
Algorithms

for

Drawing Planar Graphs

Algoritmen voor het Tekenen van Planaire Grafen

(met een samenvatting in het Nederlands)

Proefschrift
ter verkrijging van de graad van doctor
aan de Rijksuniversiteit te Utrecht

op gezag van de Rector Magni�cus, Prof. Dr J.A. van Ginkel,
ingevolge het besluit van het College van Dekanen

in het openbaar te verdedigen
op maandag 14 juni 1993 des namiddags te 2.30 uur

door

Goossen Kant

geboren op 3 januari 1967
te Rijswijk (N.Br.)

Promotor: Prof. Dr J. van Leeuwen
Co-promotor: Dr H.L. Bodlaender

Faculteit Wiskunde en Informatica

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Kant, Goossen

Algorithms for drawing planar graphs / Goossen Kant. -
Utrecht : Universiteit Utrecht, Faculteit Wiskunde en
Informatica
Proefschrift Rijksuniversiteit Utrecht. - Met samenvatting
in het Nederlands.
ISBN 90-393-0416-5
Trefw.: algoritmen / grafentheorie.

This research was supported by the ESPRIT Basic Research Actions of the EC under
contract No. 3075 (project ALCOM) and contract No. 7141 (Project ALCOM II).

Preface

Many times it was pretty hard for me to explain to my family and friends what the
precise contents is of the work of a PhD student. Moreover, in general it becomes
even more di�cult to explain the research problems we try to solve in theoretical
computer science. I often started these discussions by complaining of the readability
of electrical diagrams, which you receive when buying a television. This thesis gives
more insight in the broad area of automatically drawing networks or graphs. Many
involved problems and di�erent kinds of representations are discussed. I hope that
you will enjoy this research �eld in graph algorithms as much as I do. I also hope
that you will detect (after inspecting the di�erent delivered drawing results) that
this drawing topic is not so theoretical at all.

It is a pleasure to thank the people who supported me during the preparation
of this thesis. Especially I want to thank my supervisor Jan van Leeuwen for intro-
ducing me in this beautiful and fascinating �eld of graph drawing. I really appreciate
the various discussions we had (including computer science) and his trust in me after
I found again another error in this { and other { work. Jan van Leeuwen involved me
in organizing various events and gave me a lot of opportunities to travel to workshops
and conferences in foreign parts of this world. In these four PhD years, I have been
to a huge number of major European cities, and also to Ottawa, Montreal, New
York, Pittsburgh, and even to the magni�c island Barbados. I also like to thank
Hans Bodlaender for giving a lot of helpful comments. He also delivered considerable
contributions to the research that is reported in this thesis, and was co-author of
some corresponding reports.

Several persons commented on previous versions of parts of this thesis. In par-
ticular, I want to thank Therese Biedl, Marek Chrobak, Xin He, Tsan-sheng Hsu,
Siebren van de Kooij, Klaus Kriegel, Petra Mutzel, and Martin van Trigt and the
anonymous referees of conferences and journals. Many results in this thesis have
pro�ted from their suggestions and remarks. I like to thank the members of the
review-committee, Giuseppe Di Battista, Kees Hoede, Jan Karel Lenstra, Mark
Overmars and Roberto Tamassia for their careful proofreading of this thesis. I ap-
preciate the help of Piet van Oostrum, Maarten Pennings, Otfried Schwartzkopf
and Nico Verwer, who answered all my questions about LATEX and related issues.
But also thanks to all other collegues. The Vakgroep is not only a stimulating
environment for doing research, it is also a pleasant place to work.

iii

iv

I also want to thank my family and friends for their moral support, and being
there when I needed them. In particular, I want to thank my father and mother for
taking care of me, and stimulating me the many days I worked at home. To them
I dedicate this thesis. But most important, I like to thank the almighty God. He
gave me joy, happiness, strength, health, intelligence, and so many other blessings
all the days of my life.

Algorithms

for

Drawing Planar Graphs

voor mijn vader en moeder

Gebruik de tijd om te werken { het is de prijs voor succes.
Gebruik de tijd om te denken { het is de bron van kracht.
Gebruik de tijd om te spelen { het is het geheim van de eeuwige jeugd.
Gebruik de tijd om te lezen { het is de fontein der wijsheid.
Gebruik de tijd om vriendelijk te zijn { het is de weg naar geluk.
Gebruik de tijd om te dromen { zo worden idealen geboren.
Gebruik de tijd om te beminnen en bemind te worden { het is het voorrecht
van verloste mensen
Gebruik de tijd om rond te kijken { de dag is te kort voor zelfzuchtigheid.
Gebruik de tijd om te lachen { het is de muziek van de ziel.
Gebruik de tijd voor God { het is de enige duurzame belegging in het leven.

Uit: \Planning voor alledag", een Telos-uitgave

Contents

Preface iii

A Introduction xi

1 Drawing Planar Graphs 3

2 Backgrounds 11

2.1 Terminology : 11
2.2 Testing and Embedding Planar Graphs : : : : : : : : : : : : : : : : : 16

2.2.1 Introduction : 16
2.2.2 Testing Planarity Using PQ-trees : : : : : : : : : : : : : : : : 16
2.2.3 Constructing Planar Embeddings Using PQ-trees : : : : : : : 19

2.3 Planarization of Graphs : 21
2.3.1 Introduction : 21
2.3.2 Planarization Using PQ-trees : : : : : : : : : : : : : : : : : : 23
2.3.3 Maximal Planarization : 26

2.4 Biconnected and Triconnected Components : : : : : : : : : : : : : : : 28
2.4.1 The BC-tree : 29
2.4.2 The SPQR-tree : 29

2.5 The Canonical Ordering : 33
2.6 Augmentation and Drawing Algorithms : : : : : : : : : : : : : : : : : 36

B Augmenting Planar Graphs 39

3 Introduction 41

4 The Planar Biconnectivity Augmentation Problem 45

4.1 Preliminaries : 45
4.2 NP-completeness : 48
4.3 Approximation Within 2 Times Optimal : : : : : : : : : : : : : : : : 49
4.4 A Special Case : 52
4.5 The Planar Bridge-Connectivity Augmentation Problem : : : : : : : 54

vii

viii CONTENTS

5 The Planar Triconnectivity Augmentation Problem 57

5.1 Preliminaries : 57
5.2 An Approximation Algorithm : 60

5.2.1 The Series Case : 61
5.2.2 The Parallel Case : 63
5.2.3 The Rigid Case : 66

5.3 Triconnecting While Minimizing The Maximum Degree : : : : : : : : 71

6 Triangulating Planar Graphs 75

6.1 NP-completeness : 79
6.2 Triangulating While Minimizing the Maximum Degree : : : : : : : : 82

6.2.1 The Algorithm : 82
6.2.2 Counting the Increase of deg(v) : : : : : : : : : : : : : : : : : 85

7 Augmenting Outerplanar Graphs 89

7.1 Introduction : 89
7.2 Bridge-Connectivity : 91
7.3 Biconnectivity : 94

7.3.1 Stage 2 : 95
7.3.2 Stage 3 : 96

7.4 Triconnectivity : 100
7.4.1 Triconnecting Biconnected Outerplanar Graphs : : : : : : : : 100
7.4.2 Triconnecting Outerplanar Graphs : : : : : : : : : : : : : : : 102

7.5 Triangulating Outerplanar Graphs : 104
7.5.1 Triangulating One Face of a Planar Graph : : : : : : : : : : : 104
7.5.2 Triangulating Outerplanar Graphs : : : : : : : : : : : : : : : 106

8 Conclusions 109

C Drawing Planar Graphs 113

9 Drawing Algorithms 115

9.1 Straight-line Drawings : 115
9.2 Convex Drawings : 117
9.3 Drawing Planar Graphs Using the st-Numbering : : : : : : : : : : : : 118

9.3.1 Visibility Representation : 119
9.3.2 Orthogonal Drawings : 121

9.4 Overview of Part C : 123

10 The Drawing Framework and Convex Drawings 127

10.1 The Drawing Framework : 127
10.1.1 The lmc-Ordering : 127

10.2 Convex Drawings : 131

CONTENTS ix

10.2.1 Convex Drawings on an (n� 2) � (n� 2) Grid : : : : : : : : : 134
10.3 The mixed model : 138
10.4 Visibility Representations : 141
10.5 Improvements of the lmc-Ordering : : : : : : : : : : : : : : : : : : : 142

10.5.1 Duality Aspects : 143
10.5.2 A New shift-Method : 145

11 Orthogonal Drawings 149

11.1 Orthogonal Drawings of 4-Planar Graphs : : : : : : : : : : : : : : : : 149
11.2 Orthogonal Drawings of 3-Planar Graphs : : : : : : : : : : : : : : : : 154

11.2.1 Triconnected 3-Planar Graphs : : : : : : : : : : : : : : : : : : 154
11.2.2 Drawing Biconnected 3-Planar Graphs : : : : : : : : : : : : : 156
11.2.3 Drawing General 3-Planar Graphs Orthogonally : : : : : : : : 160

12 Hexagonal Drawings 163

12.1 Triconnected 3-Planar Graphs : 164
12.2 Drawing Graphs with Degree at most 3 : : : : : : : : : : : : : : : : : 170
12.3 Drawings with Straight Lines : 173
12.4 Heuristics for Decreasing the Area : 175

13 Rectangular Duals 179

13.1 Introduction : 179
13.2 The Rectangular Dual Algorithm : 180
13.3 Computing a REL Using a Canonical Ordering : : : : : : : : : : : : : 183
13.4 Algorithm for Visibility Representation : : : : : : : : : : : : : : : : : 187

14 A More Compact Visibility Representation 191

14.1 Introduction : 191
14.2 A General Compact Visibility Representation : : : : : : : : : : : : : 192
14.3 Constructing the 4-block tree : 197

15 Conclusions 201

Bibliography 209

Samenvatting 223

Curriculum Vitae 227

x CONTENTS

Part A

Introduction

1

Chapter 1

Drawing Planar Graphs

In many applications graphical representations are used for displaying information.
The function of these representations is to clarify or to display the structure of the
information in a compact and relatively small space. Many times one picture says
more than thousand words, but the picture has to be clear and readable. Almost
everybody is aware of schemas, using rectangles with information, and lines and
arrows connecting them. Just think about the schematic representation of the orga-
nizational structure of a company. Or consider all relations and links in a database
or other huge software program, which must be shown in a convenient way. Also
a plan for a project has to show clearly the underlying relationships, e.g., which
parts of the project should be done at the same time or consecutively. Representing
all this information in a schematic diagram helps to manage the project. In many
contexts the design of such a graphical representation is supported by a computer,
i.e., the computer is used to calculate the coordinates of the di�erent objects. What
kind of problems can occur?

If a schema is small, then it can easily be drawn by hand. The problem becomes
more and more di�cult if one tries to draw the electrical diagrams of electrical
applications in a readable form. The electrical schema of e.g. a television set gives
a readable idea how the di�erent components in the television are connected with
each other. Needless to say, the actual placement inside the application is completely
di�erent. This is a real-life example that shows how computers are used to compute
a drawing of a huge network.

On the other hand, a computer is also used to calculate the optimal placement
of the components inside the electrical application. The application contains a
numerous amount of small electrical components, which must be connected with
each other. These components have to be placed on a chip, such that the number
of crossings between the connections is as small as possible, and the required area
of the chip must not become too large. To compute an optimal placement of the
components on a chip by hand requires an incredible amount of time. The problem
becomes even more complex when several additional constraints have to be satis�ed
as well, e.g., the number of bends and the total length of the connections must

3

4 Drawing Planar Graphs

be minimized as well. These questions arise in the design of Very Large Scale
Integration (VLSI) chips.

In a more mathematical abstract setting, the components are called vertices or
nodes and the connections between the components are called edges. A graph is a
set of vertices and a set of edges between the vertices. Many real-life examples with
objects and connections (or relations) between the various objects can be represented
by a graph.

This thesis is devoted to research in automatic drawings and graphical represen-
tation of graphs. The examples mentioned above give a good insight in the ques-
tions and optimization criteria, involved in the methods, or algorithms, to layout any
given graph. However, these optimization criteria are not always well de�ned. The
aesthetic criteria of \readability" or \a nice drawing" cannot always be expressed
clearly in mathematical formulas. One mathematical optimization criterion can be a
good choice for one structure but can lead to an unattractive drawing in other cases.
Many times a good drawing ful�lls a combination of optimization criteria. Never-
theless, we will assume that if a graph can be drawn without any pair of crossing
edges, then we draw it accordingly. The graphs, which can be drawn without any
pair of crossing edges, are called planar graphs. As announced in the title, we focus
our attention on planar graphs in this thesis. This problem is not new: the drawing
problem is a classical theme in the context of planar graphs. Nowadays, an abun-
dant amount of research and literature is reported all over the world. See the recent
annotated bibliography of Di Battista, Eades & Tamassia [18] for an overview.

Several algorithms are constructed to test whether a graph is planar or not (see
e.g. [9, 50]). Even for planar graphs, various relevant additional constraints are
developed and shown to be useful in the applications. The following are just some
of the major criteria mentioned in the ever growing collection of relevant literature
in the subject of drawing (planar) graphs.

� Minimizing the total number of bends in the edges (or draw the graph with
no bends at all, i.e., straight-line edges)

� Minimizing the total used area

� Placing the vertices and bends on grid coordinates

� Maximizing the minimum angles between consecutive edges

� Maximizing the minimum distance between the vertices

In the area of VLSI design several additional constraints are given, e.g., separating
the graph in circuits layers, via placement, and typical network models. See the
book of Lengauer ([77]) for a more detailed overview of the questions and problems
appearing in this speci�c area.

In some applications a direction is given to each edge. For this special case
more speci�c constraints are developed, e.g., the endpoint of the edge must be

Drawing Planar Graphs 5

placed higher than the beginpoint. Drawings satisfying this constraint are called
upward drawings. Recently several (graph-theoretic) papers appeared in this area
[4, 5, 20, 22]. In this thesis we focus our attention on undirected planar graphs.
Let us distinguish in more detail the di�erent classes of undirected planar graphs
and the corresponding representation models, known for this model. The relation-
ships between the di�erent classes of planar graphs and the corresponding drawing
algorithms are a key in this thesis. We consider the following four di�erent classes:
(i) trees, (ii) biconnected planar graphs, (iii) triconnected planar graphs, and (iv),
triangulated planar graphs. Here we give a brief overview; in Chapter 9 several of
these algorithms are outlined in more detail, which are relevant for our research.

First, when the graph is a tree, then in most drawings the vertices are placed
along horizontal lines according to their level (distance from the root), and a min-
imum separation distance between two consecutive vertices on the same level such
that the width of the drawing is small. In Figure 1.1 we give some output draw-
ings of existing algorithms. For tree drawing algorithms the reader is referred to
[40, 93, 101, 112, 120].

Figure 1.1: Output of tree-drawing algorithms (see [93, 40]).

In the case of biconnected planar graphs two important representation models
are presented. The �rst one is the orthogonal drawing, in which the vertices are
represented by points and edges by alternatingly horizontal and vertical segments,
connecting the endpoints. Such a representation is only possible when every vertex
has at most 4 incident edges. The model of orthogonal drawings has important
applications in VLSI-design and in drawings of electrical diagrams. Therefore re-
search with special attention to grid size and number of bends gains a lot of interest
from both the theoretical and practical point of view. Storer [100], Tamassia [102]
and Tamassia & Tollis [105] presented the major orthogonal drawing algorithms. In
Figure 1.2(a) an example is given. The second model is the visibility representation.
Vertices are represented by horizontal segments and edges by vertical segments, only

6 Drawing Planar Graphs

touching the two segments, representing the two endpoints. An important advantage
of this model is that relevant additional information, assigned to the vertices, can
be placed inside the horizontal segments (or rectangles). Moreover, since the edges
are straight-line vertical segments, this yields very readable and practical pictures
in general, appearing in a broad context of applications. In Figure 1.2(b) an idea of
this representation is given, as outlined by Rosenstiehl & Tarjan [96] and Tamassia
& Tollis [104].

5

1 2 3

4

6

8

7

1

2

3

4

6

7

8

5

(a) Orthogonal drawing. (b) Visibility representation.

Figure 1.2: Output of biconnected planar graph drawing algorithms

A third important class is the class of triconnected planar graphs. Most algo-
rithms in this thesis require a triconnected planar graph as input. If a planar graph
is triconnected, then a drawing is possible with vertices represented as points and
edges as straight lines such that every face is drawn as a convex polygon. This
so-called convex drawing is an important representation in graph theory. Wagner
[113], F�ary [31] and Stein [99] independently proved that every planar graph can be
drawn with vertices represented as points and edges as straight lines. (Sometimes
this is also called a F�ary drawing.) Tutte [110] and Thomassen [109] considered the
graph-theoretic backgrounds of convex drawings. Tutte [111] presented an algorithm
for drawing triconnected planar graphs convexly. The algorithm of Chiba et al. [14]
draws a planar graph with convex faces if this is possible.

When every face of the graph is a triangle, then the graph is called a triangular
planar graph. This forms the last class we distinguish. Recently, several algorithms
are presented to represent a graph as a straight-line drawing, requiring a triangular
planar graph as input. We mention here the work of Chrobak & Payne [15], de
Fraysseix, Pach & Pollack [34], Van Haandel [43], Read [92] and Schnyder [98]. The
algorithms, described in [15, 34, 43, 98], places the vertices on an O(n)�O(n) grid.
Since all coordinates are integers, we can draw the resulting picture in precisely the
same way on a screen or paper, where the resolution is �xed. If the triangular planar

Drawing Planar Graphs 7

graph is 4-connected, then we can represent every vertex v of G as a rectangle R(v),
such that every edge (u; v) in G corresponds to a common boundary of R(u) and
R(v). This is called a rectangular dual. In Figure 1.3 an idea of the mentioned
representations is given.

1

2

3
4

5 6

7 8
9 10

11 12

13

14

(a) Convex drawing (b) Straight-line drawing (c) Rectangular dual

Figure 1.3: Di�erent types of drawing.

However, what to do when a given graph does not ful�ll these additional connec-
tivity requirements? How can we still use the drawing algorithm we want to apply?
The typical solution we present here is to add edges to the graph such that the
augmented graph is still planar and satis�es the connectivity property. We apply
the drawing algorithm on the augmented graph and compute the coordinates of the
vertex and edge representations. Finally we draw the graph, but the added edges are
suppressed. Corresponding to the distinguished classes of planar graphs, we have
the planar augmentation problem with respect to biconnectivity, triconnectivity and
triangular planar graphs.

We show that the problem of deciding whether adding at most K edges to a
graph such that the resulting graph is planar and biconnected is NP-complete. We
present an O(n � �(n; n)) time algorithm for the planar biconnectivity augmenta-
tion algorithm, adding at most two times the minimum number of edges. We also
present an O(n) time algorithm for the planar triconnectivity augmentation algo-
rithm, adding at most 3

2
times the minimum number of edges. Triangulating a

planar graph G can be done in linear time. A linear time triangulation algorithm
is presented, with the property that the maximum degree of the triangulation is at
most 3

2
time the maximum degree of the input graph. It is shown that the problem

of deciding whether G can be triangulated such that the maximum degree of the
triangulation is at most K is NP-complete. Graph augmentation algorithms receive
more and more attention in the recent literature, but these algorithms do not deal
with the additional planarity constraint.

8 Drawing Planar Graphs

The thesis is divided into three parts.
Part A, of which this introduction is the �rst chapter, introduces the reader

to the area of planar graphs. We brie
y outline the techniques of testing whether
a graph is planar, and if so, how to embed a planar graph. In case the graph is
not planar, we explain how to delete a small number of edges such that the graph
is planar. Moreover a technique is introduced for splitting a planar graph into its
bi- and triconnected components, and how to compute a special ordering (called
canonical ordering) on the vertices of a planar graph. The last two techniques will
play a major role in Part B and C.

Part B concerns itself with the problem of augmenting planar graphs. In par-
ticular, we consider the problem of adding a minimum number of edges such that
a planar graph is biconnected or triconnected, and still planar. These augmen-
tation problems turn out to be very hard to solve in polynomial time. Therefore
approximation algorithms are presented, adding only a constant times the minimum
number of edges. We also consider the problem of adding edges such that we obtain
a triangular planar graph, while minimizing the maximum degree. This problem
appears in the area of constructing a straight-line drawing. In the special case that
the input graph is outerplanar, i.e., all vertices share one face, then all augmentation
problems mentioned above can be solved in polynomial time. Chapter 7 is devoted
to the case of outerplanar graphs.

Part C concerns the major theme of this thesis, namely, the drawing of pla-
nar graphs. This part requires no background of Part B and, hence, can be read
completely independent of Part B. We start in Part C by giving a more detailed
survey of the existing drawing algorithms, which are relevant for our work. We also
introduce a new ordering on the vertices and faces of a triconnected planar graph,
called the lmc-ordering. This ordering leads to a new drawing framework for many
representation models. The most important drawing results are the following (in all
cases the planar graph is drawn without crossing edges):

1. Every triconnected planar graph can be drawn with straight-line edges on a
grid of size at most (n � 2) � (n � 2) such that every interior face is convex
(Chapter 10).

2. Every planar graph can be drawn on a grid of size at most (2n� 6)� (3n� 6)
with at most 5n� 15 bends and minimum angle at least 2

3d+1
, such that every

edge has at most 3 bends and length at most 2n (Chapter 10).

3. Every triconnected planar graph with degree at most 4 can be drawn orthog-
onally on a grid of size at most n� n with at most d3

2
ne+ 4 bends such that

every edge has at most 2 bends if n > 6 (Chapter 11).

4. Every planar graph with degree at most 3 can be drawn orthogonally on a grid
of size at most bn

2
c � bn

2
c with at most bn

2
c+ 1 bends, with the property that

there is a spanning tree of n � 1 straight-line edges, while all non-tree edges
have at most one bend if n > 4 (Chapter 11).

Drawing Planar Graphs 9

5. Every planar graph with degree at most 3 can be drawn with straight-line edges
and vertices represented as points, such that the minimum angle between any
two consecutive edge is at least �

4
if the graph is triconnected, and at least �

3
,

otherwise (Chapter 12).

6. There is a simple linear time algorithm for constructing a rectangular dual of
a 4-connected triangular planar graph (Chapter 13).

7. A visibility representation of a planar graph can be constructed on a grid of
size at most (n � 1) � (n � 1), if the graph is 4-connected, and on a grid of
size at most (b3

2
nc � 3) � (n� 1), otherwise (Chapter 13).

For almost all cases, the given bounds improve previous bounds, known in the
literature, and sometimes match existing lower bounds. The outlined algorithms are
quite easy to implement. A discussion of the advantages and disadvantages of the
representation models is included as well. Moreover, results, based on experiments
of implementations of several described algorithms, are given in Chapter 14. Part
C ends with an evaluation of these graph drawings and some conclusions.

10 Drawing Planar Graphs

Chapter 2

Backgrounds

This chapter gives the basic de�nitions and o�ers a brief description of a number of
techniques that have been developed in the theory of planar graphs. We also describe
a number of the major algorithms that are used in this thesis. More precisely, an
outline is given of the methods for testing planarity, embedding planar graphs,
planarization of graphs, splitting a graph into bi- and triconnected components, and
a special ordering on the vertices and faces of a triconnected planar graph. The
aim is not to give a complete survey of these techniques in their most general and
sophisticated form; it is rather meant as a starting point for our work. In particular,
we assume for many algorithms described in Part B and C, that a planar embedding
of a (planar) graph is given along with a description of the bi- and triconnected
components.

If the reader wants to know more, he/she should follow the pointers to the
literature that are given. We also mention the work of Even [28] and Nishizeki
& Chiba [86]. Both books deliver a broad spectrum of techniques with respect to
planarity, embeddings and planar graphs.

2.1 Terminology

In this section we give a �rst introduction to the terminology of graphs, which will
be used throughout the thesis. More explicit de�nitions with respect to graph the-
ory, graph augmentation and graph layout are given in the corresponding chapters.
Using these introduction a more detailed overview is given of testing the planarity,
embedding of planar graphs and splitting the graph into subgraphs.

De�nition 2.1.1 A graph is a structure G = (V;E) in which V is a �nite set of
vertices and E � V �V is a �nite set of edges (unordered pairs). Given a graph G,
jV j is denoted by n and jEj by m.

Two vertices of a graph G are called adjacent if there is an edge with these vertices
as end vertices. We de�ne the degree of vertex v, denoted by deg(v), to be the number

11

12 Backgrounds

of incident edges of v. We de�ne �(G) = maxfdeg(v)jv 2 Gg. A path between two
vertices x and y is an alternating sequence of vertices and edges such that x and y are
at the end of this sequence and each edge in the sequence is preceded and followed
its end vertices. More precisely, x = x0; e1; x1; e2; : : : ; ek; xk = y is a path between x
and y, if ei = (xi�1; xi) 2 G (for 1 � i � k). If x = y and k > 0, then there is a path
with the same begin- and endpoint. Such a path is called a cycle. If the vertices
on the path have degree 2, then the path is called a chain. Two vertices are called
connected if there exists a path between them. A graph is called connected if there
is a path between every pair of vertices, otherwise the graph is called disconnected.
A cycle of G consisting of 3 edges is called a triangle. Let G�fvg denote the graph
after deleting vertex v with all its incident edges. If G � fvg is disconnected, then
v is called a cutvertex of G, and each component of G � fvg is called a v-block. If
(x; y) is an edge such that (V;E � f(x; y)g) is disconnected, then (x; y) is called a
bridge of G. Let us consider the connectivity aspects of graphs and the involved

u

v

Figure 2.1: A nonplanar biconnected graph with separation pair fu; vg.

de�nitions in more detail. If G is connected and contains no cutvertices, then G

is called biconnected or 2-connected. If G is connected and contains no bridges,
then G is called bridge-connected or 2-edge-connected. In general, G is k-connected
if there is no set of k � 1 vertices, whose removal disconnects G. Such a set is
called a separating (k � 1) set. By Menger's theorem, G is k-connected if there
exist k vertex-disjoint paths between any two vertices of G. A 2-set of vertices is
called a separation pair or cutting pair. A maximal biconnected subgraph is called
a biconnected component or block. In Section 2.4 a detailed discussion is given on
the algorithmic aspects of splitting a graph into subgraphs, which are biconnected
or triconnected. This splitting plays a major role in the augmentation algorithms
in Part B of this thesis.

In this thesis we only consider planar graphs in detail, which are de�ned as
follows:

De�nition 2.1.2 A graph is called planar if it can be drawn in the plane such that
there is no pair of crossing edges.

2.1 Terminology 13

A planar embedding is a representation of a planar graph in which at every vertex
all edges are sorted in clockwise order when visiting them around the vertex with
respect to the planar drawing. A graph with a given, �xed planar embedding is
also called a plane graph. A face of a plane graph is any topologically connected
region surrounded by edges of the plane graph. The one unbounded face of a plane
graph is called the outerface or exterior face. All other faces are called interior
faces. Edges and vertices, belonging to the outerface, are called exterior edges and
exterior vertices, respectively. The other edges and vertices are called interior edges
and interior vertices. An interior edge, connecting two exterior vertices, is called a
chord. If every face in G is a triangle, then G is called a triangulated, triangular or
maximal planar graph.

1

2

3

4 5

6

7

(a) A triconnected planar graph and its

dual.

(b) A triangulated planar graph.

Figure 2.2: Di�erent types of graphs.

The dual graph G� of G is de�ned as follows: every vertex vFk of G
� represents a

face Fk of G. All faces of G are represented in this way. There is an edge (vFk ; vFj)
in G� if Fk and Fj have an edge in common in G. Hence deg(vFk) in G� is equal to
the number of edges belonging to Fk in G. By Euler's formula: m� n � f + 2 = 0
for every planar graph, where f is the number of faces. It implies that m � 3n� 6.
Using this formula and the de�nition of the dual graph, more observations can be
made. For the number of vertices nG� of the dual graph G� of G, nG� = m� n+ 2
holds. It also easily follows that every planar graph has a vertex v with deg(v) � 5.
Deleting the neighbors of v disconnects G, hence every planar graph is at most 5-
connected. We call a graph G k-planar, if G is planar and the maximum degree of
any vertex in G is at most k. An embedded k-planar graph is called a k-plane graph.
A triangulated planar graph has exactly 3n�6 edges. It is also calledmaximal planar
since adding any edge to it destroys the planarity. Every triangulated planar graph
is triconnected [41]. A triconnected planar graph G has the important property of

14 Backgrounds

having a unique embedding, i.e., in any planar embedding of G, the edges around
each vertex have the same order (up to reversing all adjacency lists) [12].

In this thesis we also consider two important subclasses of planar graphs, namely,
the outerplanar graphs and trees. A planar graph is called outerplanar if it can be
drawn as a planar graph with all vertices occurring on one face, the outerface. A
graph is outerplanar if and only if its blocks are outerplanar. A block of an outerpla-
nar graph essentially is a cycle with non-intersecting chords. If the outerplanar graph
G is biconnected and every interior face is a triangle, then G is called a maximal
outerplanar graph or mop. Adding any edge to a mop destroys the outerplanarity.
An outerplanar graph has at most 2n�3 edges, and a mop has exactly 2n�3 edges.
A tree is an undirected, connected, acyclic graph. A tree is outerplanar. Consider
the dual graph G� of an outerplanar graph G. Let vout be this vertex of G�, rep-
resenting the outerface of G. It follows that G� � fvoutg is a tree with maximum
degree 3.

Figure 2.3: An outerplanar graph, a mop and a tree.

Throughout the thesis a graph G = (V;E) is represented as a collection of
adjacency lists. For each v 2 V , the adjacency list adj(v) contains (pointers to)
all the vertices u for which there is an edge (u; v) 2 E. The record containing u

in adj(v) contains a crosspointer to the record containing v in adj(u). For testing
planarity we assume that the vertices in each adjacency list are stored in arbitrary
order. The sum of the lengths of all the adjacency lists is 2m, since for every
edge (u; v), u appears in v's adjacency list and vice versa. Hence the adjacency-list
representation has the desirable property that the amount of memory it requires is
O(m+n) 1. However, in the augmentation and drawing algorithms we assume that
a planar embedding is given, i.e., the neighbors of v are stored in adj(v) in clockwise
order when visiting them around v with respect to a planar drawing. This has the
nice property that for every edge (u; v), we can �nd in O(1) time the \next" and
\previous" edges of u and v in the planar embedding.

Constructing the adjacency lists adj(v) including crosspointers of a given planar
embedding of G can be done on-line as follows in O(m) time. Assume that the

1We assume that the reader is familiar with the O-,
-, and �-notation, see e.g. [17]

2.1 Terminology 15

input-format is as follows:

� On the �rst line n, the number of nodes.

� On the next n lines we have on line i (1 � i � n) the neighbors of vertex vi in
clockwise order.

The adjacency lists adj(vi) are represented as queues. For each vertex we also
introduce a list loweradj(vi), containing pointers to the place of vertex vi in adj(vj),
with j < i. We also introduce an array bucket, for �nding an element of loweradj(vi)
in O(1) time in step i. An important fact is that when the neighbors of vertex vi
are read, we already have adj(vj) for the vertices vj; j < i. The algorithm becomes
as follows:

MakeGraph(G);
Readln(n);
for i := 1 to n do initialize loweradj(vi) and adj(vi) to ; rof;
for i := 1 to n do
for all elements x in loweradj(vi) do
let x be a crosspointer to vi in adj(vj); bucket[j] := x

rof;
for every neighbor vj of vi, read in order from input do
Enqueue(vj, adj(vi));
if j > i then Enqueue(vi, loweradj(vj)) with pointer to adj(vi)
else place crosspointer's between adj(vi) and bucket[j]

rof
rof;

End MakeGraph

An idea of this algorithm is the following: before the neighbors of vi are read, the
elements of loweradj(vi) are put in bucket. More precisely, if bucket[j] = x, then x

is a pointer to record vi in adj(vj) with j < i. When neighbor vj of vi is read from
the input, then vj is added to adj(vi). If j < i then (cross)pointers between adj(vi)
and x are added, with bucket[j] = x; if j > i then vi is added to loweradj(vj).

In several planar algorithms it is also necessary to have pointers from the vertices
and edges to the faces they belong to. Given a planar embedding, e.g. as constructed
by MakeGraph, it is rather easy to deliver this. We start by visiting vertex v1
and process the faces incident to v1. For each such face F with boundary vertices
v1 = u1; u2; : : : ; up (in clockwise order around F) we do: we introduce a record for
face F and an edge-list, containing the edges (ui; ui+1) (1 � i < p) and (up; u1). We
also mark vertex ui+1 in adj(ui) (for 1 � i < p) and u1 in adj(up) as being visited,
and set pointers from them to the record of F . We continue by visiting all vertices
v1; : : : ; vn. If some vertex vj in adj(vi) is not marked visited, then from (vi; vj) we
traverse in clockwise order a face, not visited yet. Since every face is traversed once,
since every record in every adjacency list is marked visited only once, this yields a
linear time algorithm.

16 Backgrounds

2.2 Testing and Embedding Planar Graphs

2.2.1 Introduction

A major theme in graph theory is the study of planar graphs. Before we consider
the problem of drawing a planar layout of a graph, the question arises how one can
actually determine whether a given graph is planar or not. This classical problem
in graph theory has a fundamental answer in the form of Kuratowski's Theorem
[74]: a graph G is planar if and only if it has no subgraph \homeomorphic" to K3;3

or K5. (K3;3 is the complete bipartite graph on 2 sets of 3 vertices and K5 is the
complete graph on 5 vertices, see Figure 2.4.) This characterization seems far from a

Figure 2.4: Forbidden homeomorphic subgraphs of planar graphs.

feasible computational recipe for testing planarity, and a di�erent approach is called
for. A simple observation shows that we can actually restrict the planarity test and,
later, the design of a suitable drawing algorithm to the biconnected components
of graphs: a graph is planar if and only if its biconnected components are. (This
follows because the biconnected components of a graph can intersect in at most
one vertex.) Hopcroft & Tarjan [107, 49] proved that the connected, biconnected
and triconnected components of a graph can be determined by an algorithm that
operates in O(m+ n) time on a graph (see also Section 2.4).

Nowadays, several algorithms are known for testing the planarity of graphs, based
on one of two global techniques, namely the \edge addition" method and the \vertex
addition" method. These terms refer to the principles used in the algorithms. The
edge addition algorithm is originally due to Auslander & Parter [2] and a linear
time implementation was developed by Hopcroft & Tarjan [50]. After this �rst
approach, several related and simpli�ed versions appeared. We mention here the
work of Williamson [121], the algorithm of de Fraysseix & Rosenstiehl [35], and the
recent algorithm by Hsu & Shih [54], which seems to be a very simple and fast
method to test whether a graph is planar or not.

2.2.2 Testing Planarity Using PQ-trees

In this section we outline the vertex addition algorithm as presented by Lempel,
Even & Cederbaum [76], and improved later to a linear time algorithm by Booth &

2.2 Testing and Embedding Planar Graphs 17

Lueker [9], using a novel data structure called the PQ-tree. Except the leaves, the
PQ-tree consists of two types of nodes: The P-nodes, representing the cutvertices
of the graph, and the Q-nodes, representing the blocks of the graph. There is an
edge between a P-node and a Q-node, if the corresponding cutvertex belongs to that
block. We will verify later that the order of children at each node is a core item
in this data structure. (There is a high correspondence between the PQ-tree and
the BC-tree, described in Section 2.4.) We maintain the children in a doubly linked
list. The left- and rightmost child of a Q-node, and all children of a P-node, have
a pointer to their parent. Every node has a pointer to its left- and rightmost child.
Using this algorithm it is relatively easy to compute a planar embedding for a planar
graph. There is a good related planarization algorithm, i.e., an algorithm to delete
a small number of edges from a non-planar graph to obtain planarity. Both features
of this algorithm are outlined in Section 2.2.3, and 2.3.2, 2.3.3, respectively.

We henceforth assume that G is biconnected. The planarity testing algorithm
of Lempel, Even & Cederbaum �rst labels in linear time the vertices of G as
v1; v2; : : : ; vn, using what is called an st-numbering [30]. An st-numbering num-
bers the vertices of G such that (v1; vn) 2 E and every vertex vi (1 < i < n) has
edges to some vertices vk and vl with k < i < l. Planar graphs that are numbered
or directed in this way are called planar st-graphs. Planar st-graphs have many
properties which have shown to be useful for planar graph drawing algorithms. An
overview of these properties and the nice consequences are enumerated in Chapter
9.

Let Gk = (Vk; Ek) be the subgraph of G induced on the vertices v1; v2; : : : ; vk,
i.e., Vk = fv1; : : : ; vkg, and (vi; vj) 2 Ek, if i � k and j � k. If k < n then there
exists an edge of G with one endpoint in Vk and the other in V � Vk. Let G0

k be
the graph formed by adding to Gk all these edges (vi; vj), with i � k and j > k.
Any edge (vi; vj) of this kind is called a virtual edge, and vj is called a virtual vertex.
The virtual vertices are kept separate, i.e., there may be several virtual vertices with
label (vk+1), each with exactly one entering edge from Vk. Let Bk (the bush form)
be an embedding of G0

k such that all the virtual vertices are placed on the outerface.
Lempel, Even & Cederbaum [76] showed that an st-graph G is planar if and only
if for every Bk, 2 � k � n � 2, there exists a planar drawing B 0

k isomorphic to Bk

such that in B 0
k all virtual vertices labeled (vk+1) appear consecutively.

The PQ-tree Tk corresponding to the bush form Bk consists of three types of
vertices: (i) Leaves in Tk represent virtual edges (vi; vj) in Bk, with i � k < j,
and are labeled with (vj); (ii) P-nodes in Tk represent cutvertices in Bk, and (iii)
Q-nodes of Tk represent the blocks in Bk. G;Gk; Bk and the corresponding PQ-tree
are illustrated in Figure 2.5. (In this drawing a P-node is denoted by a circle, a
Q-node is denoted by a rectangle.)

A few de�nitions are now in order. A node x in Tk is said to be full if all its
descendant leaves are labeled (vk+1); x is said to be empty if none of its descendant
leaves is labeled (vk+1); otherwise x is partial. If x is full or partial, then x is called
a pertinent node. A pertinent leaf with label (vk+1) is always full. The frontier of Tk

18 Backgrounds

s = 1

2

3 45

67

8

t = 9

s = 1

2

3 4
5

s = 1

2

3 4

5

6 7 8 6 6 9 6 9

(1,9)

(2,6) (2,7) (2,8)

(3,6) (5,6)

(4,9) (4,6)

Figure 2.5: Example of G;Gk ; Bk and corresponding PQ-tree (from [12]).

is the sequence of all the descendant leaves of Tk read from left to right. Similarly,
the frontier of a node x is the sequence of all descendant leaves of x read from left to
right. The pertinent subtree of Tk is the smallest connected subtree which contains
all leaves with label (vk+1). The root of the pertinent subtree, say xr, is called the
pertinent root. xr is the least common ancestor of all leaves with label (vk+1). Two
PQ-trees are considered to be equivalent if one can be obtained from the other by
performing one or more of the following types of operations.

� Reversing the order of the children of a Q-node.

� Permuting the children of a P-node.

The underlying idea is that all v-blocks, connected at a cutvertex v, can be arbitrarily
permuted without destroying the planarity. Hence the children of a P-node can be
arbitrarily permuted. In the same way every block can be reversed with respect to a
cutvertex, hence the children of a Q-node can be reversed. An important operation
during the algorithm is that in every step the P- and Q-nodes of degree 2 are removed
from the PQ-tree, while connecting their neighbors.

It is shown in [9] that B0
k exists if and only if Tk can be converted into an equiva-

lent PQ-tree T 0
k such that all leaves with label (vk+1) (corresponding to the incoming

edges of vk+1) appear consecutively in the frontier of T 0
k. This follows precisely the

intuition of planarity, i.e., all edges of vk+1 must end in a single endpoint, vk+1,
without losing planarity. Booth & Lueker have de�ned a set of patterns and re-
placements by means of which T 0

k can be reduced into a PQ-tree T �
k in which all full

nodes appear as one consecutive sequence of children of a single node. To construct
Tk+1 from Tk, they �rst reduce Tk to T �

k and then replace all full nodes by a P-node,
whose children are all leaves, corresponding to the outgoing edges of vk+1. The al-
gorithm of Booth & Lueker starts with T1 and constructs the sequence of PQ-trees
T1; T2; : : :. If the graph G is planar, then the algorithm terminates after constructing
Tn�1; otherwise it terminates after detecting the impossibility of reducing some Tk
into T �

k . The crucial result in the complexity analysis of this algorithm is stated in
the following theorem [9]:

2.2 Testing and Embedding Planar Graphs 19

Theorem 2.2.1 The sum of the sizes of all the pertinent nodes in the PQ-trees
T1; T2, : : :, Tn�1 when the algorithm is run on an arbitrary graph is O(m+ n).

2.2.3 Constructing Planar Embeddings Using PQ-trees

Testing the planarity of a planar graph and constructing a planar embedding seems
to imply more di�culties than expected at �rst sight. In particular, modifying the
\edge-addition" planarity testing algorithm of Hopcroft & Tarjan [50] such that it
outputs a planar embedding seems to be \fairly complicated", according to Chiba et
al. [12]. Nevertheless, several years after the publication of Hopcroft & Tarjan [50],
embedding algorithms based on this planarity testing algorithm have been presented,
independently by Mutzel [84] and Cai, Han & Tarjan [10].

In this section we describe brie
y a simple modi�cation of the Booth & Lueker
planarity testing algorithm to obtain a planar embedding algorithm for planar
graphs, as described by Chiba et al. [12]. They (and also, independently, Rosen-
stiehl & Tarjan [96] and Tamassia & Tollis [104]) observed the following interesting
characteristic of planar st-graphs.

Lemma 2.2.2 Consider an embedding of a planar graph G obtained by the Booth
& Lueker algorithm. Let vi be a vertex of G. All neighbors vj with j < i appear
consecutively around v as do all the neighbors vj with j > i.

The embedding algorithm consists of two stages: (i) constructing an upward em-
bedding of the upward graph Gup of G, and (ii), constructing the entire embedding.
Gup is the graph G in which every edge (vi; vj) is directed vi ! vj, i� i < j. Let the
adjacency lists adjup(vi) store Gup. The head vi appears in adjup(vj), but the tail vj
does not appear in adjup(vi) for every directed edge (vi; vj). When G is planar, then
we can reduce the tree Tk in step k of the Booth & Lueker algorithm to a tree T �

k

in which all the leaves, labeled (vk+1), appear as children of a single node, say node
xk. adjup(vk+1) is obtained by scanning the leaves labeled vk+1 from left to right (or
vice versa) in T �

k .
If adjup(vk+1) is correctly determined in step k then, by counting the number

of subsequent reversions of node xk, one can correct the direction of adjup(vk+1) by
reversing adjup(vk+1) if the number is odd. The algorithm of Chiba et al. [12] does
not determine the direction of adjup(vk+1) in Tk, but adds a new special node as
one of xk's children to the PQ-tree at an arbitrary position. The new node is called
a direction indicator, also labeled vk+1, and depicted by a triangle, as illustrated
in Figure 2.6. The direction indicator vk+1 plays two roles. The �rst is to trace
the subsequent reversions of adjup(vk+1). The indicator will be reversed with each
reversion of xk. The second is to transfer the relative direction of node vk+1 to its
siblings.

When computing the maximal consecutive sequence of pertinent leaves, the pres-
ence of direction indicators is ignored. In the vertex addition step of step k we

20 Backgrounds

....

v ... v v ... v

....

....
v v

Figure 2.6: Adding a direction indicator in the PQ-tree (from [12]).

traverse the sequence with pertinent leaves and direction indicators. We store the
contents of the leaves (which are edges (vi; vk+1) with i < k + 1) and the direction
indicators in adj(vk+1). After step n � 1 the adjacency lists are scanned in reverse
order. When we visit the direction indicator of vertex vi in adj(vj) (with j > i) in a
direction opposite to the direction indicated by the triangle, then adj(vi) is reversed.
The algorithm UpwardEmbed outlines these ideas.

UpwardEmbed(G);
assign st-numbers to all the vertices of G;
construct the initial PQ-tree T1;
for k := 1 to n� 1 do
f reduction step g
construct T �

k from Tk by applying the template matchings
to the PQ-tree, ignoring the direction indicators in it, such that
the leaves labeled (vk+1) occupy consecutive positions;

f vertex addition step g
let l1; l2; : : : ; li be the leaves labeled (vk+1) and direction
indicators scanned in this order;
delete l1; l2; : : : ; li from the PQ-tree and store the contents in adjup(vk+1);
if the pertinent root r is not full then
add an indicator (vk+1) directed from l1 to li to the PQ-tree as a child of r;

replace all full nodes by a new P-node, with all outgoing edges
of vertex vk+1 appearing as children of the new P-node

rof;

fcorrection stepg
for k := n downto 1 do
for each element x in adjup(vk) do
if x is a direction indicator then
if direction of x is opposite to that of adjup(vk) then reverse adjup(x);
delete x from adjup(vk)

rof
rof;

End UpwardEmbed

2.3 Planarization of Graphs 21

Finally the upward embedding adjup(v) is extended to a complete embedding. This
is obtained by a simple depth-�rst search from vn, and adding w to the top of
adjup(v) when directed edge (w; v) is visited. Due to the characteristics of the st-
numbering it can be proved [12] that this leads to a correct planar embedding. Let
all vertices be marked new and all adjacency lists adjup(v) be copied to adj(v), then
the embedding is completed by calling Dfs(vn).

Dfs(w)
mark vertex w old;
for each v in adjup(w) do
add vertex w to the top of adj(v);
if v is marked new then Dfs(v)

rof
End Dfs

Theorem 2.2.3 ([12]) There is a linear time and space algorithm to test whether
a graph is planar, and if so, it outputs a planar embedding.

2.3 Planarization of Graphs

2.3.1 Introduction

If the graph G is nonplanar, then G can only be drawn in the plane with crossings.
One reasonable objective for a readable representation is to look for a drawing
which minimizes the number of crossings. Unfortunately, deciding whether a graph
can be drawn with at most K crossings is NP-complete (the crossing number

problem, see [59]). Another strategy for drawing G is to delete some edges from
it such that it becomes planar, draw the resulting graph, and add the deleted edges
again in the drawing. Unfortunately again, deciding whether the deletion of at
most K edges makes the graph planar is NP-complete (the planar subgraph

problem, see problem [GT27] in [38]). On the other hand, making the graph
planar by deleting edges yields an approximation algorithm for the crossing number
problem. Therefore, the interest for computing planar subgraphs of a graph is
growing, with more and more e�cient and sophisticated algorithms documented
in the recent literature. However, there exist graphs with n vertices and �(

p
n)

crossings, which become planar after deleting already one edge. Graph planarization
de�nes the process of deleting (a small number of) edges to obtain a planar subgraph.

Several heuristic algorithms have been described for planarization. Several of
these algorithms have been developed from a practical point of view. They contain
no theoretical time and performance bounds, and the results are based on experi-
ments. As an illustration of a simple and good heuristic, we outline the approach of

22 Backgrounds

Goldschmidt & Takvorian [41], which consists of two phases: (i) devise an ordering
of the set of vertices of G, v1; v2; : : : ; vn, and draw them in this order on a horizontal
line; (ii) try to draw a maximum number of edges in E above or below the line such
that no two edges intersect. More precisely, partition the edges of G into three sets
E1; E2 and E3 in such a way that jE1j+ jE2j is maximum and that, given any four
vertices with vi1 < vi2 < vi3 < vi4, there are no two edges (vi1; vi3) and (vi2; vi4) both
in E1 or in E2. Clearly the subgraph consisting of the edges in E1[E2 is planar. For
Phase (i) they use an approximation algorithm for �nding an Hamiltonian circuit.
For Phase (ii) they introduce a new graph H. Every edge (vi; vj) of G is represented
by a vertex in H. There is an edge between two vertices in H i� for the correspond-
ing edges (vi; vj); (vk; vl) i < k < j < l holds. Constructing E1 and E2 is achieved
by computing independent sets. Computing a maximum independent set in H can
be achieved in polynomial time, and the corresponding edges in G yields a planar
subgraph. See [41] for more details and Figure 2.7 for an idea of the algorithm.

6 71 2 3 4 5 8

Figure 2.7: A simple heuristic for planarization of graphs.

Since the maximum planar subgraph problem is NP-complete, the current re-
search emphasizes the problem of computing a maximal planar subgraph. A maximal
planar subgraph Gp = (V;Ep) of G = (V;E) is a planar subgraph with the property
that adding any edge e 2 G � Gp to Gp destroys the planarity. A �rst attempt to
computeGp is by incremental planarity testing: start with Ep = ;, and test for every
edge e whether Gp [e is still planar. If so, add e to Gp. Continue until no further
edge can be added. Using any of the prescribed planarity testing algorithms this
leads to an O(mn) time maximal planarization algorithm. Di Battista & Tamassia
[21] developed an algorithm that tests in O(log n) time worst-case whether e can be
added to Gp such that the resulting graph is planar. Adding e to Gp and updating
the data structure that they need requires O(log n) time amortized. This leads to
an O(m log n) time maximal planarization algorithm.

Very recently, La Poutr�e [75] presented a new data structure for maintaining
planar graphs, in which one can test in O(�(m;n)) time worst-case whether an edge
e can be added to a planar graph G with m edges and n vertices while preserv-
ing planarity. �(m;n) is the functional inverse of Ackermann's function, which is
no larger than 4 in all practical situations. The time of adding an edge e to G

is O(�(n; n)), amortized over O(n) edges. This leads to an O(m � �(m;n)) maxi-

2.3 Planarization of Graphs 23

mal planarization algorithm. (This also improves an independently obtained result
by Westbrook [119].) We also mention the work of Cai, Han & Tarjan [10], who
presented an O(m log n) maximal planarization algorithm, based on the planarity
testing algorithm of Hopcroft & Tarjan, but not using the incremental planarity
testing approach.

In this thesis we focus attention on the planarization algorithm due to Ozawa
& Takahashi [90], and described in more detail by Jayakumar et al. [58]. The
algorithm is based on Booth & Lueker's planarity testing algorithm. The underlying
argument for studying this framework is the following: in every step a next vertex
vi is added, and we determine the minimum number of edges (vj; vi); j < i, whose
deletion yields a planar graph on v1; : : : ; vi. After deleting these edges in every step
we obtain a planar subgraph Gp. The hope is that Gp contains more edges than
the planar subgraphs obtained by incremental planarity testing, as described by Di
Battista [21] and La Poutr�e [75]. We implemented the planarization algorithm of
Jayakumar et al. [58], and compared the delivered planar subgraphs with the planar
subgraph, obtained by incremental planarity testing. Indeed, for graphs which are
\almost planar", we observed that the \vertex addition" method of Jayakumar
et al. outputs denser planar subgraphs than the \edge addition" method. The
experimental comparisons are summarized in Figure 2.10. However, the resulting
planar subgraph Gp of the \vertex addition" method is not necessarily planar, as
wrongly announced in [90]. In Section 2.3.3 we give a brief description how to obtain
a maximal planar subgraph G0

p, containing Gp.

2.3.2 Planarization Using PQ-trees

In this section we discuss the basic principle of an approach for planarization, due
to Ozawa & Takahashi [90] and also studied by Jayakumar et al. [56, 58]. Following
these papers, we classify the nodes of a PQ-tree as follows:

Type W: A node is said to by type W, if its frontier consists of only empty leaves.

Type B: A node is said to be type B, if its frontier consists of only full leaves.

Type H: A node X is said to be type H if the subtree rooted at x can be arranged
such that all the descendant pertinent leaves of x appear consecutively either
at the left end or at the right end of the frontier.

Type A: A node x is said to be type A if the subtree rooted at x can be arranged
such that all the descendant pertinent leaves of x appear consecutively in the
middle of the frontier with at least one non-pertinent leaf appearing at each
end of the frontier.

The central concept of the planarization algorithm is stated in the following theorem
of [58], which essentially is a restatement of the principle on which the Booth &
Lueker's planarity testing algorithm is based.

24 Backgrounds

Figure 2.8: Nodes of type W, B, H, and A, respectively.

Theorem 2.3.1 ([58]) A graph G is planar if and only if the pertinent roots of all
subtrees in T2; T3; : : : ; Tn�1 of G are type B, H or A.

A PQ-tree is called reducible if its pertinent root is type B, H or A; otherwise it
is called irreducible. A graph G is planar i� all the trees Tk are reducible. If any
Tk is irreducible, we make it reducible by appropriately deleting some leaves with
label (vk+1) from it. For a node x in an irreducible PQ-tree Tk, let the w-, h- and
a-number be the minimum number of descendant leaves of x, which must be deleted
from Tk such that x becomes type W, H and A, respectively. This is denoted by
[w; h; a]. (Note that a partial node can not be made type B, because in this case we
have to delete empty children, which is not allowed.) After computing [w; h; a] for
the pertinent root r of the PQ-tree, we set the type of r to H or A (according to the
minimum of the h- and a-number) and traverse the tree top-down to determine the
type of each pertinent node. The leaves of type W are removed from the tree. The
result is a reducible tree.

We now concentrate on the computation of the [w; h; a]-numbers for every per-
tinent node x. To this end we process Tk bottom-up from the pertinent leaves to
the pertinent root r, i.e., when we compute [w; h; a] for node x, then the [w; h; a]
numbers of all pertinent children of x is already computed. For every node x with
numbers [w; h; a] it follows that a � h � w. If x is a leaf, then [w; h; a] = [1; 0; 0], so
assume x is not a leaf. Let x1; : : : ; xp be the pertinent children of x, each child
xi with h- and w-number hi and wi. When one pertinent child of x is made
type H and all other pertinent children of x type W, then the h-number of x is
min1�i�pfhi+w1+ : : :+wi�1+wi+1+ : : :+wpg = w1+ : : :+wp�min1�i�pfwi�hig.
The computation of the w- h- and a-numbers follows in a similar way as follows:

� The w-number for x is simply
P

y
w, over all y that are a pertinent child of x.

� We make a P-node x type H by making all full children type B, one partial
child type H and all other partial children type W.

� We can make a P-node x type A in two di�erent ways. We can make one
partial child of x type A and make all other pertinent children of x type W,
or we can make two partial children type H, all full children type B and make
all other pertinent children type W.

2.3 Planarization of Graphs 25

� To make a Q-node x type H, we traverse the children of x from left to right and
�nd the maximal consecutive sequence of pertinent children such that only the
rightmost node in this sequence may be partial, all other nodes must be full.
The same is done by traversing the children of x from right to left.

� We make a Q-node x type A by �nding a maximal consecutive sequence of
pertinent children of x such that all the nodes of this sequence except the
leftmost and rightmost nodes are full. The endmost nodes of this sequence
may be full or partial. Instead of this we could also make one of the pertinent
children of x type A and make all the other pertinent children type W.

[2, 0, 0]

[3, 1, 0]

[6, 3, 2]

[3, 1, 1]

[1, 0, 0]

Figure 2.9: Computing the [w; h; a]-numbers.

Planarize

Construct the initial tree T1 = T �
1 ;

for k := 1 to n� 1 do
f make Tk reducible g
compute the [w; h; a]-number for all pertinent nodes in Tk;
if minfh; ag for the pertinent root r is not zero then
make r type H or A corresponding to the minimum of h and a;
traverse Tk top-down and determine the type of each pertinent node;
delete leaves of type W from Tk;

f reduction step g
construct T �

k from Tk by applying the replacements
to the PQ-tree such that all remaining leaves with label
(vk+1) appear as a consecutive sequence in T �

k ;
f vertex addition step g
replace all full nodes of T �

k by a new P-node x with all
outgoing edges of vertex vk+1 appearing as children of x

rof;
End Planarize

26 Backgrounds

Computing the [w; h; a]-number for node x can be done in O(p(x)) time, with p(x)
the number of pertinent children of x if x is a P-node, and with p(x) the number
of children of x if x is a Q-node. The number of children of all Q-nodes in any
PQ-tree is at most n [58]. Since in any PQ-tree there are at most n pertinent leaves,
n P-nodes and n Q-nodes, the total work for computing the [w; h; a]-numbers and
making the tree reducible is O(n) in each step, hence the algorithm takes O(n2)
time in total.

Theorem 2.3.2 ([58]) Algorithm Planarize determines a planar subgraph Gp of
the nonplanar graph G in O(n2) time.

2.3.3 Maximal Planarization

Unfortunately, the algorithm Planarize does not necessarily return a maximal
planar subgraph, and in [56] a counterexample is given. If G is a complete graph
Kn or a complete bipartite graph Km;n, then Planarize yields a maximal planar
subgraph with 3n�6 and 2(m+n)�4 edges, respectively, which is best possible (see
Jayakumar et al. [56] and Kant [66], respectively). In [58], Jayakumar et al. propose
an O(n2) time algorithm that, given a biconnected planar subgraph Gp, outputs a
maximal planar subgraph G0

p of G, with Gp � G0
p. However, as proved in Kant [66],

this algorithm is incorrect, and several counterexamples are included in [66]. Kant
also presents a new algorithm to augment Gp to a maximal planar subgraph G0

p of
G, containing Gp, even when Gp is not biconnected. In this section we give the main
ideas of this algorithm, for details the reader is referred to [66].

The idea is to do the planarization algorithm again, and to distinguish leaves
le0, storing edges e0 2 Gp, which we call preferred leaves, and leaves le storing edges
e 2 G � Gp, which we call potential leaves. In step k we compute an equivalent
tree T �

k of Tk in which all preferred leaves with label (vk+1) form one consecutive
sequence. Potential leaves with label (vk+1) are not removed from T �

k . Let xk be
the new P-node after the vertex addition step in T �

k , with all outgoing edges of vk+1
appearing as children of xk. To indicate the place of the sequence of incoming edges
of vk+1 in T �

k , we place adjacent to xk a new node, called the sequence indicator,
denoted by < k+1 >. (This idea is inspired by the direction indicator, described in
Section 2.2.3). We call potential leaves and sequence indicators empty leaves. When
computing the consecutive sequence of preferred leaves of vk+1 in Tk, we ignore the
presence of empty leaves.

Observe that an edge e = (vi; vj) 2 G�Gp can be added to Gp without destroying
the planarity, if in Tk between the corresponding potential leaf le and sequence
indicator < j >, only empty leaves le1 ; : : : ; ler appear. This follows because after
deleting the leaves le1; : : : ; ler , Tk can be reduced such that le is an adjacent sibling
of < j >. < j > denotes the place of the consecutive sequence of the incoming
edges of vertex vj in PQ-tree Tj�1. (vi; vj) is an incoming edge of vj as well. Hence
the consecutive sequence can be enlarged, i.e., we can add (vi; vj) to Gp without

2.3 Planarization of Graphs 27

destroying the planarity. Such a pair of potential leaf and corresponding sequence
indicator with only empty leaves in between, is called a near pair. (A more formal
and precise de�nition of a near pair is given in [66].)

