
A Relational Calculus for the Design of

Distributed Algorithms

Een relationele calculus voor het ontwerpen van
gedistribueerde algoritmen

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit Utrecht

op gezag van de Rector Magni�cus, Prof. dr. J.A. van Ginkel
ingevolge het besluit van het College van Decanen

in het openbaar te verdedigen
op woensdag 27 september 1995 des middags te 12.45 uur

door

Frans Johan Rietman

geboren op 26 september 1967
te Kampen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39700259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Promotor: Prof. L.G.L.T. Meertens
Faculteit Wiskunde en Informatica

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Rietman, Frans Johan

A relational calculus for the design of distributed
algorithms / Frans Johan Rietman. - Utrecht :
Universiteit Utrecht, Faculteit Wiskunde en Informatica
Proefschrift Universiteit Utrecht. - Met index, lit. opg.
- Met samenvatting in het Nederlands.
ISBN 90-393-0689-3
Trefw.: algoritmen

N
_

WO

The research in this thesis was supported by the Netherlands Organisation for Scienti�c
Research (NWO) under grant 025-62-518, NFI-project \Speci�cation and Transformation
of Programs" (STOP).

Contents

Acknowledgements v

1 Introduction 1

1.1 Historical background and related work . 1
1.2 Transformational programming . 2
1.3 Goals and contents of this thesis . 3
1.4 On nomenclature . 5

I Basics 7

2 Processes and networks 9

2.1 Processes . 9
2.2 Sequential composition . 10
2.3 Parallel composition . 11
2.4 Split and projections . 12
2.5 Feedback . 12

3 The relational algebra 15

3.1 The algebraic framework . 16
3.1.1 Lattice . 16
3.1.2 Sequential composition . 18
3.1.3 Reverse . 20
3.1.4 Parallel composition . 20
3.1.5 Feedback . 23
3.1.6 The Cone Rule and Dedekind's Rule 25

3.2 De�nitions and properties . 28
3.2.1 Interfaces, typing and domains . 28
3.2.2 Functionality and totality . 32

3.3 Demonic composition . 35
3.3.1 Demonic composition de�ned . 36
3.3.2 Weakest preconditions . 39

3.4 Points and extensionality . 40
3.5 Two preservation problems . 42

i

ii CONTENTS

4 Back to the model 45

4.1 Relational algebra B . 45

4.2 Message domain . 46

4.3 Time domain . 47

4.4 Chronicles . 49

4.5 Axiom of Choice for Chronicles . 51

II Postcompose, precompose 55

5 Postcompose 57

5.1 Postcompose de�ned . 57

5.2 Basic properties of postcompose . 58

5.3 Preservation of products . 63

5.4 Derived notions . 65

5.4.1 Identity on singleton channel . 65

5.4.2 Equal arity . 67

5.4.3 Equal support . 69

6 Precompose 71

6.1 Precompose de�ned . 71

6.2 Basic properties of precompose . 72

6.3 Preservation of arities . 75

6.4 Derived notions . 76

6.4.1 Preliminaries . 76

6.4.2 Equal-until and Equal-since . 78

Summarising the results 83

III Healthiness 85

7 Causality 87

7.1 Pinpointing the exact problems . 87

7.2 Archimedean functions . 88

7.3 Primed typing . 91

7.4 Causality for polyfunctions . 93

7.4.1 Polyfunctionality of feedback . 103

7.4.2 Totality of feedback . 104

7.5 Causality for arbitrary procs . 106

7.5.1 Totality of feedback revisited . 108

CONTENTS iii

8 Preservation of causality 109

8.1 Constants . 109

8.2 Preservation . 111

8.2.1 Cup . 111

8.2.2 Sequential composition . 113

8.2.3 Parallel composition . 115

8.2.4 Split . 117

8.2.5 Feedback . 118

9 Weak causality 123

9.1 Weak causality de�ned . 123

9.2 Properties . 124

Summarising the results 129

IV Basic procs 131

10 Possible delay, Delay, Pre�x 133

10.1 Possible delay . 133

10.2 Delay . 136

10.3 Pre�x . 138

10.3.1 Cut . 139

10.3.2 Pre�x de�ned . 141

10.4 Causality . 143

10.5 New properties . 146

11 Synchronise 149

11.1 Synchronise explained . 149

11.2 Synchronise de�ned . 149

11.3 Theorems . 150

12 Bu�er 161

12.1 Bu�er de�ned . 161

12.2 Theorems . 162

12.3 Hot bu�er . 168

12.4 n-place bu�er . 172

Summarising the results 175

iv CONTENTS

V An application 177

13 Instantiating the calculus 179

13.1 Typed rules . 179
13.2 Stream types . 180

14 The Alternating Bit Protocol 183

14.1 The Basic Network . 184
14.2 Tagged messages . 190
14.3 The Alternating Bit Protocol . 196

14.3.1 Weak fairness . 196
14.3.2 Sender and receiver de�ned . 197

15 Conclusion and future work 199

15.1 Conclusion . 199
15.2 Future work . 200

Bibliography 203

Index 209

A Archimedean functions 213

A.1 Inating . 213
A.2 Isomorphism . 214
A.3 Monotonic . 216
A.4 Corollaries . 217

B Axiom of Choice applied 219

C Dataow 223

Samenvatting 225

Curriculum vitae 229

Acknowledgements

Writing a thesis is the �nal state of a period of four years of intensive research, mostly in
cooperation with other people. I would like to thank them for all the support.

First of all, I want to thank Lambert Meertens for o�ering me the OIO position at the
Department of Computer Science, Utrecht University, and for supervising me for the last
four years. I pity him for his e�orts to convince me of my (potential) faults; and still,
I'm not convinced in all cases. There is no doubt, however, that he was often right, in
particular when he accused me of being stubborn.
There were several meetings which contributed to my research. Among them are the STOP
workshops and Summer schools on Ameland, and the weekly (well, almost) meetings at
Utrecht (Constructive Algorithmics Club, Woensdag Middag Club) and Eindhoven (Math-
ematics of Program Construction Group). During those meetings I was introduced to the
�elds of Transformational Programming, Relational Programming and Distributed Pro-
gramming. Furthermore, the monthly meetings of Mathematics of Programming (MoP)
are appreciated. They provided a forum which enabled me to present my own work, and
to get familiar with other approaches to doing research.

Furthermore, I would like to mention a few people for their speci�c contributions to this
thesis1:
All the people from `de eerste'2 for creating such a nice working environment, and, more
importantly, for having time to go to the movies, for playing skwosj and for the numerous
things I can't remember (sometimes, it was quite late).
Carroll Morgan for initiating the research on chronicles together with Lambert, and for
the fruitful and pleasant time during his visit to Utrecht in 94/95.
Chritiene Aarts and Henk Doornbos for helping me when I had serious problems with the
relational algebra, for having stimulating discussions, and just for being good friends.
For nearly four years, Rob Udink was my roommate. I don't want to give a complete
summary of all the interesting, deep, personal, etc. talks we had, but simply characterise
those conversations as most valuable for me during the time I spent in Utrecht. Thanks.
Joost Kok for guiding me through the theory on semantics and dataow networks.

1\. . . and in no way is this in order of priority" { Guns n' Roses, cover Use your illusion.
2This name determines a group, not a place.

v

vi ACKNOWLEDGEMENTS

Maarten Pennings for providing a lot of useful LATEX macros and for helping me to un-
derstand and circumvent the typical error messages and warnings produced by this `thesis
preparation system'. I am hardly able to understand something like:

\def\mynewtheorem#1{\newtheorem{mcp@#1}[equation]{#1}%

\newenvironment{#1}[1]%

{\begin{mcp@#1}\mbox{\it ##1}\rm\par}%

{\ifvmode\mbox{}\else\\\fi\Box\end{mcp@#1}}}

I was not|and probably never will be|able to invent this myself.
Maria Ferreira is thanked for explaining the theory of well-ordered sets.
The members of the reading committee, Prof. Dr R.C. Backhouse, Prof. Dr W.H. Hesselink,
Prof. Dr J.N. Kok, Dr C.C. Morgan and Prof. Dr S.D. Swierstra are acknowledged for
reviewing this thesis.

The object on the cover is generated by the command:
xmartin -f cp1,3,1,4 -zoom 230 -a 18.3041 -b -6.10138 -x 20 -y 30 -coord ar -move ne,100

For those who are puzzled: the picture doesn't mean anything. It decorated the background
of my terminal during the �nal year at the department.

Chapter 1

Introduction

1.1 Historical background and related work

Networks of processes can be modelled as a dataow network. Such networks are rep-
resented by a graph consisting of nodes and directed arcs. Each node corresponds to a
process, while each arc corresponds to a (bu�ered) channel. Kahn's insight in his pio-
neering paper [Kah74] was that for deterministic processes the operational behaviour of
such networks could be captured denotationally in a very simple and elegant way, using
elementary domain theory. He modelled the behaviour of a process by a continuous history
function. The operational behaviour of the whole network could be obtained by setting
up a system of equations (one for each channel in the network) and solving the system by
taking the least �xpoint. This result is called the Kahn Principle.
Since then, a number of people have tried to extend Kahn's work to networks with non-
deterministic processes: instead of modelling processes by history functions, processes
were modelled by history relations. Unfortunately, the construction of feedback loops
introduces anomalies, as was shown by Keller [Kel78] and a few years later by Brock &
Ackerman [BA81]. Additional properties involving timing or causality aspects are needed
to circumvent these problems.

Based on work by Misra [Mis90], Abramsky [Abr90] generalised the Kahn Principle to a
large class of non-deterministic systems. In a very general setting (it includes the usual
models based on linear traces), he describes processes in a network as sets of functions.
Each such function obeys the causality condition that an additional output event can
only be the result of past input events. Then, it is shown that the (non-deterministic)
operational behaviour of a network is described denotationally by the set of �xpoints, each
of which is speci�ed by ordinary Kahn semantics.
Despite the carefully designed semantics of non-deterministic networks, Abramsky's work
does not result in a calculus. Stark [Sta90] also states and proves a generalised Kahn prin-
ciple; he even relates his own result to that of Abramsky [Abr90]. In a subsequent paper,
Stark [Sta92], a set of equational laws (about, for example, bu�ering and feedback) is given,
together with a completeness result stating that those equational laws are complete and

1

2 CHAPTER 1. INTRODUCTION

sound with respect to a dataow calculus of built-in processes, process-forming operations,
transition axioms and inference rules. Despite the elegance of the obtained calculus, we
could not �nd an application in the literature.
Another good example of a carefully designed calculus is the work of Broy [Bro90]. He
concentrates on the notions of speci�cation and several forms of re�nement. The behaviour
of deterministic processes is represented by a stream processing function which is continuous
and pre�x monotonic. Pre�x monotonicity is the causality property that more input can
only produce more output; no previous output is retracted. Non-deterministic processes
(speci�cations) are described by predicates that characterise a set of functions representing
their set of possible behaviours. In addition to these processes, several combining forms
such as sequential composition, parallel composition and feedback are given. Broy argues
that all calculations on re�nement can be performed completely using functions.
Other calculi, which have reached the stage of being widely applied, are UNITY [CM89]
(with operational semantics similar to action systems, Back [Bac93]) and CSP [Hoa85] (and
other process algebras, Milner [Mil89] or Baeten & Weijland [BW90]). These calculi incor-
porate non-determinism. The methodology of UNITY is adapted to the development of
programs for a variety of architectures and applications. The foundation on which program
development is based is a theory similar to temporal logic. Programs and speci�cations
are in di�erent formalisms. Only speci�cations can be re�ned, after which a program is
obtained. A re�nement proof often boils down to reasoning about execution sequences and
program states. A UNITY program is not a network of processes. To develop a distributed
program, a UNITY programmer has to partition his program into isolated processes. The
theory of CSP, based on a model of traces, is better suited for distributed programming.
One of the reasons is that the main objects of manipulation are (channel-oriented) processes
rather than (state-oriented) statements. Another advantage over UNITY is that speci�ca-
tions and programs in CSP are in the same formalism; no mapping from a re�nement to a
program is needed.

1.2 Transformational programming

The approach to the derivation of distributed algorithms we are heading for is transfor-
mational programming. Speci�cations, described in a formal system, are viewed as correct
algorithms which can be highly ine�cient or contain non-implementable parts. By succes-
sive meaning-preserving (or meaning-re�ning) transformation steps, formulated in trans-
formation rules, those speci�cations are transformed into correct and e�cient algorithms
built from implementable primitives. Therefore, the process of applying transformation
rules can stop if all non-implementable parts are removed. Since each transformation step
preserves (or re�nes) the meaning of the algorithm, the overall result of a sequence of trans-
formation steps is correct again. Because the concept of e�ciency depends on the actual
implementation in some language on some architecture, and we do not want to commit
ourselves unduly, e�ciency considerations have to be informal.

1.3. GOALS AND CONTENTS OF THIS THESIS 3

To be able to state and apply transformation rules, a transformational programming calcu-
lus should possess the following two properties. First, to perform calculations, it should be
possible to express both speci�cations and algorithms in the language used by the calculus;
second, to perform understandable calculations, the notation used for algorithms should
be concise and the rules should be simple but powerful.
Transformational programming was advocated by Backus [Bac78] in his ACM Turing
Award Lecture. He proposed an algebra of programs and combining forms:

This algebra can be used to transform programs and to solve equations

whose \unknowns" are programs in much the same way one transforms equa-

tions in high school algebra. These transformations are given by algebraic laws

and are carried out in the same language in which programs are written. Com-

bining forms are chosen not only for their programming power but also for the

power of their associated algebraic laws.

Among the algebraic laws mentioned by Backus are rules such as distributivity, associa-
tivity and idempotency, and monotonicity with respect to some (re�nement) order.
Good recent examples of transformational programming for program derivation and the
development of new theory can be found in the theses of Fokkinga [Fok92], Jeuring [Jeu93]
and Meijer [Mei92].

1.3 Goals and contents of this thesis

In this thesis we look at the problem of distributed, communicating processes. There
are several varieties of distributed algorithms, such as synchronous versus asynchronous
algorithms. We strive for a mathematical model that can serve as an abstraction for all
these varieties. The di�erence should correspond to di�erent constraints imposed on a
general unifying mathematical framework, leading to di�erent rules in the calculus.
One goal is the development of a calculus that is suited for dealing with non-determinism
in a natural way. The �nal calculus should provide a box of powerful tools, containing
useful primitive processes and concise transformation rules.
In the spirit of Backus, the second goal is to avoid the explicit use of states; states are
inherited from the von Neumann programming style. During calculations, especially in a
calculus for distributed algorithms, the presence of a decentralised state clouds the sky.
A third goal is the abstraction from time: only the ordering of events is important, not
the exact timing. As announced, the di�erence between several assumptions on time (for
example, discrete versus continuous) only occurs in the di�erence between sets of rules in
the calculus. Therefore, no single rule in the calculus will ever refer to explicit time.
We do not intend to be exhaustive in presenting a new calculus. Investigations are still in
progress, and the set of transformation rules and primitive processes is subject to change.

To introduce non-determinism in a calculus for the design of distributed algorithms, we
start with a well-established relational algebra, and extend this algebra with axioms and

4 CHAPTER 1. INTRODUCTION

de�nitions for constructs needed in a calculus for the design of distributed algorithms.
Calculations in the model justify the axioms introducing the new constructs.
In the model we propose, processes are modelled as relations that relate timed input streams
to timed output streams; those timed streams will be called chronicles. This contrasts with
most related work in which events on channels are merged to form a trace that describes
a behaviour of the system. The hope is that, by using relations as the basis, a simple
calculus with a high level of abstraction will result.
All processes calculate simultaneously throughout time, and communicate with other pro-
cesses in a synchronous way. Bu�ering of messages is not assumed: a bu�er is just an
ordinary process in some network of processes, and has to be mentioned explicitly, built
on top of the synchronous system. Consequently, if a process is not ready to accept a
message, other processes can not send to them and the communication `blocks'. One has
to use explicit protocol schemes (bu�ered processes) to avoid this blocking, resulting in
asynchronous communication.
Processes can be connected in networks of processes using composition constructions.
These compositions represent dedicated channels connecting (pairs of) processes and de-
scribe the topology of the network. The connection therefore represents the ow of data,
which contrasts ow of control.

The thesis consists of �ve parts. We aim at a small application in the �nal part. All pre-
ceding parts introduce useful concepts for the design of distributed algorithms, exploiting
a calculus of relations.
In Part I, we summarise the relational algebra and specify the particular model we are going
to use in our calculations. Chapter 2 explains our view of processes and gives examples
of ways to compose processes to obtain larger networks. Processes will be mathematically
described as binary (input-output) relations, and relational composition constructs can
be used to describe the topological structure of networks. Then, Chapter 3 discusses the
raw relational calculus. It is introduced by giving a set of axioms. This axiomatisation is
sound, witnessed by a set-theoretical model. To get a more realistic calculus with respect
to implementation, also a demonic composition operator is discussed. It is shown that
the angelic composition from the raw relational calculus can easily be transformed into its
demonic counterpart. Apart from the feedback construct and two preservation problems
related to feedback, Chapter 3 contains no topics concerning distributed programming.
Finally, Chapter 4 deals with the particular model for the relational algebra: the model of
chronicles. In this chapter, important concepts such as message domain and time domain
are de�ned.
Part II introduces two important functions for performing actions on messages and on time.
In Chapter 5, the function postcompose is de�ned and investigated. It prescribes actions
on the messages and is used to de�ne some simple processes. Actions on the time domain
can be speci�ed by the function precompose, Chapter 6. This gives us the possibility to
reason about shifts in time, or to restrict the time domain to some part we want to observe.
Despite the fact that the functions postcompose and precompose are dual, we will only
axiomatise the function postcompose in the relational calculus. The reason to neglect the

1.4. ON NOMENCLATURE 5

function precompose is that in the �nal calculus we want to avoid explicit time or actions
on time.
In Part I we encounter several anomalies with respect to feedback. Our solution to these
anomalies is presented in Part III: the property of causality. First, Chapter 7 records
the consequences and properties of causal processes, in particular when these processes are
placed in a feedback loop. After having motivated the importance of causality, preservation
rules for the composition constructions are derived in Chapter 8. Chapter 9 strengthens
some of the preservation rules by weakening their conditions.
Some useful primitive processes in the calculus are identi�ed in Part IV. Three processes
for delaying the input or taking some pre�x are de�ned in Chapter 10. These processes
pave the way for the de�nition of a synchronisation process in Chapter 11. This process
is investigated in detail, resulting in new axioms imposed on the processes of Chapter 10.
The �nal chapter of Part IV, Chapter 12, de�nes and explores the bu�er process, and
mentions some extensions and related processes.
The bu�er and its extensions of Chapter 12 are the key processes in Part V, which brings
all results obtained in the previous chapters together in an e�ort to derive a well-known
communication protocol by calculation. Before doing so, a small instantiation of the general
calculus is made in Chapter 13 in order to be able to reason about typed procs. Still, many
of the calculations in Chapter 14, where we derive the communication protocol, could be
done without the burden of type checking.

1.4 On nomenclature

Before starting, some remarks are made on the nomenclature of assumptions, de�nitions
and results. Because we want to abstract from the model, and in particular from the time
aspects, we will make a clear distinction between assumptions made in the model, and
assumptions made in the calculus; and similar for de�nitions, theorems, etc.
For the model, where time plays an important role, the following terminology is used. For
assumptions in the model: Assumption; for de�nitions in the model concerning time
aspects: Characterisation; for all other de�nitions in the model: De�nition; for results
depending on time aspects and which are not meant to be axiomatised: Proposition; for
results depending on time aspects and which are meant to be axiomatised: Property; and,
�nally, for all other results: Theorem. At the end of Parts II, III and IV, the obtained
properties are axiomatised.
In the calculus, common nomenclature occurs: Axiom, De�nition, Lemma, Theorem
and Corollary. They all speak for themselves. In the proof of a Lemma or a Theorem,
the use of statements from the model level is not allowed. An exception is the use of
Properties at places where they have not yet been axiomatised.
Not all the proofs of all propositions, properties, lemmas and theorems are given: several
proofs bearing great similarity to other proofs have been omitted.

6 CHAPTER 1. INTRODUCTION

Part I

Basics

7

Chapter 2

Processes and networks

This chapter introduces our view of processes and networks. We motivate why processes are
regarded as binary relations. Furthermore, the need for several composition constructions
is explained. Part of the discussion below also appeared in Rietman [Rie93b].

2.1 Processes

A possible model of a distributed program is that of a collection of communicating processes
connected by channels, for example as in Figure 2.1:

P Q R

Figure 2.1: Small network

We will explain how we embed networks like these in an algebra of binary relations. Let A
be the set of processes. Each process has input ports and output ports. A channel connects
an output port to an input port. Processes communicating with the `outside world' can
be thought of as having channels connected to `outside' ports.
The process P in Figure 2.1 corresponds to a relation that relates an input channel, which
happens to be a singleton, to an output channel, which is a pair. In the mathematical
model, we abstract from any notion of physical lay-out: only the topology of the network|
which ports are connected to which ports|is important. We assume that the left-hand
side ports are output ports, and the right-hand side ports are input ports.
A channel carries a stream of values. These streams are called chronicles and are de�ned
in Chapter 4. In short, they are total functions of type C :=M T , where T is some
time domain and M is some `well-typed' message domain. Identi�ers f , g and h range
over C.

9

10 CHAPTER 2. PROCESSES AND NETWORKS

If the possible input chronicles are in the set A�C, and the possible output chronicles are
in the set B�C we say that P has type B from A. Observe that typing is not unique.
For example, every process has type C from C.

Pf g

Figure 2.2: Process P relates chronicle f 2B to chronicle g 2A

Mathematically, Figure 2.2 is expressed in the model by f hP i g. Several di�erent chronicles
f can be related by relation P to g, or, symmetrically, several di�erent chronicles g can be
related to f . Typing of P is denoted by P 2 B�A.
Allowing relations in the model introduces non-determinism. There are various reasons for
allowing non-determinism in the model; one reason is the possible delay of a process. For
example: given two input values to an adder at some moment, it is completely determined
what the result of the addition will be. However, it might be unknown when this result
occurs on the output channel, due to an unknown delay in the adder. In this sense, the
adder is non-deterministic. Another reason for non-determinism is the subject of under-
speci�cation.
Speci�cations and programs are in the same formalism: a process can be a speci�cation as
well as a program. Programs are, in fact, speci�cations that are deemed to be (directly)
`implementable'. We are not concerned here with a precise de�nition of implementability,
which may depend on the speci�cs of some programming language. We need ways, though,
to combine programs into new programs, that is, ways to compose relations in such a way
that implementability is preserved. These composition methods, which can be interpreted
as ways to obtain connection patterns of some network, are the subject of the following
sections; in Chapter 3 the compositions will be formally introduced. Often, properties of the
new processes can be derived from properties of the constituents by means of preservation
properties of the composition operator.

2.2 Sequential composition

To connect two processes sequentially the relational angelic composition is used. In this
way, processes of arbitrary types can be combined. The calculus provides tools to identify
which types are meaningful. This composition looks like chaining in CSP [Hoa85].

2.3. PARALLEL COMPOSITION 11

P Q
f h g

Figure 2.3: Sequential composition of P and Q

The process P �Q relates some output chronicle f to some input chronicle g if and only
if there exists a chronicle h such that P relates f to h and Q relates h to g, Figure 2.3.
The identity of sequential composition I can be thought of as a bundle of (arbitrarily
many) wires. The direction (from right to left) will be �xed by the notion of functionality
in Chapter 3. In that chapter, we will also introduce a relational demonic composition,
which is actually the composition used in implementations.

2.3 Parallel composition

To combine two processes that compute in parallel, that is, the two processes do not have
(direct) interaction with each other, parallel composition is used. The parallel composition
of processes P and Q is denoted by P kQ . The process P kQ relates an input pair of
chronicles to an output pair, Figure 2.4.

P

Q

Figure 2.4: Parallel composition of P and Q

A warning should be given here. The parallel composition used in this calculus is not
similar to merge operators used in CSP or in dataow networks. In those theories the
parallel operator expresses (synchronised) communication of the operands. In our theory,
parallel composition is similar to product in category theory and expresses simultaneous
computation of the operands without (direct) communication. In fact, all composition
constructions presented in the theory express simultaneous computation. The composition
denotes the way these processes are connected.

12 CHAPTER 2. PROCESSES AND NETWORKS

2.4 Split and projections

Elementary actions on pairs of channels can be performed by split and the projections.
Split combines two processes P and Q in parallel, attached to the same input channel:
P 4Q. The projections � and � select one of the input channels. The left projection and
the split of P and Q are depicted in Figure 2.5.

Q

P

Figure 2.5: Left projection �, and split P 4Q

At this point there is a clear divergency between the pictures and the theory: when the
processes in Figure 2.5 are composed sequentially, one is tempted to conclude that the
result is the process P . But this is, in general, not the case. The freedom to write P 4Q
for all P and Q (without the need for type checking) forces us to take into account the type
of Q when trying to reduce the combination of the processes in Figure 2.5. These type
considerations are exactly what we have in mind: no type checking when writing some
expression. The type of (part of) the expression emerges from the calculation.

2.5 Feedback

One of the most important components of a relational calculus for the design of distributed
algorithms is the feedback operator. Its importance is comparable to the importance of
the concept of loops in iterative programming and recursion in functional programming.
However, the feedback operator does not exist. Therefore, we want to have a general one in
the sense that it should be possible to construct all other possible feedback constructions
from it. This motivates the choice to feed back all the output channels. Then, at the
input side, every possible combination of the fed-back output channels can be chosen to
contribute to the input. The feedback of process P is denoted by P �.

2.5. FEEDBACK 13

P

Figure 2.6: Feedback circuit P � of P

The rich structure of the algebra introduced in Chapter 3 will enable us to de�ne the
feedback operator. No new axioms are assumed to capture the notion. Many of the
desired properties of feedback, such as the computation rules, follows from its de�nition.
It would be naive, though, to think that all the problems other researchers in the �eld
encountered are circumvented.

14 CHAPTER 2. PROCESSES AND NETWORKS

Chapter 3

The relational algebra

This chapter summarises the algebraic framework in which the calculations are made. This
framework can also be found in Backhouse et al. [BdBH+91], which is based on the pio-
neering work by Tarski [Tar41], and related to work by Maddux [Mad91] and Schmidt &
Str�ohlein [SS93]. Compared to [BdBH+91] there are only some minor di�erences in nota-
tions and terminology. The calculations that are shown here merely serve as illustrations.
In Section 3.1, the relational algebra is presented. As the basic sequential composition we
will encounter angelic relational composition. However, in implementations the composi-
tion tends to be demonic. When comparing angelic composition with demonic composition,
it turns out that the former `delivers a result' whenever a sensible result exists. In con-
trast, the result of demonic composition is unde�ned whenever the possibility of failure
exists. However, angelic composition cannot be implemented e�ectively. Then why use
angelic composition? The reason is that the calculational properties of demonic compo-
sition are not as nice as those of angelic composition. Some of the disadvantages are the
non-distribution of demonic composition over disjunction and conjunction (from the left),
due to its anti-monotonic behaviour. Moreover, there are typing problems in using de-
monic composition. Angelic composition, on the other hand, has nice distribution rules
with respect to disjunction, and reasonable conditions for the distribution over conjunc-
tion. Furthermore, there is no need for typing considerations when composing two processes
with angelic composition. Last but not least, angelic composition is easily transformed into
demonic composition by requiring totality of the processes involved.
After introducing the framework, useful concepts, such as functionality and totality, are
de�ned in Section 3.2. The concept of functionality (or determinism) is an important
one in our calculus: functional processes obey important distribution laws not satis�ed by
processes in general. Totality is used to transform the angelic composition of the calcula-
tionally derived processes into the demonic composition of an implementation. Section 3.3
will be devoted to this matter. In Section 3.4 the Principle of Extensionality is explained
and axiomatised. Finally, Section 3.5 discusses two preservation problems of feedback.

15

16 CHAPTER 3. THE RELATIONAL ALGEBRA

3.1 The algebraic framework

The framework is a relational algebra (A; v; �; I; [; �; �). It is introduced in four layers,
connected by interfaces.
A model for the axiomatisation is the structure of the set-theoretical relations over some
universe. That is, the objects of A are sets of pairs of elements from the universe. To-
gether with the introduction of new objects in A and new operators for constructing new
objects from old ones, interpretations (or justi�cations) in the model are given. In each
interpretation the quanti�cation is over all f , g, h and i from the universe. To express
that a pair (f; g) is an element of relation R the notation f hRi g is used. In operational
terms this says: for input g (describing a complete input history) a possible output of R
is f (describing a complete output history). In Chapter 4 the elements of the universe are
speci�ed in more detail.

3.1.1 Lattice

The �rst layer is the structure of a lattice, see for example Davey & Priestly [DP90]. Let
A be a set, the elements of which are to be called procs (from processes). The identi�ers
P , Q, etc. range over A. On A the structure of a complete, universally distributive,
complemented lattice is imposed:

Axiom 3.1 Lattice

(A; v)
is a complete, universally distributive, complemented lattice. Here, `lattice' means that
the join operator, denoted by t and called cup, and the meet operator, denoted by u and
called cap, are associative, commutative and idempotent, binary in�x operators with unit
elements ?? and >>, respectively.
`Complete' means that the extrema t(P : P 2B : P) and u(P : P 2B : P)
de�ned in the usual way exist for all bags B of procs.
`Universally distributive' means: for all bags B of procs:

P u t(Q : Q2B : Q) = t(Q : Q2B : P uQ)

P t u(Q : Q2B : Q) = u(Q : Q2B : P tQ)

`Complemented' means that the rules of Contradiction and Excluded Middle are valid:

P u:P = ??

P t:P = >>
2

3.1. THE ALGEBRAIC FRAMEWORK 17

The interpretations in the set-theoretical model are:

f hP tQi g � f hP i g _ f hQi g

f h??i g � False

f hP uQi g � f hP i g ^ f hQi g

f h>>i g � True

P vQ � 8(f; g : f hP i g : f hQi g)

f h:P i g � :(f hP i g)
The order w, meaning P wQ � QvP , will also be used. The distributivity properties in
Axiom 3.1 are also referred to as: P u is (universally) cupjunctive and P t is (universally)
capjunctive.
The complemented lattice structure is well known from the literature. For example, the
predicate calculus, Dijkstra & Scholten [DS90], embeds the structure. We call it a plat,
standing for power set lattice. Calculations in the structure are referred to by the hint
`plat calculus'.
Before continuing, some remarks are made on operator precedence. First, the connectives
in the predicate calculus (�, (,), _ and ^) have lower precedence than all the op-
erators in the relational algebra. Next, the operators in the lattice structure =, v and
w all have equal precedence. Also t and u have equal precedence, but higher than the
other binary operators in the lattice structure. Because : is a unary operator, it has the
highest precedence of all the operators in the lattice. So, :P tQ v R should be parsed
as ((:P)tQ) v R.
In a complete lattice, every monotonic function F has a least �xpoint; the least �xpoint of
F is denoted by �F . We record the characterising property of the least �xpoint �F . First,
the computation rule:

F:�F =�F

and second, the induction rule:

8(P :: �F vP (F:P vP)

We �nd the characterisation above inadequate for our calculations: in several applications
of the induction rule the antecedent turns out to be too strong. Therefore, we rewrite the
characterisation of �F :

Theorem 3.2 Fixpoint Characterisation
The least �xpoint �F of the monotonic function F is characterised by:

8(P :: �F vP � F:(P u�F) v P)

2

18 CHAPTER 3. THE RELATIONAL ALGEBRA

The implication) equivales F:�F v �F ; the implication (then equivales the induc-
tion rule. These two conjuncts express that �F is the least solution of the inequation
X :: F:X vX. Then, we exploit the Knaster-Tarski Fixpoint Theorem [Tar55]1, which
states that the equation X :: F:X =X and the inequation X :: F:X vX both have the
same least solution for monotonic F .
The least �xpoint operator � is de�ned in any complete lattice. In the rest of this thesis,
several procs, relations or ordinary sets are de�ned using the schema of Theorem 3.2.

3.1.2 Sequential composition

The second layer is the monoid structure for sequential composition:

Axiom 3.3 Sequential composition

(A; �; I)
is a monoid, that is, � is an associative binary in�x operator with unit element I. The
interface with the plat structure is: � is coordinate-wise universally cupjunctive. That is,
for bags B and C of procs,

(tB) � (tC) = t(P;Q : P 2B ^ Q2C : P �Q)

2

In the model, sequential composition is the angelic relational composition:

f hP �Qi g � 9(h :: f hP ih ^ h hQi g)

f hIi g � f = g

Sequential composition has higher precedence than the binary operators in the lattice
structure. So, P u :Q �R is to be read as P u ((:Q) �R).
From Axiom 3.3, it follows that � is monotonic with respect to v and has ?? as a left and
right zero. Another consequence of the interface of sequential composition with the lattice
is the existence of factors:

De�nition 3.4 Factors
The right factor PnR is de�ned by:

a. P �Q v R � Q v PnR
And the left factor R=Q is de�ned by:

b. P �Q v R � P v R=Q

2

1This theorem is a lattice-theoretical generalisation of the set-theoretical theorem in Knaster [Kna28].

3.1. THE ALGEBRAIC FRAMEWORK 19

In the model, factors correspond to a universal quanti�cation. Their interpretation can be
derived using ordinary predicate calculus from the interpretation of sequential composition:

f hPnQi g � 8(h : h hP i f : h hQi g)

f hP=Qi g � 8(h : g hQi h : f hP ih)
Factors have a higher priority than sequential composition. De�nitions 3.4a and 3.4b
are instances of Galois connections, see for example Schmidt [Sch53] and more recently
Aarts [Aar92]. The main corollary of De�nition 3.4 is formed by the so-called cancellation
rules:

Theorem 3.5 Cancellation

a. P �PnQ v Q

b. P=Q �Q v P

2

To give an illustration of a calculation in the relational algebra and to demonstrate our
proof style, the result >> �>> = >> is proved:

Theorem 3.6 >> is idempotent

>> �>> = >>
Proof by mutual inclusion:

>>
w f >> is top element of the lattice g

>> �>>
w f >> is top element: >>w I; monotonicity of composition g

I �>>
= f I is identity of composition g

>>
2

Although the relational calculus by itself has no left-right bias, in our use of it, the input-
output direction is typically assumed to be from right to left. Thus, our sequential com-
position is `backwards'. However, it is only by de�ning what is meant by functionality,
Subsection 3.2.2, that this direction is �xed.
The transitive and reexive closure P � of a proc P is de�ned by:

De�nition 3.7 Transitive and reexive closure
Let P n, for n2N , be de�ned by:

a. P 0, I

b. P n+1 , P �P n

20 CHAPTER 3. THE RELATIONAL ALGEBRA

The transitive and reexive closure of P is de�ned as:

c. P � , t(n : n2N : P n)

2

There are several equivalent de�nitions for the transitive and reexive closure of proc P .
It could be de�ned as the least solution of the �xpoint equation X :: X = I t P �X,
see Kleene [Kle52] and Rogers [Rog67]. The de�nition given above is probably the most
familiar one, and suitable for our purposes.

3.1.3 Reverse

The third layer is the reverse structure. It is axiomatised as follows:

Axiom 3.8 Reverse

(A; [)
introduces the unary post�x operator [. The interface with the lattice structure is the
following Galois connection:

P [vQ � P vQ[

The interface with the monoid structure of sequential composition is:

(P �Q)[= Q[� P [

2

In the model, reverse switches the input ports and the output ports. It is a generalisation
of the inverse of functions:

f hP [i g � g hP i f
Because reverse is an unary operator, it has the same precedence as negation. Therefore,
P u Q �R[is to be read as P u (Q � (R[)).
From the interface with the lattice structure it follows that [is its own inverse. Moreover,
reverse is universally cupjunctive and capjunctive. This implies ??[=??, >>[=>>, and
the monotonicity of reverse. The expression :P [does not need to be parenthesised because
it also follows that reverse commutes with negation. From the interface with the monoid
structure of sequential composition it follows that I[= I.

3.1.4 Parallel composition

The fourth layer is the layer of parallel composition. The introduction of parallel com-
position di�ers from the axiomatisation of sequential composition. First, we assume the
existence of the projections � and �. Second, parallel composition and split are de�ned
in terms of those projections and other elements of the calculus such as u and sequential
composition. Finally, the axiomatisation of the layer is completed.

3.1. THE ALGEBRAIC FRAMEWORK 21

Axiom 3.9 Parallel composition

(A; �; �)
postulates the existence of two procs � and �. The proc � is called `left projection'; the
proc � is called `right projection'. Before continuing with Axiom 3.9, two binary operators
on procs, 4 and k, referred to as `split' and `parallel', are de�ned:

De�nition 3.10 Split and parallel composition

a. P 4Q , �[�P u �[�Q

b. P kQ , (P ��) 4 (Q ��)

(End of De�nition 3.10)
2

The axiomatisation of the layer is completed:

c. I w I k I

d. (P 4Q)[� R4S = P [�R u Q[�S

e. >> �� = >> ��

(End of Axiom 3.9)
2

In the model, the projections are interpreted as:

f h�i g � 9(h :: g=(f; h))

f h�i g � 9(h :: g=(h; f))

A better-known interpretation of the projections is:

f h�i (g; h) � f = g

f h�i (g; h) � f =h

Notice, though, that this last de�nition does not cover the complete set of arguments:
nothing is said about f h�i g where g cannot be split in two. It is understood that the
interpretation only succeeds for pairs; otherwise the result is false.
With the interpretation in the model of � and � one can derive the interpretations of 4

and k:

(f; g) hP 4Qih � f hP ih ^ g hQi h

(f; g) hP kQi (h; j) � f hP ih ^ g hQi j
Later, in Section 4.4, a slightly di�erent notation f Ng will be used for pairs (f; g). It
would lead too far to explain the precise motivation already here.

22 CHAPTER 3. THE RELATIONAL ALGEBRA

The binary operators 4 and k have equal precedence, higher than all the other binary
operators in the algebra. Parentheses will be used to disambiguate expressions where
necessary.
Split and parallel composition are monotonic with respect to v because they are built using
the monotonic operators �, u and [. Other consequences are the distribution of reverse
over parallel composition, and the expressibility of the projections as a reversed split:

Theorem 3.11 Parallel composition

a. (P kQ)[= P [kQ[

b. � = (I4>>)[

c. � = (>>4I)[
2

The following results can also be derived from the axioms. They are known as `parallel-
split fusion', `parallel-parallel fusion' and `computation rules'. The derivation involves
elementary relational calculus, and illustrates the use of Axiom 3.10d:

Theorem 3.12 Parallel-split fusion, parallel-parallel fusion

a. P kQ � R4S = (P �R) 4 (Q �S)

b. P kQ � R kS = (P �R) k (Q �S)

Proof:

P kQ � R4S
= f reverse is its own inverse g

(P kQ)[[� R4S
= f Theorem 3.11a g

(P [kQ[)[� R4S
= f De�nition 3.10b g

((P [��) 4 (Q[��))[� R4S
= f Axiom 3.10d g

(P [��)[�R u (Q[��)[�S
= f Axiom 3.8; reverse is its own inverse g

�[�P �R u �[�Q �S
= f De�nition 3.10a g

(P �R) 4 (Q �S)

Theorem 3.12b follows from 3.12a by De�nition 3.10b
2

For notational and calculational reasons, parallel composition is not associative. Also, the
operator does not have a unit element. Notice that a choice for associativity of parallel
composition would not have allowed the derived Theorem 3.12b. It can not be applied

3.1. THE ALGEBRAIC FRAMEWORK 23

to P kQ � R kS kT , because it is not clear which parallel compositions match with each
other. A similar remark holds for the absence of a unit element for parallel composition.
Next, the computation rules for split are given:

Theorem 3.13 Computation rules for split

a. � � P 4Q = P u >> �Q

b. � � P 4Q = Q u >> �P

Proof:

� � P 4Q
= f Theorem 3.11b g

(I4>>)[� P 4Q
= f Axiom 3.10d g

I[�P u >>[�Q
= f I[= I; Axiom 3.8: >>[=>> g

P u >> �Q

2

In Subsection 3.2.1, the two expressions of Theorem 3.13 are further transformed to other,
nicer expressions. Also, the computation rules for parallel composition are given in that
subsection.
A thorough exploration of the properties of split and parallel composition can be found in
Backhouse et al. [BdBH+91]. There are some minor di�erences in the notation, the main
one being that we use the notation k, whereas in [BdBH+91] the notation � is used.

3.1.5 Feedback

There are several ways to characterise the feedback operator. The one taken is the explicit
formulation in terms of known procs:

De�nition 3.14 Feedback

P � , (P u�) � I4>>
2

Here, we use the meet with� to model the feedback, whereas I4>> separates this feedback
channel from the input. Notice that there are no type restrictions on P ; the calculus gives
as result that feedback only uses the binary input part of P . Using interpretations in
the model given in the previous sections, the following interpretation for the feedback
construction is derived:

f hP �i g � f hP i (g; f)

24 CHAPTER 3. THE RELATIONAL ALGEBRA

The feedback construction obeys a rule of Input fusion:

Theorem 3.15 Input fusion

P � �Q = (P � Q k I)�

2

Due to the fed-back output, it is not possible to �nd an equally short formulation for the
form P �Q�. Because feedback is constructed from universally cupjunctive functions, it
follows that feedback itself is universally cupjunctive. This is stated and proved in the
next theorem.

Theorem 3.16 Universal cupjunctivity

(t(P : P 2B : P))� = t(P : P 2B : P �)

Proof:

(t(P : P 2B : P))�

= f De�nition 3.14 g
(t(P : P 2B : P) u �) � I4>>

= f universal cupjunctivity of u� and of � I4>> g
t(P : P 2B : (P u�) � I4>>)

= f De�nition 3.14 g
t(P : P 2B : P �)

2

From the above it follows that the feedback operator � is monotonic and ??-strict, i.e.,
??�=??. Another property is the computation rule for feedback:

P � = (P u�) � I4P �

Notice the extra u�. In case proc P is deterministic, see Subsection 3.2.2, the rule can
be simpli�ed to:

P � = P � I4P �

A derived feedback is a loop with a hidden feedback wire:

De�nition 3.17 Loop

P$, � � (P � I k�)�

2

With the interpretation in the model of the projections and compositions one can derive
the interpretations of the loop:

f hP$i g � 9(h :: (f; h) hP i (g; h))
It turns out that the hidden feedback is as expressive as the feedback de�ned in De�ni-
tion 3.14. The feedback construction of De�nition 3.14 is obtained from De�nition 3.17 by
duplicating the output of the argument proc.

3.1. THE ALGEBRAIC FRAMEWORK 25

The construction obeys several fusion rules:

Theorem 3.18 Feedback and loop

a. P � = (I4I � P)$

b. P �Q$ �R = (P k I � Q � R k I)$

c. (I kP � Q)$ = (Q � I kP)$

2

A corollary of Theorems 3.18a and 3.18b is P �Q� = (P 4I � Q)$. This looks like a good
alternative for the dual of Theorem 3.15.
This concludes the introduction of the operators of the relational calculus. The following
subsection will connect the layers of the algebra more tightly by adding two extra axioms.

3.1.6 The Cone Rule and Dedekind's Rule

An axiom that guarantees, among other consequences, that I and >> di�er from ??, is
the Cone Rule. In general, the Cone Rule gives a condition to conclude that a proc is not
equal to the uninteresting proc ??:
Axiom 3.19 Cone Rule

>> �P �>> = >> � P 6=??
2

Now, the claimed consequences can be proved:

Theorem 3.20 Non-emptiness

a. I 6=??

b. >> 6=??

c. P kQ = ?? � P =?? _ Q=??
Proof:

I 6=??
= f Cone Rule 3.19 g

>> � I �>> = >>
= f Axiom 3.3: I is identity of composition g

>> �>> = >>
= f Theorem 3.6 g

True

The implication (in 3.20c follows by ??-strictness of (the building blocks of) parallel
composition.

26 CHAPTER 3. THE RELATIONAL ALGEBRA

For) we assume P kQ = ?? and P 6=??:
P kQ = ??

) f ?? is zero of composition g
� � P kQ � >>4I = ??

