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Chapter 1

Introduction

This thesis is concerned with the design of efficient sequential and parallel algorithms for
problems on graphs of bounded treewidth. Many real-life problems can be modeled as op-
timization or decision problems on graphs. Consider for instance the problem in which a
courier has to deliver a number of packages at different addresses, and the courier’s company
wants him to follow the shortest route visiting all addresses, starting and ending at the com-
pany’s address. This problem is known as thetraveling salesman problem. The input can
be modeled as a weighted graph in which the vertices represent the addresses that have to be
visited, including the company’s address, and an edge between two vertices represents the
road between the corresponding addresses. Each edge has a weight that corresponds to the
length of the road between the corresponding addresses. The problem is then to find a cycle
in the graph which contains all vertices and has minimum weight.

Unfortunately, many graph problems that model real-life problems are hard in the sense
that there are (probably) no efficient algorithms which solve these problems. More formally,
these problems are NP-hard. The traveling salesman problem is such a problem. A way of
overcoming this disadvantage is to discover a special structure in the graphs modeling the
real-life problem which may help in finding a more efficient algorithm for the problem. For
instance, the input graphs may have a special structure that assures that the problem at hand is
easy to solve. Another possibility is that the problem can be decomposed into subproblems,
and that the structure of the input graphs assures that some of these subproblems are easy
to solve. This might help in finding a more efficient algorithm that computes an optimal
solution for the complete problem, or in finding an efficient algorithm that computes a good
approximation of the optimal solution.

One suitable structure is the tree-structure: it appears that many graph problems that are
hard in general, are efficiently solvable on trees. As an example, consider the maximum
independent set problem, in which we search for a subsetI of the vertices ofG for which
there is no edge between any two vertices ofI , and the cardinality ofI is as large as possible.
This problem is NP-hard, but if the input graph is a tree, then we can easily solve the problem
to optimality as follows. LetT be a rooted tree with rootr. For each nodev of T, let
Tv denote the subtree ofT rooted atv. For each nodev, we compute integersnv andmv

which denote the size of a maximum independent set ofTv that containsv, and the size of a
maximum independent set ofTv that does not containv, respectively. It follows that the size
of a maximum independent set ofT is the maximum ofnr andmr . A particular instance is
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Chapter 1 Introduction

shown in part I of Figure 1.1: each nodev of the tree is labeled with the pairnv;mv. The size
of a maximum independent set inT is ten.

r

1;0 1;0

1;2

3;2

1;0 1;0 1;0

1;3 1;0

1;01;0 4;4

5;6

9;10

I II

1;0

r
level

1

0

2

3

4

Figure 1.1. A rooted tree in which each nodev is labeled with the pairnv;mv (part I),
and a maximum independent set of the tree, denoted by the white nodes (part II).

For each nodev of T, we can computenv andmv from the values ofnu andmu of all
childrenu of v. This implies that we can perform dynamic programming onT to find the size
of a maximum independent set ofT: first compute the numbers of the nodes that are at the
lowest level of the tree (these nodes have no children). Next rise one level in the tree, and
compute the numbers for the nodes on that level, by using the numbers for the nodes one level
down. This step is repeated until the numbersnr ;mr of the root are computed. We can also
find a maximum independent set ofT, by using the computed numbers. Part II of Figure 1.1
shows a maximum independent set of the tree in part I (the nodes in the independent set are
white). Sequentially, the above algorithm can be made to run inO(n) time, wheren denotes
the number of nodes of the tree. In a parallel algorithm, we can perform the computations of
different nodes on the same level in parallel, which gives a faster algorithm.

A similar dynamic programming approach as described above can be applied for many
problems if the input graph is a tree. For most practical cases however, the class of trees is
too limited. Therefore, we consider extensions of the class of trees which are more useful
in practice, namely the classes of graphs oftreewidthat mostk andpathwidthat mostk, for
any positive integerk. Intuitively, the treewidth of a graph measures the resemblance of the
graph to a tree: a graph has treewidth at mostk if one can associate a treeT with G in which
each node represents a subgraph ofG with at mostk+1 vertices, such that all vertices and
edges ofG are represented in at least one of the nodes ofT, and for each vertexv of G, the
nodes ofT in whichv is represented form a subtree ofT. Such a tree associated with a graph
is called atree decompositionof the graph, of widthk. As an example, consider the graphG
depicted in part I of Figure 1.2. Part III of this figure gives a tree decompositionTD of G.
Part II shows the correspondence between the nodes ofTD and some subgraphs ofG.

The width of a tree decomposition is the maximum number of vertices occuring in any
node minus one (the ‘minus one’ has been introduced to obtain the fact that the class of

2



a
b

c
d

e
f

g

h

ij

k

ab

d e f

bc
cd

i j k

f gh
d k

TDG

I II III

Figure 1.2. A graphG (part I), a tree decompositionTD of width two ofG (part III),
and the correspondence between the nodes ofTD and subgraphs ofG (part II).

connected graphs of treewidth one is exactly the class of trees). The tree decomposition
in Figure 1.2 for instance has treewidth two. Apath decompositionof a graph is a tree
decomposition with the extra restriction that the tree is a path. A graph has pathwidth at most
k if there is a path decomposition of the graph of width at mostk.

Many (hard) problems can be solved efficiently on graphs of small treewidth, using the
tree-like structure of the graphs. For instance, a large class of problems can be solved ef-
ficiently by applying dynamic programming on a tree decomposition of small width of the
graph, in a way similar to the dynamic programming for finding a maximum independent
set in a tree (this algorithm is described in Section 2.2.3). These algorithms usually work
on rooted, binary tree decompositions of small width withO(n) nodes, and for parallel al-
gorithms, we additionally require that the tree decomposition has heightO(logn). Examples
of problems that can be solved efficiently on graphs of small treewidth by using the dynamic
programming approach are the maximum independent set problem and the traveling sales-
man problem: both problems can be solved inO(n) time sequentially and inO(logn) time
in parallel withO(n= logn) processors (the algorithms are exponential in the treewidth of the
graph). To solve problems this way, it is necessary to find a tree decomposition of small width
of the given graph first. Fortunately, for each positive integerk, there is a linear time algo-
rithm which, given a graph, finds a tree decomposition of width at mostk of the graph, if one
exists (this algorithm is again exponential ink) [Bodlaender, 1996a]. In parallel, the problem
can be solved inO(log2n) time with O(n= log2 n) processors, and the result is a binary tree
decomposition with heightO(logn) [Bodlaender and Hagerup, 1995].

It appears that many graph problems have practical instances in which the input graphs
have small treewidth. For example, it has been shown that graphs modeling special types of
expert systems have small treewidth, which helps in solving statistical problems for reasoning
with uncertainty in expert systems [Lauritzen and Spiegelhalter, 1988; van der Gaag, 1990].
Also, in natural language processing, it has been shown that dependency graphs encoding the
major syntactic relations among words have pathwidth at most six [Kornai and Tuza, 1992].
Thorup [1995] has shown that control-flow graphs of structured programs have treewidth at
most six, which helps in finding good register allocations. Cook and Seymour [1993] have

3



Chapter 1 Introduction

shown that graphs modeling certain telephone networks have bounded treewidth. They have
used this for solving a variant of the traveling salesman problem in these graphs (they actually
use branchwidth, but this concept is closely related to treewidth).

Also, many (practical) graph problems require that the treewidth or pathwidth of the
input graph is small. Examples of such problems are the gate matrix layout problem that
occurs in VLSI design [Fellows and Langston, 1992; Deo, Krishnamoorty, and Langston,
1987; Möhring, 1990; Ramachandramurthi, 1994], Cholesky factorization for sparse matrices
[Bodlaender, Gilbert, Hafsteinsson, and Kloks, 1995], the perfect phylogeny problem that
occurs in evolutionary theory [Agarwala and Fern´andez-Baca, 1993; Bodlaender, Fellows,
and Warnow, 1992; Bodlaender and Kloks, 1993; Kannan and Warnow, 1990; Kannan and
Warnow, 1992; McMorris, Warnow, and Wimer, 1994], the DNA physical mapping problem
occuring in molecular biology [Golumbic, Kaplan, and Shamir, 1994; Fellows, Hallett, and
Wareham, 1993] (see also Chapter 4 of this thesis), and interval routing problems in networks
[Bodlaender, Tan, Thilikos, and van Leeuwen, 1995].

In all the problems described above, the fact that the treewidth of the input graph is or
should be small helps to find more efficient algorithms to solve them. It does not ensure the
existence of efficient algorithms, see e.g. Section 4.2.2.

Unfortunately, many algorithms solving problems on graphs of small treewidth are only
efficient in theory: the running time of the algorithms is usually exponential in the treewidth
of the graph. This means that if the input graph is only of moderate size, and the bound
on the treewidth is six or more, then in the running time of the algorithm, the factor that
is exponential in the treewidth is likely to overtake the factor that is polynomial in the size
of the graph. For example, consider the problem of finding a tree or path decomposition of
width at mostk of a given graph, if one exists (k constant). The sequential algorithms of
Bodlaender [1996a] solve these problems inO(n) time. These algorithms use an algorithm
of Bodlaender and Kloks [1996] which, given a graphG and a tree decomposition of width
at mostl of G (for any fixed integerl ), finds a tree (path) decomposition of width at most
k of G, if one exists (for any fixed integerk with k < l ). This algorithm runs inO(n) time
sequentially, but the constants hidden in theO-notation make the algorithm only practical for
k� 5. Also, the algorithm of Bodlaender and Kloks [1996] is rather complicated, and thus
not easy to implement. This makes the algorithms of Bodlaender [1996a] for finding a tree or
path decomposition of small width of a graph inefficient in practice fork� 6. Furthermore,
for k < 6, the algorithm is still hard to implement, and algorithms that are tailor-made for a
specific treewidth are probably more efficient in practice. (For treewidth 2, 3, and 4, such
algorithms exist [Arnborg and Proskurowski, 1986; Matou˘sek and Thomas, 1991; Sanders,
1996].) The parallel algorithms of Bodlaender and Hagerup [1995] for finding a tree or path
decomposition of small width of a graph use a parallel version of the algorithm of Bodlaender
and Kloks [1996], and thus have the same drawback.

The goal of this thesis is to give efficient sequential and parallel algorithms for several
problems on graphs of small treewidth or pathwidth. We consider both graph problems which
require that the treewidth or pathwidth of the input graph is bounded by some constant, and
graph problems which are hard on general graphs, but have more efficient solutions on graphs
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of small treewidth or pathwidth. The aim is to design algorithms which are not only theoret-
ically efficient, but are also efficient in practical applications.

This thesis is organized as follows. We start with preliminary results in Chapter 2. In
this chapter, we introduce the terminology used throughout the thesis, and we give formal
definitions of tree and path decompositions and of the treewidth and pathwidth of graphs.
Furthermore, we present a number of well-known properties of tree and path decompositions
and of graphs of bounded treewidth or pathwidth which will prove useful in the remainder of
the thesis. Most of the results presented here include a proof to give the reader a feeling for
the concepts of treewidth and pathwidth. We also present an overview of the most powerful
algorithmic results on graphs of bounded treewidth and pathwidth. Finally, we discuss some
graph notions that are closely related to the notion of treewidth or pathwidth and that are used
in the remainder of the thesis.

In Chapter 3, we give a complete characterization of graphs of pathwidth at most two.
This characterization is then used for the design of a linear time algorithm that checks whether
a given graph has pathwidth at most two, and if so, builds a path decomposition of minimum
width of the graph. Although Bodlaender’s algorithm [1996a] can be used to solve this prob-
lem in O(n) time, our algorithm is probably more efficient and useful in practice, as it does
not use the theoretical result of Bodlaender and Kloks [1996] and is much easier to imple-
ment. The characterization of graphs of pathwidth two that is presented in Chapter 3 is used
for the algorithms presented in Chapter 4.

Chapter 4 is concerned with two decision problems that occur in DNA physical map-
ping, namelyk-INTERVALIZING SANDWICH GRAPHS(k-ISG) andk-UNIT-INTERVALIZING

SANDWICH GRAPHS (k-UISG). In both problems, the input consists ofk copies of a DNA
string that are fragmented, and for each pair of fragments, either it is known that they overlap,
or it is known that they do not overlap, or nothing is known about their overlap. Ink-UISG,
we additionally have the information that all fragments have the same length. There is no
explicit information on the order of the fragments in the DNA string, or on the copy from
which each fragment originates. The problem is to recover the complete overlap information
of the fragments, and with this, the order of the fragments in each copy of the DNA string.
The input of the problems is modeled as graphG = (V;E) and an extra set of edgesF: the
vertices of the graph represent the fragments, and for each two vertices inV, there is an edge
betweenu andv in E if we know that the corresponding fragments overlap, and there is an
edge betweenu andv in F if the corresponding fragments possibly overlap, i.e. are not known
not to overlap. The problem is then to find a setE0, E � E0 � F , such that the graph(V;E0)
represents the complete overlap information. Both fork-ISG andk-UISG, there is such a set
E0 only if the input graphG has pathwidth at mostk�1.

In Chapter 4 we resolve the complexity ofk-ISG for all fixed integersk� 2: we give a
linear time algorithm for 2-ISG, a quadratic algorithm for 3-ISG, and we show thatk-ISG is
NP-complete ifk� 4. Furthermore, we give anO(n+m) time algorithm for 3-UISG (where
m denotes the number of extra edges that is part of the input). This algorithm improves
on theO(n2) algorithm of Kaplan and Shamir [1996]. The algorithms for 3-ISG and 3-
UISG heavily rely on the characterization of graphs of pathwidth at most two, as described

5



Chapter 1 Introduction

in Chapter 3: it consists of a large case analysis based on the structure of the input graph.
We present the most instructive part of the algorithms for 3-ISG and 3-UISG in Chapter 4,
namely the algorithms for the case that the input graph is biconnected. The remaining part of
the algorithm consists of a lot of technical details, mostly based on the same principles as the
algorithm for biconnected graphs. This part is not included in the thesis.

In Chapters 5 – 9, we discuss a special type of algorithms, namelyreduction algorithms.
A reduction algorithm is an algorithm which applies a sequence of reductions to the input
graph: in each reduction, a small part of the graph is replaced by a smaller part, thus reducing
the size of the graph. In a sequential algorithm, all reductions are performed subsequently,
but in a parallel reduction algorithm, non-interfering reductions can be performed at the same
time. The reduction behavior is described by a set of reduction rules, which is problem
specific. It turns out that for many decision and optimization problems, such a set of reduction
rules can be constructed, and with this constructed set, the problem can be solved efficiently
on graphs of small treewidth, both sequentially and in parallel.

An advantage of reduction algorithms is that they are easy to implement: the difficulty of
a problem is hidden in the design of the problem specific set of reduction rules, and not in the
reduction algorithm itself. Another advantage of reduction algorithms over other algorithms
on graphs of small treewidth is that a reduction algorithm works directly on the input graph,
and hence no tree decomposition of small width of the graph is needed. As the running
times of the algorithms for finding a tree decomposition of small width of a graph are not
efficient in practice, this makes reduction algorithms potentially more practical (if the set of
reduction rules is not too large). In Chapter 5, we present the basic theory on reduction algo-
rithms and we show that reduction algorithms can be used to solve large classes of decision
and optimization problems on graphs of bounded treewidth. The chapter is meant as a com-
prehensive overview of results presented by Arnborg, Courcelle, Proskurowski, and Seese
[1993], Bodlaender [1994], and Bodlaender and Hagerup [1995]. It gives an introduction
into the theory of reduction algorithms and their applications to decision and optimization
problems on graphs of bounded treewidth. In effect, it provides the basic terminology and
results that are used in Chapters 6 – 9.

One drawback of the reduction algorithms presented in Chapter 5 is that they only solve
decision and optimization problems. For decision problems, the algorithms only return ‘yes’
or ‘no’, but they do not return a solution for the problem if the answer is ‘yes’. Similarly,
for optimization problems, only the optimal value is returned, but no optimal solution of the
problem is returned. In Chapter 6, we extend the theory of reduction algorithms toconstruc-
tive reduction algorithms, which also return an (optimal) solution for the problem at hand, if
one exists. We show that this theory can be applied to a large class of constructive decision
and optimization problems on graphs of bounded treewidth.

In Chapter 7, a number of well-known optimization problems is listed on which the the-
ory of reduction algorithms that is presented in Chapters 5 and 6 can be applied. This result
implies that the listed problems can be solved efficiently on graphs of bounded treewidth
using reduction algorithms. We also give a number of optimization problems for which the
theory can not be applied. These problems, however, can be solved efficiently if a tree de-

6



composition of the graph is given.
In Chapters 8 and 9 we show that the following two problems can be solved by efficient

parallel reduction algorithms:

� given a graphG, check whetherG is series-parallel, and if it is, construct an ‘sp-tree’ for
G (see Section 2.3.3 for definitions), and

� given a graphG, check whetherG has treewidth at most two, and if it does, construct a
tree decomposition of width at most two of the graph.

The two problems are closely related: a series-parallel graph has treewidth at most two, and
a biconnected graph of treewidth at most two is series-parallel. Despite this resemblance, it
turns out that the algorithm for solving the ‘treewidth two’ problem is more complicated than
the algorithm for recognizing series-parallel graphs. In Chapter 8, we present an (almost)
logarithmic parallel algorithm for recognizing series-parallel graphs; in Chapter 9, we mod-
ify this algorithm to obtain a parallel algorithm for graphs of treewidth at most two with the
same resource bounds. Both algorithms are applications of the general theory of construc-
tive reduction algorithms as presented in Chapter 6, but they do not fit in the framework of
constructive reduction algorithms for graphs of bounded treewidth that are presented in that
chapter. For both problems, the set of reduction rules is described completely. These sets of
reduction rules are quite small, which means that there are no large constants in the running
time of the algorithms. Hence the algorithms are probably also efficient in practice.

The parallel algorithm for series-parallel graphs presented in Chapter 8 improves in effi-
ciency on the parallel algorithms of He and Yesha [1987], He [1991], and Eppstein [1992].
The parallel algorithm for treewidth at most two presented in Chapter 9 improves in efficiency
on the parallel algorithms for treewidth at mostk for any fixedk that are given by Bodlaender
and Hagerup [1995].

In Appendix A, we give definitions of a number of well-known graph problems that are
used throughout this thesis.

This thesis comprises, among other things, the work that has been published in Bodlaen-
der and de Fluiter [1995, 1996b, 1996c, 1996a].
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Chapter 2

Preliminaries

In this chapter, we give a number of definitions and preliminary results. We start in Sec-
tion 2.1 by presenting the terminology on graphs and algorithms as it is used in this thesis.
Section 2.2 provides an introduction to the notions of treewidth and pathwidth and discusses
some results related to these notions. In Section 2.3, we define a number of graph classes that
are used in this thesis, and we indicate their role in the theory of treewidth and pathwidth.

2.1 Graphs and Algorithms
We assume that the reader is familiar with graph theory and algorithms, but we give an
overview of the terminology that is used in this thesis. More background information can
be found in e.g. Harary [1969] for graph theory and Cormen, Leiserson, and Rivest [1989]
for algorithms.

2.1.1 Graphs

Definition 2.1.1 (Graph). Asimple graph Gis a pair(V;E), whereV is a set ofvertices, and
E is a set ofedges. Each edge is an unordered pair of distinct verticesu andv, denoted by
fu;vg. A multigraph Gis a pair(V;E), whereV is a set of vertices, andE is a multiset of
edges. Agraphis either a simple graph or a multigraph.

In this chapter, the term ‘graph’ refers to both simple graphs and multigraphs. In the remain-
ing chapters of the thesis, we use the term graph for one of the two, and we state which one is
meant at the beginning of each chapter. In some cases, we usedirectedgraphs (either simple
graphs or multigraphs): in a directed graph, each edge is an ordered pair of vertices, and an
edge from vertexu to v is denoted by(u;v). The sets of vertices and edges of a graphG are
denoted byV(G) andE(G), respectively. The cardinality ofV(G) is usually denoted byn,
the cardinality ofE(G) by m.

Let G= (V;E) be a graph. For any edgee= fu;vg 2 E, u andv are called theend points
of e, ande is called an edge betweenu andv, or connectingu andv. Two verticesu;v2 V
areadjacentif there is an edgefu;vg 2 E. If two verticesu andv are adjacent, we also say
thatu is aneighborof v, and vice versa. A vertexv2V and an edgee2 E are calledincident
if e= fu;vg for someu2 V. Thedegreeof a vertexv in G is the number of edges that are
incident withv, and is denoted by deg(v) (note that for simple graphs, the degree of a vertex
equals the number of its neighbors, whereas for multigraphs this does not necessarily hold).
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If G is a multigraph ande1 ande2 are distinct edges with end pointsu andv, then we say that
e1 ande2 areparallel to each other, and there aremultipleedges betweenu andv.

A graphG0 is a subgraphof a graphG if V(G0) � V(G) andE(G0) � E(G). If G0 is a
subgraph ofG, thenG is called asupergraphof G0. A graphG0 is the subgraph ofG induced
by W, whereW �V(G), if V(G0) =W andE(G0) = ffu;vg 2 E j u;v2Wg. We also sayG0

is aninduced subgraphof G. For anyW �V(G), the subgraph induced byW is denoted by
G[W].

A walk W in a graphG is an alternating sequence(v1;e1;v2;e2; : : : ;ep;vp+1) of vertices
and edges (p� 0), starting and ending with a vertex, such that for eachi, vi 2V, andei 2 E,
andei = fvi ;vi+1g. The walkW is also called a walk fromv1 to vp+1, or a walk betweenv1

andvp+1. Verticesv1 andvp+1 are called the end points of the walk, all other vertices are
inner vertices. We also callv1 the first vertex andvp+1 the last vertex of the walk. Thelength
of a walk is the number of edges in the walk. We say a walkW usesa vertexv if v= vi for
somei with 1� i � p+1, andW avoids vif W does not usev. If only the sequence of vertices
in a walkW is of importance, thenW is also denoted as a sequence(v1; : : : ;vp) of vertices,
such that for eachi with 1� i < p, fvi ;vi+1g 2 E(G). Note that ifG is a simple graph, then
this sequence determines the edges of the walk as well.

A path in a graphG is a walk in which all vertices are distinct (and hence all edges are
distinct). Acycle Cin G is a walk in which all edges are distinct, and all vertices are distinct,
except for the first and the last vertex, which are equal. A walk, path or cycleH in a graph
can also be seen as a subgraph ofG, and we denote the set of vertices inH by V(H), and the
set of edges byE(H). Thedistancebetween two verticesv andw in G is the length of the
shortest path fromv to w in G.

Two vertices areconnectedin a graphG if there is a path between them. A graphG
is connectedif every pair of vertices ofG is connected. A(connected) component Cof G
is a maximal connected subgraph ofG, i.e. C is a subgraph ofG which is connected, and
there is no subgraph ofG which properly containsC and is also connected. A setW � V
is a separatorof G if there are two verticesu;v2 V �W, such thatu andv are connected
in G and not connected inG[V�W]. A cut vertexof G is a vertexv2V(G) for which fvg
is a separator ofG; we also sayv separatesthe graphG. A graphG is biconnectedif G is
connected and contains no cut vertices. Abiconnected componentor blockof G is a maximal
biconnected subgraph ofG. It can be seen that the blocks ofG partition the setE of edges
of G, each block is an induced subgraph ofG, and a vertexv2V is a cut vertex ofG if and
only if v is contained in two or more blocks ofG. An edgee2 E is called abridgeof G if
there are two verticesu;v2V that are connected inG, but that are not connected in the graph
(V;E�feg). A block B of G consisting of one edge with its two end points is called atrivial
block. If a blockB of G contains two or more edges, it is called anon-trivial block ofG.

A tree is a simple connected graph without cycles. Aforest is a simple graph without
cycles, i.e. a graph is a forest if and only if each of its components is a tree. Note that in a
tree, there is a unique path between each pair of vertices.

A rooted treeis a treeT with a distinguished vertexr 2 V(T) called theroot of T. In a
rooted treeT, thedescendantsof a vertexv2V(T) are the vertices of which the path to the
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root usesv. Thechildrenof v are the descendants ofv which have distance one tov. If v is not
the root, then the parent ofv is the unique vertex of whichv is a child. Theleavesof a rooted
tree are the vertices without children (i.e. each leaf has degree one, unless if it is the root, in
which case it has degree zero). (The term leaf is sometimes used in trees that are not rooted:
in this case, it refers to a vertex of degree one.) The vertices which are not leaves are called
internal vertices. It can be shown by induction that the number of internal vertices with two
or more children is at most equal to the number of leaves of the tree. Arooted binarytree is
a rooted tree in which each internal vertex has two children.

Thedepthof a rooted treeT is the maximum distance of any vertex inT to the root. The
levelof a vertexv in a rooted treeT equals the depth ofT minus the distance ofv to the root.
Hence the root has leveld, whered is the depth, and the vertices on level zero are leaves
which have distanced to the root.

A complete graphor clique is a simple graph in which every two vertices are adjacent.
The complete graph onn vertices is denoted byKn. A clique in a graphG is a subgraph ofG
which is a clique. The maximum clique size of a graphG is the maximum number of vertices
of any clique inG.

Let G= (V;E) be a graph. LetC= (v1;e1; : : : ;ep;v1) be a cycle inG. A chordof C in G
is an edgee2E such thate= fvi;vjg for somei and j, and there is no edge betweenvi andvj

in C. If C has no chords inG, thenC is called achordless cycleof G. In other words, a cycle
C in a simple graphG is a chordless cycle if the vertices ofC induce a cycle inG. A graph
which contains no chordless cycles of length four or more is called achordalor triangulated
graph.

Two graphsG1 = (V1;E1) andG2 = (V2;E2) are said to beisomorphicif there are bijec-
tions f : V1 ! V2 andg : E1 ! E2 such that for eachv2V1 ande2 E1, v is incident withe
in G1 if and only if f (v) is incident withg(e) in G2. The pair( f ;g) is called anisomorphism
from G1 to G2. If G1 andG2 are simple graphs, then it suffices to give the bijection between
the vertices ofG1 andG2, i.e. G1 andG2 are isomorphic if there is a bijectionf : V1 ! V2

such that for eachu;v2V1, fu;vg 2 E1 if and only if f f (u); f (v)g 2 E2. For simple graphs,
we also say thatf is an isomorphism fromG1 to G2.

Let G be a simple graph, and lete2 E(G) with e= fu;vg. Furthermore, letN �V(G)
denote the union of the sets of neighbors ofu andv, except foru andv themselves. The
contractionof e in G is the operation that removesu andv and their incident edges fromG,
and adds a new vertexw to the graph which is exactly adjacent to the vertices inN. An edge
contractionin G is the contraction of some edgee2 E(G). A minor of G is a simple graph
G0 which is obtained from a subgraph ofG by applying a sequence of edge contractions.

2.1.2 Graph Problems and Algorithms

This thesis is concerned with algorithms for graph problems. A graph problem usually con-
sists of a description of an arbitrary instance of the problem, and the problem that has to be
solved for this instance. For graph problems, each instance contains at least a graph. In Ap-
pendix A, we give definitions of a number of well-known graph problems that are considered
in this thesis, or that act as illustrative examples throughout.
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We distinguish between two types of graph problems, namelydecision problemsandop-
timization problems. Both types have anon-constructiveversion and aconstructiveversion.
In a non-constructive decision problem, or simply decision problem, the question is whether
a certain property holds for an instance. An algorithm solving a decision problem has as input
an instance of the problem, and as output the answer to the question, which may be either
‘yes’ (true) or ‘no’ (false). An example of a decision problem is HAMILTONIAN CIRCUIT,
in which the question is whether a given graph contains a Hamiltonian circuit (see also Ap-
pendix A). A decision problemP of which each instance is a single graph can also be seen as
agraph class: take the classG of all graphs for whichP has ‘yes’ as an answer. The problem
of checking whether a given graph is in a graph classG is also called arecognition problem.
An algorithm solving this problem is an algorithm that recognizes graphs in the classG .

In a constructive decision problem, orconstruction problem, it should not only be decided
whether a certain property holds for a given instance, but if the property holds, a concrete
solution for the instance should be constructed. For example, in the constructive version of
HAMILTONIAN CIRCUIT, the problem is to construct a Hamiltonian circuit in a given graph,
if one exists. Hence an algorithm solving a construction problem has as input an instance
of the problem, and as output a solution to the problem if there is one, and ‘no’ orfalse
otherwise.

In a non-constructive optimization problem, or simply optimization problem, the problem
is to find thevalueof some optimal solution of the instance: an optimal solution is a solution
with optimal value, where optimal can be either maximum or minimum. An example of
an optimization problem is MAX INDEPENDENT SET (see Appendix A for a definition):
in this problem, the solutions are independent sets of the given graph, and the value of an
independent set is its cardinality. The problem is to find the maximum size of any independent
set in the given graph. An algorithm solving an optimization problem has as input an instance
of the problem, and returns the value of an optimal solution of this instance, if there is a
solution, ‘no’ orfalse otherwise.

In a constructive optimization problem, the problem is not only to find the value of an
optimal solution for a given instance, but also to construct an optimal solution. For example,
in the constructive version of MAX INDEPENDENTSET, we ask for an independent set in the
given graph of maximum cardinality. Hence an algorithm solving a constructive optimization
problem has as input an instance of the problem, and returns an optimal solution and its value
if there is a solution, ‘no’ orfalse otherwise.

With an optimization problem, we can usually associate a number of decision problems.
Suppose for instance that we have a maximization problem called MAX PROBLEM, in which
the problem is to find the maximum value of any solution in a given graph. Then we define
the decision problem PROBLEM as follows: given a graphG and an integerk, doesG contain
a solution of value at leastk? We can also assume that the integer is not part of the input,
but is fixed to some valuek. Then the problem is denoted byk-PROBLEM. For minimization
problems, we can apply the same technique. (See also Appendix A.) Consider for example
MAX INDEPENDENTSET. Then INDEPENDENTSET is the problem in which a graphG and
a non-negative integerk are given, and the question is whetherG contains an independent
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set of sizek or more. For each fixedk, k-INDEPENDENT SET asks whether a given graph
contains an independent set of sizek or more.

In an algorithm solving a graph problem, the input graph must be stored in memory.
There are many ways to represent graphs in memory. We make use of anadjacency list
representation. This representation contains a doubly linked list of all vertices in the graph.
For each vertexv, a doubly linked, cyclic list is maintained which contains an entry for each
edge that is incident withv. This list is called the adjacency list ofv; an entry for an edge
e= fu;vg in the adjacency list ofv contains the edgee, a pointer to its two end points, and a
pointer to the entry for edgee in the adjacency list ofu.

In this thesis, we give sequential and parallel algorithms for different graph problems.
The algorithms are usually described in a rather informal way, the details are left out. For se-
quential algorithms, we use the random access machine or RAM with uniform cost measure.
A RAM consists of a single processor with a random access memory [Mehlhorn, 1984]. Each
basic instruction, like reading from and writing to a memory location, and arithmetic or logic
operations, uses one time unit. For parallel algorithms, the model of computation we use is
the parallel RAM, or PRAM: in this model, we have a number of processors (RAMs) and a
global memory. Each processor can read to and write from the global memory at the same
time. In this thesis, we use two models for parallel computation, namely the CRCW PRAM
and the EREW PRAM: in the first model, different processors may read from or write to the
same memory location at the same time, whereas in the latter model, at most one processor
may read from or write to the same memory location at any point in time.

In the analysis of a sequential algorithm, we describe the running time of the algorithm,
and sometimes the amount of memory-space used by the algorithm, as a function of the size
of the input. The running time is estimated by the number of basic instructions. In analyzing
a parallel algorithm, we describe the amount of time, the number of operations, and the
amount of space that the algorithm uses, all as a function of the input size. By the number
of operations, we mean the product of the amount of time and the number of processors that
is used. If the number of operations of a parallel algorithm for some problem equals the best
known running time of a sequential algorithm for this problem, we say that parallel algorithm
has optimal speedup. For more background information on (the analysis of) sequential or
parallel algorithms, see e.g. Cormen, Leiserson, and Rivest [1989] and J´aJá [1992].

2.2 Treewidth and Pathwidth
In this section, we give some background information on the treewidth and pathwidth of a
graph. The notions of treewidth and pathwidth were introduced by Robertson and Seymour
[1983, 1986a].

Definition 2.2.1 (Tree Decomposition & Treewidth). LetG = (V;E) be a graph. Atree
decomposition TDof G is a pair(T;X ), whereT = (I ;F) is a tree, andX = fXi j i 2 Ig is a
family of subsets ofV, one for each node (vertex) ofT, such that

�
S

i2I Xi =V,
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� for every edgefv;wg 2 E, there is ani 2 I with v2 Xi andw2 Xi , and

� for all i; j;k2 I , if j is on the path fromi to k in T, thenXi \Xk � Xj .

The treewidthor width of a tree decomposition((I ;F);fXi j i 2 Ig) is maxi2I jXi j � 1. The
treewidth of a graphG, denoted by tw(G), is the minimum width over all possible tree de-
compositions ofG.

The vertices of a tree in a tree decomposition are usually callednodesto avoid confusion with
the vertices of a graph. If a vertexv or the end points of an edgeeare contained inXi for some
nodei of a tree decomposition, we also say nodei contains vor e. An example of a graph of
treewidth two and a tree decomposition of width two of the graph is given in Figure 2.1. A
tree decomposition is usually depicted as a tree in which each nodei contains the vertices of
Xi .

a b c d
e

f
g

hij

k
ab

d e f

bc cd d f

d f i
d iki j k

f h i f ghf i

G TD

Figure 2.1. A graphG of treewidth two, and a tree decompositionTD of width two
of G.

Definition 2.2.2 (Path Decomposition & Pathwidth). Apath decomposition PDof a graph
G is a tree decomposition(T;X ) of G in which the treeT is a path (i.e. the nodes ofT have
degree at most two). Thepathwidthof a graphG is the minimum width over all possible path
decompositions of the graph, and is denoted by pw(G).

Let PD= (T;X ) be a path decomposition of a graphG with T = (I ;F) andX = fXi j i 2 Ig.
We usually representPD by the sequence(Xi1;Xi2; : : : ;Xit ), where(i1; i2; : : : ; it) is the path
representingT. Note that the pathwidth of a graph is at least equal to the treewidth of the
graph, and there are graphs of which the pathwidth is larger than the treewidth. The graph
of Figure 2.1 for example, has pathwidth three. A path decomposition of width tree of this
graph is depicted in Figure 2.2.

ab bc cd d e f id id i j k f hi f ghf iPD

Figure 2.2. A path decompositionPD of width three of the graphG depicted in
Figure 2.1.
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Let k be a positive integer. Graphs of treewidth and pathwidth at mostk are also called
partial k-treesandpartial k-paths, respectively (as they are exactly the subgraphs ofk-trees or
k-paths, see e.g. Kloks [1994] for definitions and proofs). In the literature, many other notions
have been defined which turned out to be equivalent to the notions of treewidth or pathwidth.
Bodlaender [1996b] gave a list of these notions. There are also many classes of graphs which
have a constant bound on the treewidth or pathwidth, or which are closely related to classes
of graphs of bounded treewidth or bounded pathwidth. For example, the forests are exactly
the simple graphs of treewidth at most one. Series-parallel graphs (see Definition 2.3.3)
have treewidth at most two,k-outerplanar graphs have treewidth at most 3k�1 [Bodlaender,
1996b]. In Section 2.3, we introduce some of these classes. For a complete overview, see
Bodlaender [1996b].

In the remainder of this section, we show some properties of tree and path decomposi-
tions of graphs (Section 2.2.1), we discuss the complexity of the problems of computing the
treewidth and pathwidth of a graph (Section 2.2.2), and we describe two major algorithmic
results for graphs of bounded treewidth (Sections 2.2.3 – 2.2.5).

2.2.1 Properties of Tree and Path Decompositions

We give a number of well-known properties of tree and path decompositions and of graphs of
bounded treewidth or pathwidth in this section. Most of these properties have already been
noted by many authors (see e.g. Robertson and Seymour [1983, 1986a], Scheffler [1989] and
Bodlaender [1996b]). To give some feeling for the concepts of tree and path decompositions,
we give a proof for some of these results.

Lemma 2.2.1 [Scheffler, 1989; Bodlaender, 1996b].Let G be a graph.

1. The treewidth or pathwidth of any subgraph of G is at most the treewidth or pathwidth of
G.

2. The treewidth of G is the maximum treewidth over all components of G.

3. The pathwidth of G is the maximum pathwidth over all components of G.

4. The treewidth of G is the maximum treewidth over all blocks of G.

Proof.
1. LetD be a tree or path decomposition ofG of minimum width, and letG0 be a subgraph of
G. TurnD into a tree or path decomposition ofG0 by removing all vertices ofV(G)�V(G0)
from nodes ofD. The width of the resulting tree or path decomposition is at most the width
of D.

2. By part 1 of the lemma, each component ofG has treewidth at most tw(G). Suppose
G hast components, and letTD1; : : : ;TDt be minimum width tree decompositions of the
components ofG. Connecting the tree decompositionsTD1; : : : ;TDt in an arbitrary way
without introducing any cycles results in a tree decomposition ofG. The width of this tree
decomposition equals the maximum width ofTD1; : : : ;TDt .
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3. Each component ofG has pathwidth at most pw(G). LetPD1; : : : ;PDt be minimum width
path decompositions the components ofG. The concatenation ofPD1; : : : ;PDt in arbitrary
order results in a path decomposition ofG. The width of this path decomposition equals the
maximum width ofPD1; : : : ;PDt .

4. SupposeG is connected. By part 1, each block ofG has treewidth at most tw(G). Let
B1; : : : ;Bs denote the blocks ofG and letC be the set of cut vertices ofG. Let TD1; : : : ;TDs

be minimum width tree decompositions of the respective blocks ofG, with TDi = (Ti ;Xi) for
eachi. Let T be the disjoint union ofT1; : : : ;Ts and letX be the disjoint union ofX1; : : : ;Xs.
For each cut vertexv of G, add a new nodeiv to T and a new setXiv to X with Xiv = fvg. For
each blockBj of G which containsv, add an edge between nodeiv, and a node ofTj which
containsv. The result is a tree decomposition(T;X ) of G, and its width is the maximum
width of all blocks ofG. Hence the treewidth ofG is at most the maximum treewidth of
a block ofG. If G is not connected, then the same construction can be performed for all
components ofG, and we get the result from part 2. 2

Lemma 2.2.2. Let G be a graph and TD= (T;X ) a tree decomposition of G.

1. Let u;v2 V(G), and let i; j 2 I be such that u2 Xi and v2 Xj. Then each node on the
path from i to j in T contains a vertex of every path from u to v in G.

2. For each connected subgraph G0 of G, the nodes in T which contain a vertex of G0 induce
a subtree of T .

Proof.
1. Let u;v 2 V(G), and letP = (u;e1;w1;e2;w2; : : : ;v) be a path fromu to v in G. We
use induction on the length ofP. If P has length zero, thenu = v and the result holds by
property 3 of a tree decomposition.

SupposeP has length one or more. Leti; j 2 I be such thatu2 Xi andv2 Xj . Let P0 be
the subpath ofP from w1 to v. Let l 2 I such thatu;w1 2 Xl . By the induction hypothesis,
each node on the path froml to j in T contains a vertex ofP0. If i is on the path froml to j
in T, then this proves part 1 of the lemma. Ifi is not on the path froml to j, then each node
on the path fromi to l in T containsu, and hence each node on the path fromi to j either
containsu or a vertex ofP0. This proves part 1 of the lemma.

2. Suppose that there is a connected subgraphG0 of G which does not induce a subtree of
T. Then there are nodesi; j 2 I such thatXi contains a vertexv of G0, Xj contains a vertex
w of G0, and there is a nodel on the path fromi to j which does not contain a vertex ofG0.
As there is a path fromv to w in G0, and hence inG, each node on the path fromi to j in T
contains a vertex ofG0 (by part 1 of this lemma). This gives a contradiction. 2

The following lemma is proved in e.g. Bodlaender and M¨ohring [1993].

Lemma 2.2.3 (Clique Containment).Let G= (V;E) be a graph, let TD= (T;X ) be a tree
decomposition of G with T= (I ;F) and X = fXi j i 2 Ig, and let W� V be such that W
induces a clique in G. There is an i2 I such that W� Xi.
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Proof. We prove this by induction onjWj. If jWj= 1, then there is ani 2 I with W � Xi by
definition. SupposejWj > 1. Let v2W. By the induction hypothesis, there is a nodei 2 I
such thatW�fvg� Xi . LetT 0 = (I 0;F 0) be the subtree ofT induced by the nodes containing
v. If i 2 I 0, thenW � Xi . Supposei =2 I 0. Let j 2 I 0 be such thatj is the node ofT 0 that has
the shortest distance toi. We show thatW � Xj . Let w2W�fvg. Note that each path from
a node inT 0 to nodei in T uses nodej. As there is an edgefv;wg 2 E(G), there is a node
j 0 2 I 0 such thatv;w2 Xj 0 . The path fromj 0 to i uses nodej, and hencew2 Xj . 2

Lemma 2.2.4. Let G be a connected partial k-path, k� 1, and W� V such that G[W] is
connected. At most two of the connected components of G[V�W] have pathwidth k.

Proof. Suppose there are three componentsG1, G2 andG3 of G[V�W] which have path-
width k. Let PD = (X1; : : : ;Xt) be a path decomposition ofG of width k. For i = 1;2;3
let (Xji ; : : : ;Xli ) denote the subsequence ofPD consisting of all nodes that contain vertices
of Gi . Note that for eachi, if we remove the vertices ofV(G)�V(Gi) from (Xji ; : : : ;Xli ),
then we get a path decomposition of widthk of Gi . Suppose w.l.o.g. thatj1 � j2 � j3. If
l1 > l2, then each node in(Xj2; : : : ;Xl2) contains a vertex ofG1. This is not possible, since
G2 has pathwidthk andV(G1)\V(G2) = o=. Hencel1 � l2 and analogouslyl2 � l3. Let
G0 = G[V(G1)[V(G3)[W]. Note thatG0 is a connected subgraph ofG which has no ver-
tices in common withG2. Hence, by Lemma 2.2.2, eachXi , j1 � i � l3, contains at least one
vertex ofG0. But j1 � j2 � l2 � l3 andG2 has pathwidthk, which gives a contradiction.2

A rooted binarytree decomposition of a graphG is a tree decomposition(T;X ) of G in
whichT is a rooted binary tree.

Lemma 2.2.5. Let G be a graph. There is a rooted binary tree decomposition of minimum
width of G with O(n) nodes.

Proof. Let k = tw(G), and letTD = (T;X ) be a tree decomposition of widthk of G, with
T = (I ;F) andX = fXi j i 2 Ig. We turnTD into a rooted binary tree decomposition of width
k of G. Take an arbitrary noder 2 I as the root. Repeat the following as long as possible. For
each leaf nodei 2 I with i 6= r, if Xi � Xj , wherej is i’s parent, then remove nodei. For each
nodei 2 I , i 6= r, with degree two, do the following. Letj bei’s parent, andl bei’s only child.
If Xi � Xj , then ‘splice out’i, i.e. removei and let j bel ’s new parent. The result is still a tree
decomposition ofG of the same width. We show that the number of nodes ofTD is O(n).

The number of internal nodes with two or more children is at most equal to the number of
leaves. Leti 2 I be a node with at most one child, supposei 6= r and j is i’s parent. AsXi 6�Xj ,
Xi contains a vertex which is not inXj . Let vi denote this vertex. For every two distinct nodes
i and j with at most one child that are not the root,vi 6= vj , otherwise property 3 of a tree
decomposition is violated. Hence there are at mostn nodes with at most one child (except for
the root). This implies that the total number of nodes is at mostO(n).

We next show howTD can be transformed into a rooted binary tree decomposition. To
this end, we apply the following transformations to each node. Leti 2 I be an internal node of
T. If i has two children, do nothing. Ifi has one child, then add a new leaf nodej to T which
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is the second child ofi, and letXj =Xi . Supposei hasd� 3 children, and letj1; : : : ; jd denote
the children ofi. We spliti into nodesi1; : : : ; id�1, and letXia = Xi for eacha, 1� a� d�1.
The new nodes are connected as follows. The parent ofi1 is the former parent ofi. For each
a, 1� a < d�1, ia has childrenja and ia+1, andid�1 has childrenjd�1 and jd. See also
Figure 2.3. It can be seen that the resulting tree is a rooted tree in which each internal node
has exactly two children, and hence we have a rooted binary tree decomposition of minimum
width ofG. Furthermore, we have added at mostO(n) nodes to the tree decomposition, which
means that the total number of nodes isO(n). 2

Xii

j1 j2 j3 jd

!

i1

j1

j2

jd

i2

id�1

jd�1

Xi

Xi

Xi

Figure 2.3. The splitting step performed on each nodei with three or more children
in order to get a rooted binary tree decomposition.

The last part of the construction of the proof of Lemma 2.2.5 shows that, if we have a tree
decomposition of a graphG with l nodes, then we can transform it inO(l) time into a rooted
binary tree decomposition of the same width ofG with O(l) nodes.

Lemma 2.2.6. Let G= (V;E) be a simple graph, let k� 1, and supposetw(G) = k. Then
jEj � kjVj� 1

2k(k+1).

Proof. We prove this by induction onjVj. If jVj < k+1, then tw(G) < k. If jVj = k+1,
thenjEj � 1

2k(k+1) = kjVj� 1
2k(k+1). SupposejVj > k+1. Let TD = (T;X ) be a tree

decomposition ofG of width at mostk with T = (I ;F) andX = fXi j i 2 Ig. Assume that for
each nodei 2 I with neighbor j 2 I , Xi 6� Xj (it is shown in the proof of Lemma 2.2.5 that
there is such a tree decomposition). Note thatT contains at least two nodes. Leti be a node
of degree one ofT and let j be the neighbor ofi. Note that there is a vertexv2 Xi with v =2Xj .
This implies thatv is adjacent to at mostk vertices, asjXij � k+1. The graphG0=G[V�fvg]
has treewidth at mostk, and hasjVj�1 vertices, hencejE(G0)j � kjV(G0)j� 1

2k(k+1). This
implies thatjEj � jE(G0)j+k� kjV(G0)j� 1

2k(k+1)+k= kjVj� 1
2k(k+1). 2

Lemma 2.2.7. Let G be a graph and let H be a minor of G. Thentw(H) � tw(G) and
pw(H)� pw(G).

Proof. Let D be a tree or path decomposition of minimum width ofG. We transformD
into a tree or path decomposition ofH without increasing the width. We first show howD is
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2.2 Treewidth and Pathwidth

transformed ifH is obtained fromG by one edge contraction. Lete= fu;vg be the contracted
edge ofG. Supposew is the new vertex that is added in order to getH. In D, we replace all
occurrences ofu andv by w. It is easy to see that the result is a tree or path decomposition of
H and that the width has not increased.

SupposeH is obtained fromG by applying a sequence of edge contractions on the sub-
graphG0 of G. We first transformD into a tree or path decomposition ofG0 by removing
all occurrences of vertices inV(G)�V(G0) from D. After this, we repeatedly apply the
transformation as described above for each contraction in the sequence. 2

2.2.2 Complexity Issues of Treewidth and Pathwidth

The treewidth and pathwidth optimization problems are defined as follows (see also Ap-
pendix A).

MIN TREEWIDTH (MIN PATHWIDTH )
Instance: A graphG= (V;E).
Find: The treewidth (pathwidth) ofG.

In the constructive versions of MIN TREEWIDTH and MIN PATHWIDTH, we additionally ask
for a tree or path decomposition of minimum width of the graph. We also define the associated
decision problems TREEWIDTHand PATHWIDTH, andk-TREEWIDTHandk-PATHWIDTH for
any fixed integerk� 1.

Arnborg, Corneil, and Proskurowski [1987] showed that both MIN TREEWIDTH and MIN

PATHWIDTH are NP-hard. Polynomial time approximation algorithms were found by Bod-
laender, Gilbert, Hafsteinsson, and Kloks [1995]. They gave polynomial time algorithms
which, given a graphG, find a tree decomposition of width at mostO(tw(G) � logn), and
a path decomposition of width at mostO(pw(G) � log2n) of G (for all logarithms used in
this thesis, the base is two). For many graph classes, the treewidth and pathwidth can be
found more efficiently. Examples are chordal graphs, interval graphs (see Definition 2.3.1),
permutation graphs [Bodlaender, Kloks, and Kratsch, 1993] and cographs [Bodlaender and
Möhring, 1993]. For an overview, see Bodlaender [1993].

For fixedk, bothk-TREEWIDTHandk-PATHWIDTH can be solved in polynomial time,
which was first proved by Arnborg et al. [1987]: they gave anO(nk+2) algorithm for k-
TREEWIDTH. This algorithm actually solves the constructive version of this problem, i.e. it
returns a tree decomposition of width at mostk of the graph, if one exists. Many people have
worked on the problem to find efficient algorithms fork-TREEWIDTH andk-PATHWIDTH

[Robertson and Seymour, 1986a; Robertson and Seymour, 1990c; Lagergren, 1996; Reed,
1992], which resulted eventually inO(n) time algorithms by Bodlaender [1996a] for the
constructive versions of both problems. The algorithms given by Bodlaender [1996a] are not
very practical, as they have large hidden constants. Fork-TREEWIDTH with k � 3, more
practical algorithms are given by Matou˘sek and Thomas [1991], using results of Arnborg and
Proskurowski [1986]. Fork = 4, Sanders [1996] has given a more practical algorithm using
similar, but more detailed techniques.
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Parallel algorithms for (the constructive version of)k-TREEWIDTH are given by Bod-
laender [1988b], Chandrasekharan and Hedetniemi [1988], Lagergren [1996], and Bodlaen-
der and Hagerup [1995]. The algorithm of Bodlaender and Hagerup [1995] is the only one
with optimal speedup; it has running timeO(log2n) and usesO(n) operations and space on
an EREW or CRCW PRAM. Bodlaender and Hagerup [1995] also solve the constructive
version of thek-PATHWIDTH problem within the same time and resource bounds. In Chap-
ter 9, we improve on this result for 2-TREEWIDTH and 2-PATHWIDTH: these algorithms use
O(lognlog�n) time with O(n) operations and space on an EREW PRAM, andO(logn) time
with O(n) operations and space on a CRCW PRAM (log�n denotes the amount of times we
have to replacen by the value of logn in order to get a value that is at most one. For all
practical values ofn, log�n� 5 (note that log�265536= 5).)

2.2.3 Dynamic Programming on Tree Decompositions

Many, even NP-hard graph problems can be solved in polynomial time if we know a bound on
the treewidth of the input graph. One technique that is applicable to a large class of problems
is dynamic programming on a tree decomposition of the graph. We sketch the basic approach
of this technique.

Suppose we have some graph problemP, we want to solveP on a simple graphG=(V;E)
of treewidth at mostk for some constantk, and we have a rooted binary tree decomposition
TD= (T;X ) of width k of G with T = (I ;F) andX = fXi; j i 2 Ig. Let r denote the root of
T. For eachi, let

Yi = fv2 Xj j j = i_ j is a descendant ofi in Tg;

and letGi = G[Yi ]. Note thatGr = G. For eachi 2 I , a tableSi is computed which con-
tains information about the graphGi with respect to problemP. These tables must have the
following properties.

1. For each nodei 2 I , problemP can be solved forGi solely from the information in table
Si .

2. For each leaf nodei 2 I , Si can be computed fromG[Xi ].

3. For each internal nodei 2 I , Si can be computed fromG[Xi ] and the tables ofi’s children
in the tree.

If these properties hold, then dynamic programming on the tree decompositionT can be used
to computeSr . First compute the tablesSi for all nodesi on level zero inT (the nodes on
level zero are the nodes with largest depth). Next, use these tables to compute the tables of
all nodes on level one, and so on until, finally, tableSr is computed. OnceSr is computed, the
problem can be solved from the information inSr . In order to obtain an efficient algorithm, it
must be the case that each table can be computed efficiently from the tables of the children.
For instance, if for each nodei tableSi can be computed in polynomial time in the size of the
graph, givenG[Xi ] and the tables ofi’s children, then it takes polynomial time to compute the
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2.2 Treewidth and Pathwidth

table of the root node. If each table can be computed in constant time, then it takesO(n) time
to compute the table of the root.

The important property of tree decompositions that is used to achieve the design of tables
that satisfy the properties described above is the following. For each nodei 2 I , the vertices
of Gi that are adjacent to vertices outsideGi must be contained in nodeXi . In other words,
consider a nodei 2 I , and letv2 V(G) be such thatv =2Yi . Suppose there is a vertexu2 Yi

which is adjacent tov. Thenu2 Xi (this follows from part 1 of Lemma 2.2.2, and the fact
that there is a nodej with u2 Xj and j a descendant ofi, and there is a nodel with v2 Xl and
l not a descendant ofi). Hence inG, the graphsGi andG[V�Yi ] are only ‘connected’ via the
vertices inXi .

As an example, consider MAX INDEPENDENTSET (see also Arnborg [1985] or Bodlaen-
der [1993]). For eachi 2 I , we let the tableSi contain the following information: for each
Z�Xi , Si(Z) is the size of the largest independent setSin Gi with S\Xi = Z (let Si(Z) =�∞
if there is no such independent set). It is easy to see that for everyi 2 I , the maximum size
of any independent set ofGi is maxfSi(Z) j Z� Xig. This implies that the maximum size of
an independent set ofG can easily be obtained from the information in tableSr . Figure 2.4
shows an example of a graph, a binary tree decomposition, and the tables corresponding to
each node: in each table, only the values which are larger than�∞ are given. The size of a
maximum independent set in the depicted graph is 4, as this is the value ofS4(e).

a
b

c
d

e

f

g

d e f

cd d f g
TD

G

I II

abc

4

2

1

3

T1 T2 T3 T4
o= 0 o= 1 o= 0 o= 3
a 1 c 2 d 1 d 3
b 1 d 2 f 1 f 3
c 1 g 1 e 4
a;c 2

III

Figure 2.4. A graphG (part I), a binary rooted tree decompositionTD of G (part II),
and the tablesSi for each nodei of TD (part III).

For each leaf nodei 2 I and eachZ� Xi, we have

Si(Z) =

(
jZj if 8v;w2Z fv;wg =2 E

�∞ otherwise.
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Let i 2 I be an internal node, and letj andl be the children ofi. For eachZ� Xi , we have

Si(Z) =

8><
>:

maxfSj(Z1)+Sl(Z2)�jZ1\Zj� jZ2\Zj+ jZj j (Z1 � Xj)

^ (Z2 � Xl )^ (Z1\Xi = Z\Xj)^ (Z2\Xi = Z\Xl )g if 8v;w2Z fv;wg =2 E

�∞ otherwise.

We show that the latter expression is correct. Leti be an internal node with childrenj and
l , and letZ � Xi . Clearly, there is an independent set inGi that containsZ if and only if
no two vertices ofZ are adjacent. Suppose no two vertices ofZ are adjacent. Consider an
independent setISof Gi of sizeSi(Z) such thatIS\Xi =Z. Let IS1 =Yj \ ISandIS2 =Yl \ IS,
and letA1 = IS1\Xj andA2 = IS2\Xj . Note thatIS1 is an independent set ofGj and hence
jIS1j � Sj(A1). Similarly, IS2 is an independent set ofGl andjIS2j � Sl (A2). Note also that
A1\Xi = Z\Xj andA2\Xi = Z\Xl . Furthermore,

Si(Z) = jISj

= jIS1j+ jIS2j� jIS1\Zj� jIS2\Zj+ jZj

� Sj(A1)+Sl(A2)�jA1\Zj� jA2\Zj+ jZj

�maxfSj(Z1)+Sl(Z2)�jZ1\Zj� jZ2\Zj+ jZj j

(Z1 � Xj)^ (Z2 � Xl )^ (Z1\Xi = Z\Xj)^ (Z2\Xi = Z\Xl )g:

On the other hand, letA1 � Xj andA2 � Xl such thatA1\Xi = Z\Xj , A2\Xi = Z\Xl , and
Sj(A1)+Sj(A2)�jA1\Zj�jA2\Zj+ jZj is maximum. Note thatSj(A1)� 0 andSl (A2)� 0.
Let IS1 and IS2 be independent sets ofGj and Gl , respectively, such thatIS1 \Xj = A1,
IS2\Xl = A2, jIS1j = Sj(A1) andjIS2j = Sl (A2). ThenIS= IS1[ IS2[Z is an independent
set ofGi with IS\Xi = Z. Furthermore,

Si(Z)� jISj

= jIS1j+ jIS2j� jIS1\Zj� jIS2\Zj+ jZj

= Sj(A1)+Sl(A2)�jA1\Zj� jA2\Zj+ jZj

= maxfSj(Z1)+Sl(Z2)�jZ1\Zj� jZ2\Zj+ jZj j

(Z1 � Xj)^ (Z2 � Xl )^ (Z1\Xi = Z\Xj)^ (Z2\Xi = Z\Xl)g:

This shows that the recursive definition ofSi(Z) is correct.
With the two expressions given above, the tableSr can be obtained by computing the

tables of all nodes in a bottom-up way: first compute the tables of all nodes on level zero in
the tree, then the tables of all nodes on level one, and so on. Each tableSi has sizeO(2k+1)
(asjXi j � k+1 andTi contains one entry for each subset ofXi). Therefore, if adjacency of
two vertices can be checked in constant time, then each table of a leaf node can be computed
in O(2k+1) time, and each table of an internal node can be computed inO(23k+3) time from
the tables of its children. Note that, with an adjacency list representation, it is not possible to
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check in constant time whether two vertices are adjacent. However, as the graph has treewidth
at mostk, we can modify the adjacency lists in such a way that each edgee= fu;vg occurs
either in the adjacency list ofu or in the adjacency list ofv, and each adjacency list has length
at mostk. It can be seen that we can build such a representation inO(kn) time (we omit the
details of this construction). Furthermore, with this representation we can check inO(k) time
whether two vertices are adjacent.

The discussion above implies that for any constantk� 1 and any simple graphG with
tw(G) � k, the size of a maximum independent set ofG can be computed inO(n) time
if a tree decomposition of bounded width ofG with O(n) nodes is given: turn the given
tree decomposition into a rooted binary tree decomposition withO(n) nodes, and apply the
algorithm as described above. If we are also interested in a maximum independent set of the
graph, then we can compute one from the information in the tables inO(n) time in a top-
down manner. For example, in the graphG of Figure 2.4, this gives the following maximum
independent setfa;c;e;gg.

We can also use parallel dynamic programming to compute the size of a maximum inde-
pendent set inG: for each levell in the rooted treeT of the rooted binary tree decomposition,
the tables of the nodes at levell in T can be computed independently of each other, from the
tables of their respective children. This suggests the following parallel algorithm, consisting
of d+1 rounds, whered denotes the depth ofT. In roundl , 0� l � d, the tablesSi of all
nodesi on levell are computed. Each node is handled by a different processor, which needs
O(1) time to compute the table. It can easily be seen that this algorithm takesO(d) time with
O(n) processors on an EREW PRAM. As the total number of nodes that has to be handled
is O(n), standard techniques show that this algorithm can be made to run inO(d) time with
O(n) operations, and thusO(n=d) processors (in roundi, 0� i � d, let each processor handle
nid=n nodes on leveli, whereni denotes the number of nodes on leveli; summed over all
rounds, this takesO(d) time per processor).

Bodlaender and Hagerup [1995] have shown that, given a tree decomposition of width
at mostk with O(n) nodes of a graph, a rooted binary tree decomposition of the graph of
width at most 3k+ 2 with depthO(logn) can be constructed. This transformation can be
done inO(logn) time with O(n) operations and space on an EREW PRAM. On this tree
decomposition of depthO(logn), the parallel dynamic programming algorithm as described
above takesO(logn) time with O(n) operations on an EREW PRAM, if the input of the
algorithm is a graphG and a tree decomposition of bounded width ofG.

It turns out that the dynamic programming technique described above can be applied to
many problems on graphs of bounded treewidth (see e.g. Arnborg [1985], Johnson [1985]
and Johnson [1987] for an overview). More systematic attempts have led to linear time algo-
rithms that can solve classes of graph problems on graphs of bounded treewidth [Takamizawa,
Nishizeki, and Saito, 1982; Wimer, 1987; Scheffler, 1987; Bodlaender, 1988a; Bern, Lawler,
and Wong, 1987; Courcelle, 1990; Borie, Parker, and Tovey, 1991; Arnborg, Lagergren, and
Seese, 1991; Abrahamson and Fellows, 1993; Courcelle and Mosbah, 1993]. A very general
class of problems for which this has been shown is the class of recognition problems offi-
nite stategraph classes. These problems include all graph problems that can be defined in
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Monadic Second Order Logic.

2.2.4 Finite State Problems and Monadic Second Order Logic

A graph propertyis a functionP which maps each graph to the valuetrue or false. We assume
that isomorphic graphs are mapped to the same value. A graph propertyP holds for graph
G or P(G) holds, if P(G) = true. An extended graph propertyis a functionP for which
there are domainsD1; : : : ;Dt (t � 0), such that for each graphG and eachXi 2 Di , 1� i � t,
P(G;X1;X2; : : : ;Xt) is mapped to the valuetrue or false. (Note that for fixedXi , 1� i � t,
P(G;X1;X2; : : : ;Xt) is a graph property.)

A graph propertyP corresponds directly to a decision problem: given a graphG, does
P hold for G? An algorithm decides a propertyP if it solves the corresponding decision
problem.

Definition 2.2.3 (Terminal Graph). Aterminal graph Gis a triple (V;E;X) with (V;E) a
simple graph, andX � V an ordered subset ofl � 0 vertices. We denoteX by hx1; : : : ;xl i.
Vertices inX are calledterminalsor terminal vertices. Vertices inV �X are calledinner
vertices.

Figure 2.5 gives an example of a terminal graph. Although a terminal graph with zero termi-
nals is not exactly an ordinary simple graph, we sometimes use it in that way.

321 4

: terminal vertex

: inner vertex

G

Figure 2.5. Example of a terminal graphG with four terminals.

A terminal graph withl terminals (l � 0) is also called anl -terminal graph. LetG =
(V;E;X) be anl -terminal graph,l � 0, with X = hx1; : : : ;xl i. For eachi, 1� i � l , we call
xi the ith terminal ofG. A terminal graph(V;E;X) is said to beopenif there are no edges
between terminals.

Terminal graphs are also calledsourcedgraphs (e.g. in Arnborg et al. [1993], Lagergren
and Arnborg [1991]), in which case the terminals are called thesourcesof the graph, or
boundariedgraphs (e.g. in Fellows and Langston [1989]), in which case the set of terminals
is called theboundary.

Definition 2.2.4. The operation�maps two terminal graphsG andH with the same numberl
of terminals to a simple graphG�H, by taking the disjoint union ofG andH, then identifying
corresponding terminals, i.e., fori = 1; : : : ; l , identifying theith terminal ofG with the ith
terminal ofH, and removing multiple edges.

For an example of the�-operation, see Figure 2.6. Note that the result of an� operations is
a simple graph, and not a terminal graph.
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Figure 2.6. Example of operation� applied to two three-terminal graphs.

Definition 2.2.5. Let P be a graph property, andl a non-negative integer. Forl -terminal
graphsG1 andG2, we define the equivalence relation�P;l as follows:

G1 �P;l G2 , for all l -terminal graphsH: P(G1�H), P(G2�H):

PropertyP is of finite indexif for all l � 0,�P;l has finitely many equivalence classes.

There are many equivalent terms for a graph class of which the corresponding graph property
is of finite index: such a graph class isrecognizable, [Courcelle, 1990],finite stateor (fully)
cutset regular[Abrahamson and Fellows, 1993], orregular [Bern, Lawler, and Wong, 1987;
Borie, Parker, and Tovey, 1991] (equivalence has been shown by Courcelle and Lagergren
[1996]). We use the term finite state.

The dynamic programming approach described in Section 2.2.3 can be used to recognize
graphs from any finite state graph class in linear time, as long as there is a bound on the
treewidth of the graph. Therefore, it is again assumed that the input of the algorithm consists
of a graphG and a binary rooted tree decomposition of bounded width ofG with O(n) nodes.
The idea of this algorithm is as follows. LetP be a graph property of finite index. Note that
for each equivalence classC of �P;0, eitherP holds for each graph inC, or P does not hold
for any graph inC. We call a class of�P;0 of the first type anaccepting class.

Let G = (V;E) be a simple graph of width at mostk, for some constantk� 1, and let
(T;X ) be a rooted binary tree decomposition of width at mostk of G with T = (I ;F) and
X = fXi j i 2 Ig. Supposer is the root ofT, and suppose w.l.o.g. thatXr = o=. For eachi, letHi

denote the terminal graph obtained fromGi by letting the vertices inXi be the terminals (recall
thatGi is the subgraph ofG induced by the vertices in nodesXj , where j is a descendant of
i). For each nodei 2 I , the information that is computed is the equivalence class of�P;l that
containsHi (wherel = jXi j). Let Ci denote this equivalence class. Now,P(G) holds if and
only if Cr is an accepting class. Furthermore, ifi is a leaf node, thenCi only depends on
G[Xi ]. If i is an internal node with childrenj andl , thenCi only depends on the graphsG[Xi ],
G[Xj ] andG[Xl ], and the equivalence classesCj andCl . Hence we can use this information
in a dynamic programming algorithm. We briefly show how this is done.

The number of different graphs with at mostk+1 vertices is bounded. Furthermore, for
eachl � k+ 1, the number of equivalence classes of�P;l is bounded. From this, it can be
seen that there is a tableT1 of bounded size in which, for any leaf nodei with jXij � k+1,
we can find the equivalence class ofHi , givenG[Xi]. Furthermore, there is a transition table
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T2 of bounded size in which, for each internal nodei with children j andl , we can find the
equivalence class ofHi , givenG[Xi ], G[Xj ], G[Xl ], and the equivalence classes ofHj andHl .
TablesT1 andT2 can be effectively constructed if we have an algorithm which decides�P;l

for all l � 0. With tableT1, Ci can be computed in constant time for each leaf nodei of the
tree decomposition. With tableT2, Ci can be computed in constant time for each internal
nodei, by only using nodesj andl , wherej andl are the children ofi.

This implies that the dynamic programming approach can be used to recognize graphs of
any finite state class, if the input consists of a graph of treewidth at mostk for some fixed in-
tegerk, and a binary rooted tree decomposition of width at mostk of the graph. Sequentially,
this algorithm takesO(n) time, if the tree decomposition containsO(n) nodes. In the parallel
case, the algorithm takesO(logn) time with O(n) operations on an EREW PRAM, if the
tree decomposition containsO(n) nodes (see also Lagergren [1991]). (In Courcelle [1990],
Arnborg, Lagergren, and Seese [1991], and Abrahamson and Fellows [1993], the algorithm
is described in terms of finite state tree-automata, but this boils down to the same principle.)

Courcelle [1990] has given a large class of graph properties which are finite state. We
define this class here. TheMonadic Second Order Logicor MSOL for graphsG = (V;E)
consists of a language in which predicates can be built with

� the logic connectiveŝ , _, :,) and, (with their usual meanings),

� individual variables which may be vertex variables (with domainV), edge variables (with
domainE), vertex set variables (with domainP (V), the power set ofV), and edge set
variables (with domainP (E)),

� the existential and universal quantifiers ranging over variables (9 and8, respectively), and

� the following binary relations:

– v2W, wherev is a vertex variable andW a vertex set variable,

– e2 F , wheree is an edge variable andF an edge set variable,

– ‘v andw are adjacent inG’, wherev andw are vertex variables,

– ‘v is incident withe in G’, wherev is a vertex variable, ande an edge variable, and

– equality for variables.

A predicate that is defined in MSOL for graphs is also called anMSOL predicate. LetRbe an
MSOL predicate such thatR has no free variables. Then a graphG satisfies Rif R evaluates
to true for G with the common interpretations of the language elements. A graph propertyP
is MS-definableif there is a predicateR defined in MSOL for graphs, such thatR has no free
variables and for each graphG= (V;E), P(G) holds if and only ifG satisfiesR. A graph class
or decision problem is MS-definable if the corresponding graph property is MS-definable.

As an example, we show that the graph propertyP with P(G) = ‘G is two-colorable’ is
MS-definable (a graph is two-colorable if there is a partition of the vertices in two sets such
that each set is an independent set of the graph). For a graphG= (V;E), we define the MSOL

26



2.2 Treewidth and Pathwidth

predicateRas follows:

R = 9U�V 9W�V (U \W = o=)^ (U [W =V)

^ (8u2V8v2V (u andv are adjacent)) (u2U , v2W)):

Note thatU \W = o= can be defined in MSOL as8v2V:(v2U ^v2W), and thatU [W =V
can be defined as8v2V(v2U _v2W). Now, a graphG= (V;E) is two-colorable if and only
if G satisfies predicateR. Hence propertyP is MS-definable.

Let P be an extended graph propertyP with variablesG, X1;X2; : : : ;Xt , whereG= (V;E)
is a graph and for eachi, 1� i � t, Xi 2 Di for some domainDi . ThenP is MS-definable if
there is a predicateR(Y1;Y2; : : : ;Yt) that is defined in MSOL for graphs, with free variables
Y1;Y2; : : : ;Yt , such that for each graphG and everyX1;X2; : : : ;Xt with Xi 2 Di for eachi,
P(G;X1;X2; : : : ;Xt) holds if and only ifG satisfiesR(X1;X2; : : : ;Xt).

As an example, consider the extended graph propertyQ with for each graphG and every
subsetsV1 andV2 of V(G), Q(G;V1;V2) holds if and only if(V1;V2) is a two-coloring ofG.
Let R(Y1;Y2) be the MSOL predicate defined as follows:

R(Y1;Y2) = (Y1\Y2 = o=)^ (Y1[Y2 =V)

^ (8u2V8v2V (u andv are adjacent)) (u2Y1 , v2Y2)):

Clearly, for each graphG and each two subsetsV1 andV2 of V(G), (V1;V2) is a two-coloring
of G if and only if G satisfiesR(V1;V2). HenceQ is MS-definable.

Courcelle [1990] has shown that MS-definable graph properties are finite state, and thus
decidable in linear time for graphs of bounded treewidth. There are many decision problems
which are MS-definable, even many NP-complete decision problems, including HAMILTO -
NIAN CIRCUIT and (for fixedk) k-COLORABILITY (see e.g. Arnborg et al. [1991] for a
list).

Arnborg et al. [1991] gave an alternative proof of the fact that all MS-definable graph
classes are recognizable inO(n) time, if a tree decomposition of bounded width of the input
graph is given. They extended MS-definability to, among others, construction problems and
(constructive) optimization problems (definitions are given below). They have shown that
MS-definable (constructive) decision and (constructive) optimization problems can be solved
in linear time, given a tree decomposition of bounded width of the input graph. We describe
some of these results.

A construction problem is MS-definable if there is an MS-definable extended graph prop-
erty Q(G;X1;X2; : : : ;Xt), such that the construction problem is to find, for a given graphG,
values ofX1; : : : ;Xt for which Q(G;X1; : : : ;Xt) holds. For instance, the constructive version
of k-COLORABILITY is MS-definable, as the extended graph propertyQ(G;V1;V2; : : : ;Vk)
which holds if(V1;V2; : : : ;Vk) is ak-coloring ofG is MS-definable. The constructive version
of HAMILTONIAN CIRCUIT is also MS-definable.

An optimization problem is MS-definable if there is an MS-definable extended graph
propertyQ(G;X1; : : : ;Xt), and there are constantsα1; : : : ;αt such that the problem is to find
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for a given graphG the maximum value ofα1jX1j+α2jX2j+ � � �+αt jXt j. For instance, MAX

INDEPENDENT SET is MS-definable: letQ(G;W) be the extended graph property which
holds ifW is an independent set ofG. It is easy to see thatQ is MS-definable. The problem
of finding the maximum size of an independent set ofG= (V;E) is then the problem to find
the maximum value ofjWj for any setW �V for which Q(G;W) holds. Other examples of
MS-definable optimization problems are MAX CUT, LONGESTPATH and LONGESTCYCLE.

