Algorithms for Graphs of Small Treewidth

Algoritmen voor grafen met kleine boombreedte

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van
doctor aan de Universiteit Utrecht
op gezag van de Rector Magnificus, Prof. Dr. J.A. van Ginkel,
ingevolge het besluit van het College van Decanen
in het openbaar te verdedigen
op woensdag 19 maart 1997 des middags te 2:30 uur

door

Babette Lucie Elisabeth de Fluiter

geboren op 6 mei 1970
te Leende



Promotor: Prof. Dr. J. van Leeuwen
Co-Promotor: Dr. H.L. Bodlaender

Faculteit Wiskunde & Informatica

ISBN 90-393-1528-0

L
oo
g P
o/ o - I
z I -
e ——
Z &
7, — &
¢, >
(/4) &
O‘Z~

These investigations were supported by the Netherlands Computer Science Research Founda-
tion (SION) with financial support from the Netherlands Organization for Scientific Research
(NWO). They have been carried out under the auspices of the research school IPA (Institute

for Programming research and Algorithmics).









Contents

Contents i
1 Introduction 1
2 Preliminaries 9
2.1 Graphsand Algorithms . . . . . . . . . . ... 9
2.1.1 Graphs . . . . . 9
2.1.2 Graph Problems and Algorithms . . . . .. ... ... .. ....... 11
2.2 Treewidthand Pathwidth . . . . . . .. .. .. ... ... ... ........ 13
2.2.1 Properties of Tree and Path Decompositions . . . . .. ... .... .. 15
2.2.2 Complexity Issues of Treewidth and Pathwidth . . . . . ... ... .. 19
2.2.3 Dynamic Programming on Tree Decompositions. . . . . .. .. .. .. 20
2.2.4 Finite State Problems and Monadic Second Order Logic. . . . . .. .. 24
2.2.5 Forbidden Minors Characterization . . . . . .. ... ... ....... 28
2.3 RelatedGraphClasses . . . . .. .. . ... . . .. 29
2.3.1 Chordal Graphs and IntervalGraphs . . . . .. .. ... ........ 30
2.3.2 Bandwidth . . . . . . ... 31
2.3.3 Series-ParallelGraphs. . . . ... ... ... ... ... ... . ..., 32
3 The Structure of Partial Two-Paths 37
3.1 Preliminaries . . . . . . . . e 37
3.2 Biconnected Partial Two-Paths . . . . . . ... ... ... ... ........ 38
3.3 Treesof PathwidthTwo . . . .. ... ... ... ... ... ... ...... 44
3.4 GeneralGraphs . . . . . . . .. .. e 50
3.5 Finding the Structure of a Partial Two-Path . . . . .. .. ... ... ..... 68
3.5.1 Biconnected Graphs . . . . . .. ... ... ... . ... . ... ... 68
352 Trees . . . . . e e 69
3.5.3 GeneralGraphs . . . . . . . ... 69
4 DNA Physical Mapping 71
4.1 Introduction . . . . . ... e 71
4.2 Intervalizing SandwichGraphs. . . . . . . ... ... .. ... . ....... 75
4.2.1 Three-Intervalizing SandwichBlocks . . . . .. ... ... ... .... 76
4.2.2 Four-Intervalizing SandwichGraphs . . . . ... ... ... ...... 81

4.3 Unit-Intervalizing SandwichGraphs . . . . . . ... .. ... ... ...... 85




Contents

4.3.1 Three-Unit-Intervalizing Biconnected Sandwich Graphs . . . . . . . .. 87
4.3.2 Three-Unit-Intervalizing Biconnected Colored Graphs . . . . . ... .. 92

Reduction Algorithms 95

5.1 Reduction Algorithms for Decision Problems . . . . . .. .. ... ...... 96
5.1.1 ReductionSystems . . . . . . . . ... ... e 96
5.1.2 An Efficient Reduction Algorithm . . . . . .. .. ... ... ... .. 98
5.1.3 Decision Problems for Graphs of Bounded Treewidth . .. .... . . . 104

5.2 Reduction Algorithms for Optimization Problems . . . . . . . . ... ... .. 108
5.2.1 Reduction-Counter Systems and Algorithms..... . . . . ... ... 108
5.2.2 Optimization Problems for Graphs of Bounded TreeW|dth v ... 110

5.3 Parallel Reduction Algorithms . . . . . . . . ... ... . ... ........ 112
5.3.1 DecisionProblems . . .. ... ... ... ... ... . .. .. 112
5.3.2 OptimizationProblems . . . . . . ... ... ... . ... ... ... 115

5.4 AdditionalResults . . . . . . . . ... ... 116

Constructive Reduction Algorithms 121

6.1 DecisionProblems . . . . . . . ... ... ... 122
6.1.1 Constructive Reduction Systems and Algorithms . . . . . .. ... .. 122
6.1.2 Construction Problems for Graphs of Bounded Treewidth . . . . . 125

6.2 Optimization Problems . . . . . . . . . . . .. ... 131
6.2.1 Constructive Reduction-Counter Systems and Algorithms . . . . . 131
6.2.2 Constructive Optimization Problems for Graphs of Bounded Treewidth . 133

6.3 Parallel Constructive Reduction Algorithms . . . . . . . ... ... ... ... 138
6.3.1 ConstructionProblems . . . .. ... ... ... ... . . . . ... .. 138
6.3.2 Constructive Optimization Problems . . . . . . ... ... ... .... 140

6.4 AdditionalResults . . . . . . . . . ... . 141

Applications of Reduction Algorithms 143

7.1 PositiveResults . . . . . . . .. 143

7.2 NegativeResults . . . . . . . . . . . . e 155

Parallel Algorithms for Series-Parallel Graphs 161

8.1 PreliminaryResults . . . . . . . . .. . 162

8.2 A Special Parallel Constructive Reduction System . . . . .. ... ... ... 166
8.2.1 A Safe SetofReductionRules . .. ... ... ... .......... 166
8.2.2 The Construction Algorithms . . . . . . . ... ... ... ... .... 173
8.2.3 A Lower Bound on the Number of Matches . . .. ... ...... 174
8.2.4 A Lower Bound on the Number of Discoverable Matches..... . . . 179

8.3 Algorithms . . . . . . . . 181




Contents

9 Parallel Algorithms for Treewidth Two
9.1 Preliminary Results
9.2 A Special Parallel Constructive Reduction System

9.2.1 A Safe Set of Reduction Rules
9.2.2 A Lower Bound on the Number of Matches
9.2.3 A Lower Bound on the Number of Discoverable Matches. .... . . .
9.2.4 The Construction Algorithms
9.3 Algorithms

10 Conclusions

A Graph Problems

References

Acknowledgments

Samenvatting

Curriculum Vitae

Index

223

231

233

237

239




Contents




Chapter 1

Introduction

This thesis is concerned with the design of efficient sequential and parallel algorithms for
problems on graphs of bounded treewidth. Many real-life problems can be modeled as op-
timization or decision problems on graphs. Consider for instance the problem in which a
courier has to deliver a number of packages at different addresses, and the courier’'s company
wants him to follow the shortest route visiting all addresses, starting and ending at the com-
pany’s address. This problem is known as tfaveling salesman probleniThe input can

be modeled as a weighted graph in which the vertices represent the addresses that have to be
visited, including the company’s address, and an edge between two vertices represents the
road between the corresponding addresses. Each edge has a weight that corresponds to the
length of the road between the corresponding addresses. The problem is then to find a cycle
in the graph which contains all vertices and has minimum weight.

Unfortunately, many graph problems that model real-life problems are hard in the sense
that there are (probably) no efficient algorithms which solve these problems. More formally,
these problems are NP-hard. The traveling salesman problem is such a problem. A way of
overcoming this disadvantage is to discover a special structure in the graphs modeling the
real-life problem which may help in finding a more efficient algorithm for the problem. For
instance, the input graphs may have a special structure that assures that the problem at hand is
easy to solve. Another possibility is that the problem can be decomposed into subproblems,
and that the structure of the input graphs assures that some of these subproblems are easy
to solve. This might help in finding a more efficient algorithm that computes an optimal
solution for the complete problem, or in finding an efficient algorithm that computes a good
approximation of the optimal solution.

One suitable structure is the tree-structure: it appears that many graph problems that are
hard in general, are efficiently solvable on trees. As an example, consider the maximum
independent set problem, in which we search for a subséthe vertices ofG for which
there is no edge between any two verticet, @nd the cardinality off is as large as possible.

This problem is NP-hard, but if the input graph is a tree, then we can easily solve the problem
to optimality as follows. Lefl be a rooted tree with roat For each node of T, let

Ty denote the subtree df rooted atv. For each node, we compute integens, andm,

which denote the size of a maximum independent s&, tfiat containy, and the size of a
maximum independent set &f that does not contaiwn, respectively. It follows that the size

of a maximum independent set ofis the maximum oh, andm,. A particular instance is
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shown in part | of Figure 1.1: each nodef the tree is labeled with the paig, m,. The size
of a maximum independent setThis ten.

level
4

o N

Figure 1.1. A rooted tree in which each nodss labeled with the pain,, m, (part 1),
and a maximum independent set of the tree, denoted by the white nodes (part II).

For each node of T, we can computa, andm, from the values oh, andm, of all
childrenu of v. This implies that we can perform dynamic programmindao find the size
of a maximum independent set ©f first compute the numbers of the nodes that are at the
lowest level of the tree (these nodes have no children). Next rise one level in the tree, and
compute the numbers for the nodes on that level, by using the numbers for the nodes one level
down. This step is repeated until the numbmrsn, of the root are computed. We can also
find a maximum independent set ®f by using the computed numbers. Part Il of Figure 1.1
shows a maximum independent set of the tree in part | (the nodes in the independent set are
white). Sequentially, the above algorithm can be made to r@(im) time, wheren denotes
the number of nodes of the tree. In a parallel algorithm, we can perform the computations of
different nodes on the same level in parallel, which gives a faster algorithm.

A similar dynamic programming approach as described above can be applied for many
problems if the input graph is a tree. For most practical cases however, the class of trees is
too limited. Therefore, we consider extensions of the class of trees which are more useful
in practice, namely the classes of graphsreéwidthat mostk andpathwidthat mostk, for
any positive integek. Intuitively, the treewidth of a graph measures the resemblance of the
graph to a tree: a graph has treewidth at nkabbne can associate a tr@ewith G in which
each node represents a subgraplBafith at mostk + 1 vertices, such that all vertices and
edges ofG are represented in at least one of the nodeg, @nd for each vertex of G, the
nodes ofT in whichv is represented form a subtreeTaf Such a tree associated with a graph
is called atree decompositionf the graph, of widthk. As an example, consider the gra@h
depicted in part | of Figure 1.2. Part Il of this figure gives a tree decomposiiDmof G.

Part Il shows the correspondence between the nodeé®aeind some subgraphs Gt

The width of a tree decomposition is the maximum number of vertices occuring in any

node minus one (the ‘minus one’ has been introduced to obtain the fact that the class of




Figure 1.2. A graphG (part 1), a tree decompositionD of width two of G (part Il1),
and the correspondence between the nodd@d$ndénd subgraphs @ (part I1).

connected graphs of treewidth one is exactly the class of trees). The tree decomposition
in Figure 1.2 for instance has treewidth two. path decompositioof a graph is a tree
decomposition with the extra restriction that the tree is a path. A graph has pathwidth at most
kif there is a path decomposition of the graph of width at nkost

Many (hard) problems can be solved efficiently on graphs of small treewidth, using the
tree-like structure of the graphs. For instance, a large class of problems can be solved ef-
ficiently by applying dynamic programming on a tree decomposition of small width of the
graph, in a way similar to the dynamic programming for finding a maximum independent
set in a tree (this algorithm is described in Section 2.2.3). These algorithms usually work
on rooted, binary tree decompositions of small width witfn) nodes, and for parallel al-
gorithms, we additionally require that the tree decomposition has h@igbgn). Examples
of problems that can be solved efficiently on graphs of small treewidth by using the dynamic
programming approach are the maximum independent set problem and the traveling sales-
man problem: both problems can be solvedifn) time sequentially and i®(logn) time
in parallel withO(n/logn) processors (the algorithms are exponential in the treewidth of the
graph). To solve problems this way, it is necessary to find a tree decomposition of small width
of the given graph first. Fortunately, for each positive intdgehere is a linear time algo-
rithm which, given a graph, finds a tree decomposition of width at kwo$the graph, if one
exists (this algorithm is again exponentiakifBodlaender, 1996a]. In parallel, the problem
can be solved i©D(log?n) time with O(n/log?n) processors, and the result is a binary tree
decomposition with heigf®(logn) [Bodlaender and Hagerup, 1995].

It appears that many graph problems have practical instances in which the input graphs
have small treewidth. For example, it has been shown that graphs modeling special types of
expert systems have small treewidth, which helps in solving statistical problems for reasoning
with uncertainty in expert systems [Lauritzen and Spiegelhalter, 1988; van der Gaag, 1990].
Also, in natural language processing, it has been shown that dependency graphs encoding the
major syntactic relations among words have pathwidth at most six [Kornai and Tuza, 1992].
Thorup [1995] has shown that control-flow graphs of structured programs have treewidth at
most six, which helps in finding good register allocations. Cook and Seymour [1993] have
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shown that graphs modeling certain telephone networks have bounded treewidth. They have
used this for solving a variant of the traveling salesman problem in these graphs (they actually
use branchwidth, but this concept is closely related to treewidth).

Also, many (practical) graph problems require that the treewidth or pathwidth of the
input graph is small. Examples of such problems are the gate matrix layout problem that
occurs in VLSI design [Fellows and Langston, 1992; Deo, Krishnamoorty, and Langston,
1987; Mohring, 1990; Ramachandramurthi, 1994], Cholesky factorization for sparse matrices
[Bodlaender, Gilbert, Hafsteinsson, and Kloks, 1995], the perfect phylogeny problem that
occurs in evolutionary theory [Agarwala and Fendez-Baca, 1993; Bodlaender, Fellows,
and Warnow, 1992; Bodlaender and Kloks, 1993; Kannan and Warnow, 1990; Kannan and
Warnow, 1992; McMorris, Warnow, and Wimer, 1994], the DNA physical mapping problem
occuring in molecular biology [Golumbic, Kaplan, and Shamir, 1994; Fellows, Hallett, and
Wareham, 1993] (see also Chapter 4 of this thesis), and interval routing problems in networks
[Bodlaender, Tan, Thilikos, and van Leeuwen, 1995].

In all the problems described above, the fact that the treewidth of the input graph is or
should be small helps to find more efficient algorithms to solve them. It does not ensure the
existence of efficient algorithms, see e.g. Section 4.2.2.

Unfortunately, many algorithms solving problems on graphs of small treewidth are only
efficient in theory: the running time of the algorithms is usually exponential in the treewidth
of the graph. This means that if the input graph is only of moderate size, and the bound
on the treewidth is six or more, then in the running time of the algorithm, the factor that
is exponential in the treewidth is likely to overtake the factor that is polynomial in the size
of the graph. For example, consider the problem of finding a tree or path decomposition of
width at mostk of a given graph, if one existk constant). The sequential algorithms of
Bodlaender [19964a] solve these problem®im) time. These algorithms use an algorithm
of Bodlaender and Kloks [1996] which, given a grapland a tree decomposition of width
at mostl of G (for any fixed integet), finds a tree (path) decomposition of width at most
k of G, if one exists (for any fixed integérwith k < I). This algorithm runs irO(n) time
sequentially, but the constants hidden in@waotation make the algorithm only practical for
k < 5. Also, the algorithm of Bodlaender and Kloks [1996] is rather complicated, and thus
not easy to implement. This makes the algorithms of Bodlaender [19964a] for finding a tree or
path decomposition of small width of a graph inefficient in practicekfor6. Furthermore,
for k < 6, the algorithm is still hard to implement, and algorithms that are tailor-made for a
specific treewidth are probably more efficient in practice. (For treewidth 2, 3, and 4, such
algorithms exist [Arnborg and Proskurowski, 1986; Maekiand Thomas, 1991; Sanders,
1996].) The parallel algorithms of Bodlaender and Hagerup [1995] for finding a tree or path
decomposition of small width of a graph use a parallel version of the algorithm of Bodlaender
and Kloks [1996], and thus have the same drawback.

The goal of this thesis is to give efficient sequential and parallel algorithms for several
problems on graphs of small treewidth or pathwidth. We consider both graph problems which
require that the treewidth or pathwidth of the input graph is bounded by some constant, and
graph problems which are hard on general graphs, but have more efficient solutions on graphs




of small treewidth or pathwidth. The aim is to design algorithms which are not only theoret-
ically efficient, but are also efficient in practical applications.

This thesis is organized as follows. We start with preliminary results in Chapter 2. In
this chapter, we introduce the terminology used throughout the thesis, and we give formal
definitions of tree and path decompositions and of the treewidth and pathwidth of graphs.
Furthermore, we present a number of well-known properties of tree and path decompositions
and of graphs of bounded treewidth or pathwidth which will prove useful in the remainder of
the thesis. Most of the results presented here include a proof to give the reader a feeling for
the concepts of treewidth and pathwidth. We also present an overview of the most powerful
algorithmic results on graphs of bounded treewidth and pathwidth. Finally, we discuss some
graph notions that are closely related to the notion of treewidth or pathwidth and that are used
in the remainder of the thesis.

In Chapter 3, we give a complete characterization of graphs of pathwidth at most two.
This characterization is then used for the design of a linear time algorithm that checks whether
a given graph has pathwidth at most two, and if so, builds a path decomposition of minimum
width of the graph. Although Bodlaender’s algorithm [1996a] can be used to solve this prob-
lem in O(n) time, our algorithm is probably more efficient and useful in practice, as it does
not use the theoretical result of Bodlaender and Kloks [1996] and is much easier to imple-
ment. The characterization of graphs of pathwidth two that is presented in Chapter 3 is used
for the algorithms presented in Chapter 4.

Chapter 4 is concerned with two decision problems that occur in DNA physical map-
ping, namelk-INTERVALIZING SANDWICH GRAPHS(k-ISG) andk-UNIT-INTERVALIZING
SANDWICH GRAPHS (k-UISG). In both problems, the input consistskofopies of a DNA
string that are fragmented, and for each pair of fragments, either it is known that they overlap,
or it is known that they do not overlap, or nothing is known about their overlag-UISG,
we additionally have the information that all fragments have the same length. There is no
explicit information on the order of the fragments in the DNA string, or on the copy from
which each fragment originates. The problem is to recover the complete overlap information
of the fragments, and with this, the order of the fragments in each copy of the DNA string.
The input of the problems is modeled as gr&pk- (V,E) and an extra set of edgés the
vertices of the graph represent the fragments, and for each two verti¢ethiere is an edge
betweeru andv in E if we know that the corresponding fragments overlap, and there is an
edge betweenandvin F if the corresponding fragments possibly overlap, i.e. are not known
not to overlap. The problem is then to find a B&tE C E’ C F, such that the graptVv,E’)
represents the complete overlap information. Bothkft8G andk-UISG, there is such a set
E’ only if the input graphG has pathwidth at most<1.

In Chapter 4 we resolve the complexity leiSG for all fixed integerk > 2: we give a
linear time algorithm for 2-ISG, a quadratic algorithm for 3-1SG, and we showkH@&6 is
NP-complete ik > 4. Furthermore, we give ab(n+ m) time algorithm for 3-UISG (where
m denotes the number of extra edges that is part of the input). This algorithm improves
on theO(n?) algorithm of Kaplan and Shamir [1996]. The algorithms for 3-ISG and 3-
UISG heavily rely on the characterization of graphs of pathwidth at most two, as described
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in Chapter 3: it consists of a large case analysis based on the structure of the input graph.
We present the most instructive part of the algorithms for 3-ISG and 3-UISG in Chapter 4,
namely the algorithms for the case that the input graph is biconnected. The remaining part of
the algorithm consists of a lot of technical details, mostly based on the same principles as the
algorithm for biconnected graphs. This part is not included in the thesis.

In Chapters 5 — 9, we discuss a special type of algorithms, nameglyction algorithms
A reduction algorithm is an algorithm which applies a sequence of reductions to the input
graph: in each reduction, a small part of the graph is replaced by a smaller part, thus reducing
the size of the graph. In a sequential algorithm, all reductions are performed subsequently,
but in a parallel reduction algorithm, non-interfering reductions can be performed at the same
time. The reduction behavior is described by a set of reduction rules, which is problem
specific. It turns out that for many decision and optimization problems, such a set of reduction
rules can be constructed, and with this constructed set, the problem can be solved efficiently
on graphs of small treewidth, both sequentially and in parallel.

An advantage of reduction algorithms is that they are easy to implement: the difficulty of
a problem is hidden in the design of the problem specific set of reduction rules, and not in the
reduction algorithm itself. Another advantage of reduction algorithms over other algorithms
on graphs of small treewidth is that a reduction algorithm works directly on the input graph,
and hence no tree decomposition of small width of the graph is needed. As the running
times of the algorithms for finding a tree decomposition of small width of a graph are not
efficient in practice, this makes reduction algorithms potentially more practical (if the set of
reduction rules is not too large). In Chapter 5, we present the basic theory on reduction algo-
rithms and we show that reduction algorithms can be used to solve large classes of decision
and optimization problems on graphs of bounded treewidth. The chapter is meant as a com-
prehensive overview of results presented by Arnborg, Courcelle, Proskurowski, and Seese
[1993], Bodlaender [1994], and Bodlaender and Hagerup [1995]. It gives an introduction
into the theory of reduction algorithms and their applications to decision and optimization
problems on graphs of bounded treewidth. In effect, it provides the basic terminology and
results that are used in Chapters 6 — 9.

One drawback of the reduction algorithms presented in Chapter 5 is that they only solve
decision and optimization problems. For decision problems, the algorithms only return ‘yes’
or ‘no’, but they do not return a solution for the problem if the answer is ‘yes’. Similarly,
for optimization problems, only the optimal value is returned, but no optimal solution of the
problem is returned. In Chapter 6, we extend the theory of reduction algorithtosstruc-
tive reduction algorithms, which also return an (optimal) solution for the problem at hand, if
one exists. We show that this theory can be applied to a large class of constructive decision
and optimization problems on graphs of bounded treewidth.

In Chapter 7, a number of well-known optimization problems is listed on which the the-
ory of reduction algorithms that is presented in Chapters 5 and 6 can be applied. This result
implies that the listed problems can be solved efficiently on graphs of bounded treewidth
using reduction algorithms. We also give a number of optimization problems for which the
theory can not be applied. These problems, however, can be solved efficiently if a tree de-




composition of the graph is given.
In Chapters 8 and 9 we show that the following two problems can be solved by efficient
parallel reduction algorithms:

e given a graplG, check whetheG is series-parallel, and if it is, construct an ‘sp-tree’ for
G (see Section 2.3.3 for definitions), and

e given a graplG, check whethe6 has treewidth at most two, and if it does, construct a
tree decomposition of width at most two of the graph.

The two problems are closely related: a series-parallel graph has treewidth at most two, and
a biconnected graph of treewidth at most two is series-parallel. Despite this resemblance, it
turns out that the algorithm for solving the ‘treewidth two’ problem is more complicated than
the algorithm for recognizing series-parallel graphs. In Chapter 8, we present an (almost)
logarithmic parallel algorithm for recognizing series-parallel graphs; in Chapter 9, we mod-
ify this algorithm to obtain a parallel algorithm for graphs of treewidth at most two with the
same resource bounds. Both algorithms are applications of the general theory of construc-
tive reduction algorithms as presented in Chapter 6, but they do not fit in the framework of
constructive reduction algorithms for graphs of bounded treewidth that are presented in that
chapter. For both problems, the set of reduction rules is described completely. These sets of
reduction rules are quite small, which means that there are no large constants in the running
time of the algorithms. Hence the algorithms are probably also efficient in practice.

The parallel algorithm for series-parallel graphs presented in Chapter 8 improves in effi-
ciency on the parallel algorithms of He and Yesha [1987], He [1991], and Eppstein [1992].
The parallel algorithm for treewidth at most two presented in Chapter 9 improves in efficiency
on the parallel algorithms for treewidth at m&gbr any fixedk that are given by Bodlaender
and Hagerup [1995].

In Appendix A, we give definitions of a number of well-known graph problems that are
used throughout this thesis.

This thesis comprises, among other things, the work that has been published in Bodlaen-
der and de Fluiter [1995, 1996b, 1996¢, 1996a)].
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Chapter 2
Preliminaries

In this chapter, we give a number of definitions and preliminary results. We start in Sec-
tion 2.1 by presenting the terminology on graphs and algorithms as it is used in this thesis.
Section 2.2 provides an introduction to the notions of treewidth and pathwidth and discusses
some results related to these notions. In Section 2.3, we define a number of graph classes that
are used in this thesis, and we indicate their role in the theory of treewidth and pathwidth.

2.1 Graphs and Algorithms

We assume that the reader is familiar with graph theory and algorithms, but we give an
overview of the terminology that is used in this thesis. More background information can
be found in e.g. Harary [1969] for graph theory and Cormen, Leiserson, and Rivest [1989]
for algorithms.

2.1.1 Graphs

Definition 2.1.1 (Graph). Asimple graph Qs a pair(V,E), whereV is a set ofvertices and
E is a set ofedges Each edge is an unordered pair of distinct vertieesmdv, denoted by
{u,v}. A multigraph Gis a pair(V,E), whereV is a set of vertices, anfl is a multiset of
edges. Agraphis either a simple graph or a multigraph.

In this chapter, the term ‘graph’ refers to both simple graphs and multigraphs. In the remain-
ing chapters of the thesis, we use the term graph for one of the two, and we state which one is
meant at the beginning of each chapter. In some cases, wiraseedgraphs (either simple
graphs or multigraphs): in a directed graph, each edge is an ordered pair of vertices, and an
edge from vertexi to v is denoted byu,v). The sets of vertices and edges of a gr&pére
denoted by (G) andE(G), respectively. The cardinality & (G) is usually denoted bwy,
the cardinality ofE(G) by m.

Let G = (V,E) be a graph. For any edge= {u,v} € E, uandv are called thend points
of g, andeis called an edge betweenandv, or connectings andv. Two verticesu,v e V
areadjacentif there is an edgéu,v} € E. If two verticesu andv are adjacent, we also say
thatu is aneighborof v, and vice versa. A vertexe V and an edge € E are calledncident
if e= {u,v} for someu € V. Thedegreeof a vertexv in G is the number of edges that are
incident withv, and is denoted by dég) (note that for simple graphs, the degree of a vertex
equals the number of its neighbors, whereas for multigraphs this does not necessarily hold).
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If Gis a multigraph an@; ande, are distinct edges with end point&ndv, then we say that
e andey areparallel to each other, and there arailtipleedges betweenandv.

A graphG' is asubgraphof a graphG if V(G') CV(G) andE(G') C E(G). If G'is a
subgraph ofG, thenGis called asupergraplof G'. A graphG' is the subgraph db induced
by W, wherew C V(G), if V(G') =W andE(G') = {{u,v} € E | u,v € W}. We also sayd'
is aninduced subgrapbf G. For anyW C V(G), the subgraph induced B is denoted by
G[W].

A walk Win a graphG is an alternating sequen¢e;, e1, V2, €, ... ,€p,Vpy1) Of vertices
and edgesp > 0), starting and ending with a vertex, such that for eaghe V, andg € E,
andg = {Vvj,Vvi;1}. The walkW is also called a walk fromy to vp, 1, or a walk between;
andvp,1. Verticesv; andvp, are called the end points of the walk, all other vertices are
inner vertices. We also call the first vertex andp, 1 the last vertex of the walk. THength
of a walk is the number of edges in the walk. We say a Wdlkisesa vertexv if v=; for
some with 1 <i < p+1, andW avoids vf W does not use. If only the sequence of vertices
in a walkW is of importance, thelV is also denoted as a sequerffeg, . .. ,vp) of vertices,
such that for eachwith 1 <i < p, {vi,vi;1} € E(G). Note that ifG is a simple graph, then
this sequence determines the edges of the walk as well.

A pathin a graphG is a walk in which all vertices are distinct (and hence all edges are
distinct). Acycle Cin Gis a walk in which all edges are distinct, and all vertices are distinct,
except for the first and the last vertex, which are equal. A walk, path or &afea graph
can also be seen as a subgrapfepénd we denote the set of verticeHrby V(H), and the
set of edges b¥(H). Thedistancebetween two verticeg andw in G is the length of the
shortest path fromtowin G.

Two vertices areconnectedn a graphG if there is a path between them. A gragh
is connectedf every pair of vertices of5 is connected. Aconnected) component& G
is a maximal connected subgraph®fi.e. C is a subgraph o6 which is connected, and
there is no subgraph @& which properly contain€ and is also connected. A sét CV
is aseparatorof G if there are two vertices,v € V <W, such thatu andv are connected
in G and not connected iG]V <W)]. A cut vertexof G is a vertexv € V(G) for which {v}
is a separator of5; we also say separateshe graphG. A graphG is biconnectedf G is
connected and contains no cut verticediéonnected componeot blockof G is a maximal
biconnected subgraph @&. It can be seen that the blocks Gfpartition the seE of edges
of G, each block is an induced subgraph@fand a vertex € V is a cut vertex ofs if and
only if vis contained in two or more blocks &. An edgee € E is called abridge of G if
there are two verticag v € V that are connected i@, but that are not connected in the graph
(V,E <{e}). A block B of G consisting of one edge with its two end points is calledwaal
block If a blockB of G contains two or more edges, it is called@n-trivial block of G.

A treeis a simple connected graph without cycles.fokestis a simple graph without
cycles, i.e. a graph is a forest if and only if each of its components is a tree. Note that in a
tree, there is a unigue path between each pair of vertices.

A rooted treeis a treeT with a distinguished vertexe V(T) called theroot of T. In a
rooted tre€T, thedescendantsf a vertexv € V(T) are the vertices of which the path to the
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root usew. Thechildrenof v are the descendantswivhich have distance one W If vis not

the root, then the parent wiis the unique vertex of whichis a child. Thdeavesof a rooted

tree are the vertices without children (i.e. each leaf has degree one, unless if it is the root, in
which case it has degree zero). (The term leaf is sometimes used in trees that are not rooted:
in this case, it refers to a vertex of degree one.) The vertices which are not leaves are called
internal vertices It can be shown by induction that the number of internal vertices with two

or more children is at most equal to the number of leaves of the treeot&d binarytree is

a rooted tree in which each internal vertex has two children.

Thedepthof a rooted tred is the maximum distance of any vertexlirto the root. The
levelof a vertexv in a rooted tred equals the depth df minus the distance ofto the root.
Hence the root has level, whered is the depth, and the vertices on level zero are leaves
which have distancd to the root.

A complete graplor cliqueis a simple graph in which every two vertices are adjacent.
The complete graph amvertices is denoted bi,. A clique in a graplG is a subgraph o6
which is a clique. The maximum clique size of a gr&pts the maximum number of vertices
of any clique inG.

LetG = (V,E) be agraph. Le€ = (v1,€1,... ,€p,v1) be a cycle inG. A chordofCin G
is an edge € E such thae = {v;,v;} for somei andj, and there is no edge betwegrandy;
in C. If C has no chords i, thenC is called achordless cyclef G. In other words, a cycle
C in a simple grapl@ is a chordless cycle if the vertices Gfinduce a cycle irG. A graph
which contains no chordless cycles of length four or more is callgtbedalor triangulated
graph.

Two graphsG; = (V1,E1) andG; = (V,, E») are said to bésomorphicif there are bijec-
tionsf :V; — Vo andg: E; — E; such that for eack € V4 ande € E;, v is incident withe
in Gy if and only if f(v) is incident withg(e) in G,. The pair(f,q) is called anisomorphism
from G1 to G,. If G1 andG; are simple graphs, then it suffices to give the bijection between
the vertices ofG; andGy, i.e. G; andG; are isomorphic if there is a bijectioh: V; — V,
such that for each,v € V4, {u,v} € E; if and only if { f(u), f(v)} € Ex. For simple graphs,
we also say that is an isomorphism fron®; to Gp.

Let G be a simple graph, and lete E(G) with e= {u,v}. Furthermore, leN C V(G)
denote the union of the sets of neighborsuadndv, except foru andv themselves. The
contractionof e in G is the operation that removesandv and their incident edges frof,
and adds a new vertexto the graph which is exactly adjacent to the verticeN.irAn edge
contractionin G is the contraction of some edges E(G). A minor of G is a simple graph
G’ which is obtained from a subgraph @fby applying a sequence of edge contractions.

2.1.2 Graph Problems and Algorithms

This thesis is concerned with algorithms for graph problems. A graph problem usually con-
sists of a description of an arbitrary instance of the problem, and the problem that has to be
solved for this instance. For graph problems, each instance contains at least a graph. In Ap-
pendix A, we give definitions of a number of well-known graph problems that are considered
in this thesis, or that act as illustrative examples throughout.

11
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We distinguish between two types of graph problems, nametysion problemandop-
timization problemsBoth types have aon-constructiverersion and &onstructiveversion.

In a non-constructive decision problem, or simply decision problem, the question is whether
a certain property holds for an instance. An algorithm solving a decision problem has as input
an instance of the problem, and as output the answer to the question, which may be either
‘yes’ (true) or ‘no’ (false). An example of a decision problem isaMILTONIAN CIRCUIT,

in which the question is whether a given graph contains a Hamiltonian circuit (see also Ap-
pendix A). A decision probler® of which each instance is a single graph can also be seen as
agraph classtake the clas® of all graphs for whictP has ‘yes’ as an answer. The problem

of checking whether a given graph is in a graph clads also called aecognition problem

An algorithm solving this problem is an algorithm that recognizes graphs in the(glass

In a constructive decision problem,@onstruction problenyit should not only be decided
whether a certain property holds for a given instance, but if the property holds, a concrete
solution for the instance should be constructed. For example, in the constructive version of
HAMILTONIAN CIRCUIT, the problem is to construct a Hamiltonian circuit in a given graph,
if one exists. Hence an algorithm solving a construction problem has as input an instance
of the problem, and as output a solution to the problem if there is one, and ‘rfalser
otherwise.

In a non-constructive optimization problem, or simply optimization problem, the problem
is to find thevalueof some optimal solution of the instance: an optimal solution is a solution
with optimal value, where optimal can be either maximum or minimum. An example of
an optimization problem is Mx INDEPENDENT SET (see Appendix A for a definition):
in this problem, the solutions are independent sets of the given graph, and the value of an
independentset is its cardinality. The problem s to find the maximum size of any independent
set in the given graph. An algorithm solving an optimization problem has as input an instance
of the problem, and returns the value of an optimal solution of this instance, if there is a
solution, ‘no’ orfalse otherwise.

In a constructive optimization problem, the problem is not only to find the value of an
optimal solution for a given instance, but also to construct an optimal solution. For example,
in the constructive version of Mx INDEPENDENTSET, we ask for an independent set in the
given graph of maximum cardinality. Hence an algorithm solving a constructive optimization
problem has as input an instance of the problem, and returns an optimal solution and its value
if there is a solution, ‘no’ ofalse otherwise.

With an optimization problem, we can usually associate a number of decision problems.
Suppose for instance that we have a maximization problem calked RROBLEM, in which
the problem is to find the maximum value of any solution in a given graph. Then we define
the decision problemm®OBLEM as follows: given a grap® and an integek, doesG contain
a solution of value at leas? We can also assume that the integer is not part of the input,
but is fixed to some valule Then the problem is denoted kyPROBLEM. For minimization
problems, we can apply the same technique. (See also Appendix A.) Consider for example
MAX INDEPENDENTSET. Then NDEPENDENTSET is the problem in which a grap® and
a non-negative integde are given, and the question is whetl@icontains an independent
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set of sizek or more. For each fixel, k-INDEPENDENT SET asks whether a given graph
contains an independent set of skzer more.

In an algorithm solving a graph problem, the input graph must be stored in memory.
There are many ways to represent graphs in memory. We make useagfjaoency list
representation This representation contains a doubly linked list of all vertices in the graph.
For each vertex, a doubly linked, cyclic list is maintained which contains an entry for each
edge that is incident with. This list is called the adjacency list 8f an entry for an edge
e= {u,v} in the adjacency list of contains the edge a pointer to its two end points, and a
pointer to the entry for edgein the adjacency list afi.

In this thesis, we give sequential and parallel algorithms for different graph problems.
The algorithms are usually described in a rather informal way, the details are left out. For se-
guential algorithms, we use the random access machine or RAM with uniform cost measure.
A RAM consists of a single processor with a random access memory [Mehlhorn, 1984]. Each
basic instruction, like reading from and writing to a memory location, and arithmetic or logic
operations, uses one time unit. For parallel algorithms, the model of computation we use is
the parallel RAM, or PRAM: in this model, we have a number of processors (RAMs) and a
global memory. Each processor can read to and write from the global memory at the same
time. In this thesis, we use two models for parallel computation, namely the CRCW PRAM
and the EREW PRAM: in the first model, different processors may read from or write to the
same memory location at the same time, whereas in the latter model, at most one processor
may read from or write to the same memory location at any point in time.

In the analysis of a sequential algorithm, we describe the running time of the algorithm,
and sometimes the amount of memory-space used by the algorithm, as a function of the size
of the input. The running time is estimated by the number of basic instructions. In analyzing
a parallel algorithm, we describe the amount of time, the number of operations, and the
amount of space that the algorithm uses, all as a function of the input size. By the number
of operations, we mean the product of the amount of time and the number of processors that
is used. If the number of operations of a parallel algorithm for some problem equals the best
known running time of a sequential algorithm for this problem, we say that parallel algorithm
has optimal speedup. For more background information on (the analysis of) sequential or
parallel algorithms, see e.g. Cormen, Leiserson, and Rivest [1989haanlL.992].

2.2 Treewidth and Pathwidth

In this section, we give some background information on the treewidth and pathwidth of a
graph. The notions of treewidth and pathwidth were introduced by Robertson and Seymour
[1983, 19864a].

Definition 2.2.1 (Tree Decomposition & Treewidth). L& = (V,E) be a graph. Atree
decomposition Tf G is a pair(T,X), whereT = (I,F) isatree,an = {X |i€l}isa
family of subsets oY/, one for each node (vertex) @f such that

b Uielxi =V,
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o for every edggv,w} € E, there is an € | with v € X; andw € X;, and
e foralli,j,kel,if jis onthe pathfromtokin T, thenX N Xx C X].

The treewidthor width of a tree decompositiof(1,F),{Xi | i € I}) is maxe| |Xi| <1. The
treewidth of a grapl@, denoted by tyG), is the minimum width over all possible tree de-
compositions ofs.

The vertices of atree in a tree decomposition are usually catiddgo avoid confusion with

the vertices of a graph. If a verteor the end points of an edgare contained iX; for some
nodei of a tree decomposition, we also say nodentains vor e. An example of a graph of
treewidth two and a tree decomposition of width two of the graph is given in Figure 2.1. A
tree decomposition is usually depicted as a tree in which eachirmmigains the vertices of

Figure 2.1. A graphG of treewidth two, and a tree decompositio® of width two
of G.

Definition 2.2.2 (Path Decomposition & Pathwidth). path decomposition PBf a graph
Gis a tree decompositiofT, X ) of G in which the tre€T is a path (i.e. the nodes @f have
degree at most two). Thaathwidttof a graphG is the minimum width over all possible path
decompositions of the graph, and is denoted by®w

LetPD = (T,X) be a path decomposition of a gra@with T = (I,F) andX = {X |i € | }.

We usually represe®D by the sequencgX;,, Xi,,... , X ), where(i,i»,... i) is the path
representing. Note that the pathwidth of a graph is at least equal to the treewidth of the
graph, and there are graphs of which the pathwidth is larger than the treewidth. The graph
of Figure 2.1 for example, has pathwidth three. A path decomposition of width tree of this
graph is depicted in Figure 2.2.

PO @B~(b9(cg—@ik)-@N-(de D-(D-(FnD-(Tgh

Figure 2.2. A path decompositiofPD of width three of the grapl& depicted in
Figure 2.1.
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Let k be a positive integer. Graphs of treewidth and pathwidth at kas¢ also called
partial k-treesandpartial k-paths respectively (as they are exactly the subgraphstocées or
k-paths, see e.g. Kloks [1994] for definitions and proofs). In the literature, many other notions
have been defined which turned out to be equivalent to the notions of treewidth or pathwidth.
Bodlaender [1996b] gave a list of these notions. There are also many classes of graphs which
have a constant bound on the treewidth or pathwidth, or which are closely related to classes
of graphs of bounded treewidth or bounded pathwidth. For example, the forests are exactly
the simple graphs of treewidth at most one. Series-parallel graphs (see Definition 2.3.3)
have treewidth at most twé;outerplanar graphs have treewidth at mdst2 [Bodlaender,
1996b]. In Section 2.3, we introduce some of these classes. For a complete overview, see
Bodlaender [1996b].

In the remainder of this section, we show some properties of tree and path decomposi-
tions of graphs (Section 2.2.1), we discuss the complexity of the problems of computing the
treewidth and pathwidth of a graph (Section 2.2.2), and we describe two major algorithmic
results for graphs of bounded treewidth (Sections 2.2.3 — 2.2.5).

2.2.1 Properties of Tree and Path Decompositions

We give a number of well-known properties of tree and path decompositions and of graphs of
bounded treewidth or pathwidth in this section. Most of these properties have already been
noted by many authors (see e.g. Robertson and Seymour [1983, 1986a], Scheffler [1989] and
Bodlaender [1996b]). To give some feeling for the concepts of tree and path decompositions,
we give a proof for some of these results.

Lemma 2.2.1 [Scheffler, 1989; Bodlaender, 1996hkt G be a graph.

1. The treewidth or pathwidth of any subgraph of G is at most the treewidth or pathwidth of
G.

2. The treewidth of G is the maximum treewidth over all components of G.
3. The pathwidth of G is the maximum pathwidth over all components of G.

4. The treewidth of G is the maximum treewidth over all blocks of G.

Proof.

1. LetD be atree or path decomposition®bf minimum width, and leG’ be a subgraph of

G. TurnD into a tree or path decomposition @f by removing all vertices 0 (G) <V (G')

from nodes oD. The width of the resulting tree or path decomposition is at most the width
of D.

2. By part 1 of the lemma, each component®has treewidth at most ). Suppose
G hast components, and I€EDs,...,TD; be minimum width tree decompositions of the
components ofs. Connecting the tree decompositioh®;,...,TD; in an arbitrary way
without introducing any cycles results in a tree decompositio@.ofhe width of this tree
decomposition equals the maximum widthTaDs, ... , T Dy.
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3. Each component @& has pathwidth at most f@). LetPDy, ... ,PD; be minimum width
path decompositions the component$fThe concatenation &?Ds,... ,PD; in arbitrary
order results in a path decomposition@f The width of this path decomposition equals the
maximum width ofPDq,... ,PD.

4. Supposés is connected. By part 1, each block @fhas treewidth at most ). Let
Bi1,...,Bsdenote the blocks db and letC be the set of cut vertices &. Let TD4,...,TDs

be minimum width tree decompositions of the respective block efith TD; = (T;, X;) for
eachi. LetT be the disjoint union oTy, ..., Ts and letX be the disjoint union oKy, ..., Xs.

For each cut vertex of G, add a new nodg to T and a new seX;, to X with X, = {v}. For

each blockB; of G which contains/, add an edge between noggand a node ofj which
containsv. The result is a tree decompositiéh, X ) of G, and its width is the maximum
width of all blocks ofG. Hence the treewidth o is at most the maximum treewidth of

a block of G. If G is not connected, then the same construction can be performed for all
components o6, and we get the result from part 2. a

Lemma 2.2.2. Let G be a graph and TE: (T,X) a tree decomposition of G.

1. Letuve V(G), and letij € | be such that i X; and ve X;. Then each node on the
path fromito jin T contains a vertex of every path fromutovin G.

2. For each connected subgraph @ G, the nodes in T which contain a vertex dfi@luce
a subtree of T.

Proof.

1. Letu,veV(G), and letP = (u,e;,w1,e,Wo,... ,v) be a path fromu to vin G. We
use induction on the length &f. If P has length zero, them= v and the result holds by
property 3 of a tree decomposition.

Suppose® has length one or more. Letj € | be such that € X; andv € X;. LetP be
the subpath oP fromw; tov. Letl € | such thatu,wy € X. By the induction hypothesis,
each node on the path fronto j in T contains a vertex d?. If i is on the path fronh to j
in T, then this proves part 1 of the lemma.i i6 not on the path frorhto j, then each node
on the path from to | in T containsu, and hence each node on the path frioim j either
containsu or a vertex ofP’. This proves part 1 of the lemma.

2. Suppose that there is a connected subg@lpsf G which does not induce a subtree of
T. Then there are nodesj € | such thatX; contains a vertex of G/, Xj contains a vertex
w of G, and there is a nodeon the path froni to j which does not contain a vertex Gf.
As there is a path fromto w in G/, and hence i, each node on the path frointo j in T
contains a vertex o&’ (by part 1 of this lemma). This gives a contradiction. O

The following lemma is proved in e.g. Bodlaender andhviiig [1993].

Lemma 2.2.3 (Clique Containment).Let G= (V,E) be a graph, let TD= (T,X) be a tree
decomposition of G with & (I,F) andX = {X; |i € I}, and let WC V be such that W
induces a clique in G. There is arEil such that WC X;.
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Proof. We prove this by induction ofWw|. If |W| =1, then there is ane | with W C X; by
definition. Suppos@V| > 1. Letv € W. By the induction hypothesis, there is a nadel
such thaWW <{v} C X. LetT' = (I',F’) be the subtree of induced by the nodes containing
v. If i e lI’, thenW C X;. Suppose ¢ |I'. Let j €1’ be such thaf is the node ofl’ that has
the shortest distance toWe show thatV C X;. Letw € W <{v}. Note that each path from
a node inT’ to nodei in T uses nodg. As there is an edgév,w} € E(G), there is a node
j" € 1" such thaw,w € Xj/. The path fromj’ toi uses nodg, and hencev € X;. O

Lemma 2.2.4. Let G be a connected partial k-path,>k1, and WC V such that QNV] is
connected. At most two of the connected componentB/o£@/] have pathwidth k.

Proof. Suppose there are three componéitsG, andGz of G|V W] which have path-
width k. Let PD = (Xy,...,%) be a path decomposition & of width k. Fori =1,2,3

let (Xj;,...,%;) denote the subsequenceRID consisting of all nodes that contain vertices
of Gi. Note that for each, if we remove the vertices of (G) <V(G;) from (Xj;,... , X,),
then we get a path decomposition of widtlof G;. Suppose w.l.o.g. thgh < jo < jz. If

[1 > |2, then each node ifXj,,... ,X,) contains a vertex oB;. This is not possible, since
G2 has pathwidttk andV(G1) NV(G2) = ¢. Hencel1 < I and analogously, < I3. Let

G' = GV(G1) UV(G3) UW]. Note thatG' is a connected subgraph Gfwhich has no ver-
tices in common witlG,. Hence, by Lemma 2.2.2, eah j1 <i <3, contains at least one
vertex of G'. But j; < j2 <2 < I3 andG; has pathwidttk, which gives a contradiction. O

A rooted binarytree decomposition of a gragghis a tree decompositiofT, X ) of G in
whichT is a rooted binary tree.

Lemma 2.2.5. Let G be a graph. There is a rooted binary tree decomposition of minimum
width of G with @n) nodes.

Proof. Letk =tw(G), and letTD = (T,X) be a tree decomposition of widkhof G, with
T=(,F)andX = {X; |i € 1}. We turnT Dinto a rooted binary tree decomposition of width
k of G. Take an arbitrary node€ | as the root. Repeat the following as long as possible. For
each leaf nodee | with i #r, if X; C Xj, wherej isi’s parent, then remove nodleFor each
nodei € |, 1 # r, with degree two, do the following. Lgtbei’s parent, andi bei’s only child.
If X C X, then ‘splice outi, i.e. removeé and letj bel’s new parent. The result is still a tree
decomposition o6 of the same width. We show that the number of nodeBDis O(n).

The number of internal nodes with two or more children is at most equal to the number of
leaves. Let € | be a node with at most one child, suppoger andj isi's parent. AsK Z X;,
X; contains a vertex which is not . Lety; denote this vertex. For every two distinct nodes
i andj with at most one child that are not the rout# v;, otherwise property 3 of a tree
decomposition is violated. Hence there are at mogides with at most one child (except for
the root). This implies that the total number of nodes is at rogs}.

We next show howl D can be transformed into a rooted binary tree decomposition. To
this end, we apply the following transformations to each nodei E€étbe an internal node of
T. If i has two children, do nothing. ithas one child, then add a new leaf ngde T which
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is the second child af and letX; = X;. Supposeéhasd > 3 children, and lejs, ..., jq denote

the children ofi. We spliti into nodedy, ... ,ig_1, and letX, = X; for eacha, 1 <a<d<l.

The new nodes are connected as follows. The pareatisfthe former parent af For each

a, 1< a<d<l, iy has childrenj; andig, 1, andig_; has childrenjg_1 and jq. See also
Figure 2.3. It can be seen that the resulting tree is a rooted tree in which each internal node
has exactly two children, and hence we have a rooted binary tree decomposition of minimum
width of G. Furthermore, we have added at mD$h) nodes to the tree decomposition, which
means that the total number of node®is). O

Figure 2.3. The splitting step performed on each nodeith three or more children
in order to get a rooted binary tree decomposition.

The last part of the construction of the proof of Lemma 2.2.5 shows that, if we have a tree
decomposition of a grapB with | nodes, then we can transform it@{l) time into a rooted
binary tree decomposition of the same widtiGWwith O(l) nodes.

Lemma 2.2.6. Let G= (V,E) be a simple graph, let k 1, and supposéwn(G) = k. Then
|E| <KV| @%k(k+ 1).

Proof. We prove this by induction ofV|. If V| < k+1, then tWG) < k. If V| =k+1,
then|E| < Jk(k+1) =kV|<3k(k+1). SupposeV|>k+1. LetTD = (T,X) be a tree
decomposition 06 of width at mosk with T = (I,F) andX = {X; | i € I }. Assume that for
each node € | with neighborj € I, Xi Z X (it is shown in the proof of Lemma 2.2.5 that
there is such a tree decomposition). Note thabntains at least two nodes. Lidie a node
of degree one of and letj be the neighbor af Note that there is a vertexc X with v ¢ X;.
This implies thav is adjacent to at mo&tvertices, a$X;| < k+1. The graplG’ = G|V <{v}]
has treewidth at mo$t and hagV| <1 vertices, hencfE(G')| < KV (G| @%k(k+ 1). This
implies thatE| < |E(G')| +k < k|V(G)| ©ik(k+1) + k=KV| &3k(k+ 1). m

Lemma 2.2.7. Let G be a graph and let H be a minor of G. ThemH) < tw(G) and
pw(H) < pw(G).

Proof. LetD be a tree or path decomposition of minimum widthGf We transformD
into a tree or path decompositiondfwithout increasing the width. We first show hdwis
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transformed iH is obtained fronG by one edge contraction. Let= {u, v} be the contracted
edge ofG. Supposev is the new vertex that is added in order to getin D, we replace all
occurrences aofl andv by w. Itis easy to see that the result is a tree or path decomposition of
H and that the width has not increased.

SupposeH is obtained frons by applying a sequence of edge contractions on the sub-
graphG’ of G. We first transfornD into a tree or path decomposition &f by removing
all occurrences of vertices M(G) <V (G') from D. After this, we repeatedly apply the
transformation as described above for each contraction in the sequence. O

2.2.2 Complexity Issues of Treewidth and Pathwidth

The treewidth and pathwidth optimization problems are defined as follows (see also Ap-
pendix A).

MIN TREEWIDTH (MIN PATHWIDTH)
Instance: A graphG = (V, E).
Find: The treewidth (pathwidth) db.

In the constructive versions of M TREEWIDTHand MIN PATHWIDTH, we additionally ask

for atree or path decomposition of minimum width of the graph. We also define the associated
decision problems REewIDTHand RTHWIDTH, andk-TREEWIDTHandk-PATHWIDTH for

any fixed integek > 1.

Arnborg, Corneil, and Proskurowski[1987] showed that both MIREEWIDTHand MIN
PATHWIDTH are NP-hard. Polynomial time approximation algorithms were found by Bod-
laender, Gilbert, Hafsteinsson, and Kloks [1995]. They gave polynomial time algorithms
which, given a grapl@, find a tree decomposition of width at ma3ttw(G) - logn), and
a path decomposition of width at moS{pw(G) - log®n) of G (for all logarithms used in
this thesis, the base is two). For many graph classes, the treewidth and pathwidth can be
found more efficiently. Examples are chordal graphs, interval graphs (see Definition 2.3.1),
permutation graphs [Bodlaender, Kloks, and Kratsch, 1993] and cographs [Bodlaender and
Mohring, 1993]. For an overview, see Bodlaender [1993].

For fixedk, bothk-TREEWIDTHand k-PATHWIDTH can be solved in polynomial time,
which was first proved by Arnborg et al. [1987]: they gave@m*+2) algorithm for k-
TREEWIDTH. This algorithm actually solves the constructive version of this problem, i.e. it
returns a tree decomposition of width at mksif the graph, if one exists. Many people have
worked on the problem to find efficient algorithms #0iTREEWIDTH and k-PATHWIDTH
[Robertson and Seymour, 1986a; Robertson and Seymour, 1990c; Lagergren, 1996; Reed,
1992], which resulted eventually i@(n) time algorithms by Bodlaender [1996a] for the
constructive versions of both problems. The algorithms given by Bodlaender [1996a] are not
very practical, as they have large hidden constants. KFBREEWIDTH with k < 3, more
practical algorithms are given by MateeK and Thomas [1991], using results of Arnborg and
Proskurowski [1986]. Fok = 4, Sanders [1996] has given a more practical algorithm using
similar, but more detailed techniques.

19



Chapter 2 Preliminaries

Parallel algorithms for (the constructive version kff REEWIDTH are given by Bod-
laender [1988b], Chandrasekharan and Hedetniemi [1988], Lagergren [1996], and Bodlaen-
der and Hagerup [1995]. The algorithm of Bodlaender and Hagerup [1995] is the only one
with optimal speedup; it has running tin®log?n) and use€(n) operations and space on
an EREW or CRCW PRAM. Bodlaender and Hager@p9g5] also solve the constructive
version of thek-PATHWIDTH problem within the same time and resource bounds. In Chap-
ter 9, we improve on this result for 2REEWIDTH and 2-RRTHWIDTH: these algorithms use
O(lognlog* n) time with O(n) operations and space on an EREW PRAM, &flbgn) time
with O(n) operations and space on a CRCW PRAM {Inglenotes the amount of times we
have to replacea by the value of log in order to get a value that is at most one. For all
practical values ofi, log" n < 5 (note that l0§25°°36=5).)

2.2.3 Dynamic Programming on Tree Decompositions

Many, even NP-hard graph problems can be solved in polynomial time if we know a bound on
the treewidth of the input graph. One technique that is applicable to a large class of problems
is dynamic programming on a tree decomposition of the graph. We sketch the basic approach
of this technique.

Suppose we have some graph probRwe want to solvé on a simple grap = (V, E)
of treewidth at mosk for some constark, and we have a rooted binary tree decomposition
TD=(T,X) of width k of Gwith T = (I,F) andX = {X;,|i € | }. Letr denote the root of
T. For each, let

Yi={veXj|j=iv]jisadescendant din T},

and letG; = G[Y{]. Note thatG, = G. For each € |, a tableS is computed which con-
tains information about the grap® with respect to probler®. These tables must have the
following properties.

1. For each nodee |, problemP can be solved fo; solely from the information in table
S.
2. For each leaf nodec I, S can be computed fro@[X].

3. For each internal nodes |, S can be computed froi®[X;] and the tables dfs children
in the tree.

If these properties hold, then dynamic programming on the tree decompdsitenmbe used

to computeS.. First compute the table§ for all nodesi on level zero inT (the nodes on

level zero are the nodes with largest depth). Next, use these tables to compute the tables of
all nodes on level one, and so on until, finally, taBlés computed. Oncg is computed, the
problem can be solved from the informatiorSn In order to obtain an efficient algorithm, it

must be the case that each table can be computed efficiently from the tables of the children.
For instance, if for each nodeableS can be computed in polynomial time in the size of the
graph, giverG[X;] and the tables dfs children, then it takes polynomial time to compute the
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table of the root node. If each table can be computed in constant time, then iQi@kesne
to compute the table of the root.

The important property of tree decompositions that is used to achieve the design of tables
that satisfy the properties described above is the following. For eachi motehe vertices
of G;j that are adjacent to vertices outsi@emust be contained in nod&. In other words,
consider a node€ |, and letv € V(G) be such thav ¢ Y;. Suppose there is a vertexc Y;
which is adjacent tw. Thenu € X; (this follows from part 1 of Lemma 2.2.2, and the fact
that there is a nodpwith u € X; andj a descendant of and there is a nodewith v € X and
| not a descendant @f. Hence inG, the graph$5; andG|V <] are only ‘connected’ via the
vertices inX;.

As an example, consider Ak INDEPENDENTSET (see also Arnborg [1985] or Bodlaen-
der [1993]). For eache I, we let the table5 contain the following information: for each
Z C X, S(2Z) is the size of the largest independentSet G; with SN X = Z (let S§(Z) = <
if there is no such independent set). It is easy to see that for @¢elythe maximum size
of any independent set & is max S(Z) | Z C X;}. This implies that the maximum size of
an independent set @ can easily be obtained from the information in tafle Figure 2.4
shows an example of a graph, a binary tree decomposition, and the tables corresponding to
each node: in each table, only the values which are largersaaare given. The size of a
maximum independent set in the depicted graph is 4, as this is the vafygenf

T1 T T3 Ta
p |Ofp|1]p|O0fp 3
a ljlc|2|d|1]|d]|3
b 1fdf2| f|21] f]|3
c 1 gl|lje|4d
ac | 2

Figure 2.4. A graphG (part ), a binary rooted tree decompositibD® of G (part 1),
and the table$§ for each nodé of TD (part I11).

For each leaf nodec | and eaclZ C X;, we have

Z| ifVv v,w} ¢ E
sz |7 T Yunez fvw) ¢
“o0  otherwise.
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Leti € | be an internal node, and lgandl be the children of. For eachZ C X;, we have

max{Sj (Zl) + S(Zz) <:>|ZlﬂZ| ©|ZzﬂZ| + |Z| | (Zl - Xj)
S(Z2)= N CX)NZNX =ZNX)A(ZNX=ZNX)} if Vywez {V,W} ¢ E
&S00 otherwise.

We show that the latter expression is correct. iLle¢ an internal node with childrepand

I, and letZ C X;. Clearly, there is an independent setGnthat contain< if and only if
no two vertices o are adjacent. Suppose no two verticeZaire adjacent. Consider an
independent sé6 of G; of size§(Z) such thatSNX = Z. LetIS; = Y;nISandIS; =Y NIS,
and letA; = 1S, N Xj andA; = IS, N Xj. Note thatlS; is an independent set &fj and hence
[1S1] < Sj(A1). Similarly, IS, is an independent set & and|ISy| < S(A2). Note also that
ALNX =ZnXjandA2NX = ZNX. Furthermore,

S(2) =19
— IS1] +]1S:] /1811 Z| #[1$1 2] +12|
<Sj(A1) +S(A2) AN Z| AN Z| + |Z]
<max{Sj(Z1) +S(Z) e|ZanZ| |ZonZ| + (2| |
(Z1 XA CTX)N(nNX =ZNX)A(ZoNX =ZN X))}

On the other hand, led; C Xj andA; C X such thathy N X =ZnNXj, AoNX =ZnNX, and
Si(A1)+ Sj(A2) ©|A1NZ| <|A2NZ| +|Z] is maximum. Note thesj (A1) > 0 andS (Az) > 0.
Let IS; and IS, be independent sets @ and G, respectively, such thdg; N X; = Ay,
ISSNX = A, [IS1] = Sj(A1) and|ISp] = S(A2). ThenlS=1S,UIS UZ is an independent
set of G; with ISN X; = Z. Furthermore,

S(2) > IS
= ISy + |IS2] (1S, N Z| (1521 2] + |2
=Sj(A1) + S(A2) ©|ANZ| ©|ANZ| +|Z]
=max{Sj(Z1) +S(Z2) ©|ZanZ| <|ZoNZ| +|Z| |
(ZL CX)A(Z2SX)A(ZLINX =ZNX) A(ZeNX =ZNX)}.

This shows that the recursive definition®fZ) is correct.

With the two expressions given above, the taBlecan be obtained by computing the
tables of all nodes in a bottom-up way: first compute the tables of all nodes on level zero in
the tree, then the tables of all nodes on level one, and so on. EaclStétale sizeD(2k+1)

(as|Xi| < k+ 1 andT; contains one entry for each subset@f. Therefore, if adjacency of

two vertices can be checked in constant time, then each table of a leaf node can be computed
in O(2¢t1) time, and each table of an internal node can be comput€ga#2) time from

the tables of its children. Note that, with an adjacency list representation, it is not possible to
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2.2 Treewidth and Pathwidth

check in constant time whether two vertices are adjacent. However, as the graph has treewidth
at mostk, we can modify the adjacency lists in such a way that each edgéu, v} occurs

either in the adjacency list afor in the adjacency list of, and each adjacency list has length

at mostk. It can be seen that we can build such a representati@kn) time (we omit the

details of this construction). Furthermore, with this representation we can ché¢k)itime
whether two vertices are adjacent.

The discussion above implies that for any constart1 and any simple grapG with
tw(G) < k, the size of a maximum independent set®ftan be computed i®(n) time
if a tree decomposition of bounded width &f with O(n) nodes is given: turn the given
tree decomposition into a rooted binary tree decomposition @ft) nodes, and apply the
algorithm as described above. If we are also interested in a maximum independent set of the
graph, then we can compute one from the information in the tabl€{ni time in a top-
down manner. For example, in the graplof Figure 2.4, this gives the following maximum
independent sdfa, ¢, e g}.

We can also use parallel dynamic programming to compute the size of a maximum inde-
pendent set i: for each level in the rooted tred@ of the rooted binary tree decomposition,
the tables of the nodes at leveh T can be computed independently of each other, from the
tables of their respective children. This suggests the following parallel algorithm, consisting
of d + 1 rounds, wherel denotes the depth @f. In roundl, 0< | < d, the tables5 of all
nodes on levell are computed. Each node is handled by a different processor, which needs
O(1) time to compute the table. It can easily be seen that this algorithm @k gime with
O(n) processors on an EREW PRAM. As the total number of nodes that has to be handled
is O(n), standard techniques show that this algorithm can be made to @¢dirtime with
O(n) operations, and thu3(n/d) processors (in round0 < i < d, let each processor handle
nid/n nodes on level, wheren; denotes the number of nodes on leve$ummed over all
rounds, this take®(d) time per processor).

Bodlaender and Hagerup [1995] have shown that, given a tree decomposition of width
at mostk with O(n) nodes of a graph, a rooted binary tree decomposition of the graph of
width at most & + 2 with depthO(logn) can be constructed. This transformation can be
done inO(logn) time with O(n) operations and space on an EREW PRAM. On this tree
decomposition of dept®(logn), the parallel dynamic programming algorithm as described
above takeO(logn) time with O(n) operations on an EREW PRAM, if the input of the
algorithm is a grapl& and a tree decomposition of bounded widttGof

It turns out that the dynamic programming technique described above can be applied to
many problems on graphs of bounded treewidth (see e.g. Arnborg [1985], Johnson [1985]
and Johnson [1987] for an overview). More systematic attempts have led to linear time algo-
rithms that can solve classes of graph problems on graphs of bounded treewidth [Takamizawa,
Nishizeki, and Saito, 1982; Wimer, 1987; Scheffler, 1987; Bodlaender, 1988a; Bern, Lawler,
and Wong, 1987; Courcelle, 1990; Borie, Parker, and Tovey, 1991; Arnborg, Lagergren, and
Seese, 1991; Abrahamson and Fellows, 1993; Courcelle and Mosbah, 1993]. A very general
class of problems for which this has been shown is the class of recognition probldims of
nite stategraph classes. These problems include all graph problems that can be defined in
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Monadic Second Order Logic

2.2.4 Finite State Problems and Monadic Second Order Logic

A graph propertyis a functionP which maps each graph to the vatuge or false. We assume
that isomorphic graphs are mapped to the same value. A graph prépedigs for graph
G or P(G) holds, if P(G) = true. An extended graph propertis a functionP for which
there are domain®1,...,D; (t > 0), such that for each grafhand eaclX; € Dj, 1 <i <t,
P(G, X1, X, ... ,%) is mapped to the valugue or false. (Note that for fixedX;, 1 <i <t,
P(G, X1, X, ... ,%) is a graph property.)

A graph propertyP corresponds directly to a decision problem: given a gr@pldoes
P hold for G? An algorithm decides a properBif it solves the corresponding decision
problem.

Definition 2.2.3 (Terminal Graph). Aterminal graph Gis a triple (V,E, X) with (V,E) a
simple graph, an&X C V an ordered subset &f> 0 vertices. We denot¥ by (x1,... ,%).
Vertices inX are calledterminalsor terminal vertices Vertices inV <X are calledinner
vertices

Figure 2.5 gives an example of a terminal graph. Although a terminal graph with zero termi-
nals is not exactly an ordinary simple graph, we sometimes use it in that way.

G O : terminal vertex
® : inner vertex

Figure 2.5. Example of a terminal grap@ with four terminals.

A terminal graph withl terminals [ > 0) is also called an-terminal graph. LeG =
(V,E, X) be anl-terminal graph| > 0, with X = (xg,...,X ). Foreach, 1 <i <1, we call
x; theith terminal ofG. A terminal graph(V, E, X) is said to beopenif there are no edges
between terminals.

Terminal graphs are also callsdurcedgraphs (e.g. in Arnborg et al. [1993], Lagergren
and Arnborg [1991]), in which case the terminals are calledsitnrcesof the graph, or
boundariedgraphs (e.g. in Fellows and Langston [1989]), in which case the set of terminals
is called theboundary

Definition 2.2.4. The operatiors maps two terminal grapia andH with the same numbér
of terminals to a simple gragB< H, by taking the disjoint union d& andH, then identifying
corresponding terminals, i.e., foe= 1,... 1, identifying theith terminal of G with theith
terminal ofH, and removing multiple edges.

For an example of the-operation, see Figure 2.6. Note that the result ofasperations is
a simple graph, and not a terminal graph.
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1 1
2 & 2 =
3 3
G H GoH

Figure 2.6. Example of operatiom applied to two three-terminal graphs.

Definition 2.2.5. Let P be a graph property, arlda non-negative integer. Fésterminal
graphsG; andGy, we define the equivalence relatiem, as follows:

Gi1~p1 G2 <« foralll-terminal graph$i: P(Gi & H) & P(Ga @ H).
PropertyP is of finite indexif for all | > 0, ~p| has finitely many equivalence classes.

There are many equivalent terms for a graph class of which the corresponding graph property
is of finite index: such a graph classrexognizable[Courcelle, 1990]finite stateor (fully)

cutset regulafAbrahamson and Fellows, 1993], mgular [Bern, Lawler, and Wong, 1987;
Borie, Parker, and Tovey, 1991] (equivalence has been shown by Courcelle and Lagergren
[1996]). We use the term finite state.

The dynamic programming approach described in Section 2.2.3 can be used to recognize
graphs from any finite state graph class in linear time, as long as there is a bound on the
treewidth of the graph. Therefore, it is again assumed that the input of the algorithm consists
of a graphG and a binary rooted tree decomposition of bounded widta with O(n) nodes.

