
Termination of term rewriting

Well-foundedness, totality and transformations

Terminatie van termherschrijfsystemen
Welgefundeerdheid, totaalheid en transformaties

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit Utrecht

op gezag van de Rector Magni�cus, Prof. dr. J. A. van Ginkel
ingevolge het besluit van het College van Decanen

in het openbaar te verdedigen
op maandag 20 november 1995 des middags te 14.30 uur

door
Maria da Concei�c~ao Fern�andez Ferreira

geboren op 23 maart 1962
te Lissabon

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39700255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Promotor: Prof. dr. J.-J. Ch. Meyer
Co-Promotor: dr. H. Zantema

Faculteit Wiskunde en Informatica

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Ferreira, Maria da Concei�c~ao Fern�andez
Termination of term rewriting: well-foundedness, totality
and transformations / Maria da Concei�c~ao Fern�andez Ferreira. -
Utrecht: Universiteit Utrecht, Faculteit Wiskunde en Informatica
Thesis Universiteit Utrecht. - With summary in Dutch.
ISBN 90-393-1231-1
Subject headings: term rewriting systems; termination

The research of this thesis was supported by the Netherlands
Organisation for Scienti�c Research (NWO) under grant
612-16-605 (612-316-041).

A Manuela, Dani�el

y Kiko

Contents

Acknowledgements iii

1 Introduction 1

2 Preliminaries 5
2.1 Sets, Relations and Orders . 5
2.2 Term Rewriting Systems . 15

2.2.1 Equational Rewriting . 19
2.3 Orders on Terms . 21
2.4 Termination . 23

2.4.1 Path Orders . 25
2.4.2 Monotone Algebras . 27
2.4.3 Undecidability Questions . 38

2.5 Conclusions . 42

3 Well-foundedness of Term Orderings 45
3.1 Introduction . 45
3.2 Liftings and Status . 46
3.3 Finite Signatures . 48

3.3.1 Main Result . 48
3.3.2 Completeness Results . 50

3.4 In�nite Signatures . 53
3.4.1 Precedence-based Orders . 53
3.4.2 Generalizing Liftings on Orders . 57

3.5 Semantic Path Order and General Path Order 60
3.6 Conclusions . 62

4 On Recursively De�ned Term Orders 65
4.1 CPO's and Continuous Functions . 65
4.2 De�ning spo and rpo . 67

4.2.1 Well-foundedness of spo, rpo . 74
4.2.2 Some Remarks on Quasi-orders . 74

4.3 Revisiting rpo and kbo Orders . 83

i

ii Contents

4.4 Making rpo and kbo Total . 83
4.5 Conclusions . 96

5 Total Termination of Term Rewriting 99
5.1 Tools from Ordinal Theory . 100
5.2 Multisets and Binary Functions . 106
5.3 Extension to Higher Ordinals and Modularity 108
5.4 String Rewriting Systems . 112
5.5 Minimal Ordinals . 114
5.6 Characterizing Total Termination . 121
5.7 Conclusions . 130

6 Termination by Transformation 131
6.1 Motivation . 131
6.2 General Dummy Elimination . 133

6.2.1 Ordering Trees . 135
6.3 Transforming the TRS . 142
6.4 Eliminating Constants . 165
6.5 Comparing Transformations . 171

6.5.1 Eliminating Distribution Rules . 180
6.6 Final Remarks . 182

A A note on Well-founded Orders 185
A.1 The Problem . 185
A.2 The Proof . 186
A.3 Another Solution . 189
A.4 Remarks . 189

B Undecidability of termination 191
B.1 Turing Machines . 191
B.2 De�ning the TRS . 192
B.3 Using Many-sorted TRS's . 198
B.4 Huet and Lankford's approach . 200

Bibliography 203

Index 213

Samenvatting 217

Curriculum Vitae 221

Acknowledgements

I would like to acknowledge every person that in a way or another had some inuence in the
elaboration of this thesis.

To the Netherlands Organisation for Scienti�c Research (NWO) I thank the �nancial support
I received from them. I thank the department of Computer Science at Utrecht University for
providing such a nice working environment. I also thank my colleagues for their helpfulness:
lending a dictionary, correcting my Dutch, helping with LATEX, (thanks Piet) or simply listening
to my ravings, there was always somebody there.

The meetings of the TeReSe group at Amsterdam and the meetings of the FIP group at
Utrecht taught me things I wouldn't otherwise have learnt. They also gave me the chance to
expose my work and get helpful comments; my thanks to all the participants.

The review comittee of this thesis was formed by Prof. dr. P. Lescanne, Prof. dr. J.
A. Bergstra, Prof. dr. J. W. Klop and dr. A. Middeldorp. To all of them my thanks and
appreciation for accepting this task and for the comments and suggestions given. I also want to
thank my promotor Prof. dr. J.-J. Ch. Meyer for his advice and comments on earlier versions
of this manuscript.

Hans Zantema is my co-promotor and has been my supervisor for the last (almost) four years.
He is a very enthousiastic and encouraging researcher; we had countless fruitful discussions
about our work. It is di�cult to express what his supervision meant for the elaboration of this
thesis; I just want to say that it was a privilege to work with him.

I also want to thank my friends for their help and support. Aart did a terri�c job proof-
reading the work (answering his remarks was sometimes quite funny); thanks also to Femke
for her comments and her friendship (and the greetings to \de generaal"), thanks to Dani�el
for the translation work. The lunches with M�arcia, the support of people like Adriana, Maribel
and Delia, Margarida and Vasco, helped me keeping in touch with my roots. To them, and the
unnamed ones, many thanks.

These acknowledgements would be quite incomplete without mentioning my family. Grand-
mother Manuela, and my parents Maria del Carmen and Victor, have always guided me. They
and the rest of the family lent support and patience; my apologies to all for being away so long.

At home, I was lucky enough to have Dani�el and Kiko. They made sure I kept my mental
sanity through the bad periods, and that I enjoyed the simple pleasures of everyday life.

I had the good fortune of writing this thesis in a foreign country. It was, and is, an extremely
enriching experience, full of both exciting moments and pitfalls. At the end, not only the �nal
result is important but perhaps even more so, the whole way that led to it. This is why I would

iii

iv Acknowledgements

like to close these acknowledgements with an excerpt of the poem �Itaca, by the Greek poet
Constantin Cavafy.

: : : : : :
Ter�as sempre �Itaca no teu esp��rito,
que l�a chegar �e o teu destino �ultimo.
: : : : : :
�Itaca deu-te essa viagem esplêndida.
Sem �Itaca n~ao terias partido.
Mas �Itaca n~ao tem nada mais para dar-te.

Por pobre que a descubras, �Itaca n~ao te traiu.
S�abio come �es agora, senhor de tanta experiência,
ter�as compreendido o sentido de �Itaca.

Chapter 1

Introduction

Rewriting is a relatively new technique developed in Computer Science; as its name indicates it
is a technique concerned with replacement of some objects by other objects following certain
rules. Rewriting arises very naturally when reasoning about equations. Consider for example
the natural numbers represented as 0; s(0); s(s(0)); : : : , and the following equations specifying
the maximum of two natural numbers

max(x; 0) = x
max(0; x) = x

max(s(x); s(y)) = s(max(x; y))

If we want to determine what max(s(s(0)); s(s(s(0)))) is, a possible way of doing it is to reason
as follows:

max(s(s(0)); s(s(s(0)))) = s(max(s(0); s(s(0))))
= s(s(max(0; s(0))))
= s(s(s(0)))

What is peculiar about the above reasoning is that the equations specifying max have been used
in one direction. This one-directional use of equations leads to rewriting. A rewrite system is
then a set of oriented equations or rules describing some relation between some objects. If our
objects are terms in a \term algebra", we talk about term rewriting systems.

Consider the next example of a rewriting system (where the symbol! denotes in an obvious
way what the intended direction of the rule is)

white red ! red white

blue white ! white blue

blue red ! red blue

Our objects are sequences over the alphabet fblue; white; redg, and the rules dictate what
transformations can be applied to those sequences. This system represents the \Dutch National
Flag" game and traces its origins back to Dijkstra [30] (see also Dershowitz and Manna [27]).
We will use it to illustrate some of the main concepts involved in term rewriting.

Consider the term
blue white red white blue

1

2 Chapter 1. Introduction

In order to obtain a (one-step) reduction from the term, we have to identify a part of it that
matches the lefthand-side of some rewrite rule and then replace that matched part of the term
with the righthand-side of the rule matched (in the presence of variables this is a little more
complicated but the basic idea is the same). In Figure 1.1, we show all possible reductions for
the term considered.

blue white red white blue

��������9

XXXXXXXXz

white blue red white blue blue red white white blue

? ?

white red blue white blue red blue white white blue

?

XXXXXXXXXXXXXXXXXz ?

white red white blue blue red white blue white blue
Z
Z
Z
Z
Z~

�
�
�

�
�=

red white white blue blue

Figure 1.1: All possible reductions of the term blue white red white blue.

From this example we see that there are terms that may admit more than one reduction
sequence. In our case, the term blue white red white blue admits the three reduction
sequences shown in Figure 1.1 (in the leftmost sequence we always reduce the underlined
terms, in the rightmost sequence we reduce the overlined terms and in the sequence going
from left to right we start by reducing underlined terms and then go on reducing overlined
terms). When several reduction sequences exist for a term, it may or may not be possible to
join the di�erent reductions, i. e., to �nd another term such that all reduction sequences end
in that term. Systems in which this is possible are called conuent or said to have the Church-
Rosser property. There are also terms that admit no reduction sequences, i. e., they are normal
forms. Normal forms play an important role in the theory of rewriting and of particular interest
are the systems in which each term admits a normal form (especially if the normal form is
unique). Normal forms are related to another important property of rewriting systems, namely
termination. A rewriting system is said to be (uniformly) terminating , strongly normalizing or
noetherian, if no term admits an in�nite reduction sequence.

Term rewriting systems (TRS's) constitute a simple formalism useful for the study of com-

3

putational procedures. For equational reasoning, for example, term rewriting systems are used
as interpreters for equational programs O'Donnell [84], for solving uni�cation problems, Fay
[31], in Knuth-Bendix completions, Knuth and Bendix [63] (where given an equational theory a
TRS is constructed proving the same equations as the original theory, and providing a solution
for the validity problem in the theory), proof by consistency procedures, Musser [80], abstract
data types speci�cations and so forth.

Also of interest are several extensions of (�rst-order) rewriting. We mention some: graph-
rewriting, Barendregt et al. [4], rewriting modulo equational theories, Jouannaud and Kirchner
[50], Bachmair [1], Dershowitz and Jouannaud [26], term rewriting with priorities, Baeten,
Bergstra and Klop [2], order-sorted rewriting, Goguen, Jouannaud and Meseguer [43], in�nite
rewriting, Kennaway, Klop, Sleep and de Vries [58], conditional rewriting, Brand, Darringer and
Joyner Jr. [10], Bergstra and Klop [7], Dershowitz, Okada and Sivakumar [28], higher-order
rewriting, Klop [60], Wolfram [105], Nipkow [83], van Oostrom [103]. Included in the last group
are �-Calculus, Church [12], Barendregt [3], used to formalize the notion of computability, and
Combinatory Logic, Sch�on�nkel [98], Curry [13, 14], Curry and Feys [15], Curry, Hindley and
Seldin [16], which has proved itself very useful in the implementation of programming languages.

Overview of the thesis

This thesis is about termination of rewriting. Our setting is �rst-order term rewriting,
extended in the last chapter to rewriting modulo equations. In general, given a �nite TRS
it is undecidable if the TRS terminates or not; there are nevertheless some techniques that
are successful in particular cases. Generally speaking those techniques can be divided into
two main groups: syntactical methods and semantical methods. In the �rst class only the
syntactical structure of the terms is used to devise a proof of termination. The best known
method of this type is probably the recursive path order (rpo) of Dershowitz [22]. In the
second class, terms are interpreted compositionally in some (well-founded monotone) algebra
in order to prove termination of the system. However, at the core of both classes of methods
lies a well-founded order. Indeed, well-foundedness is the essential property needed for proving
termination. Unfortunately checking if a particular order is well-founded is usually a di�cult
task. In chapter 3 we investigate this important property for orders on terms and give new
criteria, in the style of Kruskal's theorem, that can be used to infer well-foundedness. The
results obtained there can be applied, in particular, to prove well-foundedness of an extended
version of the recursive path order that is de�ned in chapter 4. It turns out that recursive path
order, though being a syntactic method, �ts nicely in the semantic framework, as we see in
chapter 4. In this chapter we also investigate the problem of de�ning path orders recursively and
give a general framework for proving well-de�nedness of such orders. In chapter 5 we concentrate
on the study of TRS's for which a proof of termination can be given by interpretation of terms
in a total well-founded monotone algebra. TRS's having this property are said to be totally
terminating . Interestingly enough, the class of totally terminating TRS's contains the class of
TRS's for which a proof of termination using rpo can be given. Finally, in chapter 6 we present
a method for simplifying the task of proving termination of TRS's. The method consists of
transformations on TRS's induced by transformations on terms, that are sound with respect to

4 Chapter 1. Introduction

termination (i. e., if the transformed system terminates, so does the original one). The method
remains valid for rewriting modulo a set of equations as long as the equations satisfy some
minor restrictions.

We summarize what we believe are the main results in this thesis:

� the new criteria for proving well-foundedness of term orderings; unlike Kruskal's theorem,
our criteria cover all terminating TRS's.

� the characterization of the algebras associated to totally terminating TRS's and modu-
larity of total termination.

� a new transformational method for proving termination; we emphasize that, unlike most
syntactical methods, this approach remains valid in the presence of equations.

We review briey the chapters and subjects not yet mentioned. In chapter 2 we will introduce
the main concepts of the theory of rewriting and of orders. With respect to termination, we
will concentrate on the semantical framework; well-founded monotone algebras will be de�ned
and linked to termination of TRS's. Terminating TRS's can be divided in categories based on
the properties of the algebras used for termination proofs; such a classi�cation is presented and
discussed. We will also discuss undecidability of termination. As mentioned before, in chapter
5 we will concentrate on total termination. A lot of the techniques used in this chapter come
from the theory of ordinals. In order to keep the thesis self-contained, we will give a summary
of the theory of ordinals needed.

In Appendix A we present a proof of a well-known result about extending well-founded
orders to total well-founded ones. The reason why we include such a well-known result is that
it is quite hard to �nd a proof of it in the literature. Finally in Appendix B contains a proof of
undecidability of termination and a comparison between the proof given and the work of Huet
and Lankford [47].

Most of the results presented in this thesis have already been published elsewhere. Chapter
3 was presented in Ferreira and Zantema [34], chapter 4 is based on Ferreira and Zantema [33]
and chapter 5 on Ferreira and Zantema [32, 33]. Chapter 6 is unpublished (though it originates
in the work presented at Ferreira and Zantema [35]).

As far as dependecies between the chapters are concerned, chapter 2 contains most of the
notions needed to read the rest of the thesis so its reading should precede the reading of any
other chapter. As for chapters 3, 4, 5 and 6, and appendices A and B, though obviously
connected, they can be read as independent units, so no order is imposed. We suggest the
order in which they are presented since it seemed the most natural to us.

Chapter 2

Preliminaries

In this chapter we introduce most of the notions over �rst-order term rewriting and partial orders
needed in the sequel. More complete information about term rewriting and its applications can
be found in the surveys of Klop [61], Dershowitz and Jouannaud [26], and Plaisted [89]. For
more information on partial orders, see for example Fra��ss�e [37].

Throughout this chapter (and the rest of the thesis) we will use the following convention:
whenever an object (relation, set, etc.) is de�ned inductively, we always have in mind the
smallest object of the same type as the one being de�ned, satisfying the conditions speci�ed in
the de�nition, i. e., all other objects of the same type satisfying the conditions of the de�nition,
will contain the object being de�ned.

2.1 Sets, Relations and Orders

Given sets Ai, with 1 � i � n, for some �xed natural n � 0, their cartesian product is given
by A1 � : : : � An = f(a1; : : : ; an) : ai 2 Ai for all 1 � i � ng; if n = 0, the cartesian
product contains only one element. If Ai = A for all 1 � i � n, we abbreviate this product
to An. For any set S, the set of its parts or powerset is denoted by P(S) and de�ned by
P(S) = fAj A � Sg.

Given n sets Si, 1 � i � n, a n-ary relation � over S1� : : :�Sn is a subset of S1� : : :�Sn.
Most of the relations we will be concerned with are binary relations, i. e., subsets of A�B, for
some sets A;B. For this type of relation, we use the notation (u; v) 2 � or u�v meaning that
the elements u and v are in the relation �. Given two (binary) relations � and � over A� B
and B � C, respectively, for some sets A;B;C, their composition is denoted by � � � and is
a (binary) relation on A� C, de�ned as follows.

(u; v) 2 � � � () 9w 2 B : (u; w) 2 � ^ (w; v) 2 �

If � is a binary relation over a set S, we use the notation �n to denote the composition
of � with itself n times (if n = 0 then �0 is the identity, i. e. the relation containing the
pairs (s; s), for any element s in S). Composition of relations is an associative operation, i. e.,
� � (� ��) = (� � �) ��, whenever the compositions are well-de�ned.

5

6 Chapter 2. Preliminaries

Given a binary relation � over A�B, its inverse is denoted by ��1 and is a binary relation
on B � A given by b��1a () a�b.

A function f : A ! B (where A is said to be the domain of the function and B its
codomain) is a particular kind of relation, since it can be represented (and represents) the set
f(a; f(a))j a 2 Ag � A � B. Among the properties of functions we are interested in are the
following:

� injectivity : 8x; y 2 A : f(x) = f(y)) x = y,

� surjectivity : 8y 2 B 9x 2 A : f(x) = y.

A function which is simultaneously injective and surjective is called bijective or said to be a
bijection. In this case the sets A and B are in a one-to-one correspondence.

Composition of functions is also denoted by \�" and de�ned as follows. If f : A! B and
g : B ! C are functions, its composition is the function g � f : A ! C with (g � f)(x) =
g(f(x)). Composition of functions, when de�ned, is also an associative operation.

We will use a particular kind of function named projection . If A = A1 � : : : � An,
n � 1, for some sets Ai, 1 � i � n, the projection of order i, or ith projection is a function
�i : A1 � : : :� An ! Ai given by �i(a1; : : : ; an) = ai.

De�nition 2.1. A binary relation � on a set S is said to be

� (ir)reexive if (:)s�s, for all s 2 S,

� symmetric if � satis�es (u�v) v�u), for all u; v 2 S,

� anti-symmetric if � satis�es (u�v ^ v�u) u = v), for all u; v 2 S,

� transitive if � satis�es (u�v ^ v�w) u�w), for all u; v; w 2 S.

De�nition 2.2. Given a binary relation �, the reexive closure of � is denoted by �= and is
the smallest reexive binary relation containing �. The transitive closure of � is denoted by
�+ and is the smallest transitive binary relation containing �. The transitive-reexive closure
of � is denoted by �� and is the smallest transitive and reexive binary relation containing �.

Remark 2.3. It is not di�cult to see that for a binary relation � � S � S, its transitive
closure satis�es �+ =

S
n�1�

n, and its transitive-reexive closure satis�es �� =
S
n�0�

n.
Note also that �+ = � ��� = �� ��.

De�nition 2.4. A binary relation � on a set S is said to be an equivalence relation if it is
reexive, symmetric and transitive. The set S=� = fhsi�j s 2 Sg is the quotient of S modulo
� and hsi� is the �-equivalence class of the element s 2 S, i. e., hsi� = fx 2 Sj x � sg.

Note that the equivalence class of an element does not depend on the element chosen for
its representative. In the following when describing equivalence classes we will only explicitly
indicate which equivalence we refer to if that is not clear from context.

2.1. Sets, Relations and Orders 7

De�nition 2.5. A binary relation on a set S is called a (strict) partial order , or simply order ,
over S if it is a transitive and irreexive relation on S. We use the terminology poset meaning
a set with a partial order. The partial order is usually denoted by > and its inverse by <.

Note that the inverse of a partial order is also a partial order. Furthermore, a partial order
can also be characterized by reexivity, anti-symmetry and transitivity. It is not di�cult to see
that there is a one-to-one correspondence between strict partial orders and partial orders. In
the following we will use the terminology partial order in the strict sense.

De�nition 2.6. A quasi-order over a set S is a transitive and reexive relation over S. We
denote such relations in general by �.

Quasi-orders also appear in the literature under the name pre-orders. Any quasi-order de�nes
an equivalence relation, namely �\�, and a partial order, namely �n� (or its inverse �n�).
We usually denote the induced equivalence relation by � and the induced partial order by �.
But when need arises, we will also use the following notation:

De�nition 2.7. If � is a quasi-order over a set S then ord(�) = �n� and eq(�) = �\�,
i. e., ord(�) represents a partial order contained in �, and eq(�) represents the equivalence
relation contained in �.

Conversely, given a partial order � and an equivalence �, their union does not always de�ne
a quasi-order (the transitive closure of their union does). However if � and � satisfy

(� � � � �) � � (2.1)

where � represents composition, then � [� is a quasi-order, of which � is the strict part
and � the equivalence part.

Remark 2.8. From now on if we characterize a quasi-order via � [�, we assume that the
condition (2.1) is satis�ed. Also we take as partial order de�ned by a quasi-order � the relation
� = � n �. Note that if � and � satisfy condition 2.1, then � \� = ;, as we want it to
be: if this condition is not satis�ed we have that a � b � a, for some elements a; b, and this
conicts either with irreexivity or condition 2.1.

De�nition 2.9. Given a quasi-order � over S and the quotient S=� consisting of the (�-)
equivalence classes of � (which are are denoted by h i), we can extend � to S=� in a natural
way, namely by de�ning hsi = hti if and only if s � t.

The following lemma is not di�cult to prove.

Lemma 2.10. In the conditions of de�nition 2.9, the relation = on S=� is well-de�ned.
Furthermore = is a partial order over S=�.

8 Chapter 2. Preliminaries

Note that well-de�nedness means that = does not depend on the class representative and
is a consequence of the fact that � and � satisfy condition (2.1). When the extension = is
well-de�ned we abusively write � instead of =.

De�nition 2.11. Let > (respectively �) be a partial order (respectively quasi-order) on a
set S and let >0 (respectively �0) be a partial order (respectively quasi-order) on a set S 0. A
function f : S ! S 0 is said to be:

� order-preserving or weakly monotone if 8x; y 2 S : x � y) f(x) �0 f(y),

� (strictly) monotone or (strictly) increasing if 8x; y 2 S : x > y) f(x) >0 f(y),

� order-isomorphism if it is bijective and satis�es: 8x; y 2 S : x � y () f(x) �0 f(y).
If � is anti-symmetric then bijectivity is replaced by surjectivity.

De�nition 2.12. Given two partial orders >;>0 (respectively quasi-orders � and �0) over
some set S, we say that > extends >0 (respectively � extends �0) if and only if >0 � >
(respectively �0 � � and �0 � �).

Remark 2.13. In the case of quasi-orders, we could de�ne extension simply as � � �0.
However this would not allow us to say anything about the relation between the respectives
strict and equivalence parts associated with the quasi-orders. The following example illustrates
what we mean. Suppose S = fa; bg and that �, �0, in addition to the reexive property, satisfy
a � b while not b � a, and a �0 b, b �0 a. Clearly � � �0 but we have � = f(a; b)g;� =
f(a; a); (b; b)g and �0 = ;;�0 = S � S. Since we want to avoid this situation we de�ne
extension as in 2.12.

Before introducing the de�nition of well-foundedness we make some comments on the notion
of sequence and indexing. A sequence of elements of a set S is just a function � : I ! S,
where I represents a set of indexes. The function � is an indexing function; we will use indexing
over the natural numbers (or parts of it) and ordinals. Usually a sequence is represent by
(si)i2I , instead of giving the function � explicitly. Actually si = �(i), so the function is implicit
in the notation. A sub-sequence (ti)i2I of a sequence (si)i2I is given by a injective function
� : I ! I such that ti = �(�(i)) = s�(i), for all i 2 I, and where � is the function giving the
sequence (si)i2I . When the set I is partially ordered by >, sub-sequences are assumed to be
order-preserving, i. e., i > j) �(i) > �(i).

When indexing sequences over IN (or subsets of it) or ordinals, we sometimes use the
notation (si)i�k, for �xed k, meaning the domain of the indexing contains all elements greater
or equal to k.

De�nition 2.14. Given a partial order � (respectively quasi-order �) over some set S, we
say that � (respectively �) is well-founded if and only if � (respectively �) has no in�nite
descending sequences, i. e., there are no sequences of the form s0 � s1 � s2 � : : : . We extend
the terminology well-founded to the elements of S: s 2 S is well-founded (with respect to a
given partial or quasi-order) if and only if s does not occur in any in�nite descending chain.

2.1. Sets, Relations and Orders 9

We will also need a concept similar to well-foundedness for arbitrary binary relations.

De�nition 2.15. Given a binary relation � over a set S, we say that � is well-founded or
terminating if there is no in�nite sequence (si)i2IN of elements of S, such that si � si+1, for
all i 2 IN. An element s 2 S is well-founded or terminating if and only if s does not occur in
any such in�nite sequence.

De�nition 2.16. Given a quasi-order � over some set S, we say that � is total if and only
if for any elements u; v 2 S we have either u � v or u � v or v � u. A partial order > is total
if the above assertion holds with � replaced by equality.

The following is also a standard result.

Lemma 2.17. Let (S;�) be a quasi-ordered set and let = be the extension of > to the
equivalence classes, i. e., to S= �. Then � is total (respectively well-founded) on S if and only
if = is total (respectively well-founded) on S= �.

We consider two useful extensions of partial orders, namely the multiset and lexicographic
extensions. First we have to de�ne the domain of these extensions.

De�nition 2.18. Let S be any set. A �nite multiset over S is a function � : S ! IN such
that the set fs 2 Sj �(s) 6= 0g is �nite. The set of all �nite multisets over S is denoted by
M(S).

Intuitively a �nite multiset is a �nite set where elements can be repeated �nitely many times.
For any s 2 S, �(s) just gives the frequency (number of occurrences) of the element s in the
multiset.

Notation 2.19. We will use a set-like notation ff gg to denote a multiset. Operations similar
to the ones applied on sets (e. g. 2, [, � etc.) are also applied to multisets. We will use
round symbols to denote operations on sets (e. g. �) and similar squared symbols for the same
operation on multisets (e. g. v), whenever possible. Some operations, like 2, n, will be denoted
ambiguously by the same symbol. In the following we abbreviate �nite multiset to multiset.

De�nition 2.20. Let �; � be arbitrary multisets over a set S. The operations 2, t, v, n, u
onM(S), the set of �nite multisets over S, are de�ned as follows:

� 8s 2 S : s 2 � () �(s) > 0,

� � t � is the multiset de�ned by (� t �)(s) = �(s) + �(s), for all s 2 S,

� � v � () 8s 2 S : �(s) � �(s). If the last inequality is strict for all s 2 S then we
have strict inclusion of multisets, i. e., � < �,

� � u � is the multiset de�ned by (� u �)(s) = minf�(s); �(s)g, for all s 2 S,

10 Chapter 2. Preliminaries

� � n � is the multiset de�ned by (� n �)(s) = maxf�(s)� �(s); 0g, for all s 2 S.

Example 2.21. Consider (IN; >), the natural numbers with the usual order, and let � be the
multiset given by �(0) = 4, �(1) = �(2) = 0, �(3) = 2 and �(n) = 0, for n � 4. We can also
represent � as ff0; 0; 0; 0; 3; 3gg.

In the following we will use multiset union indexed over �nite multisets. We de�ne what
that is.

De�nition 2.22. Let � : A !M(A) be a function. We extend this function to a function
� :M(A)!M(A) as follows:

� �(;) = ;,

� �(ffagg) = �(a),

� �(X t Y) = �(X) t �(Y).

We sometimes use the notation
G
s2S

�(s) instead of �(S).

In order to see that the previous de�nition makes sense, we have to show that it does not
depend on the choices of X and Y , i. e., if X t Y = X 0 t Y 0 then

(
G
x2X

�(x))
G

(
G
y2Y

�(x)) = (
G
x2X0

�(x))
G

(
G
y2Y 0

�(x))

This is cumbersome but not di�cult to show if we use the relations (X t Y) n X 0 = Y 0,
(X t Y) n Y 0 = X 0, symmetrical relations in the roles of X; Y and X 0; Y 0, and the properties
of the operations on multisets.

Similarly we can extend functions with more than one argument to multisets.

De�nition 2.23. Let � : An !M(A) (with n � 1) be a function. We extend this function
to a function � :M(A)n !M(A) as follows:

� �(: : : ; ;; : : :) = ;,

� �(ffa1gg; : : : ; ffangg) = �(a1; : : : ; an),

� �(X1; : : : ; Xi t Y; : : :Xn) = �(X1; : : : ; Xi; : : :Xn) t �(X1; : : : ; Y; : : : ; Xn).

We sometimes use the notation
G
s12S1

: : :
G

sn2Sn

�(s1; : : : ; sn) instead of �(S1; : : : ; Sn).

Note that similar observations as for de�nition 2.22 apply here.

2.1. Sets, Relations and Orders 11

De�nition 2.24. Let S be any set and n 2 IN, �xed. Then Sn represents the set of sequences
of elements of S of size exactly n. S� =

S
k�0 S

k represents all possible sequences over S,

where S0 contains only the empty sequence �. We use the notation S�n for the set
Sn
k=0 S

k.
Elements of Sk, for any k, are denoted by s1 � � � sk, where \�" denotes concatenation.

Note that we use the notation Sn ambiguously: it either represents the cartesian product
of S with itself n times or the set of sequences of elements of S of size n. For any n � 0 those
sets are in a one-to-one correspondence. For n = 0, both sets contain only one element. It
should be clear from context what is the meaning associated to Sn.

We now consider posets and de�ne the multiset and lexicographic extension of the orders.
The following de�nition is due to Dershowitz and Manna [27].

De�nition 2.25. Let (S;>) be a poset. The multiset extension of > overM(S) is denoted
by >mul and de�ned as follows: X >mul Y if and only if there are multisets X0; Y0 2 M(S)
satisfying

� X0 6= ; and X0 � X,

� Y = (X nX0) [Y0,

� 8y 2 Y0 9x 2 X0 : x > y.

In [51], Jouannaud and Lescanne proved that the above de�nition is equivalent to the
de�nition of Huet and Oppen [48] we present below.

De�nition 2.26. Let (S;>) be a poset. The multiset extension of > overM(S) is de�ned
as follows: X >mul Y if X and Y satisfy

� X 6= Y , and

� (9y 2 S : Y (y) >IN X(y))) (9x 2 S : x > y and X(x) >IN Y (x)).

We will also need to use a multiset extension of general binary relations. The intention
behind the de�nition is that should the relation lifted be a partial order, then the multiset
extension of the relation coincides with the multiset extension for partial orders. This property
is enjoyed by the following de�nition taken from Middeldorp [76].

De�nition 2.27. Let S be a set and � a binary relation on S. The multiset extension of � is
a binary relation on M(S), denoted by �mul and de�ned as follows: X �mul Y if and only if
there are multisets X0; Y0 2 M(S) satisfying

� X0 6= ; and X0 � X,

� Y = (X nX0) [Y0,

� 8y 2 Y0 9x 2 X0 : x�y.

12 Chapter 2. Preliminaries

The following lemma is proven in Dershowitz and Manna [27].

Lemma 2.28. If (S;>) is a poset then (M(S); >mul) is also a poset. Furthermore, > is
well-founded (respectively total) on S if and only if >mul is well-founded (respectively total)
on M(S).

Recall the de�nition of � from 2.23. We have the following result.

Lemma 2.29. Let (A;>) be a poset and consider the poset (A; >mul). If � : An !M(A),
with n � 1, is strictly monotone in all arguments, then � :M(A)n ! M(A) is also strictly
monotone in all arguments provided that if n > 1, the arguments of � are non-empty multisets.

Proof We see that � is strictly monotone in each argument. Suppose X 0i >mul Xi, then we
can write Xi = (X 0i nX) t Y , for some multisets X; Y satisfying

� X 6= ;, X � X 0i,

� 8y 2 Y 9x 2 X : x > y:

Then

�(X1; : : : ; Xi; : : : ; Xn) = �(X1; : : : ; X
0
i nX; : : : ; Xn)

G
�(X1; : : : ; Y; : : : ; Xn)

But we can also write X 0i = (X 0i nX) tX, so

�(X1; : : : ; X
0
i; : : : ; Xn) = �(X1; : : : ; X

0
i nX; : : : ; Xn) t �(X1; : : : ; X; : : : ; Xn):

So it su�ces to see that for each element in �(X1; : : : ; Y; : : : ; Xn) there is an element
in �(X1; : : : ; X; : : : ; Xn) bounding it. For that it is essential that this last multiset
is never empty and that implies that we have to restrict ourselves to arguments which
are themselves not empty. Take then �(x1; : : : ; y; : : : ; xn) 2 �(X1; : : : ; Y; : : : ; Xn).
Since y 2 Y) 9x 2 X : x > y and � is monotone in all arguments, we have that
�(x1; : : : ; x; : : : ; xn) > �(x1; : : : ; y; : : : ; xn), for that particular x.
Since �(x1; : : : ; x; : : : ; xn) 2 �(X1; : : : ; X; : : : ; Xn), we are done. 2

De�nition 2.30. Let (S;>) be a poset. The lexicographic extension of > over Sn, S�n (for
some �xed n 2 IN) or S� is de�ned as follows:

u1 � � �uk >lex v1 � � � vm ()

�
m < k ^ 81 � j � m : uj = vj; or
91 � j � minfm; kg : (uj > vj) ^ (81 � i < j : ui = vi))

Note that when restricted to Sn, the �rst condition is irrelevant. As for multiset extensions,
we will need to consider lexicographic extensions of arbitrary binary relations. The de�nition is
similar to de�nition 2.30.

2.1. Sets, Relations and Orders 13

De�nition 2.31. Let S be a set and � an arbitrary binary relation on S. The lexicographic
extension of � over Sn, S�n (for some �xed n 2 IN) or S� is de�ned as follows:

u1 � � �uk �lex v1 � � � vm ()

�
m < k ^ 81 � j � m : uj = vj; or
91 � j � minfm; kg : (uj � vj) and (81 � i < j : ui = vi))

We have a result similar to lemma 2.28.

Lemma 2.32. If (S;>) is a poset then (Sn; >lex), (S
�n; >lex) and (S�; >lex) are also posets.

Furthermore, > is well-founded on S if and only if >lex is well-founded on Sn or S�n and > is
total on S if and only if >lex is total on Sn, S�n or S�.

Note that if > is well-founded, >lex is not necessarily well-founded on S�, as the following
example shows.

Example 2.33. Let S = fa; bg with a > b. Then we have the in�nite descending chain

a >lex ba >lex bba >lex bbba >lex : : :

This problem can easily be avoided if we take the length of the sequence into consideration,
i. e., if we de�ne

u1 � � �uk >
�
lex v1 � � � vm ()

�
k > m; or
m = k and u1 � � �uk >lex v1 � � � vm

We have that >�lex is a partial order whenever S is a partial order. Furthermore >�lex is well-
founded (respectively total) if and only if > is well-founded (respectively total).

Sometimes we are also interested in the lexicographic combination of orders over possibly
di�erent sets.

De�nition 2.34. Given n � 1 posets (Ai; >i), then �, the lexicographic product of the
orders >i, 1 � i � n, over the set A1 � : : :� An, is de�ned as

(u1; : : : ; un) � (v1; : : : ; vn) ()

�
91 � j � n : (uj >j vj and

(81 � i < j : ui = vi))

This lexicographic product preserves totality and well-foundedness.

Lemma 2.35. Let (Ai; >i) be posets, with 1 � i � n, for some �xed natural n � 1. Then �
is a partial order over A1 � : : :� An. Furthermore � is well-founded (respectively total) over
A1 � : : :� An if and only if >i is well-founded (respectively total) over Ai, for all 1 � i � n.

We can also de�ne the multiset and lexicographic extensions and lexicographic product for
quasi-orders. Direct de�nitions similar to the de�nitions 2.25, 2.30 and 2.34, can be given, but
the simplest way of de�ning these concepts is, in our view, to consider the equivalence classes.

14 Chapter 2. Preliminaries

De�nition 2.36. Let � = >[� be a quasi-order over S and let hai denote the �-equivalence
class of the element a 2 S. Let = denote the extension of > to the quotient S=� of the �-
equivalence classes, and =mul its multiset extension onM(S=�). The multiset extension of �
is denoted by �mul and de�ned as follows:

ffa1; � � � ; amgg eq(�mul) ffb1; � � � ; bngg () ffha1i; � � � ; hamigg = ffhb1i; � � � ; hbnigg

ffa1; � � � ; amgg ord(�mul) ffb1; � � � ; bngg () ffha1i; � � � ; hamigg =mul ffhb1i; � � � hbnigg

De�nition 2.37. Let � = >[� be a quasi-order over S and let hai denote the �-equivalence
class of the element a 2 S. Let = denote the extension of > to the quotient S=� of the �-
equivalence classes, and =lex its lexicographic extension on (S=�)� ((S=�)n, (S=�)�n, for
some n). The lexicographic extension of � is denoted by �lex and de�ned as follows:

a1 � : : : � am eq(�lex) b1 � : : : � bn () ha1i � : : : � hami = hb1i � : : : � hbni
a1 � : : : � am ord(�lex) b1 � : : : � bn () ha1i � : : : � hami =lex hb1i � : : : � hbni

It is important to note that both ord(�lex) and ord(�mul) are di�erent from the lexicographic
and multiset extensions, respectively, of >, the strict part of �. Consider the set S = fa; bg
and the quasi-order � satisfying reexivity and a � b and b � a. Then > is the empty
relation. We have that a � a ord(�lex) b and ffa; agg ord(�mul) ffbgg, while a � a 6>lex b and
ffa; agg 6>mul ffbgg.

The relations �lex and �mul are themselves quasi-orders, satisfying condition 2.1 and pre-
serving both well-foundedness and totality. More precisely:

Lemma 2.38. In the conditions of de�nition 2.36, �mul= ord(�mul) [eq(�mul) is a
quasi-order satisfying condition 2.1. Furthermore � is well-founded (respectively total) over a
set S if and only if �mul is well-founded (respectively total) over M(S).

Lemma 2.39. In the conditions of de�nition 2.37, �lex= ord(�lex) [eq(�lex) is a quasi-
order satisfying condition 2.1. Furthermore � is well-founded over a set S if and only if �lex
is well-founded over Sn (or S�n), for a �xed n � 1. Also � is total over a set S if and only if
�lex is total over Sn (S�n or S�).

The lexicographic product of n � 1 quasi-orders (Ai;�i), 1 � i � n, is de�ned similarly to
the lexicographic product of partial orders, we only need to change equality in de�nition 2.34
to �i, the equivalence relation contained in �i, while the equivalence relation associated to
the lexicographic product is de�ned by using equality of the equivalence classes, as in de�nition
2.37. Then lemma 2.35 can also be stated for quasi-orders.

In the following we introduce an important class of well-founded (quasi-) orders.

De�nition 2.40. A quasi-order � (respectively partial order �) over a set S is a well quasi-
order (respectively a partial well-order), abbreviated to wqo (respectively to pwo), if and only
if every quasi-order (respectively partial order) extending it, including itself, is well-founded.

2.2. Term Rewriting Systems 15

De�nition 2.41. Given a quasi-order � (respectively partial order �) over a set S, a sequence
(si)i�0 of elements of S is good if there are indices 0 � i < j with sj � si. If no such indices
exist, the sequence is named bad .

There are several equivalent characterizations of wqo's and pwo's. We also use the following
(see Gallier [38], Middeldorp and Zantema [78]):

Lemma 2.42. Given a quasi-order � (respectively partial order �) over a set S, the following
assertions are equivalent:

1. � (respectively �) is a wqo (respectively pwo).

2. Every in�nite sequence (si)i�0 of elements of S contains an in�nite subsequence (s�(i))i�0
such that s�(i+1) � s�(i), for all i � 0.

3. Every in�nite sequence is good.

Note that in the case of a pwo, the equivalence part of � is just equality.

2.2 Term Rewriting Systems

We introduce some notions from the theory of �rst-order term rewriting systems.

De�nition 2.43. A signature or alphabet F is a (non-empty) set of function symbols, each
of which has associated an arity given by the function arity : F ! IN. Elements of F with
arity 0 are also called constants; constants are denoted usually by c instead of c().

Remark 2.44. It is not essential to consider that each function symbol has an associated
�xed arity. Instead arity(f) can be any non-empty subset of the natural numbers, i. e.,
arity(f) 2 P(IN) n ;. If for at least one element f 2 F , arity(f) contains more than
one element, we speak of a varyadic signature. Otherwise we speak of a �xed-arity signature.
We will use the function arity ambiguously meaning either a natural number, in the case of
�xed-arity signatures, or a non-empty set of natural numbers, for varyadic signatures. Another
way of expressing this is by de�ning F = [i�0Fi, where each Fi, contains the function symbols
of arity i. Then a varyadic signature corresponds to the case where the union is not disjoint.
We will make clear when necessary what kind of signature we have in mind.

To de�ne the set of terms we will also use variables. In the following X will represent
a countable set of variables (whose elements we usually denote by letters x; y; z; : : :). The
function arity is extended to the elements of X : they have arity 0 or f0g, depending whether
we are dealing with a �xed-arity or varyadic signature, respectively.

De�nition 2.45. Let F be a signature and let X denote a countable set of variables with
F \ X = ;. The set of terms over F and X is denoted by T (F ;X) and the set of ground
terms over F by T (F); they are de�ned inductively as follows:

16 Chapter 2. Preliminaries

� X ;F0 � T (F ;X), F0 � T (F); where F0 represents the set of constants,

� f(t1; : : : ; tn) 2 T (F ;X) (respectively T (F)), if f 2 F admits arity n � 1 and ti 2
T (F ;X) (respectively T (F)) for any 1 � i � n.

De�nition 2.46. Given a term t, the set of variables occurring in t is denoted by var(t) and
the multiset of variables occurring in t is denoted by mvar(t). By #c(t) we denote the number
of occurrences of the symbol or variable c in t, and jtj denotes the total number of function

symbols and variables occurring in t (obviously jtj =
X

c2F[X

#c(t)).

De�nition 2.47. A term t 2 T (F ;X) is said to be linear if each variable in t occurs at most
once.

We sometimes need to abstract from the actual form of the whole term and concentrate
on parts of it. For that we use contexts. Intuitively a context is a term containing \holes" that
can be �lled with other terms. We formalize this concept.

De�nition 2.48. Let F be a signature and 2 a constant not occurring in F . A context is
a term over T (F [f2g;X) with at least one occurrence of 2 (the trivial context). Given a
context C[2; � � � ;2] with n occurrences of 2, and n terms t1; : : : ; tn 2 T (F ;X), C[t1; : : : ; tn]
denotes the term obtained by replacing each hole (occurrence of 2) by a term ti, 1 � i � n,
from left to right. More precisely: 2[t] = t, for any term t, and

f(C1; : : : ; Cn)[t1;1; : : : ; t1;k1; : : : ; tn;1; : : : ; tn;kn]
=

f(C1[t1;1; : : : ; t1;k1]; : : : ; Cn[tn;1; : : : ; tn;kn])

for any f 2 F , contexts C1; : : : ; Cn with respectively exactly k1; : : : ; kn occurrences of 2, and
terms ti;j, for any 1 � i � n, 1 � j � ki.

Notation 2.49. We abbreviate contexts of the form C[2; � � � ;2] to C[� � �]. A context with
only one occurrence of 2 is denoted by C[2] or C[] and is called a linear context.

We note that the concept of context and replacement of 2 by a term can be stated using
the notion of position. A position is a sequence of natural numbers indicating precise points
within a term or context. Each occurrence of 2 has a unique position within the term and the
notation s = tjpu or s = t[u]p is used to indicate that term s is obtained from term or context
t, by replacing the term at position p with the term u. We chose not to use this notation since
we usually don't need to be too speci�c about the position in a term where replacement occurs.

Remark 2.50. We will often need to perform induction on the de�nition of linear contexts,
i. e., if we want to prove some property for a term C[t], for any linear context C and (any)
term t, we prove that the property holds for (all) t and then assuming that the property holds
for D[t], where D is a linear context, we prove the property holds for f(: : : ; D[t]; : : :), for any

2.2. Term Rewriting Systems 17

f 2 F with appropriate arity. It is not di�cult to see that this is equivalent to proving the
property for (all) t and then prove that if the property holds for a term s then it also holds
for f(: : : ; s; : : :), for any f 2 F , arity permitting. This fact will be used when performing
induction on linear contexts.

De�nition 2.51. We say that a term t is a subterm of a term s if we have s = C[t], for
some linear context C; s is also called a superterm of t. If C is not the trivial context then t
is a proper subterm of s. Furthermore if s = f(t1; : : : ; tn), for some n � 1, the terms ti, with
1 � i � n are called the principal subterms, or arguments, of s; the function symbol f is the
root symbol of s, usually denoted by root(s).

De�nition 2.52. A substitution � is a function from X to T (F ;X); such a function can be
extended to an endomorphism over T (F ;X) as follows

� �(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)), for any f 2 F admitting arity n � 0, and terms
t1; : : : ; tn 2 T (F ;X).

A ground substitution is a substitution whose image lies in T (F). A renaming is an injective
substitution whose image lies in X . We usually denote �(t) by t�.

De�nition 2.53. A term rewriting system (TRS) is a tuple (F ;X ; R), where R is a subset
of (T (F ;X) n X) � T (F ;X). The elements of R are called the rules of the TRS and are
usually denoted by l! r, with l being the lefthand-side (lhs) of the rule, r the righthand-side
(rhs) and satisfying var(r) � var(l).

Note that the de�nition does not exclude the bizarre case of R = ; and F = X = ;.
Obviously we are not interested in this case. In the following we identify a TRS with its set of
rules R; F is de�ned implicitly: it is the set of function symbols occurring in R. We will only
specify F or X if necessary. We will also sometimes associate labels with rules.

The rules of a TRS induce a relation on terms as follows.

De�nition 2.54. A TRS (F ;X ; R) induces a reduction relation on T (F ;X), denoted by
!R, as follows: s !R t if and only if s = C[l�] and t = C[r�], for some linear context C,
substitution � and rule l ! r 2 R. We call s !R t a reduction or rewrite step and say that
t is obtained from s by contracting or reducing the redex l�, i. e., replacing the redex l� by
its contractum r�. The transitive closure of !R is denoted by !+

R and its reexive-transitive
closure by !�R.

Remark 2.55. It is not di�cult to see that de�nition 2.54 is equivalent to the following
inductive de�nition:

� l� !R r�,

� f(: : : ; ti; : : :) !R f(: : : ; t0i; : : :), if f 2 F admits arity n � 1, ti; t
0
i 2 T (F ;X), and

ti !R t0i.

18 Chapter 2. Preliminaries

A rewrite sequence is a sequence of reduction steps t0 !R t1 !R � � � , and may be �nite
or in�nite.

De�nition 2.56. Let R be a TRS. A term s 2 T (F ;X) is said to be a (or to be in) normal
form (with respect to R) if for no term t 2 T (F ;X) we have s!R t. The set of normal forms
of R is denoted by Nf(R).

Apart from the reduction relation we will also deal with some particular relations on terms
we de�ne next.

De�nition 2.57. A binary relation � over T (F ;X) is said to be closed under contexts
(monotonic or satisfying the replacement property) if whenever s�t then for any linear context
C[] also C[s]�C[t]. Equivalently, s�t) f(: : : ; s; : : :)�f(: : : ; t; : : :), for all non-constant
f 2 F .

De�nition 2.58. A binary relation � over T (F ;X) is said to be closed under substitutions
(stable or satisfying the full invariance property) if whenever s�t then for any substitution
� : X ! T (F ;X) also s��t�.

De�nition 2.59. A binary relation on T (F ;X) is said to be a congruence if it is an equivalence
relation closed under contexts.

Some kinds of TRS's are important enough for us to name them apart. They usually are
formed by rules having a certain shape, thus it is also useful to name those rules.

De�nition 2.60. Let (F ;X ; R) be a TRS and l! r a rule in R. We say that l! r is a

� left-linear rule (respectively right-linear rule) if l (respectively r) is a linear term,

� linear rule if both l and r are linear terms,

� collapsing rule (c-rule) if r 2 X ,

� duplicating rule (d-rule) if mvar(l) (mvar(r),

� non-erasing rule if var(l) = var(r),

� length-preserving rule if mvar(l) = mvar(r) and jlj = jrj (equivalently jl�j = jr�j for
all ground substitutions �, under the assumption that F contains at least one constant),

� embedding rule if l ! r is of the form f(x1; : : : ; xn)! xi, for some 1 � i � n, where
f 2 F admits arity n � 1, and x1; : : : ; xn are pairwise di�erent variables. We denote by
EmbF all embedding rules for all function symbols in F ,

� ground rule if l; r 2 T (F).

2.2. Term Rewriting Systems 19

De�nition 2.61. A TRS (F ;X ; R) is said to be left-linear (respectively right-linear , lin-
ear , duplicating , non-erasing , length-preserving , ground) if all the rules in R are left-linear
(respectively right-linear, linear, duplicating, non-erasing, length-preserving, ground).

Example 2.62. Let F = ff; g; hg with arity(f) = 1; arity(g) = 2; arity(h) = 3.
Consider the rules

r1 : g(x; x) ! h(x; x; x)
r2 : h(x; y; z) ! z
r3 : g(f(x); y) ! g(x; y)
r4 : h(x; x; f(y)) ! g(x; g(x; y))

r1 is a d-rule, r2 is a (linear) c-rule and also an embedding rule, r3 is a non-erasing (linear)
rule, and r4 is a length-preserving rule.

An important subclass of TRS's are the so-called string rewriting systems (SRS's) or Semi-
Thue systems (see Jantzen [49] or Book [9]).

De�nition 2.63. A TRS (F ;X ; R) is said to be a string rewriting system (SRS) or Semi-Thue
system if F contains only unary function symbols.

It is important and desirable to be able to infer properties of TRS's from the validity of the
same properties in parts of the TRS (in general we call this concept modularity). There are
di�erent ways of de�ning what \parts" are. Here we take the simplest approach.

De�nition 2.64. Given two TRS's (F1;X1; R1) and (F2;X2; R2) with F1 \ F2 = ;, their
disjoint union R1 �R2 is the TRS (F1 [F2;X1 [X2; R1 [R2).

If F1 and F2 are not disjoint, we can rename one (or both) of the TRS's, forcing the
disjointness condition to hold.

A thorough account of modular properties of TRS's can be found in Middeldorp [76].

2.2.1 Equational Rewriting

We introduce the notion of equation over terms and of equational rewriting.

De�nition 2.65. Let T (F ;X) be a set of terms. An equation over T (F ;X) is a pair of
terms (s; t) 2 T (F ;X)� T (F ;X), sometimes denoted by s = t. An equational system over
T (F ;X) is a set of equations EQ; if this set is �nite we say that the equational system is
�nitely presented .

Given an equational system EQ over T (F ;X), we can de�ne semantics for it in the style
of the semantics for �rst-order logic (see Plaisted [89]). A \structure" M consists of a non-
empty domain D, a function fD : Dn ! D, for each function symbol f 2 F (i. e., D is an
F -algebra) and evaluations � : X ! D. The \meaning" of a term t in the structure M,
for a given evaluation �, is denoted by [[t; �]]M and de�ned as �(x) if t is a variable x, or

20 Chapter 2. Preliminaries

fD([[t1; �]]M; : : : ; [[tn; �]]M) if t = f(t1; : : : ; tn). If M is a structure and (s; t) an equation,
we say thatM satis�es the equation (s; t) and writeM j= s = t if [[s; �]]M = [[t; �]]M, for all
evaluations �. IfM satis�es all the equations of EQ we say thatM is a model for EQ and
we write M j= EQ. If EQ1 and EQ2 are two equational systems, we write EQ1 j= EQ2 if
all models for EQ1 are also models for EQ2. In particular EQ j= s = t if all models of EQ
satisfy (s; t). We then say that s = t is a logical consequence of EQ.

An equational system EQ generates a congruence on the set of terms. We denote by =EQ

the least congruence closed under substitutions containing EQ. Note that this congruence
does exist since there is at least one congruence closed under substitutions and containing
EQ, namely T (F ;X)�T (F ;X), and the class of congruences closed under substitutions and
containing EQ is closed under intersection, so a least such congruence does exist, namely the
intersection of all of them.

The following result connecting logical consequence of an equational system and congruence
generated by it is due to Birkho� [8].

Theorem 2.66. If EQ is a set of equations then EQ j= s = t if and only if s =EQ t.

Remark 2.67. From now on we assume that any equational system contains its symmetric
image, i. e., if (s; t) 2 EQ then also (t; s) 2 EQ; however for the sake of simplicity, when
expressing EQ extensively we will omit the symmetric equations. With this assumption the
equational theory generated by a set of equations becomes:

De�nition 2.68. The equational theory generated by an equational system EQ is denoted by
=EQ and is the least congruence on T (F ;X) containing EQ and closed under substitutions,
i. e., s =EQ t if and only if either

� s = t,

� s = C[e1�] and t = C[e2�], for some equation (e1; e2) 2 EQ, linear context C and
substitution �,

� s =EQ u and u =EQ t, for some term u.

where = stands for syntactical equality.

Some of the terminology applied to TRS's carries over to equational systems. Thus we
have:

De�nition 2.69. Let (s; t) be an equation over T (F ;X). We say that (s; t) is

� linear if both s and t are linear terms,

� variable-preserving if mvar(s) = mvar(t),

� length-preserving or permutative if mvar(s) = mvar(t) and jsj = jtj (equivalently
js�j = jt�j for all ground substitutions �, under the assumption that F contains at least
one constant).

2.3. Orders on Terms 21

As for TRS's, an equational system is said to be linear , non-erasing or length-preserving if
all its equations are linear, non-erasing or length-preserving.

An important classe of equational systems are the permutative or length-preserving theories
(see Peterson and Stickel [86]). This class comprises the so-called AC-theories, where A stands
for associativity and C for commutativity. AC-theories contain only

� associative axioms; these axioms have the form f(x; f(y; z)) = f(f(x; y); z), for binary
function symbols f ,

� commutative axioms; these axioms have the form f(x; y) = f(y; x), for binary function
symbols f .

Finally, we de�ne what equational rewriting is.

De�nition 2.70. An equational rewrite system R=EQ consists of a TRS R and an equational
system EQ, both de�ned over the same signature and set of variables. Its associated equational
rewrite relation !R=EQ is given by: s !R=EQ t if and only if there are terms u; v such that
s =EQ u !R v =EQ t. We speak of equational rewriting or rewriting modulo a set of
equations.

Another interesting more restricted notion of rewriting modulo a set of equations is the
relation !R;EQ de�ned by: s !R;EQ t if and only if s = C[u], u =EQ l� and t = C[r�]
(see Jouannaud and Mu~noz [53]). In this case, given a term s, we are only allowed to rewrite
subterms of s modulo the equational system. For example, the term (x + e) + y cannot be
rewritten using the rule e + x ! x and the associative axiom for the symbol \+". However
we have (x + e) + y !R=EQ x + y. Note also that the two relations !R=EQ and !R;EQ can
still be di�erent even if we rewrite at the top of the term. For example if a =EQ b, b! c and
c =EQ d, for some constants a; b; c; d, then a!R=EQ d while a only rewrites with !R;EQ to c.

2.3 Orders on Terms

In the context of term rewriting, orders on terms are especially useful if they are compatible
with the reductions, i. e., if s !R t) s > t, for some reduction relation !R and order >.
Checking if an order satis�es this property can be cumbersome and ideally we would like to
be able to infer this property by performing a check on a �nite special set of reductions steps.
That is indeed possible if the order satis�es some properties (and the TRS has �nitely many
rules).

De�nition 2.71. A partial order over T (F ;X) is called a rewrite order if it is closed under
contexts and substitutions. A quasi-order over T (F ;X) is called a rewrite quasi-order if both
its strict and equivalence parts are closed under contexts and substitutions.

We remark that in the literature a rewrite quasi-order is only required to be closed under
contexts and substitutions. This means in particular that we can have s > t and C[s] � C[t],
for a rewrite quasi-order > [�. We found it more convenient to de�ne rewrite quasi-order as
in de�nition 2.71.

22 Chapter 2. Preliminaries

De�nition 2.72. A partial order (respectively quasi-order) over T (F ;X) is called a reduction
order (respectively reduction quasi-order) if it is a well-founded rewrite order (respectively a
well-founded rewrite quasi-order) over T (F ;X).

De�nition 2.73. A partial order > (respectively quasi-order �) is compatible with a TRS R
if s > t whenever s !R t. If > is a rewrite order, it is enough to require l > r for every rule
l! r in R.

Some orders play an important role on termination arguments. They are related to the
beautiful Kruskal's theorem (theorem 2.78 below).

De�nition 2.74. The subterm ordering is de�ned on T (F ;X) as follows: s � t () s =
C[t], for some non-trivial context C. We say that a partial order > (respectively quasi-order
�) satis�es or has the subterm property if � � > (respectively � � �).

De�nition 2.75. An order > over T (F ;X) is called a simpli�cation order if it is a rewrite order
with the subterm property and satisfying the deletion property , i. e., f(: : : ; t; : : :) > f(: : : : : :)
for all terms t (provided the arities of f allow it). A quasi-order � is called a quasi-simpli�cation
order if it satis�es the same properties, i. e., f(: : : t : : :) � t and f(: : : t : : :) � f(: : : : : :).

Note that the deletion property in the de�nition above is e�ective only in a varyadic setting.
In a �xed-arity setting, it is trivially satis�ed.

The interest of simpli�cation orders stems from the fact that they are well-founded, provided
that the signature F is �nite (this result is a consequence of Kruskal's Theorem, presented later).
For in�nite signatures, the subterm property is not enough to guarantee well-foundedness. To
see why, consider the signature F = faigi�0, where each symbol ai is a constant. Then the
order � de�ned by ai � aj, for all i < j, is a rewrite order having the subterm property and
yet is not well-founded.

Since simpli�cation orderings are related to Kruskal's Theorem, it seems reasonable to
de�ne them according to the requirements of the theorem itself. This is the approach taken in
Middeldorp and Zantema [78] and that we adopt here (for a di�erent approach see Ohlebush
[85]).

First we introduce the homeomorphic embedding (see for example Gallier [38]).

De�nition 2.76. Let � be a quasi-order on F . The quasi-order �emb on T (F ;X) is de�ned
as follows:

1. f(: : : ; s; : : :) �emb s (subterm property)

2. f(: : : ; s; : : :) �emb f(: : :) (deletion property) when the arities of f allow it;

3. f(s1; : : : ; sk) �emb g(t1; : : : ; tm) whenever f � g and there are integers j1; : : : ; jm such
that 1 � j1 < : : : < jm � k, sj1 �emb t1; : : : ; sjm �emb tm.

If > is a partial order on F , the partial order �emb is de�ned as above, replacing everywhere �
by > and �emb by �emb.

2.4. Termination 23

We now de�ne simpli�cation ordering as in Middeldorp and Zantema [78]. Note that in the
case that the signature is �nite, de�nition 2.75 and de�nition 2.77 coincide, since any partial
order over F and in particular the empty one, is a pwo.

De�nition 2.77. A rewrite order � on T (F ;X) is a simpli�cation ordering with respect to
a pwo > on F if it satis�es �emb � �.

The following result clari�es the relation between embedding, simpli�cation orderings and
termination.

Theorem 2.78. Kruskal's Tree Theorem [64]
Let � (respectively >) be a wqo (respectively pwo) on F . Then �emb (respectively �emb) is

a wqo (respectively pwo) on T (F).

