
Generating incremental attribute evaluators

Het genereren van incrementele attribuut evaluatoren

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de

Universiteit Utrecht op gezag van de Rector Magnifi-

cus, Prof. dr. J.A. van Ginkel, ingevolge het besluit van

het College van Decanen in het openbaar te verdedigen

op vrijdag 25 november 1994 des middags te 12:45 uur

door

Maarten Christiaan Pennings

geboren op 28 december 1965
te Utrecht

Promotor: Prof. dr. S.D. Swierstra
Co-promotor: Dr. M.F. Kuiper

Faculteit Wiskunde en Informatica

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Pennings, Maarten Christiaan

Generating incremental attribute evaluators / Maarten
Christiaan Pennings. - Utrecht : Universiteit Utrecht,
Faculteit Wiskunde en Informatica
Proefschrift Universiteit Utrecht. - Met index, lit. opg.
- Met samenvatting in het Nederlands.
ISBN 90-393-0665-6
Trefw.: attributen (computerprogramma's) /
programmeertalen / compilers.

N
d

WO

These investigations were supported by the Netherlands Computer Science
Research Foundation (SION) with the �nancial support from the Netherlands
Organization for Scienti�c Research (NWO).

At the back cover: the initial abstract syntax tree (left) of the varuse grammar de�ned in this

thesis and the same tree (right) after augmenting, splitting and elimination.

P
i

Preface

In the passed four years, I was often asked by friends and relatives what my research
was about. If the question was raised by an insider of the world of computing
science I would drop the keyword \compiler generator", and we would talk shop for
a while. The other scenario, the question coming from an outsider, was perhaps
even more appealing. I always felt challenged to explain specialized matters to
others, and I still do.

With outsiders, I started talking about software familiar to them|a wordpro-
cessor whose brand I shall not name here. I then explained that such software
is written by programmers in programming languages like \Pascal" or \c". The
next point in my exposition appeared critical quite often: a program written by a
programmer needs to be translated by a \compiler" before a computer can actually
execute it. When I then �nally told that a compiler is also a program that can be
generated by yet another program \my research topic", I usually lost my audience
allthough they were mostly too polite to admit it.

In short, my thesis is about a program that generates compilers, or, using
insiders jargon, about a program that generates attribute evaluators. I have done
my best, joyfully, to write an understandable thesis. I have included lots of pictures
to enlighten the subject and lots of marginal notes that informally elaborate on the
matters in the main text. However, it is the destiny of computing scientist that
their research is for insiders. I hope that if you are one, you do not get lost in my
thesis.

I would like to thank Doaitse Swierstra, my promotor, for o�ering me an OIO
position and introducing me to the �eld of compiler generators. His ideas, often
wild but always brought with enthusiasm, are stimulating. I enjoyed the various
discussions with him, including the ones about computing science. In the same
breath I must mention Matthijs Kuiper, who is my co-promotor. Together, we
spend numerous hours on writing the generator and identifying research problems.
He also tried to teach me to write concise. Wherever this thesis is not concise, I
am to blame.

Furthermore, I would like to thank the reading-committee, dr. H. Alblas,
dr. M. Jourdan, prof. dr. F.E.J. Kruseman Aretz, prof. L.G.L.T. Meertens, and
prof. dr. ir. M.J. Plasmeijer for reviewing my thesis. Chritiene Aarts meticulously
worked his way through a draft version of my thesis �nding many errors. I would
also like to thank Harald Vogt, who was a pleasant roommate for a too short
period, for commenting on previous versions of this text.

ii Preface

Numerous years of research in computing science have gone by, and still there is
no document preparation system that one can operate without getting a headache
now and then. I thank Chritiene Aarts and Rob Udink who were always willing
to discuss LaTEX-quirks. By the way, the previewer with encapsulated postscript
support has become a real paper-saver now.

The Vakgroep has always been a pleasant place to work. I need only to bring
into mind the (too) few sailing days, the \�lm-list" and \skwosj-list".

Finally, I thank my family and friends for their interest and moral support. In
particular I want to thank my parents for stimulating my curiosity. And I thank
Debbie, for being there.

C
iii

Contents

1 Introduction 1

1.1 Motivation : 1

1.2 A formal motivation : 2

1.3 Attribute grammars : 4

1.4 Higher-order attribute grammars : : : : : : : : : : : : : : : : : : : 6

1.5 Structure of this thesis : 7

1.6 Meta remarks : 8

2 The formalism 9

2.1 Notation : 9

2.2 Grammars : 11

2.2.1 Context-free grammars : 11

2.2.2 Attribute grammars : 12

2.2.3 Higher-order attribute grammars : : : : : : : : : : : : : : 15

2.3 Grammar speci�cations : 19

2.3.1 Algebraic formalism : 19

2.3.2 Graphical formalism : 22

2.3.3 Discussing the varuse grammar : : : : : : : : : : : : : : 23

2.4 Circularities : 27

2.4.1 The dtr graph : 28

2.4.2 The circularity test : 30

2.4.3 Strongly non-circular : 31

2.4.4 Reducing higher-order attribute grammars : : : : : : : : : 33

3 Using visit-sequences for incremental evaluation 35

3.1 Introduction : 35

3.1.1 Plain and incremental evaluation : : : : : : : : : : : : : : 35

3.1.2 Visit-sequences : 38

3.1.3 Interfaces and partitionable grammars : : : : : : : : : : : : 42

3.1.4 Background : 43

3.2 The box grammar : 44

3.2.1 Single visit : 44

iv Contents

3.2.2 Two visits : 48

3.2.3 The header : 48

3.3 Visit-sequence based evaluators : : : : : : : : : : : : : : : : : : : 48

3.3.1 Plain evaluation : 49

3.3.2 Incremental evaluation : 49

3.3.3 Skipping visits : 51

3.3.4 Evaluation of higher-order grammars : : : : : : : : : : : : 54

3.3.5 An attribute grammar system : : : : : : : : : : : : : : : : 56

3.3.6 Background : 57

3.4 Visit-functions : 58

3.4.1 Mapping grammars to functional programs : : : : : : : : : 59

3.4.2 Intra-visit-dependencies and plan icons : : : : : : : : : : : 64

3.4.3 Bindings : 68

3.4.4 Binding analysis : 73

3.4.5 Emptiness test for bindings : : : : : : : : : : : : : : : : : 80

3.4.6 Reviewing the varuse and box grammar : : : : : : : : : 82

3.4.7 Memoization : 85

3.4.8 An attribute grammar system : : : : : : : : : : : : : : : : 88

4 New techniques for incremental evaluation 89

4.1 Introduction : 89

4.2 Splitting : 90

4.2.1 The split grammar, split function and SPLIT mapping : : : 92

4.2.2 Splitting the varuse grammar : : : : : : : : : : : : : : : 96

4.2.3 Higher-order attribute grammars : : : : : : : : : : : : : : 98

4.2.4 Flow trees and data trees : : : : : : : : : : : : : : : : : : 100

4.2.5 Discussion : 102

4.3 Encapsulators : 103

4.3.1 De�nitions : 103

4.3.2 Encapsulating split : 104

4.3.3 Elimination and uni�cation : : : : : : : : : : : : : : : : : 106

4.3.4 Folding and normalization : : : : : : : : : : : : : : : : : : 112

4.4 Untyping : 115

4.5 Discussion : 116

5 Computing visit-sequences 119

5.1 Grammar classes : 119

5.2 Ordered scheduling : 122

5.2.1 Ordering attributes of a non-terminal : : : : : : : : : : : : 123

5.2.2 Ordering attribute occurrences of a production : : : : : : : 125

5.3 Dat grammars : 127

Contents v

5.3.1 Arc surplus in the tdp graphs : : : : : : : : : : : : : : : : 128

5.3.2 De�nition of dat graphs : : : : : : : : : : : : : : : : : : : 128

5.3.3 New steps 4 and 5 : 131

5.3.4 Comparing dat grammars with ordered grammars : : : : : : 131

5.4 Chained scheduling : 134

5.4.1 Introduction to scheduling costs : : : : : : : : : : : : : : : 135

5.4.2 Computation classes : 137

5.4.3 Priority worklist : 138

5.4.4 Ordering attribute occurrences of a production : : : : : : : 139

5.4.5 Optimizing bindings : 141

5.5 Review : 143

6 An implementation 145

6.1 Structure of the generator : 145

6.1.1 Front-end : 145

6.1.2 Back-end : 146

6.1.3 Rundraw : 147

6.2 Structure of generated evaluators : : : : : : : : : : : : : : : : : : 148

6.2.1 Library for plain evaluation : : : : : : : : : : : : : : : : : 148

6.2.2 Library for incremental evaluation : : : : : : : : : : : : : : 149

6.2.3 Generated code : 158

6.3 Performance results : 158

6.3.1 Test set : 158

6.3.2 What to measure? : 159

6.3.3 Results : 159

6.4 Towards a user-interface : 161

6.4.1 Editing : 162

6.4.2 Display tree editing : 163

6.5 Open problems : 166

7 Final remarks 169

7.1 Review : 169

7.2 Completing the generator : 169

7.3 Parallel attribute evaluation : 170

7.4 Conclusions : 170

A Ssl source 171

A.1 Comments : 171

A.2 Listing : 172

B Generated C program 173

B.1 Comments : 173

B.2 Listing : 174

vi Contents

C Evaluator output 181

C.1 Comments : 181

C.2 Listing : 182

Bibliography 185

Samenvatting 191

Informele inleiding : 191

Compilers : 191

Incrementele berekeningen : : : : : : : : : : : : : : : : : : 192

Taal-speci�eke editors : 193

Kort overzicht : 194

Curriculum vitae 195

Glossary 197

Variables : 197

Symbols : 199

Index 203

L
vii

List of Figures

The varuse example

2.1 The grammar : 21

2.2 The higher-order grammar : 21

2.4 The production icons : 24

2.5 The higher-order variant of the production icons : : : : : : : : : : 24

2.6 Venn-diagram of O(decl); the higher-order variant : : : : : : : : : 26

2.7 The abstract syntax tree of the standard application : : : : : : : : 28

3.1 The production icons and their plans : : : : : : : : : : : : : : : : 39

3.2 The plan tree (old style) of the standard application : : : : : : : : 40

3.3 Total order on the attribute instances in the standard application : 40

3.4 The visit-sub-sequences \structured style" : : : : : : : : : : : : : 41

3.14 The visit-sub-sequences of the higher-order variant : : : : : : : : : 55

3.19 Visit-functions from the VSS mapping (with side-e�ects) : : : : : : 65

3.20 The plan icons : 65

3.21 The plan tree (new style) for the standard application : : : : : : : 67

3.22 Diverting intra-visit-dependencies : : : : : : : : : : : : : : : : : : 68

3.30 The augmented plan tree : 83

3.31 The binding in the standard application : : : : : : : : : : : : : : : 83

3.32 Visit-functions and data types : 84

4.2 Split grammar and split functions : : : : : : : : : : : : : : : : : : 96

4.3 The split tree associated with the standard application : : : : : : : 97

4.4 Split visit-functions : 98

4.5 An edit operation on the standard application : : : : : : : : : : : : 99

4.7 The encapsulators : 105

4.8 Eliminating the copy-wrapper stat1!2 : : : : : : : : : : : : : : : 107

4.10 Split visit-functions with stat1 eliminated : : : : : : : : : : : : : : 109

4.11 The standard application with elimination in e�ect : : : : : : : : : 110

5.19 Chained scheduling for stat : 142

C.1 The shared terms during the second run : : : : : : : : : : : : : : 182

viii List of Figures

The box example

3.5 The grammar (part I) : 46

3.6 The grammar (part II) : 46

3.7 The grammar (part III) : 46

3.8 The production icons of sideb and stackr : : : : : : : : : : : : : 47

3.9 The visit-sub-sequences : 47

3.12 The abstract syntax tree for the standard application : : : : : : : : 52

3.13 The plan tree (old style) for the standard application : : : : : : : : 52

3.33 The plan icons : 86

The binding example

3.24 Diversion of border-crossings with bindings in production p : : : : 72

3.25 Annotated visit-sequences of production p : : : : : : : : : : : : : 76

3.26 Plan icon of production q : 77

3.27 Visit-functions using bindings : 79

3.28 Visit-functions with only non-empty parcels : : : : : : : : : : : : : 81

Algorithms

2.8 The circularity test : 30

2.9 The strongly non-circular test : 32

3.10 Attribute evaluator decorate : : : : : : : : : : : : : : : : : : : 49

3.11 Incremental attribute evaluator redecorate : : : : : : : : : : : 50

3.29 The emptiness test for parcels : 82

5.4 Ordering the attributes of a non-terminal: step 1{3 : : : : : : : : : 124

5.5 Graph operations for step 3 : 124

5.6 Ordering the attributes occurrences of a production: step 4 and 5 : 124

5.16 The goal function : 140

5.17 The retrieve procedure : 140

5.18 New step 5: chained scheduling : : : : : : : : : : : : : : : : : : : 140

Grammar class examples

2.10 A non-circular grammar that is not strongly non-circular : : : : : : 32

List of Figures ix

2.12 A well-de�ned higher-order grammar that is not reduced non-circular 34

5.1 A (strongly) non-circular grammar that is not partitionable : : : : : 121

5.2 A partitionable grammar that is not l-ordered : : : : : : : : : : : : 121

5.7 Grammars passing steps 1{3 but failing step 4 : : : : : : : : : : : 126

5.9 A dat grammar that is not ordered : : : : : : : : : : : : : : : : : 134

Other �gures

2.3 A production icon : 23

2.11 Reducing a production of a higher-order attribute grammar : : : : 33

3.15 The minimum example : 61

3.16 The replace example : 61

3.17 The repmin example : 61

3.18 The VSS mapping: strict visit-functions for repmin : : : : : : : : : 63

3.23 Factorization gives better incremental behavior than accumulation : 69

3.34 Terms for the fragment \x := x xor y ; y := x xor y ; x := x xor y" 87

4.1 Splitting the abstract syntax tree : : : : : : : : : : : : : : : : : : 91

4.6 Syntactic references in a split production : : : : : : : : : : : : : : 101

4.9 Non crossing copy-rules only : 108

4.12 Typical threading productions : 113

4.13 A production that replaces threading productions : : : : : : : : : : 113

4.14 Divide and conquer production : : : : : : : : : : : : : : : : : : : 114

4.15 Associative-normalization : 114

5.3 Grammar hierarchy : 122

5.8 The mixed arcs for a three-visit non-terminal : : : : : : : : : : : : 130

5.10 The dat(q) and tdp(q) graphs : : : : : : : : : : : : : : : : : : : 134

5.11 Scheduling � := f � : 136

5.12 Scheduling
 := f � � : 136

5.13 Scheduling � := f � and
 := g � : : : : : : : : : : : : : : : : : 136

5.14 Scheduling � := f : 136

5.15 The four classes of computations : : : : : : : : : : : : : : : : : : 137

5.20 Minimizing the number of bindings : : : : : : : : : : : : : : : : : 142

6.1 Garbage in the constructor cache : : : : : : : : : : : : : : : : : : 157

x List of Figures

1
1

Chapter 1

Introduction

This thesis is concerned with several aspects of generators for incremental attribute
evaluators. We introduce evaluators that are purely functional. Functional eval-
uators allow for several optimizations aimed at improving incremental behavior.
This thesis also presents a new algorithm for scheduling the work in evaluators.
To examine the feasibility of our approach, we have implemented an evaluator
generator.

Attribute grammars are a formalism for describing formal languages such as
programming languages. An attribute grammar describes the computation of at-
tributes, objects attached to tree nodes. An attribute grammar de�nes the struc-
ture of trees, associates attributes with tree nodes and speci�es how attributes of
adjacent nodes depend on each other. An attribute evaluator takes as input a tree
and computes the values of all attributes attached to the nodes of that tree, a
process known as decoration. After an edit action that changes the input tree, an
incremental attribute evaluator does not redecorate the new tree from scratch; it
uses the previous results to speed up decoration.

Because (incremental) attribute evaluators can be constructed automatically
from an attribute grammar, attribute grammars are not just de�nitions. Software
tools can be de�ned by an attribute grammar. An implementation of such a tool
can be obtained by generating an attribute evaluator from its attribute grammar.

We discuss the implementation of generators for incremental attribute evalu-
ators. In particular, we discuss a new approach that uses functions to decorate
trees. These so-called visit-functions are memoized to obtain incremental eval-
uation. This thesis also addresses the feasibility of evaluation with memoized
visit-functions: a generator has been implemented.

1.1 Motivation

The simple mechanism of computing the values of attributes associated with tree
nodes has a wide range of applications [DJL88]. With an attribute grammar one
can compute something as simple as the minimal value in a tree. But attribute

2 1. Introduction

grammars are also used to describe compilers [KHZ82]. Other application of at-
tribute evaluators are language based editors, program transformation systems,
document preparation systems and veri�cation tools [RT88, DJL88].

For example, generators have been used to create compilers for di�erent kind
of languages with varying structures: plain programming languages, speci�cation
languages, grammar de�nitions. Such compilers feature type checking, detect-
ing programming anomalies and code generation. Furthermore, transformation
systems for functional programming languages have been implemented. The gen-
erated system checks the correctness of transformations. Document preparation
tools have been constructed for plain text, mathematical formulas, dictionary en-
tries, or tax forms to name but a few. Such systems are mainly used for pretty
printing, that is, creating consistent, high-quality typeset output.

A language based editor can be applied in each of these examples. Such editors
consist of two parts: a user interface that lets the user manipulate the \program"
under construction and an attribute evaluator that is applied after each change
to the program. As a result of attribute evaluation, a language based editor mayA language based ed-

itor is an editor with
knowledge about the
language it is con-
structed for (\Which
variables are declared
here?").

detect errors in the program against the static semantics of the language it is
constructed for. Furthermore, a language based editor may be queried by the user
about properties of the program under construction. These two features make that
language based editors increase the productivity of its users.

Incremental evaluators can be used wherever plain evaluators are applied; in
particular, they can be used in interactive systems such as language based editors.

The delay between user input and system response is an extremely important
aspect of interactive systems. Drawing programs, desk top publishing systems and
spreadsheets are famous examples of non grammar based interactive tools that useMany drawing pro-

grams have a button

redraw

screen
to be used

when the incremen-
tal refresh algorithm
leaves some pixels in
the wrong color.

incremental techniques to decrease system response time. Incremental algorithms
are hard to write by hand. On the other hand, we observe a still growing need for
interactive software. Generated incremental language based editors alleviate this
friction.

The use of generators reduces the production time for an evaluator consider-
ably. This makes generators especially useful for prototyping or for writing evalua-
tors for specialized languages. A disadvantage of generated evaluators is that their
e�ciency is lower than that of hand written ones. Our work is an approach to over-
come the time penalty for generated evaluators by using incremental techniques.
Observe that improvements in the generator improve any generated evaluator.

1.2 A formal motivation

This section gives an abstract motivation for research in incremental attribute
evaluation. It explains that computations described by attribute grammars are
easily made incremental. This section also shows that the class of problems that
can be speci�ed by an attribute grammar is large. Non-interested readers may skip
this section. The next one informally introduces attribute grammars.

1.2. A formal motivation 3

Many problems require an incremental solution. For compositional problems
an incremental solution is easily obtained. Compositional problems are problems
de�ned as homomorphisms on an inductive structure (lists, trees). A homomor-
phism h is de�ned on the \basis" h�i of the inductive structure h hii = hhiii and
on the \step" � of the inductive structure h (a � b) = h a �� h b , where hh�ii is
some unary and � �� � some binary operation. A change to one of the basic values
hii in such a term, requires only recomputation alongside the path from the tip
hii to the root of the term. For a balanced term of size n , this implies log n
re-applications of ��. In other words, compositional problems are well suited for
incremental evaluation.

As an example consider the problem of �nding the minimal element in a binary
tree of integers. Binary trees are de�ned by the following type de�nition. Note
that tip is the basic constructor (h�i) and fork the step (�).

5 2

3

2

type tree = tip(int)
j fork(tree; tree)

Function f presented below, gives a solution to the posed problem.

f : : tree �! int

f tip(i) = i

f fork(l ; r) = f l min f r

One may wonder whether the class of compositional problems is not too re-
stricted: data
ow is essentially bottom-up, which appears not very expressive.
However, if we allow higher-order functions, top-down
ow can be mimicked. Es-
sentially, this means that h a and h b are functions instead of ordinary values|a
higher order aspect. In that case �� is a higher-order function, such as functional
composition, so that the value for h (a � b) is a function too; let us call it g . By
passing g an argument, we realize top-down
ow.

We extend our previous example to illustrate this. We are required to transform
a binary tree into one of the same shape, but with all the tips replaced by the
minimal value. Function f applied to a tree t will return a tuple (v ; g), whose
�rst component v is the minimal tip value of t , and whose second component g 5 2

3

2

2

2

is a higher-order function. When g is passed an integer m , it returns a tree of the
same structure as t but with tip values m .

f : : tree �! (int ; int �! tree)
f tip(i) = (i ; [�m : tip(m)])
f fork(l ; r) = f l
 f r

where (vl ; gl)
 (vr ; gr) = (vl min vr ; [�m : fork(gl m; gr m)])

The requested answer is then easily computed by the following function.

ans : : tree �! tree

ans s = t

where (v ; g) = f s

t = g v

4 1. Introduction

However, the above program can be shortened if we allow non-strict functions.Here, \strict" means
that all the arguments
of a function must
be known in advance;
more speci�cally they
may not depend on
the functions result.
This is a liberal inter-
pretation of the usual
de�nition.

In that case, function f has two arguments: the source tree and an integer that
will replace all the tip values. Function f returns the minimal value of the source
tree and the target tree.

f : : tree �! int �! (int ; tree)
f tip(i) m = (i ; tip(m))
f fork(l ; r) m = f l m
 f r m

where (vl ; tl)
 (vr ; tr) = (vl min vr ; fork(tl ; tr))

The ans function now uses that f is non-strict in its second argument.

ans : : tree �! tree

ans s = t

where (v ; t) = f s v

We conclude with the observation that the class of compositional problemsThe example in this
section comes from
Bird [Bir84]. In 3.4.1
it is treated as an at-
tribute grammar prob-
lem.

allows for good incremental update and is large enough for practical applications,
provided that we allow non-strict, though not circular, homomorphisms. The at-
tribute grammar formalism describes precisely this class of problems, and is thus
an ideal framework to specify incremental computations.

1.3 Attribute grammars

A de�nition of a formal language usually consists of concrete syntax, abstract
syntax and descriptions of static and dynamic semantics. Programming languages
are a typical example of formal languages. Elements of a language shall be referred
to as programs. The concrete syntax of a language de�nition speci�es which
sequences of characters establish a syntactically valid program. The abstract syntax
de�nes trees; with each syntactically valid program an abstract syntax tree is
associated. Not every abstract syntax tree describing a syntactically valid program
corresponds to a semantically valid program. The abstract syntax tree might violate
semantic properties, called context conditions, de�ned by the static semantics of
the language. The dynamic semantics concerns the actualmeaning of the program.
It is usually described by de�ning a relation between the programs input and output.

Attribute grammars constitute a formalism for formal language de�nitions. An
attribute grammar includes a context-free grammar describing the concrete and
abstract syntax. Furthermore, an attribute grammar associates so-called attributes
with tree nodes. Attributes of a node describe properties of the subtree rooted
at that node and properties of the context of that node. Attributes of adjacent
nodes functionally depend on each other. Static semantics is imposed by enforcing
conditions on the attributes. Dynamic semantics can also be de�ned via attributes;
for example, by associating an executable program describing the meaning of a tree
with that tree.

1.3. Attribute grammars 5

We illustrate this with an example. Consider the assignment statement in a
pascal like language. The context-free grammar will contain a production for the
assignment statement that might look like

assignment : statement �! variable ':=' expression .

This production, named assignment , describes that a V ':=' E is a syntacti-
cally correct statement if string V is a syntactically correct variable and string E

is a syntactically correct expression . Hence, the string ':=' must occur literally in
assignments. The above production describes the concrete syntax. The associated
abstract syntax, the constructor assignment, has the following de�nition. Note
that does not mention literal strings.

statement = assignment(variable; expression)

When v is an abstract syntax tree for a syntactically correct variable , and e is an
abstract syntax tree for a syntactically correct expression , then assignment(v ; e)
is an abstract syntax tree for a syntactically correct statement .

A typical context condition is the requirement that the type of the expression

must be coercible to the type of the variable . In order to check for such a
condition, attributes are introduced. A variable and an expression are both
augmented with an attribute type . The condition can then be formulated as The value of the at-

tribute variable:type

denotes the type of
the variable denoted
by the subtree rooted
at variable .

follows

condition coercible(variable:type; expression:type) ,

where the so-called semantic function coercible de�nes which types are coercible.

The type of a variable depends on its declaration elsewhere in the program.
Similarly, the type of an expression depends on the types of its constituents which
eventually might be variables. Usually, the declarations of a program induce a
symbol table. The symbol table is passed to the expression by the following
equation.

expression:table := statement :table

The dynamic semantics of an assignment statement, more informally known as
its code, can also be characterized via attributes. An attribute code is associated
with variable , expression and statement . The semantic function code assign

constructs the code for a statement out of the codes for the variable and the
expression.

statement :code := code assign(variable:code; expression:code)

The entities variable , expression and statement are known as the non-ter-
minals of the attribute grammar. In production assignment , the non-terminal
statement is known as the left-hand side non-terminal or parent. The other two

6 1. Introduction

non-terminals are known as right-hand side non-terminals or children of production
assignment .

The attributes type and code are known as a synthesized attribute. Synthesized
attributes contain information that is derived from the subtree to whose root they
are attached. Inherited attributes, like table , contain information from the part of
the tree surrounding the subtree to whose root they are attached.

1.4 Higher-order attribute grammars

The structure of an abstract syntax tree is �xed during decoration. This is a
disadvantage. For example, conditions on attributes can be used to reject incorrect
abstract syntax trees a posteriori, but they can not be used to guide construction
of correct trees a priori. Higher-order attribute grammars [VSK89] were introduced
to alleviate this shortcoming.

In higher-order attribute grammars, attributes that are tree valued may be
decorated themselves. In other words, decoration of the abstract syntax tree com-
putes a tree that may be instantiated|grafted into the abstract syntax tree|and
decorated. Note the analogy with higher-order functions in functional languages.

Higher-order attribute grammars are interesting on two accounts.

First of all, it is advantageous that the abstract syntax tree, which guides
decoration, can be computed. When a computation can not easily be expressed in
terms of the inductive structure of the tree, a better suited structure can �rst be
computed. For example, a multi-pass compiler can be modeled by computing an
intermediate structure in an attribute upon which that attribute can be decorated,
much like attribute coupled grammars [GG84].

The second reason is a fundamental one rather than a practical one. Ev-
ery computation can be modeled through attribute evaluation in a higher-order
attribute grammar. More speci�cally, execution of semantic functions can be re-
placed by decoration of higher-order attributes. Vogt has proven that higher-order
attribute grammars without semantic functions (except identity functions and tree
constructors) have the same expressive power as plain attribute grammars with
semantic functions [Vog93]. In other words, semantic functions are redundant,
which is interesting from an aesthetic point of view because the formalism for
semantic functions is alien to the attribute grammar formalism.

From a practical point of view, it makes sense to promote using higher-order
attributes instead of semantic functions. Functional programming is \harder" than
writing attribute grammars since the latter are recursion free. Furthermore, during
incremental evaluation a semantic function is either completely reevaluated or not
at all. Thus, time consuming semantic functions cripple incremental attribute
evaluation.

A typical application of higher-order attributes is to model symbol table
lookups. The declarations in the program do not synthesize a symbol table as
in a plain grammar setting, but a tree encoding the declared identi�ers and their

1.5. Structure of this thesis 7

types. Symbol table lookup is achieved by �rst instantiating that tree, passing
the variable under consideration as an inherited attribute to that tree and thirdly
decorating that tree. The information associated with the variable will then be
synthesized.

The following fragment illustrates symbol table lookup in the assigment pro-
duction discussed in the previous section. The attributable attribute T computes
the type of the variable used in the context condition.

ata T : symbol table ; fdeclare attributable attribute T g
T := statement :table ; finstantiate T g
T :id := variable:name ; fpass the name of the variableg
condition coercible(T :type; expression:type) fuse synthesized typeg

Higher-order attributes are just a small enhancement to the attribute grammar
formalism. As a result, standard evaluation techniques are also applicable to higher-
order attribute grammars [VSK89]. However, the standard incremental techniques
proved ine�cient [TC90]. We developed a new approach based on memoized visit-
functions [VSK91, PSV92a]. This thesis elaborates on that approach and discusses
the the lrc processor that implements it.

1.5 Structure of this thesis

Chapter 2 introduces the attribute grammar formalism and the higher-order exten-
sion. Chapter 2 also introduces our notation with which we will denote grammar
speci�cations. Furthermore, it de�nes a graphical notation for grammars that will
be used extensively in this thesis.

Chapter 3 presents two methods for constructing incremental attribute eval-
uators. The �rst method is based on a visit-sequences driven tree walker. The
second method maps visit-sequences to visit-functions that are memoized to ob-
tain incremental behavior. Visit-functions based incremental evaluation handles
higher-order attributes e�ciently as opposed to the �rst method. However, visit-
functions require bindings, a complex data structure. A large part of Chapter 3
contains a thorough de�nition of bindings.

With the introduction of bindings, decoration is purely functional. This al-
lows for several optimizations, such as splitting, elimination, uni�cation, folding,
normalization and untyping. These optimizations are discussed in Chapter 4.

The third chapter only discusses how evaluators can be constructed from visit-
sequences. Chapter 5 explains how the visit-sequences themselves are computed.
We show how the ordered scheduling algorithm can be modi�ed on two accounts.
The �rst change (concerning step 4) causes a larger class of attribute grammars
to be accepted, the so-called dat grammars. Secondly, we have implemented a
new scheduling algorithm, chained scheduling (new step 5), that optimizes visit-
sequences with respect to incremental behavior.

8 1. Introduction

Part of our research concerned the feasibility of incremental attribute evaluation
with memoized visit-functions. To address this question, we have implemented
our ideas in the lrc system. Implementation issues are discussed in Chapter 6,
together with the �rst performance results.

Finally, Chapter 7 presents the conclusions.

1.6 Meta remarks

This thesis is intended to be rather self contained. That is why the varuse

grammar, the running example of this thesis, is treated so thoroughly. This also
explains the inclusion of the circularity test in Chapter 2 and Kastens' ordered
scheduling algorithm in Chapter 5.

Pictures provide a good insight in dependency patterns. Static analysis of
attribute grammars means analyzing dependencies. That is why pictures are useful
in explaining attribute grammars which in turn accounts for the numerous pictures
in this thesis.

It is thus also inevitable that references to �gures occur frequently. To help
the reader �nd the �gure being referred to, page numbers are given as subscripts,
except when the �gure is placed at the page of reference or its facing page. For
example, Figure 3.21 on page 67 will be referred to as Figure 3.21. 67 . If only one
page is to be turned, this is indicated with a single / or . subscript.

The successive stages in the processing of the varuse grammar are illustrated
with a �gure. In order to be able to �nd related �gures back easily, a list of �gures
is appended to the table of contents. The list of �gures is subdivided by topic.

For the curious reader, a test run of the lrc processor|the evaluator generator
written by us|is included. The varuse grammar has been used: Appendix A gives
the source, Appendix B presents the generated c code and Appendix C lists the
(diagnostic) output of the generated evaluator.

The notation for attribute grammars, de�ned in Chapter 2 is not standard. To
facilitate the reading of subsequent chapters a glossary is appended to this thesis.
It lists and shortly explains our notation.

The margins contain side notes and small �gures now and then. These marginalA marginal note looks
like this. notes are intended to elaborate on the matter discussed in the main text. Usually

they rephrase the main text in an informal way.

2
9

Chapter 2

The formalism

In this chapter we formally de�ne context-free grammars, structure trees, attribute
grammars and higher-order attribute grammars. Two formalisms are presented to
specify (higher-order) attribute grammars: an algebraic and a graphical one. The
notions of attributes, attribute occurrences, attribute instances and dependency
graphs are introduced. The circularity test at the end of this chapter illustrates
the de�nitions and gives a �rst taste of grammar analysis.

2.1 Notation

Compilers deal with languages and for each of these languages we need a nota-
tion. On top of that, we need a meta-notation to denote ordinary mathematical
expressions and algorithms. However, we do not make a strict separation between
the various languages in this thesis.

The source language for the evaluator generator will be de�ned in Section 2.3.
For the target language, we will use a notation inspired by functional languages A good introduction

into functional pro-
gramming is given
by Bird and Wadler
[BW88].

like gofer [Jon91], a large subset of haskell [HF92, HPJW+92]. Ordinary
mathematics is also expressed in a functional fashion. Algorithms in this thesis are
presented in a pascal like syntax.

We denote functional application by juxtaposition and we use parentheses for
grouping. For example, the application of f to x is denoted with f x . Conventional
binary operators, like functional composition � or addition +, will be written in�x.
Grammar related in�x and pre�x operators are written bold, as in for example
XS v and vX , or they are written with parentheses, as in tds(X).

A tuple of comma separated elements is enclosed in parentheses. The empty
tuple is denoted with (). The �rst respectively second element of a two-tuple or
pair t is denoted with fst t respectively snd t . In a context with many parentheses,
straight parentheses () will be used for tuples.

Following mathematical conventions, a set is denoted by enclosing the comma
separated elements in braces. The empty set is denoted by fg, union with [,
disjunction with \ and element-of with 2. Sometimes, + is used instead of [, to

10 2. The formalism

stress that the operands are disjoint. If V = V1+V2 then V1 and V2 partition V .
The crossproduct V1�V2 is the set of two-tuples f(v1; v2) j v1 2 V1 ^ v2 2 V2g.
Types are regarded as sets. Hence, a new type can be formed by applying the
crossproduct to two existing types.

A graph is a pair (V ;E) of vertices V and arcs E . If v and w are vertices,
then v!w denotes an arc. In this thesis, the set of vertices is known and �xed
for most graphs, which makes dependency sets more convenient. A dependency
set is a set of arcs which represents a graph with implicit vertices. Standard set
operations will be used for dependency sets. Transitive closure of a graph G

(dependency set D) is denoted with G+ (respectively D+).

A list is a sequence of elements. A list is denoted by enclosing the comma
separated sequence of its elements in square brackets. For example, [4; 5; 2; 2; 9; 5]
denotes a list of six natural numbers, [] denotes the empty list and [18] denotes
a singleton list. For a set (type) V , the set [V] consists of all lists that can be
formed by concatenating zero or more elements from V .

The following operators on lists are de�ned: the head of a non-empty list is
its �rst element; the tail of a non-empty list consists of all elements but the �rst,
preserving the order. head and tail are partial functions since they do not take
the empty list as argument. The len of a list is the number of elements in the
sequence. If l is a list and i a natural number, and 0 � i < len l , then l�i is the
element in l with i predecessors. Concatenation of two lists is denoted with ++

and x : l \cons" abbreviates [x] ++ l .

The �nal piece of notation for lists is called a list comprehension. It employs a
syntax adapted from conventional mathematics for describing sets. A list [E j P]
contains the values of the expression E for which the predicate P holds. An order
on the values is obtained by a special predicate of the form x l which is the
list-equivalent of the set predicate a 2 V . The idea is that a so called generator

x l preserves the order of list l :

[2x j x [1; 2; 3; 4]] = [2; 4; 6; 8] :

We will miss-use list comprehension to convert a set into a list in the following
manner. The resulting order is arbitrary.

[x j x 2 f1; 2; 3; 4g] could be [4; 1; 3; 2]

A term is a recursive data structure. Terms are created by constructors, a
special kind of function, denoted by bold symbols. For example, the declaration

type N = zero()
j succ(N)

de�nes type N representing natural numbers, and constructors zero and succ.
The term succ(n) is constructed by applying constructor succ to the term n .
Destructing a term means inspecting which constructor is applied to which sub-
terms. In this thesis, we will often not distinguish between a term type and an

2.2. Grammars 11

instance of that type. For example, the following function that returns the half of
a given natural number, uses pattern matching on terms. The third pattern uses
N as a fresh variable of type N : symbol N is overloaded.

half : : N �! N

half zero() = zero()
half succ(zero()) = zero()
half succ(succ(N)) = succ(half N)

In the above example, the symbol : : denotes has-type. Note the di�erence in
function application (denoted with white space) and constructor application (with
brackets).

2.2 Grammars

In this section, we introduce attributegrammars [Knu68, Knu71] and the higher- See [WG84] for an
introduction on gram-
mars.

order extension [VSK89, TC90, Vog93]. Our notation di�ers from other notations
[Kas80, WG84, Kui89, Vog93] in order to avoid ambiguity, most notably between
non-terminals and their occurrences.

2.2.1 Context-free grammars

An attribute grammar is based on a context-free grammar.

De�nition 1 Context-free grammar.

A context-free grammar is a triple G = (V ;P ; S). V is a non-empty, �nite set
of symbols, partitioned into a non-empty set of non-terminal symbols N and a
set of terminal symbols T . P is a �nite set of productions. A production is a
non-empty �nite list of symbols whose �rst element is a non-terminal symbol. The
start symbol S is a non-terminal symbol.
2

V is the vocabulary of grammar G . Non-terminal symbols are usually called
non-terminals and terminal symbols are called terminals. Unless noted otherwise,
we assume that T = fg, in which case, the context-free grammar is said to
describe the abstract syntax as opposed to the concrete syntax.

Unlike most de�nitions of context-free grammars, we de�ne productions as
a non-empty list of non-terminals, as Kuiper did [Kui89]. A production p =
[X0;X1;X2 : : : ;Xs] 2 P , s � 0, will be denoted either as p : X0 �! X1 X2 : : :Xs

or as X0 = p(X1;X2; : : : ;Xs). The former denotation stresses the rewriting char-
acteristics whereas the latter stresses the analogy with terms. Note that symbol
p is overloaded. It is used to denote the entire production \p 2 P" as well as its
name \p : : : :"; its bold version is reserved for the corresponding term constructor

12 2. The formalism

\p(: : :)". Non-terminal X0 is called the left-hand side non-terminal or parent of
p and X1 , X2 ,: : : , Xs are the right-hand side non-terminals or children of p .

List selection allows us to refer to the non-terminals of a production: p�i refers
to Xi . Furthermore, we use the unary operator s \size" to denote the number of
children of a production p 2 P : sp = len p � 1. Note that sp � 0 by de�nition
of P . In other words, we have 80�i�spp�i = Xi . We say that p is a production
on X if p�0 = X .

A production p is a terminal production if it has no (non-terminal) children:
sp = 0. In the concrete syntax such a production has only terminal symbols on
the right-hand side. A context-free grammar can only derive strings of terminals
only, if terminal productions exist.

A tuple (p; i), for production p and 0 � i � sp , denotes an occurrence, on
position i , of non-terminal p�i in production p . We use a shorter notation for
non-terminal occurrences, based on the binary in�x operator o \occurrence". It
is de�ned as poi = (p; i), and has the highest precedence of all operators used inThe `o' is a big `�'.

this thesis.

A primitive value or pseudo terminal is a non-terminal with implicit productions.
Examples of primitive values are booleans, integers and strings. Primitive values
abbreviate grammar speci�cations. Note that non-terminals and pseudo terminals
induce a set of values (terms); they will therefore also be regarded as types.

A structure tree or abstract syntax tree of a context-free grammar is a �niteA tree is ordered if,
for every node, a linear
order is de�ned on the
children of that node
[WG84].

ordered tree whose nodes are labeled with productions (abstract syntax trees used
to be referred to as parse trees). For every node K of a structure tree prod(K) is
the production that labels K and nont(K) is the left-hand side non-terminal of
prod(K). With K �i we denote the i th child of node K . Structure trees must be
such that each node K has sprod(K) children, and nont(K �i) = prod(K)�i . ForThe root of a structure

tree does not have to
be the start symbol.

a structure tree T with root K we de�ne prod(T), nont(T) and T�i to mean
respectively prod(K), nont(K) and the subtree rooted at K �i . Furthermore,
nont(T) is known as the root or type of T .

An instance of a production p is a node in a structure tree labeled with p . To
denote a node in a structure tree, we use a list of natural numbers that describesThe list denotation for

a node is reversed
compared to a unix

path denotation.

the path from the root of the tree to that node. The root is denoted by [] and
the i th child of a node denoted by l is denoted by i : l . From now on nodes are
identi�ed by lists of natural numbers.

An instance of a non-terminal X is a node K in a structure tree such that
nont(K) = X . Note that node K will not only be used to refer to the production
instance of prod(K) but also to refer to the non-terminal instance of nont(K).

2.2.2 Attribute grammars

An attribute grammar, sometimes referred to as a plain attribute grammar as op-
posed to a higher-order attribute grammar, is based on a context-free grammar
which is augmented with attributes and attribute equations. Each attribute de-

2.2. Grammars 13

scribes a property of an abstract syntax tree. The value of an attribute is de�ned
by a composition of several equations in a context dependent manner.

De�nition 2 Attribute grammar.

An attribute grammar is a triple AG = (G ;A;E). G is a context-free grammar
(V ;P ; S). A is a �nite set of attributes, partitioned into sets Anont(X) and
Aloc(p) for each X 2 N and p 2 P . The sets Anont(X) are further partitioned
into sets Ainh(X) and Asyn(X). E is a set of attribute equations, partitioned into
sets E (p) for each production p 2 P .
2

A and E together are known as the attribution rules of an attribute grammar.
Each attribute in an attribute grammar is associated with either a symbol X 2 N
or a production p 2 P . The attributes in Aloc(p), p 2 P are known as local

attributes, they are denoted by p:l , p:k ,: : : The set Anont(X), which will be Do not confuse p:l

(local attribute l of p)
and p�i (the i th non-
terminal of p).

abbreviated to A(X), consists of all attributes associated with non-terminal X .
Its elements are denoted by X :a , X :b ,: : : An attribute X :a is either inherited,
if X :a 2 Ainh(X), or synthesized if X :a 2 Asyn(X). It is convenient to let list
selection bind stronger than the \attribute dot": with p�i :a we mean (p�i):a .

For each occurrence poi of non-terminal X , there is an attribute occurrence
associated with production p , denoted by poi :a for all attributes X :a 2 A(X). O(�) is for attribute

occurrences and O(�)
for orders.

O(poi) is the set of all attribute occurrences of poi . It is formally de�ned
as O(poi) = fpoi :a j p�i :a 2 A(p�i)g. Onont(p) is the set of all the at-
tribute occurrences associated with the non-terminal occurrences of p : Onont(p) =S
0�i�sp O(poi). Local attributes of p also induce attribute occurrences for p :

Oloc(p) = Aloc(p). O(p) is the set of all attribute occurrences associated with
production p : O(p) = Oloc(p) [Onont(p). Note that operator O is overloaded:

X
P
 ��!poi

A(�)

???y
???yO(�)

X :a ��!
P

poi :ait operates not only on non-terminal occurrences, but also on productions. The
elements of O(p) will usually be denoted with Greek letters from the beginning of
the alphabet �, � ,: : :

The partitions Ainh(X) and Asyn(X) of the attributes of a non-terminal X in-
duce the partitions Oinh(poi) and Osyn(poi) of the attribute occurrences O(poi)
of occurrence poi of X . Hence, the non-local attribute occurrences of O(p) can
be partitioned in inherited and synthesized attribute occurrences. However, a more
useful partition is into input and output occurrences. The input attributes occur-
rences are the inherited attribute occurrences of the parent and the synthesized
attribute occurrences of the children. The set of output attribute occurrences
consist of the complement with respect to the non-local attribute occurrences:
the synthesized attribute occurrences of the parent and the inherited attribute
occurrences of the children. Formally, the following three sets partition O(p): Oinp(p) [Oout (p) =

Onont (p)

Oinp(p) = Oinh(po0) [
S
1�i�sp Osyn(poi) ;

Oout(p) = Osyn(po0) [
S
1�i�sp Oinh(poi) ;

Oloc(p) = Aloc(p) :

14 2. The formalism

E (p) is the set of attribute equations associated with production p . Each
equation de�nes the value of an attribute occurrence in O(p) in terms of other
attribute occurrences in O(p). An equation will be denoted by (� := f : : : � : : :).
In this equation, f is the name of a semantic function and � and � are attribute
occurrences of p . Attribute occurrence � is said to depend on � . E (p) de�nes
a dependency set dpr(p) \dependencies in a production" on O(p). There is an
arc �!� if � depends on � , �; � 2 O(p). Formally dpr(p) = f�!� j (� :=
f : : : � : : :) 2 E (p)g.

Each attribute equation describes a dependency of one attribute occurrence
on zero or more others. The set Odef (p) denotes all attribute occurrences of
production p for which there is a de�ning equation, that is to say Odef (p) = f� j
(� := f : : : � : : :) 2 E (p)g. Likewise, Ouse(p) denotes the set of used attribute
occurrences. It is de�ned as Ouse(p) = f� j (� := f : : : � : : :) 2 E (p)g.

An attribute grammar is in Bochmann normal form [Boc76] or normalized if
equations do not use output attribute occurrences: Ouse(p) \ Oout(p) = fg.
Every attribute grammar can be converted to Bochmann normal form by means of
a simple transformation of the semantic functions provided the dpr sets are cycle
free [Boc76].

Non-terminal occurrences may occur on the right-hand side of an attribute
equation: (� := f : : : poi : : :) 2 E (p). This is known as a syntactic reference.Syntactic references

can be avoided by
de�ning a context-free
grammar for primitive
values and a self

attribute for each non-
terminal.

Syntactic elements can be regarded as constants because the abstract syntax tree is
not subject to change during attribute evaluation. Primitive values in the abstract
syntax tree can only be used via a syntactic reference.

The following two conditions guarantee that an attribute grammar description
\makes sense". This is commonly known as the completeness property [WG84,
Kui89, Vog93]. The �rst condition, Odef (p) = Oloc(p)[Oout(p), guarantees that
every local and every output attribute of p has at least one de�ning equation.
Secondly we require that no two equations have the same target: jOdef (p)j =
jE (p)j.

De�nition 3 Complete attribute grammar.

An attribute grammar is complete, if for each production p the following two
conditions hold:

� Odef (p) = Oloc(p) [Oout(p) ,

� jOdef (p)j = jE (p)j .

2

Completeness alone does not guarantee that all attributes of an abstract syntax
tree are e�ectively computable: circular dependencies may occur. If they do not
occur for any derivable tree, the grammar is called well-formed [DJL88] or well-
de�ned [Knu68, WG84].

2.2. Grammars 15

De�nition 4 Well-de�ned attribute grammar.

An attribute grammar is well-de�ned, if for each abstract syntax tree of the gram-
mar all attribute instances are e�ectively computable.
2

The speci�cations of semantic functions and context conditions are absent
from the given de�nition of attribute grammars. Only the names of the semantic
functions occur in the attribute equations. Since our emphasis is on the analysis
of dependencies between attribute (occurrences) the precise nature of semantic
functions and conditions is irrelevant.

2.2.3 Higher-order attribute grammars

Higher-order attribute grammars are based on plain attribute grammars which
are augmented with higher-order attributes. Higher-order attributes are attributes
whose value is a tree with which we associate attributes again. Attributes of these
so-called higher-order trees, may be higher-order attributes again.

Operationally, we associate the following behavior with higher-order attributes.
Assignments to tree-valued attributes always assign an undecorated tree. In par-
ticular, this holds for higher-order attributes. After a higher-order attribute is
instantiated, the inherited attributes of the root of the instantiated tree are as-
signed a value in the \normal" way. The synthesized attributes of the instantiated
tree are obtained by decorating it. When decoration is �nished, the synthesized
attributes are ready for further \normal" processing.

Two kinds of higher-order attributes can be distinguished, namely non-terminal

attributes and attributable attributes. Non-terminal attributes were introduced by
Vogt [VSK89]. He proposed to interpret them as gaps in the abstract syntax tree
that are �lled by attribute evaluation. This computation model is very powerful
but hard to implement e�ciently and elegantly. Vogt proposed an evaluator for
higher-order attribute grammars [VSK91] that uses attributable attributes instead.
Attributable attributes o�er the same expressive power as non-terminal attributes,
but they force the grammar writer into a harness that allows for more elegant
evaluators. Vogt probably was not aware of the di�erence between attributable
and non-terminal attributes.

We �rst discuss attributable attributes, since that is how we model higher-order
attributes. Next, we illustrate why we prefer attributable attributes to non-terminal
attributes.

Attributable attributes

An attributable attribute p:x is an attribute associated with a production p , much
like a local attribute. An equation of that production should assign a tree t to
p:x . The root non-terminal of t is �xed, or in other words, the type of p:x is
determined by the grammar speci�cation. The inherited attributes of t should also

16 2. The formalism

be given a value so that its synthesized attributes may be used in other equations.
The inherited and synthesized attributes of t are known as the generated attributes

of p:x .

De�nition 5 Higher-order attribute grammar.

A higher-order attribute grammar HAG is a quadruple HAG = (G ;A;E ;R). G
is a context-free grammar (V ;P ; S). A is a �nite set of attributes, partitioned into
sets Anont (X), Aloc(p) and Aata(p) for X 2 N and p 2 P . The sets Anont (X)
are further partitioned into sets Ainh(X) and Asyn(X). E is a set of attribute
equations, partitioned into sets E (p) for each production p 2 P . R is a partial
function from attributes to non-terminals.
2

We distinguish three kinds of attributes in higher-order attribute grammars,
each of which induces attribute occurrences in one or more productions.

The set Anont (X), which will be abbreviated to A(X), consists of all attributes
associated with non-terminal X . Its elements are denoted by X :a , X :b , : : : An
attribute X :a is either inherited, if X :a 2 Ainh(X), or synthesized if X :a 2
Asyn(X). Each occurrence poi of X induces the attribute occurrences Oinh(poi),
Osyn(poi) and O(poi) de�ned as Oinh(poi) = fpoi :a j p�i :a 2 Ainh(p�i)g
respectively Osyn(poi) = fpoi :a j p�i :a 2 Asyn(p�i)g and O(poi) = Oinh(poi)[
Osyn(poi). Furthermore we de�ne Onont(p) =

S
0�i�sp O(poi).

Secondly, the attributes in Aloc(p) are known as local attributes of p 2 P , they
are denoted by p:l , p:k , : : : Each local attribute induces precisely one attribute
occurrence: Oloc(p) = Aloc(p).

Thirdly, Aata(p) is the set of attributable attributes associated to produc-
tion p 2 P . They are denoted by p:x , p:y , : : : Each attributable attribute
induces an attribute occurrence: Oata(p) = Aata(p). The partial function R

maps an attributable attribute p:x to a non-terminal X : X = R p:x . Non-
terminal X is the root non-terminal of the trees that may be instantiated at
p:x ; X is the type of p:x . Each attribute X :a of X induces a generated at-
tribute occurrence denoted by p:x :a . Operator O will be overloaded once more;
it not only operates on non-terminal occurrences and productions, but also on
attributable attributes. The sets Oinh(p:x), Osyn(p:x) and O(p:x) are de�ned as
Oinh(p:x) = fp:x :a j X = R p:x ^ X :a 2 Ainh(X)g respectively Osyn(p:x) =
fp:x :a j X = R p:x ^ X :a 2 Asyn(X)g and O(p:x) = Oinh(p:x) [Osyn(p:x).
The generated attribute occurrences associated with a production are de�ned as
Ogen(p) =

S
p:x2Oata(p)O(p:x).

For higher-order attribute grammars the set O(p) is partitioned into four sets:

nont

ata

loc

inp out

gen

Onont(p), Oloc(p), Oata(p) and Ogen(p). The attribute occurrences Onont(p) and
Ogen(p) can be partitioned into input and output occurrences as we did for plain
attribute grammars:

Oinp(p) = Oinh(po0) [
S
1�i�sp Osyn(poi) [

S
p:x2Oata (p)Osyn(p:x) ;

Oout(p) = Osyn(po0) [
S
1�i�sp Oinh(poi) [

S
p:x2Oata (p)Oinh(p:x) :

2.2. Grammars 17

We have now de�ned similar classi�cations for attribute occurrences of higher-
order attribute grammars and plain attribute grammars. Therefore, the notions of
semantic functions, dpr(p), Odef (p), Ouse(p) and Bochmann normal form, are
also similar. We will not repeat them.

A higher-order attribute grammar is complete if every non-input attribute oc-
currence is de�ned Odef (p) = Oout(p)[Oloc(p)[Oata(p) and if no two equations
have the same target: jOdef (p)j = jE (p)j. Furthermore, the semantic function
for attributable attributes must compute trees with the right root non-terminal.

De�nition 6 Complete higher-order attribute grammar.

A higher-order attribute grammar is complete, if for each production p the following
three conditions hold:

� Odef (p) = Oout(p) [Oloc(p) [Oata(p) ,

� jOdef (p)j = jE (p)j and

� for every (p:x := f : : :) 2 E (p), the type of f must match R p:x .

2

Completeness alone does not guarantee that all attributes of an abstract syntax
tree are e�ectively computable: circular dependencies may occur. If they do not
occur for any derivable tree with appropriate instances of its attributable attributes,
the grammar is called well-de�ned [Vog93].

De�nition 7 Well-de�ned higher-order attribute grammar.

A higher-order attribute grammar is well-de�ned, if for each abstract syntax tree
of the grammar all attribute instances are e�ectively computable.
2

Non-terminal attributes

The name \non-terminal attribute" stems from the fact that an occurrence of a
non-terminal is computed by attribute evaluation as if it were an occurrence of an
attribute. Vogt [VSK89] uses the following notation for a production to show that
non-terminal occurrence poi is a non-terminal attribute

p : X0 �! X1 : : :Xi : : :Xs :

Such a declaration does require an attribute equation (poi := f : : :) to be part
of E (p). Informally poi is a gap which is to be instantiated during attribute
evaluation. Thus, for constructing a tree with root p, no subtree for position i

should be supplied, one must reserve a \joker" (?) for that purpose:

T0 := p(T1; : : : ;Ti�1; ?;Ti+1; : : : ;Ts) :

18 2. The formalism

The core of a tree is the unexpanded tree; the tree without the jokers being
instantiated by attribute evaluation. Instantiated non-terminal attributes really
belong to the abstract syntax tree. Thus, when destructing (inspecting) a tree,
the non-terminal attributes may be referenced. The value of T0�i in the above
example depends on the context of T0, more speci�cally on the inherited attributes
of T0. They determine what will be instantiated at the gap.

Syntactic references do not mingle well with non-terminal attributes. We will
shortly discuss two peculiarities.

Consider a subtree T rooted X with an instance N of a non-terminal attribute.
Assume that T is referenced (a syntactic reference) by a semantic function g . It
simply copies T into a non-terminal attribute X (thus g = id). Since the values
of inherited attributes of X are possibly di�erent from the ones of T the gap in
the tree of X will probably be �lled with a di�erent instantiation of N . Hence g

copies only the core of T into X . This gives rise to a peculiar situation: X is
assigned the value of T , but is does not equal T .

To complicate the example, consider another semantic function f that also
refers to T . Note that a \copy" of T can be passed around in the abstract syntax
tree from attribute instance to attribute instance (where the semantic functions
may add or delete some nodes). In this case, the core of T does not su�ce

T

N

g

X

f
X

since the formalism allows inspection of the copied T which might include the

instantiated non-terminal attribute. If the result of f|and probably a chain of
other semantic functions|happens to be assigned to a non-terminal attribute
somewhere, it must still be stripped, leaving only the core. Note that if syntactic
references occur, one must make sure that a tree is only referenced after all non-
terminal attributes have been instantiated. This puts a heavy burden on the
attribute evaluator.

. . .