= f Parallel-split fusion 3.12a g
� � (P �>>) 4 Q = ??

= f Theorem 3.13b g
Q u >> �P �>> = ??

= f P 6=??: Cone Rule 3.19 g
Qu>> = ??

= f >> is unit of cap g
Q=??

2

A second axiom that connects the �rst three layers of the relational algebra is Dedekind's
Rule. Although this rule looks terrifying (there are �ve free variables), it is very useful in
calculations:

Axiom 3.21 Dedekind's Rule

P u Q �R v S �T
(

P �R[u Q v S
^

Q[�P u R v T

2

To remember this rule one has to be able to reconstruct its syntactic shape. For ex-
ample, the �rst conjunct of the antecedent is obtained as follows: take the consequent
P u Q �R v S �T , forget about the right arguments of the compositions (R and T) and
add R[on the right side of P . The second conjunct is obtained in a symmetrical way.
In calculations it is often the case that one of the conjuncts becomes trivially true, for
example if Q=S. So applying Dedekind does not really stretch the proofs.
A �rst formulation of Dedekind's Rule can be found in Riguet [Rig48]. Riguet attributes
the rule to Dedekind who suggested a slightly weaker variation. Although the axiom only
contains three free variables, it is less useful for our calculations, because it strongly tends
to widen the proofs. It looks thus:

P u Q �R v (P �R[u Q) � (Q[�P u R)

The interpretation in the model of Dedekind's rule, Axiom 3.21, boils down to the following
statement in predicate calculus:

8(f; g; h : f hP i g ^ f hQi h ^ h hRi g : 9(h0 :: f hSih0 ^ h0 hT i g))
(

8(f; g; h : f hP i g ^ f hQi h ^ h hRi g : f hSih ^ h hT i g)

3.1. THE ALGEBRAIC FRAMEWORK 27

In Backhouse et al. [BdBH+91] another rule is proposed: the so-called Middle Exchange
Rule. It reads:

P [�X �Q[v Y � P �:Y �Q v :X
In the scope of axioms stated earlier, the Middle Exchange Rule and Dedekind's Rule are
equivalent. We prefer Dedekind's Rule because it lacks the negation.
To illustrate the use of Dedekind, consider the following theorem.

Theorem 3.22 Swap

P u Q �R v ?? � P �R[u Q v ??
Proof by mutual implication:

P u Q �R v ??
= f ?? is zero of composition g

P u Q �R v ?? �R
(f Dedekind 3.21 g

P �R[u Q v ??
= f ?? is zero of composition g

P �R[u Q v ?? �R[

(f Dedekind 3.21 g
P u Q �R v ??

2

Another important theorem dealing with the distribution of sequential composition over
cap is proved and some corollaries are stated. Notice that until now nothing has been said
about such distributions.

Theorem 3.23 Distribution over cap

a. (P uQ) � R = P �R u Q �R (P �R �R[v P

b. (P u Q �>>) � R = P �R u Q �>>
Proof by mutual inclusion:
First:

(P uQ) � R v P �R u Q �R
= f plat calculus g

(P uQ) � R v P �R ^ (P uQ) � R v Q �R
(f monotonicity of composition g

P uQ v P ^ P uQ v Q
= f plat calculus g

True

28 CHAPTER 3. THE RELATIONAL ALGEBRA

And for the other inclusion:

P �R u Q �R v (P uQ) � R
(f Dedekind 3.21 g

P �R �R[u Q v P uQ
(f plat calculus g

P �R �R[v P

The proof of the second statement follows the same structure
2

Notice that the consequent of Theorem 3.23a is symmetric in P and Q. So in the an-
tecedent, P could equally well have been replaced by Q. Some important corollaries with
respect to distribution over split are:

Corollary 3.24 Distribution over split

a. P 4Q � R = (P �R) 4 (Q �R) (P �R �R[v P _ Q �R �R[v Q

b. P 4 (Q �>>) � R = (P �R) 4 (Q �>>)
2

This (almost) concludes the axiomatisation of the algebraic framework. In Section 3.4 a
last axiom called extensionality will be added to the set of axioms for relational algebra
A. But �rst other important constructions have to be presented.

3.2 De�nitions and properties

In this section, additional notions such as domains and functionality are de�ned and some
of their most important properties are stated.

3.2.1 Interfaces, typing and domains

We are heading for some notion of typing. Take for example a relation R which relates
elements of set A with elements of set B. The type of R can be represented by the inclusion
R � A�B. If the relation R is the square root function on N we could write in the modelp
� R�N. An alternative notation is

p
2 R N. To capture the bi-direction which

occurs in relations we propose for arbitrary proc P a more symmetric symbol: P 2 A�B.
In the following we will �rst concentrate on the notion of `set A'; procs representing sets
will be called interfaces. Then, the notation P 2 A�B can be introduced. Finally, the
useful domain operators, which deliver the type of a proc, are de�ned.
Sets are represented as `subsets' of the identity proc I, which represents the complete
universe:

De�nition 3.25 Interfaces

P is an interface � P v I
2

3.2. DEFINITIONS AND PROPERTIES 29

Two trivial interfaces are the procs I and ??. Identi�ers A and B are used to denote
interfaces, that is, Av I and Bv I. In the model, interfaces can be interpreted by:

f hAi g) f = g

These interfaces play the role of restricted identities. To stress the interpretation as a set,
we write f 2A for f hAi f . A basic and useful theorem about interfaces is:

Theorem 3.26 Interfaces

a. A=A[

b. A � (P uQ) = A �P u Q

2

The proof is omitted, though it is another good example of the usefulness of Dedekind's
Rule 3.21. Notice that the second statement of Theorem 3.26 actually equivales the de�ning
property of interfaces. This follows by instantiating P and Q both to I. Some straightfor-
ward corollaries of the theorem are:

Corollary 3.27 Interfaces

a. A = A �A

b. A �B = B �A = AuB

c. A � (P uQ) = A �P u A �Q

2

To introduce a more familiar way to express the type of a proc the following de�nition is
given:

De�nition 3.28 Typing

P 2 A�B � A �P = P ^ P = P �B

2

In the model, the conjuncts A �P = P and P = P �B read:

f hP i g) f 2A ^ g 2B
This is equivalent to the set-theoretical notation P � A�B. Other (di�erent!) ways of
typing could have been:

A �P = A �P �B = P �B

which is a weaker formulation than De�nition 3.28. The disadvantage is that this de�nition
only gives limited typing information: only in the presence of interface A can one remove
B from A �P �B. An even weaker formulation is:

A �P �B = P �B

30 CHAPTER 3. THE RELATIONAL ALGEBRA

This alternative de�nition comes very close to conventional typing. It is, however, a highly
asymmetric one, which is inconvenient in a framework which is closed under reverse, Ax-
iom 3.8.
In the model it is easily seen that from P � A�B, A�C and B�D it follows by
monotonicity that P is also in C�D. The question raised now is: given some proc P ,
what are the least A and B such that P � A�B is valid? These `limit sets' seem to
be useful, and therefore need to be de�ned in the formalism. They are called left domain
(`range') and right domain (`source') and are denoted by P< and P>, respectively:

De�nition 3.29 Domains
Left domain:

P< , P �>> u I

Right domain:

P> , I u >> �P

2

From the de�nitions it follows that the domain operators are universally cupjunctive,
which implies ??<=??>=?? and monotonicity of the operators. Notice that domains
are interfaces. This is, among other useful properties, formally stated as follows:

Theorem 3.30 Domains

a. P< �Q = P �>> u Q and P �Q> = P u >> �Q

b. P< �P = P and P = P �P>

c. P< �>> = P �>> and >> �Q> = >> �Q

d. P<v I and P>v I

e. A<=A>=A

2

In the proof of Theorem 3.30, the distribution rule of Theorem 3.23b plays a fundamental
role. The list of properties recorded in Theorem 3.30 is far from complete. During calcu-
lations in the chapters that follow, we will give extensive hints when dealing with those
properties. It is a straightforward exercise to derive the interpretation of domains in the
model. From De�nition 3.29 one can conclude for the left domain:

f 2P< � 9(h :: f hP ih)
There are a number of equivalent formulations for typing a proc. Whenever appropriate,
we feel free to take one of the equivalent formulations listed next.

3.2. DEFINITIONS AND PROPERTIES 31

Theorem 3.31 Equivalent formulations for typing
The following four statements are all equivalent:

a. P = A �P ^ P = P �B

b. P = A �P �B

c. P v A �>> ^ P v >> �B

d. P<vA ^ P>vB
Proof by mutual implication:

P = A �P ^ P = P �B
) f Leibniz g

P = A �P �B
) f >> is top element: monotonicity of composition g

P v A �>> ^ P v >> �B
) f monotonicity of composition and cap; Theorem 3.6 g

P �>> u I v A �>> u I ^ I u >> �P v I u >> �B
= f De�nition 3.29; A and B are interfaces: Theorem 3.30e g

P<vA ^ P>vB
) f monotonicity of composition g

P< �P v A �P ^ P �P> v P �B
= f Theorem 3.30b g

P v A �P ^ P v P �B
= f A is an interface: P w A �P ; anti-symmetry g

P = A �P ^ P = P �B

2

With the notion of domains, the computation rules for split, Theorem 3.13, can be rewrit-
ten, making use of Theorem 3.30a. Also the computation rules for parallel composition are
given:

Theorem 3.32 Computation rules for split and parallel composition, revised

a. � � P 4Q = P �Q>

b. � � P 4Q = Q �P>

c. � � P kQ = P � � � I kQ>

d. � � P kQ = Q � � � P> k I

2

For a more intensive exploration of properties about typing and domains the reader is

32 CHAPTER 3. THE RELATIONAL ALGEBRA

referred to Backhouse et al. [BdBH+91]. In that paper, the term monotypes is used instead
of interfaces.

3.2.2 Functionality and totality

Until now, nothing has been said about functions, functionality or determinism. All op-
erators introduced thus far apply to arbitrary procs. These procs can be interpreted as
(non-deterministic) relations. In this section it is speci�ed what is meant by a functional
(or deterministic) proc. Because injectivity is dual, it is de�ned simultaneously:

De�nition 3.33 Functionality, injectivity

a. P is functional � P �P [v I

b. P is injective � P [�P v I

2

The identi�ers F and G are used to denote arbitrary functional procs. As announced in
the example

p
2 R N, the notation ` ' is used to denote that the proc is functional.

So, by de�nition:

De�nition 3.34 Typing

a. P 2 A B � P 2 A�B ^ P is functional

b. P 2 A!B � P 2 A�B ^ P is injective

2

In the model the de�nition of functionality reads:

f hP ih ^ g hP ih) f = g

For a function F , the formulation f hF i g can be interpreted as f =F:g, thus showing the
embedding of functions in the algebra of relations. Notice that the direction of a proc
`from right to left' is implied. If one reads from left to right, the notion of functionality
will become the notion of injectivity.
One of the main properties of functions is that they distribute from the right over cap and
split. This follows from Theorem 3.23 and Corollary 3.24a:

Theorem 3.35 Function distribution

a. (P uQ) � F = P �F u Q �F

b. F � (P u F [�Q) = F �P u Q

c. P 4Q � F = (P �F) 4 (Q �F)

3.2. DEFINITIONS AND PROPERTIES 33

Proof:

(P uQ) � F = P �F u Q �F
(f Theorem 3.23a g

Q w Q �F �F [

(f monotonicity g
I w F �F [

= f F ranges over functions; De�nition 3.33a g
True

And second, by mutual inclusion:

F � (P u F [�Q)
v f monotonicity of cap g

F �P u F �F [�Q
v f F is a function: monotonicity g

F �P u Q
v f Dedekind 3.21 g

F � (P u F [�Q)

The proof of 3.35c is similar to the �rst proof and exploits Corollary 3.24a
2

Without proof we claim that Theorem 3.35a can be generalised to any (arbitrary) non-
empty cap. The results of Theorem 3.35 are easily dualised to injections. Sequential
composition, split and parallel composition all preserve functionality:

Theorem 3.36 Preservation of functionality

The composition operators �, k and 4 preserve functionality

2

The operators also preserve injectivity. The operator 4 preserves injectivity in a strong
sense: injectivity of only one argument is required. This concludes the short discussion of
functionality. Next, the notion of totality and the dual notion of surjectivity are de�ned:

De�nition 3.37 Totality, surjectivity

a. P is total on A � AvP>

b. P is surjective to A � AvP<

2

For example, all procs are total on the interface ??. There are numerous equivalent
formulations of totality. Two examples of formulations equivalent to `P is total on A' are
A v >> �P and A v P [�P . In the model, totality of P on A reads:

f 2A) 9(h :: h hP i f)

34 CHAPTER 3. THE RELATIONAL ALGEBRA

The notation � is used to denote that the proc is total; the reversed notation denotes
surjectivity:

De�nition 3.38 Typing

a. P 2 A�B � P 2 A�B ^ P is total on B

b. P 2 A�B � P 2 A�B ^ P is surjective to A

2

All combinations of 3.28, 3.34a, 3.34b, 3.38a and 3.38b are possible. The typings � and
 are used very often. For example, F 2 N Z expresses that F is a partial function,
mapping each element in Z to a result in N. For convenience, their precise meaning is
written out in full:

Theorem 3.39 Typing

a. P 2 A�B � P<vA ^ P>=B

b. P 2 A B � P<vA ^ P>=B ^ P is functional

Proof:

P 2 A�B
= f De�nition 3.38a g

P 2 A�B ^ P is total on B
= f De�nitions 3.28 and 3.37a g

A �P = P ^ P = P �B ^ BvP>

= f equivalence of 3.31a and 3.31d g
P<vA ^ P>vB ^ BvP>

= f anti-symmetry g
P<vA ^ P>=B

2

With these de�nitions of interfaces and domains, functionality and injectivity, and totality
and surjectivity one can list some typing properties of the basic procs. For example, the
property that all interfaces are isomorphisms on `themselves' is stated:

Theorem 3.40 Typing of basic procs
For all interfaces A:

a. A 2 A$A

In particular:

b. ?? 2 ??$??

c. I 2 I$I

3.3. DEMONIC COMPOSITION 35

Moreover:

d. >> 2 I�I

e. � 2 I I k I

f. � 2 I I k I

2

The top relation >> is the most non-deterministic proc one can imagine; so it is not func-
tional. Because >> is symmetric, >>[=>>, injectivity is also ruled out. The projections
destruct their argument: picking out one element from a pair, forgetting the other one.
Therefore, projections can not be injective. This concludes the limited discussion on the
type information of procs. In Section 3.4 we will introduce some special functions called
points.
The following theorem summarises preservation properties of fundamental composition
operators:

Theorem 3.41 Preservation of typing

a. P tQ 2 AtB � C tD (P 2 A�C ^ Q 2 B�D

b. P �Q 2 A�C (P 2 A�B ^ Q 2 B�C

c. P 4Q 2 A kB � C uD (P 2 A�C ^ Q 2 B�D

d. P kQ 2 A kB � C kD (P 2 A�C ^ Q 2 B�D

2

The proof is omitted. This concludes the limited discussion on the type information of
procs.

3.3 Demonic composition

This section introduces demonic sequential composition. Recall that the composition which
has been used until now is angelic relational composition. It is not our objective to intro-
duce demonic composition in yet another way, or to investigate it thoroughly; other au-
thors have done that before, and well enough, see Backhouse & van der Woude [BvdW93],
Berghammer [Ber91] or Sekerinski [Sek93].
Sometimes, we will `step outside' our formalism and look at some operator from the point
of implementation. In this way several choices are motivated.
In developing a calculus for the design of (distributed) algorithms the task is to give a set
of rules and to provide programming heuristics as general and powerful as possible. In this
way, the �nal calculus will be widely applicable and easy to use. This is the motivation to
choose an axiomatic introduction of an algebra which contains several angelic operators.

36 CHAPTER 3. THE RELATIONAL ALGEBRA

The present calculus supplies a sequential composition � and a union t which are combined
in an axiom stating the universal distribution over union of composition in both its argu-
ments. This axiom results in many nice and easy to remember operators and calculation
rules such as the existence of the factors n and =, and monotonicity and ??-strictness of
composition.

3.3.1 Demonic composition de�ned

Looking at (hardware) implementations, components are connected by wires. What is
the theoretical counterpart of connecting components sequentially in our algebra? At �rst
glance it looks as if sequential composition � is the right one.
But this composition is an angelic operator in the sense that P �Q relates an input to an
output whenever there exists some intermediate result between P and Q:

f hP �Qi g
�

9(h :: f hP ih ^ h hQi g)
This does not behave like the connection of P and Q obtained by a wire because the
output of proc Q depends on the (in-)ability of proc P to process this output. We need a
connection of P and Q that makes it possible for component Q to produce output regardless
of whether the following component P can consume it. In that case, it will be possible to
implement the sequential composition of P and Q by using the individual implementations
of P and Q (compositionality : the meaning of P
Q is a function of the meaning of P and
the meaning of Q). The connection we are heading for is known as demonic composition.
As a side-remark we mention that there are already several demonic-like operators present
in the algebra: among others, there is split and parallel composition.
Motivated by the informal behaviour of a `wire' we propose a more stringent composition,
dubbed demonic composition: P ��Q behaves like the relational composition restricted to
those initial inputs which only lead to intermediate values for which P is de�ned:

f hP ��Qi g
�

f hP �Qi g ^ 8(h : h hQi g : h2P>)

In the literature, various ways to construct a point-free formulation for demonic com-
position are presented. We just jump to the de�nition with only the remark that the
8-quanti�cation corresponds to a factor = in the relational calculus:

De�nition 3.42 Demonic composition

P ��Q , P �Q u (>> �P) =Q[

2

This de�nition of demonic composition is the same as the one given by Backhouse &
van der Woude [BvdW93]. Demonic composition has the same priority as angelic compo-

3.3. DEMONIC COMPOSITION 37

sition. It is well known that demonic composition is a monoid operation: it is associative
and has I as identity:

Theorem 3.43 Demonic composition

(A; ��; I) is a monoid

2

This is a nice property of demonic composition. However, a major disadvantage of demonic
composition is the fact that it is only monotonic with respect to the order v on procs in its
�rst argument P . It is neither monotonic nor anti-monotonic in Q. This rules out general
junctivity properties.
The thing we are interested in for reasons of re�nement and, even more importantly,
implementation, is conditions under which our well-behaved angelic composition coincides
with the newly introduced demonic composition. The next theorem states some useful
preliminary results:

Theorem 3.44 Demonic composition

a. P �Q = P ��Q � P �Q �Q[v >> �P

b. (P ��Q)> = Q> ^ P �Q = P ��Q � Q<vP>

Proof:

P �Q = P ��Q
= f De�nition 3.42 g

P �Q = P �Q u (>> �P) =Q[

= f plat calculus g
P �Q v (>> �P) =Q[

= f De�nition 3.4b g
P �Q �Q[v >> �P

In the proof of the second statement, many rules from the domain calculus are used:

(P ��Q)> = Q> ^ P �Q = P ��Q
= f Leibniz; Theorem 3.44a g

(P �Q)> = Q> ^ P �Q �Q[v >> �P
= f Theorem 3.30c; calculus g

>> �P �Q = >> �Q ^ >> �P �Q �Q[v >> �P
= f Leibniz g

>> �P �Q = >> �Q ^ >> �Q �Q[v >> �P
= f monotonicity; domain calculus: >> �Q �Q[= >> �Q[g

>> �P �Q w >> �Q ^ >> �Q[v >> �P
= f >> �Q[v >> �P implies >> �Q = >> �Q[�Q v >> �P �Q g

>> �Q[v >> �P
= f Theorem 3.30c g

Q<vP>

2

38 CHAPTER 3. THE RELATIONAL ALGEBRA

The main corollary of Theorem 3.44b is:

Corollary 3.45 Demonic composition

a. P �Q = P ��Q (Q<vP>

b. P �Q = P �� (P> �Q)

c. P �Q = P ��Q (Q is a function

Proof:
Statement 3.45a follows from Theorem 3.44b. The second one 3.45b is just a concise
rewriting of 3.45a. For 3.45c we calculate:

P �Q = P ��Q
= f Theorem 3.44a g

P �Q �Q[v >> �P
(f monotonicity g

P v >> �P ^ Q �Q[v I
= f I v>>: monotonicity of composition g

Q �Q[v I
= f De�nition 3.33a g

Q is a function

2

This corollary justi�es the remark that angelic composition and demonic composition co-
incide whenever the procs are total. What is actually meant is that every proc has to be
total on the left domain of the proceeding proc.
The condition for the equality we derived in Theorem 3.44a can be interpreted in the model
as follows:

P �Q �Q[v >> �P
=

8(f; g : f hQ �Q[i g : f 2P>) g 2P>)
=

8(f; g; h : f hQi h ^ g hQi h : f 2P> � g 2P>)

In words this means: any two outputs f and g generated (via Q) by one input h are either
both inside the domain of P or both outside that domain.
Corollary 3.45c concluded that functionality of Q is also su�cient to establish the equality
P �Q = P ��Q. One could argue that functionality is also desirable in programs. Therefore,
to re�ne a speci�cation down to some demonic composition of procs, it su�ces to end up
with just functions. However, in that case we might loose totality: we can not guarantee
that the re�nement we found is as total as its `�rst' component. For example, in the above
formula, we would like to conclude that (P ��Q)> = Q>. For that to follow we need type
information about the sequential connections; type information like Q<vP>. So, we need
the information anyway.

3.3. DEMONIC COMPOSITION 39

In calculations, we will continue to use angelic composition. However, we feel free to impose
type assumptions (according to Corollary 3.45a) when needed.
This subsection introduced the demonic composition in an angelic calculus. In this way, we
preserved all nice calculational properties of the angelic relational algebra. The conclusion
is that an angelic environment is well-suited to de�ne and investigate demonic operators.
As a result, we obtain a calculus in which angelic and demonic operators are at the disposal
of the program designer.

3.3.2 Weakest preconditions

There is a nice way to relate the demonic composition to the well-known sequential com-
position ; in imperative programming. The connection is given via weakest preconditions.
In Dijkstra & Scholten [DS90], and in many other books on program semantics, the se-
mantics of ; is given by:

wp:(S0 ;S1):X = wp:S0:(wp:S1:X)

where S0 and S1 are statements, and X ranges over predicates. This rule expresses the
behaviour of the compound statement S0 ;S1 as a combination of the individual behaviours
of S0 and S1, i.e., compositionally.
To make a connection between demonic composition �� and this wp-rule we �rst identify
predicates and the predicate transformer wp:P . Let the predicates be modelled by inter-
faces, i.e., p is a predicate if and only if pv I. Recall that procs under I represent sets and
that predicates and sets are in one-to-one correspondence. The predicates form a complete,
universally distributive (complemented) lattice. The meet is u and will be denoted (very
suggestively) by ^. Consequently, the inclusion v on predicates can be denoted by), and
equality = becomes equivalence �.
The predicate transformer wp:P is de�ned for all procs P :

De�nition 3.46 Weakest precondition

wp:P:p , (p��P)>

2

Others, like Doornbos [Doo94] and Sekerinski [Sek93], already suggested this connection
between demonic composition and wp in various ways. In the model, the weakest precon-
dition of P for postcondition p reads:

f 2 wp:P:p
�

9(g : g hP i f : g 2 p) ^ 8(g : g hP i f : g 2 p)
This is the interpretation: wp:P:p contains exactly those input chronicles for which proc
P is guaranteed to result in an output chronicle in p.

40 CHAPTER 3. THE RELATIONAL ALGEBRA

The compound statements demonic sequential composition ��, split 4 and parallel composi-
tion k enjoy the following wp properties:

wp:(P ��Q):p � wp:Q:(wp:P:p)

wp:(P 4Q):(p k q) � wp:P:p^wp:Q:q

wp:(P kQ):(p k q) � wp:P:p kwp:Q:q

As an example, we will prove the wp-rule for demonic composition. A nice tool is the
demonic counterpart of (P �Q)> = (P> �Q)>. It reads (P ��Q)> = (P>��Q)> and is derived
mainly using >>>= I and Corollary 3.45a:

wp:(P ��Q):p
= f De�nition 3.46 g

(p��P ��Q)>

= f (P ��Q)> = (P>��Q)> g
((p��P)>��Q)>

= f De�nition 3.46 g
(wp:P:p��Q)>

= f De�nition 3.46 g
wp:Q:(wp:P:p)

The second and third property use predicates p k q; these are predicates on pairs. The third
property in particular shows the absence of communication between P and Q.
By Corollary 3.45b it follows that wp:(P �Q):p � wp:(P> �Q):(wp:P:p) which once more
reects that the behaviour of Q is restricted by (the right domain of) P .
This concludes the short discussion of the demonic composition ��. In the next section we
will introduce some special functions called points.

3.4 Points and extensionality

In this section we de�ne points. Points are constant total functional procs. They represent
the elements f of the model, and enable the formulation of another axiom called the
Principle of Extensionality in algebra A:
De�nition 3.47 Points

point :x
�

x = x �>> ^ x 2 I I

2

We let identi�ers x and y range over points. In the model the conjunct x = x �>> is
interpreted as:

f hxi g � f hxi h

3.4. POINTS AND EXTENSIONALITY 41

It represents the `constant' aspect of points. In words it says: no matter what the input
(g or h), the output is always the same (f). Some properties of points used in the sequel
are:

Theorem 3.48 Points

a. x � x[= x<

b. x4I � P = x4P

c. >> � x = >>
2

The �rst statement follows from the functionality of points and is in fact a property that
is valid for all functions (P �P [= P< is even equivalent to stating that P is a function).
The second follows from the property that points are constant. The last property describes
totality on I.
With points it is possible to formulate and axiomatise the Principle of Extensionality. In
set theory, this principle states that two sets are equal if and only if they contain the same
elements. In functional programming the mechanism of extensionality is used to prove that
two functions are equal:

f = g � 8(x :: f:x= g:x)

This is easily generalised to relations, lifting function application to relational composition.
In the relational algebra the above translates to the axiom:

Axiom 3.49 Extensionality

P =Q � 8(x :: P � x = Q � x)

2

This is the last axiom for the relational algebra A. No more axioms on the algebra are
needed to prove the desired results in the algebra of procs. There are many other possible
formulations of extensionality, some of which are:

Theorem 3.50 Equivalent formulations of Extensionality

a. I = t(x :: x � x[)

b. >> = t(x :: x)

2

For an intensive exploration of points and extensionality in the relational calculus the reader
is referred to Rietman [Rie91]. It is the objective to try to avoid the use of extensionality
as much as possible, and do the calculations at the level of procs: they are our �rst-class
citizens.

42 CHAPTER 3. THE RELATIONAL ALGEBRA

3.5 Two preservation problems

A healthiness condition of a relational calculus for the design of distributed algorithms
should be that it subsumes the results of Kahn for deterministic procs, Kahn [Kah74].
One property of the feedback operator should be its preservation of functionality. This
is, in general, a false statement in the calculus introduced thus far. This is shown by the
following example: Theorem 3.40e states that the proc � is deterministic, which can not
be said of the proc ��:

��

= f De�nition Feedback 3.14 g
(�u�) � I4>>

= f idempotency of u g
� � I4>>

= f Split computation 3.32 g
>> � I>

= f I>= I; identity g
>>

We can not deduce from the relational calculus that >> is deterministic; even stronger: in
the model for distributed programming we are heading for, the proc>> is not deterministic.
Our conclusion is that in general feedback does not preserve determinism.
The question raised now is: do we want our feedback operator to preserve determinism?
In general, the answer to the question is `no'. The result derived above is actually what we
want. Still, we might be tempted to say that realistic procs which are deterministic do not
behave non-deterministically when they are put in a feedback loop. The projection proc
in the example above looks ordinary enough to be entitled a realistic proc.
The problem is, though, that the projection is not realistic since it exhibits instantaneous
response, which is not a realistic behaviour: all realistic deterministic procs su�er from
some delay in their response.
In Section 3.3 we motivated why demonic composition is required and how to transform
angelic composition into the corresponding demonic counterpart: Corollary 3.45a. This
result points out that the type of a proc is important. Therefore, we need a type inference
rule for the operators of the calculus. The operators cup, sequential composition, split and
parallel composition do not cause any problem, see Theorem 3.41. However, the feedback
operator does cause serious problems (because cap does). We do not have some rule like:

P � 2 A�B
(

P 2 A � B kA

This is one of the reasons why we did not give a wp-rule for feedback in Subsection 3.3.2. So,
we found a second problem of feedback: typing is not preserved. After having introduced
time in the calculus and a few other constructions, we can tackle the preservation properties
of feedback in Chapter 7.

3.5. TWO PRESERVATION PROBLEMS 43

Brock and Ackerman point out in their paper [BA81] that the history model of determin-
istic networks, where procs are functions between input and output histories, cannot be
extended to a history model of non-deterministic networks, where procs are relations. To
solve the problems they introduce a network model they called scenarios. This model is
the history model of non-deterministic networks restricted by a causality requirement on
the input and output histories. This causality requirement captures information of timing
aspects between input and output.
In the spirit of Brock and Ackerman these problems are solved by adding time information.
The introduction of time in the model is the main subject of Chapter 4. When the two
problems are solved, making use of the time information, we can abstract from time in the
model by axiomatising the results in the calculus.

44 CHAPTER 3. THE RELATIONAL ALGEBRA

Chapter 4

Back to the model

To be able to describe causality properties in our set-theoretical model for binary relations,
the notion of time is introduced. This guides the way to the solution of the problems about
the functionality preservation and the totality preservation of feedback.
The universe we are interested in is C, which is a subset of M T . The elements of C
are called chronicles. The typeM is some message domain; T is some time domain. The
time domain and the exact de�nition of the set of chronicles will be the main subject of
discussion in this chapter.
Chronicles describe a complete timed (input or output) history. In Chapter 2 we argued
why we restricted our attention to binary relations. In operational terms the notation
f hP i g reads: for input g a possible output of P is f . Now we know what the inter-
pretations of g and f are, we can give the complete interpretation of f hP i g: for some
input chronicle g, which describes the input for every moment in time, a possible output
chronicle is f , describing again the output for every moment in time.
The chronicles are taken from a relational algebra B. The reason for this choice is that it
enables (forces) us to do the calculations (in the model) precisely and formally. Section 4.1
introduces the algebra B after which the axiomatisation of the message domain and the
time domain T follows in Sections 4.2 and 4.3; in those sections, two additional assumptions
are imposed on B. Then, the set of chronicles is de�ned in Section 4.4. Finally, the Axiom
of Choice for Chronicles is clari�ed and imposed on algebra B in Section 4.5.

4.1 Relational algebra B

Assume a relational algebra (B; �; :; �; I; �1; �; �) satisfying the axioms of a relational
algebra as introduced in the Chapter 3. The Principle of Extensionality is assumed to be
valid in B.
The elements of B are called relations; the identi�ers r and s range over B. The join and
meet compositions in B are denoted by [and \, respectively, with unit elements ? and>.
For split and parallel composition in B the notations N and � are used; for left and right
domains in B the notations � and � are used. Typing of relations in B will be denoted the

45

46 CHAPTER 4. BACK TO THE MODEL

same as the typing of procs in A. Relations below I are called identities. The identi�ers
a and b range over these identity relations. Without further comments, all results for A
stated in Chapter 3 will be used for B also.

4.2 Message domain

First, the message domain is described in more detail. To be able to reason about a single
channel, the identity on `non-pairs' is de�ned. We simply take the polymorphic identity I
and exclude all pairs:

De�nition 4.1 Singleton identity

� , I \ :(I �I)
2

This de�nition implies that I solves the equation x :: x = � [x� x. To ensure that �
is non-empty, we assume that I is the least solution of the equation. If � were ?, I would
be ? which contradicts the Cone Rule in B. It is assumed that there is a special singleton
message nm in � to formalise the notion of `no message':

Assumption 4.2 non-empty � spans I
a. I = �(x :: � [x� x)

b. nm 6=? ^ nm �>� nm � �

2

The complement of nothing with respect to the identity � is msg, i.e., the identity on
messages on a single channel:

De�nition 4.3 Singleton message

msg , :nm \ �
2

To decide whether there is a useful message somewhere (possibly within a nested pair), we
introduce the identity sm:

De�nition 4.4 Somewhere a message

sm , �(x :: msg [x�I [I � x)
2

The relation sm is an identity on singletons or pairs (or pairs of pairs, etc.) that carry a
useful message somewhere.

4.3. TIME DOMAIN 47

4.3 Time domain

This section de�nes the time domain T 2B. A possible model we have in mind for T is
the set of reals R. We will, however, only use properties of T as an ordered set in the
assumptions, and thus provide no means for obtaining a metric on T . If a metric is desired,
for example for a real-time calculus, additional assumptions must be imposed.
Recall that a partially ordered set (S;�) is a chain if any two elements of the set S are
comparable, see Davey & Priestley [DP90]. We call a chain (S;�) closed and in�nite if
S has all limits (least upper bounds) of bounded increasing sequences, and if the relation
� is total and surjective on S. The transitive and irreexive relation � is induced by
�. Totality and surjectivity of � excludes minimal and maximal elements, and therefore
(S;�) is called in�nite. Examples of closed in�nite chains are Z and R under the order
6. The rationals Q do not form a closed in�nite chain because Q does not have all limits
of bounded increasing sequences. Next, we assume the existence of the time domain T :
Assumption 4.5 Time domain T

The time domain T is a non-empty identity of B with a partial order 6
such that (T ;6) is a closed in�nite chain

2

In Chapter 10, another (optional) assumption will be imposed on T making the time
domain isomorphic to the set of reals R. We will keep track of all the consequences of
this assumption, thereby tagging the theorems of the calculus which are only valid for a
continuous time domain.
The induced strict relation < and their reversed versions > and >, de�ned in the usual
way, are used on T . For reference, we record a few propositions:

Proposition 4.6

For all relations r 2 T � T and s:

r � s[6 � r\> � s

2

Proposition 4.6 is equivalent to Proposition 4.7. The proposition states that 6 and > are
complementary relations with respect to T �>� T :
Proposition 4.7

a. 6\> = ?

b. 6[> = T �>� T
2

Writing out the details, this boils down to saying that <, T and > establish a trichotomy
on T .

48 CHAPTER 4. BACK TO THE MODEL

The ordering 6 cancels out when composed with <:

Proposition 4.8

< �6 = < = 6 �<

Proof:

< �6
= f Assumption 4.5: 6 = <[T g

< � (<[T)
= f cupjunctivity of composition g

< �< [< �T
= f Assumption 4.5: < is total on T g

< �< [<
= f < is transitive: plat calculus g

<

2

To be able to reason about elements of T we introduce moments in time t. Their properties
in B are de�ned as follows:

Characterisation 4.9 Moment

t is a moment
�

t 6=? ^ t �>� t � T
2

The existence of moments is guaranteed by the Principle of Extensionality in B. Some
properties for these moments are:

Proposition 4.10

a. t�T

b. t �>� t = t

c. t �>2 t I
2

For an extensive exploration of relations satisfying Characterisation 4.9, one is referred to
Backhouse et al. [BdBH+91]. In that paper, the relations are dubbed `unit types' and are
below I.
A corollary of Proposition 4.10c is that t �> is a point below T . This allows extensional
arguments over moments, for example T = [(t :: t).

4.4. CHRONICLES 49

4.4 Chronicles

This section introduces the chronicles which are used to describe the stream of messages
on a channel. The set of chronicles C is a subset of the set of relations B. There will
be some limitations on the message domain of chronicles to assure the well-de�nedness of
their arity. Also, the time domain will be restricted to guarantee an induction principle.
With sm, De�nition 4.4, we can de�ne the support sp of a relation total on T . For relation
r 2 I�T , the identity sp:r is a subset of T containing those moments where relation r
really has something to tell, i.e., is able to return a useful message, possibly in a pair:

Characterisation 4.11 Support
For r 2 I�T :

sp:r , (sm � r)�

2

It is time to investigate a proposition which states that the function sp distributes over
the split N:

Proposition 4.12

sp:(rNs) = sp:r[sp:s
Proof:

sp:(rNs)
= f Characterisation 4.11 g

(sm � rNs)�

= f De�nition 4.4 g
((msg [sm�I [I � sm) � rNs)�

= f cupjunctivity of composition; Product-split fusion 3.12a g
(msg � rNs [(sm � r) N s [r N (sm � s))�

= f msg � I �I = ?; cupjunctivity of domains g
((sm � r) N s)� [(r N (sm � s))�

= f (rNs)� = r�\ s� g
((sm � r)� \ s�) [(r� \ (sm � s)�)

= f s� = T � (sm � r)� = sp:r g
sp:r[sp:s

2

Proposition 4.12 expresses that the pair of total relations rNs can return a message on
moment t whenever at least one of the constituents can return a message on that moment.
Observe the join [. This is in contrast with the domain property (rNs)� = r�\ s� where
the meet \ emerges.
So much for the support. Next, our universe, the set of chronicles C, will be de�ned. Recall
that a chain (S;�) is well-ordered if every non-empty subset of S has a �rst element, see
for example Kuratowski & Mostowski [KM68]. The Fixpoint Characterisation scheme of

50 CHAPTER 4. BACK TO THE MODEL

Theorem 3.2 is used to de�ne C as the least set containing elements in � T (functions,
total to � from T) with a well-ordered support (with respect to the order <), and closed
under pairing with N :

Characterisation 4.13 Set of chronicles C
For the base, the set of chronicles bs is de�ned:

bs , f x j x 2 � T ^ sp:x is well-ordered g
C is the set of chronicles such that for all predicates Pr on relations the following equivalence
holds:

8(x : x2C : Pr:x)
�

8(x : x2 bs : Pr:x)
^ 8(y; z : y 2C ^ z 2C ^ Pr:y ^ Pr:z : Pr:(yNz))

2

By convention, the identi�ers f , g and h range over the chronicles in set C. An exam-
ple of a chronicle is nm �>� T ; this chronicle describes one single channel carrying only
no-messages. The function (nm �>) N (nm �>) � T is a di�erent chronicle: it describes
two channels in parallel, both carrying nothing. Observe that the support of these two
chronicles is empty: they have nothing to tell. The empty set is trivially well-ordered.
In Section 3.1.4, parallel composition was axiomatised and the pointwise de�nitions of
the projections were given in the model. For example, the left projection � was to be
interpreted as f h�i (g; h) � f = g. Now, a problem emerges: the pair (g; h) is not a
chronicle. It is just an element of the product C �C. Pairing by (g; h) simply is not the
way to represent pairs.
However, the set of chronicles is closed under pairing in the sense of N. This composition
is an isomorphic mapping between C �C and the set f f Ng j (f; g) 2 C �C g. So we do
not invalidate any axioms in Chapter 3 if we switch to the notation with N. From now
on, pairs in the model will be written using N. For example, the interpretation of parallel
composition in the model now reads:

f Ng hP kQihNj � f hP ih ^ g hQi j
The condition involving x2 bs results in the well-de�nedness of the arity of the message
domain of chronicles, and in the well-orderedness of their support. These are two of the
properties listed below:

Proposition 4.14

For all chronicles f :

a. f 2 I T

b. f� � I �I � � � f 2 C ^ � � f 2 C

c. f�� � � :(f� � I �I)

d. sp:f is well-ordered

4.5. AXIOM OF CHOICE FOR CHRONICLES 51

Proof:
Proposition 4.14a follows from the preservation of functionality and totality by N, Theo-
rems 3.36 and 3.41c. Propositions 4.14b and 4.14c both use the fact that the time domain T
and the singleton message domain � are non-empty, i.e., chronicles are non-empty. Propo-
sition 4.14d follows from Proposition 4.12 and the fact that well-ordered sets (with respect
to the same order) are closed under �nite union. Only the proof of 4.14b is shown. Let
the predicate Qr be de�ned by:

Qr:x , x� � I �I � � �x 2 C ^ � �x 2 C
Then:

8(f :: Qr:f)
= f Characterisation 4.13 g

8(f : f 2 bs : Qr:f) ^ 8(g; h : Qr:g ^ Qr:h : Qr:(gNh))
= f f 2 bs implies Qr:f � ? 62 C ; Qr:(gNh) � g 2C ^ h2C g

8(f : f 2 bs : ? 62 C) ^ 8(g; h : Qr:g ^ Qr:h : g2C ^ h2C)
= f chronicles are non-empty; convention: g and h range over chronicles g

True

2

Proposition 4.14a states that all chronicles are functions, total on the time domain T .
This property will often be used in proofs. The hint in these calculation steps is `total
functions'. The second proposition 4.14b expresses that every binary-valued chronicle can
be decomposed into two chronicles; or more operationally: a binary-valued channel is
simply the combination of two channels side by side. The well-de�nedness of the arity of
the left domain of a chronicle is described in 4.14c. In words it says that a chronicle is
either singleton-valued or binary-valued. Together with 4.14b this ensures the uniqueness
of the output arity. In Section 4.5 we will encounter a more concise description of unique
arity. Finally, Proposition 4.14d describes the well-orderedness of the support of chronicles.
This is equivalent to the fact that we are allowed to use induction over the support of a
chronicle.
We �nish the discussion on chronicles with the agreement that the set of procs A, intro-
duced in Chapter 3, is assumed to be equal to P(C �C) whenever calculations in the model
are made. Consequently, for every interpretation f hP i g in the model it is understood
that f and g are chronicles.

4.5 Axiom of Choice for Chronicles

A useful relation in B is the function wipe, which wipes a message and replaces it by a
no-message of the appropriate arity. In this way, arities are maintained.

De�nition 4.15 Wipe

wipe , �(x :: nm �>� � [x� x)
2

52 CHAPTER 4. BACK TO THE MODEL

The relation wipe recursively replaces all singletons by the special singleton nm. To clarify
this de�nition, consider two of its properties:

Theorem 4.16 Wipe

a. wipe � � = nm �>� �

b. wipe � I �I = wipe�wipe

2

Wiping elements twice is overdone: if all singletons in some message are replaced by nm, a
second wipe will have no e�ect. This is expressed by the property that wipe is idempotent.
Assumption 4.2a is equivalent to wipe�= I, which is part of the propositions for wipe
listed next. The �rst proposition is the idempotency of wipe; the second proposition states
that wipe is a function total on I:
Theorem 4.17 Wipe

a. wipe �wipe = wipe

b. wipe 2 I I
2

Next, we rewrite Proposition 4.14c. It was motivated why this proposition expresses that
chronicles have a unique output arity. Using the function wipe, we can express the property
of unique output arity for relation r (regardless the arity of the input) as follows:

De�nition 4.18 Unique output arity

unar :r
�

r �>� r�1 � wipe�1 �wipe

2

With this de�nition of unique arity, Proposition 4.14c is replaced by unar :f for all f :

Proposition 4.19

unar :f

2

Summarising the characteristics of chronicles we can say that chronicles are total functions
(4.14a) with a well-ordered support (4.14d) and a unique output arity (4.19):

f 2 I T ^ sp:f is well-ordered ^ unar :f

Finally, we come to the Axiom of Choice for Chronicles. The general Axiom of Choice
states that one can choose a function F out of a relation R:

8(R :: 9(F : F is a function : dom:F = dom:R ^ F �R))

4.5. AXIOM OF CHOICE FOR CHRONICLES 53

To translate this general Axiom of Choice to one that is suited for choosing a chronicle
f out of some relation r, we have to impose assumptions on the relation. In short, we
assume that the relation r is total with a well-ordered support and a unique output arity,
i.e., a `non-deterministic chronicle'. Then, the general Axiom of Choice eliminates the
non-determinism, resulting in a real chronicle. So the Axiom of Choice for Chronicles is a
consequence of the general Axiom of Choice.

Assumption 4.20 Axiom of Choice for Chronicles
For all relations r:

9(f :: f � r)
(

r�= T ^ sp:r is well-ordered ^ unar :r

2

This assumption is used only sparingly; consequences of its application can be found in
Sections 5.2 and 10.3.1.