For an elegant proof of this result we suggest Nash-Williams [82] or Gallier [38]. A proof
of the version for pwo's can be found in Middeldorp and Zantema [78]. We remark that a
restricted version of this result for strings is due to Higman [45].

The following result is a corollary of Kruskal's Theorem. For �nite signatures (and using
the concept of simpli�cation ordering as de�ned in 2.75), it appeared �rst in Dershowitz [19];
the general result is taken from Middeldorp and Zantema [78].

Theorem 2.79. Let � be any simpli�cation ordering with respect to a pwo > on F . Then
� is a well-founded order.

Note that if we consider �xed-arity signatures, condition (2) in de�nition 2.76 can be left
out. If furthermore the quasi-order � on F is just the equality relation (so its strict part is
empty), then condition (3) is just closedness under contexts. As a consequence a rewrite order
over a �nite signature is well-founded if it contains the subterm relation (thus justifying the
original de�nition 2.75).

2.4 Termination

An important notion in the theory of TRS's is the subject of this thesis, namely termination.

De�nition 2.80. A TRS R is said to be terminating (strongly normalizing or noetherian) if
!R is terminating.

The following is a well-known and simple observation going back to Manna and Ness [74].

Theorem 2.81. A TRS R over a set of terms T (F ;X) is terminating if and only if there
exists a well-founded order > on T (F ;X) such that s!R t) s > t.

The conditions on the above theorem imply a possibly in�nite test since possibly in�nitely
many rewrites have to be checked. A way of reducing the number of rewrites to be checked is
given in the next (also well-known) result.

24 Chapter 2. Preliminaries

Theorem 2.82. A TRS is terminating if and only if it is compatible with a reduction order.

The previous result describes what is usually the task of proving termination of particular
TRS's: �nding a suitable well-founded order that can be turned into a reduction order. There
are essentially two ways of accomplishing this: syntactically or semantically. In the syntactic
approach a careful inspection of the structure of the terms is done (eventually using an auxiliary
order on the set of function symbols) in order to de�ne an order on terms. Most of the path
orders are of this kind, being its best known representative the recursive path order due to
Dershowitz [22]. In the semantic approach, terms are interpreted in an algebra (A;>), where >
is a well-founded order. The interpretation is compositional and has to obey some monotonicity
conditions (we will be more speci�c later). If all conditions are met, the order on the algebra
and the interpretation induce a reduction order on T (F ;X).

In the setting of rewriting modulo a set of equations, termination has a more general
de�nition.

De�nition 2.83. Let EQ be an equational system and R a TRS, both de�ned over T (F ;X).
We say that R is E-terminating (or that R=EQ is terminating) if the relation !R=EQ is
terminating, i. e., if there are no in�nite sequences of the form:

s0 =EQ s00 !R s1 =EQ s01 !R s2 : : :

Note that de�nition 2.80 is a particular case of de�nition 2.83 for which EQ is just syntactic
equality.

De�nition 2.84. An equational rewrite system R=EQ is compatible with a quasi-order
� = � [� (on T (F ;X)) if =EQ � � and � is compatible with R.

We also have a result similar to theorem 2.82.

Theorem 2.85. An equational rewrite system R=EQ is terminating if and only if it is
compatible with a reduction quasi-order.

The following result can easily be proven using the de�nitions and properties of equational
rewriting.

Theorem 2.86. Let R=EQ be an equational rewrite system over T (F ;X). We have that:

1. =EQ �!
+
R=EQ �=EQ � !

+
R=EQ,

2. If R=EQ is terminating then !+
R=EQ is a reduction order on T (F ;X). Furthermore

!+
R=EQ is compatible with =EQ (in the sense of de�nition 2.1), so !+

R=EQ [=EQ is a

well-founded reduction quasi-order on T (F ;X).

Proving E-termination is in general much more complicated than proving termination. For
a study of the problems involved see Jouannaud and Mu~noz [53]. As far as this thesis is
concerned, E-termination will only play a role in chapter 6.

2.4. Termination 25

2.4.1 Path Orders

The basic idea behind path orders is the construction of orders on terms starting from a well-
founded order on the signature F (usually called a precedence). In general a term s is greater
than any term built from \smaller" terms connected together under a function symbol smaller,
in the precedence, then the root of s (in particular terms are bigger than proper subterms).
Thus path orders compare the roots of the terms using the precedence and in the case of equal
or equivalent roots, subterms are compared recursively in some manner. The di�erent ways of
doing this subterm's comparison give rise to di�erent path orders.

Path orders originated with the work of Plaisted (path of subterms orderings [88, 87]) and
Dershowitz (recursive path order [20, 22]) at the end of the seventies. Since then other orders
have been proposed and the original ones improved. As examples of such orders we have (apart
from the ones already mentioned): the lexicographic path order of Kamin and L�evy [54], the
recursive decomposition ordering of Jouannaud, Lescanne and Reinig [52], the path ordering
of Kapur, Narendran and Sivakumar [56].

Other orders have been proposed and a lot of work has been done on generalizing and
improving existing ones (see for example Rusinowitch [96], Lescanne [70]). For an exhaustive
account on path orders, their properties, history and connections between them, see Steinbach
[100, 101].

An improvement which has been systematically added to path orders is the notion of status.
Basically a status is associated to each function symbol with the purpose of indicating how
arguments of the function symbol are to be taken for the purpose of comparison. The idea of
status can be traced back to the work of Kamin and L�evy [54]; it was also presented informally
in Lescanne [73] and formalized in Lescanne [69]. Here we present a de�nition of status based
in the one given in Steinbach [99].

De�nition 2.87. To each function symbol f 2 F we associate a status �(f). We consider
two possible cases:

� �(f) = mul; indicates that, for the purpose of ordering, the arguments of f are to be
taken as a multiset,

� �(f) = lex�, where � is a permutation of the set f1; : : : ; arity(f)g; indicates that, for
the purpose of ordering, the arguments are to be taken as a lexicographic sequence whose
order is given by �. Two common abbreviations are left and right. The �rst indicates
the usual left-to-right lexicographic sequencing (� = Id) and the second the right-to-left
lexicographic sequencing.

Probably the best known path order is the recursive path order . Using this notion of status
we present the de�nition of recursive path order as it appeared in Steinbach [99]. First we
introduce some notation.

De�nition 2.88. Let F be a signature. A precedence is a partial or quasi-order on F denoted
respectively by � or D. We sometimes use the term quasi-precedence to emphasize that we
are dealing with a quasi-order on F .

26 Chapter 2. Preliminaries

De�nition 2.89. (rpo with status) Let � be a precedence (i. e., a partial order) on F and
� a status function. Given two terms s; t we say that s >rpo t i� s = f(s1; : : : ; sm) and either

1. t = g(t1; : : : ; tn), s >rpo ti, for all 1 � i � n, and

(a) f � g, or

(b) f = g and (s1; : : : ; sm) >rpo;� (t1; : : : ; tn); or

2. 91 � i � m : si >rpo t or si = t.

where >rpo;� is the extension of >rpo associated with the status �(f).

Note that in the case that we take the lexicographic status for all function symbols in F ,
>rpo coincides with >lpo, the lexicographic path order of Kamin and L�evy [54], and if the
status is �xed to the multiset status, the order coincides with the original recursive path order
of Dershowitz [20, 22].

It can be seen that >rpo is a partial order on T (F ;X), closed under contexts and sub-
stitutions, well-founded if and only if the precedence is, satisfying the subterm property and
monotone with respect to the precedence, i. e., if � and �0 are two precedences satisfying
� � �0 then >rpo � >rpo

0, where >rpo and >rpo
0 are the recursive path orders associated with

the precedences � and �0 respectively. Furthermore >lpo is a total order on T (F) whenever
� is total on F (we will see this in more detail in chapter 4).

The orders mentioned so far are simpli�cation orders of an essentially syntactic nature.
Bridging the gap between syntax and semantics we have orders such as the Knuth-Bendix order
(kbo) of Knuth and Bendix [63], the semantic path order (spo) of Kamin and L�evy [54] and
the general path order (gpo) of Dershowitz and Hoot [24]. It should be noted that while kbo
is still a simpli�cation order, spo and gpo are in general not so (we willl look at these orders in
more detail in the next chapter).

Knuth-Bendix order is similar to a polynomial interpretation (see below). The idea behind
kbo is to assign a natural number (a weight) to each function symbol and then extend the
weight function to terms. Below we present a version of kbo which combines features from the
de�nitions presented in Steinbach [99] and Dick, Kalmus and Martin [29].

Let �0 2 IN be a �xed natural greater than zero. Let � : F [X ! IN be a function such
that

�(f) is

8<
:

= �0 if f 2 X
� �0 if arity(f)= 0
> 0 if arity(f)= 1 and 9g 2 F : f 6� g

where � is a precedence in F . Note that the last condition means that we can allow a function
symbol f with arity(f) = 1 to have weight 0 as long as that symbol is maximal in the
precedence �.

We extend � to terms as follows: �(f(s1; : : : ; sm)) = �(f) +
mX
i=1

�(si).

Let #x(t) denote the number of occurrences of variable x in term t (see de�nition 2.46).
We de�ne the Knuth-Bendix order with status as follows (Steinbach [99]; Dick, Kalmus and
Martin [29]).

2.4. Termination 27

De�nition 2.90. (kbo with status) Let � be a precedence (i. e., a partial order) on F
and � a status function. We say that s >kbo t i� 8x 2 X : #x(s) � #x(t) and

1. �(s) > �(t), or

2. �(s) = �(t), and

(a) t 2 X and 9k > 0 : s = fk0 (t), where f0 is the element of F having arity 1 and
weight 0, and being maximal in the precedence,

(b) s = f(s1; : : : ; sm), t = g(t1; : : : ; tn) and

� f � g or

� f = g and s1; : : : ; sm >kbo;� t1; : : : ; tn

where >kbo;� is the extension of >kbo associated with the status �(f).

Knuth-Bendix order has properties similar to >rpo (see Steinbach [99]; Dick, Kalmus and
Martin [29] and chapter 4), namely it is a simpli�cation ordering, monotone with respect to
precedences and total on ground terms if the precedence is total.

All the orders mentioned are meant for term rewriting; in the presence of an equational
system they cannot be applied. Recently there has been quite some work done on de�ning or
adapting path orders to equational rewriting, more especi�cally rewriting modulo AC-theories.
One of the earliest examples of such orders is the associative path ordering of Plaisted [90]
(see also Dershowitz, Hsiang, Josephson and Plaisted [25]) de�ned for ground terms. More
recently Kapur, Sivakumar and Zhang [57] de�ned another associative ordering which can be
applied also to non-ground terms, and Rubio and Nieuwenhuis [95] gave a modi�cation of rpo
which is compatible with AC-theories and total on non-AC-equivalent ground terms. For more
information on this type of orders see Steinbach [100].

2.4.2 Monotone Algebras

The idea of using a well-founded F -algebra and a monotonic morphism (\termination function"
in the original terminology) to prove termination of TRS's goes back to Lankford [67], Manna
and Ness [74]. We use the de�nitions and terminology of Zantema [109].

De�nition 2.91. Let F be a signature. A monotone F -algebra (A;>) is a structure
consisting of a non-empty set A provided with a partial order > and algebra operations fA :
An ! A, for each function symbol f 2 F of arity n � 0; if n = 0, then fA is an arbitrary
element of A. Furthermore each algebra operation is monotone1 in all of its coordinates: for
each function symbol f 2 F of arity n � 1, and all a1; : : : ; an; b1; : : : ; bn 2 A for which ai > bi
for some i, and aj = bj for all j 6= i, we have fA(a1; : : : ; an) > fA(b1; : : : ; bn). A well-founded
(respectively total) monotone F -algebra (A;>) is a monotone F -algebra such that the order
> is well-founded (respectively total).

1By monotone we mean strictly increasing.

28 Chapter 2. Preliminaries

A monotone algebra is used to de�ne interpretations for the terms as follows.

De�nition 2.92. Let (A;>) be a (well-founded) monotone F -algebra. The interpretation
function [[]]A : T (F ;X)� AX ! A (where AX = f� : X ! Ag) is de�ned inductively by

[[x; �]]A = �(x);

[[c; �]]A = cA; for any c 2 F0;

[[f(t1; : : : ; tn); �]]A = fA([[t1; �]]A; : : : ; [[tn; �]]A);

for x 2 X ; � 2 AX ; f 2 F with arity n, t1; : : : ; tn 2 T (F ;X) and cA 2 A is �xed. This
function induces a partial order >A on T (F ;X) as follows:

t >A t0 () (8� 2 AX : [[t; �]]A > [[t0; �]]A):

It is easy to see that >A is indeed a (well-founded) partial order on T (F ;X). Intuitively t >A t0

means that for each interpretation of the variables in A the value of t is greater than that of t0.

If we restrict ourselves to ground terms, it follows from the de�nition by an easy induction
that the interpretation of the terms does not depend on the assignment of values to variables.
In other words, if t 2 T (F) then for any �; � 2 AX , [[t; �]]A = [[t; �]]A. We denote this value
by [[t]]A. In the following, we omit the subscript A in [[]]A when it is clear from context which
algebra we refer to.

De�nition 2.93. We say that a TRS (F ;X ; R) and a non-empty (well-founded) monotone
F -algebra (A;>) are compatible if l >A r for every rule l! r of R.

This terminology is motivated by the following proposition.

Theorem 2.94.

1. If (A;>) is a (well-founded) monotone algebra compatible with R then >A is a rewrite
(reduction) order over T (F ;X).

2. A TRS is terminating if and only if it admits a compatible non-empty well-founded mono-
tone algebra.

For the proof we refer to Zantema [108, 109].

Another way of proving termination of a TRS is now as follows: choose a well-founded
poset A, de�ne for each function symbol a corresponding operation that is strictly monotone
in all of its coordinates, and for which the interpretation function satis�es [[l; �]]A > [[r; �]]A for
all rewrite rules l ! r and all � : X ! A. Then according to the above proposition the TRS
is terminating.

2.4. Termination 29

Example 2.95. Consider the system

f(f(x; y); z) ! f(x; f(y; z)):

Choose (A;>) = (IN1; >), where IN1 is de�ned to be the set of strictly positive integers, and
choose fA(x; y) = 2x + y. Clearly fA is strictly monotone in both coordinates, and

fA(fA(x; y); z) = 4x+ 2y + z > 2x+ 2y + z = fA(x; fA(y; z))

for all x; y; z 2 A. Hence f(f(x; y); z) >A f(x; f(y; z)), proving termination of the system.

Sometimes when trying to de�ne algebras compatible with a TRS R it is convenient to
de�ne algebras compatible with parts of R. If certain conditions are met, then the lexicographic
product of those algebras will be an algebra compatible with the whole TRS. We now give those
conditions.

De�nition 2.96. Given a monotone F -algebra (A;>) the relation =A on terms is de�ned by

t =A s () 8� : X ! A : [[t; �]] = [[s; �]]

The relation =A is an equational theory induced by the algebra and the interpretation.

Lemma 2.97. In the conditions of de�nition 2.96, =A is a congruence, i. e., an equivalence
relation closed under contexts, also closed under substitutions.

Proof Checking that =A is an equivalence relation is quite straightforward so we will just
show that =A is closed under contexts and substitutions. We �rst show that =A is closed
under contexts, i. e., if s =A t then C[s] =A C[t], for any linear context C. We proceed
by induction on the context. If C is the trivial context, the result holds by hypothesis.
Suppose now that s =A t and that C is of the form f(: : : ; D[]; : : :), for some f 2 F ,
and that the result holds for context D. Let � : X ! A be an arbitrary assignment.
Then

[[C[s]; �]] =
[[f(: : : ; D[s]; : : :); �]] = (by de�nition of interpretation)
fA(: : : ; [[D[s]; �]]; : : :) = (by induction hypothesis)
fA(: : : ; [[D[t]; �]]; : : :) =
[[f(: : : ; D[t]; : : :); �]] =
[[C[t]; �]]

Since � was arbitrarily chosen, we can conclude that C[s] =A C[t].

To see that =A is closed under substitutions we need the following fact from Zantema
[109]:

Let � : X ! T (F ;X) be any substitution and let � : X ! A be
an assignment. Then [[t�; �]] = [[t; �]] where � : X ! A is given by
�(x) = [[�(x); �]].

30 Chapter 2. Preliminaries

Suppose now that s =A t and let � : X ! T (F ;X) be any substitution. Let � : X ! A
be any assignment. Then

[[s�; �]] = (by fact above)
[[s; �]] = (by de�nition of =A)
[[t; �]] = (by fact above)
[[t�; �]]

where � is de�ned as in the fact above. Since � was arbitrarily chosen we conclude that
s� =A t�. 2

De�nition 2.98. A monotone quasi-model for a TRS (F ;X ; R) is a monotone F -algebra
(A;>) such that [[l; �]] � [[r; �]], for all assignments � : X ! A and all rules l ! r in R. If
[[l; �]] = [[r; �]], for all evaluations � and rules l! r, we say that (A;>) is a model for the TRS.
A well-founded (respectively total) monotone (quasi-)model is just a monotone (quasi-)model
where the order > is well-founded (respectively total).

Theorem 2.99. Let (F i;X i; Ri), with 1 � i � k , for some �xed k � 1, be TRS's.
Let F =

Sk
i=1F

i. Suppose that for each i, (Ai; >i) is a non-empty (well-founded or total)
monotone F -algebra such that (Ai; >i) is compatible with (F i;X i; Ri) and (Ai; >i) is a (well-
founded or total) monotone quasi-model for (

Sk
j=i+1R

j)nRi. De�ne B = (A1�: : :�Ak; >lex)
where >lex is the lexicographic product of >1; : : : ; >k, and the interpretation fB : Bn ! B
given by

fB((a
1
1; : : : ; a

1
k); : : : ; (a

n
1 ; : : : ; a

n
k)) = (fA1(a

1
1; : : : ; a

n
1); : : : ; fAk(a

1
k; : : : ; a

n
k))

for all f 2 F with arity n � 0. Then (B;>lex) is a (well-founded or total) monotone F -algebra
compatible with (

Sk
i=1F

i;
Sk
i=1X

i;
Sk
i=1R

i).

Before presenting the proof of the theorem, we give the following lemma (which appeared
in Ferreira and Zantema [32]).

Lemma 2.100. In the conditions of theorem 2.99, let � : X ! B be any evaluation (where
X =

Sk
i=1X

i). Then
[[t; �]]B = ([[t; �1 � �]]A1

; : : : ; [[t; �k � �]]Ak)

for any term t 2 T (F ;X), and where the functions �i, 1 � i � k, are the projections in the
i-th coordinate.

Proof We proceed by induction over t. If t is a variable x then

[[x; �]]B = ((�1 � �)(x); : : : ; (�k � �)(x)) = ([[x; �1 � �]]A1
; : : : ; [[x; �k � �]]Ak)

If t = f(t1; : : : ; tn) then

[[f(t1; : : : ; tn); �]]B = (by def. 2.92)
fB([[t1; �]]B; : : : ; [[tn; �]]B) = (by IH)
fB((: : : ; [[t1; �i � �]]Ai; : : :); : : : ; (: : : ; [[tn; �i � �]]Ai; : : :)) = (by def. of fB)
(fA1(: : : ; [[ti; �1 � �]]A1

; : : :); : : : ; fAk(: : : ; [[ti; �k � �]]Ak ; : : :)) = (by def. 2.92)
([[f(t1; : : : ; tn); �1 � �]]A1

; : : : ; [[f(t1; : : : ; tn); �k � �]]Ak)

2

2.4. Termination 31

We present now the proof of theorem 2.99.

Proof Obviously B is non-empty and by lemma 2.35, >lex is a (well-founded or total) order on
B. We need to see that the interpretation functions fB are monotone on each argument.
Take then fB : Bn ! B with

fB((a
1
1; : : : ; a

1
k); : : : ; (a

n
1 ; : : : ; a

n
k)) = (fA1(a

1
1; : : : ; a

n
1); : : : ; fAk(a

1
k; : : : ; a

n
k))

Suppose we replace an element (ai1; : : : ; a
i
k) by a bigger one (with respect to the >lex

order) (ai10; : : : ; a
i
k0). This means that

91 � j � k : (aij0 >j a
i
j and (81 � l < j : ail0 = ail))

Consequently, fAl(a
1
l ; : : : ; a

i
l0; : : : ; a

n
l) = fAl(a

1
l ; : : : ; a

i
l; : : : ; a

n
l), for all 1 � l < j, and,

due to the monotonicty of fAj , fAj (a
1
j ; : : : ; a

i
j0; : : : ; a

n
j) >j fAj(a

1
j ; : : : ; a

i
j; : : : ; a

n
j). By

de�nition of >lex, we conclude that

fB(: : : ; (a
i
10; : : : ; a

i
k0); : : :) >lex fB(: : : ; (a

i
1; : : : ; a

i
k); : : :)

as we wanted. Finally to see that B is compatible with R, take l ! r an arbitrary rule
in R and let Ri be the TRS with smallest index i, 1 � i � k, such that l! r 2 Ri. Let
� : X ! B be any evaluation (with X =

Sk
p=1X

p). The combination of l! r 62 Rl, for

1 � l < i and the fact that Al is a monotone quasi-model for (
Sk
j=l+1Rj) n Rl, allows

us to say that [[l; �l � �]]Al �l [[r; �l � �]]Al, for 1 � l < i and since Ai is compatible with

Ri, also [[l; �i � �]]Ai >i [[r; �i � �]]Ai . Then using lemma 2.100, we can write

[[l; �]]B =
([[l; �1 � �]]A1

; : : : ; [[l; �i � �]]Ai; : : : ; [[l; �k � �]]Ak)
>lex

([[r; �1 � �]]A1
; : : : ; [[r; �i � �]]Ai; : : : ; [[r; �k � �]]Ak) =

[[r; �]]B

Arbitrariety of the rule chosen gives the result. 2

Note that we don't require neither the signatures F i nor the rewrite rules Ri to be disjoint
sets.

An interesting corollary of theorem 2.99 is the following.

Corollary 2.101. Let (F ;X ; R) be a TRS. Let (A1; >1) be a non-empty (well-founded
or total) monotone F -algebra compatible with (F ;X ; R) and suppose that (Ai; >i), with
2 � i � k, for some k � 2, is a non-empty (well-founded or total) monotone F -algebra
for (F ;X ; ;). De�ne (B;>lex) and fB as in theorem 2.99. Then (B;>lex) is a non-empty
(well-founded or total) monotone F -algebra compatible with (F ;X ; R).

32 Chapter 2. Preliminaries

Theorem 2.99 is particularly useful when proving termination of R [EmbF since it is
sometimes easier to provide a monotone algebra compatible with EmbF that is also a monotone
model for R, and combine it with a monotone algebra compatible with R.

Theorem 2.94 tells us that each terminating TRS has associated with it a class of monotone
algebras in which a termination proof can be given. This means that we can use intrinsic
properties of the algebras to try to characterize di�erents aspects of terminating TRS's. Using
this idea Zantema [109, 107] proposed a classi�cation of di�erent types of termination. He
distinguished between polynomial termination, !-termination, total termination and simple
termination. Below we introduce these concepts and give some examples.

Simple Termination

The terminology simple termination was �rst used by Kurihara and Ohuchi [66]. They
de�ne a TRS to be simply terminating if the TRS is compatible with a simpli�cation order
in the sense of de�nition 2.75. As we have seen, compatibility with such a simpli�cation order
in the case that F is in�nite, is not enough to guarantee termination of the TRS; for that we
need to use the de�nition of simpli�cation order of Middeldorp and Zantema [78], presented
as de�nition 2.77. Since for �nite signatures both de�nitions coincide, no harm is done. The
following de�nition is taken from Middeldorp and Zantema [78].

De�nition 2.102. A TRS (F ;X ; R) is simply terminating if it is compatible with a simpli�-
cation order on T (F ;X).

Example 2.103. Let F = ffact,s,mul; 0; 1g where the function symbols 0; 1 are constants,
fact and s have arity 1 and mul has arity 2. Let R be given by the rules

fact(s(x)) ! mul(s(x); fact(x))
fact(0) ! 1

Consider the set (A;>) = (IN; >), where > is the usual total well-founded order on the
natural numbers, and de�ne the algebra operations:

factA(x) = x2 + 1
sA(x) = x+ 2
mulA(x; y) = x + y + 1
0A; 1A = 0

It is not di�cult to see that with these operations (A;>) is indeed a monotone algebra for the
TRS, compatible with the rewrite rules.

Since F is �nite, we can take as pwo the empty relation and therefore the homeomorphic
embedding relation associated to it is, according to de�nition 2.76, the least rewrite order
satisfying the subterm property. Again it is not di�cult to see that the interpretation de�ned
indeed satis�es this property and so contains the embedding relation. In other words >A, the
induced order on T (F ;X), is a simpli�cation order compatible with R and so R is simply
terminating.

2.4. Termination 33

As a consequence of Kruskal's theorem, we have (see Middeldorp and Zantema [78]):

Theorem 2.104. Every simply terminating TRS is terminating.

The reverse is not true, i. e., not all terminating TRS's are simply terminating, as the
following example shows.

Example 2.105. The TRS given by

R : f(f(x))! f(g(f(x)))

is terminating. To see that we de�ne the following monotone algebra. Let A = f0; 1g� IN and
� be de�ned on A by

(a; n) � (b;m) () (a = b) and n > m

where > is the usual order on the natural numbers. It is not di�cult to see that � is a
well-founded partial order over A. De�ne the algebra operations

g(a; n) = (1; n) for all n 2 IN, a 2 f0; 1g

f(a; n) =

�
(0; n+ 1) for all n 2 IN, if a = 0
(0; n) for all n 2 IN, if a = 1

It can be seen that with these operations (A;�) is a monotone algebra for R, compatible with
the rewrite rule since, given any evaluation � : X ! A,

[[f(f(x)); �]] =

�
(0; n+ 2) if �(x) = (0; n)
(0; n+ 1) if �(x) = (1; n)

and

[[f(g(f(x))); �]] =

�
(0; n+ 1) if �(x) = (0; n)
(0; n) if �(x) = (1; n)

and in any case [[f(f(x)); �]] � [[f(g(f(x))); �]].
To see why R is not simply terminating, remark that from the de�nition of homeomorphic

embedding, any partial order containing it also satis�es the subterm property. Suppose > is a
simpli�cation order and let c be any constant. Then we must have

f(f(c)) > (compatibility of > with the rewrite rule)
f(g(f(c))) > (subterm property and closedness under contexts)

f(f(c))

which contradicts transitivity and irreexivity of the order.

For �nite �xed-arity signatures, the homeomorphic embedding is just the the least rewrite
order having the subterm property and it is not di�cult to see that this order can be \de�ned"
by the rewrite system EmbF , i. e., the homeomorphic embedding is the smallest rewrite order
satisfying f(: : : ; xi; : : :) > xi, for all embedding rules of EmbF . Indeed in Zantema [109] the
following result (implicit in many earlier works) can be found.

34 Chapter 2. Preliminaries

Theorem 2.106. Let R be a TRS over a �nite �xed-arity signature F . The following
assertions are equivalent:

1. R is simply terminating.

2. R [EmbF is simply terminating.

3. R [EmbF is terminating.

In order to have a similar statement for �nite varyadic signatures, the TRS EmbF would
have to contain the rewrite rules arising from the deletion property.

The following result is a simple observation but quite useful.

Lemma 2.107. Let R be a TRS over a �nite �xed-arity signature F . If R is terminating and
length-preserving then R [EmbF is terminating.

For the in�nite case a characterization similar to theorem 2.106 also exists but now the
embedding rules have to be de�ned with respect to a pwo on F . From Middeldorp and
Zantema [78] we recall the following de�nition and result.

De�nition 2.108. Let > be a partial order on a signature F . The TRS Emb(F ;>) consists of
all the rewrite rules of EmbF together with the rules

f(x1; : : : ; xm)! g(xi1 ; : : : ; xin)

with f 2 F admitting aritym, g 2 F admitting arity n, f > g, m � n, 1 � i1 < : : : < in � m,
whenever n � 1, and where x1; : : : ; xm are pairwise distinct variables.

Theorem 2.106 can now be re-phrased as:

Theorem 2.109. (F ;X ; R) is simply terminating if and only if (F ;X ; R [Emb(F ;�)) is
terminating, for some pwo � over F .

Total termination

The concept of total termination was de�ned in Zantema [107, 109]. We present the
de�nition.

De�nition 2.110. A TRS (F ;X ; R) is called totally terminating if it admits a compatible
total well-founded monotone F -algebra (A;>). If A = IN and > is the usual order on the
natural numbers, we speak about !-termination; if A = IN, > is the usual order on the natural
numbers, and the algebra operations are polynomials over IN, we speak about polynomial
termination.

2.4. Termination 35

Note that totality of > (in the algebra) does not imply totality of >A, the induced relation
on terms. For example if X contains at least two di�erent elements x and y, we cannot have
x >A y nor y >A x since depending on the assignment � 2 AX , we will sometimes have
[[x; �]]A > [[y; �]]A and sometimes [[y; �]]A � [[x; �]]A.

It is clear from the de�nition that any totally terminating TRS is also terminating. Further-
more we have

polynomial termination) !-termination) total termination:

The reverse of these implications do not hold. The following TRS

f(g(h(x)))! g(f(h(g(x))))

is !-terminating and not polynomially terminating (see Zantema [109]), and the system

f(g(x))! g(f(f(x)))

is totally terminating and not !-terminating (see chapter 5).
The relation between total termination and simple termination varies depending on the

cardinality of the signature. We have the following result from Zantema [109].

Theorem 2.111. Let (F ;X ; R) be a TRS. Then R is totally terminating if and only if
R [EmbF is totally terminating.

Proof (Sketch). The \if" part is trivial. For the \only-if" part we remark that any func-
tion monotone on all coordinates and de�ned on a well-order (A;>) has the property
f(a1; : : : ; an) � ai, for any 1 � i � n (this result appeared in Zantema [108] and
will be proved in chapter 5). Now since R is totally terminating, it admits a com-
patible well-founded monotone F -algebra (A;>) for which the order > is total on A.
Furthermore, by the observation above, we have that f(x1; : : : ; xn) �A xi, for any
embedding rule, i. e., (A;>) is a monotone total well-founded model for EmbF . We
now de�ne an interpretation in (IN;�), where � is the usual order on the naturals, as
follows: fIN(x1; : : : ; xn) = x1 + : : : + xn + 1. Clearly (IN;�) is a total well-founded
monotone algebra for F and for each embedding rule f(x1; : : : ; xn) ! xi, we have
that [[f(x1; : : : ; xn); �]]IN = �(x1) + : : : + �(xn) + 1 � �(xi), for any � : X ! IN
and any 1 � i � n. Consequently (IN;�) is compatible with EmbF . Due to theorem
2.99, the lexicographic product B of the algebras (A;>) and (IN;�) with interpretations
fB = (fA; fIN) is a total well-founded monotone algebra compatible with R [EmbF . 2

For �nite signatures, theorems 2.106 and 2.111 give the relation between total termination
and simple termination, since

R is totally terminating
m

R [EmbF is totally terminating
+

R [EmbF is terminating
m

R is simply terminating.

36 Chapter 2. Preliminaries

The reverse implication is not true. The system

f(a) ! f(b)
g(b) ! g(a)

is simply terminating. First note that R is terminating since if s!R t then t is in normal form.
Since R is also length-preserving, we can apply lemma 2.107 to conclude that R [EmbF is
terminating, so R is simply terminating.

To see that R is not totally terminating, note that any possible interpretation of a and b
combined with monotonicity and compatibility with the rewrite rules, forces incomparability of
a and b while a 6= b, and that is impossible in any total algebra.

So for TRS's over �nite signatures we have:

polynomial termination
+

!-termination
+

total termination
+

simple termination.

For in�nite signatures, things are not quite so as Middeldorp and Zantema showed in [78]. Indeed
we have that polynomial termination no longer implies simple termination and consequently
neither !-termination nor total termination imply simple termination. What happens is that
theorem 2.111 no longer holds if we replace EmbF by Emb(F ;>) for an arbitrary pwo over
F . The next TRS, from Middeldorp and Zantema [78], provides a counterexample. Let F =
ffi; gij i � 1g, where for each i � 1, fi and gi have arity 1. Let R be given by the rules

fi(gj(x))! fj(gj(x)); for any j > i

Take (A;>) as (IN1; >), where IN1 contains only strictly positive naturals, and de�ne the
following interpretation:

fiA(x) = x3 � ix2 + i2x (i � 1)
giA(x) = x+ 2i (i � 1)

It can be seen that the interpretations of both fi and gi, for all i � 1, are strictly monotone
and that the induced order >A on terms satis�es fi(gj(x)) >A fj(gj(x)). So R is polynomially
terminating.

However R[Emb(F ;�) is not terminating for any pwo � on F . Suppose � is a pwo on F .
Since the sequence (fi)i�1 must be good, we have two indices j > l such that fj � fl. Let �
be any simpli�cation order compatible with R [Emb(F ;�). Then we must have

fj(gj(x)) � (since fj � fl)
fl(gj(x)) � (compatibility of � with R)
fj(gj(x))

2.4. Termination 37

which contradicts well-foundedness of �.
The following picture from Middeldorp and Zantema [78] summarizes the relationship be-

tween the kinds of termination considered.

polynomial

termination

ω− termination

total termination

simple termination

Infinite signatures Finite signatures

Modularity of Termination

As mentioned before, we will consider the weakest form of modularity. It is well-known that
termination is not a modular property of TRS's. The following famous counter-example is due
to Toyama. Let R1 and R2 be given by:

R1 : f(0; 1; x) ! f(x; x; x) R2 : g(x; y) ! x
g(x; y) ! y

Then both R1 and R2 are terminating while R1 �R2 admits the cyclic derivation:

f(0; 1; g(0; 1))! f(g(0; 1); g(0; 1); g(0; 1))! f(0; g(0; 1); g(0; 1))! f(0; 1; g(0; 1))

If the TRS's satisfy some conditions, termination of the union can be concluded from
termination of the parts. The following result is proven in Middeldorp [76].

Theorem 2.112. Let (F1;X1; R1) and (F2;X2; R2) be two disjoint and terminating TRS's
such that one of them contains neither duplicating nor collapsing rules. Then R1 � R2 is
terminating.

38 Chapter 2. Preliminaries

Simple termination is a modular property. For the case of �nite signatures, the result is due
to Kurihara and Ohuchi [66], and for in�nite signatures (and for the notion of simple termination
we use here) the result is due to Middeldorp and Zantema [79].

As far as total termination is concerned, modularity of termination holds under some con-
ditions as we will prove in chapter 5. As a consequence of the results presented there, we have
that both !-termination and polynomial termination are modular properties.

Modular properties of TRS's are treated extensively in Middeldorp [76]. Recently Rubio [94]
has given di�erent proofs of most known results on modularity, including modularity of total
termination.

2.4.3 Undecidability Questions

In this subsection we restrict ourselves to TRS's for which both the signature F and the set of
rewrite rules R is �nite.

Most interesting properties of TRS's are undecidable, i. e., it is not possible to devise a
procedure that can decide whether or not a given TRS has that property. Conuence is an
undecidable property though decidable for ground TRS's. For the property of termination, the
situation is the same. In 1978, Huet and Lankford [47] proved that given a �nite TRS R and
a term t, the problem of determing whether t has an in�nite rewrite sequence is undecidable.
Furthermore determining whether R is terminating is undecidable. For ground TRS they showed
that these properties are decidable (termination is decidable even for right-ground TRS's; see
Dershowitz [21]). In their proof Huet and Lankford used a translation from Turing machines
to term rewriting systems such that the uniform halting problem for Turing machines (known
to be undecidable) was equated with termination of the TRS. A characteristic of this proof is
that only unary function symbols are used (so Huet and Lankford presented in fact a proof of
undecidability of termination for string rewriting systems). In Klop [61] a similar simpler proof
is given using also binary function symbols. We also present such a proof in Appendix B.

The original result of Huet and Lankford has been since re�ned. In 1987, Dershowitz [23]
showed that termination is undecidable even for TRS's containing only two rewriting rules. Later
on, in 1989, Dauchet [17] presented a complicated proof of the undecidabilty of termination for
one-rule TRS's. Since the TRS used was orthogonal , Dauchet proved a stronger result, namely
he showed undecidabilty of termination for one-rule orthogonal TRS's (i. e., TRS's which are
left-linear and have no critical pairs - for a de�nition of critical pairs see any survey on TRS's,
for example Klop [61]). The results mentioned so far have in common the fact that they all
use a translation from Turing Machines to TRS's and equate the halting problem for Turing
Machines with termination. Using a di�erent approach, Lescanne [72] has shown the result
proven in Dauchet [17] but in a simpler way. In his proof he uses a translation to another
undecidable problem, namely the Post Correspondence problem from Post [91].

Since we have distinguished between di�erent types of termination, we can ask ourselves
whether these types of termination are or not decidable. Except for termination proofs using
recursive path order , which are decidable neither simple termination nor total termination are
decidable. Simple termination was proven undecidable even for one rule orthogonal systems by
Middeldorp and Gramlich [77]. They used a translation to linear bounded automata, whose

2.4. Termination 39

halting problem had been proven undecidable via the Post correspondence problem by Caron
[11]. Undecidability of total termination has been shown recently by Zantema [110] via the
Post correspondence problem, but no restriction has been put on the number of rules. It is
still an open problem whether total termination of one-rule rewrite systems is decidable. As for
polynomial and !-termination, their (un)decidability is still an open problem.

For the sake of completeness, we give here a proof of undecidability of termination for the
general case. For this purpose, we will use a translation of Post correspondence problem to
term rewriting.

A Post correspondence system is composed of an alphabet � and a �nite subset P =
f(�1; �1); : : : ; (�n; �n)g � �� � �� of ordered pairs. The Post correspondence problem (PCP
for short) consists in, given such a system determine whether there are indexes i1; : : : ; ik 2
f1; : : : ; ng such that �i1 � � ��k1 = �i1 � � ��k1, (where \�" represents string concatenation), i.
e., determine whether the system has a solution. If we impose the restriction that i1 = 1 , this
problem becomes the Modi�ed Post Correspondence Problem (MPCP for short).

It is well-known that (M)PCP is an undecidable problem even if � contains only two ele-
ments (see Post [91], Rozenberg and Salomaa [93]). We will see that termination of TRS's is
undecidable by translating the PCP to term rewriting in such a way that given a correspondence
system P , P has a solution if and only if RP (the associated TRS) is not terminating. As a
consequence we obtain undecidability of termination for TRS's.

Suppose then that P = f(�1; �1); : : : ; (�n; �n)g � �� � ��, with n > 0. We are going to
consider terms over the signature F = �[ff; cg, where each symbol a 2 � has arity 1, f has
arity 3 and c is a constant. For each word � 2 �� if � = a1 � � �ak then the term �(x) is given
by a1(: : : ak(x) : : :). The TRS RP (based on ideas from Lescanne [72] and Zantema [110]) is
de�ned over the set of terms T (F ;X) and contains the rules:

f(�(x); �(y); z) ! f(x; y; z) for each pair (�; �) 2 P
f(c; c; a(z)) ! f(a(z); a(z); a(z)) for each element a 2 �

We have the following results connecting solutions of the PCP and reductions.

Lemma 2.113. If the PCP for P has a solution then RP is not terminating.

Proof Let �i1: : : : :�ik = �i1 : : : : :�ik be a solution for P then the term

f(�i1(: : : �ik(c) : : :); �i1(: : : �ik(c) : : :); �i1(: : : �ik(c) : : :))

admits the following cyclic rewrite sequence:

f(�i1(: : : �ik(c) : : :); �i1(: : : �ik(c) : : :); �i1(: : : �ik(c) : : :))
!+

f(c; c; �i1(: : : �ik(c) : : :))
!

f(�i1(: : : �ik(c) : : :); �i1(: : : �ik(c) : : :); �i1(: : : �ik(c) : : :))

2

40 Chapter 2. Preliminaries

Lemma 2.114. If the TRS RP is not terminating, then the PCP for P has a solution.

Proof The idea behind the proof is to show that if RP has in�nite rewrite sequences, then
there are terms t admitting an in�nite rewrite sequence and having the form f(s1; s2; s3),
where the function symbol f does not occur in any term si, 1 � i � 3. This combined
with the shape of the rules will give a solution for P . The easiest way of proving this
assertion is to associate to RP a many-sorted TRS RS . We �rst introduce the idea of
many-sorted rewriting (see Huet and Oppen [48]; Goguen and Meseguer [44]). We will
follow the notation and conventions of Zantema [106, 109].

Let S be a set of sorts and XS an S-sorted set of variables. Let F 0 be a set of func-
tion symbols such that with each symbol there is a sort and an arity associated, given
respectively by the functions:

st : F 0 ! S
ar : F 0 ! S�

The S-sorted set of terms, is T (F 0;XS) =
S
s2S T (F

0;XS)s, where T (F 0;XS)s is de�ned
by:

� Xs � T (F 0;XS)s, for any s 2 S (we remark that all sets Xs are disjoint),

� f(t1; : : : ; tk) 2 T (F 0;XS)s, if f 2 F 0, ar(f) = s1 : : : sk, st(f) = s and ti 2
T (F 0;XS)si, for i = 1; : : : ; k.

Note that substitutions now have to respect the sort of variables, i. e., a substitution �
is a function � : XS ! T (F 0;XS) such that �(Xs) � T (F 0;XS)s for all sorts s 2 S.

An S-sorted TRS has an S-sorted set of rules RS =
S
s2S Rs such that, for any s 2 S,

Rs � T (F 0;XS)s � T (F 0;XS)s. The reduction relation on a sorted TRS is a S-sorted
relation !RS=

S
s2S!Rs on T (F

0;XS), where !Rs is given by:

� l� !Rs r�, for every (l; r) 2 Rs and every substitution �,

� f(t1; : : : ; tk; : : : ; tn) !Rs f(t1; : : : ; t
0
k; : : : ; tn), for every f 2 F 0 with ar(f) =

s1 : : : sn, st(f) = s, ti 2 T (F 0;XS)si, for i = 1; : : : ; n, t0k 2 T (F
0;XS)sk , and

tk !Rsk
t0k.

We build our particular sorted TRS. In our case S = fS; Fg, F 0 = fa0j a 2 �g[ff 0; c0g,
XS is the S-sorted set of variables such that XF = ;. Each function symbol a0 has arity
ar(a0) = S and sort st(a0) = S; f 0 has arity ar(f 0) = S � S � S and sort st(f 0) = F ; c0

has arity � (the empty word) and sort S.

We have only two kinds of terms, namely terms of sort S and terms of sort F , such that

� t 2 T (F 0;XS)S () t = a01(: : : (a
0
k(�) : : :), where � 2 fc0g [XS,

� t 2 T (F 0;XS)F () t = f 0(s1; s2; s3), where si 2 T (F 0;XS)S.

2.4. Termination 41

As for the reduction rules, our sorted system has two set of rules RS and RF with RS = ;
and RF given by:

f 0(�0(x); � 0(y); z) ! f(x; y; z) for each pair (�; �) 2 P
f(c0; c0; a0(z)) ! f(a0(z); a0(z); a0(z)) for each element a 2 �

where for any word � 2 ��, if � = a1 � � �ak, the term � 0(x) is given by a01(: : : a
0
k(x) : : :).

The S-sorted TRS RS is terminating if and only if for every s 2 S, the reduction relation
!Rs is terminating. In this case since RS = ;, !RS gives no reductions, so the system
is terminating if and only if !RF is terminating.

Now associated with any sorted TRS RS , there is a one-sort TRS obtained from the sorted
version by ignoring the sort information. This new TRS, that we denote by �(RS), is
given by:

� F = ff jf 0 2 F 0g, X =
S
s2S Xs,

� (l; r) 2 �(RS) () (l0; r0) 2
S
s2S Rs, l = �(l0) and r = �(r0), where � :

T (F 0;XS)! T (F ;X) is de�ned inductively by:

{ �(x) = x, for all x 2 Xs, for all s 2 S (this de�nition poses no problem since
all Xs are disjoint),

{ �(f 0(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)), for all f
0 2 F 0 and ti of the appropriate

sort.

We remark that p!Rs q () �(p)!�(RS) �(q).

From Zantema [106, 109] we know that if RS is an S-sorted TRS without both collapsing
and duplicating rules then RS is terminating if and only if �(RS) is terminating.

Since by construction we have RP = �(RS) and RS has duplicating but no collapsing
rules, using the previous statement we can conclude that if RP does not terminate, neither
does RS .

Let R1 denote the system containing the rules:

f 0(�0(x); � 0(y); z) ! f(x; y; z); for each pair (�; �) 2 P

and R2 denote the system containing the rules:

f(c0; c0; a0(z)) ! f(a0(z); a0(z); a0(z)); for each element a 2 �

It is not di�cult to see that both R1 and R2 are terminating. Since RS is not terminating,
any in�nite rewrite sequence must contain in�nitely many applications of rules from both
R1 and R2, such that there are no in�nitely many consecutive steps of R1 or R2. This
means that any in�nite reduction will contain a reduction sequence of the shape:

s!R2 t!
+
R1

u!R2 v

42 Chapter 2. Preliminaries

Since s 2 T (F 0;XS)F and due to the shape of the rules in R2, we have that s =
f 0(c0; c0; s0) and t = f 0(s0; s0; s0), for some term s0 2 T (F

0;XS)S. For similar reasons,
u = f 0(c0; c0; u0) and v = f 0(u0; u0; u0), for some term u0 2 T (F 0;XS)S. Now, due to the
shape of the rules of R1, we have that s0 = �0i1(: : : (�

0
ik
(c0) : : :) = �i1

0(: : : (�ik
0(c0) : : :),

and by replacing each symbol a0 by a in the above expression, we get a solution for P . 2

As a consequence of lemmas 2.113 and 2.114, we have:

Theorem 2.115. Given a TRS R, the problem of determining whether R is terminating is
undecidable.

The coding of the PCP P in RP allows us to prove undecidability of termination but not of
simple or total termination. It is however very easy to modify the system RP in order to obtain
undecidability of simple termination. If we de�ne Rst

P to be

Rst
P : f(�(x); x0; �(y); y0) ! f(x; �� (x0); y;

 �
� (y0)); for each pair (�; �) 2 P

f(x; a(z); x; a(z)) ! f(a(x); z; a(x); z); for each a 2 �

where for any string � = a1 � � �ak 2 ��, �� (x) represents the term ak(: : : a1(x) : : :); then in a
similar way as done before we can prove that the PCP P has a solution if and only if the TRS Rst

P

is terminating. But since Rst
P is length-preserving, termination of Rst

P is equivalent to simple
termination (see lemma 2.107) and so we conclude that simple termination is undecidable.
Furthermore if we introduce another unary function symbol a for each element a 2 � and
de�ne Rtt

P to be:

Rtt
P : f(�(x); x0; �(y); y0) ! f(x; �(x0); y; �(y0)); for each pair (�; �) 2 P

f(x; a(z); x; a(z)) ! f(a(x); z; a(x); z); for each a 2 �

where for any string � = a1 � � �ak 2 ��, the term �(x) is now given by ak(: : : a1(x) : : :), it
can be proven that the PCP for P has a solution if and only if Rtt

P is terminating if and only if
Rtt
P is total terminating. The proof of this statement is however much more complicated (see

Zantema [110]).
We have seen that termination is in general an undecidable property. This remains so if we

are interested only in termination starting from a �xed term. For a proof of this statement see
Huet and Lankford [47] or appendix B. Finally termination is decidable for ground rewriting.

2.5 Conclusions

In this chapter we tried to summarize the concepts needed for the subsequent chapters. Most
of the results presented are not new, though some have a di�erent presentation. Needless to
say this chapter is quite incomplete. Many important notions and properties of term rewriting
(including some strongly related to the topic of termination) have been left out; critical pairs,
conuence, completion procedures, quasi-termination, relative termination, are some of them.

2.5. Conclusions 43

We tried both to provide the necessary information for reading this thesis and to be concise.
As a consequence topics beyond the scope of this work had to be left out.

With respect to equational rewriting, we have treated this important topic very super�cially
due to the fact that most of the thesis makes no use of it and the part that does, needs little
more than the de�nition of this concept. Nevertheless, we would like to point out that many
concepts concerning termination of TRS's, like simple or total termination, can also be de�ned
in an equational setting. We did not do this because the work presented here was done in the
simple rewrite setting and we thought it to be wiser and more natural to keep the presentation
restricted to the non-equational case.

44 Chapter 2. Preliminaries

Chapter 3

Well-foundedness of Term Orderings

Well-foundedness is the essential property of orderings for proving termination of term rewriting
systems. In this chapter we introduce criteria on term orderings such that any term ordering
possessing the subterm property and satisfying some of these criteria is well-founded. The
usual path orders ful�l these criteria, yielding a much simpler proof of well-foundedness than
the classical proof depending on Kruskal's theorem. Even more, our approach covers non-
simpli�cation orders like the semantic path order (spo) of Kamin and L�evy [55] and general
path order (gpo) of Dershowitz and Hoot [24], that can not be dealt with by Kruskal's theorem.

For �nite alphabets we present completeness results, i. e., a term rewriting system terminates
if and only if it is compatible with an order satisfying the criterion. For in�nite alphabets the
same completeness results hold for a slightly di�erent criterion.

3.1 Introduction

The usual way of proving termination of a term rewriting system is by �nding a well-founded
order such that every rewrite step causes a decrease according to this ordering. Proving well-
foundedness is often di�cult, in particular for recursively de�ned syntactic orderings. It is
therefore desirable to have criteria that help decide whether a particular order is well-founded.
A standard criterion of this type is implied by Kruskal's theorem: if a monotonic term ordering
over a �nite signature satis�es the subterm property then it is well-founded on ground terms;
if additionally the order is closed under substitutions then it is well-founded on the set of all
terms. However, this theorem does not apply to all terminating TRS's: there are terminating
TRS's like

f(f(x))! f(g(f(x)))

that are not compatible with any monotonic term ordering satisfying the subterm property (for
more details see example 2.105). Even recursive path order (rpo) with lexicographic status over
a varyadic alphabet, is not covered directly by Kruskal's theorem as we shall see in chapter 4.
This motivated us to look for other conditions ensuring well-foundedness. Our approach consists
in removing the monotonicity condition and replacing it by some decomposability condition.
For orderings satisfying the subterm property and this decomposability condition we prove

45

46 Chapter 3. Well-foundedness of Term Orderings

well-foundedness in a way that is inspired by Nash-Williams' proof of Kruskal's theorem (Nash-
Williams [82], as it appears in Gallier [38]), but which is much simpler. A similar technique,
for a particular order, has already been used by Kamin and L�evy [55]. Standard orderings like
recursive path order (Dershowitz [22], Steinbach [99]) and semantic path order (spo) (Kamin
and L�evy [55], Dershowitz [23], Geser [42]) trivially satisfy our conditions, yielding a simple proof
of well-foundedness for these orders. Moreover, our conditions cover all terminating TRS's: a
TRS terminates if and only if it is compatible with an order satisfying our conditions.

We are concerned essentially with term rewriting systems over �nite signatures. In the case
of an in�nite signature the same conditions yield well-foundedness if the signature is provided
with a partial well-order satisfying some natural compatibility with the given term ordering.

The rest of the chapter is organized as follows. In section 3.2, we introduce the notion
of lifting of an order, which plays an essential role in the theory presented. In section 3.3 we
present our well-foundedness criterion for orders on terms built over a �nite signature and give
some surprising completeness results involving orders closed under substitutions and orders that
are total.

In section 3.4, we present a well-foundedness criterion for orders on terms built over in�nite
signatures. First we follow an approach similar to the one used in section 3.3. For that we need
the existence of well quasi-orders on the set of function symbols. This requirement is quite
strong and to overcome it we introduce a di�erent notion of lifting of orders on terms. Using
this new notion we can present a very general and simple result on well-foundedness and show
that in this case the completeness results of section 3.3 also hold. The criteria presented are
used in section 3.5 to derive well-foundedness of semantic path order and general path order .

Finally we make some concluding remarks, including some comparison between our results
and Kruskal's theorem.

In the sequel we will consider terms over di�erent kinds of signature, for example �nite or
in�nite signatures and �nite or in�nite sets of variables. We will make clear which restrictions
apply at any point. We assume our signature may contain varyadic function symbols.

In the following we will also use \order" as an abbreviation of \partial order" (see de�nition
2.5).

3.2 Liftings and Status

As mentioned before, we replace monotonicity by another condition. This condition relates the
comparison between terms f(s1; : : : ; sm) and f(t1; : : : ; tn) (i. e., terms having the same root)
to the comparison of the sequences hs1; : : : ; smi and ht1; : : : ; tni. Here we need to describe
how an ordering on terms is lifted to an ordering on sequences of terms. To be able to conclude
well-foundedness it is essential that this lifting preserves well-foundedness.

De�nition 3.1. Let (S;>) be a partial ordered set and S� = [n2INSn. We de�ne a lifting to
be a partial order >� on S� for which the following holds: for every A � S, if > restricted to
A is well-founded, then >� restricted to A� is also well-founded. We use the notation �(S;>)
to denote all possible liftings of > on S�.

3.2. Liftings and Status 47

A typical example of a lifting is the multiset extension of an order, i. e., we say that
a1 � � �ak >� b1 � � � bm if ffa1; : : : ; akgg >mul ffb1; : : : ; bmgg. The usual lexicographic extension
on unbounded sequences is not a lifting as example 2.33 shows, since well-foundedness is not
always respected. If the lexicographic comparison is restricted to sequences whose size is
bounded by some �xed natural N , then it is indeed a lifting.

Another type of lifting is a constant lifting, i. e., any �xed well-founded partial order on S�.
More precisely if � is a �xed well-founded partial order on S�, and if we de�ne

a1 � � �ak >� b1 � � � bm () a1 � � �ak � b1 � � � bm:

then >� is a lifting.
Clearly other liftings can be de�ned like combinations of the ones mentioned. In particular,

combinations of multiset and lexicographic liftings can be very useful. For example, in a
partial order (S;>) where a > b and c is incomparable with a and b, one cannot conclude
ha; c; ci >� hc; b; ai, for the multiset lifting nor for any lexicographic lifting. If we de�ne >� by

hs1; : : : ; smi >
� ht1; : : : ; tni ()

8<
:

(m = n = 3) and
hs1; s2i >mul ht1; t2i or
hs1; s2i =mul ht1; t2i and s3 > t3

it is not di�cult to see that >� satis�es the de�nition of lifting and also satis�es ha; c; ci >�

hc; b; ai. This lifting will be used to obtain

f(s(x); y; y) >rpo f(y; x; s(x))

Classical >rpo (see de�nition 2.89) cannot be used to compare these two terms.
De�nition 3.1 is intended to be applied to terms over varyadic function symbols. If we

consider signatures with �xed arity function symbols, we can simplify the notion of lifting:
instead of taking liftings of any order we need only to take liftings of �xed order, i. e., the lifting
is going to be a partial order over Sn, for a �xed natural number n. This is a special case of
a lifting to S�: >� is de�ned on S� to be the order one has in mind for Sn on sequences of
length n, while all other pairs of sequences are de�ned to be incomparable with respect to >�.
Note that for the case of in�nite signatures with unbounded arities, we cannot �nd a natural
n where liftings for all the possible arities could be de�ned. This is not really a problem, since
we will associate a lifting to each function symbol, and for each function symbol the arity is a
�xed natural number.

Again typical examples of liftings are the lexicographic extension of > on sequences and the
multiset extension of > restricted to multisets of a �xed size.

We are interested in orders on terms, so from now on we choose S = T (F ;X), with F
containing varyadic function symbols, and we �x a partial order > on T (F ;X).

De�nition 3.2. Given (T (F ;X); >), a status function (with respect to >) is a function
� : F ! �(T (F ;X); >), mapping every f 2 F to a lifting >�(f).

48 Chapter 3. Well-foundedness of Term Orderings

Again for the case of �xed-arity signatures, a status function will associate to each function
symbol f 2 F an order n lifting >� on T (F ;X)n, where n is the arity of f .

We note that the terminology \status" was not chosen arbitrarily. In fact our notion of
status is a generalization of status as de�ned in de�nition 2.87.

Example 3.3. The following status will be used later in connection with the semantic path
order. Let > be a partial order and � a well-founded quasi-order both de�ned on T (F ;X).
Write � for the strict part of � and � for the equivalence relation induced by �. For each
f 2 F the lifting �(f) is given by

hs1; : : : ; ski >
�(f) ht1; : : : ; tmi ()

�
s � t; or
s � t and hs1; : : : ; ski >

mul ht1; : : : ; tmi

for any k;m 2 arity(f) and where >mul is the multiset extension of >, s = f(s1; : : : ; sk)
and t = f(t1; : : : ; tm). It is not di�cult to see that >�(f) is indeed a partial order on T (F ;X)�

and that >�(f) respects well-foundedness, being therefore a lifting.

We introduce some additional notation. In the following, > stands for a strict partial
order and � stands for a quasi-order whose strict part is >. It is important to note that the
equivalence part of � does not need to be equality; what is essential is that > is indeed the
strict part of � and therefore compatible with the equivalent part. This allows us to conclude
that if s > t � u or s � t > u, then also s > u, an argument often used in the sequel.

3.3 Finite Signatures

In this section we present one of the main results of this chapter. For the sake of simplicity we
restrict ourselves to �nite signatures (in�nite signatures will be treated separately). Surprisingly
we do not need to �x the arities of the function symbols.

3.3.1 Main Result

In the following we consider the set of terms T (F ;X), over the set of varyadic function symbols
F and such that F [X is �nite.

Recall that a term t 2 T (F ;X) is well-founded (with respect to a certain order > on
T (F ;X)) if there are no in�nite descending chains starting with t; recall also that jtj denotes
the size of the term t (see chapter 2, de�nition 2.46).

De�nition 3.4. Let > be a partial order over T (F ;X) and � a status function with respect
to >. We say that > is decomposable with respect to � if > satis�es

� if f(s1; : : : ; sk) > f(t1; : : : ; tm) then either

{ 91 � i � k : si � f(t1; : : : ; tm), or

3.3. Finite Signatures 49

{ hs1; : : : ; ski >�(f) ht1; : : : ; tmi.

for all f 2 F ; k;m 2 arity(f) and terms s1; : : : ; sk; t1; : : : ; tm 2 T (F ;X).

We can now present the main result of this section.

Theorem 3.5. Let > be a partial order over T (F ;X) and � a status function with respect
to >. Suppose > has the subterm property and is decomposable with respect to � , then > is
well-founded.

Proof Suppose that > is not well-founded and take an in�nite descending chain t0 > t1 >
� � � > tn > � � � , minimal in the following sense:

� jt0j � jsj, for all non-well-founded terms s;

� jti+1j � jsj, for all non-well-founded terms s such that ti > s.

Note that from the �rst minimality condition follows that any principal subterm of t0
is well-founded. Assume that ti+1 = f(u1; : : : ; uk) and some uj, with 1 � j � k, is
not well-founded. From the subterm property we obtain ti > ti+1 > uj, and transitivity
gives ti > uj, hence the second minimality condition yields jti+1j � jujj which is a
contradiction. We conclude that all principal subterms of any term ti, i � 0, are well-
founded.

Since F [X is �nite and > is irreexive, the (in�nite) sequence (ti)i�0 must contain a
subsequence (t�(i))i�0 with t�(i) = f(ui;1; : : : ui;ni), for a �xed f 2 F .1 By hypothesis,
for each i � 0, either

� 91 � j � ni : ui;j � t�(i+1); or

� hui;1; : : : ; ui;nii >
�(f) hui+1;1; : : : ; ui+1;ni+1

i.