One of the applications of higher-order attributes in a grammar is to replace
an inductive semantic function. Alternatively, higher-order attributes are used to
decorate a subtree that is �rst massaged into a more easily decoratable tree. In
such cases the higher-order attribute is not supposed to be visible to the outside
world. Let alone that the outside world should be bothered by spurious jokers in
constructor calls. Observe further that a sort-of self attribute can be introduced
by the grammar writer that computes an image of a tree|including possibly some
higher-order attributes|in a way as the grammar writer wants the tree to be seen
by the outside world. Therefore, syntactic references to expanded abstract syntax
trees can be realized without non-terminal attributes.

Attributable attributes are absent from the context-free grammar, thus jokers
are no longer needed in constructor calls. Attributes in general and speci�cally
attributable attributes are not available while destructing an abstract syntax tree.
Therefore, we need not worry about problems caused by syntactic references either.
The notion of abstract syntax trees need not be re�ned. In this thesis, we model
higher-order attributes with attributable attributes.

2.3. Grammar specifications 19

2.3 Grammar speci�cations

The previous section presented a mathematical de�nition of attribute grammars,
suitable for analysis. In this section we will describe two formalisms to write

down grammar speci�cations. The �rst algebraic formalism resembles ssl, the
Synthesizer Speci�cation Language, used by the Synthesizer Generator [RT88].
The second formalism is a graphical one. It has the same expressive power as the
algebraic one except that the semantic functions are usually not speci�ed. The
former is better suited for computer processing; the latter gives more insight in
dependencies.

This section also presents a running example, the varuse grammar. A small
abstract syntax tree will accompany the varuse grammar. It will be referred to
as the varuse application.

2.3.1 Algebraic formalism

The algebraic formalism will be presented by example. We will use a small gram-
mar, the varuse grammar [PSV92a]. The varuse grammar de�nes a simple
programming language that captures the essence of declaring and applied occur-
rences of variables.

A program is a list of \declarations" (such as var x) and \statements" (like
use x). They may be mixed freely, and we do not require de�nition before use.
In the translation process, each variable is mapped onto a number; its \address".
Addresses are assigned in an order corresponding with the declarations. The out-
come of the translation will be a list which contains the address for each applied
occurrence, and the negation of the address for the de�ning occurrence. Hence

(use x;use y;var y;use x;use y;use z;var z;var x;use x;)

is mapped onto the list

3, 1, -1, 3, 1, 2, -2, -3, 3 .

We will now formally de�ne an attribute grammar that describes this mapping.
We start with a context-free grammar. Unlike the mathematical de�nition, we do
not list the non-terminals separately; we only list the productions. Productions are
labeled for future reference. Non-terminal S is the start symbol.

root : S �! '(' L ')'
decl : L �! 'var' N ';' L

stat : L �! 'use' N ';' L

empty : L �!
name : N �! str

20 2. The formalism

The non-terminal str is a pseudo terminal. This means that it is a non-terminal
for which the productions are implicit; in this case the productions produce strings
that we use as identi�ers in our programming language.

Concrete syntax is not of interest to us; for grammar analysis we focus on
the abstract syntax. So, before we extend the grammar with attribution rules, we
\extract" the abstract syntax by leaving out the terminals ('(', ')', 'var', 'use',
and ';'). Furthermore, we prefer to cast the de�nition in a form that stresses the

Concrete syntax is for
parsing; abstract syn-
tax for attribute eval-
uation.

term-like nature of abstract syntax trees.

S = root(L)
L = decl(N ;L)
j stat(N ;L)
j empty()

N = name(str)

Now that the context-free grammar for the abstract syntax is de�ned, we focusThe grammar formal-
ism only deals with at-
tribute dependencies,
not with semantic
functions, let alone
types. In a grammar
speci�cation, types
help understanding.

on the attribution rules: the attributes and the equations. Firstly, we de�ne the
attributes associated with the non-terminals. Attributes have a type. Apart from
the primitive value str , the type num representing natural numbers is assumed
to exist. We de�ne two new types: Env represents symbol tables (lists of de�ned
identi�ers) and Code represents the �nal output.

type Env = [str]
type Code = [num]

The start symbol S has a single (synthesized) attribute returning the code. List
symbol L has three attributes: one that collects the declarations (synthesized),
one that distributes the environment (inherited) and one that synthesizes the code.
A name N only synthesizes the underlying identi�er. The following declarations
de�ne the attributes for each non-terminal. Synthesized attributes are pre�xed
by \"", inherited attributes by \#".

S<"code : Code>
L<"decs : Env ; #env : Env ; "code : Code>
N<"id : str>

The second part of the attribution rules de�nes the relationships between theWe use denotations
like poi when dis-
cussing grammars in
general. For an
grammar instance, like
varuse, we use deno-
tations like L2 .

attributes of various occurrences of non-terminals. For example, in a decl pro-
duction, the synthesized symbol table consists of the identi�er declared by the N
child consed to the symbol table of the L child. We will not use the o operator
in grammar speci�cations: denotation declo0 shows no relation with non-terminal
L. Instead, the two L occurrences in a decl production are subscripted to distin-
guish them: declo0 is denoted with L1 and declo2 with L2 . Since declo1 is the
only occurrence of N in decl , we simply denote it by N . The afore mentioned
relationship is thus described by the following equation

L1:decs := N :id : L2:decs :

2.3. Grammar specifications 21

root S

S<"code : Code>

S = root(L)
L:env := L:decs ;
S :code := L:code

type Env = [str]
type Code = [num]

L<"decs : Env ; #env : Env ; "code : Code>

L1 = decl(N ;L2)
L1:decs := N :id : L2:decs ;
L2:env := L1:env ;
L1:code := (�lookup L1:env N :id) : L2:code

j stat(N ;L2)
L1:decs := L2:decs ;
L2:env := L1:env ;
L1:code := (+lookup L1:env N :id) : L2:code

j empty()
L1:decs := [];
L1:code := []

upstring : : str �! str

lookup : : Env �! str �! num

N<"id : str>

N = name(str)
N :id := upstring str

func lookup (s : ss) i =
if s = i

then 1
else 1 + lookup ss i

�

func lookup [] i =
?

Figure 2.1. The varuse grammar

root S

S<"code : Code>

S = root(L)
L:env := L:decs ;
S :code := L:code

type Code = [num]

L<"decs : E ; #env : E ; "code : Code>

L1 = decl(N ;L2)
L1:decs := add(N :id ;L2:decs);
L2:env := L1:env ;
ata table : E ;
table := L1:env ;
table:id := N :id ;
L1:code := �table:addr : L2:code

j stat(N ;L2)
L1:decs := L2:decs ;
L2:env := L1:env ;
ata table : E ;
table := L1:env ;
table:id := N :id ;
L1:code := +table:addr : L2:code

j empty()
L1:decs := none();
L1:code := []

upstring : : str �! str

N<"id : str>

N = name(str)
N :id := upstring str

E<#id : str ; "addr : num>

E1 = add(str ;E2)
E2:id := E1:id ;
E1:addr := if str = E1:id

then 1
else 1 + E2:addr

�

j none()
E1:addr := ?

Figure 2.2. A higher-order variant for varuse

22 2. The formalism

This equation uses the semantic function cons : , which is assumed to be
built-in. To �nd an identi�er in a symbol table, a lookup function must be written.
For this reason, grammar speci�cation languages include a functional language in
which semantic functions can be speci�ed. We will not de�ne one, but merely use
a standard functional programming language. Figure 2.1/ presents the complete
varuse grammar. The speci�cation includes the lookup function which is a simple
recursive function that returns a polymorphic \unde�ned" value (?) when the
lookup fails (the given identi�er does not occur in the symbol table). The semantic
function upstring may be regarded as a standard function on the standard primitiveupstring 'Idx'

= 'IDX' type str . It converts all lowercase letters in a string to uppercase. The application
of upstring in the varuse grammar makes the language case insensitive.

Note that about half the equations are so-called copy-rules: the semantic func-
tion is the identity function id . Copy-rules pass information around in abstract
syntax trees. They make grammar descriptions long winded and generated evalu-
ators ine�cient.

Figure 2.2/ lists an equivalent higher-order attribute grammar for the varuse
language. An additional non-terminal E is de�ned. Type E is isomorphic with
Env : add corresponds with : and none corresponds with []. It is common in
attribute grammars that abstract syntax is de�ned to describe data types. In this
example, attribution rules are given for E which replace the lookup function. This
allows us to use in production stat an attributable attribute stat :table of type
E to lookup the address of N :id . Note the analogy between function lookup in
Figure 2.1/ and the equations for E in Figure 2.2/. This is an example where a
higher-order attribute replaces a recursive function.

The next chapter (Section 3.2) introduces the box grammar. It will feature
local attributes, factorization of equations common to several productions and
modularization.

2.3.2 Graphical formalism

Attribute grammars are most often presented in a linear representation as the
one just given. However, they could also be presented in a graphical way. Such
pictures provide more insight in the attribute dependencies while preserving the
formal semantics.

A graphical speci�cation of a (higher-order) attribute grammar consists of a
drawing for each production. A graphic describing a single production is known as
a production icon. A speci�cation in the graphical formalism lists the production
icons.

A production is rendered by a large box . The name of the production is given in
a \
ag" emanating from the left border. Figure 2.3 shows a \general" production
p : X0 �! X1X2X3 : : :Xs .

Non-terminals are rendered by labeled discs. The left-hand side non-terminal
(Fig 2.3: X0) is drawn at the top of the production box, the right-hand side non-
terminals are drawn at the bottom of the production box in the order described by

2.3. Grammar specifications 23

p

X0

X1 X2 X3 Xsi
s

a b
c

j

f

t

l

N
Figure 2.3. A production icon

the production.

Each non-terminal disc is followed by small boxes denoting the attributes.
The boxes are labeled with names of the attributes|i instead of X :i . Inherited Output attribute oc-

currences \stick out"
of a production
icon; input occur-
rences \point in".

attributes (Fig 2.3: i) are lowered, synthesized attributes (Fig 2.3: s) raised.
Attributes are usually ordered in such a way that the overall picture comes out
nicely. Since the discs actually correspond to non-terminal occurrences, the small
boxes correspond to attribute occurrences.

Local attributes will also be rendered by small boxes labeled with the name
of the attribute|l instead of p:l . Local attributes will roughly be placed in the
center of the production box (Fig 2.3: l). Attributable attributes are drawn in a
similar fashion as right-hand side non-terminals except that they will be rendered
by a box instead of a disc. The box is labeled with the type of the attributable
attribute. Attributable attributes are interspersed somewhere at the bottom of the
production (Fig 2.3: N). The generated attributes associated to them (Fig 2.3:
a , b and c) are drawn as if they were plain attributes. Pseudo terminals are also
drawn as boxes at the bottom of the production (Fig 2.3: X2).

The arrows describe the dependencies on the attribute occurrences. In other
words they form the dpr(p) graph. Arrows may emanate from syntactic elements
as non-terminals (Fig 2.3: Xs) or pseudo terminals (Fig 2.3: X2). The arrow
then represents a syntactic reference. Arrows may be labeled with a small disc

showing the semantic function associated with the arrow (Fig 2.3: f). But since
we are mostly interested in dependencies, we usually leave out the labels. Sources
in the dpr(p) graph|attribute occurrences with a de�ning semantic function that
is constant|are decorated with an in-arrow (Fig 2.3: j). For cosmetic reasons,
sinks are supplied with an out-arrow (Fig 2.3: t).

The varuse grammar, algebraically speci�ed in Figure 2.1/ , is presented
graphically in Figure 2.4. . The higher-order variant, speci�ed in Figure 2.2/,
is presented graphically in Figure 2.5..

2.3.3 Discussing the varuse grammar

We will review the characteristics of the varuse grammar. First we discuss the
plain attribute grammar, next we deal with the higher order variant.

24 2. The formalism

code

root

S

L decs
env

code

N

name

id

str

L decs
env

code

stat

L decs
env

codeN id

L decs
env

code

decl

N id L decs
env

code

L

empty

decs
env

code

Figure 2.4. The production icons of the varuse grammar

L decs
env

code

decl

N id L decs
env

code E addr
id

stat

L decs
env

code

N id L decs
env

code E id
addr

str E

E id

id
addr

addr

E id
addr

none

code

root

S

L decs
env

code

N

name

id

str

L

empty

decs
env

code

add

Figure 2.5. The production icons for higher-order variant of the varuse grammar

2.3. Grammar specifications 25

Production decl : L �! N L has size 2 (sdecl = 2) which means that it has
two children: decl�1 = N and decl�2 = L. The parent is denoted with decl�0 = L.

Non-terminal N has one attribute, namely N :id . Non-terminal L has three
attributes: A(L) = fL:decs;L:env ;L:codeg, one inherited Ainh(L) = fL:envg
and two synthesized Asyn(L) = fL:decs;L:codeg.

Consequently, occurrence declo0 of non-terminal L has three attribute oc-
currences namely O(declo0) = fdeclo0:decs; declo0:env ; declo0:codeg. One at-
tribute occurrence is inherited Oinh(declo0) = fdeclo0:envg and two are synthe-
sized Osyn(declo0) = fdeclo0:decs; declo0:codeg.

Similar inductions leads to the following partitions of the set Onont(decl)

O(declo0) = fdeclo0:decs; declo0:env ; declo0:codeg ;

O(declo1) = fdeclo1:idg and

O(declo2) = fdeclo2:decs; declo2:env ; declo2:codeg :

Production decl has no local attributes. The set of attribute occurrences
O(decl) thus equals Onont(decl). Non-terminal occurrences are usually denoted
with the non-terminal subscripted with an index to distinguish multiple occurrences
in a production. In other words, we write

O(decl) = fL1:decs;L1:env ;L1:code; N :id ; L2:decs;L2:env ;L2:codeg :

The set of attribute occurrences of a production can either be partitioned into
local attribute occurrences and attribute occurrences induced by non-terminal oc-
currences, or it can be partitioned in local, input and output attribute occurrences.

Oloc(decl) = fg

Oinp(decl) = fL1:env ;N :id ;L2:decs;L2:codeg

Oout(decl) = fL1:decs;L1:code;L2:envg

. . .

Let us turn to the higher-order variant of the varuse grammar. It features two
equivalent attributable attributes: decl :table and stat :table , both of type E . Non-
terminal E has two attributes: Ainh(E) = fE :idg and Asyn(E) = fE :addrg.
Consequently, decl :table generates two attribute occurrences Oinh(decl :table) =
fdecl :table:idg and Osyn(decl :table) = fdecl :table:addrg and thus we have

O(decl :table) = fdecl :table:id ; decl :table:addrg :

Attributable attributes and their generated attribute occurrences (and local
attribute occurrences for that matter) are usually denoted without the production
name, if it is clear from the context which production is meant. In other words, in
context decl we usually write O(table) = ftable:id ; table:addrg.

Attribute table is the only attributable attribute associated with production
decl : Oata(decl) = ftableg. The set of generated attributes associated with decl

26 2. The formalism

L1()O
env

Oinh L1()
Osyn L1()

decs
code

()1NO
id

()1NOsyn ()1NOinh

L2()O
decs
code

L2()Osyn
L2()Oinh

addr

()Osyn table)Oinh(table
()O table

Oloc()decl

Oata()decl

Oinp()decl

Onont()decl

Ogen()decl

O()decl

Oout()decl

table

production

attributable attribute

non−terminal occurrence

id

env

Figure 2.6. Venn-diagram of O(decl); the higher-order variant

2.4. Circularities 27

thus equals Ogen(decl) = ftable:id ; table:addrg. Oloc(decl) and Onont(decl) are
the same as in the plain attribute grammar. These four sets partition O(decl).
Another way to partition O(decl) is as follows.

Oloc(decl) = fg

Oata(decl) = ftableg

Oinp(decl) = fL1:env ;N :id ;L2:decs;L2:code; table:addrg

Oout(decl) = fL1:decs;L1:code;L2:env ; table:idg

A Venn-diagram of all attribute occurrences of decl is given in Figure 2.6. The
borders of the sets associated with productions, attributable attributes respectively
non-terminal occurrences are drawn in di�erent line styles.

. . .

In this section, we have de�ned the varuse grammar with two di�erent spec-
i�cation methods namely an algebraic and a graphical formalism. The varuse
grammar will serve as running example. The program (use x;var x;use y;)

will �gure as the (standard) varuse application. That variable 'y' is not declared
is not crucial to the example. The following (linear rendering of the) abstract
syntax corresponds with the given concrete syntax.

root

�
stat

�
name('x');decl

�
name('x'); stat

�
name('y'); empty()

����

Abstract syntax trees are best presented graphically. In traditional drawings
of abstract syntax trees, tree nodes correspond to non-terminal instances. For an
overview of the dependencies between the attribute instances it is better to use
production instances as the tree nodes. Besides, that is how we de�ned abstract
syntax trees in the �rst place.

L

L

L

L

S

N

’x’ N

’x’ N

’y’

root

stat

decl

stat

empty

name

name

name

The production icons can be pasted together to construct an abstract syntax
tree with attribute instances. Figure 2.7. shows the abstract syntax tree for the
varuse application. Adjacent non-terminal occurrences and their attributes unite
nicely. Note that the abstract syntax tree induces a dependency graph on the
attribute instances, the so-called dtr graph. The dtr \dependencies in a tree"
graph appears clearly if the large discs and large rectangles are removed from
Figure 2.7. . The next section discusses dtr graphs.

2.4 Circularities

The completeness property alone does not guarantee that all attribute instances
in a tree are e�ectively computable: cyclic dependencies will in general not be
allowed. A circular attribute grammar is usually regarded as ill-de�ned. Neverthe-
less, viable semantics might be assigned. The equations of the grammar should
not be considered as assignments|a view which is often silently adopted|but
looked upon as equations. In that case, a least �xed-point can be de�ned, which

28 2. The formalism

code

root

S

L decs
env

code

stat

L decs
env

code

decl

L decs
env

code

stat

N

name

id L

empty

decs
env

code

N

name

id

N

name

id

’x’

’x’

’y’

Figure 2.7. An abstract syntax tree \pasted together": the varuse application

can be approximated [Far86, Alb91a]. In this thesis, we only deal with non-circular
attribute grammars.

This section presents two well-known algorithms that check for circularities.
They are not only given for the sake of completeness, but also because they illus-
trate the concepts of static grammar analysis (bottom-up analysis, exponential ver-
sus polynomial approximation, in�nite set represented by �nite set, non-terminals
and their occurrences, attributes versus attribute occurrences, pasting and projec-
tion). Familiarity with these concepts will aid in understanding the computation
of visit-sequences discussed in Chapter 5. Furthermore, we will see how algorithms
for plain attribute grammars can be adapted for higher-order attribute grammars.

2.4.1 The dtr graph

An instance of attribute X :a is an occurrence of X :a in a structure tree. It is

dtr graphs is for
plain grammars, not
for higher-order gram-
mars.

denoted by a tuple (K ;X :a) where K is an instance of non-terminal X . Likewise,
an instance of an attribute p:l is an occurrence of p:l in a structure tree; it is
denoted by a tuple (K ; p:l) where K is an instance of production p . We will use
Greek letters near the end of the alphabet �, � , : : : for attribute instances.

The function ins maps a tree node and an attribute occurrence onto an at-
tribute instance. Note that the attribute occurrences of a right-hand side non-
terminal occurrence poi of production instance K are mapped onto attribute

2.4. Circularities 29

instances of node i : K . Recall that a tree node
is denoted by a list of
natural numbers.ins(K ; po0:a) = (K ; p�0:a)

ins(K ; poi :a) = (i : K ; p�i :a); i > 0

ins(K ; p:l) = (K ; p:l)

Function ins is partial, since ins(K ; �) is only de�ned if � 2 O(prod(K)).

Let T be a abstract syntax tree of some grammar G . The set vdtr(T) of all
attribute instances is de�ned by the following recursive function

vdtr (T) = v(T ; [])
where v(t ;K) = fins(K ; �) j � 2 O(prod(t))g

[
S
1�i�sprod(t) v(t�i ; i : K) .

v(t ;K) can equiva-
lently be de�ned as
f ins(K ; �)
j � 2 O(prod(t)o0)
_ � 2 Oloc(prod(t))
g [

S
i v(t�i ; i :K) :

In other words, v(t ;K) consists of the attribute instances corresponding with the
attribute occurrences of the root production of t (which is node K of the outer-
most tree T) and the attribute instances of the children t�i of t .

A point of confusion in this de�nition might be that every non-terminal instance
(except for the root) is inspected twice: once as the parent of a production and
once as a child of a production. Nevertheless, the attached attribute instances are
not duplicated since ins generates the same tuple in both cases while building the
set.

The set edtr(T) contains the dependencies between the attribute instances.
Function ins is used to map dependencies on attribute occurrences onto depen-
dencies on attribute instances.

edtr (T)=e(T ; [])
where e(t ;K)=fins(K ; �)! ins(K ; �) j �!� 2 dpr(prod(t))g

[
S
1�i�sprod(t) e(t�i ; i : K)

Essentially, dpr graphs
are pasted together.

The attribute instances of an abstract syntax tree T induce a dependency
graph dtr(T) \dependencies in a tree" de�ned as dtr(T) = (vdtr(T); edtr(T)).
The base of the above recursive de�nitions is formed by trees T such that a
terminal production is applied at the root of T . For such trees T , dtr(T) is
isomorphic with (O(p); dpr(p)). An attribute grammar AG is non-circular if the
attribute dependency graph dtr(T) for any tree T is a-cyclic.

De�nition 8 Non-circular attribute grammar.

An attribute grammar is non-circular if for each structure tree T of the grammar,
dtr(T) is a-cyclic.
2

An attribute grammar is well-de�ned if and only if it is non-circular [WG84].

Figure 2.7 gives (the dtr graph of) the varuse application. Node [2; 2; 2; 1]
is the only instance of empty . Its parent node, denoted by [2; 2; 1], is an instance
of production stat . Attribute instances ([2; 2; 1];L:code) and ([2; 2; 2; 1];L:code)
correspond with attribute occurrences of stat : the former with stato0:code and
the latter with stato2:code . The dpr(stat) arc stato2:code!stato0:code is lifted
to the attribute instance dependency ([2; 2; 2; 1];L:code)!([2; 2; 1];L:code).

S

L
stat

L
decl

L
stat

N

N

N

root

name

name

name empty

L

[]

[1]

[2,1]

[2,2,1]

[1,1]

[1,2,1]

[2,2,2,1][1,2,2,1]

30 2. The formalism

var

DS : array [non-terminal] of set of graph of attributes
d0; : : : ; ds : graph of attributes
d : graph of attribute occurrences
cycle , conv : bool

begin

for each non-terminal X do DS [X] := fg rof
cycle := false

repeat

conv := true

for each production p : X0 �! X1 : : :Xs do

for each tuple (d1; : : : ; ds) 2 DS [X1]� � � � �DS [Xs] do
d := dpr(p)[fg; d1; : : : ; ds]

+

if d is circular then cycle := true �

d0 := d|0
if d0 62 DS [X0] then conv := false ; DS [X0] := DS [X0] [fd0g �

rof

rof

until conv _ cycle
f cycle = AG is circular g

end

Algorithm 2.8. The circularity test

2.4.2 The circularity test

Now let us consider an algorithm which determines whether or not an attribute
grammar is circular. We want to decide whether there exists an abstract syntax
tree for which the attribute dependency graph is circular. Of course, we can not
enumerate all abstract syntax trees, there are possibly in�nitely many.

However, we are not interested in every conceivable tree. We are interested in
its attribute dependencies. Note that only the (transitive) dependencies between
the attributes of the root of a tree are visible to the \outside world". This leads
to the key idea of representing the in�nite set of abstract syntax trees with the
same root X by the �nite set of graphs on A(X). The number of these so-called
is-graphs [Alb91c] or subordinate characteristic graphs [RTD83] is �nite because
jA(X)j is �nite.

Algorithm 2.8 uses this �nite representation to determine whether a cycle exists.
It is basically Knuth's revised algorithm [Knu71]. How does it work?

Suppose there exist abstract syntax trees T1 : : :Ts whose roots are labeled
with the respective non-terminals X1 : : :Xs . Suppose further that tree Ti induces
dependencies between the attributes of A(Xi) that are recorded in the dependency
set di . We would like to compute the dependency set on A(X0) re
ecting the
dependencies in the tree T0 that is constructed by applying production p : X0 �!
X1 : : :Xs to the subtrees T1 : : :Ts . This is achieved by pasting the dependencies
d1 : : : ds into dpr(p) and taking a transitive closure. Pasting is de�ned as follows.

2.4. Circularities 31

De�nition 9 Pasting attribute graphs into an attribute occurrence graph.

Given a production p : X0 �! X1 : : :Xs , a dependency set dp on O(p) and the
dependency sets di on A(Xi), 0 � i � s , the graph dp [d0; : : : ; ds] is de�ned as
the dependency set dp [

S
0�i�sfpoi :a!poi :b j p�i :a!p�i :b 2 dig on O(p).

2

The paste operator dp[: : :] requires 1+ sp arguments: the dependency graphs
on A(p�i) for 0 � i � sp . If, as in the circularity test, one of the graphs needs not
to be pasted, we supply the empty dependency set, for example, dp[fg; d1; : : : ; ds].

Pasting takes (dependencies on) attributes and converts them into (dependen-
cies on) attribute occurrences. Projection does the opposite. Given a production
p and a non-terminal occurrence index i , 0 � i � sp , it extracts the dependencies
for poi and converts them into dependencies for p�i .

De�nition 10 Projection.

Given a dependency set d on O(p), and index i , 0 � i � sp , projection | is
de�ned as follows d|i = fp�i :a!p�i :b j poi :a!poi :b 2 dg.
2

The circularity test algorithm computes a closure. The base is formed by
terminal productions. For a terminal production p , the inner loop performs a single
step with the empty tuple (), which is the only element in a cartesian product of
zero sets. In that single step d is initialized to dpr(p), enabling tuples for other
productions. In other words, the is-graphs are built bottom-up.

2.4.3 Strongly non-circular

It is well-known that the circularity test is exponential [Jaz81, DJL84, Alb91c].
We will now present a polynomial algorithm that approximates the circularity test.
It is safe in the sense that circular grammars will be
agged as such, but it is
pessimistic in the sense that some non-circular grammars will also be
agged.

Algorithm 2.9., which is Knuth's �rst (too pessimistic) circularity test [Knu68],
de�nes the class of strongly non-circular attribute grammars (SNC) [Jou84], also
known as absolutely non-circular attribute grammars (ANC) [KW76]. The basic
di�erence with the \real" circularity test is that during the computation it merges

the graphs in DS [X] into one dependency set D [X]. The dependency sets are
initialized to fg: they contain no arcs.

As an example of the pessimistic nature consider the grammar in Figure 2.10..
It de�nes two abstract syntax trees, p(q()) and p(r()). Both the induced dtr s
are cycle free, hence the grammar is non-circular. The circularity test determines
DS [X] to be ffX :i!X :sg; fX :j!X :tgg. However, in the strongly non-circular
test, these graphs are merged yielding D [X] = fX :i ! X :s ; X :j ! X :tg.
Pasting this graph into dpr(p) gives a cycle. Hence the grammar is not strongly
non-circular.

32 2. The formalism

var

D : array [non-terminal] of dependency set of attributes
d0 : graph of attributes
d : graph of attribute occurrences
cycle , conv , snc : bool

begin

for each non-terminal X do D [X] := fg rof
cycle := false

repeat

conv := true

for each production p : X0 �! X1 : : :Xs do

d := dpr(p)[fg;D [X1]; : : : ;D [Xs]]
+

if d is circular then cycle := true �

d0 := d|0
if d0nD [X0] 6= fg then conv := false ; D [X0] := D [X0] [d0 �

rof

until conv _ cycle
snc := :cycle
f snc = AG is strongly non-circular g

end

Algorithm 2.9. The strongly non-circular test

S

X

X X

p q r

i j
s t

s t s t
i j i j

Figure 2.10. A non-circular grammar that is not strongly non-circular

2.4. Circularities 33

p p

R x R x

l x

Figure 2.11. Reducing a production of a higher-order attribute grammar

2.4.4 Reducing higher-order attribute grammars

Most algorithms that analyze attribute grammars for attribute dependencies can
be adapted to handle higher-order attribute grammars as well. The key idea is to
transform the higher-order attribute grammar into a plain attribute grammar. An
attributable attribute is thereby replaced by a non-terminal and a local attribute.
The local attribute captures the dependencies of the attributable attribute itself.
The attribute occurrences of the non-terminal capture the dependencies of the gen-
erated attribute occurrences. This transformation is known as reduction [Vog93].
Of course, reduction only makes sense if the information gathered by analyzing the
reduced grammar can be interpreted for the underlying higher-order grammar.

Needless to say, a higher-order tree can only be decorated after it has been
computed. Therefore, the generated synthesized attributes, which are determined
by decorating the higher-order tree, should neither directly nor indirectly contribute
to the computation of the higher-order tree. The fourth item in the following
de�nition of reduction makes these dependencies explicit. Figure 2.11 illustrates
reduction.

De�nition 11 Reducing a higher-order attribute grammar.

Let H be a higher-order attribute grammar. The reduced attribute grammar H 0

is obtained by the following transformations on every production p of H :

� For each p:x 2 Oata(p) a non-terminal R p:x is appended to p , say at
position ix , and a fresh local variable p:lx is introduced.

� Every attributable attribute p:x 2 Oata(p) is removed.

� Every attribute occurrence p:x :a in any equation of E (p) is replaced by
poix :a .

� Every synthesized attribute occurrence poix :s is explicitly made dependent
on p:lx ; for example by adding p:lx!poix :s to dpr(p).

2

We loose information when reducing a higher-order grammar to a plain at-
tribute grammar. We can no longer distinct between a \real" non-terminal and a
non-terminal poix that replaces attributable attribute p:x . As a consequence, at-
tribute dependencies deduced for A(p�ix) might be assumed to also occur at poix .

34 2. The formalism

p

S

X i j
s t

X

r

s t
i jX s t

i j

qq()

Figure 2.12. A well-de�ned higher-order grammar that is not reduced non-circular

However, in the underlying higher-order grammar, the instantiated tree for p:x is
�xed by attribute evaluation; it can certainly not have an arbitrary shape. Thus,
an algorithm for plain attribute grammars that is applied to reduced higher-order
grammars is generally pessimistic.

For example, the circularity test can be used for reduced higher-order grammarsTesting whether a
higher-order attribute
grammar is non-
circular is hard; it
appears to be as hard
as the halting problem.

as well. But some reduced higher-order grammars will fail the test although all
attribute instances of every abstract syntax tree are e�ectively computable. A
higher-order attribute grammar is said to be reduced non-circular if the reduced
grammar is non-circular. Reduced non-circular is a su�cient condition for well-
de�nedness of higher-order attribute grammars.

De�nition 12 Reduced non-circular higher-order attribute grammar.

An higher-order attribute grammar is reduced non-circular if the reduced grammar
is non-circular.
2

Figure 2.12 shows a higher-order attribute grammar that is not reduced non-
circular although well-de�ned. This grammer de�nes only one abstract syntax tree,
namely p(). The equation for the attributable attribute p:x of type X speci�es
that q() should be instantiated. Decoration of q() is possible in the given context
of p(). However, the reduced grammar de�nes two abstract syntax trees, namely
p(q()) and p(r()). The latter generates a circularity, so that the reduced grammar
is circular and hence the higher-order grammar not reduced non-circular.

3
35

Chapter 3

Using visit-sequences for

incremental evaluation

We discuss how to obtain an elegant and e�cient incremental attribute evaluator.
For the subclass of partitionable attribute grammars, so-called visit-sequences can
be statically determined. In Chapter 5 we will discuss how to compute visit-sub-
sequences. In this chapter we discuss how visit-sequences are used for plain and
incremental attribute evaluation. We also present a new approach that converts
visit-sequences into visit-functions, which can be memoized in order to obtain
incremental behavior.

3.1 Introduction

This section discusses attribute evaluation and introduces visit-sequences and visit-
sequence related terminology and notations.

3.1.1 Plain and incremental evaluation

An attribute grammar speci�cation consists of a context-free grammar and attri-
bution rules. The context-free grammar de�nes a set of abstract syntax trees. The
nodes of an abstract syntax tree are decorated with attribute instances. The attri-
bution rules of the attribute grammar describe how attribute instances depend on
each other. An attribute evaluator is an algorithm that, given an abstract syntax
tree T , computes the values of the attribute instances associated with the nodes
of T . The result of attribute evaluation is de�ned as the values of the synthesized
attribute instances of the root of T .

In an interactive environment, a user slightly modi�es a fully decorated tree
T into tree T 0 . An incremental attribute evaluator uses T and its attribute
instances to compute the attribute instances of T 0. The underlying assumption is
that decoration of T 0 from scratch is more expensive (in time) than an incremental
update. This is motivated by the observation that changes from T to T 0 are often

36 3. Using visit-sequences for incremental evaluation

small so that the changes in the attribute instances of T to T 0 are frequently also
small. Incremental evaluators are optimized for time e�ciency; space consumption
is not a major topic.

An attribute grammar evaluator is generated from an attribute grammar spec-
i�cation at generation time. The time during which the generated evaluator itself
is running will be referred to as evaluation time. Since both processes are a form ofCompiler generators

generate attribute
evaluators.

compilation we will avoid the term \compile time". The grammar writer writes the
attribute grammar speci�cation, and the user provides the evaluator with input.

Formal descriptions such as attribute grammars are well suited for various forms
of generation time analysis or static analysis. These may result in particularly
e�cient evaluators [KW76, Boc76, Kas80], space optimized evaluators [Kas87,
EdJ90, JP90, odAS91], parallel evaluators [Kui89, Zar90, Jou91, Kle91, Rep93] or
incremental evaluators [DRT81, Rep82, Yeh83, RTD83, YK88, Alb91b].

Plain evaluation

Conceptually, attribute evaluation|plain attribute evaluation as opposed to in-
cremental attribute evaluation|is not complex. The attribute instances of an
abstract syntax tree induce a dependency graph dtr . The attribute instances
must be computed in a total order that complies with the dtr graph. In essence,
an attribute evaluator is an algorithm that determines such an order, and computes
the attribute instances on the
y.

Visit-sequences are determined at generation time. They impose a total order
on the attribute occurrences of a production. Furthermore, they describe how total
orders associated to subtrees of a production instance K should be composed to
describe a total order on the attribute instances of the entire tree rooted at K .
In other words, visit-sequences statically induce a total order on the attribute
instances of any abstract syntax tree.

Visit-sequence based evaluators are more e�cient than evaluators that dy-
namically determine a total order. However, visit-sequence based evaluation is
restricted to a subclass of attribute grammars called partitionable grammars (see
Chapter 5). Generally, the more e�cient an evaluation strategy, the smaller the
class of grammars that can be evaluated by that strategy.

Incremental evaluation

An incremental attribute evaluator is an algorithm that recomputes a tree's at-
tributes after an operation that slightly changes that tree. Although any non-
incremental attribute evaluator can be applied to completely redecorate the tree,
our goal is to minimize work by focusing on the attribute instances that have a
new or changed value. The set of attribute instances that require a new value is
referred to as �; it is commonly known as AFFECTED [DRT81, Yeh83].

To be more precise, let T 0 be an abstract syntax tree resulting from a subtree
replacement at node K in tree T . The attribute instances in the new subtree at

3.1. Introduction 37

K are called newborn, all other instances are called retained. When evaluating
T 0 only retained attribute instances may have the same value as in T . Let us
call the unchanged attribute instances equal as opposed to the changed instances.
Needless to say, the subtree replacement causes these changes. An incremental

T T’

KK

attribute evaluator has to assign new values to the changed and newborn attribute
instances. This subset is denoted by �. The following table sums up the relations.

attribute instances

retained newborn

equal changed

�

It is hard to give a
good de�nition for �
in the case of higher-
order grammars, since
the set of attribute
instances grows during
evaluation.

Bear in mind that it is not known in advance which attribute instances are
members of �: the incremental update algorithm has to determine � itself. An
incremental evaluator is called asymptotically optimal if its costs are O(j�j). In
measuring evaluation costs, we neglect the true cost of evaluating the semantic
functions and regard them as having unit costs. In reality, such functions can be
more expensive as is illustrated by the lookup function in the varuse grammar.

Incremental attribute evaluators must recompute a (small) superset of � in
order to determine the edge of �: � [f� j 9�2��! �g. This set, denoted by Some de�ne double-

bar delta jj�jj :=
j�+1j.

�+1 , extends � with those attribute instances that are reachable in a single step
from the frontier of �. Due to the constant out-degree of attribute occurrences
in dpr graphs (given an attribute grammar) O(j�+1j) = O(j�j) holds.

Incremental evaluation requires the storage of \old values" of the attribute
instances. In this sense, incremental evaluation con
icts with storage optimizations
(such as mapping several attribute instances to one global variable). In most
approaches, the values of the attribute instances are stored in the abstract syntax
tree. In other words, the abstract syntax tree serves as a very e�cient attribute
cache. It should combine this function with its primary role, the one of data

ow driver. The functional approach presented in this chapter, separates the two
functions of the abstract syntax tree: attribute instances will be stored in a cache
tailored for incremental evaluation, while the abstract syntax tree is optimized for
driving the evaluation (see Chapter 4).

A naive implementation of incremental attribute evaluation is dynamic change

propagation. Attribute instances are marked if their value is possibly inconsistent.
Initially, the attribute instances of the newly inserted subtree are marked. The
dynamic change propagation algorithm selects a marked attribute instance that has
no marked predecessors and computes its value (such instances must exist since
dtr(T) is non-circular). If the new value di�ers from the old one, all successors of
the attribute instance are marked. When propagation has died out, all instances
will be consistent again.

The dynamic change propagation is ine�cient for two reasons. First of all, an
attribute instance may be assigned a \new" value in the course of reevaluation,
that is not its correct �nal value. For example, if an attribute instance � depends

38 3. Using visit-sequences for incremental evaluation

on a marked instance � via eight paths, unfortunate scheduling may cause �

to be assigned eight times. The e�ciency of dynamic change propagation may
thus be as bad as exponential in the number of the marked attribute instances.
Secondly, the set of marked attributes can be far larger than �. This is also due to

τ

σ

multiple assignments: spurious changes are likely to propagate beyond � leading
to suboptimal running time.

The obvious solution to the naive algorithm is to make sure that an attribute
instance is only reevaluated after all its arguments have gotten their correct �nal
values. In order to achieve this, the dependencies between the attribute instances|
direct as well as indirect|have to be known. For arbitrary non-circular grammars,
Reps presented an algorithm propagate that dynamically constructs a depen-
dency graph that is topologically sorted on the
y [Rep82, RTD83]. It has an
optimal running time, but its space consumption is considerable; it usually domi-
nates the storage for attribute values [RT89].

Visit-sequences implicitly establish an order on the attribute instances of an
abstract syntax tree. An incremental evaluator can make use of this order [Yeh83,
YK88, RT89]. This eliminates the need for a dynamically constructed graph which
makes the algorithm not only faster but also less memory consuming. Of course
the applicability of this method is restricted to the class of partitionable attribute
grammars.

3.1.2 Visit-sequences

A tree-walk evaluator traverses the abstract syntax tree. It starts at the root and
moves from node to (adjacent) node. A subtree is entered when it is reached
with a downward move and it is exited with an upward move from the root of the
subtree. During a traversal attribute instances are computed. The decoration of a
tree is completed when all its attribute instances are computed and the root node
is exited.

A visit is a sequence of actions that starts with entering a subtree T , followed
by a number of attribute computations during the traversal of T and then exiting
T . In general multiple visits to T are necessary to compute all its attribute
instances. During a speci�c visit to T , multiple visits to any subtree of T may
take place and some subtree might not be visited at all.

A visit-sequence evaluator is a tree-walk evaluator that has associated a �xed
sequence of moves, interspersed with attribute computations, with each produc-
tion. Such a sequence is known as visit-sequence or plan. Each node of the
abstract syntax tree is an instance of a production, and the instructions from
the plan apply to the actual non-terminal and attribute instances of that node.The plan for node K

includes eval instruc-
tions for attributes
associated with node
i : K .

Three kind of instructions are used, two transfer instructions and one evaluation
instruction. The following table lists them and their semantics when executed in
node K :

3.1. Introduction 39

instruction semantics in tree node K

eval(�) compute attribute instance ins(K ; �)
visit(i ; v) descend to node i : K for the v th time
suspend(v) exit visit number v and ascend to tail K

In a visit-sequence evaluator, the number of visits to a non-terminal is �xed.
Furthermore, each visit to a non-terminal has a �xed interface that consists of a
set of inherited attributes of the root that may be used during the visit and a set
of synthesized attributes of the root that are guaranteed to be computed by the
visit (the yield).

Figure 3.1 shows the visit-sequences of the varuse grammar. Note that in-
stead of writing visit(2; 1), we write visit(L2; 1). If there is only one occurrence
of a non-terminal in a production, we even leave out the subscript and write
visit(L; 1).

L

empty

decs
env

codecode

root

S

L decs
env

code

N

name

id

str

visit
L,1

eval
L.env

visit
L,2

eval
S.code

suspend
1

eval
L.decs

suspend
1

eval
L.code

suspend
2

eval
N.id

suspend
1

visit
L ,12

visit
N,1

eval
L .decs1

suspend
1

eval
L .env2

visit
L ,22

eval
L .code1

suspend
2

visit
L ,12

eval
L .decs1

suspend
1

eval
L .env2

visit
L ,22

visit
N,1

eval
L .code1

suspend
2

decs
env

code

decl

N id decs
env

code

L1

2L

decs
env

code

stat

decs
env

codeN id
2L

L1

Figure 3.1. The production icons of the varuse grammar with their plans

Each L tree is visited twice. The interface for the �rst visit is (fg; fL:decsg)
and for the second (fL:envg; fL:codeg). The plans for a production on L are
divided into two sub-sequences corresponding to the two visits to L. The plan
for a root node (which is not divided since S is only visited once), contains both
visits to its L child. During the �rst visit to a stat node, its L child is visited for
the �rst time. The second visit to this child takes place during the second visit
to stat . This \synchronization" need not be, it simply follows from the particular
dependencies in dpr(stat). See for example the visits to the N children: in a decl
node N is skipped during the second and in a stat node during the �rst visit to L.

40 3. Using visit-sequences for incremental evaluation

visit
L ,12

visit
N,1

eval
L .decs1

suspend
1

visit
L ,12

eval
L .decs1

suspend
1

visit
N,1

eval
L .env2

visit
L ,22

eval
L .code1

suspend
2

suspend
1

eval
L.decs

visit
L ,12

eval
L .decs1

suspend
1

eval
L .env2

visit
L ,22

eval
L .code1

suspend
2

eval
L.code

suspend
2

visit
N,1

eval
L .env2

visit
L ,22

eval
L .code1

suspend
2

suspend
1

eval
N.id

suspend
1

eval
N.id

suspend
1

eval
N.id

visit
L,1

visit
L,2

eval
S.code

suspend
1

eval
L.env

Figure 3.2. The plan tree for the varuse application

code

code
env

decs

codedecs
env

env
decs code

id

id

id

root

stat

decl

stat

name empty

name

16

name

1

4

5

6

11

1314

7

8

12

15

decs
2

env
code

10

9

3

S

L

N L

N L

N L

’y’

’x’

’x’

Figure 3.3. Total order on the attribute instances for the varuse application

3.1. Introduction 41

plan root

begin 1
visit(L; 1);
eval(L:env);
visit(L; 2);
eval(S :code)

end 1

plan decl

begin 1
visit(N ; 1);
visit(L2; 1);
eval(L1:decs)

end 1
begin 2
eval(L2:env);
visit(L2; 2);
eval(L1:code)

end 2

plan stat

begin 1
visit(L2; 1);
eval(L1:decs)

end 1
begin 2
eval(L2:env);
visit(L2; 2);
visit(N ; 1);
eval(L1:code)

end 2

plan empty

begin 1
eval(L:decs)

end 1
begin 2
eval(L:code)

end 2

plan name

begin 1
eval(N :id)

end 1

Figure 3.4. The visit-sub-sequences of the varuse grammar \structured style"

Decoration proceeds in a coroutine like fashion. We imagine machines attached
to the nodes of the trees. These machines execute the plan associated with the
node. At any moment, only one of the machines is active. It stops execution by
transferring control to the machine of the parent (suspend) or to the machine of
one of its children (visit). The eval instructions perform the actual computation:
evaluating the attribute instances.

The eval instructions in the visit-sequence of production p describe a total
order on the attribute occurrences of p . The total orders on the attribute oc-
currences of the productions induce a total order on the attribute instances of an
abstract syntax tree. By composing the plan induced total orders of the subtrees
T1; : : : ;TS with the total order described by p , the plan induced total order of
the tree p(T1; : : : ;Ts) is obtained. Terminal productions form the base of the
recursion.

For example, Figure 3.2 shows how the plans of the productions of the varuse
application are composed to form a so-called plan tree. A depth-�rst left-to-right
traversal of the plan tree that takes only the eval instructions into account, de�nes
the plan induced total order on the attribute instances of the varuse application.
Figure 3.3 shows the varuse application with a gray line denoting a \time-axis"

owing through all the attribute instances which, for clarity, have been \time-
stamped".

The visit-sequences presented thus far have been formatted in a \classic style"
used by many authors. That is to say, the three basic instructions are simply listed.
Classic style visit-sequences are the output of plan generating algorithms.

However, the visit-sequences are also used as input for an algorithm that ex-
tracts visit-functions as discussed later in this chapter. It is then convenient to
bring more structure into visit-sequences: they are divided into sub-sequences. The
suspend instructions are used as breakpoints, and become obsolete as shown in
Figure 3.4. The di�erence between classic and structured plans can be neglected,
and we will use the two views interchangeably.

42 3. Using visit-sequences for incremental evaluation

3.1.3 Interfaces and partitionable grammars

Visit-sequence based evaluators are particularly e�cient. However, visit-sequences
only exist if for every non-terminal in the grammar the evaluation order of its
attributes can be �xed at generation time. To see why, consider the two machines
attached to adjacent nodes in an abstract syntax tree. The actual productions
applied at those nodes are not known to the respective machines at the other side;
they are only joined by a non-terminal, say X . The inherited attribute instances of
X are computed by the upper machine, the synthesized attribute instances by the
lower. The interaction between the machines is as follows. The upper computes
some subset of Ainh(X) as indicated by the eval instructions in its plan. It then
passes control to the lower machine by executing a visit instruction. The lower
machine executes its plan, computing a subset of Asyn(X). It transfers control to
the upper machine by executing a suspend instruction. Both machines could have
evaluations and transfers to other nodes interspersed. This process of alternatingly
computing inherited and synthesized attribute instances continues until all of X 's
attribute instances have been processed.

The attributes of X constitute the only interface between the upper and lower
machine. When the upper machine transfers control to the lower it expects that a
particular subset of Asyn(X) will be computed before control is transferred back,
irrespective of the subtree present. Likewise, whatever the current context of the
lower machine, it expects a particular subset of Ainh(X) to be available so that it
may refer to them in order to compute the required synthesized attribute instances.

De�nition 13 Interface of a non-terminal.

A list l of pairs of sets is an interface for non-terminal X if its sets form a partition
of A(X) in the following sense[(f:g;f:g)| {z }

i=0

; (f:g;f:g)| {z }
i=1

; ::]

Ainh(X) = +
0�i<len l

fst (l�i) ;

Asyn(X) = +
0�i<len l

snd (l�i)quad :

2

The interface for non-terminal X , computed by an algorithm f , is denoted by
interfacef (X). In order to facilitate interface related discussions, we introduce
some notation (vf , If and Sf).

The number of visits to non-terminal X is len interfacef (X). It will be
denoted by vfX . We overload this operator: vf poi = vf p�i and we abbreviate
vf p = vf p�0 and vfT = vf prod(T). Furthermore, for 1 � v � vfX we de�ne
X If v = I and XSf v = S where tuple (I ; S) = interfacef (X)�(v � 1). In otherFor historic reasons,

visits are numbered
starting from 1.

words, (X If v ;XSf v) is the interface for the v th visit to X . The selectors If
and Sf are overloaded; they operate on non-terminal occurrences and attributable
attributes too: poiIf v = fpoi :a j p�i :a 2 p�iIf vg and poiSf v = fpoi :a j
p�i :a 2 p�iSf vg respectively p:xIf v = fp:x :a j X = R p:x ^ X :a 2 X If vg
and p:xSf v = fp:x :a j X = R p:x ^ X :a 2 XSf vg. In general, we drop the
subscript f .

3.1. Introduction 43

Interface interface(X) induces a partial order on the attributes A(X). To
de�ne this partial order, we �rst present the auxiliary notion of time slots. Time
slots are associated with attribute sets from interface(X). Slots are numbered
from 1 to 2 � vX and map to the sets as follows: slot(X I v) = 2v � 1 and
slot(XS v) = 2v . We also associate a time slot slot(X :a) with an attribute [(

1

f:g;
2

f:g)| {z }
v=1

; (
3

f:g;
4

f:g)| {z }
v=2

; ::]

X :a ; either slot(X :a) = slot(X I v) or slot(X :a) = slot(XS v) depending on
X :a 2 X I v or X :a 2 XS v . The partial order induced by interface(X) can now
be characterized as follows: X :a ! X :b if and only if slot(X :a) < slot(X :b).
Attributes within the same slot (interface set) are not ordered.

The largest class of attribute grammars for which visit-sequences can be com-
puted is the class of partitionable attribute grammars. Informally, an attribute
grammar is partitioned if for each non-terminal an interface exist, such that in
any context of the non-terminal the attributes are computable in an order which
is included in the partial order induced by the interface. Visit-sequences are not
�xed by interfaces; they merely have to comply with them. Chapter 5 gives a
formal de�nition of partitionable attribute grammars. It also presents two di�erent
algorithms to compute visit-sequences that comply with the same interface. In
this chapter, we simply assume that plans exist.

3.1.4 Background

An attribute evaluator computes the attribute instances of an abstract syntax
tree T in a total order that complies with dtr(T). We immediately obtain two
di�erent classes of evaluators. Demand driven or top-down evaluators start with
(part of) the sinks of the dtr graph and work their way downwards. Data driven

or bottom-up evaluators start with the sources of the dtr graph and work their
way up. The advantage of the demand driven approach lies in the ability to avoid
useless computations caused by, for example, conditional expressions. Kaviani
[Kav84] showed that the advantage of the top-down approach is not essential over
bottom up.

An unrelated classi�cation is based on the ordering strategy. The total order
on dtr can be determined at evaluation time or at generation time. Evaluators of
the former kind are know as dynamic evaluators, whereas evaluators of the latter
kind are referred to as static. Intermediate forms also exist [KW76]: evaluation is
mainly dynamic, but some decisions are made at generation time.

In general, dynamic evaluators [KR79, CH79] are slower and consume more
memory than static evaluators since they construct dependency graphs at eval-
uation time. However, dynamic evaluators have a distinct advantage over static
evaluators. In general, they work for arbitrary non-circular attribute grammars. A
drawback of this feature is that, unless the grammar is checked for circularity, one
can not be sure the evaluator always terminates. It is well know that this test is
exponential [Jaz81, DJL84, Alb91c].

One may check for cir-
cularities at evaluation
time: constant costs.

Numerous statically determined evaluators have been researched [Eng84]. Al-
blas [Alb91a] subdivides static evaluators into
exible and rigid evaluators. For

44 3. Using visit-sequences for incremental evaluation

evaluators that use a rigid strategy, the computation order is �xed a priori. An
example is a multi-pass left-to-right strategy [Alb81]. If, on the other hand, the
attribute grammar speci�cation is analyzed and the computed dependencies are
used to construct an evaluator, the evaluator uses a
exible strategy. For exam-
ple, for a so-called ordered attribute grammar [Kas80] there exists a particularly
e�cient static evaluator whose strategy is determined at generation time.

3.2 The box grammar

We will now present a second running example, the box grammar. Unlike the
varuse grammar it only distantly resembles a traditional compiler. It is inspired
by Donald Knuth's TEX system [Knu91].

3.2.1 Single visit

The basic building block of the box grammar is a box containing text in some
font. Boxes can be stacked on top of each other or placed side by side giving new
boxes. A structure of boxes is to be translated into a display list containing for
each text its position and font.

The following abstract syntax tree will �gure as the (standard) application of
the box grammar.

stackl (sidet(box('small'; 'a');box('emph'; 'nice'))

; box('large'; 'example')

)

The box application translates to the following display list, assuming that the
upper left corner of the outer box is to be placed at (0; 0) and supposing some
font metrics and mappings.

(0,0) 'helv-8pt' 'a'
(4,0) 'helv-italic-10pt' 'nice'
(0,11) 'helv-14pt' 'example'

a
nice

example

Converting a display list into bitmaps of the right font and size is left to a
separate interpreter. The translator of the box grammar only knows the font
metrics so that the sizes of the boxes can be determined; just like TEX converts a
tex �le into a dvi �le and an appropriate driver converts the dvi �le into bitmaps
for an output device.

The name display list is somewhat misleading since we use a more convenient
display tree represented by D . Note that D is not part of the context-free gram-
mar, although it uses the same syntax. It describes a type, just like the pseudo
terminal real describes real numbers, except that it is de�ned by the grammar
writer.

3.2. The box grammar 45

D = join(D ;D)
j at(real ; real ; font ; str)

Primitive type real denotes
oating point numbers and str represents strings.
A font is a name, such as 'helv-italic-10pt', that is known to the display
list interpreter. In the input speci�cation, fonts are not referenced explicitly but
rather by a symbolic name (fname) like 'emph' for emphasize. A font library or
\style �le" maps symbolic names to fonts: Lib is the type fname �! font . In
the translation of the box application above, we assumed a font library
ib such
that �ndfont
ib 'emph' = 'helv-italic-10pt'. Two other font functions are
available, namely strwidth and strheight that return the width respectively height
of a string in a given font. For example strheight 'helv-italic-10pt' 'nice' =
11pt.

The context-free grammar for the box grammar is de�ned by the following
declaration

B = box(fname; str)
j sidet(B ;B)
j stackl(B ;B) .

Non-terminal B has six attributes. Three attributes are inherited:
ib , x and
y supplying respectively the font library and the requested upper left corner. The
other three are synthesized attributes. Attributes w and h report the width and
height of the box and dlist represents its display list representation.

Figure 3.5. gives the speci�cation of the box grammar. Two aspects are
new. First of all, a local attribute is used in production box , namely box :f . By
using it, we avoid writing, and probably evaluating, function �ndfont three times.
Secondly, we factorized the common equations of sidet and stackl . The common
parts include passing down the font library and the coordinates of the �rst child
and synthesizing the joined display lists. Factorization allows for a modest form of
modularization of attribute grammar speci�cations.

The equations for sidet de�ne a box that consists of the box for the left child

r
r r

r

r

rglued to the box for the right child. Hence the width is the sum of the widths and
the height is the maximum of the heights. The boxes are top aligned. The stackl
production puts the box for the left child above the box for the right child. These
boxes are left aligned.

We will show in Chapter 5 that the box grammar is partitionable and that the
following interface is valid in any context of B .

h �
fB :
ib;B :x ;B :yg ; fB :w ;B :h;B :dlistg

� i

In other words, one visit su�ces to decorate a B tree and the inherited attributes
of the �rst visit are BI 1 = fB :
ib;B :x ;B :yg whereas the synthesized attributes
are BS 1 = fB :w ;B :h;B :dlistg. Observe that B :x is scheduled in slot 1 and
B :w is scheduled in slot 2. Thus, the partial order induced by this single visit
interface includes the arc B :x!B :w .