54 CHAPTER 4. BACK TO THE MODEL

Part II

Postcompose, precompose

55

Chapter 5

Postcompose

To be able to perform at least the normal operations on streams of messages, a `lift'
construction is needed. For example, it should be possible to lift the addition function on
natural numbers + 2 N N�N (in B) to a proc (in A) that adds at every moment the
two natural numbers that occur on the input g, if any, and puts the result on the output
f : f = + � g. The type of this proc should be like IN IN k IN, where IN denotes the
interface of chronicles carrying natural numbers.
The aim is that the lift operation is total on all relations in the relational algebra B; no
assumptions on the type of the argument should have to be made. In fact, one of the main
reasons for the choice to denote pairs of chronicles with the split (f Ng instead of (f; g))
was the wish to give only one de�nition of the lift operator without conditions on the arity
of the argument relation.
It turns out that the lift operator de�ned and investigated in this chapter is like the post-
compose operation, known from (higher-order) functional calculi, extended to relations.

5.1 Postcompose de�ned

We use the function postcompose � to de�ne new procs in algebra A from relations in
algebra B, i.e., to lift a relation.
Given some relation r, the function postcompose delivers a proc r� acting on the message
domain of the input chronicle. An example of such a proc is the increment function (1+)�

on integers. It is understood that (1+) maps nm to nm; or in other words: (1+) is
nm-strict. The proc r� can be interpreted as follows:

f hr�i g � 8(t : t2T : f:t hri g:t)
Abstracting from the moments t by means of the Principle of Extensionality directly results
in the de�nition in the model for postcompose:

De�nition 5.1 Postcompose

f hr�i g � f � r � g

2

57

58 CHAPTER 5. POSTCOMPOSE

Allowing arbitrary relations in our system, especially in B, results in generalisations of
de�nitions covering only functional arguments. In the above case, we had to generalise the
notion of postcompose known from functional calculi. The need to be able to lift arbitrary
relations is apparent: some speci�cation which does not specify a function uniquely (e.g.
>) can now be lifted to a proc.
The process of generalisation has its restrictions: the new notion has to be a true general-
isation in the sense that the old notion is captured by the new one. In the speci�c case of
De�nition 5.1: if � is applied to a function, the inclusion has to be an equality. To show
this, we use the relational result that inclusion between functions which are de�ned on the
same source domain is in fact an equality :

f � r � g
= f T = f� � (r � g)� � g� = T g

f � r � g ^ f� = (r � g)�

= f r is a function, so r � g is a function; above result g
f = r � g

Having convinced ourselves that De�nition 5.1 is right, we go on with the investigation of
this function in more detail.

5.2 Basic properties of postcompose

Next, a list of the application of postcompose to the basic components of the relational
algebra B is given. The preservation properties with respect to the product in B will be
dealt with in the following section.

Property 5.2 Postcompose

a. a�=?? � a� sm

b. >�=>>

c. (\(x : P:x : E:x))� = u(x : P:x : (E:x)�)

d. (r � s)� w r� � s�

e. (r � s)� = r� � s� (sm � s � s � sm ^ s �wipe�1 �wipe � s�1 � wipe�1 �wipe

f. I�= I

g. (r�1)�=(r�)[

Proof:
Property 5.2a is a stronger result than ?�=??. The implication) is proved by contrapo-
sition. The proof exploits Assumption 4.2a which enables us to construct a chronicle 2 a�

5.2. BASIC PROPERTIES OF POSTCOMPOSE 59

carrying only no-messages. The implication(uses the fact that supports are well-ordered
but the time domain itself has no �rst element: every chronicle carries no-messages (of the
appropriate arity) initially.
Only the statements 5.2d, 5.2e and 5.2g are proved. First, the inclusion in 5.2d is easily
veri�ed:

f h(r � s)�i g
= f De�nition 5.1 g

f � r � s � g
(f monotonicity g

9(h :: f � r � h ^ h � s � g)
= f De�nition 5.1 g

9(h :: f hr�ih^ h hs�i g)
= f interpretation composition in the model g

f hr� � s�i g
To prove the other implication, additional assumptions on r and s are needed. We �rst
show 5.2g:

f h(r�1)�i g
= f De�nition 5.1 g

f � r�1 � g
= f Proposition 4.14a: f; g 2 I T g

f � g�1 � r�1

= f Proposition 4.14a: f; g 2 I T g
g�1 � f�1 � r�1

= f reverse g
g � r � f

= f De�nition 5.1 g
g hr�i f

= f interpretation reverse in the model g
f h(r�)[i g

The inclusion in 5.2d is due to the absence of type information about r and s. If we want to
prove the inclusion (r � s)� v r� � s�, we have to give some chronicle which `�ts' in between
r� and s�. This is in general not possible. In 5.2e, only the assumptions on s are recorded.
By Property 5.2g, the same assumptions on r�1 are also su�cient. The proof incorporates
the Axiom of Choice for Chronicles 4.20. We assume f � r � s � g and the conditions of
5.2e to show the existence of a chronicle h in between:

9(h :: f � r � h ^ h � s � g)
= f calculation like 5.2g g

9(h :: h � r�1 � f ^ h � s � g)
= f properties cap g

9(h :: h � r�1 � f \ s � g)
(f de�ne rr = r�1 � f \ s � g : Axiom of Choice 4.20 g

rr�=T ^ sp:rr is well-ordered ^ unar :rr

60 CHAPTER 5. POSTCOMPOSE

These three requirements are proved exploiting the assumptions. For the totality of rr:

rr�

= f de�nition rr g
(r�1 � f \ s � g)�

= f domains: (u � v \ w)� = (v \ u�1 �w)� g
(f \ r � s � g)�

= f assumption f � r � s � g g
f�

= f Proposition 4.14a: chronicles are total on T g
T

The support of relation rr is well-ordered:

sp:rr
= f rr�= T : Characterisation 4.11; de�nition rr g

(sm � (r�1 � f \ s � g))�

� f monotonicity g
(sm � s � g)�

� f assumption sm � s � s � sm g
(s � sm � g)�

� f domains: (u � v)� � v� g
(sm � g)�

= f Characterisation 4.11 g
sp:g

It is a theorem that all subsets of a well-ordered set are well-ordered. Therefore, because
sp:g is well-ordered, it follows that sp:rr is well-ordered. Finally we show that rr has a
unique output arity, which is determined by g:

rr �>� rr�1

= f de�nition rr g
(r�1 � f \ s � g) � > � (r�1 � f \ s � g)�1

� f monotonicity g
s � g �>� (s � g)�1

= f reverse g
s � g �>� g�1 � s�1

� f Proposition 4.19 and De�nition 4.18 g
s �wipe�1 �wipe � s�1

� f assumption on s g
wipe�1 �wipe

2

We do not have the intention to axiomatise Property 5.2b, because it can be derived from
Property 5.2c, which is going to be axiomatised. Observe that Property 5.2c also implies
that postcompose is monotonic.

5.2. BASIC PROPERTIES OF POSTCOMPOSE 61

The inclusion (r[s)� w r�t s�, which is also a consequence of Property 5.2c, is exactly
what one expects when lifting a cup of two relations. The proc r�t s� behaves either like
r� or s�, forever. This contrasts with the behaviour of (r[s)�, which can choose at every
moment whether it wants to apply r or s. It might choose r always or s always, but it does
not have to. In terms of predicate calculus, the inclusion in (r[s)� w r�t s� corresponds
to the implication:

8(y :: 9(x :: P:x:y)) (9(x :: 8(y :: P:x:y))

The assumption s �wipe�1 �wipe � s�1 � wipe�1 �wipe in 5.2e states that the output arity
of s is determined by the input arity. Because this lengthy expression occurs often, we �rst
de�ne the predicate detar :r:

De�nition 5.3 Determination of output arity

detar :r
�

r �wipe�1 �wipe � r�1 � wipe�1 �wipe

2

Several relations, such as the identities and projections, obey this determination condition:

Lemma 5.4

a. (r � a)� = r� � a� ^ (a � r)� = a� � r�

b. (r ��)� = r� ��� ^ (r ��)� = r� ���

Proof:
These two statements are proved by checking the conditions of Property 5.2e. Lemma 5.4a
follows from a�I and Corollary 3.27b. For 5.4b we verify the �rst condition of 5.2e:

sm ��

= f Product computation 3.32c g
� � sm�I

� f De�nition 4.4 g
� � sm

The second condition, detar :�, is shown as follows:

� �wipe�1 �wipe ���1

= f De�nition 4.15 g
� � (nm �>� � [wipe �wipe)�1 � (nm �>� � [wipe �wipe) � �

�1

= f distribution and reverse; � � � = ? g
� � wipe�1�wipe�1 � wipe �wipe � ��1

� f reverse and Product computation 3.32c g
wipe�1 �� ���1 �wipe

� f � is a function g
wipe�1 �wipe

2

62 CHAPTER 5. POSTCOMPOSE

These are examples where compositionality of postcompose holds: due to the identity or
projection, there is no confusion which chronicle �ts in between. In contrast, the equality
(� � r)� = �

� � r� is in general false, for it is possible that r is not correctly typed in its
second output argument.
The function postcompose lifts functions in B to functions in A. We already proved some
properties about postcompose in Property 5.2 which permit us not to mention any chronicle
in the proof of Theorem 5.5:

Theorem 5.5 Preservation properties

a. r� 2 a�� b� (r 2 a� b

b. r� is a function (r is a function

c. (r�)>=(r�)� (sm � r � r � sm ^ detar :r

Proof:
By Property 5.2f and monotonicity of postcompose we have that a� is an interface. Then:

r� 2 a�� b�

= f De�nition 3.28 g
a� � r� = r� ^ r� = r� � b�

= f a and b are identities: Lemma 5.4a g
(a � r)� = r� ^ r� = (r � b)�

(f Leibniz g
a � r = r ^ r = r � b

= f De�nition 3.28 g
r 2 a� b

For 5.5b, using De�nition 3.33a, we have to show that r� � (r�)[v I follows from the
inclusion r � r�1 � I:

r� � (r�)[

= f Property 5.2g g
r� � (r�1)�

v f Property 5.2d g
(r � r�1)�

v f assumption on r; postcompose is monotonic g
I�

= f Property 5.2f g
I

And for Theorem 5.5c:

(r�)>

= f De�nition 3.29 g
I u >> � r�

= f Properties 5.2f and 5.2b g

5.3. PRESERVATION OF PRODUCTS 63

I� u>� � r�
= f assumptions on r: De�nition 5.3 and Property 5.2e g

I� u (>� r)�

= f Property 5.2c g
(I \>� r)�

= f De�nition 3.29 g
(r�)�

Note that the inclusion (r�)>v (r�)� is valid without assumptions on r
2

5.3 Preservation of products

In this section the important theorem about preservation of products by postcompose is
proved. This implies that the arity of the argument of postcompose is preserved, for all
arities! A property, stating the preservation of the projections, is needed as a preliminary
result.

Property 5.6 Preservation of projections

a. �
�=�

b. �
�=�

Proof:
To prove this, one is forced to take the exact de�nition of the projections in the model
because it is not clear what the type of �� is. For all f and g:

f h�i g
= f interpretation � g

9(h : h2C : g = f Nh)
= f g = f Nh) f = � � g g

f = � � g ^ 9(h : h2C : g = f Nh)
= f below: construction of chronicle h g

f = � � g
= f � is a function g

f � � � g
= f De�nition 5.1 g

f h��i g
We postponed an implication. We show that the chronicle h we are looking for is � � g.
First:

f = � � g
) f compose with g�1: g is a function g

f � g�1 � �

64 CHAPTER 5. POSTCOMPOSE

) f domains are monotonic g
(f � g�1)� � ��

= f (r � s)� = (r� � s)�; �� = I � I g
(f� � g�1)� � I �I

= f f and g are total on T ; (r�1)�= r� g
g� � I �I

Now, the claim about � � g is veri�ed. It follows from Proposition 4.14b that � � g is indeed
a chronicle. So:

f N (� � g)
= f assumption f = � � g g

(� � g) N (� � g)
= f g is a function: Theorem 3.35c g

�N� � g
= f De�nition product 3.10b g

I �I � g
= f above: g� � I �I g

g

2

The main theorem of this section follows from the preservation properties of postcompose:

Theorem 5.7 Preservation of products

a. (rNs)� = r�4s�

b. (r� s)� = r� k s�

Proof:
Only the second statement is proved. A corollary of Lemma 5.4b and Property 5.6a is
(u ��)� = u� ��. Because postcompose commutes so nicely with reverse, Property 5.2g,
also the equality (��1 � u)� = �[�u� is valid.

(r� s)�
= f De�nition product 3.10 g

(��1 � r �� \ �
�1 � s ��)�

= f Property 5.2c g
(��1 � r ��)� u (��1 � s ��)�

= f (u ��)� = u� ��; (��1 �u)� = �[� u� g
�[� r� �� u �[� s� ��

= f De�nition 3.10 g
r� k s�

2

5.4. DERIVED NOTIONS 65

It is time to go back to the initiating example of lifting the addition function on natural
numbers + 2 N N�N (in B) to a proc (in A). Postcompose applied to an identity
yields an interface. In the model, these interfaces can be interpreted as:

8(a; f : a�I : f 2 a� � f 2 a T)

In particular, this holds for N[nm � I: (N[nm)� is an interface and denotes the identity
on chronicles of natural numbers (and no-messages). Now, de�ne IN as (N[nm)�, and let
+
nm

be the nm-strict version of +. Due to the well-typed and strict function +
nm

, typing
of +

nm
lifts to +

nm

� by Property 5.2e.

+ 2 N N�N
) f making + nm-strict g

+
nm
2 (N[nm) (N[nm) � (N[nm)

) f Theorem 5.5b; preservation of types g
+
nm

� 2 (N[nm)� ((N[nm) � (N[nm))�

= f Theorem 5.7b g
+
nm

� 2 (N[nm)� (N[nm)� k (N[nm)�

= f de�nition IN g
+
nm

� 2 IN IN k IN

So, de�ne the addition proc by +
nm

� and it has the desired typing properties. Notice that
also other properties (laws) on +

nm
in B, such as associativity and commutativity, carry

over to +
nm

� in A. To get a more realistic addition proc we could �rst synchronise the
two input chronicles (see Chapter 11) such that the addition proc +

nm

� only gets pairs of
naturals.

5.4 Derived notions

5.4.1 Identity on singleton channel

In Section 4.2 we de�ned the identity on singleton messages �, De�nition 4.1. With the
postcompose operator we can lift this identity to an interface which is the identity on
singleton channels:

De�nition 5.8 Singleton channel

i, ��

2

Because � is by de�nition an identity, the proc i is an interface by monotonicity of post-
compose. This interface i represents the set of chronicles f such that f�� �, i.e., the base
set bs in Characterisation 4.13. Therefore, it will not come as a surprise that the interface
i spans the interface I:

Property 5.9 i spans I

I = �(X :: i t X kX)

66 CHAPTER 5. POSTCOMPOSE

Proof:
We convince ourselves that I is the least �xpoint of the inequation X :: X w i t X kX.
Because i and I k I are interfaces, I solves the inequation. The proc I is characterised in
the model by f hIi g � f = g, for all f; g 2C. To complete the argument, it is proved that
any other solution X contains the proc I:

8(f; g : f hIi g : f hXi g)
= f f hIi g � f = g g

8(f :: f hXi f)
= f Characterisation 4.13 g

8(f : f 2 bs : f hXi f)
^ 8(g; h : g hXi g ^ h hXih : gNh hXi gNh)

(f X solves the inequation: ivX and X kX v X g
8(f : f 2 bs : f hii f)
^ 8(g; h : g hXi g ^ h hXih : gNh hX kXi gNh)

= f interpretation of i and X kX g
8(f : f 2 bs : f�� �)
^ 8(g; h : g hXi g ^ h hXih : g hXi g ^ h hXih)

= f Characterisation 4.13: f 2 bs) f�� � g
True

This shows that I is the least solution of the inequation X :: X w i t X kX. By
the Knaster-Tarski Theorem we conclude that I is also the least solution of the equation
X :: X = i t X kX
2

It is a theorem that i and I k I are complementary interfaces:

Theorem 5.10 Complementary interfaces

a. i u I k I = ??

b. i t I k I = I

Proof:

i u I k I
= f De�nition 5.8; Property 5.2f g

�� u I� kI�
= f Theorem 5.7b; Property 5.2c g

(� \ I �I)�
= f De�nition 4.1: plat calculus g

?�
= f Property 5.2a g

??
Theorem 5.10b is implied by Property 5.9
2

5.4. DERIVED NOTIONS 67

Observe that it follows from the Cone Rule that i is non-empty. Otherwise, I would
have been ?? by Property 5.9. This observation also follows from Property 5.2a and the
existence of no-messages. Finally, it will be shown that I is even the unique solution of
the equation X :: X = i t X kX:

Theorem 5.11 Uniqueness

X = I � X = i t X kX

Proof:
As stated in Theorem 5.10b, I solves the equation. Next, it is shown that there is at
most one solution. Assume X and Y both solve the equation. Then it follows from
Theorem 5.10a that X � i = i and X � I k I = X kX are the computation rules for X.
So:

X vY
= f De�nition 3.4a g

I v XnY
(f Property 5.9: induction g

i t (XnY) k (XnY) v XnY
= f De�nition 3.4a; cupjunctivity g

X � i t X � (XnY) k (XnY) v Y
= f above-mentioned computation rules g

i t X kX � (XnY) k (XnY) v Y
= f Parallel-parallel fusion 3.12b g

i t (X � XnY) k (X � XnY) v Y
(f Theorem 3.5a and monotonicity g

i t Y kY v Y
= f Y solves the equation g

True

2

Observe that after having imposed Property 5.9 as an axiom, all the consequences become
theorems in the calculus.

5.4.2 Equal arity

Proposition 4.14c stated that chronicles have a unique output arity. So, it is allowed to
speak about the arity of a chronicle. Sometimes we want to know if two chronicles have
the same arity, for example, if we want to merge them into a single chronicle. We de�ne a
proc eqar that relates any pair of chronicles with the same arity. First, two chronicles f
and g both have the same arity if they represent a singleton channel:

f�� � ^ g�� �
= f calculus g

f � � �>� � � g

68 CHAPTER 5. POSTCOMPOSE

= f De�nition 5.1 g
f h(� �>� �)�i g

= f � is an identity: Proposition 5.2e g
f h�� �>� � ��i g

= f De�nition 5.8;>�=>> g
f hi �>> � ii g

If f and g are pairs, then their left components have to have the same arity; the same
holds for their right components. This motivates the following least �xpoint de�nition for
eqar that relates all chronicles of the same arity:

De�nition 5.12 Equal arity

eqar , �(X :: i �>> � i t X kX)

2

The proc eqar is an equivalence relation; moreover, it `distributes' over parallel composi-
tion:

Theorem 5.13 Equal arity

a. I v eqar

b. eqar[= eqar

c. eqar � eqar = eqar

d. eqar � i = i �>> � i

e. eqar � I k I = eqar k eqar

Proof:

I v eqar
= f Property 5.9; De�nition 5.12 g

�(X :: i t X kX) v �(X :: i �>> � i t X kX)
(f monotonicity of the �-operator g

i v i �>> � i
= f I v>> g

True

5.13b follows from Property 5.2g and the reverse-invariance of i �>> � i . For 5.13c we only
have to show one inclusion, because the other inclusion follows from reexivity of eqar ,
5.13a:

eqar � eqar v eqar
= f De�nition 3.4b g

eqar v eqar=eqar

5.4. DERIVED NOTIONS 69

(f De�nition 5.12: induction g
i �>> � i t (eqar=eqar) k (eqar=eqar) v eqar=eqar

= f De�nition 3.4b; cupjunctivity g
i �>> � i � eqar t (eqar=eqar) k (eqar=eqar) � eqar v eqar

= f De�nition 5.12 and Theorem 5.10a g
i �>> � i � i �>> � i t (eqar=eqar) k (eqar=eqar) � eqar k eqar v eqar

= f Parallel-parallel fusion 3.12b g
i �>> � i � i �>> � i t (eqar=eqar � eqar) k (eqar=eqar � eqar) v eqar

(f Theorem 3.5b and monotonicity g
i �>> � i t eqar k eqar v eqar

= f De�nition 5.12 g
True

Theorems 5.13d and 5.13e, which are sometimes called the computation rules, follow
straightforwardly from De�nition 5.12 and Theorem 5.10a
2

The proc eqar is the unique solution of the �xpoint equation X :: X = i �>> � i t X kX:

Theorem 5.14 Uniqueness

X = eqar � X = i �>> � i t X kX

2

A nice corollary of the uniqueness theorem is that the proc (wipe�1 �wipe)� equals the proc
eqar , i.e., f heqari g � wipe � f = wipe � g by properties of total functions:

Corollary 5.15 Equal arity

(wipe�1 �wipe)� = eqar

2

In the next chapter, the dual of postcompose will be de�ned. One of the properties of this
dual, dubbed precompose, is that it preserves the arity of its input chronicle. In formulating
this property the proc eqar will occur.

5.4.3 Equal support

A proc that relates chronicles with the same support is eqsp. It establishes a one-to-one
correspondence between `useful domains': there is an abstraction from the actual contents
of the chronicles; only the moments on which messages occur are important. To de�ne the
proc eqsp, we �rst de�ne the relation es by means of factors:

De�nition 5.16 Equal support

a. es , sm n (>� sm) \ (sm �>) = sm

b. eqsp, es�

2

70 CHAPTER 5. POSTCOMPOSE

In the model, the relation es relates any two useful messages: a hesi b � a2 sm � b2 sm.
The relation es satis�es a number of properties, among which that it is an equivalence
relation:

Theorem 5.17 es

a. I � es

b. es�1= es

c. es � es � es

d. sm � es = es � sm

e. wipe � es = es �wipe

2

The relation es is even the greatest relation that satis�es the fourth property of 5.17. The
proof of the �fth statement is a bit nasty. It boils down to showing that both sides equal
wipe �>. The interpretation of eqsp reads: f heqspi g � sp:f = sp:g. The proc eqsp is
reexive, symmetric and idempotent, or, in other words, it is an equivalence relation:

Theorem 5.18 Equal support

a. I v eqsp

b. eqsp[= eqsp

c. eqsp � eqsp = eqsp

Proof:
Reexivity, symmetry and transitivity of eqsp all follow from the corresponding properties
of es, Theorem 5.17. Notice that reexivity and transitivity imply idempotency.
2

Theorems 5.17d and 5.17e have not been exploited yet. During the discussions that follow
in Chapter 10, we will encounter conditions which are implied by these two properties.

Chapter 6

Precompose

In Chapter 5, the emphasis was on the postcompose function. It was introduced to be able
to perform actions on the information delivered by the input chronicle.
Another interesting feature for calculations in the model would be the ability to manipulate
the timing of the chronicles. For example, one needs a way to describe that some output
chronicle is a delayed version of some input chronicle. Let � 2 T T be such that for all
t2T : t >�:t. To express that output chronicle f is a `�-delayed' copy of g one could
write: f = g � �, f equals g precomposed by �.

6.1 Precompose de�ned

The dual of postcompose is precompose. It performs actions on the time domain, and can
be used to model shifts in time:

f h�ri g � 8(t; t0 : t hri t0 : f:t0= g:t)

The above discussion suggests the following de�nition of precompose:

f h�ri g � f � g � r

However, there is a strange discontinuity in this de�nition of precompose when r=?. It
is easy to see that the formula f � g �? is valid for all chronicles f and g because of
?-strictness of composition, regardless the arities of f and g. So, it would be the case that
�?=>>. On the other hand, it turns out that for every non-empty relation r 2 T � T
precompose preserves the arity:

Proposition 6.1

For ? 6= r 2 T � T :
wipe � f = wipe � g (f � g � r

Proof:

f � g � r
) f g is total on T ; typing of r g

71

72 CHAPTER 6. PRECOMPOSE

g�1 � f � r
) f r 6=?: Cone Rule 3.19 g

>=>� g�1 � f �>
) f Leibniz g

g �>� f�1 = g �>� g�1 � f �>� f�1

) f Proposition 4.19; monotonicity g
g � f�1 � wipe�1 �wipe �wipe�1 �wipe

= f f , g and wipe are total functions: relational calculus g
wipe � f = wipe � g

2

This is the discontinuity we referred to: �? relates any two chronicles, whereas �r, for non-
empty r, relates at most chronicles with the same arity. To avoid this strange behaviour, we
re�ne our �rst attempt at a de�nition for f h�ri g by adding the conjunct wipe � f = wipe � g :

Characterisation 6.2 Precompose
For r 2 T � T :

f h�ri g � f � g � r ^ wipe � f = wipe � g

2

Observe the type restriction on the argument of precompose: T � T . This restriction is
not necessary, but in most of the calculations it is used. To avoid the restriction emerging
in all theorems as a condition, it is encapsulated in the de�nition. Every time �r occurs, it
is assumed that r is well-typed, that is, r has typing T � T .
Whenever it is clear that r is non-empty, we feel free to drop the second conjunct in using
Characterisation 6.2 on account of Proposition 6.1.

6.2 Basic properties of precompose

Again, a list of the application of precompose to the basic components of the relational
algebra B is given. The list is dual to Property 5.2.

Proposition 6.3

a. �?= eqar

b. �([(x : x2S : E:x)) = u(x : x2S : �(E:x)) (S 6= ;

c. �(r\ s) w �rt �s

d. �(r � s) w �s � �r

e. �T = I

f. �(r�1)= (�r)[

6.2. BASIC PROPERTIES OF PRECOMPOSE 73

Proof:
The fourth and �fth statement are easy to verify. We will only show the other propositions.
First:

f h�?i g
= f Characterisation 6.2 g

f � g �? ^ wipe � f = wipe � g
= f � is ?-strict g

wipe � f = wipe � g
= f f , g and wipe are total functions: relational calculus g

f � wipe�1 �wipe � g
= f De�nition 5.1 g

f h(wipe�1 �wipe)�i g
= f Corollary 5.15 g

f heqari g
Second:

f h�([(x : x2S : E:x))i g
= f Characterisation 6.2 g

f � g � [(x : x2S : E:x) ^ wipe � f = wipe � g
= f cupjunctivity of composition g

f � [(x : x2S : g � (E:x)) ^ wipe � f = wipe � g
= f plat calculus g

8(x : x2S : f � g � (E:x)) ^ wipe � f = wipe � g
= f S is non-empty: predicate calculus g

8(x : x2S : f � g � (E:x) ^ wipe � f = wipe � g)
= f Characterisation 6.2 g

8(x : x2S : f h�(E:x)i g)
= f interpretation u in the model g

f hu(x : x2S : �(E:x))i g
This property implies 6.3c by anti-monotonicity. For 6.3f, we use the assumption that r
has typing T � T :

f h�(r�1)i g
= f Characterisation 6.2 g

f � g � r�1 ^ wipe � f = wipe � g
= f r 2 T � T ; reverse g

f � g � r�1 � T ^ wipe � f = wipe � g
= f f and g are functions, total on T g

g�1 � T � r�1 � f�1 ^ wipe � f = wipe � g
= f r 2 T � T ; reverse; symmetry of = g

g � f � r ^ wipe � g = wipe � f
= f Characterisation 6.2 g

g h�ri f

74 CHAPTER 6. PRECOMPOSE

= f de�nition reverse in the model g
f h(�r)[i g

2

The relation T �>� T is the greatest relation of type T � T . Notice that by anti-
monotonicity of precompose and Proposition 6.3e the proc �(T �>� T) is an interface.
Interpreting it in the model we conclude that it relates constant chronicles:

f h�(T �>� T)i f
= f Characterisation 6.2 g

f � f � T �>� T
= f f is a total function g

I � f �>� f�1

This last expression denotes that f carries the same message everywhere. Because chroni-
cles carry at least no-messages (of some arity), that single message has to be a no-message.
Therefore, the proc �(T �>� T) is the interface on empty chronicles. By anti-monotonicity
it also follows that this interface is the least precompose structure. Because it is non-empty,
all precompose structures are non-empty.
Although the preservation properties of precompose are not as nice as those of postcom-
pose, there are some typing results. Because of the anti-monotonicity of precompose,
which follows from 6.3b, and the contravariance, 6.3d, one could call precompose an anti-
monotonic, contravariant relator1, but no theory has been developed in relational algebra
about such a concept. The next typing properties hold:

Proposition 6.4

a. �r 2 I I (r 2 T �T

b. �r 2 I! I (r 2 T � T
Proof:
Assume r 2 T �T :

�r 2 I I
= f De�nition 3.33a g

�r � (�r)[v I
= f Proposition 6.3f g

�r � �(r�1) v I
(f Propositions 6.3d and 6.3e g

�(r�1 � r) v �T
(f anti-monotonicity of precompose g

r�1 � r � T
= f relational calculus g

r is total on T
1A relator is a generalisation of the categorical notion of a functor, see Backhouse et al. [BdBH+91].

6.3. PRESERVATION OF ARITIES 75

(f De�nition 3.38a g
r 2 T �T

2

6.3 Preservation of arities

One of the main objectives in taking Characterisation 6.2 as de�nition for precompose was
its preservation of arities. This is formalised in Proposition 6.5, which follows directly from
Proposition 6.3a and anti-monotonicity of precompose:

Proposition 6.5

�rv eqar

2

Precompose preserves parallel composition in a weak sense. Probably, we ought to say
that precompose-structures distribute over parallel composition. Notice that there are no
restrictions (such as functionality) on the argument r:

Proposition 6.6

�r � I k I = �r k �r

Proof:
To simplify the proof we make a case analysis. For r=?, the property follows from
Proposition 6.3a and Theorem 5.13e. For r 6=? the calculation proceeds as follows. Because
�r preserves arities by Proposition 6.5, we know that the output chronicles of the proc
�r � I k I are pairs:

f Ng h�rihNj
= f r 6=?: Characterisation 6.2 g

f Ng � hNj � r
= f): Split computation 3.32; (: monotonicity of split g

f � h � r ^ g � j � r
= f r 6=?: Characterisation 6.2 g

f h�rih ^ g h�ri j
= f parallel composition in the model g

f Ng h�r k �rihNj
2

At �rst sight, this is an amazing property: even for non-deterministic relations r the
equality holds, whereas one of the rules of thumb in relational calculus is that duplicating
a non-deterministic relation usually increases non-determinism. However, one should bear
in mind that precompose is anti-monotonic, and therefore the rule of thumb does not apply.
Observe that the property would have been false, had we de�ned �?=>>, for this would
have led to the false equality >> � I k I = >> k>>.

76 CHAPTER 6. PRECOMPOSE

It follows from Theorem 5.10b and Proposition 6.6 that the proc �r solves the equation
X :: X = �r � i t X kX. One of the nicest results of this section is that it is even the
unique solution:

Proposition 6.7

X = �r
�

X = �r � i t X kX

2

The proof, being similar to the proof of Theorem 5.11, is omitted. The proposition ex-
presses that we could equally well have �rst de�ned a precompose on chronicles representing
singleton channels, and, after that, closed it under parallel composition. By instantiating
r to ? or T we get Theorems 5.11 and 5.14 once more as straightforward corollaries. This
concludes the discussion on preservation of arities.

6.4 Derived notions

At the moment, the set of instruments for comparing two chronicles is very limited: I, �

and �. To be able to compare two chronicles, for example only on some interval of T , the
procs Equal-until and Equal-since are de�ned.

6.4.1 Preliminaries

All calculations in this subsection will be entirely on the level of the model. In the next
subsection, where the main procs are de�ned, no calculations in the model will be needed,
because all the necessary calculations will have been done in this subsection. Before con-
tinuing, we derive the following theorem, pertaining to precompose applied to an identity:

Proposition 6.8

�(a � b) = �a � �b

Proof:
In this proposition we encounter an example of compositionality of precompose. Let ~a be
:a\T in:

f h�a � �bi g
= f interpretation � in the model g

9(h :: f h�aih ^ h h�bi g)
= f Characterisation 6.2 g

9(h :: f � h � a ^ wipe � f = wipe � h ^ h � g � b ^ wipe �h = wipe � g)

= f): monotonicity; (: construct h = f � a [g � b [wipe � g � ~a �~b g
f � g � b � a ^ wipe � f = wipe � g

= f Corollary 3.27b; Characterisation 6.2 g
f h�(a � b)i g

6.4. DERIVED NOTIONS 77

We are obliged to give some comments on the construction of h. It has to be shown that h
is indeed a chronicle. The details are omitted, but we will quickly run through the required
properties. First of all, h has to be total with a well-ordered support. This follows from
its de�nition and the fact that f and g are chronicles. Secondly, h has to be a function.
This follows from the assumption f � g � b � a.
2

As an example of precompose applied to an identity take some (non-empty) moment t�T
and consider the proc �t. In the model the proc �t relates every two chronicles which are
equal on moment t : f h�ti g � f � t = g � t.
In the next subsection, the identities (< � t)� and (> � t)� will occur. These identities are
complementary with respect to the time domain T :
Proposition 6.9

a. (< � t)� \ (> � t)� = ?

b. (< � t)� [(> � t)� = T
Proof:

(< � t)� \ (> � t)�

= f De�nition 3.29 g
< � t �>\ > � t �>\ I

= f Proposition 4.10c: t �> is a function; Theorem 3.35a g
(<\>) � t �> \ I

= f Proposition 4.7a g
? � t �>\ I

= f ? is zero of composition and cap g
?

And:

(< � t)� [(> � t)�

= f cupjunctivity of domains and composition g
((<[>) � t)�

= f Proposition 4.7b g
(T �>� T � t)�

= f De�nition 3.29 g
T �>� T � t �>\ I

= f T � t is non-empty: Cone Rule 3.19 g
T �>\ I

= f De�nition 3.29 and Theorem 3.30e g
T

2

All these results are used to de�ne the procs Equal-until and Equal-since.

78 CHAPTER 6. PRECOMPOSE

6.4.2 Equal-until and Equal-since

The following procs in A are instruments to compare two chronicles with respect to a
particular moment t:

Characterisation 6.10 Equal-until, Equal-since

a. <t , �((< � t)�)

b. >t , �((> � t)�)

2

In addition, we use the notations <r and >r, meaning <(r�) and >(r�), respectively, provided
that r� is a moment.
The procs <t and >t will be frequently used in calculations on the level of the model, in
algebra B. Observe that the relations < � t and > � t are non-empty for all t because of the
totality of < and >. In the model, Equal-until and Equal-since can be interpreted as:

f h<ti g � 8(t0 : t0<t : f � t0 = g � t0)

f h>ti g � 8(t0 : t0> t : f � t0 = g � t0)

The relations (< � t)� and (> � t)� are identities. This allows us to translate all the results of
the previous subsection about precompose applied to identities to Equal-until and Equal-
since. The following theorem states that <t and >t are equivalence relations (reexive,
idempotent and symmetric), and distribute over parallel composition. Furthermore, the
procs <t and >t0 commute: <t � >t0 = >t0 � <t; the special instance <t � >t turns out to be equal
to eqar :

Proposition 6.11

Let 2 be < or > in:

a. I v 2t

b. 2t � 2t = 2t

c. (2t)[= 2t

d. 2t � I k I = 2t k 2t = I k I � 2t

e. 2t w 2t k 2t

f. <t � >t0 = >t0 � <t

g. <t � >t = eqar

6.4. DERIVED NOTIONS 79

Proof:
We only prove the second and the last statement. The other results are direct translations
of similar results for precompose, Propositions 6.3 and 6.6.

2t � 2t
= f Characterisation 6.10 g

�((2 � t)�) � �((2 � t)�)
= f (2 � t)��I : Proposition 6.8 g

�((2 � t)� � (2 � t)�)
= f (2 � t)��I : Corollary 3.27a g

�((2 � t)�)
= f Characterisation 6.10 g

2t

And 6.11g:

<t � >t
= f Characterisation 6.10 g

�((< � t)�) � �((> � t)�)
= f Proposition 6.8 g

�((< � t)� � (> � t)�)
= f Corollary 3.27b and Proposition 6.9a g

�?
= f Proposition 6.3a g

eqar

2

Proposition 6.9b gives rise to a property not used in the sequel, but which might be
illuminating: <tu >t = I. This means that if two chronicles are equal until some moment
t and also from that moment on, then the two chronicles are equal (everywhere).
Taking the expression <t � <t0 and interpreting it in the model, it seems to be equivalent
to <tt <t0. Equally, >t � >t0 seems to be equal to >tt >t0. To prove these claims without
recourse to the model one lemma is used. It gives a su�cient condition for when an
Equal-until structure is included in another:

Proposition 6.12

<tv <t0 ^ >t0v >t (6 � t0 �>� t

Proof:

<tv <t0 ^ >t0v >t
= f Characterisation 6.10 g

�((< � t)�) v �((< � t0)�) ^ �((> � t0)�) v �((> � t)�)
(f anti-monotonicity of precompose g

(< � t)� � (< � t0)� ^ (> � t0)� � (> � t)�

(f De�nition 3.29 g

80 CHAPTER 6. PRECOMPOSE

< � t �>� < � t0 �> ^ > � t0 �>� > � t �>
= f Proposition 4.8; Theorem 3.6 g

< �6 � t �>�>� < � t0 �> ^ > �> � t0 �>�>� > � t �>
(f compose with <, > and> g

6 � t �>� t0 ^ > � t0 �>� t
= f Proposition 4.10c: t �> is a total function g

6 � t0 � (t �>)�1 ^ > � t � (t0 �>)�1
= f reverse g

6 � t0 �>� t

2

In Proposition 6.12 the expression 6 � t0 �>� t occurred. This is the relational expression
for the more informal notation t06 t.

Proposition 6.13

a. <t � <t0 = <tt <t0

b. >t � >t0 = >tt >t0

c. (<tv <t0 ^ >t0v >t) _ (<t0v <t ^ >tv >t0)

Proof:
To prove these statements, we use properties about points and extensionality. The details
will be omitted. Moreover, the next theorem from relational calculus will be used:

P �Q = P tQ
(

(I vP vQ ^ Q �Q v Q) _ (I vQvP ^ P �P v P)

The �rst two statements follow from the third statement:

<t � <t0 = <tt <t0 ^ >t � >t0 = >tt >t0
(f above result from relational calculus g

((I v <tv <t0 ^ <t0 � <t0 v <t0) _ (I v <t0v <t ^ <t � <t v <t))
^ ((I v >tv >t0 ^ >t0 � >t0 v >t0) _ (I v >t0v >t ^ >t � >t v >t))

= f Propositions 6.11a and 6.11b g
(<tv <t0 _ <t0v <t) ^ (>tv >t0 _ >t0v >t)

(f propositional calculus g
(<tv <t0 ^ >t0v >t) _ (<t0v <t ^ >tv >t0)

The proof of the Proposition 6.13 is completed by showing the proof of 6.13c:

(<tv <t0 ^ >t0v >t) _ (<t0v <t ^ >tv >t0)
(f Proposition 6.12 g

6 � t0 �>� t _ 6 � t �>� t0

= f reverse g
6 � t0 �>� t _ > � t0 �>� t

6.4. DERIVED NOTIONS 81

= f t �> is a point: Principle of Extensionality g
6[> � t0 �>� t

(f Proposition 4.10a: monotonicity g
6[> � T �>� T

= f Proposition 4.7b g
True

2

According to Proposition 6.11a, all <t structures include I. Taking an arbitrary cap over
all t one expects to get I. Dually, all <t structures are included in eqar , Proposition 6.5.
Bringing all those <t in one cup, we expect to get eqar , taking into account that chronicles
have a well-ordered support:

Proposition 6.14

a. I = u(t :: <t)

b. eqar = t(t :: <t)

Proof:

u(t :: <t)
= f Characterisation 6.10a; t2T 6=?: Proposition 6.3b g

�([(t :: (< � t)�))
= f cupjunctivity of domains and composition g

�((< � [(t :: t))�)
= f Extensionality g

�((< � T)�)
= f Assumption 4.5: < is total and surjective on T g

�T
= f Proposition 6.3e g

I

To prove the second statement we need a result expressing the fact that every chronicle
has an initial section with no-messages. This follows from the assumption that non-empty
well-ordered sets have a �rst element:

t(t :: <t) = eqar
= f Characterisation 6.10a; Proposition 6.5 g

t(t :: <t) w eqar
(f Theorems 5.14 and 3.2; monotonicity g

t(t :: <t) w i �>> � i t t(t :: <t) kt(t :: <t)
= f properties t g

t(t :: <t) w i �>> � i ^ t(t :: <t) w t(t :: <t) kt(t :: <t)
= f Proposition 6.13c: diagonalisation g

t(t :: <t) w i �>> � i ^ t(t :: <t) w t(t :: <t k <t)
= f Proposition 6.11e g

82 CHAPTER 6. PRECOMPOSE

t(t :: <t) w i �>> � i
= f interpretation in the model: for all f and g g

9(t :: f � (< � t)� = g � (< � t)�) (f; g 2 bs
According to Characterisation 4.13, f and g have a well-ordered support. If both supports
are empty, f and g are equal (to nm �>� T). If at least one of the supports is non-empty,
it su�ces to take the minimum of the support of f and g. Below that minimum, f and g
both carry only no-messages nm, and so they are equal
2

So much for some of the basic elements of the calculus. We presented useful functions
to build procs: postcompose and precompose. Furthermore, several procs to compare
chronicles were introduced: eqar , eqsp, <t and >t. In the next part, some healthiness
aspects of the calculus are discussed. Then, it will be possible to tackle the preservation
problems of feedback.

Summarising the results

We summarise the derived propositions of the function postcompose. Remember that the
function precompose acts on the time domain, and, therefore, is not part of the calculus.

Axiom 6.15

a. a�=?? � a� sm

b. (\(x : P:x : E:x))� = u(x : P:x : (E:x)�)

c. (r � s)� w r� � s�

d. (r � s)� = r� � s� (sm � s � s � sm ^ detar :s

e. I�= I

f. (r�1)�=(r�)[

g. �
�=�

h. �
�=�

i. I = �(X :: i t X kX)

2

All the other properties in this part on postcompose can be derived from this set of axioms.

83

84 SUMMARISING THE RESULTS

Part III

Healthiness

85

Chapter 7

Causality

In Section 3.5 two problems were encountered: functionality and totality are not preserved
by feedback. In this chapter the notion of causality is introduced. This condition on procs
should establish the following properties:

Firstly, feedback should preserve functionality and totality:

F � is a function (causal :F

P � 2 A � B (causal :P ^ P 2 A � B kA

Secondly, causality itself should be preserved by all the composition operations, in partic-
ular by the feedback construction:

causal :(P �) (causal :P

Finally, the notion of causality should not be unnecessarily restricted.
It will turn out that the properties listed above are too strong. We need stronger (typing)
conditions. Furthermore, the consequence of, in particular, the functionality of feedback
has to be weakened. This all is due to the inherent polymorphism of the system.
The discussion on causality also appeared in Rietman [Rie93a]. In that technical report,
the model di�ered signi�cantly from the one used in this thesis: it was assumed that there
is a minimal moment t0 in the time domain. In Chapter 4, this assumption has been
replaced by the well-orderedness of the support.

7.1 Pinpointing the exact problems

Feedback does not preserve functionality; recall the counterexample of the feedback of
the function � in Section 3.5: ��=>>. Apparently, our notion of functionality does not
match with the notion of `implementability'. And indeed, when we take a closer look at
the projections, we �nd several unrealistic properties.
One problem with the projections is that they react instantaneously to the input. This is
not a reasonable property of any implementable process: every physical machine has some
delay. This delay will be modelled by archimedean functions.

87

88 CHAPTER 7. CAUSALITY

But having some delay is not enough to preserve functionality. Polymorphism is also
the cause of some problems. Consider the function �(�1) ��, which takes its second
input channel and delays it for one time unit before sending it to the output. Placing
this delaying function in a feedback loop results in a non-deterministic proc: (�(�1) ��)�
equals (�(�1)u I) � >>. The interface �(�1)u I describes the set of empty chronicles.
This follows from the equality f = f � (�1) and the fact that the support of chronicles is
well-ordered. Therefore, the proc (�(�1)u I) � >> is non-deterministic in the sense that
it is able to return an empty chronicle of arbitrary output arity.
At this point there are two possibilities. We can require functions to have a unique out-
put arity; this cancels out the output polymorphism. Or we could weaken our notion of
functionality: observe that the procs �(�1) �� and (�(�1)u I) � >> are both functional
per output arity. Because we prefer to calculate with polymorphism as long as possible,
we take the second possibility. The property of functionality per output arity is dubbed
polyfunctionality. It is the case that the feedback of a delaying polyfunction is again a
polyfunction.