We compute in each step k the maximal consecutive sequence of preferred leaves
with label (vk+1), thereby ignoring the presence of empty leaves. When reducing
the tree from Tk to T �

k , we test for near pairs, that are part of the sequence. For
every near pair le; < j >, we delete all empty leaves between < j > and le from Tk,
and add e to Gp. After reducing all near pairs, we delete all potential leaves and
sequence indicators from Tk, which are part of the consecutive sequence. For every
deleted sequence indicator < j >, we remove all corresponding potential leaves from
Tk, since after deleting < j >, they cannot form a near pair anymore.

The maximal planarization algorithm can now be described at a high level as
follows:

MaximalPlanarize

assign st-numbers to the vertices of G;
Planarize(G);
construct the initial PQ-tree T1;
for k := 1 to n� 1 do
fcomputing stepg
compute the maximal pertinent sequence in tree Tk
of incoming edges of vertex vk+1 in Gp;

freduction stepg
apply the template matchings in the PQ-tree, and apply an additional
step to reduce near pairs in the maximal pertinent sequence;

fvertex addition stepg
for all deleted sequence indicators < j >,
remove the corresponding potential leaves from Tk;
replace all the full nodes in Tk by a P-node x with all
outgoing edges of vertex vk+1 appearing as children of x;
add the sequence indicator < k + 1 > as a sibling of x in Tk

rof;
End MaximalPlanarize

Reducing the near pairs is complex and uses several extra pointers and a new
type for a node in the PQ-tree. Explaining this in detail is beyond the scope of this
thesis, and we only announce the following result:

Theorem 2.3.3 ([66]) There is a maximal planarization algorithm based on PQ-
trees, that requires O(n2) time and space.

As noticed earlier, the strength of the PQ-tree algorithms is that we can compute
for every vertex vk+1 the minimum number of edges which have to be deleted to

28 Backgrounds

obtain planarity in step k. In particular, for graphs which are \almost planar", this
approach seems to delete less edges than testing planarity incrementally per edge.
We applied both approaches on randomly generated triangular planar graphs with
n vertices and 3n�6 edges, to which we randomly added k edges. The experimental
results are given in Figure 2.10. Here v-test denotes the planarization algorithm
described in Section 2.3.2, and e-test denotes the incremental planarity testing
algorithm. The numbers shown denote the number of edges in the resulting planar
subgraphs.

k 100 nodes 200 nodes 300 nodes 400 nodes 500 nodes

v-test e-test v-test e-test v-test e-test v-test e-test v-test e-test

35 189 187 504 325 731 480 730 656 1189 804

75 207 293 438 326 683 474 917 637 1147 738

115 203 238 428 318 644 482 894 746 1107 763

155 205 239 421 324 630 487 829 635 1073 800

190 212 161 396 319 668 472 820 638 1037 791

230 222 163 387 318 624 471 823 636 1020 778

265 226 162 412 319 606 476 815 632 1048 769

305 232 162 405 325 606 467 805 633 1011 750

345 245 162 409 319 615 470 789 634 1008 786

375 234 166 398 317 567 480 795 617 965 804

Figure 2.10: Comparison between v-test and e-test on almost planar graphs.

We conclude from Figure 2.10 that for almost planar graphs the planarization
algorithm based on vertex addition is preferred above the edge addition approach,
when we search for a minimal number of deleted edges. We did the same test
for random graphs. In this case the vertex addition approach seems only to be
interesting for sparse graphs.

2.4 Biconnected and Triconnected Components

Until now, we have described how to test planarity, how to construct a planar sub-
graph in case the graph is nonplanar, and how to compute a planar embedding.
In Part B and Part C we consider augmentation and drawing algorithms of planar
graphs. An important issue in these algorithms is to determine whether the graph
is bi- or triconnected, and if not, to split the graph into bi- and triconnected compo-
nents. To this end we present two trees in this section. The �rst tree is the BC-tree
TBC of G for splitting G into its biconnected components, introduced by Harary
[45]. This tree is also denoted as the block tree, bc(G) or the 2-block tree in [53]. The
second tree is the SPQR-tree TSPQR of G for splitting the biconnected components
of G into triconnected components, introduced by Di Battista & Tamassia [21]. Re-
lated trees are the 2-subgraph tree and the 3-block tree [51, 52]. If a graph G is not
biconnected, then we construct a BC-tree of G, and to each block of G we associate
the SPQR-tree of this block. Both trees can be constructed in linear time.

2.4 Biconnected and Triconnected Components 29

2.4.1 The BC-tree

The biconnected components of a connected graph (also called blocks) are: (a) its
maximal biconnected subgraphs, and (b) its bridges together with their endpoints
(trivial blocks). In TBC, every block is represented by a B-node and each cutvertex
of G is represented by a C-node. There is an edge between a C-node u and a B-node
b in T if and only if u belongs to the corresponding block of b in G. Every path in
the BC-tree contains alternatingly B- and C-nodes. A pendant or a pendant block is
a block which contains exactly one cutvertex, i.e., whose corresponding B-node is a
leaf in TBC. Let p(v) of a cutvertex v denote the number of pendants, connected at
v, i.e., the number of leaves, which are children of C-node v. Let p be the number
of pendants of G, i.e., the number of leaves in TBC. Let d(v) denote the number of
components of G � fvg, i.e., the graph after deleting cutvertex v, i.e., the degree
of C-node v in TBC. Each component of G � fvg is called a v-block. Let d =
maxv2V fd(v)g. Using a depth-�rst search algorithm as described by Tarjan [107],
the tree TBC can be constructed in linear time. In Figure 2.11 an example is given
(from [53]).

15

5 12

9

10
87

6

2

1

3

4

11

14

13

A H C

B

E

FD

3 6

5 12

9
A

B

C
D

E F

H

Figure 2.11: A graph G and its corresponding BC-tree (from [53]).

If G is outerplanar, then all vertices belong to the outerface. When constructing
TBC for G, we assume that the cutvertices c1; : : : ; ck connected at a certain B-node b
in TBC appear in the order they appear on the outerface of the corresponding block
of G. This means that in TBC, the order of children of every B-node is �xed, and
for every C-node any order of children is allowed. Such a \�xed" BC-tree can be
constructed in linear time as well.

2.4.2 The SPQR-tree

The 3-connected or triconnected components of a biconnected graph G are de�ned as
follows (see also [49, 21]): ifG is triconnected, thenG itself is the unique triconnected
component of G. Otherwise, let fu; vg be a separation pair of G, i.e., deleting u and
v from G disconnects G. We partition the edges of G into two disjoint subsets E1

30 Backgrounds

and E2 (jE1j; jE2j � 2), such that the subgraphs G1 and G2 induced by E1 and E2

only have u and v in common. We continue the decomposition process recursively
on G0

1 = G1+(u; v) and G0
2 = G2+(u; v) until no further decomposition is possible.

The added edges (u; v) are called virtual edges. This procedure is called splitting.
Each of the resulting graphs is either a triconnected simple graph, a set of three
parallel edges (triple bond), or a cycle of length three (triangle). The triconnected
components of G are obtained from such graphs by merging the triple bonds into
maximal sets of parallel edges (bonds), and the triangles into maximal simple cycles
(polygons). Merging is the procedure opposite to splitting.

We now describe the SPQR-tree TSPQR which is used for splitting the bicon-
nected components of G into triconnected components. To each B-node in TBC an
SPQR-tree TSPQR is associated for the triconnected components of this block. For
simplicity, we now assume that G is a biconnected graph. A split pair of G is either
a separation pair or a pair of adjacent vertices. A split component of a split pair
fu; vg is either an edge (u; v) of G or a maximal subgraph G0 of G such that fu; vg
is not a split pair of G0. Let fs; tg be a split pair of G. A split pair fu; vg is a
maximal split pair of G with respect to fs; tg when for any other split pair fu0; v0g,
vertices u; v; s and t are in the same split component of fu0; v0g.

Let e be an edge of G between vertices s and t, called the reference edge. TSPQR
of G with respect to e describes a recursive decomposition of G induced by its split
pairs. TSPQR is a rooted ordered tree whose nodes are of four types: S, P, Q and R.
Each node b of T has an associated biconnected multigraph, called the skeleton of b,
and denoted by skeleton(b). Also, it is associated with an edge in the skeleton of the
parent b0 of b, denoted by edge(b) . TSPQR and the types of its nodes are recursively
de�ned as follows.

Trivial Case: If G consists of exactly two parallel edges between s and t, then
TSPQR consists of a single Q-node whose skeleton is G itself.

Parallel Case: If the split pair fs; tg has at least three split componentsG1; : : : ; Gk

(k � 3), then the root TSPQR is a P-node b. Graph skeleton(b) consists of k
parallel edges between s and t, denoted by e1; : : : ; ek, with e1 = e.

Series Case: In case the split pair fs; tg has exactly two split components, one
of them is the reference edge e, and we denote the other split component by
G0. If G0 has cutvertices c0; : : : ; ck (k � 2) that partition G into its blocks
G1; : : : ; Gk, in this order from s to t, then the root of TSPQR is an S-node b.
Graph skeleton(b) is the cycle e0; e1; : : : ; ek, where e0 = e; c0 = s; ck = t, and
ei connects ci�1 with ci (i = 1; : : : ; k).

Rigid Case: Otherwise, let fs1; t1g; : : : ; fsk; tkg be the maximal split pairs of G
with respect to fs; tg (k � 1), and for i = 1; : : : ; k let Gi be the union of all
the split components of fsi; tig but the one containing the reference edge e.
The root of TSPQR is an R-node b. Graph skeleton(b) is obtained from G by
replacing each subgraph Gi with the edge ei between si and ti.

2.4 Biconnected and Triconnected Components 31

In the last three cases (series, parallel and rigid), b has children b1; : : : ; bk (in this
order), such that bi is the root of TSPQR of the decomposition tree of graph Gi [ei
with respect to reference edge ei (i = 1; : : : ; k). The virtual edge of node bi is edge
ei in skeleton(b). The endpoints of ei are the vertices of the split pair, and are also
called the poles of node bi. The tree so obtained has a Q-node associated with each
edge of G, except the reference edge e. We complete TSPQR by adding another Q-
node, representing the reference edge e, and making it the parent of b such that it
becomes the root. An example of an SPQR-tree is shown in Figure 2.12.

1
2

3

4

5

6

7

8

9

10 11

12

13

3
4

5
6

9
10

11

1
2

8

1

3

6

7

8

12

13

8

9
11

12

1

8

...

...

R−node

R−node
P−node

S−node

S−node

S−node

Figure 2.12: A graph and its SPQR-tree (from [21]).

The next three lemmas follow directly from the above de�nitions:

Lemma 2.4.1 ([21]) Let b be a node of TSPQR. We have:

� if b is an R-node, then skeleton(b) is a triconnected graph;

� if b is an S-node, then skeleton(b) is a cycle;

32 Backgrounds

� if b is a P-node, then skeleton(b) is a triconnected multigraph consisting of a
bundle of parallel edges;

� if b is a Q-node, then skeleton(b) is a biconnected multigraph consisting of two
parallel edges.

Lemma 2.4.2 ([21]) The skeletons of the nodes of TSPQR are homeomorphic to
subgraphs of G. Also, the union of the sets of split pairs of the skeletons of the nodes
of TSPQR is equal to the set of split pairs of G.

Lemma 2.4.3 ([21]) TSPQR of G has m Q-nodes and O(n) S-, P- and R-nodes.
Also the total number of vertices of the skeletons stored at the nodes of TSPQR is
O(n).

The following lemma is important for our algorithms, and can be proved by
using the linear time algorithm of Hopcroft & Tarjan [49] for splitting a graph into
its triconnected components.

Lemma 2.4.4 ([21]) TSPQR of G can be constructed in O(m+ n) time.

It is possible to show that SPQR-trees of the same graph with respect to di�er-
ent reference edges are isomorphic and are obtained one from another by selecting
a di�erent Q-node as the root. SPQR-trees are closely related to the classical de-
composition of biconnected graphs into triconnected components [49]. Namely, the
triconnected components of a biconnected graph G are in one-to-one correspondence
with the internal nodes of the SPQR-tree: The R-nodes correspond to triconnected
graphs, the S-nodes to polygons, and the P-nodes to bonds. The SPQR-trees of pla-
nar graphs are introduced in [21] and are applied to the problem of on-line planarity
testing. Notice that if fs; tg is a split pair and (s; t) 2 E, then there is a P-node bi,
with poles s and t, and one child of bi corresponds with edge (s; t). We will also use
the following lemma:

Lemma 2.4.5 If b is an S-node, then parent(b) is not an S-node.

Proof: Let b be an S-node with poles s; t. Suppose that b0 = parent(b) is
also an S-node with poles s0; t0. But replacing (s; t) by skeleton(b) in skeleton(b0)
gives a cycle with poles s0; t0. This contradicts with the fact that the triconnected
components are unique. 2

In all our algorithms the Q-nodes, representing the edges of G, are not used, so
we delete these from the SPQR-tree. We denote by pertinent(bi) the subgraph of G
which corresponds with the subtree of the SPQR-tree rooted at bi. Hence we can
de�ne pertinent(bi) recursively as the the subgraph of G obtained by replacing all
virtual edges ej by pertinent(bj) in skeleton(bi), if bj is a child of bi in TSPQR and
ej = edge(bj).

2.5 The Canonical Ordering 33

Lemma 2.4.6 If b is a P-node, then deg(b) � 2 in TSPQR.

Proof: Let b be a P-node, then skeleton(b) is a bond. At least two edges
of this bond are virtual, hence correspond with triconnected components, whose
corresponding node is connected with b in the SPQR-tree. 2

The last lemma implies that if b is a leaf in TSPQR, then b is an S- or R-node. In
our algorithms, G is planar. By a theorem of Chiba et al. [12], triconnected planar
graphs have a unique embedding. Hence, if b is a S- or R-node in the SPQR-tree
TSPQR, then skeleton(b) has a unique embedding. If b is a P-node, then we may
permute the parallel edges between the two poles s; t in the skeleton of b.

2.5 The Canonical Ordering

A last tool we need in our algorithms is an ordering on the vertices and faces of a
graph. Hereto we introduce in this section the canonical ordering for triconnected
planar graphs. The canonical ordering plays a major role in Chapter 6 for trian-
gulating planar graphs, and in Part C for drawing triconnected planar graphs on
a grid. The canonical ordering generalizes the canonical ordering for triangulated
planar graphs, described by de Fraysseix, Pach & Pollack [34], and also generalizes
the st-ordering, de�ned by Even [30]. The st-ordering is used in several drawing
algorithms [20, 21, 22, 23, 96, 105, 104, 106]. Let an embedding of a triconnected
planar graph G be given. Gk denotes the subgraph of G, induced on the vertices
v1; : : : ; vk.

(Canonical Ordering)
Let G be a triconnected plane graph with an edge (v1; v2) on the external face.
Let � = (V1; : : : ; VK) be an ordered partition of V , that is, V1 [: : : VK = V and
Vi \ Vj = ; for i 6= j. De�ne Gk to be the subgraph of G induced by V1 [: : : [Vk,
and denote by Ck the external face of Gk. We say that � is a canonical ordering of
G if:

� V1 consists of fv1; v2g.
� VK is a singleton fvng, where vn lies on the outerface and is a neighbor of v1.

� Each Ck (k > 1) is a cycle containing (v1; v2).

� Each Gk is biconnected and internally triconnected, that is, removing two
internal vertices of Gk does not disconnect it.

� For each k in 2; : : : ;K � 1, one of the two following conditions holds:

(a) Vk is a singleton, fzg, where z belongs to Ck and has at least one neighbor
in G �Gk.

34 Backgrounds

(b) Vk is a chain, (z1; : : : ; z`), where each zi has at least one neighbor in
G�Gk, and where z1 and z` each have one neighbor on Ck�1, and these
are the only two neighbors of Vk in Gk�1.

Theorem 2.5.1 Every triconnected planar graph G with pre-de�ned v1; v2; vn has a
canonical ordering.

Proof: LetG be a triconnected planar graph with v1; v2 and vn given in advance.
The decomposition of the vertices in V1; : : : ; VK will be de�ned by reverse induction.
Assume that v2 and vn are neighbors of v1 and belong to the outerface of a planar
embedding of G. Notice that by triconnectivity of G, the graph Gn�1 = G � fvng
is biconnected and the outerface Cn�1 is a cycle, containing (v1; v2).

Let 2 < k < K be �xed. Assume that Vi has already been determined for every
i > k such that the subgraph Gk satis�es the conditions of the canonical ordering.
Notice that if there are vertices v 2 Gk of degree 2 then v 2 Ck. Notice also that
by triconnectivity of G there are at least 3 vertices c�; c�; c
 2 Ck having edges to
vertices in G �Gk. Assume w.l.o.g. that c� 6= v1; v2. If Gk is triconnected then we
can take Vk = fc�g because by triconnectivity, c� has at least three neighbors in Gk

and Gk � c� is biconnected.
Assume further that Gk is not triconnected, hence Gk contains separation pairs.

Let vx; vy be a separation pair, and let G1; G2 be two components of Gk � fvx; vyg.
Since G is triconnected, there is a path P between G1 and G2, not visiting vx and
vy. In Gk, vx and vy are forming a separation pair, hence the edges of path P are
removed in Gk. Since we de�ned the ordering by reverse induction, we removed
only vertices and edges from the outerface. Hence path P goes between two vertices
cx0; cy0 , belonging to Ck with cx0 2 G1 and cy0 2 G2. This yields that vx and vy
belong to Ck and one path between vx and vy on Ck is part of G1; the other path
on Ck between vx and vy is part of G2. This holds for every separation pair vx; vy,
hence all vertices of the separation pairs belong to Ck.

Let ca; cb be a separation pair such that b � a is minimal. If deg(ca+1) > 2
then there is a vertex c�, a < � < b, with at least one edge to a vertex deleted in
step j > k, otherwise the graph G� fca; cbg is disconnected, which contradicts the
triconnectivity of G. By minimality of b�a, c� is not part of a separation pair in Gk,
hence Gk�c� does not have a cutvertex and the outerface of Gk�c� is biconnected.
We take Vk = fc�g in the ordering.

Assume now that there is no separation pair ca; cb with deg(ca+1) > 2. Then b =
a+2, because ca and ca+2 are the only neighbors of ca+1 in Gk. Let now 1 � a0 � a

and b � b0 � r be such that all vertices ca0+1; ca0+2; : : : ; cb0�1 have degree 2, and
deg(ca0) > 2 if a0 > 1 and deg(cb0) > 2 if b0 < r. Notice that v1; v2 62 fca0+1; : : : ; cb0�1g
and every vertex c0i; a

0 < i < b0, has an edge to G �Gk. If edge (ca0; cb0) 2 G, then
Gk � fca0+1; : : : ; cb0

1
g is biconnected and we set Vk = fca0+1; : : : ; cb0�1g.

Assume �nally that (ca0; cb0) 62 G. Let F be the face in Gk, containing the vertices
ca0; ca0+1; : : : ; cb0 . We claim that the path P in F between ca0 and cb0 not containing

2.5 The Canonical Ordering 35

1
2

3
4

5

6
7 8

9
10

11
1213

14

15

A

B
C

D

E F

vertex sepf visited

1 2 1

2 3 0

3 2 0

4 2 0

5 3 0

6 1 2

7 1 1

8 2 0

9 2 0

10 1 1

11 1 1

12 1 2

face outv oute

A 5 1

B 3 2

C 4 3

D 3 1

E 3 2

F 3 2

Figure 2.13: A graph with canonical ordering and corresponding variable-values at
some step.

ca0+1; : : : ; cb0+1, does not contain another vertex on the outerface of Gk. Suppose
not, i.e, the path P contains a vertex cd on the outerface of Gk. Suppose w.l.o.g.
1 � d < a0. But now it follows that cd+1; : : : ; ca0�1 is a chain of vertices of degree
2. Since (cd; ca0) 62 G it follows that deg(ca0) = 2, which is a contradiction. Hence
Gk � fca0+1; : : : ; cb0

1
g is biconnected and we set Vk = fca0+1; : : : ; cb0�1g. 2

If Vkfz1; : : : ; z`g with ` > 1, then precisely one face is added, otherwise one vertes
is added to Gk�1. The algorithm for computing the canonical ordering is based on
the proof of Theorem 2.5.1: We start with the entire graph G, and in each step
we delete a face or vertex. For this we introduce a variable outv(F) and oute(F)
for each face F , denoting the number of vertices and edges of F belonging to the
current outerface. We also introduce a variable sepf(v) for every vertex v, denoting
the number of di�erent faces, containing a separation pair with vertex v. By the
proof of Theorem 2.5.1, both v and w are part of the current outerface. We call
the corresponding faces separation faces. Using these variables we can prove the
following theorem.

Theorem 2.5.2 For every triconnected planar graph a canonical ordering can be
computed in linear time and space.

Proof: Let an embedding of the triconnected planar graph G be given. Let
every vertex v and edge e have pointers to the faces they belong to. Initially all
variables outv(F), oute(F) and sepf(v) are set to 0. We take an arbitrary face Fout

as outerface during the algorithm. Assign v1 with neighbors v2 and vn on Fout. In
every step we remove vertices from G and update Fout. For every vertex v 2 Fout

and every edge e 2 Fout; e 6= (v1; v2), we increase outv(Fv) and oute(Fe). for every
Fv 6= Fout where v belongs to, and Fe 6= Fout, where e belongs to.

For every vertex v which becomes part of Fout we have to compute sepf(v).
Consider for this problem a face F where v belongs to. We claim that F is a

36 Backgrounds

separation face if and only if outv(F) � 3 or if outv(F) = 2 and oute(F) = 0. This
follows because precisely in these cases, F has at least two non-adjacent vertices
on the outerface which makes this face a separating face. To compute sepf(v) we
count the number of incident faces F of v with outv(F) � 3 or outv(F) = 2 and
oute(F) = 0. A face becomes at most once a separation face, because when outv(F)
or oute(F) decreases then a vertex or edge from F is deleted and F is added to Fout.
Every face F with outv(F) = oute(F) + 1 and oute(F) � 2 can be the next face
in our ordering, because in this case the vertices of F , belonging to the outerface,
form a consecutive sequence. Otherwise a vertex v, v 6= v1; v2, with sepf(v) = 0 and
visited(v) � 1 (with visited(v) the number of deleted neighbors of v) can be the next
vertex vk in our ordering. By Theorem 2.5.1, such a face or vertex exists.

The time complexity of the algorithm is the following: every vertex v has deg(v)
neighbors and belongs to deg(v) faces. When v becomes part of Fout then updating
outv(Fv) for all incident faces of v requires O(deg(v)) time in total. Computing
sepf(v) requires O(deg(v)) time if v becomes part of Fout, and O(1) if v was already
part of Fout and is incident to a vertex, deleted in this step. Updating oute(Fe)
for an edge e, which becomes part of Fout, requires O(1) time. When F becomes a
separation face then sepf of the other vertices of F , part of the outerface, must be
increased by one. (This are at most two vertices and this happens only once, hence
requires constant time.) Deleting a vertex or face can be done in time, constant in
the number of deleted edges. Since

P
deg(v) = 2m, and m = O(n), this yields a

linear time and space algorithm. 2

See Figure 2.13 for a graph with corresponding values of the variables visited(v),
sepf(v), outv(F) and oute(F).

2.6 Augmentation and Drawing Algorithms

We now have all ingredients, which are necessary as a starting point for the drawing
algorithms introduced in this thesis. However, several drawing algorithms require a
biconnected, and sometimes even a triconnected planar graph. Therefore, we devote
complete Part B to the problem of adding (a small number of) edges to a planar
graph so the resulted augmented graph is biconnected, triconnected or triangulated.
E�cient algorithms are described, often yielding performance ratio's which are tight,
and with a complexity only an additive or multiplicative factor from optimal. In
Chapter 3 an overview of our work and the relation to existing algorithms is given.

Using the tools of this chapter in combination with the augmentation tools de-
scribed in Part B, we can start the investigation of representing or drawing a planar
graph. Part C is devoted to this problem. In Chapter 9, we start with an overview
of good existing algorithms. Several of these algorithms will be improved or gener-
alized in the remaining chapters of Part C. We do not have the intention of being
complete in this overview, and to present all di�erent representation models known

2.6 Augmentation and Drawing Algorithms 37

in the literature. Only those algorithms, relevant for our work, are described. Nev-
ertheless, this includes all main representations known to date. We mention the
convex, orthogonal and hexagonal drawings, visibility representations, rectangular
duals, drawings with minimum angle at least a constant. Some further representa-
tions, not mentioned here, are summarized in [18]. In this paper, Di Battista, Eades,
Tamassia & Tollis give an annotated bibliography with more than 250 references,
and several applications in which drawing algorithms appear. We refer the reader
to this work for a more detailed survey of the current �eld of graph drawings. Addi-
tionally, in [103], Tamassia, Di Battista & Batini give another survey. This survey
emphasizes the practical applications.

38 Backgrounds

Part B

Augmenting Planar Graphs

39

Chapter 3

Introduction

Many problems concerning the planarity of graphs arise from the wish to draw the
graph in an elegant way. In Part C we consider several di�erent techniques to ob-
tain a graphical layout of planar graphs. These techniques rely on the underlying
structure and characteristics of the input graph. Moreover, almost always the draw-
ing algorithm requires additional constraints of the planar graph G with respect
to connectivity. As a �rst example, consider the graph drawing algorithms of Di
Battista, Tamassia & Tollis [22], Rosenstiehl & Tarjan [96] and Tamassia & Tollis
[104]. They all assume that the input graph is biconnected. In this case an st-
ordering of the vertices can be constructed, which leads to an interesting linear time
framework for a broad area of drawing applications. In Chapter 9 we outline these
algorithms. As a second example, consider the convex drawing algorithm of Tutte
[110, 111]. This algorithm is only valid for triconnected planar graphs. In Part C
we introduce a completely new framework for drawing planar graphs, based on a
so-called lmc-ordering. This framework leads to various graph representation and
drawing applications. This ordering requires as input a triconnected planar graph.
As a last example we mention the several recent algorithms for drawing a planar
graph with straight lines on a grid [15, 34, 43, 98]. In this case the input graph has
to be triangulated, i.e., every face has to be a triangle.

If the input graph does not satisfy these connectivity constraints, dummy edges
have to be added to make it satisfy the constraints. These edges are only used to
obtain the desired degree of connectivity for the purposes of the algorithm. The
added edges are suppressed in the �nal drawing. The goal is to preserve the original
graph as much as possible in the drawing of the augmented graph. Indeed, when we
delete a large number of edges from an elegant drawing, the resulting drawing, i.e.,
the drawing of the original graph, can be less readable. For this reason, we consider
the problem of �nding the minimum number of edges that must be added to the
input graph such that a biconnected or triconnected planar graph is obtained. This
problem is not interesting if the graph must be triangulated, since every triangulated
planar graph has 3n�6 edges. In this case we inspect the problem how to augment a
planar graph to a triangulated planar graph while minimizing the maximum degree.

41

42 Introduction

Eswaran & Tarjan posed the problem of �nding a minimum set of edges to
augment a graph to a biconnected graph [27]. The solution of this problem heavily
depends on the structure of the BC-tree bc(G), de�ned in Section 2.4. Assume G is
connected. Observe that every pendant block must receive an augmenting edge to
satisfy the biconnectivity requirement for G. If p is the number of leaves of bc(G),
then at least dp

2
e augmentation edges are necessary. If a C-node v has degree d(v)

in bc(G), then d(v) � 1 edges must be added between the v-blocks such that when
we delete vertex v, the graph is still connected. Let d be the maximum degree of the
C-nodes in bc(G), and q the number of isolated nodes in bc(G). Then the following
theorem of Eswaran & Tarjan is obtained:

Theorem 3.0.1 ([27]) maxfd � 1; q + dp
2
eg edges are necessary and su�cient to

make G biconnected.

A linear time algorithm for biconnectivity augmentation based on this theorem
was presented by Rosenthal & Goldner [97]. The algorithm contains a small error.
Hsu & Ramachandran corrected it and simpli�ed the algorithm such that also a
fast parallel implementation is possible [53]. Eswaran & Tarjan [27] proved that the
weighted variant of the biconnectivity augmentation problem is NP-complete. An
approximation algorithm for the weighted biconnectivity augmentation problem is
presented by Frederickson & Ja'Ja [36]. Khuller & Thurimella [72] simpli�ed this
algorithm, yielding an O(m+ n log n) algorithm to biconnect G such that the total
weight of the added edges is at most two times the optimal weight.

The triconnectivity augmentation problem has been investigated by Hsu & Ra-
machandran [52]. The algorithms for this problem are based on the structure of
what they call a 3-block tree, which is very close to the SPQR-tree. Assume G is
biconnected, and let the SPQR-tree TSPQR of G be given. We change TSPQR such
that every vertex v with deg(v) = 2 is also represented by one, unique, S-node bi,
with a virtual edge between the neighbors of v. We remove all Q-nodes from the
SPQR-tree, since they are not necessary in the construction. Notice that after delet-
ing the Q-nodes, every leaf in TSPQR is either an R-node or represents a vertex v of
degree 2.

Let p be the number of leaves of TSPQR. Then at least dp2e edges are necessary to
make G triconnected. If a P-node bi has degree d(bi) in TSPQR, then d(bi)� 1 edges
must be added between the di�erent triconnected components, having the poles of
bi as cutting pair. Let d be the maximum degree of the P-nodes in TSPQR. Then
the following variant of Theorem 3.0.1 can be proved in the triconnected case.

Theorem 3.0.2 ([52]) maxfd� 1; dp2eg edges are necessary and su�cient to make
a biconnected graph G triconnected.

Hsu & Ramachandran [52] also presented an algorithm to augment a general
graph to a triconnected graph, by adding a minimum number of edges. Very re-
cently, Hsu presented a O(m + n � �(m;n)) algorithm to 4-connect a triconnected

Introduction 43

graph by adding a minimum number of edges [51]. For the problem of �nding a
smallest augmentation for a graph to reach a given edge connectivity property, sev-
eral polynomial time algorithms are known, see e.g. Eswaran & Tarjan [27], Frank
[33], Frederickson & Ja'Ja [36], Kuller & Thurimella [72], Naor et al. [85], and
Watanabe et al. [114, 115, 117].

In Part B we study these problems with the additional requirement that the
augmented graphs have to be planar. In Chapter 4 we consider the planar bicon-
nectivity augmentation problem. We prove that the problem of deciding whether
adding at most K edges to a planar graph G yields a biconnected planar graph is
NP-complete. We present an approximation algorithm for this problem, working in
O(n � �(n; n)) time and it adds at most two times the minimum number of edges.
A nice feature is that every vertex receives at most two augmentation edges. We
extensively make use of incremental planarity testing (see e.g. [21, 75]), which �nds
a very nice application in this context. The approximation algorithm can also be
used for making a planar graph bridge-connected while preserving planarity, and it
follows that the same complexity and performance bound holds for this problem as
well.

In Chapter 5 we consider the planar triconnectivity augmentation problem for
biconnected planar graphs. Up to now it is not known whether the decision vari-
ant of this problem is NP-complete. We present an approximation algorithm for
triconnecting a biconnected planar graph while preserving planarity. Inspecting the
SPQR-tree and the planarity aspects in more detail leads to a linear time algorithm,
which adds at most 3

2 times the minimum number of edges. Every vertex v receives

at most maxf2; ddeg(v)
2
eg extra edges.

In Chapter 6 we consider the problem of triangulating a planar graph while
minimizing the maximumdegree. We show that the decision variant of this problem
is NP-complete for biconnected planar graphs. We present a linear time algorithm
that triangulates a triconnected planar graph such that every degree increases by
at most 8. This algorithm uses the canonical ordering described in Section 2.5.
Combining this result with results on triconnecting a planar graph yields that every
connected planar graph can be triangulated such that the maximumdegree is at most
d3
2�(G)e + 11, where �(G) denotes the maximum degree of G. This di�ers only
an additive constant from the worst-case lower bound. Several simple triangulation
algorithms, working in linear time and space, are included as well.

In Chapter 7 we consider the augmentation problems for the case that the input
graph is outerplanar. Outerplanar graphs are an interesting class of planar graphs,
since all vertices are on one common face. Several problems, which are NP-hard
for planar graphs, become easily solvable for outerplanar graphs, e.g., the chro-
matic number problem. Also the augmentation problems mentioned above can
be solved optimally in polynomial time, if the input graph is outerplanar. In partic-
ular, we present a linear time algorithm to augment an outerplanar graph by adding
a minimum number of edges such that the augmented graph is bridge-connected

44 Introduction

and planar. We also show that biconnecting an outerplanar graph while preserving
planarity by adding a minimum number of edges can be achieved in linear time, by
modifying the algorithms of Hsu & Ramachandran [53]. Augmenting an outerplanar
graph to a triconnected planar graph by adding a minimum number of edges can
also be done in linear time. For this we use the algorithm for bridge-connecting
outerplanar graphs. We also present a polynomial time algorithm to triangulate the
interior faces of an outerplanar graph while minimizing the maximum degree. This
algorithm is based on dynamic programming and can also be used to triangulate
one face of a planar graph while minimizing the maximum degree.

The last chapter of Part B contains several concluding remarks. Observations
with respect to bridge-connectivity and triconnecting arbitrary planar graphs are
included as well.

Chapter 4

The Planar Biconnectivity

Augmentation Problem

4.1 Preliminaries

In this section we present various observations and �rst results concerning the prob-
lem of augmenting planar graphs to satisfy biconnectivity and planarity constraints.
Recall the de�nitions in Section 2.4 with respect to bc(G); p(v); d(v) and v-blocks.
Let p be the number of leaves of bc(G), and q be the number of isolated vertices. If
G is disconnected, we connect G by applying the following technique of Eswaran &
Tarjan [27]. Let bc(G) have t trees, numbered from 1 to t. For each i with 1 � i � 2t,
let v(i) be a set of vertices of bc(G) such that

1. v(2i� 1) and v(2i) are each a pendant or an isolated vertex in the ith tree of
bc(G), for each 1 � i � t.

2. v(2i� 1) = v(2i) if and only if the ith tree of bc(G) is an isolated vertex.

It easily follows that bc(G) [f(v(2i); v(2i + 1))j1 � i < tg is a tree having p0 =
p + 2q � 2(t� 1) pendants and no isolated vertices [27]. We call the corresponding
algorithm for determining the trees of bc(G), numbering the pendants and adding
the edges (v(2i); v(2i+ 1)) for 1 � i < t, Connect(G). We will use the algorithm
Connect in Chapter 7 as well, when the aim is to bridge-connect, biconnect or
triconnect an outerplanar graph by adding a minimum number of edges.

A simple linear time algorithm for biconnecting G while preserving planarity is
the following approach due to Read [92]: if for any pair of consecutive neighbors
u;w of v, u and w belong to di�erent blocks, then the edge (u;w) is added. This
collapses the two blocks into one. Applying this to all consecutive neighbors of
every vertex yields a biconnected planar graph. Unfortunately, this algorithm can
increase the degree of a single vertex by O(n), as shown in Figure 4.1(a). To avoid
this, the algorithm of Read is modi�ed in four ways: (i) we change the embedding of
G such that all neighbors of v, belonging to the same block, appear in a consecutive

45

46 The Planar Biconnectivity Augmentation Problem

sequence in adj(v); (ii) we inspect the vertices in depth-�rst order; (iii) we test
during the algorithm whether an added edge can be removed without destroying
biconnectivity; (iv) let v have d(v) v-blocks, then we observe that adding d(v) � 1
edges between the v-blocks has the e�ect that v is not a cutvertex anymore. The
modi�cation of the algorithm of Read can be described as follows:

v
w

w
v

w

w

w

w

1

2

2

1

u

u

1

2

(a) One vertex gets n � 2 extra

edges.

(b) Every vertex gets at most 2

extra edges.

Figure 4.1: Making graphs biconnected.

Biconnect(G)
construct a planar embedding of G such that all neighbors of vi,
belonging to the same block, appear consecutively in adj(vi);
number the cutvertices vi of G in depth-�rst order;
for every cutvertex vi (in increasing vi-number) do
let adj(vi) = fu1; : : : ; ukg, with u1 and uk belonging to di�erent blocks;
for j := 1 to k � 1 do
if uj and uj+1 belong to di�erent blocks then
add an edge (uj; uj+1) to G;
if (vi; uj) (or (vi; uj+1)) was added to G earlier then
remove (vi; uj) (or (vi; uj+1), resp.) from G

rof
rof;

End Biconnect

4.1 Preliminaries 47

Lemma 4.1.1 In linear time a planar embedding of a planar graph G can be con-
structed with the property that for every vertex v, all neighbors of v, belonging to the
same block, appear consecutively.

Proof: Every edge belongs to a unique block. After labeling the edges with
the numbers of the blocks, we sort adj(vi) such that all neighbors of vi, belonging
to the same block, appear consecutively in adj(v). We do it such that if neighbors
vj and vk belong to the same block and initially vj appeared before vk in adj(vi),
then after sorting vj is before vk in adj(vi). Since the ordering between the edges in
the same block is not disturbed, and there are no edges between the di�erent blocks
except the incident edges of vi, it follows that the new embedding is planar. 2

Lemma 4.1.2 Algorithm Biconnect(G) gives a biconnected planar graph.

Proof: Let B1; : : : ; Bl be the vi-blocks, in clockwise order around cutvertex vi in
Biconnect(G), with u1 2 B1 and uk 2 Bl. Then an edge is added between Bj and
Bj+1, for 1 � j < l. Hence after the augmentation by algorithm Biconnect(G),
all neighbors of vi belong to one common block. Thus vi is not a cutvertex any-
more. Consider consecutive neighbors uj and uj+1 of vi. If (vi; uj) was added in
Biconnect(G) then there was a path from vi to uj initially. But then there was a
path initially from uj+1 to uj, not using the edge (vi; uj+1). Adding (uj; uj+1) implies
a cycle containing the vertices uj; vi; uj+1, not containing (vi; uj), hence (vi; uj) can
be removed without destroying the biconnectivity. Similar for (vi; uj+1). 2

Lemma 4.1.3 In algorithm Biconnect(G) every vertex receives at most 2 extra
incident edges.

Proof: Assume w.l.o.g. that vertex vi is the only vertex of a block. When
visiting a vertex w of which vi is a neighbor, vi receives at most two incident aug-
menting edges, say (w1; v) and (w2; v). By the depth-�rst order v will be visited
before the other neighbors of v. If v belongs to at least two blocks, then edges are
added between neighbors of v, and the edges (w1; v) and (w2; v) are removed. In
this case v is on the outerface of a block. The two neighbors of v on the outerface,
say u1 and u2, can be cutvertices. By the algorithm, v receives at most 1 incident
edge when visiting u1, say to u01, and at most 1 incident edge when visiting u2, say
to u02. If v receives another incident edge, e.g. when visiting u01, then edge (v; u01)
is removed. Hence v receives at most two incident augmenting edges (see Figure
4.1(b)). 2

Lemma 4.1.4 Let b be the number of blocks of G. Biconnect(G) adds at most
b� 1 edges to G.

48 The Planar Biconnectivity Augmentation Problem

Proof: Let TBC be the BC-tree of G. Root TBC at an arbitrary B-node, say
br. Every C-node v has degree d(v) in TBC and has only B-nodes as neighbors in
TBC. When visiting C-node v in Biconnect(G), at most d(v)� 1 edges are added,
i.e., the number of children of C-node v in TBC. Hence for every B-node (except the
root br) at most one edge is added in Biconnect(G). b is the number of blocks
of G, i.e., the number of B-nodes in TBC, thus Biconnect(G) adds at most b � 1
edges. 2

Corollary 4.1.5 There is a linear time and space algorithm to augment a planar
graph such that it is biconnected and planar and the degree of every vertex increases
by at most 2.

However, it is not di�cult to modify the example in Figure 4.1(a) such that
Biconnect(G) adds O(n) edges to achieve biconnectivity, while one edge would
already be su�cient to satisfy biconnectivity. In the remaining part of this chapter
we try to biconnect G by adding a minimum number of edges.

4.2 NP-completeness

Theorem 4.2.1 The problem of deciding whether adding at most K edges to a
connected planar graph G = (V;E) can lead to a biconnected planar graph is NP-
complete.

Proof: Clearly the problem is in NP: guess L � K edges to be added to G,
add the edges to G in some way and check in polynomial time whether the resulting
graph is biconnected and planar.

To prove the NP-hardness, we show that 3-partition (which is well-known to
be NP-complete in the strong sense [38]) is reducible to the planar biconnectivity
augmentation problem. Let an instance of 3-partition be given, i.e., a set A of
3m elements a1; : : : ; a3m, a bound B 2 Z+ and a size s(ai) 2 Z+ for each ai 2 A
such that B=4 < s(ai) < B=2 and

P
ai2A

s(ai) = mB. The question is whether A
can be partitioned into m disjoint sets A1; A2; : : : ; Am such that, for 1 � i � m,P

a2Ai
s(a) = B (note that each Ai must therefore contain exactly three elements

fromA). To reduce 3-partition to the planar biconnectivity augmentation problem
we construct a planar graph as follows:

Introduce a vertex x and for each i; 0 � i < m, introduce vertices bi; ci, and
the edges (bi; bi+1); (bi; x), (bi; ci) and (bi+1; ci) (additions modulo m). Introduce for
each vertex ci B additional edges to B new vertices. Introduce 3m new vertices
a1; : : : ; a3m connected at x. Each vertex ai gets s(ai) additional edges to s(ai) new
vertices (see Figure 4.2). Let G be the resulting graph.

Clearly G has 2mB pendant blocks, so at least mB edges are necessary to make
G biconnected. G can be made biconnected without destroying planarity by adding

4.3 Approximation Within 2 Times Optimal 49

......

...

b

b
b

1

2

c

cc
1

a
a

a

a

1
2

3

... ...

...

...

s(a)1
s(a)

s(a)

2

3

s(a)
3m

3m

B

0

0

x

m−1

m−1

B B

b

Figure 4.2: Construction of the graph for the NP-completeness proof.

exactly mB edges, if and only if it is possible to have a matching edge from each
pendant of cutvertex ai to a unique pendant of a cutvertex ci. This can be done,
if and only if for each ci, the B pendants are matched with pendants of some ver-
tices ai1; ai2; ai3, i.e., if and only if there exists a partition of A into m disjoint sets
A1; : : : ; Am such that for all i; 1 � i � m;

P
a2Ai

s(a) = B. As G can be constructed
in time, polynomial in m and B, this is a polynomial time transformation from the
strongly NP-complete 3-partition problem to the planar biconnectivity augmen-
tation problem, hence the latter is NP-complete. 2

4.3 Approximation Within 2 Times Optimal

As the planar biconnectivity augmentation problem is NP-complete, we focus our
attention on approximation algorithms for the problem. In this section we present
an O(n��(n; n)) algorithm for augmenting a planar graph G to a biconnected planar
graph G0, while keeping the number of added edges within 2 times optimal. We may
assume w.l.o.g. that G is connected, otherwise we can apply the algorithmConnect

to G.

Let TBC be the BC-tree of G. We root TBC at a B-node br. Let for each block
Bi in G, bi denote the corresponding B-node in TBC, and let ci = parent(bi) in
TBC. We add pointers from the children to their parent in TBC, and we store the
children of a node in a doubly linked list. If we want to add an edge e = (v;w)
to G, then we have to test whether G [e is still planar. We denote this test by

50 The Planar Biconnectivity Augmentation Problem

15

5 12

9

10

87

6

2

1

3

4

11

14

13

A H

X

F

3 6
12

X

A

H

F

Figure 4.3: Updating TBC after adding edge (8; 10) to the graph of Figure 2.11.

Planar(v;w). This test is called incremental planarity testing in the literature,
and several sophisticated algorithms are known for it ([21, 119, 75]). The best
algorithm (in a theoretical sense) for this problem is given by La Poutr�e [75]: it
requires O(�(q; n)) time worst-case for the qth query of testing whether an edge e
can be added while preserving planarity. The time of adding e to G is O(�(n; n))
time, amortized over O(n) edges.

Let a planar embedding of G be given. We call a vertex v on the outerface of a
block Bi an outside vertex, if v 6= parent(bi). The idea is to search for an arbitrarily
outside vertex v of a pendant block Bi this B-node bj such that: (i) bj is as closest as
possible to br in TBC, and (ii), after changing the embedding, v is an outside vertex
of Bj . Let bk = parent(cj), and let w be an outside vertex of Bk, with (w; cj) 2 G.
v is an outside vertex of Bj i� Planar(v;w) = true. Let d(ci) be the degree of
C-node ci in TBC. If p(ci) = d(ci)�1, then v has only leaves as children, and we �rst
add edges between the p(ci) corresponding pendant blocks to coalesce them into one
block. When we add an edge between two vertices of di�erent blocks, say B1 and
B2, then all blocks on the path between the corresponding nodes of B1 and B2 in
TBC become part of one block. More precisely, TBC must be updated as follows,
given by Rosenthal & Goldner:

Lemma 4.3.1 ([97]) Given a graph G and its BC-tree TBC, consider the cycle C
created by adding an edge between two vertices v and w of TBC. Let G0 be the graph
obtained from G by adding an edge between v0 and w0 in G where v0 and w0 are
non-cutvertices in the blocks represented by v and w respectively. Let T 0

BC be the
BC-tree of G0. The following relations hold between TBC and T 0

BC (see also Figure
4.3):

1. Vertices and edges of TBC that are not in the cycle C remain the same in T 0
BC.

2. All B-nodes in TBC that are in the cycle C contract to a single B-node b0 in
T 0
BC.

3. Any C-node in C with degree equal to 2 is eliminated.

4.3 Approximation Within 2 Times Optimal 51

4. A C-node x in C with degree greater than 2 remains in T 0
BC with edges incident

on nodes not in the cycle. The node x also attaches to the B-node b0 in T 0
BC.

The algorithm can now be described as follows:

2*OptBiconnect(G);
compute the BC-tree TBC of G; root TBC at br;
while TBC is not a single node br do
let ci be a C-node in TBC with p(ci) = d(ci)� 1;
coalesce pendant blocks of ci into one by adding p(ci)� 1 edges;
let Bi be the coalesced block; let v be an outside vertex of Bi;
repeat
w := outside vertex of Bj, with bj = parent(ci);
ci := parent(bj)

until bj = br or Planar(v;w) = false;
add (v;w) to G;
update TBC

od;
End 2*OptBiconnect

Theorem 4.3.2 Algorithm 2*OptBiconnect(G) can be implemented to run in
O(n � �(n; n)) time.

Proof: We represent TBC by a Union-Find structure. Every node in TBC
has a parent-pointer, and represents a set of nodes, initially only one B- or C-node.
The data structure required for the incremental planarity tester of La Poutr�e is
initialized by adding incrementally every edge of the original planar graph G to the
data structure. This costs O(n � �(n; n)) time in total [75]. During the algorithm
we maintain the set of cutvertices ci with p(ci) = d(ci)� 1. After determining such
a cutvertex ci, we �rst add p(ci) � 1 edges between the pendant blocks, connected
at ci. We update TBC by applying p(ci) � 1 unions on these pendant blocks in the
underlying Union-Find structure, which decreases the number of nodes in TBC by
p(ci)� 1. Hence this requires O((p(ci)� 1) � �(n; n)) time amortized.

Next we compute a path P from the coalesced pendant block Bi to Bj such that
Planar(v;w) = true, with v 2 Bi and w 2 Bj . Let jP j denote the length of P , then
jP j is even, because TBC consists of alternatingly B- and C-nodes. P is computed

by testing jP j
2 + 1 times whether Planar(v;w) = true. Using the algorithm of La

Poutr�e, this requires O(jP j � �(n; n)) time amortized. Updating TBC follows by a
union of all B-nodes on the path between bi and bj in TBC. We test for every C-node
c on P , whether deg(c) was 2, and if so, we eliminate c. The total time for updating
TBC by collapsing path P is O(jP j � (1 + �(n; n))). The number of nodes in TBC
decreases by at least d jP j

2 e.

52 The Planar Biconnectivity Augmentation Problem

If at the end G is biconnected, then TBC is a single leaf, thus the total work
during all augmentation steps is O(n � �(n; n)). 2

Lemma 4.3.3 Every vertex receives at most 2 extra incident edges.

Proof: When we add p(ci)� 1 edges between the pendant blocks, say in order
B1; : : : ; Bp(ci)�1, connected at ci, then B1 and Bp(ci)�1 get one incident edge, the
other blocks B2; : : : ; Bp(ci)�2 two. Then we add an edge between a vertex of B1 and
a neighbor w of cutvertex c in block Bj in 2*OptBiconnect. After this addition
it follows that (c; w) becomes a chord, i.e., is not on the outerface of the coalesced
block. Hence in the next step we can take another neighbor w0 of c on the outerface
of Bj, and if c = ci, we can take a neighbor of c on the outerface of Bp(ci)�1. 2

Theorem 4.3.4 Algorithm 2*OptBiconnect adds at most 2 times the minimum
required number of edges to G in O(n � �(n; n)) time.

Proof: By Theorem 3.0.1, the number of required edges is at least dp
2e, with p

the number of pendant blocks, i.e., the number of leaves in TBC. In 2*OptBicon-
nect, the p(ci) pendants of ci are coalesced into one by adding p(ci)�1 edges. The
coalesced pendant receives one incident augmenting edge to a block Bj , with bj an
ancestor of ci in TBC.

A B-node bj 6= br becomes a leaf in TBC, if there is no descendant pendant block
for which an outside vertex can become an outside vertex of Bj. Hence no edge
(v;w) can be added to G without destroying planarity, with v 2 Bi, bi a descendant
of bj in TBC, and w 2 Bl, bl not a descendant of bj in TBC. Thus also in the
optimal solution bj becomes a leaf, and an extra edge is required for bj. If there
are s non-leaf B-nodes, becoming a leaf during the augmentation algorithm, then at
least dp

2e+ d s2e edges are required in the optimal solution to preserve the planarity.
In 2*OptBiconnect we add an edge from each leaf, hence p+ s edges are added,
which completes the proof. 2

Figure 4.4 shows an example of the algorithm 2*OptBiconnect(G) as it applies
to the graph of Figure 2.11, with B = root(TBC).

4.4 A Special Case

In this section we consider a special case of the problem of adding edges to a planar
graph, such that the resulting graph is biconnected and still planar. Recall from
Theorem 4.2.1 that the problem of deciding whether adding at most K edges to a
connected planar graph G = (V;E) can lead to a biconnected planar graph is NP-
complete. The problem appears to be solvable in polynomial time when the input
graph G preserves a special structure:

4.4 A Special Case 53

15

5 12

9

10

87

6

2

1

3

4

11

14

13

A

B

C
D

E F

H
15

5 12

9

10

87

6

2

1

3

4

11

14

13

A

B

C
D

E F

H

Figure 4.4: Biconnecting the graph of Figure 2.11 by 2*OptBiconnect.

Theorem 4.4.1 If all cutvertices of G are part of one triconnected component, then
a minimum number of edges, whose addition to G gives a biconnected planar graph
can be determined in M(n; n2) time, where M(n;m) is the time required to compute
a maximum cardinality matching on a graph with n vertices and m edges.

Proof: Let G0 � G be the triconnected component, containing all cutver-
tices. By the de�nition of triconnected components (see Section 2.4), G0 is either
a pair of vertices a; b with several multiple edges (a; b), or a cycle, or a tricon-
nected graph. If G is a pair of vertices a; b with multiple edges, then the problem
is easy to resolve in linear time: add minfp(a); p(b)g edges between pendants of
a and b, where p(v) is the number of pendants connected at v. The remaining
maxfp(a); p(b)g�minfp(a); p(b)g pendants receive one incident edge to the remain-
ing part of the graph. If G0 is a cycle, then we can use the algorithm OuterBicon-

nect of Chapter 7. This algorithm biconnects an outerplanar graph in linear time
by adding a minimum number of edges, while preserving planarity. This algorithm
can also be used to biconnect a graph, where all pendants are part of one outerplanar
graph.

Assume now that G0 is a triconnected graph. Hence G0 has one, unique, planar
embedding, which is the key to obtain an optimal solution. We construct a graph
H by representing every cutvertex v of G by p(v) vertices in H. We add an edge
(vi; vj) in H if and only if vi and vj are on a common face in G0 and do not represent
the same vertex in G.

Every vertex in H corresponds to one pendant in G, and every edge in H corre-
sponds to an edge, which can be added between two pendants. The aim is to add
as many as possible edges between pendants without destroying planarity. An edge
between pendants of v and w is only possible, if v and w are on a common face,
i.e., if there is an edge (v;w) 2 H. We try to �nd a subset E0 � EH such that
jE0j is minimal and for each vertex v 2 H there is an edge e 2 E0 such that v is
an endpoint of e. Hereto we compute a maximum cardinality matching M in H. A
maximum cardinality matching M is a maximum set of edges M � EH such that
each vertex v is an endpoint of at most one edge e 2 M . Every edge (v;w) 2 M
corresponds to an edge between pendants of v and w in G. Let V 0 � VH be the set
of vertices, which do not have an incident edge inM . Every pendant, corresponding

54 The Planar Biconnectivity Augmentation Problem

to a vertex v 2 V 0 must receive an additional edge to an arbitrary vertex such that
planarity is maintained, because every pendant must get at least one augmenting
edge. It directly follows that the computed set of edges is minimum.

If more edges are added in one face, then crossings may occur between the added
edges. To remove these crossings, we apply the algorithm OuterBiconnect of
Chapter 7. This algorithm biconnects an outerplanar graph in linear time by adding
a minimum number of edges, while preserving planarity. To apply the algorithm
OuterBiconnect here, we remove all added edges in one face F , and we apply
the algorithm OuterBiconnect to F . This gives a minimum set of added edges
in F without crossings. Applying OuterBiconnect to all faces in G gives a
biconnected planar graph without crossings.

Notice that jVH j = O(n), but jEHj can be O(n2), which completes the proof. 2

The fastest algorithm (in a theoretical sense) is presented by Micali & Vazi-
rani, who proved that M(n;m) = O(m

p
n) [83], hence this yields an O(n2:5) time

algorithm. In Figure 4.5 an example of this special case is given.

4.5 The Planar Bridge-Connectivity Augmenta-

tion Problem

In this section we show that the algorithm for the planar biconnectivity problem
can also be used to make a connected graph G bridge-connected with the same
complexity and performance bound. Recall that a bridge is an edge (u; v) such that
G � f(u; v)g is disconnected. A bridge-connected graph is a graph without bridges.
A maximal bridge-connected subgraph of G is called a bridge-block.

Let TBC be the BC-tree of G. Every bridge in G is a trivial block, and is
represented by a B-node in TBC. We now merge two B-nodes in TBC into one,
if the corresponding blocks belong to the same bridge-block. We remove the C-
nodes of degree 1 from TBC. After this merging and deleting process, every B-node
corresponds with a bridge or a bridge-block, and every C-node is an endpoint of at
least one bridge. Let TBBC be the transformed tree. We call TBBC the bridge-block
tree. TBBC is a tree, and can be constructed in O(m+ n) time by using depth-�rst
search, as described by Tarjan [107, 108]. Any set of edges which bridge-connects
TBBC corresponds to a set of edges which bridge-connects G.

Let a pendant bridge-block correspond to a leaf in bridge-block tree TBBC. Let
p(c) be the number of leaves of cutvertex c in TBBC. If p(c) > 2, then we can
add edges between corresponding pendant bridge-blocks, connected at c, until one
(p(c) is odd) or two (p(c) is even) pendant bridge-blocks at c remain. Every added
edge removes two bridges. We continue this, until one or two pendant bridge-blocks
remain at c, because there has to go an edge from a pendant bridge-block of c to a
bridge-block, not connected at c to achieve bridge-connectivity (if c 6= root(TBBC)).

4.5 The Planar Bridge-Connectivity Augmentation Problem 55

A

B

C

D

E
F

A

B

C D

E

F

(a) The initial graph G. (b) The matching graph H .

A

B

C D

E

F

A

B

C
D

E

F

(c) Maximum matching in H . (d) The optimal augmentation.

Figure 4.5: Biconnecting a planar graph using a maximum matching graph.

So assume further that p(c) � 2 for every vertex c 2 TBBC. Bridge-connecting G
is obtained by adding edges between bridge-blocks of G while preserving planarity.
Doing this within two times optimal follows by applying 2*OptBiconnect(G),
but now using TBBC. We call the resulting algorithm 2*OptBridgeConnect(G).

The problem of �nding in polynomial time a minimum number of edges, that
when added to a given planar graph yields a bridge-connected planar graph, remains
as an interesting open problem.

56 The Planar Biconnectivity Augmentation Problem

Chapter 5

The Planar Triconnectivity

Augmentation Problem

5.1 Preliminaries

In this chapter we consider the question how to augment a biconnected graph such
that the augmented graph is triconnected and still planar. Triconnected planar
graphs have nice characteristics, e.g., they have only one embedding in the plane and
they can be drawn with convex faces, by a result of Tutte [110]. These characteristics
are used in Section 10.2 to obtain a linear time algorithm for drawing a triconnected
planar graph convexly on an (n� 2)� (n� 2) grid. Thomassen [109] characterized
the class of planar graphs which can be drawn with convex faces. If a graph G
does not satisfy these constraints, we can try to draw G with a minimum number
of non-convex faces. Unfortunately, this problem is rather di�cult, as stated in the
following theorem.

Theorem 5.1.1 The problem of deciding whether a biconnected planar graph can
be drawn with � K convex faces is NP-complete.

Proof: (i) The problem is in NP: assume G has F � K faces. Pick L � F �K
faces, triangulate these faces by adding a vertex in each face with edges to all other
vertices, belonging to this face. Check whether the resulting graph satis�es the
constraints of Theorem 5.1 of [109], which is a characterization of the planar graphs
that can be drawn with convex faces. If this is the case then G can be drawn with
� F�L convex faces. This checking is possible in polynomial time by the algorithm
of Chiba et al. [14].

(ii) To prove the NP-hardness we use a transformation from the vertex cover
problem on triconnected planar graphs (which can easily be shown to be NP-
complete, by modifying the graph G in the reduction in the proof in [39], such that
G is triconnected). Let a triconnected planar graph G = (VG; EG) and a positive
integer K � n be given. The question in the vertex cover problem is whether

57

58 The Planar Triconnectivity Augmentation Problem

there is a subset V 0 � V with jV 0j � K such that for each edge (u; v) 2 E at least
one of u and v belongs to V 0. Inspect the dual graph G� of G. The vertices of
the dual graph G� of a planar graph G are the faces of G. There is an edge in G�

if and only if the corresponding faces of the endpoints have a common edge in G.
Note that G� is also triconnected and, hence, has exactly one planar embedding.
We construct a new graph G�

1 from G� by changing every edge (a; b) in G� by
(a; ab1); (ab1; b); (a; ab2) and (ab2; b) in G�

1, thereby introducing two new vertices, ab1
and ab2. Note that G�

1 is biconnected.