46 3. Using visit-sequences for incremental evaluation

B<#
ib : Lib; "w ; h : real ; #x ; y : real ; "dlist : D>

B1 = box(fname; str)
local f : font ;
f := �ndfont B1:
ib fname ;
B1:w := strwidth f str ;
B1:h := strheight f str ;
B1:dlist := at(B1:x ;B1:y ; f ; str)

j sidet(B2;B3); stackl(B2;B3)
B2:
ib := B1:
ib ;
B3:
ib := B1:
ib ;
B2:x := B1:x ;
B2:y := B1:y ;
B1:dlist := join(B2:dlist ;B3:dlist)

j sidet(B2;B3)
B1:w := B2:w + B3:w ;
B1:h := B2:h max B3:h ;
B3:x := B1:x + B2:w ;
B3:y := B1:y
j stackl(B2;B3)
B1:w := B2:w max B3:w ;
B1:h := B2:h + B3:h ;
B3:x := B1:x ;
B3:y := B1:y + B2:h

Figure 3.5. The box grammar (part I)

B1 = sideb(B2;B3)
B2:
ib := B1:
ib ;
B3:
ib := B1:
ib ;

B1:w := B2:w + B3:w ;
B1:h := B2:h max B3:h ;

local b : real ;
b := B1:y + B1:h ;

B2:x := B1:x ;
B2:y := b � B2:h ;
B3:x := B1:x + B2:w ;
B3:y := b � B3:h ;

B1:dlist := join(B2:dlist ;B3:dlist)

j stackr(B2;B3)
B2:
ib := B1:
ib ;
B3:
ib := B1:
ib ;

B1:w := B2:w max B3:w ;
B1:h := B2:h + B3:h ;

local r : real ;
r := B1:x + B1:w ;

B2:x := r � B2:w ;
B2:y := B1:y ;
B3:x := r � B3:w ;
B3:y := B1:y + B2:h ;

B1:dlist := join(B2:dlist ;B3:dlist)

Figure 3.6. The box grammar (part II)

R<"dlist : D>
H<"
ib : Lib; "w ; h : real>

R = root(H ;B)
B :
ib := H :
ib ;
B :x := H :w=2� B :w=2;
B :y := H :h=2� B :h=2;
R:dlist := B :dlist

Figure 3.7. The box grammar (part III)

3.2. The box grammar 47

w h dlist
flib

flib

flib

x y

x y x y
dlist

dlist

sideb

w

w

stackr

w h dlist
flib

flib

flib

x y

x y x y
dlist

dlist

w

w h

hB

B

B

h

hB

B

B

b

r

The dashed arrows describe a dependency of an inherited at-

tribute on a synthesized attribute of the same non-terminal.

Figure 3.8. The production icons of sideb and stackr

plan box

begin 1
eval(f);
eval(B1:w);
eval(B1:h)

end 1
begin 2
eval(B1:dlist)

end 2

plan sidet

begin 1
eval(B2:
ib);
visit(B2; 1);
eval(B3:
ib);
visit(B3; 1);
eval(B1:w);
eval(B1:h)

end 1
begin 2
eval(B2:x);
eval(B2:y);
visit(B2; 2);
eval(B3:x);
eval(B3:y);
visit(B3; 2);
eval(B1:dlist)

end 2

plan stackl

begin 1
eval(B2:
ib);
visit(B2; 1);
eval(B3:
ib);
visit(B3; 1);
eval(B1:w);
eval(B1:h)

end 1
begin 2
eval(B2:x);
eval(B2:y);
visit(B2; 2);
eval(B3:x);
eval(B3:y);
visit(B3; 2);
eval(B1:dlist)

end 2

plan sideb

begin 1
eval(B2:
ib);
visit(B2; 1);
eval(B3:
ib);
visit(B3; 1);
eval(B1:w);
eval(B1:h)

end 1
begin 2
eval(b);
eval(B2:x);
eval(B2:y);
visit(B2; 2);
eval(B3:x);
eval(B3:y);
visit(B3; 2);
eval(B1:dlist)

end 2

plan stackr

begin 1
eval(B2:
ib);
visit(B2; 1);
eval(B3:
ib);
visit(B3; 1);
eval(B1:w);
eval(B1:h)

end 1
begin 2
eval(r);
eval(B2:x);
eval(B2:y);
visit(B2; 2);
eval(B3:x);
eval(B3:y);
visit(B3; 2);
eval(B1:dlist)

end 2

Figure 3.9. The visit-sub-sequences of the box grammar

48 3. Using visit-sequences for incremental evaluation

3.2.2 Two visits

To complicate matters, we will now add two productions: sideb and stackr . They
are analogue to sidet respectively stackl . However the bottoms respectively r ight
sides of the boxes are aligned instead of the tops respectively left sides. See Fig-

r
r

r

r

r

r ure 3.6/ for the description of these two productions. Notice that the speci�cation
in Figure 3.5/ is completely self-contained. The two productions in Figure 3.6/
can be regarded as a separate module that may or may not be \linked".

Equation b := B1:y +B1:h in sideb (Figure 3.5/) is not in Bochmann normal
form since it uses the output attribute occurrence B1:h . As noted before, substi-
tution of the output attribute occurrences by their de�ning equations normalizes
the equation: b := B1:y + (B2:h max B3:h).

Why is the extended box grammar more complex than the short one? The
crux is in the dashed arrows in the production icons for sideb and stackr displayed
in Figure 3.8/ : an inherited attribute depends on a synthesized attribute of the
same non-terminal. A stackr node introduces a context in which the partial
order introduced by the single-visit interface given previously is in con
ict with the
actual dependencies. To be concrete, the dashed arrow in dpr(stackr) denotes
the dependency B :w!B :x which violates the interface.

Nevertheless, the extended box grammar is still partitionable. As will be shown
in Chapter 5, the following interface is valid in any context. Possible visit-sequences
adhering to this interface are presented in Figure 3.9/.

h �
fB :
ibg ; fB :w ;B :hg

�
;
�
fB :x ;B :yg ; fB :dlistg

� i

Note that vB = 2. We observe that arcs from a synthesized attribute to an
inherited attribute of the same non-terminal force additional visits.

3.2.3 The header

Finally, the box grammar is extended with two non-terminals. Non-terminal R is
the root of the extended grammar. It derives a \header" H and a box B . Headers
are not speci�ed any further, but the idea is that they de�ne a font library and a
\paper size". The equations for the root production map the center of the box to
the center of the paper. These ideas are formalized by the fragment in Figure 3.7/ .
For the remainder of this thesis, the box grammar comprises all three parts.

3.3 Visit-sequence based evaluators

This section discusses how visit-sequences can be used to construct a plain or incre-
mental attribute evaluator. The box grammar illustrates the pitfalls of incremental
evaluation.

3.3. Visit-sequence based evaluators 49

3.3.1 Plain evaluation

Several methods exist to implement a visit-sequence evaluator. Algorithm 3.10
sketches one that is not obscured by an excess of tables. decorate is based on
a single table plan that encodes visit-sequences in the structured style. Visit-sub-
sequence number s of production p is retrieved by an expression of the form
plan[p; s]. The number of instructions in this subsequence is determined via
length(plan[p; s]), and the individual instructions are retrieved by indexing the
subsequence: plan[p; s][i].

Attribute instances are attached to tree nodes. To decorate an abstract syn-
tax tree T , one must �rst set the inherited attributes of (the root of) T to the
appropriate values, and then call decorate(root(T); 1). When the procedure re-
turns, all attribute instances of T have been assigned a correct value, including
the synthesized attributes of (the root of) T .

proc decorate(K : Node; segment : Integer)
var index : Integer ;
begin

for index := 1 to length(plan[prod(K); segment]) do

case plan[prod(K); segment][index] of
eval(�) : compute ins(K ; �)
visit(i ; v) : decorate(i : K ; v)

esac

rof

end

Algorithm 3.10. Attribute evaluator decorate

3.3.2 Incremental evaluation

Plans induce a total order on the attribute instances of an abstract syntax tree.
When a tree is evaluated the eval instructions are executed respecting all di-
rect and indirect dependencies. Therefore, the plans also represent an acceptable
reevaluation order for the attribute instances of a production instance. The basic
idea behind incremental evaluator redecorate (Algorithm 3.11.) is to use the
plans as during non-incremental evaluation except that as many instructions as
possible should be skipped. In particular, skipping visit and suspend is pro�table:
in unit time arbitrarily many reevaluations can be avoided.

Incremental evaluator redecorate is based on the plain evaluator deco-
rate. redecorate passes through three phases as recorded in variable phase .
The �rst phase initializes the evaluator state, the second phase deals with the
redecoration and in the third phase no changes need to be propagated anymore.

The �rst phase initializes the state of the evaluator. Let T and T 0 be two ab-
stract syntax trees such that T 0 is obtained from T by subtree replacement at node
S . The initialization phase brings the evaluator stack in the same con�guration

50 3. Using visit-sequences for incremental evaluation

var

phase : int = 1
S : Node =\root of the replaced subtree"

proc update(�)
begin

if � is newborn
then compute and mark �
else if any predecessor of � is marked
then compute � and mark it if it changes
else skip

� �

end

proc redecorate(K : Node; segment : Integer)
var index : Integer
begin

for index := 1 to length(plan[prod(K); segment]) do

case plan[prod(K); segment][index] of
eval(�) : if phase = 2 then update(ins(K ; �)) �

visit(i ; v) : if K = S then phase := 2 �

redecorate(i : K ; v)
esac

rof

end

Algorithm 3.11. Incremental attribute evaluator redecorate

as decorate has when it �rst reaches node S . As pointed out by Yeh [Yeh83],
this is required to start incremental decoration at node S . The con�guration is
reached by simply following the linear order, while skipping the eval instructions,
until root S of the replaced subtree is reached. The time for sequence control
(visit s) is insigni�cant compared with time for decoration (eval s) [YK88]. This
explains why simply following the linear order is preferred to an optimal algorithm
that sets up the stack [Yeh83].

During the second phase, the real work is done; the eval instructions are no
longer skipped a priori. Attribute instances are marked to re
ect the fact that
their value in T 0 is di�erent from their value in T . The decision to recompute anA mark in the naive

dynamic change prop-
agation algorithm dis-
cussed earlier meant
that the attribute in-
stance needed to be
evaluated. Here it
means that it has
been evaluated and
found out to have
changed.

attribute instance is now as follows, either (i) one of the predecessors is marked
(changed) or (ii) the instance is attached to the new subtree: it is newborn. The
newly computed value of an attribute instance is compared with the old value in
order to decide whether the instance should be marked.

The evaluator is in phase three once it is outside the area of marked attribute
instances. Every update issued by an eval instruction will fall through to the skip
branch. One may device all kinds of strategies [Yeh83] that deal with detecting
the end of change propagation so that redecorate can be aborted. Informally
this means setting variable phase to 3. No such strategies have been incorporated
in redecorate.

3.3. Visit-sequence based evaluators 51

3.3.3 Skipping visits

A interesting improvement for redecorate (Algorithm 3.11) is suggested by
Reps and Teitelbaum [RT89] and Alblas [Alb89]. They aim at skipping visit and
suspend instructions during phase two. In order to appreciate their ideas let us
have a look at three examples landscape, reduce and bold. They are based on the
box grammar.

Figure 3.12. shows the abstract syntax tree for the box application. We assume
that the header in the box application speci�es as paper size 100 � 200 and as
font library the following mapping

'small' ! 'helv-8pt'

'emph' ! 'helv-italic-10pt'

'large' ! 'helv-14pt' :

The plan tree associated with the box application is given in Figure 3.13.. It
is composed from the plans given in Figure 3.9/ 47 ; the plan tree for the header is
left unspeci�ed (grey).

The three examples that will now be presented all deal with an edit operation
on the box application. In each case, the header is modi�ed, which is re
ected by
a change in the inherited attributes of B . We discuss which visits may be skipped.

Landscape

The �rst example of an edit operation illustrates that a (�rst) visit may be skipped
if the inherited attributes for that visit are unchanged.

We assume a subtree replacement in the header that de�nes \landscape" paper
200�100. Consequently, redecoration changes phase from 1 to 2 while visiting the
header. Since the display list must re
ect the changed paper, redecoration (phase
two) is still in progress when the plan for root is reached again. Consequently,
instruction eval(B :
ib) (labeled a in Figure 3.13.) will issue an update . Since
H :
ib , the only predecessor of B :
ib , is not changed by the assumed subtree
replacement, B :
ib will not be (recomputed and thus not be) marked. Observe
that since none of the inherited attribute instances for the �rst visit to child B

is marked, visit(B ; 1) (labeled b) can be skipped! Redecoration proceeds by
executing eval(B :x) (labeled c). This attribute instance does change|it depends
on the changed H :h|so that the second visit to B (labeled e in Figure 3.13.)
can not be skipped.

Visit 1 to B can be skipped because its inherited attribute instances (instances
of BI 1) are unmarked. Unfortunately, this rule only applies to the �rst visit of a
tree as is illustrated in the second example.

Reduce

The second example shows that visit 2 to B can not be skipped even though all
its inherited attribute instances (instances of BI 2) are unchanged. The reason for

52 3. Using visit-sequences for incremental evaluation

’large’ ’example’

B

box

stackl

root

R

H B

B

sidet

box

’small’ ’a’

B

box

’emph’ ’nice’

B

Figure 3.12. The abstract syntax tree for the box application

eval
B .y3

visit

3B ,2
visit
B ,22

eval
B .dlist1

eval
B .x2

eval
B .y2

eval
B .x3

stackl2

eval
B.flib

visit
B,1

visit
B,2

eval
R.dlist

visit
H,1

eval
B .flib3

eval
B .flib2

visit

3B ,1
visit
B ,12

1stackl

1root

eval
B .dlist1

box2

eval
B .flib3

visit

3B ,1
eval

B .flib2

visit
B ,12

sidet1

eval
B .y3

visit

3B ,2
visit
B ,22

eval
B .dlist1

eval
B .x2

eval
B .y2

eval
B .x3

2sidet

eval
B .dlist1

box2

eval
B.x

eval
B.y

box1

eval
box.f

box1

eval
box.f

box1

eval
box.f

eval
B .dlist1

box2

a b c d e

h i

j k

l m

eval

1B .w
eval

1B .h

gf

eval

1B .w
eval

1B .h
eval

1B .w
eval

1B .h

eval

1B .w
eval

1B .h
eval

1B .w
eval

1B .h

The bold labels under the lower right corner of each visit-sub-sequence identify the

production instance; the superscript denotes the subsequence number. The circled

letters label instructions that are referred to in the examples \landscape", \reduce"

and \bold".

Figure 3.13. The plan tree for the box application

3.3. Visit-sequence based evaluators 53

this are intra-visit-dependencies.

Instead of changing the paper size, we now assume a subtree replacement in
the header that changes the font library. The symbolic name 'small' is no longer
mapped to 'helv-8pt', we let it map to a reduced font, say 'helv-5pt'. Like

a

nice

example
before, redecoration is in phase two when the plan for root is reached again. Unlike
the previous example, eval(B :
ib) causes B :
ib to be computed and marked. The
�rst visit to B can not be skipped.

Since the height of 'nice' still dominates the height of 'a', and the width of
'example' still dominates the width of the joined boxes 'a' and 'nice', the size
of the entire structure does not change. Consequently, B :h and B :w in the root
production (labeled f and g in Figure 3.13) remain unchanged (are unmarked) so
that B :x and B :y (labeled c and d) need not be recomputed. In other words, the
inherited attribute instances for the second visit to B do not change value.

However, since the changed font library, passed down in the �rst visit, is also
used in the second visit the second visit can not be skipped. More speci�c, the
change in the font library causes instruction eval(box :f) labeled h to be executed.
The value of local attribute instance f changes from 'helv-8pt' to 'helv-5pt'.
In the second visit, instruction eval(B :dlist) labeled i refers to the new value
and must therefore be executed. The dependency box :f !B1:dlist is a so-called
intra-visit-dependency. Intra-visit-dependencies play an important role in the next
section where visit-sequences are converted into visit-functions.

Incremental evaluator vspropagate, introduced by Reps and Teitelbaum
[RT89], avoids wasting visit s and suspend s by keeping track of the production
instances that contain changed attribute instances. vspropagate uses an addi-
tional state variable \reactivated" that records those production instances. When-
ever an attribute instance is marked, the associated production instance is reacti-
vated. Transfers to reactivated nodes can never be skipped. In other words, visit Care must be taken

with syntactic refer-
ences.

v to a tree with root N may be skipped as long as all the inherited attribute
instances used by visit v and all previous ones (

S
1�w�v N Iw) are not marked.

Once an inherited attribute for visit u changes, the attribute instance is marked
and the tree node reactivated so that all visits v , u � v � vN must be executed.

Bold

The edit action described in the last|rather complex|example, changes the in-
herited attributes of the �rst visit, but not the inherited attributes of the second
visit. Although the previous example showed that, in general, one may not skip
a visit if a previous visit has been executed, in speci�c cases|like this one|one
may. In other words, vspropagate is pessimistic and may be re�ned.

The current example strongly resembles the previous one; the symbolic name
'large' is remapped instead of 'small'. The subtree replacement changes the
mapping for 'large' from 'helv-14pt' to 'helv-bold-14pt'. We suppose that
the font metrics of 'helv-14pt' and 'helv-bold-14pt' do not di�er.

The �rst visit to B (label b in Figure 3.13) can not be skipped since its inherited

54 3. Using visit-sequences for incremental evaluation

attribute, the font library B :
ib labeled a, is changed. Because we supposed equal
font metrics for the old and the substituted font, the sizes of the boxes as computed
by the �rst visit, do not change. So, like in the previous example, the inherited
attribute instances (labels c and d) for the second visit do not change. The second
visit to B (label e) can not be skipped since the change in the font library must
still be induced in the display list.

We have now traced incremental update up to the second subsequenceThe superscript 2 in
stackl2 denotes the
second subsequence of
stackl .

of the stackl node which is labeled stackl2 in Figure 3.13/. The left and
right subtree of this node, sidet(box('small'; 'a');box('emph'; 'nice')) and
box('large'; 'example'), will be visited for the second time: visit(B2; 2) (la-
bel j) respectively visit(B3; 2) (label k). The inherited attributes for both visits,
the origins B2:x ;B2:y respectively B3:x ;B3:y , are unchanged since they depend
on the unchanged origin of the parent. The previous example learned that this
does not mean that we may skip the visits: intra-visit-dependencies with the �rst
visit may exist.

Nevertheless, we observe that visit(B2; 2) can be skipped whereas visit(B3; 2)
can not! The reason for this is that during the decoration of B2 no eval instructionAn arbitrary large tree

\B2" can be skipped
as long as it does
not use the changed
'large' font.

refers to a marked attribute instance so they all lead to the skip branch anyhow.
However, during the decoration of B3 the marked attribute instance box :f la-
beled l is referenced by the eval(B1:dlist) instruction labeled m. This is the only
instruction that actually changes the display list (re
ecting the changed mapping
for 'large'); it may certainly not be skipped.

. . .

The �rst example suggested the rough idea of skipping visits if the associated
inherited attribute instances have not changed. The second example learned that
the observation does not hold in general: previous visits may have changed at-
tribute instances that are referenced by later visits (intra-visit-dependencies). It is
safe to skip visit v if all inherited attribute instances for visits 1 : : : v have not been
changed. The third example showed that this is a safe but pessimistic strategy.
Visits may be skipped as long as they only refer to unchanged attribute instances.
The next section will show how to implement this approach. Basically, a visit com-
putes an additional structure called binding that holds the values of precisely those
attribute instances that are computed during that visit and that are referenced by
a later visit. If the binding has not changed, the later visit may be skipped.

3.3.4 Evaluation of higher-order grammars

Visit-sequences for a higher-order grammar G can be obtained by �rst reducing
G to a plain grammar G 0 then computing visit-sequences vss 0 for G 0 and �nally
translating vss 0 to visit-sequences vss for G .

When applying a plain-grammar algorithm f 0 to a reduced higher-order gram-
mar two aspects must be investigated. First of all, the reduced grammar G 0 is a
pessimistic representation of G : f 0 will assume that derived dependencies between
attributes on A(X) might also occur between the generated attribute occurrences

3.3. Visit-sequence based evaluators 55

plan root

begin 1
visit(L; 1);
eval(L:env);
visit(L; 2);
eval(S :code)

end 1

plan decl

begin 1
visit(N ; 1);
visit(L2; 1);
eval(L1:decs)

end 1
begin 2
eval(L2:env);
visit(L2; 2);
eval(table);
eval(table:id);
visit(table; 1);
eval(L1:code)

end 2

plan stat

begin 1
visit(L2; 1);
eval(L1:decs)

end 1
begin 2
eval(L2:env);
visit(L2; 2);
visit(N ; 1);
eval(table);
eval(table:id);
visit(table; 1);
eval(L1:code)

end 2

plan empty

begin 1
eval(L:decs)

end 1
begin 2
eval(L:code)

end 2

plan none

begin 1
eval(E :addr)

end 1

plan name

begin 1
eval(N :id)

end 1

plan add

begin 1
eval(E2:id);
visit(E2; 1);
eval(E1:addr)

end 1

Figure 3.14. The visit-sub-sequences of the higher-order variant of the varuse grammar

O(p:x) if R p:x = X . Algorithm f 0 may reject G 0 on account of these induced
dependencies. Since p:x is de�ned by computation the higher-order trees that
may be instantiated at p:x are not arbitrary, nor are their dependencies. In other
words, the reduction strategy rejects some higher-order grammars that would be
accepted by a higher-order version f of f 0. The question that must be answered is Assuming that f ex-

ists.whether reduction does not narrow the class of higher-order grammars too much:
whether

fG j reduced G 0 is accepted by f 0g � fG j G is accepted by f g :

The second question that must be raised is whether the results computed by the
plain-grammar algorithm f 0 for the reduced grammar G 0 are applicable for the
underlying higher-order grammar G . The �rst question is harder to answer than
the second. The answer to the �rst question must be supported by experimental
evidence; whereas the second problem requires mathematical reasoning.

Let us deal with these questions with respect to the computation of visit-
sequences. The class of ordered attribute grammars, which is a subclass of parti-
tionable attribute grammars (both are de�ned in Chapter 5), is a su�ciently large
class for de�ning programming languages [Kas80]. There is an e�cient algorithm,
Kastens ordered scheduling algorithm, to compute visit-sequences for ordered at-
tribute grammars. The class of reduced ordered higher-order attribute grammars

contains those higher-order attribute grammars whose reduced grammar is an or-
dered grammar. Vogt expects that the reduced ordered higher-order grammars
form a large enough class [VSK89]. Our experiments substantiate this expecta-
tion.

Before we address the second question, we de�ne the instructions occurring in
visit-sequences for higher-order attribute grammars.

Higher-order attribute
grammars are attribute
grammars with at-
tributable attributes.
The higher-order vari-
ant of visit-sequences
include an instruction
to visit attributable
attributes.

56 3. Using visit-sequences for incremental evaluation

instruction semantics

eval(�) compute � and instantiate if it is an attributable attribute
visit(i ; v) visit poi for the v th time
visit(p:x ; v) visit attributable attribute p:x for the v th time
suspend(v) exit visit v

We will now address the second question: can visit-sequences for a reduced
grammar be converted into visit-sequences for the underlying higher-order gram-
mar. Let G be a higher-order grammar and G 0 its reduced counterpart. Suppose
production p of G contains an attributable attribute p:x that is reduced to a local
attribute p:lx and a non-terminal occurrence poix in G 0. The visit-sequence for
p in G 0 will contain

� an equation for p:lx
eval(p:lx) is replaced by eval(p:x) ;

� visits to poix
every visit(poix ; v) is replaced by visit(p:x ; v) ;

� equations for the inherited attribute occurrences of poix
every eval(poix :a) is replaced by eval(p:x :a) ;

� implicit uses of synthesized attribute occurrences of poix in semantic func-
tions every � := f : : : poix :a : : : is replaced by � := f : : : p:x :a : : : .

Figure 3.14/ shows the visit-sub-sequences of the higher-order variant of the
varuse grammar obtained via reduction.

In the same way as visit-sequences for plain grammars can be used for incre-
mental evaluation, visit-sequences for a higher-order attribute grammar form the
basis of an incremental attribute evaluator for that higher-order grammar [VSK89].
However, multiple instances of a higher-order attribute are redecorated separately
after a change to a higher-order attribute [TC90]. This leads to non-optimal
incremental behavior. The next section discusses visit-functions that solve this
problem.

3.3.5 An attribute grammar system

The key concepts for a classical attribute evaluator have been discussed. We
will now synthesize the ingredients to obtain a compiler generator. A compiler
generator reads an attribute grammars speci�cation given in some formal language.
There is not much consensus on the source language for compiler generators; many
languages exist.

Once the grammar is read and parsed it must be checked: equations and
semantic functions must be type correct; productions and non-terminals must be
declared. Then, the grammar is analyzed and visit-sequences are generated.

The generated visit-sequences, accompanied with an appropriate driver (dec-Part 1: plans&driver

orate) form the main part of the generated compiler. Another important part
deals with the data structures for storing the abstract syntax tree and structuredPart 2: data types

3.3. Visit-sequence based evaluators 57

attributes. The generated compiler is either batch, or interactive. In the former
case, a third module consists of a scanner and parser for the underlying context-free
grammar. This module reads an application for the attribute grammar, constructs Part 3a: parser

the associated abstract syntax tree and starts the attribute evaluator. The gag
system [KHZ82] is an example of this approach.

In case of an interactive compiler, the third part of the generated system is a
so-called language based editor. The editor module maintains an abstract syntax Part 3b: editor

tree that is repeatedly edited by the user and then passed to the evaluator. Clearly,
incremental evaluation makes sense here, so the plan module is extended with an
incremental driver (redecorate).

3.3.6 Background

Several methods exist to implement visit-sequence evaluators. Reps and Teitel-
baum [RT89] use a complicated algorithm vsevaluate that requires two tables.
The �rst table, indexed with a production, stores the plans. The second table maps
the parameters from visit and suspend instructions to an index into the plan of a
child respectively parent. In addition to this, each node records a reference to its
parental tree and its child-index within that tree. The advantages of this scheme
is two-fold. First of all, no state information needs to be stored at evaluation time.
The (sizes of the) tables are �xed by the grammar. However, the storage space
for nodes increases a little due to the parental reference. Moreover, this storage
space does grow with the size of the abstract syntax tree. The second advantage
of this scheme is that an incremental update can start anywhere in the tree; the
tables will automatically follow the total order.

Yeh [Yeh83] uses an explicit stack to recapture the plan index after a visit
to a child returns. Algorithm 3.10/ 49, decorate, is based on this approach.
The advantage of decorate over vsevaluate is that the index table becomes
redundant which makes the algorithm easier to understand. Furthermore, the
memory occupied by the stack, which does grow with the depth of the abstract
syntax tree, is less than the space occupied by the no longer needed parental
references. On the other hand, it is harder to start an incremental update after
subtree S of T has been changed: the stack must �rst be initialized to contain
the path from the root of T to the root of S . An easy way to achieve this, is
to start evaluation with the root of T thereby skipping eval instructions until the
root of S is reached, as in redecorate.

Vogts visit-functions [Vog93] resemble Yehs approach. However, instead of
coding the visit-sequences in the plan table, the instructions are inlined in the
bodies of the visit-functions. Because the evaluation stack can not be controlled
directly, incremental update can no longer be started in the middle of the tree.
The stack is initialized by simulating plain evaluation. Where Yeh skips eval

instructions to reach the replaced subtree, Vogt skips visit instructions. This is
realized by memoizing the visit-functions. Vogts visit-functions will be described
in the next section.

58 3. Using visit-sequences for incremental evaluation

The incremental counterpart of vsevaluate in the Synthesizer Generator
is vspropagate. It is based on the \reactivation" scheme discussed earlier.
redecorate, the incremental version of decorate was introduced by Yeh and
Kastens [Yeh83, YK88].

Incremental evaluation requires equality tests on attribute instances. The
equality test may be expensive since attribute instances may be arbitrarily large
structures such as symbol tables. In the Synthesizer Generator this has led to an
optimization that eliminates the need for equality tests for a special class of seman-
tic functions, the so-called one-to-one functions (most notably identity functions)
[RT89] .

3.4 Visit-functions

The previous section described a classical attribute evaluator driven by visit-
sequences. This section discusses a novel approach using visit-functions [VSK91,
SV91, Vog93]. It is based on the following combination of ideas.

Visit-functions Attribute instances are computed by visit-functions. Such func-
tions take as parameter a tree and a subset of inherited attributes of the
root of that tree. They return a subset of the synthesized attributes. The
entire evaluator consists of visit-functions that recursively call each other in
order to decorate the tree.

Memoizing visit-functions In a conventional incremental treewalk evaluator a
partially attributed tree can be considered as a very e�cient cache|where
caching is replaced by explicit navigation|for the semantic functions. The
tree serves as data
ow driver and as attribute cache. Pugh [Pug88] separates
the two roles of the abstract syntax tree by introducing a separate cache for
the semantic functions. Vogt [VSK91, Vog93] caches the visit-functions
instead. This is e�cient, since a cache hit for a visit-function means that an
entire visit to an arbitrarily large tree can be skipped. Furthermore, a visit-
function may return the results of several semantic functions at the same
time. Observe that, except for the cache, no administration is needed to
record whether attributes have changed and further visits are necessary.

Memoizing constructors Since attributes may be found in the cache, there is
no longer need to store them in the tree. This allows us to share multiple
instances of the same tree. Memoization of tree constructors [TC90] is an
elegant way to achieve sharing. A memoized constructor is also known as a
hashing cons [Hug85]. Sharing not only reduces space consumption, it also
allows for fast equality tests between terms: a pointer comparison su�ces.
Attribute values may be large structures too (symbol tables). Therefore, the
constructors for user de�ned types are also shared. This solves the problem
of expensive attribute equality test during incremental evaluation and huge

3.4. Visit-functions 59

space consumption due to multiple instances of the same attribute value in
an abstract syntax tree.

Bindings The above ideas are complicated by intra-visit-dependencies: attribute
instances computed in an earlier visit may have to be preserved for use in later
visits. For standard evaluators, this is no problem since attributes are stored
in the tree. In a functional setting these values must be passed explicitly to
the future visits. Each visit-function therefore not only computes synthesized
attributes but also bindings for subsequent visits. Bindings computed by
earlier visits are passed as parameters to later visits.

Vogt �rst used standard visit-sequences to evaluate higher order attribute gram-
mars incrementally [VSK89]. However, a standard evaluator decorates each in-
stance of a higher-order attribute separately, leading to non-optimal incremental
behavior after a change to a higher-order attribute [TC90]. This problem can be
solved by using memoized visit-functions instead of visit-sequences [VSK91, SV91,
Vog93]. Observe that a changed higher-order attribute is redecorated only once
because all other instances cause the visit-function to �nd its previously computed
result in the cache (assuming that each instance has the same inherited attributes).

3.4.1 Mapping grammars to functional programs

Attribute grammars and functional languages [BW88] are closely related [Joh87].
Explicit sequencing is completely absent in both formalisms and the description
of the data
ow is purely functional. Garbage collection needs not to be made
explicit as in more imperative settings (assignments).

On some accounts the formalisms di�ers. When compared to functional pro-
grams, attribute grammar speci�cations are \algorithm free"; they only specify
attribute dependencies, and no recursive functions. It is \easier" to write a gram-
mar speci�cation. On the other hand, the attribute grammar formalism usually
lacks the powerful mechanisms of polymorphism and higher order functions. Higher
order attribute grammars [Vog93] are a �rst attempt to close this gap. Polymor-
phism in attribute grammars has not received much attention yet|the elegant
system [Aug93] being an exception. Almost all typed functional languages (for
example miranda [Tur85], gofer [Jon91], haskell [HF92, HPJW+92]) sup-
port polymorphism and modularity supporting constructs like type and constructor
classes. The impact of these innovations in functional languages is such, that
similar extensions to the attribute grammar formalism deserve more attention.

We will introduce three mappings from attribute grammar speci�cations onto
functional programs. Three small grammars will be used to illustrate the mappings.
The �rst mapping, CIRC [KS87], requires lazy evaluation. It constructs de�nitions
of the form (: : : ; x ; : : :) = f : : : x : : : which appear to be circular. The second
mapping, VSS, eliminates the need for this laziness and constructs strict functions
by breaking up decorations into multiple visits. The functions created by VSS are

Here, \strict" means
that all the arguments
of a function must
be known in advance;
more speci�cally they
may not depend on
the functions result.
This is a liberal inter-
pretation of the usual
de�nition.

60 3. Using visit-sequences for incremental evaluation

generally not side-e�ect free due to intra-visit-dependencies. Functions with side-
e�ects can not be memoized. The third mapping, FUN, which will be introduced
later, uses bindings to eliminate the need for side-e�ects.

We will now present the examples, minimum, replace and repmin. The former
two are the constituents of the latter, as the name suggest. Bird introduced the
repmin example [Bir84].

Minimum

The �rst example introduces the concept of mapping a grammar to a function.
The resulting functions are known as visit-functions.

A synthesized-only attribute grammar can easily be mapped onto a functional
program. In synthesized-only grammars, the synthesized attributes are recursively
de�ned over the abstract syntax tree. The grammar maps to a top-down recursive
function with one argument, an abstract syntax tree T , whose result is the values
of the synthesized attributes of the root of T . Such functions have a primitive
recursive scheme; they correspond to homomorphisms from the term algebra to
some other domain.

As an example, consider the grammar in Figure 3.15a that computes the min-
imum element of a simple binary tree labeled with integers. The corresponding
homomorphism f is given in Figure 3.15b. Such a function is called a visit-functionf is also known

as the catamorphism

([id ;min]).
and since it is a visit-function on the data type T we usually write visitT . Note
that a visit-function for T uses pattern matching of constructors (productions) on
T . The pattern variables correspond to the right-hand side non-terminals of p .
We overload the symbols for the data types, such as T and int , to also denote
pattern variables. Figure 3.15c shows the way we will present visit-functions.

Replace

The second example de�nes and illustrates the CIRC mapping, applicable to any
grammar.

The mapping CIRC from grammars to functional programs [KS87] is as follows.
For each non-terminal X a function visitX is written. It takes a tree of type X

and an additional argument for each attribute in Ainh(X). The result of visitX
is a tuple of the synthesized attributes Asyn(X). For each production p on X ,
the visit function on X has an alternative de�nition, trivially depending on the
equations E (p). The visit-functions generated by the CIRC mapping can handle
arbitrarily non-circular grammars [Joh87, KS87].

We will examine a simple grammar to which we can apply CIRC. We are required
to compute a tree with the same shape as the abstract syntax tree except that
the tips are to be replaced with a given value r . Figure 3.16a gives the attribute
grammar. Note that T has an inherited attribute r . For the visit-function, given
in Figure 3.16b, this maps to an additional argument.5 2

3

r r

r

3.4. Visit-functions 61

T<"min : int>

T1= tip(int)
T1:min := int

j fork(T2;T3)
T1:min := T2:min min T3:min

f : : T �! int

f tip(i) = i

f fork(l ; r) = f l min f r

visitT : : T �! int

visitT tip(int) = int

visitT fork(T2;T3) = visitT T2 min visitT T3

a. The grammar b. The visit-function c. Rewritten visit-function

Figure 3.15. The minimum example

T<#r : int ; "new : T>

T1=tip(int)
T1:new := tip(T :r)
j fork(T2;T3)
T2:r := T1:r ;
T3:r := T1:r ;
T1:new := fork(T2:new ;T3:new)

visitT : : T � int �! T

visitT tip(int) r = tip(r)
visitT fork(T2;T3) r = fork(visitT T2 r ; visitT T3 r)

a. The grammar b. The visit-function

Figure 3.16. The replace example

R<"new : T>
T<"min : int ; #r : int ; "new : T>

R =root(T)
T :r := T :min;
R:new := T :new

T1 =tip(int)
T1:min := int ;
T1:new := tip(T :r)
j fork(T2;T3)
T1:min := T2:min min T3:min;
T2:r := T1:r ;
T3:r := T1:r ;
T1:new := fork(T2:new ;T3:new)

visitR : : R �! T

visitT : : T � int �! int � T

visitR root(T) = T :new
where (T :min;T :new) = visitT T T :min

6

visitT tip(int) r = (int ; tip(r))
visitT fork(T2;T3) r = (T2:min min T3:min; fork(T2:new ;T3:new))

where (T2:min;T2:new) = visitT T2 r

; (T3:min;T3:new) = visitT T3 r

a. The grammar b. The non-strict visit-functions

Figure 3.17. The repmin example

62 3. Using visit-sequences for incremental evaluation

Repmin

Finally, the third example illustrates that the CIRC mapping generates seemingly
circular functions. These kind of functions can not be evaluated in a conventional,
call by value style.

The problem requires to compute a tree with the same shape as the abstract
syntax tree except that the tips are to be replaced with the minimal tip value of the
abstract syntax tree. This is a full blown example since it is essentially two pass. For
an attribute grammar writer, this problem is not much harder than the previous
two. In fact, the previous two grammars can simply be merged and extended
with an additional root production to specify the equation T :r := T :min , see
(Figure 3.17a/).

This problem was originally introduced by Bird [Bir84] to illustrate how \one-
touch" solutions can be obtained. The seemingly circular de�nition for visitR in
Figure 3.17b/ is not straightforward; it makes essential use of lazy evaluation. Bird
uses mathematically based rewrite techniques to obtain the given solution from an
initial correct but less elegant set of functions. Kuiper and Swierstra [KS87] follow
our approach: the functions in Figure 3.17b/ are obtained by applying CIRC to
the grammar in Figure 3.17a/. The counterintuitive cyclic function is easy to
understand since it is based on a simple decoration scheme, in which an inherited
attribute occurrence happens to depend on a synthesized attribute occurrence.

. . .

The goal of Bird and Kuiper and Swierstra is to derive e�cient and elegant
functional programs. We, on the other hand, aim at mapping attribute grammarsStrict functions are

easily and e�ciently
implementable in im-
perative languages
like c.

onto functional programs that can be executed e�ciently and incrementally.

Lazy evaluation is needed to resolve the \circular" dependencies that arise when
an inherited attribute depends on a synthesized attribute of the same non-terminal
occurrence. We have encountered this situation before: when visit-sequences are
generated such dependencies cause an additional visit. A former visit computes
the synthesized attribute in question so that the depending inherited attribute can
be computed before the second visit is started.

The VSS mapping maps visit-sequences to strict visit-functions. For each visit

to a non-terminal, a separate visit-function is constructed. The VSS mapping is
sketched in Figure 3.18. Figure 3.18a lists the visit-sub-sequences for the repmin
grammar (given in Figure 3.17a/). Each sub-sequence induces an separate body
for a visit-function. An eval instruction maps to its associated equation and a visit
instruction (both plain and higher-order) maps to a recursive call. Figure 3.18b
shows the resulting bodies. Reordering of these fragments yields the visit-functions
given in Figure 3.18c. These functions are strict. The top level function visit1R
returns, for every abstract syntax tree R, the associated synthesized attribute
R:new .

There is one major drawback in the VSS mapping: the resulting functions are
generally not side-e�ect free. For some grammars, the constructed visit-functions
are not functions in the mathematical sense; they rely on side-e�ects to resolve

3.4. Visit-functions 63

plan root

begin 1
visit(T ; 1);
eval(T :r);
visit(T ; 2);
eval(R:new)

end 1

plan tip

begin 1
eval(T1:min)

end 1
begin 2
eval(T1:new)

end 2

plan fork

begin 1
visit(T2; 1);
visit(T3; 1);
eval(T1:min)

end 1
begin 2
eval(T2:r);
visit(T2; 2);
eval(T3:r);
visit(T3; 2);
eval(T1:new)

end 2

visit1
R
root(T) = R:new

where T :min = visit1
T
T

; T :r = T :min
; T :new = visit2

T
T T :r

; R:new = T :new

visit1
T
tip(int) = T1:min

where T1:min = int

visit2
T
tip(int) T1:r = T1:new

where T1:new = tip(T1:r)

visit1
T
fork(T2;T3) = T1:min

where T2:min = visit1
T
T2

; T3:min = visit1
T
T3

; T1:min = T2:min min T3:min

visit2
T
fork(T2;T3) T1:r = T1:new

where T2:r = T1:r
; T2:new = visit2

T
T2 T2:r

; T3:r = T1:r
; T3:new = visit2

T
T3 T3:r

; T1:new = fork(T2:new ;T3:new)

visit1
R
: :R �! T

visit1
R
root(T) = R:new

where T :min = visit1
T
T

; T :r = T :min
; T :new = visit2

T
T T :r

; R:new = T :new

visit1
T

: : T �! int

visit1
T
tip(int) = T1:min

where T1:min = int

visit1
T
fork(T2;T3) = T1:min

where T2:min = visit1
T
T2

; T3:min = visit1
T
T3

; T1:min = T2:min min T3:min

visit2
T

: : T � int �! T

visit2
T
tip(int) T1:r = T1:new

where T1:new = tip(T1:r)
visit2

T
fork(T2;T3) T1:r = T1:new

where T2:r = T1:r
; T2:new = visit2

T
T2 T2:r

; T3:r = T1:r
; T3:new = visit2

T
T3 T3:r

; T1:new = fork(T2:new ;T3:new)

a. Sub-sequences b. Sub-sequences ; visit-functions c. Strict visit-functions

Figure 3.18. The VSS mapping: strict visit-functions for repmin

64 3. Using visit-sequences for incremental evaluation

intra-visit-dependencies. Since functions with side-e�ects can not be memoized, a
third mapping (using bindings) will be introduced: FUN. First we will investigate
intra-visit-dependencies and bindings.

3.4.2 Intra-visit-dependencies and plan icons

The varuse grammar is an example of a grammar that VSS maps to visit-functions
with side-e�ects. Note that the varuse grammar resembles the repmin grammar
closely. Both synthesize tree-leaf information (taking the minimum in T :min

respectively concat in L:decs) on the �rst pass and distribute this information on
the second pass (in T :r respectively L:env). During the second pass, the \output"
is generated at the leaves (using the distributed information) and combined and
synthesized (in T :new and L:code) by the internal nodes. However, there is one
important aspect in the varuse grammar that causes side-e�ects in the visit-
functions resulting from the VSS mapping: during the second visit to a decl node,
the attribute instance N :id|which is computed in the �rst visit|is referenced
again. This is known as an intra-visit-dependency.

De�nition 14 Intra-visit-dependencies.

An abstract syntax tree T has an intra-visit-dependency between visit v and w ,
v < w , if there is an attribute instance that is computed during visit v to T which
is used during visit w to T .
2

Figure 3.19 gives the visit-functions obtained by applying the VSS mapping to
the varuse plans (Figure 3.4/ 41). The de�ning and a using occurrence of N :id

have been boxed. Note that the variable N :id is not de�ned within the scope of
visit2L; and thus it is a free variable. Some mechanism must make it accessible
there so attribute instance N :id in a decl node can not be deleted when returning
from the �rst visit. The conventional solution is to store the attribute instances
in the tree, but this is a side-e�ect, frustrating the memoizability of the visit-
functions. We will take a di�erent approach. The later needed attribute instances
are bundled and passed to the parent (via a newly introduced attribute) and we
rely on the parent to pass them down (via another newly introduced attribute)
for the next visit. The bundle of attribute instances passed from visitvX to visitwX
via a parent is called a binding from v to w for non-terminal X . It is denoted
by X v!w .

To help understand bindings, it is useful to present visit-sequences graphically
with so-called plan icons. Plan icons should not be confused with production icons
with which they have much in common. For example, compare the production
icons in Figure 2.4/ 24 with the plan icons in Figure 3.20. Production icons form a
graphical speci�cation of an attribute grammar. The use of plan icons lies mainly
in the insight they provide in dependencies on attribute instances, most notably
intra-visit-dependencies.

3.4. Visit-functions 65

visit1
S
: : S �! Code

visit1
S
root(L) = S :code

where L:decs = visit1
L
L

; L:env = L:decs
; L:code = visit2

L
L L:env

; S :code = L:code

visit1
N

: : N �! str

visit1
N
name(str) = N :id

where N :id= upstring str

visit1
L
: : L �! Env

visit1
L
decl(N ;L2) = L1:decs

where N :id = visit1
N
N

; L2:decs = visit1
L
L2

; L1:decs = N :id : L2:decs
visit1

L
stat(N ;L2) = L1:decs

where L2:decs = visit1
L
L2

; L1:decs = L2:decs
visit1

L
empty() = L1:decs

where L1:decs = []

visit2
L
: : L� Env �! Code

visit2
L
decl(N ;L2) L1:env = L1:code

where L2:env = L1:env
; L2:code = visit2

L
L2 L2:env

; L1:code = (�lookup L1:env N :id)
: L2:code

visit2
L
stat(N ;L2) L1:env = L1:code

where L2:env = L1:env
; L2:code = visit2

L
L2 L2:env

; N :id = visit1
N
N

; L1:code = (+lookup L1:env N :id)
: L2:code

visit2
L
empty() L1:env = L1:code

where L1:code = []

Attribute occurrence N :id (boxed) is de�ned in the �rst visit to a decl instance

and used in the second visit: a so-called intra-visit-dependency.

Figure 3.19. Visit-functions from the VSS mapping (with side-e�ects) for the varuse grammar

code

root

decs
env

code

empty

decs
env

code

id

decl

decs
env

code

decs
env

code

stat

id

decs
env

code

decs
env

code

name

id

str

1
L1

L2
1

L1
2

S
1

N
11

L L
2

N
1 L2

1

1
L1 L1

2

1
L L

2

N
1

L2
2L2

2

Attribute occurrence N :id is de�ned in the �rst visit to a decl instance and used

in the second visit. The intra-visit-dependency is
agged with a lightning symbol.

Figure 3.20. The visit-sequences of the varuse grammar: plan icons

66 3. Using visit-sequences for incremental evaluation

Plan icons consist of several elements. The large rectangle denotes the pro-
duction. Its name is given in the \
ag" emanating from the left border. The
small boxes denote the attribute occurrences, and the large boxes denote syntacticA plan icon is not

simply a more detailed
production icon: the
lexical order of the
children is lost; it
is substituted by an
order on the visit

instructions.

elements that are referred to by equations. These three elements have the same
semantics as in production icons. Large and small discs and arrows also occur in
production icons, but their semantics is slightly di�erent. In plan icons, large discs
denote visits to non-terminal occurrences instead of the non-terminal occurrences
themselves. The arrows still denote dependencies, but in plan icons the emphasis
is on the data
ow of the equations which are denoted by small discs. A new
element is a dashed vertical line enclosed by small black discs. It is called a visit-

border. Visit-borders divide a production into compartments. Each compartment
represents a visit-sub-sequence.

In roughly the same way that production icons can be pasted together to form
an abstract syntax tree, plan icons can be pasted together. The resulting trees
correspond to plan trees, although plan trees have been drawn di�erently until
now. When combining plan icons into a plan tree, the small black discs hook
visit-borders together, separating area's of the tree. Such a tree border starts with
a black \head" () and ends with a black \anchor" (). Figure 3.21 shows the
plan tree composed from plan icons for the varuse application. A time-axis
ows
through all attribute instances which have been \time-stamped". Compare this
�gure with Figures 3.2/ 40 and 3.3/ 40 .

The following table lists the semantics of the various pictorial elements for
production and plan icons.

element production icon plan icon

large rectangle production production
small box attribute occurrence attribute occurrence

large box syntactic element syntactic element

large disc non-terminal occurrence visit to non-terminal occurrence

arrow dependency source or destination of equation
small disc semantic function equation

dashed line { visit-border

black head { begin of border

black disc { border hook

black anchor { end of border

Most of the elements in the plan icons are labeled. The name of the produc-
tion is given in the
ag. Attribute names are given in the respective boxes. A
large disc is labeled with the non-terminal occurrence superscripted with the visit
number. For example L2

1 is the label corresponding with instruction visit(L2; 1).L2
1 denotes the �rst

visit to L2 . Therefore
we do not write L12 .

An equation is often not labeled, but easily identi�ed since there is an arrow to its
left-hand side attribute occurrence. Compartments (visit-sub-sequences) are also
easily identi�ed: each compartment has precisely one large parental disc associ-
ated with it. This disc represents a visit or rather suspend to the parent. The

3.4. Visit-functions 67

decs

env
code

name

id

code

root

decl

decs
env

code

stat

env
codedecs

id

name

env
code

name

id

stat

empty

decs

1

2

3

4

5

6

7

8

9

10

13 14

15

16

12

11

S1

N1

1L

1L L2

L2 N1

L21L

L21L

N1’x’

’y’

’x’

Figure 3.21. Plan tree for the varuse application composed from plan icons

68 3. Using visit-sequences for incremental evaluation

id

decl

decs
env

code

decs
env

code2L2

L1
2

L2
1N1

1L1

id

decl

decs
env

code

decs
env

code
N1 L2

1

1L1 L1
2

2L2

1−2s
1−2i

id

decl

decs
env

code

decs
env

codeN1 L2
1

1L1 L1
2

2L2

1−2s
1−2i

1−2s
1−2i

a. Intra-visit-dependency b. Bypass visit-border c. Handle bypass for child

Border-crossers are bundled (stacks of small squares) and passed to the parent via

the binding attributes denoted by the boxes with the round corners. The bypassed

border-crossings are shown with dashed arrows.

Figure 3.22. Diverting intra-visit-dependencies

compartment number can thus be read from the superscript in the label of that
disc.

Intra-visit-dependencies are easily recognized in plan icons: an arrow crosses
a visit-border. Intra-visit-dependencies are therefore also referred to as border-

crossings, their sources as border-crossers. The border-crossing in the varuse

example is easily spotted. In Figures 3.20/ 65 and 3.21/ border-crossings are marked
with a lightning symbol () next to the border. It is immediately clear that the
equation for L1:code in the second compartment of decl uses border-crosser N :id

which is de�ned in the �rst compartment.

3.4.3 Bindings

When an abstract syntax tree is decorated, each node is visited several times. In a
visit some attribute instances are computed, some children are visited and �nally
the visit exits. During a subsequent visit to the same node, attribute instances
computed in earlier visits may be needed (border-crossers).

In the functional approach by Vogt [VSK91, SV91, Vog93] this is still feasible.
There are two reasons for not following that direction. First, it is not purely
functional: the tree is a parameter of the visit-functions and functions should not
change arguments. Secondly, if visit-functions are purely functional (without side-
e�ects), they can be memoized. Memoized visit-functions implement an elegant
incremental evaluator.

In a purely functional setting, a visit not only computes the required synthe-
sized attributes, but also the border-crossers that need to be transported to a

3.4. Visit-functions 69

later visit. A bundle is passed to the parent and we rely on him to pass it back
again. Figure 3.22b illustrates how a bundle with only attribute instance N :id is
transported to the parent via the fresh synthesized attribute L1:s

1!2 and passed
back via the fresh inherited attribute L1:i

1!2 . This mechanism solves the border-
crossing for the decl node shown in Figure 3.22a. A bundle is known as binding

[VSK91, Pen93]; in this example the binding is denoted by L1!2 . The newly
introduced attributes L1:s

1!2 and L1:i
1!2 are known as binding attributes.

If a decl node may request its parent to pass a binding back on the second L2:s
1!2 is a bind-

ing attribute occur-
rence for child L2
from its �rst visit
to its second. It
should be denoted with
po2:s1!2 since po2 is
the correct denotation
for L2 .

visit, then a child of decl may ask the same of decl . So, by induction, child L2 of
a decl node also introduces two new attributes: a synthesized attribute L2:s

1!2

and an inherited attribute L2:i
1!2 (see Figure 3.22c). The �rst visit to L2 (which

synthesizes L2:s
1!2) takes place in the �rst compartment of decl whereas the

second visit to L2 (which uses L2:i
1!2) takes place in the second compartment

of decl . As a consequence, the dependency L2:s
1!2 ! L2:i

1!2 is an intra-visit-
dependency for decl . Consequently, border-crossers L2:s

1!2 and N :id are bundled
together, creating a binding that is passed to the parent and received back in the
second compartment. There the binding is unpacked, making N :id available for
the lookup and L2:s

1!2 available for copying into L2:i
1!2.

Factorized versus accumulated bindings

The varuse example is relatively simple in that the maximum number of visits
of any non-terminal is two. A non-terminal with only one visit needs no bindings,
and a non-terminal with two visits needs at most a binding from visit one to two.
If a grammar has a non-terminal with more than two visits, we are confronted
with a choice. Suppose X has three visits. The �rst visit might compute values
needed in the second and third visit, and the second visit might compute values
that are needed in the third. So, we could either de�ne bindings X 1!2 and X 2!3 ,
accumulating (threading) the border-crossings, or we could de�ne bindings X 1!2 ,
X 1!3 and X 2!3, factorizing the border-crossings. The advantage of the former is
that fewer bindings are required. The number of bindings is linear in the number of
visits, namely vX � 1. In the latter approach the number of bindings is quadratic
in the number of visits, namely 1

2
� vX � (vX � 1).

vX acc fac

1 0 0
2 1 1
3 2 3
4 3 6
5 4 10
6 5 15

X1 X2 X3
1−3s 1−2s

1−2i

2−3s
2−3i 1−3i

X1−3

X1−2 X2−3

Figure 3.23. Factorization gives better incremental behavior than accumulation

70 3. Using visit-sequences for incremental evaluation

The factorized solution gives a better incremental behavior though. For exam-
ple, take the three-visit node in Figure 3.23/, which uses factorized bindings, and
assume that the grey attributes change due to an edit action. Since the arguments
for the second visit do not change it can be skipped. If we had used accumulated
bindings instead, the border-crossers that were formerly contained in X 1!2 and
X 1!3 would be merged into one binding from 1 to 2. As a consequence, this
binding would change since it incorporates the changing border-crosser formerly
contained in X 1!3 . This leads to a redundant second visit.

Because we aim at time-e�ciency and not so much at space-e�ciency, fac-
torized bindings have our preference. Although the static analysis for bindings is
cumbersome, (factorized) bindings have a considerable advantage: they contain
precisely the information needed for a particular visit and nothing more. Factorized
bindings accurately indicate whether a visit may be skipped.

As a result of introducing bindings|factorized or accumulated|the free vari-
ables of the visit-functions are bound. Visit-functions then correspond to super-
combinators [Hug82].

The bind grammar

A binding from visit v to visit w (v < w) contains the border-crossers computed
in visit v and used in visit w in an organized manner. More precisely, a binding
is a term whose structure will be de�ned using a context-free grammar, known as
the bind grammar. As a preliminary example, consider the binding computed for
the varuse application given in Figure 3.31. 83 .

The visit-sequences will be augmented with binding attributes that pass around
bindings in the abstract syntax tree. The bind grammar describes the types of
and operators on the binding attributes. In order to distinguish between trees,
productions and non-terminals of the underlying context-free grammar on one hand
and of the bind grammar on the other hand, we will introduce di�erent names for
the respective elements of the bind grammar.

Bindings are constructed using wrappers, which are the equivalent of produc-
tions. A production constructs a tree for the left-hand side non-terminal out
of the trees for the right-hand side non-terminals and zero or more terminals.
Likewise, a wrapper constructs a binding for the left-hand side parcel out of the
bindings for the right-hand side parcels and zero or more attribute instances (com-
ing from the production instance the wrapper is associated with). The following
table summarizes the terminology and illustrates the analogy between algebras,
context-free-grammars and bindings.

algebra context-free grammar bind grammar

term tree binding
constructor production wrapper
sort non-terminal parcel

3.4. Visit-functions 71

A bind grammar is induced by an attribute grammar and its visit-sub-sequences.
Non-terminal X induces the parcels X v!w , where 1 � v < w � vX . Note that
the number of parcels induced by X is 1

2
� vX � (vX � 1). Parcels denote the

elementary types of a binding and thus of the binding attributes in the augmented
visit-sequences.

