a result,
the MDL measure may prefer a network with fewer arcs than the Bayesian measure
prefers.

Score equivalence4.2.5

One need not be interested in the represented distribution but instead one may
be interested in the causal structure underlying the domain. Now, in a network
structure only those arcs that have the same direction in any equivalent network

70
�
�
�
�

Learning Bayesian Networks

a b

0 0
0 0
0 0
0 1
1 0
1 0
1 1
1 1

Table 4.1: A database of cases over two binary variables.

structure represent causal in
uences [104]. From this point of view, a network
structure is as valuable as any of its equivalent network structures. So, it is desirable
that quality measures assign the same quality to equivalent network structures when
no prior information is available (see also [53]). We formalize this property with the
term score equivalence.

De�nition Let V be a set of variables, and let D be the set of all possible databases4.6

over V . Let BS be the set of all possible network structures over V . Let Q be a
quality measure. Then Q is score equivalent if for all D 2 D and BS; B

0
S 2 BS, we

have that Q(BS;D) = Q(B 0
S;D) if the network structures BS and B0

S are equivalent.

Unfortunately, the Bayesian measure is not score equivalent if a uniform prior dis-
tribution over the network structures is assumed. Consider the database in Table
4.1 over two binary variables a and b, and the network structures BS1 being a! b
and BS2 being b! a. It will be evident that both structures represent the same set
of independencies. Yet,

P (BS1 ;D) = P (BS1)
(2 � 1)!

(8 + 2 � 1)!
4!4!

(2� 1)!

(4 + 2� 1)!

(2 � 1)!

(4 + 2 � 1)!
3!1!2!2! = P (BS1)

24

25

1

9!

and

P (BS2 ;D) = P (BS2)
(2� 1)!

(8 + 2� 1)!
5!3!

(2 � 1)!

(5 + 2 � 1)!

(2� 1)!

(3 + 2� 1)!
3!1!2!2! = P (BS2)

1

9!
:

So, if we assume both structures equiprobable we have that P (BS1 ;D) = 24
25P (BS2 ;D).

For measures based on other Bayesian approaches [14, 52, 102], score equivalence
does hold. In these approaches a non-uniform prior distribution over the assessment
functions is used and formulas di�ering slightly from 4.1 are obtained.

In the remainder of this section, we will show that the information criteria, and
speci�cally the MDL measure, assign equal quality to network structures that repre-
sent the same independency model. Before doing so, we state some useful properties
of information criteria.

For a network structure, if a single arc-reversal operation is applied on a pair of
nodes u and v that are adjacent, then the quality of the structure does not change

71
�
�
�
�

Learning Bayesian Networks

bvva

Figure 4.2: A network structure with va 2 �b and �a = �bnva.

if the parent set of u equals the parent set of v (excluding u itself). First, we
examine the in
uence of such an arc reversal on the entropy; after this, we examine
its in
uence on the number of parameters.

Lemma Let V be a set of variables, and let D be a database over V . Let BS be a4.1

network structure over V . Furthermore, let va and vb be two nodes in BS such that
either va 62 �b or va 2 �b and �a = �bnva and let BS0 = arcr(BS; va; vb). Then,

H(BS ;D) = H(BS0 ;D);

where H is the entropy as de�ned in Formula 4.3.

Proof: We distinguish between the two cases. In the case where va 62 �b, we have
by de�nition that BS = BS0 and the lemma is trivially true. In the remainder of the
proof, we address the case where va 2 �b and �a = �bnva; Figure 4.2 sketches the
basic idea.

Let ri, qi, Nijk, and Nij be as before for D and BS, and let r0i, q
0
i, N

0
ijk, and N 0

ij

be likewise for D and BS0 . Note that ri = r0i for all i = 1; : : : ; n. For notational
convenience, we now prove that N � H(BS;D) = N � H(BS0 ;D). By de�nition, we
have

N �H(BS;D) = �
nX
i=1

qiX
j=1

riX
k=1

Nijk log
Nijk

Nij
:

Since q0i = qi, �i = �0i, N
0
ij = Nij and N 0

ijk = Nijk for all nodes vi 62 fva; vbg we have
that the entropy term equals

�
nX

i=1;i 6=a;i6=b

q0iX
j=1

riX
k=1

N 0
ijk log

N 0
ijk

N 0
ij

�
qaX
j=1

raX
k=1

Najk log
Najk

Naj
�

qbX
j=1

rbX
k=1

Nbjk log
Nbjk

Nbj
:

Consider the last two terms of Expression 4.12. These terms equal

4.12

qaX
j=1

raX
k=1

Najk logNaj�
qaX
j=1

raX
k=1

Najk logNajk+

qbX
j=1

rbX
k=1

Nbjk logNbj�
qbX
j=1

rbX
k=1

Nbjk logNbjk:

Now consider the third term of Expression 4.13. Using Nbj =
Prb

k=1Nbjk, we �nd

4.13

that
Pqb

j=1

Prb
k=1Nbjk logNbj =

Pqb
j=1Nbj logNbj . From �b = �ava, we have that for

every Nbj there is a unique index j 0 together with an index k such that Naj0k = Nbj .
So,

Pqb
j=1Nbj logNbj can be written as

Pqa
j=1

Pra
k=1Najk logNajk. Substitution in

Expression 4.13 gives

qaX
j=1

raX
k=1

Najk logNaj�
qaX
j=1

raX
k=1

Najk logNajk+

qaX
j=1

raX
k=1

Najk logNajk�
qbX
j=1

rbX
k=1

Nbjk logNbjk:

72
�
�
�
�

Learning Bayesian Networks

The middle two terms cancel out, yielding

qaX
j=1

raX
k=1

Najk logNaj �
qbX
j=1

rbX
k=1

Nbjk logNbjk:

For the �rst term of Expression 4.14 we once more have
Pqa

j=1

Pra
k=1Najk logNaj

4.14

equals
Pqa

j=1Naj logNaj . From �0b = �a, we further have that q0b = qa and N 0
bj = Naj;

so, we can write the sum
Pqa

j=1Naj logNaj as
Pq0b

j=1N
0
bj logN

0
bj , which is equal toPq0

b

j=1

Pr0
b

k=1N
0
bjk logN

0
bj .

Now, we consider the second term
Pqb

j=1

Prb
k=1Nbjk logNbjk of Expression 4.14.

Recall that Nbjk is the number of cases in which the parent set �b of node vb takes
the con�guration x�bj and node vb takes the value xbk; likewise, N 0

aj0k0 is the number
of cases in which �0a takes the con�guration x0�aj0 and va takes the value x

0
bk0 . Since

�bvb = �0ava, we have that there are indices j0 and k0 such that Nbjk = N 0
aj0k0 . So,Pqb

j=1

Prb
k=1Nbjk logNbjk can be written as

Pq0a
j=1

Pr0a
k=1N

0
ajk logN

0
ajk. Expression 4.14

therefore equals
q0
bX

j=1

r0
bX

k=1

N 0
bjk logN

0
bj �

q0aX
j=1

r0aX
k=1

N 0
ajk logN

0
ajk:

Now observe that

4.15

q0aX
j=1

r0aX
k=1

N 0
ajk logN

0
aj �

q0bX
j=1

r0bX
k=1

N 0
bjk logN

0
bjk = 0;

using �0a = �0bvb. Adding this term to Expression 4.15 gives

q0
bX

j=1

r0
bX

k=1

N 0
bjk logN

0
bj�

q0
bX

j=1

r0
bX

k=1

N 0
bjk logN

0
bjk+

q0aX
j=1

r0aX
k=1

N 0
ajk logN

0
aj�

q0aX
j=1

r0aX
k=1

N 0
ajk logN

0
ajk:

Using log x� log y = log x
y
we get,

�
q0bX
j=1

r0bX
k=1

N 0
bjk log

N 0
bjk

N 0
bj

�
q0aX
j=1

r0aX
k=1

N 0
ajk log

N 0
ajk

N 0
aj

:

Substituting this result in Expression 4.12 gives,

�
nX

i=1;i6=a;j 6=b

q0iX
j=1

r0iX
k=1

N 0
ijk log

N 0
ijk

N 0
ij

�
q0aX
j=1

r0aX
k=1

N 0
ajk log

N 0
ajk

N 0
aj

�
q0
bX

j=1

r0
bX

k=1

N 0
bjk log

N 0
bjk

N 0
bj

;

and by reordering terms, this is,

�
nX
i=1

q0iX
j=1

r0iX
k=1

N 0
ijk log

N 0
ijk

N 0
ij

;

which by de�nition is N �H(BS0 ;D).

73
�
�
�
�

Learning Bayesian Networks

Now observe that the condition in Lemma 4.1, that is, that either va 62 �b or va 2 �b
and �a = �bnva, is the same as the condition that BS and BS0 are equivalent. So the
lemma states that a single arc reversal on a network structure BS has no in
uence
on the entropy of the structure and a database, as long as the obtained network
structure BS0 is equivalent with BS. The following lemma gives a similar result for
the number of parameters that have to be assessed for the two network structures
BS and BS0 .

Lemma Let V be a set of variables, and let D be a database over V . Let BS be a4.2

network structure over V . Furthermore, let va and vb be two nodes in BS such that
either va 62 �b or va 2 �b and �a = �bnva and let BS0 = arcr(BS; va; vb). Then,

K = K 0;

where K and K 0 are the number of parameters of BS and BS0, respectively.

Proof: We distinguish between the two cases. In the case where va 62 �b we have by
de�nition that BS = BS0 and the lemma is trivially true. In the remainder of the
proof, we address the case where va 2 �b and �a = �bnva.

Let ri, qi, Nijk, and Nij be as before for D and BS, and let r0i, q
0
i, N

0
ijk, and N 0

ij

be likewise for D and BS0 . By de�nition of K and K 0, we have

K �K 0 =

nX
i=1

fqi(ri � 1)� q0i(r
0
i � 1)g :

We recall that r0i = ri for all i = 1; : : : ; n. In addition, we have for all i = 1; : : : ; n,
i 6= a, i 6= b, that q0i = qi. From these observations, we have

K �K 0 = qa(ra � 1) + qb(rb � 1)� q0a(ra � 1)� q0b(rb � 1):

By de�nition, we have, qa =
Q

vj2�a
rj and qb =

Q
vj2�b

rj ; a similar observation holds

for q0a and q0b. Substitution gives

K �K 0 =
Y
vj2�a

rj(ra � 1) +
Y
vj2�b

rj(rb � 1) �
Y
vj2�0a

rj(ra � 1)�
Y
vj2�0b

rj(rb � 1)

= (
Y
vj2�a

rj �
Y
vj2�0a

rj)(ra � 1) + (
Y
vj2�b

rj �
Y
vj2�0b

rj)(rb � 1):

Since �0a = �ab and �0b = �bna = �a, we �nd

K �K 0 =
Y
vj2�a

rj(1 � rb)(ra � 1) +
Y
vj2�a

rj(ra � 1)(rb � 1) = 0:

We conclude that K = K 0.

The previous two lemmas together indicate that a single arc reversal does not change
the quality of a network structure if an information criterion is used.

74
�
�
�
�

Learning Bayesian Networks

Lemma Let V be a set of variables, and let D be a database over V . Let BS4.3

be a network structure over V . Let the prior probability distribution on network
structures over V be uniform. Now, let va and vb be two nodes in BS such that
either va 62 �b or va 2 �b and �a = �bnva, and let BS0 = arcr(BS; va; vb). Then

If(BS ;D) = If(BS0 ;D);

where If(BS;D) is an information criterion with penalty function f as de�ned in
De�nition 4.4.

Proof: We have to show that log P (BS)�N �H(BS;D)�K �f(N) = log P (BS0)�N �
H(BS0 ;D)�K 0 � f(N), where N , K and K 0 as before. We will prove the equality by
showing that logP (BS) = logP (BS0), N �H(BS;D) = N �H(BS0;D), and K �f(N) =
K 0 � f(N). From the uniform prior distribution over all network structures, we
have that P (BS) equals P (BS0), and therefore that logP (BS) equals logP (BS0).
Using Lemma 4.1, we �nd that H(BS ;D) = H(BS0 ;D), so N � H(BS ;D) equals
N �H(BS0 ;D). Using Lemma 4.2, we �nd that K = K 0, and therefore that K � f(N)
equals K 0 � f(N).

From the previous lemma we have that under certain conditions arc reversal does
not in
uence the quality of the network structure given the data if an information
criterion is used. These condition are satis�ed as long as arc reversal does not change
the independency model represented by the structure. The following lemma now
states that any two network structures that represent the same independency model
can be transformed into one another by applying successive arc-reversal operations.

Lemma Let V be a set of variables. Let BS and BS0 be network structures over4.4

V such that BS � BS0. Then, a �nite sequence B1; : : : ; Bk, k � 1, of network
structures over V exists such that BS = B1, BS0 = Bk, and for 1 � i < k, Bi+1 =
arcr(Bi; vai; vbi) where vai and vbi are nodes in V such that either vai 62 �bi or vai 2 �bi
and �ai = �binvai.

Proof: We prove the lemma by induction on the number of reversed arcs in BS

with respect to BS0, that is, the number of pairs of nodes vi; vj such that vi ! vj
is an arc in BS and vj ! vi is an arc in BS0 . For each such a reversed arc, an arc
reversal is applied, so if there are k reversed arcs, the sequence is of length k.

If there are zero reversed arcs then BS is equal to BS0 and the lemma is trivially
true for k = 1.

Assume that the lemma holds for some k � 1 � 0 reversed arcs. Now, let BS0

be a network structure that contains k reversed arcs with respect to BS. We show
that an arc reversal on B1 = BS can be performed such that the BS0 contains k � 1
reversed arcs with respect to the obtained network structure B2.

By inspection of the de�nition of the arc-reversal operation we �nd that applying
the operation to two nodes vai and vbi in Bi for which the conditions of the lemma
apply (that is, either vai 62 �bi or vai 2 �bi and �ai = �binvai) results in a network
structure Bi+1 that is equivalent with Bi. So, the independency model of Bi+1 is
the same as the one of Bi if we can �nd two such nodes va and vb and apply the
arc-reversal operation.

75
�
�
�
�

Learning Bayesian Networks

Now, let <V be a topological ordering obeyed of B1. Let va and vb be two adjacent
nodes in Bi on which an arc reversal can be performed but that need not necessarily
satisfy the condition in the theorem and let vb! va be an arc in BS0. Furthermore,
let vb be the lowest ordered node according to <V for which this property holds.

Now, suppose that va 2 �b and not �a = �bnva. We distinguish between two cases
for �a and �b:

� Suppose that �bn(�a [va) 6= ;. Let u be a node in �bn(�a [va). Then, we have
that va�6 �u holds in the embedded graph of B1, and that va! vb and vb u
are in B1. If va ! vb is reversed in BS0 , then the conditions that va�6 �u is in
the underlying graph of BS and va ! vb and vb u are arcs in BS cannot
hold. So, �bn(�a [va) must be empty to satisfy BS � BS0 .

� Suppose that (�a[va)n�b 6= ;. Let u be a node in (�a[va)n�b. Then in B1, we
have va ��u, va ��vb and u�6 �vb in the underlying graph of B1. Furthermore,
hvb; �b; ui holds in B1, thus also in BS and BS0 . In B2 we must have these
properties also. However, if the arrow va ! vb is just
ipped in direction, we
would obtain u! va vb and hvb; �b; ui would not hold. For the d-separation
statement to hold in BS0 , u ! va will have to be
ipped in direction in BS0

also. But, then a pair v0a, v
0
b would have to exist with v0b<V vb which must be

false by our choice of vb.

From these contradictions, we conclude that either va 62 �b or �a = �bnva.
So, in B1, always two nodes va and vb can be found to which the arc-reversal

operation can be applied such that the represented independency model is not
changed. Furthermore, in B2 there are only k � 1 reversed arcs with respect to
BS0 , hence by the induction hypothesis there is a �nite sequence B2; : : : ; BS0 such
that Bi+1 = arcr(Bi; vai; vbi) under the conditions stated in the Lemma. Therefore,
there is a �nite sequence of network structures BS = B1; : : : ; Bk = BS0 such that
Bi+1 = arcr(Bi; vai; vbi) where vai and vbi are nodes in V such that either vai 62 �bi
or vai 2 �bi and �ai = �binvai.

From the lemma we have that for any equivalent two network structures BS and
BS0 , a sequence of arc reversals exists that transforms BS into BS0 such that any
intermediate network structure is equivalent with BS and BS0. Now combining this
result with Lemma 4.3 yields the following theorem.

Theorem Let V be a set of variables. Let D be a database over V . Let the prior4.2

probability distribution on network structures over V be uniform. Let If be an
information criterion with penalty function f . Then,

If(BS ;D) = If(BS0 ;D);

for any two network structures BS and BS0 with BS � BS0.

Proof: Let BS and BS0 be network structures with BS � BS0. From Lemma 4.4, we
have that a �nite sequence of network structures B1; : : : ; Bk, k � 1, exists such that
BS = B1, BS0 = Bk, and Bi+1 = arcr(Bi; vai; vbi) with either vai 62 �bi or vai 2 �bi
and �ai = �binvai in Bi. From Lemma 4.3, we have that such arc reversals do not

76
�
�
�
�

Learning Bayesian Networks

change the quality of the resulting network structures according to an information
criterion. So, If(Bi+1;D) = If(Bi;D) for i = 1; : : : ; k hence If(BS;D) = If(BS0 ;D).

From this theorem we have that the information criteria are score equivalent if a
uniform prior distribution over the network structures is assumed, as opposed to
the Bayesian measure.

In�nite-Size Database Properties of Quality Measures4.2.6

In this section, we will investigate the asymptotic behavior of the Bayesian measure,
information criteria, and the MDL measure, that is, the behavior for in�nite-size
databases. Although the results will be of a theoretical nature mainly, they indicate
how the measures may be expected to behave for large databases.

For the Bayesian measure it is known that it assigns a higher quality to minimal
I-maps than to any other network structures given a large database obeying the same
topological ordering as the I-map when the database is generated from a positive
distribution [57]. Since the MDL measure approximates the Bayesian measure, a
similar property holds for the MDL measure. In fact, the property also holds for
information criteria as well and can be generalized even more, as is stated in the
following theorem.

Theorem Let V be a set of variables and let <V a total ordering one V. Let the4.3

prior probability distribution over all network structures over V be positive. Now,
let PrD be a joint probability distribution over V such that BS is a minimal I-map
of PrD obeying <V and no other network structure obeying <V is a minimal I-map
of PrD. Let D be a database with N cases generated from PrD. Let Q be either
the Bayesian measure, the MDL measure, or an information criterion with nonzero
penalty function f , where limN!1 f(N) = 1 and limN!1 f(N)=N = 0. Then, for
any network structure BS0 over V that obeys <V , we have that

lim
N!1

(Q(BS0;D) �Q(BS;D)) = �1

if and only if BS0 is not a minimal I-map of PrD.

Proof: For the Bayesian measure, the property stated above follows from Theorem
6.3 of [57]. Since the MDL measure is a special case of an information criterion that
satis�es the above conditions, it su�ces to prove the theorem for information criteria.
Let f be a penalty function such that limN!1 f(N) =1 and limN!1 f(N)=N = 0
and consider information criterion If .

Let N , n, ri, vi, qi, xik, x�ij, Nijk, and Nij be as before for the network structure
BS and database D, and let r0i, v

0
i, q

0
i, x

0
ik, x

0
�ij
, N 0

ijk, and N 0
ij be likewise for BS0 and

D. Note that r0i = ri for i = 1; : : : ; n. Let K and K 0 be the numbers of parameters
for BS and BS0 , respectively. We consider limN!1 (If(BS0;D) � If(BS ;D)) which
by de�nition is equal to

77
�
�
�
�

Learning Bayesian Networks

lim
N!1

(log P (BS0)�NH(BS0 ;D) �K 0f(N)� logP (BS) +NH(BS ;D) +Kf(N)) :

Now, consider the behavior of the entropy term N �H(BS ;D) in the limit for N !

4.16

1. This term is by de�nition �N �Pn
i=1

Pqi
j=1

Pri
k=1�Nijk

N
log

Nijk
Nij

. By the strong

law of large numbers, we have that limN!1
Nijk
N

= PrD(vi = xik; �i = x�ij) and

limN!1
Nijk
Nij

= PrD(vi = xikj�i = x�ij). Therefore, in the limit for N !1 we have

that

N �H(BS ;D) = N

nX
i=1

qiX
j=1

riX
k=1

�PrD(vi = xik; �i = x�ij) log PrD(vi = xikj�i = x�ij):

A similar property holds for the behavior of the entropy term N � H(BS0 ;D). To
examine the behavior of the sum N(�H(BS0 ;D) + �H(BS ;D)) in Expression 4.16,
we distinguish between three cases:
� BS0 is not an I-map of PrD,
� BS0 is an I-map of PrD but not a minimal one, and
� BS0 is a minimal I-map of PrD.

First, suppose that BS0 is not an I-map of PrD. Then, in the limit for N ! 1
the sum �N �H(BS0 ;D) +N �H(BS ;D) is equal to

N �
nX
i=1

8<
:

q0iX
j=1

r0iX
k=1

PrD(vi = xik; �
0
i = x0�ij) logPrD(vi = xikj�0i = x0�ij)

�
qiX
j=1

riX
k=1

PrD(vi = xik; �i = x�ij) log PrD(vi = xikj�i = x�ij)

)
:

Now observe that since BS0 is not an I-map of PrD, there is an index i such that �i 6�
�0i; if for all i we would have �i � �0i, then BS0 would represent less independencies
than the I-map BS and BS0 would be an I-map too. For this index i, let �00i = �i�

0
i,

let x00�ij be the jth con�guration of �00i , and let q00i be the number of all possible
con�gurations of �00i . Now observe that for j = 1; : : : ; q00i , we have that PrD(vi =
xikj�00i = x00�ij) = PrD(vi = xikj�i = x�i) where x�i conforms to x00�ij, because vi and �

00
i

are conditionally independent given �i, that is, I(vi; �i; �00i). So, by marginalization
the above equation can be written as,

N �
nX
i=1

8<
:

q00iX
j=1

riX
k=1

PrD(vi = xik; �
00
i = x00�ij) log PrD(vi = xikj�0i = x0�i)

�
q00iX
j=1

riX
k=1

PrD(vi = xik; �
00
i = x00�ij) log PrD(vi = xikj�00i = x00�ij)

9=
; ;

where x0�i conforms to x00�ij . From Shannon's inequality, which states
P

i�ai log ai �P
i�ai log bi for all ai; bi � 0 such that

P
i ai =

P
i bi = 1, we have that the expression

78
�
�
�
�

Learning Bayesian Networks

within brackets must be greater than or equal to 0 because there is at least one index
i for which PrD(vi = xikj�0i = x�i) is not equal to PrD(vi = xikj�00i = x00�ij). So, in
the limit for N !1 the entropy of BS0 is higher than the entropy of BS. Note that
for the other two cases the Bayesian belief networks represent the same probability
distribution, namely PrD. So, for those cases we have N(�H(BS0;D)+�H(BS ;D)) =
0.

To examine the behavior of Expression 4.16, we distinguish between the same
three cases as before.

If BS0 is not an I-map of PrD, the entropy terms sum to �1 when N !1. Since
O(N) terms dominate O(f(N)) when N !1 we have that the term (K�K 0) �f(N)
in Expression 4.16 is dominated by the term �N �H(BS0;D)+N �H(BS;D)!�1.
Since the prior probability distribution on network structures is positive, the term
log(P (BS0)=P (BS)) is a constant with respect to to N and negligible in the limit for
N !1. So, limN!1 (Q(BS0;D) �Q(BS;D)) = �1.

If BS0 is a non-minimal I-map of PrD, BS0 must comprise at least one ex-
tra arc compared to BS0 . So, K 0 � K > 0. Since for the penalty function
the property limN!1 f(N) = 1 holds, we have that, �(K 0 � K)f(N) ! �1.
The term log(P (BS)=P (BS0)) can once more be neglected and therefore, limN!1

(Q(BS0 ;D)�Q(BS;D)) = �1.
If BS0 is a minimal I-map then BS0 equalsBS since it was required that the minimal

I-map is unique for the given ordering and limN!1 (Q(BS0;D) �Q(BS;D)) = 0.

The theorem states that for large enough databases, a network structure that is a
minimal I-map obeying a particular ordering <V is overwhelmingly preferred over
any other network structure obeying the same ordering. From the fact that indepen-
dency models associated with positive distributions are closed under the graphoid
axioms and that such independency models have a unique minimal I-maps for net-
work structures that obey a given ordering, this property holds for any positive
distribution.

Equally, the property holds for any distribution that has a P-map, since inde-
pendency models associated with P-maps are closed under the graphoid axioms as
well. So, for these distributions also there is a unique minimal I-map for every given
ordering. In general for �nite-size databases, a minimal I-map need not necessarily
have a higher quality than other structures.

Note that application of Theorem 4.3 requires that an ordering on the variables is
given. For learning a network structure, however, it is not desirable that an ordering
on the variables need to be provided to the learning algorithm; di�erent orderings
may results in considerably di�erent network structures and �nding a `good' ordering
may be di�cult. Therefore, we investigate the behavior of the quality measures more
in general. We are interested in determining the class of network structures that are
preferred over other network structures by the considered quality measures in order
to get a better understanding of the quality measures.

We begin by observing that minimal I-maps need not be unique. In fact, di�erent
minimal I-maps for a joint probability distribution need not even be equivalent.
Consider for example the network structures shown in Figure 4.3. Suppose that
the structure on the left is a P-map of some distribution Pr. Both structures on
the right are minimal I-maps of the distribution obtained from Pr by marginalizing

79
�
�
�
�

Learning Bayesian Networks

@
@
@@R

�
�
���

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

J
JĴ

�

J
JĴ

�

�

-

HHHHHHHj

��������

��
��

a

�

J
JĴ

J
JĴ

�

c

ed

a

c

ed

a

b c

ed

Figure 4.3: Example of di�erent minimal I-maps.

over b; note that the two structures do not obey the same variable ordering. The
two I-maps are not equivalent; for example, the upper structure represents I(a; ;; e)
whereas the lower structure does not.

As a result of the fact that minimal I-maps are not unique, the numbers of pa-
rameters that need to be estimated for di�erent minimal I-maps need not necessarily
the same. Therefore, a quality measure may assign di�erent qualities to di�erent
minimal I-maps. It is desirable that as few as possible probabilities need be assessed,
since in every estimate of a probability a small error is introduced. This motivates
distinguishing between minimum and non-minimum I-maps.

De�nition Let V be a set of variables. Let M I be an independency model over V4.7

and BS be a network structure over V . Then, BS is a minimum I-map of M I if
BS is an I-map of M I and for every network structure BS0 over V that is an I-map
of M I , we have that K 0 � K, where K and K' are the number of parameters of BS

and BS0 , respectively.

Let Pr be a joint probability distribution over V . Then, we say that BS is a minimum
I-map of Pr to denote that BS is a minimum I-map of the independency model M I

that is associated with Pr.
Consider once more the network structures on the left-hand side in Figure 4.3.

Suppose that all variables except c are binary and that the variable is c ternary.
Then, for the upper structure on the right of Figure 4.3 eighteen probabilities need
be speci�ed to arrive at a belief network: one probability for a, two for c, twelve
for d, and three for e. However, for the lower structure, only seventeen probabilities
need be speci�ed: one for a, two for c, two for d, and twelve for e.

Unfortunately, in general minimum I-maps need not be unique. Further, two
minimum I-maps may exits that are not equivalent. Consider the network structures
on the left-hand side in Figure 4.3 once more. If all variables including c would be
binary, for both structures twelve probabilities would need to be speci�ed.

However, the quality measures that we consider all prefer minimum I-maps over
non-minimum I-maps under some conditions stated in the following theorem.

Theorem Let V be a set of variables and let the prior probability distribution over4.4

all network structures over V be positive. Let PrD be a positive joint probability

80
�
�
�
�

Learning Bayesian Networks

distribution over V, and let BS be a minimum I-map of PrD. Let D be a database
with N cases generated from PrD. Let Q be either the Bayesian measure, the
MDL measure, or an information criterion with nonzero penalty function f where
limN!1 f(N) =1 and limN!1 f(N)=N = 0. Then, for any network structure BS0

over V , we have that

lim
N!1

(Q(BS;D) �Q(BS0 ;D)) = �1

if and only if BS0 is not a minimum I-map of PrD.

Proof: Recall from Theorem 4.1 that for large enough N the MDL measure is an
approximation of the Bayesian measure with O(1) error provided that each con�g-
uration of every parent set occurs in the database. Since PrD is a positive distri-
bution, all these con�gurations are guaranteed to be in the database for N ! 1.
Also observe that for penalty function f(N) = 1

2 logN , the information criterion
I 1
2
log is equal to the MDL measure. We conclude that it su�ces to prove the theo-

rem for the information criteria in general. Let f be a penalty function such that
limN!1 f(N) =1 and limN!1 f(N)=N = 0 and consider the information criterion
If .

Let N , n, ri, vi, qi, xik, x�ij, Nijk, and Nij be as before for the network structure
BS and database D, and let r0i, v

0
i, q

0
i, x

0
ik, x

0
�ij
, N 0

ijk, and N
0
ij be likewise forBS0 andD.

Let K and K 0 be the numbers of parameters for BS and BS0 , respectively. We con-
sider the expression limN!1 (If(BS0 ;D) � If(BS;D)), which by de�nition is equal to
limN!1 (logP (BS0)�NH(BS0 ;D) �K 0f(N) � log P (BS) +NH(BS ;D) +Kf(N)).
This expression can be written as

lim
N!1

�
log

P (BS0)

P (BS)
�N �H(BS0 ;D) +N �H(BS ;D) � (K 0 �K) � f(N)

�
:

First, consider the entropy term H(BS0;D) and its behavior in the limit for N !

4.17

1. This term by de�nition is �Pn
i=1

Pqi
j=1

Pri
k=1�Nijk

N
log

Nijk
Nij

. By the strong

law of large numbers, we have that limN!1
N 0
ijk

N
= PrD(vi = x0ik; �

0
i = x0�ij) and

limN!1
N 0
ijk

N 0
ij

= PrD(vi = x0ikj�0i = x0�ij). Therefore in the limit for limN!1 we have

that H(BS0 ;D) can be written as

nX
i=1

q0iX
j=1

r0iX
k=1

�PrD(vi = x0ik; �
0
i = x0�ij) � logPrD(vi = x0ikj�0i = x0�ij):

By renaming con�gurations, this is equal to

nX
i=1

X
xvi2
i

X
x�0

i
2
�0

i

�PrD(vi = xvi; �
0
i = x�0i) � log PrD(vi = xui j�0i = x�0i):

By marginalization we have

nX
i=1

X
xV 2
V

�PrD(V = xV) � logPrD(vi = xuij�0i = x�0i):

81
�
�
�
�

Learning Bayesian Networks

Now, let <V be an ordering obeyed by BS0 and let Vi = fvjv <V vig for i = 1; : : : ; n.
Then, we can rewrite the above expression as

nX
i=1

X
xV 2
V

�

nY
h=1

PrD(uh = xhjVh = xVh)

!
� logPrD(vi = xuij�0i = x�0i):

Changing the order of summation and collection the summation over i in the loga-
rithm gives

X
xV 2
V

�

nY
i=1

PrD(ui = xijVi = xVi)

!
� log

nY
i=1

PrD(vi = xuij�0i = x�0i)

!
:

Now, let Pr0D(V = xV) =
Qn

i=1 PrD(vi = xvij�0i = x�0i), that is, let Pr
0
D be the joint

probability distribution de�ned by the belief network with network structure BS0 .
Then, we can write the above expression asX

xV 2
V

�PrD(V = xV) � logPr0D(V = xV):

We now consider the entropy term H(BS ;D). By a similar argument, we �nd that
this term equals X

xV 2
V

�PrD(V = xV) � logPrD(V = xV):

Note that BS is an I-map of PrD. Therefore, the distribution represented by the
Bayesian belief network with BS is equal to PrD and the expression for H(BS ;D)
contains the same distribution before as after the logarithm. So, Expression 4.17
can be written as

lim
N!1

log

P (BS0)

P (BS)
+N �

X
xV 2
V

(PrD(V = xV) � log Pr0D(V = xV)

�PrD(V = xV) � logPrD(V = xV))� (K 0 �K) � f(N)

!
:

We now distinguish between three cases:

4.18

� BS0 is not an I-map of PrD,
� BS0 is an I-map but not a minimum I-map of PrD, and
� BS0 is a minimum I-map of PrD.
We consider these cases separately. First, suppose that BS0 is not an I-map of PrD.
Then, there is a con�guration xV of V such that Pr0D(V = xV) 6= PrD(V = xV);
if no such con�guration would exist, then the belief networks with the network
structure BS0 and BS would de�ne the same probability distribution and BS0 would
model at most the same set of independency statements as the I-map BS and there-
fore would be an I-map too. From Shannon's inequality, which states

P
i ai log bi �P

i ai log ai, for all ai; bi � 0 such that
P

i ai =
P

i bi = 1, we have that the sumP
xV 2
V

(PrD(V = xV) � logPr0D(V = xV)� PrD(V = xV) � log PrD(V = xV)) in Ex-
pression 4.18 is less than 0. The result is multiplied by N yielding a negative O(N)

82
�
�
�
�

Learning Bayesian Networks

term. Since the prior probability distribution on network structures is positive, the
term log(P (BS0)=P (BS)) is a constant with respect to N and negligible in the limit
for N ! 1. Since an O(N) term dominates any O(f(N)) term for N ! 1 we
have that the (K 0 � K) � f(N) in Expression 4.18 is dominated by the term N �P

xV 2
V
(PrD(V = xV) � logPr0D(V = xV)� PrD(V = xV) � log PrD(V = xV)). So,

Expression 4.18 equals �1.
Now suppose that BS0 is an I-map of PrD, yet not a minimum I-map. We observe

that the joint probability distribution de�ned by the Bayesian belief network with
BS0 equals PrD and that the entropy terms in Expression 4.18 cancel out. However,
since BS0 is not a minimum I-map of PrD, we know that the number of parameters
of BS0 is larger than number of parameters of BS. Therefore, K 0 �K > 0. So, since
for penalty function f the property limN!1 f(N) =1 holds, we have that the term
�(K 0 �K) � f(N) ! �1 for N ! 1. The term logP (BS)=P (BS0) can once more
be neglected. So, Expression 4.18 equals �1.