A constructive optimization problem is MS-definable if there is an MS-definable ex-
tended graph propertyQ(G;X1; : : : ;Xt), and there are constantsα1; : : : ;αt such that the prob-
lem is to find for a given graphG values ofX1; : : : ;Xt , such thatQ(G;X1; : : : ;Xt) holds and
α1jX1j+α2jX2j+ � � �+αt jXt j is maximum. For instance, the constructive versions of MAX

INDEPENDENTSET, MAX CUT, LONGESTPATH and LONGESTCYCLE are MS-definable.
Borie et al. [1991] have used a different approach to show similar results, using the results

of Bern et al. [1987].
The disadvantage of the algorithms presented in this section is that a tree decomposition

of bounded width of the input graph is needed. Although there is a linear time algorithm that
finds a tree decomposition of small width of a given graph if one exists [Bodlaender, 1996a],
this algorithm is not practical, as argued before. In parallel, the best known algorithm to find a
tree decomposition of small width of a graph usesO(log2n) time withO(n) operations, even
on a CRCW PRAM [Bodlaender and Hagerup,1995]. This slows down the computations by
a factor logn. A way to overcome this disadvantage is to usereduction algorithms. These
algorithms work directly on the graph: to decide whether a given graph is in some graph class,
a reduction algorithm reduces small parts of the graph into smaller parts, thereby preserving
membership of the graph class. If no more reductions can be performed, either the graph
is reduced to a small graph, which is easy to handle, or the graph is not in the graph class.
Reduction algorithms are more thoroughly discussed in Chapter 5.

2.2.5 Forbidden Minors Characterization

Let G andH be graphs. We sayG containsH as a minor orH is a minor ofG if G has a
minor that is isomorphic toH. A graph classG is minor-closedif for every graphG and every
minorH of G, if G2 G thenH 2 G . Note that for each integerk� 1, the class of graphs of
treewidth or pathwidth at mostk is minor-closed, by Lemma 2.2.7. Robertson and Seymour
have established deep results on graph minors in their series of papers [1983 – 1996]. An
overview of these results can be found in Robertson and Seymour [1985]. The most important
of these results in our context are the following.

Theorem 2.2.1 (Graph Minor Theorem).Let G1;G2; : : : be a countable sequence of graphs.
Then there are indices1� i < j such that Gi is a minor of Gj .

Theorem 2.2.1 was formerly known as Wagner’s Conjecture. LetG be a minor-closed graph
class. LetH be a graph which is not inG . Each graph which hasH as a minor is not inG ,
otherwiseH would be inG . We callH a forbidden minorof G . A minimal forbidden minor
of G is a forbidden minor ofG of which each proper minor is inG . A minor-closed graph
classG is completely characterized by the set of all minimal forbidden minorsO, called

28



2.3 Related Graph Classes

the obstruction setof G : a graph is inG if and only if it does not contain a minor inO.
Theorem 2.2.1 immediately implies the following result.

Corollary 2.2.1. For each minor-closed class of graphsG , the obstruction set has finite
cardinality.

Note that Corollary 2.2.1 shows that for each fixedk� 1, the class of graphs of treewidth at
mostk or pathwidth at mostk has a finite obstruction set.

Robertson and Seymour [1985] have also shown that for a fixed graphH, one can check
whetherH is a minor of a graphG in O(n3) time (wheren= jV(G)j). If the input graph is
known to have a bound on the treewidth, then we can even do a minor test inO(n) time, since
the corresponding decision problem is MS-definable [Arnborg, Lagergren, and Seese, 1991].

These results imply that there existO(n3) time recognition algorithms for all minor-closed
graph classes: test for a given graph whether it has a minor in the obstruction set of the graph
class. For classes of graphs which have a bound on the treewidth, there even existO(n)
time recognition algorithms. Unfortunately, the results of Robertson and Seymour are non-
constructive in the sense that they only prove existence of a finite obstruction set, but provide
no method to obtain the obstruction set. Also, theO(n3) minor testing algorithm has large
hidden constants, which makes this algorithm rather impractical. Furthermore, the size of
an obstruction set can be very large. For the class of graphs of pathwidth at mostk for
example, the obstruction set contains among others(k!)2 trees, each having(5 � 3k� 1)=2
vertices [Takahashi, Ueno, and Kajitani, 1994].

Many efforts have been made to actually find obstruction sets of minor-closed graph
classes. For example, Arnborg and Proskurowski [1986] have given the obstruction sets of
the classes of graphs of treewidth at most one, two and three; Bryant, Fellows, Kinnersley,
and Langston [1987] have given the obstruction sets for pathwidth at most one and Kinner-
sley and Langston [1994] for pathwidth at most two. More general approaches have been
taken by Fellows and Langston [1989] and Lagergren and Arnborg [1991], who have given a
number of ingredients that have to be present in order to be able to compute an obstruction
set for a given graph class. A more practical approach, based on the result of Fellows and
Langston [1989], is taken by Dinneen [1995].

We explicitly mention the following result, as it will be used in this thesis.

Lemma 2.2.8 [Arnborg and Proskurowski, 1986].A graph has treewidth at most one if and
only if it does not have K3 as a minor, and treewidth at most two if and only if it does not have
K4 as a minor.

2.3 Related Graph Classes

In this section, we define a number of graph classes and graph problems which are related to
treewidth and pathwidth.
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2.3.1 Chordal Graphs and Interval Graphs

A chordal or triangulated graph is a graph which does not contain any induced cycles of
length four or more. LetG= (V;E) be a graph. Atriangulationof G is a supergraphG0 of G
with V(G0) =V, such thatG0 is chordal.

The following result relates chordal graphs to treewidth.

Lemma 2.3.1 [Robertson and Seymour, 1986a].Let G= (V;E) be a graph and let ct(G)
denote the least maximum clique size of any triangulation of G. Thentw(G)� ct(G)�1.

Proof. We use the following result of Gavril [1974]: a graphG is a chordal graph if and only
if G is the intersection graph of a family of subtrees of a tree (the intersection graphG of a
family F of subtrees of a tree is the graphG= (V;E) which contains a vertex for each tree
in F , and edge between two vertices if and only if the corresponding trees intersect).

We first show that tw(G) � ct(G)�1. Suppose tw(G) = k�1 and letTD= (T;X ) be a
tree decomposition of widthk�1 of G, with T = (I ;F) andX = fXi j i 2 Ig. Let E0 be the
setffu;vg j 9i2I u;v2 Xig and letG0 = (V;E0). TD is a tree decomposition of widthk�1 of
G0, and thus, by Lemma 2.2.3, the clique size ofG0 is at mostk. We show thatG0 = (V;E0)
is a chordal graph. For eachv2 V(G), let Tv denote the subtree ofT induced by the nodes
containingv. ThenF = fTv j v2Vg is a family of subtrees ofT, andG0 is the intersection
graph ofF . Hence tw(G)� ct(G)�1.

We next show that tw(G)� ct(G)�1. SupposeG0 is a triangulation ofG with maximum
clique sizek. LetF be a family of subtrees of a treeT = (I ;F) such thatG0 is the intersection
graph ofF . For eachv2V(G0), let Tv 2 F be the tree corresponding to vertexv. For each
i 2 I , let Xi = fv2V(G0) j i 2V(Tv)g. Then(T;X ) is a tree decomposition of the graphG0,
and hence ofG. Furthermore, asG0 has clique sizek, each nodei contains at mostk vertices.
Thus(T;X ) has widthk�1, and hence tw(G)� ct(G)�1. 2

Simple chordal graphs can be recognized inO(n+m) time [Rose, Tarjan, and Lueker, 1976].
For the pathwidth of a graph there is a similar result, which we describe after a few more

preliminaries.

Definition 2.3.1 (Interval Graph). A graphG= (V;E) is aninterval graphif there is a func-
tion φ which maps each vertex ofV to an interval of the real line, such that for eachu;v2V
with v 6= u,

φ(u)\ φ(v) 6= o=,fu;vg 2 E:

The functionφ is called aninterval realizationfor G.

It can be seen that interval graphs are chordal. An example of an interval graph and an interval
realization of the graph is given in Figure 2.7.

Simple interval graphs can be recognized inO(n+m) time [Booth and Lueker, 1976;
Hsu, 1993; Korte and M¨ohring, 1989], and with these algorithms it is also possible to find
an interval realization of the given graph (if it is an interval graph). The relation between
interval graphs and pathwidth is expressed in the following results.
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Figure 2.7. An interval graphG and an interval realizationφ of G.

Lemma 2.3.2. Let G= (V;E) be a graph and let PD= (X1; : : : ;Xt) a path decomposition of
G. Let G0 = (V;E0) be the supergraph of G with E0 = E[ffu;vg j 91�i�t u;v2 Xi g. The
graph G0 is an interval graph.

Proof. Let φ : V ! f1; : : : ;ng be defined as follows. For eachv 2 V, if the subsequence
of PD consisting of all nodes containingv is (Xj ; : : : ;Xl ), thenφ(v) = [ j; l ]. Then for each
u;v2V, fu;vg 2 E0 if and only if φ(u) andφ(v) overlap. 2

The graphG0 as defined in Lemma 2.3.2 is called theinterval completionof G for PD.

Lemma 2.3.3 [Möhring, 1990]. Let G= (V;E) be a graph and let ci(G) denote the least
maximum clique size of any interval graph which is a supergraph of G. Thenpw(G) =
ci(G)�1.

Proof. We first show that tw(G) � ci(G)� 1. SupposeG0 = (V 0;E0) is an interval graph
such thatE � E0, the clique size ofG0 is ci(G), and there is no other interval supergraph
of G with smaller clique size. Letk = ci(G). Note that ifV 0 6= V, then the subgraph ofG0

induced byV is an interval with maximum clique size at mostci(G). Hence we may assume
thatV 0 =V. Let φ : V ! I be an interval realization forG0, and suppose w.l.o.g. that for each
vertexv, φ(v) = [lv; rv] for some integerslv andrv. Let (u1; : : : ;un), n= jVj, be an ordering
of V in such a way that for alli; j with 1� i < j � n, lui � luj . For eachi with 1� i � n, let
Xi = fv2V j lui 2 φ(v)g. ThenPD= (X1; : : : ;Xn) is a path decomposition ofG0 and hence of
G. Furthermore, each node contains at mostk vertices, since the clique size ofG is k. Hence
PD has pathwidth at mostk�1.

The proof that tw(G)� ci(G)�1 follows directly from Lemmas 2.2.3 and 2.3.2. 2

2.3.2 Bandwidth

Definition 2.3.2 (Layout and Bandwidth). LetG = (V;E) be a graph. Alayout of G is a
function` : V ! ZZ

+, such that for eachv 6= w, `(v) 6= `(w). Thebandwidthof a layout` is
defined to be maxf`(v)�`(w) j fv;wg 2 Eg. Thebandwidthof G is the minimum bandwidth
of all layouts ofG.
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Figure 2.8 shows a layout` of a graphG. This layout has bandwidth two, and this is also the
bandwidth ofG. The layout is depicted by drawing the vertices in a sequence in the order in
which they appear in the layout.
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Figure 2.8. A graphG of bandwidth two and a layout` of bandwidth two ofG.

Lemma 2.3.4 [Bodlaender, 1996b].If G is a graph of bandwidth at most k, then G has
pathwidth at most k.

Proof. SupposeG is a graph of bandwidth at mostk. Let ` be a layout ofG of bandwidth
at mostk. Then we can make a path decomposition of width at mostk as follows. Order the
vertices ofGasv1; : : : ;vn, such that for eachi < j, `(vi)<`(vj). Now for eachi, 1� i � n�k,
make a nodei with Xi = fvi;vi+1; : : : ;vi+kg. It can be seen thatPD= (X1; : : : ;Xn�k) is a path
decomposition ofG and has pathwidthk. 2

The BANDWIDTH problem (given a graphG, integerk, doesG have bandwidth at most
k� 1?) is NP-complete [Garey, Graham, Johnson, and Knuth, 1978], even when the input
graph is a tree [Monien, 1986]. For any fixedk, there is anO(nk) algorithm that solves
k-BANDWIDTH [Gurari and Sudborough, 1984], and there is anO(n) time algorithm for 2-
BANDWIDTH [Garey, Graham, Johnson, and Knuth, 1978]. Bodlaender, Fellows, and Hallett
[1994] have shown thatk-BANDWIDTH is hard forW[2]. We do not give an exact definition of
W[i]-hardness (i 2 IN) here [Downey and Fellows, 1995], but the idea is that if a parameterized
graph problem calledk-PROBLEM is hard forW[i], wherei 2 IN, then it is unlikely thatk-
PROBLEM is fixed parameter tractable, i.e. it is unlikely that there exists a constantc such
that for any fixed numberk, k-PROBLEM is solvable in timeO( f (k)nc).

2.3.3 Series-Parallel Graphs

Series-parallel graphs appear in several applications. For example, if we want to compute the
resistance of an electrical network of resistors using Ohm’s laws, then the underlying graph
of the network must be a series-parallel graph.

A source-sink labeled graphis a triple(G;s; t), whereG is a multigraph ands andt are
distinct vertices ofG, called thesourceandsinkof the graph, respectively.

Theseries compositionof two or more source-sink labeled graphs is the operation which
takesr � 2 source-sink labeled graphs(G1;s1; t1); : : : ;(Gr ;sr ; tr) and returns a new source-
sink labeled graph(G;s; t) that is obtained by taking the disjoint union ofG1; : : : ;Gr , identi-
fying si+1 with ti for all i, 1� i < r, and lettings= s1 andt = tr . Figure 2.9 shows the series
composition of three source-sink labeled graphs.
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Figure 2.9. A series and a parallel composition of three source-sink labeled graphs
(G1;s1; t1);(G2;s2; t2);(G3;s3; t3).

The parallel compositionof two or more source-sink labeled graphs is the operation
which takesr � 2 source-sink labeled graphs(G1;s1; t1); : : : ;(Gr ;sr ; tr) and returns a new
source-sink labeled graph(G;s; t) that is obtained by taking the disjoint union ofG1; : : : ;Gr ,
identifying all verticess1; : : : ;sr into the new sources, and identifying all verticest1; : : : tr
into the new sinkt. Figure 2.9 shows the parallel composition of three source-sink labeled
graphs.

Definition 2.3.3 (Series Parallel Graphs). A source-sink labeled graph(G;s; t) is a series-
parallel graphif and only if one of the following holds.

� (G;s; t) is abase series-parallel graph, consisting of two verticess andt with one edge
betweensandt.

� (G;s; t) is obtained by a series or parallel composition ofr � 2 series-parallel graphs.

Part I of Figure 2.10 shows a series-parallel graph with sources and sinkt. An equivalent
definition which is often used only involves series and parallel compositions with two series-
parallel graphs. A multigraphG is said to be series-parallel if and only if there are vertices
s; t 2V(G) such that(G;s; t) is a series-parallel graph.

The ‘decomposition’ of a series-parallel graph(G;s; t) into series and parallel composi-
tions is expressed in ansp-tree TG of the graph. An sp-tree is a rooted tree, in which each
node has one of the typesp-node, s-nodeand leaf node, and has a label. A label of a node
is an ordered pair(u;v) of vertices ofG. Every node of an sp-tree corresponds to a unique
series-parallel graph(G0;a;b), whereG0 is a subgraph ofG, and(a;b) is the label of the node.
The root of the tree has label(s; t), and corresponds to the graph(G;s; t). The leaves of the
tree are of type leaf node, and correspond to the base series-parallel graphs that represent the
edges ofG: there is a one-to-one correspondence between leaves ofTG and edgese2 E(G).
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Figure 2.10. A series-parallel graphs and its minimal sp-tree.

Internal nodes are of type s-node (series node) or p-node (parallel node). The children of a
series node are ordered, while the children of a parallel node are not ordered. The series-
parallel graph associated to an s-nodeα is the graph that is obtained by a series composition
of the series-parallel graphs associated to the children ofα, where the order of the children
gives the order in which the series composition is applied. The series-parallel graph associ-
ated to a p-nodeβ is the graph that is obtained by a parallel composition of the series-parallel
graphs associated to the children ofβ. Note that the children of a p-node have the same label
as their parent. Part II of Figure 2.10 shows an sp-tree of the series-parallel graph given in
part I.

Note that a series-parallel graph can have different sp-trees. An sp-tree is called a binary
sp-tree if each internal node has two children. It can be seen that any series-parallel graph
has a binary sp-tree. Aminimal sp-treeof a series-parallel graph(G;s; t) is an sp-tree of
the graph in which p-nodes only have s-nodes and leaf nodes as children, and s-nodes only
have p-nodes and leaf nodes as children. Note that the sp-tree in part II of Figure 2.10 is
minimal. For each series-parallel graph(G;s; t) there is a unique minimal sp-tree which can
be obtained from any sp-tree of(G;s; t) as follows: for any s-nodeα with another s-nodeβ
as child, contract the edge betweenα andβ, and adapt the label. Do the same for any p-node
with another p-node as child.

We can also define directed series-parallel graphs. These are defined in the same way as
undirected series-parallel graphs, with the sole exception that a base series-parallel graph is
a directed graph with two verticess andt and a directed edge from the sources to the sink
t. As a result, directed series-parallel graphs are acyclic, and every vertex lies on a directed
path from the source to the sink.

Lemma 2.3.5. If a multigraph G is series-parallel, then the treewidth of G is at most two.

Proof. Let T = (N;F) be a binary sp-tree ofG. We make a tree decompositionTD= (X ;T)
of width at most two ofG fromT with X = fXα j α2Ng. For each p-nodeα with label(v;w),
let Xα = fv;wg, and for each s-nodeα with label(v;w) and labels of its two children(v;x) and
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(x;w), let Xα = fv;w;xg. One can verify that(X ;T) is a tree decomposition ofG of treewidth
at most two. 2

If an sp-tree of a series-parallel graph is given, many graph problems can be solved in
linear time (in the number of edges) by doing dynamic programming on the sp-tree [Bern
et al., 1987; Borie et al., 1992; Kikuno et al., 1983; Takamizawa et al., 1982]. These results
also follow from the fact that series-parallel graphs have treewidth at most two.

A series reductionin a source-sink labeled graph(G;s; t) is the operation which removes a
vertexv2V(G) of degree two ofG, v 6= s; t, and adds an (extra) edge between the neighbors
of v. A parallel reductionin a source-sink labeled graph(G;s; t) is the operation which
removes an edgee between two verticesu andv which are connected by two or more edges.
The rules for series and parallel reduction are depicted in Figure 2.11.

! !

series reduction rule parallel reduction rule

Figure 2.11. Series and parallel reduction rules.

Duffin [1965] has shown that a source-sink labeled graph(G;s; t) is series-parallel if and
only if any sequence of series and parallel reductions eventually leads to a base series-parallel
graph. Valdes et al. [1982] have given anO(m) time algorithm for recognizing series-parallel
graphs which is based on this characterization. This algorithm also builds an sp-tree of the
input graph if it is series-parallel.

In Chapter 8 we give an additional set of reduction rules with which series-parallel graphs
can be recognized in parallel inO(logmlog�m) time with O(m) operations on an EREW
PRAM. This algorithm also returns an sp-tree of the input graph, if it is series-parallel.
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Chapter 3

The Structure of Partial Two-Paths

In this chapter, we give a complete characterization of the structure of partial two-paths. This
characterization is presented in three steps: we first describe the structure of biconnected
partial two-paths (Section 3.2), then the structure of trees of pathwidth two (Section 3.3), and
finally the structure of partial two-paths in general (Section 3.4). In Section 3.5, we give a
linear time algorithm which, given a graphG, checks whetherG has pathwidth at most two,
and if so, finds the structure of the graph as described in this chapter. This algorithm is used
in Chapter 4. We start with some definitions and preliminary results in Section 3.1.

3.1 Preliminaries
In this section, we give some terminology and preliminary results that are used in this chapter
and in Chapter 4.

The graphs we consider in this chapter are simple. LetGbe a graph, andPD=(V1; : : : ;Vt)
a path decomposition ofG. Let G0 be a subgraph ofG. Theoccurrenceof G0 in PD is the
subsequence(Vj ; : : : ;Vj 0) of PD in which Vj andVj 0 contain an edge ofG0, and no node
Vi , with i < j or i > j 0 contains an edge ofG0, i.e. (Vj ; : : : ;Vj 0) is the shortest subsequence
of PD that contains all nodes ofPD which contain an edge ofG0. We say thatG0 occursin
(Vj ; : : : ;Vj 0). The vertices ofG0 are said to occur in(Vl ; : : : ;Vl 0) if this sequence is the shortest
subsequence ofPD containing all vertices ofG0.

Let G be a graph andPD= (V1; : : : ;Vt) a path decomposition ofG. Let 1� j � t. We say
that a nodeVi is on theleft sideof Vj if i < j, and on theright sideof Vj if i > j. Let G0 be a
connected subgraph ofG, supposeG0 occurs in(Vl ; : : : ;Vl 0). We say thatG0 occurs on the left
side ofVj if l 0 < j, and on the right side ofVj if l > j. In the same way, we speak about the
left and right sides of a sequence(Vj ; : : : ;Vj 0), i.e. a node is on the left side of(Vj ; : : : ;Vj 0) if
it is on the left side ofVj , and a node is on the right side of(Vj ; : : : ;Vj 0) if it is on the right
side ofVj 0 .

The following definition only makes sense if the graphG has pathwidth at most two. An
edgee (or vertexv) is anend edge(or end vertex) of G0 if in each path decomposition of
width two of G, e (or v) occurs in the leftmost or rightmost end node of the occurrence of
G0. An edgee (or vertexv) is adouble end edge(or double end vertex) of G0 if in each path
decomposition of width two ofG, e (or v) occurs in both end nodes of the occurrence ofG0.

Let G be a graph, letPD = (V1; : : : ;Vt) be a path decomposition ofG, and letV 0 � V.
SupposeG[V 0] occurs in(Vj ; : : : ;Vj 0), 1� j � j 0 � t. The path decomposition ofG[V 0]
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induced byPD is denoted byPD[V 0] and is obtained from the sequence(Vj \V 0; : : : ;Vj 0 \V 0)
by deleting all empty nodes and all nodesVi \V 0, j � i < j 0, for whichVi \V 0 =Vi+1\V 0.

Let G be a graph, and letG1 andG2 be subgraphs ofG such that the union ofG1 andG2

equalsG. Let PD1 = (V1; : : : ;Vt) andPD2 = (W1; : : : ;Wt0) be path decompositions ofG1 and
G2. Theconcatenationof PD1 andPD2 is denoted byPD1++PD2 and is defined as follows.

PD1++PD2 = (V1; : : : ;Vt ;W1; : : : ;Wt0)

Note thatPD1++PD2 is a path decomposition ofG if and only if the vertices ofV(G1)\
V(G2) occur inVt and inW1.

Lemma 3.1.1. Let G= (V;E) be a connected partial two-path and let V0 � V. Let PD=
(V1; : : : ;Vt) be a path decomposition of width two of G such that the vertices of V0 occur in
(Vj ; : : : ;Vj 0). On each side of(Vj ; : : : ;Vj 0), edges of at most two components of G[V�V 0]
occur.

Proof. Suppose there are edges of at least three components ofG[V�V0] on the left side of
Vj . Let G1, G2, G3 be three of these components. LetVl , 1� l < j, be the rightmost node on
the left side ofVj containing an edge of one of the componentsG1, G2 andG3, sayG1. Vl

contains a vertex ofG2 and ofG3. HencejVl j � 4. 2

3.2 Biconnected Partial Two-Paths
We only consider non-trivial biconnected graphs in this section. For the characterization of
biconnected partial two-paths, we make use of a result of Bodlaender and Kloks [1993] (see
also Kloks [1994]), who gave a characterization of biconnected partial two-trees.

Definition 3.2.1. Given a biconnected graphG = (V;E), thecell completionḠ of G is the
graph which is obtained fromG by adding an edgefu;vg for all pairsu;v of vertices inV,
u 6= v, for whichfu;vg =2E(G) andG[V(G)�fu;vg] has at least three connected components.

Lemma 3.2.1. Let G be a biconnected graph, let̄G denote the cell completion of G. Let C1

and C2 be distinct chordless cycles of̄G.

1. C1 and C2 have at most two common vertices.

2. If C1 andC2 have two common vertices u and v, then they have the edgefu;vg in common.

Proof. We first prove the following claim: ifC1 andC2 have two verticesu andv in common,
thenfu;vg is an edge inḠ, and furthermore,fu;vg 2 E(C1) andfu;vg 2 E(C2).

Let P1 andP2 be the two paths fromu to v in C1 which are internally vertex-disjoint. There
is a pathP3 from u to v in C2 which is internally vertex-disjoint from bothP1 andP2. By the
definition of cell completion,fu;vg 2 E(Ḡ). SinceC1 andC2 are both chordless cycles, it
must be the case thatfu;vg 2 E(C1) andfu;vg 2 E(C2). This proves the claim.

SupposeC1 andC2 have a setW of vertices in common withjWj � 3. By the previous
claim,W induces a clique inC1 and inC2. This is only possible ifjWj= 3 andC1 andC2 are
both cycles on the vertices ofW. But that means thatC1 =C2, contradiction. HenceC1 and
C2 have at most two vertices in common, and if they have two vertices in common, then they
have the edge between these vertices in common. 2
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3.2 Biconnected Partial Two-Paths

The following lemma has been proved by Bodlaender and Kloks [1993] in the setting of
partial two-trees. For the sake of completeness, we give an alternative proof here.

Lemma 3.2.2. Let G be a biconnected partial two-path. Each path decomposition of width
two of G is a path decomposition (of width two) of the cell completionḠ of G.

Proof. Let u;v 2 V(G), u 6= v, and supposefu;vg =2 E(G) andG[V(G)�fu;vg] has at
least three connected components. SinceG is biconnected, there are three internally vertex-
disjoint pathsP1;P2;P3 from u to v in G (i.e. for i 6= j, Pi andPj only have verticesu andv in
common). We show that in each path decomposition of width two ofG, there is a node which
containsu andv. Suppose not. LetPD= (V1; : : : ;Vt) be a path decomposition of width two
of G such thatVi is the rightmost node containingu, Vj is the leftmost node containingv, and
i < j. NodeVi+1 contains at least one vertex of eachPl , 1� l � 3, but it does not containu.
But each of these vertices has a path tou, andu =2Vi+1. This means that, for eachl , 1� l � 3,
there is a vertexvl 2V(Pl )�fu;vg such thatvl 2Vi . This means thatjVi j � 4, a contradiction.

2

Bodlaender and Kloks [1993] gave a linear time algorithm for finding the cell completion
of a biconnected partial two-path. In the cell completion of a graph, each two distinct chord-
less cycles have at most one edge in common. Bodlaender and Kloks [1993] have shown that
the cell completion of a biconnected partial two-tree is a ‘tree of cycles’. We show that the
cell completion of a biconnected partial two-path is a ‘path of cycles’. First, we give some
definitions and prove a number of lemmas.

Definition 3.2.2 [Bodlaender and Kloks, 1993]. The class oftrees of cyclesis the class of
graphs recursively defined as follows.

� Each cycle is a tree of cycles.

� For each tree of cyclesG and each cycleC, the graph obtained fromG andC by taking
the disjoint union and then identifying an edge and its end vertices inG with an edge and
its end vertices inC, is a tree of cycles.

Note that two different chordless cycles in a tree of cycles have at most one edge in common.

Definition 3.2.3. A path of cyclesis a tree of cyclesG for which the following holds.

1. Each chordless cycle ofG has at most two edges which are contained in other chordless
cycles ofG.

2. If an edgee2 E(G) is contained inm� 3 chordless cycles ofG, then at leastm�2 of
these cycles have no other edges in common with other chordless cycles, and consist of
three vertices.

For an example of a path of cycles, see Figure 3.1. With each path of cyclesG, we can
associate a sequence(C1; : : : ;Cp) of all chordless cycles ofG and a sequence(e1; : : : ;ep�1)
of edges ofG, such that for eachi, 1� i < p, cyclesCi andCi+1 have edgeei in common,
and furthermore, ifi < p�1 andei = ei+1, thenCi+1 has three vertices.
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1
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Figure 3.1. A path of cycles.

Definition 3.2.4 (Cycle Path). LetG be path of cycles, letC = (C1; : : : ;Cp) be a sequence
of chordless cycles as defined above, and letE = (e1; : : : ;ep�1) be the corresponding set of
common edges. The pair(C ;E) is called acycle pathfor G.

For the path of cycles shown in Figure 3.1, a cycle path consists of 6 cycles. A possible
cycle path is(C ;E), with C = (C1; : : : ;C6) andE = (e1; : : : ;e5):

V(C1) = f1;2;3;4;16;17;18g; V(C2) = f4;16;19g; V(C3) = f4;16;20g;

V(C4) = f4;5;6;13;14;15;16g; V(C5) = f6;7;8;13g; V(C6) = f8;9;10;11;12;13g;

and furthermore,e1 = e2 = e3 = f4;16g, e4 = f6;13g, ande5 = f8;13g.
Consider a path of cyclesG. Suppose there are two distinct cycle paths(C ;E) and

(C 0;E 0) for G, whereC = (C1; : : : ;Cp), E = (e1; : : : ;ep�1) and C 0 = (C0
1; : : : ;C

0
p), E 0 =

(e01; : : : ;e
0
p�1). Then either for eachi, 1� i < p, ei = e0i or for eachi, ei = e0p�i. If the first

condition holds, then for eachi, 1� i � p, if Ci 6= C0
i , thenCi andC0

i both consist of three
vertices, and if 1< i < p, thenei�1 = ei . If the latter condition holds, a similar property can
be derived. In other words: two cycle paths for the same path of cycles can only differ in the
ordering of cycles which consist of only three vertices, and have the same (only one) edge in
common with any other cycles.

In the remainder of this section, we show that a biconnected graphG is a partial two-path
if and only if its cell completion is a path of chordless cycles. We first show one side of this
equivalence.

Lemma 3.2.3. Let G be a biconnected graph. If̄G is a path of cycles, then G is a partial
two-path.

Proof. SupposeḠ is a path of cycles and(C ;E) is a cycle path forḠ, with C = (C1; : : : ;Cp)
andE = (e1; : : : ;ep�1), p� 1. Then we can make a path decomposition of width two ofḠ
as follows. Lete0 be an arbitrary edge inC1 with e0 6= e1, and letep be an arbitrary edge
in Cp with ep 6= ep�1. For eachi, 1� i � p, we make a path decompositionPDi of Ci as
follows. If jV(Ci)j = 3, let PDi = (V(Ci)). Otherwise, do the following. Letei�1 = fu;vg
andei = fu0;v0g such that there is a path fromu to u0 which does not containv or v0, Let
P1 = (u1; : : : ;uq) denote the path inCi from u to u0 which avoidsv andv0 (i.e. u = u1 and
u0 = uq), and letP2 = (v1; : : : ;vr) denote the path inCi from v to v0 avoidingu andu0 (i.e.

40



3.2 Biconnected Partial Two-Paths

v= v1 andv0 = vr ). For eachj, 1� j < q, letVj = fuj ;uj+1;v1g, and for eachj, 1� j < r, let
Vj+q�1 = fuq;vj ;vj+1g. Let PDi = (V1; : : : ;Vq+r�2). Note thatPDi is a path decomposition
of width two ofCi with ei�1�V1 andei �Vq+r�2, and hencePD=PD1++PD2++ � � �++PDp

is a path decomposition of width two of̄G, and thus ofG. 2

As an example, consider the path of cycles of Figure 3.1. Figure 3.2 shows a path de-
composition of width two of this graph, made according to the construction of the proof of
Lemma 3.2.3, wheree0 = f1;18g andep = f9;10g.
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Figure 3.2. A path decomposition of width two for the graph of Figure 3.1.

We now give three technical lemmas in order to prove that if a biconnected graphG has
pathwidth two, then its cell completion̄G is a path of cycles. These lemmas show that, in a
path decomposition of width two of a biconnected partial two-path, the occurrences of two
chordless cycles can overlap in only a very small part.

Lemma 3.2.4. Let G be a biconnected partial two-path, C a cycle ofḠ, and PD= (V1; : : : ;Vt)
a path decomposition of G of width two. Suppose C occurs in(Vj ; : : : ;Vj 0), fu;vg is an edge
of C occurring in Vj , andfu0;v0g an edge occurring in Vj 0 . The following holds.

1. If jV(C)j> 3, thenfu;vg 6= fu0;v0g.

2. For each i, j� i � j 0, jVi \V(C)j � 2 and for each edge e2 E(C) there is an i, j� i � j 0,
such that e�Vi andjVi \V(C)j= 3.

Proof.
1. SupposejV(C)j > 3, butu = u0 andv = v0. There is an edgefw;xg in C with fw;xg\
fu;vg= o=. Because of the definition of path decomposition, there is ani, j � i � j 0, such that
w;x2Vi, and alsou;v2Vi. HencejVij � 4, contradiction.

2. Suppose w.l.o.g. thatu and u0 are connected by a path inC which avoidsv and v0.
Denote this path byP1. Denote the path betweenv and v0 which avoidsu and u0 by P2.
See also Figure 3.3. According to Lemma 2.2.2, eachVi , j � i � j 0, contains a vertex ofP1.
Analogously, eachVi contains a vertex ofP2. SinceP1 andP2 are vertex-disjoint,jVi\V(C)j �
2 for eachi, j � i � j 0. SupposeP1 contains at least one edge. Letebe an edge ofP1. LetVl ,
j � l � j 0, be such thate�Vl . NodeVl also contains a vertex ofP2, hence there is ani such
thate�Vi andjVi \V(C)j � 3 for each edgee onP1 andP2. Now consider edgefu;vg �Vj .
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Chapter 3 The Structure of Partial Two-Paths

If there is another vertex ofC in Vj , then the lemma holds forfu;vg. If Vj \V(C) = fu;vg,
then there must be ani, j < i � j 0, such thatfu;vg �Vi andVi contains a neighbor ofu or v.
HencejVi\V(C)j= 3. A similar argument establishes that there is a nodeVi with fu0;v0g�Vi

andjVi \V(C)j= 3. 2

u

v

u0

v0

P1

P2

e

Vl Vj 0Vj Vi

Figure 3.3. The occurrence of chordless cycleC as described in part 2 of the proof of
Lemma 3.2.4.

Let G be a biconnected partial two-path. Lemma 3.2.4 implies that the occurrences of
two chordless cycles of̄G that do not have a vertex in common can not overlap in any path
decomposition of width two ofG.

Lemma 3.2.5. Let G be a biconnected partial two-path with cycles C and C0 which have one
vertex u and no other vertices in common. Let PD= (V1; : : : ;Vt) be a path decomposition
of G of pathwidth two in which no consecutive nodes are the same. Suppose C occurs in
(Vj ; : : : ;Vj 0) and C0 occurs in(Vl ; : : : ;Vl 0). Then either j0 � l or l 0 � j.

Proof. Assumej � l . CycleC contains an edge of which both end points are not vertices of
C0, and similarly,C0 contains an edge of which both end points are not vertices ofC. Hence
j < l and j 0 < l 0.

If j 0 < l , then clearlyj 0 � l holds. Supposel � j 0. For eachi, l � i � j 0, Vi contains
two vertices fromC and two vertices fromC0 (Lemma 3.2.4, part 1), henceu 2 Vi . Let
fu;vg 2 E(C) such thatu;v 2 Vj 0 . There is a nodei0, j � i0 � j 0, which containsu, v and
another vertex fromC (Lemma 3.2.4, part 2). This is only possible ifi0 < l , since j 0 < l 0.
Hence, for eachi, l � i � j 0, Vi containsu andv. In the same way, we can prove that, if
fu;wg is the edge ofC0 which occurs inVl , thenw2Vi for eachi, l � i � j 0. Hence for each
i, l � i � j 0, Vi = fu;v;wg. SincePD contains no consecutive nodes that are the same, this
means thatl = j 0. Hence if j � l , then j 0 � l .

By symmetry,l � j implies l 0 � j 0. 2

Lemma 3.2.5 shows that, if two cyclesC andC0 have one vertex in common, then in any
path decomposition of pathwidth two their occurrences can overlap in at most one node. We
say thatC occurs on the left side ofC0 orC occurs on the right side ofC0.

Lemma 3.2.6. Let G be a biconnected partial two-path with cycles C and C0 which have one
edgefu;vg and no other vertices in common. Let PD= (V1; : : : ;Vt) be a path decomposition
of G of pathwidth two. Suppose C occurs in(Vj ; : : : ;Vj 0) and C0 occurs in(Vl ; : : : ;Vl 0). Then
the following holds.
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3.2 Biconnected Partial Two-Paths

1. j� l and j0 � l 0 or j � l and j0 � l 0. If j = l and j0 = l 0, thenjV(C)j= jV(C0)j= 3.

2. Edgefu;vg is an end edge of C and C0. If j � l and j0 � l 0, then

� j 0 � l,

� fu;vg occurs in Vj 0 and in Vl , and

� there is an i, l� i < j 0, such that V(C)\ (Vi+1[ : : :[Vt) = fu;vg and V(C0)\ (V1[
: : :[Vi) = fu;vg (or possibly vice versa, if j= l and j0 = l 0).

Proof.
1. Supposej < l and j 0 > l 0. ThenjV(C0)j = 3, sayV(C0) = fu;v;wg, since each node
in Vj ; : : : ;Vj 0 contains two vertices ofC. Let j < i < j 0, such thatVi = fu;v;wg. Suppose
fx;yg;fx0;y0g 2 E(C) andfx;yg � Vj , fx0;y0g � Vj 0 , such that there is a path fromx to x0

which avoidsy andy0. Let P1 denote this path, and letP2 denote the path fromy to y0 which
avoidsx andx0. fx;yg 6= fu;vg andfx0;y0g 6= fu;vg, so supposefu;vg 2 E(P1). NodeVi

contains a vertex ofP2, which is notu, v or w. HencejVi j � 4, which is a contradiction. So
either j � l and j 0 � l 0 or j � l and j 0 � l 0. If j = l and j 0 = l 0, thenjV(C)j = jV(C0)j = 3,
since eachVi , j � i � j 0, contains two vertices ofC and two vertices ofC0.

2. Suppose thatj � l and j 0 � l 0. It is clear thatj 0 � l , sincefu;vg is an edge of bothC and
C0. There are nodesVm andVm0 such thatVm = fu;v;wg for somew 2 V(C) with w 6= u;v,
andVm0 = fu;v;w0g for somew0 2 V(C0) with w0 6= u;v. Note thatl �m;m0 � j 0. Suppose
first thatl �m< m0 � j 0. We show that all vertices ofV(C)�fu;vg occur only on the left
side ofVm0 . Suppose there is a vertexx2V(C)�fu;vg which occurs on the right side ofVm0 .
There is a path fromx to w in C which avoidsu andv. NodeVm0 contains a vertex of this
path. HencejVm0 j � 4. This is a contradiction. Since eachVi , m� i �m0, containsu andv,
this means that there is ani, m� i < m0, such that all vertices ofV(C)�fu;vg occur only
in (V1; : : : ;Vi), and the vertices ofV(C0)�fu;vg occur only in(Vi+1; : : : ;Vt). Furthermore,
sincei < j 0 andVj 0 contains an edge ofC, Vj 0 containsu andv. Similarly,Vl containsu andv.

Now supposel �m0 < m� j 0. In the same way as before, we can show that the vertices
of V(C)�fu;vg occur only on the right side ofVm0 , and the vertices ofV(C0)�fu;vg occur
only on the left side ofVm. Hence there is ani, m0 � i < m, such that all vertices ofV(C)�
fu;vg occur only in(Vi+1; : : : ;Vt) and all vertices ofV(C0)�fu;vg occur only in(V1; : : : ;Vi).
Furthermore,Vl is the leftmost node which contains an edge ofC0, which means thatj = l .
In the same way, we can prove thatj 0 = l 0, andVl andVj 0 both containu andv. Hencefu;vg
is an end edge. 2

Note that in part 2 of the lemma, the part(Vj ; : : : ;Vi) of PD restricted toV(C) is a path
decomposition ofC, and(Vi+1; : : : ;Vl 0) restricted toV(C0) is a path decomposition ofC0. We
say thatC occurs on the left side ofC0. In other words, Lemma 3.2.6 says that, if there are
two cycles which have one edge in common, then in each path decomposition of width two
one occurs on the left side of the other one.

Let G be a biconnected partial two-path, and letC andC0 be two distinct chordless cycles
of G. Lemmas 3.2.1, 3.2.4, 3.2.5 and 3.2.6 show that in any path decomposition of width two
of G, eitherC occurs on the left side ofC0, orC occurs on the right side ofC0.
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Lemma 3.2.7. Let G be a biconnected graph. If G is a partial two-path, thenḠ is a path of
cycles.

Proof. SupposeG is a biconnected partial two-path. It follows from the result of Bodlaender
and Kloks [1993] thatḠ is a tree of cycles. That means that we only have to show that
conditions 1 and 2 of Definition 3.2.3 hold.

Let PD= (V1; : : : ;Vt) be a path decomposition of width two ofG (and hence of̄G). By
the previous discussion, there is a sequence(C1; : : : ;Cp) of the chordless cycles of̄G, such
that for each 1� i < j � p, Ci occurs on the left side ofCj in PD. For eachi; j, 1� i < j � p,
let Wi j =V(Ci)\V(Cj ).

Claim. For each i,1� i � p, at most two edges of Ci are contained in other chordless cycles
of Ḡ.

Proof. Consider a cycleCj with j > i. Note that, by the definition of cell completion,
jWi j j � 2, and if jWi j j = 2, thenWi j is an edge of bothCi andCj . Hence each chordless
cycle that occurs betweenCi andCj (in PD) also contains the vertices fromWi j : for eachl ,
i � l � j, Wi j �V(Cl ). This means thatWi j �V(Ci+1) and henceWi j �Wi(i+1). Hence ifCi

has an edgee in common withCj , then it has this edge in common withCi+1. But Ci has at
most one edge in common withCi+1, which means that at most one edge ofCi is contained
in any chordless cycle that occurs onCi ’s right side. By symmetry,Ci has at most one edge in
common with any chordless cycle that occurs on its left side. HenceCi has at most two edges
in common with any other chordless cycle. 2

Claim. If an edge e occurs in m� 3 chordless cycles, then at least m�2 of these cycles have
no other edges in common with any other chordless cycle, and consist of only three vertices.

Proof. Suppose edgee occurs inm� 3 chordless cycles. Leti; j, 1� i < j � p, be such
thatCi is the leftmost cycle containinge andCj is the rightmost cycle containinge. Then for
eachl , i < l < j, edgee occurs in each node of the occurrence ofCl , and thus, by part 2 of
Lemma 3.2.4,e2 E(Cl ), and furthermore, by part 1 of Lemma 3.2.4,jV(Cl )j= 3. 2

This proves the lemma. 2

The main result of this section now follows.

Theorem 3.2.1. Let G be a biconnected graph. G is a partial two-path if and only ifḠ is a
path of cycles.

3.3 Trees of Pathwidth Two
The following result, describing the structure of trees of pathwidthk, is similar to a result of
Ellis, Sudborough, and Turner [1994].

Lemma 3.3.1. Let H be a tree and let k� 1. H is a tree of pathwidth at most k if and only if
there is a path P= (v1; : : : ;vs) in H such that H[V�V(P)] has pathwidth at most k�1, i.e.
if and only if H consists of a path with trees of pathwidth at most k�1 connected to it.
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Proof. If H consists of a pathP=(v1; : : : ;vs) with trees of pathwidth at mostk�1 connected
to it, then we can make a path decomposition ofH as follows. For eachi, 1� i � s, make
a path decomposition of width at mostk� 1 of all components ofH[V�V(P)] which are
connected tovi , and add vertexvi to all nodes in this path decomposition. LetPDi denote this
path decomposition. Now let

PD= PD1++(fv1;v2g)++PD2++(fv2;v3g)++ � � �++f(vs�1;vsg)++PDs:

ThenPD is a path decomposition of width at mostk of H.
Suppose(V1; : : : ;Vt) is a path decomposition ofH of width at mostk. Selectv;w 2 V

such thatv 2 V1 andw 2 Vt . Let P be the path fromv to w in H. Then eachVi, 1� i � t,
contains a vertex ofP. HencePD[V(H)�V(P)] is a path decomposition of width at most
k�1 of H[V�V(P)]. 2

A graph has pathwidth zero if and only if it consists of a set of isolated vertices. Because
graphs of pathwidth one do not contain cycles, each component of a graph of pathwidth one
is a tree which consists of a path with ‘sticks’, which are vertices of degree one adjacent only
to a vertex on the path (‘caterpillars with hair length one’). An example of a partial one-path
is shown in Figure 3.4.

1 14

2

3 8 10

4 5

6 7

9 11 12

13

15 16

Figure 3.4. Example of a partial one-path.

Lemma 3.3.2. Let H be a tree of pathwidth k, k� 1, and suppose there is no vertex v2V(H)
such that H[V�fvg] has pathwidth k�1 or less. Then there is a unique shortest path P in H
such that H[V�V(P)] has pathwidth k�1 or less. Furthermore, P is a subpath of each path
P0 in H for which H[V�V(P0)] has pathwidth at most k�1.

Proof. If P is a path inH such thatH[V�V(P)] has pathwidth at mostk�1, then all the
paths inH containingP have that same property. Suppose there are two distinct pathsP and
P0, such thatH[V�V(P)] andH[V�V(P0)] have pathwidth at mostk�1. We first show that
V(P)\V(P0) 6=o=. SupposeV(P)\V(P0)= o=. LetH 0 be the component ofH[V�V(P)] which
containsP0, let H 00 be the component ofH[V�V(P0)] which containsP, and letv2 V(P)
be the vertex to whichH 0 is connected, i.e. there is aw 2 V(H 0) such thatfv;wg 2 E(H).
See Figure 3.5. Consider the components ofH[V�fvg]. H 0 is one of these components, and
has pathwidth at mostk�1. All other components contain no vertex ofP0, and hence are
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subgraphs ofH 00, which also has pathwidth at mostk�1. HenceH[V�fvg] has pathwidth
at mostk�1, a contradiction.

Let P00 be the intersection ofP andP0, which is again a (non-empty) path. The forest
H[V�V(P00)] has pathwidth at mostk�1, since each component ofH[V�V(P00)] contains
no vertices ofP or no vertices ofP0, hence is a component or a subgraph of a component of
eitherG[V�V(P)] or G[V�V(P0)].

This means that the intersectionP0 of all pathsP for which H[V�V(P)] has pathwidth
at mostk�1 also has the property thatH[V�V(P0)] has pathwidth at mostk�1, and it is
unique and shorter than all other paths having this property. 2

P
P0

H 0

v

H 00

w

Figure 3.5. Example of a tree of pathwidthk for the proof of Lemma 3.3.2.

Let H be a tree of pathwidthk. In the next two lemmas, we show that fork= 1 andk= 2,
there are at most a constant number of verticesv2V(H) for whichH[V�fvg] has pathwidth
at mostk�1.

Lemma 3.3.3. Let H be a tree of pathwidth one, let W�V(H) consist of all vertices v2V(H)
for which H[V�fvg] has pathwidth zero, and suppose thatjWj � 1. ThenjWj � 2, and if
jV(H)j> 2, thenjWj= 1.

Proof. Let v2W. ThenH[V�fvg] consists of single vertices. IfjVj= 2, thenG consists of
one edge, sojWj= 2. If jVj> 2, then all (at least two) edges ofG are incident withv. Hence
for eachw2 V�fvg, H[V�fwg] contains at least one edge incident withv, and does not
have pathwidth zero. So ifjVj> 2, thenjWj= 1. 2

Lemma 3.3.4. Let H be a tree of pathwidth two and let W� V(H) consist of all vertices
v2V(H) for which H[V�fvg] has pathwidth at most one. SupposejWj � 1. The following
holds.

1. H[W] is a connected graph.
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3.3 Trees of Pathwidth Two

2. If there is a v2W such that H[V�fvg] has four or more components of pathwidth one,
thenjWj= 1.

3. There is a vertex v2W such that H[V�fvg] has two or more components of pathwidth
one.

4. jWj � 7.

Proof.
1. SupposejWj � 2. Let v;v0 2W be distinct vertices. Letw be a vertex on the path from
v to v0 in H. Then each component ofH[V�fwg] does not containv or does not containv0.
Hence each component is a subgraph of a component ofH[V�fvg] or of H[V�fv0g], so
w2W.

2. Letv2W, let Hi , 1� i � s, be the components ofH[V�fvg] which have pathwidth one.
Supposes� 4. Letw2V(H) for somew 6= v, and letH 0 be the component ofH[V�fwg]
containingv. If w 2 V(Hj) for some j, thenH 0 contains allHi with i 6= j. Otherwise,H 0

contains allHi . In both cases,H 0 has pathwidth two, according to Lemma 2.2.4, sincev
separatesH 0 in three or more components of pathwidth one. HencejWj= 1.

3. SupposeW does not contain a vertexv 2W such thatH[V �fvg] has two or more
components of pathwidth one. Letv 2W. There is one component ofH[V �fvg] which
has pathwidth one, otherwise,H has pathwidth at most one. LetH 0 be this component, and
let w 2 V(H 0) such thatfv;wg 2 E(H). It must be the case thatH 0 contains three or more
vertices: otherwise,H has pathwidth one. LetP denote the unique shortest path inH 0 for
whichH 0[V�V(P)] has pathwidth zero (P exists by Lemmas 3.3.2 and 3.3.3). There are two
possibilities forw. Eitherw is an inner vertex ofP, orw is a stick of an inner vertexw0 of P. In
all other cases,H has pathwidth one. Ifw is an inner vertex ofP, thenH[V�fwg] has at least
two components of pathwidth one, namely the two components which contain vertices ofP.
Furthermore, all components ofH[V�fwg] have pathwidth at most one, since all neighbors
of v exceptw have degree one. Hence the component containingv has pathwidth one. Ifw
is a stick of inner vertexw0 of P, thenH[V�fw0g] has at least two components of pathwidth
one for the same reason, and all components ofH[V�fw0g] have pathwidth one.

4. If W contains a vertexv for whichH[V�fvg] has four or more components of pathwidth
one, thenjWj= 1.

Consider the case that for allv2W, H[V�fvg] has at most three components of path-
width one. First supposeW contains a vertexv such thatH[V�fvg] has three components of
pathwidth one. LetH1, H2 andH3 denote these components. For allw2V such thatw 6= v
andw =2V(H1)[V(H2)[V(H3), H[V�fwg] has a component of pathwidth two, namely the
component containingv. Let w 2 H1 and supposeH[V�fwg] has pathwidth at most one.
Let H 0 be the component ofH[V�fwg] containingv. Note thatH 0 contains bothH2 and
H3 as a subgraph, and henceH 0 has pathwidth one. As bothH2 andH3 have pathwidth one,
jV(H 0)j � 5. Hence there is a unique shortest pathP in H 0 for which H 0[V(H 0)�V(P)] has
pathwidth zero. This path contains at least one vertex ofH2 sinceH2 has pathwidth one.
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Similarly, it contains at least one vertex ofH3. This implies thatv2 V(P) and thatv is an
inner vertex ofP. Then eitherw is adjacent tov or there is a vertexw0 2 V(H1) such that
w0 has degree two inH andw andv are its only neighbors. In both cases, there are at most
two possible verticesu2V(H1) for whichH[V�fug] has pathwidth one. ForH2 andH3 the
same holds, and hencejWj � 7.

Now supposeW contains no vertexv2W such thatH[V�fvg] has three components of
pathwidth one. Letv2W such thatH[V�fvg] has two components of pathwidth one. Let
H1 andH2 be the components ofH[V�fvg] which have pathwidth one, and letw1 2V(H1)
andw2 2V(H2) such thatfv;w1g;fv;w2g 2 E(H). It must be the case thatjV(H1)j � 3 and
jV(H2)j � 3, otherwiseH has pathwidth one. Fori = 1;2, let Pi denote the unique shortest
path inHi for which Hi [V(Hi)�V(Pi)] has pathwidth zero. Then fori = 1;2, wi is either an
inner vertex or a stick adjacent to an inner vertex ofPi , since otherwise eitherH does not
have pathwidth two, orW contains a vertexw such thatH[V�fwg] has three components
of pathwidth one. For eachw 2W with w 6= v andw =2 V(H1)[V(H2), H[V�fwg] has
pathwidth two. Ifw1 is inner vertex ofP1 andv has degree two, thenw2 is the only vertex
in H2 for which H[V�fw2g] has pathwidth one, otherwise, there is no such vertex inH2.
Similar forw1. HencejWj � 3. This completes the proof. 2

Note that the boundjWj � 7 is sharp: in Figure 3.6, the treeH has pathwidth two and for
each vertexv2V(H) it holds thatH[V�fvg] has pathwidth one.

Figure 3.6. A tree of pathwidth two. Removing any vertex results in a graph of
pathwidth one.

For k� 3, the number of vertices in a tree of pathwidthk whose removal decreases the
pathwidth by at least one, is not necessarily bounded. For instance, Figure 3.7 shows a tree of
pathwidth three. For eachi, 1� i �m, the removal of vertexvi leaves a forest of pathwidth
two. Butmmay be arbitrarily large.

Definition 3.3.1. Let H be a tree and letk� 1. Pk(H) denotes the set of all pathsP in H for
which H[V�V(P)] is a partial(k�1)-path, and there is no strict subpathP0 of P for which
H[V�V(P0)] is a partial(k�1)-path. If jPk(H)j= 1, thenPk(H) denotes the unique element
of Pk(H).

Let H be a tree and letk� 1. Note that ifH has pathwidth more thank, thenPk(H) = o=.
If H has pathwidth less thank, thenjPk(H)j= 1 andPk(H) = (). If H has pathwidth exactly
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v1 v2 vmvm�1v3

Figure 3.7. A tree of pathwidth three. Removing any vertexvi , 1� i �m, results in
a forest of pathwidth two.

k thenjPk(H)j � 1 and all paths inPk(H) contain at least one vertex. IfPk(H) contains more
than one element, then its elements are all paths consisting of one vertex.

For a tree of pathwidth one, all path decompositions of width one are essentially the same.

Lemma 3.3.5. Let H= (V;E) be a tree of pathwidth one and let PD= (V1; : : : ;Vt) be a path
decomposition of width one of H. SupposejV(H)j > 2, and let P1(H) = (v1; : : : ;vs). For
each e2 E(H), let f(e) be such that Vf (e) is the leftmost node containing e. If s� 3, then
either for each i,1� i < s�1, f(fvi ;vi+1g)< f (fvi+1;vi+2g), or for each i, f(fvi ;vi+1g)>
f (fvi+1;vi+2g). Suppose the first case holds. Then for each i,1 � i � s, and each w2
V(H)�V(P1(H)) such thatfvi ;wg 2 E(H), the following holds. If i< s, then f(fvi ;wg) <
f (fvi ;vi+1g), and if i> 1, then f(fvi ;wg)> f (fvi�1;vi).

Proof. Straightforward from the definition of path decomposition. 2

In Figure 3.8, a path decomposition of the partial one-path of Figure 3.4 is given.

2
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Figure 3.8. A path decomposition of width one of the partial one-path of Figure 3.4.

Lemma 3.3.6. Let k� 1 and let H be a tree of pathwidth k such that there is a v2V(H) for
which H[V�fvg] has pathwidth at most k�1. For each path P in H for which H[V�V(P)]
has pathwidth at most k�1, there is a v2V(P) such that H[V�fvg] has pathwidth at most
k�1.

Proof. Let P be a path inH for which H[V �V(P)] has pathwidth at mostk� 1. Let
v2 V(H) be such thatH[V�fvg] has pathwidthk� 1. Supposev =2 V(P). Let H 0 denote
the component ofH[V�V(P)] containingv. Let v0 2V(P) be such that there is aw2V(H 0)
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for which fv0;wg 2 E(H). We show thatH[V �fv0g] has pathwidth at mostk� 1. The
components that do not contain a vertex ofP have pathwidth at mostk� 1 because they
are components ofH[V�V(P)]. All other components are subgraphs of the component of
H[V�fvg] which containsP. Hence these components also have pathwidth at mostk�1. 2

Together with Lemma 3.3.2, Lemma 3.3.6 implies that ifjPk(H)j= 1, thenPk(H) is the
intersection of all pathsP for whichH[V�V(P)] has pathwidth at mostk�1. Furthermore,
it implies the following result, which will be frequently used in the next section.

Corollary 3.3.1. Let k� 1, let H be a tree of pathwidth k, and let PD= (V1; : : : ;Vt) be a path
decomposition of width k of H. Let v2V1 and v0 2Vt. Then the path P from v to v0 contains
one of the paths inPk(H) as a subpath.

3.4 General Graphs
In this section, we denote by a block a non-trivial block. A graph may contain a number of
blocks. If all edges which are contained in a block are removed, then the resulting graph is a
forest.

Definition 3.4.1. LetG be a graph. The subgraphGtr is the graph obtained fromGby deleting
all edges of blocks ofG. The components ofGtr are called the trees ofG.

The cell completion of a graphG is the graph obtained fromG by replacing each block
by its cell completion. It is denoted bȳG. Let G be a partial two-path. Clearly, the cell
completion of each block ofG is a path of cycles, and each tree ofG is a tree of pathwidth at
most two. The number of possible ways in which blocks and trees ofG can be connected to
each other is large. In this section, we give a complete description of this structure. First we
show that for each treeH of G, the vertices ofH which are contained in a block ofG all lie
on one path, which also contains a path ofP2(H). After that, we give for each block of̄G all
possible interconnections with other blocks and trees ofḠ.

Lemma 3.4.1. Let G be a partial two-path and H a tree of G. Let V0 � V(H) be the set of
vertices which are vertices of blocks ofḠ. There is a path in H which contains all vertices of
V 0 and a path ofP2(H).

Proof. Let PD= (V1; : : : ;Vt) be a path decomposition of width two ofG, and suppose the
vertices ofH occur in(Vj ; : : : ;Vj 0). Selectv2 Vj andv0 2 Vj 0 such thatv;v0 2 V(H). Let P
denote the path fromv to v0. All vertices ofV 0 are onP, since for eachw2V 0, there is a cycle
C which containsw, hence there is a nodeVi, j � i � j 0, such thatVi containsw and two other
vertices ofC, soVi \V(H) = fwg. Furthermore, there is a path inP2(H) which is a subpath
of P. 2

Definition 3.4.2. Let G be a partial two-path andH a tree ofG. LetV 0 �V(H) be the set of
all vertices ofH which are contained in a block ofG. PH denotes the set of all pathsP in H
for which the following conditions hold:
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1. there is a path inP2(H) which is a subpath ofP (if P2(H) 6= o=),

2. V 0 �V(P), and

3. there is no strict subpathP0 of P for which conditions 1 and 2 hold.

If jPH j= 1, thenPH denotes the unique element ofPH , andPH is calledthe pathof H.

Let G be a partial two-path andH a tree ofG. If jP2(H)j= 1, thenjPH j= 1. If jP2(H)j>
1, then all elements ofP2(H) are paths consisting of one vertex, and all these vertices form a
connected subgraphH 0 of H (Lemma 3.3.4). This means that if there is one vertexv2V(H)
for which v is contained in a block, then there is a unique shortest path containingv and a
path fromP2(H), since one of the vertices ofH 0 is closer tov than the others. If there are two
or more vertices ofH which are contained in a block, then a similar argument holds. Hence
jPH j= 1 if there is at least one vertex ofH which is contained in a block ofG.

Figure 3.9 shows a partial two-pathG in which G has one treeH of pathwidth two, one
treeH 0 of pathwidth one, and a number of trees of pathwidth zero, i.e. isolated vertices. For
H, P2(H) = (v2;v3;v4) andPH = (v1; : : : ;v4), and forH 0, P2(H 0) = o= andPH0 = (u).

v1 v2 v3

G Gtr , after deletion of isolated vertices

H 0

v4 v1 v2 v3 v4

u u

H

Figure 3.9. A partial two-pathG and its two trees of pathwidth at least one.

From the proof of Lemma 3.4.1 it can be seen that an analog of Corollary 3.3.1 also holds
for PH .

Corollary 3.4.1. Let G be a connected partial two-path which is not a tree and let H be a tree
of G. Let PD= (V1; : : : ;Vt) be a path decomposition of width two of G and suppose H occurs
in (Vj ; : : : ;Vj 0). There is a v2Vj \V(H) and a v0 2Vj 0 \V(H) such that the path from v to v0

contains PH.

The following lemma shows some conditions for the structure of blocks of a partial two-
pathG.

Lemma 3.4.2. Let G be a connected partial two-path which is not a tree, let H be a component
of Gtr , and let PH = (v1 : : : ;vs) be the path of H. Let G0 = G[V �V(PH)]. At most two
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components of G0 have pathwidth two. For each component G00 of G0 of pathwidth two, there
is a v2V(G0) such that eitherfv;v1g 2 E(G) or fv;vsg 2 E(G), i.e. G00 is connected to v1 or
vs. If s> 1, then at most one component of pathwidth two is connected to v1, and at most one
to vs.

Proof. Because of Lemma 2.2.4, at most two components ofG0 may have pathwidth two. If
there is a component of width two adjacent tovi , 1< i < s, thenvi is a vertex which separates
G into three or more components of width two, and henceG has pathwidth three. Ifs 6= 1 and
there are two or more components of width two adjacent tov1, or if s= 1 and there are three
or more components of width two adjacent tov1, thenv1 separatesG into three components
of width two, and henceG has pathwidth three. 2

For the vertices of each block of a partial two-path, we define states, which reflect the
structure of the subgraphs which are connected to them. In Figure 3.10, an example is given
for all possible states.

Definition 3.4.3 (Vertex States). LetGbe a partial two-path, andBa block ofG. Letv2V(B),
and letH denote the tree ofG containingv. The(vertex) stateof v, denoted byst(v), is the
element of the setfN;S;E1; I1;E2; I2g defined as follows.

st(v) = N if v has no neighbors outside ofB (vertexv1 in Figure 3.10).

st(v) = S if v has only neighbors of degree one outside ofB: only sticks are connected tov
(vertexv2 in Figure 3.10).

st(v) =E1 if H has pathwidth one,PH = (v), v is adjacent to exactly one vertexw =2B which
does not have degree one andw2V(H), and eitherv or w is end point ofP1(H) (vertex
v3 in Figure 3.10).

In other words,st(v) = E1 if B is the only block containingv, H has pathwidth one and
contains at least one edge which is not incident withv (hencejP1(H)j= 1),PH = (v), and
v is not an inner vertex ofP1(H), but there is a path inH containingv andP1(H).

st(v) = I1 if B is the only block containingv, H has pathwidth one and contains at least one
edge which is not incident withv, PH = (v), andv is an inner vertex ofP1(H) (vertexv4

in Figure 3.10).

st(v) = E2 if at least one of the following conditions holds.

� There is another block containingv (vertexv5 in Figure 3.10).

� TreeH has pathwidth one,PH = (v) and there is no path inH containingv and a path
of P1(H) (vertexv6 in Figure 3.10).

� TreeH has pathwidth one,PH 6= (v), andv is end point ofPH (vertexv7 in Figure 3.10).

� TreeH has pathwidth two andv is an end point ofPH (vertexv8 in Figure 3.10).

st(v) = I2 if H has pathwidth at most two andv is an inner vertex ofPH (vertex v9 in
Figure 3.10).
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The states are ordered in the following way:I2� E2� I1� E1� S� N.

Note that all possibilities are covered forv, and that all states are well-defined. In the
remainder of this section, we derive what combinations of states are possible for the vertices
of a block.

N S

E1I1

E2

I2

v1 v2

v3
v4

v5

v6

v8

v9

v7

Figure 3.10. Examples of all vertex states.st(v1) = N, st(v2) = S, st(v3) = E1,
st(v4) = I1, st(v5) = st(v6) = st(v7) = st(v8) = E2 andst(v9) = I2. For eachi, let
Hi denote the component ofGtr which containsvi . H1 andH5 consist of one single
vertex. Fori 2 f3;4;6g, the fat edges inHi form the pathP1(Hi). For i 2 f7;8;9g, the
fat edges inHi form the pathPHi . For i 2 f1; : : : ;6g, PHi = (vi).

Lemma 3.4.3. Let G be a partial two-path and C a cycle in G. Let v2V(C), and let G0 be a
component of G[V�V(C)] for which there is a vertex u2V(G0) such thatfv;ug 2 E(G). If
G0 contains at least one edge, then v is an end vertex of C.

Proof. Let PD=(V1; : : : ;Vt) be a path decomposition of width two ofG, supposeC occurs in
(Vj ; : : : ;Vj 0), and letfx;yg 2E(C) such thatx;y2Vj . SupposeE(G0) 6= o=, letfu;wg 2E(G0).
Edgefu;wg can not occur in(Vj ; : : : ;Vj 0), so supposefu;wg occurs inVl , l < j. Then either
v 2 Vj or u 2 Vj . Consider the case thatu 2 Vj , and letVp, j � p � j 0, be the leftmost
node containingv. Then each node inVj ; : : : ;Vp containsu. Furthermore, there is a node
containingx, y, and another vertex ofC (Lemma 3.2.4), which means thatx;y2Vp. This is
only possible ifv= x or v= y, which means thatv is an end vertex. 2
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We can now show that for a blockB of the cell completion of a partial two-pathG, there
is a cycle path(C ;E) with C = (C1; : : : ;Cp) such that all vertices ofB which have stateE1,
I1, E2 or I2, are inC1 or Cp, and all verticesv which are in someCi with 1< i < p and with
ei = ei+1 andv =2 ei have stateN.

Definition 3.4.4 (Correct Cycle Path). LetG be a partial two-path, letB be a block ofḠ,
and let(C ;E) be a cycle path forB with C = (C1; : : : ;Cp) andE = (e1; : : : ;ep�1). (C ;E) is
called acorrect cycle pathif

� for all v2V(B) which are not inC1 orCp, st(v) 2 fN;Sg, and

� for all i, 1� i < p�1 and allv2V(Ci+1), if ei = ei+1 andv =2 ei , thenst(v) = N.

Lemma 3.4.4. Let G be a partial two-path. There is a correct cycle path for each block B of
Ḡ.

Proof. Let PD = (V1; : : : ;Vt) be a path decomposition of width two ofG, and supposeB
occurs in(Vj ; : : : ;Vj 0). As shown in Section 3.2, the chordless cycles occur in some order
C = (C1; : : : ;Cp). Let E = (e1; : : : ;ep�1) be the sequence of edges ofB for which ei =
V(Ci)\V(Ci+1) for eachi, 1� i < p. It can be seen that(C ;E) is a cycle path forB.

Let Ci be such thatei�1 = ei , let v2 V(Ci)�ei . Thenst(v) = N, sinceei occurs in both
end nodes of the occurrence ofCi , and hence any edge adjacent tov could not occur within
the occurrence ofCi , and not within the occurrence of any otherCj .

Finally, we prove that all vertices of the component that are not inV(C1) or V(Cp) are
not adjacent to anything other than sticks. Letv2 V(B), such thatv does not have stateN
or S. Let C be the cycle inB with V(C) the set of vertices ofV(B) except allv2 V(B) for
which v2 V(Ci)�ei for somei, 1< i < p, for which ei�1 = ei , andE(C) the set of edges
in B[V(C)] except the edgesei , 1� i < p. Thenv is an end vertex ofC. C occurs within
(Vj ; : : : ;Vj 0), andVj andVj 0 can not contain any vertices ofB which are not inC1 or Cp,
which is a contradiction. 2

Consider a blockB of the cell completion of a partial two-pathG. Suppose there are
two distinct correct cycle paths(C ;E) and (C 0;E 0) for B, whereC = (C1; : : : ;Cp), E =
(e1; : : : ;ep�1) andC 0 = (C0

1; : : : ;C
0
p), E 0 = (e01; : : : ;e

0
p�1) (p> 1). Suppose w.l.o.g. that for

eachi, 1� i < p, ei = e0i . We have already seen that, for eachi, 1� i � p, if Ci 6=C0
i , thenCi

andC0
i both consist of three vertices, and if 1< i < p, thenei�1 = ep (see page 40). It also

holds that both the vertex ofCi that is not inei (or ei�1 if i = p), and the vertex ofC0
i that is

not ine0i (or e0i�1 if i = p) have stateN.
From Lemma 3.1.1, we can derive that there are at most four vertices ofB which have

stateE1, I1, E2 or I2. Furthermore, if(C ;E) is a correct cycle path, then bothV(C1)�V(Cp)
andV(Cp)�V(C1) each have at most two vertices with state infE1; I1;E2; I2g.

Let G be a partial two-path, andB a block ofḠ with v2V(B) andst(v) 2 fI2;E2; I1;E1g.
Let X be a component ofG[V�V(B)] which is connected tov in G such thatjV(X)j > 1,
and letX0 denoteG[V(X)[fvg]. Then in each path decomposition of width two ofG, all
edges ofX0 occur on the same side of the occurrence ofB: if two edgese;e0 2 E(X0) occur
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on different sides of the occurrence ofB, then there is a path betweene ande0 which avoids
v, hence each node in the occurrence ofB contains a vertex of this path, which is not possible
sinceB has pathwidth two.

Lemma 3.4.5. Let G be a partial two-path and C a cycle of̄G. Let PD= (V1; : : : ;Vt) be a
path decomposition of width two of G and suppose C occurs in(Vj ; : : : ;Vj 0). Let v2Vj such
that v2V(C). Then Vj contains a neighbor of v in C.

Proof. Let fx;yg 2 E(C) be such thatx;y2 Vj . Let Vm, j � m� j 0, be the leftmost node
which contains another edge ofC. ThenVm containsx, y and a neighborzof x or y in C. Then
eitherm= j andv= zor v2 fx;yg. 2

In the next lemmas, we show that the vertices which have stateE1, I1, E2 or I2 must have
a ‘small distance’ to each other.

Lemma 3.4.6. Let G be a partial two-path and B a block of̄G. Let PD be a path decompo-
sition of width two of G such that B occurs in(Vj ; : : : ;Vj 0), and let(C ;E) be a correct cycle
path for B such that C1 is the chordless cycle of B that occurs leftmost in PD.

Let x;y2V(B), and suppose st(x);st(y) 2 fI2;E2; I1;E1g. Let X0 be the graph consisting
of all components of G[V�V(B)] that are connected to x in G, and that occur on the left side
of (Vj ; : : : ;Vj 0), and let X denote G[V(X0)[fxg]. Similarly, let Y0 be the graph consisting
of all components of G[V�V(B)] that are connected to y in G, and that occur on the left
side of(Vj ; : : : ;Vj 0), and let Y denote G[V(Y0)[ fyg] (see for example Figure 3.11). Then
x;y2V(C1) and

1. eitherfx;yg 2 E(C1)�fe1g or there is a vertex z2V(B) such thatfx;zg 2 E(C1)�fe1g
andfz;yg 2 E(C1)�fe1g and st(z) = N, and

2. either X is a partial one-path such that x is not an inner vertex of P1(X) but there is a
path containing P1(X) and x, or Y is a partial one-path such that y is not an inner vertex
of P1(Y) but there is a path containing P1(Y) and y.

Proof.
1. Bothx andy occur inVj , sox;y2V(C1). There is a neighbor ofx in Vj and a neighbor ofy
in Vj . This means that, according to Lemma 3.4.5, eitherfx;yg2E(C1) or there is az2V(C1)
such thatfx;zg 2 E(C1) andfy;zg 2 E(C1). If fx;yg= e1, thenfx;yg is a double end edge of
C1, hencejV(C1)j= 3, so there is az2V(C1) such thatfx;zg;fy;zg 2 E(C1)�fe1g. If there
is az2 V(C1) such thatfx;zg 2 E(C1) andfy;zg = e1, thene1 also is a double end vertex,
hencejV(C1)j= 3, andfx;yg 2 E(C1)�fe1g.