Production p induces the wrappers pv!w , where 1 � v < w � vp . The
left-hand side parcel of pv!w is p�0v!w . The right-hand side of pv!w consists
of parcels and attributes. Informally, pv!w bundles the occurrences of binding
attributes and plain attributes that are de�ned in compartment v of p and used
in compartment w of p . For a formal de�nition, we must �rst augment the visit-
sequences with binding attributes and then perform a life-time analysis on plain
and binding attributes.

The binding attributes

In order to pass around bindings in an abstract syntax tree, we associate fresh
attributes to non-terminals, the so-called binding attributes. The visit-sequences
will be augmented with equations to re
ect the passing of bindings.

The set BAinh(X) of inherited binding attributes associated with non-terminal We assume that at-
tribute names like
X :iv!w and X :sv!w

do not occur in A(X).
Note that i and s
stand for inherited re-
spectively synthesized.

X is de�ned as BAinh(X) = fX :iv!w j 1 � v < w � vX g. Likewise,
BAsyn(X) = fX :sv!w j 1 � v < w � vX g is the set of synthesized binding
attributes. BA(X) denotes the set of all binding attributes associated with X . It
is de�ned as BA(X) = BAinh(X) [BAsyn(X). Elements of BA(X) will usually
be denoted with X :av!w unless we want to stress that the binding attribute is
inherited or synthesized. The type of binding attribute X :av!w is parcel X v!w .

For each occurrence poi of non-terminal X , there is an occurrence denoted by
poi :av!w for every binding attribute X :av!w 2 BA(X). Occurrences of binding
attributes will be referred to as binding occurrences. BO(poi) is the set of all bind-
ing occurrences of poi de�ned as BO(poi) = fpoi :av!w j p�i :av!w 2 BA(p�i)g.
BO(p) is the set of all binding occurrences associated with production p . It con-

X
P
 �!poi

BA(�)

???y
???yBO(�)

X:av!w �!
P

poi :av!wsists of the binding occurrences associated with every non-terminal occurrence of
p : BO(p) =

S
0�i�sp BO(poi).

Let f be an algorithm that computes visit-sequences. The set of synthesized
binding attributes of visit v to X (1 � v � vfX) is de�ned as XBSf v =
fX :sv!w 2 BAsyn(X) j v < w � vfX g. The set of inherited binding attributes
for visit v to X is de�ned by XBIf v = fX :iu!v 2 BAinh(X) j 1 � u < vg.
The selectors BSf and BIf are overloaded: poiBSf v = fpoi :sv!w j p�i :sv!w 2
p�iBSf vg respectively poiBIf v = fpoi :iv!w j p�i :iv!w 2 p�iBIf vg. From now
on, we assume the existence of visit-sequences so we drop the subscript f . Note
the (notational) analogy with the operators for attributes.

attr bind

A BA

O BO

S BS

I BI

Recall that in the varuse grammar declo2 is usually written as L2 and
rooto1 even as L. Similarly, binding occurrence declo2:a1!2 is usually rendered
as L2:a

1!2 and rooto1:a1!2 as L:a1!2. Both have the parcel L1!2 as type.

We shall now de�ne the dependencies between the binding attributes. For each

72 3. Using visit-sequences for incremental evaluation

i1
s1

i2 i2’
s2 s3

i4

s4

i2
s3s2

f4
f1

f2
f3 f6p

f5

i1
s1

i3

i3N

X

a. Plan icon with border-crossings

i3

s1−2 s1−3 s1−4

i1−2
s2−3 s2−4 s3−4

i1−3 i2−3 i1−4 i2−4 i3−4i1

s1

i2 i2’

s2

i3

s3

i4

s4

i1−3
s2−3s1−3s1−2

i1

s1
i1−2 i2

s3s2

i2−3

f4
f1

f2
f3 f6

N

X

p
f5

b. Production augmented with binding occurrences (rounded boxes) and their dependencies (dashed)

i3

s1−2 s1−3 s1−4

i1−2
s2−3 s2−4 s3−4

i1−3 i2−3 i1−4 i2−4 i3−4i1

s1

i2 i2’

s2 s3

i4

s4

i1−3
s2−3s1−3s1−2

i1

s1
i1−2 i2

s3s2

i2−3

f4
f1

f2
f3 f6p

f5

i3N

X
c. Border-crossings diverted

Figure 3.24. Diversion of border-crossings with bindings in production p of the binding grammar

3.4. Visit-functions 73

child poi of production p , the binding attribute occurrence poi :iv!w is a copy of
poi :sv!w . The set BE (poi) consists of these (binding) equations:

BE (poi) = f(poi :iv!w := id poi :sv!w) j poi :iv!w 2 BO(poi)g (i 6= 0):

The equations for the synthesized binding occurrences of the parent po0 are
explicitly excluded from the above de�nition. Binding analysis, which will be de-
scribed next, determines which attribute or binding occurrences are border-crossers. bind(p; v ;w) is de-

termined by binding

analysis, which will be
discussed next.

Let bind(p; v ;w) be the set of all border-crossers de�ned in compartment v and
used in compartment w of p . The equation for po0:sv!w creates a bundle of all
border-crossers in bind(p; v ;w). It uses wrapper pv!w for that.

BE (po0) = f(po0:sv!w := pv!w(\bind(p; v ;w)")) j po0:sv!w2BO(po0)g

Figure 3.24a shows the plan icon of an arti�cial production N = p(X) that
we will use in this section to illustrate bindings. This production will be referred
to as production p of the binding grammar. For future reference, the semantic
functions in Figure 3.24a have been given a name. Note also that the visit discs
are replaced by a single non-terminal disc to \abbreviate" the plan icon. In the
binding grammar, non-terminal N has three visits and X has four visits. Thus,
three parcels (six binding attributes) are associated with N and six parcels (twelve
binding attributes) with X . Figure 3.24b shows the plan icon augmented with
the inherited and synthesized binding occurrences. Furthermore, it shows the
dependencies for the binding occurrences of child X with dashed arrows.

3.4.4 Binding analysis

Binding analysis determines border-crossers and thereby the right-hand side of the
wrappers. Border-crossers in the augmented visit-sequences are either occurrences
of plain attributes or occurrences of binding attributes of right-hand side non-
terminals. For each occurrence of either kind the de�ning compartment and all
using compartments will be determined. This is known as lifetime analysis. For
example, attribute occurrence X :s1 in Figure 3.24b is de�ned in the �rst compart-
ment (or subsequence) and used in the �rst and second compartment. Binding
occurrence X :s1!3 (more correctly denoted with po1:s1!3) is also de�ned in the
�rst compartment; it is only used in the second.

First, the visit-sequences will be augmented with instructions associated with
the computation of binding occurrences. Secondly, the augmented visit-sequences
will be annotated with de�ne and usage directives to facilitate lifetime analysis,
which is the third step of binding analysis. Observe that binding analysis is com-
pletely static.

Roughly sketched, binding analysis determines which arrows must be \cut and
diverted" in Figure 3.24b to obtain Figure 3.24c. Wrappers construct the bundles
denoted by the stacks of small squares in Figure 3.24c.

74 3. Using visit-sequences for incremental evaluation

Augmented visit-sub-sequences

Lifetime analysis is based upon visit-sub-sequences. However, the visit-sequences
of the attribute grammar should �rst be augmented with the binding attributes
and their equations described above.

Each visit(i ; v) instruction in the plan of p is pre�xed with the instructions
eval(�) for each � 2 poiBI v . The associated equation is the copy equation
(because visit instructions apply to children, i is guaranteed to be non-zero).

The equations for the synthesized binding attributes of the left-hand side non-
terminal pose a small problem. They should be inserted at the end of each sub-
sequence. To be more precise an instruction eval(po0:sv!w) should be appended
for each binding occurrence po0:sv!w 2 po0BS v . The associated equation is
pv!w(\bind(p; v ;w)"), where bind(p; v ;w) is de�ned by binding analysis. How-
ever, binding analysis would be frustrated by such instructions because it uses
eval instructions to determine bind(p; v ;w). Therefore, we propose the alterna-
tive name pass for eval in these cases.

Annotated visit-sub-sequences

Lifetime analysis uses augmented visit-sub-sequences as input. However, the sub-
sequences will �rst be annotated with de�ne and usage directives to make the
analysis easier. We distinguish between the three kinds of instructions that occur
in the plan for production p .

� An eval(�) instructions shows that � is de�ned. We add the directive
uses(�) for every attribute occurrence � that � depends on. We add aThe sref directives

become important in
the next chapter.

directive sref (poi) for every non-terminal that is syntactically referenced,
thus (� := f : : : poi : : :) 2 E (p).

� A visit(i ; v) causes non-terminal occurrence poi to be visited for the v th
time. Hence the attribute occurrences of poiI v and the binding occurrences
of poiBI v are used as arguments and the attribute occurrences of poiS v
and binding occurrences of poiBS v are returned. Thus we add inp(�)
for every � 2 poiI v [poiBI v and out(�) for every � 2 poiS v [� 2
poiBS v .

� Analogous annotation is derived for a suspend(v) instruction. SubsequenceThe lifetime of the
binding occurrences
associated to the left-
hand side non-terminal
need not be analyzed.

v computes the attribute occurrences of po0S v using the attribute oc-
currences of po0I v . Therefore we add inh(�) for every � 2 po0I v and
syn(�) for every � 2 po0S v .

� Each pass(po0:sv!w) instruction is left untouched.

The interfaces for the three visits to non-terminal N of the binding grammar
are (fN :i1g ; fN :s1g) respectively (fN :i2g ; fN :s2g) and (fN :i3g ; fN :s3g).
Non-terminal X has four visits with interfaces (fX :i1g ; fX :s1g) respectively
(fX :i2;X :i20g ; fX :s2g), (fX :i3g ; fX :s3g) and (fX :i4g ; fX :s4g). Note
that visit 2 and 3 to X both fall in the second compartment of p . The annotated

3.4. Visit-functions 75

visit-sequences for production p are given in Figure 3.25.. Observe that they are
much better understandable for the human reader than plain visit-sequences.

Lifetime analysis

Annotated visit-sub-sequences specify when an attribute or binding occurrence
is de�ned or used. Let us denote the annotated visit-sub-sequence number w of
production p with vss(p;w). The set def (p;w) denotes the attribute and binding
occurrences that are de�ned in vss(p;w). Likewise, use(p;w) denotes the set of
occurrences that are used in vss(p;w). They are de�ned as follows. def (p;w) contains all

occurrences that be-
come available in com-
partment w of p .
Inherited attributes of
the parent \inh" and
synthesized attributes
of a child \out" be-
long to this set.

use(p;w) = f� j syn(�), uses(�) or inp(�) occurs in vss(p;w)g

def (p;w) = f� j inh(�), eval(�) or out(�) occurs in vss(p;w)g

Occurrences that are used but not de�ned in a compartment are called free.

free(p;w) = use(p;w) n def (p;w)

A free occurrence � in compartment w corresponds to a border-crossing. If �

is de�ned in compartment v , then � should be transported from v to w . The
set bind(p; v ;w) consists of all attribute and binding occurrences that should be
transported from v to w . It is de�ned as

bind(p; v ;w) = free(p;w) \ def (p; v) :

Let us go back to the binding grammar. The following occurrences are used
in the second compartment of p .

use(p; 2) = fN :s2 (syn)

; N :i1; X :s1; N :i2; X :s1!2; X :s2; X :s1!3; X :s2!3; X :s3 (uses)

; X :i1!2; X :i2; X :i20; X :i1!3; X :i2!3; X :i3 (inp)

g

Many of these are also de�ned in the second compartment, such as attribute
occurrence X :i2 (eval) and binding occurrence X :s2!3 (out).

def (p; 2) = fN :i2 (inh)

; X :i2; X :i20; X :i1!2; X :i3; X :i1!3;X :i2!3; N :s2 (eval)

; X :s2; X :s2!3; X :s2!4; X :s3; X :s3!4 (out)

g

Consequently, the following occurrences should be bound for the second compart-
ment.

free(p; 2) = fN :i1;X :s1;X :s1!2;X :s1!3g

76 3. Using visit-sequences for incremental evaluation

begin 1
inh(N :i1)
syn(N :s1)

eval(X :i1)
uses(N :i1);

visit(X ; 1)
inp(X :i1)
out(X :s1)
out(X :s1!2)
out(X :s1!3)
out(X :s1!4);

eval(N :s1)
uses(X :s1);

pass(N :s1!2);
pass(N :s1!3)

end 1

begin 2
inh(N :i2)
syn(N :s2)

eval(X :i2)
uses(N :i1)
uses(X :s1);

eval(X :i20)
uses(N :i2);

eval(X :i1!2)
uses(X :s1!2);

visit(X ; 2)
inp(X :i1!2)
inp(X :i2)
inp(X :i20)
out(X :s2)
out(X :s2!3)
out(X :s2!4);

eval(X :i3)
uses(X :s2);

eval(X :i1!3)
uses(X :s1!3);

eval(X :i2!3)
uses(X :s2!3);

visit(X ; 3)
inp(X :i1!3)
inp(X :i2!3)
inp(X :i3)
out(X :s3)
out(X :s3!4);

eval(N :s2)
uses(X :s3);

pass(N :s2!3)
end 2

begin 3
inh(N :i3)
syn(N :s3)

eval(X :i4)
uses(N :i1)
uses(N :i3);

eval(X :i1!4)
uses(X :s1!4);

eval(X :i2!4)
uses(X :s2!4);

eval(X :i3!4)
uses(X :s3!4);

visit(X ; 4)
inp(X :i1!4)
inp(X :i2!4)
inp(X :i3!4)
inp(X :i4)
out(X :s4);

eval(N :s3)
uses(X :s4)

end 3

Figure 3.25. Annotated visit-sub-sequences for production p of the binding
grammar

3.4. Visit-functions 77

q

i1
s1N i2

s2
i3

s3

* f8
f7

Figure 3.26. The (only) other production on N in the binding grammar

By the nature of visit-sequences, these occurrences are all de�ned in the �rst
compartment. Therefore we have

bind(p; 1; 2) = fN :i1;X :s1;X :s1!2;X :s1!3g :

In the �rst compartment of p in Figure 3.24c/ 72 , we see a stack of four small
squares. They correspond with the four elements in bind(p; 1; 2).

The attribute occurrences N :i1 and X :s1 are easily spotted as border-crossers
in Figure 3.24b/ 72 . Whether X :s1!2 and X :s1!3 are really needed depends on
the (visit-sequences associated to the) productions on X . If none of them have
border-crossings, the bindings may be omitted. This will be discussed later.

Similar analysis yields

bind(p; 1; 3) = fN :i1;X :s1!4g ;

bind(p; 2; 3) = fX :s2!4;X :s3!4g :

Wrappers

Wrapper pv!w creates a bundle containing the border-crossers in bind(p; v ;w).
For a formal de�nition of wrappers, we use a similar denotation as for productions,
namely a list consisting of the left-hand side and right-hand side parcels. Formally,
a wrapper is de�ned as follows Set to list conversion:

just pick an order.

pv!w = p�0v!w : [�̂ j � 2 bind(p; v ;w)] :

This de�nition consists of two parts. The �rst part, p�0v!w , is the left-hand side
parcel. The second part is a list comprehension that de�nes the right-hand side.
Every border-crosser � is mapped onto its type �̂. For an attribute occurrence
poi :a , dpoi :a maps to the type of attribute p�i :a . For a binding occurrence,dpoi :st!u maps to the parcel p�i t!u .

Let us illustrate wrappers with the binding grammar. Suppose that in addition
to p there is one other production on N , namely N = q(). The plan icon of q
is given in Figure 3.26. Lifetime analysis of production q yields bind(q ; 1; 2) =
fN :i1g as opposed to bind(p; 1; 2) = fN :i1;X :s1;X :s1!2;X :s1!3g. Thus we
obtain

78 3. Using visit-sequences for incremental evaluation

p1!2 = N 1!2 : [dN :i1; dX :s1; dX :s1!2; dX :s1!3]

q1!2 = N 1!2 : [dN :i1] .

The following fragment de�nes the type N 1!2 using the inferred wrapper def-
initions. Since p and q are the only productions on N , p1!2 and q1!2 are the
only wrappers on N 1!2 .

dX :s1!2 = X 1!2

dX :s1!3 = X 1!3

N 1!2 = p1!2(dN :i1; dX :s1;X 1!2;X 1!3)

j q1!2(dN :i1)

A wrapper pv!w is said to be terminal if bind(p; v ;w)\BO(p) = fg. In that
case, the wrapper has no children. A wrapper is empty if bind(p; v ;w) = fg. For
example, all wrappers induced by production q in of the binding grammar are
terminal since q itself is terminal. Wrappers q1!3 and q2!3 are even empty.

The FUN mapping

The VSS mapping discussed earlier has one serious
aw. Intra-visit-dependencies
in an attribute grammar map to side-e�ects of the visit-functions. However, by
augmenting the visit-sequences with bindings, intra-visit-dependencies are diverted.
As a result, the augmented visit-sequences are free of intra-visit-dependencies so
that a VSS-like mapping will map them to pure visit-functions.

The FUN mapping maps visit-sequences to pure visit-functions. It is de�ned
as the VSS mapping on the augmented visit-sequences, where pass instructions
are now interpreted as eval instructions.

As a result of the FUN mapping, a visit-function visitvX is constructed for everyThe order of the argu-
ments|the inherited
(binding) attributes|
can be freely chosen
(see also page 116).

non-terminal X and every visit v such that 1 � v � vX . It has the following
signature

visitvX : : X � \XBI v"� \X I v" �! \XS v"� \XBS v" :

The quotes around a set belong to the meta-language. \V " should be interpreted
as (the Cartesian product of) the types of the elements of V .

For each production p on X an alternative body for visitvX is generated. It is
selected by using pattern matching on p in the following mannerpv!w (�) abbreviates

pv!w (`bind(p;v ;w)')

visitvX p(�) p1!v(�) : : : p(v�1)!v (�) `X I v '
= (`XS v ' ; pv!(v+1)(�) ; : : : ; pv!vX (�))
where body :

The single quotes around a set also belong to the meta-language. `V ' should be
interpreted as the elements of V . Since the bindings follow the structure of the
abstract syntax tree, the multiple pattern matching on the binding constructors
(wrappers) will never fail. The body is obtained from visit-sub-sequence v of

3.4. Visit-functions 79

visit2
N

: :N �N 1!2 � dN :i2 �! dN :s2�N 2!3

visit2
N
p(X) p1!2(N :i1;X :s1;X :s1!2;X :s1!3) N :i2 = (N :s2;N :s2!3)

where X :i2 = N :i1�X :s1
; X :i20 = f 3 N :i2
; X :i1!2 = id X :s1!2

; (X :s2;X :s2!3;X :s2!4) = visit2
X
X X :i1!2 X :i2 X :i20

; X :i3 = f 4 X :s2
; X :i1!3 = id X :s1!3

; X :i2!3 = id X :s2!3

; (X :s3;X :s3!4) = visit3
X
X X :i1!3 X :i2!3 X :i3

; N :s2 = f 5 X :s3
; N :s2!3 = p2!3(X :s2!4;X :s3!4)

visit2
N
q() q1!2(N :i1) N :i2 = (N :s2;N :s2!3)

where N :s2 = N :i1 �N :i2
; N :s2!3 = q2!3()

Figure 3.27. Visit-functions using bindings

production p . Each eval instruction maps to its associated equation. A visit
instruction of the form visit(poi ;w) maps to a recursive call of the form

(`poiSw ' ; `poiBSw ') = visitwp�i poi `poiBIw ' `poiIw ' :

As an example, consider the function visit2N given in Figure 3.27.

Let S be the start symbol of an attribute grammar. An abstract syntax tree
T rooted S is evaluated by successively calling the visit-functions visitvS , for 1 �
v � vS . It is convenient to have a single visit root vS = 1 since then only one
visit-function has to be called, and no bindings have to be passed from visit to visit
\manually". Fortunately, it is always possible to transform an attribute grammar
for which the start symbol has more than one visit into an attribute grammar
for which the start symbol has precisely one visit. The set of non-terminals is
extended with a symbol S 0 that takes over the role of start symbol. Furthermore,
a production S 0 = root0(S) is added. Symbol S 0 has only one inherited attribute
and one synthesized attribute. Both are tuples of respectively all inherited and
all synthesized attributes of S . The equations associated with root 0 destruct the
inherited and construct the synthesized tuple. From now on, we will assume that
the root symbol of an attribute grammar is single visit.

Higher-order attribute grammars

Computing pure visit-functions for a higher-order attribute grammars proceeds in
much the same way: the higher-order visit-sequences are augmented in analogy
with plain visit-sequences. Then, the VSS mapping is applied to the higher-order
visit-sequences.

When augmenting the higher-order visit-sequences, attributable attributes need
special treatment. Like non-terminals, attributable attributes induce binding oc-

80 3. Using visit-sequences for incremental evaluation

currences. The following set of generated binding occurrences associated with
attributable attribute p:x should be added to BO(p):

BO(p:x) = fp:x :av!w j X = R p:x ^ X :av!w 2 BA(X)g :

The associated equations are

BE (p:x) = f (p:x :iv!w := id p:x :sv!w) j p:x :iv!w 2 BO(p:x)g :

When augmenting a higher-order visit-sequence, the associated eval(�) instruc-
tions (for each � 2 p:xBI v) are to be inserted just before the visit(p:x ; v)
instruction in the plan of p .

There is one aspect that might easily be forgotten. An attributable attribute
p:x computed in compartment v might be visited in compartment w . This means
of course, that p:x should be transported form v to w . In other words, a visit to
p:x is a usage of p:x . As a consequence the set use(p;w) should be extended
with fp:x j visit(p:x ; u) occurs in vss(p;w)g for every attributable attribute p:x .

3.4.5 Emptiness test for bindings

Given visit-sequences, an abstract syntax tree T induces the bindings T v!w ,
1 � v < w � vnont(T). A binding T v!w is a tree with attribute instances,
computed during visit v and used during visit w , as leaves. Bindings closely resem-
ble the abstract syntax tree we pretended not to need anymore for storing attribute
instances. For example, Figure 3.31. shows the binding that is constructed during
the decorating of the varuse application. Bindings can be thought of as extracts
of the tree that contain precisely those attribute instances needed for a later visit.
These extracts can be \peeled" of, binding by binding.

If no intra-visit-dependencies occur between visit v and w of an abstract syntax
tree T , then the induced binding T v!w is said to be empty. An empty binding is
an arbitrarily large term that contains no attribute instances. If, for every abstract
syntax tree T with root X , the induced binding T v!w is empty, then the parcel

X v!w is said to be empty.

De�nition 15 Empty parcel.

A parcel X v!w is empty if for every structure tree T with root X no intra-visit-
dependency between visit v and w occurs.
2

Emptiness is an important property of parcels. Empty parcels, and their wrap-
pers can be removed from the augmented grammar without altering the meaning
with respect to plain attributes.

For example, the wrapper p2!3 induced by production p in binding grammar
contains the binding occurrences X :s2!4 and X :s3!4 . Assuming that the parcels
X 2!4 and X 3!4 are empty, these binding occurrences may be removed, making

3.4. Visit-functions 81

visit2
N

: : N �N 1!2 � dN :i2 �! dN :s2
visit2

N
p(X) p1!2(N :i1;X :s1;X :s1!2;X :s1!3) N :i2 = N :s2

where X :i2 = N :i1�X :s1
; X :i20 = f 3 N :i2
; X :i1!2 = id X :s1!2

; (X :s2;X :s2!3) = visit2
X
X X :i1!2 X :i2 X :i20

; X :i3 = f 4 X :s2
; X :i1!3 = id X :s1!3

; X :i2!3 = id X :s2!3

; X :s3 = visit3
X
X X :i1!3 X :i2!3 X :i3

; N :s2 = f 5 X :s3
visit2

N
q() q1!2(N :i1) N :i2 = N :s2

where N :s2 = N :i1 �N :i2

It is assumed that the parcels X 2!4 and X 3!4 are empty,

and that p and q are the only productions on N . In that

case, parcel N 2!3 is empty.

Figure 3.28. Visit-functions with only non-empty parcels

p2!3 an empty wrapper. Assume further that q in the binding grammar is the
only other production on N . Since q2!3 is also an empty wrapper, all wrappers
on the parcel N 2!3 are empty which makes the parcel N 2!3 empty. Removing
the empty bindings from the binding grammar yields the visit-function given in
Figure 3.28.

It is not known a priori whether an intra-visit-dependency exits between visit
v and w of any X tree. Even if none of the productions on X have a border-
crossing on their attribute occurrences, there might still be a child Y of such a
production whose binding occurrences induce a border-crossing. That is, if these
bindings occurrences are not occurrences of an empty binding.

We will now discuss an algorithm for determining the emptiness of parcels
[Vog93]. By de�nition, a binding X v!w is constructed by applying some wrapper
pv!w (where p�0 = X) to attribute occurrences of p and binding occurrences of
children of p . If an attribute occurrences is bound, then pv!w and hence X v!w

is clearly not empty. If binding occurrence poi :st!u is bound and the underlying
parcel p�i t!u is not empty, then parcel X v!w is not empty either.

These observations lead to Algorithm 3.29. that basically performs a transi-
tive closure on a parcel dependency graph. The vertices of a parcel dependency
graph are either parcels or attribute occurrences. The attribute occurrences are
condensed into a single vertex ?. The wrappers de�ne the dependencies; binding
occurrences are thereby converted to their underlying parcels. A binding X v!w is
empty if Algorithm 3.29. sets empty(X v!w) to true .

82 3. Using visit-sequences for incremental evaluation

G := fg
for each production p do

for each pair v ;w such that 1 � v < w � vp do

if O(p) \ bind(p; v ;w) 6= fg then G := G [f?!p�0v!wg
for each binding occurrence poi :at!u 2 bind(p; v ;w) do G := G [fp�i t!u!p�0v!wg

G := G+

for each non-terminal X do

for each binding X v!w 2 BA(X) do
empty(X v!w) := ?!X v!w 62 G

Algorithm 3.29. The emptiness test for parcels

3.4.6 Reviewing the varuse and box grammar

In the varuse grammar, non-terminal L is visited twice which induces one binding
L1!2. Three productions on L exist, each of which induces a wrapper: decl1!2 ,
stat1!2 and empty1!2. Only production decl has an intra-visit-dependency, thus
only decl1!2 binds an attribute instance. The bind grammar has the following
form:

L1!2 = decl1!2(str ;L1!2)
j stat1!2(L1!2)
j empty1!2() .

The parcel dependency graph associated with the bind grammar induced by
the varuse grammar has only two vertices: parcel L1!2 and the attribute occur-
rence declo1:id . The single attribute occurrence is \condensed" into the vertex
?. Each right-hand side symbol in any wrapper induces an arc in the parcel
dependency graph; in this example we thus have three arcs: ? decl

1!2

������!L1!2 ,
L1!2 decl

1!2

������!L1!2 and L1!2 stat
1!2

������!L1!2. Since ? is a predecessor of the
parcel L1!2 , it is not empty.

L
1 2

stat1 2

decl1 2

decl1 2

The plan icons associated with augmented visit-sequences are known as aug-
mented plan icons. When pasted together, they form an augmented plan tree.
The augmented plan tree associated with the varuse application is given in Fig-
ure 3.30. The di�erence with the plain plan tree in Figure 3.21/ 67 are the binding
attributes denoted with boxes with rounded corners.

Figure 3.31 presents the binding computed during the decoration of the
standard varuse application. Only one attribute instance is stored, namelySee the marginal note

on page 29 for node
[1; 2; 1].

([1; 2; 1];N :id). For completeness and future reference, the visit-functions and
data types for the varuse grammar are given in Figure 3.32..

. . .

The plan icons of the box grammar are given in Figure 3.33. 86. With the plan
icons given, it is fairly simple to determine the following bind grammar.

3.4. Visit-functions 83

decs

env
code

id

code

root

decl

decs
env

code

env
codedecs

id
env

code

iddecs

S1

N1

1L

1L L2

L2 N1

L21L

L21L

N1’x’

’y’

’x’

s1 2

1 2i

1 2i

1 2i

1 2i

s1 2

s1 2

s1 2

stat

name

name

name

stat

empty

’x’

L1 2

L1 2

L1 2

L1 2

1 2stat

1 2empty

1 2decl

1 2stat

Figure 3.30. The augmented plan tree for the varuse application Figure 3.31. Binding

84 3. Using visit-sequences for incremental evaluation

type S = root(L)
type L = decl(N ;L)

j stat(N ;L)
j empty()

type N = name(str)

type L1!2 = decl1!2(str ;L1!2)
j stat1!2(L1!2)
j empty1!2()

visit1
S
: : S �! Code

visit1
S
root(L) = S :code

where (L:decs ;L:s1!2) = visit1
L
L

; L:env = L:decs
; L:i1!2 = L:s1!2

; L:code = visit2
L
L L:i1!2 L:env

; S :code = L:code

visit1
N

: : N �! str

visit1
N
name(str) = N :id

where N :id= upstring str

visit1
L
: : L �! Env � L1!2

visit1
L
decl(N ;L2) = (L1:decs ;L1:s

1!2)
where N :id = visit1

N
N

; (L2:decs ;L2:s
1!2) = visit1

L
L2

; L1:decs = N :id : L2:decs

; L1:s
1!2 = decl1!2(N :id;L2:s

1!2)
visit1

L
stat(N ;L2) = (L1:decs ;L1:s

1!2)
where (L2:decs ;L2:s

1!2) = visit1
L
L2

; L1:decs = L2:decs
; L1:s

1!2 = stat1!2(L2:s
1!2)

visit1
L
empty() = (L1:decs ;L1:s

1!2)
where L1:decs = []

; L1:s
1!2 = empty1!2()

visit2
L
: : L� L1!2 � Env �! Code

visit2
L
decl(N;L2) decl

1!2(N :id;L2:s
1!2) L1:env = L1:code

where L2:env = L1:env
; L2:i

1!2 = L2:s
1!2

; L2:code = visit2
L
L2 L2:i

1!2 L2:env
; L1:code = (�lookup L1:env N :id) : L2:code

visit2
L
stat(N ;L2) stat

1!2(L2:s
1!2) L1:env = L1:code

where L2:env = L1:env
; L2:i

1!2 = L2:s
1!2

; L2:code = visit2
L
L2 L2:i

1!2 L2:env
; N :id = visit1

N
N

; L1:code = (+lookup L1:env N :id) : L2:code
visit2

L
empty() empty1!2() L1:env = L1:code

where L1:code = []

Figure 3.32. Pure visit-functions and data types for the varuse grammar

3.4. Visit-functions 85

B1!2 = box1!2(font)
j sidet1!2(real ;B1!2;B1!2)
j stackl1!2(real ;B1!2;B1!2)
j sideb1!2(real ; real ; real ; real ;B1!2;B1!2)
j stackr1!2(real ; real ; real ; real ;B1!2;B1!2)

Note that in productions sidet, stackl, sideb and stackr both children
induce an occurrence of binding B1!2 that must be transported from the �rst
compartment to the second. Thus, the \�rst" B1!2 binds B2:s

1!2 and the \sec-
ond" binds B3:s

1!2 (or rather sideto2:s1!2 respectively sideto3:s1!2).

A minor
aw in our drawing formalism can be observed in the plan icon of
the box production. The arc str ! dlist appears to cross a visit-border so that
one would expect a lightning symbol. However, str is not an attribute occur-
rence computed in the �rst compartment; it is a syntactic element available in all
compartments.

3.4.7 Memoization

Visit-functions have become pure functions due to the introduction of bindings.
Static analysis for bindings is cumbersome. However, due to the pure nature of the
visit-functions, incremental evaluation can now be obtained by memoizing the visit-
functions. This moves the bookkeeping for incremental evaluation into a separate
module for implementing function caching.

Memoization is implemented by associating a table (cache) with each function
that records argument/result pairs. Each time a memoized function is called, the
computed result together with the argument is stored in the table. A memoized
function is said to hit when it is called with an argument that happens to occur in
the table. Then, instead of actually evaluating the function, the associated result
can be retrieved from the table. A memoized function is said to miss when its
argument is not yet stored in the table.

One of the major problems of visit-sequence based incremental evaluation,
namely when to skip a visit instruction (see Subsection 3.3.3), is implicitly solved
by the introduction of bindings. The binding occurrence poiBI v contain precisely
the attribute instances computed by earlier visits that will be used by visit(i ; v).
Thus visit v to poi can be skipped only if the bindings poiBI v|and the standard
inherited attributes poiI v|have not changed, and the replaced subtree is not a
subtree of poi . A visit-functions has precisly these three arguments (the abstract
syntax tree, the bindings and the inherited attributes). They all contribute to
the decision whether the visit-function \hits" (is found in the cache). Therefore,
memoized visit-functions implement an optimal scheme for skipping visits. Further
reducing the number of visits is only possible in two directions: by taking the
semantics of the dpr arcs into account, or by optimizing the role of data
ow
driver of the abstract syntax tree.

86 3. Using visit-sequences for incremental evaluation

flib
dlist

fname

box f

x yB1 B2h

str

w

flib
dlist

x y
h ww hflib

1

B1 B2

root

1H

R dlist

sideb

flib

flib

flib

x y

x y x y
dlist dlist

dlistw h

ww hh

B1 B2

b

1
1B B1

2 B2
1 B2

2

stackr

flib

flib

flib

x y

x y x y
dlist dlist

dlistw h

ww hh

B1 B2

r

1
1B B1

2 B2
1 B2

2

stackl

flib

flib

flib

x y

x y x y
dlist dlist

dlistw h

ww hh

B1 B2

1
1B B1

2 B2
1 B2

2

flib

flib

flib

x y

x y x y
dlist dlist

dlistw h

ww hh

B1 B2

sidet

1
1B B1

2 B2
1 B2

2

Figure 3.33. The plan icons of the box grammar

3.4. Visit-functions 87

;

x y

x xor

:=

x y

xor

:=

x y

x xor

:=

;

y

yx

xor

:=

;

:=

;

a. Unshared b. Shared

Figure 3.34. Terms for the fragment \x := x xor y ; y := x xor y ; x := x xor y"

The use of bindings for optimal visit skipping is not a privilege of functional
evaluators. Traditional evaluators may incorporate bindings for incremental evalua-
tion. In fact, in traditional evaluators, the bindings need not actually be computed
since the attribute instances may all be found in the tree. It su�ces to synthesize a
boolean for every binding that indicates whether the binding would have changed,
had it been computed.

A second problem concerning incremental evaluation has not been discussed
yet. E�cient incremental computation relies heavily on e�cient equality test of
attribute instances. For simple instances like integers equality can be e�ciently
decided. For structured attribute instances like symbol tables, the equality test can
be extremely ine�cient. Note that bindings are treated as generated attributes that
must also be compared, and that, in general, bindings are large term-like structures.
Furthermore, the abstract syntax tree itself is a parameter for the visit-functions.
It must also be checked for equality. Consequently, the equality problem is even
more salient in a functional setting. Fortunately, the purely functional approach
allows us to share values. If we make sure that equal terms are always represented
by the same \internal" structure, then term comparison can be implemented by
pointer comparison.

For example, consider the term in Figure 3.34a. It represents the pascal

fragment x := x xor y ; y := x xor y ; x := x xor y that swaps the values of x
and y . Sharing of subtrees will yield the structure given in Figure 3.34b. Sharing
is obtained by memoizing the constructors. Shared terms may also be viewed as
directed acyclic graphs, DAGs for short.

In a standard attribute avaluator, the abstract syntax tree has a double role. It
serves as a data
ow driver selecting which (plan-)instructions are to be executed
and it serves as a cache for the semantic functions. In a functional setting the
abstract tree only serves as data
ow driver. It can be optimized for this function

88 3. Using visit-sequences for incremental evaluation

as will be illustrated in the next chapter. The role of cache is taken over by
the memo table. It can be optimized separately. For example, the size of the
cache tunes the time-space trade-o� for an evaluator. Observe that the cache
not only records the previous state but, theoretically, all prevous states. An edit
action T �! T 0 �! T can be very ine�cient in a conventional setting. In our
functional setting, the second edit transition takes only O(1), provided the cache
is large enough to keep both T and T 0.

3.4.8 An attribute grammar system

The concepts for functional evaluation have now been discussed. We will sketch
how to obtain a compiler generator that generates a functional evaluator.

The compiler generator reads, parses and checks an attribute grammar spec-
i�cation. Next, visit-sub-sequences are generated. The lifetime of attribute oc-
currences and binding occurrences is analyzed de�ning pessimistic wrappers. The
emptyness test eliminates occurrences from empty bindings from the wrappers.

The generated visit-functions form the main part of the generated compiler.Part 1: visit-functions

The second module deals with the data structures and constructors for imple-Part 2: data types

menting the abstract syntax tree, the bindings and structured attributes. A third
module implements either the parser (for a batch compiler) or a language basedPart 3a: parser

editor (for an interactive compiler).Part 3b: editor

When the generated compiler has to be incremental, which is desirable if it is
interactive, a fourth module must be added. It implements the memoization ofPart 4: caches

the constructors for the abstract syntax tree, bindings and structured attributes.
Furthermore, it implements a cache for the visit-functions.

4
89

Chapter 4

New techniques for incremental

evaluation

This chapter discusses several ways of transforming an abstract syntax tree while
preserving the functional dependency between the inherited and synthesized at-
tributes of the root of that tree. The role of tree as data
ow driver is optimized.

First, splitting is introduced: the abstract syntax tree is split into di�erent
representations for di�erent visits with the aim to improve incremental behavior.
Then, encapsulators are introduced. Encapsulators replace the actual tree con-
structors. They construct an alternative abstract syntax tree that can be evaluated
more e�ciently. Several encapsulator applications will be discussed: elimination,
uni�cation, folding and normalization.

4.1 Introduction

In this chapter we discuss techniques that aim at increasing the chance on visit-
function cache hits. The arguments of a function play a key role during memoiza-
tion; they determine whether the function call hits or misses.

Non-injective functions allow for cache-optimizations. For example, suppose
that square is memoized. We obtain a more e�cient squaring function if we
precede square by abs , which returns the absolute value of its argument, in the
following manner (functional composition)

square 0 = square � abs :

The de�nition of square 0 utilizes the property that square is not injective:
8xsquare �x = square +x . Assuming that abs is more e�cient then square ,
this de�nition saves computation time by increasing the change on cache hits.

Visit-functions are in general not injective. For example consider the varuse
grammar. Whether we apply visit1L to the argument stat(name('x'); empty())
or to stat(name('y'); empty()) the result remains ([]; stat1!2(empty1!2())),
namely an empty symbol table and an empty binding. Since visit-functions are not

90 4. New techniques for incremental evaluation

injective, there is a possibility to increase the chance on cache hits by mapping
di�erent arguments with the same results to equal arguments.

For visit-functions, we distinguish the following arguments: the abstract syntax
tree, bindings and the inherited attributes. A visit-function can be non-injective
in each of these arguments. However, in order to make use of this property for
inherited attributes and bindings we need to investigate the nature of the semantic
functions. Such analysis is beyond the scope of this thesis. We will make one
exception though. Section 4.3 discusses optimizations applicable when a semanticThe identity func-

tion id is de�ned
as id x = x for x

of any type (id is
polymorphic).

function happens to be the identity function.

In Section 4.2 we focus on the �rst argument of a visit-function: the abstract
syntax tree. As we illustrated above with the varuse grammar, visit-functions
are non-injective in the tree argument. The reason for this is that in general, a
speci�c visit to an abstract syntax tree does not inspect every node of that tree. In
the varuse grammar, name nodes are not inspected during the �rst visit to stat

nodes. This observation is especially fruitful in incremental evaluation: a change
to an uninspected node would cause the visit-function with otherwise unchanged
arguments to miss if no special precautions were taken.

4.2 Splitting

A split abstract syntax tree T is a tuple (T 1; : : : ;T vT) of terms [PSV92a]. Term
T v includes only those parts of T that are inspected during visit v of T . The
underlying principle is that by including only those parts that are actually used
during a visit, unnecessary cache misses can be avoided.

We will illustrate the process of splitting with the abstract syntax tree given in
Figure 4.1a. The grammar itself remains anonymous; all important details can be
read from the �gure. We focus on production N = p(X ;Y) and non-terminal R.
Decoration occurs according to the plan tree given in Figure 4.1b. Observe that
non-terminals R, N and X are visited twice, whereas non-terminal Y is visited
only once. During the �rst visit to a p node the X child is visited for the �rst
time; during the second visit to that p node, the X child is visited for the second
time upon which Y is visited. In other words, the subtree rooted Y does not play
a role during the �rst visit to p .

We assume the abstract syntax tree is decorated using the memoized visit-
functions described in the previous chapter. As a result of decoration, the visit-
function cache is �lled with among others, entries for the following visit-functions:
visit1R , visit

1
N , visit

1
X , visit

2
R , visit

2
N , visit

2
X and visit1Y .

Suppose, an edit operation issued by the user changes a subtree of the Y node
that is marked dark grey in Figure 4.1a. The nodes of the abstract syntax tree
from the changed subtree to the root is marked light grey as is the corresponding
part in Figure 4.1b. Redecoration using memoized visit-functions will reevaluate
every equation in the grey part of the plan tree. The reason for this is as follows:
the dark grey part changes the Y tree, which in turn changes the N tree (since

4.2. Splitting 91

p

R

X Y

N

p

N2

1Y2X1X

N1

2R1R

p2p1

1Y2X1X

N1 N2

2R1R

a. Abstract syntax tree b. Plan tree c. Split abstract syntax tree

The dark grey part of the tree is changed by an edit action of the user. The light grey

part of the tree includes the dark part and is therefore also subject to reevaluation.

Figure 4.1. Splitting the abstract syntax tree

Y is a child of N) which changes the R tree. So for each of the visit-functions
visit1R , visit

1
N , visit

2
R , visit

2
N and visit1Y , one of the arguments (namely the tree)

has changed which requires the recomputation of the visit-function. Only the visit-
functions visit1X and visit2X will lead to a cache hit. The nodes associated with
these visits are kept white in Figure 4.1.

Closer observation however, reveals that we may skip recomputation of visit1R .
As the plan tree shows, the �rst visit to R does not inspect the changed subtree
Y . It is only during the second visit to R that the second visit to N is executed
which includes a visit to the changed subtree. Consequently, if only we could
detect that Y is not included in the �rst visit to R, we could reuse the previously
computed results stored in the cache.

We propose to split an abstract syntax tree T , that is visited v times (rephrased
v = vT) into trees T 1 : : :T v that each include only those parts of T that are
actually inspected by the respective visits visit1T : : : visitvT .

Figure 4.1c shows the split abstract syntax tree, corresponding to the abstract
syntax tree given in Figure 4.1a. Observe that the trees rooted R, N and X are
each represented by two trees, rooted R1 , R2 respectively N 1 , N 2 and X 1, X 2 .
The Y tree is visited only once, and is thus represented by a single tree rooted Y 1 .

Do not confuse the plan tree, which shows data
ow, with the split abstract
syntax tree, a data structure which is visited (a data
ow driver). Whereas in the
former N 2 denotes visit 2 to N , in the latter N 2 is a term constructed by applying
split constructors like p2 , to terms rooted with split non-terminals like X 2 and Y 1 .

92 4. New techniques for incremental evaluation

The crux of splitting in this example is that the split tree rooted R1 does
not include the changed subtree Y 1. In other words, a change to Y 1 has no
repercussions for the R1 tree: visit1R will hit. Note that the subtree rooted R1

can be arbitrarily large.

4.2.1 The split grammar, split function and SPLIT mapping

Splitting requires four steps. First, we must perform a \split analysis" on the visit-
sequences to determine which part of the abstract syntax tree is actually inspected
during a visit. Next, we de�ne a grammar for split trees. Thirdly, we de�ne a
function that converts an abstract syntax tree into a split tree. Finally, we de�ne
the mapping SPLIT from visit-functions to split visit-functions. Split visit-functions
operate on split trees instead of plain abstract syntax trees.

Split analysis

In the introduction, we have not been precise. We informally de�ned a split tree
T v as a term that only includes those parts of the abstract syntax tree T that
are inspected during visit v to T . Although we left out to de�ne \inspected", we
implied that it means \visited". This is only half true.

Another way to inspect parts of the abstract syntax tree is via a syntactic refer-
ence. A syntactic reference is a dependency of an attribute occurrence on a syntac-
tic element, that is to say a non-terminal or pseudo terminal. For example, in the
varuse grammar, the set E (name) contains the equation N :id := upstring str

which should formally be rendered as nameo0:id := upstring nameo1. The
pseudo terminal nameo1 is inspected.

N

name

id

str

During decoration of node K , a syntactic reference like poi :a := poj equates
the entire subtree K �j with attribute instance ins(K ; poi :a). Tree values may be
destructed by semantic functions or they may be assigned to attributable attributes.
In either case, the entire subtree needs to be available. As a consequence, the
terminals of the split grammar correspond to subtrees of the underlying abstract
syntax tree.

Annotated visit-sequences are de�ned on page 74. Amongst others, they in-
clude sref directives
agging syntactic references. The set inspect(p; v) contains
all split non-terminal occurrences that are visited and all syntactic elements that
are referenced in visit-sub-sequence v of production p . It is de�ned as follows.poiw denotes visit w

to non-terminal occur-
rence poi . inspect(p; v) = fpoiw j visit(i ;w) occurs in vss(p; v)g

[fpoi j sref (poi) occurs in vss(p; v)g

Production p of the grammar in Figure 4.1/ has no syntactic references, so
only the visit instructions matter. Since the �rst compartment of p only contains
the �rst visit to X and the second compartment of p contains the second visit
to X and the �rst visit to Y , we have the following inspect sets

Recall that Y 1 is infor-
mal notation for po21 .

4.2. Splitting 93

inspect(p; 1) = fX 1g

inspect(p; 2) = fX 2;Y 1g :

The split grammar

In the previous chapter bindings were introduced. Bindings are described by a
context-free grammar, the bind grammar, induced by the attribute grammar and its
visit-sequences. In a similar fashion an attribute grammar induces a split grammar.
However, where the bind grammar de�nes an additional data structure passed
around in binding attributes, the split grammar de�nes split trees that replace the
abstract syntax tree. The following table shows the relation between the attribute
grammar, the bind grammar and the split grammar.

attribute grammar bind grammar split grammar

1 � v < w � vfT ; p;X g 1 � v � vfT ; p;X g

tree T bindings T v!w split trees T v

production p wrapper pv!w split productions pv

non-terminal X parcels X v!w split non-terminals X v

terminals attribute instances abstract syntax trees

We will de�ne the split grammar in analogy with the bind grammar. The
split representation T of an abstract syntax tree T is a vT -tuple of terms
(T 1; : : : ;T vT). A term T v , with 1 � v � vT , is known as a split tree (for We will use straight

parenthesis () for tu-
ples in the split gram-
mar.

visit v). Each non-terminal X induces a type X de�ned as (X 1; : : : ;X vX); X v

with 1 � v � vX is known as a split non-terminal. The root of a split tree is
a split non-terminal. A pseudo-terminal is not split. For each occurrence poi of
non-terminal X , there is a split non-terminal occurrence denoted poi v for every
1 � v � vX .

In order to construct split trees from the split non-terminals, we need split

productions. In a similar fashion as the set bind(p; v ;w) de�nes the right-hand
side of the wrapper pv!w in the bind grammar, the set inspect(p; v) de�nes the
right-hand side of the split production pv (1 � v � vp): Set to list conversion:

just pick an order.

pv = p�0v : [�̂ j � 2 inspect(p; v)] :

This de�nition consists of two parts. The �rst part, p�0v , is the left-hand side
split non-terminal. The second part is a list comprehension that de�nes the right-
hand side. Every element of inspect is mapped onto its type: �̂ denotes the type
of �. For example, for a split non-terminal occurrence poi v , dpoi v maps to the
split non-terminal p�i v . For a non-terminal occurrence, dpoi maps to p�i .

For the grammar in Figure 4.1/ we obtain the following de�nitions. Non-
terminals R, N and X are visited twice, thus their split representations are
two-tuples: R = (R1;R2), N = (N 1;N 2) and X = (X 1;X 2). The split
representation for the single visit non-terminal Y is a one-tuple Y = (Y 1).
Production p induces two split production p1 and p2 since vp = 2. Using the

94 4. New techniques for incremental evaluation

equalities inspect(p; 1) = fX 1g and inspect(p; 2) = fX 2;Y 1g, we infer that
the split productions induced by p have the form N 1 = p1(X 1) respectively
N 2 = p2(X 2;Y 1).

The split function

We will de�ne functions that split an abstract syntax tree. For each non-terminal
X , a function splitX : : X �! X is de�ned. Each production p on X inducessplitX is a homo-

morphism mapping X

values to X values.
Observe that splitX
is half-bijective in the
sense that there exists
a function f such that
X = f (splitX X) for
all X .

an alternative de�nition for splitX . The alternative de�nitions are selected using
pattern matching on constructor p. The alternative for production p has the
following form

splitX p(\children") = (p1(\params 1"); : : : ;pvX (\params vX"))
where \recurse for children" .

For each non-terminal on the right-hand side of p a pattern variable poi

occurs in \children". Furthermore, each poi is split with a recursive call in the
where-clause \recurse for children": (poi1; : : : ; poivpoi) = splitp�i poi .

The fragment \params v " is determined by inspect(p; v): each element of the
set inspect(p; v) maps to a parameter for \params v ". An element poi v refers to
a split tree computed by the recursive call in \recurse for children". An element
poi refers to a subtree of the abstract syntax tree that matched with the pattern
p(\children").

Let us return to the example in Figure 4.1/ 91 and derive the splitN function.
Only one production on N , namely p , is known, so we obtain only one alternative
for splitN .

splitN : : N �! (N 1;N 2)
splitN p(X ;Y) = (p1(X 1) ; p2(X 2;Y 1))
where (X 1;X 2) = splitX X

; (Y 1) = splitY Y

The SPLIT mapping

The FUN mapping discussed in the previous chapter generates a visit-function
visitvX to handle visit v of an abstract syntax tree T rooted X . The function
splitX applied to T returns a tuple (T 1; : : : ;T v ; : : : ;T vX). Split tree T v rooted
X v contains precisely those parts of T that are inspected by visit v . Therefore,
we would like to use T v instead of T as �rst parameter for visitvX . Consequently,
the signature of visitvX should be changed so that not X but X v is the type of
the �rst parameter.

The SPLIT mapping maps pure visit-functions, as generated by the FUN map-
ping, onto split visit-functions. Split visit-functions are visit-functions whose �rst
argument is a split tree instead of a plain abstract syntax tree. In other words, the
visit-function visitvX will be changed into visitX v with signature

visitX v : : X v � \XBI v"� \X I v" �! \XS v"� \XBS v" :

4.2. Splitting 95

A pattern p(: : :) selecting an alternative for visitvX is mapped to the pattern
pv(\params v ") for visitX v . Each element of the set inspect(p; v) maps to a
parameter for \params v ".

Equations (eval instructions) in the body of a visit-function remain unchanged.
If they refer to a syntactic element poi then poi 2 inspect(p; v), so that poi oc-
curs in \params v ". Furthermore, a recursive call (visit instruction) visitwp�i poi : : :
in the body of a visit-function is mapped onto visitp�iw poi

w : : :

. . .

The split grammar describes the abstract syntax of split trees. The split

function actually constructs a split tree, that is destructed by a split visit-function.
Splitting will be illustrated shortly using the varuse grammar which includes a
syntactic reference.

The elements of inspect(p; v) play a recurring role in the three topics discussed.
In the split grammar, a visit(i ;w) instruction induces a right-hand side split non-
terminal p�iw in the split production pv . In the split function, it maps to a
variable poiw that holds a split tree rooted p�iw . In the split visit-function the
corresponding pattern variable poiw is introduced to match that split tree rooted
p�iw . Likewise, a syntactic reference to poi induces a right-hand side non-terminal
p�i in the split production pv . In the split function, it maps to a variable poi

that holds a subtree of the underlying abstract syntax tree rooted p�i . In the split
visit-function the corresponding pattern variable poi is introduced to match that
subtree rooted p�i .

Since every visit(i ;w) instruction (1 � i � sp and 1 � w � vp�i) occurs
precisely once in the plan of p , every split non-terminal occurrence poiw occurs
only once in

S
1�v�vp inspect(p; v). In other words, for every production p , the

sets Vv = fpoiw j poiw 2 inspect(p; v)g partition fpoiw j 1 � i � sp ^ 1 �
w � vp�ig.

The syntactic references that are inspected might have multiple occurrences.
For every production p , the sets Wv = fpoi j poi 2 inspect(p; v)g are generally
not disjunct, nor do they unite to fpoi j 1 � i � sp ^ 1 � w � vp�ig.

Recall that we assume the start symbol S of an attribute grammar to be single
visit. Thus, in order to decorate an abstract syntax tree T rooted S using the split
visit-functions, the function visit1S (splitS T) must be called with the appropriate
inherited attributes.

A decorator is a context-free grammar G and a function f that takes as
argument a tree T rooted with the start symbol S of G . Decorator (G 0; f 0) is

T ofG
f
�!(SI1!SS1)

�

????y
????yid

T 0
ofG 0�!

f 0
(SI1!SS1)

a re�nement of decorator (G ; f) if there exists an abstraction � from G trees to
G 0 trees such that f T = f 0 T 0 , where T 0 = � T .

For example, the underlying context-free grammar of an attribute grammar,
and the computed visit-functions form a decorator. The induced split grammar
and the split visit-functions also form a decorator. The function splitS (where S is
the root symbol of the context-free grammar) is an abstraction. As a consequence,
the split decorator is a re�nement of the plain decorator.

96 4. New techniques for incremental evaluation

inspect(root ; 1) = fL1;L2g

inspect(decl ; 1) = fN 1;L1g
inspect(decl ; 2) = fL2g

inspect(stat ; 1) = fL1g
inspect(stat ; 2) = fL2;N 1g

inspect(empty ; 1)= fg
inspect(empty ; 2)= fg

inspect(name; 1) = fstrg

S 1 = root1(L1;L2)

L1 = decl1(N 1;L1)
j stat1(L1)
j empty1()

L2 = decl2(L2)
j stat2(L2;N 1)
j empty2()

N 1= name1(str)

splitS : : S �! S

splitS root(L) = (root1(L1;L2))
where (L1;L2) = splitL L

splitL : : L �! L

splitL decl(N ;L) = (decl1(N 1;L1);decl2(L2))
where (N 1) = splitN N

; (L1;L2) = splitL L

splitL stat(N ;L) = (stat1(L1); stat2(L2;N 1))
where (N 1) = splitN N

; (L1;L2) = splitL L

splitL empty() = (empty1(); empty2())

splitN : : N �! N

splitN name(str) = (name1(str))

a. The inspect sets b. The split grammar c. The split functions

Figure 4.2. Split grammar and split functions associated with the varuse grammar

4.2.2 Splitting the varuse grammar

As an example, we will now split the varuse grammar. It features a syntactic
reference. First, split analysis determines the inspect sets. Secondly, we will de�ne
the split grammar induced by the varuse grammar. Next, we will present the split
functions. Finally, we will give the visit-functions obtained by the SPLIT mapping
from the visit-functions presented in the previous chapter (Figure 3.32/ 84).

The root symbol S has one visit inducing S = (S 1). Likewise, N will induce
N = (N 1). Non-terminal L has two visits, so it induces the two-tuple L =
(L1;L2). str is a pseudo-terminal, so it will not be split.