Since all terms ui;j are well-founded, the �rst case never occurs; note that whenever
ui;j eq(�) t�(i+1) > t�(i+2), then also ui;j > t�(i+2), and therefore ui;j would be non-
well-founded. Consequently we have an in�nite descending chain

hu0;1; : : : ; u0;n0i >
�(f) hu1;1; : : : ; u1;n1i >

�(f) hu2;1; : : : ; u2;n2i >
�(f) : : :

Since > is well-founded over the set of terms
[
i�0

(

ni[
j=1

fui;jg), this contradicts the assump-

tion that >� (f) preserves well-foundedness. 2

Theorem 3.5 provides a way of proving well-foundedness of orders on terms, including orders
which are not closed under contexts nor closed under substitutions.

Consider the recursive path order with status (Dershowitz [22], Steinbach [99]; see also
de�nition 2.89) extended to incorporate arbitrary liftings as status.

1Irreexivity of the order in combination with �niteness of F [X rules out an in�nite number of occurrences
of either variables or constants.

50 Chapter 3. Well-foundedness of Term Orderings

De�nition 3.6. (rpo with status) Let � be a partial order on F and � a status function
with respect to >rpo. Given two terms s; t we say that s >rpo t i� s = f(s1; : : : ; sm) and either

1. t = g(t1; : : : ; tn), s >rpo ti, for all 1 � i � n, and

(a) f � g, or

(b) f = g, and hs1; : : : ; smi >
�(f)
rpo ht1; : : : ; tni; or

2. 91 � i � m : si >rpo t or si = t.

Some care should be taken when using a status in recursive de�nitions such as de�nition 3.6
since for arbitrary status we may end up with relations that are not partial orders. In chapter 4
we make some considerations about this. Since here our aim is not to study the conditions in
which rpo-like orders can be de�ned we assume that we have an order satisfying the conditions
of de�nition 3.6 for some status. Well-foundedness of >rpo, as de�ned in de�nition 3.6, follows
from theorem 3.5: condition 2 ensures that >rpo has the subterm property and conditions 1-b
and 2 imply that >rpo is decomposable with respect to � . If we take the de�nition of >rpo

over a precedence that is a quasi-order with the additional condition that each equivalence
class of function symbols has one status associated (see chapter 4 for a precise de�nition),
well-foundedness is still a direct consequence of theorem 3.5. We remark that by using our
de�nition of lifting and status, de�nition 3.6 is a generalization of >rpo orders as found in the
literature. With this de�nition we are able to prove termination of the following TRS (originally
from Geerling [39]):

f(s(x); y; y) ! f(y; x; s(x))

For that we use a lifting given earlier, namely

hs1; : : : ; smi >
� ht1; : : : ; tni ()

8<
:

(m = n = 3) and
hs1; s2i >mul ht1; t2i or
(hs1; s2i =mul ht1; t2i) and s3 > t3

and then take >
�(f)
rpo = >�

rpo. Termination of this system cannot be handled by earlier versions
of >rpo.

In section 3.5 we shall see that well-foundedness of both semantic path order and general
path order also follows from theorem 3.5.

3.3.2 Completeness Results

The next result states that the type of term orderings described in theorem 3.5 covers all
terminating TRS's.

Theorem 3.7. A TRS R is terminating if and only if there is an order > over T (F ;X) and
a status function � satisfying the following conditions:

� > has the subterm property,

3.3. Finite Signatures 51

� > is decomposable with respect to � ,

� if s!R t then s > t, i. e., > is compatible with R.

Proof The \if" part follows from theorem 3.5: the order > is well-founded and the assumption
!R � > implies that R is terminating.

For the \only-if" part we de�ne the relation > on T (F ;X) by:

s > t () s 6= t and 9C[] : s!�R C[t]

By de�nition, the relation > is irreexive and has the subterm property.

For transitivity, suppose s > t and t > u; then there are contexts C[]; D[] such that
s !�R C[t], t !�R D[u], s 6= t and t 6= u. Clearly s !�R C[D[u]] so to have s > u we
only need to check that s 6= u. If s !+

R C[t] or t !+
R D[u] then s = u would give us

s !+
R C[D[s]] contradicting termination of R. If both s = C[t] and t = D[u], since

s 6= t and t 6= u, we must have C[]; D[] 6= 2 and from s = C[D[u]] we conclude s 6= u.

We check that > is well-founded. Suppose it is not and let s0 > s1 > � � � , be an in�nite
descending chain. By de�nition of >, for each i � 0, we have si !�R Ci[si+1], for some
context Ci[], with si 6= si+1. Thus we obtain the in�nite chain

s0 !
�
R C0[s1]!

�
R C0[C1[s2]]!

�
R � � �

From termination of R, we conclude that there is an index j � 0 such that

sj = Cj[sj+1] = Cj[Cj+1[sj+2]] = : : :

Since the sequence is in�nite and Ck[] 6= 2 (since sk 6= sk+1), for all k � j, and all
terms are �nite, this is a contradiction.

For each function symbol f 2 F we de�ne >�(f) by:

hu1; : : : uki >
�(f) hv1; : : : ; vmi () f(u1; : : : ; uk) > f(v1; : : : ; vm)

for any k;m 2 arity(f). Since > is well-founded, we see that >�(f) is indeed a lifting.

From the above reasoning follows that all the conditions of theorem 3.5 are satis�ed.
Finally if s !R t, we obviously have s !�R C[t], with C the trivial context. Since R is
terminating we must have s 6= t and consequently s > t. 2

An alternative proof of theorem 3.7 can be given using the fact that a TRS R is terminating
if and only if it is compatible with some particular version of a semantic path order; in the proof
of this fact the same order as above is used. Since spo ful�ls the conditions of theorem 3.5, as
we shall see in section 3.5, this provides an alternative proof for theorem 3.7.

The order de�ned in the proof of theorem 3.7 has the additional property of being closed
under substitutions (but not under contexts). Consequently we also have the following stronger
result.

52 Chapter 3. Well-foundedness of Term Orderings

Theorem 3.8. A TRS R is terminating if and only if there is an order > over T (F ;X) and
a status function � satisfying the following conditions:

� > has the subterm property,

� > is decomposable with respect to � ,

� > is closed under substitutions,

� if s!R t then s > t.

An interesting question raised by J.-P. Jouannaud is what can be said about totality of orders
satisfying the conditions of theorem 3.5. It turns out that totality can very easily be achieved
as we now show. However, totality is not compatible with closedness under substitutions. First
we present a well-known lemma.

Lemma 3.9. Any partial well-founded order > on a set A can be extended to a total
well-founded order on A.

For a proof of this result see Appendix A.

Theorem 3.10. A TRS R is terminating if and only if there is an order > over T (F ;X),
and a status function � satisfying the following conditions:

� > has the subterm property,

� > is decomposable with respect to � ,

� > is total,

� if s!R t then s > t.

Proof Again the \if" part follows from theorem 3.5: the order > is well-founded and the
assumption !R � > implies that R is terminating.

For the \only-if" part we use theorems 3.5 and 3.7. Since R is terminating, by theorem
3.7 there is an order � on T (F ;X) and a status function � satisfying the conditions of
theorem 3.5 and such that s!R t) s� t. By theorem 3.5 the order� is well-founded,
but not necessarily total. By lemma 3.9, let > be a total well-founded order extending�.
Since � has the subterm property, so does >. Furthermore > is also compatible with
!R, for if s!R t then s� t and so s > t. In order to apply theorem 3.5 we still have
to de�ne a status function � for which > is decomposable. For each function symbol
f 2 F we de�ne: hu1; : : : uki >

�(f) hv1; : : : ; vmi () f(u1; : : : ; uk) > f(v1; : : : ; vm),
for any k;m 2 arity(f). Since > is well-founded, >�(f) is indeed a lifting. Theorem
3.5 now gives the result. 2

3.4. In�nite Signatures 53

The previous result may seem a bit strange since it tells us that we can achieve totality on all
terms and not only ground terms. This is so because we do not impose any closure conditions
on the order. Note that a total order on T (F ;X) is never closed under substitutions as long as
X contains more than one element. As for closure under contexts, this property is usually not
maintained by na��ve extensions of the order, it may even make the existence of certain extensions
impossible. In our case the conditions imposed are subterm property and compatibility with the
reduction relation; any extension will comply with those conditions whenever the original order
does.

3.4 In�nite Signatures

In the previous section we presented some results which are applicable to orders and TRS's
over �nite signatures. Here we treat the in�nite case, i. e., we consider the set of terms over
an in�nite alphabet F , with varyadic function symbols, and an in�nite set of variables X . As
usual we require that F \ X = ;.

We �rst discuss orders which are based on a precedence on the set of function symbols. Af-
terwards we present another simpli�ed approach in which we can dispense with the precedence.
This approach is based on a generalization of the notion of lifting.

3.4.1 Precedence-based Orders

Theorem 3.5 can also be extended to in�nite signatures, but requires some extra conditions.
We introduce some more notation. Let D be a quasi-order on F , called a precedence (see

de�nition 2.88). As usual, we denote the strict partial order D n E by � and the equivalence
relation D \E by �.

De�nition 3.11. Given an order > on T (F ;X) and a precedence D on F , we say
that > is compatible with D if whenever f(s1; : : : ; sm) > g(t1; : : : ; tn) and g � f then
si � g(t1; : : : ; tn), for some 1 � i � m.

In theorem 3.5 we only needed to take into account comparisons between terms with the
same head function symbol (root), but now we also need to consider the comparisons between
terms whose head function symbols are equivalent under the precedence considered. As a
consequence, we need to impose some constraint on the status associated with a function
symbol.

De�nition 3.12. Given a precedence D on F , an order > on T (F ;X) and a status function
� , with respect to >, we say that � and D are compatible if whenever f � g then �(f) = �(g).

Recall from chapter 2, de�nition 2.40, that a well quasi-order , abbreviated to wqo, is a
quasi-order � such that any extension of it is well-founded. We can now formulate theorem
3.5 for in�nite signatures:

54 Chapter 3. Well-foundedness of Term Orderings

Theorem 3.13. Let D be a precedence on F , > a partial order over T (F ;X), and � a
status function with respect to >, such that that both > and D, and, � and D are compatible.
Suppose > has the subterm property and satis�es the following condition:

� 8f; g 2 F ; m 2 arity(f); n 2 arity(g); s1; : : : ; sm; t1; : : : ; tn 2 T (F ;X) :
if f(s1; : : : ; sm) > g(t1; : : : ; tn) with f � g, then either

{ 91 � i � m : si � g(t1; : : : ; tn), or

{ hs1; : : : ; smi >�(f) ht1; : : : ; tni.

Suppose also that D is a wqo on F n F0 and > is well-founded on X [F0, where as usual
F0 = ff 2 F : arity(f) = f0gg. Then > is well-founded on T (F ;X).

Proof We proceed, as in proof of theorem 3.5, by contradiction. First we remark that any
in�nite descending sequence (ti)i�0 contains an in�nite subsequence (t�(i))i�0 such that
arity(root(t�(i))) 6= f0g, for all i � 0. If that would not be the case, the sequence
would contain in�nitely many variables or constants, contradicting the fact that > is
well-founded on X [F0.

We take a minimal in�nite descending sequence (ti)i�0, in the same sense as in theorem
3.5. Again, as remarked in the proof of theorem 3.5, from the minimality of (ti)i�0, the
subterm property and transitivity of >, it follows that all (principal) subterms of any term
ti, i � 0, are well-founded.

Let root(t) be the head function symbol of the term t. Consider the in�nite se-
quence (root(ti))i�0. From the �rst observation above, it follows that this sequence
contains in�nitely many elements of F n F0. Consequently and since D is a wqo on
FnF0, we can conclude that the sequence (root(ti))i�0 contains an in�nite subsequence
(root(t�(i)))i�0 such that root(t�(i+1)) � root(t�(i)) and arity(root(t�(i))) 6= f0g,
for all i � 0.

The in�nite sequence (root(ti))i�0 contains no in�nite subsequence (root(t (i)))i�0
such that root(t (i+1)) � root(t (i)), for all i � 0. Suppose it is not so and let
(root(t (i)))i�0 be such a sequence. Since t (i) > t (i+1), by hypothesis we must have

1. si;k � t (i+1), with si;k a principal subterm of t (i), or

2. hsi;1; : : : ; si;k (i)i >
� hsi+1;1; : : : ; si+1;k (i+1)

i, where >� is the lifting given by the

status of root(t (0))
2, and where si;1; : : : ; si;k (i) and si+1;1; : : : ; si+1;k (i+1)

are the
principal subterms of, respectively, t (i) and t (i+1), for all i.

Due to the minimality of (ti)i�0 and the subterm property, case 1 above can never occur.
Therefore we have an in�nite descending sequence

hs0;1; : : : ; s0;k (0)i >
� hs1;1; : : : ; s1;k (1)i >

� hs2;1; : : : ; s2;k (2)i >
� : : :

2Recall that for equivalent function symbols, their status coincides.

3.4. In�nite Signatures 55

Since > is well-founded on
[
i�0

k (i)[
j=1

fsi;jg, this contradicts the de�nition of lifting.

Therefore, and without loss of generality, we can state that the in�nite subsequence
(root(t�(i))i�0) has the additional property root(t�(i+1)) � root(t�(i)), for all i.3

Since t�(i) > t�(i+1) and > is compatible with D, we must have u � t�(i+1), for some
principal subterm u of t�(i), contradicting the minimality of (ti)i�0. 2

Some remarks are appropriate. It is not essential to require that D should be a precedence
on F ; requiring that D is a precedence on F n F0 is enough. The condition � serves the same
purpose as the decomposability condition (for > with respect to �) in theorem 3.5.

The restriction f � g) �(f) = �(g) can be relaxed if we allow the arguments of f and g
to be permuted before being compared under >�(f). The result is still valid if (while keeping the
restriction f � g) �(f) = �(g)) we associate permutations to function symbols indicating the
order in which arguments are taken to form a sequence. Then hs1; : : : ; smi >�(f) ht1; : : : ; tni
becomes �f(hs1; : : : ; smi) >�(f) �f (ht1; : : : ; tni), where �h is a permutation associated to
function symbol h (this may be a function that �rst checks the number or arguments and then
permutes them, thus not a permutation in the strict sense), and where by �h(hu1; : : : ; uki) we
mean the application of the permutation �h to the elements u1; : : : ; uk. This relaxation allows
us to consider lexicographic status where sequences are �rst arranged before they are compared.

Since there are no substitutions involved, there is no essential di�erence between elements
of X and F0. The condition stating that > is well-founded on X is imposed to disallow the
bizarre case where we can have an in�nite descending sequence constituted solely by variables.
Usually (e. g. in Kruskal's theorem) it is required that the precedence D is a wqo over F , we
can however relax that condition to D being a wqo over F nF0 provided > is also well-founded
on F0. This is weaker than requiring that D be a wqo on F . The wqo requirement cannot be
weakened to well-foundedness as the following example shows. Consider F = ffiji � 0g with
arity(fi) = f1g, for all i � 0. Let > be an order on T (F ;X) with the subterm property and
such that

f0(x) > f1(x) > f2(x) > � � �

Take D to be equality. Obviously D is well-founded and all the other conditions of theorem
3.13 are satis�ed, however the order > is not well-founded.

If we remove the condition \> is well-founded on X [F0", and strengthen the condition
on D to \D is a wqo on F [X ", then the same statement as above can be proved (and the
proof is very similar). In this case and for �nite signatures, theorem 3.5 is a direct consequence
of theorem 3.13, since the discrete order is a wqo and the compatibility conditions are trivially
ful�lled.

Theorem 3.13 holds in particular for precedences that are partial well-orders (pwo's). In this
case we only need to compare terms with the same root function symbol and the compatibility
condition of de�nition 3.12 is trivially veri�ed.

3Strictly speaking, an in�nite subsequence of this sequence has that property.

56 Chapter 3. Well-foundedness of Term Orderings

As in the �nite case, well-foundedness of orders as rpo over in�nite signatures, is a conse-
quence of theorem 3.13. For that we need to extend the well-founded precedence to a total
well-founded one, keeping the equivalence part the same, which is then a wqo. Note that we
also need to check that rpo is well-founded over F0 [X. All the other conditions also hold, so
the theorem can be applied.

If it is the case that F is �nite but we allow X to be an in�nite set, the conditions imposed
on the order on theorem 3.5 are not enough to guarantee that the order is well-founded: any
non-well-founded order de�ned only in X is a counterexample. However, in the presence of an
in�nite set of variables, well-foundedness of > on T (F ;X) is equivalent to well-foundedness of
> on X , i. e., theorem 3.5 can be rewritten as:

Theorem 3.14. Let > be a partial order over T (F ;X) and � a status function with respect
to >. Suppose > has the subterm property and is decomposable with respect to � . Then > is
well-founded on T (F ;X) if and only if > is well-founded on X .

One direction is trivial, the other is a consequence of theorem 3.13, by taking as precedence
equality. Note that for F �nite and X in�nite, theorems 3.7, 3.8 and 3.10, hold under the
additional assumption that the order considered is well-founded when restricted to X .

If we relax the requirements on the precedence and strengthen the ones on the order, another
interesting result arises.

Theorem 3.15. Let D be a well-founded precedence on F [X such that elements of F and
X are incomparable under D and D restricted to X is equality. Let > be a partial order over
T (F ;X), and � a status function with respect to >, such that that � and D are compatible.
Suppose > has the subterm property and satis�es the following condition:

� 8f; g 2 F [X ; m 2 arity(f); n 2 arity(g); s1; : : : ; sm; t1; : : : ; tn 2 T (F ;X) :
if f(s1; : : : ; sm) > g(t1; : : : ; tn) then either

{ 91 � i � m : si � g(t1; : : : ; tn), or

{ f � g, or

{ f � g and hs1; : : : ; smi >
�(f) ht1; : : : ; tni.

Then > is well-founded on T (F ;X).

The proof is very similar to the proof of theorem 3.13, therefore we omit it. Note that
condition � implies that > and D are compatible. Furthermore we can require that D is only
de�ned and well-founded on F provided > is well-founded on X . As for theorem 3.13, we can
also generalize the result above by allowing arguments of f and g to be permuted before they
are compared.

Note that well-foundedness of rpo, for an arbitrary well-founded precedence, is a direct
consequence of this result. In the \classical" approach, �rst the precedence has to be extended
via lemma 3.9 to a well-founded total precedence, maintaining the equivalence part, before
Kruskal's theorem yields the desired result.

3.4. In�nite Signatures 57

It would also be interesting to have a theorem similar to theorem 3.7 for the case of in�nite
signatures. However for in�nite signatures the discrete relation (equality) is not a wqo any
longer and it is not clear how to choose an appropriate wqo. A possibility is to take D de�ned
by f � g for any f; g 2 F , which is trivially a wqo, however this choice will not always work
as the following example shows. Consider the in�nite terminating TRS given by

ai ! aj for any i > j � 0

and where each ai is a constant. Then any order compatible with R will never satisfy a
decomposability condition akin to � in theorem 3.13 or 3.15, for a precedence in which ai � aj,
for all i; j � 0.

Another alternative is to take a total well-founded order on F , again by de�nition a wqo,
but then other compatibility problems arise. Just consider the rule

a ! f(0)

If we choose the precedence as an arbitrary total well-founded order on F , we may have f � a,
and the conditions of theorem 3.13 will never hold.

3.4.2 Generalizing Liftings on Orders

The decomposability restriction hs1; : : : ; smi >
�(f) ht1; : : : ; tni has the inconvenience of for-

getting about the root symbols of the terms compared. In the case of �nite signatures, that is
irrelevant since we only need to compare terms with the same head symbol and the symbol can
be encoded in the status � . For in�nite signatures, however, that information is essential, since
given an in�nite sequence of terms we no longer have the guarantee that it contains an in�nite
subsequence of terms having the same root symbol. As a consequence we need to impose some
strong conditions both on the set of function symbols and on the status and order used. A way
of relaxing these conditions is by remembering the information lost with the decomposition and
this can be achieved by changing the de�nition of lifting.

In this section we present another condition for well-foundedness on term orderings. Now
we do not require the existence of an order or quasi-order on the set of function symbols F .
Instead we will use a di�erent de�nition of lifting for orderings on terms.

De�nition 3.16. Let (T (F ;X); >) be a partially ordered set of terms. We de�ne a
term lifting to be a partial order >� on T (F ;X) for which the following holds: for every
A � T (F ;X), if > restricted to A is well-founded, then >� restricted to �A is also well-
founded, where

�A = ff(t1; : : : ; tn) : f 2 F [X ; n 2 arity(f); and ti 2 A; for all i; 0 � i � ng

We use the notation �(>) to denote all possible term liftings of > on T (F ;X).

Note that for any partial order >, the term lifting >� is well-founded on X [F0. This is a
consequence of the de�nition since > is well-founded on A = ; and �A = X [F0.

58 Chapter 3. Well-foundedness of Term Orderings

We remark that term liftings can make use of liftings and status functions since the well-
foundedness requirement is preserved. Given an order > on T (F ;X), every lifting in the sense
of de�nition 3.1 induces a term lifting of the same order as follows:

f(s1; : : : ; sm) >
� g(t1; : : : ; tn)

def

() hs1; : : : ; smi >
� ht1; : : : ; tni

It is not di�cult to see that if >� is a lifting in the sense of de�nition 3.1, then >� is irreexive
and transitive. Furthermore if > is well-founded on a set of terms A � T (F ;X) then >� is
well-founded on A� and so >� is well-founded on �A.

We present a new well-foundedness criterion.

Theorem 3.17. Let > be a partial order on T (F ;X) and let >� be a term lifting of >.
Suppose > has the subterm property and satis�es the following condition:

� 8f; g 2 F [X ; m 2 arity(f); n 2 arity(g); s1; : : : ; sm; t1; : : : ; tn 2 T (F ;X) :
if s = f(s1; : : : ; sm) > g(t1; : : : ; tn) = t then either

{ 91 � i � m : si � g(t1; : : : ; tn), or

{ s >� t

Then > is well-founded on T (F ;X).

Proof Suppose that > is not well-founded and take an in�nite descending chain

t0 > t1 > � � � > tn > � � �

minimal in the same sense as in the proof of theorem 3.5, i. e.,

� jt0j � jsj, for all non-well-founded terms s;

� jti+1j � jsj, for all non-well-founded terms s such that ti > s.

As remarked in the proof of theorem 3.5, from the minimality of (ti)i�0, the subterm
property and transitivity of >, it follows that all principal subterms of any term ti, i � 0,
are well-founded. Since ti > ti+1, for all i � 0, we must have either

1. ui � ti+1, for some principal subterm ui of ti, or

2. ti >
� ti+1

Due to the minimality of the sequence, the �rst case above can never occur. Therefore
we have an in�nite descending chain

t0 >
� t1 >

� t2 >
� : : :

But due also to minimality, the order > is well-founded over the set of terms

A = fu : u is a principal subterm of ti; for some i � 0g:

By de�nition of term lifting we have that >� is well-founded over

�A = ff(u1; : : : ; uk) : f 2 F [X ; k 2 arity(f) and ui 2 A; for all 1 � i � kg

and since ftij i � 0g � �A, we get a contradiction. 2

3.4. In�nite Signatures 59

It is interesting to remark that theorem 3.5 (for �nite signatures) is a consequence of theorem
3.17. Let > be a partial order over T (F ;X) in the conditions of theorem 3.5. We de�ne the
following order �:

s� t
def

() root(s) = root(t) and s > t

It is not di�cult to see that � is indeed a partial order, i. e., irreexive and transitive.
Now we de�ne the following term lifting

f(s1; : : : ; sm)�
� g(t1; : : : ; tn)

def

() f = g and hs1; : : : ; smi >
�(f) ht1; : : : ; tni

where >�(f) is the lifting associated by the status function � to the function symbol f . It is not
di�cult to see that since the lifting >�(f) respects well-foundedness of >, �� is a well-de�ned
term lifting. Now theorem 3.17 gives well-foundedness of �. But since non-well-foundedness
of > would imply non-well-foundedness of � (by an argument similar to the proof of theorem
3.5), we are done.

Furthermore when F [X is �nite, theorem 3.17 is also a consequence of theorem 3.5 (i. e.,
they are equivalent). Suppose that we have a partial order > on T (F ;X) and a term lifting
>� in the conditions of theorem 3.17. We de�ne the status

hs1; : : : ; smi >
�(f) ht1; : : : ; tni

def

() f(s1; : : : ; sm) >
� f(t1; : : : ; tn)

It is now not di�cult to check that >�(f) is a partial order and that if > is well-founded over a
set of terms A � T (F ;X) then >�(f) is well-founded over A� (since otherwise >� would not
be well-founded over �A). By theorem 3.5 we conclude that > is well-founded.

Due to the required existence of a partial order on the set of function symbols, the relation
of this theorem with theorems 3.13 and 3.15 is not yet clear.

An important consequence of the use of term liftings is that we manage to recover the
completeness results stated in section 3.3.2 which we could not state for precedence-based
orders.

Theorem 3.18. Let R be a TRS over an in�nite varyadic signature. Then R is terminating
if and only if there is an order > over T (F ;X) and a term lifting >� satisfying the following
conditions:

� > has the subterm property (and > is closed under substitutions),

� 8f; g 2 F [X ; m 2 arity(f); n 2 arity(g); s1; : : : ; sm; t1; : : : ; tn 2 T (F ;X) :
if s = f(s1; : : : ; sm) > g(t1; : : : ; tn) = t then either

{ 91 � i � m : si � g(t1; : : : ; tn), or

{ s >� t

� if s!R t then s > t.

60 Chapter 3. Well-foundedness of Term Orderings

Proof Sketch. The \if" part follows from theorem 3.17: the order > is well-founded and the
assumption !R � > implies that R is terminating.

For the \only-if" part the proof is similar to the proof of theorem 3.7. We de�ne again
the relation > on T (F ;X): s > t () s 6= t and 9C[] : s!�R C[t]. The only di�erent
part is the de�nition of term lifting. Since the order > is well-founded we can use it as
the term lifting itself. 2

As for the �nite case the completeness result concerning totality also holds and the proof is
very similar, so we omit it.

Theorem 3.19. Let R be a TRS over an in�nite varyadic signature. Then R is terminating
if and only if there is an order > over T (F ;X) and a term lifting >� satisfying the following
conditions:

� > has the subterm property,

� 8f; g 2 F [X ; m 2 arity(f); n 2 arity(g); s1; : : : ; sm; t1; : : : ; tn 2 T (F ;X) :
if s = f(s1; : : : ; sm) > g(t1; : : : ; tn) = t then either

{ 91 � i � m : si � g(t1; : : : ; tn), or

{ s >� t

� > is total,

� if s!R t then s > t.

3.5 Semantic Path Order and General Path Order

As an application of results presented earlier, we show here how well-foundedness of semantic
path order (Kamin and L�evy [55]) and general path order (Dershowitz and Hoot [24]) can be
derived using either theorem 3.5 or theorem 3.17.

De�nition 3.20. (semantic path order - spo) Let � be a well-founded quasi-order on
T (F). The semantic path order �spo is de�ned on T (F) as follows: s = f(s1; : : : ; sm) �spo
g(t1; : : : ; tn) = t if either

1. s > t and s �spo ti, for all 1 � i � n, or

2. s � t and s �spo ti, for all 1 � i � n, and hs1; : : : ; smi �mulspo ht1; : : : ; tni, where �
mul
spo

is the multiset extension of �spo, or

3. 9i 2 f1; : : : ; mg : si �spo t.

3.5. Semantic Path Order and General Path Order 61

It can be seen that �spo is a quasi-order with the subterm property and in general not
monotonic (Geser [42]).

In the case the alphabet we consider is �nite, de�ne the following status. Let � be the
well-founded quasi-order used in the de�nition of �spo. For each f 2 F the lifting �(f) is given
by

hs1; : : : ; ski �
�(f)
spo ht1; : : : ; tmi ()

�
s > t; or
s � t and hs1; : : : ; ski ord(�mulspo) ht1; : : : ; tmi

for any k;m 2 arity(f) and where ord(�mulspo) is the strict part of the multiset extension

of �spo, s = f(s1; : : : ; sk) and t = f(t1; : : : ; tm). It is not di�cult to see that ��(f)spo is

indeed a partial order on T (F)� and that ��(f)spo preserves well-foundedness, being therefore a
lifting. Since �spo has the subterm property and satis�es the other conditions of theorem 3.5,
its well-foundedness follows from application of the theorem.

For the case we consider an in�nite signature, we de�ne the following term lifting: for
s = f(s1; : : : ; sm) and t = g(t1; : : : ; tn)

s ��
spo t ()

�
(s > t) or
(s � t) and hs1; : : : ; smi ord(�

mul
spo) ht1; : : : ; tni

where again � is the well-founded quasi-order used in the de�nition of �spo. Since > is well-
founded and the multiset extension preserves well-foundedness, ��

spo is indeed a term lifting.
Using this term lifting, we can apply theorem 3.17 to conclude that �spo is well-founded.

The general path order , that we denote by �gpo, was introduced by Dershowitz and Hoot
[24]. We present the de�nition and show how well-foundedness of this order can be derived
from theorem 3.5 or theorem 3.17.

De�nition 3.21. A termination function � is a function de�ned on the set of ground terms
T (F) and is either

1. a homomorphism from terms to a set S such that

�(f(s1; : : : ; sn)) = f�(�(s1); : : : ; �(sn))

2. an extraction function that given a term associates to it a multiset of principal subterms,
i. e.,

�(f(s1; : : : ; sn)) = ffsi1 ; : : : ; sikgg

where i1; : : : ; ik 2 f1; : : : ; ng.

De�nition 3.22. A component order � = h�;�i consists of a termination function de�ned
on the set T (F) of ground terms, along with an associated well-founded quasi-order � (de�ned
on the codomain of �).

62 Chapter 3. Well-foundedness of Term Orderings

De�nition 3.23. (general path order - gpo) Let �i = h�i;�ii, with 0 � i � k, be
component orders, such that if �j is an extraction function then �j is the multiset extension
of the general path order itself. The induced general path order �gpo is de�ned on T (F) as
follows: s = f(s1; : : : ; sm) �gpo g(t1; : : : ; tn) = t if either

1. 9i 2 f1; : : : ; mg : si �gpo t or

2. s �gpo tj, for all 1 � j � n, and �(s) >lex �(t), where � = h�0; : : : ; �ki and >lex is
the lexicographic combination of the component orderings �i, with 0 � i � k.

The equivalence part is de�ned as: s = f(s1; : : : ; sm) �gpo g(t1; : : : ; tn) = t if s �gpo tj, for
all 1 � j � n, and t �gpo sj, for all 1 � j � m, and �i(s) �i �i(t), for all 0 � i � k, where
�i is the equivalence contained in �i.

It is known (Dershowitz and Hoot [24]) that �gpo is a quasi-order with the subterm property.
Well-foundedness of �gpo is a consequence of the results previously presented. For the case

of �nite signatures we de�ne the following status

hs1; : : : ; smi �
�(f)
gpo ht1; : : : ; tni () �(f(s1; : : : ; sm)) >lex �(f(t1; : : : ; tk))

where as in de�nition 3.23, �(v) = h�0(v); : : : ; �k(v)i and >lex is the lexicographic combination
of the component orderings �i, with 0 � i � k. If �i is an homomorphism to a well-founded
set, then �i is obviously a lifting, and if �i is a multiset extracting function, since the multiset
construction preserves well-foundedness, we also have that �i is a lifting. Finally the �nite
lexicographic composition of liftings is still a lifting. As a consequence ��(f)gpo is a well-de�ned
status, and since �gpo has the subterm property and satis�es the other conditions of theorem
3.5, we can apply this result to conclude �gpo is well-founded.

For in�nite signatures, well-foundedness of �gpo is a consequence of theorem 3.17. If we
de�ne the term lifting ��

gpo as �, we see that ��
gpo is indeed well-de�ned. Since the other

conditions of theorem 3.17 are satis�ed, we can apply it to conclude well-foundedness of �gpo.
Finally it is interesting to remark that if we allow the termination function to be not only a
multiset extraction function but an arbitrary lifting, we may be able to obtain a generalization
of �gpo whose well-foundedness can still be derived from the results presented.4

3.6 Conclusions

We presented some criteria for proving well-foundedness of orders on terms. Our approach
was inspired by Kruskal's theorem but is simpler. Kruskal's theorem (and extensions as the
one in Puel [92]) is a stronger result in the sense that it establishes that a certain order is a
well quasi-order (or partial well-order). Our result allows to conclude well-foundedness directly.
However the essential di�erence is the domain of application: Kruskal's theorem implies well-
foundedness of orders extending any monotonic order with the subterm property, hence only

4For generalizations of �gpo see Geser [41].

3.6. Conclusions 63

covers simpli�cation orders and it is well-known that those orders do not cover all terminating
TRS's. Our criteria do not require monotonicity and as a consequence, cover all terminating
TRS's.

For in�nite signatures we presented a criterion even simpler and the completeness results
still hold.

64 Chapter 3. Well-foundedness of Term Orderings

Chapter 4

On Recursively De�ned Term Orders

In the previous chapters we presented some recursively de�ned path orders and stated some
properties these orders have. Here we look at some of these orders in more detail.

The chapter can be divided in two parts. In the �rst part we consider the problems sur-
rounding the de�nition of recursive path orders. When giving a recursive de�nition of a path
order, several problems are posed. One of them is well-de�nedness of the order, i. e., one
should see that an object of the sort that is being de�ned exists. Another important aspect
concerns the properties that make a relation a partial order, i. e., irreexivity and transitivity.
In general irreexivity is not so di�cult to prove but veri�cation of transitivity is in general not
a trivial task. We discuss these issues for the particular cases of spo and rpo. We will follow
an approach similar to the one presented in Kamin and L�evy [55]. We will concentrate on the
partial order case and will make some remarks on the quasi-order case.

In the second part we show that existing versions of rpo and kbo are related to total
termination in the sense that any TRS proven terminating by such an order is totally terminating.

4.1 CPO's and Continuous Functions

The de�nitions we want to consider are recursive ones and recursive de�nitions are related to
�xed points. Given a function f : A ! A, a �xed point of f is an element a 2 A satisfying
f(a) = a. Not all functions have �xed points, but it is possible to ensure the existence of �xed
points if both the domain and the functions satisfy certain conditions. A possibility is to require
A to be a CPO and f to be continuous. In this section we introduce these concepts. For more
detailed information, see for example Davey and Priestley [18].

De�nition 4.1. Let (P;>) be a poset and let S be a subset of P . An element p 2 P is said
an upper bound for S if it satis�es p � s, for all s 2 S. The supremum of S, denoted by

W
S,

when it exists, is the least upper bound of S, i. e.,

�
W
S � s, for all s 2 S,

� if p is an upper bound for S then p �
W
S.

65

66 Chapter 4. On Recursively De�ned Term Orders

The supremum of P (when it exists) is named the greatest element or top.

We note that the notions of lower bound , greatest lower bound or minimum and least
element (or bottom) have a dual de�nition.

De�nition 4.2. Let D be a non-empty subset of a poset (P;>). D is said to be directed if
for any �nite subset F of D there is an element d 2 D which is an upper bound for F .

De�nition 4.3. A poset (P;>) is a complete partial order , abbreviated to CPO, if it satis�es
the following conditions:

� P has a least element,

� every directed subset of P has a supremum.

Example 4.4. A very simple example of CPO that will be of use later, is the powerset of any
set P , ordered by strict inclusion. The least element is the empty set and the supremum of any
family of sets, and in particular a directed one, is the union of the elements in the family. This
CPO also has a greatest element, namely P itself.

De�nition 4.5. Let (P;>) and (Q;�) be two CPO's. A function f : P ! Q is said to be
continuous if for every directed set D of P we have f(

W
>D) =

W
� f(D).

Note that in the de�nition above we do not need the existence of a least element neither
in P nor in Q. In fact the de�nition of continuous function can be weakened to requiring that
the condition for the supremums holds whenever they exist. Note also that if a function is
continuous it is also order-preserving or weakly monotone (i. e., x > y) f(x) � f(y)) since
for any pair of elements x; y such that x > y, the set fx; yg is directed and its supremum is x.
Continuity now gives f(

W
fx; yg) = f(x) � f(y), by de�nition of supremum.

We now present the �xed-point result that is needed (for a proof of these statements see
Davey and Priestley [18]).

Theorem 4.6. Let (P;>) be a CPO with least element ?. Let f : P ! P be any function.
We have:

1. if f is order-preserving then f has a least �xed point. Furthermore if
_

n�0
fn(?) is a

�xed point then it is the least �xed-point.

2. if f is continuous then f has a least �xed point given by
_

n�0
fn(?).

Note that the set ffn(?)j n � 0g is a directed set and so the supremum is well-de�ned.

4.2. De�ning spo and rpo 67

4.2 De�ning spo and rpo

We present a construction that allows us to de�ne spo and rpo and easily prove that they are
partial orders on terms.

First we introduce a new notion of status. Later it will become clear why we need to do so.

De�nition 4.7. Let S be a set. A status is a function � : P(S � S)! P(S � S) satisfying:

1. if � is transitive over S then �(�) is transitive over S.

2. if � is a partial order over S then �(�) is a partial order over S.

3. if we consider the CPO (P(S � S);�) then � is continuous.

Note that the last condition above implies that � is order-preserving or weakly monotone.

We consider the set of terms T (F ;X) over a set of variables X and a �xed arity signature
F . Since we do not restrict ourselves to �nite signatures, the results presented apply also for
the varyadic case since any varyadic signature can be simulated by a �xed-arity one with the
function symbols labelled with their arities.

We now �x our CPO to be P(T (F ;X)�T (F ;X)) or abbreviatedly PT , ordered by strict
inclusion �. The least element is the empty set. Let � be a �xed quasi-order on T (F ;X) and
let � be a status with domain PT .

De�nition 4.8. The function G : PT ! PT is de�ned as follows, s = f(s1; : : : ; sk) G(�) t,
(for � 2 PT), with f 2 F having arity k � 0, if one of the following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F having arity m � 0, and s G(�) tj, for all 1 � j � m,
and either

(a) s � t, or

(b) s � t and s �(�) t, or

2. 91 � i � k : si G(�) t or si = t.

The �rst thing that needs to be checked is that the function G is well-de�ned, i. e., that
G(�) is a relation on T (F ;X), for any relation � and that if � = �0 then G(�) = G(�0). That
can be done without much work by induction over jsj+ jtj.

The idea behind the de�nition of the function G is that we want to use it to obtain a
de�nition of spo and rpo, i. e., we want those orders to be the least �xed point of this function.
So now we have to see that the function G is continuous.

Lemma 4.9. The function G as de�ned in de�nition 4.8 is continuous.

68 Chapter 4. On Recursively De�ned Term Orders

Proof Let D be a directed set in P(T (F ;X) � T (F ;X)). Recall that the supremum of
D in this CPO is just the union of the elements of D, that we denote by

S
D to keep

the notation simple. Thus what we need to see is that G(
S
D) =

S
G(D), where again

abusively
S
G(D) denotes

[
A2D
G(A).

It is well-known that one inclusion always holds due to weak monotonicity and the def-
inition of supremum. Indeed since

W
D � A, for any A 2 D, if G is weakly monotone

then G(
S
D) � G(A) and consequently G(

S
D) �

[
A2D

G(A) =
S
G(D).

So �rst we check weak monotonicity of G. Let then � � �0. We need to see that if
s G(�0) t then also s G(�) t and we do it by induction on jsj+ jtj. Let then s; t be a pair
of minimal terms in the sense that the property holds for terms u; v with juj+jvj < jsj+jtj.
We have to do some case analysis. If s G(�0) t by case 2 of de�nition 4.8, we have by
induction hypothesis or de�nition of G that also s G(�) t. For case 1, induction hypothesis
gives us s G(�) tj, for all 1 � j � m, where t = g(t1; : : : ; tm), for some g 2 F having
arity m � 0. Now if we are in case 1a we are done since the same case allows us to
conclude that s G(�) t. If we are in case 1b, then s �(�0) t and since � is monotone also
s �(�) t. Again we can conclude that s G(�) t.

We still need to see that the other inclusion holds, that is G(
S
D) �

S
G(D). We see

that for any s; t 2 T (F ;X), s G(
S
D) t) s

S
G(D) t, by induction on jsj + jtj. Let

then s; t be a pair of minimal terms for which the property is not yet known to hold.
Again case analysis has to be done. If s G(

S
D) t by case 1 then t = g(t1; : : : ; tm), for

some g 2 F having arity m � 0, and induction hypothesis gives us s
S
G(D) tj, for all

0 � j � m. This means that for each j there is an element of D, that we denote by �j
such that s G(�j) tj. Because f�j 2 D : 0 � j � mg is a �nite subset of the directed
set D, we know that there is an element � 2 D such that � � �j, for all 0 � j � m,
and weak monotonicity of G implies that s G(�) tj, for all 0 � j � m. Now if case 1a
is applicable, we conclude that s G(�) t and so that s

S
G(D) t; if case 1b is applicable

then continuity of the status gives us s
S
�(D) t, that is there is an element �0 in D

such that s �(�0) t. Again the two elements �; �0 are majorated in D by an element �
and again monotonicity of G gives s G(�) tj, for all 1 � j � m and monotonicity of �
gives s �(�) t. By de�nition of G, we conclude that s G(�) t and thus that s

S
G(D) t.

Finally if case 2 is applicable, induction hypothesis (and de�nition of G) gives the result.
2

Since the function G is continuous, theorem 4.6 tell us that this function has a least �xed
point. Furthermore this �xed point is given by

[
n�0

>n where

>0= ; and >n+1= G(>n); for all n � 0:

We will now show that for each n � 0 the relation >n is transitive and irreexive.

Lemma 4.10. For each n � 0, the relation >n as de�ned above is transitive.

4.2. De�ning spo and rpo 69

Proof We have to see that

8n � 0 8s; t; u 2 T (F ;X) : s >n t and t >n u) s >n u

We proceed by induction on the lexicographic product (n; jsj+ jtj+ juj). For n = 0 the
result is trivially satis�ed since >0 is the empty relation. Suppose now that (n+ 1; jsj+
jtj+ juj) is a minimal tuple for which the property is not yet veri�ed, i. e., >j is transitive
for any 0 � j � n and if jpj + jqj + jrj < jsj + jtj + juj then p >n+1 q and q >n+1 r
implies p >n+1 r. We have to do case analysis and we have to check the following nine
cases:

Case s >n+1 t t >n+1 u s >n+1 u
(1) 1a 1a 1a
(2) 1a 1b 1a
(3) 1a 2 IH/2
(4) 1b 1a 1a
(5) 1b 1b 1b
(6) 1b 2 IH/2
(7) 2 1a IH/2
(8) 2 1b IH/2
(9) 2 2 IH/2

The last column indicates the case of the de�nition of G used in the conclusion, apart
from the induction hypothesis and other reasoning. For the cases when it is neces-
sary we assume that s; t; u are written, respectively as f(s1; : : : ; sk), g(t1; : : : ; tm) and
h(u1; : : : ; uo).

Cases (7), (8) and (9) follow directly from the induction hypothesis and the de�nition of
G since si >

n+1 t and t >n+1 u implies, by induction hypothesis, that si >
n+1 u, and

si = t >n+1 u gives, using case 2 from de�nition 4.8, si >
n+1 u. The same holds for

cases (3) and (6). For case (1), since s >n+1 t and t >n+1 ul, for all 0 � l � o (where
u = h(u1; : : : ; uo)), induction hypothesis gives s >n+1 ul, for all l. Since � is transitive
the result follows. For case (2), similarly to (1), induction hypothesis gives us s >n+1 ul,
for all 0 � l � o. Since � and � are compatible, we also have s � u and the result
follows. Case (4) is similar to case (3).

Case (5) is the most complicated. As in (1), induction hypothesis gives us s >n+1 ul, for
all 0 � l � o. Transitivity of � gives us s � u. By hypothesis we have s �(>n) t and
t �(>n) u. Recall that induction hypothesis tells us that >n is transitive and since the
status � preserves transitivity of relations, we conclude that �(>n) is also transitive and
therefore that s �(>n) u. Case 1b of the de�nition of G, gives the result. 2

Lemma 4.11. For each n � 0, the relation >n as de�ned above is irreexive.

70 Chapter 4. On Recursively De�ned Term Orders

Proof We show that 8n � 0 8s 2 T (F ;X) : :(s >n s). We proceed by induction on the
lexicographic tuple (n; jsj) and will use transitivity of the relations >n, n � 0 (proven in
lemma 4.10).

For n = 0 again the result is trivially veri�ed, since >0 is the empty relation. Suppose
then that (n+ 1; jsj) is a minimal tuple for which the property has not yet been veri�ed
(i. e., the property holds for all tuples (j; t) with 0 � j � n and t arbitrary, and tuples
(n + 1; t) with jtj < jsj). Suppose furthermore that s >n+1 s. We now proceed by
case analysis. If case 1a would be applicable then we would have s � s, contradicting
irreexivity of order �. If case 1b would be applicable we would have s �(>n) s. But
by induction hypothesis >n is irreexive and by lemma 4.10 it is transitive; therefore >n

is a partial order and since the status � preserves partial orders, we have that �(>n) is
a partial order, thus arriving at a contradiction. Finally if case 2 would be applicable, we
would get either

� si >
n+1 s, for some 1 � i � k, and since s >n+1 si, transitivity of >

n+1 (see lemma
4.10) gives si >

n+1 si, contradicting the minimality of s,

� si = s; and this cannot occur.

2

In the following we shall denote the least �xed point of G by �. Of course we have:

Proposition 4.12. s = f(s1; : : : ; sk)� t, with k � 0 and f 2 F having arity k, if one of the
following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F having arity m � 0, and s � tj, for all 1 � j � m,
and either

(a) s � t, or

(b) s � t and s �(�) t, or

2. 91 � i � k : si � t or si = t.

The previous lemmas give us the result we were aiming at.

Theorem 4.13. Let � =
[

n�0
>n. Then � is irreexive and transitive.

Proof We �rst check irreexivity. Suppose there is a term s 2 T (F ;X) such that s � s.
Then we must have an index i � 1 such that s >i s. But lemma 4.11 tells us that >i is
irreexive, so we reach a contradiction.

For transitivity, suppose that s� t and t � u, for some terms s; t; u 2 T (F ;X). This
means that there are indexes i; j � 1 such that s >i t and t >j u. Now it is easy to
see that the following fact holds: 8n � 0 : >n � >n+1; indeed >0 = ; � >1 and if

4.2. De�ning spo and rpo 71

>k � >k+1, weak monotonicity of G gives >k+1 � >k+2. As a consequence of this fact
we have

>0 � >1 � : : : >n : : :

Take now k = maxfi; jg, then >i; >j � >k, and since >k is transitive (by lemma
4.10), we conclude that s >k u and therefore that s� u. 2

So now we know that the relation � (satisfying 4.12) is a partial order on terms but what
kind of order is it? If we consider the usual de�nition of spo (Kamin and L�evy [54]) we see that
� is a form of spo.

Also if we have a �xed precedence (quasi-order) D on F and associated to each function
symbol f 2 F we have:

� a permutation �f that indicates how the arguments of f are to be taken to form a sequence
(to simplify the notation, we denote a sequence s�f (1) � � � s�f (k) by �f (s1; : : : ; sk)),

� a lifting �f from relations on T (F ;X) to relations on T (F ;X)�, preserving transitivity
and partial orders (i. e., having the same properties as the status �) and continuous with
respect to the CPO's (P(T (F ;X)�T (F ;X));�) and (P(T (F ;X)��T (F ;X)�);�).

If we additionally require that the liftings are compatible with the precedence, i. e., if f � g
then �f = �g, then by choosing the quasi-order � to be:

� s � t () root(s) � root(t),

� s � t () root(s)eq(D)root(t), where eq(D) is the equivalence part of the �xed
precedence D,

and de�ning the status � as

s = f(s1; : : : ; sk) �(�) g(t1; : : : ; tm) = t if

�
root(s) � root(t) and
�f(s1; : : : ; sk) �f(�) �g(t1; : : : ; sm)

(where k;m � 0), we see that de�nition 2.89 is a particular case of the de�nition of�. This is
due to the fact (not di�cult to prove) that multiset extension and lexicographic extensions of
relations are continuous (essentially continuity is guaranteed because comparison of multisets
or sequences envolves only a �nite number of comparisons of individual elements). We denote
the order � obtained in these conditions by �rpo.

The order � (see 4.12) is a generalization of spo and rpo. To see that, consider the
properties usually associated with spo and rpo, namely subterm property and closedness under
substitutions for both orders, and additionally closedness under contexts for rpo.

Subterm property is not a problem, i. e., the order � also enjoys this property, as is stated
in the following lemma that can easily be proven by induction on the context and using case 2
from proposition 4.12.

Lemma 4.14. The partial order � satis�es C[s] � s, for any term s and any non-trivial
context C.

72 Chapter 4. On Recursively De�ned Term Orders

However in general the order� does not enjoy the other properties. The reason why stems
from the use (and de�nition) of status used in the construction of the order. If the status
function produces an order which is not closed under substitutions, � will not be closed under
substitutions. A similar observation applies to closedness under contexts for the particular case
of rpo. For example, let x 2 X be �xed. If we de�ne the status � by

s �(�) t ()

�
s = f(s1; : : : ; sk) and t = g(t1; : : : ; tm); k;m � 1; and
s1 = t1 = x and s2 � � � sk �lex t2 � � � tm

then � is a status in the sense of de�nition 4.7 but it is not closed under substitutions, so the
relation � associated with this status will not be closed under substitutions.

If we require the status function to preserve closedness under substitutions, i. e., to satisfy:

If � is a relation closed under substitutions then �(�) is closed under substi-
tutions.

then we are able to prove the following:

Theorem 4.15. If the quasi-order � is closed under substitutions, i. e., both � and � are
closed under substitutions, and � preserves closedness under substitutions then � is closed
under substitutions.

Proof Recall that � =
[

n�0
>n, where >0= ; and >n+1= G(>n). We will show that

for each n � 0, the relation >n is closed under substitutions. We proceed by induction
on n. For n = 0 the result is trivially satis�ed since >0= ;. Suppose the result is valid
for >n, for some n � 0. We see that for any terms s; t 2 T (F ;X) and any substitution
� : X ! T (F ;X), s >n+1 t) s� >n+1 t�. We proceed by induction on jsj + jtj.
Let then � : X ! T (F ;X) be any substitution and let s; t 2 T (F ;X) be a pair of
minimal terms for which the property is not yet veri�ed (i. e., if u; v are terms such that
juj + jvj < jsj + jtj then u >n+1 v) u� >n+1 v�). Suppose s >n+1 t; we have to do
some case analysis. If s >n+1 t by case 1 then s = f(s1; : : : ; sk) and t = g(t1; : : : ; tm),
for some function symbols f; g 2 F having arities respectively k;m � 0; note that
t� = g(t1�; : : : ; tm�). Furthermore s >n+1 tj, for all 1 � j � m, and the induction
hypothesis gives s� >n+1 tj�, for all 1 � j � m. If case 1a is applicable then s � t
and so s� � t�. We then have that s� >n+1 t� (using case 1a). If case 1b is applicable
then s � t and so also s� � t�, and s �(>n) t. Since >n is closed under substitutions
and � respects this property, we conclude that s� �(>n) t�. As a consequence we have
that s� >n+1 t�. Finally if s >n+1 t by case 2 then also s = f(s1; : : : ; sk) for some
f 2 F having arity k � 1, and si >

n+1 t or si = t, for some 1 � i � k. For the �rst
case and by induction hypothesis we conclude that si� >n+1 t�, and the second case we
have si� = t� (equality is closed under substitutions) and since s� = f(s1�; : : : ; sk�),
it follows (from 2) that s� >n+1 t�.

Now we see that � =
[

n�0
>n is closed under substitutions. Let � : X ! T (F ;X)

be any substitution and let s; t 2 T (F ;X) be terms satisfying s � t. This means that
there is an index n � 1 such that s >n t and since >n is closed under substitutions we
conclude that s� >n t�, and therefore that s� � t�, as we wanted. 2

4.2. De�ning spo and rpo 73

For closedness under contexts, we know that in general spo is not closed under contexts,
but rpo is. As for closedness under substitutions, if we want to see that � is closed under
contexts for the particular case that � is �rpo, we have to require that the status � satis�es
some condition. In this case we additionally require that each lifting �f , f 2 F , respects or
extends in some sense the relation lifted, i. e.:

If � is a partial order then �(�) respects �, i. e., if s�t then
s1 � � � s � � � sn �f(�) s1 � � � t � � � sn, for any terms s; t; s1; : : : ; sk 2 T (F ;X),
and function symbol f 2 F having arity n � 0.

Then we are able to prove the following result:

Theorem 4.16. If �(�rpo) respects �rpo then �rpo is closed under contexts.

Proof We proceed by induction on the context C. If C is the trivial context, the result holds
so it su�ces to show that

if s�rpo t then p = h(u1; : : : ; s; : : : ; un)�rpo h(u1; : : : ; t; : : : ; un) = q;

for any h 2 F having arity k � 1, terms u1; : : : ; uj�1; uj+1; : : : un 2 T (F ;X), and
where both s and t occur at position 1 � l � n.

Suppose that s �rpo t by case 1. Then s = f(s1; : : : ; sk), t = g(t1; : : : ; tm) and
s �rpo tj, for all 1 � j � m. Since �rpo satis�es the subterm property, we have
that h(u1; : : : ; s; : : : ; un) �rpo uj; s, for all 1 � j � n, j 6= l. But s �rpo t and so
transitivity gives us h(u1; : : : ; s; : : : ; un) �rpo t. Since root(p) eq(D) root(q), we
have to see that u1 � � � s � � �un �f(�rpo) u1 � � � t � � �un, and this a consequence of the
fact that �(�rpo) respects �rpo and that s�rpo t. Consequently, using case 1b we can
conclude that p�rpo q. Suppose now that s�rpo t by case 2; then s = f(s1; : : : ; sk),
and si �rpo t or si = t, for some 1 � i � k. But h(u1; : : : ; s; : : : ; un) �rpo si (due
to the subterm property and transitivity) and also h(u1; : : : ; s; : : : ; un)�rpo uj, for any
j 6= l, so since s �rpo si �rpo t or s �rpo si = t, and �(�rpo) respects �rpo, we
conclude that u1 � � � s � � �un �f(�rpo) u1 � � � t � � �un, so by case 1b, the result holds. 2

Another interesting property to look at is totality. Totality of an order closed under substi-
tutions cannot be achieved in the set of terms. But if we restrict ourselves to ground terms,
sometimes totality is possible. In general neither spo nor rpo will be total even on ground
terms, but totality for rpo can be achieve at least in some cases.

In [70], Lescanne proved that if the precedence is a total quasi-order satisfying the arity
condition:

if f eq(D) g and f 6= g then arity(f) 6= arity(g).

and the lifting �f is the lexicographic extension for all f 2 F , then the order �rpo is total on
ground terms.

Note that the arity condition is essential as the following example shows.

74 Chapter 4. On Recursively De�ned Term Orders

Example 4.17. Suppose that a; b are constants and that f admits arity 2. Suppose that
�f(�rpo) is the left-to-right lexicographic extension of �rpo, i. e., �f(�)rpo = �rpo;lex.
Suppose also that f � p for any p 2 fa; bg, and that � satis�es (apart from equality) a � b.
Then � is total but we cannot conclude that f(a; a)�rpo f(b; b) nor the reverse. Since clearly
these terms are di�erent this example shows that we cannot weaken the arity condition.

It is also interesting to remark that there are \natural" examples of TRS's that require a
quasi-order as precedence in the de�nition of rpo as we see in the following example.

Example 4.18. The following TRS (from Lescanne [70]), arising in the context of groups with
left division, can only be oriented by a version of rpo where the function symbols i and n are
equivalent.

x n e ! i(x)
i(xny) ! y n x
(x n y) n z ! y n (i(x) n z)

If we use rpo with left-to-right lexicographic status, and a quasi-precedence D satisfying i � n,
we can indeed orient the rules of the TRS.

4.2.1 Well-foundedness of spo, rpo

For orders on terms to be used in termination proofs, it is essential that the orders are well-
founded. Here we discuss well-foundedness of the order �. From lemma 4.14 we know that
the order � has the subterm property.

We de�ne the relation �
�� as follows:

s�
�� t ()

�
s � t or
s � t and s �(�) t

where � and � are the quasi-order and status used in the de�nition of �.
It is not di�cult to see that �

�� is a partial order on T (F ;X). Also if �(�) is a term
lifting in the sense of de�nition 3.16 and � is well-founded, we also have that �

�� is a term
lifting. Furthermore if s� t then either s = f(s1; : : : ; sk), for some f 2 F having arity k � 1,
and si � t or si = t, for some 1 � i � k (this is given by case 2), or s �

�� t (consequence
of cases 1a, 1b). Consequently theorem 3.17 gives us the following result.

Theorem 4.19. If � is well-founded and �(�) is a term lifting (in the sense of de�nition
3.16) then � is well-founded.

4.2.2 Some Remarks on Quasi-orders

The construction presented in section 4.2 only works for partial orders. Since the CPO we use
is more general (it contains all relations) we can ask ourselves if such construction will also
work for the quasi-order case. The answer is no. One of the problems is that in the case of
partial orders inclusion of partial orders coincides with inclusion of sets but for quasi-orders we

4.2. De�ning spo and rpo 75

want inclusion of quasi-orders to respect the strict and equivalent parts and therefore inclusion
of quasi-orders no longer coincides with inclusion of sets. So a di�erent kind of CPO has to
be de�ned and a good candidate seems to be the set of quasi-orders ordered by an appropriate
partial order.

We proceed to de�ne the CPO. Let S be a set and de�ne QOS to be the set of all quasi-
orders on S, i. e., QOS = f� � S � S : � is a quasi-orderg. We now de�ne a relation = in
QOS as follows:

� = �0 ()

8<
:

� � �0; and
ord(�) � ord(�0); and
eq(�) � eq(�0)

It is not di�cult to see that = is indeed a partial order (irreexivity follows from the �rst
condition above and transitivity is a consequence of the fact that � and � are transitive).
Furthermore we have:

Lemma 4.20. The poset (QOS;=) is a CPO with bottom element given by equality, i. e.,
the relation f(s; s)j s 2 Sg, and with the supremum of directed sets given by the union of the
elements in the set.

Proof It is clear that the bottom element is equality since any quasi-order contains this
relation. Suppose now that D is a directed set of quasi-orders and take

S
D. We have

to see that
S
D is a quasi-order and that for any element � 2 D, we have

S
D w �.

The relation
S
D is indeed reexive since it is the union of reexive relations. As for

transitivity, suppose we have elements s; t; u 2 S such that s (
S
D) t and t (

S
D) u;

then there are elements �1; �2 2 D such that s�1t and t�2u. Since D is directed, there
is an element �3 2 D such that �3 w �1; �2 and since �3 is transitive, we conclude that
s �3 u and so s (

S
D) u, as we wanted.

Now we see that
S
D is an upper bound for each element in D. Let � be an ar-

bitrary element of D. It is obvious that
S
D � �, but we still have to see that

ord(
S
D) � ord(�) and eq(

S
D) � eq(�). Suppose that (s; t) 2 eq(�), then

s�t and t�s and consequently s (
S
D) t and t (

S
D) s, so (s; t) 2 eq(

S
D). Suppose

now that (s; t) 2 ord(�), then s�t and :(t�s). We also have s (
S
D) t; suppose we

have t (
S
D) s. Then an element �0 2 D has to exist such that t �0 s. Since D is

directed, there is an element �00 2 D such that �00 w �; �0; thus we have s �00 t and
t �00 s, which means that (s; t) 2 eq(�00). But this contradicts the fact that �00 w �
and (s; t) 2 ord(�). So we must have :(t (

S
D) s) and ord(

S
D) � ord(�). We

have just seen that
S
D is an upper bound for �, thus concluding the proof. 2

We now de�ne a new notion of status. In the previous sections the status was intended
for application to partial orders but now we are dealing with quasi-orders, so the properties the
status has to ful�l are di�erent.