To conclude, suppose that BS0 is a minimum I-map of PrD. Then, following the
same line of reasoning above, we �nd that H(BS;D) = H(BS0;D) and further that
K = K 0. Expression 4.18 then equals log P (BS)=P (BS0) which is a �nite constant if
the prior probability distribution on network structures is positive.

The theorem states that for large enough databases, a network structure that is a
minimum I-map is assigned a far larger quality than any other network structure.
Note that the property stated in the theorem is more general than the property
stated in Theorem 4.3 as it does not depend on an ordering of the variables. Now
if a probability distribution has a P-map, then for every ordering there is a unique
P-map, and by Theorem 4.3 we have this P-map is assigned a far higher quality
than any other network structure. In general however, P-maps need not be unique.
But, we have the following property.

Theorem Let V be a set of variables. Let the prior probability distribution over4.5

all network structures over V be positive. Let PrD be a positive distribution over V
such that a P-map exists for PrD. Let BS be such a P-map for PrD. Now, let D be a
database with N cases generated from PrD. Let Q be either the Bayesian measure,
the MDL measure, or an information criterion with nonzero penalty function f such
that limN!1 f(N) =1 and limN!1 f(N)=N = 0. Then, for any network structure
BS0 over V we have that

lim
N!1

Q(BS;D) �Q(BS0 ;D) = �1

if and only if BS0 is not a P-map of PrD.

Proof: This proof is similar to the proof of Theorem 4.4. Following a same line of
reasoning as in the proof of Theorem 4.4, we �nd that we have to show that

lim
N!1

�
log

P (BS)

P (BS0)
�N �H(BS0 ;D) +N �H(BS ;D)� (K 0 �K) � f(N)

�

goes to minus in�nity if and only if BS0 is not a minimal I-map. We distinguish

4.19

three cases:

83
�
�
�
�

Learning Bayesian Networks

� BS0 is not a minimal I-map,
� BS0 is a minimal I-map but not a P-map, and
� BS0 is a P-map.

If BS0 is not a minimal I-map of PrD, the corollary follows from the observation
that a P-map is a minimal I-map. From [73] we have the following property; let <V

be an ordering obeyed by BS1 , then a sequence of arc reversals on BS1 exists that
results in network structure BS2 such that BS2 is a minimal I-map of the indepen-
dency model represented by BS1 . So, a sequence of arc reversals exists on BS such
that the resulting network structure BS00 obeys a same topological ordering as BS0

and BS00 is a minimal I-map of the independency model represented by BS. Since
BS is a P-map of PrD, we conclude that BS00 is a minimal I-map of PrD. Since
a P-map exists, we conclude that PrD satis�es intersection and thus that minimal
I-maps are unique for a given ordering and Theorem 4.3 applies.

If BS0 is a minimal I-map but not a P-map, let BS00 as before. Since both BS0 and
BS00 are minimal I-maps and minimal I-maps are unique for a given ordering, BS00

must be equal to BS0. With every arc reversal, zero or more arcs are added. Assume
that during the sequence of arc reversal no arcs are added. Then BS0 represents the
same set of independency statements as BS and thus BS0 is a P-map. This is not
true by our primary assumption, so we conclude that an arc must have been added
during the sequence of arc reversals and the number of parameters for BS0 is larger
than the number of parameters for BS, that is K 0 > K. Since BS0 is an I-map,
H(BS0 ;D) = H(BS ;D). The term log P (BS)

P (BS0)
is a constant that vanishes in Formula

4.19. Therefore, Formula 4.19 will go to �1.
If BS0 is a P-map, then a sequence of arc reversals exists that transforms BS into

BS0 such that no arcs are added during the arc reversals by Lemma 4.4. So, BS and
BS0 induce the same number of parameters and represent the same distributions.
And we conclude that Formula 4.19 is a constant log P (BS)

P (BS0)
that is �nite because the

prior on network structures was assumed to be positive.

Theorem 4.5 states that for large enough databases, a network structure that is a
perfect map is assigned a far larger quality than other network structures. This is an
important property when one is interested in learning causal structure as performed
by Spirtes [104]; for conditional independence based causal structure recovery it is
assumed that there exists a perfect map, which is the so-called `faithfulness condi-
tion'. So, by Theorem 4.5 it is justi�ed that the quality measures considered are
used for detecting causal relations.

Finite-Size Database Properties of Quality Measures4.2.7

In the previous section, the various quality measures have been compared with
respect to their behavior for databases of in�nite size. Since for real-life applications
in�nite-size databases never occur, we also are interested in the non-asymptotic
behavior of these measures. It can be expected that this behavior di�ers from
the behavior for in�nite-size databases because the estimates of the probabilities in
the entropy terms will contain an error. Further, the Bayesian measure and MDL
measure may di�er a lot because the condition under which they are approximately

84
�
�
�
�

Learning Bayesian Networks

the same need not necessarily hold. Now recall that one of the aims of learning is to
construct a Bayesian belief network for use as inference in knowledge-based systems.
As the complexity of belief network inference often is determined by the size of the
parent sets of a network, it is interesting to investigate the behavior of the various
quality measures with respect to the parent-set size. Insight in this behavior further
helps in investigating search algorithms. The following theorem gives some insight
on the behavior of the information criterion.

Theorem Let V be a set of variables. Let the prior probability distribution over4.6

all network structures over V be uniform. Let D be a database with N cases over
V. Let BS be a network structure over V with a parent set containing more than

log
�

N
f(N) + 1

�
variables. Then, a network structure BS0 exists such that If (BS0;D) >

If (BS;D) with fewer arcs, where If be an information criterion with non-zero penalty
function f .

Proof: Let vs be a variable in V such that j�sj > log
�

N
f(N)

+ 1
�
in BS. Now, let

BS0 be the network structure obtained from BS by deleting all incoming arcs for
this variable vs, that is, �0s = ;. Let ri, qi, Nij , and Nijk be as before for BS and
D and r0i, q

0
i, N

0
ij and N 0

ijk likewise for BS0 and D; note that ri = r0i, i = 1; : : : ; n.
We prove the theorem by contradiction. Suppose that BS0 is not assigned a higher
quality according to If than BS . We consider the di�erence If (BS0;D)� If (BS;D),
which equals

log
P (BS0)

P (BS)
�N � (H(BS0 ;D) �H(BS ;D)) � (K 0 �K) � f(N):

Since BS0 is not assigned a higher quality than BS, this di�erence is not positive.

4.20

Because the prior probability distribution over all network structures is uniform, we
have that log(P (BS0)=P (BS)) = 0.

Now consider the entropy terms in expression 4.20. By de�nition of entropy, we
have that H(BS0 ;D) �H(BS ;D) equals

nX
i=1

q0iX
j=1

r0iX
k=1

�N
0
ijk

N
log

N 0
ijk

N 0
ij

�
nX
i=1

qiX
j=1

riX
k=1

�Nijk

N
log

Nijk

Nij
:

We observe that for all i 6= s, the separate terms cancel out. So, we can write
H(BS0 ;D) �H(BS;D) as

q0sX
j=1

rsX
k=1

�N
0
sjk

N
log

N 0
sjk

N 0
sj

�
qsX
j=1

rsX
k=1

�Nsjk

N
log

Nsjk

Nsj
;

which equals

q0sX
j=1

N 0
sj

N

rsX
k=1

�N
0
sjk

N 0
sj

log
N 0
sjk

N 0
sj

!
�

qsX
j=1

Nsj

N

rsX
k=1

�Nsjk

Nsj
log

Nsjk

Nsj

!
:

85
�
�
�
�

Learning Bayesian Networks

We maximize this expression to compensate for the penalty term in Expression
4.20. To this end, we use the property that 0 �Pr

k=1�pk log pk � log r, for pk � 0,
k = 1; : : : ; r with

Pr
k=1 pk = 1 for H(BS0 ;D)�H(BS ;D) we �nd

H(BS0 ;D) �H(BS;D) �
q0sX
j=1

N 0
sj

N
� log rs �

qsX
j=1

Nsj

N
� 0 = log rs:

The latter equality follows from the observation that
Pq0s

j=1

N 0
sj

N
= 1. We therefore

have that �N � (H(BS0 ;D) �H(BS;D)) � �N � log rs. Since Expression 4.20 is not
positive, it follows that �(K 0 � K) � f(N) � N � log rs. Therefore, the following
inequality holds

(rs � 1) � qs � f(N)� (rs � 1) � f(N) � N � log rs:
Note that q0s = 1 since �0s = ;. Division of this expression by (rs � 1) � f(N), which
is admissible since f(N) > 0, gives

qs � 1 � N

f(N)
:
log rs
rs � 1

:

Using the inequality log x � (x� 1) for positive integers x, we �nd

qs � 1 � N

f(N)
:

So,

qs � N

f(N)
+ 1:

Now, recall that qs =
Q

vj2�s
rj, Since for each variable vj we have rj � 2, j = 1; : : : ; n

it follows that qs � 2j�sj and hence that j�sj � log qs. So,

j�sj � log

�
N

f(N)
+ 1

�
:

This contradicts the number of parents of vs in BS being larger than log(N
f(N) + 1).

From this contradiction, we conclude that Expression 4.20 is positive and therefore
that BS0 is assigned a higher quality according to If than BS.

Theorem 4.6 implies that good search algorithms that use an information criterion

will never select network structures with parent sets with more than log
�

N
f(N) + 1

�
variables, when N is the number of cases in the database used for learning. So, with
the AIC measure where the penalty function equals f(N) = 1, no structures with
parent sets with more than log (N + 1) variables should be found; note that almost
equal to logN . With the BIC measure where the penalty function is f(N) = 1

2 logN ,

no parent sets with more than log
�

2N
logN

+ 1
�
variables should be found, which is

smaller than logN for large enough N . Since the BIC criterion and the MDL

86
�
�
�
�

Learning Bayesian Networks

v7 v6 v5 v4 v3 v2 v1 w
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 D7

1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 D6

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 D5

1 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1 D4

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 D3

1 1 1 1 1 0 0 1
1 1 1 1 1 0 0 1 D2

1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 D1

Figure 4.4: The databases D7.

measure coincide, log
�

2N
logN + 1

�
is also the upper-bound on the size of the parent

sets of the network structure that should be found when using the MDL measure.

With penalty functions larger than f(N) = 1, log
�

N
f(N)

+ 1
�
is smaller than logN

for large enough N . So for a wide range of information criteria, logN can be taken
as an upper-bound of the parent sets in selected network structures.

Since the Bayesian measure and MDL measure are approximately the same for
large enough databases, a similar result would be expected for the Bayesian measure.
However, the Bayesian measure does not have such a property. Consider a database
Dn de�ned recursively by

D1 =
v1 w
0 0
1 1

where the rows represent the individual cases and the columns indicate the values of
the variables; database Dj is constructed from Dj�1, j = 2; : : : ; n by adding an extra
column for a new variable vj �lled with 1s, and two new identical cases with vi = 0
i = 1; : : : ; j and w = (j + 1)mod 2. For example, Figure 4.4 shows the database D7

as it is built from D1 up to D6.
For the database D7, the network structure with highest quality according to the

Bayesian measure is shown in Figure 4.5. Note that each node vi, i = 1; : : : ; 7, has
node vi�1 in its parent set except for node v1 which has an empty parent set. Node
w includes all nodes v1; : : : ; v7 in its parent set. This network was found by brute
force: the Bayesian measure was calculated for all 1.138.779.265 possible network
structures over the variables discerned. Obviously, the parent set of node w contains
more than log(14) � 3:81 parents.

To explain why the network structure shown in Figure 4.5 is assigned highest
quality for the database D7, we examine the behavior of the Bayesian measure for
the database Dn in general. Informally speaking, the Bayesian measure will favor

87
�
�
�
�

Learning Bayesian Networks

w

5

4

6

71

2

3

v

v

v

v

v

v

v

Figure 4.5: The network structure with highest quality according to the Bayesian
measure for D7.

a parent set �i for a variable vi over a subset of �i if knowledge of the values of
the variables in �i yields information about the distribution over the values of vi, as
long as the number of di�erent con�gurations of �i that occur in the database is not
too large. Now, consider the parent sets of the best structure BS for Dn according
to the Bayesian measure. Note that, relative to Dn, vi's value is a function of the
values of vi�1, vi+1 and w. Therefore, �i will be a subset of fvi�1; vi+1; wg. In BS

each node vi, i = 2; : : : ; n � 1, may have vi�1 in its parent set: whenever vi�1 = 1,
we �nd in the database that vi = 1 and when vi�1 = 0, we �nd that vi = 0 for
almost all cases. So, the knowledge of the value of vi�1 gives a lot of information
about the probability over the values of vi and the Bayesian measure assings a high
quality to network structures containing these parent sets. Alternatively, vi+1 may
be in �i: when vi+1 = 0, we �nd in the database that vi = 0 and when vi+1 = 1,
we �nd that vi = 1 for almost all cases. The only variable that would provide more
information in combination with vi�1 or vi+1 about the value of vi is w. However,
adding w to the parent set of vi would increase the number of di�erent con�guration
of �i considerably while the information obtained about the value of vi would only
increase for four cases in the database. Knowing only w would not give a signi�cant
amount of information about the value of vi so �i does not consist of w alone.
Therefore, w will not be in vi's parent set. For v1 and vn similar arguments hold.
Since a network structure is a directed acyclic graph, there will be either an arc from
vi to vi+1, i = 1; : : : ; n� 1, or the other way around.

We now turn to node w. We have that for w the parent set fvn�k+1; : : : ; vng
gets assigned a higher quality according to the Bayesian measure than any other
parent set of size k (see appendix Lemma 4.7 and 4.8). Furthermore, we have that
if �w = fvk; : : : ; vng, for some 1 < k � n, then BS cannot be the network structure
with highest quality for Dn since the structure with �w = fvk�1; : : : ; vng for �w has
a better quality according to the Bayesian measure (see appendix Lemma 4.9). As
a consequence, �w = fv1; : : : ; vng results in the highest quality according to the
Bayesian measure (see appendix Lemma 4.10). We conclude that for a database
with N cases, a network structure with a parent set comprising N=2 variables can
be assigned highest quality by the Bayesian measure.

So, while the asymptotic behavior of the Bayesian measure, information criteria,
and MDL measure on databases of in�nite size is the same, this is not the true for

88
�
�
�
�

Learning Bayesian Networks

practical cases where only a �nite-size database is available; the MDL measure and
most information criteria will not assign the highest quality to network structures
with parent sets of size larger than logN while the Bayesian measure may assign
the highest quality to a network structure with a parent set of size N=2.

Search Strategies4.3

One of the purposes of an algorithm for learning a network structure from data is to
select a network structure with high quality according to a given quality measure.
To this aim, one searches in the space of network structures for such a network
structures. In this section, we will �rst introduce some terminology. First, we
investigate the complexity of selecting a network structure with some optimality
properties in Section 4.3.1. In Section 4.3.2, we review the most popular heuristics,
K2 and B. To conclude, we show in Section 4.3.3 how to apply general purpose
optimization algorithms for learning a network structure from data.

The search for a network structures with a high quality may be looked upon
as a combinatorial optimization problem. Combinatorial optimization theory is
engaged with the problem of selecting a solution with some optimality properties
from among a large set solutions. We introduce some terminology from the theory
of combinatorial optimization, following [1].

De�nition An instance of a combinatorial optimization problem is a pair (f; S)4.8

where S is a solution space and f : S ! IR is a real-valued function over S, called
the cost function. A global optimal solution of (f; S) is an element s 2 S such that
f(r) � f(s) for all r 2 S.

A global optimal solution is also called global optimum. An element of S is called
a solution. Now, let V be a set of variables. Learning a network structure from a
database D over V can be formulated as an instance of a combinatorial problem:
the problem that we consider is (Q;BS) where the solution space BS is the set of all
possible network structures over V and the cost function Q is a quality measure.

De�nition Let (f; S) be an instance of a combinatorial optimization problem. Then4.9

a neighborhood structure on (f; S) is a mapping N : S ! P(S) where P(S) is the
power set of S.

The neighborhood structure de�nes for each solution s 2 S a set N (s) � S of
solutions that are in some sense `close' to s. The set N (s) is called the neighborhood
of solution s. Each r 2 N (s), r is called a neighboring solution or simply neighbor
of s. For our combinatorial problem (Q;BS), a neighborhood of a network structure
BS usually consists of a set of network structures that di�er in only one arc from
BS .

De�nition Let (f; S) be an instance of a combinatorial optimization problem and4.10

let N be a neighborhood structure of (f; S). A local optimum of (f; S) is a solution
s 2 S such that f(s) � f(r) for all r 2 N (s).

89
�
�
�
�

Learning Bayesian Networks

n G(n)
0 1
1 1
2 3
3 25
4 543
5 29.281
6 3.781.503
7 1.138.779.265
8 783.702.329.343
9 1.213.442.454.842.881
10 4.175.098.976.430.598.143

Figure 4.6: The number of directed acyclic graphs for small number of nodes.

A generation mechanism is a means of selecting a solution r from N (s). In general,
search for a network structure with high quality amounts to iteratively applying a
generation mechanism to a neighborhood structure. The network structures with
the highest quality visited during this search is the one returned by the algorithm.

Search Complexity4.3.1

As pointed out in the previous section, learning a network structure amounts to
selecting a network structure with a relatively high quality from among the set of
all possible network structures. The number of di�erent network structures over n
di�erent nodes is given by the following recursive formula [91]:

G(n) =

�
1 if n = 0;Pn

i=1(�1)i+1(ni)2i(n�1)G(n� i) if n > 0:

Table 4.6 shows the number G(n) for some small values of n. As the number of
di�erent network structures grows exponentially in the number of nodes, it is evident
that it is not feasible from a computational point of view to consider all network
structures. The question arises whether or not an e�cient algorithm exists for
selecting an optimal network structure. We will show that the problem of selecting
a network structure with certain minimality properties is NP-hard.

Lemma Let V be a set of n variables and let Pr be a known joint probability4.5

distribution over V . Let an oracle be available that reveals whether an independency
statement holds in Pr or not. Let k � jV j be a positive constant and let s =
1
2n(n � 1) � 1

2k(k � 1). Then, the problem of deciding whether or not there is an
I-map of Pr with less or equal to s arcs by consulting the oracle is NP-complete.

Proof: Let OBUILD be the problem of deciding whether or not an I-map of Pr
with less or equal than s arcs exists where an oracle is available that reveals whether
an independency statement holds or not.

90
�
�
�
�

Learning Bayesian Networks

First, we show that OBUILD is in NP. To this end we show that a nondeterministic
Turing machine can solve OBUILD in polynomial time. The machine needs only to
guess a network structure BS. Deciding whether BS is an I-map of Pr by consulting
an oracle can be performed by constructing a topological ordering on BS and asking
the oracle whether I(vi; �i; Vin�i) is valid for all vi 2 V . All these actions can be
performed in polynomial time. Deciding whether BS has less than s arcs can be
performed in polynomial time as well. So, a nondeterministic machine can decide
OBUILD in polynomial time, and we conclude that OBUILD is in NP.

Next, we reduce the independent set problem GT20, which is known to be NP-
complete [41], to OBUILD and show that this reduction can be performed in poly-
nomial time.

GT20 can be stated as follows. Let G = (V;E) be an undirected graph and
k � jV j be a positive integer. GT20 is the problem of deciding whether G contain
an independent set of size k or more, that is, whether a set V 0 � V exists such that
jV 0j � k and no two nodes in V 0 are adjacent.

The reduction of instances of GT20 to instances of OBUILD can be per-
formed as follows. Let G = (V;E) be an undirected graph; note that we do
not interpret G as a Markov network. Now, let M I be the independency model
fI(X;Z; Y)j8u;v2XYZ(u; v) 62 Eg; in the appendix we show that a probability distri-
bution exists that induces such an independency model M I . By inspection we �nd
that M I is a graphoid independency model.

An oracle that reveals whether I(X;Z; Y) is in M I can check for all u; v 2 XY Z
whether (u; v) is an edge in G, which is a polynomial time task. So, the transfor-
mation of GT20 to OBUILD can be performed in polynomial time.

Let G be an undirected graph and consider the instance of GT20 for G and the
instance of OBUILD by transforming G as described above. Assume an independent
set of size at least k exists in G and let S � V , k = jSj, be an independent set of
nodes in G, that is, a set of nodes such that for all u; v 2 S we have that (u; v) 62 E.
Consider a causal input list L<V over M I .

If <V is such that the nodes in S are assigned the numbers 1 up to k, then all
parent sets of these nodes would be empty, since the construction ofM I requires that
I(vi; ;; Vi) 2M I if 8u;v2Vi[fvig(u; v) 62 E. So, the network structure BS corresponding
to L<V contains at most 1

2n(n � 1)� 1
2k(k � 1) arcs. Therefore, we have that if the

instance of GT20 is true, then the instance of OBUILD is true.
Assume a network structure BS can be found by consulting the oracle about M I

such that BS has less than 1
2
n(n� 1)� 1

2
k(k� 1) arcs and BS is an I-map of Pr. Let

<V be a topological ordering on BS . Now there exists a node vi such that jVij � k�1
where there is a node vj 2 Vi such that vj 62 �i. If no such node exists, then BS

would have to have more than 1
2n(n� 1)� 1

2k(k� 1) arcs. And since hvi; Vinvj; vji in
BS and BS is an I-map of Pr we have that I(vi; Vinvj; vj) is in M I . By construction
of M I , we then have that for all u; v 2 viVi (u; v) 62 G. Since jviVij � k, viVi is an
independent set in G. Therefore, we have that if the instance of OBUILD is true,
then instance of GT20 is true.

As a result of Lemma 4.5 we have that selecting an I-map of a distribution Pr
with a minimal number of arcs by consulting an oracle that reveals conditional
independence information about Pr is expected to have a computational complexity

91
�
�
�
�

Learning Bayesian Networks

that is exponential in the number of variables in V . Furthermore, we have the
following property.

Theorem Let V be a set of n binary variables and let Pr be a known joint prob-4.7

ability distribution over V . Let an oracle be available that reveals whether an
independency statement holds in Pr or not. Let k be a positive constant and let
s = k + 2n � 2k. Then, the problem of deciding whether or not there is an I-map
which has at most s associated parameters by consulting the oracle is NP-complete.

Proof: Let NBUILD be the problem of deciding whether or not an I-map of Pr
which has at most s associated parameters exists, where an oracle is available that
reveals whether an independency statement holds or not.

Note that a network structure in which k nodes have empty parent-sets has asso-
ciated at most k +

Pn
i=k+1 2

i�1 parameters. Now, k+
Pn

i=k+1 2
i�1 = k +

Pn
i=1 2

i�1 �Pk
i=1 2

i�1 which can be written as k+2n� 2k. Therefore, a solution of the OBUILD
problem presented in the proof of Lemma 4.5 for certain k is equivalent to a solution
of the NBUILD problem for the same k.

As a result of Lemma 4.5 we have that selecting a minimum I-map of a distribution
Pr over binary variables by consulting an oracle that reveals conditional indepen-
dence information about Pr is expected to have a computational complexity that
is exponential in the number of variables in V . We conjecture that a similar result
holds in the case that V contains non-binary variables. From Lemma 4.5 and The-
orem 4.7 we have that no polynomial time algorithm may be expected to exist for
�nding an optimal network structure exhibiting certain minimallity properties, not
even when the distribution to be represented is known and conditional independen-
cies can be determined with certainty. Since from data conditional independencies
cannot be deduced reliably, learning network structures from data is an even harder
task to ful�ll. Therefore, we do not expect to �nd polynomial time algorithms for
selecting network structures with highest quality. In fact, �nding such a network
structure has been proved to be NP-hard [52].

Search Heuristics4.3.2

Considering the results in the previous subsection, it is apparent that search heuris-
tics are necessary for solving the problem of selecting a network structure with high
quality. Several heuristics have been proposed in literature [14, 23]. We will present
these heuristics and some generalizations in this subsection.

The heuristics gain their computational e�ciency by only partially calculating
the quality for each network structure considered. Close examination of the various
quality measures namely reveals that a network structure's quality with respect to
a given database can be expressed as the sum of the of the contributions of the
separate nodes and some constant C.

De�nition Let V be a set of variables. Let BS be a network structure over V and4.11

let D be a database over V . Let vi, ri, �i, qi, Nij and Nijk be as before.

92
�
�
�
�

Learning Bayesian Networks

The Bayesian quality of node vi in BS and D is

mB(vi; �i;D) =

qiX
j=1

log

(ri � 1)!

(Nij + ri � 1)!
+

riX
k=1

logNijk!

!
:4.21

The information criterion quality of node vi in BS and D is

mIC(vi; �i;D) =

qiX
j=1

riX
k=1

Nijk � log Nijk

Nij

� qi � (ri � 1) � f(N):4.22

The MDL quality of node vi in BS and D is

mMDL(vi; �i;D) =

qiX
j=1

riX
k=1

Nijk � log Nijk

Nij
� 1

2
qi � (ri � 1) � logN:4.23

When the context makes clear which database D is considered, we omit the pa-
rameter D in the notation of the quality of a node and write mB(vi; �i), mIC(vi; �i),
and mMDL(vi; �i) to denote mB(vi; �i;D), mIC(vi; �i;D), andmMDL(vi; �i;D) respec-
tively. When we speak of the quality of node vi in general, irrespective of the quality
measure employed, we will write m(vi; �i;D) or m(vi; �i) for short.

Lemma Let V be a set of variables, and let D be a database over V . Let Q be4.6

either the Bayesian measure, the MDL measure, or an information criterion. When
the prior on all network structures is uniform, then Q(BS;D) can be written as

C +
nX
i=1

m(vi; �i;D)

for any network structure BS over V .

Proof: We show that B(BS;D) can be written as C +
Pn

i=1m
B(vi; �i;D). The

proofs for the MDL measure and information criterion are analogues. By de�nition,
B(BS;D) is logP (BS ;D) for any network structure BS over V , which can be written

as log
�
P (BS) �

Qn
i=1

Qqi
j=1

(ri�1)!
(Nij+ri�1)!

�Qri
k=1Nijk!

�
. This formula can be reformulated

to logP (BS) +
Pn

i=1

Pqi
j=1

�
log (ri�1)!

(Nij+ri�1)!
+
Pri

k=1 logNijk!
�
. Now, since the prior

on all network structures is uniform, log P (BS) can be replaced by a constant C.
Furthermore, by de�nition of the Bayesian quality of node we have that Q(BS;D)
can be written as C +

Pn
i=1m(vi; �i;D).

The property in Lemma 4.6 will be referred to as the sum property. The sum
property is very helpful for comparing two network structures BS and BS0 that
di�er only slightly. For example, suppose that BS and BS0 di�er only in the sense
that BS0 contains an extra arc vj ! vi. Now, let �i and �0i denote the parent sets of
node vi in BS and BS0 , respectively. Then, Q(BS;D)�Q(BS0;D) = C+

P
im(vi; �i)�

C�Pim(vi; �0i) = m(vi; �i)�m(vi; �0i). So, with very little computational e�ort, BS

and BS0 can be compared with respect to their quality. In the rest of this section,
we assume that the prior distribution over all network structures P (BS) is uniform
and thus that all considered quality measures have the sum property.

93
�
�
�
�

Learning Bayesian Networks

Algorithm K2 (<V)

for i = 1; : : : ; n do finitializeg
�i ;

for i = 2; : : : ; n do fmain loopg
repeat

select v 2 fv1; : : : ; vi�1gn�i that
maximizes g = m(vi; �i [fvg)

� g �m(vi; �i)
if � > 0 then

�i �i [fvg
until � � 0 or �i = fv1; : : : ; vi�1g

return �1; : : : ; �n

Greedy heuristics K2

Based on the Bayesian measure, Cooper and Herskovits have developed a search
heuristic for learning network structures from data, called K2 [23]. This algorithm,
however, can also be used with other quality measures. The K2 algorithm takes an
ordering on the variables involved and performs a greedy search in the sense that
the arc that obeys the ordering and maximally increases the quality is added, until
no quality increase is possible by adding a single arc.

Let V be a set of variables. Consider the instance of a combinatorial problem
(Q;BS) where BS is the set of all possible network structures over V . Let <V be an
ordering on V . The neighborhood of a network structure BS = (V;E) is the set of
all network structures that can be obtained from BS by adding a single arc vj ! vi
to BS such that vj<V vi, that is,

N (BS) = f(V;E 0)jE0 = E [(vj; vi); (vj; vi) 62 E; vj<V vig:

The algorithm starts with the arc-less network structure BS = (V; ;). Given a net-
work structure B0

S, the generation mechanism iteratively selects a network structure
BS00 2 N (B0

S) such that Q(BS00;D) � Q(BS000 ;D) for all BS000 2 N (B0
S). The iteration

is stopped if a local optimum is reached.
The generation mechanism can be implemented e�ciently. Due to the sum prop-

erty, all nodes can be considered independent of each other. Further, instead of
complete network structures, only a node with its parents need to be considered.
For each node vi 2 V , a parent set is calculated by starting with the empty parent
set and successively adding to the parent set a node vj and that is lower ordered
than vi and maximally improves the quality of vi. This process is repeated until
adding such nodes does not increase the quality of node vi anymore or the parent
set consists of all lower ordered variables. Below the K2 heuristic is detailed in
pseudo-code. Note that node v1 need not be considered, because �1 = ; for any
network structure.

The heuristic K2 will not always return a (minimal) I-map, not even for large
databases where the behavior of a quality measure can be interpreted as an

94
�
�
�
�

Learning Bayesian Networks

conditional-independency test. For example, let V = fv1; v2; v3g be a set of vari-
ables and let <V be some ordering on V . Furthermore, let Pr be a joint probability
distribution on V such that all variables are pairwise independent but dependent
given the third variable. Now consider a large enough database generated with Pr.
K2 will not return a minimal I-map but an empty graph instead. Note that this
implies that K2 will not necessary return a network structure with the highest qual-
ity that obeys the given ordering. However, if a P-map exists for the underlying
distribution, K2 will return an I-map.

A major drawback of K2 is that it relies on an ordering on the nodes which in
u-
ences the resulting network structure and its quality to a large extent. To guarantee
a good performance with K2, it is essential to choose a `good' ordering. Such an
ordering, for example, may be provided by a domain expert. Recall, however, that
the main aims of learning belief networks from data are to shorten the build-test
cycle, and to circumvent a lengthy knowledge acquisition process. Alternatively,
K2 can be applied with a randomly chosen ordering after which depending on the
returned network structures this ordering is optimized in a post-processing step. We
refer the reader to [7] for further details.

Algorithm B

Buntine has proposed a search heuristic that does not require an ordering on the
variables involved [14]; we call this heuristic algorithm B. Like K2, algorithm B
is a greedy search heuristic that exploits the sum property of the various quality
measures. The main di�erence between K2 and B is that in B no ordering on the
variables is required. The neighborhood of a network structure BS consists of all
graphs that have one extra arc with respect to BS such that no cycle occurs in the
graph.

Let V be a set of variables. Consider the instance of a combinatorial problem
(Q;BS) where BS is the set of all possible network structures over V . The neighbor-
hood of a network structure BS = (V;E) is the set of network structures that can
be obtained from BS by adding a single arc (vi; vj) to BS such that the new network
structure is a directed acyclic graph, that is, N (BS) is equal to

f(V;E0)jE 0 = E [(vj; vi); (vj; vi) 62 E; (V;E0) is a directed acyclic graphg:
Like K2, the algorithm starts with the arc-less network structure BS = (V; ;). Given
a network structure BS0, the generation mechanism again selects a network struc-
ture BS00 2 N (BS0) such that Q(BS00;D) � Q(BS000;D) for all BS000 2 N (B0

S). The
algorithm is stopped if a local optimum is reached.