Split analysis yields the inspect sets given in Figure 4.2a. For example, since
the N child is visited in the �rst compartment of a decl node and the L child is
visited for the �rst time in the �rst compartment and for the second time in the
second compartment, inspect(decl ; 1) = fN 1;L1g and inspect(decl ; 2) = fL2g.The split non-terminal

occurrences L2
1 and

L2
2 are abbreviated

to L1 respectively L2 .
There can be no
confusion with L1

1

respectively L1
2 since

the parent (L1) can
not be a member of
an inspect set.

The visit-sequence for the root production contains the �rst as well as the second
visit to L. Hence, inspect(root ; 1) = fL1;L2g. Since the visit-sequence for the
production name contains a syntactic reference (but no visits), inspect(name; 1)
is the singleton fstrg.

The split grammar, given in Figure 4.2b, is straightforwardly obtained from the
inspect sets of Figure 4.2a.

Figure 4.2c gives the splitS , splitL and splitN functions. They form a homo-
morphism that map a plain abstract syntax tree to a split tree. Observe that in
the splitN function the subtree that matches the pattern variable str is included
(unsplit) in the split production name1 .

Figure 4.3 shows the split tree obtained by applying splitS to the standard
varuse application. It closely resembles the augmented plan tree given in Fig-
ure 3.30/ 83. The visit-functions for the varuse grammar obtained by the SPLIT
mapping are given in Figure 4.4..

4.2. Splitting 97

decs

env
code

id

code

root

decl

decs
env

code

env
codedecs

id
env

code

iddecs

S1

N1

1L

1L L2

L2 N1

L21L

L21L

N1’x’

’y’

’x’

s1 2

1 2i

stat

stat

decl

1 2i

1 2i

1 2i

s1 2

s1 2

s1 2

1

stat1

1

name1

name1

name1

stat1

empty1

2

2

2

empty2

Figure 4.3. The split tree associated with the standard varuse application

98 4. New techniques for incremental evaluation

visitS1 : : S 1 �! Code

visitS1 root
1(L1;L2) = S :code

where (L:decs ;L:s1!2) = visitL1 L
1

; L:env = L:decs

; L:i1!2 = L:s1!2

; L:code = visitL2 L
2 L:i1!2 L:env

; S :code = L:code

visitN 1 : : N 1 �! str

visitN 1 name1(str) = N :id

where N :id= upstring str

visitL1 : : L1 �! Env � L1!2

visitL1 decl
1(N 1;L2

1) = (L1:decs ;L1:s
1!2)

where N :id = visitN 1 N 1

; (L2:decs ;L2:s
1!2) = visitL1 L2

1

; L1:decs = N :id : L2:decs

; L1:s
1!2 = decl1!2(N :id;L2:s

1!2)

visitL1 stat
1(L2

1) = (L1:decs ;L1:s
1!2)

where (L2:decs ;L2:s
1!2) = visitL1 L2

1

; L1:decs = L2:decs

; L1:s
1!2 = stat1!2(L2:s

1!2)

visitL1 empty1() = (L1:decs ;L1:s
1!2)

where L1:decs = []
; L1:s

1!2 = empty1!2()

visitL2 : : L2 � L1!2 � Env �! Code

visitL2 decl
2(L2

2) decl1!2(N :id;L2:s
1!2) L1:env = L1:code

where L2:env = L1:env

; L2:i
1!2 = L2:s

1!2

; L2:code = visitL2 L2
2 L2:i

1!2 L2:env

; L1:code = (�lookup L1:env N :id) : L2:code
visitL2 stat

2(L2
2;N 1) stat1!2(L2:s

1!2) L1:env = L1:code

where L2:env = L1:env

; L2:i
1!2 = L2:s

1!2

; L2:code = visitL2 L2
2 L2:i

1!2 L2:env

; N :id = visitN 1 N 1

; L1:code = (+lookup L1:env N :id) : L2:code
visitL2 empty2() empty1!2() L1:env = L1:code

where L1:code = []

Figure 4.4. Split visit-functions for the varuse grammar

Does the varuse grammar bene�t from splitting? As the split tree given in
Figure 4.3/ clearly shows, a change to a name node that is a child of a stat node
has no e�ect on the L1 tree. In other words, suppose that we edit the standard
application (use x;var x;use y;) into (use x;var x;use x;) correcting the
obvious mistake of using the undeclared variable y. The standard application maps
to the split tree given in Figure 4.5a, whereas the corrected version maps to the
split tree given in Figure 4.5b.

Observe that both versions share the split tree for the �rst visit to L, which
collects the declarations. As a result, incremental decoration of the corrected
version will be substantially faster since

visitL1 stat
1(decl1(name1('x'); stat1(empty1())))

will hit.

We conclude that we have reached the goal set in the introduction. The split
functions preprocess the input for the visit-functions so that some unequal trees
yielding the same results are mapped to the same split tree.

4.2.3 Higher-order attribute grammars

Trees assigned to an attributable attribute should also be split. Let p:x be an
attributable attribute of type X (thus X = R p:x). Let p:x := E be the equation

4.2. Splitting 99

root

S1

1

decl

1L

1L

stat1

1

N1

’x’

name1

1L

1L

stat1

empty1

L2

stat2

L2

L2

stat

decl

N1

’y’

name1

N1

’x’

name12

2

L2

empty2

root

stat

decl

stat

name1

S1

1

decl

1L

1L

stat1

1

N1

’x’

name1

1L

1L

stat1

empty1

L2

2

L2

L2

N1

N1

’x’

name12

2

L2

empty2

’x’

a. Before b. After

The using occurrence of y is changed to x (dark grey). The
light grey nodes belong to the changed tree.

Figure 4.5. An edit operation on the standard varuse application

100 4. New techniques for incremental evaluation

associated with the instruction eval(p:x) in the higher-order visit-sequence. The
type of E is X . In other words, p:x is assigned an unsplit tree. If it were split,
we could use the split visit-functions to decorate the higher-order tree, which is
potentially more e�cient.

Of course, the solution is to apply splitX to E . Attributable attribute p:xThe unsplit p:x must
remain available since
it could be used in
some equation.

becomes a local attribute and vX fresh attributable attributes p:x 1 : : : p:xvX are
introduced. Instruction (p:x 1; : : : ; p:xvX) = splitX p:x is inserted immediately
after instruction p:x := E . Each visit(p:x ; v) instruction (1 � v � vX) must
be mapped onto visitX v p:x v .

An attributable attribute p:x might also be a border-crosser. In the unsplit
variant, this results in p:x being transported, as a whole, to a successive compart-
ment of p . However, when generating split visit-functions, binding analysis should
be modi�ed somewhat: not fp:x j visit(p:x ; u) occurs in vss(p;w)g should be
added to use(p;w) but fp:x u j visit(p:x ; u) occurs in vss(p;w)g. As a result,
only those split components of p:x will be bound by wrapper pv!w that are ac-
tually visited in compartment w of p .

4.2.4 Flow trees and data trees

In an attribute grammar system, we can distinct two di�erent kind of terms, both
of which are described by a context-free grammar de�ned by the grammar writer.
The �rst kind of term is known as
ow tree. Informally formulated, a
ow tree is
a tree that is passed as �rst argument to a visit-function. The abstract syntax tree
which is decorated by the visit-functions is a
ow tree. The other kind of term
is known as data tree. Data trees are data structures de�ned by the grammar
writer. Such structures are passed around in attributes and they are destructed by
semantic functions.

This distinction is important, because we could use more e�cient representa-
tions for one or the other. For example,
ow trees could be represented as ordinary
terms, but as we have seen above, splitting is a transformation that optimizes their
role as data
ow driver. Other optimizations will be discussed in the rest of this
chapter.

Unfortunately, there are a two places were the distinction between
ow treesAttributable attribute:
data �!
ow;

syntactic reference:

ow �! data.

and data trees is blurred. Those places are the \higher-order" constructs in our
attribute grammar formalism: attributable attributes and syntactic references. In
the former case a data tree is assigned to an attributable attribute that is then
visited. In the latter case a part of the abstract syntax tree, a
ow tree, is referred
to as a data tree.

The problem with data trees being assigned to attributable attributes was
solved for splitting by dynamically converting the data tree to a
ow tree by means
of the split function. The problem with
ow trees being syntactically referenced is
solved for splitting by statically including a syntactically referenced tree as terminal
in a split production.

4.2. Splitting 101

X

Y

p p

X1 X2

YYv Yw

a. The production icon b. The plan icon

X1

p1

X2

p2

Y YYv Yw

X1

p1

Y

p2

X2

Yv Yw

X1

p1 p2

X2

self
Yv Yw

c. Duplicate d. Binding e. Self attribute

Figure 4.6. Syntactic references in a split production

The next section introduces encapsulators. Encapsulators are like tree construc-
tors, except that they construct split trees instead of plain terms. In other words,
by statically replacing constructors by encapsulators, the dynamic conversion from
data trees to
ow trees is eliminated.

Syntactic references

A syntactic reference to an unsplit abstract syntax tree T is resolved by including
T in the split production. We discuss two other possible solutions.

Production p in Figure 4.6a has only one child, namely Y . Suppose that Y
is a \real" non-terminal, that is visited several times. For brevity, the attributes of
Y have been left out. Note, that Y is referenced twice by an equation.

Suppose further the plan icon associated with Y is given in Figure 4.6b. Non-
terminal X has two visits, so that p has two compartments. There appears to be For identical reasons,

the box production
of the box grammar
(Fig 3.33/ 86) also ap-
pears to have a border-
crossing.

a border crossing , but there is none: since Y is a syntactical element and not
an attribute, it is available in both compartments. For completeness, two visits to
Y , v and w , have been sketched. Again, we left out Y s attributes.

If we split p , we obtain the production icons in Figure 4.6c. The subtree rooted
Y is inspected twice: once in the �rst compartment of p and once in the second
compartment of p . As a result, Y is included in both split productions. Since
terms are shared in our grammar system, such duplications are not ine�cient. Of
course, a change in Y changes both X 1 and X 2 so that splitting seems pointless.
However, the fact that Y is used in both compartments is an intrinsic property of
production p .

A di�erent way of dealing with several syntactic references to the same tree

102 4. New techniques for incremental evaluation

is presented in Figure 4.6d/. Subtree Y is only included once, and it is passed
via a binding to the second compartment of p . A change to Y might keep X 2

unchanged, however binding X 1!2 has changed so that visit2X misses nevertheless.
If parcel X 1!2 were empty, we are worse of with this solution since it no longer is
empty.

The third solution, presented in Figure 4.6e/ , is based on a self attribute. Syn-
tactic references can be avoided altogether by introducing an attribute self with
every non-terminal that synthesized the underlying abstract syntax tree. Deco-
ration of the
ow tree Y yields as attribute a data tree isomorphic with Y in
attribute Y:self . In Figure 4.6e/ , we assumed that Y:self 2 Y S v . Observe that
self attributes eliminate the need of incorporating tree fragments in split produc-
tions. However the disadvantages of the previous approach still holds: the second
visit still misses since the binding has changed and the parcel X 1!2 is no longer
empty.

4.2.5 Discussion

As a result of splitting, an abstract syntax tree is represented by a tuple of split
trees. Like plain abstract syntax trees in the unsplit approach, split trees are
arguments of cached functions. This implies that split trees should be shared for
fast comparison.

Since we assume that the start symbol is visited only once, the split represen-
tation of an abstract syntax tree rooted by the start symbol is a single term. Each
split tree is tailored for a speci�c visit. It only includes those parts of the underlying
abstract syntax tree that are actually inspected during that visit. Therefore, the
split abstract syntax tree resembles the (augmented) plan tree closely.

As a consequence, the plan tree may be superimposed on the split tree. The left
to right depth �rst order on the attribute instances (the grey line in Figure 3.30/ 83)
in the plan tree may also be superimposed on the attribute instances in the split
tree. Consequently, the split grammar can be evaluated in one left to right depth
�rst pass. Thus, splitting may be viewed as a grammar transformation that maps
arbitrary partitionable grammars to one pass left to right depth �rst grammars.

However, it is not completely fair to see the transformation as a grammar

transformation. Splitting depends heavily on the algorithm that computes visit-
sequences, which o�ers a lot of freedom. It might happen for example, that if one
would transform a grammar G into a grammar G 0 using splitting, that a split non-
terminal of G 0 is assigned two visits by the algorithm that computes visit-sequences.
In other words, the visit-sequences computed for G 0, might not coincide with the
visit-sequences obtained by splitting the visit-sequences computed for G (which is
in essence the approach advocated in this section).

One must realize that splitting is only feasible if there are no implicit intra-
visit-dependencies. There is no way of storing the value of a border-crosser in a
tree node in order to access it in a later visit. Due to splitting, the later visit
refers to another node. As a consequence, splitting is not applicable in standard

4.3. Encapsulators 103

attribute grammar setting where attribute instances are stored in tree nodes, unless
the visit-sequences happen to be free of intra-visit-dependencies.

In a split tree, we can not really distinguish between two di�erent children of
a tree node and two di�erent visits to the same child. The only distinction is that
successive visits to the same child are linked with bindings. However, since bindings
may be empty, these links may be absent too. As a result, a split grammar is more
\general" and may therefore be well suited for further analysis. For example,
parallelism detection might bene�t from such a generalization.

Another advantage of the split grammar is that the dpr graphs associated with
each split production are smaller. The dpr(p) graph is unraveled into subgraphs
dpr(pv). The bene�t of having simpler dpr graphs is that they are easier to
analyze. In the next sections we will encounter examples exploiting this fact.

4.3 Encapsulators

Encapsulators are functions associated with constructors, that hide the application
of those constructors. As such, encapsulators are not interesting. However, by
hiding the actual tree construction, the encapsulators may construct a tree in a
di�erent representation.

As a �rst example, encapsulators will be used to construct a split tree instead
of a plain abstract syntax tree. In e�ect, the encapsulators hide the immediate
application of split .

Furthermore, since encapsulators hide tree construction, they may as well con-
struct a di�erently shaped tree. The only restriction is that the semantics in the
sense of the relation between the inherited and synthesized attributes of the root
of the tree do not change.

As a second usage of encapsulators we will show that we may statically decide
not to include certain tree nodes. As a result, the tree is not only smaller, which
saves space and evaluation time, it also increases the chance on cache hits of the
visit-functions, since more trees are likely to be the same.

A third application of encapsulators is uni�cation. Static analysis may infer
that di�erent tree nodes have the same semantics. In such a case, every node
of one kind may be replaced by a node of another kind. The advantage of such
an optimization is that more trees are likely to be the same which increases the
chance on cache hits.

Fourthly, we discuss folding and normalization. These optimizations are also
realized by encapsulators, however they bring dynamic costs.

4.3.1 De�nitions

Let (G 0; f 0) be a re�nement of (G ; f), and let � be the corresponding abstraction.
Let p : : X1 � : : : � Xs �! X0 be a constructor corresponding with production
p in G . For clarity, the signature of constructor p is denoted in a functional

104 4. New techniques for incremental evaluation

manner. Finally, let T1 : : :Ts be terms of type X1 : : :Xs . The function p 0 is an
encapsulator of p if

p 0 (� T1) : : : (� Ts) = � p(T1; : : : ;Ts) :

The type X 0 is an implementation of X . It is de�ned as

X 0 = f� T j T has root X g :

Thus, the signature of encapsulator p 0 is

p 0 : : X 0
1 � : : :� X 0

s �! X 0
0 :

In other words, the encapsulators p 0 and types X 0 behave as the productions p
and non-terminals X of G . Nevertheless, they construct terms described by gram-
mar G 0 . Abstraction � guarantees that a tree T 0 constructed by encapsulators is
a re�nement of tree T constructed by the corresponding productions, in the sense
that f 0 T 0 = f T . Observe that by using encapsulators to construct T 0 there is
no longer a need to dynamically convert T to T 0 with �; � is encapsulated.

4.3.2 Encapsulating split

The split grammar and split visit-functions are a re�nement of the underlying
context-free grammar and the computed visit-sequences. The corresponding ab-
straction is the split function. We will now de�ne encapsulators that hide the
construction of split trees.

As a �rst attempt, we take X as an implementation for X . A constructor
p: :X1�: : :�Xs �! X0 induces an encapsulator p : :X 1�: : :�X s �! X 0 . The
de�nition of p has the following form where each element poiw of inspect(p; v)
maps to a parameter X w

i for `prms v '.

p (X 1
1 : : :X vX1

1) : : : (X 1
s : : :X vXs

s) = (p1(`prms 1'); : : : ;pvX0(`prms vX0'))

Paraphrased, the above de�nition says that the vX0-tuple representing the treeThe tuple for the
parent is assembled
from the tuples of its
children.

p(X1; : : : ;Xs), is obtained by applying split productions p1 : : :pvX0 to appropriate
split trees X w

i which are components of the tuples (X 1
1 : : :X vX1

1) : : : (X 1
s : : :X vXs

s)
that represent the respective subtrees X1; : : : ;Xs .

However, the above de�nition exhibits a
aw when syntactic references occur
in p . In the de�nition of the split grammar given in the previous section, a syn-
tactic reference to Xi recorded in inspect(p; v) maps to a parameter for the split
production pv . The subtree corresponding with Xi could be obtained by applying
split�1

Xi
to the tuple (X 1

i : : :X vXi

i). However, there are two reasons for not doing
that.

Firstly, one of the reasons for introducing encapsulators, is that we wish to
eliminate dynamic conversions, in this case from plain trees to split trees. If we
were to use split�1 , we would still be faced with a dynamic conversion, albeit the
other way round.

4.3. Encapsulators 105

root : : L �! S

root (L1 ; L2) = (root1(L1;L2))

decl : :N � L �! L

decl (N 1) (L1 ; L2) = (decl1(N 1;L1) ; decl2(L2))

stat : : N � L �! L

stat (N 1) (L1 ; L2) = (stat1(L1) ; stat2(L2;N 1))

empty : : L
empty = (empty1() ; empty2())

name : : str �! N

name str = (name1(str))

root : : L �! S

root (L;L) = (root(L); root L)

decl : :N � L �! L

decl (N ;N) (L;L) = (decl(N ;L); decl N L)

stat : :N � L �! L

stat (N ;N) (L;L) = (stat(N ;L); stat N L)

empty : : L
empty = (empty(); empty)

name : : str �! N

name str = (name(str);name str)

a. The shells b. The encapsulators

Figure 4.7. The encapsulators

Secondly, although the split function is invertible, other optimizations as elim-
ination, uni�cation, normalization and folding which are to be discussed later,
massage the split tree into more e�cient forms which are no longer invertible; the
split function is injective, but it is not surjective.

The solution we have chosen is to pass the syntactically referenced trees
Xi : : :Xj as additional parameters to the function p . Each element poiw respec-
tively poi of inspect(p; v) maps to a parameter X w

i respectively Xi for `parms
v '.

p X 1 : : : X s Xi : : : Xj = (p1(`parms 1'); : : : ;pvX0(`parms vX0'))

A function like p is not an encapsulator since its signature no longer matches
the signature of p . We will refer to these functions as shells. As an example,
consider the shells in Figure 4.7a. They hide the construction of a split tree for the
varuse grammar. The shell name has a parameter str for passing the syntactic
reference.

Shells are not encapsulators according to our de�nition, since their signatures
specify, in addition to the implementations of the right hand side symbols, the
syntactic references. To obtain encapsulators, we will construct a plain tree in
synchronization with the split tree, so that fragments of the plain tree are available
for referencing.

The proposed implementation for a non-terminal X becomes X de�ned as the
two tuple (X ;X). In essence, the encapsulators construct a
ow tree as well as
a data tree. A constructor p : : X1 � : : : � Xs �! X0 induces an encapsulator
p : : X 1 � : : :� X s �! X 0 ; it has the following de�nition. Encapsulator in gen-

eral: the implemen-
tation of the parent
is assembled from the
implementation of its
children.

p (X1;X 1) : : : (Xs ;X s) = (p(X1; : : : ;Xs) ; p X 1 : : : X s Xi : : : Xj)

The implementation of X adheres to the following type invariant

X = (X ;X) � splitX X = X :

106 4. New techniques for incremental evaluation

Observe that the split functions become obsolete when using encapsulators. The
implementation of a pseudo-terminal is that pseudo-terminal itself.

Figure 4.7b/ gives the encapsulators for the varuse grammar. Observe that
the name encapsulator passes the syntactically referenced element str to the shell
name .

Every constructor in any equation in the attribute grammar should be replaced
by an encapsulator. Then, every term is implemented as a two tuple consisting
of a data tree and a
ow tree. So, for destructing, the �rst component can be
used, and for assignment to an attributable attribute, the second component can
be used.

If syntactic references to non-terminals were forbidden|which does not dimin-
ish expressivity since syntactic references can be rewritten with self attributes|
encapsulators could be greatly simpli�ed. The shells alone would su�ce.

. . .

Given a grammar G with start symbol S and visit-function visit1S . G inducesWe assume vS = 1.

a split grammar G 0 and split visit-function visitS1 . With implementation (X ;X)
for non-terminal X and encapsulator p for production p as de�ned above, the
decorator (G 0; f 0) is a re�nement of (G ; visit1S), where f

0 (S ; (S 1)) = visitS1 S 1 .
The corresponding abstraction � is de�ned as � S = (S ; splitS S).

4.3.3 Elimination and uni�cation

The re�nement de�ned above is based on splitting. Split trees are a better im-
plementation than plain terms because they increase the chance on visit-function
cache hits. We will now discuss two optimizations, elimination and uni�cation,
that are based on the same implementation for trees, while employing di�erent en-

capsulators. In e�ect, the encapsulators restructure the
ow tree to obtain better
(incremental) evaluation performance while preserving the semantics.

In short, elimination removes tree nodes that do not contribute in an essential
way to the data
ow. Uni�cation maps tree nodes of one kind to tree nodes of
another kind if their dpr graphs coincide.

Elimination and uni�cation are tree-restructuring optimizations e�ected at gen-
eration time. Static analysis of dpr graphs determines which tree nodes will be
eliminated or uni�ed.

Analyzing dpr graphs

The performance of any program can be enhanced by detailed analysis of data

ow. In its generality data
ow analysis is beyond the scope of this thesis. We limit
ourselves to data
ow analysis in which the semantic functions remain anonymous;
we do not investigate the semantics of the arcs of the dpr graphs.

We make one exception though, namely for identity functions. The identity
function id occurs frequently in attribute grammar speci�cation, most notably in

4.3. Encapsulators 107

L1!2=decl1!2(str;L1!2)
j empty1!2()

visitL1 : : L1 �! Env � L1!2

visitL1 stat
1(L2

1) = (L1:decs ;L1:s
1!2)

where (L2:decs ;L2:s
1!2)=visitL1 L2

1

; L1:decs =L2:decs

; L1:s
1!2 =L2:s

1!2

visitL2 : : L2 � L1!2 � Env �! Code

visitL2 stat
2(L2

2;N 1) L2:s
1!2 L1:env=L1:code

where L2:env = L1:env

; L2:i
1!2 = L2:s

1!2

; L2:code = visitL2 L2
2 L2:i

1!2 L2:env

; N :id = visitN 1 N 1

; L1:code = (+lookup L1:env N :id)
: L2:code

a. Declaration b. Construction c. Destruction

Figure 4.8. Eliminating the copy-wrapper stat1!2 of the varuse grammar

so-called copy-rules. Copy-rules are equations of the form � := id � . Copy-
rules make grammar speci�cations long winded and evaluators ine�cient. Not
surprisingly, the elimination of copy rules is a major topic in attribute grammar
research, ranging from syntactic abbreviations for remote access to attribute in-
stances in grammar speci�cations [Kas91, RT88] to bypassing copy-rules in eval-
uators [Hoo86, RT89].

Wrappers are sometimes copy-rules in disguise. For example, the varuse

grammar, contains the wrapper L1!2 = stat1!2(L1!2) which is a copy-wrapper.
The �rst step in data
ow analysis removes these wrappers. Such a transformation
has three aspects: the de�nition of the wrapper must be removed from the parcel
de�nition, the wrapper must be removed from the equation were it is used to
construct a binding, and thirdly, the wrapper must be removed from the equation
that destructs that binding.

As an example, consider how the parcel de�nition for L1!2 and the visit-
functions visitL1 and visitL2 change when the copy-wrapper stat1!2 is removed.
Figure 4.8a shows the parcel de�nition after removal of stat1!2. Figure 4.8b shows
the visit-function body that constructed a binding with stat1!2 and Figure 4.8c
shows the visit-function for the second traversal that destructed the binding (using
pattern matching on stat1!2). With the removal of stat1!2, the binding com-
puted during decoration of the standard varuse application is reduced in size: see
Figure 4.11b. 110 .

In the rest of this section, we use a liberal interpretation of dpr graphs. A dpr

graph is to be understood as the augmented dependency graph|thus including
the equations for the binding occurrences|associated with a split production|
thus only considering the occurrences of a single compartment. Copy-wrappers are
assumed to have been eliminated.

Elimination

Tree nodes, whose associated dpr graph consists of copy-rules only, do not con-
tribute in an essential way to the dtr graph. Therefore, such node may be elimi-

nated.

108 4. New techniques for incremental evaluation

According to De�nition 16, a (split) production X v = pv(X v) is redundant
if its associated dpr(pv) graph consists of non-crossing copy-rules only. Such
production are characterized by the icon in Figure 4.9. The requirement that the
copy-rules are non-crossing is important. If the arrows did cross, the tree node
would contribute to the dtr graph: it would swap the values of some attributes.

De�nition 16 Redundant production.

A split production pv is redundant if

� its only child has the same type as the parent:
inspect(p; v) = fpo1vg and p�0 = p�1;

� the equations are non-crossing copy-rules only:
8po1:i2po1Iv (po1:i = id po0:i) 2 E (p) and
8po0:s2po0Sv (po0:s = id po1:s) 2 E (p).

2

X

id id idid.

Xv

pv

v

Figure 4.9. Non crossing copy-rules only

Nodes that are instances of redundant productions may be eliminated from
any tree T without altering the semantics of T . Elimination of pv is easily
implemented in the encapsulator p . The shell p constructs a tuple with pv(X v)
as v th component. This component should be transformed into X v alone, leaving
out the application of pv . Since shell p is the only function applying pv , this
transformation makes constructor pv super
uous. As a result, pv can be removed
from the split grammar and the visit-function alternative visitp�0v p

v (: : :) may also
be removed.

Production stat1 in the (split) varuse grammar is an example of a redundant
production (once the copy-wrapper stat1!2 is removed). To eliminate stat1 , the
shell stat is transformed from

stat (N 1) (L1;L2) = (stat1(L1); stat2(L2;N 1))

into

stat1

decs

decs s1 2

s1 2

1L

1L

id id

stat (N 1) (L1;L2) = (L1 ; stat2(L2;N 1)) :

Figure 4.10 shows the data structures and visit-functions after elimination of
stat1 . First of all, note that stat1 is removed from the term de�nition (upper

4.3. Encapsulators 109

S 1 = root1(L1;L2)

L1 = decl1(N 1;L1)
j empty1()

L2 = decl2(L2)
j stat2(L2;N 1)
j empty2()

N 1= name1(str)

visitS1 : : S 1 �! Code

visitS1 root
1(L1;L2) = S :code

where (L:decs ;L:s1!2) = visitL1 L
1

; L:env = L:decs

; L:i1!2 = L:s1!2

; L:code = visitL2 L
2 L:i1!2 L:env

; S :code = L:code

visitL1 : : L1 �! Env � L1!2

visitL1 decl
1(N 1;L2

1) = (L1:decs ;L1:s
1!2)

where N :id = visitN 1 N 1

; (L2:decs ;L2:s
1!2) = visitL1 L2

1

; L1:decs = N :id : L2:decs

; L1:s
1!2 = decl1!2(N :id;L2:s

1!2)
visitL1 empty1() = (L1:decs ;L1:s

1!2)
where L1:decs = []

; L1:s
1!2 = empty1!2()

root (L1;L2) = (root1(L1;L2))
decl (N 1) (L1;L2) = (decl1(N 1;L1);decl2(L2))
stat (N 1) (L1;L2) = (L1; stat2(L2;N 1))
empty = (empty1(); empty2())
name str = (name1(str))

L1!2 = decl1!2(str ;L1!2)
j empty1!2()

visitN 1 : : N 1 �! str

visitN 1 name1(str) = N :id

where N :id= upstring str

visitL2 : : L2 � L1!2 � Env �! Code

visitL2 decl
2(L2

2) decl1!2(N :id;L2:s
1!2) L1:env = L1:code

where L2:env = L1:env

; L2:i
1!2 = L2:s

1!2

; L2:code = visitL2 L2
2 L2:i

1!2 L2:env

; L1:code = (�lookup L1:env N :id) : L2:code
visitL2 stat

2(L2
2;N 1) L2:s

1!2 L1:env = L1:code

where L2:env = L1:env

; L2:i
1!2 = L2:s

1!2

; L2:code = visitL2 L2
2 L2:i

1!2 L2:env

; N :id = visitN 1 N 1

; L1:code = (+lookup L1:env N :id) : L2:code
visitL2 empty2() empty1!2() L1:env = L1:code

where L1:code = []

Figure 4.10. Split visit-functions for the varuse grammar with stat1 eliminated

left). The shell stat no longer applies stat1 as just explained (upper right);
the encapsulators themselves do not change. Visit-function visitL1 (lower left) is
changed: it no longer has an alternative for stat1 nodes.

Figure 4.11a. gives the split tree constructed by the shells in Figure 4.10. The
main di�erence with Figure 4.3/ 97 is, of course, that stat1 icons have been short
circuited. Note also that the stat2 nodes use copy rules for the binding attributes
instead of the copy-wrapper stat1!2. As a result, the binding computed during
decoration of the standard application is reduced in size; compare Figure 3.31/ 83
with Figure 4.11b..

Incremental decoration of varuse grammar trees also gains from elimination
of stat1 . When a stat node is inserted or deleted in an abstract syntax tree, the
encapsulator does not insert or delete a stat1 constructor in the split tree. As a
result, the L1 tree does not change, resulting in a cache hit for visitL1 .

For example, suppose that an edit action transforms the standard tree (leaving
out the root node for brevity)

(L; (L1;L2)) = stat (name 'x')
�
decl (name 'x') (stat (name 'y') empty)

�

110 4. New techniques for incremental evaluation

env
code

id

code

root

decl

decs

env
code

env
code

id

env
code

id

S1

N1

1L L2

L2 N1

L2

L2

N1

’x’

’y’

’x’

1 2i

stat

stat

decl

1 2i

1 2i

1 2i

s1 2

1

1

name1

name1

name1

decs1L
s1 2

empty1

2

2

2

empty2

’x’

L1 2

L1 2

1 2empty

1 2decl

a. stat1 eliminated b. stat
1!2 eliminated

Figure 4.11. The standard varuse application with elimination in e�ect

4.3. Encapsulators 111

into

(L; (L1;L2)) = stat (name 'x')
�
decl (name 'x') empty

�

simply deleting the mistakenly used variable 'y'. In both cases, the split tree for
the �rst visit to L are equal

L1 = L01 = decl1(name1('x'); empty1()) :

Uni�cation

Tree nodes that are isomorphic, may be uni�ed. According to De�nition 17 two Factorization of com-
mon equations for
di�erent productions,
an abbreviation mech-
anism in some gram-
mar speci�cation lan-
guages, promotes uni-
�cation.

(split) productions X v = pv (Y1; : : : ;Ys) and X v = qv(Z1; : : : ;Zs) are isomor-
phic if the children Y1 : : :Ys form a permutation of the children Z1 : : :Zs and the
equation on the associated attribute occurrences are subject to the same permu-
tation (with similar requirements for local, attributable and generated attribute
occurrences).

De�nition 17 Isomorphic productions.

Two split productions pv and qv are isomorphic if there exist bijections

� � from [0::spv] to [0::sqv] with � 0 = 0;

� � from Oloc(p
v) to Oloc(q

v);

� � from Oata(p
v) to Oata(q

v)

inducing a bijection � from O(pv) to O(qv) de�ned as follows

� poi :a = qo(� i):a

� p:l = � p:l

� p:x = � p:x

� p:x :a = (� p:x):a

such that

� the symbols of pv form a permutation of those of qv :
80�i�spvpv�i = qv�(� i);

� the corresponding attributable attributes have corresponding types:
8p:x2Oata(pv)R p:x = R (� p:x);

� the corresponding equations are equal:
(� := f : : : � : : :) 2 E (pv) � ((� �) := f : : : (�:�) : : :) 2 E (qv).

2

112 4. New techniques for incremental evaluation

Suppose to pv and qv are isomorphic, and that � is the corresponding bi-
jection from [0::spv] to [0::sqv]. Uni�cation of pv and qv is easily implemented
in the encapsulator p . The shell p constructs a tuple with pv (Y1; : : : ;Ys) as
v th component. This component should be transformed into qv(Y� 1; : : : ;Y� s),
replacing constructor pv with qv . Since shell p is the only function applying pv ,
this transformation makes pv super
uous. As a result, pv can be removed from
the split grammar and the visit-function alternative visitp�0v p

v (: : :) may also be
removed.

The purpose of uni�cation is the same as it is for splitting and elimination:
to map di�erently shaped trees with the same semantics to the same tree. The
result of these strategies is more identical trees and thus, due to sharing, less space
consumption. But above all, more identical trees lead to more cache hits.

4.3.4 Folding and normalization

Elimination and uni�cation are static optimizations. We will now discuss optimiza-
tions that are partly static and partly dynamic. For example, we might consider
a form of elimination that is only applicable in certain contexts. Static analysis
determines which contexts make a speci�c constructor super
uous. The encapsu-
lator for that constructor bases its behavior on the context, a dynamic decision.
Such partly static, partly dynamic elimination will be referred to as folding.

Another kind of partly static partly dynamic analysis is normalization. Static
analysis determines contexts which allow for some kind of tree restructuring. En-
capsulators dynamically decide whether such contexts emerge, and if so, they re-
structure accordingly. For example, one might think about balancing binary trees
or, on the contrary, linearizing trees.

For folding the emphasis is on restructuring the tree in such a way that fewerFolding may be
thought of as a form
of partial evaluation
during tree construc-
tion.

attribute instances have to be evaluated. For normalization on the other hand, the
emphasis is on restructuring the tree in such a way that it has a normalized form,
which hopefully improves sharing (and thus evaluation).

Folding and normalization are optimizations that are not fully understood yet.
Further research is needed to reveal recurring patterns that are amenable for re-Analysis of semantic

functions broadens the
possibilities.

structuring. However, unlike elimination and uni�cation, folding and normalization
have dynamic costs. Therefore, such optimizations should only be applied after
careful considerations.

Folding

Folding is a strategy that can not easily be characterized in general. Informally,
an encapsulator is rewritten to dynamically check for conditions upon which some
restructuring may be applied. There exist many ways to restructure trees, with as
many conditions to check, but we will only give two examples.

An often recurring technique in attribute grammars is threading. With thread-
ing, the data
ows top-down either from left to right or vice versa. The typical

4.3. Encapsulators 113

concat

Sv

Sv Sv

v ididid goto

Sv

v id label

Sv

v + add

int

Sv

v +

Figure 4.12. Typical threading productions Figure 4.13. Generated

productions for left to right threading are given in Figure 4.12: a compose construc-
tor corresponding to functional composition (concatv), an identity constructor
corresponding to the identity function id (gotov) and the unit constructor that
actually transforms the input (labelv). Threading is used for gathering sequence
dependent tree information. In this example, label numbers for goto's are dis-

Other \statement"
(S) constructors do
not in
uence label
counting and are thus
eliminated.

tributed in left to right order.

The �rst example of folding is compose-identity-folding. Let concatv be a
compose production. The shell concat associated with it has the form

concat (: : : ; S v
1 ; : : :) (: : : ; S v

2 ; : : :) = (: : : ; concatv(S v
1 ; S

v
2); : : :) :

Furthermore, let gotov be an identity production. Compose-identity-folding trans-
forms the v th component of the tuple created by concat into

if S v
1 = gotov() ^ S v

2 = gotov() �! gotov()
2 S v

1 = gotov() ^ S v
2 6= gotov() �! S v

2

2 S v
1 6= gotov() ^ S v

2 = gotov() �! S v
1

2 S v
1 6= gotov() ^ S v

2 6= gotov() �! concatv(S v
1 ; S

v
2)

�

Compose-identity-folding e�ectively reduces a split tree rooted S v to the small- The only tree with a
gotov () node is the
\empty" tree gotov ()
itself.

est possible tree: a tree with at most one gotov() node. This example shows that
folding is a form of partial attribute evaluation.

The second example, constant-folding, rigorously folds the S v tree. Partial
evaluation during construction yields a tree that may be attributed in O(1) time.
All that is required is a production like addv given in Figure 4.13. The shell for
label may now be transformed from

label = (: : : ; labelv(); : : :)

into

label = (: : : ; addv(1); : : :) :

Similarly, the shell for goto becomes

goto = (: : : ; addv(0); : : :) :

However, the work horse is the shell for concat

concat (: : : ; addv(i1); : : :) (: : : ; addv(i2); : : :) = (: : : ; addv (i1 + i2); : : :) :

114 4. New techniques for incremental evaluation

Normalization

The purpose of normalization is to restructure the tree into some normal form so
that the chance on cache hits increases [Pug88]. Many schemes are possible, we
present balancing and linearization.

Sw

concatw

env

env env
code code

codeSw

Sw

Figure 4.14. Divide and conquer production

Like threading, divide and conquer is an often recurring technique in attribute
grammars. With divide and conquer, data is �rst distributed to all tree leafs, where
it is processed, upon which the transformed data is synthesized and merged at every
node. Figure 4.14 shows a typical example of a divide and conquer constructor: the
symbol table env is passed unmodi�ed to both children, and the code computed
by the children is merged (
) and synthesized.

If the merge operator
 of the divide and conquer constructor concatw is as-
sociative, then the data
ow associated with instances of that constructor is asso-
ciative. As a result, trees constructed with concatw are amenable for associative-
normalization: balancing or linearization (see Figure 4.15). Linearization yields
normal forms which are more likely to be reconstructed. Balancing produces trees
with a more evenly distributed evaluation workload for the left and right child of
a concatw node. Balanced trees might prove useful in parallel evaluators. If
the merge operator is commutative in addition to associative, the restructuring
possibilities for normalization grow even further.

A
C

D

B
A C DB

A

C D
B

a. Before b. After balancing c. After linearization

Figure 4.15. Associative-normalization

The crux of the divide and conquer constructors with associative merge op-
erators is that their data
ow graph is associative. The graph associated with
concatv in Figure 4.12/ is also associative. Consequently, trees constructed with
concatv are also amenable for associative-normalization in addition to folding.

4.4. Untyping 115

Divide and conquer constructors arise naturally. For example, the sidet,
sideb, stackl and stackr constructors of the box grammar are all of that kind.
On �rst glance, the constructors even appear to have associative data
ow graphs
associated with them. For example, dpr(sidet1) (Figure 3.33/ 86) distributes the
font library
ib to its children, and it synthesizes the width w and height h . The
width is computed as the sum of the widths of its children and the height is com-
puted as the maximum of the heights of its children. Addition and maximum are
both associative. However, the binding attributes must also be synthesized. And a
constructor B1!2 = sidet1!2(real ;B1!2;B1!2) is, by de�nition, not associative.

4.4 Untyping

Closer examination of the optimizations discussed in the previous section reveals
that they are more restricted than they need to be. For example, elimination
requires a production of the form X v = pv(X v) with non-crossing copy-rules only.
But, a production like X v = pv(Y w) with non-crossing copy-rules only (implying
equal attribute types) could also be eliminated, with respect to the induced dtr

graph. However, if we were to eliminate root constructor pv from pv (T), then the
type of the tree changes from X v to Y w . This type mismatch can be remedied

id id idid

Xv

pv

Yw

with untyping.

Untyping is a type transformation, that maps every split non-terminal X v to
one single data type N . The split representation X = (X 1; : : : ;X vX) thereby
becomes X = (N ; : : : ;N) which means that X = (X ; (N ; : : : ;N)). Neither
the encapsulators, nor the shells have to be transformed. Only the data-type for
terms has to be changed. For example, for the varuse grammar we get

N = root1(N ;N)
j decl1(N ;N)
j stat1(N)
j empty1()
j decl2(N)
j stat2(N ;N)
j empty2()
j name1(str) .

All optimizations discussed bene�t from untyping. Where elimination, uni-
�cation, compose-identity-folding, constant-folding and associative-normalization
were severely limited by the restrictions on the abstract syntax, after untyping,
only the types of the associated attributes matter.

optimization drop requirement

elimination p�0 = p�1
uni�cation 80�i�spvpv�i = qv�(� i)
compose-identity-folding form X v = p(X v ;X v)
associative-normalization form X v = p(X v ;X v)

116 4. New techniques for incremental evaluation

The table above shows the syntactic requirements that may be dropped for the
various optimizations, after untyping is applied. They are replaced by restrictions
on the attributes. These restrictions are hard to formalize algebraically, since they
do not only depend on the type of the attributes but also on the positions of
attributes in the plan icon.

Until now, we have not paid much attention to the positions of the attributes in
the plan icons. A disc labeled poi v denoting visit v to non-terminal occurrence poi
is followed by boxes denoting the inherited attributes poiI v which are followed
by boxes denoting the synthesized attributes poiS v . The actual order of the
inherited (respectively synthesized) attributes does matter: it corresponds with
the order on the parameters of the visit-function visitp�iv . Therefore, the algebraic

requirement [8po1:i2po1Iv (po1:i = id po0:i) 2 E (p)] ^ [8po0:s2po0Sv (po0:s =
id po1:s) 2 E (p)] for elimination is well captured by \non-crossing copy-rules" in
our graphical formalism.

Wherever one of the discussed optimizations has a syntactic requirement like
pv�i = qw�j , in some form or another, this is replaced by the following requirements
on the associated attributes:

� the number of associated attributes are equal
jpoiI v j = jqoj Iw j;

� the associated attributes are ordered such that if � is the k th attribute of
poiI v and � is the k th attribute of qoj Iw than the types of � and � are
equal;

� equivalent requirements for the synthesized attributes hold.

These requirements boil down to the following: the signatures of the partially
parameterized functions visitp�iv T1 and visitq�j w T2 (with T1 of type p�i v and T2

of type q�jw) must be equal. Pennings, Vogt and Swierstra represent a tree by
a tuple of functions instead of a tuple of split trees [PSV92b]. In essence, these
functions are the split visit-functions partially parameterized with the split trees.

Observe that the order on the attributes of poiI v can be chosen arbitrarily.
These orders should be chosen with care, if one wishes to apply certain optimiza-
tions. For example, if one tries to eliminate production X v = pv(Y w), one should
not order the attributes of X I v and Y Iw in such a way that the copy-rules cross
in pv . Naturally, such decisions may con
ict with the same wish for X v = qv(Y w)
so that elaborate analysis with an appropriate cost scheme is required.

id id id

Xv

pv

Yw

4.5 Discussion

This chapter discussed optimizations of the visit-function based attribute evalua-
tor of the previous chapter. The optimizations aim at improving the incremental
behavior. The term \optimize" is somewhat confusing since an \optimized eval-
uator" is not optimal (in some sense), it is better. It is customary in the �eld of
compiler research to use \optimize" in that way.

4.5. Discussion 117

The optimizations fall into three categories. The �rst category optimizes the
implementation. We have presented two variants, namely splitting and untyping.
Splitting enhances incremental behavior and reduces the complexity of the asso-
ciated dpr graphs so that other optimizations are more likely to be applicable.
Untyping is also an implementation optimization intended to improve the applica-
bility of other optimizations.

The second class of optimizations are the static optimizations. Elimination
removes productions and uni�cation removes productions by substituting them by
others. Both increase the chance that di�erent abstract syntax trees map to the
same implementation.

Finally, we discussed dynamic optimizations. Folding is a form of evaluation
during tree construction. It not only saves evaluation time by reducing the tree
size, it also increases the chance on cache hits for that same reason. Normalization
restructures the tree, �ne-tuning the workload during evaluation.

implementation static dynamic

splitting elimination folding
untyping uni�cation normalization

The above table lists the optimizations discussed in this chapter. The list is
certainly not exhaustive.

Encapsulators construct an abstract syntax tree with an alternative implemen-
tation. The optimizations incorporated in the encapsulators improve the way trees
are stored. The e�ects of the optimizations are intertwined very closely. Trees
will occupy less space and they will share larger parts. Both aspects also lower
the evaluation time: smaller trees imply fewer function calls and enhanced sharing
means more cache hits.

However, the optimizations are rather unlikely to occur massively in attribute
grammars. What is the chance that dependency graphs have a useful form for
uni�cation or folding? We hope, however, that the representation optimizations,
splitting and untyping, will increase our chances. Note that all optimizations are
also possible in plain attribute grammar evaluators, where attribute instances are
stored in tree nodes. However, due to the complexity of the unsplit dpr graphs,
optimizable patterns are less likely to occur. On the other hand, in our functional
setting, we need bindings to resolve intra-visit-dependencies for split visit-functions.
Bindings typically complicate the dpr graphs, thereby also reducing the chances
on applicable optimizations.

A grammar speci�cation might include equations that use constructors. These
equations map to instructions using encapsulators. As a result, a tree computed
during attribute evaluation is available either as data tree or as
ow tree optimized
for visiting. The former representation is needed when the tree is destructed by
semantic functions, the latter representation is needed when the tree is assigned
to an attributable attribute.

When the attribute grammar evaluator is driven by a language based editor,
the editor should use the encapsulators instead of the plain constructors, since

118 4. New techniques for incremental evaluation

an optimized
ow tree should be passed to the evaluator. Partial evaluation,
performed by folding, is not foreseen to be cached by the visit-function cache.
However, since split trees are shared (split constructors are memoized), incremental
evaluation is not crippled by folding, or any of the other optimizations.

5
119

Chapter 5

Computing visit-sequences

Chapter 3 discusses how visit-sequences are used to construct a functional evalua-
tor. This chapter discusses how visit-sequences can be computed from a grammar
speci�cation. We discuss two algorithms that compute visit-sequences, namely
Kastens' ordered scheduling and a new algorithm named chained scheduling.

Chained scheduling is a variant of Kastens' algorithm that uses a priority-queue
driven topological sort that results in visit-sequences with lower cost. In this case,
the visit-sequences are tailored for fast incremental evaluation based on cached
visit-functions.

The priority-queue driven topological sort performs best, if the graph which is
sorted contains the least number of arcs. We will therefore �rst de�ne dat graphs
that replace Kastens' tdp graphs. The dat graphs contain no other arcs than
strictly necessary. Therefore, dat graphs are better suited than tdp graphs to
extract visit-sequences from. We preset one algorithm, chained scheduling, which
is basically a priority based topological sort of the dat graph.

Visit-sequences can not be computed for every attribute grammar, but only
for grammars from the class of partitionable attribute grammars. The algorithms
discussed in this chapter accept only a subclass of partitionable grammars: the
so-called ordered attribute grammars respectively dat attribute grammars. The
latter class is slightly larger than the former, as will be proven.

5.1 Grammar classes

Recall from 3.1.3 that visit-sequences only exist if for every non-terminal in the
grammar interfaces (see De�nition 13) can be �xed at generation time. Recall
also that an interface for X induces a partial order on the attributes A(X) of X .

Visit-sequences are easily formed once the interfaces for the non-terminals are
established. Let PO(X) be the partial orders induced by interfacef (X) computed
by some algorithm f . The interfaces are only compatible if for every production Recal that past-

ing is denoted with
dp [d0 : : : dsp].

p : X0 �! X1 : : :Xs the graph dpr(p)[PO(X0); : : : ;PO(Xs)] is non-circular.
The reason for this is as follows. A node labeled with p must, due to the plan-
based evaluation scheme, compute the attribute instances for each adjacent node

120 5. Computing visit-sequences

Xi in an order matching its interface. Only if these orders comply with the actual
dependencies as described by dpr(p), all instances can successfully be computed
in orders matching PO(Xi).

In other words the non-circular graph dpr(p)[PO(X0); : : : ;PO(Xs)] describes
every dependency that has to be taken into account: semantic dependencies and
interface dependencies. A total order of this graph yields a visit-sequence for
p . Consequently, compatible interfaces for the non-terminals supply us with the
visit-sequences for the productions.

Grammars for which interfaces can be determined are important since we can
avoid the dynamic construction of the visit-sequences. Several classes of such
grammars are de�ned. In general we observe: the larger the class, the worse the
time complexity for determining the interfaces. The simplest class is probably theThe unix tool YACC is

based on synthesized-
only attribute gram-
mars.

class of synthesized-only attribute grammars.

De�nition 18 Synthesized-only attribute grammar.

An attribute grammar is synthesized-only if 8X2NAinh(X) = fg.
2

The interfaces for a synthesized-only grammar are trivial: every non-terminal
X has one visit and the interface for this visit is (fg;Asyn(X)).

The largest class of attribute grammars for which interfaces can be determined
is, by de�nition, the class of partitionable [WG84] grammars, also known as ar-

ranged orderly [Kas80] grammars.

De�nition 19 Partitionable attribute grammar.

An attribute grammar is partitionable if for every non-terminal X an interface
interface(X) exists, such that for every production p : X0 �! X1 : : :Xs , the
graph dpr(p)[PO(X0); : : : ;PO(Xs)] is non-circular, where PO(Xi) is the partial
order induced by interface(Xi).
2

Partitionable grammars form a proper subclass of the strongly non-circular
grammars. Nevertheless, the class of partitionable grammars is su�ciently large: all
grammars of practical importance turn out to be partitionable [Kas80]. Figure 5.1
presents a (non-practical) grammar that is SNC but not partitionable. In tree
p(r()) the order of evaluation of X 's attributes is X :j ! X :s ! X :i ! X :t

whereas the order in q(r()) would be X :i !X :t !X :j !X :s . Note that the
order on A(X) depends on its context, which is explicitly ruled out in the de�nition
of partitionable grammars.

In the literature [DJL88, Alb91a, EF82] one encounters l-ordered grammars
more often then partitionable grammars. The two classes are di�erent, although
not fundamentally.

5.1. Grammar classes 121

X

r

S

X

p

i j
s t

s t
i jS

X i j
s t

q

Figure 5.1. A (strongly) non-circular grammar that is not partitionable

De�nition 20 l-ordered attribute grammar.

An attribute grammar is l-ordered if there exist total orders TO(X) for every
non-terminal X such that for every production p : X0 �! X1 : : :Xs the graph
dpr(p)[TO(X0); : : : ;TO(Xs)] is non-circular.
2

Such total orders TO(X) on A(X) are easily converted into interfaces: cut
them into maximal segments of inherited and synthesized attributes. Henceforth,
an l-ordered grammar is partitionable.

However, partitionable grammars are not always l-ordered. This is illustrated
by Figure 5.2. Due to r two total orders on A(X) are possible X :i!X :j!X :s

and X :j!X :i!X :s . The former causes a cycle in p and the latter in q, hence
the grammar is not l-ordered. On the other hand (fX :i ;X :jg; fX :sg) induces
partial orders that �t in all three productions so that the grammar is partitionable.

S

X

p

S

X

q

X

r

i j
s

i j
s

s
i j

Figure 5.2. A partitionable grammar that is not l-ordered

The claim that the two classes do not fundamentally di�er is based on the
observation that they are equal when we only consider grammars in Bochmann
normal form. For such grammars, a dpr graph can not have (induced) depen-
dencies between output attribute occurrences belonging to a single non-terminal
occurrence, other than via input attribute occurrences of the same non-terminal
occurrence. This means that any two attributes in the same interface set or time
slot can be linearly ordered arbitrarily. In other words, a partitionable grammar in
Bochmann normal form is l-ordered.

Deciding whether an attribute grammar is l-ordered means �nding a total order
on A(X) for every non-terminal X . Engelfriet and Fil�e [EF82] proved that this
problem is NP-complete. Faced with this complexity, Kastens [Kas80] exhibited a The class of ordered

attribute grammars is
de�ned by an algo-
rithm.

subclass that can be tested in polynomial time called the ordered attribute gram-

mars (OAG). The de�nition of ordered attribute grammars consists of a particular

122 5. Computing visit-sequences

attribute grammars (page 13)
#

complete attribute grammars (page 14)
#

non-circular attribute grammars (page 30)
Fig 2.10/32

strongly non-circular attribute grammars (page 32)
Fig 5.1/

partitionable attribute grammars (page 120)
Fig 5.2/

l-ordered attribute grammars (page 121)
Fig 5.7a.126

dat attribute grammars (page 134)
Fig 5.9.134

ordered attribute grammars (page 121)
#

synthesized-only attribute grammars (page 120)

Each class is labeled with a page number where a de�nition for

that class is given. Some arrows are labeled with references

to counterexamples: grammars that belong to the class just

above the arrow but do not belong to the class just below.

Figure 5.3. Grammar hierarchy

procedure that tries to construct the orders. If the construction succeeds, the
grammar is ordered.

In the next section Kastens' �ve step ordered scheduling algorithm will be
presented. In section 5.4 we will present a variation on ordered scheduling that
allows for optimizations of the visit-sequences. This so-called class of dat grammars

is larger than the class of ordered grammars, but they appear to be equal if one
considers normalized grammars only. Figure 5.3 shows the hierarchy of attribute
grammar classes discussed in this thesis.

5.2 Ordered scheduling

In this section, we discuss Kastens' �ve step ordered scheduling algorithm [Kas80,
RT89] in detail. From a practical point of view, the purpose of this algorithm
is to compute the visit-sequences. From a more theoretical point, this algorithm
computes orders on attributes.

Kastens distinguishes two kinds of orders. The �rst three steps of his algorithm
determine a partial order (interface) on the attributes of each non-terminal. These
orders are deduced from the so-called tds(X) relations \transitive dependencies of
a symbol" on A(X). The last two steps determine a total order (visit-sequence)
on the attribute occurrences of each production. They are determined by a topo-
logical sort of the so-called tdp(p) relations \the transitive dependencies of a

5.2. Ordered scheduling 123

production" on O(p).

Steps 1 and 2 of Kastens' algorithm compute the tds(X) relations and step 3
extracts the interfaces. The third step is the crucial step that makes the algorithm
polynomial. Many partial orders comply with a tds relation, but step 3 �xes a
particular choice, which may be an unfortunate one. Step 4 pastes the chosen
orders into the tdp(p)s to �nd out whether the choice was lucky or not. If it was, Step 4 performs the

class test.the grammar is said to be ordered. Step 5 performs a topological sort of the thus
constructed tdp(p) graphs, creating the visit-sequences.

5.2.1 Ordering attributes of a non-terminal

Ordered scheduling makes a worst case assumption by merging all (indirect) de- tds(X) is much
like the D [X] in
the SNC test (Fig-
ure 2.9/ 32). However,
D [X] records only the
bottom-up dependen-
cies, whereas tds(X)
also records top-down
dependencies.

pendencies on attributes of a non-terminal in any context into one dependency
graph. In other words, for each non-terminal X the computed relation tds(X)
on the attributes of X covers the actual dependencies on the attributes of any
instance of X in any structure tree. The pessimistic approach in computing the
dependencies is crucial for l-ordered grammars: it must always be possible to com-
pute the attributes of X in the order speci�ed by tds(X) irrespective of the actual
context. Hence tds(X) must describe all dependencies simultaneously.