De�nition 4.21. Let S be a set. A status is a function � : P(S � S) ! P(S � S)
satisfying:

76 Chapter 4. On Recursively De�ned Term Orders

1. if � is reexive in S then �(�) is reexive in S,

2. if � is transitive in S then �(�) is transitive in S,

3. if we consider the CPO (QOS;=), then � is weakly monotone, i. e., � = �0) �(�) w
�(�0).

From now on we �x our CPO to be (QOT (F ;X);=). Let � be a �xed quasi-order on T (F ;X)
and let � be a status, in the sense of 4.21, with domain PT . We de�ne the following function:

De�nition 4.22. The function H : QOT (F ;X) ! QOT (F ;X) is de�ned as follows. For
� 2 QOT (F ;X), s = f(s1; : : : ; sk) H(�) t, with f 2 F [X , having arity k � 0, if one of the
following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [X , having arity m � 0, and for all 1 � j � m, we
have s H(�) tj and :(tj H(�) s), and either

(a) s � t, or

(b) s � t and s �(�) t, or

2. 91 � i � k : si H(�) t.

It is not di�cult to see that the function H is well-de�ned. Below we give some other
properties of H.

Lemma 4.23. If � is reexive then H(�) is reexive.

Proof (Sketch) We show that for any term s, we have s H(�) s, by induction on the size of
s and using the fact that both � and �(�) are reexive. 2

Lemma 4.24. If � is transitive then H(�) is transitive.

Proof (Sketch) We have to see that for any terms s; t; u 2 T (F ;X), if sH(�) t and tH(�) u
then s H(�) u. We proceed by induction on jsj+ jtj+ juj. The proof is a case analysis
similar to the one done in lemma 4.10. The only part that is essentially di�erent is that
a negation is involved. For example, for the combination of cases 1 versus 1 we have to
see that s H(�) ul and :(ul H(�) s), for all 1 � l � m (where u = h(u1; : : : ; um)).
By induction hypothesis s H(�) t and t H(�) ul gives s H(�) ul, for all 1 � l � m.
Suppose we have ul H(�) s, for some 1 � l � m. Then, since s H(�) t, the induction
hypothesis gives us ul H(�) t, which is a contradiction (since we have :(ul H(�) t),
for all 1 � l � m). Other combination of cases in which a negation occurs are solved
similarly.

The rest of the case analysis is very similar to the one in 4.10, so we omit it. 2

The following lemma will be quite useful.

4.2. De�ning spo and rpo 77

Lemma 4.25. For any � 2 QOT (F ;X), for any non-trivial context C and any term s 2
T (F ;X), we have that :(s H(�) C[s]).

Proof Let � be an arbitrary element of QOT (F ;X). We proceed by induction on the lex-
icographic product (jsj; C). For terms of size 1, the result holds since for concluding
that s H(�) f(: : : ; s; : : :), for any f 2 F , with arity �1, the only case of the de�-
nition of H applicable is case 1 and then we must have simultaneously s H(�) s and
:(s H(�) s), which is impossible; and if D is a context for which the result holds
then s H(�) f(: : : ; D[s]; : : :) again would imply (case 1 is the only possibility) that
s H(�) D[s], contradicting the induction hypothesis.

Take now a term s with jsj > k, for a �xed k � 1, for which the result is not yet veri�ed.
i. e., the result holds for all terms u and contexts D if juj � k. Take f 2 F with
arity �1. If s H(�) f(: : : ; s; : : :), case 1 of de�nition 4.22 is not applicable, since both
s H(�) s and its negation would have to hold. So we must have s = h(s1; : : : ; sm),
for some h 2 F with arity m � 1, and si H(�) f(: : : ; s; : : :), for some 1 � i � m.
But f(: : : ; s; : : :) can be written as D[si], for some non-trivial context D, so we have
si H(�) D[si], contradicting the induction hypothesis. Suppose now that the result holds
for the pair s and some non-trivial context C. Suppose also that sH(�) f(: : : ; C[s]; : : :),
for some f 2 F with arity �1. Again case 1 gives a contradiction (since we would have
s H(�) C[s]) and case 2 will also give a contradiction since then we conclude that
si H(�) D[s], for some non-trivial context D and proper subterm si of s, contradicting
the induction hypothesis. 2

Lemma 4.26. The function H is weakly monotone.

Proof We have to see that if � = �0 then H(�) w H(�0) or equivalently that

� s H(�0) t) s H(�) t, for all terms s; t 2 T (F ;X), and

� ord(H(�)) � ord(H(�0)), and

� eq(H(�)) � eq(H(�0)).

We prove, by induction on jsj + jtj, that if s H(�0) t then s H(�) t and if additionally
:(t H(�0) s) then also :(t H(�) s). It is not di�cult to see that the statement holds for
terms s; t with jsj+jtj = 2. Let s; t be a minimal pair of terms such that s H(�0) t and for
which the property is not yet veri�ed, i. e., if u; v are terms such that juj+ jvj < jsj+ jtj,
then u and v satisfy the property. We have to do some case analysis. If s H(�0) t by

1. case 1; then t = g(t1; : : : ; tm), for some g 2 F [X , having arity m � 0, and for
all 1 � j � m, we have s H(�0) tj and :(tj H(�0) s). By induction hypothesis we
also have s H(�) tj and :(tj H(�) s), for all 1 � j � m.

(a) If case 1a is applicable then we have s � t and consequently also s H(�) t.
Suppose additionally that :(t H(�0) s). If we would have t H(�) s, then cases
1a and 1b cannot be applied since we cannot have simultaneously s � t and

78 Chapter 4. On Recursively De�ned Term Orders

t � s or t � s; therefore we must have t H(�) s by case 2 and this means that
tj H(�) s, for some 1 � j � m, which gives a contradiction.

(b) If case 1b is applicable then we have s � t and s �(�0) t. Since � is
weakly monotone, we also have s �(�) t and so also s H(�) t. If additionally
:(tH(�0) s) and tH(�) s, then we conclude that we must have tH(�) s by case
1b (case 1a is not applicable since we cannot have both s � t and t � s; and
case 2 leads to a contradiction as above). But in case 1b, we have both s �(�) t
and t �(�) s, which means that (s; t) 2 eq(�(�)). But (s; t) 2 ord(�(�0))
and due to weak-monotonicity of �, we also have (s; t) 2 ord(�(�)), giving a
contradiction.

2. case 2; then s = f(s1; : : : ; sn), for some f 2 F , having arity n � 1, and si H(�0) t,
for some 1 � i � n. By induction hypothesis we conclude that si H(�) t and so
that s H(�) t. Suppose additionally that :(t H(�0) s). If we would have t H(�) s
then transitivity of H(�) would give si H(�) s, contradicting lemma 4.25.

Once we have established that H(�0) � H(�) and ord(H(�0)) � ord(H(�)), we also
have that eq(H(�0)) � eq(H(�)), since H() = ord(H()) [eq(H()), for any
quasi-order . Thus we establish that H is weakly monotone. 2

Since the function H is weakly monotone (or order-preserving), theorem 4.6 tells us that
H has a least �xed point. We denote this element by =. Obviously, as a consequence of the
de�nition of =, we have that:

Proposition 4.27. = is a quasi-order on T (F ;X) satisfying s = f(s1; : : : ; sk) = t, with
f 2 F [X , having arity k � 0, if and only if one of the following conditions holds:

1. t = g(t1; : : : ; tm), for some g 2 F [X , having arity m � 0, and for all 1 � j � m, we
have s = tj and :(tj = s), and either

(a) s � t, or

(b) s � t and s �(=) t, or

2. 91 � i � k : si = t.

As for the partial order case we can discuss what kind of properties does the quasi-order =
enjoy. Note that if we consider the usual de�nition of spo (Kamin and L�evy [54]) we see that
= is a form of spo, in quasi-order version.

If we have a �xed precedence (quasi-order) D on F [X such that elements of F and X are
incomparable under the precedence and D restricted to X is equality, and associated to each
function symbol f 2 F we have:

� a permutation �f indicating how the arguments of f are to be taken to form a sequence
(again we denote a sequence s�f (1) � � � s�f (1) by �f(s1; : : : ; sk)),

4.2. De�ning spo and rpo 79

� a lifting �f from relations on T (F ;X) to relations on T (F ;X)�, preserving reexivity
and transitivity (i. e., having the same properties as the status �) and weakly monotone
with respect to the CPO's (QOT (F ;X);=) and (QOT (F ;X)�;=).

If we additionally require that the liftings are compatible with the precedence, i. e., if f � g
then �f = �g, then by choosing the quasi-order � to be:

� s � t () root(s) � root(t),

� s � t () root(s) eq(D) root(t),

and de�ning the status � as

s = f(s1; : : : ; sk) �(=) g(t1; : : : ; tm) = t if

�
root(s) � root(t) and
�f(s1; : : : ; sk) �f(=) �g(t1; : : : ; sm)

(where k;m � 0), we obtain an order similar to rpo but in a quasi-order version.
We denote the order = obtained in these conditions by =rpo. Note that both multiset and

lexicographic extensions of quasi-orders satisfy the properties required for the lifting �, i. e.,
they preserve reexivity and transitivity and they are weakly monotone.

The quasi-order = enjoys the subterm property; more precisely the strict part of = enjoys
this property.

Lemma 4.28. The partial order ord(=) satis�es C[s] ord(=) s, for any term s and any
non-trivial context C.

Proof (Sketch) Since reexivity of = ensures that s = s, case 2 of proposition 4.27 gives
f(: : : ; s; : : :) = s, for any f 2 F having arity n � 1. That the relation is strict, i. e.,
that :(s = f(: : : ; s; : : :)) is a consequence of lemma 4.25. 2

In general the order = does not enjoy the other usual properties of well-known recursively
de�ned quasi-orders, like closedness under substitutions or contexts. Again the reason why
stems from the use (and de�nition) of status appearing in the construction of the order. If the
status function produces an order which is not closed under substitutions, = will not be closed
under substitutions. A similar observation applies to closedness under contexts.

For closedness under contexts, we know that in general spo does not have this property, but
rpo does. If we want to see that = is closed under contexts for the particular case that = is
=rpo, we have to require that the status � satis�es some condition. In this case we additionally
require that each lifting �f , f 2 F , respects or extends in some sense the relation lifted, i. e.:

If � is a quasi-order then �(�) respects �, i. e., if s�t then
s1 � � � s � � � sn �f(�) s1 � � � t � � � sn, for any terms s; t; s1; : : : ; sk 2 T (F ;X),
and function symbol f 2 F having arity n � 0 (and lifting �f). Furthermore
if additionally :(t�s) then also :(s1 � � � t � � � sn �f(�) s1 � � � s � � � sn).

Then we are able to prove the following result:

80 Chapter 4. On Recursively De�ned Term Orders

Theorem 4.29. If �(=rpo) respects =rpo then =rpo is closed under contexts. Furthermore
both its strict and equivalent parts are closed under contexts.

Proof (Sketch) The proof is by induction on the context C. If C is the trivial context,
the result holds. We then show that for any h 2 F having arity n � 1, and terms
u1; : : : ; uj�1; uj+1; : : : un 2 T (F ;X),

if s =rpo t then p = h(u1; : : : ; s; : : : ; un) =rpo h(u1; : : : ; t; : : : ; un) = q;

and if also :(t =rpo s) then :(h(u1; : : : ; t; : : : ; un) =rpo h(u1; : : : ; s; : : : ; un)), as well.
This is done by case analysis and is not so di�cult (note that lemma 4.25 is also needed).
As a consequence the equivalence part of = is also closed under contexts and the result
holds. 2

We consider now closedness under substitutions. In general the relation = will not be
closed under substitutions, and the same holds for =rpo. In order to achieve closedness under
substitutions it is essential that the quasi-order � used on the construction of = has the strict
part � as well as the equivalent part � closed under substitutions. But this is not enough and
the reason why stems again from the status. There are two ways to deal with the problem of
closedness under substitutions. One is the \brute force" way, that is, when confronted with a
particular order de�ned in the same way as =, one tries to prove, for that particular choice of
status and/or lifting, that the property holds; for example for multiset and lexicographic liftings,
that is not so di�cult. Another way is to try to provide general conditions on the status and/or
liftings that will ensure that the property holds. This is of course a more elegant way of solving
the problem.

We now propose such a solution. Our proposal requires that we know how the least �xed
point of H looks like. If H is continuous we indeed know what the least �xed point is. In fact it

is enough to show that the relation � =
[

n�0
�n, where �0 is equality and �n+1 = H(�n),

is a �xed point of H; then we also know that it is the least �xed point. In any case we have to
require that the status � is continuous. We can then prove that � is a �xed point (and indeed
that the function H is continuous).

Lemma 4.30. If � is continuous then � is the least �xed point of H.

Proof (Sketch) First note that due to the (weak) monotonicity of H and the fact that
�1 w �0, the relations �n, n � 0, satisfy �n+1 w �n, for all n � 0. So the
relation � is well-de�ned and is a quasi-order. Also due to weak monotonicity of H,
de�nition or the quasi-orders �n, n � 0 and de�nition of supremum, we have that[
n�0

�n v H(
[
n�0

�n).

What we have to prove is that H(
[
n�0

�n) v
[
n�0

�n. This can be done by showing

(by induction on jsj + jtj) that if s H(
[
n�0

�n) t then s
[
n�0

�n t and if additionally

4.2. De�ning spo and rpo 81

:(t H(
[
n�0

�n) s) then also :(t
[
n�0

�n s). It is not di�cult to see that this result holds

for terms s; t with jsj+ jtj = 2. Take now minimal terms s; t for which the property has
still to be checked (i. e., if u; v are terms with juj + jvj < jsj + jtj, then the property

holds for u and v). Suppose then that s H(
[
n�0

�n) t. We now proceed by case analysis

on the case of the de�nition 4.22 used to establish this.

1. case 1; then t = g(t1; : : : ; tm), for some g 2 F [X , with arity m � 0, and for all

1 � j � m, both s H(
[
n�0

�n) tj and :(tj H(
[
n�0

�n) s). By induction hypothesis,

we also have that s
[
n�0

�n tj, for all 1 � j � m. Suppose now that tj
[
n�0

�n s,

for some 1 � j � m. Since
[
n�0

�n v H(
[
n�0

�n), then also tj H(
[
n�0

�n) s, and

that is not possible. So also :(tj
[
n�0

�n s), for all 1 � j � m.

Note that s
[
n�0

�n tj, for all 1 � j � m, implies that, for each j there is a

quasi-order �nj such that s �nj tj, and since the set f�n j n � 0g is directed,
we conclude that there is an element �k in this set, such that s �k tj, for all
1 � j � m. Note also that :(tj �k s), for all 1 � j � m. If s � t (case

1a), we conclude from the de�nition of �k that s �k t and so also s
[
n�0

�n t. If

s � t (case 1b), then also s �(
[
n�0

�n) t and since � is continuous, we have that

s
[
n�0

�(�n) t. This means that there is an element �K such that s �(�K) t. Again

due to the directenedness of f�n j n � 0g, we conclude that there is an element
�p such that �p w �k;�K and so s �p tj and :(tj �p s), for all 1 � j � m,

and s �(�p) t; consequently s �p t and so s
[
n�0

�n t.

2. case 2 tells us that s = f(s1; : : : ; sk), for some f 2 F , having arity k � 1, and

si H(
[
n�0

�n) t, for some 1 � i � k. Then by induction hypothesis we also have

that si
[
n�0

�n t. This means that si �q t for some �q 2 f�n j n � 0g. From the

de�nition of �q we conclude that s �q t and consequently that s
[
n�0

�n t.

Suppose additionally that :(t H(
[
n�0

�n) s. If we would have t
[
n�0

�n s, by the fact that

82 Chapter 4. On Recursively De�ned Term Orders

[
n�0

�n v H(
[
n�0

�n), we would get a contradiction.

We have seen that H(
[
n�0

�n) �
[
n�0

�n and that ord(H(
[
n�0

�n)) � ord(
[
n�0

�n);

as a consequence also eq(H(
[
n�0

�n)) � eq(
[
n�0

�n), so
[
n�0

�n is a �xed point of H

and by theorem 4.6, it is the least �xed point. 2

Now we can prove that the relation = is closed under substitutions. Apart from continuity
of �, we also have to require that � satis�es the following substitution condition:

If � is a quasi-order with strict and equivalent parts closed under substitutions
then �(�) is closed under substitutions, i. e., both ord(�(�)) and eq(�(�))
are closed under substitutions.

Lemma 4.31. Suppose that � and � are closed under substitutions and that � satis�es the

substitution condition. Suppose also that = =
[

n�0
�n. Then = is closed under substitutions,

i. e., ord(=) and eq(=) are closed under substitutions.

Proof (Sketch) The proof is an induction on the lexicographic product (n; jsj+ jtj), i. e., we
see that �0 satis�es the property and then as induction hypothesis we have >i and �i

are closed under substitutions, for any i � k, and k � 0 �xed, and if u; v are terms such
that juj + jvj < jsj + jtj then u �k+1 v implies that u� �k+1 v� and if additionally
:(v �k+1 u) then also :(v� �k+1 u�), for any substitution �. We have a case analysis
similar to the ones done in previous results. Note that lemma 4.25 has to be used in case
2. Now if �n, for all n � 0 satisfy the property, so does =. 2

On Well-foundedness

Here we discuss well-foundedness of the quasi-order =. From lemma 4.28 we know that the
order = has the subterm property. Furthermore ord(=) has the subterm property.

We de�ne the following relation =
�� as follows:

s =
�� t ()

�
s � t or
s � t and s ord(�(=)) t

where � and � are the quasi-order and status used in the de�nition of =.
It is not di�cult to see that =

�� is a partial order on T (F ;X). Also if ord(�(=)) is a term
lifting in the sense of de�nition 3.16 and � is well-founded, we also have that =

�� is a term
lifting. Furthermore if s ord(=) t then either s = f(s1; : : : ; sk), for some f 2 F having arity
k � 1, and si = t, for some 1 � i � k, (this is given by case 2), or s =

�� t (consequence of
cases 1a, 1b). Consequently theorem 3.17 gives us the following result.

Theorem 4.32. If � is well-founded and ord(�(=)) is a term lifting (in the sense of
de�nition 3.16) then ord(=) is well-founded.

4.3. Revisiting rpo and kbo Orders 83

4.3 Revisiting rpo and kbo Orders

In chapter 2, subsection 2.4.1, we introduced the notion of path orders. Path orders are
related to simpli�cation orders in the sense that most path orders are also simpli�cation orders.
Actually those path orders form a restricted class of simpli�cation orders: they are either total
or extendable to total monotonic orders on ground terms modulo some congruence. In other
words those orders when applied to proving termination of TRS's, do not prove only simply
termination of TRS's, they prove total termination.

In practical applications it is very natural to require this totality: for example in Knuth-Bendix
completion such a well-founded term ordering is required, and a highly desirable property is that
all new critical pairs can be ordered by the ordering. Totality on non-ground terms can not be
achieved since commutativity conicts with well-foundedness; totality on ground terms is the
strongest feasible requirement. The totality property is essential for the completeness of the
unfailing completion strategies. In the case of ground AC-equational theories �nitely presented,
the existence of a reduction ordering AC-compatible and total on T (F)= =AC ensures that
such theories always admit a canonical rewrite system. For more information on AC-compatible
total orders see for example Narendran and Rusinowitch [81], Rubio and Nieuwenhuis [95].

4.4 Making rpo and kbo Total

In [46], Hofbauer proved that for a �nite TRS shown terminating by recursive path order
with only multiset status, a proof of total termination can be given in the natural numbers
with primitively recursive operations. Here we show that even if we take rpo or kbo in their
most general form, these orders actually prove total termination, i. e., if a TRS R is proven
terminating by rpo (or kbo), then R is totally terminating. We will restrict ourselves to �xed
arity signatures and make some remarks about the varyadic case.

Recall from chapter 2 that for any quasi-order �, �lex and �mul denote its lexicographic and
multiset extensions, respectively. Also from chapter 2, section 2.4, recall the de�nition of status
(de�nition 2.87). To each function f 2 F we associate a status �(f). Status indicates how
the arguments of the function symbol are to be taken. We consider two possible cases namely
the multiset status (�(f) = mul) and the (family of) lexicographic status (�(f) = lex�),
whose order is given by a permutation �. Given the set of function symbols F , let � denote a
quasi-precedence over F (see de�nition 2.88).

From now on we assume that a quasi-precedence over F is given as well as a status function
� , under the following restriction: lexicographic and multiset status cannot be mixed, i. e.,

if f � g and �(f) = mul then �(g) = mul (4.1)

Write >=
rpo for recursive path order with status as de�ned in de�nition 2.89 but with the

equality f = g in clause 1b of the de�nition replaced by f � g. This de�nition is not suitable
to our purposes. We need to de�ne a total well-founded monotone algebra (A;>) and a good
candidate is (T (F); >=

rpo) but if >=
rpo is based on a quasi-precedence over F , then >=

rpo is
not necessarily total even if the quasi-precedence is so. The reason behind this is that the

84 Chapter 4. On Recursively De�ned Term Orders

equivalence relation contained in the quasi-precedence gives rise to a kind of equivalence on
terms more general than equality and the order >=

rpo does not take those equivalent terms
into account. For example suppose c � a � b � d and f � a; b; c; d, where a; b; c; d are
constants and f has arity 2. Suppose we associate to f the multiset status, then neither
f(f(a; b); c) >=

rpo f(f(b; a); d) nor vice-versa and since c � d, the terms are not equivalent.
What we have to do is extend >=

rpo in order to be able to compare equivalence classes of
terms. But >=

rpo is not amenable to such an extension: if we de�ne the congruence ' over
T (F ;X) as follows: s ' t i� s = t or s = f(s1; : : : ; sm), t = g(t1; : : : ; tn), f � g, m = n
and either

� �(f) = �(g) = mul and there is a permutation � of f1; : : :mg such that si ' t�(i), for
any 1 � i � m;

� �(f) = lex�f and �(g) = lex�g and s�f (i) ' t�g(i) for all 1 � i � m.

Then if for ground terms s; t, s ' t and s 6= t, both s 6>=
rpo t and t 6>=

rpo s. So >=
rpo is not

always total on T (F) and due to the nature of the obstacle just mentioned, it seems reasonable
to take A = T (F)='. Unfortunately the natural extension of >=

rpo to the congruence classes
of T (F ;X)=' is not well-de�ned even for total precedences (condition (2.1) does not hold).
This can be repaired by extending the de�nition of >=

rpo, namely replace equality by '. The
following de�nition is just de�nition 2.89 for the quasi-order case. It can be found in Steinbach
[100, 101] and in Dershowitz [23] (only for multiset status). To avoid problems with reexivity
we extend the quasi-precedence D to the set of variables as follows: x � x, for any x 2 X .
Variables remain incomparable, under D, with elements of F .

De�nition 4.33. (rpo with status) Given two terms s; t we say that s �rpo t if s =
f(s1; : : : ; sm) for some f 2 X [F and m � 0, and either

1. t = g(t1; : : : ; tn), for some g 2 X [F and n � 0, and for all 1 � i � n both s �rpo ti
and :(ti �rpo s) and either

(a) f � g, or

(b) f � g and ((m = k = 0) or s1 � � � sm �rpo;� t1 � � � tn); or

2. 91 � i � m : si �rpo t.

From the results presented in section 4.2.2, we can state that �rpo has the following prop-
erties (note that the multiset and the lexicographic status have the properties required for the
lifting/status in section 4.2.2):

� �rpo is a quasi-order; we denote its strict part by >rpo and its equivalence part by �rpo,

� >rpo has the subterm property,

� �rpo and in particular >rpo and �rpo, are closed under substitutions and contexts.

4.4. Making rpo and kbo Total 85

Note that if all function symbols have lex status, then �rpo coincides with Kamin and L�evy's
[55] lexicographic path order , �lpo. If � is total in F and � is equality then, as a consequence
of lemma 4.36 (to be presented later), we have that >lpo is total over T (F).

The following lemma is not di�cult to prove by induction on the sum of the size of the
terms, using the properties of the lexicographic and multiset extensions of quasi-orders and
lemma 4.25.

Lemma 4.34. Let �rpo be de�ned as in 4.33. Then

� �rpo and ' coincide,

� s >rpo t if and only if s = f(s1; : : : ; sk), with f 2 F admitting arity k � 0, and either

1. t = g(t1; : : : ; tm), with g 2 F admitting arity m � 0, and either

(a) f � g, or

(b) f � g and s1 � � � sm ord(�rpo;�) t1 � � � ; tn; or

2. 91 � i � k : si �rpo t.

The following lemma is not di�cult to prove by induction on jsj + jtj, using the charac-
terization of both �rpo and >rpo given in lemma 4.34, and using the monotonicity of both
lexicographic and multiset extensions.

Lemma 4.35. The relation �rpo is monotone with respect to quasi-precedences, i. e., if
�;�0 are quasi-precedences such that �0 extends �, i. e., � � �0 and � � �0, then �rpo
associated with �0 extends �rpo associated with �, i. e., �rpo � �0rpo and >rpo � >0rpo, where
�rpo = >rpo [�rpo and �0rpo = �

0
rpo [>

0
rpo. (Consequently �rpo extends >=

rpo, for any �xed
quasi-precedence and status.)

Note that we require that both � and �0 are de�ned over F [X , coinciding with the
identity in X and maintaining incomparable variables with elements of F .

The following result is crucial for the rest of the section; though it is a well-known result
we will present its proof.

Lemma 4.36. Let D be quasi-precedence total on F . Then the extension of >rpo to the
equivalence classes of T (F)=�rpo is a total order.

Proof First note that since >rpo and �rpo are compatible, the extension of >rpo to the
equivalence classes of T (F ;X)=�rpo is well-de�ned and is a partial order. In order to
keep the notation simple we will denote this extension also by >rpo; it should be clear
from context whether we mean the order on terms or on equivalence classes.

Consider the set of ground terms T (F). If T (F) = ;, then the result is trivially satis�ed.
Suppose then that T (F) 6= ;. It can be seen by induction on the sum of the size of the
terms that if u �rpo v then juj = jvj and this allows us to prove the lemma by induction
on jsj + juj, i. e., we see that for any ground terms s; t, we have either hsi = hti, or

86 Chapter 4. On Recursively De�ned Term Orders

hsi >rpo hti or hti >rpo hsi, by induction on jsj + jtj. Since equivalent terms have the
same size, this is possible.

Suppose then that s; t 2 T (F) are two minimal terms for which the result has not yet
been veri�ed. Suppose we have s = f(s1; : : : ; sk) and t = g(t1; : : : ; tm), for some
function symbols f; g 2 F , admitting arities respectively k;m � 0, and ground terms
s1; : : : ; sk; t1; : : : ; tm 2 T (F). By induction hypothesis, for each si, with 1 � i � k
�xed, we have either:

� hsii = hti; this means that si �rpo t and so s >rpo t. Consequently hsi >rpo hti.

� hsii >rpo hti; in this case we have s >rpo si >rpo t and consequently s >rpo t, giving
hsi >rpo hti.

� hti >rpo hsii.

So if there is a term si satisfying one of the �rst two cases above, we are done. Suppose
then that no such si exists, i. e., suppose that hti >rpo hsii, for all 1 � i � k.

Applying the same reasoning as above to the terms s and tj, for 1 � j � m, the only
case that remains to be analysed is hsi >rpo htji, for all 1 � j � m. So we suppose we
have both hti >rpo hsii, for all 1 � i � k and hsi >rpo htji, for all 1 � j � m. Since D
is total we have either

� f � g; in this case we conclude that hsi >rpo hti;

� g � f ; in this case we conclude that hti >rpo hsi;

� f � g.

Suppose also that f � g. If the sequences hs�f (1)i � � � hs�f (k)i and ht�g(1)i � � � ht�g(m)i
are equal, then we conclude that hsi = hti, whether the status of both f and g is
lexicographic or multiset. If the sequences are di�erent and the status of both f and
g is lexicographic, using the de�nition of lexicographic extension and the fact that each
element hsii is comparable with each element htji, it is not di�cult to see that either

hs�f (1)i � � � hs�f (k)i >rpo;lex ht�g(1)i � � � ht�g(m)i

or vice-versa. In both cases we are able to establish a relation between hsi and hti.

Suppose the sequences are di�erent and the status of both f and g is the multiset status.
Note that we can write

S = (T \ S) [S1 with S1 = S n T
T = (T \ S) [T1 with T1 = T n S

where S is the multiset containing the elements hs1i; : : : ; hski, and T is the multiset
containing the elements ht1i; : : : ; htmi. Then, by induction hypothesis, and since both
S1 and T1 cannot be simultaneously empty, either

4.4. Making rpo and kbo Total 87

� 8hui 2 T1 9hvi 2 S1 : hvi >rpo hui, or

� 9hui 2 T1 8hvi 2 S1 : hui >rpo hvi or hvi = hui.

In the �rst case we conclude that S >rpo;mul T and so that hsi >rpo hti. In the second
case, we see that if hvi = hui then hvi 2 T \ S; indeed hvi 2 T n S implies that the
number of occurrences of hvi in T is strictly greater than the number of occurrences of
hvi in S, but also hvi 2 S n T implies that the number of occurrences of hvi in S is
strictly greater than the number of occurrences of hvi in T and these facts contradict
themselves, so we must have hvi 2 S \T and the second case above can be rewritten as

9hui 2 T1 8hvi 2 S1 : hui >rpo hvi

and consequently hti >rpo hsi, concluding the proof. 2

Note that if all function symbols have lex status then >rpo coincides with Kamin and L�evy's
[55] lexicographic path order , >lpo. If � is total and � is syntactical equality then we have
that >lpo is total over T (F).

Example 4.37. Let F consist of two constants a � b and function symbols fi, i � 1, such
that fi has arity i, �(fi) = lexId and fi � fj, for any i; j. Then we have the following in�nite
descending chain

f1(a) >rpo f2(b; a) >rpo f3(b; b; a) >rpo f4(b; b; b; a) >rpo � � �

In order for >rpo to be useful for proving termination of term rewriting systems, the order has
to be well-founded. Unfortunately, well-foundedness of � alone is not su�cient to guarantee
well-foundedness of >rpo as the above example showed. The problem stems from the fact that
lexicographic sequences of unbounded size are not well-founded.1 Kamin and L�evy [55] proved
that >lpo is well-founded provided that equivalent function symbols have the same arity. In
the following we prove that this restriction can be weakened. It is enough to require that for
every equivalence class of function symbols with lexicographic status, there is a natural number
bounding the arities of the function symbols in the class. That is

8f 2 F : �(f) = lex�) (9n � 0 : 8g 2 hfi : arity(g) � n) (4.2)

A traditional way of proving well-foundedness of >rpo is via Kruskal's theorem. Recall the
de�nitions of well-quasi-order (wqo) and embedding relation �emb from chapter 2. Kruskal's
theorem (2.78) states that if � is a wqo on F then �emb is also a wqo on T (F). Consequently
any relation containing the embedding relation is well-founded. Previous versions of >rpo fall
within this category. For de�nition 4.33 this does no longer hold: in example 4.37 we have
f2(b; a) >emb f1(a), and f2(b; a) 6>rpo f1(a).

1Note that even if � would be total or F �nite, with a function symbol f allowing di�erent arities, the same
problem would arise.

88 Chapter 4. On Recursively De�ned Term Orders

A way of dealing with orders for which Kruskal's theorem is not applicable was given in
chapter 3. Well-foundedness of >rpo can be derived from results presented there (see also
section 4.2.2). Nevertheless here we present a proof of well-foundedness of >rpo inspired by the
proof of Kruskal's theorem itself as presented in Gallier [38], Nash-Williams [82], and closely
following the results of chapter 3. The proof given does not rely on Kruskal's theorem and is
therefore simpler if we consider the degree of di�culty involved in Kruskal's theorem itself.

Again we admit that D is a quasi-precedence de�ned on F [X such that D restricted to
X is equality and elements of X and F are incomparable under D.

Theorem 4.38. Let � be a quasi-precedence over F [X and � a status function such
that conditions (4.1) and (4.2) are satis�ed. Then >rpo is well-founded over T (F ;X) i� � is
well-founded over F [X .

Proof For the if part, let � be a well-founded quasi-precedence over F [X and � a status
function such that conditions (4.1) and (4.2) are satis�ed. We �rst extend � to a total
well-founded quasi-order �0 on F such that �0 = �. This is done in the \usual" way (see
Appendix A). First we consider the extension � to the equivalence classes, i. e., we take
the extension of � to F=�. This relation is then extended, using Zorn's Lemma, to a
total well-founded partial order >0 over F=� (see Appendix A for the details on how this
can be done). Then �0 and � are compatible and �0 (with �0 = �), is total and well-
founded over F , where as expected �0 is de�ned as 8f; g 2 F : f �0 g () hfi >0 hgi.
The reasons why we require that �0 = � are twofold: to ensure compatibility of �0 and
�0 and to avoid problems with the status of equivalent symbols, i. e., to guarantee that
conditions (4.1) and (4.2) still hold for the extended quasi-precedence.

The relation �0 is total and well-founded on F , hence �0 is a wqo over F . Suppose now
that >rpo taken over �0 is not well-founded. Take then an in�nite descending chain

t0 >rpo t1 >rpo t2 >rpo � � �

minimal in the following sense:

� jt0j � jsj, for all non-well-founded terms s.

� jti+1j � jsj, for all non-well-founded terms s such that ti >rpo s.

where jtj represents the number of function symbols occurring in t.

We remark that no proper subterm of a term ti, i � 0 in the above chain can be
non-well-founded; for, suppose uij is such a non-well-founded subterm, then the chain

t0 >rpo � � � >rpo ti�1 >rpo u
i
j >rpo u1 >rpo � � �

will be an in�nite descending chain contradicting the minimality of (ti)i�0 (since juijj <
jtij). Note also that for all i � 0, ti cannot be a variable, since by the restrictions imposed
on � and �0, variables are never greater than any other term, so if some ti would be a
variable, the sequence would be �nite.

4.4. Making rpo and kbo Total 89

Let root(t) be the head function symbol of the term t. We see that there is no in�nite
subsequence (t�(i))i�0 of (ti)i�0 such that root(t�(i)) � root(t�(j)), for all i; j � 0.
Suppose it is not so and let (t�(i))i�0 be such a subsequence. Due to condition (4.1), all
root symbols in this sequence have the same status (either mul or lex). By de�nition of
>rpo, and since t�(i) >rpo t�(i+1), for all i � 0, we must have

args(t�(0)) >rpos;� args(t�(1)) >rpos;� � � �

where args(t) are the proper subterms of t. From lemma 2.38 or 2.39, we conclude
that >rpo is not well-founded over

S
i�0 Args(t�(i)) (where Args(t) is the set of proper

subterms of t), contradicting the minimality of (ti)i�0.

Consider the sequence (root(ti))i�0. This sequence is in�nite and since �0 is a wqo over
F , by lemma 2.42 this sequence contains an in�nite subsequence (root(t�(i)))i�0 such
that root(t�(i+1)) �

0 root(t�(i)), for all i � 0. But since every �-equivalence class
appears only �nitely many times in the sequence (root(ti))i�0, we can say without loss of
generality that the subsequence (root(t�(i)))i�0 ful�ls root(t�(i+1)) �

0 root(t�(i)), for
all i � 0 (strictly speaking there is a subsequence of (root(t�(i)))i�0 with this property).
But if t�(i) >rpo t�(i+1) (for all i � 0), then, by de�nition of >rpo, both t�(i) and t�(i+1)
are not constants and we must have u�(i) >rpo t�(i+1) or u�(i) �rpo t�(i+1), for some
u�(i) 2 Args(t�(i)). In both cases a contradiction with the minimality of (ti)i�0 arises.

Well-foundedness of >rpo over the original quasi-precedence � follows from the fact that
>rpo is monotone with respect to precedences (since �0 is an extension of �).

For the only-if part, suppose that >rpo is well-founded over T (F ;X) and that � is not
well-founded on F [X . Let f0 � f1 � � � � be an in�nite descending sequence in F .
This sequence does not contain an in�nite subsequence consisting only of constants,
since if (f�(i))i�0 would be such a sequence, we would have f�(0) >rpo f�(1) >rpo � � � ,
contradicting well-foundedness of >rpo; it also does not contain any variable since for any
p 2 X [F and any variable x, x 6� p. Let then (f�(i))i�0 be an in�nite subsequence of
(fi)i�0 such that f�(i) admits arity �1, for all i � 0. Let x be any variable. By de�nition
of >rpo, we conclude that

f�(0)(x; : : : ; x) >rpo f�(1)(x; : : : ; x) >rpo � � �

contradicting well-foundedness of >rpo. 2

Another approach to prove well-foundedness of our version of >rpo is the following. Every
function symbol with status lex has its arity augmented to the maximal arity associated with its
equivalence class. By this construction all function symbols in the same equivalence class are
forced to have the same arity, hence the old version of >rpo is applicable, provided we change
the status function consistently. Well-foundedness of our version of >rpo then follows from well-
foundedness of previous >rpo versions. This classical proof of well-foundedness does make use
of Kruskal's theorem. To conclude that >rpo is well-founded over the original signature we just
have to note that an in�nite descending sequence of terms over the old signature translates to an

90 Chapter 4. On Recursively De�ned Term Orders

in�nite descending sequence of terms over the new signature where new arguments introduced
are �lled with a dummy constant.

Example 4.39. The following TRS's

R1 : f(1; x) ! g(0; x; x) R2 : a ! g(c)
g(x; 1; y) ! f(x; 0) g(a) ! b

f(g(x); b) ! f(a; x)

can be proven terminating with >rpo. Just take quasi-precedences � and status function �
satisfying 1 � 0, f � g, �(f) = �(g) = lexId, for R1, and a � g, a � c, a � b and �(f) =
mul , for R2. Earlier versions or >rpo fail to prove termination of these TRS's: for R1 we cannot
choose f � g nor g � f nor incomparability of f and g, and if f � g, the status of these
symbols cannot be the multiset status, and for R2 we wouldn't be able to orient the second
and third rules using >=

rpo.

We now prove that >rpo as de�ned in de�nition 4.33 does indeed prove total termination.
Again we extend the precedence D to X with D restricted to X being the equality, and
maintaining symbols of F and X incomparable.

Theorem 4.40. Given a TRS R, suppose � is a quasi-precedence well-founded over F and
� is a status function such that conditions (4.1) and (4.2) are satis�ed. If l >rpo r for every
rule l! r 2 R then R is totally terminating.

Proof Suppose that for a TRS R, a termination proof using >rpo exists, i. e., we can de�ne
a well-founded quasi-precedence � over F [X such that � restricted to X is equality,
and � maintains symbols of F and X incomparable, and we can de�ne a status function
satisfying conditions (4.1) and (4.2) and such that l >rpo r, for every rule l! r 2 R. In
order to establish total termination of R we need to de�ne a total well-founded monotone
algebra. For that we choose T (F)=�rpo, where �rpo is the congruence associated with
>rpo. If F does not contain any constant, we introduce one to force T (F) to be non-
empty. With respect to the quasi-precedence �, the relative order of this new element
with respect to elements of F is irrelevant. A possibility is to consider this new element
incomparable to all other function symbols, then � remains unchanged and the same
holds for >rpo. As in the proof of theorem 4.38, we extend � to a total well-founded
quasi-precedence �t on F such that the equivalence part remains the same (this is done
using Zorn's lemma as described in Appendix A), and consider >rpo over this extended
quasi-precedence. By theorem 4.38, we know that >rpo is well-founded, and combining
this with lemma 4.36, we conclude that >rpo extended to T (F)=�rpo is total and well-
founded. In A = (T (F)=�rpo; >rpo) we interpret the function symbols of F by

fA(hs1i; : : : ; hsni) = hf(s1; : : : ; sn)i

where n = arity(f), and h i denotes the�rpo-equivalence classes. If we take hsii = hs
0
ii,

for some 1 � i � arity(f) then si �rpo s0i and since �rpo is a congruence we also have

f(s1; : : : ; si; : : : ; sn) �rpo f(s1; : : : ; s
0
i; : : : ; sn);

4.4. Making rpo and kbo Total 91

i. e., hf(s1; : : : ; si; : : : ; sn)i = hf(s1; : : : ; s0i; : : : ; sn)i, so the function fA does not
depend on the class representative and thus is well-de�ned. The interpretation function
[[]] : T (F ;X)�AX !A is given as usual (see de�nition 2.92).

Since A is total and well-founded, the only condition we need to check to establish total
termination is compatibility with the rules of R. For that we need the following fact:

8t 2 T (F ;X) 8� 2 AX : [[t; �]] = ht�i

where � is any ground substitution satisfying �(x) 2 �(x), for all x 2 X . First we see that
the expression above makes sense, i. e., if �1; �2 are two di�erent substitutions satisfying
�i(x) 2 �(x), for i = 1; 2 and all x 2 X , then ht�1i = ht�2i. We proceed by induction
on the structure of t. If t is a variable then ht�1i = h�1(x)i = �(x) = h�2(x)i = ht�2i.
Suppose now that t = f(t1; : : : ; tm), then

ht�1i = hf(t1; : : : ; tm)�1i = hf(t1�1; : : : ; tm�1)i

By induction hypothesis we know that hti�1i = hti�2i, i. e., ti�1 �rpo ti�2 for all
1 � i � m. Since �rpo is a congruence, also f(t1�1; : : : ; tm�1) �rpo f(t1�2; : : : ; tm�2)
so

hf(t1; : : : ; tm)�1i = hf(t1�1; : : : ; tm�1) = hf(t1�2; : : : ; tm�2) = ht�2i

So indeed the class ht�i does not depend on the choice of the representative for �(x)
from �(x).

We now prove the stated fact also by induction on the structure of t. If t = x 2 X
then, by de�nition of interpretation, [[t; �]] = �(x) = h�(x)i, for any ground substitution
� satisfying �(x) 2 �(x). Suppose that t = f(t1; : : : ; tm). Then

[[t; �]] =
[[f(t1; : : : ; tm); �]] = (by de�nition of interpretation)
fA([[t1; �]]; : : : ; [[tm; �]]) = (by induction hypothesis)
fA(ht1�1i; : : : ; htm�mi)

where each ground substitution �i, 1 � i � m, satis�es �i(x) 2 �(x). Note that we can
have a variable x occurring in ti and tj, with i 6= j, and such that �i(x) 6= �j(x), but
from what we established before, the class hs�i does not depend on the representative
chosen from �(x) for �(x), so if we �x some element in �(x) and de�ne a new ground
substitution � such that �(x) equals that �xed element in �(x), we have that, for all
x 2 X and all 1 � i � m, hti�ii = hti�i. Consequently we can write

[[t; �]] =
fA(ht1�1i; : : : ; htm�mi) =
fA(ht1�i; : : : ; htm�i) =
hf(t1�; : : : ; tm�)i

as we wanted.

92 Chapter 4. On Recursively De�ned Term Orders

Let l ! r be a rule in R and let � : X ! A be an assignment. Let � be a ground
substitution satisfying �(x) 2 �(x) for all x 2 X . Since >rpo is monotone with respect to
quasi-precedences and by hypothesis l >rpo r, with >rpo taken over �, we also have l >rpo

r, where now the order >rpo is based on the total quasi-precedence �t. Consequently
hl�i >rpo hr�i, thus [[l; �]] >rpo [[r; �]], and we conclude that R is totally terminating,
with T (F)=�rpo as total well-founded monotone algebra. 2

We make some remarks about varyadic signatures. First note that lexicographic status is
not de�ned for function symbols with varyadic arity. We can extend the de�nition and consider
rpo with status over such signatures (basicly the permutation chosen has to make sense for all
possible arities of a function symbol). We need to impose condition 4.1. Furthermore, in order
for rpo to be well-founded, we have to impose a new restriction (apart from condition 4.2),
namely that a varyadic function symbol with lexicographic status has to have its arities bounded
by a natural number (this is similar to restriction 4.2). Now we can easily code the varyadic
signature in a �xed-arity one by labelling function symbols with its arity. The new precedence
on this extended set of function symbols has to respect the old precedence, i. e., �xed-arity
function symbols arising from the labelling of a particular varyadic function symbol, are made
equivalent in this new precedence, and if f was greater than (respectively equivalent to) symbol
g, then all labelled versions of f are greater (respectively equivalent) to the labelled versions
of g. Note that conditions 4.1 and 4.2 remain valid. With some work it can be seen that
rpo remains well-founded in this new setting, and that termination of such a varyadic system
implies termination of the corresponding labelled �xed-arity system. In other words theorem
4.40 remains valid.

We turn now to the Knuth-Bendix order. Recall from chapter 2 the de�nition of weight
function, � : F [X ! IN satisfying

�(f) is

8<
:

= �0 if f 2 X
� �0 if arity(f)= 0
> 0 if arity(f)= 1 and 9g 2 F : f 6D g

where � is a quasi-precedence in F and �0 2 IN is a �xed natural greater than zero. Note
that the last condition now means that if f 2 F , has arity 1 and weight 0, then it must satisfy
f D g for all function symbols g 2 F .

We extend � to terms as follows: �(f(s1; : : : ; sm)) = �(f) +
mX
i=1

�(si).

The following de�nition of Knuth-Bendix order with status is just de�nition 2.90 adapted
for the case the precedence on function symbols is a quasi-order.

De�nition 4.41. (kbo with status) We say that s >kbo t i� 8x 2 X : #x(s) � #x(t) and

1. �(s) > �(t) or

2. �(s) = �(t), and

4.4. Making rpo and kbo Total 93

(a) t 2 X and 9k > 0 : s = fk0 (t), where f0 is the element of F having weight 0, and
being maximal in the precedence,

(b) s = f(s1; : : : ; sm), t = g(t1; : : : ; tn) and

� f � g, or

� f � g and s1; : : : ; sm >kbos;� t1; : : : ; tn

where #x(t) denotes the number of occurrences of variable x in term t.

Again this version of Knuth-Bendix order has properties similar to >rpo namely it is a partial
order closed under substitutions and contexts, monotone with respect to quasi-precedences and
having the subterm property.

We show some of these properties. First we introduce a lemma which was proven in Dick,
Kalmus and Martin [29].

Lemma 4.42. Let the relation >kbo be de�ned as in 4.41. We have:

1. Let s; t 2 T (F ;X). If �(s) = �(t) and t is a proper subterm of s then s = fk0 (t), for
some k � 1, where f0 2 F is a function symbol satisfying arity(f0) = 1 and �(f0) = 0.

2. Let x 2 X then C[x] >kbo x and x 6>kbo C[x], for any non-trivial linear context C.

Using this lemma and induction on the size of the terms (i. e., the number of symbol
occurrences on the terms) we can prove the following.

Lemma 4.43. The relation >kbo as de�ned in 4.41 is a partial order on T (F ;X).

We show now that >kbo has the subterm property.

Lemma 4.44. For any term s 2 T (F ;X) and any non-trivial linear context C, we have that
C[s] >kbo s.

Proof Note that due to remark 2.50 we only need to see that f(: : : ; s; : : :) >kbo s, for all
f 2 F . We will prove this property by induction on s. If s = x, for some x 2 X , the
result follows from lemma 4.42. Suppose now that s = g(s1; : : : ; sm). First we note
that we obviously have that #x(f(: : : ; s; : : :)) � #x(s), for all variables x 2 X . Also,
from the de�nition of weight function, we conclude that �(f(: : : ; s; : : :)) � �(s). If the
inequality is strict, we are done. Suppose then that �(f(: : : ; s; : : :)) = �(t). From the
de�nition of � it is easy to derive that �(t) � �0 > 0, for any term t. As a consequence
�(f(: : : ; s; : : :)) � �(s)+�(f)+ (n� 1):�0, where n is the arity of f and (n� 1):�0 is
a lower bound for the weight of the (not shown) arguments of f other than s. In order
to have �(f(: : : ; s; : : :)) = �(s), we must have n = 1 and �(f) = 0, and in this case
de�nition of � forces f D p, for all p 2 F . Recall that s = g(s1; : : : ; sm). If f � g
then we can conclude that f(: : : ; s; : : :) >kbo s. If f � g then we need to see that
s >kbos;� s1; : : : ; sm. Applying the induction hypothesis to each si, we conclude that
s = g(s1; : : : ; sm) >kbo si, for all 1 � i � m, and this implies that s >kbos;� s1; : : : ; sm,
no matter what the status of f is (namely multiset or lexicographic). Consequently
f(: : : ; s; : : :) >kbo s. 2

94 Chapter 4. On Recursively De�ned Term Orders

Finally we see that >kbo is closed under contexts and substitutions.

Lemma 4.45. Let s; t 2 T (F ;X) such that s >kbo t. Then:

1. C[s] >kbo C[t], for any context C,

2. s� >kbo t�, for any substitution � : X ! T (F ;X).

Proof For 1 we proceed by induction on the context. For the trivial context the result holds
by hypothesis. Suppose now that s >kbo t. According to remark 2.50 we just need to see
that f(u1; : : : ; s; : : : ; uk) >kbo f(u1; : : : ; t; : : : ; uk), for any f 2 F with arity k � 1, and
terms u1; : : : ; uk 2 T (F ;X). Since s >kbo t) �(s) � �(t) and due to the de�nition of
�, we also have �(f(u1; : : : ; s; : : : ; uk)) � �(f(u1; : : : ; t; : : : ; uk)), for any f 2 F with
arity k � 1, and terms u1; : : : ; uk 2 T (F ;X). If the inequality is strict, we are done,
otherwise in order to conclude that f(u1; : : : ; s; : : : ; uk) >kbo f(u1; : : : ; t; : : : ; uk) we
need to have u1; : : : ; s; : : : ; uk >kbos;� u1; : : : ; t; : : : ; uk and this holds for any status
since s >kbo t.

For 2, we proceed by induction on t. If t is a variable then we must have that s is
not a variable (since s >kbo t) and so t is a proper subterm of s. Consequently t� is a
proper subterm of s� and by lemma 4.44 we conclude that s� >kbo t�. Suppose that
t = g(t1; : : : ; tm), for some g 2 F with arity m � 0, and terms t1; : : : ; tm 2 T (F ;X).
Given that s >kbo t, the following facts are not di�cult to establish:

� #x(s�) � #x(t�), for any x 2 X and any substitution �,

� �(s�) � �(t�) and �(s�) = �(t�)) �(s) = �(t), for any substitution �.

If �(s�) > �(t�) then due to the �rst part of the fact above, we are done. If �(s�) =
�(t�), again by the fact above, we also have �(s) = �(t). Since t = g(t1; : : : ; tm) and
due to the fact that s >kbo t, we must have s = f(s1; : : : ; sk), for some f 2 F , with
arity k � 0, and terms s1; : : : ; sk 2 T (F ;X). If f � g then again using the �rst part of
the above fact, we conclude that s� >kbo t�. Otherwise we must have f � g, k;m � 1,
and s1; : : : ; sk >kbos;� t1; : : : ; tm and using the induction hypothesis (applied to each
ti) is not di�cult to see with a little case analysis for the status, that this implies that
s1�; : : : ; sk� >kbos;� t1�; : : : ; tm�. Since s� = f(s1�; : : : ; sk�), t� = g(t1�; : : : ; tm�),
we can conclude that s� >kbo t�. 2

We can de�ne a congruence �kbo over T (F ;X) as follows: s �kbo t i� s = t or s =
f(s1; : : : ; sm), t = g(t1; : : : ; tn), f � g, m = n, �(s) = �(t) and either

� �(f) = mult and si �kbo t�(i), for any 1 � i � m, where � is a permutation of f1; : : :mg;

� �(f) = lex�f , �(g) = lex�g and s�f (i) �kbo t�g(i) for all 1 � i � m.

4.4. Making rpo and kbo Total 95

It can be seen that �kbo is indeed a congruence i. e., a reexive, symmetric and transitive
relation, closed under contexts. Further �kbo is also closed under substitutions and it is not
di�cult to see that >kbo and �kbo are compatible, so we can extend >kbo to T (F ;X)=�kbo
in the usual way. As with >rpo, given a total quasi-precedence over F , >kbo is total over
T (F)=�kbo. As for well-foundedness we have

Theorem 4.46. Let � be a well-founded quasi-precedence over F and � a status function
such that condition (4.1) is satis�ed. Then >kbo is well-founded over T (F ;X).

The proof of this theorem is very similar to the proof of theorem 4.38 so we omit it. Note
however that condition (4.2) is not necessary since the use of the weight function ensures that
the lexicographic extension is well-founded.

We now present the result stating that >kbo also proves total termination.

Theorem 4.47. Given a TRS R, suppose � is a well-founded quasi-precedence over F and
� is a status function such that condition (4.1) is satis�ed. Let � be a weight function. If
l >kbo r for every rule l ! r 2 R then R is totally terminating.

Proof (Sketch) We proceed in a manner similar as for >rpo. If F is empty, we add a
dummy constant to it and assign weight �0 to that constant. We then extend the well-
founded quasi-precedence � to a total one whose underlying equivalence is the same,
and take >kbo over this total well-founded quasi-precedence. Note that if f is a function
symbol maximal with respect to �, then it remains maximal with respect to the total
quasi-precedence.

As total well-founded monotone algebra we choose T (F)=�kbo and interpret the function
symbols of F in the same way. It is not di�cult to see that all requirements of total
termination are met. 2

We have shown that orders as >rpo and >kbo do prove total termination. The reverse in
not true, i. e., total termination is a more general notion since not all totally terminating TRS's
can be proven terminating using >rpo or >kbo, as the following example shows.

Example 4.48. Let R be given by:

f(s(x); y) ! h(s(f(h(y); x)))

This system cannot be proven terminating by either rpo or kbo:

� for kbo, note that if the weight of the function symbol h is non-negative, we will always
have that the weight of the rhs is bigger that the weight of the lhs of the rule, no
matter what values we choose for the weight of the function symbols; and if h is given
weight 0 , we must have h � p, for all p 2 F , and even if f � h, we cannot have
f(s(x); y) >kbo h(s(f(h(y); x))), for any possible status.

96 Chapter 4. On Recursively De�ned Term Orders

� for rpo, note that in order to have >rpo orient the rule we need to have f(s(x); y) >rpo

f(h(y); x) and that is impossible: multiset status (for f) is ruled out because y 6>rpo h(y)
and any lexicographic status implies the comparison of terms having di�erent variables,
something not possible under rpo.

We now see that R is polynomially terminating. Choose (A;>) to be IN2, the set of naturals
greater or equal to 2, with the usual well-order >. De�ne the operations:

hA(x) = x
sA(x) = x+ 1
fA(x; y) = xy

These operations are monotone and if � : X ! IN2 is any assignment, we have

[[f(s(x); y); �]] = �(x)�(y) + �(y) > �(x)�(y) + 1 = [[h(s(f(h(y); x))); �]]

since �(y) � 2. Since � is arbitrary, the result follows.
Another interesting example is the system f(g(x)) ! g(f(f(x))). This system cannot be

proven terminating with >rpo. It can be proven terminating with >kbo if we choose �(f) = 0,
�(g) > 0 and f � g. As we shall see in chapter 5, this TRS is totally terminating but not
!-terminating.

4.5 Conclusions

In the �rst part of this chapter we tried to provide a characterization of recursively de�ned path
orders. Though many such orders are known, proofs of their well-de�nedness are, as far as we
know, not to be found in the literature. With the characterizations given, we can also prove the
\di�cult" property of transitivity of both partial and quasi-orders de�ned in this recursive way.
An interesting aspect of our approach is that it abstracts from the form of the status/liftings
and enables us to concentrate on the properties of those status/liftings needed for the relations
obtained to ful�l di�erent requirements.

In the second part of the chapter we concentrated on �rpo and >kbo. As we mentioned be-
fore, many path orders are either total or extendable to total monotonic orders on ground terms
(eventually modulo some congruence). For status functions and quasi-precedences satisfying
certain conditions, Lescanne [70] showed that rpo is contained in the recursive decomposition
ordering (rdo) and that both orders can be extended to total orders on ground terms (modulo
some congruence). In Rusinowitch [97], relations between di�erent path orders for the case
of total precedences, are given.2 Continuing on this line of work, Steinbach [100] provides
also a comparison of the behaviour of di�erent path orders on ground terms (being the orders
taken over total precedences). He states that in these conditions the path of subterms ordering
of Plaisted [87] and the path ordering with status of Kapur, Narendran and Sivakumar [56],
amongst others, are total on ground terms modulo some congruence. Furthermore the e�ect of

2As far as we know Rusinowitch was the �rst to provide this kind of comparisons.

4.5. Conclusions 97

those orders on ground terms is the same, i. e., given a total precedence and a status function
these orders are equivalent between themselves and equivalent to rpo, in the sense that ground
terms are comparable with respect to an order � if and only if they are comparable with respect
to rpo.

In Steinbach [100], kbo is also identi�ed as being an order di�erent in nature from the
other orders. Even when such strong conditions as total precedence and ground terms are
imposed, kbo remains incomparable with the other orders mentioned. This is essentially the
reason why we decided to deal in this chapter with rpo and kbo: they are representatives of
the two essentially distinct classes of path orders amenable to totalization.

Finally we should remark that not all path orders are amenable to totalization. The example
that comes to mind is spo of Kamin and L�evy [54]. It is well-known that any terminating TRS
can be proven terminating via some spo. Since not all terminating TRS's are totally terminating,
spo is not amenable to totalization in general.

98 Chapter 4. On Recursively De�ned Term Orders

Chapter 5

Total Termination of Term Rewriting

In this chapter we investigate proving termination of term rewriting systems by a compositional
interpretation of terms in a total well-founded order. As introduced in chapter 2, this kind
of termination is called total termination. Equivalently total termination can be characterized
by the existence of an order on ground terms which is total, well-founded and closed under
contexts, as we shall see.

When trying to prove termination of TRS's by interpretation, a major problem is how to
choose a suitable well-founded ordered set. The variation among well-founded ordered sets is
so unwieldy that some restriction is reasonable. A natural one is the restriction to total orders:
then the ordered sets correspond to ordinal numbers, having a very elegant structure that has
been studied extensively in the past. For �nite signatures, total termination turns out to be a
slightly stronger restriction than simple termination in the sense that every totally terminating
TRS is also simply terminating but not vice-versa. Simple termination has been extensively
studied while total termination is a relatively new notion. However, it turns out that most
of the existing methods for proving termination of TRS's prove in fact total termination. By
de�nition the methods of polynomial interpretations Lankford [68], Ben-Cherifa and Lescanne
[6], and elementary interpretations Lescanne [71] are nothing else than our approach in which
the algebra is chosen to be the naturals and the operations have a particular shape. Hence a
termination proof by these interpretations implies total termination. The same can be said for
recursive path order and Knuth-Bendix order.

In this chapter we investigate several aspects of total termination, in particular which totally
ordered sets are useful. One of the main conclusions is that apart from some minor exceptions
only ordinals of the shape !� are of interest. The basic observation leading to this result is
the following. The existence of a binary operation in a total well-founded order that is strictly
monotonic in both coordinates implies that the order type is !�. Stated without ordinals this
means that the order is isomorphic to the �nite multisets over another order. Below the ordinal
�0 this implies that all totally ordered sets of interest can be constructed from the natural
numbers in �nitely many steps using only the constructions of lexicographic product and �nite
multisets. We show that these constructions are essential by presenting examples of TRS's for
which a termination proof can be given (by an interpretation) in !�, for any �xed � � !, but
not in a totally ordered set of a smaller order type.

99

100 Chapter 5. Total Termination of Term Rewriting

Another main topic of this chapter is the modularity of total termination. Surprisingly the
tree structure of mixed terms that is essential in other modularity questions (see Middeldorp
[76]) does not play a role here. The essential problem is how to lift an interpretation in an
ordinal to an interpretation in a greater ordinal without a�ecting monotonicity and compatibility.
We did not succeed in proving modularity of total termination in full generality (which is still
an open problem) but found some interesting partial results.