Feedback does not preserve totality. Again, polymorphism is the main problem. Consider
the total delaying function I4I � �(�1) � �, which takes its second input channel and de-
lays it for one time unit before sending it as a pair to the output. Placing this delaying total
function in a feedback loop results in the non-total function ??: (I4I � �(�1) � �)� = ??.
The problem is that the arity is `doubled' every iteration of the loop, but it is forced by
the feedback to stay the same. The only candidates for the arity of the output are there-
fore the zero arity and an in�nite arity. Both zero and in�nite arities are impossible by
Characterisation 4.13 and therefore the feedback equals ??. The solution is to require the
second input arity and the output arity to be the same. This typing information will be
provided by primed typing.
Having an agreement on input arity and output arity is still insu�cient to get preservation
of totality. Because the feedback builds its output in an iteration loop, we need the
existence of the limit of these successive iterations. Consider the proc One which is de�ned
on �nite chronicles of 1's. The proc copies its input with some delay to the output, but also
produces an additional message 1 once. When the proc One �� is placed in a feedback
loop, the output of the loop can only be a continuous stream of 1's. But then, the proc
One has to be de�ned on this limit of �nite chronicles of 1's. A proc which is also de�ned
on the limits of its �nite input chronicles is called closed.

The following Sections 7.2 and 7.3 will discuss archimedean functions to model the delay
of a proc, and primed typing. Finally, the notion of causality is explained, de�ned and
investigated.

7.2 Archimedean functions

In the previous section we showed that an instantaneously reacting proc can cause prob-
lems, and that it is reasonable to assume some delay. To capture the notion of progress

7.2. ARCHIMEDEAN FUNCTIONS 89

in time of a proc archimedean functions are introduced. First, the notion of an order-
isomorphism is de�ned:

Characterisation 7.1 Order-isomorphism

oiso:�
�

� � ��1 = T = ��1 � � ^ � �< = < � �

2

The �rst conjunct states that � is an isomorphism on T : it is total and surjective, functional
and injective. The second conjunct describes monotonicity of � with respect to the order
< and is interpreted as follows: for all t; t0 2T ,

t < t0 � �:t< �:t0

Among the most important propositions of order-isomorphisms is their closedness under
sequential composition and reverse:

Proposition 7.2

Order-isomorphisms are closed under sequential composition and reverse

2

Now, the following de�nition for archimedeans is taken:

Characterisation 7.3 Archimedean function

arch:�
�

��> ^ oiso:�

2

Identi�ers � and � range over archimedeans. It is assumed that archimedean functions do
exist in B. The conjunct ��> can be interpreted as:

8(t :: �:t> t)

This expresses the progress. All the assumed properties of archimedean functions have
many interesting implications. For example, it is not possible that a sequence (�n � t)n has
accumulation points. Starting from some moment t, every moment t0 can be exceeded by
a �nite number of iterations of �:

8(t; t0 :: 9(n : n2N : t0<�n:t))

This is a consequence of the assumption that the time domain T is closed, Assumption 4.5.
In terms of the algebra, the unboundedness of � reads:

Proposition 7.4

8(� :: < ��� = T �>� T)

2

90 CHAPTER 7. CAUSALITY

From the progress property we conclude that whenever two chronicles are related by <(� � t)
they also have to be related by <t, for all t. A generalisation of this property reads:

Proposition 7.5

<(� � t)v <t (� 2 T T ^ ��>
Proof:
From the fact that � is a total function we conclude that (� � t)� is again a moment
(interpreted as �:t). Actually, a proof is required, but we take that for granted from
relational calculus. It follows that <(� � t) is a permissible expression.

<(� � t)v <t
(f Proposition 6.12 g

6 � t �>� (� � t)�

= f reverse; s� �>= s �> g
> � � � t �>� t

= f Proposition 4.10b g
> � � � t

(f t is an identity g
>� �

2

In Proposition 6.11a the property I v <t was derived. This implies for all n2N and for
all t : I v <(�n � t) . Or equivalently: I v u(n : n2N : <(�n � t)) for all t. As may be
expected, the cap-structure actually equals the identity, keeping in mind the unboundedness
of �:

Proposition 7.6

I = u(n : n2N : <(�n � t))

Proof:

u(n : n2N : <(�n � t))
= f Characterisation 6.10a; N 6= ;: Proposition 6.3b g

�([(n : n2N : (< ��n � t)�))
= f cupjunctivity of domains and composition g

�((< � [(n : n2N : �n) � t)�)
= f De�nition 3.7c g

�((< ��� � t)�)
= f Proposition 7.4 g

�((T �>� T � t)�)
= f De�nition 3.29 g

�(T �>� T � t �>\ I)
= f T � t is non-empty: Cone Rule 3.19 g

�(T �>\ I)
= f De�nition 3.29 and Theorem 3.30e g

7.3. PRIMED TYPING 91

�T
= f Proposition 6.3e g

I

2

Compare this result and its proof to Proposition 6.14a. This concludes the discussion
about archimedeans.

7.3 Primed typing

In functional programming languages, the type (information) of a function is one of the
fundamental concepts. In particular, the notion of polymorphism has an prominent role,
see for example Bird & Wadler [BW88]. The identity function id has the polymorphic
type �!� , where � is a so-called type variable. A type variable can be instantiated to
di�erent types in di�erent circumstances: the expression id :3 is well-de�ned and has type
N because N can be substituted for � in the polymorphic type of id. In general, for an
input element of type A one gets as output something of type A, for any A.
In the system that we advocate, there is no such thing as the polymorphic type of a relation:
the identity I is one function which is the identity on every element (of the universe C).
However, it could be useful to formalise in a type expression `for an input element of type
A one gets as output something of type A' in case of the identity I. In particular, we are
interested in the arity preserving properties of I: `for input element with some arity one
gets as output something with the same arity'.
We are heading for a new notion of typing dubbed primed typing which gives us the
desired arity preservation information: for some proc P , the typing P 2 A0�B0 should
imply �rstly that P has type A�B, and secondly, that P preserves the arity of its
input element (it might be de�ned on several arities). In a relational expression this reads
P 2 A�B ^ P v eqar . With this meaning, it follows from Theorem 5.13a that I has
the typing I 0� I 0.
In the rest of this section we will de�ne precisely what the meaning is of primed typing.
First of all, the set D is de�ned by a �xpoint characterisation, using the scheme of The-
orem 3.2. It contains all the greatest, well-typed interfaces; well-typed in the sense of
well-de�ned arity:

De�nition 7.7 Well-typed interfaces
For all predicates Pr on procs, the following equivalence holds:

8(X : X 2D : Pr:X)
�

Pr:(i) ^ 8(X; Y : X 2D ^ Y 2D ^ Pr:X ^ Pr:Y : Pr:(X kY))

2

For example, the interfaces i and (i k i) k i are inD; the interfaces ?? and I are not elements
of D because there does not seem to be a reasonable arity for them. Taking arbitrary cups

92 CHAPTER 7. CAUSALITY

in several ways gives us known procs:

Lemma 7.8

a. t(X : X 2D : X) = I

b. t(X : X 2D : X �>> �X) = eqar

Proof:
Theorems 5.11 and 5.14 and De�nition 7.7 imply the desired results
2

Other results such as t(X : X 2D : X � >> � I kX) = eqar �� follow from this
lemma by cupjunctivity properties of parallel composition and sequential composition.
The set D and Lemma 7.8 open the way for de�ning what we mean by primed typing.
It is assumed that \A(n) " stands for an expression (syntax) of an ordinary interface A
decorated with n primes, for 16n. We let identi�ers � and 	 range over the expressions of
(possibly) primed interfaces. Substitutions are used to manipulate decorated expressions.
For X 2D, the substitution [X=v(n)], for 16n, matches any n-primed interface in an
expression and replaces it by X. There is an implicit quanti�cation of the variable v which
matches interfaces. The substitution [v=v(i)], which also has an implicit quanti�cation of
i, removes all primes in the expression to which it is applied.
For example, take the expression \A0 � >> � B00 kC 0 ", which is actually a piece of syn-
tax. Here, A, B and C denote ordinary interfaces, De�nition 3.25, which are deco-
rated with a number of primes. Applying substitution [X=v(1)] results in the expression
\X � >> � B00 kX "; afterwards, the substitution [v=v(i)] removes the remaining primes,
and the result is interpreted as the proc X � >> � B kX.

De�nition 7.9 Primed typing

P 2 ��	
�

P v u(n : 16n : Sb:n:(�;))

where the function substitute Sb is de�ned for all n, � and 	 by:

Sb:n:(�;) = t(X : X 2D : (� �>> �)[X=v(n)][v=v(i)])

2

For example, Sb:1:(A0; B00 kC 0) results in the proc t(X : X 2D : X � >> � B kX),
which, by Lemma 7.8, can be transformed to eqar � � � B k I, while Sb:2:(A0; B00 kC 0)
results in t(X : X 2D : A � >> � X kC).
The reader is urged to check that primed typing, De�nition 7.9, is a real extension of
ordinary typing, De�nition 3.28. To clarify the new de�nition and the role of function Sb,
we present a few results needed in the next section on causality:

Lemma 7.10

a. P 2 A0�B0 � P v A � eqar �B

b. P 2 A0 � B kC 0 � P v A � eqar � � � B kC

7.4. CAUSALITY FOR POLYFUNCTIONS 93

Proof:
We only show 7.10a:

P 2 A0�B0

= f De�nition 7.9 g
P v u(n : 16n : Sb:n:(A0; B0))

= f plat calculus g
P v Sb:1:(A0; B0) u u(n : 26n : Sb:n:(A0; B0))

= f de�nition Sb in De�nition 7.9; v(1)= v0 g
P v t(X : X 2D : (A0 �>> �B0)[X=v0][v=v(i)])

u u(n : 26n : t(X : X 2D : (A0 �>> �B0)[X=v(n)][v=v(i)]))
= f substitutions [X=v0] and [X=v(n)] for 26n g

P v t(X : X 2D : (X �>> �X)[v=v(i)])
u u(n : 26n : t(X : X 2D : (A0 �>> �B0)[v=v(i)]))

= f substitution [v=v(i)] g
P v t(X : X 2D : X �>> �X)

u u(n : 26n : t(X : X 2D : A �>> �B))
= f Lemma 7.8b; plat calculus g

P v eqar u A �>> �B
= f Theorem 3.26b: Q u A �>> �B = A �Q �B g

P v A � eqar �B

2

Several preservation rules for primed typing such as:

P �Q 2 I 0 � I 0 k I
(

P 2 I 0 � I 0 k I ^ Q 2 I 0� I 0

are valid. This result can be obtained by applying De�nition 7.9 directly, but a better way
would be to give some uni�cation algorithm which makes it possible to reason at the level
of the types only.
A corollary is the primed typing of I: because I v I � eqar � I is valid, Theorem 5.13a, we
can deduce from 7.10a that the typing I 2 I 0� I 0 is correct, just as we wanted. The rhs
of Lemma 7.10b implies that the second input arity and the output arity of proc P are the
same. It was explained in Section 7.1 that this information is needed for reasoning about
P �.

7.4 Causality for polyfunctions

In Section 7.1 it was shown that plain functionality is not preserved by feedback. The
property of being functional per output arity was more appropriate. Functionality per

94 CHAPTER 7. CAUSALITY

output arity is described by polyfunctionality:

De�nition 7.11 Polyfunction

P is a polyfunction
�

eqar u P �P [v I

2

There are several ways to deduce functionality from polyfunctionality. The next theorem
states a su�cient assumption:

Theorem 7.12 Polyfunction

P is a function � P �P [v eqar ^ P is a polyfunction

2

Without loss of reasonability, the assumption is made that the present output of im-
plementable processes is determined and only depends on past input. This property is
described by inertia of P : there exists some � such that for all moments t and for any
two possible input chronicles f and g which are equal until moment t, any two possible
output chronicles of P (`P:f ' and `P:g') with the same arity are equal until a later (because
��>) moment �:t. So, P does not react instantaneously, nor does its output depend on
future input:

Characterisation 7.13 Inert

inert :P
�

9(� :: 8(t :: eqar u P � <t �P [v <(� � t)))

2

Several alternative formulations for inertia have been studied. Consider the following three
equivalent formulations for some archimedean function �:

8(t :: P � <t �P [v <(� � t))

8(t :: P � <t �P> v <(� � t) �P) ^ P is a function

8(t :: eqar u P � <t �P [v <(� � t)) ^ input arity determines output arity of P

The interpretation of the �rst alternative reads: for all moments t and for any two possible
input chronicles f and g which are equal until moment t, any two possible output chronicles
of P are equal until a later moment �:t. This alternative is wrong: it is not preserved
by feedback. A counterexample is the (total) function �(�1) ��: (�(�1) ��)� is not a
function, and, therefore, it can not be inert according to the �rst alternative.
We could weaken the �rst alternative by dropping functionality: take the �rst conjunct
of the second formulation. This alternative is also wrong: preservation of totality by the

7.4. CAUSALITY FOR POLYFUNCTIONS 95

feedback can not be guaranteed. A counterexample is the total proc M ��, where M
(`Monster') is de�ned by f hMi g � (f �nishes � g does not �nish): (M ��)� = ??.
Another possibility is weakening the �rst alternative by dropping determination of arities.
This results in Characterisation 7.13. It corresponds to pre�x monotonicity used by, for
example, Broy [Bro90]: if we have observed a �nite (up to some moment �:t) output
chronicle for a corresponding �nite input chronicle (up to some moment t), then if we
observe additional input (up to a moment t0>t) we may just observe additional output
(up to a moment >�:t).
Notice that the property of inertia is a strengthening of polyfunctionality:

Proposition 7.14

P is a polyfunction (inert :P

Proof:

9(� :: 8(t :: eqar u P � <t �P [v <(� � t)))
) f Proposition 6.11a; Proposition 7.5 g

9(� :: 8(t :: eqar u P �P [v <t))
= f predicate calculus g

8(t :: eqar u P �P [v <t)
= f plat calculus g

eqar u P �P [v u(t :: <t)
= f Proposition 6.14a g

eqar u P �P [v I
= f De�nition 7.11 g

P is a polyfunction

2

There seems to be a problem: the translation of the intuitive idea of having a delay implies
that the proc is a polyfunction. This excludes, for example, that an arbitrary delay is
inert, whereas is it clear that such a delay only bases its present output on past input. The
solution we propose is the following: �rst de�ne causality for polyfunctions, and thereafter,
extend this de�nition to arbitrary procs by requiring that causal procs can be decomposed
into causal polyfunctions.
Next, we concentrate on a fundamental property of inert procs. In the literature, the
feedback operator is sometimes called the �xpoint operator because it forces (part of) the
output to be equal to (part of) the input. This motivates our interest in �xpoints of
procs. In the model, a chronicle f is a �xpoint of proc P if and only if f hP i f . In terms
of relational algebra the �xpoints are represented by the interface P u I. The following
abbreviation is used:

De�nition 7.15 Fixpoints

�P , P u I
2

96 CHAPTER 7. CAUSALITY

For an inert proc we can show that it has at most one �xpoint for every output arity: given
an inert proc P , for any two chronicles f and g with the same arity such that f 2�P and
g 2�P it follows that f = g. In relational algebra this translates to �P � eqar ��P v I :

Proposition 7.16 At most one �xpoint for every arity

�P � eqar ��P v I (inert :P

Proof:
From the characterisation of inert :P , 7.13, one obtains that there exists an archimedean
function � such that:

8(t :: eqar u P � <t �P [v <(� � t))
) f �P vP g

8(t :: eqar u �P � <t � (�P)[v <(� � t))
= f �P v I: Theorem 3.26a; <tv eqar : plat calculus g

8(t :: �P � <t ��P v <(� � t))
) f compose with �P ; Corollary 3.27a g

8(t :: �P � <t ��P v �P � <(� � t) ��P)
= f induction g

8(t :: 8(n :: �P � <t ��P v �P � <(�n � t) ��P))
) f �P v I g

8(t :: 8(n :: �P � <t ��P v <(�n � t)))
= f plat calculus g

8(t :: �P � <t ��P v u(n :: <(�n � t)))
= f Proposition 7.6 g

8(t :: �P � <t ��P v I)
= f plat calculus g

t(t :: �P � <t ��P) v I
= f cupjunctivity of composition g

�P � t(t :: <t) � �P v I
= f Proposition 6.14b g

�P � eqar ��P v I

2

A second problem is the non-preservation of totality, due to the fact that the domain can
be incorrectly typed or incomplete. In Sections 7.1 we explained the problems. Now, we
can suggest a solution. To capture the notion that for all sequences of chronicles in some
domain the limit of that sequence is also in the domain, a new property closedness is
de�ned:

Characterisation 7.17 Closedness

closed :P
�

P 6=?? ^ u(t :: >> �P � <t) v >> �P

2

7.4. CAUSALITY FOR POLYFUNCTIONS 97

The proc ?? is excluded from the set of closed procs to avoid the occurrence of the conjunct
P 6=?? in almost all the important propositions to be proved in the sequel. Notice that
the inclusion in the second conjunct is actually an equality: because of <tw I the other
inclusion follows.
Characterisation 7.17 is best understood in terms of interfaces A: a consequence of rela-
tional calculus is closed :P � closed :(P>) , and (right) domains are interfaces:

Proposition 7.18

closed :P � closed :(P>)

2

This follows from the Cone Rule 3.19 and Theorem 3.30c. In the model, Characterisa-
tion 7.17 for non-empty interface A reads:

8(t :: 9(g : g 2A : g � (< � t)� = f � (< � t)�))) f 2A
We say that A is closed under limits. In particular, for an interface containing arbitrary
long but �nite chronicles of 1's, closedness guarantees that the limit of the �nite chronicles
(the chronicle carrying an in�nite number of 1's) is also in the interface. The existence of
limits in addition to being inert implies the existence of �xpoints. This is the counterpart
of Proposition 7.16:

Proposition 7.19 At least one �xpoint

�P 6=?? (P 2 A0�A0 ^ inert :P ^ closed :P

Proof:
The proof is given in the model. First, from P 2 A0�A0 we conclude, by Lemma 7.10a,
P v eqar , which implies, by Theorem 7.12, that P is a function. We will construct a
sequence (fi)i in A and show that the limit flim is a �xpoint of P , i.e., ful�lls the equality
flim=P:flim. The notation P:f represents the unique chronicle returned by function P for
f 2A.
From the primed typing information and closed :P we get P u eqar 6= ??. This results in
an initial value of a sequence:

closed :P
) f Characterisation 7.17 g

P 6=??
= f Lemma 7.10a: P v eqar g

P u eqar 6= ??
= f interpretation in the model g

9(f; g :: f hP i g ^ f heqari g)
= f P is a function; Proposition 6.14b: interpretation in the model g

9(f; g :: f =P:g ^ 9(t :: f h<ti g))
= f predicate calculus g

9(g; t :: P:g h<ti g))

98 CHAPTER 7. CAUSALITY

There may be many chronicles g (with di�erent arities) and moments t that ful�ll the
above condition. Let f0 and t0 be such that P:f0 h<t0i f0 holds. The chronicle f0 is the
initial value of the sequence (fi)i which is constructed by iterating the application of P :
fn+1,P:fn. This sequence exists in A because P 2 A�A, and is unique, given the value
f0, because P is a function. Observe that f0 �xes the arity of the sequence. The successive
iterations are more and more alike. Let � witness the inertia of P ; then:

8(n :: fn+1 h<(�n � t0)i fn)
This is shown by the principle of induction. For the basis we calculate:

f1 h<t0i f0
= f de�nition fn: f1=P:f0 g

P:f0 h<t0i f0
= f assumptions on f0 and t0 g

True

And for the step:

fn+2 h<(�n+1 � t0)i fn+1
= f De�nition 3.7b and fn g

P:fn+1 h<(� ��n � t0)iP:fn
(f fn+1; fn 2A; P is inert, witnessed by � g

fn+1 h<(�n � t0)i fn
Because � is unbounded, Proposition 7.4, we can de�ne the limit of this sequence (fi)i.
The limit is characterised by the following property:

flim= g
�

8(n :: g h<(�n � t0)i fn)
The chronicle flim is a candidate for �P : flim=P:flim . This is proved by showing that
P:flim satis�es the characterising property of flim. First, it has to be assumed that flim is
in A, the domain of P , but this is exactly described by u(t :: >> �P � <t) v >> �P in
closed :P .

flim=P:flim
= f De�nition flim g

8(n :: P:flim h<(�n � t0)i fn)
Finally, by case analysis:
n=0:

P:flim h<(�0 � t0)i f0
= f De�nition 3.7a; identity g

P:flim h<t0i f0
(f Proposition 6.11b: <t is transitive g

P:flim h<t0iP:f0 ^ P:f0 h<t0i f0

7.4. CAUSALITY FOR POLYFUNCTIONS 99

= f assumptions on f0 and t0 g
P:flim h<t0iP:f0

(f Proposition 7.5 g
P:flim h<(� � t0)iP:f0

(f flim; f0 2A; P is inert, witnessed by � g
flim h<t0i f0

= f n=0: characterisation flim g
True

n> 0:

P:flim h<(�n � t0)i fn
= f n> 0: De�nition 3.7b and fn g

P:flim h<(� ��n�1 � t0)iP:fn�1
(f flim; fn�1 2A; P is inert, witnessed by � g

flim h<(�n�1 � t0)i fn�1
= f n> 0: characterisation flim g

True

This concludes the proof of the existence of �xpoints.
2

Propositions 7.16 and 7.19 stress that a proc which is inert and closed has interesting
properties; we had better combine the two notions into one: causality. This property
speci�es a class of processes that will turn out very important.

Characterisation 7.20 Causality

caus:P
�

inert :P ^ closed :P

2

Consequently, the main result of this investigation is:

Proposition 7.21 Existence and uniqueness of �xpoint

�P 6=?? ^ �P � eqar ��P v I (P 2 A0�A0 ^ caus:P

2

Causality does not require a well-de�ned arity, despite the goal to describe implementabil-
ity. This is done deliberately: when calculating with causal procs, we want to be as
general as possible. This includes the irrelevance of the arities. After having �nished the
calculation, arities can be specialised to particular instances. Then we can conclude by
Theorem 7.12 that we derived non-clairvoyant functions with a well-de�ned (closed) type.

Next, the main objective for introducing causality is shown: polyfunctionality and totality
are preserved by feedback if the argument is causal. But �rst, the concept of sectioning
is explained. Now, the use of points and extensionality enters the picture. In the lemmas

100 CHAPTER 7. CAUSALITY

and propositions that follow, the formulation P � x4I appears. These forms are called
sections of proc P ; in this case it is a left section. The structure is known in functional
programming as currying. For example, the binary function Add that adds two numbers
has as a curried form (left section) the unary function Add x that increments its argument
by x. The corresponding relational formulation reads Add � x4I .
The lemma below shows what happens when P � is applied to some input x. Here, x is
a point and can be thought of as the representation in the algebra A of a chronicle f in
B. The lemma states that the feedback construction gives as result the �xpoint(s) of the
section P � x4I :

Lemma 7.22

8(x :: P � � x = �(P � x4I) � >>)

Proof:
In the proof, the property is used that x4I is a function. This follows from the function-
ality of x (De�nition 3.47) and I (Theorem 3.40a) and the functionality preservation of 4

(Theorem 3.36):

P � � x
= f De�nition 3.14 g

(P u�) � I4>> � x
= f Corollary 3.24b g

(P u�) � x4>>
= f Theorem 3.48b g

(P u�) � x4I � >>
= f x4I is a function: Theorem 3.35a g

(P � x4I u � � x4I) � >>
= f Split computation 3.13b g

(P � x4I u I u >> �x) � >>
= f Theorem 3.48c g

(P � x4I u I) � >>
= f De�nition 7.15 g

�(P � x4I) � >>
2

The lemma above points out that the left section P � x4I is an interesting one. Sectioning
preserves several of the properties introduced in the previous sections: primed typing,
inertia, closedness and causality. Only the property of closedness requires a preliminary
result. The lemma that follows shows that (left) sectioning preserves primed typing and
totality of the argument proc:

Lemma 7.23

8(x : x2B : P � x4I 2 A0�A0) (P 2 A0 � B kA0

7.4. CAUSALITY FOR POLYFUNCTIONS 101

Proof:
By x2B we mean B � x = x. According to Theorem 3.39a and Lemma 7.10b, the primed
typing of P implies: P> = B kA and P v A � eqar � � � B kA. These properties are
exploited in the proof:

P � x4I 2 A0�A0

= f De�nition 3.38a g
P � x4I 2 A0�A0 ^ A v (P � x4I)>

= f Lemma 7.10a; (R �S)> = (R> �S)> g
P � x4I v A � eqar �A ^ A v (P> � x4I)>

(f assumptions on P g
A � eqar � � � B kA � x4I v A � eqar �A ^ A v (B kA � x4I)>

= f Parallel-split fusion 3.12b g
A � eqar � � � (B � x) 4 A v A � eqar �A ^ A v ((B �x) 4 A)>

= f B � x = x; Theorem 3.32b; (P 4Q)> = P> �Q> g
A � eqar �A � x> v A � eqar �A ^ A v x> �A

= f De�nition 3.47 and Theorem 3.39b: x>= I g
True

2

This lemma is one step towards the application of Proposition 7.21 for P � x4I. But more
properties are required. The next proposition shows that (left) sectioning preserves inertia:

Proposition 7.24

8(x :: inert :(P � x4I)) (inert :P

Proof:
It is shown that the archimedean function � witnessing the inertia of P also witnesses the
inertia of P � x4I :

eqar u P � x4I � <t � (P � x4I)[

= f Theorem 3.48b and Parallel-split fusion 3.12a; reverse g
eqar u P � I k <t � x4I � (x4I)[� P [

v f R4I � (S4I)[v (R �S[) k I g
eqar u P � I k <t � (x �x[) k I � P [

= f Theorem 3.48a; Parallel-parallel fusion 3.12b g
eqar u P � x< k <t � P [

v f Theorem 3.30d and Proposition 6.11a: x<v I v <t g
eqar u P � <t k <t � P [

v f Proposition 6.11e g
eqar u P � <t � P [

v f � witnesses the inertia of P : Characterisation 7.13 g
<(� � t)

2

102 CHAPTER 7. CAUSALITY

To prove the preservation of closedness, a di�cult intermediate result is needed. It de-
scribes that P and Q are closed under limits whenever P kQ is closed. Fortunately, the
applicability of this result is not restricted to this chapter only.

Proposition 7.25

closed :P ^ closed :Q
(

closed :(P kQ)

Proof:
The non-emptiness of P and Q follows straightforwardly from the non-emptiness of P kQ
by Theorem 3.20c. For the second conjunct of the de�nition of closedness, Characterisa-
tion 7.17, the result following from relational calculus

� � R kS � I4>> = R (S 6=??
will be used. This result gives a way to introduce or eliminate R kS. Now, closed :P is
derived:

>> �P
= f Q 6=??: above result g

>> � � � P kQ � I4>>
= f Theorem 3.40e: >> �� = >> � I k I g

>> � P kQ � I4>>
w f assumption on P kQ: Characterisation 7.17 g

u(t :: >> � P kQ � <t) � I4>>
= f Proposition 6.11d g

u(t :: >> � P kQ � <t k <t) � I4>>
= f Theorem 3.40e; Parallel-parallel fusion 3.12b g

u(t :: >> � � � (P � <t) k (Q � <t)) � I4>>
= f Parallel computation 3.32c g

u(t :: >> � P � <t � � � I k (Q � <t)) � I4>>
w f Proposition 6.11a g

u(t :: >> � P � <t � � � I kQ) � I4>>
w f monotonicity g

u(t :: >> �P � <t) � � � I kQ � I4>>
= f Q 6=??: above result g

u(t :: >> � P � <t)

2

The main result of Proposition 7.25 and Lemma 7.23 is that closedness is preserved by
sectioning. Despite the fact that more is assumed about P in Proposition 7.26, a su�cient
condition is already that the right domain of P can be written as a square B kA for
closed :A:

7.4. CAUSALITY FOR POLYFUNCTIONS 103

Proposition 7.26

8(x : x2B : closed :(P � x4I))
(

P 2 A0 � B kA0 ^ closed :P

Proof:

closed :(P � x4I)
= f Proposition 7.18 g

closed :((P � x4I)>)
(f Theorem 3.39a g

P � x4I 2 A0�A0 ^ closed :A
(f x2B: Lemma 7.23; Proposition 7.25 g

P 2 A0 � B kA0 ^ closed :(B kA)
= f Theorem 3.39a and Proposition 7.18 g

P 2 A0 � B kA0 ^ closed :P

2

These were all preliminary results, leading to the main preservation result. Under reason-
able typing conditions, causality is preserved by sectioning:

Proposition 7.27

8(x : x2B : caus:(P � x4I))
(

P 2 A0 � B kA0 ^ caus:P

Proof:

caus:(P � x4I)
= f Characterisation 7.20 g

inert :(P � x4I) ^ closed :(P � x4I)
(f x2B: Propositions 7.24 and 7.26 g

P 2 A0 � B kA0 ^ inert :P ^ closed :P
= f Characterisation 7.20 g

P 2 A0 � B kA0 ^ caus:P

2

This property, together with Proposition 7.21, is the instrument to get a totality result for
P �. First, we will concern ourselves with the polyfunctionality of the feedback.

7.4.1 Polyfunctionality of feedback

According to Characterisation 7.20 and Proposition 7.14, causality of P implies polyfunc-
tionality. It is even the case that the feedback of a causal proc P is polyfunctional. In
the presence of polymorphism, this is the best we can get: we saw that pure functionality

104 CHAPTER 7. CAUSALITY

is not preserved by feedback, but polyfunctionality is preserved if the argument proc is
causal:

Proposition 7.28

P � is a polyfunction (caus:P

Proof:

P � is a polyfunction
= f De�nition 7.11 g

eqar u P � � (P �)[v I
= f Extensionality g

8(x :: eqar u P � � x � (P � � x)[v I)

We continue: for all x,

eqar u P � � x � (P � � x)[v I
= f Lemma 7.22 g

eqar u �(P � x4I) � >> � (�(P � x4I) � >>)[v I
= f reverse through composition g

eqar u �(P � x4I) � >> � >>[� (�(P � x4I))[v I
= f >> �>>[= >>; �P is an interface: Theorem 3.26a g

eqar u �(P � x4I) � >> � �(P � x4I) v I
= f �(P � x4I) is an interface; Q u A �>> �A = A �Q �A g

�(P � x4I) � eqar � �(P � x4I) v I
(f Proposition 7.16 g

inert :(P � x4I)
(f Proposition 7.24 g

inert :P
(f Characterisation 7.20 g

caus:P

2

Observe that only the inert part of P was used to get the result. This is not very surprising,
since the property of closedness was introduced to preserve totality. This is the topic of
the subsequent subsection.

7.4.2 Totality of feedback

In this subsection a rule is given which allows to conclude the totality of a feedback structure
on some interface. The assumption that the argument proc P for feedback is closed under
limits, Characterisation 7.17, is essential. First, a weaker version of preservation of typing
is proved:

Lemma 7.29

P � 2 A�B (P 2 A� B kA

7.4. CAUSALITY FOR POLYFUNCTIONS 105

Proof:
According to De�nition 3.28 and Theorem 3.31b the assumption on P translates to the
expression P = A � P � B kA. The proof obligation then reads P � = A �P � �B:

A �P � �B
= f De�nition 3.14 g

A � (P u�) � I4>> � B
= f Corollary 3.27c; Corollary 3.24b g

(A �P u A ��) � B4>>
= f Parallel computation 3.32d; Parallel-split fusion 3.12a g

(A �P u � � I kA) � B k I � I4>>
= f Corollary 3.27c; Parallel-parallel fusion 3.12b g

(A �P u � � B kA) � I4>>
= f Corollary 3.27c g

(A � P � B kA u �) � I4>>
= f assumption on P g

(P u�) � I4>>
= f De�nition 3.14 g

P �

2

This paves the way to proving the totality of feedback if the argument is a total and causal
polyfunction. Because the hard work has been done in Proposition 7.21 (and Proposi-
tion 7.19), the proof is extremely short:

Proposition 7.30

P � 2 A�B (P 2 A0 � B kA0 ^ caus:P

Proof:

P � 2 A�B
= f De�nitions 3.38a and 3.37a g

P � 2 A�B ^ Bv (P �)>

= f P 2 A� B kA: Lemma 7.29 g
Bv (P �)>

This last expression is, by an extensional argument, Axiom 3.49, and making use of the
Cone Rule 3.19, equivalent to:

8(x : x2B : P � � x 6= ??)

Now, the proof continues: for all x2B,
P � � x 6= ??

= f Lemma 7.22 g
�(P � x4I) � >> 6= ??

= f Cone Rule 3.19 and Theorem 3.6 g

106 CHAPTER 7. CAUSALITY

�(P � x4I) 6= ??
(f Proposition 7.21 g

P � x4I 2 A0�A0 ^ caus:(P � x4I)
(f x2B: Lemma 7.23 and Proposition 7.27 g

P 2 A0 � B kA0 ^ caus:P

2

These are all useful results but not general yet enough: because caus:P implies polyfunc-
tionality of P , we can not state results like Proposition 7.30 or 7.28 for non-polyfunctional
procs. Therefore, we have to extend the de�nition of causality to arbitrary procs.

7.5 Causality for arbitrary procs

To de�ne causality for arbitrary procs, advantage is taken of the view that a proc is the
union of all the (poly)functional procs which are included in that proc and de�ned on the
same domain1. The combined notion of `included' and `same domain' is sometimes dubbed
re�nement:

De�nition 7.31 Re�nement

P �Q
�

P vQ ^ P>=Q>

2

P �Q is pronounced as `P re�nes Q'. In Back [Bac93], Hoare [Hoa85] and Morgan [Mor90]
the direction of the re�nement symbol is reversed. Moreover, the notion de�ned in those
papers is somewhat weaker. The choice for the direction in the de�nition above originates
from the order on procs, which is due to set inclusion in the model.

Theorem 7.32 Re�nement

a. � is a partial order

b. P �F � P =F

2

Several operators from the relational algebra, such as t, k and4, preserve re�nement. Other
operators, such as u, �, [and �, do not preserve re�nement, due to the domain requirement
in De�nition 7.31. Additional typing information (or even closedness information) of the
arguments avoids this problem.

1This is an extensional argument.

7.5. CAUSALITY FOR ARBITRARY PROCS 107

Next, we extend Characterisation 7.20 to arbitrary procs:

Characterisation 7.33 Causality

causal :P
�

?? 6= P v t(Q : Q�P ^ caus:Q : Q)

In combination with typing, the notation `
c
�' is used to denote that the proc is causal

2

The non-emptiness of closed P is equivalent to the existence of a proc Q such that Q�P
and caus:Q. Observe that the inclusion in the de�nition is actually an equality. A health-
iness condition is that Characterisation 7.33 is a real extension of Characterisation 7.20.
It is even the case that the two are equivalent when applied to a function:

Proposition 7.34

a. causal :F � caus:F

b. causal :P (caus:P

Proof:
We only show 7.34a:

causal :F
= f Characterisation 7.33 g

?? 6= F v t(Q : Q�F ^ caus:Q : Q)
= f Theorem 7.32b; predicate calculus g

?? 6= F v t(Q : Q=F ^ caus:Q : Q) ^ (caus:F _:(caus:F))
= f Leibniz; ^ distributes over _ g

(?? 6= F v t(Q : Q=F ^ caus:F : F) ^ caus:F)
_ (?? 6= F v t(Q : Q=F ^ caus:F : F) ^ :(caus:F))

= f plat calculus g
(?? 6=F vF ^ caus:F) _ (?? 6=F v?? ^ :(caus:F))

= f caus:F) F 6=??; predicate calculus g
caus:F

2

The equivalence for functions of Proposition 7.34a does not hold for polyfunctions. This
is due to the fact that the least archimedean function (`least' in the sense of the pointwise
ordering) of an arbitrary set of archimedean functions does in general not exist.
The most important corollary of Propositions 7.34a and 7.28 is that the feedback of a
causal function results in a polyfunction. Recall that a function is also a polyfunction,
Theorem 7.12. We intend to axiomatise the result; that's why it is called a property:

Property 7.35 Preservation of polyfunctionality

F � is a polyfunction (causal :F

2

108 CHAPTER 7. CAUSALITY

With the extended de�nition of causality, Characterisation 7.33, we can take a closer look
at a �nal property for totality preservation by feedback.

7.5.1 Totality of feedback revisited

The following property generalised Proposition 7.30. This is the second and last property
of this chapter on causality:

Property 7.36 Preservation of totality

P � 2 A�B (P 2 A0 c
� B kA0

Proof:
In the proof, the fact is used that Q�P and P 2 A0 � B kA0 imply Q 2 A0 � B kA0.
This enables us to exploit Proposition 7.30:

P � 2 A�B
= f De�nitions 3.38a and 3.37a g

P � 2 A�B ^ Bv (P �)>

= f P 2 A� B kA: Lemma 7.29 g
Bv (P �)>

(f t(Q : Q�P ^ caus:Q : Q) v P ; monotonicity g
B v (t(Q : Q�P ^ caus:Q : Q)�)>

= f cupjunctivity of feedback and domains g
B v t(Q : Q�P ^ caus:Q : (Q�)>)

= f Q 2 A0 � B kA0: Proposition 7.30 and Theorem 3.39a g
B v t(Q : Q�P ^ caus:Q : B)

= f Characterisation 7.33: 9(Q :: Q�P ^ caus:Q), predicate calculus g
True

2

This concludes the discussion on the consequences of causality. The two properties in this
chapter motivate the importance of causality, and consequently urges us to look at causality
properties of the constants in the relational algebra and to investigate preservation of
causality by several composition constructions. This is the main topic in the next chapter.

Chapter 8

Preservation of causality

This chapter covers two things. First, the causality of several constants from the relational
algebra is proved. Secondly, the important composition constructions are considered with
respect to their causality-preservation properties.

8.1 Constants

The non-causality of ?? follows immediately from the observation that this proc is not
closed, Characterisation 7.17. The non-causality of I (and of � and �) is a bit tricky.
One can show that causal :I is equivalent to I =>>. So, to conclude :(causal :I), we
need the axiom I 6=>>. However, one should keep in mind that at the end we want to
drop the de�nition of causality, and continue with the derived properties such as causality
preservation. Therefore, the non-causality of I is not important, and the required axiom
is not imposed. Really important is to know when a proc is causal:

Property 8.1 Causality of constants

a. causal :>>

b. causal :eqar

Proof:
To prove causality of >> we have to give a set of causal polyfunctions (in the sense of
Characterisation 7.20) such that the cup over this set is >>. According to Theorem 3.50b,
we can decompose >> into points. Therefore, it su�ces to show that all points are causal:
8(x :: caus:x):

inert :x
= f Characterisation 7.13 g

9(� :: 8(t :: eqar u x � <t �x[v <(� � t)))
(f <tv>> and Proposition 6.11a: monotonicity g

9(� :: 8(t :: x �>> � x[v I))
= f predicate calculus g

109

110 CHAPTER 8. PRESERVATION OF CAUSALITY

x �>> � x[v I
= f De�nition 3.47: x �>> = x g

x � x[v I
= f De�nition 3.47: a point is a function; De�nition 3.33a g

True

And for the property of closedness it is shown that points are closed under limits:

closed :x
= f Characterisation 7.17 g

x 6=?? ^ u(t :: >> � x � <t) v >> � x
= f Cone Rule 3.19 g

>> � x �>> = >> ^ u(t :: >> �x � <t) v >> � x
= f Theorem 3.48c g

>> �>> = >> ^ u(t :: >> � <t) v >>
= f Theorem 3.6; >> is top element g

True

Straightforwardly, the causality of >> follows from the causality of points:

causal :>>
= f Characterisation 7.33 g

?? 6= >> v t(Q : Q�>> ^ caus:Q : Q)
= f Theorem 3.20b; Q�>> � Q 2 I�I g

>> v t(Q : Q 2 I�I ^ caus:Q : Q)
(f plat calculus g

>> = t(x : x 2 I I ^ caus:x : x)
= f De�nition 3.47; points are causal g

>> = t(x :: x)
= f Theorem 3.50b g

True

The proof of 8.1b has the same structure. From Theorem 5.13a, the non-emptiness of eqar
is derived. To complete the proof, we need the notion of polypoint, which is a generalisation
of a point in the following sense:

px is a polypoint
�

8(X : X 2D : X � px is a point)

Observe that polypoints are polyfunctions, just like points are functions. Because we
can construct a pair (X; px) of every normal point, we conclude by Theorem 3.50b that
t(px :: px) = >>. This implies that we can decompose eqar into t(X :: X � px �X)-
structures, for all px. These structures turn out to be real re�nements of eqar . Moreover,
they are inert; this follows from the equivalence for all X; Y 2D:

X � eqar �Y 6= ??
�

X =Y

8.2. PRESERVATION 111

Because the structures are also total on I, which is closed, we conclude that for all X and
px, t(X :: X � px �X) is causal in the sense of Characterisation 7.20:

eqar
= f Lemma 7.8b; t(px :: px) = >> g

t(X :: X � t(px :: px) � X)
= f cupjunctivity g

t(px :: t(X :: X � px �X))
= f t(X :: X � px �X) � eqar and is causal g

t(px : t(X :: X � px �X) � eqar ^ caus:t(X :: X � px �X)
: t(X :: X � px �X))

v f monotonicity g
t(Q : Q� eqar ^ caus:Q : Q)

2

Despite the fact that the procs I, � and � are not causal, they still satisfy properties like
closedness and not relating present output to future input. In Chapter 9 the notion of weak
causality is introduced. The procs I, � and � turn out to be causal in this weaker sense.

8.2 Preservation

In this section an important aspect is handled: preservation of causality by several con-
structions such as cup, sequential composition, parallel composition and feedback.

8.2.1 Cup

The causality preservation of t in the sense of Characterisation 7.20 requires a preliminary
result: a minimum operator combines two archimedean functions into one. The proof
that we indeed obtain an archimedean function is beyond the scope of this presentation;
therefore, the exercise is placed in Appendix A.

Proposition 8.2

caus:(P tQ) (caus:P ^ caus:Q ^ P � eqar �Q[= ??
Proof:
In Appendix A, the function # is investigated. It is the minimum on moments. Its de�nition
is:

, (I N> [>NI)�1
In the model, the interpretation reads:

8(t; t0; t00 :: t h#i (t0; t00) � (t= t0 ^ t6 t00) _ (t6 t0 ^ t= t00))

With this function, the preservation of inertia by cup can be proved; after that the proof
for closedness is completed.

112 CHAPTER 8. PRESERVATION OF CAUSALITY

The assumption on P and Q is that they are inert, witnessed by some � and �, respectively.
For all moments t :

eqar u (P tQ) � <t � (P tQ)[
= f cupjunctivity g

eqar u (P � <t �P [t P � <t �Q[t Q � <t �P [t Q � <t �Q[)
= f P � <t �Q[v P � eqar �Q[= ?? g

eqar u (P � <t �P [t Q � <t �Q[)
= f cupjunctivity g

(eqar u P � <t �P [) t (eqar u Q � <t �Q[)
v f inertia of P and Q g

<(� � t)t <(� � t)
= f Proposition A.9 g

<(# � �N� � t)

So inertia of P tQ is witnessed by the archimedean function # � �N�, Proposition A.8.
To prove that P tQ is closed we do not need the assumption P � eqar �Q[= ??. Non-
emptiness of P tQ is trivial because P and Q are both non-empty. A powerful step in the
following proof is the diagonalisation rule:

>> � (P tQ)
= f cupjunctivity g

>> �P t >> �Q
w f P and Q are closed g

u(t :: >> �P � <t) t u(t0 :: >> �Q � <t0)
= f capjunctivity of cup g

u(t; t0 :: >> �P � <t t >> �Q � <t0)
= f Proposition 6.13c: diagonalisation g

u(t :: >> �P � <t t >> �Q � <t)
= f cupjunctivity g

u(t :: >> � (P tQ) � <t)

2

Causality in the sense of Characterisation 7.33 is proved more straightforwardly. Two rules
are given: one for the union of procs with the same right domain, and one for the case
when the two components have completely disjoint arities:

Proposition 8.3

a. causal :(P tQ) (causal :P ^ causal :Q ^ P>=Q>

b. causal :(P tQ) (causal :P ^ causal :Q ^ P � eqar �Q[= ??
Proof of 8.3a:

causal :(P tQ)
= f Characterisation 7.33 g

8.2. PRESERVATION 113

?? 6= P tQ v t(R : R � P tQ ^ caus:R : R)
= f property cup g

?? 6= P tQ ^ P v t(R : R � P tQ ^ caus:R : R)
^ Q v t(R : R � P tQ ^ caus:R : R)

(f P>=Q> ^ R�P) R � P tQ g
?? 6=P ^ ?? 6=Q ^ P v t(R : R�P ^ caus:R : R)
^ Q v t(R : R�Q ^ caus:R : R)

= f Characterisation 7.33 g
causal :P ^ causal :Q

Proposition 8.3b follows from Proposition 8.2. In the proof the property

P 0 tQ0 � P tQ ^ P 0 � eqar �Q0[= ??
(

P 0�P ^ Q0�Q ^ P � eqar �Q[= ??
is used
2

This proposition can be generalised to arbitrary cups of procs with the same domain, or
with pairwise `disjoint' domains. For non-empty set S of procs:

Property 8.4 Cup

a. causal :(tS) (8(P : P 2S : P 2 I
c
� A)

b. causal :(tS)
(

8(P;Q : P;Q2S : causal :P ^ (P 6=Q) P � eqar �Q[= ??))
2

Property 8.4a suggests a mechanism to prove the causality of a non-deterministic proc. It
is a direct corollary of Characterisation 7.33. In particular 8.4b is interesting because it
captures the construction of polymorphic, causal procs.