We take a closer look at the generation mechanism. Let BS be the network
structure at some moment during the execution of algorithm B. To �nd a network
structure from the neighborhood of BS with highest quality, the generation mecha-
nism needs to determine an arc that upon addition to BS gives the highest increase
in quality and does not introduce a cycle. Now, let BSij denote the network struc-
ture obtained by adding the arc vj ! vi to BS that does not introduce a cycle. From
the sum property of quality measures, we have that the di�erence in quality between
BS and BSij equals Q(BS;D) � Q(BSij;D) = m(vi; �i) �m(vi; �ivj) where �i is the
parent set of vi in BS. In the pseudo-code of algorithm B shown below, these values

95
�
�
�
�

Learning Bayesian Networks

Algorithm B

for i 2 f1; : : : ; ng do �i = ; finitializeg
for i = 1; : : : ; n, j = 1; : : : ; n do

if i 6= j then
A[i; j] m(vi; fvjg)�m(vi; ;)

else
A[i; j] �1 fobstruct vi ! vig

repeat fmain loopg
select i, j that maximize A[i; j]
if A[i; j] > 0 then

�i �i [fvjg
for a 2 Ai, b 2 Di do
A[a; b] �1 fobstruct introduction of cyclesg

for k 1 to n do
if A[i; k] > �1 then
A[i; k] m(vi; �i [fvkg)�m(vi; �i)

until A[i; j] � 0 or A[i; j] = �1 for all i, j
return �1; : : : ; �n

are stored in the array A; in this array we have A[i; j] = m(vi; �ivj) � m(vi; �i) if
addition of vj ! vi does not introduce a cycle and A[i; j] = �1 otherwise. Note
that if subsequently an arc vm ! vk is added, only the values A[k;m], m = 1; : : : ; n,
need to be recalculated. Also note that if at some moment adding an arc vm ! vk
to the network structure would introduce a cycle, then it will introduce a cycle at
any moment later on. So, after A[k;m] is set to �1 it never is changed. In the
pseudo-code, Ai denotes the set of indices of the ascendants of vi and Di denotes
the set of indices of descendants of vi including i. The largest computational e�ort
is necessary for calculating the values for the array A. This calculation is performed
every time an arc is added for at most n nodes. Maximally 1

2
n(n�1) are added. So,

the computational complexity of algorithm B in terms of calculation of mi is O(n3).
Just like K2, algorithm B does not always return a minimal I-map. For exam-

ple, let V = fv1; v2; v3g be a set of variables and let <V be some ordering on V .
Furthermore, let Pr be a joint probability distribution on V such that all variables
are pairwise independent but dependent given the third variable. Now consider a
large enough database generated with Pr. Algorithm B will not return a minimal
I-map but an empty graph instead. Note that this implies that algorithm B will not
necessary return a network structure that obeys the given ordering with the highest
quality. So, it is advised to optimize the ordering of the variables as implied by the
structure generated by algorithm B in a post-processing.

96
�
�
�
�

Learning Bayesian Networks

K2 and B with k Step Look-Ahead

The heuristics K2 and B may be looked upon as search algorithms that look only one
step ahead in the search process: a single arc is selected that maximizes the quality
increase irrespective of a quality increases obtained by selecting larger sets of arcs.
As argued in the preceding section, these heuristics will not always return a minimal
I-map, not even if large databases are available. The reason for this behavior is that
these heuristics do not consider a quality increase obtained by selecting sets of arcs
larger than one. These algorithms can be extended to adopt a k-step look-ahead.
The basic idea of this extension is to select a group of k or less arcs, instead of a
single arc, that increases the quality most.

Again, the algorithms starts with the arc-less network structure. Given a network
structure BS, the generation mechanism selects the network structure BS0 2 N (BS)
that maximizes Q(D;BS0). The di�erence with the heuristics K2 and B is that
another neighborhood structure is used.

For K2 with k step look-ahead, the neighborhood of a network structure BS =
(V;E) is de�ned as follows, N (BS) is

f(V;E0)jE0 = E [F;F = f(vj; vi)jvj; vi 2 V (vj; vi) 62 E; vj<V vig; 1 � jF j � kg:

As the introduction of nodes in the parent set of a node does not in
uence the
selection of parent sets for all other nodes, it su�ces to consider the addition of a
group of k or less arcs ending in a single node vi, that is, N (BS) is

f(V;E0)jE0 = E [F; vi 2 V; F = f(vj; vi)jvj 2 V; (vj; vi) 62 E; vj<V vig; 1 � jF j � kg:

For B with k step look-ahead the neighborhood of a network structure BS =
(V;E) is

N (BS) = f(V;E0)jE0 = E [F;F = f(vi; vj)j(vi; vj) 62 Eg; 1 � jF j � k;

(V;E0) is a directed acyclic graphg:
Now observe that, unlike for K2, the introduction of nodes in the parent set of a node
vi in
uences the selection of parent sets for some other nodes; if node vj is selected
for inclusion in �i, then vi cannot be selected for �j. However, to construct N (BS)
for k = 2 and for the initial empty network structure BS, we can select a single arc
in n � (n� 1) ways, and two arcs that do not form a cycle in n � (n � 1) � n � (n � 2)
ways. So, N (BS) would be of size O(n4), and in general O(n2k). As a result, the
computational complexity of an algorithm that uses this neighborhood structure
would become very large for larger k. Therefore, we consider the addition of groups
of arcs that end in the same node. More formally, we use the following neighborhood
for a network structure BS = (V;E);

N (BS) = f(V;E0)jE0 = E [F; vi 2 V; F = f(vi; vj)jvj 2 V; (vj; vi) 62 Eg; 1 � jF j � k;

(V;E0) is a directed acyclic graphg:
Note that the heuristics with k step look-ahead for k > 1 are computational

less attractive than ordinary K2 and B. On the other hand, the search space is

97
�
�
�
�

Learning Bayesian Networks

explored more e�ectively. We will try to �nd experimentally a suitable choice of
k such that these e�ects are balanced. The heuristics with k step look-ahead will
not necessarily return a minimal I-map, not even when very large databases are
available. As a result, these heuristics will not always return a network structure
with highest quality.

General Approaches4.3.3

In the previous subsection, we have reviewed several well-known search heuristics
that have been designed especially for the purpose of learning network structures
from data. A major drawback of these heuristics is that the network structure
returned not necessarily has maximal quality by the quality measure that is used.

In this subsection, we consider application of the general purpose optimization
algorithms tabu search, simulated annealing, and rejectionfree annealing for learn-
ing network structures from data. Unlike the heuristics, these algorithms have the
any time property, that is, these algorithms can be stopped at any desired moment
while it may be expected that the longer the allowed execution time, the better
the returned result. Furthermore, theoretical results concerning global optima are
available. Genetic programming, another popular optimization method, is not con-
sidered because the method is sensitive to many parameters, though its use have
been reported [18, 70].

Neighborhood Structures for General Approaches

A basic condition for general search algorithms to be applicable to a combinatorial
optimization problem (f; S) is that the cost function f can be easily calculated
for elements of the neighborhood of a solution. So, an appropriate neighborhood
structure that ful�lls this condition should be chosen. First of all, we do not demand
an ordering on the nodes, unlike we did for K2. Without ordering, a global optimum
may be selected.

For the greedy heuristics discussed in the previous section, the neighborhood
structure de�ned for a network structure BS, network structures that are obtained
from BS by adding a single arc that does not introduce cycles in the new network
structure seemed to be appropriate. However this neighborhood structure does not
allow for removing arcs, and one cannot escape from a local optimum. For the
general-purpose optimization algorithms, we therefore build on another neighbor-
hood structure where the neighborhood of a network structure BS contains not only
all structures obtained by adding one arc to BS but also all network structures that
can be obtained from BS by removing a single arc. So, if BS = (V;E), then N (BS)
is de�ned as

f(V;E 0)jE 0 = E [(vj; vi); (vj; vi) 62 E; (V;E0) is a directed acyclic graphg

[f(V;E0)jE0 = En(vj; vi); (vj; vi) 2 Eg:
We will refer to this neighborhood as the straight neighborhood of BS. Note that
due to the sum property of the quality measures considered, the di�erence in quality
of BS and a network structure BS0 2 N (BS) can be computed e�ciently since BS and

98
�
�
�
�

Learning Bayesian Networks

BS0 have di�erent parent sets for one node only, say vi: if �i and �0i are the parent sets
of vi in BS and BS0, respectively, then Q(BS;D)�Q(BS0 ;D) = m(vi; �i)�m(vi; �0i):

Consider algorithm B, when vj ! vi is the �rst arc that is added, and the quality
measure is an information criterion. Then, the increase in quality is equal to when
vi ! vj is added so no distinction in the quality is made for the direction of the arc.
It may very well be that the direction of the arc between nodes vi and vj is chosen
erroneously and need to be reversed. Using the straight neighborhood structure, arc
reversal can be reached in two steps: �rst the arc vi ! vj is removed, and then the
reversed arc vj ! vi is added. As the intermediate network structure may have a
much lower quality than the original one it may take a very long time before the
vi ! vj is removed. To circumvent this problem, we extend the neighborhood of
a network structure BS with all network structures that can be obtained from BS

by reversing a single arc. So, if BS = (V;E), then N (BS) is de�ned as the straight
neighborhood of BS united with

f(V;E0)jE0 = E [(vj; vi)n(vi; vj); (vi; vj) 2 Eg:
We call this the reversed neighborhood of BS. Again, comparison of the quality
of BS and a network structure BS0 2 N (BS) can be performed e�ciently. If BS0 is
also in the straight neighborhood structure of BS, then we have that Q(BS;D) �
Q(BS0 ;D) = m(vi; �i) �m(vi; �0i), as before. Otherwise, BS and BS0 have di�erent
parent sets for two nodes only, say vi and vj; now if �i and �0i are the parent sets of
vi in BS and BS0, respectively, and �j and �0j have the same meaning for vj, then,
Q(BS;D) �Q(BS0;D) = m(vi; �i)�m(vi; �0i) +m(vj; �j) �m(vj; �0j):

The straight and reversed neighborhood of a network structure BS contain net-
work structures that di�er in just one arc. Similar to the extension of the neigh-
borhood structure for the heuristics with k step look-ahead, we could extend the
straight and reversed neighborhood structure. For tabu search and rejectionfree an-
nealing, in each iteration the complete neighborhood of a current network structure
is considered. Since extended neighborhoods would become very large, we will not
consider such an extension to keep the computational complexity of the algorithms
feasible.

We will discuss the various general purpose search algorithms for the straight
neighborhood structure only. However, they are straightforward generalized for the
case the reversed neighborhood structure is used.

Tabu Search

Tabu search is a general-purpose combinatorial optimization algorithm [46]. The
basic idea is to start with an arbitrary solution and recursively select a new solution
from the neighborhood of the previous one that maximally increases a pre-de�ned
cost function. If there is no solution that increases the cost function, the present so-
lution is a local optimum. The search process leaves this local optimum by selecting
a solution that minimally decreases the cost function. If a solution is selected that
decreases the cost function, immediate re-selection of the local optimum just visited
is prevented by maintaining a list of solutions that are forbidden, the so called tabu-

list. The length tll of this tabu-list determines how many iterations it may take to
return to a local optimum; the higher tll, the longer it will take to possibly return

99
�
�
�
�

Learning Bayesian Networks

Tabu Search (tll; stopcriterion)

initialize s
sbest s
tp 0
for i 0 to tll� 1 do tabu list[i] s

repeat
select solution r from N (s) that maximizes f(r) and is not in tabu list
s r
tabu list[tp] r
tp (tp+ 1) mod tll
if f(s) > f(sbest) then sbest s

until stopcriterion
return sbest

to the local optimum, the larger the probability that it will not be visited again.
The solution returned by tabu search is the best solution visited during execution of
the algorithm. Tabu search is attractive for its simplicity, the few parameters that
are necessary, and the empirical results which look very promising for a variety of
combinatorial optimization problems [59, 111].

Below the general tabu-search algorithm is shown in pseudo-code. The tabu-list
length tll and a stop-criterion depend on the instance of the combinatorial optimiza-
tion problem (f; S). The tabu-list of length tll is usually implemented as a circular
list; an array with tll elements and an index tp that points to the last element
inserted.

For the search generally a stop criterion is employed. This criterion di�ers among
various applications. For example, the search can be stopped after a �xed number
of iterations [59], or when during the last �xed number of steps no improvement has
been made [116], or a combination of both [111].

For application of tabu-search to the problem of learning network structures from
data, we build on the straight neighborhood structure de�ned above. The tabu-
list employed identi�es the last tll network structures. Note that as all network
structures in the straight neighborhood N (BS) of a network structure BS di�er only
in a single arc, it su�ces to store this arc and whether it has been added or removed.

Below the tabu-search algorithm adapted to selecting network structures is shown
in pseudo-code. Note that we have once more used an arrayA to memorize changes in
qualities. For representing the change in quality upon removal of an arc vj ! vi, we
take A[i; j] = m(vi; �invj)�m(vi; �i). Updating A after addition of an arc vj ! vi is
the same as before, except that for vk 2 �i in A[i; k] the values m(vi; �invk)�m(vi; �i)
need to be entered. Note that when an arc vj ! vi is deleted from a network
structure, it is possible that the addition of an arc vm ! vk, that would introduce
a cycle in the original structure, now becomes admissible. So, for all A[k;m] =
�1, it is examined if addition of vm ! vk is allowed, and if so, A[k;m] is set to
m(vk; �kvm) � m(vk; �k). The algorithm for updating A when the indices i and j

100
�
�
�
�

Learning Bayesian Networks

Tabu Search (tll; stopcriterion)

for i = 1; : : : ; n do �i ; �best;i ;
tp 0
for i = 0; : : : ; tll� 1 do

tabu list[i] (0; 0) fenter dummy valuesg
for i = 1; : : : ; n, j = 1; : : : ; n do

if i 6= j then
A[i; j] m(vi; vj)�m(vi; ;)

else
A[i; j] �1 fobstruct vi! vig

repeat
select the indices i; j that maximizes A[i; j] and is not in tabu list
if vj 2 �i then

�i �invj
else

�i �ivj
tabu list[tp] (i; j)
update array(A, i, j, BS)
tp (tp+ 1) mod tll
if
Pn

i=1m(vi; �best;i) <
Pn

i=1m(vi; �i) then 8i2f1;:::;ng�best;i �i
until stopcriterion
return �best;1; : : : ; �best;n

have been selected and the current solution is network structure BS is show below.
For �nding the best network structure visited during execution of the algorithm,

we have to test whether
Pn

i=1m(vi; �best;i) <
Pn

i=1m(vi; �i). This test involves all
nodes. One cannot simply return the parent sets that result in the best node quality
because network structures containing cycles would arise.

Note that tabu search is started with an arc-less network structure just as the
greedy heuristics K2 and B. If the straight neighborhood structure is used, tabu
search at �rst will select the same network structures as in algorithm B. So, the
network structure returned by tabu search is expected to have at least the quality
of the network structure returned by algorithm B.

Simulated Annealing

Simulated annealing is a general purpose combinatorial optimization algorithm
that was independently introduced by Kirkpatrick, Gelatt, and Vecchi [64] and by
�Cerny [113]. The algorithm has been motivated by the process of annealing of metal
to harden it. Annealing begins by heating the metal until it melts and all particles
move freely. Then, the temperature is decreased carefully to allow the particles
to arrange themselves in a highly structured lattice. Contrasting tabu search, a
deep theoretical understanding of the mechanism underlying simulated annealing

101
�
�
�
�

Learning Bayesian Networks

update array(A, i, j, BS)

for k = 1; : : : ; n do
if vk 2 �i then

if vk 62 Di then
A[i; k] m(vi; �ivk)�m(vi; �i)

else
A[i; k] �1

else
A[i; k] m(vi; �invk)�m(vi; �i)

if vj 62 �i then
for vk 2 Di, vl 2 Ai do

A[l; k] �1
else

for k = 1; : : : ; n l = 1; : : : ; n do
if A[k; l] == �1 and vl 62 vk
and adding vl ! vk does not introduce a cycle then

A[i; k] m(vi; �ivk)�m(vi; �i)

has been developed [1, 77].
The basic idea of simulated annealing for solving an instance of an optimization

problem (f; S) now is to assign to the problem a temperature T and interpret the
cost f(s) of a solution s 2 S as an energy level; such a solution s corresponds
with the state of the metal. The algorithm now starts with an arbitrary solution
and recursively selects a new solution r from the neighborhood N (s) of the current
solution s. If the `energy level' f(r) is less than or equal to the current `energy
level' f(s), then the new solution is accepted, that is, s is replaced by r. Otherwise,

the new solution is accepted with probability exp f(r)�f(s)
T

. Note that the higher the
temperature, the larger the probability that a new solution r will be accepted. The
temperature varies during execution of the algorithm according to a cooling schedule.
Initially, the temperature of the problem is so high that almost all solutions selected
by the generation mechanism are accepted. During execution of the algorithm,
temperature is decreased slowly so as to accept fewer and fewer solutions that are
worse than the current solution. The algorithm returns the best solution found
during execution of the algorithm. Below the simulated annealing algorithm is
shown in pseudo-code. Note that if f(r) > f(s) then exp(f(r)�f(s)

T
) > exp(0) > 1, so

the condition for accepting r will always be true.
The main parameter is the cooling schedule which consists of an initial and a

�nal temperature, and a function describing the decrease in temperature over time.
The �nal temperature can be looked upon as a stop-criterion for execution of the
algorithm. Various cooling schedules an generation mechanisms have been proposed
[1, 45, 60, 110]. However, selecting a satisfactory schedule in general is a di�cult
task; in fact, a lot of research e�ort has already been invested in this task.

For the cooling schedule we may adopt for example an empirical approach based

102
�
�
�
�

Learning Bayesian Networks

Simulated Annealing (T0; Tend; calc temp)

initialize s
T T0
k 0
sbest s

repeat
select a solution r from the solution space S

if exp(f(s)�f(r)
T

) > random[0::1] then
s r
if f(s) > f(sbest) then sbest s

k k + 1
T calc temp(T , k)

until T < Tend
return sbest

on the polynomial cooling schedule proposed by Aarts [1]. The initial temperature
T0 of the schedule is chosen in such a way that half of all selected solutions are
accepted. This temperature is determined by sampling the solution space: a sample
is selected and the average energy level is taken for the initial temperature. Note
that since the quality measures grow linearly with the size of the database, it su�ces
to �nd an initial factor �0: given a database of size N , the initial temperature is set
to T0 = �0 � N . For the �nal temperature, we choose a value such that none of the
solutions that are worse are accepted. We let the user de�ne a number of iterations
ni to make a comparison with the other algorithms in run-time and performance
possible. So, we have Tni = �niT0 and thus � = (Tni=T0)1=ni. Now, let Tk be the
temperature at some arti�cial time k then Tk can be computed as � � Tk�1.

We start with a network structure without arcs. Then, we select a new net-
work structure randomly from the straight neighborhood of the current network
structure.2 Following these choices, we arrive at the simulated annealing algorithm
for selecting network structures with the straight neighborhood structure depicted
below. Note that for the calculation of the di�erence of the quality of the current
network structure BS and that of the selected network structure BS0 we distinguish
between the cases where BS0 has one arc extra and where BS0 has one arc missing
compared to BS.

Rejectionfree Annealing

Rejectionfree annealing [50] is a general-purpose combinatorial optimization algo-

2For proofs of convergence of simulated annealing to the optimal solution, it is necessary to de�ne
a positive distribution Pr over all solutions and select a solution using Pr. However, with rationally
de�ned distributions, seldomly a solutions is chosen that is not in the straight neighborhood. Since
following the original approach would alter the algorithm only slightly but would ask for a more
theoretical explanation, we adopt the simpli�ed approach.

103
�
�
�
�

Learning Bayesian Networks

Simulated Annealing (�0; Tni; ni)

for i = 1; : : : ; n do �i ; �best;i ;
T �0 �N
� (Tni=T0)1=ni

k 0

repeat
repeat

select two indices i; j randomly
until vj 2 �i or adding vj to �i does not introduce a cycle
if vj 2 �i then

if exp(m(vi; �invj)�m(vi; �i)) > random[0::1] then
�i �invj

else
if exp(m(vi; �ivj)�m(vi; �i)) > random[0::1] then

�i �ivj
if
Pn

i=1m(vi; �best;i) <
Pn

i=1m(vi; �i) then 8i2f1;:::;ng�best;i �i
T T � �
k k + 1

until k = ni
return �best;1; : : : ; �best;n

rithm that can be considered as an optimization of simulated annealing. At the
end of the execution of the simulated annealing algorithm, many solutions are con-
sidered and then rejected. The idea of rejectionfree annealing is to avoid selecting
solutions that will be rejected. To this end for each solution r in the neighborhood
structure N (s) of the current network structure s, the probability h(r) of r being
accepted is calculated according to the acceptance criterion of the simulated anneal-
ing algorithm for certain temperature. When we take for simplicity a temperature
of 1, we have that if f(r) > f(s), then the acceptance probability h(r) = 1 and
otherwise h(r) = exp(f(r) � f(s)). Let p be the sum of those probabilities, that is,
p =

P
r2N (s) h(r). Then, a probability distribution over the neighborhood structure

is constructed by taking

P (r) =
h(r)

p

for every r 2 N (s). The algorithms now chooses a solution r inN (s) with probability

4.24

P (r) given by Formula 4.24. Below the pseudo-code for rejectionfree annealing is
given. Note that the only parameter to the algorithm is a stop-criterion.

It has been shown that rejectionfree annealing is equivalent to simulated annealing
[50] as soon as the probability of acceptance of new solutions drops below a certain
threshold value which is determined by the temperature. Obviously, rejectionfree
annealing is more e�cient than simulated annealing since it does not consider solu-
tions that are rejected. So, when the algorithm runs for a su�ciently long time, the
probability that the global optimum will be found goes to one. Another advantage

104
�
�
�
�

Learning Bayesian Networks

Rejectionfree Annealing (stopcriterion)

initialize s

repeat
calculate h(r) for all r 2 N (s)

select a solution r from N (s) with probability h(r)
p

s r
until stopcriterion

is that no parameters need to be chosen to de�ne a cooling schedule. However, extra
computational e�ort is necessary to calculate the probability distribution over the
neighborhood structure.

Application of rejectionfree annealing to selection of network structures with high
quality is performed similar to the application of simulated annealing to this task.
Below the rejectionfree annealing algorithm for selecting network structures with
the straight neighborhood structure is shown. Note that we have used an array B
to memorize values of the probability of accepting the addition or removal of an arc
similar to the memoization of Q(BS;D) � Q(BS0;D) in the tabu-search algorithm;
updating of B is performed with the update array algorithm where calculation of the
values of B is adapted.

Complexity of the Various Algorithms4.3.4

In this section, we address the computational complexity of the various search al-
gorithms. Note that learning minimal I-maps is NP-hard, which justi�es the use of
search heuristics for this task. One might argue that the complexity of the various
search algorithms is of no interest because these algorithms are likely to be applied
only once. However, with the use of a Bayesian belief network as knowledge-based
system, new cases become available by which the database may be extended. The
extended database can be used to evaluate the quality of the network structure and
alternative better network structures may be suggested by one of the learning algo-
rithms. Therefore, it is important to get a global idea of the run-time of the various
search algorithms. We consider their complexity in the following paragraphs.

From [24] we have that the worst-case computational time complexity of the
Bayesian quality of a node (Formula 4.21) is O(N � u � r), where N is the size of the
database, u is an upper bound on the size of a parent set, and r is the maximum
of ri, i = 1; : : : ; n. If the Bayesian measure is used, it is recommended to have a
user-de�ned upper bound forced because of the e�ects discussed in Section 4.2.7. Of
course, introduction of such an upper bound would a�ect the code for the algorithm
slightly. By examining the de�nitions, we observe that the complexity of the IC
quality and MDL quality of a node is the same as for the Bayesian quality. So, the
worst computational time complexity of the calculation of the quality of a node is
O(N � u � r).

We now express the computational complexity of the algorithms K2 and B in

105
�
�
�
�

Learning Bayesian Networks

Rejectionfree Annealing (ni)

for i = 1; : : : ; n do �i ;, �best;i ;
for i = 1; : : : ; n, j = 1; : : : ; n do

if i 6= j then
B[i; j] min(exp(m(vi; vj)�m(vi; ;)); 1)

else
B[i; j] 0 fobstruct vi! vig

k 0

repeat
p Pn

i=1

Pn
j=1B[i; j]

r random[0::p]
Select i; j be such that

P
(i0;j0)<(i;j)B[i0; j 0] � r <

P
(i0;j0)�(i;j)B[i0; j0]

if vj 2 �i then
�i �invj

else
�i �ivj

update array B
k k + 1
if
Pn

i=1m(vi; �best;i) <
Pn

i=1m(vi; �i) then 8i2f1;:::;ng�best;i �i
until k = ni
return �best;1; : : : ; �best;n

106
�
�
�
�

Learning Bayesian Networks

terms of the number of computations of the quality of a node. Both algorithms will
calculate the quality of a node at most O(n2 �u) times where u is an upper bound on
the number of parents of a variable. The complexity of K2 and B is O(n2 �u2 �N � r).

For tabu search and rejectionfree annealing, initially for each solution in the
neighborhood structure the quality of a node is calculated. There are at most
n�(n�1) elements in any straight neighborhood structure and also at most 2n�(n�1)
elements in any reversed neighborhood structure. Therefore, initially the quality of
a node must be calculated at most 4n � (n � 1) times. With each iteration of the
algorithm, the array that memorizes the qualities of nodes need to be updated
for at on average at most n elements of the straight and n elements of the reversed
neighborhood structure. The other operations in these algorithms are negligible. So,
let ni be the number of iterations, then the complexity in terms of calculations of
the quality of a node of tabu search and rejectionfree annealing, is O(n2)+O(n �ni).
Since ni � n almost always, we have a complexity of O(n � ni). Incorporating
the complexity of the calculation of the quality of a node gives a complexity of
O(n � ni �N � u � r).

For simulated annealing, negligible computational e�ort is necessary for initial-
ization. In the main loop, the quality of a node is calculated twice. The loop is
executed ni times and since the other operations are negligible, the complexity is
O(ni). Incorporating the complexity of the calculation of the quality of a node gives
a complexity of O(ni �N � u � r).

In general, the number of iterations ni is much larger than n � u in tabu search
and rejectionfree annealing. So, the heuristics K2 and B are computationally more
e�cient then those algorithms. Simulated annealing may seem to have a better worst
case computational time complexity than K2 and B. However, many iterations are
necessary for simulated annealing to return high quality network structures. Further,
the di�erence between average and worst case complexity is smaller for simulated
annealing than for K2 and B. As a result, K2 and B will in general be computational
more e�cient than simulated annealing.

Miscellaneous considerations4.3.5

In the subsection on greedy heuristics it was argued that the algorithms K2 and
B return local optima. To get a better network structure it may be useful to have
a post-processing algorithm. The general-purpose algorithms can be used for this
purpose; during the initialization of these algorithms not the arc-less graph but the
network structure returned by K2 or B may to be used and for tabu search and
rejectionfree annealing di�erent values need to be calculated for the array A.

So far, we assumed that the sum property holds for the quality measure in use.
Now, assume that the prior distribution over all network structures is positive. If
BS and BS0 are two network structures that are equal except that BS0 has an arc
vj ! vi that is not in BS. Then, it is su�cient for determining Q(BS;D)�Q(BS0 ;D)
to calculate P (BS)� P (BS0) +m(vi; �i)�m(vi; �0i). If P (BS) is not positive several
problem arise. For example, if all network structures with less than a �xed number
p � 2 of arcs have zero prior probability, then algorithm K2 will always return an
arc-less graph; addition of a single arc to the arc-less network structure does not
change the quality in this case. The same problem arises with algorithm B. So, it

107
�
�
�
�

Learning Bayesian Networks

may be necessary to change the initialization of the various algorithms to be sure
that the algorithm does not return a non-informative network structure.

Probability Estimation4.4

One of the aims of learning a Bayesian belief network from data is to decrease the
time of the build-test cycle of constructing a belief network for use in a knowledge-
based system. Now recall that the task of constructing a Bayesian belief network
is twofold: constructing the network structure and de�ning the set of assessment
functions. In the previous sections, learning network structures was addressed. In
this section, we will investigate learning a set of assessment functions for a given
network structure. We show how an learning technique known as smoothing can
be easily incorporated into search heuristics thus yielding better estimates at small
computational cost. But we will introduce direct estimation and smoothing �rst.

Let V be a set of variables. Let D be a database over V and let BS be a network
structure over V . Let vi, �i, ri, Nij and Nijk as before. In learning the set of
assessment functions, BP for BS, several probabilities of the form Pr(vi = xikj�i =
x�ij) have to be estimated. Let �ijk denote the probability Pr(vi = xikj�i = x�ij) in
the assessment function for a variable vi. Cooper and Herskovits [24] showed that,
under the assumptions with which the Bayesian measure was derived, the expected
value of �ijk given the database D and network structure BS is

E[�ijkjBS;D] =
Nijk + 1

Nij + ri
:

The expected value of �ijk can be used as an estimate for
vi(vi = xikj�i = x�ij).

4.25

When the assessment functions are obtained by setting
vi(vi = xikj�i = x�ij) =
Nijk+1

Nij+ri
for all i = 1; : : : ; n, j = 1; : : : ; qi, k = 1; : : : ; ri, we say that these functions

have been obtained by direct estimation. In the derivation of this expectation it is
assumed that no prior information of the values �ijk is available. If prior information
is available, it can be incorporated in the computation of the expected value of �ijk
by adding cases to the database that expresses this information [24].

Furthermore, Cooper and Herskovits showed that

E[P (XjY)jBS ;D] = PB(XjY)

for all X;Y � V , where PB denotes the joint probability distribution over V repre-
sented by the Bayesian belief network B = (BS; BP) where the assessment functions
have been obtained by direct estimation from D. The expected value of P (XjY) is
dependent not only on the database but also on the selected network structure BS .
If the network structure is not well-chosen, these expected values of P (XjY) can
deviate considerably from the `true' values. To circumvent this problem, it would
be better to use E[P (XjY)jD] instead, which is,

E[P (XjY)jD] =
X

BS2BS

E[P (XjY); BSjD] =
X

BS2BS

E[P (XjY)jBS;D] � P (BS jD);

where BS is the set of all network structures over V and P (BS jD) is the probability

4.26

108
�
�
�
�

Learning Bayesian Networks

PP

P’

P’’

a b
c

P
w

P’

P’’

a

c

b

P
w

Figure 4.7: Relation between `true' distribution P , estimated distributions P 0 and
P 00, and weighted distribution Pw.

of having network structure BS given database D. This probability can be calculated
using the Formula 4.1.

Since the cardinality of BS is very large in general, it is not practical to consider
all network structures in BS for computing E[P (XjY)jD]. This value, however,
can be approximated by summing over network structures with high quality only.
Even if only a small number of network structures is used, the deviation from the
distribution P may be expected to be smaller than when a single network structure
is used.

This e�ect is illustrated in Figure 4.7 which shows a part of the space of all possible
distributions. Let P be the `true' distribution, and let P 0 and P 00 be two distributions
represented by two di�erent Bayesian belief networks B0 and B00 respectively. The
di�erence between the distributions P 0 and P is denoted by the vector ~a, and the
di�erence between P 00 and P is denoted by ~b. Now, let Pw be the distribution
obtained by weighting the distributions P 0 and P 00 based on Formula 4.26, and let
~c denote the di�erence between Pw and P . If ~a and ~b deviate from P in di�erent
dimensions as on the left-hand side of Figure 4.7, then ~c will have a smaller length
than both ~a and ~b, meaning that Pw is expected to deviate less from P than both P 0

and P 00. If ~a and ~b point in the same direction from P as on the right-hand side of
Figure 4.7, then the distance between Pw and P is still smaller than between P 0 and
P . However, it is larger than between P 00 and P . But, without extra information
about P , it cannot be known which of P 0 and P 00 is closest to P : the expected
deviation of the distribution represented by B from the true distribution cannot be
judged from the quality of the network structure and the database. So, it is safer
to choose the weighted distribution Pw than to choose from P 0 and P 00 involving of
choosing the wrong one.

So, we can select a set of network structures, and estimate the assessment func-
tions for each of these network structures. A distribution that is the weighted
average over a collection of the thus obtained Bayesian belief networks can be ex-
pected to be closer to the real distribution than a distribution of a single Bayesian
belief network. Because inference in just a single network is already NP-hard, it is
computationally unattractive to have a set of belief networks instead of one. Under
certain conditions, however, a collection of Bayesian belief networks and therewith a
weighted distribution can be represented by a single Bayesian belief network. This
technique is called smoothing.