The chapter is organized as follows. Since most of the techniques used are based on
ordinal arithmetic, we present some needed ordinal theory in section 5.1. In section 5.2 the
important multiset construction is introduced and given an ordinal characterization. In the
same section we prove that existence of monotone functions, of arity greater than one, in a
certain monotone algebra forces the algebra to have a multiset type. In section 5.3 we present
some closure properties for the class of ordinals associated with a totally terminating TRS. An
important consequence of those closure properties is the modularity (under certain conditions)
of total termination. Section 5.4 discusses the particular case of string rewriting systems and
in section 5.5 we make some considerations about the minimal ordinal associated with a totally
terminating TRS. In section 5.6 we try to give a more syntactically oriented characterization
of the notion of total termination. We show that total termination can indeed be equated
with some total orders on ground terms. We also look at the problem of proving non-total
termination: as a consequence some partial characterizations of total termination in terms of
relations on terms, arise. Section 5.7 concludes the chapter.

Except when explicitly noted, all the results presented apply to both �nite and in�nite
signatures and TRS's.

5.1 Tools from Ordinal Theory

A main topic of this chapter is the investigation of useful total orders for total termination.
The main tool is the arithmetic of ordinals, i. e., of total well-founded orders modulo order-
isomorphism. We say that a proof of total termination is in an ordinal � if the underlying
order of the monotone algebra has order type �. Since in this algebra we allow all possible
monotone functions this does not mean that the proof can be given in � in the proof-theoretical
sense. For example, the term rewriting system describing the Ackermann function can be proven
terminating by a monotone algebra whose underlying order corresponds to the natural numbers,
so in our sense its termination proof is in !. Another approach connecting termination orders
and ordinals is given, for example, in Martin and Scott [75].

In this section we summarize notions and results from ordinal arithmetic we need. For many
of the proofs we refer to Kuratowski and Mostowski [65]. A few of these results are, as far
as we know, new (usually results about properties of monotone functions on ordinals) so their
proofs are also presented. Note however that not all proofs presented are from new results.

De�nition 5.1. A well-order is a total well-founded order.

In a well-order every non-empty subset has an unique minimal element (a minimum). A simple
but useful lemma is the following.

5.1. Tools from Ordinal Theory 101

Lemma 5.2. Let A = (A;>) be well-ordered and let f : A! A be any monotone function.
Then f(x) � x for every x 2 A. Furthermore, for any x; y 2 A, f(x) > f(y) () x > y.

Proof Suppose there is x 2 A such that x > f(x). Monotonicity of f leads to an in�nite
decreasing sequence: x > f(x) > f(f(x)) > f(f(f(x))) > � � � , contradicting well-
foundedness.

Suppose now that f(x) > f(y), for some x; y 2 A. Since A is well-ordered we must
have x > y, y > x or x = y. The last two cases contradict the monotonicity of f so we
must have x > y. Conversely, if x > y, de�nition of monotonicity gives f(x) > f(y). 2

Corollary 5.3. Let A = (A;>) be well-ordered and let f : A� : : :�A! A be any function
with n � 1 arguments and (weakly) monotone in all arguments. Then f(x1; : : : ; xn) � xi for
all 1 � i � n and xi 2 A.

Proof Fix i with 1 � i � n. By �xing all arguments of f except the ith argument, we obtain
a monotone function from A to A. Now lemma 5.2 gives the result. 2

De�nition 5.4. Two ordered sets are called similar if they are order-isomorphic, i. e., there
is a monotone bijection between them.

Since, in a total order, monotonicity implies injectivity we have:

Lemma 5.5. Let A and B be totally ordered sets and f : A ! B. Then f is monotone and
surjective () f is an order-isomorphism.

Proof The \if" part is always satis�ed by de�nition of order-isomorphism. For the \only-if"
part we just need to see that f is injective. Let then x; y 2 A and suppose f(x) = f(y).
Since A is well-ordered, we must have x = y or x >A y or y >A x. The last two cases
would imply f(x) >B f(y) or vice-versa (since f is monotone), so we must have x = y.
2

Similarity classes of well-orders are called ordinal numbers (or for short ordinals). For
�nite well-ordered sets their ordinals coincide with their cardinality and are denoted by natural
numbers. The ordinal corresponding to a well-ordered set is called its order type or type.

De�nition 5.6. A proper subset X of a well-order A = (A;>) is called an initial segment
of A if 8x 2 X 8y 2 A (y < x) y 2 X). Equivalently X is an initial segment of A if and
only if X = fy j y < xg for some x 2 A.

The following result is essential for the theory of ordinals.

Theorem 5.7. Let A and B be well-ordered sets. Then either A is similar to B or A is
similar to an initial segment of B or B is similar to an initial segment of A.

102 Chapter 5. Total Termination of Term Rewriting

Let Ord denote the class of ordinal numbers and de�ne a relation < on Ord by:
� < � () any set of type � is similar to an initial segment of a set of type �.
From theorem 5.7 follows that < totally orders Ord.

An ordinal is an equivalence class and it is convenient to describe it by a canonical repre-
sentative of this class. If A = (A;�) has type �, it can be seen that A is similar to the set
f� 2 Ord j � < �g.1 We choose this set to be the canonical representative for the ordinal
�. As a consequence we have: � < � () � 2 � () � � �. We shall freely switch
between the class and the canonical representative. Sometimes we will also use the notation
>� to emphasize that we are comparing elements of �.

Below some basic properties of Ord are listed.

I. < well-orders the class Ord, that is:

{ < is a total order in Ord,

{ Every non-empty class B � Ord has a minimal element in B,

{ For every � 2 Ord, f� 2 Ordj� < �g is a set.

II. For every set of ordinals U there is an ordinal � such that � = sup(U) =
W
U (If

U = ff(�)j p(�)g, for any predicate p, we sometimes use the notation
_
p(�)

f(�).)

III. W (�) = f� j � < �g is well-ordered and has type �.

Note that the existence of the ordinal sup(U) in II above, is given by the fact that sup(U) =
minf� 2 Ordj 8 2 U : � �g, since this class is not empty. The second condition in I
above is equivalent to the principle of trans�nite induction that we will use in some proofs.

Theorem 5.8. (Principle of Trans�nite Induction - PTI) Let A be a class well-ordered
by > and let F be a propositional function such that

8x 2 A : (8y < x : F (y))) F (x)

Then 8x 2 A : F (x).

Proof Suppose the result is not true and de�ne B = fx 2 Aj :F (x)g. By hypothesis B is
not empty and using the second condition of I. above we conclude that B has a minimal
element xm. Then, by de�nition of B, y < xm) F (y), for any y < xm, and this implies
(by hypothesis) F (xm), contradicting the de�nition of xm. 2

To see that the Principle of Trans�nite Induction implies the second condition of I above, i.
e., that every non-empty class B � A contains a minimal element, we consider the equivalent
formulation of PTI:

9x 2 A : :F (x)) 9x 2 A : (8y < x : F (y)) ^ :F (x)

1Note that here the symbol 2 is used to denote a relation between an element and a class; the intuitive
meaning is the same as for sets.

5.1. Tools from Ordinal Theory 103

This is valid for all propositional functions F . By instantiating F to F (x) = x 62 B, we obtain
exactly the minimality requirement.

The ordinal 0 is de�ned to be the minimal element of Ord; it is the type of the empty set.
For every ordinal �, its successor �0 is de�ned by �0 = minf� j � < �g. We use the notation
00 = 1, 10 = 2, and so forth. We will sometimes denote the successor ordinal by � + 1. Clearly
� < �0 and there is no ordinal � such that � < � < �0.

An ordinal � is de�ned to be a limit ordinal if

(9� < �) ^ (8� < � 9� < � : � < �)

The �rst condition states that a limit ordinal is non-empty, and the second condition says that it
has no maximal element. An ordinal � 6= 0 is a limit ordinal if and only if (� < �)) (�0 < �);

if and only if � =
_
�<�

�. The class of limit ordinals is denoted by Lim. The ordinal ! is de�ned

to be the minimum of Lim; it is the type of the natural numbers.
Every ordinal is either 0, a successor ordinal or a limit ordinal. These three kinds often

appear in inductive proofs and de�nitions.
The operations of addition, multiplication and exponentiation are inductively de�ned in Ord

as follows:

� + � �:� ��

� = 0 � 0 1
� = � 00 (� + �0)

0 �:�0 + � ��0:�

� 2 Lim
_
�<�

(� + �)
_
�<�

(�:�)
_

0<�<�

(��)

We list some properties of these operations.
Addition: it is associative and non-commutative; commutativity does hold for ordinals

smaller than !. Addition is weakly monotone in the left argument, i. e., � < �) �+� � �+�,
and strictly monotone in the right argument; consequently there is a left-cancellation law, i. e.,
� + � < �+ �) � < �. For any �, if � 2 Lim, then �+ � 2 Lim.

Multiplication: it is associative and non-commutative; commutativity does hold for or-
dinals smaller than !. Multiplication is weakly monotone in the left argument provided right
arguments are > 0; for left arguments > 0, it is strictly monotone in the right argument and
left-cancellation holds. Also �:� = 0 () � = 0 _ � = 0; if � 6= 0 and � 2 Lim,
then �:�; �:� 2 Lim. We also have that multiplication left-distributes over addition, i. e.,
�:(� +) = �:� + �:.

Exponentiation: for a �xed base greater than 1, exponentiation is strictly monotone in
the exponent; also (��) = ��:, for any �; �; .

Lemma 5.9. � 2 Lim () � = !:�, for some � 6= 0.

Some ordinals are closed under the operations of addition and/or multiplication; they are
crucial in this chapter.

104 Chapter 5. Total Termination of Term Rewriting

De�nition 5.10. An ordinal � 6= 0 is named additive principal if it satis�es �; � < �) �+� <
�. An ordinal � > 1 is said to be multiplicative principal if it satis�es �; � < �) �:� < �.

Lemma 5.11. Let � 2 Ord. Then the following conditions are equivalent:

� � is additive (respectively multiplicative) principal;

� � = !� (respectively � = !!
�

or � = 2), for some � � 0;

� 8� < � : � + � = � (respectively �:� = �).

Lemma 5.12. If � � � then there is a unique ordinal � such that � = � + �.

The unique ordinal � of the previous lemma is usually written � � � and we speak about
subtraction of ordinals. It is not di�cult to see that subtraction is weakly anti-monotone in the
right argument, i. e., if � < � � � then (�� �) � (�� �).

Lemma 5.13. If � � � then (� + �)� � = (�� �) + �.

Proof First we remark that the di�erence ��� is well-de�ned given that � � �. By de�nition
of di�erence, we have � + ((� + �)� �) = � + � = (� + (�� �)) + �. Associativity of
addition and left-cancellation give the result. 2

As we would expect, additive principal ordinals are closed under subtraction.

Lemma 5.14. If � < � and � = !�, for some ordinal �, then � � � = �.

Proof By lemma 5.11 and lemma 5.12 we have �+(���) = � = �+�. The result follows
from left-cancellation. 2

Lemma 5.15. Let f : �! � be a monotone function. Then for any ordinals a; b such that
a+ b < � we have f(a+ b) � f(a) + b.

Proof Fix a 2 �. De�ne g(x) = f(a + x) � f(a), for any x 2 (� � a). Since f is
monotone, g is well-de�ned and is a function from �� a to �� f(a). Furthermore g is
also monotone for if x > y we have by the properties of addition that a+ x > a+ y and
monotonicity of f implies f(a + x) > f(a + y). But then f(a) + (f(a + x) � f(a)) =
f(a + x) > f(a + y) = f(a) + (f(a + y) � f(a)) and by left-cancellation we get
f(a + x) � f(a) > f(a + y) � f(a), proving that g is monotone. From lemma 5.2 we
conclude that f(a+x)�f(a) = g(x) � x, hence f(a+x) � f(a)+x, for all x < ��a.
Since a + b < � implies that b < �� a, the result follows. 2

Lemma 5.16. Let f : �! � be monotone. Then � � �.

Proof For any � 2 �, f(�) 2 �. But since f is monotone, we have � � f(�) (by lemma 5.2),
hence � 2 �. Therefore � � � and � � �. 2

5.1. Tools from Ordinal Theory 105

We conclude this section with some useful standard results.

Lemma 5.17.

1. 8�; � 2 Ord 9!; � 2 Ord : � = �: + �; � < �.

2. 8� � 1 8� � 2 9!� : �� � � < ��+1.

3. If � < �: then 9!�1; 1 : �1 < � ^ 1 < ^ � = �:1 + �1.

Theorem 5.18. (Cantor Normal Form) For every ordinal � > 0 there is a natural number
k � 1 and uniquely determined ordinals �1 � � � � � �k such that � = !�1 + � � �+ !�k .

Besides Cantor normal form, there are other ways of representing ordinals. One such rep-
resentation that we will make use of later is the so-called normal form. Given an ordinal � its
unique normal form � is the expansion of � with base !, that is � = !�1:p1 + � � � + !�k :pk,
with �1 > �2 > � � � > �k, 0 � pi < !, for 1 � i � k, and ! > k � 1. Using this normal
form we can de�ne natural addition, denoted by �. Given ordinals x; y, x� y is performed by
adding the expansions of both x and y as polynomials in ! (well-de�ned since ordinal addition
is commutative for ordinals smaller than !). Natural addition is commutative, associative and
strictly increasing in each argument. Furthermore ordinals of the form !, for � 0, are
principal ordinals for addition, and therefore closed for natural addition. Similarly we can de�ne
natural multiplication (for details see Kuratowski and Mostowski [65]).

Example 5.19. Let � = !!:! + !2:(!3 + 1) + 1 and � = !2 + ! + ! + !. Then
� = !!

2
+ !5 + !2 + 1 and � = !2 + !:3. We have � � � = � � � = � � � = � � � =

!!
2
+!5+!2:2+!:3+1 while �+� = !!

2
+!5+!2:2+!:3 and �+� = !!

2
+!5+!2+1 = �.

We end this section by presenting a constructive characterization of ordinal multiplication.
Later we will freely switch between the di�erent characterizations of multiplication.

Lemma 5.20. Let �; � 2 Ord. Then �:� is the order type of the lexicographic product
(� � �;>lex), where >lex is the lexicographic product of the orders >� by >� as de�ned in
2.34.

Proof First note that if either � or � are 0, the result holds since �:� is 0 and the lexicographic
product is empty. Suppose now that both �; � > 0. By lemma 2.35, >lex is total and
well-founded over � � �, so � � � is also an ordinal and we see that it coincides with
�:�. Let x 2 �:�, by lemma 5.17 there are unique ordinals �x < �; �x < � such that
x = �:�x + �x. Let f : �:� ! � � � be de�ned by f(x) = (�x; �x). Due to the
uniqueness of the decomposition mentioned, function f is well-de�ned. According to
lemma 5.5 in order to see that both ordinals are the same it is enough to show that f
is monotone and surjective. Suppose then that x; y 2 �:� are uniquely decomposed in
x = �:�x+�x, y = �:�y +�y and that x > y. If �x < �y we can write �y = �x+ �, for
some � > 0. Consequently we have

x = �:�x + �x > �:�y + �y = �:�x + �� + �y = y

106 Chapter 5. Total Termination of Term Rewriting

Left-cancellation gives �x > �� + �y � �, which is a contradiction. So �x � �y. If
�x > �y, we have that f(x) = (�x; �x) >lex (�y; �y) = f(y), so we are done. If �x = �y,
suppose that �y > �x. Again we can write �y = �x + �, for some � > 0, and x > y
becomes �:�x+�x > �:�x+�y = �:�x+�x+ �. Left-cancellation gives � < 0 which is
a contradiction. So if �x = �y then �x > �y and again f(x) = (�x; �x) >lex (�y; �y) =
f(y), so f is monotone. Let (b; a) 2 � � �, then b < � and a < �, so �:b + a < �:�,
since b < �) (b + 1) � � and �:b + a < �:b + � = �:(b + 1) � �:�. Trivially the
image of �:b + a under f is (b; a), so f is surjective. 2

5.2 Multisets and Binary Functions

We give a constructive description of ordinal exponentiation. Let

Exp(�; �) = f� : � ! � j fy 2 � j �(y) 6= 0g is �niteg;

for any �; � 2 Ord. Note that if � is zero, then Exp(�; �) contains only one element, namely
the empty function. If � = 0 and � 6= 0 then Exp(�; �) contains no elements. In Exp(�; �)
we de�ne the relation � by

� � �0 () 9x 2 � : (�(x) >� �
0(x)) ^ (8y 2 � : y >� x) �(y) = �0(y))

for any �; �0 2 Exp(�; �). One easily veri�es that � is a total order (note that it is a kind of
lexicographic order).

Theorem 5.21. Let �; � 2 Ord. Then (Exp(�; �);�) is order-isomorphic to ordinal
exponentiation ��.

We present only a sketch of the proof. If � = 0 or � = 0, the result can easily be derived from
the de�nitions of Exp(�; �) and ordinal exponentiation. Suppose then that �; � � 1. Any
x 2 �� admits a unique �nite decomposition in base � (see Kuratowski and Mostowski [65]),
i. e., we can write x = ��1 :1 + � � �+ ��k :k, with 1 � k < !, � > �1 > � � � > �k and � > i,
for 1 � i � k. Further it is not di�cult to see that given two elements x; y and their respective
decompositions x = ��1 :1 + � � � + ��k :k, y = ��1 :�1 + � � � + ��m :�m, with 1 � k;m < !,
� > �1 > � � � > �k, � > �1 > � � � > �m and � > i; �j, for 1 � i � k and 1 � j � m, then the
following fact holds

x > y ()

�
91 � i � minfk;mg : (81 � j < i : ��j :j = ��j :�j) and

(�i > �i or (�i = �i and i > �i))

Given such decompositions, the function � : �� ! Exp(�; �) is de�ned as

8x 2 �� 8� 2 � : �(x)(�) =

�
i if � = �i; for some 1 � i � k
0 otherwise

5.2. Multisets and Binary Functions 107

It is not di�cult to see that � is an order-isomorphism. Due to the uniqueness and �niteness
of the decomposition, the function � is well-de�ned. Using the fact stated above and the
de�nition of � in Exp(�; �), it is not di�cult to derive that � is monotonic. For its surjectivity,
let � 2 Exp(�; �) and de�ne D = fx 2 � j �(x) 6= 0g. D is �nite and enumerating its elements
in decreasing order we obtain a sequence �1 > � � � > �k. Let x = ��1 :�(�1) + � � �+ ��k :�(�k).
Since � > �1 > � � � > �k and � > �(�i), for all 1 � i � k, x 2 ��, and by de�nition of �,
�(x) = �, proving its surjectivity. The result now follows from lemma 5.5.

Remark 5.22. If � = ! the de�nition of Exp(!; �) is the setM(�) of �nite multisets over �,
together with its multiset order as described in Dershowitz and Manna [27]. So the order type of
M(�) is !�. In the sequel we shall freely switch betweenM(�) and !�. Considering multisets
inM(�) as functions from � to !, multiset union is pointwise addition; it is known that if �
is totally ordered thenM(�) is ordered by lexicographic order on sorted list of the elements of
the multiset (see Jouannaud and Lescanne [51]). This corresponds exactly to natural addition
of ordinals below !�. Furthermore given X; Y 2 !�, X >mul Y () X � Y , where >mul is
the multiset extension of >� as de�ned in 2.25 and � is the order on elements of Exp(!; �)
de�ned above.

We shall prove that the existence of a monotone function of arity greater than one in
some ordinal implies that the ordinal has the form !�. As a consequence, for a TRS containing
function symbols of arity > 1 the only monotone algebras of interest are those whose underlying
order is a multiset order. First we introduce some notation and some lemmas. Let � denote
cartesian product. We have:

Lemma 5.23. Let � > 0 be an ordinal for which functions from ��� � ��� to �, with more than
one argument and monotone in all arguments, do exist. Then � satis�es: 8� < � : � < ���.

Proof Suppose the conclusion does not hold, i. e., there is an ordinal � < � such that
� � � � �. Let f : � � � � �� ! � be a function with more than one argument and
monotone in all arguments. Without loss of generality we can suppose that f has two
arguments (if not by �xing all arguments except two, such a function would be obtained).
De�ne ' : � ! � by '(x) = f(x; �) � �. We see that ' is well-de�ned. If we
�x the �rst argument of f to 0, the minimal element of �, we have, since f(0; x) is
strictly monotone and by lemma 5.2, that f(0; �) � �. So f(x; �) � � for any x,
hence ' is well-de�ned. Actually ' is a function from � to � � �. If x > y then
� + '(x) = f(x; �) > f(y; �) = � + '(y). Due to the left-cancellation law, we
conclude that ' is strictly monotone. By lemma 5.16 we conclude that � � ���. Since
� < � � �� � � �, we get a contradiction. 2

Lemma 5.24. For � 6= 0, � = ! for some () 8� < � : �� � > �:

Proof We prove that (8�; � < � : �+ � < �) if and only if (8� < � : �� � > �); then the
result follows from lemma 5.11.

108 Chapter 5. Total Termination of Term Rewriting

For the only-if part, let � < �. We always have �� � � �. If �� � < �, by hypothesis
we get � + (�� �) < �, a contradiction. Therefore �� � = �, so �� � > �.

For the if part, take �; � < �. The hypothesis implies � < � � � and � < � � �. We
may suppose without loss of generality, that � � �. Then

� + � � � + � < � + (�� �) = �

2

Theorem 5.25. Let A = (A;>) be a well-ordered set such that A 6= ;. Then A is
order-isomorphic to M(B), for some well-ordered set B, if and only if there is a function from
A� � � � � A to A with more than one argument, monotone in all arguments.

Proof Assume A is order-isomorphic to M(B), for some well-ordered set B. The multiset
union from M(B) � � � � � M(B) to M(B) is monotone in all arguments. The order-
isomorphism gives us a similar function in A.

On the other hand assume there is a function that is monotone in several arguments.
According to lemmas 5.23 and 5.24 the order type of A is !, so A is order-isomorphic
toM(), for some � 0. 2

Recall that a TRS is said to be totally terminating if it admits a compatible non-empty
well-founded monotone algebra in which the underlying order is total. Thus, stated in di�erent
words, the previous result says that if we have a TRS R containing at least a function symbol
of arity n � 2 and totally terminating in an algebra A, then A has type !, for some � 0.

5.3 Extension to Higher Ordinals and Modularity

In this section we look at modularity of total termination (for �nite and in�nite signatures). If
two TRS's are totally terminating, what can be said about their disjoint union? From Kurihara
and Ohuchi [66] it follows that the disjoint union is simply terminating in the case of �nite
signatures, but is it also totally terminating? This is not clear if the proofs of total termination
are given in distinct ordinals. That leads to the question of whether a total termination proof
in some ordinal can be lifted to a similar proof in another ordinal.

De�nition 5.26. For a TRS R we de�ne U(R) to be the class of ordinals in which a proof
of total termination of R can be given. The minimum of U(R) is denoted by uR.

By de�nition U(R) is non-empty for every totally terminating TRS R, since any algebra used in
the termination proof of a non-empty TRS has to be non-empty; also if R or F are non-empty
then 0 62 U(R). For example, if R consists of one rule involving two di�erent constants then
U(R) is the class of all ordinals > 1. The following lemma characterizes the class of ordinals
associated with a disjoint union of TRS's.

5.3. Extension to Higher Ordinals and Modularity 109

Lemma 5.27. Let R1 � R2 be the disjoint union of TRS's (F1;X1; R1) and (F2;X2; R2).
Then U(R1 �R2) = U(R1)\ U(R2). Consequently R1 �R2 is totally terminating if and only
if U(R1) \ U(R2) 6= ;.

Proof It is clear that U(R1 � R2) � U(R1) \ U(R2), since any well-founded monotone
(total) algebra compatible with R1 � R2 is also compatible with both R1 and R2. Take
now � 2 U(R1) \ U(R2). This means that a proof by interpretation of termination of
both R1 and R2 can be given in �. By using the same interpretations for each function
symbol in F1 and F2 (possible since these sets are disjoint so there can be no clashes in
the interpretations), we obtain an interpretation compatible with R1 � R2. 2

The following theorems state some basic properties of U(R).

Theorem 5.28. Let � 2 U(R) and let � be an arbitrary non-zero ordinal. Suppose that
either all function symbols in R have arity � 1 or that � = ! for some ordinal . Then
�:� 2 U(R).

Proof Interpret �:� as the lexicographic product with weight on � (see lemma 5.20). Its
elements will be denoted by pairs (b; a), with a 2 � and b 2 �. Since � 2 U(R), we
have an interpretation f� of every function symbol f of R in �, strictly monotone in each
argument, such that for every rule l! r in R and every assignment � : X ! �, we have
[[l; �]]� >� [[r; �]]�. For every function symbol f we introduce an interpretation f� in �:
for constants c we choose c� = 0 and for unary f we choose f� to be the identity on �.
If there are symbols of arity > 1 we assumed � to be the �nite multisets over , in this
case we de�ne f� to be the multiset union of all of its arguments. For every f de�ne

f�:�((b1; a1); : : : ; (bn; an)) = (f�(b1; : : : ; bn); f�(a1; : : : ; an))

By applying corollary 2.101 with k = 2, (A1; >1) = � and (A2; >2) = �, we conclude that
f�:� is monotone in all arguments and that with this interpretation, �:� is a well-founded
total monotone algebra compatible with R, thus �:� 2 U(R). 2

Note that if R contains function symbols of arity � 2, then � has to have the form !, for
some � 0. Consider the (empty) TRS (ffg;X ; ;) with the function symbol f having arity
2. Then R is totally terminating and uR = !0 = 1 = �. Take � = ! + 1. Then �:� = � and
� 62 U(R) since by lemmas 5.23 and 5.24 it is not possible to de�ne a function f� : ��� ! �
monotone on both arguments.

Theorem 5.29. If � 2 U(R) then !� 2 U(R).

Proof Again f� will denote the interpretation of the function symbols f of R in �. In
this proof we identify !� with the �nite non-empty multisets over � instead of all �nite
multisets. In terms of ordinals this does not make any di�erence since !� � 1 = !�, for
� � 1. Write ffagg for the multiset containing only one element a and

F
for multiset

union.

For constants c and function symbols f of arity n � 1, we de�ne (see 2.23):

110 Chapter 5. Total Termination of Term Rewriting

� c!� = ffc�gg.

� f!�(X1; : : : ; Xn) =
G

x12X1

� � �
G

xn2Xn

fff�(x1; : : : ; xn)gg = f�(X1; : : : ; Xn)

That the functions f!� , for all function symbols f , are strictly monotone in each argument
is a consequence of lemma 2.29 (note that it is essential that for arities greater than one
we restrict ourselves to non-empty multisets).

Let l ! r be an arbitrary rewrite rule and let � : X ! !�. We still have to prove
that [[l; �]]!� >!� [[r; �]]!� . For any such � , we de�ne an assignment �max : X ! �
by �max(x) = max(�(x)), the maximal element of �(x) (recall that for any x 2 X ,
�(x) 6= ;). Using the de�nition of f!� , it can be easily proven by induction that, for any
term t, max([[t; �]]!�) = [[t; �max]]�. For all a 2 [[r; �]]!� we have

a � max([[r; �]]!�) = [[r; �max]]� < [[l; �max]]� 2 [[l; �]]!�

Consequently we obtain [[l; �]]!� >!� [[r; �]]!� . We have proven that R is totally termi-
nating in !�, so !� 2 U(R). 2

Now we are ready to prove modularity of total termination under certain conditions.

Theorem 5.30. Let (F1;X1; R1) and (F2;X2; R2) be totally terminating TRS's, at least one
of which does not containing duplicating rules. Then R1 � R2 is totally terminating.

Proof Let � and � be ordinals in which the proofs of total termination of R1 and R2 can
respectively be given. By theorem 5.29 we may, and shall, assume that � = ! and
� = !�, for some ; � � 1. Suppose that R1 has no duplicating rules (the other case is
symmetric). Identify � = !� with �nite multisets over � (including the empty multiset)
and de�ne interpretations in � for the functions symbols of R1 in the following way:

� c� = ff gg, for any constant c, where ff gg = 0� represents the empty multiset.

� f�(x1; : : : ; xn) =
nG
i=1

xi, where
F

represents multiset union.

For a term t let Xt be the multiset of variables occurring in t. For any � : X ! � we

obtain [[t; �]]� =
G
x2Xt

�(x); here the multiset union over an empty index is de�ned to be

the empty multiset. Since there are no duplicating rules the multiset Xr is contained in
Xl for all rewrite rules l! r 2 R1. Consequently,

[[l; �]]� =
G
x2Xl

�(x) �
G
x2Xr

�(x) = [[r; �]]�

Note that the inequality is not strict in general. We have just turned � into a well-founded
total quasi-model for R1.

5.3. Extension to Higher Ordinals and Modularity 111

Now in �:� (the lexicographic product with weight on �) we de�ne for any n-ary function
symbol f of R1, n � 0:

f�:�((a1; b1); : : : ; (an; bn)) = (f�(a1; : : : ; an); f�(b1; : : : ; bn));

where f� comes from the total termination proof of R1 in �. From lemma 5.20 we can
identify �:� with (���;>� � >�). Furthermore we can apply theorem 2.99, (with k = 2,
(F1;X 1; R1) = (F2;X2; R2) and (F2;X 2; R2) = (F1;X1; R1)) since � is compatible with
R2 and a quasi-model for R1 and � is compatible with R1. Consequently f�:� is well-
de�ned and strictly monotone in all coordinates (for any f 2 F1) and (� � �;>� � >�)
is compatible with (F1 [F2;X1 [X2; R1 [R2), i. e., with R1 � R2. Using again the
identi�cation between �:� and (� � �;>� � >�), we conclude that �:� 2 U(R1�R2),
proving total termination of U(R1 � R2). 2

A trivial consequence of theorem 5.30 is the modularity of total termination for string
rewriting systems, since by de�nition they cannot have duplicating rules.

Note that if both R1 and R2 contain duplicating rules, there are particular cases in which
we can prove the union is totally terminating; the obvious case is when the proof of termination
is given in the same ordinal for both TRS's. For example, let R1 and R2 be totally terminating

in �; �, respectively, and assume there are ordinals ; � such that + !:
:!
�

= � + !:
:!
�

= A,
for �nite exponentiations on both right summands. Then it easily follows from theorem 5.28
and theorem 5.29 that !A 2 U(R1 � R2), so R1 � R2 is totally terminating. Also if there
are ordinals �; � such that �:� = �:�, total termination of R1 � R2 can be proven. This last
case is more interesting from a practical point of view. For example, since ordinal addition is
commutative for ordinals smaller than !, we have that total termination is modular for TRS's
for which a termination proof can be given in ordinals smaller than !!.

However, not all �; � satisfy these properties; for example � = !2 and � = !!. The
problem boils down to extending functions (of any arity) de�ned on a certain ordinal, to a
given higher one, in such a way that the requirements of total termination are met. That is,
in the new ordinal the functions are strictly monotone in all coordinates and for every rule the
interpretation of the lefthand-side is greater than that of the righthand-side.

Recently Rubio [94] has provided a new way of proving modularity results. The idea behind
his technique is as follows: since each TRS is terminating, there are well-founded rewrite orders
compatible with them. By translating terms over the extended signature F1 [F2 to multisets
of terms over F1 and F2 and using some lexicographic product of extensions of the orders
compatible with R1 and R2, a new well-founded order for T (F1 [F2;X) is built that (in
some conditions) is compatible with R1 � R2. In this way, Rubio presented another proof of
theorem 5.30. Interesting enough his technique su�ers from the same problem as ours in the
presence of duplicating rules in both systems. It is still an open problem whether the condition
of non-existence of duplicating rules in one of the systems can be dispensed with.

112 Chapter 5. Total Termination of Term Rewriting

5.4 String Rewriting Systems

In the previous sections we saw that when trying to prove total termination of TRS's containing
at least a function symbol of arity n � 2, only ordinals of the form !� were relevant. In this
section, we discuss whether the same holds for string rewriting systems (SRS's), i. e., rewriting
systems containing only unary function symbols. First we need a lemma.

Lemma 5.31. Let � 6= 0 and f : � ! � be (strictly) monotone. Then there is a unique
ordinal � such that !� � � < !�+1 and f(!�) � !�.

Proof Existence and uniqueness of � satisfying !� � � < !�+1 = !�:! is guaranteed by
lemma 5.17. If � = !�, we are done. Suppose now that � > !�. Again by lemma
5.17 we can write � = !�: + �, where the uniquely determined ordinals ; � satisfy
1 � < !, 0 � � < !�.

We suppose f(!�) 6� !� and will derive a contradiction. That means there is an element
b 2 !� such that f(b) � !�. Since !� is principal additive and b < !�, we can conclude
that b+ !� = !� and therefore b+ !�:n = !�:n, for any ordinal 1 � n < !.

Recall that � = !�: + �. We consider two cases, namely � = 0 and � > 0. If � = 0
then � = !�: and 1 < < !. Since b + !�:(� 1) = !�:(� 1) < � we can apply f
to b + !�:(� 1). We have

� >
f(b+ !�:(� 1)) � (by lemma 5.15)
f(b) + !�:(� 1) � (by hypothesis)
!� + !�:(� 1) =
!�:(1 + (� 1)) = (de�nition of di�erence)

!�: =
�

which is a contradiction.

Suppose now that � > 0. Similarly we have b+!�: = !�: < � (recall that 1 � < !).
Again we can apply f to b + !�: and conclude2

� > f(b+ !�:) � f(b) + !�: � !� + !�: = !�:(1 +) = !�:(+ 1)

Then � = !�: + � > !�: + !�, and by left-cancellation we get � > !�, which is a
contradiction. 2

Remember that for a totally terminating TRS R the ordinal uR is de�ned to be the minimal
ordinal in which the total termination proof can be given.

Theorem 5.32. Let R be a totally terminating SRS. Then uR = !� for some � � 1.

2Note that addition is commutative for ordinals smaller than !.

5.4. String Rewriting Systems 113

Proof From lemma 5.31 we obtain a unique ordinal � such that !� � uR < !�+1 and
f�(!

�) � !� for all function symbols f . We now prove, by induction on the structure of
terms, that [[t; �]]!� 2 !

�, for any assignment � : X ! !� and where f!� is taken to be
f� (since f�(!

�) � !�, this is possible). If t is a variable then [[t; �]]!� = �(t) 2 !� and
the result holds. Suppose now that t = f(s), for some f 2 F , and the result is valid
for term s. Then [[t; �]]!� = f!�([[s; �]]!�). By induction hypothesis [[s; �]]!� 2 !

� and so
f!�([[s; �]]!�) 2 !�. This means that by restricting f : uR ! uR to !� for all function
symbols f , we also have a proof of total termination of R in !�, so !� 2 U(R). Since
uR is the minimum of U(R) and !� � uR we obtain uR = !�. 2

Note that this result is essentially weaker than theorem 5.25 for the case of arity > 1. The
fact that uR = !� does not imply that every ordinal in U(R) is of that shape. For example,
every proof of total termination of a SRS in ! is easily extended to a similar proof in ! + !,
which is not of the required shape. We can nevertheless impose some restrictions on U(R) as
we see below.

Lemma 5.33. Let R be a totally terminating (non-empty) SRS. Then U(R) � Lim.

Proof Since we only use non-empty monotone algebras, we have that 0 62 U(R). Let � + 1
be a successor ordinal and suppose that � + 1 2 U(R). It can be seen, by induction
on the context and using lemma 5.2, that [[C[x]; �]] � �(x), for any � : X ! ,
where is an arbitrary ordinal in U(R) (non-empty by hypothesis). Since R is a SRS,
rules have the form C[x] ! D[x], where C;D are contexts with D possibly trivial. Let
� : X ! � + 1 be such that �(x) = �. Then by total termination requirements,
[[C[x]; �]]�+1 > [[D[x]; �]]�+1 � �(x) = �. That gives [[C[x]; �]]�+1 � � + 1, which is a
contradiction with the fact that [[C[x]; �]]�+1 < �+1. So if 2 U(R), is not zero and
it is not a successor ordinal; therefore it must be a limit ordinal. 2

A natural operation on SRS's is reversal: all lefthand-sides and righthand-sides are reversed,
considered as strings. For example, the reverse of f(f(g(x))) is g(f(f(x))). Clearly there
is a bijective correspondence between reductions in the original system and reductions in the
reversed system. As a consequence, a SRS is terminating if and only if the reversed system is
terminating. However, a similar observation does not hold for total termination. For example,
the system

f(f(x)) ! f(g(x))
g(g(x)) ! g(f(x))

is not totally terminating since f(a) and g(a) are incomparable for any a in any corresponding
monotone algebra. On the other hand, the reversed system

f(f(x)) ! g(f(x))
g(g(x)) ! f(g(x))

is totally terminating in the natural numbers: just take the interpretation f(x) = 4x+2; g(x) =
4x+1, for x even, and f(x) = 4x; g(x) = 4x+3, for x odd. Further, if for a totally terminating

114 Chapter 5. Total Termination of Term Rewriting

system the reversed system is totally terminating too, the corresponding ordinal may change.
An example is f(g(x))! g(f(f(x))); in the next section we shall see that the minimal ordinal
of this totally terminating system is !2, while termination of the reversed system g(f(x)) !
f(f(g(x))) can be proved in the natural numbers by choosing f(x) = x+ 1; g(x) = 3x.

We conclude this section with some remarks about TRS's that also contain constants, and
no function symbols of arity > 1. In all other cases we know, from theorems 5.25 and 5.32,
that total termination implies that uR = !� for some � � 0. However, if there are constants
then the proof of theorem 5.32 no longer holds since the interpretation of the constants may
be too big. The simplest example is the TRS R consisting of the rule a ! b, where a and b
are constants. It is totally terminating and uR = 2. If we allow in�nitely many constants and
rewrite rules then for any ordinal � a TRS R can be given with uR = �.

The in�nite TRS R consisting of the rules

cj+1 ! f i(cj); with 0 � j < k, and for each i < !,
f(x) ! x

(where k � 1 is a �xed natural) satis�es uR = !:(k + 1). Note that by lemma 5.2 and the
de�nition of successor ordinal, the interpretation f(x) = x+1 is the \least" possible one for f
compatible with the rule f(x)! x. If we interpret c0 as 0 (again the smallest possible choice)
then the interpretation of c1 has to be at least ! and similarly if we interpret cj by !:j then
we must have cj+1 �

W
x<! !:j + x = !:(j + 1). Finally f(ck) > ck implies that uR has to

be the least limit ordinal greater than !:k , i. e., !:(k + 1). It seems that in a similar way, for
every ordinal � < !! an in�nite TRS R with �nitely many unary symbols and constants can
be constructed satisfying uR = �.

We conjecture that for any �nite totally terminating TRS R without function symbols of
arity > 1 and containing at least one rule of the form C[x] ! D[x], for some contexts C;D,
the ordinal uR is of the form !�.

However, even if uR is not of the form !�, by theorem 5.29 we need only consider those
ordinals for proving total termination.

5.5 Minimal Ordinals

As we have seen previously, when trying to establish total termination of (�nite or in�nite)
SRS's or TRS's containing symbols of arity > 1, we only need to consider algebras with type
!� for some � � 0. Furthermore the minimal ordinal uR associated with any totally terminating
SRS or TRS with function symbols of arity � 2 is always of the form !�, for some ordinal �.
This has interesting consequences if the ordinals considered are below �0. As usual �0 is de�ned
to be the minimal �-ordinal, i. e., the minimal ordinal � satisfying � = !�. It can also be
de�ned as limn<! n where 0 = 1 and n+1 = !n; �nally it is the only ordinal � satisfying
� < �) � < !� < �. Therefore if uR = !� < �0, then uR can be constructed in �nitely
many steps using the ordinal !, ordinal (lexicographic) product and ordinal exponentiation
(multiset construction). This follows by induction on �. If � = 0, it is true. For � � 1, if
uR = !� < �0 and !�1 + � � � + !�k (! > k � 1) is the Cantor normal form of �, we have

5.5. Minimal Ordinals 115

�0 > !� > � � !�i > �i, for all i, 1 � i � k. By induction hypothesis each �i is �nitely
constructed and since uR = !� = !!

�1+���+!�k = !!
�1 : � � � :!!

�k , so is uR.
Is it the case that all ordinals of the form !� are important or can we restrict the class even

further? Partially answering this question, we have the following result.

Theorem 5.34. For any ordinal � with 1 � � � !, there is a SRS R such that uR = !�.

Proof For � = 1, the string rewriting system f(x) ! x satis�es the requirements by inter-
preting f as the successor function in !.

For 1 < � < !, let R� consist of the � � 1 rules

fi(fi+1(x))! fi+1(fi(fi(x)))

for i = 1; : : : ; � � 1. We will show that uR� = !� for any �; for � = 2 this was already
shown in Zantema [108] (report version).

For the TRS R de�ned by

f(g(x)) ! g(f(f(x))
f(h(x)) ! h(g(x))

we shall prove that uR = !!.

According to theorem 5.32 the only ordinals of interest are of the shape !�, for some
ordinal �. In the following we will prove that uR� � !�, for 1 < � � !, and �nally we
establish uR� � !� by giving an interpretation in !� that satis�es all the requirements of
total termination. Proving that uR� � !� requires some work; we �rst have to introduce
some auxiliary lemmas and de�nitions.

To simplify the treatment we will use the same representation for a function symbol in a
TRS and for the corresponding interpretation function in an ordinal.

Lemma 5.35. Let R be a TRS totally terminating in an ordinal � and containing a
rule of the form

F (G(x))! G(F (F (x)))

Then 8 ! > k � 1 8a 2 � : G(a) > F k(a).

Proof By induction on k. If k = 1, for any a 2 �, we have

F (G(a)) > (by total termination)
G(F (F (a))) � (by lemma 5.2)

F (F (a))

From F (G(a)) > F (F (a)) using lemma 5.2 we conclude that G(a) > F (a), as we
wanted.

116 Chapter 5. Total Termination of Term Rewriting

Assume that G(a) > F l(a) for some ! > l � 1 and for all a 2 �. Then

F (G(a)) > (by total termination)
G(F (F (a))) > (by induction hypothesis)
F l(F (F (a))) =
F (F l+1(a))

Again by lemma 5.2, we conclude that G(a) > F l+1(a). Since a was arbitrary, the
result holds. 2

From the above lemma we conclude that uR� � !2, since the property only holds in ! if
F is the identity function Id (but the interpretation of the rule rules out that possibility)
and, from theorem 5.32, uR� = !�, for some ordinal � (this is in fact another proof that
for � = 2, uR� � !2).

Given a function F : !m ! !m, we de�ne

O(F) = minfk < ! j 0 � k � m ^ 8a 2 !m : a + !k > F (a)g

The meaning of O(F) is as follows: if we consider the elements of !m as vectors of
size m (possible since !m is the lexicographic product ! � � � � � !), then O(F) denotes
the highest-order coordinate k which may be changed by function F . We note that
0 � O(F) � m; O(F) = 0 () F is the identity function. Next some necessary
properties of O are introduced.

Lemma 5.36. Let F;G be monotone functions from !m to !m, for some m � 1. Then
(8x 2 !m : G(x) � F (x))) O(G) � O(F).

Proof Suppose 0 � j = O(G) < O(F) = k � m. Then 9a 2 !m such that
G(a) < a+ !j � a+ !k�1 � F (a), contradicting the hypothesis. 2

Lemma 5.37. Let F;G be monotone functions from !m to !m, for some m � 1. Then
O(F �G) = max(O(F);O(G)).

Proof Let k = max(O(F);O(G)). If k = 0 then F �G = Id, so F = G = Id and the
result holds. Suppose that k � 1. For any 0 � j < k, 9a 2 !m such that either
F (a) � a + !j or G(a) � a + !j. In both cases, using monotonicity and lemma
5.2, we conclude F (G(a)) � a+ !j, hence O(F �G) � k.

Note that since a � G(a), we can write G(a) = a + (G(a) � a), for any a. Since
O(G) � k we conclude that a+ !k > G(a) = a+ (G(a)� a), for any a. By strict
monotonicity of addition in the right argument, we conclude that !k > G(a) � a,
for any a. This combined with O(F) � k and lemma 5.11, gives us

a + !k = a+ (G(a)� a) + !k = G(a) + !k > F (G(a))

Hence O(F �G) � k. 2

5.5. Minimal Ordinals 117

Lemma 5.38. Let R be a TRS containing a rule of the form

F (G(x))! G(F (F (x)))

and totally terminating in an ordinal !m for some m < !. Then O(G) > O(F).

Proof By the assumption of total termination of R, both F and G are not the identity,
so O(F);O(G) > 0. Let O(F) = k, for some 1 � k � m. We have 8x 2 !m :
x+!k > F (x) and 9a 2 !m : a+!k�1 � F (a). Fix this element a 2 !m. Next we
prove by induction on j that F j(a) � a + !k�1:j, for any 1 � j < !.3 For j = 1
this holds by hypothesis. Suppose the property holds for any i � j. Then

F j+1(a) =
F (F j(a)) � (by monotonicity of F and induction hypothesis)

F (a+ !k�1:j) � (by lemma 5.15)
F (a) + !k�1:j � (by induction hypothesis)

a + !k�1 + !k�1:j = (associativity of addition)
a+ !k�1(1 + j) = (commutativity of \+" below !)
a+ !k�1:(j + 1)

But by lemma 5.35, G(a) � F j(a) � a + !k�1:j, for any j < !. Applying this
lemma we also conclude that G � F (in the usual pointwise sense) and therefore
O(G) � O(F) (by lemma 5.36). Let O(F) = k, then

a+ !k > F j(a) � a + !k�1:j

for any j < !. But then

G(a) �
_
j<!

(a+ !k�1:j) = a + !k�1:(
_
j<!

j) = a+ !k�1:! = a+ !k

and therefore O(G) > k = O(F). 2

Now going back to our original system R� and applying the previous results to every rule,
we get 0 < O(f1) < � � � < O(f�) � m. So m � �, hence, uR� � !�. In order to show
that uR� is indeed !

� we still have to give an interpretation in !�. Identify ! with strictly
positive integers and de�ne in !�:

fi(x1; : : : ; x�) = (x1; : : : ; xi�1; xi + 2xi+1; xi+1; : : : ; x�)

for i = 1; : : : ; �, where x�+1 is de�ned to be 1 and where (x1; : : : ; x�) is an element of
the right-to-left lexicographic product !�.4 It is not di�cult to see that the functions fi,

3Recall that \." denotes ordinal multiplication.
4The element (x1; : : : x�) can also be represented as !��1:x� + � � � + !0:x1, its normal formal form as

introduced after theorem 5.18.

118 Chapter 5. Total Termination of Term Rewriting

i = 1; : : : ; �, are monotone. We check that this interpretation is compatible with the
rewrite rules. Given � : X ! !�, for a rule fi(fi+1(x))! fi+1(fi(fi(x))) we have

[[fi(fi+1(x)); �]]!� = fi(fi+1(x1; : : : ; x�))
= fi(x1; : : : ; xi; xi+1 + 2xi+2; xi+2; : : : ; x�)
= (x1; : : : ; xi + 2xi+1+2

xi+2 ; xi+1 + 2xi+2; : : : ; x�)

and

[[fi+1(fi(fi(x))); �]]!� = fi+1(fi(fi(x1; : : : ; x�)))
= fi+1(fi(x1; : : : ; xi�1; xi + 2xi+1; : : : ; x�)
= fi+1(x1; : : : ; xi�1; xi + 2xi+1+1; : : : ; x�)
= (x1; : : : ; xi + 2xi+1+1; xi+1 + 2xi+2; : : : ; x�)

where �(x) = (x1; : : : ; x�). Since xi+2 � 1 we have that xi+2xi+1+2
xi+2

>IN xi+2xi+1+1

so the interpretation of the lhs is always greater than that of the rhs. Since all the
requirements of total termination are ful�lled the system is totally terminating in !�.

For the ordinal !! we consider the SRS R

f(g(x)) ! g(f(f(x)))
f(h(x)) ! h(g(x))

We shall prove uR = !!; �rst we show that we cannot prove total termination of R in
!n, for any 1 < n < !. Suppose we can, then there are strictly monotone functions
f; g; h : !n ! !n satisfying, for all x 2 !n,

f(g(x)) > g(f(f(x))) and f(h(x)) > h(g(x))

Let O be de�ned as before. By lemma 5.38, O(f) < O(g). Let j = O(f) and thus
0 < j < O(g) � n; then 8a 2 !n : a+!j > f(a) and 9a0 2 !n : a0+!j � g(a0). Using
lemma 5.15, we derive h(g(a0)) � h(a0+!j) � h(a0)+!j > f(h(a0)), contradicting the
requirements of total termination.

To prove uR = !! we still need to present an interpretation in !!. Identify ! with natural
numbers, including 0. Recall from Theorem 5.21 that we can identify an element X 2 !!

with a certain function X : ! ! !; we therefore denote such an element by the sequence
(p0; : : : ; pk) where:

� X(i) = pi, if 0 � i � k.

� X(k) 6= 0 and X(i) = 0 for i > k.

Let A be !! restricted to the part for which k � 1 in this notation. This means that we
skip the �rst ! elements of !!; since !! � ! = !! this does not a�ect the ordinal. We
now de�ne f; g; h : A! A by:

f(p0; : : : ; pk�1; pk) = (p0 + pk; : : : ; pk�1 + pk; pk)
g(p0; : : : ; pk�1; pk) = (p0; : : : ; pk�1; 2:pk + 1)
h(p0; : : : ; pk�1; pk) = (p0; : : : ; pk�1; pk; 0; 1)

5.5. Minimal Ordinals 119

Given two multisets (p0; : : : ; pk) and (q0; : : : ; qm), if (p0; : : : ; pk) >!! (q0; : : : ; qm) then
either k >! m or k = m and 90 � i � k : pi >! qi and for i < j � k : pj = qj.
Using this fact and with some easy calculations, it can be shown that the functions
are indeed strictly monotone. We check that the interpretation of the lhs of the rules
is always greater than that of the rhs. Let � : X ! !! be an assignment such that
�(x) = (p0; : : : ; pk). For the rule f(g(x))! g(f(f(x))) we have

[[f(g(x)); �]]!! = f(g(p0; : : : ; pk))
= f(p0; : : : ; 2pk + 1)
= (p0 + 2pk + 1; : : : ; pk�1 + 2pk + 1; 2pk + 1)

and
[[g(f(f(x))); �]]!! = g(f(f(p0; : : : ; pk)))

= g(f(p0 + pk; : : : ; pk�1 + pk; pk))
= g(p0 + 2pk; : : : ; pk�1 + 2pk; pk)
= (p0 + 2pk; : : : ; pk�1 + 2pk; 2pk + 1)

and indeed [[f(g(x)); �]]!! >!! [[g(f(f(x))); �]]!! , since pk�1 + 2pk + 1 >! pk�1 + 2pk.
For the second rule f(h(x))! h(g(x)), we have

[[f(h(x)); �]]!! = f(h(p0; : : : ; pk))
= f(p0; : : : ; pk�1; pk; 0; 1)
= (p0 + 1; : : : ; pk�1 + 1; pk + 1; 1; 1)

while
[[h(g(x)); �]]!! = h(g(p0; : : : ; pk))

= h(p0; : : : ; pk�1; 2pk + 1)
= (p0; : : : ; pk�1; 2pk + 1; 0; 1):

Because the coordinate of order k + 2 is greater for the lhs than for the rhs (1 and 0
respectively) and the coordinate of order k + 3 is the same for both lhs and rhs, we
conclude that [[f(h(x)); �]]!! >!! [[h(g(x)); �]]!! . This concludes the proof of theorem
5.34. 2

We end this section with an example based on the battle of Hercules and the Hydra (see
Kirby and Paris [59]; another version of this game appears in Dershowitz and Jouannaud [26]).
For this system we conjecture uR = �0.

The Hydra is represented as a �nite tree. We code the tree using a binary symbol c: a tree
consisting of a root and descendants t1; : : : ; tk is represented as c(t1; c(t2; : : : ; c(tk�1; tk) : : :)),
that is c(D;S) represents a node whose descendants are coded in the subtree D and whose
siblings are coded in subtree S. Leaves are represented by the constant nil.

On each stage, a leaf node is selected and deleted. Afterwards, k � 0 copies of the subtree
containing the now missing leaf, are added to the second ancestor of the selected leaf. The

120 Chapter 5. Total Termination of Term Rewriting

number of copies k is chosen randomly. The game can be represented as the in�nite TRS H:

c(nil; x) ! x
c(c(nil; x); y) ! copy(n; x; y)
copy(s(k); x; y) ! copy(k; x; c(x; y))
copy(0; x; y) ! y

n ! si(0) for each i � 0

Termination of the system above cannot be proven by recursive path order with status.
This remains true even if we allow the precedence to be a quasi-order. To see why note
that in the third rule (counting from top to bottom) in order to have copy(s(k); x; y) >rpo

copy(k; x; c(x; y)), the status of copy has to be lexicographic with permutation � which satis�es
�(1) = 1 or satis�es �(1) = 2 and �(2) = 1, and the precedence � has to satisfy copy � c.
But then, the version of >rpo thus obtained is incompatible with the second rule.

The Knuth-Bendix order will not yield a termination proof either since it can only be applied
to non-duplicating systems (i. e., systems where for every rule, the number of occurrences of
a variable on the righthand-side is never bigger than the number of occurrences of the same
variable in the lefthand-side) and the third rule is duplicating. The system is however totally
terminating in �0 with the following interpretation:

0 = 0
n = !
nil = 2
s(x) = x + 1
c(x; y) = !x � y
copy(k; x; y) = !k�x�1 � x� y:

Here elements of �0 are identi�ed with ordinals < �0; the operation � represents natural addition
(see remarks after theorem 5.18 and example 5.19). Well-de�nedness of these functions follows
from standard properties of �0. Since natural addition in associative, commutative and strictly
monotone in both coordinates, it is not di�cult to see that the functions above are strictly
monotone in each coordinate. Further it is easy to check that the interpretations of all lefthand-
sides are strictly greater than the interpretations of the corresponding righthand-sides. We show
it here only for the second rule. For any assignment � : X ! �0, we have

[[l2; �]]�0 = [[c(c(nil; x); y); �]]�0 = !!
2��(x) � �(y)

[[r2; �]]�0 = [[copy(n; x; y); �]]�0 = !!��(x)�1 � �(x)� �(y)

Since ! � 1 < !2 (because !2 is additive principal and !; 1 < !2), we get

! � �(x)� 1 < !2 � �(x)) !!��(x)�1 < !!
2��(x)

But also, �(x) < �0) �(x) < !�(x) < !!
2��(x). Because !!

2��(x) is additive principal, we
get

!!��(x)�1 � �(x) < !!
2��(x)) !!��(x)�1 � �(x)� �(y) < !!

2��(x) � �(y)

5.6. Characterizing Total Termination 121

and thus [[l2; �]]�0 >�0 [[r2; �]]�0.
So uH � �0. It can be proven that if f : � � � ! � is strictly increasing in each

argument then f(x; y) � maxfx + y; y + xg, for any x; y 2 �. Using this fact and rules
2, 3 and 4, it can be seen that for any substitution � , the lhs of rule 2 (l2) has to full�l
[[l2; �]]uH > �(x)+ � � �+�(x), where �(x) can appear any �nite number of times. Consequently

[[l2; �]]uH � �(x):
_
i<!

i = �(x):!. So [[l2; �]]uH � !�1+1, where �(x) has as Cantor normal form

!�1p1+ � � �+!�0p0. With this last inequality it is not di�cult to derive uH � !!. Consequently
!! � uH � �0 and we conjecture that uH = �0.

5.6 Characterizing Total Termination

The concept of total termination as de�ned in chapter 2, de�nition 2.110, relies on the concept
of monotone algebra. Here we give an alternative de�nition for total termination that does not
refer to monotone algebras. First we need a very weak form of modularity of total termination.

Lemma 5.39. Let F and F 0 be two disjoint signatures. Then (F ;X ; R) is totally terminating
if and only if (F [F 0;X ; R) is totally terminating.

Proof For the if part, since (F [F 0;X ; R) is totally terminating there is a total monotone
algebra compatible with (F [F 0;X ; R). The same algebra is obviously compatible with
(F ;X ; R).

For the only-if part, we take R1 to be (F 0; ;; ;) and R2 to be (F ;X ; R). Then all
conditions of theorem 5.30 are satis�ed so we can conclude that R1 � R2 is totally
terminating (note that (F 0; ;; ;) is totally terminating in, for example, !, since in ! we
can de�ne monotone functions with an arbitrary number of arguments). Since R1�R2 =
(F [F 0;X ; R), the result holds. 2

Theorem 5.40. Let F 0 be F extended with a new constant if F does not contain any. Then
R is totally terminating if and only if there is a strict partial order > on T (F 0), such that

� > is a well-order (i. e., total and well-founded);

� > is closed under ground contexts, i. e., if C[] is a linear ground context, and t and s
are ground terms with s > t then C[s] > C[t];

� l� > r� for every rule l! r in R and every ground substitution �.

Proof First, consider the if part. Since > is total and well-founded on T (F 0), we can make
(T (F 0); >) a well-founded total monotone algebra over F by interpreting each function
symbol in F by itself. From the properties of > follows that R is compatible with this
interpretation, yielding total termination of R.

For the only-if part, �rst note that total termination of (F ;X ; R) implies total termination
of (F 0;X ; R) (see lemma 5.39), so we consider total monotone algebras over F 0.

122 Chapter 5. Total Termination of Term Rewriting

The essential step in this part is the existence of a total order on the set of ground terms,
well-founded and closed under contexts. To construct such an order, consider the set of
function symbols F 0. By Zermelo's Theorem (see for example Kuratowski and Mostowski
[65]) there is a total, well-founded order on F 0. Let � be such a total precedence. Con-
sider the order >lpo associated with this precedence and taking lexicographic sequences
from left to right. In chapter 2, section 2.4, we stated that this order has all the required
properties.

Since (F 0;X ; R) is totally terminating, we know that R is compatible with a (non-
empty) monotone F 0-algebra (A;>), with > total and well-founded. Again let [[t]] be the
interpretation in A of a ground term t.

In T (F 0) we de�ne the order = by

s = t () ([[s]] > [[t]]) or ([[s]] = [[t]] and s >lpo t)

Irreexivity and transitivity of = follows from irreexivity and transitivity of both > and
>lpo. Given any two ground terms s; t then either [[s]] > [[t]] or [[t]] > [[s]] or [[t]] = [[s]],
since > is total. In the �rst two cases we conclude s = t or t = s, respectively. In the
last case, since >lpo is total we know that either s >lpo t or t >lpo s or s = t, hence the
order = is total. For well-foundedness of =, suppose there is an in�nite descending chain

t0 = t1 = t2 = � � �

Consider the sequence ([[ti]])i2IN. By de�nition of =, we have

[[t0]] � [[t1]] � [[t2]] � � � �

Since > is well-founded, there must be an index j such that [[tj]] = [[tj+1]] = � � � , and
consequently tj >lpo tj+1 >lpo � � � , contradicting the well-foundedness of >lpo.

Note that another way of proving these properties is by remarking that the relation =
can be injected in a subset of the lexicographic product of > by >lpo (over A� T (F

0)).
Since both > and >lpo are total well-founded partial orders on, respectively A and T (F 0),
by lemma 2.35 we conclude that their lexicographic product is also a total well-founded
partial order on A � T (F 0), and so on any subset of it; as a consequnece = is a total
well-founded partial order on T (F 0).

For closedness under ground contexts, note that >A and =A, respectively the partial order
and congruence induced on T (F 0;X) by (A;>) and the interpretation function, are both
closed under contexts, and in particular ground contexts (see theorem 2.94 and lemma
2.97). Furthermore, since we are dealing with ground terms then [[s]] > [[t]] () s >A t
and [[s]] = [[t]] () s =A t. This combined with the fact that >lpo is closed under
(ground) contexts gives that = is closed under ground contexts.