The idea of this algorithm is as follows. LBtbe a graph property of finite index. Note that
for each equivalence clagsof ~pg, eitherP holds for each graph i€, or P does not hold
for any graph irC. We call a class of-p of the first type araccepting class

Let G = (V,E) be a simple graph of width at mokt for some constark > 1, and let
(T,X) be a rooted binary tree decomposition of width at mosf G with T = (I,F) and
X ={X |i €l}. Suppose is the root ofT, and suppose w.l.0.g. th&t = ¢. For each, letH;
denote the terminal graph obtained fr@nby letting the vertices iX; be the terminals (recall
thatG; is the subgraph o& induced by the vertices in nod&s, wherej is a descendant of
i). For each nodec I, the information that is computed is the equivalence classppfthat
containsH; (wherel = |X;|). LetC; denote this equivalence class. Nd¥G) holds if and
only if C; is an accepting class. Furthermoreij i§ a leaf node, thef; only depends on
G[Xi]. If i is an internal node with childrepandl, thenC; only depends on the grap$x],

G[Xj] andG[X], and the equivalence clasgesandC;. Hence we can use this information
in a dynamic programming algorithm. We briefly show how this is done.

The number of different graphs with at mdst 1 vertices is bounded. Furthermore, for
eachl > k+ 1, the number of equivalence classes-gfj is bounded. From this, it can be
seen that there is a tablg of bounded size in which, for any leaf nodwith |X| <k+1,
we can find the equivalence classtf givenG[X;]. Furthermore, there is a transition table
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T, of bounded size in which, for each internal nadeith childrenj andl, we can find the
equivalence class &f;, givenG[X], G[Xj], G[X], and the equivalence classesHjfandH;.
TablesT; andT> can be effectively constructed if we have an algorithm which decidgs
for all | > 0. With tableTy, C; can be computed in constant time for each leaf ricofehe
tree decomposition. With tablE,, Ci can be computed in constant time for each internal
nodei, by only using node$ andl, wherej andl are the children of.

This implies that the dynamic programming approach can be used to recognize graphs of
any finite state class, if the input consists of a graph of treewidth atkfossome fixed in-
tegerk, and a binary rooted tree decomposition of width at nkasftthe graph. Sequentially,
this algorithm take®©(n) time, if the tree decomposition contai®$n) nodes. In the parallel
case, the algorithm take3(logn) time with O(n) operations on an EREW PRAM, if the
tree decomposition contai¥n) nodes (see also Lagergren [1991]). (In Courcelle [1990],
Arnborg, Lagergren, and Seese [1991], and Abrahamson and Fellows [1993], the algorithm
is described in terms of finite state tree-automata, but this boils down to the same principle.)

Courcelle [1990] has given a large class of graph properties which are finite state. We
define this class here. Tionadic Second Order Logior MSOL for graphsG = (V,E)
consists of a language in which predicates can be built with

¢ the logic connectives, Vv, -, = and< (with their usual meanings),

¢ individual variables which may be vertex variables (with doméjpedge variables (with
domainE), vertex set variables (with domak(V), the power set of/), and edge set
variables (with domai® (E)),

e the existential and universal quantifiers ranging over variaBlesdV, respectively), and

e the following binary relations:

— Ve W, wherev is a vertex variable and/ a vertex set variable,

— e€ F, whereeis an edge variable arfélan edge set variable,

— ‘vandw are adjacent iis’, wherev andw are vertex variables,

— ‘visincident withein G', wherev is a vertex variable, anglan edge variable, and
— equality for variables.

A predicate that is defined in MSOL for graphs is also calletM&OL predicateLetRbe an

MSOL predicate such th& has no free variables. Then a graptsatisfies Rf R evaluates

to true for G with the common interpretations of the language elements. A graph prdperty

is MS-definabléf there is a predicatR defined in MSOL for graphs, such ththas no free

variables and for each gragh= (V,E), P(G) holds if and only ifG satisfieR. A graph class

or decision problem is MS-definable if the corresponding graph property is MS-definable.
As an example, we show that the graph prop@rtyith P(G) = ‘G is two-colorable’ is

MS-definable (a graph is two-colorable if there is a partition of the vertices in two sets such

that each set is an independent set of the graph). For a @aptV, E), we define the MSOL
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predicateR as follows:

R = 3JucvIwey UNW=9g)A(UUW=V)
A (VuevVvev (Uandv are adjacent= (ue U < veW)).

Note thaty NW = ¢ can be defined in MSOL &,y —(ve U AveW), and that) UW =V
can be defined ag,cy(ve U vv e W). Now, a graptG = (V,E) is two-colorable if and only
if G satisfies predicat@ Hence propert is MS-definable.

Let P be an extended graph propeRyvith variablesG, X1, X, ... , X, whereG = (V,E)
is a graph and for eadh1 <i <t, X; € D; for some domai;. ThenP is MS-definable if
there is a predicatB(Y1,Y2,... ,Y;) that is defined in MSOL for graphs, with free variables
Y1,Y2,...,Y;, such that for each grap@ and everyXs, Xo,... , % with X € D; for eachi,
P(G, X1, X, ..., %) holds if and only ifG satisfiesR(X1, Xz, ... , X).

As an example, consider the extended graph profigwmyth for each grapl& and every
subsetd/; andV; of V(G), Q(G,V4,V2) holds if and only if(V4,V,) is a two-coloring ofG.
LetR(Y1,Y2) be the MSOL predicate defined as follows:

R(Yl,Yz) = (YlﬂY2:¢)/\(Y1UY2:V)
A (VuevVvev (Uandv are adjacent= (UEY; S VEY,)).

Clearly, for each grapt® and each two subsets andV, of V(G), (V1,V2) is a two-coloring
of Gif and only if G satisfiesR(V1,V»). HenceQ is MS-definable.

Courcelle [1990] has shown that MS-definable graph properties are finite state, and thus
decidable in linear time for graphs of bounded treewidth. There are many decision problems
which are MS-definable, even many NP-complete decision problems, includimgLiFo -

NIAN CirculT and (for fixedk) k-COLORABILITY (see e.g. Arnborg et al. [1991] for a
list).

Arnborg et al. [1991] gave an alternative proof of the fact that all MS-definable graph
classes are recognizable@in) time, if a tree decomposition of bounded width of the input
graph is given. They extended MS-definability to, among others, construction problems and
(constructive) optimization problems (definitions are given below). They have shown that
MS-definable (constructive) decision and (constructive) optimization problems can be solved
in linear time, given a tree decomposition of bounded width of the input graph. We describe
some of these results.

A construction problem is MS-definable if there is an MS-definable extended graph prop-
erty Q(G, X1, X2, ... ,% ), such that the construction problem is to find, for a given gi@ph
values ofXy, ..., X% for which Q(G, Xy, ... ,%) holds. For instance, the constructive version
of k-COLORABILITY is MS-definable, as the extended graph prop&t,Vi,Va,..., V)
which holds if(V1,Vs, ... k) is ak-coloring of G is MS-definable. The constructive version
of HAMILTONIAN CIRCUIT is also MS-definable.

An optimization problem is MS-definable if there is an MS-definable extended graph
propertyQ(G, X, ..., %), and there are constants, ... ,o such that the problem is to find
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for a given graptG the maximum value ofi|Xy| + az|Xo| + - - - + at|X|. For instance, Mx
INDEPENDENT SET is MS-definable: [eQQ(G,W) be the extended graph property which
holds ifW is an independent set &. It is easy to see th& is MS-definable. The problem
of finding the maximum size of an independent seGef (V,E) is then the problem to find
the maximum value ofW| for any seW C V for which Q(G,W) holds. Other examples of
MS-definable optimization problems areaM CuT, LONGESTPATH and LONGESTCYCLE.

A constructive optimization problem is MS-definable if there is an MS-definable ex-
tended graph propert9(G, X1, ... ,% ), and there are constants, ... , o such that the prob-
lem is to find for a given grapt values ofXy, ... , %, such thalQ(G, Xy, ... , %) holds and
ag|Xg| + az|Xz| + - - - + at| X | is maximum. For instance, the constructive versions afxM
INDEPENDENTSET, MAX CUT, LONGESTPATH and LONGESTCYCLE are MS-definable.

Borie et al. [1991] have used a different approach to show similar results, using the results
of Bern et al. [1987].

The disadvantage of the algorithms presented in this section is that a tree decomposition
of bounded width of the input graph is needed. Although there is a linear time algorithm that
finds a tree decomposition of small width of a given graph if one exists [Bodlaender, 1996a],
this algorithm is not practical, as argued before. In parallel, the best known algorithmto find a
tree decomposition of small width of a graph u€¥tog?n) time with O(n) operations, even
on a CRCW PRAM [Bodlaender and Hagerdp95]. This slows down the computations by
a factor logh. A way to overcome this disadvantage is to vsguction algorithms These
algorithms work directly on the graph: to decide whether a given graph is in some graph class,
a reduction algorithm reduces small parts of the graph into smaller parts, thereby preserving
membership of the graph class. If no more reductions can be performed, either the graph
is reduced to a small graph, which is easy to handle, or the graph is not in the graph class.
Reduction algorithms are more thoroughly discussed in Chapter 5.

2.2.5 Forbidden Minors Characterization

Let G andH be graphs. We sa§ containsH as a minor oH is a minor ofG if G has a

minor that is isomorphic tél. A graph clas§ is minor-closedf for every graphG and every
minorH of G, if G € G thenH € G. Note that for each integdr> 1, the class of graphs of
treewidth or pathwidth at mogtis minor-closed, by Lemma 2.2.7. Robertson and Seymour
have established deep results on graph minors in their series of papers [1983 — 1996]. An
overview of these results can be found in Robertson and Seymour [1985]. The mostimportant
of these results in our context are the following.

Theorem 2.2.1 (Graph Minor Theorem)Let G, G,,... be a countable sequence of graphs.
Then there are indices < i < j such that Gis a minor of G.

Theorem 2.2.1 was formerly known as Wagner’s ConjectureGLieé a minor-closed graph
class. LetH be a graph which is not i6. Each graph which had as a minor is not irs,
otherwiseH would be inG. We callH aforbidden minorof G. A minimal forbidden minor
of G is a forbidden minor of5 of which each proper minor is i6. A minor-closed graph
classG is completely characterized by the set of all minimal forbidden mifibrealled
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the obstruction sebf G: a graph is inG if and only if it does not contain a minor iQ.
Theorem 2.2.1 immediately implies the following result.

Corollary 2.2.1. For each minor-closed class of grapfs the obstruction set has finite
cardinality.

Note that Corollary 2.2.1 shows that for each fixed 1, the class of graphs of treewidth at
mostk or pathwidth at most has a finite obstruction set.

Robertson and Seymour [1985] have also shown that for a fixed ¢ftaphe can check
whetherH is a minor of a graplG in O(n®) time (wheren = |V(G)|). If the input graph is
known to have a bound on the treewidth, then we can even do a minor @8t)itime, since
the corresponding decision problem is MS-definable [Arnborg, Lagergren, and Seese, 1991].

These results imply that there ex@n?) time recognition algorithms for all minor-closed
graph classes: test for a given graph whether it has a minor in the obstruction set of the graph
class. For classes of graphs which have a bound on the treewidth, there eveD(exist
time recognition algorithms. Unfortunately, the results of Robertson and Seymour are non-
constructive in the sense that they only prove existence of a finite obstruction set, but provide
no method to obtain the obstruction set. Also, @@?3) minor testing algorithm has large
hidden constants, which makes this algorithm rather impractical. Furthermore, the size of
an obstruction set can be very large. For the class of graphs of pathwidth ak foost
example, the obstruction set contains among ottidig trees, each havings- 3¢ <1)/2
vertices [Takahashi, Ueno, and Kajitani, 1994].

Many efforts have been made to actually find obstruction sets of minor-closed graph
classes. For example, Arnborg and Proskurowski [1986] have given the obstruction sets of
the classes of graphs of treewidth at most one, two and three; Bryant, Fellows, Kinnersley,
and Langston [1987] have given the obstruction sets for pathwidth at most one and Kinner-
sley and Langston [1994] for pathwidth at most two. More general approaches have been
taken by Fellows and Langston [1989] and Lagergren and Arnborg [1991], who have given a
number of ingredients that have to be present in order to be able to compute an obstruction
set for a given graph class. A more practical approach, based on the result of Fellows and
Langston [1989], is taken by Dinneen [1995].

We explicitly mention the following result, as it will be used in this thesis.

Lemma 2.2.8 [Arnborg and Proskurowski, 1986 graph has treewidth at most one if and
only if it does not have Kas a minor, and treewidth at most two if and only if it does not have
K4 as a minor.

2.3 Related Graph Classes

In this section, we define a number of graph classes and graph problems which are related to
treewidth and pathwidth.
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Chapter 2 Preliminaries

2.3.1 Chordal Graphs and Interval Graphs

A chordal or triangulated graph is a graph which does not contain any induced cycles of
length four or more. LeG = (V, E) be a graph. Ariangulationof G is a supergrapt®’ of G
with V(G') =V, such thatG' is chordal.

The following result relates chordal graphs to treewidth.

Lemma 2.3.1 [Robertson and Seymour, 1986al.et G= (V,E) be a graph and let ¢G)
denote the least maximum clique size of any triangulation of G. ) < ct(G) <1.

Proof. We use the following result of Gavril [1974]: a gra@hs a chordal graph if and only
if G is the intersection graph of a family of subtrees of a tree (the intersection Graph
family F of subtrees of a tree is the gra@h= (V, E) which contains a vertex for each tree
in F , and edge between two vertices if and only if the corresponding trees intersect).

We first show that tdG) > ct(G) 1. Suppose tG) = k<1 and letTD= (T,X) be a
tree decomposition of width<1 of G, with T = (I,F) andX = {X; | i € | }. LetE' be the
set{{u,v} | Jiciu,v€ X} and letG' = (V,E’). TDis a tree decomposition of width1 of
G/, and thus, by Lemma 2.2.3, the clique size3fis at mosk. We show thaG' = (V,E’)
is a chordal graph. For eache V(G), let T, denote the subtree df induced by the nodes
containingv. ThenF = {T, | v e V} is a family of subtrees of, andG' is the intersection
graph ofF . Hence tWG) < ct(G) 1.

We next show that tWG) < ct(G) 1. Suppos&' is a triangulation o5 with maximum
clique sizek. LetF be a family of subtrees of a trde= (I, F) such thatG' is the intersection
graph ofF . For eachv € V(G'), let Ty € F be the tree corresponding to vertexFor each
iel, letX ={veV(G)|ieV(Ty)}. Then(T,X) is a tree decomposition of the gra@h
and hence o6. Furthermore, a&’ has clique siz&, each nodé contains at most vertices.
Thus(T,X) has widthk <1, and hence t¢G) < ct(G) <1. ad

Simple chordal graphs can be recognize®{n+ m) time [Rose, Tarjan, and Lueker, 1976].
For the pathwidth of a graph there is a similar result, which we describe after a few more
preliminaries.

Definition 2.3.1 (Interval Graph). A grapls = (V,E) is aninterval graphif there is a func-
tion @ which maps each vertex dfto an interval of the real line, such that for each € V
with v # u,

o(U)No(v) # p & {u,v} €E.
The functiongis called arinterval realizationfor G.

It can be seen that interval graphs are chordal. An example of an interval graph and an interval
realization of the graph is given in Figure 2.7.

Simple interval graphs can be recognizeddfm+ m) time [Booth and Lueker, 1976;
Hsu, 1993; Korte and Mfiring, 1989], and with these algorithms it is also possible to find
an interval realization of the given graph (if it is an interval graph). The relation between
interval graphs and pathwidth is expressed in the following results.
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2.3 Related Graph Classes

Figure 2.7. An interval graphG and an interval realizatiopof G.

Lemma 2.3.2. Let G= (V,E) be a graph and let PB= (X, ... ,% ) a path decomposition of
G. Let G = (V,E’') be the supergraph of G with'E= EU {{u,Vv} | J1<i<t u,v € X }. The
graph G is an interval graph.

Proof. Leto:V — {1,...,n} be defined as follows. For eaete V, if the subsequence
of PD consisting of all nodes containingis (X;j,... , X)), theng(v) = [j,l]. Then for each
u,veV, {u,v} € E'if and only if o(u) andg(v) overlap. O

The graphG’ as defined in Lemma 2.3.2 is called th&erval completiorof G for PD.

Lemma 2.3.3 [Mohring, 1990]. Let G= (V,E) be a graph and let €iG) denote the least
maximum clique size of any interval graph which is a supergraph of G. Ph@) =
Ci(G) 1.

Proof. We first show that tWG) < ci(G) <1. Suppos&’ = (V',E') is an interval graph
such thatt C E’, the clique size of5' is ci(G), and there is no other interval supergraph
of G with smaller clique size. Ldt=ci(G). Note that ifV’ #V, then the subgraph &'
induced byV is an interval with maximum clique size at me$tG). Hence we may assume
thatV’ =V. Leto:V — | be an interval realization fd&', and suppose w.l.0.g. that for each
vertexv, @(v) = [ly,ry] for some integerk, andry. Let (uy,...,un), n=|V|, be an ordering
of V in such a way that for all, j with 1 <i < j <n, I; <ly;. For eachi with 1 <i <n, let
Xi={veV|ly €g(v)}. ThenPD=(Xy,...,Xn) is a path decomposition & and hence of
G. Furthermore, each node contains at nkogtrtices, since the clique size Gfis k. Hence
PD has pathwidth at mogt<1.

The proof that twG) > ci(G) <1 follows directly from Lemmas 2.2.3and 2.3.2. O

2.3.2 Bandwidth

Definition 2.3.2 (Layout and Bandwidth). Le® = (V,E) be a graph. Aayoutof G is a
function?¢ :V — Z*, such that for eacla # w, ((v) # ¢(w). Thebandwidthof a layout? is
defined to be mai((v) <((w) | {v,w} € E }. Thebandwidthof G is the minimum bandwidth
of all layouts ofG.
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Figure 2.8 shows a layoutof a graphG. This layout has bandwidth two, and this is also the
bandwidth ofG. The layout is depicted by drawing the vertices in a sequence in the order in
which they appear in the layout.

Figure 2.8. A graphG of bandwidth two and a layoutof bandwidth two ofG.

Lemma 2.3.4 [Bodlaender, 1996b].If G is a graph of bandwidth at most k, then G has
pathwidth at most k.

Proof. Supposés is a graph of bandwidth at mokt Let ¢ be a layout ofG of bandwidth
at mostk. Then we can make a path decomposition of width at rh@st follows. Order the
vertices ofG asvy, ... , vy, such that for each< j, £(v;) < ¢(vj). Now for each, 1 <i < n<k,
make a nodéwith X; = {Vi,Vit+1,...,Vitk}. It can be seen th&D = (Xy, ... ,Xy_k) is a path
decomposition 06 and has pathwidth. a

The BanDWIDTH problem (given a grapl, integerk, doesG have bandwidth at most
k<1?) is NP-complete [Garey, Graham, Johnson, and Knuth, 1978], even when the input
graph is a tree [Monien, 1986]. For any fixédthere is anO(nK) algorithm that solves
k-BANDWIDTH [Gurari and Sudborough, 1984], and there isG{m) time algorithm for 2-
BANDWIDTH [Garey, Graham, Johnson, and Knuth, 1978]. Bodlaender, Fellows, and Hallett
[1994] have shown th&BANDWIDTH is hard folW[2]. We do not give an exact definition of
WI(i]-hardnessi(e IN) here [Downey and Fellows, 1995], but the idea is that if a parameterized
graph problem calle#-PrRoBLEM is hard forW(i], wherei € IN, then it is unlikely thak-
PROBLEM is fixed parameter tractabla.e. it is unlikely that there exists a constanguch
that for any fixed numbek, k-PROBLEM is solvable in timeD( f (k)n°).

2.3.3 Series-Parallel Graphs

Series-parallel graphs appear in several applications. For example, if we want to compute the
resistance of an electrical network of resistors using Ohm’s laws, then the underlying graph
of the network must be a series-parallel graph.

A source-sink labeled grapis a triple(G,s,t), whereG is a multigraph and andt are
distinct vertices of5, called thesourceandsink of the graph, respectively.

Theseries compositionf two or more source-sink labeled graphs is the operation which
takesr > 2 source-sink labeled grapbGy,si,t1),...,(Gr,s,t) and returns a new source-
sink labeled graphG,s,t) that is obtained by taking the disjoint union@®f, ... ,G;, identi-
fying s11 with tj for all i, 1 <i < r, and lettings= s andt =t,. Figure 2.9 shows the series
composition of three source-sink labeled graphs.
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series composition — o G1 ° Gy [} G3 ()

Gs
S=81=5=33
parallel compositon ——> So G ol t-gy=th=ts
Gy

Figure 2.9. A series and a parallel composition of three source-sink labeled graphs
(G1,81,11), (G2, %, 12), (G3, 3, 13).

The parallel compositionof two or more source-sink labeled graphs is the operation
which takesr > 2 source-sink labeled grapli&i,si,t1),...,(Gr,s,t) and returns a new
source-sink labeled grafks, s,t) that is obtained by taking the disjoint union@f, ... ,G,,
identifying all verticessy, ... ,s into the new sourcs, and identifying all vertices, ...t
into the new sink. Figure 2.9 shows the parallel composition of three source-sink labeled
graphs.

Definition 2.3.3 (Series Parallel Graphs). A source-sink labeled grd@pls,t) is a series-
parallel graphif and only if one of the following holds.

e (G,st) is abase series-parallel grapltonsisting of two vertices andt with one edge
betweers andt.

e (G,st) is obtained by a series or parallel compositiom &f 2 series-parallel graphs.

Part | of Figure 2.10 shows a series-parallel graph with sosiao®d sinkt. An equivalent
definition which is often used only involves series and parallel compositions with two series-
parallel graphs. A multigrap is said to be series-parallel if and only if there are vertices
s,t € V(G) such tha{G,s;t) is a series-parallel graph.

The ‘decomposition’ of a series-parallel graffh, s,t) into series and parallel composi-
tions is expressed in ap-tree § of the graph. An sp-tree is a rooted tree, in which each
node has one of the typg@snode s-nodeandleaf node and has a label. A label of a node
is an ordered paitu, V) of vertices ofG. Every node of an sp-tree corresponds to a unique
series-parallel graptG',a, b), whereG' is a subgraph 0B, and(a,b) is the label of the node.

The root of the tree has labgd t), and corresponds to the graf®, s,t). The leaves of the
tree are of type leaf node, and correspond to the base series-parallel graphs that represent the
edges ofG: there is a one-to-one correspondence between leaviesasfd edges € E(G).
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= p-node labeleda, b)
= s-node labeleda, b)

SX ab =leaf node labelega,b)

Figure 2.10. A series-parallel graphs and its minimal sp-tree.

Internal nodes are of type s-node (series node) or p-node (parallel node). The children of a
series node are ordered, while the children of a parallel node are not ordered. The series-
parallel graph associated to an s-noads the graph that is obtained by a series composition

of the series-parallel graphs associated to the children wfhere the order of the children
gives the order in which the series composition is applied. The series-parallel graph associ-
ated to a p-nodp is the graph that is obtained by a parallel composition of the series-parallel
graphs associated to the childrerpofNote that the children of a p-node have the same label

as their parent. Part Il of Figure 2.10 shows an sp-tree of the series-parallel graph given in
partl.

Note that a series-parallel graph can have different sp-trees. An sp-tree is called a binary
sp-tree if each internal node has two children. It can be seen that any series-parallel graph
has a binary sp-tree. Ainimal sp-treeof a series-parallel graptG,s,t) is an sp-tree of
the graph in which p-nodes only have s-nodes and leaf nodes as children, and s-nodes only
have p-nodes and leaf nodes as children. Note that the sp-tree in part Il of Figure 2.10 is
minimal. For each series-parallel graffb, s,t) there is a unique minimal sp-tree which can
be obtained from any sp-tree B, s,t) as follows: for any s-node with another s-nodg
as child, contract the edge betwaeandp, and adapt the label. Do the same for any p-node
with another p-node as child.

We can also define directed series-parallel graphs. These are defined in the same way as
undirected series-parallel graphs, with the sole exception that a base series-parallel graph is
a directed graph with two verticesandt and a directed edge from the sous® the sink
t. As a result, directed series-parallel graphs are acyclic, and every vertex lies on a directed
path from the source to the sink.

Lemma 2.3.5. If a multigraph G is series-parallel, then the treewidth of G is at most two.

Proof. LetT =(N,F) be a binary sp-tree @. We make a tree decompositid = (X, T)
of width at most two ofc from T with X = {X; | a € N}. For each p-node with label(v,w),
let X4 = {v,w}, and for each s-nodewith label(v,w) and labels of its two childrefv,x) and
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(x,w), let Xy = {v,w,x}. One can verify thatX,T) is a tree decomposition & of treewidth
at most two. O

If an sp-tree of a series-parallel graph is given, many graph problems can be solved in
linear time (in the number of edges) by doing dynamic programming on the sp-tree [Bern
et al., 1987; Borie et al., 1992; Kikuno et al., 1983; Takamizawa et al., 1982]. These results
also follow from the fact that series-parallel graphs have treewidth at most two.

A series reductioim a source-sink labeled grap8, s, t) is the operation which removes a
vertexv € V(G) of degree two of5, v # st, and adds an (extra) edge between the neighbors
of v. A parallel reductionin a source-sink labeled gragls,s,t) is the operation which
removes an edgebetween two vertices andv which are connected by two or more edges.
The rules for series and parallel reduction are depicted in Figure 2.11.

o]

series reduction rule parallel reduction rule

Figure 2.11. Series and parallel reduction rules.

Duffin [1965] has shown that a source-sink labeled gr@pls.t) is series-parallel if and
only if any sequence of series and parallel reductions eventually leads to a base series-parallel
graph. Valdes et al. [1982] have given@(m) time algorithm for recognizing series-parallel
graphs which is based on this characterization. This algorithm also builds an sp-tree of the
input graph if it is series-parallel.

In Chapter 8 we give an additional set of reduction rules with which series-parallel graphs
can be recognized in parallel @(logmlog*m) time with O(m) operations on an EREW
PRAM. This algorithm also returns an sp-tree of the input graph, if it is series-parallel.
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Chapter 3
The Structure of Partial Two-Paths

In this chapter, we give a complete characterization of the structure of partial two-paths. This
characterization is presented in three steps: we first describe the structure of biconnected
partial two-paths (Section 3.2), then the structure of trees of pathwidth two (Section 3.3), and
finally the structure of partial two-paths in general (Section 3.4). In Section 3.5, we give a
linear time algorithm which, given a grajgh checks whethe® has pathwidth at most two,

and if so, finds the structure of the graph as described in this chapter. This algorithm is used
in Chapter 4. We start with some definitions and preliminary results in Section 3.1.

3.1 Preliminaries

In this section, we give some terminology and preliminary results that are used in this chapter
and in Chapter 4.

The graphs we consider in this chapter are simpleQla¢ a graph, anBD = (Vi,... ,\4)

a path decomposition d@&. Let G’ be a subgraph oB. Theoccurrenceof G' in PD is the
subsequencéVj,...,Vj) of PD in whichVj andV; contain an edge o&', and no node
Vi, with i < j ori> |’ contains an edge @/, i.e. (Vj,...,Vy) is the shortest subsequence
of PD that contains all nodes &D which contain an edge &'. We say thaGG’' occursin
(Vj,...,Vy). The vertices o6’ are said to occurifv,, ..., Vi) if this sequence is the shortest
subsequence &D containing all vertices of'.

Let G be agraph anBD = (Vi,...,Vt) a path decomposition @. Let 1< j <t. We say
that a nod&/; is on theleft sideof V; if i < j, and on theight sideof V;j if i > j. LetG' be a
connected subgraph &, supposé&’ occurs in(M, ..., V). We say thaG’ occurs on the left
side ofVj if I’ < j, and on the right side of; if | > j. In the same way, we speak about the
left and right sides of a sequen@g, ...,Vj/), i.e. a node is on the left side ¢fj,...,Vj ) if
it is on the left side o¥j, and a node is on the right side @f;,...,Vj) if it is on the right
side ofV;.

The following definition only makes sense if the graplhas pathwidth at most two. An
edgee (or vertexv) is anend edggor end vertex of G’ if in each path decomposition of
width two of G, e (or v) occurs in the leftmost or rightmost end node of the occurrence of
G'. An edgee (or vertexv) is adouble end edgéor double end vertgxof G’ if in each path
decomposition of width two o8, e (or v) occurs in both end nodes of the occurrenc&of

Let G be a graph, 1ePD = (V4, ... ,\t) be a path decomposition &, and letvV' C V.
SupposeG[V'] occurs in(Vj,...,Vy), 1< j < j' <t. The path decomposition @B[V’]

37



Chapter 3 The Structure of Partial Two-Paths

induced byPD is denoted by?D[V'] and is obtained from the sequeriggnV’,... \V;ynV’)
by deleting all empty nodes and all nodés\V', j <i < j’, for whichVnV' =V, 1 nV".

Let G be a graph, and l&s; andG; be subgraphs d& such that the union d&; andG,
equalsG. LetPD; = (V4,...,\t) andPDy = (W, ... ,\W) be path decompositions &f; and
Gy. Theconcatenatiof PD; andPD; is denoted byPD; + PD, and is defined as follows.

PDy +PDy = (V17... Vi, W, 7V\{/)

Note thatPD; + PD> is a path decomposition @ if and only if the vertices oW/ (G1) N
V(Gy) occur inV; and inW.

Lemma 3.1.1. Let G= (V,E) be a connected partial two-path and let ¥ V. Let PD=
(V1,..., V) be a path decomposition of width two of G such that the vertices ottur in
(Vj,...,Vj). On each side ofVj,...,V), edges of at most two components ¢¥ &V']
occur.

Proof. Suppose there are edges of at least three compone@{¥ abV'] on the left side of
Vj. LetGy, G, Gz be three of these components. Mgtl <| < j, be the rightmost node on
the left side ofv; containing an edge of one of the compondbis G, andGg, sayGi.
contains a vertex d&; and ofGz. HenceV;| > 4. O

3.2 Biconnected Partial Two-Paths

We only consider non-trivial biconnected graphs in this section. For the characterization of
biconnected partial two-paths, we make use of a result of Bodlaender and Kloks [1993] (see
also Kloks [1994]), who gave a characterization of biconnected partial two-trees.

Definition 3.2.1. Given a biconnected grapgh = (V,E), thecell completion@ of G is the
graph which is obtained fror® by adding an edgéu, v} for all pairsu,v of vertices inV,
u#v, forwhich{u,v} ¢ E(G) andG[V (G) <{u,v}] has at least three connected components.

Lemma 3.2.1. Let G be a biconnected graph, l6tdenote the cell completion of G. Let C
and G be distinct chordless cycles Gf

1. G and G have at most two common vertices.
2. IfCy and G have two common vertices u and v, then they have the{edgein common.

Proof. We first prove the following claim: i€, andC; have two vertices andv in common,
then{u,v} is an edge irG, and furthermoreju,v} € E(C;) and{u,v} € E(Cy).

Let P; andP; be the two paths fromto vin C; which are internally vertex-disjoint. There
is a pathP; from u to v in C; which is internally vertex-disjoint from both; andP.. By the
definition of cell completion{u,v} € E(G). SinceC; andC; are both chordless cycles, it
must be the case thét, v} € E(C;) and{u,v} € E(Cy). This proves the claim.

SupposeC; andC; have a setV of vertices in common withW| > 3. By the previous
claim,W induces a clique i€; and inC,. This is only possible ifW| = 3 andC; andC; are
both cycles on the vertices . But that means th&; = C,, contradiction. Henc€; and
C, have at most two vertices in common, and if they have two vertices in common, then they
have the edge between these vertices in common. a
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3.2 Biconnected Partial Two-Paths

The following lemma has been proved by Bodlaender and Kloks [1993] in the setting of
partial two-trees. For the sake of completeness, we give an alternative proof here.

Lemma 3.2.2. Let G be a biconnected partial two-path. Each path decomposition of width
two of G is a path decomposition (of width two) of the cell complegBaf G.

Proof. Letu,ve V(G), u#v, and supposéu,v} ¢ E(G) andGV(G) <{u,v}] has at
least three connected components. Si@de biconnected, there are three internally vertex-
disjoint pathsP, P>, Ps fromutovin G (i.e. fori # j, B andP; only have vertices andv in
common). We show that in each path decomposition of width tw®, difiere is a node which
containsu andv. Suppose not. LD = (Vy,...,\t) be a path decomposition of width two
of G such thaw is the rightmost node containingVj is the leftmost node containingand
i < j. NodeVi;1 contains at least one vertex of edghl < | < 3, but it does not contain.
But each of these vertices has a patb,tandu ¢ Vi 1. This means that, for ea¢hl <I <3,
there is a vertex; € V(R ) <{u,v} such thay, € Vi. This means thd¥;| > 4, a contradiction.

O

Bodlaender and Kloks [1993] gave a linear time algorithm for finding the cell completion
of a biconnected partial two-path. In the cell completion of a graph, each two distinct chord-
less cycles have at most one edge in common. Bodlaender and Kloks [1993] have shown that
the cell completion of a biconnected partial two-tree is a ‘tree of cycles’. We show that the
cell completion of a biconnected partial two-path is a ‘path of cycles’. First, we give some
definitions and prove a number of lemmas.

Definition 3.2.2 [Bodlaender and Kloks, 1993]. The classtmfes of cycless the class of
graphs recursively defined as follows.

e Each cycle is a tree of cycles.

e For each tree of cycleS and each cycl€, the graph obtained froi® andC by taking
the disjoint union and then identifying an edge and its end verticEsiith an edge and
its end vertices i, is a tree of cycles.

Note that two different chordless cycles in a tree of cycles have at most one edge in common.

Definition 3.2.3. A path of cycless a tree of cycle& for which the following holds.

1. Each chordless cycle & has at most two edges which are contained in other chordless
cycles ofG.

2. If an edgee € E(G) is contained irm > 3 chordless cycles db, then at leasin<2 of
these cycles have no other edges in common with other chordless cycles, and consist of
three vertices.

For an example of a path of cycles, see Figure 3.1. With each path of ycles can
associate a sequen(@y, ... ,Cp) of all chordless cycles d& and a sequendes, ... ,€p_1)
of edges ofG, such that for each 1 <i < p, cyclesC; andCi;1 have edgey in common,
and furthermore, if < p<1 ande = g1, thenCi11 has three vertices.
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2 3 4 5 6 7 8
\ 4
19 20 °
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@
18 17 16 15 14 13 12 11

Figure 3.1. A path of cycles.

Definition 3.2.4 (Cycle Path). LeG be path of cycles, le€ = (Cy,...,C;) be a sequence
of chordless cycles as defined above, andElet (ey,...,ep_1) be the corresponding set of
common edges. The pdi€,E) is called acycle pathfor G.

For the path of cycles shown in Figure 3.1, a cycle path consists of 6 cycles. A possible
cycle path igC,E), with C = (Cy,...,Cs) andE = (ey,...,65):

V(C) ={1,2,3,4,16/17,18}, V(C,)={4,16,19}, V(Cs) = {4,16,20},
V(C4) = {4,5,6,13,14,15,16}, V(Cs) = {6,7,8,13}, V(Cs) ={8,9,10,11,12,13},

and furthermoreg; = o = e3 = {4,16}, &4 = {6,13}, andes = {8,13}.

Consider a path of cycle§. Suppose there are two distinct cycle patGsE) and
(C',E’) for G, whereC = (Cy,...,Cp), E = (e1,...,85-1) andC’' = (C},... ,C}), E' =
(€,... 7e’p_l). Then either for each 1<i < p, g = € or for eachi, g = e’p_i. If the first
condition holds, then for eadh 1 <i < p, if G; # C{, thenC; andC/ both consist of three
vertices, and if K i < p, theng_1 = g. If the latter condition holds, a similar property can
be derived. In other words: two cycle paths for the same path of cycles can only differ in the
ordering of cycles which consist of only three vertices, and have the same (only one) edge in
common with any other cycles.

In the remainder of this section, we show that a biconnected d@eapla partial two-path
if and only if its cell completion is a path of chordless cycles. We first show one side of this
equivalence.

Lemma 3.2.3. Let G be a biconnected graph. @is a path of cycles, then G is a partial
two-path.

Proof. Supposés is a path of cycles an(C, E) is a cycle path foG, with C = (Cy,... ,Cp)
andE = (ey,...,ep_1), p> 1. Then we can make a path decomposition of width tw&of
as follows. Letey be an arbitrary edge i61 with ey # e(, and lete, be an arbitrary edge
in Cp with ep # ep_1. For eachi, 1 <i < p, we make a path decompositi®D; of C; as
follows. If |[V(Ci)| = 3, letPD; = (V(Gi)). Otherwise, do the following. Let_1 = {u,v}
ande = {U,V} such that there is a path fromto U’ which does not contaim or V', Let
Py = (ug,...,uq) denote the path i€ from u to U’ which avoidsv andV’ (i.e.u=u; and
U = ug), and letP> = (vi,..., V) denote the path i€ from v to V' avoidingu andu’ (i.e.
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3.2 Biconnected Partial Two-Paths

v=v; andV =v;). Foreach, 1< j < q, letVj = {uj,uj;1,v1}, and foreachj, 1< j <r, let
Vjtg-1={Uuq,Vj,Vj41}. LetPD; = (V1,...,Vgq4r—2). Note thatPD; is a path decomposition
of width two ofC; with 1 CV; andg C Vqyr—2, and henc®D = PD; +PDa+-- - +PDyp
is a path decomposition of width two &, and thus ofG. a

As an example, consider the path of cycles of Figure 3.1. Figure 3.2 shows a path de-
composition of width two of this graph, made according to the construction of the proof of
Lemma 3.2.3, whereg = {1,18} ande, = {9,10}.

Figure 3.2. A path decomposition of width two for the graph of Figure 3.1.

We now give three technical lemmas in order to prove that if a biconnected Grapls
pathwidth two, then its cell completid@ is a path of cycles. These lemmas show that, in a
path decomposition of width two of a biconnected partial two-path, the occurrences of two
chordless cycles can overlap in only a very small part.

Lemma 3.2.4. Let G be a biconnected partial two-path, C a cycléofand PD=(V4,...,M)
a path decomposition of G of width two. Suppose C occuf¥jin..,Vj), {u,v} is an edge
of C occurring in \{, and{u’,v'} an edge occurring in ). The following holds.

1. If|V(C)| > 3, then{u,v} # {U ,V}.

2. Foreachi, j[<i< |, MnNV(C)| > 2and for each edgee E(C) thereis ani, j<i < j/,
such thateC V; and|ViNV(C)| = 3.

Proof.

1. SupposeaV(C)| > 3, butu=u" andv=V. There is an edgéw,x} in C with {w,x} N
{u,v} = . Because of the definition of path decomposition, there is prt i < j’, such that
w, X € Vi, and alsau,v € Vi. Hence|V;| > 4, contradiction.

2.  Suppose w.l.o.g. that and U’ are connected by a path @ which avoidsv andV'.
Denote this path by;. Denote the path betweenandVv which avoidsu andu’ by P..
See also Figure 3.3. According to Lemma 2.2.2, each <i < j/, contains a vertex d?;.
Analogously, eack contains a vertex d®. SinceP; andP; are vertex-disjointVi NV (C)| >
2 for each, j <i < j’. Supposé’; contains at least one edge. ledte an edge dP;. LetV,,
j <1 <j', be such tha¢ C V. NodeV, also contains a vertex &, hence there is ainsuch
thate C V; and|V NV (C)| > 3 for each edge on P andP,. Now consider edgéu,v} C V.
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Chapter 3 The Structure of Partial Two-Paths

If there is another vertex & in Vj, then the lemma holds fdu,v}. If V;nV(C) = {u,v},
then there must be @nj <i < j’, such thafu,v} C Vi andV; contains a neighbor af or v.
HenceV; NV (C)| = 3. A similar argument establishes that there is a npaéth {u’,v'} C\
and|VinV(C)| = 3. o

Figure 3.3. The occurrence of chordless cy€es described in part 2 of the proof of
Lemma 3.2.4.

Let G be a biconnected partial two-path. Lemma 3.2.4 implies that the occurrences of
two chordless cycles db that do not have a vertex in common can not overlap in any path
decomposition of width two o8.

Lemma 3.2.5. Let G be a biconnected partial two-path with cycles C ahevBich have one
vertex u and no other vertices in common. LetDVi,... ,\t) be a path decomposition

of G of pathwidth two in which no consecutive nodes are the same. Suppose C occurs in
(Vj,...,Vy) and C occurs in(M,... V). Then either j<lorl" < j.

Proof. Assumej <. CycleC contains an edge of which both end points are not vertices of
C/, and similarly,C’ contains an edge of which both end points are not vertic€s ¢fence
j<landj <.

If j” <1, then clearlyj” < holds. Supposé< j'. For each, | <i < j, Vi contains
two vertices fromC and two vertices fronC' (Lemma 3.2.4, part 1), henaee V;. Let
{u,v} € E(C) such thatu,v € Vj. There is a nod&, j < i’ < J', which containay, v and
another vertex fron€ (Lemma 3.2.4, part 2). This is only possible’if< |, sincej’ < I'.
Hence, for each, | <i < j’, V; containsu andv. In the same way, we can prove that, if
{u,w} is the edge o€’ which occurs iV}, thenw € V; for eachi, | <i < j'. Hence for each
i, <i<j',Vi={uvw}. SincePD contains no consecutive nodes that are the same, this
means that = j’. Hence ifj <I, thenj’ <I.

By symmetry] < j impliesl’ < j'. a

Lemma 3.2.5 shows that, if two cycl€sandC' have one vertex in common, then in any
path decomposition of pathwidth two their occurrences can overlap in at most one node. We
say thatC occurs on the left side @' or C occurs on the right side &'.

Lemma 3.2.6. Let G be a biconnected partial two-path with cycles C ahav@ich have one
edge{u, v} and no other vertices in common. Let RD(V4, ... ,\t) be a path decomposition
of G of pathwidth two. Suppose C occurg¥j, ..., V) and C occurs in(M,... ,Vi/). Then
the following holds.
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3.2 Biconnected Partial Two-Paths

1. j<landj<l'orj>landj>1"Ifj=land j =V, thenV(C)| = |V(C')| =3.
2. Edge{u,v}is anend edge of CandQf j <land j <I’, then

o j'2>1,

e {u,v} occursinV{ andinV, and

e thereis ani, I<i < j’, such that (C) N (Vix1U...UM) = {u,v} and V(C')n (V1 U
...UVi) = {u,v} (or possibly vice versa, if | and j =I').

Proof.

1. Supposg < | andj’ > I'. Then|V(C')| = 3, sayV(C') = {u,v,w}, since each node
inVj,...,Vj contains two vertices o. Let j <i < j’, such thaV; = {u,v,w}. Suppose
{xy}.{X,y'} € E(C) and{x,y} CV;j, {X,y'} CVy, such that there is a path frorito x
which avoidsy andy'. Let P; denote this path, and |& denote the path fromto y which
avoidsx andX'. {x,y} # {u,v} and{x,y} # {u,v}, so supposdu,v} € E(P;). NodeV,
contains a vertex o, which is notu, v or w. Hence|Vi| > 4, which is a contradiction. So
eitherj <l andj’ <l"orj>landj >I'. If j=landj =I', then|V(C)| = |V(C")| =3,
since each,, j <i < j', contains two vertices & and two vertices of'.

2. Suppose thagt<l andj’ </I'. Itis clear thatj’ > |, since{u,v} is an edge of botl and
C'. There are nodegy andV,y such thatvy, = {u,v,w} for somew € V(C) with w # u, v,
andVyy = {u,v,w} for somew € V(C') with w # u,v. Note thatt < m,m < j’. Suppose
first thatl < m< m < j'. We show that all vertices &f(C) <{u,v} occur only on the left
side ofVy. Suppose there is a vertex V(C) <{u, v} which occurs on the right side bfy.
There is a path fromx to w in C which avoidsu andv. NodeV,y contains a vertex of this
path. HencéV,y| > 4. This is a contradiction. Since ea¢h m<i < m, containsu andv,
this means that there is anm <i < m, such that all vertices of (C) <{u,v} occur only
in (V1,...,V), and the vertices of (C') <{u,v} occur only in(Viy1,...,M). Furthermore,
sincei < " andVj contains an edge @, Vj containsu andv. Similarly,V| containsu andv.
Now supposé <m <m< j’. In the same way as before, we can show that the vertices
of V(C) <{u,v} occur only on the right side &f, and the vertices of (C') <{u,v} occur
only on the left side o¥,. Hence there is an m' <i < m, such that all vertices &f (C) <
{u,v} occur only in(Vi41,...,W) and all vertices o¥/ (C') <{u,v} occur only in(Vy, ... , ;).
Furthermore) is the leftmost node which contains an edg€gfwhich means thag = I.
In the same way, we can prove that=1', andV; andV; both contairu andv. Hence{u, v}
is an end edge. a

Note that in part 2 of the lemma, the pa@, ... ,V;) of PD restricted tov(C) is a path
decomposition o€, and(V;1, ..., V) restricted to/(C') is a path decomposition &'. We
say thatC occurs on the left side &’. In other words, Lemma 3.2.6 says that, if there are
two cycles which have one edge in common, then in each path decomposition of width two
one occurs on the left side of the other one.

Let G be a biconnected partial two-path, anddeaindC’ be two distinct chordless cycles
of G. Lemmas 3.2.1, 3.2.4, 3.2.5 and 3.2.6 show that in any path decomposition of width two
of G, eitherC occurs on the left side &', or C occurs on the right side &'.
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Chapter 3 The Structure of Partial Two-Paths

Lemma 3.2.7. Let G be a biconnected graph. If G is a partial two-path, tiis a path of
cycles.

Proof. Supposé& is a biconnected partial two-path. It follows from the result of Bodlaender
and Kloks [1993] thatG is a tree of cycles. That means that we only have to show that
conditions 1 and 2 of Definition 3.2.3 hold. _

Let PD = (V1,...,\t) be a path decomposition of width two Gf (and hence 06). By
the previous discussion, there is a seque@e. .. ,Cp) of the chordless cycles @, such
that for each Ki < j < p, G occurs on the left side &; in PD. For each, j, 1<i< j <p,
letW; =V(G)NV(C;).

Claim. Foreachi,1<i < p, at mosttwo edges of @re contained in other chordless cycles
of G.

Proof. ~ Consider a cycl€; with j > i. Note that, by the definition of cell completion,
IWj| < 2, and if \Wj| = 2, thenW; is an edge of botiC; andC;. Hence each chordless
cycle that occurs betwedl andC; (in PD) also contains the vertices frowi;: for eachl,

i <I<j,Wj CV(G). This means thatfj C V(Ciy1) and hencé\; C Wi(;1). Hence ifG
has an edge in common withC;j, then it has this edge in common with, 1. ButG has at
most one edge in common wi@ 1, which means that at most one edgeCpfs contained
in any chordless cycle that occurs@rs right side. By symmetng; has at most one edge in
common with any chordless cycle that occurs on its left side. HEnlsas at most two edges
in common with any other chordless cycle. a

Claim. If an edge e occurs in m 3 chordless cycles, then at leasks2 of these cycles have
no other edges in common with any other chordless cycle, and consist of only three vertices.

Proof. Suppose edge occurs inm > 3 chordless cycles. Letj, 1<i< j < p, be such
thatG; is the leftmost cycle containingandC; is the rightmost cycle containirg Then for
eachl, i <| < j, edgee occurs in each node of the occurrence&gfand thus, by part 2 of
Lemma 3.2.4e € E(C;), and furthermore, by part 1 of Lemma 3.2M(C)| = 3. O

This proves the lemma. a
The main result of this section now follows.

Theorem 3.2.1. Let G be a biconnected graph. G is a partial two-path if and on@'r[s a
path of cycles.

3.3 Trees of Pathwidth Two

The following result, describing the structure of trees of pathwiglih similar to a result of
Ellis, Sudborough, and Turner [1994].

Lemma 3.3.1. LetH be atree and let k 1. H is a tree of pathwidth at most k if and only if
there is a path P= (v4,...,Vs) in H such that HV <V (P)] has pathwidth at most41, i.e.
if and only if H consists of a path with trees of pathwidth at maestlkconnected to it.
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3.3 Trees of Pathwidth Two

Proof. If H consists of apatR = (v1,...,Vs) with trees of pathwidth at mo&t=1 connected
to it, then we can make a path decompositiotdods follows. For each 1 <i <'s, make
a path decomposition of width at mdst=1 of all components oH[V <V (P)] which are
connected t;, and add vertey; to all nodes in this path decomposition. IRD; denote this
path decomposition. Now let

PD = PD1 -+ ({v1,V2}) + PD2 + ({v2,v3}) + -+ + {(Vs-1,Vs}) + PDs.

ThenPD is a path decomposition of width at mdsbf H.

SupposgVy, ..., ) is a path decomposition ¢f of width at mostk. Selectv,w € V
such thatv € V; andw € \4. Let P be the path fronvto win H. Then each/, 1 <i <t,
contains a vertex of. HencePD|V(H) <V (P)] is a path decomposition of width at most
kelofHV <V (P)). O

A graph has pathwidth zero if and only if it consists of a set of isolated vertices. Because
graphs of pathwidth one do not contain cycles, each component of a graph of pathwidth one
is a tree which consists of a path with ‘sticks’, which are vertices of degree one adjacent only
to a vertex on the path (‘caterpillars with hair length one’). An example of a partial one-path
is shown in Figure 3.4.

11 12 15 16

1 Xs 10 14
6 7

13

Figure 3.4. Example of a partial one-path.

Lemma 3.3.2. Let H be a tree of pathwidth k,k 1, and suppose there is no vertex ¥ (H)
such that HV <{v}] has pathwidth k=1 or less. Then there is a unique shortest path P in H
such that HV <V (P)] has pathwidth k=1 or less. Furthermore, P is a subpath of each path
P’ in H for which HV <V (P')] has pathwidth at most<e1.

Proof. If Pis a path inH such thatH [V <V(P)] has pathwidth at most<1, then all the
paths inH containingP have that same property. Suppose there are two distinct Pathd
P, such thaH [V <V (P)] andH [V <V (P')] have pathwidth at mogt<1. We first show that
V(P)NV(P') #¢@. Suppos& (P)NV(P') = @. LetH’ be the component &V <V (P)] which
containsP’, let H” be the component dfl [V <V (P')] which containsP, and letv € V(P)

be the vertex to whicld’ is connected, i.e. there isvac V(H’) such that{v,w} € E(H).
See Figure 3.5. Consider the components pf <{v}]. H' is one of these components, and
has pathwidth at most<-1. All other components contain no vertex®f and hence are
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Chapter 3 The Structure of Partial Two-Paths

subgraphs oH”, which also has pathwidth at mdst>1. HenceH [V <{v}] has pathwidth
at mostk <1, a contradiction.

Let P” be the intersection d? andP’, which is again a (non-empty) path. The forest
H[V <V (P")] has pathwidth at mo$t<1, since each componentdfV <V (P")] contains
no vertices oP or no vertices of’, hence is a component or a subgraph of a component of
eitherG[V &V (P)] or GV &V (P)].

This means that the intersecti of all pathsP for which H[V <V (P)] has pathwidth
at mostk <1 also has the property thet]V <V (P')] has pathwidth at most<-1, and it is
unique and shorter than all other paths having this property. |

L)

Figure 3.5. Example of a tree of pathwidthfor the proof of Lemma 3.3.2.

LetH be a tree of pathwidtk. In the next two lemmas, we show that for= 1 andk = 2,
there are at most a constant number of vertice®/ (H) for whichH [V <{v}] has pathwidth
at mostk<1.

Lemma 3.3.3. LetH be a tree of pathwidth one, let WV (H) consist of all vertices g V(H)
for which HV <{v}] has pathwidth zero, and suppose that > 1. Then|W| < 2, and if
[V(H)| > 2, then|W| = 1.

Proof. LetveW. ThenH [V <{v}] consists of single vertices. | = 2, thenG consists of
one edge, sfW| = 2. If |V| > 2, then all (at least two) edges Gfare incident withv. Hence
for eachw € V <{v}, H]V <{w}] contains at least one edge incident witrand does not
have pathwidth zero. So ¥/ | > 2, thenw| =1. a

Lemma 3.3.4. Let H be a tree of pathwidth two and let WV (H) consist of all vertices
v e V(H) for which H)V <{v}] has pathwidth at most one. Supp®&é > 1. The following
holds.

1. H|W] is a connected graph.
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3.3 Trees of Pathwidth Two

2. If there is a ve W such that HvV <{v}] has four or more components of pathwidth one,
then|wW| = 1.

3. There is a vertex g W such that HV <{v}] has two or more components of pathwidth
one.

4. |W|<7.

Proof.

1. SupposéW| > 2. Letv,V € W be distinct vertices. Le be a vertex on the path from
vtoV in H. Then each component bfV <{w}] does not contairm or does not contaiw’.
Hence each component is a subgraph of a componedf\of=>{v}] or of H[V <{V}], so
wew.

2. Letve W, letH;, 1<i < s, be the components &f[V <{v}] which have pathwidth one.
Supposes > 4. Letw € V(H) for somew # v, and letH’ be the component dfi [V <{w}]
containingv. If we V(H;) for somej, thenH’ contains allH; with i # j. OtherwiseH’
contains allH;. In both casesH’ has pathwidth two, according to Lemma 2.2.4, simce
separates!’ in three or more components of pathwidth one. Helli¢e= 1.

3. Supposé&V does not contain a vertexe W such thatH[V <{v}] has two or more
components of pathwidth one. Letc W. There is one component &f[V <{v}] which
has pathwidth one, otherwisid, has pathwidth at most one. LE{ be this component, and
letw € V(H') such that{v,w} € E(H). It must be the case thét' contains three or more
vertices: otherwiseld has pathwidth one. Leé® denote the unique shortest pathHnh for
whichH'[V &V (P)] has pathwidth zerdq exists by Lemmas 3.3.2 and 3.3.3). There are two
possibilities fow. Eitherwis an inner vertex oP, orwis a stick of an inner vertew’ of P. In

all other cased;l has pathwidth one. Iiis an inner vertex oP, thenH[V <{w}] has at least
two components of pathwidth one, namely the two components which contain vertiees of
Furthermore, all components BV <{w}| have pathwidth at most one, since all neighbors
of v exceptw have degree one. Hence the component containimas pathwidth one. Mv

is a stick of inner vertew’ of P, thenH[V <{w}] has at least two components of pathwidth
one for the same reason, and all component$pf<{w}] have pathwidth one.

4. If W contains a vertex for whichH[V <{v}] has four or more components of pathwidth
one, thenW| =1.

Consider the case that for alle W, H[V <{v}] has at most three components of path-
width one. First suppod#’ contains a vertex such thaH [V <{v}] has three components of
pathwidth one. LeH;, H, andH3 denote these components. FonalE V such thatv # v
andw ¢ V(H1) UV (H2) UV (Hs), HV <{w}] has a component of pathwidth two, namely the
component containing. Letw € Hy and supposél [V <{w}] has pathwidth at most one.
Let H' be the component dfi[V <{w}] containingv. Note thatH’ contains bottH, and
Hs as a subgraph, and henidéhas pathwidth one. As both, andHz have pathwidth one,
[V(H")| > 5. Hence there is a unique shortest patin H' for whichH'[V(H’) <V (P)] has
pathwidth zero. This path contains at least one vertel-o6inceH, has pathwidth one.
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Similarly, it contains at least one vertex ld§. This implies thatv € V(P) and thatv is an
inner vertex ofP. Then eithemw is adjacent tos or there is a vertex/ € V(H1) such that
w has degree two ikl andw andv are its only neighbors. In both cases, there are at most
two possible vertices € V(H1) for whichH[V <{u}] has pathwidth one. Fai, andH3 the
same holds, and heng#/| < 7.

Now suppos&V contains no vertex € W such thaH [V <-{v}] has three components of
pathwidth one. Let € W such thatH [V <{v}] has two components of pathwidth one. Let
H1 andH; be the components &f[V <{v}] which have pathwidth one, and et € V(H1)
andw; € V(Hy) such thaf{v,wi}, {v,w.} € E(H). It must be the case thit(H;)| > 3 and
[V(H2)| > 3, otherwiseH has pathwidth one. Far= 1,2, letP denote the unique shortest
path inH; for which H; [V (H;) ©V(R)] has pathwidth zero. Then foe 1,2, w; is either an
inner vertex or a stick adjacent to an inner vertexPgfsince otherwise eithéd does not
have pathwidth two, oW contains a vertew such thatH [V <{w}] has three components
of pathwidth one. For eaclv € W with w # v andw ¢ V(H1) UV (Hz), H)V <{w}] has
pathwidth two. Ifw; is inner vertex ofP, andv has degree two, them; is the only vertex
in Hz for which H[V <{w>}] has pathwidth one, otherwise, there is no such verté,in
Similar forw;. HencelW| < 3. This completes the proof. |

Note that the bounfiW| < 7 is sharp: in Figure 3.6, the tréthas pathwidth two and for
each vertex € V(H) it holds thatH [V <{v}] has pathwidth one.

Figure 3.6. A tree of pathwidth two. Removing any vertex results in a graph of
pathwidth one.

For k > 3, the number of vertices in a tree of pathwidttkvhose removal decreases the
pathwidth by at least one, is not necessarily bounded. For instance, Figure 3.7 shows a tree of
pathwidth three. For eadh1 < i < m, the removal of vertex; leaves a forest of pathwidth
two. Butm may be arbitrarily large.

Definition 3.3.1. LetH be atree and It > 1. Py(H) denotes the set of all patRsin H for
whichH[V &V (P)] is a partial(k<<1)-path, and there is no strict subpdthof P for which
H[V <V(P')] is a partial k <1)-path. If|Px(H)| = 1, thenR(H) denotes the unique element
of Pk(H).

LetH be a tree and lék > 1. Note that ifH has pathwidth more thag thenPy(H) = @.
If H has pathwidth less thdq then|Px(H)| =1 andP(H) = (). If H has pathwidth exactly

48



3.3 Trees of Pathwidth Two

Figure 3.7. A tree of pathwidth three. Removing any vertgx1 < i < m, results in
a forest of pathwidth two.

k then|Px(H)| > 1 and all paths i’ (H) contain at least one vertex.R(H) contains more
than one element, then its elements are all paths consisting of one vertex.
For a tree of pathwidth one, all path decompositions of width one are essentially the same.

Lemma 3.3.5. Let H= (V,E) be a tree of pathwidth one and let RB(V4,... ,\t) be a path
decomposition of width one of H. SuppdgéH)| > 2, and let R(H) = (v4,...,Vs). For
each ec E(H), let f(e) be such that Y is the leftmost node containing e. IPs3, then
either foreachil <i<s<l, f({vi,vit1}) < F({Vit1,Vit2}), or for each i, f{{vi,viy1}) >

f({vit1,Vir2}). Suppose the first case holds. Then for each<; i <'s, and each v

V(H)<V(Pi(H)) such that{v;,w} € E(H), the following holds. If k s, then {{vi,w}) <

f({vi,viz1}), and ifi> 1, then f({vi,w}) > f({vi_1,vi).

Proof. Straightforward from the definition of path decomposition. O

In Figure 3.8, a path decomposition of the partial one-path of Figure 3.4 is given.

Figure 3.8. A path decomposition of width one of the partial one-path of Figure 3.4.

Lemma 3.3.6. Let k> 1and let H be a tree of pathwidth k such that there is@V¥(H) for
which HV <{v}] has pathwidth at mostd1. For each path P in H for which ¥ <V (P)]
has pathwidth at most41, there is a € V(P) such that HV <{v}] has pathwidth at most
kel

Proof.  Let P be a path inH for which HV <V (P)] has pathwidth at modt<1. Let
v e V(H) be such thaH [V <{v}] has pathwidttk <1. Supposer ¢ V(P). LetH' denote
the component ofi [V <V (P)] containingv. LetV € V(P) be such that there isvae V (H')
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for which {V/,w} € E(H). We show thaH[V <{V'}] has pathwidth at modt<1. The
components that do not contain a vertexRohave pathwidth at modt<1 because they
are components dfi[V <V (P)]. All other components are subgraphs of the component of
H[V <{v}] which containd®. Hence these components also have pathwidth at kxest O

Together with Lemma 3.3.2, Lemma 3.3.6 implies thaPif(H)| = 1, thenP(H) is the
intersection of all pathP for whichH[V <V (P)] has pathwidth at mot<-1. Furthermore,
it implies the following result, which will be frequently used in the next section.

Corollary 3.3.1. Letk> 1, letH be a tree of pathwidth k, and let PB(V4, ... ,\4) be a path
decomposition of width k of H. LetavV; and V € 4. Then the path P from v td eontains
one of the paths iRx(H) as a subpath.

3.4 General Graphs

In this section, we denote by a block a non-trivial block. A graph may contain a number of
blocks. If all edges which are contained in a block are removed, then the resulting graphis a
forest.

Definition 3.4.1. LetG be a graph. The subgraf is the graph obtained fro by deleting
all edges of blocks o. The components d&;, are called the trees @.

The cell completion of a grapB is the graph obtained froi® by replacing each block
by its cell completion. It is denoted b$. Let G be a partial two-path. Clearly, the cell
completion of each block d& is a path of cycles, and each tree®fs a tree of pathwidth at
most two. The number of possible ways in which blocks and tre€azn be connected to
each other is large. In this section, we give a complete description of this structure. First we
show that for each treld of G, the vertices oH which are contained in a block & all lie
on one path, which also contains a pattPefH ). After that, we give for each block @ all
possible interconnections with other blocks and tregs.of

Lemma 3.4.1. Let G be a partial two-path and H a tree of G. Let¥ V(H) be the set of
vertices which are vertices of blocks®f There is a path in H which contains all vertices of
V' and a path oP,(H).

Proof. LetPD= (Vi,...,\) be a path decomposition of width two & and suppose the
vertices ofH occur in(Vj,...,Vj). Selectv € Vj andV €V such thaw,v € V(H). LetP
denote the path fromto V. All vertices ofV’ are onP, since for eachv € V', there is a cycle
C which containsv, hence there is a nodg j <i < j’, such tha¥; containsv and two other
vertices ofC, soVi NV (H) = {w}. Furthermore, there is a path®a(H) which is a subpath
of P. a

Definition 3.4.2. Let G be a partial two-path anid a tree ofG. LetV’' C V(H) be the set of
all vertices ofH which are contained in a block &. Py denotes the set of all patfsin H
for which the following conditions hold:
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1. there is a path iR2(H) which is a subpath d? (if P2(H) # ¢),
2.V'CcV(P),and

3. there is no strict subpaf of P for which conditions 1 and 2 hold.

If |Pu| = 1, thenPy denotes the unique elementRy, andPy is calledthe pathof H.

Let G be a partial two-path and a tree ofG. If |P2(H)| =1, then|Py| = 1. If |P2(H)| >
1, then all elements d¥,(H) are paths consisting of one vertex, and all these vertices form a
connected subgragtt’ of H (Lemma 3.3.4). This means that if there is one vertex/(H)
for which v is contained in a block, then there is a unique shortest path contairsng a
path fromP,(H), since one of the vertices bF is closer tov than the others. If there are two
or more vertices oH which are contained in a block, then a similar argument holds. Hence
|Pu| = 1 if there is at least one vertex bif which is contained in a block d&.

Figure 3.9 shows a partial two-pa@hin which G has one tre&l of pathwidth two, one
treeH’ of pathwidth one, and a number of trees of pathwidth zero, i.e. isolated vertices. For
H, P,(H) = (v2,v3,v4) andPy = (va,...,Vvs), and forH’, P2(H') = ¢ andPy = (u).

H
V1 V2 V3 4 \41 V2 V3 4
u ‘U I—.\ H'
G Gy, after deletion of isolated vertices

Figure 3.9. A partial two-pathG and its two trees of pathwidth at least one.

From the proof of Lemma 3.4.1 it can be seen that an analog of Corollary 3.3.1 also holds
for Py.

Corollary 3.4.1. Let G be a connected partial two-path which is not a tree and let H be a tree
of G. Let PD= (V1,...,\) be a path decomposition of width two of G and suppose H occurs
in (Vj,...,Vy). Thereisae VjnV(H) and aV € V; NV (H) such that the path from v td v
contains .

The following lemma shows some conditions for the structure of blocks of a partial two-
pathG.

Lemma 3.4.2. Let G be a connected partial two-path whichis not a tree, let H be a component
of Gy, and let B = (v1...,Vs) be the path of H. Let G= G|V <V (Py)]. At most two
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components of Ghave pathwidth two. For each componert@& G’ of pathwidth two, there
isave V(G) such that eithefv,v1} € E(G) or {v,vs} € E(G), i.e. G’ is connected toor
vs. If s> 1, then at most one component of pathwidth two is connected &énd at most one
to vs.

Proof. Because of Lemma 2.2.4, at most two componen€ @hay have pathwidth two. If
there is a component of width two adjacentipl < i < s, theny; is a vertex which separates
G into three or more components of width two, and he@Gdes pathwidth three. §# 1 and
there are two or more components of width two adjacen tor if s= 1 and there are three
or more components of width two adjacenttg thenv; separate& into three components
of width two, and hencé& has pathwidth three. a

For the vertices of each block of a partial two-path, we define states, which reflect the
structure of the subgraphs which are connected to them. In Figure 3.10, an example is given
for all possible states.

Definition 3.4.3 (Vertex States). LeB be a partial two-path, arila block ofG. Letve V(B),
and letH denote the tree db containingv. The(vertex) stateof v, denoted byst(v), is the
element of the sefN, S,E1,11,E2,12} defined as follows.

st(v) = N if v has no neighbors outside Bf(vertexv; in Figure 3.10).

st(v) = S if v has only neighbors of degree one outsid8obnly sticks are connected to
(vertexvs in Figure 3.10).

st(v) = E1if H has pathwidth oné}y = (v), vis adjacent to exactly one vertex¢ B which
does not have degree one amd@ V(H), and eithew or w is end point ofP;(H) (vertex
vz in Figure 3.10).

In other wordsst(v) = E1 if B is the only block containing, H has pathwidth one and
contains at least one edge which is not incident withencelP1(H)| = 1), By = (v), and
vis not an inner vertex df;(H), but there is a path il containingv andPyi(H).

st(v) = 11 if Bis the only block containing, H has pathwidth one and contains at least one
edge which is not incident witly, Py = (v), andv is an inner vertex oPi(H) (vertexv,
in Figure 3.10).

st(v) = E2 if at least one of the following conditions holds.

e There is another block containingvertexvs in Figure 3.10).

e TreeH has pathwidth ondy = (v) and there is no path iH containingv and a path
of P1(H) (vertexvg in Figure 3.10).

¢ TreeH has pathwidth oné}y # (Vv), andvis end point o (vertexvz in Figure 3.10).
e TreeH has pathwidth two andis an end point oPy (vertexvg in Figure 3.10).

st(v) = 12 if H has pathwidth at most two andis an inner vertex oPy (vertexvg in
Figure 3.10).
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The states are ordered in the following wad = E2 = 11 > E1 > S > N.

Note that all possibilities are covered farand that all states are well-defined. In the
remainder of this section, we derive what combinations of states are possible for the vertices

of a block.