We now claim that G�
1 has a planar embedding with � K convex faces, if and

only if G has a vertex cover of size � K. Suppose that (a; b) 2 F1 and (a; b) 2 F2

in G�. In any drawing of G�
1, F1 or F2 cannot be drawn convexly. Since the goal is

to obtain a minimum number of non-convex faces, the problem is to �nd in G� the
smallest set S of faces such that for every edge (a; b) in G�, F1 or F2 belongs to S,
if (a; b) belongs to F1 and F2 in G�. The faces of S are drawn non-convex in G�

1.
The faces F1 and F2 with common edge (a; b) correspond to an edge (vF1; vF2) in G.
For every edge (vF1; vF2) 2 G, vF1 or vF2 belongs to S. Hence S is a vertex cover of
G. There is a vertex cover in G of size � K if and only if there is a set S of faces
of size � K in G�. But this exists if and only if there is a set of non-convex faces of
size � K in G�

1. The construction is easily computable in polynomial time, so the
problem whether there exist a drawing such that the biconnected planar graph can
be drawn with � K non-convex faces is NP-complete. 2

If we augment G by adding k edges to obtain a triconnected planar graph G0,
then G contains at most k non-convex faces, since deleting any augmented edge
joins two (convex) faces into one (possibly non-convex) face.

In this chapter we consider the problem of augmenting a biconnected planar
graph G to a triconnected planar graph G0 by adding as few as possible edges. The
problem of deciding in polynomial time whether adding � K edges to a biconnected
planar graph can make the augmented graph planar and triconnected remains as an
interesting open problem. We present an algorithm, that adds a number of edges
that is bounded by only a constant times optimal, and the increase of the maximum
degree is only an additive constant from an existential lower bound. Recall the
de�nitions in Section 2.4 concerning the triconnected components and the SPQR-
tree TSPQR. As described in Chapter 3, we delete the Q-nodes from TSPQR, and
assume that every vertex v of degree 2 is represented by an S-node in TSPQR. Let
TSPQR be rooted at an arbitrary node. The goal is to add a minimum number of
edges between the triconnected components, which are leaves in TSPQR.

To preserve planarity, edge can only be added between two triconnected compo-
nents if they share a face in a planar embedding of G. Let bl be a node in TSPQR,
and let Bl = skeleton(bl). If bl is a P-node, Bl is a bond; if bl is an S-node, Bl is a
cycle, and if bl is an R-node, Bl is a triconnected graph. Cycles and triconnected
graphs have a unique embedding.

5.1 Preliminaries 59

Assume edge(bl) belongs to faces F 0 and F 00 in skeleton(parent(bl)), then for every
augmenting edge (v0; w0) with v0 2 pertinent(bl) and w0 2 G� pertinent(bl), v0 and
w0 share F 0 or F 00 in a planar embedding of G. Suppose there are x edges in F 0

and y edges in F 00 between vertices in pertinent(bl) and vertices in G� pertinent(bl).
The following lemma is crucial in our algorithm.

Lemma 5.1.2 We can change the augmentation edges while preserving triconnec-
tivity such that there are at most 2 augmentation edges in F 0 and at most 2 aug-
mentation edges in F 00 between pertinent(bl) and G� pertinent(bl).

Proof: By induction on the depth of the subtree of the SPQR-tree, rooted at
bl. Let Bl = skeleton(bl). If the depth = 0, then bl is a leaf, and Bl is either a vertex
v of degree 2, or a triconnected graph. Since only one augmenting edge from Bl to
G �Bl is su�cient to triconnect Bl, the lemma follows.

Let now bl be an arbitrary vertex in the SPQR-tree, and assume the lemma
holds for all triconnected components Bi with bi in the subtree of TSPQR, rooted at
bl. Assume there are k � 3 edges between pertinent(bl) and G� pertinent(bl) in face
F 0, with k odd. (A similar argument follows when k is even, and for face F 00.) We
prove that instead of adding k edges between pertinent(bl) and G� pertinent(bl), we
can add k � 1 edges between vertices of pertinent(bl) and one between pertinent(bl)
and G� pertinent(bl) in F 0 while preserving the triconnectivity.

Let v1; : : : ; vk be the vertices (in clockwise order) from pertinent(bl), which must
get an incident edge in F1 toG� pertinent(bl). LetBi be the triconnected component
corresponding to vi (for 1 � i � k), which must get an augmenting edge to G�
pertinent(bl). See Figure 5.1(a). Let ei = edge(bi), for 1 � i � k. Assume edges
eij : : : : ; eij+1�1 also share face Fj in Bl. Let there be k0 such faces, then i1 = 1 and
ik0+1�1 = k. Inspect the sequence of vertices vij ; : : : ; vij+1�1. For ij � � < ij+1�2 we
do: if B� = B�+1, then the edge (v�+1; v�+2) is added and we union the components
B�+1 and B�+2 into one triconnected component. (By induction hypothesis B�+1 6=
B�+2.) See Figure 5.1(b). Let (after renumbering) vi0j ; : : : ; vi0j+1�1 be the vertices

among vij ; : : : ; vij+1�1, which must still get an augmenting edge (numbered from vij
to vij+1�1). The underlying idea is that after these unions, only Bi0j+1�1

must get
at most two outgoing edges, the other components Bi0j

; : : : ; Bi0j+1�2
must get one

outgoing edge, for each j; 1 � j � k0.
We now add the augmentation edges (vi0j ; vi0j+1�1); (vi0j+1; vi0j+1�2), etc., until one

or two vertices remain, which must get an augmenting edge. By swapping the
triconnected components Bi0j

; : : : ; Bi0j+1�1
these edges can be added in face Fj. If

i0j+1 � 1 � i0j is even, then one vertex, with index
i0j+1�1+i

0

j

2 , does not receive an

augmenting edge, otherwise two vertices, with indices b i0j+1�1+i0j2 c and d i0j+1�1+i0j2 e,
do not receive an augmenting edge. Notice that the components Bi0j

; : : : ; Bi0j+1�1

become one triconnected graph after adding these edges (see Figure 5.1(c)).
Let v1; : : : ; vp (p � k0) be the vertices, in clockwise order around F 0, which

must get an edge to G� pertinent(bl). If for any i, 1 � i < p, ei and ei+1 are on the

60 The Planar Triconnectivity Augmentation Problem

t t tt

ssss

v

v

1

2

3

4

B = B

B

1 2

3

4B

v B

v

v

v

v

5

6

7 7

B = B5 6

v

v

1

2

3

4

B = B

B

1 2

3

4B

v

v

v

5

B5

1

2

B = B1 2

v

v

v

B

3

3

1

1

v

B

(a) (d)(c)(b)

Figure 5.1: Example for the proof of Theorem 5.1.2.

common face Fj initially, then we add (vi+1; vi+2) in face F 0. Let (after renumbering)
v1; : : : ; vp0 (p0 � p) be the vertices which must get an augmenting edge. Notice that
p0 is odd, since k was assumed to be odd, and by every added edge e, two vertices of
pertinent(bl) do not need an edge to G� pertinent(bl). We add the edges (v2i; v2i+1)
in F 0, with 1 � i � p0�1

2
. v1 is the only remaining vertex among v1; : : : ; vk, which

must get an augmenting edge to G� pertinent(bl). See Figure 5.1(d).
Notice that every vertex vi (1 � i � k) receives one augmenting edge. Observe

also that if eij ; : : : ; eij+1�1 were on a common face before the augmentation, then
there is a vertex vx; ij � x � ij+1 � 1, having an edge to a vertex vy; y < ij or
y > ij+1 � 1. This proves the triconnectivity. 2

5.2 An Approximation Algorithm for the Planar

Triconnectivity Augmentation Algorithm

In Section 5.1 it is shown that for every node bi 2 TSPQR, with edge(bi) belonging to
faces Fi1 and Fi2 in skeleton(parent(bi)), at most x augmentation edges in Fi1 and y
augmentation edges in Fi2 between vertices of pertinent(bi) and G� pertinent(bi) are
necessary to achieve triconnectivity, with 0 � x; y � 2, and x+ y > 0. Notice that
more optimal solutions are possible. Let aug(bi) denote the set of pairs of integers
(x; y), with 0 � x; y � 2, with the property that adding x edges in Fi1 and y edges
in Fi2 between pertinent(bi) and G� pertinent(bi) triconnects pertinent(bi) with G�
pertinent(bi). For all (xj; yj) 2 aug(bi), xj + yj is even, or for all (xj; yj) 2 aug(bi),

5.2 An Approximation Algorithm 61

xj + yj is odd.
The global idea of the algorithm is as follows: we start at the leaves bi of TSPQR,

and for each leaf bi we compute aug(bi). skeleton(bi) of a leaf bi 2 TSPQR is either
a vertex v with deg(v) = 2 or a triconnected graph. In both cases skeleton(bi)
must receive one augmenting edge, thus aug(bi) = f(1; 0)g. Consider now nodes
bi 2 TSPQR, for which aug(bj) is computed, if bj is a child of bi. The computation of
aug(bi) heavily depends on the type of node bi 2 TSPQR. For each type of node bi in
TSPQR we present an algorithm for computing aug(bi), using only the information
of the sets aug(bj) of the children bj of bi in TSPQR. After computing aug(br) with
br = root(TSPQR), we �x one pair (x; y) 2 aug(br) for br. From this pair (x; y) the
augmentation pairs (xi; yi) for the children bi of br follow. We traverse the tree
top-down and repeat this argument. Finally the pairs (xl; yl) for all leaves bl in
TSPQR are computed. Using this information, the augmenting edges can be added
to achieve triconnectivity. We will discuss this problem of computing aug(b) in more
detail when considering the di�erent types of the nodes in TSPQR. The algorithm
can now be described at a high level as follows:

Triconnect(G);
construct the SPQR-tree TSPQR of G;
remove the Q-nodes from TSPQR;
root TSPQR at an arbitrary vertex br;
for every leaf bi do aug(bi) := f(1; 0)g rof;
repeat
let bi 2 TSPQR such that aug(bj) has been computed for all children bj of bi;
compute aug(bi) as follows according to the type of bi:
S-node : Series(bi);
P-node : Parallel(bi);
R-node : Rigid(bi)

until bi = br;
traverse TSPQR top-down and add the augmentation edges;

End Triconnect

We now only have to explain how the three algorithms Series(bi), Parallel(bi)
and Rigid(bi) work. Given the computed set aug(bi) it is quite easy to determine
and add the augmentation edges in O(skeleton(bi)) time while preserving planarity.

5.2.1 The Series Case

Let b be an S-node, and B = skeleton(b). Then B is a cycle. Let b1; : : : ; bk be
the children of b in TSPQR, with edge(bi) in clockwise order when walking around
the cycle B. Let Bi = pertinent(bi) with 1 � i � k. We change aug(bi) by a
pair (x; y) 2 aug(bj), for which x + y is maximal. Let s and t be the poles of B.
Assume s and t belong to Fleft and Fright in skeleton(parent(b)). The idea is to add
alternatingly edges in Fleft and Fright such that if there is an edge added between a

62 The Planar Triconnectivity Augmentation Problem

vertex in Bi and a vertex in Bj (j > i) in face Fleft, then there is an edge added in
Fright between a vertex of Bx and By with i � x � j and y < i or y > j. Hereto
we use counters nleft and nright. These numbers denote the number of vertices of
B1; : : : ; Bi�1, which must get an augmenting edge to G�fB1; : : : ; Bi�1g in Fleft and
Fright, respectively. The following algorithm makes this idea to compute one pair of
aug(b) more precise. (Later we show how to compute the complete set aug(b).) Let
b have children b1; : : : ; bk in order as described above.

Series(b)
for i := 1 to k do
let (xi; yi) be this pair in aug(bi), for which xi + yi is maximal

rof;
nleft := x1;nright := y1; i := 2;
while i � k do
nleft := jnleft � yij;
nright := nright + xi;
n0

left := 0; j := i;
while n0

left < nleft and j < k do
j := j + 1;
n0

left := n0
left + xj;

nright := nright + yj
od;
nleft := n0

left � nleft;
while nright > 2 do nright := nright � 2 od;
i := j + 1;
swap(left, right)

od;
aug(b) := f(nleft; nright)g;

End Series

When the statement nleft := jnleft�yij is executed, we assume that jnleft�yij edges are
added between vertices of Bi and Bj; j < i, which must receive augmenting edges.
When the statement nleft := n0

left � nleft is executed, we assume that nleft edges are
added between vertices of B�; � � i and B�; i < � � j. When nright := nright � 2 is
executed, then edges are added between consecutive vertices in Fright, which must
get an augmenting edge and do not belong to the same Bi. swap(left, right) means
that Fleft and Fright are swapped. Also nleft and nright are swapped.

Lemma 5.2.1 At the entry of every while-loop: 0 < nleft � 2.

Proof: Initially nleft = x1 and 0 < xi � 2, since xi � yi. During every
outermost while-loop, we set nright := nright + xi and decrease nright if necessary
until 0 < nright � 2. 2

5.2 An Approximation Algorithm 63

Lemma 5.2.2 pertinent(b) is triconnected after applying Series(b).

Proof: We prove by induction that after step i of the outermost while-loop,
the components B1; : : : ; Bj are triconnected when we add the additional edges with
respect to aug(bj). Initially i = 2 and B1 is triconnected by adding xi edges in nleft

and yi edges in nright.
Assume B1; : : : ; Bi�1 are made triconnected by adding edges between vertices in

B1; : : : ; Bi�1, and by adding nleft edges in Fleft and nright edges in Fright to vertices
in G�fB1; : : : ; Bi�1g. In the remaining part of the proof, let nleft and nright denote
the value at the entry of the outermost while-loop. We add minfyi; nleftg edges
between vertices of Bi and B1; : : : ; Bi�1. If nleft = yi, then j = i, and B1; : : : ; Bi

are triconnected, since there are yi edges from Bi to B1; : : : ; Bi�1, and there are
xi + nright edges (with xi + nright > 0) from B1; : : : ; Bi to Bi+1; : : : ; Bk.

Suppose jnleft � yij > 0, hence jnleft � yij edges will go in Fleft from B1; : : : ; Bi to
Bi+1; : : : ; Bj. If yi > 0, then also one edge will go from Bi to B1; : : : ; Bi�1, yielding
triconnected components B1; : : : ; Bj. If yi = 0, then nleft edges go from B1; : : : ; Bi�1

to Bi+1; : : : ; Bj, since nleft > 0 by Lemma 5.2.1. Since xi > 0, the following cases
can occur in Fright: if xi+ nright � 3, then an edge between Bi and B1; : : : ; Bi�1 will
be added, and xi + nright decreases by 2. If xi + nright + yi+1 + : : : + yj � 3, then
an edge between B1; : : : ; Bi and Bi+1; : : : ; Bj is added. One or two edges will be
added between B1; : : : ; Bj and Bj+1; : : : ; Bk. This implies that if yi = 0, then also
the components B1; : : : ; Bj are triconnected. 2

Lemma 5.2.2 implies that (nleft; nright) is a correct member of aug(b). If 3 �
nleft + nright � 4, then it is rather easy to add one additional edge between two
vertices inside pertinent(b), such that 1 � nleft + nright � 2. This gives a second
correct member of aug(b). Observe that if (x1 + y1) + (x2 + y2) + : : :+ (xk + yk) is
even (odd), then nleft + nright is even (odd, respectively).

To compute the complete set aug(b), the following is done. If there are children
bj of bi, with f(2; 2); (1; 1)g or f(2; 1); (1; 0)g � aug(bi), then Series(b) is applied
again, with (xi; yi) changed into (1; 1) or (1; 0), for exactly one child bi of b. This
leads to a complete and optimal set aug(b), completing the following lemma:

Lemma 5.2.3 Series(b) computes in linear time the set aug(b), and Series(b)
also delivers the corresponding sets with minimum number of edges, which must be
added between pertinent(bi) and pertinent(bj), with bi and bj children of node b in
TSPQR.

In Figure 5.2 an example of applying the algorithm Series(V 0) is given.

5.2.2 The Parallel Case

Let b be a P-node with children b1; : : : ; bk. Let Bi = pertinent(bi), with 1 � i � k. b
is a bond, i.e., a pair of vertices s; t, with k+1 parallel edges in between. (One virtual

64 The Planar Triconnectivity Augmentation Problem

b

b b b b1 2 3 4

aug(b) = {(2,1), (1,0)}
aug(b) = {(2,0)}
aug(b) = {(1,0)}
aug(b) = {(1,1)}

1
2
3
4

B

B

B

B

1

2

3

4

aug(b) = {(2,2), (2,0)} aug(b) = {(1,1)}

b

b b b b1 2 3 4

aug(b) = {(2,2), (2,0), (1,1)}

S−node

S−node

Figure 5.2: Applying the algorithm Series(b).

edge corresponds with parent(b).) We have to �nd an optimal order, say b1; : : : ; bk,
such that adding a minimum number of edges between Bj and Bj+1, 1 � j < k
makes B1; : : : ; Bk triconnected. If (�; �) 2 aug(bj), and (�;
) 2 aug(bj+1), then
adding � edges in between leads to a united component B0 with (�;
) 2 aug(b0).
If � = 0, then B1; : : : ; Bj are only connected via s and t to Bj+1; : : : ; Bk. A third
vertex-disjoint path from Bj to Bj+1 cannot visit s and t, hence has to go via B1

and Bk, implying that between every pair of components Bi; Bi+1 (i 6= j) there
has to be an augmenting edge. Also B1 and Bk must get augmenting edges to G�
pertinent(b). Such a place, where no augmenting edges between Bj and Bj+1 occur,
is called a gap. Between the components B1; : : : ; Bk at most one gap may occur to
achieve triconnectivity. If (s; t) 2 G, then there has to be a gap, say between Bj

and Bj+1, and (s; t) is placed in the face in between.
We �rst place the triconnected components in one set Kj as follows:

if (1; 1) 2 aug(bi) then add bi to K1 else
if (2; 2) 2 aug(bi) then add bi to K2 else
if (2; 1) 2 aug(bi) then add bi to K3 else
if (1; 0) 2 aug(bi) then add bi to K4 else
if (2; 0) 2 aug(bi) then add bi to K5

Let ki = jKij, 1 � i � 5. If k4 + k5 � 2, then these components imply one
gap; if k4 + k5 > 2, this gives rise to more than one gap, and we have to add
extra edges to get only one gap. If k5 > 2, we change k5 � 2 times (2; 0) into
(2; 1) and add the component to K3. This implies k5 � 2 extra edges, one for each
component, added to K3. Hence we assume k5 � 2. If k4 > 2 � k5 then we change
k4 � 2 + k5 times (1; 0) into (1; 1), and add the component to K1 (and add the
corresponding extra edges). After these two operations k4 + k5 � 2 holds. By
adding augmentation edges between triconnected components of K1 we can collapse
them into one triconnected component B 0 with aug(b0) = f(1; 1)g. By adding edges
between triconnected components of K2 we get one united triconnected component

5.2 An Approximation Algorithm 65

B00 with aug(b00) = f(2; 2)g. Let the term (�; �)-component denote a component bi
with (�; �) 2 aug(bi), corresponding to the set Ki, to which bi is added.

We place the components as follows: If k1 > 0, we place all components of
K1 consecutively, say in the order Bj1+1; : : : ; Bj1+k1 . Between each consecutive pair
Bj1+i and Bj1+i+1, 1 � i < k1, one augmenting edge is required. Also all components
of K2 are placed consecutively, say at Bj2+1; : : : ; Bj2+k2 . Between each consecutive
pair Bj2+i; Bj2+i+1, 1 � i < k2, two augmenting edges are required.

If k3 is even, we collapse the components of K3 into one (1; 1)-component, i.e.,
place them at Bj1+k1+1; : : : ; Bj1+k1+k3 , such that between Bi and Bi+1 alternatingly
one or two augmenting edges are added. We can also collapse the components
into one (2; 2)-component, i.e., placing them at Bj2+k2+1; : : : ; Bj2+k2+k3 . If k3 is
odd, we can collapse them into one (2; 1)-component, thereby connecting the (1; 1)-
components with the (2; 2)-components, i.e., at places Bj1+k1+1; : : : ; Bj1+k1+k3 , and
set j2 = j1+k1+k3. If k4 = 1, we place the component of K4 before the components
of K1, i.e., at place j1. If k5 = 1, we place the component of K5 at place k2+ j2+1.
If k4 = 2, we place the two components of K4 between two components of K1. If
k5 = 2, we place the two components of K5 between two components of K2.

Distinguishing the di�erent values of k1; : : : ; k5 leads to the following algorithm:

Parallel(b);
if k4 = 2 then
collapse the components of K4 into one (1; 1)-component and add it to K1;

if k5 = 2 then
collapse the components of K5 into one (2; 2)-component and add it to K2;

if k4 = 1 and k5 = 1 then
collapse the components of K4 and K5 into one (2; 1)-component and add it to K3;

if k3 is odd then
collapse all components of K3 into one (2; 1)-component; k3 := 1

else
if k2 > 0 then
collapse all components of K3 into one (2; 2)-component and add it to K2

else
collapse all components of K3 into one (1; 1)-component and add it to K1;

k3 := 0;
do depending on the values of k4 and k5 the following:
k4 = 1 : if k2 > 0 or k3 > 0 then aug(b) := f(2; 0)g else f(1; 0)g;
k5 = 1 : if k1 > 0 or k3 > 0 then aug(b) := f(1; 0)g else f(2; 0)g;
otherwise : if k3 = 1 or (k1 > 0 and k2 > 0) then aug(b) := f(2; 1)g

else if k1 > 0 then aug(b) := f(1; 1)g else f(2; 2)g
od;

End Parallel

More optimal solutions are possible: If there was a component bi with (2; 1) and
(1; 0) 2 aug(bi), then we can change (2; 1) into (1; 0). Otherwise, if there is a

66 The Planar Triconnectivity Augmentation Problem

component bi with (2; 2) and (2; 0) 2 aug(bi), then we change (2; 2) into (2; 0). This
leads to other optimal pairs for aug(b), i.e., this implies that jaug(b)j � 2. If for all
(x; y) 2 aug(b), x > 0 and y > 0 and there is no gap, i.e., k4 = k5 = 0, then we have
to inspect the case when edge (s; t) 2 G. In this case, one extra edge is required, if
there is a component with (1; l) 2 aug(bi) for some child bi of b, otherwise two extra
edges are required. The following lemma can now be veri�ed:

Lemma 5.2.4 Algorithm Parallel(b) computes the correct set aug(b) for P-node
b.

5.2.3 The Rigid Case

The case in which b is an R-node is more di�cult. Let B = skeleton(b). Assume b
has children b1; : : : ; bk in TSPQR. Let Bi = pertinent(bi), for 1 � i � k. Let ei =
edge(bi), belonging to faces Fi1 and Fi2 in B. If (�; �) 2 aug(bi) and (�;
) 2 aug(bj),
then � augmenting edges can be added between vertices Bi and Bj, if they share a
face. If � = 2 and there are two components bj1; bj2 , with (1; l) 2 aug(bj1), aug(bj2),
then we can also add an edge between a vertex of Bi and Bj1 and between a vertex
of Bi and Bj2. An added edge (vi; vj) is called a matching edge, if both vi and vj
must get an incident augmenting edge to admit triconnectivity. If only one of them
must receive an augmenting edge, then (vi; vj) is called an extra edge. The problem
of constructing the set aug(b) can now be described as matching vertices with each
other, corresponding to the sets aug(bi) (1 � i � k). To this end one pair (xi; yi) 2
aug(bi) is �xed for each child bi of b. xi and yi = 1 or 2, and this is denoted by a 1
of bi or 2 of bi. Matching a 1 of bi with a 2 of bj means that xi (or yi) = 1, and xj
(or yj) = 2, and we can add augmenting edges between the corresponding vertices
of bi and bj to make the graph triconnected. The vertex or vertices of Bi, which
must get an edge to G�Bi, are denoted by vi (in the case of one augmenting edge)
or by vi1 and vi2 (in the case of two augmenting edges). The number of matching
and extra edges is computed as follows:

1. Fix one pair (xi; yi) 2 aug(bi), 1 � i � k. Assign xi to Fi1 and yi to Fi2, where
Fi1 and Fi2 are the faces to which edge(ei) belongs in B. Hence there must be
xi vertices of pertinent(bi) in Fi1 and yi of pertinent(bi) in Fi2, which must get
an augmenting edge to G� pertinent(bi).

2. In a face, it is possible to match:

(a) a 1 with a 1: one matching edge

(b) a 1 with a 2: one matching edge, one extra edge

(c) a 2 with a 2 or with two 1's: two matching edges

(d) three 2's with each other: three matching edges

5.2 An Approximation Algorithm 67

For each unmatched 1, one extra edge, and for each unmatched 2, two extra edges
are required. The problem now is to assign the 1's and 2's to the faces in such a way,
that a minimum number of extra edges is required. An interesting, but still open
question is to decide whether this problem can be solved in polynomial time. Let
e = edge(b), and let Fleft and Fright be the left and right face of e in the embedding
of skeleton(parent(b)), if b 6= root(TSPQR). At least one edge has to go from B to
G�B. If all elements in Fleft or Fright are matched, then by deleting one augmenting
edge in Fleft or Fright, there are two vertices which can get an edge to G�B. If there
is one unmatched vertex v 2 Fleft or Fright, then an edge from v to G � B can be
added. Using these observations, the set aug(b) can be computed.

In Figure 5.3 an input graph and an augmentation are given. Assume we �x
an arbitrary pair (xi; yi) 2 aug(bi) for each bi. In the optimal solution at least
1
2

P
1�i�k(xi + yi) augmentation edges are required. Let us assign now xi to Fi1

and yi Fi2, and add xi augmentation edges in Fi1 and yi augmentation edges in Fi2
to vertices of G � Bi. This can be done while preserving planarity, and we addP

1�i�k(xi + yi) augmenting edges, i.e., at most two times the minimum number.
This leads to the following lemma:

Lemma 5.2.5 There is a linear time algorithm to augment a biconnected planar
graph to a triconnected planar graph by adding at most two times the minimum
required number of edges.

In the remaining part of this section we present an algorithm, working in linear
time, which adds at most 3

2 times the minimum number of augmenting edges.
If aug(bi) = f(1; 1)g or f(2; 2)g, then in both cases the same number is assigned

to Fi1 and Fi2. If jaug(bi)j � 2 or aug(bi) = f(�; �)g, with � 6= �, then di�erent
numbers can be assigned to Fi1 and Fi2. The idea is to consider this component bi,
with (2; �) 2 aug(bi), and add 2 augmenting edges from pertinent(bi) in either Fi1
or Fi2 to two vertices of G� pertinent(bi), which must get an augmenting edge.

To this end we introduce for each face F two sets, 2set(F) and 1set(F) . Let
for each bi; (�i; �i) 2 aug(bi) be this pair, for which �i + �i is maximum. We insert
bi in �iset(Fi1) and �iset(Fi2), if �i > 0. We insert bi in �iset(Fi1) and �iset(Fi2),
if �i > 0; �i 6= �i. Assume j�set(Fi1)j � 2, and bi 2 �set(Fi1) and bj 2 �set(Fi1).
Then we can add � edges between vertices of Bi and Bj in face Fi1. Let aug(bi) =
f(�; �)g, and let edge(bi) 2 Fi1 and Fi2. The � of bi is used, thus bi must be removed
from �set(Fi1) and �set(Fi2). The � of bi cannot be assigned to Fi1, hence bi must
be deleted from �set(Fi1). Let assign(F) denote the set of vertices, which must get
an augmenting edge in face F , then we add the corresponding � vertices of bi to
assign(Fi1). The same is done for bj.

The algorithm is now as follows: We �rst initialize the sets 1set(F) and 2set(F),
and inspect for every bi 2 2set(F), whether we can add 2 edges between pertinent(bi)
and two vertices of G� pertinent(bi), which must get an augmenting edges. In other
words, we try to match a 2 with a 2 or a 2 with two 1's. We can describe this as
given in RigidHigh.

68 The Planar Triconnectivity Augmentation Problem

RigidHigh(b);
for all faces F do initialize 1set(F) and 2set(F) to ; rof;
for all bi do
let (�i; �i) 2 aug(bi), with �i + �i maximum;
Insert(bi; �iset(Fi1)) and Insert(bi; �iset(Fi2)), if �i > 0;
Insert(bi; �iset(Fi1)) and Insert(bi; �iset(Fi2)), if �i 6= �i and �i > 0

rof;
for all faces F with j2set(F)j � 2 do
for all bi 2 2set(F) do
add corresponding vertices vi1 and vi2 to assign(F);
update the 1set's and 2set's

rof
rof;
for all faces F with j2set(F)j = 1 and j1set(F)j � 2 do
let 2set(F) = fbig, and bj; bk 2 1set(F) with j 6= i and k 6= i;
add corresponding vertices vi1; vi2; vj and vk to assign(F);
update the 1set's and 2set's

rof;
End RigidHigh

Suppose that after RigidHigh(b), a 2 of bi is not matched, i.e., bi 2 2set(Fi1) and
bi 2 2set(Fi2). This implies that there is at most one vertex in Fi1 (or in Fi2) to
which we can add an edge from pertinent(bi). This gives rise to at least one extra
edge for bi. However, if initially jaug(bi)j � 2, then we change aug(bi) into f(1; 0)g
or f(1; 1)g, if this pair belongs to aug(bi). After this changing, we have to add
at most one edge from pertinent(bi) in Fi1 or Fi2. We update the corresponding
2set(Fi1); 1set(Fi1); 2set(Fi2) and 1set(Fi2). The aim is to match a 2 with a 1,
otherwise a 1 is matched with a 1, until no matching is possible anymore.

RigidLow(b);
while not all faces F have j2set(F)j+ j1set(F)j < 2 do
if j2set(F)j = 1 and j1set(F)j = 1 then
let 2set(F) = fbig, and bj 2 1set(F) with j 6= i;
add corresponding vertices vi1; vi2 and vj to assign(F)

else
let bi; bj 2 1set(F); j 6= i;
add corresponding vertices vi and vj to assign(F);

update the 1set's and 2set's
od;
for each 2set(F) = fbig or 1set(F) = fbig do
add corresponding vertices to assign(F);
update the 1set's and 2set's

rof;
End RigidLow

5.2 An Approximation Algorithm 69

Let assign(F) = fv1; : : : ; vkg, in clockwise order around face F . Adding the aug-
mentation edges in F without introducing crossings is done as follows: if a pair of
vertices vi; vi+1 belong to the same Bj, with parent(bj) = b, then we add (vi+1; vi+2)
in F . Let after renumbering v1; : : : ; vk0 be the remaining vertices in clockwise order
around F which must receive an augmenting edge (with k0 � k). Then we add the
edges (v2i�1; v2i), for 1 � i � bk0

2
c. If k0 is odd, then one extra edge is required

for vertex vk0. If k = 2 and v1; v2 belong to the same Bi, then an extra edge is
required for both v1 and v2. Applying this approach leads to a maximum number
of augmentation edges in F , given the vertices in assign(F).

b b b b b b b

b

aug(b) = {(1,0)}
aug(b) = {(1,0)}
aug(b) = {(2,1)}
aug(b) = {(1,0)}
aug(b) = {(2,0)}
aug(b) = {(1,0)}
aug(b) = {(1,0)}

1
2
3
4
5
6
7

B B B

B

B

B
B

1 2 3

4
5

6

7

aug(b) = {(2,0)}

1 2 3 4 5 6 7

Figure 5.3: Applying Rigid(b).

Let Rigid(b) denote the algorithm, consisting of RigidHigh(b), RigidLow(b),
and adding the corresponding edges in the faces of skeleton(b). To prove the ap-
proximation ratio of the algorithm Rigid(b), we use the following lemma:

Lemma 5.2.6 We can assign every extra edge, required by applying Rigid(b) and
not required in the optimal solution, to a unique vertex, endpoint of a matching edge
in Rigid(b).

Proof: Inspect a bi with an unmatched 2 in Rigid(b), which is matched in the
optimal solution. If the 2 of bi is matched with a 2 of bj, then in Rigid(b) the 2
of bj is matched in another face, hence we assign the two extra edges of bi to the
two corresponding matched vertices vj1; vj2 of bj. If the 2 of bi is matched with two
1's, say from bj and bk, then in Rigid(b) the 1 of bj and the 1 of bk are matched in
other faces, hence we assign the two extra edges of bi to the corresponding vertices
vj and vk.

70 The Planar Triconnectivity Augmentation Problem

Inspect a bi with a 2. Suppose this 2 is matched with a 1 in Rigid(b). If this 2
of bi was matched with a 2 of bj in the optimal solution, then the 2 of bj is matched
in another face. We assign one extra edge of bi to one vertex vj1 of bj. Suppose that
the 2 of bi was matched with two 1's in Rigid(b), say from bj and bk. bj and bk
share F initially. They cannot be both unmatched now, because then we can match
bj with bk in face F . Assume bj is matched, then we assign the extra edge of bi to
vj. Assume �nally that a 1 of bi is unmatched, while it was matched with a 1, say
of bj, in the optimal solution. But now again bj is matched, otherwise the 1 of bj
was matched with bi, hence the extra edge of bi is assigned to vj. 2

Lemma 5.2.7 Rigid(b) adds at most 3
2 times the minimum number of edges to

obtain triconnectivity.

Proof: We can assign every extra edge to an endpoint of a matching edge. If
there are k matching edges, then there are at most 2k extra edges. This implies
2k vertices, endpoints of matching edges and 2k vertices, endpoints of extra edges,
which must get an augmenting edge. In the optimal solution, each of these 4k
vertices corresponds to the endpoint of a matching or extra edge, hence there are
at least 2k edges are added in the optimal solution. Since we now have 2k extra
edges and k matching edges, and in the optimal solution at least 2k edges added,
this yields a performance ratio of 3

2
. 2

Lemma 5.2.8 Algorithm Rigid(b) can be implemented to run in O(nB) time, with
nB the number of vertices in skeleton(b).

Proof: Initializing and constructing the sets 1set(F) and 2set(F) can be done
inO(nB) time, because we can construct the embedding of the planar graph inO(nB)
time [12], and the time for updating 1set(F) and 2set(F) is O(1) for every child bi
of b in TSPQR. Each bi belongs to at most 4 sets. We use cross-pointers between bi
and �set(F), if bi 2 �set(F). Using these pointers we can update the 1set's and
2set's in constant time, after chosing bi and bj for a matching. After constructing
the sets assign(F) we can compute the matching edges in O(jassign(F)j) time, for
each face F . 2

The lemmas of this section leads to the main result of this section:

Theorem 5.2.9 The algorithm Triconnect(G) augments in linear time a bicon-
nected planar graph to a triconnected planar graph, which adds at most 3

2 times the
minimum required number of edges.

5.3 Triconnecting While Minimizing The Maximum Degree 71

5.3 Triconnecting While Minimizing The Maxi-

mum Degree

In this section we focus our attention on the problem of triconnecting a planar
graph while minimizing the maximum degree. Let us �rst consider the increase of
the degree of every vertex in the algorithm Triconnect(G) as described in Section
5.2. Again we distinguish matching edges and extra edges as de�ned in Section 5.2.
If (vi; vj) is an extra edge, then vi gets an extra incident edge, while vi did not need
an extra edge to achieve triconnectivity. Indeed, vi might get several incident extra
edges. (Notice that every vertex gets at most one incident matching edge.)

Let us be more precies about this. We inspect the di�erent types of node b in
the SPQR-tree: If b is an S-node, then no extra edge is added. If b is a P-node,
then an extra edge between triconnected components Bj and Bj+1 is added, if in
the optimal permutation � of Bj and � of Bj+1 is assigned to Fj, � 6= �, with Fj the
face between Bj and Bj+1. If � = 1 and � = 1, then the increase of deg(v) of the
corresponding vertices is one. If � = 2, then bj is not a leaf in TSPQR and, hence,
has descendants, say bj1 and bj2. Let Bj1 = pertinent(bj1) and Bj2 = pertinent(bj2).
They both must get an edge to G �Bj . But we can add an edge between Bj1 and
Bj2 in face Fj, and add an edge from arbitrarily Bj1 or Bj2 to G � Bj. If Bj1 and
Bj2 are just vertices of degree 2, then deg(vj1) or deg(vj2) increases by two. A similar
argument follows when � = 2. Hence the increase for all vertices, receiving incident
edges in Parallel(b) is at most 2. In the remaining part of this section we focus
our attention on the case in which b is an R-node.

Let b be an R-node. Extra edges in face F are required, when j2set(F)j = 1 or
j1set(F)j = 1, say 2set(F) = fbjg. This implies again that bj is not a leaf in TSPQR.
Let bj1 and bj2 be descendants of bj such that Bj1 and Bj2 must get edges to G�Bj.
We can add an edge between Bj1 and Bj2 in face F , and an edge from arbitrarily
Bj1 or Bj2 to G�Bj makes Bj triconnected. If F is a triangle in B on the vertices
u; v; w, and u and v are the poles of Bj, then the augmenting edge from Bi1 or Bi2

to G �Bj goes to w. w receives at most one extra edge in face F . Since w belongs
to deg(w) faces, w can receive deg(w) augmenting edges. Since the initial graph is
biconnected, deg(w) � 2. This completes the following lemma.

Lemma 5.3.1 Triconnect(G) triconnects in linear time a biconnected planar
graph G to a triconnected planar graph G0 by adding at most 3

2 times the minimum
number of edges such that �(G0) � 2�(G).

The idea in this section is to change the algorithm Triconnect(G) a little such
that for the triconnected planar graph G0, �(G0) � d32�(G)e holds. Hereto we only
have to consider the case that b is an R-node, because in all other cases, every vertex
receives at most two edges. Let bj be a child of b, with aug(bj) = f(�j; �j)g. Let
sj; tj be the poles of bj, and assume that (sj; tj) 2 Fj1 and Fj2 in B. There must

72 The Planar Triconnectivity Augmentation Problem

always go at least one edge from Bj to G � Bj . We distinguish two cases for the
extra edges:

1. InRigid(b) a matching edge, say (vj; v0j), goes fromBj toG�Bj . If �j+�j > 1,
then extra edges are required in Bj. But if �j +�j > 1, then bj is not a leaf in
TSPQR. Let b0 be a descendant of bj in TSPQR, which must get an incident edge
to G�Bj. It is not di�cult to add this edge, say (v0; w0) such that v0 2 B 0 and
w0 2 Bj �B 0. We do this for all vertices in Bi, which must get an augmenting
edge to G �Bj. We can do this such that Bj becomes triconnected, because
there is an edge (vj; v

0
j) to G�Bj.

Hence there are no extra edges from Bj to G �Bj.

2. InRigid(b) no matching edges are added betweenBj and G�Bj . Then �j+�j
extra edges between Bj and G�Bj are required in Triconnect(G). Similar
as described before, we add �j +�j�1 extra edges with both endpoints in Bj,
such that adding one extra edge from Bj to G �Bj makes Bj triconnected.

We apply this approach to all children of vertex b in TSPQR. After this, there are
children bj of b in TSPQR, which must receive one extra edge from Bj to G�Bj . Let
Fi1 and Fi2 be the triangles, say on vertices sj ; tj; vj1 and sj; tj; vj2. vj1 or vj2 must
get an augmenting edge. The aim is to the edges such that deg(vj1) and deg(vj2) do
not increase too much. Hereto a graph H is constructed as follows:

Every face F 2 B is represented by an f -vertex vF in H, and every bi is rep-
resented by a b-vertex vbi in H, if Bi must get one augmenting edge from Bi to
G�Bi. We add the edge (vF ; vbi) to H, i� ei 2 F in the embedding of B. We delete
all isolated f -vertices from H. This leads to a bipartite planar graph H on b- and
f -vertices. We now compute a subset of edges M � EH such that every b-vertex bj
has one incident edge (bj; ui) 2M , and the f -vertex have as few as possible incident
edges in M . The edge (vF ; vbi) 2M implies that we add an edge from Bi to G�Bi

in face F . If F is a triangle in B, then there is only one vertex v 2 F , with v 62 Bi,
because the other two vertices in F are the poles of Bi.

M is constructed as follows: Using a simple modi�cation of Eulers technique to
�nd an Eulerian cycle in a graph, the elementary cycles Celem are extracted from H.
An elementary cycle is a cycle that uses each edge at most once. Thus H � Celem

consists of paths P with disjoint begin- and endpoints (see Figure 5.4(b)). From
every cycle of Celem Celem and every path P we add alternatingly one edge to M
and one not. Recall that H is bipartite, and that b-vertices have degree 2. Hence for
every vertex in Celem and every internal vertex of a path P , one incident edge is inM
and the other is not. But also for every b-vertex, exactly one incident edge is in M ,
hence satisfying the constraints (see Figure 5.4(c)). For every vertex v 2 H, at most

ddegH(v)
2 e neighbors are in M . This observation completes the following theorem:

Theorem 5.3.2 Algorithm Triconnect(G) augments a biconnected planar graph
G to a triconnected planar graph G0 in linear time by adding at most 3

2 times the
minimum number of edges, such that �(G0) � maxf2; d3

2�(G)eg.

5.3 Triconnecting While Minimizing The Maximum Degree 73

(a) example of H with

white and black vertices

(b) The elementary cycles

and the disjoint paths

(c) The set M of edges.

Figure 5.4: The construction of H and M .

This bound with respect to the maximum degree matches the lower bound, as
stated in the following theorem:

Theorem 5.3.3 For every � > 3 there exists a biconnected planar graph G with
the property that for every triconnected planar graph G0; G � G0: �(G0) � d3

2�(G)e.

Proof: Let � = �(G) � 4. Construct the graph G� consisting of two vertices
A and B, and 2�� 1 vertices p0; : : : ; p2��2. There is an edge (pi; pi+1) for 0 � i <
2� � 2. There are edges (A; pi) and (B; pi), for i even and 0 � i � 2� � 2. For
� odd (implying � � 5), a separate vertex C is inserted with edges (p0; C) and
(C; p2��2). See Figure 5.5.

In every face Fi with vertices pi; pi+1; pi+2; A and in every face F 0
i with vertices

pi; pi+1; pi+2; B, one extra edge must be added (with i even). When we add an edge
(pi; pi+2) in Fi, then an edge (pi+1; B) must be added in F 0

i . Since there are � � 1
faces Fi, this means that the total increase of the degree of A and B is �� 1. If �
is odd, then an additional edge has to go from C to A or B. Hence the degree of A
or B increases by at least d�

2 e. 2

We will use the algorithm Triconnect in Chapter 6 to triangulate a planar
graph while minimizing the maximum degree.

74 The Planar Triconnectivity Augmentation Problem

A

B

C

p p p
2 4 6 80

p p

Figure 5.5: Illustration of Theorem 5.3.3.

Chapter 6

Triangulating Planar Graphs

In this chapter we consider the problem of triangulating planar graphs. A planar
graph is triangular (or triangulated or maximal planar) when every face has exactly
three vertices. If a planar graph is not triangular, then there is a face F having
at least four di�erent vertices, say v1; v2; v3; v4 in this order around the face. By
planarity constraints it follows that (v1; v3) 62 G or (v2; v4) 62 G. Adding the miss-
ing edge in face F and repeating this argument to all faces which are not triangles
leads to a triangular planar graph. Simple and elegant linear time algorithms based
on this idea are documented in the literature. In this section we outline two ap-
proaches, and we present a new algorithm for triangulating planar graphs, based on
the canonical ordering introduced in Section 2.5. Assume G is a biconnected planar
graph (otherwise we can use an augmentation algorithm, described in Chapter 4.
Let an arbitrary planar embedding of G be given.

The �rst algorithm is due to Read [92], and modi�ed by De Fraysseix such that it
works in linear space. It can be described as follows: visit all vertices of G. For every
pair of consecutive neighbors u;w of a current visited vertex v, add (u;w) to G if w
is not adjacent to v in adj(u). This gives a triangle on the vertices u;w; v. Applying
this to all vertices leads to a triangulated planar graph G0 which, however, may
contain multiple edges. Let there be k edges (u;w) in G0. Removing one edge (u;w)
leads to a face F with four vertices, say v; u; v0; w, and by planarity, (v; v0) 62 G0.
Replacing (u;w) by (v; v0) in F removes one multiple edge. The multiple edges can
be detected by a bucketsort [1]. Replacing each edge requires constant time, hence
this leads to a linear time, linear space triangulation algorithm.

Hagerup & Uhrig [44] changed this algorithm such that no multiple edges are
introduced in G0 at all. This is obtained by marking the neighbors of vertex v, which
we are currently visiting in the algorithm. Process the faces incident on v. For each
such face F with boundary vertices v = u1; u2; : : : ; up we do: if p = 3, then F is a
triangle. Otherwise, if u3 is not marked, add an edge (u1; u3), mark u3 and continue
triangulating the face with boundary vertices u1; u3; u4; : : : ; up. Since u3 was not
marked, (u1; u3) 62 G, and thus by adding (u1; u3), no multiple edge is introduced.
If u3 was marked, then (u1; u3) 2 G, and by planarity constraints, (u2; u4) 62 G.

75

76 Triangulating Planar Graphs

Add an edge (u2; u4), and continue triangulating the face with boundary vertices
u1; u2; u4; u5; : : : ; up. When all incident faces of v are visited, we unmark the neigh-
bors of v. After visiting all vertices of G, a planar triangular graph is obtained
[44].

In this section another simple linear time triangulation algorithm is introduced.
This algorithm has the interesting side-e�ect that it directly computes a canonical
ordering for triangular planar graphs, as de�ned in [34]. For completeness, we restate
here this theorem:

Theorem 6.0.4 Let G be a triangular planar graph embedded in the plane with
outerface u; v; w. There exists an ordering of the vertices v1 = u; v2 = v; v3; : : : ; vn =
w meeting the following requirements for every k; 4 � k � n.

1. The subgraph Gk�1 � G induced by v1; v2; : : : ; vk�1 is biconnected, and the
boundary of its outerface is a cycle Ck�1 containing the edge (u; v);

2. vk is on the outerface of Gk, and its neighbors in Gk�1 form an (at least 2-
element) subinterval on the path Ck�1 � (u; v).

Assume G is biconnected and let a planar embedding of G be given. Following
the idea of Theorem 6.0.4 we start with edge (v1; v2) and add a vertex vk in each
step k; 3 � k � n, such that we can construct Gk with all interior faces triangulated.
To this end we search for a vertex vk such that all neighbors vl with l < k are on
Ck�1. We call the edges (v�; v�) with � < k � � outgoing edges in step k, i.e., the
outgoing edges are edges from vertices on the outerface Ck�1 to G � Gk�1. Let i
be as small and j be as high as possible such that (vk; ci) and (vk; cj) 2 G, with
ci and cj belonging to the outerface Ck�1 : c1; c2; : : : ; cr. If j > i, then all vertices
ci+1; : : : ; cj�1 may not have outgoing edges to vertices vl with l > k. We add edges
from ci+1; : : : ; cj�1 to vk, if these edges are not present already. If j = i, then we
assume that vk is consecutive to ci�1 or ci+1 in adj(ci). We can add an edge from ci�1
or ci+1 to vk while preserving planarity. If all interior faces in Gk�1 were triangulated,
then it follows that all faces in Gk are also triangulated. We call ci the leftvertex
of vk and cj the rightvertex of vk. The vertices ci+1; : : : ; cj�1 are called internal
vertices. Assume vk has edges to vertices vl with l > k. We call the vertex vl; l > k,
with vl consecutive to ci (to cj) in adj(vk) leftup(vk) (rightup(vk), respectively). If
vk has only one neighbor vl with l > k, then leftup(vk) = rightup(vk). If vk has no
neighbors vl with l > k, then leftup(vk) = nil and rightup(vk) = nil.

For the algorithm we introduce a linked list, called readylist, containing these
vertices, which can be the next one in the ordering of triangulating. We also intro-
duce two variables for each vertex vk in G: old(vk), denoting the number of vertices
vl with l < k, and visit(vk). We increase visit(vk) by one, if there is a pair of ver-
tices c�; c� on Ck, with rightup(c�) = vk, leftup(c�) = vk and all vertices c
 on Ck,
� <
 < �, do not have outgoing edges. We claim that if this is the case, then c�

Triangulating Planar Graphs 77

and c� are consecutive in adj(vk). Suppose not, thus there is at least one neighbor
of vk, say w, between c� and c� in adj(vk). w is not part of Ck, since all vertices c

on Ck, � <
 < �, do not have outgoing edges. Hence there is no path from w to
c� than by going via v. This yields that G� fvg is disconnected, which contradicts
the fact that G is biconnected.

We use the variables old(v) and visit(v) to determine whether there is precisely
one consecutive sequence of lower-numbered neighbors in adj(v), which is the case
when old(v) = visit(v) + 1. The algorithm CanonicalTriangulate can now be
described as follows:

CanonicalTriangulate(G);
initialize old(v) and visit(v) to 0 for all v 2 G;
start with an edge (v1; v2);
increase old(v) by one, for all neighbors of v1 and for all neighbors of v2;
add rightup(v1) and leftup(v2) to readylist;
for k := 3 to n do
delete arbitrary vertex vk from readylist;
for all neighbors vl; l > k of vk do
delete vl from readylist (if present); old(vl) := old(vl) + 1

rof;
let ci be the leftvertex and cj be the rightvertex of vk;
if vk = leftup(ci) and i = j and ci 6= v1 then j := i; i := i� 1 else
if vk = rightup(ci) and i = j and cj 6= v2 then i := j; j := j + 1;

while old(ci) = deg(ci) and ci 6= v1 do i := i� 1 od;
while old(cj) = deg(cj) and cj 6= v2 do j := j + 1 od;
add edges from ci; : : : ; cj to vk (if not present already);
let cl = rightup(ci) and cr = leftup(cj);
if old(vk) = deg(vk) then
if cl = cr then visit(cl) := visit(cl) + 1

else
if cl = leftup(vk) then visit(cl) := visit(cl) + 1;
if cr = rightup(vk) then visit(cr) := visit(cr) + 1;

if old(cl) = visit(cl) + 1 then add cl to readylist;
if old(cr) = visit(cr) + 1 then add cr to readylist

rof;
End CanonicalTriangulate

See Figure 6.1 for an illustrating example. To prove that this algorithm indeed
works, we need the following lemma:

Lemma 6.0.5 readylist is not empty at the start of step k; 3 � k � n.

Proof: The initial graph is biconnected, hence in every step k there are at
least two vertices on Ck�1, having edges to vertices outside Gk�1. If there is a vertex

78 Triangulating Planar Graphs

k

v v

k
k

v

jc
ic

1 2

G
k−1

leftvertex

rightvertex

leftup(v)
rightup(v)

Figure 6.1: Triangulating a planar graph while computing a canonical ordering.

v 2 G � Gk�1 with v = leftup(c�) or v = rightup(c�) for some c� on Ck�1, and
old(v) = 1, then by de�nition of visit, visit(v) = 0. Hence we can choose vk = v.
Assume further that for every vertex v, with v = leftup(c�) or v = rightup(c�) for
some c� on Ck�1, that old(v) > 1.

Consider now this pair of vertices c�; c� on Ck�1 (� > �) with ���minimal, v =
rightup(c�) and (c�; v) 2 G, but c� not consecutive to c� in adj(v). By biconnectivity
of G it follows that there is at least one outgoing edge on Ck�1 between the outgoing
edges (c�; v) and (c�; v). Let (c
; v0) be such an edge, with v0 = leftup(c
) and
� <
 � �. By de�nition v0 6= v. By planarity, v0 has no neighbors c� on Ck�1,
with � � � or � > �. We assumed old(v0) > 1, thus v0 has a neighbor c�, with
� < � � �. But by minimality of � � � it follows that all neighbors of v0 on Ck�1

form a consecutive sequence in adj(v0). Hence we can choose vk = v0. 2

Lemma 6.0.6 The ordering in which the vertices are added is a canonical ordering.

Proof: In every step k after the augmentation, vk has edges to vertices ci; : : : ; cj
on Ck�1. If i = j, then by the algorithm vk = leftup(ci) or vk = rightup(ci), because
only vertices, which are rightup(ci) or leftup(cj), are added. If vk = leftup(ci) then
ci 6= vk, and if vk = rightup(ci), then ci 6= v2. Hence after the augmentation j > i
holds, and vk has edges to ci; ci+1; : : : ; cj. vk becomes part of Ck and receives at
least one edge to a vertex vl with l > k, if k < n. This precisely corresponds to the
canonical ordering of de Fraysseix, Pach & Pollack [34], as presented in Theorem
6.0.4. 2

Theorem 6.0.7 The algorithm CanonicalTriangulate(G) triangulates in lin-
ear time a biconnected planar graph, while computing a canonical ordering.

Proof: The correctness of the algorithm and the canonical ordering follows
from the previous lemmas. We only have to prove that it works in linear time. But
this follows directly, by introducing a linked list for maintaining Ck�1 in every step,

6.1 NP-completeness 79

and by using the pointers leftup(v), rightup(v) and the counters old(v) and visit(v)
for every vertex v. 2

The algorithm CanonicalTriangulate is a good and simple method for com-
puting a canonical ordering of a graph while triangulating the graph. We can use
this algorithm as a �rst step to draw a planar graph planar with straight lines on an
(n� 2)� (n� 2) grid (see Section 10.2.1), or to compute a visibility representation
(see Section 10.4).

Unfortunately, all triangulation algorithms mentioned above do not triangulate
the planar graph such that the maximumdegree is minimum. The remaining part of
this paper is devoted to this problem. We show that the problem of deciding whether
a biconnected planar graph can be triangulated such that the maximum degree is
at most K is NP-complete. An approximation algorithm is presented, working
only an additive constant from optimal, when the input graph is triconnected, and
only an additive constant from an existential lower bound, when the input graph is
biconnected.

6.1 NP-completeness

In this section we prove the following theorem:

Theorem 6.1.1 The problem of deciding whether a biconnected planar graph can
be triangulated such that the maximum degree is � K is NP-complete.

Proof: The problem is in NP: guess 3n � 6 �m additional edges, and test in
polynomial time whether G is planar and has maximum degree � K.

To prove the NP-hardness we use a reduction from the 3-coloring problem for
triconnected planar graphs. It is well-known that deciding whether a planar graph
can be colored with three colors such that every pair of adjacent vertices have
di�erent colors is NP-complete [39]. The proof in [39] can be modi�ed such that
the NP-completeness of the 3-coloring problem also follows for triconnected planar
graphs. We omit the details here. Let a triconnected planar graph G and a constant
K � 7 times the number of vertices in the largest face in G be given. G has a
unique embedding. Let G� be the dual graph of G: every vertex of G� corresponds
to a face of G and there is an edge between two vertices in G�, if and only if the
corresponding faces in G share an edge. G� is triconnected and planar as well. We
change graph G� into a graph G�

1 as follows: every edge (a; b) 2 G� is replaced by
three components A1; A3; A5 and two vertices c; d with edges to a and b as shown in
Figure 6.2(a). We construct Ai (i = 1; 3; 5) such that all interior faces are triangles
and all interior vertices (vertices not belonging to the outerface of Ai) have degree
� K. The outerface of Ai consists at each side of a and b of i consecutive vertices
of degree K � 1, say v1; : : : ; vi at one side and w1; : : : ; wi at the other side. of
degree K � 1. Each side also contains a vertex of degree K � i � 2, say v and w.

80 Triangulating Planar Graphs

a

b

c d
1AA5 A9

a

b

c
A9A51A

d

F’

(a) The replacement of edge (a; b)

in G.

(b) Every component in F must

have the same orientation.

F F

(c) Every face must have the same

kind of components.

(d) If a face F consists of one type

of components, then a triangulation

of F exists with degree � K.

Figure 6.2: Figures for the NP-completeness proof.

v and w are adjacent to a and b, and to v1; : : : ; vi and w1; : : : ; wi, respectively. We
augment the components such that the vertices a and b have degree K. See Figure
6.2(a), where the dotted areas imply the triangulated components A1; A3; A5, hence
there are additional edges in it, not shown in the picture. It is not hard to �nd the
precise constructions for A1; A3; A5, although a little tedious. We omit the precise
construction. Notice that vertex a (and b) receives at least two incident edges from
each component Ai. a has also incident edges to c and d and there is no edge (a; b)
in G�

1 Thus �(G�
1) � 7�(G�).

We add vertices inside some Ai-components with edges to a and b in such a way
that the degree of all vertices a and b 2 G� is K in G�

1 and the degree of the other

6.1 NP-completeness 81

external vertices of the Ai-components does not change. We call the vertices v 2 G�
1

with deg(v) < K � 1 white, with deg(v) = K � 1 grey and with deg(v) = K black,
and they are drawn accordingly in Figure 6.2. Notice that the vertices of G� are
black in G�

1 and the other vertices in G�
1 are initially grey or white. Suppose G� has

a triangulation with maximum degree � K. Fix such a triangulation, and construct
a planar embedding of the triangulated graph.

Lemma 6.1.2 Between every two components Ai; Aj with common vertices a; b
there must be a vertex c or d.

Proof: Suppose not, i.e., there are two components Ai; Aj, adjacent to each
other between two vertices a and b in G�

1. Let F be the face between Ai and Aj. If
there are two grey vertices adjacent to a or b in F , then one of these grey vertices
must get two extra edges by the triangulations, hence will get degree > K, which
is not allowed. So assume that adjacent to a and b there is a white and a grey
vertex. If we want to triangulate F such that every vertex has degree � K, then
each consecutive sequence of grey vertices must get incident edges to a common
white vertex. Let v;w be the white vertices and v1; : : : ; vi, w1; : : : ; wj be the grey
vertices of F1. Let j > i, then we must assign i+2 edges between v and w1; : : : ; wi+2

and i edges must be assigned between w and v1; : : : ; vi. After this assignment, v
and wi+2 are both black. Since j � i+ 2, F is not completely triangulated. But v
and wi+2 are now neighbors in F , and one of them must get an extra incident edge.
This contradicts the assumption that we can triangulate F such that the maximum
degree is � K. Thus between every two components Ai; Aj of vertices a and b, there
must be a vertex c or d. 2

This means that for every edge (a; b) 2 G�, belonging to faces F1; F2, we have
to assign one Ai-component of a; b to F1 and one Aj-component of a; b to F2, with
i 6= j. Assigning Ai to F1 means that we construct a planar embedding such that the
exterior vertices of Ai at one side between a and b belong to face F1. Triangulating
the faces F , to which c and d belong, can simply be done by adding edges from
vertex c or d to all other vertices of face F .

Lemma 6.1.3 For every face F 2 G�
1 only one type component Ai can be assigned

to F .

Proof: Suppose we can triangulate a face F with di�erent components Ai; Aj

assigned to it, such that the maximumdegree is still� K. First we notice that every
black vertex v 2 F may not get an incident augmenting edge, hence there must come
an edge between its two neighbors v1; v2 2 F . Since for any triangulation, v1 or v2
must get in total at least two augmenting edges, one of them must be white. This
means that every component in F must have the same orientation, i.e., when walking
around F we visit alternatingly a black vertex, a white vertex and a sequence of
grey vertices (see Figure 6.2(b)). Notice that after adding (v1; v2) for every black

82 Triangulating Planar Graphs

vertex v in F , the size of F decreases, but since v1 or v2, say v1, was grey, v1 is black
now, and we repeat our argument to all black vertices v1. Inspect two adjacent
components Ai; Aj of a black vertex v. Let j > i. After assigning i + 2 edges from
the white vertex w of Ai to the grey vertices w1; : : : ; wi+2 of Aj, w and w1; : : : ; wi+2

are all black now. But similar to Lemma 6.1.2, since j � i+ 2, F is not completely
triangulated yet, thus w or wi+2 must receive at least one extra edge (see Figure
6.2(c)). This contradicts the assumption that we could triangulate F such that the
maximum degree is � K. 2

If only one type of components Ai is assigned to a face F 2 G�
1 then we can

triangulate F as follows: from every white vertex we add i edges to the grey vertices
of the next component in the circular order of F . In the reduced face F we assign
edges between every two consecutive white vertices. This triangulates F completely
and the degree of every vertex v 2 F becomes K. An example is given in Figure
6.2(d).