Let V be a set of variables. Let S be a set of network structures over V and let

109
�
�
�
�

Learning Bayesian Networks

�i denote the set of parent sets �i of node vi 2 V that are found in the various
network structures from S, that is, �i = f�ij�i is the parent set of vi in BS; BS 2
Sg. Furthermore, we demand an ordering <V on V exists that is obeyed by each
network structure BS 2 S. Finally, we demand that S can be written as the set
of all possible network structures that can be formed by selecting for each node
vi 2 V a parent set from �i. So, given for each i = 1; : : : ; n the set �i, we can write
S = fBSji 2 f1; : : : ; ng; �i 2 �ig. Then, the weighted distribution Pr over V can be
written as

Pr(V = xV) = �
X
BS2S

PrB(V = xV jBS ;D) � P (BS jD);

where � is a normalizing constant. By using the de�nition of the Bayesian quality
of a node, we �nd that P (BS;D) = P (BS) � 2

Pn
i=1m

B(vi;�i), where �i is the parent
set of vi in BS. Since P (BS jD) = P (BD; S)=P (D) and P (D) is a constant, we can
write P (BDjS) = �P (BS)�2

Pn
i=1m

B(vi;�i). Further, by expressing the joint probability
distribution PrBS in terms of the assessment functions and writing �0 for � � �, we
can write

Pr(V = xV) = �0
X
BS2S

nY
i=1

vi(vi = xij�i = x�i) � P (BS) � 2
Pn

i=1m
B(vi;�i)

!
;

where
vi(vi = xij�i = x�i) denotes the assessment function for node vi in the
Bayesian belief network with network structure BS obtained by a direct estimate
from D. Note that each value of the
vi is the same for the same parent set of �i and
the same con�guration of vi; this value does not depend on the other parent sets.
Note that this function is the same for all network structures where the parent set
of vi is the same. Since the distribution over all network structures is uniform, we
have that P (BS) is a constant. By writing �00 for �0 �P (BS) and by grouping terms,
we �nd

Pr(V = xV) = �00 �
X
BS2S

nY
i=1

vi(vi = xij�i = x�i) � 2m
B(vi;�i)

!
:

By an inductive argument it can be shown that due to the fact that S can be written
as fBSji 2 f1; : : : ; ng; �i 2 �ig, we can change summations and multiplication and
get,

Pr(V = xV) = �00
nY
i=1

 X
�i2�i

vi(vi = xij�i = x�i) � 2m
B(vi;�i)

!
;

where
vi(vi = xij�i = x�i) denotes the assessment function in the Bayesian belief
network where vi has parent set �i. Now, let

�0i = [�i2�i�i
for i = 1; : : : ; n, and let

0i(vi = xij�0i = x�0i) = �i �
X
�i2�i

vi(vi = xij�i = x�i) � 2m
B(vi;�i);

110
�
�
�
�

Learning Bayesian Networks

where �i is a normalizing constant. Then BS0 is a network structure with parent
sets �i, i = 1; : : : ; n and
 0i is an assessment function de�ning a joint probability
distribution Pr over V . Note that the MDL measure can be considered to be an
approximation of the Bayesian measure, this procedure applies when using the MDL
quality of nodes instead of the Bayesian quality as well. Now, inference can be
performed in this single Bayesian belief network B0 instead of in the set of networks
S.

When smoothing is used for learning a Bayesian belief network from data, appro-
priate sets of parent sets need to be found. We observe that for e�cient reasoning
with a Bayesian belief network, the parent sets should be as small as possible. There-
fore, in applying the approach the parent sets selected for a node should have a large
overlap. In most cases, not only the whole set of parents is informative for a node
u, but also subsets are informative. The more informative a set of nodes for u, the
higher the quality of this set. In practical applications, this can be achieved by
taking the network structure generated by a search algorithm and letting �i be the
set of subsets of �i. Note that is likely that �i contains high quality parent sets.

To implement this approach, the qualities and the assessment functions of all
subsets of all parent sets in the �nal structure need to be computed. Since this
computation involves many terms that are also computed by the search algorithm,
it is much more e�cient to incorporate the estimation of the probabilities into the
search algorithm. The basic idea is that every time an arc vj ! vi is added to the
network structure under construction the assessment function of vi is adapted. Let �i
be the present parent set of vi to which a node vj is added and let
vi(vi = xij�i = x�i)
be the assessment function for vi so far. Furthermore, let wi be the sum of the
contribution terms 2m(vi;�i) of the parent sets considered so far. Then, the new
probabilities
0vi(vi = xij�i = x�i; vj = xvj) are computed as the weighted sum

� � (wi �
0vi(vi = xij�i = x�i) + 2m(vi;�ivj)P̂ r(vi = xij�i = x�i; vj = xvj)) where

� = 1=(wi + 2m(vi;�ivj)) and P̂ r a direct estimate; the new sum wi of contributing
terms is computed as wi + 2m(vi;�ivj).

Note that the sets �i consist of the subsets of the �nal parent sets of vi that
once were parent sets at some stage in the search algorithm. Also note that the
quality of these parent sets are directly available in the algorithm. The only extra
administration needed is maintaining the sums wi of weights of parent sets so far.
Details can be found in the algorithm, called weighted K2, shown below; a similar
approach can be applied to algorithm B and we will call this algorithm weighted B.
We would like to stress that this technique is suitable only for a greedy algorithm
in which arcs are added one by one; when an arc vj ! vi is deleted or reversed
incremental computation of assessment functions would be much more complicated.

Experimental Results4.5

We have performed several experiments to compare the performance of the various
algorithms for learning Bayesian belief networks from data described in the previ-
ous sections. To this end, we generated Bayesian belief networks of di�erent size,
generated databases of cases from these networks, and applied the various learn-
ing algorithms to these databases using the original networks as golden standard to

111
�
�
�
�

Learning Bayesian Networks

Algorithm weighted K2 (<V)

for i = 1; : : : ; n do finitializeg
�i ;
wi 2m(vi;;)

for xi 2
vi do
vi(vi = xi) = P̂ r(vi = xi)
for i = 2; : : : ; n do fmain loopg

repeat
select v 2 fv1; : : : ; vi�1gn�i that
maximizes g = m(vi; �i [fvg)

� g �m(vi; �i)
if � > 0 then
for xi 2
vi, x�i 2
�i , xvj 2
vj do

vi(vi = xij�i = x�i; vj = xvj) = �(wi
vi(vi = xij�i = x�i)

+2gP̂ r(vi = xij�i = x�i; vj = xvj))
wi wi + 2g

�i �i [fvg
until � � 0 or �i = fv1; : : : ; vi�1g

normalize

return

evaluate the performance of the algorithms.
We generated several Bayesian belief networks with varying numbers of nodes

and arcs; details are listed in Table 4.2. We generated networks with 10, 15, and
50 nodes, respectively. We did not generate networks with more than 50 nodes
for several reasons. First, we feel that in real-life domains there are not many
databases with many more variables of su�cient size. Secondly, the complexity of
the described search algorithms is quadratic in the number of nodes which prohibits
experimentation with larger networks from a computational point of view. The
numbers of arcs are chosen so as to yield a singly connected structure, a structure
with about one and a half times the number of nodes, and a structure with twice
as many arcs as nodes. In the last case, the generated network structures contain
many cycles and large parent sets. These ratios of number of arcs and number of
nodes seem realistic. For example, the ALARM network [5] contains 37 nodes and
46 arcs. In networks where a time component is involved, every variable tends to be
dependent of its value in a previous time slot and a ratio of the number of arcs and
number of nodes near two is easily obtained. However, depending on the domain,
this ratio may vary considerably.

A single Bayesian belief network was synthesized as follows. First, the networks'
structure was generated. Initially, an ordering on the variables was �xed. Then,
two nodes u and v were selected randomly, and an arc v ! u was added to the
structure in the making if v > u and u ! v, otherwise. In each successive step of
the generation process, one of the variables that already had at least one incident
arc was selected and one of the variables with no incident arcs, both in random
fashion. An arc was added between these nodes in the structure, taking the variable

112
�
�
�
�

Learning Bayesian Networks

nodes # arcs
10 9 15 20
25 24 37 50
50 49 75 100

Table 4.2: The numbers of nodes and arcs in generated networks.

ordering into consideration. This process was repeated until a poly-tree resulted. If
the desired number of arcs was not yet reached, randomly two di�erent nodes were
selected and an arc was added between them, once more taking the variable ordering
into consideration. This step was repeated until the network structure contained the
desired number of arcs. We would like to note that this generation process yields
network structure with a bias towards structures with nodes having many incident
arcs as opposed to networks with long strings of nodes; realistic networks seem to
have the same kind of bias. For a generated network structure, assessment functions
were generated for all nodes. The variables were all assumed to be binary. For each
variable u with parent set �u, we selected a random number from the unit interval
and assigned it to
u(u = 0j�u = x�u), setting
u(u = 1j�u = x�u) = 1 �
u(u =
0j�u = x�u), for each x�u 2
�u . In this way, we generated ten di�erent Bayesian
belief networks for each combination of the number of nodes and number of arcs,
ninety in total.

From each Bayesian belief network, we generated a database for each of the fol-
lowing sizes: 100, 200, 300, 400, and 500 cases. For this purpose, we used logic
sampling [55] which we describe in further detail in the next chapter.

The performance of the various algorithms was evaluated with di�erent criteria
depending on the purpose of application of Bayesian belief network learning. When
a network structure will be used as a starting point for a build-test cycle, it is im-
portant that as many as possible dependencies in the domain are represented in the
structure. The number of extra and missing edges in the underlying graph of the
learned network structure compared to the original structure therefore is used as a
criterion for evaluating the performance of learning algorithms. When learning is
used to recover causality, the direction of the arcs in a network is of importance.
The number of extra and missing arcs in the learned network structure compared to
the original structure therefore is used as another criterion. Consider the numbers of
extra and missing edges in the underlying structure of the network structure yielded
upon application of the K2 algorithm. Note that these numbers are equal to the
numbers of extra and missing arcs if the ordering used for K2 is the same as the
ordering used for constructing the network structure. For many real life applications
involving decision making, it is important that the probability distribution repre-
sented by a Bayesian belief network approximated the true probability distribution.
Therefore, the third criterion we used for evaluating the performance of the various
algorithms for learning belief networks from data is the expected logarithmic dis-
tance between the learned distribution and the original distribution known as the
divergence or cross entropy. The divergence is an appropriate criterion for this
purpose as it emphasizes deviations for small probabilities for which errors have a

113
�
�
�
�

Learning Bayesian Networks

large in
uence on decision making processes. The divergence is de�ned as

X
xV 2
V

Pr(V = xV) � log Pr(V = xV)

PrB(V = xV)
;

where Pr is the `true' probability distribution, that, is the distribution represented
by the Bayesian belief network that was used to generated the database D, and
PrB denotes the distribution represented by the Bayesian belief network learned
from D. We implemented the divergence by brute force. Because of computational
limitations, we only measured the divergence for Bayesian belief networks with ten
nodes. When the network structure that �ts the database best is searched for, as
for example in hypothesis testing, the quality of a structure is crucial. The last
criterion used therefore is the quality of the returned network structure.

We applied the learning algorithms to the generated databases recording the
number of extra and missing arcs, the number of extra and missing edges, the
quality of the returned network structure and the divergence of the represented
distribution. All these methods of evaluation were considered with respect to the
original Bayesian belief network with which the database was generated.

Recall that we are interested in the performance of the various quality measures we
discussed: the Bayesian measure, the information criterion and the MDL measure.
For the information criterion, we experimented with the values 1=3, 1=2, 1, 2, and 3
that are often mentioned in literature; we will denote the criterion with these values
by ic,1/3, ic,1/2, ic,1, ic,2, and ic,3, respectively.

We divided the experiments into two groups; experiments involving learning with
greedy search heuristics, and experiments involving learning with general search
heuristics. Learning assessment functions was addressed in both groups. In apply-
ing a quality measure, we assumed that there was no prior information. So, the
probability distribution over all network structures was taken to be uniform.

All experiments were performed on a HP-9000 series 700 using a C-program.

Results for Greedy Search Heuristics4.5.1

In this section, we illustrate the main features of the experimental results by con-
sidering small parts of the experimental results. Since the amount of experimental
results is very large, we do not discuss all of it in detail.

We performed an experiment where we applied the ordinary K2 algorithm for
Bayesian belief networks with ten nodes and nine arcs where the ordering on the
nodes provided was the ordering used for constructing the original network structure.
Figure 4.8 shows the number of extra arcs on the left-hand side and number of
missing arcs on the right-hand side for various database sizes and quality measures
averaged over ten networks.

From Figure 4.8, it is seen that the number of extra arcs as well as the number of
missing arcs decreases when the database size grows. This e�ect is explained by the
fact that the larger a database, the more information is available. So, the larger the
database, the better the returned network structure. The �gure also indicates that
the network structure learned with the MDL measure tends to contain less extra
arcs and more missing arcs than those learned with the Bayesian measure. This

114
�
�
�
�

Learning Bayesian Networks

+arcs

measur
0

3

Bayes

0

ic,3

1

ic,2

5

ic,1

11

ic,1/2

15

ic,1/3

1

MDL

-arcs

measur
0

2

Bayes

4

ic,3

3

ic,2

2

ic,1

1

ic,1/2

1

ic,1/3

4

MDL

+arcs

measur
0

2

Bayes

0

ic,3

1

ic,2

5

ic,1

11

ic,1/2

16

ic,1/3

0

MDL

-arcs

measur
0

2

Bayes

3

ic,3

3

ic,2

2

ic,1

1

ic,1/2

1

ic,1/3

3

MDL

+arcs

measur
0

1

Bayes

0

ic,3

1

ic,2

4

ic,1

11

ic,1/2

17

ic,1/3

0

MDL

-arcs

measur
0

1

Bayes

3

ic,3

2

ic,2

1

ic,1

0

ic,1/2

0

ic,1/3

3

MDL

+arcs

measur
0

1

Bayes

0

ic,3

1

ic,2

4

ic,1

11

ic,1/2

18

ic,1/3

0

MDL

-arcs

measur
0

1

Bayes

2

ic,3

1

ic,2

1

ic,1

0

ic,1/2

0

ic,1/3

2

MDL

+arcs

measur
0

0

Bayes

0

ic,3

0

ic,2

5

ic,1

14

ic,1/2

19

ic,1/3

0

MDL

-arcs

measur
0

1

Bayes

2

ic,3

1

ic,2

1

ic,1

0

ic,1/2

0

ic,1/3

2

MDL

Figure 4.8: Average number of extra arcs (left) and missing arcs (right) obtained
with ordinary K2 for various quality measures for databases of 100 (top) up to 500
(bottom) cases. The original network structures contained 10 nodes, and 9 arcs.

115
�
�
�
�

Learning Bayesian Networks

e�ect is explained by the observation that network structures returned when using
the MDL measure tends to contain smaller parent sets than the structures returned
when using the Bayesian measure. We described this e�ect from a theoretical point
of view in Section 4.2.7.

When we examine the results for the information criteria with various penalty
functions, we see that a decrease in the penalty function results in an increase in
the number of extra arcs and a decrease in the number of missing arcs. Since, this
function can be interpreted as a penalty for the number of values that need to be
estimated for the assessment functions of a network structure, it will be evident
that the higher this penalty, the smaller the sizes of the parent sets, and hence, the
smaller the number of extra arcs, and the higher the number of missing arcs.

Table 4.3 shows the divergence averaged over ten networks between the learned
distribution and the original one for Bayesian belief networks learned, where the
original networks had ten nodes and nine arcs learned with algorithm B with one-step
look-ahead. The same but diminished e�ects can be observed in the results with K2
with one-step look-ahead. In Table 4.3, the averages and variances of the divergence
of the ten learned networks both for direct and smoothed estimates are listed. Note
that with a growing number of extra arcs, a growing number of values need to be
estimated for the various assessment functions. It will be evident that the more
values need to be estimated, the more errors are introduced. On the other hand, the
more missing arcs in a network, the fewer dependencies are represented and the more
the learned probability distribution di�ers from the original one. The experimental
results shown in Table 4.3 suggest that the former e�ect has more impact on the
divergence than the latter e�ect. In fact, the Bayesian belief networks with the least
arcs, namely the ones learned with the information criterion with penalty function
f(N) = 3, have the lowest divergence of all. Table 4.3 further shows that applying
the method of smoothing slightly decreases both the divergence and the variance of
the divergence.

One would expect that the divergence would decrease with increasing database
sizes. However, this e�ect cannot be observed from Table 4.3 for all but the Bayesian
measure. This can be explained by observing that the error made in estimating the
distribution tends to be rather larger due to the fact that the databases are relatively
small. For accurate estimates, the database should contain several thousands of
cases.

Figure 4.9 gives an impression of the usefulness of applying a k step look-ahead
in the greedy search algorithm described in Section 4.3.2. The quality averaged
over ten networks is shown for databases with 500 cases and the quality measure
used was the MDL measure. The qualities are depicted for the algorithms K2 and
B with one, two, and three-steps look-ahead, respectively. The table shows the
qualities for network structure over ten nodes with 9, 15 and 20 arcs. In general,
the variants of K2 returned a network structure with a slightly lower quality than
with B. This e�ect can be explained from the observation that the ordering with
which the network structure was constructed was supplied to K2. This ordering
gives extra information about the original structure that was not available to B.
For the network structures with 9 arcs, applying a look-ahead of more than one
step with K2 did not in
uence the quality of the returned structure. However,
for network structures with 15 and 20 arcs, the quality of the returned structure

116
�
�
�
�

Learning Bayesian Networks

Quality Direct estimate Smoothed
measure N average variance average variance
Bayes 100 1.3573 0.807853 1.3343 0.814999

200 1.054 1.18945 1.0498 1.11725
300 0.9613 0.984862 0.9466 0.976641
400 0.8162 0.543504 0.8094 0.546175
500 0.83 0.593212 0.8215 0.586496

ic,3 100 0.4512 0.371678 0.4541 0.369206
200 0.4136 0.508621 0.4173 0.511758
300 0.2892 0.323984 0.2984 0.30815
400 0.7417 0.541098 0.7164 0.535142
500 1.2079 1.22244 1.2014 1.22201

ic,2 100 0.5247 0.354532 0.5198 0.334052
200 0.6418 0.560836 0.622 0.555777
300 0.4806 0.312307 0.4836 0.326394
400 0.882 0.499015 0.8577 0.494539
500 1.1217 0.738958 1.097 0.752403

ic,1 100 1.6027 0.730721 1.5151 0.715809
200 1.6836 1.05287 1.5661 1.01165
300 1.6485 0.727109 1.5207 0.6034
400 1.5914 0.949219 1.5312 0.936412
500 1.6706 0.925989 1.5921 0.933069

ic,1/2 100 1.7951 0.778958 1.8037 0.880254
200 2.2496 1.11739 2.1666 1.09767
300 2.5577 1.30925 2.4166 1.12787
400 1.9844 0.729641 1.9567 0.677669
500 2.1396 0.99537 2.0981 1.00064

ic,1/3 100 2.0171 0.648805 2.0336 0.779539
200 2.5019 1.62503 2.3644 1.52051
300 1.9755 0.808016 1.906 0.847741
400 2.2598 0.790407 2.1673 0.790488
500 2.5443 1.20251 2.5512 1.23562

MDL 100 0.6911 0.654127 0.6655 0.621631
200 0.418 0.522918 0.4161 0.522632
300 0.2892 0.323984 0.2949 0.310366
400 0.7408 0.542232 0.7163 0.53562
500 1.1034 1.26881 1.1019 1.26847

Table 4.3: Divergence for Bayesian belief networks with ten nodes and nine arcs
learned by B.

117
�
�
�
�

Learning Bayesian Networks

increased considerably upon applying a two or three-step look-ahead. This e�ect can
be explained from the observation that when the original network structure is sparse,
the most in
uential nodes for inclusion in a parent set are easily discerned; when the
original network structure is not sparse, there are relatively many in
uential nodes
that can be selected for inclusion in a parent set. A more elaborate search explores
the search space more e�ectively in such cases. Judging from Figure 4.9, it does not
pay to have a three-step look-ahead instead of a two-step look-ahead: the quality of
the returned network structure does not improve signi�cantly while the run time of
the algorithm increased considerably.

When algorithm B is applied with a two-step instead of a one-step look-ahead,
network structures of lower quality were returned for networks with 9 and 20 arcs
and higher quality for networks with 15 arcs. However, the increase in quality was
much less impressive than for K2. When a three step look-ahead is applied, the
quality of the returned network structures decreases a lot. The reason lies in our
restriction on the neighborhood structure that the addition of up to three arcs is
such that all arcs point to the same node. Therefore, early in the execution of the
algorithm, when a set of three arcs all pointing to the same node is chosen, we get
severe restrictions on the ordering of the variables, which we do not get when the
arcs are added one by one. This e�ect also appears with the two-step look-ahead,
but it is compensated for by the more e�ective search for parents, resulting in a
slightly better quality.

To see whether the aforementioned e�ects are also present with larger networks,
we performed the same experiments as above, but now for belief networks with 25
nodes. To keep computational time limited, we did not apply the greedy search
heuristic with a three-step look-ahead, but only the variants with one and two-
step look-ahead. Figure 4.10 shows the average quality over ten networks for which
databases with 500 cases were generated and where the MDL measure was used.
Again, we see that in most cases, K2 with one-step look-ahead performs slightly
better than B with one-step look-ahead.

Further, when a two-step look-ahead is used, the average quality of the returned
network structures is the same when the original network structure has the topology
of a poly-tree. However for less sparse network structures, there is a signi�cant
increase in quality when a two-step look-ahead is used instead of a one-step look-
ahead. These e�ects also have been observed in the experiments with the network
structures containing ten nodes. A short examination of other outcomes shows that
the same behavior is exposed as for the network structures with ten nodes. Only the
numbers increase dramatically for larger networks. For example, with a Bayesian
measure, network structures with up to 200 extra arcs were returned for networks
with 50 nodes and with the MDL measure, network structures with up to 40 missing
arcs were constructed. In general, the experiments with larger networks showed the
same e�ects we have discussed before for the various evaluation methods, but now
more dramatically. So, it seems su�cient to perform experiments on small networks
to get an impression of the various learning methods in general.

118
�
�
�
�

Learning Bayesian Networks

quality

valg
-2473.46

-2443.24

k2,1

-2442.03

k2,2

-2442.03

k2,3

-2444.11

b,1

-2450.52

b,2

-2473.46

b,3

quality

valg
-2849.66

-2820.57

k2,1

-2800.25

k2,2

-2800.2

k2,3

-2825.59

b,1

-2809.43

b,2

-2849.66

b,3

quality

valg
-2582.53

-2543.87

k2,1

-2532.95

k2,2

-2530.19

k2,3

-2545.53

b,1

-2551.38

b,2

-2582.53

b,3

Figure 4.9: Average quality for various algorithms and number of arcs with origi-
nal network structure containing 9 (top), 15 (middle), and 20 (bottom) arcs. The
databases were over ten nodes and had size 500 and network structure learned using
the MDL measure.

119
�
�
�
�

Learning Bayesian Networks

quality

valg
-6536.72

-6528.87

k2,1

-6515.62

k2,2

-6528.6

b,1

-6536.72

b,2

quality

valg
-6626.77

-6592.91

k2,1

-6583.57

k2,2

-6626.77

b,1

-6612.45

b,2

quality

valg
-6888.27

-6838.65

k2,1

-6798.99

k2,2

-6888.27

b,1

-6862.86

b,2

Figure 4.10: Average quality for various algorithms and number of arcs with orig-
inal network structure containing 24 (left), 37 (middle), and 50 (right) arcs. The
databases were over ten nodes and had size 500 and network structure learned using
the MDL measure.

Results for General Search Heuristics4.5.2

In this section, we illustrate the performance of the general search algorithms dis-
cussed in Section 4.3.3. In our experiments, we investigated the behavior of these
algorithms only for the Bayesian belief networks with 10 variables and 15 arcs and
the databases generated from them; we do not expect other trends to arise from
experiments with larger networks, supported by the results obtained from the ex-
periments with the greedy search heuristics. We considered the in
uence of the
various parameters on tabu search, simulated annealing and rejectionfree annealing
separately and compare their performance with optimal parameters with the greedy
search heuristics. Also, to keep computational time limited, we used the small do-
mains. For all general search algorithms, we performed the experiments with both
the straight and the reversed neighborhood structure. We executed every algo-
rithm with 100, 250, 500, 1000, 2500, 5000, 7500, and 10000 iterations, which seems
a broad enough spectrum of iterations to elucidate the various properties of the al-
gorithms. Due to computational limitations, we did not perform experiments with
a larger number of iterations. For each algorithm, we further experimented with
various parameter settings.

Tabu Search

Table 4.4 lists the quality averaged over ten networks of the network structures
learned by the tabu-search algorithm with the Bayesian measure with 100 up to
10000 iterations for databases with 500 cases generated using network structures
with 15 arcs. The parameter that we can select freely for tabu search is the length
of the tabu-list. In literature, one encounters values between 20 and 50. So, we
performed experiments with a tabu-list length of 20, 30 and 50. The part on the
left side of the table shows the quality averaged over ten networks of the learned
structures when tabu search is employed using a straight neighborhood structure;
the part on the right side of the table shows the average quality when the reversed
neighborhood structure is used. It seems that by using the reversed structure, the

120
�
�
�
�

Learning Bayesian Networks

straight reversed
neighborhood structure neighborhood structure

ni 20 30 50 20 30 50
100 -2767.84 -2765.85 -2772.16 -2760.91 -2762.32 -2764.35
250 -2766.74 -2765.85 -2768.60 -2759.85 -2760.30 -2761.79
500 -2766.64 -2765.85 -2767.09 -2759.80 -2760.30 -2761.79
750 -2766.60 -2765.85 -2769.44 -2759.80 -2760.14 -2761.73
1000 -2766.60 -2765.85 -2771.09 -2759.80 -2759.98 -2761.55
2500 -2766.60 -2765.85 -2769.67 -2759.72 -2759.84 -2761.19
5000 -2766.60 -2765.68 -2769.15 -2759.72 -2759.84 -2760.78
7500 -2766.47 -2765.37 -2768.81 -2759.68 -2759.83 -2760.49
10000 -2766.46 -2765.37 -2767.65 -2759.67 -2759.83 -2760.41

Table 4.4: Average quality of the network structure learned by tabu search with the
Bayesian measure for di�erent neighborhood structures for networks with 10 nodes
and 15 arcs.

search space of network structures is explored more e�ectively since then the average
quality of the learned network structure is considerably better than by using the
straight neighborhood structure. This e�ect is explained by the observation that
reversal of an arc is less often performed when using the straight neighborhood
structure because removal of the arc �rst results in a network structure with a
relatively low quality. A similar observation holds if the performance of tabu search is
evaluated using the number of extra and missing edges and arcs and less dramatically
when using the divergence. In the experiments that we present from now on, we
have used the reversed neighborhood structure.

We want to know the in
uence of the two parameters tabu-list length and number
of iterations on the performance of tabu search. In Table 4.5, the number of missing
and extra edges are listed for tabu search using the reversed neighborhood structure
averaged over ten networks. The part on the left of the table shows the number of
missing edges for various tabu-list lengths; the part on the right of the table shows
the number of extra edges. The rows of the table indicate the results for a di�erent
number of iterations. The table shows that with a tabu-list of length 20 slightly
better results are obtained than with tabu-lists of length 30 and 50. However, in
experiments with networks with other numbers of arcs and with other database sizes
we obtained other results. Therefore, we conclude that the tabu-list length hardly
in
uences the performance of tabu search.

Furthermore, we see in Table 4.5 that with an increasing number of iterations,
the average number of missing and extra arcs decreases, especially for a tabu-list
length of 50. This e�ect can be explained by observing that with a larger number
of iterations a larger part of the search space is visited by the algorithm. On the
other hand, it seems that not much progress is made after 2500 iterations have been
made. The same observations hold for Table 4.4.

When the number of extra and missing arcs was used to evaluate the performance
of tabu search, we obtained similar tables as Table 4.5. Only the numbers were
somewhat higher due to having reversed arcs in the learned network counting both

121
�
�
�
�

Learning Bayesian Networks

Missing edges Extra edges
ni 20 30 50 20 30 50

100 1.1 1.1 1.5 2.0 2.7 2.7
250 0.9 0.9 1.5 1.5 2.1 2.0
500 0.9 0.9 1.5 1.3 2.1 2.0
750 0.9 0.9 1.3 1.4 1.7 2.1
1000 0.9 0.7 1.1 1.4 1.5 2.1
2500 0.8 0.9 1.2 1.4 1.6 1.8
5000 0.8 0.9 1.0 1.4 1.6 1.9
7500 0.7 0.9 1.1 1.4 1.6 1.9
10000 0.8 0.9 1.1 1.5 1.6 1.7

Table 4.5: Average number of missing and extra edges of network structures returned
by tabu search learned with the Bayesian measure for networks with 10 nodes and
15 arcs.

as missing and as extra arcs. The divergence of the networks obtained with tabu
search was comparable to those obtained when using the greedy heuristics; the
divergence was hardly in
uenced by the number of iterations and tabu-list length.

When we compare these results with the experiments with the greedy search
heuristics, we see that K2 returned networks with an average quality of 2774.2 and
2761.61 for one and two-step look-ahead respectively when using the same databases
as above. From Table 4.4 we conclude that a gain in quality is obtained by using
tabu search with respect to the greedy search heuristic K2.

For K2 we found on average of 2.5 and 1.0 missing edges for one and two-step
look-ahead respectively and zero extra edges for both cases. So, it seems that K2
performs better than tabu search when we consider the number of mismatched edges,
that is, the sum of missing and extra edges. To conclude, we would like to note that
the runtime of K2 is considerably less than that of tabu search: K2 took on average
0.37 seconds for networks with 10 nodes and 15 arcs databases with 500 cases, which
was the worst case. In comparison, tabu search took 1.46 seconds for 100 iterations
in the experiments above described, and the runtime grows linearly in the number
of iterations to 139.13 seconds for 10.000 iterations.

The divergence of the returned networks was comparable for both the greedy
heuristics and tabu search.

Simulated Annealing and Rejectionfree Annealing

For the simulated annealing and rejectionfree annealing algorithms, Table 4.6 lists
the quality averaged over ten networks of the network structures learned from the
same databases as before for various numbers of iterations. The simulated annealing
algorithm depends on a cooling schedule. All experiments with the simulated an-
nealing algorithm were performed by starting with a temperature of 0:5�no where no
is the number of cases in the database and a �nal temperature of 0:025 �no. For both
algorithms we see that with an increasing number of iterations the average quality
shows a tendency to become of higher quality. This observation can be explained

122
�
�
�
�

Learning Bayesian Networks

ni simulated rejectionfree
annealing annealing

100 -2799.22 -2767.07
250 -2781.45 -2760.28
500 -2770.18 -2760.98
750 -2766.48 -2761.57
1000 -2765.99 -2759.59
2500 -2762.39 -2760.40
5000 -2760.56 -2759.58
7500 -2760.43 -2759.58
10000 -2759.90 -2759.80

Table 4.6: Average quality of network structures returned by simulated annealing
and rejectionfree annealing with the Bayesian measure for networks with 10 nodes
and 15 arcs.

by the fact that with an increasing number of iterations a larger part of the space
of network structures is searched.

Table 4.7 shows the number of missing and extra edges averaged over ten networks
for the same databases as above. On the left side of the table, the average number
of missing edges are listed. The �rst column for network structures returned by
simulated annealing and the second for rejectionfree annealing. Likewise, the right-
hand side shows the average number of extra edges. Each row show the results for
a di�erent number of iterations. Again we see that the more iterations are used,
the better the returned network structures. Rejectionfree annealing seems to return
network structures with a slightly lower number of extra and missing edges then
simulated annealing does. Similar e�ects can be observed when considering the
number of extra and missing arcs.

In both Table 4.6 and 4.7 we see that rejectionfree annealing performed better
than simulated annealing. This observation can be explained by interpreting re-
jectionfree annealing as an e�cient implementation of the last part of the cooling
schedule in simulated annealing.

The divergence between the original networks and the networks learned with
simulated and rejectionfree annealing was in general better than in the experiments
with K2 when there were few arcs in the network structure and worse when there
were many arcs.

Discussion4.5.3

Limited value should be assigned to the experiments since relatively few networks
were considered. Further, the networks considered were randomly generated and
need not correspond to the networks encountered in particular real-world domains.