IR ey

%

\1 Vo

Figure 3.10. Examples of all vertex statesst(vi) = N, st(v2) = S, st(v3) = E1,
st(vs) = 11, st(vs) = st(vs) = st(v7) = st(vg) = E2 andst(vg) = 12. For each, let
H; denote the component & which containsy. H; andHs consist of one single
vertex. Foii € {3,4,6}, the fat edges il; form the pathP;(H;). Fori € {7,8,9}, the
fat edges irH; form the pattRy,. Fori € {1,...,6}, By, = (Vi).

Lemma 3.4.3. Let G be a partial two-path and C a cycle in G. Le¢W(C), and let G be a
component of (% <V (C)] for which there is a vertex @ V(G') such that{v,u} € E(G). If
G’ contains at least one edge, then v is an end vertex of C.

Proof. LetPD=(V4,...,\) be a path decomposition of width two@f suppos€ occurs in
(Vj,...,Vy), and let{x,y} € E(C) such thak,y € V. Suppos& (G') # ¢, let{u,w} € E(G').
Edge{u,w} can not occur irfVj,...,Vj), so supposgu,w} occurs inV;, | < j. Then either
v eV orue V. Consider the case thate Vj, and letVp, j < p < |, be the leftmost
node containingy. Then each node iWj, ... ,V, containsu. Furthermore, there is a node
containingx, y, and another vertex @ (Lemma 3.2.4), which means thaty € V. This is
only possible ifv = x or v =y, which means that is an end vertex. O
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Chapter 3 The Structure of Partial Two-Paths

We can now show that for a blogkof the cell completion of a partial two-pat, there
is a cycle pati{C,E) with C = (Cy,...,Cp) such that all vertices d which have stat€&1,
11, E2 or 12, are inCy or Cp, and all vertices which are in som€; with 1 < i < p and with
6 = 41 andv ¢ g have staten.

Definition 3.4.4 (Correct Cycle Path). LeB be a partial two-path, leB be a block ofG,
and let(C,E) be a cycle path foB with C = (Cy,...,Cp) andE = (ey,... ,ep_1). (C,E)is
called acorrect cycle pathf

e for all v e V(B) which are not irCy or Cy, st(v) € {N,S}, and
e foralli,1<i< p&landallveV(Cii), if 6 =41 andv ¢ g, thenst(v) = N.

Lemma 3.4.4. Let G be a partial two-path. There is a correct cycle path for each block B of
G.

Proof. LetPD= (Vi,...,\) be a path decomposition of width two &, and suppos&
occurs in(Vj,...,Vj). As shown in Section 3.2, the chordless cycles occur in some order
C =(Cy,...,Cp). LetE = (eq,...,ep_1) be the sequence of edgesBffor which g =
V(C)NV(Ci41) for eachi, 1<i < p. It can be seen th&€ ,E) is a cycle path foB.

LetCi be such thag_1 =g, letve V(C) <g. Thenst(v) = N, sinceg occurs in both
end nodes of the occurrence@f and hence any edge adjacent/toould not occur within
the occurrence df;, and not within the occurrence of any oti@gr

Finally, we prove that all vertices of the component that are ndt(id,) or V(C,) are
not adjacent to anything other than sticks. ket V(B), such thatv does not have state
or S. LetC be the cycle irB with V(C) the set of vertices o (B) except allv € V(B) for
whichv € V(G) < for somei, 1 < i < p, for whiche_; = g, andE(C) the set of edges
in B[V(C)] except the edges, 1 <i < p. Thenvis an end vertex o€. C occurs within
(Vj,...,Vy), andVj andVj can not contain any vertices & which are not inCy or C,
which is a contradiction. a

Consider a blockB of the cell completion of a partial two-patB. Suppose there are
two distinct correct cycle path€ ,E) and (C’,E’) for B, whereC = (Cy,...,Cp), E =
(e1,...,ep-1) andC’ = (Cy,... ,Cp), E' = (€, ... 7e’p_1) (p > 1). Suppose w.l.o.g. that for
eachi, 1<i < p, & = €. We have already seen that, for each<i < p, if G; # C/, thenGC;
andC/ both consist of three vertices, and ikli < p, theng_1 = e, (see page 40). It also
holds that both the vertex &; that is not ine (or e_1 if i = p), and the vertex of/ that is
notin€ (or€_; if i = p) have state\.

From Lemma 3.1.1, we can derive that there are at most four vertiddsubiich have
stateEl, 11, E2 or I2. Furthermore, ifC, E) is a correct cycle path, then boi{Cy) <V (Cp)
andV(Cp) <V(Cy) each have at most two vertices with state f1,11,E2,12}.

Let G be a partial two-path, arBla block ofG with v e V(B) andst(v) € {I12,E2,11,E1}.
Let X be a component oB[V <V (B)] which is connected tw in G such thatV (X)| > 1,
and letX' denoteG[V(X) U {v}]. Then in each path decomposition of width two®f all
edges ofX’ occur on the same side of the occurrenc8oif two edgese, € € E(X') occur
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on different sides of the occurrenceR®fthen there is a path betweemnde which avoids
v, hence each node in the occurrenc8abntains a vertex of this path, which is not possible
sinceB has pathwidth two.

Lemma 3.4.5. Let G be a partial two-path and C a cycle Gf Let PD= (Vi,...,\;) be a
path decomposition of width two of G and suppose C occufgjin.. V). Let ve Vj such
that ve V(C). Then \ contains a neighbor of vin C.

Proof. Let {x,y} € E(C) be such thak,y € V;. LetVm, j <m< j’, be the leftmost node
which contains another edge®©f ThenVy, containsx, y and a neighbar of xoryin C. Then
eitherm=jandv==zorv e {xy}. a

In the next lemmas, we show that the vertices which have Btigtie, E2 or I2 must have
a ‘small distance’ to each other.

Lemma 3.4.6. Let G be a partial two-path and B a block &f Let PD be a path decompo-
sition of width two of G such that B occurs (¥, ...,V ), and let(C,E) be a correct cycle
path for B such that Cis the chordless cycle of B that occurs leftmost in PD.

Let xy € V(B), and suppose &t),st(y) € {I12,E2,11,E1}. Let X be the graph consisting
of all components of <V (B)] that are connected to x in G, and that occur on the left side
of (Vj,...,Vj), and let X denote & (X') U {x}]. Similarly, let Y be the graph consisting
of all components of <V (B)] that are connected to y in G, and that occur on the left
side of(Vj,...,Vj), and let Y denote (¥ (Y') U {y}] (see for example Figure 3.11). Then
x,y € V(Cy1) and

1. either{x,y} € E(C1) &{e1} or there is a vertex 2 V(B) such that{x,z} € E(C1) <{e1}
and{zy} € E(C;) &{e1} and s{z) = N, and

2. either X is a partial one-path such that x is not an inner vertex;0KPbut there is a
path containing P(X) and x, or Y is a partial one-path such that y is not an inner vertex
of Pi(Y) but there is a path containingiPY) and y.

Proof.
1. Bothxandy occur inVj, sox,y € V(Cy). There is a neighbor ofin V; and a neighbor of
inVj. This means that, accordingto Lemma 3.4.5, eiftxey} € E(C;) orthereis & V(Cy)
such that{x,z} € E(Cy) and{y,z} € E(Cy). If {x,y} = e1, then{x,y} is a double end edge of
Ci1, hencdV(Cy)| = 3, sothere is @€ V(Cy) such thaf{x,z},{y,z} € E(C1) <{e1}. If there
is aze V(Cy) such that{x,z} € E(Cy) and{y,z} = ey, thene; also is a double end vertex,
henceV(Cy)| = 3, and{x,y} € E(C1) {e1}.

Suppose(x,y} ¢ E(C1) <{e1}, and letz be the common neighbor afandy such that
Vj = {xy,z}. LetV,, i< j, be the rightmost node containing an edgex6for Y’. Then
Vi = {x,y,Z} for someZ € V(X')UV(Y’). This means that no edge that occurs on the left
side ofVj is incident withz. In the same way, we can prove that there can be no edge incident
with zwhich occurs on the right side uf.

2. Suppos« occurs in(\,... , V), 1< 1 <I' < j, andY occurs in(Vip, ... ,Viy), 1< m<
m' < j, and suppose thah < |. See also part Il of Figure 3.11. It is clear that V|, and
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Y € Viyy, and thatX has pathwidth one. Furthermore, the rightmost node containing an edge
of X contains an end pointof the pathP;(X) and a stick/ adjacent to it. This means that

x € {v,V'}, hencexis either an end point & (X) or a stick adjacent to an end pointRf X).

If I < m, then we get the same result H6r a

Figure 3.11. Part | is a partial two-patls which contains a path with cycles with
correct cycle patiC.E) with C = (C1,Cy), E = (e1). Verticesx,y € V(C1) both
have statee2. Part Il shows the order of the occurrence<Cef Cy, X, Y and X”
in a possible path decomposition of width two @f as it is used for the proof of
Lemma 3.4.6.

Corollary 3.4.2. Let G be a partial two-path, B a block &, and(C,E) a correct cycle path
for B. Let v, ... ,vs € V(B) such that sfvi) € {I2,E2,I11}. Then s< 3. Furthermore, if s= 3,
thereis a j,1 < j <3, such that tv;) =11 and v; is a double end vertex of B, which implies
that v, € g for each i.

To be able to give the possible states for the blocks in a partial two-path, we first give a
definition.

Definition 3.4.5 (Distance). LeG be a partial two-pathB a block ofG and(C,E) a cor-
rect cycle path foB with C = (Cy,...,Cp) andE = (ey,...,ep_1). For eachu,v e V(B),
dsti(u,v) € {true,false} and dsg(u,v) € {true,false} are defined as follows. I = 1, then

dst(u,v) <
u,veV(Ci) A ({u,v} € E(C1) V Auev(cy) {U, W}, {V, W} € E(Cq) Ast(w) = N)
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If p> 1then

dst(u,v) < u,veV(Cy) A

({u,v} € E(C1) &{e1} V Anev(cy) {U,W}, {v,w} € E(C1) &{er} Ast(w) =N)
dsty(u,v) & u,veV(Cp) A

({u.v} € E(Cp) &{ep 1} V Fuev(cy) {U W}, {w W} € E(Cp) &{ep 1} AStW) =N)
Figure 3.12 shows an example of dst. The picture shows a path of cycles with cycle path
(C,E) with C = (C1,C), E = (&1). dsb(vz,v3) and dst(vs,va4) hold. dst(vp,v4) and
dsb(vz,va4) do not hold, since the edge betweenandv, is edgee;. dst(vi,vs) does not
hold since the common neighborwfandv, has states.

Vg

V3
V2

Figure 3.12. Example for the definition of dstvi,vj) and dsg(vi,v;).

In Definition 3.4.6, we are going to define the state of a block of a partial two-path.
Furthermore, for each state, a necessary condition will be given which must hold for any
block of that state, such that the graph can be a partial two-path. The necessity of these
conditions is proved in Lemma 3.4.7.

Figures 3.14 — 3.17 symbolically depict the condition for each state. As an example,
consider Figure 3.13. A cycle patl ,E) is represented by an ellipse in which the vertical
lines denote the common edges of the cycles. The leftmost cycle représgtiis rightmost
one representS,. The vertices that have one of the state§IlmE2,11,E1} are represented
by a dot. All other vertices are not drawn. In Figure 34t8y1) =12, st(v2) = E2, st(v3) =11
andst(vs) = E1. If dst;(u,v) (dst(u,v)) holds for two vertices, then the vertices are both
drawn in the leftmost (rightmost) cycle, and they are connected by a fat edge. In Figure 3.13,
dst (v2,va) holds.

Definition 3.4.6 (Block States). LeG be a partial two-pathB a block of G, and(C ,E)

a correct cycle path foB, C = (Cy,...,Cp), E = (eq,...,ep-1). Letvi,...,vs denote the
vertices ofB which do not have stati or S, such thast(v;) = st(viy+1) for eachi, 1 <i <

s. Thestate of Bis denoted byst(B), and is defined ast(B) = (st(v1),st(v2),...,St(Vs)).
BecauseG is a partial two-path, the vertices, . .. ,vs satisfy a number of conditions. For
each value oft(B), we denote these conditions by c@sifB)). The conditions will be
defined in following tables. Faa= 0, cond()) = true (Figure 3.14)
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Vi
\Z3

Vo 3

Figure 3.13. Legend for Figures 3.14 — 3.18. The states of the drawn vertices are
as follows: st(v1) = 12, st(v2) = E2, st(vs) = I1 andst(v4) = E1. Furthermore,
dst(vz,va) holds.

s=1 (Figure 3.14)
st(B) | condst(B))
(12) Vici<pVi € &
(E2) | vi e V(Cp)UV(Cp)
(11) | cond(E2))
(E1) | cond(E2))

Figure 3.14. Symbolic representation of coff§) for each possible block stagfor
s=0ands= 1. Cases that are symmetriciq andC,, are given only once.
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s=2 (Figure 3.15)

st(B) condst(B))
(12,11) ((Vici<pVi € 6 AV2 € &) AdSt(V1,V2) AdSty(Ve,V2))
vV (p=1AV(Cy) = {v1,V2,u,w}
AE(C1) = {{va,u},{va,u},{v1,w}, {vo,w}} A st(u) = st(w) = N)
(12,E1) | (Vici<pV1 € &) A (dst(v1,V2) V dsty(ve,V2))
(E2,E2) | (v €CLAV2€Cp) V (V1 €CpAV2 €Cy)
(E2,11) | cond(E2,E2))
(E2,E1) | (v € CLAV2€Cp) V (V1 € CoAV2 € Cy) V dst (v, V2) Vdsty(Ve,V2))
(11,11) | cond(E2,E2))
(11,E1) | cond(E2,E1))
(E1,E1) | cond(E2,E1))
s= 3 (Figure 3.16)
st(B) condst(B))
(12,E1,E1) | (dst(v1,V2) Adsty(vi,V3)) V (dsty(vi, Vo) Adst(v,Va))
(E2,E2,11) | (dst(v1,v3) Adst(V2,v3)) V (dsty(vi,v3) Adst(v2,V3))
(E2,E2,E1) | (v1 € V(Cy) AdSip(V2,Vv3)) V (V1 € V(Cp) Adst(Vo,V3)) V
(V2 € V(Cy) Adsitp(v1,V3)) V (V2 € V(Cp) Adsti(ve,V3))
(E2,I1,11) (dst(vi,v3) A dSTp(Vz,V3)) V (dStp(V]_,V3) Adst(v2,v3)) V
(dsti(v1,V2)) Adsty(v3,V2)) V (dsty(va,V2) Adst(v3,V2))

(E2,11,E1) | cond(E2,E2,E1))

(E2,EL,EL) | (v eV(C1) A dStp(Vz,Vg)) V(vi € V(C YAdst(va,v3)) V
(V2 € V(Cy) AdSitp(v1,V3)) V (V2 € V(Cp) Adsti(ve,V3)) V
(V3 € V(Cy) AdStp(v1,V2)) V (V3 € V(Cp) Adst(vi,V2))

(I11,12,11) (dsty(v1,V3) Adsiy(V2,v3)) V (dsiy(vi,v3) Adst(vo,v3)) V
(dsti(va,V2) Adst(vs,V2)) V (dst(vi,V2) Adst(vs,V2)) V
(dsti(vz2,vi) Adst(vs,vi)) V (dstp(V2,v1) Adst(vs, V1))

(11,11,E1) | cond(E2,E2,E1))
(11,E1,E1) | cond(E2,E1,E1))
(E1,E1,E1) | cond(E2,E1,E1))
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LR T

|2|1 Q El
E2 E2 E2|l |1|l
O—[ [+ v S [D
(E2,E1)
v Z
(I11,E1)
v ;
(E1,E1)

Figure 3.15. Symbolic representation of coff) for each possible block stag&for
s=2. For statg(12,11), the block is represented in its normal way. Cases that are
symmetric inCy andCy, or in distinct vertices; with the same state are given only

once.
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OO BT

(12,E1,E1) (E2,E2,11) (E2,E2,E1)
s (o ([ D0
(E2,11,E1)
e v DO
(E2,EL,E1)

OTRSE RSE
(E2,11,11) (11,11,11)
(I1,E1,E1)

(11,11,E1) (E1,ELE1)

Figure 3.16. Symbolic representation of coffs) for all block statesSfor s= 3. Cases
that are symmetric i€, andC,, or in distinct vertices; with the same state are given
only once.
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s=4 (Figure 3.17)
st(B) condst(B))
(E2,E2,E1,E1) | (dst(v1,Va) Adsty(V2,va)) V (dSty(ve,V3) Adst(V2,va)) V
(dsty(v1,Va) Adsip(V2,v3)) V (dsty(V1,Va) Adst(vo,V3))
(E2,11,E1,E1) | cond(E2,E2,E1,E1))
(E2,E1,EL1,E1) | (dst(vi,Vv2)A dStp(V3,V4)) \Y, (dStp(V]_,Vz) Adst(vs,Vva)) V
(dst(vi,v3) A dStp(Vz,V4)) \Y, (dStp(V]_,V3) Adst(v2,va)) V
(dsty(vi,va) A dStp(Vz,V3)) \Y, (dStp(V]_,V4) Adst(v2,V3))

(11,11,E1,E1) | cond(E2,E2,E1,E1))
(11,E1,E1,E1) | cond(E2,E1,E1,E1))
(E1,E1,E1,E1) | cond(E2,E1,E1,E1))

O T e O e

(E2,E2,E1,E1) (E2,11,E1,E1) (E2,E1,E1,E1)
(11,11,E1,E1) (11,E1,E1,E1) (E1,E1,E1,E1)

Figure 3.17. Symbolic representation of coff8) for all possible block states for
s= 4. Cases that are symmetric@a andCp, or in distinct vertices; with the same
state are given only once.

Leta e {12,E2,11,E1}. We denote by§, the set of block states for which> 1 and
st(v1) = a.

Although it seems that the states and conditions that are given in Definition 3.4.6 depend
on the correct cycle path that is used, this is not the case: no matter what correct cycle path
(C,E) of a blockB is used, the state & and the value of cor{dt(B)) are the same (see also
page 54). Note that the block states are well-defined, i.e. each block has exactly one state.

Lemma 3.4.7. Let G be a partial two-path. Each block B &f has one of the states in
S2US2 U Sy U &, and satisfiesond st(B)).

Proof. LetB be a block ofG, let (C,E) be a correct cycle path & with C = (Cy, ... ,.Cp),
E =(ey,...,ep_1). Furthermore, lety, ... ,vs denote the vertices & which have one of the
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states in{12,E2,11,E1} such thast(vy) = st(v2) = --- = st(vs). Then clearlys < 4. We have
to show that(st(vy), ... ,,st(Vs)) € Sy,) and that cong(st(vy),... ,st(vs))) holds. Ifs =0,
then this is clear.

Suppose > 0, letH be the tree 06 which contaings. If st(v1) =12, thenvy is an inner
vertex of the patiPy, and it follows from Lemma 3.4.2 that the componenG§¥ <{v1}]
which contains vertices @& must have pathwidth one. It can easily be checked that if this is
the case, thest(B) € S, and condst(B)) holds.

Supposest(v1) € {E2,I1,E1}. Vertexv; is end point ofRy. Lemma 3.4.6 shows that
st(B) € Syv,) and that con(bt(B)) holds. O

Definition 3.4.7. Let G be a partial two-pattB a block ofG, and(C, E) a correct cycle path
for Bwith C = (Cy,...,Cp) andE = (ey,... ,ep_1). Letvy,... Vs denote the vertices @&
which do not have state or S, such thast(vi) = st(vi+1) for eachi, 1 <i < s. Suppose that
s> 1 andst(v;) = E2. LetG' be the component @3V <{v;}] which containgd/(B) <{v1}.
cond (st(B)) is defined as follows.

cond (st(B)) & cond (12,st(vy), ... ,st(vs)))

Note that ifst(v1) = E2 and cond(st(B)) holds, then also cortst(B)) holds. Figure 3.18
depicts cond(st(B)) for all values ofst(B).

7> T S

(E2,E1) (E2,E1,E1)

"2 R

(E2,11)

Figure 3.18. Symbolic representation of con(@®) for possible block stat& =
(st,...,st) with sty = E2. Cases that are symmetrical@ andC, or in distinct
verticesy; with the same state are given only once.

Theorem 3.4.1. Let G be a connected graph. G is a partial two-path if and only if the
following conditions hold.

1. For each tree H of G, the following holds: H has pathwidth at most two, and there is a
path in H which contains a path iRy(H) and all vertices that are in a block of G.
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2. Each block B 06 contains only vertices that have one of the stéeg2, 11, E1, S and
N, and at most four vertices of B do not have stai@ N.

3. For each block o6, there is a correct cycle path.

4. Each block B ofG has one of the states in2® S, US1 US; U{()} and satisfies
condst(B)).

5. Let H be a tree of ¢, suppose G H, let Ry = (uy,... ,up). If p>1and uy is a vertex
of a block and stu;) = E2, then at most one of the blocks that contairdoes not satisfy
cond (st(B)). Similar for .

If p=1, u is a vertex of a block and @i;) = E2, then at most two blocks containing u
do not satisfycond (st(B)).

Proof. We first prove the ‘only if’ part. SuppodB is a partial two-path, then it follows
directly from Lemmas 3.4.1, 3.4.4, and 3.4.7 that 1, 2, 3 and 4 hold.

We now prove 5. LeH be a tree of5, supposés # H, let Py = (uy,...,up). If p> 1,
then, according to Lemma 3.4.2, there is at most one compon&it=nG[V (G) <V (Py)]
that has pathwidth two and is adjacentupin G. This means that at most one bloBk
containingu; does not satisfy congst(B)), since cong(st(B)) holds if the component of
G|V <{u1}] which containsV(B) <{u1} has pathwidth one, as is shown in the proof of
Lemma 3.4.7. Ifp =1, then in the same way, we can show that at most two bl&cks
containingu; are allowed not to satisfy congst(B)).

Now we prove the ‘if’ part. SupposB is a connected graph that satisfies conditions 1,
2, 3,4 and 5. IfG is a tree o1G is biconnected, the® has pathwidth two, as is shown in
Theorem 3.2.1 and Lemma 3.3.1. Supp@smontains at least one block and at least one tree
with one or more edges. We construct a path decomposition of width t@&o of

First consider the trees @. LetH be a tree ofG, let Py = (ug,... ,up). If p=1 and
st(u1) = E1, then make a path decompositiBDy of width one ofH in which u; is in the
rightmost node.

If p=1 andst(u;) = I1, then make a path decompositiBby of width one ofH. Let
H1 andH; be the components &f[V <{v1}] that contain edges ¢, such that the leftmost
node ofPDy contains vertices ofl; and the rightmost node contains verticedf Let
PDY, = PDV(Hy) U {v1} U {sticks ofv; }], andPD? = PD[V(Hz) U {v1}]. Note thatv; is
in the rightmost node oPD}; and in the leftmost node &?DZ. Furthermore, make a path
decompositiorPDy, of width two of H, which is similar toPDy, but with vertexv; added
to each node. In the final path decompositiofpf Dy, is used if componeri may occur
completely on the same side of the block which containgndPD}; andPDZ are used if
two parts ofH must occur on different sides. In this ca&b}, occurs on the left side and
PD? on the right side.

If p> 1, orp=1andst(u;) = E2, then do the following. LeGy denote the induced sub-
graph ofG which containg4 and all components @[V <V (P4 )] which have pathwidth zero
or one. For each;, each component @& [V (Gn ) <V (Py)] which is connected taj, make
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3.4 General Graphs

a path decomposition of width zero or one, and adid each node of this path decomposi-
tion. For eachy;, concatenate the obtained path decompositions of all components which are
connected tay;, and letPD; denote this path decomposition. Now make the following path
decomposition:PDy = PDy -+ ({ug,uz}) +H PD2 + - - - + ({Up—1,Up}) -+ PDp. See for
example Figure 3.19. In this pictuf@; = (u1, Uz,us,us), andHs, ... ,Hs are the components

of Gy which have pathwidth one.

w uz2 Hq uz Hy Hs Ug Hg Hs

PDy

wlu [ w | v | U3 |lus | Ug

Figure 3.19. Example of the construction &fDy for the subgrapiGy.

PDy is a path decomposition of width two of the gra@h. Furthermore, the leftmost
node ofPDy containsuy, the rightmost node containg. There are at most two compo-
nents ofG[V <V (R4 )] which have pathwidth two, and {f > 1, then at most one of these
components is connectedug, and at most one ta,.

Now consider the blocks which are not contained in s@pnedor a treeH of G. For each
block B of G for which this holds, le{C,E) be a correct cycle path with = (Cy,...,Cp)
andE = (ey,... ,ep_1). Letvy, ... ,vsdenote the vertices & which have one of the states in
{E2,11,E1}. Note thatB has no vertices with state, since therB would be in some graph
Gy . LetGg denote the subgraph &fwhich containd and all sticks oB which are adjacent
to vertices with stats.

If s=0, then make a path decomposition of width twdzgfas follows. First make a path
decompositiorPDg of width two of B in the way that is shown in the proof of Lemma 3.2.3,
but add one node on the left side which contains one of the edges in the former leftmost node,
and add one node on the right side which contains one of the edges in the former rightmost
node. We now extenBDg such that it is a path decomposition of width twoG.
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Chapter 3 The Structure of Partial Two-Paths

First supposéV (B)| > 3. Letv € V(B) such thast(V) = S. It can be seen that there are
two nodesv; andV1, such thaw; NViy1 = {v,u} for someu # v. See e.g. Figure 3.2. For
each stickw adjacent tov, we add a nodéw, v,u} betweenv; andV. ;. If this is done for all
vertices inB which have stats, then thePDg is a path decomposition of width two &fs.

SupposeV/(B) = {wi,wz,w3}. ThenPDg = ({wi,w2,ws3}), and we can make a path
decomposition of width two o6g by adding on the left side for each stiakof wy or w, a
node{w, W, w}, and on the right side for each stiekof ws a node{ws, w}.

If s> 1, then make a path decomposition@y in the same way as far= 0, but with the
appropriate vertices ofvi, ... ,Vs} occurring in the leftmost and rightmost node. It can be
derived from the pictures of all conditions (see Figures 3.14 — 3.17 which vertex must occur
on which side; e.qg. if; € V(C1) and the treéd of G which contains/; is drawn on the left
side of the block in the picture representing this case, themust occur in the leftmost node,
but if st(v1) =11, v1 € V(C1) NV(Cp) and part ofH is drawn on left side of the block, and
the other part is drawn on the right side, thammust occur in both end nodes of the path
decomposition. Note that this is possible, since in the conditions, the distance between two
verticesv; andv; of which the components must occur on the same side must be sufficiently
small.

If all these path decompositions are made, then they can be combined rather straightfor-
wardly into a path decomposition of width two &t In Figure 3.20, an example is given of
how this can be done. O

Let G be a connected partial two-path which is not a tree. We now extend the definition
of the pathPy for a treeH of G to a path of the grap. Consider the sdfl of all trees of
G which contain a vertew of a block, such thatv has staté2 or E2. Each block has at most
one vertex with state, at most two vertices with sta2, and if it has a vertex with state,
then it has no vertices with stai. This means that we can give the following definition.

Definition 3.4.8. Let G be a connected partial two-path which is not a tree. Hebe as
defined above, IéB be the set of blocks db. Thepath R; of G is a graph which is defined
as follows:

V(Pe)= |J V(Pn),
HeH
E(Ps) = {€€ E(G) | Jyen €€ E(Py) } U
{{vV} | 3unen s H#H AVEV(PR) AV eV(Py)AVV €V(B)}.

Note thatPg is unique since, if5 is not a tree, then each trékof G has at least one vertex

in a block, and hencfPy | = 1. The seV (Ps) may be empty in the case thatcontains only

one block. Note furthermore thBg is in fact a concatenation of all patRs of treesH € H,

in such a way that two paths which have an end point in a common block are consecutive
in Ps. Pg is not a real path o6, but it is the largest common subsequence of all paths in

G between the two end points BE. The blocks ofG which contain two vertices dfs are
calledconnectinglocks. All other blocks are calleabn-connectindplocks.
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Hy sl va
GBl Vi (V1 Hq V3 Bo Up ||U1 Gy

V3 V3

Figure 3.20. Example of the construction of a path decomposition of width two of
a partial two-pathG, after the path decompositions of all trees@and all blocks,
including their sticks, are constructed as in the proof of Theorem 3.4.1.

In each path decompositid?D = (V4,...,Vt) of width two of G, the occurrences of the
pathsPy, H € H, do not overlap, since they have no vertices in common. Furthermore, they
occur in the same order as g or in reversed order, because they are connected to each
other by blocks with pathwidth two.

We show the analog of Corollary 3.3.1 for general partial two-paths.

Lemma 3.4.8. Let G be a connected partial two-path which is nota tree. lgetRvy, ... ,Vs)
and let PD= (V4,...,\t) be a path decomposition of width two of G. For eachV, V € 4,
any path from v to\contains B as a subsequence.

Proof. If [V(Pg)| =0, the result clearly holds. Suppds&Pg)| > 1. LetG; be the subgraph
of Ginduced by vertex; and the components &V <{v1 }] which do not contain vertices of
Ps. Similarly, letG; be the subgraph @ induced bys and the components @&V <{vs}]
which do not contain vertices ¢%. We prove the lemma by proving theit C V(G;1) and
Vs CV(Gy) or vice versa, and i§ = 1, thenVy andV; do not contain vertices of the same
component oGV <{v1}].

Suppose&/; contains a vertex ¢ V(G1) UV(G2). We distinguish two cases.

1. vis an inner vertex oPg or there is an inner verteX of Pg such thatv is a vertex of a
component of5]V <{V'}] which does not contain vertices Bf.
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2. v¢ V(Pg) and there is a connecting blo&kof G such thatv is in the component of
G|V ©V(Pg)] which contains vertices d.

First suppose case 1 holds. liefl <i < s, be such that either=v; orvis in a component
of GV <{v;}] which does not contain vertices B§. LetG' andG” denote the components
of GV <{vi}] which contain vertices oPs. G’ andG" have pathwidth two, hence there
are node¥; andVj in PD such thaV; contains three vertices @' andVj, contains three
vertices ofG'. Suppose w.l.0.g. thgt< j’. ThenV; contains a vertex dB[V <V (G')], since
Vi containsv, andV; contains vertices o&”. Contradiction.

Next suppose case 2 holds. [Bbe the block ofG for which v is in the component of
G|V &V (Pg)] which contains a vertex d. Leti, 1<i <'s, be such that;,vi11 € V(B).
Let G’ be the subgraph @& induced by; and the component &V <{v;}| containingG;.
Similarly, let G” be the subgraph d& induced byv;. 1 and the subgraph &V <{vit1}]
containingG,. In the same way as for case 1, we can derive a contradiction.

We next show tha¥; andV; can not both contain a vertex &, unlesss= 1. Suppose
s> 1andve Vi, V €V such that,V € V(G1). Gy has pathwidth two, which means that
there is a nod¥j, 1 < j <t, such thav/j contains three vertices &,. ButV; also contains
a vertex ofGy, which is a contradiction. In the same way we can prove thatifl, thenVy
andVt can not both contain a vertex of the same compone@{\gf{v}]. O

3.5 Finding the Structure of a Partial Two-Path

In this section we give an algorithm which, given a gr&heturndalse if G has pathwidth

three or more, and otherwise, constructs a correct cycle path for the cell completion of each
block of G, computes the se(H), Py andP1(H) of all trees ofG, computes the states of

all blocks and all vertices in blocks &, and computes the paf, if G is not a tree. We

first give the algorithm for biconnected graphs, then for trees, and finally for general graphs.

3.5.1 Biconnected Graphs

The following algorithm has as its input a biconnected gré&pland returngalse if G has
pathwidth three or more, and constructs a cycle path for the cell completiBotiferwise.

Algorithm Cycle PathG)

Input: Biconnected grapls

Output: A cycle path forG if G has pathwidth at most two, arfalse otherwise

1. Find the cell completiofs of G. _

2. Make a list_ of all chordless cycles if.

3. Check whethe6 is a path of cycles. If it is, construct a cycle path aeturn it.
Otherwisefeturn false.

For Steps 1 and 2 we use an algorithm from Bodlaender and Kloks [1993]. This algorithm
has as input a biconnected graphand checks iG has treewidth at most two. If so, it also
computes the cell completida of G together with a list of the chordless cycles@flt uses
O(n) time and space. Step 3 can be done as follows.
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Algorithm Step 3

1.

2.

3.

Check for each cycle ih whether it has at most two edges in common with any other
chordless cycle. If noteturn false.

Check whether there is an edge which occurs in two or more cycles. If there is no such
edge, then there is only one cy@eandreturn ((C),()) as cycle path.

Take an arbitrary edgethat occurs in two or more cycles. Make a list (Cy,... ,Cs)

of all cycles which contaim in such a way that onlZ; andCs may have four or more
vertices or have an edg&# e in common with another cycle. If this is not possible,
return false. Also, make a lisE = (e/g,... ,€), in whiche occurss<1 times. Remove
Cy,...,Csfrom L.

Repeat the following until the first cycle 61has no edge in common with a cycle that
is notinC.

LetC; be the first cycle if€. If C; has an edg€ # ein common with a cycle that is not
in C, then do the following. Construct a li§t = (Ci,...,C}) of all cycles containing
€, in such a way that onl; may have four or more vertices or have an edgg ein
common with another cycle. If there are two or more of these cyclesyrétemn false.
Also, build a listE’ = (¢,¢€, ... ,€), in which€ occurss times. Now, let the neW be
the concatenation @' and the oldC, and letE be the concatenation &’ and the old
E. RemoveC;,... ,C| fromL.

Repeat a modified version of step 4 for the last cyclg,inntil the last cycle if€ has no
edge in common with a cycle that is notGn (Directions ofC’ andE’ must be reversed,
C'’ is concatenated at the back@fand similar forE’).

return (C,E).

It is easy to see that the algorithm returns a cycle patlflgfcif one exists, and that it can

be made to run i©(n) time.

3.5.2 Trees

Ellis et al. [1994] and Mhring [1990] have given linear time algorithms to compute the
pathwidth of a tree. We can modify one of these algorithms in order to check whether a given
treeH has pathwidth zero, one or two, and furthermore, if the pathwidtH efjuals one,

then comput@1(H), and if the pathwidth oH is two, then computB,(H).

3.5.3 General Graphs

For general graphs, we combine the algorithms for biconnected graphs and for trees. Given
a graphG, we first compute the blocks @, and after that, the trees &. During the
computation of the trees, we mark each venewith a list of all blocks that contain.
Similarly, we mark each vertexof each block with the tree containing

Now, for each tre¢d of G, we compute the s&(H ), if H has pathwidth two, anld; (H)

if H has pathwidth one. After that, we compute theR3gt With this information, we can
compute the vertex states of the vertices that are in at least one block in linear time.
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Next, for each bloclB of G, we compute the cell completids) we check ifB is a path of
cycles, and we compute a cycle p&th E) for B, and if possible, modifyC ,E) such that it
becomes a correct cycle path. If this is not possible, we réalge Now we check ifB has
one of the states i, U S, US1 USs U{ () } and satisfies corgdt(B)). Then, we check if
condition 5 of Theorem 3.4.1 holds. FinallyGfis not a tree, we concatenate all pafhsof
treesH € H into the pathPs. All steps can be done i@(n) time.

We have now proved the following theorem.

Theorem 3.5.1. There is a linear time algorithm which, given a graph G, retufaise if

G has pathwidth three or more, and otherwise, constructs a correct cycle path for the cell
completion of each block of G, computes the &f#1), P4 andP1(H) of all trees of G,
computes the states of all blocks and all vertices in blocks of G, and computes the pifith P

G is not atree.

The algorithm described above can be extended to find a path decomposition of minimum
width of the input grapl@, if the pathwidth ofG is at most two. To this end, the construction
as described in the ‘if’ part of Theorem 3.4.1 can be used. This construction can be performed
in O(n) time. The algorithm thus obtained is no theoretical improvement of the linear time
algorithm of Bodlaender [1996a] for finding a tree or path decomposition of width atkmost
of a graph, for any fixe##t. However, our algorithm is tailor-made for pathwidth at most two,
and does not use the theoretical result of Bodlaender and Kloks [1996] (as does the algorithm
of Bodlaender [1996a]). This means that our algorithm is easier to implement, and probably
more efficient in practice.
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Chapter 4
DNA Physical Mapping

In this chapter we consider two graph problems which model problems arising in molecular
biology. In Section 4.1 we introduce the biological problems and show how they can be
modeled as graph problems. In Sections 4.2 and 4.3, we discuss the two graph problems. At
the end of Section 4.1 we give a more detailed overview of Sections 4.2 and 4.3.

4.1 Introduction

The biological problems we consider are knownsagjuence reconstructigoroblems in
molecular biology. Sequence reconstruction occurs in different levels of DNA physical map-
ping: itis currently not possible to find the linear structure of large parts of DNA or proteins at
once [Jungck, Dick, and Dick, 1982]. Therefore, the sequence is cut into smaller parts, called
fragmentswhich can then be sequenced. However, the order of the different fragments in the
large sequence is lost during the fragmentation process. The reconstruction of this order is
called sequence reconstruction.

There are several ways to attack the sequence reconstruction problem, many of which
give rise to algorithmic (graph) problems (see e.g. Karp [1993] and Bodlaender, Downey,
Fellows, Hallett, and Wareham [1995]). One way is to use, instead of one sequence of DNA
or protein, a number of copies of the sequence, and to cut these copies in different ways. After
that, a set of characteristics is determined for each fragment (its ‘fingerprint’ or ‘signature’),
and based on the respective fingerprints, an ‘overlap’ measure is computed.

The overlap measure for a pair of fragments usually consists of the probability that the
two fragments overlap [Karp, 1993]. This information can be used in different ways. We
use thepositive overlap informatioand thenon-negative overlap informatiofThe positive
overlap information consists of all pairs of fragments that overlap with probability one. The
non-negative overlap information consists of all pairs of fragments that overlap with prob-
ability strictly larger than zero. The probabilities themselves are not used. We discuss the
situation wherek copies of a sequencé are fragmented, and we have positive and non-
negative overlap information about the fragments. The problem is to assign each fragment
to a copy of the sequencg and for each copy, to make a linear ordering of the fragments
that are assigned to that copy, in a way that is consistent with the positive and non-negative
overlap information. This means that the assignment of fragments to copies and the ordering
of the fragments must be such that

¢ two fragments overlap only if their overlap probability is strictly larger than zero, and
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o if two fragments have overlap probability one then they overlap.
The positive and non-negative overlap information can be modeledagdwich graph

Definition 4.1.1. A sandwich grapt8is a triple(V, Ez, E2) in which (V,Ez) and(V, E) are
simple graphs, anf; C Eo.

Each vertex in the sandwich graph represents one fragment. TReregiresents the positive
overlap information: an edge iB; between two vertices denotes that the corresponding
fragments are known to overlap, i.e. they have overlap probability one. Thg sgppresents
the non-negative overlap information: an edgéinbetween two vertices denotes that the
corresponding fragments may overlap, i.e. their overlap probability is strictly larger than
zero. For each pair,w of vertices for which{v,w} ¢ E, it is known that the corresponding
fragments do not overlap, i.e. their overlap probability is zero.

The assignment of each fragment to one olkthepies of the sequence can be modeled by
ak-coloringof the graphV, E;) (we also call this &-coloring of the sandwich gra@). (In
this chapter, &-coloring of a graplG is represented as a functionV(G) — {1,2,... ,k},
such that for eacKu,v} € E(G), c(u) # c(v).) Each color represents one of the copies: if
two vertices are assigned the same color, then the corresponding fragments are in the same
copy, and hence they do not overlap, so there is no ed@e lmetween the vertices. The
linear orderings of all the vertices of the same color can be modeled by intervals. Assign to
each vertex an intervalg(v) on the real line, such that for each paiv’ € V of vertices, the
following holds:

1. if vandVv have the same color, thev) andg(V') do not overlap,
2. if {v,V'} € E1 theng(v) and¢(V') overlap, and
3. if {v,V'} ¢ E; theng(v) andg(V') do not overlap.

Now the orderings on the real line of the intervals of each color give linear orderings of the
fragments of each copy of the sequence which is consistent with the overlap information.
Suppose we have such an interval assignnpdot S. Consider the grapls = (V,E),
where{v,V'} € E if and only if the intervals corresponding toandV overlap. ClearlyG
is an interval graph (Definition 2.3.1), thecoloring of the sandwich grap&is also ak-
coloring of G, andG is sandwichedn S, i.e.E; C E C E,. Hence the maximum clique size
of Gis at mosik.
On the other hand, suppose we have an interval g&agh(V, E) which is sandwiched
in sandwich grapls= (V,E1,Ey), and has clique sizk for somek > 1. Then we can find
an interval realization o6 in linear time [Booth and Lueker, 1976; Hsu, 1993; Korte and
Mohring, 1989]. Furthermore, there existk-aoloring of G, which can easily be found in
linear time from an interval realization. This means that, instead of findkigaloring and
an interval assignment of the sandwich graph which satisfy conditions 1, 2 and 3 described
above, we can find an interval graghwhich is sandwiched i and has maximum clique
size at mosk. We call such a grap ak-intervalizationof S. The decision problem can be
modeled as follows [Golumbic, Kaplan, and Shamir, 1994].
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INTERVALIZING SANDWICH GRAPHS(ISG)
Instance: A sandwich grapts= (V,E1, E), an integek > 1
Question: Is there &-intervalization ofS?

It can be seen that there is not always a unique interval graph which is a solution to the
problem. Furthermore, given an interval graph, there are usually no unique interval realiza-
tions and colorings of this graph. This means that, given a set of fragmehtsagfies of
a sequenc¥, and the positive and non-negative overlap information of the fragments, there
may be more than one assignment of the fragments to copies, and/or there may be more than
one ordering of the fragments which satisfies the positive and non-negative overlap informa-
tion, although only one of them is correct. However, when solving ISG, we only find one
possibility, which is not guaranteed to be the correct one. Nevertheless, ISG, and especially
the constructive version of ISG which also outputs-iatervalization, may help to predict
overlaps between fragments and to work towards reconstruction of the original sedfuence

In some applications of sequence reconstruction, the information about the copy of which
fragments originate is not lost during the fragmentation process and, furthermore, only pos-
itive overlap information is used. The problem is to find, for each copy, a linear ordering of
all fragments of this copy.

In this case, the input can be modeled as a g@ph (V,E) and ak-coloringc:V —

{1,... ,k} of G, whereV denotes the set of fragmenE denotes the positive overlap infor-
mation, andt represents information about the origin of each fragment: each color represents
a copy of the sequence. The output of the problem can now be modeled as an interval graph
G' = (V,E'), such thatG’ does not violate the positive overlap information, EeC E’, and

c is ak-coloring forG'. We call the graplG’ a k-intervalization ofG andc. The decision
problem can be modeled as follows [Golumbic, Kaplan, and Shamir, 1994; Fellows, Hallett,
and Wareham, 1993].

INTERVALIZING COLORED GRAPHS (ICG)
Instance: A simple graptG = (V,E), an integek > 1 and ak-coloringc for G
Question: Is there &-intervalization ofG andc?

This problem is a restricted version of ISG, since we can represent a GraptV,E) and

a k-coloring of G, by a sandwich grapB= (V,E,E’), whereE’ contains an edge between
every two vertices which have different colors. A solution for ISG with iffand number
kis also a solution for ICG with input grapgh andk-coloringc, and vice versa.

In other applications, the fragmentation process generates fragments of equal length. The
problem is again to find an assignment of fragments to copies and an interval assignment of
the fragments which do not violate the overlap information, but an additional constraint is that
the intervals must be equally long. The graph which is associated with the interval assignment
is again an interval graph, but a stronger property holds: the graplmis mterval graph

Definition 4.1.2. An interval graphG = (V,E) is a unit interval graph if there is an interval
realizatione for G in which all intervalsp(v) (v € V) have the same (unit) length.

Given a unitinterval grap, we can use the algorithm from Corneil, Kim, Natarajan, Olariu,
and Sprague [1995] to find an interval realizatiorin which all intervals have the same
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length. Furthermore, we can again find-aoloring of G in linear time, wheré is the clique
size of G. Hence we can restrict ourselves again to finding a unit interval géawhich is
sandwiched in the input sandwich gragland has clique size at mdst Such a grapi is
called ak-unit-intervalizatiorof S.

UNIT-INTERVALIZING SANDWICH GRAPHS(UISG)
Instance: A sandwich grapts= (V,E1, E), an integek > 1
Question: Is there &-unit-intervalization ofS?

We can again restrict this problem to the case where we know the original copy of the
sequence for each fragment, and only use positive overlap information. This gives rise to the
problem: given a grap® and ak-coloringc of G, is there a unit interval grap®’ = (V,E’),
such thatE C E’ andc is ak-coloring of G'? The graph?’ is called ak-unit-intervalization
of G andc.

UNIT-INTERVALIZING COLORED GRAPHS (UICG)
Instance: A simple graptG = (V,E), an integek > 1 and ak-coloringc for G
Question: Is there &-unit-intervalization ofG andc?

It has been shown that ICG, ISG, UICG and UISG are NP-complete (see Golumbic et al.
[1994], Fellows et al. [1993] for ICG and ISG, and Goldberg, Golumbic, Kaplan, and Shamir
[1995], Kaplan, Shamir, and Tarjan [1994] for IUCG and UISG). However, from the applica-
tion it appears that the cases whkiie some small given constant are of interest. For fixed
we denote the four problems BYICG, k-ISG, k-UICG, andk-UISG, respectively.

Fellows et al. [1993] considerddICG for different fixed values ok. They showed
that, although for fixek > 3, yes-instances have bounded pathwidth (and hence bounded
treewidth), standard methods for graphs with bounded treewidth will be insufficient to solve
k-ICG, as the problem is not ‘finite state’ (see Section 2.2.4 for a definition). Also, they
showedk-ICG to be hard for the complexity cla¥8[1], (which was strengthened by Bod-
laender, Fellows, and Hallett [1994] to hardness for all cla¥égk t € IN). Hencek-ICG
is probably not fixed parameter tractable (see also page 32). Clearly, the negative results of
Fellows et al. [1993] also apply 161SG.

In Section 4.2 of this chapter we resolve the complexiti-t6G andk-ICG for all con-
stant value&. We observe that the cake= 2 is easy to resolve i®(n) time. Then, we give
anO(n?) algorithm that solves 3-1SG dsiconnectedyraphs. We also show how the algo-
rithm can be made constructive. The algorithm can be extended to an algorithm for 3-ISG
on general graphs, which also runsdnn?) time with O(n?) space. This algorithm consists
of an extensive case analysis, based on the structure of partial two-paths as it is described in
Chapter 3. In each case of the algorithm, a modification of our algorithm for biconnected
graphs is used. As the description of the complete algorithm is very detailed and technical, it
is not included in this thesis [de Fluiter and Bodlaender, 1997].

Furthermore, we show that 4-ICG is NP-complete. This implies NP-completeness of
k-ICG andk-ISG for any fixeck > 4.
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Kaplan et al. [1994] showed thktUICG, and henc&-UISG, is hard folV[1]. Addition-
ally, Kaplan and Shamir [1996] showed thaUISG is solvable in polynomial time whdan
is fixed: they have given a@(n*~1) time algorithm.

In Section 4.3 of this chapter we give algorithms which solve 3-UISG and 3-UICG for
biconnected input graphs. The algorithm for 3-UISG run®itE;|) time for sandwich
graphS= (V,Ey,Ez). This improves the algorithm of Kaplan and ShamifB§| = o(n?).

The algorithm for 3-UICG runs i©©(n) time, which improves the algorithm of Kaplan and
Shamir by a facton. The algorithms can be extended to obtain complete algorithms for
solving 3-UISG and 3-UICG with the same time bounds. These algorithms are essentially
the same as the algorithm for solving 3-1SG: the case analysis is very similar, but the building
blocks are based on the linear time algorithms for biconnected graphs for 3-UISG and 3-
UICG, respectively. They are not included in this thesis.

4.2 Intervalizing Sandwich Graphs

We first give a number of definitions and previously known results.

Let S= (V,E1,E») be a sandwich graph. Foe= 1,2, the graphV,E;) is denoted by
Gi(S). We callG4(S) theunderlying graphof S. The set of vertices dbis also denoted by
V(9), the first edge set bl¢1(S) and the second edge setBy(S). LetW C V. By SW| we
denote the sub-sandwich graphSihduced by, defined as follows:

V(SW)) =w
E1(SW]) = BN {{v,w} [vw e W}
E2(SW]) = E2n {{v,w} | v,we W}.

A sandwich graph is called biconnected if its underlying graph is biconnected. A biconnected
sandwich graph is also calledsandwich block The blocks of a sandwich graph are the
blocks of its underlying graph.

The problem ok-intervalizing sandwich or colored graphs is closely related to the path-
width problem.

Definition 4.2.1. Let S= (V,Ej,E2) be a sandwich graph. path decompositionf Sis a
path decompositioRD = (Vi,... ,\t) of G1(S), such for eaclv,V €V, if there is a nod®,
1<i<t,withv,V e Vi, then{v,V'} € E,. The pathwidth ofSis the minimum width of any
path decomposition d&.

The following lemma has been proved by Fellows et al. [1993] for intervalizations of
colored graphs, and is a generalization of Lemma 2.3.3.

Lemma 4.2.1. Let S= (V,E1,Ey) be a sandwich graph and letk 1. Sandwich graph S has
pathwidth at most k>1 if and only if S has a k-intervalization.

Proof. For the ‘if’ part, suppos& = (V,E) is ak-intervalization ofS. Letg:V — | be an
interval realization foiG. Let (u,...,un), N = |V|, be an ordering o¥ in such a way that
foralli, jwith 1 <i < j<n, ¢(u) starts on the left side of or at the same poing@sg). For
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eachi letV, = {veV |gv)ng(u) #0}. ThenPD = (V4,...,Vy) is a path decomposition
of G in which there is an edge between two vertigesdV if and only if there is a nod¥;
containingv andv'. HencePD is a path decomposition & Furthermore, each node contains
at mostk vertices, since the clique size Gfis k. HencePD has pathwidth at mogi<1.

For the ‘only if’ part, suppos&has pathwidth at mo$t<1, and letPD = (V4,... , ) be
a path decomposition @& of width at mostk<-1. Then the interval completio®' of G1(S)
for PDis an interval graph which is sandwichedG@yand has clique size mokst O

Thus, the following problem is equivalent to ISG.

SANDWICH PATHWIDTH
Instance: A sandwich grapts= (V,E1, E), an integek > 1
Question: DoesShave pathwidth at mogt<-1?

Note that the proof of Lemma 4.2.1 also gives an easy way to transform a solution for one
problem into a solution for the other problem. Furthermore, it implies the following result.

Corollary 4.2.1. Letk> 1and let S be a sandwich graph. If there is a k-intervalization of S
then the underlying graph of S has pathwidth at mastik

For the cas&k = 2, the question whether there is a path decomposition of a sandwich
graphSis equal to the question whether the underlying grap8 isfa partial one-path (see
also Fellows et al. [1993]). This is because each path decomposition of width @G€3)f
can be transformed into a path decomposition of width ortelnf simply deleting all nodes
which contain no edge, and then adding a node at the right side of the path decomposition
for each isolated vertex containing this vertex only. Checking whether a graph has pathwidth
one can be done in linear time (Chapter 3).

Theorem 4.2.1. 2-ISG can be solved in linear time.
4.2.1 Three-Intervalizing Sandwich Blocks

By Corollary 4.2.1, a sandwich graph has a three-intervalization only if the underlying graph
of Shas pathwidth at most two. Therefore, our algorithm for finding a three-intervalization
of a sandwich graph makes use of the structure of partial two-paths as described in Chapter 3.
The algorithm first checks if the underlying gra@h(S) is a partial two-path and if so, finds
its structure. Then this structure is used to find a three-intervalizatiSn of

In this section we give the algorithm for the case that the input sandwich graph is a
block. The main algorithm has the following form: first, the cell complet@nS) of the
underlying graph o8is computed. Then, a cycle path 18i(S) is constructed if it exists (see
Section 3.2). After that, this cycle path is used to check whether there is a path decomposition
of Sof width at most two.

Lemma 3.2.2 states that each path decomposition of width two of a partial tw@spsith
also a path decomposition of width two of its cell complet®nWith respect to intervaliza-
tions, the lemma states that each three-intervalization of a sandwich §rsyghsupergraph
of the cell completiorG; (S) of the underlying grapks:1(S) of S.

The following lemma follows directly from the results in Section 3.2.
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Lemma 4.2.2. Let S be a sandwich block. Suppose thatSpis a partial two-pathG;(S)

is sandwiched in S, an(C,E) is a cycle path foiGy(S) with C = (Cy,...,Cp) andE =
(e1,...,ep-1). There is a path decomposition of S if and only if the following conditions
hold:

1. there is a path decomposition of width two §f &, )] with edge ¢ in the rightmost node
(if p>1),

2. there is a path decomposition of width two ¢¥ &;)] with edge g-1 in the leftmost
node (if p> 1), and

3. foralli, 1< i < p, there is a path decomposition of width two §f &;)] with edge g 1
in the leftmost node and edggie the rightmost node.

Hence to check whether there is a path decomposition of width tv@wnath cycle path
(C,E), the algorithm checks for each cy@g 1 <i < p, whether there is a path decomposi-
tion of SV (G;)] with the appropriate edges in the leftmost and the rightmost node. The path
decompositions of the sub-sandwich graphs induced by the cycles are then concatenated in
the order in which they occur i@, and this gives a path decomposition of width twdsof

4.2.1.1 Cycles

We concentrate now on checking whether there exists a path decomposition of width two
of a sandwich graph whose underlying graph is a cycle. Sé such a sandwich graph
and letC = G1(S).We denote the vertices and edge£dfy V(C) = {vo,v1,...,Vn_1}, and

E(C) = {{vi,Vi+1} | 0<i < n} (for eachi, letv; denotev, modn). For eachj andl, 1<1 < n,
let1(j,) denote the set of vertices ¥{C) betweerv; andv;, when going fronmv; to vj

in positive direction, i.e.,

(G ={vli<i<j+!}
Furthermore, Ie€(j,1) denote the cycle with

V(C(j,0D) =1(j,1)
E(C.1) = {H{vi Vi 1 U {H{Mvisa} Vi € 1(0,1) <{vj} }

Note thaiC(j,n<1) = Cfor all j. For an example, consider Figure 4.1.
The following lemma is used to obtain a dynamic programming algorithm for our prob-
lem.

Lemma 4.2.3. Let S= (V,E1,E) be a sandwich graph whose underlying graph is a cycle
C with n vertices. Leti, j and | be integer3< | < n, and suppose £ i < j+1. There is

a path decomposition PE: (V1, ... ,\t) of width two of Gj,I) such that{vi,vi;1} C V4 and
{Vvj,Vjs1} C M if and only if{vj,vj4i } € E> and either one of the following conditions holds:

1. V(C)| =3,
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Vo Vi ow Vo Vi w
V11 \& Vi1
V10 V4 V1o
Vg Vs Vg
V8 vz V6 Vg
C=C(j,19) C(8,6)

Figure 4.1. A cycleC with 12 vertices, and the cyc{&(8,6) derived fromC.

2. there is a path decomposition PB (Vj,...,V/) of width two of §(j,| <1)] such that
{Vi,visa} CVyand{vj,vjy_1} CV/, or

3. there is a path decomposition PE- (V/',... V') of width two of i (j + 1,1 <1)] such
that{vi,vi1} C V)" and{vj 1,vj4} C V.

Proof. For the ‘if’ part, supposgvj,vj4 } € Ez. If [V(C)| =3, thenC(j,l) =C, and hence
(V(C)) is a path decomposition of width two & Suppose there is a path decomposition
PD' = (Vi,...,V/) of width two of §I(j,| <1)] with {vi,vi41} C V| and{vj,vj;_1} CV/.
ThenPD = PD' + ({Vj,Vj+i1-1,Vj+1 }) is a path decomposition of width two &I (j,!)]
which satisfies the appropriate conditions. The other case is similar.

For the ‘only if’ part, suppose there is a path decomposién= (Vi,... ,\t) of width
two of §I(j,1)] such that{vi,vi;1} C Vi and{vj,vj} C V. Clearly,{vj,vj } € Ez, since
Vj,Vj4 € V. SupposgV (C)| > 3. If {vi,Viz1} = {Vj,Vj4 }, thenl =n&1, henceC(j,1) =C
and|l(j,1)| > 3. Lemma 3.2.4 shows that the leftmost and the rightmost noB®afan not
contain the same edge, contradiction.{8ovi;1} # {Vj,Vj+ }. LetVmandVy, 1<mm <
t, be the rightmost nodes containing edgg; 1,vj } and{v;1i_1,Vj4 }, respectively.

First supposeY < m. ThenViy = {Vj11,Vj,vj4 }, and for eaclk, m< k <t, vj,vjq € Vk.
We claim that the path decomposition obtained frofy ... ,Vin) by deletingv; from each
node is a path decomposition of width twoSif(j + 1,1 <1)] with edge{vj,1,vj4 } in the
rightmost node and edde;, vi11} in the leftmost node.

Suppose there is a vertexc V(C) <{vj,vj+1} which occurs on the right side &f.
Vertexv has an edge to some verteXMiiC) <{vj,vj;1}, hencev € V. Butthenv =vj_1,
which gives a contradiction. Hence all edgessif{ j + 1,1 <1)] occur in(Va, ... ,Vim). Fur-
thermore {vj1,Vj4+1-1} occurs inVy. We only have to show #i andj # i+ 1. NodeVy
containsvijy, vj41—1, and a vertex of the path from,; to vi;1 which avoidsvj. Hence
Vj ¢ Viy and thusy; ¢ V1. This proves the claim.

For the case tham < m, a path decomposition of width two 8l (j,| <1)] with {vj,vi+1}
in the leftmost node andv;,vj,,_1} in the rightmost node can be constructed in the same
way.
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If m=m, thenvj;1 = vj4—1, hence|l(j,1)] = 3. Since{vi,vi;1} # {vj,vju}, this
means thafvi,Viy1} = {Vj,Vj+1} or {vi,Viq1} = {Vj41-1,Vj+ }. In the first case({vi,Vi41})
is a path decomposition of width two &l (j,| ©1)] with edge{vi,vi+1} in the leftmost
node and edggvj,vj 1} in the rightmost node. In the latter caggyi,vi+1}) is a path
decomposition of width two ofl (j + 1,1 <1)] with edge{vi,vi+1} in the leftmost node and
edge{Vji1,Vj4 } in the rightmost node. i

Let Sbe a sandwich graph whose underlying graph is a €ycke starting pointor ending
pointof Sis an element oE(C) U {nil}. LetPD = (V4,...,\t) be a path decomposition &f
We say that a starting poispof Sis in the leftmost node if eithespe E(C) andspC Vi, or
sp= nil. We also denote this bsp e V;. Similarly, an ending poingpof Sis in the rightmost
node ofPD, orepe V4, if eitherepe E(C) andepC 4, orep= nil.

We definePW2 as follows.

Definition 4.2.2. Let Sbe a sandwich graph of which the underlying graph is a cgaléth
nvertices. Lespbe a starting point of, and letj andl be integers, X | <nand 0< j < n.

true if there is a path decompositid?D = (Vy,...,\)
PW2(S;sp j,l) = of width two of Sl (j,1)] with vj,vj4 € t andspe V;
false otherwise

Let sp and ep be starting and ending points of a sandwich gr&obf which the un-
derlying graph is a cycle. There is a path decomposition of width tw8 with spin the
leftmost node andpin the rightmost node if and only if there isjavith 0 < j < nsuch that
PW2(S,sp, j,n<1) holds and eitheep= nil orep= {vj_1,v;}.

If n=3, then for any starting poispand ending poinep, (V(S)) is a path decomposition
of width two of Swith spin the leftmost node anelpin the rightmost node.

Suppose > 3. It can be seen from the definition BYV2 that for all starting pointsp of
S and allj, 0< j <n, PW2(S;sp j,1) holds if and only ifsp= nil or sp= {vj,vj;1}. We
use this fact and Lemma 4.2.3 to describ&2 recursively. Lespbe a starting point o8,
and letj andl be integers with K1 <nand 0< j <n.

sp=nilvsp={vj,vju} ifl=1
PW2(Ssp j,1) = 4 {vj,Vj11} € E2(S) A
(PW2(Sspj+1,1e1) vPW2(Sspj,l<1)) ifl>1

(Notice thatj + 1 denotegj + 1) modn.)
We can now use dynamic programming to compute whether there is a path decomposition
of width two of Swith the appropriate starting and ending points as follows.
Algorithm 3-ISG.Cycle(S,spep
Input: Sandwich grapl®with G1(S) a cycleC with n verticesvy, ... ,Vnh_1,
and edgeg {vi,vi+1}|0<i<n}
Starting poinspof S
Ending pointepof S
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Output: ( Jo<j<n (ep=nil vV ep={vj_1,Vj}) APW2(S;spj,n&l))

if n=3then return true
if sp=nil
thenfor j < Oton&sl
doP(j,1) « true
else forj«+ Oton&sl
doP(j,1) « false
Letj be such thasp= {vj,vj+1} € E(C)
P(j,1) + true
(+ Yo<jen P(j,1) = PW2(S;sp . 1) %)
10. for 1 +2ton&l
11. dofor j« Otonsl
12. doP(j,1) + ({vj,Vvju1 } € E2(S)) A (P((j + 1) modn,| 1) VP(j,l 1))
13. (& Yo<j<n P(j,nel) =PW2(S;sp j,n<l) %)
14. if ep=nil then return true
15. Letj be such thaep= {vj_1,v;}
16. return P(j,n<1)
The algorithm use®(n?) time if we first build an adjacency matrix of the gra@p(S): this
is needed in order to do the test in line 12 in constant time.

The algorithm can be made constructive in the sense that if there exists an intervalization,
then the algorithm outputs one, as follows. Construct an @rwgf pointers, such that for
eachj andl,0< j <nand 1< | < n, PP(j,l) contains the nil pointer if = 1 or if P(j,l) is
false. If P(],l) istrue andl > 1, thenPP(j,l) contains a pointer tBP(j,| 1) if P(j,1<1)is
true, and toPP((j + 1) modn,| <1) otherwise. The computation &P can be done during
the computation oP in 3-ISG.Cycle. Afterwards, if there is a three-intervalization, then
one can be constructed as follows. First@abe the underlying graph of the input sandwich
graph. Ifep=nil, then start with anyj, 0 < j < n for which P(j,n<1) is true, otherwise.
start withj for whichep= {vj_1,v;j}. Then follow the pointers frorRP( j,n<1) until the nil
pointer is reached, and add edge,vi } to G for eachi andl for which PP(i, 1) is visited.
Note that the nil pointer is reached if the previous pointer pointd®?R@, 1) for somei such
that eithersp= {vi,Vi+1} or sp=nil. HenceG is a three-intervalization of the input sandwich
graph.

CoNoO~WDE

Lemma 4.2.4. Algorithm 3-ISGCycle solves 3SGin O(n?) time and space for sandwich
graphs of which the underlying graph is a cycle.

4.2.1.2 Blocks

Let Sbe a sandwich block, suppo&e(S) is a partial two-path an@:(S) is sandwiched irs.
Let (C,E) be a cycle path fo61(S) with C = (Cy,...,Cp). There is a path decomposition
of width two of Sif and only if for eachi, 1 <i < p, there is a path decomposition of width
two of SV (G;)] with starting point_1 if i > 1, nil otherwise, and ending poigtif i < p, nil
otherwise (Lemma 4.2.2).

80



4.2 Intervalizing Sandwich Graphs

For a given sandwich block, the following algorithm returngrue if there is a three-
intervalization ofG, andfalse otherwise.

Algorithm 3-ISG.SB(S)
Input: Sandwich blocks
Output: true if there is a three-intervalization & false otherwise
Check ifG1(S) is sandwiched i, and if there is a cycle path f@:(S). If so, construct
such a patfiC,E) with C = (Cy,... ,Cp) andE = (ey,... ,ep_1). If not, return false.
fori< 1ltop
dom«+ |V(G)]

if i > 1thensp<« g_; elsesp <« nil

if i < pthenep+ g elseep+ nil

if =3-1SG.Cycle§V(Gi)],spep then return false
return true

=

Nook~owN

For Step 1, we can use the algorithm from Section 3.2, which t@kestime. The loop
in lines 2 — 6 runs irO(n?) time (n= |V (G)|) if we first make an adjacency matrix f@(S),
and then use procedure 3-ISGycle.

Algorithm 3-ISG.SB can again be made constructive. To this end, the constructive ver-
sion of algorithm 3-ISGCycle is used in line 6. After the loop has ended, the union of the
graphs that are constructed by the calls to 3-IS¢&le form a three-intervalization of the
input sandwich graph. Hence, we have proved the main result of this section.

Theorem 4.2.2. There exists an %) time algorithm that solves the constructive version
3-ISGfor sandwich blocks.

For three-intervalizing colored graphs we can use the same algorithm, with the only mod-
ification that in line 12 of algorithm 3-IS®ycle, we test whethes; andv;,, have different
colors instead of testing whethgv;,vj } € Ex(S)). Furthermore, we do not build an adja-
cency matrix of any graph, as this is not necessary.

4.2.2 Four-Intervalizing Sandwich Graphs

In this section we show that 4-ICG and 4-1SG are NP-complete. This showls t8& and

k-ISG are NP-complete for all > 4. Unfortunately, in most practical cases, the number of
colors is between five and fifteen. We feel however that the graphs that arise in the reduction
of our NP-completeness proof will not be typical for the type of graphs that arise in sequence
reconstruction applications. It may well be that special cases of ISG or ICG, which capture
characteristics of the application data, have efficient algorithms.

Theorem 4.2.3. 4-ICG is NP-complete.

Proof. Clearly, 4-ICGe NP. To prove NP-hardness, we transform frosRRREE-PARTITION,
which is strongly NP-complete [Garey and Johnson, 1979].
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THREE-PARTITION [SP15]

Instancel: Integersnl16 N andQ € N, a sequencs,, ... ,S3m € N such thatz?;“ls =mQ, and
Vici<am Q< s < 3Q.

Question: Can the sef1,...,3m} be partitioned intan disjoint setsS;, ... , Sy such that
Vicj<mYies § = Q7

Suppose we are given inpot Q,s1,S,...,%m € N. We define a grapls = (V,E) and a
four-coloringc of G, which consists of the following parts (see Figure 4.2).

@ vertex of color 1 €3m,24s37—2
© vertex of color 2
O vertex of color 3
® vertex of color 4 --—0
€2 24s,-2
--—20
€1,245, -2

C12 Cm-12
ag o—O0— - - 'o—& - —# by
12 Oi3  dioag-1 1240 O21 Om-1240 Omi .
an Cls €1 Cm13 Cmi1 03 by

Figure 4.2. The constructed grapB = (V,E) and its four-coloring.

Start clique.  Take verticeA = {aj1,ap,a3,a4}. Color vertexg; with colori (i = 1,2,3,4).
Add edges between every two verticefin

End clique. Take vertice = {by,bp,b3,bs}. Color vertexty with colori (i =1,2,3,4).
Add edges between every two verticein

Middle cliques.  Take verticesC = {¢;j |1 <i <m«1, 1< j<3}. Color each vertex
Gi,j € C with color j. Make each sef; = {c; 1,Ci 2,Ci 3} into a clique.