From Lemma 6.1.2 and 6.1.3 and the construction in Figure 6.2(d) it follows
that we can triangulate G�

1 with maximum degree � K if and only if we can assign
to every face F 2 G�

1 only one type of components Ai, i = 1; 3; 5, i.e., if and only
if we can assign one number i; i = 1; 3; 5, to every face in G� such that every two
faces, sharing a common edge in G�, have a di�erent number, i.e, if and only if there
exists a coloring of G with three colors such that every pair of two neighbors v;w,
have a di�erent color. As G� and G�

1 can be constructed in time polynomial in K;n
and m, there is a polynomial time transformation from the NP-complete problem
of 3-coloring triconnected planar graphs to the problem of triangulating a planar
graph while minimizing the maximum degree, hence the latter is NP-complete. 2

6.2 Triangulating Planar Graphs While Minimi-

zing the Maximum Degree

6.2.1 The Algorithm

In this section we present an approximation algorithm for triangulating planar
graphs while minimizing the maximum degree. The algorithm will lead to a proof
of the following theorem:

Theorem 6.2.1 There is a linear time and space algorithm to triangulate a con-
nected planar graph G such that for the triangulation G�

1 of G, �(G�
1) � d3

2�(G)e+
11.

An important procedure in the algorithm is to triangulate a face by adding edges
in a \zigzag"-form, as shown in Figure 6.3. It can be described as follows:

6.2 Triangulating While Minimizing the Maximum Degree 83

Zigzag(F; v1; vp);
(* F is a face of p vertices, numbered v1; : : : ; vp in order *)
add edges (vp; v2); (v2; vp�1); (vp�1; v3); (v3; vp�2); : : : ; (vb p

2
c; vb p

2
c+2);

End Zigzag

v

v v

v v
v

v

v
v

v

1

2
3 4

5

6

7
89

10

v

v v

v v
v

v

v
v

v

1

2
3 4

5

6

7
89

10

(a) Zigzagging one face. (b) Zigzagging the planar graph.

Figure 6.3: Example of zigzagging a face and zigzagging a planar graph.

By applying this method to a face, the degree of v1 and vb p
2
c+1 does not increase,

the degree of vp and vb p
2
c (p even) or vb p

2
c+2 (p odd) increases by 1, and all other

degrees increase by 2 (see Figure 6.3(a)).
Let G be a connected planar graph to be triangulated. A simple technique for

triangulating G is to apply Zigzag to all faces of G. However, since a vertex v
belongs to deg(v) faces and deg(v) can increase by two in every face, this may lead
to a maximumdegree of 3�(G). Moreover, this algorithmmay imply multiple edges,
which are not allowed (see Figure 6.3(b)). To circumvent this we �rst add edges to
G such that G is planar and triconnected (see Chapters 4 and 5), because then the
following important lemma holds:

Lemma 6.2.2 Triangulating a triconnected planar graph G cannot cause multiple
edges.

Proof: Assume not, thus there are two vertices u and v with at least two edges
(u; v) in the triangulation of G. Let the second edge (u; v) be added in face F . This
implies that u and v are not neighbors in F , thus there are vertices between the two
edges (u; v), after adding (u; v) in F . Let w be such a vertex. By planarity of G

84 Triangulating Planar Graphs

and the two edges (u; v) it follows that all paths from w to other vertices of G go
via u and v. But this yields that G � fu; vg is disconnected, which contradicts the
triconnectivity of G. 2

The idea for triangulating G is as follows: we compute a \special" ordering of the
faces of G, and when applying Zigzag(F; v;w) to every face F of G, we start with
some \special" vertex v. For the ordering of the faces, we use the de�nition of the
canonical ordering for triconnected planar graphs, as described by Kant [66]: Let
an embedding of a triconnected planar graph G be given. Gk denotes the subgraph
of G, induced on the vertices v1; : : : ; vk.

Theorem 6.2.3 ([66]) The vertices of a triconnected planar graph G can be ordered
in a sequence v1; : : : ; vn such that v2 and vn are neighbors of v1 and are on a common
face, and for every k; k > 3:

1. vk is on the outerface of Gk and has at least two neighbors in Gk�1, which
are on the outerface of Gk�1. vk has at least one neighbor in G � Gk. Gk is
biconnected,

2. or there exists an l � 1 such that vk; : : : ; vk+l is a chain on the outerface of
Gk+l and has exactly two neighbors in Gk�1, which are on the outerface of
Gk�1. Every vertex vk; : : : ; vk+l has at least one neighbor in G�Gk+l. Gk+l is
biconnected.

Suppose we add vk, and let Ck�1 : v1 = c1; : : : ; cr = v2 be the outerface of Gk�1.
Let ci be the leftmost neighbor of vk (called leftvertex) and cj be the rightmost
neighbor of vk on Ck�1 (called rightvertex). Vertices ci+1; : : : ; cj�1 of Ck�1 are called
internal. The vertices, added in step k, are called new in step k. Every vertex, not
belonging to the outerface of G, is exactly once new and once internal. Vertices
on the outerface of G, i.e., belong to the face, containing v1; v2 and vn, are once
new, and do not become internal. Every vertex can be more than once the left- or
rightvertex. If we triangulate a face Fk with leftvertex ci and rightvertex cj with
j = i + 1, then ci or cj must get an augmenting edge, since they are neighbors on
Ck�1. To count the number of incident edges of vertex v, added when v was the
left- or rightvertex, we introduce a variable extra(v), initially 0. Every time when
v receives an incident edge and v is the left- or rightvertex, we increase extra(v) by
one. (This is not expressed in the algorithm Triangulate(G).)

Adding an edge between the neighbors of v in face F is denoted by AddNeigh-
bors(F; v). By this method deg(v) does not increase in face F . Zigzag(F; v;w)
does not increase deg(v), but increases deg(w) by one. Let there be K steps in total.
In step 1 and 2 vertex v1 and v2 are added; in step K vertex vn is added. The
algorithm becomes as follows:

Triangulate(G);

6.2 Triangulating While Minimizing the Maximum Degree 85

2*OptBiconnect(G);
Triconnect(G);
compute a canonical ordering v1; : : : ; vn of G and start with (v1; v2);
for k := 3 to K do
if we add a face Fk with leftvertex ci and rightvertex cj then
if extra(ci) � extra(cj) then
AddNeighbors(Fk; cj); Zigzag(Fk; ci; v) with (v; ci) 2 Fk

else
AddNeighbors(Fk; ci); Zigzag(Fk; cj ; v) with (v; cj) 2 Fk

else
let c01; : : : ; c

0
t (t > 2) be the neighbors of vk from left to right on Ck�1;

let F 0
l be the face, containing vk; c

0
l; c

0
l+1, for 1 � l � t� 1;

Zigzag(F 0
1; c

0
1; vk);

for l := 2 to t� 2 do AddNeighbors(F 0
l ; vk); Zigzag(F

0
l ; c

0
l; c

0
l+1) rof;

AddNeighbors(F 0
t�1; c

0
t�1); Zigzag(F

0
t�1; c

0
t; vk)

rof;
triangulate the outerface F by Zigzag(F; v1; v2);

End Triangulate

Using the adjacency lists adj(v) for the embedding, it is not very di�cult to im-
plement the algorithm such that it works in linear time and space. In the remaining
part of this paper we consider the increase of deg(v).

6.2.2 Counting the Increase of deg(v)

In this section we inspect the total increase of every vertex v in Triangulate(G).
We distinguish the cases that v is new, internal or a left- or rightvertex. The increase
of deg(v), when v is a left- or rightvertex, is given by extra(v). When v is part of
the outerface F , then v does not become internal, but by Zigzag(F; v1; v2), deg(v)
increases by at most 2. To count the increase of the degree of all other vertices, we
have the following lemma:

Lemma 6.2.4 In every step k the degree of the new and internal vertices increases
by at most 3.

Proof: If we add only one face Fk in step k, then we start with applying Add-
Neighbors(Fk; ci) or AddNeighbors(Fk; cj), which increases the degree of the
neighbors of ci or cj in face Fk by one. Then Zigzag(Fk; ci; v) or Zigzag(Fk; cj; v)
is applied, which increases the degree of every internal and every new vertex of face
Fk by at most 2.

If we add a vertex vk with neighbors c01; : : : ; c
0
t, then deg(c�); c� 6= c0l; (1 � l � t),

increases by at most 3 by AddNeighbors(F 0
l; vk) and Zigzag(F

0
l ; c

0
l; c

0
l+1). In face

F 0
l , (2 � l � t�2), deg(c0l) and deg(c0l+1) increase by one byAddNeighbors(F

0
l ; vk),

and deg(c0l+1) increases one by Zigzag(F 0
l ; c

0
l; c

0
l+1). deg(c02) increases by at most 2

86 Triangulating Planar Graphs

in F 0
1 by Zigzag(F

0
2; c

0
1; vk). deg(c

0
t�1) does not increase in F 0

t�1, because of the call
AddNeighbors(F 0

t�1; c
0
t�1). Hence deg(c0l), 2 � l � t � 1, increases by at most 3.

deg(vk) increases by one in F 0
1 by Zigzag(F

0
1; c

0
1; vk). deg(vk) does not increase in the

faces F 0
2; : : : ; F

0
t�2. In F 0

t�1, deg(vk) increases by one in AddNeighbors(F 0
t�1; c

0
t�1)

and by one in Zigzag(F 0
t�1; c

0
t; vk), which completes the proof. 2

To count the increase of extra(v) during all steps of Triangulate(G), we con-
sider the outerface Ck after adding the new vertices in any step k:

Lemma 6.2.5 For every four consecutive vertices c�; c�+1; c�+2; c�+3 on Ck, k � 3,
the following holds:
If extra(c�+1) = 2 then either extra(c�) = extra(c�+2) = 0 or extra(c�) = extra(c�+3)
= 0 and extra(c�+2) = 1. If extra(c�+1) = extra(c�+2) = 1, then we have extra(c�)
= extra(c�+3) = 0.

Proof: By induction. When starting the algorithm extra(v1) = extra(v2) = 0
holds, thus then the lemma is true. Assume the lemma holds for outerface Ck�1.

If we add a face Fk in step k with two (or more) vertices vk1 ; vk2 with leftvertex
ci and rightvertex cj = ci+1, then the lowest extra-value of ci and cj, say extra(ci),
increases by one. If extra(ci) = 1, then by the induction step, we obtain the following
extra-values for ci�1; ci; vk1; vk2; cj; cj+1: 0, 2, 0, 0, extra(cj), 0. If extra(ci) = 0, then
we obtain: 0, 1, 0, 0, extra(cj), 0. Hence also on Ck the lemma holds.

If we add only one vertex vk with leftvertex ci and rightvertex cj, then we do not
increase extra(ci) and extra(cj), and we initialize extra(vk) to 0. Hence then also the
lemma holds. 2

Lemma 6.2.6 For every pair of consecutive vertices c�; c�+1 on Ck holds that extra(c�)
+ extra(c�+1) � 3.

Proof: Suppose not. Let k be the smallest possible integer such that for two
consecutive vertices c�; c�+1 on Ck: extra(c�) + extra(c�+1) > 3, thus extra(c�) +
extra(c�+1) = 4 on Ck, and on Ck�1, extra(c�) + extra(c�+1) = 3. But by Lemma
6.2.5, extra(c��1) = extra(c�+2) = 0 on Ck�1. Thus both c� and c�+1 have neigh-
bors with smaller extra-value. The added face in Ck cannot have leftvertex c� and
rightvertex c�+1, because then vertices with extra-value 0 come between them. Hence
extra(c�) and extra(c�+1) do not increase in step k. This contradicts the assumption
that in step k, extra(c�) + extra(c�+1) > 3. 2

Corollary 6.2.7 For every vertex v 2 G, extra(v) � 2.

Thus every vertex v receives at most 3 edges when v is new, at most 2 edges when
v is left- or rightvertex, and �nally at most 3 edges when v is internal. This implies
that Triangulate(G) triangulates in linear time and space a triconnected planar

6.2 Triangulating While Minimizing the Maximum Degree 87

graph G such that every vertex receives at most 8 extra incident edges. If G is not
triconnected, then we do the following: We apply the algorithm Biconnect(G),
described in Chapter 4, to biconnect G, while increasing the degree of every vertex
by at most 2. Then we apply the algorithm Triconnect(G) to triconnect G, while

increasing the degree of every vertex by at most d�(G)
2
e. Applying the algorithms

Biconnect, Triconnect and Triangulate completes Theorem 6.2.1, which
says that we can triangulate in linear time and space a connected graph G such that
for the maximum degree of the triangulation G0: �(G0) � d32�(G)e + 11.

For a lower bound of the increase of deg(v) we can use Theorem 5.3.2: It is easy
to prove that for any triangulation G0 of the biconnected planar graph G described in
Theorem 5.3.2, that �(G0) � d3

2
�(G)e. Hence our approach works only an additive

constant from an existential lower bound. The same holds for the triconnected case,
in which case we have the following theorem:

Theorem 6.2.8 For every � = �(G) � 5, there exist triconnected planar graphs
G such that for every triangulation G0 of G: �(G0) � �(G) + 3.

Proof: Construct a triconnected planar graph G as follows. Take V = fvg [
fvij1 � i � �g [fvijj1 � i � �; 1 � j � �� 1g, thus jV j = �2 + 1. Connect v to
the � vertices v1; : : : ; v�. Connect vi to �� 1 vertices vij, 1 � j � �� 1. Connect
vij to vi(j+1) if j < �� 1 and to v(i+1)1 otherwise (see Figure 6.4). Notice that G is
triconnected. Suppose we can triangulate G such that �(G0) � �(G) + 2. Thus v
can get at most two augmenting edges. Let F1; : : : ; F� be the adjacent faces of v.
Fi consists of 5 vertices, thus every triangulation of Fi consists of two augmenting
edges, incident to one vertex w 2 Fi, which we call marked, to its non-neighbors of
Fi. Hence except for at most two neighbors vi; vj of v, all other � � 2 neighbors
of v must be marked. But marking both vi and vi+1 increases deg(vi) by 3. Hence
only half of the neighbors of v can be marked, which is larger than �� 2 for � � 5.
Thus �(G0) � �+ 3, for � � 5. 2

It is an interesting open problem to close this gap between the lower bound of
3, and the upper bound of 8, delivered by the algorithm Triangulate.

88 Triangulating Planar Graphs

v

v

v

v
v

v 1

2

3

4

5

Figure 6.4: Illustration of Theorem 6.2.8.

Chapter 7

Augmenting Outerplanar Graphs

7.1 Introduction

Outerplanar graphs are an interesting subclass of planar graphs, because all vertices
share one face, namely, the outerface. There are two speci�c drawing techniques
for outerplanar graphs. The �rst method is to place all vertices of a biconnected
outerplanar graph on the corner points of a regular n-gon (in clockwise order around
the face). Every interior edge is a chord, and drawn as a straight line inside the
n-gon. Though this drawing is planar and convex, the minimum angle between
two consecutive incident edges of a vertex can be O(1

n
) and the ratio between the

length of the longest and smallest edge can be O(n). Another drawing algorithm for
outerplanar graphs requires as input a maximal outerplanar graphs (mop), i.e., all
interior faces are triangles. It starts with drawing a face F , say with vertices u; v; w,
which has at least one edge, say (u; v), on the outerface. It draws (u; v) horizontally
and draws w above (u; v) such that length(u;w) = length(v;w), and \vuw = \uvw.
From (u;w) and (v;w) the remaining faces of the outerplanar graph are drawn
recursively. See �gure 7.1 for an example. The drawing can be constructed such that
the minimum angle is �

2(d+2), by a result of Malitz & Papakostas [80]. However, the

ratio between the longest and smallest edge can be O(2n). This drawing construction
has also been applied succesfully by Lin & Skiena [78], to draw a polygon P on a
grid of polynomial size, where the visibility graph of P is a maximal outerplanar
graph.

Let us �rst consider the problem of augmenting an outerplanar graph such that
the resulting graph is biconnected, and still outerplanar. If G is disconnected, then
the algorithm Connect(G) of [27], described in Chapter 4, is applied. This al-
gorithm preserves the outerplanarity. Hence we may assume from now on that G
is connected and outerplanar. The algorithm of Read [92], and the modi�cation
Biconnect(G) of it described in Chapter 4, can be used to biconnect G. If b is the
number of blocks, then at most b�1 blocks are added (see Lemma 4.1.4. Let v be a
cutvertex with d(v) v-blocks. If u and w appear consecutively in adj(v) and u and

89

90 Augmenting Outerplanar Graphs

u

w

v

Figure 7.1: Drawing an outerplanar graph.

w belong to di�erent blocks, then (u;w) is added. In this way d(v) � 1 edges are
added. There remains one pair of consecutive neighbors u and w in adj(v), belonging
to di�erent blocks, where no edge (u;w) is added. (u; v) and (v;w) belong to the
outerface before the augmentation, hence also after the augmentation, v belongs to
the outerface. This completes the following theorem:

Theorem 7.1.1 If the input graph G is outerplanar, then the augmented graph
obtained by Biconnect(G) is biconnected and outerplanar.

Every biconnected graph is also bridge-connected, thus this algorithm can be
used to bridge-connect G as well. In both cases the maximum increase of the degree
of every vertex is at most 2. Notice that if G is not a triangle, then G cannot be
triconnected. This follows because if G contains no chords, then G is a cycle, and
deleting any pair of two non-adjacent vertices disconnects G. If G contains a chord
(u; v), then G� fu; vg is disconnected.

Biconnecting (or bridge-connecting) G by a minimum number of edges while
maintaining outerplanarity seems to be a much harder problem. Even for trees T
with p leaves and maximum degree d it is not very di�cult to construct examples
in which p

2 edges are su�cient to biconnect (or bridge-connect) T , and examples in
which p�d edges are necessary to biconnect (or bridge-connect) T , while preserving
outerplanarity. Also there exist outerplanar graphs G with b blocks and 2 pendants,
for which b� 1 edges are necessary to biconnect G (in which case Biconnect(G)
gives an optimal solution). However, it seems to be di�cult to prove in general that
a solution is also optimal.

To apply the huge number of planar graph drawing algorithms, we consider the
problem of augmenting outerplanar graphs such that the augmented graph is bridge-
connected, biconnected or triconnected and planar. We show that the number of
added edges is equal to the number of edges, which we would add without the
additional planarity constraint. Hence the presented solutions are optimal. The
algorithms are simple and can easily be implemented to run in linear time. For
drawing biconnected and triconnected planar graphs many advanced algorithms
are known, which can thus be used to draw the (augmented) outerplanar graph.
Triangulating outerplanar graphs such that the augmentation is a mop can easily
be done in linear time. We show that we can do this triangulation in polynomial

7.2 Bridge-Connectivity 91

time such that the maximal degree is minimized. This result has nice features for
the algorithm of Malitz & Papakostas [80].

7.2 Bridge-Connectivity

In this section we consider the problem of how to add a minimum number of edges
to an outerplanar graph G, such that the augmented graph G0 is bridge-connected
and planar. Bridge-connectingG is equal to bridge-connecting the forest bc(G). The
algorithm for bridge-connecting bc(G) is inspired by the general bridge-connecting
algorithm of Eswaran & Tarjan [27]. They gave the following lower bound on the
number of edges needed to make bc(G) bridge-connected:

Theorem 7.2.1 ([27]) At least dp
2
e + q edges are needed to make bc(G) bridge-

connected, if p+ q > 1.

If G is not connected, then we can �rst apply the algorithm Connect(G) of
Chapter 4. Hence we assume from now on that G is connected. Let TBC be its
BC-tree. The children of each B-node are in the order of visiting them around the
corresponding block. It remains to �nd a set of dp

2
e edges to bridge-connect a tree

with p leaves and a �xed order of the children of each B-node. Eswaran & Tarjan
make the graph bridge-connected by adding the edges (vi; vb p

2
c+i) (1 � i � dp2e) with

v1; : : : ; vp the leaves of TBC enumerated from left to right. Of course this destroys
the planarity and therefore we apply a complete new strategy.

Root TBC at an arbitrary non-leaf B-node. We number the nodes in postorder,
which means that we traverse the tree by a depth-�rst search traversal, where we
�rst visit the children of a node for numbering, before numbering the node. We visit
the children from left to right, which means that the leftmost descendant leaf gets
number 1 and the root gets number n. Let v1; : : : ; vn be the vertices where vertex
vi has postorder-number i. Let v(1); : : : ; v(p) be the leaves of TBC, numbered from
left to right. The following lemma is easy to prove:

Lemma 7.2.2 The descendants of any node have consecutive numbers in any post-
order numbering.

The idea of the algorithm is as follows: we visit the nodes in increasing postorder
numbering. If vi is a leaf v(k) and k is odd, then we simply add an edge (v(k �
1); v(k)). If vi is an internal node, then we test whether there exists an augmenting
edge (v(�); v(�)), with v(�) a descendant leaf of vi and v(�) not. If there is no such
edge, then we change some added edges to obtain this. To this end a variable x is
introduced, which increases monotone from 1 to p. Later it is proved that if v(x) is
a descendant leaf of vi, then there exists an augmenting edge (v(�); v(�)), with v(�)
a descendant leaf of vi and v(�) not. This precisely corresponds to the de�nition of
the bridge-connectivity.

92 Augmenting Outerplanar Graphs

The algorithm OuterBridgeConnect makes this idea more precise. (The
command lca(v(a); v(b)) denotes the least common ancestor of leaves v(a) and
v(b).)

OuterBridgeConnect

A := ;; f A becomes the set of augmenting edges. g
x := 1;
for i := 2 to n do
if vi is a leaf v(k) then
if k is odd then A := A [f(v(k � 1); v(k))g

else
let v(j1); : : : ; v(jh) be the descendant leaves of vi;
if j1 is even and x < j1 then
A := A� f(v(j1); v(j2))g [f(v(x); v(j1))g; x := j2

rof;
if x = 1 or x = p then A := A [f(v(1); v(p))g else
let (v(1); v(y)) 2 A;
if lca(v(y); v(x)) is an ancestor of lca(v(x); v(p)) then
A := A� f(v(1); v(y))g [f(v(y); v(x)); (v(1); v(p))g

else
A := A [f(v(x); v(p))g;

End OuterBridgeConnect

1

2 3 4

5

6

7 8

9

10

11 12

13

14

15

(1)

(2) (3) (4)

(5) (6) (7)

(8) (9)

1

2 3 4

5

6

7 8

9

10

11 12

13

14

15

(1)

(2) (3) (4)

(5) (6) (7)

(8) (9)

(a) Numbering of the nodes and

leaves.

(b) The bridge-connected

augmentation.

Figure 7.2: Bridge-connecting an outerplanar graph.

In Figure 7.2 an example is given of the algorithm OuterBridgeConnect. It
follows from the algorithm that jAj = dp

2
e, but to prove that G indeed is bridge-

connected and planar, we need the following lemma of Tarjan [108]:

7.2 Bridge-Connectivity 93

Lemma 7.2.3 Let G0 = (V;E [A), and let (v;w) be an edge of G0. Then (v;w)
is a bridge of G0 if and only if v is the parent of w in TBC and there is no edge
(�; �) 2 A such that � is a descendant of w in TBC and � is not a descendant of w
in TBC.

Lemma 7.2.4 If at some step during the algorithm, v(x) is a descendant of w 6= v1,
then in the augmented graph w has a descendant leaf, which has an edge to a leaf,
not a descendant of w.

Proof: Let us call the added edges (v(x); v(j1)) in OuterBridgeConnect
special. Consider a vertex w 6= v1 with descendant leaves v(j1); : : : ; v(jh) from left
to right. Notice that for every special edge (v(a); v(b)) a is odd and b is even, and
the next special edge starts in v(b+ 1). Assume �rst that at the end x > jh holds.
If jh is odd then later the special edge (v(jh); v(jh + 1)) is added, and v(jh + 1) is
not a descendant of w. If jh is even, then let (v(a); v(b)) be the special edge with
b � jh as high as possible. When (v(a); v(b)) is added, then x is set to b+ 1. Since
jh and b+ 1 are both even it follows that x � jh. At the end x � jh + 2 holds, thus
there is a special edge (v(a0); v(b0)) with a0 � jh < b0.

Assume now that at the end x � jh. If x = 1 then p > jh, and the edge
(v(x); v(p)) is added to A. Otherwise let (v(1); v(y)) 2 A. Assume �rst that j1 � y.
If jh = p then j1 > 1 thus the added edge (v(1); v(y)) or (v(1); v(p)) satis�es the
lemma. If p > jh then the added edge (v(x); v(p)) to A satis�es the lemma. If j1 > y
then if p > jh then the edge (v(y); v(x)) is added to A, otherwise the edge from v(x)
to v(y) or v(p) satis�es the lemma. 2

Lemma 7.2.5 G0 = (V;E [A) is bridge-connected.

Proof: Let (v;w) be any edge of G0 such that v = parent(w) in TBC. Let
the descendant leaves of w be fv(j1); : : : ; v(jh)g from left to right. If j1 = 1 then
initially v(x) is a descendant of w and we can apply Lemma 7.2.4, so assume j1 > 1.
Every leaf gets an incident augmented edge, hence if j1 = jh then the lemma directly
follows, thus assume jh > j1. If j1 is odd, then the edge (v(j1 � 1); v(j1)) is added.
If later (v(j1 � 1); v(j1)) is removed, then x is set to j1 + 1. Hence in this case v(x)
is a descendant of w, and we can apply Lemma 7.2.4. Otherwise, if j1 is even and
x < j1, then the edge (v(x); v(j1)) is added, and v(x) is not a descendant of w. If
x � j1, then v(x) is a descendant leaf of w, and we can apply Lemma 7.2.4. This
completes the proof. 2

Constructing the graph bc(G) can be done in linear time, as well as adding the
edges such that the graph is connected. Computing the postorder numbering of TBC
can easily be performed in linear time. At each internal node v we store a pointer
to its leftmost leaf. Using this plus one pointer to leaf v(x) the total required time
is O(1) when visiting vi in BridgeConnect. After visiting vn we have to decide

94 Augmenting Outerplanar Graphs

whether lca(v(y); v(x)) is an ancestor of lca(v(x); v(p)). We do this by looking
whether there is a vertex v0 on the path between v1 and v(p) such that that for
the leftmost leaf v(z) of v0, y < z � x holds. lca(v(y); v(x)) is an ancestor of
lca(v(x); v(p)), if and only if there exists such a vertex v0. This leads to the main
theorem of this section:

Theorem 7.2.6 The planar bridge-connectivity augmentation problem can be solved
in linear time and space for outerplanar graphs.

7.3 Biconnectivity

For the planar biconnectivity augmentation algorithm we assume that the input
outerplanar graph G is connected (otherwise we can apply Connect to G). Let
TBC be the BC-tree of G. We �rst study some properties of TBC. The following
de�nitions are from Hsu & Ramachandran [53].

De�nition 7.3.1 A node v of TBC is called massive if and only if v is a C-node
with d(v) � 1 > dp2e. A node v of TBC is critical if and only if v is a C-node with
d(v)� 1 = dp2e. TBC is critical if and only if there exists a critical C-node in TBC.

De�nition 7.3.2 TBC is balanced if and only if G has not a massive C-node. A
graph G is balanced if and only if TBC is balanced.

De�nition 7.3.3 (the leaf-connecting condition) Two leaves u1 and u2 of TBC
satisfy the leaf-connecting condition if and only if the path P from u1 to u2 in TBC
contains either (1) two nodes of degree more than 2, or (2) one B-node of degree
more than 3.

Some �rst observations concerning TBC are the following:

Lemma 7.3.1 ([97]) There can be at most one massive node in TBC. If there is
a massive node in TBC, then there is no critical node in TBC, and there can be at
most two critical nodes in TBC, if p > 2.

Lemma 7.3.2 ([53]) Let u1 and u2 be two leaves of TBC satisfying the leaf-con-
necting condition (de�nition 7.3.3). Let � and � be non-cutvertices in blocks of G
represented by u1 and u2 respectively. Let G0 be the graph obtained from G by adding
an edge between � and � and let P represent the path between u1 and u2 in TBC.
The following three conditions are true.

� p0 = p� 2.

� If v is a C-node in P with degree greater than 2 in TBC, then the degree of v
decreases by 1 in bc(G0).

7.3 Biconnectivity 95

� If v is a C-node in P with degree equal to 2, then v is eliminated in bc(G0).

The idea for obtaining the lower bound of maxfd� 1; dp
2
eg edges (see Theorem

3.0.1) without the requirement of planarity is to add an edge between two leaves
y and z under the conditions that the path P between y and z passes through all
critical vertices and the new block tree has two less leaves if TBC has more than 3
leaves. Thus the degree of any critical vertex decreases by 1 and the tree remains
balanced (see [53, 97]). In our case we also have to choose y and z such that the
augmented graph remains planar. We show that this can be achieved and that the
general lower bound stated in Theorem 3.0.1 is achieved for our problem.

The algorithm of Hsu & Ramachandran [53] for biconnecting graphs by adding a
minimum number of edges consists of three stages. Stage 1 is making G connected,
for which we used Connect of Chapter 4. We will describe now Stage 2 and 3
for our problem of biconnecting outerplanar graphs. Stage 2 eliminates the massive
nodes and Stage 3 makes the graph biconnected. Stage 2 can easily be modi�ed for
our problem but for Stage 3 we have to modify the algorithm extensively.

7.3.1 Stage 2

Suppose there is a massive node v� in TBC. (If no massive node v� exists, no action
is taken at Stage 2.) Let
 be the number of components of TBC � fvg containing
only one leaf. Call such components 1-chains. There are d(v�)�
 components, each
containing at least 2 leaves, so p �
 + 2(d(v�)�
). We pick v� as the root of TBC
and number the leaves of TBC from left to right by v(1); : : : ; v(p). We now add 2�
edges such that as many 1-chains as possible are coalesced into one by the following
algorithm, with � = d(v�)� 1 � dp

2
e.

i := 1;A := ;; f A becomes the set of augmenting edges. g
while jAj < 2� and i < n do
if v(i) and v(i+ 1) are both 1-chains then A := A [f(v(i); v(i+ 1))g;
i := i+ 1

od;
i := 1;
while jAj < 2� do
if v(i) is a 1-chain and (v(i); v(i+ 1)) 62 A then A := A [f(v(i); v(i+ 1))g;
i := i+ 1

od

Let G0 be the augmented graph by adding the 2� edges of A between the cor-
responding pendants. We do this by adding edges between exterior vertices on the
last blocks of the 1-chains, which preserves the planarity. Let T 0

BC be the BC-tree
of G0 with p0 leaves, with p0 = p� 2�, and let d0(v) denote the d-value of v in T 0

BC.

Lemma 7.3.3 ([97]) For all C-nodes v of T 0
BC, d

0(v)� 1 � dp0

2 e holds.

96 Augmenting Outerplanar Graphs

Proof: For v� holds that d0(v�)�1 = d(v�)�1�2� = dp
2
e� � = dp0

2
e. Consider

a C-node v 6= v�, and suppose that d0(v) � 1 > dp0

2
e. Now p � d(v�) + d(v) � 2

= (d(v�) � 1) + (d(v)� 1) > (dp
2
e + �) + dp0

2
e = (dp

2
e + �) + (dp

2
e � �) = 2dp

2
e � p,

which is a contradiction. 2

7.3.2 Stage 3

In Stage 3 we have to deal with a graph G where TBC is balanced. (Assume we
have performed Stage 2.) The idea is to add an edge between two leaves y and z
under the conditions that the path P between y and z passes through all critical
nodes (at most 2) and the BC-tree of the augmented graph has two leaves less if
TBC has more than 3 leaves. Thus the degree of any critical node decreases by one
and the tree remains balanced. We also want y and z to be leaves that satisfy the
leaf-connecting condition, because then we can use Lemma 7.3.2 and it will lead to
the desired lower bound of dp2e edges to biconnect a balanced graph. Moreover, this
path must be such that adding an edge between two non-cutvertices of the blocks
represented by y and z does not destroy planarity. Let us be more precise about
this. We call two leaves y and z in TBC adjacent if after adding (y; z) to TBC all
other leaves of TBC are either inside or outside the new created cycle C. If y and
z are adjacent, then we can add the edge (y0; z0), with y0 and z0 non-cutvertices in
the blocks of B-nodes y and z. Hence in every step we look for two adjacent leaves
y and z, satisfying the leaf-connecting condition and the path P between them in
TBC passes through all critical nodes. We will show that these pairs always exist.

Since the nodes with degree 2 are of no interest in the algorithm, we eliminate
them from the BC-tree by contracting their two incident edges into one. We do
this also during the algorithm. In particular, if the root of the BC-tree, say b�, gets
degree 2, then we take one of the children of b� the root and we eliminate b� from
the tree. This can easily be done in O(1) time. The algorithm becomes as follows:

OuterBiconnect(G)
(* G has at least 3 nodes and TBC is balanced; *)
Let TBC be rooted at an arbitrary B-node b�;
while p � 2 do
if d = 2 then let v be a B-node (di�erent from b�) with degree > 2
else let v be a C-node with the largest degree in TBC;
use algorithm Pathfinder(v) to �nd a node w with degree > 2 and two
adjacent leaves y and z such that the path between them passes through v and w;
�nd non-cutvertices � and � in the corresponding blocks of G represented
by y and z respectively;
add an edge between � and � and update TBC

od;
End OuterBiconnect

7.3 Biconnectivity 97

We now describe the procedure Pathfinder, that �nds a node w and the two
adjacent leaves y and z whose path P between them passes through v and w. Recall
from Section 7.2 that any order of children of a C-node is allowed, but the children of
a B-node may only be swapped from a left-to-right order into a right-to-left order.
We construct the following data structure for TBC (which is almost equal to the
construction of PQ-trees, introduced in [9], and explained in Section 2.2.2)

� Every node v in TBC is represented by a record. If v is not a leaf, then v
has a pointer to its leftmost and rightmost child, called l-child and r-child,
respectively.

� The children of each node are stored in a doubly linked list.

� If a node is a child of a C-node or the left- or rightmost child of a B-node,
then it has a parent-pointer to it, otherwise this pointer is nil.

Since we may permute the children of a C-node in any order, we sort the children
of each C-node v such that all non-leaf children occur at one side, say starting from
the leftmost child of v. The idea is to walk from v towards root b�, until the parent-
pointer is nil or b�. Let w be the highest node reached from v to b�, then we change
the tree such that the path from w to v goes via l-child pointers only. We reach leaf
y now by following l-child pointers from v and leaf z by following r-child pointers
from the left sibling of w if w is not the leftmost child of its parent, otherwise we
take the r-child pointers from the parent of w.

If there are only three leaves, then we can reduce TBC to a new tree with two
leaves by picking any pair of leaves in TBC and connecting them. We know that we
can reduce a BC-tree of 2 leaves into a single node by connecting the two leaves.
So assume further that p > 3. Then the algorithm can be described as follows
(swap(a; b) swaps the contents of a and b):

Pathfinder(node v);
(* v is the C-node with largest degree in TBC or a B-node with degree > 2; *)
w := v;
while parent(w) 6= nil and parent(w) 6= b� do
if w 6= l-child(parent(w) then swap(w, l-child(parent(w)));
w := parent(w)

od;
y := v;
while y is not a leaf do
if leftmost child of y is a leaf then swap(l-child(y), r-child(y));
y := l-child(y)

od;
if w 6= l-child(parent(w)) then z := left sibling of w
else z := r-child(parent(w));

98 Augmenting Outerplanar Graphs

while z is not a leaf do
if rightmost child of z is a leaf then swap(l-child(z), r-child(z));
z := r-child(z)

od;
End Pathfinder

Lemma 7.3.4 y and z are adjacent.

Proof: Let w be the vertex obtained in OuterBiconnect. Let w0 be the
parent of w. From w0 there are two paths downwards: one path via w and v to leaf
y, following only the leftmost child pointers. If w is the leftmost child of w0, then
the path to leaf z follows the rightmost child pointers of w0, otherwise the path to
leaf z follows the rightmost child pointers from the left sibling of w. Hence in both
cases all other leaves are on one side of the cycle, obtained by adding (y; z) to TBC.

2

This means that we can add an edge (�; �) between two non-cutvertices of the
blocks of y and z without destroying the planarity.

Lemma 7.3.5 y and z satisfy the leaf-connecting condition.

Proof: Let v be the starting node in Pathfinder, then d(v) > 2. When we
stop in the while-loop of pathfinder, then either parent(w) = b� or parent(w) =
nil and, hence, has degree > 2 and is part of path P . Assume w.l.o.g. that d(b�) < 3,
thus b� has degree 1, because we eliminated all nodes with degree 2 from TBC. w
has degree at least 3 because all non-leaf vertices have degree at least 3. If w 6= v
then we have two nodes with degree > 2 on the path, so assume w = v. Hence v is
the only child of b�. If v is a C-node and there is another node v0 with degree > 2
in TBC, then v0 is the leftmost or rightmost child of v, because the children of each
C-node in TBC are sorted such that all non-leaf children occur at one side. But path
P is constructed by taking from v the l-child pointers and taking from b� the r-child
pointers. Hence v0 is part of P . Assume �nally that v is a B-node (hence d = 2).
If v has degree > 3 then w = v satis�es the leaf-connecting condition, so assume v
has only two children. Since v is the only child of b�, both children of v are part
of P . Since p > 3, it follows that at least one of them is not a leaf, i.e., has degree
at least 3 and is part of P . Hence leaves y and z always satisfy the leaf-connecting
condition. 2

Lemma 7.3.6 For outerplanar graphs G with TBC balanced, the algorithm Out-

erBiconnect �nds a set of dp
2
e edges such that, when this set is added to G, a

biconnected planar graph is obtained.

7.3 Biconnectivity 99

Proof: Assume w.l.o.g. that p > 3. In this case, a critical node must have
degree more than 2.
Case 1: TBC has two critical nodes v and w. All other non-leaf vertices have degree
2 and, hence, are eliminated from the tree. Since Pathfinder will �nd another
node with degree > 2 if present, both v and w will be part of P .
Case 2: TBC has only one critical node v. OuterBiconnect takes the C-node
with highest degree, thus v is part of P . Since TBC is balanced and p > 3, there
exists a node w 6= v with degree more than 2, otherwise v is massive. Pathfinder
�nd a node w with degree > 2 by Lemma 7.3.5.
Case 3: TBC has no critical node. OuterBiconnect will take the C-node with
highest degree if d � 2, otherwise it takes a B-node with degree � 3. In both cases
Pathfinder �nds a node w 6= v with degree > 2 on path P .

In all three cases, we �nd two nodes of degree more than 2 or a B-node of degree
more than 3. Thus by Lemma 7.3.2, the number of leaves in the new BC-tree
reduces by two. When v or w is critical, the value of d reduces by 1. Thus the
BC-tree remains balanced. Hence the lower bound of Theorem 3.0.1 is achieved by
the algorithm. 2

For �nding the C-node with highest degree, we maintain an array bucket, and
initially store in bucket[i] all C-nodes with degree i. We use an extra pointer ptr
for �nding the C-node with highest degree, starting at bucket[d]. The degree of the
nodes only decrease, hence ptr moves monotone from bucket[d] to bucket[3]. Hence
the total work for �nding the C-node with highest degree is O(d) in total. When
the degree of a C-node c decreases, we can remove c from bucket[d(c)] and store c
in bucket[d(c)� 1] in O(1) time. If all buckets are empty, then there is no C-node
in TBC, because a C-node has not degree 1 and we eliminated all nodes of degree
2. We now have to take a B-node with degree > 2. Notice that either b� or one of
its children must have degree > 2, hence we can easily �nd such a B-node in O(1)
time.

If d(b�) � 3, then the lowest common ancestor of y and z is always a B-node
b1. Let w1; w2 be two children of b1, part of P . We walk from y to z and make
every C-node a child of b1 and we make all children of a B-node children of b1. We
store them between w1 and w2 in the order we visit them between y and z. Since
all B-nodes on P are now eliminated and every C-node on P is now child of P , the
degree of several nodes on P is decreased in the updated tree. Since only the degree
of nodes on P decreases, we test these nodes for degree 2, because then we eliminate
them. If the lowest common ancestor of y and z is a C-node c1, then we take a new
B-node b1, and do the same as above, and add �nally this B-node as child of c1 in
the tree TBC.

Lemma 7.3.7 Algorithm OuterBiconnect runs in O(n) time.

Proof: The BC-tree can be built in O(n) time, and has O(n) nodes. A linear
time bucket-sort routine is used to sort the degree of the C-nodes. By the algorithm

100 Augmenting Outerplanar Graphs

Pathfinder, the path P between the adjacent leaves y and z is found in O(jP j)
time. By Theorem 4.3.1, the number of times a node is visited is no more than its
degree. Since the summation of the degrees of all nodes in a tree with n nodes is
O(n), the lemma follows. 2

Lemma 7.3.7 completes the following result:

Theorem 7.3.8 There is a linear time and space algorithm to augment outerpla-
nar graphs by adding a minimum number of edges such that the resulting graph is
biconnected and planar.

7.4 Triconnectivity

7.4.1 Triconnecting Biconnected Outerplanar Graphs

We now consider the problem of how to augment an outerplanar graph G by adding
a minimum number of edges such that the augmented graph G0 is triconnected and
planar. To this end we �rst restrict our attention to biconnected outerplanar graphs,
which are cycles with non-intersecting chords. Every vertex with degree 2 must get
an additional edge. Every biconnected outerplanar graph has at least two vertices
v, with deg(v) = 2 [82]. Let K be the number of vertices of degree 2, then we will
show that the number of edges to be added to achieve triconnectivity is equal to
dK
2 e, which is optimal.
It is not very di�cult to construct an example where the outerplanar embedding

(all vertices occuring on the outerface) has to be changed to obtain an optimal
augmentation. As an example, consider the cycle on vertices v1; : : : ; vn and let n
vertices w1; : : : ; wn be given with wi connected to vi and vi+1 (1 � i < n). Vertex
wn is connected to v1 and vn. The resulting graph G is outerplanar and each vertex
wi must receive an augmenting edge. Hence dn

2 e edges must be added. Assume edge
(wi; wj) is added, with j > i and j�i as small as possible. If j = i+1 then it follows
that G � fvi; vi+2g is disconnected. If j > i + 1 then we cannot add an edge from
wi+1 without crossing edge (wi; wj). Hence we cannot always maintain the original
outerplanar embedding for constructing an optimal augmentation.

Let G be an outerplanar graph with a given outerplanar embedding. Assume the
vertices are numbered v1; : : : ; vn along the outerface. We now construct the dual
graph G� of G: every interior face F of G is represented by a vertex wF in G�.
There is an edge between two vertices (wF ; wF 0) in G�, i� F and F 0 share an edge
in G. We also represent every vertex v of degree 2 by a vertex v in G�, and add the
edge (v; vF), i� v 2 F in G. Observe that G� is a tree and the leaves of G� are the
vertices of degree 2 in G.

Notice also that if vi and vj share an interior face and j� i > 1, then G�fvi; vjg
is disconnected. If j�i > 1, then there is a vertex vk with deg(vk) = 2 and i < k < j.
Assume vi and vj share face F then vertex wF has descendant leaf vk. If we add

7.4 Triconnectivity 101

edges to G� such that there is a path P from vk to a vertex vl, not a descendant of
wF and wF 62 P , then it follows that vi and vj are not a cutting pair anymore. This
observation leads to the following lemma:

Lemma 7.4.1 If G� is balanced, then applying OuterBiconnect to G�, and then
adding the corresponding edges in G gives a triconnected graph.

Proof: Let G0 be the augmented graph of G after applying OuterBiconnect
to G�. Consider two vertices vi and vj. They split the outerface of G into two paths:
a path P1 from vi+1 to vj�1, and a path P2 from vj+1 to vi�1. If vi and vj do not
share an interior face, then there is chord (vk; vl) inbetween, connecting P1 with P2.
Hence G�fvi; vjg is connected. Assume further that vi and vj share an interior face
F and let j > i+1. Let vk be a vertex with degree 2 and i < k < j. If we delete wF

in the augmentation G0� of G�, then the graph G0� is still connected. Let (va; vb) be
an added edge in G0�, with va a descendant of wF and vb not a descendant of wF in
G�. This implies that i < a < j and b < i or b > j. There is an edge between P1

and P2 in G0, hence vi and vj are not a cutting pair in G0. Since this holds for every
pair vi; vj (j > i), sharing an interior face, this proves the lemma. 2

In the algorithm OuterBiconnect the order of the children of a C-node is
changed from time to time, to preserve the planarity. How can we deal with this
problem here, since the embedding of G� (hence the order of the children) is �xed.
The solution we present here is as follows: We root G� at an arbitrary vertex of
degree at least 2, say br. We assume that every internal vertex of G� is a C-node,
and every leaf of G� is a B-node. However, the order of children of each vertex
is �xed. After �nding v with maximal d(v) we walk towards br, until the current
vertex is not the leftmost child of its parent, or the parent is br. If the parent is
not br, then it has degree at least 3, which is su�cient to satisfy the leaf-connecting
condition. Hence Lemma 7.3.2 still holds, and of course, planarity is preserved.

The only point is now when the graph is not balanced, or in other words: how to
implement Stage 2? Recall that a 1-chain is a component of TBC � fvg, containing
only one leaf. The solution we present is to add edges between the 1-chains inside
the shared interior face. More precisely, let v� be the massive node in G�, i.e.,
d(v�) > dp

2e�1. Root G� at v� and let v(1); : : : ; v(
) be the leaves from left to right
in G�, which are 1-chains. We now add an edge between 1-chain v(d

2
e � i) and

v(d
2e+ i), for 1 � i < � with � = d(v�)� 1�dp2e. Since p � 2d(v�)�
 (see Section
7.3.1) it follows that � � d
2e � 1.

Let G0 be the augmented graph by adding the � edges of A between the cor-
responding pendants. We do this by swapping the 1-chains inside interior face F
and adding edges between vertices on the last blocks of the 1-chains inside face F �,
which preserves the planarity. For updating G� we simply delete the two 1-chains
from G�. This decreases the number of leaves and the degree of v� by two. Let G�

1

be the resulting tree with p0 leaves, with p0 = p�2�, and let d0(v) denote the d-value
of v in G�

1. The following variant of Lemma 7.3.3 can be proved.

102 Augmenting Outerplanar Graphs

Lemma 7.4.2 For all nodes v of G�
1, d

0(v)� 1 � dp0

2
e holds.

Proof: For v� holds that d0(v�) � 1 = d(v�) � 1 � 2� = dp
2
e � � = dp0

2
e.

Consider a v 6= v�, and suppose that d0(v) � 1 > dp0

2
e. Now p � d(v�) + d(v) � 2

= (d(v�) � 1) + (d(v)� 1) > (dp
2
e + �) + dp0

2
e = (dp

2
e + �) + (dp

2
e � �) = 2dp

2
e � p,

which is a contradiction. 2

After this we apply the algorithm OuterBiconnect on the graph G0� as de-
scribed above. The corresponding edges are added in the outerface of G. Since this
algorithm works in linear time and space, we obtain the following result:

Lemma 7.4.3 There exists a linear time algorithm to augment a biconnected out-
erplanar graph G by adding a minimum number of edges such that the augmented
graph G0 is triconnected and planar.

7.4.2 Triconnecting Outerplanar Graphs

To triconnect outerplanar graphs G, which are not necessarily biconnected, we use
the technique of the previous section. If G is not connected, then the algorithm
Connect(G) is applied to connect the components with each other, so assume that
G is connected.

We now recognize the blocks of G and build the BC-tree TBC. Notice that if a
block Bi contains two cutvertices, c1 and c2, then deleting c1 and c2 disconnects G.
To be more precise about the blocks, which must receive an augmenting edge, we
state the following lemma, which can be veri�ed quite easily.

Lemma 7.4.4 A block Bi in an outerplanar graph needs at least one augmenting
edge in any triconnectivity augmentation if and only if there is a vertex of degree 2
in Bi or its corresponding B-node has degree 2 in TBC.

Let one arbitrary B-node b� be the root of TBC. Again the order of the children of
a B-node is �xed. We assume that the left-to-right-order of the children of a B-node
corresponds to walking counterclockwise around the outerface of the corresponding
block.

The idea is to start with the pendant blocks Bi, and to apply BicOuterTri-
connect on Bi. But now there must go at least two edges from vertices of Bi to
vertices, not part of Bi. Indeed, for this we do not add the last augmentation edge
to Bi. This implies that two or three vertices of Bi remain with degree 2. Let Bj

be the block, corresponding to the parent of the parent of the B-node of Bi in TBC.
When applying OuterBiconnect on Bj, we represent Bi by a vertex vBi

with k
leaves as children in the dual graph B�

j of Bj, where k is the number of vertices of
degree 2.

7.4 Triconnectivity 103

1

2

3
4 5

6
7

8

9

10

11

12

1314

15

16
17

A

B

C

D

F

E

G
18

19

20

A
B

C

D

E

F

G
18

19

20 1

15

12

11

6

7

8

(a) The initial graph G. (b) The tree G�.

A
B

C

D

E

F

G
18

19

20 1

15

12

11

6

7

8

1

2
3

4 5

6
7

8

9

10

11

12

13
14

15

16

17

A

B

C

D

F

E

G
18

19

20

(c) Applying OuterBiconnect to

G�.

(d) The optimal triconnectivity

augmentation.

Figure 7.3: Triconnecting an outerplanar graph.

104 Augmenting Outerplanar Graphs

Notice that always at least two edges have to go from Bi or descendants of Bi

to vertices, not descendants of Bi. If pendant block Bi consists of only one single
vertex v in G or if Bi has only one vertex v of degree 2, then we represent this by 2
leaves as children of vBi

, because there has to go two edges from v to vertices, not
part of Bi. Since every vertex vBi

of a pendant block Bi has 2 or 3 leaves, no new
1-chains or massive nodes are introduced in B�

j .
After visiting the pendant blocks we visit these blocks Bj, for which all descen-

dant B-nodes are visited by OuterBiconnect. We compute the dual graph B�
j

in which every descendant B-node of the corresponding block Bi is represented by
a vertex vBi

. vBi
has k children, where k is the number of edges, which has to go to

the remaining part of the graph. We apply OuterBiconnecton B�
j . In the same

way, two or three edges have to go from Bj or its descendants to the remaining part
of the graph. We apply this algorithm bottom-up until we are at the root of TBC. In
each step we visit a block Bi and the total time is linear in the number of vertices of
Bi+ the number of children of the B-node of Bi. Combining this observation with
Lemma 7.4.1 yields the following theorem.

Theorem 7.4.5 There is a linear time and space algorithm to augment an out-
erplanar graph G by a minimum number of edges such that the resulted graph is
triconnected and planar.

7.5 Triangulating Outerplanar Graphs

7.5.1 Triangulating One Face of a Planar Graph

Now we consider the following problem: given a planar graph G with a planar em-
bedding, triangulate a face F of G while minimizing the maximum degree. We
show by using dynamic programming that this problem can be solved exactly in
polynomial time. We use this algorithm to triangulate all interior faces of an out-
erplanar graph while minimizing the maximum degree. Dynamic programming has
been applied for several related triangulation algorithms of polygons, described by
Edelsbrunner et al. [24, 25, 26]. They present polynomial time algorithms (using
dynamic programming) for triangulating polygons while maximizing the minimum
height, minimizing the maximum slope, or minimizing the maximum eccentricity.
Unfortunately, these algorithms cannot be translated directly to our problem.

Let a face F of G on k vertices v1; : : : ; vk be given (numbered clockwise around
the face). Every vertex vi of F has degree � 2. Some edges (vi; vj) with vi; vj 2 F
may occur. These edges are called forbidden edges and are embedded outside F .
Notice that in every triangulation the vertices v1 and vk have a common neighbor
vp (2 � p � k � 1) inside face F , which splits the face F into two faces F1 (with
vertices v1; : : : ; vp) and F2 (with vertices vp; : : : ; vk). If (v1; vp) or (vp; vk) is already
present outside F , (thus 2 < p < k � 1), then this triangulation is not possible,
since it would imply multiple edges. Otherwise, we recursively triangulate the faces

7.5 Triangulating Outerplanar Graphs 105

F1 and F2. Let F 0
1 and F 0

2 denote the triangulated faces of F1 and F2, then the
highest degree in F 0

1 and F 0
2 is important, but moreover, since F1 and F2 share vp,

the increase of deg(vp) in F 0
1 and F 0

2 must be added to deg(vp) in F . When we
examine triangulations of a face Fij, formed by vertices vi; vi+1; : : : ; vj, we inspect
the di�erent values of increases of deg(vi), deg(vj) and deg(vp) in F1 and F2. See
�gure 7.4.

v1

2v

v
v

v

F

F1

2

k−1
k

p

Figure 7.4: Recursive de�nition of the triangulation of one face.

Notice that when p = 2 (or k� 1) then the edge (v1; v2) (or (vk�1; vk)) is already
present, hence need not to be added. To deal with this, we delete the edges (vi; vi+1)
(1 � i < k) and decrease deg(vi) by 2. Let incr(vi) denote the increase of deg(vi)
when triangulating F1 to F 0

1 (assuming vi 2 F1). For a triangulation of a face Fij we
have to store the di�erent increases of deg(vi) and deg(vj) in a table. Let D[i; j; i0; j 0]
be the maximumdegree of Fij by a triangulation with incr(vi) = i0 and incr(vj) = j 0.
If such a triangulation does not exist, D[i; j; i0; j 0] = 1. A simple analysis shows
the following recursive formula if i < j � 1:

D[i; j; i0; j0] := min fmax f D[i; p; i0 � 1; p0];D[p; j; p00; j 0 � 1];
i < p < j deg(vi) + i0 + 1;
p0; p00 deg(vj) + j 0 + 1;

(i; p) and (j; p) deg(vp) + p0 + p00 + 2
not forbidden g

g

If i = j � 1 then for all i0; j 0 � 0: D[i; j; i0; j0] =maxfdeg(vi), deg(vj)g. We want
to compute mini0;j0fD[1; k; i0; j0], deg(v1) + i0 + 1, deg(vk) + j0 + 1g. We do this by
using dynamic programming, based on the above formulas, and some other ideas
which help to decrease the running time of the algorithm.

Theorem 7.5.1 There is an exact O(k3�(G) log�(G)) time algorithm to trian-
gulate one face of k vertices of a graph G such that the maximum degree of the
triangulation G0 is minimized.

106 Augmenting Outerplanar Graphs

Proof: Let a face F be given. By Theorem 5.3.2 and 6.2.1, we know that we can
triangulate F such that the maximumdegree is at most d3

2
�(G)e+O(1). We do not

compute all values of D[i; j; i0; j0] as this would be too time-consuming, but instead
apply binary search on the maximumdegree. So we must test for O(log �(G)) values
of K whether a triangulation with maximum degree � K exists. Let DK[i; j; i0; j0]
= true () D[i; j; i0; j0] � K. Suppose K is �xed. Note that it is su�cient to know:
for all i0, 1 � i0 � K� deg(vi), the smallest value of j 0 such that DK [i; j; i0; j0] = true
and for all j0, 1 � j0 � K� deg(vj), the smallest value of i0 such that DK[i; j; i0; j0] =
true. Denote these smallest values with FK[i; j; i0] and GK [i; j; j 0]. (If such j0 or i0

not exist, FK[i; j; i0] =1, or GK [i; j; j 0] =1.)
Now DK[i; j; i0; j 0] = true, if and only if there exists a p, i < p < j, (vi; vp) and

(vj; vp) not forbidden and FK[p; j;K� deg(vp)� FK[i; p; i0]� 2] � j 0. (The increase
of the degree of vp in face Fpj may not be larger than K� deg(vp) � FK[i; p; i

0] �
2. FK[i; p; i0] edges are used for face Fip, and there are edges (i; p); (p; j).) So
FK[i; j; i0] = minfFK[p; j;K� deg(vp) � F [i; p; i0] � 2]ji < p < j; (i; p); (p; j) not
forbiddeng. The latter formula allows us to compute all values of FK[i; j; i0] (1 �
i � k; 0 � i � p) in O(k3K) time. When FK is computed, one easily determines
whether a triangulation with maximum degree � K exists. Using binary search on
K, we can implement it such that the total runtime becomes O(k3�(G) log �(G)).

2

7.5.2 Triangulating Outerplanar Graphs

In this section we consider the problem of triangulating the interior faces of an
outerplanar graph G. If G is biconnected, then the augmentation G0 is a mop.
Every triangulated polygon is a mop [88]. Also recognizing outerplanar graphs is
based on recognizing mops [82].

First, we remark that we can treat all blocks separately. The only relevant
information for a block B for G�B is cutvertex v, belonging to both B and G�B.
If B is connected by a bridge with G�B, then no information of the triangulation
of B is relevant for G � B. Hence assume that G is bridge-connected, otherwise
we can apply the following method to the bridge-connected components of G. We
construct a tree T , where every interior face F of G is represented by a node vF in
T . We have two types of edges:

� add an edge (vF1; vF2), if F1 and F2 share an edge. By de�nition, F1 and F2

belong to the same block.

� add an edge (vF1; vF2), if F1 and F2 share a vertex in G, and F1 and F2 belong
to di�erent blocks of G.

We now have a tree where each node vF represents a face F . Root T at an arbitrary
node vF . Let the parent of node vFa be vFb, then we call Fb the parent-face of Fa.

7.5 Triangulating Outerplanar Graphs 107

The common edge (or common node if Fa and Fb belong to di�erent blocks) is called
the parent-edge (or parent-node respectively) of Fa. For every edge (vi; vj) of face Fa
that is a parent-edge of some other face Fb, de�ne D[vi; j; i0; j0] to be the maximum
degree if Fb and all their descendants in H are triangulated, such that the degree
increase of vi is at most i0, and the degree increase of vj is most j 0. For every vertex
vi of face Fa that is parent-node of at least one other face Fb, de�neD[vi; i

0] to be the
maximum degree, if these faces Fb and all their descendants in H are triangulated,
such that the degree increase of vi is at most i0.

We now use a procedure, similar to the one, described in Section 7.5. Apply
binary search on the maximum degree K. For a �xed K, de�ne FK[i; j; i0] and
GK [i; j; j0] as in the proof of Theorem 7.5.1. De�ne HK(i) = minfi0jD[i; i0] � Kg.
Compute the tables or values for FK; GK and HK bottom up in the tree H. When
we deal with a face, we add HK(i) to the degree of vi. Let the tables FK[i; j; i0] and
GK [i; j; j0] play the same role as they played in the proof of Theorem 7.5.1. With
minor modi�cations of this algorithm, one can compute the table FK[v0i; v

0
j; i

0] and
GK [v0i; v

0
j; j

0] for the parent-edge (v0i; v
0
j) of Fa, or compute the contribution to HK [v0i]

for the parent-node v0i of Fa. We omit some easy details here. Applying a similar
proof as in Theorem 7.5.1, the following result can be obtained:

Theorem 7.5.2 There is an O(n3�(G) log �(G)) algorithm to triangulate all inte-
rior faces of an outerplanar graph while minimizing the maximum degree.