Supposefx;yg =2 E(C1)�fe1g, and letz be the common neighbor ofx andy such that
Vj = fx;y;zg. Let Vi , i < j, be the rightmost node containing an edge ofX0 or Y0. Then
Vi = fx;y;z0g for somez0 2 V(X0)[V(Y0). This means that no edge that occurs on the left
side ofVj is incident withz. In the same way, we can prove that there can be no edge incident
with zwhich occurs on the right side ofVj .

2. SupposeX occurs in(Vl ; : : : ;Vl 0), 1� l � l 0 � j, andY occurs in(Vm; : : : ;Vm0), 1�m�
m0 � j, and suppose thatm< l . See also part II of Figure 3.11. It is clear thatx2 Vl 0 and
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y2Vm0 , and thatX has pathwidth one. Furthermore, the rightmost node containing an edge
of X contains an end pointv of the pathP1(X) and a stickv0 adjacent to it. This means that
x2 fv;v0g, hencex is either an end point ofP1(X) or a stick adjacent to an end point ofP1(X).
If l < m, then we get the same result forY. 2

x

y

X

e1

Y

X00

C1
C2

C1 C2e1 e1x

y

X
Y x

y
x x X00

I

II

Figure 3.11. Part I is a partial two-pathG which contains a path with cycles with
correct cycle path(C ;E) with C = (C1;C2), E = (e1). Verticesx;y 2 V(C1) both
have stateE2. Part II shows the order of the occurrences ofC1, C2, X, Y andX00

in a possible path decomposition of width two ofG, as it is used for the proof of
Lemma 3.4.6.

Corollary 3.4.2. Let G be a partial two-path, B a block of̄G, and(C ;E) a correct cycle path
for B. Let v1; : : : ;vs2V(B) such that st(vi) 2 fI2;E2; I1g. Then s� 3. Furthermore, if s= 3,
there is a j,1� j � 3, such that st(vj) = I1 and vj is a double end vertex of B, which implies
that vj 2 ei for each i.

To be able to give the possible states for the blocks in a partial two-path, we first give a
definition.

Definition 3.4.5 (Distance). LetG be a partial two-path,B a block ofḠ and(C ;E) a cor-
rect cycle path forB with C = (C1; : : : ;Cp) andE = (e1; : : : ;ep�1). For eachu;v 2 V(B),
dst1(u;v) 2 ftrue; falseg and dstp(u;v) 2 ftrue; falseg are defined as follows. Ifp= 1, then

dst1(u;v),

u;v2V(C1) ^ (fu;vg 2 E(C1)_9w2V(C1) fu;wg;fv;wg 2 E(C1)^st(w) = N)
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If p> 1 then

dst1(u;v), u;v2V(C1) ^

(fu;vg 2 E(C1)�fe1g_9w2V(C1) fu;wg;fv;wg 2 E(C1)�fe1g^st(w) = N)

dstp(u;v), u;v2V(Cp) ^

(fu;vg 2 E(Cp)�fep�1g_9w2V(Cp) fu;wg;fv;wg 2 E(Cp)�fep�1g^st(w) = N)

Figure 3.12 shows an example of dst. The picture shows a path of cycles with cycle path
(C ;E) with C = (C1;C2), E = (e1). dst2(v2;v3) and dst2(v3;v4) hold. dst1(v2;v4) and
dst2(v2;v4) do not hold, since the edge betweenv2 andv4 is edgee1. dst1(v1;v4) does not
hold since the common neighbor ofv1 andv4 has stateS.

C1 C2
v1

v2

v3

v4

e1

Figure 3.12. Example for the definition of dst1(vi ;vj ) and dstp(vi ;vj).

In Definition 3.4.6, we are going to define the state of a block of a partial two-path.
Furthermore, for each state, a necessary condition will be given which must hold for any
block of that state, such that the graph can be a partial two-path. The necessity of these
conditions is proved in Lemma 3.4.7.

Figures 3.14 – 3.17 symbolically depict the condition for each state. As an example,
consider Figure 3.13. A cycle path(C ;E) is represented by an ellipse in which the vertical
lines denote the common edges of the cycles. The leftmost cycle representsC1, the rightmost
one representsCp. The vertices that have one of the states infI2;E2; I1;E1g are represented
by a dot. All other vertices are not drawn. In Figure 3.13,st(v1) = I2, st(v2) = E2, st(v3) = I1
andst(v4) = E1. If dst1(u;v) (dstp(u;v)) holds for two vertices, then the vertices are both
drawn in the leftmost (rightmost) cycle, and they are connected by a fat edge. In Figure 3.13,
dst1(v2;v4) holds.

Definition 3.4.6 (Block States). LetG be a partial two-path,B a block of Ḡ, and(C ;E)
a correct cycle path forB, C = (C1; : : : ;Cp), E = (e1; : : : ;ep�1). Let v1; : : : ;vs denote the
vertices ofB which do not have stateN or S, such thatst(vi) � st(vi+1) for eachi, 1� i <
s. Thestate of Bis denoted byst(B), and is defined asst(B) = (st(v1);st(v2); : : : ;st(vs)).
BecauseG is a partial two-path, the verticesv1; : : : ;vs satisfy a number of conditions. For
each value ofst(B), we denote these conditions by cond(st(B)). The conditions will be
defined in following tables. Fors= 0, cond(()) = true (Figure 3.14)
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v1

v2 v3

v4

Figure 3.13. Legend for Figures 3.14 – 3.18. The states of the drawn vertices are
as follows: st(v1) = I2, st(v2) = E2, st(v3) = I1 and st(v4) = E1. Furthermore,
dst1(v2;v4) holds.

s= 1 (Figure 3.14)
st(B) cond(st(B))
(I2) 81�i<p v1 2 ei

(E2) v1 2V(C1)[V(Cp)
(I1) cond((E2))
(E1) cond((E2))

(I2) (E2)

(I1) (E1)

()

Figure 3.14. Symbolic representation of cond(S) for each possible block stateS for
s= 0 ands= 1. Cases that are symmetric inC1 andCp are given only once.
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s= 2 (Figure 3.15)
st(B) cond(st(B))
(I2; I1) ((81�i<p v1 2 ei ^v2 2 ei)^dst1(v1;v2)^dstp(v1;v2))

_ ( p= 1^V(C1) = fv1;v2;u;wg
^E(C1) = ffv1;ug;fv2;ug;fv1;wg;fv2;wgg^st(u) = st(w) = N )

(I2;E1) (81�i<p v1 2 ei) ^ (dst1(v1;v2)_dstp(v1;v2))

(E2;E2) (v1 2C1^v2 2Cp) _ (v1 2Cp^v2 2C1)

(E2; I1) cond((E2;E2))

(E2;E1) ((v1 2C1^v2 2Cp) _ (v1 2Cp^v2 2C1) _ dst1(v1;v2)_dstp(v1;v2))

(I1; I1) cond((E2;E2))

(I1;E1) cond((E2;E1))

(E1;E1) cond((E2;E1))

s= 3 (Figure 3.16)
st(B) cond(st(B))
(I2;E1;E1) (dst1(v1;v2)^dstp(v1;v3))_ (dstp(v1;v2)^dst1(v1;v3))

(E2;E2; I1) (dst1(v1;v3)^dstp(v2;v3)) _ (dstp(v1;v3)^dst1(v2;v3))

(E2;E2;E1) (v1 2V(C1)^dstp(v2;v3)) _ (v1 2V(Cp)^dst1(v2;v3)) _
(v2 2V(C1)^dstp(v1;v3)) _ (v2 2V(Cp)^dst1(v1;v3))

(E2; I1; I1) (dst1(v1;v3)^dstp(v2;v3)) _ (dstp(v1;v3)^dst1(v2;v3)) _
(dst1(v1;v2))^dstp(v3;v2)) _ (dstp(v1;v2)^dst1(v3;v2))

(E2; I1;E1) cond((E2;E2;E1))

(E2;E1;E1) (v1 2V(C1)^dstp(v2;v3)) _ (v1 2V(Cp)^dst1(v2;v3)) _
(v2 2V(C1)^dstp(v1;v3)) _ (v2 2V(Cp)^dst1(v1;v3)) _
(v3 2V(C1)^dstp(v1;v2)) _ (v3 2V(Cp)^dst1(v1;v2))

(I1; I1; I1) (dst1(v1;v3)^dstp(v2;v3)) _ (dstp(v1;v3)^dst1(v2;v3)) _
(dst1(v1;v2)^dstp(v3;v2)) _ (dstp(v1;v2)^dst1(v3;v2)) _
(dst1(v2;v1)^dstp(v3;v1)) _ (dstp(v2;v1)^dst1(v3;v1))

(I1; I1;E1) cond((E2;E2;E1))

(I1;E1;E1) cond((E2;E1;E1))

(E1;E1;E1) cond((E2;E1;E1))
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W

(I2; I1) (I2;E1)

(E2;E2) (E2; I1) (I1; I1)

(E2;E1)

W

(I1;E1)

W

(E1;E1)

W

Figure 3.15. Symbolic representation of cond(S) for each possible block stateS for
s= 2. For state(I2; I1), the block is represented in its normal way. Cases that are
symmetric inC1 andCp, or in distinct verticesvi with the same state are given only
once.
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(I2;E1;E1) (E2;E2; I1)

(E2; I1; I1)

(E2;E2;E1)

(E2;E1;E1)

W

(I1; I1; I1)

(E2; I1;E1)

W

(I1; I1;E1)

(I1;E1;E1)

W

(E1;E1;E1)

Figure 3.16. Symbolic representation of cond(S) for all block statesSfor s= 3. Cases
that are symmetric inC1 andCp, or in distinct verticesvi with the same state are given
only once.
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s= 4 (Figure 3.17)
st(B) cond(st(B))
(E2;E2;E1;E1) (dst1(v1;v3)^dstp(v2;v4)) _ (dstp(v1;v3)^dst1(v2;v4)) _

(dst1(v1;v4)^dstp(v2;v3)) _ (dstp(v1;v4)^dst1(v2;v3))

(E2; I1;E1;E1) cond((E2;E2;E1;E1))

(E2;E1;E1;E1) (dst1(v1;v2)^dstp(v3;v4)) _ (dstp(v1;v2)^dst1(v3;v4)) _
(dst1(v1;v3)^dstp(v2;v4)) _ (dstp(v1;v3)^dst1(v2;v4)) _
(dst1(v1;v4)^dstp(v2;v3)) _ (dstp(v1;v4)^dst1(v2;v3))

(I1; I1;E1;E1) cond((E2;E2;E1;E1))

(I1;E1;E1;E1) cond((E2;E1;E1;E1))

(E1;E1;E1;E1) cond((E2;E1;E1;E1))

(E2;E2;E1;E1) (E2; I1;E1;E1) (E2;E1;E1;E1)

(I1; I1;E1;E1) (I1;E1;E1;E1) (E1;E1;E1;E1)

Figure 3.17. Symbolic representation of cond(S) for all possible block states for
s= 4. Cases that are symmetric inC1 andCp, or in distinct verticesvi with the same
state are given only once.

Let a 2 fI2;E2; I1;E1g. We denote bySa the set of block states for whichs� 1 and
st(v1) = a.

Although it seems that the states and conditions that are given in Definition 3.4.6 depend
on the correct cycle path that is used, this is not the case: no matter what correct cycle path
(C ;E) of a blockB is used, the state ofB and the value of cond(st(B)) are the same (see also
page 54). Note that the block states are well-defined, i.e. each block has exactly one state.

Lemma 3.4.7. Let G be a partial two-path. Each block B of̄G has one of the states in
SI2[SE2[SI1[SE1, and satisfiescond(st(B)).

Proof. Let B be a block ofḠ, let (C ;E) be a correct cycle path ofB with C = (C1; : : : ;Cp),
E = (e1; : : : ;ep�1). Furthermore, letv1; : : : ;vs denote the vertices ofB which have one of the
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states infI2;E2; I1;E1g such thatst(v1)� st(v2)� �� � � st(vs). Then clearlys� 4. We have
to show that(st(v1); : : : ; ;st(vs)) 2 Sst(v1) and that cond((st(v1); : : : ;st(vs))) holds. Ifs= 0,
then this is clear.

Supposes> 0, letH be the tree ofG which containsv1. If st(v1) = I2, thenv1 is an inner
vertex of the pathPH , and it follows from Lemma 3.4.2 that the component ofG[V�fv1g]
which contains vertices ofB must have pathwidth one. It can easily be checked that if this is
the case, thenst(B) 2 SI2 and cond(st(B)) holds.

Supposest(v1) 2 fE2; I1;E1g. Vertexv1 is end point ofPH . Lemma 3.4.6 shows that
st(B) 2 Sst(v1) and that cond(st(B)) holds. 2

Definition 3.4.7. Let G be a partial two-path,B a block ofḠ, and(C ;E) a correct cycle path
for B with C = (C1; : : : ;Cp) andE = (e1; : : : ;ep�1). Let v1; : : : ;vs denote the vertices ofB
which do not have stateN or S, such thatst(vi)� st(vi+1) for eachi, 1� i < s. Suppose that
s� 1 andst(v1) = E2. Let G0 be the component ofG[V�fv1g] which containsV(B)�fv1g.
cond1(st(B)) is defined as follows.

cond1(st(B)), cond((I2;st(v2); : : : ;st(vs)))

Note that ifst(v1) = E2 and cond1(st(B)) holds, then also cond(st(B)) holds. Figure 3.18
depicts cond1(st(B)) for all values ofst(B).

(E2)

W

(E2; I1)

(E2;E1) (E2;E1;E1)

Figure 3.18. Symbolic representation of cond1(S) for possible block stateS=
(st1; : : : ;sts) with st1 = E2. Cases that are symmetrical inC1 andCp, or in distinct
verticesvi with the same state are given only once.

Theorem 3.4.1. Let G be a connected graph. G is a partial two-path if and only if the
following conditions hold.

1. For each tree H of G, the following holds: H has pathwidth at most two, and there is a
path in H which contains a path inP2(H) and all vertices that are in a block of G.
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2. Each block B ofḠ contains only vertices that have one of the statesI2, E2, I1, E1, S and
N, and at most four vertices of B do not have stateS or N.

3. For each block of̄G, there is a correct cycle path.

4. Each block B ofḠ has one of the states in SI2 [ SE2 [ SI1 [ SE1 [ f()g and satisfies
cond(st(B)).

5. Let H be a tree of Gtr , suppose G6= H, let PH = (u1; : : : ;up). If p > 1 and u1 is a vertex
of a block and st(u1) = E2, then at most one of the blocks that contain u1 does not satisfy
cond1(st(B)). Similar for up.

If p = 1, u1 is a vertex of a block and st(u1) = E2, then at most two blocks containing u1

do not satisfycond1(st(B)).

Proof. We first prove the ‘only if’ part. SupposeG is a partial two-path, then it follows
directly from Lemmas 3.4.1, 3.4.4, and 3.4.7 that 1, 2, 3 and 4 hold.

We now prove 5. LetH be a tree ofG, supposeG 6= H, let PH = (u1; : : : ;up). If p> 1,
then, according to Lemma 3.4.2, there is at most one component inG0 = G[V(G)�V(PH)]
that has pathwidth two and is adjacent tou1 in G. This means that at most one blockB
containingu1 does not satisfy cond1(st(B)), since cond1(st(B)) holds if the component of
G[V �fu1g] which containsV(B)�fu1g has pathwidth one, as is shown in the proof of
Lemma 3.4.7. Ifp = 1, then in the same way, we can show that at most two blocksB
containingu1 are allowed not to satisfy cond1(st(B)).

Now we prove the ‘if’ part. SupposeG is a connected graph that satisfies conditions 1,
2, 3, 4 and 5. IfG is a tree orG is biconnected, thenG has pathwidth two, as is shown in
Theorem 3.2.1 and Lemma 3.3.1. SupposeG contains at least one block and at least one tree
with one or more edges. We construct a path decomposition of width two ofG.

First consider the trees ofG. Let H be a tree ofG, let PH = (u1; : : : ;up). If p = 1 and
st(u1) = E1, then make a path decompositionPDH of width one ofH in which u1 is in the
rightmost node.

If p= 1 andst(u1) = I1, then make a path decompositionPDH of width one ofH. Let
H1 andH2 be the components ofH[V�fv1g] that contain edges ofH, such that the leftmost
node ofPDH contains vertices ofH1 and the rightmost node contains vertices ofH2. Let
PD1

H = PD[V(H1)[ fv1g[ fsticks ofv1g], andPD2
H = PD[V(H2)[ fv1g]. Note thatv1 is

in the rightmost node ofPD1
H and in the leftmost node ofPD2

H . Furthermore, make a path
decompositionPD0

H of width two of H, which is similar toPDH , but with vertexv1 added
to each node. In the final path decomposition ofG, PD0

H is used if componentH may occur
completely on the same side of the block which containsv1, andPD1

H andPD2
H are used if

two parts ofH must occur on different sides. In this case,PD1
H occurs on the left side and

PD2
H on the right side.
If p> 1, orp= 1 andst(u1)� E2, then do the following. LetGH denote the induced sub-

graph ofG which containsH and all components ofG[V�V(PH)] which have pathwidth zero
or one. For eachui , each component ofGH [V(GH)�V(PH)] which is connected toui , make
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a path decomposition of width zero or one, and addui to each node of this path decomposi-
tion. For eachui , concatenate the obtained path decompositions of all components which are
connected toui, and letPDi denote this path decomposition. Now make the following path
decomposition:PDH = PD1 ++(fu1;u2g)++PD2 ++ � � �++(fup�1;upg)++PDp. See for
example Figure 3.19. In this picture,PH = (u1;u2;u3;u4), andH1; : : : ;H5 are the components
of GH which have pathwidth one.

u1 u2 u3
u4

H2

H3H1

H4

H5

w

u1

w

u1

u2

u2 u2

u3H1

u3

u4

u3

H3H2

u4

H5H4

GH

PDH

Figure 3.19. Example of the construction ofPDH for the subgraphGH .

PDH is a path decomposition of width two of the graphGH . Furthermore, the leftmost
node ofPDH containsu1, the rightmost node containsup. There are at most two compo-
nents ofG[V�V(PH)] which have pathwidth two, and ifp > 1, then at most one of these
components is connected tou1, and at most one toup.

Now consider the blocks which are not contained in someGH for a treeH of G. For each
block B of Ḡ for which this holds, let(C ;E) be a correct cycle path withC = (C1; : : : ;Cp)
andE = (e1; : : : ;ep�1). Let v1; : : : ;vs denote the vertices ofB which have one of the states in
fE2; I1;E1g. Note thatB has no vertices with stateI2, since thenB would be in some graph
GH . Let GB denote the subgraph ofG which containsB and all sticks ofB which are adjacent
to vertices with stateS.

If s= 0, then make a path decomposition of width two ofGB as follows. First make a path
decompositionPDB of width two ofB in the way that is shown in the proof of Lemma 3.2.3,
but add one node on the left side which contains one of the edges in the former leftmost node,
and add one node on the right side which contains one of the edges in the former rightmost
node. We now extendPDB such that it is a path decomposition of width two ofGB.
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First supposejV(B)j> 3. Letv2V(B) such thatst(V) = S. It can be seen that there are
two nodesVi andVi+1, such thatVi \Vi+1 = fv;ug for someu 6= v. See e.g. Figure 3.2. For
each stickw adjacent tov, we add a nodefw;v;ug betweenVi andVi+1. If this is done for all
vertices inB which have stateS, then thePDB is a path decomposition of width two ofGB.

SupposeV(B) = fw1;w2;w3g. ThenPDB = (fw1;w2;w3g), and we can make a path
decomposition of width two ofGB by adding on the left side for each stickw of w1 or w2 a
nodefw1;w2;wg, and on the right side for each stickw of w3 a nodefw3;wg.

If s> 1, then make a path decomposition ofGB in the same way as fors= 0, but with the
appropriate vertices offv1; : : : ;vsg occurring in the leftmost and rightmost node. It can be
derived from the pictures of all conditions (see Figures 3.14 – 3.17 which vertex must occur
on which side; e.g. ifv1 2V(C1) and the treeH of G which containsv1 is drawn on the left
side of the block in the picture representing this case, thenv1 must occur in the leftmost node,
but if st(v1) = I1, v1 2 V(C1)\V(Cp) and part ofH is drawn on left side of the block, and
the other part is drawn on the right side, thenv1 must occur in both end nodes of the path
decomposition. Note that this is possible, since in the conditions, the distance between two
verticesvi andvj of which the components must occur on the same side must be sufficiently
small.

If all these path decompositions are made, then they can be combined rather straightfor-
wardly into a path decomposition of width two ofG. In Figure 3.20, an example is given of
how this can be done. 2

Let G be a connected partial two-path which is not a tree. We now extend the definition
of the pathPH for a treeH of G to a path of the graphG. Consider the setH of all trees of
G which contain a vertexw of a block, such thatw has stateI2 or E2. Each block has at most
one vertex with stateI2, at most two vertices with stateE2, and if it has a vertex with stateI2,
then it has no vertices with stateE2. This means that we can give the following definition.

Definition 3.4.8. Let G be a connected partial two-path which is not a tree. LetH be as
defined above, letB be the set of blocks ofG. Thepath PG of G is a graph which is defined
as follows:

V(PG) =
[

H2H

V(PH);

E(PG) = fe2 E(G) j 9H2H e2 E(PH)g [

ffv;v0g j 9H;H02H ;B2B H 6= H 0^v2V(PH)^v0 2V(PH)^v;v0 2V(B)g:

Note thatPG is unique since, ifG is not a tree, then each treeH of G has at least one vertex
in a block, and hencejPH j= 1. The setV(PG) may be empty in the case thatG contains only
one block. Note furthermore thatPG is in fact a concatenation of all pathsPH of treesH 2H ,
in such a way that two paths which have an end point in a common block are consecutive
in PG. PG is not a real path ofG, but it is the largest common subsequence of all paths in
G between the two end points ofPG. The blocks ofG which contain two vertices ofPG are
calledconnectingblocks. All other blocks are callednon-connectingblocks.
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v1

v2

v3

v4

u1
B1 B2

H1

H2

GB1 v1

v3

H2 v4 v4

v3

B2 u1H1v1 v3 GHu1

Figure 3.20. Example of the construction of a path decomposition of width two of
a partial two-pathG, after the path decompositions of all trees ofG and all blocks,
including their sticks, are constructed as in the proof of Theorem 3.4.1.

In each path decompositionPD= (V1; : : : ;Vt) of width two of G, the occurrences of the
pathsPH , H 2H , do not overlap, since they have no vertices in common. Furthermore, they
occur in the same order as inPG or in reversed order, because they are connected to each
other by blocks with pathwidth two.

We show the analog of Corollary 3.3.1 for general partial two-paths.

Lemma 3.4.8. Let G be a connected partial two-path which is not a tree. Let PG =(v1; : : : ;vs)
and let PD= (V1; : : : ;Vt) be a path decomposition of width two of G. For each v2V1, v0 2Vt,
any path from v to v0 contains PG as a subsequence.

Proof. If jV(PG)j= 0, the result clearly holds. SupposejV(PG)j � 1. LetG1 be the subgraph
of G induced by vertexv1 and the components ofG[V�fv1g] which do not contain vertices of
PG. Similarly, letG2 be the subgraph ofG induced byvs and the components ofG[V�fvsg]
which do not contain vertices ofPG. We prove the lemma by proving thatV1 �V(G1) and
Vs� V(G2) or vice versa, and ifs= 1, thenV1 andVt do not contain vertices of the same
component ofG[V�fv1g].

SupposeV1 contains a vertexv =2V(G1)[V(G2). We distinguish two cases.

1. v is an inner vertex ofPG or there is an inner vertexv0 of PG such thatv is a vertex of a
component ofG[V�fv0g] which does not contain vertices ofPG.
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2. v =2 V(PG) and there is a connecting blockB of G such thatv is in the component of
G[V�V(PG)] which contains vertices ofB.

First suppose case 1 holds. Leti, 1� i � s, be such that eitherv= vi or v is in a component
of G[V�fvig] which does not contain vertices ofPG. Let G0 andG00 denote the components
of G[V �fvig] which contain vertices ofPG. G0 andG00 have pathwidth two, hence there
are nodesVj andVj 0 in PD such thatVj contains three vertices ofG0 andVj 0 contains three
vertices ofG0. Suppose w.l.o.g. thatj < j 0. ThenVj contains a vertex ofG[V�V(G0)], since
V1 containsv, andVj 0 contains vertices ofG00. Contradiction.

Next suppose case 2 holds. LetB be the block ofG for which v is in the component of
G[V�V(PG)] which contains a vertex ofB. Let i, 1� i � s, be such thatvi ;vi+1 2 V(B).
Let G0 be the subgraph ofG induced byvi and the component ofG[V�fvig] containingG1.
Similarly, let G00 be the subgraph ofG induced byvi+1 and the subgraph ofG[V�fvi+1g]
containingG2. In the same way as for case 1, we can derive a contradiction.

We next show thatV1 andVt can not both contain a vertex ofG1, unlesss= 1. Suppose
s> 1 andv 2 V1, v0 2 Vt such thatv;v0 2 V(G1). G2 has pathwidth two, which means that
there is a nodeVj , 1� j � t, such thatVj contains three vertices ofG2. ButVj also contains
a vertex ofG1, which is a contradiction. In the same way we can prove that ifs= 1, thenV1

andVt can not both contain a vertex of the same component ofG[V�fv1g]. 2

3.5 Finding the Structure of a Partial Two-Path
In this section we give an algorithm which, given a graphG, returnsfalse if G has pathwidth
three or more, and otherwise, constructs a correct cycle path for the cell completion of each
block ofG, computes the setsP2(H), PH andP1(H) of all trees ofG, computes the states of
all blocks and all vertices in blocks ofG, and computes the pathPG, if G is not a tree. We
first give the algorithm for biconnected graphs, then for trees, and finally for general graphs.

3.5.1 Biconnected Graphs

The following algorithm has as its input a biconnected graphG, and returnsfalse if G has
pathwidth three or more, and constructs a cycle path for the cell completion ofG otherwise.

Algorithm Cycle Path(G)
Input: Biconnected graphG
Output: A cycle path forḠ if G has pathwidth at most two, andfalse otherwise
1. Find the cell completion̄G of G.
2. Make a listL of all chordless cycles in̄G.
3. Check whetherḠ is a path of cycles. If it is, construct a cycle path andreturn it.

Otherwise,return false.

For Steps 1 and 2 we use an algorithm from Bodlaender and Kloks [1993]. This algorithm
has as input a biconnected graphG, and checks ifG has treewidth at most two. If so, it also
computes the cell completion̄G of G together with a list of the chordless cycles ofḠ. It uses
O(n) time and space. Step 3 can be done as follows.
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Algorithm Step 3
1. Check for each cycle inL whether it has at most two edges in common with any other

chordless cycle. If not,return false.
2. Check whether there is an edge which occurs in two or more cycles. If there is no such

edge, then there is only one cycleC, andreturn ((C);()) as cycle path.
3. Take an arbitrary edgee that occurs in two or more cycles. Make a listC = (C1; : : : ;Cs)

of all cycles which containe in such a way that onlyC1 andCs may have four or more
vertices or have an edgee0 6= e in common with another cycle. If this is not possible,
return false. Also, make a listE = (e;e; : : : ;e), in whiche occurss�1 times. Remove
C1; : : : ;Cs from L.

4. Repeat the following until the first cycle inC has no edge in common with a cycle that
is not inC .
LetC1 be the first cycle inC . If C1 has an edgee0 6= e in common with a cycle that is not
in C , then do the following. Construct a listC 0 = (C0

1; : : : ;C
0
s0) of all cycles containing

e0, in such a way that onlyC0
1 may have four or more vertices or have an edgee0 6= e in

common with another cycle. If there are two or more of these cycles, thenreturn false.
Also, build a listE 0 = (e0;e0; : : : ;e0), in whiche0 occurss0 times. Now, let the newC be
the concatenation ofC 0 and the oldC , and letE be the concatenation ofE 0 and the old
E . RemoveC0

1; : : : ;C
0
s0 from L.

5. Repeat a modified version of step 4 for the last cycle inC , until the last cycle inC has no
edge in common with a cycle that is not inC . (Directions ofC 0 andE 0 must be reversed,
C 0 is concatenated at the back ofC , and similar forE 0).

6. return (C ;E).

It is easy to see that the algorithm returns a cycle path forḠ, if one exists, and that it can
be made to run inO(n) time.

3.5.2 Trees

Ellis et al. [1994] and M¨ohring [1990] have given linear time algorithms to compute the
pathwidth of a tree. We can modify one of these algorithms in order to check whether a given
treeH has pathwidth zero, one or two, and furthermore, if the pathwidth ofH equals one,
then computeP1(H), and if the pathwidth ofH is two, then computeP2(H).

3.5.3 General Graphs

For general graphs, we combine the algorithms for biconnected graphs and for trees. Given
a graphG, we first compute the blocks ofG, and after that, the trees ofG. During the
computation of the trees, we mark each vertexv with a list of all blocks that containv.
Similarly, we mark each vertexv of each block with the tree containingv.

Now, for each treeH of G, we compute the setP2(H), if H has pathwidth two, andP1(H)
if H has pathwidth one. After that, we compute the setPH . With this information, we can
compute the vertex states of the vertices that are in at least one block in linear time.
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Next, for each blockB of G, we compute the cell completion̄B, we check ifB̄ is a path of
cycles, and we compute a cycle path(C ;E) for B̄, and if possible, modify(C ;E) such that it
becomes a correct cycle path. If this is not possible, we returnfalse. Now we check ifB has
one of the states inSI2 [SE2[SI1[SE1[f()g and satisfies cond(st(B)). Then, we check if
condition 5 of Theorem 3.4.1 holds. Finally, ifG is not a tree, we concatenate all pathsPH of
treesH 2H into the pathPG. All steps can be done inO(n) time.

We have now proved the following theorem.

Theorem 3.5.1. There is a linear time algorithm which, given a graph G, returnsfalse if
G has pathwidth three or more, and otherwise, constructs a correct cycle path for the cell
completion of each block of G, computes the setsP2(H), PH and P1(H) of all trees of G,
computes the states of all blocks and all vertices in blocks of G, and computes the path PG, if
G is not a tree.

The algorithm described above can be extended to find a path decomposition of minimum
width of the input graphG, if the pathwidth ofG is at most two. To this end, the construction
as described in the ‘if’ part of Theorem 3.4.1 can be used. This construction can be performed
in O(n) time. The algorithm thus obtained is no theoretical improvement of the linear time
algorithm of Bodlaender [1996a] for finding a tree or path decomposition of width at mostk
of a graph, for any fixedk. However, our algorithm is tailor-made for pathwidth at most two,
and does not use the theoretical result of Bodlaender and Kloks [1996] (as does the algorithm
of Bodlaender [1996a]). This means that our algorithm is easier to implement, and probably
more efficient in practice.
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Chapter 4

DNA Physical Mapping

In this chapter we consider two graph problems which model problems arising in molecular
biology. In Section 4.1 we introduce the biological problems and show how they can be
modeled as graph problems. In Sections 4.2 and 4.3, we discuss the two graph problems. At
the end of Section 4.1 we give a more detailed overview of Sections 4.2 and 4.3.

4.1 Introduction
The biological problems we consider are known assequence reconstructionproblems in
molecular biology. Sequence reconstruction occurs in different levels of DNA physical map-
ping: it is currently not possible to find the linear structure of large parts of DNA or proteins at
once [Jungck, Dick, and Dick, 1982]. Therefore, the sequence is cut into smaller parts, called
fragments, which can then be sequenced. However, the order of the different fragments in the
large sequence is lost during the fragmentation process. The reconstruction of this order is
called sequence reconstruction.

There are several ways to attack the sequence reconstruction problem, many of which
give rise to algorithmic (graph) problems (see e.g. Karp [1993] and Bodlaender, Downey,
Fellows, Hallett, and Wareham [1995]). One way is to use, instead of one sequence of DNA
or protein, a number of copies of the sequence, and to cut these copies in different ways. After
that, a set of characteristics is determined for each fragment (its ‘fingerprint’ or ‘signature’),
and based on the respective fingerprints, an ‘overlap’ measure is computed.

The overlap measure for a pair of fragments usually consists of the probability that the
two fragments overlap [Karp, 1993]. This information can be used in different ways. We
use thepositive overlap informationand thenon-negative overlap information. The positive
overlap information consists of all pairs of fragments that overlap with probability one. The
non-negative overlap information consists of all pairs of fragments that overlap with prob-
ability strictly larger than zero. The probabilities themselves are not used. We discuss the
situation wherek copies of a sequenceX are fragmented, and we have positive and non-
negative overlap information about the fragments. The problem is to assign each fragment
to a copy of the sequenceX, and for each copy, to make a linear ordering of the fragments
that are assigned to that copy, in a way that is consistent with the positive and non-negative
overlap information. This means that the assignment of fragments to copies and the ordering
of the fragments must be such that

� two fragments overlap only if their overlap probability is strictly larger than zero, and
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� if two fragments have overlap probability one then they overlap.

The positive and non-negative overlap information can be modeled by asandwich graph.

Definition 4.1.1. A sandwich graphS is a triple(V;E1;E2) in which (V;E1) and(V;E2) are
simple graphs, andE1� E2.

Each vertex in the sandwich graph represents one fragment. The setE1 represents the positive
overlap information: an edge inE1 between two vertices denotes that the corresponding
fragments are known to overlap, i.e. they have overlap probability one. The setE2 represents
the non-negative overlap information: an edge inE2 between two vertices denotes that the
corresponding fragments may overlap, i.e. their overlap probability is strictly larger than
zero. For each pairv;w of vertices for whichfv;wg =2 E2, it is known that the corresponding
fragments do not overlap, i.e. their overlap probability is zero.

The assignment of each fragment to one of thek copies of the sequence can be modeled by
a k-coloringof the graph(V;E1) (we also call this ak-coloring of the sandwich graphS). (In
this chapter, ak-coloring of a graphG is represented as a functionc : V(G)! f1;2; : : : ;kg,
such that for eachfu;vg 2 E(G), c(u) 6= c(v).) Each color represents one of the copies: if
two vertices are assigned the same color, then the corresponding fragments are in the same
copy, and hence they do not overlap, so there is no edge inE1 between the vertices. The
linear orderings of all the vertices of the same color can be modeled by intervals. Assign to
each vertexv an intervalφ(v) on the real line, such that for each pairv;v0 2V of vertices, the
following holds:

1. if v andv0 have the same color, thenφ(v) andφ(v0) do not overlap,

2. if fv;v0g 2 E1 thenφ(v) andφ(v0) overlap, and

3. if fv;v0g =2 E2 thenφ(v) andφ(v0) do not overlap.

Now the orderings on the real line of the intervals of each color give linear orderings of the
fragments of each copy of the sequence which is consistent with the overlap information.

Suppose we have such an interval assignmentφ for S. Consider the graphG = (V;E),
wherefv;v0g 2 E if and only if the intervals corresponding tov andv0 overlap. Clearly,G
is an interval graph (Definition 2.3.1), thek-coloring of the sandwich graphS is also ak-
coloring ofG, andG is sandwichedin S, i.e.E1 � E � E2. Hence the maximum clique size
of G is at mostk.

On the other hand, suppose we have an interval graphG = (V;E) which is sandwiched
in sandwich graphS= (V;E1;E2), and has clique sizek for somek� 1. Then we can find
an interval realization ofG in linear time [Booth and Lueker, 1976; Hsu, 1993; Korte and
Möhring, 1989]. Furthermore, there exists ak-coloring ofG, which can easily be found in
linear time from an interval realization. This means that, instead of finding ak-coloring and
an interval assignment of the sandwich graph which satisfy conditions 1, 2 and 3 described
above, we can find an interval graphG which is sandwiched inSand has maximum clique
size at mostk. We call such a graphG a k-intervalizationof S. The decision problem can be
modeled as follows [Golumbic, Kaplan, and Shamir, 1994].
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INTERVALIZING SANDWICH GRAPHS(ISG)
Instance: A sandwich graphS= (V;E1;E2), an integerk� 1
Question: Is there ak-intervalization ofS?

It can be seen that there is not always a unique interval graph which is a solution to the
problem. Furthermore, given an interval graph, there are usually no unique interval realiza-
tions and colorings of this graph. This means that, given a set of fragments ofk copies of
a sequenceX, and the positive and non-negative overlap information of the fragments, there
may be more than one assignment of the fragments to copies, and/or there may be more than
one ordering of the fragments which satisfies the positive and non-negative overlap informa-
tion, although only one of them is correct. However, when solving ISG, we only find one
possibility, which is not guaranteed to be the correct one. Nevertheless, ISG, and especially
the constructive version of ISG which also outputs ak-intervalization, may help to predict
overlaps between fragments and to work towards reconstruction of the original sequenceX.

In some applications of sequence reconstruction, the information about the copy of which
fragments originate is not lost during the fragmentation process and, furthermore, only pos-
itive overlap information is used. The problem is to find, for each copy, a linear ordering of
all fragments of this copy.

In this case, the input can be modeled as a graphG = (V;E) and ak-coloringc : V !
f1; : : : ;kg of G, whereV denotes the set of fragments,E denotes the positive overlap infor-
mation, andc represents information about the origin of each fragment: each color represents
a copy of the sequence. The output of the problem can now be modeled as an interval graph
G0 = (V;E0), such thatG0 does not violate the positive overlap information, i.e.E � E0, and
c is a k-coloring forG0. We call the graphG0 a k-intervalization ofG andc. The decision
problem can be modeled as follows [Golumbic, Kaplan, and Shamir, 1994; Fellows, Hallett,
and Wareham, 1993].

INTERVALIZING COLORED GRAPHS(ICG)
Instance: A simple graphG= (V;E), an integerk� 1 and ak-coloringc for G
Question: Is there ak-intervalization ofG andc?

This problem is a restricted version of ISG, since we can represent a graphG = (V;E) and
a k-coloring ofG, by a sandwich graphS= (V;E;E0), whereE0 contains an edge between
every two vertices which have different colors. A solution for ISG with inputSand number
k is also a solution for ICG with input graphG andk-coloringc, and vice versa.

In other applications, the fragmentation process generates fragments of equal length. The
problem is again to find an assignment of fragments to copies and an interval assignment of
the fragments which do not violate the overlap information, but an additional constraint is that
the intervals must be equally long. The graph which is associated with the interval assignment
is again an interval graph, but a stronger property holds: the graph is aunit interval graph.

Definition 4.1.2. An interval graphG= (V;E) is a unit interval graph if there is an interval
realizationφ for G in which all intervalsφ(v) (v2V) have the same (unit) length.

Given a unit interval graphG, we can use the algorithm from Corneil, Kim, Natarajan, Olariu,
and Sprague [1995] to find an interval realization ofG in which all intervals have the same
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length. Furthermore, we can again find ak-coloring ofG in linear time, wherek is the clique
size ofG. Hence we can restrict ourselves again to finding a unit interval graphG which is
sandwiched in the input sandwich graphSand has clique size at mostk. Such a graphG is
called ak-unit-intervalizationof S.

UNIT-INTERVALIZING SANDWICH GRAPHS(UISG)
Instance: A sandwich graphS= (V;E1;E2), an integerk� 1
Question: Is there ak-unit-intervalization ofS?

We can again restrict this problem to the case where we know the original copy of the
sequence for each fragment, and only use positive overlap information. This gives rise to the
problem: given a graphG and ak-coloringc of G, is there a unit interval graphG0 = (V;E0),
such thatE � E0 andc is ak-coloring ofG0? The graphG0 is called ak-unit-intervalization
of G andc.

UNIT-INTERVALIZING COLORED GRAPHS(UICG)
Instance: A simple graphG= (V;E), an integerk� 1 and ak-coloringc for G
Question: Is there ak-unit-intervalization ofG andc?

It has been shown that ICG, ISG, UICG and UISG are NP-complete (see Golumbic et al.
[1994], Fellows et al. [1993] for ICG and ISG, and Goldberg, Golumbic, Kaplan, and Shamir
[1995], Kaplan, Shamir, and Tarjan [1994] for IUCG and UISG). However, from the applica-
tion it appears that the cases wherek is some small given constant are of interest. For fixedk,
we denote the four problems byk-ICG, k-ISG,k-UICG, andk-UISG, respectively.

Fellows et al. [1993] consideredk-ICG for different fixed values ofk. They showed
that, although for fixedk� 3, yes-instances have bounded pathwidth (and hence bounded
treewidth), standard methods for graphs with bounded treewidth will be insufficient to solve
k-ICG, as the problem is not ‘finite state’ (see Section 2.2.4 for a definition). Also, they
showedk-ICG to be hard for the complexity classW[1], (which was strengthened by Bod-
laender, Fellows, and Hallett [1994] to hardness for all classesW[t], t 2 IN). Hencek-ICG
is probably not fixed parameter tractable (see also page 32). Clearly, the negative results of
Fellows et al. [1993] also apply tok-ISG.

In Section 4.2 of this chapter we resolve the complexity ofk-ISG andk-ICG for all con-
stant valuesk. We observe that the casek= 2 is easy to resolve inO(n) time. Then, we give
anO(n2) algorithm that solves 3-ISG onbiconnectedgraphs. We also show how the algo-
rithm can be made constructive. The algorithm can be extended to an algorithm for 3-ISG
on general graphs, which also runs inO(n2) time with O(n2) space. This algorithm consists
of an extensive case analysis, based on the structure of partial two-paths as it is described in
Chapter 3. In each case of the algorithm, a modification of our algorithm for biconnected
graphs is used. As the description of the complete algorithm is very detailed and technical, it
is not included in this thesis [de Fluiter and Bodlaender, 1997].

Furthermore, we show that 4-ICG is NP-complete. This implies NP-completeness of
k-ICG andk-ISG for any fixedk� 4.
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Kaplan et al. [1994] showed thatk-UICG, and hencek-UISG, is hard forW[1]. Addition-
ally, Kaplan and Shamir [1996] showed thatk-UISG is solvable in polynomial time whenk
is fixed: they have given anO(nk�1) time algorithm.

In Section 4.3 of this chapter we give algorithms which solve 3-UISG and 3-UICG for
biconnected input graphs. The algorithm for 3-UISG runs inO(jE2j) time for sandwich
graphS= (V;E1;E2). This improves the algorithm of Kaplan and Shamir ifjE2j = o(n2).
The algorithm for 3-UICG runs inO(n) time, which improves the algorithm of Kaplan and
Shamir by a factorn. The algorithms can be extended to obtain complete algorithms for
solving 3-UISG and 3-UICG with the same time bounds. These algorithms are essentially
the same as the algorithm for solving 3-ISG: the case analysis is very similar, but the building
blocks are based on the linear time algorithms for biconnected graphs for 3-UISG and 3-
UICG, respectively. They are not included in this thesis.

4.2 Intervalizing Sandwich Graphs
We first give a number of definitions and previously known results.

Let S= (V;E1;E2) be a sandwich graph. Fori = 1;2, the graph(V;Ei) is denoted by
Gi(S). We callG1(S) theunderlying graphof S. The set of vertices ofS is also denoted by
V(S), the first edge set byE1(S) and the second edge set byE2(S). LetW �V. By S[W] we
denote the sub-sandwich graph ofS induced byW, defined as follows:

V(S[W]) =W

E1(S[W]) = E1\ffv;wg j v;w2Wg

E2(S[W]) = E2\ffv;wg j v;w2Wg:

A sandwich graph is called biconnected if its underlying graph is biconnected. A biconnected
sandwich graph is also called asandwich block. The blocks of a sandwich graph are the
blocks of its underlying graph.

The problem ofk-intervalizing sandwich or colored graphs is closely related to the path-
width problem.

Definition 4.2.1. Let S= (V;E1;E2) be a sandwich graph. Apath decompositionof S is a
path decompositionPD= (V1; : : : ;Vt) of G1(S), such for eachv;v0 2V, if there is a nodeVi ,
1� i � t, with v;v0 2Vi, thenfv;v0g 2 E2. The pathwidth ofS is the minimum width of any
path decomposition ofS.

The following lemma has been proved by Fellows et al. [1993] for intervalizations of
colored graphs, and is a generalization of Lemma 2.3.3.

Lemma 4.2.1. Let S= (V;E1;E2) be a sandwich graph and let k� 1. Sandwich graph S has
pathwidth at most k�1 if and only if S has a k-intervalization.

Proof. For the ‘if’ part, supposeG= (V;E) is ak-intervalization ofS. Let φ : V! I be an
interval realization forG. Let (u1; : : : ;un), n = jVj, be an ordering ofV in such a way that
for all i; j with 1� i < j � n, φ(ui) starts on the left side of or at the same point asφ(uj). For
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eachi let Vi = fv2 V j φ(v)\ φ(ui) 6= o=g. ThenPD= (V1; : : : ;Vn) is a path decomposition
of G in which there is an edge between two verticesv andv0 if and only if there is a nodeVi

containingv andv0. HencePD is a path decomposition ofS. Furthermore, each node contains
at mostk vertices, since the clique size ofG is k. HencePD has pathwidth at mostk�1.

For the ‘only if’ part, supposeShas pathwidth at mostk�1, and letPD= (V1; : : : ;Vt) be
a path decomposition ofSof width at mostk�1. Then the interval completionG0 of G1(S)
for PD is an interval graph which is sandwiched inG, and has clique size mostk. 2

Thus, the following problem is equivalent to ISG.

SANDWICH PATHWIDTH

Instance: A sandwich graphS= (V;E1;E2), an integerk� 1
Question: DoesShave pathwidth at mostk�1?

Note that the proof of Lemma 4.2.1 also gives an easy way to transform a solution for one
problem into a solution for the other problem. Furthermore, it implies the following result.

Corollary 4.2.1. Let k� 1 and let S be a sandwich graph. If there is a k-intervalization of S
then the underlying graph of S has pathwidth at most k�1.

For the casek = 2, the question whether there is a path decomposition of a sandwich
graphS is equal to the question whether the underlying graph ofS is a partial one-path (see
also Fellows et al. [1993]). This is because each path decomposition of width one ofG1(S)
can be transformed into a path decomposition of width one ofSby simply deleting all nodes
which contain no edge, and then adding a node at the right side of the path decomposition
for each isolated vertex containing this vertex only. Checking whether a graph has pathwidth
one can be done in linear time (Chapter 3).

Theorem 4.2.1. 2-ISG can be solved in linear time.

4.2.1 Three-Intervalizing Sandwich Blocks

By Corollary 4.2.1, a sandwich graph has a three-intervalization only if the underlying graph
of Shas pathwidth at most two. Therefore, our algorithm for finding a three-intervalization
of a sandwich graph makes use of the structure of partial two-paths as described in Chapter 3.
The algorithm first checks if the underlying graphG1(S) is a partial two-path and if so, finds
its structure. Then this structure is used to find a three-intervalization ofS.

In this section we give the algorithm for the case that the input sandwich graph is a
block. The main algorithm has the following form: first, the cell completionḠ1(S) of the
underlying graph ofSis computed. Then, a cycle path for̄G1(S) is constructed if it exists (see
Section 3.2). After that, this cycle path is used to check whether there is a path decomposition
of Sof width at most two.

Lemma 3.2.2 states that each path decomposition of width two of a partial two-pathG is
also a path decomposition of width two of its cell completionḠ. With respect to intervaliza-
tions, the lemma states that each three-intervalization of a sandwich graphS is a supergraph
of the cell completionḠ1(S) of the underlying graphG1(S) of S.

The following lemma follows directly from the results in Section 3.2.
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Lemma 4.2.2. Let S be a sandwich block. Suppose that G1(S) is a partial two-path,Ḡ1(S)
is sandwiched in S, and(C ;E) is a cycle path forḠ1(S) with C = (C1; : : : ;Cp) and E =
(e1; : : : ;ep�1). There is a path decomposition of S if and only if the following conditions
hold:

1. there is a path decomposition of width two of S[V(C1)] with edge e1 in the rightmost node
(if p > 1),

2. there is a path decomposition of width two of S[V(Cp)] with edge ep�1 in the leftmost
node (if p> 1), and

3. for all i, 1< i < p, there is a path decomposition of width two of S[V(Ci)] with edge ei�1

in the leftmost node and edge ei in the rightmost node.

Hence to check whether there is a path decomposition of width two ofSwith cycle path
(C ;E), the algorithm checks for each cycleCi , 1� i � p, whether there is a path decomposi-
tion of S[V(Ci)] with the appropriate edges in the leftmost and the rightmost node. The path
decompositions of the sub-sandwich graphs induced by the cycles are then concatenated in
the order in which they occur inC , and this gives a path decomposition of width two ofS.

4.2.1.1 Cycles

We concentrate now on checking whether there exists a path decomposition of width two
of a sandwich graph whose underlying graph is a cycle. LetS be such a sandwich graph
and letC = G1(S).We denote the vertices and edges ofC by V(C) = fv0;v1; : : : ;vn�1g, and
E(C) = ffvi;vi+1g j 0� i < ng (for eachi, let vi denotevi modn). For eachj andl , 1� l < n,
let I( j; l) denote the set of vertices ofV(C) betweenvj andvj+l , when going fromvj to vj+l

in positive direction, i.e.,

I( j; l) = fvi j j � i � j + l g:

Furthermore, letC( j; l) denote the cycle with

V(C( j; l)) = I( j; l)

E(C( j; l)) = ffvj ;vj+lgg [ ffvi ;vi+1g j vi 2 I( j; l)�fvj+lgg

Note thatC( j;n�1) =C for all j. For an example, consider Figure 4.1.
The following lemma is used to obtain a dynamic programming algorithm for our prob-

lem.

Lemma 4.2.3. Let S= (V;E1;E2) be a sandwich graph whose underlying graph is a cycle
C with n vertices. Let i, j and l be integers,2� l < n, and suppose j� i < j + l. There is
a path decomposition PD= (V1; : : : ;Vt) of width two of C( j; l) such thatfvi ;vi+1g �V1 and
fvj ;vj+lg �Vt if and only iffvj ;vj+lg 2 E2 and either one of the following conditions holds:

1. jV(C)j= 3,
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v1 v2

v3

v4

v5
v6v7v8

v9

v10

v11

v0

C=C( j ;11)

v1 v2

v9

v10

v11

v0

C(8;6)

v8

Figure 4.1. A cycleC with 12 vertices, and the cycleC(8;6) derived fromC.

2. there is a path decomposition PD0 = (V 0
1; : : : ;V

0
r ) of width two of S[I( j; l �1)] such that

fvi ;vi+1g �V 0
1 andfvj ;vj+l�1g �V 0

r , or

3. there is a path decomposition PD00 = (V 00
1 ; : : : ;V

00
s ) of width two of S[I( j +1; l �1)] such

thatfvi ;vi+1g �V 00
1 andfvj+1;vj+lg �V 00

s .

Proof. For the ‘if’ part, supposefvj ;vj+lg 2 E2. If jV(C)j = 3, thenC( j; l) =C, and hence
(V(C)) is a path decomposition of width two ofS. Suppose there is a path decomposition
PD0 = (V 0

1; : : : ;V
0
r ) of width two of S[I( j; l �1)] with fvi;vi+1g �V 0

1 andfvj ;vj+l�1g �V 0
r .

Then PD = PD0 ++ (fvj ;vj+l�1;vj+lg) is a path decomposition of width two ofS[I( j; l)]
which satisfies the appropriate conditions. The other case is similar.

For the ‘only if’ part, suppose there is a path decompositionPD= (V1; : : : ;Vt) of width
two of S[I( j; l)] such thatfvi ;vi+1g �V1 andfvj ;vj+lg �Vt . Clearly,fvj ;vj+lg 2 E2, since
vj ;vj+l 2Vt . SupposejV(C)j> 3. If fvi;vi+1g= fvj ;vj+lg, thenl = n�1, henceC( j; l) =C
andjI( j; l)j > 3. Lemma 3.2.4 shows that the leftmost and the rightmost node ofPD can not
contain the same edge, contradiction. Sofvi;vi+1g 6= fvj ;vj+lg. LetVm andVm0 , 1�m;m0 �
t, be the rightmost nodes containing edgefvj+1;vjg andfvj+l�1;vj+lg, respectively.

First supposem0 < m. ThenVm= fvj+1;vj ;vj+lg, and for eachk, m< k� t, vj ;vj+l 2Vk.
We claim that the path decomposition obtained from(V1; : : : ;Vm) by deletingvj from each
node is a path decomposition of width two ofS[I( j +1; l �1)] with edgefvj+1;vj+lg in the
rightmost node and edgefvi ;vi+1g in the leftmost node.

Suppose there is a vertexv 2 V(C)�fvj ;vj+1g which occurs on the right side ofVm.
Vertexv has an edge to some vertex inV(C)�fvj ;vj+1g, hencev2Vm. But thenv= vj+l�1,
which gives a contradiction. Hence all edges ofS[I( j +1; l �1)] occur in(V1; : : : ;Vm). Fur-
thermore,fvj+1;vj+l�1g occurs inVm. We only have to showj 6= i and j 6= i +1. NodeVm0

containsvj+l , vj+l�1, and a vertex of the path fromvj+1 to vi+1 which avoidsvj . Hence
vj =2Vm0 and thusvj =2V1. This proves the claim.

For the case thatm<m0, a path decomposition of width two ofS[I( j; l�1)] with fvi;vi+1g
in the leftmost node andfvj ;vj+l�1g in the rightmost node can be constructed in the same
way.
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If m= m0, thenvj+1 = vj+l�1, hencejI( j; l)j = 3. Sincefvi;vi+1g 6= fvj ;vj+lg, this
means thatfvi ;vi+1g= fvj ;vj+1g or fvi ;vi+1g= fvj+l�1;vj+lg. In the first case,(fvi ;vi+1g)
is a path decomposition of width two ofS[I( j; l � 1)] with edgefvi;vi+1g in the leftmost
node and edgefvj ;vj+l�1g in the rightmost node. In the latter case,(fvi ;vi+1g) is a path
decomposition of width two ofS[I( j +1; l�1)] with edgefvi ;vi+1g in the leftmost node and
edgefvj+1;vj+lg in the rightmost node. 2

Let Sbe a sandwich graph whose underlying graph is a cycleC. A starting pointorending
pointof S is an element ofE(C)[fnilg. Let PD= (V1; : : : ;Vt) be a path decomposition ofS.
We say that a starting pointspof S is in the leftmost node if eithersp2 E(C) andsp�V1, or
sp= nil. We also denote this bysp2V1. Similarly, an ending pointepof S is in the rightmost
node ofPD, or ep2Vt , if eitherep2 E(C) andep�Vt , or ep= nil.

We definePW2 as follows.

Definition 4.2.2. Let Sbe a sandwich graph of which the underlying graph is a cycleC with
n vertices. Letspbe a starting point ofS, and let j andl be integers, 1� l < n and 0� j < n.

PW2(S;sp; j; l) =

8><
>:

true if there is a path decompositionPD= (V1; : : : ;Vt)

of width two ofS[I( j; l)] with vj ;vj+l 2Vt andsp2V1

false otherwise

Let sp and ep be starting and ending points of a sandwich graphS of which the un-
derlying graph is a cycle. There is a path decomposition of width two ofS with sp in the
leftmost node andepin the rightmost node if and only if there is aj with 0� j < n such that
PW2(S;sp; j;n�1) holds and eitherep= nil or ep= fvj�1;vjg.

If n= 3, then for any starting pointspand ending pointep, (V(S)) is a path decomposition
of width two ofSwith sp in the leftmost node andep in the rightmost node.

Supposen> 3. It can be seen from the definition ofPW2 that for all starting pointsspof
S, and all j, 0� j < n, PW2(S;sp; j;1) holds if and only ifsp= nil or sp= fvj ;vj+1g. We
use this fact and Lemma 4.2.3 to describePW2 recursively. Letspbe a starting point ofS,
and let j andl be integers with 1� l < n and 0� j < n.

PW2(S;sp; j; l) =

8><
>:

sp= nil_sp= fvj ;vj+lg if l = 1

fvj ;vj+lg 2 E2(S) ^

(PW2(S;sp; j +1; l�1) _ PW2(S;sp; j; l �1)) if l > 1

(Notice thatj +1 denotes( j +1) modn.)
We can now use dynamic programming to compute whether there is a path decomposition

of width two ofSwith the appropriate starting and ending points as follows.

Algorithm 3-ISG Cycle(S;sp;ep)
Input: Sandwich graphSwith G1(S) a cycleC with n verticesv0; : : : ;vn�1,

and edgesffvi;vi+1g j 0� i < ng
Starting pointspof S
Ending pointepof S
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Output: ( 90� j<n (ep= nil _ ep= fvj�1;vjg) ^PW2(S;sp; j;n�1) )

1. if n= 3 then return true
2. if sp= nil
3. then for j  0 to n�1
4. do P( j;1) true
5. else for j  0 to n�1
6. do P( j;1) false
7. Let j be such thatsp= fvj ;vj+1g 2 E(C)
8. P( j;1) true
9. (� 80� j<n P( j;1)� PW2(S;sp; j;1) �)
10. for l  2 to n�1
11. do for j  0 to n�1
12. do P( j; l) (fvj ;vj+lg 2 E2(S))^ (P(( j +1) modn; l �1)_P( j; l�1))
13. (� 80� j<n P( j;n�1)� PW2(S;sp; j;n�1) �)
14. if ep= nil then return true
15. Let j be such thatep= fvj�1;vjg
16. return P( j;n�1)

The algorithm usesO(n2) time if we first build an adjacency matrix of the graphG2(S): this
is needed in order to do the test in line 12 in constant time.

The algorithm can be made constructive in the sense that if there exists an intervalization,
then the algorithm outputs one, as follows. Construct an arrayPP of pointers, such that for
eachj andl , 0� j < n and 1� l < n, PP( j; l) contains the nil pointer ifl = 1 or if P( j; l) is
false. If P( j; l) is true andl > 1, thenPP( j; l) contains a pointer toPP( j; l�1) if P( j; l�1) is
true, and toPP(( j +1) modn; l �1) otherwise. The computation ofPP can be done during
the computation ofP in 3-ISG Cycle. Afterwards, if there is a three-intervalization, then
one can be constructed as follows. First letG be the underlying graph of the input sandwich
graph. Ifep= nil, then start with anyj, 0� j < n for which P( j;n�1) is true, otherwise.
start with j for whichep= fvj�1;vjg. Then follow the pointers fromPP( j;n�1) until the nil
pointer is reached, and add edgefvi ;vi+lg to G for eachi andl for which PP(i; l) is visited.
Note that the nil pointer is reached if the previous pointer pointed toPP(i;1) for somei such
that eithersp= fvi ;vi+1g or sp= nil. HenceG is a three-intervalization of the input sandwich
graph.

Lemma 4.2.4. Algorithm 3-ISGCycle solves 3-ISG in O(n2) time and space for sandwich
graphs of which the underlying graph is a cycle.

4.2.1.2 Blocks

Let Sbe a sandwich block, supposeG1(S) is a partial two-path and̄G1(S) is sandwiched inS.
Let (C ;E) be a cycle path forG1(S) with C = (C1; : : : ;Cp). There is a path decomposition
of width two of S if and only if for eachi, 1� i � p, there is a path decomposition of width
two of S[V(Ci)] with starting pointei�1 if i > 1, nil otherwise, and ending pointei if i < p, nil
otherwise (Lemma 4.2.2).
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4.2 Intervalizing Sandwich Graphs

For a given sandwich blockS, the following algorithm returnstrue if there is a three-
intervalization ofG, andfalse otherwise.

Algorithm 3-ISG SB(S)
Input: Sandwich blockS
Output: true if there is a three-intervalization ofS, false otherwise
1. Check ifḠ1(S) is sandwiched inS, and if there is a cycle path for̄G1(S). If so, construct

such a path(C ;E) with C = (C1; : : : ;Cp) andE = (e1; : : : ;ep�1). If not, return false.
2. for i 1 to p
3. do m jV(Ci)j
4. if i > 1 then sp ei�1 elsesp nil
5. if i < p then ep ei elseep nil
6. if :3-ISG Cycle(S[V(Ci)],sp,ep) then return false
7. return true

For Step 1, we can use the algorithm from Section 3.2, which takesO(n) time. The loop
in lines 2 – 6 runs inO(n2) time (n= jV(G)j) if we first make an adjacency matrix forG2(S),
and then use procedure 3-ISGCycle.

Algorithm 3-ISGSB can again be made constructive. To this end, the constructive ver-
sion of algorithm 3-ISGCycle is used in line 6. After the loop has ended, the union of the
graphs that are constructed by the calls to 3-ISGCycle form a three-intervalization of the
input sandwich graph. Hence, we have proved the main result of this section.

Theorem 4.2.2. There exists an O(n2) time algorithm that solves the constructive version
3-ISG for sandwich blocks.

For three-intervalizing colored graphs we can use the same algorithm, with the only mod-
ification that in line 12 of algorithm 3-ISGCycle, we test whethervj andvj+l have different
colors instead of testing whetherfvj ;vj+lg 2 E2(S)). Furthermore, we do not build an adja-
cency matrix of any graph, as this is not necessary.

4.2.2 Four-Intervalizing Sandwich Graphs

In this section we show that 4-ICG and 4-ISG are NP-complete. This shows thatk-ICG and
k-ISG are NP-complete for allk� 4. Unfortunately, in most practical cases, the number of
colors is between five and fifteen. We feel however that the graphs that arise in the reduction
of our NP-completeness proof will not be typical for the type of graphs that arise in sequence
reconstruction applications. It may well be that special cases of ISG or ICG, which capture
characteristics of the application data, have efficient algorithms.

Theorem 4.2.3. 4-ICG is NP-complete.

Proof. Clearly, 4-ICG2NP. To prove NP-hardness, we transform from THREE-PARTITION,
which is strongly NP-complete [Garey and Johnson, 1979].
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THREE-PARTITION [SP15]
Instance: Integersm2N andQ2N, a sequences1; : : : ;s3m2N such that∑3m

i=1si = mQ, and
81�i�3m

1
4Q< si <

1
2Q.

Question: Can the setf1; : : : ;3mg be partitioned intom disjoint setsS1; : : : ;Sm such that
81� j�m ∑i2Sj

si = Q?

Suppose we are given inputm;Q;s1;s2; : : : ;s3m 2 N. We define a graphG = (V;E) and a
four-coloringc of G, which consists of the following parts (see Figure 4.2).

d1;1 d1;2 d1;3 d1;24Q�1 d1;24Q d2;1 dm;1 dm;24Qdm�1;24Q
= a1

a2

a3

a4
= b3

b2

b4

b1

c1;3
=

c1;2

cm�1;3 cm�1;1

cm�1;2

f

=
c1;1

= =

e1;1 e1;2 e1;24s1�2

e2;1 e2;2 e2;24s2�2

e3m;1 e3m;2 e3m;24s3m�2vertex of color 1
vertex of color 2
vertex of color 3
vertex of color 4

e2;3

e3m;3

e1;3

Figure 4.2. The constructed graphG= (V;E) and its four-coloring.

Start clique. Take verticesA= fa1;a2;a3;a4g. Color vertexai with color i (i = 1;2;3;4).
Add edges between every two vertices inA.

End clique. Take verticesB= fb1;b2;b3;b4g. Color vertexbi with color i (i = 1;2;3;4).
Add edges between every two vertices inB.

Middle cliques. Take verticesC = fci; j j 1� i � m� 1; 1� j � 3g. Color each vertex
ci; j 2C with color j. Make each setCi = fci;1;ci;2;ci;3g into a clique.

Tracks. Take verticesD = fdi; j j 1� i �m; 1� j � 24Qg. Color each vertexdi; j 2D with
color 1 if j mod 3= 1, with 2 if j mod 3= 2 and with 3 if j mod 3= 0. Identify vertex
a1 with d1;1, vertexb3 with dm;24Q, and, for all i, 1� i � m� 1, identify di;24Q with ci;3,
anddi+1;1 with ci;1. These track vertices formm paths: take edgesfdi; j ;di; j+1g for all i, j,
1� i �m, 1� j � 24Q�1.
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4.2 Intervalizing Sandwich Graphs

Number representing paths. Take verticesE = fel ; j j 1 � l � 3m; 1 � j � 24sl � 2g.
Color each vertexel ; j 2 E with color 2 if j mod 3= 1, with color 3 if j mod 3= 2, and with
color 1 if j mod 3= 0. For eachl , the verticesEl = fel ; j j 1� j � 24sl �2g form a path: add
edgesfel ; j ;el ; j+1g for all l , j, 1� l � 3m, 1� j � 24sl �3.

Attachment vertex. Take one vertexf . Color f with color 4. Take edgesf f ;a1g f f ;b3g,
and for alll , 1� l � 3m, edgef f ;el ;1g.

The four-colored graph, resulting from this construction, is the graphG = (V;E). Note
that the transformation can be done in polynomial time inQ andm.

Claim. There exists a partition of the setf1; : : : ;3mg into sets S1; : : : ;Sm such that∑i2Sj
si =

Q for each j if and only if there is a four-intervalization of G and c.

Proof. Suppose thatG is a subgraph of a properly colored interval graph. So, we have a
path decompositionPD= (V1; : : : ;Vr) of G, such no two vertices of the same color occur in
the same node ofPD. We may assume that there are noVi ;Vi+1 with Vi �Vi+1 or Vi+1�Vi .
(Otherwise, we may omit the smaller of these two sets from the path decomposition and still
have a path decomposition ofG.)

Note that, by the clique containment lemma (Lemma 2.2.3), there existi0 with Vi0 = A,
andi1 with Vi1 = B. Without loss of generality supposei0 < i1. If i0 6= 1, then there exists a
v2 Vi0�1 with v 62 A. Note that such a vertexv has a path to a vertex inB that avoidsA. It
follows thatVi0 must contain a vertex from this path, but this will yield a color conflict with a
vertex inA, contradiction. So,i0 = 1. A similar argument shows thati1 = r.

Also, from the clique containment lemma it follows that for eachi, 1� i �m�1, there
is a ji , 2� ji � r�1 with Ci �Vji . We havej1 < j2 < j3 < � � � < jm�1, otherwise a color
conflict will arise between a track vertex and a vertex in a setCi . Write j0 = 1, jm = r. As
there is a path fromd1;1 to dm;24Q in G that does not contain vertices with color 4 or vertices
in E, it follows that each setVi contains at least one vertex inC[D with color 1, 2 or 3.

For eachi, 1� i � m, call the interval[ ji�1 +1; ji �1] the ith valley. Each vertexdi; j

must be in one or more successive nodesVα with α in the ith valley. It can not be in another
valley, since this gives a color conflict. Note that, for eachi, there are exactly 8Q verticesdi; j

with color 2. For a vertexdi; j with color 2, we call the intervalfα j di; j 2 Vαg a two-range.
All two-ranges are disjoint, otherwise we have a color conflict. So, in each valley, we have
exactly 8Q two-ranges.

For eachl , 1� l � 3m, consider the verticesEl . All vertices in El must be contained
in nodesVα with all α’s in the same valley. Otherwise, the path induced byEl will cross a
middle clique, and we have a color conflict between a vertex inEl and a vertex inC. Write
Si = fl j vertices inEl are in setsVα with α in the ith valleyg. We show thatS1; : : : ;Sm is a
partition off1; : : : ;3mg such that for eachj, ∑i2Sj

si = Q.
For each edgefel ; j ;el ; j+1g with el ; j of color 3 (and hence,el ; j+1 has color 1), there must

be a nodeα with fel ; j ;el ; j+1g � Vα. α must be in a two-range, as otherwiseVα contains a
one-colored or three-colored vertex fromC[D, and we have a color conflict. If there exists
anα with fel ; j ;el ; j+1;di; j 0g �Vα, with di; j 0 of color 2, then we say that the two-range ofdi; j 0

contains the 1-3-E-edgefel ; j ;el ; j+1g.
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Claim. No two-range contains two or more 1-3-E-edges.

Proof. Supposefel1; j1;el1; j1+1g andfel2; j2;el2; j2+1g are distinct 1-3-E-edges, and there is
a di; j 0 such thatfel1; j1;el1; j1+1;di; j 0g �Vα, fel2; j2;el2; j2+1;di; j 0g � Vβ. Suppose w.l.o.g. that
α < β. Note that bothv = el1; j1 andw = el1; j1+1 are adjacent to a vertex with color 2. Let
[γ;δ] be the two-range ofdi; j 0 . Note thatγ� α < β� δ. If Vγ�1 contains a vertex with color 1
from C[D, then consider the vertexw with color 1. It can not belong toVγ�1 and it can not
belong toVβ. So, if w2 Vε, thenγ � ε � δ. Hence, there can not be a setVε that containsw
and itsel1; j1+2 with color 2, contradiction. IfVγ�1 does not contain a vertex with color 1 from
C[D, then it contains a three-colored vertex fromC[D, and by consideringv and using a
similar argument, a contradiction also arises. 2

Let 1� i � m. SupposeSi = fl1; l2; : : : ; ltg. Note thatEl1 [ �� � [Elt induces 8sl1�1+
8sl2�1+ � � �+8slt �1 1-3-E-edges. As there are 8Q two-ranges in a valley, we must have

8(sl1 +sl2 + � � �slt )� t � 8Q

By noting that eachsl �Q=4+1=4, it follows that 8(Q=4+1=4)t� t � 8Q, sot � 3, and that
hence also, by integrality,

8(sl1 +sl2 + � � �slt )� 8Q

So, we have a partition off1; : : : ;3mg into setsS1; : : : ;Sm, such that for allj;1� j � m,
∑i2Sj

si �Q. As ∑m
j=1 ∑i2Sj

si = mQ, it follows that for all j, 1� j �m, ∑i2Sj
si = Q.

Now, supposeS1;S2; : : : ;Sm is a partition off1; : : : ;3mg, such that for allj, 1� j �m,
∑i2Sj

si = Q. We will give a path decompositionPD= (V1; : : : ;Vr) of G= (V;E), such that
noVi contains two vertices of the same color. We leave most of the easy verification that the
given path decomposition fulfills the requirements to the reader.

Take t = 48Q, r = mt+ 1. TakeV1 = A, Vr = B. For each vertexci; j 2 C, put ci; j in
nodeVti+1. For each vertexdi; j 2D, putdi; j in nodeVt(i�1)+2 j�1, Vt(i�1)+2 j , andVt(i�1)+2 j+1.
(Note that each vertex occurs in consecutive nodes; even vertices with two names like the
vertices with namesdi;24Q andci;3 for 1� i < m.)

For eachi, 1� i �m, supposeSi = fl1; l2; l3g. Put vertexel1;1 in nodeVt(i�1)+2. For all
j, 2� j � 24sl1�2, put vertexel1; j in nodesVt(i�1)+2 j�2, Vt(i�1)+2 j�1, Vt(i�1)+2 j .

For all j, 1� j � 24sl2�2, put vertexel2; j in nodesVt(i�1)+48sl1
+2 j�2, Vt(i�1)+48sl1

+2 j�1,
Vt(i�1)+48sl1

+2 j . For all j, 1� j � 24sl3�2, put vertexel3; j in nodesVt(i�1)+48sl1
+48sl2

+2 j�2,
Vt(i�1)+48sl1

+48sl2
+2 j�1, Vt(i�1)+48sl1

+48sl2
+2 j .

Finally, put f in all nodesV2; : : : ;Vr�1.
A straightforward, but somewhat tedious verification shows that the resulting path decom-

positionPD is indeed a path decomposition ofG, and that no nodeVi contains two different
vertices with the same color, and hencePD has pathwidth at most three. 2

As three-partition is strongly NP-complete and our transformation is polynomial inQ and
m, the claimed theorem now follows. 2
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Note that we even proved a slightly stronger result.

Corollary 4.2.2. 4-ICG is NP-complete, even if there is one color that is only given to three
vertices of the input graph.

Since ICG is a restricted version of ISG, we also have the following result.