Tracks. Take verticed = {d; ;| 1 <i<m, 1< j<24Q}. Color each vertes; j € D with

color 1 if j mod 3= 1, with 2 if j mod 3= 2 and with 3 if ] mod 3= 0. Identify vertex
ap with dy 1, vertexbs with dm24g, and, for alli, 1 <i < m«1, identify d; 240 with ¢; 3,

anddi; 11 with ¢ 1. These track vertices fornm paths: take edge§; j,d; j;1} for alli, j,

1<i<m1<j<24Qel.
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Number representing paths. Take verticeE = {g; |1 <1 <3m, 1< j <24y 2}
Color each verteg ; € E with color 2 if j mod 3= 1, with color 3 if j mod 3= 2, and with
color 1if j mod 3= 0. For each, the vertice€ = {g j | 1 < j < 245 &2} form a path: add
edges{e j,g 41} foralll, j, 1<1<3m, 1< j <245 <3.

Attachment vertex.  Take one vertex. Color f with color 4. Take edge§f,a;} {f,bs},
and for alll, 1 <1 <3m, edge{f,g 1}.

The four-colored graph, resulting from this construction, is the gaph(V,E). Note
that the transformation can be done in polynomial tim@iandm.

Claim. There exists a partition of the sgt,... ,3m} into sets §,... ,Sy such thalyies s =
Q for each j if and only if there is a four-intervalization of G and c.

Proof. Suppose tha is a subgraph of a properly colored interval graph. So, we have a
path decompositioRD = (V4,...,V;) of G, such no two vertices of the same color occur in
the same node d¢?D. We may assume that there are\ig/i;1 with Vi C Vi1 orVi;1 C V.
(Otherwise, we may omit the smaller of these two sets from the path decomposition and still
have a path decomposition Gf)

Note that, by the cliqgue containment lemma (Lemma 2.2.3), thereigxisth Vi, = A,
andiy with Vi, = B. Without loss of generality suppoge< i1. If ig # 1, then there exists a
Vv € Vj,—1 with v ¢ A. Note that such a vertexhas a path to a vertex B that avoidsA. It
follows thatVj, must contain a vertex from this path, but this will yield a color conflict with a
vertex inA, contradiction. Sop = 1. A similar argument shows that=r.

Also, from the clique containment lemma it follows that for each< i < m&1, there
isaji, 2< ji <r&<lwithG CVj,. We havej; < jo < j3 <--- < jm-1, Otherwise a color
conflict will arise between a track vertex and a vertex in aGseWrite jo =1, jm=r. As
there is a path frordy 1 t0 dm24q in G that does not contain vertices with color 4 or vertices
in E, it follows that each s&f; contains at least one vertex@ D with color 1, 2 or 3.

For eachi, 1 <i < m, call the interval/ji_1 + 1, ji 1] theith valley. Each vertexd;
must be in one or more successive nodewith a in theith valley. It can not be in another
valley, since this gives a color conflict. Note that, for eadhere are exactly@ verticesd; j
with color 2. For a vertexi, ; with color 2, we call the intervafa | d; j € V } a two-range.
All two-ranges are disjoint, otherwise we have a color conflict. So, in each valley, we have
exactly & two-ranges.

For eachl, 1 <| < 3m, consider the verticel,. All vertices inE; must be contained
in nodesV, with all o’s in the same valley. Otherwise, the path inducedbywvill cross a
middle cliqgue, and we have a color conflict between a vertel iand a vertex irC. Write
S = {I | vertices inE; are in set¥, with a in theith valley}. We show thats,...,Syis a
partition of{1,...,3m} such that for eacy, yics s = Q.

For each edgée j,e 11} with g ; of color 3 (and hencey ;1 has color 1), there must
be a nodex with {g j,& j11} C V4. a must be in a two-range, as otherwiggcontains a
one-colored or three-colored vertex fr@w D, and we have a color conflict. If there exists
ana with {& j,€ j+1,d; j} € Va, with d; j of color 2, then we say that the two-rangedgf:
contains the 1-3-E-edd& j,€ j+1}-
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Claim. No two-range contains two or more 1-3-E-edges.

Proof. Suppos€e, j;,8,j,+1} and{e, j,,&, j,+1} are distinct 1-3-E-edges, and there is
ad; j such that{e j,, &, j;+1,0j } € Va, {8,,j,,8,,j,+1,0i j} € Vp. Suppose w.l.o.g. that
a < B. Note that bottv = g, ;, andw = g j, +1 are adjacent to a vertex with color 2. Let
v, 3] be the two-range ad; ;. Note thaty < a < B < &. If V1 contains a vertex with color 1
from CUD, then consider the vertaxwith color 1. It can not belong t¥,_; and it can not
belong toVg. So, ifw €V, theny < e < 3. Hence, there can not be a Sgtthat containsv
and itsg, j, +» with color 2, contradiction. I¥,_; does not contain a vertex with color 1 from
CuD, then it contains a three-colored vertex fr@w D, and by considering and using a
similar argument, a contradiction also arises. |

Let 1<i<m. Suppose§ = {lg,l2,...,It}. Note thatE, U---UE, induces 8, <1+
8, ©14---+ 8y, <1 1-3-E-edges. As there ar@8wo-ranges in a valley, we must have

8(s; +9,+-5,) =t <8Q

By noting that eacly > Q/4+1/4, it follows that §Q/4+ 1/4)t t < 8Q, sot < 3, and that
hence also, by integrality,

So, we have a partition ofl,...,3m} into setsS;,..., Sy, such that for allj,1 < j <m,
Yies S <Q. As zT:lZiESj s = mQ it follows that forallj, 1< j <m, Yies S = Q.
Now, suppos&;, S, ..., Sy is a partition of{1,...,3m}, such that for allj, 1 < j <m,
Yies; S = Q. We will give a path decompositidRD = (V1,...,V;) of G = (V,E), such that
noV; contains two vertices of the same color. We leave most of the easy verification that the
given path decomposition fulfills the requirements to the reader.

Taket = 48Q, r = mt+ 1. TakeVy = A, V; = B. For each vertex; j € C, putg in
nodeViit1. For each vertes, j € D, putd; j in NodeVy(i_1)10j—-1, Vi(i-1)+2j, aNAVy(i—1)4-2j+1-

(Note that each vertex occurs in consecutive nodes; even vertices with two names like the
vertices with named; »4g andc; 3 for 1 <i < m)

For each, 1 <i <m, suppose5 = {l1,1,I3}. Put vertexa, 1 in node\/t(i,le. For all
J, 2<j <245, &2, putvertexg, j in NodesV(i_1)42j—2, Ve(i-1)+2j—1 Vh(i-1)+2;-

Forallj, 1< j <24, 2, putverte)a, j in nodesV(i—1)aay, +2j-2: Vh(i-1)+48s, +2j—1
Vi(i-1)+48s,+2j- FOrallj, 1< j <24s, 2, putvertexe, j in nodesvii—1)14sq +4ss,+2i—2:
Vi(i-1)+485, +485,+2j—1 Vi(i-1)+48s, +485,+2]"

Finally, putf in all nodesva,... ,V;_1.

A straightforward, but somewhat tedious verification shows that the resulting path decom-
positionPD is indeed a path decomposition@f and that no nod¥; contains two different
vertices with the same color, and heriR2 has pathwidth at most three. m|

As three-partition is strongly NP-complete and our transformation is polynonfiahind
m, the claimed theorem now follows. |
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Note that we even proved a slightly stronger result.

Corollary 4.2.2. 4-ICG is NP-complete, even if there is one color that is only given to three
vertices of the input graph.

Since ICG is a restricted version of ISG, we also have the following result.

Corollary 4.2.3. 4-I1SG is NP-complete.

4.3 Unit-Intervalizing Sandwich Graphs

In this section, we consider the problemsiitD-INTERVALIZING SANDWICH GRAPHS (or
UISG) and WNIT-INTERVALIZING COLORED GRAPHS (or UICG).

Kaplan and Shamir [1996] have shown a relationship between a unit-intervalization of a
sandwich graph, its bandwidth, and ggper pathwidth. Before citing this result, we first
define the bandwidth and proper pathwidth of a sandwich graph.

LetG = (V,E) be a graph an®D = (V41,Va,...,\t) a path decomposition. Let

E'=EUu{{uv}|JuveV}.

Recall from Lemma 2.3.2 th@V/,E') is an interval graph, and is called the interval comple-
tion of G for PD.

Definition 4.3.1. A path decompositioD = (Vi, ... ,\t) of a (sandwich) graph is called a
proper path decompositiahfor eachv,w € V, the occurrence of is not properly contained
in the occurrence o, i.e. if w occurs in all nodes containing thenv occurs in all nodes
containingw.

Theproper pathwidttof a (sandwich) graph is defined as the minimum width of all proper
path decompositions of the (sandwich) graph.

Definition 4.3.2. LetS= (V,Ej1,Ey) be a sandwich graph. A layout 8fis a layout ofG(S)
(Definition 2.3.2). A layout of Sis called alegal layout of Sif, for eachv,w,V,w €V,
Lv) < V) < (W) < ¢(w) and{v,w} € E; implies that{V',w'} € E;.

The bandwidthof Sis the minimum bandwidth of all legal layouts &f If there is no
legal layout ofS, then the bandwidth dbis co.

The following lemma has been proved implicitly by Kaplan and Shamir [1996].

Lemma4.3.1. Let G= (V,E)be agraph and a layout of G of bandwidth k. Let'& (V,E’)
be the supergraph of G with'Eefined as follows.

E' = {{v,w} | vywe VAT wice (V) < U(v) < (w) < W)}

G is an interval graph with maximum clique size-4.

85



Chapter 4 DNA Physical Mapping

Proof. We construct an interval realizatignof G'. For eachv € V, letm(v) = max{¢(w) |
L(w) > (V) A ({v,w} € E'vVv=w)}. For eactv € V, letg(v) = [¢(v),m(v)]. Clearly, if there
is an edge{v,w} € E’, theng(v) andg(w) overlap. Now suppose(v) and @(w) overlap,
and w.l.0.g. suppose thétv) < ¢(w). Thenm(v) > ¢(w), hence there is e € V, such that
£(u) > ¢(w) and{v,u} € E'. By definition of G, this means thafv,w} € E’. This proves that
G' is an interval graph.

Since each graph of bandwidtihas maximum clique size at mdst 1, and( is a layout
of G, this means thab’ has maximum clique size O

G is called the interval completion @ for ¢. The following theorem has been proved by
Kaplan and Shamir [1996].

Theorem 4.3.1 [Kaplan and Shamir, 1996]Let S be a sandwich graph and let G be a graph
with V(G) = V(S). The following statements are equivalent.

1. Gis a k-unit-intervalization of S.

2. There is a proper path decomposition PD of widt#s-k of S such that G is the interval
completion of G(S) for PD.

3. There is a legal layout of S of bandwidth k-1 such that G is the interval completion of
G1(S) for ¢.

As an example of Theorem 4.3.1, consider Figure 4.3. It shows a sandwich §raph
with V(S) ={1,2,...,12}. The solid edges denote the edgeEi(S), and the dashed edges
denote the edges iB2(S) which are not inE1(S). The graphG depicted in the figure is
a three-unit-intervalization o8 G is sandwiched ir5, andg is an interval realization of
G in which all intervals are of equal length, which means t@at a unit-interval graph.
Furthermore, the path decompositiBb that is depicted is a proper path decomposition of
width two of S, and/ is a legal layout of bandwidth two & The layout/ is depicted by the
ordering of the vertices. The edges drawn in this layout are the ed@a$3h It is easy to
see that the unit-interval graghis the interval completion o1 (S) for PD and for¢.

Thus, the following problems are equivalent to UISG, and furthermore, a solution of one
problem can easily be transformed into a solution of another problem (as can be seen from
the proofs of Kaplan and Shamir [1996]).

SANDWICH PROPERPATHWIDTH
Instance: A sandwich grapts= (V,E1, Ey), integerk > 1
Question: DoesS have proper pathwidth at mdst1?

SANDWICH BANDWIDTH
Instance: A sandwich grapts= (V,E1, E), integerk > 1
Question: DoesS have bandwidth at mo&t=1?

Consider the problem 2-UISG. A connected graph has bandwidth at most one if and only
if it is a path. Furthermore, if the underlying graph of a sandwich g&isha path, then any
layout of bandwidth one dB1(S) is a legal layout of bandwidth one &f Checking this can
clearly be done i©(n) time (althougHEz(S)| may bew(n)).
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—— edge inEy(S)
,,,,,,,, edge inEx(S) — E1(9)

@ 2 4 8 10
1 3 6 9 12

1 2 3 7 4 6 5 8 9 11 10 12

Figure 4.3. An example of Theorem 4.3.1.

Theorem 4.3.2. 2-UISG can be solved in @) time.

For 3-UISG, we use an algorithm which has the same structure as our algorithm for 3-
ISG. A necessary condition for a sandwich gr&ih admit ak-unit-intervalization is that the
underlying graptG: (S) has pathwidth at most<-1, since the proper pathwidth of a graph
is at least its pathwidth. Therefore, we use the characterization of partial two-paths given in
Chapter 3 for our algorithm: first the algorithm check&if(S) has pathwidth at most two,
and if so, finds the structure as given in Chapter 3. This structure is then used to solve the
problem.

In the remainder of this section, we first give an algorithm for solving 3-UISG on bi-
connected graphs. After that, we show how this algorithm can be improved for 3-UICG on
biconnected graphs.

4.3.1 Three-Unit-Intervalizing Biconnected Sandwich Graphs

We start by considering the case that the underlying graph of the input sandwich graph is a
cycle. After that, we extend the algorithm to sandwich blocks.

4.3.1.1 Cycles
First we study the structure of layouts of bandwidth two of a cycle.

Lemma 4.3.2. LetC= (V,E) be a cycle. The following holds.
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1. In each layout of bandwidth two of C, the first two vertices in the ordering induced by
are adjacent.

2. Let{u,w} € E. There is exactly one layotibf C of bandwidth two in which(u) = 1 and
¢(w) = 2. Furthermore, for each il <i < n, there is a vertex;te V with {(u;) =i, and

E= {{Ul,UZ},{Un_l,Un}} U {{Ui,Ui+2} | 1<i< n<:>2} (41)

Proof.

1. Let/ be alayout of of bandwidth two which starts at one, i.e. there is a veutex/ for
which ¢(u) = 1. Each vertex irC has degree two, and hengdas degree two. Letw e V
be the neighbors af. Then eithel(v) = 2 and{(w) = 3, or vice versa.

2. Let? be a layout of width two o€, and order the vertices W corresponding td, i.e. let
V ={uy,...,un} such that for each< j, {(u;) < ¢(uj). We claim that equation (4.1) holds
and that for each ¢(u;) =i.

The proof is by induction om. If n = 3, the claim clearly holds. Suppose> 3. The
verticesu,_1 andup_» are the neighbors af,. Hence the grap& which is obtained fronC
by removing vertexi, and its incident edges, and adding an edge between veutjcesind
un—1 is also a cycle, but witim <1 vertices. Furthermoré,restricted to/(G) is a layout of
G of bandwidth two. By the induction hypothesis,

E(G) = {{u1,u2}, {un—2,un—1} } U {{Ui,Ui2} | 1 <i < n&3},

and for each, 1 <i < n<&l, ((u) =i. It follows that Equation (4.1) holds. Furthermore,
since{un_2,uUn} € E(C), it must be the case théfu,) < ¢(un—2) +2. Hencel/(up) =n. O

Figure 4.4 shows the unique layout for a cycle with ten vertices as given in Lemma 4.3.2.
Vg4 Ve
W=V Vg
C u=wv; V1o l

V3 Vo
Vs V7

Vi V2 V3 Vg V5 Vg V7 Vg Vg Vio

Figure 4.4. A cycleC with ten vertices, and the unique laydudf bandwidth two of
C with ¢(u) = 1 and((w) = 2.

Lemma 4.3.2 implies that, for each cy&ewith n vertices, there are exactlyn2ayouts
of bandwidth two ofC which start at one: for each ed@ew} € E(C), there is a layout with
((v) =1 and((w) =2, and a layout witl{(w) = 1 and/(v) = 2.

Suppos& is a cycle withn vertices with

V(C) ={vo,V1,... ,Vn-1} @andE(C) = {{Vi,V(i+1)moan} | 0 <1 < n}.
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For each, 0< i < n, let ¢!, denote the layout of of bandwidth two with¢', (vi) = 1 and
Eg(v(iﬂ) modn) = 2, and let’"_ denote the layout o of bandwidth two with?" (vi) =1 and
€ (V(i—1)modn) = 2. Furthermore, for each 0 <i < n, let G} andGL denote the interval

completions ofC for ¢, and('_, respectively. Figures 4.5 and 4.6 show example$ o',
(" andG. for the case that is even anadh is odd, respectively.

n=10 Vg Vs
V3 V6
2 2 W V7
Vo2 V3 Vi Va4 Vo V5 Vg Vg Vg V7 +
V1 Vg
Vo Vo
Vg4 Vg5
V3 V6
e LOVVVNYNYND @ v “
Vo2 V1 V3 Vo V4 Vg9 V5 Vg Vg V7
Vi Vg
Vo Vo

Figure 4.5. Examples of graph&? andG? for n = 10.

ez GZ v
Vo V3 Vi V4 Vo V5 Vg Vg V7

2 2w
Vo V1 V3 Vo V4 Vg V5 V7 Vg

Vg Vg
V3
Vi
Vo Vg
Vg Vg
V3
Vi
Vo Vg
; 2 2 _
Figure 4.6. Examples of graph&4 andG* forn= 9.

Suppose thatis even. Lemma4.3.2 implies that for each<i < n/2, GLr = Gijn/z: for
eachveV, (i (v) = n+ 10 ™). Similarly, G_ = G2, For example, in Figure 4.5,

it can be seen that, if = 10, thenG2 = G/ andG2 = G’. Furthermore, for each j,
0<i,j<n/2,G. #G', and ifi # |, thenG # G} andG_ # G'. This means that
there are exactly different interval completions of layouts of bandwidth two@f Let
{Ho,Hs,... ,Hn_1} denote the set of all these graphs, and let... ,¢{n_1} denote the set of
layouts, such that for ea¢h0 <i < n/2,H; =G, and(; = ¢, , and furthermorei; /= G-
and/' .
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. ipntl
Consider the case thatis odd. For each 0<i<n, G, = G(_'+T)m°dn. For example,

figure 4.6 shows that, i = 9, thenG2 = G’ andG? = G?. Furthermore, for each€i <

j<n, GLr # GL andG'_ # G.. This means again that there are exaathifferent interval
completions of layouts of bandwidth two Gf Let {Ho,Hs,... ,Hn-1} again denote this set
and let{(o, ... ,(n_1} denote a set of layouts, such that for eacb<i < n, H; = G, and
= f'Jr.

For each Xi < j < nwith 1 < j i <n<«l, we call{vi,vj} adiagonalof C. The
preceding discussion implies the following result.

Lemma4.3.3. Let{vj,v;} be adiagonal of C. There are integerg end n, 0 <m <nmp <n,
such that the edgévi,v;} is contained in i, and Hy, and in no other |, p # mg,mp.
Furthermore, m and my can be computed in constant time from i, j and n.

Proof. If j<iiseven,theqvi,v;}isanedgeis, andinG_? (andG;? #G_2?).If j<i
itj-1 itj+1 i+j-1 itj+1

is odd, then{vi,v;} is an edge irG, 2 andinG_? (andG,? # G_? ). Thisimplies

thatm, andm, exist and can be easily computed fronj andn. Also, it can be seen that

there is nop, 0 < p < n, with p # my, my and{v;,v;} is an edge irHj. a

Suppose we have an input sandwich gré&pk (V,E1,E2), such thatGy(S) is a cy-
cle C with verticesV = {vo,...,vn—1} as before. Notice that a gragh is a three-unit-
intervalization ofSif and only if there is an, 0 <i < n, such thatG = H;. If there is such
ani, theny; is a legal layout ofS of bandwidth two. Furthermore, for eachthere are
exactlyn <3 edges irE(H;) which are not inC. If H; is a three-unit-intervalization d8,
thenE(H;) C E». This implies the following algorithm for three-unit-intervalizing sandwich
graphs of which the underlying graph is a cycle.

For eachi, 0 <i < n, we compute an integé(i) which denotes the number of edges
of Ex &E; which are also edges id;. By the preceding discussion, there is a three-unit-
intervalization ofSif and only if there is am, 0 <i < n, such thalN(i) = n<3. The algorithm
for deciding 3-UISG on sandwich grapBdor which G1(S) is a cycleC with n vertices is
now as follows.

Algorithm 3-UISG.Cycle(S
Input: Sandwich graplsfor whichG4(S) is a cycle
Output: true if there is a three-unit-intervalization & false otherwise
1.  Number the vertices @1 (S) by vp, ... ,Vn—1, Such that
foreachj, 0 < j < n, {Vj,V(j+1)modn} € Ea.
fori«< Oton&l

doN(i) «+ 0
forall {vi,vj} € B>

doifl<|j&il<nsl

then Compute the values ofy andny as in Lemma 4.3.3 and increasémy )
andN(my) by one.

fori«<Otonsl

oukwnN

N
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8. do if N(i) = n<-3then return true
9. return false

By the preceding discussion, this algorithm returas if and only if there is a three-unit-
intervalization ofS. It runs inO(|Ez|) time. We can easily modify the algorithm such that
it returns a three-unit-intervalization if one exists: it is easy to construct the giafir a
given value of.

Lemma 4.3.4. Algorithm 3-UISGCycle solves 3JISG in O(|E2(9)|) time and space for
sandwich graphs S of which the underlying graph is a cycle.

4.3.1.2 Blocks

In the following lemma we give a necessary condition for a biconnected partial two-path to
have bandwidth two.

Lemma 4.3.5. Let G be a biconnected partial two-path. If G has bandwidth two then G is a
path of cycles in which each edge occurs in at most two chordless cycles.

Proof. SupposéS has bandwidth two and lébe a layout ofS of bandwidth two. LetC ,E)
be a cycle path fo& with C = (C1,Cs, ... ,Cp) andE = (e1,e,...,€p_1). LetW CV(G) be
the set of vertices for which there is am, 1 <i < p, suchthav e V(Ci),e_1 =g andv¢ e.
Consider the cycl€ of G which is obtained fronG by first removing all vertices froriv
and their incident edges, and then removing all edges< i < p, which occur more than
once inE. Note thatC is a subgraph o8.

The function?’ that is obtained by restrictingtoV(C) is a layout of bandwidth two d.
Order the vertices dF by ug, . .. ,un, such that for each< j, ¢(uj) < ¢(uj). By Lemma 4.3.2,
£(un) ©L(u1) = n<1. This means that for each vertene W, eitheré(w) < £(uz) or £(w) >
£(un). If ¢(w) < £(u1), thenw can only be adjacent to; and u. But {ug,up} € E(C),
contradiction. If¢(w) > ((un), we also get a contradiction. Hendé= @, and thusG is a
path of cycles in which each edge occurs in at most one chordless cycle. This also implies
thatG = G, which completes the proof. a

The next lemma easily follows from the preceding discussion.

Lemma 4.3.6. Let S= (V,Ej,E») be a sandwich graph, suppose(S) is a path of cycles
in which each edge occurs in at most two chordless cycles. &t be the set of edges
which occur in two chordless cycles, and let C be the cycle obtained frd8) 8y removing
alledgesin F, i.e. C= (V,E1 <F). A graph G is a three-unit-intervalization of S if and only
if G is a three-unit-intervalization of C and E E(G) C E,.

Let S= (V, E1, Ez) be a sandwich graph, suppdSg(S) is a path of cycles in which each
edge occurs in at most two chordless cycles. E&l E; denote the edges @&1(S) which
occur in two chordless cycles, and@& (V,E; <F). Furthermore, I8¢ = {vo,v1,... ,Vn_1}
andE = {{Vi,V(it1)modn} | 0 <i < n}. Lemma 4.3.5 shows that we can use an algorithm
similar to the cycle algorithm to compute whett&has bandwidth two: together with the
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arrayN we now compute an arrdy of positive integers. For eagh0 < i < n, B(i) denotes
the number of edges iR which occur inH;. The arrayB can be computed i®(|F|) time

in the same way as we computed the amhylt can be seen tha;, 0<i < n, is a three-
unit-intervalization ofSif and only if N(i) = n<3 andB(i) = |F|. This implies the following
algorithm for 3-UISG on biconnected sandwich graphs

Algorithm 3-UISGBSG(S)
Input: Biconnected sandwich graf$h
Output: true if there is a three-unit-intervalization & false otherwise

1. Check ifG1(S) has pathwidth two, and if so find a cycle pah E) (C = (Cy,...,Cp),
E =(ey,... ,ep—1)) for G1(S). If not, return false.

2. fori<1topel

3. do if § = g1 then return false

4. LetC be the cycle obtained froi@;(S) by removing all edges dE.

5. Number the vertices @ by Vv, . .. , Va1 such that for each {Vi,V(i+1)modn} € E(C).

6. Compute the arrays andB.

7. fori<Otonsl

8. doif N(i) = n<3 andB(i) = p<1then return true

9. return false

Step 1 is described in Section 3.2 and can be do@m time. The loop in lines 2 — 3, and
steps 4 and 5 can easily be don®ifm) time. Step 6 can be done®@(|E;|) time, as described
above (note thap = O(|Ez|)), and the loop in lines 7 — 8 tak&Xn) time. Hence the total
algorithm take<O(|Ez|) time. Notice that we can easily make the algorithm constructive: in
line 8, return the graphl; if N(i) = n<3 andB(i) = p<1l.

Theorem 4.3.3.  There exists an QE(S)|) time algorithm that solves the constructive
version3-UISG for sandwich blocks S.

4.3.2 Three-Unit-Intervalizing Biconnected Colored Graphs

Let G = (V,E) be a graph and a three-coloring of5. The sandwich grap8= (V. E1,Ey),

with E; = E andEp = {{v,w} | c(v) # c(w)} is called the sandwich graph associated v@th
andc. For three-unit-intervalizing biconnected colored graphs we can use the algorithm from
the previous section, by first computing the sandwich graph associated with input@raph
and coloringc. Unfortunately, the number of edgesEa may beQ(n?), while the graphG

must haveO(n) edges.

In this section we show that it is possible to obtain a faster algorithm for 3-UICG that does
not use the associated sandwich graph. Instead of using the notions of bandwidth, (proper)
pathwidth and unit-intervalizations for the sandwich gr&hssociated with grap® and
coloringc, we use these notions for the p@irc itself.

Consider the case in which the input graph is a cycle.

Lemma 4.3.7. Let C be a cycle, suppose=n|V(C)| > 4. Letc:V — {1,2,3} be a coloring
of C and suppose € has bandwidth two. There are exactly two vertices v and w in C which
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4.3 Unit-Intervalizing Sandwich Graphs

have two neighbors of the same color. In each legal layoot C,c of bandwidth two in
which there is a vertex u such th&u) = 1, either/(v) = 2 and{(w) = n<-1, or vice versa.
Furthermore, if n even, then v and w have distang2 and u and w have distancg a<1,
and if nis odd, then v and w have distar{ce=3) /2, and u and w have distan¢a <1)/2.

Proof. Let ¢ be a legal layout fo€, c which has bandwidth two such th&u) = 1. Num-
ber the vertices fronuy, ... ,un, such that for each ¢(uj) =i. For each, 1<i<n&2,
{uj,ui;2} € E(C) (Lemma 4.3.2), sa(u;) # c(Ui+2), and furthermoreg(u;) # c(ui+1) and
c(ui+1) # c(Uir2). Hence vertices;, up andus have different colors, and for eaghL <i <n,
if i mod 3= 1), thenc(u;) = c(u1), if i mod 3= 2, thenc(u;) = c(uz), and ifi mod 3= 0,
thenc(u;) = c(us).

Verticesu; andup have two neighbors of different colors. The neighboracdreu; and
Uz, and these have the same color. The neighbotg of areu, andu,_3, which also have
the same color. For eath3 < i < n&2, the neighbors ofi areu;_, andu; 2, which have
different colors.

Consider the two paths fromp to up—1 in C. If nis odd, then these are the paths=
(U2,Ug,Ug, ... ,Un—1) andPe = (up,U1,Us,... ,Un—2,Un,Un—1). PathP; has length(n<3)/2,
andP, has lengtl{n+ 3)/2. Hence the distance betweeandw is (n<3)/2, and the distance
betweeru = u; andwis (n<1)/2.

If nis even then the paths fromp to u,_1 are P, = (up,up,Us,... ,Up—1) and P, =
(u,Us,...,Un—2,Un,Un_1), @and they both have lengtly2. Hence the distance between
andwis n/2, and the distance betweenandwis n/2 <1. O

If we have a cycleC of length three with a three-coloring thenC is a three-unit-
intervalization ofC, c.

LetC be a cycle and a three-coloring of C, and suppose = |V (C)| > 4. Furthermore,
suppose that, c has bandwidth two and letbe a vertex irC which has two neighbong;
andu; of the same color. There are two legal layout€afith bandwidth two in whichv is
mapped to the value 2, namely the layéiivith ¢1(u1) = 1 and the layout, with ¢,(uy) = 1.

If nis even, then it is easy to see that bétrand/, are legal layouts of,c. Furthermore,
the interval completions d for 1 and/, are the only three-unit-intervalizations®©fc.

If nis odd, then only one of the layouts is legal: tiktdenote the distance betwean
andw. Then eitheid; = (n<1)/2 andd, = (n<5)/2, or vice versa. In the first casé, is
the only legal layout o€, c with ¢1(v) = 2, and in the latter casé; it the only legal layout
of C,c with ¢,(v) = 2. Furthermore, there is a unique three-unit-intervalizatio€,af in
the first case, this is the interval completion®for /1. In the second case, it is the interval
completion ofC for /.

So to check if there is a three-unit-intervalization of a cy€land a three-coloring
of C, we can simply check if the conditions given in Lemma 4.3.7 hold. This can be done
in O(n) time. Also, the preceding discussion shows that we ca@(i) time, construct a
three-unit-intervalization of, c if one exists.

Lemma 4.3.8. There is an @n) time algorithm which solves the constructive version of
3-UICG if the input graph is a cycle.
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Chapter 4 DNA Physical Mapping

Suppose we have a biconnected gr&pland a three-coloring of G, and suppos&
has bandwidth two. Lef be the set of edges iB which occur in two chordless cycles,
and letC be the cycle obtained fro® by removing all edges ifr. Clearly, each three-
unit-intervalization ofG, c is a three-unit-intervalization d€,c. Suppose there is a three-
unit-intervalizationG' of C,c. ThenG' is a three-unit-intervalization d, c if and only if
F CE(G).

Given a biconnected graghwith a three-coloring, we can now check whether there is
a three-unit-intervalization db andc as follows.

Algorithm 3-UICG_.BG(G,c)

Input: Biconnected grapks, three-coloring for G

Output: true if there is a 3-unit-intervalization d5, ¢, false otherwise

1. Check ifG is a path of cycles. If so, find a cycle paiG,E) for G, and check ifE
contains each edge only once. If n@urn false.

2. LetC be the cycle obtained froi® by removing all edges . If |V(C)| = 3, return
true.

3. Find the seL of all (at most two) legal layouts of bandwidth two Gfc. If L = ¢,
return false.

4. Foreacl € L, check whethet is a legal layout of bandwidth two @, c. If so, return
true.

5. return false

By the preceding discussion, this algorithm retumes if and only if there is a three-unit-
intervalization. Steps 1, 2 and 3 u&¢n) time, as is shown before. In step 4, a laybat L

is a legal layout of bandwidth two dB,c if for each {u,v} € F, |¢(u) <((v)| = 1. This
can be checked i®(n) time, since|F| = O(n). Hence 3-UICGBG usesO(n) time. The
algorithm can be made constructive as follows: if in step 4, a legal lafyofiG, ¢ is found,
then the interval completion dfis returned. By Theorem 4.3.1, this interval completion is a
three-unit-intervalization o6, c. This shows the following result.

Theorem 4.3.4. There exists an ) time algorithm that solves the constructive version
3-UICG for biconnected graphs.
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Chapter 5
Reduction Algorithms

In this chapter we give an introductionteduction algorithmgor decision and optimization
problems on graphs. A reduction algorithm is based on a finite sedoftion rulesand a

finite set of graphs. Each reduction rule describes a way to modify a graph locally. The idea
of areduction algorithm is to solve a decision problem by repeatedly applying reduction rules
on the input graph until no more rule can be applied. If the resulting graph is in the finite set
of graphs, then the algorithm returtnge, otherwise it returnfalse.

The idea of reduction algorithms originates from Duffin’s [1965] characterization of
series-parallel graphs (Definition 2.3.3): a multigraph is series-parallel if and only if it can be
reduced to a single edge by applying a sequensenésandparallel reductions. A series
reduction is the replacement of a vertex of degree two and its incident edges by an edge be-
tween its two neighbors, and a parallel reduction is the removal of one of two or more edges
between the same vertices, i.e. the removal of an edge which has parallel edges (see also
Figure 2.11). Valdes, Tarjan, and Lawler [1982] showed how a reduction algorithm based on
this set of reduction rules can be implemented in linear time, and hence series-parallel graphs
can be recognized in linear time.

Inspired by the characterization of Duffin and the similarity between graphs of treewidth
two and series-parallel graphs, Arnborg and Proskurowski [1986] generalized this idea for
recognizing simple graphs of treewidth at most three: they gave a set of reduction rules which
characterizes graphs of treewidth at most three. They also showed that these reduction rules
can be used to recognize partial three-treed(in’) time. Matowek and Thomas [1991] gave
a slightly different set of reduction rules, and showed that with this new set it is possible to
recognize simple graphs of treewidth at most three in linear time. Additionally, they showed
how to construct a tree decomposition of minimum width in linear time if the input graph has
treewidth at most three.

A much more general approach is taken by Arnborg, Courcelle, Proskurowski, and Seese
[1993]. They gave a set of conditions that must hold for a set of reduction rules to ensure
that the reduction algorithm works correctly. They have also shown that for a large class of
decision problems on simple graphs of bounded treewidth, there is a set of reduction rules
for which these conditions hold, and that the algorithm based on such a set of reduction rules
takesO(n) time (but more than linear space). The results of Arnborg et al. are stated in a
general, algebraic setting.

Bodlaender [1994] extended the notion of reduction algorithms to optimization problems:
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he introduced a new notion of reduction rules for optimization problems, cedbhattion-
counter rulesand gave a set of conditions which are necessary for a set of reduction-counter
rules in order to make a reduction algorithm work correctly. For simple graphs of bounded
treewidth, this results again in efficient linear time algorithms.

Bodlaender and Hagerup [1995] have shown that the sequential reduction algorithms
of Arnborg et al. [1993] and Bodlaender [1994] can efficiently be parallelized, if some
additional conditions hold for the set of reduction rules. Their reduction algorithm uses
O(lognlog* n) time with O(n) operations and space on an EREW PRAM, @ilbgn) time
with O(n) operations and space on a CRCW PRAM. A sequential version of this algorithm
gives a reduction algorithm which us@$n) time and space.

In this chapter, we give an overview of the results of Arnborg et al. [1993], Bodlaender
[1994] and Bodlaender and Hagerup [1995] that are mentioned above. We combine the re-
sults and present them in a uniform setting, in order to get a comprehensible overview. The
chapter also acts as an introduction for Chapters 6 and 7: in Chapter 6, we show how the
reduction algorithms presented in this chapter can be extended to constructive algorithms,
i.e. algorithms which solve constructive decision or optimization problems. In Chapter 7, we
apply these results to a number of optimization problems.

This chapter is organized as follows. In Section 5.1 we discuss reduction algorithms for
decision problems as introduced by Arnborg et al. [1993]. We do this in a more direct way,
without making use of the algebraic theory. We also give a reduction algorithm which uses
linear time and space, based on the ideas of Arnborg et al. [1993] and of Bodlaender and
Hagerup [1995]. In Section 5.2, we describe reduction algorithms for optimization problems,
as introduced by Bodlaender [1994]. In Section 5.3, we discuss the parallel reduction algo-
rithms of Bodlaender and Hagerup [1995], and in Section 5.4, we mention some additional
results.

5.1 Reduction Algorithms for Decision Problems

In this section, we start with definitions of reduction rules and reduction systems (Sec-

tion 5.1.1). Then we give an efficient reduction algorithm based on a special type of reduction
system (Section 5.1.2). Finally, we show that this reduction algorithm can be used to solve a
large class of decision problems on graphs of bounded treewidth (Section 5.1.3).

5.1.1 Reduction Systems

The graphs we consider are simple unless stated otherwise. Recall that a graph property is a
functionP which maps each graph to the valuge or false. We say a property isffectively
decidabléf an algorithm isknownthat decides the property.

For the definitions of terminal graphs, and the operatipsee Definitions 2.2.3and 2.2.4.
Two terminal graph$Vi,Es, (x1, - , X)) and(V, Ep, (y1,---,yi)) are said to bésomorphic
if k=1 and there is an isomorphism frof¥i, E1 ) to (V2, Ez) which mapsx; to y; for eachi,
1<i<k
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Definition 5.1.1 (Reduction Rule). Aeduction rule ris an ordered paifH1,Hy), whereH;
andH; arel-terminal graphs for somle> 0.

A matchto reduction rule = (Hy,Hy) in graphG is a terminal grapl@; which is iso-
morphic toH;, such that there is a terminal gra@h with G = G ¢ Go.

If G contains a match to, then anapplicationof r to G is an operation that replac&
by a graphG’, such that there are terminal graghg G, andGgs, with G; isomorphic toH;,
G, isomorphic toHz, andG = G; ¢ G3, G' = G, 4 G3. We also say that, i, G; is replaced
by G2. An application of a reduction rule is also calledeguction

Figure 5.1 shows an example of a reduction myland an application af to a graphG. We
usually depict a reduction rulgd;, H,) by the two graph$l; andH, with an arrow fromH;
to Hz. Given a reduction rule = (Hq,Hz), we callH; the left-hand side of, andH; the
right-hand side of.

Hi Ha
1 1
r 2%%2
3 3

Figure 5.1. An example of a reduction rule= (Hy,Hy), and an application afto a
graphG, resulting in grapl@'. The dotted lines it andG’ denote the parts @& and
G’ that are involved in the reduction.

Let G be a graph and = (H1,H>) a reduction rule. IfG contains a matcks; to r, then
an application of to G which replace$5; by a terminal graph isomorphic td, is called a
reduction corresponding to the maiGh.

Note that different applications of a reduction rule to a graph may result in different (i.e.
non-isomorphic) graphs. If there is an application of nul® graphG which results in a
graphG', then we writeG 5 G'. LetR be a set of reduction rules. For two graghsnd

G, we writeG 5> G if there exists am € R with G - G'. We sayG contains a matcls if
there is ar € R such thatG; is a match ta in G. If G contains no match, then we say that
Gisirreducible(for R).

The following conditions are useful for a set of reduction rules in order to get a charac-
terization of a graph properf.

Definition 5.1.2. Let P be a graph property aritl a set of reduction rules.

e R is safefor P if, wheneverG R G/, thenP(G) & P(G').
e R iscompletefor P if the setl of irreducible graphs for whicP holds is finite.

. S . e R R R
¢ R isterminatingif there is no infinite sequend®, — G, — Gz — ---.
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. o R . .
e R isdecreasingf, whenevelG — G/, thenG' contains fewer vertices thaa

Definition 5.1.3 (Reduction System). Aeduction systenfor a graph property is a pair
(R, 1), with R a finite set of reduction rules which is safe, complete and terminatin@, for
andl the set of irreducible graphs for whi¢hholds.

A decreasing reduction systefor P is a reduction syster(R , 1) for P in which R is
decreasing.

A reduction systeniR , 1) for a propertyP gives a complete characterizationRfP(G)
holds for a grapl@ if and only if any sequence of reductions frdtnon G leads to a graph
G which belongs td (i.e. is isomorphic to a graph ih).

As an example, consider the graph property of being a pagath for a fixed non-
negative integek. Arnborg and Proskurowski [1986] have given reduction systms
(R, Ix) for the properties that a graph is a parkgbath, for 0< k < 3 (see also Arnborg
[1985]). For eactk, Ik contains only the empty graph, denoted ®ympy. Furthermore,
the set of ruleR is a subset of the rules depicted in Figure 2 = {1}, R1 = {1,2},

R2:{17273} anngz{l,... 76}.
5 4,

1
? Gempty
2
—

O

1o

[ J :
[@
Figure 5.2. A set of reduction rules which is safe, complete and terminating for
treewidth at most three.

5.1.2 An Efficient Reduction Algorithm

A decreasing reduction syste(R , 1) for a propertyP corresponds to a polynomial time
algorithm that decides whether propeRynolds for a given grapfs: repeat applying rules
from R starting with the input graph, until no rule froR can be applied anymore. If the
resulting graph belongs to the detthenP holds for the input graph, otherwise, it does not.
The number of reductions that has to be performed is at ma#stice each reduction reduces
the number of vertices by at least one. Furthermore, it t&k@S) time to check whether
G contains a match, whekeis the maximum number of vertices in any left-hand side of a
reduction rule.

In general, an algorithm as described above is not very efficient. However, there are
several ways to make the algorithm more efficient. One way is to use a reduction system
in which the reduction rules have a special structure, and to use this structure to efficiently
determine whether a reduction rule can be applied. For example, Arnborg et al. [1993] define
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such a special reduction system, and show that, with such a reduction system, a property
can be decided i®©(n) time on an input graph with vertices. However, their algorithm
need€(nP) space, wher@ is the maximum number of terminals in any left-hand side of a
reduction rule (although this result can be improve®tol*¢) space for ang > 0, with an
increase in running time of only a constant factor [Hagerup, 1988]).

Another way to make a reduction algorithm more efficient is to design the reduction
system(R ;1) such that for any grap® for which the property holds, eith& belongs to
I, or G contains a match which can be found in an efficient way. As an example of this, we
consider the method used by Bodlaender and Hagerup [1995], callbddhneed adjacency
list search method(Bodlaender and Hagerup use their method to obtain an efficient parallel
algorithm; we give an efficient sequential version of this parallel algorithm in this section.)

Definition 5.1.4. Letd be a positive integer. L& be a graph given by some adjacency list
representation and I&; be anl-terminal graph. We sa; is d-discoverablén G if

1. G is open and connected, and the maximum degree of any ver@xigiat mostd,
2. there is a-terminal graphGy, such thatG = G1 & Gy, and

3. Gy contains an inner vertexsuch that for all verticew € V(G;) there is a walkV in G;
with W = (ug,up, ... ,Us), such thav = u;, w = us, and for each, 2<i < s&1, in the
adjacency list ofjj in G, the edgegu;_1,u;} and{u;,ui11} have distance at most

Let G be a graphd a positive integer, and I1€%; be ad-discoverable terminal graph @&. Let

v be an inner vertex dB; satisfying condition 3 above, and Mt= (u1,up, ... ,us) be a walk
in G1 with v =uy, such that for each 2 <i < s&1, the edges$ui_1, u; } and{u;,ui+1} have
distance at most in the adjacency list afi, 1 in G. We show that there is a wall’ from uy

to us in G; satisfying the same condition in which each edge {x,y} occurs at most twice
inW'. If an edgee = {x,y} occurs three times W', then it is passed in the same direction at
least twice, i.eW contains either a subsequence of the f@&mx.y, ... , X,y or a subsequence
of the formS=y,x,...,y,x. In the first case, we remove the subsequence,x of S, and
in the latter case, we remove the subsequence,y of S. The result is still a walk irG;
satisfying the stated condition. This transformation can be repeated\dbkes not contain
any edge more than twice.

In the same way we can show that if condition 3 holds, then there is a walk from any inner
vertexw to any other inner vertew’ in Gz in which two subsequent edges have distance at
mostd in the adjacency list of their common vertex, and each edge occurs at most twice.
This, and the fact that each edge in an open terminal géapsincident with an inner vertex
(which has degree at mad} implies the following result.

Lemma 5.1.1. If a terminal graph G is d-discoverable in a graph G for somexd1, then
for any inner vertex v of g all vertices and edges ofi&an be found from v in an amount of
time that only depends on the integer d and the size;pb@® not on the size of the graph G.

Definition 5.1.5 (Special Reduction System). Llebe a graph property, ani® , | ) a decreas-
ing reduction system foP. Let nmax be the maximum number of vertices in any left-hand

99



Chapter 5 Reduction Algorithms

side of aruler € R. (R, 1) is aspecial reduction systefor P if we know positive integers
Nmin andd, Nmin < Nmax < d, such that the following conditions hold.

1. For each reduction rufgd;,Hy) € R,

(a) if H1 has at least one terminal, thei is connected andl; andH- are open, and
(b) if Hy is a zero-terminal graph, thé¥(Hz)| < Nmin .

2. For each grap® and each adjacency list representatio®oif P(G) holds, then

(a) each component @& with at leasiny,, vertices has d-discoverable match, and

(b) if all components ofs have less thann, vertices, then eithe® € | or G contains a
match which is a zero-terminal graph.

Conditions 1a and 2a assure that each compdewntth [V (H)| > nyn, of a graphG for
which P(G) holds, contains at least onediscoverable match to a reduction rule, which can
be applied without having to remove multiple edges. Conditions 1b and 2b are only needed
for graph properties which do not imply that the input graph is connected; they assure that,
if no other reduction rules are applicable, then matches to reduction rules with zero terminals
of which the left-hand side is not connected, can be found efficiently.

As a simple example of a special reduction system, consider the graph prepetigre
P(G) holds if and only if each component &fis a two-colorable cycle, and the number of
components 06 is odd. LetR be the set of reduction rules depicted in Figure &3ty
denotes the empty graph), and letoe the set containing just the cycle on four vertices
(see also Figure 5.3). It can easily be seen tRatl ) is a special reduction system fBr
(d = nmax= 8 andnpin = 5).

DR
T111% o []

Figure 5.3. A reduction system for properfy, which is the property that a graph is
two-colorable, has an odd number of components, and each of its components is a
cycle.

Theorem 5.1.1. Let P be a graph property. If we have a special reduction system for P, then
we have an algorithm which decides P ifrptime and @n) space.

We prove Theorem 5.1.1 by giving the algorithm. The algorithm consists of two phases.
In the first phase, the algorithm findsdiscoverable matches and executes the corresponding
reductions, until there are no matediscoverable matches. If the resulting graph ik ithen
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P holds for the input graph, artcue is returned. Otherwise, the algorithm proceeds with the
second phase.

In the second phase, the algorithm checks wheheontains a component with at least
Nmin vertices. If so,false is returned, sincd® does not hold (by condition 2a of Defini-
tion 5.1.5). Otherwise, the algorithm repeats applying reduction rules of which the left-hand
side has no terminals, until this is no longer possible. If the resulting ggaighin |, then
P holds andrue is returned. Otherwise, there is no further applicable rule: each component
of G has less thannm, vertices, since it either was already a component of the graph after
phase 1, or it is the result of a reduction in phase 2, which means that it is a component of
a right-hand side of a reduction rule. Since the set of reduction rules is complétetfos
means thaP(G) does not hold, and henéase is returned.

We now give the complete algorithm, given the special reduction syderh) and the
integersnmin andd. The algorithm is a simplified sequential simulation of the parallel algo-
rithm given by Bodlaender and Hagerup [1995]. It resembles the algorithm of Arnborg et al.
[1993], but use®(n) space, whereas the algorithm of Arnborg et al. @3@¥) space, where
p equals the maximum number of terminal vertices in any reduction rule.

Algorithm ReduceG)
Input: GraphG
Output: P(G)

1. Nmax< max|V(H)|| H is left-hand side of somee R }

2. (x Phase k)

3. S+ {veV(G)|deqv) <d}

4. while S#£¢

5. dotakeve S

6. if vis inner vertex of al-discoverable matc®; to a ruler ¢ R

7. then applyr to G:

8. let G, be a new terminal graph isomorphic , such thatG; and G,
have the same set of terminals

9. (x* Remove inner vertices and edges3af x)

10. V(G) «+ V(G) {veV(Gy) | visinner vertex oG }

11. E(G) «+ E(G) ©E(Gy)

12. S+ S&e{veV(Gy) | vis inner vertex ofGy }

13. (+ Add inner vertices and edgesGf x)

14. V(G) < V(G) +{ve V(Gy) | vis inner vertex 0fG }

15. E(G) + E(G) +E(Gy)

16. S« SU{veV(Gy) | dedqv) <d}

17. for all terminalsx of G,

18. do let L denote adjacency list of

19. for all {x,w} € L for whichL changed within distana#

20. do if degw) < d then S« SuU {w}

21. S+ Se{v}

22. if Ge | then return true
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23. (x Phase 2)

24. if G has a component with> nyi, verticesthen return false

25. R%« {r e R | left-hand side of is zero-terminal graph

26. forall r = (Hy,Hp) RO

27. do make listL; containing for each compone@tof H; a graphH isomorphic taC,
an integeii(H) denoting the number of components isomorphitlts Hy, and
an initially empty listL (H) containing components @& which are isomorphic to
H (L, contains only one entry for isomorphic componentbsigf

28. S + {C|Cis component oG}

29. while S #¢

30. dotakeCeS

31. forall reR?©

32. do if L, contains componeit isomorphic taC

33. thenaddCto L(H)

34. if Ir e RO:VH' € L, : L(H') containg(H’) components

35. then applyr:

36. foreactH’ € L, takei(H’) components of the lidt(H') and remove them
fromL(H’), from G, from S and from all other lists oR ©

37. add graplt; isomorphic to right-hand side ofto G

38. add all components &1 to S

39. S+ S <{C}

40. if G e | then return true else returnfalse

We first show that phase 1 and phase 2 of the algorithm are corredt hethe graph that
results after the main loop of phase 1 (lines 4 — 21) is finished. Phase 1 is correct if

e G does not contain ang-discoverable matches,
e P(G) holds if and only ifP holds for the input graph, and
e trueis returnedifand onlyitG e I.

Phase 2 is correct ifue is returned ifP holds for the input graph, andise is returned
otherwise.

Lemma 5.1.2. Phase 1 of algorithm Reduce is correct.

Proof. As the applied reduction rules are safe Ryiit must be the case th&tholds for the
input graph if and only iP(G) holds for the grapks resulting from the main loop. We prove
that the main loop has the following invariant: for eathiscoverable matc®; in G, there
is a vertexw € Swhich is an inner vertex oB;. Clearly, if this invariant holds wheS = ¢,
thenG contains nal-discoverable matches. This implies that phase 1 is correct. We prove
the invariant by induction on the number of iterations.

Initially (after the Oth iteration), the invariant holds. Now suppose it holds afteitithe
iteration { > 0), and consider th@ + 1)st iteration. If no reduction is applied in this iteration,
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then no match id-discoverable fronv and the grapis does not change. Hence the invariant
still holds after this iteration.

Suppose a reduction is applied in ttie- 1)st iteration. LeG' andG'** denote the graph
G after theith and the(i + 1)st iteration, respectively. L&;, G, andG3 be terminal graphs
such thalG' = G; @ Gz, G*1 = G, @ G3, andG; is the match irG' that corresponds to the
applied reduction rule. Suppose that, after the 1)st iteration, there is d-discoverable
matchHz in G1. We show that there is an inner vertexttfin S. If Hy contains no vertices
of G1, thenH; was alreadyd-discoverable after thih iteration, and henc8 contains an
inner vertex ofH1. Supposé/(H1) NV (Gy) # @. If one of the inner vertices of Hy is a
vertex of Gy, thenu has degree at modtand hencei is added t&Sin line 16 in the(i + 1)st
iteration. If one of the inner vertices & is a terminal vertex of H1, then all neighbors of
are inG,, and sincec has a neighban which is an inner vertex dfi;, this means that € S,

The only remaining case is the case that the common vertid8s afdH; are terminal
vertices of bothG, andH;. ThenH; is also a match in the grap®i. If H; was already a
d-discoverable match i6', thenS contains an inner vertex f;. Supposéd; was not ad-
discoverable match i&'. Hence there is an inner vertexf Hy, and a vertexv e V(Hi1) and
awalk(ug, Uy, ... ,Us) in Hi with u; = vandus = w, in which there is g, 2< j < s<1, such
that in the adjacency list af; in G, the edgegu;_1,u;} and{uj,uj;1} have distance more
thand, but in the adjacency list afj in graphG'™1, edges{u;j_1,u;} and{uj,uj+1} have
distance at most. That implies that the adjacency listwfhas changed during the reduction
of G' to G*1, and henca; is a terminal vertex oG, and also oH1. Moreover, the change
of the adjacency list ofi; was within distance from both{u;_1,u;} and{uj,uj;1}. Since
Hj is an open terminal graph, both_; anduj, are inner vertices ofl;, and hence have
degree at mosi. This means thatj_; anduj1 have been added ®in line 20 of iteration
i+ 1. O

Lemma 5.1.3. Phase 2 of algorithm Reduce is correct.

Proof.  The main loop of phase 2 (lines 29 — 39) can be proved to have the following
invariant: for each matc®; in G to some rule = (Hy,Hz) inR 0 there is a componeftof

Gy which is inS and furthermore, for each componentbf G, eitherC € S, orCis in list

L(H) of L;, whereH is isomorphic taC and to a component ¢d;. Clearly, if this invariant
holds whenS = ¢, then this means that phase 2 is correct. The proof of this invariant is
similar to the one for phase 1, and thus omitted. |

This proves the following result.

Lemma 5.1.4. Algorithm Reduce correctly recognizes simple graphs for which a property P
holds, given a special reduction systéf, | ) for P.

Consider the time complexity of the algorithm.
Lemma 5.1.5. Algorithm Reduce uses(0) time and space.

Proof. Consider phase 1 first. We first show that the main loop of this phase is iterated
O(n) times. We do this by showing that the number of times a vertex is addg&to(n).
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Initially, in line 3, ScontaingO(n) vertices. In the main loop, there are only vertices added to
Sif a reduction takes place. Since at moseductions take place, and after each reduction, at
most a constant number of vertices is addef tihis means that the total number of vertices
added td&5during the main loop is als®(n). Since in each iteration of the main loop, at least
one vertex is removed froi@ this means that the main loop is execu@a) times.

Consider one iteration of the main loop. In line 6daliscoverable match % that
containsv as an inner vertex can be found in constant time, as we described. Furthermore,
each reduction can be done in constant time. The loop in lines 17 — 20 can also be done in
constant time: during the reduction, it is possible to store the places in the adjacency lists
of the terminals where something changes, so that they can be easily found. Hence each
iteration of the main loop takeS(1) time. Hence phase 1 algorithm can be don©im)
time.

Consider phase 2 of the algorithm. Lines 25 — 27 can be done in constant time, and
lines 24 and 28 irD(n) time. We can show in a similar way as for phase 1 that the loop in
lines 29 — 39 is iterate®(n) times and that each iteration tak®1) time. Line 40 can be
done inO(1) time, hence phase 2 tak€gn) time. It is easy to see that algorithm Reduce
usesO(n) space. O

This completes the proof of Theorem 5.1.1.

5.1.3 Decision Problems for Graphs of Bounded Treewidth

In this section, we show that algorithm Reduce can be used for a large class of graph proper-
ties on graphs of bounded treewidth.

Let P be a graph property anda non-negative integer. Recall that for every two
terminal graph<s; andG,, the equivalence relatiorp) is defined as followsG; ~p G
if and only if for all I-terminal graph$4, P(G1 & H) holds if and only ifP(Gz & H) holds
(Definition 2.2.5). We say graph propemyis of finite index if for each non-negative integer
I, ~py has finitely many equivalence classes. As mentioned in Section 2.2.4, many important
graph properties are of finite index. For instance, all MS-definable graph properties are of
finite index [Courcelle, 1990].

Note thata seR of reduction rules for a proper®is safe if and only if for each reduction
rule (Hy,H2) € R, H1 ~p) Hp, for | the number of terminals df; andH,.

An equivalence relation-’ is arefinemenbf an equivalence relatior if each equiva-
lence class of' is a subset of an equivalence class~ofClearly, if ~ is finite, then so is

~,

Lemma 5.1.6. Let B and B be graph properties of finite index. Let@nd Q@ be graph
properties defined as follows. For each graph G,(Q) = P1(G) A P,(G), and Q(G) =
P1(G) v P2(G). Then Q and @ are also of finite index.

Proof.  (Cf. Borie, Parker, and Tovey [1992], Fellows and Langston [1989].) For each
| > 0 and every twd-terminal graph$s; andGy, let Gy ~| G; if and only if G; ~p | G and
G1 ~p, Go. Then~, is a refinement of botk-g, | and~q, . Furthermorey is finite, since
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each equivalence class #f is the intersection of two equivalence classes-gf| and~p, |,
and there are at most finitely many of these intersections. O

For each integek > 1, let TW, be the graph property defined as follows: for each graph
G, TW(G) holds if and only if twG) < k. For eachk > 1, TW is MS-definable (see e.g.
Arnborg et al. [1991]). This immediately implies tHBY\, is of finite index, for eactk > 1.
Unfortunately, fork > 4, no formulation off W, is known. However, Lagergren and Arnborg
[1991] have given an effectively decidable equivalence relatipn which for eactk andl,
is a refinement of-1y 1. Thus we have the following result.

Lemma 5.1.7 [Lagergren and Arnborg, 1991For each fixed k> 1, TW, is of finite index,
and for each I> 0, there is a finite, effectively decidable refinementef, .

For a property? and an integek, we define the property ash(G) = P(G) A TW(G).
It follows from Lemmas 5.1.6 and 5.1.7 that for each fixed 1, if P is of finite index, then
so isP, and furthermore, if we have a refinementof ~p; which is effectively decidable,
then we have a refinemert of ~p | which is effectively decidable.

As we have mentioned in Section 2.2.4, finite index corresponds to ‘finite state’: there
exists a linear time algorithm that decides finite index properties on graphs, given their tree
decomposition of bounded treewidth. Moreover, this algorithm is of a special, well-described
structure [Courcelle, 1990; Borie et al., 1992; Abrahamson and Fellows, 1993]. The disad-
vantage of this algorithm is that a tree decomposition of the input graph is needed. Fortu-
nately, for each fixed, there is a linear time sequential algorithm which, given a g@ph
checksiftw(G) <k, and if so, computes a minimum width tree decompositica fBodlaen-
der, 1996a]. However, this algorithm is not very practical, due to the large constant factors
involved. With reduction algorithms, this disadvantage can be overcome, as we will show in
the remainder of this section.

Bodlaender and Hagerup [1995] have proved the following lemma. The proofis technical,
so we do not include it here.

Lemma 5.1.8 [Bodlaender and Hagerup, 199%Ft k and i, be positive integers. There are
integers d and fax 2(Nmin<1) < nmax< d, and a constant & 0, such that in each connected
graph G of treewidth at most k, ifa nmin, then G contains at leastn| d-discoverable open
and connected I-terminal graphs H withd 2(k+ 1) and rin < [V(H)| < Nmax

The following theorem has originally been proved by Arnborg et al. [1993] for a slightly
different kind of special reduction system. Bodlaender and Hagerup [1995] have adapted the
proof for the special reduction system as defined here.

Theorem 5.1.2. Let P a graph property, and suppose P is of finite index. For each integer
k > 1, there exists a special reduction syst@n | ) for R..

If P is also effectively decidable, and there is an equivalence relatiofor each |> 0
which is a finite refinement efp and is effectively decidable, then such a syste@ml ) can
effectively be constructed.
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Proof. Letk > 1. We first construct all right-hand sides of reduction rules. For every
| <2(k+1) and every equivalence cla€sof ~p |, do the following. IfC contains open
|-terminal graphs with treewidth at mdstthen choose a representing opaerminal graph

Hc € C with treewidth at mosk. Let nmin be one more than the maximum number of vertices
of all chosen graphc. Letd, nmaxandc be as in Lemma 5.1.8.

LetR denote the set of reduction rules to be built. First, for all zero-terminal gridphs
with at leasthmin and at moshnax vertices, if we have a representative for the classhich
containsH, then add reduction rulgH,Hc) to R . Next, for alll with 1 <1 < 2(k+ 1) and
for all open connectettterminal graphdd with at leastnyjn, and at moshmay vertices, if
we have a representative for the equivalence dlasswhich H is contained, then add the
reduction rulgH,Hc) to R . Note that if we do not have such a representative, Hhenust
have treewidth at leadt+ 1, and hence there is no terminal grapHor which B(H & G)
holds.

Letl ={G| GisirreducibleA P(G)}.

It is easy to see thd& is finite: there are finitely manl:terminal graphs with at most
Nmax Vertices. Safeness of the resultingRefollows directly from the fact that each left- and
right-hand side of a rule iR belong to the same equivalence class of the relatign.

Conditions 1a and 1b of a special reduction system (Definition 5.1.5) clearly hold. This
also shows thaR is decreasing.

We now show thaR is complete, i.e. thatl | is finite and that conditions 2a and 2b of
Definition 5.1.5 hold. LeG be a graph for whichr(G) holds. LetC be a component of
G. Note that tWC) < k. If C has at leastnmin vertices, then, by Lemma 5.1.8,contains at
least[c|V(C)|] > 1 d-discoverable opehterminal graph$d with | < 2(k+ 1) andnmin <
[V(H)| < nmax Hence, by construction of the reduction systéheontains al-discoverable
match, so condition 2a holds. If all components®have less thany,, vertices, then by
definition of R , G contains a match, and hence condition 2b holds.

We now show thatl | is finite. Clearly, all connected graphs Inhave less thammi,
vertices. If we have a disconnected gr&pkwhich is irreducible and for whicR(G) holds,
then all components db have less thanm, vertices. We show tha® has less thammin
vertices. Suppose not. Sinogax > 2(Nmin<1), there is a subs@&of the set of components
of G which has at leastmin and at moshyax vertices. The graph induced by these compo-
nents has treewidth at mdstand hence by the construction of the reduction rules with zero
terminals inR , G contains a match. This completes the proof fRas complete, and hence
that(R , 1) is a special reduction system.

We now show how we can effectively construct such a reduction system. Note that the
non-constructive parts in the proof until now are: compufindginding a representative for
each equivalence class which contains open terminal graphs with treewidth ak,raosk
testing in which equivalence class a graph is contained. Forledeth~ be an effectively
decidable equivalence relation brerminal graphs that is a refinementa$; and has a finite
number of equivalence classes.

Arnborg et al. [1993] gave a way to construct, for any given integex representative of
each equivalence class of (0 <| < m+ 1) which contains a graph for which there exists a
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tree decomposition of widtm with all terminals in the same node.

Furthermore, Lagergren and Arnborg [1991] gave an effectively decidable equivalence
relation~1 Tw I which is finite for eaclk andl, and is a refinement o1y, ;. This gives us
enough mgredlents to construct a special reduction system. First consider the construction of
representatives.

For eacH andk, let ~¢| and~j , be equivalence relations dsierminal graphs which are
defined as follows. 7

Gi~kl G2 & G1~ GAGL~1y G2
Gi~k G2 © G~k G2A(Grisopene Gyis open

By Lemma 5.1.6 and 5.1.7 it follows that botky and ~[<| are effectively decidable, have
a finite number of equivalence classes, and are a refinemens of Furthermorey~ | is a
refinement ofvy.

LetG=(V,E,X) be anl-terminal graph with < 2(k+ 1), and suppos& has treewidth at
mostk. There is a tree decomposition of width at mos#3 of G in which all terminals are
in one node: take an arbitrary tree decomposition of wWidbh G, letx € X. Add all vertices
in X <{x} to all nodes inT. Clearly, the new tree decomposition has a node containing all
terminals, and has width at mdst 2(k+ 1) = 3k + 2.

Use the result from Arnborg et al. [1993] to generate a representative for each equivalence
class of~ (for eachl < 3k+ 2) which contains a graph for which there is a tree decom-
position of width &+ 2 with all terminals in one node. After the generation, throw away
all representatives with more tha(k2- 1) terminals or with treewidttk+ 1 or more. The
resulting set contains a representative for each equivalence clagg,0d <1 < 2(k+1),
which contains a graph of treewidth at mé&st.et R denote this set.

Now delete all graphs frorR which are not open. The resulting set contains a represen-
tative for each equivalence class-ef, which contains opehterminal graphs of treewidth
at mostk, and hence this is the set we need.

Now it is easy to construct a special reduction system. risf be one more than the
maximum number of vertices of any graphRnLetd andnmaxbe as found in Lemma 5.1.8.
For alll <2(k+ 1), for all open and, il > 1, connected-terminal graphd1 with at least
Nmin @nd at moshmay vertices, find arH’ € R for whichH ~y; H' (using the algorithm for
deciding~y ). IfanH' is found, then add the reduction ruld,H’) to an initially empty set
of reduction rulesX .

The computation of can be done as follows. As we have showed, all graptistiave
less thampin vertices. Sincé is effectively decidable, so B, and hence we can compute
I by computing(G) for all graphsG with less thamm, vertices, and putting the graphs for
which R(G) holds inl . O

From the proof of Theorem 5.1.2, we can also conclude the following.

Corollary 5.1.1. Let P be a graph property, and for eackrlO, let~| be a refinement ofp,.
Let k> 1. If ~ is finite for each I> 0, then there is a special reduction systé, I ) for
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P, such that for eackH,H’) € R, H ~; H'. Moreover, if~; and P are effectively decidable,
then such a system can effectively be constructed.

As each MS-definable graph property is of finite index (Section 2.2.4), Theorem 5.1.2
immediately implies the following result.

Corollary 5.1.2. Let P be a graph property which is MS-definable. For each integerlk

there is a linear time algorithm which decideg Without using a tree decomposition of the
input graph. Moreover, such an algorithm can be automatically constructed from an MSOL
predicate for P.

5.2 Reduction Algorithms for Optimization Problems

In this section we show how the idea of reduction algorithms can be extended to optimization
problems. This idea was introduced by Bodlaender [1994].

5.2.1 Reduction-Counter Systems and Algorithms

Let @ be a function which maps each graph to a valu#io {false} (we assume that iso-
morphic graphs are mapped to the same value). TypichNyill be an optimization problem
like MAX INDEPENDENTSET. We will call ® agraph optimization problemThe valudalse
is used to denote that a certain condition does not hold, i.e. that there is no optimum for a
graph. LetZ denote the seZ U {false}. Define addition orZ as follows: ifi, | € Z, then
we take fori + j the usual sum, and for dli Z, i + false = false + i = false.

Instead of reduction rules, we usduction-counterules for graph optimization prob-
lems.

Definition 5.2.1 (Reduction-Counter Rule). Aeduction-counter rulés a pair(r,i), wherer
is a reduction rule, anidan integer.

A match to a reduction-counter rulei) in a graphG is a match ta in G.

If G contains a match to a reduction-counter ndle- (r,i), then an application af to a
graphG and an integer countent is an operation which appliesto G and replacesnt by
cnt+i. An application of a reduction-counter rule is also called a reduction.

Let G andG' be two graphs. If there is a reduction-counter nukuch that applying

to G and some countamt can result inG’, then we writeG L,> G'. If we have a seR of

reduction-counter rules, we wri@g G if there exists am € R with G 5 G'. If a graphG
has no match iR , then we say tha® is irreducible (w.r.tR).

We extend the notions of safeness, completeness, termination and decrease to reduction-
counter rules.

Definition 5.2.2. Let ® be a graph optimization problem and Rtbe a set of reduction-
counter rules.

o R issafefor @ if, wheneveiG -+ G’ for somer = (r',i) € R, then®(G) = ®(G) +1i.
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e R iscompletdor @ if the setl of irreducible graph& for which ®(G) # false is finite.
¢ R isterminatingif there is no infinite sequend®; 5> G, 5> G3 E>
¢ R isdecreasindf wheneverG 5> G/, thenG' contains fewer vertices thah

Definition 5.2.3 (Reduction-Counter System). i&duction-counter systefor a graph opti-
mization problemd is a triple(R,1,¢), whereR is a finite set of reduction-counter rules
which is safe, complete and terminating fby | is the set of graph& which are irreducible
and for which®(G) # false, andgis a function mapping each graghe | to the valued(G).