108 Augmenting Outerplanar Graphs

Chapter 8

Conclusions

In Part B we developed e�cient algorithms for several augmentation problems for
planar and outerplanar graphs. For outerplanar graphs G, optimal O(n) time and
space algorithms are given for making G bridge-connected, biconnected or tricon-
nected by adding a minimum number of edges, while preserving planarity. In all
three cases, the degree of every vertex increases by at most 2. Triangulating all
interior faces of an outerplanar graph while minimizing the maximum degree can be
achieved in polynomial time as well.

For planar graphs we presented augmentation algorithms, adding only a con-
stant times the minimum number of edges to preserve the planarity and di�erent
connectivity constraints. In Figure 8.1 an overview is given of the presented algo-
rithms of Part B. Except for the algorithm Triangulate, the maximum increase
of the degree is equal to the worst-case lower bound. In Triangulate the maxi-
mum increase of the degree is at most an additive constant from optimal. To our
knowledge, this is the �rst time that augmentation problems are considered with
the additional planarity constraint. The augmentation problems arise in the area of
graph drawings, in which the input planar graph must be biconnected, triconnected
or triangulated. In Chapter 13 we will also present an algorithm for 4-connected tri-
angular planar graphs, but unfortunately, we cannot augment every planar graph by
adding edges such that it becomes a 4-connected triangular planar graph. Therefore,
we did not consider this problem in Part B.

Augmentation algorithms, not dealing with the planarity constraint, are becom-
ing a core area in the literature on graph algorithms. We mention here the work
on augmentation algorithms, with respect to vertex-connectivity [27, 36, 51, 52, 53,
72, 97, 114, 117] and edge-connectivity [33, 72, 85, 115, 118]. Among these pa-
pers, optimal linear time algorithms are given for augmenting graphs with respect
to bridge-connectivity [27], biconnectivity [53, 97] and triconnectivity [52].

However, up to now we did not consider the problem of augmenting an arbitrary
non-biconnected planar graph to a triconnected planar graph by adding a minimum
number of edges. As announced in Chapter 5, the decision variant of this problem is
still open. One approach to solve this problem is to make the graph biconnected, e.g.

109

110 Conclusions

algorithm time space input graph added lower bound �(G0)

complexity compl. G edges for �(G0)

Connect O(n) O(n) disconnected optimal �(G) + 2 �(G) + 2

Biconnect O(n) O(n) connected | �(G) + 2 �(G) + 2

2*OptBiconnect O(n � �(n; n)) O(n) connected 2*OPT. �(G) + 2 �(G) + 2

2*OptBridgeConnect O(n � �(n; n)) O(n) connected 2*OPT. �(G) + 2 �(G) + 2

Triconnect O(n) O(n) biconnected 3

2
*OPT. d 3

2
�(G)e d 3

2
�(G)e

Triangulate O(n) O(n) triconnected optimal �(G) + 3 �(G) + 8

Figure 8.1: Overview of algorithms in Part B.

by applying 2*OptBiconnect, and then making the graph triconnected, e.g. by
applying Triconnect. This of course does not necessarily lead to a triconnected
planar graph with a minimum number of edges, but moreover, there are planar
graphs for which any optimal augmentation to a biconnected planar graph does
not lead to an optimal augmentation to a triconnected planar graph. In Figure
8.2 an example is given. Also it is open whether applying 2*OptBiconnect and
Triconnect leads to a solution for the general planar triconnectivity problem with
the number of added edges only a small constant times optimal.

(a) Optimal

biconnectivity

augmentation

(b) From biconnectivity

to triconnectivity

(c) Optimal

triconnectivity

augmentation

Figure 8.2: Counterexample for triconnecting non-biconnected planar graphs.

When the input graph G is embedded, i.e., given as a plane graph G, then the
augmentation problem with respect to biconnectivity becomes easily solvable. In a
plane graph every pendant is already assigned to a face. In each face we have to
�nd an optimal matching between the pendants, while preserving planarity. This
problem is equal to applying OuterBiconnect to each face of the graph, leading
to an optimal linear time algorithm for biconnecting general plane graphs while
preserving planarity.

When the plane graph G must be augmented to a triconnected plane graph,
then the problem is more complicated. We cannot simply use the algorithm for
triconnecting outerplanar graphs to every face F of G. Because when we triconnect
the components inside F , then also edges can be added outside F . We have to place

Conclusions 111

these edges outside F in such a way that triconnecting the adjacent faces of F can
also be done by adding a minimum number of edges. Notice also that Lemma 5.1.2
does not hold anymore for a plane graph. Though it is not very hard to change the
algorithm Triconnect such that it works within 3

2 times optimal in O(n) time for
plane graphs, it seems pretty hard to obtain an optimal solution in polynomial time.

We also considered the problem of triangulating planar graphs G. We proved that
triangulating a biconnected planar graph G such that the maximum degree is � K
is NP-hard. Jansen proved that triangulating a plane graph, with coordinates given
for every vertex, such that the triangulated plane graph has maximum degree � K
is also NP-hard [55]. On the positive side, we presented a linear time algorithm for
triangulating a planar graph, such that the maximum degree is at most an additive
constant from an existential lower bound. For triconnected planar graphs, this
increase of the degree is at most a constant from optimal, and it is interesting to
close this gap, or in other words: is the problem of triangulating a planar graph such
that the maximum degree is � K also NP-hard for triconnected planar graphs?

112 Conclusions

Part C

Drawing Planar Graphs

113

Chapter 9

Drawing Algorithms

During the last decades many drawing algorithms have been described in the lit-
erature, both from the theoretical and the practical point of view. The problem
of nicely drawing a graph in the plane has received increasing attention due to
the large number of applications. Examples include VLSI layout, algorithm an-
imation, visual languages and CASE tools. In Chapter 1 some more detailed
examples are presented. Several representations are possible. Typically, vertices
are represented by distinct points in a line or plane, and are sometimes restricted
to be grid points. (Alternatively, vertices are sometimes represented by line seg-
ments [58, 89, 96, 104].) Edges are often constrained to be drawn as straight lines
[15, 31, 32, 34, 58, 80, 89, 96, 98, 104] or as a contiguous line segments, i.e., when
bends are allowed [100, 102, 105, 106]. The objective is to �nd a layout for a graph
that optimizes some cost function such as area, minimum angle, number of bends,
or that satis�es some other constraint. In [18], Di Battista, Eades, Tamassia &
Tollis give a good annotated bibliography with more than 250 references including
several pointers to applications in which drawing algorithms appear. In this section
we describe several techniques in more detail, which deal with undirected planar
graphs. We do not have the intention of being complete in our overview, but we
try to give the more recent general techniques that leads to interesting theoretical
and practical bounds. The algorithms serve as a starting point for the new results,
presented in Part C.

9.1 Straight-line Drawings

By a result, independently obtained by Wagner [113], F�ary [31] and Stein [99], every
planar graph can be drawn in the plane with straight-line edges. This is also obtained
by the following constructive proof, due to Read [92]: assumeG is a triangular planar
graph. (If G is not triangulated, then in linear time we can add edges such that G
is triangulated, see Chapter 6.) By planarity one can verify that every vertex v of G
has at least one neighbor u such that u and v have exactly two neighbors in common.

115

116 Drawing Algorithms

If v does not belong to the outerface, then we contract edge (u; v), i.e., we add edges
from u to all neighbors of v, which are not a neighbor of u yet, and remove vertex
v. We draw the reduced graph G0 with n � 1 vertices recursively. Afterwards we
remove the added edges from u to the (previous) neighbors of v and place v inside
the corresponding face such that v is visible from its previous neighbors. This gives
a drawing with straight-line edges. Using the observation that every planar graph
G has a vertex v with deg(v) � 5, we can implement this algorithm such that it runs
in O(n) time, requiring O(n2) space [92].

v

vvu w

a

b

c d

a

b

c d

u

a

b c

d

u

a

b c

d

Figure 9.1: The basic concept of Read's drawing algorithm.

A drawback of this algorithm is that vertices are placed on real coordinates.
Moreover, it sometimes distributes the vertices unevenly, thus requiring high-reso-
lution display devices for a drawing, since the vertices can be placed very close to
each other (this is called clustering).

Using a more advanced and deeper characterization of planar graphs one can
draw every triangular planar graph planar with straight lines such that the vertices
are placed on grid coordinates. A method for this, described by de Fraysseix, Pach
& Pollack [34] will be outlined in Chapter 10. Independently, Schnyder [98] obtained
a linear time algorithm to draw a triangular planar graph on an (n�2)�(n�2) grid,
based on a novel representation of triangulated planar graphs, called the barycentric
representation. The vertices are widely distributed on the grid, and there is a lower
bound on the minimum edge length. Planar drawings require an
(n2) area in
the worst-case [34]. However, a drawback of all these drawing algorithms is that
the minimum angle between lines can be very small, which makes the drawing
unattractive. In [80], Malitz & Papakostas showed that every d-planar graph G can
be drawn in the plane such that the minimum angle is at least �d radians, where
0 < � < 1 is a constant (approximately 0.15). This follows by the remarkable result
that one can represent every vertex v of a triangular planar graph G by a closed
disc D(v) such that if (u; v) 2 G, then the discs D(u) and D(v) touch each other (a
so-called disc-packing). A disc packing D induces a planar graph G in the obvious
way: place a vertex at the center of each disc and for each pair of touching discs,
create an edge between the vertices at the centers of the two discs. Unfortunately, the
proof is non-constructive, and the minimum angle is quite small. A polynomial-time

9.2 Convex Drawings 117

approximation of a disc-packing realization, and a nice generalization to triconnected
planar graphs is announced by Mohar (personal communication).

On the other hand, G can be drawn non-planar with straight lines such that
the minimum angle is at least
(1

d
), by a result of Formann et al. [32]. They also

proved that deciding whether a graph with maximum degree 4 can be drawn with
minimum angle � �

2
is NP-complete. In Kant [66] it it is proved that deciding

whether a biconnected planar graph can be drawn planar with the minimum angle
� K is NP-complete.

9.2 Convex Drawings

Another way for drawing planar graphs is by drawing it with convex faces, i.e.,
a planar straight-line drawing such that all internal face boundaries are convex
polygons. This problem of obtaining convex drawings was �rst studied in more
detail by Tutte [110]. Tutte also gave a simple method for �nding a convex drawing.
Here the external face is any prescribed convex polygon and the position P (v) =
(x(v); y(v)) of each vertex v is given by

x(v) =
1

deg(v)

X

(v;w)2E

x(w) y(v) =
1

deg(v)

X

(v;w)2E

y(w)

Using Gaussian elimination the coordinates can be found by a simple algorithm,
working inO(n3) time, and requiringO(n2) space. Using a more sophisticated sparse
matrix elimination scheme which relies on the planar separator theorem, this leads
to an O(n

p
n) algorithm, requiring only O(n log n) space [79].

Thomassen [109] characterized the class of planar graphs that admit a convex
drawing. We do not give the full characterization here, but it can be described as
the class of biconnected planar graphs, where \almost" all separation pairs are part
of the outerface. Based on this characterization, Chiba et al. [14] present an O(n)
time recursive algorithm, which can be outlined as follows: assume an outerface F
of the biconnected planar graph G has been chosen, assume that all vertices v 2 F
are placed, and that vertices of degree two are eliminated, while connecting their
neighbors. (The vertex of degree 2 can later be placed on the straight-line segment
joining the two vertices adjacent to it.) The remaining part of the algorithm is as
follows:

ConvexDraw(G); f assume n � 4, otherwise G is drawn as a triangle g
let v be a vertex, which is a corner point of the outerface;
let G0 := G� fvg;
let B1; : : : ; Bp be the blocks of G

0;
let for each Bi, vi and vi+1 be two cutvertices of Bi, with (v; vi); (v; vi+1) 2 E;
place the vertices on the outerface of every Bi on a convex area
inside triangle v; vi; vi+1 such that:

118 Drawing Algorithms

B1

B

B

2
Bp−1

p

v

v

v

vv

v

v1

2

3 p−1

p

p+1

....

Figure 9.2: Drawing a planar graph convex (from [14]).

� the vertices adjacent to v are corner points of a convex polygon;
� the other vertices are on straight-line segments of this polygon;

for each block Bi do ConvexDraw(Bi) rof;
End ConvexDraw

See Figure 9.2 for an idea of the algorithm, and see [14] for a complete descrip-
tion. In [13], Chiba et al. extended the algorithm to general planar graphs such
that the outerface of each drawn triconnected component is drawn as a convex poly-
gon. Unfortunately, experiments showed that this algorithm sometimes distributes
unevenly, thus requiring high-resolution display devices.

9.3 Drawing Planar Graphs Using the st-Numbe-

ring

Several drawing algorithms for planar graphs are based on the st-numbering. An
st-numbering is a numbering of the vertices v1; : : : ; vn of G such that (v1; vn) 2 E
and every vertex vi (1 < i < n) has edges to vertices vk and vl, with k < i < l. This
is only possible when G is biconnected, hence assume G is biconnected. (Otherwise,
dummy edges can be added to G to make G biconnected while preserving planarity.
See Chapter 4 for an extensive investigation of this augmentation problem. The
dummy edges are suppressed in the �nal drawing.) The st-numbered graph is called
an st-graph .

Let the edges (vi; vj) be directed vi ! vj, if j > i. Let a planar embedding of
G be given. G has exactly one source (vertex s = v1) and one sink (vertex t = vn).

9.3 Drawing Planar Graphs Using the st-Numbering 119

The orientation is also called a bipolar orientation [96]. We �rst restate and extend
Theorem 2.2.2.

Theorem 9.3.1 ([104, 122]) All the entering edges of any vertex in G appear con-
secutively in the rotation around v, as do all the exiting edges, in any embedding of
G. The boundary of every face consists of exactly two directed paths in G.

We de�ne left(e) (right(e)) to be the face to the left (right) of e. The face
separating the incoming from the outgoing edges in the clockwise direction is called
left(v) and the other separating face is called right(v). The highest and lowest
numbered vertex of the face is denoted by high(F) and low(F), see Figure 9.3.

vleft(v) right(v)
left(e) e right(e)

F

low(F)

high(F)

Figure 9.3: Properties of planar st-graphs.

The edges of the dual graph G� of G are directed as follows: if Fl and Fr are the
left and right face of some edge (v;w) of G, then the dual edge is directed from Fl
to Fr if (v;w) 6= (s; t) and from Fr to Fl, if (v;w) = (s; t). The orientation of G� is
also a bipolar orientation, with source s� the right face of (s; t) and sink t� the left
face of (s; t).

9.3.1 Visibility Representation

In a visibility representation of a planar graph vertices are represented as horizontal
segments and edges as vertical segments such that each edge segment has its end-
points on the segments associated with its incident vertices and does not cross any
other vertex segment. Otten & van Wijk [89] introduced this representation, which
has applications to circuit schematics, and showed that every planar graph admits
one. Here we describe in more detail the algorithm of Rosenstiehl & Tarjan [96].
(This algorithm was found independently by Tamassia & Tollis [104].)

120 Drawing Algorithms

For drawing the graph we �rst construct an st-numbering, and direct the edges
from s to t. Then we compute the dual graph G�, and direct the edges in G� from
source s� to sink t� as described above. For each vertex v of G, let d(v) denote the
length of the longest path from s to v. Let D = d(t). For each vertex F of G�, let
d�(F) denote the number of nodes on the longest path from s� to F . Let d�(s�) = 1
and D� = d�(t�). These lengths can easily be computed in linear time and give
the coordinates in the visibility representation. The width of the drawing becomes
D� � 1 and the height becomes D.

Visibility(G);
compute an st-numbering for G;
construct the planar st-graph G and its dual G�;
compute d(v) for all vertices in G and d�(F) for vertices in G�;
for each vertex v 6= s; t do
draw a horizontal line between (d�(left(v)); d(v)) and (d�(right(v))� 1; d(v));

rof;
for vertex s, draw a horizontal line between (0; 0) and (D� � 1; 0);
for vertex t, draw a horizontal line between (0;D) and (D� � 1;D);
for each edge (u; v) 6= (s; t) do
draw a line between (d�(left(u; v)); d(u)) and (d�(left(u; v)); d(v));

rof;
for edge (s; t), draw a line between (0; 0) and (0;D);

End Visibility

Theorem 9.3.2 ([96, 104]) The algorithm Visibility(G) computes in linear time
a visibility representation of a biconnected planar graph on a grid of size at most
(2n � 5) � (n� 1).

a

b

c
d

e

f

g

bf

d c

e

a

g

s

t

0

1 1

2

2

3

4

s* t*

1
2

3

4

5

6

Figure 9.4: Constructing a visibility representation.

The steps are also illustrated in Figure 9.4. It follows that the vertices v of G,
v 6= s; t, of degree 2, are represented by a single point in the visibility representation

9.3 Drawing Planar Graphs Using the st-Numbering 121

(e.g., see Figure 9.7). In Chapter 13 it is shown that the visibility representation of a
4-connected planar graph can be constructed on a grid of size at most (n�1)�(n�1).
Using this result it is shown in Chapter 14 that every planar graph can be represented
by a visibility representation on a grid of size at most (b32nc�3)�(n�1). To achieve
a linear time complexity for this algorithm, we show that constructing the 4-block
tree of a triangulated planar graph can be done in linear time.

This simple algorithm has also been applied successfully by Di Battista & Tamas-
sia [20], who showed that by using this type of construction we can construct in O(n)
time an upward drawing of G on a grid of size at most (2n� 5)� (n� 1) such that
there are at most 4n � 10 bends. Recall that a drawing is upward if for every di-
rected edge (v;w) : y(w) > y(v). The result for upward drawings is obtained by
constructing a visibility representation of G, and then collapsing every horizontal
segment into one point. Except for n � 1 edges, all other edges will get at most
two bends. There are at most 2n � 5 edges, leading to at most 4n � 10 bends.
This number can be improved to 1

3(10n � 31) bends [20], and even to 2n� 5 bends
[22]. Di Battista, Tamassia & Tollis used the algorithmVisibility(G) also for com-
puting a constrained visibility representation of graphs. In a constrained visibility
representation the edges of some given edge-disjoint paths are vertically aligned [22].

9.3.2 Orthogonal Drawings

The algorithm Visibility(G) can also be used to construct an orthogonal drawing
of G. An orthogonal drawing is a planar drawing where vertices are represented by
points and every edge is an alternating sequence of horizontal and vertical segments.
The heuristic algorithm of Tamassia & Tollis [105] for minimizing the number of
bends in orthogonal drawings is as follows:

Orthogonal(G);
� := Visibility(G);
for each v 2 �, convert it to a node as indicated in Figure 9.5 rof;
optimize drawing � by the following optimizations (see Figure 9.6):

T1: move consecutive bends of 90o and 270o in one edge by straight line;
T2: rotate vertex, if all incident edges have an angle of 90o;
T3: replace a vertex of degree � 3 to incident bend;

construct a grid embedding;
End Orthogonal

Theorem 9.3.3 ([105]) There is a linear time algorithm to compute an orthogonal
representation of a biconnected planar graph G with at most n+2 bends if �(G) � 3,
and with at most 2n + 4 bends if �(G) � 4.

In Figure 9.7 an example is given of the complete process of constructing an or-
thogonal drawing, using a visibility representation. The same bound on the number

122 Drawing Algorithms

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9.5: Converting a visibility representation into an orthogonal drawing.

270
o

90
o

90
o

90
o 90

o

90
o

o
180u

u

v

u

v

u

v

w

v

w

u

u
T1:

T3:

T2:

Figure 9.6: Optimizing the orthogonal drawing.

of bends was already obtained by Storer [100]. He presented several polynomial-time
heuristics for minimizing the number of bends for 3- and 4-planar graphs. Storer
also proved several optimization problems concerning grid size and number of bends
to be NP-complete. Storer showed that there are 3-plane graphs for which any or-
thogonal layout requires an n

2 � n
2 grid. A lower bound of n

2 + 1 bends for drawing
3-planar graphs orthogonal is included in [100] as well. There are also 4-plane graphs
requiring an (n� 1) � (n � 1) grid, and there are 4-plane graphs, requiring 2n � 2
bends in any orthogonal drawing [100]. On the other hand, Tamassia [102] showed
that given a 4-plane graph G, the problem of computing an orthogonal drawing with
minimumnumber of bends can be solved in O(n2 log n) time. This fascinating result
follows by reducing the problem to an instance of a maximum-
ow problem.

Indeed, this result only holds for embedded planar graphs. To compute the pre-
cise minimum number of bends, all di�erent planar embeddings have to be checked.
Very recently, Di Battista et al. presented polynomial-time algorithms for bicon-

9.4 Overview of Part C 123

1
2

3

4

5

7

6

8

(a) (b)

8

(c)

1

2

3

4

6

7

8

5

1

2

34

56

7

1

8

76

54

3
2

5

1 2 3

4

6

8

7

(d) (e)

Figure 9.7: Example of constructing an orthogonal drawing (from [105]).

nected 3-planar graphs and series-parallel graphs, delivering an orthogonal drawing
with a minimum number of bends [19]. Here the initial embedding is not �xed.

9.4 Overview of Part C

In Chapter 10 we re�ne the canonical ordering, introduced in Section 2.5 to a so-
called leftmost canonical ordering or lmc-ordering. Every lmc-ordering is also
an st-numbering. If the input graph is triangulated, then the lmc-ordering is a
canonical ordering for triangulated planar graphs, as introduced by de Fraysseix,
Pach & Pollack [34]. The lmc-ordering leads to a linear time drawing framework,
and can be used for a broad range of drawing representations of (triconnected)
planar graphs. We show in Chapter 10 that the planar straight-line grid drawing
algorithm of de Fraysseix, Pach & Pollack [34] can be implemented to run in linear
time, and the grid size can be decreased to (n� 2)� (n� 2). (In [15] an alternative

124 Drawing Algorithms

linear time implementation is described, requiring an (2n� 4)� (n� 2) grid, where
the planar graph has to be triangular.) For our algorithm it is already su�cient
that the input graph is triconnected instead of triangulated. In particular we show
that, using the lmc-ordering, all interior faces can be made convex. This algorithm
outperforms the algorithms of [111, 14] and is not only of theoretical interest, but
also leads to more pleasing pictures (see Figure 10.3). It also gives a new and rather
simple proof of the fact that every triconnected planar graph admits a convex planar
drawing. It is also shown that every triconnected planar graph G can be drawn in
the plane on an (2n � 6) � (3n � 6) grid with minimum angle > 1

d�2
radians, such

that in each edge there are at most 3 bends, and at most 5n�15 bends in total. The
vertices and bends are placed on grid points. This seems to be the �rst practical
drawing algorithm for drawing planar graphs with vertices vertices represented by
grid points and edges by polylines, having very reasonable bounds on the grid size,
on the number of bends, and on the minimum angle.

In Chapter 11 we prove that if G is triconnected and 4-planar, then G can be
drawn with at most d3

2
ne+4 bends on an n�n grid. This improves the best known

bound of 2n+4 bends considerably in the triconnected case. We also present a class
of triconnected 4-plane graphs, for which any orthogonal layout requires at least
4
3
(n� 1) + 2 bends. For any 3-planar graph G we show that G can be drawn with

at most bn2c + 1 bends on an bn2c � bn2c grid. A nice characteristic of the drawing
is that it has a spanning tree using n� 1 straight-line edges, and that all non-tree
edges have at most 1 bend (if n > 4).

In Chapter 12 we present a linear time algorithm to draw triconnected 3-planar
graphs on a hexagonal grid of size n

2 � n
2 . Using this algorithm we show that every

3-planar graph with > 4 vertices can be drawn with straight-line edges such that
the minimum angle is � �

4
if G is triconnected, and � �

3
, otherwise. As a side result

we prove that every triconnected 6-planar graph can be drawn on an O(n) � O(n)
hexagonal grid such that every edge has at most 4 bends.

In Chapter 13 we consider the problem of representing every vertex v of G as
a rectangle R(v) such that if (v;w) 2 G, then R(v) and R(w) share a boundary.
This is called the rectangular dual problem. Bhasker & Sahni [7] described a very
complicated linear time algorithm for this problem, based on a so-called regular edge
labeling. He showed that using this labeling, the coordinates can be computed in
a simple and elegant way, using topological sort [47]. We present a simple linear
time algorithm to compute a regular edge labeling, based on the canonical ordering
for 4-connected triangular planar graphs. This completes a new and rather easy
approach for the rectangular dual problem. Applying this ordering to the visibility
representations leads to a grid size of at most (n � 1) � (n � 1) for representing 4-
connected planar graphs as a visibility representation. This improves the best known
grid bounds by a factor 2. Using this result it is shown that every planar graph can
be drawn as a visibility representation, using a grid of size at most (b3

2nc�3)�(n�1),
improving the best known bound of (2n � 5)� (n� 1) considerably.

Part C ends with several related results, conclusions and closing observations in

9.4 Overview of Part C 125

Chapter 14. Chapter 14 also contains some open problems and it introduces some
interesting related �elds for further research.

126 Drawing Algorithms

Chapter 10

The Drawing Framework and

Convex Drawings

10.1 The Drawing Framework

In this section we re�ne the canonical ordering, described in Section 2.5, to a left-
most canonical (lmc�) ordering for triconnected planar graphs. Using this re�ne-
ment, we obtain a linear time framework to represent triconnected planar graphs in
various ways on a grid. Among these representations, we discuss in detail the con-
vex straight-line grid drawings, visibility representations, orthogonal and hexagonal
drawings, and the computation of rectangular duals.

10.1.1 The lmc-Ordering

Recall from Section 2.5 that a canonical ordering of a triconnected planar graph is
a sequence of sets V1; V2; : : : ; VK of vertices such that V1 = fv1; v2g, VK = fvng, and
v2 and vn are neighbors of v1 and share a face (the outerface). In step k, 1 < k < K
the vertex set Vk is added. If Vk is a singleton, z, then z belongs to Ck and has
at least one neighbor in G � Gk; if Vk is a chain, fz1; : : : ; z`g, then each vertex zi
(1 � i � `) has a neighbor in G�Gk, and only z1 and z` have a neighbor on Ck�1.
In each step, the graph Gk, consisting of the vertices of V1; : : : ; Vk, is biconnected.

The general idea for drawing the graph is to start with edge (v1; v2), and add
in step k the vertices of Vk. In step K vertex vn is added. Assume w.l.o.g. that in
step 1 v1 is drawn most left and v2 most right. Let Ck�1 : c1 = v1; c2; : : : ; cq = v2 be
the vertices from left to right on the outerface of Gk�1. When adding the vertices
of Vk let cl and cr be two neighbors of Vk on Gk�1, with l and r as small and as big
as possible, respectively. We call cl the leftvertex and cr the rightvertex. Edges to
lower (higher) numbered neighbors of vertex v are called incoming (outgoing) edges
of v, and in(v) and out(v) denote the corresponding number.

We place the vertices in such a way on the grid such that when adding Vk, the
corresponding incoming edges have downwards direction. Moreover, we want to

127

128 The Drawing Framework and Convex Drawings

maintain the invariant that the vertices c1; : : : ; cq of Ck remain \visible from the
top" during each step. This implies that after adding Vk, vertices cr; : : : ; cq must be
\shifted to the right", as well as several interior vertices of Gk�1. However, updating
all x-coordinates of the vertices in Gk in each step implies a quadratic running time.
To avoid this, we use lazy evaluation:

We compute the exact coordinates of a vertex only when they are necessary to
compute the coordinates of other vertices. This means that only the exact coordi-
nates of the vertices on the outerface are essential during the insertions. As a �rst
step towards this process, we re�ne the canonical ordering to the leftmost canonical
ordering, which we will call the lmc-ordering from now on.

De�nition 10.1.1 A canonical ordering is a leftmost canonical (lmc-)ordering if
we can add in any step k a vertex set Vk with leftvertex cl or a vertex set Vk0 with
leftvertex cl0, and l < l0 holds, then k < k0.

In other words, we take this vertex set Vk, for which the corresponding leftvertex
cl is minimal with respect to l. By planarity it follows that also the corresponding
rightvertex, say cr, is minimal with respect to r.

To compute the lmc-ordering, we maintain a list Outerface-Stack for the vertices
on the outerface from left to right, implemented as a stack, and initialized as fv2g.
Also the vertex sets Vk of the canonical ordering, with pointers to its left- and right-
vertex are stored. Notice that Vk can be added in step k0, if all incoming edges of Vk
are part of Ck0�1. We now delete vertices from the top from Outerface-Stack, until
we �nd a vertex cr on top, which is the rightvertex of a vertex set Vk, not added
yet. Let Vk = fz1; : : : ; z`g from left to right, then we add z`; : : : ; z1 in this order
to Outerface-Stack. We repeat this step with the updated Outerface-Stack, until
all sets Vk are added. When a vertex cr is deleted from Outerface-Stack, then cr is
not the rightvertex of some set Vk (which is not added yet), because otherwise all
other incoming edges of Vk are left from cl on the current outerface, which would
imply that Vk could be added. Hence every vertex set Vk will be added once to the
ordering. This implies that every vertex will once be added and once be deleted from
Outerface-Stack. Since the vertices are added from left to right to Outerface-Stack
the vertex sets Vk are added in a leftmost order.

Theorem 10.1.1 Given a canonical ordering, an lmc-ordering can be computed in
linear time.

Proof: The correctness is shown above. Regarding the time complexity, every
vertex v is once added to, and once deleted from Outerface-Stack. Testing whether
vertex cr on top of Outerface-Stack is the rightmost vertex of some set Vk (not added
yet) requires constant time, which completes the proof. 2

In Figure 10.1 an example of the lmc-ordering is given which will serve as an
example for almost all drawing algorithms, presented in this paper.

10.1 The Drawing Framework 129

1
2

3
4

5

6
7 8

9
10

11

1213

14

15

1
2

3
4

5

6 7 8 9
10

12
13

14

15

11

Figure 10.1: From a canonical ordering of the graph in Figure 2.13 to an lmc-
ordering.

In the drawing algorithms we distinguish the insertcoordinates of vk (when we in-
sert vk by the lmc-ordering) and the endcoordinates of vk (in the complete drawing).
We introduce a boolean variable correct(v), denoting whether x(v), with v 2 Ck,
has been recalculated. We also introduce a counter for each vertex v, called shift(v).
shift(cr) denotes the value, which must be added to all x(ck), with j � k � r, where
c1; : : : ; cr is the current outerface Ck. When a vertex v is added by the lmc-ordering,
we set correct(v) = false and shift(v) = 0. Inspect step k. Let cr be the rightvertex
of Vk. We walk along the outerface from cr towards c1 until we �nd the �rst true
marked correct(c�). Then we walk back from c� to cr. When visiting c� (� < � < r)
we add

P
�<i�� shift(cl) to x(c�) and set correct(c�) to true, because x(c�) is recal-

culated. We add
P

�<i<r shift(cl) to shift(cr). This approach is correct since the
following two lemmas hold in step k:

Lemma 10.1.2 All vertices c�, � < � � r, have correct(c�) = false.

Proof: Suppose not. Inspect the �rst time that a vertex c
 on the outerface is
encountered for which correct(c
) = false and correct(c
+1) = true. correct(c
+1) =
true means that in a step k0 < k, x(c
+1) and correct(c
+1) are recomputed, due to
the insertion of a vertex set Vk0 with leftvertex cl0, and l0 �
 +1. But correct(c
) =
false means that in step k we add Vk with rightvertex c
. This contradicts the
de�nition of the lmc-ordering. 2

Lemma 10.1.3 r > � holds for rightvertex cr.

Proof: Suppose not. correct(c�) = true means that in a step k0 < k, we
updated x(c�), due to the insertion of Vk0 with leftvertex cl0; l0 � �. Adding Vk with
rightvertex cr in step k implies l0 > r. Since k0 < k, this contradicts the de�nition
of the lmc-ordering. 2

130 The Drawing Framework and Convex Drawings

Lemma 10.1.4 The total time for visiting the false marked vertices and updating
shift(v), x(v) and correct(v) for all vertices v is O(n).

Proof: When we insert Vk in step k with leftvertex cl and rightvertex cr, extra
time is required for walking towards c1 to �nd the �rst true marked correct(c�). All
correct-values of the vertices c�; : : : ; cr�1 are marked true after visiting them. If in
a step k0 > k, correct(c�) becomes false again (with � � � � r � 1), then a vertex
set Vk0 with rightvertex ck0 = c� is added, with k0 � l. This contradicts the lmc-
ordering, hence every correct(c�) becomes once false and becomes true after visiting
c� again. Updating requires constant time, hence the total time for visiting the false
marked vertices and updating shift(v); x(v) and correct(v) for all vertices is O(n).
2

These three lemmas show that in any step k we can compute the up-to-date
x-coordinates of the vertices c1; : : : ; cr of Ck�1 when adding Vk, where cr is the
rightvertex of Vk. Let P (v) = (xinsert(v); yinsert(v)) be the coordinates of v at the
time of adding v.

However, how can we compute the �nal x-coordinates of the vertices. Indeed,
hereto we have to traverse the vertices of Vk in decreasing order, i.e., from VK to
V1, and set initially shift(v) = 0 for all v 2 V . When considering the vertices of
Vk = fz1; : : : ; z`g, we set shift(cl) = shift(z1), with l < i < r, and cl and cr the left-
and rightvertex, resp., of Vk, and c1; : : : ; cq the outerface Ck�1 of Gk�1. shift(cl) is
not updated (because cl is not shifted when adding Vk initially). Since cr is also
part of some outerface Ck0�1, k0 > k, shift(cr) could already be greater than zero at
the moment of visiting Vk. The question arises whether this value was also added
to the vertices of Vk or not. If this was the case, then this shift-value should not be
added to shift(cr) again. How can we solve this problem?

The solution is as follows: to compute the right shift of cr we distinguish the
shifts added to cl+1; : : : ; cr�1 and to cr, by introducing a new variable, rshift(v).
When considering Vk for computing the �nal x-coordinates, and cr must be shifted
a value x0 more to the right than cr�1, then we add rshift(z1) + x0 to rshift(cr). The
�nal coordinates of the vertices z1; : : : ; z` of Vk is now given by xinsert(zi)+ shift(zi)+
rshift(zi); 1 � i � `.

The technique for computing the �nal coordinates corresponds to the idea of
computing the insert-coordinates: when the vertices of Vk are shifted to the right in
a later step, then also the vertices cl+1; : : : ; cr must be shifted to the right as well.

All this work can be done in linear time totally. We call the method for computing
the insert- and endcoordinates, using the shift(v) values the shift-method. This
method will serve as a general framework for planar graph drawings on a grid. The
idea of shifting vertices is widely used, e.g., in the grid drawing algorithm of Chrobak
& Payne [15]. A generalization of the latter technique is described in Section 10.5.2.

In Section 10.2 we use the lmc-ordering to draw a triconnected planar graph
with convex faces on an (2n � 4) � (n � 2) grid. In Section 10.2.1 we show how

10.2 Convex Drawings 131

the grid size can be reduced to (n � 2) � (n � 2). In Section 10.5.2 optimizations
are given for computing an lmc-ordering and computing the coordinates. Several
related applications of the lmc-ordering are given in this chapter as well. In Chapter
11 and 12 we use the lmc-ordering for drawing planar graphs orthogonally and on
an hexagonal grid.

10.2 Convex Drawings

The lmc-ordering is a generalization of the canonical ordering of de Fraysseix et al.
[34]. We can apply the lmc-ordering and the shift-method to get a linear implemen-
tation of the straight-line grid drawing algorithm of triangulated planar graphs [34].
(In [15] another linear implementation of [34] is described, assuming that the input
graph is triangulated.) Moreover, we will show that this algorithm can be modi�ed
such that we can draw every triconnected planar graph with convex faces on a grid.

The algorithm of [34] is as follows: it maintains a straight-line embedding during
every step k of the lmc-ordering such that

1. v1 is at (0; 0), v2 is at (2k � 4; 0).

2. If v1 = c1; c2; : : : ; cr = v2 is the outerface of Gk in step k, then x(c1) < x(c2) <
� � � < x(cr).

3. The edges (vl; vl+1) have slopes +1 or �1.
Assume �rst that G is triangulated, in which case we can add a vertex vk in

every step k of the lmc-ordering [34]. Let L(v) be a set of vertices. The idea
of the algorithm is the following: when we add vertex vk with leftvertex cl and
rightvertex cr then all vertices cl+1; : : : ; cr�1 are shifted one to the right, and the
vertices cr; : : : ; cr are shifted two to the right (and of course, several internal vertices
of Gk�1 have to be shifted to the right as well). The crossing point of the line with
slope +1 from cl and the line with slope �1 from cr denotes the place for vertex vk.
All vertices cl; : : : ; cr are visible from this point, see Figure 10.2 for the corresponding
picture. In particular, the algorithm is as follows:

f In every step k, let c1; : : : ; cr be the outerface,
and cl and cr are the left- and rightvertex of vk, resp.g
let �(p1; p2) be the crossing point of line of slope +1 from p1
and line of slope �1 from p2.

P (v1) := (0; 0);L(v1) := fv1g;
P (v2) := (2; 0);L(v2) := fv2g;
P (v3) := (1; 1);L(v3) := fv3g;
for k := 4 to n do

for v 2 Sr

l=j L(cl) do x(v) := x(v) + 2 rof;

132 The Drawing Framework and Convex Drawings

for v 2 Sj�1
l=i+1 L(cl) do x(v) := x(v) + 1 rof;

P (vk) := �((x(cl); y(cl)); (x(cr); y(cr)));

L(vk) := fvkg [
Sj�1

l=i+1 L(cl)
rof

v1 = c1 v2 = cr

c2

ci
ci+1

ci+2 cj�2

cj�1
cj

P (ci; cj)

Gk�1

v1 = c1 v2 = cr

c2

cp
ci+1

ci+2 cj�2

cj�1
cj

vk

s

s

s

s

s

s

s

s

s

s

q

s

s

s

s

s

s

s

s

s

s

Gk

Figure 10.2: Idea of the straight-line drawing algorithm.

The correctness of this algorithm is proved in [34]. Shiftvalues of 1 and 2 occur
in the algorithm and we update the corresponding variables shift(v) and rshift(v) in
a similar way. The complete algorithm can now be implemented as follows:

LinearStraight-lineDraw(G);
P (v1) := P (v2) := (0; 0);
for k := 3 to n do
update x(cl) and shift(cr);
shift(cr) := shift(cj) + 2;
P (vk) := �((x(cl); y(cl)); (x(cr)+ shift(cj); y(cj)))

rof;
shift(v) := rshift(v) := 0 for all v 2 V ;
for k := n downto 2 do
for every internal vertex vi of vk do shift(vi) := shift(vk)+ rshift(vk) + 1 rof;
rshift(cr) := rshift(cj)+ rshift(vi) + 2;
x(vk) := xinsert(vk)+ shift(vk)+ rshift(vk)

rof;
End LinearStraight-lineDraw

Moreover, using the lmc-ordering it is already su�cient that the planar graph
is triconnected, because when adding Vk = fz1; : : : ; z`g, we can draw z1; : : : ; z` on
a horizontal line with distance two in between. This yields that edge (cl; z1) has a
slope +1, edges (z1; z2); : : : ; (z`�1; z`) have slope 0 and length 2, and edge (z`; cr) has
a slope �1. It is easy to see that this still gives a correct straight-line drawing on
an (2n� 4) � (n� 2) grid.

10.2 Convex Drawings 133

In the remaining part of this section we modify this new algorithm a little such
that all interior faces are convex.

Let Vk be fz1g, and let ci1; : : : ; cis be the vertices on Ck�1, adjacent to z1. (i1 = l
and is = r.) Let Fj (1 � j < s) be the face formed by the edges (z1; cij); (z1; cij+1)
and the path Bj between cij and cij+1 .

Lemma 10.2.1 Each path Bj has the following pattern:

� From cij to some vertex c�j , a sequence Dj , jDj j � 1, of vertices with strictly
decreasing y-coordinate.

� Two vertices c�j ; c�j with same y-coordinate.

� From c�j to cij+1 , a sequence Uj of vertices with strictly increasing y-coordinate.

Proof: By de�nition of the lmc-ordering, every vertex v 2 Vk has a neighbor
w 2 Vk0 , with k0 > k. By de�nition of the algorithm LinearStraight-lineDraw

it follows that y(w) > y(v). In step k the vertices cij+1; : : : ; cij+1�1 have already
higher placed neighbors. Let c�j be the lowest placed vertex, with ij � �j < ij+1
and �j minimal. If there is a vertex c�j with y(c�j) = y(c�j), then �j = �j + 1,
because otherwise there would be a vertex c
, �j <
 < �j, which does not have
a higher placed neighbor. From cij to c�j the vertices have strictly decreasing y-
coordinate and from c�j+1 to cij+1 the vertices have strictly increasing y-coordinate.

2

Notice that all edges on Ck�1 have slope +1, 0 and �1 before adding Vk. When
adding z1, we shift c�1; : : : ; c�s�1 to right by one, and shift c�s�1+1; : : : ; cis to right
by two. As explained above, we draw z1 at point �(ci1; cis).

When Vk = fz1; : : : ; z`g, we add only one face F1. Let B1 be the path of Ck�1

between cl and cr. B1 also has the pattern of Lemma 10.2.1. We shift c�1 and c�1
to right by one, and c�1+1; : : : ; cr to right by 2p. z1; : : : ; z` are placed as explained
above.

This yields the following slopes after adding Vk:

� The slope of edge (c�1�1; c�1) is in the range [�1; 0).
� The slope of edge (c�s�1; c�s�1+1) is in the range (0;+1).

� All other slopes on Ck�1 are not changed.

� The slopes of the incident edges of Vk are in the range (�1;�1] [[+1;1).

This implies that the faces F1; : : : ; Fs�1 are convex when inserting Vk at step k.
To preserve convexity during the other steps k0 > k, we add edges from cij to
c�j ; : : : ; cij�2 (1 � j � s). This does not destroy planarity and implies that if cij
is shifted to right in some step k0 > k, then also c�j+1; : : : ; cij�1 is shifted to right
with the same value. The modi�ed graph is still called G. Now we can prove the
following lemma.

134 The Drawing Framework and Convex Drawings

Lemma 10.2.2 The faces remain convex during the algorithm.

Proof: Assume Vk = fz1g, and let cij (1 � j � s) , c�j ; c�j and Fij (1 � j < s)
be as de�ned above. (The proof is analogous when jVkj > 1.) Consider a step k0 > k.
If cis is shifted to the right, then by the added dummy edges, also c�s�1+1; cis�1 are
shifted to the right with the same value, thereby preserving planarity in the only
relevant face, Fs�1. If z1 is shifted to right, then the vertices ci2; : : : ; cis are shifted
to right as well, and if cij is shifted, then c�j�1+1; : : : ; cij�1 and cij+1; c�j+1 are shifted
to right with the same value. This yields planarity in the faces F1; : : : ; Fs�1. It also
has the consequence that if ci is shifted to right (i1 � i < is), then ci0, i < i0 � is is
shifted to right with at least the same value.

We use this observation for the case that ci1 is shifted to right in some later step
k. Then z1 is also shifted to right by at least the same value. Hence the vertices
c�1+1; : : : ; ci2 are shifted to right by at least the value of the shift of ci1 ; : : : ; c�1. This
preserves the planarity in F1 and completes the proof. 2

Finally we remove the added dummy edges from cij to c�j ; c�j+1; : : : ; cij�2 (1 �
j � s).

Theorem 10.2.3 There is a linear time and space algorithm to draw a triconnected
planar graph convexly with straight-line edges on an (2n � 4)� (n� 2) grid.

Our algorithm not only outperforms the algorithms of [110, 13], it is also much
easier to implement than the algorithm of [13]. However, a drawback of the algorithm
is that the drawings are not strictly convex, as those of [110, 13]. On the positive
side, this algorithm gives a new proof that every triconnected planar graph admits
a planar drawing, in which every interior face is convex. The outerface is a triangle.
With respect to the tightness of the grid size we note that every strictly convex
drawing of a cycle with n vertices requires an �(n3) grid [78]. In Figure 10.3, the
straight-line convex drawing of the graph in Figure 10.1 is given.

10.2.1 Convex Drawings on an (n� 2)� (n� 2) Grid

In this section we describe a method for decreasing the grid size by a factor 2. This
optimization is joint work with Chrobak, and based on an important observation
made by Schnyder. The idea is to maintain the outerface Ck�1 during the drawing
algorithm, such that every edge has a slope, which is �1; 0, or in the range [+1;1),
instead of �1; 0;+1, as described in the previous section.

Let Vk = fz1; : : : ; z`g, which we add from leftvertex cl to rightvertex cr in step
k. If cl has no edges to vertices added in a step k0 > k, then we can place z1 right
above cl, thus x(z1) := x(cl), otherwise we set x(z1) := x(cl) + 1. We shift cr ` to
the right, and the crossing point of the line with slope �1, starting from P (cr), with
the vertical line of x(z1) + ` � 1 gives the place for z`. We place zi (1 � i < `) at
(x(z`) � ` + i� 1; y(z`)), and add ` to shift(cr). Testing whether cl has an edge to

10.2 Convex Drawings 135

1 2

3 4 5

1 2

3 4 5

6

7 8

1 2

3 4 5
6

7 8
9 10

11

1 2

3 4 5
6

7 8
9 10

11

12

13

1

3 4
6

7 8

5
9 10

12

13

14

15

2

13

Step 3

Step 5

Step 7

Step 9

Step 11

Figure 10.3: Convex drawing of the graph of Figure 10.1.

a vertex added in a step k0 > k is easy, because the embedding of the planar graph
is given. If cl�1 is adjacent to z1 in adj(cl), then there is no such vertex, otherwise
there is one. In Figure 10.4 it is demonstrated that the neighbors c� of vk on Ck�1,
with i � � � j, are visible from P (vk). This follows from the fact that if for a vertex
c�, x(c�+1) = x(c�), then c� does not have an edge to vk. The slope of (cl; z1) is 0
or in the range [+1;1), the slopes of the edges (zi; zi+1) is 0 (1 � i < p), and the
slope of the edge (z`; cr) is �1.

Lemma 10.2.4 Applying the modi�cation, described above, in the convex grid draw-
ing algorithm, gives a correct straight-line drawing of a triconnected planar graph G
on an (n � 1) � (n� 1) grid.

Proof: We only have to prove the size of the grid. We start with horizontal edge
(v1; v2) of length 1. Assume that we add in step k the vertex set Vk = fz1; : : : ; z`g
(` � 1) from leftvertex cl to rightvertex cr. This increases the width by one, and the
height by at most `. This gives a total length of n � 1, and since the line through
v2 and vn has slope �1, and x(vn) = 0, it follows that the height is also n� 1. 2

We now modify the algorithm in the same way as in the previous section such
that all interior faces are convex. Assume we add a vertex vk. Let cp and cq be two
vertices on Ck�1, such there is no neighbor cl of vk, with p < l < q. Let F 0 be the
face, containing cp; cq and vk.

136 The Drawing Framework and Convex Drawings

Gk−1

P(c , c)

v = c1 1 v = c2 r

ci
cj

ji

v = c1 1 v = c2 r

cjci

Gk

vk

Figure 10.4: Convex drawings on an (n� 2)� (n� 2) grid.

Lemma 10.2.5 There are constants �; �, with p � � � � � q, and � = � or
� = �+ 1 such that before adding vk:

� all edges (ca; ca+1); p � a < �, have slope �1;
� all edges (cb; cb+1); � < b < q, have slope 1;

� the edge (c�; c�+1) has a slope in the range (0;1);

� if � = � + 1, then (c�; c�) has a slope 0.

Proof: We �rst observe that every vertex v has a neighbor, say w, which is
added in a later step and has y(w) � y(v). In step k the vertices cp+1; : : : ; cq�1
have already higher placed neighbors. Let c� be the lowest placed vertex, with
p � � � q. If � > p and (c��1; c�) is horizontal, then from c��1 to cp the vertices
are strictly increasing in Y -direction, thus have slope �1. If � > p, then cb is the
leftvertex of cb+1; � � b < q. By the drawing algorithm, we place x(cb+1) = x(cb),
thus the edges (cb; cb+1) are vertical. If � = p, then c� has neighbor vk. This yields
x(c�+1) = x(c�) + 1. In this case (c�; c�+1) has a slope in the range [+1;1). 2

To achieve a convex face F 0, we do the following. Let vk be an added vertex
with leftvertex cl and rightvertex cr. Only x(cr) increases when adding vk. Also it
follows that if shift(cl) or shift(vk) increases, then the shift increases for the vertices
cl; : : : ; cr. The only point is when shift(cr) increases, and shift(vk) does not increase.
Let cp be a neighbor of vk, with p < j as large as possible, and let � be as small as
possible, with y(�+ 1) > y(�) and p � � < j. We add edges from cr to c�; : : : ; cr�1
in step k. This does not destroy planarity in the embedding, and it means in the
algorithm, that if we shift cr, then we also shift c�+1; : : : ; cr�1 to the right. This
implies that still x(c�+1) = x(c�+2) = : : : = x(cr) holds, and thus Lemma 10.2.5

10.2 Convex Drawings 137

holds after adding vk. This implies that face F 0 is convex when inserting vk in step
k. The same values follow when we add a chain z1; : : : ; z` instead of one vertex vk,
because in this case z1; : : : ; z` are placed on a horizontal line. We again apply Lemma
10.2.2, which says that the internal faces remain convex during the algorithm. After
this we delete the added edges from cr to c�; c�+1; : : : ; cr�1.

Now we sketch how to modify the algorithm in order to reduce the grid size to
(n � 2) � (n � 2). First we pick vn to be the neigbhor of v2 di�erent from v1 on
the outer face of G. We construct a canonical decomposition and run the previous
algorithm for K � 1 steps. In the last step, having already embedded G2, we set
P (vn) = (1; n� 2), and we do not shift any vertices to the right.

In order to show correctness, we only need to show that adding vn will result in
a correct, convex embedding. By Lemma 10.2.5 and the algorithm, before adding vn
we have x(c1) = x(c2) = : : : = x(cl) = 0 and x(cr) = n� 2, where cr = v2. The edge
with slope �1 from v2 contains the point (1; n � 3). This implies that all vertices
cl; : : : ; cr are visible from (1; n�2). The convexity of the outer face follows from the
choice of vn. Consequently, we obtain the following theorem.

Theorem 10.2.6 There is a linear time and space algorithm to draw a triconnected
planar graph convexly into the (n� 2)� (n� 2) grid.

At the end of this chapter a complete pseudo-Pascal code for the (n � 2) �
(n� 2) convex grid drawing algorithm is given, including some other optimizations,
described in Section 10.5.2. The grid size matches the best known grid bounds for
drawing a planar graph planar on a grid (see Schnyder [98]). Moreover, it gives a
new proof that every triconnected planar graph admits a planar drawing, in which
every interior face is convex. However, the drawing is not strictly convex, i.e., there
might be angles of size �. When we want to obtain a strictly convex drawing, then
the gridsize becomes larger, since any drawing of a cycle of length n already requires
a grid of size
(n3) by a result of Lin & Skiena [78]. Unfortunately, we see no simple
way to change our convex drawing algorithm such that it avoids angles with size �.

Chiba et al. showed that if a graph can be drawn convex, then after eliminating
the vertices of degree 2, almost all triconnected components have an edge on the
boundary of the outerface. But using our algorithm, we can draw biconnected planar
graphs, where every triconnected component has an edge on the outerface, convex as
well. This follows by observing that adding a vertex vn+1 with edges to all vertices
on the outerface gives a triconnected planar graph. Applying the algorithm on the
augmented graph, and �nally removing vertex vn+1 gives the desired result.

The vertices with degree 2 seems to be a much harder problem. How can we place
these vertices back after applying ConvexSmallGridDrawing on the reduced
graph? In particular, let v have neighbors u and w. Let the greatest common
divisor of jx(w)� x(u)j and jy(w)� y(u)j be 1, then there is no interior grid point
on the drawing of edge (u;w). Hence the problem of placing v seems to be hard
when placing the vertices on grid coordinates.

138 The Drawing Framework and Convex Drawings

10.3 The mixed model

In this section we use the drawing framework, introduced in Section 2.5, to draw
any triconnected d-planar graph G on an (2n � 6) � (3n � 9) grid such that there
are at most 5n� 15 bends and the minimum angle is at least 2

d
radians. All vertices

and bend coordinates will be placed on grid points only. Every edge will have at
most three bends and length O(n).

Every edge, say (u; v) will have the following format. From u it goes to an
outpoint of u, say bo, from bo it goes in vertical direction to a point, say b0, from b0

it goes in horizontal direction to an inpoint, say bi of v, and from bi it goes to v.
Important question is here what the coordinates of the in- and outpoints are, and
how to compute them.

Let outl(v) = bout(v)�12
c and outr(v) = dout(v)�1

2
e. Similar for in(v), i.e., inl(v) =

b in(v)�32 c and inr(v) = d in(v)�32 e. The idea is to place the outpoints of v on the follow-
ing places: the diagonal lines from (x(v)� outl(v); 1) to (x(v)�1; y(v)+ outl(v)), and
from (x(v)+ outr(v); 1) to (x(v)+1; y(v)+ outr(v)), and using (x(v); y(v)+ outl(v)).
For the inpoints it is de�nes similarly: the diagonal lines from (x(v)� inl(v);�1)
to (x(v) � 1; y(v)� outl(v)), and from (x(v)+ outr(v);�1) to (x(v) + 1; y(v)�
outr(v)), and the three points (x(v)� outl(v); y(v)), (x(v); y(v)� outl(v)) and (x(v)+
outr(v); y(v)). See Figure 10.5 for some examples, and the corresponding bounding
boxes.

Figure 10.5: Examples of bounding boxes.

The width of the bounding box is maxfout(v) � 1; in(v) � 3g, the height is
inl(v)+ outl(v). The idea is to insert the vertices of the canonical ordering such that
the bounding boxes do not intersect or touch. Also outgoing edges may not cross
or overlap, i.e., this means that for every pair of consecutive vertices cl; cl+1 on the
outerface, x(cl+1) > x(cl) + outr(cl) + outl(cl+1) must hold. We can now explain the
di�erent adding steps as follows:

10.3 The mixed model 139

Adding a vertex v

For the y-direction, we simply set y(v) = maxfy(cl)+outl(cl)+1; y(cr)+outl(cr)+1g.
In x-direction, the problem is a little more di�cult: let u1; : : : ; uin(v)(v) be neighbors
of v, corresponding with the left-to-right order of incoming edges of v. Let u = uinl(v).
then we want to have x(v) = x(u), but also (for the outgoing edges), we want to have
x(v) > x(cl) + outr(cl) + outl(v). Hence we set x(v) = maxfx(u); x(cl) + outr(cl) +
outl(v), and shift uinl(v); : : : ; uin(v)�1 to the right (if x(cl)+outr(cl)+outl(v) > x(u)).
For the rightvertex cr we set x(cr) = maxfx(cr); x(v) + outr(v) + outl(cr) + 1g.

Adding z1; : : : ; z`, ` > 1.

Now every vertex z1; : : : ; z` has precisely two incoming edges, hence they are placed
on a horizontal line at height maxfy(cl) + outl(cl); y(cr) + outl(cr)g + 1. In the
x-direction we don't have to deal with the incoming edges, hence we set x(z1) =
x(cl) + outr(cl) + outl(z1) + 1, we set x(zi) = x(zi�1) + outr(zi�1) + outl(zi) + 1
(1 < i � p), and we set x(cr) = maxfx(cr); x(z`) + outr(z`) + outl(cr) + 1g. Figure
10.6 makes this more precise.

c

w w w w

cl

1 2 3 p

r

....

c

c

z

l

r

1

(a) Adding one vertex. (b) Adding more vertices.

Figure 10.6: Adding vertices in the mixed model.

Analysis of the algorithm

Using the shift-technique, explained in section 2, it is not di�cult to obtain a lin-
ear time and space algorithm, satisfying the constraints with respect to width and
height, as given in the two relevant steps. Therefore we now consider in detail the
number of bends, the size of the minimum angle and the total grid size.

Lemma 10.3.1 The size of the minimum angle is 2
�
, where � is the maximum

degree of G.

140 The Drawing Framework and Convex Drawings

Proof: Let v have maximum degree. The minimum angle, say �, is reached
at an outpoint which is neighbored to a horizontal line. If deg(v) < 6, then it is
easily proved, hence assume deg(v) � 6. The size of the angle is arctan(1

outr(v)
) �

arctan(b 2
deg(v)�2c). Using the potence series of the arctan we know that for jxj < 1,

arctan(x) = x � 1
3
x3 + 1

5
x5 � 1

7
x7 + : : : � x � 1

3
x3. Since b 2

deg(v)�2
c � 2

deg(v)�1
, we

obtain that � � 2
deg(v)�1

� 1
3
(2
deg(v)�1

)3 � 2
deg(v)

, which completes the proof. 2

Lemma 10.3.2 The gridsize is at most (2n � 6)� (3n � 6).

Proof: For the width notice that x(ci+1) = x(ci)+outr(ci)+outl(ci+1) holds in
every step on the outerface if y(ci+1) 6= y(ci) and x(ci+1) = x(ci)+outr(ci)+outl(ci+1)
otherwise. If y(ci+1) = y(ci) then (ci; ci+1) is not an outgoing edge of any vertex. Let
us call (ci; ci+1) in this case unmarked. Counting leads to a horizontal distance of at
most

P
1�i<n outl(vi)+outr(vi)+number of unmarked edges =

P
1�i<n(out(vi)�1) =

2n � 6.
Adding a vertex vk requires more increase in height per vertex than adding a

face, hence assume we add a vertex vk in every step. Let the incoming edges of
vertex vk come from vertices u1; : : : ; ur, then y(vk) � max1�i�pfy(ui)g +maxf1 +
inr(v);outr(u1);outr(ur)g. The increase for every vertex vk during the insertions is
at most 1 + inr(vk) + outr(vk). Summarizing this for all vertices leads to a total
distance in Y -direction of at most 3n � 6 units. 2

Lemma 10.3.3 There are at most 5n � 15 bends. Every edge has at most 3 bends
and length O(n).

Proof: All outgoing edges of vertex v, except the one going straight upwards,
requires one bend in worst-case to go in vertical direction. We assign these bends
to the insertion step of v. Adding a face requires less bends per vertex than adding
a vertex, so assume we only add vertices vk. If in(vk) = 2 and y(cl) � y(cr), then
there will come at most 1 bend in (cl; vk) and 2 bends in (cr; vk). (A similar holds
when y(cl) � y(cr).) In each edge, one bend was already assigned to the insertion
step of cl and cr, hence adding vk with in(vk) = 2 requires at most one bend for the
incoming edges. If in(vk) � 3, then at most 2 � in(vk)�4 extra bends are required for
the incoming edges. Edge (v1; v2) requires no bends. Counting this leads to totally
at most 5n � 15 bends. Every edge goes at most once vertical and once horizontal,
hence requiring 3 bends in worst-case and by Lemma 10.3.2, has length O(n). 2

Theorem 10.3.4 There is a linear time and space algorithm to draw a triconnected
d-planar graph planar on an (2n�6)� (3n�9) grid with at most 5n�15 bends and
minimum angle > 1

d�2
, in which every edge has at most 3 bends and length O(n).