Steps 1 and 2 of the algorithm determine the tds relations. Initially, the tds

graphs are empty. They are constructed using an auxiliary relation tdp that records
the transitive indirect dependencies in a production. The key operation during the
construction is the procedure add arc induce(tdp(p); �; �) given below. It
inserts the arc �! � into tdp(p) and adds arcs needed to transitively reclose
tdp(p). Any added arc may be induced in a tds(X) relation: if poi :a!poi :b is
added, where poi is an occurrence of X , then X :a!X :b is added to tds(X).

proc add arc induce(inout tdp(p) : graph of attrocc; in �; � : attrocc)

G := tdp(p)

tdp(p) := (tdp(p) [f�!�g)
+

for each (added) arc of the form poi :a!poi :b 2 tdp(p)nG do

if p�i :a!p�i :b 62 tds(p�i) then tds(p�i) := tds(p�i) [fp�i :a!p�i :bg �

rof

Step 1 (see Algorithm 5.4.) initializes the tdp(p) graphs with all direct depen-
dencies between the attribute occurrences of p as described by dpr(p). Because
add arc induce is used, step 1 also initializes the tds relations with all direct
dependencies occurring in the grammar.

Step 2 of the algorithm performs a closure operation of the tdp and tds graphs.
Every arc in any of the tds(X) relations is induced in every tdp(p) with an oc-
currence poi of X . This closure is computed using a marking scheme for tds
arcs. The arcs added by add arc induce to the tds relations are unmarked. Each
unmarked arc is induced by step 2 in all relevant tdp relations upon which it is
marked (see Algorithm 5.4.). When all tds arcs are marked, the e�ects of all
direct dependencies are induced in the tdp and tds relations.

124 5. Computing visit-sequences

proc step0
for each non-terminal X do tds(X) := fg rof
for each production p do tdp(p) := fg rof

proc step1
for each production p do

for each arc �!� 2 dpr(p) do
add arc induce(tdp(p); �; �)

rof

rof

proc step2
while there is an unmarked arc X :a!X :b in any tds(X) do
mark(tds(X); X :a; X :b)
for each occurrence poi of X in any production p do

add arc induce(tdp(p); poi :a; poi :b)
rof

end

proc step3
for each non-terminal X do

G := tds(X); parts(X) := []
sinks(G ; syn work ; inh work)
while syn work 6= fg _ inh work 6= fg do

syn part := fg
while syn work 6= fg do

select and remove X :b from syn work

syn part := syn part [fX :bg
preds(G ;X :b; syn work ; inh work)

end

inh part := fg
while inh work 6= fg do

select and remove X :b from inh work

inh part := inh part [fX :bg
preds(G ;X :b; syn work ; inh work)

end

parts(X) = (inh part ; syn part) : parts(X)
end

rof

Algorithm 5.4. Ordering the attributes of a non-terminal: step 1{3

proc sinks (in G : graph of attr

; out syns ; inhs : set of attr)
syns := fg; inhs := fg
for each attribute X :a in G do

if is sink(G ;X :a) then

if X :a is a synthesized attribute of X
then syns := syns [fX :ag
else inhs := inhs [fX :ag

� � rof

proc preds (inout G : graph of attr ; in X :b : attr
; inout syns ; inhs : set of attr)

for each predecessor X :a of X :b in G do

remove arc X :a!X :b from G

if is sink(G ;X :a) then

if X :a is a synthesized attribute of X
then syns := syns [fX :ag
else inhs := inhs [fX :ag

� � rof

Algorithm 5.5. Graph operations for step 3

proc step4
for each production p do

for each occurrence poi of non-terminal X do

for each pair poi :a and poi :b do

if X :a<X :b in the order induced by parts(X)
then tdp(p) := tdp(p) [fpoi :a!poi :bg

�

rof rof rof

proc condense(inout G : graph of attrocc

; in p : production)
for i := 0 to sp do for v := 1 to vpoi do if i = 0
then condense po0I v in G to V (0; v)
else condense poiS v in G to V (i ; v)

� rof rof

proc step5
for each production p do

G := tdp(p); code := []
condense(G ; p)
remove V (0; 1) from G

sources(G ;work)
while work 6= fg do

select and remove vertex �

case � of

V (0; v) : code := code ++ [suspend(v � 1)]
V (i>0; v): code := code ++ [visit(i ; v)]
else : code := code ++ [eval(�)]

esac

succs(G ; �;work)
end

code := code ++[suspend vpo0]
rof

Algorithm 5.6. Ordering the attributes occurrences of a production: step 4 and 5

5.2. Ordered scheduling 125

If any of the tdp relations is circular, the grammar is not ordered. A circularity
in step 1 indicates an error in the attribute grammar speci�cation: a dpr graph
is circular. A circularity during step 2 can indicate that the grammar is circular,
but circularities also arise for some non-circular grammars. In any case, it is not
l-ordered.

Step 3 (see Algorithm 5.4) determines the interfaces for the non-terminals.
Several orders are possible, but instead of choosing the best one (in some sense)
or even a compatible one, the choice is �xed a priori. Step 3 maximizes the sizes
of interface sets so that the number of visits is minimized. It is basically an eager
topological sort using two worklists; syn work contains only synthesized attributes
and inh work only inherited attributes. Kastens uses a \backward" sort hence we
start with the sinks of the graph and after dealing with them, continue with the
predecessors (see Algorithm 5.5). The main result of step 3 is the parts(X) data
structure. We de�ne interfaceOAG(X) = parts(X).

If non-terminal X has no attributes, then interface(X) = [] or, formulated
di�erently, vX = 0. Unlike Kastens or Reps and Teitelbaum [Kas80, RT89] we feel
that a non-terminal can indeed have no visits. The reason for this is that we have
a di�erent concept of tree decoration. For us, tree decoration means computing
the synthesized attributes of the root. Others feel that the entire decorated tree
is the result of decoration. This implies that a node without attributes must still
be visited in order to enable decoration of its children.

This di�erence in view has no severe implications for the algorithm; ours does
not di�er very much from the one presented by Reps and Teitelbaum [RT89]. It
does allow us to formulate it in terms of the high level data structure parts(X).
Historically, step 3 computes partition sets Ai(X) of attributes. The relation The name parts stems

from \partitions", his-
torically the result of
step 3.

with our data type is as follows: X I v = A2�vX+1�slot(X Iv)(X) and XS v =
A2�vX+1�slot(XSv)(X) for 1 � v � vX .

5.2.2 Ordering attribute occurrences of a production

The third step of ordered scheduling extracts interfaces from the dependencies
described by tds relations. Step 4 checks whether the chosen interfaces are
compatible. One would expect that, as suggested by the de�nitions of parti-
tionable and l-ordered grammars, the partial orders PO(X) induced by the in-
terfaces would be pasted into the dpr graphs. If the thus constructed graphs
dpr(p)[PO(p�0); : : : ;PO(p�sp)] are circular the grammar is rejected. If they are
not circular, they can be topologically sorted, producing the plans.

The ordering algorithm for chained attribute grammars presented in this thesis
follows that approach. Kastens algorithm is obscured by the usage of the auxiliary
tdp graphs from the preceding steps instead of the dpr graphs. In other words step
4 computes tdp(p)[PO(p�0); : : : ;PO(p�sp)]. If any of these graphs is circular the
grammar is not ordered (OAG) by de�nition. If all are non-circular, step 5 performs
a topological sort to determine the plans. See Algorithm 5.6 for steps 4 and 5 of
ordered scheduling.

126 5. Computing visit-sequences

i

i
s

j
tX

i
s

j
t

i
s

j
tXX

i
s

j
tX

R

p

q

r

X s
j

t

i
s

j
tX

i
s

j
t

i
s

j
tXX

R

i
s

j
t

i
s

j
tXX

R

p

q

r

a. Not ordered b. Not l-ordered

Figure 5.7. Grammars passing steps 1{3 but failing step 4

Many are confused by this usage of the tdp graphs. The tdp graphs seem to
comprise the interface orders (\the interfaces are extracted from them") so that
step 4 appears to be redundant. But once again, the chosen interfaces might not
be compatible as will be illustrated shortly.

A circularity in step 4 can originate from two sources. Either the grammar is
not l-ordered (so that no interface exists), or it is, but step 3 selected incompatible
interfaces. Figure 5.7 illustrates both cases. Both grammars have start symbol
R and one extra non-terminal X . X has two inherited attributes X :i and X :j

and two synthesized attributes X :s and X :t . Both grammars have an identical
terminal production t , but di�erent productions p and q . However, in both cases
tds(X) = fX :i!X :s;X :j !X :tg. With this restriction imposed, 3 interfaces
are possible:

1.
h �
fX :i ;X :jg; fX :s;X :tg

� i
,

2.
h �
fX :ig; fX :sg

�
;
�
fX :jg; fX :tg

� i
and

3.
h �
fX :jg; fX :tg

�
;
�
fX :ig; fX :sg

� i
.

Step 3 maximizes interface sets, so it chooses the �rst one. For the grammar
in Figure 5.7a, this partition does not comply with production q as the reader may
infer. This means that the grammar is not ordered. The other two partition are
both viable. A schoolbook `trick' is to add an arti�cial dependency X :s ! X :j

to force Kastens algorithm to �nd the second partition. However, in the grammar
from Figure 5.7b none of the interfaces comply, the grammar is not l-ordered, let
alone ordered.

5.3. Dat grammars 127

Finally, step 5 computes a total order on the attribute occurrences of a produc-
tion. This order can be interpreted as the visit-sequence code for that production.
Each output and local attribute occurrence correspond with an eval instruction
and each input occurrence corresponds with a transfer instruction. A transfer in-
struction can either be a visit (in case of a synthesized attribute occurrence of
a child) or suspend (in case of a inherited attribute occurrences of the parent)
instruction.

More precisely, a visit(i ; v) instruction in the plan for production p (1 � i �
sp and 1 � v � vpoi) corresponds to the entire set poiS v and a suspend(v) Observe that vpoi =

len part(p�i).instruction in the visit-sequence of p corresponds to the entire set po0I v . Because
it is an entire interface set that corresponds to a transfer instruction, rather than an
individual attribute occurrence, each set of input attribute occurrences is condensed
to a single vertex V (i ; v) where i is the non-terminal occurrence number and v the
visit number. By \condensing set W in graph G to x " we mean the operation of
creating a vertex x in G and deleting all vertices in W from G , where x becomes
the source of all arcs that formerly emanated from members of W as well as the
destination for all arcs that formerly reached members of W . Re
exive arcs on x

are discarded.

There are two exceptions concerning the transfer of control. The initial transfer
is implicit so that no suspend should be generated. This explains the removal
of V (0; 1). Furthermore, the �nal exit must be made explicit. Therefore, an
additional suspend is generated.

Algorithm 5.6/ implements step 5. The auxiliary functions sources and succs

move the sources of the given graph to the worklist respectively move the successors
of a given vertex in the given graph to the worklist. They are much like the graph
operations for step 3 (see Algorithm 5.5/) and are not speci�ed further.

5.3 Dat grammars

The previous section discussed Kastens' ordered scheduling. The last step of the
algorithm schedules the attribute occurrences of each production in a total order
complying with the tdp graphs. This total order is chosen rather arbitrarily from a
large set of possible orders. We will formulate a cost criterion, and then select the
order with minimal costs: chained scheduling computes visit-sequences specially
tailored for fast incremental evaluation based on cached visit-functions.

However, closer investigation of the tdp graphs reveals that they contain more
edges than necessary for the last step. This means that if the topological sort were
applied to a less restrictive graph, the costs could be reduced even further. This
section de�nes dat graphs which are meant to replace Kastens' tdp graphs. The
dat graphs contain no other arcs than strictly necessary.

As explained in the previous section, a grammar is ordered if there is no cycle
in any of the tdp graphs. Dat grammars are attribute grammars whose dat graphs
are cycle free. The class of dat grammars is slightly larger than the class of ordered
grammars.

128 5. Computing visit-sequences

5.3.1 Arc surplus in the tdp graphs

The tdp graphs that are topologically sorted in step 5 of ordered scheduling have
a surplus of arcs. How these spurious arcs are added by step 2 as well as step 4,
as we illustrate.

Let p be a production on X where a synthesized attribute s of visit w depends
only on the inherited attributes i and j of visit v , with v < w . It might be wise
to compute s as soon as i and j are available, which means for this example in
compartment v . However, since step 4 of ordered scheduling adds arcs between

i j k
s

XwXv

the attributes of the respective partitions, s is explicitly made to depend on the
inherited attribute k of visit w . Thus, the arcs added in step 4 to the tdp graph
inhibit the computation of s in compartment v .

Step 2 also introduces spurious arcs in the tdp graph. In the example in
the previous paragraph, there is a reason for s being scheduled in a di�erent
compartment than i and j . Probably, there exists a production q on X whose
inherited attribute k of visit w is used in the de�ning equation for s in q . Arc
k ! s is added to tds(X) to correctly infer the partitioning information. Arcs
in tds(X) are in turn induced in tdp graphs, amongst others in tdp(p). The arc

i j k
s

XwXv

k ! s induced by step 2 in tdp(p) prevents, once again, the scheduling of the
computation of s in compartment w .

5.3.2 De�nition of dat graphs

The use of tdp graphs in step 5 is based on the overly strict interpretation of
the de�nition of ordered attribute grammars. This de�nition states that there is a
total order in which attributes of a non-terminal can be computed. The evaluator
however has the freedom to compute attributes earlier or later than is dictated
by these orders. The only important aspect is that visit-sequences adhere to the
interfaces.

In order to exploit the freedom in scheduling computations, it is better to use
graphs that contain no spurious arcs. In the following we de�ne dat \dependencies
of attributes and transfers" graphs that are better suited as input to step 5 than
the tdp graphs.

The vertices of the dat graph

We start with de�ning the set of vertices. We distinguish two kinds. Firstly, we
associate a vertex with each attribute occurrence. Secondly, we associate a vertex
with each visit to a non-terminal occurrence. The former is known as attribute

vertex and the latter as transfer vertex.

Attribute vertices correspond to instructions to compute attributes, and transfer
vertices correspond instructions that transfer control. This distinction is natural:
step 5 orders pieces of code, so the vertices should be code.

Visits to the parent are treated di�erent from visits to children. In case of a
transfer to the parent, also known as suspend, synthesized attributes are input val-

Higher-order gram-
mars are �rst reduced.

5.3. Dat grammars 129

ues and inherited attributes are output values which is just the inverse of \normal"
visits.

As an example take a (two visit) left-hand side with the following interface:
[(fig; fsg) ; (fjg; ftg)]. In this example the �rst suspend synthesizes s and then
inherits j . The second suspend synthesizes t and exits. One could argue that this
last suspend is only \half"; it computes t , but does not need any results. What
we have brushed under the carpet is that a similar situation arises at the beginning
except that it is precisely the inverse: without giving output we get input i .

To model these half visits, we create an additional transfer vertex 0 for the
parent that represents half the initial visit. The last visit of the parent also acts as
half a visit. The set of vertices vdat(p) of the dat(p) graph is thus de�ned as

vdat(p) = O(p) [f(poi ; v) j 0 � i � sp ^ 1 � v � vpoig [f(po0; 0)g :

The arcs of the dat graph

The arcs in the dat graph represent semantic dependencies and interface require-
ments.

As an example of a semantic dependency, consider the attribute vertices � and
� . Attribute vertices stand for the de�ning equation of that attribute. Thus, if
the equation for � refers to �, then � should be scheduled after �. This is forced
by an arc �!� .

As an example of an interface requirement, consider the attribute vertices poi :j
and poi :t and the transfer vertex (poi ; v). Suppose that poi is a right-hand side
symbol and that poi :j 2 poiI v and poi :t 2 poiS v . Visit v to poi may
only be scheduled after poi :j has been computed, which is represented by an arc
poi :j!(poi ; v). Likewise, poi :t is computed by visit v . This relation is captured
by the arc (poi ; v)!poi :t .

As a second example of an interface requirement consider the two transfer
vertices (poi ; v) and (poi ;w), with v < w . Naturally, visit v to poi must be
scheduled before visit w . Such a dependency is forced with (poi ; v)!(poi ;w).

The set edat(p) is partitioned into the above three kinds of arcs: arcs from
attribute vertices to attribute vertices eaa(p), transfer{transfer arcs ett(p) and
mixed arcs emix (p).

attribute{attribute All arcs from the dpr graph will occur in the dat graph.
These arcs de�ne the semantic dependencies that have to be obeyed. Since the
dpr graph describes dependencies between attribute occurrences, these arcs are
indeed attribute{attribute arcs.

eaa(p) = dpr(p)

130 5. Computing visit-sequences

transfer{transfer For each non-terminal occurrence in p , ett(p) contains an arc
from visit v to visit v + 1, including the arti�cial transfer vertex 0 of the parent.
These arcs force an order on visits.

ett(p) = f(poi ; v)!(poi ; v + 1) j 0�i�sp ^ 1�v<vpoig

[f(po0; 0)!(po0; 1)g

mixed Finally edat(p) contains arcs to obey the interface as inferred duringThe set emix (p) con-
tains attribute{trans-
fer and transfer{attri-
bute arcs.

step 3. We distinguish between arcs describing the interface for the parent, and
arcs describing the interface for the children.

emix (p) = emix0(p) [emix1(p)

For each transfer vertex that belongs to a visit v of a child, emix1(p) contains
arcs from the inherited attributes of visit v and the outgoing arcs to synthesized
attributes of visit v , as illustrated in Figure 5.8a.

emix1(p) = fpoi :j!(poi ; v) j 1�i�sp ^ 1�v�vpoi ^ poi :j2poiI vg

[f(poi ; v)!poi :s j 1�i�sp ^ 1�v�vpoi ^ poi :s2poiS vg

1 2 3

0 1 2 3

a. mixed for child (mix1 arcs) b. mixed for parent (mix0 arcs)

Figure 5.8. The mixed arcs for a three-visit non-terminal

For the vertex associated with suspend v of the parent emix0(p) contains in-
coming arcs from the synthesized attributes of visit v and outgoing arcs to the
inherited attributes of visit v +1. This is illustrated in Figure 5.8b. Thus, transfer
vertex 0 has no incoming arcs, and transfer vertex vp has no outgoing arcs.

emix0(p) = fpo0:s!(po0; v) j 1�v�vpo0 ^ po0:s2po0S vg

[f(po0; v � 1)!po0:i j 1�v�vpo0 ^ po0:i2po0I vg

. . .

The dependencies between attributes and transfers in a production p are de-
scribed by the graph dat(p) de�ned as (vdat(p); edat(p)). This graph normally has
one source namely the vertex associated with transfer 0 of the parent (po0; 0).
However, each semantic function that is constant introduces another source. Fur-
thermore, a synthesized only visit, such as visitN 1 in the varuse grammar, to a
child is also a source.

On the other hand, the last transfer vertex of the parent (po0;vp) is the
general sink of a dat graph. Each other sink is the ultimate end of a dead-end.

5.3. Dat grammars 131

5.3.3 New steps 4 and 5

The new step 4 sets up a dat graph as de�ned above. If one of the constructed
dat graphs is cyclic, the grammar is not a dat grammar. In other words, step 4
performs the member-ship test for dat grammars.

Visit-sequences are determined in step 5 by a topological sort of the dat graphs.
Any total order that complies with the dat graph of production p , describes a
valid visit-sequence for p . In the next section, we present an algorithm that selects Optimal is to be un-

derstood as with the
lowest costs in some
cost scheme.

the \optimal" total order for incremental attribute evaluation based on memoized
visit-functions.

Although we only distinguish two kinds of vertices in a dat graph, we do
distinguish four categories of vertices, each of which maps to a di�erent visit-
sequence instruction. The mapping of dat vertices to visit-sequence instructions
is given below.

� suspend vertex

A vertex of the form (po0; v).
For such a vertex step 5 emits a suspend(v) instruction.

� visit vertex

A vertex of the form (poi ; v) with i > 0.
Step 5 emits a visit(i ; v).

� eval vertex

A vertex of the form poi :a 2 Oout(p) or p:l 2 Oloc(p).
Step 5 emits an eval(poi :a) respectively eval(p:l).

� auxiliary vertex

A vertex of the form poi :a such that poi :a 2 Oinp(p).
Step 5 emits nothing.

5.3.4 Comparing dat grammars with ordered grammars

We address the question of how dat grammars relate to ordered grammars. We
prove that the class of dat grammars is a superset of the class of ordered grammars.
In order to prove this, we �rst show that any path from attribute vertex to attribute
vertex in the dat graph has a corresponding path in the tdp graph. In particular,
this holds for circular paths which completes the proof.

Lemma Path in a dat graph.

Each segment of any element in the set of arc-sequences described by the following
regular expression describes a path in a dat graph.

� �
aa
�!

�
� mix
�!

�
tt
�!

�� mix
�!

�
�

2

132 5. Computing visit-sequences

proof

A pawn traversing a dat graph by hopping from vertex to vertex can be in two
modes: attribute-mode or transfer-mode, depending on the kind of vertex the pawn
is placed on. The pawn remains in attribute-mode while traversing

aa
�! arcs, it

switches from mode when traversing a
mix
�! arc and it remains in transfer-mode

while traversing
tt
�! arcs; all by de�nition of dat graphs. As a result the pawn

path is a
mix
�! separated sequence of

aa
�! arcs and

tt
�! arcs.

mix

mix

tt

aa

a

t

2

A path
mix
�!

�
tt
�!

�� mix
�! in a dat graph is called an interface segment. A pawn

traversing a interface segment starts at an attribute vertex which is followed by
one or more transfer vertices and ends at an attribute vertex.

Lemma Interface segment.

An interface segment has the following form

poi :a
mix
�! (poi ; v)

tt
�! (poi ; v + 1)

tt
�! : : :

tt
�! (poi ;w)

mix
�! poi :b

where slot(poi :a) < slot(poi :b).
2

proof

By de�nition, only a mixed arc
mix
�! connects an attribute vertex poi :a with a

transfer vertex (poi ; v) or vice versa. Likewise, only a transfer{transfer arc
tt
�!

connects a transfer vertex (poi ; v) with a transfer vertex (poi ; v + 1). This
explains the form of an interface segment.

The slot associated with poi :a is smaller than the slot associated with poi :b . For
i > 0 this holds because poi :a is an inherited attribute for visit v and poi :b is
an synthesized attribute of visit w , with v � w . For i = 0 this holds because
po0:a is a synthesized attribute of visit v and poi :b is an inherited attribute of
visit w + 1 (by de�nition of emix0(p)), with v � w .
2

The above lemma shows that an interface segment in dat(p) connects two
attribute vertices poi :a and poi :b of the same non-terminal. It represents the
interface requirement for p�i that p�i :a is computed before p�i :b . Kastens ensures
this requirement by pasting the arc poi :a!poi :b into tdp(p) in step4. The crux
of the following lemma is precisely the fact that dat(p) as well as tdp(p) enforce
this interface requirement.

Lemma Path correspondence.

If there is a path from attribute vertex � to attribute vertex � in the dat(p) graph,
then there is a path from � to � in tdp(p).
2

5.3. Dat grammars 133

proof

According to the �rst lemma, a path in the dat graph is a segment from the
following sequence, where Vi denote vertices.

V0
aa
�! : : :

aa
�! Vn

mix
�! Vn+1

tt
�! : : :

tt
�! Vm�1

mix
�! Vm

aa
�! : : :

According to the second lemma, each interface segment can be short circuited by

a single arc
is
�!.

V0
aa
�! : : :

aa
�! Vn

is

�����������������������! Vm
aa
�! : : :

Every vertex Vi in this sequence is an attribute vertex. Each arc �
aa
�! � is an

attribute{attribute arc induced by dpr(p). It is also present in tdp(p) since step1
induces dpr(p) arcs in tdp(p). Each arc poi :a

is
�! poi :b represents an interface

requirement. Because slot(poi :a) < slot(poi :b) this arc is induced in tdp(p) by
step4. In other words, every arc of the short circuited path occurs in tdp(p).
2

A cycle is a path. Thus, a cycle in the dat(p) graph can be mapped onto a
cycle in the tdp(p) graph. This completes our theorem.

Theorem Dat grammar.

Every ordered grammar is also a dat grammar.
2

proof

We have to prove that every grammar that passes step4 of Kastens' ordered
scheduling, also passes dat step4. This is equivalent to proving that if a grammar
fails dat step4 , it must also fail step4 . Formally, this means that if the dat(p)
graph contains a cycle, the tdp(p) graph is also circular.

Assume that there is a cycle in dat(p). This cycle must contain an attribute vertex
� since transfer vertices are totally ordered according to ett(p). Since � is part of
a cycle, there is a path from � to � in dat(p). According to the above lemma,
this means that there is a path from � to � in tdp(p).

In other words, every cycle in dat(p) has a corresponding cycle in tdp(p).
2

The class of dat grammars is strictly larger than the class of ordered gram-
mars. This is illustrated by the grammar of Figure 5.9.. The interface of X is
[(fg; fsg) ; (fig; ftg)]; S and N are single visit. The crux of the example is in
the computation of attribute X :t in production q . Since \all" the predecessors of This is true since X :t

has no predecessors.X :t are known in the �rst compartment of q , X :t might be computed there.

The grammar in Figure 5.9. is a dat grammar because of the non-circular
dat(q) graph in Figure 5.10a.. When X :t is computed in the �rst compartment,

134 5. Computing visit-sequences

S1

t
i

2Xs1X

t

p

N1
i

s

i
s t1X 2X

q

N1
i

s

r

Figure 5.9. A dat grammar that is not ordered

N :i might be scheduled next, giving the impression of an illegal back-dependency.
This allows the scheduling of visit 1 to N and thus the computation of N :s in the
�rst compartment so that X :s can be synthesized, adhering to the interface.

The grammar is not ordered as is illustrated with the (abridged) tdp(q) in
Figure 5.10b. The interface arcs close the cycle set up by the dpr(q) arcs. The arc
X :i!X :t re
ects the misconception that an attribute scheduled to be synthesized
by visit v must be computed during visit v .

N1

i s

is t

1X 2XX0

i s

is t

a. The dat(q) graph b. The tdp(q) graph

Figure 5.10. The dat(q) and tdp(q) graphs

Note however, that the grammar in Figure 5.9 is not in Bochmann normal
form [Boc76]. Synthesized attribute X :t is used for computing N :i . It is this
dependency that introduces the \back-arrow" that creates the cycle in the tdp(q)
graph. We have not yet found a dat grammar in Bochmann normal form that isFor grammars in

Bochmann normal
form, the class of parti-
tionable grammars co-
incides with the class
of l-ordered grammars
(see page 121).

not ordered. Our conjecture is that for grammars in normal form, the class of dat
grammars coincides with the class of ordered grammars.

The applicability of dat grammars is not the larger class. It is the greater
freedom of dat graphs over tdp graphs that makes them interesting. The next
section gives an example of how to exploit this freedom.

5.4 Chained scheduling

In a traditional setting, where attribute instances are stored at tree nodes, it makes
little di�erence in what order the attributes are computed. In a functional approach,

5.4. Chained scheduling 135

there is a di�erence. Values computed in previous visits that are referenced in later
visits have to be passed explicitly in bindings. Changing the scheduling order, alters
the life-time of the attribute occurrences and thus the intra-visit-dependencies,
which in turn in
uence the number and contents of bindings. This results in
di�erent incremental behavior. Choices made by Kastens for an imperative setting,
are not always appropriate in a functional setting. We investigate a di�erent
scheduling strategy, named chained scheduling.

Chained scheduling is based on Kastens' algorithm. It uses the same �rst three
steps to determine (possible) interfaces. However, the computation of the visit-
sequences from the interfaces is di�erent. Step 4 of chained scheduling sets up
the dat graphs as described in the previous section. Step 5 is a topological sort of
the dat graphs. Many total orders comply with a given dat graph. In this section
we present a priority queue based topological sort that optimizes visit-sequences
that form the base of a functional attribute evaluator.

5.4.1 Introduction to scheduling costs

The scheduling strategy during step 5 in
uences incremental behavior of the gen-
erated visit-functions based evaluator. We illustrate this with four examples.

The question in Figure 5.11. is where to schedule the computation of � := f �.
There are two possibilities. First, � can be put in a binding from the �rst com-
partment to the second. In that case � is computed in the second compartment. Computations destroy

information: functions
are not necessarily in-
jective. For example,
addition destroys infor-
mation: 3 + 5 equals
8, but so does 2 + 6.

This is illustrated in Figure 5.11a.. Secondly, f � can be computed in the �rst

compartment upon which the result is bound for the second compartment. This
is illustrated in Figure 5.11b.. Function f may destroy information. This means
that f � and f �0 may be equal even if � and �0 di�er. Thus, the so-called eager

scheduling strategy of Figure 5.11b. is preferred.

For functions with more arguments, like f in Figure 5.12., eager scheduling is
also preferred. Instead of binding a symbol table � and a symbol � for the next
visit (Figure 5.12a.), it is preferred to schedule the lookup in the �rst compartment
and bind only the address
 for the next (Figure 5.12b.). This means that if, due
to an edit action of the user, the symbol � is renamed but still mapped to the
same address, the binding remains unchanged. An additional advantage of eager
scheduling of a function with multiple arguments is that only the result of the
function is bound instead of all its arguments. As a result, the binding is reduced
in size.

However, reducing the size of bindings is not our main objective; we aim at
optimal incremental behavior. For example, in case of the production icons in
Figure 5.13., we still prefer the eager scheduling variant of Figure 5.13b., although
the variant of Figure 5.13a. induces a smaller binding.

There is one situation, where we do not opt for eager scheduling: a func-
tion with no arguments, a constant expression. Indeed, eager scheduling (see
Figure 5.14b.) induces a binding with good incremental behavior: it remains un-
changed, more precisely, it is constant. Avoiding the binding (as in Figure 5.14a.)

136 5. Computing visit-sequences

α βf α βf

a. Behind the border b. Before the border

Figure 5.11. Scheduling � := f �

α

β
γf

α

β
γf

a. Behind the border b. Before the border

Figure 5.12. Scheduling
 := f � �

α
β

γ

f

g
α

β

γg

f

a. Behind the border b. Before the border

Figure 5.13. Scheduling � := f � and
 := g �

f α f α

a. Behind the border b. Before the border

Figure 5.14. Scheduling � := f

5.4. Chained scheduling 137

does not worsen incremental behavior. On top of that a border crossing is avoided.

We conclude with the formulation of a scheduling strategy. Attribute vertices

of the dat graph should be scheduled as soon as possible except for the cases

where the semantic functions computing the underlying attribute is a constant.

5.4.2 Computation classes

We consider a path in a dat graph to be a computation. We distinguish four classes
of computations within a production, namely converging, diverging, unconnected
and chained computations. Two criteria determine the class of a computation: its
dependency on an inherited attribute of the parent, and secondly its contribution
to any of the synthesized attributes of the parent.

A computation that neither depends on nor contributes to an attribute of the
parent is called an unconnected computation. Since the class of a computation
is a local property of a production, an unconnected computation is probably a
programming error. If a computation does depend on an inherited attribute, but it
does not contribute to any result, it is called a diverging computation. Diverging
computations may indicate programming errors too. However, it is quite natural
not to inspect all input attributes of a production, so diverging computations of a
single vertex need not indicate an error. Unconnected computations and diverging
computations are sometimes called dead-ends. Dead-ends are easily detected and
eliminated by an evaluator generator.

Converging computations are computations that do contribute to any syn-
thesized attribute of the parent but that do not depend on any of its inherited
attributes. Such computations yield a constant value. Constant expressions and
syntactic references are examples of converging computations. The last kind of
computations is the class of chained computations. Chained computations do de-
pend on inherited attributes of the parent and they do contribute to the output.
Chained computations are the most common ones.

converging

unconnected

chained

diverging

Figure 5.15. The four classes of computations

In the plan icon in Figure 5.15 all computations are marked with a grey curve.
Two chained computations, one diverging, one converging and one unconnected

138 5. Computing visit-sequences

computation occur in that production. The converging and diverging computa-
tions are not optimally scheduled because both induce an unnecessary intra-visit-
dependency.

5.4.3 Priority worklist

The chained scheduling algorithm performs a topological sort of the dat graph.
At any moment a worklist contains a set of vertices all of which may be scheduled
next. Instead of selecting a random element from the worklist, the \best" one is
retrieved. We next describe what constitutes the best element.

Recall that we distinguish four categories of vertices in the dat graph. Transfer
vertices are partitioned into suspend and visit vertices and attribute vertices are
partitioned into eval and auxiliary vertices. Suspend vertices play a crucial role,
since they determine the visit-borders.

When we introduced scheduling costs we observed that the main objective is
eager scheduling. In terms of priority, this means that suspend vertices have a
lower priority than every other kind of vertex. All vertices in a diverging (and
unconnected) computation|if not eliminated after detection|will be placed in a
single compartment with eager scheduling: no border-crossing is created.

However, the introduction also learned that eager scheduling should not be ap-
plied to converging computations since this would introduce unnecessary border-
crossings. In terms of priority, this means that the sources of converging computa-
tions have a lower priority than suspend vertices. Once the source of a converging
computation is scheduled, all it successors should be scheduled eagerly since pos-
sible border-crossings can no longer be avoided.

priority vertices

low sources of converging computations
medium suspend vertices
high all other vertices

Within the high priority section, we do not distinct between vertices. The
medium section contains only suspend vertices. Since suspend vertices are totally

ordered by
tt
�! arcs, the medium section contains at most one element. There is

no need for sub-priorities. However, the low priority section is subdivided.

The dat graph may have various converging computations, each with its own
source in the low priority section. Some of these computations may converge to
the \main-stream" computation in the �rst compartment, others may converge
later. Suppose that scheduling of the dat graph is proceeded so far that the �rst
suspend vertex yet to be scheduled closes compartment v . Suppose also that the
high and medium sections are empty. In that case, the next vertex to schedule
must be chosen from the low priority section. It makes a di�erence which one
is selected; we must take one that contributes to the synthesized attributes of
compartment v . Such a synthesized attribute exists, since otherwise the suspend

5.4. Chained scheduling 139

vertex that closes compartment v would be in the medium section. We shouldn't
take another one into account, since this would introduce an unnecessary binding.

We see that the suspend vertices form the intermediate goals of the computa-
tions. Suspend vertices are totally ordered, and the last one is the ultimate goal
of the computations in the visit-sequence.

We say that a vertex a has a goal g if there is a, possibly empty, path from
a to g in the dat graph, and g is a suspend vertex. Note that a vertex has
multiple goals in general. We will be interested in a smallest goal with respect
to the total order on suspend vertices. Observe that not every vertex has a goal:
vertices in diverging and unconnected computations do not contribute to any of
the synthesized attributes of the parent and are thus not connected with suspend
vertices.

The function goal (Algorithm 5.16.) returns, given a dat graph G and a vertex
� of G , the transfer number of �'s nearest goal or +1 in case � has no goal.
The function goal(dat(p); �) returns an integer in the range 0 : : :vp or +1.
There is only one vertex, namely (po0; 0), that has goal 0.

The procedure retrieve (Algorithm 5.17.) retrieves the cheapest element �

with respect to graph G from a priority worklist work taking the priorities into
account as described above.

5.4.4 Ordering attribute occurrences of a production

We will now present chained step5 that replaces step5 of Kastens ordered schedul-
ing. chained step5 performs a topological sort of the dat . The topological sort is
based on the priority scheme devised in 5.4.1.

The topological sort of chained scheduling (see Algorithm 5.18.) requires less
pre- and postprocessing than Kastens' topological sort. Most notably, condensing
is no longer needed since the transfer vertices in the dat graph represent visits
and suspends. As a result, the input attributes of a production become auxiliary
vertices in the dat graph. To assure that the �nal suspend is indeed scheduled
last, we make (po0;vp) the ultimate sink of the graph by adding arcs from all
other vertices.

Procedure sources(G ;w) called from chained step5 determines the sources
of graph G and initializes worklist w with them. In Algorithm 5.18. the low
section of the worklist is initialized that way. It thus contains the sources of all
converging computations and the special transfer vertex (po0; 0) of the parent.
Vertex (po0; 0) is retrieved �rst, since work :high = fg, work :medium = fg and
the goal of (po0; 0) is the lowest possible: 0. Therefore, instruction suspend(0)
is scheduled �rst. If compatibility with Kastens' visit-sub-sequences is desired, it
must be deleted.

140 5. Computing visit-sequences

func goal(in G : graph of vertex ; in � : vertex) : integer
g := +1
for each vertex � of G do

if � is a suspend vertex (po0; v) of G then

if there is a path from � to � in G then g := g min v �

�

rof

return g

Algorithm 5.16. The goal function

type worklist = record low,medium,high: set of vertex end

proc retrieve(in G : graph of vertex ; inout work : worklist ; out a : vertex)
if work :high 6= fg
then select and remove any vertex � from work :high

else if work :medium 6= fg
then select and remove any vertex � from work :medium

else select and remove a vertex � from work :low

such that goal(G ; �) is minimal
�

�

Algorithm 5.17. The retrieve procedure

proc chained step5
for each production p do

G := dat(p) [f�!(po0;vpo0) j � 6= (po0;vpo0)g ; code := []
work :high := fg; work :medium := fg; sources(G ;work :low)
while work :high [work :medium [work :low 6= fg do

retrieve(G ;work ; �)
case � of

(po0; v) : code := code ++[suspend(v)]
(poi > 0; v) : code := code ++[visit(i ; v)]
� 2 Oout(p) : code := code ++[eval(�)]
� 2 Oinp(p) : skip

esac

psuccs(G ; �;work)
end

rof

Algorithm 5.18. New step 5: chained scheduling

5.4. Chained scheduling 141

proc psuccs(inout G : graph of vertex ; in � : vertex ; inout work : worklist)

for each successor � of � in G do

remove arc �!� from G

if is source(G ; �) then

if � is suspend vertex (it has the form (po0; v))

then work :medium := work :medium [f�g
else work :high := work :high [f�g

�

�

rof

The procedure psuccs removes � and determines the new sources of G after �
is removed. It updates the worklist work accordingly, respecting the type invariant
of the priority worklist.

The while loop in chained step5 has the following invariant. The vertices of
the dat graph are partitioned into two sets A and B . The vertices in A are linearly
ordered as described by code . Every vertex in B is larger than or incomparable
with any vertex in A. Initially, A is empty and B contains all vertices of the dat

graph. The algorithm ends when B is empty; code then holds the total order.
Worklist work is a subset of B containing the smallest elements of B . In other
words, it contains the sources of the subgraph of dat induced by B . work :low

contains all vertices that have no predecessors in A. work :medium contains \all"
suspend vertices and work :high contains the rest.

5.4.5 Optimizing bindings

Figures 5.11/ 136{5.14/ 136 illustrate that the contents of bindings is in
uenced by
scheduling. Figures 5.12/ 136 and 5.13/ 136 show that the size of the binding may be
reduced. In the extreme case presented in Figure 5.14/ 136 a binding is eliminated
altogether. By deferring the computation of � := f till the second compartment,
a border-crossing is avoided.

A more elaborate example is presented in Figure 5.19. which shows two ways
of scheduling the dat graph of the stat production in the varuse grammar. By We mean the compu-

tation consisting of the
vertices corresponding
with visit(N ; 1) and
eval(N :id).

delaying the converging computation that determines N :id , which includes the
�rst visit to N , the binding L1!2 may be kept empty.

Scheduling does in
uence the life-time of attribute occurrences and thus the
number of bindings. It is not possible however, to minimize the number of non-
empty bindings in an attribute grammar on account of the local characteristics of
the productions only. A minimal number of bindings can not be determined by a
appropriate priority scheme alone.

For example, consider the production in Figure 5.20.. The di�erence between
Figure 5.20a. and Figure 5.20b. lies in the local attribute k which is scheduled
in the �rst respectively second compartment. As a result, the scheduling in Fig-
ure 5.20a. induces only two bindings: on from 1 to 2 containing the (source for)
k and one binding from 2 to 3 containing both i and k . Figure 5.20b. on the

142 5. Computing visit-sequences

stat

decs

decs

env

env
code

code

id

1L

L1 N1L2

L2 1L

L1

stat

decs

decs

L2

L2

env

env
code

code

id
N1

a. Deferring converging computations b. Eager scheduling for converging computations

Figure b shows that eager scheduling introduces a binding. The priority scheme for

chained scheduling as discussed in 5.4.3 makes an exception for converging com-

putations, essentially delaying them until necessary. This results in the bindingless

order of Figure a.

Figure 5.19. Chained scheduling for stat of the varuse grammar

i

k

i

k

a. 3 crossings, 2 bindings b. 3 crossings, 3 bindings

Figure 5.20. Minimizing the number of bindings

other hand induces three bindings: one from 1 to 2 containing k , one from 1 to
3 also containing k and one from 2 to 3 containing i .

Although the number of border-crossings does not depend on the scheduling
strategy (it only does so for converging computations), the number of bindings

does. The reason is that multiple border-crossing may be merged into a single
binding. This is what happens in Figure 5.20: because there is a binding from
compartment 2 to 3 (containing i), the border-crossing for k in Figure 5.20a gets
a free ride. If the intra-visit-dependency using i were not present, both cases would
show two border-crossings resolved with two bindings.

This observation is important because it shows that for reducing the number
of bindings all border-crossings must be known. In particular, It must be known
whether the bindings for a child are empty or not. This means that the border-
crossings for all productions that may occur as a child in
uence the number of
non-empty wrappers for the production under consideration.

The naive algorithm given below determines a combination of visit-sequences
such that the number of non-empty parcels is minimal. It is assumed that there
are n productions p1 : : : pn in the grammar, and that the visit-sequences corre-
sponding with the various scheduling orders for production pi are collected in the
set VSS (pi) (thus VSS (pi) contains all possible plans for pi).

5.5. Review 143

b := +1
for all (v1; v2; : : : ; vn) 2 VSS (p1)�VSS (p2)� : : :�VSS (pn) do

perform emptiness test on visit-sequences v1; v2; : : : ; vn
bind := number of non-empty parcels

if bind < b then bind := b ; (vss1; vss2; : : : ; vssn) := (v1; v2; : : : ; vn) �

rof

f (vss1; vss2; : : : ; vssn) is a combination of visit sequences

with the minimal number of parcels b .

g

The number of total orders complying with a partial order on v vertices can be
exponential in v . This means that the number of visit-sequences in VSS (pi) that
can be derived from dat(pi) may be exponential in the number of instructions.
The number of elements in the Cartesian product VSS (p1) � : : : � VSS (pn) is
already exponential in the number of productions (n) if each of the sets VSS (pi)
contains more than one element. The emptiness test itself is a transitive closure on
the parcel dependency graph which has 1+

P
X2N

1
2
�vX � (vX �1) vertices. The

naive approach is extremely ine�cient, but the problem itself seems intrinsically
hard.

5.5 Review

Step 5 of Kastens' ordered scheduling algorithm [Kas80] constructs an arbitrary
order that complies with the tdp graphs. We associated qualitative costs with
scheduling orders (visit-sequences) so that the best order can be selected. However,
the tdp graphs contain too many arcs so that not every visit-sequence that is
compatible with the interfaces of the symbols complies with the tdp graph.

This was remedied by de�ning new graphs, the dat graphs, that contain only
those dependencies that describe interface requirements or dpr relations. As ex-
pected, the class of dat grammars is bigger, albeit not essentially, than the class
of ordered grammars.

We presented one application of cost driven scheduling: chained scheduling.
Chained scheduling chooses that order such that every (non converging) computa-
tion is scheduled as early as possible. This results in better incremental behavior.
Vogt already tried two di�erent scheduling strategies [Vog93], which he named
greedy and just in time evaluation. Greedy evaluation equals eager scheduling as
discussed in this chapter. Converging computations are scheduled too early. Just
in time evaluation does the opposite. It avoids the bindings for converging eval- Note that just in time

evaluation does intro-

duce bindings for di-
verging computations.

uation but also postpones all other computations which has a negative e�ect on
incremental behavior. Besides, Vogt did not use dat graphs so scheduling freedom
was not optimal.

Steps 1{3 of Kastens' algorithm are also biased against traditional evaluators:
the partitions are made as large as possible, making the number of required visits
as small as possible. In our setting, incremental evaluation is obtained by memoiza-
tion of visits. More visits mean �ner grain and thus better incremental behavior.

144 5. Computing visit-sequences

The �nest grain incremental evaluation is obtained by using one visit-function
per synthesized attribute. However, a one-visit-per-attribute scheme creates the
largest memoization overhead. Overhead can be reduced by grouping dependent
synthesized attributes in one partition. An interesting problem is to devise a new
algorithm for computing interfaces coarser than one-visit-per-attribute but �ner
than Kastens' interfaces.

Storage optimizations in traditional evaluators heavily depend on the life-time
of the attribute occurrences [Kas87]. Therefore, it seems that storage optimization
might bene�t from dat graphs with an appropriate priority driven topological sort.

6
145

Chapter 6

An implementation

Previous chapters exhibited a novel approach in incremental attribute evaluation,
namely memoized visit-functions. It was �rst devised by Vogt, Swierstra and
Kuiper [VSK91] to solve the problems of incremental evaluation of higher-order at-
tribute grammars. Vogt conducted the �rst implementation experiments [Vog93].

This thesis continues the work of Vogt. The current chapter describes the
project of implementing a generator for attribute grammar evaluators based on
memoized visit-functions. It discusses the architecture of the generator and the
generated evaluators and includes some test results. Furthermore, we present a
new edit model. We conclude this chapter with a discussion of open problems.

6.1 Structure of the generator

As part of our research on attribute grammars, we have written a generator for
attribute grammar evaluators, the lrc processor. The lrc processor consists of
a front-end which processes a grammar speci�cation into intermediate code and
a back-end which translates intermediate code to executable code. We have also
written a tool, that generates production and plan icons.

6.1.1 Front-end

The front-end of the lrc processor is based on the lrc kernel, written by Matthijs
Kuiper for his experiments with parallel attribute evaluation [Kui89]. The lrc ker-
nel consists of a lexical scanner, parser and attribute evaluator. It reads a grammar
speci�cation written in ssl, the Synthesizer Speci�cation Language [RT88], and
constructs a parse tree. An attribute evaluator traverses the parse tree, checking
the types of productions, attributes, equations and semantic functions while con-
structing the agstore. The agstore is a collection of data structures representing
the attribute grammar. More speci�cally it stores lists of productions, equations,
non-terminal and attributes, and occurrences of the latter two. These lists are
cross-referenced where appropriate.

146 6. An implementation

The Synthesizer Speci�cation Language has been chosen as source language
for the lrc processor because the Synthesizer Generator is a well known evaluator
generator for which many syntax based editors have been written. By choosing
such a wide-spread language, we assure ourself of many grammar speci�cations to
test the lrc processor with.

The initial version of the lrc kernel served as starting point for Vogts exper-
iments. Our project is also based on the kernal albeit a newer version. We have
added several modules that together implement a generator for attribute evaluators
based on memoized split visit-functions. Each module implements a phase of static
analysis corresponding with the algorithms discussed in the previous chapters.

As an initialization, referred to as phase zero, the lrc kernel is activated toPhase 0

read an ssl speci�cation and construct the corresponding agstore.

Phase 1 constructs the visit-sequences. We have implemented both algorithms,Phase 1

Kastens' ordered scheduling as well as chained scheduling. For comparison, gen-
eralizations of Vogts greedy and just-in-time scheduling [Vog93] have also been
implemented. The �rst phase includes an algorithm to strip local dead-ends (di-
verging computations) from the visit-sequences.

The second phase �rst determines the life-time of attribute and binding oc-Phase 2

currences. Furthermore, the bind grammar is induced and the empty parcels are
determined.

The third phase of the generator induces the split grammar and the associ-Phase 3

ated encapsulators. A �rst attempt to elimination has been made, but the other
optimizations discussed in Section 4.3 have not yet been implemented.

Each of the four phases of the front-end generates intermediate code as well as
internal tables for diagnostics and debugging. Phase zero generates intermediate
code for equations, semantic functions and the constructors of the abstract syntax
tree. Phase one generates the visit-sequences, and phase two the augmented visit-
sequences and the bindings. The third phase generates the split grammar and the
encapsulators. For an overview, see the following table.

phase intermediate code

0 abstract syntax, equations, semantic functions
1 visit-sequences
2 bindings, visit-functions
3 split syntax, encapsulators

6.1.2 Back-end

The back-end of the lrc processor reads the intermediate code and data gen-
erated by the front-end. It generates an attribute evaluator. Three orthogonal
characteristics determine the kind of evaluator: the architecture (visit-sequences,
VSS visit-functions, FUN visit-functions, SPLIT visit-functions), the model (plain
or incremental evaluation) and the target language (pascal or c).

Di�erent architectures require di�erent parts of the intermediate code. A stan-
dard visit-sequence evaluator may be generated, requiring only the intermediate

6.1. Structure of the generator 147

code of phases zero and one. Alternatively, the intermediate code of phase zero
and one may be mapped to visit-functions using the VSS mapping. In that case, no
bindings are generated since attribute instances are stored in the abstract syntax
tree. Thirdly, pure visit-functions (FUN mapping) may be generated using the in-
termediate code from phase two as well. The back-end has not yet been extended
to generate an evaluator using split visit-functions (SPLIT mapping).

Not every architecture can be combined with every target language or evalua-
tion model. The following table lists valid (v) combinations.

architecture language and model

pascal c

plain incr. plain incr.
visit-sequences v

visit-functions from VSS v v

visit-functions from FUN v v

visit-functions from SPLIT

pascal is supported as target language for plain visit-sequence based evalua-
tors because part of the lrc kernel|which is written in pascal|is generated by
the lrc processor itself; lrc is partly bootstrapped. c is chosen as main target
language since it is more or less (hardware) platform independent. We have not
taken the trouble to write a run-time library for every combination in the above
table. This explains for the missing vs. Unfortunately, this prevents us from
comparing architectures, most notably incremental evaluation with visit-sequences
versus incremental evaluation with memoized visit-functions.

6.1.3 Rundraw

Plan icons provide for an excellent overview of the attribute dependencies in a
production. We have written a tool called rundraw that reads lrc output and
writes a postscript �le containing the (production or plan) icons of requested
productions. The postscript �le conforms to a special syntax so that it may be
edited by an interactive drawing program.

The use of rundraw is twofold. Grammar writers sometimes use grammar The icons generated
by rundraw are in
essence the same as
the ones appearing in
this thesis. However,
they are not of presen-
tation quality, because
rundraw is rather
rigid in laying out
arrows.

constructions that take the grammar out of the class of ordered or dat grammars:
a cycle emerges in one of the tdp or dat graphs. Such cycles are much more easily
studied in a graphical representation.

rundraw proved also useful while trying out new techniques. Especially in the
cause of writing new scheduling algorithms with di�erent priority schemes (such
as chained scheduling) or optimizations (such as elimination), plan icons provide
quick insight in the obtained results.

148 6. An implementation

6.2 Structure of generated evaluators

In this section we will describe the structure of a generated evaluator using an
incremental model, c as target language and an architecture based on FUN visit-
functions.

A generated evaluator consists of two parts: a grammar dependent part and a
�xed part, the so-called library. The library can be further subdivided into a library
for plain evaluation and a library for incremental evaluation.

The grammar dependent code is emitted by the backend. It includes code
for trees, bindings; semantic functions and equations; the visit-sub-sequences and
some tables for diagnostics. The library code for incremental evaluation imple-
ments term sharing and visit-function caching. The non-incremental library code
implements terms and primitive values and the operations on them.

6.2.1 Library for plain evaluation

The major part of the library implements the primitive values like booleans, integers
and strings and the operations on them like logical and (^), addition (+) and
uppercase conversion (upstring). Without much trouble, additional operations or
even new primitive values can be added to the library.

In addition to primitive values, the library also implements structured terms. To
simplify implementation, terms are untyped and thus independent of the grammar.

The library exports the type term|corresponding to N from Section 4.4|
that implements any term:
ow trees, data trees as well as bindings. In a future
version, term would also implement split trees. One would expect the following
de�nition for term

typedef

struct termnode

{

production_tag tag;

struct termnode **child;

} * term;

which can be paraphrased as: \a termnode consists of a production tag tag and

tag
child

t

chld1

chld2

chld3

chld4

a child array (�rst *) which holds pointers (second *) to nodes".

The above de�nition is correct. However, we want to eliminate the extraWe assume that
sizeof(int) �

sizeof(void*).
indirection from the child �eld to the array of children. The idea is to \misuse"
a pointer �eld as tag �eld, leading to a de�nition like the following.

typedef

struct termnode

{

void * tag;

struct termnode **child;

} * term;

6.2. Structure of generated evaluators 149

The child array consists of pointers, and the tag now is a pointer |which must be
coerced to integer now and then. The representation we have chosen abbreviates
the above de�nition to the following.

typedef

void * ptr;

typedef

ptr * term;

These declarations can be paraphrased as: \a term is an array of pointers, where

tag

t

chld1

chld2

chld3

chld4

the �rst pointer is a coerced production tag".

Let us shortly discuss the properties of the chosen representation. We distin-
guish two frequently occurring operations on (
ow) trees, namely plan selection
and destruction (child access). Retrieving a child from a term in the chosen im-
plementation requires indexing, an little amount of work that can not be avoided.
Selecting a plan requires two steps: an indexation to extract the tag �eld and a
lookup of the start address of the associated visit-function. The latter is usually
implemented as a switch statement. The lookup can be avoided by storing the
start addresses of the visit-functions in the tree node in addition to the tag �eld.
For example, a decl node is visited twice, so the associated �elds in the array
would be as follows.

tag value for decl

pointer to visit1L
pointer to visit2L

pointer to N child
pointer to L child

Such implementation is especially fruitful for split trees because in that case
each tree has only one visit-function associated with it. Since there is a one-to-one
correspondence between the (address of) this visit-function and the tag �eld, the
tag �eld may be removed at the cost of a lookup when the term is a data tree
being destructed. When the tag �eld is replaced by a pointer to a visit-function,
an instance of term could be viewed as a function that can be \called". In this
respect, such a function corresponds to a partially parameterized visit-function as
described in Section 4.4.

t

chld1

chld2

chld3

chld4

func

code

6.2.2 Library for incremental evaluation

Incremental evaluation is achieved through two mechanisms that are completely
separated from plain evaluation: sharing of terms and caching of visit-functions.
In order for function caching to be e�cient, fast argument comparison is required.
Terms are represented uniquely, so that term equality can be realized by pointer
equality. In other words, term sharing forms the bases of visit-function caching.

The library for incremental evaluation implements term sharing and visit-
function caching. We will also discuss garbage collection.

150 6. An implementation

Memoizing constructors

Term sharing is essentially achieved by caching calls to malloc, the c primitive for
dynamic memory allocation. For example, assume a constructor fork is applied
to the two uniquely represented subtrees T1 and T2. In light of the de�nition of
terms given in 6.2.1 this requires a node of three �elds: the tag for fork , a pointer
to T1 and a pointer to T2. However, instead of allocating this three-�eld node
right away, it is �rst checked to see whether such a node already exists. If so, that
node is returned. If not, the node is allocated.

The following c function C_fork implements the constructor fork. Note thatTo avoid name clashes
between the tag and
the constructor asso-
ciated with a produc-
tion, the former is
pre�xed with T and
the latter with C .

a three-�eld local variable node is temporarily constructed. The constant T_fork
denotes the tag for a fork node; it must be cast to term.

term C_fork(term T1,term T2) {

term node[3];

node[0]=(term)T_fork;

node[1]=T1;

node[2]=T2;

return SHALLOC(node);

}

The macro SHALLOC calls the library routine shared_alloc that we will discuss
next. Observe that the �rst parameter for shared_alloc denotes the size of the
node in bytes; divided by sizeof(ptr) it denotes the number of �elds, 3 in the
fork example.