A decreasing reduction-counter systemdois a reduction-counter system which is de-
creasing.

As a simple example we give a reduction-counter system is the optimization problem
MAX INDEPENDENTSET on cycles: for each grapB, if G is a cycle ther(G) is the size
of a maximum independent set @ otherwised(G) = false. LetR = {(r,1)}, wherer is
the reduction rule depicted in Figure 5.4, let {C3,C4}, whereCs andC, are the cycles on
three and four vertices (see Figure 5.4), andpl€s) = 1, ¢(C4) = 2. It can easily be seen
that(R, 1 ,9) is a reduction-counter system féx

SRR RS

Figure 5.4. A reduction rule and a set of irreducible graphs forR MINDEPENDENT
SET on cycles.

Let @ be a graph optimization problem. LEtbe the graph property with for each graph
G, P(G) =true if ®(G) € Z, andP(G) = false if ®(G) = false. We callP thederivedgraph
property (of®). From a reduction-counter systeiR , | , @) for @, we can derive a reduction
system foP: letR' = {r | (r,i) € R for somei € Z}. Then(R', 1) is a reduction system for
P. We call this system thderived reduction systeffrom (R .1 ,¢)).

If we are given a decreasing reduction-counter sygemR |, I , ) for a graph optimiza-
tion problemd, we can again use a reduction algorithm to sa@bie polynomial time. LefS’
denote the derived reduction system (which is also decreasing). A reduction algorithm based
onS is a modification of a reduction algorithm for the derived graph property bas&d: on
instead of repeatedly applying reduction rules fi&hon the input grapks, repeatedly apply
reduction-counter rules frof on the graplG and a counteent. Initially, cntis set to zero.

Let G;j denote the graph after thj¢h reduction is done, and lent; denote the value of
the counter at this moment (hen@g denotes the input graph, andfy = 0). It is important
to note that the sur®(G;j) + cntj is invariant during the reduction process, because of the
safeness property. Thus, at each moment in the reduction algoditfeg) = ®(G;) + cnt;.
Hence, when the reduction process stops dfiggrations, becausé; is irreducible, then
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®(Gp) € Z if and only if G; € | (or, more preciselyG is isomorphic to a graphl € 1).
Hence ifG; € I, then®(Gp) = ¢(Gt) + cnt, otherwise®(Gp) = false.

Definition 5.2.4 (Special Reduction-Counter System). A special reduction-counter system
special is a reduction-counter system of which the derived reduction system is special (Defi-
nition 5.1.5).

Note that the reduction-counter system foaMINDEPENDENT SET on cycles that we
have given above is also a special reduction-counter system for this problem.

Clearly, if we have a special reduction-counter system for a graph optimization problem
@, then we can apply the modifications described above to algorithm Reduce in order to get
a linear time algorithm for solving.

Theorem 5.2.1. Let ® be a graph optimization problem. If we have a special reduction-
counter system fo®, then we have an algorithm which, for each graph G, comp®&3)
in O(n) time with Qn) space.

5.2.2 Optimization Problems for Graphs of Bounded Treewidth

In this section, we derive a similar result as Theorem 5.1.2 for reduction-counter systems.
In analogy to~p) for graph propertieB, we define an equivalence relatiem, for graph
optimization problems.

Definition 5.2.5. For a graph optimization probled the equivalence relatione onl-
terminal graphs is defined as follows. L@t andG; be twol-terminal graphs.

G1~0, G2 <& thereis ari € Z such that for all-terminals
graphsH: ®(G1 ¢ H) = P(Ga b H) +1i.

Optimization problen is of finite integer indexf ~q is finite for each fixed.

Note that a if reduction-counter ru{éH,H’),i) is safe for a graph optimization problem
®, thenH ~¢ H'. Furthermore, iH ~4, H' for two |-terminal graph$i andH’, then there
is ani € Z for which the reduction-counter rulgH,H’),i) is safe ford. Note furthermore
that, for each > 0, ~¢ is a refinement of-p), whereP is the derived graph property df.
Hence if® is of finite integer index, then the derived propd?tis of finite index.

For any graph optimization problemand any integek > 1, ®y is the graph optimization
problem with for each grapB,

false iftw(G) >k

D(G) =
«(G) {d)(G) otherwise.

From Lemma 5.1.6 and Lemma 5.1.7, it follows thakpifs of finite integer index, then
for eachk > 1, @y is of finite integer index.

The following theorem is the analog of Theorem 5.1.2 for finite integer index problems.
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Theorem 5.2.2. Let @ is a graph optimization problem of finite integer index. For each
integer k> 1 there exists a special reduction-counter systentfar

If ® is also effectively computable and there is an equivalence relatipfor each 1> 0,
which is a finite refinement efe | and is effectively decidable, then such a special reduction-
counter systerf can effectively be constructed. Moreover, for each reduction-counter rule
((H,H"),i)inS, H ~ H'.

Proof. Letk> 1. LetP be the derived graph property @f. Since for each > 0, ~q¢,

is a refinement of-p_ |, Corollary 5.1.1 implies that there is a special reduction sy§em

(R, 1) for P, such that for eactH,H’) € R, H ~¢, | H'. We show that we can construct a
special reduction-counter system fbifor whichS is the derived reduction system. For each
reduction rule(H,H’), make a reduction-counter ru{¢H,H"),i), wherei = 0 if for all G,
®(H ¢ G) = false (and hencepb(H' & G) = false), andi = ®(H & G) ©d(H’ @ G) for some

G such thatd(H ¢ G) € Z otherwise. LeR ' denote the set of all these reduction-counter
rules. Letp: | — Z be the function mapping each gra@he | to its value®(G). Then
(R',1,q) is a special reduction-counter system dar

If ® is effectively computable and we have a refinementof ~q, for eachl > 0,
then @y is effectively computable ang and P are effectively decidable. Hence we can
effectively construct a special reduction syst@in | ) for B, such that for each rulgH,H’),

H ~; H'. Furthermore, we can turn this reduction system in a special reduction-counter
system(R', 1) for @ in the following way. The functiorp can be computed by simply
computing®(G) for eachG € I .

For each reduction rule= (H,H’) € R, we compute an integersuch that(r,i) is a
safe reduction-counter rule iR . SupposeH andH’ arel-terminal graphs. Le€G be a
finite class ofl-terminal graphs containing at least one terminal graph of each equivalence
class of~¢). Such a se; can be effectively computed, as is described in the proof of
Theorem 5.1.2. Now if there is & € G for which ®(H ¢ G) € Z, then take any such
G and leti = ®(H & G) ©®d(H' ¢ G). Note that, sinced ~¢ H’, for eachG € G with
P(GpH) e Z, d(GpH)«P(GaH') has the same value, hence this gives a proper value.
If G contains no grapk for which®(H ¢ G) € Z, then leti = 0. Note that in this case, for
everyl-terminal graphG, ®(H ¢ G) = ®(H’ & G) = false, and henceP(H ¢ G) = false =
false + 0= ®(H' & G) +i. LetR ' be the set of all reduction-counter rules that are found this
way. O

Unfortunately, we can not apply Theorem 5.2.2 to all MS-definable graph optimization
problems (as defined in Section 2.2.4). Hence the analog of Corollary 5.1.2 does not hold for
optimization problems. However, there are a number of problems for which we can prove
that they are of finite integer index. We give them in the next theorem. A precise definition
of these problems is given in Appendix A. In Chapter 7, we prove that these problems are
of finite integer index (Theorem 7.1.2). These proofs make use of techniques introduced in
Chapter 6.

Theorem 5.2.3. The following problems are of finite integer indeMAX INDUCED d-
DEGREESUBGRAPHTforalld > 1, MAX INDEPENDENTSET, MIN VERTEX COVER, MIN
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p-DOMINATING SET for all p > 1, MAX CUT on graphs with bounded degred|N PAR-
TITION INTO CLIQUES, MIN HAMILTONIAN PATH COMPLETION, and MAX LEAF SPAN-
NING TREE

5.3 Parallel Reduction Algorithms

Bodlaender and Hagerup [1995] have given an efficient parallel variant of algorithm Reduce,
based on a variant of the special reduction system. In this section, we describe this variant
of the special reduction system, and we describe the structure of the algorithm. Because the
algorithm is quite complicated, we do not give all details. We start with reduction algorithms
for decision problems.

5.3.1 Decision Problems

The basic idea of the parallel reduction algorithm is that, if there are two or more possible
applications of reduction rules at a certain time, and these applications do not interfere, then
they can be applied concurrently.

Definition 5.3.1 (Non-Interfering Matches). LéR be a set of reduction rules and ethe a
graph with a fixed adjacency list representation. Two mat€hesndG; in G are said to be
non-interferingif

e noinner vertex of5; (i = 1,2) is a vertex ofGz_j,
¢ the sets of edges @; andG; are disjoint, and

e if G; andG; have a common termina| then in the adjacency list of there are no two
consecutive edges ande, such thaie; € E(G;) ande, € E(Gy). A set of matches iG
is non-interfering if all matches in the set are pairwise non-interfering.

LetR be a set of reduction rules and @be a graph with a fixed adjacency list represen-
tation. If we have a set of non-interfering matchesGinthen the reductions corresponding
to these matches can be executed in parallel, which gives the same result as if the reductions
were executed subsequently, in an arbitrary order. In order to make a parallel reduction algo-
rithm for a given graph property efficient, we must have a special reduction system which
gives sufficiently many matches in any graptor which P holds. Therefore, we introduce
a speciaparallel reduction system.

Definition 5.3.2 (Special Parallel Reduction System). [Eebe a graph property, ar® , 1)

a decreasing reduction system far Let nphax be the maximum number of vertices in any
left-hand side of a rule e R. (R, 1) is called aspecial parallel reduction systefor P if
we know positive integersmin andd, Nmin < Nmax < d, and a constant > 0, such that the
following conditions hold.

1. For each reduction rufgd;,Hy) € R,

(a) if H1 hasl > 0 terminals, thetd; is connected andl; andH; are open, and
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(b) if Hy is a zero-terminal graph, thé¥(Hz)| < Nmin .
2. For each grap® and each adjacency list representatio®oif P(G) holds, then

(a) each componeftof G with at leasthmin vertices has at least |V (C)| d-discoverable
matches, and

(b) if all components ofs have less thann, vertices, then any subgraf of G induced
by a set of components & with nmin < [V(G')| < Nmaxis a match.

Note that, since for each integer> 1 and each constaotif ¢ > 0 thencn> 0, a special
parallel reduction system is also a special reduction system.

Consider the graph property which holds if a graph is two-colorable, has an odd number
of components, and all its components are cycles. The reduction system that we have given
for this property on page 100 is an example of a special parallel reduction systerd &ake
Nmax= 8, Nmin = 5 andc = 1/5).

Let P be a graph property arffi= (R, 1) a special parallel reduction system far Let
Nmin, Nmax d andc be as in Definition 5.3.2. The parallel reduction algorithm introduced by
Bodlaender and Hagerup [1995] basedSoworks as follows. Like algorithm Reduce, the
algorithm consists of two phases (see also page 100 — 102). In the first phase, the algorithm
finds d-discoverable matches and executes the corresponding reductions, until there are no
mored-discoverable matches. In the second phase, the algorithm tries to finish the reductions
by applying reduction rules with zero terminals. We first describe the first phase in more
detail.

Phase 1. Suppose we are given an input graptwith n vertices. The first phase consists

of a number of reduction rounds, which are subsequently executed. In each reduction round,
Q(m) reductions are applied to the current graph, whichrhasgrtices, if possible. Further-
more, each component of less thag, vertices is removed from the graph, and is added to a
graphH (which is initially the empty graph). This is done in four steps.

1. In the first step, for each vertexwhich has degree at moditit is checked whethev
is contained in a component of less thax, vertices, and if so, then this component is
removed fromG and added té1.

2. In the second step, the algorithm tries to discover a match from each vevtegh has
degree at modd, and if this succeeds, the corresponding reductionmrigelooked up.
Let A denote the set of all matches that are found. Note Ahiatnot necessarily non-
interfering. If|A] < cm wheremis the number of vertices of the current graph, tien
does not hold for the input graph €fi£ 0, then it must be the case that> nyin, Since
otherwise, in step 1 of this reduction round, all component afe removed), anfdise
is returned. Otherwise, go on with the next step.

3. Inthe third step, the algorithm computes a subdéeff A with sizeQ(|A|), which is a set
of non-interfering matches.

4. Inthe last step, all reductions corresponding to the match#'sare applied.
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The first, second and fourth step can be done in constant tinnemcessors, without
concurrent reading or writing: in step 1 and 2, take one processor for each vertex of degree
at mostd. In step 4, for each match i, let the processor which discovered the match in
step 2 apply its corresponding reduction. The third step is more complicated. It is basically
done as follows. First, aonflict graphof all matches iMA is built. This graph contains a
vertex for each match iA, and an edge between two vertices if and only if the corresponding
matches are interfering. Now an independent set in the conflict graph corresponds to a set
of non-interfering matches. It can be seen that the conflict graph has bounded degree. This
means that there is an independentSeof size Q(|A|) which can be found efficiently in
parallel on an EREW PRAM (for more details, see Bodlaender and Hagerup [1995]).

The reduction rounds are finished as soon as the graph is empty. The actual result of the
reductions is the grapH, which consists of components with less thag#, vertices. The
algorithm proceeds with phase 2, with the gréph

Phase 2. In the second phase, a grabhis given which consists of a number of compo-
nents, each having less thagj, vertices. LeC be a collection of subgraphs bff. Initially,

let C be the collection of connected componentsiofUntil C contains only one element, a
number ofjoin-reducerounds is performed witG andH.

In each join-reduce round, a 8t {(G1,G}),(G2,G5), ... ,(Gt,G;)} of pairs of graphs
in C is computed, such that each grapiobccurs at most once i and the se§ contains
as many pairs as possible, i|§ = ||C|/2] For each such pai(G;,G]) in Sit is checked
whetherG; UG/ is a match to some rule= (Hy,Hy). If so, the corresponding reduction rule
is applied: inH, G; andG; are replaced by a grajisi which is isomorphic t¢dz, and inC, we
replaceG; andG; by Gs. If G; andG{ do notform a match, then eithpf(Gi) UV (G)| < Nmin
or |V(Gi) UV(Gj)| > nmin. In the first caseG; andG are replaced b; UG in the collection
C. Inthe latter casedalse is returned, sinc® does not hold (condition 2b of a special parallel
reduction system).

The algorithm performs the join-reduce rounds u}iiil = 1. If H € | thentrue is re-
turned, otherwisdalse is returned.

By the definition of a special parallel reduction system it can be seen that phase 2 returns
true if and only if P holds for the grapli as it was passed to this phase. This means that the
algorithm described above is correct.

Consider the amount of resources used by the algorithms. In each reduction round of the
first phase, the number of vertices of the current graph is decreased by at least a constant
fraction. This means that there a&¢logn) reduction rounds. The only part in a reduction
round of phase 1 which takes more than constant time is step 3. By a careful analysis, it
can be seen that phase 1 of the algorithm can be made to 1@fagnlog*n) time with
O(n) operations and space on an EREW PRAM. For a CRCW PRAM, the algorithm can be
slightly improved: it runs irO(logn) time with O(n) operations and space.

In phase 2, the collectidd initially contains at mostV (H)| components an¥/ (H)| < n.

Hence phase 2 consists Oflogn) join-reduce rounds. Furthermore, by the definition of a
special parallel reduction systefi,contains only graphs with less thag, vertices, which
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implies that phase 2 can be done@flogn) time with O(n) operations and space on an
EREW PRAM. Hence we have the following result.

Theorem 5.3.1. Let P be a graph property. If we have a special parallel reduction system for
P, then we have an algorithm which decides P ifilo@nlog" n) time with Q'n) operations
and space on an EREW PRAM, and ifl@n) time with Q'n) operations and space on a
CRCW PRAM.

The definition of a special parallel reduction system, Lemma 5.1.8 and (the proof of)
Theorem 5.1.2 immediately imply the following result.

Theorem 5.3.2. Let P a graph property, and suppose P is of finite index. For each integer
k > 1, there is a special parallel reduction system fqr P

If P is also effectively decidable, and there is an equivalence relatiofor each 1> 0,
which is a finite refinement efp and is effectively decidable, then such a syste@ml ) can
effectively be constructed. Moreover, for each riieH’) e R, H ~| H'

The analog of Corollary 5.1.2 also holds for the parallel case.

In the parallel case, there exist algorithms that decide finite index propertisagn)
time with O(n) operations and space, given a tree decomposition of bounded width of the
graph (see also Section 2.2.4). However, the best known parallel algorithm for finding a tree
decomposition of the input graph tak®§log? n) time with O(n) operations on an EREW or
CRCW PRAM [Bodlaender and Hageruf995]. Hence the reduction algorithms presented
in this section are more efficient.

5.3.2 Optimization Problems

It is again easy to adapt the parallel reduction algorithm for optimization problems. There-
fore, we define a special parallel reduction-counter system to be a reduction-counter system
of which the derived reduction system is a special parallel reduction system.

For instance, the reduction-counter system foxXM NDEPENDENTSET on cycles that
we defined on page 109 is a special parallel reduction-counter system for this problem.

Let @ be a graph optimization problem, ad= (R, 1 ,9) a special parallel reduction-
counter system fo. A parallel reduction algorithm based &nis a combination of the
parallel reduction algorithm based on the derived reduction system, and the sequential re-
duction algorithm described in Section 5.2. Each processor has a counter, which is initially
set to zero. If a processor applies a reduction-counter rule in either phase 1 or phase 2 of
the algorithm, then it uses its own counter. After the last round of phase 2 is finished, the
counters of all processors are added up.drgtienote the resulting counter, [Btdenote the
input graph andH the reduced graph. Now, H € |, then®(G) = cnt+ ¢(H), otherwise,
®(G) = P(H) = false. The sum of all the counters can be compute®jifogn) time with
O(n) operations and space on an EREW PRAM, which means that the total algorithm runs
in O(lognlog" n) time with O(n) operations and space on an EREW PRAM, o6iflogn)
time with O(n) operations and space on a CRCW PRAM.
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Theorem 5.3.3. Let @ be a graph optimization problem. If we have a special parallel
reduction-counter system fap, then we have an algorithm which, for each graph G with
n vertices, compute®(G) in O(lognlog*n) time with Qn) operations and space on an
EREW PRAM, and in @ogn) time with Q'n) operations and space on a CRCW PRAM.

By Lemma 5.1.8 and Theorem 5.2.2, we also have the following result.

Theorem 5.3.4. Let® be a graph optimization problem which is of finite integer index. For
each integer k> 1, there exists a special parallel reduction systgrior ®y.

If, in addition, @ is effectively computable, and there is an equivalence relatigrfor
each I> 0, which is a finite refinement of¢ and is effectively decidable, then such a
systen® can effectively be constructed, and for each reduction-countef (bHeH’),i) in S,
H~ H.

Theorem 5.3.4 implies that there are special parallel reduction-counter systems for the fol-
lowing problems on graphs of bounded treewidth (see also Theorem 5.2a3):INDUCED
d-DEGREESUBGRAPHfor all d > 0, MIN p-DOMINATING SET forall p> 1, MIN VERTEX
COVER, MAX CuUT on graphs with bounded degree|MPARTITION INTO CLIQUES, MIN
HAMILTONIAN PATH COMPLETION, and MAX LEAF SPANNING TREE.

5.4 Additional Results

Itis possible to generalize the results in this chapter to directed, mixed and/or labeled graphs.
In the case of labeled graphs, we can allow the input graph to have a labeling of the vertices
and/or edges, where the labels are taken from a set of constant size. These labels could also
act as weights for finite integer index problems, e.g., we can deal witk M/EIGHTED
INDEPENDENT SET, with each vertex a weight froffil,2,...,c} for some fixedc, in the

same way as we dealt with AX INDEPENDENTSET. Each of these generalizations can be
handled in a very similar way as the results that are given in this chapter.

It is possible to generalize the results on reduction algorithms based on special reduction
systems to multigraphs. As we will use this generalized result in Chapters 8 and 9, we give a
brief description of how this is done. Instead of ordinary terminal graphs (Definition 2.2.3),
we use terminal multigraphs, which are terminal graphs that may have multiple edges. The
operation® on terminal multigraphs is similar to the operatioron ordinary terminal graphs
(Definition 2.2.4), except that it does not remove multiple edges. Reduction rules, matches
and applications of reduction rules are the same as for ordinary graphs (Definition 5.1.1),
except that they are based on the definitions of terminal multigraphs and the new operation
as given above.

Wherever we mentioned the number of vertices of a (terminal) graph, we replace this by
the number of vertices plus the number of edges of the (terminal) multigraph. For exam-
ple, a set of reduction ruld® is decreasing if for eactH;,Hz) € R, [V(H2)| + |E(H2)| <
[V(H1)| + |E(H1)|.- Note that this implies that on each gra@h= (V,E), a sequence of at
most|V| + |E| reduction rules can be applied, and hence this influences the running time of
the reduction algorithms.
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We also slightly modify the definition of discoverability. We do not require that the left-
hand and right-hand side of a reduction rule are open. As a consequence, not only all vertices
of a match must bd-discoverable, but also all edges.

Definition 5.4.1. Letd be a positive integer, l& be a multigraph, given by some adjacency

list representation, and |&; be anl-terminal multigraph. We sa; is d-discoverable irG

if

1. Gy is connected, the maximum degree (i.e. the maximum number of incident edges) of
any vertex inG; is at most,

2. there is an-terminal multigraphG,, such thatG = G1 ¢ G, and

3. G; contains an edge such that for all edges € E(G1), there is a wallV in G; with
W = (Up,€&p,Us,€1,...,65,Usy1), Wheregg = g, s = €, and for each, 1<i <'s, in the
adjacency list ofjj in G, the edgeg_; andg have distance at modt

Note that if condition 3 of Definition 5.4.1 holds for a terminal graphin G, then for every

two edgese and€ of G; there is a walkV = (up, ey, ... ,6s,Us1) in G1 with e = ey and

€ = e, such that for each 0<i < s, g andeg 1 have distance at mostin the adjacency

list of u;, and furthermore, each edge®f occurs at most twice W (see also page 99).
We redefine a special reduction system for graph properties on multigraphs.

Definition 5.4.2 (Special Reduction System for Multigraphs). Bebe a graph property, and
(R, 1) a decreasing reduction system far Let nnax be the maximum number of vertices
plus edges in any left-hand side ofarakeR . (R, 1) is called aspecial reduction systefar

P if we know positive integersmin andd, Nmin < Nmax < d, such that the following conditions
hold.

1. For each reduction rufgH1,Hy) € R,
(a) if H1 hasl > 0 terminals, thetd; is connected, and
(b) if Hy is a zero-terminal graph, thé¥i(Hz)| + |E(H2)| < Nmin -
2. For each grap® and each adjacency list representatio®oif P(G) holds, then

(a) each component @ with at leashyy vertices plus edges haslaliscoverable match,
and

(b) if all components ofs have less thanpi, vertices plus edges, then eitheére | or G
contains a match which is a zero-terminal graph.

A special parallel reduction system for graph properties on multigraphs is defined as
follows.

Definition 5.4.3 (Special Parallel Reduction System for Multigraph). Bdie a graph prop-
erty, and(R, 1) a decreasing reduction system far Let npax be the maximum number of
vertices plus edges in any left-hand side of arueR . (R, 1) is called aspecial parallel re-
duction systerfor P if we know positive integeramin andd, Nmin < Nmax < d, and a constant
¢ > 0, such that the following conditions hold.
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1. conditions 1a and 1b of Definition 5.4.2 hold.
2. For each grap® and each adjacency list representatio®oif P(G) holds, then

(a) each componef of G with at leastnmn vertices plus edges has at least|V(C)| +
|E(C)|) d-discoverable matches, and

(b) if all components ofs have less thanp,, vertices plus edges, then any subgr&h
of G induced by a set of components@fwith nmin < [V (G')| + |E(G')| < Nmaxis a
match.

A special (parallel) reduction-counter system is again a (parallel) reduction-counter system
of which the derived (parallel) reduction system is special.

The algorithms can now by adapted as follows. First consider the sequential reduction
algorithm which is given on page 101. We modify it as follows. Instead of searching for
d-discoverable matches from vertices, we search from edges. Therefore, we first fillghe set
(line 3) with all edges ife(G). In each iteration of the main loop of phase 1, we take one edge
from Sand we look for al-discoverable matc; to some reduction rule= (H1,Hz). If one
can be found, we apply it by replaciig by a graphG, isomorphic toH,. We remove all
edges of5; which are not irG; from the seS. After that, we add all edges & which were
not already inG; to the setS, and furthermore, we add all edgesf the graphG for which
there is a terminat of G; such thai € e, and in the adjacency list of something changed
within a distanced from e (whered denotes the constant for discoverability). Phase 2 of
the algorithm does not have to be changed. It can be seen that the algorithm is still correct,
and that it runs irO(n+ m) time usingO(n+ m) space. For the sequential reduction-counter
system we can use the same modifications and get the same time and space bounds.

Theorem 5.4.1. Let P be a graph property and a graph optimization problem, both for
multigraphs.

¢ If we have a special reduction system for P, then we have an algorithm which solves P in
O(n-+ m) time and space.

¢ If we have a special reduction-counter systemdorthen we have an algorithm which
solves®d in O(n+ m) time and space.

Consider the parallel algorithm (page 113). We use the same type of modification, i.e.
we search from edges instead of vertices of degree atandstthe first step of phase 1, the
algorithm checks for each edge whether it is contained in a component of lesgthasr-
tices plus edges, and in the second step of phase 1, the algorithm tries td-itiscaverable
match from each edge. It is easy to check that this gives the following results.

Theorem 5.4.2. Let P be a graph property and a graph optimization problem, both for
multigraphs.

¢ If we have a special parallel reduction system for P, then we have an algorithm which
solves P in Qlog(n+ m)log"(n+ m)) time with Qn+ m) operations and space on an
EREW PRAM, and in @og(n-+m)) time with Qn+ m) operations and space on a CRCW
PRAM.
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¢ If we have a special parallel reduction-counter systemdfpthen we have an algorithm
which solvesb in O(log(n+ m)log"(n+ m)) time with Qn+ m) operations and space
on an EREW PRAM, and in(@g(n+ m)) time with Qn+ m) operations and space on
a CRCW PRAM.
Unfortunately, the results on the existence of special (parallel) reduction(-counter) sys-

tems for many problems on graphs of bounded treewidth (Theorems 5.1.2, 5.2.2,5.3.2, and
5.3.4) can not directly be generalized to multigraphs of bounded treewidth.
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Chapter 6
Constructive Reduction Algorithms

In Chapter 5 we have shown that for many decision and optimization problems on graphs of
bounded treewidth, efficient reduction algorithms can be designed that decide these problems.
Many decision and optimization problems however, have a constructive version, in which we
are not only interested in whether a certain property holds for a given graph, but we are
also interested in aolution if the property holds. For example, in the constructive version

of k-COLORABILITY we want to find ak-coloring of a given graph, if one exists. In the
constructive version of MXx INDEPENDENT SET, we want to find an independent set of
maximum size in a given graph, and we are not only interested in the maximum size itself.

The reduction algorithms that we described in Chapter 5 do not provide a possibility to
construct solutions. In this chapter, we show how reduction algorithms can be adapted in
such a way that solutions can be constructed, and we show that these algorithms run within
the same time and resource bounds as the basic reduction algorithms (both sequentially and in
parallel). We also show that for a number of graph problems on graphs of bounded treewidth,
these algorithms can be used. For example, they can be used for all MS-definable construction
problems whose structure of a solution satisfies certain conditions.

The basic idea of a constructive reduction algorithm is the following. The algorithm
consists of two parts. In the first part, an ordinary reduction algorithm is applied. The reduced
graph is then passed to the second part. In this part, a solution is constructed for the reduced
graph, if it exists (in the case of an optimization problem, this solution is guaranteed to be
optimal). After that, the reductions that are applied in part 1 are undone one by one, in
reversed order, and each time a reduction is undone, the (optimal) solution of the graph is
adapted to an (optimal) solution of the new graph. This results in a solution of the input
graph, which is an optimal solution in the case of a graph optimization problem.

In order to keep the running time and amount of resources for the second part within the
same bounds as for first part, we must be able to efficiently construct an (optimal) solution
for the new graph from an (optimal) solution of the old graph, after an undo-action is ap-
plied. Therefore, we require that the new solution can efficiently be constructed from the old
solution.

In this chapter, we define a type of reduction system for which this can be done efficiently,
both for decision and for optimization problems. We also determine for what kind of prob-
lems such a reduction system exists. In Section 6.1, we develop the theory for sequential
reduction algorithms for decision problems. In Section 6.2, we extend this to optimization
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problems, and in Section 6.3, we show that this method can also be applied in parallel. Fi-
nally, in Section 6.4, we discuss some additional results. In all sections, except Section 6.4,
the graphs we consider are simple.

6.1 Decision Problems

We start with a definition of a constructive reduction system and an extension of the efficient
reduction algorithm presented in Section 5.1.2 to construction problems. After that, we show
how this algorithm can be applied to solve a large class of construction problems on graphs
of bounded treewidth.

6.1.1 Constructive Reduction Systems and Algorithms

Recall that a graph property is a functiBrwhich maps each graph to one of the valtras
andfalse. Many graph properties are of the form

P(G) = ‘there is anSe D(G) for which Q(G, S) holds’,

whereD(G) is asolution domair{or shortly domain), which is some set dependingand
Qs an extended graph property@fandS, i.e. Q(G, S) € {true,false} for all graphsG and
all Se D(G). An Se D(G) for whichQ(G, S) holds is called a&olutionfor G. For example,
for the perfect matching problem on a gra@hD(G) can beP (E), the power set oE, and
for Se D(G), Q(G,S) holds if and only if every vertex i is end point of exactly one edge
in S. HenceSis a solution foiG if Sis a perfect matching d&.

If a graph property is of the forfA(G) = ‘there is anS € D(G) for which Q(G, S) holds’,
then we callP a construction propertglefined by the paifD, Q).

In this section, we consider constructive reduction algorithms which, for a construction
propertyP defined by(D,Q), do not only decidé®, but if P holds for an input grapk, also
construct ars € D(G) for whichQ(G, S) holds.

Definition 6.1.1 (Constructive Reduction System). Llgtbe a construction property defined
by (D, Q). A constructive reduction systeior P is a quadrupléR ,1,Ag ,A;), where

e (R 1) is areduction system fd®,
e AR is an algorithm which, given
— areductionrule = (H1,Hz) €R,

— two terminal graph§: andGg, such thatG; is a isomorphic tdH; andGy is isomor-
phic toHy,

— agraphG with G = G, @ H for someH, and
— anSe D(G), such tha(G, S) holds,
computes ai € G1 ¢ H such thaQ(G; ¢ H, S) holds,

e A is an algorithm which, given a graghwhich is isomorphic to some € |, computes
anSe D(G) for whichQ(G, S) holds.
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Algorithm A; in a constructive reduction systefR ,1,Ag ,A) is used to construct an
initial solution of the reduced grap8, if G € |. Algorithm Ar is used to reconstruct a
solution, each time a reduction is undone on the graph.

As an example, consider the constructive version of the graph prdpeiiych holds for
graphsG of which each component is a two-colorable cycle, and the number of components
is odd (see Chapter 5, page 100): we are looking for a two-coloring of the graph, if the graph
is two-colorable, all its components are cycles, and the number of its components is odd. For
each grapl@G, let D(G) be the set of partitioné/1,V») of V(G), and for eacts € D(G), let
Q(G, ) betrue if and only if Sis a two-coloring ofG, each component @ is a cycle, and
the number of components Gfis odd.

We extend the reduction system f@rgiven on page 100 (Figure 5.3) to a constructive
reduction system fdP. Algorithm Ag uses atable: for each reduction rgie ,H2) € R, and
each possible two-coloring of the terminal gragh it gives a two-coloring of the terminal
graphH; which is the same on the set of terminals. The contents of this table are depicted in
part | of Figure 6.1 (symmetric cases are considered only once, hence for both rules, there is
only one two-coloring). Given as input a reduction roléwo terminal graph&; andGs, a
graphG = G, @& H, and a two-coloring o6, algorithmAg can easily compute a two-coloring
of G1 @ H using the given table: the algorithm looks which vertice&gthave which color,
and looks up the corresponding coloring®fin the table. Then it removes the inner vertices
of G, from the solution, and adds the inner vertice$gfin the correct way.

Algorithm A; also uses a table: for the only eleméhic |, this table contains a two-
coloring of H. See part Il of Figure 6.1. Hend® ,1,Ag ,A) is a constructive reduction
system foiP defined by(D, Q). Note that both algorithms can be made to ru®{i) time if
we use a convenient data structure.

D

|
@ : inner or terminal vertex in one part of partition
(_ Gempty . . . .
® inner or terminal vertex in the other part of partition

Figure 6.1. Example of tables used g andA; for constructive reduction system
for two-colorability on graphs of which each component is a cycle, and the number
of components is odd.

In order to make an efficient constructive reduction algorithm based on a constructive
reduction systeniR , 1, Ag ,Ay), we want that algorithm8gr andA; work efficiently. This
is required in a special constructive reduction system.

Definition 6.1.2 (Special Constructive Reduction System). Pdie a construction property
defined by(D,Q). A constructive reduction systetiR ,1,Ar ,A;) for P is aspecial con-
structive reduction systefor P if
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1. (R,I) is a special reduction system f@r(Definition 5.1.5), and
2. algorithmsAg andA; runinO(1) time.

Note that the constructive reduction system we gave for two-colorability of graphs of which
each componentis a cycle, is a special constructive reduction system, since algAyitumals

AR as described above take constant time, and we have shown on page 100 that the reduction
system depicted in Figure 5.3 is a special reduction system for the problem.

One way to obtain an algorithidr in a constructive reduction system which runs in
O(1) time is to ensure thatr only has to change a solution locally, i.e. that the solution to
construct only differs from the input solution in the part of the graph that was involved in the
reduction. We use this technique in most of our algorithms.

Let P be a construction property defined t9,Q) and let(R,1,Ar ,A;) be a special
constructive reduction system fBr The following algorithm computes for a given gra@h
a solution ofG if one exists.

Algorithm Reduce-Construdg)

Input: GraphG

Output: Se D(G) for whichQ(G, S) holds if P(G) holds,false otherwise

1. (xPart1x)

2.  Apply as many reductions as possible @rin the way of algorithm Reduce. Store
the resulting sequend&l, G}), (G2, G3), ..., (G}, G), wheret denotes the number of
reductions, and for eadghl < i <t, in theith reductionG‘1 is replaced b)Giz. LetG be
the reduced graph.

3. (x Part 2x)

4. if G¢ | then return false

5. (* Construct initial solutior)

6. S« A(G)

7. fori+tdowntol

8. doletr = (Hy,Hp) € R such thatH; and G} are isomorphic and, and G, are
isomorphic.

9. (x reconstruct solutiom)

10. S+ AR (r,G},G,,G,9)

11. (x undoith reductionx)

12. G < H @ G1 (H denotes the terminal graph for which= G‘2 @H)

13. return S

It is clear from Lemma 5.1.4 and the definition of a constructive reduction system that
algorithm Reduce-Construct is correct. Consider the running time of the algorithm. Part 1
takesO(n) time, by Lemma 5.1.5. In part 2, the initial solution can be constructed in con-
stant time, since algorithiy takesO(1) time. Every undo-action also takes constant time:
undoing a reduction can be done in the same way as applying it, which @&¢gime,
and algorithmAg usesO(1) time (note that the terminal graph as described in line 12 is
not explicitly computed). Hence the complete algorithm ta®és) time. This proves the
following theorem.
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6.1 Decision Problems

Theorem 6.1.1. Let P be a construction property defined by the g@rQ). If we have a
special constructive reduction system for P, then we have an algorithm which, given a graph
G, returns a solution & D(G) for which Q G, S) holds, if RG) holds, andalse otherwise.

The algorithm runs in (n) time and uses (M) space.

6.1.2 Construction Problems for Graphs of Bounded Treewidth

In this section we show that algorithm Reduce-Construct can be used for a large class of
construction properties on graphs of bounded treewidth.

Let D be some solution domain, i.e. for each gr&hiD(G) denotes a ‘set of all possible
solutions’ inG. Let G andH bel-terminal graphs and I&< D(G @ H). We want to be able
to restrictSto the terminal graph& andH. For these restrictions, we use the notat)a]
andS[H]. We can define such a restriction in several ways, but we requir&@atioes not
contain any vertices or edges which are ndsirSuppose we have given a definition] pfor
a solution domaifD. We say]] is properly definedf, for any terminal graph& andH, and
anySe D(G@ H), §G] contains no vertices or edges which are ndinrAn obvious proper
definition of[] is thus to obtair§/G] from Sby removing all vertices and edges which are not
in G from S. For example, if for each grapB, D(G) is the set of all partitions 0¥ (G) in
three sets, then a proper definition pfvould be that for eachterminal graph& andH and
eachS= (V1,Vo,V3) e D(G@H), §JG] = (ViNV(G),V2nV(G),V3NV(G)).

Definition 6.1.3. Let D be a solution domain, let a proper definition[pbe given. For each
| > 0, and each-terminal graplG, define

D(G) = {SG] | Se D(G& H) for somel-terminal grapH }.

EachSe Dyj(G) is called gpartial solutionof G, andDy; is called the partial solution domain
for D.

Definition 6.1.4. Let D be a solution domain and let a proper definition[pbe given.
D is induciblefor [] if each twol-terminal graphss andH (I > 0) andSs € Dj(G) and
Si € Dj(H), there is at most on8€ D(G @ H) such thaSG] = Ss andSH| = S4.

Let G andH bel-terminal graphs, le§s € D;j(G) andSy € Dyj(H). If there is exactly
oneSe D(G® H) such that§G] = Ss andSH] = S, then(G, Ss) and(H,Sy) are called
¢-compatibleand we writeSs & S = S.

As an example of Definition 6.1.4, consider the solution doraivith for each grapit,
D(G) =P (V). Let[] be defined as follows. For every tixierminal graph$i; andH; and
eachSe D(Hi @ Hy), letS[Hy] = SNV (Hz) (henceDy(Hy) =P (V(Hy))). Then[] is properly
defined and is inducible for[]. If Hy = (V4,Ea1, (X1,...,%)) andHz = (V2,E2, (y1,... , %))
are l-terminal graphs, an&; € D[](Hl) and$ € D[](Hz), then(H1,S;) and (H2,S) are
@-compatible if and only ifS; andS; contain the same set of terminals, i.e.

{ili<i<iAxes}={i[1<i<Iry €S}
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Chapter 6 Constructive Reduction Algorithms

In that case$S d S is simply the union of5; andS; in Hy & Ha.
As another example of Definition 6.1.4, consider the solution domairith for eachG,

D(G) = {V CP(V)[Wev VI=3},

i.e. eachSe D(G) is a set of subsets of cardinality three\6fG). The obvious proper
definition of [] is as follows. For each two terminal grapBsandH, eachSe D(G®H),
S[G] = {WnV(G) | W € S}. However,D is not inducible for this definition. Consider for
example two one-terminal grapfsandH as depicted in part | of Figure 6.2, and consider
the partial solutionsSs € D;j(G) andS; € Dyj(H) denoted by the dotted lines. Part Il of
Figure 6.2 shows aB ¢ D(G® H) for which JG] = S andSH] = S4. However, part llI
shows anS € D(G@ H) with S # S, but S[G] = S and S[H] = S4. Hence with this
definition of [], we are not able to combine two partial solutions of two terminal gr&phs
andH into a solution of the grap& ® H.

Figure 6.2. Example of two one-terminal grapl&andH with partial solutionsSs
andSy, and the grapls ¢ H with S S € D(G@ H), such tha§G] = S[G] = S and
SH] = S[H] = S.

Let P be a construction property defined {y, Q) such thaD is inducible for[]. LetG
andH be terminals graphs, and 8t D(G) andS € Djj(H). The value oQ(G®H, S S)
is only defined if

e G andH are bothH-terminal graphs for some> 0, and
e (G,S) and(H,S) ares-compatible.

For shorter notation, we defif@G® H,S® S) to befalse if G andH are not both-terminal
graphs for somé> 0, or if (G,S) and(H, S) are not&-compatible.

Definition 6.1.5 (Compatibility). LetD be a solution domain which is inducible for some
definition of []. LetG; andG; bel-terminal graphs for some> 0, and letS, € Dy;(Gs) and

S € Di(Gz). (G1,S1) and(Gz,S,) arecompatibleif for eachl-terminal grapiH and each

Se Dyj(H), (G1,S1) is #-compatible with(H, S) if and only if (G2, ;) is &:-compatible with
(H,S).

Note that compatibility is an equivalence relation. The set of all equivalence classes of this

relation is denoted b@cmp, for eachl, and the equivalence classes are also called compat-
ibility classes. For two equivalence classeandC’ of some equivalence relation which is
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a refinement of compatibility, we say thatandC’ are-compatible if, for eachiG,S) € C
and(H,S) e/, (G,9) and(H,S) are®-compatible.
Let P be a construction property defined {y, Q), whereD is inducible for[].

Definition 6.1.6. For eacH > 0, ~q, is an equivalence relation on pairsleterminal graphs
and partial solutions, which is defined as follows. G, Gz be I-terminal graphs, and
S e D[](Gl) andS, € D[](Gz).

(G1,S1) ~q) (G2,S) = (G1,S1) and(G,,S) are compatible and
for all I-terminal graph#i and allS€ Dyj(H):

Q(G1oH, 589 =Q(GdH,$©9)

The set of equivalence classes-aj, is denoted b¥q,, and for each-terminal graphG and
Se Dy (G), the equivalence class 6§, that containgG, S) is denoted by &g, (G, S).

By ~rq,, we usually denote an equivalence relation which is a refinementgf By
Cro, we denote the set of equivalence classesf, and for each-terminal graphG and
eachSe Dy(G), eGq,(G,S) =Cif (G,9) is in equivalence clags € Crq .

Definition 6.1.7. Let ~q be a refinement of-q, for eachl > 0. By ~q, we denote
the equivalence relation daterminal graphs, which is defined as follows. For every two
|-terminal graph$; andGy,

G~ G2 & {€Gqi(G1,S1) ]S €D)(G1)} ={eGq (G2, D) | S €Dy(Ge) }-

Recall that for a graph properfy and an integek > 1, B denotes the property with for
each grapl@, P(G) holds if and only ifP(G) A TW(G) holds. SupposE is a construction
property defined byD, Q). For eactk > 1, let Qx denote the property with for each graph
G, eachSe D(G), Qk(G,S) holds if and only ifQ(G, S) A TW,(G) holds. Note thaF is the
construction property defined B, Q).

For eachk > 1, let ~qk| be the refinement of(q which is defined as follows. For
every twol-terminal graph$s; andG; and eact, € Dyj(G1) and$S; € Dyy(Gz),

(G1,S1) ~rgk) (G2,S) & (G1,S1) ~r) (G2,S) A G ~T1wy G2

Lemma 6.1.1. Let~q) be arefinement ofq, and let k> 1.
1. Foreach I> 0, =q, is a refinement okq,.

2. Foreach >0, =q, is a refinement ofp).

3. Foreach |> 0, if ~q) is finite, therx,q is finite.

4. For each > 0, if ~(q, is finite, therrqy is finite.
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Proof.
1. Follows directly from the definition ofq .

2. Follows from the fact that for every tweterminal graph$s; andGy, if Gy =q; G2, then
for eachS; € D[](Gl) thereis ar, € D[](Gz) such tha{G1,S1) ~q, (G2, ).

3. The number of equivalence classes, is at most Zreil.
4. Follows from Lemmas 5.1.7 and 5.1.6. O

Note that forlC;q, | to be finite,|Cq, | must be finite, and hence alfymp | must be finite.

The next theorem is the analog of Theorem 5.1.2 for construction properties: we give a set
of conditions for a construction prope®y and we show that these conditions are sufficient
for proving the existence of a special constructive reduction systef for anyk > 1.

Theorem 6.1.2. Let P a construction property defined B, Q), suppose that a proper
definition of] is given and that the following conditions hold.

1. Domain D is inducible fof], Q is decidable, a refinemesy,q of ~q, is decidable and
|Cro, | is finite, for fixed > 0.

2. There is a representation of (partial) solutions for which the following holds.

(&) There is a function s which assigns to each terminal graph G a positive integer, such
that for each S Dy;(G), the number of bits needed to represent S is at i@t s

(b) For each two fixed I-terminal graphs H and’ Hhe following holds. For each I-
terminal graph G, if S D(H @ G), then $H] can be computed from S and H in
constant time, and for eact & D;j(H'), if (H,SH]) ~rq (H',S), then S& S(G] can
be computed in constant time from §,}$and H.

Then for each k> 1, there exists a special constructive reduction systeml , Az ,A;) for
P defined by(D, Qx), such that for eacliHi,Hz) € R, H1 =g, Ha.

If, in addition, (i) Q and~q, are effectively decidable, (ii) s is effectively computable,
and (iii) in condition 2b $H] and S S[G] are effectively computable from S, H and H,
then such a special constructive reduction system can effectively be constructed.

Proof. Letk> 1. Since|C,q,| is finite, ~qk has a finite number of equivalence classes,
and itis a refinement ofp |. Let (R, 1) be a special reduction system f&; such that for
each rulgH1,Hz) € R, Hy ~rqk) Hz. By Corollary 5.1.1, such a system exists, and it can be
constructed ik is effectively computable anghq, is effectively decidable, since in that case,
P and~qk, are effectively decidable as well. We now show how to construct algorifigms
andA; suchthatR ,1,Ag ,A) is a special constructive reduction systemmgr

Both algorithmAg and A; use a table (see also the example for two-colorability on
page 123). For algorithir , we make a table which contains for each mie (H;,Hp) € R
and eacl$; € Djj(Hz) an$; € Dyj(Hy) such thatHy,S;) ~rq) (H2,S). This table is com-
puted as follows. For each reduction ruld,Hz) in R, we construct allS; € Dyj(Ha)
and all$; € Dyj(Hz). Then, for eacl, € Djj(Hz), we pick oneS, € Dyj(Hy) for which
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(H1,S1) ~rq, (H2,$2). By condition 2a, this table has finite size. Condition 2b assures that
this table can be used to make algorithg run in constant time.

For algorithmA, we make a table which contains for eadle | a solutionSof H. This
is done as follows. For eadh € |, we construct alSe D(H), and we pick one suc8 for
which Q(H,S) holds. It is easy to see that algoritdp can be made to run i®(1) time
using this table.

Note that if~,q) is effectively decidable andis effectively computable, then we can
effectively construct the tables for algorithiys andA, . Condition 2 assures that the system
(R,1,Ar,A) is a special constructive reduction system. O

As an important special case, we now consider the MS-definable construction properties.
Let D be a solution domain of the following form: there is & 1, such that for all graphs,
all elements 0D(G) aret-tuples(S;, S, ... ,S), where for each, 1 <i <t, S is an element
of V(G), of E(G), of P (V(G)) or of P (E(G)). If D is of this form, we say thdD is at-vertex-
edge-tuple An example of a domain which isavertex-edge-tuple is the domdinfor which
for each graplG, D(G) contains all orderetpartitions ofV(G), i.e. for eachSe D(G),
S= (Vi,..., M), whereVy,... 4 partitionV(G). The construction properties defined by
(D,Q), whereD is at-vertex-edge tuple an@ is an MS-definable extended graph property
correspond exactly to the MS-definable construction problems as defined in Section 2.2.4.

Theorem 6.1.3. Let P be a construction property defined (@, Q), where D is a t-vertex-
edge tuple and Q is MS-definable. For each R there is a special constructive reduction
system for @ which can be effectively constructed.

Proof. For each twd-terminal graphs$s; andG,, G = G1 & Gy, eachS= (S,,...,S) €
D(G), let§G1] = (S1[G1],. .. ,S[G1]), where for eacly, S[G4] is defined as follows.

SNV(Gy) if S€EP(V(G)
SNE(Gy) if S €P(E(G))
S if (SEV(G)ASEeV(G1))V (SEE(G)AS EE(G))
€ if (SEV(G)ASEV(G1))V (SEE(G)AS ¢E(G1))

With this definition off], D is inducible, andCcmy | is finite, for eacH > 0.
Borie, Parker, and Tovey [1992] have shown that for daeHL, there is a homomorphism
h, mapping each paiiG, S), where eitheG is an ordinary graph anie D(G) or G is anl-
terminal graphl <k, andSe Dy;(G), to an element of a finite sé, such that the following
conditions hold.
1. For every two graph&; andGy, and eaclts; € D(G1) andS, € D(Gy), if h(G1,S1) =
h(Gz,S), thenQ(G1,S1) = Q(Gz2, ).
2. Thereis a functiofiy, : Ax x Ax — Ag, such that for each< k, every twol-terminal graphs
G andH, and eacts € D;j(G) andS € Dyj(H), if (G,S) and(H,S) are®-compatible,
then

S[G1] =

h(GeH,S3 S) = f5(h(G,9),h(H,S)).
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This homomorphism can be computed from an MSOL predicat®for

For eachl > 0, eachl-terminal graphG andS € D;;(G), let e¢(G,S) = (h(G,S),C),
whereC € Ccmpy is such that G, S) belongs to compatibility clags. Furthermore, le€ =
Ax % Cempl, and let(Gy,Sp) ~1 (G2,S) if and only if eG(G1,S;) = eq(G2,S). Since|Ay]
and|Cc¢mp| are both finite|Cy | is also finite. We now show thag; is a refinement o .

Letl > 0, letG; andG; bel-terminal graphs, and & € D;j(G1) and$; € Dyj(Gy), such
that(Gy,S;) ~ (G2, ). We have to show that for diterminal graphsi and allSe Dyj(H),
QG1eH,$®9 =Q(GC2dH,S® ). LetH be anl-terminal graph, and €8 € Dyj(H)
such tha{G1,S;) and(H, S) ared-compatible. Then, sindgG1,S;) = h(Gp,S),

h(Gl@ H,S_].@S) = f@(h(lesl)vh(Hvs>>
= f5(h(G2,%),h(H,9))
=h(GdH, S+ 9).

HenceQ(G1®H,S5 ¢ S) =Q(GadH, S @ S). This shows that condition 1 of Theorem 6.1.2
holds.

Now consider condition 2. We use a data structure for storing tuptesS;,... ,S) €
Dy(G) which consists of an array 6flata structures, one for eagh If S is a set of vertices
or edges, then these vertices or edges are put in a (doubly linked) liSt.islfa vertex or
edge, ok, then this vertex or edge ers stored. Furthermore, we keep a pointer from each
vertex and edge in the graph to each place in the data structure where this vertex or edge
occurs. There are at masof these pointers for each vertex and each edge. This shows that
condition 2a of Theorem 6.1.2 is satisfied.

Consider condition 2b of Theorem 6.1.2. For every two fikégfminal graph$i andH’
and each-terminal graplG, if we have arSe D(G® H) stored in the way described above,
then we can computgH] as follows. Make a new data structure f§§H] with S[H] empty
for eachi. For each vertex in H, follow the pointers fronv to the places in which it occurs
in S, and check in which pai§ of Sit occurs. Then add to S[H]. Do the same for all
edges. Then for eadhcheck ifS is a set of vertices or edges, but there is no vertex or edge
in the data structure at the location®fH], and if so, add to S[H]. This can all be done in
constant time, sincl has constant size, and each vertex or edge occurs at most once in each
S, so at most times inS.

LetS =(S,,...,§) € Dyj(H’) such thatH,S) ~rq (H',S). S © SG] can be computed
as follows. For each vertexof H which is not a terminal, follow the pointers frowto all
places inSwhere it occurs, and delete it there. Do the same for all edgesfar which at
least one end point is not a terminal. For each vevtekH’ which is a terminal, follow the
pointers fromv to all pointers inS where it occurs, and deleteat that place. Do the same
for all edges irH’ of which both end points are terminals. Next, for each< i <t, append
the listS to the listS. The resulting data structure represesits SG]. Hence condition 2b
of Theorem 6.1.2 holds. a

Theorem 6.1.3 implies that for each MS-definable construction property, there is a linear
time algorithm which solve® on graphs of bounded treewidth, without making use of a
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tree decomposition of the input graph. For instance, this gives linear time algorithms for the
constructive versions of e.g.AMILTONIAN CIRcUIT andk-COLORABILITY for fixedk, all
on graphs of bounded treewidth.

As a corollary, we also have the following result, which may be easier to use than Theo-
rem6.1.2.

Corollary 6.1.1. Let P be a construction property defined iy, Q). If D is a t-vertex-edge-
tuple for some © 1, and furthermore Q is decidable, and a finite refinemepy, of ~q, is
decidable, then for eachXk 1, there is a special constructive reduction system for P

If, in addition, Q and~,q are effectively decidable, then such a system can be effectively
constructed.

6.2 Optimization Problems

In this section we show how the idea of constructive reduction algorithms can be extended
to constructive optimization problems. We start with a definition of a constructive reduction-
counter system and an efficient reduction algorithm for constructive optimization problems.
After that, we show that this algorithm can be used to solve a large class of constructive
optimization problems on graphs of bounded treewidth.

6.2.1 Constructive Reduction-Counter Systems and Algorithms

Many graph optimization problems are of the form
®(G) = op{Z(S) | Se D(G) A Q(G,9)},

whereD is a solution domain, for eache D(G), zis a function fromD(G) to Z, and either
opt= max or opt= min. (If there is noS € D(G) for which Q(G,S) holds, then we define
®(G) to befalse.) If ® is of this form, then we sagp is a constructive optimization problem
defined by the quadruplg,Q,z opt). MAX INDEPENDENT SET is an example of such
an optimization problem: for this problem, we can choose-optax, D(G) = P (V(G)),
Q(G,S) holds if and only if for eaclw,w € S, {v,w} ¢ E(G), andz(S) = |9.

In this section, we consider reduction algorithms for constructive optimization problems
® which return the value ob(G) for an input grapl@, and also construct an optimal solution
for G, i.e. a solutiorS € D(G) for which Q(G,S) holds andz(S) = ®(G) (if ®(G) # false).

We first define the constructive version of a reduction-counter system.

Definition 6.2.1 (Constructive Reduction-Counter System). ete a constructive opti-
mization problem defined b§D, Q, z,0pt). A constructive reduction-counter systéon ® is
aquadrupléR | 1,0, Ar ,Al), where

e (R,I,0) is a reduction-counter system fér(Definition 5.2.3),
e Ag is an algorithm which, given

— areductionrule = (Hq,Hp) € R,
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— two terminal graph§: andGg, such thatG; is a isomorphic tdH; andGy is isomor-
phic toH,

— agraphG with G= G, @ H for someH, and anSe D(G) such thaQ)(G, S) holds and
ZS) = »(G),

computes a8 € G; 4 H such thaQ(G1 ¢ H,S) holds and/(S) = ®(G1 ¢ H),

e A is an algorithm which, given a graghwhich is isomorphic to some € I, computes
anSe D(G) for whichQ(G, S) holds andz(S) = ®(G).

As an example, consider the optimization probléndefined as follows. For each graph
G, ®(G) is the maximum size of an independent sdbiis a cycle,®(G) = false otherwise
(see Chapter 5 on page 109). Consider the constructive versivdefined by(D, Q,z, max),
whereD, Q andz are defined as follows. For each graphD(G) = P (V(G)), and for each
Se D(G), Q(G,S) holds if and only ifG is a cycle andSis an independent set &, and
ZS) =9.

We extend the reduction-counter system @depicted in Figure 5.4 to a constructive
reduction-counter system fdr. Therefore, we again use the table method. For algoithm
we make a table which contains the following information. For the only reductiorr rle
(H1,H2) € R and each independent stof H, for which there is a maximum independent
setSin some grapi, ¢ H with S, = SNV (H,), the table contains an independent Sget
of Hy such thatS; and$; contain the same terminals aj#l| = |S| + 1. All these cases are
depicted in part | of Figure 6.3 (symmetric cases are given only once). Note that algorithm
Ar can be made to run i@(1) time with this table, since it only has to remove inner vertices
of Hy from the independent set of the old graph and add some inner verti¢éstofthe
independent set of the new graph.

For algorithmA;, we make a table which contains for eaghe | a maximum indepen-
dent set oH (see part Il of Figure 6.3). Algorithry also use©(1) time. It can be seen that
(R,1,9,Ar,A) is a constructive reduction-counter systemdodefined by(D, Q, zZ max).

Let @ be a constructive optimization problem defined (B, Q,z opt). Let P be the
construction property defined Bp, Q). We callP the derived construction propertyFrom
a constructive reduction-counter systél, I, ¢, Ag , A1) for ® we can derive a constructive
reduction syster for P: letR" = {r| (r,i) e R },and letS = (R',] ,Ag ,A1). We callS the
derived constructive reduction system

Definition 6.2.2 (Special Constructive Reduction-Counter System). A special constructive
reduction-counter system is a constructive reduction-counter system whose derived construc-
tive reduction system is special.

Note that the constructive reduction-counter system that we gave Aor MIDEPENDENT
SET on cycles is special.

Let @ be a constructive optimization problem defined (B}, Q,z opt), such thaD is
inducible for a given definition of]. LetS = (R,l,9Ar,AI) be a special constructive
reduction-counter system fdr. We can modify algorithm Reduce-Construct (page 124) to
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7+ contains vertices in independent set

Figure 6.3. Example of tables for algorithm&z andA; for constructive reduction-
counter system for Mx INDEPENDENTSET on cycles.

obtain a constructive reduction algorithm férbased orb: in part 1, use the reduction-
counter algorithm as described in Section 5.2 (page 109) instead of algorithm Reduce. In
Part 2, line 6 of algorithm Reduce-Construct, store the vel@ in some variabl®pt In
line 13, return withSthe valueopt

Hence we have the following result.

Theorem 6.2.1. Let® be a constructive optimization problem defined ByQ, z,opt). If we
have a special constructive reduction-counter systerdftiren we have an algorithm which,
given any graph G, comput@yG) and, if ®(G) # false, computes an 8 D(G) such that
Q(G,S) holds and £S) = ®(G). The algorithm uses @) time and space.

6.2.2 Constructive Optimization Problems for Graphs of
Bounded Treewidth

In this section we show that for a large class of constructive optimization problems on graphs
of bounded treewidth, there exists a special constructive reduction-counter system.
Let(D,Q,z 0opt) define a constructive optimization problébrand supposP is inducible
for []. For eacH > 0, let~,q be arefinement ofq,.
Let G be a terminal graph. We want to be able to compare the quality of two partial
solutionsS andS for which (G,S) ~q, (G,S), i.e. we want that one of them is always at
least as good as the other one. More formally, we want that either

o for each terminal graphli and each§; € Dyj(H) for which Q(G& H,S® S§4) holds,
Z2(SeS) > S @ Sy), or

o for each terminal graphli and each§; € Dyj(H) for which Q(G& H,S® ) holds,
(SeSy) > 2(SeS).

Therefore, we define an extension of the functigo the domain of terminal graphs.
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Definition 6.2.3. Letzbe a function which, for each terminal gra@hand eacls € D(G),
mapsSto a value inZ. Functionzis anextensiorof zwith respect tof~,q,| | > O} if, for
eachl >0, and eacl€,C’ € C;q, for whichC andC’ are-compatible, there is a constant
d|(C,C') € Z such that the following holds. For every tlerminal graph& andH and all
€ D[](G) and$y € DH(H) suchthat e, (G,Ss) =Cand egy(H,S4) =C/,

QGaH,Ss®SH) = ZSsHSH)=ZSe)+ZS)«d(C,C)
The constantd| (C,C') are called th@xtension constanfer z

Note that, if there is a refinemeniq, of ~q, for eachl > 0 and there is an extensian
of zwith respecttd{~q || > 0}, then it is not necessarily the case that an extension of
with respect to{~q,| | > 0}. Howeverzis an extension for with respect to any refinement
Of NrQJ .

Lemma 6.2.1. Suppose& is an extension of z with respect{e,q,| | > 0}. Let G be an
I-terminal graph (1> 0). Let SS € D;j(G) such that(G,S) ~rq, (G, S). If Z(S) > Z(S) (or

Z(S) > Z(S)), then for each terminal graph H and each 8 Djj(H), if Q(G& H,S® Sy)

holds, then S84 Sy) > z(S & Sy) (or (S SH) > z(S & S4), respectively).

Proof. LetC =egGq, and letd; denote the extension constants ZoSuppose(S) > Z(S)
and letH be a terminal graph§, € Dyj(H) such thatQ(G® H,S® S4) holds. LetC' =
eGo, (H,S4). ThenQ(G4 H,S & S4) also holds. Furthermorg(Se Sy) = Z(S) + Z(S1) <
d(C,C) >ZS)+2ZS4) 0 (C,C') =2zS & Sy). For> the proof is similar. O

In other words, Lemma 6.2.1 shows that(§) > z(S), thenSis better thar§ if opt = max,
andS is better tharSif opt = min.
Let G be anl-terminal graph, an@ € C;q,. Let

op(G,C) = op{Z(S)|SeDy(G)reGq(G,S)=CAZS e Z}

(hence ofG,C) = false if there is noS € Dy;(G) for which e¢q ) (G, S) = C). If opt(G,C) €
Z, then let opt8G,C) denote ars € Dyy(G) for whichz(S) = opt(G,C). Informally speaking,
opt(G,C) represents ‘the value of the best partial solutiotisah equivalence clasg’, and
optY G, C) gives such a partial solution (if existing).

Let Se Dyj(G), letC = eqq, (G,S) and suppos& may lead to an optimal solution, i.e.
there is a terminal grapH and anSy € Djj(H) such thaQ(G© H,S® S$4) holds and( S
S4) = P(GapH). Lemma 6.2.1 shows thatS) = opt(G,C). Hence only partial solutionS
for which z(S) = opt(G, eGq, (G,S)) may lead to optimal solutions.

Theorem 6.2.2. Let® be a constructive optimization problem defined ByQ, z,opt). Sup-
pose D is inducible fof] and there is a refinement.q, of ~q; for which the following
conditions hold.

1. Qs decidable, for each* 0, ~1q, is decidable andC;q, | is finite.
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2. There is an extensianof z with respect t§~q,| | > 0} and for each I> 0, there is a
constant K € IN, such that for each I-terminal graph G and everB8Se Dyj(G), if both
S and Scan lead to optimal solutions, thérS) <Z(S)| < K.

3. There is a representation of (partial) solutions for which the following holds.

(a) There is a function s, which assigns to each terminal graph G a positive integer, such
that for each S Dy;(G), the number of bits needed to represent S is at i@t s

(b) For each two fixed I-terminal graphs H and’,Hhe following holds. For each I-
terminal graph G, if Sc D(G® H), then $H] can be computed from S and H in
constant time, and for eacti § Dyy(H’), if (H,SH]) ~rq (H',S), then $& S[G] can
be computed in constant time from §,15, and H.

Then for each k> 1, there exists a special constructive reduction-counter syStdan ®y
defined by D, Qx, z opt), and for each reduction-counter ru{éHy,Hy),i) in S, Hi =g Ha.

If, in addition, (i) Q and~q, are effectively decidable, (ii) z is effectively computable,
(iii) in condition 2,z and K are effectively computable, and (iv) in condition 3, s is effectively
computable, and [Bl] and $S¢ JG] are effectively computable from S, 8 and H, then
such a special constructive reduction-counter system can be effectively constructed.

Proof. Suppose conditions 1, 2, and 3 hold fbr Let z be the extension of condition 2
and letd, (C,C’) denote the corresponding extension constants f@,&ll € C,q,. For each
| >0, letK; € IN be as in condition 2. Let be as in condition 3. Le® be the construction
property derived fron® (i.e.P is defined by(D, Q)).

We first construct a refinemeny of ~,q; such that for each pajiGz,G) of I-terminal
graphs, if|[V(G2)| < [V(G1)| andG1 = G2, then there is ane Z for which the following
holds.

1. ((G1,Gy),i) is a safe reduction-counter rule féx, and

2. for eachS; € D[](Gz) which can lead to an optimal solution, there is@ne D[](Gl)
such that(Gy,S;) ~ (G2,$) and for eacH-terminal graptH and eactS € Dyj(H), if
Q(G2dH,S® ) holds andz(S® S) = P(G2d H), thenQ(G1 & H, S @ S) holds, and
(S 9S) =d(GrdH).

We also show that is finite. After that, we show how to use to build a special construc-
tive reduction-counter system fdy (k > 1).

For eachl > 0, eachl-terminal graphG, do the following. If there is a partial solution
in G which can lead to an optimal solution, then$ete D[](G) such thatss can lead to an
optimal solution. Letg = Z(Ss) (note thaig € Z). Otherwise s is not defined anit; = 0.
Lethg : Cig) — {<K|,... K } U {false} be a function with for eac € Cq,

he(C) = opt(G,C) i if |opt(G,C) wig| < K|
™7 false otherwise.
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For eacH > 0, each pai6G,, G; of I-terminal graphs and ea&h € Djj(G1) and$; € Dy)(Gz),
let

(G1,S1) ~1 (G2, ) & (G1,S1) ~rgy (G2, S)
Ahg,(eGq,1(G1,51)) = he,(€6Gq, (G2, S))-

Note that~, is a refinement of;q | and hence of-q). For eacH > 0, the range ohg for
anyl-terminal grapltG has finite cardinality, anélq, is finite, which means that, is also
finite.

Consider the equivalence relatien on|-terminal graphs as defined in Definition 6.1.7.
Letl > 0, letG; andG; bel-terminal graphs, such tht(G,)| < |V(G1)| andGy ~; G2. By
definition of ~| and=, hg, = hg,. Leti =ig, ©ig,, and leth = hg, = hg,. We show that
G1, G2 andi satisfy conditions 1 and 2 given above.

Note that, if there is ai$ € Dyj(G1) which can lead to a solution, then there isSire
D[](Gz) which can lead to a solution, and vice versa.

Claim.  Suppose there is a partial solution iny@vhich can lead to a solution. Let €
Crq, such thatopt(G1,C) € Z. Let H be an I-terminal graph. Let;S= opt§G1,C), S =
0pt§Gz,C) and $ € Dyj(H), and suppose (B1 @ H,S @ Sy) holds. Then @&, & §4) =
AS®SH) +1i.

Proof. As there is a partial solution i@, which can lead to a solutioﬁﬁg1 is defined and
ZSs,) =i, This also means th&, is defined and(Ss,) = ic,. Hence, by condition 2
of the theorem|z(S;) <ig,| < K|, s0Z(S;) = ig, + h(C), and similarly,z2($) = ig, + h(C).
Furthermore,

2S1®S4) =ZS) +ZSi) &d(C,C)
=h(C) +ig, +ZS4) <d(C,C)
=h(C) +ig, ig, +ig, +Z(S4) d(C,C)
=2(S) +2Z(Sy) ©d (C,C) ig, +ig,
=S o S) e, +ig,
=SoS) +i.

Claim. ((G1,Gp),i) is safe ford.

Proof. LetH be anl-terminal graph. We have to show th{G; & H) = ®(Go & H) +
i. SinceG; = Gy, andx; is a refinement okeq), which in turn is a refinement ofp,
®(G1 D H) is false if and only if ®(G, ® H) is false. Hence if®(Gy ¢ H) = false, then
P(G1PH)=P(GCadH)+i.