8.2.2 Sequential composition

The preservation of causality by sequential composition is simple. Parallel composition
will cause some more trouble.

Proposition 8.5

caus:(P �Q)
(

caus:P ^ caus:Q ^ P>wQ<

^ (P [� eqar �P v eqar _ Q � eqar �Q[v eqar)

First the property of inertia is proved; after that the proof for closedness is given. The
assumption on P and Q is that they are inert, witnessed by some � and �, respectively.

114 CHAPTER 8. PRESERVATION OF CAUSALITY

The calculation below shows that � witnesses the inertia of P �Q. For all t :

eqar u P �Q � <t � (P �Q)[

= f reverse through composition g
eqar u P �Q � <t �Q[�P [

= f P [� eqar �P v eqar _ Q � eqar �Q[v eqar g
eqar u P � (eqar u Q � <t �Q[) � P [

v f inertia of Q g
eqar u P � <(� � t) �P [

v f Proposition 7.5 g
eqar u P � <t �P [

v f inertia of P g
<(� � t)

To prove that P �Q is closed, observe that (P �Q)> = Q> by the typing assumptions on
P and Q:

(P �Q)>

= f (P �Q)> = (P> �Q)>; Theorem 3.30b g
(P> �Q< �Q)>

= f I wP>wQ<: Corollary 3.27b and plat calculus g
(Q< �Q)>

= f Theorem 3.30b g
Q>

The fact that P �Q is closed follows now from the corresponding property of Q and Propo-
sition 7.18
2

The typing requirements in the antecedent of Proposition 8.5 are needed to ensure that proc
Q does not produce output for which P is not de�ned. Observe that in this case, the angelic
sequential composition of P and Q coincides with the demonic sequential composition,
Theorem 3.44b; this was one of the objectives. The assumption P � eqar �P [v eqar states
that the output arity is determined by the input arity. Compare this property for a proc
in A to the property of detar , De�nition 5.3, for a relation in B. The link is established
by Corollary 5.15. Therefore, we extend the de�nition of detar to procs:

De�nition 8.6 Determination of output arity

detar :P
�

P � eqar �P [v eqar

2

8.2. PRESERVATION 115

Next, the results of Proposition 8.5 are extended to preservation of causality for arbitrary
procs:

Proposition 8.7

causal :(P �Q)
(

causal :P ^ causal :Q ^ P>wQ< ^ (detar :P [_ detar :Q)

Proof:
Non-emptiness of P �Q follows from the type assumptions on P and Q and the non-
emptiness of Q. The following fact, expressing preservation of re�nement by sequential
composition, is used to �nish the proof:

P 0 �Q0 � P �Q ^ P 0
>wQ0

<

(
P 0�P ^ Q0�Q ^ P>wQ<

Moreover,

detar :P 0

(
P 0vP ^ detar :P

Then:

P �Q
v f causal :P and causal :Q g

t(P 0 : P 0�P ^ caus:P 0 : P 0) � t(Q0 : Q0�Q ^ caus:Q0 : Q0)
= f cupjunctivity of composition g

t(P 0; Q0 : P 0�P ^ Q0�Q ^ caus:P 0 ^ caus:Q0 : P 0 �Q0)
v f above facts: Proposition 8.5 g

t(P 0; Q0 : P 0 �Q0 � P �Q ^ caus:(P 0 �Q0) : P 0 �Q0)
v f plat calculus g

t(R : R� P �Q ^ caus:R : R)

2

Again, observe that Proposition 8.7 is a true generalisation of Proposition 8.5. The as-
sumption detar :P is implied by the property P v eqar , which describes that the output
arity is the same as the input arity. The condition P>wQ< is implied by P>= I. In cal-
culations, all this information will often be captured, together with causality, by (primed)

typing: P 2 I 0
c
� I 0.

8.2.3 Parallel composition

Compared to the preservation of causality by sequential composition, the preservation
property for parallel composition is more di�cult:

Proposition 8.8

caus:(P kQ) (caus:P ^ caus:Q

116 CHAPTER 8. PRESERVATION OF CAUSALITY

Proof:

eqar u P kQ � <t � (P kQ)[

= f Theorem 3.26b twice; Theorem 3.11a g
eqar � I k I u P kQ � <t � P [kQ[

= f Theorem 5.13e; Proposition 6.11d g
eqar k eqar u P kQ � <t k <t � P [kQ[

= f Parallel-parallel fusion 3.12b; capjunctivity of parallel composition g
(eqar u P � <t �P [) k (eqar u Q � <t �Q[)

v f inertia of P and Q g
<(� � t) k <(� � t)

v f Proposition A.10 g
<(# � �N� � t) k <(# � �N� � t)

v f Proposition 6.11e g
<(# � �N� � t)

The non-emptiness of P kQ follows from non-emptiness of P and Q and Theorem 3.20c.
For the other part, a distributivity property of composition over cap, and capjunctivity of
parallel composition is used:

u(t :: >> � P kQ � <t)
= f >> � I k I = >> � >> k>>; Proposition 6.11d g

u(t :: >> � >> k>> � P kQ � <t k <t)
= f Parallel-parallel fusion 3.12b g

u(t :: >> � (>> �P � <t) k (>> �Q � <t))
= f non-trivial distribution over cap g

>> � u(t :: (>> �P � <t) k (>> �Q � <t))
= f capjunctivity of parallel composition g

>> � u(t :: >> �P � <t) k u(t :: >> �Q � <t)
v f P and Q are closed g

>> � (>> �P) k (>> �Q)
= f >> � >> k>> = >> � I k I g

>> � P kQ

2

The implication in Proposition 8.8 is actually an equivalence. Part of this claim follows
from Theorem 3.20c and Proposition 7.25.
The previous results are extended to causal procs:

Property 8.9 Parallel composition

causal :(P kQ) (causal :P ^ causal :Q

8.2. PRESERVATION 117

Proof:
In the proof the property P 0 kQ0 � P kQ (P 0�P ^ Q0�Q is used. For the non-
emptiness, Theorem 3.20c su�ces. Then:

P kQ
v f causal :P and causal :Q g

t(P 0 : P 0�P ^ caus:P 0 : P 0) k t(Q0 : Q0�Q ^ caus:Q0 : Q0)
= f cupjunctivity of parallel composition g

t(P 0; Q0 : P 0�P ^ Q0�Q ^ caus:P 0 ^ caus:Q0 : P 0 kQ0)
v f above fact; Proposition 8.8 g

t(P 0; Q0 : P 0 kQ0 � P kQ ^ caus:(P 0 kQ0) : P 0 kQ0)
v f plat calculus g

t(R : R� P kQ ^ caus:R : R)

2

8.2.4 Split

We turn to split, which is also part of the axiomatisation of parallel composition. For the
inertia-part, we �rst prove a small lemma:

Proposition 8.10

I4I � <t � (I4I)[v <t

Proof:

I4I � <t � (I4I)[

v f P 4Q � R v (P �R) 4 (Q �R) g
<t4<t � (I4I)[

= f Parallel-split fusion 3.12a g
<t k <t � I4I � (I4I)[

v f I4I is a function: De�nition 3.33a g
<t k <t

v f Proposition 6.11e g
<t

2

This proposition makes it possible to derive the inertia preservation of 4 from the inertia-
preserving properties of parallel composition:

Proposition 8.11

caus:(P 4Q) (caus:P ^ caus:Q ^ P �Q[6= ??
Proof:
The extra conjunct P �Q[6= ?? can be interpreted as the property that P and Q have
some source domain elements in common.

118 CHAPTER 8. PRESERVATION OF CAUSALITY

The inertia of P 4Q follows from the (proof of) inertia of P kQ:

eqar u P 4Q � <t � (P 4Q)[

= f Parallel-split fusion 3.12a; reverse over composition g
eqar u P kQ � I4I � <t � (I4I)[� (P kQ)[

v f Proposition 8.10 g
eqar u P kQ � <t � (P kQ)[

v f inertia of P and Q; proof of inertia in Proposition 8.8 g
<(# � �N� � t)

For the non-emptiness we only remark that R4S 6= ?? � R �S[6= ??. The preservation
of limits by P 4Q follows from a calculation which is analogous to the proof of preservation
by P kQ
2

The previous results are extended to arbitrary causal procs:

Property 8.12 Split

causal :(P 4Q) (causal :P ^ causal :Q ^ P �Q[6= ??
2

In the proof the property

P 0
4Q0 � P 4Q ^ P 0 �Q0[6= ??

(
P 0�P ^ Q0�Q ^ P �Q[6= ??

is used. The proof is omitted because it strongly resembles the proof of Property 8.9.

8.2.5 Feedback

This subsection concerns the feedback operator. During the calculations, properties of
points and the principles of extensionality and induction are used. However, only the �nal
results are going to be axiomatised, in that way abstracting from the use of extensionality
and induction.

Proposition 8.13

caus:(P �) (caus:P ^ P 2 A0 � B kA0

Proof:
The proof of this proposition requires a preliminary result which is `expensive' in the
sense that the proof is not straightforward and the applicability of the result itself is very
restricted:

�P � eqar ��Q v <t0 (eqar u P �Q[v <t0
(

inert :P ^ P v eqar ^ Qv eqar ^ P>=Q>

8.2. PRESERVATION 119

Let the archimedean function � be a witness for the inertia of P in:

�P � eqar ��Q v <t0
= f Proposition 6.11a g

�P � eqar ��Q v I t <t0
= f Propositions 6.14b and 7.6 g

�P � t(t :: <t) � �Q v u(n :: <(�n � t)) t <t0
= f cupjunctivity of composition; capjunctivity of cup g

t(t :: �P � <t ��Q) v u(n :: <(�n � t)t <t0)
= f plat calculus g

8(t; n :: �P � <t ��Q v <(�n � t)t <t0)
(f induction g

8(t :: �P � <t ��Q v <(� � t)t <t0)
= f Proposition 6.13a g

8(t :: �P � <t ��Q v <(� � t) � <t0)
(f �P v P �P> = P g

8(t :: P � <t �Q> �Q[v <(� � t) � <t0)
(f Q> = P> v P [�P g

8(t :: P � <t �P [�P �Q[v <(� � t) � <t0)
(f monotonicity g

8(t :: P � <t �P [v <(� � t)) ^ P �Q[v <t0
= f P v eqar and Qv eqar g

8(t :: eqar u P � <t �P [v <(� � t)) ^ eqar u P �Q[v <t0
= f P is inert g

eqar u P �Q[v <t0

In the proof, the principle of induction is applied. The step is taken without further
explanation to avoid a cumbersome calculation that would not contribute to the main
calculation. The result derived above is the instrument to tackle 8.13. First we discuss the
inertia part. The proof obligation is that there exists an archimedean function � such that
for all moments t:

eqar u P � � <t � (P �)[v <(� � t)
= f Lemma 7.29; reverse g

eqar u P � �B � <t �B � (P �)[v <(� � t)
= f Extensionality g

8(x; y : x � y[v B � <t �B : eqar u P � � x � y[� (P �)[v <(� � t))

The assumptions on P that can be used are P 2 A0 � B kA0 and the causality of P .
According to Lemma 7.23, we can conclude that for any z 2B: (P � z4I)> = A and
P � z4I v eqar . Moreover, Proposition 7.24 states that P � z4I is even inert. This
enables us to exploit the preliminary result.
We continue: for all x and y such that x � y[v B � <t �B:

eqar u P � � x � y[� (P �)[v <(� � t)
= f reverse through composition; Lemma 7.22 g

120 CHAPTER 8. PRESERVATION OF CAUSALITY

eqar u �(P � x4I) � >> � �(P � y4I) v <(� � t)
= f Q u A �>> �B = A �Q �B g

�(P � x4I) � eqar � �(P � y4I) v <(� � t)
(f above-mentioned facts: preliminary result g

eqar u P � x4I � (P � y4I)[v <(� � t)
= f reverse through composition g

eqar u P � x4I � (y4I)[� P [v <(� � t)
(f R4I � (S4I)[v (R �S[) k I g

eqar u P � (x � y[) k I � P [v <(� � t)
(f close quanti�cation over x and y: x � y[v B � <t �B g

eqar u P � (B � <t �B) k I � P [v <(� � t)
(f Propositions 6.11a and 6.11e: (B � <t �B) k I v <t g

eqar u P � <t �P [v <(� � t)

which equivales the inertia of P . The property of closedness of P � is delightfully simple:

closed :P �

= f Proposition 7.18; assumptions on P : Proposition 7.30 g
closed :B

(f Proposition 7.25 g
closed :(B kA)

= f assumption on P : Proposition 7.18 g
closed :P

2

Finally, there is just one property left to be proved:

Property 8.14 Feedback

causal :(P �) (P 2 A0 c
� B kA0

Proof:
The non-emptiness of P � is proved by contraposition:

P �=??
= f P 2 A0 c

� B kA0: Property 7.36 and Theorem 3.39a g
B=??

) f parallel composition is ??-strict g
B kA = ??

= f P 2 A� B kA: Theorem 3.39a g
P =??

= f causal :P g
False

The proof of causality continues:

P �

v f causal :P : Characterisation 7.33; monotonicity of feedback g

8.2. PRESERVATION 121

(t(Q : Q�P ^ caus:Q : Q))�

= f Theorem 3.16 g
t(Q : Q�P ^ caus:Q : Q�)

v f below: Q��P � ^ caus:(Q�) (Q�P ^ caus:Q g
t(Q : Q��P � ^ caus:(Q�) : Q�)

v f plat calculus g
t(R : R�P � ^ caus:R : R)

The assumptions of Property 8.14, P 2 A0 c
� B kA0 , together with the re�nement

Q�P and caus:Q, give us:

Q��P � ^ caus:(Q�)
= f De�nition 7.31 g

Q�vP � ^ (Q�)>=(P �)> ^ caus:(Q�)
(f monotonicity feedback; Theorem 3.39a g

QvP ^ Q� 2 A�B ^ P � 2 A�B ^ caus:(Q�)
(f De�nition 7.31; Proposition 7.30 and Property 7.36 g

Q�P ^ Q 2 A0 � B kA0 ^ caus:Q ^ P 2 A0 c
� B kA0

= f Q�P ^ P 2 A0 � B kA0: Q 2 A0 � B kA0 g
Q�P ^ caus:Q ^ P 2 A0 c

� B kA0

= f assumptions on P g
Q�P ^ caus:Q

2

122 CHAPTER 8. PRESERVATION OF CAUSALITY

Chapter 9

Weak causality

In Proposition 8.5 the inertia preservation of sequential composition was proved. The
witness for inertia of P �Q for inert P and Q used in the proof did not depend on the
witness for inertia of Q. Of course, one can give the `symmetric' proof of the proposition
and show that inertia of P �Q is established by the witness of Q only.

9.1 Weak causality de�ned

The above discussion suggests that plain inertia of both arguments of sequential com-
position is really overkill. More speci�cally: the (new) assumption on inertia of Q in
Proposition 8.5

8(t :: eqar u Q � <t �Q[v <t)

is su�cient to get the same result by an even shorter proof. This assumption on Q is
dubbed weak inertia and de�ned as follows:

Characterisation 9.1 Weak inertia

winert :P
�

8(t :: eqar u P � <t �P [v <t)

2

Remember that, in words, inertia expresses the fact that the proc does not react instanta-
neously, nor does it look into the future. The requirement of `no instantaneous reaction'
is dropped in the de�nition of weak inertia. This weaker formulation of inertia induces a
weaker formulation of causality:

Characterisation 9.2 Weak causality

a. wcaus:P , winert :P ^ closed :P

b. wcausal :P , ?? 6= P = t(Q : Q�P ^ wcaus:Q : Q)

123

124 CHAPTER 9. WEAK CAUSALITY

In combination with typing, the notation `
w
�' is used to denote that the proc is weakly

causal in the sense of 9.2b
2

The following section summarises a number of properties concerning the new notion of
weak causality.

9.2 Properties

The property of inertia implies weak inertia. Consequently, causality implies weak causal-
ity:

Property 9.3 Weak causality

wcausal :P (causal :P

2

The proof of Property 9.3, being straightforward, is omitted. In Section 8.1 it was shown
that several basic procs like I and the projections are not causal (assuming the reasonable
axiom >> 6= I). It will not come as a surprise, though, that these functions are weakly
causal.
The weak causality of the identity i and the projections is stated and proved in the following
property. For reasons of typing, we show a stronger result for eqsp:

Property 9.4 Weak causality of constants

a. wcausal :i

b. wcausal :�

c. wcausal :�

d. 8(X : X 2D : X � eqsp 2 I
w
� I)

Proof:
Because i is an non-empty interface, weak causality follows from closed :i. As an example,
we show 9.4b. Because � is functional, we only have to show that it is wcaus; this follows
from a result similar to Proposition 7.34a. The proof of 9.4b is shown �rst:

winert :�

= f Characterisation 9.1 g
8(t :: eqar u � � <t ��[v <t)

(f plat calculus; Proposition 6.11d g
8(t :: � � <t k <t � �[v <t)

= f Parallel computation 3.32c g
8(t :: <t � � � I k (<t)> � �[v <t)

9.2. PROPERTIES 125

(f I k (<t)> v I g
8(t :: <t �� ��[v <t)

= f � is a function: � ��[v I g
True

Non-emptiness of � is shown by contraposition:

�=??
) f sequential composition is ??-strict g

� � >>4>> = ??
= f Split computation 3.13a g

>> u >> �>> = ??
= f Theorem 3.6; >> is unit of cap g

>>=??
= f Theorem 3.20b g

False

And, �nally, �> = I k I is closed under limits:

u(t :: >> � I k I � <t)
= f Proposition 6.11d g

u(t :: >> � <t k <t)
= f Theorem 3.30c; domains distribute over parallel composition g

u(t :: >> � (<t)> k (<t)>)
v f Theorem 3.30d g

u(t :: >> � I k I)
= f plat calculus g

>> � I k I

We continue with 9.4d. Let X be an element of D, De�nition 7.7. The proc X � eqsp is too
non-deterministic to be causal in the sense of 7.20 or 9.2a. Furthermore, because the proc
connects two supports and consequently exhibits instantaneous response, it is not causal
in the sense of Characterisation 7.33 either. We will show that X � eqsp is weakly causal
according to Characterisation 9.2b.
The proc X � eqsp has to be decomposed into polyfunctions which return, given some
chronicle g, a chronicle f with arity X and the same support as g: sp:f = sp:g. For that
purpose we de�ne, just like the set of chronicles C, Characterisation 4.13, a set E containing
functions with their support equal to T . For the basis, the set bs is de�ned as follows:

bs , f x j x 2 � T ^ sp:x= T g
For all predicates Pr on relations, the following equivalence holds:

8(x : x2E : Pr:x)
�

8(x : x2 bs : Pr:x)
^ 8(y; z : y 2E ^ z 2E ^ Pr:y ^ Pr:z : Pr:(yNz))

126 CHAPTER 9. WEAK CAUSALITY

We let the identi�er f range over E with arity X. A chronicle can be constructed by re-
stricting the support of f to a well-ordered set, and brushing away the remaining messages.
To obtain this behaviour, the function [f] is de�ned point-wise for all f and g:

f h[f]i g
�

f = f � sp:g [wipe � f �gsp:g
where gsp:g = :sp:g \T . It follows from this de�nition that the proc [f] is total. The
function f �xes the output arity of f to X. It follows that f h[f]i g implies sp:f = sp:g. On
the other hand, a function f 2E such that f h[f]i g can be constructed for any pair f 2X
and g with sp:f = sp:g: replace all no-messages in f by real messages. This motivates the
claim thatX � eqsp can be written as the union of all [f]-structures: X � eqsp = t(f :: [f]).
The [f]-structures are re�nements of X � eqsp, total and weakly causal in the sense of 9.2a.
Consequently, according to Characterisation 9.2b, X � eqsp is total and weakly causal.
Now that weak causality is proved for X � eqsp, we shall have no further use for the set E
or the formulation t(f :: [f])
2

The kind of strengthened result such as the one proved in Property 9.4d occurs often when
the main proc (in this case eqsp) absorbs eqsp: because of the absorption, all informa-
tion about the arities is lost. We will encounter similar properties in Section 12.3 and
Chapter 14.
With the notion of weak causality, Proposition 8.7 can be strengthened by weakening the
assumptions on the arguments:

Property 9.5 Sequential composition

causal :(P �Q)
(

((causal :P ^wcausal :Q) _ (wcausal :P ^ causal :Q)) ^ P>wQ<

^ (detar :P [_ detar :Q)

2

The proof of this property is almost an exact copy of the proofs of Proposition 8.5 and
Proposition 8.7. An easy exercise is the preservation of weak causality by several compo-
sitions. Let S be a non-empty set of procs:

Property 9.6 Preservation of weak causality

a. wcausal :(tS) (8(P : P 2S : P 2 I
w
� A)

b. wcausal :(tS)
(

8(P;Q : P;Q2S : wcausal :P ^ (P 6=Q) P � eqar �Q[= ??))

9.2. PROPERTIES 127

c. wcausal :(P �Q)
(

wcausal :P ^ wcausal :Q ^ P>wQ< ^ (detar :P [_ detar :Q)

d. wcausal :(P kQ) (wcausal :P ^ wcausal :Q

e. wcausal :(P 4Q) (wcausal :P ^ wcausal :Q ^ P �Q[6= ??
2

Weak causality of the elements in D is a consequence of Properties 9.4a and 9.6d. This
in turn implies weak causality of I by Lemma 7.8a and Property 9.6b. It follows from
Properties 9.4d and 9.6a that the proc eqsp is weakly causal:

Theorem 9.7 Weak causality

a. 8(X : X 2D : wcausal :X)

b. wcausal :I

c. wcausal :eqsp

2

Weak causality of P � for weakly causal P is highly unlikely, because closedness of P � de-
pends on (plain) inertia of P . It is exactly this part that is dropped in the de�nition of
weak causality. This concludes the theoretical discussion on causality and many preserva-
tion properties.

128 CHAPTER 9. WEAK CAUSALITY

Summarising the results

It has been shown that the class of causal processes is a very important one: a feedback loop
preserves polyfunctionality and totality of its argument proc if it is causal. Furthermore,
(weak) causality itself is preserved (under certain reasonable conditions) by the composition
constructions of the relational algebra.
For completeness, we record all the important results derived in the previous chapters in a
new axiom. The notion of caus, Characterisation 7.20, only served as an auxiliary notion
to get the �nal one: causal, Characterisation 7.33. Therefore, caus will not occur in the
list below.

Axiom 9.8

First, the constants of the relational algebra:

a. :(wcausal :??)

b. causal :>>

c. wcausal :�

d. wcausal :�

Second, some new primitives of the calculus:

e. wcausal :i

f. causal :eqar

g. 8(X : X 2D : X � eqsp 2 I
w
� I)

Third, the preservation rules of causality for several composition constructions. For non-
empty set S of procs:

h. causal :(tS) (8(P : P 2S : P 2 I
c
� A)

i. causal :(tS)
(

8(P;Q : P;Q2S : causal :P ^ (P 6=Q) P � eqar �Q[= ??))

129

130 SUMMARISING THE RESULTS

j. causal :(P �Q)
(

((causal :P ^wcausal :Q) _ (wcausal :P ^ causal :Q)) ^ P>wQ<

^ (detar :P [_ detar :Q)

k. causal :(P kQ) (causal :P ^ causal :Q

l. causal :(P 4Q) (causal :P ^ causal :Q ^ P �Q[6= ??

m. causal :P � (P 2 A0 c
� B kA0

Fourth, the connection between causality and weak causality:

n. wcausal :P (causal :P

Fifth, the preservation rules of weak causality for several composition constructions. For
non-empty set S of procs:

o. wcausal :(tS) (8(P : P 2S : P 2 I
w
� A)

p. wcausal :(tS)
(

8(P;Q : P;Q2S : wcausal :P ^ (P 6=Q) P � eqar �Q[= ??))

q. wcausal :(P �Q)
(

wcausal :P ^ wcausal :Q ^ P>wQ< ^ (detar :P [_ detar :Q)

r. wcausal :(P kQ) (wcausal :P ^ wcausal :Q

s. wcausal :(P 4Q) (wcausal :P ^ wcausal :Q ^ P �Q[6= ??
And �nally, the properties it was all about:

t. F � is a polyfunction (causal :F

u. P � 2 A�B (P 2 A0 c
� B kA0

2

Compare these results with the wishes we started with in Chapter 7. Axiom 9.8a is included
to be able to infer that (weakly) causal procs are non-empty.

Part IV

Basic procs

131

Chapter 10

Possible delay, Delay, Pre�x

In this chapter the procs pdly, dly and pref are introduced. Those procs make it possible
to compare chronicles in several ways. Important properties such as commutation with
postcompose-structures and causality are shown to be correct.
It should be noted that the informal interpretation of the procs as given in this chapter
and subsequent chapters depends on the assumption T isomorphic to R. However, almost
all results do not depend on this isomorphism. The few that do will be tagged.

10.1 Possible delay

One of the most important procs is a proc expressing the fact that the output chronicle
is a delayed version of the input chronicle. This behaviour is exhibited by, for example,
a (not too short) wire. If a wire is allowed to have length zero, the proc might respond
instantaneously. This behaviour is exhibited by the proc pdly . In the next section a real
delay dly will be considered.
To model a possibly delaying proc, we �rst de�ne the predicate pd:

Characterisation 10.1 pd

pd :�
�

��6 ^ oiso:�

2

By convention, the identi�ers � and �0 range over the functions satisfying pd. The property
of pd :� describes that � is a lessening order-isomorphism on T . The identity T satis�es
the condition pd. Moreover, pd is preserved by composition:

Proposition 10.2

a. pd :T

b. 9(�; �0 :: � � �0 = r) � pd :r

2

133

134 CHAPTER 10. POSSIBLE DELAY, DELAY, PREFIX

Observe that 10.2b expresses more than just preservation by composition: the implication
(follows straightforwardly from 10.2a and is therefore for free. The proc �� has the
following interpretation in the model: f h��i g � f = g � �. Or, in words: f is a `�-
delayed' version of g (because � is lessening). The proc �� has some useful properties:

Proposition 10.3

Let & be an order-isomorphism

a. �& � <(& � t) = <t � �&

b. �& � >(& � t) = >t � �&

c. �& � r� = r� � �&

Proof:
First:

�& � <(& � t) = <t � �&
= f Characterisation 6.10a g

�& � �((< � & � t)�) = �((< � t)�) � �&
= f & is an isomorphism: compositionality of precompose g

�((< � & � t)� � &) = �(& � (< � t)�)
(f Leibniz g

(< � & � t)� � & = & � (< � t)�

= f De�nition 3.29 g
(< � & � t �>\ I) � & = & � (< � t �>\ I)

= f Theorem 3.23b; & is an injection: Theorem 3.35a g
< � & � t �>\ & = & �< � t �>\ &

(f Leibniz g
< � & = & �<

= f & is monotonic g
True

In the proof of the third statement we use the fact

a is well-ordered
�

8(& 0 : oiso:& 0 : (a � & 0)� is well-ordered)

This guarantees that h � & is a chronicle whenever h is.

�& � r� = r� � �&
= f interpretation in the model g

8(f; g :: 9(h :: f h�&i h ^ h hr�i g) � 9(h0 :: f hr�ih0 ^ h0 h�&i g))
= f De�nition 5.1; & 6=?: Characterisation 6.2 g

8(f; g :: 9(h :: f � h � & ^ h � r � g) � 9(h0 :: f � r � h0 ^ h0 � g � &))
= f & is an isomorphism: relational calculus g

8(f; g :: 9(h :: f � &�1 = h ^ h � r � g) � 9(h0 :: f � r � h0 ^ h0 = g � &))

10.1. POSSIBLE DELAY 135

= f h and h0 are chronicles: predicate calculus g
8(f; g :: f � &�1 � r � g � f � r � g � &)

= f & is a total function: relational calculus g
8(f; g :: f � r � g � & � f � r � g � &)

= f reexivity g
True

2

Now, pdly is the union over all such ��-structures, modelling the property that there might
be some (arbitrary but �nite) delay:

Characterisation 10.4 Possible delay

pdly , t(� :: ��)

2

The use of the word `possible' stems from the property ��6 of �: since 6 is reexive, it
is possible that � is also reexive (on part of its domain). This can result in (momentarily)
instantaneous response of ��.
Propositions 10.2 and 10.3 give rise to corresponding properties about pdly. This paves the
way for an axiomatisation of pdly . One of the main properties of pdly is that it commutes
with postcompose structures:

Property 10.5 Possible delay

a. I v pdly

b. pdly � pdly = pdly

c. pdly � r� = r� � pdly

d. pdly � I k I v pdly k pdly

Proof:
Only the second and the fourth property are handled. The inclusion pdly � pdly w pdly of
10.5b follows from reexivity of pdly , 10.5a.

pdly � pdly
= f Characterisation 10.4 g

t(� :: ��) � t(�0 :: ��0)
= f cupjunctivity g

t(�; �0 :: �� � ��0)
v f Proposition 6.3d g

t(�; �0 :: �(�0 � �))
= f introducing a dummy g

t(r; �; �0 : �0 � � = r : �r)
= f generalised range disjunction g

136 CHAPTER 10. POSSIBLE DELAY, DELAY, PREFIX

t(r : 9(�; �0 :: �0 � � = r) : �r)
= f Proposition 10.2b g

t(r : pd :r : �r)
= f Characterisation 10.4 g

pdly

The inclusion that occurs in the above proof is an equality: because � and �0 are order-
isomorphisms, precompose preserves composition. In the proof of the fourth property, we
use the fact that the projections in the algebra of procs are just the lifted projections from
the algebra of chronicles: �=�

� and �=�
�, Axioms 6.15g and 6.15h. This enables us to

exploit Property 10.5c:

pdly k pdly
= f De�nition 3.10 g

�[� pdly �� u �[� pdly ��

= f Axioms 6.15g and 6.15f: �[=(��1)�; Property 10.5c g
pdly ��[�� u pdly ��[��

w f monotonicity g
pdly � (�[�� u �[��)

= f De�nition 3.10 g
pdly � I k I

2

The proc pdly represents a one-to-one correspondence between the input and the output
chronicle in the sense that each message from one chronicle is related to exactly one message
from the other chronicle. The proc pdly[� pdly abstracts from the timing.

10.2 Delay

This section discusses the delaying proc dly . Because several of its properties are similar
to corresponding properties of pdly , proofs are shortened. To model a delaying proc, the
function dl is de�ned �rst:

Characterisation 10.6 dl

dl :�
�

� �< ^ oiso:�

2

We let the identi�ers � and � 0 range over the functions satisfying dl. Compared to Char-
acterisation 10.1, we dropped the part that � is allowed to be reexive (on part of its
domain). This is expressed most clearly by the fact that T is not dl. We do, however,
have that dl implies pd.

10.2. DELAY 137

The dual of Proposition 10.2 becomes:

Proposition 10.7

a. dl :�) pd :�

b. 9(�; � 0 :: � � � 0 = r)) dl :r

c. 9(�; � :: � � � = r) � dl :r

2

To get something similar to Proposition 10.2b, we need a property which states that a
dl-function can be decomposed into two other dl-functions. It is clear that this is a false
statement in Z which is one of the models for T . It is, however, a true statement in R. In
this set one can show that a dl-function � can be decomposed:

9(� 0; � 00 :: � 0 � � 00 = �)

This is a non-trivial result for which Bolzano's Theorem is needed, see Apostol [Apo67].
Recall that a closed in�nite chain (S;�) has all limits of bounded increasing sequences,
and that the strict relation � is total and surjective on S. We call a closed in�nite chain
(S;�) continuous if the chain is isomorphic to the chain of reals R.
What we can do next is impose the assumption of continuity on T . But then we restrict
the applicability of the calculus signi�cantly because all discrete models are cancelled; that
is not the objective. What we will do is the following: we will use the continuity of T
whenever it is needed, and tag (all results depending on) the continuity assumption with
the symbol � in the left margin.

Assumption 10.8 Continuous time domain T
� The closed in�nite chain (T ;6) is isomorphic to the chain of reals R

2

We continue with the de�nition of the proc dly . The proc dly is the union over all �� -
structures, modelling the property that there is some (arbitrary but �nite) delay:

Characterisation 10.9 Delay

dly , t(� :: ��)

2

A shorter de�nition for dl would have been dl :� � arch:��1, see Characterisation 7.3. The
equivalence is no coincidence: it is what makes it possible to show the causality of dly .
This is exactly the intuitive idea we had about causal procs: every physical machine has
some delay in its response to input (Section 7.1).
Proposition 10.7 and Proposition 10.3 result in a set of properties for dly which are similar
to those stated in Property 10.5 for pdly . In contrast to pdly , the proc dly is not reexive.

138 CHAPTER 10. POSSIBLE DELAY, DELAY, PREFIX

Observe the tagged Property 10.10b:

Property 10.10 Delay

a. dly v pdly

b.� dly � dly = dly

c. dly � r� = r� � dly

d. dly � I k I v dly k dly

e. dly � pdly = dly = pdly � dly

Proof:
To prove 10.10b, in particular the inclusion w, the assumption of continuity is needed.
Moreover, the equality �� � �� 0 = �(� 0 � �) appears. It is valid because � (or � 0) is an order-
isomorphism:

dly � dly
= f Characterisation 10.9 g

t(� :: ��) � t(� 0 :: �� 0)
= f cupjunctivity g

t(�; � 0 :: �� � �� 0)
= f � and � 0 are isomorphisms: compositionality of precompose g

t(�; � 0 :: �(� 0 � �))
= f introducing a dummy g

t(r; �; � 0 : � 0 � � = r : �r)
= f generalised range disjunction g

t(r : 9(�; � 0 :: � 0 � � = r) : �r)
= f Assumption 10.8 g

t(r : dl :r : �r)
= f Characterisation 10.9 g

dly

2

Just like the proc pdly, dly also represents a one-to-one correspondence between the input
and the output chronicle. This time in the sense that each message from the input chronicle
is related to exactly one message occurring later on the output chronicle.

10.3 Pre�x

As pointed out at the end of Section 10.1, pdly represents a one-to-one correspondence. It
may be desirable not to have this strong connection. To express that one chronicle is a

10.3. PREFIX 139

pre�x of another chronicle, the proc pref is de�ned. First, we de�ne the more primitive
proc cut .

10.3.1 Cut

This subsection characterises the proc cut . The intention is to use this proc as a building
block for another proc, pref , which will be de�ned in the next subsection. All properties
of the proc pref lean heavily on corresponding properties of cut .

Characterisation 10.11 Cut

cut , t(t :: <t u >t �wipe�)

2

This proc chops its input chronicle at some moment t. All messages which occurred before
moment t appear on the output chronicle; all messages which occurred on or after moment
t are wiped, that is, no-messages (of the correct type) are produced instead. This is
motivated by the interpretation of cut in the model:

f hcuti g
�

9(t :: f = g � (< � t)� [wipe � g � (> � t)�)

From this interpretation, one expects that delaying the input chronicle and then cutting at
some moment is exactly the same as �rst cutting the input chronicle on an earlier moment
and then delaying the output. It is concisely formulated as cut � pdly = pdly � cut . This
proposition is proved as follows:

Proposition 10.12

Let & be an order-isomorphism.

a. (<t u >t �wipe�) � �& = �& � (<(& � t) u >(& � t) �wipe�)

b. cut � �& = �& � cut

c. cut � pdly = pdly � cut

d. cut � dly = dly � cut

Proof:

(<t u >t �wipe�) � �&
= f & is total: Proposition 6.4a and Theorem 3.35a g

<t � �& u >t �wipe� � �&
= f Proposition 10.3c g

<t � �& u >t � �& �wipe�

= f Propositions 10.3a and 10.3b g
�& � <(& � t) u �& � >(& � t) �wipe�

140 CHAPTER 10. POSSIBLE DELAY, DELAY, PREFIX

= f & is surjective: Proposition 6.4b and Theorem 3.35a g
�& � (<(& � t) u >(& � t) �wipe�)

Proposition 10.12b follows straightforwardly from 10.12a:

cut � �&
= f Characterisation 10.11; cupjunctivity g

t(t :: (<t u >t �wipe�) � �&)
= f Proposition 10.12a g

t(t :: �& � (<(& � t) u >(& � t) �wipe�))
= f cupjunctivity g

�& � t(t :: <(& � t) u >(& � t) �wipe�)
= f & is an isomorphism on T : dummy change g

�& � t(t0 :: <t0 u >t0 �wipe�)
= f Characterisation 10.11 g

�& � cut

The third and fourth statement directly follow from the second one and the de�nitions of
pdly and dly , Characterisations 10.4 and 10.9
2

More di�cult is the idempotency of cut . The details of the proof are omitted. For 10.13a
we only remark that a case analysis is made: t6 t0 or t> t0, in order to use Proposition 6.12.
Performing the proof in the model (at the level of chronicles) is less di�cult.

Proposition 10.13

a. (<t u >t �wipe�) � (<t0 u >t0 �wipe�) = (<tt <t0) u (>tu >t0) � wipe�

b. cut � cut = cut

Proof:
For 10.13b, we use the instrument of diagonalisation:

cut � cut
= f Characterisation 10.11 g

t(t :: <t u >t �wipe�) � t(t0 :: <t0 u >t0 �wipe�)
= f cupjunctivity g

t(t; t0 :: (<t u >t �wipe�) � (<t0 u >t0 �wipe�))
= f Proposition 10.13a g

t(t; t0 :: (<tt <t0) u (>tu >t0) � wipe�)
= f Proposition 6.13c: diagonalisation g

t(t00 :: <t00 u >t00 �wipe�)
= f Characterisation 10.11 g

cut

2

10.3. PREFIX 141

The interaction of cut with postcompose structures is even more di�cult. There, the
Axiom of Choice for Chronicles is needed. Observe the similarities between the antecedent
and the consequent in the following result:

Proposition 10.14

a. r� � cut w cut � r� (r �wipe � wipe � r

b. r� � cut � (r�)> v cut � r� (r �wipe � r� � wipe � r

2

The second property is the more di�cult one to prove. We need the Axiom of Choice 4.20.
Because the proof is in terms of the model and not illuminating at all, it is relegated to
Appendix B.
The condition r �wipe � wipe � r is satis�ed by, for example, strict relations. Informally,
a strict relation r satis�es a hri b) nma hrinmb, where nmx is some tuple of nm with the
same arity as x. That is, strictness of r implies r � wipe � r �wipe�1. So for strict r we
have that r� (weakly) commutes with cut :

strict:r
) f interpretation of a strict relation g

r � wipe � r �wipe�1

= f wipe is a total function g
r �wipe � wipe � r

) f Proposition 10.14a g
r� � cut w cut � r�

10.3.2 Pre�x de�ned

We go on with the proc pref , which uses the newly introduced proc cut :

Characterisation 10.15 Pre�x

pref , pdly � (cut t I)
2

For f hpref i g we have that f is a (possibly) chopped, (possibly) delayed version of g. This
proc pref will play a fundamental role in the de�nition of a bu�er which delivers messages
on request: when no more requests arrive, no more output will be generated, despite the
fact that there might be more input. Then, the output is a pre�x of the input.
The proc pref has a few nice properties:

Property 10.16 Pre�x

a. I v pref

b. pdly v pref

142 CHAPTER 10. POSSIBLE DELAY, DELAY, PREFIX

c. dly v pref

d. pdly � pref = pref = pref � pdly

e. dly � pref = pref � dly

f. pref � pref = pref

Proof:
The second property follows from the de�nition and from reexivity of cut t I. Further-
more, 10.16a and 10.16c follow from 10.16b and Properties 10.5a and 10.10a. For the
fourth we calculate:

pref � pdly
= f Characterisation 10.15 g

pdly � (cut t I) � pdly
= f cupjunctivity g

pdly � (cut � pdly t pdly)
= f Proposition 10.12c g

pdly � (pdly � cut t pdly)
= f cupjunctivity g

pdly � pdly � (cut t I)
= f Property 10.5b g

pdly � (cut t I)
= f Characterisation 10.15 g

pref

Property 10.16e follows in a similar way. In fact, both sides equal dly � (cut t I). Prop-
erty 10.16f is derived from Proposition 10.13b
2

The more problematic property of pref is the commutation with postcompose. Fortunately,
most of the work has been done in the previous section about cut :

Property 10.17 Commutation with postcompose

a. r� � pref w pref � r� (r �wipe � wipe � r

b. r� � pref � (r�)> v pref � r� (r �wipe � r� � wipe � r

c. r� � pref � (r�)> = pref � r� (r �wipe � r� = wipe � r

Proof:
Only statement 10.17a is shown:

r� � pref w pref � r�

= f Characterisation 10.15 g

10.4. CAUSALITY 143

r� � pdly � (cut t I) w pdly � (cut t I) � r�

(f Property 10.5c; monotonicity g
r� � (cut t I) w (cut t I) � r�

= f cupjunctivity g
r� � cut t r� w cut � r� t r�

(f monotonicity g
r� � cut w cut � r�

(f Proposition 10.14a g
r �wipe � wipe � r

2

The total relation es commutes with wipe, Theorem 5.17e. Therefore, the total proc eqsp,
De�nition 5.16, commutes with pref . In the table below we record all combinations of the
proc eqsp and the procs introduced in this chapter:

Theorem 10.18 Combinations

P �Q Q eqsp pdly dly pref
P
eqsp eqsp pdly � eqsp dly � eqsp pref � eqsp
pdly eqsp � pdly pdly dly pref
dly eqsp � dly dly dly pref � dly
pref eqsp � pref pref dly � pref pref

2

So much for the commutation properties of the four procs. Now we turn our attention to
the interesting topic of causality.