10.4 Visibility Representations 141

1 2

3 4 5

6 7 8 9 10

11

12

13

14

15

Figure 10.7: Drawing the graph of Figure 10.1 with bends.

In Figure 10.7 the drawing of the graph of Figure 10.1 is given.
Notice that in Chapter 5 we proved that every graph G can be augmented by

adding edges to a triconnected planar graph G0 such that �(G0) � d3
2�(G)e + 3.

This yields the following theorem.

Theorem 10.3.5 There is a linear time and space algorithm to draw a planar graph
planar on an (2n � 6) � (3n � 9) grid with at most 5n � 15 bends and minimum
angle > 4

3�(G)+1
, in which every edge has at most 3 bends and length O(n).

10.4 Visibility Representations

Since every lmc-ordering is also an st-ordering, we can use the lmc-ordering in various
drawing applications, where the st-ordering is used. We now focus the attention on
the construction of a visibility representation by the lmc-ordering. In a visibility
representation every vertex is mapped to a horizontal segment, and every edge is
mapped to a vertical line, only touching the two vertex segments of its endpoints.
In �gure 10.8 an example is given. The visibility representation is interesting of its
practical consequences. The interesting fact of using the lmc-ordering is that now
we have the shift-values on the edges instead of on the vertices, and the algorithm
becomes quite simple and may lead to more compact representations.

Hereto, when adding Vk, the y-coordinates of the vertices, already placed, are
interesting, as well as the x-coordinates of (cl; vk) and (cr; vk), where cl and cr are
the left- and rightvertex of Vk, resp. Therefore we associate an y-coordinate, y(v) to
every vertex, and an x-coordinate, x(u; v), and a shift-variable, shift(u; v), to every
edge (u; v).

The horizontal segment, representing a vertex vmust have length at least out(v)�
1. If we add Vk = fzg, then the horizontal segment, representing z goes from
(x(z; cl); y(z)) to (x(z; cr); y(z)). If Vk = fz1; : : : ; z`g, ` > 1, then we can draw the

142 The Drawing Framework and Convex Drawings

horizontal segments of z1; : : : ; z` alternatingly on some height Y and Y +1, as shown
in Figure 10.8. The implementation of the complete algorithm follows now directly
and is left to the reader.

Since in(v) � 2 for every vertex v, this means that adding vk increases the height
by 1 and the width by maxf0; out(vk)� 2g. If for every vertex vi; out(vi) � 2 holds,
then this leads to a visibility representation on a grid of size at most (n�1)�(n�1).
Indeed, we prove in Section 13.4 that a canonical ordering of a 4-connected triangular
planar graph is possible, in which every vertex vk has out(vk) � 2. This decreases
the width by a factor 2 with respect to the grid size for visibility representations of 4-
connected planar graphs. Several related compressing and optimization techniques
are possible, leading in general to more compact layouts than the algorithms in
[57, 89, 96] in general. In particular, when we add a face Fk in lmc-Visibility(G),
we can do it such that the Y -direction increases by at most 2. Moreover, compared
with [96], we do not have to compute the dual graph.

Theorem 10.4.1 There is a linear time algorithm to construct a visibility repre-
sentation of a planar graph on a grid of size at most (2n� 5)� (n� 1).

In Figure 10.8 a visibility representation of the graph in Figure 10.1 is given,
and a visibility representation of a graph is given, requiring an (2n � 5) � (n � 1)
grid. In Chapter 13 a linear time algorithm is presented, constructing a visibility
representation of a planar graph on a grid of size at most (b32nc � 2) � (n� 1).

1

2

3

4

5

6 8

7

9

10

11

12 13

14

15

....

....

....

1

2

3

4

5

6

n

(a) Visibility representation of the

graph in Figure 10.1.

(b) Graph, requiring a grid of size

(2n� 5)� (n� 1).

Figure 10.8: Visibility representations.

10.5 Improvements of the lmc-Ordering

In this section we present two important optimizations of our drawing framework.
The �rst improvement follows by proving that an lmc-ordering of G de�nes an lmc-
ordering on the dual graph G� of G. In particular, if G is a triconnected 3-planar

10.5 Improvements of the lmc-Ordering 143

graph, thenG� is a triangular planar graph, and we can use a much simpler algorithm
of de Fraysseix, Pach & Pollack [34] to compute a canonical ordering for G�. From
this canonical ordering of G� we can derive an lmc-ordering for G in an e�cient
way. The second improvement is that the shift-method, as introduced by Chrobak
& Payne [15] for a linear implementation of the straight-line grid drawing algorithm
of de Fraysseix, Pach & Pollack can be adopted in our framework. More precisely, we
can generalize this technique, based on the canonical ordering of triangular planar
graphs, such that it works for the canonical ordering of triconnected planar graphs.
This means that there is no need to re�ne the canonical ordering for triconnected
planar graphs to an lmc-ordering. This yields a new linear time framework, and
the constant in the O(n) seems to be smaller in the generalized Chrobak & Payne
framework than by applying the lmc-ordering. As an example, we show the complete
convex drawing algorithm of triconnected planar graphs at the end of this chapter,
using the modi�ed Chrobak & Payne approach.

10.5.1 Duality Aspects

Let G be a triconnected planar graph. Let G� be the dual graph of G, i.e., every
face of G is a vertex in G�, and there is an edge (u; v) in G�, if the corresponding
faces share an edge in G. Assume an lmc-ordering is given on the vertices of G. We
construct a labeling on the faces of G as follows: if k is the smallest integer such
that all vertices of face F belong to Gk in the lmc-ordering, then we set label(F) =
K + 3 � k. Let (v1; vn) 2 F 0; F 00, with F 0 the outerface. We set label(F 0) = 1 and
label(F 00) = 2.

Theorem 10.5.1 The labeling of the faces of G corresponds to an lmc-ordering of
the dual graph G�.

Proof: We �rst prove by reverse induction on the steps of the lmc-ordering that
the assigned labeling corresponds to the canonical ordering of the dual graph G�.
Let wF denote the vertex in G�, corresponding to face F in G. Let G� denote the
induced subgraph on the vertices wF with label(F) � i in G. We start with deleting
vn from G. (v1; vn) belongs to F

0 and F 00, and label(F 0) = 1 and label(F 00) = 2. Since
deg(vn) � 3, there are deg(vn) � 2 remaining faces F 0

i in G, with label(F 0
i) = 3. By

duality aspects, the corresponding vertices wF 0
i
form a consecutive chain from wF 0

to wF 00. Hence G�
3 satis�es the constraints of Theorem 2.5.1.

Let k be �xed, 3 < k < K, and assume that face Fi or vertex vi has already been
determined for every i > k such that G�

K+3�i satis�es the constraints of Theorem
2.5.1. Consider the 2 cases in step k: deleting a vertex vk or a face Fk from Gk.
Assume �rst that we delete vk with p lower-numbered neighbors. Then p � 1 faces
F 0
i are deleted from Gk, which all have label(F 0

i) = K + 3 � k. By construction of
G�, there are edges (wF 0

i
; wF 0

i+1
) (1 � i < p � 1), hence it follows that each wF 0

i
has

degree 2 in G�
K+3�k. Each wF 0

i
has a neighbor with higher label, since F 0

i contains

144 The Drawing Framework and Convex Drawings

an edge of Ck�1. wF 0
1
and wF 0

p�1
have neighbors with lower label, because F 0

1 and
F 0
p�1 contain an edge of Ck.

If we delete a face Fk in step k, then wFk is added to G�
K+3�k. wFk has at least

two neighbors with lower label, and at least one neighbor with higher label. In
both cases one easily veri�es that the added chain or vertex to G�

K+3�k is on the
outerface. G�

K+3�k is biconnected and by induction G�
K+3�k satis�es the constraints

of Theorem 2.5.1.

We end with edge (v1; v2) in G. Assume (v1; v2) belongs to F 0 (the outerface)
and F 000, then label(F 000) = K by de�nition. But since v2 and vn are neighbors of v1
and belong to the outerface it follows that wF 000 and wF 00 are both neighbors of wF 0

in G�, and belong to a common face, which completes the proof that the assigned
labeling is a canonical ordering for G�.

In the same way, by considering the dual graph G�, it easily follows that the
canonical ordering is leftmost, because if we delete a vertex vk or face Fk from Gk,
then the corresponding face or vertex in G� is leftmost with respect to the vertices
wF 0 and wF 00 . 2

Notice that in [96] a similar result is obtained for the st-ordering. Hence it
seems that the lmc-ordering is a powerful generalization of the st-ordering in the
triconnected case. (See also the illustration in Figure 10.9.)

vk

3

1u
2u

u w1

w2
w

3 w
4

1u

(a) Adding a vertex vk . (b) Adding a chain w1; : : : ; w4.

Figure 10.9: The dual graph also implies an lmc-ordering.

If G is triconnected and 3-planar, then G� is a triangulated planar graph. In
this case we can use the canonical ordering of de Fraysseix, Pach & Pollack [34] to
compute an lmc-ordering of G�. The f vertices of G� are numbered v1; : : : ; vf by
a simple linear time framework. Every vertex vi in G� corresponds to a face Fi in
G which must be added. This optimization can be used for computing the lmc-
ordering in Section 11.2 and Section 12.1, where we consider triconnected 3-planar
graphs.

10.5 Improvements of the lmc-Ordering 145

10.5.2 A New shift-Method

In this section we explain another technique for computing the coordinates, based
on the shift-method, described by Chrobak & Payne [15]. They introduced this
technique for implementing the straight-line grid drawing algorithm of de Fraysseix,
Pach & Pollack [34] in linear time. We show here that this technique can be changed
such that it works for our drawing algorithms for triconnected planar graphs as well.
Using this technique there is no need to verify the canonical ordering for triconnected
planar graphs to the lmc-ordering. The crucial observation in [15] is that when we
draw vk, it is not necessary to know the exact positions of cl and cr. If we only know
their y-coordinates and their relative x-coordinates, i.e., if we know x(cr)�x(cl); y(cl)
and y(cr), then we can compute y(vk) and the x-o�set of vk relative to cl, that is
x(vk)� x(cl).

To obtain this, a tree T is constructed during the algorithm. In the �rst phase
we add new vertices, compute their x-o�sets and their y-coordinates, and update
the x-o�sets of one or two vertices. In the second phase, we traverse the tree and
compute the �nal x-coordinates by accumulating the o�sets. Suppose that vertex
v is a T -ancestor of vertex w. By the cumulative o�set from v to w, denoted by
c(v;w), we mean the sum of o�sets along the branch from v to w including that
of w but excluding that of v. Note that, if w is a T -ancestor of vertex x, then
c(v; x) = c(v;w) + c(w; x). By adding the x-coordinate of the root v1 of the tree
to the cumulative o�set from v1 to a node, one can determine the node's proper
x-coordinate. We store for each vertex v the following information:

left(v) = the left T -son of v
right(v) = the right T -son of v
�x(v) = x(v)� x(w), x-o�set of v from its T -father w
x(v) = x-coordinate of v
y(v) = y-coordinate of v

If u; v are any two nodes, then let �x(u; v) = x(v)�x(u). In particular, �x(v) =
�x(u; v) where u is the father of v. We want to emphasize that the algorithm
will store only �x(v) for each v; whenever the value of �x(u; v) is needed, where
v 6= left(u); right(u), it has to be computed by �nding the lowest common ancestor
w of u; v, adding all o�sets on the path from w to v and subtracting all o�sets on
the path from w to u.

In terms of our tree T , when we add Vk, we need to shift T (cr) to the right.
The crucial observation that leads to the linear-time algorithm is that it is not
really necessary to know the exact positions of cl and cr at the time when we install
Vk = fz1; : : : ; z`g. If we only know their y-coordinates and the o�set �x(cl; cr) then
for each i > 1 we can compute y(zi) and the x-o�set of zi relative to zi�1, the x-o�set
of z1 relative to cl, and the x-o�set of cr relative to z`.

We will assume, for simplicity, that all links in T have been initialized to nil.

146 The Drawing Framework and Convex Drawings

The algorithm consists of two phases. In the �rst phase we add new vertices,
compute their x-o�sets and y-coordinates. In the second phase, we traverse the tree
and compute �nal x-coordinates by accumulating o�sets.

We begin by embedding V1 and V2, where V1 = fv1; v2g and V2 = fz1; : : : ; z`g:
for i := 1 to `� 1 do right(zi) := zi+1;
right(v1) := z1; right(z`) := v2;
P (v1) := (0; 0); P (v2) := (`+ 1; 0);
for i := 1 to ` do P (zi) := (i; 1);

Now, for each k = 3; 4; : : : ;K, we proceed as follows. Let c1; : : : ; cq be the outer
face of Gk�1; and let cl, cr be the left- and rightvertex of Vk = fz1; : : : ; z`g in Gk�1.
Then execute the following steps.

� := �+(p); � := ��(q);
Precompute o�sets: compute �i = �x(cl; ci), for i = l + 1; : : : ; r;
Update vertex cl: if � > l (and thus r > l + 1) then begin

right(c�) := left(cl);
if left(cl) 6= nil then �x(left(cl)) := �x(left(cl))���;
left(cl) := right(cl)

end ;
right(cl) := z1;

Install Vk: if cl is saturated then � := 0 else � := 1;
�x(z1) := �;
y(z1) := y(cr) + �r � ` + 1� �;
for i := 2 to ` do begin

right(zi�1) := zi;
�x(zi) := 1;
y(zi) := y(z1)

end ;
right(z`) := cr;
if � < � then begin

left(z1) := c�+1;
�x(c�+1) := ��+1 � �;
right(c�) := nil;

end ;
Update node cr: if � + 1 < q then begin

right(cr�1) := left(cr);
�x(left(cr)) := �x(left(cr)) + �x(cr);
left(cr) := c�+1;
�x(c�+1) := ��+1 ��r;

end ;
�x(cr) := �r � `+ 1 � �;

10.5 Improvements of the lmc-Ordering 147

At this point all y-coordinates and x-o�sets have already been computed. All
that remains to be done is to compute x-coordinates. In order to do so, we invoke
AccumulateO�sets(v1; 0), where AccumulateO�sets is as follows:

procedure AccumulateO�sets(v: vertex, �: integer);
begin

if v 6= nil then begin
x(v) := � +�x(v);
AccumulateO�sets(left(v); x(v));
AccumulateO�sets(right(v); x(v))

end
end

In Figure 10.10 the construction of the tree and the values of �x(v) are given
for the example from Figure 10.1.

Notice that the algorithm also computes a spanning tree of a 3-connected planar
graph with degree at most 3. This gives a new proof (and a linear-time algorithm)
for a theorem of Barnette [3]. The general problem is NP-hard, i.e., given a graph,
�nd a spanning tree with degree at most K (K � 2) (problem ND1 in [38]).

Our algorithm can also be generalized, using the following theorem of Thomassen:

Theorem 10.5.2 Let G be a plane graph with outer face S such that all vertices
not in S have degree � 3. Then G has a convex representation with outerface S if
and only if G is internally 3-connected.

If G satis�es the assumptions in the above theorem and S = (u1; : : : ; uj), then
adding a vertex z0 with edges to u1; : : : ; uj gives a triconnected graph G�. By
applying the algorithm to G�, and not adding z0 in the last phase, we obtain a
straight-line and internally convex drawing for G. This yields the following theorem:

Theorem 10.5.3 If a plane graph G with degree � 3 is convex drawable, then the
algorithm, modi�ed as above, constructs in linear time an internally convex drawing
of G into a (n � 1) � (n� 2) grid.

148 The Drawing Framework and Convex Drawings

3

4

5 6

9

10

7

8

11

12 13

14

right

right

right

rightleft

left right

right

right

right

right

2

3

4

5 6

9
10

7

8

11
12 13

14

right

right

right

right

left

left
right right

right

right

right

(a) The tree of the graph G7. (b) The tree of the graph G.

adding �x(v)
step vertices 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 9, . . . , 14 0 1 1 1 1 1

7 8 1 0 1 1 1 1 1

6 7 0 2 0 1 1 1 1 1

5 5, 6 0 1 0 2 0 2 1 1 1 1

4 4 0 0 1 0 3 0 2 1 1 1 1

3 3 0 0 0 1 0 3 0 2 3 1 2 1

2 2 0 2 0 0 -1 0 3 0 2 4 1 9 1

Figure 10.10: The tree T and �x(v).

Chapter 11

Orthogonal Drawings

In this chapter we consider the problem of drawing a planar graph G on a rectilin-
ear grid with orthogonal edges, i.e., the edges are polygonal chains of horizontal and
vertical segments. The vertices are represented by points. This problem has impor-
tant applications in VLSI-design, and has received a lot of attention during the last
years. In Section 9.3.2 several algorithms are described for orthogonal drawings of
biconnected 3- and 4-planar graphs, originally coming from Storer [100], Tamassia
[102], Tamassia & Tollis [105], and Tamassia, Tollis & Vitter [106].

11.1 Orthogonal Drawings of 4-Planar Graphs

We �rst consider the problem when the input graph G is a triconnected 4-plane
graph. Using a variant of Theorem 2 of [106], we can obtain the following lower
bound:

Theorem 11.1.1 There are embedded triconnected 4-planar graphs Gn with 3n+1
vertices and 6n+ 1 edges, for which any layout requires at least 4n+ 2 bends.

Proof: Consider the triconnected plane graph Gn with 3n+ 1 vertices, and its
layout in Figure 11.1(a), which has 4n + 3 bends. Notice that there are no bends
in the edges between two white vertices. The vertices, which had degree 4 initially,
have degree 2 now, and are deleted, while connecting the two incident edges. This
leads to a biconnected planar graph G0

n with 2n+2 vertices (see Figure 11.1(b)). It
is shown in corollary 4 in [106] that the shown layout in Figure 11.1(b) of G0

n is best
possible with respect to the minimum number of bends, which is 4n + 2. If there
was a layout for Gn with fewer than 4n+2 bends, then there was a better layout of
G0
n with fewer than 4n + 2 bends, which contradicts Corollary 4 of [106]. 2

Let G be a triconnected 4-planar graph. Let an lmc-ordering of G be given. We
introduce a variable mark(vi) for each vertex v, which is important when adding
Vk = fvg to Gk�1. v has at most two outgoing edges, say to u1 and u2 (from left

149

150 Orthogonal Drawings

(a) The graph G5. (b) The graph G0
5.

Figure 11.1: Lowerbound of 4
3
(n� 1) + 2 bends.

to right). If v is the rightvertex of u1, and v is not the leftvertex of u2, then we set
mark(v) = left otherwise we set mark(v) = right.

There are four directions to connect an edge at v, namely, left, right, up and
down of v. A direction is called free if there is no edge connected in that direction of
v yet. The idea for the algorithm is as follows: we add v to Gk�1 such that down(v)
is not free in Gk. Let cl and cr be the left- and rightvertex of v. We connect (cl; v)
at right(cl), if it is free, otherwise at up(cl), if it is free, otherwise at left(cl). The
opposite direction is followed for cr. We want to add v such that when mark(v)
= left then left(v) is free after addition. Since v is the rightvertex of u1, we can
use left(v) for the edge (v; u1) to the left. When right(u1) is used for (v; u1), then
no bends occur in (v; u1), otherwise up(u1) is used, yielding one bend. Similar for
mark(v) = right.

The algorithm, trying to achieve this as much as possible, can be described in a
more elaborate way as follows:

4-Orthogonal(G);
edge (v1; v2) via down(v1) and down(v2);
for k := 3 to K � 1 do
Let Vk = fz1; : : : ; z`g;
� if ` = 1 and in(z1) = fcl; ci; crg then

(cl; z1) via left(z1);
(ci; z1) via down(z1);
(cr; z1) via right(z1);

� if ` = 1 and in(z1) = fcl; crg then
if mark(z1) = left or (left(cr) free and right(cl) not free) then
(z1; cl) via down(z1) and (z1; cr) via right(z1)

else
(z1; cl) via left(z1) and (z1; cr) via down(z1);

� otherwise (` > 1)

11.1 Orthogonal Drawings of 4-Planar Graphs 151

v v1 2

1

cc

c
l

i r

z

Starting with (v1; v2). Adding z1 with in(z1) = fcl; ci; crg.

1
1

c

c
c

c

c

c

left rightl

r

l

r

l

r

z
z

1
z

Adding z1 with in(z1) = fcl; crg.

65
3

2
1

c

c

left
left left

left left
right

l

r

z
z z

4
z

z z

c

vn

c

cα

β

1c = v l

r

Adding z1; : : : ; z`. Adding vn.

Figure 11.2: Adding vertices and faces to obtain an orthogonal drawing.

if right(cl) is free then (z1; cl) via left(z1) else via down(z1);
for i := 2 to ` do
if down(zi�1) is free then (zi�1; zi) via down(zi�1) else via right(zi�1);
if mark(zi) = left then (zi�1; zi) via down(zi) else via left(zi);

rof;
if left(cr) is free then (z`�1; z`) via down(z`); (z`; cj) via right(z`) else
(z`�1; z`) via left(z`); (z`; cr) via down(z`)

rof;
edges from cl; ci2 ; ci3; cr to vn via left(vn), down(vn), right(vn) and up(vn), resp.;

End 4-Orthogonal

See Figure 11.2 for an illustration of the di�erent cases.

152 Orthogonal Drawings

There are several ways for computing the coordinates. Here we brie
y describe
the method, given by Biedl & Kant [8]: Remark that the y-coordinate of a vertex
is never changed later, so we only have to worry about the x-coordinates. The
crucial observation is that we need not know the values of the x-coordinates of
incoming edges of vi when adding vi. We can do the following trick: throughout
the algorithm maintain a list Columns. Every embedded vertex v contains a pointer
x(v) to one element of Columns. Whenever we want to add a column, we add a new
element in Columns. By storing a list as a sequence of pointers we can do so without
changing any of the x-values of vertices, already visited. The �nal x-coordinates are
computed by traversing Columns and assigning ascending values to each element.
Every vertex and bend then checks the value of the element it points to and stores
it as its x-coordinate. This yields a planar orthogonal drawing.

Lemma 11.1.2 The number of bends is at most d3
2
ne + 3. One edge has at most

three bends, all other edges have at most 2 bends.

Proof: Let Vk = fz1; : : : ; z`g. Assume �rst ` > 1. For every vertex zi, down(zi)
and either left(zi) or right(zi) is used. The edge to down(zi) always requires one
extra bend, the other ones not. If mark(z1) = right, and right(z1) is used by (z1; z2),
then later an extra bend is required for the outgoing edge via left(z1). A similar
holds for z` when mark(z`) = left. Hence this implies at most ` bends.

If ` = 1 then we have at most two bends if in(z1) = 3, so assume in(z1) = 2. The
incoming edge, using down(z1), gets no extra bends, the other edge gets one more
bend. If right(cl) and up(cr) are both free, then both edges, (cl; z1) and (cr; z1) are
straight lines (using left(z1) and down(z1), resp). However, if mark(z1) = left, then
an extra bend is required for the outgoing edge of z1, using right(z1). We assign this
extra bend to step k. Similar when mark(z1) = right, hence in all cases at most one
extra bend is introduced when in(z1) = 2.

Also a similar assignment follows for edge (v1; v2): we assign the extra bends of
edges, using the connection left(v1) or right(v2), to step 1. Summarizing this leads
to the following table:

step # vertices # edges # bends
` = 1, in(z1) = 2 1 2 1
` = 1, in(z1) = 3 1 3 2
z1; : : : ; z` ` ` + 1 `

Every vertex v has deg(v) � 4, thus m � 2n. Consider the steps 2; : : : ;K � 1 in
which n � 3 vertices and at most 2n � 5 edges are added. Adding Vk = fzg with
in(z) = 3 occurs at most dn

2
e � 2 times, because then at most d3

2
ne � 6 edges are

added, and at most bn2 +1 edges are added by at most bn2 c� 1 vertices. This yields
at most 2(dn2 e � 2) + bn2c � 1 + 8 = d32ne + 3 bends. The edge, using up(vn) has at
most three bends, all other edges have at most 2 bends. 2

11.1 Orthogonal Drawings of 4-Planar Graphs 153

Lemma 11.1.3 The gridsize is at most n � n.

Proof: The increase in height in step k, 1 < k < K, is at most `, where
Vk = fz1; : : : ; z`g. In step 1 the increase in height is at most one, and in step K two,
which proves the total height of n.

For the total width, we consider the di�erent cases for step k, 1 < k < K. Let
Vk = fz1; : : : ; z`g. If ` > 1, then x(zi)�x(zi�1) = 1 (1 < i < `). If x(z`)�x(z`�1) > 1
then there is no increase in width at all in this step, since then x(cr)�x(cl) > `�1. If
(cl; z1) is horizontal, then this means an increase of one in width, if (cl; z1) is vertical
and mark(z1) = right, then one outgoing edge of z1 has to go via l(z1), hence this
means also an increase of one in width later. We assign this increase to step k. A
similar holds for (z`; cr). Since x(cr) � x(cl) + 1 in step k � 1, it follows that the
increase in width is at most ` in step k.

If ` = 1 and in(z1) = 2, then the width increases by one, due to the fact that
an extra column might be necessary for the outgoing edge of z1 via left(z1) when
mark(z1) = right (similar when mark(z1) = left). If ` = 1 and in(z1) � 3 then the
width does not increase.

For (v1; v2) we assign the extra columns, required by the outgoing edges via
left(v1) and right(v2) to step 1, yielding a starting width of three units. This gives
the following table:

step # vertices increase in width
1, adding (v1; v2) 2 3
k, ` = 1 and in(z1) = 2 1 1
k, ` = 1 and in(z1) = 3 1 0
k, ` > 1 ` `
K, adding vn 1 0

This leads to a total width of at most n. 2

Indeed, in our solution, the edge, using up(vn) has at most three bends, all other
edges have at most two bends. How can we avoid the edge with three bends? Indeed,
Even & Granot proved that any orthogonal drawing of the 4-planar triangulated
planar graph on 6 vertices (octahedron) requires at least one edge with at least
three bends [29]. In our case, if there is a vertex v with deg(v) = 3 then we can set
vn = v. Otherwise let n > 6. Then there is a face with at least 4 vertices, which
we choose to be the outerface. Let vn1; : : : ; vn4 be the neighbors of vn from left to
right. If edge (vn; vn4) uses right(vn4), then we change the four directions of vn4 such
that up(vn4) is used for (vn4; vn). Since mark(vn4) = right (by de�nition), it follows
that at most one extra bend is introduced. Moreover, since n4 6= 2 it follows that
all other edges still have at most 2 bends. This completes the following theorem.

Theorem 11.1.4 There is a linear time and space algorithm to draw every tricon-
nected 4-planar graph G orthogonally on an n�n grid with at most d3

2
ne+4 bends,

such that every edge has at most two bends and length O(n) if n > 6.

154 Orthogonal Drawings

3

7 8

4 5

h 12 11 l

9 10

2
k

ja

1

6 d

b

c 15 g

f

e

q

m

13
p

n

i

14

3

7 8

4 5

h 11 l

9 10

2

k

ja

1

6 d

b

c 15 g

f

e

q

m
13

p

n

i

12

14

(c) Orthogonal drawing. (d) At most 2 bends in every edge.

Figure 11.3: Orthogonal drawing of the 4-planar graph of Figure 10.1.

In Figure 11.3 the orthogonal drawing of the graph of Figure 10.1 is given. In
particular, in Figure 11.3(d) it is shown how to change vk such that all edges have
at most 2 bends. The previous bound on the number of bends was 2n+4, given by
Tamassia & Tollis [105]. Hence our algorithm improves this result considerably for
triconnected planar graphs. In the algorithm of Tamassia & Tollis, every edge gets
at most 4 bends, hence we also improve this bound. Very recently, Biedl & Kant
presented a linear time algorithm for constructing an orthogonal repesentation of
a connected planar graph on an n � n grid, having at most 2n + 2 bends, and
every edge is bent at most twice. Notice that at most 2 bends in every edge is best
possible, because if the planar graph contains a separating triangle on the vertices
vi; vj; vk, then at least one edge of the separating triangle has at least 2 bends in
any orthogonal drawing.

11.2 Orthogonal Drawings of 3-Planar Graphs

11.2.1 Triconnected 3-Planar Graphs

In this section we present a linear time and space algorithm to draw every 3-planar
graph with at most bn2c+1 bends on an bn2c � bn2c grid. This improves all previous
bounds (from [100, 105]) and matches the worst-case lower bounds and, hence, is
best possible. An interesting side-e�ect is that there is a spanning tree using n� 1
straight-line edges. All m� n+ 1 � bn2c+ 1 non-tree edges have at most one bend.

Assume �rst that G is triconnected. By Euler's formula, n is even, m = 3
2n and

f = n
2 +2. Let an lmc-ordering of G be given. Similarly as in Section 11.1 there are

four directions to connect an edge at v, namely, left(v), up(v), right(v) and down(v).
Every vertex v (except v1; v2 and vn) has one outgoing edge, and we connect this

11.2 Orthogonal Drawings of 3-Planar Graphs 155

edge via up(v) at v. We start with placing v1 and v2 at (0; 1) and (1; 1). edge (v1; v2)
goes via down(v1) and down(v2), hence via (0; 0) and (1; 0). In step 2, the vertices
z1; : : : ; z` of V2 are placed on the horizontal line between v1 and v2, i.e., via right(v1)
and left(v2). In every step k, 3 � k < K, we place z1; : : : ; z` also on a horizontal
line of height 1 + maxfy(cl); y(cr)g, with cl and cr the left- and rightvertex of Vk.
If ` > 1 then we shift the drawing such that x(z1) = x(cl) and x(z`) = x(cr). Since
in(Vk) = 2 for 2 � k < K and in(vn) = 3, it follows that K = f , with f the number
of faces in G. Notice that f = n

2
+ 2 (n is even). The complete algorithm can now

be described as follows:

3-Orthogonal

P (v1) := (0; 1);P (v2) := (1; 1);
for k := 3 to f � 1 do
assume we add z1; : : : ; z` (` � 1), from cl to cr;
y(z1) := � � � := y(z`) := 1 +maxfy(cl); y(cr)g;
update x(cl) and shift(cr);
x(z1) := x(cl);
for l := 2 to ` � 1 do x(zl) := x(z1) + l � 1 rof;
if ` > 1 then x(z`) := maxfx(z1) + `� 1; x(cr)+ shift(cr)g;
shift(cr) := maxfshift(cj); x(z`)� x(cj)g

rof;
P (vn) := (x(cl); 1 + maxfy(cl); y(cl); y(cr)g); where in(vn) = fcl; cl; crg;
for k := f downto 2 do
assume we added z1; : : : ; z` from cl to cr;
for i := 1 to ` do x(zi) := xinsert(zi) +

P
1�j�i shift(zj) rof;

if ` = 1 then shift(cr) := shift(z1) else shift(cr) := x(z`)� xinsert(cj)
rof;

End 3-Orthogonal

Lemma 11.2.1 The number of bends is at most n
2
+ 2.

Proof: Since m = 3
2n, we add at most n

2 � 2 times a vertex v with in(v) = 2,
each one introduces one bend. The edge (v1; v2) introduces 2 bends, as well as
adding vn. 2

Lemma 11.2.2 The gridsize is at most n
2 � n

2 .

Proof: Edge (v1; v2) gives 1 unit in X- and Y -direction. Then we add n
2 � 1

times a face with ` � 1 vertices, increasing the X-direction with at most `� 1 units
and the Y -direction (except the �rst time) by 1 unit. Adding vn increases the Y -
direction by 1 unit. Counting this together leads to at most n

2 units in X-direction
and n

2 units in Y -direction. 2

In Figure 11.4(b), an example is given of a triconnected 3-planar graph.

156 Orthogonal Drawings

1

2

3
4

5

6
7

8
9

10

12

13

14

15

16

17
18

1920

11

1 23 4 5 6

7 8 9 10

1112

131415

16
17

18

19

20
20

19

18

1716

15 14 13

12

11

109876

2

5431

Figure 11.4: Orthogonal drawing of a triconnected 3-planar graph.

We can change the drawing as follows, such that there is one bend less, and there
is a spanning tree, using only straight-line edges (if n > 4). Let the vertices of the
�rst drawn face be numbered v1; vi; vi�1; : : : ; v3; v2. We place v1; vi; vi�1; : : : ; v3 on a
horizontal line, and place v2 on (x(v3); y(v3) � 1). Let F 0 be the other face, where
(v2; v3) belongs to. Let vj; : : : ; vk be the other vertices of F 0. We draw vj; : : : ; vk on
a horizontal line on height y(v3), as shown in Figure 11.4(c). The remaining faces
are drawn similar as before. Notice that using this strategy, every triconnected
planar graph G with n vertices can be drawn orthogonally on a grid of size at most
n
2 � (n2 � 1), with at most n

2 + 1 bends (n is even), in which there is a spanning
tree, using only straight-line horizontal and vertical edges. All non-tree edges have
at most one bend (if n > 4).

We notice that better bounds can be obtained if the dual graph G� of G is a
4-connected planar graph in which all internal faces are triangles. It has been shown
by Bhasker & Sahni [7] that in this case G can be drawn orthogonally in linear time
such that there are at most 4 bends. In Chapter 13 we show that by changing
the canonical ordering to 4-connected triangular planar graphs, and applying the
drawing method of He [47], we can achieve the same orthogonal drawing in a very
simple way in linear time and space.

11.2.2 Drawing Biconnected 3-Planar Graphs

In this section we generalize the results of Section 11.2.1 to biconnected 3-planar
graphs G. Recall the de�nitions from Section 2.4 with respect to triconnected com-
ponents, the SPQR-tree, skeleton(bi) and pertinent(bi). Let the triconnected com-
ponents of G be given. From these components we construct the SPQR-tree TSPQR
of G. Let for each node bi in T , si; ti be the poles of bi, and let Bi = skeleton(bi).
We root T at an arbitrary S-node br. Since every vertex has degree 2 or 3 it follows

11.2 Orthogonal Drawings of 3-Planar Graphs 157

that the only bonds which can occur are triple bonds. Let bi be a P-node in T . We
claim that bi has no R-nodes as neighbors. Assume not, and let bj be an R-node,
adjacent to P-node bi in T . But in pertinent(bj) there are � 3 paths between si and
ti. But then in G, deg(si) > 3 and deg(ti) > 3. Thus two neighbors of bi in T , say
bi1 and bi2, are S-nodes, and the third neighbor, say bi3, is a Q- or S-node. bi3 is a
child of bi in TSPQR, and we merge skeleton(bi3) with skeleton(bi2), where bi2 is the
other child of bi. The merged subgraph is a cycle. If bi3 is a Q-node, then it contains
edge (si; ti). If bi3 is an S-node, then si and ti are not adjacent. We represent the
merged subgraph by an S'-node. In this way we remove all P-nodes from TSPQR.
We remove all Q-nodes from TSPQR as well (they are leaves in TSPQR). For every
R-node bi, skeleton(bi) is a triconnected 3-planar graph; for every S-node or S'-node
bi, skeleton(bi) is a cycle. Since deg(v) � 3 for every vertex, the neighbors of an
R-node and the parent of an S'-node are S-nodes. The neighbors of an S-node and
the children of an S'-node are R- or S'-nodes.

The drawing algorithm for biconnected 3-planar graphs follows the structure of
TSPQR. Every triconnected component Bi has exactly two vertices, si and ti, in
common with Bj, where bj = parent(bi) in TSPQR. The triconnected components
Bi, with bi a leaf in TSPQR, are drawn as follows:

bi is an R-node Bi is drawn by the algorithm 3-Orthogonal with v1 = si and
v2 = ti.

bi is an S-node Let (si; s
0
i) and (ti; t

0
i) 2 Bi, s

0
i 6= ti and t0i 6= si. Let B 0

i be Bi �
fsi; tig. If jB0

ij � 4, then draw B0
i as a rectangle such that s0i and t0i are

placed in the lowerleft and lowerright corner, and 2 other vertices placed in
the other two corner points. If jB0

ij = 3, then place s0i in the upperleft corner,
t0i in the lowerright corner, and the other vertex is placed in the upperright
corner. If jB0

ij = 2, B0
i is an edge, which we draw horizontal. For Bi, set

P (si) = (x(s0i); y(s
0
i)� 1), if jB0

ij 6= 3, and P (si) = (x(s0i); y(s
0
i)� 2) if jB0

ij = 3.
Set P (ti) = (x(t0i) + 1; y(t0i)).

bi is an S'-node We draw Bi as a rectangle such that si and ti are the lowerleft
and lowerright corner. If one path between si and ti in Bi contains at least 2
other vertices, then vertices are placed in the other 2 corner points.

Let jBij = n0. If bi is an R-node, then n0 is even. If bi is an S'-node, then we can
draw Bi such that y(ti) = y(si) and x(ti) = x(si) + bn02 c. The same equalities hold
when bi is an R-node after deleting (si; ti). If bi is an S-node, then y(ti) = y(si) + 1
and x(ti) = x(si) + bn02 c, and all vertices v 2 Bi; v 6= si; ti, have x(v) < x(ti) and

y(v) > y(si). In all cases of bi the used area is at most bn0
2
c � (bn0

2
c � 1).

We draw a triconnected component Bj, with bj not a leaf in TSPQR, after every
triconnected component Bi is drawn, with parent(bi) = bj. Let x(bi) = x(ti)� x(si)
and y(bi) = y(ti)�y(si) in the drawing of Bi, then the idea is to stretch the drawing
of Bj such that in the drawing of Bj , x(ti)� x(si) = x(bi) and y(ti)� y(si) = y(bi).

158 Orthogonal Drawings

Then we can place the drawing of Bi in the drawing of Bj without crossing edges.

In particular, we want to stretch the drawing of Bj such that x(bj) � b jBij+jBj j

2 c and
y(bj) � b jBij+jBjj

2
c � 1.

If bj is an S-node, then all edges of bj are straight lines. Every child bi of bj is
an R- or S'-node, thus y(bi) = 0, and we can easily stretch the edge (si; ti) in Bj

to length x(bi). If bj is an S'-node, then one edge with a bend may occur, if both
paths between sj and tj have length � 2. Let P = sj; v; tj be such a path. But
now it follows that if (sj; v) is a virtual edge, then (v; tj) is not virtual, otherwise
deg(v) � 4. We can place v such that the incident virtual edge of v is a straight
line. Hence we can draw Bj with all virtual edges drawn as straight lines. We can

stretch (si; ti) easily such that it has length x(bi). y(bi) � b jBij
2
c � 1, x(bi) � b jBij

2
c,

and (si; ti) had length � 1, thus the increase in both X- and Y -direction, when

inserting the drawing of Bi inside the drawing of Bj is at most b jBij
2
c � 1. We can

place the rectangle, representing Bi, on the outerface of the rectangle, representing
Bj. In this way no crossings occur.

Assume �nally that bj is an R-node, thus Bj is a triconnected graph. This
implies that bi is an S-node, thus Bi is a cycle. Let (si; s0i); (ti; t

0
i) 2 Bi; s

0
i 6= ti and

t0i 6= si. Also y(t0i) = y(s0i) holds in the drawing of Bi. Placing Bi depends on the
di�erent situations, which can occur for edge (si; ti) in Bj. Figure 11.5 shows these
replacements.

Situation (a) occurs when we add one vertex. Situation (b) and (c) are the cases
for adding a chain with at least 3 vertices. Situation (d) occurs when we add a chain
of length 2 in Bj. But here we may place a bend in the incoming edge of si, because
we still have a path, using only straight-line edges from ti to si. Also the increase
in X-direction by adding a chain of length 2 is 1. Hence Lemma 11.2.1 and Lemma
11.2.2 still hold.

Situation (e) occurs when vertex si = sj , i.e., a pole of Bj . A similar situation
can occur for vertex ti. From this replacement it follows that though the size of the
total drawing is at most b jBij+jBjj

2 c�(b jBij+jBjj

2 c�1), the poles sj and tj of Bj are not
necessarily the corner points of this rectangle. But still d(si); l(si) and d(ti); r(ti)
are free. parent(bj) is an S- or S'-node, and we can draw the edges from sj via d(sj)
and from tj via r(tj) in the same way as described for the edges (si; s

0
i) and (ti; t

0
i).

Hence though sj and tj are not the corner points of the area, we can add edges
from sj and tj to the neighbors in Bj without crossing edges in the required area.
Situation (f) occurs when (si; ti) is a horizontal edge, belonging to the �rst added
chain between sj and tj.

When (si; ti) is the internal incoming edge of vn of Bj, then we have 2 situations.
Situation (g) occurs when jBjj > 4. Then either l(si) or r(si) is free, and we can
use a similar replacement. If jBjj = 4, then l(si) and r(si) are not free, hence the
only possible replacement is as shown in situation (h). This leads to a drawing of

size b jBij+jBjj

2
c� (b jBij+jBjj

2
c�1), and x(tj) = x(sj)+ b jBij

2
c�1 holds. But adding Bi

inside another triconnected graph by drawing the 2 connecting edges horizontal (as

11.2 Orthogonal Drawings of 3-Planar Graphs 159

(a) (b)

(c) (d)

(e) (f)

(g) (h)

t’i

s’i

ti

si

si

ti

si

ti

t’i

s’i si

ti

t’is’i

si

ti

t’is’i

si

ti
si ti

si ti

si ti si ti

t’i
s’i

si

ti

t’i
s’i

si ti

si

ti

t’i

s’i

si

ti

si

ti
t’i

s’i

si

ti

Figure 11.5: Replacing virtual edges by triconnected components.

in situation (h)) already solves the problem. This completes the following lemma:

Lemma 11.2.3 After replacing a virtual edge (si; ti) by the corresponding orthogo-
nal drawing of Bi in an orthogonal drawing of Bj, the total required grid size is at

most b jBij+jBjj

2 c � (b jBij+jBjj

2 c � 1).

This means that after replacing all virtual edges of Bj by the triconnected com-
ponents Bi, we obtain an orthogonal drawing of size bn02 c � (bn02 c � 1), with n0 the
number of vertices in pertinent(bj). We continue this approach until we are at root br
of TSPQR. If G is not triconnected, then TSPQR contains an S-node, and we assumed
that br is an S-node.

One easily observes that no bends are introduced, when we consider an S- or
S'-node. Hence the following theorem is obtained:

Theorem 11.2.4 There is a linear time and space algorithm to draw a biconnected
3-planar graph on a grid of size at most bn

2c � bn2 c, with at most bn2c + 1 bends,

160 Orthogonal Drawings

with the property that there is a spanning tree of n � 1 straight-line edges, while all
non-tree edges have at most 1 bend (if n > 4).

In Figure 11.6 an example is given of a biconnected 3-planar graph G, the SPQR-
tree of G, and the corresponding orthogonal drawing of G.

11.2.3 Drawing General 3-Planar Graphs Orthogonally

We extend the algorithm 3-Orthogonal to draw arbitrary 3-planar graphs or-
thogonally. Assume all biconnected components Bi of G are drawn orthogonally on
a grid of size at most b jBij

2 c � (b jBij
2 c � 1). We construct a BC-tree TBC of G. Let

ci = parent(bi) in TBC. We assume that cutvertex ci of block Bi is drawn in one
corner of the orthogonal drawing of Bi. Since ci has degree 2 in Bi it follows that
the root of the corresponding SPQR-tree of Gi is an S- or S'-node, hence placing
ci in the corner can easily be obtained. Let cl be the other neighbor of ci, then cl
is a cutvertex as well. cl has one or two children in TBC. We �rst draw these 2
corresponding blocks, and then merge it into one drawing, as shown in Figure 11.7.

There will be no extra bends included in the drawing. Also the required area
for drawing blocks Bi and Bj is at most b jBij+jBjj

2 c�b jBij+jBjj

2 c, which completes the
following theorem:

Theorem 11.2.5 There is a linear time and space algorithm to draw any 3-planar
graph on an bn

2
c � bn

2
c grid with at most bn

2
c+ 1 bends, with the property that there

is a spanning tree of n� 1 straight-line edges, while all non-tree edges have at most
1 bend (if n > 4).

11.2 Orthogonal Drawings of 3-Planar Graphs 161

1

2 3

4

5

6

7

8
9

10

11

12
13

14
15

16

17
18

6

9
10

11

13
14

11

12
13

6

7
8

1 5
6

14
15

18

1516

18

2 3

4 5

9

17 1

(a) The input graph G. (b) The SPQR-tree of G.

18

16

17
15

1 54

2 3

14

15
18

1 5 6

11

12

13

11
13 10

9

14

6

6

87 9

12

13 11

9 8 7

6

5

4

1

3

2

18

17 16

1514

10

(c) Drawing the triconnected

components.

(d) The complete drawing.

Figure 11.6: Orthogonal drawing of a biconnected 3-planar graph.

162 Orthogonal Drawings

l
c

c

c

j

i

ci
lc

cj

Figure 11.7: Orthogonal drawing of the blocks.

Chapter 12

Hexagonal Drawings

In Chapter 11 we considered the drawings of 3- and 4-planar graphs on a rectilinear
grid. In this chapter we consider the drawings of 3-planar graphs on a hexagonal
grid. In a hexagonal grid there are three directions of the lines (see Figure 12.1): 0
degree lines (here called X-direction), �=3 degree lines (here called Y -direction) and
the 2�=3 degree lines (here called Z-direction). We show in this chapter that we
can draw any 3-planar graph on a hexagonal grid, such that at most one edge has
bends. This bent edge cannot always be avoided. For instance, consider the graph
K4 in Figure 12.1.

1 2

3 4

X−direction

Y−directionZ−direction

Figure 12.1: Drawing of a K4 on a hexagonal grid.

Using the drawing on the hexagonal grid, we are able to prove the main result of
this chapter, which says that every 3-planar graph G can be drawn with straight-line
edges such that the minimum angle is � �

4
if G is triconnected, and � �

3
, otherwise.

This solves an open problem of Formann et al. [32].

163

164 Hexagonal Drawings

12.1 Triconnected 3-Planar Graphs

Let G be a triconnected 3-planar graph with n vertices. Then n must be even,
the number of edges m = 3

2
n and the number of faces f = n

2
+ 2, since by Euler's

formula, m � n � f + 2 = 0. Let an lmc-ordering of G be given. In each step k,
3 � k < n we add one face, Fk, and in the last step K we add vn. This yields that
K = f . Let F 0 be the outerface, and let F 00 6= F 0 be the other face, containing
(v1; vn). Let Fn be this incident face of vn, which does not contain (v1; vn). Recall
the de�nitions of the new and internal vertices, and the left- and rightvertex, given
in Chapter 2.

De�nition 12.1.1 E(Fk) is the set of edges of Fk, added in step k.

De�nition 12.1.2 The base-edge of Fk, called be(Fk), is the edge which belongs
also to the lowest numbered face Fj that is adjacent to Fk.

Let the base-edge of F3 be (v1; v2). By de�nition jE(Fk)j � 2 for all faces
Fk; k � 3, because we add at least one vertex v in step k. The base-edges play
an important role in the drawing algorithm. First a length lth is assigned to each
base-edge, calculated as follows:

Set lth(e) = 1 for all edges e 2 G;
for k := f downto 3 do lth(be(Fk)) :=

P
e2E(Fk)

lth(e)� 1 rof;

For each edge e, we will show that the length of e in the resulting drawing, denoted
by length(e), is at least lth(e). Let k1 = lth((v1; v2)). For the coordinates P (vi) =
(x(vi); y(vi)) we use the units along the X- and Y -axis. The drawing is constructed
as follows:

Let v2 and v3 be the two neighbors of v1 in F3. (v2 and v3 are not necessarily
neighbors.) We start with drawing F3 as a triangle with sizes k1, i.e., P (v2) =
(0; 0); P (v1) = (k1;�k1); P (v3) = (k1; 0), and the other vertices of F3 are placed on
the horizontal line between v2 and v3, such that the length of every edge e is lth(e).
These edges form the basis for adding the faces F4; : : : ; Ff�1.

If Vk = fzg, then we walk from leftvertex cl upwards in Y -direction and from
rightvertex cr upwards in Z-direction. The crossing point is the place for z (see
Figure 12.2(b)). If Vk = fz1; : : : ; z`g, then we go from cr one unit in Z-direction and
from cl in Y -direction to the same height (assume y(cr) � y(cl)) and add z1; : : : ; z`
on the horizontal line in between (see Figure 12.2(c)).

For computing P (vn) we ignore edge (v1; vn). Adding (v1; vn) is obtained by going
from v1 one step in X-direction, k1 steps in Y -direction, k1 steps in Z-direction and
one step in negative X-direction to vn (see Figure 12.2(d)). Adding the vertices
v1; : : : ; vn�1 can be described as follows:

12.1 Triconnected 3-Planar Graphs 165

1v

vv

F
k1

3

3

2

F

F
k

v v

c
c

i
j

1
w

2 3

3

(a) The structure of F3. (b) Adding a face with one

vertex to the current drawing.

F

v

ic
jc

Fk

1 2
w w

v

3

32

v v

v

v

F

2
3

1

n

3

(c) Adding a face with two

vertices to the current drawing.

(d) The complete drawing.

Figure 12.2: Illustration of the algorithm HexaDraw.

HexaDraw

P (v1) = (k1;�k1);
let v2 = z1; : : : ; z` = v3 be the other vertices of F3;
P (z1) := (0; 0);
for i := 2 to ` do P (zi) := (x(zi�1) + lth((zi�1; zi)); 0) rof;
for k := 4 to f � 1 do
assume we add z1; : : : ; z` (` > 1) from cl to cr;
x(z1) := x(cl);
if ` = 1 then

(*) y(z1) := y(cr) + x(cr)� x(cl)
else

(*) y(z1) := y(z2) := : : : := y(z`) := maxfy(cl); y(cr)g+ 1;
for i := 2 to ` � 1 do x(zi) := x(zi�1) + lth((zi; zi�1)) rof;
x(z`) := x(cr) + y(cr)� y(z1)

rof;
End HexaDraw

166 Hexagonal Drawings

It is easy to see that the algorithm can be implemented to run in linear time and
space. To prove the correctness of the algorithm, we need the following lemmas.

Lemma 12.1.1 At least one of the internal edges of a face Fk is horizontal.

Proof: Suppose not. Let cl be the leftvertex and cr be the rightvertex of Fk.
cl and cr had degree 2 before adding Fk and thus (cl; cl+1) must have Z-direction
downwards and (cr�1; cr) must have Y -direction upwards, if they are not horizontal.
But there cannot be a vertex c�, l < � < r such that (c��1; c�) has Z-direction and
(c�; c�+1) has Y -direction, because then by HexaDraw, c� would have degree 4.
Thus there must be at least one horizontal internal edge when adding Fk. 2

Lemma 12.1.2 The internal edges of a new face Fk are: �rst � 0 edges in Z-
direction downwards, then one horizontal edge and then � 0 edges in Y -direction
upwards, in this order from left to right.

Proof: If for an internal vertex c� holds that (c��1; c�) is of Y -direction and
(c�; c�+1) is of Z-direction then by de�nition c� has degree 2 in Gk and, hence,
cannot be internal. Similar when one or two of these edges are horizontal. Hence
there is exactly one horizontal edge e. All left internal edges of e are in Z-direction
and all edges right from e are in Y -direction. 2

Lemma 12.1.3 e is drawn horizontal () e is a base-edge.

Proof: =) Let (c�; c�+1) be the horizontal internal edge when adding Fk to
Gk+1. By lemma 12.1.1, such an edge exists. All internal edges of Fk left (right) from
c� have Z-direction (Y -direction) upwards by lemma 12.1.2. But these edges are
added after c�, because c� is the rightmost vertex of the face when adding (c��1; c�)
by the algorithm HexaDraw. Similarly for c�+1. But then (c�; c�+1) belongs to
the lowest numbered adjacent face of Fk, hence (c�; c�+1) is the base-edge.

(= Suppose e is a horizontal edge, belonging to Fi and Fj with i > j. Thus e is
a horizontal internal edge of Fi. Suppose be(Fi) = e0 with e0 6= e. We know already
that e0 is horizontal, but then there are two horizontal internal edges when adding
Fi. This contradicts lemma 12.1.2. 2

Lemma 12.1.4 For each edge e, length(e) � lth(e).

Proof: By induction on the faces Fk. The base-edge of F3 is drawn with length
k1. x(v3)� x(v2) = k1, which is equal to the sum of lth(e) of all edges e between v2
and v3, hence the lemma is correct for F3.

Assume the lemma is correct for i = 3; : : : ; k � 1. We show that we add Fk by
HexaDraw such that length(e) � lth(e) for every edge in Gk. Let e0 = (c�; c�+1) =

12.1 Triconnected 3-Planar Graphs 167

be(Fk). From c� we have � 0 edges in Z-direction upwards to leftvertex cl and
from c�+1 we have � 0 edges in Y -direction upwards to rightvertex cr. Assume
w.l.o.g. that y(cl) � y(cr) and that we add at least two vertices z1; : : : ; z`. From
cl we go one step in Y -direction to place z1. From cr we go in Z-direction to the
same height to place z`. (cl; z1) and (z`; cr) are not base-edges, thus lth(e) = 1
and thus length(e) � lth(e) for (cl; z1) and (z`; cr). Moreover, x(z`) � x(z1) =
x(cr) + y(cr)� y(z1)� x(z1) = x(cr)� x(cl)� (y(cl) + 1� y(cr)). Notice that from
c� to cl we go in Z-direction upwards, thus x(cl) + y(cl) = x(c�) + y(c�), and from
c�+1 to cr we go in Y -direction upwards, thus x(cr) + y(cr) � x(c�+1) + y(c�+1).
Note also that y(c�+1) = y(c�), as (c�; c�+1) = be(Fk), hence horizontal. Thus
x(z`)�x(z1) = x(cr)�x(cl)�(y(cl)+1�y(cr)) � x(c�+1)�x(c�)�1 � lth(e0)�1 by
induction. lth((cl; z1)) = lth((z`; cr)) = 1, thus

P
1�i<p lth((zi; zi+1)) = lth(e0) � 1,

hence also in Gk all edges e have length at least lth(e). 2

Since lth(e) � 1 for all edges e, this lemmaproves the correctness of the algorithm
HexaDraw.

2
3

456

7
8 9 10

11
12

13
14

15

16 17

1

18

19
20

1

2

3

45
6

7
8

9

10

11 12
13

14
15

16
17

18
19

20

Figure 12.3: The graph of Figure 11.4 with the corresponding drawing by Hex-
aDraw.

Lemma 12.1.5 The size of the hexagonal grid is n
2 � n

2 .

Proof: There are 3
2n edges and n

2 +2 faces. F 00 and F 0 do not have base-edges,
hence there are n

2 base-edges. All 3
2n edges, except (v1; vn), are added to the lth of

168 Hexagonal Drawings

a base-edge. The initial length 1 of a base-edge e is ignored when calculating lth(e),
and every lth(e) is decreased by 1 in the calculation. Thus k1 = lth(be(F3)) =
3
2
n�1� n

2
� n

2
= n

2
�1. Adding (v1; vn) increases the size in both Y - and Z-direction

by one. This leads to a drawing with sizes n
2 in each direction. 2

In Figure 12.3 an example is given of a drawing of a triconnected 3-planar graph.
We can use the algorithmHexaDraw as follows to draw a triconnected 6-planar

graph G on a hexagonal grid: replace every vertex vk with deg(vk) > 3 by the cycle
C(vk) of length deg(vk) where every vertex of C(vk) has an edge to a neighbor of
vk. Let G0 be the resulting graph. G0 is triconnected and 3-planar. We apply
HexaDraw to G0 such that face Fk of the corresponding cycle C(vk) contains at
least one internal point pk of the hexagonal grid, i.e., the size of F in X-, Y - and
Z-direction is � 2. This follows when we set lth(be(F)) =

P
e2E(Fk)

lth(e), because

then lth(be(F)) � 2, and we can place z1; : : : ; z` such that y(z1) =maxfy(cl) +
2; y(cr) + 2g. When we change G0 into G, i.e., replacing cycle C(vk) by vertex vk,
we place vk at an internal point pk of face Fk.

p
Y

p
−Z

p
Z

p
−X

p
i

Fi

−Y
p

X
p

p
Y

p
−Z

p
Z

p
−X p

i

Fi

−Y
p

X
p p

Y

p
−Z

p
Z

p
−X p

i

−Y
p

X
p

Figure 12.4: Placing pk inside Fk.

Lemma 12.1.6 We can choose pk inside Fk such that all paths between pk and the
vertices of Fk are vertex-disjoint and have at most one bend.

Proof: Let pX and p�X be these places on the hexagonal grid, by going from
place pk in X- and negative X-direction, respectively. Analog pY ; p�Y ; pZ and p�Z
are de�ned. Let (c�; c�+1) be the base-edge of Fk, and assume when we add Fk,
we add the vertices z1; : : : ; z` from cl to cr. Assume that deg(vk) = 6, the cases
deg(vk) = 4 and deg(vk) = 5 are similar.

If Fk is a 6-gon, then i 6= �; j 6= � + 1 and ` = 2. Let P (pk) = (x(c�); y(cr)).
It can easily be veri�ed that this place is an internal point of Fk. p�Y = c� and
pX = cr. p�X = cl, or on edge (cl; c�) or (cl; z1). pY = z2, or on edge (z2; z1) or
(z2; cr). pZ = z1, or on edge (z1; cl) or (z1; z2). p�Z = c�+1, or on edge (c�+1; c�) or
(c�+1; cr). Hence we can place the edges (pk; c�); (pk; c�+1); (pk; cr); (pk; z2); (pk; z1)

12.1 Triconnected 3-Planar Graphs 169

and (pk; cl) via the points p�Y ; p�Z ; pX ; pY ; pZ and p�X respectively, such that they
are vertex-disjoint, and each edge has at most one bend (see Figure 12.4).

If Fk is a 5-gon, then � = l + 2 or r = � + 3 or ` = 3. Consider the case
that p = 3, and r = � + 2. (The other cases are similar by changing the dif-
ferent directions.) We place pk at (x(z3); y(cr)). It follows that pX = cr and
pY = z3. p�X is on edge (c�; z1). p�Y is on edge (c�; c�+1); p�Z = c�+2, or on
edge (c�+2; c�+1) or (c�+2; c�+3); pZ = z1, or on edge (z1; z2) or (z1; cl). Hence we
can place the edges (pk; c�); (pk; c�+1); (pk; c�+2); (pk; cr); (pk; z2) and (pk; z1) via the
points p�Y ; p�Z ; pX ; pY ; pZ and p�X respectively, such that they are vertex-disjoint,
and each edge has at most one bend (see Figure 12.4).