If � is any ground substitution and l ! r is a rule in R, then [[l�]] > [[r�]], since (A;>)
is compatible with R, and therefore l� = r�, concluding the proof. 2

5.6. Characterizing Total Termination 123

It is also of interest to consider under what conditions is a TRS not totally terminating. We
de�ne the truncation closure TC(R) of a TRS R to be the set

TC(R) = f(t; t0)j 9C[] : C[t]!+
R C[t0]g:

In general TC(R) is not a TRS, however if R is totally terminating, then TC(R) is indeed
a TRS. To see this note that C[t] !+

R C[t0]) C[t] >A C[t0], where (A;>) is a total well-
founded monotone algebra compatible with R and >A is the order on terms induced by the
algebra and the interpretation. By lemma 5.45, we have that t >A t0. If t would be a variable,
this would be impossible (any assignment � : X ! A such that �(t) is the minimal element
of A will give [[t0; �]] > [[t; �]]). If t0 contains some variable not occurring in t, say x, then
we can write t0 = D[x], with D possibly trivial. Since x does not occur in t, we can de�ne
an assignment � : X ! A satisfying �(x) > [[t; �]]. Consequently (and using lemma 5.45),
we get [[t0; �]] � [[x; �]] > [[t; �]], contradicting t >A t0. So if R is totally terminating and
(t; t0) 2 TC(R) then t 62 X and var(t0) � var(t), so TC(R) de�nes a TRS over T (F ;X).

It is not di�cult to see that if R is totally terminating then TC(R [EmbF) is also totally
terminating. Indeed, from lemma 2.111, we conclude that R [EmbF is totally terminating, so
TC(R [EmbF) is a well-de�ned TRS. Suppose that (A;>) is a total well-founded monotone
algebra compatible with R [EmbF , and take t ! t0, a rule in TC(R [EmbF). Then there
is a context C such that C[t] !+

R[EmbF
C[t0]. This means that C[t] >A C[t0], and by lemma

5.45 we have that t >A t0, thus (A;>) is compatible with TC(R [EmbF), proving its total
termination.

A trivial consequence of this remark is that if R is totally terminating then TC(R[EmbF) is
a well-de�ned terminating TRS. Therefore if TC(R[EmbF) is not a TRS or is a TRS allowing
an in�nite rewrite sequence, R is not totally terminating. This is a useful tool for proving
that a TRS is not totally terminating. Unfortunately this characterization is not complete,
as we had conjectured in Ferreira and Zantema [32]. As Uwe Waldmann pointed out to us,
termination of TC(R [EmbF) does not imply total termination of R. The following TRS R
is a counter-example.

f(a; a) ! f(b; b)
g(b; b) ! g(a; a)

Clearly the elements a and b have to be incomparable, so the system cannot be totally termi-
nating. The system R [EmbF is terminating; R is terminating (each rewrite step eliminates a
redex and no new redexes are created) and length-preserving (see lemma 2.107).

Furthermore !+
TC(R[EmbF)

� !+
R[EmbF

. It can be seen by induction on the context that

C[s] !+
R[EmbF

C[t]) s !+
R[EmbF

t:

We sketch how this can be done. Suppose C[] is of the form f(u;2), for some term u. Suppose
that f(u; s) !+

R[EmbF
f(u; t). If this reduction does not contain root reductions then either

u !+
R[EmbF

u or s !+
R[EmbF

t. The �rst case gives a contradiction (with termination of
R [EmbF) so the second case must hold and the result is satis�ed. Suppose there is at least
one root reduction, i. e., we can write

124 Chapter 5. Total Termination of Term Rewriting

� f(u; s)!�R[EmbF f(u0; s0)!R[EmbF u0 !�R[EmbF f(u; t), or

� f(u; s)!�R[EmbF f(u0; s0)!R[EmbF s0 !�R[EmbF f(u; t), or

� f(u; s)!�R[EmbF f(u0; s0)!R[EmbF f(u00; s00)!�R[EmbF f(u; t),

with u !�R[EmbF u0 and s !�R[EmbF s0, and where the �rst root reduction is the reduction
showed. It is not di�cult to see that the �rst case gives a contradiction. The second case gives
s!�R[EmbF s0 !�R[EmbF f(u; t)!R[EmbF t, so the result holds. In the third case the reduction
is a R-step and this implies that u0 = a = s0, s00 = b = u00. Furthermore we must have u = b,
t = b, so f(u; s) = f(b; s) and b!�R[EmbF a which is not possible. For the other contexts, the
proof is similar.

Consequently t!+
R[EmbF

t0, for any rule t! t0 2 TC(R [EmbF); therefore

!+
TC(R[EmbF)

� !+
R[EmbF

so we conclude that TC(R [EmbF) is terminating.
A next step in the characterization of total termination is context removal: if C[t]!+

R C[u]
then R is totally terminating if and only if R [ft ! ug is totally terminating. Note that in
general t! u may be an incorrect rule; however if R is totally terminating then R [ft! ug
is a well-de�ned TRS.

A �rst rough attempt to characterize total termination resulted in the following de�nition.

De�nition 5.41. Given a TRS R we de�ne the relation . � T (F)� T (F) as follows: s . t
i� s 6= t and (R [EmbF [ft! sg) is not terminating.

It is not di�cult to see that . has the following properties:

� if C[s] . C[t], for any ground context C[], then s . t,

� !+
R[EmbF

restricted to T (F)� T (F), is contained in .,

� . is in general not transitive.

Given a binary relation � over a set A, not necessarily transitive, we say that � is well-founded
if there is no in�nite sequence (ai)i2IN such that ai�ai+1, for all i 2 IN. The connection between
this relation and total termination is given below.

Theorem 5.42. If R is totally terminating then . is well-founded.

Proof Suppose R is a totally terminating TRS. By theorem 2.111, R [EmbF is also totally
terminating. Without loss of generality, we can assume that T (F) 6= ;, since by lemma
5.39 and theorem 2.111, adding a constant to F does not change the behaviour of neither
R nor R [EmbF with respect to total termination. By theorem 5.40, there is a strict
total and well-founded partial order > over T (F), such that:

� l� > r�, for any rule l! r 2 R [EmbF , and any ground substitution �.

5.6. Characterizing Total Termination 125

� > is closed under ground contexts.

We will prove that . � >.Then well-foundedness of the later relation will yield well-
foundedness of the former relation. Suppose then that s . t, with s; t 2 T (F) and s 6= t.
Since > is total on T (F), we have either s > t or t > s . If t > s, we will see that
R [EmbF [ft! sg is terminating (in fact that it is totally terminating), contradicting
s . t. We remark that > has the property t� > s�, for any (ground) substitution �, since
if s and t are ground terms we have that t� = t and s� = s. Consequently we can apply
theorem 5.40 in the opposite direction to conclude that R [EmbF [ft ! sg is totally
terminating, so we must have s > t as we wanted. 2

The relation . can be used to prove that a system is not totally terminating, as the next
example shows. Consider the TRS

f(g(x)) ! f(f(x))
g(f(x)) ! g(g(x))

The �rst rule combined with f(c) ! g(c), where c is an arbitrary constant, gives a non-
terminating system, hence g(c) . f(c). Similarly the second rule combined with g(c) ! f(c)
results in a non-terminating system, hence f(c) . g(c). Consequently . is not well-founded and
the system cannot be totally terminating. Note that the previous TRS:

f(a; a) ! f(b; b)
g(b; b) ! g(a; a)

can also be proven not totally terminating using the relation .. In this case we have a . b . a
and so . is not well-founded.

The converse of theorem 5.42 does not hold, even if only constant and unary function
symbols are allowed. Let R be:

f(a) ! f(b)
g(g(b)) ! g(c)
f(c) ! f(g(a))

Suppose R is totally terminating and let (A;>) be a total well-founded monotone algebra
compatible with R. The �rst rule tells us that [[a]] > [[b]]. Then monotonicity of the algebra
operations and compatibility with the rules give us [[g(b)]] > [[c]] > [[g(a)]] > [[g(b)]], which is a
contradiction.

We now give a sketch of the proof of well-foundedness of .. De�ne the following weight
function � : T (F)! IN by

� �(a) = �(b) = 1; �(c) = 2

� �(p(t)) = 1 + �(t), for any t 2 T (F), p 2 ff; gg.

It is easy to see that for any ground substitution � and any rule l! r, we have

126 Chapter 5. Total Termination of Term Rewriting

� �(l�) = �(r�), if l! r 2 R.

� �(l�) > �(r�), if l! r 2 EmbF .

Furthermore � is closed under ground contexts.
The following fact is also not di�cult to prove:

s . t) �(s) � �(t)

As a consequence . n=� is well-founded, where =� is the equivalence relation generated by �,
i. e., for any t; s 2 T (F), t =� s () �(t) = �(s).

It is well known that given a ground TRS, if the system is not terminating then it contains
a rule l ! r such that r admits an in�nite rewrite sequence. Using this fact we can derive that
(a; b) is the only pair in . of size one and that (g(b); c); (c; g(a)) are the only pairs in . of size
two involving c. Also g(a) 6 . g(b).

We see now that g(u) 6 .f(v), for any ground terms u; v such that �(u) = �(v). Suppose
that is not so, i. e., there are terms u; v 2 T (F) with �(u) = �(v) and g(u).f(v). This means
that the TRS R [EmbF [ff(v)! g(u)g is not terminating. Since for any rule in this TRS
and any ground substitution � we have �(l�) � �(r�), � is closed under contexts and (IN; >)
is well-founded, we can conclude that if this TRS admits an in�nite rewrite sequence then so
does R1 = R[ff(v)! g(u)g, and since R1 is a ground system, at least one rhs of a rewriting
rule admits an in�nite rewrite sequence. With a bit of case analysis it is possible to see that no
reduction rule has a rhs leading to an in�nite rewrite sequence, giving a contradiction.

Suppose then that . \ =� is not well-founded and take an in�nite chain t0 . t1 . : : : , such
that the size of the chain, given by n = �(ti) = �(tj), for any i; j, is minimal. Since (a; b) is the
only pair in . of size one, it must be n � 2. If n = 2 and c occurs in the chain, its occurrence
has to follow the pattern g(b) . c . g(a) or c . g(a). But from what we have seen g(a) 6 . t, for
any t 2 fc; g(b); f(a); f(b)g, which are all the possible terms of size two. Therefore the chain
stops at g(a) and cannot be in�nite. Consequently any in�nite chain of size n � 2 cannot
contain c. So the head symbol of t0 has to be either f or g. If the head symbol never changes
then the chain is of the form

p(t00) . p(t
0
1) . : : : . p(t

0
i) . : : :

where p 2 ff; gg. By eliminating the head symbol, we get an in�nite chain (t0i)i2IN with a
strictly smaller size, contradicting the minimality of (ti)i2IN. So the head symbol has to change
in�nitely many often and that contradicts the fact that g(u) 6 . f(v), for any terms u; v 2 T (F)
with the same weight. As a result . \ =� is well-founded and so is ..

Furthermore the characterization of total termination via . is not complete even for string
rewriting systems. If we modify slightly the TRS above we can get a string rewriting system R
that is not totally terminating and such that R [EmbF terminates and . is well-founded. In
fact the following system

f(h(x)) ! f(k(x))
g(g(k(x))) ! g(i(x))
f(i(x)) ! f(g(h(x)))

5.6. Characterizing Total Termination 127

is a string rewriting system in those conditions. For proving termination of R[EmbF we choose
as monotone algebra A = IN� (f0; 1g � IN) with the order � de�ned by

(a; (x; n)) � (b; (y;m)) () (a > b or (a = b and x = y and n > m))

where > is the usual order in the natural numbers, and the interpretations

kA((a; (x; n))) = (a+ 1; (1; n)) for x 2 f0; 1g
hA((a; (x; n))) = (a+ 1; (0; n)) for x 2 f0; 1g
iA((a; (x; n))) = (a+ 2; (0; n)) for x 2 f0; 1g

fA((a; (x; n))) =

�
(a+ 1; (0; 3n+ 1)) if x = 0
(a+ 1; (0; n)) otherwise

gA((a; (x; n))) =

�
(a+ 1; (1; n)) if x = 0
(a+ 1; (1; 2n+ 1)) otherwise

It is not di�cult to see that these functions are strictly monotone and that for every � : X ! A
and every rule l ! r 2 R [EmbF , [[l; �]] � [[r; �]]. The system cannot be totally terminating
since for any possible total interpretation we would have iA(a) > gA(hA(a)) > gA(kA(a)) >
iA(a), for any algebra element a. For the well-foundedness of . we proceed as in the previous
example (with substantially more case analysis).

The next step is based on the following observation: if C0[t]!
+
R C1[u] and C1[t]!

+
R C0[u]

then adding t! u to R still does not a�ect total termination. These ideas were combined in
the following de�nition.

De�nition 5.43. Given a TRS R we de�ne the relation m � T (F)�T (F) as follows: sm t
if one of the following conditions holds

� s!R t or s!EmbF t

� s = C[a] and t = C[b] and am b

� for some n > 0, there are contexts C0[]; : : : ; Cn[] such that C0[] = Cn[] and Ci[s]m
Ci+1[t], for each 0 � i < n,

� 9u 2 T (F) : sm u and um t

The relation m is a bit more elaborate than . but a similar result as theorem 5.42 holds for
m. We need some auxiliary results.

Lemma 5.44. Let (A;>) be a (total well-founded) monotone F -algebra. If s; t 2 T (F ;X)
and [[s; �]] � [[t; �]], for some � 2 AX , then [[C[s]; �]] � [[C[t]; �]], for any context C[].

Proof We proceed by induction. The assertion holds for the trivial context by hypothesis.
Suppose it also holds for a context C 0[]. Then

[[f(: : : ; C 0[s]; : : :); �]] = (by de�nition of [[]])
fA(: : : ; [[C

0[s]; �]]; : : :) � (by IH and monotonicity of fA)
fA(: : : ; [[C

0[t]; �]]; : : :) � (by de�nition of [[]])
[[f(: : : ; C 0[t]; : : :); �]]

2

128 Chapter 5. Total Termination of Term Rewriting

Lemma 5.45. Let (A;>) be any total (well-founded) monotone algebra compatible with
R. Then C[s] >A C[t]) s >A t, for any terms s; t and context C[], where >A is the order
over terms induced by (A;>). Furthermore [[C[s]; �]] � [[s; �]], for any context C, term s and
assignment � 2 AX , and if (A;>) is also compatible with EmbF , then C[s] >A s, for any
non-trivial context C[] and term s.

Proof Let then C[s] >A C[t]. We have to see 8� 2 AX : [[s; �]] > [[t; �]]. Suppose
9� 2 AX : [[s; �]] 6> [[t; �]]. Due to the totality of >, this means that [[s; �]] � [[t; �]]. By
lemma 5.44 we have [[C[s]; �]] � [[C[t]; �]], contradicting C[s] >A C[t]. So s >A t.

We prove that [[C[s]; �]] � [[s; �]], for any context C, term s and assignment � 2 AX . If C
is the trivial context, the result holds since C[s] = s. Suppose that C[s] = f(: : : ; s; : : :),
for some f 2 X admitting arity n � 1, and where s occurs at position i, 1 � i � n.
Let � 2 AX be an arbitrary assignment. Then [[C[s]; �]] = fA(: : : ; [[s; �]]; : : :). Since
fA is monotone in all arguments, corollary 5.3 gives fA(: : : ; [[s; �]]; : : :) � [[s; �]], as we
wanted.

Suppose now that A is compatible with EmbF . Let C[s] = f(t1; : : : ; s; : : : ; tn), with
s occurring in position i, 1 � i � n. Since f(: : : ; xi; : : :) ! xi is a rule in EmbF ,
compatibility ensures that f(: : : ; xi; : : :) >A xi. We de�ne the substitution � by

�(x) =

8<
:

tj if x = xj, for some j 6= i
s if x = xj
x otherwise

Since >A is closed under substitutions, we have C[s] = f(x1; : : : ; xn)� >A �(xi) = s.

Suppose C 0[s] >A s for some context C 0[]. Since >A is closed under contexts, we
get f(t1; : : : ; C

0[s]; : : : ; tn) >A f(t1; : : : ; s; : : : ; tn). But f(t1; : : : ; s; : : : ; tn) >A s, so
transitivity of >A yields the result. 2

Theorem 5.46. If R is totally terminating then m is well-founded.

Proof Due to lemma 5.39 we can assume without loss of generality that F contains at least
one constant, so T (F) is not empty. Since R is totally terminating, from theorem 2.111
we know that R [EmbF is also totally terminating. By theorem 5.40 we know there is
a total well-founded order > over T (F) such that:

� l� > r�, for any rule l! r 2 R [EmbF and any ground substitution �.

� > is closed under ground contexts.

We will see, by induction on the de�nition of m, that s m t) s > t. Well-foundedness
of > will then yield the result. Suppose that sm t, for some terms s; t.

� If s!R t or s!EmbF t, since > is compatible with R[EmbF we have!+
R[EmbF

�
> and therefore s > t.

5.6. Characterizing Total Termination 129

� If s = C[a], t = C[b] with a m b and a > b (by induction hypothesis) then s > t,
since > is closed under ground contexts.

� If s m t because for some n > 0, there are contexts C0[]; : : : ; Cn[], such that
C0[] = Cn[] and for each 0 � i < n, Ci[s]mCi+1[t], then by induction hypothesis
we have C0[s] > C1[t]; C1[s] > C2[t], etc. Since > is total either s > t or t � s.
Suppose that t � s. Using the induction hypothesis, the fact that > is closed under
ground contexts and its transitivity, we get

C0[s] > C1[t] � C1[s] > C2[t] > : : : > Cn[t] � Cn[s] = C0[s]

contradicting well-foundedness of >; therefore s > t.

� Finally if 9u 2 T (F) : s m u and um t, then also by induction hypothesis s > u
and u > t and transitivity of > gives the result.

2

The previous result can be used to show that a TRS is not totally terminating and in
particular that it cannot be proven terminating by >rpo (or >kbo). For example let R be:

p(f(f(x)))! q(f(g(x))) p(g(g(x)))! q(g(f(x)))
q(f(f(x)))! p(f(g(x))) q(g(g(x)))! p(g(f(x)))

This system (actually R [EmbF) is terminating (in each step the number of redexes de-
creases) but not totally terminating. Let c be a constant, then from the leftmost rules we
get p(f(f(c)))m q(f(g(c))) and q(f(f(c)))m p(f(g(c))) and consequently f(c)m g(c) (with
C0 = p(f(2)) = C2 and C1 = q(f(2))). Similarly using the rightmost rules we get g(c)mf(c);
therefore m is not well-founded and so R cannot be totally terminating.

One can wonder whether the reverse of theorem 5.46 holds. This is not the case. For
example one can prove that the system (due to Uwe Waldmann)

f(0; a)! f(1; b) h(1; a)! h(0; b)
g(0; b)! g(1; a) k(1; b)! k(0; a)

is not totally terminating while m is well-founded. To see this note that m coincides with
!R[EmbF and R [EmbF is terminating since in each R-rewriting step the number of redexes
decreases and R is length-preserving. It is easy to see that the interpretations of a and b (or 0
and 1) have to be incomparable and so the system is not totally terminating.

It is also interesting to remark that we can prove that the TRS's presented in connection
with the relation . can be proven not totally terminating using m. For example for the TRS

f(h(x)) ! f(k(x))
g(g(k(x))) ! g(i(x))
f(i(x)) ! f(g(h(x)))

given an arbitrary constant c, from the de�nition and properties of m we can derive g(k(c))m
i(c)m g(h(c))) k(c)mh(c). From the �rst rule we get h(c)m k(c), so m is not well-founded.

It is not clear whether the reverse of theorem 5.46 holds for string rewriting systems.

130 Chapter 5. Total Termination of Term Rewriting

5.7 Conclusions

Proving termination of term rewriting systems by interpretation is not easy. We focussed on
interpretations in monotone algebras in which the underlying order is total. This gives rise to
the concept of total termination. Total termination covers many techniques used in practice to
prove termination, including recursive path order.

We have shown that the existence of a function symbol of arity greater than one implies
that the underlying order has type !�, i. e., is equivalent to �nite multisets over some well-
order. Furthermore, for any TRS R, the class of total orders in which R can be shown to
be totally terminating, is closed under multiset construction and lexicographic product. Note
that in this case (multiset and lexicographic extensions of well-orders) there is no essential
di�erence between the multiset and lexicographic construction in the sense that multisets can
be simulated by lexicographic sequences (see Jouannaud and Lescanne [51]).

It is not clear how to extend a total termination proof in a particular well-order to well-orders
that cannot be �nitely obtained from the original one by these constructions. This problem is
closely connected to modularity of total termination, on which we obtained some interesting
partial results.

We found examples of TRS's showing that proofs of total termination cannot always be
given in well-orders of type smaller than !!. Most of our techniques are based upon ordinal
arithmetic which appears to be a strong and useful tool for proving termination of TRS's.

We also showed that the notion of total termination can be given independently from the
concept of monotone algebra. Total termination can be identi�ed with the existence of a
total well-founded monotone order on ground terms compatible with (ground instances of) the
rewrite rules. This was a �rst step on trying to �nd a syntactical characterization of total
termination of the following shape: if a TRS is totally terminating then some syntactically
de�ned relation is well-founded. This kind of characterization leads to a method of proving
non-total termination: if the constructed relation admits an in�nite descending chain then the
TRS is not totally terminating. We de�ned some relations obeying this principle, yet for all
the relations given the converse does not hold: we presented TRS's for which the constructed
relations are well-founded while the TRS's are not totally terminating.

Ideally we would like to have a characterization of total termination in the same lines as the
characterization of simple termination presented in chapter 2, theorem 2.106. This, however,
remains a puzzle yet to be solved.

Chapter 6

Termination by Transformation

It should be clear by now that proving termination of term rewriting systems is a di�cult
task. In this chapter we investigate a method for transforming TRS's whose goal is to simplify
that task. The method consists of a family of transformations that can be applied to any
equational rewrite system (provided some conditions are satis�ed). The transformations are all
of the same type: function symbols considered \useless" are eliminated therefore simplifying
the rewrite rules. If the eliminated function symbols do not interfere with the equational theory
then the transformations are sound with respect to termination, i. e., termination of the original
system (modulo the equational theory) can be inferred from termination of the transformed one
(modulo the equational theory). Since we eliminate function symbols, something has to be done
to its arguments. The di�erent ways of dealing with those arguments characterize the di�erent
transformation techniques.

6.1 Motivation

In general, we are interested in simplifying the process of proving termination of term rewriting
systems. A possible approach to this goal is to devise sound transformations on TRS's such that
the transformed systems are somehow easier to deal with, with respect to termination proofs,
than the original ones. As examples of such transformations we have transformation orderings
from Bellegarde and Lescanne [5] (see also Geser [40]), semantic labelling Zantema [111] and
distribution elimination Zantema [108] 1. In fact it was the technique of distribution elimination
plus the observation that \created" function symbols (i. e., function symbols occurring only in
the righthand-side of rewriting rules) seemed to be irrelevant for reductions, which motivated
this work.

In [107, 108], Zantema devised a transformation on terms and TRS's that consists in
eliminating functions symbols whose occurrences in the rules of the TRS were restricted to
righthand-sides or \distribution rules" (hence the name of the technique). If the transformed
system satis�es the right-linearity condition, the transformation is sound with respect to termi-

1For an example of application of some of these techniques, including one described in this chapter, see
Zantema and Geser [112].

131

132 Chapter 6. Termination by Transformation

nation. Right-linearity was shown to be essential in the presence of distribution rules and it was
conjectured that if no distribution rules were present, right-linearity was no longer necessary.
While trying to solve this conjecture, we arrived at a di�erent transformation both simpler and
seemingly more powerful, dummy elimination (see Ferreira and Zantema [35]). Later, combining
the ideas of distribution elimination and dummy elimination, a whole family of transformations
was devised. As remarked by Middeldorp and Ohsaki (personal communication) who presented
another proof of the soundness of dummy elimination based on the technique of semantic la-
belling of Zantema [111], dummy elimination admits an extension in which the symbol to be
eliminated is also allowed in the lefthand-sides of rewrite rules. In the same spirit, the family of
transformations could be extended in order to lift the restriction that the eliminated function
symbol could only occur in the righthand-side of rewrite rules. Furthermore, we found that
the transformations could also be applied to rewriting modulo a set of equations, provided the
equations have a certain shape. Here we present the transformations in its most complete form,
but for didactical as well as historical reasons we start by explaining dummy elimination.

First we �x some conventions. We will consider �xed-arity signatures and elimination of
only one function symbol. The theory can also be presented for varyadic signatures and/or
simultaneous elimination of several function symbols. But, not only the presentation does not
become clearer, but also the results obtained are actually weaker, as we will show later. We
will denote by a the function symbol we want to eliminate. We also �x its arity to be some
natural number N � 1.

Suppose we want to prove termination of the following system

f(g(x)) ! f(a(g(g(f(x)))))

Intuitively, the function symbol a is created but seems not to have any inuence on the reduc-
tions. Taking that into account, we can eliminate it and transform the given rule into

f(g(x)) ! f(3)
f(g(x)) ! g(g(f(x)))

where 3 is a fresh constant. Termination of the �rst system is not easy to prove, since the
system is self-embedding orders like recursive path order (rpo) cannot be used (see chapter 2),
while termination of the second system is trivially proved with rpo by choosing the precedence
. satisfying f . g .3. If this transformation is sound, i. e., termination of the original system
can be inferred from termination of the transformed one, our task is done. Proving that the
transformation is sound constitutes the main result of this chapter.

The above example gives an idea of how the transformation associated with dummy elimina-
tion works: alien tems (i. e., terms whose root symbol is the one to be eliminated) are replaced
by a fresh constant 3 and its subterms (themselves recursively rid of alien terms) are treated as
separate entities. So a term t is decomposed in blocks that do not contain the function symbol
to be eliminated. One of these blocks, namely the one above all occurrences of alien terms, is
denoted by cap(t) and treated especially. The other blocks are collected in a set denoted by
dec(t). We give an example.

Example 6.1. The following term t

6.2. General Dummy Elimination 133

t: f

a

x h

x

cap(t)

dec(t)

g

a

x y

z

a h

a

x

x

p

has as cap the term f(3; h(3))) and its decomposition is given by

dec(t) = fg(3; z); x; y;3; p(x); h(x)g

Both cap(t) and dec(t) have very simple inductive de�nitions, namely:

t cap(t) dec(t)

x x ;

f(t1; : : : ; tm) f(cap(t1); : : : ; cap(tm))
m[
i=1

dec(ti)

a(t1; : : : ; tN) 3

N[
i=1

(fcap(ti)g [dec(ti))

The transformation on TRS's is now what we should expect. If we denote the transformed
system by E(R) then

E(R) = fcap(l)! u j l! r 2 R and u = cap(r) or u 2 dec(r)g

Note that we allow the function symbol a to occur on the lefthand-side of rewrite rules. We
can state the soundness result:

If E(R) is terminating then R is terminating.

6.2 General Dummy Elimination

If we compare the transformations associated with distribution elimination and dummy elimina-
tion, we see that the essential di�erence is in the way that subterms of alien terms are treated
with respect to the whole term. In the case of distribution elimination, all (recursively treated)

134 Chapter 6. Termination by Transformation

a

1 N

(a) (b)

1 N

1 N

::::::

:::::::::::::

:::::::::::::::

Figure 6.1: Transforming a term via (a): distribution or (b): dummy elimination.

subterms of an alien term are connected on the point where the alien term was hanging, and
no subterms are treated as separate entities, while in dummy elimination we have precisely the
opposite situation: no subterm is connected, thus all of them are treated as separate entities,
and a constant has to be inserted at the point where the alien term was hanging. Figure 6.1
illustrates this situation.

But there is no reason to choose only from these two extreme cases. The essential question
is \for each argument of the function symbol to be eliminated, how are we going to treat it?".
Di�erent answers to this question give us di�erent transformations on terms and so on TRS's.
Fig 6.2 shows all possible decompositions for the elimination of a function symbol of arity 2.

The choice of arguments has to be incorporated into the cap and the decomposition of a
term. Their meaning is now:

� cap(t) is the part of the term starting at the root and where alien subterms are replaced
by a �xed chosen argument (if no argument is chosen a fresh constant is used).

� dec(t) contains the arguments (recursively decomposed) of the alien terms in t that are

6.2. General Dummy Elimination 135

a

Figure 6.2: All possible eliminations for a function symbol of arity 2.

to be separated from the superterm.

The motivation and intuition of our transformations is already set, but before we proceed
with their de�nition and their soundness, we will introduce the main technical tool needed.
Because the technique doesn't depend on term rewriting, we choose to present it in a general
framework of quasi-ordered sets. Later we specialize to the case that the quasi-ordered set is
the set ot terms and the order is a variant of the rewrite relation.

6.2.1 Ordering Trees

Given a non-empty set S, we consider non-empty trees over S, de�ned by the following data
type: Tr(S) �= S �M(Tr(S)), i. e., if f is the function from sets to sets given by f(X) =
S�M(X), then Tr(S) is the least �xed point of f . Therefore a tree is either a root (or leaf),
represented by (s; ;), with s 2 S and ; being the empty multiset, or a tree with root s 2 S and
subtrees t1; : : : ; tn, represented by (s; fft1; : : : ; tngg). Since we are not interested in the order
of the subtrees, we choose the multiset representation for the subtrees instead of a sequence
representation.

The depth of a tree is given by the function depth and is de�ned inductively as usual, i. e.,

� depth(s; ;) = 1.

� depth(s; fft1; : : : ; tngg) = 1 + max 1�i�n(depth(ti))

136 Chapter 6. Termination by Transformation

We now describe how to lift a quasi-order on a set S to a quasi-order on Tr(S) in such a
way that well-foundedness is preserved. This lifting will be used later on in the context of term
rewriting.

De�nition 6.2. Let (S;�) be a quasi-ordered set, with � = > [�. Consider Tr(S), the
�nite non-empty trees over S. In Tr(S) we de�ne the relation � by t = (a;M) � (b;M 0) if
and only if 8u 2M 0 : (t � u) or (9v 2M : v � u), and either

� a > b, or

� a � b and M �mul M 0.

where �mul is the multiset extension of � and � = � n �. We call the relation � the tree
lifting of > [�.

The following result justi�es the previous de�nition.

Lemma 6.3. The relation � is well-de�ned and is a quasi-order on Tr(S).

Proof The proof follows closely chapter 4, section 4.2.2. We consider the CPO QOTr(S)

ordered by = (see lemma 4.20), and de�ne a function R : QOTr(S) ! QOTr(S) as
follows: for any � 2 QOTr(S), s = (a;Ms) R(�) (b;Mt) = t if

8u 2Mt : (s R(�) u and :(u R(�) s) or (9v 2Ms : v R(�) u));

and either

� a > b, or

� a � b, and Ms �mul Mt.

With proofs similar to the ones presented for the function H (see de�nition 4.22), we can
see that:

� if � is reexive then R(�) is reexive,

� if � is transitive then R(�) is transitive,

� if � = then R(�) w R(), i. e., R is weakly monotone.

As a consequence R is well-de�ned and has a least �xed point, which is the element we
use in de�nition 6.2 2

.
Note that if Ms �mul Mt, by de�nition of multiset extension of quasi-orders, then

8u 2Mt 9v 2Ms : v � u:

As a consequence we can rewrite the order � as:

6.2. General Dummy Elimination 137

De�nition 6.4. Let (S;�) be a quasi-ordered set, with � = > [�. Consider Tr(S), the
�nite non-empty trees over S. In Tr(S) we de�ne the tree lifting � of � by t = (a;M) �
(b;M 0) if and only if either

� a > b, and 8u 2M 0 : (t � u) or (9v 2M : v � u); or

� a � b and M �mul M 0.

where �mul is the multiset extension of � and � = � n �.

From now on we use de�nition 6.4 instead of de�nition 6.2.

As we saw � de�nes a quasi-order on Tr(S). For practical purposes we want to distinguish
its strict and equivalence components denoted, as usual, by � and �. It is not di�cult, though
cumbersome, to see that the following lemmas provide a di�erent characterization of both �
and �.

Lemma 6.5. For any A;B 2 Tr(S), we have that A � B if and only if one of the following
conditions holds

� A = (a; ;) and B = (b; ;) and a � b; or

� A = (a; ffu1; : : : ; ukgg), B = (b; ffv1; : : : ; vmgg) and a � b, k = m, and there is a
permutation � of f1; : : : ; kg such that ui � v�(i), for all 1 � i � k.

Note that if A � B then depth(A) = depth(B).

Notation 6.6. We will use the notation U �mul V , for �nite multisets U; V 2 M(Tr(S)),
as a shortening for the second condition in the above lemma, i. e., U = ffu1; : : : ; ukgg, V =
ffv1; : : : ; vmgg, for some k;m � 0, k = m and ui � v�(i), for some permutation � of the set
f1; : : : ; kg.

Lemma 6.7. For any A;B 2 Tr(S) we have that A � B i� A = (a;M), B = (b;M 0) and
either

� a > b and 8u 2M 0 : (t � u) or (9v 2M : v � u); or

� a � b and M ord(�mul) M 0.

Example 6.8. We present an example of this construction. Let (A;>) be the natural numbers
with the usual order. Let

138 Chapter 6. Termination by Transformation

2

2

5 5

3 2

4 4 5 5

3

5

S = T =

From de�nition 6.4 it follows that S � T . Note that even though S � T , the depth of T is
greater than the depth of S.

It is interesting to remark that �rpo, the multiset recursive path order on trees, is a proper
extension of �, in the sense of de�nition 2.12, i. e., � � �rpo and � �>rpo, as we see below.
First recall the de�nition of �rpo, with only multiset status, modi�ed to be applied on trees.
Suppose then that � is a quasi-order on a set S and consider the trees over S.

De�nition 6.9. For any trees s; t 2 Tr(S), s = (a;M) �rpo t if and only if either

� t = (b;M 0) and 8u 2M 0 : s >rpo u, and either

{ a > b, or

{ a � b and M �rpo;mul M 0; or

� 9v 2Ms : v �rpo t.

In a similar way as we did for �, we can characterize the strict and equivalent parts of �rpo.

Lemma 6.10. For any trees A;B 2 Tr(S), we have that:

1. A �rpo B if and only if one of the following conditions holds

� A = (a; ;) and B = (b; ;) and a � b; or

� A = (a; ffu1; : : : ; ukgg), B = (b; ffv1; : : : ; vmgg) and a � b, k = m, and there is a
permutation � of f1; : : : ; kg such that ui �rpo v�(i), for all 1 � i � k.

2. A >rpo B if and only if A = (a;M), B = (b;M 0) and either

� a > b and 8u 2M 0 : t >rpo u; or

� a � b and M ord(�rpo;mul) M 0; or

� 9U 2M : U >rpo B or U �rpo B.

6.2. General Dummy Elimination 139

where �rpo;mul is the multiset extension of �rpo.

We have the following lemma.

Lemma 6.11. Let � be a quasi-order on a set S and consider Tr(S), the set of non-empty
trees over S. Let � denote the tree lifting of � and �rpo the multiset recursive path order on
Tr(S) associated with �. Then:

1. � = �rpo,

2. � � >rpo.

Proof Note that (1) is a direct consequence of lemmas 6.10 and 6.5. For (2), by induction
on k = depth(U) + depth(V) and using (1), we prove that U � V) U >rpo V , for
any trees U; V 2 Tr(S). For k = 2 we must have U = (a; ;) and V = (b; ;) and by
lemma 6.7, a > b. By lemma 6.10 we also have U >rpo V . Suppose the result holds for
trees U; V with depth(U) + depth(V) � n and let U 0 = (a;Ma), V

0 = (b;Mb), such
that depth(U 0)+ depth(V 0) = n+1 and U 0 � V 0. By lemma 6.7 we must have either

� a > b and 8B 2 Mb : (U 0 � B) or (9A 2 Ma : (A � B or A � B)). We then
also have that 8B 2Mb : either U 0 >rpo B (by induction hypothesis), or A >rpo B
(also by induction hypothesis), or A �rpo B (by (1)), for some tree A 2 Ma. In
these two last cases since U 0 >rpo A, for all A 2 Ma (the tree equivalent of the
subterm property; see chapter 2), >rpo is transitive and compatible with �rpo and
using (1), we conclude that U 0 >rpo B. Since a > b, lemma 6.10 gives U 0 >rpo V

0.

� a � b and Ma ord(�mul) Mb, where �mul is the multiset extension of �. This
means that Ma = ffU1; : : : Ukgg, for some k � 1 and Mb = ffV1; : : : ; Vmgg, for
some m � 0, and we have

ffhV1i; : : : ; hVmigg = (ffhU1i; : : : ; hUkigg nX) t Y

for some �nite multisets ; 6= X v ffhU1i; : : : ; hUkigg and Y satisfying

8hyi 2 Y 9hxi 2 X : hxi � hyi

Since hxi � hyi) x � y and since �-equivalent trees have the same depth, we
can apply the induction hypothesis to x and y to conclude that x >rpo y. Since this
conclusion holds for any representatives chosen, >rpo and �rpo are compatible and
since� = �rpo, we have that hxi = hxi�rpo, hyi = hyi�rpo and hxi�rpo >rpo hyi�rpo.
We can thus conclude that ffhU1i; : : : ; hUkigg >rpo;mul ffhV1i; : : : ; hVmigg, which
is the same as Ma ord(�rpo;mul) Mb. By lemma 6.10 we conclude that U 0 >rpo V

0,
as we wanted.

2

140 Chapter 6. Termination by Transformation

The tree lifting of a quasi-order has other interesting properties, as we show below. Namely
it is monotonic with respect to the (quasi-)order lifted, preserves well-foundedness and is a
proper generalization of the multiset construction. We start with the last property.

Lemma 6.12. Let (S;�) be a quasi-ordered set. Then there is an order-preserving injection
from (M(S);�mul) to (Tr(S);�), where (M(S);�mul) is the multiset extension of (S;�).

Proof Fix r 2 S, arbitrarily chosen. Let the function �r :M(S)! Tr(S) be given by:

� �r(;) = (r; ;)

� �r(ffs1; : : : ; skgg) = (r; ff(s1; ;); : : : ; (sk; ;)gg)

It is not di�cult to see that �r is well-de�ned, injective and order-preserving. 2

Lemma 6.13. Let S be a set and �1;�2 two quasi-orders in S such that >1 � >2 and
�1 � �2. Consider Tr(S) with the quasi-orders �1 [�1 and �2 [�2, the tree liftings of
respectively �1 and �2. Then �1 � �2 and �1 � �2.

Proof (Sketch) We need to see that given two trees A;B 2 Tr(S) if A �1 B then A �2 B
and if A �1 B then also A �2 B.

Using lemma 6.5 and induction on depth(A) + depth(B), it is very easy to see that
A �1 B) A �2 B, thus �1 � �2. Using this result, we now see, also by induction
on on k = depth(A) + depth(B), that A �1 B) A �2 B. If k = 2 then A = (a; ;)
and B = (b; ;) and we must have a >1 b. By hypothesis we have a >2 b, and therefore
A �2 B.

Suppose the result holds for trees U , V with depth(U) + depth(V) � n. Let A =
(a;Ma) and B = (b;Mb) be trees with depth(A) + depth(B) = n+ 1. If A �1 B we
must have either

� a >1 b and for all u 2Mb either A �1 u or there is a tree v 2Ma such that v �1 u.
In this case also a >2 b and by induction hypothesis either A �2 u or v �2 u (for
the equivalence part we also have to use the fact that �1 � �2), so A �2 B.

� a �1 b and Ma ord(�1
mul) Mb. Let h ii denote equivalence classes with respect

to �i, with i = 1; 2. We can write Ma = ffu1; : : : ; ukgg, with k � 1, and Mb =
ffv1; : : : ; vmgg, with m � 0. Furthermore

ffhv1i1; : : : ; hvmi1gg = (ffhu1i1; : : : ; huki1gg nX) t Y

for some �nite multisets ; 6= X v ffhu1i1; : : : ; huki1gg and Y satisfying

8hyi1 2 Y 9hxi1 2 X : hxi1 �
1 hyi1

Now hxi1 �1 hyi1) x �1 y) and by hypothesis we get x �2 y and consequently
hxi2 �2 hyi2. Note that this holds independently of the representatives of the

6.2. General Dummy Elimination 141

classes. Since for any trees p; q we have hpi1 = hqi1) hpi2 = hqi2 (this is a simple
consequence of �1 � �2), we can write:

ffhv1i2; : : : ; hvmi2gg = (ffhu1i2; : : : ; huki2gg nX2) t Y2

where ; 6= X2 v ffhu1i2; : : : ; huki2gg and Y2 are just the multisets X and Y with
the equivalence classes taken with respect to �2, and thus satisfying

8hyi2 2 Y2 9hxi2 2 X2 : hxi2 �
2 hyi2

and so Ma ord(�2
mul) Mb. Since it also holds that a �2 b, we have that A �2 B.

2

Essential for our purposes is the preservation of well-foundedness, stated in the next result.

Theorem 6.14. Let (S;�) be a quasi-ordered set. Then � is well-founded on S if and only
if � is well-founded on Tr(S).

Proof For the \if" part, suppose that � is not well-founded in S. Then there is an in�nite
descending chain a0 > a1 > � � � . According to the de�nition of � and lemma 6.7,
then (a0; ;) � (a1; ;) � : : : is an in�nite descending chain on Tr(S), contradicting
well-foundedness of �.

For the \only-if" part consider �rpo, the multiset recursive path order associated with
�, as given in lemma 6.10. As was seen in chapter 4, well-foundedness of � implies
well-foundedness of �rpo. Since lemma 6.11 gives that � � �rpo, we may also conclude
well-foundedness of �. 2

A property not preserved by the tree lifting is totality. Again take (S;>) to be the natural
numbers with the usual order. Let

4

2 2

3

5

U = V =

Then according to the de�nition of � neither U � V nor V � U . Since U 6= V , the order
� is obviously not total. Note that V �rpo U .

142 Chapter 6. Termination by Transformation

6.3 Transforming the TRS

We introduce now the transformations sketched in the beginning of this section. First we
establish some terminology and the setting of our problem. Let F be a set of �xed arity
function symbols and X a set of variables with F \ X = ;. Let a be a function symbol with
arity N > 0, and not occurring in F ; a is the function symbol to be eliminated. Let 3 be a
constant also not occurring in F . We denote by Fa and F3 respectively the sets F [fag and
F [f3g. We name alien terms those terms of T (Fa; X) whose root symbol is the symbol a.

We consider TRS's and equational systems over T (Fa; X) such that the function symbol a
may occur in the TRS but not in the equations. Since we are concerned with termination modulo
a set of equations, we want to exclude equations that will force non-termination (independently
of the form of the TRS). In [53], Jouannaud and Mu~noz identi�ed two essential restrictions
equations have to satisfy, namely:

1. var(e1) = var(e2), for any equation (e1; e2);

2. (e1; e2) can not be of the form e1 = x while e2 contains more than one occurrence of the
variable x.

We see why this is so. If (e1; e2) 2 E is an equation violating the �rst restriction, and supposing
e1 = D[x; : : : ; x] where x 62 var(e2), we can write

D[r�; : : : ; r�] =E e2 =E D[l�; : : : ; l�]! D[r�; : : : ; r�];

where l ! r is any rewrite rule and � a renaming to avoid conict between variables of l ! r
and the equation (e1; e2). If (e1; e2) 2 E is an equation violating the second restriction, for
example e1 = x and e2 = D[x; : : : ; x] then

D[l�; : : : ; l�]! D[l�; : : : ; r�] =E D[D[l�; : : : ; l�]; : : : ; r�]! : : :

Condition (2) above can easily be generalized. Indeed equations of the form (D[C[x]]; C[x])
where x is a variable also occurring in the context D, prevent termination as we can see in a
similar way as for equations (C[x]; x), where x occurs in context C.

This last condition indicates that it is not always a good idea to mix equations with subterms.
Due to a technicality in our proof, we need indeed to exclude such equations, but furthermore we
need also to ensure that the equational theory is length-limited , i. e., for all (ground) equivalence
classes hsi, there is a natural number nhsi such that u 2 hsi) juj � nhsi; note that for �nite
signatures, length-limited is equivalent to �niteness of equivalence classes, for in�nite signatures
that is not so. We also need to ensure that the equations are variable-preserving, i. e., that
mvar(e1) = mvar(e2) for any equation (e1; e2).

We also use length-preserving equations, i. e., equations satisfying mvar(e1) = mvar(e2)
and je1j = je2j. Provided that T (Fa) 6= ;, this is equivalent to the following characterization:
for all ground substitutions � : X ! T (Fa), je1�j = je2�j.

We are interested in rewriting modulo a set of equations, i. e., the relation !R=EQ, where
R is a TRS over T (Fa;X) and EQ is a set of (length-limited variable preserving) equations

6.3. Transforming the TRS 143

over T (Fa;X), not containing the function symbol a. More speci�cally we are interested in
termination of !R=EQ. Proving termination of this relation involves, amongst other things,
proving termination of !R, so by simplifying this step, we simplify the whole process. We
de�ne a set of transformations on terms that induce transformations on the TRS's. Then we
show that termination of !R=EQ can be inferred from termination of !E(R)=EQ, where E is
the transformation used.

To the function symbol to be eliminated we associate a e-status (where \e" stands for
elimination) whose role is to indicate how the subterms of alien terms are going to be treated.

De�nition 6.15. A e-status is a partial function � : Fa ! P(IN) � IN, satisfying the
following condition: if f has arity n > 0 and �(f) = (X; i) then either

� X = ; and i = 0; or

� X 6= ; and X � f1; : : : ; ng and i 2 X.

Since we will only eliminate one function symbol at a time, the e-status needs only to be
de�ned for that particular function symbol.

Note that the transformation associated with the e-status �(a) = (;; 0) is dummy elimina-
tion and the transformation associated with the e-status �(a) = (f1; : : : ; ng; i), is a general-
ization of distribution elimination (actually a set of generalizations indexed by i).

Recall that we want to eliminate the function symbol a, with arity N � 1. We present the
new versions of the functions cap and dec, plus some needed auxiliary de�nitions.

De�nition 6.16. For any 0 � i � N , and term t 2 T (Fa;X), the cap of t of order i,
denoted by capi(t), is a term over T (F3;X) given by the function capi: T (F [fa;3g;X)!
T (F3;X), de�ned inductively as follows:

� capi(x) = x, for any x 2 X ,

� capi(f(t1; : : : ; tm)) = f(capi(t1); : : : ; capi(tm)), if f 2 F3 has arity m � 0,

� capi(a(t1; : : : ; tN)) =

�
capi(ti) if i 6= 0
3 if i = 0

Note that strictly speaking the domain of capi need only be T (Fa;X), however to simplify
the treatment later (basicly avoid de�ning an extension of cap only to include 3 in its domain),
we use the extended signature Fa [f3g. This same observation applies to other de�nitions.

We can extend the function cap to substitutions as follows.

De�nition 6.17. For any arbitrary substitution � : X ! T (Fa;X) and for any 0 � i � N ,
the substitution capi(�) : X ! T (F3;X) is de�ned by capi(�)(x) = capi(�(x)), for all
x 2 X .

Next lemma states that cap distributes over substitution application.

144 Chapter 6. Termination by Transformation

Lemma 6.18. Let t 2 T (Fa;X) and let � : X ! T (Fa;X) be an arbitrary substitution.
Then for any 0 � i � N , we have capi(t�) = capi(t)capi(�).

Proof Fix 0 � i � N arbitrarily. We proceed by induction on t. If t = x 2 X then

capi(t�) = capi(�(x)) = capi(�)(x) = t capi(�) = capi(t)capi(�);

by de�nition 6.17. If t = f(t1; : : : ; tm) (with f 6= a) then

capi(f(t1; : : : ; tm)�) =
capi(f(t1�; : : : ; tm�)) = (by de�nition 6.16)

f(capi(t1�); : : : ; capi(tm�)) = (by induction hypothesis)
f(capi(t1)capi(�); : : : ; capi(tm)capi(�)) =

f(capi(t1); : : : ; capi(tm))capi(�) = (by de�nition 6.16)
capi(f(t1; : : : ; tm))capi(�)

If t = a(t1; : : : ; tN) we distinguish two cases:

� if i = 0 then by de�nition 6.16, capi(t�) = � = � capi(�) = capi(t)capi(�) and
the result holds.

� if i 6= 0 then

capi(a(t1; : : : ; tN)�) =
capi(a(t1�; : : : ; tN�)) = (by de�nition 6.16)

capi(ti�) = (by induction hypothesis)
capi(ti)capi(�) = (by de�nition 6.16)

capi(a(t1; : : : ; tN))capi(�)

2

The function cap is also idempotent as the next lemma shows.

Lemma 6.19. Let t 2 T (Fa;X) be any term. Then capi(capi(t)) = capi(t).

Proof This lemma can easily be proved by induction on terms; however note that for any i,
1 � i � N , and for any term t 2 T (F [fa;3g;X), capi(t) is an element of T (F3;X),
and if s is an arbitrary term in T (F3;X) then capi(s) = s. 2

Since we are interested also in the subterms below occurrences of the symbol a, we need
other operations for collecting the parts of those subterms that are relevant. In the case of
dummy elimination the only operation needed was performed by the function dec. However,
due to the fact that some arguments of alien terms need to be connected to the superterm
where the alien term occurs, the decomposition of a term becomes a little more complicated.
Also we want to minimize the combinations of these arguments, in the case of terms with
nested a's. We give an example to make clear what we mean.

6.3. Transforming the TRS 145

Example 6.20. Consider the following term s:

s : f

a a

g 0

a

x y

x y

Suppose that a has e-status �(a) = (f1; 2g; 1). We want to have the following partitioning
of s:

y

f

g x 0

f

x

f

g

x

x

Note that we don't consider terms like f(0; x). This is what we name a \crossed term"
since it is obtained by choosing di�erent arguments for aliens terms occurring at the same
level of nesting (of alien terms). In other words the partition of the term we are interested in
should always choose the same argument for alien terms occurring at the same level of nesting.
We note that this is an essential di�erence with respect to distribution elimination since this
transformation considers all possible combinations of subterms of alien terms.

The operations that partition a term will be de�ned in such a way that the combinations of
subterms of alien terms will be done by always picking the same branch and thus minimizing
the number of \crossed" terms obtained.

De�nition 6.21. Given a term t 2 T (Fa;X), its residue of order i, with 1 � i � N ,
and its residue (with respect to �), are denoted respectively by Ei(t) and by E(t), where
Ei; E : T (Fa;X)! P(T (F3;X)) are de�ned inductively as follows:

� Ei(x) = fxg; E(x) = fxg,

� if f 2 F has arity m � 0 (f 6= a), then

Ei(f(t1; : : : ; tm)) = ff(u1; : : : ; um); with uj 2 Ei(tj); for all 1 � j � mg

E(f(t1; : : : ; tm)) =

8<
:
[
j2X

Ej(f(t1; : : : ; tm)) if X 6= ;

fcap0(f(t1; : : : ; tm))g if X = ;

146 Chapter 6. Termination by Transformation

� Ei(a(t1; : : : ; tN)) = E(ti) and

E(a(t1; : : : ; tN)) =

8<
:
[
j2X

E(tj) if X 6= ;

fcap0(a(t1; : : : ; tN))g if X = ;

De�nition 6.22. Let the e-status of a be �(a) = (X; i). For any term t 2 T (Fa;X),
its decomposition is denoted by dec(t), where dec : T (Fa;X) ! P(T (F3;X)) is de�ned
inductively as follows:

� dec(x) = ;

� dec(f(t1; : : : ; tm)) =
m[
i=1

dec(ti), if f 2 F has arity m � 0 (f 6= a)

� dec(a(t1; : : : ; tN)) =
N[
i=1

dec(ti)
[
8>>><
>>>:

[
j2f1;::: ;NgnX

E(tj) if X 6= ;

N[
j=1

fcap0(tj)g if X = ;

De�nition 6.23. Given a term t 2 T (Fa;X), its leading residue with respect to the e-status
�(a) = (X; i) is the term capi(t).

The following lemma relates the leading residue and the residue of a term, and will be of
use later.

Lemma 6.24. Let the e-status of a be �(a) = (X; i). Let t 2 T (Fa;X) be an arbitrary
term. Then capi(t) 2 E(t), i. e., the residue of a term always contains the leading residue of
the same term. Furthermore if i 6= 0 then capi(t) 2 Ei(t).

Proof If i = 0 then the result follows immediately from the de�nitions of cap and E. Suppose
then that i 2 X. We will prove that capi(t) 2 Ei(t); E(t) by induction on t.

If t = x then capi(x) = x and Ei(t) = E(t) = fxg, so the result holds.

If t = f(t1; : : : ; tm) then capi(t) = f(capi(t1); : : : ; capi(tm)). By induction hypoth-
esis capi(tj) 2 Ei(tj), for any 1 � j � m. By de�nition of Ei, we have then that
f(capi(t1); : : : ; capi(tm)) 2 Ei(t). Since Ei(t) � E(t) (note that i 2 X), the result
also holds.

If t = a(t1; : : : ; tN) then capi(t) = capi(ti). By induction hypothesis capi(ti) 2
Ei(ti); E(ti). Since Ei(t) = E(ti) and Ei(t) � E(t), we have the result. 2

Example 6.25. Suppose we want to eliminate the function symbol a, with arity 3. Consider
the following term:

6.3. Transforming the TRS 147

f

a

a
g

0 x

h

hx
z

1
p

x
za

x y

Consider the following e-status for a: �0 = (;; 0), �1 = (f1; 3g; 1) and �2 = (f2g; 2). With
respect to the di�erent e-status, the leading residue, residue and the decomposition of t are
given respectively by:

� for �0:
cap0(t) = f(3; h(3))

E(t) = ff(3; h(3))g
dec(t) = fg(3; z); x; 0; y; 1; p(x); z; h(x)g

� for �1:

cap1(t) = f(g(x; z); h(x))
E(t) = ff(g(x; z); h(x)); f(g(y; z); h(x)); f(p(x); h(h(x)))g

dec(t) = f0; 1; zg

� for �2:
cap2(t) = f(1; h(z))

E(t) = ff(1; h(z))g
dec(t) = fg(0; z); x; y; p(x); h(x)g

We can now de�ne the transformation on TRS's. As can be expected we will transform the
left and righthand-sides of the rules in R and create new rules using this transformation. Since
the transformation of a term gives, in general, a set containing more than one term, we have
to decide which element we choose for the lefthand-side of the new rules. The choice of that
element is given by the e-status of the symbol to be eliminated. Recall that �(a) = (X; i); we
use the index i to determine that choice. In other words:

De�nition 6.26. Given an equational rewrite system R=EQ over T (Fa;X) such that the
function symbol a does not occur in the equations of EQ, and given a well-de�ned e-status
�(a) = (X; i), E(R)=EQ is an equational rewrite system over T (F3;X) where E(R) is given
by

E(R) = fcapi(l)! u j l! r 2 R and u 2 E(r) [dec(r)g

We make some remarks about the transformation de�ned.

148 Chapter 6. Termination by Transformation

� The transformation E depends on the e-status of the symbol to be eliminated, and
therefore by changing the e-status, we obtain, associated to each function symbol to be
eliminated, a family of transformations. Note also that in some cases E(R) may not be
a TRS in the usual sense, since capi(l) may either be a variable or eliminate variables
needed in the righthand-sides of the transformed rules. We are interested in the cases
where E(R) is a well-de�ned TRS.

� Allowing the function symbol to be eliminated to occur in the lefthand-sides of rules of
the TRS is a generalization with respect to previous work and its possibility was �rst
remarked by Middeldorp and Ohsaki (personal communication).

� Note that we only need to extend the signature F to F3 if we intend to eliminate function
symbols with e-status (;; 0). Otherwise, as can be seen from the de�nitions 6.16, 6.21,
6.22, the constant 3 is never introduced by the transformation, and so we can restrict
ourselves to the signature F .

� When the function symbol a does not occur in a term t, we have that dec(t) = ; and
E(t) = ftg. Since the equations on EQ satisfy this restriction, it is not necessary to
apply the transformation to them.

Example 6.27. The following example was taken from Fokkink and Zantema [36]. Let
F = f+; �; :; c; dg, with +; :; � having arity 2 and c; d being constants. Let EQ consist of the
associative and commutative equations for the function symbol \+", i. e.,

EQ = f(x+ (y + z); (x + y) + z); ((x + y) + z); x + (y + z)); (x+ y; y + x)g:

Let R be given by the rules (in in�x notation):

(c � y) + z ! (c:(c � y)) + (y + z)
c � (d � z) ! c � ((d:(d � z)) + z)

By eliminating \:" with e-status (;; 0), we get the TRS

(c � y) + z ! 3+ (y + z)
(c � y) + z ! c
(c � y) + z ! c � y
c � (d � z) ! c � (3+ z)
c � (d � z) ! d
c � (d � z) ! d � z

From the de�nition of E , we can see that in general the TRS E(R) has more rules but is
syntactically simpler than the original one, so the transformation can be quite useful if we are
able to infer termination of R=EQ from termination of E(R)=EQ. Termination however is
not preserved, i. e., if R=EQ is terminating, E(R)=EQ is not necessarily terminating, as the
following example shows.

6.3. Transforming the TRS 149

Example 6.28. Let EQ = ; and let R be the terminating TRS given by:

f(x; x) ! f(a(x); x)

Suppose a has e-status �(a) = (;; 0). The transformed TRS E(R) is given by:

f(x; x) ! f(3; x)
f(x; x) ! x

and is obviously not terminating. Note that the only other possible e-status for a, namely
(f1g; 1), would also result in a non-terminating TRS:

f(x; x) ! f(x; x)

In general, however, di�erent e-status can lead to TRS's with di�erent termination properties
(these issues are further discussed in section 6.5). Note also that it is not essential that EQ = ;.
Any equational system such that R=EQ terminates, would give a similar example.

In the following we will show that, for any well-de�ned e-status � , the transformation
associated with it is sound with respect to termination, i. e., termination of E(R)=EQ implies
termination of R=EQ. Before going into the technical details we give a general idea of the proof.
If E(R)=EQ is terminating, there is a well-founded quasi-order � on T (F3;X) compatible with
E(R)=EQ. If we consider the quasi-ordered set (Tr(T (F3;X));�) (where � is the tree lifting
of � as de�ned in 6.4) then � is also well-founded. We now use the trees over T (F3;X)
to interpret the terms of T (Fa;X) in such a way that rewrite chains in R=EQ translate to
descending chains of trees. Preservation of well-foundedness by the tree lifting gives then
termination of !R=EQ.

We introduce some de�nitions and auxiliary results.

De�nition 6.29. Let the e-status of a be �(a) = (X; i). A term t 2 T (Fa;X) is mapped to
a tree tree(t) 2 Tr(T (F3;X)), by the function tree : T (F [fa;3g;X)! Tr(T (F3;X)),
de�ned inductively as follows:

� tree(x) = (x; ;), for any x 2 X

� tree(f(s1; : : : ; sm)) =

capi(f(s1; : : : ; sm));

mG
j=1

Mj

!
,

where tree(sj) = (capi(sj);Mj).

� tree(a(s1; : : : ; sN)) =

capi(a(s1; : : : ; sN));

NG

j=1;j 6=i

fftree(sj)gg

!
tMi

!
,

where, Mi = ;, for i = 0, and tree(si) = (capi(si);Mi), for i 6= 0.

Example 6.30. The following picture shows the same term as in example 6.25 together with
its corresponding tree for the e-status �0(a) = (;; 0).

150 Chapter 6. Termination by Transformation

x

t: f

a

x h

x

g

a

y

z

a h

a

x

x

p

f(,h())

x h(x)

x y x p(x)

tree(t):

g(,z)

Remark 6.31. From now on we assume we have an equational rewriting system R=EQ,
such that the equations in EQ are length-limited and variable-preserving, and do not contain
the function symbol a. We consider the equational theory generated by EQ over the set of
terms T (F3;X), so E(R)=EQ is an equational rewrite system over T (F3;X). Furthermore
we assume that E(R) is well-de�ned and that E(R)=EQ is terminating.