#define SHALLOC(n) shared_alloc(sizeof(n),(term)&n)

The constructor cache is a hash table. It is implemented as an array of lists ofThis is known as
\hashing with collision
resolution by chain-
ing" [CLR92].

term nodes. We distinguish three stages in shared_alloc. First, the hash value
associated with the given node is computed in i: the hash value of the tag initializes
i, and each childs hash value rehashes i. Secondly, entry i of the hash table is
searched: the list is traversed (t=NEXT(t)) until the end of the list is reached
(t==FAIL) or the node matches the list entry (memcmp(t,node,size)==0). TheThe hash functions

HASH TAG and REHASH

must be carefully cho-
sen.

third step actually adds the node to the hash table if it did not already occur in
the list. The function hash_table_add eventually calls malloc.

term shared_alloc(int size,term t1) {

term t2; int num=size/sizeof(ptr); int i;

i=HASH_TAG(LRC_TAG(t1));

{ int n; for(n=1; n<num; n++) i=REHASH(i,HASH(t1[n])); }

t2=hash_table[i];

while (t2!=FAIL && memcmp(t1,t2,size)!=0) t2=NEXT(t2);

if (t2==FAIL) t2=hash_table_add(i,size,t1);

return t2;

}

6.2. Structure of generated evaluators 151

The above function does not distinguish between tree nodes and elements in
a list of the hash table. The truth is, that they are the same. Each term is
represented by a memory block with the following layout.

next hash hits birth size tag
-5 -4 -3 -2 -1 0

pointers to children

A pointer to such a block is supposed to point to the tag �eld. The ele-
ments to the left of the tag �eld are for internal administration and diagnostics
only. For example, the \hash" �eld records the hash value as computed in i by \hits" records the

number of hits on
the entry, and \birth"
records the creation
time.

shared_alloc. All nodes with the same hash value are linked via the \next" �eld.
The HASH and NEXT macro access these �elds.

. . .

For primitive values, we distinguish two representations. Firstly, we use a plain
c implementation: int for integers and char* for strings and so forth. Secondly,
we use a representation similar to the one for real terms. The diagram below
illustrates the memory block layout. Note that in this case, the size of the block
needs not be a multiple of sizeof(ptr).

next hash hits birth size tag
-5 -4 -3 -2 -1 0

primitive value

The reason for the second representation of primitive values is uniformity. For
example, we need not make a distinction between primitives and non-primitives in
shared_alloc where we refer to the hash value of the children (HASH(node[n])).
The uniform approach also allows for a more elegant framework for memoizing the
visit-functions.

For each primitive type, two functions are available that coerce one represen-
tation into the other. An integer t in \shared" implementation is converted to a
c integer with the aid of the macro VALUE(t,int).

#define VALUE(t,type) (*(type*)((term)(t)+1))

The conversion the other way round is more complex. Each primitive type
requires a library function that creates a shared instance; the function is known as The function C int

constructs an integer
term. Hence the
constructor like name.

the unique constructor. The unique integer constructor is named C_int. Unique
constructors hide two primitive dependent characteristics: equality (eq_int) and
hash value (hash_int(i)).

term C_int(int i) {

struct {production_tag tag; int val;} node;

node.tag=T_int;

node.val=i;

return shared_alloc_prim

(hash_int(i), eq_int, sizeof(node), (term)&node);

}

152 6. An implementation

Equal primitive values must be mapped to the same term. The equality function
passed to shared_alloc_prim implements the knowledge of when two primitives
are equal. For integer terms, equality is straightforward.

bool eq_int(term t1,term t2) {

return TAG(t1)==TAG(t2) && VALUE(t1,int)==VALUE(t2,int);

}

Furthermore, a hash value is passed to shared_alloc_prim. The hash func-
tion maps the primitive value to a hash value in the correct domain. Only the
programmer knows the structure and distribution of instances of the primitive
type, so he must write a homogeneous distributed hash function. For integers the
following hash function usually does a good job [CLR92].

hash_value hash_int(int i) {

return abs(i) % hash_table_size;

}

The library function shared_alloc_prim is used to implement primitive types
as is demonstrated in the C_int function above. It has a de�nition similar to
shared_alloc.

term shared_alloc_prim(hash_value i,eq_func eq,int size,term t1) {

term t2;

t2=table[i];

while (t2!=FAIL && !eq(t1,t2)) t2=NEXT(t2);

if (t2==FAIL) t2=hash_table_add(i,size,t1);

return t2;

}

. . .

The correctness of the evaluator is not in danger when we relax the uniquenessIn addition to the
equality of visit-
function arguments,
semantic functions
may use equality on

primitive values. The
latter can no longer
be implemented with
pointer equality, when
the uniqueness require-
ment is dropped.

requirement. Any two terms may be declared di�erent, that is, represented by a
di�erent set of nodes. The only e�ect is less e�cient evaluation since fewer visit-
functions are likely to hit. We may decide not to memoize certain constructors in
order to save space occupied by the hash table. This might lead to more e�cient
cache lookups. We must realize however, that when an exact copy of a term
is constructed all copied nodes will be found in the cache until a non-memoized
constructor is applied. Every ancestor of that newly allocated node will create new
nodes.

If two terms are declared equal|they are represented by the same set of
nodes|they must have the same meaning. Non-primitive terms are semanti-
cally equivalent if they have the same structure. Primitive terms are semanticallyTwo equal associative

arrays may be rep-
resented by di�erent
AVL trees.

equivalent if they denote the same value. For example, when we use integers to
implement booleans, we could agree that any non-zero value corresponds with
true .

6.2. Structure of generated evaluators 153

bool eq_bool(term t1,term t2) {

return TAG(t1)==TAG(t2) &&

(VALUE(t1,int)==0 && VALUE(t2,int)==0

|| VALUE(t1,int)!=0 && VALUE(t2,int)!=0

);

}

Suppose we incorporate the above equality function in C_bool. Suppose also
that we were to execute the following fragment t1=C_bool(3); t2=C_bool(4);.
Then, the pointers t1 and t2 would be equal, that is to say, t2 would also point
to the node storing 3, because 3 has the same meaning as 4, namely true .

For e�ciency reasons, the uniqueness constructors for some primitives are sup-
plied with a sort of cache. For example, for the integer primitive, we prerecord
the terms associated with integers in the range �100 : : : + 100 in a local ar-
ray. The function C_int either returns an array entry or it falls through to the
original routine discussed above, depending on its argument falling in the domain
�100 : : : + 100 or not.

Memoizing visit-functions

Visit-function memoization is achieved by caching function applications. For ex-
ample, assume a function f is applied to an argument x . Instead of calling f x

it is �rst checked whether f was previously called with the argument x . If it was,
the previously computed and stored result is returned. If not, the function is called
and the result stored for future reference.

The macro MEMO implements cached function application. To cache the appli-
cation of the c function f to argument x call MEMO(f,x,y), which sets y to the
result.

In order for MEMO to be generally applicable, the functions to be cached must
conform to a uniform format. The format we have chosen is as follows. A function
has one input parameter called the input packet and one result called the output

packet. Both packets are an array of terms, in e�ect allowing multiple arguments
and results. The \term arrays" are passed by reference. The following two dec-
larations de�ne the type packet and the type visfun. The later describes the
signature of functions that can be memoized via MEMO.

typedef term * packet;

typedef void visfun(packet,packet);

A packet consists of terms. Thus, if an integer is to be passed as argument, it
must �rst be converted to shared representation (using C_int) before it can be put
in a packet. This accounts for the term representation for primitives introduced
previously.

Let us take the varuse grammar as an example, more speci�cally, the second
visit to an L node. The output packet O_L_2_tp for visit2L is a structure recording

154 6. An implementation

the results of that function. In other words, it consists of LS 2 and LBS 2. Since
the latter is empty it consists of the code attribute only.

typedef struct {

term code;

} O_L_2_tp;

The input packet I_L_2_tp contains not only LI 2 and LBI 2 but also the
input tree, in this case an L tree represented by term. The inherited binding
attribute L1!2 is also stored as a term.

typedef struct {

term tree;

term P_L_1_2;

term env;

} I_L_2_tp;

Function visit2L is implemented by the c function VNT_2_L. VNT functions useVNT stands for \visit
to non-terminal". a switch statement on the production tag to select the appropriate VPR visit-sub-
VPR stands for \visit
to production".

sequence.

void VNT_2_L(I_L_2_tp *ip, O_L_2_tp *op) {

switch (TAG(ip->tree)) {

case T_empty : MEMO(VPR_2_empty,ip,op); return;

case T_decl : MEMO(VPR_2_decl ,ip,op); return;

case T_stat : MEMO(VPR_2_stat ,ip,op); return;

}

}

The type of a visit-function as VPR_2_stat nearly matches visfun: it has
two parameters, an input packet ip passed by reference and an output packet op
passed by reference. The only problem still left is that the type of the packets is
too strong: I_L_2_tp and O_L_2_tp instead of packet. That is easily remedied
by type casting the parameters to the right type. The sizes of the packets mustA safe implementation

for MEMO(f,ip,op) is
f(ip,op). The result
is a non-incremental
evaluator.

remain known for the library routine memo discussed below.

#define MEMO(f,ip,op) memo((visfun)(f)

, sizeof(*ip),(packet)(ip)

, sizeof(*op),(packet)(op)

)

The VPR functions are of type visfun. As an example, the second subsequence
for stat is given below. It consists of four instruction: an eval instruction to
compute the environment for L2, a visit instruction for the second visit to L2 , a
visit instruction for the �rst visit to N and �nally an eval instruction to compute
the result L1:code . The four instructions are easily identi�ed in the following c

fragment; they immediately follow the declarations.

6.2. Structure of generated evaluators 155

void VPR_2_stat(packet ip, packet op) {

#define IP (*(I_L_2_tp*)ip)

#define OP (*(O_L_2_tp*)op)

I_L_2_tp I_L_2_2;

O_L_2_tp O_L_2_2;

I_N_1_tp I_N_1_1;

O_N_1_tp O_N_1_1;

I_L_2_2.env = IP.env;

I_L_2_2.tree = CHILD(IP.tree,2);

I_L_2_2.P_L_1_2 = W_stat_1_2_CAST(IP.P_L_1_2).P_L_2_1_2;

VNT_2_L(&I_L_2_2,&O_L_2_2);

I_N_1_1.tree = CHILD(IP.tree,1);

VNT_1_N(&I_N_1_1,&O_N_1_1);

OP.code = equation_7(O_L_2_2.code, O_N_1_1.id, IP.env);

return;

#undef IP

#undef OP

}

The declarations within a VPR function consist of two parts: two macros and

plan stat

begin 2
eval(L2:env);
visit(L2; 2);
visit(N ; 1);
eval(L1:code)

end 2

a number of packets. The two macros de�ne IP and OP that are used instead of
the arguments ip and op. This allows for clear expressions as IP.env which relies
on a type cast of ip to the (intended) type I_L_2_tp. The second part of the
declarations consists of an input and output packet for every visit occurring in the
subsequence. If instruction visit(Xi ; v) occurs, then the packets I_X _i_v and
O_X _i_v are declared. Their respective types are I_X _v_tp and O_X _v_tp.

Each visit instruction is preceded by assignments that set the non attribute
�elds of the associated input packet. Two kinds of assignments are distinguished:
assignments to tree parameters (as in I_L_2_2.tree=CHILD(IP.tree,2)) and
assignments to binding attributes. Observe also that the input and output packets
are indeed passed by reference (as in VNT_1_N(&I_N_1_1,&O_N_1_1)).

Each eval instruction in a plan has an equation associated with it. An equation
is either implemented as a c function (see for example equation_7), or it is
inlined. In the lrc processor, only copy-rules have been inlined. See for example
I_L_2_2.env=IP.env.

. . .

Let us now discuss to the library function memo. It is basically the same as the
shared_alloc library routine discussed previously. In essence, it manages a hash
table where the cells have the following layout. The sizes of the \input packet"
and \output packet" �elds depend on the signature of the visit-function \func",
but they are a multiple of sizeof(ptr).

156 6. An implementation

next hits birth func
-3 -2 -1 0

input packet output packet

In memo we distinguish the same three steps as in shared_alloc: the hashTHASH could look at
the address of term

ip[n] or at the hash
value recorded for that
term. FHASH can only
use the address of the
passed function.

value is computed, the hash table is searched and depending on the outcome of the
search, the visit-function is called and the result stored, or a previously computed
result is returned.

void memo(visfun f,int ipsize,packet ip,int opsize,packet op) {

cell c; int ipnum=ipsize/sizeof(ptr); int i;

i=FHASH(f);

{ int n; for(n=0; n<ipnum; n++) i=REHASH(i,THASH(ip[n])); }

c=table[i];

while (c!=FAIL && !EQ(f,ip,ipsize,c)) c=NEXT(c);

if (c==FAIL) {

f(ip,op);

hash_table_add(i,f,ipsize,ip,opsize,op);

} else {

memcpy(op,c+1+ipnum,opsize);

}

return;

}

As with constructor sharing, correctness is not in danger when we do not
memoize each function call. The e�ect is less e�cient evaluation since functions
that are not memoized can not hit. Relaxing visit-function memoization is a space
time trade-o�: less entries in the function cache, but less function hits.

In our implementation, the hash table for visit-function memoization and the
hash table for constructor sharing are separate.

Garbage collection

During an edit session, the abstract syntax tree is changed constantly, causing the
constructor cache to grow. Visits to a changed tree induce new entries in the
visit-function cache. In other words, both caches keep growing, and need to be
purged frequently.

Entries from the visit-function cache may be removed at any time. Which
purging strategy performs well deserves further investigation.

Entries from the constructor cache can not be removed arbitrarily since they
may be referenced from outside the cache. Figure 6.1 presents a snapshot of the
two caches. It is assumed that the \main program" has a variable root pointing
to the root of an abstract syntax tree. Of course, nodes belonging to the abstract
syntax tree can not be deleted. Entries in the visit-function cache also refer to

6.2. Structure of generated evaluators 157

Constructor cache

root

table tableVisit−function cache

Thin arrows link the cache entries. Thick arrows either denote parent-child relations

(constructor cache) or they link a visit-function argument or result to the underlying

term (from visit-function cache to constructor cache).

Entries from the visit-function cache may be deleted without any restriction. Entries

from the constructor cache may be deleted when they are not visible from the outside

(that is from root or the visit-function cache) via thick arrows only. Given the state

of the visit-function cache, the grey entries in the constructor cache are garbage.

Figure 6.1. Garbage in the constructor cache

terms (packets contain terms). If a term that is referenced by a visit-function
cache entry were to be removed, a so-called dangling pointer would be created,
making the visit-function cache entry invalid. Hence, terms referenced from the
visit-function cache can not be deleted either.

In Figure 6.1, the constructor cache nodes that are not referenced from outside
the cache (either by root or by the visit-function cache) are colored grey. They
constitute the garbage amenable for purging.

The snapshot in Figure 6.1 is simpli�ed with respect to references from the
main program. It suggests that only one arrow (from root) links the constructor
cache with the main program. This is only true before and after evaluation.

During evaluation the evaluator creates a stack of (VNT and) VPR frames. Such
frames include input and output packets and local variables which are also packets.
Packets are arrays of terms. This means that the entire stack contains references
to entries in the constructor cache. Thus, when the constructor cache is purged
during evaluation, all arrows emanating from the stack should also be taken into
account.

158 6. An implementation

6.2.3 Generated code

The generated code for an attribute evaluator is grammar dependent code. As an
example, we included the code generated for the varuse grammar in Appendix B.
It is generated from the source given in Appendix A. The output from the generator
is given in Appendix C.

Generated code may be subdivided into four groups.

The �rst group implements terms. It includes code for plain trees: tags and
constructors, and code for bindings: tags, types and constructors. Observe from
Appendix B that the tags for the plain terms and wrappers are numbered consec-
utively. The tags do not start at zero because several tags have been reserved by
the library for the unique constructors for primitives. The types for the wrappers
are mainly used in the CAST macros which in turn are used in the visit-sequences
to destruct bindings.

The second group implements semantic functions written by the programmer,
like lookup , and the attribute equations. Equations that are copy-rules are inlined
and thus not included. Absent from the code in Appendix B are constant expres-
sions. The lrc processor isolates all constant expressions, merges identical ones
and generates an initialization routine. The initialization routine is called upon
start up. It computes the values of the constants once, so that repeated access by
the equations and semantic functions brings no additional costs.

The third group implements the visit-sub-sequences. It includes the type def-
inition for packets, forward declarations (prototypes) of VNT functions, the VPR

functions that implement the visit-sub-sequences and the VNT functions them-
selves.

The fourth group de�nes tables for diagnostics. They need only be included
when the hash tables for constructor sharing or visit-function caching will be
dumped.

The main program in Appendix B is hand written. In a complete system it
would be replaced by a language based editor.

6.3 Performance results

Unfortunately, we have not yet extensively pro�led the lrc processor. A good test
set is hard to de�ne, and on top of that, it is unclear what to measure. In short,
we lack a benchmark for incremental attribute evaluation.

6.3.1 Test set

To conduct meaningful tests, we need realistic input. But what is realistic? Ob-
serve that four choices have to be made.

First of all we have to choose a \programming language". By this choice alone,
we restrict ourselves tremendously. Most languages do not feature every interesting

6.3. Performance results 159

construct. Furthermore, most existing languages are essentially one-pass (requiring
de�nition before use) so that e�cient compilers can be hand written.

Secondly, we need a grammar speci�cation suitable for the generator. Observe
that di�erent grammar speci�cations may describe the same semantics. Conse-
quently, \bad" speci�cation may be written obscuring test results. If a suitable
grammar speci�cation in a processable source language is not available in the public
domain, one has to be written|a laborious task.

These two choices �x an evaluator. In order to test the e�ciency of the
evaluator, two more choices have to be made: the input for the evaluator and the
edit actions.

The third choice concerns the input for the evaluator. Had we generated a
c compiler, then we would need for example the c source of a spreadsheet. Had
we generated a proof editor, then we would need a derivation for some tautology.
Observe that this choice might restrict the test even more. For example, the source
of the spreadsheet might expose a typical use of variables like over-usage of global
variables, or it might not use typedefs. Writing an elaborate input is a laborious
task.

The �nal choice we have to make is how we edit the input. Incremental

behavior is extremely sensitive for the kind of edit action performed: in general
global changes are handled poorly, local changes fairly.

6.3.2 What to measure?

When the test set is determined, the tests can be conducted. We are then faced
with the question what to measure.

One of the problems is that \objective characteristics" like the size of the set � It would be rela-
tively easy to com-
pare one functional
evaluator with an-
other, for example to
�nd out the bene�ts
of chained scheduling,
empty bindings, split-
ting and elimination.

of a�ected attribute instances are tailored for standard evaluators. In a functional
evaluator there are, in addition to attribute instances, binding instances. Should
they be regarded as plain attributes while determining �?

Similar questions are raised when comparing space consumption. In a functional
setting tree nodes require far less space than in a traditional setting: no links
to attributes or parental nodes nor
ags for administration during incremental
evaluation. This is compensated by large cache structures.

Two valid characteristics seem to be the number of eval and/or visit instruc-
tions executed in the course of (incremental) evaluation. Note that if the number
of eval instructions executed equals the size of �, the evaluator is optimal.

6.3.3 Results

The test described in this section shows that incremental evaluation with memoized
visit-functions is feasible. We have selected a real programming language, a real

program and real edit actions.

We have chosen a test set which is stable, documented and readily available.
The programming language is pascal. As grammar speci�cation we have taken

160 6. An implementation

the ssl source that is part of the Synthesizer Generator distribution. As input
for the generated pascal compiler we have taken a pascal program that imple-
ments a troff-like text formatting program. This format program is described
in chapter 7 of the book on software tools in pascal by Kernighan and Plaugher
[KP81]. An implementation of the format program comes also with the Synthesizer
Generator distribution. It is nearly 500 lines long.

As edit actions, we have changed the format program in �ve di�erent ways.
We have (i) kept the program unchanged, (ii) added a statement to the body of
a procedure, (iii) deleted a global procedure, (iv) changed the name of a global
procedure and (v) we have added a global variable. To measure the e�ects of
incremental evaluation we conducted the following tests. Each variant is deco-
rated three times: (i) once without memoizing the visit-functions, (ii) once with
memoized visit-function starting from scratch, that is with an empty cache and
(iii) once with memoized visit-functions starting with a cache �lled by decorating
the original format program.

number of executed visits
number of executed evals
execution time in seconds

edit action test %

nomemo scratch incr. 2/1 3/2
4819 3497 0 73 0

none 22932 19043 0 83 0
0.58 0.61 0.00 105 0
4834 3499 47 72 1

add a statement
to a procedure

23008 19056 344 83 2
0.57 0.61 0.02 107 3
4584 3312 599 72 18

delete a global
procedure

21886 18141 4143 83 23
0.56 0.60 0.08 107 13
4819 3497 742 73 21change the name

of a global proce-
dure

22932 19043 4916 83 26
0.56 0.60 0.09 107 15
4827 3503 2394 73 68

add a global vari-
able

22974 19083 15942 83 84
0.57 0.61 0.46 107 75

The above table shows the test results. We have measured the number of visit
and the number of eval instructions executed during decoration. Furthermore, we
have clocked the execution time on a plain Silicon Graphics workstation. The
results give us a clue of how much work is saved.

The ratio of the second and the �rst test (see column labeled 2/1) quanti�es
the costs of memoization overhead. In the �rst test (nomemo) memoization of
visit-functions is switched o� and the second test (scratch) it is switched on. WeBy setting the macro

MEMO(f,ip,op) to
f(ip,op) we e�ec-
tively switch o� mem-
oization.

observe a considerable drop in the number of visits (nearly 30%) and in the number
of evaluations (nearly 20%). This reduction is explained by the fact that parts of the
tree are shared and decorated similarly. For example, each occurrence of a pascal

6.4. Towards a user-interface 161

variable i in the same scope is decorated equally; the same holds for the larger
subtree i:=i+1. Execution time however, increases. This is due to the overhead
costs for memoization: each visit-function call must �rst be looked up in the
cache. Observe that the costs of cache overhead are practically compensated by the
decrease of work. The memoized version is only 7% slower than the unmemoized
version.

The column labeled 3/2 shows the di�erence between memoized evaluation
from scratch respectively from a cache �lled by decorating the original format
program. For example, with no change applied, the top level visit-function hits, so
no visit or eval instruction is executed; execution time is 0 seconds (see \none"
row). As was expected, local changes are handled extremely well incrementally.
Adding a statement to the body of a procedure shows a drop of 99% in the
number of visits. A non-local change as adding a global variable performs rather
poor in our evaluator; 68% of the visits has to be redone. However, it is expected
that non-local changes are intrinsically hard problems giving poor results in other
approaches as well.

Note that the ratio of the number of executed eval instructions and the num-
ber of executed visit instructions is roughly constant. The constant is grammar
dependent, in our tests it is about 6. This means that on the average every plan in
the pascal grammar has 6 times as many eval as visit instructions. Depending
on the mixture of nodes in the abstract syntax tree associated with the format
variants, the constant may vary.

The average execution time is 0.6 seconds, which means that the generated
evaluator processes the format program (500 lines) at a speed of 50k lines per
minut. Processing does not include parsing, only decoration. However, processing
does include administration for diagnostics. The speed-up for incremental evalua-
tion ranges from a factor of 1.3 for global changes (65k lines per minut) to a factor
of 30 for local changes (1500k lines per minut). In short, speed is of production
quality.

6.4 Towards a user-interface

A language based editor has a certain knowledge about the (program-)text under
construction. Due to incremental compilation, semantic errors such as type mis-
matches and undeclared variables are detected and announced to the user instantly.
Moreover, the user may query the editor about the program under construction.
For example, when the editor associates a symbol table with every block in the
program, the user may ask for a list of all boolean variables|global as well as
local|that are visible at the selected point.

We feel that the strong point of language based systems is the fact that they
are better equipped to assist the user. Consequently, a good, powerful and
exible
user interface forms the basis of a successful editor. In this section, we sketch a

var stop:boolean;
begin
 stop:=false;
 repeat
 <stat>;
 stop:=ch=’S’
 until <expr>;
 <stat>
end Boolean

found
b
f
stop
saved

novel approach to model the interaction between the editor and the user. First,
we discuss editing.

162 6. An implementation

6.4.1 Editing

Edit operations on trees are modeled through subtree replacement. This means
that a subtree of the abstract syntax tree can be replaced by another tree with the
same root.

To facilitate editing, the notion of \gaps" in the abstract syntax tree is often
introduced. Gaps mimic incomplete subtrees. They are easily incorporated by
adding a terminal production for every non-terminal. For example, in the box
grammar a production B = Bgap() could be added. Such an empty production
does require equations so that the grammar writer can assign adequate meaning
to gaps.

Subtree replacement may be interfaced to the user user via \keyboard driven
editing" or by selecting templates with a pointing device. A hybrid editor supports
both methods.

A template is a labeled pair of terms denoted by l : t =) t 0 , in which l

is the label, t is a term pattern and t 0 a term expression. Term pattern t may
contain template variables. The free variables that occur in term expression t 0

must also occur in t . Assume that the user selects a subtree T of the abstract
syntax tree; T is then known as the current selection. When the current selection
matches t , a button labeled l appears on the screen. When the user presses the
button, subtree T is replaced by T 0, where T 0 is obtained from t 0 by substituting
subterms for the free variables as implied by the uni�cation of T with t . Forl and r are the tem-

plate variables for tem-
plate swap . They are
free variables bound
by unifying a template
and a tree.

example, a template swap : stackl(l ; r) =) stackl(r ; l) in the box grammar
allows the user the swap the left and right subtree of a stackl node. The template
ins stackl : Bgap() =) stackl(Bgap();Bgap()) inserts a stackl node at a
gap.

Template editing is less convenient for \smaller" trees such as expressions (as
opposed to statements). Typing, as with ordinary editors, seems more appropriate.
Of course, this requires a scanner/parser to convert the typed input to an abstract
syntax tree. Note that keyboard editing is especially desirable for the primitive
values such as integers.

Template editing is not very powerful; it is based on syntax only. Conditional

templates extend the formalism in two ways. First, conditions are associated with
templates. The template button only appears on the screen when the selected
tree matches the left-hand side of the template and the condition holds. Sec-
ondly, attributes may be used in the condition as well as in the right-hand side
of the template. The following example illustrates both extensions. The template
pre�xes a statement \use Some;" in the varuse grammar with a declarationRecall that declara-

tions are converted to
uppercase.

\var SOME;", that is, if SOME was indeed not de�ned yet.

add var : stat(N ;L) =) decl(name(N :id); stat(N ;L))
if lookup L:env N :id == ?

We have not discussed yet how the abstract syntax tree is presented to the user.
The rendering of the abstract syntax tree is known as unparsing. One possibility

6.4. Towards a user-interface 163

is to render the abstract syntax tree as linearized term, perhaps formatted via
indentation. This solution is not attractive for two reasons. Firstly, the solution is
not
exible. The grammar writer needs direct control over how to format the tree,
which nodes to suppress, where to insert reserved words, where to use fancy fonts
and where to break lines. Secondly, decoration determines attribute values, which
record properties of the nodes they are attached to. These properties include
diagnostic information (\type mismatch") that must somehow be added to the
displayed tree at the appropriate node.

A better solution is to compute, via decoration, the unparsing in a string repre-
senting the tree. For each non-terminal X the set A(X) of associated attributes
is extended with a synthesized attribute display of type string. For each node, the
display strings of the children are concatenated, possibly interspersed with local
strings, and synthesized as the display string of the parent. For a fancy output,
format strings may be inserted in the display string. Format strings include font
switching or layout commands. Note that the display string is computed just as
any attribute. In other words, it is also incrementally updated. The Synthesizer
Generator uses this technique.

6.4.2 Display tree editing

Template editing is not yet powerful and
exible enough to our taste. We advo-
cate another model that generalizes template editing. It allows for arbitrary tree
transformations, even at places other than the current selection.

We construct an object that contains the unparsing as well as tree transforma-
tions. This object is called a display tree. The unparsing de�ned by a display trees
describe a two dimensional layout much like the box grammar. The transforma-
tions de�ned by a display tree must be selected and activated by the user. When
activated, a template is applied to some subtree of the underlying abstract syntax
tree. Which subtree that is, is also speci�ed by the display tree.

For example, assume that an integer is assigned to an undeclared variable. A
display tree may include a transformation that inserts a declaration of type integer
for that variable. Observe that the actual transformation (adding a declaration)
is not done at the current selection (erroneous assignment). This is why such
transformations are sometimes referred to as remote editing.

Display trees

Display trees have a box grammar like de�nition. The basic box is a txt node, We could also add a
font �eld to txt .containing a string. The hor and ver productions create a box by concatena-

tion respectively stacking two boxes. The sel production associates a menu of
transformations to a part of the unparsing.

164 6. An implementation

disp = txt(str)
j hor(disp; disp)
j ver(disp; disp)
j sel(disp;menu)

Display trees are more general than display strings. With the txt and hor

productions, we can emulate display strings. The ver and sel productions are
redundant when emulating display strings.

We require that for each non-terminal X the set Asyn(X) is extended with an
attribute out of type disp . By making unparsing explicit, we implicitly allow the
description of non-trivial data
ow. The computation of the display string in the
Synthesizer Generator is strictly bottom-up and strictly child order preserving. We
advocate reordering the display trees of the children, massaging display trees via
semantic function and passing parts of display trees down via inherited attributes
as well. The display tree synthesized by an abstract syntax tree, needs not to bear
any resemblance with the underlying abstract syntax tree.

This
exibility is a disadvantage as well. A display tree determines what is
shown to the user. In general, a subtree (subbox) selection in the display tree
can not straightforwardly be associated with a subtree of the abstract syntax tree.
That is why ordinary template editing can not be combined with display trees.

Editing

The sel production associates an edit menu of tree transformations with a part of
the display tree. When the user selects that part, the menu is shown. Each menu
entry consists of a template and a node in the abstract syntax tree to which the
template will be applied when the user selects that menu entry.

menu = done()
j choice(template; node;menu)

A node uniquely speci�es a subtree of the abstract syntax tree. For example,
when trees are not shared, a pointer to a node uniquely characterizes that node.
When trees are shared, we could take integer lists and use a path denotation as
in this thesis. For each non-terminal X the set A(X) of associated attributes
should then be extended with an inherited attribute path of type [int] (where
[int] = node).

Example

We will now de�ne the attribute equations for the stat production in the varuse
grammar that compute an elaborate display tree. We assume that shared abstract
syntax trees are uniquely identi�ed with path attributes. The following fragment
shows how the path s are inherited, and the display tree out is synthesized.

6.4. Towards a user-interface 165

L1 = stat(N ;L2)
N :path := 1 : L1:path ;
L2:path := 2 : L1:path ;
L1:out := f

use
N :out � L2:out

The semantic function fs constructs a display tree from a display tree by pre-

path is a normal at-
tribute. We could
store the path to
a declaring occurrence
of a variable in the
symbol table record for
that variable. This al-
lows for remote editing
if an applied occur-
rence of that variable
causes an error.

�xing it with the string 's '. The semantic function bs su�xes its argument with
string 's '. It is used in the de�nition of the semantic function � that joins two
display trees and places the string ';' in between.

func fs d = hor(txt('s '); d)
func bs d = hor(d ; txt('s '))
func d1 � d2 = ver(b; d1; d2)

A more elaborate display tree is constructed in the following fragment. When
an identi�er is not in the symbol table, the warning \error" shows up, right after
the violating using occurrence. Furthermore some menu m , which is still to be
de�ned, will be made available.

L1 = stat(N ;L2)
local dok ; derr : disp ;
dok := f

use
N :out � L2:out ;

derr := f
use

(b
error

N :out)� L2:out ;
local m : menu ;
m := : : :;
L1:out := if lookup L:env N :id = ? then sel(derr ;m) else dok �

When an identi�er is not declared, we can either insert its declaration or we can
delete the identi�er. For deletion, template Delete is applied to the node denoted
by N :path . We de�ne two possible places to insert a declaration. Just above the Recall the syntax of a

template: l : t =) t 0 .
Pattern t contains
free variables that are
bound by unifying t

with the subtree de-
noted by the path .

using occurrence (template Insert) or at the beginning of the program (template
InsTop). Note that InsTop is applied to the root ([]) of the abstract syntax tree.

m := choice(Delete : name(n)=) Ngap(); N :path;

choice(Insert : l =) decl(name(N :id); l); L1:path;

choice(InsTop : root(l) =) decl(name(N :id); l); [];
done())))

Observations

This section only presented preliminary thoughts on how to model a state-of-the-art
user interface. We will conclude it with some observations.

166 6. An implementation

� A node in a menu denotes a subtree in the abstract syntax tree. Could we
perform some kind of static analysis to determine whether the template for
that node has the same type as the speci�ed subtree?

� Observe that attribute path is an inherited attribute that uniquely addresses
a node. As such, it cripples memoization of the visit-functions. It seems
wise to add an additional visit (path; out) to each interface, as a last visit,
so that incremental evaluation of \normal" visits is not in
uenced.

� Higher-order attributes are computed during tree decoration. It does not
make sense to allow edit actions that change such attributes.

� It would be nice if we had \templates" that would allow for tree directed
movements. Suppose that the user has selected an applied occurrence. It
seems an interesting possibility if a button appeared that, when clicked,
moved the current selection to the de�ning occurrence.

� Templates are in fact functions. When a menu entry is selected, the subtree
speci�ed by node is traced and the template function is applied to it. We
could image other functions, most notably interactive functions, for example
to enter primitive values.

� Other primitives are imaginable for display trees besides txt leafs. We could
image icons or graphs or interactive widgets like buttons, dials, scroll bars
or tick boxes: : : .

6.5 Open problems

We conclude this chapter with an overview of the problems encountered in the
course of writing the lrc processor. Some of the problems are relatively easy to
solve, they merely require some long hours of programming. Other problems still
require a lot of research respectively engineering.

In the current system the split grammar is computed after the bind grammar.
As explained in 4.2.3, wrappers should contain split attributable attributes. It
would have been better if phases 2 and 3 were swapped.

The algorithm in the lrc processor that removes diverging and unconnected
computations (dead-ends) performs a local test: the synthesized attributes of
the parent are regarded as useful, and any attribute not contributing to any of
them are discarded. However, global analysis should be added to check which of
the synthesized attributes of the parent eventually contributes to the synthesized
attributes of the start symbol.

Another form of extensive analysis deals with conditional dead-ends. In Fig-
ure 3.14/ 55 the visit-sequence for add of the higher-order variant of the varuseplan add

begin

eval(E2:id);
visit(E2; 1);
eval(E1:addr)

end

grammar is given. Let us repeat (and expand) that fragment.

E2:id := E1:id ;
E2:addr := visit1E E2 E2:id ;
E1:addr := if str = E1:id then 1 else 1 + E2:addr �

6.5. Open problems 167

We see that if str = E1:id , the �rst two instructions are dead. In other words, if
str = E1:id holds, we may ignore the visit instruction skipping the decoration of
the arbitrarily large subtree rooted at E2. It would be interesting if the generator
could optimize the evaluator for such conditional dead-ends. This would require
branching visit-sequences.

We have changed Kastens' step 4 and 5 since we felt that Kastens' algorithm
is biased towards standard evaluation. However, we think that the computation
of the interfaces is also biased. Kastens' algorithm maximizes the partitions so
that the number of visits is minimized, since this saves time-consuming context
switches. However, in our functional setting, it might be better to have more,
smaller visit-functions in order to obtain better caching results.

We have not yet investigated the consequences of not caching every constructor
or every visit-function. It may be the case that a lot of cache entries can be spared,
leading to faster cache lookup and thus more e�cient evaluation, without causing
too many misses.

Vogt has done some research on cache purging strategies in his implementation
of a functional evaluator in gofer [Vog93]. We have not yet considered garbage
collection for the evaluators generated by the lrc processor.

Although the front-end of the lrc processor computes the split grammar, the
back-end does not yet generated target code for that. The optimizations discussed
in Chapter 4 are not yet incorporated in lrc either. We did some preliminary
experiments with display trees, but a lot of work remains to be done.

Incremental evaluation can be enhanced greatly by writing \smarter" grammar
speci�cations. For example, a block of statements usually inherits a symbol table.
One small change in that symbol tables requires the recompilation of that block,
even if the change is con�ned to a symbol that is not used in the entire block.
If a block synthesizes a list of used variables, the inherited symbol table could
be projected on that list yielding greater incremental e�ciency. However, we feel
that the grammar writer should not be bothered by such implementation consid-
erations. The generator should analyze the grammar and apply such optimizations
automatically.

168 6. An implementation

7
169

Chapter 7

Final remarks

In this �nal chapter we draw some conclusions about the work presented in this

thesis and we discuss how to extend our work. We start with a review.

7.1 Review

This thesis discussed the construction of a generator for incremental attribute

evaluator. Chapter 5 described how to compute interfaces for non-terminals and

how chained scheduling produces plans well suited for incremental evaluation based

on memoized visit-functions.

Chapter 3 showed how visit-sequences are mapped to pure visit-functions.

Intra-visit-dependencies are resolved with bindings. Bindings accurately indicate

when a visits may be skipped during incremental evaluation. In other words visit-

functions can be memoized to obtain incremental evaluation.

The construction of the lrc processor is the proof of the feasibility of our Appendices A, B and

C present a sample run

of the lrc processor.
functional approach. The �rst performance results presented in Section 6.3 are

encouraging, but we do not know how evaluators generated by the lrc processor

compare with evaluators from other systems.

Chapter 4 deals with several optimizations aimed at improving the incremental

behavior of the visit-functions. Splitting appears to improve incremental behav-

ior considerably. Encapsulators allow for many interesting tree modi�cations at

construction time. Especially elimination seems promising.

7.2 Completing the generator

The lrc processor is not yet of production quality. It consists of many tangled

tools and has many unlisted options and parameters. The implementation of the

fron-end is well documented, but there is no user manual. A major
aw is the

lack of an integrated interactive editor. This is the single most important feature

missing in lrc. Other features that would enhance lrc are listed in Section 6.5.

170 7. Final remarks

The advantages of lrc are its relatively small size and the elegance of the

generated evaluators. Furthermore, lrc uses ssl as input language. This language

is well documented and many grammars have been written in it. The lrc processor

is written in pascal, a fairly abstract language. With a pascal to c translator

it becomes easily portable. Finally, the evaluators generated by lrc appear to be

bug-free. Large parts of lrc are generated by lrc itself.

7.3 Parallel attribute evaluation

In this thesis we studied sequential attribute evaluation. How to use parallelism

to speed up incremental evaluation is still an open problem. Pure functions seem

amenable to parallel computation. However, memoization of visit-functions and

term sharing rely on large global data structures which are not straightforwardly

implemented on a distributed memory machine. Shared memory machines on the

other hand do not scale well. It is therefore not clear how memoized visit-functions

could be parallelized.

7.4 Conclusions

In this thesis we have discussed how to construct a generator for incremental

attribute evaluators. We have presented ways to improve incremental behavior. It

is also shown that incremental evaluation with memoized visit-functions is a good

approach. Generated editors have an simple, elegant and robust architecture.

Decoration speed of 50k lines per minut is of production quality.

The advent of caching in attribute grammar evaluation as well as in other areas

of incremental computation might prove to be as useful as virtual memory is today.

We are convinced that this thesis also proves that the plan and production

icons, plan trees and other pictures are useful to convey ideas.

Incremental attribute evaluation is a new technique for obtaining incremental

implementations of programs. We hope that with the continuing development of

incremental techniques editors will be generated that make the task of writing

programs even more enjoyable.

A
171

Appendix A

Ssl source

A.1 Comments

This appendix contains a speci�cation of the varuse grammar. As speci�cation
language we have chosen ssl [RT88], the source language of the Synthesizer
Generator and the lrc processor.

This source is di�erent on two accounts compared with the grammar speci�ca-
tion in Figure 2.1/ 21 . First of all, ssl lacks a list primitive. Lists must be explicitly
coded as was done with the non-terminals ENV and CODE. Secondly, ssl lacks a
polymorphic ? value. The lookup function returned this value when the identi�er
was not contained in the environment. In order not to complicate the example, we
have used a large integer (9999) instead.

Note that L1 is denoted with L$1. Since root is a reserved word specifying
the start symbol of the grammar, the root production on S has been renamed to
Root with an uppercase R.

172 A. Ssl source

A.2 Listing

/**\

** **

** "varuse.ssl" **

** Demonstration grammar **

** **

**/

root S;

/* Abstract syntax **************************/

S : Root(L)

;

L : empty()

| decl(N L)

| stat(N L)

;

N : name(STR)

;

ENV : emptyenv()

| consenv(STR ENV)

;

CODE : emptycode()

| conscode(INT CODE)

;

/* Attributes *******************************/

S { synthesized CODE code;

};

L { synthesized ENV decs;

inherited ENV env;

synthesized CODE code;

};

N { synthesized STR id;

};

/* Equations ********************************/

S : Root {

L.env = L.decs;

S.code = L.code;

}

;

L : decl {

L$1.decs = consenv(N.id,L$2.decs);

L$2.env = L$1.env;

L$1.code = conscode(

-lookup(L$1.env,N.id),

L$2.code);

}

| stat {

L$1.decs = L$2.decs;

L$2.env = L$1.env;

L$1.code = conscode(

+lookup(L$1.env,N.id),

L$2.code);

}

| empty {

L$1.decs = emptyenv();

L$1.code = emptycode();

}

;

N : name {

N.id = STRtoupper(STR);

}

;

/* Semantic functions ***********************/

INT lookup(ENV env,STR id){

with(env)(emptyenv() : 9999

,consenv(s,e) : (s==id

? 1

: 1+lookup(e,id)

)

)

};

B
173

Appendix B

Generated C program

B.1 Comments

When the ssl source of the varuse grammar, as given in Appendix A is passed
through the lrc processor, the c program listed next is generated.

The major concepts of the generated c target are discussed in Chapter 6. A
minor di�erence is that all external names declared by the library are pre�xed with
LRC_ in either upper or lower case.

Equations have not been discussed in Chapter 6. There is one interesting point
to make. Recall that attributes are shared. The arguments and result of the
functions implementing the equations are therefore terms. However, the semantic
functions, like the user de�ned lookup or the library function upstring , are de�ned
on the underlying primitive values. As a consequence, the functions implementing
the equations cast values from and to terms.

The main program refers to the library function lrc_term_print_long that
prints a term. Of course, the names of the productions are grammar dependent;
they must be installed. The code under the heading /* shalloc tables */

de�nes the name tables, and the library routine lrc_install_defaults installs
them.

Likewise, the library routine lrc_cell_print_fipop prints entries from the
visit-function cache. This routine prints the f unction, the input packet and the
output packet stored in the cell. The required tables are de�ned under the heading
/* memo tables */. These tables are also installed by lrc_install_defaults.

The main program makes two runs. After the �rst run, the entire visit-function
cache is dumped with the library function lrc_memo_dump. It needs two parame-
ters, namely a �lter function and a print function. For the latter, we use the above
mentioned lrc_cell_print_fipop.

The function lrc_memo_dump(f,p) calls p(c) for every cell for which f(c) Every memo cell must
thus pass 2 �lters: f

and the birth thres-
hold.

holds. Furthermore, the cells birth-stamp must exceed a certain threshold. Each
newly created cell is time-stamped upon which the \clock" is stepped. When a
cell hits, it is restamped without stepping the clock. The current \time" can be
obtained with lrc_memo_time(). Initially, the threshold is set to 0, the start-up

174 B. Generated C program

value of the clock. For the second run, the threshold is set to the time just after
evaluating the �rst tree. This ensures that the second dump only shows the new
cache entries.

B.2 Listing

/**\

** **

** "varuse.c" **

** Generated by the LRC processor from **

** source "varuse.ssl". **

** main() handwritten. **

** **

**/

#define LRC_TERM_FAILURE(s) printf("Fatal")

#include <stdio.h>

#include <lrclib.h>

/* tags *************************************/

typedef enum {

T_Root=9,

T_empty=10,

T_decl=11,

T_stat=12,

T_name=13,

T_emptyenv=14,

T_consenv=15,

T_emptycode=16,

T_conscode=17} production_tag_tp;

/* constructors *****************************/

lrc_term C_Root(lrc_term s1) {

lrc_term res[2];

res[0]=(lrc_term)T_Root;

res[1]=s1;

return LRC_SHALLOC(res);

}

lrc_term C_empty() {

lrc_term res[1];

res[0]=(lrc_term)T_empty;

return LRC_SHALLOC(res);

}

lrc_term C_decl(lrc_term s1, lrc_term s2) {

lrc_term res[3];

res[0]=(lrc_term)T_decl;

res[1]=s1;

res[2]=s2;

return LRC_SHALLOC(res);

}

lrc_term C_stat(lrc_term s1, lrc_term s2) {

lrc_term res[3];

res[0]=(lrc_term)T_stat;

res[1]=s1;

res[2]=s2;

return LRC_SHALLOC(res);

}

lrc_term C_name(lrc_string s1) {

lrc_term res[2];

res[0]=(lrc_term)T_name;

res[1]=C_Str(s1);

return LRC_SHALLOC(res);

}

lrc_term C_emptyenv() {

lrc_term res[1];

res[0]=(lrc_term)T_emptyenv;

return LRC_SHALLOC(res);

}

lrc_term C_consenv(lrc_string s1,lrc_term s2){

lrc_term res[3];

res[0]=(lrc_term)T_consenv;

res[1]=C_Str(s1);

res[2]=s2;

return LRC_SHALLOC(res);

}

lrc_term C_emptycode() {

lrc_term res[1];

res[0]=(lrc_term)T_emptycode;

return LRC_SHALLOC(res);

}

lrc_term C_conscode(int s1, lrc_term s2) {

lrc_term res[3];

res[0]=(lrc_term)T_conscode;

res[1]=C_Int(s1);

res[2]=s2;

return LRC_SHALLOC(res);

}

B.2. Listing 175

/* wrapper tags *****************************/

typedef enum {

W_empty_1_2_tag=18,

W_decl_1_2_tag=19,

W_stat_1_2_tag=20

} wrapper_tag_tp;

/* wrapper types ****************************/

typedef struct {

wrapper_tag_tp tag;

} W_empty_1_2_tp;

#define W_empty_1_2_CAST(t) \

(*(W_empty_1_2_tp*)(t))

typedef struct {

wrapper_tag_tp tag;

lrc_term AO_decl_N_1_id;

lrc_term P_L_2_1_2;

} W_decl_1_2_tp;

#define W_decl_1_2_CAST(t) \

(*(W_decl_1_2_tp*)(t))

typedef struct {

wrapper_tag_tp tag;

lrc_term P_L_2_1_2;

} W_stat_1_2_tp;

#define W_stat_1_2_CAST(t) \

(*(W_stat_1_2_tp*)(t))

/* wrapper constructors *********************/

lrc_term CW_empty_1_2() {

W_empty_1_2_tp res;

res.tag=W_empty_1_2_tag;

return LRC_SHALLOC(res);

}

lrc_term CW_decl_1_2(lrc_term a0,lrc_term b0){

W_decl_1_2_tp res;

res.tag=W_decl_1_2_tag;

res.AO_decl_N_1_id=a0;

res.P_L_2_1_2=b0;

return LRC_SHALLOC(res);

}

lrc_term CW_stat_1_2(lrc_term b0) {

W_stat_1_2_tp res;

res.tag=W_stat_1_2_tag;

res.P_L_2_1_2=b0;

return LRC_SHALLOC(res);

}

/* semantic functions ***********************/

int lookup(lrc_term p1,lrc_string p2) {

int cell_1;

int cell_2;

if ((LRC_TAG(p1)==T_emptyenv)) {

cell_2 = 9999;

} else {

if (lrc_string_equal(

LRC_VALUE(LRC_CHILD(p1,1),lrc_string),

p2))

{

cell_1 = 1;

} else {

cell_1 = 1+(lookup(LRC_CHILD(p1,2),p2));

}

cell_2 = cell_1;

}

return cell_2;

}

/* equations ********************************/

lrc_term eq_9(){

return C_emptycode();

}

lrc_term eq_8(){

return C_emptyenv();

}

lrc_term eq_4(lrc_term p0, lrc_term p1,

lrc_term p2){

return C_conscode(

-lookup(p2, LRC_VALUE(p1,lrc_string)),p0);

}

lrc_term eq_2(lrc_term p0, lrc_term p1){

return C_consenv(

LRC_VALUE(p1,lrc_string), p0);

}

lrc_term eq_7(lrc_term p0, lrc_term p1,

lrc_term p2){

return C_conscode(

lookup(p2, LRC_VALUE(p1,lrc_string)),p0);

}

lrc_term eq_10(lrc_term p0){

return C_Str(

STRtoupper(LRC_VALUE(p0,lrc_string)));

}

176 B. Generated C program

/* packets **********************************/

typedef struct {

lrc_term tree;

} I_S_1_tp;

typedef struct {

lrc_term code;

} O_S_1_tp;

typedef struct {

lrc_term tree;

} I_L_1_tp;

typedef struct {

lrc_term P_L_1_2;

lrc_term decs;

} O_L_1_tp;

typedef struct {

lrc_term tree;

lrc_term P_L_1_2;

lrc_term env;

} I_L_2_tp;

typedef struct {

lrc_term code;

} O_L_2_tp;

typedef struct {

lrc_term tree;

} I_N_1_tp;

typedef struct {

lrc_term id;

} O_N_1_tp;

/* VNT forward ******************************/

void VNT_1_S(I_S_1_tp *ip, O_S_1_tp *op);

void VNT_1_L(I_L_1_tp *ip, O_L_1_tp *op);

void VNT_2_L(I_L_2_tp *ip, O_L_2_tp *op);

void VNT_1_N(I_N_1_tp *ip, O_N_1_tp *op);

/* VPR functions ****************************/

void VPR_1_Root(lrc_packet ip,lrc_packet op){

#define IP (*(I_S_1_tp*)ip)

#define OP (*(O_S_1_tp*)op)

I_L_1_tp I_L_1_1;

O_L_1_tp O_L_1_1;

I_L_2_tp I_L_1_2;

O_L_2_tp O_L_1_2;

I_L_1_1.tree=LRC_CHILD(IP.tree,1);

VNT_1_L(&I_L_1_1,&O_L_1_1);

I_L_1_2.env= O_L_1_1.decs;

I_L_1_2.tree=LRC_CHILD(IP.tree,1);

I_L_1_2.P_L_1_2=O_L_1_1.P_L_1_2;

VNT_2_L(&I_L_1_2,&O_L_1_2);

OP.code= O_L_1_2.code;

return;

#undef IP

#undef OP

}

void VPR_1_empty(lrc_packet ip,lrc_packet op){

#define IP (*(I_L_1_tp*)ip)

#define OP (*(O_L_1_tp*)op)

OP.decs=eq_8();

OP.P_L_1_2=CW_empty_1_2();

return;

#undef IP

#undef OP

}

void VPR_2_empty(lrc_packet ip,lrc_packet op){

#define IP (*(I_L_2_tp*)ip)

#define OP (*(O_L_2_tp*)op)

OP.code=eq_9();

return;

#undef IP

#undef OP

}

B.2. Listing 177

void VPR_1_decl(lrc_packet ip,lrc_packet op){

#define IP (*(I_L_1_tp*)ip)

#define OP (*(O_L_1_tp*)op)

I_L_1_tp I_L_2_1;

O_L_1_tp O_L_2_1;

I_N_1_tp I_N_1_1;

O_N_1_tp O_N_1_1;

I_N_1_1.tree=LRC_CHILD(IP.tree,1);

VNT_1_N(&I_N_1_1,&O_N_1_1);

I_L_2_1.tree=LRC_CHILD(IP.tree,2);

VNT_1_L(&I_L_2_1,&O_L_2_1);

OP.decs=eq_2(O_L_2_1.decs, O_N_1_1.id);

OP.P_L_1_2=CW_decl_1_2

(O_N_1_1.id,O_L_2_1.P_L_1_2);

return;

#undef IP

#undef OP

}

void VPR_2_decl(lrc_packet ip,lrc_packet op){

#define IP (*(I_L_2_tp*)ip)

#define OP (*(O_L_2_tp*)op)

I_L_2_tp I_L_2_2;

O_L_2_tp O_L_2_2;

I_L_2_2.env= IP.env;

I_L_2_2.tree=LRC_CHILD(IP.tree,2);

I_L_2_2.P_L_1_2=W_decl_1_2_CAST

(IP.P_L_1_2).P_L_2_1_2;

VNT_2_L(&I_L_2_2,&O_L_2_2);

OP.code=eq_4(O_L_2_2.code,

W_decl_1_2_CAST(IP.P_L_1_2).AO_decl_N_1_id

,IP.env);

return;

#undef IP

#undef OP

}

void VPR_1_stat(lrc_packet ip,lrc_packet op){

#define IP (*(I_L_1_tp*)ip)

#define OP (*(O_L_1_tp*)op)

I_L_1_tp I_L_2_1;

O_L_1_tp O_L_2_1;

I_L_2_1.tree=LRC_CHILD(IP.tree,2);

VNT_1_L(&I_L_2_1,&O_L_2_1);

OP.decs= O_L_2_1.decs;

OP.P_L_1_2=CW_stat_1_2(

O_L_2_1.P_L_1_2);

return;

#undef IP

#undef OP

}

void VPR_2_stat(lrc_packet ip,lrc_packet op){

#define IP (*(I_L_2_tp*)ip)

#define OP (*(O_L_2_tp*)op)

I_L_2_tp I_L_2_2;

O_L_2_tp O_L_2_2;

I_N_1_tp I_N_1_1;

O_N_1_tp O_N_1_1;

I_L_2_2.env= IP.env;

I_L_2_2.tree=LRC_CHILD(IP.tree,2);

I_L_2_2.P_L_1_2=W_stat_1_2_CAST

(IP.P_L_1_2).P_L_2_1_2;

VNT_2_L(&I_L_2_2,&O_L_2_2);

I_N_1_1.tree=LRC_CHILD(IP.tree,1);

VNT_1_N(&I_N_1_1,&O_N_1_1);

OP.code=eq_7(O_L_2_2.code,

O_N_1_1.id,IP.env);

return;

#undef IP

#undef OP

}

void VPR_1_name(lrc_packet ip,lrc_packet op){

#define IP (*(I_N_1_tp*)ip)

#define OP (*(O_N_1_tp*)op)

OP.id=eq_10(LRC_CHILD(IP.tree,1));

return;

#undef IP

#undef OP

}

178 B. Generated C program

/* VNT functions ****************************/

int VNT_count;

void VNT_1_S(I_S_1_tp *ip, O_S_1_tp *op) {

VNT_count++;

switch (LRC_TAG(ip->tree)) {

case T_Root :

LRC_MEMOP(VPR_1_Root,ip,op); return;

default :

LRC_TERM_FAILURE("VNT_1_S");

}

}

void VNT_1_L(I_L_1_tp *ip, O_L_1_tp *op) {

VNT_count++;

switch (LRC_TAG(ip->tree)) {

case T_empty :

LRC_MEMOP(VPR_1_empty,ip,op); return;

case T_decl :

LRC_MEMOP(VPR_1_decl,ip,op); return;

case T_stat :

LRC_MEMOP(VPR_1_stat,ip,op); return;

default :

LRC_TERM_FAILURE("VNT_1_L");

}

}

void VNT_2_L(I_L_2_tp *ip, O_L_2_tp *op) {

VNT_count++;

switch (LRC_TAG(ip->tree)) {

case T_empty :

LRC_MEMOP(VPR_2_empty,ip,op); return;

case T_decl :

LRC_MEMOP(VPR_2_decl,ip,op); return;

case T_stat :

LRC_MEMOP(VPR_2_stat,ip,op); return;

default :

LRC_TERM_FAILURE("VNT_2_L");

}

}

void VNT_1_N(I_N_1_tp *ip, O_N_1_tp *op) {

VNT_count++;

switch (LRC_TAG(ip->tree)) {

case T_name :

LRC_MEMOP(VPR_1_name,ip,op); return;

default :

LRC_TERM_FAILURE("VNT_1_N");

}

}

/* shalloc tables ***************************/

char * lrc_tag_names_table[21] = {

"_Int","_Bool","_Char","_Real","_Str",

"_Tok","_Ptr","_Map","_Attr","Root",

"empty","decl","stat","name","emptyenv",

"consenv","emptycode","conscode",

"empty_1_2","decl_1_2","stat_1_2"

};

int lrc_num_sons_table[21] = {

0, 0, 0, 0, 0,

0, 0, 0, 0, 1,

0, 2, 2, 1, 0,

2, 0, 2,

0, 2, 1

};

/* memo tables ******************************/

int lrc_vpr_index(lrc_ptr f) {

if (f==(lrc_ptr)&VPR_1_Root) return 0;

if (f==(lrc_ptr)&VPR_1_empty) return 1;

if (f==(lrc_ptr)&VPR_2_empty) return 2;

if (f==(lrc_ptr)&VPR_1_decl) return 3;

if (f==(lrc_ptr)&VPR_2_decl) return 4;

if (f==(lrc_ptr)&VPR_1_stat) return 5;

if (f==(lrc_ptr)&VPR_2_stat) return 6;

if (f==(lrc_ptr)&VPR_1_name) return 7;

exit(1);

}

char * lrc_vpr_name_table[8] = {

"Root\\1", "empty\\1", "empty\\2", "decl\\1",

"decl\\2", "stat\\1", "stat\\2", "name\\1"

};

int lrc_vpr_num_ip_table[8] = {

0, 0, 2, 0, 2, 0, 2, 0

};

int lrc_vpr_num_op_table[8] = {

1, 2, 1, 2, 1, 2, 1, 1

};

B.2. Listing 179

/* main *************************************/

int main() {

lrc_term t;

I_S_1_tp ip;

O_S_1_tp op;

/* init library */

lrc_lib_init();

/* installs shalloc and memo tables */

lrc_install_default;

printf("----------------------------");

printf("----------------------------\n");

printf("Compile ");

printf("'(use x; var x; use y;)'");

printf("from scratch.\n\n");

VNT_count=0;

t=C_Root(C_stat(C_name("x")

,C_decl(C_name("x")

,C_stat(C_name("y")

,C_empty()))));

ip.tree=t;

VNT_1_S(&ip,&op);

lrc_term_print_long(op.code);

printf("\nNum of visits=%d\n\n",VNT_count);

lrc_memo_dump(lrc_filter_true,

lrc_cell_print_fipop);

lrc_memo_dump_set_birth_time(

lrc_memo_time());

printf("----------------------------");

printf("----------------------------\n");

printf("Compile ");

printf("'(use x; use x; var x; use y;)'");

printf("incrementally.\n\n");

VNT_count=0;

t=C_Root(C_stat(C_name("x")

,C_stat(C_name("x")

,C_decl(C_name("x")

,C_stat(C_name("y")

,C_empty())))));

ip.tree=t;

VNT_1_S(&ip,&op);

lrc_term_print_long(op.code);

printf("\nNum of visits=%d\n\n",VNT_count);

lrc_memo_dump(lrc_filter_true,

lrc_cell_print_fipop);

printf("----------------------------");

printf("----------------------------\n");

return 0;

}

180 B. Generated C program

C
181

Appendix C

Evaluator output

C.1 Comments

This section contains the output of the c program listed in Appendix B, which
implements an incremental evaluator for the varuse grammar.