From the experiments, we learn that the choice of the quality measure used for
learning Bayesian belief networks depends on the use of the learned Bayesian belief
network or network structure. When it is used as start of a build-test cycle, it may be
better to have a network structure that represents all dependencies. Then a domain

123
�
�
�
�

Learning Bayesian Networks

Missing edges Extra edges
ni simulated rejectionfree simulated rejectionfree

annealing annealing annealing annealing
100 2.6 1.9 9.0 2.8
250 1.9 1.3 6.2 2.2
500 1.7 1.6 4.6 2.5
750 1.4 1.2 3.9 2.2
1000 2.1 1.0 4.5 1.8
2500 1.3 1.3 2.6 1.9
5000 1.2 1.2 2.4 1.9
7500 1.3 1.2 2.0 1.9
10000 1.0 1.4 2.1 2.1

Table 4.7: Average number of missing and extra edges of network structures returned
by simulated annealing and rejectionfree annealing.

expert only needs to identify the suggested dependencies that are not signi�cant or
that arose by coincidental occurrences of cases. In this case, it is better to use an
information criterion with a small penalty function or the Bayesian measure. When
the learned Bayesian belief network is used for classi�cation, a good approximation
of the distribution over the domain is important. In this case, the best quality
measure is an information criterion with a very high penalty function. When the
results need to be interpreted in terms of probabilities, the Bayesian measure may
be used. Alternatively, the MDL measure may be interpreted as approximation of
the Bayesian measure.

In general, the performance di�erences of the search algorithms is not very large.
Therefore, we believe that it is not worth the e�ort to investigate these general
purpose algorithms or to develop more clever heuristics. The choice of the search
algorithm also depends on the use of the learned network. If computation time is
important, for example, when a network is evaluated every time it has been used
for inference, then a greedy search heuristic is most suitable. If the quality of the
distribution is important, one may select a greedy search heuristic when there turn
out to be many arcs in the network structure, and otherwise the general search
heuristics perform �ne. By running K2 with some good node ordering, one can
determine with little computational e�ort whether the network structure contains
many arcs or not. If the quality of the network structure is important, rejectionfree
annealing is most suitable. If few missing and extra edges are required then tabu
search seems to be the best choice of the general search heuristics. However, K2
performs comparable when a good ordering is available.

For learning assessment functions smoothing seems to give slightly smaller er-
rors in the estimates of these functions than direct estimates do. However, large
databases are necessary to obtain reliable estimates, especially when the network
structure contains many arcs and many values need to be estimated. The database
used in the experiments contained at most 500 cases. Databases of the used sizes
are too small to obtain useful estimates.

124
�
�
�
�

Learning Bayesian Networks

Appendix4.6

In this appendix, we show some additional properties of the Bayesian measure and
we show that a probability distribution exists that induces the independency model
used in the proof of Theorem 4.5.

We show some properties of the Bayesian measure for a database Dn of the form
as de�ned in Section 4.2.7. In particular, we consider the parent set of node w in
network structures learned from Dn. The parent set that consists of a number of
consecutive variables fvn�k; vn�k+1; : : : ; vng will be preferred by the Bayesian mea-
sure over a set that consists of a number of consecutive variables of the same size
that is lower numbered.

Lemma Let V = fv1; : : : ; vn; wg be a set of variables and let Dn be a �nite database4.7

over V as de�ned in Section 4.2.7. Let �0w = fvj�k; vj�k+1; : : : ; vjg for some k � 0, k <
j < n, and let �w = fvn�k; vn�k+1; : : : ; vng. Then, mB(w; �0w;Dn) < mB(w; �w;Dn).

Proof: We will refer to the con�guration of �0w when all nodes have value 0 as the
�rst con�guration of �0w; when all nodes have value 1 as the last con�guration of
�0w. Note that by construction of Dn we have that the number of cases in Dn for
which w is 0 and �w takes any other con�guration than the last one is 2. Now, by
de�nition, we have

exp(mB(w; �0w;Dn)) =

q0Y
j0=1

N 0
(n+1)j00!N

0
(n+1)j01!

(N 0
(n+1)j0 + 1)!

:

Let a be the number of cases in Dn for which w is 0 and all nodes in �0w have value
0. Let b be the number cases in Dn for which w is 0 and all nodes in �0w have value
1. Let +s represent the case that the number of cases with w is 0 is more, less, or
equal to w is 1 for the �rst con�guration of �0w. So, t 2 f�2; 0; 2g. Further let +r
represent that there may be two cases more with w is 0 than with w is 1 for the last
con�guration. So, s 2 f0; 2g. Then, we can write exp(mB(w; �0w;Dn)) as

a!(a+ s)!

(2a+ 1 + s)!

�
2!

3!

�k�1
b!(b+ r)!

(2b+ 1 + r)!
:4.27

Note that there are six ways to interpret Formula 4.27. Likewise, we can write
exp(mB(w; �w;Dn)) as�

2!

3!

�k
(a+ b+ d� 2)!(a+ b� d + s+ r)!

(2a+ 2b+ 1� 2 + s+ r)!
;

where d is 0 or 2 representing the possibility that for the �rst con�guration, the

4.28

number of cases where w is 0 may di�er from the number of cases where w is 1.
We will show that Formula 4.28 is an upper bound of Formula 4.27 and thus that
mB(w; �0w;Dn) < mB(w; �w;Dn).

125
�
�
�
�

Learning Bayesian Networks

By writing xy for x!
(x�y)!

and grouping terms, we can write Formula 4.28 as

a!(a+ s)!

(2a+ 1 + s)!

�
2!

3!

�k�1�2!

3!

(a+ b+ d� 2)b+d�2(a+ b� d+ s+ r)b�d+r

(2a+ 2b� 1 + s+ r)2b�2+r

�
:

The �rst two terms are exactly the same as in Formula 4.27. So, we concentrate on

4.29

the third term

(a+ b+ d� 2)b+d�2(a+ b� d + s+ r)b�d+r

(2a+ 2b� 1 + s+ r)2b�2+r
2!

3!
:

We proceed comparing by `peeling' terms of the form x�y
w�z

from Formula 4.30 starting

4.30

with as high as possible values of x � y and w � z. We can write Formula 4.30 as

(a+ b+ d� 2)(a+ b� d+ s+ r)

(2a+ 2b� 1 + s+ r)(2a+ 2b � 2 + s+ r)

�(a+ b+ d� 3)b+d�3(a+ b� d � 1 + s+ r)b�d�1+r

(2a+ 2b� 3 + s+ r)2b�4+r
2!

3!
:

By inspection, we �nd that

4.31

(a+ b+ d� 2)(a+ b� d+ s+ r)

(2a+ 2b � 1 + s+ r)(2a+ 2b� 2 + s+ r)
>

b(b+ r)

(2b+ 1 + r)(2b + r)
:

So, Formula 4.31 is larger than,

b(b+ r)

(2b + 1 + r)(2b+ r)

(a+ b+ d � 3)b+d�3(a+ b� d� 1 + s+ r)b�d�1+r

(2a+ 2b� 3 + s+ r)2b�4+r
2!

3!
:

Note that the last part is of the same form as 4.30 but now with b � 1 instead of
b. Therefore, we can repeat the previous derivation. After b� 2 times applying this
derivation, we get as lower bound of Formula 4.31,

bb�2(b+ r)b�2

(2b+ 1 + r)2b�4
(a+ d � 2)d(a� d+ s+ r)�d+r

(2a+ 3 + s+ r)2+r
2!

3!
:

By inspection, we �nd that,

4.32

(a+ d� 2)d(a� d+ s+ r)�d+r

(2a+ 3 + s+ r)2+r
2!

3!
>

2!(2 + r)!

5 + r!
:

Therefore, Formula 4.32 is larger than,

bb�2(b+ r)b�2

(2b+ 1 + r)2b�4
2!(2 + r)!

(5 + r!)
;

which is equal to
b!(b+ r)!

(2b + 1 + r)!
:

We conclude that Formula 4.30 is larger than the third term of Formula 4.29. There-
fore, Formula 4.28 is larger than Formula 4.27, which completes the proof.

Another property of the Bayesian measure with respect to to the parent set of w
for a database Dn is that the Bayesian measure will prefer a parent set of w where
the nodes are a set of consecutive nodes starting with vk downwards over a parent
set with non-consecutive nodes with highest node vk.

126
�
�
�
�

Learning Bayesian Networks

9101112131415

v v v v v v v v vv v v v v v v

12345678910111213141516

v v v v v v v v vv v v v v v v

1234567891011

16

1213141516

v v v v v v v v vv v v v v v v

12345678910111213141516

v v v v v v v v vv v v v v v v

12345678

Figure 4.11: Example of parent sets of w

Lemma Let V = fv1; : : : ; vn; wg andDn be as before. Let �w = fvn�k; vn�k+1; : : : ; vng4.8

for some 0 � khn and �0w � fv1; : : : ; vng, j�0wj = k+1, �0w 6= �w. Then, mB(w; �0w;Dn) <
mB(w; �w;Dn).

Proof: Regard parent set �0w as a set of groups of consecutive nodes. In Figure
4.11, the upper parent set shows an example with four groups for D16. Consider
the quality of the parent set on top, and the one right below. In comparing their
Bayesian measures, all con�gurations where v8 = 0 need not be considered. And in
fact, one could act as if D8 was used.

By Lemma 4.7, we �nd that the parent set on top scores lower than the one right
below. By the same argument, this parent set scores less than the one below it, and
the one on the bottom scores highest of them all.

So, by shifting groups of nodes in the parent set we �nd parent sets that score
better and better after each shift, where the parent set �w has highest quality.

A third property of the Bayesian measure with respect to to the parent set of w
for a database Dn is that the Bayesian measure will prefer a parent set of w where
the nodes are a set of consecutive nodes starting with vk downwards over a parent
set obtained by removing the lowest numbered node from the previous parent set.

Lemma Let V = fv1; : : : ; vn; wg andDn be as before. Let �
0
w = fvn�k; vn�k+1; : : : ; vng4.9

for some k < n � 1 and let �w = �0wvn�k�1. Then, m
B(w; �0w;Dn) < mB(w; �w;Dn).

Proof:
By de�nition, �w is equal to �0wvn�k�1. By de�nition, we have that

exp(mB(w; �0w;Dn))� exp(mB(w; �w;Dn)) is

q0Y
j0=1

N 0
(n+1)j00!N

0
(n+1)j01!

(N 0
(n+1)j0 + 1)!

�
qY

j=1

N(n+1)j0!N(n+1)j1!

(N(n+1)j + 1)!
:

127
�
�
�
�

Learning Bayesian Networks

Let b be the number cases in Dn for which w is 0 and all nodes in �0w are 1. Since
all counts of con�gurations with vn�k = 0 are the same, the above formula can be
written as

C

�
b!(b+ r)!

(2b+ 1 + r)!
� 2!

3!
� b!(b� 2 + r)!

(2b� 2 + r)!

�
;

where C is a positive constant. For k < n� 2, Formula 4.33 equals

4.33

C 0

�
(b+ r)(b � 1 + r)

(2b+ 1 + r)(2b + r)
� 2!

3!

�
;

which by inspection is negative. So, for k < n� 2 the Bayesian measure prefers �w
over �0w. For k = n� 2, Formula 4.33 equals

C 0

�
1!3!

5!
� 2!

3!

1!1!

3!

�
= C 0

�
1

20
� 1

18

�
;

which is negative as well. So, also for k = n � 2 the Bayesian measure prefers �w
over �0w.

A fourth property of the Bayesian measure with respect to to the parent set of w
for a database, which summarizes the previous three properties, is that the Bayesian
measure prefers the parent set of w containing all the other nodes over any other
parent set.

Lemma Let V = fv1; : : : ; vn; wg and Dn be as before. Let �0w (fv1; : : : ; vng and4.10

let �w = fv1; : : : ; vng. Then, mB(w; �0w;Dn) < mB(w; �w;Dn).

Proof: The property follows directly from the previous lemmas. For any �0w (
fv1; : : : ; vng with j�wj = k � 1 we have the parent set �00w = fvn�k; : : : ; vng such that
mB(w; �0w;Dn) < mB(w; �00w;Dn) by Lemma 4.8. By repetitively applying Lemma
4.9, thus extending �00w node by node, we �nd that mB(w; �00w;Dn) < mB(w; �w;Dn).

Now, we will show that a distribution exists that induces an independency model
as used in the NP-completeness proof of Theorem 4.5. We show that the following
distribution has this property.

De�nition Let V be a set of binary variables. Let G = (V;E) be an undirected4.12

graph with jEj � 1. Let K : IN ! IN+ be de�ned as K(n) = 2n
2

. Let par :

S ! IN+ be de�ned as parS(S = xS) = K(jSj) if the number of ones in xS is
even, and parS(S = xS) = 2 � K(jSj) otherwise. Let S be the set of sets fBjB �
V;9u;v2B(u; v) 2 Eg. Then, the parity distribution associated with G is the joint
probability distribution on V de�ned as

Pr(V = xV) = � �
X
B2S

parB(B = xB);

where � is a normalization constant.

128
�
�
�
�

Learning Bayesian Networks

Note that the graph G in the de�nition is not a network structure nor a Markov
network. Furthermore, G has to have at least one edge since, otherwise S = ;
and Pr(V = xV) = 0 for all con�gurations of V , which would not de�ne a proper
distribution.

First, we show a property of marginalization of the parity distribution, then we
consider the independency model induced by a parity distribution. The following
lemma states that a marginalized parity distribution is a new parity distribution
plus some constant.

Lemma Let V be a set of binary variables, and let G, S, par, and Pr be as in4.11

De�nition 4.12. For any R � V , we have

Pr(V nR = xV nR) = � �
X

B2S;B�V nR

parB(B = xB) + CR;

where � is a normalization constant and CR is a positive constant.

Proof: We prove the property stated in the lemma by induction to the cardinality
of R.

For jRj = 0, the property stated in the lemma trivially holds with C; = 0.
Assume that for some k � 0 the property stated in the lemma holds for all set R

with jRj < k. Now, let jRj = k. We consider Pr(V nR = xV nR). Let v 2 R, then by
marginalization we have Pr(V nR = xV nR) =

P
xv2
v

Pr(v = xv; V nR = xV nR): Since
Pr(v = xv; V nR = xV nR) is the marginalization of Pr(V = xV) over k � 1 variables,
we can apply the the induction hypothesis. So, we have

Pr(V nR = xV nR) =
X
xv2
v

� �
X

B2S;B�V n(Rnv)

parB(B = xB) + CRnv:4.34

Since � is not a function of xv, Formula 4.34 can be written as � �P
xv2
v

P
B2S;B�V nR parB(B = xB) + CRnv. By changing order of summation, we

have � �PB2S;B�V nR

P
xv2
v

parB(B = xB) + CRnv. When we split this sum into
terms with sets that contain v and that do not and sum over v, we obtain

Pr(V nR = xV nR) = �

8<
:

X
B2S;B�V nR

(parB(B = xB) + parB(B = xB))+

X
B2S;B�V n(Rnv);v2B

�
parB(Bnv = xBnv; v = 0) + parB(Bnv = xBnv; v = 1)

�9=;+ CRnv:

By grouping terms and by de�nition of par, we get that Pr(V nR = xV nR) equals

�

8<
:

X
B2S;B�V nRv

2parB(B = xB) +
X

B2S;B�V n(Rnv);v2B

(1 + 2):K(jBj)
9=
;+ CRnv:

Now, the last term within braces is not a function of the values of variables in V
anymore. So, we can substitute a constant CR = 3� �PB2S;B�V n(Rnv);v2BK(jBj) +

129
�
�
�
�

Learning Bayesian Networks

CRnv, and �0 = 2�. Thus, we obtain Pr(V nR = xV nR) = �0 �PB2S;B�V nR parB(B =

xB) + CR.

Using the previous lemma, we show now I(X;Z; Y) holds in a parity distribution
induced by an undirected graph G if and only if for all u; v 2 XY Z there is no edge
between u and v in G.

Lemma Let V be a set of binary variables, and let G = (V;E) and Pr be as de�ned4.12

in De�nition 4.12. Then, for any disjoint subsets X;Y;Z � V I(X;Z; Y) holds in
Pr if and only if 8u;v2XYZ;u6=v(u; v) 62 E.
Proof: We �rst show the if part of the lemma. Let X and Y be disjoint subsets of
V such that 8u;v2XY;u6=v(u; v) 62 E. If I(X; ;; Y) can be shown, then also I(X 0; Z 0; Y 0)
for all X 0 � X, Y 0 � Y , Z = XY nX 0Y 0 by the weak union and symmetry axioms.
Now, Pr(XY = xXY) is a marginalization of Pr(V = xV), which by Lemma 4.11 is,

� �
X

B2S;B�XY

parB(B = xB) + CV nXY :

By construction of S there is no B 2 S such that B � XY since there is no
pair u; v 2 XY containing an edge. So, Pr(XY = xXY) is constant CV nXY for
any con�guration xXY of XY . From Pr(X = xX) =

P
Y Pr(XY = xXY) and

Pr(Y = xY) =
P

X Pr(XY = xXY), we derive Pr(X = xX)Pr(Y = xY) =P
Y Pr(XY = xXY)

P
X Pr(XY = xXY). From the above argument, we �nd

that Pr(X = xX)Pr(Y = xY) is
P

xY 2
Y
CV nXY

P
xX2
X

CV nXY . Summation over
the constants gives jXjjY jCV nXYCV nXY which is a constant C itself. Since both
Pr(XY = xXY) = CV nXY and Pr(X = xX)Pr(Y = xY) = C de�ne a proper dis-
tribution over XY , we have that CV nXY must be equal to C and thus Pr(XY =
xXY) = Pr(X = xX)Pr(Y = xY) which by de�nition tells that I(X; ;; Y) holds in
Pr.

We now show the only if part. Let X; Y; Z be subsets of V such that there exist
u; v 2 XY Z; u 6= v with (u; v) 2 E. Then,

Pr(XY Z = xXY Z) = � �
X

B2S;B�XYZ

parB(B = xB) + CV nXY Z:

By construction of S there is at least one setB, B 2 S;B � XY S, namelyB = XY Z.

4.35

Let m = jXY Zj. Consider the contribution to Formula 4.35 of the sets smaller than
m in S that are in XY Z; there are at most m2m�1 such subsets and they contribute
at most 2(m�1)

2

times 2. So, at most m2m�1+(m�1)
2+1 is contributed. But the set

XY Z contributes at least 2m
2

to Formula 4.35. We have,

m2m�1+(m�1)
2+1=2m

2

= m21�m < 1;

form > 0. Therefore, the `parity' ofXY Z dominates the summation and determines
for a certain thresh hold level � whether Pr(XY Z = xXYZ) > � or not. The `parity'
of a set cannot be written as the product of functions of two subsets. So, I(X;Z; Y)
does not hold in Pr(V = xV).

130
�
�
�
�

Learning Bayesian Networks

Strati�ed Simulation

Inference is the main activity of knowledge-based systems: by means of inference, a
knowledge-based system can reason with the knowledge represented in its formalism.
For Bayesian belief networks, inference amounts to computing conditional probabil-
ities for variables of interest, given the values of observed variables. Inference can
be exact, that is, calculating exact probabilities, or approximate. Exact inference
has been proven to be NP-hard [22]. So, it is not surprising that exact methods
cannot be successfully used for every type of Bayesian belief network. The topology
of a network structure has a large in
uence on the performance [108]. However, al-
gorithms are available for exact inference[72, 81] that have a polynomial complexity
for a wide range of network structures. In many applications, exact inference may
not be necessary. For example, if the probability assessments in the network are not
highly accurate, approximate probabilities can be delivered anyway. Also, it may
su�ce to know whether a certain probability has exceeded some threshold value and
accuracy is not required. In such cases, approximate inference may be employed.
Various algorithms have been developed [17, 55, 80, 97] for this task, most of which
are based on the principle of simulation.

The basic idea of simulation is to generate a sample, that is, a multi-set of con-
�gurations using the distribution represented by the network. The probability of
a variable taking a certain value is estimated from the sample by taking its rel-
ative frequency of appearance. It has been proven that approximating probabili-
ties from a Bayesian belief networks with certain error properties is NP-hard [29].
Notwithstanding this result, approximate inference has many advantages over exact
inference. The execution-time of an approximate method is linear in the number of
nodes of the network n and the number of samples m ((O(n �m)). So, on fore-hand
it is known what the execution-time of the algorithm will be. The execution-time
of approximation algorithms hardly depends on the topology of the network. More
speci�cally, no special mechanisms are needed for coping with loops. Another advan-
tage of simulation algorithms is that they are easily parallelized; various processes
can generate samples independently and they can then be combined into an estimate
of the probabilities of interest. Simulation algorithms, further, have an `any-time'
property, that is, the algorithm may be stopped at any moment desired. Yet, the
longer the sample generation is continued, the better the approximation of proba-
bilities is.

However, observed values of variables tend to decrease the accuracy of approxi-
mations by simulation schemes. Many generated con�gurations may be very non-
speci�c for the observed evidence and only a small portion of the con�gurations
may in
uence the estimates. As a result, the estimates are e�ectively based on only
a few con�gurations, resulting in a large error in the estimation. Therefore, it is
important that a simulation algorithm generates con�gurations evenly distributed
over the sample space. Strati�cation is a popular statistical technique that can be
exploited for this purpose. In this chapter, we present a new approximation al-
gorithm based on strati�cation. With strati�cation, the generated con�gurations
re
ect the distribution of the Bayesian belief network better than with ordinary

131
�
�
�
�
�

simulation techniques. Therefore, the error in the probability estimates is expected
to be smaller. E�cient generation of samples using strati�cation is the topic of the
present chapter.

In Section 5.1, we start with a general introduction of simulation and its applica-
tion to inference in Bayesian belief networks. In Section 5.2, the strati�ed simulation
algorithm is explained in detail and some variants are introduced. In Section 5.3, a
theoretical analysis of the performance of these algorithms is given. In Section 5.4,
experimental results are presented in order to get an impression of the performance
of the strati�ed simulation algorithms compared to other approximation methods.

Simulation5.1

Before turning to approximate inference for Bayesian belief networks, we give an
informal introduction to the principles of simulation. Let f : D ! IR be a real-
valued function over a �nite domain D called the sample space, and let

� =
X
x2D

f(x)

jDj :

Now suppose that we want to �nd the value of � without having to perform the sum-

5.1

mation over the entire sample space D. Simulation is a technique for approximating
the value of �. At the basis of a simulation algorithm lies a simulation scheme.
A simulation scheme is a procedure for selecting elements from the sample space.
Each selected element is called a sample trial. A sample of size m is a multi-set of
m sample trials. The idea of simulating f is to select a sample of trials fx1; : : : ; xmg,
and to compute for each of the elements xi from this sample the function value f(xi).
The resulting multi-set ff(x1); : : : ; f(xm)g is called a simulation of f . The mean �
of a simulation is an estimate for �.

The simulation scheme used for generating a sample has a large in
uence on the
quality of the estimate for �. For example, when f(x) is close to zero for almost
all values x in the sample space D but very large for a small number of values,
uniform selection of sample trials from D would lead to estimates for � with a large
error. A better way to select sample trials would then be to select sample trials
proportional to their contribution f(x)=m to the estimate for �. More generally, a
sampling distribution PrS overD is used to select sample trials. To compensate for
the biased selection of sample trials with large values of f; the mean of a simulation
is not calculated as the sum of the elements of the simulation but as a weighted
sum over the sample probabilities. The so-called sample score of the simulation S
is calculated as

� =

Pm
i=1 PrS(x = xi)

m

mX
i=1

f(xi)

PrS(x = xi)
:

The contribution f(xi)
PrS(x=xi)

of sample trial xi to the sample score � is called the trial

5.2

score of xi, i = 1; : : : ;m. The law of large numbers now guarantees that � converges
to � when the sample size m goes to in�nity [92], that is,

lim
m!1

� = �:
5.3

132
�
�
�
�
�

Strati�ed Simulation

Simulation for Bayesian Belief Networks5.1.1

Recall that approximate inference with a Bayesian belief network amounts to com-
puting the estimates of (conditional) probabilities of interest from the network. Let
B = (BS; BP) be a Bayesian belief network over a set of variables V . Then, B de�nes
a probability distribution [81]

PrB(V = xV) =
Y
u2V

PrB(u = xuj�u = x�u);

where the conditional probabilities PrB(u = xuj�u = x�u) are de�ned by the assess-

5.4

ment functions in B. Now, let X be a subset of V and suppose that we are interested
in the probability of the con�guration X = xX. This probability is equal to

Pr(X = xX) =
X

xV nX2
V nX

PrB(X = xX; V nX = xV nX):

Since most of the time we are interested in probabilities for single variables only, we
will focus the discussion on single variables in the sequel. However, the presented
theory is easily extended to apply to con�gurations that involve more than one
variable.

When a subset of variables E � V is known to adopt the con�guration xE for
some xE 2
E, then the probability PrB(u = xujE = xE) for some u 2 V nE equals

Pr(u = xujE = xE) =
X

xV nuE2
V nuE

PrB(u = xu; V nuE = xV nuEjE = xE);

By de�nition, we have

5.5

Pr(u = xujE = xE) =
X

xV nuE2
V nuE

PrB(u = xu; V nuE = xV nuE; E = xE)

PrB(E = xE)
;

which can be written as

Pr(u = xujE = xE) = �
X

xV nuE2
V nuE

PrB(u = xu; V nuE = xV nuE; E = xE);

where � is a normalization constant such that the sum over all con�gurations xu 2

5.6

u of Formula 5.6 is one. The sum in Formula 5.6 can now be approximated by
simulation, as described before. We do not simulate Formula 5.5 because PrB(u =
xu; V nuE = xV nuEjE = xE) is not easily available. On the other hand, PrB(u =
xu; V nuE = xV nuE; E = xE) is directly available from the assessment functions in
the Bayesian belief networks. A sample trial then is a con�guration of the set of
variables V nE.

Figure 5.1 shows the general framework of simulation algorithms for Bayesian
belief networks. First, a simulation algorithm-dependent initialization step is per-
formed. Then, m sample trials are generated from the network. Every sample trial
is generated by assigning values to the variables of the network, either one by one
or group-wise. In fact, there are di�erent methods for generating sample trials; also

133
�
�
�
�
�

Strati�ed Simulation

Initialize
i 1
while i � m do

xV generate con�guration i
p PrB(V = xV)=PrS(V = xV)
update scores p
i i+ 1

Normalize scores

Figure 5.1: General simulation framework.

di�erent sampling distributions are in use. The trial score p of a sample trial is
calculated as the quotient of the value of the function that is being approximated,
that is, the probability of the sample trial according to the distribution represented
by the belief network PrB(V = xV), and the probability of generating this speci�c
sample trial, that is, PrS(V = xV). With this trial score p, the sample scores for all
values of variables that we are interested in are updated during the execution of a
simulation algorithm; there are several methods available for updating the sample
score. After the m trials have been generated, the scores are normalized such that
the sum of approximate probabilities that a variable will take a value will be unity.

In summary, there are three components to a simulation algorithm for Bayesian
belief networks:

1. a sampling distribution,

2. a sample trial generator, and

3. a scoring method.

We will review these components in the following subsections.

Sampling Distributions5.1.2

The �rst component of a simulation algorithm for Bayesian belief networks that
we consider is the sampling distribution. The sampling distribution de�nes a joint
probability distribution over the nodes in the Bayesian belief network that are sam-

pled. The sampling distributions used for sampling belief networks typically are
distributions that can be written as the product of distributions over the sets of
sampled nodes, that is, if U is the set of sets of nodes that are being sampled, then

PrS(V nE = xV nE; E = xE) =
Y
W2U

PrS(W = xW jUW = xUW);

where each W is a group of nodes in U and UW is a subset of V that is sampling

5.7

distribution dependent. In most simulation algorithms, all nodes but the ones for
which evidence has been obtained are sampled and the groups contain single nodes
only. We distinguish between four di�erent sampling distributions:

� the uniform distribution,

134
�
�
�
�
�

Strati�ed Simulation

��
��

��
��

��
��@
@R �

�	

- b

b(b = 0ja = 1) = 0:4

c(c = 0ja = 0; b = 0) = 0:3

c(c = 0ja = 0; b = 1) = 0:3

c(c = 0ja = 1; b = 0) = 0:3

c(c = 1ja = 0; b = 0) = 0:3

b(b = 0ja = 0) = 0:6

c(c = 1ja = 0; b = 1) = 0:3

c

c(c = 1ja = 1; b = 0) = 0:4

c(c = 1ja = 1; b = 1) = 0:4

a(a = 0) = 0:4

c(c = 0ja = 1; b = 1) = 0:3

a

Figure 5.2: An example Bayesian belief network.

� the forward sampling distribution,

� the backward sampling distribution, and

� the Markov blanket distribution.

The uniform distribution [55] is used for sampling a single variable; it assigns
the same probability to every value of the variable. So, for a variable u, we have
that for all xu 2
u

PrS(u = xu) =
1

ru
;

where ru is the number of values in
u. Note that in terms of Formula 5.7 we have
W = u and UW = ;. Note that the sampling distribution is completely independent
of the assessment functions in the Bayesian belief network at hand. Because no
knowledge of the domain is incorporated, many non-representative sample trials
are generated, that is, sample trials that have a negligible trial score and hardly
contribute to the sampling score. Therefore, the uniform distribution is a sampling
distribution that leads to unsatisfactory probability estimates.

Consider the Bayesian belief network shown in Figure 5.2 where the state spaces
over the variables a, b, and c equal
a =
b = f0; 1g and
c = f0; 1; 2g respectively.
The assessment functions associated with the variables are listed with the corre-
sponding nodes; the probabilities of the con�gurations for which no assessment has
been given are easily derived, for example,
a(a = 1) = 1 �
a(a = 0) = 0:6. Now
suppose that node c is sampled with the uniform distribution. A random number
generator is used to obtain a real value f between 0 and 1. If f is in the interval
[0::1

3
], then the variable c is assigned the value 0; if f is in the interval [1

2
::2
3
], then c

is assigned the value 1, and if f is in the interval [2
3
::1] then c is assigned the value

2.
The forward sampling distribution [55] is also used for sampling a single variable.

A variable, however, can only be forward sampled if all its parents have been assigned
a value. The forward sampling distribution for a variable u is the distribution for
u given the speci�c con�guration of its parent set by the Bayesian belief network,
that is, we have that

PrS(u = xuj�u = x�u) =
u(u = xuj�u = x�u);

for all xu 2
u. Note that in terms of Formula 5.7 we have W = u and UW = �u.
In general, the forward sampling distribution results in good samples as long as

135
�
�
�
�
�

Strati�ed Simulation

the probability of the observed evidence is not very close to zero. If there is such
evidence, the problem of generating many non-representative sample trials rises
again.

Consider once more the Bayesian belief network from Figure 5.2. When the
variables a and b in the network of have been assigned the values 0 and 1 respectively,
node c is sampled by means of the assessment function for c. The probability that
c will be assigned the value 0 is PrS(c = 0ja = 0; b = 1) = 0:3. Likewise, the
probability that c will be assigned the value 1 and 2 is PrS(c = 1ja = 0; b = 1) = 0:3
and PrS(c = 2ja = 0; b = 1) = 0:4 respectively.

The backward sampling distribution [38] is used for sampling a set of nodes: the
parent set �u of a variable u can be sampled when u has been assigned a value. The
con�gurations of �u are assigned a probability according to the assessment function
of node u. We have

PrS(�u = x�uju = xu) =

u(u = xuj�u = x�u)

�u
;

where �u is a normalization constant. Note that in terms of Formula 5.7 we have
W = �u, and UW = u. It has been suggested that the backward sampling distribution
is much less sensitive to probabilities close to zero than the other distributions [38].
Therefore, sample trials that are generated with a backward sampling distribution
may be more representative compared to sample trials generated with a forward
sampling distribution when the probability of the evidence is very small. Since not
all nodes can be backward sampled, backward sampling must be mixed with another
sampling method like for example forward sampling.

To illustrate the use of the backward sampling distribution consider once more
the Bayesian belief network from Figure 5.2. Suppose that the variable c has been
assigned the value 1. Then, the probabilities with which a and b are assigned values
are

PrS(a = 0; b = 0jc = 1) /
c(c = 1ja = 0; b = 0) = 0:3;
P rS(a = 0; b = 1jc = 1) /
c(c = 1ja = 0; b = 1) = 0:3;
P rS(a = 1; b = 0jc = 1) /
c(c = 1ja = 1; b = 0) = 0:4; and
PrS(a = 1; b = 1jc = 1) /
c(c = 1ja = 1; b = 1) = 0:4:

The normalization constant equals �c = 0:3 + 0:4 + 0:4 + 0:3 = 1:4. The sampling
distribution PrS therefore equals

PrS(a = 0; b = 0jc = 1) = 0:3
1:4

= 3
14
;

P rS(a = 0; b = 1jc = 1) = 0:4
1:4 = 2

7 ;
P rS(a = 1; b = 0jc = 1) = 0:4

1:4 = 2
7 ; and

PrS(a = 1; b = 1jc = 1) = 0:3
1:4 = 3

14 :

The Markov blanket sampling distribution [80] is a distribution used for sam-
pling a single variable u again. A variable, however, can only be sampled if all
variables in its so-called Markov blanket have been assigned a value. Informally
speaking, the Markov blanketMu of a variable u is the set composed of all parents
of u, the children of u, and the parents of the children of u except u itself. The
values of node u are assigned a probability, that is, proportional to the product of
appropriate values of the assessment functions of the nodes in its Markov blanket

136
�
�
�
�
�

Strati�ed Simulation

Mu. The functionvalues are conform to the con�guration xV nu of the nodes V nu and
the con�guration xu of u, that is, we have

PrS(u = xujV nu = xV nu) = �u
u(u = xuj�u = x�u)
Y
v2Mu

v(v = xvj�v = x�v);

where once more �u is a normalization constant. Note that the values of the assess-
ment functions that do not pertain to u itself are canceled out by the normalization
constant. Therefore, we have that PrS(u = xujV nu = xV nu) can be written as

PrS(u = xujMu = xMu) = �u
u(v = xvj�v = x�v)
Y
v2�u

v(v = xvj�v = x�v):

Note that in terms of Formula 5.7 we have that W = u and UW = Mu. Samples
generated with the Markov blanket distribution give good approximations in general.
However, if there is a strong dependence between variables it may happen that two
strongly dependent variables keep each other at the same value in all sample trials,
which may result in inaccurate estimates.