Corollary 4.2.3. 4-ISG is NP-complete.

4.3 Unit-Intervalizing Sandwich Graphs
In this section, we consider the problems UNIT-INTERVALIZING SANDWICH GRAPHS (or
UISG) and UNIT-INTERVALIZING COLORED GRAPHS(or UICG).

Kaplan and Shamir [1996] have shown a relationship between a unit-intervalization of a
sandwich graph, its bandwidth, and itsproper pathwidth. Before citing this result, we first
define the bandwidth and proper pathwidth of a sandwich graph.

Let G= (V;E) be a graph andPD= (V1;V2; : : : ;Vt) a path decomposition. Let

E0 = E[ffu;vg j 9iu;v2Vig:

Recall from Lemma 2.3.2 that(V;E0) is an interval graph, and is called the interval comple-
tion of G for PD.

Definition 4.3.1. A path decompositionPD= (V1; : : : ;Vt) of a (sandwich) graph is called a
proper path decompositionif for eachv;w2V, the occurrence ofv is not properly contained
in the occurrence ofw, i.e. if w occurs in all nodes containingv, thenv occurs in all nodes
containingw.

Theproper pathwidthof a (sandwich) graph is defined as the minimum width of all proper
path decompositions of the (sandwich) graph.

Definition 4.3.2. Let S= (V;E1;E2) be a sandwich graph. A layout ofS is a layout ofG1(S)
(Definition 2.3.2). A layout̀ of S is called alegal layout of S if, for eachv;w;v0;w0 2 V,
`(v)� `(v0)< `(w0)� `(w) andfv;wg 2 E1 implies thatfv0;w0g 2 E2.

The bandwidthof S is the minimum bandwidth of all legal layouts ofS. If there is no
legal layout ofS, then the bandwidth ofS is ∞.

The following lemma has been proved implicitly by Kaplan and Shamir [1996].

Lemma 4.3.1. Let G= (V;E) be a graph and̀ a layout of G of bandwidth k. Let G0= (V;E0)
be the supergraph of G with E0 defined as follows.

E0 = ffv;wg j v;w2V^9fv0;w0g2E `(v0)� `(v)< `(w)� `(w0)g

G0 is an interval graph with maximum clique size k+1.
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Proof. We construct an interval realizationφ of G0. For eachv2V, let m(v) = maxf`(w) j
`(w)� `(v)^ (fv;wg 2 E0_v= w)g. For eachv2V, let φ(v) = [`(v);m(v)]. Clearly, if there
is an edgefv;wg 2 E0, thenφ(v) andφ(w) overlap. Now supposeφ(v) andφ(w) overlap,
and w.l.o.g. suppose that`(v) < `(w). Thenm(v) � `(w), hence there is au2 V, such that
`(u)� `(w) andfv;ug 2 E0. By definition ofG0, this means thatfv;wg 2 E0. This proves that
G0 is an interval graph.

Since each graph of bandwidthk has maximum clique size at mostk+1, and̀ is a layout
of G0, this means thatG0 has maximum clique sizek. 2

G0 is called the interval completion ofG for `. The following theorem has been proved by
Kaplan and Shamir [1996].

Theorem 4.3.1 [Kaplan and Shamir, 1996].Let S be a sandwich graph and let G be a graph
with V(G) =V(S). The following statements are equivalent.

1. G is a k-unit-intervalization of S.

2. There is a proper path decomposition PD of width k�1 of S such that G is the interval
completion of G1(S) for PD.

3. There is a legal layout̀ of S of bandwidth k�1 such that G is the interval completion of
G1(S) for `.

As an example of Theorem 4.3.1, consider Figure 4.3. It shows a sandwich graphS,
with V(S) = f1;2; : : : ;12g. The solid edges denote the edges inE1(S), and the dashed edges
denote the edges inE2(S) which are not inE1(S). The graphG depicted in the figure is
a three-unit-intervalization ofS: G is sandwiched inS, andφ is an interval realization of
G in which all intervals are of equal length, which means thatG is a unit-interval graph.
Furthermore, the path decompositionPD that is depicted is a proper path decomposition of
width two ofS, and` is a legal layout of bandwidth two ofS. The layout̀ is depicted by the
ordering of the vertices. The edges drawn in this layout are the edges inE1(S). It is easy to
see that the unit-interval graphG is the interval completion ofG1(S) for PD and for`.

Thus, the following problems are equivalent to UISG, and furthermore, a solution of one
problem can easily be transformed into a solution of another problem (as can be seen from
the proofs of Kaplan and Shamir [1996]).

SANDWICH PROPERPATHWIDTH

Instance: A sandwich graphS= (V;E1;E2), integerk� 1
Question: DoesShave proper pathwidth at mostk�1?

SANDWICH BANDWIDTH

Instance: A sandwich graphS= (V;E1;E2), integerk� 1
Question: DoesShave bandwidth at mostk�1?

Consider the problem 2-UISG. A connected graph has bandwidth at most one if and only
if it is a path. Furthermore, if the underlying graph of a sandwich graphS is a path, then any
layout of bandwidth one ofG1(S) is a legal layout of bandwidth one ofS. Checking this can
clearly be done inO(n) time (althoughjE2(S)jmay beω(n)).
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Figure 4.3. An example of Theorem 4.3.1.

Theorem 4.3.2. 2-UISG can be solved in O(n) time.

For 3-UISG, we use an algorithm which has the same structure as our algorithm for 3-
ISG. A necessary condition for a sandwich graphSto admit ak-unit-intervalization is that the
underlying graphG1(S) has pathwidth at mostk�1, since the proper pathwidth of a graph
is at least its pathwidth. Therefore, we use the characterization of partial two-paths given in
Chapter 3 for our algorithm: first the algorithm checks ifG1(S) has pathwidth at most two,
and if so, finds the structure as given in Chapter 3. This structure is then used to solve the
problem.

In the remainder of this section, we first give an algorithm for solving 3-UISG on bi-
connected graphs. After that, we show how this algorithm can be improved for 3-UICG on
biconnected graphs.

4.3.1 Three-Unit-Intervalizing Biconnected Sandwich Graphs

We start by considering the case that the underlying graph of the input sandwich graph is a
cycle. After that, we extend the algorithm to sandwich blocks.

4.3.1.1 Cycles

First we study the structure of layouts of bandwidth two of a cycle.

Lemma 4.3.2. Let C= (V;E) be a cycle. The following holds.

87



Chapter 4 DNA Physical Mapping

1. In each layout̀ of bandwidth two of C, the first two vertices in the ordering induced by`
are adjacent.

2. Letfu;wg 2E. There is exactly one layout` of C of bandwidth two in which̀(u) = 1 and
`(w) = 2. Furthermore, for each i,1� i � n, there is a vertex ui 2V with `(ui) = i, and

E = ffu1;u2g;fun�1;ungg[ffui;ui+2g j 1� i � n�2g: (4.1)

Proof.
1. Let` be a layout ofC of bandwidth two which starts at one, i.e. there is a vertexu2V for
which `(u) = 1. Each vertex inC has degree two, and henceu has degree two. Letv;w2V
be the neighbors ofu. Then either̀ (v) = 2 and`(w) = 3, or vice versa.

2. Let` be a layout of width two ofC, and order the vertices inV corresponding tò, i.e. let
V = fu1; : : : ;ung such that for eachi < j, `(ui) < `(uj). We claim that equation (4.1) holds
and that for eachi, `(ui) = i.

The proof is by induction onn. If n = 3, the claim clearly holds. Supposen > 3. The
verticesun�1 andun�2 are the neighbors ofun. Hence the graphG which is obtained fromC
by removing vertexun and its incident edges, and adding an edge between verticesun�2 and
un�1 is also a cycle, but withn�1 vertices. Furthermore,` restricted toV(G) is a layout of
G of bandwidth two. By the induction hypothesis,

E(G) = ffu1;u2g;fun�2;un�1gg[ffui;ui+2g j 1� i � n�3g;

and for eachi, 1� i � n� 1, `(ui) = i. It follows that Equation (4.1) holds. Furthermore,
sincefun�2;ung 2 E(C), it must be the case that`(un)� `(un�2)+2. Hencè (un) = n. 2

Figure 4.4 shows the unique layout for a cycle with ten vertices as given in Lemma 4.3.2.

v1
`u= v1

w= v2

v2 v3 v4 v5 v6 v7 v8 v9 v10
v3

v4

v5

v6

v7

v8

v9

v10C

Figure 4.4. A cycleC with ten vertices, and the unique layout` of bandwidth two of
C with `(u) = 1 and`(w) = 2.

Lemma 4.3.2 implies that, for each cycleC with n vertices, there are exactly 2n layouts
of bandwidth two ofC which start at one: for each edgefv;wg 2 E(C), there is a layout with
`(v) = 1 and`(w) = 2, and a layout with̀(w) = 1 and`(v) = 2.

SupposeC is a cycle withn vertices with

V(C) = fv0;v1; : : : ;vn�1g andE(C) = ffvi;v(i+1)modng j 0� i < ng:
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For eachi, 0� i < n, let `i
+ denote the layout ofC of bandwidth two with`i

+(vi) = 1 and
`i
+(v(i+1)modn) = 2, and let̀ i

� denote the layout ofC of bandwidth two with̀ i
�(vi) = 1 and

`i
�(v(i�1)modn) = 2. Furthermore, for eachi, 0� i < n, let Gi

+ andGi
� denote the interval

completions ofC for `i
+ and`i

�, respectively. Figures 4.5 and 4.6 show examples of`i
+, Gi

+,
`i
� andGi

� for the case thatn is even andn is odd, respectively.
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+

G2
�

Figure 4.5. Examples of graphsG2
+ andG2

� for n= 10.

v2
`2
+ v3 v1 v4 v0 v5 v8 v6 v7

n= 9
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Figure 4.6. Examples of graphsG2
+ andG2

� for n= 9.

Suppose thatn is even. Lemma 4.3.2 implies that for eachi, 0� i < n=2,Gi
+=Gi+n=2

+ : for

eachv2V, `i
+(v) = n+1� `

i+n=2
+ (v). Similarly, Gi

� = Gi+n=2
� . For example, in Figure 4.5,

it can be seen that, ifn = 10, thenG2
+ = G7

+ and G2
� = G7

�. Furthermore, for eachi; j,
0 � i; j < n=2, Gi

+ 6= Gj
�, and if i 6= j, thenGi

+ 6= Gj
+ and Gi

� 6= Gj
�. This means that

there are exactlyn different interval completions of layouts of bandwidth two ofC. Let
fH0;H1; : : : ;Hn�1g denote the set of all these graphs, and letf`0; : : : ; `n�1g denote the set of
layouts, such that for eachi, 0� i < n=2,Hi =Gi

+ and`i = `i
+, and furthermore,Hi+n=2 =Gi

�

and`i
�.
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Consider the case thatn is odd. For eachi, 0� i < n, Gi
+ = G

(i+ n+1
2 )modn

� . For example,
figure 4.6 shows that, ifn= 9, thenG2

+ = G7
� andG6

+ = G2
�. Furthermore, for each 0� i <

j < n, Gi
+ 6= Gj

+ andGi
� 6= Gj

�. This means again that there are exactlyn different interval
completions of layouts of bandwidth two ofC. Let fH0;H1; : : : ;Hn�1g again denote this set
and letf`0; : : : ; `n�1g denote a set of layouts, such that for eachi, 0� i < n, Hi = Gi

+ and
`i = `i

+.
For each 0� i < j < n with 1 < j � i < n� 1, we callfvi;vjg a diagonalof C. The

preceding discussion implies the following result.

Lemma 4.3.3. Letfvi ;vjg be a diagonal of C. There are integers m1 and m2, 0�m1<m2<n,
such that the edgefvi ;vjg is contained in Hm1 and Hm2 and in no other Hp, p 6= m1;m2.
Furthermore, m1 and m2 can be computed in constant time from i, j and n.

Proof. If j� i is even, thenfvi ;vjg is an edge inG
i+ j
2
+ and inG

i+ j
2
� (andG

i+ j
2
+ 6= G

i+ j
2
� ). If j� i

is odd, thenfvi ;vjg is an edge inG
i+ j�1

2
+ and inG

i+ j+1
2

� (andG
i+ j�1

2
+ 6= G

i+ j+1
2

� ). This implies
thatm1 andm2 exist and can be easily computed fromi, j andn. Also, it can be seen that
there is nop, 0� p< n, with p 6= m1;m2 andfvi;vjg is an edge inHp. 2

Suppose we have an input sandwich graphS= (V;E1;E2), such thatG1(S) is a cy-
cle C with verticesV = fv0; : : : ;vn�1g as before. Notice that a graphG is a three-unit-
intervalization ofS if and only if there is ani, 0� i < n, such thatG= Hi . If there is such
an i, then`i is a legal layout ofS of bandwidth two. Furthermore, for eachi, there are
exactlyn� 3 edges inE(Hi) which are not inC. If Hi is a three-unit-intervalization ofS,
thenE(Hi)� E2. This implies the following algorithm for three-unit-intervalizing sandwich
graphs of which the underlying graph is a cycle.

For eachi, 0� i < n, we compute an integerN(i) which denotes the number of edges
of E2�E1 which are also edges inHi . By the preceding discussion, there is a three-unit-
intervalization ofSif and only if there is ani, 0� i < n, such thatN(i) = n�3. The algorithm
for deciding 3-UISG on sandwich graphsS for which G1(S) is a cycleC with n vertices is
now as follows.

Algorithm 3-UISG Cycle(S)
Input: Sandwich graphS for whichG1(S) is a cycle
Output: true if there is a three-unit-intervalization ofS, false otherwise
1. Number the vertices ofG1(S) by v0; : : : ;vn�1, such that

for eachj, 0� j < n, fvj ;v( j+1)modng 2 E1.
2. for i 0 to n�1
3. do N(i) 0
4. for all fvi ;vjg 2 E2

5. do if 1< j j� ij< n�1
6. then Compute the values ofm1 andm2 as in Lemma 4.3.3 and increaseN(m1)

andN(m2) by one.
7. for i 0 to n�1
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8. do if N(i) = n�3 then return true
9. return false

By the preceding discussion, this algorithm returnstrue if and only if there is a three-unit-
intervalization ofS. It runs inO(jE2j) time. We can easily modify the algorithm such that
it returns a three-unit-intervalization if one exists: it is easy to construct the graphHi for a
given value ofi.

Lemma 4.3.4. Algorithm 3-UISGCycle solves 3-UISG in O(jE2(S)j) time and space for
sandwich graphs S of which the underlying graph is a cycle.

4.3.1.2 Blocks

In the following lemma we give a necessary condition for a biconnected partial two-path to
have bandwidth two.

Lemma 4.3.5. Let G be a biconnected partial two-path. If G has bandwidth two then G is a
path of cycles in which each edge occurs in at most two chordless cycles.

Proof. SupposeG has bandwidth two and let` be a layout ofG of bandwidth two. Let(C ;E)
be a cycle path for̄G with C = (C1;C2; : : : ;Cp) andE = (e1;e2; : : : ;ep�1). LetW�V(G) be
the set of verticesv for which there is ani, 1< i < p, such thatv2V(Ci), ei�1 = ei andv =2 ei .
Consider the cycleC of Ḡ which is obtained fromḠ by first removing all vertices fromW
and their incident edges, and then removing all edgesei , 1� i < p, which occur more than
once inE . Note thatC is a subgraph ofG.

The functioǹ 0 that is obtained by restricting̀toV(C) is a layout of bandwidth two ofC.
Order the vertices ofC by u1; : : : ;un, such that for eachi < j, `(ui)< `(uj). By Lemma 4.3.2,
`(un)� `(u1) = n�1. This means that for each vertexw2W, either`(w)< `(u1) or `(w)>
`(un). If `(w) < `(u1), thenw can only be adjacent tou1 and u2. But fu1;u2g 2 E(C),
contradiction. If`(w) > `(un), we also get a contradiction. HenceW = o=, and thusḠ is a
path of cycles in which each edge occurs in at most one chordless cycle. This also implies
thatḠ= G, which completes the proof. 2

The next lemma easily follows from the preceding discussion.

Lemma 4.3.6. Let S= (V;E1;E2) be a sandwich graph, suppose G1(S) is a path of cycles
in which each edge occurs in at most two chordless cycles. Let F� E1 be the set of edges
which occur in two chordless cycles, and let C be the cycle obtained from G1(S) by removing
all edges in F, i.e. C= (V;E1�F). A graph G is a three-unit-intervalization of S if and only
if G is a three-unit-intervalization of C and F� E(G)� E2.

Let S= (V;E1;E2) be a sandwich graph, supposeG1(S) is a path of cycles in which each
edge occurs in at most two chordless cycles. LetF � E1 denote the edges ofG1(S) which
occur in two chordless cycles, and letC=(V;E1�F). Furthermore, letV = fv0;v1; : : : ;vn�1g
andE = ffvi;v(i+1)modng j 0� i < ng. Lemma 4.3.5 shows that we can use an algorithm
similar to the cycle algorithm to compute whetherS has bandwidth two: together with the
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arrayN we now compute an arrayB of positive integers. For eachi, 0� i < n, B(i) denotes
the number of edges inF which occur inHi . The arrayB can be computed inO(jF j) time
in the same way as we computed the arrayN. It can be seen thatGi , 0� i < n, is a three-
unit-intervalization ofSif and only if N(i) = n�3 andB(i) = jFj. This implies the following
algorithm for 3-UISG on biconnected sandwich graphsS.

Algorithm 3-UISG BSG(S)
Input: Biconnected sandwich graphS
Output: true if there is a three-unit-intervalization ofS, false otherwise
1. Check ifG1(S) has pathwidth two, and if so find a cycle path(C ;E) (C = (C1; : : : ;Cp),

E = (e1; : : : ;ep�1)) for G1(S). If not, return false.
2. for i 1 to p�1
3. do if ei = ei+1 then return false
4. LetC be the cycle obtained fromG1(S) by removing all edges ofE .
5. Number the vertices ofC by v0; : : : ;vn�1 such that for eachi, fvi ;v(i+1)modng 2 E(C).
6. Compute the arraysN andB.
7. for i 0 to n�1
8. do if N(i) = n�3 andB(i) = p�1 then return true
9. return false

Step 1 is described in Section 3.2 and can be done inO(n) time. The loop in lines 2 – 3, and
steps 4 and 5 can easily be done inO(n) time. Step 6 can be done inO(jE2j) time, as described
above (note thatp = O(jE2j)), and the loop in lines 7 – 8 takesO(n) time. Hence the total
algorithm takesO(jE2j) time. Notice that we can easily make the algorithm constructive: in
line 8, return the graphHi if N(i) = n�3 andB(i) = p�1.

Theorem 4.3.3. There exists an O(jE2(S)j) time algorithm that solves the constructive
version3-UISG for sandwich blocks S.

4.3.2 Three-Unit-Intervalizing Biconnected Colored Graphs

Let G= (V;E) be a graph andc a three-coloring ofG. The sandwich graphS= (V;E1;E2),
with E1 = E andE2 = ffv;wg j c(v) 6= c(w)g is called the sandwich graph associated withG
andc. For three-unit-intervalizing biconnected colored graphs we can use the algorithm from
the previous section, by first computing the sandwich graph associated with input graphG
and coloringc. Unfortunately, the number of edges inE2 may beΩ(n2), while the graphG
must haveO(n) edges.

In this section we show that it is possible to obtain a faster algorithm for 3-UICG that does
not use the associated sandwich graph. Instead of using the notions of bandwidth, (proper)
pathwidth and unit-intervalizations for the sandwich graphS associated with graphG and
coloringc, we use these notions for the pairG;c itself.

Consider the case in which the input graph is a cycle.

Lemma 4.3.7. Let C be a cycle, suppose n= jV(C)j � 4. Let c: V ! f1;2;3g be a coloring
of C and suppose C;c has bandwidth two. There are exactly two vertices v and w in C which
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have two neighbors of the same color. In each legal layout` of C;c of bandwidth two in
which there is a vertex u such that`(u) = 1, either`(v) = 2 and`(w) = n�1, or vice versa.
Furthermore, if n even, then v and w have distance n=2 and u and w have distance n=2�1,
and if n is odd, then v and w have distance(n�3)=2, and u and w have distance(n�1)=2.

Proof. Let ` be a legal layout forC;c which has bandwidth two such that`(u) = 1. Num-
ber the vertices fromu1; : : : ;un, such that for eachi, `(ui) = i. For eachi, 1� i � n�2,
fui;ui+2g 2 E(C) (Lemma 4.3.2), soc(ui) 6= c(ui+2), and furthermore,c(ui) 6= c(ui+1) and
c(ui+1) 6= c(ui+2). Hence verticesu1, u2 andu3 have different colors, and for eachi, 1� i� n,
if i mod 3= 1), thenc(ui) = c(u1), if i mod 3= 2, thenc(ui) = c(u2), and if i mod 3= 0,
thenc(ui) = c(u3).

Verticesu1 andun have two neighbors of different colors. The neighbors ofu2 areu1 and
u4, and these have the same color. The neighbors ofun�1 areun andun�3, which also have
the same color. For eachi, 3� i � n�2, the neighbors ofui areui�2 andui+2, which have
different colors.

Consider the two paths fromu2 to un�1 in C. If n is odd, then these are the pathsP1 =
(u2;u4;u6; : : : ;un�1) andP2 = (u2;u1;u3; : : : ;un�2;un;un�1). PathP1 has length(n� 3)=2,
andP2 has length(n+3)=2. Hence the distance betweenvandw is (n�3)=2, and the distance
betweenu= u1 andw is (n�1)=2.

If n is even then the paths fromu2 to un�1 are P1 = (u2;u1;u3; : : : ;un�1) and P2 =
(u1;u3; : : : ;un�2;un;un�1), and they both have lengthn=2. Hence the distance betweenv
andw is n=2, and the distance betweenu1 andw is n=2�1. 2

If we have a cycleC of length three with a three-coloringc, thenC is a three-unit-
intervalization ofC;c.

LetC be a cycle andc a three-coloringc of C, and supposen= jV(C)j � 4. Furthermore,
suppose thatC;c has bandwidth two and letv be a vertex inC which has two neighborsu1

andu2 of the same color. There are two legal layouts ofC with bandwidth two in whichv is
mapped to the value 2, namely the layout`1 with `1(u1) = 1 and the layout̀2 with `2(u2) = 1.
If n is even, then it is easy to see that both`1 and`2 are legal layouts ofC;c. Furthermore,
the interval completions ofC for `1 and`2 are the only three-unit-intervalizations ofC;c.

If n is odd, then only one of the layouts is legal: letdi denote the distance betweenui

andw. Then eitherd1 = (n�1)=2 andd2 = (n�5)=2, or vice versa. In the first case,`1 is
the only legal layout ofC;c with `1(v) = 2, and in the latter case,`2 it the only legal layout
of C;c with `2(v) = 2. Furthermore, there is a unique three-unit-intervalization ofC;c: in
the first case, this is the interval completion ofC for `1. In the second case, it is the interval
completion ofC for `2.

So to check if there is a three-unit-intervalization of a cycleC and a three-coloringc
of C, we can simply check if the conditions given in Lemma 4.3.7 hold. This can be done
in O(n) time. Also, the preceding discussion shows that we can, inO(n) time, construct a
three-unit-intervalization ofC;c if one exists.

Lemma 4.3.8. There is an O(n) time algorithm which solves the constructive version of
3-UICG if the input graph is a cycle.
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Suppose we have a biconnected graphG and a three-coloringc of G, and supposeG
has bandwidth two. LetF be the set of edges inG which occur in two chordless cycles,
and letC be the cycle obtained fromG by removing all edges inF. Clearly, each three-
unit-intervalization ofG;c is a three-unit-intervalization ofC;c. Suppose there is a three-
unit-intervalizationG0 of C;c. ThenG0 is a three-unit-intervalization ofG;c if and only if
F � E(G0).

Given a biconnected graphG with a three-coloringc, we can now check whether there is
a three-unit-intervalization ofG andc as follows.

Algorithm 3-UICG BG(G;c)
Input: Biconnected graphG, three-coloringc for G
Output: true if there is a 3-unit-intervalization ofG;c, false otherwise
1. Check ifG is a path of cycles. If so, find a cycle path(C ;E) for G, and check ifE

contains each edge only once. If not,return false.
2. LetC be the cycle obtained fromG by removing all edges inE . If jV(C)j = 3, return

true.
3. Find the setL of all (at most two) legal layouts of bandwidth two ofC;c. If L = o=,

return false.
4. For each̀ 2 L , check whether̀ is a legal layout of bandwidth two ofG;c. If so, return

true.
5. return false

By the preceding discussion, this algorithm returnstrue if and only if there is a three-unit-
intervalization. Steps 1, 2 and 3 useO(n) time, as is shown before. In step 4, a layout` 2 L
is a legal layout of bandwidth two ofG;c if for eachfu;vg 2 F, j`(u)� `(v)j = 1. This
can be checked inO(n) time, sincejFj = O(n). Hence 3-UICGBG usesO(n) time. The
algorithm can be made constructive as follows: if in step 4, a legal layout` of G;c is found,
then the interval completion of̀is returned. By Theorem 4.3.1, this interval completion is a
three-unit-intervalization ofG;c. This shows the following result.

Theorem 4.3.4. There exists an O(n) time algorithm that solves the constructive version
3-UICG for biconnected graphs.
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Chapter 5

Reduction Algorithms

In this chapter we give an introduction toreduction algorithmsfor decision and optimization
problems on graphs. A reduction algorithm is based on a finite set ofreduction rulesand a
finite set of graphs. Each reduction rule describes a way to modify a graph locally. The idea
of a reduction algorithm is to solve a decision problem by repeatedly applying reduction rules
on the input graph until no more rule can be applied. If the resulting graph is in the finite set
of graphs, then the algorithm returnstrue, otherwise it returnsfalse.

The idea of reduction algorithms originates from Duffin’s [1965] characterization of
series-parallel graphs (Definition 2.3.3): a multigraph is series-parallel if and only if it can be
reduced to a single edge by applying a sequence ofseriesandparallel reductions. A series
reduction is the replacement of a vertex of degree two and its incident edges by an edge be-
tween its two neighbors, and a parallel reduction is the removal of one of two or more edges
between the same vertices, i.e. the removal of an edge which has parallel edges (see also
Figure 2.11). Valdes, Tarjan, and Lawler [1982] showed how a reduction algorithm based on
this set of reduction rules can be implemented in linear time, and hence series-parallel graphs
can be recognized in linear time.

Inspired by the characterization of Duffin and the similarity between graphs of treewidth
two and series-parallel graphs, Arnborg and Proskurowski [1986] generalized this idea for
recognizing simple graphs of treewidth at most three: they gave a set of reduction rules which
characterizes graphs of treewidth at most three. They also showed that these reduction rules
can be used to recognize partial three-trees inO(n3) time. Matous̆ek and Thomas [1991] gave
a slightly different set of reduction rules, and showed that with this new set it is possible to
recognize simple graphs of treewidth at most three in linear time. Additionally, they showed
how to construct a tree decomposition of minimum width in linear time if the input graph has
treewidth at most three.

A much more general approach is taken by Arnborg, Courcelle, Proskurowski, and Seese
[1993]. They gave a set of conditions that must hold for a set of reduction rules to ensure
that the reduction algorithm works correctly. They have also shown that for a large class of
decision problems on simple graphs of bounded treewidth, there is a set of reduction rules
for which these conditions hold, and that the algorithm based on such a set of reduction rules
takesO(n) time (but more than linear space). The results of Arnborg et al. are stated in a
general, algebraic setting.

Bodlaender [1994] extended the notion of reduction algorithms to optimization problems:
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he introduced a new notion of reduction rules for optimization problems, calledreduction-
counter rules, and gave a set of conditions which are necessary for a set of reduction-counter
rules in order to make a reduction algorithm work correctly. For simple graphs of bounded
treewidth, this results again in efficient linear time algorithms.

Bodlaender and Hagerup [1995] have shown that the sequential reduction algorithms
of Arnborg et al. [1993] and Bodlaender [1994] can efficiently be parallelized, if some
additional conditions hold for the set of reduction rules. Their reduction algorithm uses
O(lognlog�n) time with O(n) operations and space on an EREW PRAM, andO(logn) time
with O(n) operations and space on a CRCW PRAM. A sequential version of this algorithm
gives a reduction algorithm which usesO(n) time and space.

In this chapter, we give an overview of the results of Arnborg et al. [1993], Bodlaender
[1994] and Bodlaender and Hagerup [1995] that are mentioned above. We combine the re-
sults and present them in a uniform setting, in order to get a comprehensible overview. The
chapter also acts as an introduction for Chapters 6 and 7: in Chapter 6, we show how the
reduction algorithms presented in this chapter can be extended to constructive algorithms,
i.e. algorithms which solve constructive decision or optimization problems. In Chapter 7, we
apply these results to a number of optimization problems.

This chapter is organized as follows. In Section 5.1 we discuss reduction algorithms for
decision problems as introduced by Arnborg et al. [1993]. We do this in a more direct way,
without making use of the algebraic theory. We also give a reduction algorithm which uses
linear time and space, based on the ideas of Arnborg et al. [1993] and of Bodlaender and
Hagerup [1995]. In Section 5.2, we describe reduction algorithms for optimization problems,
as introduced by Bodlaender [1994]. In Section 5.3, we discuss the parallel reduction algo-
rithms of Bodlaender and Hagerup [1995], and in Section 5.4, we mention some additional
results.

5.1 Reduction Algorithms for Decision Problems

In this section, we start with definitions of reduction rules and reduction systems (Sec-
tion 5.1.1). Then we give an efficient reduction algorithm based on a special type of reduction
system (Section 5.1.2). Finally, we show that this reduction algorithm can be used to solve a
large class of decision problems on graphs of bounded treewidth (Section 5.1.3).

5.1.1 Reduction Systems

The graphs we consider are simple unless stated otherwise. Recall that a graph property is a
functionP which maps each graph to the valuetrue or false. We say a property iseffectively
decidableif an algorithm isknownthat decides the property.

For the definitions of terminal graphs, and the operation�, see Definitions 2.2.3 and 2.2.4.
Two terminal graphs(V1;E1;hx1; � � � ;xki) and(V2;E2;hy1; � � � ;yl i) are said to beisomorphic
if k= l and there is an isomorphism from(V1;E1) to (V2;E2) which mapsxi to yi for eachi,
1� i � k.
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Definition 5.1.1 (Reduction Rule). Areduction rule ris an ordered pair(H1;H2), whereH1

andH2 arel -terminal graphs for somel � 0.
A matchto reduction ruler = (H1;H2) in graphG is a terminal graphG1 which is iso-

morphic toH1, such that there is a terminal graphG2 with G= G1�G2.
If G contains a match tor, then anapplicationof r to G is an operation that replacesG

by a graphG0, such that there are terminal graphsG1, G2 andG3, with G1 isomorphic toH1,
G2 isomorphic toH2, andG= G1�G3, G0 = G2�G3. We also say that, inG, G1 is replaced
by G2. An application of a reduction rule is also called areduction.

Figure 5.1 shows an example of a reduction ruler, and an application ofr to a graphG. We
usually depict a reduction rule(H1;H2) by the two graphsH1 andH2 with an arrow fromH1

to H2. Given a reduction ruler = (H1;H2), we callH1 the left-hand side ofr, andH2 the
right-hand side ofr.

!r
G

G0

1

2

3

1

2

3

!
r

H1 H2

Figure 5.1. An example of a reduction ruler = (H1;H2), and an application ofr to a
graphG, resulting in graphG0. The dotted lines inG andG0 denote the parts ofG and
G0 that are involved in the reduction.

Let G be a graph andr = (H1;H2) a reduction rule. IfG contains a matchG1 to r, then
an application ofr to G which replacesG1 by a terminal graph isomorphic toH2 is called a
reduction corresponding to the matchG1.

Note that different applications of a reduction rule to a graph may result in different (i.e.
non-isomorphic) graphs. If there is an application of ruler to graphG which results in a
graphG0, then we writeG

r
! G0. Let R be a set of reduction rules. For two graphsG and

G0, we writeG
R
!G0 if there exists anr 2 R with G

r
!G0. We sayG contains a matchG1 if

there is anr 2 R such thatG1 is a match tor in G. If G contains no match, then we say that
G is irreducible(for R ).

The following conditions are useful for a set of reduction rules in order to get a charac-
terization of a graph propertyP.

Definition 5.1.2. Let P be a graph property andR a set of reduction rules.

� R is safefor P if, wheneverG
R
!G0, thenP(G), P(G0).

� R is completefor P if the setI of irreducible graphs for whichP holds is finite.

� R is terminatingif there is no infinite sequenceG1
R
!G2

R
!G3

R
! ��� .
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� R is decreasingif, wheneverG
R
!G0, thenG0 contains fewer vertices thanG.

Definition 5.1.3 (Reduction System). Areduction systemfor a graph propertyP is a pair
(R ;I ), with R a finite set of reduction rules which is safe, complete and terminating forP,
andI the set of irreducible graphs for whichP holds.

A decreasing reduction systemfor P is a reduction system(R ;I ) for P in which R is
decreasing.

A reduction system(R ;I ) for a propertyP gives a complete characterization ofP: P(G)
holds for a graphG if and only if any sequence of reductions fromR on G leads to a graph
G0 which belongs toI (i.e. is isomorphic to a graph inI ).

As an example, consider the graph property of being a partialk-path for a fixed non-
negative integerk. Arnborg and Proskurowski [1986] have given reduction systemsSk =
(R k;Ik) for the properties that a graph is a partialk-path, for 0� k� 3 (see also Arnborg
[1985]). For eachk, Ik contains only the empty graph, denoted byGempty. Furthermore,
the set of rulesR k is a subset of the rules depicted in Figure 5.2:R 0 = f1g, R 1 = f1;2g,
R 2 = f1;2;3g andR 3 = f1; : : : ;6g.

!

!

!

!

!

!

1

2

3

4

5

6
Gempty

Figure 5.2. A set of reduction rules which is safe, complete and terminating for
treewidth at most three.

5.1.2 An Efficient Reduction Algorithm

A decreasing reduction system(R ;I ) for a propertyP corresponds to a polynomial time
algorithm that decides whether propertyP holds for a given graphG: repeat applying rules
from R starting with the input graph, until no rule fromR can be applied anymore. If the
resulting graph belongs to the setI , thenP holds for the input graph, otherwise, it does not.
The number of reductions that has to be performed is at mostn, since each reduction reduces
the number of vertices by at least one. Furthermore, it takesO(nc) time to check whether
G contains a match, wherec is the maximum number of vertices in any left-hand side of a
reduction rule.

In general, an algorithm as described above is not very efficient. However, there are
several ways to make the algorithm more efficient. One way is to use a reduction system
in which the reduction rules have a special structure, and to use this structure to efficiently
determine whether a reduction rule can be applied. For example, Arnborg et al. [1993] define
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such a special reduction system, and show that, with such a reduction system, a property
can be decided inO(n) time on an input graph withn vertices. However, their algorithm
needsΘ(np) space, wherep is the maximum number of terminals in any left-hand side of a
reduction rule (although this result can be improved toO(n1+ε) space for anyε > 0, with an
increase in running time of only a constant factor [Hagerup, 1988]).

Another way to make a reduction algorithm more efficient is to design the reduction
system(R ;I ) such that for any graphG for which the property holds, eitherG belongs to
I , or G contains a match which can be found in an efficient way. As an example of this, we
consider the method used by Bodlaender and Hagerup [1995], called thebounded adjacency
list search method. (Bodlaender and Hagerup use their method to obtain an efficient parallel
algorithm; we give an efficient sequential version of this parallel algorithm in this section.)

Definition 5.1.4. Let d be a positive integer. LetG be a graph given by some adjacency list
representation and letG1 be anl -terminal graph. We sayG1 is d-discoverablein G if

1. G1 is open and connected, and the maximum degree of any vertex inG1 is at mostd,

2. there is anl -terminal graphG2, such thatG= G1�G2, and

3. G1 contains an inner vertexv such that for all verticesw2V(G1) there is a walkW in G1

with W = (u1;u2; : : : ;us), such thatv = u1, w = us, and for eachi, 2� i � s�1, in the
adjacency list ofui in G, the edgesfui�1;uig andfui;ui+1g have distance at mostd.

Let G be a graph,d a positive integer, and letG1 be ad-discoverable terminal graph inG. Let
v be an inner vertex ofG1 satisfying condition 3 above, and letW = (u1;u2; : : : ;us) be a walk
in G1 with v= u1, such that for eachi, 2� i � s�1, the edgesfui�1;uig andfui;ui+1g have
distance at mostd in the adjacency list ofui+1 in G. We show that there is a walkW0 from u1

to us in G1 satisfying the same condition in which each edgee= fx;yg occurs at most twice
in W0. If an edgee= fx;yg occurs three times inW0, then it is passed in the same direction at
least twice, i.e.W contains either a subsequence of the formS= x;y; : : : ;x;y or a subsequence
of the formS= y;x; : : : ;y;x. In the first case, we remove the subsequencey; : : : ;x of S, and
in the latter case, we remove the subsequencex; : : : ;y of S. The result is still a walk inG1

satisfying the stated condition. This transformation can be repeated untilW does not contain
any edge more than twice.

In the same way we can show that if condition 3 holds, then there is a walk from any inner
vertexw to any other inner vertexw0 in G1 in which two subsequent edges have distance at
mostd in the adjacency list of their common vertex, and each edge occurs at most twice.
This, and the fact that each edge in an open terminal graphG1 is incident with an inner vertex
(which has degree at mostd) implies the following result.

Lemma 5.1.1. If a terminal graph G1 is d-discoverable in a graph G for some d� 1, then
for any inner vertex v of G1, all vertices and edges of G1 can be found from v in an amount of
time that only depends on the integer d and the size of G1, but not on the size of the graph G.

Definition 5.1.5 (Special Reduction System). LetP be a graph property, and(R ;I ) a decreas-
ing reduction system forP. Let nmax be the maximum number of vertices in any left-hand
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side of a ruler 2 R . (R ;I ) is aspecial reduction systemfor P if we know positive integers
nmin andd, nmin� nmax� d, such that the following conditions hold.

1. For each reduction rule(H1;H2) 2 R ,

(a) if H1 has at least one terminal, thenH1 is connected andH1 andH2 are open, and

(b) if H1 is a zero-terminal graph, thenjV(H2)j< nmin .

2. For each graphG and each adjacency list representation ofG, if P(G) holds, then

(a) each component ofG with at leastnmin vertices has ad-discoverable match, and

(b) if all components ofG have less thannmin vertices, then eitherG2 I or G contains a
match which is a zero-terminal graph.

Conditions 1a and 2a assure that each componentH, with jV(H)j � nmin, of a graphG for
which P(G) holds, contains at least oned-discoverable match to a reduction rule, which can
be applied without having to remove multiple edges. Conditions 1b and 2b are only needed
for graph properties which do not imply that the input graph is connected; they assure that,
if no other reduction rules are applicable, then matches to reduction rules with zero terminals
of which the left-hand side is not connected, can be found efficiently.

As a simple example of a special reduction system, consider the graph propertyP, where
P(G) holds if and only if each component ofG is a two-colorable cycle, and the number of
components ofG is odd. LetR be the set of reduction rules depicted in Figure 5.3 (Gempty

denotes the empty graph), and letI be the set containing just the cycle on four vertices
(see also Figure 5.3). It can easily be seen that(R ;I ) is a special reduction system forP
(d = nmax= 8 andnmin = 5).

!

!

IR

r1

r2
Gempty

Figure 5.3. A reduction system for propertyP, which is the property that a graph is
two-colorable, has an odd number of components, and each of its components is a
cycle.

Theorem 5.1.1. Let P be a graph property. If we have a special reduction system for P, then
we have an algorithm which decides P in O(n) time and O(n) space.

We prove Theorem 5.1.1 by giving the algorithm. The algorithm consists of two phases.
In the first phase, the algorithm findsd-discoverable matches and executes the corresponding
reductions, until there are no mored-discoverable matches. If the resulting graph is inI , then
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P holds for the input graph, andtrue is returned. Otherwise, the algorithm proceeds with the
second phase.

In the second phase, the algorithm checks whetherG contains a component with at least
nmin vertices. If so,false is returned, sinceP does not hold (by condition 2a of Defini-
tion 5.1.5). Otherwise, the algorithm repeats applying reduction rules of which the left-hand
side has no terminals, until this is no longer possible. If the resulting graphG is in I , then
P holds andtrue is returned. Otherwise, there is no further applicable rule: each component
of G has less thannmin vertices, since it either was already a component of the graph after
phase 1, or it is the result of a reduction in phase 2, which means that it is a component of
a right-hand side of a reduction rule. Since the set of reduction rules is complete forP, this
means thatP(G) does not hold, and hencefalse is returned.

We now give the complete algorithm, given the special reduction system(R ;I ) and the
integersnmin andd. The algorithm is a simplified sequential simulation of the parallel algo-
rithm given by Bodlaender and Hagerup [1995]. It resembles the algorithm of Arnborg et al.
[1993], but usesO(n) space, whereas the algorithm of Arnborg et al. usesΩ(np) space, where
p equals the maximum number of terminal vertices in any reduction rule.
Algorithm Reduce(G)
Input: GraphG
Output: P(G)
1. nmax maxfjV(H)j j H is left-hand side of somer 2 R g
2. (� Phase 1�)
3. S fv2V(G) j deg(v)� dg
4. while S 6= o=
5. do takev2 S
6. if v is inner vertex of ad-discoverable matchG1 to a ruler 2 R
7. then applyr to G:
8. let G2 be a new terminal graph isomorphic toH2, such thatG1 andG2

have the same set of terminals
9. (� Remove inner vertices and edges ofG1 �)
10. V(G) V(G)�fv2V(G1) j v is inner vertex ofG1g
11. E(G) E(G)�E(G1)
12. S S�fv2V(G1) j v is inner vertex ofG1g
13. (� Add inner vertices and edges ofG2 �)
14. V(G) V(G)+fv2V(G2) j v is inner vertex ofG1g
15. E(G) E(G)+E(G2)
16. S S[fv2V(G2) j deg(v)� dg
17. for all terminalsx of G2

18. do let L denote adjacency list ofx
19. for all fx;wg 2 L for whichL changed within distanced
20. do if deg(w)� d then S S[fwg
21. S S�fvg
22. if G2 I then return true
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23. (� Phase 2�)
24. if G has a component with� nmin verticesthen return false
25. R 0 fr 2 R j left-hand side ofr is zero-terminal graphg
26. for all r = (H1;H2) 2 R 0

27. do make listLr containing for each componentC of H1 a graphH isomorphic toC,
an integeri(H) denoting the number of components isomorphic toH in H1, and
an initially empty listL(H) containing components ofG which are isomorphic to
H (Lr contains only one entry for isomorphic components ofH1)

28. S0 fC jC is component ofGg
29. while S0 6= o=
30. do takeC2 S0

31. for all r 2 R 0

32. do if Lr contains componentH isomorphic toC
33. then addC to L(H)
34. if 9r 2 R 0 : 8H 0 2 Lr : L(H 0) containsi(H 0) components
35. then applyr:
36. for eachH 0 2 Lr , takei(H 0) components of the listL(H 0) and remove them

from L(H 0), from G, from S0 and from all other lists ofR 0

37. add graphG1 isomorphic to right-hand side ofr to G
38. add all components ofG1 to S0

39. S0 S0�fCg
40. if G2 I then return true else return false

We first show that phase 1 and phase 2 of the algorithm are correct. LetG be the graph that
results after the main loop of phase 1 (lines 4 – 21) is finished. Phase 1 is correct if

� G does not contain anyd-discoverable matches,

� P(G) holds if and only ifP holds for the input graph, and

� true is returned if and only ifG2 I .

Phase 2 is correct iftrue is returned ifP holds for the input graph, andfalse is returned
otherwise.

Lemma 5.1.2. Phase 1 of algorithm Reduce is correct.

Proof. As the applied reduction rules are safe forP, it must be the case thatP holds for the
input graph if and only ifP(G) holds for the graphG resulting from the main loop. We prove
that the main loop has the following invariant: for eachd-discoverable matchG1 in G, there
is a vertexw2 Swhich is an inner vertex ofG1. Clearly, if this invariant holds whenS= o=,
thenG contains nod-discoverable matches. This implies that phase 1 is correct. We prove
the invariant by induction on the number of iterations.

Initially (after the 0th iteration), the invariant holds. Now suppose it holds after theith
iteration (i � 0), and consider the(i+1)st iteration. If no reduction is applied in this iteration,

102



5.1 Reduction Algorithms for Decision Problems

then no match isd-discoverable fromv and the graphG does not change. Hence the invariant
still holds after this iteration.

Suppose a reduction is applied in the(i+1)st iteration. LetGi andGi+1 denote the graph
G after theith and the(i +1)st iteration, respectively. LetG1, G2 andG3 be terminal graphs
such thatGi = G1�G3, Gi+1 = G2�G3, andG1 is the match inGi that corresponds to the
applied reduction rule. Suppose that, after the(i + 1)st iteration, there is ad-discoverable
matchH1 in Gi+1. We show that there is an inner vertex ofH1 in S. If H1 contains no vertices
of G1, thenH1 was alreadyd-discoverable after theith iteration, and henceS contains an
inner vertex ofH1. SupposeV(H1)\V(G2) 6= o=. If one of the inner verticesu of H1 is a
vertex ofG2, thenu has degree at mostd and henceu is added toS in line 16 in the(i +1)st
iteration. If one of the inner vertices ofG2 is a terminal vertexx of H1, then all neighbors ofx
are inG2, and sincex has a neighboru which is an inner vertex ofH1, this means thatu2 S.

The only remaining case is the case that the common vertices ofG2 andH1 are terminal
vertices of bothG2 andH1. ThenH1 is also a match in the graphGi . If H1 was already a
d-discoverable match inGi , thenScontains an inner vertex ofH1. SupposeH1 was not ad-
discoverable match inGi . Hence there is an inner vertexv of H1, and a vertexw2V(H1) and
a walk(u1;u2; : : : ;us) in H1 with u1 = v andus= w, in which there is aj, 2� j � s�1, such
that in the adjacency list ofuj in Gi , the edgesfuj�1;ujg andfuj ;uj+1g have distance more
thand, but in the adjacency list ofuj in graphGi+1, edgesfuj�1;ujg andfuj ;uj+1g have
distance at mostd. That implies that the adjacency list ofuj has changed during the reduction
of Gi to Gi+1, and henceuj is a terminal vertex ofG2, and also ofH1. Moreover, the change
of the adjacency list ofuj was within distanced from bothfuj�1;ujg andfuj ;uj+1g. Since
H1 is an open terminal graph, bothuj�1 anduj+1 are inner vertices ofH1, and hence have
degree at mostd. This means thatuj�1 anduj+1 have been added toS in line 20 of iteration
i +1. 2

Lemma 5.1.3. Phase 2 of algorithm Reduce is correct.

Proof. The main loop of phase 2 (lines 29 – 39) can be proved to have the following
invariant: for each matchG1 in G to some ruler = (H1;H2) in R 0, there is a componentC of
G1 which is inS0 and furthermore, for each component ofC of G1, eitherC2S0, orC is in list
L(H) of Lr , whereH is isomorphic toC and to a component ofH1. Clearly, if this invariant
holds whenS0 = o=, then this means that phase 2 is correct. The proof of this invariant is
similar to the one for phase 1, and thus omitted. 2

This proves the following result.

Lemma 5.1.4. Algorithm Reduce correctly recognizes simple graphs for which a property P
holds, given a special reduction system(R ;I ) for P.

Consider the time complexity of the algorithm.

Lemma 5.1.5. Algorithm Reduce uses O(n) time and space.

Proof. Consider phase 1 first. We first show that the main loop of this phase is iterated
O(n) times. We do this by showing that the number of times a vertex is added toS is O(n).
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Initially, in line 3, ScontainsO(n) vertices. In the main loop, there are only vertices added to
Sif a reduction takes place. Since at mostn reductions take place, and after each reduction, at
most a constant number of vertices is added toS, this means that the total number of vertices
added toSduring the main loop is alsoO(n). Since in each iteration of the main loop, at least
one vertex is removed fromS, this means that the main loop is executedO(n) times.

Consider one iteration of the main loop. In line 6, ad-discoverable match inG that
containsv as an inner vertex can be found in constant time, as we described. Furthermore,
each reduction can be done in constant time. The loop in lines 17 – 20 can also be done in
constant time: during the reduction, it is possible to store the places in the adjacency lists
of the terminals where something changes, so that they can be easily found. Hence each
iteration of the main loop takesO(1) time. Hence phase 1 algorithm can be done inO(n)
time.

Consider phase 2 of the algorithm. Lines 25 – 27 can be done in constant time, and
lines 24 and 28 inO(n) time. We can show in a similar way as for phase 1 that the loop in
lines 29 – 39 is iteratedO(n) times and that each iteration takesO(1) time. Line 40 can be
done inO(1) time, hence phase 2 takesO(n) time. It is easy to see that algorithm Reduce
usesO(n) space. 2

This completes the proof of Theorem 5.1.1.

5.1.3 Decision Problems for Graphs of Bounded Treewidth

In this section, we show that algorithm Reduce can be used for a large class of graph proper-
ties on graphs of bounded treewidth.

Let P be a graph property andl a non-negative integer. Recall that for every twol -
terminal graphsG1 andG2, the equivalence relation�P;l is defined as follows:G1 �P;l G2

if and only if for all l -terminal graphsH, P(G1�H) holds if and only ifP(G2�H) holds
(Definition 2.2.5). We say graph propertyP is of finite index if for each non-negative integer
l ,�P;l has finitely many equivalence classes. As mentioned in Section 2.2.4, many important
graph properties are of finite index. For instance, all MS-definable graph properties are of
finite index [Courcelle, 1990].

Note that a setR of reduction rules for a propertyP is safe if and only if for each reduction
rule (H1;H2) 2 R , H1�P;l H2, for l the number of terminals ofH1 andH2.

An equivalence relation�0 is a refinementof an equivalence relation� if each equiva-
lence class of�0 is a subset of an equivalence class of�. Clearly, if�0 is finite, then so is
�.

Lemma 5.1.6. Let P1 and P2 be graph properties of finite index. Let Q1 and Q2 be graph
properties defined as follows. For each graph G, Q1(G) = P1(G)^P2(G), and Q2(G) =
P1(G)_P2(G). Then Q1 and Q2 are also of finite index.

Proof. (Cf. Borie, Parker, and Tovey [1992], Fellows and Langston [1989].) For each
l � 0 and every twol -terminal graphsG1 andG2, let G1�l G2 if and only if G1�P1;l G2 and
G1�P2;l G2. Then�l is a refinement of both�Q1;l and�Q2;l . Furthermore,�l is finite, since
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each equivalence class of�l is the intersection of two equivalence classes of�P1;l and�P2;l ,
and there are at most finitely many of these intersections. 2

For each integerk� 1, letTWk be the graph property defined as follows: for each graph
G, TWk(G) holds if and only if tw(G) � k. For eachk� 1, TWk is MS-definable (see e.g.
Arnborg et al. [1991]). This immediately implies thatTWk is of finite index, for eachk� 1.
Unfortunately, fork� 4, no formulation ofTWk is known. However, Lagergren and Arnborg
[1991] have given an effectively decidable equivalence relation�k;l , which for eachk andl ,
is a refinement of�TWk;l . Thus we have the following result.

Lemma 5.1.7 [Lagergren and Arnborg, 1991].For each fixed k� 1, TWk is of finite index,
and for each l� 0, there is a finite, effectively decidable refinement of�TWk;l .

For a propertyP and an integerk, we define the propertyPk asPk(G) = P(G)^TWk(G).
It follows from Lemmas 5.1.6 and 5.1.7 that for each fixedk� 1, if P is of finite index, then
so isPk, and furthermore, if we have a refinement�l of �P;l which is effectively decidable,
then we have a refinement�0l of �Pk;l which is effectively decidable.

As we have mentioned in Section 2.2.4, finite index corresponds to ‘finite state’: there
exists a linear time algorithm that decides finite index properties on graphs, given their tree
decomposition of bounded treewidth. Moreover, this algorithm is of a special, well-described
structure [Courcelle, 1990; Borie et al., 1992; Abrahamson and Fellows, 1993]. The disad-
vantage of this algorithm is that a tree decomposition of the input graph is needed. Fortu-
nately, for each fixedk, there is a linear time sequential algorithm which, given a graphG,
checks if tw(G)� k, and if so, computes a minimum width tree decomposition ofG [Bodlaen-
der, 1996a]. However, this algorithm is not very practical, due to the large constant factors
involved. With reduction algorithms, this disadvantage can be overcome, as we will show in
the remainder of this section.

Bodlaender and Hagerup [1995] have proved the following lemma. The proof is technical,
so we do not include it here.

Lemma 5.1.8 [Bodlaender and Hagerup, 1995].Let k and nmin be positive integers. There are
integers d and nmax, 2(nmin�1)� nmax� d, and a constant c> 0, such that in each connected
graph G of treewidth at most k, if n� nmin, then G contains at leastdcne d-discoverable open
and connected l-terminal graphs H with l� 2(k+1) and nmin� jV(H)j � nmax.

The following theorem has originally been proved by Arnborg et al. [1993] for a slightly
different kind of special reduction system. Bodlaender and Hagerup [1995] have adapted the
proof for the special reduction system as defined here.

Theorem 5.1.2. Let P a graph property, and suppose P is of finite index. For each integer
k� 1, there exists a special reduction system(R ;I ) for Pk.

If P is also effectively decidable, and there is an equivalence relation�l for each l� 0
which is a finite refinement of�P;l and is effectively decidable, then such a system(R ;I ) can
effectively be constructed.
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Proof. Let k � 1. We first construct all right-hand sides of reduction rules. For every
l � 2(k+ 1) and every equivalence classC of �Pk;l , do the following. IfC contains open
l -terminal graphs with treewidth at mostk, then choose a representing openl -terminal graph
HC 2C with treewidth at mostk. Letnmin be one more than the maximum number of vertices
of all chosen graphsHC. Let d, nmax andc be as in Lemma 5.1.8.

Let R denote the set of reduction rules to be built. First, for all zero-terminal graphsH
with at leastnmin and at mostnmax vertices, if we have a representative for the classC which
containsH, then add reduction rule(H;HC) to R . Next, for all l with 1� l � 2(k+1) and
for all open connectedl -terminal graphsH with at leastnmin and at mostnmax vertices, if
we have a representative for the equivalence classC in which H is contained, then add the
reduction rule(H;HC) to R . Note that if we do not have such a representative, thenH must
have treewidth at leastk+ 1, and hence there is no terminal graphG for which Pk(H�G)
holds.

Let I = fG jG is irreducible^Pk(G)g.
It is easy to see thatR is finite: there are finitely manyl -terminal graphs with at most

nmaxvertices. Safeness of the resulting setR follows directly from the fact that each left- and
right-hand side of a rule inR belong to the same equivalence class of the relation�Pk;l .

Conditions 1a and 1b of a special reduction system (Definition 5.1.5) clearly hold. This
also shows thatR is decreasing.

We now show thatR is complete, i.e. thatjI j is finite and that conditions 2a and 2b of
Definition 5.1.5 hold. LetG be a graph for whichPk(G) holds. LetC be a component of
G. Note that tw(C) � k. If C has at leastnmin vertices, then, by Lemma 5.1.8,C contains at
leastdcjV(C)je � 1 d-discoverable openl -terminal graphsH with l � 2(k+ 1) andnmin�
jV(H)j � nmax. Hence, by construction of the reduction system,C contains ad-discoverable
match, so condition 2a holds. If all components ofG have less thannmin vertices, then by
definition ofR , G contains a match, and hence condition 2b holds.

We now show thatjI j is finite. Clearly, all connected graphs inI have less thannmin

vertices. If we have a disconnected graphG which is irreducible and for whichPk(G) holds,
then all components ofG have less thannmin vertices. We show thatG has less thannmin

vertices. Suppose not. Sincenmax� 2(nmin�1), there is a subsetSof the set of components
of G which has at leastnmin and at mostnmax vertices. The graph induced by these compo-
nents has treewidth at mostk, and hence by the construction of the reduction rules with zero
terminals inR , G contains a match. This completes the proof thatR is complete, and hence
that(R ;I ) is a special reduction system.

We now show how we can effectively construct such a reduction system. Note that the
non-constructive parts in the proof until now are: computingI , finding a representative for
each equivalence class which contains open terminal graphs with treewidth at mostk, and
testing in which equivalence class a graph is contained. For eachl , let�l be an effectively
decidable equivalence relation onl -terminal graphs that is a refinement of�P;l and has a finite
number of equivalence classes.

Arnborg et al. [1993] gave a way to construct, for any given integerm, a representative of
each equivalence class of�l (0� l �m+1) which contains a graph for which there exists a
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tree decomposition of widthmwith all terminals in the same node.
Furthermore, Lagergren and Arnborg [1991] gave an effectively decidable equivalence

relation�0TWk;l , which is finite for eachk andl , and is a refinement of�TWk;l . This gives us
enough ingredients to construct a special reduction system. First consider the construction of
representatives.

For eachl andk, let�k;l and�0k;l be equivalence relations onl -terminal graphs which are
defined as follows.

G1�k;l G2 , G1 �l G2^G1�
0
TWk;l G2

G1�
0
k;l G2 , G1 �k;l G2^ (G1 is open,G2 is open)

By Lemma 5.1.6 and 5.1.7 it follows that both�k;l and�0k;l are effectively decidable, have
a finite number of equivalence classes, and are a refinement of�Pk;l . Furthermore,�0k;l is a
refinement of�k;l .

Let G=(V;E;X) be anl -terminal graph withl � 2(k+1), and supposeG has treewidth at
mostk. There is a tree decomposition of width at most 3k+2 of G in which all terminals are
in one node: take an arbitrary tree decomposition of widthk of G, let x2 X. Add all vertices
in X�fxg to all nodes inT. Clearly, the new tree decomposition has a node containing all
terminals, and has width at mostk+2(k+1) = 3k+2.

Use the result from Arnborg et al. [1993] to generate a representative for each equivalence
class of�0k;l (for eachl � 3k+ 2) which contains a graph for which there is a tree decom-
position of width 3k+ 2 with all terminals in one node. After the generation, throw away
all representatives with more than 2(k+ 1) terminals or with treewidthk+ 1 or more. The
resulting set contains a representative for each equivalence class of�k;l , 0� l � 2(k+1),
which contains a graph of treewidth at mostk. Let Rdenote this set.

Now delete all graphs fromR which are not open. The resulting set contains a represen-
tative for each equivalence class of�k;l which contains openl -terminal graphs of treewidth
at mostk, and hence this is the set we need.

Now it is easy to construct a special reduction system. Letnmin be one more than the
maximum number of vertices of any graph inR. Let d andnmaxbe as found in Lemma 5.1.8.
For all l � 2(k+ 1), for all open and, ifl � 1, connectedl -terminal graphsH with at least
nmin and at mostnmax vertices, find anH 0 2 R for which H �k;l H 0 (using the algorithm for
deciding�k;l ). If an H 0 is found, then add the reduction rule(H;H 0) to an initially empty set
of reduction rulesR .

The computation ofI can be done as follows. As we have showed, all graphs inI have
less thannmin vertices. SinceP is effectively decidable, so isPk, and hence we can compute
I by computingPk(G) for all graphsG with less thannmin vertices, and putting the graphs for
whichPk(G) holds inI . 2

From the proof of Theorem 5.1.2, we can also conclude the following.

Corollary 5.1.1. Let P be a graph property, and for each l� 0, let�l be a refinement of�P;l .
Let k� 1. If �l is finite for each l� 0, then there is a special reduction system(R ;I ) for
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Pk, such that for each(H;H 0) 2 R , H �l H 0. Moreover, if�l and P are effectively decidable,
then such a system can effectively be constructed.

As each MS-definable graph property is of finite index (Section 2.2.4), Theorem 5.1.2
immediately implies the following result.

Corollary 5.1.2. Let P be a graph property which is MS-definable. For each integer k� 1,
there is a linear time algorithm which decides Pk without using a tree decomposition of the
input graph. Moreover, such an algorithm can be automatically constructed from an MSOL
predicate for P.

5.2 Reduction Algorithms for Optimization Problems
In this section we show how the idea of reduction algorithms can be extended to optimization
problems. This idea was introduced by Bodlaender [1994].

5.2.1 Reduction-Counter Systems and Algorithms

Let Φ be a function which maps each graph to a value inZZ[ffalseg (we assume that iso-
morphic graphs are mapped to the same value). Typically,Φ will be an optimization problem
like MAX INDEPENDENTSET. We will call Φ agraph optimization problem. The valuefalse
is used to denote that a certain condition does not hold, i.e. that there is no optimum for a
graph. LetZ denote the setZZ[ffalseg. Define addition onZ as follows: if i; j 2 ZZ, then
we take fori + j the usual sum, and for alli 2 Z, i + false = false+ i = false.

Instead of reduction rules, we usereduction-counterrules for graph optimization prob-
lems.

Definition 5.2.1 (Reduction-Counter Rule). Areduction-counter ruleis a pair(r; i), wherer
is a reduction rule, andi an integer.

A match to a reduction-counter rule(r; i) in a graphG is a match tor in G.
If G contains a match to a reduction-counter ruler 0 = (r; i), then an application ofr 0 to a

graphG and an integer countercnt is an operation which appliesr to G and replacescnt by
cnt+ i. An application of a reduction-counter rule is also called a reduction.

Let G andG0 be two graphs. If there is a reduction-counter ruler such that applyingr

to G and some countercnt can result inG0, then we writeG
r 0

! G0. If we have a setR of

reduction-counter rules, we writeG
R
!G0 if there exists anr 2 R with G

r
!G0. If a graphG

has no match inR , then we say thatG is irreducible (w.r.t.R ).
We extend the notions of safeness, completeness, termination and decrease to reduction-

counter rules.

Definition 5.2.2. Let Φ be a graph optimization problem and letR be a set of reduction-
counter rules.

� R is safefor Φ if, wheneverG
r
!G0 for somer = (r 0; i) 2 R , thenΦ(G) = Φ(G0)+ i.
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� R is completefor Φ if the setI of irreducible graphsG for whichΦ(G) 6= false is finite.

� R is terminatingif there is no infinite sequenceG1
R
!G2

R
!G3

R
! ��� .

� R is decreasingif wheneverG
R
!G0, thenG0 contains fewer vertices thanG.

Definition 5.2.3 (Reduction-Counter System). Areduction-counter systemfor a graph opti-
mization problemΦ is a triple(R ;I ;φ), whereR is a finite set of reduction-counter rules
which is safe, complete and terminating forΦ, I is the set of graphsG which are irreducible
and for whichΦ(G) 6= false, andφ is a function mapping each graphG2 I to the valueΦ(G).

A decreasing reduction-counter system forΦ is a reduction-counter system which is de-
creasing.

As a simple example we give a reduction-counter system is the optimization problem
MAX INDEPENDENTSET on cycles: for each graphG, if G is a cycle thenΦ(G) is the size
of a maximum independent set inG, otherwiseΦ(G) = false. Let R = f(r;1)g, wherer is
the reduction rule depicted in Figure 5.4, letI = fC3;C4g, whereC3 andC4 are the cycles on
three and four vertices (see Figure 5.4), and letφ(C3) = 1, φ(C4) = 2. It can easily be seen
that(R ;I ;φ) is a reduction-counter system forΦ.

! C4
r

C3

Figure 5.4. A reduction rule and a set of irreducible graphs for MAX INDEPENDENT

SET on cycles.

Let Φ be a graph optimization problem. LetP be the graph property with for each graph
G, P(G) = true if Φ(G) 2 ZZ, andP(G) = false if Φ(G) = false. We callP thederivedgraph
property (ofΦ). From a reduction-counter system(R ;I ;φ) for Φ, we can derive a reduction
system forP: let R 0 = fr j (r; i) 2 R for somei 2 ZZg. Then(R 0;I ) is a reduction system for
P. We call this system thederived reduction system(from (R ;I ;φ)).

If we are given a decreasing reduction-counter systemS = (R ;I ;φ) for a graph optimiza-
tion problemΦ, we can again use a reduction algorithm to solveΦ in polynomial time. LetS 0

denote the derived reduction system (which is also decreasing). A reduction algorithm based
on S is a modification of a reduction algorithm for the derived graph property based onS 0:
instead of repeatedly applying reduction rules fromS 0 on the input graphG, repeatedly apply
reduction-counter rules fromS on the graphG and a countercnt. Initially, cnt is set to zero.

Let Gj denote the graph after thejth reduction is done, and letcntj denote the value of
the counter at this moment (henceG0 denotes the input graph, andcnt0 = 0). It is important
to note that the sumΦ(Gj)+ cntj is invariant during the reduction process, because of the
safeness property. Thus, at each moment in the reduction algorithm,Φ(G0) = Φ(Gj)+cntj .
Hence, when the reduction process stops aftert iterations, becauseGt is irreducible, then
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Φ(G0) 2 ZZ if and only if Gt 2 I (or, more precisely,G is isomorphic to a graphH 2 I ).
Hence ifGt 2 I , thenΦ(G0) = φ(Gt)+cntt, otherwise,Φ(G0) = false.

Definition 5.2.4 (Special Reduction-Counter System). A special reduction-counter system
special is a reduction-counter system of which the derived reduction system is special (Defi-
nition 5.1.5).

Note that the reduction-counter system for MAX INDEPENDENTSET on cycles that we
have given above is also a special reduction-counter system for this problem.

Clearly, if we have a special reduction-counter system for a graph optimization problem
Φ, then we can apply the modifications described above to algorithm Reduce in order to get
a linear time algorithm for solvingΦ.

Theorem 5.2.1. Let Φ be a graph optimization problem. If we have a special reduction-
counter system forΦ, then we have an algorithm which, for each graph G, computesΦ(G)
in O(n) time with O(n) space.

5.2.2 Optimization Problems for Graphs of Bounded Treewidth

In this section, we derive a similar result as Theorem 5.1.2 for reduction-counter systems.
In analogy to�P;l for graph propertiesP, we define an equivalence relation�Φ;l for graph

optimization problemsΦ.

Definition 5.2.5. For a graph optimization problemΦ the equivalence relation�Φ;l on l -
terminal graphs is defined as follows. LetG1 andG2 be twol -terminal graphs.

G1�Φ;l G2 , there is ani 2 ZZ such that for alll -terminals

graphsH: Φ(G1�H) = Φ(G2�H)+ i:

Optimization problemΦ is of finite integer indexif �Φ;l is finite for each fixedl .

Note that a if reduction-counter rule((H;H 0); i) is safe for a graph optimization problem
Φ, thenH �Φ;l H 0. Furthermore, ifH �Φ;l H 0 for two l -terminal graphsH andH 0, then there
is ani 2 ZZ for which the reduction-counter rule((H;H 0); i) is safe forΦ. Note furthermore
that, for eachl � 0,�Φ;l is a refinement of�P;l , whereP is the derived graph property ofΦ.
Hence ifΦ is of finite integer index, then the derived propertyP is of finite index.

For any graph optimization problemΦ and any integerk� 1,Φk is the graph optimization
problem with for each graphG,

Φk(G) =

(
false if tw(G)> k

Φ(G) otherwise.

From Lemma 5.1.6 and Lemma 5.1.7, it follows that, ifΦ is of finite integer index, then
for eachk� 1, Φk is of finite integer index.

The following theorem is the analog of Theorem 5.1.2 for finite integer index problems.
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Theorem 5.2.2. Let Φ is a graph optimization problem of finite integer index. For each
integer k� 1 there exists a special reduction-counter system forΦk.

If Φ is also effectively computable and there is an equivalence relation�l , for each l� 0,
which is a finite refinement of�Φ;l and is effectively decidable, then such a special reduction-
counter systemS can effectively be constructed. Moreover, for each reduction-counter rule
((H;H 0); i) in S , H �l H 0.

Proof. Let k� 1. Let P be the derived graph property ofΦ. Since for eachl � 0, �Φk;l

is a refinement of�Pk;l , Corollary 5.1.1 implies that there is a special reduction systemS =
(R ;I ) for P, such that for each(H;H0) 2 R , H �Φk;l H 0. We show that we can construct a
special reduction-counter system forΦ for whichS is the derived reduction system. For each
reduction rule(H;H 0), make a reduction-counter rule((H;H 0); i), wherei = 0 if for all G,
Φ(H�G) = false (and henceΦ(H 0�G) = false), andi = Φ(H�G)�Φ(H 0�G) for some
G such thatΦ(H�G) 2 ZZ otherwise. LetR 0 denote the set of all these reduction-counter
rules. Letφ : I ! ZZ be the function mapping each graphG 2 I to its valueΦ(G). Then
(R 0;I ;φ) is a special reduction-counter system forΦ.

If Φ is effectively computable and we have a refinement�l of �Φ;l , for eachl � 0,
then Φk is effectively computable andP and Pk are effectively decidable. Hence we can
effectively construct a special reduction system(R ;I ) for Pk, such that for each rule(H;H 0),
H �l H 0. Furthermore, we can turn this reduction system in a special reduction-counter
system(R 0;I ;φ) for Φ in the following way. The functionφ can be computed by simply
computingΦ(G) for eachG2 I .

For each reduction ruler = (H;H 0) 2 R , we compute an integeri such that(r; i) is a
safe reduction-counter rule inR . SupposeH and H 0 are l -terminal graphs. LetG be a
finite class ofl -terminal graphs containing at least one terminal graph of each equivalence
class of�Φ;l . Such a setG can be effectively computed, as is described in the proof of
Theorem 5.1.2. Now if there is aG 2 G for which Φ(H �G) 2 ZZ, then take any such
G and let i = Φ(H �G)�Φ(H 0�G). Note that, sinceH �Φ;l H 0, for eachG 2 G with
Φ(G�H) 2 ZZ, Φ(G�H)�Φ(G�H 0) has the same value, hence this gives a proper value.
If G contains no graphG for whichΦ(H�G) 2 ZZ, then leti = 0. Note that in this case, for
every l -terminal graphG, Φ(H �G) = Φ(H 0�G) = false, and henceΦ(H �G) = false =
false+0= Φ(H 0�G)+ i. Let R 0 be the set of all reduction-counter rules that are found this
way. 2

Unfortunately, we can not apply Theorem 5.2.2 to all MS-definable graph optimization
problems (as defined in Section 2.2.4). Hence the analog of Corollary 5.1.2 does not hold for
optimization problems. However, there are a number of problems for which we can prove
that they are of finite integer index. We give them in the next theorem. A precise definition
of these problems is given in Appendix A. In Chapter 7, we prove that these problems are
of finite integer index (Theorem 7.1.2). These proofs make use of techniques introduced in
Chapter 6.

Theorem 5.2.3. The following problems are of finite integer index:MAX INDUCED d-
DEGREESUBGRAPH for all d � 1, MAX INDEPENDENTSET, MIN VERTEX COVER, MIN
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p-DOMINATING SET for all p � 1, MAX CUT on graphs with bounded degree,MIN PAR-
TITION INTO CLIQUES, MIN HAMILTONIAN PATH COMPLETION, andMAX LEAF SPAN-
NING TREE.

5.3 Parallel Reduction Algorithms
Bodlaender and Hagerup [1995] have given an efficient parallel variant of algorithm Reduce,
based on a variant of the special reduction system. In this section, we describe this variant
of the special reduction system, and we describe the structure of the algorithm. Because the
algorithm is quite complicated, we do not give all details. We start with reduction algorithms
for decision problems.

5.3.1 Decision Problems

The basic idea of the parallel reduction algorithm is that, if there are two or more possible
applications of reduction rules at a certain time, and these applications do not interfere, then
they can be applied concurrently.