If Fk is a 4-gon, then we have p = 4 or r = �+4 or l = ��3. Consider the case p =
4 in more detail. (The other cases go similar by changing the di�erent directions.)
Now l = � and r = � + 1 holds, and y(z1) � y(cl) + 2, because we assumed that
the length of Fi in each direction is at least 2, which is obtained by lth(be(Fk)) :=P

e2E(Fk)
lth(e). We set P (pk) = (x(z3); y(ck)+1). Again, it is not di�cult to verify

that we can place the edges (pk; c�); (pk; c�+1); (pk; z4); (pk; z3); (pk; z2) and (pk; z1)
via the points p�Y ; p�Z ; pX ; pY ; pZ and p�X respectively, such that they are vertex-
disjoint, and each edge has at most one bend (see Figure 12.4). This completes the
proof, because Fk cannot be a triangle. 2

In Figure 12.4 the di�erent cases are illustrated. This leads to the following
theorem:

Theorem 12.1.7 There is a linear time algorithm to draw a triconnected 6-planar
graph on a hexagonal grid of size at most (6n� 12)� (6n� 12) such that each edge
has at most 4 bends.

Proof: Every vertex vk of G gives rise to at most deg(vk) vertices in G0, thus
nG0 � 6n�12. ApplyingHexaDraw such that each face Fk has at least one internal
point pk can be obtained by setting lth(be(F)) =

P
e2E(Fk)

lth(e). This implies that

every edge (except (v1; vn)) are added to lth of a base-edge. The initial length 1 of
a base-edge e is ignored when calculating lth(e). This yields that k1 = lth((v1; v2))
in G0 is mG0 � 1 � fG0 + 2 = nG0 � 1 = 6n � 13 (using the formula of Euler). This
proves the grid size of (6n � 12) � (6n � 12). We place every vertex vk at place pk.
This yields at most one bend to come from pk to every vertex of Fk. At that vertex
another bend is created. The same is done at the other endpoint of this edge, thus
there are at most 4 bends in each edge. 2

In [105] a linear time algorithm is presented to draw a 4-planar graph on an
O(n2) rectilinear grid with at most 4 bends in each edge. Hence theorem 12.1.7
extends this result in a positive way to triconnected 6-planar graphs. Biedl (personal
communication) showed that there exists a class of triconnected 6-planar graphs,
requiring O(n) bends in any hexagonal drawing.

170 Hexagonal Drawings

We can use a modi�cation of HexaDraw, such that we obtain a straight-line
drawing of a triconnected 3-planar graph G on an n

2
� n

2
rectilinear grid. For this

goal take the Y -axis perpendicular to the X-axis, and let the Z-axis make an angle
of degree �=4 with the X-axis. See Figure 12.5(a). We now do the algorithm
HexaDraw. The coordinates follow the X- and Y -direction. We �nally move
vertex v1 to the point (k1+1;�1), leading to straight-line edges (v1; v2); (v1; v3) and
(v1; vn), as shown in Figure 12.5(b). The gridsize in X- and Y -direction is still the
same, thereby proving the following theorem.

Theorem 12.1.8 There is a linear time algorithm to draw a triconnected 3-planar
graph planar with straight lines on an n

2
� n

2
grid.

The best bound for the grid size of drawing planar graphs with straight-line
edges on a grid is (n�2)� (n�2) (see Chapter 10), hence Theorem 12.1.8 improves
this result by a factor 4 in the case of triconnected 3-planar graphs. Also here, every
face is drawn convexly.

(a) (b)

v

v1

v2 v
3

n
v

v

n

v
2 v3

1

X−direction

Y−direction Z−direction

Figure 12.5: Drawing the triconnected 3-planar graph on gridcoordinates.

12.2 Drawing Graphs with Degree at most 3

In this section we show how the algorithm HexaDraw can be used to draw non-
triconnected 3-planar graphs on a hexagonal grid without bends at all. This ex-
tension is obtained in a similar way as in Section 11.2. In Section 11.2 we showed

12.2 Drawing Graphs with Degree at most 3 171

how to use the algorithm for orthogonal drawings of triconnected 3-planar graphs
to draw general 3-planar graphs orthogonally. We cannot add edges to G to obtain
triconnectivity, since this may yield vertices v with deg(v) > 3. Assume w.l.o.g.
that G is biconnected, otherwise the biconnected components of G can be drawn
separately. (They are connected via bridges with each other, since �(G) � 3).

Let G be a biconnected 3-planar graph, but not triconnected. Let TSPQR be
the SPQR-tree of G. Let for each node bi in TSPQR, si; ti be the poles of bi. Root
TSPQR at an arbitrary S-node. Since every vertex has degree 2 or 3 it follows that
the only bonds which can occur are triple bonds. We merge the two components,
children of a P-node, into one component, which is denoted by an S'-node (see also
Section 11.2.2). In this way all P-nodes are removed from TSPQR. We also remove
all Q-nodes from TSPQR. For every R-node bi, skeleton(bi) is a triconnected 3-planar
graph; for every S-node or S'-node bi, skeleton(bi) is a cycle. Since deg(v) � 3 for
every vertex, the children of an S'- and an R-node are S-nodes, and all neighbors of
an S-node are R- or S'-nodes.

The idea for drawing G is as follows: We start with drawing these triconnected
components Bi, for which bi is a leaf in TSPQR, with Bi = skeleton(bi). This is done
as follows:

bi is an R-node Draw Bi by using the algorithm HexaDraw, with si = v1 and
ti = vn.

bi is an S-node Draw all non-virtual edges of the cycle Bi as a horizontal line
between si and ti, with virtual edge (si; ti), requiring two bends, below it.

bi is an S'-node Draw the cycle Bi as a parallelepiped on the X- and Y -axis such
that si and ti are corner points. (If jBij = 3, then it is drawn as a triangle.)

Next the triconnected components Bj are drawn, for which all triconnected com-
ponents Bi, bi child of bj in TSPQR, are already drawn. We replace virtual edge
(si; ti) in Bj by the drawing of Bi. This is done by \stretching" the drawing of Bj

such that the di�erence in coordinates of si and ti corresponds to the di�erence in
coordinates in the drawing of Bi. If bi is an R- or S-node, then all edges, except
the edge between the poles, are straight lines. If bi is an S'-node, then all edges are
straight lines. In all cases, the poles si and ti are corner points of a rectangle on
the X- and Y -axis. Using this strategy, it is quite easy to draw the triconnected
components Bj , when bj is not a leaf. Let bi be a child of bj. Let x(bi) = x(ti)�x(si)
and y(bi) = y(ti)� y(si) in the drawing of Bi.

bj is an R-node Apply HexaDraw(Bj), in which every virtual edge (si; ti) is
changed such that x(ti)�x(si) = x(bi) and y(ti)�y(si) = y(bi) in the drawing
of Bj .

bj is an S-node The edges of Bj (except edge (sj; tj)) are drawn on a horizontal
line initially, hence it is easy to change it such that for each virtual edge si; ti,
x(ti) = x(si) + x(bi) and y(ti) = y(si) + y(bi).

172 Hexagonal Drawings

S−node

S’−node

R−node
s
i

ti

s
i ti

s
i ti

ti

ti

ti

s
i

s
i

s
i

Figure 12.6: Drawing the triconnected components of a 3-planar graph.

bj is an S'-node Draw Bj as a rectangle, but change the virtual edges (si; ti), which
are all straight-line edges, such that x(ti) � x(si) = x(bi) and y(ti) � y(si) =
y(bi) in the drawing of Bj.

In Figure 12.6 the di�erent cases for the drawing are given. We apply this
drawing strategy for each node bj in the SPQR-tree, until bj = root(TSPQR). In this
case we assumed that bj is an S-node. We draw the corresponding cycle Bj with
straight lines on the hexagonal grid. Then we know the coordinates of all vertices of
Bj. We place all triconnected components Bi, with bj = parent(bi), in the drawing
of Bj. We continue this until a complete drawing of G is obtained. This completes
the following theorem:

Theorem 12.2.1 There is a linear time algorithm to draw a non-triconnected 3-
planar graph on a hexagonal grid with straight-line edges such that the minimum
angle is � �

3
.

12.3 Drawings with Straight Lines 173

12.3 Drawings with Straight Lines

In this section we come to the main theorem of this chapter, which is a positive
answer to the following question, posed by Formann et al. [32]:

Does every planar graph with degree � 3 have a planar embedding with
straight-line edges such that the smallest angle is at least a constant,
independent of the number of vertices?

If the 3-planar graph G is not triconnected, then by Theorem 12.2.1 we can draw
G with straight-line edges such that the smallest angle is � �

3
. This is also best

possible by the following lemma:

Lemma 12.3.1 There are 3-planar graphs with n vertices, for which in any layout
the minimum angle � is at most �

3
. If n = 6, then � � �

4
, if n = 4 then � � �

6
.

Proof: If G contains a triangle, then the best way to draw this is by equal-sized
angles of �

3 . If G is a triconnected planar graph with 6 vertices, then the largest
face has four vertices. Hence in any drawing of G the outerface Fout has at most
four vertices. Each vertex of Fout has two internal incident angles. The sum of the
angles in a 4-gon is 2�. Hence there is an angle with size � 2�

8 = �
4 . If n = 4, then

the largest face has three vertices, and the proof follows in a similar way. 2

In this section we prove that every triconnected 3-planar graph can be drawn
with straight-line edges such that the minimum angle is at least �

4
, if n � 6. If n = 6

then a drawing with minimum angle � �
4
is easily constructed, so assume n � 8.

Let an lmc-ordering of G be given. let v� and v� be the other two neighbors
of v2, unequal to v1. Let Fx be the face, containing (v2; v�) and (v2; v�). (It is
easy to compute the lmc-ordering such that x = 4.) Let k2 = lth(be(Fx)) and let
k1 =

n
2 � 1 � k2. We assume k2 � k1, otherwise we simply put k2 = k1 (this only

enlarges the drawing somewhat).
We change the algorithmHexaDraw as follows: we draw edge (v1; v2) horizontal

with length k1. We draw face Fx as a triangle with sizes k2, i.e., we draw v� and v�
k2 units from v2 in Z- and Y -direction, respectively. We draw v3 k2 units from v1 in
Y -direction. The remaining vertices of F3 and Fx are placed on the horizontal line
between v� and v3 with respect to the length of the base-edges (see Figure 12.7).
We now apply HexaDraw to draw the remaining vertices. This gives a hexagonal
drawing with bends only in (v1; vn). If F3 is a triangle, then v� = v3 and k1 = 0.

Let P (v�) = (0; 0), then we change the drawing as follows: we set P (v1) =
(k1 + k2;�k1 � k2) and P (v2) = (2k1 + 2k2; 0), as shown in Figure 12.7(b). As we
used the underlying hexagonal grid, it follows that all angles have size at least �=6,
and only the angles \v3vnv1;\vnv1v3;\v3v1v2 and \v�v2v� can have size < �=3 (see
the marked angles in Figure 12.7(b)). If n = 4, then 6 angles have size �=6: This
completes the following result:

174 Hexagonal Drawings

1
2

345610987

11

12

13
14

15

16 17

18

19

20

1

2

345610987

11

12

13
14

15

16 17

18

19

20

Figure 12.7: Changing the hexagonal drawing such that all angles � �
6 .

Lemma 12.3.2 There is a straight-line drawing of a triconnected 3-planar graph
with n � 6 vertices in which every angle has size � �=6, and at most 4 angles have
size < �=3.

We now change the drawing algorithm a little such that the minimum angle is
� �

4
, if n � 8. Hereto we use the grid model of Figure 12.5. Assume that the

outerface F 00 has � 5 vertices, and that Fx has � 4 vertices (such a pair of adjacent
faces always exists, if n � 8).

Let v
 and v� be the other neighbors of v�, unequal to v2. Let (v�; v
) 2 Fx.
Let Fy be the other face, containing (v�; v
). By de�nition, (v�; v
) = be(Fy). Let
k3 = lth(be(Fy)); k2 = lth(be(Fx)) � k3, and k1 =

n
2 � 1 � k2 � k3. We enlarge the

value k3 (and also possibly k1 and k2), such that k3 = 2k1 + k2. We now place
edge (v�; v2) horizontal. We place the faces Fx; Fy and F3 such that all vertices
of these faces, except v2 and v�, have the same y-value, and all angles have size
� �

4 . Hereto we set P (v�) = (k3;�k3) and P (v2) = (k2 + 2k3;�k3), and we set
P (v�) = (0; 0); P (v
) = (k3; 0); P (v�) = (k2 + k3; 0); P (v3) = (k1 + k2 + k3; 0) and
P (v1) = (2k1+2k2+2k3; 0), as shown in Figure 12.8. The other vertices of Fy; Fx and
F3 are placed on the horizontal line between v� and v3 with respect to the length of
the base-edges. The algorithm HexaDraw is used to draw the remaining vertices.
This gives P (vn) = (k1 + k2 + k3; k1 + k2 + k3). Since k3 = 2k1 + k2 it follows that
all edges are horizontal, vertical, or have slopes +1 or �1. This gives a drawing
with minimum angle � �

4
, as shown in Figure 12.8, and completes the proof of the

following theorem:

12.4 Heuristics for Decreasing the Area 175

1

2

3
4

5
6

7

8 9 10

11

12
13

14
15

16 17

18
19 20

v

v

vv

v v v

v

δ α

β

γ

n

1
k

k3
k
1

3

k − k3 1 k3

k + k + k

k2

2 3

2

3

F
3F

F
x

y

F’
1

Figure 12.8: Drawing a triconnected 3-planar graph G with minimum angle � �
4
.

Theorem 12.3.3 Every triconnected 3-planar graph with n � 6 vertices can be
drawn with straight-line edges on a grid of size at most 2n � 2n grid such that the
minimum angle is � �

4 and all interior faces are drawn convex.

In Figure 12.8 an example is given of the graph of Figure 12.3.

12.4 Heuristics for Decreasing the Area

In this chapter we considered drawings of planar graphs with degree at most 3 on a
hexagonal grid. A linear time algorithm HexaDraw for this problem is described,
leading to a linear-sized grid in the case of triconnected 3-planar graphs. However, in
HexaDrawwe always go from the leftvertex in Y -direction and from the rightvertex
in Z-direction to the same height, even when there is no reason to go upwards. For
example, assume y(cl) > y(cr) and (cl; cl+1) is in Z-direction downwards, then we
can place the new vertices z1; : : : ; z` of face Fk on a horizonal line on height y(cl)
instead of y(cl) + 1. To obtain this we change the two lines with (*) both as follows
in HexaDraw:

...
if (y(cl) > y(cr) and y(cl) > y(cl+1)) or (y(cr) > y(cl) and y(cr) > y(cr�1)) then
y(z1) := y(z2) := : : : := y(z`) := maxfy(cl); y(cr)g

else
...

In case we add one vertex z1 and (y(cl) > y(cr) and y(cl) > y(cl+1)) holds, then we
set x(z1) := x(cr)+ y(cr)� y(cl). To prove that the drawing algorithm HexaDraw

works correct after this modi�cation, we prove the following variant of lemma 12.1.2.

176 Hexagonal Drawings

(Notice that lemma 12.1.1 still holds and that still holds: e is a base-edge =) e is
drawn horizontal.)

Lemma 12.4.1 All internal edges of a face Fk left from be(Fk) are horizontal or
upwards in Z-direction. All internal edges of Fk right from be(Fk) are horizontal or
upwards in Y -direction.

Proof: Suppose there are edges (c�; c�+1) and (c�; c�+1) in Y - and Z-direction
at one side of a horizontal edge, with � + 1 � �. If � + 1 = � then by de�nition
c� has degree 2 in Gk+1 and, hence, must be a left- or rightvertex. If � + 2 = �
then there is only one horizontal edge between the edges of Y - and Z-direction,
thus c�+1 or c� must have degree 2 in Gk+1. If � > � + 2 then there are more
horizontal consecutive edges. If these edges belong to one face of Gk+1 then the
internal vertices c�+2; : : : ; c��1 have degree 2 in Gk+1, otherwise again c�+1 or c� has
degree 2 in Gk+1.

Hence there is a horizontal edge (c�; c�+1) such that left from c� all internal
edges are horizontal or upwards in Z-direction. Right from c�+1 all internal edges
are horizontal or upwards in Y -direction. Similarly to lemma 12.1.3 we can prove
that we can choose � such that (c�; c�+1) is the base-edge. 2

This lemma implies that in some cases we can decrease the total height consid-
erably. Another optimization is the following. We can use the drawing of Figure
12.7(a) for the hexagonal grid drawing. If k2 is small, then this decreases the height
of the drawing. Let Fx be the face, containing v2 and two neighbors of v2, not equal
to v1. Finding an lmc-ordering such that k2 is small is not easy in general, but it
becomes solvable when Fx is a triangle. (When there is a triangle Ft in G, then it
is not di�cult to number G such that Ft = Fx.) Let v� and v� be the other two
neighbors of v2, unequal to v1. Then (v�; v�) 2 Fx. Let also (v�; v�) 2 Fy; Fy 6= Fx.
Then be(Fy) 6= (v�; v�), because Fy contains at least one edge e with e 2 F3. Thus
k2 = 1, and we obtain a drawing of G within a triangle with sides n

2
.

The last optimization we notice is when x(z`) � x(z1) >
P

1�i<p lth((zi; zi+1))
at the moment of adding face Fk. This is the case when y(cr) > y(c�+1) with
(c�; c�+1) the base-edge of Fk and cr the rightvertex of Fk. In HexaDraw this
leads to a drawing with length((zp�1; z`)) > lth((zp�1; z`)). We can now subtract
length((zp�1; z`))� lth((zp�1; z`)) from lth((c�; c�+1)). We update lth((a; b)) for all
base-edges (a; b) by visiting the faces Ff�1; : : : ; F3, in this order after HexaDraw.
Using the new lth's of the base-edges we again apply HexaDraw to draw G in
linear time on a hexagonal grid of smaller size.

In Figure 12.9, these optimizations have been applied to the example, given in
Figure 12.3. Using these observations, we may use a smaller grid than n

2 � n
2 to draw

triconnected planar graphs. Whether there exist triconnected 3-planar graphs for
which any straight-line drawing requires an n

2
� n

2
grid remains as an open problem.

In Figure 12.10(a) an example of a planar graph of degree 3 is given, requiring an

12.4 Heuristics for Decreasing the Area 177

11

7

9

12
13

10

2

1

20

3

45
6

1716
15

18
19

14

8

1

20

2

19 17 4
18 16

13
14

15
5

10
6

3

12

9

811

7

Figure 12.9: Optimizing the drawing of the graph in Figure 12.3.

(n2 +1)� (n
4
+1) grid for a straight-line embedding (n = 8k, for some integer k > 0),

but it is not triconnected. In Figure 12.10(b) a planar graph of degree at most
4 is shown, for which every straight-line drawing requires an 2

3
(n � 1) � 2

3
(n � 1)

grid, if this embedding is used, and n+1
2
� n�1

3
otherwise (n = 6k + 1, for some

integer k > 0). This gives some indication of the tightness of our algorithm. The
triconnected 3-planar graph of Figure 12.10(c) requires an (n�1

3 +2)� (n�13 +2) grid,
if this embedding is used, and (n�1

4
+4)� (n�1

6
+3) grid otherwise (n = 12k+1, for

some integer k > 0).

(a) (b) (c)

Figure 12.10: Examples of planar graphs for grid size lower bounds.

178 Hexagonal Drawings

Chapter 13

Rectangular Duals

13.1 Introduction

In this chapter we consider the problem of representing a graph G by a rectangu-
lar dual. This is applied in the design of
oor planning of electronic chips and in
architectural design. A rectangular dual is de�ned as follows. A rectangular subdi-
vision system of a rectangle R is a partition of R into a set � = fR1; R2; : : : ; Rng
of non-overlapping rectangles such that no four rectangles in � meet at the same
point. A rectangular dual of a planar graph G is a rectangular subdivision system
� and a one-to-one correspondence R : V ! � such that two vertices u and v are
adjacent in G if and only if their corresponding rectangles R(u) and R(v) share a
common boundary. In the application of this representation, the vertices of G repre-
sent circuit modules and the edges represent module adjacencies. A rectangular dual
provides a placement of the circuit modules that preserves the required adjacencies.
Figure 13.1 shows an example of a planar graph and its rectangular dual.

This problem was �rst studied by Bhasker & Sahni [6, 7] and Ko�zmi�nski & Kin-
nen [73]. Bhasker & Sahni gave a linear time algorithm to construct rectangular
duals [7]. The algorithm is fairly complicated and requires many intriguing proce-
dures. The coordinates of the rectangular dual constructed by it are real numbers
and bear no meaningful relationship to the structure of the graph. This algorithm
consists of two major steps: (1) constructing a so-called regular edge labeling (REL)
of G; and (2) constructing the rectangular dual using this labeling. A simpli�cation
of step (2) is given in [47]. The coordinates of the rectangular dual constructed by
the algorithm in [47] are integers and carry clear combinatorial meaning. However,
step (1) still relies on the complicated algorithm in [7]. A parallel implementation
of this algorithm, working in O(log n log� n) time with O(n) processors, is given by
He [46].

In this paper we present a linear time algorithm for step (1): �nding a regular
edge labeling. (In [71] another algorithm is presented.) This algorithm extends
the canonical ordering of triconnected planar graphs, de�ned in Section 2.5 to 4-

179

180 Rectangular Duals

connected triangular planar graphs. It turns out that the canonical ordering also
gives a reduction of a factor 2 in the width of the visibility representation of 4-
connected planar graphs. Moreover, using this ordering it is shown that a visibility
representation of any planar graph can be constructed on a grid of size at most
(b3

2
n� 1)� (n� 1) grid.
This chapter is organized as follows: in Section 13.2 we present the de�nition of

the regular edge labeling (REL) and we review the algorithm in [47] that computes a
rectangular dual from a REL. In Section 13.3, we present the REL algorithm based
on the canonical ordering. Section 13.4 discusses the algorithm for the visibility rep-
resentation of 4-connected planar graphs. Section 13.5 brie
y outlines the visibility
representation algorithm for general planar graphs.

13.2 The Rectangular Dual Algorithm

Consider a plane graph H. Let u0; u1; u2; u3 be four vertices on the exterior face
in counterclockwise order. Let Pi (i = 0; 1; 2; 3) be the path on the exterior face
consisting of the vertices between ui and ui+1 (addition is mod 4). We seek a rectan-
gular dual RH of H such that u0; u1; u2; u3 correspond to the four corner rectangles
of RH and the vertices on P0 (P1; P2; P3, respectively) correspond to the rectangles
located on the north (west, south, east, respectively) boundary of RH. In order to
simplify the problem, we modify H as follows: Add four new vertices vN ; vW ; vS; vE.
Connect vN (vW ; vS; vE, respectively) to every vertex on P0 (P1; P2; P3, respectively)
and add four new edges (vS; vW); (vW ; vN); (vN ; vE); (vE; vS). Let G be the resulting
graph. It is easy to see that H has a rectangular dual RH if and only if G has a
rectangular dual RG with exactly four rectangles on the boundary of RG (see Figure
13.1(a) and (b)). Let a quadrangle be a cycle of length 4. The following theorem
was proved in [6, 73]:

Theorem 13.2.1 A planar graph G has a rectangular dual R with four rectangles
on the boundary of R if and only if (1) every interior face is a triangle and the
exterior face is a quadrangle; (2) G has no separating triangles.

A graph satisfying the conditions in Theorem 13.2.1 is called a proper triangular
planar (PTP) graph. From now on, we will discuss only such graphs. Note that
condition (2) of Theorem 13.2.1 implies that G is 4-connected. Since G has no
separating triangles, the degree of any interior vertex v of G is at least 4. (If
deg(v) = 3, then the triangle induced on the neighbors of v would be a separating
triangle.)

The rectangular dual algorithm in [47] heavily depends on the concept of regular
edge labeling (REL) de�ned as follows [7, 47]:

De�nition 13.2.1 A regular edge labeling of a PTP graph G is a partition of the
interior edges of G into two subsets T1; T2 of directed edges such that:

13.2 The Rectangular Dual Algorithm 181

a

b

c

d

e

f

g

h
i

j

vn

ve

v
s

vw

a

b

c

d

e

f

g

hi

j

vn

ve

v
s

vw

(a) The initial graph G. (b) A rectangular dual of G.

0

1

2 3
4

5

5

6

7

a

b

c

d

e

f

g

h
i

j

vn

ve

v
s

vw

w*

e*

n*

1

2 3
2

4

5

0

6

a

b

c

d

e

f

g

h
i

j

vn

ve

v
s

vw

s*

(c) The graph G1. (d) The graph G2.

Figure 13.1: A PTP graph, its rectangular dual, and the st-graphs G1 and G2

1. For each interior vertex v, the edges incident to v appear in counterclockwise
order around v as follows: a set of edges in T1 leaving v; a set of edges in T2
entering v; a set of edges in T1 entering v; a set of edges in T2 leaving v.

2. Let vN ; vW ; vS; vE be the four exterior vertices in counterclockwise order. All
interior edges incident to vN are in T1 and entering vN . All interior edges
incident to vW are in T2 and leaving vW . All interior edges incident to vS are
in T1 and leaving vS. All interior edges incident to vE are in T2 and entering
vE.

The regular edge labeling is closely related to planar st-graphs, described in
Section 9.3.

Let G be a PTP graph and fT1; T2g be a REL of G. From fT1; T2g we construct
two planar st-graphs as follows. Let G1 be the graph consisting of the edges of T1

182 Rectangular Duals

vleft(v) right(v)
v

below(v)

above(v)

G G1 2

left(e) right(e)e

low(F)

high(F)

F

Figure 13.2: Properties of planar st-graphs.

plus the four exterior edges (directed as vS ! vW , vW ! vN , vS ! vE, vE ! vN),
and a new edge (vS; vN). G1 is a planar st-graph with source vS and sink vN . For
each vertex v, the face of G1 that separates the incoming edges of v from the outgoing
edges of v in the clockwise direction is denoted by left(v). The other face of G1 that
separates the incoming and the outgoing edges of v is denoted by right(v). (See
Figure 13.2.)

Let G2 be the graph consisting of the edges of T2 plus the four exterior edges
(directed as vW ! vS, vS ! vE, vW ! vN , vN ! vE), and a new edge (vW ; vE). G2

is a planar st-graph with source vW and sink vE. For each vertex v, the face of G2

that separates the incoming edges of v from the outgoing edges of v in the clockwise
direction is denoted by above(v). The other face of G2 that separates the incoming
and the outgoing edges of v is denoted by below(v). (See Figure 13.2.)

The dual graph G�
1 of G1 is de�ned as follows. Every face Fk of G1 is a node

vFk in G�
1, and there exists an edge (vFi; vFk) in G�

1 if and only if Fi and Fk share
a common edge in G1. We direct the edges of G�

1 as follows: if Fl and Fr are the
left and the right face of an edge (v;w) of G1, direct the dual edge from Fl to Fr
if (v;w) 6= (vS; vN) and from Fr to Fl if (v;w) = (vS; vN). G�

1 is a planar st-graph
whose source and sink are the right face (denoted by w�) and the left face (denoted
by e�) of (vS; vN), respectively. For each node F of G�

1, let d1(F) denote the length
of the longest path from w� to F . Let D1 = d1(e

�). For each interior vertex v of
G, de�ne: xleft(v) = d1(left(v)), and xright(v) = d1(right(v)). For the four exterior
vertices, de�ne: xleft(vW) = 0; xright(vW) = 1; xleft(vE) = D1 � 1; xright(vE) = D1;
xleft(vS) = xleft(vN) = 1; xright(vS) = xright(vN) = D1 � 1.

The dual graph G�
2 of G2 is de�ned similarly. For each node F of G�

2, let d2(F)
denote the length of the longest path from the source node of G�

2 to F . Let D2 be the
length of the longest path from the source node to the sink node of G�

2. For each in-
terior vertex v of G, de�ne: ylow(v) = d2(below(v)), and yhigh(v) = d2(above(v)). For

13.3 Computing a REL Using a Canonical Ordering 183

the four exterior vertices, de�ne: ylow(vW) = ylow(vE) = 0; yhigh(vW) = yhigh(vE) =
D2; ylow(vS) = 0; yhigh(vS) = 1; ylow(vN) = D2 � 1; yhigh(vN) = D2.

The rectangular dual algorithm relies on the following theorem from He.

Theorem 13.2.2 ([47]) Let G be a PTP graph and fT1; T2g be a REL of G. For
each vertex v of G, assign v the rectangle R(v) bounded by the four lines x =
xleft(v), x = xright(v), y = ylow(v), y = yhigh(v). Then the set fR(v)jv 2 V g form a
rectangular dual of G.

Figure 13.1 shows an example of the theorem. Figure 13.1(c) shows the st-graph
G1. The small squares in the Figure represent the nodes of G�

1 and the integers in
the squares represent their d1 values. Figure 13.1(d) shows the graph G2. Figure
13.1(b) shows the rectangular dual constructed as in Theorem 13.2.2. The algorithm
for computing a rectangular dual is as follows [47]:

RectangularDual(G);
construct a regular edge labeling fT1; T2g of G;
construct from fT1; T2g the planar st-graphs G1 and G2;
construct the dual graph G�

1 from G1 and G�
2 from G2;

compute d1(F) for nodes in G�
1 and d2(F) for nodes in G�

2;
assign each vertex v of G a rectangle R(v) as in Theorem 13.2.2;

End RectangularDual

If we have a REL of a PTP graph, then the rectangular dual can easily be
constructed in linear time by this algorithm. In the next section we show how to
compute a REL of a PTP graph.

13.3 Computing a REL Using a Canonical Order-

ing

In this section we consider 4-connected planar triangular graphs. Note that adding
an edge connecting two non-adjacent exterior vertices of a PTP-graph G leads to a
4-connected planar triangular graph. So we assume that G is a 4-connected planar
triangular graph. Let the exterior vertices of G be u; v; w.

Theorem 13.3.1 There exists a labeling of the vertices v1 = u; v2 = v; v3; : : :, vn =
w of G meeting the following requirements for every 4 � k � n:

1. The subgraph Gk�1 of G induced by v1; v2; : : : ; vk�1 is biconnected and the
boundary of its exterior face is a cycle Ck�1 containing the edge (u; v).

2. vk is in the exterior face of Gk�1, and its neighbors in Gk�1 form a (at least
2-element) subinterval of the path Ck�1�f(u; v)g. If k � n�2, vk has at least
2 neighbors in G�Gk�1.

184 Rectangular Duals

Proof: The vertices vn; vn�1; : : : ; v3 are de�ned by reverse induction. Number
the three exterior vertices u; v; w by v1; v2 and vn. Let Gn�1 be the subgraph of G
after deleting vn. By 4-connectivity of G, Gn�1 is triconnected, and its exterior face
Cn�1 is a cycle and, hence, admits the constraints of the theorem. Let vn�1 6= v1
be the vertex of Cn�1 adjacent to both v2 and vn in G. By the 4-connectivity,
G�fvn; vn�1g is biconnected and its exterior face Cn�1 is a cycle and, hence, admits
the constraints.

Let k < n� 1 be �xed and assume that vi has been determined for every i > k
such that the subgraph Gi induced by V � fvi+1; : : : ; vng satis�es the constraints
of the theorem. Let Ck denote the boundary of the exterior face of Gk. Assume
�rst that Ck has no interior chords. Suppose v1; ck1 ; : : : ; ckp ; v2 are the vertices of
Ck in this order between v1 and v2. Then it follows by the 4-connectivity of G that
p � 2. If all vertices ck1 ; : : : ; ckp have only one edge to the vertices in G � Gk,
then since G is a planar triangular graph, they are adjacent to the same vertex
vj for some k < j < n. In this case we also have (v1; vj); (v2; vj) 2 G. But then
f(v1; vj); (vj; v2); (v2; v1)g would be a separating triangle. Hence at least one vertex,
say ck� , has at least 2 neighbors in G�Gk. ck� is the next vertex vk in our ordering.

Next assume Ck has interior chords. Let (ca; cb) (b > a + 1) be a chord such
that b� a is minimal. Let also (cd; ce) be a chord with e > d � b such that e� d is
minimal. (If there is no such a chord, let (ca; cb) = (cd; ce) and number the vertices
in clockwise order around Ck such that a = 1 < b = d and e = 1.) Assume, without
loss of generality, that v1; v2 62 fca+1; : : : ; cb�1g. If all vertices ca+1; : : : ; cb�1 have
only one edge to the vertices in G � Gk, then since G is a triangular graph, they
are adjacent to the same vertex vj, and we also have (va; vj); (vb; vj) 2 G. But then
f(va; vj); (vj; vb); (vb; va)g would be a separating triangle. Hence there is at least one
vertex c�; a < � < b, having at least two neighbors in G�Gk and having no incident
chords. c� is the next vertex vk in our ordering. 2

Theorem 13.3.2 The canonical ordering can be computed in linear time.

Proof: We add two labels to each vertex v: visited(v), denoting the number of
visited and extracted neighbors of v, and chords(v), denoting the number of incident
chords of v. The algorithm follows the structure of the proof of Theorem 13.3.1.

We start with vn and vn�1 and initialize the labels visited and chords of their
neighbors, after deleting the vertices vn and vn�1. We compute the ordering in
reverse order and update the labels after choosing a vertex vk as follows: we visit
each neighbor v of vk. Let ci; : : : ; cj (j > i) be the neighbors (in this order) of vk
in Gk�1. We increase visited(cl) by one, for i � l � j. If j = i + 1, then there was
a chord (ci; cj) in Gk�1, hence we decrease chords(ci) and chords(cj) by one, since
(ci; cj) becomes part of Ck�1. If j > i+ 1, then for each cl (i < l < j), we compute
chords(cl). If there is a chord (cl; v), then we also increase chords(v) by one. This is
done by marking the vertices that are part of the current exterior face.

13.3 Computing a REL Using a Canonical Ordering 185

By Theorem 13.3.1 it follows that, if k � 3, then there is a vertex v with visited(v)
� 2 and chords(v) = 0, and this can be chosen as the next vertex vk in our ordering.
We mark v as being visited. Since there are only a linear number of edges, the
canonical ordering is obtained in linear time. 2

1

2

3
4

5
6

7

8 9

10

11 12

13

14

chords = 0

visited = 2

vk

v v
1 2

Figure 13.3: Computing the canonical ordering of the graph from Figure 13.1.

To compute a REL of a PTP graph G, we �rst add an edge connecting two non-
adjacent exterior vertices of G. This gives a 4-connected planar triangular graph
G0. We compute a canonical numbering of G0 and then delete the added edge. The
four exterior vertices of G are now numbered as v1; v2; vn�1; vn, respectively. Next
we show that a REL of G can be easily derived from the canonical ordering.

First, for each edge (vi; vj) of G, direct it from vi to vj, if i < j. De�ne the
base-edge of a vertex vk to be the edge (vl; vk) for which l < k is minimal. The
vertex vk has incoming edges from ci; : : : ; cj belonging to Ck�1 (the exterior face of
Gk�1), assuming in this order from left to right. We call ci the leftvertex of vk and
cj the rightvertex of vk. Let vk1; : : : ; vkl be the higher-numbered neighbors of vk, in
this order from left to right. We call (vk; vk1) the leftedge and (vk; vkl) the rightedge
of vk. Notice that following the de�nitions of Section 6, vk1 = leftup(vk) and vkl =
rightup(vk).

Lemma 13.3.3 A base-edge cannot be a leftedge or a rightedge.

Proof: Assume the lemma is false. Suppose the leftedge (vk; vk1) of vk is
the base-edge of vk1. Thus vk is the lowest-numbered neighbor of vk1 . Since G is
triangular, there is an edge between the leftvertex of vk, say vi with i < k, and vk1.
But this contradicts the fact that (vk; vk1) is the base-edge of vk1. The argument is
similar for the rightedges. 2

Lemma 13.3.4 An edge is either a leftedge, a rightedge or a base-edge.

186 Rectangular Duals

Proof: The \exclusive or" follows from the previous lemma. We only need to
prove that every edge is a leftedge, a rightedge or a base-edge. Let vk (3 � k � n�2)
be a vertex with incoming edges coming from ci; : : : ; cj, in this order from left to
right. Let (vk; c�) be the base-edge of vk. All vertices cl (i < l < j) have at least two
higher-numbered neighbors, one of them is vk, the other one is adjacent to (cl; vk),
hence it is either (cl�1; cl) or (cl; cl+1). Thus between ci and c� it follows that cl+1
is the rightvertex of cl (1 � l < �). Between c� and cj vertex cl is the leftvertex of
cl+1 (� � l < j). Hence the edges (cl; vk) are rightedges for i � l < � and leftedges
for � < l � j. The edge (c�; vk) is a base-edge. Similarly, we can show that the
lemma holds for the incoming edges of vn�1 and vn. 2

We construct a REL for G as follows: all leftedges belong to T1, all rightedges
belong to T2. The base-edge (c�; vk) of vk is added to T1, if � = j, to T2, if � = i, and
otherwise arbitrarily to either T1 or T2. (The four exterior edges belong to neither
T1 nor T2.)

Lemma 13.3.5 fT1; T2g forms a regular edge labeling for G.

Proof: Let vk1; : : : ; vkd be the outgoing edges of the vertex vk (3 � k � n� 2).
It follows from Theorem 13.3.1 that d � 2. Then (vk; vk1) is the leftedge of vk and is
in T1. (vk; vkd) is the rightedge of vk and is in T2. The edges (vk; vk2); : : : ; (vk; vkd�1

)
are the base-edges of vk2 ; : : : ; vkd�1

, respectively. Let the vertex vk� (1 � � � d)
be the highest-numbered neighbor of vk. Then all vertices from vk1 to vk� have a
monotone increasing number, as well as the vertices from vkd to vk� . Otherwise there
was a vertex vkl such that vkl�1

and vkl+1 are numbered higher than vkl. But this
implies that vk is the only lower-numbered neighbor of vkl, which is a contradiction
with the canonical ordering of G. Hence for every vkl (1 < l < d, l 6= �), either
kl�1 < kl < kl+1 or kl�1 > kl > kl+1. Thus, by the construction of T1 and T2, the
edges (vk; vkl) are added to T1, if 1 � l < �, and to T2, if � < l � d. The edge
(vk; vk�) is arbitrarily added to either T1 or T2. This completes the proof that the
edges appear in counterclockwise order around vk as follows: a set of edges in T2
entering vk; a set of edges in T1 entering vk; a set of edges in T2 leaving vk; a set of
edges in T1 leaving vk.

Let v11; : : : ; v1d be the higher numbered neighbors of v1 from left to right. Then
v11 = vn and v1d = v2, and by the argument described above, (v1; v12); : : :, (v1; v1d�1

)
belong to T2. Similarly, all outgoing edges of v2 belong to T1. All incoming edges
of vn�1 belong to T2, and all incoming edges of vn belong to T1. This completes the
proof. 2

Since the construction of fT1; T2g from the canonical numbering can be easily
done in O(n) time, Theorem 13.3.2 and Lemma 13.3.5 constitute our linear time
REL algorithm. See Figure 13.3 for the construction of a REL from a canonical
ordering.

13.4 Algorithm for Visibility Representation 187

13.4 Algorithm for Visibility Representation

The visibility representation of a planar graph G maps the vertices of G to horizontal
line segments and edges of G to vertical line segments. In Section 10.4 we gave a
new algorithm for constructing a visibility representation of a triconnected planar
graph, using the lmc-ordering. Indeed, we observed that if out(vk) � 2 for every
vertex vk; k < n� 1, then the grid size is at most (n� 1)� (n� 1). Since this holds
for the canonical ordering for 4-connected triangular planar graphs, this leads to the
desired grid size for 4-connected planar graphs. (If the 4-connected planar graph
is not triangulated, then we can apply any triangulation algorithm, as described in
Chapter 6.) In Section 9.3.1 we presented the algorithm Visibility(G) of [96, 104],
which constructs in linear time a visibility representation of a graph G. Visibility
(G) starts with constructing an st-numbering. IfG is a 4-connected planar triangular
graph, then we can use the described canonical ordering, since this ordering is also
an st-numbering. Figure 13.4 shows an example of applying Visibility(G) of a 4-
connected planar triangular graph, using the canonical ordering. We will now show
that also the algorithm Visibilitiy(G) leads to the same grid size.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3
4

5

7

8 9

10

11 12

13

14

6
11

1098732

7

6

5

6

4
3

2

1
6

5
43

2

3

210

Figure 13.4: The canonical ordering leads to a compact visibility representation.

Theorem 13.4.1 Visibility(G) constructs a visibility representation of G on a
grid of size at most (n� 1)� (n� 1).

Proof: The correctness of Visibility(G) is shown in [96, 104]. We show that
the grid size is at most (n� 1)� (n� 1). This follows directly for the height, since
the length of the longest path from v1 to vn is at most n� 1.

Let s� be the source node of G� and t� be the sink node of G�. Every vertex v
of G corresponds to a face Fv of G�. If v 6= v1; v2; vn�1; vn, then v has � 2 incoming

188 Rectangular Duals

and � 2 outgoing edges, hence the two directed paths from low(Fv) to high(Fv) both
have length � 2. Let G�0 be the graph obtained from G� by removing the sink
node t� and its incident edges. (In Figure 13.4, t� is the node represented by the
square labeled by 11.) This merges the faces Fv1; Fv2 and Fvn of G� into one face
F 0. Note that for every face F 6= Fvn�1

of G�0, the two directed paths of F between
low(F) and high(F) in G�0 have length � 2.

Let s�
0
be the source of G�0 and let t�

0
be the sink of G�0 . Notice that s�

0
=

s� = low(F 0) and t�
0
= left((v2; vn)) = high(F 0). (In Figure 13.4, t�

0
is the node

represented by the square labeled by 10.) Clearly, there are at least two edges e
with Fvn�1 = left(e), and the only edge e with right(e) = Fvn�1 has endpoint t

�0. Let
Plong be any longest path from s�

0
to t�

0
. Then the length of any longest path from

s� to t� in G� is 1 plus the length of Plong.

We claim that Plong has at most one consecutive sequence of edges in common
with any face F of G�0. Toward a contradiction assume the claim is not true. Suppose
that Plong visits some nodes of F , assume that w1 is the last one, then l � 1 nodes
u1; : : : ; ul 62 F , then some nodes of F again, let wd be the �rst one. Let w2; : : : ; wd�1

be the nodes, in this order, of F , which are not visited by Plong (see Figure 13.5.)
Suppose F = right((w1; w2)). (If F = left((w1; w2)), the proof is similar.) Let F1 =
left((w1; w2)). Notice that w1 = low(F1). The directed path of F1, starting with edge
(w1; w2), has length � 2. Hence w2 has an outgoing edge to a node of F1, and an
outgoing edge to w3. Thus w2 = low(F2), with F2 = left((w2; w3)). Repeating this
argument it follows that wd�1 = low(Fd�1), with Fd�1 = left((wd�1; wd)). However it
is easy to see that wd = high(Fd�1). This means that one of the two directed paths
of Fd�1 has length 1. This contradiction proves the claim.

P
long

2
3

F

F F1 2

low(F)

high(F)

w
w1

w

Figure 13.5: Example of the proof of Theorem 5.1.

When traversing an edge e of Plong, we visit either left(e) or right(e) (or both)
for the �rst time. We assign each edge e to the face F , with e 2 F , which we visit
for the �rst time now. G�0 has n� 2 faces. To every face F of G�0, by the claim, at

13.4 Algorithm for Visibility Representation 189

most one edge e 2 Plong is assigned. Hence the longest path from s� to t� in G� has
length � n� 1. 2

Visibility(G) can be applied to a general 4-connected planar graph by �rst
triangulating it. (The triangulation of a 4-connected planar graph is clearly still
4-connected.) Since the worst-case bounds for visibility representation by applying
an arbitrary st-numbering is (2n� 5)� (n� 1) [96, 104], our algorithm reduces the
width of the visibility representation by a factor 2 in the case of 4-connected planar
graphs. In Chapter 14 we show that this algorithm can be used to construct more
compact visibility representations of general planar graphs.

190 Rectangular Duals

Chapter 14

A More Compact Visibility

Representation

14.1 Introduction

In this chapter we consider the problem of drawing a general compact visibility
representatation. As de�ned in Chapter 9, in a visibility representation every vertex
is mapped to a horizontal segment, and every edge is mapped to a vertical line, only
touching the two vertex segments of its endpoints. It is clear that this leads to a
nice and readable picture, and it therefore gains a lot of interest (see also Section
9.3.1 and 9.3.2 and Figure 14.1).

We show that every planar graph can be represented by a visibility representation
on a grid of size at most (b3

2nc � 3) � (n � 1). This improves all previous bounds
considerably. An outline of the algorithm to achieve this is as follows. Assume the
input graph G is triangulated (otherwise apply a triangulation algorithm, described
in Chapter 6). Then we split G into its 4-connected components, and construct the
4-block tree of G. We show that we can do this in linear time for triangulated planar
graphs, thereby improving the O(n ��(m;n)+m) time algorithm of Kanevsky et al.
[63] for this special case. To each 4-connected component we compute the canonical
ordering, as presented in Theorem 13.3.1, leading to a visibility representation of
that component on a grid of size at most (n � 1) � (n � 1) (Theorem 13.4.1). The
representations of the 4-connected components are combined into one entire drawing,
leading to the desired width.

To this end, the following lemma is important.

Lemma 14.1.1 Let v1; v2; : : : ; vn be a canonical 4-ordering of a 4-connected trian-
gular planar graph G, such that vn�1 is a neighbor of both v1 and vn. Then the
numbering ui = vn�i+1 (with 1 � i � n) is also a correct canonical 4-ordering
u1; : : : ; un of G.

Proof: By 4-connectivity of G, v1; vn�1 and vn form one face in G, hence the
vertices u1; u2 and un are forming one face. Every vertex ui (2 < i < n� 1) has at

191

192 A More Compact Visibility Representation

1 2

34

5

6

7

8

1

2

3

4 5

6

7

8

0 1 2

2

3

3

4

5

5

3

6

7

Figure 14.1: The canonical 4-ordering and corresponding visibility representation.

least 2 incoming and 2 outgoing edges, since vertex vn�i+1 has at least 2 outgoing
and 2 incoming edges. From this observation also the 2-connectivity of Gi, the
induced subgraph on u1; : : : ; ui, follows, which completes the proof. 2

A canonical ordering of a 4-connected triangular planar graph G such that
v1; vn�1 and vn are forming one face can be constructed in linear time. In the
remaining part of this chapter, �(G) denotes the drawing, obtained by applying
Visibility(G). y(v) denotes the y-coordinate of the segment of vertex v, and x(u; v)
denotes the x-coordinate of edge (u; v) in �(G). Notice that x(v1; vn) < x(v1; v2) <
x(v2; vn) in �(G). The size of the drawing is the size of the smallest rectangle with
sides parallel to the x- and y-axis that covers the drawing.

14.2 A General Compact Visibility Representa-

tion

In this section we show how we can construct a visibility representation of a planar
graph G on a grid, yielding a width smaller than 2n � 5. We assume that G
is triangulated (otherwise apply an arbitrary linear time and space triangulation
algorithm (see Chapter 6). To apply the result of Theorem 2.3 we split G into its
4-connected components. Since G is triangulated, a 4-connected component of G is
a 4-connected triangulated planar subgraph of G. From this we construct the 4-block
tree T of G: every 4-connected component Gb of G is represented by a node b in T .
There is an edge between two nodes b and b0 in T , if the separating triplet belongs to
both Gb and Gb0 . By planarity every triplet of three vertices is a separating triangle
and belongs to precisely two 4-connected components. The separating triplet is an
interior face in Gb and the exterior face of Gb0 . We show in Section 4 that T can be
computed in linear time and space for triangulated planar graphs. See Figure 14.2

14.2 A General Compact Visibility Representation 193

A B

C
D

E

G

L

M

C
D

F

G

E

G H

I
J

L

I K

L

E

Figure 14.2: The 4-block tree of the graph in Figure 1.

for the 4-block tree of the graph in Figure 1.
We root T at an arbitrary node b. We compute a canonical ordering for Gb,

as de�ned in Theorem 2.1, and direct the edges accordingly. In the algorithm, we
traverse T top-down and visit the corresponding 4-connected components. Let b0

be a child of b in T , and let V (Gb0) denote the set of vertices of Gb0 . Let u; v; w be
the separating triplet (triangle) of Gb0 . Assume the edges are directed u ! v and
v! w in Gb. We de�ne c(Gb0) = v. Using Lemma 14.1.1, we have two possibilities
for computing a canonical ordering in Gb0 (let n0 = jV (Gb0)j):
Normal(Gb0) We set u = v1; v = v2 and w = vn0 and compute a canonical ordering

v1; v2; : : : ; vn for Gb0 ,

194 A More Compact Visibility Representation

Reverse(Gb0) We set u = un0; v = u2 and w = u1, and compute the canonical
ordering u1; u2; : : : ; un0 to Gb0. Then the ordering is reversed: we set vi :=
un0�i+1, for all i with 1 � i � n0.

In Normal(Gb0), v has number v2, in Reverse(Gb0), v has number vn0�1. In both
orderings, u = v1 and w = vn0. See also Figure 14.3.

Both numberings will be applied in the algorithm to achieve a more compact
visibility representation. We introduce a label l(v) for each vertex v, which can have
the value up, down or unmarked. If l(v) = unmarked, then v is called unmarked,
otherwise v is called marked. Assume we visit node b0 in T , and we have to compute
a canonical ordering for Gb0 . Let v = c(Gb0). The value of l(v) implies whether we
use Normal(Gb0) or Reverse(Gb0): if l(v) = up, we apply Normal(Gb0), if l(v) =
down, we apply Reverse(Gb0), otherwise we can do both. We will show later that
using these marks, the increase of the width when drawing Gb0 \inside" Gb is at
most n0� 3 instead of n0� 2, when l(v) = up or down (b the parent-node of b0 in T).

This method is applied to all 4-connected components of G. After directing the
edges, this yields a directed acyclic graph, and applying a topological ordering yields
an st-numbering of the vertices. Applying the algorithm Visibility(G) now gives
the entire drawing. The complete algorithm can now be described more precisely as
follows:

CompactVisibility (input: a planar graph G)
triangulate G;
construct the 4-block tree T of G, and root T at arbitrary node b;
compute the canonical 4-ordering for Gb and direct the edges of Gb;
let n0 = jV (Gb)j; l(v2) = down, l(vn0�1) := up;
l(vi) := unmarked for all vi 2 Gb; i 6= 2; i 6= n0 � 1;
for every child b0 of b do DrawComponent(Gb0) rof;
compute an st-numbering in the directed graph G;
apply Visibility to G;

End CompactVisibility

procedure DrawComponent(G0);
begin
Case l(c(G0)) of

unmarked : Normal(G0); l(c(G0)) := down; l(vjV (G0)j�1) := up;
up : Normal(G0); l(c(G0)) := unmarked; l(vjV (G0)j�1) := up;
down : Reverse(G0); l(c(G0)) := unmarked; l(v2) := down;

for every vi 2 G0 with 2 < i < jV (G0)j � 1 do set l(vi) := unmarked rof;
direct the edges of G0 vi ! vj i� j > i;
for every child b00 of current node b0 in T do DrawComponent(Gb00) rof;

end;

Since G is triangulated, the following lemma can easily be veri�ed:

14.2 A General Compact Visibility Representation 195

Lemma 14.2.1 Let G be a triangular planar graph, and let u = rightvertex(v)
and w = rightup(v). Setting x(u; v) := x(v;w) := maxfx(u; v); x(v;w)g does not
increase the width of �(G).

Let now b0 be a (non-root) node in T with parent b in T . Let G0 be the subgraph
of G, consisting of all visited 4-connected components in CompactVisibility. Let
u; v; w be the outerface of Gb0 , with u! v and v ! w in Gb. The following lemma
follows (n0 = jV (Gb0)j) :

Lemma 14.2.2 If x(u;w) < x(u; v) < x(v;w) in �(G0), then applying Normal(Gb0)
has the result that the width of �(G0 [Gb0) is at most the width of �(G0) + n0 � 3.

Proof: In �(Gb0), x(u; v)� x(u;w) � n0 � 2 and x(v;w)� x(u;w) � n0 � 1 by
Theorem 13.4.1. In �(G0), x(u; v)� x(u;w) � 1 and x(v;w)� x(u;w) � 2. Hence
the width of �(G0 [Gb0) is at most the width of �(G0) + (n0 � 1)� 2. 2

u

v

w

u u

v

v

w w

u u

v

w w

v

Figure 14.3: The shape of the faces with respect to l(v), Normal(Gb0) and
Reverse(Gb0).

The same can be proved for x(v;w) < x(u; v) < x(u;w) and applying Normal,
or when x(u;w) < x(v;w) < x(u; v) or x(u; v) < x(v;w) < x(u;w) and applying
Reverse. See Figure 14.3 for an illustration of this. Assume now that G0, b and b0

are de�ned as in the previous lemma. The following lemma can now be proved. Let
v = c(Gb0).

Lemma 14.2.3 If v is marked, then after applying Normal(Gb0) if l(v) = up and
Reverse(Gb0) if l(v) = down, the width of �(G0 [Gb0) is at most the width of
�(G0) + n0 � 3,

Proof: Let u; v; w be the separating triplet of Gb0 , with u ! v and v ! w in
Gb, thus v = c(Gb0). If out(v) = 1 in Gb, then l(v) = up. Hence either x(v;w) <
x(u; v) < x(u;w) in �(G0) or we can change �(G0) without increasing the width (by
Lemma 14.2.1) such that x(u;w) < x(u; v) < x(v;w) in �(G0). Applying Lemma
14.2.2 yields the desired result. The same follows when in(v) = 1 in Gb, thus when
l(v) = down.

The remaining case is when v was c(Gb00) for some b00 6= b0, and at the moment
of visiting b00, l(v) = unmarked. Let the separating triplet of Gb00 be u0; v; w0, with

196 A More Compact Visibility Representation

u0 ! v and v ! w0. Let G00 be the subgraph of G, consisting of the visited 4-
connected components at the moment of visiting Gb00 . By Lemma 14.2.1 we may
assume that x(u0; v) = x(v;w0) in �(G00).

Consider the case x(u0; w0) < x(u0; v) (the case x(u0; v) < x(u0; w0) goes similar).
In CompactVisbility Normal(Gb00) is applied. Since in(v) = 1 in Gb00 , we can
set x(u0; v) to x(v;w0) in �(Gb00) without increasing the width (see Lemma 14.2.1).
This has the result that x(v;leftup(v)) < x(u0; v) in �(G0). If w = leftup(v) then
the proof is completed by observing that x(u;w) < x(v;w) < x(u; v) in �(G0) and
applying Lemma 14.2.2.

If w 6= leftup(v), then w = rightup(v) and u = rightvertex(v). By Lemma
14.2.1 we may assume that both x(u0; v) = x(v;w0) and x(rightvertex(v); v) =
x(v;rightup(v)) holds in �(G00). But since x(u0; v) < x(v;w0) holds in �(Gb00) it
directly follows that x(rightvertex(v); v) < x(v;rightup(v)) in �(G00 [Gb00). Again
the proof is completed by observing that x(u; v) < x(v;w) < x(u;w) in �(G0) and
applying Lemma 14.2.2. 2

See Figure 14.4 for an illustration of the proof of Lemma 14.2.3.

u

w

v

u

x

w

v
F

u

x

w

v

u

x

w

v

(a) The face and the 4-connected

component.
(b) The 2 di�erent possibilities for drawing

inside the face.

Figure 14.4: Illustration of Lemma 14.2.3.

Lemma 14.2.4 The width of the visibility representation of G is at most b3
2nc� 3.

Proof: Let b1; : : : ; bp be the nodes of T in visiting order. Let Ki be the number
of marked vertices after visiting bi (1 � i � p). Let K0 be the initial number of
marked vertices. K0 = 2, since initially only v2 and vn0�1 are marked. When we
visit Gbi, then vertex v2 or vn0�1 is added to the current graph and is unmarkded. If
l(c(Gbi)) 6= unmarked, then the increase in width is at most jV (Gbi)j�3 and l(c(Gbi))
becomes unmarked, i.e., Ki = Ki�1. If l(c(Gbi)) = unmarked, then the increase in
width is at most jV (Gbi)j�2 and l(c(Gb0)) becomes down, i.e, Ki = Ki�1+2. Hence
in both cases when visiting Gbi , the width of the drawing increases by at most
jV (Gbi)j � 3 + Ki�Ki�1

2
. jV (Gb0 j � 3 is also precisely the number of added vertices of

Gb0 .

14.3 Constructing the 4-block tree 197

Since the width of �(Gb1) is at most jV (Gb1)j�1 and Kp is even and Kp � n�2
(the source and the sink of G never get marked), it follows that the total width of
�(G) is at most n� 1 + bKp�K0

2
c = n� 1 + bn�2�2

2
c � b3

2
nc � 3. 2

Regarding the time complexity we show in Section 4 that the 4-block tree can be
computed in linear time. Computing a canonical 4-ordering also requires linear time.
We maintain the direction of the edges of the visited 4-connected components, and
from this c(Gb0) can be determined directly in O(1) time. Finally Visibility(G) is
applied, which requires linear time [96, 104]. This completes the following theorem.

Theorem 14.2.5 There is a linear time and space algorithm for computing a visi-
bility representation of a planar graph G on a grid of size at most (b32nc�3)�(n�1).

Consider the graph of Figure 1. In Figure 14.2 the 4-block tree is given. The
visibility representation of the root-block is given in Figure 14.1. Drawing the other
4-connected components inside and applying Visibility leads to the drawing as
given in Figure 1. Notice that l(D); l(G) and l(I) are down, l(F); l(J) and l(K) are
up, all the other vertices of the graph are unmarked. Hence 6 vertices are marked,
and the total width is at most n� 1 + 6

2 = 15. (The width in the drawing in Figure
1 is 12.)

14.3 Constructing the 4-block tree

In this section we show a method for constructing the 4-block tree of a triangulated
planar graph. Since this class of graphs has some special properties, there is no need
to use the complicated algorithm of Kanevsky et al., which builds a 4-block tree of
a general graph in O(n � �(m;n) +m) time [63]. In our case a separating triplet is
a separating triangle, which forms the basis for the algorithm.

For determining the separating triangles, we use the algorithm of Chiba &
Nishizeki [11] for determining triangles in a graph. (In [94], Richards describes an-
other linear time algorithm.) Chiba & Nishizeki �rst sort the vertices in v1; : : : ; vn
in such a way that deg(v1) � deg(v2) � : : : � deg(vn). Observing that each triangle
containing vertex vi corresponds to an edge joining two neighbors of vi, they �rst
mark all vertices u adjacent to vi (for the current index i). For each marked u and
each vertex w adjacent to u they test whether w is marked. If so, a triangle vi; u; w
is listed. After this test is completed for each marked vertex u, they delete vi from
G and repeat the procedure with vi+1. Starting with v1, this algorithm lists all
triangles without duplication in n� 2 steps.

In our case, we are looking for separating triangles. If a triangle is not separat-
ing, then it is a face in the triangulated planar graph. To test this, we store the
embedding of the original graph also in adjacency lists, say in adjacency lists adj(v)
for all v 2 G. If a triangle u; v; w is not separating, (i.e., a face), then u and w
appear consecutively in adj(v), which can be tested in O(1) time by maintaining

198 A More Compact Visibility Representation

A B

C
D

EF

G

L

M

G H

I
J

K

L

E

triangle−list L

....

crosslinking the
face vertices

Figure 14.5: The data structure for constructing the 4-block tree.

crosspointers. To compute the time complexity of this algorithm, Chiba & Nishizeki
use the arboricity of G, de�ned as the minimum number of edge-disjoint forests into
which G can be decomposed, and denoted by a(G) [45].