10.4 Causality

In Chapters 7 and 9, the notions of causality and weak causality were introduced. It was
motivated why these properties play an important role in distributed programming; in
particular with respect to the feedback structure. Chapter 8 recorded causality properties
of the constants of the calculus, and presented several preservation rules.
The three new primitives introduced in this chapter also satisfy the property of (weak)
causality. The property that is proved is:

Property 10.19 Causality of pdly, dly and pref

a. wcausal :pdly

b. causal :dly

c. wcausal :pref

144 CHAPTER 10. POSSIBLE DELAY, DELAY, PREFIX

Proof:
To establish 10.19a, we �rst show that �� (where pd :�, Characterisation 10.1) is weakly
causal in the sense of Characterisation 9.2. For winert :�� we calculate for all t:

eqar u �� � <t � (��)[

v f monotonicity; Proposition 6.3f g
�� � <t � �(��1)

= f ��1 is an order-iso: Proposition 10.3a g
�� � �(��1) � <(��1 � t)

= f Proposition 6.3f g
�� � (��)[� <(��1 � t)

v f � is total: Proposition 6.4a, i.e., �� � (��)[v I g
<(��1 � t)

v f ��6 � ��1�>: Proposition 7.5 g
<t

For the property of closedness we remark that precompose structures never equal ??. The
second conjunct of Characterisation 7.17 is veri�ed next. It su�ces to show totality of ��:

>> � ��
= f Theorem 3.6 g

>> �>> � ��
= f >>=>�; Proposition 10.3c g

>> � �� �>>
= f �� 6=??: Cone Rule 3.19 g

>>
The equality >> � �� = >> equivales (��)>= I. Finally, causality of pdly in the sense of
Characterisation 7.33 follows straightforwardly from Characterisation 10.4 and the causal-
ity of �� derived above.
We already remarked that dl :� � arch:��1. Therefore, to prove 10.19b, we show that ��1

is a candidate for the archimedean function required in Characterisation 7.13:

eqar u �� � <t � (��)[

v f monotonicity; Proposition 6.3f g
�� � <t � �(��1)

= f ��1 is an order-iso: Proposition 10.3a g
�� � �(��1) � <(��1 � t)

v f Proposition 6.3f; � is total: Proposition 6.4a g
<(��1 � t)

This shows inert :�� . The proof of closedness of �� and of causality of dly are copies of the
corresponding proofs for pdly. The weak causality of pref boils down to weak causality of
cut :

wcausal :pref
= f Characterisation 10.15 g

10.4. CAUSALITY 145

wcausal :(pdly � (cut t I))
(f pdly>= I, pdly v eqar : Axiom 9.8q g

wcausal :pdly ^ wcausal :(cut t I)
(f Property 10.19a; I>= I: Axiom 9.8o g

wcausal :cut ^ cut>= I ^ wcausal :I
= f Theorem 9.7b g

wcausal :cut ^ cut>= I

By de�nition, cut can be decomposed into (<t u >t �wipe�)-structures for all t. So it suf-
�ces to show, for all t, totality and causality of <t u >t �wipe� in the sense of Characteri-
sation 7.20. Several properties of wipe occur in the following calculations:

(<t u >t �wipe�)>

= f (P u Q �R)> = (Q[�P u R)> g
((>t)[� <t u wipe�)>

= f Propositions 6.11c, 6.11f and 6.11g g
(eqar uwipe�)>

= f corollary of Theorem 5.14: wipe�v eqar g
(wipe�)>

= f properties wipe: wipe� is total g
I

Therefore, cut is total on I. Because I is closed, I>= I, it follows that cut is also closed.
Finally, weak inertia of <t u >t �wipe� is proved for all t0:

eqar u (<t u >t �wipe�) � <t0 � (<t u >t �wipe�)[

v f monotonicity g
<t � <t0 � <t u >t �wipe� � <t0 � (>t �wipe�)[

v f property wipe: wipe� � <t0 v <t0 �wipe�; reverse g
<t � <t0 � <t u >t � <t0 �wipe� � (wipe�)[� >t

v f property wipe: wipe� is a function g
<t � <t0 � <t u >t � <t0 � >t

= f Proposition 6.13a; Propositions 6.11f and 6.11b g
<t � <t0 u >t � <t0

= f Characterisation 6.10; Proposition 6.8 g
�((<� t)� � (< � t0)�) u �((>� t)� � (< � t0)�)

= f Proposition 6.3b; cupjunctivity g
�(((<� t)�[(>� t)�) � (< � t0)�)

= f Proposition 6.9b g
�((< � t0)�)

= f Characterisation 6.10 g
<t0

The property wipe� � <t0 v <t0 �wipe� is easily veri�ed in the model
2

146 CHAPTER 10. POSSIBLE DELAY, DELAY, PREFIX

This concludes the introduction of the three primitive procs pdly , dly and pref . To relate
the procs pdly, pref and eqsp more tightly to each other, two new properties are added to
the calculus.

10.5 New properties

This section introduces two extra properties, connecting the three primitive procs eqsp,
pdly and pref . The �rst property is needed for a correct interpretation of the synchronise
proc, which will be de�ned in the next chapter:

Property 10.20 Induction

I = eqsp u pdly[� pref

2

The property is implied by the assumption in the model that the support of a chronicle is
well-ordered under <. Being well-ordered is in one-to-one correspondence with admitting
induction. The details of the proof are omitted, but the key theorem is: if two well-ordered
sets are isomorphic (implied by eqsp), then there exists only one order-isomorphism which
establishes their similarity, see Cantor [Can97], who listed quite a few results about well-
ordered sets, or Kuratowski & Mostowski [KM68]. In the above case, the mapping turns
out to be a (partial) identity.
Property 10.20 can be rewritten, thereby removing the reverse. This rewriting gives more
insight in the property:

I = eqsp u pdly[� pref
= f eqsp, pdly and pref are all reexive; Characterisation 10.4 g

I w eqsp u t(� :: ��)[� pref
= f cupjunctivity properties; plat calculus g

8(� :: I w eqsp u (��)[� pref)
= f �� and (��)[are functions: monotonicity and Theorem 3.35b g

8(� :: �� w �� � eqsp u pref)
= f eqsp is reexive; ��v pref g

8(� :: �� = �� � eqsp u pref)

We pointed out that eqsp abstracts from the messages, whereas pdly[� pdly abstracts from
the exact timing. If we combine these two procs, we expect to recover the original chronicle.
And indeed, we have that Property 10.20 is equivalent to

I = eqsp u pdly[� pdly ^ pdly = pref u pdly � eqsp

which implies

I = eqsp u pdly[� pdly

This states that if two chronicles have the same support, and if there is a one-to-one
connection between the messages (without reordering), then the two chronicles are equal.

10.5. NEW PROPERTIES 147

Another corollary of Property 10.20 is:

I = eqsp u pref
It is unclear at present whether the conjunction of these last two corollaries is equivalent
to Property 10.20. If true, this will give a nice partition into two properties about the
individual procs pdly and pref .
A second additional property expresses that any two elements of C are comparable with
respect to the number of messages they are carrying. First, two preorders on chronicles
are de�ned:

De�nition 10.21 Pre-order

a. 6# , pdly[� eqsp � pref

b. ># , (6#)[

2

The interpretation of proc 6# is: f h6#i g � `#f 6#g'. We put the interpretation with
function # between quotes because this function is not formally de�ned for chronicles.
Informally, it stands for the ordinal number of the support of the chronicle under consid-
eration.

Property 10.22 Total pre-order

� 6# t># = >>
2

The property states that the pre-order 6# on the set of chronicles C is total. Again, the
justi�cation of this property is a theorem in Kuratowski & Mostowski [KM68]. It states
that for two well-ordered sets it is either the case that they are isomorphic, or one is
isomorphic to an initial segment of the other.
The property is not valid for T isomorphic to Z: the proc pdly[� pdly is not capable to
relate each pair of chronicles with isomorphic supports. This is due to the restrictive
de�nition of pdly : the lessening order-isomorphisms in Z are all of the form �n for some
n2N.
The three procs pdly , dly and pref will play a fundamental role in de�ning new procs and
stating properties. The proc cut was used only as a subcomponent of the proc pref and
will not occur as an individual proc in the chapters that follow. Only the derived properties
of the three procs will be used; the de�nitions (in terms of precompose and chronicles) are
not important anymore. From now on, as announced before, the procs are our �rst-class
citizens.

148 CHAPTER 10. POSSIBLE DELAY, DELAY, PREFIX

Chapter 11

Synchronise

In this chapter, we de�ne and investigate a synchronisation proc. First, we give an expla-
nation of the proc in the model. Then, the de�nition is motivated, step by step.

11.1 Synchronise explained

The proc Sync takes two chronicles f and g as input, and synchronises the messages that
occur there. To explain the behaviour of Sync, suppose that the proc relates the chronicles
f , g, h and j in the following way:

hNj hSynci f Ng
The output consists of the synchronised pairs, that is, sp:h= sp:j. Sync produces as many
pairs as possible (without duplicating or loosing messages). So, the number of synchronised
output pairs is the minimum of the number of messages on both input channels. The proc
Sync is non-deterministic in the sense that the output can be delayed: once two input
messages are coupled into one pair, Sync can wait for a while before this pair is sent to
the output. Messages on one channel keep their original order.

11.2 Synchronise de�ned

From the explanation we conclude that chronicle h is a pre�x of chronicle f :
h gets messages from f (without duplication, dropping or reordering messages). Secondly,
h can be delayed, partly due to the necessity that f has to be synchronised with (a slow)
g, partly due the possibility that Sync slows down the coupled pairs. Furthermore, it can
be the case that f contains more messages than g, in which case h does not get all the
messages from chronicle f .
A similar argument justi�es the observation that j is a pre�x of g. A �rst try for the
de�nition of Sync is:

Sync = pref k pref

149

150 CHAPTER 11. SYNCHRONISE

But we can do better. Notice that with this de�nition it is always possible that two chroni-
cles containing no-messages are produced. These two chronicles are perfectly synchronised,
and they are also pre�xes of the two input chronicles. To re�ne this erroneous �rst guess
assume that f contains more messages than g. Then, it follows that h is a real pre�x of
f , but j is a delayed version of g. This excludes the production of no messages if there is
input. By symmetry we get a second guess:

Sync = pref k pdly t pdly k pref

The most important aspect of Sync is not captured, yet: the output pairs are not necessarily
synchronised. For that reason we introduce the interface synp :

De�nition 11.1 Identity on synchronised pairs

synp , (I4eqsp)<

2

In the model synp reads: hNj hsynpi hNj � sp:h= sp:j. In words this means: synp is
the identity on synchronised pairs. So �nally, we can de�ne the proc Sync:

De�nition 11.2 Synchronise

Sync , synp � (pref k pdly t pdly k pref)

2

For completeness, the interpretation of Sync in the model is given:

hNj hSynci f Ng
�

sp:h= sp:j ^ ((h hpref i f ^ j hpdlyi g) _ (h hpdlyi f ^ j hpref i g))
The following section will investigate this proc in detail.

11.3 Theorems

In the calculations that follow we will frequently use the fact that the proc pdly commutes
with postcompose, Property 10.5c. In particular, pdly commutes with synp and the pro-
jections � and � (because synp = ((I Nes)�)�, �=�

� and �=�
�). Having stated these

properties, the rest of this chapter mainly contains derivable theorems.

Theorem 11.3 Synchronise

a. Sync 2 synp � I k I

b. synpv Sync

c. pdly � Sync = Sync � pdly = Sync

d. Sync � I k pdly = Sync � pdly k I = Sync � pdly k pdly = Sync

11.3. THEOREMS 151

Proof:
The �rst theorem is almost too trivial:

synp � Sync � I k I
= f De�nition 11.2 g

synp � synp � (pref k pdly t pdly k pref) � I k I
= f synp is an interface: synp � synp = synp; cupjunctivity g

synp � (pref k pdly � I k I t pdly k pref � I k I)
= f Parallel-parallel fusion 3.12b; I is the identity g

synp � (pref k pdly t pdly k pref)
= f De�nition 11.2 g

Sync

The second theorem, which states reexivity of Sync on synp , is proved as follows:

Sync
= f De�nition 11.2 g

synp � (pref k pdly t pdly k pref)
w f Properties 10.5a and 10.16a g

synp � (I k I t I k I)
= f synp v I k I: interfaces g

synp

The proofs of the third and fourth statements exploit the corresponding absorption prop-
erties of pref and pdly:

pdly � Sync
= f De�nition 11.2 g

pdly � synp � (pref k pdly t pdly k pref)
= f synp = ((I Nes)�)�: Property 10.5c; cupjunctivity g

synp � (pdly � pref k pdly t pdly � pdly k pref)
v f Property 10.5d g

synp � (pdly k pdly � pref k pdly t pdly k pdly � pdly k pref)
= f Parallel-parallel fusion 3.12b g

synp � ((pdly � pref) k (pdly � pdly) t (pdly � pdly) k (pdly � pref))
= f Properties 10.5b and 10.16d g

synp � (pref k pdly t pdly k pref)
= f De�nition 11.2 g

Sync
v f Property 10.5a g

pdly � Sync

The proof of the second equality of statement 11.3c follows the same structure. For the
fourth proof obligation we restrict our attention to the equality Sync � pdly k pdly = Sync,

152 CHAPTER 11. SYNCHRONISE

from which all the other equalities follow by reexivity or idempotency of pdly:

Sync � pdly k pdly
= f De�nition 11.2 g

synp � (pref k pdly t pdly k pref) � pdly k pdly
= f cupjunctivity; Parallel-parallel fusion 3.12b g

synp � ((pref � pdly) k (pdly � pdly) t (pdly � pdly) k (pref � pdly))
= f Properties 10.5b and 10.16d g

synp � (pref k pdly t pdly k pref)
= f De�nition 11.2 g

Sync

2

To prove a number of other theorems, we use Property 10.20. The property is fundamental
for a correct interpretation of the synchronise proc. Exploiting this property we can prove
the idempotency of the proc Sync. As a preliminary result it is shown that the only action
of Sync on a chronicle carrying synchronised pairs is a possible delay:

Theorem 11.4 Synchronise

a. Sync � synp = pdly � synp

b. Sync � Sync = Sync

Proof:
Proving the �rst statement boils down to proving that synp � pref k pdly � synp is equal
to pdly � synp. First, two subexpressions are evaluated:

pref k pdly
= f De�nition 3.10 g

�[� pref �� u �[� pdly ��

= f �[=(��1)�: Property 10.5c g
�[� pref �� u pdly ��[��

v f Dedekind g
pdly � (pdly[��[� pref �� u �[��)

= f �=�
�: Property 10.5c and reverse g

pdly � (�[� pdly[� pref �� u �[��)
= f De�nition 3.10 g

pdly � (pdly[� pref) k I

In the next calculation, we use the fact that the procs synp ��[� eqsp and synp ��[� eqsp

11.3. THEOREMS 153

are equal (because they are both equal to eqsp4eqsp):

synp � eqsp k I � synp
= f De�nition 3.10 g

synp � (�[� eqsp �� u �[��) � synp
= f synp is an interface: Corollary 3.27c g

synp ��[� eqsp �� � synp u synp ��[�� � synp
= f synp ��[� eqsp = synp ��[� eqsp g

synp ��[� eqsp �� � synp u synp ��[�� � synp
= f Theorem 5.18a: monotonicity g

synp ��[�� � synp
= f De�nition 3.10 g

synp � >> k I � synp

from which it follows that synp � P k I � synp = synp � (eqsp uP) k I � synp. Then:

synp � pref k pdly � synp
v f �rst calculation above g

synp � pdly � (pdly[� pref) k I � synp
= f synp = ((I Nes)�)�: Property 10.5c g

pdly � synp � (pdly[� pref) k I � synp
= f second calculation above g

pdly � synp � (eqsp u pdly[� pref) k I � synp
= f Property 10.20 g

pdly � synp � I k I � synp
= f synp v I k I: interfaces g

pdly � synp
= f synp is an interface; Property 10.5c g

synp � pdly � synp
v f Property 10.5d g

synp � pdly k pdly � synp
v f Property 10.16b g

synp � pref k pdly � synp

The equality synp � pdly k pref � synp = pdly � synp is derived in a symmetrical way. This
proves statement 11.4a. And �nally:

Sync � Sync
= f Theorem 11.3a g

Sync � synp � Sync
= f Theorem 11.4a g

pdly � synp �Sync
= f Theorem 11.3a g

pdly � Sync
= f Theorem 11.3c g

Sync

2

154 CHAPTER 11. SYNCHRONISE

The inclusion synp � pref k pdly � synp w pdly � synp does not depend on Property 10.20.
This suggests that one inclusion of Theorem 11.4a is independent of this property. And
indeed, we did already prove Sync � synp w pdly � synp , because this inclusion is equivalent
to Syncw synp , Theorem 11.3b.
The last calculations involve the typing of Sync. What is still missing is the totality of
Sync on I k I. It turns out that we need Property 10.22. We can derive, exploiting this
property, the totality of proc Sync on pairs of chronicles:

Theorem 11.5 Typing of Synchronise

� Sync 2 I � I k I

Proof:
The proof involves several theorems about domains:

(synp � pref k pdly)>

= f De�nition 11.1 g
((I4eqsp)< � pref k pdly)>

= f reverse: P>=(P [)<, Theorems 3.11a and 3.26a g
(pref [k pdly[� (I4eqsp)<)<

= f (P �Q<)< = (P �Q)< g
(pref [k pdly[� I4eqsp)<

= f Parallel-split fusion 3.12a g
(pref [4 (pdly[� eqsp))<

= f (P 4Q)< = (I 4 (Q �P [))< g
(I 4 (pdly[� eqsp � pref))<

= f De�nition 10.21 g
(I46#)<

The equality (synp � pdly k pref)> = (I4>#)< is derived in the same way.
Now the proof of Sync> = I k I can be shown:

Sync>

= f De�nition 11.2 g
(synp � (pref k pdly t pdly k pref))>

= f cupjunctivity of composition and domain g
(synp � pref k pdly)> t (synp � pdly k pref)>

= f calculation above g
(I46#)< t (I4>#)<

= f cupjunctivity domain and I4 g
(I 4 (6# t>#))<

= f Property 10.22 g
(I4>>)<

= f Theorems 3.11b and 3.40e g
I k I

2

11.3. THEOREMS 155

In fact, Theorem 11.5 equivales Property 10.22, which follows from the equivalence:

(I4P)< = (I4Q)< � P =Q

This justi�es the remark that `we need Property 10.22'.
A result of Theorems 11.3a, 11.3b and 11.5 is the typing of proc Sync:

Corollary 11.6 Typing Synchronise

� Sync 2 synp � I k I

2

To conclude, we handle the commutation of Sync with postcompose structures. Because
Sync is built from the procs pdly , pref and synp , the commutation of these procs with
postcompose structures will be needed. For pdly and pref we have those results: Prop-
erty 10.5c and Property 10.17. The corresponding property for synp is still missing. For
later use we prove a somewhat stronger result than the one needed in this section:

Theorem 11.7 Equivalences
The following three statements are all (pairwise) equivalent:

a. r�v eqsp

b. synp � r� k I = r� k I � synp

c. eqsp � r� = eqsp � (r�)>

Proof:
The proof is by mutual implication. To prove the implication 11.7a) 11.7b a lemma is
given �rst. It states that the speci�c postcompose structure eqsp k I commutes with the
interface synp :

synp � eqsp k I
= f De�nition 3.10 g

synp � (�[� eqsp �� u �[��)
= f interfaces; synp ��[� eqsp = synp ��[� eqsp g

synp � (�[� eqsp �� u �[��)
= f �[is an injection: Theorem 3.35a g

synp � �[� (eqsp �� u �)
= f synp ��[= eqsp4I; De�nition 3.10, reverse g

eqsp4I � (eqsp4I)[

= f same steps backwards, reversed g
eqsp k I � synp

Then, this is generalised to arbitrary postcompose structures below eqsp, thus establishing
11.7a) 11.7b:

synp � r� k I
= f assumption g

156 CHAPTER 11. SYNCHRONISE

synp � (r� k I u eqsp k I)
= f synp is an interface: Theorem 3.26b g

r� k I u synp � eqsp k I
= f lemma above g

r� k I u eqsp k I � synp
= f synp is an interface: Theorem 3.26b g

(r� k I u eqsp k I) � synp
= f assumption g

r� k I � synp

For the implication 11.7b) 11.7c we calculate:

synp � r� k I = r� k I � synp
) f Leibniz g

� � synp � r� k I � I4>> = � � r� k I � synp � I4>>
= f � � synp = (eqsp4I)[; synp � I4>> = I4eqsp g

(eqsp4I)[� r� k I � I4>> = � � r� k I � I4eqsp
= f Parallel-split fusion 3.12a g

(eqsp4I)[� r�4>> = � � r�4eqsp
= f Axiom 3.10d; Split computation 3.32b g

eqsp � r� = eqsp � (r�)>

And the implication 11.7c) 11.7a follows straightforwardly:

eqsp � r� = eqsp � (r�)>

) f Theorem 3.30d g
eqsp � r� v eqsp

) f Theorem 5.18a g
r�v eqsp

2

The following calculation gives more insight in the condition r�v eqsp. It relates the
condition to a transformation property of r which is easier to check:

Theorem 11.8 Postcompose

r�v eqsp (sm � r = r � sm

Proof:

r�v eqsp
= f De�nition 5.16 g

r� v (sm n (>� sm) \ (sm �>) = sm)�

(f monotonicity of postcompose g
r � sm n (>� sm) \ (sm �>) = sm

= f plat calculus g
r � sm n (>� sm) ^ r � (sm �>) = sm

= f De�nition 3.4 g

11.3. THEOREMS 157

sm � r �>� sm ^ r � sm � sm �>
(f r�> g

sm � r = r � sm

2

The last implication in the proof is actually an equivalence. This shows that es, De�ni-
tion 5.16a, is the greatest relation solving the equation r :: sm � r = r � sm.
The next lemma, which will be used in the �nal chapter, shows an application:

Lemma 11.9

eqsp � I4eqsp = eqsp

Proof:

eqsp � I4eqsp = eqsp
= f I4eqsp = (I Nes)�; (I4eqsp)> = I g

eqsp � (I Nes)� = eqsp � ((I Nes)�)>
(f Theorems 11.7 and 11.8 g

sm � I Nes = I Nes � sm
= f De�nition 4.4: cupjunctivity; De�nition 4.3: msg � I �I = ? g

sm �I � I Nes [I � sm � I Nes = I Nes � sm [I Nes � sm
= f Product-split fusion 3.12a; sm is identity: distribution g

sm Nes [I N (sm � es) = sm Nes [I N (es � sm)
= f Theorem 5.17d g

True

2

Now we can state and prove the commutation property of Sync with postcompose:

Theorem 11.10 Commutation with postcompose

a. r� k s� � Sync w Sync � r� k s�

(
r � sm = sm � r ^ r �wipe � wipe � r
^ s � sm = sm � s ^ s �wipe � wipe � s

b. r� k s� � Sync � (r� k s�)> v Sync � r� k s�

(
r � sm = sm � r ^ r �wipe � r� � wipe � r
^ s � sm = sm � s ^ s �wipe � s� � wipe � s

c. r� k s� � Sync � (r� k s�)> = Sync � r� k s�

(
r � sm = sm � r ^ r �wipe � r� = wipe � r
^ s � sm = sm � s ^ s �wipe � s� = wipe � s

158 CHAPTER 11. SYNCHRONISE

Proof:
We only prove the �rst theorem:

r� k s� � Sync
= f De�nition 11.2 g

r� k s� � synp � (pref k pdly t pdly k pref)
= f assumptions r � sm = sm � r: Theorems 11.8 and 11.7 g

synp � r� k s� � (pref k pdly t pdly k pref)
= f cupjunctivity; Parallel-parallel fusion 3.12b g

synp � ((r� � pref) k (s� � pdly) t (r� � pdly) k (s� � pref))
= f Property 10.5c g

synp � ((r� � pref) k (pdly � s�) t (pdly � r�) k (s� � pref))
w f assumptions r �wipe � wipe � r: Property 10.17a g

synp � ((pref � r�) k (pdly � s�) t (pdly � r�) k (pref � s�))
= f Parallel-parallel fusion 3.12b; cupjunctivity g

synp � (pref k pdly t pdly k pref) � r� k s�

= f De�nition 11.2 g
Sync � r� k s�

2

We conclude the examination of commutation properties of Sync with the remark that
r � sm = sm � r stands in no logical relation with either the inclusion r �wipe � wipe � r or
r �wipe � r� � wipe � r. The last di�cult task is to show the weak causality of Sync:

Property 11.11 Weak causality of Sync

� Sync 2 synp0
w
� (I k I)0

Proof:
The totality and surjectivity of Sync are recorded in Corollary 11.6. Primed typing follows
from the corresponding properties of pdly and pref :

Sync 2 I 0� I 0

= f De�nition 11.2 g
synp � (pref k pdly t pdly k pref) 2 I 0� I 0

(f A �P 2 I 0� I 0 (P 2 I 0� I 0 g
pref k pdly t pdly k pref 2 I 0� I 0

(f preservation by parallel composition and cup g
pref 2 I 0� I 0 ^ pdly 2 I 0� I 0

= f pdly v pref v eqar : Lemma 7.10a g
True

It follows from Axioms 9.8o and 9.8r and Property 10.19 that pref k pdly t pdly k pref
is weakly causal. Furthermore, interfaces are weakly causal whenever they are closed.
In particular, non-empty interfaces of the form a� are closed. Because the non-empty
interface synp can be written as ((I Nes)�)� it is also closed, and therefore weakly causal.

11.3. THEOREMS 159

However, Axiom 9.8q is not applicable because synp is too restrictive: synp w I k I is a
false statement.
Consider the re�nement sync of Sync: it is the proc which is as productive as possible, i.e.,
produces a pair as soon as it is able to. The proc Sync can be obtained by composing sync
with pdly : Sync = pdly � sync. The proc sync is weakly causal in the sense of Character-
isation 9.2a because it reacts instantaneously, and therefore it is weakly causal according
to Characterisation 9.2b. It follows from Axiom 9.8q that the proc Sync is weakly causal.
2

We now turn to the proc Bu� . This proc is the main instrument to build bu�ered procs,
which permits asynchronous communication in a calculus that is basically synchronous.

160 CHAPTER 11. SYNCHRONISE

Chapter 12

Bu�er

We characterise distributed programs by their input-output behaviour. On the level of the
model, there is no bu�ering. A result of this design decision (on the level of designing a
calculus) is that the process of bu�ering has to be made explicit by a proc Bu� .

12.1 Bu�er de�ned

Our bu�er has two input channels and one output channel. On the �rst input channel
the messages come in; on the second input channel requests for new messages arrive. The
principle is that each request signal is coupled with a message. This action is performed
by the synchronisation proc Sync which was introduced in the previous chapter. After
that, the request signals are stripped of by a projection, and the corresponding messages
are delivered on the output channel. There are no type restrictions on the request signals:
only the occurrence of a request is important, not the contents. This motivates the following
de�nition:

De�nition 12.1 Bu�er

Bu� , � � Sync

2

The proc is de�ned in terms of other procs. In Lemma 12.3 we will derive an expression
in terms of the primitives of the calculus. But still, no reference to chronicles or messages
occurs in the de�nition: procs are �rst-class citizens. Several other approaches de�ne
bu�ers or queues for every possible input with the explicit mentioning of (streams of) data
elements. For example, in Hoare [Hoa85]:

BUFFER=Phi

where
Phi = left?x!Phxi

and
Phxi++s = (left?y!Phxi++s++hyi j right!x!Ps)

161

162 CHAPTER 12. BUFFER

The input channel is left, the output channel is right, and x and y are data elements.
Notice the explicit state of the bu�er, modelled as a joinlist s. This bu�er behaves like
a queue: messages join the right-hand end of the queue and leave it from the left end, in
the same order as they joined, but after a possible delay, during which later messages may
join the queue. In that perspective, this bu�er is similar to our proc pdly . In Baeten &
Weijland [BW90] a similar de�nition is found:

Q = Q� =
X
d2D

r1(d)�Qd

and

Q�d = s2(d)�Q� +
X
e2D

r1(e)�Qe�d (for every �2D� and d2D)

There are no request signals in the two approaches. In Broy [Bro90] a speci�cation QS:f
for queue f with request signals > is de�ned:

f = h:hi
where

(h:hi):(>̂ x) = >̂ (h:hi):x
,

(h(d̂ q)):(>̂ x) = d̂ (h:q):x
and

(h:q):(d̂ x) = (h(q d̂)):x

The identi�er x is a �nite or in�nite list of data elements and request signals, d is an
ordinary data element, q is a �nite list of data elements, and ^ is the append operator. The
messages leave the queue on request in the same order as they entered. In this sense the
queue behaves like our bu�er. However, a request sent to an empty queue results in the
output of that request signal as an error message; this contrasts with our approach: Bu�
simply goes to a state with an extra pending request.

12.2 Theorems

Next, a number of theorems for the bu�er Bu� are recorded. The most signi�cant results
are those involving the feedback operator $, Theorem 12.7. The theorems of Sync give rise
to a set of theorems of Bu� :

Theorem 12.2 Bu�er

a.� Bu� 2 I � I k I

b. pdly �Bu� = Bu� � pdly = Bu�

c. Bu� � I k pdly = Bu� � pdly k I = Bu� � pdly k pdly = Bu�

d. Bu� � synp = pdly �� � synp

2

12.2. THEOREMS 163

A lemma which turns out to be very useful expresses the bu�er Bu� in terms of the
primitives. We could have taken this as its de�nition, but the partition into Sync and a
projection looks nicer:

Lemma 12.3

Bu� = (pref �� u eqsp � pdly ��) t (pdly �� u eqsp � pref ��)

Proof:
In the proof that follows we will use the fact � � synp = (I4eqsp)[. This is a consequence
of the equality (I4P)< � I4>> = I4P .

Bu�
= f De�nitions 12.1 and 11.2 g

� � synp � (pref k pdly t pdly k pref)
= f � � synp = (I4eqsp)[g

(I4eqsp)[� (pref k pdly t pdly k pref)
= f cupjunctivity of composition g

(I4eqsp)[� pref k pdly t (I4eqsp)[� pdly k pref
= f De�nition 3.10b g

(I4eqsp)[� (pref ��) 4 (pdly ��) t (I4eqsp)[� (pdly ��) 4 (pref ��)
= f Axiom 3.10d g

(pref �� u eqsp � pdly ��) t (pdly �� u eqsp � pref ��)

2

Next, the commutation properties of Bu� with postcompose structures are considered.
Because the de�nition of Bu� is asymmetric, due to the left projection, we �rst look at a
nice preliminary result:

Lemma 12.4

Bu� � I k s� = Bu� � I k (s�)>

(
s � sm = sm � s

Proof:
In this proof, we use a distribution property over cap. Actually, the distribution is in the
axiomatisation of split, 3.10d:

Bu� � I k s�

= f Lemma 12.3 g
((pref �� u eqsp � pdly ��) t (pdly �� u eqsp � pref ��)) � I k s�

= f cupjunctivity g
(pref �� u eqsp � pdly ��) � I k s� t (pdly �� u eqsp � pref ��) � I k s�

= f Axiom 3.10d: distribution over cap g
(pref �� u eqsp � pdly � s� ��) t (pdly �� u eqsp � pref � s� ��)

= f Theorem 10.18 g
(pref �� u pdly � eqsp � s� ��) t (pdly �� u pref � eqsp � s� ��)

164 CHAPTER 12. BUFFER

= f assumption s � sm = sm � s: Theorems 11.8, 11.7a and 11.7c g
(pref �� u pdly � eqsp � (s�)> ��) t (pdly �� u pref � eqsp � (s�)> ��)

= f same steps backwards g
Bu� � I k (s�)>

2

This proposition tells us that if a relation s acting on the request channel does not change
the occurrence of messages, its actions may equally well be omitted. For the commutation
with postcompose structures in general we have, analogously to Theorem 11.10:

Theorem 12.5 Commutation with postcompose

a. r� �Bu� w Bu� � r� k s�

(
r � sm = sm � r ^ r �wipe � wipe � r ^ s � sm = sm � s

b. r� �Bu� � (r� k s�)> v Bu� � r� k s�

(
r � sm = sm � r ^ r �wipe � r� � wipe � r ^ s � sm = sm � s

c. r� �Bu� � (r� k s�)> = Bu� � r� k s�

(
r � sm = sm � r ^ r �wipe � r� = wipe � r ^ s � sm = sm � s

2

Now we derive some theorems for Bu� in a loop. The loop-construction (P �Bu�)$ which
we will consider can be viewed as a bu�ered proc P . This construction can be very useful
in case it is possible that input `comes too quickly', or, alternatively stated, that P is too
slow.
Four di�erent inclusions are proved in Theorem 12.7. The conditions are on the request
channel of proc P (the second channel of P). We will encounter a new interface inf in the
condition of the third theorem, 12.7c. The condition of this property originally had the
shape A � pref v pdly for some interface A. It prescribes that A does not contain chroni-
cles that stop carrying messages at some moment. For a contradiction consider chronicle
f 2A and assume that after moment t there are no messages on f anymore. We extend
this chronicle f after moment t with some messages to the chronicle f+. Then clearly
f hA � pref i f+, but f hpdlyi f+ is not valid. We conclude that A only contains chronicles
that never stop carrying messages (if A contains chronicles at all). The greatest monotype
A satisfying the inequality A � pref v pdly is interface pdly=pref u I; this interface can
be interpreted as the set of chronicles carrying messages for ever.

12.2. THEOREMS 165

For reasons of elegance the following de�nition is taken:

De�nition 12.6 In�nite chronicles
inf is an interface such that for all interface A

Av inf
�

A � pref v pdly

2

We prefer De�nition 12.6 over the explicit de�nition pdly=pref u I, since the use of the
latter often necessitates an additional step to eliminate the factor. The four inequalities
we want to prove are:

Theorem 12.7 Bu�er in loop

a. (P �Bu�)$ v � �P � pref

b. (P � Bu� � I kQ)$ w � �P � pref (� �P v (pdly � eqsp �Q)[

c. (P �Bu�)$ v � �P � pdly (pdly � eqsp �� �P u I v inf

d. (P � Bu� � I kQ)$ w � �P � pdly (� �P v (pref � eqsp �Q)[

Proof:
The �rst theorem is proved by a straightforward calculation. It expresses that any input
of the proc P (inside the loop) is a pre�x of the input of the bu�ered proc (P �Bu�)$:

(P �Bu�)$

= f Lemma 12.3 g
(P � ((pref �� u eqsp � pdly ��) t (pdly �� u eqsp � pref ��)))$

v f monotonicity g
(P � (pref �� t pdly ��))$

= f Property 10.16b: monotonicity g
(P � pref ��)$

= f De�nitions 3.17 and 3.14 g
� � (P � pref � � � I k� u �) � I4>>

v f Parallel computation 3.32c and monotonicity g
� � P � pref � � � I4>>

= f Split computation 3.32a g
� �P � pref

The second theorem gives a su�cient condition to ensure that all pre�xes of the input
(including the complete input) of the bu�ered proc (P �Bu�)$ can be consumed by P :

(P � Bu� � I kQ)$

w f De�nition Bu� ; monotonicity g
(P � � � synp � pref k pdly � I kQ)$

166 CHAPTER 12. BUFFER

= f Parallel-parallel fusion 3.12b; Theorem 3.18b g
(P � � � synp � I k (pdly �Q))$ � pref

= f De�nition 3.17 g
� � (P � � � synp � I k (pdly �Q) u >> k I) � �[� pref

= f swap property; synp is an interface g
� � (P �� � synp u >> k (pdly �Q)[) � synp � �[� pref

= f synp ��[= (� � synp)[= I4eqsp is an injection: Theorem 3.35b g
� � (P u >> k (pdly �Q)[� I4eqsp) � pref

= f Parallel-split fusion 3.12a g
� � (P u >> 4 ((pdly �Q)[� eqsp)) � pref

= f eqsp= eqsp[: reverse g
� � (P u >> 4 (eqsp � pdly �Q)[) � pref

= f the condition equivales I k I � P v >> 4 (eqsp � pdly �Q)[g
� �P � pref

Proving the third theorem requires some preliminary work. We calculate, for all procs R:

Bu� u R �� v pdly ��

= f Lemma 12.3 g
((pdly �� u eqsp � pref ��) t (pref �� u eqsp � pdly ��)) u R �� v pdly ��

= f pdly �� u eqsp � pref �� u R �� v pdly �� g
pref �� u eqsp � pdly �� u R �� v pdly ��

= f � is a total function g
(pref �� u eqsp � pdly �� u R ��) � �[v pdly

= f � and � are functions: Theorem 3.35a and 3.35b g
pref u (eqsp � pdly u R) � � � �[v pdly

= f � ��[= >> g
pref u (eqsp � pdly u R) � >> v pdly

= f Theorem 3.30a; (P uQ)< = P �Q[u I g
(eqsp � pdly �R[u I) � pref v pdly

= f eqsp � pdly �R[u I is an interface: De�nition 12.6 g
eqsp � pdly �R[u I v inf

This lemma enables us to give a proof of Theorem 12.7c using only one implication:

(P �Bu�)$ v � �P � pdly
= f De�nition 3.17 g

� � (P �Bu� u >> k I) � �[v � �P � pdly
= f � is a total function g

P �Bu� u >> k I v �[�� �P � pdly ��

(f Dedekind g
P u >> k I � Bu� [v �[�� �P
^ Bu� u P [� >> k I v pdly ��

= f I k I v �[�� g
Bu� u P [� >> k I v pdly ��

12.2. THEOREMS 167

= f >> k I = �[��; reverse g
Bu� u (� �P)[�� v pdly ��

= f result above g
eqsp � pdly �� �P u I v inf

The proof of Theorem 12.7d is a variation on the proof of Theorem 12.7b, and therefore
omitted
2

A corollary of Theorem 12.7b is:

(P �Bu�)$ w � �P � pref (� �P v (pdly � eqsp)[

obtained by instantiating Q to the identity. Now consider, as an illustration, the following
calculation for total Q:

(P � Bu� � I kQ)$ w � �P � pref
= f Theorem 3.18c; Q is total: Parallel computation 3.32c g

(I kQ � P � Bu�)$ w � � I kQ � P � pref
(f above corollary g

� � I kQ � P v (pdly � eqsp)[

= f Parallel computation 3.32d g
Q � � � P v (pdly � eqsp)[

Compare the condition in the last line with the condition of Theorem 12.7b: the con-
dition derived in the above calculation is (for nondeterministic procs) stronger than the
condition of Theorem 12.7b. So the calculator is well-adviced to move, before applying
Theorem 12.7b, as many components as possible from the output side of the loop body to
the input side, thereby weakening the condition. A similar remark holds for Theorem 12.7d.
Finally, the weak causality of the bu�er is derived. Unlike the problems we had in proving
weak causality of Sync, the weak causality of Bu� is obtained straightforwardly:

Theorem 12.8 Weak causality of Bu�

� Bu� 2 I 0
w
� I 0 k I

Proof:
Surjectivity is already stated in Theorem 12.2a, so we concentrate on the weak causality,
totality and primed typing. Primed typing of Sync implies the condition of Axiom 9.8q on
Sync: detar :Sync. So:

Bu� 2 I 0
w
� I 0 k I

= f De�nition 12.1 g
� � Sync 2 I 0

w
� I 0 k I

(f �> = I k I w synp = Sync<: Axiom 9.8q g
� 2 I 0

w
� I 0 k I ^ Sync 2 (I k I)0

w
� (I k I)0

= f Axiom 9.8c and primed typing; Property 11.11 g
True

2

168 CHAPTER 12. BUFFER

The second step in the proof above, where we derived the primed typing of� � Sync from its
components, is one of the preservation rules for primed typing as mentioned in Section 7.3.
The kind of proof as given above will occur often: (weak) causality, totality and primed
typing are proved at once. This is due to the requirements for obtaining (weak) causality
(for example Axiom 9.8q) where we often use totality and primed typing information.
Sections 12.1 and 12.2 de�ned and investigated a lazy bu�er; lazy in the sense that the
bu�er only gives output when there are corresponding requests. The following section
de�nes an eager bu�er which takes the initiative in sending the �rst message. We will take
a more axiomatic approach to introduce new procs: no exact de�nitions are given; only
the need for several assumptions (axioms) is motivated.

12.3 Hot bu�er

In Section 12.1 we introduced a bu�er. Theorem 12.7 lists several conditional assertions of
a bu�ered proc P . In particular, the condition of Theorem 12.7c describes that the trigger
channel of P carries more signals than the input channel. This was done to guarantee the
progress of the complete bu�ered proc.
Until now, the progress was the responsibility of the proc P . In the extremal case Bu� �,
where there is no proc present which takes the responsibility, the proc might simply refuse
to go on at some moment: Bu� �= pref . Another possibility is to give the bu�er the
responsibility of progress. This bu�er is called a hot bu�er. We de�ne it as the usual bu�er
Bu� preceded by some proc click for which we have to �nd properties such that when
the hot bu�er Hbu� is put in a feedback it establishes a possible delay. The hot bu�er is
de�ned as follows for some proc click :

De�nition 12.9 Hot bu�er

Hbu� , Bu� � I k click

2

The result should be a bu�er which always outputs (at least) its �rst input message, and
after that acts as the normal bu�er.
In the model, click is characterised as follows;

f hclicki g
�

8(t :: #(f � (< � t)�) 6 1+#(g � (< � t)�)) ^ #f = 1+#g

In words: the output is at most one message ahead (regardless of the actual contents of the
messages), and the total number of output messages is one more (1+) than the number of
input messages (where 1+! = !). Putting the hot bu�er in a loop, we get progress `for
free': Hbu� �= pdly . This is the main property for Hbu� which will result in axioms on
click .

12.3. HOT BUFFER 169

First, Theorem 12.7 is adapted to the hot bu�er:

Theorem 12.10 Hot-bu�ered procs

a. (P �Hbu�)$ v � �P � pref

b. (P � Hbu� � I kQ)$ w � �P � pref (� �P v (click �Q)[

c. (P �Hbu�)$ v � �P � pdly (click �� �P u I v inf

d. (P � Hbu� � I kQ)$ w � �P � pdly (� �P v (pref � click �Q)[

2

This follows straightforwardly from the de�nition of Hbu� and Theorem 12.7 if we impose
the following reasonable axioms on click :

Axiom 12.11 Click

a. eqsp � click = click = click � eqsp

b. pdly � click = click = click � pdly

2

That is, click is insensitive to contents of messages and possible delays. To get the key
property Hbu� �= pdly , which demonstrates the progress obtained by Hbu� , we need more
assumptions. They are derived as follows:

Theorem 12.12 Key property

Hbu� �= pdly

Proof:

Hbu� �= pdly
= f Theorem 3.18a g

(I4I � Hbu�)$ = pdly
= f plat calculus g

(I4I � Hbu�)$ w pdly ^ (I4I � Hbu�)$ v pdly
(f Theorem 12.10: P := I4I and Q := I; Split computation 3.32 g

I v (pref � click)[^ click u I v inf
= f reverse g

I v pref � click ^ click u I v inf
= f see below g

True

2

The last proof step gives us additional (necessary) assumptions for click . Later, yet another

170 CHAPTER 12. BUFFER

assumption is needed; we record it already now:

Axiom 12.13 Click

a. I v pref � click

b. click u I v inf

c. click � pref v pref � click

2

The �rst axiom says that the proc click is able to extend (in the sense of pref [) any input
chronicle with messages. It does not express that `at the end' the total number of outputs
is exactly one more than the total number of inputs. The second assumption is the most
important one: it states that the interface click u I represents a set of chronicles carrying
messages for ever. The third one states a weak commutation property needed in the sequel.
One of the important properties is the weak causality of click . This might seem strange
for a proc that is able to produce one message ahead. But a possible implementation of
click might be: copy all incoming messages possibly delayed to the output and insert an
arbitrary extra message somewhere. We can abstract from the exact contents by sequen-
tially composing it with the weakly causal proc eqsp. Then we get the proc click , which is
weakly causal:

Axiom 12.14 Weak causality of click

8(X : X 2D : X � click 2 X
w
� I)

2

This assumption makes it possible to conclude weak causality of click and Hbu� . Observe
that X � click obeys the inclusion X � click � eqar � click[�X v eqar , which is not satis�ed
by click because the latter proc absorbs eqsp, Axiom 12.11a, and the proc eqsp is able to
destroy the arity information completely.