Definition 5.3.1 (Non-Interfering Matches). LetR be a set of reduction rules and letG be a
graph with a fixed adjacency list representation. Two matchesG1 andG2 in G are said to be
non-interferingif

� no inner vertex ofGi (i = 1;2) is a vertex ofG3�i ,

� the sets of edges ofG1 andG2 are disjoint, and

� if G1 andG2 have a common terminalx, then in the adjacency list ofx, there are no two
consecutive edgese1 ande2 such thate1 2 E(G1) ande2 2 E(G2). A set of matches inG
is non-interfering if all matches in the set are pairwise non-interfering.

Let R be a set of reduction rules and letG be a graph with a fixed adjacency list represen-
tation. If we have a set of non-interfering matches inG, then the reductions corresponding
to these matches can be executed in parallel, which gives the same result as if the reductions
were executed subsequently, in an arbitrary order. In order to make a parallel reduction algo-
rithm for a given graph propertyP efficient, we must have a special reduction system which
gives sufficiently many matches in any graphG for which P holds. Therefore, we introduce
a specialparallel reduction system.

Definition 5.3.2 (Special Parallel Reduction System). LetP be a graph property, and(R ;I )
a decreasing reduction system forP. Let nmax be the maximum number of vertices in any
left-hand side of a ruler 2 R . (R ;I ) is called aspecial parallel reduction systemfor P if
we know positive integersnmin andd, nmin� nmax� d, and a constantc> 0, such that the
following conditions hold.

1. For each reduction rule(H1;H2) 2 R ,

(a) if H1 hasl > 0 terminals, thenH1 is connected andH1 andH2 are open, and
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(b) if H1 is a zero-terminal graph, thenjV(H2)j< nmin .

2. For each graphG and each adjacency list representation ofG, if P(G) holds, then

(a) each componentC of G with at leastnmin vertices has at leastc� jV(C)j d-discoverable
matches, and

(b) if all components ofG have less thannmin vertices, then any subgraphG0 of G induced
by a set of components ofG with nmin� jV(G0)j � nmax is a match.

Note that, since for each integern> 1 and each constantc, if c> 0 thencn> 0, a special
parallel reduction system is also a special reduction system.

Consider the graph property which holds if a graph is two-colorable, has an odd number
of components, and all its components are cycles. The reduction system that we have given
for this property on page 100 is an example of a special parallel reduction system (taked =
nmax= 8, nmin = 5 andc= 1=5).

Let P be a graph property andS = (R ;I ) a special parallel reduction system forP. Let
nmin, nmax, d andc be as in Definition 5.3.2. The parallel reduction algorithm introduced by
Bodlaender and Hagerup [1995] based onS works as follows. Like algorithm Reduce, the
algorithm consists of two phases (see also page 100 – 102). In the first phase, the algorithm
finds d-discoverable matches and executes the corresponding reductions, until there are no
mored-discoverable matches. In the second phase, the algorithm tries to finish the reductions
by applying reduction rules with zero terminals. We first describe the first phase in more
detail.

Phase 1. Suppose we are given an input graphG with n vertices. The first phase consists
of a number of reduction rounds, which are subsequently executed. In each reduction round,
Ω(m) reductions are applied to the current graph, which hasm vertices, if possible. Further-
more, each component of less thannmin vertices is removed from the graph, and is added to a
graphH (which is initially the empty graph). This is done in four steps.

1. In the first step, for each vertexv which has degree at mostd it is checked whetherv
is contained in a component of less thannmin vertices, and if so, then this component is
removed fromG and added toH.

2. In the second step, the algorithm tries to discover a match from each vertexv which has
degree at mostd, and if this succeeds, the corresponding reduction ruler is looked up.
Let A denote the set of all matches that are found. Note thatA is not necessarily non-
interfering. If jAj < cm, wherem is the number of vertices of the current graph, thenP
does not hold for the input graph (ifm 6= 0, then it must be the case thatm� nmin, since
otherwise, in step 1 of this reduction round, all components ofG are removed), andfalse
is returned. Otherwise, go on with the next step.

3. In the third step, the algorithm computes a subsetA0 of A with sizeΩ(jAj), which is a set
of non-interfering matches.

4. In the last step, all reductions corresponding to the matches inA0 are applied.
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The first, second and fourth step can be done in constant time onm processors, without
concurrent reading or writing: in step 1 and 2, take one processor for each vertex of degree
at mostd. In step 4, for each match inA0, let the processor which discovered the match in
step 2 apply its corresponding reduction. The third step is more complicated. It is basically
done as follows. First, aconflict graphof all matches inA is built. This graph contains a
vertex for each match inA, and an edge between two vertices if and only if the corresponding
matches are interfering. Now an independent set in the conflict graph corresponds to a set
of non-interfering matches. It can be seen that the conflict graph has bounded degree. This
means that there is an independent setA0 of sizeΩ(jAj) which can be found efficiently in
parallel on an EREW PRAM (for more details, see Bodlaender and Hagerup [1995]).

The reduction rounds are finished as soon as the graph is empty. The actual result of the
reductions is the graphH, which consists of components with less thannmin vertices. The
algorithm proceeds with phase 2, with the graphH.

Phase 2. In the second phase, a graphH is given which consists of a number of compo-
nents, each having less thannmin vertices. LetC be a collection of subgraphs ofH. Initially,
let C be the collection of connected components ofH. Until C contains only one element, a
number ofjoin-reducerounds is performed withC andH.

In each join-reduce round, a setS= f(G1;G0
1);(G2;G0

2); : : : ;(Gt ;G0
t)g of pairs of graphs

in C is computed, such that each graph ofC occurs at most once inS, and the setScontains
as many pairs as possible, i.e.jSj = bjC j=2c For each such pair(Gi ;G0

i) in S it is checked
whetherGi [G0

i is a match to some ruler = (H1;H2). If so, the corresponding reduction rule
is applied: inH, Gi andG0

i are replaced by a graphG0 which is isomorphic toH2, and inC , we
replaceG1 andG2 by G3. If Gi andG0

i do not form a match, then eitherjV(Gi)[V(G0
i)j< nmin

or jV(Gi)[V(Gi)j � nmin. In the first case,Gi andG0
i are replaced byGi[G0

i in the collection
C . In the latter case,false is returned, sinceP does not hold (condition 2b of a special parallel
reduction system).

The algorithm performs the join-reduce rounds untiljC j = 1. If H 2 I then true is re-
turned, otherwise,false is returned.

By the definition of a special parallel reduction system it can be seen that phase 2 returns
true if and only if P holds for the graphH as it was passed to this phase. This means that the
algorithm described above is correct.

Consider the amount of resources used by the algorithms. In each reduction round of the
first phase, the number of vertices of the current graph is decreased by at least a constant
fraction. This means that there areO(logn) reduction rounds. The only part in a reduction
round of phase 1 which takes more than constant time is step 3. By a careful analysis, it
can be seen that phase 1 of the algorithm can be made to run inO(lognlog�n) time with
O(n) operations and space on an EREW PRAM. For a CRCW PRAM, the algorithm can be
slightly improved: it runs inO(logn) time withO(n) operations and space.

In phase 2, the collectionC initially contains at mostjV(H)j components andjV(H)j � n.
Hence phase 2 consists ofO(logn) join-reduce rounds. Furthermore, by the definition of a
special parallel reduction system,C contains only graphs with less thannmin vertices, which
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implies that phase 2 can be done inO(logn) time with O(n) operations and space on an
EREW PRAM. Hence we have the following result.

Theorem 5.3.1. Let P be a graph property. If we have a special parallel reduction system for
P, then we have an algorithm which decides P in O(lognlog�n) time with O(n) operations
and space on an EREW PRAM, and in O(logn) time with O(n) operations and space on a
CRCW PRAM.

The definition of a special parallel reduction system, Lemma 5.1.8 and (the proof of)
Theorem 5.1.2 immediately imply the following result.

Theorem 5.3.2. Let P a graph property, and suppose P is of finite index. For each integer
k� 1, there is a special parallel reduction system for Pk.

If P is also effectively decidable, and there is an equivalence relation�l for each l� 0,
which is a finite refinement of�P;l and is effectively decidable, then such a system(R ;I ) can
effectively be constructed. Moreover, for each rule(H;H 0) 2 R , H �l H 0

The analog of Corollary 5.1.2 also holds for the parallel case.
In the parallel case, there exist algorithms that decide finite index properties inO(logn)

time with O(n) operations and space, given a tree decomposition of bounded width of the
graph (see also Section 2.2.4). However, the best known parallel algorithm for finding a tree
decomposition of the input graph takesO(log2n) time with O(n) operations on an EREW or
CRCW PRAM [Bodlaender and Hagerup,1995]. Hence the reduction algorithms presented
in this section are more efficient.

5.3.2 Optimization Problems

It is again easy to adapt the parallel reduction algorithm for optimization problems. There-
fore, we define a special parallel reduction-counter system to be a reduction-counter system
of which the derived reduction system is a special parallel reduction system.

For instance, the reduction-counter system for MAX INDEPENDENTSET on cycles that
we defined on page 109 is a special parallel reduction-counter system for this problem.

Let Φ be a graph optimization problem, andS = (R ;I ;φ) a special parallel reduction-
counter system forΦ. A parallel reduction algorithm based onS is a combination of the
parallel reduction algorithm based on the derived reduction system, and the sequential re-
duction algorithm described in Section 5.2. Each processor has a counter, which is initially
set to zero. If a processor applies a reduction-counter rule in either phase 1 or phase 2 of
the algorithm, then it uses its own counter. After the last round of phase 2 is finished, the
counters of all processors are added up. Letcnt denote the resulting counter, letG denote the
input graph andH the reduced graph. Now, ifH 2 I , thenΦ(G) = cnt+ φ(H), otherwise,
Φ(G) = Φ(H) = false. The sum of all the counters can be computed inO(logn) time with
O(n) operations and space on an EREW PRAM, which means that the total algorithm runs
in O(lognlog� n) time with O(n) operations and space on an EREW PRAM, or inO(logn)
time with O(n) operations and space on a CRCW PRAM.
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Theorem 5.3.3. Let Φ be a graph optimization problem. If we have a special parallel
reduction-counter system forΦ, then we have an algorithm which, for each graph G with
n vertices, computesΦ(G) in O(lognlog�n) time with O(n) operations and space on an
EREW PRAM, and in O(logn) time with O(n) operations and space on a CRCW PRAM.

By Lemma 5.1.8 and Theorem 5.2.2, we also have the following result.

Theorem 5.3.4. Let Φ be a graph optimization problem which is of finite integer index. For
each integer k� 1, there exists a special parallel reduction systemS for Φk.

If, in addition,Φ is effectively computable, and there is an equivalence relation�l , for
each l� 0, which is a finite refinement of�Φ;l and is effectively decidable, then such a
systemS can effectively be constructed, and for each reduction-counter rule((H;H 0); i) in S ,
H �l H 0.

Theorem 5.3.4 implies that there are special parallel reduction-countersystems for the fol-
lowing problems on graphs of bounded treewidth (see also Theorem 5.2.3): MAX INDUCED

d-DEGREESUBGRAPH for all d� 0, MIN p-DOMINATING SET for all p� 1, MIN VERTEX

COVER, MAX CUT on graphs with bounded degree, MIN PARTITION INTO CLIQUES, MIN

HAMILTONIAN PATH COMPLETION, and MAX LEAF SPANNING TREE.

5.4 Additional Results
It is possible to generalize the results in this chapter to directed, mixed and/or labeled graphs.
In the case of labeled graphs, we can allow the input graph to have a labeling of the vertices
and/or edges, where the labels are taken from a set of constant size. These labels could also
act as weights for finite integer index problems, e.g., we can deal with MAX WEIGHTED

INDEPENDENT SET, with each vertex a weight fromf1;2; : : : ;cg for some fixedc, in the
same way as we dealt with MAX INDEPENDENTSET. Each of these generalizations can be
handled in a very similar way as the results that are given in this chapter.

It is possible to generalize the results on reduction algorithms based on special reduction
systems to multigraphs. As we will use this generalized result in Chapters 8 and 9, we give a
brief description of how this is done. Instead of ordinary terminal graphs (Definition 2.2.3),
we use terminal multigraphs, which are terminal graphs that may have multiple edges. The
operation� on terminal multigraphs is similar to the operation� on ordinary terminal graphs
(Definition 2.2.4), except that it does not remove multiple edges. Reduction rules, matches
and applications of reduction rules are the same as for ordinary graphs (Definition 5.1.1),
except that they are based on the definitions of terminal multigraphs and the new operation�
as given above.

Wherever we mentioned the number of vertices of a (terminal) graph, we replace this by
the number of vertices plus the number of edges of the (terminal) multigraph. For exam-
ple, a set of reduction rulesR is decreasing if for each(H1;H2) 2 R , jV(H2)j+ jE(H2)j <
jV(H1)j+ jE(H1)j. Note that this implies that on each graphG = (V;E), a sequence of at
mostjVj+ jEj reduction rules can be applied, and hence this influences the running time of
the reduction algorithms.
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We also slightly modify the definition of discoverability. We do not require that the left-
hand and right-hand side of a reduction rule are open. As a consequence, not only all vertices
of a match must bed-discoverable, but also all edges.

Definition 5.4.1. Let d be a positive integer, letG be a multigraph, given by some adjacency
list representation, and letG1 be anl -terminal multigraph. We sayG1 is d-discoverable inG
if

1. G1 is connected, the maximum degree (i.e. the maximum number of incident edges) of
any vertex inG1 is at mostd,

2. there is anl -terminal multigraphG2, such thatG= G1�G2, and

3. G1 contains an edgee, such that for all edgese0 2 E(G1), there is a walkW in G1 with
W = (u0;e0;u1;e1; : : : ;es;us+1), wheree0 = e, es = e0, and for eachi, 1� i � s, in the
adjacency list ofui in G, the edgesei�1 andei have distance at mostd.

Note that if condition 3 of Definition 5.4.1 holds for a terminal graphG1 in G, then for every
two edgese ande0 of G1 there is a walkW = (u0;e0; : : : ;es;us+1) in G1 with e= e0 and
e0 = es, such that for eachi, 0� i < s, ei andei+1 have distance at mostd in the adjacency
list of ui , and furthermore, each edge ofG1 occurs at most twice inW (see also page 99).

We redefine a special reduction system for graph properties on multigraphs.

Definition 5.4.2 (Special Reduction System for Multigraphs). LetP be a graph property, and
(R ;I ) a decreasing reduction system forP. Let nmax be the maximum number of vertices
plus edges in any left-hand side of a ruler 2R . (R ;I ) is called aspecial reduction systemfor
P if we know positive integersnmin andd, nmin� nmax� d, such that the following conditions
hold.

1. For each reduction rule(H1;H2) 2 R ,

(a) if H1 hasl > 0 terminals, thenH1 is connected, and

(b) if H1 is a zero-terminal graph, thenjV(H2)j+ jE(H2)j< nmin .

2. For each graphG and each adjacency list representation ofG, if P(G) holds, then

(a) each component ofG with at leastnmin vertices plus edges has ad-discoverable match,
and

(b) if all components ofG have less thannmin vertices plus edges, then eitherG2 I or G
contains a match which is a zero-terminal graph.

A special parallel reduction system for graph properties on multigraphs is defined as
follows.

Definition 5.4.3 (Special Parallel Reduction System for Multigraph). LetP be a graph prop-
erty, and(R ;I ) a decreasing reduction system forP. Let nmax be the maximum number of
vertices plus edges in any left-hand side of a ruler 2 R . (R ;I ) is called aspecial parallel re-
duction systemfor P if we know positive integersnmin andd, nmin� nmax� d, and a constant
c> 0, such that the following conditions hold.
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1. conditions 1a and 1b of Definition 5.4.2 hold.

2. For each graphG and each adjacency list representation ofG, if P(G) holds, then

(a) each componentC of G with at leastnmin vertices plus edges has at leastc � (jV(C)j+
jE(C)j) d-discoverable matches, and

(b) if all components ofG have less thannmin vertices plus edges, then any subgraphG0

of G induced by a set of components ofG with nmin� jV(G0)j+ jE(G0)j � nmax is a
match.

A special (parallel) reduction-counter system is again a (parallel) reduction-counter system
of which the derived (parallel) reduction system is special.

The algorithms can now by adapted as follows. First consider the sequential reduction
algorithm which is given on page 101. We modify it as follows. Instead of searching for
d-discoverable matches from vertices, we search from edges. Therefore, we first fill the setS
(line 3) with all edges inE(G). In each iteration of the main loop of phase 1, we take one edge
fromSand we look for ad-discoverable matchG1 to some reduction ruler = (H1;H2). If one
can be found, we apply it by replacingG1 by a graphG2 isomorphic toH2. We remove all
edges ofG1 which are not inG2 from the setS. After that, we add all edges ofG2 which were
not already inG1 to the setS, and furthermore, we add all edgese of the graphG for which
there is a terminalx of G1 such thatx2 e, and in the adjacency list ofx, something changed
within a distanced from e (whered denotes the constant for discoverability). Phase 2 of
the algorithm does not have to be changed. It can be seen that the algorithm is still correct,
and that it runs inO(n+m) time usingO(n+m) space. For the sequential reduction-counter
system we can use the same modifications and get the same time and space bounds.

Theorem 5.4.1. Let P be a graph property andΦ a graph optimization problem, both for
multigraphs.

� If we have a special reduction system for P, then we have an algorithm which solves P in
O(n+m) time and space.

� If we have a special reduction-counter system forΦ, then we have an algorithm which
solvesΦ in O(n+m) time and space.

Consider the parallel algorithm (page 113). We use the same type of modification, i.e.
we search from edges instead of vertices of degree at mostd. In the first step of phase 1, the
algorithm checks for each edge whether it is contained in a component of less thannmin ver-
tices plus edges, and in the second step of phase 1, the algorithm tries to find ad-discoverable
match from each edge. It is easy to check that this gives the following results.

Theorem 5.4.2. Let P be a graph property andΦ a graph optimization problem, both for
multigraphs.

� If we have a special parallel reduction system for P, then we have an algorithm which
solves P in O(log(n+m) log�(n+m)) time with O(n+m) operations and space on an
EREW PRAM, and in O(log(n+m)) time with O(n+m) operations and space on a CRCW
PRAM.
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� If we have a special parallel reduction-counter system forΦ, then we have an algorithm
which solvesΦ in O(log(n+m) log�(n+m)) time with O(n+m) operations and space
on an EREW PRAM, and in O(log(n+m)) time with O(n+m) operations and space on
a CRCW PRAM.

Unfortunately, the results on the existence of special (parallel) reduction(-counter) sys-
tems for many problems on graphs of bounded treewidth (Theorems 5.1.2, 5.2.2, 5.3.2, and
5.3.4) can not directly be generalized to multigraphs of bounded treewidth.
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Chapter 6

Constructive Reduction Algorithms

In Chapter 5 we have shown that for many decision and optimization problems on graphs of
bounded treewidth, efficient reduction algorithms can be designed that decide these problems.
Many decision and optimization problems however, have a constructive version, in which we
are not only interested in whether a certain property holds for a given graph, but we are
also interested in asolution, if the property holds. For example, in the constructive version
of k-COLORABILITY we want to find ak-coloring of a given graph, if one exists. In the
constructive version of MAX INDEPENDENT SET, we want to find an independent set of
maximum size in a given graph, and we are not only interested in the maximum size itself.

The reduction algorithms that we described in Chapter 5 do not provide a possibility to
construct solutions. In this chapter, we show how reduction algorithms can be adapted in
such a way that solutions can be constructed, and we show that these algorithms run within
the same time and resource bounds as the basic reduction algorithms (both sequentially and in
parallel). We also show that for a number of graph problems on graphs of bounded treewidth,
these algorithms can be used. For example, they can be used for all MS-definable construction
problems whose structure of a solution satisfies certain conditions.

The basic idea of a constructive reduction algorithm is the following. The algorithm
consists of two parts. In the first part, an ordinary reduction algorithm is applied. The reduced
graph is then passed to the second part. In this part, a solution is constructed for the reduced
graph, if it exists (in the case of an optimization problem, this solution is guaranteed to be
optimal). After that, the reductions that are applied in part 1 are undone one by one, in
reversed order, and each time a reduction is undone, the (optimal) solution of the graph is
adapted to an (optimal) solution of the new graph. This results in a solution of the input
graph, which is an optimal solution in the case of a graph optimization problem.

In order to keep the running time and amount of resources for the second part within the
same bounds as for first part, we must be able to efficiently construct an (optimal) solution
for the new graph from an (optimal) solution of the old graph, after an undo-action is ap-
plied. Therefore, we require that the new solution can efficiently be constructed from the old
solution.

In this chapter, we define a type of reduction system for which this can be done efficiently,
both for decision and for optimization problems. We also determine for what kind of prob-
lems such a reduction system exists. In Section 6.1, we develop the theory for sequential
reduction algorithms for decision problems. In Section 6.2, we extend this to optimization
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problems, and in Section 6.3, we show that this method can also be applied in parallel. Fi-
nally, in Section 6.4, we discuss some additional results. In all sections, except Section 6.4,
the graphs we consider are simple.

6.1 Decision Problems
We start with a definition of a constructive reduction system and an extension of the efficient
reduction algorithm presented in Section 5.1.2 to construction problems. After that, we show
how this algorithm can be applied to solve a large class of construction problems on graphs
of bounded treewidth.

6.1.1 Constructive Reduction Systems and Algorithms

Recall that a graph property is a functionP which maps each graph to one of the valuestrue
andfalse. Many graph properties are of the form

P(G) = ‘there is anS2 D(G) for whichQ(G;S) holds’;

whereD(G) is asolution domain(or shortly domain), which is some set depending onG, and
Q is an extended graph property ofG andS, i.e.Q(G;S) 2 ftrue; falseg for all graphsG and
all S2 D(G). An S2 D(G) for whichQ(G;S) holds is called asolutionfor G. For example,
for the perfect matching problem on a graphG, D(G) can beP (E), the power set ofE, and
for S2 D(G), Q(G;S) holds if and only if every vertex inG is end point of exactly one edge
in S. HenceS is a solution forG if S is a perfect matching ofG.

If a graph property is of the formP(G) = ‘there is anS2 D(G) for whichQ(G;S) holds’,
then we callP a construction propertydefined by the pair(D;Q).

In this section, we consider constructive reduction algorithms which, for a construction
propertyP defined by(D;Q), do not only decideP, but if P holds for an input graphG, also
construct anS2D(G) for whichQ(G;S) holds.

Definition 6.1.1 (Constructive Reduction System). LetP be a construction property defined
by (D;Q). A constructive reduction systemfor P is a quadruple(R ;I ;AR ;AI ), where

� (R ;I ) is a reduction system forP,

� AR is an algorithm which, given

– a reduction ruler = (H1;H2) 2 R ,

– two terminal graphsG1 andG2, such thatG1 is a isomorphic toH1 andG2 is isomor-
phic toH2,

– a graphG with G= G2�H for someH, and

– anS2 D(G), such thatQ(G;S) holds,

computes anS0 2G1�H such thatQ(G1�H;S0) holds,

� AI is an algorithm which, given a graphG which is isomorphic to someH 2 I , computes
anS2 D(G) for whichQ(G;S) holds.
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Algorithm AI in a constructive reduction system(R ;I ;AR ;AI ) is used to construct an
initial solution of the reduced graphG, if G 2 I . Algorithm AR is used to reconstruct a
solution, each time a reduction is undone on the graph.

As an example, consider the constructive version of the graph propertyP which holds for
graphsG of which each component is a two-colorable cycle, and the number of components
is odd (see Chapter 5, page 100): we are looking for a two-coloring of the graph, if the graph
is two-colorable, all its components are cycles, and the number of its components is odd. For
each graphG, let D(G) be the set of partitions(V1;V2) of V(G), and for eachS2 D(G), let
Q(G;S) be true if and only if S is a two-coloring ofG, each component ofG is a cycle, and
the number of components ofG is odd.

We extend the reduction system forP given on page 100 (Figure 5.3) to a constructive
reduction system forP. AlgorithmAR uses a table: for each reduction rule(H1;H2)2R , and
each possible two-coloring of the terminal graphH2, it gives a two-coloring of the terminal
graphH1 which is the same on the set of terminals. The contents of this table are depicted in
part I of Figure 6.1 (symmetric cases are considered only once, hence for both rules, there is
only one two-coloring). Given as input a reduction ruler, two terminal graphsG2 andG1, a
graphG=G2�H, and a two-coloring ofG, algorithmAR can easily compute a two-coloring
of G1�H using the given table: the algorithm looks which vertices ofG2 have which color,
and looks up the corresponding coloring ofG1 in the table. Then it removes the inner vertices
of G2 from the solution, and adds the inner vertices ofG1 in the correct way.

Algorithm AI also uses a table: for the only elementH 2 I , this table contains a two-
coloring of H. See part II of Figure 6.1. Hence(R ;I ;AR ;AI ) is a constructive reduction
system forP defined by(D;Q). Note that both algorithms can be made to run inO(1) time if
we use a convenient data structure.

 

: inner or terminal vertex in one part of partition

: inner or terminal vertex in the other part of partition

I

II

 Gempty

Figure 6.1. Example of tables used byAR andAI for constructive reduction system
for two-colorability on graphs of which each component is a cycle, and the number
of components is odd.

In order to make an efficient constructive reduction algorithm based on a constructive
reduction system(R ;I ;AR ;AI ), we want that algorithmsAR andAI work efficiently. This
is required in a special constructive reduction system.

Definition 6.1.2 (Special Constructive Reduction System). LetP be a construction property
defined by(D;Q). A constructive reduction system(R ;I ;AR ;AI ) for P is a special con-
structive reduction systemfor P if
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1. (R ;I ) is a special reduction system forP (Definition 5.1.5), and

2. algorithmsAR andAI run inO(1) time.

Note that the constructive reduction system we gave for two-colorability of graphs of which
each component is a cycle, is a special constructive reduction system, since algorithmsAI and
AR as described above take constant time, and we have shown on page 100 that the reduction
system depicted in Figure 5.3 is a special reduction system for the problem.

One way to obtain an algorithmAR in a constructive reduction system which runs in
O(1) time is to ensure thatAR only has to change a solution locally, i.e. that the solution to
construct only differs from the input solution in the part of the graph that was involved in the
reduction. We use this technique in most of our algorithms.

Let P be a construction property defined by(D;Q) and let(R ;I ;AR ;AI ) be a special
constructive reduction system forP. The following algorithm computes for a given graphG
a solution ofG if one exists.

Algorithm Reduce-Construct(G)
Input: GraphG
Output: S2 D(G) for whichQ(G;S) holds if P(G) holds,false otherwise
1. (� Part 1�)
2. Apply as many reductions as possible onG in the way of algorithm Reduce. Store

the resulting sequence(G1
1;G

1
2);(G

2
1;G

2
2); : : : ;(G

t
1;G

t
i ), wheret denotes the number of

reductions, and for eachi, 1� i � t, in theith reduction,Gi
1 is replaced byGi

2. Let G be
the reduced graph.

3. (� Part 2�)
4. if G =2 I then return false
5. (� Construct initial solution�)
6. S AI (G)
7. for i t downto 1
8. do let r = (H1;H2) 2 R such thatH1 andGi

1 are isomorphic andH2 andGi
2 are

isomorphic.
9. (� reconstruct solution�)
10. S AR (r;Gi

1;G
i
2;G;S)

11. (� undoith reduction�)
12. G H�G1 (H denotes the terminal graph for whichG= Gi

2�H)
13. return S

It is clear from Lemma 5.1.4 and the definition of a constructive reduction system that
algorithm Reduce-Construct is correct. Consider the running time of the algorithm. Part 1
takesO(n) time, by Lemma 5.1.5. In part 2, the initial solution can be constructed in con-
stant time, since algorithmAI takesO(1) time. Every undo-action also takes constant time:
undoing a reduction can be done in the same way as applying it, which takesO(1) time,
and algorithmAR usesO(1) time (note that the terminal graphH as described in line 12 is
not explicitly computed). Hence the complete algorithm takesO(n) time. This proves the
following theorem.
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Theorem 6.1.1. Let P be a construction property defined by the pair(D;Q). If we have a
special constructive reduction system for P, then we have an algorithm which, given a graph
G, returns a solution S2 D(G) for which Q(G;S) holds, if P(G) holds, andfalse otherwise.
The algorithm runs in O(n) time and uses O(n) space.

6.1.2 Construction Problems for Graphs of Bounded Treewidth

In this section we show that algorithm Reduce-Construct can be used for a large class of
construction properties on graphs of bounded treewidth.

Let D be some solution domain, i.e. for each graphG, D(G) denotes a ‘set of all possible
solutions’ inG. Let G andH be l -terminal graphs and letS2 D(G�H). We want to be able
to restrictS to the terminal graphsG andH. For these restrictions, we use the notationS[G]
andS[H]. We can define such a restriction in several ways, but we require thatS[G] does not
contain any vertices or edges which are not inG. Suppose we have given a definition of[ ] for
a solution domainD. We say[ ] is properly definedif, for any terminal graphsG andH, and
anyS2D(G�H), S[G] contains no vertices or edges which are not inG. An obvious proper
definition of[ ] is thus to obtainS[G] from Sby removing all vertices and edges which are not
in G from S. For example, if for each graphG, D(G) is the set of all partitions ofV(G) in
three sets, then a proper definition of[ ] would be that for eachl -terminal graphsG andH and
eachS= (V1;V2;V3) 2D(G�H), S[G] = (V1\V(G);V2\V(G);V3\V(G)).

Definition 6.1.3. Let D be a solution domain, let a proper definition of[ ] be given. For each
l � 0, and eachl -terminal graphG, define

D[ ](G) = fS[G] j S2D(G�H) for somel -terminal graphHg:

EachS2D[ ](G) is called apartial solutionof G, andD[ ] is called the partial solution domain
for D.

Definition 6.1.4. Let D be a solution domain and let a proper definition of[ ] be given.
D is inducible for [ ] if each two l -terminal graphsG andH (l � 0) andSG 2 D[ ](G) and
SH 2D[ ](H), there is at most oneS2 D(G�H) such thatS[G] = SG andS[H] = SH .

Let G andH be l -terminal graphs, letSG 2 D[ ](G) andSH 2 D[ ](H). If there is exactly
oneS2 D(G�H) such thatS[G] = SG andS[H] = SH , then(G;SG) and(H;SH) are called
�-compatible, and we writeSG�SH = S.

As an example of Definition 6.1.4, consider the solution domainD with for each graphG,
D(G) = P (V). Let [ ] be defined as follows. For every twol -terminal graphsH1 andH2 and
eachS2D(H1�H2), letS[H1] =S\V(H1) (henceD[ ](H1) =P (V(H1))). Then[ ] is properly
defined andD is inducible for[ ]. If H1 = (V1;E1;hx1; : : : ;xl i) andH2 = (V2;E2;hy1; : : : ;yl i)
are l -terminal graphs, andS1 2 D[ ](H1) and S2 2 D[ ](H2), then (H1;S1) and (H2;S2) are
�-compatible if and only ifS1 andS2 contain the same set of terminals, i.e.

fi j 1� i � l ^xi 2 S1g= fi j 1� i � l ^yi 2 S2g:
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In that case,S1�S2 is simply the union ofS1 andS2 in H1�H2.
As another example of Definition 6.1.4, consider the solution domainD with for eachG,

D(G) = fV � P (V) j 8V2V jVj= 3g;

i.e. eachS2 D(G) is a set of subsets of cardinality three ofV(G). The obvious proper
definition of [ ] is as follows. For each two terminal graphsG andH, eachS2 D(G�H),
S[G] = fW\V(G) jW 2 Sg. However,D is not inducible for this definition. Consider for
example two one-terminal graphsG andH as depicted in part I of Figure 6.2, and consider
the partial solutionsSG 2 D[ ](G) andSH 2 D[ ](H) denoted by the dotted lines. Part II of
Figure 6.2 shows anS2 D(G�H) for which S[G] = SG andS[H] = SH . However, part III
shows anS0 2 D(G�H) with S0 6= S, but S0[G] = SG and S0[H] = SH . Hence with this
definition of [ ], we are not able to combine two partial solutions of two terminal graphsG
andH into a solution of the graphG�H.

G H G�H

I II III

G�H

SG SH
S S0

Figure 6.2. Example of two one-terminal graphsG andH with partial solutionsSG

andSH , and the graphG�H with S;S0 2 D(G�H), such thatS[G] = S0[G] = SG and
S[H] = S0[H] = SH .

Let P be a construction property defined by(D;Q) such thatD is inducible for[ ]. Let G
andH be terminals graphs, and letS2D[ ](G) andS0 2D[ ](H). The value ofQ(G�H;S�S0)
is only defined if

� G andH are bothl -terminal graphs for somel � 0, and

� (G;S) and(H;S0) are�-compatible.

For shorter notation, we defineQ(G�H;S�S0) to befalse if G andH are not bothl -terminal
graphs for somel � 0, or if (G;S) and(H;S0) are not�-compatible.

Definition 6.1.5 (Compatibility). LetD be a solution domain which is inducible for some
definition of[ ]. Let G1 andG2 be l -terminal graphs for somel � 0, and letS1 2 D[ ](G1) and
S2 2 D[ ](G2). (G1;S1) and(G2;S2) arecompatibleif for each l -terminal graphH and each
S2D[ ](H), (G1;S1) is�-compatible with(H;S) if and only if (G2;S2) is�-compatible with
(H;S).

Note that compatibility is an equivalence relation. The set of all equivalence classes of this
relation is denoted byCcmp;l , for eachl , and the equivalence classes are also called compat-
ibility classes. For two equivalence classesC andC0 of some equivalence relation which is
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a refinement of compatibility, we say thatC andC0 are�-compatible if, for each(G;S) 2C
and(H;S0) 2C0, (G;S) and(H;S0) are�-compatible.

Let P be a construction property defined by(D;Q), whereD is inducible for[ ].

Definition 6.1.6. For eachl � 0,�Q;l is an equivalence relation on pairs ofl -terminal graphs
and partial solutions, which is defined as follows. LetG1, G2 be l -terminal graphs, and
S1 2D[ ](G1) andS2 2 D[ ](G2).

(G1;S1) �Q;l (G2;S2) , (G1;S1) and(G2;S2) are compatible and

for all l -terminal graphsH and allS2 D[ ](H):

Q(G1�H;S1�S) = Q(G2�H;S2�S)

The set of equivalence classes of�Q;l is denoted byCQ;l , and for eachl -terminal graphG and
S2D[ ](G), the equivalence class ofCQ;l that contains(G;S) is denoted by ecQ;l (G;S).

By �rQ;l , we usually denote an equivalence relation which is a refinement of�Q;l . By
CrQ;l we denote the set of equivalence classes of�rQ;l , and for eachl -terminal graphG and
eachS2 D[ ](G), ecrQ;l (G;S) =C if (G;S) is in equivalence classC2 CrQ;l .

Definition 6.1.7. Let �rQ;l be a refinement of�Q;l for eachl � 0. By �rQ;l we denote
the equivalence relation onl -terminal graphs, which is defined as follows. For every two
l -terminal graphsG1 andG2,

G1 �rQ;l G2 , fecrQ;l (G1;S1) j S1 2 D[ ](G1)g= fecrQ;l (G2;S2) j S2 2D[ ](G2)g:

Recall that for a graph propertyP and an integerk � 1, Pk denotes the property with for
each graphG, Pk(G) holds if and only ifP(G)^TWk(G) holds. SupposeP is a construction
property defined by(D;Q). For eachk� 1, let Qk denote the property with for each graph
G, eachS2 D(G), Qk(G;S) holds if and only ifQ(G;S)^TWk(G) holds. Note thatPk is the
construction property defined by(D;Qk).

For eachk� 1, let�rQk;l be the refinement of�rQ;l which is defined as follows. For
every twol -terminal graphsG1 andG2 and eachS1 2 D[ ](G1) andS2 2 D[ ](G2),

(G1;S1)�rQk;l (G2;S2) , (G1;S1)�rQ;l (G2;S2) ^ G1 �TWk;l G2:

Lemma 6.1.1. Let�rQ;l be a refinement of�Q;l , and let k� 1.

1. For each l� 0,�rQ;l is a refinement of�Q;l .

2. For each l� 0,�Q;l is a refinement of�P;l .

3. For each l� 0, if �rQ;l is finite, then�rQ;l is finite.

4. For each l� 0, if �rQ;l is finite, then�rQk;l is finite.
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Proof.
1. Follows directly from the definition of�rQ;l .

2. Follows from the fact that for every twol -terminal graphsG1 andG2, if G1�Q;l G2, then
for eachS1 2 D[ ](G1) there is anS2 2D[ ](G2) such that(G1;S1)�Q;l (G2;S2).

3. The number of equivalence classes of�rQ;l is at most 2jCrQ;l j.

4. Follows from Lemmas 5.1.7 and 5.1.6. 2

Note that forjCrQ;l j to be finite,jCQ;l jmust be finite, and hence alsojCcmp;l jmust be finite.
The next theorem is the analog of Theorem 5.1.2 for construction properties: we give a set

of conditions for a construction propertyP, and we show that these conditions are sufficient
for proving the existence of a special constructive reduction system forPk for anyk� 1.

Theorem 6.1.2. Let P a construction property defined by(D;Q), suppose that a proper
definition of[ ] is given and that the following conditions hold.

1. Domain D is inducible for[ ], Q is decidable, a refinement�rQ;l of�Q;l is decidable and
jCrQ;l j is finite, for fixed l� 0.

2. There is a representation of (partial) solutions for which the following holds.

(a) There is a function s which assigns to each terminal graph G a positive integer, such
that for each S2 D[ ](G), the number of bits needed to represent S is at most s(G).

(b) For each two fixed l-terminal graphs H and H0, the following holds. For each l-
terminal graph G, if S2 D(H �G), then S[H] can be computed from S and H in
constant time, and for each S0 2D[ ](H

0), if (H;S[H])�rQ;l (H 0;S0), then S0�S[G] can
be computed in constant time from S, S0, H and H0.

Then for each k� 1, there exists a special constructive reduction system(R ;I ;AR ;AI ) for
Pk defined by(D;Qk), such that for each(H1;H2) 2 R , H1�rQ;l H2.

If, in addition, (i) Q and�rQ;l are effectively decidable, (ii) s is effectively computable,
and (iii) in condition 2b S[H] and S0�S[G] are effectively computable from S, S0, H and H0,
then such a special constructive reduction system can effectively be constructed.

Proof. Let k� 1. SincejCrQ;l j is finite,�rQk;l has a finite number of equivalence classes,
and it is a refinement of�Pk;l . Let (R ;I ) be a special reduction system forPk, such that for
each rule(H1;H2) 2 R , H1�rQk;l H2. By Corollary 5.1.1, such a system exists, and it can be
constructed ifs is effectively computable and�rQ;l is effectively decidable, since in that case,
P and�rQk;l are effectively decidable as well. We now show how to construct algorithmsAR
andAI such that(R ;I ;AR ;AI ) is a special constructive reduction system forPk.

Both algorithmAR and AI use a table (see also the example for two-colorability on
page 123). For algorithmAR , we make a table which contains for each ruler = (H1;H2)2 R
and eachS2 2 D[ ](H2) anS1 2 D[ ](H1) such that(H1;S1) �rQ;l (H2;S2). This table is com-
puted as follows. For each reduction rule(H1;H2) in R , we construct allS1 2 D[ ](H1)
and all S2 2 D[ ](H2). Then, for eachS2 2 D[ ](H2), we pick oneS1 2 D[ ](H1) for which
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(H1;S1) �rQ;l (H2;S2). By condition 2a, this table has finite size. Condition 2b assures that
this table can be used to make algorithmAR run in constant time.

For algorithmAI , we make a table which contains for eachH 2 I a solutionSof H. This
is done as follows. For eachH 2 I , we construct allS2 D(H), and we pick one suchS for
which Q(H;S) holds. It is easy to see that algorithmAI can be made to run inO(1) time
using this table.

Note that if�rQ;l is effectively decidable ands is effectively computable, then we can
effectively construct the tables for algorithmsAR andAI . Condition 2 assures that the system
(R ;I ;AR ;AI ) is a special constructive reduction system. 2

As an important special case, we now consider the MS-definable construction properties.
Let D be a solution domain of the following form: there is at � 1, such that for all graphsG,
all elements ofD(G) aret-tuples(S1;S2; : : : ;St), where for eachi, 1� i � t, Si is an element
of V(G), of E(G), of P (V(G)) or of P (E(G)). If D is of this form, we say thatD is at-vertex-
edge-tuple. An example of a domain which is at-vertex-edge-tuple is the domainD for which
for each graphG, D(G) contains all orderedt-partitions ofV(G), i.e. for eachS2 D(G),
S= (V1; : : : ;Vt), whereV1; : : : ;Vt partition V(G). The construction properties defined by
(D;Q), whereD is a t-vertex-edge tuple andQ is an MS-definable extended graph property
correspond exactly to the MS-definable construction problems as defined in Section 2.2.4.

Theorem 6.1.3. Let P be a construction property defined by(D;Q), where D is a t-vertex-
edge tuple and Q is MS-definable. For each k� 1 there is a special constructive reduction
system for Pk, which can be effectively constructed.

Proof. For each twol -terminal graphsG1 andG2, G = G1�G2, eachS= (S1; : : : ;St) 2
D(G), let S[G1] = (S1[G1]; : : : ;St [G1]), where for eachi, Si [G1] is defined as follows.

Si [G1] =

8>>><
>>>:

Si \V(G1) if Si 2 P (V(G))

Si \E(G1) if Si 2 P (E(G))

Si if (Si 2V(G)^Si 2V(G1)) _ (Si 2 E(G)^Si 2 E(G1))

ε if (Si 2V(G)^Si =2V(G1)) _ (Si 2 E(G)^Si =2 E(G1))

With this definition of[ ], D is inducible, andjCcmp;l j is finite, for eachl � 0.
Borie, Parker, and Tovey [1992] have shown that for eachk� 1, there is a homomorphism

h, mapping each pair(G;S), where eitherG is an ordinary graph andS2 D(G) or G is anl -
terminal graph,l � k, andS2D[ ](G), to an element of a finite setAk, such that the following
conditions hold.

1. For every two graphsG1 andG2, and eachS1 2 D(G1) andS2 2 D(G2), if h(G1;S1) =
h(G2;S2), thenQ(G1;S1) = Q(G2;S2).

2. There is a functionf� : Ak�Ak!Ak, such that for eachl � k, every twol -terminal graphs
G andH, and eachS2 D[ ](G) andS0 2 D[ ](H), if (G;S) and(H;S0) are�-compatible,
then

h(G�H;S�S0) = f�(h(G;S);h(H;S0)):
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This homomorphism can be computed from an MSOL predicate forQ.
For eachl � 0, eachl -terminal graphG and S2 D[ ](G), let ecl (G;S) = (h(G;S);C),

whereC 2 Ccmp;l is such that(G;S) belongs to compatibility classC. Furthermore, letCl =
Ak�Ccmp;l , and let(G1;S1) �l (G2;S2) if and only if ecl (G1;S1) = ecl (G2;S2). SincejAkj
andjCcmp;l j are both finite,jCl j is also finite. We now show that�l is a refinement of�Q;l .

Let l � 0, letG1 andG2 bel -terminal graphs, and letS12D[ ](G1) andS22D[ ](G2), such
that(G1;S1)�l (G2;S2). We have to show that for alll -terminal graphsH and allS2D[ ](H),
Q(G1�H;S1�S) = Q(G2�H;S2�S). Let H be anl -terminal graph, and letS2 D[ ](H)
such that(G1;S1) and(H;S) are�-compatible. Then, sinceh(G1;S1) = h(G2;S2),

h(G1�H;S1�S) = f�(h(G1;S1);h(H;S))

= f�(h(G2;S2);h(H;S))

= h(G2�H;S2�S):

HenceQ(G1�H;S1�S) =Q(G2�H;S2�S). This shows that condition 1 of Theorem 6.1.2
holds.

Now consider condition 2. We use a data structure for storing tuplesS= (S1; : : : ;St) 2
D[ ](G) which consists of an array oft data structures, one for eachSi . If Si is a set of vertices
or edges, then these vertices or edges are put in a (doubly linked) list. IfSi is a vertex or
edge, orε, then this vertex or edge orε is stored. Furthermore, we keep a pointer from each
vertex and edge in the graph to each place in the data structure where this vertex or edge
occurs. There are at mostt of these pointers for each vertex and each edge. This shows that
condition 2a of Theorem 6.1.2 is satisfied.

Consider condition 2b of Theorem 6.1.2. For every two fixedl -terminal graphsH andH 0

and eachl -terminal graphG, if we have anS2D(G�H) stored in the way described above,
then we can computeS[H] as follows. Make a new data structure forS[H] with Si [H] empty
for eachi. For each vertexv in H, follow the pointers fromv to the places in which it occurs
in S, and check in which partSi of S it occurs. Then addv to Si [H]. Do the same for all
edges. Then for eachi, check ifSi is a set of vertices or edges, but there is no vertex or edge
in the data structure at the location ofSi[H], and if so, addε to Si [H]. This can all be done in
constant time, sinceH has constant size, and each vertex or edge occurs at most once in each
Si , so at mostt times inS.

Let S0 = (S01; : : : ;S
0
t) 2D[ ](H

0) such that(H;S)�rQ;l (H 0;S0). S0�S[G] can be computed
as follows. For each vertexv of H which is not a terminal, follow the pointers fromv to all
places inSwhere it occurs, and delete it there. Do the same for all edges inH for which at
least one end point is not a terminal. For each vertexv of H 0 which is a terminal, follow the
pointers fromv to all pointers inS0 where it occurs, and deletev at that place. Do the same
for all edges inH 0 of which both end points are terminals. Next, for eachi, 1� i � t, append
the listS0i to the listSi . The resulting data structure representsS0�S[G]. Hence condition 2b
of Theorem 6.1.2 holds. 2

Theorem 6.1.3 implies that for each MS-definable construction property, there is a linear
time algorithm which solvesP on graphs of bounded treewidth, without making use of a
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tree decomposition of the input graph. For instance, this gives linear time algorithms for the
constructive versions of e.g. HAMILTONIAN CIRCUIT andk-COLORABILITY for fixedk, all
on graphs of bounded treewidth.

As a corollary, we also have the following result, which may be easier to use than Theo-
rem 6.1.2.

Corollary 6.1.1. Let P be a construction property defined by(D;Q). If D is a t-vertex-edge-
tuple for some t� 1, and furthermore Q is decidable, and a finite refinement�rQ;l of�Q;l is
decidable, then for each k� 1, there is a special constructive reduction system for Pk.

If, in addition, Q and�rQ;l are effectively decidable, then such a system can be effectively
constructed.

6.2 Optimization Problems
In this section we show how the idea of constructive reduction algorithms can be extended
to constructive optimization problems. We start with a definition of a constructive reduction-
counter system and an efficient reduction algorithm for constructive optimization problems.
After that, we show that this algorithm can be used to solve a large class of constructive
optimization problems on graphs of bounded treewidth.

6.2.1 Constructive Reduction-Counter Systems and Algorithms

Many graph optimization problems are of the form

Φ(G) = optfz(S) j S2 D(G)^Q(G;S)g;

whereD is a solution domain, for eachS2D(G), z is a function fromD(G) to ZZ, and either
opt= max or opt= min. (If there is noS2 D(G) for which Q(G;S) holds, then we define
Φ(G) to befalse.) If Φ is of this form, then we sayΦ is a constructive optimization problem
defined by the quadruple(D;Q;z;opt). MAX INDEPENDENT SET is an example of such
an optimization problem: for this problem, we can choose opt= max, D(G) = P (V(G)),
Q(G;S) holds if and only if for eachv;w2 S, fv;wg =2 E(G), andz(S) = jSj.

In this section, we consider reduction algorithms for constructive optimization problems
Φ which return the value ofΦ(G) for an input graphG, and also construct an optimal solution
for G, i.e. a solutionS2 D(G) for which Q(G;S) holds andz(S) = Φ(G) (if Φ(G) 6= false).
We first define the constructive version of a reduction-counter system.

Definition 6.2.1 (Constructive Reduction-Counter System). LetΦ be a constructive opti-
mization problem defined by(D;Q;z;opt). A constructive reduction-counter systemfor Φ is
a quadruple(R ;I ;φ;AR ;AI ), where

� (R ;I ;φ) is a reduction-counter system forΦ (Definition 5.2.3),

� AR is an algorithm which, given

– a reduction ruler = (H1;H2) 2 R ,
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– two terminal graphsG1 andG2, such thatG1 is a isomorphic toH1 andG2 is isomor-
phic toH2,

– a graphG with G= G2�H for someH, and anS2D(G) such thatQ(G;S) holds and
z(S) = Φ(G),

computes anS0 2G1�H such thatQ(G1�H;S0) holds andz(S0) = Φ(G1�H),

� AI is an algorithm which, given a graphG which is isomorphic to someH 2 I , computes
anS2 D(G) for whichQ(G;S) holds andz(S) = Φ(G).

As an example, consider the optimization problemΦ defined as follows. For each graph
G, Φ(G) is the maximum size of an independent set ifG is a cycle,Φ(G) = false otherwise
(see Chapter 5 on page 109). Consider the constructive version ofΦ defined by(D;Q;z;max),
whereD, Q andz are defined as follows. For each graphG, D(G) = P (V(G)), and for each
S2 D(G), Q(G;S) holds if and only ifG is a cycle andS is an independent set ofG, and
z(S) = jSj.

We extend the reduction-counter system forΦ depicted in Figure 5.4 to a constructive
reduction-counter system forΦ. Therefore, we again use the table method. For algorithmAR ,
we make a table which contains the following information. For the only reduction ruler =
(H1;H2) 2 R and each independent setS2 of H2 for which there is a maximum independent
setS in some graphH2�H with S2 = S\V(H2), the table contains an independent setS1

of H1 such thatS1 andS2 contain the same terminals andjS1j= jS2j+1. All these cases are
depicted in part I of Figure 6.3 (symmetric cases are given only once). Note that algorithm
AR can be made to run inO(1) time with this table, since it only has to remove inner vertices
of H2 from the independent set of the old graph and add some inner vertices ofH1 to the
independent set of the new graph.

For algorithmAI , we make a table which contains for eachH 2 I a maximum indepen-
dent set ofH (see part II of Figure 6.3). AlgorithmAI also usesO(1) time. It can be seen that
(R ;I ;φ;AR ;AI ) is a constructive reduction-counter system forΦ defined by(D;Q;z;max).

Let Φ be a constructive optimization problem defined by(D;Q;z;opt). Let P be the
construction property defined by(D;Q). We callP thederived construction property. From
a constructive reduction-counter system(R ;I ;φ;AR ;AI ) for Φ we can derive a constructive
reduction systemS for P: let R 0 = fr j (r; i) 2 R g, and letS = (R 0;I ;AR ;AI ). We callS the
derived constructive reduction system.

Definition 6.2.2 (Special Constructive Reduction-Counter System). A special constructive
reduction-counter system is a constructive reduction-counter system whose derived construc-
tive reduction system is special.

Note that the constructive reduction-counter system that we gave for MAX INDEPENDENT

SET on cycles is special.
Let Φ be a constructive optimization problem defined by(D;Q;z;opt), such thatD is

inducible for a given definition of[ ]. Let S = (R ;I ;φ;AR ;AI ) be a special constructive
reduction-counter system forΦ. We can modify algorithm Reduce-Construct (page 124) to

132



6.2 Optimization Problems

 
C4 C3

 

 : contains vertices in independent set

I

II

Figure 6.3. Example of tables for algorithmsAR andAI for constructive reduction-
counter system for MAX INDEPENDENTSET on cycles.

obtain a constructive reduction algorithm forΦ based onS : in part 1, use the reduction-
counter algorithm as described in Section 5.2 (page 109) instead of algorithm Reduce. In
Part 2, line 6 of algorithm Reduce-Construct, store the valueφ(G) in some variableopt. In
line 13, return withS the valueopt.

Hence we have the following result.

Theorem 6.2.1. Let Φ be a constructive optimization problem defined by(D;Q;z;opt). If we
have a special constructive reduction-counter system forΦ then we have an algorithm which,
given any graph G, computesΦ(G) and, if Φ(G) 6= false, computes an S2 D(G) such that
Q(G;S) holds and z(S) = Φ(G). The algorithm uses O(n) time and space.

6.2.2 Constructive Optimization Problems for Graphs of
Bounded Treewidth

In this section we show that for a large class of constructive optimization problems on graphs
of bounded treewidth, there exists a special constructive reduction-counter system.

Let (D;Q;z;opt) define a constructive optimization problemΦ and supposeD is inducible
for [ ]. For eachl � 0, let�rQ;l be a refinement of�Q;l .

Let G be a terminal graph. We want to be able to compare the quality of two partial
solutionsS andS0 for which (G;S) �rQ;l (G;S0), i.e. we want that one of them is always at
least as good as the other one. More formally, we want that either

� for each terminal graphH and eachSH 2 D[ ](H) for which Q(G�H;S�SH) holds,
z(S�SH)� z(S0�SH), or

� for each terminal graphH and eachSH 2 D[ ](H) for which Q(G�H;S�SH) holds,
z(S0�SH)� z(S�SH).

Therefore, we define an extension of the functionz to the domain of terminal graphs.
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Definition 6.2.3. Let z̄ be a function which, for each terminal graphG and eachS2 D[ ](G),
mapsS to a value inZZ. Functionz̄ is anextensionof z with respect tof�rQ;l j l � 0g if, for
eachl � 0, and eachC;C0 2 CrQ;l for whichC andC0 are�-compatible, there is a constant
dl (C;C0) 2 ZZ such that the following holds. For every twol -terminal graphsG andH and all
SG 2 D[ ](G) andSH 2D[ ](H) such that ecrQ;l (G;SG) =C and ecrQ;l (H;SH) =C0,

Q(G�H;SG�SH) ) z(SG�SH) = z̄(SG)+ z̄(SH)�dl(C;C
0)

The constantsdl (C;C0) are called theextension constantsfor z̄.

Note that, if there is a refinement�rQ;l of �Q;l for eachl � 0 and there is an extension ¯z
of zwith respect tof�rQ;l j l � 0g, then it is not necessarily the case that ¯z is an extension ofz
with respect tof�Q;l j l � 0g. However,z̄ is an extension forzwith respect to any refinement
of �rQ;l .

Lemma 6.2.1. Supposēz is an extension of z with respect tof�rQ;l j l � 0g. Let G be an
l-terminal graph (l� 0). Let S;S0 2 D[ ](G) such that(G;S)�rQ;l (G;S0). If z̄(S)� z̄(S0) (or
z̄(S) > z̄(S0)), then for each terminal graph H and each SH 2 D[ ](H), if Q(G�H;S�SH)
holds, then z(S�SH)� z(S0�SH) (or z(S�SH)> z(S0�SH), respectively).

Proof. Let C = ecrQ;l and letdl denote the extension constants for ¯z. Suppose ¯z(S) � z̄(S0)
and letH be a terminal graph,SH 2 D[ ](H) such thatQ(G�H;S�SH) holds. LetC0 =
ecrQ;l (H;SH). ThenQ(G�H;S0�SH) also holds. Furthermore,z(S�SH) = z̄(S)+ z̄(SH)�
dl (C;C0)� z̄(S0)+ z̄(SH)�dl(C;C0) = z(S0�SH). For> the proof is similar. 2

In other words, Lemma 6.2.1 shows that if ¯z(S)> z̄(S0), thenS is better thanS0 if opt = max,
andS0 is better thanS if opt = min.

Let G be anl -terminal graph, andC2 CrQ;l . Let

opt(G;C) = optfz̄(S) j S2 D[ ](G)^ecrQ;l (G;S) =C^ z̄(S) 2 ZZg

(hence opt(G;C) = false if there is noS2D[ ](G) for which ecrQ;l (G;S) =C). If opt(G;C) 2
ZZ, then let optS(G;C) denote anS2D[ ](G) for whichz̄(S)= opt(G;C). Informally speaking,
opt(G;C) represents ‘the value of the best partial solution ofG in equivalence classC’, and
optS(G;C) gives such a partial solution (if existing).

Let S2 D[ ](G), let C = ecrQ;l (G;S) and supposeSmay lead to an optimal solution, i.e.
there is a terminal graphH and anSH 2 D[ ](H) such thatQ(G�H;S�SH) holds andz(S�
SH) = Φ(G�H). Lemma 6.2.1 shows that ¯z(S) = opt(G;C). Hence only partial solutionsS
for which z̄(S) = opt(G;ecrQ;l (G;S)) may lead to optimal solutions.

Theorem 6.2.2. Let Φ be a constructive optimization problem defined by(D;Q;z;opt). Sup-
pose D is inducible for[ ] and there is a refinement�rQ;l of �Q;l for which the following
conditions hold.

1. Q is decidable, for each l� 0,�rQ;l is decidable andjCrQ;l j is finite.
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2. There is an extension̄z of z with respect tof�rQ;l j l � 0g and for each l� 0, there is a
constant Kl 2 IN, such that for each l-terminal graph G and every S;S0 2 D[ ](G), if both
S and S0 can lead to optimal solutions, thenjz̄(S)� z̄(S0)j � Kl .

3. There is a representation of (partial) solutions for which the following holds.

(a) There is a function s, which assigns to each terminal graph G a positive integer, such
that for each S2 D[ ](G), the number of bits needed to represent S is at most s(G).

(b) For each two fixed l-terminal graphs H and H0, the following holds. For each l-
terminal graph G, if S2 D(G�H), then S[H] can be computed from S and H in
constant time, and for each S0 2D[ ](H

0), if (H;S[H])�rQ;l (H 0;S0), then S0�S[G] can
be computed in constant time from S, S0, H, and H0.

Then for each k� 1, there exists a special constructive reduction-counter systemS for Φk

defined by(D;Qk;z;opt), and for each reduction-counter rule((H1;H2); i) in S , H1�rQ;l H2.
If, in addition, (i) Q and�rQ;l are effectively decidable, (ii) z is effectively computable,

(iii) in condition 2,z̄ and Kl are effectively computable, and (iv) in condition 3, s is effectively
computable, and S[H] and S0�S[G] are effectively computable from S, S0, H and H0, then
such a special constructive reduction-counter system can be effectively constructed.

Proof. Suppose conditions 1, 2, and 3 hold forΦ. Let z̄ be the extension of condition 2
and letdl (C;C0) denote the corresponding extension constants for allC;C0 2 CrQ;l . For each
l � 0, let Kl 2 IN be as in condition 2. Lets be as in condition 3. LetP be the construction
property derived fromΦ (i.e.P is defined by(D;Q)).

We first construct a refinement�l of �rQ;l such that for each pair(G1;G2) of l -terminal
graphs, ifjV(G2)j < jV(G1)j andG1 �l G2, then there is ani 2 ZZ for which the following
holds.

1. ((G1;G2); i) is a safe reduction-counter rule forΦ, and

2. for eachS2 2 D[ ](G2) which can lead to an optimal solution, there is anS1 2 D[ ](G1)
such that(G1;S1) �l (G2;S2) and for eachl -terminal graphH and eachS2 D[ ](H), if
Q(G2�H;S2�S) holds andz(S2�S) = Φ(G2�H), thenQ(G1�H;S1�S) holds, and
z(S1�S) = Φ(G1�H).

We also show that�l is finite. After that, we show how to use�l to build a special construc-
tive reduction-counter system forΦk (k� 1).

For eachl � 0, eachl -terminal graphG, do the following. If there is a partial solution
in G which can lead to an optimal solution, then letS̃G 2 D[ ](G) such thatS̃G can lead to an
optimal solution. LetiG = z̄(S̃G) (note thatiG 2 ZZ). Otherwise,S̃G is not defined andiG = 0.
Let hG : CrQ;l ! f�Kl ; : : : ;Klg[ffalseg be a function with for eachC2 CrQ;l ,

hG(C) =

(
opt(G;C)� iG if jopt(G;C)� iGj � Kl

false otherwise.
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For eachl � 0, each pairG1, G2 of l -terminal graphs and eachS12D[ ](G1) andS22D[ ](G2),
let

(G1;S1)�l (G2;S2) , (G1;S1)�rQ;l (G2;S2)

^hG1(ecrQ;l (G1;S1)) = hG2(ecrQ;l (G2;S2)):

Note that�l is a refinement of�rQ;l and hence of�Q;l . For eachl � 0, the range ofhG for
any l -terminal graphG has finite cardinality, and�rQ;l is finite, which means that�l is also
finite.

Consider the equivalence relation�l on l -terminal graphs as defined in Definition 6.1.7.
Let l � 0, letG1 andG2 bel -terminal graphs, such thatjV(G2)j< jV(G1)j andG1�l G2. By
definition of�l and�l , hG1 = hG2. Let i = iG1� iG2, and leth= hG1 = hG2. We show that
G1, G2 andi satisfy conditions 1 and 2 given above.

Note that, if there is anS2 D[ ](G1) which can lead to a solution, then there is anS0 2
D[ ](G2) which can lead to a solution, and vice versa.

Claim. Suppose there is a partial solution in G1 which can lead to a solution. Let C2
CrQ;l such thatopt(G1;C) 2 ZZ. Let H be an l-terminal graph. Let S1 = optS(G1;C), S2 =
optS(G2;C) and SH 2 D[ ](H), and suppose Q(G1�H;S1�SH) holds. Then z(S1�SH) =
z(S2�SH)+ i.

Proof. As there is a partial solution inG1 which can lead to a solution,̃SG1 is defined and
z̄(S̃G1) = iG1. This also means that̃SG2 is defined and ¯z(S̃G2) = iG2. Hence, by condition 2
of the theorem,jz̄(S1)� iG1j � Kl , so z̄(S1) = iG1 +h(C), and similarly,z̄(S2) = iG2 +h(C).
Furthermore,

z(S1�SH) = z̄(S1)+ z̄(SH)�dl(C;C
0)

= h(C)+ iG1 + z̄(SH)�dl(C;C
0)

= h(C)+ iG2� iG2 + iG1 + z̄(SH)�dl(C;C
0)

= z̄(S2)+ z̄(SH)�dl(C;C
0)� iG2 + iG1

= z(S2�SH)� iG2 + iG1

= z(S2�SH)+ i:

2

Claim. ((G1;G2); i) is safe forΦ.

Proof. Let H be anl -terminal graph. We have to show thatΦ(G1�H) = Φ(G2�H)+
i. SinceG1 �l G2, and�l is a refinement of�Q;l , which in turn is a refinement of�P;l ,
Φ(G1�H) is false if and only if Φ(G2�H) is false. Hence ifΦ(G1�H) = false, then
Φ(G1�H) = Φ(G2�H)+ i.

Now supposeΦ(G1�H) 2 ZZ, and letS2 D(G1�H) such thatz(S) = Φ(G1�H).
let S1 = S[G1] andSH = S[H]. Let S2 = optS(G2;ecrQ;l (G1;S1)). By the previous claim,
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z(S1�SH) = z(S2�SH)+ i, and hence if opt= max, thenΦ(G1�H)�Φ(G2�H)+ i, and
if opt= min, thenΦ(G1�H)�Φ(G2�H)+ i. By symmetry, we can also show that if opt=
max, thenΦ(G2�H)�Φ(G1�H)� i and if opt= min thenΦ(G2�H)�Φ(G1�H)� i,
and henceΦ(G1�H) = Φ(G2�H)+ i. 2

Claim. For each S2 2 D[ ](G2) which can lead to an optimal solution, there is an S1 2
D[ ](G1) such that(G1;S1)�l (G2;S2) and for each l-terminal graph H and each S2D[ ](H),
if Q(G2�H;S2�S) holds and z(S2�S) = Φ(G2�H), then Q(G1�H;S1�S) holds, and
z(S1�S) = Φ(G1�H).

Proof. Let S2 2 D[ ](G2) such thatS2 can lead to an optimal solution, letC = ecrQ;l (G2;S2).
Note that opt(G2;C) = z̄(S2) 6= false (and hence opt(G1;C) 6= false). LetS1 = opt(G1;C). Let
H be anl -terminal graph, letSH 2 D[ ](H) and letC0 = ecrQ;l (H). SupposeQ(G2�H;S2�
SH) holds andz(S2�SH) = Φ(G2�H). By a previous claim,z(S1�SH) = z(S2�SH)+ i.
SinceΦ(G1�H) = Φ(G2�H)+ i andΦ(G2�H) = z(S2�H), this implies thatz(S1�H) =
Φ(G1�H). 2

The claims show that conditions 1 and 2 hold.
Let k� 1. We show that there is a special constructive reduction-counter system forΦk.

Theorem 6.1.2 shows that there is a special constructive reduction systemS = (R ;I ;AR ;AI )
for Pk such that for each(H1;H2) 2 R , H1�l H2. We show how to transformS into a special
constructive reduction-counter systemS 0 = (R 0;I 0;φ;A0R ;A0I ) for Φk. First, we make a set
R 0 of reduction-counter rules fromR : for eachr = (H1;H2) 2 R , make a reduction-counter
rule (r; i) in R 0 with i = iH1� iH2. As is shown before,R 0 is safe forΦk.

Next, letI 0 = I , and for eachG2 I 0, let φ(G) = Φ(G). We let the algorithmsA0R and
A0I be the same asAR andAI , but with different tables. ForA0I , we make a table which
gives for eachG2 I 0 anS2 D(G) such thatΦ(G) = z(S). ForA0R , we make a table which,
for each reduction-counter ruler = ((H1;H2); i) 2 R 0, and eachS2 2 H2 for which z̄(S2) =
opt(H2;ecl (H2;S2)), contains optS(H1;S1). Now, (R 0;I 0;φ;A0R ;A0I ) is a special constructive
reduction-counter system forΦk. The effectiveness result easily follows. 2

Note that, if only conditions 1 and 2 hold forΦ, thenΦ is of finite integer index, and
hence for eachk� 1, there is a special reduction-counter system forΦk.

As a corollary, we also have the following result.

Corollary 6.2.1. LetΦ be a constructive optimization problem defined by(D;Q;z;opt), where
D is a t-vertex-edge-tuple for some t� 1. Suppose there is a refinement�rQ;l of �Q;l for
which the following conditions hold.

1. Q is decidable and for each l� 0,�rQ;l is decidable andjCrQ;l j is finite.

2. There is an extension̄z of z with respect tof�rQ;l j l � 0g and for each l� 0, there is a
constant Kl 2 IN, such that for each l-terminal graph G, each S;S0 2D[ ](G), if both S and
S0 can lead to optimal solutions, thenjz̄(S)� z̄(S0)j � Kl .
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Then for each k� 1, there exists a special constructive reduction-counter system forΦk

defined by(D;Qk;z;opt).
If, in addition, (i) Q and�rQ;l are effectively decidable, (ii) z is effectively computable,

and (iii) in condition 2,z̄, Kl and iG are effectively computable, then such a special construc-
tive reduction-counter system can be effectively constructed.

With these results, we can prove that there are efficient constructive reduction algorithms
for the following problems: MAX INDUCED d-DEGREESUBGRAPH, MIN VERTEX COVER,
MIN p-DOMINATING SET for all p� 1, MAX CUT on graphs with bounded degree, MIN

PARTITION INTO CLIQUES, CHROMATIC NUMBER, MIN HAMILTONIAN PATH COMPLE-
TION, and MAX LEAF SPANNING TREE. We prove this in Chapter 7, Theorem 7.1.2.

6.3 Parallel Constructive Reduction Algorithms
We now show how the results of Sections 6.1 and 6.2 can be extended to parallel reduction
algorithms. We first consider decision problems, and then optimization problems.

6.3.1 Construction Problems

We start with adapting the definition of a special constructive reduction system.

Definition 6.3.1. Let P be a construction property defined by(D;Q) and let(R ;I ;AR ;AI )
be a constructive reduction system forP. Algorithm AR is non-interferingif for each graph
G, eachS2 D(G), every two terminal graphsG1 and G2, and every two reduction rules
r1; r2 2 R , if r1;G1;G;Sandr2;G2;G;Sare correct inputs ofAR , and no inner vertex ofG1

occurs inG2 and vice versa, then runningAR simultaneously on these two inputs (using the
same versions ofG andS) gives the same result as runningAR successively on these two
inputs.

Definition 6.3.2 (Special Parallel Constructive Reduction System). LetP be a construction
property defined by(D;Q). A constructive reduction systemS = (R ;I ;AR ;AI ) for P is a
special parallel constructive reduction systemfor P if

� (R ;I ) is a special parallel reduction system forP,

� algorithmsAR andAI useO(1) time, and

� algorithmAR is non-interfering.

Note that the constructive reduction system that we have defined for two-colorability of
graphs of which the number of components is odd, and each component is a cycle (page 123)
is a special parallel constructive reduction system: we represent each two-coloring as a la-
beling of the graph, i.e. each vertex is labeled with an integer denoting its color. We can
implement algorithmAR such that it is non-interfering, and it runs inO(1) time (use the
tables as given on page 123). AlgorithmAI also takesO(1) time.

If we have a special parallel constructive reduction system for a given construction prop-
ertyP defined by(D;Q), then we can use a parallel variant of algorithm Reduce-Construct to
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construct a solution for an input graphG, if one exists. The parallel algorithm consists of two
parts. In part one, reductions are applied as often as possible, using the parallel algorithm de-
scribed in Section 5.3.1. Recall that this algorithm consists ofO(logn) reduction rounds, and
in each roundΩ(m) reductions are applied in parallel, wheremdenotes the number of vertices
of the current graph. In each round, the reductions that are applied are non-interfering.

Part two of the algorithm starts with constructing an initial solution for the reduced graph,
if P holds. This is done by one processor in constant time, by using algorithmAI . After that,
the reduction rounds of part one are undone in reversed order. In each undo-action of a
reduction round, all reductions of that round are undone, and the solution is adapted. Each
undo-action of a reduction is executed by the same processor that applied the rule in the first
part of the algorithm. This processor also applies algorithmAR . SinceAR is non-interfering,
this results in the correct output.

Part one of the algorithm takesO(lognlog�n) time withO(n) operations and space on an
EREW PRAM. Part two can be done inO(logn) time with O(n) operations and space on an
EREW PRAM: each undo action of a reduction can be done inO(1) time on one processor,
and the local adaptation of the solution can also be done inO(1) time by the same processor,
since algorithmAR takes constant time. This implies the following result.

Theorem 6.3.1. Let P be a construction property defined by(D;Q). If we have a special
parallel constructive reduction system for P, then we have an algorithm which, given a graph
G, checks if P(G) holds and if so, constructs an S2 D(G) for which Q(G;S) holds. The
algorithm takes O(lognlog�n) time with O(n) operations and space on an EREW PRAM,
and O(logn) time with O(n) operations and space on a CRCW PRAM.

We next show that for a large class of construction properties on graphs of bounded
treewidth, there is a special constructive reduction system. For simplicity, we only consider
construction propertiesP defined by(D;Q), whereD is at-vertex-edge-tuple for somet � 1.

Theorem 6.3.2. Let P be a construction property defined by(D;Q). If D is a t-vertex-edge-
tuple for some t� 1, Q is decidable, and a finite refinement�rQ;l of�Q;l is decidable, then
for each k� 1, there is a special parallel constructive reduction system for Pk.

If, in addition, Q and�rQ;l are effectively decidable, then such a system can be effectively
constructed.

Proof. Let k� 1. LetS = (R ;I ;AR ;AI ) be a special constructive reduction system forPk

as defined in the proof of Theorem 6.1.2. We show thatAR andAI can be made such thatS
is a special parallel reduction system forPk.