Lemma 14.3.1 ([11])
P

(u;v)2E minfdeg(u); deg(v)g � 2 � a(G) �m.

Using this lemma Chiba & Nishizeki show that the time complexity of the algo-
rithm is O(a(G) �m). If G is planar then a(G) � 3 ([45]), so the algorithm runs in
O(n) time in case G is planar.

To obtain the 4-block tree we introduce now the following data structure: Let
L be the list of separating triangles. L(u; v; w) denotes the record in L, containing
separating triangle u; v; w. L(u; v; w) contains the edges (u; v); (v;w) and (w; u),
and there are crosspointers between L and the edges and vertices in G.

We now want to \sort" the separating triangles, containing edge (u; v). Hereto
we do the following: Let adj(v) = w0; w1; : : : ; wd�1 (in clockwise order around v with
respect to a planar embedding). We sort the separating triangles v;wi; wj stored at
v in order with respect to w0; : : : ; wd�1. If there are separating triangles v;wi; wj

and v;wi; wk then we set a pointer from edge (v;wi) in L(v;wi; wj) to edge (v;wi)
in L(v;wi; wk), if k > j (addition modulo d). We do this for every vertex v 2 G.
Of course, when visiting vertex wi and considering separating triangles v;wi; wj and
v;wi; wk, there is no need to place another directed edge between L(v;wi; wj) and
L(v;wi; wk).

Observe now that when edge (u; v) in L(u; v; w) has no outgoing edge, then
this means that when we split G at (u; v); (v;w); (w; u) into two subgraphs, say
G1 and G2, then all other separating triangles, containing (u; v), belong to ei-
ther G1 or G2. We start at an arbitrary separating triangle in L, say u; v; w,
where each edge in L(u; v; w) has either an incoming or an outgoing edge. We
split the graph at (u; v); (v;w) and (w; u) into two subgraphs, say G1 and G2.

14.3 Constructing the 4-block tree 199

Let adj(v) = w0; : : : ; wd�1 and let u = w0 and w = wi, 0 < i < d. To obtain
G1 and G2, we split adj(v) into two adjacency lists, say adj1(v) and adj2(v) with
adj1(v) = w0; : : : ; wi and adj2(v) = wi; : : : ; wd�1; w0 (similar for adj(u) and adj(w)).
Let adj1(v) correspond to G1. If all other separating triangles, containing (u; v),
belong to G1, then we introduce w0 in adj2(v). This yields that all other separating
triangles in L, containing (u; v), still point to the right edge in the data structure,
viz. in the adjacency list of G1. Testing whether the other separating triangles,
containing (u; v), belong to G1 or G2 can be tested by checking whether (u; v) in
L(u; v; w) has an incoming or an outgoing edge. we introduce w0 in adj1(v). Similar
is done for the edges (v;w) and (w; u) with respect to adj(w) and adj(u). We mark
L(u; v; w) as visited and delete the incoming and outgoing edges of L(u; v; w), and
we continue until all separating triangles in L are visited.

To construct the 4-block tree, we apply a simple traversal through the datas-
tructure for determining the connected components. The connections via the face
vertices give the connections in the 4-block tree. For every 4-connected component
we add pointers to its three vertices on the outerface. The complete algorithm can
now be described as follows:

Construct 4-block tree

enumerate all separating triangles and store them in L;
sort the separating triangles and add directed edges in L;
while not every triangle in L is visited do
Let L(u; v; w) be a record in L such that each edge (u; v); (v;w) and (w; u)
in L(u; v; w) has either an incoming or outgoing edge;

split the graph at edges (u; v); (u;w); (v;w);
set a pointer between the two corresponding faces;

od;
determine the connected components and construct the 4-block tree;

End Construct 4-block tree

Theorem 14.3.2 The 4-block tree of a triangulated planar graph can be constructed
in linear time and space.

Proof: Determining and storing the separating cycles requires O(n) time,
because every planar graph has at most n � 4 separating triangles. Sorting the
separating triangles at vertex v can be done in O(deg(v)) time by using (double)
bucket-sort, since vertex v belongs to at most deg(v)�2 separating triangles. Hence
the total sorting time is O(n). By maintaining a sublist of L where we store all
separating triangles, which can be visited next, we can �nd the next separating
triangle in O(1) time. Since there are crosspointers between the edges and vertices
in G and the corresponding entry in L, we can split the graph at the separating
triangle in O(1) time. Determining the connected components and building up the
4-block tree is achieved by a simple traversal through the graph, which completes
the proof. 2

200 A More Compact Visibility Representation

Chapter 15

Conclusions

In Part C we studied the problem of drawing a planar graph, such that there is
no pair of crossing edges and the vertices and bends placed on grid points. To
this end we de�ned a new ordering, called a canonical ordering, on the vertices of
a triconnected planar graph. Using this ordering, a lot of improvements and new
results are obtained for several representation models of planar graphs. To obtain
a linear time algorithm we do not need advanced and sophisticated data structures.
After computing a planar embedding of the graph, and storing it in the adjacency
lists adj(v), we can compute the canonical ordering by only assigning some additional
counters to each vertex, like shift(v), interval(v) and chords(v). The various drawing
algorithms can also be implemented by using a small number of variables for each
vertex, and by maintaining the outerface Ck�1 in a doubly linked list.

It is the �rst time that one new characterization of a planar graph leads to such
a broad area of applications with respect to drawing requirements. If the edges
must be straight lines, then we can draw every triconnected planar graph on a grid
of size at most (n � 2) � (n � 2) such that every face is convex, i.e., all interior
angles have size � �. This problem was open for several years in the graph drawing
community. Moreover, this matches the best known grid bounds for drawing a planar
graph planar on a grid (see Schnyder [98]). We also used the canonical ordering to
construct orthogonal drawings of 3-planar and triconnected 4-planar graphs. In
the case of triconnected 4-planar graphs, the number of total bends decreases from
2n+ 4 to d3n2 e+ 4 bends with the property that every edge has at most 2 bends (if
n > 6). We also proved an existential lower bound of 4

3(n� 1) + 2 bends for a class
of 4-planar graphs. In the case of 3-planar graphs we presented an algorithm that
draws a 3-planar graph orthogonal with at most bn2c + 1 bends totally on a grid of
size at most bn2c � bn2c. This matches both lower bounds with respect to number
of bends and size of the grid. Moreover, we showed that if n > 4, then there is a
spanning tree, using only straight-line edges, and all remaining edges have at most
one bend.

Using a hexagonal grid as drawing model, we showed that every triconnected
3-planar graph can be drawn hexagonal on an n

2 � n
2 grid such that one edge has at

201

202 Conclusions

most 3 bends, and all other edges have no bends. More important, using this result
we showed that every 3-planar graph can be drawn with minimum angle � �

3
, if the

graph is not triconnected, and with minimum angle � �
4
, otherwise. This solves an

open problem of Formann et al. [32]. As a side result we showed that every tricon-
nected 6-planar graph can be drawn planar on an O(n)�O(n) hexagonal grid such
that each edge has at most 4 bends. Other applications of the canonical ordering are
in the area of rectangular duals and computing visibility representations. For both
representations new and fairly simple algorithms are presented. Using the canonical
ordering for 4-connected triangular planar graphs, we can construct a visibility rep-
resentation of a 4-connected planar graph on a grid of size at most (n�1)� (n�1),
thereby decreasing the best known grid size by a factor 2. This result is also used
to construct a visibility representation of a planar graph on a grid of size at most
(b3

2
nc � 3)� (n� 1) grid, improving the best known grid size of (2n � 4)� (n� 1)

considerably. This algorithm also uses a new result, namely that a 4-block tree of a
triangulated planar graph can be constructed in linear time and space.

Core areas in the �eld of graph algorithms are the parallel and dynamic algo-
rithms. Let us be more precise about this �eld with respect to the problems described
in this thesis. Very recently, He announced an O(log4 n) algorithm for computing
a canonical ordering for triconnected planar graphs [48]. This gives a parallel al-
gorithm for several drawing algorithms, described in Part C. In particular, given a
canonical ordering, He proved that a convex planar drawing on an (2n�2)� (n�1)
can be obtained in O(log n) time [48]. Jou, Suzuki & Nishizeki [61] presented an
O(log n log� n) time parallel algorithm for the hexagonal grid drawing algorithm
for triconnected planar graphs, presented in Chapter 12. This algorithm is based
on the O(log n log� n) parallel algorithm for Schnyder's grid drawing algorithm, de-
scribed by F�urer et al. [37]. In [46], He describes an O(log n) parallel algorithm for
a variant of the rectangular dual algorithm, described in Chapter 13. The parallel
computation model in [37] is the EREW PRAM with O(n) processors. In the other
algorithms, described here, the parallel computation model is the CRCW PRAM
with O(n) processors. In [16], Cohen et al. describe various dynamic algorithms for
updating the �gure after adding (or deleting) an edge or vertex. Unfortunately, this
framework seems not to work for our drawing algorithms.

We believe that more combinatorial observations with respect to the lmc-ordering
can be given than those, given in this thesis. Very recently, a new characterization of
planar graphs has been made, based on the st-ordering of biconnected planar graphs
[95]. The generalization to triconnected planar graphs, using the lmc-ordering, may
yield new combinatorial and practical results for planar graph drawings.

Let us end Part C with some words about the more practical aspects of the
introduced graph drawing problems. In this context the aesthetic aspects and read-
ability is more important than the theoretical derived bounds on grid size, angles,
number of bends, and other criteria. A deep investigation of drawing triangular
planar graphs planar with vertices represented by points and edges by straight-line
edges (also alled a F�ary drawing) is presented by Jones et al. [60]. They study the

Conclusions 203

algorithm of Chiba et al. [14], de Fraysseix et al. [34], Read [92] and Tutte [111].
They used the following metrics to compare the di�erent drawings:

� the standard deviation in angle size,

� the standard deviation in edge length as a percentage of the mean edge length,

� and the standard deviation in face area as a percentage of the mean face area.

They concluded that the algorithm of de Fraysseix et al. [34] is undoubtably the
best of the four examined algorithms. The most important disadvantage of the
other algorithms is the fact of clustering: in a relative small area too many vertices
are placed. This leads to very short edge lengths, small face areas and a crowded
and messed drawing. The algorithm of de Fraysseix et al. (and its linear time
implementation, due to Chrobak & Payne [15]) does not have this problem, since
vertices are placed on grid points. However, the problem of this algorithm is that the
size of the angles can become very small, which also makes the drawing unattractive.
See Figure 15.1 for the output of applying the algorithm of de Fraysseix et al.,
Read and Tutte on a triangular planar graph with 32 vertices. To inspect these

(a) ConvexSmallGrid-

Drawing

(b) Modi�ed Read (c) Tutte

Figure 15.1: Drawing a triangular planar graph.

problems, we implemented our (n � 2) � (n � 2) grid convex drawing algorithm
ConvexSmallGridDrawing(G), as presented in Chapter 10. We also modi�ed
the algorithm of Read [92], presented in Chapter 10: we use a sophisticated way for
chosing the next vertex v to delete, and when placing v back, we try to optimize
the involved angle sizes and edge lengths. More precisely, instead of deleting one
vertex in every step, we remove an independent set of vertices from the drawing.
Since a planar graph can be colored easily with 6 colors in linear time, this yields a
simple method to extract an independent set with size at least n=6. The idea is that
when the independent set is more or less distributed over G, then the probability
decreases that vertices are clustered in the entire drawing. The algorithm can be
described as follows (let N(v) be the set of neighbors of vertex v):

204 Conclusions

ModifiedRead(G);
compute a planar embedding of the triangular planar graph G;
let u; v; w be the vertices on the outerface of G;
n0 := n;
while n0 > 3 do
compute an independent set I in G, with u; v; w 62 I;
let vn0�jIj+1; vn0�jIj+2; : : : ; vn0 := vertices of I;
for i := n0 � jIj+ 1 to n0 do
let v0i be a neighbor of vi in G, with jN(v0i) \N(vi)j = 2;
delete vi from G and add edges from v0i to neighbors of vi;

od;
n0 := n0 � jIj;

od;
place the three vertices v1; v2; v3 as a triangle;
for i := 4 to n do OptimalPlacement(vi) rof;

End ModifiedRead

The remaining point is to compute the optimal place of vi with respect to its neigh-
bors. What is the best place for vertex vi? Consider for this face Fi, the face in
which vi has to be placed (thus after removing the added edges from v0i). Then F
is a star-shaped polygon, that is, there is an nonempty area inside F from which
all vertices from Fi are visible. This nonempty area is called the kernel of F . Let
u1; u2; : : : ; ud be the neighbors of vi.

For placing vi, the edgelength of (uj; vi), (1 � j � d), and the size of the
incident angles of vi and uj inside Fi are important. This problem has a lot to do
with several linear programming problems in computational geometry. Matou�sek,
Sharir & Welzl [81] considered the problem of computing a point pi inside the kernel
of Fi, such that after connecting pi to all the vertices of Fi by straight-line edges, the
minimal angle between two adjacent edges is maximized. They called this problem
the angle-optimal placement of point in polygon and showed that using generalized
linear programming, this problem can be solved in linear time [81].

In our model, we want to deal with both the minimum angle and the minimum
length of the incident edges of vi. Therefore we introduce two variables: an angle
� and a distance �. We place vi such that the minimum angle inside Fi is greater
than � and each incident edge of vi has length greater than �. Using binary search,
the optimal values of the parameters � and � can be achieved. Computing the area
is done by determining the set of halfspaces, to which vertex v must belong, and to
inspect whether its intersection is empty or not. See Preparato & Shamos [91] for a
description of this method. A triangular planar graph has 3n � 6 edges, hence the
average degree of every vertex is 6. This yields an O(1) work amortized to compute
the optimal place of vi. Hence the total algorithm can be implemented to run in
O(n log n) time.

We compared the algorithm SmallGridConvex with ModifiedRead with

Conclusions 205

respect to length of the edges, the sizes of the angles and the area of the faces. This
leads to the table, as given in Figure 15.2.

vertices

Alg. 50 100 150 200 250 300 350 400 450 500

Edges jej Read 22.39 17.58 15.10 14.87 13.79 12.34 12.78 13.42 12.24 11.26

Convex 33.71 25.89 25.85 22.26 21.72 20.28 17.99 17.04 19.75 18.30

� Read 19.30 17.94 17.08 17.76 16.78 15.84 18.23 18.61 17.77 16.15

Convex 30.06 26.66 28.39 25.95 27.01 26.52 23.78 22.46 26.51 24.94

� 100

n
Read 27.00 64.20 110.20 197.40 284.00 382.20 475.00 476.80 576.20 673.00

Convex 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.60

� 200

n
Read 39.60 75.60 121.80 209.40 292.60 392.20 486.00 491.20 590.00 695.40

Convex 33.40 65.80 92.20 121.40 148.80 189.00 214.60 239.40 277.40 301.40

Angles � Read 2.63 3.01 3.21 3.85 4.09 4.33 4.48 4.27 4.44 4.45

Convex 1.24 1.23 1.23 1.23 1.23 1.23 1.23 1.23 1.24 1.23

� Read 2.16 2.21 2.34 2.47 2.47 2.43 2.49 2.52 2.46 2.55

Convex 1.04 1.06 1.07 1.08 1.07 1.08 1.08 1.08 1.09 1.08

� 5

n
Read 28.80 38.20 48.80 41.80 38.40 42.60 42.20 63.20 51.40 63.20

Convex 78.80 127.40 191.20 236.60 274.80 312.60 333.40 391.00 465.40 478.60

� 10

n
Read 54.40 70.60 85.40 76.40 68.20 74.40 102.40 99.20 89.80 119.80

Convex 108.20 171.60 240.80 291.60 346.00 394.60 422.00 489.80 551.60 584.80

Faces jF j Read 67.03 43.63 24.59 19.93 17.59 15.79 11.76 13.31 10.14 8.16

Convex 62.75 28.29 20.26 14.47 11.53 9.87 8.51 7.47 6.74 5.70

� Read 72.44 63.19 47.70 40.72 48.13 38.36 37.03 39.81 41.84 31.16

Convex 76.21 52.98 44.70 45.73 36.78 34.74 25.51 34.16 15.83 22.48

� 25

n
Read 34.80 86.40 158.80 283.00 359.40 457.60 593.60 642.20 753.60 842.20

Convex 0.00 0.00 0.00 0.40 58.60 67.40 77.40 89.60 210.60 224.20

� 50

n
Read 35.00 88.60 163.60 288.80 365.20 461.40 603.40 647.80 763.80 855.60

Convex 0.00 0.80 36.60 49.20 111.60 137.20 225.20 245.60 350.80 370.80

Figure 15.2: Output of the di�erent drawing algorithms.

jejmeans the average length of the edges; � denotes the standard deviation,� 100
n

de�nes the number of edges, with length at most 100
n
, etc. Hence in the triangular

planar graphs with 350 vertices there were on average 189 edges with length at most
200
n
. Notice that in the convex drawing algorithm, there are only a few short edges

(with length at most 100
n
), there are a lot of small angles (size at most 5

n
), and there

are only a few faces with small area (area at most 25
n
).

The experimental results assent the conclusions of Jones et al. [60], stated above
(see Figure 15.1): the modi�ed algorithm of Read has the big problem of clustering,
and the algorithm ConvexSmallGridDrawing has the problem of introducing a
lot of angles of small size. More important, we state (as well as Jones et al. did) that
the straight-line drawing is not the ideal model for representing triangular planar
graphs. The resulting pictures do not satisfy the aesthetic criteria for obtaining a
readable drawing, as stated in Chapter 1 (see also Figure 15.1). In all investigated
cases we observed problems with respect to clustering, face area, angle size and edge
length. We believe that the d-planar drawing algorithm, described in Section 10.3
and the visibility representation, described in Section 10.4 give a more convenient
insight in the structure of the planar graph. The drawings of the triangular planar
graph of Figure 15.1, using this representation models, are given in Figure 15.3.

206 Conclusions

1

3

4

6

7

10

15

16

18

20

2122

23

24

25

26

27

28

29

30

19

17

12

13

14

31

11

9
8

5

2

32

(a) Drawing G as a d-planar graph. (b) Drawing G as a visibility

representation.

Figure 15.3: Drawing a triangular planar graph.

When the input graph is triconnected and has a relative small number of edges,
then both the convex drawing algorithm of Tutte (see Chapter 10) and ConvexS-
mallGridDrawing give somewhat more readable pictures. (Since the graph is
not triangular, the algorithm of Read can not be used now.) In Figure 15.4 the
output is given when applying these algorithms on a triconnected planar graph with
32 vertices. In this setting, the algorithm ConvexSmallGridDrawing has the
advantage that the vertices are placed on grid coordinates. The output of Tutte's
algorithm contains several faces with relatively small area, but here all interior an-
gles have size smaller than � and, hence, are strictly convex. Since this graph has
maximum degree 4, we can also represent this graph by an orthogonal drawing, as
presented in Chapter 11. Though this algorithm might imply bends in the edges,
every edge has length at least 1, every face has area at least 1, and the size of the
angles is at least �=2. The required area is at most n�n. Hence this representation
is a good candidate when the planar graph has maximum degree 4.

We also notice that several algorithms for straight-line drawings, based on local
replacements or simulated annealing, are described in the literature. Though the
obtained drawings are more beautiful than several models presented here, the corre-
sponding price with respect to the required time is very high. Hence before chosing

Conclusions 207

(a) ConvexSmallGrid-

Drawing

(b) Tutte (c) Orthogonal

Figure 15.4: Drawing a triconnected planar graph.

a drawing algorithm, the question how much time the algorithm may use should be
answered. It is clear that if the drawings must be given immediately, the presented
algorithms outperforms the existing corresponding algorithms with respect to time
and delivered results. We hope that the presented algorithms help you to represent
di�erent kinds of networks and diagrams in a convenient way....

208 Conclusions

Bibliography

[1] Aho, A.V., J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley Publ. Comp., Reading, Mass., 1974.

[2] Auslander, L., and S.V. Parter, On embedding graphs in the plane, J. Math.
Mech. 11 (1961), pp. 517{523.

[3] D. Barnette. Trees in polyhedral graphs. Canad. J. Math. (18):731{736, 1966.

[4] Bertolazzi, P., and G. Di Battista, On upward drawing testing of triconnected
digraphs, in: Proc. 7th Annual ACM Symp. on Computational Geometry,
North Conway, 1991, pp. 272{280.

[5] Bertolazzi, P., G. Di Battista, C. Mannino and R. Tamassia, Optimal Upward
Planarity Testing of Single-Source Digraphs, Manuscript, Dip. di Informatica
e Sistemistica, Universit�a degli Studi di Roma La Sapienza, 1992.

[6] Bhasker, J., and S. Sahni, A linear algorithm to check for the existence of
a rectangular dual of a planar triangulated graph, Networks 7 (1987), pp.
307-317.

[7] Bhasker, J., and S. Sahni, A linear algorithm to �nd a rectangular dual of a
planar triangulated graph, Algorithmica 3 (1988), pp. 147{178.

[8] Biedl, T., and G. Kant, A better heuristic for planar orthogonal drawings,
in: Proc. 2nd European Symposium on Algorithms (ESA'94), Lecture Notes
in Comp. Science 855, Springer-Verlag, 1994, pp. 24{36.

[9] Booth, K.S., and G.S. Lueker, Testing for the consecutive ones property, inter-
val graphs and graph planarity testing using PQ-tree algorithms, J. of Com-
puter and System Sciences 13 (1976), pp. 335{379.

[10] Cai, J., X. Han and R.E. Tarjan, New Solutions to Four Planar Graph Prob-
lems, Tech. Report, Dept. of Computer Science, New York University/Courant
Institute, 1989.

[11] Chiba, N., and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM
J. Comput. 14 (1985), pp. 210{223.

209

210 BIBLIOGRAPHY

[12] Chiba, N., T. Nishizeki, S. Abe and T. Ozawa, A linear algorithm for embed-
ding planar graphs using PQ-trees, J. of Computer and System Sciences 30
(1985), pp. 54{76.

[13] Chiba, N., K. Onoguchi, and T. Nishizeki, Drawing plane graphs nicely, Acta
Informatica 22 (1985), pp. 187{201.

[14] Chiba, N., T. Yamanouchi, and T. Nishizeki, Linear algorithms for convex
drawings of planar graphs, in: J.A. Bondy and U.S.R. Murty (Eds.), Progress
in Graph Theory, Academic Press, New York, 1984, pp. 153{173.

[15] Chrobak, M., and T.H. Payne, A Linear Time Algorithm for Drawing Planar
Graphs on the Grid, Tech. Rep. UCR-CS-90-2, Dept. of Math. and Comp.
Science, University of California at Riverside, 1990.

[16] Cohen, R.F., G. Di Battista, R. Tamassia, I.G. Tollis and P. Bertolazzi, A
framework for dynamic graph drawing, in: Proc. 8th Annual ACM Symp. on
Computational Geometry, Berlin, 1992, pp. 261{270.

[17] Cormen, T.H., C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, Mass., 1990.

[18] Di Battista, G., Eades, P., and R. Tamassia, I.G. Tollis, Algorithms for Au-
tomatic Graph Drawing: An Annotated Bibliography, Tech. Report, Dept. of
Comp. Science, Brown Univ., 1993.

[19] Di Battista, G., G. Liotta and F. Vargiu, Spirality of orthogonal represen-
tations and optimal drawings of series-parallel graphs and 3-planar graphs,
in: Proc. 3nd Workshop on Algorithms and Data Structures, Lecture Notes in
Comp. Science, Springer-Verlag, 1993, to appear.

[20] Di Battista, G., and R. Tamassia, Algorithms for plane representations of
acyclic digraphs, Theoret. Comp. Science 61 (1988), pp. 436{441.

[21] Di Battista, G., and R. Tamassia, Incremental planarity testing, in: Proc. 30th
Annual IEEE Symp. on Found. of Comp. Science, North Carolina, 1989, pp.
436{441.

[22] Di Battista, G., R. Tamassia and I.G. Tollis, Area requirement and symmetry
display in drawing graphs, Discrete and Comp. Geometry 7 (1992), pp. 381{
401.

[23] Di Battista, G., R. Tamassia and I.G. Tollis, Constrained visibility represen-
tations of graphs, Inf. Proc. Letters 41 (1992), pp. 1{7.

[24] Edelsbrunner, H., Triangulations, Tech. Report CS 497, Dept. of Comp. Sci-
ence, University of Illinois at Urbana Champaign, 1991.

BIBLIOGRAPHY 211

[25] Edelsbrunner, H., and T.S. Tan, A quadratic time algorithm for the minmax
length triangulation, in: Proc. 32th Annual IEEE Symp. on Found. of Comp.
Science, Puerto Rico, 1991, pp. 548{559.

[26] Edelsbrunner, H., T.S. Tan and R. Waupopitsch, An O(n2 log n) time algo-
rithm for the minmax angle triangulation, in: Proc. 6th Annual ACM Symp.
on Computational Geometry, Berkeley, 1990, pp. 44-52.

[27] Eswaran, K.P., and R.E. Tarjan, Augmentation problems, SIAM J. Comput.
5 (1976), pp. 653{665.

[28] Even, S., Graph Algorithms, Computer Science Press, Potomac, MD, 1979.

[29] S. Even, and G. Granot, Rectilinear Planar Drawings with Few Bends in Each
Edge, Manuscript, Faculty of Comp. Science, the Technion, Haifa (Israel),
1993.

[30] Even, S., and R.E. Tarjan, Computing an st-numbering, Theoret. Comp. Sci-
ence 2 (1976), pp. 436{441.

[31] F�ary, I., On straight lines representations of planar graphs, Acta Sci. Math.
Szeged 11 (1948), pp. 229{233.

[32] Formann, M., T. Hagerup, J. Haralambides, M. Kaufmann, F.T. Leighton, A.
Simvonis, E. Welzl and G. Woeginger, Drawing graphs in the plane with high
resolution, in: Proc. 31th Annual IEEE Symp. on Found. of Comp. Science,
St. Louis, 1990, pp. 86{95.

[33] Frank, A., Augmenting graphs to meet edge-connectivity requirements, in:
Proc. 31th Annual IEEE Symp. on Found. of Comp. Science, St. Louis, 1990,
pp. 708{718.

[34] Fraysseix, H. de, J. Pach and R. Pollack, How to draw a planar graph on a
grid, Combinatorica 10 (1990), pp. 41{51.

[35] Fraysseix, H. de, and P. Rosenstiehl, A depth �rst characterization of planarity,
Annals of Discrete Math. 13 (1982), pp. 75{80.

[36] Frederickson, G.N., and J. Ja'Ja, Approximation algorithms for several graph
augmentation problems, SIAM J. Comput. 10 (1981), pp. 270{283.

[37] F�urer, M., X. He, M.-Y. Kao and B. Raghavachari, O(n log log n)-work parallel
algorithms for straight-line grid embeddings of planar graphs, in: Proc. 4th
Annual IEEE Symp. on Parallel Algorithms and Architectures, San Diego,
1992, pp. 410{419.

212 BIBLIOGRAPHY

[38] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness, Freeman & Co., San Francisco, 1979.

[39] Garey, M.R., D.S. Johnson and L. Stockmeyer, Some simpli�ed NP-complete
graph problems, Theoret. Comp. Science 1 (1976), pp. 237{267.

[40] Garg, A., M.T. Goodrich and R. Tamassia, Area-e�cient upward tree draw-
ings, in: Proc. 9th Annual ACM Symp. on Computational Geometry, San
Diego, 1993, to appear.

[41] Goldschmidt, O., and A. Takvorian, An E�cient Graph Planarization Two-
Phase Heuristic, Tech. Report ORP91-01, Dept. of Mechanical Engineering,
Univ. of Texas at Austin, 1991.

[42] Granot, G., Planar Drawings of Graphs on the Rectlinear Grid with few Bends
in each Edge, M.Sc. Thesis (in Hebrew), Faculty of Comp. Science, the Tech-
nion, Israel, 1993 (in preparation).

[43] Haandel, F. van, Straight Line Embeddings on the Grid, M.Sc. Thesis,
INF/SCR-91-19, Dept. of Comp. Science, Utrecht University, 1991.

[44] Hagerup, T., and C. Uhrig, Triangulating a Planar Graph, in: Library of
E�cient Datatypes and Algorithms (LEDA), software package, Max-Plank
Instit�ut f�ur Informatik, Saarbr�ucken, 1991.

[45] Harary, F., Graph Theory, Addison{Wesley Publ. Comp., Reading, Mass.,
1969.

[46] He, X., E�cient Parallel Algorithms for Two Graph Layout Problems, Tech.
Report 91-05, Dept. of Comp. Science, State Univ. of New York at Bu�alo,
1991.

[47] He, X., On �nding the rectangular duals of planar triangulated graphs, SIAM
J. Comput., 1993, to appear.

[48] He, X., and M.-Y. Kao, Parallel Construction of Canonical Ordering and
Convex Drawing of Triconnected Planar Graphs, Manuscript, Dept. of Comp.
Science, State Univ. of New York at Bu�alo, 1993.

[49] Hopcroft, J., and R.E. Tarjan, Dividing a graph into triconnected components,
SIAM J. Comput. 2 (1973), pp. 135{158.

[50] Hopcroft, J., and R.E. Tarjan, E�cient planarity testing, J. ACM 21 (1974),
pp. 549{568.

[51] Hsu, T.-S., On four-connecting a triconnected graph, in: Proc. 33st Annual
IEEE Symp. on Found. of Comp. Science, Pittsburgh, 1992, pp. 70{79.

BIBLIOGRAPHY 213

[52] Hsu, T.-S., and V. Ramachandran, A linear time algorithm for triconnectiv-
ity augmentation, in: Proc. 32th Annual IEEE Symp. on Found. of Comp.
Science, Puerto Rico, 1991, pp. 548{559.

[53] Hsu, T.-S., and V. Ramachandran, On �nding a smallest augmentation to
biconnect a graph, in: W.L. Hsu and R.C.T. Lee (Eds.), Proc. of the Sec-
ond Annual Int. Symp. on Algorithms, Lecture Notes in Comp. Science 557,
Springer-Verlag, 1992, pp. 326{335.

[54] Hsu, W.L., and S. Shih, A simple test for planar graphs, Manuscript, Institute
of Information Science, Academia Sinica Taipei, Taiwan, 1992.

[55] Jansen, K., One Strike Against the Min-max Degree Triangulation Problem,
Manuscript, Fachbereich IV, Mathematik und Informatik, Universit�at Trier,
Germany, 1992.

[56] Jayakumar, R., K. Thulasiraman and M.N.S. Swamy, On maximal planariza-
tion of non-planar graphs, IEEE Trans. on Circuits and System Sciences 23
(1986), pp. 843{844.

[57] Jayakumar, R., K. Thulasiraman, and M.N.S. Swamy, Planar embedding:
linear-time algorithms for vertex placement and edge ordering, IEEE Trans.
on Circuits and Systems 35 (1988), pp. 334{344.

[58] Jayakumar, R., K. Thulasiraman and M.N.S. Swamy, O(n2) algorithms for
graph planarization, IEEE Trans. on Computer-aided Design 8 (1989), pp.
257{267.

[59] Johnson, D.S., The NP-completeness column: an ongoing guide, J. of Alg. 3
(1982), pp. 89{99.

[60] Jones, S., P. Eades, A. Moran, N. Ward, G. Delott and R. Tamassia, A Note
on Planar Graph Drawing Algorithms, Tech. Report No. 216, Key Centre for
Software Technology, Dept. of Comp. Science, The University of Queensland,
1991.

[61] Jou, L.-j., H. Suzuki, and T. Nishizeki, A Parallel Algorithm for Drawing
Planar Graphs on the Grids, Manuscript, Faculty of Information Engineering,
Tohoku Univ., Japan, 1992.

[62] J�unger, M., and P. Mutzel, Solving the Maximum Weight Planar Subgraph
Problem by Branch and Cut, Manuscript, Instit�ut f�ur Informatik, Universit�at
zu K�oln, 1992.

[63] Kanevsky, A., R. Tamassia, G. Di Battista and J. Chen, On-line maintenance
of the four-connected components of a graph, in: Proc. 32th Annual IEEE
Symp. on Found. of Comp. Science, Puerto Rico, 1991, pp. 793{801.

214 BIBLIOGRAPHY

[64] Kant, G., Implementation Aspects of Graph Planarization Using PQ-trees,
M.Sc. Thesis, Dept. of Computer Science, Utrecht University, 1989.

[65] Kant, G., An O(n2) Maximal Planarization Algorithm based on PQ-trees,
Tech. Report, RUU-CS-92-03, Dept. of Comp. Science, Utrecht University,
1992.

[66] Kant, G., Drawing planar graphs using the lmc-ordering, Extended Abstract
in: Proc. 33th Ann. IEEE Symp. on Found. of Comp. Science, Pittsburgh,
1992, pp. 101-110.

[67] Kant, G., Hexagonal grid drawings, in: E.W. Mayr (Ed.), Proc. 18th Intern.
Workshop on Graph-Theoretic Concepts in Comp. Science (WG'92), Lecture
Notes in Comp. Science 657, Springer-Verlag, 1993, pp. 263{276.

[68] Kant, G., A more compact visibility representation, in: J. van Leeuwen (Ed.),
Proc. 19th Intern. Workshop on Graph-Theoretic Concepts in Comp. Science
(WG'93), Lecture Notes in Comp. Science, Springer-Verlag, 1993, to appear.

[69] Kant, G., and H.L. Bodlaender, Planar graph augmentation problems, Ex-
tended Abstract in: F. Dehne, J.-R. Sack and N. Santoro (Eds.), Proc. 2nd
Workshop on Algorithms and Data Structures, Lecture Notes in Comp. Science
519, Springer-Verlag, 1991, pp. 286{298.

[70] Kant, G., and H.L. Bodlaender, Triangulating planar graphs while minimiz-
ing the maximum degree, in: O. Nurmi and E. Ukkonen (Eds.), Proc. 3rd
Scand. Workshop on Algorithm Theory, Lecture Notes in Comp. Science 621,
Springer-Verlag, 1992, pp. 258{271.

[71] Kant, G., and X. He, Two algorithms for �nding rectangular duals of planar
graphs, in: J. van Leeuwen (Ed.), Proc. 19th Intern. Workshop on Graph-
Theoretic Concepts in Comp. Science (WG'93), Lecture Notes in Comp. Sci-
ence, Springer-Verlag, 1993, to appear.

[72] Khuller, S., and R. Thurimella, Approximation algorithms for graph augmen-
tation, in: W. Kuich (Ed.), Proc. 19th Int. Colloquium on Automata, Lan-
guages and Programming (ICALP'92), Lecture Notes in Comp. Science 623,
Springer-Verlag, 1992, pp. 330{341.

[73] Ko�zmi�nski, K., and E. Kinnen, Rectangular dual of planar graphs, Networks
5 (1985), pp. 145{157.

[74] Kuratowski, K., Sur le probl�eme des courbes gauches en topologie, Fund. Math.
15 (1930), pp. 271{283.

[75] La Poutr�e, J.A., On-line Planarity Testing, Tech. Report, Dept. of Comp.
Science, Utrecht University, 1993, to appear.

BIBLIOGRAPHY 215

[76] Lempel, A., S. Even and I. Cederbaum, An algorithm for planarity testing of
graphs, Theory of Graphs, Int. Symp. Rome (1966), pp. 215{232.

[77] Lengauer, Th., Combinatorial Algorithms for Integrated Circuit Layout, Teub-
ner/Wiley & Sons, Stuttgart/Chichester, 1990.

[78] Lin, Y.-L., and S.S. Skiena, Complexity Aspects of Visibility Graphs, Report
92-08, Dept. of Comp. Science, State Univ. of New York, Stony Brook, 1992.

[79] Lipton, R.J., D.J. Rose, and R.E. Tarjan, Generalized nested dissection, SIAM
J. Numer. Anal. 16 (1979), pp. 346{358.

[80] Malitz, S., and A. Papakostas, On the angular resolution of planar graphs,
in: Proc. 24th Annual ACM Symp. Theory of Computing, Victoria, 1992, pp.
527{538.

[81] Matou�sek, J., M. Sharir and E. Welzl, A Subexponential Bound for Linear Pro-
gramming, Tech. Report B-92-17, Fachbereich Mathematik, Freie Universit�at
Berlin, Germany, 1992.

[82] Mitchell, S.L., Linear algorithms to recognize outerplanar and maximal out-
erplanar graphs, Inf. Proc. Letters 9 (1979), pp. 229{232.

[83] Micali, S., and V.V. Vazirani, An O(
p
V � E) algorithm for �nding maximum

matching in general graphs, in: Proc. 21st Annual IEEE Symp. Found. of
Comp. Science, Syracuse, 1980, pp. 17{27.

[84] Mutzel, P., A Fast Linear Time Embedding Algorithm Based on the Hopcroft-
Tarjan Planarity Test, Tech. Report 92.107, Instit�ut f�ur Informatik, Univer-
sit�at zu K�oln, 1992.

[85] Naor, D., D. Gus�eld and C. Martel, A fast algorithm for optimally increasing
the edge-connectivity, in: Proc. 31st Annual IEEE Symp. on Found. of Comp.
Science, St. Louis, 1990, pp. 698{707.

[86] Nishizeki, T., and N. Chiba, Planar Graphs: Theory and Algorithms, Annals
of Discrete Mathematics 32, North-Holland, 1988.

[87] Nummenmaa, J., Constructing compact rectilinear planar layouts using canon-
ical representation of planar graphs, Theoret. Comp. Science 99 (1992), pp.
213{230.

[88] O'Rourke, J., Art Gallery Theorems and Algorithms, Oxford Univ. Press, New
York, 1987.

[89] Otten, R.H.J.M., and J.G. van Wijk, Graph representation in interactive lay-
out design, in: Proc. IEEE Int. Symp. on Circuits and Systems, 1978, pp.
914{918.

216 BIBLIOGRAPHY

[90] Ozawa, T., and H. Takahashi, A graph-planarization algorithm and its appli-
cations to random graphs, in: Graph Theory and Algorithms, Lecture Notes
in Computer Science 108, Springer Verlag, 1981, pp. 95{107.

[91] Preparata, F.P., and M.I. Shamos, Computational Geometry, An Introduction,
Springer-Verlag, New York, 1985.

[92] Read, R.C., A new method for drawing a graph given the cyclic order of the
edges at each vertex, Congr. Numer. 56 (1987), pp. 31{44.

[93] Reingold, E., and J. Tilford, Tidier drawing of trees, IEEE Trans. on Software
Engineering 7 (1981), pp. 223{228.

[94] Richards, D., Finding short cycles in planar graphs using separators, J. Alg.
7 (1986), pp. 382{394.

[95] Rosenstiehl, P., H. de Fraysseix, and P. de Mendez, personal communication,
1992.

[96] Rosenstiehl, P., and R.E. Tarjan, Rectilinear planar layouts and bipolar orien-
tations of planar graphs, Discrete and Comp. Geometry 1 (1986), pp. 343{353.

[97] Rosenthal, A., and A. Goldner, Smallest augmentations to biconnect a graph,
SIAM J. Comput. 6 (1977), pp. 55{66.

[98] Schnyder, W., Embedding planar graphs on the grid, in: Proc. 1st Annual
ACM-SIAM Symp. on Discrete Algorithms, San Francisco, 1990, pp. 138{147.

[99] Stein, S.K., Convex maps, Proc. Amer. Math. Soc. 2 (1951), pp. 464{466.

[100] Storer, J.A., On minimal node-cost planar embeddings, Networks 14 (1984),
pp. 181{212.

[101] Supowit, K., and E. Reingold, The complexity of drawing trees nicely, Acta
Informatica 18 (1983), pp. 377{392.

[102] Tamassia, R., On embedding a graph in the grid with the minimum number
of bends, SIAM J. Comput. 16 (1987), pp. 421-444.

[103] Tamassia, R., G. Di Battista and C. Batini, Automatic graph drawing and
readability of diagrams, IEEE Trans. on Systems, Man and Cybernetics 18
(1988), pp. 61{79.

[104] Tamassia, R., and I.G. Tollis, A uni�ed approach to visibility representations
of planar graphs, Discr. and Comp. Geometry 1 (1986), pp. 321{341.

BIBLIOGRAPHY 217

[105] Tamassia, R., and I.G. Tollis, E�cient embedding of planar graphs in linear
time, in: Proc. IEEE Int. Symp. on Circuits and Systems, Philadelphia, pp.
495{498, 1987.

[106] Tamassia, R., I.G. Tollis and J.S. Vitter, Lower bounds for planar orthogonal
drawings of graphs, Inf. Proc. Letters 39 (1991), pp. 35{40.

[107] Tarjan, R.E., Depth-�rst search and linear graph algorithms, SIAM J. Com-
put. 1 (1972), pp. 146{160.

[108] Tarjan, R.E., A note on �nding the bridges of a graph, Inf. Proc. Letters 2
(1974), pp. 160{161.

[109] Thomassen, C., Planarity and duality of �nite and in�nite planar graphs, J.
Comb. Theory, Series B 29 (1980), pp. 244-271.

[110] Tutte, W.T., Convex representations of graphs, Proc. London Math. Soc. 10
(1960), pp. 302{320.

[111] Tutte, W.T., How to draw a graph, Proc. London Math. Soc. 13 (1963), pp.
743{768.

[112] Vauchter, J., Pretty printing of trees, Software Practice and Experience 10
(1980), pp. 553{561.

[113] Wagner, K., Bemerkungen zum Vierfarbenproblem, Jber. Deutsch. Math.{
Verein 46 (1936), pp. 26{32.

[114] Watanabe, T., Y. Higashi, and A. Nakamura, Graph augmentation problems
for a speci�ed set of vertices, in: T. Asano, T. Ibaraki, H. Imai and T. Nishizeki
(Eds.), Proceedings 1st Annual Int. Symp. on Algorithms, Lecture Notes in
Comp. Science 450, Springer-Verlag, 1990, pp. 378{387.

[115] Watanabe, T., and A. Nakamura, Edge-connectivity augmentation problems,
J. of Computer and System Sciences 35 (1987), pp. 96{144.

[116] Watanabe, T., and A. Nakamura, 3-connectivity augmentation problems, in:
Proc. 1988 IEEE Int. Symp. on Circuits and Systems, 1988, pp. 1847{1850.

[117] Watanabe, T., T. Narita, and A. Nakamura, 3-edge-connectivity augmentation
problems, in: Proc. 1989 IEEE Int. Symp. on Circuits and Systems, 1989, pp.
335{338.

[118] Watanabe, T., M. Yamakado, and K. Onaga, A linear time augmenting al-
gorithm for 3-edge-connectivity augmentation problems, in: Proc. 1991 IEEE
Int. Symp. on Circuits and Systems, 1991, pp. 1168{1171.

218 BIBLIOGRAPHY

[119] Westbrook, J., Fast incremental planarity testing, in: W. Kuich (Ed.), Proc.
19th Int. Colloquium on Automata, Languages and Programming (ICALP'92),
Lecture Notes in Comp. Science 623, Springer-Verlag, 1992, pp. 342{353.

[120] Wetherell, C., and A. Shannon, Tidy drawing of trees, IEEE Trans. on Soft-
ware Engineering 5 (1979), pp. 514{520.

[121] Williamson, S.G., Embedding graphs in the plane { algorithmic aspects, Ann.
Discrete Math. 6 (1980), pp. 349{384.

[122] Woods, D., Drawing Planar Graphs, Ph.D. Dissertation, Tech. Rep. STAN-
CS-82-943, Computer Science Dept., Stanford University, 1982.

Index

�(G), 12
�(m;n), 22
1-chain, 95
1set(F), 67
2*OptBiconnect, 51
2*OptBridgeConnect, 55
2-block tree, 28
2-connected, 12
2-edge-connected, 12
2set(F), 67
3-block tree, 42
3-connected component, 29
3-Orthogonal, 155
4-connected, 180

above(v), 182
AddNeighbors, 84
adj(v), 14
adjacency list, 14
adjacent, 11
algorithm, 4
angle optimal placement, 204
assign(F), 67
aug(b), 60

B-node, 29
base-edge, 164, 185
bc(G), 42, 45
bc(G), 28
BC-tree, 28
be(F), 164
below(v), 182
Biconnect, 46
biconnected, 12
biconnected component, 12, 29
biconnected planar graph, 5

bipolar orientation, 119
block, 12, 29
block tree, 28
bond, 30
bridge, 12
bridge-block, 54
bridge-block tree, 54
bridge-connected, 12
bridge-connected graph, 54

C-node, 29
canonical ordering

for 4-connected planar graphs, 184
for triangular planar graphs, 76
for triconnected planar graphs, 127
leftmost, 123, 127

CanonicalTriangulate, 77
chain, 12
chip, 3
chord, 13
chords(v), 184
clustering, 203
Connect, 45
connected, 12
connected graph, 12
constrained visibility representation, 121
convex, 133

strictly, 137
convex drawing, 6, 131
ConvexDraw, 117
correct(v), 129
crosspointer, 14
cumulative o�set, 145
cutting pair, 12
cutvertex, 12
cycle, 12

219

220 INDEX

d, 42
d, 29
d(v), 45
d(v), 29
deg(v), 11
direction indicator, 19
disc packing, 116
disconnected, 12
dual graph, 13, 119, 143

edge addition method, 16
edge(b), 58
edge(b), 30
edges, 4, 11
electrical diagram, 3
elementary cycles, 72
empty leaf, 26
Euler's formula, 13
exterior edge, 13
exterior face, 13
exterior vertex, 13
extra edge, 66

face, 13
fary drawing, 202
F�ary drawing, 6
forbidden edge, 104
free, 150
frontier, 18

G�, 13
gap, 64
graph, 4, 11
grid, 4
Gup , 19

HexaDraw, 165
hexagonal drawing, 163
hexagonal grid, 163
high(F), 119, 188
high(v), 182

implementation, 203
in(v), 127

incoming, 127
incremental planarity testing, 50
interior edge, 13
interior face, 13
interior vertex, 13
internal vertex, 76
irreducible, 24

k-connected , 12
k-plane graph, 13

l-child(v), 97
lca, 92
left(e), 119, 188
left(v), 119, 182
leftedge, 185
leftmost canonical ordering, 123, 127
leftup(v), 185
leftup(v), 76
leftvertex, 76, 127, 185
length(e), 164
LinearStraight-lineDraw, 132
lmc-ordering, 123, 127
low(F), 119, 188
low(v), 182
lth(e), 164

m, 11
MakeGraph, 15
mark(v), 149
matching edge, 66
maximal outerplanar graph, 14
maximal planar graph, 13
maximal planarization, 26
maximal split pair, 30
MaximalPlanarize, 27
maximum planar subgraph, 21
Menger's theorem, 12
merging, 30
ModifiedRead, 204
mop, 14
multiple edges, 75, 83

n, 11

INDEX 221

near pair, 27
nodes, 4

Orthogonal, 121
orthogonal drawing, 5, 121, 149
out(v), 127
OuterBiconnect, 96
OuterBridgeConnect, 92
outerface, 13
outerplanar graph, 14, 89

maximal, 14
outgoing, 127
outgoing edge, 76
outside vertex, 50

p, 45
d, 42
p(v), 45
p(v), 29
P-node, 17, 30
P (v), 117
Parallel, 65
path, 12
pendant, 29
pendant block, 29
pendant bridge-block, 54
pertinent node, 17
pertinent root, 18
pertinent(b), 58, 156
pertinent(b), 32
planar st-graph, 17
planar embedding, 13
planar graph, 12

biconnected, 5
maximal, 13
triangular, 6, 13
triangulated, 13
triconnected, 6

planar graphs, 4
planar separator theorem, 117
planar st-graph, 118
planarization, 21, 23
Planarize, 25

plane graph, 13
pole, 31
polygon, 30
potential leaf, 26
PQ-tree, 17
practical aspects, 202
preferred leaf, 26
proper triangular planar graph, 180
PTP graph, 180

q, 42
Q-node, 17, 30
quadrangle, 180

r-child(v), 97
R-node, 30
rectangular dual, 7, 124, 179
rectangular subdivision system, 179
RectangularDual, 183
reducible, 24
reference edge, 30
regular edge labeling, 124, 179, 180
REL, 179
right(e), 119, 188
right(v), 119, 182
rightedge, 185
rightup(v), 185
rightup(v), 76
rightvertex, 76, 127, 185
Rigid, 69

S-node, 30
schema, 3
separating (k � 1) set, 12
separation pair, 12
sequence indicator, 26
Series, 62
shift(v), 129
skeleton(b), 58, 156, 171
skeleton(b), 30
split component, 30
split pair, 30

maximal, 30
splitting, 30

222 INDEX

spqr-tree, 156, 171
SPQR-tree, 30
st-graph, 17, 118
st-numbering, 17, 118
straight-line drawing, 115
strictly convex, 137

TBBC, 54
TBC, 28
tree, 14
triangle, 12, 30
triangular planar graph, 6, 13

proper, 180
Triangulate, 84
triangulated planar graph, 13
triangulation algorithm, 76
Triconnect, 61
triconnected component, 29
triconnected planar graph, 6
tspqr, 58, 156, 171
TSPQR, 30
type A, 23
type B, 23
type H, 23
type W, 23

upward drawing, 5, 121
upward embedding, 19
UpwardEmbed, 20

v-block, 45
v-block, 12
vertex, 4, 11
vertex addition method, 16
virtual edge, 30
Visibility, 120
visibility representation, 5, 119, 187

constrained, 121
visited(v), 184
VLSI, 4

x(b), 171
x(v), 117

y(b), 171

y(v), 117

Zigzag, 83

Samenvatting

Computers raken meer en meer ingeburgerd in de samenleving. Ze worden gebruikt
om informatie uit te rekenen, op te slaan en snel weer te geven. Deze weergave
kan gebeuren in tekst, tabellen of in allerlei andere schema's. Een plaatje zegt
vaak meer dan 1000 woorden, mits het plaatje duidelijk en overzichtelijk is. Een
schema kan bestaan uit rechthoeken met informatie en verbindingslijnen tussen deze
rechthoeken. Denk maar aan een schematische weergave van de organisatie structuur
van een bedrijf. Of beschouw een schematische weergave van alle relaties en links
in een database of een ander software programma. Ook een plan voor een uit te
voeren project moet duidelijk laten zien welke onderdelen afhankelijk van elkaar
zijn en tegelijk of na elkaar uitgevoerd moeten worden. Uit een schema moeten alle
onderlinge relaties direct blijken.

Ook op het gebied van electrische schakelingen zijn er vaak vereenvoudigde
schema's die alle verbindingen tussen de componenten weergeven. Denk maar aan
de bijlagen van een televisietoestel. Een schema wordt hier veelal gebruikt om later
reparaties of uitbreidingen aan de electrische schakelingen uit te voeren. De elec-
trische schakelingen kunnen uit duizenden componenten bestaan. Als er zeer veel
van deze schakelingen gra�sch weergegeven moeten worden, is het belangrijk dat
tekeningen van deze netwerken snel gemaakt kunnen worden, en het resultaat moet
duidelijk en overzichtelijk zijn. In meer algemene zin bestaat een netwerk uit een
aantal componenten, met verbindingen tussen deze componenten. In de wiskunde
worden deze netwerken ook wel grafen genoemd. De componenten worden knopen
genoemd en de verbindingen lijnen.

Dit proefschrift is gewijd aan het automatisch tekenen en gra�sch representeren
van grafen. De hierboven vermelde voorbeelden geven een goed inzicht in de be-
trokken vragen bij de methoden, ook wel algoritmen genoemd, om een layout van
een graaf te maken. Helaas zijn esthetische criteria zoals \leesbaarheid" of een
\mooie tekening" niet direct te vertalen tot wiskundige formules. Anderzijds kan
een wiskundig optimaliseringcriterium een goede keus zijn voor een bepaalde graaf,
maar leiden tot een onoverzichtelijke tekening in andere gevallen. Heel vaak voldoet
een goede tekening aan een combinatie van optimaliseringscriteria. Een belangrijk
criterium is ofdat de graaf zonder kruisende lijnen getekend kan worden. Als dit het
geval is dan wordt de graaf planair genoemd.

We bestuderen in dit proefschrift het automatisch tekenen en representeren van

223

224 SAMENVATTING

planaire grafen in het platte vlak en op roosters (dus alle co�ordinaten zijn gehele
getallen). We tekenen de planaire grafen ook zonder kruisende lijnen. Belangrijke
criteria voor de representatie van planaire grafen, genoemd in de literatuur, zijn de
volgende:

� Het minimaliseren van het aantal bochten in de verbindingen (of het tekenen
van de graaf met alle verbindingen als rechte lijnen weergegeven).

� Het minimaliseren van het totaal gebruikte gebied waarbinnen de representatie
\mooi" kan worden weergegeven.

� Het plaatsen van de knopen, lijnen en bochten op roostercoordinaten.

� Het maximaliseren van de hoeken tussen elke twee opeenvolgende uitgaande
verbindingen van een knoop.

� Het maximaliseren van de totale afstand tussen de knopen.

� De interne gebieden moeten convex getekend worden.

Kwantitatieve uitspraken over de kwaliteit van een tekenalgoritme worden steeds
gedaan in termen van het aantal knopen van een graaf.

Het proefschrift is onderverdeeld in drie delen:
Deel A presenteert een inleiding tot het gebied van planaire grafen. Het geeft een

uitgebreid overzicht ven de belangrijkste basistechnieken en algoritmen, die vooraf-
gaan aan de algoritmen, beschreven in de andere delen.

Deel B beschouwt het probleem van het uitbreiden van planaire grafen zodat
een bepaalde graad van samenhangendheid wordt bereikt. Een graaf heet k-samen-
hangend als na het weglaten van k � 1 willekeurige knopen de resulterende graaf
nog steeds niet in meerdere stukken uiteen valt. Vele tekenmethoden voor planaire
grafen stellen 2- of 3-samenhangendheid als voorwaarde voor de graaf, die getekend
moet worden. In sommige andere gevallen moet de planaire graaf getrianguleerd
zijn, dat wil zeggen, elk gebied moet een driehoek zijn. In deel B worden diverse
algoritmen besproken om een planaire graaf uit te breiden met zo weinig mogelijk
extra (dummy) verbindingen zodat aan de 2- of 3-samenhangendheidseis of aan de
triangulatie voldaan wordt zonder de planariteit te verliezen. Hierna kan de gewenste
tekenmethode toegepast worden, waarbij de toegevoegde verbindingen natuurlijk
niet getoond worden in het uiteindelijke plaatje.

Deel C betreft het belangrijkste onderwerp van dit proefschrift, namelijk het
tekenen en representeren van planaire grafen. Hiervoor presenteren we een totaal
nieuwe, algemene methode. Deze is gebaseerd op een speciale ordening van de
knopen van een 3-samenhangende planaire graaf, de canonical ordening genoemd.
Door gebruik te maken van deze ordening kunnen vele representaties in lineaire tijd
geconstrueerd worden, waarbij de graaf altijd planair getekend wordt. Zo worden de
volgende resultaten verkregen. (Een bijbehorende illustratie van enkele resultaten
is gegeven in de �guur op pagina 225.) n geeft het aantal knopen aan.

SAMENVATTING 225

1
2

3
4

5

6 7 8 9
10

12
13

14

15

11

(a) De canonical ordening

1 2

3 4 5
6

7 8

9 10

11

13

12

14

15

(b) Convexe gebieden

1 2

3 4 5

6 7 8 9 10

11

12

13

14

15

(c) Grote hoeken

3

7 8

4 5

12 11

9 10

2

1

6

15

13

(d) Orthogonale tekening

1

2

3

4

5

6 8

7

9

10

11

12 13

14

15

(e) Visibility representatie

1

2

3
4

8 9

107
65

11 12

13

14

(f) Rectangular dual

1. Elke 3-samenhangende planaire graaf kan getekend worden met rechte lijnen
op een (n � 2) � (n� 2) rooster zodat elk interne gebied convex is.

2. Elke planaire graaf kan getekend worden op een rooster van grootte ten hoogste
(2n�6)� (3n�6) met ten hoogste 5n�15 bochten en minimumhoek > 2

3d+1
,

waarbij elke lijn maximaal 3 bochten en lengte ten hoogste 2n heeft. d is de
maximale graad.

3. Elke 3-samenhangende planaire graaf met maximale graad 4 kan getekend wor-
den op een n�n rooster met knopen gerepresenteerd als punten en verbindin-
gen als horizontale en vertikale lijnen met ten hoogste d3

2
ne+4 bochten waarbij

elke lijn ten hoogste 2 bochten heeft voor n > 6 (orthogonale tekening).

4. Elke planaire graaf met maximale graad 3 kan getekend worden op een bn
2
c �

bn
2
c rooster met ten hoogste bn

2
c+1 bochten, waarbij er een opspannende boom

is waarvan alle verbindingen rechte lijnen zijn en alle overige verbindingen ten
hoogste 1 bocht hebben, voor n > 4.

5. Elke planaire graaf met maximale graad 3 kan getekend worden met knopen
als punten en verbindingen als rechte lijnen en wel zodanig dat de kleinste hoek
tussen twee opeenvolgende verbindingen van een knoop minimaal 45 graden is
als de graaf 3-samenhangend is, en minimaal 60 graden anders.

6. Elke 4-samenhangende getrianguleerde planaire graaf kan getekend worden
met knopen als rechthoeken zodanig dat twee rechthoeken een stuk grens

226 SAMENVATTING

gemeenschappelijk hebben dan en slechts dan als er een verbinding is tussen
de twee betre�ende knopen (rectangular dual).

7. Elke planaire graaf kan getekend worden met de knopen als horizontale balken
en alle verbindingen verticaal, alleen de betre�ende eindknopen aanrakend, op
een (n � 1) � (n � 1) rooster als de planaire graaf 4-samenhangend is, en op
een (b3

2
nc � 2) � (n� 1) rooster anders (visibility representatie).

Het proefschrift bevat verder allerlei kleinere resultaten en voorbeelden. Diverse al-
goritmen zijn ook ge��mplementeerd. Hierdoor zijn ook tabellen met resultaten van de
diverse programma's opgenomen en geanalyseerd. We besluiten het proefschrift dan
ook met diverse conclusies aan de hand van de theoretische en praktisch behaalde
grenzen. We hopen dat u tevreden bent over de leesbaarheid en overzichtelijkheid
van de getoonde graaftekeningen.

Curriculum Vitae

Goossen Kant

3 januari 1967 geboren te Rijswijk (N.Br.)

1979 { 1984 middelbare school: Chr. Scholen Gemeenschap
\De Wegwijzer", Sleeuwijk

mei 1984 HAVO diploma behaald

1984 { 1985 HTS Den Bosch:
sept. 1984 { febr. 1985: Weg- en Waterbouwkunde
maart 1985 { juni 1985: Electrotechniek

1985 { 1989 studie informatica aan de Rijksuniversiteit Utrecht
augustus 1989 doctoraal examen informatica

titel afstudeerscriptie:
\Implementation Aspects of Graph Planarization
Using PQ-trees"

1989 { 1993 Assistent in Opleiding aan de Vakgroep Informatica
van de Rijksuniversiteit Utrecht

227