Suppose that we want to sample node b of the Bayesian belief network from Figure
5.2 with a Markov blanket sampling distribution. Further, suppose that the nodes
a and c from the Markov boundary of b have been assigned the values a = 0 and
c = 1 respectively. Then, the values of b are assigned probabilities

PS(b = 0ja = 0; c = 1) /
b(b = 0ja = 0) �
c(c = 1ja = 0; b = 0) = 0:6 � 0:3 = 0:18;

PS(b = 1ja = 0; c = 1) /
b(b = 1ja = 0) �
c(c = 1ja = 0; b = 1) = 0:4 � 0:4 = 0:16:

The normalization constant equals �b = 0:18 + 0:16 = 0:34. So, we have

PS(b = 0ja = 0; c = 1) = 0:18=0:34 = 9=17;

PS(b = 1ja = 0; c = 1) = 0:16=0:34 = 8=17:

The sampling distributions mentioned so far are static during the execution of
a simulation algorithm, that is, they do not change. The heuristic importance

sampling distribution [55, 97] is dynamically changing during execution of the
simulation algorithm. The basic idea is that the sampling distribution is updated
depending on the sample trials generated: every time after k sample trials have
been generated, the joint probability distribution represented by the Bayesian belief
network is estimated, and a weighted sum of this estimated distribution and the
previously used sampling distribution is taken as the new sampling distribution.
We will not consider this sampling distribution in the sequel.

Sample Trial Generator5.1.3

The second component of a simulation algorithm for Bayesian belief networks is
the sample trial generator. This generator assigns a value to each variable or set of
variables of a network according to a sampling distribution.

137
�
�
�
�
�

Strati�ed Simulation

In the simulation scheme known as equiprobable sampling a sample trial genera-
tor is used in which nodes are assigned a value in random order. For the generated
con�guration xV of the set of all variables V the trial score is

p =
PrB(V = xV)

PrS(V = xV)
=

Q
u2V
u(u = xuj�u = x�u)Q

u2V ru
:

Since in this fraction the denominator is the same for all con�gurations, it will
have no in
uence on the normalization step at the end of a simulation algorithm.
Therefore, it can be omitted and we take the trial score

p =
Y
u2V

u(u = xuj�u = x�u):

When a sample trial generator is used in which all nodes are sampled accord-
ing to a forward sampling distribution, we speak of logic sampling [55], evidence
weighting [37, 97], or likelihood weighting depending on the scoring method; in
this thesis, we use the latter phrase. Before a node u can be sampled, its parents
must have been assigned a value �rst. To accomplish this, likelihood weighting is
performed by �rst assigning values to the root nodes (if they are not all evidence
nodes), and then assigning values to nodes of which all parents have been assigned
a value, until all nodes have been assigned a value. So, the order in which the nodes
are assigned a value is a topological ordering.

For a con�guration xV thus generated, we have that the trial score is

p =
PrB(V = xV)

PrS(V = xV)
=

Q
u2V
u(u = xuj�u = x�u)Q
u2V
u(u = xuj�u = x�u)

= 1:

If some evidence is entered into the network, a sample generator can be used in
which nodes are interchangeably sampled according to the forward and backward
sampling distributions. The order in which the nodes are sampled has to meet the
following two requirements:

1. a set of nodes can only be backward sampled if it is the parent set �u of an
instantiated node u.

2. a node can only be forward sampled if all its parents are instantiated.

Any order that satis�es these two requirements can be used to generate a sample
trial. Note that such an order not necessarily is a topological ordering on the nodes.
The in
uence of the ordering on the convergence of the approximated probabilities
to the exact probabilities is still an open question; however, it has been suggested
[38] that it may be bene�cial to backward sample evidence nodes with assessment
functions that have values close to zero since this would generate sample trials with
a larger trial score and hence result in more representative sample trials.

For a con�guration xV thus generated, the trail score is computed as follows. Let
A be the set of nodes that have been backward sampled and let F be the set of
nodes to which forward sampling has been applied. Then, the trial score is

p =
PrB(V = xV)

PrS(V = xV)
=

Q
u2V
u(u = xuj�u = x�u)Q

u2F
u(u = xuj�u = x�u)
Q

u2A
u(u = xuj�u = x�u)=�u

138
�
�
�
�
�

Strati�ed Simulation

By dividing out common terms, we �nd,

p =
Y

u2V nFA

Pr(u = xuj�u = x�u) �
Y
u2A

�u:

When a sample trial generator is used in which all nodes are assigned a value ac-
cording to a Markov blanket sampling distribution, we speak of Gibbs sampling or
Pearl's scheme. For this scheme, an initial con�guration is necessary, because the
Markov sampling distribution depends on such a con�guration. The initial con�gu-
ration is generated by using one of the other simulation methods. From this initial
con�guration, a new con�guration is generated by assigning a value to a single node
u with a probability given by the Markov blanket sampling distribution of u with the
con�guration of the variables in the network. Then the score for u can be updated.
This process is applied to every node in V nE. The thus generated con�guration is
the sample trial generated by Markov blanket sampling. For assigning values to the
nodes, there is no restriction on the order in which the nodes are dealt with. The
order may in
uence the choice of the con�guration though.

Pearl [80] showed that with a trial score p = 1 for each sample trial, sample
scores tend to converge to the actual probabilities. Like the forward and backward
sampling distributions, also this distribution results in good samples, as long as the
assessment functions do not contain values close to zero.

Scoring Methods5.1.4

The third component of a simulation algorithm for Bayesian belief networks is the
scoring method. This scoring method is used to calculate the actual approximation
of probabilities by assigning a weight to each con�guration generated. For each
variable u in the network and for every value in
u, a counter is used for calculating
the sample scores. For every sample trial in a sample, some or all sample scores
are updated using the trial score of this sample. We describe two scoring methods,
simple scoring and Markov blanket scoring.

When the simple scoring method is used, the trial score p of a sample trial xV is
added to the sample score of each variable's value appearing in xV . Note that not
all scores are updated but only the scores of the values in xV . Consider once more
the Bayesian belief network shown in Figure 5.2. Consider the con�guration a = 0,
b = 0, c = 1 with the trial score 0:072 obtained by equiprobable sampling. When
using the simple scoring method, the sample scores for a = 0, b = 0 and c = 1 are
increased by 0:072.

WithMarkov blanket scoring [80], the trial score p is weighted before it is added
to the sample score. Instead of adding p to the sample score of a value xu of node
u appearing in the sample trial xV , the value

p � PrS(u = xujMu = xMu)

is added, where PrS is the Markov blanket sampling distribution. Consider once
more the Bayesian belief network shown in Figure 5.2 and consider the con�guration
a = 0, b = 0, c = 1 with p = 0:072. For node b, we have PrS(b = 0ja = 0; c = 1) =
9=17 and PrS(b = 1ja = 0; c = 1) = 8=17. The sample score for b = 0 now is increased

139
�
�
�
�
�

Strati�ed Simulation

with 0:072 � 9=17 and the sample score for b = 1 is increased with 0:072 � 8=17. The
sample scores for a = 0, a = 1, c = 0, c = 1, and c = 2 are updated in a similar
fashion.

Note that for the equiprobable and likelihood weighting schemes, additional work
needs to be performed in computing the probabilities for the Markov blankets. When
used with Markov blanket sampling, however, these probabilities are already avail-
able, as they have been computed for generating the con�guration.

A Strati�ed Simulation Scheme5.2

In this section, we will present a new sample trial generator. It is based on a popular
statistical technique known as strati�cation [85] that aims at obtaining sample trials
that are evenly distributed over the sample space. The basic idea of strati�cation is
to divide the sample space into so-called strata and then choose a �xed number of
sample trials in each stratum. In this way, it is not possible that no sample trials are
taken from a large area of the sample space. As a result, the strati�ed simulation
scheme tends to yield samples from which better approximations are derived.

First, we will describe how to apply strati�cation to inference in Bayesian belief
networks in theory. Then, we show how strati�cation can be implemented e�ciently.
To conclude, we consider some optimizations and variations of the strati�ed scheme.

Strati�cation for Bayesian Belief Networks5.2.1

To apply strati�cation to inference in Bayesian belief networks, we �rst assign an
ordering on the con�gurations of the variables in the network, and associate a unique
subinterval of [0::1] to each con�guration. The unit interval is our sample space.
There is a large freedom in selecting strata. In our approach, we will split the
sample space [0::1] into m equally likely strata and choose one sample trial from
each stratum.

Let the variables in the set V be ordered v1 < : : : < vn, n � 1. Let PrS be a
sampling distribution on V . The elements of the outcome space
i of vi, i = 1; : : : ; n,
will be denoted by the integers 0; 1; : : : ; ri � 1, where ri is the number of values vi
may adopt. The con�gurations of V are now taken to be ordered according to the
ordering on the integers taking the order of the variables in account, that is, xV < x0V
if there is an i 2 f1; : : : ; ng such that xvj = x0vj for j = 1; : : : ; i � 1 and xvi < x0vi
where xvk and x

0
vk
conform to xV and x0V respectively. For ease of exposition, assume

that there are no variables observed, that is, E = ;. With each con�guration xV of
V , we associate an interval I(xV) de�ned by,

I(xV) = [lo(xV); hi(xV));

where
lo(xV) =

X
x0
V
<xV

PrS(V = x0V);

and
hi(xV) =

X
x0V �xV

PrS(V = x0V):

140
�
�
�
�
�

Strati�ed Simulation

Con�guration Probability Accumulated probability Associated interval
000 0.072 0.072 [0.000,0.072)
001 0.072 0.144 [0.072,0.144)
002 0.096 0.240 [0.144,0.240)
010 0.048 0.288 [0.240,0.288)
011 0.048 0.336 [0.288,0.336)
012 0.064 0.400 [0.336,0.400)
100 0.072 0.472 [0.400,0.472)
101 0.096 0.568 [0.472,0.568)
102 0.072 0.640 [0.568,0.640)
110 0.108 0.748 [0.640,0.748)
111 0.144 0.892 [0.748,0.892)
112 0.108 1.000 [0.892,1.000)

Table 5.1: Ordered con�gurations, associated probabilities and intervals.

So, the lower bound of an interval I(xV) is the probability that V takes a con�gura-
tion smaller than xV and the size of the interval I(xV) equals the probability of se-
lecting xV according to PrS . In this way, the unit interval [0::1] is divided into subin-
tervals such that for every number f 2 [0::1] there is a unique con�guration xV of V
such that f 2 I(xV). Consider once more the Bayesian belief network from Figure
5.2, where V = fa; b; cg. Suppose that the variables are ordered a < b < c. Let PrS
be the joint probability distribution on V de�ned by the network. For the con�gura-
tion a = 0, b = 1, c = 0, that is, the con�guration V = 010, we have that the interval
I(010) equals [0:24; 0:288), since lo(010) = Pr(V = 000) + Pr(V = 001) + Pr(V =
002) = 0:24 and hi(010) = lo(010) + Pr(V = xV) = 0:24 + 0:4 � 0:4 � 0:3 = 0:288.
Table 5.1 lists the intervals for the various con�gurations of V .

The strati�ed simulation scheme now uses the intervals I(xV) of the con�gurations
xV of V to select sample trials. Basically, it chooses a number f randomly from the
unit interval and then yields the con�guration xV of V such that f 2 I(xV). In our
example, suppose that the number f = 0:246 is chosen. Since f is in the interval
I(xV) = [0:24; 0:288) of the con�guration xV = 010, the sample trial a = 0, b = 1,
c = 0 is yielded.

The concept of intervals associated to con�gurations of V can be generalized to
intervals associated to pre�xes of con�gurations of V . We de�ne the pre�x of k bits
of con�guration xV , 1 � k � n, denoted as prefk(xV), by xv1 : : : xvk . For example,
pref3(0111) = 011 and pref1(0111) = 0. Then, the intervals generalized to pre�xes
Ik(xV) associated with con�guration xV is de�ned for 1 � k � n by

Ik(xV) = [lok(xV); hik(xV));

where
lok(xV) =

X
prefk(x

0
V)<prefk(xV)

PrS(V = x0V);

and
hik(xV) =

X
prefk(x

0
V)�prefk(xV)

PrS(V = x0V);

141
�
�
�
�
�

Strati�ed Simulation

a b c

10.

111

102
101
100

112

110

012

1.000

011
010
002
001
000

01.

00.

11.

0..

1..

0.240

0.000
0.072
0.144

0.288
0.336
0.400
0.472

0.568
0.640

0.748

0.892

Figure 5.3: Intervals of pre�xes.

and for k = 0,
Ik(xV) = [0; 1):

So, the lower bound of an interval Ik(xV) is the probability that the variables v1 : : : vk
take a con�guration smaller than prefk(xV) and the size of the interval Ik(xV) equals
the probability of selecting v1 : : : vk conform to xV according to PrS . Note that for
k = n we have Ik(xV) = I(xV). Also note that Ik(xV) � Ik�1(xV) for all k = 1; : : : ; n.
Consider once more the Bayesian belief network of Figure 5.2. Figure 5.3 shows the
various intervals of all possible con�gurations. For example, I2(01:), where for the
: in 01: any value of c may be substituted, starts at 0:24 since PrS(pref2(xV) <
01) = PrS(V = 000) + PrS(V = 001) + PrS(V = 002) = 0:24 and ends at 0:4 since
PrS(pref2(xV) = 01) = PrS(V = 010) + PrS(V = 011) + PrS(V = 012) = 0:16.

An Algorithm for the Strati�ed Simulation Scheme5.2.2

Based on the concept of strati�cation outlined above, we now formulate a simulation
scheme. The basic idea is as follows. We divide the unit interval [0::1] into m equal
disjoint parts called strata, where m is the number of required sample trials. For
each stratum we generate one random number f . These m random numbers are
chosen in the unit interval and these numbers are considered in ascending order.
Now suppose that the numbers f1 = 0:246, f2 = 0:399, and f3 = 0:6789 have been
generated. The sample trial corresponding to the �rst number is xV;1 = 010, to the
second xV;2 = 012, and to the third xV;3 = 110. Observe that for the samples xV;1 and
xV;2 only the least signi�cant number has changed. In general, when the random
numbers are considered in ascending order, then only the k least signi�cant bits
change and the n � k most signi�cant bits do not. This property can be exploited
to get an e�cient simulation scheme by dynamically changing values of these least
signi�cant variables. When we are looking for an interval that contains f and the
previous sample trial is con�guration xV;i�1, we �rst check if f is in In(xV;i�1). If it
is not, we check if it is in In�1(xV;i�1) and so forth, until we �nd a k such that f

142
�
�
�
�
�

Strati�ed Simulation

l0 0; h0 1
for i 1 to n do

li 0
if vi 2 E then

xvi ei
hi hi�1

else
xvi 0
hi hi�1 � PrS(vi = 0jVi = xVi)

Figure 5.4: Initialization of the strati�ed scheme.

is in Ik(xV;i�1) = [lok(xV;i�1); hik(xV;i�1)). Now observe that for all j, loj(xV;i�1) is
smaller than f . So, only hij(xV;i�1) need to be considered; looking for k such that
hik(xV;i�1) > f and hik+1 < f is su�cient. Since hik(xV;i�1) is a descending function
of k, this procedure can be performed with binary search.

In Figure 5.4 pseudo-code for the initialization method for the strati�ed scheme
is shown and in Figure 5.5 pseudo-code for generating the ith sample trial is shown.
The values of the variables in a sample trial in the making are stored in the array
xV ; we keep track of the various pre�x intervals of the con�guration stored in xV in
the arrays l and h for respectively the lower and upper bounds.

During initialization, the lowest ordered con�guration and the associated intervals
are determined. So, a con�guration x0V is generated in which each variable is assigned
a value 0 except when there is evidence for the variable. Evidence variables are
assigned their observed values. Note that evidence nodes do not contribute to the
interval. Since we consider the lowest ordered con�guration, the lower bounds of
all pre�x intervals associated with x0V are 0, that is, loj(x0V) = 0, j = 0; : : : ; n. The
upper bound hij(x0V) equals by de�nition

P
prefj(x0V)�prefj(x

0

V
) PrS(V = x0V) which

for the initial con�guration x0V reduces to PrS(v1 = x01; : : : ; vj = x0j) where vj is
the jth variable according to the ordering on V . By the de�nition of conditional
probability, we have PrS(v1 = x01; : : : ; vj = x0j) = PrS(vj = x0j jv1 = x01; : : : ; vj�1 =
x0j�1) � PrS(v1 = x01; : : : ; vj�1 = x0j�1). And, since PrS(v1 = x01; : : : ; vj�1 = x0j�1)
equals hij�1(x0V), and we write Vj for Vj = fvij1 � i < jg, we can calculate hij(x0V)
by PrS(vj = x0j jVj = x0Vj) � hij�1(x0V).

Figure 5.5 shows pseudo-code for generating the ith sample trial. Basically, a
random number f is generated, and the �rst variable vj in the ordering is identi�ed
that needs to be assigned a new value. Then, one by one each variable vj; : : : ; vn is
assigned a value and its associated intervals are determined.

First, a number f from the ith stratum [(i � 1)=m; i=m) is selected randomly.
Using binary search, the �rst variable vj for which hj < f and hj�1 > f is identi�ed.
This is the �rst variable that need to be assigned a new value. All lower ordered
variables remain assigned the same value as in the i�1th con�guration as we argued
above. For the variables vj up to vn a new value will be calculated in ascending
order. To assign a value to vj, the con�guration xV and its associated interval

143
�
�
�
�
�

Strati�ed Simulation

f (random[0 : 1) + i� 1)=m
j Binsearch (f; h)
while j <= n do

if v 2 E then
lj lj�1
hj hj�1

else
k 0
lj lj�1
hj lj + (hj�1 � lj�1) � PrS(vj = kjVj = xVj)
while f > hj do

k k + 1
lj hj
hj lj + (hj�1 � lj�1) � PrS(vj = kjVj = xVj)

xvj k
j j + 1

return(xV)

Figure 5.5: The sample trial generator of the strati�ed simulation scheme.

Ij(xV) = [loj(xV); hij(xV)) needs to be determined that includes f . To this aim, we
step through the state space of vj by taking the values in ascending order until we
�nd a value of vj such that loj(xV) � f < hij(xV).

The lower and upper bounds of the various pre�x intervals to be considered for
vj are calculated from the bounds for vj�1 as follows. If vj is an evidence node,
then the boundaries are the same as for vj�1. If vj is not an evidence node, then
loj(xV) and hij(xV) are bounded by the boundaries of vj�1. From the de�nition of
intervals over pre�xes and the de�nition of conditional probability it follows that
when vj = 0 in xV then loj(xV) = loj�1(xV) and hij(xV) = loj(xV) + (hij�1(xV) �
loj�1(xV)) � PrS(vj = 0jVj = xVj). Further, when x0V is the same con�guration as xV
where the value of vj is incremented by one, we have that loj(x0V) = hij(xV) and
hij(x0V) = loj(x0V) + (hij�1(xV) � loj�1(xV)) � PrS(vj = kjVj = xVj). So, the bounds
of the intervals can be e�ciently calculated.

The strati�ed simulation scheme is a sample trial generator. There are several
ways of de�ning the sampling distribution PrS. When PrS is chosen such that all
variables are independent and PrS(vj = xj) = 1=rj , where rj is the number of values
vj can take, all con�gurations are equiprobable and this scheme will be referred to
as the strati�ed equiprobable scheme. In this case, PrS(vj = xjjVj = xVj) = 1=rj
for all xj 2
j and xVj 2
Vj . For PrS it is also possible to take the distribution
represented by the Bayesian belief network. In this case when the ordering on the
variables is a topological ordering PrS(vj = xjjVj = xVj) =
j(vj = xjj�vj = x�vj) for
all xj 2
j and xVj 2
Vj . This scheme will be referred to as the strati�ed likelihood
scheme. The trial scores for the strati�ed equiprobable scheme and the strati�ed
likelihood scheme are the same as for the equiprobable scheme and the likelihood

144
�
�
�
�
�

Strati�ed Simulation

PPPPPP

a
0 1

0:40:3 0:3 0:40:3 0:3

������
PPPPPP

�
�
��

e
e
ee

�
�
��

\
\
\\

b b

a0

0 1 0

������

1

Pruned tree for b = 0

1

0:40:3 0:30:40:3 0:30:40:40:3 0:30:40:3 0:3

0:4 0:40:4 0:4 0:40:3 0:3 0:3 0:3 0:3 0:3 0:3 0:3

Tree representation

Array representation

Figure 5.6: Data structures for storing assessment functions.

scheme respectively.

Optimizations of the Simulation Scheme5.2.3

In this section, we brie
y point out some optimizations of the strati�ed simulation
scheme.

It is desirable to generate many representative sample trials in a small amount of
time to get a good approximation. Since in generating sample trials the assessment
functions of the Bayesian belief network at hand are used, it is important to carefully
design the data-structure for storing these assessment functions. Recall that the
assessment functions may be looked upon as tables of conditional probabilities.
Such a table can be stored in an array. For example, in CABeN [25], a collection of
algorithms for belief networks, probability tables are stored this way. The basic idea
of array-storage is illustrated in Figure 5.6: in the depicted array, the probabilities
for the variable c from the example of Figure 5.2 are stored. A disadvantage of
storing an assessment function in an array is that for �nding a speci�c probability,
an index needs to be calculated. In general, the calculation of such an index is
computationally expensive. For the example of Figure 5.6, the probability that c
takes value xc given that a and b take value xa and xb respectively is stored at index
xc + rc � xb + rc � rb � xa.

A search tree o�ers an alternative data structure for storing assessment functions.
The search tree storing the assessment function for a node u is a tree in which the
leafs contain the values of the function
u, the internal nodes are associated with
variables in the parent set of u, and branches outgoing from a node associated with
a variable v are labeled with the values that v may take. The basic idea of storing an
assessment function in a search tree is shown in Figure 5.6 where the search tree for
the assessment function of the variable c from the example of Figure 5.2 is depicted.
To determine the value of an assessment function for a given con�guration x�u of
�u, the tree is searched by starting at the root. On every node associated with a

145
�
�
�
�
�

Strati�ed Simulation

variable v the branch labeled with the value xv conform to x�u is taken to arrive at a
new node or a leaf. This process is repeated until a leaf is reached. So, for �nding a
speci�c probability, a pointer may be passed through the tree and no multiplications
need to be performed.

The search tree o�ers another advantage when the following technique is used.
When evidence is observed, outgoing arcs of the observed nodes can be removed
and the assessment functions updated to arrive at a new Bayesian belief network
that represents the conditional joint probability distribution given the observed
evidence [39]. One of the motivations of applying the technique is that if variable u
is observed to be xu then inference algorithms will not use probabilities of children
of u conditioned on con�gurations not involving xu. Since these probabilities will
not be accessed anymore, they can be removed from the search tree representing the
assessment function. When a search tree is used for storing the assessment function,
the tree is pruned by replacing a node associated with an observed variable by the
subtree attached to the branch labeled with its observed value. Consider once more
Figure 5.6. When b has been observed to have the value 0, the search tree for the
assessment function of node c can be pruned arriving at the tree depicted in the lower
part of Figure 5.6. Pruning a search tree is an almost trivial operation. Pruning an
array on the other hand would require considerable computational e�ort.

11

00

01

101.

0.

b
11
10

01

00

1.

0.

b aa

Figure 5.7: In
uence of order on intervals.

Not only the choice of the data structure for storing the assessment functions is
important for optimal computational performance. Recall that the strati�ed likeli-
hood scheme builds on a topological ordering on the variables. In general, a directed
acyclic graph allows several topological orderings of its variables. To fully exploit the
reduction in time achieved by the strati�ed schemes compared to ordinary schemes,
variables with high probabilities in their assessment functions should occur fore-
most in the ordering; in that case large intervals will occur for small pre�xes and
therefore the lower ordered variables won't need a change of value too often. Fig-
ure 5.7 illustrates the intervals for two independent binary variables a and b with
probabilities 0:5 and 0:9 of being 0 respectively. When a is ordered �rst, we have

146
�
�
�
�
�

Strati�ed Simulation

I(.)

Figure 5.8: Skipping steps for large intervals.

the intervals shown on the left-hand side of Figure 5.7 and when b is ordered �rst,
we have the intervals shown on the right-hand side. When three sample trials are
required and the values 0:3, 0:55 and 0:8 have been selected, we see that when a
is ordered �rst, four value assignments take place and when b is ordered �rst, only
three value assignments take place.

So, when choosing a topological ordering of the variables, the assessment functions
should be taken in consideration. An example of a criterion for choosing between
various orderings is to select the ordering in which the nodes are ordered �rst with
a maximal value of

P
u�u2
u�u

Pr(u = xuj�u = x�u)
4=ru�u which assigns extra weight

to probabilities close to one, whereas small probabilities do not contribute much to
the sum.

So far, we assumed that a random number in each stratum was chosen. However,
also the median of the stratum can be taken. Then, for the ith sample trial, i =
1; : : : ;m, the value of fi is taken to be

fi =
i� 0:5

m

instead. At least for the lower ordered nodes, no large changes in approximations
are expected because the values assigned to these nodes will be the same as when
random values are selected. In fact, these estimates will tend to become slightly
better because fewer errors due to random
uctuations are introduced. For variables
high in the ordering, selecting the median of a stratum has the same e�ect as choosing
a random number in the stratum.

In case the values of fi are taken to be the median of a stratum, we know on
fore-hand which values fi will be visited. Now observe that for a con�guration xV
that has a large interval I(xV), the generated sample trials may not change for many
successive numbers; this idea is illustrated in Figure 5.8. Yet, every time that a new
sample trial is generated for a new number, a binary search is performed. This work
can be saved, by simply passing over the calculations for the numbers for which on
fore-hand it is known that they result in the same sample trial. These numbers can
be identi�ed from the boundaries of the interval is stored in hn and ln. Note that

147
�
�
�
�
�

Strati�ed Simulation

Initialize
i 1
while i � m do

xV nE generate con�guration i
p PrB(V nE = xV nE; E = xE)=PrS(V nE = xV nE; E = xE)

� =
�
hn�fi
m

�
+ 1

update scores � � p
i i+ �

Normalize scores

Figure 5.9: Simulation framework for the modi�ed scheme.

� =

�
hi(xV)� fi

m

�
+ 1

numbers can be passed over, where b:c denotes the integer part. In the general

5.8

framework shown in Figure 5.1, we increment the counter i of the sequence fi with
� instead of one. In this way, we save the work of generating the same con�guration
over and over again for di�erent successive values of fi. Observe that in the basic
scheme, the con�guration is scored � times, and in the new scheme the con�guration
is scored only once. So, the trial score p has to be adapted to compensate for
skipping con�gurations in the modi�ed scheme. This is achieved by multiplying
p by �. We refer to the new scheme in which values of fi are passed over as the
modi�ed strati�cation scheme in contrast to the standard strati�ed scheme. Figure
5.9 shows the modi�ed strati�cation scheme in pseudo-code.

Care must taken when networks with many variables are used; the values of
lok(xV) and hik(xV) may erroneously be calculated as equal due to numerical round
o� errors. Therefore, the representation size used for lok(xV) and hik(xV) need to
be taken large enough.

Performance Analysis5.3

Usually, the likelihood weighting scheme is the simulation scheme that gives the best
performance when both computation time and error properties are considered. In
this section we compare the computational complexity of the strati�ed simulation
schemes with the likelihood weighting simulation scheme. In Section 5.3.1 we com-
pare the standard strati�ed scheme with the likelihood weighting scheme, and in
Section 5.3.2 we compare the standard strati�ed scheme with the modi�ed strati�ed
scheme.

Performance of the Strati�ed Scheme5.3.1

The basic idea of using the concept of strati�cation as described in Section 5.2 is that
in generating a new sample trial, the strati�ed scheme saves the work of determining
values for several variables by using the values from the previous sample trial. To

148
�
�
�
�
�

Strati�ed Simulation

determine which variables require a new value, a binary search is performed which
costs at most log n comparisons where n is the number of variables considered.
Based on these ideas, we can determine the computational savings of the strati�ed
likelihood scheme compared to the likelihood weighting scheme.

Theorem Let V be a set of n binary variables. Let PrS be a sampling distribution5.1

over V and let m be the number of trials of the sample to be generated. Let x
and y be the number of value assignments in generating the sample with PrS by
the likelihood weighting and the strati�ed likelihood weighting simulation scheme,
respectively. Let � be the relative cost of a comparison with respect to a value
assignment. Then,

x� y > m � (blogmc � � � log n):

Proof: We begin by determining the number x of value assignments performed
by the likelihood weighting scheme. In this scheme, in each sample trial that is
generated all variables are considered and assigned a value. So, x = m � n � � value
assignments are performed.

Now, consider the number y of value assignments performed by the strati�ed
likelihood weighting scheme. We observe that the most signi�cant variable gets
assigned a value at most twice, the second most signi�cant non-evidence variable
at most four times, etcetera. The blogmcth variable gets assigned a value at most
2blogmc times. We observe that every variable gets assigned a value at most m times.
Therefore, the ith variable, i > blogmc, gets assigned a value at most m times. So,
at most

blogmcX
i=1

2i + (n� blogmc) �m

variable assignments are performed. Note that the amount of work involved in
assigning a value to a variable is the same as for the likelihood weighting scheme.
In the strati�ed likelihood weighting scheme in addition at most m times a binary
search is performed each taking a computational e�ort of � � log n. The binary
searches take a computational e�ort of � �m � log n. Using

Px

k=0
2k = 2x+1 � 1, we

�nd that
y < 2blogmc+1 � 1 + (n� blogmc) �m+ � �m � log n:

So, for the di�erence x� y we have

x� y > �2blogmc+1 + 1 + blogmc �m� � �m � log n:

Using �2blogmc+1 � �2logm+1 = �m� 1, it follows that,

x� y > blogmc �m� � �m � log n;

which proves the theorem.

From the theorem, we have that the likelihood weighting scheme has a worst-case
computational complexity of O(n �m) and the strati�ed likelihood weighting scheme

149
�
�
�
�
�

Strati�ed Simulation

has a computational complexity of O((n� log m

n
) �m). From these observations, we

conclude that if the number of sample trials m is larger than the number of variables
n, which is almost always the case, the strati�ed likelihood weighting scheme is
more e�cient than the likelihood weighting scheme. Similar observations apply if
we compare the equiprobable simulation scheme with the strati�ed equiprobable
scheme.

In general, probability estimates become more accurate as the number of sample
trials increases. Dagum and Horvitz [28] showed that for the likelihood weighting
scheme, to output a probability of a value of a variable u being xu Pr(u = xujE = xE)
with probability higher than 1 � � has relative error smaller than �, at least

a � log(4=�)=(�2Pr(u = xujE = xE))

sample trials are required where a is the maximum value of the sampling distribution.
Consider once more the example of Figure 5.3. For m > 5 sample trials, always
b0:4�mc trails with a = 0 and b0:6�mc trails with a = 1 will be generated. This leaves
at most one variable to be assigned a value and the estimate of the probabilities will
be very accurate for a. So, the algorithm produces better samples, a point stressed
in [17] to be very important. Especially for variables that are low in the ordering
good sample trials are produced. We feel that the bound of Dagum and Horvitz
may be taken as an upper bound to the number of sample trials to be generated.

Standard Strati�ed Scheme versus Modi�ed Strati�ed Scheme5.3.2

In this section, we give an impression of the amount of work that needs to be
performed for the modi�ed strati�ed scheme compared to the standard strati�ed
scheme. So, we are interested in �nding the con�gurations for which the associated
intervals are larger than the size of the strata used since for these con�gurations the
modi�ed strati�cation scheme will take less computational time than the standard
strati�ed scheme. We will consider the case that all variables in the Bayesian belief
network are binary, independent, and identically distributed.