We use the following data structure for storing (partial) solutions. SupposeG is the cur-
rent graph andS= (S1;S2; : : : ;St) is the current solution forG. With each vertexv, we store
booleansb1; : : : ;bt : for eachi, 1� i � t, bi is true if and only if Di(G) = V(G) andv= Si ,
or Di(G) = P (V(G)) andv2 Si . Similarly, with each edgee, we store booleansb1; : : : ;bt :
for eachi, 1� i � t, bi is true if and only if Di(G) = E(G) ande= Si , or Di(G) = P (E(G))
ande2 Si . It is easy to see that with this data structure, we can makeAR such that it is
non-interfering and runs inO(1) time. Furthermore,AI also runs inO(1) time. 2
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Note that, with the data structure fort-vertex-edge-tuples as described in the proof of
Theorem 6.3.2, a returned solution for a given input graph is represented as a labeling of
the vertices and edges of the graph. However, we can transform this representation into the
representation as described on page 130: for eachi, 1� i � t, use a parallel prefix algorithm
(see e.g. J´aJá [1992]) to make a list of all vertices or edges for whichbi is true. Sincet is
fixed, this takesO(logn) time withO(n) operations on an EREW PRAM, and hence does not
increase the total running time.

In particular, Theorem 6.3.2 shows that many well-known graph problems, when re-
stricted to graphs of bounded treewidth, can be solved constructively within the stated re-
source bounds. These include all MS-definable construction properties for which the domain
is at-vertex-edge tuple.

6.3.2 Constructive Optimization Problems

A similar approach can be taken for constructive optimization problems. LetΦ be a construc-
tive optimization problem defined by(D;Q;z;opt). Let S be a special constructive reduction-
counter system forP. ThenS is aspecial parallel constructive reduction-counter systemif
the derived constructive reduction system is a special parallel constructive reduction system.

Note that the constructive reduction-counter system that we defined for MAX INDEPEN-
DENT SET on cycles (page 132) is a special parallel constructive reduction-counter system,
if we represent an independent set as a labeling of the vertices of the graph: each vertex is
labeled with a boolean which istrue if and only if the vertex is in the independent set.

In the same way as described above we can transform the parallel algorithm for optimiza-
tion problems as given in Section 5.3.2 into a parallel algorithm for constructive optimization
problems, based on a special parallel constructive reduction-counter system.

Theorem 6.3.3. Let Φ be a constructive optimization problem defined by(D;Q;z;opt). If
we have a special parallel constructive reduction-counter system forΦ, then we have an
algorithm which, given a graph G, checks ifΦ(G) 2 ZZ, and if so, constructs an S2D(G) for
which Q(G;S) holds and z(S) = Φ(G). The algorithm takes O(lognlog�n) time with O(n)
operations and space on an EREW PRAM, and O(logn) time with O(n) operations and space
on a CRCW PRAM.

From Theorem 6.3.2 and Corollary 6.2.1, we also derive the following result.

Theorem 6.3.4. LetΦ be a constructive optimization problem defined by(D;Q;z;opt), where
D is a t-vertex-edge-tuple for some t� 1. Suppose there is a refinement�rQ;l of �Q;l for
which the following conditions hold.

1. Q is decidable and for each l� 0,�rQ;l is decidable andjCrQ;l j is finite.

2. There is an extension̄z with respect tof�rQ;l j l � 0g and for each l� 0, there is a constant
Kl 2 IN, such that for each for each l-terminal graph G, each S;S0 2D[ ](G), if both S and
S0 can lead to optimal solutions, thenjz̄(S)� z̄(S0)j � Kl .
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Then for each k� 1, there exists a special parallel constructive reduction-counter system for
Φk defined by(D;Qk;z;opt).

If, in addition, (i) Q and�rQ;l are effectively decidable, (ii) z is effectively computable,
and (iii) in condition 2,z̄, Kl and iG are effectively computable, then such a reduction-counter
system can be effectively constructed.

This implies the existence of parallel algorithms with the stated resource bounds for
the constructive versions of MAX INDUCED d-DEGREE SUBGRAPH for all d � 0, MIN p-
DOMINATING SET for all p� 1, MIN VERTEX COVER, MAX CUT on graphs with bounded
degree, and MAX LEAF SPANNING TREE when restricted to graphs of bounded treewidth.
For a proof, see Theorem 7.1.2.

6.4 Additional Results
It is possible to generalize the results in this chapter to directed, mixed and/or labeled graphs,
in the same way as is described in Section 5.4. The results of this chapter can also be used
to give algorithms that generate all solutions for a construction propertyP, or all optimal
solutions for a constructive optimization problemΦ.

In the same way as described in Section 5.4, we can also generalize the results of this
chapter to multigraphs.
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Chapter 7

Applications of Reduction Algorithms

In this chapter we apply the results of Chapter 6 to a number of constructive optimization
problems on simple graphs. In Section 7.1 we prove a weaker version of Theorem 6.2.2
which is easier to use. We use this result and Theorem 6.2.2 to prove that a number of con-
structive optimization problems can be solved efficiently on graphs of bounded treewidth. In
Section 7.2 we show that for a number of MS-definable constructive optimization problems,
we can not apply the results of Chapters 5 and 6. The fact that these problems are MS-
definable shows that there are efficient algorithms that solve them if a tree decomposition of
bounded width of the input graph is given (Section 2.2.4).

7.1 Positive Results
While Theorem 6.2.2 may seem complex to use, it is in most cases not hard to find an equiv-
alence relation�rQ;l which satisfies condition 1 and 3. Only condition 2 is often not easy to
prove. Therefore, we give an alternative for condition 2, which is slightly weaker but easier
to use, as will be demonstrated later in this section.

Theorem 7.1.1. Let Φ be a constructive optimization problem defined by(D;Q;z;opt). Sup-
pose that D is inducible for[ ], that there is a refinement�rQ;l of�Q;l for which Q is decid-
able, for each l� 0,�rQ;l is decidable andjCrQ;l j is finite, and furthermore, that the following
condition holds.

4. There is an extension̄z of z with respect tof�rQ;l j l � 0g, for each l� 0, there is a
constant K0l 2 IN, and with each l-terminal graph G, we can associate an equivalence
class CG 2 CrQ;l , such that the following holds.

(a) For all l-terminal graphs G and H, and S2 D[ ](G), S0 2 D[ ](H), if ecrQ;l (G;S) =CG

andecrQ;l (H;S0)=CH, then(G;S) and(H;S0) are�-compatible, and Q(G�H;S�S0)
holds.

(b) If opt= max, then for all l-terminals graphs G and all S2 D[ ](G), if S can lead
to a solution (i.e. there is an(H;S0) such that Q(G�H;S�S0) holds), thenz̄(S)�
opt(G;CG)� K0

l .

(c) If opt= min, then for all l-terminals graphs G, all S2 D[ ](G), if S can lead to a
solution, thenopt(G;CG)� z̄(S)� K0

l .

Then condition 2 of Theorem 6.2.2 also holds.
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Proof. Let dl (C;C0) be the extension constants for ¯z. For eachl � 0, let

Kl = 2K0
l +4 �maxfjdl(C;C

0)j jC;C0 2 CrQ;l ^C andC0 are�-compatibleg:

We show that with these definitions of ¯zandKl , condition 2 of Theorem 6.2.2 holds. We only
consider the case that opt= max. The case that opt= min can be proved similarly.

Let G be anl -terminal graph. We show that for eachS2 D[ ](G), if S can lead to an
optimal solution, thenjz̄(S)�opt(G;CG)j �Kl=2. This implies that condition 2 holds. LetS2
D[ ](G), and supposeScan lead to an optimal solution. By condition 4b, ¯z(S)�opt(G;CG)�
K0

l � Kl=2. Hence we only have to show that opt(G;CG)� z̄(S) � Kl=2, i.e. that ¯z(S) �
opt(G;CG)�Kl=2.

Let H be anl -terminal graph and letSH 2 D[ ](H) such thatQ(G�H;S�SH) holds
andz(S�SH) = Φ(G�H). By condition 4b, ¯z(SH)� opt(H;CH) � K0

l � Kl=2. Note that
opt(G;CG) 2 ZZ and opt(H;CH) 2 ZZ. LetC= ecrQ;l (G;S) and letC0 = ecrQ;l (H;SH). Then

z̄(S) = Φ(G�H)� z̄(SH)+dl(C;C
0)

�Φ(G�H)� (opt(H;CH)+K0
l )+dl(C;C

0)

� z(optS(G;CG)�optS(H;CH))�opt(H;CH)�K0
l +dl(C;C

0)

= z̄(optS(G;CG))+ z̄(optS(H;CH))�dl(CG;CH)�opt(H;CH)�K0
l +dl(C;C

0)

= opt(G;CG)� (K0
l +dl(CG;CH)�dl(C;C

0))

� opt(G;CG)� (K0
l +2maxfjdl (C;C

0)j jC;C0 2 CrQ;l ^C andC0 are�-compatibleg)

= opt(G;CG)�Kl=2

Hence opt(G;CG)� z̄(S)� Kl=2. This completes the proof. 2

Informally, condition 4 states that eachl -terminalG graph has a basic equivalence class
CG such that (4a) for alll -terminal graphsH, a partial solution inCG and a partial solution in
CH together form a solution ofG�H, and (4b and 4c) all partial solutionsS2 D[ ](G) which
can lead to a solution are at most a constant term better than the best solution inCG.

In the following theorem, we show for a number of constructive optimization problems
that they are efficiently solvable, using the methods of Chapters 5 and 6 and of Theorem 7.1.1.
For definitions of these problems, see Appendix A.

Theorem 7.1.2. Each of the following constructive optimization problems can be solved in
O(n) time and space on graphs of bounded treewidth without making a tree decomposition of
the input graph.

1. MAX INDUCED d-DEGREESUBGRAPH for all d � 0,

2. MIN VERTEX COVER,

3. MIN p-DOMINATING SET for all p� 1,

4. MAX CUT on graphs with bounded degree,

5. MIN PARTITION INTO CLIQUES,
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6. CHROMATIC NUMBER,

7. MIN HAMILTONIAN PATH COMPLETION,

8. MIN HAMILTONIAN CIRCUIT COMPLETION, and

9. MAX LEAF SPANNING TREE.

Each of these problems can be solved with O(n) operations and space, and in O(lognlog�n)
time on an EREW PRAM or in O(logn) time on a CRCW PRAM. However for problems 5, 7
and 8 the parallel algorithm only gives the solution as a labeling of the graph within these
bounds.

Proof. For eachl � 0, let Il = f1; : : : ; lg, andFl = ffi; jg j 1� i < j � lg. Furthermore, for
eachl -terminal graphG= (V;E;hx1; : : : ;xl i), let

F(G) = ffi; jg j fxi ;xjg 2 Eg;

and for eachW�V(G) let

I(W) = fi 2 Il j xi 2Wg:

We consider the problems one by one.

1 MAX INDUCED d-DEGREE SUBGRAPH. Let d � 0 be fixed. LetΦ be defined by
(D;Q;z;max), whereD, Q andzare defined as follows. For each graphG, let D(G) = P (V),
and for eachS2D(G), let

Q(G;S) = ‘for all v2 S: jNG;S(v)j � d’ ;

whereNG;S(v) = fw2 Sj fv;wg 2 E(G)g. Furthermore, letz(S) = jSj. We show that for each
k� 1, there is a special constructive reduction-counter system forΦk, by using Theorem 6.2.2
and Theorem 7.1.1. For twol -terminal graphsG andH, andS2 D(G�H), let S[G] = S\
V(G). HenceD[ ](G) = D(G), and two solutionsS2 D[ ](G) andS0 2 D[ ](H) are compatible
and�-compatible if they contain the same terminals.

We define a refinement�rQ;l of�Q;l by giving the setsCrQ;l and the functions ecrQ;l . For
eachl � 0, let

CrQ;l = f(I ; false) j I � Ilg[

f(F; I ;N) j F � Fl ^ I � Il ^N� f(i;n) j i 2 Il ^n2 f1; : : : ;dgg:

jCrQ;l j is bounded, becaused is fixed. For eachl -terminal graphG = (V;E;hx1; : : : ;xl i),
eachS2 D[ ](G), let ecrQ;l (G;S) 2 CrQ;l be defined as follows. If there is av 2 S such
that jNG;S(v)j > d, then ecrQ;l (G;S) = (I(S); false) (Scan not lead to a solution), otherwise,
ecrQ;l (G;S) = (F(G); I(S);N), where

N = f(i; jNG;S(xi)j) j i 2 I(S)g:
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We first show that�rQ;l is a refinement of�Q;l for all l . Suppose(G1;S1)�rQ;l (G2;S2).
Clearly,(G1;S1) and(G2;S2) are compatible. LetH be anl -terminal graph, letSH 2 D[ ](H)
such that(G1;S1) and(H;SH) are�-compatible. We have to show thatQ(G1�H;S1�SH)
holds if and only ifQ(G2�H;S2�H) holds. If

ecrQ;l (G1;S1) = ecrQ;l (G2;S2) = (I(S1); false);

thenQ(G1�H;S1�SH) = false = Q(G2�H;S2�SH). Suppose

ecrQ;l (G1;S1) = ecrQ;l (G2;S2) = (F; I ;N);

whereN = f(i;ni) j i 2 Ig. Let X = hx1; : : : ;xl i, Y = hy1; : : : ;yl i, andZ = hz1; : : : ;zl i denote
the terminal sets ofG1, G2 andH, respectively.

Q(G1�H;S1�SH)

= (8v2S1�SH jNG1�H;S1�SH (v)j � d )

= (8i2I jNH;SH (zi)j+ jNG1;S1(xi)j� jf j 2 I j xj 2 NG1;S1(xi)^zj 2 NH;SH (zi)gj � d )

^ (8v2S1�X jNG1;S1(v)j � d ) ^ (8v2SH�Z jNH;SH (v)j � d )

= (8i2I jNH;SH (zi)j+ jnij� jf j 2 I j fi; jg 2 F ^fzi ;zjg 2 E(H)gj � d )

^ (8v2S1�X jNG1;S1(v)j � d ) ^ (8v2SH�Z jNH;SH (v)j � d )

= (8i2I jNH;SH (zi)j+ jNG;S2(yi)j� jf j 2 I j yj 2 NG2;S2(yi)^zj 2 NH;SH (zi)gj � d )

^ (8v2S2�Y jNG2;S2(v)j � d ) ^ (8v2SH�Z jNH;SH (v)j � d )

= Q(G2�H;S2�SH)

Hence�rQ;l is a refinement of�Q;l . This proves condition 1 of Theorem 6.2.2.
Consider condition 4 of Theorem 7.1.1. For each terminal graphG, eachS2 D[ ](G),

let z̄(S) = jSj. We show that ¯z is an extension ofz. Let C;C0 2 CrQ;l , such thatC andC0

are compatible. LetI � Il such thatC = (I ; false) or C = (F; I ;N) for someF andN, and
C0 = (I ; false) or C0 = (F 0; I ;N0) for someF 0 andN0. Let G andH be l -terminal graphs, let
S2D[ ](G) andS0 2D[ ](H) such that ecrQ;l (G;S)=C and ecrQ;l (H;S0) =C0. Thenz(S�S0)=
jS�S0j= jS[S0j= jSj+ jS0j�jI j= z̄(S)+ z̄(S0)�jI j, hencedl (C;C0) = jI j, which shows that
z̄ is an extension ofz.

We next defineKl for all l � 0, andCG for all l -terminal graphsG, and show that con-
dition 4 holds of Theorem 7.1.1 holds with these definitions. For eachl � 0, letKl = l , and
for eachl -terminal graphG, let CG = (F(G);o=;o=). Clearly, for all l -terminal graphsG and
H, eachS2D[ ](G) andS0 2 D[ ](H), if ecrQ;l (G;S) =CG and ecrQ;l (H;S0) =CH , then(G;S)
and(H;S0) are�-compatible, andQ(G�H;S�S0) holds. Furthermore, for eachl -terminal
graphG = (V;E;X), and eachS2 D[ ](G) that can lead to a solution (i.e. ecrQ;l (G;S) 6=
(F(G); false)), ecrQ;l (G;S�X) =CG andjSj�opt(G;CG)� jSj� jS�Xj � l = Kl .

Condition 3 of Theorem 6.2.2 also holds, asD is a one-vertex-edge-tuple. Hence for each
k� 1, there is a special (parallel) constructive reduction-counter system forΦk.
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2 MIN VERTEX COVER. There are two ways to prove that MIN VERTEX COVER can be
solved efficiently on graphs of bounded treewidth. Firstly, it is well-known that for each
graphG, if S is a maximum independent set inG, thenV(G)�S is a minimum vertex cover
in G. Hence we can solve MIN VERTEX COVER by first computing a maximum independent
set ofG (using the result for MAX INDUCED d-DEGREESUBGRAPH), and then taking the
complement of this set.

Alternatively, one can prove in a direct way that there is a special (parallel) constructive
reduction-counter system for Min Vertex Cover on graphs of bounded treewidth. This proof
is similar to the proof for MAX INDUCED d-DEGREESUBGRAPH, and we do not give it here.

3 MIN p-DOMINATING SET. Let p� 1 be fixed. LetΦ be defined by(D;Q;z;min), where
D, Q andzare defined as follows. For each graphG, D(G) = P (V), and for eachS2 D(G),

Q(G;S) = ‘for all v2V�S: jNG;S(v)j � p’ ;

andz(S) = jSj. [ ] is defined in the same way as for MAX INDUCED d-DEGREESUBGRAPH,
and so are� and (�-)compatibility. We define�rQ;l by giving CrQ;l and�rQ;l . For each
l � 0, let

CrQ;l = f(I ; false) j I � Ilg[

f(F; I ;N) j F � Fl ^ I � Il ^N� f(i;n) j i 2 Il � I ^n2 f1; : : : ; pgg:

For eachl -terminal graphG= (V;E;X) with X = hx1; : : : ;xl i), and for eachS2 D[ ](G), let
ecrQ;l (G;S) 2 CrQ;l be defined as follows. If there is av 2 V�X such thatjNG;S(v)j < p,
then ecrQ;l (G;S) = (I(S); false) (S can not lead to a solution). Otherwise, ecrQ;l (G;S) =
(F(G); I(S);N), where

N = f(i;n) j i 2 I(S)� Il ^ ((n= jNG;S(xi)j ^n� p)_ (n= p^ jNG;S(xi)j � p))g:

In the same way as for MAX INDUCED d-DEGREE SUBGRAPH, it can be shown that
�rQ;l is a refinement of�Q;l , and hence condition 1 of Theorem 6.2.2 holds.

We next show that condition 4 of Theorem 7.1.1 holds. For each terminal graphG,
eachS2 D[ ](G), let z̄(S) = jSj. It can be seen that ¯z is an extension ofz with respect to
f�rQ;l j l � 0g. For eachl , let Kl = l and for each terminal graphG, let CG = (F(G); Il ;o=).
Clearly, for alll -terminal graphsG andH andS2D[ ](G), S0 2D[ ](H) such that ecrQ;l (G;S)=
CG and ecrQ;l (H;S0) = CH , Q(G�H;S�S0) holds. Furthermore, for eachl -terminal graph
G= (V;E;X), eachS2 D[ ](G), if Scan lead to a solution, then ecrQ;l (G;S) 6= (F(G); false)
and ecrQ;l (G;S[X) = CG, and hence opt(G;CG)�jSj � jS[Xj� jSj � l = Kl . This proves
condition 4 of Theorem 7.1.1. Condition 3 of Theorem 6.2.2 is also satisfied, asD is again a
one-vertex-edge-tuple. This implies that for eachk� 1, there is a special (parallel) construc-
tive reduction-counter system forΦk.

4 MAX CUT on graphs with bounded degree. Letd� 0 be a bound on the maximum degree
of the input graph. LetΦ be defined by(D;Q;z;max), whereD, Q andz are as follows. For
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each graphG, let D(G) be the set of all partitions(V1;V2) of V(G), and for eachS2 D(G),
let Q(G;S) = true. For each graphG and eachS= (V1;V2) 2 D(G), let

z(S) = jffu;vg 2 E(G) j u2V1^v2V2gj:

We show that for eachk� 1, there is a special parallel constructive reduction-counter system
for Φk.

Let [ ] be defined in the obvious way, i.e. for each twol -terminal graphsG andH, and
S= (V1;V2) 2 D(G�H), let S[G] = (V1\V(G);V2\V(G)). Note thatD[ ](G) is the set of
all partitions(V1;V2) of V(G), and thatD is inducible for[ ]. Two pairs(G;S) and(H;S0) are
(�-)compatible ifSandS0 are the equal on the set of terminals.

For eachl � 0, let

CrQ;l = f(F; I) j F � Fl ^ I � Ilg;

and for eachl -terminal graphG= (V;E;X = hx1; : : : ;xl i) and eachS= (V1;V2) 2D[ ](G), let
ecrQ;l (G;S) = (F(G); I(V1)).

LetG1 andG2 bel -terminal graphs,S12D[ ](G1), S22D[ ](G2). If (G1;S1)�rQ;l (G2;S2),
then (G1;S1) and (G2;S2) are compatible, and hence�rQ;l is a refinement of�Q;l . This
means that condition 1 of Theorem 6.2.2 holds.

Consider condition 2 of Theorem 6.2.2. For each terminal graphG, eachS= (V1;V2) 2
D[ ](G), let z̄(S) = jffu;vg 2 E(G) j u 2 V1^ v 2 V2gj. We show that ¯z is an extension ofz
with respect tof�rQ;l j l � 0g.

Let G andH be l -terminal graphs, letS= (V1;V2) 2 D[ ](G) andS0 = (W1;W2) 2 D[ ](H),
such that(G;S) and(H;S0) are�-compatible. Let ecrQ;l (G;S) = (F; I), and let ecrQ;l (H;S) =
(F 0; I). Then

z(S�S0) = jffu;vg 2 E(G�H) j u2V1[W1^v2V2[W2gj

= jffu;vg 2 E(G) j u2V1^v2V2gj

+ jffu;vg 2 E(H) j u2W1^v2W2gj

� jffu;vg 2 E(G)\E(H) j u2W1^v2W2gj

= z̄(S)+ z̄(S0)�jffi; jg 2 F \F 0 j i 2 I ^ j 2 Il � Igj:

Hencedl ((F; I);(F 0; I)) = jffi; jg 2 F \F 0 j i 2 I ^ j 2 Il � Igj.
For eachl � 0, letKl = 2� l �d. LetG= (V;E;X) be anl -terminal graph, letS;S0 2D[ ](G)

such thatSandS0 can lead to optimal solutions. We have to show thatjz̄(S1)� z̄(S2)j � Kl .
Let S= (V1;V2) andS0 = (V 0

1;V
0
2). Let S̄= (W1;W2) 2 D[ ](G), where

W1 = (V1�X)+(V0
1\X) and W2 = (V2�X)+(V0

2\X):
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Then(G;S0) �rQ;l (G; S̄), and hence ¯z(S̄) � z̄(S0). Note thatSandS̄only differ on the set of
terminals. Furthermore,

z̄(S)� z̄(S0)

� z̄(S)� z̄(S̄)

= z̄(S)� ( z̄(S)�jffu;vg 2 E(G) j u2V1^v2V2^ (u;v2W1_u;v2W2)gj

+ jffu;vg 2 E(G) j u2W1^v2W2^ (u;v2V1_u;v2V2)gj )

� jffu;vg 2 E(G) j u2V1^v2V2^ (u;v2W1_u;v2W2)gj

= jffu;vg 2 E(G) j (u2V1\W1^v2V2\W1)_ (u2V1\W2^v2V2\W2)gj

� jffu;vg j (v2V2\W1)_ (u2V1\W2)gj

� jffu;vg j u2 X_v2 Xgj

� 2 � l �d = Kl :

Because of symmetry, this means thatjz̄(S)� z̄(S0)j �Kl . Hence condition 2 of Theorem 6.2.2
holds.

Condition 3 of Theorem 6.2.2 also holds, sinceD is a two-vertex-edge-tuple. Hence
for eachk� 1, there is a special (parallel) constructive reduction-counter system forΦk on
graphs with bounded degree.

5 MIN PARTITION INTO CLIQUES. Let Φ be defined by(D;Q;z;min), whereD, Q andz
are defined as follows. For each graphG, let D(G) be the set of all (unordered) partitions
S= fV1; : : : ;Vsg of V(G) for somes� 1, for which eachVi 2 Sinduces a connected subgraph
of G. For eachS2D(G), let

Q(G;S) = ‘for all W 2 S: G[W] is a complete graph’;

and letz(S) = jSj. We show that for eachk� 1, there is a special constructive reduction-
counter system forΦk.

For each twol -terminal graphsG= (V;E;X) andH = (V 0;E0;Y), eachS2D(G�H), let

S[G] = fW\V(G) jW 2 S^W\V(G) 6= o=g:

HenceD[ ](G) is the set of all partitionsS of V(G) in which for eachW 2 S, all connected
components ofG[W] contain at least one terminal vertex.

Note thatD is inducible for[ ], since, for anS2 D(G�H), there is noW 2 S which
contains vertices of bothG andH while it does not contain terminals ofG. Two pairs(G;S)
and(H;S0) are (�-)compatible if the terminals ofG andH are partitioned in the same way in
SandS0, i.e.

fI � Il j I 6= o= ^ 9W2SI = I(W)gg= fI � Il j I 6= o= ^ 9W2S0 I = I(W)g:
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For eachl � 0, let

CrQ;l = f(F; false) j F � Flg [

f(F;f(J1;b1); : : : ;(Jt ;bt)g) j F � Fl ^

t � 1^fJ1; : : : ;Jtg partitionsIl ^ (8i Ji 6= o=^bi 2 ftrue; falseg)g g

For eachl -terminal graphG= (V;E;hx1; : : : ;xl i), eachS2D[ ](G), let ecrQ;l (G;S) 2 CrQ;l be
defined as follows. If there is aW2 Swhich contains a pairv;w2W for whichfv;wg =2 E(G)
andfv;wg 6� X, then ecrQ;l (G;S) = (F(G); false) (Scan not lead to a solution). Otherwise,
ecrQ;l (G;S) = (F(G);J ), where

J = f(J;b) j (9W2S J = I(W)^J 6= o=^ (b, (W� X))g:

It is fairly easy to check that if ecrQ;l (G1;S1) = ecrQ;l (G2;S2), then(G1;S1) �Q;l (G2;S2).
This shows that condition 1 of Theorem 6.2.2 holds.

Consider condition 4 of Theorem 7.1.1. For each terminal graphG, eachS2 D[ ](G), let
z̄(S) = jSj. We show that ¯z is an extension ofzwith respect tof�rQ;l j l � 0g. Let G andH be
l -terminal graphs, letS2D[ ](G), S0 2D[ ](H), such that(G;S) and(H;S0) are�-compatible.
Let ecrQ;l (G;S) = (F;J ), and let ecrQ;l (H;S) = (F 0;J 0). Then

jSj+ jS0j� jS�S0j= jfW 2 S�S0 jW\X 6= o=gj

= jJ j:

Hencedl ((F;J );(F 0;J 0)) = jJ j.
For eachl � 0, letKl = l , and for eachl -terminal graphG, let

CG = (F(G);f(fig; true) j 1� i � lg):

Clearly, condition 4a of Theorem 7.1.1 holds. LetG be anl -terminal graph, letS2 D[ ](G),
such thatSmay lead to a solution, i.e. ecrQ;l (G;S) 6= (F(G); false). Furthermore, let

S0 = ffvg j v2 Xg[fW�X jW 2 S^W 6� Xg:

ThenS0 2 D[ ](G) and ecrQ;l (G;S0) = CG, and hence opt(G;CG)� jSj � jS0j � jSj � l = Kl .
This shows that condition 4 of Theorem 7.1.1 holds.

Consider condition 3 of Theorem 6.2.2. We represent (partial) solutionsSas follows. We
construct a list of all elementsW 2 S. For eachW 2 S, we construct a list of all vertices in
W, and for eachv2W, we make a pointer toW and to vertexv in W. It is easy to check that
condition 3 of Theorem 6.2.2 holds for this representation. This completes the proof that for
eachk� 1, there is a special constructive reduction-counter system forΦk.

For the parallel algorithm, we use a different representation of (partial) solutions. For
each (partial) solutionS, we label the vertices inG in such a way that two verticesv andw
have the same label if and only if they are in the same clique, i.e. there is aW 2 Ssuch that
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v;w 2W. It can be seen that with this representation one can use the parallel algorithm as
described in Section 6.3.2 to solve MIN PARTITION INTO CLIQUES in O(lognlog�n) time
with O(n) operations on an EREW PRAM, and inO(logn) time with O(n) operations on a
CRCW PRAM. However, we have no method to obtain a list of all cliques from the vertex
labeling within the same resource bounds.

6 CHROMATIC NUMBER. We can not prove that there is a constructive reduction-counter
system for CHROMATIC NUMBER on graphs of bounded treewidth. However, it is well-
known that for eachk� 1, each graph of treewidth at mostk has a(k+1)-coloring. Further-
more, for eachm� 1, them-COLORABILITY problem is MS-definable, and the solutions are
m-vertex-edge-tuples. Therefore, given an integerk� 1, we can solve CHROMATIC NUM-
BER on a graphG of treewidth at mostk as follows. For eachm, 1�m� k+1, try to find
anm-coloring ofG. Take the smallestm for which this is possible, and return anm-coloring.
Sequentially, this can be done inO(n) time and space. In parallel, this can be done withO(n)
operations and space inO(lognlog�n) time on an EREW PRAM, and inO(logn) time on a
CRCW PRAM.

7 MIN HAMILTONIAN PATH COMPLETION. Let Φ be defined by(D;Q;z;min), whereD,
Q andzare defined as follows. For each graphG, let each elementS in D(G) be a set of non-
empty paths inG (i.e. paths containing at least one vertex), such that the setfV(P) j P2 Sg
partitionsG. For eachS2 D(G), let Q(G;S) = true, and letz(S) = jSj�1. Note that this
correctly describes the problem HAMILTONIAN PATH COMPLETION NUMBER. We show
that for eachk� 1, there is a special constructive reduction-counter system forΦk.

Let G andH be l -terminal graphs,S2D(G�H). Let

S[G] =
[

P2S

fP0 j P0 is a connected component ofP[V(G)]g;

i.e. S[G] is the set of paths inG which is obtained fromSby deleting all vertices and edges
which are not inG, and deleting empty paths. DomainD is inducible for this definition of
[ ]: let G andH be l -terminal graphs,S2 D(G�H). ThenS is the set of components of the
subgraphG0 of G�H with

V(G0) =V(G�H)

E(G0) = fe2 E(G�H) j 9P2S[G]e2 E(P)_9P2S[H]e2 E(P)g:

Let G= (V;E;X = hx1; : : : ;xl i) be anl -terminal graphG, let P= (v1; : : : ;vs) be a path in
G. SupposeV(P)\X = fxi1; : : : ;xiqg, q� 1, and for each 1� j < m� q, xi j occurs on the
left side ofxim in P (i.e. by walking fromv1 to vs in P, we meetxi j earlier thanxim). Let vx
andnovx be dummy vertices. Then Ind(P) is defined as follows.

Ind(P) = (d0; i1;d1; i2;d2; : : : ;dq�1; iq;dq);

where for eachi, 0� i � q, di 2 fvx;novxg as follows. Ifxi1 = v1, then no vertex precedesxi1
in P and henced0 = novx, otherwised0 = vx. If xiq = vs, then no vertex followsxi1 and hence
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dq = novx, otherwisedq = vx. For eachm, 0< m< q, if there is a j, 1� j < s, such that
xim = vj andxim+1 = vj+1, then there is no vertex betweenxim andxim+1, and hencedm= novx,
otherwise,dm = vx.

For eachl -terminal graphG and eachS2 D[ ](G), let ecrQ;l (G;S) be defined as follows:

ecrQ;l (G;S) = (F(G);fInd(P) j P2 S^V(P)\X 6= o=g):

For eachl � 0, letCrQ;l contain all possible values of ecrQ;l (G;S) and let�rQ;l be defined as
usual. It can be seen that if(G1;S1)�rQ;l (G2;S2), then(G1;S1) and(G2;S2) are compatible,
and hence(G1;S1)�Q;l (G2;S2). This proves condition 1 of Theorem 6.2.2.

Consider condition 4 of Theorem 7.1.1. For each terminal graphG, eachS2 D[ ](G), let
z̄(S)= jSj. We show that ¯z is an extension ofzwith respect tof�rQ;l j l �0g. LetG=(V;E;X)
andH = (V 0;E0;Y) be l -terminal graphs,S2 D[ ](G) andS0 2 D[ ](H). If (G;S) and(H;S0)
are�-compatible, then

z(S)+z(S0)�z(S�S0) = jfP2 SjV(P)\X 6= o=gj+ jfP2 S0 jV(P)\Y 6= o=gj

� jfP2 S�S0 jV(P)\X 6= o=gj:

This value can be computed from ecrQ;l (G;S) and ecrQ;l (H;S), hence ¯z is an extension ofz.
For eachl � 0, letKl = 2l , and for eachl -terminal graphG, let

CG = (F(G);f(novx; i;novx) j 1� i � lg):

If ecrQ;l (G;S) =CG and ecrQ;l (H;S0) =CH , then(G;S) and(H;S0) are�-compatible.
Let G be anl -terminal graph,S2 D[ ](G). Let G0 be the graph consisting of all paths in

S (note thatV(G0) = V(G)). ObtainG00 from G0 by removing all edgesfv;wg 2 E(G0) for
which v2 X. Let S0 = fP j P is a component ofG00g. ThenS0 2 D[ ](G), and ecrQ;l (G;S0) =
CG. Furthermore,jS0j � jSj+ 2l , and hence opt(G;CG)� z̄(S) � jS0j � jSj � 2l = Kl . This
completes the proof of condition 4 of Theorem 7.1.1.

Consider condition 3 of Theorem 6.2.2. We represent each (partial) solutionSas follows.
We construct a list of all pathsP2 S. For eachP2 S, we construct a list of all vertices in
the order in which they occur in the path. We keep pointers from vertices in the graph to the
corresponding vertices in the path and vice versa, and from each vertex in the graph to the
path in which it occurs. With this representation, condition 3 can be proved. Hence for each
k� 1, there is a special constructive reduction-counter system forΦk. The algorithm returns
a set of paths which partition the vertices of the input graph, such that the number of these
paths is minimum. If we are interested in a minimum set of edges which have to be added
to the graph in order to get a graph which contains a Hamiltonian path, then we can compute
such a set from the minimum set of paths: take any ordering of these paths, and let the edge
set contain all edges from an end point of one path to the starting point of the next path in the
ordering. This set can be computed inO(n) time.

An efficient parallel algorithm which solvesΦk for anyk� 1 can only be obtained if we
represent (partial) solutions as a labeling of the graph: given a (partial) solutionsS, label each
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vertex and edge in the graph such that vertices and edges in the same path have the same
label. With this representation it can be shown that the algorithm described in Section 6.3.2
can be used.

8 MIN HAMILTONIAN CIRCUIT COMPLETION. The MIN HAMILTONIAN CIRCUIT COM-
PLETION can easily be solved with use of MIN HAMILTONIAN PATH COMPLETION and the
constructive version of HAMILTONIAN CIRCUIT: suppose we have an input graphG. Letmp

andmc denote the minimum number of edges that have to be added toG such that it contains
a Hamiltonian path, and a Hamiltonian circuit, respectively. Ifmp � 1, thenmc = mp+ 1.
If mp = 0, then there are two cases. EitherG contains a Hamiltonian circuit, in which
casemc = 0, or G does not contain a Hamiltonian circuit, in which casemc = 1. Hence
to solve MIN HAMILTONIAN CIRCUIT COMPLETION, we first solve MIN HAMILTONIAN

PATH COMPLETION as described above. If this gives a numbermp � 1 of paths, then it is a
solution for MIN HAMILTONIAN CIRCUIT COMPLETION. If mp = 0, then we solve the con-
structive version of HAMILTONIAN CIRCUIT. If this algorithm returns a Hamiltonian circuit,
then we take this as a solution for MIN HAMILTONIAN CIRCUIT COMPLETION, otherwise,
we take the solution of MIN HAMILTONIAN PATH COMPLETION. As HAMILTONIAN CIR-
CUIT is MS-definable and its solution domain can be seen as a two-vertex-edge-tuple, we
have an efficient algorithm for MIN HAMILTONIAN CIRCUIT COMPLETION on graphs of
bounded treewidth.

9 MAX LEAF SPANNING TREE. Let Φ be defined by(D;Q;z;max), whereD, Q andz are
defined as follows. For each graphG, let D(G) be the set of all spanning trees ofG. For each
S2 D(G), let Q(G;S) = true, and letz(S) be the number of vertices of degree one inS. We
show that there is a special parallel constructive reduction-counter system forΦk (k� 1).

For every twol -terminal graphsG andH and eachS2 D(G�H), let S[G] be the forest
in G obtained by deleting all vertices and edges fromS which are not inG, i.e. S[G] =
(V(S)\V(G);E(S)\E(G)). HenceD[ ](G) is the set of all spanning forestsF of G for which
each connected component ofF contains at least one terminal of the graph. Note thatD is
inducible for[ ].

For eachl -terminal graphG = (V;E;hx1; : : : ;xl i), eachS2 D[ ](G), if S contains more
than one connected component, and one of these components does not contain a terminal,
then let ecrQ;l = (F(G); false) (there are noH andSH 2D[ ](H) such thatS�SH is a spanning
tree ofG�H), otherwise, let ecrQ;l (G;S) = (F(G);J ;A) where

J = f(J;F) j 9V 0�V S[V0] is a connected component ofS^J = I(V 0)^

F = ffi; jg j i; j 2 J^fxi ;xjg 2 E(S)gg;

A= f(i;si) j 1� i � l ^si = jNS;V(xi)j if jNS;V(xi)j � 2; otherwisesi = 2g:

More informally, for each componentT of S, J contains the subgraph ofT induced by the
terminals inT (note that there are at mostl such components). Furthermore,A denotes for
each terminali whether it has zero neighbors, one neighbor, or more than one neighbor inS.
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Let CrQ;l be the set of all possible values of�rQ;l . Note thatjCrQ;l j is finite. For eachl � 0,
let�rQ;l be defined as usual.

One can check that if(G1;S1) �rQ;l (G2;S2), then(G1;S1) and(G2;S2) are compatible,
i.e. that for eachl -terminal graphH and eachSH 2D[ ](H), the graph(V(S1)[V(SH);E(S1)[
E(SH) is a tree if and only if the graph(V(S1)[V(SH);E(S1)[E(SH)) is a tree. This implies
that(G1;S1)�Q;l (G2;S2). Hence condition 1 of Theorem 6.2.2 holds.

Consider condition 2 of Theorem 6.2.2. For each terminal graphG and eachS2 D[ ](G),
let z̄(S) = the number of vertices of degree one inS. We show that ¯z is an extension ofzwith
respect tof�rQ;l j l � 0g.

Let G andH bel -terminal graphs, letS2D[ ](G), S0 2D[ ](H), such that(G;S) and(H;S0)
are�-compatible. Let ecrQ;l (G;S) = (F;J ;A), and let ecrQ;l (H;S) = (F 0;J 0;A0), whereA=
f(i;si) j 1� i � lg andA0 = f(i;s0i) j 1� i � lg. Then

z(S)+z(S0)�z(S�S0) = jfi 2 Il j jNS�S0
;V(G)[V(H)(xi)j � 2^si = 1gj +

jfi 2 Il j jNS�S0
;V(G)�V(H)(xi)j � 2^s0i = 1gj:

It can be seen that this value can be computed from(F;J ;A) and(F 0;J 0;A0), and hence ¯z is a
proper extension.

For eachl � 0, let Kl = 4l . For each terminal graphG, let FG be a maximal spanning
forest ofG such that ¯z(FG) is maximum. A spanning forestF of G is called maximal if each
component ofF spans a component ofG. We show that for eachl -terminal graphG and each
S2 D[ ](G), if S can lead to an optimal solution, thenjz̄(S)� z̄(FG)j � Kl=2. This implies
condition 2.

Let G be anl -terminal graph, letS2D[ ](G) and supposeScan lead to an optimal solution.
Note thatS contains at mostl components. We first show that ¯z(S) � z̄(FG)+Kl=2. Let S0

be a maximal spanning forest ofG such thatS is a subgraph ofS0. NoteS0 can be obtained
from S by adding at mostl �1 edges. Hence ¯z(S0) � z̄(S)�2(l �1). Sincez̄(S0) � z̄(FG),
this implies that ¯z(S)� z̄(FG)+Kl=2.

We next show that ¯z(S)� z̄(FG)�Kl=2. LetH be anl -terminal graph, and letSH 2D[ ](H)
such thatQ(G�H;S�SH) holds andz(S�SH)=Φ(G�H). LetG0 be the subgraph ofG�H
with V(G0) =V(G�H), andE(G0) = E(FG)[E(SH). The number of vertices of degree one
in G0 is at least ¯z(FG)+ z̄(SH)� l . Furthermore, we can obtain fromG0 a spanning treeT of
G by removing a number of edges ofG0. This does not decrease the number of vertices of
degree one, since if a vertex has one incident edge, then this edge can not be removed. Hence
z(T)� z̄(FG)+ z̄(SH)� l . Sincez(T)�Φ(G�H) = z(S�SH), we can derive the following.

z̄(S)� z(S�SH)� z̄(SH)

� z(T)� z̄(SH)

� z̄(FG)+ z̄(SH)� l� z̄(SH)

= z̄(FG)� l

� z̄(FG)�Kl=2
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This proves condition 2 of Theorem 6.2.2.
As D is a two-vertex-edge-tuple, condition 3 of Theorem 6.2.2 is also satisfied, and hence

for eachk� 1, there is a special (parallel) constructive reduction-counter system for MAX

LEAF SPANNING TREE on graphs of bounded treewidth. 2

7.2 Negative Results
There is a number of (constructive) optimization problems for which we do not succeed in
proving conditions 1, 2 (and 3) of Theorem 6.2.2, although the problems are MS-definable,
and thus standard methods can be used to solve these problems inO(n) time sequentially or
O(logn) time withO(n) operations in parallel on an EREW PRAM if a tree decomposition of
the input graph is given (Section 2.2.4). We show that it is not possible to prove conditions 1
and 2 for these problems, by showing that the problems are not of finite integer index. Indeed,
we show that�Φ;l has infinitely many equivalence classes for somel � 0. We do this by
giving an infinite class of graphs and showing that the elements of this class are pairwise not
equivalent.

We next show for a number of constructive optimization problems that they are not of
finite integer index.

Theorem 7.2.1. The following problems are not of finite integer index.

1. MAX CUT

2. MIN COVERING BY CLIQUES

3. LONGESTPATH

4. LONGESTCYCLE

Proof. Let Φ denote the respective optimization problem.

1 MAX CUT. We give an infinite setG of two-terminal graphs such that for eachG andG0

in this set, ifG 6= G0, thenG 6�Φ;2 G0. For eachn� 2, letGn be a two-terminal graph which
is defined as follows (see also Figure 7.1).

V(Gn) = X[A[Bn[Cn;

where all sets are disjoint,X = hx1;x2i is the set of terminals,A= fa1;a2g, andBn andCn

each containn vertices, and furthermore,

E(Gn) = ffx1;a1g;fx2;a2gg [ ffai;vg j 1� i � 2^v2 Bn[Cng

[ ffx2;bg j b2 Bng [ ffx1;cg j c2Cng:

Let G = fGn j n� 2^n eveng.

Claim. Let n� 1, let H be a two-terminal graph. Let(W1;W2) be a maximum cut of Gn�H
(i.e. (W1;W2) partitions V(G�H) and the number of edges with one end point in W1 and
one end point in W2 is maximum). Either((W1 \V(H)) +A;(W2 \V(H)) + Bn +Cn) or
((W1\V(H))+Bn+Cn;(W2\V(H))+A) is a maximum cut of G�H.
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x1 x2

A Bn

Gn

y1 y2

Hp

Dp Fp

Cn

Figure 7.1. The graphsGn (n� 2) andHp (p� 0) for MAX CUT.

Proof. Let M� = z(W1;W2), i.e. M� denotes the number of edges inGn�H with one end
point inW1 and one inW2. Let

A1 =W1\A; BC1 =W1\ (Bn[Cn);

A2 =W2\A; BC2 =W1\ (Bn[Cn):

Furthermore, let

(V1;V2) = (W1�BC1+A2;W2�A2+BC1), and

(V 0
1;V

0
2) = (W1�A1+BC2;W2�BC2+A1):

Note that(V1;V2) and (V 0
1;V

0
2) are the cuts mentioned in the claim. We show that either

(V1;V2) or (V 0
1;V

0
2) is a maximum cut. LetM = z(V1;V2) and letM0 = z(V 0

1;V
0
2). We consider

two cases, namely

1. jA2j= 0_ jBC1j= 0, and

2. 0< jA2j � jAj and 0< jBC1j � jBC1[BC2j.

In case 1,

M �M�+ jA1j � jBC1j+ jA2j � jBC2j� jA2j� jBC1j

= M�+ jA2j(jBC2j�1)+ jBC1j(jA1j�1)

�M�:

156



7.2 Negative Results

In case 2,

M0 �M�+ jA1j � jBC1j+ jA2j � jBC2j� jA1j� jBC2j

= M�+ jA1j(jBC1j�1)+ jBC2j(jA2j�1)

�M�:

This proves the claim. 2

For eachp� 0, letHp be the graph defined as follows (see also Figure 7.1).

V(Hp) =Y[Dp[Fp;

where all sets are disjoint,Y = hy1;y2i is the set of terminals,Dp andFp each containp
vertices, and

E(Hp) = ffd; fg j d 2 Dp^ f 2 Fpg [ fy1;dg j d 2 Dpg [ ffy2; fg j f 2 Fpg:

Claim. Let p� 0, let G be a two-terminal graph, and let(W1;W2) be a maximum cut of G�
Hp. Either((W1\V(G))+Dp;(W2\V(G))+Fp) or ((W1\V(G))+Fp;(W2\V(G))+Dp)
is a maximum cut of G�Hp.

Proof. Similar to the proof of Claim 7.2.1. 2

We now show that for eachGn;Gm2 G , if n 6= m, thenGn 6�Φ;2 Gm.
For i � 2, eachp� 0, consider the graphGi�Hp. Claim 7.2.1 and Claim 7.2.2 show that

there are eight candidates for maximum cuts inGi�Hp. In the following table, all these cuts
are given, together with their values.

nr. cut , value
1 (A[Dp[X , Bi [Ci [Fp) 4i + p2+2i + p
2 (A[Fp[X , Bi [Ci [Dp) 4i + p2+2i + p
3 (A[Dp[fx1g , Bi [Ci [Fp[fx2g) 4i + p2+ i +1
4 (A[Fp[fx1g , Bi [Ci [Dp[fx2g) 4i + p2+ i +1+2p
5 (A[Dp[fx2g , Bi [Ci [Fp[fx1g) 4i + p2+ i +1+2p
6 (A[Fp[fx2g , Bi [Ci [Dp[fx1g) 4i + p2+ i +1
7 (A[Dp , Bi [Ci [Fp[X ) 4i + p2+2+ p
8 (A[Fp , Bi [Ci [Dp[X ) 4i + p2+2+ p

Note that either cuts 1 and 2 or cuts 4 and 5 are maximum, sincei � 2, andp� 0.
Let n> m> 1, n, meven. Ifp= 0, then cuts 1 and 2 are maximum for bothGn�H0 and

Gm�H0. HenceΦ(Gn�H0) = 6n andΦ(Gm�H0) = 6m, soΦ(Gn�H0)�Φ(Gm�H0) =
6(n�m).
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Let p= 1
2(n+m)�1. Then

Φ(Gn�Hp) = 4n+ p2+maxf2n+
1
2
(n+m)�1;n+1+(n+m)�2g

= 4n+ p2+maxf
5
2

n+
1
2

m�1;2n+m�1g

= 4n+ p2+
5
2

n+
1
2

m�1

=
13
2

n+
1
2

m+ p2�1;

and

Φ(Gm�Hp) = 4m+ p2+maxf2m+
1
2
(n+m)�1;m+1+(n+m)�2g

= 4m+ p2+maxf
5
2

m+
1
2

n�1;2m+n�1g

= 4m+ p2+2m+n�1

= 6m+n+ p2�1

Hence

Φ(Gn�Hp)�Φ(Gm�Hp) = (
13
2

n+
1
2

m+ p2�1)� (6m+n+ p2�1)

=
11
2
(n�m)

However,11
2 (n�m) 6= 6(n�m) = Φ(Gn�H0)�Φ(Gm�H0), sincen 6= m. SoGn 6�Φ;2 Gm.

As eachGn, n> 1, n even, belongs to a different equivalence class of�Φ;2, the MAXIMUM

CUT problem is not of finite integer index.

2 MIN COVERING BY CLIQUES. For eachn� 1, letGn be the two-terminal graph with (see
also Figure 7.2)

V(Gn) = fx1;x2g[fa1; : : : ;ang, and

E(Gn) = ffxi ;ajg j 1� i � 2^1� j � ng:

Verticesx1 andx2 are the first and the second terminal, respectively.
Let G = fGn j n� 1g. We show that for eachGn;Gm2 G , if n 6= m, thenGn 6�Φ;2 Gm.
Let H be the two-terminal graph consisting of terminalsy1 andy2 and no edges, and letH 0

be the two-terminal graph consisting of terminalsy1 andy2 and edgefy1;y2g (see Figure 7.2).
For eachi, i � 1, Φ(Gi �H) = jE(Gi)j = 2i, sinceGi �H contains no cliques of more

than two vertices. Furthermore,Φ(Gi �H 0) = jffx1;x2;ajg j 1� j � ngj = i. This means
that for alln andm, n 6= m,

Φ(Gn�H)�Φ(Gm�H) = 2n�2m 6= n�m= Φ(Gn�H 0)�Φ(Gm�H 0);
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x1 x2

Gn

y1 y2

a1 a2 an

y1 y2

H H 0

Figure 7.2. The graphsGn (n� 2), H andH 0 for MIN COVERING BY CLIQUES.

and henceGn 6�Φ;l Gm.

3 LONGEST PATH. For eachn� 1, let Gn be the two-terminal graph defined by (see also
Figure 7.3)

V(Gn) = fx1;x2g[fa1; : : : ;ang, and

E(Gn) = ffx1;a1gg[ffai;ai+1g j 1� i < ng

(x1 andx2 are the first and the second terminal, respectively). LetG = fGn j n� 1^n eveng.

x1 x2

Gn

y1 y2

a1

a2

an

Hp

bp

b2

b1

Figure 7.3. The graphsGn (n� 1), andHp (p� 1) for LONGESTPATH.

Furthermore, for eachp� 1, letHp be the two-terminal graph with vertex set

V(Hp) = fy1;y2g[fb1; : : : ;bpg, and

E(Hp) = ffy2;b1gg[ffbi;bi+1g j 1� i < pg;

(y1 andy2 are the first and the second terminal, respectively). For eachi � 1, j � 1, Φ(Gi �
Hj) = maxfi; jg.

Let 1� n < m, such thatn and m are even. ThenΦ(Gn�Hn+1)�Φ(Gm�Hn+1) =
n+1�m= n�m+1< 0. Furthermore,Φ(Gn�Hm)�Φ(Gm�Hm) = m�m= 0. Hence
Gn 6�Φ;l Gm.
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4 LONGESTCYCLE. The proof is similar to the proof for LONGESTPATH, but with graphs
Gn andHp as depicted in Figure 7.4. 2

x1 x2

Gn

y1 y2

a1

a2

an
Hp

bp

b2

b1

Figure 7.4. The graphsGn (n� 1), andHp (p� 1) for LONGESTCYCLE.
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Chapter 8

Parallel Algorithms for
Series-Parallel Graphs

This chapter is concerned with parallel algorithms for recognizing series-parallel graphs and
finding sp-trees of series-parallel graphs. We consider four variants of this problem: the input
is either a source-sink labeled multigraph which is directed or undirected, or an ordinary
multigraph which is directed or undirected. (Definitions and some known results can be found
in Section 2.3.3.) The best known sequential algorithms for these problems are constructive
reduction algorithms which useO(m) time [Valdes et al., 1982] (m denotes the number of
edges of the input graph). We apply the theory of parallel constructive reduction systems as
introduced in Section 6.3.1 to obtain efficient parallel algorithms for the problems.

The precise definitions of the problems under considerations are as follows.

SOURCE-SINK LABELED SERIES-PARALLEL GRAPH

Instance: A source-sink labeled multigraph(G;s; t).
Find: An sp-tree of(G;s; t), if (G;s; t) is series-parallel.

For undirected input graphs the problem is denoted by LSPG, and for directed input graphs
by DLSPG.

SERIES-PARALLEL GRAPH

Instance: A multigraphG.
Find: An sp-tree ofG, if G is series-parallel.

For undirected input graphs the problem is denoted by SPG, and for undirected input graphs
by DSPG.

He and Yesha [1987] gave a parallel algorithm for DLSPG and DSPG that usesO(log2n+
logm) time, andO(n+m) processors on an EREW PRAM, and henceO((n+m)(log2n+
logm)) operations. The sp-tree that is returned by the algorithm is a binary sp-tree. He [1991]
showed that this algorithm can be extended for LSPG and SPG. The resulting algorithms also
useO(log2n+ logm) time with O(n+m) processors on an EREW PRAM.

Eppstein [1992] improved this result for simple graphs: his algorithms run inO(logn)
time on a CRCW PRAM withO(m� α(m;n)) operations (α(m;n) is the inverse of Acker-
mann’s function, which is at most four for all practical purposes). As any algorithm on a
CRCW PRAM can be simulated on an EREW PRAM with a loss ofO(logn) time, this

161



Chapter 8 Parallel Algorithms for Series-Parallel Graphs

implies an algorithm withO(log2n) time andO(mlogn �α(m;n)) operations on an EREW
PRAM.

We improve upon these results, both for the EREW PRAM model and theCRCW PRAM
model. We give algorithms which solve LSPG, SPG, DLSPG and DSPG inO(logmlog�m)
time withO(m) operations on an EREW PRAM, and inO(logm) time withO(m) operations
on a CRCW PRAM. The algorithms make heavy use of the results on constructive reduction
algorithms presented in Chapter 6. For LSPG, we apply Theorem 6.3.1: we give a special
parallel constructive reduction system for the problem. This system can be used in the parallel
algorithm given in Section 6.3.1. This results in algorithms for the EREW and CRCW PRAM
model with the stated resource bounds. The algorithms for SPG, for DLSPG and for DSPG
are based on these algorithms.

If the input graph is simple, then we can make our algorithms to run inO(lognlog� n) on
an EREW PRAM andO(logn) on a CRCW PRAM, and the number of operations isO(n).

As series-parallel graphs have treewidth at most two, we can solve many problems in
O(logm) time with O(m) operations if a tree decomposition of small width of the graph is
given, including all all finite state problems (Section 2.2.4). If no tree decomposition is given,
then we can first use the results of this chapter to construct a binary sp-tree of the graph, and
then transform the sp-tree into a tree decomposition of width two of the graph. We show that
this transformation can be done inO(1) time with O(m) operations on an EREW PRAM.
Hence we can solve a large class of problems on series-parallel graphs inO(logmlog�m)
time with O(m) operations on an EREW PRAM and inO(logm) time with O(m) operations
on a CRCW PRAM.

This chapter is organized as follows. Section 8.1 contains some preliminary results. In
Section 8.2, we give a special parallel constructive reduction system for the problem LSPG.
In Section 8.3, we show that each of the problems LSPG, SPG, DLSPG and DSPG can be
solved within the stated resource bounds.

8.1 Preliminary Results

The graphs we consider in this chapter are multigraphs, which means that we use the modi-
fied definitions as given in Section 5.4 for reduction rules (Definition 5.1.1) and constructive
reduction systems (Definition 6.1.1). Definitions of series-parallel graphs and sp-trees, and
some preliminaries can be found in Section 2.3.3.

We give a number of simple or well-known lemmas on series-parallel graphs.

Lemma 8.1.1. Let G be a series-parallel graph and let T be an sp-tree of G. Ifα andβ are
nodes of T ,α is an ancestor ofβ, and the labels ofα andβ both contain a vertex v, then all
nodes on the path betweenα andβ in T contain v in their label.

Lemma 8.1.2. If (G;s; t) is a series-parallel graph, then(G+fs; tg;s; t) is a series-parallel
graph, where G+ fs; tg is the graph obtained by adding an (extra) edge between s and t to
G.
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Proof. This follows from the parallel composition ofG with a one-edge series-parallel
graph. 2

Lemma 8.1.3. If (G;s; t) is a series-parallel graph with sp-tree TG, and there is a nodeα in
TG labeled with(u;v), then(G+fu;vg;s; t) is a series-parallel graph.

Proof. SupposeGα is the series-parallel graph associated with nodeα. Add betweenα and
its parent a p-nodeβ which has two children, namely nodeα and a leaf node representing the
added edgefu;vg. The new tree is an sp-tree of(G+fu;vg;s; t). 2

Lemma 8.1.4. Let G be a series-parallel graph, T an sp-tree of G, and u;v2 V(G). The
nodes in T which are labeled with(u;v) induce a (possibly empty) subtree of T .

As shown in Lemma 2.3.5, any series-parallel graph has treewidth at most two. From the
construction in the proof of Lemma 2.3.5 is easy to see that any binary sp-tree ofG can be
transformed into a tree decomposition of width at most two ofG in O(1) time with O(m)
operations on an EREW PRAM.

In the following lemmas, we frequently use the fact that a series-parallel graph can not
haveK4 as a minor (which follows from Lemma 2.3.5 and Lemma 2.2.8).

Lemma 8.1.5. Let (G;s; t) be a series-parallel graph.

1. If there is a nodeα with label (x;y) in an sp-tree of G, then there is a path P in G with
P= (s; : : : ;x; : : : ;y; : : : ; t).

2. If there is a node with label(x;y) in an sp-tree of G that is an ancestor of a node with
label (v;w), then there is a path(s; : : : ;x; : : : ;v; : : : ;w; : : : ;y; : : : ; t) in G.

3. For every edge e= fx;yg 2 E(G), there is a path(s; : : : ;x;y; : : : ; t), or there is a path
(s; : : : ;y;x; : : : ; t) in G.

Proof.
1. We prove that for any nodeβ with label(v;w) on the path fromα to the root of the sp-tree
of G, there is a path(v; : : : ;x; : : : ;y; : : : ;w) in the graphGβ associated with nodeβ. We use
induction on the length of the path fromα to β in the sp-tree. (Using this result withβ the
root of the sp-tree gives the desired result.)

First, supposeα = β. As any series-parallel graph is connected, there is a path fromv to
w in the series-parallel graph associated with nodeα.

Next, supposeβ is an ancestor ofα, and has label(v;w). Let γ be the child ofβ on the path
from α to β. If β is a p-node, then the label ofγ is also(v;w). By the induction hypothesis,
there is a path(v; : : : ;x; : : : ;y; : : : ;w) in the graph associated withγ, and the result follows
for β. Supposeβ is an s-node with childrenδ1; : : : ;δr , andδi has label(vi ;vi+1) for eachi,
1� i � r. Let j, 1� j � r, be such thatδ j = γ. For anyi, 1� i � r, there is a pathPi from
vi to vi+1 in Gδi (the graph associated withδi). By the induction hypothesis, there is a path
Pj = (vj ; : : : ;x; : : : ;y; : : : ;vj+1) in Gδ j . ConcatenatingP1;P2; : : : ;Pr gives the required path
of the form(v; : : : ;x; : : : ;y; : : : ;w) in Gβ.
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2. Similar.

3. Note that there is a node with label(x;y) or a node with label(y;x). Now we can use
part 1 of this lemma. 2

Lemma 8.1.6. Let (G;s; t) be series-parallel and suppose there is a path(s; : : : ;x;y; : : : ; t)
in G. The following holds.

1. There is no path from s to y that avoids x or there is no path from x to t that avoids y.

2. No node in any sp-tree of G is labeled with the pair(y;x).

Proof.
1. Suppose not. Then(G+fs; tg;s; t) containsK4 as a minor, which is a contradiction.

2. This follows from part 1 of this lemma and Lemma 8.1.5. 2

Lemma 8.1.7. Suppose(G;s; t) is a series-parallel graph with G= (V;E), and letfx;yg 2E.
Suppose there is a path(s; : : : ;x;y; : : : ; t) in G. Let W be the set

W = fv2V�fx;yg j there is a path(s; : : : ;x; : : : ;v; : : : ;y; : : : ; t) in Gg:

Then the following holds.

1. For all fv;wg 2 E, v2W implies that w2W[fx;yg.

2. For every sp-tree of G, if a node is labeled with(v;w) or (w;v), and v2 W, then w2
W[fx;yg.

3. Let T be an sp-tree of G, letα be the highest node with label(x;y). The series-parallel
graph Gα associated withα is exactly the graph G[W[fx;yg]. Furthermore, ifjWj � 1,
thenα is a parallel node.

Proof.
1. Supposefv;wg 2 E, v2W, w 62 fx;yg. By Lemma 8.1.5, there is a path(s; : : : ;v;w; : : : ; t)
or there is a path(s; : : : ;w;v; : : : ; t).

Suppose there is a path(s; : : : ;v;w; : : : ; t). If the subpath froms to v avoidsx andy, then
G+fs; tg containsK4 as a minor, contradiction. Hence eitherx or y belongs to the path from
s to v. Similarly, x or y belongs to the part of the path fromw to t. If y appears on the first
part, andx appears on the last part, then we have a contradiction with Lemma 8.1.6. Hence,
we have a path of the form(s; : : : ;x; : : : ;v;w; : : : ;y; : : : ; t). This implies thatw2W.

The case in which there is a path(s; : : : ;w;v; : : : ; t) is similar.

2. Note that if a node in the sp-tree ofG is labeled with(v;w), thenG+ fv;wg is also a
series-parallel graph (Lemma 8.1.3). Hence, the result follows from part 1 of the lemma.

3. We first show thatGα is a subgraph ofG[W [ fx;yg]. Let v 2 V(Gα). There is a
descendantβ of α which containsv in its label. According to Lemma 8.1.5, there is a path
(s; : : : ;x; : : : ;v; : : : ;y; : : : ; t), sov2W.
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Figure 8.1. The sp-tree and possible graphs for the proof of Lemma 8.1.7

Next we show thatG[W[fx;yg] is a subgraph ofGα. Let e= fv;wg 2 E(G[W[fx;yg]),
let β be the leaf node ofe, and suppose w.l.o.g. thatβ has label(v;w). We show thatβ is a
descendant ofα. If e= fx;yg, this clearly holds.

Supposee 6= fx;yg andβ is not a descendant ofα. Then we have a nodeγ, with label
(z1;z2) 6= (x;y), with childrenδ andε, such thatα is equal to or a descendant ofδ, andβ is
equal to or a descendant ofε (see Figure 8.1, part I).

If z1 2W, thenG contains a path froms to x that avoidsz1, andG contains a path fromz1

to y that avoidsx. Also, G contains a path(s; : : : ;z1; : : : ;x;y), henceG+fs; tg contains aK4

minor, contradiction. So, we may assume thatz1 62W, and similarly, thatz2 62W.
First suppose thatγ is a p-node. Figure 8.1, part II shows the structure of the series-

parallel graphGγ associated with nodeγ. The graphGε associated withε contains a path
(z1; : : : ;x;y; : : : ;z2), because of Lemma 8.1.5, part 2. Similarly, the graphGδ associated with
nodeδ contains a path(z1; : : : ;v;w; : : : ;z2). Since the only common vertices ofGε andGδ
arez1 andz2, there is a path(x; : : : ;z1; : : : ;v; : : : ;z2; : : : ;y) in G. Since(x;y) 6= (z1;z2) and
z1;z2 =2W, this means that this path contains an edge between a vertex inW and a vertex in
V�W�fx;yg, which is in contradiction with part 1 of this lemma.

Supposeγ is an s-node, and suppose that nodeδ is on the left side of nodeε. Part III of Fig-
ure 8.1 shows the structure of the series-parallel graphGγ. There is no path(z1; : : : ;v; : : : ;y)
in Gγ, which means that any path inG which goes fromx to y and containsv must look like
(x; : : : ;z1; : : : ;z2; : : : ;v; : : : ;y). This again means that there is an edge between a vertex inW
and a vertex inV�W�fx;yg, contradiction. Ifδ is on the right side ofε, then in the same
way, we have a path(x; : : : ;v; : : : ;z1; : : : ;z2; : : : ;y). This is again a contradiction. Henceβ is
a descendant ofα. This proves thatGα = G[W[fx;wg].
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Figure 8.2. A graph with only two matches to the series and the parallel reduction
rule.

If α is an s-node, then it is the only node with label(x;y). This is impossible, because
there is a leaf node with label(x;y). If α is a leaf node, thenGα consists only of the edge
fx;yg. Hence ifjWj � 1, thenα is a p-node. This completes the proof of part 3. 2

8.2 A Special Parallel Constructive Reduction System
In this section, we give a special parallel constructive reduction system for LSPG(see Defi-
nition 6.3.2), calledSsp= (R sp;Isp;A

sp
R ;Asp

I ). AlgorithmsAsp
R andAsp

I will be made in such a
way that the constructed sp-tree will be a minimal sp-tree of the graph. In Section 8.2.1, we
give a setR sp of reduction rules and a setIsp of graphs, and we show that the setR sp is safe
for LSPG. In Section 8.2.2, we give the construction algorithmsAsp

R andAsp
I and show that

they useO(1) time and that algorithmAsp
R is non-interfering. After that, in Section 8.2.3, we

show that in each series-parallel graph(G;s; t) with at least two edges, there areΩ(jE(G)j)
matches to rules inR sp. In Section 8.2.4, we extend this result to discoverable matches. To-
gether, these results show that(R sp;Isp;A

sp
R ;Asp

I ) is a special parallel constructive reduction
system for LSPG.

8.2.1 A Safe Set of Reduction Rules

Duffin [1965] has shown that the systemS = (R ;I ), whereR contains the series and the
parallel rule (see Figure 2.11), andI contains the base series-parallel graph (which consists
of one edge), is a reduction system for series-parallel graphs. Valdes et al. [1982] have given
a constructive reduction algorithm for series-parallel graphs, based on this reduction system:
they have shown howS can be used to recognize series-parallel graphs inO(m) time, and to
build an sp-tree of the input graph within the same time bounds.

For an efficient parallel algorithm, the series and the parallel rule are not sufficient: for
example, the graph shown in Figure 8.2 is series-parallel, but it contains at most two matches
to the series and parallel rule. Moreover, if we apply a sequence of series and parallel reduc-
tions on this graph, then at each point in the sequence, the current graph contains at most four
matches. We can make an arbitrarily large graph of this type, and it takesΩ(m) reduction
rounds to reduce this graph to a single edge if we only have the series and the parallel rule.
Therefore, we introduce a larger set of reduction rules. LetR sp be the set of 18 reduction
rules depicted in Figure 8.3. Rules 1 and 2 are the series and the parallel rule, rules 3 – 18
are for the graphs of the type depicted in Figure 8.2. Note that each of the rules 3 – 18 can be
applied by contracting one or two edges. These edges are marked gray in Figure 8.3.
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In rules 3 – 18, we posedegree constraintson the edges between terminals: if we apply
one of the rules 3 – 18 to a graphG, then in the matchH that is involved in the reduction,
for each edge between two terminalsH, at least one of the end points of this edge has degree
at most seven inG . (Note that all inner vertices of left-hand sides of rules 3 – 18 also have
degree at most seven). In Figure 8.3, the fat edges denote the edges with a degree constraint
of seven. The degree constraints are useful for proving that sufficiently many applications of
the reduction rules can be found.

The reduction rules will be applied on source-sink labeled graphs. To assure that the
graph will remain a source-sink labeled graph during a sequence of applications of reduction
rules, we require that a reduction is only performed if the source and sink of a the graph
are not inner vertices of the match corresponding to the reduction. With these two extra
requirements, we get a new definition of a match.

Definition 8.2.1 (Match). Letr =(H1;H2) be a reduction rule inR sp. Let(G;s; t) be a source-
sink labeled graph. Amatchto r in (G;s; t) is a terminal graphG1 which is isomorphic toH1,
such that

� there is a terminal graphG2 with G= G1�G2,

� sandt are not inner vertices ofG1, and

� if r is one of the rules 3 – 18, then for each edgee= fu;vg 2 E(G1) for whichu andv are
terminals ofG1, u or v has degree at most seven inG.

Let Isp contain the series-parallel graph consisting of one edge between sources and sinkt.
The above discussion shows that, ifR sp is safe, thenR sp is complete and thatIsp contains all
irreducible series-parallel graphs. It can also be seen thatR sp is decreasing.

In the following four lemmas, we show thatR sp is safe for series-parallel graphs, which
completes the proof that(R sp;Isp) is a reduction system for series-parallel graphs. The proofs
of the lemmas are given in such a way that they can be used for the design of algorithmAsp

R .

Lemma 8.2.1. If (G0;s; t) is obtained from(G;s; t) by applying rule 1, then(G;s; t) is a
series-parallel graph if and only if(G0;s; t) is a series-parallel graph.

Proof. SupposeG0 is obtained by removing vertexc of degree two, and adding an edge
between its two neighboring verticesa andb. Suppose we have a minimal sp-tree forG0.
There must be a leafα with label (a;b) or (b;a). Suppose w.l.o.g. thatα has label(a;b).
If α’s parent is a p-node (see Figure 8.4, right-hand side of case i), thenα is replaced by
an s-node with two children, successively labeled(a;c) and (c;b) (left-hand side of case
i). (The light-gray parts in the figure denote the parts of the sp-tree that are involved in the
modification.) The resulting tree is a minimal sp-tree of(G;s; t). If α’s parent is an s-node
(see Figure 8.4, right-hand side of case ii), then replaceα by two leaf nodes, successively
labeled(a;c) and(c;b) (left-hand side of case ii).

Suppose we have a minimal sp-tree forG. Asc is not a terminal, and notsor t, there must
be a series composition that composedfb;cg andfc;ag. This means that we have a subtree
as depicted in the left-hand side of case i or case ii of Figure 8.4. Hence the modification
above can be reversed. 2
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Lemma 8.2.2. If (G0;s; t) is obtained from(G;s; t) by applying rule 2, then(G;s; t) is a
series-parallel graph if and only if(G0;s; t) is a series-parallel graph.

Proof. Suppose(G0;s; t) is obtained by removing edgee2 from G, wheree2 is parallel to
edgee1. If we have an sp-tree forG0, then this tree has a leaf nodeα which corresponds toe2

(and hence the end points ofe1 are in its label). Supposeα is labeled(a;b). If α’s parent is
an s-node (see Figure 8.5, right-hand side of case i), then replaceα by a p-node with two leaf
children, both labeled(a;b) (left-hand side of case i). The resulting tree is a minimal sp-tree
for (G;s; t). If the parent ofα is a p-node (right-hand side of case ii in Figure 8.5), then attach
an additional leaf below this parent, with label(a;b) (left-hand side of case ii).

Suppose we have an sp-tree for(G;s; t). This tree contains a leaf nodeα corresponding
to edgee2. Hence we have a subtree as depicted in the left-hand side of case i or case ii of
Figure 8.5. Letβ denoteα’s parent. Removeα from the tree. Ifβ has only one child left
(case i), thenβ is removed and its child is directly attached to the parent ofβ. 2

Note that in a match to one of the rules 3 – 18, edges matching an edge between two
terminals in the left-hand side of the rule can have parallel edges in the graph, but edges
matching an edge in the left-hand side of the rule with at least one end point an inner vertex
can not have a parallel edge.

Lemma 8.2.3. Suppose(G0;s; t) is obtained from(G;s; t) by one application of rule 3. Then
(G;s; t) is a series-parallel graph if and only if(G0;s; t) is a series-parallel graph.

Proof. Suppose(G;s; t) is a series-parallel graph, and letT be the minimal sp-tree of(G;s; t).
Let H be the match to rule 3, as depicted in the left-hand side of Figure 8.6. SupposeH is
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Figure 8.6. Matches to left-hand and right-hand sides of rule 3.

replaced byH 0, which is depicted in the right-hand side of Figure 8.6. Consider a pathP
from s to t that uses the edgefa;bg. We distinguish between two cases, namely the case that
P visitsa beforeb, and the case thatP visitsb beforea.