Theorem 12.15 Weak causality of click and Hbu�

a. wcausal :click

b.� Hbu� 2 I 0
w
� I 0 k I

Proof:
Weak causality of click follows from Axioms 12.14 and 9.8o and Lemma 7.8a. The same
axioms are used to prove 12.15b:

Hbu� 2 I 0
w
� I 0 k I

= f De�nition 12.9 g
Bu� � I k click 2 I 0

w
� I 0 k I

= f Lemma 7.8a g
Bu� � I k (t(X :: X) � click) 2 I 0

w
� I 0 k I

12.3. HOT BUFFER 171

= f cupjunctivity g
t(X :: Bu� � I k (X � click)) 2 I 0

w
� I 0 k I

(f Axiom 9.8o, domains and primed typing g
8(X :: Bu� � I k (X � click) 2 I 0

w
� I 0 k I)

We are heading for an application of Axiom 9.8q. To guarantee a �xed arity of the messages
generated by click , the X is placed after this proc. For arbitrary proc P :

P 2 I 0 kX � I 0 k I
= f calculation like Lemma 7.10 g

P v eqar k (X �>>)
) f relational calculus applying Lemma 7.8b g

detar :P

So if P 2 I 0 kX � I 0 k I, it satis�es the important condition of determination of arities
in Axiom 9.8q. This property is exploited in the �rst step of the following calculation: for
all X 2D,

Bu� � I k (X � click) 2 I 0
w
� I 0 k I

(f Axiom 9.8q g
Bu� 2 I 0

w
� I 0 k I ^ I k (X � click) 2 I 0 kX

w
� I 0 k I

(f Theorem 12.8; Axiom 9.8r g
I 2 I 0

w
� I 0 ^ X � click 2 X

w
� I

= f Theorem 9.7b and primed typing; Axiom 12.14 g
True

2

For later use we prove one last lemma about the hot bu�er:

Lemma 12.16

Hbu� ��[v pref � click

Proof:

Hbu� ��[

= f De�nition 12.9; Lemma 12.3 g
((pref �� u eqsp � pdly ��) t (pdly �� u eqsp � pref ��)) � I k click � �[

v f monotonicity; reversed Parallel computation 3.32d g
(eqsp � pdly �� t eqsp � pref ��) � �[� click

= f Property 10.16b: monotonicity g
eqsp � pref �� ��[� click

v f Theorem 10.18; � is a function g
pref � eqsp � click

= f Axiom 12.11a g
pref � click

2

172 CHAPTER 12. BUFFER

This concludes the short discussion on hot bu�ers. The primitive proc click turns out to
be useful in other de�nitions of bu�ers also, for example in the de�nition of a one-place
bu�er. This topic will be discussed in the next section.

12.4 n-place bu�er

In Section 12.1 we discussed several other approaches to the process of bu�ering. In
particular the bu�er de�ned in Hoare [Hoa85] (and Baeten & Weijland [BW90]) di�ers
signi�cantly. There, the bu�er is not triggered by some explicit request; it simply describes
the I/O-behaviour of the messages only (observed by some observer).
In our calculus we can de�ne such a proc also. We start with a one-place bu�er and build
bu�ers of arbitrary but �nite length with it. A one-place bu�er can store at most one
message which can be sent to the output any time (if the next proc is able to receive it). A
new message can only be sent to the one-place bu�er if it is empty. Other I/O-behaviour
is not described:

De�nition 12.17 n-place bu�er

a. (1) , pref u (pref � click)[

b. (n), (1)n

2

In the model, (1) looks as follows:

f h(1)i g
�

f hpref i g ^ 8(t :: #(g � (< � t)�) 6 1+#(f � (< � t)�))

In words: the output is a pre�x of the input with the restriction that the output lags at
most one message behind. A number of properties follow readily from De�nition 12.17. As
an exercise we show the next theorem:

Theorem 12.18 n-place bu�er

a. (n) � (m) = (n+m)

b. I v (n)v pref

c. (n)v (m) (n6m

d. (n) 2 I 0�I 0

e. eqsp � (n) = (n) � eqsp

12.4. N -PLACE BUFFER 173

Proof:
From the de�nition of P n, De�nitions 3.7a and 3.7b, it follows straightforwardly by induc-
tion that P n �Pm = P n+m. By De�nition 12.17, this implies 12.18a. 12.18b is proved by
induction over n. The basis is trivially met because of P 0= I and Property 10.16a. For
the step we proceed as follows:

I v (n+1) v pref
= f Theorem 12.18a g

I v (n) � (1) v pref
(f monotonicity: Property 10.16f g

I v (n)v pref ^ I v (1)v pref
= f Induction Hypothesis g

I v (1)v pref
= f De�nition 12.17a g

I v pref u (pref � click)[v pref
= f plat calculus g

I v pref ^ I v (pref � click)[

= f Property 10.16a; Axiom 12.13a and reverse g
True

Theorem 12.18c follows by monotonicity from the �rst two properties. 12.18d is derived
from the observation that I v (n)v pref v eqar . Notice that reexivity of (n) implies
totality and surjectivity. Finally, 12.18e follows by induction from the fact that click
absorbs eqsp, Axiom 12.11, and that pref commutes with eqsp, Theorem 10.18
2

Assuming the axiom I = pref [u pref we can derive that the n-place bu�er (n) re�nes
the proc pref u (pref � clickn)[. A real problem is the equality of the procs (n) and
pref u (pref � clickn)[: it is unclear what assumptions we need.
The re�nement t(n :: (n)) � pref is valid; this is a direct consequence of Theo-
rem 12.18b. Equality does not hold because it could be the case that pref cuts an in�nite
number of messages. If we had de�ned something like P !, a possible equality would have
been pref =(!).

174 CHAPTER 12. BUFFER

Summarising the results

The procs pdly , dly and pref are axiomatised as follows:

Axiom 12.19

a. I t dly v pdly v pref v eqar

b. pdly � pdly v pdly

c. dly � pdly t pdly � dly v dly

d. pref � pref v pref

e.� dly � dly w dly

f. dly � pref = pref � dly

g. r� � pdly = pdly � r�

h. r� � dly = dly � r�

i. r� � pref w pref � r� (r �wipe � wipe � r

j. r� � pref � (r�)> v pref � r� (r �wipe � r� � wipe � r

k. r� � pref � (r�)> = pref � r� (r �wipe � r� = wipe � r

The causality assumptions on these three procs are:

l. wcausal :pdly

m. causal :dly

n. wcausal :pref

175

176 SUMMARISING THE RESULTS

In contrast to the procs pdly , dly and pref , the proc Sync is not axiomatised but de�ned:
De�nition 11.2. To get all the desired properties, several axioms have to be imposed:

o. I = eqsp u pdly[� pref

p.� 6# t># = >>
And �nally for the causality:

q.� wcausal :Sync

2

All the properties of Part IV which are not recorded in Axiom 12.19 are derivable. There-
fore, they are referred to as theorems in the following part.

Part V

An application

177

Chapter 13

Instantiating the calculus

We strive for a general theory. The results of this theory can be instantiated to more
speci�c theorems which are useful in practical applications.
The set of interfaces (types) is rather rich in the sense that any union of interfaces is again
an interface; this is not a useful property in practical applications. Moreover, the choice for
using an untyped calculus forced us to impose assumptions on relations and procs such as
primed typing and preservation of arities. This chapter presents the set of interfaces that
have a well-de�ned arity. This results in simple typing rules. Furthermore, typed versions
of polymorphic procs are de�ned and investigated.

13.1 Typed rules

Starting o� with a calculus of relations with well-de�ned (input and output) arities frees
us from the need to impose polyfunctionality, primed typing and conditions like the preser-
vation of arities. Formally, `well-de�ned arity' for interface A is described by the inclusion
A �>> �A v eqar . Several axioms listed in Axiom 9.8 reduce to simple typing rules if we
only use interfaces with a well-de�ned arity. We record a few typing rules needed in the
next chapter:

Corollary 13.1 Typing Rules
For interfaces A, B, C and D with a well-de�ned arity:

a. P �Q 2 A
c
� B

(
(P 2 A

w
� C ^ Q 2 C

c
� B) _ (P 2 A

c
� C ^ Q 2 C

w
� B)

b. P �Q 2 A
w
� B (P 2 A

w
� C ^ Q 2 C

w
� B

c. P 4Q 2 A kB
w
� C (P 2 A

w
� C ^ Q 2 B

w
� C

d. P kQ 2 A kC
w
� B kD (P 2 A

w
� B ^ Q 2 C

w
� D

179

180 CHAPTER 13. INSTANTIATING THE CALCULUS

e. P � 2 A
c
� B (P 2 A

c
� B kA

2

All symbols � in Corollary 13.1 can be replaced by to obtain the set of rules for
deterministic procs.
The re�nement order � boils down to ordinary relational inclusion v if we work with typed
(and causal) procs. Moreover, demonic composition �� equals angelic composition �.
The re�nement order � is preserved by the combining forms t, �, 4, k and �. In particular
the rule for feedback looks nice. For interfaces A and B with a well-de�ned arity:

P � � Q� : A
c
� B

(
P � Q : A

c
� B kA

This rule is invalid if causality is omitted.

13.2 Stream types

The discussion above suggests a subset of the procs which could be valuable with respect
to implementations. A set of types containing only interfaces representing chronicles over
base types|such as the naturals|might be useful. The procs which are typed with those
interfaces form a nice subset of the procs considered in this thesis.

De�nition 13.2 Base type, stream type
Identity a is called a base type whenever ? 6= a� sm and unar :a. For base type a, we
de�ne the interface Ia of streams over a by:

Ia , (a [(wipe � a)�)�

2

In words: base type a is a non-empty subset of the real messages sm, and all elements of
a have the same arity. Base types are closed under product �, but not under cup [or
cap \. The interface Ia represents what most people call the (�nite and in�nite) streams
over set a. To get the type Ia, base type a is closed by adding the no-message (wipe � a)�,
which has the arity of a, and this extension is lifted with postcompose.
Due to the unique arity of base type a, the interface Ia also has a well-de�ned arity.
Furthermore, products of the base types are almost preserved by the extension and lifting;
in conjunction with the interface synp of synchronised pairs products are preserved:

Theorem 13.3 Stream type

a. Ia �>> � Ia v eqar

b. Ia�b = Ia k Ib � synp

2

13.2. STREAM TYPES 181

The proof is omitted, but preservation properties of postcompose feature prominently.
Observe that Theorem 13.3b would not hold if base type a or b were allowed to contain
no-messages: the inclusion Ia�bv synp would have been invalid. This is one of the reasons
to require that a base type does not contain no-messages.
It is easy now to de�ne several typed versions of primitive procs and de�ned procs of the
calculus. In fact, Ia itself is just the typed interface I. Because we only need a few typed
procs in the next chapter, we con�ne ourselves to the following four de�nitions:

De�nition 13.4 Typed procs

a. �ab , � � Ia k Ib

b. pdlya , pdly � Ia

c. dlya , dly � Ia

d. Hbu� ab , Hbu� � Ia k Ib

2

Useful properties of the generic versions carry over to the typed procs. Among those
properties are totality, functionality and (weak) causality:

Theorem 13.5 Typed procs

a. Ia 2 Ia
w Ia

b. �ab 2 Ia
w Ia k Ib

c. pdlya 2 Ia
w
� Ia

d. dlya 2 Ia
c
� Ia

e.� Hbu� ab 2 Ia
w
� Ia k Ib

Proof:
Because non-empty interfaces of the form c� for identity c are closed, the proof of 13.5a
boils down to showing that Ia 6=??. This follows from Axiom 6.15a.
We only give the proof of 13.5e. The proof obligation has to be split into two conjuncts:
Hbu� ab 2 I

w
� Ia k Ib and Ia �Hbu� ab = Hbu� ab. First, the totality and weak causality

are proved together. Because Ia k Ib is an interface, the arity-determination condition of
Axiom 9.8q is ful�lled:

Hbu� ab 2 I
w
� Ia k Ib

= f De�nition 13.4d g
Hbu� � Ia k Ib 2 I

w
� Ia k Ib

(f Ia k Ib has well-de�ned arity, and I k I w Ia k Ib: Axiom 9.8q g

182 CHAPTER 13. INSTANTIATING THE CALCULUS

Hbu� 2 I
w
� I k I ^ Ia k Ib 2 Ia k Ib

w
� Ia k Ib

(f Theorem 12.15b; Axiom 9.8r g
Ia 2 Ia

w
� Ia ^ Ib 2 Ib

w
� Ib

= f Theorem 13.5a g
True

The typing Ia �Hbu� ab = Hbu� ab requires several properties about identities and the
idempotent function wipe:

Ia �Hbu� ab = Hbu� ab

= f De�nition 13.4d g
Ia � Hbu� � Ia k Ib = Hbu� � Ia k Ib

(f compose with I k (click � Ib): De�nition 12.9 g
Ia � Bu� � Ia k I = Bu� � Ia k I

= f interfaces g
Ia � Bu� w Bu� � Ia k I

(f De�nition 13.2: Theorem 12.5a with s=I g
(a [(wipe � a)�) � sm = sm � (a [(wipe � a)�)
^ (a [(wipe � a)�) � wipe � wipe � (a [(wipe � a)�)

= f a [(wipe � a)� and sm are identities: Corollary 3.27b g
(a [(wipe � a)�) � wipe � wipe � (a [(wipe � a)�)

(f properties cup g
(wipe � a)� �wipe � wipe � a ^ (wipe � a)� �wipe � wipe � (wipe � a)�

= f for identity c: (r � c)� � r � r � c g
(wipe � a)� �wipe � wipe � (wipe � a)�

= f for identity c and idempotent r: (r � c)� � r � r � (r � c)� g
True

2

After having made this small instantiation of our calculus, we can tackle a well-known
communication protocol.

Chapter 14

The Alternating Bit Protocol

As an example of the calculus for the design of distributed algorithms we want to consider
a protocol; more speci�cally, the protocol we will end up with is the Alternating Bit Pro-
tocol. We do not claim to be the �rst in doing so: the ABP is one of the most extensively
investigated protocols. In fact, the ABP may be considered a test case for calculi devel-
oped for the design of distributed algorithms, see for example Chandy & Misra [CM89],
M�oller [M�ol94] or Vaandrager [Vaa90].
The protocol, which can be traced back to Bartlett et al. [BSW69], establishes the connec-
tion between the physical activities of transmitting raw bits over communication channels
and the higher level activities of routing packets of information in a network. In terms of
the ISO/OSI reference model, see Zimmerman [Zim80] or Tanenbaum [Tan81], the protocol
transforms the raw transmission facilities of the physical layer into the reliable transmission
facilities of the datalink layer.
In this chapter, we will demonstrate our calculus by deriving the Alternating Bit Protocol
as a re�nement of the delay dly . Given a faulty medium ch, the protocol is obtained
in three phases. In Section 14.1, a feedback circuit is considered which contains a bu�er
and two media. It mainly prescribes the topology of the protocol we are heading for. The
�rst calculations will remove the feedback circuit while imposing conditions on the two
media. The result is that the feedback circuit re�nes dly. Then, we turn our attention in
Section 14.2 to one particular medium with slightly di�erent conditions, and show that it
implements the two media of Section 14.1. Finally, in Section 14.3, this particular medium
is instantiated to the faulty channel ch with adequate preprocessing and postprocessing.
This immediately results in de�nitions for a sender S and a receiver R realising the ABP.
The further we proceed with the development of the protocol, the more typed procs will
occur. We want to emphasise that the type information of a typed proc, given as a
subscript, will never be omitted. In category theory, for example, type information is often
left implicit, because the context gives enough information to deduce the type (objects) of
the functions (arrows). In our system, it is impossible to omit type information because
that would mix up the truly polymorphic procs (like dly) and the typed procs (like dlya
for some a).

183

184 CHAPTER 14. THE ALTERNATING BIT PROTOCOL

14.1 The Basic Network

Consider the topology of the Alternating Bit Protocol in Figure 14.1. The channels chx
and chy are faulty channels, and the task is to �nd a sender S, a receiver R and base
types x and y such that the network re�nes a fault-free channel.

R flch S

flch

x

y

Figure 14.1: The ABP topology

As a proc, the topology of the ABP is de�ned with a loop:

De�nition 14.1 Alternating Bit Protocol

ABPxy:(R; S) , (R � chx � S � I kchy)$

2

Instead of trying to solve the re�nement problem of the ABP at once, we like to start with
a simpler network as shown in Figure 14.2 and �nd conditions on channels ch1 and ch2
such that this Basic Network implements a reliable channel. Afterwards, de�nitions of R
and S can be derived, given a faulty channel ch.
The network in Figure 14.2 is a hot bu�er Hbu� placed in a feedback loop. The loop
contains two media ch1 and ch2 which transmit messages from the hot bu�er to the output,
or transmit messages back to (the request channel of) the hot bu�er.

Hbuffch

ch

1

2

Figure 14.2: Basic Network

In terms of the calculus, this network translates to the following expression:

De�nition 14.2 Basic Network

BN :(ch1; ch2) , (ch1 � Hbu� � I k ch2)�

2

The problem is that the media ch1 and ch2 might be unreliable: it is not guaranteed that,
under all circumstances, a message which is sent to one of the channels will actually be

14.1. THE BASIC NETWORK 185

transmitted. We are interested in the following question: under what conditions on ch1
and ch2 is (a typed version of) BN :(ch1; ch2) a re�nement of (a typed version of) dly , i.e.,
a reliable channel?
By De�nition 7.31, re�nement is divided into two parts: an inclusion and a domain prop-
erty. We �rst concentrate on the inclusion BN :(ch1; ch2)v dly, which is a combination of
safety and liveness properties, see Lamport [Lam77]. The safety part contains the prop-
erty that any message that is produced by the network has really been put in on an earlier
moment, and there is no reordering. The liveness part includes the property that every
message which is sent to the network will eventually be transmitted.
The proc dly should be a possible implementation for the media ch1 and ch2: without
additional assumptions on the channel dly the inclusion BN :(dly ; dly)v dly has to be
valid:

Lemma 14.3

BN :(dly; dly)v dly

Proof:
We are heading for an appeal to Theorem 12.10c:

BN :(dly; dly)v dly
= f De�nition 14.2 g

(dly � Hbu� � I k dly)� v dly
= f Theorems 3.18a and 3.18c g

(I4dly � dly � Hbu�)$ v dly
= f Split computation 3.32a; dly = dly � pdly g

(I4dly � dly � Hbu�)$ v � � I4dly � dly � pdly
(f Theorem 12.10c g

click � � � I4dly � dly u I v inf
(f Split computation 3.32b; dly � dly v dly g

click � dly u I v inf
(f Axiom 12.19a: dly v pdly g

click � pdly u I v inf
= f Axioms 12.11b and 12.13b g

True

2

To get an equality in Lemma 14.3 we need axioms like Axiom 12.19e. We do not, however,
need an equality; the inequality su�ces.
The lemma is valuable: it shows how we can transform a delay into a feedback structure
containing a hot bu�er, and we know more about the particular inclusion P �vQ� than
about the more general inclusion P �vQ.

186 CHAPTER 14. THE ALTERNATING BIT PROTOCOL

We state the following conditions about the media ch1 and ch2. Later, more conditions
such as causality will be added to obtain totality of the Basic Network:

Condition 14.4 One-place channel

a. ch1 v pref � eqsp

b. ch1 u (1) � eqsp v dly

c. ch2 v pref � eqsp

d. ch2 u (1) � eqsp v dly � eqsp

2

Condition 14.4a mainly says that the number of output messages of ch1 does not exceed
the number of input messages. Abstracting from timing, it directly results in the property
pdly[� ch1 v 6#.
To explain Condition 14.4b, consider just a single message m which is sent to ch1. Ac-
cording to Condition 14.4a we can only expect no output or a single output; the conjunct
(1) � eqsp agrees with this behaviour. Therefore, the inclusion in dly prescribes that the
channel has to transmit the message m eventually once; no output is not allowed. This is a
liveness property. The inclusion in dly also prescribes that no other message is transmitted.
This is a safety property. When message m has been transmitted, a new message can be
sent to the channel immediately and the scenario is repeated.
In short, Condition 14.4b states that a message which is sent to the medium ch1 eventually
is transmitted as long as no other message is sent to the channel. Therefore, channel ch1
is called a one-place channel. Condition 14.4d is a weaker version of 14.4b: it does not
require that the same message comes out; only the timing of the message is important.
These are stringent conditions, but far easier to check than an expression containing a
feedback loop. Moreover, using a less reliable channel, the conditions 14.4 can be met by,
for example, adding procs which tag and repeatedly send messages. Then, conditions like
weak fairness enter the calculations, see Francez [Fra86]. Condition 14.4 takes care of the
�rst part of the required inclusion for re�nement:

Lemma 14.5

BN :(ch1; ch2)v dly

Proof:

BN :(ch1; ch2)v dly
= f De�nition 14.2 g

(ch1 � Hbu� � I k ch2)� v dly
(f Lemma 14.3 g

(ch1 � Hbu� � I k ch2)� v (dly � Hbu� � I k dly)�

(f De�nition 3.14: P �vQ� (P u� v Q g
ch1 � Hbu� � I k ch2 u � v dly � Hbu� � I k dly

14.1. THE BASIC NETWORK 187

(f Dedekind 3.21 g
ch1 u � � (Hbu� � I k ch2)[v dly
^ Hbu� � I k ch2 u ch1[�� v Hbu� � I k dly

= f Hbu� = Hbu� � I k eqsp and eqsp � dly = dly � eqsp g
ch1 u � � (Hbu� � I k ch2)[v dly
^ Hbu� � I k ch2 u ch1[�� v Hbu� � I k (dly � eqsp)

(f Dedekind 3.21; reverse g
ch1 u � � (Hbu� � I k ch2)[v dly
^ I k ch2 u (ch1 �Hbu�)[�� v I k (dly � eqsp)

We derived two conjuncts which have a great similarity. The second conjunct contains
several parallel compositions which do not occur in the �rst one. Relational calculations
show us that these parallel compositions can be eliminated:

I kP u Q �� v I kR � P u � �Q v R

This property can be derived using the fact that the projection is a function, total on
the interface I k I, Theorem 3.40f. Applying this property to the second conjunct derived
above, we continue the calculation:

ch1 u � � (Hbu� � I k ch2)[v dly
^ ch2 u � � (ch1 �Hbu�)[v dly � eqsp

= f reverse g
ch1 u (Hbu� � I k ch2 � �[)[v dly
^ ch2 u (ch1 �Hbu� ��[)[v dly � eqsp

= f reversed Parallel computation 3.32d g
ch1 u (Hbu� ��[� ch2)[v dly
^ ch2 u (ch1 �Hbu� ��[)[v dly � eqsp

(f Lemma 12.16 g
ch1 u (pref � click � ch2)[v dly
^ ch2 u (ch1 � pref � click)[v dly � eqsp

The hot bu�er is reduced to one of its important parts: the proc click . We continued
the calculation by applying the substitution, resulting in subexpressions pref � click � ch2
and ch1 � pref � click . In these expressions, some channels can be removed by exploiting
Conditions 14.4a and 14.4c:

pref � click � ch2
v f Condition 14.4c g

pref � click � pref � eqsp
v f Axiom 12.13c g

pref � pref � click � eqsp
= f Theorem 10.16f and Axiom 12.11a g

pref � click

188 CHAPTER 14. THE ALTERNATING BIT PROTOCOL

And the other subexpression:

ch1 � pref � click
v f Condition 14.4a g

pref � eqsp � pref � click
= f Theorem 10.18 g

pref � pref � eqsp � click
= f Theorem 10.18 and Axiom 12.11a g

pref � click

Adding up the intermediate results leads us to Conditions 14.4b and 14.4d:

ch1 u (pref � click � ch2)[v dly
^ ch2 u (ch1 � pref � click)[v dly � eqsp

(f Conditions 14.4a and 14.4c: above results g
ch1 u (pref � click)[v dly
^ ch2 u (pref � click)[v dly � eqsp

= f heading for De�nition 12.17: Conditions 14.4a and 14.4c again g
ch1 u eqsp � pref u (pref � click)[v dly
^ ch2 u eqsp � pref u (pref � click)[v dly � eqsp

(f below g
ch1 u eqsp � (pref u (pref � click)[) v dly
^ ch2 u eqsp � (pref u (pref � click)[) v dly � eqsp

= f De�nition 12.17a g
ch1 u eqsp � (1) v dly
^ ch2 u eqsp � (1) v dly � eqsp

= f Conditions 14.4b and 14.4d g
True

Only one proof obligation is left:

eqsp � pref u (pref � click)[v eqsp � (pref u (pref � click)[)
(f Dedekind 3.21 g

pref u eqsp[� (pref � click)[v pref u (pref � click)[

= f reverse g
pref u (pref � click � eqsp)[v pref u (pref � click)[

= f Axiom 12.11a g
True

2

The importance of the use of Lemma 14.3 in the proof of Lemma 14.5 can not be emphasised
enough: the key step in the proof of Lemma 14.3 is Theorem 12.10c, but due to the
sequential composition with ch1 in the Basic Network, direct application of the theorem in
the proof of Lemma 14.5 (second step) is impossible.
Next, we turn to the second part needed to get the required re�nement: totality of (a
typed version of) BN :(ch1; ch2). The property of totality is hard to explain as a safety or

14.1. THE BASIC NETWORK 189

liveness property. Had we considered the refusal of a message as observable, the totality
would have been a safety property.
To be able to continue our development, we have to introduce type conditions. We will show
that, under reasonable conditions, the proc BN :(ch1; ch2) � Ia is total on Ia. Consequently,
we can derive that this typed Basic Network is a re�nement of dlya. The intended meaning
of base type a is that it is the type of the messages which are sent to the protocol.
Because the Basic Network is a feedback loop, we need causality conditions according to
Corollary 13.1e. The following (weak) causality conditions are imposed on the channels
ch1 and ch2:

Condition 14.6 Causality of one-place channel

a. ch1 2 Ia
c
� Ia

b. ch2 � Ia 2 Ib
w
� Ia

2

Base type b is, for the moment, arbitrary. It is used internally by the protocol to trigger
the hot bu�er. When we continue our development of the protocol in Section 14.2, the
intended meaning of b will become clear.
Condition 14.6 and Lemma 14.5, which is derived from Condition 14.4, guide the way
to an important theorem. We want to show that the typed network BN :(ch1; ch2) � Ia
implements a reliable channel, using channels ch1 and ch2 which might loose messages:

Theorem 14.7 Re�nement and causality

a.� BN :(ch1; ch2) � Ia � dlya

b.� causal :(BN :(ch1; ch2) � Ia)

Proof:
To obtain the re�nement, only totality of the Basic Network has to be proved:

BN :(ch1; ch2) � Ia � dlya
= f De�nitions 7.31 and 13.4c g

BN :(ch1; ch2) � Ia v dly � Ia ^ (BN :(ch1; ch2) � Ia)> = dlya>

= f Lemma 14.5: monotonicity; Theorem 13.5d: dlya>= Ia g
(BN :(ch1; ch2) � Ia)> = Ia

Totality and causality of the typed Basic Network are proved together. We are heading
for an application of Corollary 13.1e:

BN :(ch1; ch2) � Ia 2 Ia
c
� Ia

= f De�nition 14.2 g
(ch1 � Hbu� � I k ch2)� � Ia 2 Ia

c
� Ia

= f Condition 14.6a: ch1 = Ia � ch1; Theorem 3.15 g
(Ia � ch1 � Hbu� � Ia k ch2)� 2 Ia

c
� Ia

190 CHAPTER 14. THE ALTERNATING BIT PROTOCOL

= f (A �P)� = (P � I kA)� g
(ch1 � Hbu� � Ia k (ch2 � Ia))� 2 Ia

c
� Ia

(f Corollary 13.1e g
ch1 � Hbu� � Ia k (ch2 � Ia) 2 Ia

c
� Ia k Ia

We need the causality and totality of the typed proc ch1 � Hbu� � Ia k (ch2 � Ia). This
can be derived from Condition 14.6:

ch1 � Hbu� � Ia k (ch2 � Ia) 2 Ia
c
� Ia k Ia

(f Corollary 13.1a g
ch1 2 Ia

c
� Ia ^ Hbu� � Ia k (ch2 � Ia) 2 Ia

w
� Ia k Ia

= f Condition 14.6a; Condition 14.6b: ch2 � Ia = Ib � ch2 � Ia g
Hbu� � Ia k (Ib � ch2 � Ia) 2 Ia

w
� Ia k Ia

(f Parallel-parallel fusion 3.12b; Corollary 13.1b g
Hbu� � Ia k Ib 2 Ia

w
� Ia k Ib ^ Ia k (ch2 � Ia) 2 Ia k Ib

w
� Ia k Ia

(f De�nition 13.4d and Theorem 13.5e; Corollary 13.1d g
Ia 2 Ia

w
� Ia ^ ch2 � Ia 2 Ib

w
� Ia

= f Theorem 13.5a; Condition 14.6b g
True

2

This concludes our preliminary investigations of the Basic Network. We derived the fun-
damental properties of channels ch1 and ch2 which guarantee the well-behavedness of the
network in the sense of Theorem 14.7, and removed the topological structure of the loop.

14.2 Tagged messages

In the previous section we considered a network, Figure 14.2, which was a simpli�cation of
the topology of the ABP, Figure 14.1. In this section, an important detail of the processes
(programs) is introduced which results in the implementation of channels ch1 and ch2 by
one single channel chc for some base type c.
Because the ABP has to be built with two faulty channels ch which might lose messages,
we are heading for the use of a proc which repeatedly sends a message to the unreliable
channel. To be able to send two equal messages to the protocol one after the other, we
have to �nd a way to distinguish them. Otherwise, they are lost in the repetition proc.
This suggests the mechanism of tagging. In the sequel, base type b will be used for the
type of tags.
We �rst concentrate on the interface nad which is the identity on chronicles that carry
no adjacent duplicates, regardless of the arity of the chronicle. Among others, chronicles
carrying 0 and 1 in alternating order are included in the interface nad . Recalling that
the interface synp is an identity on synchronised pairs, we conclude that the interface
I k nad � synp is the identity on synchronised pairs such that the second components of

14.2. TAGGED MESSAGES 191

two adjacent pairs are non-equal. A consequence is that two adjacent synchronised pairs
are distinguishable. This is formally described by the next axiom:

Axiom 14.8 No adjacent duplicates

I k nad � synp v nad v I

2

With this knowledge, we de�ne a proc tag which adds an extra message (a tag) to its
argument message to assure that all outgoing adjacent messages are di�erent:

De�nition 14.9 Acknowledge and tag

a. ackn , nad � eqsp ; acknba , Ib � ackn � Ia

b. tag , I4ackn ; tagab , Ia k Ib � tag (= Ia4acknba)

2

The proc ackn replaces any input message by a new message such that no two adjacent
messages are equal. The proc tag does not change the occurrence of messages: for every
message it immediately produces a fresh tag and attaches this tag to the message. This is
expressed by the inclusion tag v eqsp :

Lemma 14.10

a. tag v eqsp

b. tag v nad � synp ��[

Proof:

tag
= f De�nition 14.9 g

I 4 (nad � eqsp)
v f nad is an interface g

I4eqsp
v f Theorem 5.18a g

eqsp � I4eqsp
= f Lemma 11.9 g

eqsp

The second property follows from I4eqsp = synp ��[and Axiom 14.8
2

The instruments of nad , ackn and tag are su�cient to reason about tagging messages.
Next, we show how the channels ch1 and ch2 can be implemented by one channel chc in
combination with the procs ackn and tag.
For the channel ch1 for sending the messages in the Basic Network we want to use
� � cha�b � tag : tag the messages, sent them to the channel cha�b and strip o� the tags

192 CHAPTER 14. THE ALTERNATING BIT PROTOCOL

when the tagged messages are transmitted. The channel ch2 for the acknowledgements
is less stringent. The proc chb � acknba is proposed: for every input message, generate a
fresh acknowledge which is sent to the channel. To meet the Conditions 14.4 and 14.6 of
Theorem 14.7, we assume the following about chc:

Condition 14.11 Weak one-place channel chc
For c2fb; a�bg:
a. chc v eqsp � pref

b. chc � nad u (1) � eqsp v dly

c. chc 2 Ic
c
� Ic

2

Conditions 14.11a and 14.11b are weaker than Conditions 14.4a and 14.4b: the channel
only has to behave as a one-place channel on chronicles carrying no adjacent duplicates.
Condition 14.11c is the usual healthiness condition on channel chc.
It follows that the number of messages produced by the proposed channels is less than the
number of received input messages, or, in other words, they meet Conditions 14.4a and
14.4c:

Lemma 14.12

a. � � cha�b � tag v eqsp � pref

b. chb � ackn v eqsp � pref

Proof:

� � cha�b � tag
= f Condition 14.11c and Theorem 13.3b: cha�b<v Ia�bv synp g

� � synp � cha�b � tag
v f Condition 14.11a g

� � synp � eqsp � pref � tag
= f relational calculus: � � synp = (I4eqsp)[; reverse and Lemma 11.9 g

eqsp � pref � tag
v f Lemma 14.10a g

eqsp � pref � eqsp
= f Theorem 10.18 twice g

eqsp � pref

Lemma 14.12b follows by an easier calculation from Condition 14.11a only
2

The interface nad in the proc tag does not play any role in the proof above. It will play
an important role in the next lemma, which exploits Condition 14.11b. The lemma proves

14.2. TAGGED MESSAGES 193

that the proposed channels meet Conditions 14.4b and 14.4d:

Lemma 14.13

a. � � cha�b � tag u (1) � eqsp v dly

b. chb � ackn u (1) � eqsp v dly � eqsp

Proof:

� � cha�b � tag u (1) � eqsp
v f Lemma 14.10b g

� � cha�b � nad ��[u (1) � eqsp
= f Condition 14.11c and Theorem 13.3b: cha�b = synp � cha�b � synp g

� � synp � cha�b � nad � synp ��[u (1) � eqsp
= f � is a function: Theorem 3.35b twice g

� � (synp � cha�b � nad � synp u �[� (1) � eqsp ��) � �[

= f A �P �B u Q = P u A �Q �B g
� � (cha�b � nad u synp ��[� (1) � eqsp �� � synp) � �[

v f below g
� � (cha�b � nad u (1) � eqsp) � �[

v f Condition 14.11b g
� � dly � �[

= f �=�
�: Axiom 12.19h g

dly � � � �[

v f � is a function g
dly

To discharge the deferred proof obligation we use the inclusion I4eqsp v eqsp, which is a
consequence of Lemma 11.9:

synp ��[� (1) � eqsp �� � synp
= f synp ��[= I4eqsp; reverse g

I4eqsp � (1) � eqsp � (I4eqsp)[

v f I4eqsp v eqsp; reverse g
eqsp � (1) � eqsp � eqsp

= f Theorem 12.18e; Theorem 5.18c g
(1) � eqsp

Lemma 14.13b follows from De�nition 14.9a and an appeal to Dedekind 3.21
2

A condition is needed to guarantee totality of the acknowledge proc acknba and of the
tagging proc tagab. Condition 14.14 describes that given any support, one can construct a

194 CHAPTER 14. THE ALTERNATING BIT PROTOCOL

chronicle in Ib which carries no adjacent duplicates. Furthermore, we assume that the proc
Ib � ackn is weakly causal:

Condition 14.14 Acknowledge

Ib � ackn 2 I
w
� I

2

Observe that the condition implies that there are at least two di�erent messages in b. Due
to the type restriction Ib, weak causality of Ib � ackn can not be derived from the weak
causality of Ib and ackn, exploiting Axiom 9.8q.
Now the typing of the acknowledge proc acknba and of the tagging proc tagab can be
derived:

Lemma 14.15

a. acknba 2 Ib
w
� Ia

b. tagab 2 Ia�b
w
� Ia

Proof:

tagab 2 Ia�b
w
� Ia

= f Theorem 13.3b g
tagab 2 Ia k Ib � synp

w
� Ia

= f De�nition 14.9b and Lemma 14.10b: (tagab)<v synp g
tagab 2 Ia k Ib

w
� Ia

= f De�nition 14.9b g
Ia4acknba 2 Ia k Ib

w
� Ia

(f Corollary 13.1c g
Ia 2 Ia

w
� Ia ^ acknba 2 Ib

w
� Ia

= f Theorem 13.5a; Lemma 14.15a g
True

2

Finally, according to Condition 14.6, the causality of channel � � cha�b � tag and the weak
causality of chb � ackn � Ia has to be shown:

Lemma 14.16

a. � � cha�b � tag 2 Ia
c
� Ia

b. chb � ackn � Ia 2 Ib
w
� Ia

Proof:

� � cha�b � tag 2 Ia
c
� Ia

= f Condition 14.11c, Theorem 13.3b: cha�b = Ia k Ib � cha�b � Ia k Ib g

14.2. TAGGED MESSAGES 195

� � Ia k Ib � cha�b � Ia k Ib � tag 2 Ia
c
� Ia

= f De�nitions 13.4a and 14.9b g
�ab � cha�b � tagab 2 Ia

c
� Ia

(f Corollary 13.1a g
�ab 2 Ia

w
� Ia k Ib ^ cha�b � tagab 2 Ia k Ib

c
� Ia

(f Theorem 13.5b; Corollary 13.1a g
cha�b 2 Ia k Ib

c
� Ia�b ^ tagab 2 Ia�b

w
� Ia

(f Theorem 13.3b: Ia k Ib w Ia�b; Lemma 14.15b g
cha�b 2 Ia�b

c
� Ia�b

= f Condition 14.11c g
True

And second:

chb � ackn � Ia 2 Ib
w
� Ia

(f Axiom 9.8n g
chb � ackn � Ia 2 Ib

c
� Ia

= f Condition 14.11c: chb = chb � Ib g
chb � Ib � ackn � Ia 2 Ib

c
� Ia

= f De�nition 14.9a g
chb � acknba 2 Ib

c
� Ia

(f Corollary 13.1a g
chb 2 Ib

c
� Ib ^ acknba 2 Ib

w
� Ia

= f Condition 14.11c; Lemma 14.15a g
True

2

This shows that the channels are (weakly) causal, and therefore the requirements of Theo-
rem 14.7 are met. We conclude this section with the corollary of Condition 14.11. It shows
how the two channels ch1 and ch2 of the Basic Network can be implemented by the two
channels � � cha�b � tag and chb � ackn :

Corollary 14.17 Basic Network

a.� BN :(� � cha�b � tag ; chb � ackn) � Ia � dlya

b.� causal :(BN :(� � cha�b � tag ; chb � ackn) � Ia)

2

As remarked before, Conditions 14.4b and 14.4d (and consequently Condition 14.11b)
are often too stringent. In the next section we will try to meet these conditions using
a less reliable channel ch and preprocessing and postprocessing by additional procs to
circumvent the unreliability.

196 CHAPTER 14. THE ALTERNATING BIT PROTOCOL

14.3 The Alternating Bit Protocol

In this section, an implementation of channel chc is suggested, given a faulty channel chc.
Afterwards, a sender S and a receiver R are derived which result in an instantiation of the
network in Figure 14.1.

14.3.1 Weak fairness

In Condition 14.11 we required that the channel chc behaves like a weak one-place channel.
However, when a channel can lose a message also if there is no next message, one can not
meet this requirement directly. The solution is to repeatedly send the same message to the
channel. A fairness property then has to prescribe that eventually at least one message
is transmitted by the channel. A proc placed behind the channel removes the duplicates
generated by the repetition proc.
Given a faulty channel chc, we want to specify a repetition proc repc and a removing
proc remc such that the sequential composition remc �chc � repc satis�es Condition 14.11
needed to establish the result of Corollary 14.17. To meet those conditions, we assume
that remc �chc � repc is a weak one-place channel:

Condition 14.18 Weak one-place channel
For c2fb; a�bg:

remc �chc � repc is a weak one-place channel

2

We are obliged to shed some light on Condition 14.18 and in particular on Condition 14.11b
with chc replaced by remc �chc � repc. The explanation is best understood when one
considers a single input message m which is sent to the channel remc �chc � repc. Because
there is only one input m, the conjunction with the one-place bu�er (1) � eqsp and the
inclusion in dly requires that the message m has to be transmitted eventually. Therefore,
in the worst case, the part remc �chc � repc has to take care for the transmission: if the
message m is sent repeatedly, the channel chc eventually has to transmit that message at
least once. The proc repc is responsible for the repetition; remc removes duplicates that
are transmitted. In scheduling processes, this liveness property is called weak fairness.
The causality of the channel remc �chc � repc, Condition 14.11c, is implied by the con-
ditions that the procs remc and repc are weakly causal, and the condition that chc is
causal.
Observe that the faulty channel chc is allowed to produce duplicates: the proc remc

removes those duplicates. This motivates why a condition like chc v eqsp � pref , Condi-
tion 14.11a, is too strong.
Several conditions on the procs repc, chc and remc are combined. We do not require
explicitly that the proc repc keeps on repeating its input. In combination with a channel
chc which really loses messages, repetition is necessary. In case the channel chc is FIFO,
for example if chc= dlyc, the proc pdlyc is a good instantiation for repc and remc: the
obtained combination of procs satis�es Condition 14.18 trivially.

14.3. THE ALTERNATING BIT PROTOCOL 197

The direct corollary of Condition 14.18 and Corollary 14.17 is stated next:

Corollary 14.19 Basic Network

a.� BN :(� � rema�b �cha�b � repa�b � tag ; remb �chb � repb � ackn) � Ia � dlya

b.� causal :(BN :(� � rema�b �cha�b � repa�b � tag ; remb �chb � repb � ackn) � Ia)

2

Next, we massage this instantiation of channel chc to obtain a familiar protocol.

14.3.2 Sender and receiver de�ned

Finally, we aim for our goal of �nding a sender and receiver such that the topological
structure of Figure 14.1 implements a delay. From Corollary 14.19 we conclude that the
Basic Network with the instantiation � � rem �ch � rep � tag and rem �ch � rep � ackn
re�nes a delay. To obtain a sender and a receiver, the Basic Network of Corollary 14.19 is
transformed such that we get the topology of the ABP, Figure 14.1:

BN :(� � rema�b �cha�b � repa�b � tag ; remb �chb � repb � ackn) � Ia
= f De�nition 14.2; Theorem 3.15 g

(� � rema�b � cha�b � repa�b � tag � Hbu� � Ia k (remb �chb � repb � ackn))�

= f Theorem 3.18a g
(I4I �� � rema�b �cha�b � repa�b � tag �Hbu� � Ia k (remb �chb � repb � ackn))$

= f Parallel-parallel fusion 3.12b g
(I4I �� � rema�b �cha�b � repa�b � tag �Hbu� � Iakremb � Ikchb � I k (repb�ackn))$

= f Theorem 3.18c g
(I k (repb�ackn) � I4I �� � rema�b �cha�b � repa�b � tag �Hbu� � Iakremb � Ikchb)$

= f Parallel-split fusion 3.12a g
(I4(repb � ackn) �� � rema�b �cha�b � repa�b � tag �Hbu� � Iakremb � Ikchb)$

= f De�nition 14.1 g
ABPa�b b:(I 4 (repb � ackn) � � � rema�b ; repa�b � tag � Hbu� � Ia k remb)

The derived de�nitions for a sender and a receiver such that ABP :(R; S) implements a
delay are:

De�nition 14.20 Sender S and receiver R

a. S , repa�b � tag � Hbu� � Ia k remb

b. R , I 4 (repb � ackn) � � � rema�b

2

Initially, the sender S is in a state with one request pending, due to the hot bu�er Hbu� .
The sender keeps all incoming messages, which are received on its �rst input port, in the
bu�er and repeatedly sends those messages, after adding a fresh tag, to the output port.
Whenever S gets a trigger on its second input port, the hot bu�er gives a new message

198 CHAPTER 14. THE ALTERNATING BIT PROTOCOL

to be sent if it is present; otherwise, the sender goes again to a state with one pending
request.
The receiver R removes all duplicates from its input port and strips o� the tags. The
resulting messages are sent to its �rst output port and an acknowledgement is repeatedly
sent to the second output port to signal that a message has been received.
The Alternating Bit Protocol theorem is stated next. It follows from Condition 14.18,
Corollary 14.19 and the derivation of R and S above:

Theorem 14.21 The ABP Theorem

a.� ABPa�b b:(R; S) � dlya

b.� causal :ABPa�b b:(R; S)

2

We �nish the theoretical discussion on the ABP with a remark about the angelic sequential
composition used in the protocol. All the angelic compositions can be replaced by demonic
compositions if we assume the following totality condition:

Condition 14.22 Typing
For c2fb; a�bg:

remc;chc; repc 2 Ic�Ic

2

The result then follows from type pushing and Corollary 3.45a:

Theorem 14.23 Demonic compositions

a. S = repa�b �� tagab �� Hbu� ab �� Ia k remb

b. R = Ia 4 (repb�� acknba) �� �ab �� rema�b

c. ABPa�b b:(R; S) = (R �� cha�b �� S �� Ia kchb)$

2

After having identi�ed the network of Figure 14.2 as fundamental for protocols which rely
on the mechanism of acknowledgements, we derived reasonable conditions on the channels
of this network to guarantee the implementation of a reliable channel. It was shown
that, given a faulty channel, those conditions can be met by a suitable preprocessing and
postprocessing of the messages to be sent. This resulted in a possible instantiation of
Figure 14.1 which implements a delay.
Observe that the name `Alternating Bit Protocol' is too speci�c: it is not essential that
alternating bits be used as tags. Any sequence of pairwise distinguishable tags will do; this
is formalised by the use of interface nad and Axiom 14.8.