Since E(R)=EQ is terminating, as a consequence of theorem 2.86, we have:

Lemma 6.32. The relation!+
E(R)=EQ is a well-founded partial order on T (F3;X), closed un-

der contexts and substitutions, compatible with E(R) and compatible with =EQ (i. e. condition
2.1 is satis�ed).

Remark 6.33. The lemma above states that !+
E(R)=EQ [=EQ is a well-founded quasi-

order on T (F3;X). From now on we use this quasi-order and its tree lifting � = � [� on
Tr(T (F3;X)) (actually any partial order with the properties stated in the lemma could be
used for our purposes).

First we will see that � is compatible with =EQ, i. e., if s; t 2 T (Fa;X) then s =EQ t)
tree(s) � tree(t). Some auxiliary results are required.

Lemma 6.34. Let s; t be terms in T (Fa;X). If s =EQ t then capi(s) =EQ capi(t), for any
0 � i � N .

Proof We proceed by induction on the de�nition of =EQ (see de�nition 2.68). If s = t the
result obviously holds. Suppose now that s = C[e1�] and t = C[e2�], for some context
C, equation (e1; e2) 2 EQ and substitution � : X ! T (Fa;X). For this case we have
to do induction on the context. Suppose �rst that C is the trivial context. Then s = e1�
and t = e2�. We have

capi(e1�) = (by lemma 6.18)
capi(e1)capi(�) = (a does not occur in e1)

e1capi(�) =EQ (by de�nition of =EQ)
e2capi(�) = (a does not occur in e2)

capi(e2)capi(�) = (by lemma 6.18)
capi(e2�)

6.3. Transforming the TRS 151

Suppose now that C = f(: : : ; D[]; : : :) and that the result holds for context D. If
f 6= a, we have

capi(s) =
capi(f(: : : ; D[e1�]; : : :)) = (by de�nition 6.16)
f(: : : ; capi(D[e1�]); : : :) =EQ (by induction hypothesis)
f(: : : ; capi(D[e2�]); : : :) = (by de�nition 6.16)
capi(f(: : : ; D[e2�]; : : :)) =

capi(t)

If f = a we have to distinguish several cases. If i = 0 then capi(s) = 3 and capi(t) = 3
and so capi(s) =EQ capi(t). Suppose now that i 6= 0. Then capi(s) = capi(si), where
si is the i-th argument of a. IfD[] does not occur at position i then capi(s) = capi(si) =
capi(t) and the result holds. If D[] occurs at position i, then

capi(s) = (by de�nition 6.16)
capi(D[e1�]) =EQ (by induction hypothesis)
capi(D[e2�]) = (by de�nition 6.16)

capi(t)

Suppose now that there is a term u 2 T (Fa;X) such that s =EQ u and u =EQ t and
capi(s) =EQ capi(t) and capi(t) =EQ capi(u), then the result follows from transitivity
of =EQ. 2

Lemma 6.35. Let t 2 T (F ;X) be an arbitrary term and � : X ! T (Fa;X) an arbi-

trary substitution. Let �(a) = (X; i). Then tree(t�) = (capi(t�);
G

x2mvar(t)
Mx), where

tree(�(x)) = (capi(�(x));Mx), for all x 2 mvar(t).

Proof We proceed by induction on the term t. If t = x the result holds since tree(t�) =
tree(�(x)). If t is a constant, then t� = t and since mvar(t) = ; and tree(t�) =
(capi(t�); ;), the result also holds.

Suppose now that t = f(t1; : : : ; tm), where a 6= f and a does not occur in ti, for any
1 � i � m. Then

tree(t�) = tree(f(t1; : : : ; tm)�) = tree(f(t1�; : : : ; tm�))

=

capi(f(t1�; : : : ; tm�));

mG
j=1

Mj

!

where for each 1 � j � m, tree(tj�) = (capi(tj�);Mj). We can apply the induction

hypothesis to each tj to conclude that Mj =
G

x2mvar(tj)
Mx, where again tree(�(x)) =

(capi(�(x));Mx), for each x 2 mvar(tj).

We then have that
mG
j=1

Mj =
mG
j=1

0
@ G
x2mvar(tj)

Mx

1
A, and since mvar(t) =

mG
j=1

mvar(tj),

the previous multiset coincides with
G

x2mvar(t)
Mx, as we needed. 2

152 Chapter 6. Termination by Transformation

Lemma 6.36. Let s; t 2 T (Fa;X); let �(a) = (X; i). Then s =EQ t) tree(s) � tree(t).

Proof Again we use induction on the de�nition of =EQ. If s = t then the result holds since
� contains syntactical equality on trees.

Suppose now that s = C[e1�] and that t = C[e2�] for some context C, equation
(e1; e2) 2 EQ and substitution � : X ! T (Fa;X). We do now some induction on the
context. If C is the trivial context then s = e1� and t = e2�. Since a does not occur in
e1; e2, we can apply lemma 6.35 and write

tree(e1�) = (capi(e1�);
G

x2mvar(e1)
Mx);

where tree(�(x)) = (capi(�(x));Mx), for all x 2 mvar(e1). Similarly tree(e2�) =

(capi(e2�);
G

x2mvar(e2)
Mx). Recall that all the equations in EQ are variable-preserving.

This means that mvar(e1) = mvar(e2). Furthermore, by lemma 6.34, capi(e1�) =EQ

capi(e2�), and from de�nition of tree lifting we conclude that tree(e1�) � tree(e2�).

Suppose now that C = f(v1; : : : ; D[]; : : : ; vm), where D occurs at some position 1 �
j � m, and that the result holds for context D. If f 6= a then

tree(s) = tree(f(v1; : : : ; D[e1�]; : : : ; vm))

= (capi(f(v1; : : : ; D[e1�]; : : : ; vm));
mG
k=1

Mk)

= (f(capi(v1); : : : ; capi(D[e1�]); : : : ; capi(vm));
mG
k=1

Mk)

where, for k 6= j, tree(vk) = (capi(vk);Mk) and tree(D[e1�]) = (capi(D[e1�]);Mj).
Similarly

tree(t) = tree(f(v1; : : : ; D[e2�]; : : : ; vm))

= (capi(f(v1; : : : ; D[e2�]; : : : ; vm));
mG
k=1

M 0
k)

= (f(capi(v1); : : : ; capi(D[e2�]); : : : ; capi(vm));

mG
k=1

M 0
k)

where, for k 6= j, M 0
k = Mk and tree(D[e2�]) = (capi(D[e2�]);M

0
j). By induction

hypothesis, tree(D[e1�]) � tree(D[e2�]) and this means that Mj �mul M 0
j. But then

also
mG
k=1

Mk �mul

mG
k=1

M 0
k. Since D[e1�] =EQ D[e2�] and =EQ is closed under contexts,

we can apply lemma 6.34 to conclude that

capi(f(v1; : : : ; D[e1�]; : : : ; vm)) =EQ capi(f(v1; : : : ; D[e2�]; : : : ; vm))

and therefore that tree(s) � tree(t).

6.3. Transforming the TRS 153

If f = a we consider two cases, namely i = j and i 6= j. For i 6= j,

tree(s)

= (capi(a(v1; : : : ; D[e1�]; : : : ; vN));
NG

k=1;k 6=j;i

fftree(vk)gg t fftree(D[e1�])gg tMi)

=

capi(vi);

NG
k=1;k 6=j;i

fftree(vk)gg t fftree(D[e1�])gg tMi

!

where if i = 0 then Mi = ; and capi(vi) = 3, and for i 6= 0, tree(vi) = (capi(vi);Mi).
Also

tree(t)

= (capi(a(v1; : : : ; D[e2�]; : : : ; vN));
NG

k=1;k 6=i;j

fftree(vk)gg t fftree(D[e2�])gg tMi)

=

capi(vi);

NG
k=1;k 6=i;j

fftree(vk)gg t fftree(D[e2�])gg tMi

!

Since by induction hypothesis tree(D[e1�]) � tree(D[e2�]), we also have

NG
k=1;k 6=j

fftree(vk)gg t fftree(D[e1�])gg tMi

�mul
NG

k=1;k 6=j

fftree(vk)gg t fftree(D[e2�])gg tMi

and consequently tree(s) � tree(t) (recall that their roots are equal).

For i = j (note that then i 6= 0), we have

tree(s) =

capi(a(v1; : : : ; D[e1�]; : : : ; vN));

NG
k=1;k 6=i

fftree(vk)gg tMi

!

=

capi(D[e1�]);

NG
k=1;k 6=i

fftree(vk)gg tMi

!

where tree(D[e1�]) = (capi(D[e1�]);Mi). Also

tree(t) =

capi(a(v1; : : : ; D[e2�]; : : : ; vN));

NG
k=1;k 6=i

fftree(vk)gg tM 0
i

!

=

capi(D[e2�]);

NG
k=1;k 6=i

fftree(vk)gg tM 0
i

!

154 Chapter 6. Termination by Transformation

where tree(D[e2�]) = (capi(D[e2�]);M
0
i). Since by induction hypothesis

tree(D[e1�]) � tree(D[e2�])

we also have Mi �mul M 0
i and consequently

NG
k=1;k 6=i

fftree(vk)gg tMi �mul

NG
k=1;k 6=j

fftree(vk)gg tM
0
i

Since by lemma 6.34 capi(D[e1�]) =EQ capi(D[e2�]), we have that tree(s) � tree(t).

Suppose now that there is a term u 2 T (Fa;X) such that s =EQ u and u =EQ t and
tree(s) � tree(u) and tree(u) � tree(t); transitivity of � gives the result. 2

We have now all the necessary results that allow us to infer equivalence on trees built from
equivalent terms, so we turn to the case of inequality.

Lemma 6.37. Let t 2 T (F ;X)nX and let � : X ! T (Fa;X) be any substitution. Suppose
that x 2 var(t) is such that t!+

E(R)=EQ x. Then tree(t�) � tree(�(x)), where the trees are

de�ned with respect to the e-status of a given by �(a) = (X; i).

Proof By de�nitions 6.29 and 6.16, and lemmas 6.18, 6.35,

tree(t�) = (capi(t�);
G

y2mvar(t)

My)

= (capi(t)capi(�);
G

y2mvar(t)

My)

= (t capi(�);
G

y2mvar(t)

My)

where tree(�(y)) = (capi(�(y));My), for all y 2 mvar(t). Since

t !+
E(R)=EQ x) t capi(�) !

+
E(R)=EQ capi(�(x))

(recall that !+
E(R)=EQ is closed under substitutions) and Mx v

G
y2mvar(t)

My, we conclude

that tree(t�) � tree(�(x)). 2

Recall that the de�nition of the transformation applied to a rule l! r in R, gives eventually
more than one rule of the form capi(l) !E(R) u, with u 2 E(r) [dec(r). Obviously we
want the tree interpretation of the terms in T (Fa;X) to satisfy tree(l�) � tree(r�), for
any substitution � : X ! T (Fa;X). A �rst approximation to this result is to prove that
tree(capi(l)�) � tree(r�) and in order to obtain this result we have to use the fact that
capi(l) !

+
E(R)=EQ u, for all u 2 E(r) [dec(r). Abstracting from the actual rules of R, this

amounts to prove that tree(s�) � tree(t�) whenever

6.3. Transforming the TRS 155

� var(t) � var(s) and

� s !+
E(R)=EQ u, for all u 2 E(r) [dec(r)

This can be done by induction on the structure of t, and for the case that t is a variable it has
already been shown in lemma 6.37. However, in order to be able to use the induction hypothesis
on subterms of t, the order !+

E(R)=EQ has to satisfy the subterm property (modulo EQ). In

general this will not be the case, but fortunately it is not di�cult to extend!+
E(R)=EQ to another

order on T (Fa;X), that while loosing closedness under contexts, maintains all the other nice
properties enjoyed by!+

E(R)=EQ and also has the subterm property. So before proceeding further
in the proof, we introduce this order which is an adaptation to the equational case of an order
used by Kamin and L�evy in [55].

De�nition 6.38. Let > [=E be a quasi-order on T (F3;X) such that > is closed under
contexts and substitutions and =E is the congruence generated by a set of equations E. We
de�ne a relation � on T (F3;X) as follows: s � t i� s 6=E t and there is a context C such
that s > C[t] or s =E C[t].

We have the following result.

Lemma 6.39. In the conditions of de�nition 6.38 and if E is length-limited, we have that if
> is well-founded then� is a partial well-founded order on T (F3;X) extending >, compatible
with =E, closed under substitutions and satisfying C[t]� t, for any non-trivial context C.

Proof We see �rst that� is a transitive relation. Suppose that s� t and t� u. Then there
are contexts C and D such that s � C[t] and t � D[u]. Consequently s � C[D[u]]. To
conclude that s � u we still need to see that s 6=E u. If s =E u then we would have
s � C[t] � C[D[u]] =E C[D[s]]. But s > C[D[s]] contradicts well-foundedness of >,
and if s =E C[D[s]], since =E is length-limited, we must have C = D = 2 and then we
can write s > t > u =E s (recall that both s 6=E t and t 6=E u) and then s > s, again
contradicting well-foundedness of >. Consequently s 6=E u and so s� u.

We check now well-foundedness. Suppose that � is not well-founded, then there is an
in�nite descending sequence

s0 � s1 � s2 � : : :� : : :

For each i � 0, we have si 6=E si+1 and si � Ci[si+1], for some context Ci. So the
above sequence can be written as

s0 � C0[s1] � C0[C1[s2]] � C0[C1[C2[s3]]] � : : :

Since > is well-founded, strict inequality can only occur �nitely many times, so there is
an index j � 0, such that for all i � j we have

si =E Ci[si+1] =E Ci[Ci+1[si+2]] =E : : :

156 Chapter 6. Termination by Transformation

Now, since si 6=E si+1, each Ci has to be non-trivial and so the above sequence of
equalities contradicts the fact that =E is length-limited.

To see that > � �, note that if s > t then s 6=E t and by taking C as the empty context
in the de�nition of �, we conclude that s� t.

To see that � and =E are compatible, we need to check that =E � � � =E � �.
Suppose that s =E t � u =E v; then we also have s =E t � C[u] =E C[v], for some
context C. Since > and =E are compatible we can write s � C[v]. Again because
t 6=E u, either t > C[u] or C has to be non-trivial. If t > C[u] then we have s > C[v]
and s =E v would contradict well-foundedness of >. If C is non-trivial and t =E C[u],
then s =E C[v] and s =E v would contradict the length-limited property; so we can say
that s� u.

Finally we check that � is closed under substitutions. Let � : X ! T (F3;X) be any
substitution and suppose that s � t. Then s > C[t] or s =E C[t] for some context C.
In the �rst case we also have s� > C�[t�] and in the second we have s� =E C�[t�].
Suppose that s� =E t�. Then we would have t� =E s� > C�[t�], and since > is closed
under contexts, this contradicts well-foundedness of >; or s� =E C�[t�] =E C�[s�],
contradicting the fact that =E is length-limited (note that in this case since s =E C[t]
and s 6=E t, C has to be non-trivial). 2

Remark 6.40. From now on we take � to be the order obtained from de�nition 6.38 if > is
!+
E(R)=EQ. Since!

+
E(R)=EQ is well-founded,� has all the properties stated in lemma 6.39. We

consider the quasi-order�[=EQ and the trees over T (F3;X) with the tree lifting associated
with �[=EQ. We will denote this new tree lifting by = [�. The notation is justi�ed by the
fact that, since we do not change the congruence =EQ then the equivalence on trees remains
unchanged (this actually follows from lemma 6.5).

Lemma 6.41. Let s 2 T (F ;X) n X and t 2 T (Fa;X) such that var(t) � var(s) and
s � v for all v 2 E(t) [dec(t). Let � : X ! T (Fa;X) be any substitution and suppose
that tree(s�) = (capi(s�);Ms), tree(t�) = (capi(t�);Mt), where the e-status of a is
�(a) = (X; i). Then for all U 2Mt either U 2 Ms or tree(s�) = U .

Proof We proceed by induction on the structure of t. If t = x 2 X then the result follows
from lemma 6.37 (note that this lemma can be applied since !+

E(R)=EQ � � and so also

� � =).

If t = f(t1; : : : ; tm) then

tree(t�) = tree(f(t1�; : : : ; tm�)) =

capi(f(t1�; : : : ; tm�));

mG
j=1

Mj

!

where tree(tj�) = (capi(tj�);Mj), for all 1 � j � m. Fix some such j. Since

dec(t) =
m[
k=1

dec(tk) and by hypothesis s � v for all v 2 dec(t), we also have that

6.3. Transforming the TRS 157

s � u for any u 2 dec(tj). For analyzing the elements of E(tj) we distinguish two
cases:

� �(a) = (;; 0). Then E(t) = fcap0(t)g = ff(cap0(t1); : : : ; cap0(tm))g. Since by
hypothesis s� u, for any u 2 E(t) and � has the subterm property, we conclude
that s � cap0(tj). Given that E(tj) = fcap0(tj)g, we have s � u for any
u 2 E(tj).

� �(a) = (X; i) with X 6= ; and i 2 X. Then

E(t) =
[
l2X

El(t) =
[
l2X

El(f(t1; : : : ; tm))

=
[
l2X

ff(u1; : : : ; um)juk 2 El(tk); 1 � k � mg

Since E(tj) =
[
l2X

El(tj), we conclude that for any u 2 E(tj), f(: : : u : : :) 2 E(t).

Again because s� f(: : : u : : :) and � has the subterm property, we also conclude
that s� u. Given the arbitrariety of u, we have s� u for all u 2 E(tj).

We have just seen that s � u for all u 2 E(tj) [dec(tj). Also var(tj) � var(t) �
var(s), so we can apply the induction hypothesis to tj and conclude that given any

U 2 Mj either U 2 Ms or tree(s�) = U . Since U 2
mG
k=1

Mk) U 2 Mj, for some

1 � j � m, the result holds.

If t = a(t1; : : : ; tN) then

tree(t�) =

capi(a(t1�; : : : ; tN�));

NG

j=1;j 6=i

fftree(tj�)gg

!
tMi

!

where, for i 6= 0, tree(ti�) = (capi(ti�);Mi), and M0 = ;, and �(a) = (X; i). We
distinguish again two cases

� �(a) = (;; 0). We need to see that for any j, 1 � j � N , either tree(tj�) 2 Ms

or tree(s�) = tree(tj�). Fix any such index j. By lemma 6.18 we know that

tree(tj�) = (cap0(tj�);Mj) = (cap0(tj)cap0(�);Mj)

(see de�nition 6.17 too). Also

tree(s�) = (cap0(s�);Ms) = (cap0(s)cap0(�);Ms) = (s cap0(�);Ms)

By hypothesis s� u, for all u 2 dec(t) and since

dec(t) =
N[
k=1

(fcap0(tk)g [dec(tk))

158 Chapter 6. Termination by Transformation

we can say that s � u for all u 2 dec(tj). Also E(tj) = fcap0(tj)g � dec(tj),
and so we can say that s� u for all u 2 E(tj). Further var(tj) � var(t) � var(s),
so we can apply the induction hypothesis to tj and conclude that if U 2 Mj then
either U 2 Ms or tree(s�) = U . Since by hypothesis s � cap0(tj), and � is
closed under substitutions we conclude that s cap0(�) � cap0(tj)cap0(�) and by
de�nition 6.4 we have tree(s�) = tree(tj�), as we wanted.

� �(a) = (X; i), with X 6= ; and i 2 X. We need to see that

for any U 2

NG

j=1;j 6=i

fftree(tj�)gg [Mi

!
either U 2Ms or tree(s�) = U;

where tree(ti�) = (capi(ti�);Mi). Consider tree(tj�), for a �xed 1 � j � N .2

By lemma 6.18 and de�nition 6.17, we know that

tree(tj�) = (capi(tj�);Mj) = (capi(tj)capi(�);Mj):

Also tree(s�) = (capi(s�);Ms) = (capi(s)capi(�);Ms) = (s capi(�);Ms). By
hypothesis s� u for all u 2 E(t) [dec(t) and since

dec(a(t1; : : : ; tN)) =

N[
k=1

dec(tk)

! S 0
@ [
l2f1;::: ;Ng;l 62X

E(tl)

1
A

and E(a(t1; : : : ; tN)) =
[
k2X

E(tk) we also have s� u for all u 2 dec(tj)[E(tj).

Further var(tj) � var(t) � var(s), so we can apply the induction hypothesis to tj
and conclude that if U 2Mj then either U 2Ms or tree(s�) = U . If j = i, we are
done, otherwise by lemma 6.24 we know that capi(tj) 2 E(tj). Since E(tj) � E(t),
the hypothesis gives us s� capi(tj), and since � is closed under substitutions we
conclude that s capi(�) � capi(tj)capi(�) and, by de�nition 6.4, we have that
tree(s�) = tree(tj�), as we wanted.

2

Lemma 6.42. Let the e-status of a be �(a) = (X; i). Let s 2 T (F ;X)nX and t 2 T (Fa;X)
be terms such that var(t) � var(s) and s � v for all v 2 dec(t) [E(t). Finally let
� : X ! T (Fa;X) be any substitution. Then tree(s�) = tree(t�).

Proof By de�nition 6.29 and lemma 6.18 we can write

tree(s�) = (capi(s�);Ms) = (capi(s)capi(�);Ms) = (s capi(�);Ms)

Similarly tree(t�) = (capi(t�);Mt) = (capi(t)capi(�);Mt). By lemma 6.41 we con-
clude that for any U 2 Mt either U 2 Ms or tree(s�) = U . Since by lemma

2Note that we can have i = j.

6.3. Transforming the TRS 159

6.24 capi(t) 2 E(t), we also have s � capi(t) and because � is closed under sub-
stitutions, we have s capi(�) � capi(t)capi(�); by de�nition 6.4 we conclude that
tree(s�) = tree(t�). 2

Lemma 6.43. Let the e-status of a be �(a) = (X; i). Let l ! r be a rule in R and
� : X ! T (Fa;X) an arbitrary substitution. Then tree(capi(l)�) = tree(r�).

Proof From the de�nition of E(R) (see de�nition 6.26), we know that capi(l)! u, with u 2
E(r)[dec(r), is a rule in E(R) and therefore capi(l)� u for any u 2 E(r)[dec(r).
Also var(r) � var(l) and a does not occur in capi(l), therefore all the hypothesis of
lemma 6.42 are satis�ed, so we can apply it to conclude that tree(capi(l)�) = tree(r�).
2

The previous lemma allows us to conclude that tree(capi(l)�) = tree(r�), for any rule
l ! r 2 R. However this is not good enough, since we need to have tree(l�) = tree(r�).
To obtain this we need to be able to compare the tree of a term with the tree of its cap. The
following result provides this comparison.

Lemma 6.44. Let the e-status of a be �(a) = (X; i). Let t 2 T (Fa;X) be any term and
� : X ! T (Fa;X) be any substitution. Then tree(t�) w tree(capi(t)�).

Proof We proceed by induction. First note that for any term s, lemmas 6.19 and 6.18 say
that tree(s�) and tree(capi(s)�) have the same root. If t = x then capi(t) = t so the
result is valid. If t = f(t1; : : : ; tm), with m � 0 and f 6= a, then

tree(t�) = tree(f(t1; : : : ; tm)�) =

capi(f(t1; : : : ; tm)�);

mG
i=1

Mi

!

where for each 1 � i � m, tree(ti�) = (capi(ti�);Mi). For capi(t), we have

tree(capi(t)�) = tree(capi(f(t1; : : : ; tm))�)
= tree(f(capi(t1); : : : ; capi(tm))�)

=

capi(f(capi(t1); : : : ; capi(tm))�);

mG
i=1

M 0
i

!

=

f(capi(capi(t1)); : : : ; capi(capi(tm)))capi(�);

mG
i=1

M 0
i

!

(by lemma 6.19) =

f(capi(t1); : : : ; capi(tm))capi(�);

mG
i=1

M 0
i

!

where for each 1 � i � N , tree(capi(ti)�) = (capi(ti)capi(�);M
0
i). We can apply

the induction hypothesis to each ti and conclude that tree(ti�) w tree(capi(ti)�).
Since these trees have the same root, we can say that Mi wmul M 0

i . Consequently
mG
i=1

Mi wmul

mG
i=1

M 0
i , and so tree(t�) w tree(capi(t)�).

160 Chapter 6. Termination by Transformation

If t = a(t1; : : : ; tN) we have to distinguish two cases, namely �(a) = (;; 0) and �(a) =
(X; i), with X 6= ; and i 2 X.

� if �(a) = (;; 0), then capi(t) = 3 and tree(capi(t)�) = (3; ;). Since tree(t�)
has the same root, obviously tree(t�) w tree(capi(t)�).

� if �(a) = (X; i), then capi(t) = capi(ti) and

tree(t�) = tree(a(t1�; : : : ; tN�))

=

capi(a(t1�; : : : ; tN�));

NG
j=1;j 6=i

fftree(ti�)gg tMi

!

=

capi(ti�);

NG
j=1;j 6=i

fftree(ti�)gg tMi

!

=

capi(ti)capi(�);

NG
j=1;j 6=i

fftree(ti�)gg tMi

!

where tree(ti�) = (capi(ti�);Mi) = (capi(ti)capi(�);Mi). Also

tree(capi(t)�) = tree(capi(ti)�)
= (capi(capi(ti)�);M

0
i)

= (capi(ti)capi(�);M
0
i)

By induction hypothesis, tree(ti�) w tree(capi(ti)�) and consequently Mi wmul
M 0

i (recall that the trees have the same root), so

NG

j=1;j 6=i

fftree(ti�)gg tMi

!
wmul

NG

j=1;j 6=i

fftree(ti�)gg tM
0
i

!

Since the roots of the trees t� and capi(t)� are the same, we have that tree(t�) w
tree(capi(t)�).

2

Theorem 6.45. Let the e-status of a be �(a) = (X; i). Let l ! r be any rule in R and let
� : X ! T (Fa;X) be any substitution. Then tree(l�) = tree(r�).

Proof Combining lemmas 6.43 and 6.44 we have tree(l�) w tree(capi(l)�) = tree(r�),
and so tree(l�) = tree(r�). 2

We have seen that l� !R r� implies that tree(l�) = tree(r�). We still have to check that
if a reduction occurs within a non-trivial context, the same results holds, i. e., C[l�]!R C[r�]
implies tree(C[l�]) = tree(C[r�]). For that we still need some auxiliary results.

6.3. Transforming the TRS 161

Lemma 6.46. Let s; t 2 T (Fa;X). If s !R t then capi(s) !
0;1
E(R) capi(t), i. e., capi(s)

reduces via E(R) to capi(t) in zero or one steps.

Proof We proceed by induction on the de�nition of reduction. Suppose s = l� and t = r�
for some rule l ! r of R and some substitution � : X ! T (Fa;X). By de�nition 6.16
and lemma 6.18, capi(l�) = capi(l)capi(�). Similarly capi(r�) = capi(r)capi(�).
Since capi(l) ! capi(r) is a rule in E(R) (recall that capi(r) 2 E(r)), we have
capi(l) capi(�)!1

E(R) capi(r)capi(�), as we had to show.

Suppose s!R t, capi(s)!
0;1
E(R) capi(t), f(s1; : : : ; s; : : : ; sk)!R f(s1; : : : ; t; : : : ; sk).

We have

capi(s)!
0;1
E(R) capi(t)

+
f(capi(s1); : : : ; capi(s); : : : ; capi(sk))!

0;1
E(R) f(capi(s1); : : : ; capi(t); : : : ; capi(sk))

+ (by de�nition 6.16)

capi(f(s1; : : : ; s; : : : ; sk))!
0;1
E(R) capi(f(s1; : : : ; t; : : : ; sk))

If a(s1; : : : ; s; : : : ; sN)!R a(s1; : : : ; t; : : : ; sN), we have to distinguish two cases.

� If i = 0, the result holds since by de�nition 6.16, capi(a(s1; : : : ; s; : : : ; sN)) =
3 = capi(a(s1; : : : ; t; : : : ; sN)).

� If i 6= 0 then capi(a(s1; : : : ; s; : : : ; sN)) = capi(si), where si = s if s occurs at
position i. Also capi(a(s1; : : : ; t; : : : ; sN)) = capi(si), where si = t if t occurs at
position i. In any case the result holds.

2

Lemma 6.47. Let s; t 2 T (Fa;X) such that s!R t and tree(s) = tree(t). Then, for any
context C, tree(C[s]) = tree(C[t]).

Proof We proceed by induction on the context. If C is the trivial context, the result holds
by hypothesis. Suppose now that D[] is a context for which the property holds and let
C[] = f(s1; : : : ; D[]; : : : ; sk), with D[] occurring at a �xed position j, 1 � j � k, and
f 6= a. By de�nitions 6.29 and 6.16 we have

tree(C[s]) = tree(f(s1; : : : ; D[s]; : : : ; sk))

=

f(capi(s1); : : : ; capi(D[s]); : : : capi(sk));

kG
l=1

Ml

!

where tree(sl) = (capi(sl);Ml) (1 � l � k; l 6= j), tree(D[s]) = (capi(D[s]);Mj).
Similarly

tree(C[t]) = tree(f(s1; : : : ; D[t]; : : : ; sk))

=

f(capi(s1); : : : ; capi(D[t]); : : :capi(sk));

kG
l=1

M 0
l

!

162 Chapter 6. Termination by Transformation

where M 0
l =Ml, for 1 � l � k, l 6= j, and tree(D[t]) = (capi(D[t]);M 0

j). By hypothe-

sis s!R t, so D[s]!R D[t] and lemma 6.46 gives us capi(D[s])!0;1
E(R) capi(D[t]). As

a consequence

f(capi(s1); : : : ; capi(D[s]); : : : capi(sk))

!0;1
E(R)

f(capi(s1); : : : ; capi(D[t]); : : : capi(sk))

If this reduction has 0 steps then we also have capi(D[s]) !0
E(R) capi(D[t]), and

since tree(D[s]) = tree(D[t]), de�nition 6.4 gives us Mj ord(wmul) M 0
j. Then

kG
l=1

Ml ord(wmul)
kG
l=1

M 0
l , and again by de�nition 6.4, we conclude that tree(C[s]) =

tree(C[t]).

If the reduction has one step then also capi(D[s])!1
E(R) capi(D[t]). Recall that!E(R) �

!E(R)=EQ � �. Since tree(D[s]) = tree(D[t]), this means that for any U 2M 0
j either

there is an element V 2 Mj such that V w U or tree(D[s]) = U . In this last case,
since tree(f(: : : D[s] : : :)) = tree(D[s]) (as can easily be seen using de�nition 6.4 or
lemma 6.7, and the fact that capi(f(: : :D[s] : : :))� capi(D[s])), we can conclude that
tree(f(: : : D[s] : : :)) = U , and so we can state that

8U 2
kG
l=1

M 0
l : (tree(f(: : : D[s] : : :)) = U) or

9V 2

kG
l=1

Ml : V w U

!

This together with

f(capi(s1); : : : ; capi(D[t]); : : : capi(sk))� f(capi(s1); : : : ; capi(D[t]); : : : capi(sk))

gives us tree(f(: : : D[s] : : :)) = tree(f(: : : D[t] : : :)).

Suppose now that C = a(s1; : : : ; D[]; : : : ; sN), with D[] occurring at position j, for
some �xed 1 � j � N . First we consider the case i = 0. Then

tree(C[s]) = tree(a(s1; : : : ; D[s]; : : : sN))

=

3;

NG
l=1;l 6=j

fftree(sl)gg t fftree(D[s])]gg

!

and
tree(C[t]) = tree(a(s1; : : : ; D[t]; : : : sN))

=

3;

NG
l=1;l 6=j

fftree(sl)gg t fftree(D[t])gg

!

Since tree(D[s]) = tree(D[t]) also

NG
l=1;l 6=j

fftree(sl)gg t fftree(D[s])gg ord(wmul)
NG

l=1;l 6=j

fftree(sl)gg t fftree(D[t])gg

6.3. Transforming the TRS 163

and by de�nition 6.4 we conclude that tree(C[s]) = tree(C[t]).

Suppose now that i 6= 0. Then

tree(C[s]) = tree(a(s1; : : : ; D[s]; : : : sN))

=

0
@capi(a(s1; : : : ; D[s]; : : : sN));

NG
l=1;l 62fi;jg

fftree(sl)gg tMi tM
0

1
A

where tree(si) = (capi(si);Mi), M
0 = ; if i = j and M 0 = fftree(D[s])gg otherwise,

and

tree(C[t]) = tree(a(s1; : : : ; D[t]; : : : sN))

=

0
@capi(a(s1; : : : ; D[t]; : : : sN));

NG
l=1;l 62fi;jg

fftree(sl)gg tKi tK
0

1
A

where tree(si) = (capi(si); Ki) andK
0 = ; if i = j andK 0 = fftree(D[t])gg otherwise.

Since s !R t, also D[s] !R D[t]. By lemma 6.46 we have that capi(D[s]) !0;1
E(R)

capi(D[t]) and also

capi(a(s1; : : : ; D[s]; : : : sN))!
0;1
E(R) capi(a(s1; : : : ; D[t]; : : : sN))

Suppose i = j; then M 0 = K 0 = ;. If capi(D[s]) = capi(D[t]), since tree(D[s]) =
(capi(D[s]);Mi) = (capi(D[t]); Ki) = tree(D[t]), we must have Mi ord(wmul) Ki

and consequently

NG
l=1;l 62fi;jg

fftree(sl)gg tMi tM
0 ord(wmul)

NG
l=1;l 62fi;jg

fftree(sl)gg tMi tM
0

Since capi(a(s1; : : : ; D[s]; : : : sN)) = capi(D[s]) and capi(a(s1; : : : ; D[t]; : : : sN)) =
capi(D[t]), we conclude that tree(C[s]) = tree(C[t]).

If capi(D[s]) 6= capi(D[t]) then capi(D[s]) � capi(D[t]). Take U 2 Ki, then either
there is an element V 2Mi such that V w U or tree(D[s]) = U . In the last case, since
tree(C[s]) = tree(D[s])3, by transitivity we also get tree(C[s]) = U . By de�nition
6.4 we conclude that tree(C[s]) = tree(C[t]).

Suppose now that i 6= j. Then Mi = Ki, M
0 = fftree(D[s])gg, K 0 = fftree(D[t])gg.

Since tree(D[s]) = tree(D[t]), whether capi(D[s]) = capi(D[t]) or capi(D[s]) �
capi(D[t]), it follows in a straightforward way from de�nition 6.4 that tree(C[s]) =
tree(C[t]). 2

We can now prove our main result.

3Note that this is in general not true.

164 Chapter 6. Termination by Transformation

Theorem 6.48. If E(R)=EQ terminates then R=EQ terminates.

Proof Suppose that R=EQ does not terminate. Then we have an in�nite sequence of the
form

s0 =EQ s00 !R s1 =EQ s01 !R s2 =EQ s02 : : :

Using lemmas 6.36, 6.47, theorem 6.45 and de�nition 2.54, this translates to the following
sequence on trees

tree(s0) � tree(s00) = tree(s1) � tree(s01) = tree(s2) : : :

And since � and = are compatible, this contradicts well-foundedness of =. 2

As we already mentioned, we can eliminate more than one function symbol simultaneously,
though in this presentation we concentrate on eliminating one function symbol at a time. We
can also present the transformations for the more general case of eliminating varyadic function
symbols. Though it may seem that to present the theory in these more general settings would
be better, the following example shows that that is not the case. When dummy elimination is
the transformation chosen (i. e., the e-status of the function symbols to eliminate is (;; 0)),
better results can be obtained if we consider a function symbol at a time. This is so because
by introducing new constant symbols for each function symbol eliminated, instead of using one
constant for all symbols, better results are obtained.

In the case of varyadic signatures, note that if we label the varyadic function symbols with its
arity, thus obtaining a di�erent set of �xed-arity symbols, there is a one-to-one correspondence
between terms in the varyadic signature and terms in the �xed-arity signature. Furthermore
termination of the original TRS is equivalent to termination of the labelled one. So by labelling
the function symbol we want to eliminate we obtain a set of function symbols to eliminate.
If we then apply the transformation (sequentially) to all the function symbols thus obtained
we can infer termination of the original system from termination of the transformation of the
�xed-arity version. The following example justi�es these assertions.

Example 6.49. Consider the terminating TRS (with EQ = ;)

f(x; x) ! f(a(x); b(x))

Suppose we want to eliminate function symbols a and b. If we eliminate both symbols at the
same time we get the system:

f(x; x) ! f(3;3)
f(x; x) ! x

which is clearly not terminating. But if we eliminate �rs a and then b (or vice-versa) we get
the system:

f(x; x) ! f(31;32)
f(x; x) ! x

which is terminating.

6.4. Eliminating Constants 165

As for the varyadic case consider the terminating TRS (with EQ = ;) over a varyadic
signature and suppose that the function symbol a admits arities 1 and 2:

f(x; x) ! f(a(x); a(x; x))

As far as termination is concerned, this system is equivalent to the system

f(x; x) ! f(a1(x); a2(x; x))

If we now eliminate �rst a1 and then a2, both with e-status (;; 0), the result is the TRS

f(x; x) ! f(31;32)
f(x; x) ! x

which is still a terminating system. Eliminating a1 and a2 simultaneously (which amounts to
the same as eliminating the varyadic function symbol a in the original system) results in the
following non-terminating TRS:

f(x; x) ! f(3;3)
f(x; x) ! x

So termination in R could not be inferred from termination of E(R) in the last case.

6.4 Eliminating Constants

The transformations presented so far apply to the elimination of function symbols or arity � 1.
Here we discuss the case where we want to eliminate a function symbol with arity 0, i. e., a
constant. There seems to be not much room for doing anything: if we replace the constant to
eliminate by another fresh constant (as we do in the elimination of function symbols of greater
arities) we do not improve our situation with respect to proving termination. So it seems that
the only possible improvement is to throw out rules where this constant occurs. In general,
however, this cannot be done: rules where the rhs is di�erent from the constant cannot be
eliminated. For example the rule f(x) ! f(a) (where a is the constant to eliminate) can
clearly not be thrown out otherwise we may end up with a terminating system, while no rewrite
system containing this rule is terminating. The best we can hope for is to eliminate rules where
the rhs is equal to the constant to eliminate.

First we introduce some notation. Let c be a constant. Given a TRS (F ;X ; R) (where
c 2 F) the TRS Rc is given by the rules

f(x1; : : : ; xn)! c

where x1; : : : ; xn are pairwise diferent variables, and f ranges over F n fcg.
The following lemma is not di�cult to prove.

Lemma 6.50. Let EQ be a set of length-preserving equations where the constant c does not
occur. Then the Rc=EQ is terminating.

166 Chapter 6. Termination by Transformation

Proof Suppose that Rc=EQ is not terminating. Then we have an in�nite ground sequence
of the form

s0 =EQ s00 !Rc s
0
1 =EQ s1 =EQ s001 !Rc : : :

To each ground term we will associate a weight in the naturals in the following way. Every
function symbol f 2 F n fcg has weight 1 and to c we give weight 0. The weight of a
ground term t, denoted by w(t) is just the sum of the weights of the function symbols
occurring in t (actually w(t) = jtj �#c(t)).

The following fact is easy to prove by induction on the de�nition of =EQ (recall that c
does not occur in the equations of EQ):

For ground terms s; t, if s =EQ t then w(s) = w(t).

Also by induction on terms it is not di�cult to see that, for any ground term t 6= c, we
have w(t) >IN w(c). Furthermore it is also easy to show by de�nition of reduction that
for any ground terms s; t, if s!Rc t then w(s) >IN w(t). Using all this, we have that for
all ground terms s; t; u; v if s =EQ u!Rc v =EQ t then w(s) >IN w(t). Since (IN; >IN)
is well-founded, this means that no in�nite rewrite sequence in Rc=EQ can exist. 2

Note that it is essential that both c does not occur in the equations of EQ and that the
equations are length-preserving as the following example shows.

Example 6.51. Let EQ = f(f(f(x)); f(x))g and let Rc = ff(x) ! cg. Then Rc=EQ is
not terminating since f(c) =EQ f(f(c))!Rc f(c).

Let now EQ = f(a; c)g and let Rc contain the rule a! c, then we have a! c =EQ a, so
Rc=EQ is not terminating.

Before proving the main lemma (lemma 6.54), we need some auxiliary results. The �rst
lemma is an easy induction on the de�nition of =EQ so we refrain from presenting its proof.
Note that the lemma is also valid if the equations are simply variable-preserving.

Lemma 6.52. Let EQ be a set of length-preserving (linear equations) and let c be a constant
not occurring in the equations of EQ. Then s =EQ t) #c(s) = #c(t), for any terms
s; t 2 T (F ;X).

Lemma 6.53. Let EQ be a set of (length-preserving) linear equations and let c be a constant
not occurring in the equations of EQ. Suppose that s = C[c], for some context C and let t be
a term such that s = C[c] =EQ t. Then we can write s = C[�(x)] and t = D[�(x)], for some
context D, where x is a fresh variable not occurring in s or t, and � is a substitution satisfying
�(x) = c. Furthermore the terms C[x] and D[x] are equal under EQ, i. e., C[x] =EQ D[x].

6.4. Eliminating Constants 167

Proof (Sketch) We proceed by induction on the de�nition of =EQ.

First we mark the occurrence of c we are interested in (or equivalently keep track of its
position).

Suppose that s = C[c] = e1� and t = e2�, for some equation (e1; e2) 2 EQ and
substitution � : X ! T (F ;X). Since both e1 and e2 are linear terms and contain
exactly the same variables, we can write e1 = H1[x1; : : : ; xk] and e2 = H2[x1; : : : ; xk],
for some contexts H1; H2 and where var(e1) = var(e2) = fx1; : : : ; xkg (k � 1). Since
s = C[c] = e1� and the constant c does not occur in e1 it must be introduced by the
substitution �, i. e., there is a variable x 2 var(e1) such that the marked occurrence of
c is in �(x). Let xj be that unique variable, we denote by �(xj) and �(xj), respectively,
the term �(x), where the marked occurrence of c has been replaced by a fresh variable x
or the empty context 2, respectively. If we de�ne the substitution � by

�(x) =

8<
:

�(xj) if x = xj
�(x) if x = xi, i 6= j
x otherwise

Then
e1� = H1[�(x1); : : : ; �(xj); : : : ; �(xk)]

= H1[�(x1); : : : ; �(xj); : : : ; �(xk)]
=EQ H2[�(x1); : : : ; �(xj); : : : ; �(xk)]
= e2�

And also
e1� = H1[�(x1); : : : ; �(xj); : : : ; �(xk)]

= H1[�(x1); : : : ; �(�(xj)); : : : ; �(xk)]

where � is a substitution satisfying �(x) = c (and being the identity at least on the
other variables of �(xj)), and the same holds for e2�. So we can write s = C[�(x)],
t = D[�(x)], such that e1� = C[x] =EQ e2� = D[x], where

C = H1[�(x1); : : : ; �(xj); : : : ; �(xk)] and D = H2[�(x1); : : : ; �(xj); : : : ; �(xk)]:

Suppose now that s = C[c] = F [e1�] and t = F [e2�], for some non-trivial context F ,
some equation (e1; e2) 2 EQ and substitution � : X ! T (F ;X). Since C[c] = F [e1�],
we have to consider several possibilities.

� the marked c occurs in e1�; then since e1� =EQ e2�, by the previous case, we
can conclude that C[c] = F [F1[�(x)]] =EQ F [F2[�(x)]], for some fresh variable
x, some substitution � satisfying �(x) = c, and some contexts F1; F2, such that
e1� = F1[�(x)] and e2� = F2[�(x)]. Furthermore F1[x] =EQ F2[x] and so also
C[x] = F [F1[x]] =EQ F [F2[x]]. By taking D = F [F2[]], the result holds.

� the marked c occurs in F ; then F [e1�] = F 0[c; e1�], for some context F 0. Further-
more also t = F 0[c; e1�]. Since e1� =EQ e2� and =EQ is closed under contexts,

168 Chapter 6. Termination by Transformation

we have that F 0[x; e1�] =EQ F 0[x; e2�], for any fresh variable x. Furthermore
C[x] = F 0[x; e1�] and by taking D = F 0[2; e2�], also D[x] = F 0[x; e2�]. Since
s = C[c] = C[�(x)] and t = D[�(x)], for any substitution � satisfying �(x) = c,
the result holds.

Finally suppose that s = C[c] =EQ u and that u =EQ t. By induction hypothesis we
can write s = C[�(x)], u = F1[�(x)] and C[x] =EQ F1[x], for some context F1, fresh
variable x and substitution � satisfying �(x) = c. Similarly we can write u = F1[�

0(x0)],
t = D[� 0(x0)] and F1[x

0] =EQ D[x0], for some contextD, fresh variable x0 and substitution
� 0 satisfying � 0(x0) = c. Without loss of generality we can assume that x 6= x0 and that
both variables do not occur in the terms s; u; t. Let y be another fresh variable not
occurring in var(s) [var(u) [var(t) [fx; x0g and de�ne the substitution by:

(x) =

�
y if x = x or x = x0

x otherwise

Then

C[y] = (C[x]) =EQ (F1[x]) = F1[y] = (F1[x
0]) =EQ (D[x0]) = D[y]

Also s = C[c] = C[�(y)] and t = D[�(y)], where � is any substitution satisfying
�(y) = c. 2

Lemma 6.54. Let EQ be a set of length-preserving linear equations. Let R be a left-linear
TRS over T (F ;X), and suppose that the constant c 2 F does not occur in the lhs of rules in R
nor in the equations of EQ. Then termination of R=EQ implies termination of (R[Rc)=EQ.

Proof We proceed by contradiction. Suppose that R=EQ and Rc=EQ (by lemma 6.50) are
terminating and that (R [Rc)=EQ is not terminating. Then there are in�nite rewrite
sequences in (R [Rc)=EQ. Consider a ground in�nite EQ-rewrite sequence4

s0 =EQ s00 !R[Rc s
0
1 =EQ s1 !R[Rc s

0
2 =EQ s2 !R[Rc : : :

Any in�nite rewrite sequence will contain in�nitely many rewrite steps of both R=EQ and
Rc=EQ, since both systems are terminating. Given such an in�nite ground EQ-rewrite
chain, we prove that we can push the Rc=EQ-steps forward, so that the in�nite rewrite
sequence will have an in�nite initial segment of R=EQ-steps, contradicting termination
of R=EQ. For that we prove that !Rc=EQ � !R=EQ � !R=EQ � !�Rc=EQ (i. e., that

R=EQ quasi-commutes over Rc=EQ), by a careful analysis of the position of the redexes.

First remark that if we have C[v] = D[w], for some contexts C;D and terms v; w, then
we can have three possibilities:

4We need only consider ground EQ-reductions since any in�nite EQ-rewrite sequence can be turned into a
similar ground one.

6.4. Eliminating Constants 169

(i) there is a context C 0 such that C[v] = D[C 0[w]], i. e., v = C 0[w].

(ii) there is a context D0 such that D[w] = C[D0[v]], i. e., w = D0[v].

(iii) there is a context F such that D[w] = F [v; w] and C[v] = F [v; w].

Suppose then we have s =EQ u !Rc v =EQ w !R p =EQ t, for some terms
s; u; v; w; p; t. This sequence can be rewritten as

s =EQ C[s0]!Rc C[c] =EQ D[l�]!R D[r�] =EQ t

(i. e., u = C[s0], v = C[c], w = D[l�] and p = D[r�]), for some term s0, contexts C;D,
substitution � and rule l! r of R.

If we apply lemma 6.53 to C[c] and D[l�] we obtain C[c] = C[�(x)], D[l�] = F [c] =
F [�(x)] and C[x] =EQ F [x], for some context F , fresh variable x, substitution � satis-
fying �(x) = c. From F [c] = D[l�] and by the observations made before, we have either
(mark the special occurrence of c we are interested in)

� c occurs in l�; since c does not occur in l, then there must be a variable x 2 var(l)
such that the marked occurrence of c is in �(x). Since l is linear, we can write l as
L[x1; : : : ; xk], where var(l) = fx1; : : : ; xkg. Suppose that the marked c occurs in
�(xj), with 1 � j � k. Let �(xj) denote the term �(xj) with the marked c replaced
by x. Then F [x] = D[L[�(x1); : : : ; �(xj); : : : ; �(xk)]]. De�ne the substitution
by:

(x) =

�
s0 if x = x
x otherwise

Then (F [x]) = F [s0] and

(D[L[�(x1); : : : ; �(xj); : : : ; �(xk)]]) = D[L[�(x1); : : : ; �(xj); : : : ; �(xk)]];

where �(xj) is the term �(xj) with x replaced by s0. Also C[s0] = (C[x]) =EQ

(F [x]), so C[s0] =EQ D[L[�(x1); : : : ; �(xj); : : : ; �(xk)]. De�ne now the substi-
tution � by:

�(x) =

8<
:

�(x) if x 2 fx1; : : : ; xkg and x 6= xj
�(xj) if x = xj
x otherwise

Then l� = L[�(x1); : : : ; �(xj); : : : ; �(xk)] !R r� !�Rc r�, where r� !�Rc r�
is obtained by reducing the term s0 to c in all (possibly zero) occurrences of the
variable xj in r.

We now have s =EQ C[s0] =EQ D[l�] !R D[r�] !�Rc D[r�] =EQ t, i. e.,
s!R=EQ � !

�
Rc=EQ t, as we wanted.

170 Chapter 6. Termination by Transformation

� c occurs in D; then we can write F [c] = D0[c; l�], F [x] = D0[x; l�] and F [s0] =
D0[s0; l�], for some context D0. Furthermore D[r�] = D0[c; r�]. Since C[x] =EQ

F [x], we have C[s0] = (C[x]) =EQ (F [x]) = F [s0], where the substitution
 is de�ned as before. Consequently C[s0] =EQ D0[s0; l�]. Since D0[s0; l�] !R

D0[s0; r�]!Rc D
0[c; l�] = D[r�], we conclude that s =EQ C[s0] =EQ D0[s0; l�]!R

D0[s0; r�]!Rc D
0[c; r�] = D[r�] =EQ t, so s!R=EQ � !

�
Rc=EQ t, as we wanted.

2

We can now introduce a particular form of elimination of constants. Given a TRS R where
the constant a may occur only in the rhs of the rules of R, the TRS Rs denotes R n fl! ag,
i. e., Rs contains all the rules of R that are not of the form l ! a. Then the following result
holds:

Theorem 6.55. Let EQ be a set of length-preserving linear equations. Let R be a left-linear
TRS over T (Fa;X), where a is a constant not occurring in the lhs of the rules of R nor in the
equations of EQ. Then termination of Rs=EQ implies termination of R=EQ.

Proof Since all conditions of lemma 6.54 are satis�ed, we can apply it to conclude that
(Rs [Ra)=EQ is terminating. Since !+

R=EQ � !
+
(Rs[Ra)=EQ, the result holds. 2

Interesting enough, lemma 6.54 also enables us to improve the previous transformations,
since in some cases we can eliminate the introduced constant 3. More precisely:

Theorem 6.56. Let EQ be a set of length-preserving linear equations (such that 3 does not
occur in the equations of EQ). If R is a left-linear TRS over T (Fa;X) and its transformed
version E(R) is well-de�ned and is such that 3 does not occur in the lhs of rules of E(R), then
termination of E(R)s=EQ implies termination of R=EQ.

Proof Apply lemma 6.54 with c replaced by 3. Then we get that termination of E(R)s=EQ
implies termination of E(R)=EQ, and by theorem 6.48 we get termination of R=EQ. 2

Note that left-linearity of the TRS, linearity of EQ and non-occurrence of 3 in the lhs of
rewrite rules are essential as the following example shows.

Example 6.57. Suppose EQ = ; and let R be

R : f(x; x) ! f(0; a(1))
0 ! a(1)

Let a have e-status �(a) = (;; 0). Then E(R) is given by

E(R) : f(x; x) ! f(0;3)
f(x; x) ! 1

0 ! 3

0 ! 1

6.5. Comparing Transformations 171

and E(R)s is given by
E(R)s : f(x; x) ! f(0;3)

f(x; x) ! 1
0 ! 1

We have that neither R nor E(R) terminate, and it is not di�cult to see that E(R)s is
terminating (even simply terminating).

It is also essential that the constant does not occur in the lhs of rules. For example, the
TRS (again with EQ = ;)

R : f(a(x)) ! f(f(0))
f(x) ! a(x)

is not terminating. By eliminating a (with e-status (;; 0)) and then taking E(R)s we get the
TRS

E(R)s : f(3) ! f(f(0))
f(x) ! x

which is terminating (in this case E(R)s = E(R) n ff(x)! 3g).
Finally let EQ be given by f(f(x; x); g(x; x))g and let R be:

R : f(x; y) ! g(0; 1)
0 ! c
1 ! c

Then Rs only contains the rule f(x; y) ! g(0; 1). We have that Rs=EQ is terminating but
R=EQ is not terminating since g(c; c) =EQ f(c; c)! g(0; 1)!+ g(c; c).

6.5 Comparing Transformations

As mentioned before we can obtain di�erent transformations associated with the same function
symbol by changing the e-status of the symbol. The natural question is then what is the rela-
tionship between di�erent transformations arising from di�erent e-status of the same function
symbol. Another interesting question is what happens with respect to other kinds of termina-
tion. In chapter 2 we described a hierarchy of types of termination. Here, for the purposes of
comparing the transformations, we distinguish between termination, simple termination, total
termination and rpo-termination. We are now interested in the e�ects of the transformation
over these kinds of termination, i. e., if E(R) is simply, totally or rpo-terminating, what can be
said about R? The reverse question may not be so interesting from a practical point of view,
yet it is helpful for understanding the relation between transformations. We discuss these issues
in this section. As mentioned in chapter 2, the concepts of simple and total termination carry
over easily to the equational case and the results stated in this chapter for simple and/or total
termination also hold for the equational case (where the equational theory satis�es the restric-
tion of all equations being length-limited and variable-preserving). But since rpo-termination
is not de�ned for the equational case and the equational theory in not really relevant for the

172 Chapter 6. Termination by Transformation

comparison, in this presentation we will restrict ourselves to the case where the equational
theory is just syntactical equality.

First we introduce some notation. In general �0 will denote the e-status (;; 0) and �N will
denote some e-status (f1; : : : ; arity(a)g; i), for any �xed 1 � i � arity(a). We will use the
symbol P to denote a property of TRS's. For example P (R)means that the TRSR has property
P . We will also use the following abreviations: SN for termination (strong normalization), ST
for simple termination, TT for total termination and RPO for rpo-termination.

The following tables provide answers for some of the questions mentioned above. We �rst
consider the transformation associated to the e-status �0.

�0
P P (R)) P (E�0(R)) P (E�0(R))) P (R)

a 2 lhs a 62 lhs
SN no (4) no (3) yes (1)
ST no (4) no; yes if left-linear (5) no (2)
TT no (4) yes (6) no (2)

RPO no (4) yes (7) no (2)

We give now the justi�cations for the above table.

� (1) follows from the main result proved in this chapter (theorem 6.48).

� for (2), consider the following TRS

R : f(f(x))! f(a(f(x)))

We eliminate the function symbol a with e-status �0 and get

E(R) : f(f(x)) ! f(3)
f(f(x)) ! f(x)

Now the system R is terminating but not simply terminating: we have f(f(x)) !R

f(a(f(x)))!EmbFa f(f(x)). Since total termination implies simple termination for �nite
signatures and rpo-termination implies total termination (see chapter 4), we have that R
is neither totally terminating nor rpo-terminating. However E(R) is rpo-terminating (just
take standard rpo over a precedence . satisfying f .3), and so (see observations above)
also totally terminating and simply terminating.

� for (3), consider the following TRS (which is a modi�cation of the famous Toyama's
example)

R : f(0; 1; x) ! f(x; x; x)
g(x; y) ! a(x; y)

This left-linear TRS is terminating; choose A = f0; 1g � IN1 with the order � given by:

(a;m) � (b; n) () a = b and m > n

6.5. Comparing Transformations 173

where > is the usual order on IN and IN1 contains only positive integers, and de�ne the
interpretations

fA((a; k); (b;m); (c; n)) =

�
(0; k +m + 3n) if (a; k) 6= (b;m)
(0; k +m + n) otherwise

gA((a; k); (b;m)) = (1; k +m+ 1)
aA((a; k); (b;m)) = (1; k +m)
0A = (0; 1)
1A = (1; 1)

The transformed version E(R) is not terminating.

E(R) : f(0; 1; x) ! f(x; x; x)
g(x; y) ! 3

g(x; y) ! x
g(x; y) ! y

Clearly f(0; 1; g(0; 1))! f(g(0; 1); g(0; 1); g(0; 1))!+ f(0; 1; g(0; 1)).

� for (4), consider the TRS
R : f(a(1))! f(a(0))

This TRS is rpo-terminating (take standard rpo over a precedence . satisfying 1 . 0) and
consequently also totally terminating and simply terminating. The transformed system
E(R) is given by

E(R) : f(3) ! f(3)
f(3) ! 0

which is clearly non-terminating.

Note that it is not essential that the function symbol a occurs in the rhs. The following
(non right-linear) TRS is rpo and thus totally and simply terminating, while its transformed
version is not terminating.

R : f(a(x); y) ! f(y; y) E(R) : f(3; y) ! f(y; y)

� for (5), consider the TRS

R : f(x; x)! f(a(0); a(1))

This TRS is simply terminating. Choose A1 to be IN with the usual order >. In A1 de�ne
the interpretations 0A1 = 1A1 = 0, aA1(x) = x and fA1(x; y) = x+ y+ 1. Note that A1

is compatible with R1, the rewrite system containing the embbeding rules for f , and is a
(well-founded monotone) quasi-model for R2 = R [fa(x)! xg. For compatibility with
R2, choose the well-founded monotone algebra (A2;�) = (IN;�) with

m � n () (n mod 2 = m mod 2) and m > n

174 Chapter 6. Termination by Transformation

and de�ne interpretations 0A2 = 0; 1A2 = 1, aA2(x) = x + 2 and

fA2(x; y) =

�
2(x+ y + 6) if (x mod 2) = (y mod 2)
2(x+ y) otherwise

Combination of these two algebras and theorems 2.99 and 2.106 give simple termination
of R.

The transformed system is

E(R) : f(x; x) ! f(3;3)
f(x; x) ! 0
f(x; x) ! 1

which is not even terminating.

If R is left-linear, then E(R) is also left-linear for any possible transformation. In the next
table we will see that for the e-status �N , and if a 62 lhs, then ST (R)) ST (E�N (R).
Later on (when comparing the transformation E�0 with E�N), we will prove that, given
left-linearity and a 62 lhs, ST (E�N (R))) ST (E�0(R)). Combining these two results we
get ST (R)) ST (E�N (R))) ST (E�0(R)).

� the justi�cation for (6) is as follows. Since (R;Fa;X) is totally terminating there is
a monotone F -algebra (A;>), compatible with the rules of R and such that > is a
well-order. Consider the order >A on T (Fa;X) induced by the interpretation [[]] :
T (Fa;X) � AX ! A and the order > (recall the de�nition from chapter 2). We now
interpret 3 as the minimal element of A. Then (A;>) is still a total and well-founded
monotone algebra for (R;Fa [f3g;X). By induction on terms it is not di�cult to see
that:

Lemma 6.58. Let �(a) = (;; 0). Then

{ 8t 2 T (Fa;X) : t �A cap0(t).

{ 8t 2 T (Fa;X) 8u 2 E(t) [dec(t) : t �A u.

Note that the minimality of 3 in the algebra, is essential for the proof of the lemma; also
this lemma remains valid in the equational setting.

Now, given the de�nition of E(R) and the properties above, it is easy to check that
(A;>) is also compatible with E(R), giving its total termination (note that to be able to
conclude that l > r for any rule l! r in E(R) it is essential that the eliminated symbol
doesn't occur on the lhs).