Now supposeb(Gy & H) € Z, and letSe D(G;1 @ H) such thatz(S) = ®(G1 @ H).
let S = S[G1] andS4 = §H]. Let S = optSGy,eGq,(G1,S1)). By the previous claim,
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S 9 Sy) =2S 9P Sy) +1i, and hence if opt max, thend(Gy1d H) < (G, & H) +1i, and
if opt = min, then®(G; $H) > d(G, 4 H) +i. By symmetry, we can also show that if opt
max, then®(Gad H) < ®(G1 ® H) i and if opt= min then®(Ga @ H) > ®(G1 ¢ H) <i,
and henc&p(G1dH) =P(Gy & H) +i. O

Claim.  For each $ € Dyj(Gz) which can lead to an optimal solution, there is an&
Dj1(Gy) such thatGy, ;) ~i (Gz, ) and for each I-terminal graph H and eache®(H),

if QG2 H,S 4 S) holds and 154 S) = ®(G, ¢ H), then G £ H,S 4 S) holds, and
(S DS =d(G1pH).

Proof. Let$ € Dyj(Gz) such thats; can lead to an optimal solution, I6t= eGq, (G2, ).
Note that opfG,,C) = z(S,) # false (and hence 0f61,C) # false). LetS; = opt{G;,C). Let
H be anl-terminal graph, leGy € D;j(H) and letC’' = eGq(H). Suppos®(Gz & H, S @
S4) holds andz(S, ¢ Sy) = P(Gz ¢ H). By a previous claimz(S & Sy) = 2SS SH) +1.
Since®(G; ®H) = P(GadH) +iand®(G, b H) =z(S @ H), thisimplies thag(S; H) =
D(GL P H). O

The claims show that conditions 1 and 2 hold.

Letk > 1. We show that there is a special constructive reduction-counter systeby.for
Theorem 6.1.2 shows that there is a special constructive reduction systeiR , |, AR , A1)
for P such that for eactHi,Hz) € R, Hy = Hz. We show how to transforrd into a special
constructive reduction-counter syst&h= (R',1’,¢, Az ,A}) for ®y. First, we make a set
R’ of reduction-counter rules frof : for eachr = (Hy,H2) € R, make a reduction-counter
rule (r,i) in R’ with i =i, <in,. As is shown beforeR  is safe fordy.

Next, letl” =1, and for eaclG € I', let o(G) = ®(G). We let the algorithm#\; and
A} be the same a8r andAy, but with different tables. FoA}, we make a table which
gives for eaclG € I’ anSe D(G) such that(G) = z(S). ForA;, we make a table which,
for each reduction-counter rute= ((H1,Hz),i) € R’, and eacl%; € H; for which 2(S) =
opt(Hz,eq(Hz2,$)), contains opt81,S;). Now, (R',17,¢, Az ,A}) is a special constructive
reduction-counter system fdr. The effectiveness result easily follows. O

Note that, if only conditions 1 and 2 hold far, then® is of finite integer index, and
hence for eack > 1, there is a special reduction-counter systenfar
As a corollary, we also have the following result.

Corollary 6.2.1. Let® be a constructive optimization problem definedDyQ, z opt), where
D is a t-vertex-edge-tuple for some>tl. Suppose there is a refinemeniy| of ~q, for
which the following conditions hold.

1. Qs decidable and for each® 0, ~,q is decidable andC,q, | is finite.

2. There is an extensianof z with respect t§~q,| | > 0} and for each I> 0, there is a
constant K€ IN, such that for each I-terminal graph G, eacft5¢ Dy;(G), if both S and
S can lead to optimal solutions, thér(S) <Z(S)| < K.
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Then for each k> 1, there exists a special constructive reduction-counter systendfor
defined by(D, Qk,z,opt).

If, in addition, (i) Q and~q, are effectively decidable, (ii) z is effectively computable,
and (iii) in condition 2,z, K and i are effectively computable, then such a special construc-
tive reduction-counter system can be effectively constructed.

With these results, we can prove that there are efficient constructive reduction algorithms
for the following problems: MX INDUCED d-DEGREESUBGRAPH, MIN VERTEX COVER,
MIN p-DOMINATING SET for all p > 1, MAX CuT on graphs with bounded degree|M
PARTITION INTO CLIQUES, CHROMATIC NUMBER, MIN HAMILTONIAN PATH COMPLE-
TION, and MaXx LEAF SPANNING TREE. We prove this in Chapter 7, Theorem 7.1.2.

6.3 Parallel Constructive Reduction Algorithms

We now show how the results of Sections 6.1 and 6.2 can be extended to parallel reduction
algorithms. We first consider decision problems, and then optimization problems.

6.3.1 Construction Problems
We start with adapting the definition of a special constructive reduction system.

Definition 6.3.1. Let P be a construction property defined t,Q) and let(R ,1,Ag ,A;)

be a constructive reduction system farAlgorithm Ag is non-interferingif for each graph

G, eachSe D(G), every two terminal graph&; and G, and every two reduction rules
ri,r2 € R, if ry,G1,G,Sandr,, Gy, G, Sare correct inputs ofg , and no inner vertex db;
occurs inG, and vice versa, then runnigy simultaneously on these two inputs (using the
same versions o andS) gives the same result as runniAg successively on these two
inputs.

Definition 6.3.2 (Special Parallel Constructive Reduction System). R.&e a construction
property defined byD,Q). A constructive reduction systefh= (R ,l AR ,A|) for Pis a
special parallel constructive reduction systémn P if

e (R,I)is a special parallel reduction system Byr
¢ algorithmsAr andA; useO(1) time, and
e algorithmAg is non-interfering.

Note that the constructive reduction system that we have defined for two-colorability of
graphs of which the number of components is odd, and each component s a cycle (page 123)
is a special parallel constructive reduction system: we represent each two-coloring as a la-
beling of the graph, i.e. each vertex is labeled with an integer denoting its color. We can
implement algorithmAr such that it is non-interfering, and it runs @(1) time (use the
tables as given on page 123). Algoritimn also take€(1) time.

If we have a special parallel constructive reduction system for a given construction prop-
erty P defined by(D, Q), then we can use a parallel variant of algorithm Reduce-Construct to
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construct a solution for an input grafh if one exists. The parallel algorithm consists of two
parts. In part one, reductions are applied as often as possible, using the parallel algorithm de-
scribed in Section 5.3.1. Recall that this algorithm consis@(tifgn) reduction rounds, and

in each round2(m) reductions are applied in parallel, whenelenotes the number of vertices

of the current graph. In each round, the reductions that are applied are non-interfering.

Part two of the algorithm starts with constructing an initial solution for the reduced graph,
if P holds. This is done by one processor in constant time, by using algotithesfter that,
the reduction rounds of part one are undone in reversed order. In each undo-action of a
reduction round, all reductions of that round are undone, and the solution is adapted. Each
undo-action of a reduction is executed by the same processor that applied the rule in the first
part of the algorithm. This processor also applies algoriégm SinceAg is non-interfering,
this results in the correct output.

Part one of the algorithm tak€Xlognlog* n) time with O(n) operations and space on an
EREW PRAM. Part two can be done@(logn) time with O(n) operations and space on an
EREW PRAM: each undo action of a reduction can be dor@(ity time on one processor,
and the local adaptation of the solution can also be do¥ 1) time by the same processor,
since algorithmAr takes constant time. This implies the following result.

Theorem 6.3.1. Let P be a construction property defined (i, Q). If we have a special
parallel constructive reduction system for P, then we have an algorithm which, given a graph
G, checks if PG) holds and if so, constructs ane&SD(G) for which QG,S) holds. The
algorithm takes @ognlog® n) time with Qn) operations and space on an EREW PRAM,
and (logn) time with Qn) operations and space on a CRCW PRAM.

We next show that for a large class of construction properties on graphs of bounded
treewidth, there is a special constructive reduction system. For simplicity, we only consider
construction propertieB defined by(D, Q), whereD is at-vertex-edge-tuple for some> 1.

Theorem 6.3.2. Let P be a construction property defined (i, Q). If D is a t-vertex-edge-
tuple for some © 1, Q is decidable, and a finite refinemenlg | of ~q, is decidable, then
for each k> 1, there is a special parallel constructive reduction system for P

If, in addition, Q and~,q are effectively decidable, then such a system can be effectively
constructed.

Proof. Letk> 1. LetS =(R,l,AR,A) be a special constructive reduction systemMor
as defined in the proof of Theorem 6.1.2. We show thaiandA; can be made such th&t
is a special parallel reduction system fr

We use the following data structure for storing (partial) solutions. Sup@asehe cur-
rent graph an®= (S, S, ... ,S) is the current solution fo&. With each vertex, we store
booleandy, ... ,b: for eachi, 1 <i <t, b is true if and only if Dij(G) = V(G) andv = S,
or Di(G) =P (V(G)) andv € S. Similarly, with each edge, we store booleanis, ..., b:
for eachi, 1 <i <t, by istrue if and only if D;(G) = E(G) ande= S, or D;(G) = P (E(G))
ande € §. Itis easy to see that with this data structure, we can mgkesuch that it is
non-interfering and runs i®(1) time. Furthermoredy also runs inO(1) time. O
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Note that, with the data structure fowertex-edge-tuples as described in the proof of
Theorem 6.3.2, a returned solution for a given input graph is represented as a labeling of
the vertices and edges of the graph. However, we can transform this representation into the
representation as described on page 130: for gdck i <t, use a parallel prefix algorithm
(see e.g.dH [1992]) to make a list of all vertices or edges for whighs true. Sincet is
fixed, this take®(logn) time with O(n) operations on an EREW PRAM, and hence does not
increase the total running time.

In particular, Theorem 6.3.2 shows that many well-known graph problems, when re-
stricted to graphs of bounded treewidth, can be solved constructively within the stated re-
source bounds. These include all MS-definable construction properties for which the domain
is at-vertex-edge tuple.

6.3.2 Constructive Optimization Problems

A similar approach can be taken for constructive optimization problemsplbeta construc-
tive optimization problem defined K, Q, z,opt). LetS be a special constructive reduction-
counter system foP. ThenS is aspecial parallel constructive reduction-counter systiém
the derived constructive reduction system is a special parallel constructive reduction system.
Note that the constructive reduction-counter system that we defined4sr IMDEPEN-
DENT SET on cycles (page 132) is a special parallel constructive reduction-counter system,
if we represent an independent set as a labeling of the vertices of the graph: each vertex is
labeled with a boolean which teue if and only if the vertex is in the independent set.
In the same way as described above we can transform the parallel algorithm for optimiza-
tion problems as given in Section 5.3.2 into a parallel algorithm for constructive optimization
problems, based on a special parallel constructive reduction-counter system.

Theorem 6.3.3. Let ® be a constructive optimization problem defined(ByQ, z,opt). If
we have a special parallel constructive reduction-counter systen®fadhen we have an
algorithm which, given a graph G, checkslifG) € Z, and if so, constructs an&D(G) for
which QG,S) holds and £S) = ®(G). The algorithm takes @ognlog* n) time with Qn)
operations and space on an EREW PRAM, aiild@n) time with Q'n) operations and space
on a CRCW PRAM.

From Theorem 6.3.2 and Corollary 6.2.1, we also derive the following result.

Theorem 6.3.4. Let® be a constructive optimization problem defined ByQ, z, opt), where
D is a t-vertex-edge-tuple for some>tl. Suppose there is a refinemeniy | of ~q, for
which the following conditions hold.

1. Qs decidable and for each® 0, ~q is decidable andC;q, | is finite.

2. There is an extensiawith respecttd~q || > 0} and for each I> 0, there is a constant
Ki € IN, such that for each for each I-terminal graph G, eacB$ Dy;(G), if both S and
S can lead to optimal solutions, thér(S) <Z(S)| < K.
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Then for each k> 1, there exists a special parallel constructive reduction-counter system for
®y defined by(D, Q, z, opt).

If, in addition, (i) Q and~q, are effectively decidable, (ii) z is effectively computable,
and (iii) in condition 2,z, K and i are effectively computable, then such a reduction-counter
system can be effectively constructed.

This implies the existence of parallel algorithms with the stated resource bounds for
the constructive versions of Mk INDUCED d-DEGREE SUBGRAPH for all d > 0, MIN p-
DOMINATING SET for all p> 1, MIN VERTEX COVER, MAX CuUT on graphs with bounded
degree, and Mx LEAF SPANNING TREE when restricted to graphs of bounded treewidth.
For a proof, see Theorem 7.1.2.

6.4 Additional Results

Itis possible to generalize the results in this chapter to directed, mixed and/or labeled graphs,
in the same way as is described in Section 5.4. The results of this chapter can also be used
to give algorithms that generate all solutions for a construction properor all optimal
solutions for a constructive optimization problebn

In the same way as described in Section 5.4, we can also generalize the results of this
chapter to multigraphs.
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Chapter 7
Applications of Reduction Algorithms

In this chapter we apply the results of Chapter 6 to a number of constructive optimization
problems on simple graphs. In Section 7.1 we prove a weaker version of Theorem 6.2.2
which is easier to use. We use this result and Theorem 6.2.2 to prove that a number of con-
structive optimization problems can be solved efficiently on graphs of bounded treewidth. In
Section 7.2 we show that for a number of MS-definable constructive optimization problems,
we can not apply the results of Chapters 5 and 6. The fact that these problems are MS-
definable shows that there are efficient algorithms that solve them if a tree decomposition of
bounded width of the input graph is given (Section 2.2.4).

7.1 Positive Results

While Theorem 6.2.2 may seem complex to use, it is in most cases not hard to find an equiv-
alence relationvq which satisfies condition 1 and 3. Only condition 2 is often not easy to
prove. Therefore, we give an alternative for condition 2, which is slightly weaker but easier
to use, as will be demonstrated later in this section.

Theorem 7.1.1. Let® be a constructive optimization problem defined byQ, z,opt). Sup-
pose that D is inducible fo}], that there is a refinement;q of ~q for which Q is decid-
able, foreach > 0, ~,q is decidable andC,q, | is finite, and furthermore, that the following
condition holds.

4. There is an extension of z with respect td~q,| | > 0}, for each I> 0, there is a
constant K € IN, and with each |-terminal graph G, we can associate an equivalence
class G € Cq,, such that the following holds.

(a) For all I-terminal graphs G and H, and & Dy;(G), S € Dyj(H), if eGq,(G,S) =Cs
andeGq,(H,S)=Ch, then(G, S) and(H, S) are &-compatible, and @G&H, S+ S)
holds.

(b) If opt=max then for all I-terminals graphs G and all & Dj;(G), if S can lead
to a solution (i.e. there is afH,S) such that QG & H,S4 S) holds), therz(S) <
OpY(G,Cs) < K.

(c) If opt= min, then for all I-terminals graphs G, all & Dy;(G), if S can lead to a
solution, theropt(G,Cg) <Z(S) < K.

Then condition 2 of Theorem 6.2.2 also holds.

143



Chapter 7 Applications of Reduction Algorithms

Proof. Letd(C,C') be the extension constants forFor eacH > 0, let
K = 2K/ +4-max|d(C,C")| |C,C’ € C;q; AC andC' are:-compatiblé.

We show that with these definitions pandK;, condition 2 of Theorem 6.2.2 holds. We only
consider the case that optmax. The case that opt min can be proved similarly.

Let G be anl-terminal graph. We show that for ea&e Dj(G), if Scan lead to an
optimal solution, thelfi(S) <opt(G,Cg)| < K| /2. This implies that condition 2 holds. L8
D}(G), and supposgcan lead to an optimal solution. By condition 45) <0ptG,Cg) <
K/ < K;/2. Hence we only have to show that BiCs) <z(S) < K| /2, i.e. that(S) >
opt(G,Cg) <K /2.

Let H be anl-terminal graph and le&; € Djj(H) such thatQ(G® H,S® Sy) holds
andz(S® S4) = ®(Ge H). By condition 4b,z(Sy) <optH,Ch) < K/ <K;/2. Note that
opt(G,Cg) € Z and optH,CH) € Z. LetC =eGq, (G, S) and letC’' = egg,(H,S4). Then

Z(S) = d(GHH)=Z ) +d(C,C)
> ®(GaH)<(optH,Ch) +K/)+d(C,C)
> z(optSG,Cg) ¢ optSH,Ch)) <optH,Ch) <K +di(C,C")
= Z(optSG,Cg)) + Z{optSH,Ch )) ©di(Cs,Ch) <optH,Chx) K| +d(C,C')
=0pt(G,Cs) <(K/ +d(Cs,Ch) ©di(C,C"))
> opt(G,Cg) <(K| +2max|d|(C,C')| | C,C’ € Cig; AC andC' aress-compatiblé)
=opt(G,Cg) &K /2

Hence opiG,Cg) ©Z(S) < K| /2. This completes the proof. a

Informally, condition 4 states that eatiberminalG graph has a basic equivalence class
Cs such that (4a) for all-terminal graph#i, a partial solution irCs and a partial solution in
Ch together form a solution d&© H, and (4b and 4c) all partial solutio®se Dy;(G) which
can lead to a solution are at most a constant term better than the best sol@ipn in

In the following theorem, we show for a number of constructive optimization problems
that they are efficiently solvable, using the methods of Chapters 5 and 6 and of Theorem 7.1.1.
For definitions of these problems, see Appendix A.

Theorem 7.1.2. Each of the following constructive optimization problems can be solved in
O(n) time and space on graphs of bounded treewidth without making a tree decompaosition of
the input graph.

1. MAX INDUCED d-DEGREESUBGRAPH for all d > 0,
MIN VERTEX COVER,

MIN p-DOMINATING SET for all p > 1,

MAX CuUT on graphs with bounded degree,

MIN PARTITION INTO CLIQUES,

a r wn
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6. CHROMATIC NUMBER,

7. MIN HAMILTONIAN PATH COMPLETION,

8. MIN HAMILTONIAN CIRCUIT COMPLETION, and
9. MAX LEAF SPANNING TREE.

Each of these problems can be solved witimperations and space, and in(ldgnlog* n)
time on an EREW PRAM or in{@gn) time on a CRCW PRAM. However for problems 5, 7
and 8 the parallel algorithm only gives the solution as a labeling of the graph within these

bounds.

Proof. ForeacH >0, letly ={1,... .1}, andR = {{i,j} | 1<i < j <I}. Furthermore, for
eachl-terminal graptG = (V,E, (x1,...,X)), let

F(G) ={{i,i} [{x,x;} €E},
and for eacW CV(G) let
I(W)={iel | x eW}.

We consider the problems one by one.

1 MAX INDUCED d-DEGREE SUBGRAPH. Letd > 0 be fixed. Letd be defined by
(D,Q,z,max), whereD, Q andz are defined as follows. For each graphletD(G) = P (V),
and for eacls € D(G), let

Q(G,S)="‘forall ve S [Ngs(v)| < d’,

whereNg s(v) = {we S| {v,w} € E(G)}. Furthermore, lex(S) = |§. We show that for each
k> 1, there is a special constructive reduction-counter systemdry using Theorem 6.2.2
and Theorem 7.1.1. For twieterminal graph$ andH, andSe D(G@ H), let §G] = Sn
V(G). HenceDy(G) = D(G), and two solution$ € D(G) andS € Dyj(H) are compatible
and$-compatible if they contain the same terminals.

We define a refinement,q | of ~q; by giving the set€,q and the functions gg. For
eachl >0, let

CrQ,| = {(I,false) || Cl}U
{(FLN)[FCRAICHANC{(in)|i€elAne{L,...,d}}.
|Crq,| is bounded, becauskis fixed. For each-terminal graphG = (V.E,(xq,...,X)),
eachSe DH(G), let eGq(G,S) € Cig, be defined as follows. If there is\ac S such

that|Ng s(v)| > d, then egq (G, S) = (I(S),false) (Scan not lead to a solution), otherwise,
eGq,(G,S) = (F(G),I(S),N), where

N = {(i,|Ne,s(x)|) |1 € I(S)}.
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We first show thatv,q is a refinement ofq) for all . Suppos€Gi,S;) ~rq) (G2, ).
Clearly,(G1,S1) and(Gz, ) are compatible. Letl be anl-terminal graph, le§; € Dyj(H)
such tha{G1,S;) and(H, Sy) are®-compatible. We have to show th@{G1 ©H, S & S4)
holds if and only ifQ(G2; @ H,S @ H) holds. If

€Gq,(G1,S1) = €Gq, (G2, %) = (I(S1),false),
thenQ(G14H,5 ¢ Sy) =false = Q(G2 b H, S 4 S4). Suppose
qu,' (Glasﬂ.) = e(‘fQ,l (G27SZ) = (Fv I ) N)v

whereN = {(i,n;) |i € 1}. LetX = (X1,...,%), Y = (Y1,..., %), andZ = (z,... ,7) denote
the terminal sets dB1, G, andH, respectively.

QG1aH, S8 S)

= (Vvesiosy INGiaH g0 (V)] <d)

= (Vier INH,s4 (@)1 + [Nos (%) <[{] €1 Xj € Ng,,5 (%) AZj € Nus,(z)}] <d)
A (Yves,—x NGy, (V)] <d) A (Vves;—z N, (V)] < d)

= (Vier INusq (@) + Inif <|{j €1 [ {i,j} e FA{z,7} e E(H)}| <d)
A (Yves—x INGy,s (V)] <d) A (Vvesy—z N, (V)] < d)

= (Viel INn,s4(2)| + N5, (V)| <[{i €1]Yj € Ng,,5,(¥i) AZj € Nusy(z)} < d)
A (Yves,—Y [Nap5 (V)| <d) A (Vves -z [NHs; (V)] <d)

= Q(GaH, S SH)

Hence~q, is a refinement of.q,. This proves condition 1 of Theorem 6.2.2.

Consider condition 4 of Theorem 7.1.1. For each terminal g@pbachS € Dy;(G),
let z(S) = |§. We show thatis an extension of. LetC,C’' € C;q,, such thaC andC'
are compatible. Lek C I} such thatC = (I,false) or C = (F,I,N) for someF andN, and
C' = (I,false) orC' = (F',1,N’) for someF’ andN'. Let G andH bel-terminal graphs, let
SeDyj(G) andS € Dyj(H) such thateg, (G,S) =Candegg(H,S) =C'. Thenz(SeS) =
[SeS|=|SUS|=1|9+|S|<|l|=Z9S) +ZS)<]|l|, henced (C,C') = |I|, which shows that
Zis an extension of.

We next defin&, for all | > 0, andCg for all |-terminal graphss, and show that con-
dition 4 holds of Theorem 7.1.1 holds with these definitions. For ¢aeh, letK, =1, and
for eachl-terminal graphG, letCg = (F(G),d,0). Clearly, for alll-terminal graph$s and
H, eachSe D;j(G) andS € Dyj(H), if ecq(G,S) = Cg and egq (H,S) = Cx, then(G, S)
and(H,S) ares-compatible, an@)(G 4 H, S+ S) holds. Furthermore, for eadkterminal
graphG = (V,E, X), and eact € Dyj(G) that can lead to a solution (i.e.8¢(G,S) #
(F(G),false)), €Gg, (G, S&X) =Cg and|§ <opt(G,Cs) < | «|SeX| < =K.

Condition 3 of Theorem 6.2.2 also holds,[2$s a one-vertex-edge-tuple. Hence for each
k> 1, there is a special (parallel) constructive reduction-counter syste@for
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2 MIN VERTEX COVER. There are two ways to prove thatiMVERTEX COVER can be
solved efficiently on graphs of bounded treewidth. Firstly, it is well-known that for each
graphG, if Sis a maximum independent set®) thenV(G) <Sis a minimum vertex cover
in G. Hence we can solve M VERTEX COVER by first computing a maximum independent
set of G (using the result for MX INDUCED d-DEGREE SUBGRAPH), and then taking the
complement of this set.

Alternatively, one can prove in a direct way that there is a special (parallel) constructive
reduction-counter system for Min Vertex Cover on graphs of bounded treewidth. This proof
is similar to the proof for Mx INDUCED d-DEGREESUBGRAPH, and we do not give it here.

3 MIN p-DOMINATING SET. Letp > 1 be fixed. Letb be defined byD,Q, z min), where
D, Q andz are defined as follows. For each graphD(G) = P (V), and for eacls € D(G),

Q(G,S)="'forall ve V&S |Ngs(V)| > p',

andz(S) = |9. [] is defined in the same way as fora¥ INDUCED d-DEGREESUBGRAPH,
and so areb and (&-)compatibility. We definevq; by giving Ciq| and~q. For each
| >0, let

Cro) = {(I,false) |1 Cl1}U
{(F,LN) [FCRAICHANC{(i,n)|ieli<lAne{l,...,p}}.

For each-terminal graptG = (V,E,X) with X = (x1,... ,x)), and for eacts € D};(G), let
€Go,(G,S) € Ciq, be defined as follows. If there is\ac V <X such thaiNg s(v)| < p,
then e(;Q|( S) = (I(9),false) (S can not lead to a solution). Otherwise,®dG,S) =
(F(G),1(S);N), where

N={({,n)|iel(§ <l A((n=]|Ncs(X)|An<p)V(n=pA|Ncs(X)| >p))}

In the same way as for Mx INDUCED d-DEGREE SUBGRAPH, it can be shown that
~rq, is a refinement ofq,, and hence condition 1 of Theorem 6.2.2 holds.

We next show that condition 4 of Theorem 7.1.1 holds. For each terminal @aph
eachSe Dj(G), let z(S) = |§. It can be seen thatis an extension of with respect to
{~rq,| | > 0}. For eacH, letK; =1 and for each terminal gragh, letCgc = (F(G),|;,9).
Clearly, for alll-terminal graph& andH andSe D;)(G), S € Dj(H) such that e (G, S) =
Cc and egq(H,S) = Cq, Q(G® H,S+ S) holds. Furthermore, for eadkterminal graph
G = (V,E,X), eachSe Dy(G), if Scan lead to a solution, thengg(G,S) # (F(G),false)
and egq (G, SUX) = Cg, and hence 0pG,Cs) ©|§ < [SUX| | < | =K. This proves
condition 4 of Theorem 7.1.1. Condition 3 of Theorem 6.2.2 is also satisfiddljsaagain a
one-vertex-edge-tuple. This implies that for eich 1, there is a special (parallel) construc-
tive reduction-counter system fdx.

4 MAx CuT on graphs with bounded degree. Ildet 0 be a bound on the maximum degree
of the input graph. Le® be defined byD, Q,z max), whereD, Q andz are as follows. For
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each graplG, let D(G) be the set of all partitioné/1,V») of V(G), and for eacts e D(G),
let Q(G,S) = true. For each grapls and eacts= (V1,V,) € D(G), let

Z(S) =|{{u,v} e E(G) |lue Vi AVEVL}|

We show that for eack > 1, there is a special parallel constructive reduction-counter system
for dy.

Let [] be defined in the obvious way, i.e. for each tiM@rminal graphss andH, and
S=(V1,V2) e D(G@H), let §G] = (ViNV(G),V2NV(G)). Note thatD;;(G) is the set of
all partitions(V1, V) of V(G), and thaD is inducible for[]. Two pairs(G,S) and(H,S) are
(®-)compatible ifSandS are the equal on the set of terminals.

For eacH >0, let

Coi={(F)|FCRAICH},

and for eact-terminal graptG = (V,E, X = (x1, ..., %)) and eacts= (V1,Vz) € Djj(G), let
eGq,(G,S) = (F(G),1(V1)).

LetG; andG; bel-terminal graphs$; € D[](Gl), Se D[](Gz). If (G1,S1) ~ro) (G2,S),
then (G1,S1) and (Go,S) are compatible, and heneeq) is a refinement of-q). This
means that condition 1 of Theorem 6.2.2 holds.

Consider condition 2 of Theorem 6.2.2. For each terminal g@apeachS= (Vi,V,) €
Dj(G), letZ(S) = [{{u,v} € E(G) |[u€ V1AV E V2}|. We show tharzis an extension of
with respect to{~,q | | > 0}.

Let G andH bel-terminal graphs, les= (V1,V2) € Djj(G) andS = (W1, W) € Dyj(H),
such tha{G,S) and(H, S) ares-compatible. Leteg (G, S) = (F, ) and letegy (H S):
(F',1). Then

2(S#S) = |{{u,v} e E(GHH) |ueVIUWL AV EVLUWL}|
= |{{u,v} € E(G) |Jue V1AV EVL}|
+[{{u,v} e E(H) lue W AvEW,}|
<S|{{u,v} e E(G)NE(H) |ue Wi AveEW}|
=Z9+ZS)&|{{i,i}eFnF'JielAnjelal}.

Henced ((F,1),(F',1)) =|{{i,j} e ENF’ [ielAjel &I}

ForeacH >0, letK; =2-1-d. LetG = (V, E,X) be anl-terminal graph, |1e§,S € D;}(G)
such thatSandS can lead to optimal solutions. We have to show {agh ) ©z(S)| < K.
LetS= (V1,V2) andS = (V,V;). LetS= (Wi, We) € Dy;(G), where

W = (V1<:>X) + (ViﬂX) and W, = (V2<:>X) + (VéﬂX).
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Then(G,S) ~rq, (G,9), and hence(S) < ZS). Note thatSandSonly differ on the set of
terminals. Furthermore,

S «ZS)

<ZS) =49

=29 (29 <|{{u,v} €E(G) JUEVIAVEVLA (U VEWL VU, VEW)}
+]{{u,v} € E(G) [ue WiAVEWL A (u,veVIVUVEVR)Y )

< {{u,v} €E(G) |[luEVIAVEVLA (U VEWL VU VE W)}

=|{{u,v} €E(G) | (ueViNWLAVEVLNW) V (UEVINWL AV EVoNWL) B

< H{{u, v} (veVanW) V (UeVINWL) }]

<[{{uv}|ueXvve X}

<2-1-d=K.

Because of symmetry, this means t}z8%) ©z(S )| < K|. Hence condition 2 of Theorem 6.2.2
holds.

Condition 3 of Theorem 6.2.2 also holds, sirigds a two-vertex-edge-tuple. Hence
for eachk > 1, there is a special (parallel) constructive reduction-counter systeffon
graphs with bounded degree.

5 MIN PARTITION INTO CLIQUES. Let ® be defined by{D,Q,z min), whereD, Q andz
are defined as follows. For each graphlet D(G) be the set of all (unordered) partitions
S={V1,...,Vs} of V(G) for somes > 1, for which eaclV; € Sinduces a connected subgraph
of G. For eact5e D(G), let

Q(G,S) =‘forall W € S G|W] is a complete graph’

and letz(S) = |S]. We show that for each > 1, there is a special constructive reduction-
counter system fo®y.
For each twd-terminal graph& = (V,E, X) andH = (V',E’,Y), eachSe D(G® H), let

SIG] = {WNV(G) |W € SAWNV(G) # ¢}

HenceDy)(G) is the set of all partition$ of V(G) in which for eachW € S, all connected
components oG[W] contain at least one terminal vertex.

Note thatD is inducible for[], since, for anSe€ D(G® H), there is noV € S which
contains vertices of botG andH while it does not contain terminals &. Two pairs(G, S)
and(H,S) are @-)compatible if the terminals d& andH are partitioned in the same way in
SandS, i.e.

{TShT#p A west =IW)H ={I Sl [1#0 A Fwesl =1(W)}.
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For eacH >0, let

Cro, = {(F.false) |F CR} U

{(Fv{(‘]lvbl)v'“ 7(Jt7bt)}) | FCRA
t>1A{d,...,J} partitionsl) A (Vi J #Z @A by € {true,false} )} }

For each-terminal graplG = (V,E, (x1,... ,X)), eachSe Dy(G), let eGq, (G, S) € Crq be
defined as follows. If there isW € Swhich contains a pai,w € W for which {v,w} ¢ E(G)
and{v,w} Z X, then egy(G,S) = (F(G),false) (Scan not lead to a solution). Otherwise,
eGo,(G,S) = (F(G),J), where

J = {(3.b)| (BwesI = I(W) AT # A (b (WS X))}

It is fairly easy to check that if eg(G1,S1) = €Gg,(G2,S), then(G1,S1) ~q, (G2,S).
This shows that condition 1 of Theorem 6.2.2 holds.

Consider condition 4 of Theorem 7.1.1. For each terminal g@pachS € D;)(G), let
Z(S) = |§. We show tharis an extension af with respect tg{~q,| | > 0}. LetG andH be
I-terminal graphs, les€ D;)(G), S € Dyj(H), such thatG, S) and(H, S) ared-compatible.
LeteGq,(G,S) =(F,J), and letegy(H,S) = (F',J’). Then

IS +|S| ©|S® S| = |{W € S® S |[WNX # g}
—J).

HenCEdl ((Fv‘] )7 (Flv‘]l)) = |‘] |
For eacH > 0, letK,; =1, and for each-terminal graptG, let

Ce = (F(G),{({i},true) [ 1 <i <1}).

Clearly, condition 4a of Theorem 7.1.1 holds. I&be anl-terminal graph, le € D;;(G),
such thaSmay lead to a solution, i.e. g (G, S) # (F(G),false). Furthermore, let

S ={{v}|vEX}U{WeX|WeSAW Z X}.

ThenS € D;(G) and egq, (G, S) = Cg, and hence 0pG,Cs) <9 < S| &[S < | =K.
This shows that condition 4 of Theorem 7.1.1 holds.

Consider condition 3 of Theorem 6.2.2. We represent (partial) solufilasdollows. We
construct a list of all element® € S. For eachV € S, we construct a list of all vertices in
W, and for eaclv € W, we make a pointer té&/ and to vertex in W. It is easy to check that
condition 3 of Theorem 6.2.2 holds for this representation. This completes the proof that for
eachk > 1, there is a special constructive reduction-counter systemfor

For the parallel algorithm, we use a different representation of (partial) solutions. For
each (partial) solutioi®, we label the vertices i in such a way that two verticeasandw
have the same label if and only if they are in the same clique, i.e. thei/is & such that
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v,w € W. It can be seen that with this representation one can use the parallel algorithm as
described in Section 6.3.2 to solveiMPARTITION INTO CLIQUES in O(lognlog®n) time

with O(n) operations on an EREW PRAM, and @(logn) time with O(n) operations on a
CRCW PRAM. However, we have no method to obtain a list of all cliques from the vertex
labeling within the same resource bounds.

6 CHROMATIC NUMBER. We can not prove that there is a constructive reduction-counter
system for GIROMATIC NUMBER on graphs of bounded treewidth. However, it is well-
known that for eacl > 1, each graph of treewidth at mdshas ak + 1)-coloring. Further-
more, for eachm > 1, them-COLORABILITY problem is MS-definable, and the solutions are
m-vertex-edge-tuples. Therefore, given an intdger 1, we can solve BROMATIC NUM-

BER on a graphG of treewidth at mosk as follows. For eacm, 1< m< k+ 1, try to find
anm-coloring of G. Take the smallesh for which this is possible, and return amcoloring.
Sequentially, this can be done@in) time and space. In parallel, this can be done With)
operations and space @(lognlog” n) time on an EREW PRAM, and i®(logn) time on a
CRCW PRAM.

7 MIN HAMILTONIAN PATH COMPLETION. Let ® be defined byD,Q,z min), whereD,
Q andz are defined as follows. For each graphlet each elemergin D(G) be a set of non-
empty paths irG (i.e. paths containing at least one vertex), such that th&&®) | P € S}
partitionsG. For eachSe D(G), let Q(G,S) = true, and letz(S) = |§ <1. Note that this
correctly describes the problemaiiLTONIAN PATH COMPLETION NUMBER. We show
that for eactk > 1, there is a special constructive reduction-counter systemfor

Let G andH bel-terminal graphsSe D(G& H). Let

SG] = | J{P'| P'is a connected component®V (G)]},
Pes

i.e. §G] is the set of paths i which is obtained frons by deleting all vertices and edges
which are not inG, and deleting empty paths. Domdinis inducible for this definition of
[]: let G andH bel-terminal graphsSe D(G® H). ThenSis the set of components of the
subgraplG’ of G@ H with

V(G)=V(GaH)
E(G)={ec E(G&H)|Ipcgge€ E(P)VIpcgHiec E(P)}.
LetG=(V,E,X={xy,...,X}) be anl-terminal graplG, letP = (v1,...,Vs) be a pathin
G. Suppos&/(P)NX = {x,...,%,}, 4> 1, and for each X j < m < g, x; occurs on the

left side ofx;,, in P (i.e. by walking fromv; to vs in P, we meet;; earlier thanx;,,). Letvx
andnovx be dummy vertices. Then I(B) is defined as follows.

Ind(P) = (do,i1,dq,i2,do,... ,dg-1,iq,dq),

where for each, 0 <i < g, d; € {vx,novx} as follows. Ifx;, = v1, then no vertex precedas
in P-and hencelp = novx, otherwisedp = vx. If X, = vs, then no vertex follows;, and hence
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dq = novx, otherwisedy = vx. For eachm, 0 < m< g, if there is aj, 1 < j < s, such that
Xim = Vj andxi ., = Vj1, then there is no vertex betwerp andx;,,. ,, and henceély, = novx,
otherwisedy = vx.

For each-terminal graplG and eaclts € Dy;(G), let eGq, (G, S) be defined as follows:

eGq|(G,S) = (F(G),{Ind(P) | P € SAV(P)N X # 8}).

For eacH > 0, letC;q, contain all possible values of gg (G, S) and let~q | be defined as
usual. It can be seen that(i51,S;) ~rq (G2, ), then(Gy,S1) and(Gp, S) are compatible,
and hencgG1,S1) ~q) (G2,S). This proves condition 1 of Theorem 6.2.2.

Consider condition 4 of Theorem 7.1.1. For each terminal g@pachS € D;)(G), let
Z(S) =1|9]. We show thatis an extension afwith respecttq~;q || > 0}. LetG=(V,E,X)
andH = (V',E',Y) bel-terminal graphsS € D;)(G) andS € Dyj(H). If (G,S) and(H,S)
areg-compatible, then

2(S)+2S)«z(S®eS)=|{PeS|V(P)NX £B} +|{Pe S |V(P)NY # ¢}|
S{PeSaS|V(P)NX £ 8}

This value can be computed fromg¢(G,S) and egq (H,S), hencezis an extension of.
For eacH > 0, letK, = 2, and for each-terminal graptG, let

Ce = (F(G),{(novx,i,novx) | 1 <i<1}).

If ecig,(G,S) =Cg and ey (H,S) =Cq, then(G,S) and(H, S) arew-compatible.

Let G be anl-terminal graphS e Dyj(G). Let G’ be the graph consisting of all paths in
S (note thatv(G') = V(G)). ObtainG” from G’ by removing all edge$v,w} € E(G') for
whichv e X. LetS = {P|Pis a componentd&”}. ThenS € D(;(G), and egy(G,S) =
Cg. Furthermore|S| < |S|+ 2I, and hence 0f6,Cs) <ZS) < |S|<|S <2l =K. This
completes the proof of condition 4 of Theorem 7.1.1.

Consider condition 3 of Theorem 6.2.2. We represent each (partial) sokgisifollows.
We construct a list of all pathB € S. For eachP € S, we construct a list of all vertices in
the order in which they occur in the path. We keep pointers from vertices in the graph to the
corresponding vertices in the path and vice versa, and from each vertex in the graph to the
path in which it occurs. With this representation, condition 3 can be proved. Hence for each
k> 1, there is a special constructive reduction-counter systemnfom he algorithm returns
a set of paths which partition the vertices of the input graph, such that the number of these
paths is minimum. If we are interested in a minimum set of edges which have to be added
to the graph in order to get a graph which contains a Hamiltonian path, then we can compute
such a set from the minimum set of paths: take any ordering of these paths, and let the edge
set contain all edges from an end point of one path to the starting point of the next path in the
ordering. This set can be computedd(n) time.

An efficient parallel algorithm which solveBy for anyk > 1 can only be obtained if we
represent (partial) solutions as a labeling of the graph: given a (partial) sol&i@ate| each
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vertex and edge in the graph such that vertices and edges in the same path have the same
label. With this representation it can be shown that the algorithm described in Section 6.3.2
can be used.

8 MIN HAMILTONIAN CIRCUIT COMPLETION. The MIN HAMILTONIAN CIRCUIT COM-
PLETION can easily be solved with use ofIMHAMILTONIAN PATH COMPLETION and the
constructive version of IMILTONIAN CIRCUIT: suppose we have an input graphLetm,
andm denote the minimum number of edges that have to be addedteh that it contains
a Hamiltonian path, and a Hamiltonian circuit, respectivelympf> 1, thenme = mp + 1.

If my =0, then there are two cases. Eitl@rcontains a Hamiltonian circuit, in which
casem; = 0, or G does not contain a Hamiltonian circuit, in which casg= 1. Hence
to solve MN HAMILTONIAN CIRCUIT COMPLETION, we first solve MN HAMILTONIAN
PAaTH CoMPLETION as described above. If this gives a numivgr> 1 of paths, then it is a
solution for MIN HAMILTONIAN CIRCUIT COMPLETION. If mp = 0, then we solve the con-
structive version of HMILTONIAN CIRCUIT. If this algorithm returns a Hamiltonian circuit,
then we take this as a solution forilMHAMILTONIAN CIRCUIT COMPLETION, otherwise,
we take the solution of Mi HAMILTONIAN PATH COMPLETION. As HAMILTONIAN CIR-
CUIT is MS-definable and its solution domain can be seen as a two-vertex-edge-tuple, we
have an efficient algorithm for M HAMILTONIAN CIRCUIT COMPLETION on graphs of
bounded treewidth.

9 MAX LEAF SPANNING TREE. Let ® be defined byD,Q,z,max), whereD, Q andz are
defined as follows. For each gra@hlet D(G) be the set of all spanning trees®f For each
Se D(G), let Q(G,S) = true, and letz(S) be the number of vertices of degree on&inNe
show that there is a special parallel constructive reduction-counter systebp (o> 1).

For every twal-terminal graph$s andH and eactSe D(G & H), let §G] be the forest
in G obtained by deleting all vertices and edges frBrwhich are not inG, i.e. §G] =
(V(SNV(G),E(S)NE(G)). HenceDy(G) is the set of all spanning foregtsof G for which
each connected componentfofcontains at least one terminal of the graph. Note Ehig
inducible for[].

For eachl-terminal graphG = (V,E, (x1,... X)), eachSe Dy;(G), if S contains more
than one connected component, and one of these components does not contain a terminal,
then letegy | = (F(G),false) (there are né1 andS; € Dyj(H) such thaB® Sy is a spanning
tree ofG @ H), otherwise, let ag(G,S) = (F(G),J,A) where

J ={(3,F) | Ivrcv SIV'] is a connected component®h J = 1 (V') A
F= {{Ivj} | IvJ € J/\{XhXj} € E(S)}}7
A={(i,s)|1<i<IAs =|Ngv(x)|if |[Nsv(X)| < 2, otherwises = 2}.
More informally, for each componeiit of S, J contains the subgraph af induced by the

terminals inT (note that there are at mdssuch components). Furthermoredenotes for
each terminal whether it has zero neighbors, one neighbor, or more than one neighfor in
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Let Ciq, be the set of all possible values ®fq,. Note that|C,q| is finite. For each > 0,
let ~rq, be defined as usual.

One can check that {{G1,S1) ~q) (G2,$), then(Gy,S) and(Gz,S) are compatible,
i.e. that for eacl-terminal grapiH and eacl&, € Djj(H), the grapiV(S1) UV (S4),E(S) U
E(S4) isatreeif and only if the graptV (S1) UV(S4),E(S1) UE(S4)) is a tree. This implies
that(G1,S1) ~q) (G2,S). Hence condition 1 of Theorem 6.2.2 holds.

Consider condition 2 of Theorem 6.2.2. For each terminal g@phd eactg € Dy;(G),
let z(S) = the number of vertices of degree oneSin\e show thar is an extension af with
respect to{~q,| | > O}.

LetGandH bel-terminal graphs, léd€ D;)(G), S € Dyj(H), such thatG, S) and(H, S)
ared-compatible. Let (G, S) = (F,J,A), and letegy(H,S) = (F',J',A’), whereA =
{i,s)|1<i<I}andA ={(i,5) |1<i<I}. Then

2S) +2S) «zS&S) = [{i € I | INsgs v(@uv(H) (%) = 2As =1} +
[{i € Il | INsos v (@)avH) (6)]| > 275 = 1}].

It can be seen that this value can be computed fiefth, A) and(F’,J',A’), and henceis a
proper extension.

For eachl > 0, letK; = 4l. For each terminal grap8, let Fg be a maximal spanning
forest of G such thatz{Fg) is maximum. A spanning fore§t of G is called maximal if each
component oF spans a component & We show that for eachterminal graptG and each
Se Dyy(G), if Scan lead to an optimal solution, théz{S) <z(Fg)| < Ki/2. This implies
condition 2.

Let G be anl-terminal graph, le€ Dy;(G) and supposBcan lead to an optimal solution.
Note thatS contains at most components. We first show thaiS) < z(Fg) + K| /2. LetS
be a maximal spanning forest & such thatSis a subgraph o8. NoteS can be obtained
from Sby adding at most<1 edges. HencgS) > Z(S) ©2(1 1). Sincez(S) < Z(Fg),
this implies that(S) < z(Fg) + K /2.

We next show that(S) > z(Fs) <K /2. LetH be anl-terminal graph, and I8, € Dyj(H)
suchthaQ(G&H,S® Sy) holds and(S® Sy) = (G H). LetG be the subgraph & o H
withV(G') =V(GaH), andE(G') = E(Fg) UE(S4). The number of vertices of degree one
in G’ is at leastz(Fg) + Z(S4) «<I. Furthermore, we can obtain fro8f a spanning tre& of
G by removing a number of edges Gf. This does not decrease the number of vertices of
degree one, since if a vertex has one incident edge, then this edge can not be removed. Hence
AT)>7zFe) +z(SH) <l. Sincez(T) < P(GHH) =z(S® Sy), we can derive the following.

ZS) > 2(Se ) ZAN)
> 2(T) &ZAS4)
> ZF6) + AS1) &l ©7S)
= ZFG) sl
> ZF) &K, /2
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This proves condition 2 of Theorem 6.2.2.

As D is a two-vertex-edge-tuple, condition 3 of Theorem 6.2.2 is also satisfied, and hence
for eachk > 1, there is a special (parallel) constructive reduction-counter system Aor M
LEAF SPANNING TREE 0N graphs of bounded treewidth. a

7.2 Negative Results

There is a number of (constructive) optimization problems for which we do not succeed in
proving conditions 1, 2 (and 3) of Theorem 6.2.2, although the problems are MS-definable,
and thus standard methods can be used to solve these probl&trs itime sequentially or
O(logn) time with O(n) operations in parallel on an EREW PRAM if a tree decomposition of
the input graph is given (Section 2.2.4). We show that it is not possible to prove conditions 1
and 2 for these problems, by showing that the problems are not of finite integer index. Indeed,
we show thatve has infinitely many equivalence classes for sdme0. We do this by
giving an infinite class of graphs and showing that the elements of this class are pairwise not
equivalent.

We next show for a number of constructive optimization problems that they are not of
finite integer index.

Theorem 7.2.1. The following problems are not of finite integer index.
1. Max Cut

2. MIN COVERING BY CLIQUES

3. LONGESTPATH

4. LONGESTCYCLE

Proof. Let ® denote the respective optimization problem.

1 Max CuT. We give an infinite seG of two-terminal graphs such that for eaGandG'
in this set, ifG # G/, thenG %> G'. For eac > 2, letG,, be a two-terminal graph which
is defined as follows (see also Figure 7.1).

V(Gp) = XUAUBUG,,

where all sets are disjoink = (x1,x2) is the set of terminalsh = {a1,a2}, andB,, andCy
each contaim vertices, and furthermore,

E(Gn) = {{x1,a1},{x2, 8} } U {{a;,v} | 1<i <2Ave B UGy}
U {{x2,b} | be Bn} U {{x1,c} | c€Cn}.

LetG = {Gn|n>2Anevern.

Claim. Let n> 1, let H be a two-terminal graph. LéW;,W,) be a maximum cut of b H
(i.e. (Wi, Wp) partitions V(G @ H) and the number of edges with one end point inafd
one end point in Wis maximum). Eithe{( W4 NV(H))+A WoNV(H))+ By+Cy) or
(WLNV(H)) +Bp+Cy, (WoNV(H)) + A) is a maximum cut of G H.

155



Chapter 7 Applications of Reduction Algorithms

Figure 7.1. The graph€, (n > 2) andHp (p > 0) for MAX CuUT.

Proof. LetM* =2zWi,Ws), i.e. M* denotes the number of edgesG@i ¢ H with one end
pointinWj and one in/\,. Let

A1 =WiNA BC]_ZWlﬂ(BnUCn),

A =WWoNA, BG =Win (BrUGy).

Furthermore, let

(Vl,Vz) = (Wl SBC + A Wo A + BCl), and
(V1/7V2,) = (WL &A1 + BG, W BG + A1).
Note that(V1,V2) and (V;,V;) are the cuts mentioned in the claim. We show that either
(V1,V2) or (V{,V}) is a maximum cut. LeM = z(V1,V») and letM’ = z(V/,V}). We consider
two cases, namely
1. |A2| =0V |BC| =0, and
2. 0<|A2] < |Aland 0< |BG| < |IBGLUBG|.
In case 1,
M > M" + |Aq] - [BCi| + |Az] - [BGy| <|Ag| |BC|
=M"+|A2|(|BC| 1) +[BG[(|/A] 1)
> M.
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In case 2,
M’ > M* +|A1| - |BCi| + |A2] - IBG| <A1 <|BG
=M"+ |A1|(|BC1| <:>1) + |BC2|(|A2| <:>1)
> M*,
This proves the claim. a

For eachp > 0, letHp be the graph defined as follows (see also Figure 7.1).

where all sets are disjoin¥, = (y1,y>) is the set of terminalsD, andF, each contairp
vertices, and

E(Hp) = {{d, f} |[de DpAfeFp} U{yi,d} |deDp} U {{ysf}|feFp}.

Claim. Let p> 0, let G be a two-terminal graph, and 1é#\;,\W») be a maximum cut of &
Hp. Either(WANV(G)) + Dy, WoNV(G)) +Fp) or (WiNV(G)) +Fp, WoNV(G)) + Dp)
is a maximum cut of & Hp,.

Proof. Similar to the proof of Claim 7.2.1. a

We now show that for eadBn, Gm € G, if n# m, thenGp %02 Gm.

Fori > 2, eachp > 0, consider the grapG; & H,. Claim 7.2.1 and Claim 7.2.2 show that
there are eight candidates for maximum cut&im Hp. In the following table, all these cuts
are given, together with their values.

r. cut, value
(AUDpUX ,BiUC UFp) 4i+p°+2i+p
(AUFpUX,BiUG UDyp) 4i+p?+2i+p

(AUDpU{x1},BiUGUFU{X2}) | di+p?+i+1
(AUFpU{x1},BiUCGIUDpU{x2}) | 4i+p?+i+1+2p
(AUDpU{x2},BIUGUFU{x1}) | 4i+p?+i+1+2p
(AUFpU{x2},BIUGUDpU{x1}) | 4i+p?+i+1
(AUDp, BIUG UF,UX) 4i+p?+2+p
(AUFp,BiUG UDpUX) 4i+p°+2+p

O~NO UL WNPRFPS

Note that either cuts 1 and 2 or cuts 4 and 5 are maximum, sin@& andp > 0.

Letn>m>1,n, meven. Ifp =0, then cuts 1 and 2 are maximum for b@&@h$ Hp and
Gm @ Ho. Henced(Gp @ Ho) = 6n and®(Gm @ Hg) = 6m, sod(Gp ® Ho) ©P(Gm P Ho) =
6(n<m).
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Letp=1(n+m)«<1. Then
1
®(Gn @ Hp) = 4n+ p?+ max{2n+ S(n+m) eLnt1+(n+m) <2}
1
=4n+ p2+max{52’n+ Smel2n+mel)

5 1
=4n+pP+=n+mel
+PP SNt ome
13

1 2
= —nN —Mm 1
5 +2 + p~<=l,

and
1
®(Gm ® Hp) = 4m+ p?+ max{2m+ S(n+m)elmt1+(n+m) <2}

1
= 4m+ p2+max{§2)m+ Snel2am+nel}
=4m+ p?+2m+nel
=6m+n+p’el

Hence

13 1
D(Gn & Hp) ©®(Gm & Hp) = (5 n+ Sm+ p? &1) &(6m+n+ p?el)

11
=—=(nem
5 (nem)
However, 3 (n<m) # 6(n<m) = ®(Gy & Ho) <P (G @ Ho), sincen # m. S0Gn %e,2 G
As eachGn, n> 1, n even, belongs to a different equivalence class gp, the MAXIMUM
CuT problem is not of finite integer index.

2 MIN COVERING BY CLIQUES. Foreachm > 1, letGy be the two-terminal graph with (see
also Figure 7.2)

V(Gn) = {X1,x}U{a,...,an}, and
E(Gn)={{x.aj} |1<i<2A1<<n}.

Verticesx; andx; are the first and the second terminal, respectively.
LetG = {Gn| n > 1}. We show that for eacBn,Gm € G, if n# m, thenGy, %£¢ 2 Gm.
LetH be the two-terminal graph consisting of terminalandy, and no edges, and lel
be the two-terminal graph consisting of terminalsindy, and edgdyi, y»} (see Figure 7.2).
Foreach,i > 1, ®(G @& H) = |E(Gj)| =2, sinceG; ¢ H contains no cliques of more
than two vertices. Furthermor®(G; & H') = |[{{x1,x2,a;} | 1 < j < n}| =i. This means
that for alln andm, n # m,

®(GhPH)2P(Gnd H) =2ne2m# nem= ®(G,dH') e®(Ghd H'),
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Figure 7.2. The graph$s, (n > 2),H andH’ for MIN COVERING BY CLIQUES.

and henc&p # o, Gm.

3 LONGESTPATH. For eachn > 1, let G, be the two-terminal graph defined by (see also
Figure 7.3)

V(Gn) = {x1,x2} U{ay,... ,an}, and
E(Gn) ={{xv.a1}} U{{a, a1} |1<i<n}

(x1 andx; are the first and the second terminal, respectively)Q_et {G, | n > 1Anevery.

<KD .-

Figure 7.3. The graph$, (n > 1), andH, (p > 1) for LONGESTPATH.

Furthermore, for each > 1, letH be the two-terminal graph with vertex set

V(Hp) = {y1,y2} U{by,...,bp}, and
E(Hp) = {{y2,b1}} U{{bi,bi;1} [1<i < p},

(y1 andys are the first and the second terminal, respectively). For each, j > 1, (G @
Hj) = max{i,j}.

Let 1 < n< m, such than andm are even. Them®(Gn & Hpi1) ©D(Gm D Hpy1) =
n+lem=nem+ 1< 0. Furthermored(Gh ® Hy) ©P(Gm @ Hm) = mem= 0. Hence
Gn ’/’d),l Gm.
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Chapter 7 Applications of Reduction Algorithms

4 LONGESTCYCLE. The proofis similar to the proof for @NGESTPATH, but with graphs
Gn andH,, as depicted in Figure 7.4. O

Figure 7.4. The graph$s, (N> 1), andHp (p > 1) for LONGESTCYCLE.
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Chapter 8

Parallel Algorithms for
Series-Parallel Graphs

This chapter is concerned with parallel algorithms for recognizing series-parallel graphs and
finding sp-trees of series-parallel graphs. We consider four variants of this problem: the input
is either a source-sink labeled multigraph which is directed or undirected, or an ordinary
multigraph which is directed or undirected. (Definitions and some known results can be found
in Section 2.3.3.) The best known sequential algorithms for these problems are constructive
reduction algorithms which use(m) time [Valdes et al., 1982]nf denotes the number of
edges of the input graph). We apply the theory of parallel constructive reduction systems as
introduced in Section 6.3.1 to obtain efficient parallel algorithms for the problems.

The precise definitions of the problems under considerations are as follows.

SOURCE-SINK LABELED SERIES-PARALLEL GRAPH
Instance: A source-sink labeled multigragi, s,t).
Find: An sp-tree of(G,st), if (G,s,t) is series-parallel.

For undirected input graphs the problem is denoted by LSPG, and for directed input graphs
by DLSPG.

SERIES-PARALLEL GRAPH
Instance: A multigraphG.
Find: An sp-tree ofG, if G is series-parallel.

For undirected input graphs the problem is denoted by SPG, and for undirected input graphs
by DSPG.

He and Yesha [1987] gave a parallel algorithm for DLSPG and DSPG tha®(k=g n+
logm) time, andO(n + m) processors on an EREW PRAM, and he@ién + m)(log?n +
logm)) operations. The sp-tree that is returned by the algorithm is a binary sp-tree. He [1991]
showed that this algorithm can be extended for LSPG and SPG. The resulting algorithms also
useO(log?n+ logm) time with O(n+ m) processors on an EREW PRAM.

Eppstein [1992] improved this result for simple graphs: his algorithms ru®logn)
time on a CRCW PRAM wittO(m- a(m,n)) operations ¢(m,n) is the inverse of Acker-
mann’s function, which is at most four for all practical purposes). As any algorithm on a
CRCW PRAM can be simulated on an EREW PRAM with a los€Oglogn) time, this
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Chapter 8 Parallel Algorithms for Series-Parallel Graphs

implies an algorithm withO(log?n) time andO(mlogn - a(m,n)) operations on an EREW
PRAM.

We improve upon these results, both for the EREW PRAM model an@REW PRAM
model. We give algorithms which solve LSPG, SPG, DLSPG and DSR&logmlog* m)
time with O(m) operations on an EREW PRAM, and@{logm) time with O(m) operations
on a CRCW PRAM. The algorithms make heavy use of the results on constructive reduction
algorithms presented in Chapter 6. For LSPG, we apply Theorem 6.3.1: we give a special
parallel constructive reduction system for the problem. This system can be used in the parallel
algorithm given in Section 6.3.1. This results in algorithms for the EREW and CRCW PRAM
model with the stated resource bounds. The algorithms for SPG, for DLSPG and for DSPG
are based on these algorithms.

If the input graph is simple, then we can make our algorithms to r@(iegnlog* n) on
an EREW PRAM an®(logn) on a CRCW PRAM, and the number of operation®i{s).

As series-parallel graphs have treewidth at most two, we can solve many problems in
O(logm) time with O(m) operations if a tree decomposition of small width of the graph is
given, including all all finite state problems (Section 2.2.4). If no tree decomposition is given,
then we can first use the results of this chapter to construct a binary sp-tree of the graph, and
then transform the sp-tree into a tree decomposition of width two of the graph. We show that
this transformation can be done @(1) time with O(m) operations on an EREW PRAM.
Hence we can solve a large class of problems on series-parallel gragfiogmlog* m)
time with O(m) operations on an EREW PRAM and®(logm) time with O(m) operations
on a CRCW PRAM.

This chapter is organized as follows. Section 8.1 contains some preliminary results. In
Section 8.2, we give a special parallel constructive reduction system for the problem LSPG.
In Section 8.3, we show that each of the problems LSPG, SPG, DLSPG and DSPG can be
solved within the stated resource bounds.

8.1 Preliminary Results

The graphs we consider in this chapter are multigraphs, which means that we use the modi-
fied definitions as given in Section 5.4 for reduction rules (Definition 5.1.1) and constructive
reduction systems (Definition 6.1.1). Definitions of series-parallel graphs and sp-trees, and
some preliminaries can be found in Section 2.3.3.

We give a number of simple or well-known lemmas on series-parallel graphs.

Lemma 8.1.1. Let G be a series-parallel graph and let T be an sp-tree of G.dhdp are
nodes of T ¢ is an ancestor of, and the labels of andp both contain a vertex v, then all
nodes on the path betwearandp in T contain v in their label.

Lemma 8.1.2. If (G,s,t) is a series-parallel graph, thefG + {s,t},s,t) is a series-parallel
graph, where Gt {s,t} is the graph obtained by adding an (extra) edge between s and t to
G.
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Proof.  This follows from the parallel composition @& with a one-edge series-parallel
graph. a

Lemma 8.1.3. If (G,st) is a series-parallel graph with sp-treesTand there is a node in
Te labeled with(u,v), then(G + {u,v},s,t) is a series-parallel graph.

Proof. Supposes, is the series-parallel graph associated with nmdAdd betweern and
its parent a p-nod@ which has two children, namely nodeand a leaf node representing the
added edgéu,v}. The new tree is an sp-tree @ + {u,v},st). |

Lemma 8.1.4. Let G be a series-parallel graph, T an sp-tree of G, and&V(G). The
nodes in T which are labeled witl, v) induce a (possibly empty) subtree of T.

As shown in Lemma 2.3.5, any series-parallel graph has treewidth at most two. From the
construction in the proof of Lemma 2.3.5 is easy to see that any binary sp-tteaf be
transformed into a tree decomposition of width at most tw@dh O(1) time with O(m)
operations on an EREW PRAM.

In the following lemmas, we frequently use the fact that a series-parallel graph can not
haveK, as a minor (which follows from Lemma 2.3.5 and Lemma 2.2.8).

Lemma 8.1.5. Let(G,s,t) be a series-parallel graph.

1. If there is a noder with label (x,y) in an sp-tree of G, then there is a path P in G with
P=(s....,%...,Y,...,1).

2. If there is a node with labélx,y) in an sp-tree of G that is an ancestor of a node with
label (v,w), then there is a patfs,... ,X,...,V,... ,W,...,y,...,t) in G.

3. For every edge e {x,y} € E(G), there is a path(s,...,xy,...,t), or there is a path
(S.--, ¥, %,...,t)inG.

Proof.
1. We prove that for any nodewith label(v,w) on the path fronu to the root of the sp-tree
of G, there is a patfy,... ,x,...,y,...,w) in the graphGg associated with nodg@ We use
induction on the length of the path fromto B in the sp-tree. (Using this result withthe
root of the sp-tree gives the desired result.)

First, suppose = B. As any series-parallel graph is connected, there is a path\ittom
w in the series-parallel graph associated with node

Next, suppos@ is an ancestor af, and has labglv,w). Letybe the child of3 on the path
froma to B. If B is a p-node, then the label gis also(v,w). By the induction hypothesis,
there is a pathiy,... ,x...,y,...,w) in the graph associated with and the result follows
for B. Suppose is an s-node with childredq, ... 3, andg; has labekvi,vi+1) for eachi,
1<i<r. Letj, 1< j<r, be suchthab; =v. For anyi, 1<i <r, there is a patt® from
vi to vi+1 in Gg, (the graph associated wit)). By the induction hypothesis, there is a path
Pi=(Vj,---,X%---,¥--.,Vj+1) in Gs;. Concatenatings,P,,... P gives the required path
of the form(v,... ,X,...,Y,...,w) in Gg.
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2. Similar.

3. Note that there is a node with labely) or a node with labe{y,x). Now we can use
part 1 of this lemma. a

Lemma 8.1.6. Let(G,s,t) be series-parallel and suppose there is a pah.. ,xy,...,t)
in G. The following holds.

1. There is no path from s to y that avoids x or there is no path from x to t that avoids y.
2. No node in any sp-tree of G is labeled with the f{ix).

Proof.
1. Suppose not. Theis + {s,t},s,t) containsKs as a minor, which is a contradiction.

2. This follows from part 1 of this lemma and Lemma 8.1.5. |

Lemma8.1.7. Supposé€G,s,t) is a series-parallel graph with & (V,E), and let{x,y} € E.
Suppose there is a path, ... ,x,y, ... ,t) in G. LetW be the set

W={veV —{xy} |thereis apaths,... ,X,...,V,...,Y,...,t) in G}.

Then the following holds.
1. Forall {v,w} € E, ve W implies that we WU {X,y}.

2. For every sp-tree of G, if a node is labeled withw) or (w,v), and ve W, then we
WU {x,y}.

3. Let T be an sp-tree of G, latbe the highest node with labgt,y). The series-parallel
graph G, associated wittu is exactly the graph GV U {x,y}]. Furthermore, ifW| > 1,
thena is a parallel node.

Proof.
1. Supposév,w} € E,ve W, w¢ {x,y}. By Lemma8.1.5, thereisapath... ,v,w,... ,t)
orthereis a patls,... ,wv,... ,t).

Suppose thereis a pas ... ,v,w,... ,t). If the subpath frons to v avoidsx andy, then
G+ {s,t} containK, as a minor, contradiction. Hence eithesr y belongs to the path from
stov. Similarly, x ory belongs to the part of the path fromto t. If y appears on the first
part, andx appears on the last part, then we have a contradiction with Lemma 8.1.6. Hence,
we have a path of the forfs, ... ,X,... ,v,W,...,Y,...,t). This implies thatv € W.

The case in which there is a pa... ,w,v,... ,t) is similar.

2. Note that if a node in the sp-tree @fis labeled with(v,w), thenG+ {v,w} is also a
series-parallel graph (Lemma 8.1.3). Hence, the result follows from part 1 of the lemma.

3. We first show that, is a subgraph oW U {x,y}]. LetveV(Gy). Thereis a
descendant of a which containsy in its label. According to Lemma 8.1.5, there is a path
(S )Xo,V Y, ), SOV E W,
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Figure 8.1. The sp-tree and possible graphs for the proof of Lemma 8.1.7

Next we show thaG[W U {x,y}] is a subgraph oB,. Lete= {v,w} € E(GIW U {x,y}]),
let B be the leaf node o, and suppose w.l.o.g. thathas labelv,w). We show thaf is a
descendant di. If e= {x,y}, this clearly holds.

Supposee # {x,y} and is not a descendant of. Then we have a nodg with label
(z1,22) # (X,Y), with childrend ande, such thatr is equal to or a descendant&fandp is
equal to or a descendantofsee Figure 8.1, part ).

If z7 € W, thenG contains a path frorato x that avoidsz;, andG contains a path fror,
to y that avoidx. Also, G contains a patls,... ,z,...,XYy), henceG+ {s,t} contains &4
minor, contradiction. So, we may assume that W, and similarly, thatz, ¢ W.

First suppose that is a p-node. Figure 8.1, part Il shows the structure of the series-
parallel graphG, associated with nodg The graphG; associated witlz contains a path
(z1,...,%Y,...,22), because of Lemma 8.1.5, part 2. Similarly, the grégtassociated with
noded contains a patfiz,... ,v,w,...,2). Since the only common vertices &t andG;
arez; andz, there is a pathix,... ,z;,...,v,... ,2»,...,y) in G. Since(x,y) # (z1,2) and
71,22 ¢ W, this means that this path contains an edge between a veNéxaimd a vertex in
V —W — {x,y}, which is in contradiction with part 1 of this lemma.

Supposg is an s-node, and suppose that nd@eon the left side of node Part Il of Fig-
ure 8.1 shows the structure of the series-parallel g@pHhere is no patliz,...,v,...,y)
in G,, which means that any path @& which goes fronx to y and containsy must look like
X,...,z1,...,22,...,V,...,Y). This again means that there is an edge between a veffx in
and a vertex iV —W — {x,y}, contradiction. I3 is on the right side of, then in the same
way, we have a patfx,...,Vv,...,z,...,2,...,Y). Thisis again a contradiction. Hengés
a descendant af. This proves thaG, = GIW U {x,w}].
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Figure 8.2. A graph with only two matches to the series and the parallel reduction
rule.