Let V be a set of n binary variables and let the sampling distribution PrS be a
joint probability distribution on V such that PrS(V = xV) =

Q
u2V PrS(u = xu)

with for all u 2 V , PrS(u = 1) = p, p � 0:5. Now, let s and r be the number of
con�gurations generated by the standard strati�ed scheme and modi�ed strati�ed
scheme, respectively, with sampling distribution PrS and stratum size 1=s. Then
we �nd that

s� r >
X

0�k�klimit

�
n
k

�
bs � pk � (1� p)n�k � 1c;

where

5.9

klimit =
� log 2 + log s+ n log(1� p)

log(1 � p) � log(p)
:5.10

Figure 5.10 shows logbr=sc as a function of s for n = 30 and di�erent values of p.
Two interesting irregularities can be observed in this �gure. The sudden jumps are
due to the integer part function b:c and the increasing segments are due to the fact
that for very small decrements of the stratum size no extra saving occurs because
no new con�gurations are attained.

150
�
�
�
�
�

Strati�ed Simulation

0.001

0.01

0.1

1

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

s(30.0,0.2,x)
s(30,0.1,x)

s(30,0.01,x)

Figure 5.10: logbr=sc as a function of s for n = 30 and p = 0:2 (upper curve), 0:1
(intermediate) and 0:01 (lower curve).

When the stratum size 1=s is less or equal than the minimum of the probabilities
of all con�gurations, that is, less than or equal to pn, we have, klimit = n and the
total saving is

nX
k=0

�
n
k

��
s � pk � (1 � p)n�k � 1

�
= s� 2n;

using
Pn

k=0

�
n

k

�
= 2n: So, after all 2n con�gurations have been generated there

5.11

is no increment in simulation time of the modi�ed strati�ed scheme. Note that
when s > 2n there is no reason for simulating because the exact evaluation of the
probabilities of all con�gurations can be done in the same computation time.

We can also compute the savings in terms of the number of operations. Let x
and y be the number of value assignments performed by the likelihood weighting
and the strati�ed likelihood weighting simulation scheme, respectively. Let � be the
relative cost of a multiplication with respect to a comparison. Then,

x� y = ((s� r) log n+ r � �) :

Asymptotically, the in
uence of the second term r � � vanishes. The expression
shows that the saving increases dramatically with log n and 1 � p. This suggests
that the modi�ed strati�ed simulation scheme may be an important improvement
over the standard strati�cation scheme for small values of p under the conditions
outlined before under the conditions outlined before.

151
�
�
�
�
�

Strati�ed Simulation

Experimental Results5.4

We have performed some experiments to compare the strati�ed simulation and the
modi�ed simulation scheme with likelihood weighting and Pearl's scheme. The
aim of these experiments is to get insight in the relative gain in computational
performance and approximation accuracy of the strati�ed schemes compared to the
other schemes. Further, we want to get an impression of the in
uence of the proposed
optimizations on the computational performance and approximation accuracy.

In our various experiments, we have used ten randomly generated network struc-
tures with twenty-�ve and ten structures with �fty binary variables. The network
structures were generated departing from an arcless graph and an ordering on the
variables. First, two nodes u and v are selected randomly, and an arc is added be-
tween these nodes: the arc v! u is added if u > v and u! v otherwise. Then, for
each successive arc two nodes are chosen: one node that already has one or more
incident arcs, and one that has no incident arc yet. An arc is added between these
nodes in the direction that satis�es the ordering. The process is repeated until all
nodes have at least one incident arc. Because all arcs are directed from a lower
ordered node to a higher ordered node, the resulting graph is guaranteed to be a
directed acyclic graph. In fact, this method results in a graph that is a poly-tree.
The method generates networks with a bias towards networks with some nodes hav-
ing a high number of arcs connected as opposed to networks with long strings of
nodes. The reason for this bias is that there are more directed acyclic graphs of the
former topology in the class over all poly-trees over the speci�ed number of nodes.
Realistic networks seem to have the same kind of bias.

For the networks structures thus generated, assessment functions were generated
using a random number generator. Since the performance of the strati�ed schemes
depend on the sizes of the intervals, and thus on assessment functions, we considered
two distributions for generating the assessment functions. In the �rst experiment,
the random numbers were selected from the unit interval and in the second exper-
iment the number was uniformly selected from [0::0:1] [[0:9::1]. Each experiment
was performed by generating 100 up to 1000 con�gurations, increasing by 100 in
each test and 1000 up to 10000 con�gurations increasing by 1000 in each test. From
each experiment, we have determined the time to execute one of the simulation al-
gorithms and the error in the estimates returned by the algorithm. For measuring
the error, we have used the average logarithmic distance of the estimates and the
exact probabilities

1

jV j

X
u2V

X
xu2
u

Pr(u = xu) � log
Pr(u = xu)

P̂ r(u = xu)

where Pr(u = xu) is the exact probability that the variable u takes value xu and
P̂ r(u = xu) is probability estimate yielded by simulation. The exact probabilities
were calculated using the inference algorithm of Shachter [95]. We have not incor-
porated evidence in our experiments because evidence only in
uences the sampling
distribution, and not the sample generation. All experiments are performed on a
HP-9000 series 700 using a program written in C.

To get an impression of the performance of the strati�cation technique, we ap-
plied the equiprobable scheme, the likelihood weighting scheme, Pearl's scheme, the

152
�
�
�
�
�

Strati�ed Simulation

1e-05

0.0001

0.001

0.01

0.1

1

10

10 100 1000 10000

equip
likelihood +

+
+

++++++++
+

+ +++++++

pearl r

r
r
rrrrr

r
r
r

r r
rrrr

rrr

�
� ��������

�
��������

strat.l
4strat.s
�

4 44 4
444
4
4
4 4 4

4
444444

time (ms)

mean
log
error

Figure 5.11: Results for di�erent simulation schemes with simple scoring.

strati�ed equiprobable scheme and the strati�ed likelihood scheme to the Bayesian
belief networks with �fty nodes with simple scoring and with Markov blanket scor-
ing. The ordering of the variables was the same as the order used to generate the
networks; the assessment functions were not considered for the ordering. To get
an impression of the optimizations, we applied then the strati�ed likelihood scheme
where we have sorted the variables and have taken the median of a stratum. To
determine when and how well the modi�ed strati�ed likelihood scheme performs,
this scheme was applied to the Bayesian belief networks with twenty �ve and �fty
nodes with assessment functions generated in both ways described above.

The resulting computation times and errors averaged over the Bayesian belief
networks are shown in diagrams in which the average computational time is depicted
on the x-axis and the average error in the estimates on the y-axis. The closer the
data-points are to the left lower corner of the graph, the better the performance of
the scheme.

Figure 5.11 shows the results for the equiprobable scheme (equip), the likelihood
weighting scheme (likelihood), Pearl's scheme (pearl), and the strati�ed schemes for
both the equiprobable (strat.s) and likelihood weighting (strat.l) variant. From this
�gure, it is seen that both the equiprobable scheme and the strati�ed equiprobable
scheme result in very poor approximations. The reason is that most of the sample
trials that are generated with these schemes are non-speci�c for the distribution
and many sample trials are required to arrive at a good performance. Though
strati�cation results in a shorter run-time, it does not in
uence this behavior very
much. The �gure suggests that with the strati�ed scheme the error is even larger
than with standard equiprobable sampling.

The likelihood weighting scheme performed considerably better both in compu-
tation time and error than Pearl's scheme and the equiprobable schemes, as has
been reported before [25, 97]. The reason that Pearl's scheme is computationally
outperformed by the likelihood scheme is that the latter scheme spends less e�ort in

153
�
�
�
�
�

Strati�ed Simulation

1e-05

0.0001

0.001

0.01

0.1

1

10

10 100 1000 10000

equip+m
likelihood+m +

+
+ + +++

++++ +
+ +++++++

pearl+m r

r
r r

r
r

rr
r
rr r r

r
rr
rr
rr

strat.s+m 4
4 4 4444444

4 4 44444444
strat.l+m �

�
� �

�������
� � �������

time (ms)

mean
log
error

Figure 5.12: Results for di�erent simulation schemes with Markov blanket scoring.

1e-05

0.0001

0.001

0.01

10 100 1000 10000

strat.l
strat.l+s ++

+
+
+
+
+
++++

+
+

+
++++++

strat.l-r+s �
�

�
�
�
��� ��

�

�
�
�
�
�����

time (ms)

mean
log
error

Figure 5.13: Results for various optimizations of the strati�ed likelihood weighting
scheme.

154
�
�
�
�
�

Strati�ed Simulation

1e-06

1e-05

0.0001

0.001

0.01

10 100 1000 10000

strat.l-r+s
strat.l-r+s+m +

+

+ +
++

++++
+

+
+ ++

+++++

time (ms)

mean
log
error

Figure 5.14: Results for the best strati�ed likelihood weighting scheme with and
without Markov blanket scoring.

generating a sample trial. The strati�ed likelihood weighting scheme has a slightly
shorter run-time and a smaller error than the likelihood weighting scheme as ex-
pected from the analysis in Section 5.3.1.

Figure 5.12 shows the results for the same schemes as in Figure 5.11, this time
using Markov blanket scoring. We note that compared to Figure 5.11, all data-
points have shifted in the direction of the corner right under except for the points of
Pearl's scheme, meaning that the estimates become better at the cost of additional
computational e�ort. This could be expected since Markov blanket scoring results
in much additional work for all but Pearl's scheme as pointed out in Section 5.1.2.
Further, since Markov blanket scoring contributes to every sample score for every
sample trial, and not only to those scores for which the values occur in the sample
trial, we get a smaller approximation error.

Figure 5.13 shows the e�ects of incorporating the various optimizations discussed
in Section 5.2.3 into the strati�ed likelihood weighting algorithm (strat.l). We have
added sorting the variables to the standard scheme (strat.l+s) and we have modi�ed
the standard scheme by taking median of a stratum (strat.l-r+s). The �gure suggests
that sorting the variables tends to improve the performance of the simulation scheme
but only marginally. This could be expected since sorting with the extra criterion
in
uences the order only marginally. The e�ect of using the median of a stratum
instead of a random value is equally marginal. These results were to be expected as
the optimizations represent only minor adjustments of the algorithm.

Figure 5.14 shows the results for the best strati�ed algorithm (that is, with sorting
and taking the median of a stratum), with (strat.l-r+s+m) and without (strat.l-
r+s) Markov blanket scoring. The �gure suggests that the use of Markov blanket
scoring tends to improve the probability estimates yet takes extra time because of
the additional computational e�ort that is required. These e�ects cancel each other
out, that is, if the extra computation time necessary for Markov blanket scoring is

155
�
�
�
�
�

Strati�ed Simulation

1e-05

0.0001

0.001

0.01

10 100 1000 10000

"standard" 4
4

4
4
444
4444

4
4
4
4
44444

"modi�ed" ++

+
+

+++
++++

+
+

+
+
+++++

time (ms)

mean
log
error

Figure 5.15: Results for the standard and modi�ed strati�ed scheme.

used for generating extra sample trials with simple scoring, the same error in the
estimates can be expected. Therefore, Markov blanket scoring does not seem to help
but it also does no harm.

Figure 5.15 shows the results for the standard strati�ed scheme and the modi�ed
strati�cation scheme. From the �gure, it is seen that the resulting error is the same
for both schemes. Also, there is hardly any di�erence in execution time between
the two schemes. Note that we would expect a small improvement of the modi�ed
strati�ed scheme over the standard one. The number of generated sample trials for
the standard scheme is almost the same as the number of generated sample trials
for the modi�ed scheme. As a result, the computational saving obtained by the
modi�ed strati�cation scheme is compensated by the computational e�ort spent on
calculating the number of sample trials to pass over.

Figure 5.16 shows the results for both the standard strati�ed scheme (hstandard)
and the modi�ed strati�ed scheme (hmodi�ed) for the Bayesian belief networks
where the probabilities of the assessment functions have been selected uniformly
from the interval [0::0; 1][[0:9::1]. We observe that even for large numbers of sample
trials, only a small computational saving is obtained. So, the number of con�gura-
tions in which skipping occurs is still very small. Note that both the error and the
execution times shown in Figure 5.16 are considerably smaller than the error and
execution times shown in Figure 5.15. The reason is that intervals for pre�xes of
con�gurations are larger for extreme probabilities. Therefore, fewer transitions of
the lower ordered variables occur.

The resulting errors and computation times for Bayesian belief networks with
twenty-�ve nodes are depicted in Figure 5.17 and Figure 5.18 for assessment func-
tions chosen uniformly from [0::1] and [0::0:1][[0:9::1] respectively. In both �gures,
the modi�ed strati�ed scheme performs better than the standard strati�ed scheme.
So, the modi�ed strati�ed scheme can take advantage of the larger size of intervals
compared to the �fty node networks. Especially for networks with extreme proba-

156
�
�
�
�
�

Strati�ed Simulation

1e-06

1e-05

0.0001

0.001

0.01

10 100 1000 10000

"hstandard" 4
4

4
44
44
4444

4
44
44444

4

"hmodi�ed" ++

+
+ +

++
++++

+
++

+++++
+

time (ms)

mean
log
error

Figure 5.16: Results for the standard and modi�ed strati�ed scheme for assessment
functions uniformly drawn from [0::0:1] [[0:9::1].

1e-05

0.0001

0.001

0.01

10 100 1000

"standard" 4
4

4 4

4 4
4
444
4

4
4
44
4
44
4
4

"modi�ed" ++

+ +

+ +
+

+++
+

+
+

+ +
+
++

+
+

time (ms)

mean
log
error

Figure 5.17: Results for the standard and modi�ed strati�ed scheme.

157
�
�
�
�
�

Strati�ed Simulation

1e-06

1e-05

0.0001

0.001

0.01

1 10 100 1000

"hstandard" 4

4

4

44
44444
4

4
44
4
444
44

"hmodi�ed" +
+

+

+ +
+ ++++

+
+
++

+
+++
++

time (ms)

mean
log
error

Figure 5.18: Results for the standard and modi�ed strati�ed scheme for assessment
functions uniformly drawn from [0::0:1] [[0:9::1] for 25 nodes.

bilities, this e�ect is apparent; the saving in computation time is more than 30% for
large sample sizes in Figure 5.18.

158
�
�
�
�
�

Strati�ed Simulation

Conclusions and Further Research

In this chapter, we summarize our main contributions to the various parts of the life-
cycle of a Bayesian belief network and point out some directions for further research.
Following the division of the thesis, this chapter is divided into three sections. In
Section 6.1, we consider the theory developed on conditional independence and
dependence. In Section 6.2, we discuss learning Bayesian belief networks, which
a�ects both network structure construction and assessment function estimation.
In Section 6.3, we review probabilistic inference in Bayesian belief networks with
strati�ed simulation.

Conditional Dependence6.1

Conditional independence is one of the key concepts in knowledge-based sys-
tems. Without making assumptions about conditional independence, reasoning in a
knowledge-based system would become intractable. Conditional dependence is the
counterpart of conditional independence that has not been studied until now. In
this thesis, we have presented a theory on conditional dependence that exactly mir-
rors the theory on conditional independence; dependency statements, dependency
models, and dependency bases are for conditional dependence what independency
statements, independency models and input lists are for conditional independence.
We have given an axiomatic characterization of conditional dependence by de�n-
ing dependency axioms. These axioms contain both dependency statements and
independency statements.

We have de�ned graphical criteria, called coupling, for reading dependency state-
ments from undirected graphs and directed acyclic graphs, where we assume that
the graph is a minimal I-map of some independency model and all dependency
statements read from the graph are in the complementary dependency model. Un-
fortunately, it is not possible to read all existing dependency statements from a
graph. So, for some statements it cannot be deduced from the structure of the
graph whether it is an independency or a dependency statement. These statements
are interesting for inference tasks, such as planning and explanation since, if condi-
tional independence holds, these tasks may be performed more e�ciently. It may
be interesting to design algorithms that use independencies like these.

Since algorithms that work on network structures and do not need consultation
of the represented distribution tend to be more e�cient in solving problems than
algorithms that do need the represented distribution, it is desirable to have an
e�cient graphical representation of all independency statements and dependency
statements. Thus far, graphical representations are either not capable of capturing
all independencies or are not e�cient in memory and thus not e�cient for algo-
rithms that perform on them [9, 42]. Therefore, it may be useful to put research
e�ort in developing memory e�cient graphical formalisms that do represent as many
independencies as possible.

A graphical representation that has gained much popularity in the �eld of statis-

159
�
�
�
�
�
�

tics is the chain graph [71, 119, 120]. A chain graph is a graph with both edges and
arcs. A graphical criterion has been de�ned for reading independency statements
from chain-graphs. An open question is whether a chain graph can be constructed
from an independency model similar to the construction of undirected graphs and
directed acyclic graphs. Further, it would be nice to have a characterization of the
represented independency model as the closure of some input list, subjects that are
addressed in [11]. Similar to undirected graphs and directed acyclic graphs, a depen-
dency base and a coupling criterion for reading dependency statements from chain
graphs might be de�ned. Since chain-graphs are a generalization of both undirected
graphs and directed acyclic graphs, we expect that such a graphical criterion would
generalize both coupling for undirected graphs and directed acyclic graphs.

When constructing a network structure of a Bayesian belief network, conditional
independence information may be extracted from a domain expert. The conditional
dependencies that can be read from the structure can be used to confront an expert
with the consequences of his judgements about conditional independence. Care
must be taken in selecting informative dependency statements. Methods for selecting
dependency statements for evaluation of network structures are a subject for further
research.

Learning6.2

Learning Bayesian belief networks from data consists of three components: a quality
measure to judge the quality of a network structure with respect to the database,
a search algorithm to select reasonable candidate network structures, and a method
of learning assessment functions. We address these subjects separately.

Quality Measures6.2.1

We have discussed three major measures to judge the quality of a network structure
and a database of cases: the Bayesian measure [24], information criteria, and a
minimum description length (MDL) measure. The MDL measure can be considered
to be a special case of an information criterion. We have shown that the MDL
measure can be regarded as an approximation of the logarithm of the Bayesian
measure in many cases. As a consequence, the MDL measure inherits all desirable
properties of the Bayesian measure. However, we have shown that the Bayesian
measure does not have the property of score equivalence, that is, it does not assign
the same quality to all network structures that represent the same independency
model. We have shown that both information criteria and the MDL measure do
have this property, which may be exploited by search algorithms and in deriving
theoretical results.

We have investigated both in�nite-size database properties and �nite-size database
properties of the various quality measures under the assumption that there is no
prior information. We have proved several optimality properties for in�nite-size
databases. Since these properties justify the use of the quality measures discussed
for recovering causality as de�ned by Glymour and Spirtes [104], these results unify
the results of learning of network structures based on quality measures and those

160
�
�
�
�
�
�

Conclusions and Further Research

of learning based on independency statements. In conclusion, all quality measures
show the same desirable behavior for in�nitely large databases.

However, the behavior of the measures di�er for �nite-size databases. We have
derived an upper bound on the size of the largest parent set in a network structure
with the highest quality for the various quality measures. We have shown that
network structures learned with the Bayesian measure tend to contain far more arcs
than those learned with the other two measures. This is due to information criteria
and the MDL measure assigning a cost to each probability that has to be estimated
to de�ne the assessment functions in a Bayesian belief network with the network
structure at hand. The Bayesian measure assigns costs only to probabilities over
those con�gurations that appear in the database. Note that the behavior of the
Bayesian measure can be altered by de�ning a proper prior distribution.

One of the main problems in learning Bayesian belief networks is that the number
of parameters to be learned for de�ning a variable's assessment function, grows
exponentially with the number of parents of the variable. The same problem arises
when specifying these probabilities with the help of experts. To circumvent this
problem, the noisy-ormodel was introduced [81], which requires only a linear number
of parameters to de�ne an assessment function. The noisy-or model has an intuitive
interpretation and shows that in many cases the full model is too expressive at
the cost of the necessity to specify a lot of numbers. Because restrictions in the
expressiveness of the noisy-or model, generalization have been introduced [33, 56,
105] that all require fewer parameters than in the full model. To get as much
information as possible out of a �nite-size database, it may be useful to develop
quality measures for learning Bayesian belief networks with noisy-or, generalized
noisy-or, and other distributions as well. It appears that information criteria and the
MDL measure generalize straightforwardly. For generalizing the Bayesian measure
additional investigation is necessary.

In this thesis, we assumed that the variables in the domain are discrete. A short
examination of various public available database learns that most databases contain
one or more continuous variables. To make the direct application of the quality
measures discussed possible, the ad-hoc technique commonly used is to quantize
those continuous variables. Since there is a large freedom in selecting the number of
quantization levels and values of those levels, intelligent automated support needs
to be developed.

An alternative is to develop new quality measures for Bayesian belief networks
with both continuous and discrete variables. This leads to a number of research
questions. For Bayesian belief networks with discrete variables it is clear how the
assessment functions are de�ned. However, continuous variables may follow, for
example, a beta distribution, a gamma distribution, or a normal distribution. So,
�rst of all, it should be determined which distribution the variables follow. Once
the distributions are de�ned, information criteria and the MDL measure seem to
generalize in a straightforward way as quality measures, but for the Bayesian measure
some additional investigation is necessary. E�cient algorithms for estimation of the
parameters of these distributions may need to be developed.

Often a database contains more information than just that the variables are dis-
crete or continuous. Discrete variables for which there is an ordering on their values
are very common. This extra knowledge may by informative but is neglected by

161
�
�
�
�
�
�

Conclusions and Further Research

the quality measures we discussed. New quality measures to be developed may take
advantage of this kind of information.

One of the basic assumptions used in the derivation of all quality measures is
that the `true' joint probability distribution over the domain's variables does not
change over time. Thus, the ordering of the cases in the database is considered to
be irrelevant, which may not be realistic. New measures need to be developed to
deal with the very common case that the `true' distribution does change in time.

Another frequently used basic assumption is that there are no missing values.
However, in many databases omissions occur. Techniques currently available to
handle missing values, like `�lling in' the gaps or treating a missing value as a sepa-
rate variable-value, are computationally expensive, or lead to unsatisfactory results.
Development of new measures might help in dealing with these computational prob-
lems.

Search Algorithms6.2.2

To select a network structure with high quality, the space of all network structures
is searched. We have shown that it is NP-hard to select a network structure with
some optimality properties, provided an oracle is present that reveals conditional
independence information. Therefore, in the general case it is unlikely that e�cient
algorithms exist for learning network structures from data.

This result justi�es the use of search heuristics. We have discussed two greedy
search heuristics known as K2 and B, and presented an e�cient implementation
of the latter. Both algorithms can be regarded as search heuristics that only look
one step ahead. We have proposed generalizations of K2 and B in which more
than one step is examined. Experiments suggest that such search algorithms indeed
return network structure with higher quality when there is a high connectivity in
the original network structure. However, the divergence between the learned and
the original distribution does not decrease when more than one step is looked ahead.

Furthermore, we have shown how to apply the general-purpose combinatorial op-
timization algorithms tabu search, simulated annealing, and rejectionfree annealing
to the problem of selecting network structures with high quality.

Our experimental results suggest that simple greedy search heuristics like K2 and
B, with a two-step look-ahead su�ce for returning good network structures. Though
intelligent search algorithms may return a network structure with a slightly higher
quality, the classifying potential of the Bayesian belief network with this network
structure will not di�er considerably from Bayesian belief networks with network
structures returned by K2 or B. Therefore, we believe that it may not be worth the
e�ort to consider other search algorithms for learning network structures.

Hidden variables are variables that are not in the database but have a large
in
uence on the variables in the database. When quality measures are applied to
the discovery of causal relations, it is very well possible that the variables in the
database do not allow a causal explanation of the relation between variables because
there are hidden variables. Some techniques for detecting the presence of hidden
variables based on independency statements [104] have been developed. Similar
techniques may be developed for search algorithms based on quality measures.

162
�
�
�
�
�
�

Conclusions and Further Research

Learning Assessment Functions6.2.3

Once a network structure with high quality has been selected, assessment functions
need to be speci�ed in order to obtain a complete Bayesian belief network. Assess-
ment functions can be directly estimated from the database and the Bayesian belief
network thus obtained may be used for probabilistic inference in a knowledge-based
system.

An alternative approach is to select a set of network structures with high quality,
estimate their respective assessment functions, and use this set of Bayesian belief
networks by weighting the probabilities that they deliver by the quality of the net-
work structures. When this set of network structures is appropriately chosen, the set
of Bayesian belief networks can be represented e�ciently by a single belief network,
a process known as smoothing. Experiments have indicated that smoothing indeed
decreases the divergence between the original and the learned distribution. We have
shown that smoothing of assessment functions in belief networks can be performed
e�ectively by incorporating smoothing in the search heuristics K2 and B.

This technique may also be applied when other distributions, such as the noisy-
or model and its generalizations, beta, gamma, or normal distributions, are to be
learned. Technical details to determine when and how to perform this e�ciently are
yet to be implemented. It is not clear whether a similar approach can successfully be
applied to Bayesian belief networks with continuous variables, because a weighted
sum of normal distributions need not be a distribution that can be e�ciently rep-
resented.

Strati�ed Simulation6.3

Inference in Bayesian belief networks is performed via calculation of conditional
probabilities of events given observed events. Simulation is a general-purpose tech-
nique that can be applied to implement this task. We have presented a strati-
�ed simulation scheme for probabilistic inference in Bayesian belief networks. The
scheme generates samples evenly distributed in the sample space and can be imple-
mented e�ciently. The scheme is computationally more e�cient than the likelihood
weighing scheme. Based on experiments, likelihood weighing is considered to be
the most e�cient scheme available so far [25, 97]. Due to the evenly-distributed
samples, the scheme also returns a better approximation of probabilities. We have
shown both theoretically and experimentally that the approximation of beliefs is not
only performed faster but also that better approximations are returned than with
existing schemes. We have investigated the e�ects of various optimizations speci�c
to the scheme. Though for special network structures exact algorithms may outper-
form simulation schemes, our algorithm o�ers a robust general-purpose method for
probabilistic inference without restrictions on the topology of networks.

We have given a theoretical analysis for the simple case that all variables are
independent and identically distributed. A theoretical analysis for the general case
where variables may take any dependence relation would be interesting for estimat-
ing the errors made in approximating beliefs. This analysis could be based on the
use of the central limit theorem to approximate the logarithm of the probability of

163
�
�
�
�
�
�

Conclusions and Further Research

the di�erent con�gurations as proposed by Druzdzel [34]. Such analysis could have
practical signi�cance because the mean and variance of this normal distribution
can be e�ciently calculated from the assessment functions in the Bayesian belief
network [10] and that with observation of evidence new values of mean and vari-
ance can be incrementally updated at little computational cost. Closer investigation
should make clear whether the normal approximation gives good results. Otherwise,
extreme-value theory as addressed in [16] may be more appropriate.

The strati�ed simulation scheme is inherently based on discrete variables. How-
ever, many domains contain both discrete and continuous variables. To apply the
strati�ed scheme to such domains, the following modi�cations may be made. By
choosing an appropriate sampling distribution, the strati�ed simulation scheme can
be applied to the discrete variables in the distribution and the forward sampling
scheme to the continuous variables. The discrete variables get assigned a value �rst
and the continuous variables get assigned a value later. Of course the score has to be
adapted appropriately. When there are too many continuous variables, this scheme
will not be more e�cient than forward sampling since the sampling distribution is
not optimally chosen, so more samples are necessary to give a representative sample.
Experimental results will have to give insight in the question in how many contin-
uous variables may appear in the network such that the strati�ed scheme is more
appropriate than forward simulation.

The most probable explanation (MPE) is the con�guration of variables that are
not evidence variables with the highest probability given the observed values of the
evidence variables. The MPE is used in control of knowledge-based systems and
in abduction. We can apply the strati�ed simulation scheme to solve this problem
by exploiting the observation that if we use the modi�ed strati�ed scheme with m
steps, we are sure to visit every con�guration that has a probability larger than
1=m according to the sampling distribution. Let the sampling distribution be equal
to the distribution of which we want to know the MPE. Then, if a con�guration
with probability larger than 1=m is found, the MPE is identi�ed. Otherwise, we
can run the algorithm again with a larger number of steps. This process can be
repeated until the MPE has been found. If the sampling distribution is not equal
to the distribution of which we want to know MPE, a correction factor need to be
incorporated. Techniques for �nding the k most probable explanations and �nding
the MPE of a subset of variables may be developed similarly.

Lauritzen and Spiegelhalter [72] introduced an exact inference algorithm based on
passing messages in so-called junction trees. In this thesis, we applied the strati�ed
simulation scheme for the approximation of marginal probabilities which can be
regarded as a summation

P
s2S f(s)=jSj where jSj is large and f can be written

as the product of a set of functions. In fact, we can apply this technique to any
problem with the same structure. The messages that are sent during inference in
junction trees can be written in a form shown above. Therefore, we expect that
the strati�ed simulation scheme may be used to calculate an approximation of the
messages. Especially when cliques are large, strati�ed simulation could result in a
much faster inference algorithm at the cost of introducing a small error.

164
�
�
�
�
�
�

Conclusions and Further Research

Bibliography

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines: A

Stochastic Approach to Combinatorial Optimization and Neural Comput-

ing. John Wiley & Sons, Chichester, 1989.

[2] B. Abramson and A. Finizza. Using belief networks to forecast oil prices.
International Journal of Forecasting, 7:299{315, 1991.

[3] H. Akaike. A new look at the statistical model identi�cation. IEEE Trans-

actions on Automatic Control, AC-19:716{722, 1974.

[4] S. Andreassen, M. Wolbye, B. Falck, and S.K. Andersen. MUNIN - a causal
probabilistic network for interpretation of electromyographic �ndings. In Pro-
ceedings International Joint Conference on Arti�cial Intelligence, pages
366{372, 1987.

[5] I. Beinlich, H. Suermondt, R. Chavez, and G. Cooper. The alarm monitoring
system: A case study with two probabilistic inference techniques for belief
networks. In Proceedings Arti�cial Intelligence in Medical Care, pages
247{256, 1989.

[6] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[7] R.R. Bouckaert. Optimizing causal orderings for generating DAGs from data.
In Proceedings Uncertainty in Arti�cial Intelligence, volume 8, pages 9{16,
San Mateo (CA), 1992. Morgan Kaufmann.

[8] R.R. Bouckaert. Belief network construction using the minimum descrip-
tion length principle. In Proceedings European Conference on Symbolic

and Quantitative Approaches to Reasoning and Uncertainty, pages 41{48.
Springer-Verlag, 1993.

[9] R.R. Bouckaert. IDAGs: A perfect map for any distribution. In Proceed-

ings European Conference on Symbolic and Quantitative Approaches to

Reasoning and Uncertainty, pages 49{56. Springer-Verlag, 1993.

[10] R.R. Bouckaert, E. Castillo, and J.M. Guti�errez. A modi�ed simulation scheme
for inference in Bayesian networks. Submitted to the International Journal

of Approximate Reasoning, 1994.

[11] R.R. Bouckaert and M. Studen�y. Chain graphs: Semantics and expressive-
ness. European Conference on Symbolic and Quantitative Approaches to

Reasoning and Uncertainty, 1995.

[12] H. Bozdogan. Model selection and Akaike's information criterion (AIC): The
general theory and its analytical extensions. Psychometrika, 52:345{370,
1987.

165

[13] B.G. Buchanan and E.H. Shortli�e. Rule-Based Expert Systems: The

MYCIN Experiments of the Stanford Heuristic Programming Project.
Addison-Wesley, Reading (MA), 1984.

[14] W.L. Buntine. Theory re�nement on Bayesian networks. In Proceedings

Uncertainty in Arti�cial Intelligence, volume 7, pages 52{60, San Mateo
(CA), 1991. Morgan Kaufmann.

[15] W.L. Buntine. A guide to the literature on learning graphical models. Ob-
tainable by anonymous ftp from ack.arc.nasa.gov/pub/buntine/graphbib.ps.Z,
1994.

[16] E. Castillo, R.R. Bouckaert, J.M. Sarabia, and C. Solares. Error estimation in
approximate bayesian belief network inference. In Submitted to the confer-

ence Uncertainty in Arti�cial Intelligence, volume 11, 1995.

[17] R.M. Chavez and G.F. Cooper. Hypermedia and randomized algorithms for
medical expert systems. Computer Methods and Programs in Biomedicine,
32:5{16, 1990.

[18] D. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks:
Search methods and experimental results. In Proceedings 5th International

Workshop on Arti�cial Intelligence and Statistics. Springer-Verlag, 1995.

[19] H.L. Chin and G.F. Cooper. Bayesian belief network inference using simula-
tion. In Proceedings Uncertainty in Arti�cial Intelligence, volume 5, pages
129{147. North-Holland, Amsterdam, 1989.

[20] C.K. Chow and C.N. Liu. Approximating discrete probability distributions
with dependency trees. IEEE Transactions on Information Theory, IT-
14:462{467, 1968.

[21] S.L. Clove. Small-sample and large-sample statistical model selection criteria.
In P. Cheeseman and R.W. Oldford, editors, Lecture Notes in Statistics 89.
Springer-Verlag, 1994.

[22] G.F. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Arti�cial Intelligence, 42:393{405, 1990.