The output consists of two parts. The �rst part corresponds with the �rst run,
an evaluation from scratch for the following program.

(use x; var x; use y;)

The second part corresponds with the second run, an incremental evaluation of a
changed program.

(use x; use x; var x; use y;)

The output in both cases is formatted identically. The �rst four lines identify
the source program, the computed translation and the number of visits required.
Then follows a dump of the visit-function cache.

A dump consists of a header showing the birth-stamp threshold (0 respec-
tively 11) and a list of buckets. The library uses a hash table with about 10000
buckets, only the non-empty ones are dumped. A bucket, consists of a list of en-
tries followed by a banner denoted with BUCKET. The banner shows the sequence
number of the bucket, the number of entries listed, the number of entries that
are hidden (due to �ltering as described in Appendix B) and the total number of
entries.

An entries of a bucket is pre�xed with MEMO. The �rst number following MEMO

is the number of hits on that entry. The next number gives the birth-stamp. Then
follow the visit-function that causes the entry, together with the arguments and
results.

Observe that in both runs each bucket only contains one entry; the hash func-
tions performed well.

During the �rst run, one visit hits, namely visit1N name('x'). In Figure C.1.
we have sketched the contents of the constructor cache for the second run. The

182 C. Evaluator output

nodes that are visited are colored grey and annotated with strings like 1:m. The
m stands for miss, an h stands for hit. The number 1 refers to the visit. This
information may be deduced from the dump: each annotation corresponds with
one MEMO entry, 6 in total.

L

L

L

N

’y’

L

S
root

decl

stat

empty

N

’x’

name

name

L

S
root

stat

1:m

1:m
2:m

1:h

1:h
 2:h

stat

The white and light grey nodes belong to the abstract syntax

tree of the �rst run. The dark grey nodes are the additional

nodes allocated for the second (incremental) run. The nodes

that are visited during the second run are grey. Grey nodes

are annotated with strings like #:$, where # denotes the visit

number and $ is either `h' for hit or `m' for miss.

Figure C.1. The shared terms during the second run

C.2 Listing

--

Compile '(use x; var x; use y;)' from scratch.

conscode(1,conscode(-1,conscode(10000,emptycode())))

Num of visits=12

DUMP MEMO base= 0

MEMO 0 10 Root\1

(Root(stat(name("x"),decl(name("x"),stat(name("y"),empty()))))

)=(conscode(1,conscode(-1,conscode(10000,emptycode()))))

BUCKET 4775 list= 1 hide= 0 TOTAL= 1

C.2. Listing 183

MEMO 0 3 decl\1

(decl(name("x"),stat(name("y"),empty()))

)=(decl_1_2("x",stat_1_2(empty_1_2())),consenv("x",emptyenv()))

BUCKET 5311 list= 1 hide= 0 TOTAL= 1

MEMO 0 2 stat\1

(stat(name("y"),empty()))=(stat_1_2(empty_1_2()),emptyenv())

BUCKET 5943 list= 1 hide= 0 TOTAL= 1

MEMO 0 4 stat\1

(stat(name("x"),decl(name("x"),stat(name("y"),empty())))

)=(stat_1_2(decl_1_2("x",stat_1_2(empty_1_2())))

,consenv("x",emptyenv()))

BUCKET 6023 list= 1 hide= 0 TOTAL= 1

MEMO 1 9 name\1(name("x"))=("x")

BUCKET 6447 list= 1 hide= 0 TOTAL= 1

MEMO 0 6 name\1(name("y"))=("y")

BUCKET 6527 list= 1 hide= 0 TOTAL= 1

MEMO 0 5 empty\2

(empty(),empty_1_2(),consenv("x",emptyenv()))=(emptycode())

BUCKET 6588 list= 1 hide= 0 TOTAL= 1

MEMO 0 8 decl\2

(decl(name("x"),stat(name("y"),empty()))

,decl_1_2("x",stat_1_2(empty_1_2()))

,consenv("x",emptyenv())

)=(conscode(-1,conscode(10000,emptycode())))

BUCKET 6931 list= 1 hide= 0 TOTAL= 1

MEMO 0 1 empty\1(empty())=(empty_1_2(),emptyenv())

BUCKET 6999 list= 1 hide= 0 TOTAL= 1

MEMO 0 7 stat\2

(stat(name("y"),empty()),stat_1_2(empty_1_2()),consenv("x",emptyenv())

)=(conscode(10000,emptycode()))

BUCKET 8771 list= 1 hide= 0 TOTAL= 1

MEMO 0 9 stat\2

(stat(name("x"),decl(name("x"),stat(name("y"),empty())))

,stat_1_2(decl_1_2("x",stat_1_2(empty_1_2())))

,consenv("x",emptyenv())

)=(conscode(1,conscode(-1,conscode(10000,emptycode()))))

BUCKET 9491 list= 1 hide= 0 TOTAL= 1

--

Compile '(use x; use x; var x; use y;)' incrementally.

conscode(1,conscode(1,conscode(-1,conscode(10000,emptycode()))))

Num of visits=6

184 C. Evaluator output

DUMP MEMO base= 11

MEMO 0 12 stat\2

(stat(name("x"),stat(name("x"),decl(name("x"),stat(name("y"),empty()))))

,stat_1_2(stat_1_2(decl_1_2("x",stat_1_2(empty_1_2()))))

,consenv("x",emptyenv())

)=(conscode(1,conscode(1,conscode(-1,conscode(10000,emptycode())))))

BUCKET 3324 list= 1 hide= 0 TOTAL= 1

MEMO 0 13 Root\1

(Root(stat(name("x")

,stat(name("x"),decl(name("x"),stat(name("y"),empty()))))

)

)=(conscode(1,conscode(1,conscode(-1,conscode(10000,emptycode())))))

BUCKET 5495 list= 1 hide= 0 TOTAL= 1

MEMO 1 11 stat\1

(stat(name("x"),decl(name("x"),stat(name("y"),empty())))

)=

(stat_1_2(decl_1_2("x",stat_1_2(empty_1_2())))

,consenv("x",emptyenv())

)

BUCKET 6023 list= 1 hide= 0 TOTAL= 1

MEMO 2 12 name\1(name("x"))=("x")

BUCKET 6447 list= 1 hide= 0 TOTAL= 1

MEMO 0 11 stat\1

(stat(name("x"),stat(name("x"),decl(name("x"),stat(name("y"),empty()))))

)=

(stat_1_2(stat_1_2(decl_1_2("x",stat_1_2(empty_1_2()))))

,consenv("x",emptyenv())

)

BUCKET 6743 list= 1 hide= 0 TOTAL= 1

MEMO 1 12 stat\2

(stat(name("x"),decl(name("x"),stat(name("y"),empty())))

,stat_1_2(decl_1_2("x",stat_1_2(empty_1_2())))

,consenv("x",emptyenv())

)=(conscode(1,conscode(-1,conscode(10000,emptycode()))))

BUCKET 9491 list= 1 hide= 0 TOTAL= 1

--

B
185

Bibliography

[Alb81] H. Alblas. A characterization of attribute evalution in passes. Acta
Informatica, 16:427{464, 1981.

[Alb89] Henk Alblas. Optimal incremental simple multi-pass attribute
evaluation. Information Processing Letters, 32:289{295, 1989.

[Alb91a] Henk Alblas. Attribute evaluation methods. In H. Alblas and
B. Melichar, editors, Proceedings of the International Summer School
SAGA '91 on Attribute Grammars, Applications and Systems, vol-
ume 545 of Lecture Notes in Computer Science, pages 48{113.
Springer-Verlag, 1991.

[Alb91b] Henk Alblas. Incremental attribute evaluation. In H. Alblas and
B. Melichar, editors, Proceedings of the International Summer School
SAGA '91 on Attribute Grammars, Applications and Systems, vol-
ume 545 of Lecture Notes in Computer Science, pages 215{233.
Springer-Verlag, 1991.

[Alb91c] Henk Alblas. Introduction to attribute grammars. In H. Alblas
and B. Melichar, editors, Proceedings of the International Summer
School SAGA '91 on Attribute Grammars, Applications and Systems,
volume 545 of Lecture Notes in Computer Science, pages 1{15.
Springer-Verlag, 1991.

[Aug93] Lex Augusteijn. Functional Programming, Program Transforma-
tions and Compiler Construction. PhD thesis, Technische Universiteit
Eindhoven, Eindhoven, The Netherlands, October 1993.

[Bir84] R.S. Bird. Using circular programs to eliminate multiple traversals
of data. Acta Informatica, 21:239{250, 1984.

[Boc76] Gregor V. Bochmann. Semantic evaluation from left to right.
Communications of the ACM, 19(2):55{62, 1976.

[BW88] Richard Bird and Philip Wadler. Introduction to Functional
Programming. International series in Computer Science. Prentice
Hall, 1988.

186 Bibliography

[CH79] R. Cohen and E. Harry. Automatic generation of near-optimal
linear-time translators for non-circular attribute grammars. Proceed-
ings of the 6th ACM Symposium on Principles of Programming Lan-
guages, pages 121{134, 1979.

[CLR92] Thomas H. Cormen, Charles E. Leiserson, and

Ronald L. Rivest. Introduction to Algorithms. McGraw-Hill
Book Company, 1992.

[DJL84] Pierre Deransart, Martin Jourdan, and Bernard

Lorho. Speeding up circularity tests for attribute grammars. Acta
Informatica, 21:375{391, 1984.

[DJL88] Pierre Deransart, Martin Jourdan, and Bernard

Lorho. Attribute Grammars. De�nitions, Systems and Bibliography,
volume 323 of Lecture Notes in Computer Science. Springer-Verlag,
1988.

[DRT81] A. Demers, T. Reps, and T. Teitelbaum. Incremental eval-
uation for attribute grammars with applications to syntax-directed
editors. In Conference records of the eight ACM Symposium on Prin-
ciples of Programming Languages, pages 105{116, January 1981.

[EdJ90] Joost Engelfriet and Willem de Jong. Attribute storage
optimization by stacks. Acta Informatica, 27:567{581, 1990.

[EF82] Joost Engelfriet and Gilberto Fil�e. Simple multi-visit
attribute grammars. Journal of Computer and System Sciences,
24:283{314, 1982.

[Eng84] J. Engelfriet. Attribute grammars: Attribute evaluation meth-
ods. In B. Lorho, editor, Methods and Tools For Compiler Construc-
tion, pages 103{138. Cambridge Press, 1984.

[Far86] R. Farrow. Automatic generation of �xed-point-�nding evaluators
for circular, but well-de�ned, attribute grammars. In Proceedings
of the SIGPLAN '86 Symposium on Compiler Construction, pages
85{98, 1986.

[GG84] Harald Ganzinger and Robert Giegerich. Attribute cou-
pled grammars. ACM SIGPLAN notices, 19(6):157{170, June 1984.

[HF92] Paul Hudak and Joseph H. Fasel. A gentle introduction to
haskell. ACM SIGPLAN Notices, Haskell special issue, 27(5), may
1992.

[Hoo86] Roger Hoover. Dynamically bypassing copy rule chains in at-
tribute grammars. In Thirteenth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 14{25. ACM, January 1986.

Bibliography 187

[HPJW+92] P. Hudak, S. Peyton-Jones, P. Wadler, et al. Report
on the programming language haskell, a non-strict purely functional
language (version 1.2). ACM SIGPLAN Notices, Haskell special issue,
27(5), may 1992.

[Hug82] R.J.M. Hughes. Super combinators | a new implementation
method for applicative languages. In Conference Record of the 1982
ACM Symposium on Lisp and Functional Programming, pages 1{10,
Pittsburgh, 1982.

[Hug85] John Hughes. Lazy memo-functions. In Jean-Pierre Jouannaud,
editor, Proceedings of the IFIP Conference on Functional Program-
ming Languages and Computer Architecture, volume 201 of Lec-
ture Notes in Computer Science, pages 129{146. Springer-Verlag,
September 1985.

[Jaz81] Mehdi Jazayeri. A simpler construction for showing the intrinsi-
cally exponential complexity of the circularity problem for attribute
grammars. Journal of the Association for Computing Machinery,
28(4):715{720, October 1981.

[Joh87] Thomas Johnnson. Attribute grammars as a functional program-
ming paradigm. In G. Kahn, editor, Functional programming lan-
guages and computer architecture, volume 274 of Lecture Notes
in Computer Science, pages 154{173, Portland, September 1987.
Springer-Verlag.

[Jon91] Mark P. Jones. Introduction to Gofer 2.20. Oxford Programming
Research Group, November 1991.

[Jou84] M. Jourdan. Strongly non-circular attribute grammars and their
recursive evaluation. In Proceedings of the ACM SIGPLAN '84 Sym-
posium on Compiler Construction, pages 81{93, 1984.

[Jou91] Martin Jourdan. A survey of parallel attribute evaluation meth-
ods. In H. Alblas and B. Melichar, editors, Proceedings of the In-
ternational Summer School SAGA '91 on Attribute Grammars, Ap-
plications and Systems, volume 545 of Lecture Notes in Computer
Science, pages 234{253. Springer-Verlag, 1991.

[JP90] C. Juli�e and D. Parigot. Space optimization in the fnc-2 at-
tribute grammar system. In Attribute grammars and their applica-
tions, volume 461 of Lecture Notes in Computer Science, pages 29{
45. Springer-Verlag, 1990.

[Kas80] Uwe Kastens. Ordered attribute grammars. Acta Informatica,
13:229{256, 1980.

[Kas87] Uwe Kastens. Lifetime analysis for attributes. Acta Informatica,
24:633{652, 1987.

188 Bibliography

[Kas91] Uwe Kastens. Attribute grammars as a speci�cation method. In
H. Alblas and B. Melichar, editors, Proceedings of the International
Summer School SAGA '91 on Attribute Grammars, Applications and
Systems, volume 545 of Lecture Notes in Computer Science, pages
16{47. Springer-Verlag, 1991.

[Kav84] C. Kaviani. Comparaison de deux m�ethode d'�evaluation d'attributs
s�emantiques: GAG et FNC. PhD thesis, Universit�e de Paris VI, Jan-
uary 1984.

[KHZ82] Uwe Kastens, Brigitte Hutt, and Erich Zimmermann.
GAG: A practical compiler generator, volume 141 of Lecture Notes
in Computer Science. Springer-Verlag, 1982.

[Kle91] Eduard Klein. Ein Modell zur Generierung paralleler Attribu-
tauswerter. PhD thesis, Gesellschaft f�ur Mathematik und Datenver-
arbeitung mbH., M�unchen, Germany, May 1991.

[Knu68] Donald E. Knuth. Semantics of context-free languages. Math-
ematical Systems Theory, 2(2):127{145, 1968.

[Knu71] Donald E. Knuth. Semantics of context-free languages (correc-
tion). Mathematical Systems Theory, 5(1):95{96, 1971.

[Knu91] Donald E. Knuth. The TeXbook, computers & typesetting / A.
Addison-Wesley, Reading, Massachusets, 1991.

[KP81] B.W. Kernighan and P.J. Plauger. Software tools in pascal.
Addison-Wesley, 1981.

[KR79] Ken Kennedy and Jayashree Ramanathan. A deterministic
attribute grammar evaluator based on dynamic sequencing. ACM
Transactions on Programming Languages and Systems, 1(1):142{
160, July 1979.

[KS87] M.F. Kuiper and S.D. Swierstra. Using attribute grammars
to derive e�cient functional programs. Computing Science in the
Netherlands CSN '87, November 1987.

[Kui89] Matthijs F. Kuiper. Parallel Attribute Evaluation. PhD thesis,
Utrecht University, Department of Computer Science, Utrecht, The
Netherlands, November 1989.

[KW76] K. Kennedy and S. Warren. Automatic generation of e�cient
evaluators for attribute grammars. In Conference Record of the Third
ACM Symposium on Principles of Programming Languages, pages
32{49, New York, 1976. ACM.

[odAS91] Rieks op den Akker and Erik Sluiman. Storage alloca-
tion for attribute evaluators using stacks and queues. In H. Alblas

Bibliography 189

and B. Melichar, editors, Proceedings of the International Summer
School SAGA '91 on Attribute Grammars, Applications and Systems,
volume 545 of Lecture Notes in Computer Science, pages 140{150.
Springer-Verlag, 1991.

[Pen93] Maarten Pennings. Multi-traversal tree decoration in a func-
tional setting: monads versus bindings. Technical Report RUU-CS-
93-46, Utrecht University, Department of Computer Science, PO Box
80.089, 3508 TB Utrecht, The Netherlands, December 1993.

[PSV92a] Maarten Pennings, Doaitse Swierstra, and Harald

Vogt. Using cached functions and constructors for incremental
attribute evaluation. In M. Bruynooghe and M. Wirsing, editors,
Proceedings of the 4th International Symposium PLILP '92 on Pro-
gramming Implementation and Logic Programming, volume 631 of
Lecture Notes in Computer Science, pages 130{144. Springer-Verlag,
1992.

[PSV92b] Maarten Pennings, Doaitse Swierstra, and Harald

Vogt. Using cached functions and constructors for incremental at-
tribute evaluation. Technical Report RUU-CS-92-11, Utrecht Uni-
versity, Department of Computer Science, PO Box 80.089, 3508 TB
Utrecht, The Netherlands, December 1992.

[Pug88] W.W. Pugh. Incremental Computation and the Incremental Eval-
uation of Functional Programs. PhD thesis, Cornell University, De-
partment of Computer Science, Ithaca, New York, August 1988.

[Rep82] T. Reps. Optimal-time incremental semantic analysis for syntax-
directed editors. In Conference Record of the Ninth ACM Symposium
on Principles of Programming Languages, pages 169{176, New York,
1982. ACM.

[Rep93] Thomas Reps. Scan grammars: Parallel attribute evaluation via
data-parallelism. In 5th Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 367{376. ACM, July 1993.

[RT88] T. Reps and T. Teitelbaum. The synthesizer generator refer-
ence manual. Springer-Verlag, New York, third edition, 1988.

[RT89] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Gen-
erator: a system for constructing language-based editors. Springer-
Verlag, 1989.

[RTD83] T. Reps, T. Teitelbaum, and A. Demers. Incremental
context-dependent analysis for language-based editors. ACM Trans-
actions on Programming Languages and Systems, 5(3):449{477, July
1983.

190 Bibliography

[SV91] S.D. Swierstra and H.H. Vogt. Higher order attribute gram-
mars. In H. Alblas and B. Melichar, editors, Proceedings of the
International Summer School SAGA '91 on Attribute Grammars, Ap-
plications and Systems, volume 545 of Lecture Notes in Computer
Science, pages 256{296. Springer-Verlag, 1991.

[TC90] Tim Teitelbaum and Richard Chapman. Higher-order at-
tribute grammars and editing environments. Proceedings of the ACM
SIGPLAN '90 Conference on Programming Language Design and Im-
plementation, 25(6):197{208, june 1990.

[Tur85] D.A. Turner. A non-strict functional language with polymorphic
types. In Jean-Pierre Jouannaud, editor, Functional Programming
Languages and Computer Architecture, volume 201 of Lecture Notes
in Computer Science, pages 1{16. Springer-Verlag, 1985.

[Vog93] Harald Vogt. Higher order Attribute Grammars. PhD thesis,
Utrecht University, Department of Computer Science, Utrecht, The
Netherlands, February 1993.

[VSK89] H.H. Vogt, S.D. Swierstra, and M.F. Kuiper. Higher
order attribute grammars. Proceedings of the ACM SIGPLAN '89
Conference on Programming Language Design and Implementation,
24(7):131{145, july 1989.

[VSK91] Harald Vogt, Doaitse Swierstra, and Matthijs

Kuiper. E�cient incremental evaluation of higher order attribute
grammars. In J. Maluszy�nski and M. Wirsing, editors, Proceedings
of the 3th International Symposium PLILP 91 on Programming Lan-
guage Implementation and Logic Programming, volume 528 of Lec-
ture Notes in Computer Science, pages 231{242. Springer-Verlag,
1991.

[WG84] W.M. Waite and G. Goos. Compiler Construction. Springer-
Verlag, 1984.

[Yeh83] D. Yeh. On incremental evaluation of ordered attribute grammars.
BIT, 23:308{320, 1983.

[YK88] Dashing Yeh and Uwe Kastens. Improvements of an incre-
mental evaluation algorithm for ordered attribute grammars. SIG-
PLAN notices, 23(12):45{50, December 1988.

[Zar90] Alan K. Zaring. Parallel Evaluation in Attribute Grammar-Based
Systems. PhD thesis, Cornell University, Department of Computer
Science, Ithaca, New York, August 1990.

S
191

Samenvatting

Bij het schrijven van deze samenvatting hinkte ik op twee gedachten. Enerzijds
is de \samenvatting in het Nederlands" bij uitstek een onderdeel dat door familie
en vrienden gelezen wordt. Het merendeel van deze mensen is buitenstaander wat
betreft het vakgebied van de Informatica. Voor hen zou dit een informele inleiding
moeten zijn. Anderzijds moet deze samenvatting een korte beschrijving van mijn
proefschrift zijn, zodat ingewijden snel een overzicht kunnen krijgen. Ik heb dit
dilemma opgelost door niet te kiezen. Eerst geef ik een informele inleiding en
daarna een kort overzicht.

Informele inleiding

Compilers

In onze maatschappij wordt tegenwoordig veel met software, dat wil zeggen com-
puterprogramma's, gewerkt. Denk daarbij niet alleen aan tekstverwerkers, maar
ook aan software in geldautomaten, videorecorders en het administratiesysteem
van de �scus.

Software moet geschreven worden. Programmeurs schrijven software in zoge-
heten hogere programmeertalen, waarvan Pascal, C, Basic, Cobol en Fortran de
bekenste zijn. Zulke programmeertalen nemen tijdrovende, saaie en administratieve
taken verbonden aan het programmeren, uit handen.

Echter, computers \begrijpen" hogere programmeertalen niet, zij moeten ge��n-
strueerd worden in een zogeheten machinetaal. Om een hogere programmeertaal
naar machinetaal te vertalen zijn er speciale computerprogramma's in omloop,
zogeheten compilers. Met andere woorden, compilers vormen een vitale schakel in
het productieproces van software.

Een compiler zet een zogeheten bronprogramma, geschreven in een speci�eke
hogere programmeertaal, om naar een zogeheten doelprogramma in een speci�eke
machinetaal. Men spreek dan bijvoorbeeld ook van een \Pascal compiler voor een
DOS computer". De kwaliteit van het doelprogramma is niet alleen afhankelijk van
de kwaliteit van het bronprogramma, maar ook van de kwaliteit van de gebruikte
compiler.

Compilers zijn grote, ingewikkelde programma's, die ook geschreven moeten
worden. Dit proces wordt ondersteund door compiler-generatoren. Tijdens mijn

192 Samenvatting

boter

melk 30

10 2,50

1,25

item aantal prijs a

b

c

d

1 2 3 4

b2 b3 x

c2 c3 x

b4+c4 b2+c2

boter

melk 30

10 2,50

1,25

25,00

52,50

item aantal prijs a

b

c

d

1 2 3 4

40 77,50

a. Invoer b. Uitvoer

Figuur 2. Een rekenblad voor de melkboer

vierjarig onderzoek heb ik een compiler-generator gemaakt. Een compiler-generator
is een computerprogramma dat, na invoer van een minutieuze beschrijving van
een hogere programmeertaal en de gewenste machinetaal, een compiler voor die
programmeertaal genereert.

De voordelen van een compiler-generator zijn legio. Elke verbetering aan de
generator heeft tot gevolg dat elke gegenereerde compiler verbetert. Bovendien
worden de produktiekosten en de produktietijd verbonden aan het maken van een
compiler, aanzienlijk verminderd. Immers, in plaats van een compiler voor een
hogere programmeertaal hoeft alleen nog maar een beschrijving van die hogere
programmeertaal geschreven te worden. Een student informatica kan in een paar
maanden tijd een compiler genereren, terwijl een groep beroeps programmeurs daar
eerder vele maanden tot jaren mee bezig is.

Incrementele berekeningen

De kracht van de compilers gegenereert door de door mij ontwikkelde generator is
voornamelijk gelegen in het feit dat ze incrementeel zijn. Dat betekent dat na een
kleine verandering in het bronprogramma, de compiler de corresponderende veran-
deringen in het doelprogramma aanbrengt|dit in tegenstelling tot het simpelweg
vertalen van het gehele (gewijzigde) bronprogramma. Dit laatste zou veel meer
tijd zou kosten.

Wat een incrementele berekening is wordt elegant ge��llustreerd aan de hand van
een compiler-verwante toepassing: een rekenblad of spreadsheet. Een rekenblad
bestaat uit cellen in een rechthoekig patroon, zie Figuur 2a. Elke cel wordt
aangeduid met een letter-cijfer combinatie. Zo wordt de cel links-boven aangeduid
met a1. Een cel kan tekst, getallen of formules bevatten: cel a1 bevat de tekst
`item', cel b2 bevat het getal 10 en cel b4 bevat de formule b2� b3.

Een rekenblad-evaluator berekent de waarde van de cellen waar formules in
staan. Dus, na invoer van het rekenblad in Figuur 2a wordt de uitvoer van Figuur 2b
geproduceerd.

Stel dat we een verandering aanbrengen in het rekenblad; we voeren een
zogeheten edit-operatie uit. We verlagen het getal in cel b2 van 10 naar 9, zie

Informele inleiding 193

boter

melk 30

2,50

1,25

item aantal prijs a

b

c

d

1 2 3 4

b2 b3 x

c2 c3 x

b4+c4 b2+c2

9 boter

melk 30

2,50

1,25 52,50

item aantal prijs a

b

c

d

1 2 3 4

9 22,50

75,00 39

a. Wijziging in de invoer b. Zuinige herberekening

Figuur 3. Wijziging aan een rekenblad

Figuur 3a. De rekenblad-evaluator zou alle cellen met formules opnieuw kunnen
uitrekenen. Een incrementele evaluator berekent alleen de grijze cellen in Figuur 3b.
In dit geval spaart dat de berekening van cel c4 uit.

Het is overigens niet eenvoudig om in te zien welke cellen herberekend moeten
worden. Om dat te bepalen stelt de rekenblad-evaluator een zogeheten graaf op
die de cel-afhankelijkheden weergeeft. Een knoop in de graaf representeert een cel.
Er loopt een pijl van knoop b2 naar knoop b4 omdat de formule van cel b4 refereert
aan cel b2. Zo'n pijl impliceert dat cel b4 n�a cel b2 uitgerekend moet worden.

Bij een incrementele evaluatie moet elke cel wiens knoop in de graaf een
opvolger is van b2, herberekend worden, tenzij veranderingen eerder uitdoven.
Als voorbeeld van dat laatste, beschouwen we de volgende verandering: de prijs
van boter gaat naar 0,25 en de hoeveelheid boter naar 100. In dat geval blijft de
waarde van cel b4 25,00 zodat d4 niet herberekend hoeft te worden. Grafen spelen

b3

b2

c2

c3

c4

d2

b4

d4

bij incrementele berekeningen een belangrijke rol. Ze komen dan ook veelvuldig in
dit proefschrift voor.

Compilers worden ook vaak toegepast op slechts weinig veranderde invoer. Hoe
vaak wordt een computerprogramma niet gecompileerd om er vervolgens achter te
komen dat er een kleine fout in staat? Het is daarom jammer dat er nog zo weinig i:=1 had natuurlijk

i:=0 moeten zijn.incrementele compilers zijn.

Taal-speci�eke editors

Een editor is een computerprogramma waarmee gegevens in een computer in-
gevoerd kunnen worden. Bovendien kunnen met een editor bestaande gegevens
gewijzigd worden. Meestal verstaat men onder een editor een algemeen programma
waarmee gegevens voor uiteenlopende applicaties (toepassings programma's zoals
compilers, rekenbladen, tekstverwerkers) ingevoerd kunnen worden.

Een applicatie-speci�eke editor is een invoer-en-wijzig programma dat \kennis"
heeft van een applicatie. Alle huis-tuin-en-keuken applicaties zoals tekstverwerkers LaTEX is geen huis-tuin-

en-keuken applicatie.en rekenbladen zijn uitgerust met applicatie-speci�eke editors. Het grootste voor-
deel van zulke editors is dat ze de gebruiker kunnen sturen: er kan geen al te grote
onzin in worden gevoerd.

194 Samenvatting

Compilers zouden ook uitgerust kunnen worden met een brontaal-speci�eke
editor. Dat is met name interessant als er een incrementele compiler beschikbaar
is die tijdens het intypen van het bronprogramma voortdurend het bijbehorende
doelprogramma berekend. Zulke systemen zouden de arbeidsproduktiviteit van
programmeurs enorm verhogen. Immers, fouten in het bronprogramma worden
direct als zodanig herkend door het system, en meegedeeld aan de gebruiker. Het
grootste voordeel is echter dat de editor \ondervraagd" kan worden over bepaalde
kenmerken van het bronprogramma. Voor ingewijden: als de editor constateert dat
i:=1 incorrect is omdat i niet gedeclareerd is kan het een menu aanbieden met alle
integer variabelen in de huidige scoop en een optie om de declaratie i:integer

toe te voegen aan de declaraties.

Kort overzicht

Dit proefschrift beschrijft de generatie van incrementele compilers, met name als
onderdeel van een taal-speci�eke \language based" editor.

Omdat we uitgaan van een taal-speci�eke editor, kunnen we het ontleed-
traject (lexical scanning en parsing) overslaan: de editor onderhoudt een boom-
representatie van het ingevoerde programma. Dat betekent dat compileren nietsDe titel: Generating

incremental attribute

evaluators.
anders is dan het attribueren van de boom; de compiler is een (incrementele)
attribute evaluator.

Het formalisme waarmee we bomen en attributen beschrijven is het attribuut
grammatica formalisme.

We geven twee methodes om incrementele attribuut evaluatoren te construeren.
De eerste methode is een bestaande: visit-sequences sturen boom decoratie. De
tweede methode is nieuw: visit-sequences worden afgebeeld op visit-functies die
gecached worden om incrementeel gedrag te verkrijgen. Een complicatie bij deze
aanpak vormen zogeheten intra-visit-dependencies. Om dat probleem op te lossen
worden bindingen ge��ntroduceerd.

Visit-functies zijn functies zonder zij-e�ecten. Dit opent de mogelijkheid tot
allerhanden optimalizaties. Aan de orde komen splitting, elimination, uni�cation,
folding, normalization en untyping.

We bespreken hoe visit-sequences berekend worden aan de hand van een gram-
matica. We wijzigen Kastens' ordered scheduling op twee vlakken. Om te beginnen
voeren we dat grafen in (in stap 4) waardoor een grotere klasse van gramatica's
geaccepteerd wordt. Ten tweede voeren we een nieuw orderings algorithme in
(chained scheduling) dat visit-sequences berekent die beter geschikt zijn voor
omzetting naar visit-functies.

Een groot deel van het onderzoek heeft zich toegespitst op de haalbaarheid van
een functionele aanpak: we hebben een generator geschreven. De gegenereerde
evaluatoren zijn eenvoudig, elegant en robuust. Bovenal zijn ze snel. De generator
is onder andere gebruikt om een deel van zichzelf te genereren.

C
195

Curriculum vitae

Maarten Christiaan Pennings

28 december 1965

Geboren te Utrecht.

augustus 1978 { juli 1982

Atheneum B op het Augustinianum te Eindhoven.

augustus 1982 { juli 1984

Atheneum B op het Sint Maartenscollege te Maastricht.
Atheneum diploma 4 juni 1984.

september 1984 { juli 1985

Studie werktuigbouwkunde aan de Technische Universiteit Eindhoven.
Propaedeuse werktuigbouwkunde 16 september 1985.

september 1985 { oktober 1990

Studie informatica aan de Technische Universiteit Eindhoven.
Propaedeuse informatica 10 juli 1986.
Doctoraal 1e deel informatica 2 juli 1987.
Doctoraal informatica 25 oktober 1990.
Aanvullend examen informatica 25 oktober 1990.

november 1990 { november 1994

Onderzoeker in opleiding in dienst bij de Stichting informatica-onderzoek
Nederland (SION) van de Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO) gedetacheerd bij de Universiteit Utrecht.

januari 1995 {

Wetenschappelijk medewerker bij het Philips Natuurkundig Laboratorium te
Eindhoven.

196 Curriculum vitae

G
197

Glossary

This glossary is meant as a quick reference to all known and not so well-known
symbols contained in this thesis: it gives a short description and a page number
(after .) that refers to a page where the symbol is de�ned.

Variables

This section lists the variables that occur in this thesis. Some variables are com-
pound. For example pv!w consists of three components, namely p , v and w (the
! is syntactic sugar). To facilitate lookup, variables are subdivided according to
the number of components they are made up of.

One component

a , b , c (non-terminal su�x for) attributes .13

�, � ,
 attribute occurrences .13

D dependency set .10

f , g semantic functions .14

G graph or grammar .10

i , j non-terminal indices in production .11

K node of an abstract syntax tree .12

l , k (production su�x for) local attributes .13

p , q , r productions .11

p, q, r production constructors .11

p , q , r shells .105

p , q , r encapsulators .104

R, S root and start non-terminals .11

�, � attribute instances .28

T abstract syntax tree .12

v , w , t , u visit indices .38

X , Y , N non-terminals (and trees of that type) .11

x , y (production su�x for) attributable attributes .16

198 Glossary

Two components

pv , qw split productions .93

pv , qw split production constructors .93

p:l , q :k local attributes (and occurrences thereof) .13p�i is the i th non-
terminal of p (list
indexing). p:x , q :y attributable attributes (and occurrences thereof) .16

poi , qoj non-terminal occurrences (with pairing via o) .12

T v split tree .90

X v , Y w split non-terminals (and trees of that type) .93
also visit to non-terminal in plan icons .66

X :a , Y :b attributes .13Since p�i is a non-
terminal, p�i :a de-
notes an attribute too.

Three components

(K ;X :a) non-terminal attribute instance .28

(K ; p:l) local attribute instance .28

pv!w , qv!w wrappers .77

pv!w , qv!w wrapper constructors .77

p:x :a , q :y :b generated attribute occurrences .16

poi :a , qoj :b attribute occurrences (with pairing via o) .13

poi v , qojw split non-terminal occurrences .92, 93

T v!w binding .69

X v!w , Y v!w parcels (and bindings of that type) .70

X :av!w binding attribute .71The a, i and s are
part of �xed syntactic
sugar (note the font). X :iv!w inherited binding attribute .71

X :sv!w synthesized binding attribute .71

Four components

poi :av!w binding occurrence .71

poi :iv!w inherited binding occurrence .71

poi :sv!w synthesized binding occurrence .71

p:x :av!w generated binding occurrence .80

p:x :iv!w generated inherited binding occurrence .80

p:x :sv!w generated synthesized binding occurrence .80

Symbols 199

Symbols

Symbols are subdivided into two lists. The �rst list contains constants, functions
and operators known from mathematics and functional programming; the second
list contains grammar related symbols. In both lists, 2 is used as placeholder for
arguments.

Ordinary math symbols

2 2 function application .9

2�2 list (and tree) indexing .10

2
+ transclose (graphs, dependency sets) .10

2 + 2 addition (numbers), disjunct union (sets) .9

2 [2 set union .9

2 2 2 set membership .9

2 � 2 functional composition .9

2 �! 2 arc in graphs and dependency sets .10

2 n 2 set di�erence .9

2 � 2 cross product of sets .9

2 : 2 cons of element to list .10

2 ++ 2 concatenation of lists .10

2 : : 2 has type .11

(2) tuple; also (2) .9

[2] list; [] empty list .10

f2g set; fg empty set .9

[2 j 2 2] comprehension; also [2 j 2 2 2] .10

2 div 2 integer division

fst 2 �rst component of a tuple .9

head 2 head of a list .10

len 2 length of a list .10

2 max 2 maximum of two numbers

2 min 2 minimum of two numbers

O(2) order; not to be confused with O(2)

snd 2 second component of a tuple .9

tail 2 tail of a list .10

200 Glossary

Grammar related symbols

2:2 attribute selection: X :a , p:l , p:x , poi :a , : : : .13, 16, 71, 80

2�2 p�i denotes the i th non-terminal of p ; list indexing .10
b

2 meta language type-of operator .77, 93

2 X denotes a non-terminal attribute of type X .17

2 X denotes the split representation (X 1; : : : ;X vX) .93
p denotes a shell for production p .105

2 X denotes the representation (X ; (X 1; : : : ;X vX)) .105
p denotes an encapsulator for production p .104

? joker (for non-terminal attributes) .17

2|2 projection (attribute occurrence to attribute) .31

(2) tuple of split trees; also () .9, 93

2[2] paste (attributes into attribute occurrence dependency) .31

A(2) set of attributes .13, 16

A(X) attributes of non-terminal X ; o�cially Anont(X) .13, 16

Ainh(X) inherited attributes of non-terminal X .13, 16

Asyn(X) inherited attributes of non-terminal X .13, 16

Aata(p) attributable attributes of production p .16

Aloc(p) local attributes of production p .13, 16

BA(2) set of binding attributes .71

BA(X) binding attributes of non-terminal X .71

BAinh(X) inherited binding attributes of non-terminal X .71

BAsyn(X) inherited synthesized attributes of non-terminal X .71

2BI 2 XBI v denotes the inherited binding attributes for visit v to X

.71

bind(2; 2; 2) bind(p; v ;w) denotes the attribute occurrences de�ned in
visit-sub-sequence v of p that are used visit-sub-sequence w of p
.75

BO(2) set of binding occurrences .71, 80

BO(poi) binding occurrences of poi .71

BO(p:x) binding occurrences of p:x .80

BO(p) all binding occurrences of production p .71, 80

2BS 2 XBS v denotes the synthesized binding attributes for visit v
to X .71

� set of AFFECTED attribute instances .36

dat(2) dependencies of attribute and visit vertices .128

def (2; 2) def (p; v) denotes the de�ned attribute occurrences of
visit-sub-sequence v of p .75

Symbols 201

dpr(2) (attribute occurrence) dependencies of a production .14

dtr(2) (attribute instance) dependencies of a tree .29

eval(2) eval(�) denotes the plan instruction to evaluate � .38, 55

free(2; 2) free(p; v) denotes the set of free attribute occurrences of
visit-sub-sequence v of p .75

2I 2 X I v denotes inherited attributes for visit v to X .42

inh(2) annotation for a visit-sub-sequence listing an inherited occurrence
.74

inp(2) annotation for visit instruction listing an inherited occurrence
.74

ins(2; 2) the function ins maps a node and an attribute occurrence to an
attribute instance .28

inspect(2; 2) inspect(p; v) denotes the set of split non-terminals that are
visited and syntactic elements that are referenced in
visit-sub-sequence v of p .92

interface(2) interface(X) denotes the interface of non-terminal X .42

N untyped non-terminal .115

nont(2) nont(K) is the non-terminal occurrence at node K .12

O(2) set of attribute occurrences .13, 16

O(poi) attribute occurrences of poi .13, 16

Oinh(poi) inherited attribute occurrences of poi .13, 16

Osyn(poi) synthesized attribute occurrences of poi .13, 16

O(p:x) generated attribute occurrences of p:x .16

Oinh(p:x) generated inherited attribute occurrences of p:x .16

Osyn(p:x) generated synthesized attribute occurrences of p:x .16

Onont(p) attribute occurrences from non-terminals of p .13, 16

Ogen(p) attribute occurrences from attributable attributes of p .16

Oloc(p) local attribute occurrences of p .13, 16

Oata(p) attributable attribute occurrences of p .16

Oinp(p) input attribute occurrences of p .13, 16

Oout(p) output attribute occurrences of p .13, 16

Odef (p) de�ned attribute occurrences of p .13

Ouse(p) used attribute occurrences of p .13

O(p) all attribute occurrences of p .13, 16

2o2 poi denotes non-terminal occurrence i of p .12

out(2) annotation for visit instruction listing a synthesized occurrence
.74

pass(2) eval instruction to construct wrapper .74

prod() prod(K) is the production with which node K is labeled .12

202 Glossary

s2 sp denotes the size of a production p .12

2S 2 XS v denotes synthesized attributes for visit v to X .42

slot(2) the slot number of an interface set X I v , XS v or attribute X :a

.42

split splitX denotes a function that converts an abstract syntax tree of
type X into a split representation X .94

sref (2) annotation for eval instruction listing a syntactic reference .74

suspend(2) suspend(v) denotes the plan instruction to exit visit v .38, 55

syn(2) annotation for a visit-sub-sequence listing a synthesized
occurrence .74

tdp(2) transitive (attribute occurrence) dependencies of a production
.122

tds(2) transitive (attribute) dependencies of a symbol (non-terminal)
.122

use(2; 2) use(p; v) denotes the set of used attribute occurrences of
visit-sub-sequence v of p .75

uses(2) annotation for eval instruction listing an used occurrence .74

v2 vX denotes the number of visits of non-terminal X .42

visit visitX v or visitvX denotes visit-function for visit v to X .78, 94

visit(2; 2) visit(i ; v) denotes the plan instruction to visit poi for the v th
time .38, 55

vss(2; 2) vss(p; v) denotes visit-sub-sequence v of production p .75

I
203

Index

The index does not contain references to symbols; see the glossary for that. A
pagenumber followed by an `m' refers to a marginal note on that page. Similarly,
an `f' su�x refers to a �gure. An underlined page number refers to a de�nition of
the index entry.

�, 36, 159
?, see joker
., 8, 197
#, 20
", 20

abstract syntax, 4, 11, 20m
abstract syntax tree, 12, 29, 80
abstraction, 95, 104
accumulate binding, 69
add arc induce , 123
a�ected, see �
agstore, 145
algebraic formalism, see formalism
algorithm

list of, viii
annotated visit-sequence, see

visit-sequence
architecture, 145, 146
associative, 114
attributable attribute, 7, 100
attribute, 5, 13, 16, 20

attributable, 7, 15, 16, 92, 100
binding, see binding
de�ned, 14
generated, 16, 16
higher-order, 15
inherited, 6, 13, 16, 42
input, 13, 23m
instance, 28
local, 13, 16, 45
non-terminal, 15, 17
occurrence, 13, 16, 75

output, 13, 23m
self , 14m, 18, 102, 106
synthesized, 6, 13, 16, 42
used, 14

attribute coupled, see grammar
attribute grammar, see grammar
attribute vertex, 128
augmented visit-sequence, see

visit-sequence
auxiliary vertex, 131

back-arrow, 134
balancing, 114
bijective, 94m
bind , 73, 75
bind grammar, 70, 93
binding, 54, 59, 64, 69, 69, 70, 80,

83f, 102, 135
attribute, 68f, 69, 70
empty, 80
equation, 73
generated, 80
inherited, 71
occurrence, 69m, 71, 75
scheduling, 135
size of, 141
synthesized, 71

binding analysis, 73
binding grammar, 72f, 77f

list of �gures, viii
birth �eld, 151m, 173
Bochmann normal form, 14, 17, 48,

134

legend

2f : �gure
2m : margin

2 : def

204 Index

bootstrapped, 147
border-crosser, 68, 100
border-crossing, 68, 68f, also

intra-visit-dependency
box grammar, 44

list of �gures, viii
source, 46
standard application, 44, 52f

C fork, 150
C int, 151
cache, also memoization

constructor, 150
function, 153
overhead, 161
primitives, 153
purging, 156
visit-function, 155

case insensitive, 22
CAST, 158
catamorphism, 60m
chained computation, 137
chained scheduling, 135, 139
child, 6, 12
CIRC mapping, 59, 60
circular, 27, 30, 125, 133

seemingly, 62
circularity test, 30f
commutative, 114
compartment, 66
compatible, 119
compiler, 2, 9, 57

multi-pass, 6
completeness, 14, 17
compositional problems, 3
computation, 137, 137f
concrete syntax, 4, 11, 20m
condense graph, 81, 127
conditional dead-end, 166
constructor, 5, 10

cache, see cache
production, 11
unique, 151

context condition, 5, 6, 15
context-free grammar, see grammar

converging computation, 137
copy-rule, 22, 107
core, 18
cost

dynamic, 38
scheduling, 135, 138

current selection, 162, 166

DAG, 87
dat graph, 128, 132

arcs, 129
path, 131
vertices, 128

data
ow, 66, 87, 100, 106
data tree, 100, 117
dead-end, 137, 146, 166

conditional, 166
decoration, 38, 41, 92
decorator, 95
de�nition before use, 19
dependency set, 10
destructed, 92
destruction, 10
display string, 163
display tree, 44, 163
distributed memory machine, 170
diverging computation, 137
divide and conquer, 114
document preparation system, 2
dpr graph, 14, 23, 103, 107
draw

graphical formalism, see
formalism

tool, see rundraw
dtr graph, 27, 29, 36
dynamic change propagation, 37
dynamic cost, 112
dynamic semantics, 4

edit, 162
menu, 164

edit action, 160
elimination, 107, 115
empty

binding, see binding

legend

2f : �gure
2m : margin
2 : def

Index 205

parcel, see parcel
test, 82f
wrapper, see wrapper

encapsulator, 103, 104, 105m, 108
equality test, 58, 87, 152, 152m
equation, 5, 14, 20, 27
eval vertex, 131
evaluation

greedy, 143, 146
incremental, 2, 3, 6, 36, 49
just-in-time, 143, 146
plain, 36, 49

evaluation time, 36
evaluator

attribute, 35
dynamic, 43
functional, 88
incremental, 1, 35, 50f, 88
parallel, 36, 103, 114, 170
plain, 49f
static, 43
treewalk, 38
visit-sequence, 38

execution time, 160

factorization
bindings, 70
equations, 45, 111m

�ne grain, 143
�xed point, 27

ow tree, 100, 117
folding, 112, 112m, 115
font, 44, 163m
formalism

algebraic, 19
graphical, 22, 85

front-end, 145
FUN mapping, 60, 64, 78, 94, 147
functional language, 9, 22, 59

gap, 162
garbage collection, 156
generation time, 36
goal, 139, 140f
grammar

arranged orderly, 120
attribute, 4, 13
attribute coupled, 6
context-free, 11, 19
dat, 127
hierarchy, 122f
higher-order, 6, 16
l-ordered, 121
list of class examples, viii
ordered, 44, 55, 121m, 125
partitionable, 36, 43, 120
synthesized only, 120

graph, 10
dat , see dat

dpr , see dpr

dtr , see dtr

parcel dependency, 81
tdp , see tdp

tds , see tds

graphical formalism, see formalism
greedy evaluation, see evaluation

halting problem, 34m
hash

bucket, 181
function, 152
table, 150, 155

hashing cons, 58
higher-order

attribute, see attribute
function, 3, 59
grammar, see grammar
tree, 15
visit-sequence, 55

hit, 85, 182
�eld, 151m

homomorphism, 3, 60, 94m
hybrid editor, 162

icon
plan, 64, 65f, 66, 66m
production, 22, 23f, 66

identity function, 22, 90m, 106
implementation, 104

legend

2f : �gure
2m : margin

2 : def

206 Index

incremental evaluation, see
evaluation

incremental evaluator, see evaluator
inherited attribute, see attribute
injective, 89, 105, 135
inlined, 158
ins , 28
inspect , 92
instance

attribute, see attribute
non-terminal, see non-terminal
production, see production

instructions, 38
interactive, 2, 35
interface, 39, 42, 48, 119, 126
interface segment, 132
intermediate code, 146
intra-visit-dependency, 53, 59, 64,

68, 68f, 80, also
border-crossing

is-graphs, 30

joker, 17
just-in-time evaluation, see

evaluation

Kastens, 122
Knuth, 30, 44

language based editor, 2, 57, 161
lifetime analysis, 75, 141, 144
linear representation, 22, 27
linearization, 114
list comprehension, 10, 77, 93
local attribute, see attribute
lrc, 145

mapping
CIRC, see CIRC
FUN, see FUN
SPLIT, see SPLIT
VSS, see VSS

marginal note, 8m
mark, 50m, 51, 123
MEMO, 153
memo, 156

memoization, also cache
constructor, 58, 87
visit-function, 58, 85, 153

memory block
primitive, 151
term, 151
visit-function, 155

miss, 85, 182
model, 146

next �eld, 151
non-circular, 29, 43, 119

absolutely, 31
strongly, 31, 32f

non-terminal, 5, 11, 19, 104
instance, 12, 27
left-hand side, 5, 12, 22
occurrence, 12
right-hand side, 6, 12, 22

normal form, see Bochmann
normalization, 114, 115

occurrence
attribute, see attribute
binding, see binding
non-terminal, see non-terminal

ordered scheduling, 122
ordered tree, 12m
overloading, 11

packet, 153, 155
parallel evaluator, see evaluator
parcel, 71

empty, 80, 81
minimal number empty, 142

parent, 5, 12
parse tree, 12
parser, 57, 162
partial order, 43
partition, 10
partition sets, 125
partitionable grammar, see grammar
paste, 29m, 31
path, 12
pattern matching, 60
performance results, 160

legend

2f : �gure
2m : margin
2 : def

Index 207

permutation, 111
plan, see visit-sequence

icon, see icon
plan tree, 41, 102

new style, 66, 67f
old style, 40f

polymorph, 22, 59, 90m, 171
postscript, 147
primitive value, 12, 14, 148, 151,

162, also pseudo terminal
num , 20
plain implementation, 151
real , 45
str , 20
term implementation, 151, 153

priority, 138, 140f
production, 5, 11, 19, 104

constructor, 11
icon, see icon
instance, 12, 27
isomorphic, 111
name, 11, 22
redundant, 108
terminal production, 12

program transformation system, 2
projection, 31
pseudo terminal, 12, 20, also

primitive value

recursive, 6, 10, 22, 29, 60, 79, 94
reduction, 33, 33f, 54
re�nement, 95, 104
remote editing, 163
rundraw, 147

self attribute, see attribute
semantic function, 5, 6, 14, 15, 19,

22
semantics

dynamic, 4
static, 4

SHALLOC, 150
shared memory machine, 170
shared alloc, 150
shared alloc prim, 152

sharing, 87, 87f, 101, 118, 150, also
memoization

shell, 105, 106, 108
side-e�ect, 62, 65f
slot, 43
space optimization, 36, 37, 144
space time trade-o�, 152, 156
split, 91f

constructor, 91
non-terminal, 91, 93
non-terminal occurrence, 92m,

93, 95
production, 93
tree, 90, 93, 97f, 102, 103
visit-function, 94

split analysis, 92
split function, 94, 106
split grammar, 93
SPLIT mapping, 94, 147
ssl, 19, 145

varuse grammar, 171
start symbol, 11, 19, 20, 79, 95
static analysis, 36, 106
static semantics, 4
strict, 4m, 59, 62
stripping, 18
structure tree, see abstract syntax

tree
subordinate characteristic graphs, 30
subtree replacement, 37, 51, 162
suspend vertex, 131
symbol table, 5, 6, 58, 87
syntactic reference, 14, 18, 53m, 92,

95, 100
syntax, 4, 11, 20m
synthesized attribute, see attribute

T fork, 150
T int, 151
target language, 146
tdp graph, 122, 125, 132

too restricted, 128
tds graph, 122, 123
template, 162

conditional, 162

legend

2f : �gure
2m : margin

2 : def

208 Index

variables, 162
term, 10, 70
term, 148
terminal, 11, 20
test set, 158
threading, 112
time, 151m
total order, 36, 40
transfer vertex, 128
type, 10, 12, 20m, 71, 77, 93, 115

unconnected computation, 137
uni�cation, 111, 115
unique constructor, 151
unparsing, 162
untyping, 115

VALUE, 151
varuse grammar, 19

c source, 173
higher-order source, 21f
list of �gures, vii
source, 21f
ssl source, 171
standard application, 27, 28f

veri�cation tool, 2
vertex
?, 81
categories, 131
condensed, 127
dat graph, 128

virtual memory, 170
visit, 38

skipping, 51
visit vertex, 131
visit-border, 66
visit-function, 58, 60, 78

caching, see memoization
partially parameterized, 116, 149
pure, 78
split, 94
with side-e�ects, 62

visit-sequence, 36, 38, 41f, 43, 119,
127

annotated, 74, 76f

augmented, 74
higher-order, 55
sub-sequences, 41

VNT function, 154
VPR function, 154
VSS mapping, 59, 62, 78, 147

well-de�ned, 15, 17
worklist, 125, 127

priority, 138
wrapper, 70, 71, 73, 77, 100

copy, 107
empty, 78, 81
terminal, 78

legend

2f : �gure
2m : margin
2 : def