If a is an s-node, then it is the only node with laely). This is impossible, because
there is a leaf node with labék y). If a is a leaf node, the, consists only of the edge
{x,y}. Hence if|W| > 1, thena is a p-node. This completes the proof of part 3. O

8.2 A Special Parallel Constructive Reduction System

In this section, we give a special parallel constructive reduction system for LSPG(see Defi-
nition 6.3.2), calledsp = (Rsp, lsp, AR, AL). AlgorithmsAY andAP will be made in such a

way that the constructed sp-tree will be a minimal sp-tree of the graph. In Section 8.2.1, we
give a seR sp of reduction rules and a sk, of graphs, and we show that the 8&4, is safe

for LSPG. In Section 8.2.2, we give the construction algoritégfsandA;” and show that

they useO(1) time and that aIgorithrA\SRp is non-interfering. After that, in Section 8.2.3, we
show that in each series-parallel gra@s,t) with at least two edges, there &2¢|E(G)|)
matches to rules iR sp. In Section 8.2.4, we extend this result to discoverable matches. To-
gether, these results show tHi&sp, Isp, AY,A}") is a special parallel constructive reduction
system for LSPG.

8.2.1 A Safe Set of Reduction Rules

Duffin [1965] has shown that the systéin= (R, 1), whereR contains the series and the
parallel rule (see Figure 2.11), ahccontains the base series-parallel graph (which consists
of one edge), is a reduction system for series-parallel graphs. Valdes et al. [1982] have given
a constructive reduction algorithm for series-parallel graphs, based on this reduction system:
they have shown ho& can be used to recognize series-parallel grapl@im) time, and to

build an sp-tree of the input graph within the same time bounds.

For an efficient parallel algorithm, the series and the parallel rule are not sufficient: for
example, the graph shown in Figure 8.2 is series-parallel, but it contains at most two matches
to the series and parallel rule. Moreover, if we apply a sequence of series and parallel reduc-
tions on this graph, then at each point in the sequence, the current graph contains at most four
matches. We can make an arbitrarily large graph of this type, and it @kma$ reduction
rounds to reduce this graph to a single edge if we only have the series and the parallel rule.
Therefore, we introduce a larger set of reduction rules. R.gibe the set of 18 reduction
rules depicted in Figure 8.3. Rules 1 and 2 are the series and the parallel rule, rules 3 — 18
are for the graphs of the type depicted in Figure 8.2. Note that each of the rules 3 — 18 can be
applied by contracting one or two edges. These edges are marked gray in Figure 8.3.
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In rules 3 — 18, we poseegree constrainten the edges between terminals: if we apply
one of the rules 3 — 18 to a gra@ then in the matclid that is involved in the reduction,
for each edge between two terminblsat least one of the end points of this edge has degree
at most seven i . (Note that all inner vertices of left-hand sides of rules 3 — 18 also have
degree at most seven). In Figure 8.3, the fat edges denote the edges with a degree constraint
of seven. The degree constraints are useful for proving that sufficiently many applications of
the reduction rules can be found.

The reduction rules will be applied on source-sink labeled graphs. To assure that the
graph will remain a source-sink labeled graph during a sequence of applications of reduction
rules, we require that a reduction is only performed if the source and sink of a the graph
are not inner vertices of the match corresponding to the reduction. With these two extra
requirements, we get a new definition of a match.

Definition 8.2.1 (Match). Letr = (H1,Hz) be areductionrule iR s, Let(G,s,t) be a source-
sink labeled graph. Anatchtor in (G, s,t) is a terminal grapks; which is isomorphic tds,
such that

e there is a terminal grapB; with G = G1 ¢ G,
e sandt are not inner vertices @, and

e if r is one of the rules 3 — 18, then for each edge{u,v} € E(G;) for whichu andv are
terminals ofGy, u or v has degree at most severGn

Let Isp contain the series-parallel graph consisting of one edge between sandesinkt.
The above discussion shows thaRif, is safe, theriR spis complete and thdt, contains all
irreducible series-parallel graphs. It can also be seerRtkgis decreasing.

In the following four lemmas, we show thRBtsp is safe for series-parallel graphs, which
completes the proof théR sp, Isp) is a reduction system for series-parallel graphs. The proofs
of the lemmas are given in such a way that they can be used for the design of alg@@‘?thm

Lemma 8.2.1. If (G,s;t) is obtained from(G,s,t) by applying rule 1, ther{G,s;t) is a
series-parallel graph if and only f{G', s t) is a series-parallel graph.

Proof. SupposeG’ is obtained by removing vertexof degree two, and adding an edge
between its two neighboring verticesandb. Suppose we have a minimal sp-tree @t
There must be a leaf with label (a,b) or (b,a). Suppose w.l.o.g. that has label(a,b).
If a’s parent is a p-node (see Figure 8.4, right-hand side of case i),datliemeplaced by
an s-node with two children, successively labefadc) and (c,b) (left-hand side of case
i). (The light-gray parts in the figure denote the parts of the sp-tree that are involved in the
modification.) The resulting tree is a minimal sp-tregGfs,t). If a’s parent is an s-node
(see Figure 8.4, right-hand side of case ii), then reptabg two leaf nodes, successively
labeled(a,c) and(c,b) (left-hand side of case ii).

Suppose we have a minimal sp-tree@®rAs cis not a terminal, and natort, there must
be a series composition that compogécc} and{c,a}. This means that we have a subtree
as depicted in the left-hand side of case i or case ii of Figure 8.4. Hence the modification
above can be reversed. |
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Figure 8.4. Transformation of sp-tree for rule 1.
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Figure 8.5. Transformation of sp-tree for rule 2.

Lemma 8.2.2. If (G,s;t) is obtained from(G,s;t) by applying rule 2, theriG,s,t) is a
series-parallel graph if and only {G', s t) is a series-parallel graph.

Proof. Suppos€G’,s;t) is obtained by removing edge from G, wheree, is parallel to
edgee;. If we have an sp-tree fd®’, then this tree has a leaf nodavhich corresponds te,
(and hence the end points ef are in its label). Supposeis labeled(a,b). If o’s parent is
an s-node (see Figure 8.5, right-hand side of case i), then replaca p-node with two leaf
children, both labelega, b) (left-hand side of case i). The resulting tree is a minimal sp-tree
for (G,s,t). If the parent ofx is a p-node (right-hand side of case ii in Figure 8.5), then attach
an additional leaf below this parent, with laljal b) (left-hand side of case ii).

Suppose we have an sp-tree {@;s,t). This tree contains a leaf nodecorresponding
to edgeey. Hence we have a subtree as depicted in the left-hand side of case i or case ii of
Figure 8.5. Lef denotea’s parent. Remove from the tree. If has only one child left
(casei), them is removed and its child is directly attached to the parefft of O

Note that in a match to one of the rules 3 — 18, edges matching an edge between two
terminals in the left-hand side of the rule can have parallel edges in the graph, but edges
matching an edge in the left-hand side of the rule with at least one end point an inner vertex
can not have a parallel edge.

Lemma 8.2.3. SupposéG,st) is obtained fron{G,s,t) by one application of rule 3. Then
(G,s,t) is a series-parallel graph if and only {iG’, s,t) is a series-parallel graph.

Proof. Supposé€G,s.t) is a series-parallel graph, andTebe the minimal sp-tree ¢f5, s,t).
Let H be the match to rule 3, as depicted in the left-hand side of Figure 8.6. Sudpisse
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Figure 8.6. Matches to left-hand and right-hand sides of rule 3.

replaced byH’, which is depicted in the right-hand side of Figure 8.6. Consider a path
fromstot that uses the edgia, b}. We distinguish between two cases, namely the case that
P visits a beforeb, and the case th& visits b beforea.

Casel. Suppose thatthe pabBhisitsabeforeb. We distinguish between two further cases,
namely the case th&avoidse and the case th&t visits e.

Case 1.1. Suppose tha® avoids vertexe. Let

W ={veV |thereis apatlfs,... ,a,...,v,...,b,... ,t), and
v belongs to the same componentas G|V — {a,b}]}.

Note thatc,d,e € W, and hence (by part 1 of Lemma 8.1.7), all vertices in the component
of GV — {a,b}] which contains are inW. There must be a parallel noden T with label
(a,b), with the subgraph containing the nodes\ih'below it’ (see part 3 of Lemma 8.1.7).
Let G4 be the graph associated with Each vertew # a,b of G, can occur in at most one
graph associated with one of the childreruof

Let B be the s-node that is a child afsuch that the series-parallel graBp associated
with B containse. We claim thatGg is the graph obtained frof®3[W U {a,b}] by deleting
all edges betweea andb. If a vertexw € W is not in Gg, then all paths fronmw to e usea
or b, which means thaw is not in the component @&V — {a, b}] which contains. Hence
w € V(Gg). Hence each vertex & occurs only inGg, which means that all edges between
vertices inW and inW U {a, b} are inGg.

On the other hand, if there is a vertex V(Gg), X ¢ {a,b}, then there is a patR =
(a,...,X,...,b) in Gg (Lemma 8.1.5). I contains no vertex frod, thenp is not a series
node. Hencé contains a vertex froV. Together with part 1 of Lemma 8.1.7, this means
that all vertices orP are inW U {a,b}, sox € W. The graphGg can not contain an edge
betweera andb, since ther is not an s-node. This proves the claim.

Suppose has children with label&, x1),(x1,X2), . .. , (%, b), respectively. We show that
t =1 andx; =X = ¢. Suppose not. First suppose thg# c. Add an edge betweeq andb;
this again gives a series-parallel graph. Now, by contracting all nod&'ssixceptc to d, we
get aK4 minor, contradiction. Hence = c. Now suppose that> 1. Thereis a leaf node with
label(a,c) or label(c,a) which is a descendant @f since there is an edde, c}. But vertex
a occurs only in the labels of the subtree of the child3ofith label (a,x;). Furthermore,
vertexc occurs only in the labels of the subtrees of the childref wfith labels(c,b) and
(%_1,C). Sincex; # candx_1 # @, this means that there can be no leaf node with |&hel)
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or (c,a), which gives a contradiction. Sc= 1, the children of8 have labelga, c) and(c,b),
respectively. It can be seen that the child with lafzeb) is a leaf node, corresponding to
edge{b,c}. By straightforward deduction, it follows that the sp-tree®has the tree from

the left-hand side of Figure 8.7, case i as a subtree. We can replace the light-gray part of this
subtree by the light-gray part of the subtree shown in the right-hand side of this case and get
an sp-tree 065,

Case 1.2. Suppose the path from stot that uses the edg, b}, also uses node There

are a two different cases, namely the case Bhasits e beforea, and the case th&t visits e

afterb. In the first caseG + {s,t} is series parallel, but contaiig as a minor, contradiction.

In the second case, we have a p@th.. ,a,e,... ,t), that does not usk. This case can be
analyzed in exactly the same way as the cases above, leading to a subtree transformation, as
shown in Figure 8.7, case iii.

Case 2. Suppose that the pafvisits b beforea. This case can be dealt with in the same
way as Case 1, only with directions reversed. See Figure 8.7, cases ii and iv.

This ends ‘only if’ part of the proof. The ‘if’ part is very similar. In this case, the same
transformations as above are done, but in opposite direction. |

Lemma 8.2.4. Suppos€G’,s t) is obtained fromG,s,t) by one application of one of the
rules 4 — 18. ThelG,s,t) is a series-parallel graph if and only ({5, s t) is a series-parallel
graph.

Proof. The proofis similar to the proof of Lemma 8.2.3. Supp(@Ses;t) is a series-parallel
graph, and leT be a minimal sp-tree dfG, s,t). LetH be the match to one of the rules 4 —18
and let the terminals dfl be named, b, c andd, as shown in Figure 8.8 for the case tHais
a match to rule 4 (i.e. the terminals are namel, ¢, andd, such thaeandb are adjacentin
H, andc andd are adjacent i, and furthermore, if we ‘walk aroundi clockwise, starting
at terminala, then we visit the terminals in the ordeb, d, c).

Consider a patR fromstot in G that uses the edd@, b}. First suppose® visitsa before
b. We distinguish four cases.

Case 1. P does not use verticasandd. We can show thatG',st) is series-parallel in
the same way as in Case 1.1 in the proof of Lemma 8.2.3 (défiteebe the vertices of the
component oGV — {a,b}] which contains andd).

Case 2. P usesc but notd. Then eitherc is on the subpatfis,...,a) of P or c is on
the subpath(b,... ,t) of P. In both casesG + {s,t} contains aks minor, which gives a
contradiction.

Case 3. P used but notc. This case is similar to Case 2, and hence gives a contradiction.

Case 4. P uses botft andd. If c andd both occur on the subpatk, ... ,a) of P, or on the
subpath(b,... ,t) of P, thenG + {s,t} contains &4 minor.
fP=(s,...,d,...,ab,...,c,....t), thenG+ {s;t} also contains &4 minor.
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Figure 8.7. Transformations of subtrees for rule 3.
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Y
a C

Figure 8.8. MatchH to rule 4.

IfP=(s,...,c,...,ab,....d,... t) then there is a path fromto t that uses the edge
{c,d}, and does not useandb. This case is similar to Case 1.

The case tha® visits vertexb beforea can be solved in the same way. This ends the ‘only
if’ part of the proof. The ‘if’ part can be handled in the same way.

For the proof of rules 5 — 18, we can apply exactly the same technique. O

We conclude the following result.

Corollary 8.2.1. (R gp, Isp) is a reduction system far'SPG

8.2.2 The Construction Algorithms

We now give algori'[hméstp andAP. We first describe the data structure that we use to store
sp-trees. We make a list of all nodes in the sp-tree. Each node is marked with its label and
its type (s-node, p-node or leaf node), each node has a pointer to its left-most and its right-
most child, to its parent, and to its neighboring siblings on the left-hand and the right-hand
side (if one of these nodes does not exist, the pointeifisFurthermore, each leaf node is
marked with the type of its parent, and we keep a pointer from each edge in the graph to the
corresponding leaf node in the sp-tree.

As we want to prove thelsp is a special parallel constructive reduction system (Defini-
tion 6.3.2), we have to show thAj° and A%’ useO(1) time, and that\” is non-interfering,

ie. if Ast is executed simultaneously for two or more different non-interfering reductions
on the same graph, then the two executions do not read or write concurrently in the same
memory position, and the resulting sp-tree is the same as when the executions were applied
consecutively.

Algorithm AP is easy: given a source-sink labeled grg@hs;t) consisting of one edge,
it constructs the sp-tree 06, s,t) consisting of one leaf-node, labeled witht).

For aIgorithmASRp, we use the constructions from the proofs of Lemmas 8.2.1 - 8.2.4 (see
also Figures 8.4 — 8.7). We show that algoritW&‘i’ can do its construction i®(1) time
without interference. Given a reduction rule= (Hy,Hz) € Rp, terminal graphss; and
Gy such thaiG; andH; are isomorphic an; andH; are isomorphic, a grap@ such that
G = Gy @ H, and a minimal sp-tre€ of G, algorithmAg’ does the following.

First the algorithm finds the local structure of the sp-tree, i.e. it finds the structure of the
part of the sp-tree that contains edgessin For rules 1 and 2, the different forms are the
right-hand sides of cases i and ii in Figures 8.4 and 8.5, respectively. For rule 3, the different
forms are the right-hand sides of cases i, ii, iii and iv in Figure 8.7. The parts of the sp-tree
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that are marked light-gray are the parts that must be modified. The local structure is found
as follows. Take an edgeof G, which is not an edge between two terminals in the case

of rules 3 — 18 (for rules 1 and 2, the only possibility is the edlge}, for rule 3, edge

{c,e} is the best edge to take, as this edge will be removed). Look at the corresponding leaf
node inT. For rules 1 and 2, check the type of its parent node, and for rule 3 — 18, search
the ‘neighborhood’ of this leaf node i which is involved in the modification (for rule 3,

this is the light-gray part in the right-hand side of cases i, ii, iii and iv in Figure 8.7). The
leaf node can be found in constant time without interfering with any other constructions. For
rules 1 and 2, it is clear that we can check the type of its parent in constant time without
interfering with other constructions performed at the same time, as each leaf node is marked
with the type of its parent. For rule 3, we can see from Figure 8.7 that the structure of the
neighborhood can be determineddl1) time without interfering with other constructions,

as no other construction involves any of the nodes of the light-gray part of the sp-tree. For
rules 4 — 18, the cases are similar to the cases of rule 3, and the structure can also be found in
0O(1) time without interference.

After the local structure of the sp-tree is found, this part of the sp-tree is replaced by a
new part. The structure of this new part depends on the structure of the old part. For rules
1, 2 and 3, these new parts are the parts in left-hand sides of the cases in Figures 8.4, 8.5
and 8.7 that are marked light-gray. For rules 4 — 18, a similar approach as for rule 3 can
be taken. For rules 3 — 18, it is easy to see that the modification can be doxg)itime
without interference. For rules 1 and 2, case i is also easy (see Figures 8.4 and 8.6: node
gets a different type, and gets two leaf children). In case ii, the modification needs more care,
as the neighboring siblings of nodemay be leaf nodes that are involved in another rule 1
or 2 reduction at the same time. Hence we have to ensure that the corresponding executions
do not read from or write to the same memory location at the same time. This is done in the
following way.

A new leaf-nodeB is added as the neighboring sibling on the right-hand side of the leaf
nodea. For rule 1, nodest andp get labels(a,c) and(c,b), respectively, and for rule 2
they both get labefa,b). Clearly, the construction také€3(1) time. As each leaf node that
is a sibling of nodex and is involved in a reduction of rule 1 or 2 adds a new sibling on its
right-hand side, we can make sure that no two of these constructions concurrently read from
or write to the same memory location, and that the result is correct. Hence the algorithm is
non-interfering.

This completes the description of algorithif’ and AY, and the proof that they use

0O(1) time and thaAEp is non-interfering. Together with the fact thd sp, lsp) is a reduction
system for LSPG, this also implies the following result.

Lemma8.2.5. Ssp= (Rsp lsp, AR»Al") is a constructive reduction system 108PG

8.2.3 A Lower Bound on the Number of Matches

In this section we show that each series-parallel gt&ph t) with at least two edges contains
at leastQ(|E(G)|) matches to rules iR sp.
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Lemma 8.2.6. Let(G,st) be a series-parallel graph witfE(G)| > 2. (G, s,t) contains at
least|E(G)|/139matches to rules 1 — 18.

Proof. Consider the minimal sp-trék of G. The number of leaves df equalgE(G)|. We
argue that the number of leavesTofs at most equal to 139 times the number of matches. To
obtain this, we distinguish the following ‘classes’ of leaves.

A leaf nodea in T is goodif it is a child of a parallel node and has at least one sibling
which is a leaf (i.ea is child of a parallel node which has at least two leaf children), or it is
a child of a series node and oneod$ neighboring siblings also is a leaf node (es child
of a series node which has at least two successive leaf children of wigobne). Note that
the edges that correspond to good leaf nodes occur in matches to rule 1 or 2.

An internal node inT is greenif it has at least one good leaf child.

A node inT is branchingif it is an internal node, and has at least two internal nodes as
its children.

A leaf is bad if it is not good, and its parent is branching or green. Most edges that
correspond to bad leaves can not occur in any match.

Note that the leaf children of a branching node which is not green are all bad, the leaf
children of a green p-node are all good, and the leaf children of a green s-node are either bad
or good.

Now consider the other nodesTin An internal node iblueif it is not branching or green,
but it has a descendant that is branching or green at distance at most 33.

An internal node iyellowif it is not branching, green or blue.

The total number of leaves i equals the number of good leaves plus the number of
bad leaves plus the number of leaf children of blue nodes plus the number of leaf children
of yellow nodes. We now derive an upper bound for the number of leaves in each of these
classes, in terms of the number of matches.

Good leaves. If a green p-node ha® good leaves, then the edges corresponding to its
good leaves correspond to at leagm—1)/2 matches to rule 2. If a green s-node Inas
good leaves, then the edges corresponding to these leaves correspond tore@deaatches

to rule 1. Hence the number of good leaves is at most twice the number of applications of
reduction rules 1 and 2.

Bad leaves.

Claim 8.2.1. The number of bad leaves is at most three times the number of branching nodes
plus twice the number of green nodes.

Proof. Leta be a bad leaf. l&'s parentis a p-node, then accourto its parent (which has

at most one bad leaf). if's parent is an s-node, then accourtb its neighboring sibling on

the right if it has one, or to its parent otherwise. In this way, each branching node has at most
two leaves accounted to it: at most one of its children and possibly its neighboring sibling
on the left. Each green node has at most one bad leaf accounted to it: a green p-node has
no bad leaf children, hence can only have a neighboring bad sibling on the left accounted to
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it; a green s-node has at most one bad leaf accounted to it, and it has a p-node as a parent,
which means that it has no bad siblings accounted to it. Each yellow or blue node which has
a yellow or blue parent does not have any bad leaves accounted to it. Each yellow or blue
node which has a branching or green parent has at most one bad leaf accounted to it, namely
its neighboring sibling on the left.

Let B be a yellow or blue node which has a bad leaf accounted to it. It must be the case
thatB has a branching or green parent. kdte the highest descendantivhich is green
or branching. Note that there exists such a npd&ll nodes on the path fror to y, except
y, are yellow or blue. Hence no node on this path, ex@equidy, has a bad leaf accounted
to it, as none of these nodes has a branching or green parent. Account the bad leaf that is
accounted t@, toyinstead. This way, each branching or green node has at most one extra
bad leaf accounted to it, and hence each branching node has at most three leaves accounted
to it, and each green node has at most two leaves accounted to it. O

In each green node, there is a match to rule 1 or 2 in two of the edges corresponding to
its good leaves. Hence the number of green nodes is at most equal to the number of matches
to rules 1 and 2. We now bound the number of branching and blue nodes by the number of
green nodes in order to bound the number of bad leaves.

Claim 8.2.2. The number of branching nodes is at most the number of green nodes.

Proof. Constructatre&’ fromT by removing all nodes that are not green and not branching,
while preserving successor-relationships. Note thal,,isvery internal node that has only
leaves as child is green, hence every branching node still has at least two children in
Moreover, every leaf of ' is green. Since, in any tree, the number of internal nodes with two

or more children is at most the number of leaves, the number of branching nodes is at most
the number of green nodesT, and hence ifT. a

Claims 8.2.1 and 8.2.2 show that the number of bad leaves is at most equakte-%
times the number of green nodes, which is at most 5 times the number of matches to rules 1
and 2.

Leaves of blue nodes. The number of blue nodes is at most 33 times the number of
branching and green nodes: account each blue node to the closest descendant which is branch-
ing or green. Since the number of branching nodes is at most the number of green nodes, this
means that the number of blue nodes is at me882- 66 times the number of green nodes.

Each blue node has at most two leaf children, which means that the number of leaves of blue
nodes is at most 56 = 132 times the number of matches to rules 1 and 2.

Leaves of yellow nodes. Consider a path it which consists of 33 successive yellow and
blue nodes, such that the highest node in this path is a parallel node. Each node in this path
either is a p-node with as its children one leaf node and one s-node, or it is an s-node with as
its children one p-node and one or two non-neighboring leaf nodes.

The edges associated to the leaves that are a child of the nodes in this path form a subgraph
of G of a special form: they form a sequence of 16 cycles of length three or four, each sharing
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Figure 8.9. Subgraph of5 corresponding to a path of 33 yellow or blue nodes in the
sp-tree, of which the highest one is a p-node with lgbglb; ), and the lowest one is

a p-node with labefa;1,b10). Only a1, by, a11 andbip may be incident with edges
outside the subgraph.

one edge with the previous cycle, and one edge with the next (except of course for the first
and last cycle in the sequence); three successive cycles do not share a common edge. As no
series node on the path has two successive leaf nodes, we have that the shared edges of a cycle
of length four do not have a vertex in common. We call such a subgraghle-sequence
See Figure 8.9 for an example.

Consider a sequenag,ay,...,an of n successive yellow and blue nodes starting and
ending with a p-node, and its corresponding cycle-sequends (he node that is closest to
the root). For each let (x;,yi) denote the label of;.

Note that for each < j, if x = X;j, then for each, i < | < j, x = x. Furthermore, if
Xi 7 Xi+1, thena; must be an s-node, angl ; has at least one sibling on its left side. &s1
is a yellow or blue node, it has exactly one sibling on the left, which is a leaf node with label
(Xi,%i+1), hence thereis an edg®, xi+1} € E(G). This shows that the sequengex, ... , X,
and the sequenog,y», ... ,Yyn both form a path irG. We call thembounding path®f the
cycle-sequence. In Figure 8.9 for example, we have a cycle-sequence consisting of 16 cycles,
with bounding paths$ay,ap, ... ,a11) and(bg, by, ... ,big). The length of a bounding path is
the number of edges on this path.

Note that the left-hand and right-hand sides of rules 3 — 18 are cycle-sequences. Before
proving that a cycle-sequence with 16 cycles contains a match to one of the rules 3 — 18, we
first prove the following.

Claim 8.2.3. Any cycle-sequence with one bounding path of length at least two and one
bounding path of length at least three contains as a subsequence the left-hand side of one of
the rules 3 —18.

Proof. LetC be a cycle-sequence with one bounding path of length two or more and one of
length three or more. The left-hand sides of rules 4 — 15 represent exactly the cycle-sequences
with one bounding path of length two and one of length three which do not contain the left-
hand side of rule 3 as a subsequence. The left-hand sides of rules 17 and 18 represent exactly
the cycle-sequences with two bounding paths of length three which do not contain the left-
hand side of one of the rules 3 — 15. Henc€ ifontains a subsequence with one bounding
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path of length three and one of length two or three, then it contains the left-hand side of one
of the rules 3—- 15, 17 or 18.

Now suppos&€ does not contain such a subsequence. We show that it contains the left-
hand side of rule 16. The shortest of the two bounding paths has length at least two and
the longest one has length at least three. Remove one of the outermost cycles of the cycle-
sequence until one of these conditions would be violated by removing another outermost
cycle. LetP; be the shortest bounding path a@Pcthe longest bounding path of the obtained
cycle-sequence.

If P1 has length four or more, then we can remove another outer-cycle, as this decreases
the length ofP; andP, by at most one. Hende, has length at most three. B has length
three, ther, must have length three, otherwise we can remove another outer-cycle. But that
means that it contains the left-hand side of one of the rules 4 — 15, 17 and 18 as a subsequence.
HenceP; has length two. I, has length three, then the sequence contains the left-hand side
of one of the rules 4 — 15, hen& has length four or more. Note that the first and the last
vertex of P, are adjacent to only one vertex Bf, otherwise we can remove another outer
cycle. If P has length five or more, then the middle vertexPphas at least four neighbors
in P,, and henc€ contains the left-hand side of rule 3. This means Ehatas length four.

Then the outermost cycles must be squares, otherwise the middle velRestitithas at least
four neighbors iP,. But that means that the cycle-sequence is equal to the left-hand side of
rule 16. This proves the claim. a

We can now prove the following claim.

Claim 8.2.4. In a cycle-sequence of G that consists of 16 cycles, there is a match to one of
the rules 3 —18.

Proof. LetC be a cycle-sequence (B consisting of 16 cycles, and IB{ andP, denote the
bounding paths. I€ contains a cycle-sequence of five successive triangles with one vertex
in common as its subsequence, as in Figure 8.10, then it contains a match to rule 3 (formed
by the middle three triangles). Suppose such a subsequence does not exist. It follows that
the edge between the fifth and sixth three- or four-cycle in the sequence does not have an end
point that is also end point of an edge not in the subgraph; similarly for the edge between
the 11th and 12th cycle. Consider the cycle-sequéhdéermed by the sixth cycle up to and
including the 11th cycle i€ (C' consists of six cycles). As each vertex®is contained
in at most six three- or four-cycles @, and none of the vertices i@ is incident with an
edge outsid€ in G, all vertices ofC’ have degree at most sevenGn This means that i€’
contains as a subsequence one of the left-hand sides of rules 4 — 18, then it contains a match
to the corresponding rule. L& andP; be the bounding paths @' and suppos®; has
lengthm andP; has lengtm. We now show that the cycle-sequence contains a match to one
of the rules 4 — 18.

Suppose w.l.0.g. thah < n. We first show thatm > 2 andn > 3. If m= 0, then the only
vertex of P occurs in six triangles, and we have a match to rule 814 1, then one of the
vertices ofP; occurs in three triangles, and we have again a match to rule 3. Suppege
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NN

Figure 8.10. Five successive triangles with one vertex in common

If m=n=2, then the cycle-sequence consists of at most four cycles. HenGandm > 2.
Claim 8.2.3 shows that the cycle-sequence contains a left-hand side of one of the rules 3 - 18
as a subsequence, and hence it contains a match to one of these rules. O

In a sequence of 34 successive yellow and blue nod&s we can find one path of 33
successive yellow and blue nodes, such that the highest node in this path is a p-node. We
can find a number of disjoint paths of 34 successive yellow and blue nodes, such that each
yellow node is in exactly one such path. This means that the largest number of disjoint paths
of successive yellow and blue nodes of length 34 that we can fifidsrat least 134 times
the number of yellow nodes. Hence the number of matches to rules 3 — 18 is at/lddst 1
times the number of yellow nodes. Since each yellow node has at most two leaf children, we
have that the number of leaf children of yellow nodes is at mo342- 68 times the number
of matches to rules 3 — 18.

The total number of leaves ifi is now at most 2- 5+ 132= 139 times the number of
matches to rules 1 and 2 plus 68 times the number of matches to rules 3 — 18. Hence the
number of leaves i is at most 139 times the number of matcheRig. This completes
the proof. a

8.2.4 A Lower Bound on the Number of Discoverable Matches

In this section, we complete the proof tHi, is a special parallel constructive reduction
system. As we have already shown gt and AY’ run in O(1) time and thath?’ is non-
interfering, we only have to show théR sp, Isp) is a special parallel reduction system for
series-parallel graphs (see Definition 5.4.3). We have to show that there are imiggers
andd, nmin < 19< d, and there is a constant> 0, such that each series-parallel graph
(G,st) with |V(G)| + |E(G)| > nmin, given by some adjacency list representation, has at
leastc- (|V(G)| +|E(G)|) d-discoverable matches (Definition 5.4.1)Rry, (with respect to
d). All other conditions of a special parallel reduction system are satisfied.

Let nmin =4 andd = 20. As each series-parallel graph is connected and hread®(m),
it suffices to show that each series-parallel graph with at least two edges cdntains-
discoverable matches. As we have already shown that each series-parallel graph with at least
two edges contain®(m) matches, we only have to show that sufficiently many of these
matches ard-discoverable.

Note that a match to one of the rules 1 or 3— 18 is alwajslsscoverable match. A match
to rule 2 is not alwaysl-discoverable. LefG,s,t) be a source-sink labeled graph given by
some adjacency list, and suppdsés a match to rule 2 ifG,s,t) with V(H) = {u,v} and
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E(H) = {e1,e}. ThenH is ad-discoverable match if and only if in the adjacency listiafr
v, edges; ande, have distance at most 20.

Let G be a graph given by some adjacency list representatiore ¢ &(G) and suppose
has end points andv. Edgeeis calledbadif it has a parallel edge, but all parallel edges have
distance at least 21 ®in the adjacency lists af and ofv. Note that an edge that has parallel
edges is bad if and only if it is not contained in a match to rule 2 thditdscoverable.

Lemma 8.2.7. Let G be a multigraph of treewidth at most two given by some adjacency list
representation. There are at mgE(G)|/5 bad edges in G.

Proof. Consider a tree decompositi¢h, X ) of G of width at most two withT = (I,F) and
X ={X |i €1}, and choose an arbitrary node | as root ofT. For aveV, letr, be the
highest node iff with ve X;,. Lete € E with end pointss andw. There is a node containing
v andw, hence either, =ry, orry is an ancestor afy, or ry, is an ancestor af,.

For every bad edge betweerandw, associate the edge withif ry = ry, orry is an
ancestor ofy; otherwise, associate the edge with Suppose bad edgebetweenv andw
is associated witlv. ThenX;, must contain botlv andw. It follows that there are at most
|Xr,| — 1 < 2 different verticesi for which bad edges betweerandu can be associated with
v (namely, the vertices i, — {v}). For each suclu, each 20 successive positions in the
(cyclic) adjacency list of can contain at most one bad edge betweandv, hence there are
at most de@yv)/20 bad edges betweerandu that are associated with and hence in total,
at most de¢v)/10 bad edges are associated witfThe stated bound is derived by taking the
sum over all vertices. |

As each series-parallel graph has treewidth at most two, it follows that each series-parallel
graph(G,s,t) has at mosfe(G)|/5 bad edges.

Lemma 8.2.8. There is a constants O for which each series-parallel grapi, s, t) with at
least two edges contains at leafE€G)| d-discoverable matches in G.

Proof. Letn=|V(G)| andm=|E(G)|. We distinguish two cases, namely that case that
m > 4n and the case thah < 4n. If m > 4n, then there are at least— 2n edges that are
parallel to another edge, of which at ma#t5 are bad. Hence, there are at leg§m— 2n >
4/5m—1/2m= 3m/10 edge= for which there is a parallel edge which has distance at most
20 toein the adjacency list of one of the end pointseofThis implies that there are at least
3m/20d-discoverable matches to rule 2(i6, s,t).

Supposean < 4n. We now apply Lemma 8.2.6 above on the simple graph underfging
Let G’ be obtained fron@ by removing all second and further occurrences of parallel edges.
Note that(G',st) is a series-parallel graph, a& has at leash — 1 edges. IfG' has one
edge, thert consists of two vertices witin < 8 parallel edges, and henGecontains at least
oned-discoverable match to rule 2. This means tha&'ihas one edge, the® has at least
m/8 d-discoverable matches.

Suppos&'’ has at least two edges. By Lemma 8.2.6 there are at(least) /139> n/278
matches to rules 1 and 3 — 18(',s,t). As each of the matches to rules 1 and 3 — 18 is
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d-discoverable irG', this implies thatG',s,t) has at leash/278 d-discoverable matches.
For each match in this set, there are two possibilities: either it is adsdiscoverable match

in G, or itis disturbed by the addition of one or more parallel edges. We will call a match of
the first type anon-disturbednatch, and a match of the last typédiaturbedmatch. We now
show that the number of disturbed matches is at tkhéstes the number of matches to rule 2

in G, for some positive integex.

Consider a disturbed matdh. There are two cases: either an inner vernexf H is
incident with parallel edges, or a terminal vertewhich has degree at most severGhhas
degree more than seven@ (and hence is incident with parallel edges). In both cases, the
vertexv has degree at most seven, and hendg,ithere is ad-discoverable match to rule 2
which contains vertex: any sublist of length 20 of the adjacency list contains at least two
edges with the same end points, as there at most seven different sets of end points possible.

Account each disturbed match @& to a d-discoverable match to rule 2 i which
contains a vertex of degree at most seven of the disturbed match. By the discussion above,
this is possible. We show that eadkdiscoverable match to rule 2 has at most a constant
number of disturbed matches accounted to it.\Lle¢ a vertex oz which has degree at most
seven. Each match containimgontains only vertices and edges which are reachable by a
path fromv in G’ of length at most seven (the maximum number of vertices in any left-hand
side of a rule, minus one) through vertices of degree at most seven (except possibly the last
vertex of the path). There are at most a constant number of vertices which can be reached
from v by such a path, and thus there are at most a conlstaninber of matches containing
v. Consider a-discoverable matcH to rule 2 inG, with V(H) = {u,v}. Each disturbed
match which is accounted té contains either vertey, in which casal has degree at most
seven inG', or vertexv, in which casers has degree at most seven@ Hence at mostiR2
disturbed matches are accountedhto

Consider the number af-discoverable matches i@. This number is at least equal to
the number of non-disturbed matches plus the numbdrdi§coverable matches to rule 2 in
G, which is at least the number of non-disturbed matches plg2k} times the number of
disturbed matches. Hence the numbed-afiscoverable matches Bis at least 1(2k) times
the number ofi-discoverable matches {&. This latter number is at leasf278, and hence
there are at least/(556k) d-discoverable matches. As < 4n, this means that there are at
leastm/(2224) d-discoverable matches (. m|

Note that the constamtin Lemma 8.2.8 is quite bad. However, the bound we have derived
can probably be tightened by using more detailed estimates.
We have proved the following result.

Theorem 8.2.1. Sgpis a special parallel constructive reduction systemlif&PG

8.3 Algorithms

In this section, we show that the problems LSPG, SPG, DLSPG and DSPG can be solved
efficiently in parallel. We also show that a large number of problems on series-parallel graphs
can be solved efficiently in parallel.
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Figure 8.11. Transformation of s-node in a minimal sp-tree to several s-nodes in a
binary sp-tree.

Theorem 8.2.1 and Theorem 6.3.1 show that we have an algorithm which, given a source-
sink labeled grapliG, s,t), finds a minimal sp-tree dfG, s,t), if one exists. The algorithm
usesO(logmlog* m) time on an EREW PRAM an@(logm) time on a CRCW PRAM, both
with O(m) operations and space. If we want a binary sp-tree instead of a minimal sp-tree, then
we can slightly modify algorithm!\SRp of the reduction systerfs, such that the constructed
sp-tree is binary. The proofs of Lemmas 8.2.1 — 8.2.4 can easily be modified such that the
modified algorithmﬂ\ép is still non-interfering and runs i®(1) time.

Another way to compute a binary sp-tree is to first compute a minimal sp-tree, and then
transform this tree into a binary sp-tree. This transformation can be done as follows. Each s-
or p-nodea with childrens, Bz, ... ,Bts1 is split into nodesi,ay,... o of the same type.
Figure 8.11 shows how this transformation is done for the casetisedn s-node. It can be
seen that if we do this transformation for all nodes in the sp-tree, then the resulting tree is
a binary sp-tree of the graph. We can not do this transformation for all nodes in parallel: it
gives a problem if a node is transformed at the same time as its parent or one of its children.
To this end, we first compute for each node its distance to the root node. This can be donein
O(logm) time with O(m) operations on an EREW PRAM (see e.gH][1992]). After this,
first all nodes with even distance are transformed, and then all nodes with odd distance are
transformed. In this way, a node is not transformed at the same time as its parent or one of its
children. Both transformations can be donédfil) time with O(m) operations. Hence the
complete transformation tak€{logm) time with O(m) operations.

Theorem 8.3.1. The following problems can be solved witin®) operations and space in
O(logmlog* m) time on an EREW PRAM and in(ldgm) time on a CRCW PRAM: given
a source-sink labeled grapl®, s,t), determine whethgiG, s;t) is series-parallel, and if so,
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find a minimal or binary sp-tree dfG, s t).

In the remainder of this section, we show that the algorithm can also be used to solve the
problem for directed series-parallel graphs, and for series-parallel graphs without specified
source and sink. Also, it can be used as a first step to solve many other problems on series-
parallel graphs.

First, suppose we are given a graphand want to determine wheth@ris series-parallel
with a proper choice of the source and sink. We solve this problem by first computing a
source and a sink and then solving the problem with this source and sink. He [1991] and
Eppstein [1992] have shown (using results from Duffin [1965]) that this problem reduces in
a direct way to the problem with specified vertices, as the following result holds.

Lemma 8.3.1 [He, 1991; Eppstein, 1992Let G= (V,E) be a graph. If G is series-parallel
then the following holds.

1. If G is not biconnected, then the blocks of G form a path: each cut vertex of G is in
exactly two blocks, all blocks have at most two cut vertices, and there are exactly two
blocks which contain one cut vertex.

2. The graphG,s.t) is series-parallel if s and t are vertices of G chosen as follows.

(a) If Gis biconnected, then s andt are adjacent.

(b) If G is not biconnected, then let Bnd B, be the blocks of G which contain one cut
vertex, and let cand @ denote these cut vertices. Source s is a vertex aftidch is
adjacent to ¢, and sink t is a vertex of Bwvhich is adjacent to£

We next show hows andt can be found such that they satisfy conditions 2a and 2b of
Lemma 8.3.1. Therefore, we apply Theorem 6.3.2: we give a special parallel constructive
reduction system for the problem. However, Theorem 6.3.2 does not apply for multigraphs,
and our input graph is a multigraph. Therefore, we make a new, simple @aphV’ E’)
from the multigraphG as follows.

V' =V(G) +E(G)
E'={{v.e} |[veV(G) Aee E(G) Avis incident withe}

We make a labeling of the vertices®1: each vertex originating froii(G) is labeledvertex,
and each vertex originating froB(G) is labelededge. It is easy to see that the resulting
graph is a simple graph and has mvertices and & edges, and furthermore,@ is series-
parallel, thenG' is series-parallel. The transformation can be performe@(it) time with
O(n+ m) operations.

We define a construction property for the new type of graph. Note that for a multigraph
G and the simple grap8' obtained fromG as described above, each non-trivial blockzof
corresponds to a block @', and each block o6 consisting of one edge corresponds to
two trivial blocks of G’ which are connected to each other by the cut vegtaxence part 2
of Lemma 8.3.1 is equivalent to the following statement.
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Lemma 8.3.2. If G = (V,E) is a series-parallel graph, thefG,s,t) is series-parallel if s and
t are vertices with labelertex in G' chosen as follows.

1. If G is biconnected, then s and t have distance two.

2. If G is not biconnected, then let Bind B be the blocks of G with one cut vertex, and let
c; and ¢ denote these vertices. Then s is i Bnd if By is non-trivial, s has distance
two to g, otherwise, s is adjacent tq cFurthermore, t is in B, and if B is non-trivial
then t has distance two te cotherwise, t is adjacent tg.c

Let P be the construction property defined [y,Q), whereD and Q are defined as
follows. For each grapks, D(G) is the set of all pairs of vertices which are both labeled
vertex, and for eaclis,t) € D(G), Q(G, (s,t)) holds if and only ifs andt satisfy conditions 1
and 2 of Lemma 8.3.2. It can be seen that there is an MSOL predicd@qfing techniques
from e.g. Borie et al. [1992]), and th&X is a two-vertex-edge-tuple. As all MS-definable
properties are of finite index, we can apply Theorem 6.3.2 to the problem, with a bound of
two on the treewidth. This results in a parallel algorithm that @gsgmlog* m) time with
O(m) operations and space on an EREW PRAM, &itbgm) time with O(m) operations
and space on a CRCW PRAM. While the resulting algorithm will probably not be efficient,
this result does not rely on non-constructive arguing. (We expect that it is also possible to
find sandt in the following way. First reduce the graph using thef$gf of reduction rules,
without taking care of source and sink. Then in the reduced graph, which consists of one
edge if the graph is series-parallel, malandt the end points of this edge. After that, undo
the reductions in reversed order and reconstactdt in a proper way.)

If the input graph is a source-sink labeled directed grépls,t), then one can use the
modification, described by Eppstein [1992]: solve the problem on the underlying undirected
graph, then orient the edges with help of the minimal sp-tree (there is at most one possi-
ble orientation for which the directed graph is series-parallel), and check if this orientation
corresponds to the original graph.

If the input graph is directed, and no source and sink are specified, then there must be
exactly one vertex with indegree zero and one with outdegree zero, otherwise, the graph is
not series-parallel. Let the source be this first vertex, and the sink the latter vertex, and solve
the problem for the graph with this source and sink. Note that these vertices can be found in
O(logm) time with O(m) operations on an EREW PRAM.

Theorem 8.3.2.  Each of the following problems can be solved witfmD operations, in
O(logmlog* m) time on an EREW PRAM, andIdgm) time on a CRCW PRAM.

1. Given a graph G, determine if there arg s V(G) for which (G, st) is series-parallel,
and if so, find an sp-tree of G.

2. Given a directed source-sink labeled grgi®)s,t), determine whethgG, s,t) is series-
parallel, and if so, find an sp-tree ¢6,s,t).

3. Given a directed graph G, determine if there ajesV(G) for which(G, s;t) is series-
parallel, and if so, find an sp-tree of G.
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If the input graph is simple, then we can make the algorithms to r@flimgnlog* n) time
on an EREW PRAM an@®(logn) time on a CRCW PRAM, both witld(n) operations and
space. This can be done by doing the following preprocessing step. Note|Ejati2|V| for
some simple grap8 = (V, E), thenG has treewidth more than two (Lemma 2.2.6), and hence
G is not series-parallel. Ifg| < 2|V|, then the number of edges can be counte@(logn)
time with O(n) operations and space on an EREW PRAM. Therefore, we start counting the
number of edges of the graph, but we do at m@8bgn) steps of this counting, witt(n)
operations. If, after these steps, the edges are countd&aad|V|, then we go on with the
rest of the algorithm. Otherwise, we can conclude tBat> 2|V|, and hence the input graph
does not have treewidth at most two and is not series-parallel. In this case, weaksturn

As we have mentioned before (Section 2.2.4), many problems can be solRédgm)
time, andO(p) operations and space, when the input graph is given together with a tree
decomposition of bounded treewidth consistingpofodes. These include all (constructive)
decision problems and (constructive) optimization problems that are MS-definable. Since
series-parallel graphs have treewidth at most two, we can solve these problems efficiently on
series-parallel graphs, if a tree decomposition of small width is given. A binary sp-tree of a
series-parallel graph can be transformed into a tree decomposition of width at most two in
constant time, by using the construction of Lemma 2.3.5. Hence we have the following result.

Corollary 8.3.1.  The following problem can be solved in(l@gmlog* m) time, Qm) op-
erations, and @m) space on an EREW PRAM, and ifl@ym) time, Q'm) operations and
O(m) space on a CRCW PRAM: given a series-parallel graph G, find a tree decomposition
of width at most two of G.

The resulting tree decomposition h@m) nodes. Hence we can solve the problems
described above i®(logm) time with O(m) operations given this tree decomposition.
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Chapter 9
Parallel Algorithms for Treewidth Two

This chapter is concerned with parallel algorithms for the problem of finding a tree decom-
position of width at most two of a graph, if one exists, or in other words, for the construc-
tive version of 2-REEWIDTH. We consider both simple graphs and multigraphs. The best
known parallel algorithm for recognizing simple graphs of treewidth at kizstiue to Bod-
laender and Hagerup [1995]. It us@én) operations an®(logn) time on a CRCW PRAM

or O(lognlog*n) time on an EREW PRAM. Bodlaender and Hagerup also give a parallel
algorithm for building a tree decomposition of width at mksif one exists. This algorithm
usesO(n) operations an@®(log?n) time both on an EREW PRAM and on a CRCW PRAM.
Related, earlier results can be found e.g. in Granot and Skorin-Kapov [1991] and Lagergren
[1996].

For 1-TREEWIDTH there is a more efficient algorithm than the one of Bodlaender and
Hagerup [1995]. A connected simple graph of treewidth one is a tree, and a tree can be
recognized by using a tree contraction algorithm. This t&@sgn) time with O(n) oper-
ations on an EREW PRAM [Abrahamson, Dadoun, Kirkpatrick, and Przytycka, 1989]. One
can easily construct a tree decomposition of a tre®(ih) time with O(n) operations on an
EREW PRAM. The algorithm can be modified such that it can be used on input graphs which
are not necessarily connected (see also Section 9.3).

In this chapter, we improve the result of Bodlaender and Hagerup [1995] for treewidth
two. We give an algorithm that constructs a tree decomposition of width at most two of
a given multigraph, if one exists. This algorithm rungdflogm) time on a CRCW PRAM
andO(logmlog* m) time on an EREW PRAM, in both cases wiflim) operations and space.

We modify the algorithm for simple graphs, such thatitihean be replaced hyin the time

and operations bound. The algorithm makes use of the relation between graphs of treewidth
at most two and series-parallel graphs: we extend the constructive reduction system that is
given in Chapter 8 for series-parallel graphs, such that it can be used for graphs of treewidth
at most two.

This chapter is organized as follows. In Section 9.1 we give some preliminary results
and definitions that will be used in the remainder of the chapter. In Section 9.2 we give a
constructive reduction system for 2REEWIDTH, assuming a special class of input graphs,
namely connected multigraphs of which some edges are labeled. We also show that the sys-
tem is a special parallel constructive reduction system for this problem, thus implying that the
constructive version of 2-REEWIDTH can be solved witl®(m) operations irO(logm) time
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on a CRCW PRAM or iO(logmlog* m) time on an EREW PRAM. In Section 9.3, we show
how this reduction system can be used to solve the constructive version®E2wWiDTH on
simple graphs or multigraphs which are not necessarily connected.

9.1 Preliminary Results

The following result on trees is used in Section 9.2.2.

Lemma 9.1.1. Let H be a tree. Let(H) denote the number of leaves of H, and letHhy
denote the sum of the degrees of all vertices of degree at least three. Thenh8I(H).

Proof. We prove this by induction on the numbeof vertices ofH. If n < 2, then clearly
nr(H) <3I(H).

Supposen > 2. Letv be a leaf oH, and letw be the only neighbor of. Letd denote the
degree ofv in H and note thatl > 2. Furthermore, leH’ = H[V — {v}]. By the induction
hypothesisnr(H') < 3I(H’). If d =2, thenl(H) =I(H") andnr(H) = nr(H’), sonr(H) <
3I(H). Ifd=3, thenl(H) =1(H")+ 1 andnr(H) = nr(H") + 3, and thusir(H) < 3I(H). If
d >4, thenl(H) =I(H)+1andnr(H)=nr(H’)+1, and hence alsor(H) <3I(H). O

In Section 9.2, we extend the reduction system for series-parallel graphs as it is given in
Chapter 8 for graphs of treewidth at most two. However, series-parallel graphs are connected
multigraphs, and we are especially interested in simple graphs which are not necessarily con-
nected. Therefore, we first make a reduction system for connected multigraphs of treewidth
at most two instead of simple graphs. In Section 9.3 we show how the constructive reduction
algorithm based on this system can be adapted such that it can be used for simple graphs
which are not necessarily connected.

Lemma 9.1.2. A multigraph G has treewidth at most two if and only if each block of G is
series-parallel.

Proof. Supposes has treewidth at most two. L&' be a block ofG (G' has treewidth at
most two). We show by induction d'(G')| + |E(G')| thatG' is series-parallel.

If V(G| < 3, then it clearly holds. Suppo$¢(G')| > 3, note thatE(G')| > [V(G)|.
If G’ contains parallel edges, then apply the parallel reduction rule on¢& ¢mle 2 of
Figure 8.3). The graph obtained this way has treewidth two and is biconnected. By the
induction hypothesis, it is series-parallel. Since the parallel reduction rule is safe for series-
parallel graphs, this implies th& is series-parallel.

Suppos&’ does not contain any parallel edges. T& = (T, X ) be a tree decomposition
of width two of G’ with T = (I,F) andX = {X; | i € | }. Modify T D by repeating the following
as often as possible. For eaich I, if i has exactly one neighbgre |, andX; C X, then
removeX;. Note thatT D is a tree decomposition of width two &', and it has at least two
nodes. Leti € | such thai has exactly one neighbgre | in T. There is av € X; such that
V¢ Xj.

Letv € X; such thaw ¢ X;. Vertexv must have degree two i@, and bothv's neighbors
are contained irxX;. Apply the series reduction rule anand its neighbors andw (rule 1
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of Figure 8.3). This gives the grag’ = (V(G') — {v},E(G') + {u,w}). GraphG" has
treewidth two, since the tree decomposition obtained f&nX ) by removing vertex from
nodeX; is a tree decomposition of width two &". FurthermoreG” is biconnected. By the
induction hypothesis;” is a series-parallel graph. As the series rule is safe for series-parallel
graphs, this means thé@ is also series-parallel.

Now suppose each block & is series-parallel. By Lemma 2.3.5, each blockxohas
treewidth at most two. By Lemma 2.2.1, the treewidtl&as at most two. m|

Let G = (V,E) be a multigraph. Recall that a bridge®fis an edges € E for which the
multigraph(V,E — {e}) has more connected components ti@&nin order to make the set
of reduction rules conveniently small, we put a labeling on the edges of a multigraph: each
edge in a multigraph is either labeled with lal®lor it is not labeled (the labed stands
for ‘bridge’). We call such a multigraph B-labeled multigraph We extend the notion of
treewidth at most two for multigraphs to treewidth at most twoEfdabeled multigraphs.

Definition 9.1.1. Let G = (V,E) be a connected-labeled multigraph. Le6G' be the un-
derlying unlabeled multigraph. The graghhastreewidth at most twif and only if G’ has
treewidth at most two and for each edge E, if e has labeB, theneis a bridge ofG.

A tree decomposition of width at most twbG is a tree decompositionD = (T, X) of
width at most two ofG’ with T = (1,F) andX = {X; | i € I}, such that for each edgewith
label B and end pointsl andv, there is a nodé € | with X; = {u,v} such that there is no
componentinT [| — {i}] which contains vertices of two componentg4fE — {e}).

We can easily prove by induction thaBdabeled multigrapi® has treewidth at most two
if and only if there is a tree decomposition of width at most tw@of

Note that an edge in a multigraph is a bridge if and only if the edge is a (trivial) block.
Hence we can derive the following from Lemma 9.1.2.

Corollary 9.1.1. Let G be a connecteB-labeled multigraph. G has treewidth at most two if
and only if each non-trivial block of G has no labeled edges and is series-parallel.

We useB-labeled terminal multigraphs instead of unlabeled oneB:labeled terminal
multigraph is a terminal multigraph of which some edges have labdiwo B-labeled ter-
minal multigraph<z; andG; are isomorphic if there is an isomorphism from the underlying
unlabeled terminal multigraph @& to the underlying unlabeled terminal multigraph,
such that labeled edges @y are mapped to labeled edgesdn and unlabeled edges &
are mapped to unlabeled edge&in

Reduction rules consist of pairs 8flabeled terminal multigraphs instead of ordinary
terminal multigraphs.

9.2 A Special Parallel Constructive Reduction System

In this section we define a constructive reduction sysbem= (R w, lw, Ay, A¥) for the
following problem.
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TREEWIDTH AT MOST Two (TW2)
Instance: A connected-labeled multigraplt.
Find: A tree decomposition of width at most two & if the treewidth ofG is at most two.

We also show thaby, is a special parallel constructive reduction system. Thdggtof
reduction rules is based on the $&f, of reduction rules for series-parallel graphs that is
defined in Chapter 8 (see Figure 8.3).

In Section 9.2.1 we give the extension Rfy with respect toRsp, we give Iy, and
we show that the sy, is safe for TW2. After that, we show in Section 9.2.2 that each
connected-labeled multigrapi® contain)(|E(G)|) matches to rules iR w, if |[E(G)| > 1.
In Section 9.2.3 we show that sufficiently many of these matches are discoverable. Finally,
in Section 9.2.4 we give the construction algorith¥$ andA{".

9.2.1 A Safe Set of Reduction Rules

Figure 9.1 shows the extension Rfw with respect t(Rsp. The seRy, contains all rules
of Rsp (Figure 8.3), with a small change of rule 1, plus five new rules, called rules 19 — 23.
Rule 1 ofR spis splitinto rules 1a and 1b: in rule 1a, there are no edges laBgiedule 1b,
one or two of the edges in the left-hand side are labeled, and the edge in the right-hand side
is also labeled. Rules 1a and 1b together are called rule 1. Rule 19 also consists of two parts:
19a and 19b, the first with no labeled edges, the second with one or more labeled edges. In
rule 20, we pose a degree constraint of eight on the terminal vertex of the left-hand side. This
degree constraint requires that if rule 20 is applied, then the vertex in the graph that matches
the terminal of the left-hand side of the rule, has degree at most eight in the graph.

We give a new definition of a match to one of the rules 1 — 23BAlabeled multigraph.

Definition 9.2.1 (Match). Letr = (H1,H>) be a reduction rule iR yy and letG be aB-labeled
multigraph. Amatchtor in G is aB-labeled terminal multigrap@®; which is isomorphic to
H1, such that

¢ there is aB-labeled terminal multigrap@,; with G = G; & Gy,
e if risrule 20, then the terminal vertexin G; has degree at most eight@

e if ris one of the rules 3 — 18, then for each edge{u,v} € E(G;) for whichu andv are
terminals,u or v has degree at most severGn

The setly, consists of only one graph, namely the graph consisting of one isolated vertex.
Lemma 9.2.1. The seRy, of reduction rules is safe foFW2.

Proof. Let G be a connecteB-labeled multigraph, let € Ry, and suppos& contains a
matchH tor. Let G’ be the graph obtained fro@ by applying the reduction corresponding
to matchH. We show thaG has treewidth at most two if and only® has treewidth at most
two. Note that éB-labeled multigraph has treewidth at most two if and only if all its blocks
have treewidth at most two.

First suppose is one of the rules 2 — 18. Thethis contained in one of the blocks &£
Let B denote this block (note th&is a non-trivial block andH is also a match i), and let
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T(B)
19 ﬂ 2 B 4
4 B (B) B
o terminal ® inner vertex O<I:I>O 22 B
= o—o0
® terminal with degree constraint of 8
unlabeled edge

_ B labeled edge O<N>O E} o B o
_® labeled or unlabeled edge

Figure 9.1. The modifications made 1@ spin order to geR .

B’ be the graph obtained froBiby applying the rule. TheB' is a block ofG'. Therefore, it
suffices to show tha has treewidth at most two if and onlyBf has treewidth at most two.

Let s,t € V(B) such thats andt are adjacent and are not inner verticesHofNote that
this is possible. Furthermor®, has treewidth at most two if and only B has no labeled
edges andB, s,t) is series-parallel (by Corollary 9.1.2 and Lemma 8.3.1). The gty
also a match in(B,s,t), ass andt are not inner vertices dfl. Since rules 2 — 18 are safe
for series-parallel graphs, this means ttRits;t) is series-parallel if and only ifB’, s t) is
series-parallel. Furthermore, sinBeis biconnected®’ has treewidth at most two if and only
if (B',s,t) is series-parallel. This proves tHahas treewidth at most two if and onlyBf has
treewidth at most two.

Suppose is rule 1. If all vertices oH are contained in one blodg, then this is a non-
trivial block. In the same way as for rules 2 — 18, we can show@laas treewidth at most
two if and only if G’ has treewidth at most two.

Suppose the vertices &f are not in one block. Then the two edgestbfare separate
blocks, and they are both bridges (hence they both have treewidth at most two). This implies
that the new edge is a block @&, and it is also a bridge i’ (hence it also has treewidth
at most two). This shows th& has treewidth at most two if and only@ has treewidth at
most two.

Itis easy to see that rules 19 and 20 are safe for TW2isifule 19 or 20, then the blocks
of G have treewidth at most two if and only if the blocks@fhave treewidth at most two.

Suppose is one of the rules 21, 22 and 23. beandy be the terminals ofl. Supposé
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has treewidth at most two. & contains a path between the terminal$iofvhich avoids the
inner vertices oH, thenG contains &4 minor, hence this is not the case. This means that
x andy are cut vertices o6, and henced is a block ofG. This implies that inG', the edge
betweerx andy is a bridge ofG’, and hence it is a block @& which has treewidth at most
two. HenceG' has treewidth at most two.

If G’ has treewidth at most two, then the edge betweandy is a bridge, and hence is a
block with treewidth at most two. This implies thidtis a block inG. As H has treewidth at
most two, we have th&b has treewidth at most two. |

9.2.2 A Lower Bound on the Number of Matches

In this section, we show that each connected multig&aptith at least one edge which has
treewidth at most two has at lea@t|E(G)|) matches. We do this by bounding the number
of edges ofG by an integer constant times the number of matche&s. iWe first prove the
following lemma.

Lemma 9.2.2. Let G be a connecte-labeled multigraph and let g V(G) such that v has
degree at most eight. Then the number of matches to rules 1 — 23 in G which contain v is at
most some integer constant k.

Proof. We give a very rude bound which is probably far too large, but easy to prove. Note
that all inner vertices of left-hand sides of rules 1 — 23 have degree at most eigld; bet

a match inG which containss. It can be seen that all vertices and edgeGirare reachable

by a pathP from v to this vertex or edge, such that all vertices on the path except possibly the
first and the last one are inner vertice<xf or are terminals 0o6; with degree at most eight.

Hence each vertex on such a path, except the last one, has degree at most eight. Furthermore,
the path has length at most seven, as each left-hand side of a reduction rule has at most eight
vertices. Therefore, the number of vertices and edgé&zivhich are reachable from by

such a path is at most' 8 This implies that there is at most a constant number of matches
containingy. a

Let G = (V,E) be a connected-labeled multigraph, suppose the treewidthQfs at
most two, and letE| > 1.

A dangling edgén G is an edge = {u, v} for which eitheru or v has degree one. ifhas
degree one, theais called a dangling edge of A staris a graph consisting of one vertex
with dangling edges. Aseudo blocks a graph which is a star, or consists of one block with
dangling edges, i.65 consists of a block of which some vertices have dangling edges.

We divideG into pseudo blocks as follows. @ is a star, theit itself is the only pseudo
block. Otherwise, leB denote the set of all blocks @, and letB’ C B be the set of all
blocks which are non-trivial, or which have two or more cut vertices. NoteBhabntains
exactly all blocks which are not dangling edges, and each dangling edge has an end point in
one of the blocks i3’. Assign each dangling edge to a block&ihwhich contains one of its
end points. A pseudo block @& consists of a block i3’ with the dangling edges assigned
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to them. LetP B be the set of all the pseudo blocks. For each pseudo &k PB, we
call the block ofPBwhich is inB’ theunderlyingblock of PB.

The vertices that are contained in two or more pseudo blocks are calletiohg cut
verticesof G, and we denote the set of all strong cut verticeS bif v is a strong cut vertex,
thenv is a cut vertex of5 andv is contained in the underlying block of each pseudo block it
is contained in.

Note that the pseudo blocks Gfpartition the set of edgds(G). We divide the edges of
G into different classes, which correspond to the type of pseudo block that they are contained
in. After that, we give for each class an upper bound on the number of edges in this class
with respect to the number of matchesGnTherefore, we first constructeseudo block tree
T =(N,F) as follows.

N=PBuUS
F ={{v,PB} |[veSAPBePB Ave V(PB)}

HenceT contains as its vertices the pseudo blocks and strong cut verti€gsanid there is
an edge between two verticesTinif and only if one of them is a cut vertex the other one
is a pseudo blockB, andv is contained irPB. Note that the degree of a strong cut vertex
in T equals the number of pseudo blocks it is contained in, and the degree of a pseudo block
in T equals the number of strong cut vertices it contains. We call a pseudo bttetikee d
pseudo blockf its corresponding node iN has degred in T. A degree one pseudo block
is also called a leaf pseudo block. Note that each leaf pseudo block has at least two edges (if
it had only one edge, then it would be a dangling edge of one of the blocks it shares a vertex
with).

We partition the se B of pseudo blocks into four setB:Bg, PB1, PB, andP B 3. For
i =0,1,2, PB; is the set of degreiepseudo blocks. The sBtB 3 is the set of all degree
pseudo blocks witld > 3. Fori = 0,1, 2, letE; denote the set of all edges of pseudo blocks
in PBj, and letE>3 denote the set of edges of all pseudo blockB By-3. Note that, ass is
connected, eitheB itself is its only pseudo block and has degree zerd; opntains two or
more pseudo blocks which all have degree one or more. Note furthermore that only degree
zero pseudo blocks can be stars.

Let M denote the set of all matches@

Lemma 9.2.3. |Eg| < ko|M| for some integer constangk

Proof. If PBo =@, then it clearly holds. Suppo$B, = {G}, and letm= |E|. If m=1,
thenG contains a match to rule 20. Suppase> 2. If G is a star, thers hasm(m—1)/2
matches to rule 19, and henee< 2|M|. If G consists of an edge with one or more dangling
edges at each end point, then eithree 3 andG has a match to rule 1 or 19, or> 3 andG
has at leastm— 1)(m— 3)/8 matches to rule 19 (at legsh— 1) /2 edges are dangling edges
of the same end point). Henoe< 9|M|.

Supposés consists of a hon-trivial blocB with dangling edge®. Note thatB has no
edges labeled. Let D1 denote the dangling edges which are dangling edges of some vertex
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of B that has one dangling edge, andlet, denote the other dangling edges. Note Bat
has at leas{D>»|/2 matches to rule 19, and hen@»| < 2|M|.

Consider blockB. As B is series-parallel and has at least two edges, it contains at least
|[E(B)|/139 matches to rules 1 — 18 (Lemma 8.2.6). Consider thdggif all these matches.
LetH € Mg EitherH is a match inG or not. IfH is not a match irs, we callH a disturbed
match.

If H is disturbed, then either an inner vertegf H has one or more dangling edges, or a
terminal vertexv of H which has degree at most severBihas one or more dangling edges.
In both casesy has degree at most severBnFurthermore, i has one dangling edge, then it
has degree at most eight@and hence is a match to rule 20. i has two or more dangling
edges, then two of these edges form a match to rule 18 iBy Lemma 9.2.2, the number
of matches inG which contaings is at mostk. Hence the number of disturbed matches is at
mostk times the number of matches to rules 19 and 2G.iThis means that we can derive
the following upper bound foMsp).

[Msp| = |[{non-disturbed matchgf+ |{disturbed matchgs$
< |[{matches to rules 1 — 38+ k- |{matches to rules 19 and R0
< kM|

Furthermore|D>2| < 2|M| and|D1| < |V(B)| < |E(B)|. Hence

m= |E(B)| +|Da1| + [Dx2|
< 2|E(B)| +2|M|
< 278Msg| +2|M|
<278 k+1)|M|,

hence the lemma holds willh = 278k + 1). a

In the following discussion, we denote for each pseudo bPBkhe set of matches in
PBby Mpg. A match inMpg is either a match i, in which case it is called aon-disturbed
match, or it is not a match i, in which case it is called disturbedmatch. The set of
non-disturbed matches Mpg is denoted bWIB%, and the set of disturbed matchedMeg is
denoted byMd;. Note thatM4 € M. Lemma 9.2.3 implies the following result.

Corollary 9.2.1. For each pseudo block PEE(PB)| < ko|Mpg|.

Consider a disturbed matehin M35, Then there is a strong cut vertein PB for which
either

e Vis aninner vertex ofl,

e H is a match to rule 20 andis a terminal ofH, v has degree at most eight #B andv
has degree more than eight@; or

e H is a match to one of the rules 3 — Mds a terminal oH, v has degree at most seven in
PB, andv has degree more than sever@n
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If one of these cases holds for a strong cut vertexd a disturbed matdH, we say thawv
disturbs H

Lemma 9.2.4. Each strong cut vertex disturbs at most k matches in each pseudo block it is
contained in.

Proof. LetPBbe a pseudo block and lebe a strong cut vertex iRB. LetH be a match that

is disturbed by. Note thatv has degree at most eightiB. Hence, by Lemma 9.2.2, there

are at mosk matches irPB which contairnv. This means that disturbs at mosk matches.
O

Lemma 9.2.5. |E;| < ki|M| for some integer constant kand each leaf pseudo block contains
at least one match in G.

Proof. Let PB be a leaf pseudo block, let denote the strong cut vertex PB. By
Lemma 9.2.4|Mdg| < k. If [MBY| > 1, then|M8g| < kIMBZ|, and hence

|[E(PB)| < ko|Mpg| < ko(IMB3| + [MBg]) < ko(1+K)IMBG| < ko(1+K)[M].

This will show that|E; | < ki|M| with ky = ko(1+k). Furthermore, ifM3%| > 1, then each
leaf pseudo block contains at least one match.

We next show thalMB%| > 1. If the underlying block oPB is an edgee, then the end
point of e which is notx has at least one dangling edge, and hence there is at least one match
to rule 19 or 20. This match is not disturbedgyso|MB3| > 1.