[23] G.F. Cooper and E. Herskovits. A Bayesian method for the induction of prob-
abilistic networks from databases. In Proceedings Uncertainty in Arti�cial

Intelligence, volume 7, pages 86{94, San Mateo (CA), 1991. Morgan Kauf-
mann.

[24] G.F. Cooper and E. Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Machine Learning, 9:309{347, 1992.

[25] S.B. Cousins, W. Chen, and N.E. Frisse. CABeN: A collection of algorithms
for belief networks. Technical Report WUCS-91-25, Medical Informatics Lab-
oratory, Washington University, St Louis, MO, 1991.

166 Bibliography

[26] S.B. Cousins, W. Chen, and N.E. Frisse. A tutorial introduction to stochastic
simulation algorithms for belief networks. Arti�cial Intelligence in Medicine,
5:315{340, 1993.

[27] R. Cox. Probability, frequency and reasonable expectation. American Jour-

nal of Physics, 14:1{13, 1946.

[28] P. Dagum and E. Horvitz. A Bayesian analysis of simulation algorithms for
inference in belief networks. Networks, 23:499{516, 1993.

[29] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Arti�cial Intelligence, 60:141{153, 1993.

[30] J.N. Darroch, S.L. Lauritzen, and T.P. Speed. Markov �elds and log-linear
interaction models for contingency tables. Annals of Statistics, 8:522{539,
1980.

[31] A.P. Dawid. Conditional independence in statistical theory. Journal of the
Royal Statistical Society B, 41:1{31, 1979.

[32] A.P. Dempster. A generalization of Bayesian inference. Journal of the Royal
Statistical Society, Series B, 30:325{339, 1968.

[33] F.J. Di�ez. Parameter adjustment in Bayes networks. The generalized noisy
OR-gate. In Proceedings Uncertainty in Arti�cial Intelligence, volume 9,
pages 99{105, San Mateo (CA), 1993. Morgan Kaufmann.

[34] M. Druzdzel. Some properties of joint probability distributions. In Proceed-

ings Uncertainty in Arti�cial Intelligence, volume 10, pages 187{194, 1994.

[35] J. Friedman. Multivariate adaptive regression splines (with discussion). An-
nals of Statistics, 19:1{141, 1991.

[36] J.F. Fung and S.L. Crawford. Constructor: A system for the induction of
probabilistic models. In Proceedings American Association for Arti�cial

Intelligence, volume 8, pages 762{769, 1990.

[37] R. Fung and K. Chang. Weighting and integrating evidence for stochastic
simulation in Bayesian networks. In Proceedings Uncertainty in Arti�cial

Intelligence, volume 6, pages 209{219. North-Holland, Amsterdam, 1990.

[38] R. Fung and B. Del Favero. Backward simulation in Bayesian networks. In
Proceedings Uncertainty in Arti�cial Intelligence, volume 10, pages 227{
234, San Mateo (CA), 1994. Morgan Kaufmann.

[39] L. van der Gaag. Evidence absorption for belief networks. Technical Report
RUU-CS-93-35, Department of Computer Science, Utrecht University, 1993.

[40] A. Gammerman and Z. Luo. Constructing causal trees from a medical
database. Technical Report TR91002, Department of Computer Science,
Heriot-Watt University, 1991.

167 Bibliography

[41] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman & Co., San Francisco, 1979.

[42] D. Geiger. Towards the formalization of informational dependencies. Tech-
nical Report CSD-880053, Cognitive Systems Laboratory, Computer Science
Department, UCLA, 1988.

[43] D. Geiger and D. Heckerman. Learning Gaussian networks. In Proceedings

Uncertainty in Arti�cial Intelligence, volume 10, pages 235{243, San Mateo
(CA), 1994. Morgan Kaufmann.

[44] D. Geiger, A. Paz, and J. Pearl. Learning causal trees from dependence infor-
mation. In Proceedings American Association for Arti�cial Intelligence,
volume 8, pages 770{771, 1990.

[45] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis

and Machine Learning, PAMI-6:721{741, 1984.

[46] F. Glover, C. McMillan, and B. Novick. Interactive decision software and
computer graphics for architectural and space planning. Annals of Operations
Research, 5:557{573, 1985.

[47] C. Glymour, P. Spirtes, and R. Scheines. Independence relations produced by
parameter values in causal models. Philosophical Topics, 18:55{70, 1990.

[48] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[49] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, Reading (MA), 1989.

[50] J.W. Greene and K.J. Supowit. Simulated annealing without rejected moves.
IEEE Transactions on Computer-Aided Design, CAD-5:221{228, 1986.

[51] E. Hannan and B. Quinn. The determination of the order of an autoregression.
Journal of the Royal Statistical Society B, 41:191{195, 1979.

[52] D. Heckerman, D. Geiger, and D. Chickering. Learning Bayesian networks:
The combination of knowledge and statistical data. Technical report, Microsoft
Research, 1994.

[53] D. Heckerman, D. Geiger, and D. Chickering. A strati�ed simulation scheme
for inference in Bayesian belief networks. In Learning Bayesian Networks:

The Combination of Knowledge and Statistical Data, volume 10, pages
293{301, San Mateo (CA), 1994. Morgan Kaufmann.

[54] D. Heckerman, E. Horvitz, and B. Nathwani. Towards normative expert sys-
tems: Part I, the path�nder project. Methods of Information in Medicine,
31:90{105, 1992.

168 Bibliography

[55] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic
logic sampling. In Proceedings Uncertainty in Arti�cial Intelligence, vol-
ume 4, pages 149{163. North-Holland, Amsterdam, 1988.

[56] M. Henrion. Some practical issues in constructing belief networks. In Pro-

ceedings Uncertainty in Arti�cial Intelligence, volume 5, pages 161{173.
North-Holland, Amsterdam, 1989.

[57] E. Herskovits. Computer-Based Probabilistic-Network Construction. PhD
thesis, Section of Medical Informatics, University of Pittsburgh, 1991.

[58] E.H. Herskovits and G.F. Cooper. Kutat�o: An entropy-driven system for the
construction of probabilistic expert systems from databases. In Proceedings

Uncertainty in Arti�cial Intelligence, volume 6, pages 54{62. North-Holland,
1990.

[59] A. Hertz and D. de Werra. Using tabu search techniques for graph coloring.
Computing, 39:345{351, 1987.

[60] L. Ingber. Very fast simulated re-annealing. Journal of Mathematical and

Computer Modeling, 12:867{973, 1989.

[61] R.L. Kashyap. Optimal choice of ar and ma parts in autoregressive moving
average models. IEEE Transactions on Pattern Analysis and Machine

Intelligence, PAMI-4:99{104, 1982.

[62] H. Kiiveri, T.P. Speed, and J.B. Carlin. Recursive causal models. Journal of
the Australian Mathematical Society A, 36:30{52, 1984.

[63] A.C. King and C.B. Read. Pathways to Probability. Holt, Rinehart and
Winston, New York, 1963.

[64] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 220:671{680, 1983.

[65] U Kjearul�. A computational scheme forreasoning in dynamic probabilistic
networks. In Proceedings Uncertainty in Arti�cial Intelligence, volume 8,
pages 121{129, San Mateo (CA), 1992. Morgan Kaufmann.

[66] H.H. Ku and S Kullback. Approximating discrete probability distributions.
IEEE Transactions on Information Theory, IT-15:444{447, 1969.

[67] S. Kullback. Information Theory and Statistics. John Wiley & Sons, New
York, 1959.

[68] W. Lam. Learning and Re�ning Bayesian Network Structures from Data.
PhD thesis, Department of Computer Science, University of Waterloo, 1994.

[69] W. Lam and F. Bacchus. Learning Bayesian belief networks, an approach
based on the MDL principle. Computational Intelligence, 10:269{293, 1994.

169 Bibliography

[70] P. Larra~naga and Y. Yurramendi. Structure learning approaches in causal
probabilistic networks. In Proceedings European Conference on Symbolic

and Quantitative Approaches to Reasoning and Uncertainty, pages 227{
232. Springer-Verlag, 1993.

[71] S.L. Lauritzen. Mixed graphical association models. Scandinavian Journal

of Statistics, 16:273{306, 1989.

[72] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities
on graphical structures and their applications to expert systems (with discus-
sion). Journal of the Royal Statistical Society B, 50:157{224, 1988.

[73] I. Matzkevich and B. Abramson. Deriving a minimal I-map of a belief net-
work relative to a target ordering of its nodes. In Proceedings Uncertainty

in Arti�cial Intelligence, volume 9, pages 159{165, San Mateo (CA), 1993.
Morgan Kaufmann.

[74] A. Newell and H.A. Simon. Human Problem Solving. Prentice-Hall, Engle-
wood Cli�s (NJ), 1972.

[75] R. Nishii. Maximum likelihood principle and model selection when the true
model is unspeci�ed. Journal of Multivariate Analysis, 27:392{403, 1988.

[76] K.G. Olesen, S.L. Lauritzen, and F.V. Jensen. aHUGIN: A system creating
adaptive causal probabilistic networks. In Proceedings Uncertainty in Arti-

�cial Intelligence, volume 8, pages 223{229, San Mateo (CA), 1992. Morgan
Kaufmann.

[77] R. Otten and L. van Ginneken. The Annealing Algorithm. Kluwer Academic
Publishers, Boston, 1989.

[78] Dagum. P., A. Galper, and E. Horvitz. Dynamic network models for forecast-
ing. In Proceedings Uncertainty in Arti�cial Intelligence, volume 8, pages
41{48, San Mateo (CA), 1992. Morgan Kaufmann.

[79] J. Pearl. Fusion, propagation, and structuring in belief networks. Arti�cial
Intelligence, 29:241{288, 1986.

[80] J. Pearl. Evidential reasoning using stochastic simulation of causal models.
Arti�cial Intelligence, 32:241{288, 1987.

[81] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, San Mateo (CA), 1988.

[82] J. Pearl, D. Geiger, and T. Verma. The logic of in
uence diagrams. In R.M.
Oliver and J.Q. Smith, editors, In
uence Diagrams, Belief Nets and Deci-

sion Analysis, pages 67{87. John Wiley & Sons, 1990.

[83] J. Pearl and A. Paz. Graphoids: A graph based logic for reasoning about
relevance relations. In B. Du Boulay, D. Hogg, and L. Steels, editors, Advances
in Arti�cial Intelligence II, pages 357{363. North-Holland, Amsterdam, 1987.

170 Bibliography

[84] J. Pearl and T. Verma. A theory of inferred causation. In A. Fikes and
E. Sandewall, editors, Proceedings of the Second International Conference

on Principles of Knowledge Representation, pages 441{452, 1991.

[85] D. Raj. Sampling Theory. McGraw-Hill, New York, 1968.

[86] G. Rebane and J. Pearl. The recovery of causal polytrees from statistical
data. In Proceedings Uncertainty in Arti�cial Intelligence, volume 3, pages
222{228. North-Holland, Amsterdam, 1987.

[87] R. Reiter. Nonmonotonic reasoning. Annual Review of Computer Science,
2:147{186, 1987.

[88] J. Rissanen. A universal data compression system. IEEE Transactions on

Information Theory, IT-29:656{664, 1983.

[89] J. Rissanen. Stochastic complexity and modeling. Annals of Statistics,
14:1080{1100, 1986.

[90] J. Rissanen. Stochastic complexity. Journal of the Royal Statistical Society
B, 49:223{239, 1987.

[91] R.D. Robinson. Counting unlabeled acyclic digraphs. In Proceedings Aus-

tralian Conference on Combinatorial Mathematics, volume 5, pages 28{43,
1976.

[92] R.Y. Rubinstein. Simulation and Monte Carlo Methods. Wiley, New York,
1981.

[93] L.J. Savage. The Foundations of Statistics. Dover, New York, 1954.

[94] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6:461{464, 1978.

[95] R.D. Shachter. Evaluating in
uence diagrams. Operations Research, 34:871{
882, 1986.

[96] R.D. Shachter. An ordered examination of in
uence diagrams. Networks,
20:535{563, 1990.

[97] R.D. Shachter and M. Peot. Simulation approaches to general probabilistic
inference on belief networks. In Proceedings Uncertainty in Arti�cial Intel-

ligence, volume 6, pages 221{231. North-Holland, Amsterdam, 1990.

[98] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
Princeton, 1976.

[99] G. Shafer and J. Pearl, editors. Readings in Uncertain Reasoning. Morgan
Kaufmann, San Mateo (CA), 1990.

[100] E.H. Shortli�e. MYCIN: A Rule-Based Computer Program for Advising

Physicians Regarding Antimicrobial Therapy Selection. PhD thesis, Stan-
ford Arti�cial Intelligence Laboratory, Stanford University, 1974.

171 Bibliography

[101] D.J. Spiegelhalter, A.P. Dawid, S.L. Lauritzen, and R.G. Cowell. Bayesian
analysis in expert systems. Statistical Science, 8:219{283, 1993.

[102] D.J. Spiegelhalter and S.L. Lauritzen. Sequential updating of conditional prob-
abilities on directed graphical structures. Networks, 20:579{605, 1990.

[103] P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal
structures. Social Science Computer Review, 9:62{72, 1991.

[104] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search.
Springer-Verlag, New York, 1993.

[105] S. Srinivas. A generalization of the noisy-OR model. In Proceedings Uncer-

tainty in Arti�cial Intelligence, volume 9, pages 208{215, San Mateo (CA),
1993. Morgan Kaufmann.

[106] M. Studen�y. Multiinformation and the problem of characterization of
conditional-independence relations. Problems of Control and Information

Theory, 18:3{16, 1989.

[107] M. Studen�y. Formal properties of conditional independence in di�erent calculi
of AI. In Proceedings European Conference on Symbolic and Quantitative

Approaches to Reasoning and Uncertainty, pages 341{348. Springer-Verlag,
1993.

[108] H.J. Suermondt and G.F. Cooper. Probabilistic inference in multiply con-
nected belief networks using loop cutsets. Journal of Approximate Reason-
ing, 4:283{306, 1990.

[109] J. Suzuki. A construction of Bayesian networks from databases based on
the MDL principle. In Proceedings Uncertainty in Arti�cial Intelligence,
volume 9, pages 266{273, San Mateo (CA), 1993. Morgan Kaufmann.

[110] H.H. Szu and R.L. Hartley. Fast simulated annealing. Physical Letters A,
122:157{162, 1987.

[111] E. Taillard. Robust taboo search for the quadratic assignment problem. Par-
allel Computing, 17:443{455, 1991.

[112] A. Tversky and D. Kahneman. Extensional versus intuitive reasoning: The
conjunction fallacy in probability judgement. Psychological Review, 4:293{
315, 1983.

[113] V. �Cerny. A thermodynamical approach to the traveling salesman problem:
An e�cient simulation algorithm. Journal of Optimization Theory and

Applications, 45:41{51, 1985.

[114] T. Verma and J. Pearl. Causal networks: Semantics and expressiveness. In
Proceedings Uncertainty in Arti�cial Intelligence, volume 4, pages 352{359.
North-Holland, Amsterdam, 1988.

172 Bibliography

[115] T. Verma and J. Pearl. An algorithm for deciding if a set of observed indepen-
dencies has a causal explanation. In Proceedings Uncertainty in Arti�cial

Intelligence, volume 8, pages 323{330, San Mateo (CA), 1992. Morgan Kauf-
mann.

[116] W.A.T. Wan Abdullah. Seeking global minima. Journal of Computational
Physics, 110:320{326, 1994.

[117] D. Wedelin. E�cient Algorithms for Probabilistic Inference, Combinato-

rial Optimization and the Discovery of Causal Structure from Data. PhD
thesis, Department of Computer Sciences, Chalmers University of Technology
G�oteborg, Sweden, 1993.

[118] N. Wermuth and S.L. Lauritzen. Graphical and recursive models for contin-
gency tables. Biometrika, 72:537{552, 1983.

[119] N. Wermuth and S.L. Lauritzen. On substantive research hypothesis, condi-
tional independence graphs and graphical chain models. Journal of the Royal
Statistical Society B, 52:21{50, 1990.

[120] J. Whittaker. Graphical Models in Applied Mathematical Multivariate

Statistics. John Wiley & Sons, Chichester, 1990.

[121] S.S. Wilks.Mathematical Statistics. John Wiley & Sons, New York - London,
1962.

[122] L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and
systems, 1:3{28, 1978.

173 Bibliography

Curriculum vitae

Remco Ronaldus Bouckaert

27 Januari 1967

Geboren te Haarlem

September 1979 - Mei 1985

VWO Nieuw Lyceum Hilversum

September 1985 - Februari 1991

Technische Universiteit Eindhoven
Propaedeuse elektrotechniek 1986
Doctoraal informatietechniek 1991

Maart 1991 - Maart 1995

AIO aan de Universiteit Utrecht, vakgroep informatika

174

Samenvatting

In het dagelijks leven is het redeneren met onzekerheden gebruikelijker dan het
redeneren zonder. Bayesiaanse belief netwerken bieden een wiskundig correct for-
malisme om onzekerheid te representeren en op e�ci�ente wijze mee te redeneren.
Een Bayesiaanse belief netwerk bestaat uit twee delen.

Ten eerste bestaat een belief netwerk uit een een gerichte graaf zonder lussen: de
netwerkstructuur. Voor elke variabele waarmee we willen redeneren is er een knoop
in de graaf. We zullen de termen knoop en variabele dan ook door elkaar gebruiken.
Figuur 0.1 laat een eenvoudig belief netwerk zien voor een klein medisch domein
met daarin de leeftijd van een patient (a), de behoefte aan een bril (g), of het zicht
beter wordt als de patient knippert (v) en of de patient klachten heeft over zijn zicht
(s). Als er een directe afhankelijkheid tussen twee knopen is, dan zijn deze knopen
verbonden met een pijl. Intuitief geeft de richting van de pijl een causale invloed
aan. Bijvoorbeeld in Figuur 0.1 geeft de pijl van a naar g weer dat de leeftijd een
indicatie is dat de patient een bril nodig heeft.

�

��

�

��

�

��

?

�
�
�

��	

@
@
@
@@R

Pr(g = T ja = T) = 0:75

Pr(g = T ja = F) = 0:15

Pr(v = T jg = T) = 0:8

Pr(v = T jg = F) = 0:05

Heeft bril nodig

�

��

Zicht verbetert

Pr(s = T jg = F) = 0:05

na knipperen

Patient klaagt

over zicht

Leeftijd van patient > 75

g

sv

a Pr(a = T) = 0:1

Pr(s = T jg = T) = 0:75

Figure 0.1: Eenvoudig belief netwerk.

Ten tweede bestaat een Bayesiaanse belief netwerk uit een verzameling condi-

tionele kansverdelingen, �e�en voor elke knoop geconditioneerd op de ouder knopen.
In Figuur 0.1 zijn deze kansverdelingen naast iedere knoop weergegeven. Al deze
kansverdelingen samen de�ni�eren een kansverdeling over de hele verzameling van
variabelen.

In dit proefschrift behandelen we drie essenti�ele onderdelen in de levens cyclus van
een belief netwerk; de door de netwerkstructuur gerepresenteerde afhankelijkheden,
het automatisch leren van belief netwerken uit databases, en het redeneren met
behulp van belief netwerken.

175

Gerepresenteerde Afhankelijkheden

De e�ci�entie van veel algoritmen die worden toegepast op belief netwerken is
gebaseerd op het feit dat vaak grote verzamelingen variabelen irrelevant zijn voor
het redeneren met andere variabelen. Irrelevantie kan worden geformaliseerd met
het begrip conditionele onafhankelijkheid; de verzamelingen variabelen X en Y
zijn conditioneel onafhankelijk gegeven de verzameling variabelen Z, als voor alle
waarden van de variabelen in X, Y en Z geldt, dat het kennen van de waarden
van variabelen in Y irrelevant is om iets over de waarden van de variabelen X af te
leiden als we de waarden van de variabelen Z al kennen. Bijvoorbeeld, als bekend is
dat een patient een bril nodig heeft, dan is het niet relevant of de patient klachten
heeft over zijn zicht om iets over de leeftijd van de patient af te leiden.

Een onafhankelijkheidsmodel is een verzameling conditionele onafhankelijkhe-
den. Een veel voorkomend onafhankelijkheidsmodel is het graphoide onafhanke-

lijkheidsmodel: het is gesloten is onder a
eiding met behulp van de zogenaamde
graphoide axioma's. Voor deze modellen is veel theorie ontwikkeld:
- Er zijn criteria om conditionele onafhankelijkheden af te lezen uit netwerkstruc-
turen.
- Er bestaat een relatie tussen gerepresenteerde conditionele onafhankelijkheden in
een netwerkstructuur en die gerepresenteerd in de kansverdeling behorend bij een
belief netwerk.
- Er zijn e�ci�ente methode om netwerkstructuren te construeren uit een onafhanke-
lijkheidsmodel M I die een maximale deelverzameling van M I representeert, zoge-
naamde minimale I-maps.
Helaas kan niet elk onafhankelijkheidsmodel precies gerepresenteerd worden met be-
hulp van een graaf; er zullen er vaak conditionele onafhankelijkheden zijn die wel in
het onafhankelijkheidsmodel zitten maar niet door de graaf gerepresenteerd worden.

In dit proefschrift wordt een theorie ontwikkeld over conditionele afhankeli-

jkheid, het tegengestelde van conditionele onafhankelijkheid; X en Y zijn con-
ditioneel afhankelijk gegeven Z als X en Y niet conditioneel onafhankelijk zijn.
Een afhankelijkheidsmodel is een verzameling conditionele afhankelijkheden. Met
elk onafhankelijkheidsmodel kan een afhankelijkheidsmodel geassocieerd worden zo-
danig dat elk triple (X;Z; Y) in �e�en van beide modellen zit. Stel dat M I een
graphoide onafhankelijkheidsmodel is en MD het complementaire afhankelijkhei-
dsmodel. Een aantal axioma's is opgesteld waaronder een groot aantal afhankeli-
jkheidsmodellen gesloten is. In dit proefschrift is een criterium ontwikkeld om een
groot aantal conditionele afhankelijkheden uit MD af te lezen uit een netwerkstruc-
tuur die een minimale I-map vanM I is. Helaas kan niet van elk triple ge��denti�ceerd
worden of het een conditionele onafhankelijkheid of een conditionele afhankelijkheid
is.

Automatisch Leren van Belief Netwerken

Een belief netwerk bestaat uit twee componenten; een netwerkstructuur en een
verzameling conditionele kansverdelingen. Het leren van een belief netwerk van een
database kan eveneens worden opgedeeld in twee�en; het leren van een netwerkstruc-
tuur en het leren van de conditionele kansverdelingen.

176 Samenvatting

Een netwerkstructuur kan worden geleerd met behulp van een kwaliteitsmaat, een
maat die aangeeft hoe goed een netwerkstructuur bij een database past. In dit proef-
schrift zijn de eigenschappen van verschillende kwaliteitsmaten onderzocht, te weten
de Bayesiaanse maat, de MDL maat en informatiecriteria. Er wordt aangetoond dat
de MDL maat als een goede benadering van de Bayesiaanse maat gezien kan worden
voor veel databases. We hebben laten zien dat door een informatiecriterium aan
elke netwerkstructuur die dezelfde conditionele onafhankelijkheden representeert,
dezelfde kwaliteit wordt toegekend. Deze eigenschap geldt ook voor de MDL maat.
De Bayesiaanse maat heeft deze eigenschap niet. We hebben voor verscheidene situ-
aties laten zien dat alle drie de kwaliteitsmaten de gewenste eigenschappen hebben
voor oneindig grote databases. Voor eindig grote databases hebben we bovengrenzen
afgeleid voor het aantal ouders van een knoop in de beste netwerkstructuur. Het
blijkt dat de Bayesiaanse maat vaak netwerken met knopen met veel meer ouders
prefereert dan de andere maten.

Aangezien het aantal mogelijke netwerkstructuren exponentieel groeit met het
aantal knopen, is het niet mogelijk een kwaliteitsmaat toe te passen op alle mogelijke
netwerkstructuren. Er is een zoekalgoritme nodig dat netwerkstructuren selecteert
waarvan verwacht kan worden dat ze een hoge kwaliteit hebben. In dit proefschrift
laten we zien dat het selecteren van netwerkstructuren met zekere optimaliteit-
seigenschappen NP-moeilijk is. Dit betekent dat het zeer waarschijnlijk is dat er
geen e�ci�ent algoritme bestaat om zulke netwerkstructuren te selecteren. Daarom
maken we gebruik van heuristieken. We laten zien hoe de bekende heuristieken K2
en B gegeneraliseerd kunnen worden en hoe `simulated annealing', `tabu search' en
`rejectionfree annealing' toegepast kunnen worden op dit probleem.

Als eenmaal een netwerkstructuur met een hoge kwaliteit geselecteerd is, dan kun-
nen de conditionele kansverdelingen geleerd worden door rechtstreeks de kansen uit
de database te schatten. Een alternatieve methode is om een verzameling netwerk-
structuren met hoge kwaliteit te selecteren, en voor deze verzameling structuren
kansen te schatten. De verzameling aldus verkregen netwerken representeren een
kansverdeling die een met de kwaliteit gewogen gemiddelde is van de netwerken in
de verzameling. Voor speciale verzamelingen kan deze kansverdeling door �e�en enkel
belief netwerk gerepresenteerd worden. In dit proefschrift laten we zien dat het con-
strueren van zo een belief netwerk e�ci�ent gedaan kan worden tijdens het uitvoeren
van de heuristieken K2 en B.

Redeneren met Belief Netwerken

Redeneren met belief netwerken is gebaseerd op het berekenen van conditionele
kansen. Met het belief netwerk uit Figuur 0.1 kan bijvoorbeeld de kans berekend
worden dat een patient een bril nodig heeft wanneer bekend is dat de patient ouder
is dan 75 jaar. Een algemeen toepasbare techniek die voor deze berekening ge-
bruikt kan worden is simulatie. In dit proefschrift wordt een simulatiealgoritme
gepresenteerd voor het redeneren met belief netwerken gebaseerd op een populaire
statistische techniek, strati�catie. Het strati�catiealgoritme genereert steekproeven
die gelijkmatig over de sample ruimte verdeeld zijn. Het algoritme kan e�ci�ent
ge��mplementeerd worden. We laten zowel theoretisch als experimenteel zien dat
het algoritme zowel een kortere rekentijd als een betere kansschatting oplevert dan

177 Samenvatting

het `likelihood weighing' algoritme, het meest e�ci�ente algoritme dat tot dusver
bekend was. Verscheidene optimalisaties van ons algoritme hebben we onderzocht.
Hoewel andere algoritmen voor speciale netwerkstructuren e�ci�enter kunnen zijn,
biedt strati�catie een algemeen toepasbaar robuust algoritme waarvan de e�ci�entie
niet door de netwerkstructuur be��nvloed wordt.

178 Samenvatting

Index

Aarts, 103
adjacent, 17
AIC, 64, 86
Akaike information criterion, 64
algorithm B, 95, 101, 107, 111, 116,

118, 162
algorithm B with k step look-ahead, 97
arc-reversal, 26, 71, 75, 76
arcs, 17
ascendant, 18
assessment functions, 3, 27, 108

backward sampling, 136, 138
backward sampling distribution, 136,

139
backward-sampling, 13
Bayesian belief network, 27
Bayesian belief networks, 2
Bayesian measure, 62, 68, 93, 125, 127,

128
Bayesian quality of node, 93
belief networks, 2
BIC, 64, 86
blocked, 22, 23
boundary, 24
build-test cycle, 4, 59, 95, 108, 113,

123

cases, 60
causal graphs, 2
causal input list, 25, 29, 45, 47
causal networks, 2
�Cerny, 101
certainty factor model, 2
chain, 18
chain graph, 160
chain rule, 20
Chang, 13
Chavez, 14
child, 17
child set, 17
Chin, 14
Chow, 7, 8
clique, 18

complement, 30
complete, 18
composition, 32
conditional independence, 9
conditional probability, 20
conditionally dependent, 30
conditionally independent, 20
con�guration, 19
conforms, 19
connected, 18
contraction, 21
Cooper, 8, 14, 61, 62, 94, 108
cost function, 89
coupled, 42, 51
coupling statement, 42, 51
Crawford, 11
cross entropy, 7, 113
cycle, 18

D-map, 24
d-separates, 23
d-separation, 9
Dagum, 150
database, 60
decomposition, 21
Dempster-Shafer theory, 2
dependency axioms, 32
dependency base, 38, 49
dependency map, 24
dependency model, 30
dependency pool, 39
descendant, 18
description length, 67
direct estimation, 108
directed acyclic graph, 18
directed edge, 17
directed graph, 17
disconnected, 18
divergence, 7, 113
Druzdzel, 164

edges, 17
embedded graph, 18
entropy, 63, 72

179

equiprobable sampling, 12, 138
equivalent , 25
event space, 19
evidence variables, 12
evidence weighting, 13, 138
extraction, 32
extraction+, 32

forward sampling distribution, 135
frequentist, 1, 7, 62, 64
Fung, 11, 13
fuzzy logic, 2

Geiger, 9
Gelatt, 101
generation mechanism, 90
Gibbs sampling, 139
global optimal solution, 89
global optimum, 89
Glymour, 10, 160
graph, 17
graphoid, 21, 30
graphoid axioms, 21

Henrion, 12
Herskovits, 8, 61, 62, 94, 108
heuristic importance sampling distri-

bution, 137
Horvitz, 150

I-map, 24, 90, 92
Idiot's Bayes, 1
importance sampling, 13
independency base, 24, 29, 34, 37
independency map, 24
independency model, 21
independency statement, 21
induced, 18, 21
inference, 4, 131
information criterion, 64, 75, 76, 85,

93
information criterionquality of node, 93
instance of a combinatorial optimiza-

tion problem, 89
intersection, 21, 32

joint probability distribution, 20

K2, 94, 101, 107, 162

K2 with k step look-ahead, 97
Kirkpatrick, 101
Ku, 8
Kullback, 8

Lauritzen, 164
learning, 59
length, 18
likelihood weighing, 13
likelihood weighting, 138
Liu, 7, 8
local optimum, 89
log-linear models, 8
logic sampling, 13, 138

marginal, 20
marginal probabilitydistribution, 20
Markov blanket, 136
Markov blanket sampling distribution,

136

Markov blanket scoring, 139
Markov boundary, 11
Markov network, 26
maximum likelihood, 64
MDL measure, 67, 68, 93
MDL quality of node, 93
minimal I-map, 24, 77
minimum I-map, 80, 81
mixed graph, 17
modi�ed strati�cation scheme, 148

neighbor, 89
neighborhood, 17, 89, 94, 95, 97, 98,

118, 120
neighborhood structure, 89
neighboring solution, 89
network structure, 2, 27
nodes, 17
non-monotonic logics, 2
number of parameters, 63, 74

obeys, 18
outcome space, 19

P-map, 24, 83
parent, 17
parent set, 17
parity distribution, 129, 130

180 Index

parity distribution, 128
partial con�guration, 19
partial outcome space, 19
path, 18
Paz, 9
Pearl, 2, 8{10, 14, 139
Pearl's scheme, 139
penalty function, 64
Peot, 13
perfect map, 24
poly-tree, 8, 9, 18, 113, 118, 152
positive probability distributions, 19
positive stochastic, 21, 30
possibility theory, 2
potentials, 26
probabilistic networks, 2
probability distribution, 19
probabilitytheory, 1

quality measure, 61
quality of node, 93

Rebane, 8, 10
recursive models, 2
Rejectionfree annealing, 103
rejectionfree annealing, 122
reversed neighborhood, 99, 99, 107, 120
rule-based expert systems, 2

sample, 132
sample score, 12, 132
sample space, 132
sample trial, 132
sampled, 134
sampling distribution, 13
sampling distribution, 132
Scheines, 10
Schwarz criterion, 64
score equivalent, 71
semi-dependency axioms, 32
semi-graphoid, 21, 30
semi-graphoid axioms, 21
separates, 22
separation statement, 23
SGS-algorithm, 10
Shachter, 13, 152
simple, 18
simple graph, 17

simple scoring, 139
Simulated annealing, 101
simulated annealing, 122
simulation, 132
simulation scheme, 132
skeleton, 26
smoothing, 109
solution, 89
solution space, 89
Spiegelhalter, 164
Spirtes, 10, 84, 160
standard, 148
state space, 19
stochastic, 21, 30
straight neighborhood, 120
straight neighborhood, 98, 99
strati�ed equiprobable scheme, 144
strati�ed likelihood scheme, 144
subgraph, 18
subjective Bayesians, 1
sum property, 93
symmetry, 21, 32

Tabu search, 99
tabu search, 120
tabu-list, 99
topological ordering, 18, 138, 147
tree, 18
trial score, 132

underlying, 18
undirected edge, 17
undirected graph, 17
uniform distribution, 135

v-node, 8, 18, 56, 57
value, 19
Vecchi, 101
Verma, 10

weak reunion, 32
weak union, 21
weighted B, 111
weighted K2, 111
Whittaker, 8

181 Index