Chapter 15

Conclusion and future work

We draw some conclusions from the preceding investigations, and present some suggestions
for future work, either as an extension of the theory presented in this thesis, or as an
alternative.

15.1 Conclusion

Our goal was, and is, the development of a relational calculus for the design of distributed
algorithms. After intensive research, of which this thesis is the result, the question should
be asked: How far did we get?
The choice for starting with a well-established relational calculus was a signi�cant leap for-
ward. Due to work done by other researchers, Part I records an extensive set of theorems
which are at our disposal. The only problem was to pinpoint the speci�c model needed to
reason about processes. In essence, the model is the stream model for history relations, ex-
tended with time information to be able to describe causality properties. We showed, after
some preliminary work on postcompose and precompose in Part II, that the property of
causality solves the preservation problems of feedback with respect to (poly-)functionality
and totality. This work, presented in Part III, is the main body of the theory developed
in this thesis. In Part IV, we succeeded in giving de�nitions (partly in the model with
precompose) of several useful procs, and �xed a number of properties as axioms which
can be applied during the derivation of distributed algorithms. As an example of such a
derivation, Part V presents the proof of the Alternating Bit Protocol. The proof is con-
ducted completely on the level of procs. No elements of the model occur in the calculation;
only some informal justi�cations and clari�cations are given in terms of chronicles and
messages.
The tool box of the calculus contains only about ten primitive procs. The set of combining
forms is small too; it mainly comprises the primitive combining forms of the raw relational
calculus, extended with a few derived forms such as feedback and postcompose. Most
of the axioms recorded at the end of each part �t in classes such as commutation and
preservation properties.

199

200 CHAPTER 15. CONCLUSION AND FUTURE WORK

The absence of state results in proofs which only mention processes; no internal structure
is visible. Together with the goal to perform calculations point-free, we could completely
concentrate on the processes as �rst-class citizens.
We succeeded in abstracting from time in a pleasant way: the procs which are related to
assumptions on the time domain, such as dly, are axiomatised without explicit reference
to time. As announced, di�erent assumptions lead to di�erent rules of the calculus.

We can, however, indicate several drawbacks of the approach. Despite the fact that the
relational calculus is well developed, it does not mean that it is well known. The reason
is that most research has been done using models built on traces or transition systems; a
relational calculus as the basis is relatively new in the �eld. One calculus which applies a
relational algebra is the language called Ruby, developed by Jones & Sheeran [JS90]. For
us, the application of the calculus of relations for the design of distributed algorithms was
a �rst try. Therefore, it might be the case that we made some wrong decisions, and that
other choices would have led to a nicer set of theorems.
For example, the choice for an untyped calculus forced us to introduce assumptions on
relations and procs such as primed typing and preservation of arities. We showed that
instantiating the general theory is possible, Chapter 13, but starting o� with a well-typed
calculus of relations in the �rst place simply avoids considerations such as primed typing.
On the other hand, a typed calculus introduces typing problems with cap.
The dependence of Axiom 12.19p (and all its corollaries) on Assumption 10.8 is a mistake.
This is due to the restrictive de�nitions of pdly and dly when interpreted for T isomorphic
to Z.
Several calculations are very unwieldy, or simply cannot be called calculations in the �rst
place. The `proofs' of the causality and weak causality of the procs eqar , eqsp and Sync
(Properties 8.1b, 9.4d and 11.11) are a thorn in the esh of the calculus. The calculations
concerning bu�ered procs, Theorem 12.7, were tedious and long as well.

15.2 Future work

Alternative de�nitions for pdly and dly establishing an order-isomorphism between the
supports of chronicles have to be given. This will result in an intuitively correct interpre-
tation of these procs and remove the dependence of Axiom 12.19p on Assumption 10.8.
Commutation of pdly or dly with r� (Axiom 12.19g and 12.19h) will be false in general.
However, under conditions like sm � r = r � sm or Assumption 10.8 these axioms will be
valid.
In Chapters 13 and 14 we introduced typed procs. These chapters suggest a subset of
procs which could be valuable with respect to implementations. The rules listed in Corol-
lary 13.1 resemble (typing) rules for a category of total and causal procs. If we are able to
identify the structure of a category, we get theorems known from category theory `for free',
see Goldblatt [Gol86], MacLane [Lan88] or, more speci�cally, Abramsky [Abr94]. Future
research has to study the e�ect of the type-checking and other restrictions emerging during
calculations.

15.2. FUTURE WORK 201

Another important possibility suggested by category theory is the use of functors (or, in
our case, relators) to describe the topology of large networks. In our calculus, the parallel
composition is a functor, and therefore we claim that functors can be useful in de�ning and
manipulating the topological structure of networks. Preliminary investigations showed that
work by Jones & Sheeran [JS90] on Ruby �ts in our framework, and that several topological
constructs such as columns col and rows row can be de�ned generically by making use of
initial algebras of appropriate functors.
The usefulness of the calculus could be increased by adding so-called accumulations which
simulate an internal state: present output depends on present input and on the previous
output. The result is a generalisation of the function postcompose which applies its argu-
ment only to the present input. For example, a proc that adds all the natural numbers on
the input and delivers the intermediate results can be de�ned using accumulations. Early
investigations on accumulations showed that there are similarities with relational cata-
morphisms on non-empty lists, Backhouse et al. [BdBM+91]. Accumulations are powerful
instruments, and we would like to have them in our tool box.
Further research could also investigate and encapsulate the connections with dataow net-
works (see Appendix C), process algebras, delay-insensitive algebras and real-time calculi.

The �nal conclusion is that the �rst steps towards a relational calculus for the design of
distributed algorithms are promising, but leave enough questions unanswered, or solved in
such an unsatisfactory way that alternatives have to be found.

202 CHAPTER 15. CONCLUSION AND FUTURE WORK

Bibliography

[Aar92] C.J. Aarts. Galois connections presented calculationally. Master's thesis,
Eindhoven University of Technology, 1992.

[Abr90] S. Abramsky. A generalised Kahn principle for abstract asynchronous net-
works. In M. Main, A. Melton, and D. Schmidt, editors, Mathematical Foun-
dations of Program Semantics, volume 442 of Lecture Notes in Computer Sci-
ence, pages 1{21. Springer-Verlag, 1990.

[Abr94] S. Abramsky. Interaction categories and communicating sequential processes.
In A.W. Roscoe, editor, A Classical Mind: Essays in Honour of C.A.R. Hoare.
Prentice-Hall, 1994.

[Apo67] T.M. Apostol. Calculus, volume 1, second edition. Wiley International Edi-
tion, 1967.

[BA81] J.D. Brock and W.B. Ackerman. Scenarios: A model of non-deterministic
computation. In J. Diaz and I. Ramos, editors, Formalization of Programming
Concepts, volume 107 of Lecture Notes in Computer Science, pages 252{259.
Springer-Verlag, 1981.

[Bac78] J. Backus. Can programming be liberated from the von Neumann style? a
functional style and its algebra of programs. Communications of the ACM,
21(8):613{641, 1978.

[Bac93] R.-J.R. Back. Re�nement calculus, lattices and higher order logic. In M. Broy,
editor, Program Design Calculi, volume 118 of Springer NATO ASI Series,
pages 53{71, 1993.

[BdBH+91] R.C. Backhouse, P.J. de Bruin, P.F. Hoogendijk, G. Malcolm, T.S. Voermans,
and J.C.S.P. van der Woude. Polynomial relators. In M. Nivat, C. Rattray,
T. Rus, and G. Scollo, editors, Algebraic Methodology and Software Technol-
ogy, Workshops in Computing, pages 303{326. Springer-Verlag, 1991.

[BdBM+91] R.C. Backhouse, P.J. de Bruin, G. Malcolm, T.S. Voermans, and J.C.S.P.
van der Woude. Relational catamorphisms. In B. M�oller, editor, Proceedings
of the IFIP Working Conference on Constructing Programs, pages 287{318.
Elsevier Science Publishers, 1991.

203

204 BIBLIOGRAPHY

[Ber91] R. Berghammer. Relational speci�cation of data types and programs. Tech-
nical Report 9109, Universit�at der Bundeswehr M�unchen, Fakult�at f�ur Infor-
matik, 1991.

[Bro90] M. Broy. Functional speci�cation of time sensitive communicating systems.
In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise
Re�nement of Distributed Systems: Models, Formalisms, Correctness, volume
430 of Lecture Notes in Computer Science, pages 153{179. Springer-Verlag,
1990.

[BSW69] K.A. Bartlett, R.A. Scantleburry, and P.T. Wilkinson. A note on reliable
full-duplex transmission over half-duplex links. Communications of the ACM,
12(5):260{261, 1969.

[BvdW93] R.C. Backhouse and J.C.S.P. van der Woude. Demonic operators and mono-
type factors. Mathematical Structures in Computer Science, 3(4):417{434,
1993.

[BW88] R.S. Bird and P. Wadler. Introduction to Functional Programming. Prentice-
Hall, 1988.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in TCS. Cambridge University Press, 1990.

[Can97] G. Cantor. Beitr�age zur Begr�undung der Trans�niten Mengenlehre. Mathe-
matische Annalen, 49:207{246, 1897.

[CM89] K.M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1989.

[Doo94] H. Doornbos. A relational model of programs without the restriction to Egli-
Milner monotonic constructs. In E.-R. Olderog, editor, Programming Con-
cepts, Methods and Calculi, pages 363{382. North-Holland, 1994.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

[DS90] E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1990.

[Fok92] M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Twente Univer-
sity, 1992.

[Fra86] N. Francez. Fairness. Springer-Verlag, 1986.

[Gol86] R. Goldblatt. Topoi: the Categorial Analysis of Logic. North-Holland, 1986.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

BIBLIOGRAPHY 205

[Jeu93] J.T. Jeuring. Theories for Algorithm Calculation. PhD thesis, Utrecht Uni-
versity, 1993.

[JS90] G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, edi-
tor, Formal Methods for VLSI Design: IFIP WG 10.5 Lecture Notes. North-
Holland, 1990.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming. In J.L.
Rosenfeld, editor, Information Processing 74: Proceedings of IFIP Congress
74, pages 471{475. North-Holland, 1974.

[Kel78] R.M. Keller. Denotational models for parallel programs with indeterminate
operators. In E.J. Neuhold, editor, Formal Description of Programming Con-
cepts, pages 337{366. North-Holland, 1978.

[Kle52] S.C. Kleene. Introduction to metamathematics. North-Holland, 1952.

[KM68] K. Kuratowski and A. Mostowski. Set Theory. North-Holland, 1968.

[Kna28] B. Knaster. Un th�eor�eme sur les fonctions d'essembles. Annales de la Societ�e
Polonaise de Mathematique, 6:133{134, 1928.

[Kok93] J.N. Kok. Current trends in the semantics of data ow. In M. Droste and
Y. Gurevich, editors, Semantics of Programming Languages and Model The-
ory, volume 5 of Algebra, Logic and Applications, pages 245{268. Gordon and
Breach Science Publishers, 1993.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, SE-3(2):125{143, 1977.

[Lan88] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
1988.

[Mad91] R.D. Maddux. The origin of relation algebras in the development and axiom-
atization of the calculus of relations. Studia Logica, 50:421{455, 1991.

[Mei92] H.J.M. Meijer. Calculating Compilers. PhD thesis, University of Nijmegen,
1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mis90] J. Misra. Equational reasoning about nondeterministic processes. Formal
Aspects of Computing, 2:167{195, 1990.

[M�ol94] B. M�oller. Ideal streams. In E.-R. Olderog, editor, Programming Concepts,
Methods and Calculi, pages 39{58. North-Holland, 1994.

[Mor90] C.C. Morgan. Programming from Speci�cations. Prentice-Hall, 1990.

206 BIBLIOGRAPHY

[Rie91] F.J. Rietman. A note on extensionality. In J. van Leeuwen, editor, Computing
Science in the Netherlands, pages 468{483, 1991.

[Rie93a] F.J. Rietman. The secrets of causality. Technical Report RUU-CS-93-29,
Department of Computer Science, Utrecht University, 1993.

[Rie93b] F.J. Rietman. Towards the derivation of distributed algorithms in the rela-
tional calculus. In H.A. Wijsho�, editor, Computing Science in the Nether-
lands, pages 297{308, 1993.

[Rig48] J. Riguet. Relations binaires, fermetures, correspondances de galois. Bulletin
de la Societ�e Mathematique de France, 76:114{155, 1948.

[Rog67] H.R. Rogers. Theory of Recursive Functions and E�ective Computability.
McGraw-Hill, New York, 1967.

[Sch53] J. Schmidt. Beitr�age zur Filtertheorie. Mathematische Nachrichten, 10:197{
232, 1953.

[Sek93] E. Sekerinski. A calculus for predicative programming. In R.S. Bird, C.C.
Morgan, and J.C.P. Woodcock, editors, Proceedings of the 2nd International
Conference on the Mathematics of Program Construction, volume 669 of Lec-
ture Notes in Computer Science, pages 302{322. Springer-Verlag, 1993.

[SS93] G. Schmidt and T. Str�ohlein. Relations and graphs: discrete mathematics
for computer scientists. EATC: monographs on theoretical computer science.
Springer-Verlag, 1993.

[Sta90] E.W. Stark. A simple generalization of Kahn's principle to indeterminate
dataow networks. In M.Z. Kwiatkowska, M.W. Shields, and R.M. Thomas,
editors, Semantics for Concurrency, Workshops in Computing, pages 157{174.
Springer-Verlag, 1990.

[Sta92] E.W. Stark. A calculus of dataow networks. In Proceedings seventh annual
IEEE symposium on Logic in Computer Science, Logic in Computer Science,
pages 125{136, 1992.

[Tan81] A.S. Tanenbaum. Computer Networks. Prentice-Hall, 1981.

[Tar41] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73{89,
1941.

[Tar55] A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c
Journal of Mathematics, 5:285{309, 1955.

[Vaa90] F.W. Vaandrager. Two simple protocols. In J.C.M. Baeten, editor, Applica-
tions of Process Algebra, volume 17 of Cambridge Tracts in TCS, pages 23{44.
Cambridge University Press, 1990.

BIBLIOGRAPHY 207

[Zim80] H. Zimmermann. OSI reference model | the ISO model of architecture
for open systems interconnection. IEEE Transactions on Communications,
28(4):425{432, 1980.

208 BIBLIOGRAPHY

Index

v, inclusion, 16
t, cup, 16
u, cap, 16
??, bottom, 16
>>, top, 16
:, negation, 16
�F , least �xpoint of F , 17
�, angelic sequential composition, 18
n, n-fold sequential composition, 19
�, transitive and reexive closure, 20
[, reverse, 20
�, left projection, 21
�, right projection, 21
4, split, 21
k, parallel composition, 21
�, feedback, 23
$, loop, 24

�, typing, 29
<, left domain, 30
>, right domain, 30
 , function, 32
!, injection, 32

�, total, 34

�, surjective, 34

��, demonic sequential composition, 36
�, inclusion in B, 45
�, sequential composition in B, 45
�1, reverse in B, 45
�, left projection in B, 45
�, right projection in B, 45
[, cup in B, 45
\, cap in B, 45
?, bottom in B, 45
>, top in B, 45
N, split in B, 45

�, product in B, 45
�, left domain in B, 45
�, right domain in B, 45
�, singleton identity, 46
6, order on T , 47
<, strict order on T , 47
�, postcompose, 57
� , precompose, 72
<t, equal-until, 78
>t, equal-since, 78
�P , �xpoints of proc P , 95
�, re�nement, 106
c
�, causal, 107
#, minimum on moments, 111, 213
w
�, weakly causal, 124
6#, pre-order on chronicles, 147
(n), n-place bu�er, 172

A, relational algebra, 16
ABP , alternating bit protocol, 184
ackn, acknowledge, 191, 194
arch, archimedean function, 89
axiom of choice for chronicles, 53

applied, 59, 141

B, relational algebra, 45
base type, 180
BN , basic network, 184
bs, base set of chronicles, 50
Bu� , bu�er, 161

C, set of chronicles, 50
cancellation, 19
capjunctive, 17
causality, 99, 107
ch1, ch2, one-place channels, 186

209

210 INDEX

chain, 47
closed in�nite, 47
continuous closed in�nite, 137

chc, weak one-place channel, 192
chronicle, 50
click , 169, 170
closedness, 96
closure, transitive and reexive, 19
cone rule, 25
cupjunctive, 17
cut , 139

D, set of well-typed interfaces, 91
Dedekind's rule, 26
detar , determination output arity, 61, 114
dl , 136
dly , delay, 137
domain, 30

eqar , equal arity, 68
eqsp, equal support, 69
equal-since, 78
equal-until, 78
es, 69
extensionality, 41

factor, 18
feedback, 23
�xpoint, 95
�xpoint characterisation, 17
ch, faulty channel, 196, 198
function, 32

Hbu� , hot bu�er, 168

I, identity, 18
I, identity in B, 45
i, singleton channel, 65
Ia, stream type, 180
inertia, 94
inf , in�nite chronicles, 165
injection, 32
interface, 28

lattice, 16

least �xpoint, 17
loop, 24

message domain, 46
moment, 48
msg, singleton message, 46

n-place bu�er, 172
nad , no adjacent duplicates, 191
nm, singleton no-message, 46

oiso, order-isomorphism, 89
one-place bu�er, 172
one-place channel, 186, 189
order-isomorphism, 89

parallel composition, 21
pd , 133
pdly, possible delay, 135
plat calculus, 17
point, 40
polyfunction, 94
polypoint, 110
postcompose, 57
precedence, 17{20, 22, 36
precompose, 72
pref , pre�x, 141
primed typing, 92

R, receiver of the ABP, 197
re�nement, 106
relational algebra
A, 16
B, 45

rem, remove, 196, 198
rep, repeat, 196, 198
reverse, 20

S, sender of the ABP, 197
section, 100
sequential composition

angelic, 18
demonic, 36

sm, somewhere a message, 46
sp, support, 49

INDEX 211

split, 21
stream type, 180
surjective, 33
Sync, synchronise, 150
synp, synchronised pairs, 150

T , time domain, 47
tag , 191
time domain, 47

continuous, 137
total, 33
trichotomy, 47
typed procs, 181
typing, 29, 32, 34

unar , unique output arity, 52

weak causality, 123
weak inertia, 123
weak one-place channel, 192
well-ordered, 49
wipe, 51
wp, weakest precondition, 39

212 INDEX

Appendix A

Archimedean functions

In the discussion that follows, it is assumed that the relations � and � are arch, Charac-
terisation 7.3.

Characterisation A.1 Minimum on moments

, (I N> [>NI)�1

2

A.1 Inating

Proposition A.2

� rNs = (r \ 6 � s) [(6 � r \ s)

Proof:

� rNs
= f Characterisation A.1 g

(I N> [>NI)�1 � rNs
= f cupjunctivity of reverse and composition g

(I N>)�1 � rNs [(>NI)�1 � rNs
= f axiom split g

(r \ >�1 � s) [(>�1 � r \ s)
= f >�1=6 g

(r \ 6 � s) [(6 � r \ s)

2

Proposition A.3

� �N� � >

213

214 APPENDIX A. ARCHIMEDEAN FUNCTIONS

Proof:

� �N�
= f Proposition A.2 g

(� \ 6 ��) [(6 �� \ �)
� f plat calculus g

�[�
� f � and � are inating g

>[>
= f idempotency cup g

>

2

A.2 Isomorphism

Proposition A.4

a. (� \ 6 ��) � (� \ 6 � �)�1 = I \ � �> � ��1

b. (� \ 6 ��) � (6 �� \ �)�1 = I \ � � ��1

c. (� \ 6 ��)�1 � (� \ 6 � �) = I \ ��1 �6 � �

d. (� \ 6 ��)�1 � (6 �� \ �) = I \ ��1 � �

Proof of A.4a:

(� \ 6 ��) � (� \ 6 � �)�1

= f � is a function) (� \ 6 � �) is a function g
(� \ 6 ��)�

= f (P uQ)< = I u P �Q[g
I \ � � ��1 �>

= f monotonicity of ��1 g
I \ � �> � ��1

Monotonicity in the proof of A.4a is only used to get a symmetric form. The proofs of A.4b
and A.4c do not require monotonicity properties. For the proof of A.4d, the monotonicity
of both � and � is needed:

(� \ 6 ��)�1 � (6 �� \ �)
= f reverse g

(��1 \ ��1 �>) � (6 �� \ �)
= f ��1 is a function; � is an injection g

��1 � (I \ � � ��1 �>) � (6 �� ���1 \ I) � �
= f identities: a � b = a\ b g

��1 � (� � ��1 �> \ 6 �� � ��1 \ I) � �

A.2. ISOMORPHISM 215

= f ��1 and � are monotonic g
��1 � (� �> � ��1 \ � �6 � ��1 \ I) � �

= f � is an injection; ��1 is a function g
��1 � (� � (>\6) � ��1 \ I) � �

= f >\6 = T ; types g
��1 � (� � ��1 \ I) � �

= f ��1 is a function; � is an injection g
I \ ��1 � �

2

Proposition A.5

a. # � �N� � (# � �N�)�1 = T

b. (# � �N�)�1 � # � �N� = T

Proof of A.5a:

� �N� � (# � �N�)�1

= f Proposition A.2 g
((� \ 6 � �) [(6 �� \ �)) � ((� \ 6 � �) [(6 �� \ �))�1

= f reverse g
((� \ 6 � �) [(6 �� \ �)) � ((� \ 6 � �)�1 [(6 �� \ �)�1)

= f cupjunctivity g
(� \ 6 � �) � (� \ 6 � �)�1 [(� \ 6 � �) � (6 �� \ �)�1

[(6 �� \ �) � (� \ 6 � �)�1 [(6 �� \ �) � (6 �� \ �)�1

= f Propositions A.4a and A.4b g
(I \ � �> � ��1) [(I \ � � ��1) [(I \ � ���1) [(I \ � �> ���1)

= f >�T : monotonicity of cup g
(I \ � �> � ��1) [(I \ � �> ���1)

= f I \ r = I \ r�1 g
(I \ � �> � ��1) [(I \ � �6 � ��1)

= f cupjunctivity g
I \ � � (>[6) � ��1

= f >[6 = T �>� T ; types g
I \ � �>� ��1

= f � and � are surjective to T g
T

The proof of A.5b follows the same structure. Propositions A.4c and A.4d, and the totality
of � and � on T are used instead
2

216 APPENDIX A. ARCHIMEDEAN FUNCTIONS

A.3 Monotonic

Proposition A.6

� <�< = < �
Proof:

� <�< = < �
= f de�nition product g

� (< ��) N (< ��) = < �
= f Proposition A.2 g

(< �� \ 6 �< ��) [(6 �< �� \ < ��) = < � #
= f 6 �< = < g

(< �� \ < ��) [(< �� \ < ��) = < � #
= f idempotency cup g

< �� \ < �� = < � #
= f de�nition split; Characterisation A.1 g

(>N>)�1 = < � (I N> [>NI)�1
= f reverse g

>N> = (I N> [>NI) � >

We are heading for case analysis. The axiom 6[> = T �>�T is equivalent to the ex-
pression (I N>)� [(>NI)� = T �T . This equality formalises the property that for all
pairs (t; t0) it is either the case that t6 t0 or t> t0; this is the case analysis. The expression
(I N>)� [(>NI)� is placed after >N> in the previous calculation:

>N> = (I N> [>NI) � >
= f above discussion g

((I N>)� [(>NI)�) � >N> = (I N> [>NI) � >
= f cupjunctivity of composition g

(I N>)� � >N> [(>NI)� � >N> = I N> � > [>NI � >
(f Leibniz g

(I N>)� � >N> = I N> � > ^ (>NI)� � >N> = >NI � >

We continue with the �rst disjunct. By mutual inclusion:

(I N>)� � >N>
� f monotonicity g

(I N>)� � >N>
= f Corollary 3.24b g

(I N>)� � I N> � >
= f (I Nr)� � I N> = I Nr g

I N> � >
= f Theorem 3.30b g

(I N>)� � I N> � >
� f rNs � u � (r �u) N (s � u) g

A.4. COROLLARIES 217

(I N>)� � > N (> �>)
= f > �> = > g

(I N>)� � >N>

2

Now the fact that # � �N� is monotonic is easily proved:

Proposition A.7

� �N� � < = < � # � �N�

Proof:
Because # � �N� is an isomorphism on T (which is totally ordered by 6) we only have to
prove one inclusion:

� �N� � <
� f rNs � u � (r �u) N (s � u) g

� (� �<) N (� �<)
= f � and � are monotonic g

� (< ��) N (< � �)
= f Product-split fusion 3.12a g

� <�< � �N�
= f Proposition A.6 g

< � # � �N�

2

The conclusion of the calculations is that # � �N� is an archimedean function whenever
� and � are:

Proposition A.8

arch:(# � �N�)

Proof:
Propositions A.3, A.5 and A.7
2

A.4 Corollaries

So much for this arch property of # � �N�. The discussion is completed by the following
propositions:

Proposition A.9

<(# � �N� � t) = <(� � t)t <(� � t)

218 APPENDIX A. ARCHIMEDEAN FUNCTIONS

Proof:

<(� � t)t <(� � t)
= f � 2 T T : (� � t)� is moment; Proposition 6.13a g

<(� � t) � <(� � t)
= f Characterisation 6.10 g

�((< �� � t)�) � �((< � � � t)�)
= f Proposition 6.8 g

�((< �� � t)� � (< � � � t)�)
= f Corollary 3.27b g

�((< �� � t)� \ (< �� � t)�)
= f De�nition 3.29 g

�(< �� � t �>\ < �� � t �>\ I)
= f Proposition 4.10c: t �> is a function; Theorem 3.35a g

�((< �� \ < � �) � t � > \ I)
= f De�nition 3.29 g

�(((< �� \ < � �) � t)�)
= f below g

�((< � # � �N� � t)�)
= f Characterisation 6.10 g

<(# � �N� � t)

Below:

< � # � rNs
= f Proposition A.6 g

� <�< � rNs
= f Parallel-split fusion 3.12a g

� (< � r) N (< � s)
= f Proposition A.2 g

(< � r \ 6 �< � s) [(6 �< � r \ < � s)
= f 6 �< = < g

(< � r \ < � s) [(< � r \ < � s)
= f idempotency of cup g

< � r \ < � s

2

With the straightforward corollary:

Proposition A.10

a. <(# � �N� � t) w <(� � t)

b. <(# � �N� � t) w <(� � t)

2

This concludes this appendix on #.

Appendix B

Axiom of Choice applied

The Axiom of Choice for Chronicles 4.20 is used to prove Proposition 10.14b of cut :

r� � cut � (r�)> v cut � r� (r �wipe � r� � wipe � r

Proof:
Using the de�nition of cut , Characterisation 10.11, the consequent follows by cupjunctivity
from:

r� � (<t u >t �wipe�) � (r�)> v (<t u >t �wipe�) � r�

The latter inclusion is shown in the model: for all f and g,

f hr� � (<t u >t �wipe�) � (r�)>i g
= f de�nitions in the model g

9(h; h0 :: f � r � h ^ h = g � (< � t)� [wipe � g � (> � t)� ^ h0 � r � g)
) f monotonicity; 9(h0 :: h0 � r � g)) g = r� � g g

f � r � g � (< � t)� [r �wipe � g � (> � t)� ^ g = r� � g
) f de�ne rr = r � g \ (f � (< � t)� [wipe�1 � f � (> � t)�); below g

rr�=T ^ sp:rr is well-ordered ^ unar :rr
) f Axiom of Choice for Chronicles 4.20 g

9(h :: h� rr)
= f de�nition rr; property cap g

9(h :: h � f � (< � t)� [wipe�1 � f � (> � t)� ^ h � r � g)
) f Proposition 6.9a; identities g

9(h :: f � h � (< � t)� ^ wipe�1 � f � h � (> � t)� ^ h � r � g)
= f wipe is a total function g

9(h :: f � h � (< � t)� ^ f � wipe � h � (> � t)� ^ h � r � g)
= f property cup g

9(h :: f � h � (< � t)� [wipe � h � (> � t)� ^ h � r � g)
= f Proposition 6.9b: h � (< � t)� [wipe � h � (> � t)� is total g

9(h :: f = h � (< � t)� [wipe � h � (> � t)� ^ h � r � g)
= f de�nitions in the model g

f h(<t u >t �wipe�) � r�i g

219

220 APPENDIX B. AXIOM OF CHOICE APPLIED

We skipped a step which led us to the conditions of the Axiom of Choice for Chronicles 4.20.
Let a = (< � t)�. It follows by Proposition 6.9 that (> � t)� is the complement of a (with
respect to T); this complement is denoted by ~a. The conditions that we have to check are:

rr�=T
^

sp:rr is well-ordered
^

unar :rr

This has to follow from the assumptions:

r �wipe � r� � wipe � r
^

f � r � g � (< � t)� [r �wipe � g � (> � t)�

^
g = r� � g

We start with rr�= T . First:
f � a

� f assumption on f g
(r � g � a [r �wipe � g � ~a) � a

= f cupjunctivity; ~a � a = ? g
r � g � a

� f identity g
r � g

And second:

f � ~a
� f assumption on f ; cupjunctivity; ~a � a = ? g

r �wipe � g � ~a
� f identity g

r �wipe � g
= f assumption on g g

r �wipe � r� � g
� f assumption on r g

wipe � r � g

The totality of rr follows:

rr�

= f de�nition rr g
(r � g \ (f � a [wipe�1 � f � ~a))�

= f cupjunctivity g
(r � g \ f � a)� [(r � g \ wipe�1 � f � ~a)�

= f domains: (s \ u � v)� = (u�1 � s \ v)� g

221

(r � g \ f � a)� [(wipe � r � g \ f � ~a)�

= f �rst and second result above g
(f � a)� [(f � ~a)�

= f cupjunctivity g
(f � (a[~a))�

= f a[~a = T g
(f � T)�

= f chronicles are total on T g
T

We continue with the proof that the support of rr is well-ordered. This follows from the
fact that sp:rr is included in the support of g. First, we show sm � r � r � sm, which follows
from the assumption on r and the fact that sm and wipe� are complementary domains:

sm � r � r � sm
= f sm [wipe� = I: cupjunctivity g

sm � r � sm [sm � r �wipe� � r � sm
= f sm \wipe� = ?: sm �wipe � r = ? g

sm � r � sm [sm � r �wipe� � r � sm [sm �wipe � r
(f sm �I: monotonicity g

r �wipe� � wipe � r
= f domains g

r �wipe� � r� � wipe � r
(f Theorem 4.17: wipe is an idempotent function, so wipe��wipe g

r �wipe � r� � wipe � r
= f assumption on r g

True

The claimed inclusion of the supports follows:

sp:rr
= f rr�= T : Characterisation 4.11; de�nition rr g

(sm � (r � g \ (f � a [wipe�1 � f � ~a)))�

� f monotonicity g
(sm � r � g)�

� f above: monotonicity g
(r � sm � g)�

� f domains: (s �u)� � u� g
(sm � g)�

= f Characterisation 4.11 g
sp:g

Finally, we show that rr has a unique arity; in fact, its arity is the same as that of f :

rr �>� rr�1

= f de�nition rr g

222 APPENDIX B. AXIOM OF CHOICE APPLIED

(r � g \ (f � a [wipe�1 � f � ~a)) � > � (r � g \ (f � a [wipe�1 � f � ~a))�1

� f monotonicity g
(f � a [wipe�1 � f � ~a) � > � (f � a [wipe�1 � f � ~a)�1

� f identities: monotonicity g
(f [wipe�1 � f) � > � (f [wipe�1 � f)�1

= f cupjunctivity and reverse g
(I [wipe�1) � f �> � f�1 � (I [wipe)

� f Proposition 4.19 and De�nition 4.18 g
(I [wipe�1) � wipe�1 � wipe � (I [wipe)

= f cupjunctivity; Theorem 4.17a g
wipe�1 � wipe

This proves by De�nition 4.18 the required uniqueness of the arity of rr, and thereby the
second statement of Proposition 10.14.
2

It should be remarked that Assumption 4.20 is not used in proving the �rst statement of
Proposition 10.14.

Appendix C

Dataow

The model on which we based our calculus of procs is rather basic. There is reason to
expect that other theories for communicating processes can be expressed in terms of our
model. As an example, we sketch how to make a link between our calculus of procs and the
theory of dataow networks, see for a reference Kok [Kok93]. To model dataow networks
in our calculus of procs, we have to relate several constructions such as compositions and
processes in dataow theory with constructions in the proc calculus. As a start, we �rst
de�ne the parallel closure of pdly , which corresponds to a bu�ered channel:

De�nition C.1

Pdly , �(X :: pdly t X kX)

2

The proc Pdly is able to delay multiple parallel channels independently of each other.
Contexts in dataow theory are built using bu�ered processes and the compositions �, k, 4

and �. A bu�ered process in our calculus is de�ned as follows:

De�nition C.2

bu� :P , Pdly �P �Pdly

2

In addition, the observation criterion, =hist is de�ned:

De�nition C.3

a. eP , Pdly �Pdly[�P �Pdly �Pdly[

b. P =histQ � eP = eQ
2

The proc eP corresponds to the history relation of P . Therefore, the equivalence relation
=hist is the equality on history relations.

223

224 APPENDIX C. DATAFLOW

It is known that the observation criterion =hist is not a congruence for all contexts, see
Brock & Ackerman [BA81]: there exist procs P and Q and a context C such that:

P =histQ ^ :(C[P] =histC[Q])

We say that =hist is not compositional. The largest congruence between procs contained
in =hist is �(P;Q :: 8(C :: C[P] =histC[Q])):

De�nition C.4

P �histQ , 8(C :: C[P] =histC[Q])

2

The question raised now is: which procs are equal in the sense of �hist ? To answer this
question we record an important conjecture: the congruence �hist can be rewritten using
the procs bP :
Characterisation C.5

a. trace:P , t(& : oiso:& : �& �P � (�&)[)

b. bP , trace:(bu� :P)

2

Procs satisfying P = trace:P abstract from exact timing. For these procs, only the order
of (input and output) messages is important. Such procs can be characterised by a set of

traces. Therefore, the proc bP corresponds to the description of P as a set of traces which
are closed under bu�ering (the so-called Bu�ering Condition). The conjecture reads:

Conjecture C.6

P �histQ � bP = bQ
2

This is suggested by corresponding theorems in dataow theory: it is our version of the
Full Abstraction Theorem. Future research has to check this claim.

Samenvatting

Informele introductie

In deze moderne tijd wordt het kunnen localiseren en verkrijgen van de juiste informatie
steeds belangrijker. Wil je goede service leveren of de concurrent aftroeven, dan zul je
slimmer moeten zijn, en zorgen dat je de belangrijkste informatie (snel) tot je beschik-
king hebt. Met name de elektronische informatieverwerking neemt een belangrijke plaats
in; denk hierbij aan reserveringssystemen voor vliegtuigen en aan nieuwsnetwerken. Dit
zijn grote, vaak wereldwijde netwerken waar honderden of zelfs duizenden computers aan
gekoppeld zijn. Deze computers verzenden, ontvangen en presenteren boodschappen.
Om het informatieverkeer over zo'n netwerk ordelijk te laten verlopen zijn er regels nodig:
het schaarse produkt (toegang tot de diensten van het netwerk) moet `eerlijk' verdeeld
worden. Het mag bijvoorbeeld niet mogelijk zijn dat dezelfde vliegtuigstoel gelijktijdig
vanuit twee plaatsen wordt gereserveerd. Maar er mag ook geen \na u { na u" situatie
ontstaan waarbij twee klanten van het netwerk eindeloos op elkaar blijven wachten. Verder
zal er gezorgd moeten worden voor adequate oplossingen wanneer er problemen optreden
in het netwerk, zoals het uitvallen van een verbinding. Daarom zal een netwerk, ongeacht
de grootte, moeten werken volgens regels welke zijn vastgelegd in computerprogramma's:
zogenaamde netwerkprotocollen. Omdat we te maken hebben met meerdere computers in
een netwerk, zijn deze protocollen verdeeld (gedistribueerd) over de verschillende compu-
ters, en spreken we van gedistribueerde protocollen. De doelstelling van het onderzoek dat
in dit proefschrift wordt gepresenteerd is het ontwikkelen van een rekenmethode (calculus)
om dit soort gedistribueerde protocollen op elegante en correcte wijze te kunnen ontwerpen.

Waarom een formele rekenmethode? Het menselijk verstand is in het algemeen niet in staat
om de complexiteit die ontstaat bij het ontwerpen van programma's te overzien. Daarom
moeten er hulpmiddelen geleverd worden om programma's te kunnen ontwerpen; in het
bijzonder als het gedistribueerde programma's betreft. Deze hulpmiddelen kunnen de vorm
krijgen van een verzameling rekenregels om uit een formele beschrijving (speci�catie) een
programma af te kunnen leiden. Een complete verzameling van rekenregels en heuristieken
vormt de uiteindelijke calculus.
Een groot probleem is dat voor het berekenen van een gedistribueerd programma vaak
rekening moet worden gehouden met veel verschillende situaties. De reden is simpel: een
groot systeem van computers die met elkaar willen communiceren kent vele verschillende
toestanden. Om het hoofd te kunnen bieden aan al die situaties is het belangrijk dat

225

226 SAMENVATTING

irrelevante details van het systeem achterwege gelaten worden. Daarom willen we niet
redeneren over het ontvangen of verzenden van �e�en boodschap, zelfs niet over het ontvangen
of verzenden van een complete stroom boodschappen, maar over het complete gedrag van
een programma in elke willekeurige omgeving. De omgeving wordt bepaald door de andere
programma's in het netwerk.

Vaak kan het gedrag van een programma vastgelegd worden in een verzameling rekenregels
door de interactie met andere (bekende) programma's te geven. Een simpel voorbeeld
daarvan is het karakteriseren van het programma I dat iedere boodschap a binnengekomen
op tijdstip t meteen weer doorstuurt:

Voor alle boodschappen a en tijdstippen t: I:at= at

Hier worden dus afzonderlijke boodschappen genoemd. Beter zou het zijn (maar nog niet
goed genoeg) om I te karakteriseren door te zeggen dat iedere complete invoerstroom f
van boodschappen ook de uitvoer is:

Voor alle stromen van boodschappen f : I:f = f

In dit proefschrift wordt I vastgelegd door het gedrag te geven in iedere willekeurige om-
geving:

Voor alle programma's P : I �P = P en P = P � I

Deze laatste formulering geeft aan dat I het gedrag van ieder ander willekeurig programma
P ongemoeid laat.

Omdat het gedrag van een groot computernetwerk niet volledig te controleren is (bijvoor-
beeld onvoorspelbaar menselijk gedrag kan een grote rol spelen), moeten we in de calculus
rekening kunnen houden met onbepaald gedrag (non-determinisme). Een van de belang-
rijkste onbepaalde factoren is de tijdsduur: vaak is wel duidelijk welke boodschap verstuurd
is over een verbinding, maar is het onbepaald hoe lang die boodschap er over zal doen.
Een andere onbepaalde factor is dat op de meest willekeurige momenten plotseling een fout
ergens in het systeem kan optreden. Om over dit soort onbepaald gedrag te kunnen rede-
neren, is de calculus in dit proefschrift gebouwd op een zogenaamde relationele calculus.
Deze relationele calculus kan goed overweg met non-determinisme.

Kort overzicht

Het proefschrift bestaat uit vijf delen. Elk deel breidt de calculus verder uit. Tot slot wordt
de calculus gebruikt voor het ontwerpen van een simpel, gedistribueerd protocol voor het
correct verzenden door een zender van boodschappen over onbetrouwbare verbindingen
naar een ontvanger.

In Deel I wordt eerst aangegeven hoe we gedistribueerde systemen willen beschrijven als
invoer/uitvoer-relaties. Vervolgens wordt de relationele calculus gepresenteerd. In deze
relationele calculus wordt, ter verkrijging van een relationele calculus voor het ontwer-
pen van gedistribueerde systemen, meer structuur aangebracht door de constructie van

KORT OVERZICHT 227

de feedback loop te de�ni�eren. Er wordt aangetoond dat feedback een aantal `ongezonde'
eigenschappen heeft. Een groot deel van het proefschrift (in het bijzonder Deel III) zal zich
wijden aan het oplossen van deze problemen. Tenslotte wordt het model van de relationele
calculus, waarin veel voorbereidende berekeningen zullen worden uitgevoerd, vastgelegd.
De elementen van dit model, de zogenaamde chronicles, beschrijven complete stromen
boodschappen.
Deel II introduceert twee constructies om chronicles te kunnen manipuleren. De functie
postcompose kan worden gebruikt om functies die werken op afzonderlijke boodschappen
om te zetten in processen die werken op complete stromen van boodschappen. Zo kunnen
we met de optelling + voor natuurlijke getallen een eenvoudig proces beschrijven dat een
complete stroom van paren van natuurlijke getallen omzet in de stroom van sommen van
de paren. Enkele basisprocessen worden met behulp van postcompose gede�nieerd en
onderzocht. De functie precompose kan veranderingen aanbrengen in de tijd. Omdat we
in de calculus niet willen redeneren over exacte tijd of tijdsduur, is de functie precompose
geen onderdeel van de uiteindelijke calculus, maar slechts een hulpmiddel om bijvoorbeeld
een (onbepaalde) vertraging te beschrijven.
In Deel I zijn verschillende ongezonde eigenschappen van met name de feedback gesig-
naleerd. Deel III presenteert daarom een nieuwe eigenschap, genaamd causaliteit. Een
proces dat deze eigenschap heeft is gezond in de zin dat er geen boodschappen (van een
bepaald type) geweigerd kunnen worden, en dat huidige uitvoer niet afhangt van huidige
of toekomstige invoer. Dit zijn realistische eigenschappen die niet noodzakelijk gelden voor
ieder proces dat uitgedrukt kan worden in de calculus. Causale processen worden uitvoerig
onderzocht, met name in combinatie met feedback. Het blijkt dat causale processen in een
feedback loop weer een causaal proces opleveren.
Deel IV de�nieert en onderzoekt, in het model, drie basisprocessen die verschuivingen
kunnen aanbrengen in de tijd. Twee processen drukken de vertraging van een verbinding
uit. Een derde proces heeft de mogelijkheid om de doorvoer van boodschappen af te kap-
pen. Daarna volgen de�nities van nieuwe processen in termen van de drie basisprocessen.
Het belangrijkste nieuwe proces is de bu�er, welke gebruikt kan worden voor asynchrone
communicatie.
Tenslotte wordt al het werk van de eerste vier delen samengebracht in de aeiding van
een eenvoudig communicatieprotocol. Daartoe wordt in Deel V eerst getoond hoe de alge-
mene theorie kan worden ge��nstantieerd tot een meer gespecialiseerde theorie. De daarop
volgende aeiding van het communicatieprotocol kenmerkt zich door het abstracte niveau
waarop de verschillende bewijsverplichtingen worden afgehandeld: er wordt slechts gerede-
neerd over processen, niet over (stromen van) boodschappen.

228 SAMENVATTING

Curriculum vitae

Frans Johan Rietman

26 september 1967

Geboren te Kampen.

1979 - 1985

VWO aan het Johannes Calvijn-Lyceum te Kampen.

1985 - 1986

Studie Elektrotechniek aan de HTS te Zwolle.

1986 - 1991

Studie Informatica aan de Rijksuniversiteit Groningen. Afstudeerverslag: An Aggregated
Segment Sum Theorem in the Relational System.

1991 - 1995

Onderzoeker in opleiding aan de Vakgroep Informatica van de Universiteit Utrecht, in
dienst van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

229

230 CURRICULUM VITAE