Case 1. Suppose that the pathP visitsa beforeb. We distinguish between two further cases,
namely the case thatP avoidseand the case thatP visitse.

Case 1.1. Suppose thatP avoids vertexe. Let

W = fv2V j there is a path(s; : : : ;a; : : : ;v; : : : ;b; : : : ; t), and

v belongs to the same component ase in G[V�fa;bg]g:

Note thatc;d;e2W, and hence (by part 1 of Lemma 8.1.7), all vertices in the component
of G[V�fa;bg] which containse are inW. There must be a parallel nodeα in T with label
(a;b), with the subgraph containing the nodes inW ‘below it’ (see part 3 of Lemma 8.1.7).
Let Gα be the graph associated withα. Each vertexv 6= a;b of Gα can occur in at most one
graph associated with one of the children ofα.

Let β be the s-node that is a child ofα such that the series-parallel graphGβ associated
with β containse. We claim thatGβ is the graph obtained fromG[W[fa;bg] by deleting
all edges betweena andb. If a vertexw2W is not inGβ, then all paths fromw to e usea
or b, which means thatw is not in the component ofG[V�fa;bg] which containse. Hence
w2V(Gβ). Hence each vertex ofW occurs only inGβ, which means that all edges between
vertices inW and inW[fa;bg are inGβ.

On the other hand, if there is a vertexx 2 V(Gβ), x =2 fa;bg, then there is a pathP =
(a; : : : ;x; : : : ;b) in Gβ (Lemma 8.1.5). IfP contains no vertex fromW, thenβ is not a series
node. HenceP contains a vertex fromW. Together with part 1 of Lemma 8.1.7, this means
that all vertices onP are inW[ fa;bg, so x 2 W. The graphGβ can not contain an edge
betweena andb, since thenβ is not an s-node. This proves the claim.

Supposeβ has children with labels(a;x1),(x1;x2); : : : ;(xt ;b), respectively. We show that
t = 1 andx1 = xt = c. Suppose not. First suppose thatxt 6= c. Add an edge betweenxt andb;
this again gives a series-parallel graph. Now, by contracting all nodes inW exceptc to d, we
get aK4 minor, contradiction. Hencext = c. Now suppose thatt > 1. There is a leaf node with
label(a;c) or label(c;a) which is a descendant ofβ, since there is an edgefa;cg. But vertex
a occurs only in the labels of the subtree of the child ofβ with label (a;x1). Furthermore,
vertexc occurs only in the labels of the subtrees of the children ofβ with labels(c;b) and
(xt�1;c). Sincex1 6= c andxt�1 6= a, this means that there can be no leaf node with label(a;c)

170



8.2 A Special Parallel Constructive Reduction System

or (c;a), which gives a contradiction. Sot = 1, the children ofβ have labels(a;c) and(c;b),
respectively. It can be seen that the child with label(c;b) is a leaf node, corresponding to
edgefb;cg. By straightforward deduction, it follows that the sp-tree ofG has the tree from
the left-hand side of Figure 8.7, case i as a subtree. We can replace the light-gray part of this
subtree by the light-gray part of the subtree shown in the right-hand side of this case and get
an sp-tree ofG0.

Case 1.2. Suppose the pathP from s to t that uses the edgefa;bg, also uses nodee. There
are a two different cases, namely the case thatP visits e beforea, and the case thatP visits e
afterb. In the first case,G+fs; tg is series parallel, but containsK4 as a minor, contradiction.
In the second case, we have a path(s; : : : ;a;e; : : : ; t), that does not useb. This case can be
analyzed in exactly the same way as the cases above, leading to a subtree transformation, as
shown in Figure 8.7, case iii.

Case 2. Suppose that the pathP visits b beforea. This case can be dealt with in the same
way as Case 1, only with directions reversed. See Figure 8.7, cases ii and iv.

This ends ‘only if’ part of the proof. The ‘if’ part is very similar. In this case, the same
transformations as above are done, but in opposite direction. 2

Lemma 8.2.4. Suppose(G0;s; t) is obtained from(G;s; t) by one application of one of the
rules 4 – 18. Then(G;s; t) is a series-parallel graph if and only if(G0;s; t) is a series-parallel
graph.

Proof. The proof is similar to the proof of Lemma 8.2.3. Suppose(G;s; t) is a series-parallel
graph, and letT be a minimal sp-tree of(G;s; t). LetH be the match to one of the rules 4 – 18
and let the terminals ofH be nameda, b, c andd, as shown in Figure 8.8 for the case thatH is
a match to rule 4 (i.e. the terminals are nameda, b, c, andd, such thata andb are adjacent in
H, andc andd are adjacent inH, and furthermore, if we ‘walk around’H clockwise, starting
at terminala, then we visit the terminals in the ordera;b;d;c).

Consider a pathP froms to t in G that uses the edgefa;bg. First supposeP visitsa before
b. We distinguish four cases.

Case 1. P does not use verticesc andd. We can show that(G0;s; t) is series-parallel in
the same way as in Case 1.1 in the proof of Lemma 8.2.3 (defineW to be the vertices of the
component ofG[V�fa;bg] which containsc andd).

Case 2. P usesc but not d. Then eitherc is on the subpath(s; : : : ;a) of P or c is on
the subpath(b; : : : ; t) of P. In both cases,G+ fs; tg contains aK4 minor, which gives a
contradiction.

Case 3. P usesd but notc. This case is similar to Case 2, and hence gives a contradiction.

Case 4. P uses bothc andd. If c andd both occur on the subpath(s; : : : ;a) of P, or on the
subpath(b; : : : ; t) of P, thenG+fs; tg contains aK4 minor.

If P= (s; : : : ;d; : : : ;a;b; : : : ;c; : : : ; t), thenG+fs; tg also contains aK4 minor.
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Figure 8.8. MatchH to rule 4.

If P = (s; : : : ;c; : : : ;a;b; : : : ;d; : : : ; t) then there is a path froms to t that uses the edge
fc;dg, and does not usea andb. This case is similar to Case 1.

The case thatP visits vertexb beforea can be solved in the same way. This ends the ‘only
if’ part of the proof. The ‘if’ part can be handled in the same way.

For the proof of rules 5 – 18, we can apply exactly the same technique. 2

We conclude the following result.

Corollary 8.2.1. (R sp;Isp) is a reduction system forLSPG.

8.2.2 The Construction Algorithms

We now give algorithmsAsp
R andAsp

I . We first describe the data structure that we use to store
sp-trees. We make a list of all nodes in the sp-tree. Each node is marked with its label and
its type (s-node, p-node or leaf node), each node has a pointer to its left-most and its right-
most child, to its parent, and to its neighboring siblings on the left-hand and the right-hand
side (if one of these nodes does not exist, the pointer isnil). Furthermore, each leaf node is
marked with the type of its parent, and we keep a pointer from each edge in the graph to the
corresponding leaf node in the sp-tree.

As we want to prove thatSsp is a special parallel constructive reduction system (Defini-
tion 6.3.2), we have to show thatAsp

I andAsp
R useO(1) time, and thatAsp

R is non-interfering,

i.e. if Asp
R is executed simultaneously for two or more different non-interfering reductions

on the same graph, then the two executions do not read or write concurrently in the same
memory position, and the resulting sp-tree is the same as when the executions were applied
consecutively.

Algorithm Asp
I is easy: given a source-sink labeled graph(G;s; t) consisting of one edge,

it constructs the sp-tree of(G;s; t) consisting of one leaf-node, labeled with(s; t).
For algorithmAsp

R , we use the constructions from the proofs of Lemmas 8.2.1 – 8.2.4 (see

also Figures 8.4 – 8.7). We show that algorithmAsp
R can do its construction inO(1) time

without interference. Given a reduction ruler = (H1;H2) 2 R sp, terminal graphsG1 and
G2 such thatG1 andH1 are isomorphic andG2 andH2 are isomorphic, a graphG such that
G= G2�H, and a minimal sp-treeT of G, algorithmAsp

R does the following.
First the algorithm finds the local structure of the sp-tree, i.e. it finds the structure of the

part of the sp-tree that contains edges inG2. For rules 1 and 2, the different forms are the
right-hand sides of cases i and ii in Figures 8.4 and 8.5, respectively. For rule 3, the different
forms are the right-hand sides of cases i, ii, iii and iv in Figure 8.7. The parts of the sp-tree
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that are marked light-gray are the parts that must be modified. The local structure is found
as follows. Take an edgee of G2 which is not an edge between two terminals in the case
of rules 3 – 18 (for rules 1 and 2, the only possibility is the edgefa;bg, for rule 3, edge
fc;eg is the best edge to take, as this edge will be removed). Look at the corresponding leaf
node inT. For rules 1 and 2, check the type of its parent node, and for rule 3 – 18, search
the ‘neighborhood’ of this leaf node inT which is involved in the modification (for rule 3,
this is the light-gray part in the right-hand side of cases i, ii, iii and iv in Figure 8.7). The
leaf node can be found in constant time without interfering with any other constructions. For
rules 1 and 2, it is clear that we can check the type of its parent in constant time without
interfering with other constructions performed at the same time, as each leaf node is marked
with the type of its parent. For rule 3, we can see from Figure 8.7 that the structure of the
neighborhood can be determined inO(1) time without interfering with other constructions,
as no other construction involves any of the nodes of the light-gray part of the sp-tree. For
rules 4 – 18, the cases are similar to the cases of rule 3, and the structure can also be found in
O(1) time without interference.

After the local structure of the sp-tree is found, this part of the sp-tree is replaced by a
new part. The structure of this new part depends on the structure of the old part. For rules
1, 2 and 3, these new parts are the parts in left-hand sides of the cases in Figures 8.4, 8.5
and 8.7 that are marked light-gray. For rules 4 – 18, a similar approach as for rule 3 can
be taken. For rules 3 – 18, it is easy to see that the modification can be done inO(1) time
without interference. For rules 1 and 2, case i is also easy (see Figures 8.4 and 8.5: nodeα
gets a different type, and gets two leaf children). In case ii, the modification needs more care,
as the neighboring siblings of nodeα may be leaf nodes that are involved in another rule 1
or 2 reduction at the same time. Hence we have to ensure that the corresponding executions
do not read from or write to the same memory location at the same time. This is done in the
following way.

A new leaf-nodeβ is added as the neighboring sibling on the right-hand side of the leaf
nodeα. For rule 1, nodesα andβ get labels(a;c) and (c;b), respectively, and for rule 2
they both get label(a;b). Clearly, the construction takesO(1) time. As each leaf node that
is a sibling of nodeα and is involved in a reduction of rule 1 or 2 adds a new sibling on its
right-hand side, we can make sure that no two of these constructions concurrently read from
or write to the same memory location, and that the result is correct. Hence the algorithm is
non-interfering.

This completes the description of algorithmsAsp
I andAsp

R , and the proof that they use

O(1) time and thatAsp
R is non-interfering. Together with the fact that(R sp;Isp) is a reduction

system for LSPG, this also implies the following result.

Lemma 8.2.5. Ssp= (R sp;Isp;A
sp
R ;Asp

I ) is a constructive reduction system forLSPG.

8.2.3 A Lower Bound on the Number of Matches

In this section we show that each series-parallel graph(G;s; t) with at least two edges contains
at leastΩ(jE(G)j) matches to rules inR sp.
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Lemma 8.2.6. Let (G;s; t) be a series-parallel graph withjE(G)j � 2. (G;s; t) contains at
leastjE(G)j=139matches to rules 1 – 18.

Proof. Consider the minimal sp-treeT of G. The number of leaves ofT equalsjE(G)j. We
argue that the number of leaves ofT is at most equal to 139 times the number of matches. To
obtain this, we distinguish the following ‘classes’ of leaves.

A leaf nodeα in T is good if it is a child of a parallel node and has at least one sibling
which is a leaf (i.e.α is child of a parallel node which has at least two leaf children), or it is
a child of a series node and one ofα’s neighboring siblings also is a leaf node (i.e.α is child
of a series node which has at least two successive leaf children of whichα is one). Note that
the edges that correspond to good leaf nodes occur in matches to rule 1 or 2.

An internal node inT is greenif it has at least one good leaf child.
A node inT is branchingif it is an internal node, and has at least two internal nodes as

its children.
A leaf is bad if it is not good, and its parent is branching or green. Most edges that

correspond to bad leaves can not occur in any match.
Note that the leaf children of a branching node which is not green are all bad, the leaf

children of a green p-node are all good, and the leaf children of a green s-node are either bad
or good.

Now consider the other nodes inT. An internal node isblueif it is not branching or green,
but it has a descendant that is branching or green at distance at most 33.

An internal node isyellow if it is not branching, green or blue.
The total number of leaves inT equals the number of good leaves plus the number of

bad leaves plus the number of leaf children of blue nodes plus the number of leaf children
of yellow nodes. We now derive an upper bound for the number of leaves in each of these
classes, in terms of the number of matches.

Good leaves. If a green p-node hasm good leaves, then the edges corresponding to its
good leaves correspond to at leastm(m�1)=2 matches to rule 2. If a green s-node hasm
good leaves, then the edges corresponding to these leaves correspond to at leastm=2 matches
to rule 1. Hence the number of good leaves is at most twice the number of applications of
reduction rules 1 and 2.

Bad leaves.

Claim 8.2.1. The number of bad leaves is at most three times the number of branching nodes
plus twice the number of green nodes.

Proof. Let α be a bad leaf. Ifα’s parent is a p-node, then accountα to its parent (which has
at most one bad leaf). Ifα’s parent is an s-node, then accountα to its neighboring sibling on
the right if it has one, or to its parent otherwise. In this way, each branching node has at most
two leaves accounted to it: at most one of its children and possibly its neighboring sibling
on the left. Each green node has at most one bad leaf accounted to it: a green p-node has
no bad leaf children, hence can only have a neighboring bad sibling on the left accounted to
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it; a green s-node has at most one bad leaf accounted to it, and it has a p-node as a parent,
which means that it has no bad siblings accounted to it. Each yellow or blue node which has
a yellow or blue parent does not have any bad leaves accounted to it. Each yellow or blue
node which has a branching or green parent has at most one bad leaf accounted to it, namely
its neighboring sibling on the left.

Let β be a yellow or blue node which has a bad leaf accounted to it. It must be the case
thatβ has a branching or green parent. Letγ be the highest descendant ofβ which is green
or branching. Note that there exists such a nodeγ. All nodes on the path fromβ to γ, except
γ, are yellow or blue. Hence no node on this path, exceptβ andγ, has a bad leaf accounted
to it, as none of these nodes has a branching or green parent. Account the bad leaf that is
accounted toβ, to γ instead. This way, each branching or green node has at most one extra
bad leaf accounted to it, and hence each branching node has at most three leaves accounted
to it, and each green node has at most two leaves accounted to it. 2

In each green node, there is a match to rule 1 or 2 in two of the edges corresponding to
its good leaves. Hence the number of green nodes is at most equal to the number of matches
to rules 1 and 2. We now bound the number of branching and blue nodes by the number of
green nodes in order to bound the number of bad leaves.

Claim 8.2.2. The number of branching nodes is at most the number of green nodes.

Proof. Construct a treeT 0 fromT by removing all nodes that are not green and not branching,
while preserving successor-relationships. Note that, inT, every internal node that has only
leaves as child is green, hence every branching node still has at least two children inT 0.
Moreover, every leaf ofT 0 is green. Since, in any tree, the number of internal nodes with two
or more children is at most the number of leaves, the number of branching nodes is at most
the number of green nodes inT 0, and hence inT. 2

Claims 8.2.1 and 8.2.2 show that the number of bad leaves is at most equal to 3+2= 5
times the number of green nodes, which is at most 5 times the number of matches to rules 1
and 2.

Leaves of blue nodes. The number of blue nodes is at most 33 times the number of
branching and green nodes: account each blue node to the closest descendant which is branch-
ing or green. Since the number of branching nodes is at most the number of green nodes, this
means that the number of blue nodes is at most 2�33= 66 times the number of green nodes.
Each blue node has at most two leaf children, which means that the number of leaves of blue
nodes is at most 2�66= 132 times the number of matches to rules 1 and 2.

Leaves of yellow nodes. Consider a path inT which consists of 33 successive yellow and
blue nodes, such that the highest node in this path is a parallel node. Each node in this path
either is a p-node with as its children one leaf node and one s-node, or it is an s-node with as
its children one p-node and one or two non-neighboring leaf nodes.

The edges associated to the leaves that are a child of the nodes in this path form a subgraph
of G of a special form: they form a sequence of 16 cycles of length three or four, each sharing
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a1

b1

a2 a4a3 a11

b2 b10

a5 a6 a8a7 a10a9

b3 b4 b5 b6 b7 b8 b9

Figure 8.9. Subgraph ofG corresponding to a path of 33 yellow or blue nodes in the
sp-tree, of which the highest one is a p-node with label(a1;b1), and the lowest one is
a p-node with label(a11;b10). Only a1, b1, a11 andb10 may be incident with edges
outside the subgraph.

one edge with the previous cycle, and one edge with the next (except of course for the first
and last cycle in the sequence); three successive cycles do not share a common edge. As no
series node on the path has two successive leaf nodes, we have that the shared edges of a cycle
of length four do not have a vertex in common. We call such a subgraph acycle-sequence.
See Figure 8.9 for an example.

Consider a sequenceα1;α2; : : : ;αn of n successive yellow and blue nodes starting and
ending with a p-node, and its corresponding cycle-sequence (α1 is the node that is closest to
the root). For eachi, let (xi ;yi) denote the label ofαi .

Note that for eachi < j, if xi = xj , then for eachl , i < l < j, xi = xl . Furthermore, if
xi 6= xi+1, thenαi must be an s-node, andαi+1 has at least one sibling on its left side. Asαi+1

is a yellow or blue node, it has exactly one sibling on the left, which is a leaf node with label
(xi ;xi+1), hence there is an edgefxi ;xi+1g 2E(G). This shows that the sequencex1;x2; : : : ;xn

and the sequencey1;y2; : : : ;yn both form a path inG. We call thembounding pathsof the
cycle-sequence. In Figure 8.9 for example, we have a cycle-sequence consisting of 16 cycles,
with bounding paths(a1;a2; : : : ;a11) and(b1;b2; : : : ;b10). The length of a bounding path is
the number of edges on this path.

Note that the left-hand and right-hand sides of rules 3 – 18 are cycle-sequences. Before
proving that a cycle-sequence with 16 cycles contains a match to one of the rules 3 – 18, we
first prove the following.

Claim 8.2.3. Any cycle-sequence with one bounding path of length at least two and one
bounding path of length at least three contains as a subsequence the left-hand side of one of
the rules 3 – 18.

Proof. Let C be a cycle-sequence with one bounding path of length two or more and one of
length three or more. The left-hand sides of rules 4 – 15 represent exactly the cycle-sequences
with one bounding path of length two and one of length three which do not contain the left-
hand side of rule 3 as a subsequence. The left-hand sides of rules 17 and 18 represent exactly
the cycle-sequences with two bounding paths of length three which do not contain the left-
hand side of one of the rules 3 – 15. Hence ifC contains a subsequence with one bounding
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path of length three and one of length two or three, then it contains the left-hand side of one
of the rules 3 – 15, 17 or 18.

Now supposeC does not contain such a subsequence. We show that it contains the left-
hand side of rule 16. The shortest of the two bounding paths has length at least two and
the longest one has length at least three. Remove one of the outermost cycles of the cycle-
sequence until one of these conditions would be violated by removing another outermost
cycle. LetP1 be the shortest bounding path andP2 the longest bounding path of the obtained
cycle-sequence.

If P1 has length four or more, then we can remove another outer-cycle, as this decreases
the length ofP1 andP2 by at most one. HenceP1 has length at most three. IfP1 has length
three, thenP2 must have length three, otherwise we can remove another outer-cycle. But that
means that it contains the left-hand side of one of the rules 4 – 15, 17 and 18 as a subsequence.
HenceP1 has length two. IfP2 has length three, then the sequence contains the left-hand side
of one of the rules 4 – 15, henceP2 has length four or more. Note that the first and the last
vertex ofP1 are adjacent to only one vertex ofP2, otherwise we can remove another outer
cycle. If P2 has length five or more, then the middle vertex ofP1 has at least four neighbors
in P2, and henceC contains the left-hand side of rule 3. This means thatP2 has length four.
Then the outermost cycles must be squares, otherwise the middle vertex ofP1 still has at least
four neighbors inP2. But that means that the cycle-sequence is equal to the left-hand side of
rule 16. This proves the claim. 2

We can now prove the following claim.

Claim 8.2.4. In a cycle-sequence of G that consists of 16 cycles, there is a match to one of
the rules 3 – 18.

Proof. Let C be a cycle-sequence inG consisting of 16 cycles, and letP1 andP2 denote the
bounding paths. IfC contains a cycle-sequence of five successive triangles with one vertex
in common as its subsequence, as in Figure 8.10, then it contains a match to rule 3 (formed
by the middle three triangles). Suppose such a subsequence does not exist. It follows that
the edge between the fifth and sixth three- or four-cycle in the sequence does not have an end
point that is also end point of an edge not in the subgraph; similarly for the edge between
the 11th and 12th cycle. Consider the cycle-sequenceC0 formed by the sixth cycle up to and
including the 11th cycle inC (C0 consists of six cycles). As each vertex ofC is contained
in at most six three- or four-cycles ofC, and none of the vertices inC is incident with an
edge outsideC in G, all vertices ofC0 have degree at most seven inG. This means that ifC0

contains as a subsequence one of the left-hand sides of rules 4 – 18, then it contains a match
to the corresponding rule. LetP01 andP02 be the bounding paths ofC0 and supposeP01 has
lengthm andP02 has lengthn. We now show that the cycle-sequence contains a match to one
of the rules 4 – 18.

Suppose w.l.o.g. thatm� n. We first show thatm� 2 andn� 3. If m= 0, then the only
vertex ofP01 occurs in six triangles, and we have a match to rule 3. Ifm= 1, then one of the
vertices ofP01 occurs in three triangles, and we have again a match to rule 3. Supposem� 2.
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Figure 8.10. Five successive triangles with one vertex in common

If m= n= 2, then the cycle-sequence consists of at most four cycles. Hencen� 3 andm� 2.
Claim 8.2.3 shows that the cycle-sequence contains a left-hand side of one of the rules 3 – 18
as a subsequence, and hence it contains a match to one of these rules. 2

In a sequence of 34 successive yellow and blue nodes inT, we can find one path of 33
successive yellow and blue nodes, such that the highest node in this path is a p-node. We
can find a number of disjoint paths of 34 successive yellow and blue nodes, such that each
yellow node is in exactly one such path. This means that the largest number of disjoint paths
of successive yellow and blue nodes of length 34 that we can find inT is at least 1=34 times
the number of yellow nodes. Hence the number of matches to rules 3 – 18 is at least 1=34
times the number of yellow nodes. Since each yellow node has at most two leaf children, we
have that the number of leaf children of yellow nodes is at most 2�34= 68 times the number
of matches to rules 3 – 18.

The total number of leaves inT is now at most 2+5+132= 139 times the number of
matches to rules 1 and 2 plus 68 times the number of matches to rules 3 – 18. Hence the
number of leaves inT is at most 139 times the number of matches inR sp. This completes
the proof. 2

8.2.4 A Lower Bound on the Number of Discoverable Matches

In this section, we complete the proof thatSsp is a special parallel constructive reduction
system. As we have already shown thatAsp

I andAsp
R run in O(1) time and thatAsp

R is non-
interfering, we only have to show that(R sp;Isp) is a special parallel reduction system for
series-parallel graphs (see Definition 5.4.3). We have to show that there are integersnmin

and d, nmin � 19� d, and there is a constantc > 0, such that each series-parallel graph
(G;s; t) with jV(G)j+ jE(G)j � nmin, given by some adjacency list representation, has at
leastc � (jV(G)j+ jE(G)j) d-discoverable matches (Definition 5.4.1) inR sp (with respect to
d). All other conditions of a special parallel reduction system are satisfied.

Let nmin = 4 andd = 20. As each series-parallel graph is connected and hencen= O(m),
it suffices to show that each series-parallel graph with at least two edges containsΩ(m) d-
discoverable matches. As we have already shown that each series-parallel graph with at least
two edges containsΩ(m) matches, we only have to show that sufficiently many of these
matches ared-discoverable.

Note that a match to one of the rules 1 or 3 – 18 is always ad-discoverable match. A match
to rule 2 is not alwaysd-discoverable. Let(G;s; t) be a source-sink labeled graph given by
some adjacency list, and supposeH is a match to rule 2 in(G;s; t) with V(H) = fu;vg and
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E(H) = fe1;e2g. ThenH is ad-discoverable match if and only if in the adjacency list ofu or
v, edgese1 ande2 have distance at most 20.

Let G be a graph given by some adjacency list representation. Lete2E(G) and supposee
has end pointsu andv. Edgee is calledbadif it has a parallel edge, but all parallel edges have
distance at least 21 toe in the adjacency lists ofu and ofv. Note that an edge that has parallel
edges is bad if and only if it is not contained in a match to rule 2 that isd-discoverable.

Lemma 8.2.7. Let G be a multigraph of treewidth at most two given by some adjacency list
representation. There are at mostjE(G)j=5 bad edges in G.

Proof. Consider a tree decomposition(T;X ) of G of width at most two withT = (I ;F) and
X = fXi j i 2 Ig, and choose an arbitrary nodei 2 I as root ofT. For av2 V, let rv be the
highest node inT with v2 Xrv. Lete2 E with end pointsv andw. There is a node containing
v andw, hence eitherrv = rw, or rv is an ancestor ofrw, or rw is an ancestor ofrv.

For every bad edge betweenv andw, associate the edge withv if rv = rw, or rw is an
ancestor ofrv; otherwise, associate the edge withw. Suppose bad edgee betweenv andw
is associated withv. ThenXrv must contain bothv andw. It follows that there are at most
jXrvj�1� 2 different verticesu for which bad edges betweenv andu can be associated with
v (namely, the vertices inXrv �fvg). For each suchu, each 20 successive positions in the
(cyclic) adjacency list ofv can contain at most one bad edge betweenu andv, hence there are
at most deg(v)=20 bad edges betweenv andu that are associated withv, and hence in total,
at most deg(v)=10 bad edges are associated withv. The stated bound is derived by taking the
sum over all vertices. 2

As each series-parallel graph has treewidth at most two, it follows that each series-parallel
graph(G;s; t) has at mostjE(G)j=5 bad edges.

Lemma 8.2.8. There is a constant c> 0 for which each series-parallel graph(G;s; t) with at
least two edges contains at least cjE(G)j d-discoverable matches in G.

Proof. Let n = jV(G)j andm= jE(G)j. We distinguish two cases, namely that case that
m� 4n and the case thatm< 4n. If m� 4n, then there are at leastm� 2n edges that are
parallel to another edge, of which at mostm=5 are bad. Hence, there are at least 4=5m�2n�
4=5m�1=2m= 3m=10 edgese for which there is a parallel edge which has distance at most
20 toe in the adjacency list of one of the end points ofe. This implies that there are at least
3m=20d-discoverable matches to rule 2 in(G;s; t).

Supposem< 4n. We now apply Lemma 8.2.6 above on the simple graph underlyingG.
Let G0 be obtained fromG by removing all second and further occurrences of parallel edges.
Note that(G0;s; t) is a series-parallel graph, andG0 has at leastn� 1 edges. IfG0 has one
edge, thenG consists of two vertices withm� 8 parallel edges, and henceG contains at least
oned-discoverable match to rule 2. This means that ifG0 has one edge, thenG has at least
m=8 d-discoverable matches.

SupposeG0 has at least two edges. By Lemma 8.2.6 there are at least(n�1)=139� n=278
matches to rules 1 and 3 – 18 in(G0;s; t). As each of the matches to rules 1 and 3 – 18 is
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d-discoverable inG0, this implies that(G0;s; t) has at leastn=278 d-discoverable matches.
For each match in this set, there are two possibilities: either it is also ad-discoverable match
in G, or it is disturbed by the addition of one or more parallel edges. We will call a match of
the first type anon-disturbedmatch, and a match of the last type adisturbedmatch. We now
show that the number of disturbed matches is at mostk times the number of matches to rule 2
in G, for some positive integerk.

Consider a disturbed matchH. There are two cases: either an inner vertexv of H is
incident with parallel edges, or a terminal vertexv which has degree at most seven inG0 has
degree more than seven inG (and hence is incident with parallel edges). In both cases, the
vertexv has degree at most seven, and hence inG, there is ad-discoverable match to rule 2
which contains vertexv: any sublist of length 20 of the adjacency list contains at least two
edges with the same end points, as there at most seven different sets of end points possible.

Account each disturbed match inG0 to a d-discoverable match to rule 2 inG which
contains a vertex of degree at most seven of the disturbed match. By the discussion above,
this is possible. We show that eachd-discoverable match to rule 2 has at most a constant
number of disturbed matches accounted to it. Letv be a vertex ofG which has degree at most
seven. Each match containingv contains only vertices and edges which are reachable by a
path fromv in G0 of length at most seven (the maximum number of vertices in any left-hand
side of a rule, minus one) through vertices of degree at most seven (except possibly the last
vertex of the path). There are at most a constant number of vertices which can be reached
from v by such a path, and thus there are at most a constantk number of matches containing
v. Consider ad-discoverable matchH to rule 2 inG, with V(H) = fu;vg. Each disturbed
match which is accounted toH contains either vertexu, in which caseu has degree at most
seven inG0, or vertexv, in which casev has degree at most seven inG0. Hence at most 2k
disturbed matches are accounted toH.

Consider the number ofd-discoverable matches inG. This number is at least equal to
the number of non-disturbed matches plus the number ofd-discoverable matches to rule 2 in
G, which is at least the number of non-disturbed matches plus 1=(2k) times the number of
disturbed matches. Hence the number ofd-discoverable matches inG is at least 1=(2k) times
the number ofd-discoverable matches inG0. This latter number is at leastn=278, and hence
there are at leastn=(556k) d-discoverable matches. Asm< 4n, this means that there are at
leastm=(2224k) d-discoverable matches inG. 2

Note that the constantc in Lemma 8.2.8 is quite bad. However, the bound we have derived
can probably be tightened by using more detailed estimates.

We have proved the following result.

Theorem 8.2.1. Ssp is a special parallel constructive reduction system forLSPG.

8.3 Algorithms
In this section, we show that the problems LSPG, SPG, DLSPG and DSPG can be solved
efficiently in parallel. We also show that a large number of problems on series-parallel graphs
can be solved efficiently in parallel.
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Figure 8.11. Transformation of s-nodeα in a minimal sp-tree to several s-nodes in a
binary sp-tree.

Theorem 8.2.1 and Theorem 6.3.1 show that we have an algorithm which, given a source-
sink labeled graph(G;s; t), finds a minimal sp-tree of(G;s; t), if one exists. The algorithm
usesO(logmlog�m) time on an EREW PRAM andO(logm) time on a CRCW PRAM, both
with O(m) operations and space. If we want a binary sp-tree instead of a minimal sp-tree, then
we can slightly modify algorithmAsp

R of the reduction systemSsp such that the constructed
sp-tree is binary. The proofs of Lemmas 8.2.1 – 8.2.4 can easily be modified such that the
modified algorithmAsp

R is still non-interfering and runs inO(1) time.
Another way to compute a binary sp-tree is to first compute a minimal sp-tree, and then

transform this tree into a binary sp-tree. This transformation can be done as follows. Each s-
or p-nodeα with childrenβ1;β2; : : : ;βt+1 is split into nodesα1;α2; : : : ;αt of the same type.
Figure 8.11 shows how this transformation is done for the case thatα is an s-node. It can be
seen that if we do this transformation for all nodes in the sp-tree, then the resulting tree is
a binary sp-tree of the graph. We can not do this transformation for all nodes in parallel: it
gives a problem if a node is transformed at the same time as its parent or one of its children.
To this end, we first compute for each node its distance to the root node. This can be done in
O(logm) time with O(m) operations on an EREW PRAM (see e.g. J´aJá [1992]). After this,
first all nodes with even distance are transformed, and then all nodes with odd distance are
transformed. In this way, a node is not transformed at the same time as its parent or one of its
children. Both transformations can be done inO(1) time with O(m) operations. Hence the
complete transformation takesO(logm) time withO(m) operations.

Theorem 8.3.1. The following problems can be solved with O(m) operations and space in
O(logmlog�m) time on an EREW PRAM and in O(logm) time on a CRCW PRAM: given
a source-sink labeled graph(G;s; t), determine whether(G;s; t) is series-parallel, and if so,

182



8.3 Algorithms

find a minimal or binary sp-tree of(G;s; t).

In the remainder of this section, we show that the algorithm can also be used to solve the
problem for directed series-parallel graphs, and for series-parallel graphs without specified
source and sink. Also, it can be used as a first step to solve many other problems on series-
parallel graphs.

First, suppose we are given a graphG, and want to determine whetherG is series-parallel
with a proper choice of the source and sink. We solve this problem by first computing a
source and a sink and then solving the problem with this source and sink. He [1991] and
Eppstein [1992] have shown (using results from Duffin [1965]) that this problem reduces in
a direct way to the problem with specified vertices, as the following result holds.

Lemma 8.3.1 [He, 1991; Eppstein, 1992].Let G= (V;E) be a graph. If G is series-parallel
then the following holds.

1. If G is not biconnected, then the blocks of G form a path: each cut vertex of G is in
exactly two blocks, all blocks have at most two cut vertices, and there are exactly two
blocks which contain one cut vertex.

2. The graph(G;s; t) is series-parallel if s and t are vertices of G chosen as follows.

(a) If G is biconnected, then s and t are adjacent.

(b) If G is not biconnected, then let B1 and B2 be the blocks of G which contain one cut
vertex, and let c1 and c2 denote these cut vertices. Source s is a vertex of B1 which is
adjacent to c1, and sink t is a vertex of B2 which is adjacent to c2.

We next show hows andt can be found such that they satisfy conditions 2a and 2b of
Lemma 8.3.1. Therefore, we apply Theorem 6.3.2: we give a special parallel constructive
reduction system for the problem. However, Theorem 6.3.2 does not apply for multigraphs,
and our input graph is a multigraph. Therefore, we make a new, simple graphG0 = (V 0;E0)
from the multigraphG as follows.

V 0 =V(G)+E(G)

E0 = ffv;eg j v2V(G)^e2 E(G)^v is incident witheg

We make a labeling of the vertices inG0: each vertex originating fromV(G) is labeledvertex,
and each vertex originating fromE(G) is labelededge. It is easy to see that the resulting
graph is a simple graph and hasn+m vertices and 2medges, and furthermore, ifG is series-
parallel, thenG0 is series-parallel. The transformation can be performed inO(1) time with
O(n+m) operations.

We define a construction property for the new type of graph. Note that for a multigraph
G and the simple graphG0 obtained fromG as described above, each non-trivial block ofG
corresponds to a block ofG0, and each block ofG consisting of one edgee corresponds to
two trivial blocks ofG0 which are connected to each other by the cut vertexe. Hence part 2
of Lemma 8.3.1 is equivalent to the following statement.
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Lemma 8.3.2. If G = (V;E) is a series-parallel graph, then(G;s; t) is series-parallel if s and
t are vertices with labelvertex in G0 chosen as follows.

1. If G0 is biconnected, then s and t have distance two.

2. If G0 is not biconnected, then let B1 and B2 be the blocks of G with one cut vertex, and let
c1 and c2 denote these vertices. Then s is in B1, and if B1 is non-trivial, s has distance
two to c1, otherwise, s is adjacent to c1. Furthermore, t is in B2, and if B2 is non-trivial
then t has distance two to c2, otherwise, t is adjacent to c2.

Let P be the construction property defined by(D;Q), whereD and Q are defined as
follows. For each graphG, D(G) is the set of all pairs of vertices which are both labeled
vertex, and for each(s; t) 2D(G), Q(G;(s; t)) holds if and only ifsandt satisfy conditions 1
and 2 of Lemma 8.3.2. It can be seen that there is an MSOL predicate forQ (using techniques
from e.g. Borie et al. [1992]), and thatD is a two-vertex-edge-tuple. As all MS-definable
properties are of finite index, we can apply Theorem 6.3.2 to the problem, with a bound of
two on the treewidth. This results in a parallel algorithm that usesO(logmlog�m) time with
O(m) operations and space on an EREW PRAM, andO(logm) time with O(m) operations
and space on a CRCW PRAM. While the resulting algorithm will probably not be efficient,
this result does not rely on non-constructive arguing. (We expect that it is also possible to
find sandt in the following way. First reduce the graph using the setR sp of reduction rules,
without taking care of source and sink. Then in the reduced graph, which consists of one
edge if the graph is series-parallel, makes andt the end points of this edge. After that, undo
the reductions in reversed order and reconstructsandt in a proper way.)

If the input graph is a source-sink labeled directed graph(G;s; t), then one can use the
modification, described by Eppstein [1992]: solve the problem on the underlying undirected
graph, then orient the edges with help of the minimal sp-tree (there is at most one possi-
ble orientation for which the directed graph is series-parallel), and check if this orientation
corresponds to the original graph.

If the input graph is directed, and no source and sink are specified, then there must be
exactly one vertex with indegree zero and one with outdegree zero, otherwise, the graph is
not series-parallel. Let the source be this first vertex, and the sink the latter vertex, and solve
the problem for the graph with this source and sink. Note that these vertices can be found in
O(logm) time withO(m) operations on an EREW PRAM.

Theorem 8.3.2. Each of the following problems can be solved with O(m) operations, in
O(logmlog�m) time on an EREW PRAM, and O(logm) time on a CRCW PRAM.

1. Given a graph G, determine if there are s; t 2 V(G) for which(G;s; t) is series-parallel,
and if so, find an sp-tree of G.

2. Given a directed source-sink labeled graph(G;s; t), determine whether(G;s; t) is series-
parallel, and if so, find an sp-tree of(G;s; t).

3. Given a directed graph G, determine if there are s; t 2V(G) for which(G;s; t) is series-
parallel, and if so, find an sp-tree of G.
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If the input graph is simple, then we can make the algorithms to run inO(lognlog�n) time
on an EREW PRAM andO(logn) time on a CRCW PRAM, both withO(n) operations and
space. This can be done by doing the following preprocessing step. Note that ifjEj> 2jVj for
some simple graphG= (V;E), thenG has treewidth more than two (Lemma 2.2.6), and hence
G is not series-parallel. IfjEj � 2jVj, then the number of edges can be counted inO(logn)
time with O(n) operations and space on an EREW PRAM. Therefore, we start counting the
number of edges of the graph, but we do at mostO(logn) steps of this counting, withO(n)
operations. If, after these steps, the edges are counted andjEj � 2jVj, then we go on with the
rest of the algorithm. Otherwise, we can conclude thatjEj> 2jVj, and hence the input graph
does not have treewidth at most two and is not series-parallel. In this case, we returnfalse.

As we have mentioned before (Section 2.2.4), many problems can be solved inO(logp)
time, andO(p) operations and space, when the input graph is given together with a tree
decomposition of bounded treewidth consisting ofp nodes. These include all (constructive)
decision problems and (constructive) optimization problems that are MS-definable. Since
series-parallel graphs have treewidth at most two, we can solve these problems efficiently on
series-parallel graphs, if a tree decomposition of small width is given. A binary sp-tree of a
series-parallel graph can be transformed into a tree decomposition of width at most two in
constant time, by using the construction of Lemma 2.3.5. Hence we have the following result.

Corollary 8.3.1. The following problem can be solved in O(logmlog�m) time, O(m) op-
erations, and O(m) space on an EREW PRAM, and in O(logm) time, O(m) operations and
O(m) space on a CRCW PRAM: given a series-parallel graph G, find a tree decomposition
of width at most two of G.

The resulting tree decomposition hasO(m) nodes. Hence we can solve the problems
described above inO(logm) time with O(m) operations given this tree decomposition.
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Chapter 9

Parallel Algorithms for Treewidth Two

This chapter is concerned with parallel algorithms for the problem of finding a tree decom-
position of width at most two of a graph, if one exists, or in other words, for the construc-
tive version of 2-TREEWIDTH. We consider both simple graphs and multigraphs. The best
known parallel algorithm for recognizing simple graphs of treewidth at mostk is due to Bod-
laender and Hagerup [1995]. It usesO(n) operations andO(logn) time on a CRCW PRAM
or O(lognlog�n) time on an EREW PRAM. Bodlaender and Hagerup also give a parallel
algorithm for building a tree decomposition of width at mostk, if one exists. This algorithm
usesO(n) operations andO(log2n) time both on an EREW PRAM and on a CRCW PRAM.
Related, earlier results can be found e.g. in Granot and Skorin-Kapov [1991] and Lagergren
[1996].

For 1-TREEWIDTH there is a more efficient algorithm than the one of Bodlaender and
Hagerup [1995]. A connected simple graph of treewidth one is a tree, and a tree can be
recognized by using a tree contraction algorithm. This takesO(logn) time with O(n) oper-
ations on an EREW PRAM [Abrahamson, Dadoun, Kirkpatrick, and Przytycka, 1989]. One
can easily construct a tree decomposition of a tree inO(1) time with O(n) operations on an
EREW PRAM. The algorithm can be modified such that it can be used on input graphs which
are not necessarily connected (see also Section 9.3).

In this chapter, we improve the result of Bodlaender and Hagerup [1995] for treewidth
two. We give an algorithm that constructs a tree decomposition of width at most two of
a given multigraph, if one exists. This algorithm runs inO(logm) time on a CRCW PRAM
andO(logmlog�m) time on an EREW PRAM, in both cases withO(m) operations and space.
We modify the algorithm for simple graphs, such that them can be replaced byn in the time
and operations bound. The algorithm makes use of the relation between graphs of treewidth
at most two and series-parallel graphs: we extend the constructive reduction system that is
given in Chapter 8 for series-parallel graphs, such that it can be used for graphs of treewidth
at most two.

This chapter is organized as follows. In Section 9.1 we give some preliminary results
and definitions that will be used in the remainder of the chapter. In Section 9.2 we give a
constructive reduction system for 2-TREEWIDTH, assuming a special class of input graphs,
namely connected multigraphs of which some edges are labeled. We also show that the sys-
tem is a special parallel constructive reduction system for this problem, thus implying that the
constructive version of 2-TREEWIDTH can be solved withO(m) operations inO(logm) time
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on a CRCW PRAM or inO(logmlog�m) time on an EREW PRAM. In Section 9.3, we show
how this reduction system can be used to solve the constructive version of 2-TREEWIDTH on
simple graphs or multigraphs which are not necessarily connected.

9.1 Preliminary Results
The following result on trees is used in Section 9.2.2.

Lemma 9.1.1. Let H be a tree. Let l(H) denote the number of leaves of H, and let nr(H)
denote the sum of the degrees of all vertices of degree at least three. Then nr(H)� 3l(H).

Proof. We prove this by induction on the numbern of vertices ofH. If n� 2, then clearly
nr(H)� 3l(H).

Supposen> 2. Letv be a leaf ofH, and letw be the only neighbor ofv. Let d denote the
degree ofw in H and note thatd � 2. Furthermore, letH 0 = H[V�fvg]. By the induction
hypothesis,nr(H 0) � 3l(H 0). If d = 2, thenl(H) = l(H 0) andnr(H) = nr(H 0), sonr(H) �
3l(H). If d = 3, thenl(H) = l(H 0)+1 andnr(H) = nr(H 0)+3, and thusnr(H)� 3l(H). If
d� 4, thenl(H) = l(H 0)+1 andnr(H) = nr(H 0)+1, and hence alsonr(H)� 3l(H). 2

In Section 9.2, we extend the reduction system for series-parallel graphs as it is given in
Chapter 8 for graphs of treewidth at most two. However, series-parallel graphs are connected
multigraphs, and we are especially interested in simple graphs which are not necessarily con-
nected. Therefore, we first make a reduction system for connected multigraphs of treewidth
at most two instead of simple graphs. In Section 9.3 we show how the constructive reduction
algorithm based on this system can be adapted such that it can be used for simple graphs
which are not necessarily connected.

Lemma 9.1.2. A multigraph G has treewidth at most two if and only if each block of G is
series-parallel.

Proof. SupposeG has treewidth at most two. LetG0 be a block ofG (G0 has treewidth at
most two). We show by induction onjV(G0)j+ jE(G0)j thatG0 is series-parallel.

If jV(G0)j � 3, then it clearly holds. SupposejV(G0)j > 3, note thatjE(G0)j � jV(G0)j.
If G0 contains parallel edges, then apply the parallel reduction rule once onG0 (rule 2 of
Figure 8.3). The graph obtained this way has treewidth two and is biconnected. By the
induction hypothesis, it is series-parallel. Since the parallel reduction rule is safe for series-
parallel graphs, this implies thatG0 is series-parallel.

SupposeG0 does not contain any parallel edges. LetTD= (T;X ) be a tree decomposition
of width two ofG0 with T =(I ;F) andX = fXi j i 2 Ig. Modify TDby repeating the following
as often as possible. For eachi 2 I , if i has exactly one neighborj 2 I , andXi � Xj , then
removeXi . Note thatTD is a tree decomposition of width two ofG0, and it has at least two
nodes. Leti 2 I such thati has exactly one neighborj 2 I in T. There is av2 Xi such that
v =2 Xj .

Let v2 Xi such thatv =2 Xj . Vertexv must have degree two inG0, and bothv’s neighbors
are contained inXi . Apply the series reduction rule onv and its neighborsu andw (rule 1
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of Figure 8.3). This gives the graphG00 = (V(G0)�fvg;E(G0) + fu;wg). GraphG00 has
treewidth two, since the tree decomposition obtained from(T;X ) by removing vertexv from
nodeXi is a tree decomposition of width two ofG00. Furthermore,G00 is biconnected. By the
induction hypothesis,G00 is a series-parallel graph. As the series rule is safe for series-parallel
graphs, this means thatG0 is also series-parallel.

Now suppose each block ofG is series-parallel. By Lemma 2.3.5, each block ofG has
treewidth at most two. By Lemma 2.2.1, the treewidth ofG is at most two. 2

Let G= (V;E) be a multigraph. Recall that a bridge ofG is an edgee2 E for which the
multigraph(V;E�feg) has more connected components thanG. In order to make the set
of reduction rules conveniently small, we put a labeling on the edges of a multigraph: each
edge in a multigraph is either labeled with labelB, or it is not labeled (the labelB stands
for ‘bridge’). We call such a multigraph aB-labeled multigraph. We extend the notion of
treewidth at most two for multigraphs to treewidth at most two forB-labeled multigraphs.

Definition 9.1.1. Let G = (V;E) be a connectedB-labeled multigraph. LetG0 be the un-
derlying unlabeled multigraph. The graphG hastreewidth at most twoif and only if G0 has
treewidth at most two and for each edgee2 E, if e has labelB, thene is a bridge ofG.

A tree decomposition of width at most twoof G is a tree decompositionTD= (T;X ) of
width at most two ofG0 with T = (I ;F) andX = fXi j i 2 Ig, such that for each edgee with
label B and end pointsu andv, there is a nodei 2 I with Xi = fu;vg such that there is no
component inT[I �fig] which contains vertices of two components of(V;E�feg).

We can easily prove by induction that aB-labeled multigraphG has treewidth at most two
if and only if there is a tree decomposition of width at most two ofG.

Note that an edge in a multigraph is a bridge if and only if the edge is a (trivial) block.
Hence we can derive the following from Lemma 9.1.2.

Corollary 9.1.1. Let G be a connectedB-labeled multigraph. G has treewidth at most two if
and only if each non-trivial block of G has no labeled edges and is series-parallel.

We useB-labeled terminal multigraphs instead of unlabeled ones: aB-labeled terminal
multigraph is a terminal multigraph of which some edges have labelB. Two B-labeled ter-
minal multigraphsG1 andG2 are isomorphic if there is an isomorphism from the underlying
unlabeled terminal multigraph ofG1 to the underlying unlabeled terminal multigraph ofG2,
such that labeled edges inG1 are mapped to labeled edges inG2 and unlabeled edges inG1

are mapped to unlabeled edges inG2.
Reduction rules consist of pairs ofB-labeled terminal multigraphs instead of ordinary

terminal multigraphs.

9.2 A Special Parallel Constructive Reduction System
In this section we define a constructive reduction systemS tw = (R tw;Itw;Atw

R ;Atw
I ) for the

following problem.

189



Chapter 9 Parallel Algorithms for Treewidth Two

TREEWIDTH AT MOST TWO (TW2)
Instance: A connectedB-labeled multigraphG.
Find: A tree decomposition of width at most two ofG, if the treewidth ofG is at most two.

We also show thatS tw is a special parallel constructive reduction system. The setR tw of
reduction rules is based on the setR sp of reduction rules for series-parallel graphs that is
defined in Chapter 8 (see Figure 8.3).

In Section 9.2.1 we give the extension ofR tw with respect toR sp, we giveItw, and
we show that the setR tw is safe for TW2. After that, we show in Section 9.2.2 that each
connectedB-labeled multigraphG containsΩ(jE(G)j) matches to rules inR tw, if jE(G)j � 1.
In Section 9.2.3 we show that sufficiently many of these matches are discoverable. Finally,
in Section 9.2.4 we give the construction algorithmsAtw

R andAtw
I .

9.2.1 A Safe Set of Reduction Rules

Figure 9.1 shows the extension ofR tw with respect toR sp. The setR tw contains all rules
of R sp (Figure 8.3), with a small change of rule 1, plus five new rules, called rules 19 – 23.
Rule 1 ofR sp is split into rules 1a and 1b: in rule 1a, there are no edges labeledB, in rule 1b,
one or two of the edges in the left-hand side are labeled, and the edge in the right-hand side
is also labeled. Rules 1a and 1b together are called rule 1. Rule 19 also consists of two parts:
19a and 19b, the first with no labeled edges, the second with one or more labeled edges. In
rule 20, we pose a degree constraint of eight on the terminal vertex of the left-hand side. This
degree constraint requires that if rule 20 is applied, then the vertex in the graph that matches
the terminal of the left-hand side of the rule, has degree at most eight in the graph.

We give a new definition of a match to one of the rules 1 – 23 in aB-labeled multigraph.

Definition 9.2.1 (Match). Letr = (H1;H2) be a reduction rule inR tw and letG be aB-labeled
multigraph. Amatchto r in G is aB-labeled terminal multigraphG1 which is isomorphic to
H1, such that

� there is aB-labeled terminal multigraphG2 with G= G1�G2,

� if r is rule 20, then the terminal vertexu in G1 has degree at most eight inG.

� if r is one of the rules 3 – 18, then for each edgee= fu;vg 2 E(G1) for whichu andv are
terminals,u or v has degree at most seven inG.

The setItw consists of only one graph, namely the graph consisting of one isolated vertex.

Lemma 9.2.1. The setR tw of reduction rules is safe forTW2.

Proof. Let G be a connectedB-labeled multigraph, letr 2 R tw, and supposeG contains a
matchH to r. Let G0 be the graph obtained fromG by applying the reduction corresponding
to matchH. We show thatG has treewidth at most two if and only ifG0 has treewidth at most
two. Note that aB-labeled multigraph has treewidth at most two if and only if all its blocks
have treewidth at most two.

First supposer is one of the rules 2 – 18. ThenH is contained in one of the blocks ofG.
Let B denote this block (note thatB is a non-trivial block andH is also a match inB), and let
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Figure 9.1. The modifications made toR sp in order to getR tw.

B0 be the graph obtained fromB by applying the rule. ThenB0 is a block ofG0. Therefore, it
suffices to show thatB has treewidth at most two if and only ifB0 has treewidth at most two.

Let s; t 2 V(B) such thats andt are adjacent and are not inner vertices ofH. Note that
this is possible. Furthermore,B has treewidth at most two if and only ifB has no labeled
edges and(B;s; t) is series-parallel (by Corollary 9.1.2 and Lemma 8.3.1). The graphH is
also a match in(B;s; t), ass andt are not inner vertices ofH. Since rules 2 – 18 are safe
for series-parallel graphs, this means that(B;s; t) is series-parallel if and only if(B0;s; t) is
series-parallel. Furthermore, sinceB0 is biconnected,B0 has treewidth at most two if and only
if (B0;s; t) is series-parallel. This proves thatB has treewidth at most two if and only ifB0 has
treewidth at most two.

Supposer is rule 1. If all vertices ofH are contained in one blockB, then this is a non-
trivial block. In the same way as for rules 2 – 18, we can show thatG has treewidth at most
two if and only ifG0 has treewidth at most two.

Suppose the vertices ofH are not in one block. Then the two edges ofH are separate
blocks, and they are both bridges (hence they both have treewidth at most two). This implies
that the new edge is a block inG0, and it is also a bridge inG0 (hence it also has treewidth
at most two). This shows thatG has treewidth at most two if and only ifG0 has treewidth at
most two.

It is easy to see that rules 19 and 20 are safe for TW2: ifr is rule 19 or 20, then the blocks
of G have treewidth at most two if and only if the blocks ofG0 have treewidth at most two.

Supposer is one of the rules 21, 22 and 23. Letx andy be the terminals ofH. SupposeG
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has treewidth at most two. IfG contains a path between the terminals ofH which avoids the
inner vertices ofH, thenG contains aK4 minor, hence this is not the case. This means that
x andy are cut vertices ofG, and henceH is a block ofG. This implies that inG0, the edge
betweenx andy is a bridge ofG0, and hence it is a block ofG0 which has treewidth at most
two. HenceG0 has treewidth at most two.

If G0 has treewidth at most two, then the edge betweenx andy is a bridge, and hence is a
block with treewidth at most two. This implies thatH is a block inG. As H has treewidth at
most two, we have thatG has treewidth at most two. 2

9.2.2 A Lower Bound on the Number of Matches

In this section, we show that each connected multigraphG with at least one edge which has
treewidth at most two has at leastΩ(jE(G)j) matches. We do this by bounding the number
of edges ofG by an integer constant times the number of matches inG. We first prove the
following lemma.

Lemma 9.2.2. Let G be a connectedB-labeled multigraph and let v2V(G) such that v has
degree at most eight. Then the number of matches to rules 1 – 23 in G which contain v is at
most some integer constant k.

Proof. We give a very rude bound which is probably far too large, but easy to prove. Note
that all inner vertices of left-hand sides of rules 1 – 23 have degree at most eight. LetG1 be
a match inG which containsv. It can be seen that all vertices and edges inG1 are reachable
by a pathP from v to this vertex or edge, such that all vertices on the path except possibly the
first and the last one are inner vertices ofG1, or are terminals ofG1 with degree at most eight.
Hence each vertex on such a path, except the last one, has degree at most eight. Furthermore,
the path has length at most seven, as each left-hand side of a reduction rule has at most eight
vertices. Therefore, the number of vertices and edges inG which are reachable fromv by
such a path is at most 87. This implies that there is at most a constant number of matches
containingv. 2

Let G = (V;E) be a connectedB-labeled multigraph, suppose the treewidth ofG is at
most two, and letjEj � 1.

A dangling edgein G is an edgee= fu;vg for which eitheru or v has degree one. Ifu has
degree one, thene is called a dangling edge ofv. A star is a graph consisting of one vertex
with dangling edges. Apseudo blockis a graph which is a star, or consists of one block with
dangling edges, i.e.G consists of a block of which some vertices have dangling edges.

We divideG into pseudo blocks as follows. IfG is a star, thenG itself is the only pseudo
block. Otherwise, letB denote the set of all blocks ofG, and letB 0 � B be the set of all
blocks which are non-trivial, or which have two or more cut vertices. Note thatB 0 contains
exactly all blocks which are not dangling edges, and each dangling edge has an end point in
one of the blocks inB 0. Assign each dangling edge to a block inB 0 which contains one of its
end points. A pseudo block ofG consists of a block inB 0 with the dangling edges assigned
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to them. LetP B be the set of all the pseudo blocks. For each pseudo blockPB2 P B , we
call the block ofPBwhich is inB 0 theunderlyingblock ofPB.

The vertices that are contained in two or more pseudo blocks are called thestrong cut
verticesof G, and we denote the set of all strong cut vertices byS . If v is a strong cut vertex,
thenv is a cut vertex ofG andv is contained in the underlying block of each pseudo block it
is contained in.

Note that the pseudo blocks ofG partition the set of edgesE(G). We divide the edges of
G into different classes, which correspond to the type of pseudo block that they are contained
in. After that, we give for each class an upper bound on the number of edges in this class
with respect to the number of matches inG. Therefore, we first construct apseudo block tree
T = (N;F) as follows.

N = P B [S
F = ffv;PBg j v2 S ^PB2 P B ^v2V(PB)g

HenceT contains as its vertices the pseudo blocks and strong cut vertices ofG, and there is
an edge between two vertices inT if and only if one of them is a cut vertexv, the other one
is a pseudo blockPB, andv is contained inPB. Note that the degree of a strong cut vertex
in T equals the number of pseudo blocks it is contained in, and the degree of a pseudo block
in T equals the number of strong cut vertices it contains. We call a pseudo block adegree d
pseudo blockif its corresponding node inN has degreed in T. A degree one pseudo block
is also called a leaf pseudo block. Note that each leaf pseudo block has at least two edges (if
it had only one edge, then it would be a dangling edge of one of the blocks it shares a vertex
with).

We partition the setP B of pseudo blocks into four sets:P B0, P B1, P B2 andP B�3. For
i = 0;1;2, P B i is the set of degreei pseudo blocks. The setP B�3 is the set of all degreed
pseudo blocks withd � 3. For i = 0;1;2, letEi denote the set of all edges of pseudo blocks
in P B i , and letE�3 denote the set of edges of all pseudo blocks inP B�3. Note that, asG is
connected, eitherG itself is its only pseudo block and has degree zero, orG contains two or
more pseudo blocks which all have degree one or more. Note furthermore that only degree
zero pseudo blocks can be stars.

Let M denote the set of all matches inG.

Lemma 9.2.3. jE0j � k0jMj for some integer constant k0.

Proof. If P B0 = o=, then it clearly holds. SupposeP B0 = fGg, and letm= jEj. If m= 1,
thenG contains a match to rule 20. Supposem� 2. If G is a star, thenG hasm(m�1)=2
matches to rule 19, and hencem� 2jMj. If G consists of an edge with one or more dangling
edges at each end point, then eitherm= 3 andG has a match to rule 1 or 19, orm> 3 andG
has at least(m�1)(m�3)=8 matches to rule 19 (at least(m�1)=2 edges are dangling edges
of the same end point). Hencem� 9jMj.

SupposeG consists of a non-trivial blockB with dangling edgesD. Note thatB has no
edges labeledB. Let D1 denote the dangling edges which are dangling edges of some vertex
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of B that has one dangling edge, and letD�2 denote the other dangling edges. Note thatG
has at leastjD�2j=2 matches to rule 19, and hencejD�2j � 2jMj.

Consider blockB. As B is series-parallel and has at least two edges, it contains at least
jE(B)j=139 matches to rules 1 – 18 (Lemma 8.2.6). Consider the setMsp of all these matches.
Let H 2 Msp. EitherH is a match inG or not. If H is not a match inG, we callH a disturbed
match.

If H is disturbed, then either an inner vertexv of H has one or more dangling edges, or a
terminal vertexv of H which has degree at most seven inB has one or more dangling edges.
In both cases,v has degree at most seven inB. Furthermore, ifv has one dangling edge, then it
has degree at most eight inG and hencee is a match to rule 20. Ifv has two or more dangling
edges, then two of these edges form a match to rule 19 inG. By Lemma 9.2.2, the number
of matches inG which containsv is at mostk. Hence the number of disturbed matches is at
mostk times the number of matches to rules 19 and 20 inG. This means that we can derive
the following upper bound forjMspj.

jMspj= jfnon-disturbed matchesgj+ jfdisturbed matchesgj

� jfmatches to rules 1 – 18gj+k � jfmatches to rules 19 and 20gj

� kjMj

Furthermore,jD�2j � 2jMj andjD1j � jV(B)j � jE(B)j. Hence

m= jE(B)j+ jD1j+ jD�2j

� 2jE(B)j+2jMj

� 278jMspj+2jMj

� 278(k+1)jMj;

hence the lemma holds withk0 = 278(k+1). 2

In the following discussion, we denote for each pseudo blockPB the set of matches in
PBby MPB. A match inMPB is either a match inG, in which case it is called anon-disturbed
match, or it is not a match inG, in which case it is called adisturbedmatch. The set of
non-disturbed matches inMPB is denoted byMnd

PB, and the set of disturbed matches inMPB is
denoted byMd

PB. Note thatMnd
PB�M. Lemma 9.2.3 implies the following result.

Corollary 9.2.1. For each pseudo block PB,jE(PB)j � k0jMPBj.

Consider a disturbed matchH in Md
PB. Then there is a strong cut vertexv in PB for which

either

� v is an inner vertex ofH,

� H is a match to rule 20 andv is a terminal ofH, v has degree at most eight inPB andv
has degree more than eight inG, or

� H is a match to one of the rules 3 – 18,v is a terminal ofH, v has degree at most seven in
PB, andv has degree more than seven inG.
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9.2 A Special Parallel Constructive Reduction System

If one of these cases holds for a strong cut vertexv and a disturbed matchH, we say thatv
disturbs H.

Lemma 9.2.4. Each strong cut vertex disturbs at most k matches in each pseudo block it is
contained in.

Proof. Let PBbe a pseudo block and letv be a strong cut vertex inPB. LetH be a match that
is disturbed byv. Note thatv has degree at most eight inPB. Hence, by Lemma 9.2.2, there
are at mostk matches inPB which containv. This means thatv disturbs at mostk matches.

2

Lemma 9.2.5. jE1j � k1jMj for some integer constant k1, and each leaf pseudo block contains
at least one match in G.

Proof. Let PB be a leaf pseudo block, letx denote the strong cut vertex inPB. By
Lemma 9.2.4,jMd

PBj � k. If jMnd
PBj � 1, thenjMd

PBj � kjMnd
PBj, and hence

jE(PB)j � k0jMPBj � k0(jM
nd
PBj+ jMd

PBj)� k0(1+k)jMnd
PBj � k0(1+k)jMj:

This will show thatjE1j � k1jMj with k1 = k0(1+ k). Furthermore, ifjMnd
PBj � 1, then each

leaf pseudo block contains at least one match.
We next show thatjMnd

PBj � 1. If the underlying block ofPB is an edgee, then the end
point ofewhich is notx has at least one dangling edge, and hence there is at least one match
to rule 19 or 20. This match is not disturbed byx, sojMnd

PBj � 1.
Suppose the underlying blockB of PB is non-trivial. Note thatx 2 V(B). Let y be a

neighbor ofx in B. By Lemma 8.3.1,(B;x;y) is series-parallel and hence it has at least one
match to rules 1 or 2 which does not havex or y as inner vertex. This means thatPB has at
least one match to rule 1, 2, 19 or 20 which does not havex as an inner vertex, and hence is
not disturbed inG. HencejMnd

PBj � 1. 2

Lemma 9.2.6. jE�3j � k3jMj for some integer constant k3.

Proof. Let d � 3 and letPB be a degreed pseudo block. Note that the underlying block
B of PB is non-trivial. By Lemma 9.2.4, there are at mostd � k disturbed matches inPB.
Lemma 9.1.1 shows that the sum over all degrees of the pseudo blocks inP B�3 is at most
three times the number of leaf pseudo blocks. By Lemma 9.2.5, each leaf pseudo block
contains at least one match inM. Hence we can derive the following.

jE�3j= ∑
PB2P B�3

jE(PB)j

� ∑
PB2P B�3

k0jMPBj

= k0 ∑
PB2P B�3

(jMnd
PBj+ jMd

PBj)

� k0jMj+ ∑
PB2P B�3

deg(PB) �k

195



Chapter 9 Parallel Algorithms for Treewidth Two

� k0jMj+3kjP B1j

� k0jMj+3kjfmatches in leaf pseudo blocksgj

� jMj(k0+3k)

Hence the lemma holds withk3 = k0+3k. 2

Consider the setP B2. We split this set in two partsP B t
2 andP B nt

2 . The first set contains
all degree two pseudo blocks of which the underlying block is an edge, and the second set
contains all other degree two pseudo blocks (i.e. the degree two pseudo blocks of which the
underlying block is non-trivial). letEt

2 denote the set of edges in pseudo blocks ofP B t
2 and

let Ent
2 denote the set of edges in pseudo blocks ofP B nt

2 .

Lemma 9.2.7. For all degree two pseudo blocks PB2 P B nt
2 , jMnd

PBj � 1.

Proof. Let PBbe a degree two pseudo block ofP B nt
2 , and letB denote the non-trivial block

of PB. Let x andy denote the strong cut vertices ofPB. Suppose all matches inMPB are
disturbed, i.e.Mnd

PB= o=. As matches to rules 2 and 19 can not be disturbed,PBhas no parallel
edges, and there is no vertex inB with two or more dangling edges. Furthermore, no vertex of
V(B)�fx;ygwith degree at most seven inB has a single dangling edge, otherwise, this edge
would be a match to rule 20 which is not disturbed. This implies that vertices inV(B)�fx;yg
with degreed� 7 in B also have degreed in PB, and hence ifB contains a match to one of
the rules 1 – 23, thenPB also contains this match. AsMnd

PB = o=, this match is disturbed byx
or y.

Note thatx;y 2 V(B), and leta 2 V(B) such thatfx;ag 2 E(B) anda 6= y. By Corol-
lary 9.1.1 and Lemma 8.3.1,B has no labeled edges and the graph(B;x;a) is series-parallel.
As each series-parallel graph with two or more edges contains a match to the series or the
parallel rule (rule 1 or 2), andB does not contain a match to the parallel rule, it contains a ver-
texv of degree two withv =2 fx;ag. Then inPB, v also has degree two, and hencePBcontains
a match to rule 1. This match must be disturbed inG, and thusv= y. Hencey has degree two
in B. By symmetry, vertexx also has degree two, and there can be no other vertices of degree
two. Letb be the second neighbor ofx, and letc andd denote the neighbors ofy. Let T 0 be
the minimal sp-tree of(B;x;a), and letα denote the root node ofT 0, which has label(x;a).
Nodeα must be a p-node, as there is a leaf node with label(x;a).

Color and name the internal nodes ofT 0 in the same way as in the proof of Lemma 8.2.6
(an internal node is green if it is a p-node with two leaf children, or an s-node with two
neighboring leaf children; an internal node is branching if at least two of its children are
internal nodes; an internal node is yellow or blue if it is not green or branching). TreeT 0

contains at least one s- or p-node which has only leaf nodes, and hence this node is green.
Let β be a green node inT 0. Thenβ can not be a p-node, since then there would be a match
to rule 2. Henceβ 6= α. If β is an s-node, then there is a match to rule 1 inB which consists
of the edges corresponding to the leaf children ofβ. This must be the match consisting ofy,
c andd, and henceβ has two children, both leaves, labeled with(c;y) and(y;d), or (d;y) and
(y;c). Suppose w.l.o.g. that the first case holds. Thenβ has label(c;d) (possibly withc= x
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9.2 A Special Parallel Constructive Reduction System

and/ord = a). Furthermore,β is the only green node, as vertexy does not occur in the label
of any other s-node.

TreeT 0 can not contain any branching nodes, otherwiseT 0 would have at least two green
nodes. It follows that all nodes ofT 0, exceptβ, are either leaf nodes, yellow nodes or blue
nodes. Each yellow or blue node has one yellow, blue or green child, and one or two non-
adjacent leaf children. Hence the s- and p-nodes ofT 0 form a sequence of yellow and blue
nodes, followed by the green nodeβ. See part I of Figure 9.2 for an example.
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Figure 9.2. An example of the sp-treeT 0 of B (part I), its corresponding cycle-
sequence (part II), and the general structure of the cycle-sequenceB (part III).

Consider the p-nodeγ which is a child ofα. Nodeγ has label(x;a). If γ = β, thenx= c
anda= d, which means thatB is a four cycle. But that it not possible, since thena has degree
two. Supposeγ 6= β. Thenγ has a child which is a p-nodeδ. Note that the leftmost child of
γ is a leaf child labeled(x;b), asx has degree two. Henceδ has label(b;e) for some vertex
e2V(B). If e 6= a, thenγ also has a leaf child labeled(e;a). But that means thata has degree
two, which is not possible. Henceδ is the rightmost child ofα, and has label(b;a). As δ
is a p-node, and has at least one leaf child, it follows that there is an edge betweena andb.
Furthermore, there is an edge betweenc andd, asβ’s parent is a p-node with label(c;d), and
has at least one leaf child.

It can be seen thatB is a cycle-sequence with bounding pathsP1 = (x;b; : : : ;c) andP2 =
(a; : : : ;d;y) (see page 177 for a definition). The first and the last cycle have three vertices, the
first cycle containsx, a andb, andx has degree two inB, and the last cycle containsy, c and
d, andy has degree two inB. Part II of Figure 9.2 shows the cycle sequence corresponding to
the sp-tree of part I of the figure. Part III shows the general structure of the cycle-sequence
B. The bounding paths in part II and III are denoted by the fat edges. Note that, asβ is not a
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Figure 9.3. An example of a match to rule 3 ifP1 contains a vertexv with four
neighbors inP2 (part I) or with six neighbors inP2 (part II).

child of α in T 0, x 6= c anda 6= d, and henceP1 andP2 have length one or more (P1 has length
one ifb= c andP2 has length one ifa= d).

If P1 andP2 both have length one, thenB, and hencePB, contains a match to rule 21 with
terminalsx andy. As this match is not disturbed, this can not be the case. Hence eitherP1 or
P2 has length more than one.

If P1 has length one andP2 has length two, thenB forms a match to rule 3 with terminals
x, y andb (note thatb has degree four), which is also a match inPB, and is not disturbed.
Hence this is not possible. Similarly ifP2 has length one andP1 has length two.

SupposeP1 contains a vertexv which has at least four neighbors inP2. Note thatv 6= x
andv 6= y. If v has four or five neighbors inP2, then it has degree at most seven inB, and
hence it forms a match to rule 3 with four of its neighbors inP2. See e.g. part I of Figure 9.3.
In this picture,v has four neighbors inP2, and the part of the graph surrounded by the dotted
lines forms a match to rule 3 with terminalsu, w andv. Vertexv has degree at most seven in
B, butu andw may have degree more than seven. The match to rule 3 is also a match inPB,
and it is not disturbed, asv has degree at most seven inG. Hence this gives a contradiction.

If v has six or more neighbors inP2, then at most two of these neighbors have degree
seven or more inB, namely the outermost two. The remaining at least four neighbors all
have degree three. We can take four of these vertices which, together withv, form a match
to rule 3. See e.g. part II of Figure 9.3 for the case thatv has six neighbors inP2. Let u and
w be the terminals of the match to rule 3, together withv. Note thatu andw are not equal to
x or y. Hence this match is also a match inPB and inG, which gives a contradiction. This
means thatP1 does not contain vertices with four or more neighbors inP2, and by symmetry,
the same holds for the vertices ofP2.

SupposeP1 has length one andP2 has length three or more. Then all vertices onP2 are
neighbors of vertexb, which is impossible by the discussion above. HenceP1 can not have
length one, and by symmetry,P2 can not have length one.

Until now, we have shown that it is impossible thatP1 or P2 has length one, and that no
vertex inP1 has four or more neighbors inP2, or vice versa. Suppose bothP1 andP2 have
length two or more, and suppose all vertices inP1 have at most three neighbors inP2, and
vice versa. Suppose w.l.o.g. thatP2 is at least as long asP1. If P1 andP2 both have length
two, thenB forms a match to rule 22 or 23, and hencePB contains this match, and it is not
disturbed, which gives a contradiction.
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9.2 A Special Parallel Constructive Reduction System

Finally, consider the case thatP1 has length two or more andP2 has length three or more.
Note that all vertices inB have degree at most six, and hence all vertices exceptx and y
have degree at most six inG. Furthermore,x andy are not adjacent, and hence if the cycle-
sequence has one of the left-hand sides of rules 3 – 18 as a subsequence, then it has a match
to this rule which is also a match inPBand is not disturbed. It follows from Claim 8.2.3 that
B contains such a subsequence, and hence we have a contradiction. This proves the lemma.