Suppose the underlying blodk of PB is non-trivial. Note thaix € V(B). Lety be a
neighbor ofx in B. By Lemma 8.3.1(B, x,y) is series-parallel and hence it has at least one
match to rules 1 or 2 which does not haver y as inner vertex. This means tH2B has at
least one match to rule 1, 2, 19 or 20 which does not lxaagan inner vertex, and hence is
not disturbed irG. Hence|MBg| > 1. O

Lemma 9.2.6. |E>3| < ks|M| for some integer constangk

Proof. Letd > 3 and letPB be a degreé pseudo block. Note that the underlying block

B of PB is non-trivial. By Lemma 9.2.4, there are at mastk disturbed matches iRB.
Lemma 9.1.1 shows that the sum over all degrees of the pseudo bloBBsigis at most

three times the number of leaf pseudo blocks. By Lemma 9.2.5, each leaf pseudo block
contains at least one matchlifi Hence we can derive the following.

|E>s| = ZB |E(PB)]
PBe >3

< ZB ko|Mpg|
PBEFPB>3

=ko (IMB3| + [Mgg])
PBe >3

< ko|M|+ ZB degPB) -k
PBePB>3
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< ko|M] +3K|P B4
< ko|M| + 3k|{matches in leaf pseudo blogks
< [MJ(ko + 3K)

Hence the lemma holds witty = kg + 3k. a

Consider the sé?B». We split this set in two par8B5 andP BJ". The first set contains
all degree two pseudo blocks of which the underlying block is an edge, and the second set
contains all other degree two pseudo blocks (i.e. the degree two pseudo blocks of which the
underlying block is non-trivial). leE5 denote the set of edges in pseudo blockB Bf and
let E5t denote the set of edges in pseudo blockB Bf".

Lemma 9.2.7. For all degree two pseudo blocks REPBJ', |MpB3| > 1.

Proof. LetPBbe a degree two pseudo bIockR)BSt, and letB denote the non-trivial block

of PB. Let x andy denote the strong cut vertices BB. Suppose all matches Mpg are
disturbed, i.eMp3 = @. As matches to rules 2 and 19 can not be disturB&has no parallel
edges, and there is no vertexBwith two or more dangling edges. Furthermore, no vertex of
V(B) — {x,y} with degree at most sevenBhhas a single dangling edge, otherwise, this edge
would be a match to rule 20 which is not disturbed. This implies that verticé&Bn— {x,y}

with degreed < 7 in B also have degreg in PB, and hence iB contains a match to one of
the rules 1 — 23, theRB also contains this match. A48 = ¢, this match is disturbed by
ory.

Note thatx,y € V(B), and leta € V(B) such that{x,a} € E(B) anda #y. By Corol-
lary 9.1.1 and Lemma 8.3.B,has no labeled edges and the gréBlx, a) is series-parallel.

As each series-parallel graph with two or more edges contains a match to the series or the
parallel rule (rule 1 or 2), anB does not contain a match to the parallel rule, it contains a ver-
texv of degree two witty ¢ {x,a}. Then inPB, v also has degree two, and heR®contains

a match to rule 1. This match must be disturbe@jmand thus/=y. Hencey has degree two

in B. By symmetry, vertex also has degree two, and there can be no other vertices of degree
two. Letb be the second neighbor »f and letc andd denote the neighbors gf Let T’ be

the minimal sp-tree ofB,x,a), and leta denote the root node 4, which has labelx,a).

Nodea must be a p-node, as there is a leaf node with |&oel).

Color and name the internal nodesTdfin the same way as in the proof of Lemma 8.2.6
(an internal node is green if it is a p-node with two leaf children, or an s-node with two
neighboring leaf children; an internal node is branching if at least two of its children are
internal nodes; an internal node is yellow or blue if it is not green or branching). Tfree
contains at least one s- or p-node which has only leaf nodes, and hence this node is green.
Let B be a green node if’. ThenB can not be a p-node, since then there would be a match
to rule 2. Hence # a. If B is an s-node, then there is a match to rule Bwwhich consists
of the edges corresponding to the leaf childre.of his must be the match consistingyof
candd, and henc@ has two children, both leaves, labeled w(thy) and(y,d), or (d,y) and
(y,c). Suppose w.l.0.g. that the first case holds. Théras labelc,d) (possibly withc = x
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and/ord = a). Furthermorep is the only green node, as vertgxloes not occur in the label
of any other s-node.

TreeT' can not contain any branching nodes, otherWiseould have at least two green
nodes. It follows that all nodes df, exceptB, are either leaf nodes, yellow nodes or blue
nodes. Each yellow or blue node has one yellow, blue or green child, and one or two non-
adjacent leaf children. Hence the s- and p-nodeB’dorm a sequence of yellow and blue
nodes, followed by the green nofleSee part | of Figure 9.2 for an example.

Figure 9.2. An example of the sp-tre&’ of B (part 1), its corresponding cycle-
sequence (part 1), and the general structure of the cycle-seqBdpeet I11).

Consider the p-nodgwhich is a child ofa. Nodey has labelx,a). If y=, thenx=c
anda = d, which means tha® is a four cycle. But that it not possible, since ttegmas degree
two. Supposg # B. Theny has a child which is a p-node Note that the leftmost child of
yis a leaf child labeledx,b), asx has degree two. Hen@ehas labelb, e) for some vertex
e€ V(B). If e# a, thenyalso has a leaf child labeléd, a). But that means tha has degree
two, which is not possible. Henaeis the rightmost child ofy, and has labelb,a). As 3
is a p-node, and has at least one leaf child, it follows that there is an edge betwedb.
Furthermore, there is an edge betweamdd, asp’s parent is a p-node with labét, d), and
has at least one leaf child.

It can be seen th& is a cycle-sequence with bounding pafis= (x,b, ... ,c) andP, =
(a,...,d,y) (see page 177 for a definition). The first and the last cycle have three vertices, the
first cycle containg, a andb, andx has degree two iB, and the last cycle contaiysc and
d, andy has degree two iB. Part Il of Figure 9.2 shows the cycle sequence corresponding to
the sp-tree of part | of the figure. Part Il shows the general structure of the cycle-sequence
B. The bounding paths in part Il and Il are denoted by the fat edges. Note tiais ast a
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Figure 9.3. An example of a match to rule 3 B, contains a vertex with four
neighbors irP, (part I) or with six neighbors i (part I).

child ofa in T/, x# canda # d, and henc®; andP, have length one or mor®{ has length
one ifb = candP, has length one i& = d).

If P1 andP; both have length one, th&) and henc®B, contains a match to rule 21 with
terminalsx andy. As this match is not disturbed, this can not be the case. Hence Bjtber
P, has length more than one.

If P1 has length one ané has length two, theB forms a match to rule 3 with terminals
X, y andb (note thatb has degree four), which is also a matchPB, and is not disturbed.
Hence this is not possible. Similarlyf% has length one arlgy has length two.

SupposeP; contains a vertex which has at least four neighborsia. Note thatv # x
andv #vy. If v has four or five neighbors iRy, then it has degree at most severBinand
hence it forms a match to rule 3 with four of its neighbor®in See e.g. part | of Figure 9.3.
In this picturey has four neighbors iR, and the part of the graph surrounded by the dotted
lines forms a match to rule 3 with terminalsw andv. Vertexv has degree at most seven in
B, butu andw may have degree more than seven. The match to rule 3 is also a m&Bh in
and it is not disturbed, ashas degree at most severGnHence this gives a contradiction.

If v has six or more neighbors i, then at most two of these neighbors have degree
seven or more iB, namely the outermost two. The remaining at least four neighbors all
have degree three. We can take four of these vertices which, together, iottm a match
to rule 3. See e.g. part Il of Figure 9.3 for the case thaas six neighbors if,. Letu and
w be the terminals of the match to rule 3, together witiNote thatu andw are not equal to
x ory. Hence this match is also a matchRB and inG, which gives a contradiction. This
means thaP; does not contain vertices with four or more neighbor&irand by symmetry,
the same holds for the verticesf.

SupposeP; has length one ank, has length three or more. Then all verticesRorare
neighbors of vertekb, which is impossible by the discussion above. HeRcean not have
length one, and by symmetiy; can not have length one.

Until now, we have shown that it is impossible thiator P, has length one, and that no
vertex inP; has four or more neighbors i, or vice versa. Suppose bof andP, have
length two or more, and suppose all verticeirhave at most three neighborsha, and
vice versa. Suppose w.l.o.g. tHatis at least as long &8;. If P, andP, both have length
two, thenB forms a match to rule 22 or 23, and heriR8 contains this match, and it is not
disturbed, which gives a contradiction.
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9.2 A Special Parallel Constructive Reduction System

Finally, consider the case thiat has length two or more ari® has length three or more.
Note that all vertices iB have degree at most six, and hence all vertices excepdy
have degree at most six (8. Furthermorex andy are not adjacent, and hence if the cycle-
sequence has one of the left-hand sides of rules 3 — 18 as a subsequence, then it has a match
to this rule which is also a match iPB and is not disturbed. It follows from Claim 8.2.3 that
B contains such a subsequence, and hence we have a contradiction. This proves the lemma.
O

Lemma 9.2.8. |ENY| < ko|M| for some integer constanpkand each pseudo block PB 3"
contains at least one match in G.

Proof. LetPBe PBJ". Letx andy denote the strong cut vertices®B. Note thaMdg| <
2k, by Lemma 9.2.4. By Lemma 9.2.jMB4| > 1. HencelMdg| < 2kMBd|, and it follows
that|E(PB)| < ko|Mpg| = ko(IMBS| + M) < ko(2k+ 1)|MBY| < ko(2k+1)|M|. This proves
the lemma withky = ko(2k + 1). O

Lemma 9.2.9. |E}| < kq|M| for some integer constangk

Proof. We partition the seP B into two setsA andB:

o A is the set of pseudo blocks MB of which the underlying block is an edge and has at
least two dangling edges on one of its end points,

e B is the set of pseudo blocks B of which the underlying block is an edge and has at
most one dangling edge on each end point.

Let Ep denote the edges of all pseudo blocksfirand Eg the set of edges of all pseudo
blocks inB.

Claim. |Ea| <9|M|, and each pseudo block RBA contains at least one match in G.

Proof. Let PBe A, lete be the underlying block dPB. Note that the end pointsandy
of e are the strong cut vertices BB. Letm= |E(PB)|. If m= 4, thenPB has one match to
rule 19, which is not disturbed. Hence in this case 4M3%|. If m> 4, then there are at
least(m— 1)(m— 3)/8 matches to rule 19 iRB, and these are also matchesdnHence in
this casem < 9M34|. This implies that for each pseudo bloEB € A, |E(PB)| < 9Mag),
and hencdB contains at least one match. Summing over all pseudo blockssimows that
|Eal < 9M]. O

Note that each pseudo blockBihas at most three edges. We boyB¢ifrom above in
terms of the number of matches@ Thereto, we partitioB into two set<LL andD:

¢ C contains all pseudo blocks &f for which one of the strong cut vertices has degree at
least three in the pseudo block tree, and

¢ D contains all pseudo blocks & of which both strong cut vertices have degree two in
the pseudo block tree.

Note that there are no cut vertices of degree one, and tigacelD partitionB.
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Claim. |C| < 3|M].
Proof. The number of pseudo blocks Ghis at most the sum over the degrees of all nodes
in the pseudo block tree which have degree at least three. Hence, by Lemmd(d.k ht
most three times the number of leaf pseudo blocks, and as each leaf pseudo block has at least
one match (Lemma 9.2.5(| < 3|M|. O
Consider the pseudo blocksBf We partition this set in four sefd, Doa, Doy andDa:
e D; contains all pseudo blocks B which have a strong cut vertesthat is also contained
in a pseudo block frorR B .
e Dy, contains all pseudo blocks B which are not inD; and have a strong cut vertex
that is contained in two pseudo blocks frdin
e Dy, contains all pseudo blocks @ which are not inD; or D,,, and have a strong cut
vertexx that is also contained in a pseudo block frBid, — D, and
¢ D3 contains all pseudo blocks D which are notirD4 or D».

Note that the pseudo blocks D3 are the pseudo blocks which have two strong cut vertices
that are contained in a pseudo block fr& »s.

Claim. |D1| <|M|.

Proof. Consider a pseudo blodkBin D;. Letx be a strong cut vertex such that the other
pseudo blockPB' containingx is in PB;. Pseudo blockPB contains at least one match.
AccountPB to such a match. Each match in a leaf pseudo block has at most one pseudo
block of D1 accounted to it. This proves the claim. |

Claim. |Dag| < 2|M|.

Proof. Consider a pseudo blodkBin D,,. Letx be a strong cut vertex such that the other
pseudo bloclPB' containingx is also inD. Note that inG, x has at most two dangling edges.

If xhas one or two dangling edges, then one of these dangling edges forms a match to rule 20,
otherwise x has degree two and it forms a match to rule 1, together with its neighbors. We
account each pseudo blockly, to such a match to rule 1 or 20. In this way, each match to
rule 1 or 20 has at most two pseudo blocks accounted to it, and Hepge< 2|M|. O

Claim. |Dap| < 10/M|.

Proof. Consider a pseudo blodkBin D,,. Letx be a strong cut vertex d?B which is
contained in a pseudo bloé8 of PB'UAUC. If PB € PBJ', thenPB contains at least
one match, by lemma 9.2.8, and hefle®J'| < [M|. If PB' € A, thenPB also contains a
match, as is shown above, and heffee< [M|. OtherwisePB' € C, and we have shown that

|C| < 3|M|. AccountPBto PB. Each pseudo block iRBS'UA UC has at most two pseudo
blocks of D 5, accounted to it, and hence

ID2o| <2(|PB3|+|A|+|D|)
< 2(|M[+ [M[+3|M])
= 10/M|.
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Claim. |D3| <3|M|.

Proof. Consider a pseudo blo#kBin D3. Letx be a strong cut vertex &B which is con-

tained in a pseudo blodRB' of P B 3. AccountPBto the edggx,PB'} in the pseudo block
treeT. Each such edge has at most one pseudo bloéksodiccounted to it. Lemma 9.1.1
implies that the number of these edges is at most three times the number of leaves of the
pseudo block tre&. As each leaf irT is a leaf pseudo block, and each leaf pseudo block
contains at least one match@ this implies thatD 3| < 3|M|. a

We now get the following.

|E3| = |Ea| + |Eg|
<|Ea|+3(IC|+|DJ)
=|Ea|+3(|C| +|D1| +|Dza| +|D2s+ |Ds)
<9M|+3M|(3+1+2+10+3)
= 66/M|,

which proves Lemma 9.2.9 witky = 66. a

Note that|E| = |Eo| + |E1| + |EJ'| + |ES| + |E>3| and henceE| < (ko + ki + ko + ks +
ks3)|M|. This means that we have proved the following result.

Lemma 9.2.10. There is a constant & 0, such that each connect&dlabeled multigraph
G = (V,E) with treewidth at most two anj@E| > 1 contains at least|&| matches.

Lemma 9.2.10 also shows thRt,, is complete for TW2: each connectBdabeled multi-

graph with at least one edge has a match to one of the rulRginFurthermore, the graph
consisting of one vertex has treewidth at most two, and does not contain a match. Hence it is
the only irreducible graph of treewidth at most two. It is easy to seeRhais decreasing,
hence we have proved the following.

Corollary 9.2.2. (R, lw) is a reduction system farw2.

9.2.3 A Lower Bound on the Number of Discoverable Matches

In this section, we show thdR v, lw) is a special parallel reduction system for TW2 (see
Definition 5.4.3). Therefore, we have to show that there are integgtrsindd, with npin <
19< d, and a constant’ > 0, such that for each connectedabeled multigraphG with
treewidth at most two that is given by some adjacency list representation, the following
holds: if[V(G)| +|E(G)| > nminthenG contains at least - ( |V (G)| + |E(G)| ) d-discoverable
matches (with respect ). Since a connected multigraph hagE(G)) vertices, it suffices
to show that there are at least |E(G)| d-discoverable matches.

We use the same idea as for series-parallel graphs, only rule 19 gives some extra compli-
cations. Lethmin = 2 andd = 20 (note thad is the same as for series-parallel graphs, see
page 179). A match to a rule iRy, is d-discoverable if it either is a match to one of the
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rules 1, 3— 18, or 20 — 23, or it is a match to rule 2 or 19, and in the adjacency list of one of
the terminals of this match, the edges of the match have distance at most 20.

Let G be aB-labeled multigraples = (V, E) given by some adjacency list representation.
Recall from Chapter 8, page 180 that an edgs bad if it has a parallel edge, but all its
parallel edges have distance at least 21 in the adjacency lists of the end peints of

A dangling edges is called abad dangling edg€ it is incident with a vertexv that has
two or more dangling edges, but in the adjacency list, ¢fiese dangling edges have distance
at least 21 t@. Note that an edge is bad if and only if it occurs in a match to rule 2, but not
in ad-discoverable match to rule 2. A dangling edge is bad if and only if it occurs in a match
to rule 19, but not in @-discoverable match to rule 19.

Lemma 9.2.11. Let G= (V,E) be aB-labeled multigraph of treewidth at most two, given
by some adjacency list representation. The graph G has at B4 bad edges and at most
|E|/10bad dangling edges.

Proof. For the bound on the bad edges, see Lemma 8.2.7. Consider the dangling edges.
Letv e V(G). If the adjacency list o’ has length at most 20, therdoes not have any bad
dangling edges. If the adjacency listwhas length more than 20, then each 20 successive
entries in the (cyclic) adjacency list contain at most one bad dangling edge. Hence there are
at most defyv)/20 bad dangling edges in the adjacency list.off we sum over all vertices,

we get that the number of dangling edges is at nBit10. O

Lemma 9.2.12. There is a constant ¢ 0 for which each connectegtlabeled multigraph G
of treewidth at most two with at least one edge has at I€8&t@)| d-discoverable matches.

Proof. We use the same idea as in the proof of Lemma 8.2.8Get(V, E) be aB-labeled
multigraph with at least one edge. Lret= |V| and letm= |E|. Let dedenote the number of
dangling edges o& of which one end point has at least two dangling edges, i.e. the dangling
edges which occur in a match to rule 19. We distinguish between three cases:

1. m>4n,
2. de>m/5, and
3. m<4nandde< m/5.

Casel. Supposen> 4n. AsG has treewidth at most two, the underlying simple graph has
at most 2 edges (Lemma 2.2.6). This means that at least2n edges are parallel to another
edge. At mosim/5 of these are bad edges, hence at least2n—m/5 > 4m/5—m/2 =
3m/10 edges occur in d-discoverable match to rule 2. This means that there are at least
3m/20d-discoverable matches to rule 2@

Case2. Supposethate>m/5. Of thededangling edges which occur in a match to rule 19,
at mostm/10 are bad. Hence at lead®— m/10 > m/10 of these dangling edges occur in
a d-discoverable match to rule 19. This means that there are atrig@8td-discoverable
matches to rule 19 i®.
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Case 3. Suppose thatn < 4n andde < m/5. If G is a star, therG contains at leasn/20
d-discoverable matches to rule 19.

Supposé&s is not a star. Remove all dangling edges which occur in a match to rule 19 from
G. Furthermore, for each pair,v of vertices inG which have two or more edges between
them, do the following. Iiu andv both have two or more neighbors, then remove all edges
except one betweamandv. If uorv has only one neighbor, then remove all but two edges
betweeru andv. Let G’ denote the resulting graph, andtét= |V (G')|, m' = |E(G')|.

Note that, ifG’ contains a match to rule 2, then one of the terminals of this match has
degree two, and hence this matcldidiscoverable. Note furthermore tHathas no matches
to rule 19: first all matches to rule 19 were removed, and after that, matches to rule 2 were
removed without introducing new matches to rule 19.

We express’ andnt in terms ofm: n = n—de> m/4—m/5=m/20. AsG is not a star,
it follows thatn’ > 2. FurthermoreG' is connected, and heno# > ' — 1> n'/2 > m/40.

Note thatm’ > 1 (sinceG is not a star). By Lemma 9.2.1@ contains at least - nY
matches. As we have argued before, these matches akelisitoverable, and in each match
to rule 2, one of the end points has degree at most twoML@énote the set of all matches in
G'. Each of these matches is eithed-gliscoverable match i, or it is not ad-discoverable
match inG. We call the first set the set of non-disturbed matches, denoted,hyand
the second the set of disturbed matches, denoteMby Let Mpew denote the set ofl-
discoverable matches (@ which are not inG'. Note that the set ai-discoverable matches
in G containdVl,q andMpew.

Consider a matchl € My. If H is a match to rule 2, then the terminabf H which has
degree two inG' has degree more than two @ If H is a match to one of the other rules,
then eitheH contains an inner vertexwhich has dangling edges @ or which is incident
with parallel edges i, orv is a terminal which has degree< 8 in G/, but has degree more
thand in G. In all cases, there is a vertex V(H) which has degred < 8 in G’ and has
degree more thadin G.

Sincev has larger degree i@ than inG', it must be the case that @, v has two or more
dangling edges, or is incident with parallel edges. If the adjacency listvdias length at
most 20, then there are two edges incident witbhich form ad-discoverable match to rule 2
or rule 19. LetH, denote this match, note thid € MpewU Mpg. If the adjacency list of has
length more than 20, then consider a sublist of length 20 of this list. If this sublist contains
two or more dangling edges, then two of these fordidiscoverable match to rule 19 @,
and hence this match is Mnew. Let Hy, denote this match. If the sublist contains at most one
dangling edge, then 20 or 21 of the places in this sublist contain anedoigfsveernv and a
neighbor ofv. Asv has at most eight distinct neighbors, there must be at least two edges with
the same end points in the sublist. Two of these edges correspomidseoverable match
torule 2 inG. Let Hy again denote this match, and note tHate Mpew U Mpg.

Note that, aw has degree at most eight @, it is contained in at most matches irM
and hence invig (Lemma 9.2.2). For each matt¢hin My, accountH to a matchH, of a
vertexv € V(H) which has degred < 8 in G’ and degree more thahin G. In this way,
each match to rule 19 iMnewU Mpg has at mosk matches accounted to it, and each match
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to rule 2 inMpewU Mpq has at mostRmatches accounted to it (at mésior each end point).
Hence|My| < 2K(|MnewU Mng|) = 2k|Mpew| + 2k|Mpg|, and we can derive the following.

m < 40m

< (40/c)- M|

= (40/c) - (IMd| + [Mnd|)
(40/c) - (2K|Mnew + (2k+1)|Mng| )
(40(2k+1)/c) - (|Mnew| + [Mnd|)

)
)
<
<

As G contains at leagMnew| + |Mng| d-discoverable matches, this means Batontains at
leastc’|E| d-discoverable matches, with= c/40(2k + 1). O

Hence we have shown the following result.
Corollary 9.2.3. (R, lw) is a special parallel reduction system fow2.

9.2.4 The Construction Algorithms

In this section we complete the description of the special parallel constructive reduction sys-
tem (R w, lw, A, Al") for TW2 by describing algorithmal}’ andA{". Algorithm A%’ has to
be such that it use®(1) time and is non-interfering, and algorithif must useO(1) time.
We construcAg" andA}" in such a way that the tree decomposition is a so-called special tree
decomposition (see Definition 6.3.2).

Let G = (V,E) be a connecte#-labeled multigraph, and lety € V. A setW CV is
anx,y-separatorif x,y ¢ W, andx andy are in different components @&V —W)]. An x,y-
separator is called minimal x y-separator if no proper sub3st of W is anx, y-separator.

Definition 9.2.2 (Special Tree Decomposition). L& = (V,E) be a connecte@-labeled
multigraph with treewidth at most two. L8tD = (T,X) be a tree decomposition of width
two of Gwith T = (1,F) andX = {X | i € I }. ThenT D is aspecial tree decompositiaf G

if it satisfies the following conditions,

1. For each vertex € V there is a unique nodewith X; = {u}, called the node associated
with u.

2. Each edge € E with end pointau andv has a nodéwith X; = {u,v} associated with it.
Distinct edges have distinct associated nodes.

3. Letu be a cut vertex o6, leti denote the node associated withThen each component
of T[I — {i}] contains vertices of at most one componern®pf — {u}].

4. Letebe a bridge of5 with end pointsiandv and leti be the node associated wghThen
each component &f[| — {i}] contains vertices of exactly one componenf\fE — {e}).

5. Letu,veV. Ifthere is an edge betweerandv, and{u,v} is a minimalx, y-separator for
some verticex andy, then there is a nodeassociated with some edge betweesndv
such that andy occur in different components afl — {i}].
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6. For each two adjacent nodeg € |, | |Xi| —|Xj|| =1, unless ifX; = X; = {u,v} andi and
j are nodes associated with different edges betwesrdyv.

7. For eachy,v € V, the nodes associated with edges betweandv induce a subtree af.

We give a number of properties of a special tree decomposition.

Lemma 9.2.13. Let G= (V,E) be aB-labeled connected multigraph and let T=D(T, X)
be a special tree decomposition of G with=T(I,F) andX = {X; | i € I}. TD satisfies the
following properties.

1. No node with one or three vertices occurs twice, and if a node with two vertices u and v
occurst times, & 2, then there are t edges between u and v.

2. For each ic I, no two components of[T— {i}] contain vertices of the same component
of GV — Xi].
3. Letij elsuchthat{i,j} € F. Then|X;nX;| > 1, and either XC Xj or X; C X;.

4. Letijelsuchthat{i,j} € F, X ={u,v} and X = {u,v,w}. Then w and u are in the
same component of{&— {v}], and w and v are in the same component §f G {u}].

Proof.
1. Follows from conditions 1, 2 and 6 of Definition 9.2.2.

2. If two verticesu andv of the same compone@tof GV — X;] occur in different compo-
nents ofT[I — {i}], thenX; contains a vertex of a path @fromutov.

3. If XinX; =@, thenG is not connected. Suppo3¥eZ X; andX; Z X;. Letu € X — X;
andv € X; —X.. ThenX; N X is au,v-separator. A$ andj can not both have three vertices,
[XinXj| =1. Letae XN X;. Thenais a cut vertex and andv are in different components of
G|V — {a}]. Letk be the node associated wahThenu andv occur in different components
of T[I — {k}]. But thenk must be betweerandj, which is impossible, aisand] are adjacent.

4. Suppose&v andu are not in the same component®WV — {v}]. Thenvis a cut vertex. In
the same way as for case 3, this gives a contradiction. |

We use the following data structure for storing a special tree decomposition. We store a
list containing all nodes of the tree decomposition. Each nddes an adjacency list which
contains an entry for each neighboriof An entry for neighborj in the adjacency list of
i contains a pointer tg, the contents(j of nodej, and a pointer to the entry dfin the
adjacency list ofi. Furthermore, for each vertex and edge in the graph, we keep a pointer to
the node associated with it.

Consider algorithnAl". Given a grapl® consisting of one vertex A" simply constructs
a tree decomposition of one node which contairdote that this tree decomposition satisfies
conditions 1 — 7, and hence is a special tree decomposition.

Consider algorithnA}Y’. The algorithm consists of 23 rounds which are executed consec-

utively. Each round corresponds to a ruleRg,: if the algorithm gets rule as input, then

205



Chapter 9 Parallel Algorithms for Treewidth Two

it is only active in round. Suppose the input of the algorithm is a rule: (H1,H) € R,
aB-labeled multigraplG = (V,E), a special tree decompositidiD = (T, X) of G, a match
G2 = (V2,E2,X) to Hy in G, and a matcls; = (Vi,Ej, X) to Hy with the same terminal set
asGy. LetT = (I,F) andX = {X; |i € | }. We describe the algorithm per round.

Round 1. If r is notrule 1, then the algorithm is idle in this round. Suppoiserule 1, and
supposéd, = {a,b}, E; = {e} andVi = {a,b,c}. See part | of Figure 9.4 (labelings of edges
are not shown). Latand|j be the nodes of D associated witla andb, and letk be the node
associated witle.

I G, ao—% ob — ao—e—o0b G

OGS WOOCE

i —>

Figure 9.4. The construction for rule 1.

If eis a bridge inG, thena andb are cut vertices. The nodeassociated witle separates
TDin different components corresponding to the componer® ef (V,E — {e}). Note that
G’ has exactly two components, one containingnd one containing. By condition 4 of
Definition 9.2.2, this means that the nddeas degree two: it is adjacent to a node containing
aand one containinly. Consider the path from nodé kin T. Letl be on this path, suppose
| #i andl # k. X containsa, and not. If X; contains a vertex # a, thenv ¢ Xy, and hence
there is no path fromv to b which avoidsa. Hencev andb are in different components of
G|V —{a}], while they occur in the same componenT¢f — {i}]. This is a contradiction, and
hence no node on the path frdnto i contains another vertex than(exceptk). Hencek and
i are adjacent. In the same way, we can showktaatd j are adjacent. This means tHab
contains a subtree as shown in the left-hand side of part Il of Figure 9.4. We replace this by the
subtree shown in the right-hand side of part Il (the light-gray parts of the tree decompositions
are the parts that are involved in the modification). Note that the new edges are bridges and
is a cut vertex. Hence the new tree decomposition is a special tree decomposition.
Consider the case thais not a bridge. Then nodedoes not necessarily havandj as
its only neighbors. If this is indeed not the case, we add an extralnasleew neighbor of
k, with X; = {a,b,c}, and we add some other nodes to fulfil conditions 1 — 7. See part Ill of
Figure 9.4. Note that the new tree decomposition is indeed a special tree decomposstion (
not a cut vertex, the new edges are not bridges, and théaefsand{c, b} are not minimal
X, y-separators).
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Hence algorithmA}’ does the following. It looks if nod& has as its only neighbors
nodei andk. If so, it applies the construction of part Il of Figure 9.4. The new nodes are
added, the contents & is changed, and in the adjacency listsi @nd j, the entries for
nodek are modified. Furthermore, the nodes with contdrts}, {b,c} and{b} are the
nodes associated with the edge betwaemdc, the edge betweebn andc, and vertex,
respectively.

If k does not have onlyandj as its neighbors, the algorithm applies the construction of
part Il of Figure 9.4. This can be done by adding the new nodes with their adjacency lists,
and adding an entry for the new node adjaceit & the end of the adjacency list kf The
new nodes are the nodes associated with the new edges and vertices.

It can be seen that this construction is correct. Furtherngferuns inO(1) time for
rule 1, and it is non-interfering: edgeis not involved in any other reduction at the same
time, and hence nodeis not involved in any other reductions that are performed in round 1.
Nodesi andj may be involved in other applications of rule 1, however, only the contents of
entries in the adjacency list ofand j are modified, and this can be done in different places
of the adjacency list at the same time without concurrent reading or writing.

Round 2. If r is not rule 2, then the algorithm is idle in this round. Supposerule 2.
The construction is very simple. L& =V, = {a,b}, E; = {e} andE; = {e, €}, see part |

of Figure 9.5. Let be the node associated wigh Then we can apply the construction of
part Il of Figure 9.5. The newly added node is the node associated withekdijete that
condition 7 is satisfied, and hen€® is a special tree decomposition. It is easy to see that this
construction can be done @(1) time and that round 2 is non-interfering (edgis involved

in only one reduction and hence so is node

| G ao—% ob — aog\/_\/obGl

I —

i
Figure 9.5. The construction for rule 2.

Round 3. Suppose is rule 3 (otherwise, the algorithm is idle in this round). IGatand
G2 be as depicted in part | of Figure 9.6. Lief andk be the nodes associated to edge
andes, respectively. We show thdt contains a subtree as depicted in the left-hand side of
part Il of Figure 9.6.

Note that there is no path fromto b in G which avoids bothc andd, otherwiseG
contains &4 minor. Hence{c,d} is a minimala, b-separator. This shows that nodeend
j are in different components df[l — {k}]. Let| be the (unique) node wit); = {a,c,d}.
Consider the path frorkto | in T. Each node on this path contaiogndd. Furthermore,
only Xx = {c,d}, since there is only one edge betweeandd. If there is a nod€c,d. v}
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Figure 9.6. The construction for rule 3. Dashed lines denote possible adjacencies.

on this path for some ¢ {a,c,d}, then there must be another noged}, since there are no
two adjacent nodes with three vertices. This gives a contradiction, tkearad#l are adjacent.
Similarly, k is adjacent to the unique nogevith X, = {b,c,d}.

Consider the path frorhto i in T. Each node on this path contaiasndc. Leti’ be
the node on this path which hxg = {a,c} and is the node closest kdor which this holds.
Theni’ andl are adjacent. Similarly, node is adjacent with a nod¢ with Xj; = {b,c}.
Consider the nodg with Xq = {a,d}. This node must be adjacent to nddeSimilarly, the
noder associated with edggh,d} must be adjacent to noge

Consider the noddsand p. Both these nodes are adjacent to three other nodes, and, by
property 3 of Lemma 9.2.13 and condition 7 of Definition 9.2.2 they can not be adjacent to
any other node. Consider nodesg andr. By property 4 of Lemma 9.2.13, none of these
nodes can be adjacent to another node containing three vertices. Furthermore, the only nodes
containing one vertex that can be adjacent to these nodes are the nodes associatdal with
¢, andd. The node associated withmay be adjacent to nodg the node associated with
b may be adjacent to nodethe node associated withmay be adjacent tk, and the node
associated witld must be adjacent to eithkrq, orr. Hence we have the subtree depicted in
the left-hand side of part Il of Figure 9.6. The possible adjacencies of the nodes associated
with @, b, ¢, andd are denoted by dashed lines. We replace a part of this subtree by a new
subtree, as is depicted in the right-hand side of part Il of Figure 9.6. The dashed lines again
denote possible adjacencies, which are the same as in the left-hand side. Note that the new
tree decomposition satisfies conditidns 7 of Defintion 9.2.2, and hence it is a special tree
decomposition.

Itis easy to see that this construction can be dor@(it) time: find the node associated
with edge{c,d}, and search for the structure of the subtree. Then replace the proper subtree
by the new subtree. It can also be seen that round 3 of algoAﬂ\riss non-interfering: the
replaced nodes are not involved in any other application of rule 3. Only the node associ-
ated withb and nodej’ may be involved in other applications, but for these nodes, only the
contents of one entry in the adjacency list are changed, and this can be done in parallel for
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different entries.

Rounds 4 —18. The constructions for rules 4 — 18 are similar to the construction for rule 3,
so we do not describe them. The rules of which the right-hand side contains a chordless
four-cycle are a bit different, as there are two possibilities for the structure of the tree decom-
position. As an example, we depict the two possible constructions for rule 6 in Figure 9.7.

Figure 9.7. The construction for rule 6. Dashed lines denote possible adjacencies.

Round 19. Suppose is rule 19. LetG; andG; be as depicted in part | of Figure 9.8 (label-
ings of edges are not shown). Note that edgga bridge, and hence the tree decomposition
contains a subtree as depicted in the left-hand side of part Il of Figure 9.8 (see also round 1).
We replace this subtree by the subtree depicted in the right-hand side of part Il of Figure 9.8.
Note the resulting tree decomposition is special.

In order to make the algorithm non-interfering in round 19, the construction is as follows.
We make two new nodes with conter{ts,c} and{c}, respectively, which are adjacent to
each other. Furthermore, we make a new entry in the adjacency list of the node associated
with a. The new entry is for the node associated with eflge}. It is added between the
entry for the node associated with edggnd its right neighbor in the list. In this way, we can
make sure that no two constructions for rule 19 try to modify the same entry of the adjacency
list of nodei.

Round 20. Suppose is rule 20. LetG; andG, be as depicted in part | of Figure 9.9. liet
denote the node associated wathNe apply the construction depicted in part Il of Figure 9.9.
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Figure 9.8. The construction for rule 19.
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Note that the resulting tree decomposition is special.

| G ao — ao—eb &1

I @—) (a)y—(ab—(b)

i

Figure 9.9. The construction for rule 20.

In order to make the algorithm non-interfering in round 20, the construction is as follows.
LetH be aB-labeled terminal multigraph such that= G, ¢ H. Note that, inG; & H, vertex
a has degree at most eight. We divide round 20 into eight subrounds, which are executed
subsequently. First, edgecomputes its rank in the adjacency list o& in G1 & H. Then,
in subroundk, the construction is applied by adding new noglesd| with X; = {a,b} and
X = {a} which are adjacent to each other, and makjradjacent ta: an extra entry for
nodej is added at the end of the adjacency list of noda each subround, at most one such
construction that involves vertexis applied, and hence the algorithm is non-interfering and
runs inO(1) time.

Rounds 21 — 23. Rules 21, 22 and 23 are very similar to each other. We give the con-
struction only for rule 21. Le6G; andG; be as depicted in part | of Figure 9.10. As edge
eis a bridge, the tree decomposition must contain a subtree as depicted in the left-hand side
of part Il of Figure 9.10. This subtree is replaced by the subtree depicted in the right-hand
side of this figure. It is easy to see that the new tree decomposition is special, and that the
construction can be done @(1) time and is non-interfering.

This completes the description of algoritmqgi“. We have shown the following result.

Theorem 9.2.1. Sy is a special parallel constructive reduction systemTav2.

9.3 Algorithms

In the previous section, we have given a special parallel constructive reduction system for the
problem TW2. Theorem 6.3.1 (with the modifications for multigraphs as given in Section 5.4)
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Figure 9.10. The construction for rule 21.

shows that this system immediately gives an algorithm for TW2 that ru@slagmlog" m)
time on an EREW PRAM and i®(logm) time on a CRCW PRAM, in both cases wii{m)
operations and space.

We can use this algorithm for the same problem, but without requiring that the input graph
is connected. In that case, we use a technique similar to the technique of Bodlaender and
Hagerup [1995]: from each connected component of the graph we select one vertex. Then
we add a new dummy vertex to the graph, and make all selected vertices adjacent to this
dummy vertex. The new graph is connected, and has treewidth at most two if and only if the
original graph has treewidth at most two. Now we solve the problem on the new connected
graph with the reduction system given in the previous section. After that, we remove the
dummy vertex from all nodes it occurs in, and the resulting tree decomposition is a tree
decomposition of width at most two of the input graph.

The only problem is how to select a vertex from each connected component of the graph.
We use the reduction systefR w, I ) for this, with a small extension: we add reduction
rule 24 as depicted in Figure 9.11Rq,,. LetR be the new set of reduction rules. It is easy
to see thatR , lyy) is a special parallel reduction system for TW2 on input graphs which do
not have to be connected (see Definition 5.4.3).

o o ﬁ) [ ]

Figure 9.11. The extra rule 24.

Now we first make a copy of the input graph, and then apply a reduction algorithm on
this copy, based ofR , l;w). Each time the new rule is applied, we remove a connected
component of the graph, by removing the only vertex that is left from this component. We
then mark the vertex in the original graph that corresponds to this removed vertex. This
marked vertex is the selected vertex of its connected component. If the input graph has
treewidth at most two, then it is reduced to the graphiirin O(log(n+ m)log*(n+m)) time
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on an EREW PRAM and i®©(log(n+ m)) time on a CRCW PRAM, both witl®(n+ m)
operations (note that it is not necessarily the casatkad(m) if the graph is not connected).
Furthermore, in the original graph, each connected component has exactly one marked vertex.
If the input graph has treewidth three or more, then the reduction algorithm will not succeed
to reduce the graph within the given time bounds, and it stops in time, retuatsag This

gives the following result.

Theorem 9.3.1. There is a parallel algorithm which checks whether a giverabeled)
multigraph G has treewidth at most two, and if so, returns a tree decomposition of width at
most two of G. The algorithm usegrO+ m) operations and space, and 9g(n+ m)) time

on a CRCW PRAM, or @og(n+ m)log*(n+ m)) time on an EREW PRAM.

If the input graphG = (V, E) is simple, then we can use the same preprocessing step as
described in Chapter 8 for series-parallel graphs (see page 185) to check Beth&fV|.
This step take®©(logn) time andO(n) operations on an EREW or CRCW PRAM. If the
preprocessing step does not retégige, then we know thate| < 2|V|, and hence we have
the following result.

Theorem 9.3.2. There is a parallel algorithm which checks whether a given simple graph
G has treewidth at most two, and if so, returns a tree decomposition of width at most two of
G. The algorithm uses @) operations and space, andIdgn) time on a CRCW PRAM, or
O(lognlog® n) time on an EREW PRAM.

In Section 2.2.3, we have argued that many (constructive) optimization and decision prob-
lems can be solved on graphs of bounded treewid®(logn) time with O(n) operations on
an EREW PRAM, if a tree decomposition of bounded width of the input graph is given
(with O(n) nodes). These problems include all (constructive) decision problems that are MS-
definable. Together with Theorem 9.3.2, this shows that all these problems can be solved
within the same resource bounds as the problem of finding a tree decomposition of width at
most two, if the input graph has treewidth at most two.

One of the problems which can be solved if a tree decomposition of bounded width of
the input graph is given, is the pathwidth problem: given a gi@gind an integer constant
k, check whethe has pathwidth at mo&t and if so, find a path decomposition of width at
mostk of the graph [Bodlaender and Hagerup, 1995]. Hence we have the following result.

Theorem 9.3.3. Letk> 1 be aninteger constant. There is a parallel algorithm which checks
whether a given graph G has treewidth at most two and pathwidth at most k, and if so, returns
a path decomposition of width at most k of G. The algorithm uge$ @perations and space,

and (logn) time on a CRCW PRAM, or(@gnlog* n) time on an EREW PRAM.

Note that the theorem also holds for multigraphs, if we repteegn+ min the time and
operations bounds. As graphs of pathwidth at most two also have treewidth at most two, the
theorem implies that we can find a path decomposition of width at most two of a graph, if
one exists, within the same resource bounds.
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Chapter 10

Conclusions

In this chapter we summarize the results presented in this thesis, and we give some remarks
and directions for further research.

In Chapter 3, we give a complete characterization of partial two-paths, and we use this
characterization to obtain a linear time algorithm for building a path decomposition of width
at most two of a graph, if one exists. This algorithm has no hidden constants and is easier
to implement than the linear time algorithm of Bodlaender [1996a] for recognizing partial
k-paths for any fixed positive integ&r This makes it potentially more practical than Bod-
laender’s algorithm for the case that 2.

An obvious generalization of the results of Chapter 3 would be to find a characterization
of partialk-paths fork > 3, and to make an efficient and practical algorithm for recognizing
partialk-paths, based on this characterization. It seems however that this is not feasible with
the method used in Chapter 3, since the characterization of pesiahs is already quite
complicated for the cade= 2 and the complexity grows quickly witk

In Chapter 4, we discuss two problems that originate from molecular biology, namely
k-INTERVALIZING SANDWICH GRAPHS (k-ISG) andk-UNIT-INTERVALIZING SANDWICH
GRAPHS (k-UISG). We give an algorithm for 2-ISG that runs in linear time in the number
of vertices of the input graph, and an algorithm for 3-ISG that runs in quadratic time in the
number of vertices. Furthermore, we show thatkor 4, k-1ISG is NP-complete. We also
give an algorithm for 3-UISG which is linear in the number of edges of the graph. Kaplan
et al. [1994] have given a®(nk1) algorithm fork-UISG. Hence our algorithm is more
efficient for the case that= 3. The given algorithms for 3-1SG and 3-UISG are based on
the characterization of partial two-paths as presented in Chapter 3. The algorithms have no
hidden constants, but they consist of an extensive case analysis, thus making the algorithms
very large. It would be nice to find more compact algorithms running in the same time
bounds.

Unfortunately, in most practical instanceskefSG andk-UISG, k lies between five and
fifteen. For these cases, there is (probably) no polynomial time algorithkalf®®. Fork-

UISG there is atD(n*~1) algorithm, but ifk = 10 for example, this algorithm is not practical.
Besidesk-UISG isW/[1]-hard [Kaplan et al., 1994], which means that there is probably no
algorithm which solve&-UISG in O(n®) time wherec is a constant which does not depend
onk. Thus the results fat-ISG andk-UISG are not very helpful and it might be interesting

to take a closer look at the original problems as they occur in biology. It might for instance
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be that problems which model the practical situation more accurately have more efficient
algorithms, or there might be practical situations in which extra constraints hold that make
the problems easier.

In Chapters 5 — 9 we discuss reduction algorithms. Chapter 5 contains an overview of
results in Arnborg et al. [1993], Bodlaender [1994] and Bodlaender and Hagerup [1995],
presented in a uniform setting. We give definitions of reduction systems for both decision
problems and optimization problems. We also give a number of conditions for reduction
systems which ensure the existence of efficient reduction algorithms based on these systems.
For the sequential case, these algorithms use linear time and space. In parallel Déy)use
operations and space, afflognlog®n) time on an EREW PRAM o©(logn) time on a
CRCW PRAM. We also apply these results to problems on graphswided treewidth: we
show that for all finite index decision problems and for all finite integer index optimization
problems on graphs of bounded treewidth there exist reduction systems for which the efficient
reduction algorithms can be used, and these systems can be automatically generated in most
cases.

In Chapter 6 we extend the results of Chapter 5 to constructive decision and optimiza-
tion problems: we define constructive reduction systems, and we give efficient sequential
and parallel algorithms based on constructive reduction systems that satisfy some additional
constraints. These algorithms do not only decide problems or find optimal values for opti-
mization problems, but they also find an (optimal) solution for the problem, if one exists.
They use the same resource bounds as the reduction algorithms presented in Chapter 5. We
again apply these results to graphs of bounded treewidth: we show that all finite (integer) in-
dex problems of which the solution domain satisfies some extra constraints have constructive
reduction systems which admit efficient algorithms.

In Chapter 7, we apply the results of Chapters 5 and 6 to a number of constructive op-
timization problems on graphs of bounded treewidth. We also show that a number of opti-
mization problems which are MS-definable, are not finite integer index, which means that the
technique presented in Chapters 5 and 6 can not be applied to all MS-definable optimization
problems.

In Chapters 5 and 6, we have shown that efficient reduction algorithms can be used for
a large class of problems on graphs of bounded treewidth. However, we did not investigate
any other graph classes: it might well be that the efficient reduction algorithms can be used
for problems on other classes of graphs, as long as the graphs are sparse (i.e. the number of
edges of each graph must be at most a constant times the number of vertices). It would be
interesting to find such classes of graphs, and the problems for which these algorithms can be
used.

The reduction algorithms presented in Chapters 5 and 6 are simple, and not hard to imple-
ment. As long as the number of reduction rules in a reduction system is not too large, these
algorithms are probably also efficient in practice. For a large class of problems on graphs
of bounded treewidth, a set of reduction rules can automatically be generated. The size of
this set may become very large, and the generation process may take a long time. It would
be interesting to find out how long this process actually takes and to see whether it can be
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made quicker. It is also interesting to find out how large the set of reduction rules can get,
and to try to keep the set of generated rules as small as possible. This might for instance
be done by applying self-reduction on the reduction rules: if a reductiorr robmtains a

match to another reduction rulg then ruler can be removed (as soon as rule applicable

to some graph, rul€ is also applicable). If a set of reduction rules is large, then a way to
improve the efficiency of a reduction algorithm based on this set is to use the structure of
the reduction rules. Consider for instance the set of reduction rules for series-parallel graphs
presented in Figure 8.3: rules 3 — 18 in this set are all very much alike. This means that if
the algorithm tries to find a match to one of these rules, it does not have to do this for each
rule independently, but it can make use of the fact that many of these rules have the same
subgraphs.

As mentioned in Chapter 2, all MS-definable decision problems are of finite index, and
thus can be solved on graphs of bounded treewidth using an efficient reduction algorithm
(apply the technique from Chapter 5). For optimization problems, this does not hold: we
have shown in Chapter 7 that there are MS-definable optimization problems which are not of
finite integer index. It might be interesting to find out whether there is a method with which
all MS-definable optimization problems can be solved by using a type of reduction algorithm.
Itis also interesting to find a language like MSOL to define optimization problems which are
finite integer index.

The constructive reduction algorithms presented in Chapter 6 can be applied to con-
structive decision problems which are of finite index and constructive optimization problems
which are of finite integer index, as long as the structure of solutions is suitable. This is the
case for many problems, but for instance not¢orREEWIDTH andk-PATHWIDTH. It would
be interesting to extend the methods presented in Chapter 6 such that they can also be applied
to these problems. A start with this is made for instance forREBwIDTH in Chapter 9.

In Chapters 8 and 9, we give efficient parallel reduction algorithms for the problem of
finding an sp-tree of a graph, if it is series-parallel, and the problem of finding a tree de-
composition of width at most two of a graph, if it has treewidth at most two. We do this
by giving constructive reduction systems for both problems, which can then be used in the
efficient parallel constructive reduction algorithm as given in Chapter 6. Both algorithms
improve in efficiency on previously known parallel algorithms for these problems. The re-
duction system for 2-REEWIDTH is an extension of the reduction system for series-parallel
graphs, since series-parallel graphs have treewidth at most two. It would be interesting to
extend the reduction system for 2REEWIDTH to a reduction system for 3REEWIDTH or
evenk-TREEWIDTH for any fixedk. These reduction systems however might become too
large to be practical, and thus new techniques might be necessary to turn the algorithms into
practical algorithms (as is also described above).

Using a result from Bodlaender and Hagerup [1995] and the parallel algorithm for 2-
TREEWIDTH, we also have an efficient parallel algorithm for 2ZFRwIDTH: first make a
tree decomposition of width at most two of the graph, then apply a procedure from Bod-
laender and Hagerup [1995] to construct a path decomposition of width at most two. Al-
though this procedure runs @(logn) time with O(n) operations on an EREW PRAM, it is
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not very practical. Therefore, it would be nice to find a more direct parallel algorithm for

2-PATHWIDTH, for instance by building a constructive reduction system and applying the
results of Chapter 6.
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Appendix A

Graph Problems

In this appendix, we give definitions of the graph problems that are used in this thesis. Most
graph problems are defined both for simple graphs and for multigraphs. If the problems are
mentioned in Garey and Johnson [1979], we give the number of the problem in this book
between square brackets.

For almost all of the problems defined in this appendix, there are two decision variants and
one optimization variant. In the first decision variant, S®OBLEM, the instance consists
of a graphG and an integek, and we ask whether a solution exists for the graph which has
value at least or at mo&t In the second decision variant, the integer is taken to be some
constank, and the instance consists of a graph only. The question is the same as for the first
decision variant, and the problem is denotedkbyrOBLEM for any fixed integek. In the
optimization variant, the instance is a graph, and we ask for the maximum or minimum value
of the integeik for which the decision problem has a ‘yes’ answer. The problem is denoted
by MAX PROBLEM or MIN PROBLEM, respectively (unless stated otherwise).

In this appendix, we only give definitions of the first variant of the decision problem:
the definitions of the other two variants follow directly. Each of the defined problems has a
constructive version, which follows directly from the context.

For definitions of tree decompositions and treewidth, see Definition 2.2.1. For path de-
compositions and pathwidth, see Definition 2.2.2.

TREEWIDTH

Instance: A graphG = (V,E), integerk > 1.

Question: DoesG have treewidth at mo4t i.e. doesG have a tree decomposition of width
at mostk?

PATHWIDTH

Instance: A graphG = (V,E), integerk > 1.

Question: DoesG have pathwidth at most i.e. doess have a path decomposition of width
at mostk?

A Hamiltonian circuitin a graphG is a simple cycle irG containing all vertices o. A
Hamiltonian pathin a graphG is a path inG containing all vertices ob.

HAMILTONIAN CIRCUIT [GT37]
Instance: A graphG = (V, E).
Question: DoesG contain a Hamiltonian circuit?
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HAMILTONIAN PATH [GT39]
Instance: A graphG = (V, E).
Question: DoesG contain a Hamiltonian path?

An independent saif a graphG is a sefW C V(G) such that no two vertices W are
adjacentinG.

INDEPENDENTSET [GT20]
Instance: A graphG = (V,E), integerk > 0.
Question: DoesG have an independent set of cardinality at ld&st

For any integek > 1, ak-coloringof a graphG is a partition(Vy, ... ,Vk) of V(G) such
that for each, V; is an independent set &.

COLORABILITY [GT4]
Instance: A graphG = (V,E), an integek > 1.
Question: DoesG have ak-coloring?

The minimization problem in which we ask for a minimum valuéd®ér which ak-coloring
exists, is denoted by KROMATIC NUMBER.
For definitions of layouts and bandwidth, see Definition 2.3.2.

BANDWIDTH [GT40]

Instance: A graphG = (V,E), an integek.

Question: DoesG have bandwidth at mo&t i.e. doe< have a layout of bandwidth at most
k?

The following problem is defined for all integeds> 0.

INDUCED d-DEGREESUBGRAPH

Instance: A graphG = (V,E), integerk > 0.

Question: Is there a se6 C V such that all vertices iG[S have degree at mog, and
1S > k?

Ford = 0, this is the NDEPENDENTSET problem.

VERTEX COVER[GT1]
Instance: A graphG = (V,E), an integek > 1.
Question: Is there a se C V such that for each edge,w} € E(G), ve Sorwe S and
S| < k?
The following problem is defined for any fixed integep 1.
p-DOMINATING SET
Instance: A graphG = (V,E), an integek > 1.
Question: Is there a seS C V such that all vertices i — Shave at leasp neighbors irS,
and|S| <k?.

For p =1, this is the DMINATING SET problem, numbered [GT2].
A cutin a graphG = (V,E) is a partition(V1,V2) of V.
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LARGE CUT [ND16]
Instance: A graphG = (V,E), integerk > 1.
Question: DoesG have a cutVi, Vo) such that{{v,w} e E |[ve V1 Aw € Vo}| > k?

The corresponding maximization problem is called MCuT.

PARTITION INTO CLIQUES [GT15]

Instance: A graphG = (V,E), an integek > 1.

Question: Is there a partition(V,...,Vs) of V in which for eachi, 1<i <s, G[V] is a
complete graph, ansi< k?

COVERING BY CLIQUES[GT17]

Instance: A graphG = (V,E), an integek > 1.

Question: Is there a sefVi,...,Vs}, in which for eachi, 1<i<s Vi CV, GV]is a
complete graph, and for each edge E, there is an, 1<i <'s, such thae € E(G[V|]), and
furthermores < k?

HAMILTONIAN CIRCUIT COMPLETION[GT34]

Instance: A graphG = (V,E), an integek > 0.

Question: Is there a sef C {{u,v} | u,veV}, such thaG’ = (V,EUF) contains a Hamil-
tonian circuit, andF| < k?

HAMILTONIAN PATH COMPLETION

Instance: A graphG = (V,E), an integek > 0.

Question: Is there a sef C {{u,v} | u,veV}, such thaG’ = (V,EUF) contains a Hamil-
tonian path, an¢F| < k?.

A spanning treef a graphG = (V,E) is a subgrapi = (V,F) of G which is a tree.

LEAF SPANNING TREE[NDZ2]
Instance: A graphG = (V,E), an integek > 1.
Question: Is there a spanning tree &fin which at leask vertices have degree one?

LONG PaTH [ND29]
Instance: A graphG = (V,E), an integek > 1.
Question: DoesG have a path of length at lede?

The corresponding maximization problem is calledNGESTPATH.

LoONG CycLE [ND28]
Instance: A graphG = (V,E), an integek > 1.
Question: DoesG have a cycle of length > 17?

The corresponding maximization problem is calledNGESTCYCLE.

The following seven problems are only used in Chapter 4. For definitions of sandwich
graphsk-intervalizationsk-unit-intervalizations, and the (proper) pathwidth and bandwidth
of sandwich graphs, see Section 4.1 and Section 4.3.
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INTERVALIZING SANDWICH GRAPHS(ISG)
Instance: A sandwich grapts= (V,E1,Ey), an integek > 1.
Question: Is there &-intervalization ofS?

INTERVALIZING COLORED GRAPHS(ICG)
Instance: A simple graptG = (V,E), an integek > 1 and ak-coloringc for G.
Question: Is there &-intervalization ofG andc?

UNIT-INTERVALIZING SANDWICH GRAPHS(UISG)
Instance: A sandwich grapts= (V,E1,Ey), an integek > 1.
Question: Is there &-unit-intervalization ofS?

UNIT-INTERVALIZING COLORED GRAPHS (UICG)
Instance: A simple graptG = (V,E), an integek > 1 and ak-coloringc for G.
Question: Is there &-unit-intervalization ofG andc?

SANDWICH PATHWIDTH
Instance: A sandwich grapts= (V,E1, E2), an integek > 1.
Question: DoesS have pathwidth at mogt— 1?

SANDWICH PROPERPATHWIDTH

Instance: A sandwich grapts= (V,E1,Ey), an integek > 1.

Question: DoesS have proper pathwidth at madst- 1, i.e. is there a proper path decompo-
sition of S?

SANDWICH BANDWIDTH

Instance: A sandwich grapls= (V,E1, E>), integerk > 1.

Question: DoesS have bandwidth at mo&t— 1, i.e. is there a legal layout of bandwidth at
mostk — 1 of S?

The following two problems are only used in Chapter 8. For definitions of source-sink
labeled graphs, series-parallel graphs and sp-trees, see Section 2.3.3.

SOURCE-SINK LABELED SERIES-PARALLEL GRAPH
Instance: A source-sink labeled multigrage, s, t).
Question: Is (G, s,t) series-parallel, i.e. is there an sp-tree(f@rs,t)?

For directed input graphs, this problem is denoted by DLSPG, for indirected input graphs by
LSPG.

SERIES-PARALLEL GRAPH
Instance: A multigraphG.
Question: Is G series-parallel, i.e. is there an sp-tree &

For directed input graphs, this problem is denoted by DSPG, for indirected input graphs by
SPG.

The following problem is only used in Chapter 9 (for definitions of a labeled multigraph
and the treewidth of such a graph, see Section 9.1).
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TREEWIDTH AT MOST Two (TW2)
Instance: A connected labeled multigragh

Question: DoesG have treewidth at most two, i.e. is there a tree decomposition of width at
most two ofG?
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Samenvatting

Veel problemen uit de praktijk kunnen worden gemodelleerd als optimaliserings- of beslis-
singsproblemen op grafen. Denk bijvoorbeeld aan het probleem waarbij een koerier een
aantal pakketjes moet afleveren op verschillende adressen in het land. De manager van de
koerier wil dat hij een zo kort mogelijke route aflegt die begint en eindigt bij het koeriers-
bedrijf, en die alle adressen aandoet. Het probleem om zo’n kortste route te vinden is het
zogenaamdeandelsreizigersprobleenDe invoer kan worden gemodelleerd als een graaf,
waarbij elke knoop in de graaf een adres vertegenwoordigt en elke kant tussen twee knopen
de weg tussen de corresponderende adressen. Elke kant heeft een gewicht dat aangeeft hoe
lang de corresponderende weg is. Het probleem is dan om een cykel in de graaf te vinden die
alle knopen bevat en waarvoor de som van de gewichten van alle kanten in de cykel minimaal
is.

Helaas is het zo dat de meeste problemen op grafen die praktische problemen modelleren
lastig zijn in die zin, dat er waarschijnlijk geen ef@aite algoritmen zijn die deze problemen
oplossen. Formeel gezegd zijn deze problemen NP-lastig. Het handelsreizigersprobleem is
een voorbeeld hiervan. Een manier om hiermee om te gaan is om te kijken of er in het
probleem uit de praktijk een structuur zit die maakt dat het probleemesftai’is op te
lossen. Het kan bijvoorbeeld zo zijn dat het gegeven probleem in het algemeen lastig is, maar
dat de grafen die in de praktijk voorkomen een dusdanige structuur hebben dat er wel een
efficiént algoritme voor het probleem bestaat.

Een voorbeeld van een prettige graafstructuur iddemstructuur het blijkt dat veel
graafproblemen die in het algemeen lastig zijn, een efiicélgoritme hebben wanneer de
graaf een boom is. Helaas is de boomstructuur erg beperkt: er zijn maar weinig praktische
problemen die kunnen worden gemodelleerd als problemen op bomen. In dit proefschrift kij-
ken we daarom naar een generalisatie van deze structuur, en dat is dechtigestructuur:
we kijken naar grafen mdioombreedtdooguitk of padbreedtehooguitk, waarbijk een
positief geheel getal is.

Intuitief gezien geeft de boombreedte van een graaf de mate aan waarin de graaf op een
boom lijkt: hoe groter de gelijkenis, hoe kleiner de boombreedte. Met een graaf van boom-
breedte&k kan een boom worden geassocieerd waarbij elke knoop van de boom correspondeert
met een deelgraaf van de graaf op een zodanige manier dat

¢ elke knoop en elke kant van de graaf in tenminste een knoop van de boom voorkomt, en

¢ voor elke knoow in de graaf geldt dat de knopenin de boomwlievatten een verbonden
deelboom vormen.
Zo’n boom bestaande uit deelgrafen wordt é@mmmdecompositiean de graaf genoemd.
De breedte van de boomdecompositie is het maximaal aantal knopen van de graagdat in
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knoop van de boomdecompositie voorkomt, reém.” De boombreedte van een graaf is de
minimale breedte over alle boomdecomposities van de graaf (een boom heeft boombreedte
één). Eenpaddecompositigan een graaf is een boomdecompositie die de vorm heeft van
een pad. De padbreedte van een graaf is de minimale breedte over alle paddecomposities van
de graaf. Dus de boombreedte van een graaf is altijd ten hoogste gelijk aan z'n padbreedte.

Voor veel problemen zoals het handelsreizigersprobleem is er eerffidgoritme op
grafen met kleine boombreedte. Het blijkt dat er veel praktische graafproblemen zijn waar-
voor de invoergraaf een kleine boombreedte heeft. Bij al deze problemen helpt dit gegeven
bij het vinden van een effieiiter algoritme. Deze algoritmen maken meestal gebruik van
een boomdecompositie van de graaf met kleine breedte. Daarom is het nodig om eerst zo'n
boomdecompositie van de graaf te vinden. Hiervoor zijn effitd algoritmen beschikbaar,
zowel sequentieel als parallel.

Helaas is het zo dat veel algoritmen op grafen met een kleine boombreedte alleen in
theorie efficient zijn: de looptijd van de algoritmen is vaak exponentieel in de boombreedte
van de graaf. Dit geldt bijvoorbeeld voor de algoritmen voor het vinden van een boom- of
paddecompositie van breedte hooduian een graaf, waarkijconstant is.

Het doel van dit proefschrift is om effieite sequeraié en parallelle algoritmen te ont-
werpen voor problemen op grafen met een kleine boom- of padbreedte. Het doel is om
algoritmen te ontwerpen die niet alleen theoretisch efficzijn, maar die ook in praktische
toepassingen effieiit kunnen zijn.

Het proefschrift is als volgt georganiseerd. Hoofdstuk 1 geeft een inleiding. In hoofd-
stuk 2 worden formele definities van boom- en padbreedte gegeven, en wordt een aantal ei-
genschappen en bekende resultaten over grafen met een kleine boom- en padbreedte gegeven.
Verder worden definities gegeven die worden gebruikt in de rest van het proefschrift.

In hoofdstuk 3 geven we een volledige karakterisatie van grafen met padbreedte twee.
Deze karakterisatie wordt vervolgens gebruikt voor een efiicéequentieel algoritme dat
beslist of een graaf padbreedte ten hoogste twee heeft en, als dat zo is, een paddecompositie
van minimale breedte vindt. De karakterisatie wordt ook gebruikt in de algoritmen die zijn
beschreven in hoofdstuk 4.

Hoofdstuk 4 gaat over twee problemen welke hun oorsprong vinden in de moleculaire
biologie. In beide problemen bestaat de invoer uit een aantal @opi@i een DNA string
welke in fragmenten zijn opgedeeld. Voor elk paar van fragmenten is informatie beschikbaar
over de overlap tussen die twee fragmentenwé weten dat de fragmenten zeker overlappen,
of we weten dat ze zeker niet overlappefwe weten niets. Met behulp van deze informatie
moet de volledige overlap informatie tussen elk tweetal fragmenten worden berekend, dat wil
zeggen dat voor elk tweetal fragmenten moet worden berekend of ze wel of niet overlappen.
Dit probleem heek-INTERVALIZING SANDWICH GRAPHS of k-ISG, waarbijk het aantal
copiegn is dat is gefragmenteerd. In de tweede variant is ook nog bekend dat alle fragmenten
gelijke lengte hebben. Deze variant hied NIT-INTERVALIZING SANDWICH GRAPHSOf k-

UISG. De invoer van beide problemen kan worden gemodelleerd als een graaf. Het blijkt dat
de volledige overlap informatie alleen kan worden berekend wanneer die graaf padbreedte
ten hoogstek heeft, waarbijk weer het aantal copési‘is. In Hoofdstuk 4 geven we een
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kwadratisch algoritme voor 3-ISG, en we bewijzen k&G NP-moeilijk is wanneek > 4.
Verder geven we een lineair algoritme voor 3-UISG.

Hoofstukken 5 — 9 gaan over een speciaal soort algoritmen, nametijictie algorit-
men Een reductie algoritme is een algoritme waarin een reeks reducties wordt uitgevoerd op
de invoergraaf. Het gedrag van de reducties is beschreven in een verzameling van reductie
regels, welke afhangen van het probleem waarvoor het algoritme is. Wanneer de reductie re-
gels aan bepaalde voorwaarden voldoen kan het reductie algoritme lineaire tijd gebruiken (of
logaritmische tijd in het geval van een parallel reductie algoritme). De reductie algoritmen
zijn eenvoudig: de moeilijkheden van het probleem zitten verstopt in de verzameling reductie
regels, en niet in het algoritme.

Er zijn hele klassen van problemen op grafen met begrensde boombreedte waarvoor een
verzameling van reductie regels kan worden geconstrueerd. Het voordeel van reductie algo-
ritmen voor het oplossen van problemen op grafen met begrensde boombreedte is dat er geen
boomdecompositie van de graaf nodig is: de algoritmen werken direct op de graaf.

In hoofdstuk 5 geven we een overzicht van de bestaande teaan&t reductie algorit-
men. We combineren verschillende bestaandecidesi presenteren ze als een geheel. Dit
hoofdstuk is tevens een inleiding voor hoofdstukken 6 — 9.

Reductie algoritmen hebben als nadeel dat ze alleen optimaliserings- en beslissingspro-
blemen kunnen oplossen: bij een optimaliseringsprobleem wordt alleen de optimale waarde
teruggegeven, maar niet een oplossing waarvoor de waarde optimaal is. Bij beslissingspro-
blemen wordt alleen het antwoord ‘ja’ of ‘nee’ gegeven, maar als het antwoord ‘ja’ is wordt
geen oplossing gegeven. In hoofdstuk 6 breiden we de theorie van reductie algoritmen uit
naarconstructieve reductie algoritmemelke ook een (optimale) oplossing teruggeven, mits
er een is. We laten zien dat voor veel problemen op grafen met begrensde boombreedte waar-
voor reductie algoritmen kunnen worden toegepast, ook de constructieve reductie algoritmen
kunnen worden toegepast.

In hoofdstuk 7 passen we de theameielke zijn gepresenteerd in hoofdstukken 5 en 6
toe op een aantal optimaliseringsproblemen.

In hoofdstukken 8 en 9 gebruiken we de theenieit hoofdstuk 6, aangevuld met nieuwe
ideeen, om efficénte, constructieve parallelle reductie algoritmen te verkrijgen voor de vol-
gende twee aanverwante problemen:

e gegeven een graaf, bepaal of hij series-parallel is, en zo ja, vind dan een ‘sp-boom’ van
de graaf,

e gegeven een graaf, bepaal of hij boombreedte hooguit twee heeft, en zo ja, maak een
boomdecompositie van breedte twee van de graaf.

In hoofdstuk 10 vatten we de resultaten uit dit proefschrift nog eens samen, en geven we
wat richtingen aan voor verder onderzoek.

Appendix A bevat een opsomming van definities van alle graafproblemen welke worden
gebruiktin het proefschrift.
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