2

Lemma 9.2.8. jEnt
2 j � k2jMj for some integer constant k2, and each pseudo block inP B nt

2
contains at least one match in G.

Proof. Let PB2 P B nt
2 . Let x andy denote the strong cut vertices ofPB. Note thatjMd

PBj �
2k, by Lemma 9.2.4. By Lemma 9.2.7,jMnd

PBj � 1. HencejMd
PBj � 2kjMnd

PBj, and it follows
thatjE(PB)j � k0jMPBj= k0(jMnd

PBj+Md
PB)� k0(2k+1)jMnd

PBj � k0(2k+1)jMj. This proves
the lemma withk2 = k0(2k+1). 2

Lemma 9.2.9. jEt
2j � k4jMj for some integer constant k4.

Proof. We partition the setP B t
2 into two setsA andB :

� A is the set of pseudo blocks inP B t
2 of which the underlying block is an edge and has at

least two dangling edges on one of its end points,

� B is the set of pseudo blocks inP B t
2 of which the underlying block is an edge and has at

most one dangling edge on each end point.

Let EA denote the edges of all pseudo blocks inA andEB the set of edges of all pseudo
blocks inB .

Claim. jEA j � 9jMj, and each pseudo block PB2 A contains at least one match in G.

Proof. Let PB2 A , let e be the underlying block ofPB. Note that the end pointsx andy
of e are the strong cut vertices ofPB. Let m= jE(PB)j. If m= 4, thenPB has one match to
rule 19, which is not disturbed. Hence in this casem� 4jMnd

PBj. If m> 4, then there are at
least(m�1)(m�3)=8 matches to rule 19 inPB, and these are also matches inG. Hence in
this case,m� 9jMnd

PBj. This implies that for each pseudo blockPB2 A , jE(PB)j � 9jMnd
PBj,

and hencePB contains at least one match. Summing over all pseudo blocks inA shows that
jEA j � 9jMj. 2

Note that each pseudo block inB has at most three edges. We boundjB j from above in
terms of the number of matches inG. Thereto, we partitionB into two setsC andD:

� C contains all pseudo blocks ofB for which one of the strong cut vertices has degree at
least three in the pseudo block tree, and

� D contains all pseudo blocks ofB of which both strong cut vertices have degree two in
the pseudo block tree.

Note that there are no cut vertices of degree one, and henceC andD partitionB .
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Claim. jC j � 3jMj.

Proof. The number of pseudo blocks inC is at most the sum over the degrees of all nodes
in the pseudo block tree which have degree at least three. Hence, by Lemma 9.1.1,jC j is at
most three times the number of leaf pseudo blocks, and as each leaf pseudo block has at least
one match (Lemma 9.2.5),jC j � 3jMj. 2

Consider the pseudo blocks ofD. We partition this set in four setsD1, D2a, D2b andD3:
� D1 contains all pseudo blocks inD which have a strong cut vertexx that is also contained

in a pseudo block fromP B1.

� D2a contains all pseudo blocks inD which are not inD1 and have a strong cut vertexx
that is contained in two pseudo blocks fromD,

� D2b contains all pseudo blocks inD which are not inD1 or D2a, and have a strong cut
vertexx that is also contained in a pseudo block fromP B2�D, and

� D3 contains all pseudo blocks inD which are not inD1 or D2.
Note that the pseudo blocks inD3 are the pseudo blocks which have two strong cut vertices
that are contained in a pseudo block fromP B�3.

Claim. jD1j � jMj.

Proof. Consider a pseudo blockPB in D1. Let x be a strong cut vertex such that the other
pseudo blockPB0 containingx is in P B1. Pseudo blockPB0 contains at least one match.
AccountPB to such a match. Each match in a leaf pseudo block has at most one pseudo
block ofD1 accounted to it. This proves the claim. 2

Claim. jD2aj � 2jMj.

Proof. Consider a pseudo blockPB in D2a. Let x be a strong cut vertex such that the other
pseudo blockPB0 containingx is also inD. Note that inG, x has at most two dangling edges.
If x has one or two dangling edges, then one of these dangling edges forms a match to rule 20,
otherwise,x has degree two and it forms a match to rule 1, together with its neighbors. We
account each pseudo block inD2a to such a match to rule 1 or 20. In this way, each match to
rule 1 or 20 has at most two pseudo blocks accounted to it, and hencejD2aj � 2jMj. 2

Claim. jD2bj � 10jMj.

Proof. Consider a pseudo blockPB in D2b. Let x be a strong cut vertex ofPB which is
contained in a pseudo blockPB0 of P B nt

2 [A [C . If PB0 2 P B nt
2 , thenPB0 contains at least

one match, by lemma 9.2.8, and hencejP B nt
2 j � jMj. If PB0 2 A , thenPB0 also contains a

match, as is shown above, and hencejA j � jMj. Otherwise,PB0 2 C , and we have shown that
jC j � 3jMj. AccountPB to PB0. Each pseudo block inP B nt

2 [A [C has at most two pseudo
blocks ofD2b accounted to it, and hence

jD2bj � 2( jP B nt
2 j+ jA j+ jDj )

� 2( jMj+ jMj+3jMj )

= 10jMj:

2
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Claim. jD3j � 3jMj.

Proof. Consider a pseudo blockPB in D3. Let x be a strong cut vertex ofPB which is con-
tained in a pseudo blockPB0 of P B�3. AccountPB to the edgefx;PB0g in the pseudo block
treeT. Each such edge has at most one pseudo block ofD3 accounted to it. Lemma 9.1.1
implies that the number of these edges is at most three times the number of leaves of the
pseudo block treeT. As each leaf inT is a leaf pseudo block, and each leaf pseudo block
contains at least one match inG, this implies thatjD3j � 3jMj. 2

We now get the following.

jEt
2j= jEA j+ jEB j

� jEA j+3(jC j+ jDj)

= jEA j+3(jC j+ jD1j+ jD2aj+ jD2b+ jD3j)

� 9jMj+3jMj(3+1+2+10+3)

= 66jMj;

which proves Lemma 9.2.9 withk4 = 66. 2

Note thatjEj = jE0j+ jE1j+ jEnt
2 j+ jEt

2j+ jE�3j and hencejEj � (k0 + k1 + k2 + k4 +
k3)jMj. This means that we have proved the following result.

Lemma 9.2.10. There is a constant c> 0, such that each connectedB-labeled multigraph
G= (V;E) with treewidth at most two andjEj � 1 contains at least cjEj matches.

Lemma 9.2.10 also shows thatR tw is complete for TW2: each connectedB-labeled multi-
graph with at least one edge has a match to one of the rules inR tw. Furthermore, the graph
consisting of one vertex has treewidth at most two, and does not contain a match. Hence it is
the only irreducible graph of treewidth at most two. It is easy to see thatR tw is decreasing,
hence we have proved the following.

Corollary 9.2.2. (R tw;Itw) is a reduction system forTW2.

9.2.3 A Lower Bound on the Number of Discoverable Matches

In this section, we show that(R tw;Itw) is a special parallel reduction system for TW2 (see
Definition 5.4.3). Therefore, we have to show that there are integersnmin andd, with nmin�
19� d, and a constantc0 > 0, such that for each connectedB-labeled multigraphG with
treewidth at most two that is given by some adjacency list representation, the following
holds: if jV(G)j+ jE(G)j � nmin thenG contains at leastc0 �( jV(G)j+ jE(G)j) d-discoverable
matches (with respect tod). Since a connected multigraph hasO(E(G)) vertices, it suffices
to show that there are at leastc0 � jE(G)j d-discoverable matches.

We use the same idea as for series-parallel graphs, only rule 19 gives some extra compli-
cations. Letnmin = 2 andd = 20 (note thatd is the same as for series-parallel graphs, see
page 179). A match to a rule inR tw is d-discoverable if it either is a match to one of the
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rules 1, 3 – 18, or 20 – 23, or it is a match to rule 2 or 19, and in the adjacency list of one of
the terminals of this match, the edges of the match have distance at most 20.

Let G be aB-labeled multigraphG= (V;E) given by some adjacency list representation.
Recall from Chapter 8, page 180 that an edgee is bad if it has a parallel edge, but all its
parallel edges have distance at least 21 in the adjacency lists of the end points ofe.

A dangling edgee is called abad dangling edgeif it is incident with a vertexv that has
two or more dangling edges, but in the adjacency list ofv, these dangling edges have distance
at least 21 toe. Note that an edge is bad if and only if it occurs in a match to rule 2, but not
in ad-discoverable match to rule 2. A dangling edge is bad if and only if it occurs in a match
to rule 19, but not in ad-discoverable match to rule 19.

Lemma 9.2.11. Let G= (V;E) be aB-labeled multigraph of treewidth at most two, given
by some adjacency list representation. The graph G has at mostjEj=5 bad edges and at most
jEj=10bad dangling edges.

Proof. For the bound on the bad edges, see Lemma 8.2.7. Consider the dangling edges.
Let v2V(G). If the adjacency list ofv has length at most 20, thenv does not have any bad
dangling edges. If the adjacency list ofv has length more than 20, then each 20 successive
entries in the (cyclic) adjacency list contain at most one bad dangling edge. Hence there are
at most deg(v)=20 bad dangling edges in the adjacency list ofv. If we sum over all vertices,
we get that the number of dangling edges is at mostjEj=10. 2

Lemma 9.2.12. There is a constant c0 > 0 for which each connectedB-labeled multigraph G
of treewidth at most two with at least one edge has at least c0jE(G)j d-discoverable matches.

Proof. We use the same idea as in the proof of Lemma 8.2.8. LetG= (V;E) be aB-labeled
multigraph with at least one edge. Letn= jVj and letm= jEj. Let dedenote the number of
dangling edges ofG of which one end point has at least two dangling edges, i.e. the dangling
edges which occur in a match to rule 19. We distinguish between three cases:

1. m� 4n,

2. de�m=5, and

3. m< 4n andde< m=5.

Case 1. Supposem� 4n. As G has treewidth at most two, the underlying simple graph has
at most 2n edges (Lemma 2.2.6). This means that at leastm�2n edges are parallel to another
edge. At mostm=5 of these are bad edges, hence at leastm�2n�m=5� 4m=5�m=2 =
3m=10 edges occur in ad-discoverable match to rule 2. This means that there are at least
3m=20d-discoverable matches to rule 2 inG.

Case 2. Suppose thatde�m=5. Of thededangling edges which occur in a match to rule 19,
at mostm=10 are bad. Hence at leastde�m=10� m=10 of these dangling edges occur in
a d-discoverable match to rule 19. This means that there are at leastm=20 d-discoverable
matches to rule 19 inG.
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Case 3. Suppose thatm< 4n andde< m=5. If G is a star, thenG contains at leastm=20
d-discoverable matches to rule 19.

SupposeG is not a star. Remove all dangling edges which occur in a match to rule 19 from
G. Furthermore, for each pairu;v of vertices inG which have two or more edges between
them, do the following. Ifu andv both have two or more neighbors, then remove all edges
except one betweenu andv. If u or v has only one neighbor, then remove all but two edges
betweenu andv. Let G0 denote the resulting graph, and letn0 = jV(G0)j, m0 = jE(G0)j.

Note that, ifG0 contains a match to rule 2, then one of the terminals of this match has
degree two, and hence this match isd-discoverable. Note furthermore thatG0 has no matches
to rule 19: first all matches to rule 19 were removed, and after that, matches to rule 2 were
removed without introducing new matches to rule 19.

We expressn0 andm0 in terms ofm: n0 = n�de> m=4�m=5= m=20. AsG is not a star,
it follows thatn0 � 2. Furthermore,G0 is connected, and hencem0 � n0�1� n0=2�m=40.

Note thatm0 � 1 (sinceG is not a star). By Lemma 9.2.10,G0 contains at leastc �m0

matches. As we have argued before, these matches are alld-discoverable, and in each match
to rule 2, one of the end points has degree at most two. LetM denote the set of all matches in
G0. Each of these matches is either ad-discoverable match inG, or it is not ad-discoverable
match inG. We call the first set the set of non-disturbed matches, denoted byMnd, and
the second the set of disturbed matches, denoted byMd. Let Mnew denote the set ofd-
discoverable matches inG which are not inG0. Note that the set ofd-discoverable matches
in G containsMnd andMnew.

Consider a matchH 2 Md. If H is a match to rule 2, then the terminalv of H which has
degree two inG0 has degree more than two inG. If H is a match to one of the other rules,
then eitherH contains an inner vertexv which has dangling edges inG or which is incident
with parallel edges inG, or v is a terminal which has degreed� 8 in G0, but has degree more
thand in G. In all cases, there is a vertexv2 V(H) which has degreed � 8 in G0 and has
degree more thand in G.

Sincev has larger degree inG than inG0, it must be the case that inG, v has two or more
dangling edges, orv is incident with parallel edges. If the adjacency list ofv has length at
most 20, then there are two edges incident withv which form ad-discoverable match to rule 2
or rule 19. LetHv denote this match, note thatHv 2Mnew[Mnd. If the adjacency list ofv has
length more than 20, then consider a sublist of length 20 of this list. If this sublist contains
two or more dangling edges, then two of these form ad-discoverable match to rule 19 inG,
and hence this match is inMnew. Let Hv denote this match. If the sublist contains at most one
dangling edge, then 20 or 21 of the places in this sublist contain an edgee betweenv and a
neighbor ofv. As v has at most eight distinct neighbors, there must be at least two edges with
the same end points in the sublist. Two of these edges correspond to ad-discoverable match
to rule 2 inG. Let Hv again denote this match, and note thatHv 2 Mnew[Mnd.

Note that, asv has degree at most eight inG0, it is contained in at mostk matches inM
and hence inMd (Lemma 9.2.2). For each matchH in Md, accountH to a matchHv of a
vertexv 2 V(H) which has degreed � 8 in G0 and degree more thand in G. In this way,
each match to rule 19 inMnew[Mnd has at mostk matches accounted to it, and each match
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to rule 2 inMnew[Mnd has at most 2k matches accounted to it (at mostk for each end point).
HencejMdj � 2k(jMnew[Mndj) = 2kjMnewj+2kjMndj, and we can derive the following.

m� 40m0

� (40=c) � jMj

= (40=c) � ( jMdj+ jMndj)

� (40=c) � (2kjMnewj+(2k+1)jMndj)

� (40(2k+1)=c) � ( jMnewj+ jMndj)

As G contains at leastjMnewj+ jMndj d-discoverable matches, this means thatG contains at
leastc0jEj d-discoverable matches, withc0 = c=40(2k+1). 2

Hence we have shown the following result.

Corollary 9.2.3. (R tw;Itw) is a special parallel reduction system forTW2.

9.2.4 The Construction Algorithms

In this section we complete the description of the special parallel constructive reduction sys-
tem(R tw;Itw;Atw

R ;Atw
I ) for TW2 by describing algorithmsAtw

R andAtw
I . AlgorithmAtw

R has to
be such that it usesO(1) time and is non-interfering, and algorithmAtw

I must useO(1) time.
We constructAtw

R andAtw
I in such a way that the tree decomposition is a so-called special tree

decomposition (see Definition 6.3.2).
Let G = (V;E) be a connectedB-labeled multigraph, and letx;y 2 V. A setW � V is

anx;y-separatorif x;y =2W, andx andy are in different components ofG[V�W]. An x;y-
separator is called aminimal x;y-separator if no proper subsetW0 of W is anx;y-separator.

Definition 9.2.2 (Special Tree Decomposition). LetG = (V;E) be a connectedB-labeled
multigraph with treewidth at most two. LetTD = (T;X ) be a tree decomposition of width
two of G with T = (I ;F) andX = fXi j i 2 Ig. ThenTD is aspecial tree decompositionof G
if it satisfies the following conditions,

1. For each vertexu2V there is a unique nodei with Xi = fug, called the node associated
with u.

2. Each edgee2 E with end pointsu andv has a nodei with Xi = fu;vg associated with it.
Distinct edges have distinct associated nodes.

3. Letu be a cut vertex ofG, let i denote the node associated withu. Then each component
of T[I �fig] contains vertices of at most one component ofG[V�fug].

4. Letebe a bridge ofG with end pointsu andv and leti be the node associated withe. Then
each component ofT[I �fig] contains vertices of exactly one component of(V;E�feg).

5. Letu;v2V. If there is an edge betweenu andv, andfu;vg is a minimalx;y-separator for
some verticesx andy, then there is a nodei associated with some edge betweenu andv
such thatx andy occur in different components ofT[I �fig].
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9.2 A Special Parallel Constructive Reduction System

6. For each two adjacent nodesi; j 2 I , j jXi j�jXj j j= 1, unless ifXi = Xj = fu;vg andi and
j are nodes associated with different edges betweenu andv.

7. For eachu;v2V, the nodes associated with edges betweenu andv induce a subtree ofT.

We give a number of properties of a special tree decomposition.

Lemma 9.2.13. Let G= (V;E) be aB-labeled connected multigraph and let TD= (T;X )
be a special tree decomposition of G with T= (I ;F) andX = fXi j i 2 Ig. TD satisfies the
following properties.

1. No node with one or three vertices occurs twice, and if a node with two vertices u and v
occurs t times, t� 2, then there are t edges between u and v.

2. For each i2 I, no two components of T[I �fig] contain vertices of the same component
of G[V�Xi].

3. Let i; j 2 I such thatfi; jg 2 F. ThenjXi \Xj j � 1, and either Xi � Xj or Xj � Xi.

4. Let i; j 2 I such thatfi; jg 2 F, Xi = fu;vg and Xj = fu;v;wg. Then w and u are in the
same component of G[V�fvg], and w and v are in the same component of G[V�fug].

Proof.
1. Follows from conditions 1, 2 and 6 of Definition 9.2.2.

2. If two verticesu andv of the same componentC of G[V�Xi] occur in different compo-
nents ofT[I �fig], thenXi contains a vertex of a path inC from u to v.

3. If Xi \Xj = o=, thenG is not connected. SupposeXi 6� Xj andXj 6� Xi . Let u2 Xi �Xj

andv2 Xj �Xi . ThenXi \Xj is au;v-separator. Asi and j can not both have three vertices,
jXi\Xj j= 1. Leta2Xi\Xj . Thena is a cut vertex andu andv are in different components of
G[V�fag]. Let k be the node associated witha. Thenu andv occur in different components
of T[I�fkg]. But thenk must be betweeni and j, which is impossible, asi and j are adjacent.

4. Supposew andu are not in the same component ofG[V�fvg]. Thenv is a cut vertex. In
the same way as for case 3, this gives a contradiction. 2

We use the following data structure for storing a special tree decomposition. We store a
list containing all nodes of the tree decomposition. Each nodei has an adjacency list which
contains an entry for each neighbor ofi. An entry for neighborj in the adjacency list of
i contains a pointer toj, the contentsXj of node j, and a pointer to the entry ofi in the
adjacency list ofj. Furthermore, for each vertex and edge in the graph, we keep a pointer to
the node associated with it.

Consider algorithmAtw
I . Given a graphGconsisting of one vertexv, Atw

I simply constructs
a tree decomposition of one node which containsv. Note that this tree decomposition satisfies
conditions 1 – 7, and hence is a special tree decomposition.

Consider algorithmAtw
R . The algorithm consists of 23 rounds which are executed consec-

utively. Each round corresponds to a rule inR tw: if the algorithm gets ruler as input, then
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Chapter 9 Parallel Algorithms for Treewidth Two

it is only active in roundr. Suppose the input of the algorithm is a ruler = (H1;H2) 2 R tw,
a B-labeled multigraphG= (V;E), a special tree decompositionTD= (T;X ) of G, a match
G2 = (V2;E2;X) to H2 in G, and a matchG1 = (V1;E1;X) to H1 with the same terminal set
asG2. Let T = (I ;F) andX = fXi j i 2 Ig. We describe the algorithm per round.

Round 1. If r is not rule 1, then the algorithm is idle in this round. Supposer is rule 1, and
supposeV2 = fa;bg, E2 = feg andV1 = fa;b;cg. See part I of Figure 9.4 (labelings of edges
are not shown). Leti and j be the nodes ofTD associated witha andb, and letk be the node
associated withe.

!a b a b
c

a bab ! a cac bcb

e

i k j i k j

I

II

III ab ! ab
ccb

k k

abc

ac

G2 G1

Figure 9.4. The construction for rule 1.

If e is a bridge inG, thena andb are cut vertices. The nodek associated witheseparates
TD in different components corresponding to the components ofG0 = (V;E�feg). Note that
G0 has exactly two components, one containinga and one containingb. By condition 4 of
Definition 9.2.2, this means that the nodek has degree two: it is adjacent to a node containing
a and one containingb. Consider the path from nodei to k in T. Let l be on this path, suppose
l 6= i andl 6= k. Xl containsa, and notb. If Xl contains a vertexv 6= a, thenv =2 Xk, and hence
there is no path fromv to b which avoidsa. Hencev andb are in different components of
G[V�fag], while they occur in the same component ofT[I�fig]. This is a contradiction, and
hence no node on the path fromk to i contains another vertex thana (exceptk). Hencek and
i are adjacent. In the same way, we can show thatk and j are adjacent. This means thatTD
contains a subtree as shown in the left-hand side of part II of Figure 9.4. We replace this by the
subtree shown in the right-hand side of part II (the light-gray parts of the tree decompositions
are the parts that are involved in the modification). Note that the new edges are bridges andc
is a cut vertex. Hence the new tree decomposition is a special tree decomposition.

Consider the case thate is not a bridge. Then nodek does not necessarily havei and j as
its only neighbors. If this is indeed not the case, we add an extra nodel as new neighbor of
k, with Xl = fa;b;cg, and we add some other nodes to fulfil conditions 1 – 7. See part III of
Figure 9.4. Note that the new tree decomposition is indeed a special tree decomposition (c is
not a cut vertex, the new edges are not bridges, and the setsfa;cg andfc;bg are not minimal
x;y-separators).

206



9.2 A Special Parallel Constructive Reduction System

Hence algorithmAtw
R does the following. It looks if nodek has as its only neighbors

nodei andk. If so, it applies the construction of part II of Figure 9.4. The new nodes are
added, the contents ofXk is changed, and in the adjacency lists ofi and j, the entries for
nodek are modified. Furthermore, the nodes with contentsfa;cg, fb;cg andfbg are the
nodes associated with the edge betweena andc, the edge betweenb andc, and vertexc,
respectively.

If k does not have onlyi and j as its neighbors, the algorithm applies the construction of
part III of Figure 9.4. This can be done by adding the new nodes with their adjacency lists,
and adding an entry for the new node adjacent tok at the end of the adjacency list ofk. The
new nodes are the nodes associated with the new edges and vertices.

It can be seen that this construction is correct. Furthermore,Atw
R runs inO(1) time for

rule 1, and it is non-interfering: edgee is not involved in any other reduction at the same
time, and hence nodek is not involved in any other reductions that are performed in round 1.
Nodesi and j may be involved in other applications of rule 1, however, only the contents of
entries in the adjacency list ofi and j are modified, and this can be done in different places
of the adjacency list at the same time without concurrent reading or writing.

Round 2. If r is not rule 2, then the algorithm is idle in this round. Supposer is rule 2.
The construction is very simple. LetV1 =V2 = fa;bg, E2 = feg andE1 = fe;e0g, see part I
of Figure 9.5. Leti be the node associated withe. Then we can apply the construction of
part II of Figure 9.5. The newly added node is the node associated with edgee0. Note that
condition 7 is satisfied, and henceTD is a special tree decomposition. It is easy to see that this
construction can be done inO(1) time and that round 2 is non-interfering (edgee is involved
in only one reduction and hence so is nodei).

!a b a be
I

II ab ! ab

i i

ab

G2 G1
e
e0

Figure 9.5. The construction for rule 2.

Round 3. Supposer is rule 3 (otherwise, the algorithm is idle in this round). LetG1 and
G2 be as depicted in part I of Figure 9.6. Leti, j andk be the nodes associated to edgee1, e2

ande3, respectively. We show thatT contains a subtree as depicted in the left-hand side of
part II of Figure 9.6.

Note that there is no path froma to b in G which avoids bothc and d, otherwiseG
contains aK4 minor. Hencefc;dg is a minimala;b-separator. This shows that nodesi and
j are in different components ofT[I �fkg]. Let l be the (unique) node withXl = fa;c;dg.
Consider the path fromk to l in T. Each node on this path containsc andd. Furthermore,
only Xk = fc;dg, since there is only one edge betweenc andd. If there is a nodefc;d;vg
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Figure 9.6. The construction for rule 3. Dashed lines denote possible adjacencies.

on this path for somev =2 fa;c;dg, then there must be another nodefc;dg, since there are no
two adjacent nodes with three vertices. This gives a contradiction, hencek andl are adjacent.
Similarly, k is adjacent to the unique nodep with Xp = fb;c;dg.

Consider the path froml to i in T. Each node on this path containsa andc. Let i0 be
the node on this path which hasXi0 = fa;cg and is the node closest tol for which this holds.
Then i0 and l are adjacent. Similarly, nodep is adjacent with a nodej 0 with Xj 0 = fb;cg.
Consider the nodeq with Xq = fa;dg. This node must be adjacent to nodel . Similarly, the
noder associated with edgefb;dg must be adjacent to nodep.

Consider the nodesl andp. Both these nodes are adjacent to three other nodes, and, by
property 3 of Lemma 9.2.13 and condition 7 of Definition 9.2.2 they can not be adjacent to
any other node. Consider nodesk, q andr. By property 4 of Lemma 9.2.13, none of these
nodes can be adjacent to another node containing three vertices. Furthermore, the only nodes
containing one vertex that can be adjacent to these nodes are the nodes associated witha, b,
c, andd. The node associated witha may be adjacent to nodeq, the node associated with
b may be adjacent to noder, the node associated withc may be adjacent tok, and the node
associated withd must be adjacent to eitherk, q, or r. Hence we have the subtree depicted in
the left-hand side of part II of Figure 9.6. The possible adjacencies of the nodes associated
with a, b, c, andd are denoted by dashed lines. We replace a part of this subtree by a new
subtree, as is depicted in the right-hand side of part II of Figure 9.6. The dashed lines again
denote possible adjacencies, which are the same as in the left-hand side. Note that the new
tree decomposition satisfies conditions1 – 7 of Definition 9.2.2, and hence it is a special tree
decomposition.

It is easy to see that this construction can be done inO(1) time: find the node associated
with edgefc;dg, and search for the structure of the subtree. Then replace the proper subtree
by the new subtree. It can also be seen that round 3 of algorithmAtw

R is non-interfering: the
replaced nodes are not involved in any other application of rule 3. Only the node associ-
ated withb and nodej 0 may be involved in other applications, but for these nodes, only the
contents of one entry in the adjacency list are changed, and this can be done in parallel for
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9.2 A Special Parallel Constructive Reduction System

different entries.

Rounds 4 – 18. The constructions for rules 4 – 18 are similar to the construction for rule 3,
so we do not describe them. The rules of which the right-hand side contains a chordless
four-cycle are a bit different, as there are two possibilities for the structure of the tree decom-
position. As an example, we depict the two possible constructions for rule 6 in Figure 9.7.
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Figure 9.7. The construction for rule 6. Dashed lines denote possible adjacencies.

Round 19. Supposer is rule 19. LetG1 andG2 be as depicted in part I of Figure 9.8 (label-
ings of edges are not shown). Note that edgee is a bridge, and hence the tree decomposition
contains a subtree as depicted in the left-hand side of part II of Figure 9.8 (see also round 1).
We replace this subtree by the subtree depicted in the right-hand side of part II of Figure 9.8.
Note the resulting tree decomposition is special.

In order to make the algorithm non-interfering in round 19, the construction is as follows.
We make two new nodes with contentsfa;cg andfcg, respectively, which are adjacent to
each other. Furthermore, we make a new entry in the adjacency list of the node associated
with a. The new entry is for the node associated with edgefa;cg. It is added between the
entry for the node associated with edgeeand its right neighbor in the list. In this way, we can
make sure that no two constructions for rule 19 try to modify the same entry of the adjacency
list of nodei.

Round 20. Supposer is rule 20. LetG1 andG2 be as depicted in part I of Figure 9.9. Leti
denote the node associated witha. We apply the construction depicted in part II of Figure 9.9.
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G2 G1

Figure 9.8. The construction for rule 19.

Note that the resulting tree decomposition is special.

!a ba

! a bab

I

II a
i i j k

G2 G1

Figure 9.9. The construction for rule 20.

In order to make the algorithm non-interfering in round 20, the construction is as follows.
Let H be aB-labeled terminal multigraph such thatG= G2�H. Note that, inG1�H, vertex
a has degree at most eight. We divide round 20 into eight subrounds, which are executed
subsequently. First, edgee computes its rankk in the adjacency list ofa in G1�H. Then,
in subroundk, the construction is applied by adding new nodesj andl with Xj = fa;bg and
Xl = fag which are adjacent to each other, and makingj adjacent toi: an extra entry for
node j is added at the end of the adjacency list of nodei. In each subround, at most one such
construction that involves vertexa is applied, and hence the algorithm is non-interfering and
runs inO(1) time.

Rounds 21 – 23. Rules 21, 22 and 23 are very similar to each other. We give the con-
struction only for rule 21. LetG1 andG2 be as depicted in part I of Figure 9.10. As edge
e is a bridge, the tree decomposition must contain a subtree as depicted in the left-hand side
of part II of Figure 9.10. This subtree is replaced by the subtree depicted in the right-hand
side of this figure. It is easy to see that the new tree decomposition is special, and that the
construction can be done inO(1) time and is non-interfering.

This completes the description of algorithmAtw
R . We have shown the following result.

Theorem 9.2.1. S tw is a special parallel constructive reduction system forTW2.

9.3 Algorithms
In the previous section, we have given a special parallel constructive reduction system for the
problem TW2. Theorem 6.3.1 (with the modifications for multigraphs as given in Section 5.4)
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Figure 9.10. The construction for rule 21.

shows that this system immediately gives an algorithm for TW2 that runs inO(logmlog�m)
time on an EREW PRAM and inO(logm) time on a CRCW PRAM, in both cases withO(m)
operations and space.

We can use this algorithm for the same problem, but without requiring that the input graph
is connected. In that case, we use a technique similar to the technique of Bodlaender and
Hagerup [1995]: from each connected component of the graph we select one vertex. Then
we add a new dummy vertex to the graph, and make all selected vertices adjacent to this
dummy vertex. The new graph is connected, and has treewidth at most two if and only if the
original graph has treewidth at most two. Now we solve the problem on the new connected
graph with the reduction system given in the previous section. After that, we remove the
dummy vertex from all nodes it occurs in, and the resulting tree decomposition is a tree
decomposition of width at most two of the input graph.

The only problem is how to select a vertex from each connected component of the graph.
We use the reduction system(R tw;Itw) for this, with a small extension: we add reduction
rule 24 as depicted in Figure 9.11 toR tw. Let R be the new set of reduction rules. It is easy
to see that(R ;Itw) is a special parallel reduction system for TW2 on input graphs which do
not have to be connected (see Definition 5.4.3).

24!

Figure 9.11. The extra rule 24.

Now we first make a copy of the input graph, and then apply a reduction algorithm on
this copy, based on(R ;Itw). Each time the new rule is applied, we remove a connected
component of the graph, by removing the only vertex that is left from this component. We
then mark the vertex in the original graph that corresponds to this removed vertex. This
marked vertex is the selected vertex of its connected component. If the input graph has
treewidth at most two, then it is reduced to the graph inItw in O(log(n+m) log�(n+m)) time
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on an EREW PRAM and inO(log(n+m)) time on a CRCW PRAM, both withO(n+m)
operations (note that it is not necessarily the case thatn=O(m) if the graph is not connected).
Furthermore, in the original graph, each connected component has exactly one marked vertex.
If the input graph has treewidth three or more, then the reduction algorithm will not succeed
to reduce the graph within the given time bounds, and it stops in time, returningfalse. This
gives the following result.

Theorem 9.3.1. There is a parallel algorithm which checks whether a given (B-labeled)
multigraph G has treewidth at most two, and if so, returns a tree decomposition of width at
most two of G. The algorithm uses O(n+m) operations and space, and O(log(n+m)) time
on a CRCW PRAM, or O(log(n+m) log�(n+m)) time on an EREW PRAM.

If the input graphG= (V;E) is simple, then we can use the same preprocessing step as
described in Chapter 8 for series-parallel graphs (see page 185) to check whetherjEj � 2jVj.
This step takesO(logn) time andO(n) operations on an EREW or CRCW PRAM. If the
preprocessing step does not returnfalse, then we know thatjEj � 2jVj, and hence we have
the following result.

Theorem 9.3.2. There is a parallel algorithm which checks whether a given simple graph
G has treewidth at most two, and if so, returns a tree decomposition of width at most two of
G. The algorithm uses O(n) operations and space, and O(logn) time on a CRCW PRAM, or
O(lognlog�n) time on an EREW PRAM.

In Section 2.2.3, we have argued that many (constructive) optimization and decision prob-
lems can be solved on graphs of bounded treewidth inO(logn) time withO(n) operations on
an EREW PRAM, if a tree decomposition of bounded width of the input graph is given
(with O(n) nodes). These problems include all (constructive) decision problems that are MS-
definable. Together with Theorem 9.3.2, this shows that all these problems can be solved
within the same resource bounds as the problem of finding a tree decomposition of width at
most two, if the input graph has treewidth at most two.

One of the problems which can be solved if a tree decomposition of bounded width of
the input graph is given, is the pathwidth problem: given a graphG and an integer constant
k, check whetherG has pathwidth at mostk, and if so, find a path decomposition of width at
mostk of the graph [Bodlaender and Hagerup, 1995]. Hence we have the following result.

Theorem 9.3.3. Let k� 1 be an integer constant. There is a parallel algorithm which checks
whether a given graph G has treewidth at most two and pathwidth at most k, and if so, returns
a path decomposition of width at most k of G. The algorithm uses O(n) operations and space,
and O(logn) time on a CRCW PRAM, or O(lognlog�n) time on an EREW PRAM.

Note that the theorem also holds for multigraphs, if we replacen by n+m in the time and
operations bounds. As graphs of pathwidth at most two also have treewidth at most two, the
theorem implies that we can find a path decomposition of width at most two of a graph, if
one exists, within the same resource bounds.
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Chapter 10

Conclusions

In this chapter we summarize the results presented in this thesis, and we give some remarks
and directions for further research.

In Chapter 3, we give a complete characterization of partial two-paths, and we use this
characterization to obtain a linear time algorithm for building a path decomposition of width
at most two of a graph, if one exists. This algorithm has no hidden constants and is easier
to implement than the linear time algorithm of Bodlaender [1996a] for recognizing partial
k-paths for any fixed positive integerk. This makes it potentially more practical than Bod-
laender’s algorithm for the case thatk= 2.

An obvious generalization of the results of Chapter 3 would be to find a characterization
of partialk-paths fork� 3, and to make an efficient and practical algorithm for recognizing
partialk-paths, based on this characterization. It seems however that this is not feasible with
the method used in Chapter 3, since the characterization of partialk-paths is already quite
complicated for the casek= 2 and the complexity grows quickly withk.

In Chapter 4, we discuss two problems that originate from molecular biology, namely
k-INTERVALIZING SANDWICH GRAPHS(k-ISG) andk-UNIT-INTERVALIZING SANDWICH

GRAPHS (k-UISG). We give an algorithm for 2-ISG that runs in linear time in the number
of vertices of the input graph, and an algorithm for 3-ISG that runs in quadratic time in the
number of vertices. Furthermore, we show that fork� 4, k-ISG is NP-complete. We also
give an algorithm for 3-UISG which is linear in the number of edges of the graph. Kaplan
et al. [1994] have given anO(nk�1) algorithm for k-UISG. Hence our algorithm is more
efficient for the case thatk = 3. The given algorithms for 3-ISG and 3-UISG are based on
the characterization of partial two-paths as presented in Chapter 3. The algorithms have no
hidden constants, but they consist of an extensive case analysis, thus making the algorithms
very large. It would be nice to find more compact algorithms running in the same time
bounds.

Unfortunately, in most practical instances ofk-ISG andk-UISG,k lies between five and
fifteen. For these cases, there is (probably) no polynomial time algorithm fork-ISG. Fork-
UISG there is anO(nk�1) algorithm, but ifk= 10 for example, this algorithm is not practical.
Besides,k-UISG isW[1]-hard [Kaplan et al., 1994], which means that there is probably no
algorithm which solvesk-UISG in O(nc) time wherec is a constant which does not depend
on k. Thus the results fork-ISG andk-UISG are not very helpful and it might be interesting
to take a closer look at the original problems as they occur in biology. It might for instance
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be that problems which model the practical situation more accurately have more efficient
algorithms, or there might be practical situations in which extra constraints hold that make
the problems easier.

In Chapters 5 – 9 we discuss reduction algorithms. Chapter 5 contains an overview of
results in Arnborg et al. [1993], Bodlaender [1994] and Bodlaender and Hagerup [1995],
presented in a uniform setting. We give definitions of reduction systems for both decision
problems and optimization problems. We also give a number of conditions for reduction
systems which ensure the existence of efficient reduction algorithms based on these systems.
For the sequential case, these algorithms use linear time and space. In parallel they useO(n)
operations and space, andO(lognlog�n) time on an EREW PRAM orO(logn) time on a
CRCW PRAM. We also apply these results to problems on graphs ofbounded treewidth: we
show that for all finite index decision problems and for all finite integer index optimization
problems on graphs of bounded treewidth there exist reduction systems for which the efficient
reduction algorithms can be used, and these systems can be automatically generated in most
cases.

In Chapter 6 we extend the results of Chapter 5 to constructive decision and optimiza-
tion problems: we define constructive reduction systems, and we give efficient sequential
and parallel algorithms based on constructive reduction systems that satisfy some additional
constraints. These algorithms do not only decide problems or find optimal values for opti-
mization problems, but they also find an (optimal) solution for the problem, if one exists.
They use the same resource bounds as the reduction algorithms presented in Chapter 5. We
again apply these results to graphs of bounded treewidth: we show that all finite (integer) in-
dex problems of which the solution domain satisfies some extra constraints have constructive
reduction systems which admit efficient algorithms.

In Chapter 7, we apply the results of Chapters 5 and 6 to a number of constructive op-
timization problems on graphs of bounded treewidth. We also show that a number of opti-
mization problems which are MS-definable, are not finite integer index, which means that the
technique presented in Chapters 5 and 6 can not be applied to all MS-definable optimization
problems.

In Chapters 5 and 6, we have shown that efficient reduction algorithms can be used for
a large class of problems on graphs of bounded treewidth. However, we did not investigate
any other graph classes: it might well be that the efficient reduction algorithms can be used
for problems on other classes of graphs, as long as the graphs are sparse (i.e. the number of
edges of each graph must be at most a constant times the number of vertices). It would be
interesting to find such classes of graphs, and the problems for which these algorithms can be
used.

The reduction algorithms presented in Chapters 5 and 6 are simple, and not hard to imple-
ment. As long as the number of reduction rules in a reduction system is not too large, these
algorithms are probably also efficient in practice. For a large class of problems on graphs
of bounded treewidth, a set of reduction rules can automatically be generated. The size of
this set may become very large, and the generation process may take a long time. It would
be interesting to find out how long this process actually takes and to see whether it can be

214



made quicker. It is also interesting to find out how large the set of reduction rules can get,
and to try to keep the set of generated rules as small as possible. This might for instance
be done by applying self-reduction on the reduction rules: if a reduction ruler contains a
match to another reduction ruler 0, then ruler can be removed (as soon as ruler is applicable
to some graph, ruler 0 is also applicable). If a set of reduction rules is large, then a way to
improve the efficiency of a reduction algorithm based on this set is to use the structure of
the reduction rules. Consider for instance the set of reduction rules for series-parallel graphs
presented in Figure 8.3: rules 3 – 18 in this set are all very much alike. This means that if
the algorithm tries to find a match to one of these rules, it does not have to do this for each
rule independently, but it can make use of the fact that many of these rules have the same
subgraphs.

As mentioned in Chapter 2, all MS-definable decision problems are of finite index, and
thus can be solved on graphs of bounded treewidth using an efficient reduction algorithm
(apply the technique from Chapter 5). For optimization problems, this does not hold: we
have shown in Chapter 7 that there are MS-definable optimization problems which are not of
finite integer index. It might be interesting to find out whether there is a method with which
all MS-definable optimization problems can be solved by using a type of reduction algorithm.
It is also interesting to find a language like MSOL to define optimization problems which are
finite integer index.

The constructive reduction algorithms presented in Chapter 6 can be applied to con-
structive decision problems which are of finite index and constructive optimization problems
which are of finite integer index, as long as the structure of solutions is suitable. This is the
case for many problems, but for instance not fork-TREEWIDTH andk-PATHWIDTH. It would
be interesting to extend the methods presented in Chapter 6 such that they can also be applied
to these problems. A start with this is made for instance for 2-TREEWIDTH in Chapter 9.

In Chapters 8 and 9, we give efficient parallel reduction algorithms for the problem of
finding an sp-tree of a graph, if it is series-parallel, and the problem of finding a tree de-
composition of width at most two of a graph, if it has treewidth at most two. We do this
by giving constructive reduction systems for both problems, which can then be used in the
efficient parallel constructive reduction algorithm as given in Chapter 6. Both algorithms
improve in efficiency on previously known parallel algorithms for these problems. The re-
duction system for 2-TREEWIDTH is an extension of the reduction system for series-parallel
graphs, since series-parallel graphs have treewidth at most two. It would be interesting to
extend the reduction system for 2-TREEWIDTH to a reduction system for 3-TREEWIDTH or
evenk-TREEWIDTH for any fixedk. These reduction systems however might become too
large to be practical, and thus new techniques might be necessary to turn the algorithms into
practical algorithms (as is also described above).

Using a result from Bodlaender and Hagerup [1995] and the parallel algorithm for 2-
TREEWIDTH, we also have an efficient parallel algorithm for 2-PATHWIDTH: first make a
tree decomposition of width at most two of the graph, then apply a procedure from Bod-
laender and Hagerup [1995] to construct a path decomposition of width at most two. Al-
though this procedure runs inO(logn) time with O(n) operations on an EREW PRAM, it is
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not very practical. Therefore, it would be nice to find a more direct parallel algorithm for
2-PATHWIDTH, for instance by building a constructive reduction system and applying the
results of Chapter 6.
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Appendix A

Graph Problems

In this appendix, we give definitions of the graph problems that are used in this thesis. Most
graph problems are defined both for simple graphs and for multigraphs. If the problems are
mentioned in Garey and Johnson [1979], we give the number of the problem in this book
between square brackets.

For almost all of the problems defined in this appendix, there are two decision variants and
one optimization variant. In the first decision variant, say PROBLEM, the instance consists
of a graphG and an integerk, and we ask whether a solution exists for the graph which has
value at least or at mostk. In the second decision variant, the integer is taken to be some
constantk, and the instance consists of a graph only. The question is the same as for the first
decision variant, and the problem is denoted byk-PROBLEM for any fixed integerk. In the
optimization variant, the instance is a graph, and we ask for the maximum or minimum value
of the integerk for which the decision problem has a ‘yes’ answer. The problem is denoted
by MAX PROBLEM or MIN PROBLEM, respectively (unless stated otherwise).

In this appendix, we only give definitions of the first variant of the decision problem:
the definitions of the other two variants follow directly. Each of the defined problems has a
constructive version, which follows directly from the context.

For definitions of tree decompositions and treewidth, see Definition 2.2.1. For path de-
compositions and pathwidth, see Definition 2.2.2.

TREEWIDTH

Instance: A graphG= (V;E), integerk� 1.
Question: DoesG have treewidth at mostk, i.e. doesG have a tree decomposition of width
at mostk?

PATHWIDTH

Instance: A graphG= (V;E), integerk� 1.
Question: DoesG have pathwidth at mostk, i.e. doesG have a path decomposition of width
at mostk?

A Hamiltonian circuitin a graphG is a simple cycle inG containing all vertices ofG. A
Hamiltonian pathin a graphG is a path inG containing all vertices ofG.

HAMILTONIAN CIRCUIT [GT37]
Instance: A graphG= (V;E).
Question: DoesG contain a Hamiltonian circuit?
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HAMILTONIAN PATH [GT39]
Instance: A graphG= (V;E).
Question: DoesG contain a Hamiltonian path?

An independent setof a graphG is a setW � V(G) such that no two vertices inW are
adjacent inG.

INDEPENDENTSET [GT20]
Instance: A graphG= (V;E), integerk� 0.
Question: DoesG have an independent set of cardinality at leastk?

For any integerk� 1, ak-coloringof a graphG is a partition(V1; : : : ;Vk) of V(G) such
that for eachi, Vi is an independent set ofG.

COLORABILITY [GT4]
Instance: A graphG= (V;E), an integerk� 1.
Question: DoesG have ak-coloring?

The minimization problem in which we ask for a minimum value ofk for which ak-coloring
exists, is denoted by CHROMATIC NUMBER.

For definitions of layouts and bandwidth, see Definition 2.3.2.

BANDWIDTH [GT40]
Instance: A graphG= (V;E), an integerk.
Question: DoesG have bandwidth at mostk, i.e. doesG have a layout of bandwidth at most
k?

The following problem is defined for all integersd� 0.

INDUCED d-DEGREESUBGRAPH

Instance: A graphG= (V;E), integerk� 0.
Question: Is there a setS� V such that all vertices inG[S] have degree at mostp, and
jSj � k?

Ford = 0, this is the INDEPENDENTSET problem.

VERTEX COVER [GT1]
Instance: A graphG= (V;E), an integerk� 1.
Question: Is there a setS� V such that for each edgefv;wg 2 E(G), v 2 S or w2 S, and
jSj � k?

The following problem is defined for any fixed integerp� 1.

p-DOMINATING SET

Instance: A graphG= (V;E), an integerk� 1.
Question: Is there a setS�V such that all vertices inV�Shave at leastp neighbors inS,
andjSj � k?.

For p= 1, this is the DOMINATING SET problem, numbered [GT2].
A cut in a graphG= (V;E) is a partition(V1;V2) of V.
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LARGE CUT [ND16]
Instance: A graphG= (V;E), integerk� 1.
Question: DoesG have a cut(V1;V2) such thatjffv;wg 2 E j v2V1^w2V2gj � k?

The corresponding maximization problem is called MAX CUT.

PARTITION INTO CLIQUES [GT15]
Instance: A graphG= (V;E), an integerk� 1.
Question: Is there a partition(V1; : : : ;Vs) of V in which for eachi, 1� i � s, G[Vi] is a
complete graph, ands� k?

COVERING BY CLIQUES [GT17]
Instance: A graphG= (V;E), an integerk� 1.
Question: Is there a setfV1; : : : ;Vsg, in which for eachi, 1� i � s, Vi � V, G[Vi ] is a
complete graph, and for each edgee2 E, there is ani, 1� i � s, such thate2 E(G[Vi]), and
furthermore,s� k?

HAMILTONIAN CIRCUIT COMPLETION [GT34]
Instance: A graphG= (V;E), an integerk� 0.
Question: Is there a setF � ffu;vg j u;v2Vg, such thatG0 = (V;E[F) contains a Hamil-
tonian circuit, andjF j � k?

HAMILTONIAN PATH COMPLETION

Instance: A graphG= (V;E), an integerk� 0.
Question: Is there a setF � ffu;vg j u;v2Vg, such thatG0 = (V;E[F) contains a Hamil-
tonian path, andjF j � k?.

A spanning treeof a graphG= (V;E) is a subgraphT = (V;F) of G which is a tree.

LEAF SPANNING TREE [ND2]
Instance: A graphG= (V;E), an integerk� 1.
Question: Is there a spanning tree ofG in which at leastk vertices have degree one?

LONG PATH [ND29]
Instance: A graphG= (V;E), an integerk� 1.
Question: DoesG have a path of length at leastk?

The corresponding maximization problem is called LONGESTPATH.

LONG CYCLE [ND28]
Instance: A graphG= (V;E), an integerk� 1.
Question: DoesG have a cycle of lengthk� 1?

The corresponding maximization problem is called LONGESTCYCLE.
The following seven problems are only used in Chapter 4. For definitions of sandwich

graphs,k-intervalizations,k-unit-intervalizations, and the (proper) pathwidth and bandwidth
of sandwich graphs, see Section 4.1 and Section 4.3.
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INTERVALIZING SANDWICH GRAPHS(ISG)
Instance: A sandwich graphS= (V;E1;E2), an integerk� 1.
Question: Is there ak-intervalization ofS?

INTERVALIZING COLORED GRAPHS(ICG)
Instance: A simple graphG= (V;E), an integerk� 1 and ak-coloringc for G.
Question: Is there ak-intervalization ofG andc?

UNIT-INTERVALIZING SANDWICH GRAPHS(UISG)
Instance: A sandwich graphS= (V;E1;E2), an integerk� 1.
Question: Is there ak-unit-intervalization ofS?

UNIT-INTERVALIZING COLORED GRAPHS(UICG)
Instance: A simple graphG= (V;E), an integerk� 1 and ak-coloringc for G.
Question: Is there ak-unit-intervalization ofG andc?

SANDWICH PATHWIDTH

Instance: A sandwich graphS= (V;E1;E2), an integerk� 1.
Question: DoesShave pathwidth at mostk�1?

SANDWICH PROPERPATHWIDTH

Instance: A sandwich graphS= (V;E1;E2), an integerk� 1.
Question: DoesShave proper pathwidth at mostk�1, i.e. is there a proper path decompo-
sition ofS?

SANDWICH BANDWIDTH

Instance: A sandwich graphS= (V;E1;E2), integerk� 1.
Question: DoesShave bandwidth at mostk�1, i.e. is there a legal layout of bandwidth at
mostk�1 of S?

The following two problems are only used in Chapter 8. For definitions of source-sink
labeled graphs, series-parallel graphs and sp-trees, see Section 2.3.3.

SOURCE-SINK LABELED SERIES-PARALLEL GRAPH

Instance: A source-sink labeled multigraph(G;s; t).
Question: Is (G;s; t) series-parallel, i.e. is there an sp-tree for(G;s; t)?

For directed input graphs, this problem is denoted by DLSPG, for indirected input graphs by
LSPG.

SERIES-PARALLEL GRAPH

Instance: A multigraphG.
Question: Is G series-parallel, i.e. is there an sp-tree forG?

For directed input graphs, this problem is denoted by DSPG, for indirected input graphs by
SPG.

The following problem is only used in Chapter 9 (for definitions of a labeled multigraph
and the treewidth of such a graph, see Section 9.1).
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TREEWIDTH AT MOST TWO (TW2)
Instance: A connected labeled multigraphG.
Question: DoesG have treewidth at most two, i.e. is there a tree decomposition of width at
most two ofG?
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Samenvatting

Veel problemen uit de praktijk kunnen worden gemodelleerd als optimaliserings- of beslis-
singsproblemen op grafen. Denk bijvoorbeeld aan het probleem waarbij een koerier een
aantal pakketjes moet afleveren op verschillende adressen in het land. De manager van de
koerier wil dat hij een zo kort mogelijke route aflegt die begint en eindigt bij het koeriers-
bedrijf, en die alle adressen aandoet. Het probleem om zo’n kortste route te vinden is het
zogenaamdehandelsreizigersprobleem. De invoer kan worden gemodelleerd als een graaf,
waarbij elke knoop in de graaf een adres vertegenwoordigt en elke kant tussen twee knopen
de weg tussen de corresponderende adressen. Elke kant heeft een gewicht dat aangeeft hoe
lang de corresponderende weg is. Het probleem is dan om een cykel in de graaf te vinden die
alle knopen bevat en waarvoor de som van de gewichten van alle kanten in de cykel minimaal
is.

Helaas is het zo dat de meeste problemen op grafen die praktische problemen modelleren
lastig zijn in die zin, dat er waarschijnlijk geen effici¨ente algoritmen zijn die deze problemen
oplossen. Formeel gezegd zijn deze problemen NP-lastig. Het handelsreizigersprobleem is
een voorbeeld hiervan. Een manier om hiermee om te gaan is om te kijken of er in het
probleem uit de praktijk een structuur zit die maakt dat het probleem effici¨enter is op te
lossen. Het kan bijvoorbeeld zo zijn dat het gegeven probleem in het algemeen lastig is, maar
dat de grafen die in de praktijk voorkomen een dusdanige structuur hebben dat er wel een
efficiënt algoritme voor het probleem bestaat.

Een voorbeeld van een prettige graafstructuur is deboomstructuur: het blijkt dat veel
graafproblemen die in het algemeen lastig zijn, een effici¨ent algoritme hebben wanneer de
graaf een boom is. Helaas is de boomstructuur erg beperkt: er zijn maar weinig praktische
problemen die kunnen worden gemodelleerd als problemen op bomen. In dit proefschrift kij-
ken we daarom naar een generalisatie van deze structuur, en dat is de boomachtigestructuur:
we kijken naar grafen metboombreedtehooguitk of padbreedtehooguitk, waarbijk een
positief geheel getal is.

Intuı̈tief gezien geeft de boombreedte van een graaf de mate aan waarin de graaf op een
boom lijkt: hoe groter de gelijkenis, hoe kleiner de boombreedte. Met een graaf van boom-
breedtek kan een boom worden geassocieerd waarbij elke knoop van de boom correspondeert
met een deelgraaf van de graaf op een zodanige manier dat
� elke knoop en elke kant van de graaf in tenminste een knoop van de boom voorkomt, en
� voor elke knoopv in de graaf geldt dat de knopen in de boom dievbevatten een verbonden

deelboom vormen.
Zo’n boom bestaande uit deelgrafen wordt eenboomdecompositievan de graaf genoemd.
De breedte van de boomdecompositie is het maximaal aantal knopen van de graaf dat in ´eén
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knoop van de boomdecompositie voorkomt, min ´eén. De boombreedte van een graaf is de
minimale breedte over alle boomdecomposities van de graaf (een boom heeft boombreedte
één). Eenpaddecompositievan een graaf is een boomdecompositie die de vorm heeft van
een pad. De padbreedte van een graaf is de minimale breedte over alle paddecomposities van
de graaf. Dus de boombreedte van een graaf is altijd ten hoogste gelijk aan z’n padbreedte.

Voor veel problemen zoals het handelsreizigersprobleem is er een effici¨ent algoritme op
grafen met kleine boombreedte. Het blijkt dat er veel praktische graafproblemen zijn waar-
voor de invoergraaf een kleine boombreedte heeft. Bij al deze problemen helpt dit gegeven
bij het vinden van een effici¨enter algoritme. Deze algoritmen maken meestal gebruik van
een boomdecompositie van de graaf met kleine breedte. Daarom is het nodig om eerst zo’n
boomdecompositie van de graaf te vinden. Hiervoor zijn effici¨ente algoritmen beschikbaar,
zowel sequentieel als parallel.

Helaas is het zo dat veel algoritmen op grafen met een kleine boombreedte alleen in
theorie efficient zijn: de looptijd van de algoritmen is vaak exponentieel in de boombreedte
van de graaf. Dit geldt bijvoorbeeld voor de algoritmen voor het vinden van een boom- of
paddecompositie van breedte hooguitk van een graaf, waarbijk constant is.

Het doel van dit proefschrift is om effici¨ente sequenti¨ele en parallelle algoritmen te ont-
werpen voor problemen op grafen met een kleine boom- of padbreedte. Het doel is om
algoritmen te ontwerpen die niet alleen theoretisch effici¨ent zijn, maar die ook in praktische
toepassingen effici¨ent kunnen zijn.

Het proefschrift is als volgt georganiseerd. Hoofdstuk 1 geeft een inleiding. In hoofd-
stuk 2 worden formele definities van boom- en padbreedte gegeven, en wordt een aantal ei-
genschappen en bekende resultaten over grafen met een kleine boom- en padbreedte gegeven.
Verder worden definities gegeven die worden gebruikt in de rest van het proefschrift.

In hoofdstuk 3 geven we een volledige karakterisatie van grafen met padbreedte twee.
Deze karakterisatie wordt vervolgens gebruikt voor een effici¨ent sequentieel algoritme dat
beslist of een graaf padbreedte ten hoogste twee heeft en, als dat zo is, een paddecompositie
van minimale breedte vindt. De karakterisatie wordt ook gebruikt in de algoritmen die zijn
beschreven in hoofdstuk 4.

Hoofdstuk 4 gaat over twee problemen welke hun oorsprong vinden in de moleculaire
biologie. In beide problemen bestaat de invoer uit een aantal copie¨en van een DNA string
welke in fragmenten zijn opgedeeld. Voor elk paar van fragmenten is informatie beschikbaar
over de overlap tussen die twee fragmenten: ´of we weten dat de fragmenten zeker overlappen,
óf we weten dat ze zeker niet overlappen, ´of we weten niets. Met behulp van deze informatie
moet de volledige overlap informatie tussen elk tweetal fragmenten worden berekend, dat wil
zeggen dat voor elk tweetal fragmenten moet worden berekend of ze wel of niet overlappen.
Dit probleem heetk-INTERVALIZING SANDWICH GRAPHS of k-ISG, waarbijk het aantal
copieën is dat is gefragmenteerd. In de tweede variant is ook nog bekend dat alle fragmenten
gelijke lengte hebben. Deze variant heetk-UNIT-INTERVALIZING SANDWICH GRAPHSof k-
UISG. De invoer van beide problemen kan worden gemodelleerd als een graaf. Het blijkt dat
de volledige overlap informatie alleen kan worden berekend wanneer die graaf padbreedte
ten hoogstek heeft, waarbijk weer het aantal copie¨en is. In Hoofdstuk 4 geven we een
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kwadratisch algoritme voor 3-ISG, en we bewijzen datk-ISG NP-moeilijk is wanneerk� 4.
Verder geven we een lineair algoritme voor 3-UISG.

Hoofstukken 5 – 9 gaan over een speciaal soort algoritmen, namelijkreductie algorit-
men. Een reductie algoritme is een algoritme waarin een reeks reducties wordt uitgevoerd op
de invoergraaf. Het gedrag van de reducties is beschreven in een verzameling van reductie
regels, welke afhangen van het probleem waarvoor het algoritme is. Wanneer de reductie re-
gels aan bepaalde voorwaarden voldoen kan het reductie algoritme lineaire tijd gebruiken (of
logaritmische tijd in het geval van een parallel reductie algoritme). De reductie algoritmen
zijn eenvoudig: de moeilijkheden van het probleem zitten verstopt in de verzameling reductie
regels, en niet in het algoritme.

Er zijn hele klassen van problemen op grafen met begrensde boombreedte waarvoor een
verzameling van reductie regels kan worden geconstrueerd. Het voordeel van reductie algo-
ritmen voor het oplossen van problemen op grafen met begrensde boombreedte is dat er geen
boomdecompositie van de graaf nodig is: de algoritmen werken direct op de graaf.

In hoofdstuk 5 geven we een overzicht van de bestaande theorie¨en over reductie algorit-
men. We combineren verschillende bestaande idee¨en en presenteren ze als een geheel. Dit
hoofdstuk is tevens een inleiding voor hoofdstukken 6 – 9.

Reductie algoritmen hebben als nadeel dat ze alleen optimaliserings- en beslissingspro-
blemen kunnen oplossen: bij een optimaliseringsprobleem wordt alleen de optimale waarde
teruggegeven, maar niet een oplossing waarvoor de waarde optimaal is. Bij beslissingspro-
blemen wordt alleen het antwoord ‘ja’ of ‘nee’ gegeven, maar als het antwoord ‘ja’ is wordt
geen oplossing gegeven. In hoofdstuk 6 breiden we de theorie van reductie algoritmen uit
naarconstructieve reductie algoritmenwelke ook een (optimale) oplossing teruggeven, mits
er een is. We laten zien dat voor veel problemen op grafen met begrensde boombreedte waar-
voor reductie algoritmen kunnen worden toegepast, ook de constructieve reductie algoritmen
kunnen worden toegepast.

In hoofdstuk 7 passen we de theorie¨en welke zijn gepresenteerd in hoofdstukken 5 en 6
toe op een aantal optimaliseringsproblemen.

In hoofdstukken 8 en 9 gebruiken we de theorie¨en uit hoofdstuk 6, aangevuld met nieuwe
ideeën, om efficiënte, constructieve parallelle reductie algoritmen te verkrijgen voor de vol-
gende twee aanverwante problemen:

� gegeven een graaf, bepaal of hij series-parallel is, en zo ja, vind dan een ‘sp-boom’ van
de graaf,

� gegeven een graaf, bepaal of hij boombreedte hooguit twee heeft, en zo ja, maak een
boomdecompositie van breedte twee van de graaf.

In hoofdstuk 10 vatten we de resultaten uit dit proefschrift nog eens samen, en geven we
wat richtingen aan voor verder onderzoek.

Appendix A bevat een opsomming van definities van alle graafproblemen welke worden
gebruikt in het proefschrift.
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G
Gempty, 98
gate matrix layout, 4
graph, 9–11

bandwidth of, 31
biconnected, 10
boundaried, 24
chordal, 11, 30
clique in, 11
complete, 11
conflict, 114
connected, 10
control-flow, 3
directed, 9
induced, 10
interval,

see interval graph
isomorphic, 11
layout of, 31
multi-,

see multigraph
path decomposition of, 14

pathwidth of, 14
proper path decomposition of, 85
proper pathwidth of, 85
sandwich,

see sandich graph
series-parallel, 33
simple, 9
source-sink labeled, 32
sourced, 24
terminal,

see terminal graph
tree decomposition of, 13
treewidth of, 14
triangulated, 11
underlying, 75

graph class, 12
cutset regular, 25
finite state, 25
fully cutset regular, 25
minor-closed, 28
MS-definable, 26
obstruction set of, 29
recognizable, 25
regular, 25

graph optimization problem,
see optimization problem

graph problem,
see problem

graph problems, 11–13, 217–221
graph property, 24

derived, 109
effectively decidable, 96
extended, 24
finite index, 25
MS-definable, 26

H
HAMILTONIAN CIRCUIT, 12, 27, 131, 217

constructive version of, 27
Hamiltonian circuit, 217
HAMILTONIAN CIRCUIT COMPLETION,

219
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HAMILTONIAN PATH, 218
Hamiltonian path, 217
HAMILTONIAN PATH COMPLETION, 219

I
Isp, 166, 168
Itw, 190
I1, 52
I2, 52
ICG, 73, 220
3-ICG, 81
k-ICG, 220
incident, 9
INDEPENDENTSET, 12, 218
independent set, 1, 218
k-INDEPENDENTSET, 13
INDUCED d-DEGREESUBGRAPH, 218
induced graph, 10
induced subgraph, 10
inducible, 125
interval completion, 31, 85
interval graph, 30

unit, 73
interval realization, 30
interval routing, 4
intervalization, 72, 73
k-intervalization, 72, 73
INTERVALIZING COLORED GRAPHS,

see ICG
INTERVALIZING SANDWICH GRAPHS,

see ISG
intervalizing sandwich graphs, 75–85
irreducible, 97
ISG, 73, 220
2-ISG, 76
3-ISG, 76–81
4-ISG, 81–85
k-ISG, 220
isomorphic, 11
isomorphism, 11

J
join-reduce round, 114

L
LARGE CUT, 219
layout, 31, 85

legal, 85
leaf, 11
leaf node, 11, 33
LEAF SPANNING TREE, 219
level, 11
LONG CYCLE, 219
LONG PATH, 219
LONGESTCYCLE, 28, 155, 219

constructive version of, 28
LONGESTPATH, 28, 155, 219

constructive version of, 28
LSPG, 161
LSPG

reduction system for, 167

M
match, 97, 108, 116, 168, 190

d-discoverable, 99, 117
disturbed, 194
non-disturbed, 194

matches
non-interfering, 112

MAX CUT, 28, 112, 116, 138, 141, 144,
155, 219

constructive version of, 28
MAX INDEPENDENT SET, 12, 21, 28, 108,

111, 121, 131, 218
constructive version of, 28

MAX INDEPENDENTSET on cycles, 109,
110, 132, 140

MAX INDUCED d-DEGREESUBGRAPH,
111, 116, 138, 141, 144, 218

MAX LEAF SPANNING TREE, 112, 116, 138,
141, 145, 219

maximum independent set, 1
MIN BANDWIDTH, 218
MIN COVERING BY CLIQUES, 155, 219
MIN DOMINATING SET, 218
MIN p-DOMINATING SET, 112, 116, 138,
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141, 144, 218
MIN HAMILTONIAN CIRCUIT

COMPLETION, 145, 219
MIN HAMILTONIAN PATH COMPLETION,

112, 116, 138, 145, 219
MIN PARTITION INTO CLIQUES, 112, 116,

144, 219
MIN PATHWIDTH, 19, 217
MIN TREEWIDTH, 19, 217
MIN VERTEX COVER, 111, 116, 138, 141,

218
minor, 11

forbidden,
see forbidden minors

minor-closed, 28
Monadic Second Order Logic, 24, 26–28
MS-definable, 26–28
MSOL, 26–28
multigraph, 9

B-labeled, 189
terminal,

see terminal multigraph

N
N, 52
natural language processing, 3
neighbor, 9
node, 14

child, 11
leaf, 11

non-interfering, 112, 138

O
obstruction set, 29
occur, 37
occurrence, 37
operations, 13
opt, 131
optimal speedup, 13
optimization problem, 12

algorithm for, 12
constructive,

see constructive optimization problem

MS-definable, 27
non-constructive, 12
reduction algorithm for, 108–112

optS, 134
overlap information

non-negative, 71
positive, 71

P
P , 26
PG, 66
PH , 50
PH , 51
Pk(H), 48
Pk(H), 48
p-node, 33
parallel composition, 33
parallel node, 33
parallel reduction, 35, 95
partialk-path, 15
partial solution, 125
partialk-tree, 15
partial two-paths, 50–68

biconnected, 38–44
sequential algorithm for, 68–70
structure of, 37–70
trees, 44–50

PARTITION INTO CLIQUES, 138, 219
path, 10, 51, 66

cycle, 40
path decomposition, 3, 14, 75

proper, 85
properties of, 15–19

path of cycles, 39
k-path, 15
PATHWIDTH, 19, 217

complexity of, 19
pathwidth, 2, 14, 75

proper, 85
properties of, 15–19

pathwidth two
trees of, 44–50
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2-PATHWIDTH

parallel algorithm for, 212
sequential algorithm for, 68–70

k-PATHWIDTH, 19, 217
algorithms for, 19
complexity of, 19

P B , 193
perfect matching, 122
perfect phylogeny, 4
PRAM, 13
predicate, 26

MSOL, 26
problem, 12

construction,
see construction problem

decision,
see decision problem

graph, 11
graph optimization, 108
optimization, 12
real-life, 1
recognition, 12

pseudo block, 192
degreed, 193

pseudo block tree, 193
pw, 14
PW2, 79

R
R sp, 166, 167
R tw, 189, 190, 191
RAM, 13
recognition problem, 12
Reduce, 101
Reduce-Construct, 124
reduction, 97, 108

parallel, 35, 95
series, 35, 95

reduction algorithm, 6, 28, 95, 101, 109
constructive,

see constructive reduction algorithm
efficient, 101, 110

parallel, 113, 115
reduction algorithms, 95–119

applications of, 143–160
for decision problems, 96–108, 112–115
for multigraphs, 116–119
for optimization problems, 108–112,

115–116
parallel, 112–116
sequential, 96–112

reduction rule, 95, 97, 116
application of, 97, 116
match to, 97, 168, 190
safe, 97

reduction rules
complete, 97
decreasing, 98
safe for LSPG, 166–173
safe for TW2, 190–192
terminating, 97

reduction system, 98
constructive,

see constructive reduction system
decreasing, 98
derived, 109
special, 100, 117
special for multigraphs, 117
special parallel, 112, 117
special parallel for multigraphs, 117

reduction systems, 96–98
reduction-counter rule, 96, 108

application of, 108
match to, 108
safe, 108

reduction-counter rules
complete, 109
decreasing, 109
terminating, 109

reduction-counter system, 109
constructive,

see constructive reduction-counter
system

special, 118

244



Index

special for multigraphs, 118
special parallel, 115

refinement, 104
register allocation, 3
root, 10

S
S , 193
S, 52
Ssp, 166
S tw, 189
s-node, 33
safe, 97, 108
SANDWICH BANDWIDTH, 86, 220
k-SANDWICH BANDWIDTH, 220
sandwich block, 75
sandwich graph, 72

bandwidth of, 85
layout of, 85
legal layout of, 85
path decomposition of, 75
pathwidth of, 75
proper path decomposition of, 85
proper pathwidth of, 85

SANDWICH PATHWIDTH, 76, 220
k-SANDWICH PATHWIDTH, 220
SANDWICH PROPERPATHWIDTH, 86, 220
k-SANDWICH PROPERPATHWIDTH, 220
separator, 10, 204
x;y-separator, 204

minimal, 204
sequence reconstruction, 71
series composition, 32
series node, 33
series reduction, 35, 95
SERIES-PARALLEL GRAPH, 161, 220
series-parallel graph, 33

base, 33, 166
sp-tree of, 33

series-parallel graphs
parallel algorithm for, 161–185
reduction system for, 167

sequential algorithm for, 35
sink, 32
solution, 121, 122

partial, 125
solution domain, 122

inducible, 125
partial, 125

source, 24, 32
SOURCE-SINK LABELED SERIES-

PARALLEL GRAPH, 161, 220
sp-tree, 33

binary, 34
minimal, 34

spanning tree, 219
special parallel reduction system, 112, 117

for multigraphs, 117
special reduction system, 100, 117

for multigraphs, 117
special reduction-counter system, 118

for multigraphs, 118
SPG, 161
star, 192
starting point, 79
state

block, 57
vertex, 52

subgraph, 10
supergraph, 10

T
telephone network, 4
terminal, 24
terminal graph, 24, 96, 116

d-discoverable, 99, 117
isomorphic, 96
open, 24

terminal multigraph, 116
B-labeled, 189

terminating, 97, 109
THREE-PARTITION, 82
traveling salesman problem, 1, 4
tree, 10
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depth of, 11
pseudo block, 193
root of, 10
rooted, 10
rooted binary, 11

tree decomposition, 2, 13, 189
dynamic programming on, 20–24
node in, 14
properties of, 15–19
rooted binary, 17
special, 204
width of, 14

tree of cycles, 39
k-tree, 15
trees of a graph, 50
TREEWIDTH, 19, 217

complexity of, 19
treewidth, 2, 14

properties of, 15–19
TREEWIDTH AT MOST TWO, 190, 221
1-TREEWIDTH, 187
2-TREEWIDTH

reduction system for, 191
2-TREEWIDTH, 187, 189

parallel algorithm for, 187–212
k-TREEWIDTH, 19, 217

algorithms for, 19
complexity of, 19

triangulated graph, 11
triangulation, 30
TW2, 190, 221

reduction system for, 191
tw, 14
two-colorability, 113

U
UICG, 74, 85, 220
3-UICG, 92–94
k-UICG, 220
UISG, 74, 85, 220
3-UISG, 87–92
k-UISG, 220

underlying graph, 75
unit interval graph, 73
unit-intervalization, 74
k-unit-intervalization, 74
UNIT-INTERVALIZING COLORED GRAPHS,

see UICG
UNIT-INTERVALIZING SANDWICH

GRAPHS,
see UISG

unit-intervalizing sandwich graphs, 85–94

V
vertex, 9

boundary, 24
cut,

see cut vertex
degree of, 9
descendants of, 10
end,

see end vertex
inner, 24
internal, 11
level of, 11
neighbor of, 9
source, 24
terminal, 24

VERTEX COVER, 144, 218
vertex state, 52
t-vertex-edge-tuple, 129

W
W[i], 32
walk, 10

length of, 10
width, 14
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