� for (7) we just have to extend the precedence . on Fa to Fa [f3g as follows f .3, for
all f 2 Fa. The rest is similar to (6), with the order >A replaced by >rpo.

We now consider the transformation associated to the e-status �N .

6.5. Comparing Transformations 175

�N
P P (R)) P (E�N (R)) P (E�N (R))) P (R)

a 2 lhs a 62 lhs
SN no (4) no (3) yes (1)
ST no (4) yes (5) no (2); yes if right-linear (8)
TT no (4) yes (6) yes (9)

RPO no (4) yes (7) no (10)

We give the justi�cations which are di�erent from the corresponding ones in the previous
table.

� for (2) consider yet another variant of Toyama's TRS

R : f(0; 1; x)! f(x; x; a(0; 1))

This TRS is not simply terminating. The transformed one is given by

E(R) : f(0; 1; x) ! f(x; x; 0)
f(0; 1; x) ! f(x; x; 1)

We can see that E(R) is simply terminating by choosing the following monotone algebra
A = IN1 � f0; 1g � IN1, where IN1 represents the strictly positive natural numbers, with
the well-founded order

(n; p;m) > (n0; p0; m0) () (n >IN1
n0) or

(n = n0 and p = p0 and m >IN1 m
0)

and interpreting 0 by (1; 0; 1), 1 by (1; 1; 1) and f by the monotone function

f((a; b; c); (k;m; n); (r; s; t)) =

�
(a+ k + 2r; 0; c+ n+ 3t) if b 6= m
(a+ k + 2r; 0; c+ n+ t) otherwise

This interpretation is compatible with the TRS E(R)[EmbF and therefore E(R) is simply
terminating.

� for (3), consider the same example as in (3), �0-table, the only di�erence being that the
rule g(x; y)! 3 does not occur in the transformed system associated with �N .

� for (4) consider the TRS
R : f(a(0))! f(0)

This TRS is rpo-terminating and so also totally and simply terminating. The transformed
system E(R) is given by

E(R) : f(0)! f(0)

which is not terminating.

176 Chapter 6. Termination by Transformation

� for (5) and (6) we proceed similarly. Since (R;Fa;X) is simply, respectively totally,
terminating, we know that there is a well-founded monotone algebra (total in the case
of total termination) (A;>) compatible with (R [EmbFa ;Fa;X) (for total termination
this requires the equivalence between total termination of R and total termination of
R[EmbF ; see theorem 2.111). We don't really need to consider the function symbol 3,
however since 3 does not occur in the rules of E(R), introducing 3 in the alphabet is
not problematic, we just interpret it by an arbitrary element of A. This said, lemma 6.58
does also hold for the transformation associated with �N , where cap0(t) is now replaced
by capi(t). Now it is easy to show that l >A u, for all rules l ! u in E(R), so E(R) is
simply (respectively totally) terminating (note that the embedding rules for E(R) are a
subset of the embedding rules for R, so compatibility with the embedding rules of E(R)
is guaranteed).

� (8) and (9) were already shown in Zantema [109] for the case that the function symbol
a does not occur in the lhs of R, but a similar proof applies if we remove this restriction,
since t !�Emba capi(t), for any term t, where Emba consists of the embbeding rules for
a.

� for (10), consider the TRS R:

R : g(h(x); h(y)) ! f(a(x; y))
f(x) ! g(x; x)

Then the transfomed TRS E(R) is given by:

E(R) : g(h(x); h(y)) ! f(x)
g(h(x); h(y)) ! f(y)
f(x) ! g(x; x)

The TRS E(R) is rpo-terminating with >rpo taken over the precedence . such that h.f.g.
However R is not rpo-terminating. The second rule of R forces any precedence to satisfy
f .g and no subterm of g(h(x); h(y)) is greater in the >rpo order than f(a(x; y)), even if
h . f . a, since di�erent variables are incomparable. An even simpler example is provided
by the TRS f(g(f(x)))! g(f(f(a(x)))) (though this is not an orthogonal system).

What happens if the e-status � is neither �0 nor �N? We then get a table \in-between"
tables for �0 and �N , namely

�
P P (R)) P (E�(R)) P (E�(R))) P (R)

a 2 lhs a 62 lhs
SN no no (3) yes (1)
ST no (4) yes (5) no (2)
TT no (4) yes (6) no (2)

RPO no (4) yes (7) no (2)

6.5. Comparing Transformations 177

Note that (2) is the same as in the table for �0 and (5) is the same as in the table for �N
(being the proof of it also the same). With respect to (2), the example for �0 can be modi�ed to
accomodate any e-status � 6= �N . Let then �(a) = (X; i) with ; 6= X (f1; : : : ; arity(a)g,
and i an arbitrary element of X. Let R be

R : f(f(x))! f(a(0; : : : ; f(x); : : : ; 0))

where the term f(x), in the rhs, occurs at some position j 2 f1; : : : ; arity(a)g n X. The
system E(R) will be given by

E(R) : f(f(x)) ! f(0)
f(f(x)) ! f(x)

and eventually will also contain the rule f(f(x)) ! 0. Again E(R) is rpo-terminating, and
thus totally and simply terminating, while R is not even simply terminating.

Since we are interested in simplifying the task of proving termination of E(R), it would
be useful to identify which e-status are more suitable for that purpose. We therefore consider
what happens when a function symbol a has e-status � 1(a) = (X; i) and � 2(a) = (Y; i) with
X � Y . First we consider the case where X 6= ;. Surprisingly enough we have that termination
of E�1(R) does not imply termination of E�2(R) nor vice-versa. Consider the following examples

R : f(f(x))! f(a(0; f(x)))

Let a have e-status � 1(a) = (f1g; 1) and � 2(a) = (f1; 2g; 1). Then the associated transformed
systems are

E�1(R) : f(f(x)) ! f(0)
f(f(x)) ! f(x)

and
E�2(R) : f(f(x)) ! f(0)

f(f(x)) ! f(f(x))

We easily see that E�1(R) is rpo-terminating and that E�2(R) is not terminating. Fix the same
e-status for a and consider now the TRS

R : f(g(0); 1) ! f(2; 2)
2 ! g(a(0; 1))

Then
E�1(R) : f(g(0); 1) ! f(2; 2)

2 ! g(0)
2 ! 1

and
E�2(R) : f(g(0); 1) ! f(2; 2)

2 ! g(0)
2 ! g(1)

178 Chapter 6. Termination by Transformation

In this case we have the reversed situation: E�1(R) is not terminating while E�2(R) is termi-
nating.

We now compare the transformations associated with �0 and any other e-status � . In
Ferreira and Zantema [35] we suggested that, although the transformation associated with �N
and the transformation associated with �0 were not really comparable, that the later seemed
stronger than the former. The following table con�rms our intuition. Let � be any e-status
di�erent from �0, then

P a 62 lhs; � 6= �0
P (E�(R))) P (E�0(R)) P (E�0(R))) P (E�(R))

SN no (2) no (1)
ST no; yes if R left-linear (3) no (1)
TT yes (4) no (1)

RPO yes (5) no (1)

The justi�cations are as follows:

� for (1), consider again the TRS

R : f(f(x))! f(a(f(x)))

Then E�0(R) is given by

E�0(R) : f(f(x)) ! f(3)
f(f(x)) ! f(x)

For any other e-status � we have that E� (R) is given by

E�(R) : f(f(x))! f(f(x))

We have that E�0(R) is rpo-terminating (thus also totally and simply terminating) while
E� (R) is not terminating.

� for (2) consider the TRS

R : f(0; 1) ! f(2; 2)
2 ! g(a(0; 1))

The system E�0(R) is given by

E�0(R) : f(0; 1) ! f(2; 2)
2 ! g(3)
2 ! 0
2 ! 1

6.5. Comparing Transformations 179

The systems E� (R) are the following (the indices give the set X of the e-status (X; i)):

Rf1g : f(0; 1) ! f(2; 2)
2 ! g(0)
2 ! 1

Rf2g : f(0; 1) ! f(2; 2)
2 ! 0
2 ! g(1)

Rf1;2g : f(0; 1) ! f(2; 2)
2 ! g(0)
2 ! g(1)

Clearly E�0(R) is not terminating, while all TRS's E� (R) are terminating, for � 6= �0.

� consider (3); this property was �rst remarked by Middeldorp and Ohsaki (personal commu-
nication) for the case � = �N . We have that E� (R)[Emb(F3;�) is terminating, for some
pwo � on F3. Since R is left-linear, so is E� (R). Recall the de�nition of E� (R)3 from sec-
tion 6.4. Since both E�(R)[Emb(F3;�) and E�(R)

3 are terminating, E� (R)[Emb(F3;�)
is left-linear and 3 does not occur in the lhs of the rules of E�(R) [Emb(F3;�), we can
apply lemma 6.54 and conclude that E� (R)[Emb(F3;�) [E�(R)

3 is terminating. Let us
call this TRS Q.

We de�ne the following order = on T (F3;X):

s = t () 8� : X ! T (F [f3g) : s� !+
Q t�

Note that = is a well-founded partial order on T (F3;X), closed under contexts and
substitutions.

We can prove the following lemma by induction on terms (dec(t)� indicates that the
decomposition of t is taken with respect to e-status �):

Lemma 6.59. For all terms t 2 T (F [fag;X):

{ capi(t) w cap0(t).

{ 8u 2 E�0(t) [dec(t)�0 9v 2 E� (t) [dec(t)� : v w u.

Take an arbitrary rule l ! u of E�0(R). Then there is a rule l ! r of R such that
u 2 E�0(r) [dec(r)�0 . Applying lemma 6.59, we conclude that there is a term v 2
E� (r) [dec(r)� , such that v w u. Since l ! v is a rule in E� (R), we have that l = u,
i. e., !+

E�0(R)[Emb(F3 ;�)
�!+

Q, so E�0(R) is simply terminating.

Left-linearity is essential. The TRS with the rule f(x; x)! f(a(0); a(1)) originates the
only possible transformed TRS's ER� and ER�0 :

ER� : f(x; x) ! f(0; 1) ER�0 : f(x; x) ! f(3;3)
f(x; x) ! 0
f(x; x) ! 1

Then ER� is simply terminating while ER�0 is not even terminating.

180 Chapter 6. Termination by Transformation

� for (4) note that in a total well-founded monotone algebra compatible with E� (R), 3 is
not necessarily interpreted as the minimal element. However it is not di�cult to see that,
since the constant 3 does not occur in the rules of E� (R), we can force the interpretation
of 3 to be the minimal element while keeping the interpretation of the other function
symbols, and the resulting algebra will still be compatible with the TRS. This said we
assume that the interpretation of 3 is indeed the minimal element of the algebra. We
have:

Lemma 6.60. For all terms t 2 T (Fa;X):

{ capi(t) �A cap0(t).

{ 8u 2 E�0(t) [dec(t)�0 9v 2 E� (t) [dec(t)� : v �A u.

where >A is the order on T (F3;X) induced by the algebra (see de�nition 2.92). Now
we can proceed as for (3) above, replacing lemma 6.59 by lemma 6.60 and = by >A and
considering only rules of E�0(R), to conclude that if l! u is such a rule then l >A u, so
E�0(R) is totally terminating.

� for (5) �rst note that if (F3;X ; E�(R)) is rpo-terminating, since the constant 3 does not
occur in the rules of E� (R), then (F3;X ; E�(R)) is still rpo-terminating for a precedence
. satisfying f . 3, for all function symbols f 2 F . We �x such a >rpo. By double
induction on s and t, we can prove that:

Lemma 6.61. For all terms s 2 T (F ;X); t 2 T (Fa;X):

{ s >rpo capi(t)) s >rpo cap0(t) (with i 6= 0)

{ (8u 2 E� (t) [dec(t)� : s >rpo u)) (8u 2 E�0(t) [dec(t)�0 : s >rpo u)

Let l ! u be a rule in E�0(R). Then there is a rule l ! r in R such that u 2
E�0(r)[dec(r)�0 . But since l ! v, for any v 2 E� (r)[dec(r)� , is a rule in E� (R) and
so l >rpo v for all such elements, we conclude using the previous lemma, that l >rpo u,
for all u 2 E�0(r) [dec(r)�0 , proving that E�0(R) is rpo-terminating.

6.5.1 Eliminating Distribution Rules

We now consider the elimination of function symbols in the presence of distribution rules for
that symbol.

In Zantema [108] distribution elimination was introduced. It consists of a transformation on
terms which is applied to TRS's that may contain distribution rules for the eliminated function
symbol. From Zantema [108] we recall the de�nition of distribution rule.

De�nition 6.62. Let a be a �xed function symbol of arity N � 1. A distribution rule for a
is a rule of the form

C[a(x1; : : : ; xN)]! a(C[x1]; : : : ; C[xN])

for any non-trivial context C where a does not occur.

6.5. Comparing Transformations 181

The transformation on terms used in Zantema [108] is denoted by Ea and is similar to our
transformation associated with the e-status �(a) = (f1; : : : ; Ng;�), the di�erence being that
with Ea we get all possible combinations (or crossed) subterms, while with E we only get the
combinations arising from always taking the same branch of alien terms. In other words, if we
�x �N = (f1; : : : ; Ng; i) (with 1 � i � N arbitrary), then, for any term t 2 T (Fa;X) we have
(E(t) [dec(t)) � Ea(t), and in general the inclusion is strict. As a consequence termination
of E(R) follows from termination of Ea(R) and the former transformation is more general.
However we have until now left out the possibility of existence of distribution rules for a in R.
Here we discuss that case. From Zantema [108] we recall:

Theorem 6.63. Let R be a TRS over T (Fa;X), such that each rule is either a distribution
rule for a or a rule where a does not occur in the lefthand-side. Then

1. if Ea(R) is terminating and right-linear then R is terminating.

2. if Ea(R) is right-linear then Ea(R) is simply terminating if and only if R is simply
terminating.

3. Ea(R) is totally terminating if and only if R is totally terminating.

The following example, suggested by Aart Middeldorp, shows that in the presence of distribu-
tion rules, our transformations are not sound with respect to termination, even if no equational
theory is considered.

Example 6.64. Let EQ = ; and let R be given by:

f(0; 1) ! f(a(0; 1); a(0; 1))
f(a(x; y); z) ! a(f(x; z); f(y; z))
f(x; a(y; z)) ! a(f(x; y); f(x; z))

This system is not terminating since it allows the in�nite rewrite sequence

f(0; 1)! f(a(0; 1); a(0; 1))! a(f(0; a(0; 1)); f(1; a(0; 1)))!

a(a(f(0; 0); f(0; 1)); f(1; a(0; 1)))! : : :

All possible transformations of R, with elimination of the distribution rules are shown below

� (;; 0) (f1g; 1)

f(0; 1) ! f(3;3)
f(0; 1) ! 0
f(0; 1) ! 1

f(0; 1) ! f(0; 0)
f(0; 1) ! 1

� (f2g; 2) (f1; 2g;�)

f(0; 1) ! f(1; 1)
f(0; 1) ! 0

f(0; 1) ! f(0; 0)
f(0; 1) ! f(1; 1)

All systems presented above are terminating. We therefore conclude that only the trans-
formation Ea presented in Zantema [108] remains sound with respect to termination when
distribution rules are allowed.

182 Chapter 6. Termination by Transformation

6.6 Final Remarks

We concentrated our e�orts on the elimination of function symbols. We can ask ourselves
whether it is possible to apply the same kind of reasoning to patterns. That is not so. Even if
the pattern is a normal form, elimination of patterns does not provide a sound transformation.
The following example supports this assertion.

Example 6.65. Let R be:
f(x; x) ! f(a(0); a(1))
1 ! 0

Note that this system is not terminating. Suppose we eliminate the pattern a(0) and replace it
by the constant 3. The result is:

f(x; x) ! f(3; a(1))
1 ! 0

which is a terminating system.

There is yet another problem with patterns and that is that since patterns may be dynamically
created during reductions, eliminating a pattern from the reduction rules does not ensure that
the pattern does not occur later.

We can also wonder whether we can weaken the condition necessary to prove theorem 6.48.
It is still an open problem whether theorem 6.48 holds if we remove the restrictions imposed on
the equational system, i. e., based solely on the hypothesis of termination of E(R)=EQ. Due
to the technical tool used for proving theorem 6.48, namely the tree construction and the tree
lifting of a quasi-order, those restrictions are necessary. The restriction mvar(e1) = mvar(e2),
for any equation (e1; e2), is necessary to ensure that s =EQ t) tree(s) � tree(t). If
an equation (e1; e2) would not satisfy this then lemma 6.35 and lemma 6.5 would imply that
tree(e1) 6� tree(e2). But length-limited cannot be weakened to variable-preserving and we
now see why. In order to be able to prove lemma 6.47, we need to have an order on terms that
is compatible with some form of subterm property (modulo EQ). But we also want such an
order to be well-founded. The problem is that ensuring that the quasi-order \subterm modulo
EQ" is well-founded is not possible in general, as the following example shows.

Example 6.66. Let EQ = f(f(g(f(x))); g(x))g. We de�ne � = D n E, where s D
t () 9C : s =EQ C[t] (here D is a form of subterm property modulo EQ). Then we have
g(f i(x)) � g(f i+1(x)), for all i � 0, so � is not well-founded.

The best way of ensuring well-foundedness of an order having the subterm property modulo
EQ we could �nd was imposing the length-limited condition on the equations of EQ.

We were not able to �nd neither another proof nor a counterexample for equational theories
not satisfying our restriction and it seems that termination of E(R)=EQ is a strong enough
condition to ensure validity of theorem 6.48. However that remains to be proved.

With respect to practical application of the techniques presented in this chapter, we believe
they can be quite useful, especially in the �eld of automatic termination proofs, since these

6.6. Final Remarks 183

techniques can easily be implemented and used to pre-process the (equational) term rewrite
systems to be proven terminating. So far dummy elimination has been used in Zantema and
Geser [112], in the context of term rewriting, and in Fokkink and Zantema [36], for equational
rewriting, this last application being in the �eld of Process Algebra.

184 Chapter 6. Termination by Transformation

Appendix A

A note on Well-founded Orders

A.1 The Problem

It is well-known that given a partially ordered set, it is always possible to extend that partial
order to a total one. It is also known that given any set, it is possible to de�ne a total and
well-founded order on that set (Zermelo's Theorem; see Kuratowski and Mostowski [65]). We
turn now to the problem of extending a partial well-founded order. We remark that these three
problems are closely related to the Axiom of Choice (see Kuratowski and Mostowski [65]).
Indeed Zermelo's Theorem is equivalent to it and so is Zorn's lemma (see Davey and Priestley
[18]), the result used in the proof of the �rst problem and also in the proof we present here.

First let us make clear what we mean by well-founded (see de�nition 2.14). Given a partially
ordered set (P;>), we de�ne an !-descending chain in P as a function � from the naturals to
P , such that i < j) �(i) > �(j). By a �nite descending chain we mean that � is de�ned
only on a �nite subset of the natural numbers. If (P;>) admits no !-descending chains, we
say that it is well-founded .

It is interesting to remark that we can characterize well-foundedness without using the
natural numbers, since we have the following result (also equivalent to the Axiom of Choice):

(P;>) is well-founded () 8; 6= S � P : S has a minimal element.

We state now the essential tool for our solution.

Lemma A.1. (Zorn's Lemma) Let (P;>) be a non-empty partially ordered set such that
every (ascending) chain has an upper bound. Then (P;>) has a maximal element.

Recall that a an ascending chain has the form: x0 > x1 > : : : > xn : : : . Recall also that
given a set X � P an element m 2 P is an upper bound for X if for all x 2 X we have m � x.

We state our problem.

Theorem A.2. Let (A;>) be a partially ordered set such that > is well-founded. Then it is
possible to extend the order > to a total and well-founded order on A.

185

186 Appendix A. A note on Well-founded Orders

In the case that A is �nite the total well-founded extension is called a topological sort (see
Knuth [62]).

We will prove this result as follows: �rst a convenient set (denoted by K) of partial orders
over subsets of A will be de�ned and with it an appropriate notion of inclusion =; then we check
that (K;=) satis�es the conditions of Zorn's lemma; �nally we see that a maximal element
of K (whose existence is ensured by Zorn's lemma), is an element which complies with our
requisites, i. e., it is a total well-founded order extending the original one.

The intuitive idea behind the proof is that we want to extend an initially well-founded order,
so we can start with a �nite descending chain of that order and try to extend that chain.
However for that extension to be well-founded it is necessary that we do not extend the chain
from below (at least not in an indiscriminate manner). One can achieve this by �xing (an initial
segment of) the chain and add elements at the top.

A.2 The Proof

We �x the set A and the well-founded partial order > on A. De�ne K as the set of partial
orders (P;>P) satisfying the following conditions:

1. P � A.

2. If x; y 2 P and x > y then x >P y.

3. >P is total and well-founded (in P).

4. If x > y and x 2 P then y 2 P .

We note that K is non-empty since (for example) every singleton set containing a minimal
element of (A;>) with the trivial order, is in K.

The �rst three conditions state that we are interested in total well-founded orders respecting
the original order but de�ned only on a subset of A. The fourth condition means that P has
to be an ideal for the original order.1

We now turn K into a partially ordered set de�ning, for any T;R 2 K

R = T () T is an initial segment of R.

That is,

(a) T � R (as sets),

(b) if x >R y and x 2 T then y 2 T and x >T y.

It is easy to see that = is indeed a partial order in K.

1Recall that an ideal I of a poset (P;�) is a set satisfying x 2 I and x � y) y 2 I .

A.2. The Proof 187

We remark that condition (b) and the fact that both >R and >T are total orders, imply
that >R subsumes >T , i. e., x >T y) x >R y.

The next step is to verify that K satis�es the conditions of Zorn's lemma. We already
saw that K is non-empty. Now we take an ascending chain S0 < S1 < S2 < : : : in K
(where as usual < is the inverse relation of =, i. e., S < T () T = S) and de�ne
(S;>S) = (

S
n�0 Sn;

S
n�0 >Sn).

We shall see now that (S;>S) 2 K. First we note that >S is indeed a partial order on S
since:

� irreexivity: suppose we have an element s 2 S such that s >S s; then there is an index
i � 0 such that s 2 Si and s >Si s, contradicting irreexivity of >Si .

� transitivity: x >S y and y >S z) 9i; j : x >Si y and y >Sj z. Taking m = maxfi; jg
we have that Si v Sm and Sj v Sm. So x >Sm y and y >Sm z and since >Sm is
transitive we conclude that x >Sm z implying that x >S z.

It is also easy to see that (S;>S) is a upper bound for every element in the chain. Indeed
for any n:

(a) Sn � S.

(b) Suppose x >S y and x 2 Sn, then there is an index k such that x >Sk y. Now either
Sn v Sk or the converse holds and in both cases x >Sn y, because of the de�nition of
=.

We check now the conditions de�ning K.

� Condition 1 is trivial since we take a union of subsets of A.

� For condition 2, if x; y 2 S then there are indexes i; j such that x 2 Si and y 2 Sj.
Taking m = maxfi; jg, then x; y 2 Sm. Now, since Sm satis�es condition 2, if x > y
then x >Sm y and therefore x >S y.

� For condition 3, let us take x; y 2 S. Again there must be indexes i; j such that x 2 Si
and y 2 Sj and consequently x; y 2 Sm, where m = maxfi; jg. Since Sm is total then
either x �Sm y or the converse must hold, and in any case x and y are related in S,
so S is total. To see that (S;>S) is well-founded, we suppose there is an !-descending
chain and then reach a contradiction. Let then x0 >S x1 >S x2 : : : be an !-descending
chain. Since x0 >S x1 there must be an index i0 such that x0; x1 2 Si0 and x0 >Si0

x1.
Also x1 >S x2) 9i1 : x1 >Si1

x2. Since fSigi�0 is a chain, we have either Si1 v Si0
or Si0 v Si1 . In the �rst case we have x1; x2 2 Si0 and x1 >Si0

x2 (see remark after
the de�nition of =). In the second case we have x2 <Si1

x1 2 Si0 and Si0 v Si1 , so, by
condition (b) in the de�nition of =, we conclude that also x2 2 Si0 and x2 <Si0

x1.

By induction we prove that 8i � 0 : xi 2 Si0 and xi >Si0
xi+1. Therefore the !-

descending chain above is contained in Si0 contradicting its well-foundedness.

188 Appendix A. A note on Well-founded Orders

� Finally the fourth condition is also trivially veri�ed since if x > y and x 2 S, then there
is some index i such that x 2 Si and since Si satis�es condition 4, we have y 2 Si and
therefore y 2 S.

We have just seen that (S;>S) 2 K. Furthermore (S;>S) is an upper bound for the chain,
so we can apply Zorn's lemma to conclude that K has a maximal element we shall denote by
(S;�).

In order to show that this is the total well-founded order we are looking for, it is enough to
see that S = A.

Let us suppose that that is not the case, then A n S 6= ;. Since > is well-founded in A,
A n S has a minimal element (with respect to >). We denote that element by m.

We now de�ne (S 0; >0) by letting S 0 = S [fmg, and >0 be given by:

x >0 y () (x = m and y 6= m) or x � y

It is not di�cult to see that >0 is well-de�ned and also that (S;�) < (S 0; >0). If we now
can prove that (S 0; >0) 2 K, we reach a contradiction and therefore are able to conclude that
A = S. We check the conditions de�ning K.

1. Obviously S 0 � A.

2. Suppose x; y 2 S 0 and x > y. We have the following cases:

� x; y 2 S; then x � y (since (S;�) 2 K) implying x >0 y.

� y 2 S and x = m; then x >0 y by de�nition of >0.

� y = m and x 2 S; this case cannot occur since by condition 4 of the de�nition of
K and the fact that (S;�) 2 K we would get m 2 S.

3. >0 is total in S 0 by de�nition. As for well-foundedness, suppose there is an !-descending
chain
 in (S 0; >0). If m does not occur in
 then
 is an !-descending chain in (S;�)
contradicting the fact that (S;�) is well-founded. If m occurs in
 then it occurs only
once (since the chain is strictly decreasing and no element of S 0 is greater, with respect
to >0, than m); removing m from
 we get again an !-descending chain in (S;�),
again contradicting well-foundedness of (S;�). Therefore no !-descending chains exist
in (S 0; >0), so (S 0; >0) is well-founded.

Alternatively, to establish well-foundedness of (S 0; >0) we can verify that every non-empty
subset of S 0 has a minimal element. Let B be such a set. If B \ S 6= ; then we can
take the minimal element of B \ S in (S;�) since (S;�) is well-founded. From the
de�nition of (S 0; >0) we see that this element is also a minimal element of B in (S 0; >0).
If B \ S = ; then B = fmg and m is the minimal element of B.

4. Suppose that x > y and x 2 S 0. If x = m then y 2 S, since m is minimal in A n S, and
then y 2 S 0. If x 6= m then x 2 S and since (S;�) 2 K also y 2 S � S 0.

We have just seen that (S 0; >0) 2 K contradicting the maximality of (S;�). Therefore
A = S and � is a total, well-founded extension of >.

A.3. Another Solution 189

A.3 Another Solution

Another way to prove this result is by using ordinals and Zermelo's Theorem. Let > be a partial
well-founded order on a set A. By Zermelo's Theorem we can ensure the existence of �, a
total well-founded order in A. In general � will not be an extension of > so we have to do
something else.

Let Ord denote the class of ordinals well-ordered by the order >o. We de�ne the following
function � : A! Ord by

�(x) =
�_

a<x
�(a)

�
+ 1

where the supremum over an empty set is the unique minimal ordinal 0 and with the operation
� + 1 giving the successor ordinal of ordinal �.

Note that � is well-de�ned and is order-preserving, i. e., it satis�es x > y) �(x) >o �(y),

since if x > y then �(y) 2 f�(a)j a < xg so �(y) �o
_

a<x
�(a)) �(y) <o

�_
a<x

�(a)
�
+1.

In A we de�ne the relation = by

x = y () (�(x) >o �(y)) or (�(x) = �(y) and x � y)

It is not di�cult to see that = is a partial order on A. Furthermore, since both >o and � are
well-founded on, respectively, Ord and A, also = is well-founded on A: an !-descending chain
with respect to = would translate into either an !-descending chain in (Ord;>o) or (A;�),
contradicting well-foundedness of these orders.

Since � is order-preserving, we conclude that = is an extension of >. Finally, in order to
see that = is the order we want, we need to see that it is total on A. Let then x; y be two
arbitrary di�erent elements of A. Since the order >o is total in Ord, we must have either
�(x) >o �(y), �(y) >o �(x) or �(x) = �(y). In the �rst two cases we conclude that x = y or
vice-versa, respectively. In the last case, totality of � implies that x � y or y � x. In any case
we conclude that the elements x and y are related under =.

A.4 Remarks

To conclude this note, we remark that the solutions presented came out of some discussions
with Hans Zantema and Lu��s Monteiro. Thanks to Narciso Mart��-Oliet for proof-reading part
of this appendix and suggestions.

We would also like to remark that in Wechler [104] (Theorem 19) another proof of theorem
A.2 is given using also a mapping from the set A to ordinals. The solution presented there
is di�erent from ours and is based on an enumeration of the elements of A, starting from an
arbitrary minimal element. In that solution not only the extension is obtained but also its order
type.

For more information on this topic, see Fra��ss�e [37].

190 Appendix A. A note on Well-founded Orders

Appendix B

Undecidability of termination

In the following simulation of Turing Machines by Term rewriting systems and the undecidability
of termination of those are discussed. The main subject of this appendix is the uniform halting
problem for which two di�erent solutions will be given. The �rst approach presented is similar
to the one followed by Klop [61] and di�ers from the approach of Huet and Lankford [47]
essentially in the way the states of the machine are interpreted in the rewriting system. The
second approach is new and is based on the notion of many-sorted term rewriting systems as
presented in Zantema [106].

B.1 Turing Machines

We de�ne Turing Machines as follows:

De�nition B.1. A Turing Machine is a tuple M = hQ; �; �i such that:

� Q = fq0; : : : ; qng is the set of states of the machine.

� � = fs0; : : : ; smg is a set of symbols constituting the alphabet of the machine. The
symbol s0 represents the blank symbol.

� � : Q��! Q���f�1; 1g is a function giving the transitions of the machine, where
�(ql; si) = (qk; sj; �) means \if in state ql the symbol si is read then (over)write symbol
sj, go to state qk and advance � cells in the tape" (where � 2 f�1; 1g).

� associated to the machine there is a tape, in�nite in both directions and blank everywhere
except in a �nite (consecutive part) in which a word over � is writen.

Some authors consider the possible moves in the tape to include 0 (no move). The de�nition
obtained is equivalent to the one presented. Also we omit the initial and �nal states since they
are not relevant for our purposes.

Additionally a snapshot of the Turing Machine is characterized by the contents of the tape
and the state the machine is in. Such a snapshot is called con�guration and its de�nition is:

191

192 Appendix B. Undecidability of termination

De�nition B.2. A con�guration of a Turing Machine is a triple of the form hw0; ql; w1i,
where w0; w1 2 �� and ql 2 Q. w0 and w1 represent the left and the right parts of the tape
respectively. The machine is in state ql and we conventionalize that the head is positioned on
the �rst symbol of w1. We denote by C the set of all con�gurations of a Turing Machine.

Remark B.3. If w1 = � (empty word), the head of the Turing Machine has reached the right
extremity of the tape. This means that all subsequent symbols are blanks, so actually � stands
for an in�nite sequence of blanks. Similarly for w0 = � and the left part of the tape.

In the following we will use a dot to denote both the concatenation of elements and strings
and the concatenation of strings. Since concatenation is associative the order taken is irrelevant.

The transition function � induces a transition relation between the con�gurations. Namely,
if I and I 0 are con�gurations, we say that there is a transition from I to I 0 and write I !M I 0,
if and only if:

� I = hw0; ql; w1i, �(ql; si) = (qk; sj; �); first(w1) = si, and

{ I 0 = hw0 � sj; qk; tail(w1)i, for � = 1, or

{ I 0 = hinit(w0); qk; last(w0) � sj � tail(w1)i, for � = �1.

where first, last, init and tail are functions from �� to ��, de�ned as:

� first(�)= s0 and first(s � w)= s, for s 2 � and w 2 ��.

� last(�)= s0 and last(w � s)= s, for s 2 � and w 2 ��.

� init(�)= � and init(w � s)= w, for s 2 � and w 2 ��.

� tail(�)= � and tail(s � w)= w, for s 2 � and w 2 ��.

B.2 De�ning the TRS

We want to simulate the behaviour of the Turing Machine (TM for short) by an appropriate
term rewriting system (TRS). For de�ning the TRS, we have to de�ne its alphabet and its
reduction rules. Then we have to translate the TM to the TRS in such a way that transitions
in the TM correspond to reductions in the TRS.

We start by de�ning the alphabet F of the TRS. We need to �nd analogues for the symbols
of � andQ in order to be able to represent the tape. A possible choice is to interpret the symbols
of � as unary symbols in the TRS, and the symbols of Q as binary symbols. A justi�cation for
such a choice is that we can think of a state ql as a function of two arguments: the left and
right parts (with respect to the head) of the tape. So for each state qi 2 Q, we de�ne a binary
function symbol Qi, thus yielding a set of binary function symbols F2 = fQ0; : : : ; Qng. For
each symbol si 2 �, we de�ne an unary function symbol Si, so we have a set of unary function
symbols F1 = fS0; : : : ; Smg. We de�ne also F0, the set of constant symbols, that contains

B.2. De�ning the TRS 193

6 b s1 s3 s4 s2

q3

s1 s5 6 b: : : : : :

Figure B.1: A Turing Machine's tape. The symbol 6 b marks the beginning of the in�nite blank
part of the tape.

only the symbol �, intended to represent the empty tape. Therefore the alphabet of the TRS
is given by F = F2 [F1 [F0.

Furthermore we have a set of variables X . Now T (F ;X) is, as usual, the set of terms over
F and X .

To be able to simulate the TM by the TRS we need some way of translating the con�g-
urations of the machine to terms in the TRS (and, of course, provide the reduction rules).
Informally, a tape as the one presented in Figure B.1, which has as con�guration the tuple
I = hs1 � s3 � s4; q3; s2 � s1 � s5i, gives rise to a term tI = Q3(X1; X2), where X1 codes the left
part of the tape and X2 the right part. For X2 we expect a term like S2(S1(S5(�))) but for X1

things are a little di�erent. Since the backward movement of the tape is from right-to-left, we are
actually interested in the left part of the tape reversed. That is, we take X1 = S4(S3(S1(�))).
So the term corresponding to this con�guration is tI = Q3(S4(S3(S1(�))); S2(S1(S5(�)))).

More formally, we de�ne the following function:

� : C ! T (F ;X)
hw0; ql; w1i 7! Ql(�((w0)

�1); �((w1)))

where the exponent �1 represents string inversion, : fs0; : : : ; sng� ! F1 [F0 is given by:

(�) = �
(si � w) = Si � (w)

and �(w) is the ground term obtained from the string w 2 F1� � F0 as follows: �(�) = � and
�(Si � w) = Si(�(w)).

The reasons behind the de�nition of F should now be clearer. The function symbols Qi

represent the head of the Turing Machine, its �rst parameter represents the left part of the
tape (and therefore is reversed) and its second parameter represents the right part of the tape.

Remark B.4. From the de�nition of � it is clear that con�gurations are coded by only a
certain set of ground terms, namely the ground terms of the formQi(Wl;Wr) for some Qi 2 F2,

194 Appendix B. Undecidability of termination

and where W0;W1 are the images under � of some words over F�1 � f�g. In the following we
use the notation tI to stand for a term corresponding to the translation of a con�guration I,
that is tI = �(I).

We now introduce the rewriting rules of the TRS. These rules are derived from the transition
function � in the following way:

� If �(qi; sj) = (qk; sl; 1), we introduce in the TRS the rules:

{ Qi(x; Sj(y))! Qk(Sl(x); y),

{ Qi(x;�)! Qk(Sl(x);�), if j = 0.

� If �(qi; sj) = (qk; sl;�1), then we add the rules:

{ Qi(S(x); Sj(y))! Qk(x; S(Sl(y))), for each S 2 F1,

{ Qi(S(x);�)! Qk(x; S(Sl(�))), for each S 2 F1 and if j = 0,

{ Qi(�; Sj(y))! Qk(�; S0(Sl(y))),

{ Qi(�;�)! Qk(�; S0(Sl(�))), if j = 0.

We will denote the TRS de�ned above by RM . The reduction relation will be denoted by!RM
or simply by !.

It is clear from the de�nitions of !M and !RM , that I !M I 0 () tI !RM tI0, where
I and I 0 are con�gurations and tI and tI0 their respective images under �. Consequently we
have the following lemma:

Lemma B.5. M has an in�nite sequence of con�gurations starting with I0 if and only if
tI0 = �(I0) has an in�nite reduction in RM .

As a corollary we have:

Corollary B.6. Given a term t and a TRS R, the problem of determining if t admits in�nite
reductions in R is undecidable.

Proof Given a Turing Machine M and input tape I , the problem of determining if M stops
with input I reduces to determine if tI has no in�nite reductions in RM . Since the former
problem is undecidable, so is the second. 2

The previous results does not allow us to conclude anything on the uniform halting problem
for TRS's since not all terms inRM correspond to valid con�gurations of the machine. However,
as we will see, a general term can be viewed as a set of replicas of the same Turing Machine,
each of them acting on a di�erent tape.

A general term in RM may contain more than one Q symbol, looking something like:

Si1(: : : Sik(Qj1(: : : Qj2(: : : Qj3(: : :)); : : : Qjl(: : :))))

B.2. De�ning the TRS 195

where ik; jl � 0 and where : : : may contain S and/or Q symbols.
We want to identify and separate in such a term the parts which relate to valid con�gurations

of the machine, that is, subterms of the form

Si1(: : : Sik(�) : : :) and Qj(Sl1(: : : Slp(�l) : : :); Sr1(: : : Srs(�r) : : :))

where �; �l; �r 2 f�g [X and k; p; s � 0.
First we introduce the notions of S-term and Q-term. Intuitively, S-terms are terms which

consist of zero or more applications of Si symbols to the constant �, and Q-terms are terms
which have one and only one occurrence of a Qj symbol and whose arguments are S-terms.
More formally we de�ne:

S = ft 2 T (F)j t = Si1(: : : Sik(�) : : :); for some k � 0g
Q = ft 2 T (F)j t = Ql(T1; T2); for some Ql 2 F2 and T1; T2 2 Sg

We now de�ne a function that will allow us to break a term into its S and Q-constituents.
Let then f = (f1; f2) : T (F ;X)! S�M(Q) (whereM represents the �nite multisets1), be
de�ned inductively as follows:

� f(�) = (�; ;), if � 2 f�g [X .

� f(Si(w)) = (Si(u); P), if f(w) = (u; P).

� f(Qj(wl; wr)) = (�; ffQj(ul; ur)gg t Pl t Pr), if f(wr) = (ur; Pr) and f(wl) = (ul; Pl).

The idea behind this de�nition is to get in the second coordinate the possible con�gura-
tions contained in the term, the �rst coordinate being used to build the arguments of those
con�gurations.

Example B.7. Let the term t be

Sk(Sr(Qi(Ss(Qj(Sl(�);�)); Qt(y; Su(�))))

This term is showed in Figure B.2 and gives the following partition: f(t) = (Sk(Sr(u)); P),
and

(u; P) = f(Qi(Ss(Qj(Sl(�);�)); Qt(y; Su(�))))
= (�; ffQi(u1; u2)gg t P1 t P2)

where (u1; P1) = f(Ss(Qj(Sl(�));�)) and (u2; P2) = f(Qt(y; Su(�))) = (�; ffQt(u3; u4)ggt
P3 t P4): But

(u3; P3) = f(y) = (�; ;)
(u4; P4) = f(Su(�)) = (Su(�); ;):

Also
(u1; P1) = f(Ss(Qj(Sl(�);�))) = (Ss(�); ffQj(u5; u6)gg t P5 t P6)

1Since we have to account for possible repetition of Q-terms, sets are not enough but actually we don't need
to use multisets. Lists, trees or (meta)words, for example, would also solve our problem.

196 Appendix B. Undecidability of termination

Sk

Sr

Qi

Ss

Qt

y Su

�

Qi(Ss(�);�)

Qt(�; Su(�))Qj(Sl(�);�)

Qj

�

�Sl

Figure B.2: Partitioning a term.

where
(u5; P5) = f(Sl(�)) = (Sl(�); ;)
(u6; P6) = f(�) = (�; ;):

Making all the replacements we get

f(t) = (Sk(Sr(�)); ffQi(Ss(�);�); Qj(Sl(�);�); Qt(�; Su(�))gg)

We have the following lemma:

Lemma B.8. Suppose t !RM t0 then there are Q-terms q 2 f2(t), q
0 2 f2(t

0) such that
q !RM q0. Furthermore f2(t) n ffqgg = f2(t

0) n ffq0gg.

Proof Suppose t!RM t0, then there is a subterm u of t such that u is of the form Qi(ta; tb)
matching one of the rewriting rules.

It is easily seen by induction on the structure of a term that if u is a subterm of t then
f2(u) v f2(t). So we have f2(Qi(ta; tb)) v f2(t). But f2(Qi(ta; tb)) = ffQi(ua; ub)gg t
Pa t Pb, where (ua; Pa) = f(ta) and (ub; Pb) = f(tb).

It can be seen by case analysis that the following diagram holds:

u = Qi(ta; tb)
r
! Qk(t

0
a; t
0
b) = u0

Qi(ua; ub)
r
! Qk(u

0
a; u
0
b)

B.2. De�ning the TRS 197

that is, if Qi(ta; tb) matches a rule r then Qi(ua; ub) matches the same rule and its reduct
Qk(u

0
a; u
0
b) is in f2(Qk(t

0
a; t
0
b)).

We will check it for the rules of the type:

Qi(x; Sj(y))! Qk(Sl(x); y); for any j 2 f0; : : : ; mg

For the other rules it is done in a similar way.

Suppose then that Qi(ta; tb) matches Qi(x; Sj(y)). Then there is a substitution �
such that �(x) = ta and Sj(�(y)) = tb. Thus we can write (ua; Pa) = f(�(x))
and (ub; Pb) = f(Sj(�(y))) = (Sj(w); Pw) where (w; Pw) = f(�(y)). Consequently
Qi(ua; ub) = Qi(ua; Sj(w)) and this term matches the same rule with substitution �0

satisfying �0(x) = ua, �
0(y) = w.2 Applying the rule on both redexes, we get the

resulting terms Qk(Sl(ta); �(y)) and Qk(Sl(ua); w). Furthermore

f(Qk(Sl(ta); �(y))) = (�; ffQk(Sl(ua); w)gg t Pa t Pw):

So Qk(Sl(ua); w) 2 f2(Qk(Sl(ta); �(y))) v f2(t
0).

Recalling that f2(Qi(ta; tb)) = ffQi(ua; ub)gg t Pa t Pw (since Pb = Pw), we have that
f2(u) n ffQi(ua; ub)gg = f2(u

0) n ffQk(Sl(ua); w)gg. Note that also f1(u) = f1(u
0).

We still have to see that f2(t) and f2(t
0) di�er only in the redex and reduct (in the

following this will be denoted by f2(t); f2(t
0)). We will see then that:

t!RM t0) f1(t) = f1(t
0) and f2(t); f2(t

0) (B.3)

Let u be the reduced subterm, that is t = C[u] and t0 = C[u0] with u ! u0. We prove
B.3 by induction on the context. If C = 2 then the result holds (as seen in the previous
case analysis). If t = Si(C[u]) then f(t) = f(Si(C[u])) = (Si(a); Pa) where (a; Pa) =
f(C[u]). Also t0 = Si(C[u

0]) and f(t0) = (Si(a
0); Pa0) where (a0; Pa0) = f(C[u0]). By

induction hypothesis a = a0 and Pa ; Pa0 , so the result follows.

If t = Qi(ta; C[u]) then f(t) = (�; ffQi(ua; ub)ggtPatPb), where (ua; Pa) = f(ta) and
(ub; Pb) = f(C[u]). Also t0 = Qi(ta; C[u

0]) and f(t0) = (�; ffQi(ua; u
0
b)gg t Pa t Pb0),

with (u0b; Pb0) = f(C[u0]). Again by induction hypothesis, ub = ub0 and Pb ; Pb0 , giving
the result. The case t = Qi(C[u]; ta) is symmetrical. 2

Now if t is a ground term which has an in�nite reduction then one of the Q-terms of its
decomposition must also be rewritten in�nitely many times, since the number of Q-terms in the
decomposition is �nite from the start and that number remains constant during the reductions.
So we can state:

Lemma B.9. If t is a ground term that has an in�nite reduction then there is a term q 2 f2(t)
that has an in�nite reduction.

2Note that there are no variable clashes since both ua and w are ground terms.

198 Appendix B. Undecidability of termination

If t is a general term that has an in�nite reduction, then t also has an in�nite ground
reduction, so the following result holds.

Theorem B.10. The TRS RM is terminating if and only if M stops on any input.

Consequently we have:

Corollary B.11. Termination of Term rewriting systems is undecidable.

B.3 Using Many-sorted TRS's

As remarked before not all terms in RM correspond to valid con�gurations in M . Following the
approach of Zantema [106], we can go around this problem by de�ning a sorted TRS such that
the well-de�ned terms in this TRS contain at most one Q symbol. First we introduce some
basic notions from sorted TRS's (all this notions can be found in Zantema [106]).

Let S be a set of sorts and XS an S-sorted set of variables. Let F be a set of function
symbols such that with each symbol there is associated a sort and an arity, given respectively
by the functions:

st : F ! S
ar : F ! S�

The S-sorted set of terms, denoted by T (F ;XS), is de�ned by:

� Xa � T (F ;XS)a, for any a 2 S (we remark that all sets Xa are disjoint),

� f(t1; : : : ; tk) 2 T (F ;XS)a, for f 2 F with ar(f)= s1 � � � sk, st(f)= a and ti 2
T (F ;XS)si, for i = 1; : : : ; k.

Note also that substitutions now have to respect the sort of variables, i. e., a substitution
� is a function � : XS ! T (F ;XS) such that �(Xa) � T (F ;XS)a for all sorts a 2 S.

An S-sorted TRS has an S-sorted set of rules RS =
S
s2S Rs such that Rs � T (F ;XS)s�

T (F ;XS)s, for any s 2 S. In the following we denote this rewrite system, as well as its rewrite
relation, by RS .

De�nition B.12. The rewrite (or reduction) relation of an S-sorted TRS R is the S-sorted
relation !RS=

S
s2S!Rs on T (F ;XS), where !Rs is given by:

� l� !Rs r�, for every rule (l; r) 2 Rs and every substitution �.

� f(t1; : : : ; tk; : : : ; tn)!Rs f(t1; : : : ; t
0
k; : : : ; tn), for every f 2 F with ar(f)= s1 � � � sk,

st(f)= s, ti 2 T (F ;XS)si , i = 1; : : : ; n, t0k 2 T (F ;XS)sk, and tk !Rsk
t0k.

Now let us build our particular sorted TRS. In our case S = fs; qg and XS is the S-
sorted set of variables such that Xq = ;. The set of operation symbols is given by F =
fQ0; : : : ; Qn; S0; : : : ; Sm;�g with the following arities and sorts:

B.3. Using Many-sorted TRS's 199

� ar(�)= �; st(�)= s,

� ar(Qi)= s � s; st(Qi)= q, for all 0 � i � n,

� ar(Si)= s; st(Si)= s, for all 0 � i � m.

We have only two kinds of terms, namely terms of sort s and terms of sort q, such that

� t 2 T (F ;XS)s () t = Si1(: : : Sik(�) : : :), for k � 0 and � 2 f�g [Xs,

� t 2 T (F ;XS)q () t = Qi(t1; t2), for some Qi 2 F and t1; t2 2 T (F ;XS)s.

As for the reduction rules, our sorted system has two set of rules Rs and Rq with Rs = ;
and Rq = RM = RS � T (F ;XS)q � T (F ;XS)q.

The S-sorted TRS RS is terminating if and only if for every a 2 S, there is no in�nite
reduction of the reduction relation !Ra. In this case since Rs = ;, !Rs gives no reductions,
so the system is terminating if and only if !Rq has no in�nite reductions.

Now associated with any sorted TRS R, there is a one-sort TRS obtained from the sorted
version by ignoring the sort information. This new TRS, that we denote by �(R), is given by:

� F 0 = ff 0jf 2 Fg

� X 0 =
S
s2S Xs

� (l0; r0) 2 �(R) () (l; r) 2
S
s2S Rs and l0 = �(l) and r0 = �(r), where � :S

s2S T (F ;XS)s ! T (F
0;X 0) is de�ned inductively by:

{ �(x) = x, for all x 2 Xs, for all s 2 S (this de�nition poses no problem since all
sets Xs are disjoint).

{ �(f(t1; : : : ; tn)) = f 0(�(t1); : : : ;�(tn)), for all f 2 F and terms ti, 1 � i � n
(n � 0), of the appropriate sort.

We remark that t!Rs t
0 () �(t)!�(R) �(t

0).
From Zantema [106] we know that if R is an S-sorted TRS without collapsing rules then R

is terminating if and only if �(R) is terminating. Since by construction we have RM = �(RS),
we can establish our main result:

Theorem B.13. RM is terminating if and only if M stops on any input I.

Proof From the above observation and since RS contains no collapsing rules, we know that
RM is terminating if and only if RS is terminating. So it su�ces to establish that

RS is terminating if and only if M stops on any input I

and this is an easy consequence of the following facts:

� for any con�guration I, �(I) is a RS-term of sort q,

200 Appendix B. Undecidability of termination

� any reducible RS-term has to have the form

Qi(Sl1(: : : Slk(�l) : : :); Sr1(: : : Srp(�r) : : :))

where k; p � 0, Sli; Srj 2 F for any 1 � i � k and 1 � j � p, and �l; �r 2
f�g [Xs. Any ground instance of such a term corresponds to a con�guration of
the Turing Machine.

2

B.4 Huet and Lankford's approach

We will comment briey on the approach presented in Huet and Lankford [47] comparing it
with the approach presented here.

Essentially these approaches di�er in the way the symbols from the alphabet of the Turing
Machine are interpreted in the TRS. In Huet and Lankford's approach, the TRS contains no
binary symbols, both states of the machine and symbols of the alphabet are interpreted as
unary function symbols. However it is still necessary to distinguish between the right and the
left parts of the tape and for that purpose a direction is introduced in the tape symbols. That

is, for each si 2 � two symbols are created in F , namely

Si and
!

Si representing, respectively, an
occurrence of si to the right and to the left of the head of the Turing Machine. The signature
F also contains another unary function symbol L representing the left part of the tape, and a
constant R representing the right side of the tape (in our model both L and R collapse to �).
Thus the alphabet F is given by F1 [F0 where:

� F1 = fQ0; : : : ; Qn;

S0; : : : ;

Sm;
!

S0; : : : ;
!

Sm; Lg,

� F0 = fRg.

Con�gurations are de�ned in the same way but their correspondence with terms is di�erent
as the following example shows.

Example B.14. The con�guration I = hs1 � s3 � s4; q3; s2 � s1 � s5i, from Figure B.1, gives rise
to the term

tI = L(
!

S1 (
!

S3 (
!

S4 (Q3(

S2 (

S1 (

S5 (R))))))))

In general a con�guration I = hw0; qj; w1i will give rise to a term

tI = L(
!

W0 (Qj(

W1 (R) : : :);

where
!

W0 consists of the symbols of w0 in capitals and with the rightarrow on top, and similarly

for

W1.
The rules of the TRS have a somewhat simpler formulation:

B.4. Huet and Lankford's approach 201

� if �(qi; sj) = (qk; sl; 1), we introduce in the TRS the rules:

{ Qi(

Sj (x))!
!

Sl (Qk(x)),

{ Qi(R)!
!

Sl (Qk(R)), if j = 0.

� if �(qi; sj) = (qk; sl;�1), we introduce in the TRS the rules:

{
!

Sr (Qi(

Sj (x)))! Qk(

Sr (

Sl (x))), for all r 2 f0; : : : ; mg,

{
!

Sr (Qi(R))! Qk(

Sr (

Sl (R))), if j = 0 and for any r 2 f0; : : : ; mg,

{ L(Qi(

Sj (x)))! L(Qk(

S0 (

Sl (x)))),

{ L(Qi(R))! L(Qk(

S0 (

Sl (R)))), if j = 0.

We also have a \reduction" relation on con�gurations induced by the transition function �,
and it also holds that I !M I 0 () tI !R tI0.

Lemma 3 holds, giving us undecidability of termination for TRS and a given term. Unde-
cidability of termination is a consequence of the following lemma:

Lemma B.15. If t has an in�nite reduction in RM then there is a con�guration I admiting
an in�nite reduction in M .

Before concluding the section we want to remark that we can not interpret the symbols of
Q and � as unary symbols and forget about the position in which those symbols appear, thus
reducing F1 to the set fQ0; : : : ; Qn; S0; : : : ; Sm; Lg, as the following example shows.

Example B.16. Suppose we have the following Turing Machine:

� �(q0; 0) = (q1; 1;�1),

� �(q0; 1) = (q2; 0; 1),

� �(q1; �) = (q3; �; 1), for � 2 f0; 1g,

� �(q2; �) = (q4; �;�1), for � 2 f0; 1g,

� �(q3; 0) = (q1; 1;�1),

� �(q4; 1) = (q2; 0; 1).

The alphabet and the states are built from the symbols appearing in the de�nition above.
\Operationally", the e�ect of the rules de�ned above is to change 1 into 0 and vice-versa

in certain states while maintaining the value in other states. The initial state is q0.
It is easy to see that this Turing machine terminates for any input. Now consider the derived

TRS, with the rules:

202 Appendix B. Undecidability of termination

1. 0(Q0(0(x)))! Q1(0(1(x))),

2. 1(Q0(0(x))! Q1(1(1(x))),

3. Q0(1(x))! 0(Q2(x)),

4. Q1(0(x))! 0(Q3(x)),

5. Q1(1(x))! 1(Q3(x)),

6. 0(Q2(x))! Q4(0(x)),

7. 1(Q2(x))! Q4(1(x)),

8. 0(Q3(0(x)))! Q1(0(1(x))),

9. 1(Q3(0(x)))! Q1(1(1(x))),

10. Q4(1(x))! 0(Q2(x)).

It is also easy to see that any term with at most one occurrence of a Q symbol has only
�nite rewritings, but for a term with more than one such occurrence that is not necessarily so.

For instance, the rewriting sequence (where
i
! indicates that the rule used in the reduction

step was rule i):

0(Q3(1(Q2(0(x)))))
7
! 0(Q3(Q4(1(0(x)))))

10
! 0(Q3(0(Q2(0(x)))))

8
! Q1(0(1(Q2(0(x)))))

4
! 0(Q3(1(Q2(0(x)))))

is a cyclic sequence and therefore in�nite.

Bibliography

[1] Bachmair, L. Proof by consistency in equational theories. In Proceedings of the 3rd
IEEE Symposium on Logic in Computer Science (Edinburgh, 1988), IEEE, pp. 228{233.

[2] Baeten, J. C. M., Bergstra, J. A., and Klop, J. W. Priority rewrite systems.
In Proceedings of the second International Conference on Rewriting Techniques and Ap-
plications (Bordeaux, 1987), vol. 256 of Lecture Notes in Computer Science, Springer,
pp. 83{94.

[3] Barendregt, H. P. The Lambda Calculus, its syntax and semantics, vol. 103 of
Studies in Logic and the Foundations of Mathematics. Elsevier Science Publishers B. V.,
Amsterdam, 1984.

[4] Barendregt, H. P., van Eekelen, M. C. J. D., Glauert, J. R. W., Ken-

naway, J. R., Plasmeijer, M. J., and Sleep, M. R. Term graph rewriting.
In Proceedings of the �rst Conference on Parallel Architectures and Languages Europe
(PARLE), VOL.II (Eindhoven, 1987), vol. 259 of Lecture Notes in Computer Science,
Springer, pp. 141{158.

[5] Bellegarde, F., and Lescanne, P. Termination by completion. Applicable Algebra
in Engineering, Communication and Computing 1, 2 (1990), 79{96.

[6] Ben-Cherifa, A., and Lescanne, P. Termination of rewriting systems by polyno-
mial interpretations and its implementation. Science of Computing Programming 9, 2
(1987), 137{159.

[7] Bergstra, J. A., and Klop, J. W. Conditional rewrite rules: conuence and
termination. Journal Comp. System Scienc. 32 (1986), 323{362.

[8] Birkhoff, G. On the structure of abstract algebras. Proc. Cambridge Philos. Soc. 31
(1935), 433{454.

[9] Book, R. V. Thue systems as rewrite systems. Journal of Symbolic Computation, 3
(1987), 39{68.

[10] Brand, D., Darringer, J. A., and Jr., W. J. J. Completeness of conditional
reductions. In Proceedings of the 4th Workshop on Automated Deduction (Austin, 1979).

203

204 Bibliography

[11] Caron, A. C. Linear bounded automata and rewrite systems: inuence of initial
con�guration on decision properties. In Proceedings of the Colloquium on Trees in Algebra
and Programming (1991), vol. 493 of Lecture Notes in Computer Science, Springer,
pp. 74{89.

[12] Church, A. A set of postulates for the foundation of logic. Annals of Mathematics 33
(1932), 346{366.

[13] Curry, H. B. Grundlagen der kombinatorischen Logik. Teil I. American Journal of
Mathematics LII (1930), 509{536.

[14] Curry, H. B. Grundlagen der kombinatorischen Logik. Teil II. American Journal of
Mathematics LII (1930), 789{834.

[15] Curry, H. B., and Feys, R. Combinatory Logic, volume I. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1958.

[16] Curry, H. B., Hindley, J. R., and Seldin, J. P. Combinatory Logic, volume II.
North-Holland, 1972.

[17] Dauchet, M. Simulation of Turing machines by a regular rewrite rule. Theoretical
Computer Science 103, 2 (1992), 409{420. Appeared before in Proceedings of the 3rd
Conference on Rewriting Techniques and Applications RTA89 (1989), Lecture Notes in
Computer Science 355, Springer, pp. 109{120.

[18] Davey, B. A., and Priestley, H. A. Introduction to Lattices and Order. Cambridge
Mathematical Textbooks. Cambridge University Press, Cambridge, 1991.

[19] Dershowitz, N. A note on simpli�cation orderings. Information Processing Letters 9,
5 (1979), 212{215.

[20] Dershowitz, N. Orderings for term rewriting systems. In Proceedings of the 20th
Annual Symposium on Foundations of Computer Science (1979), S. R. Kosaraju, Ed.,
pp. 123{131.

[21] Dershowitz, N. Termination of linear rewriting systems - preliminary version. In
Proceedings of ICALP81, Automata, Languages and Programming, Eighth Colloquium
(1981), S. Even and O. Kariv, Eds., vol. 115 of Lecture Notes in Computer Science,
Springer, pp. 448{458.

[22] Dershowitz, N. Orderings for term rewriting systems. Theoretical Computer Science
17, 3 (1982), 279{301.

[23] Dershowitz, N. Termination of rewriting. Journal of Symbolic Computation 3, 1 and
2 (1987), 69{116.

Bibliography 205

[24] Dershowitz, N., and Hoot, C. Topics in termination. In Proceedings of the 5th
Conference on Rewriting Techniques and Applications (1993), C. Kirchner, Ed., vol. 690
of Lecture Notes in Computer Science, Springer, pp. 198{212.

[25] Dershowitz, N., Hsiang, J., Josephson, N., and Plaisted, D. A.

Associative-commutative rewriting. In Proceedings of the 8th Joint Conference on Arti-
�cial Intelligence (1983), pp. 940{944.

[26] Dershowitz, N., and Jouannaud, J.-P. Rewrite systems. In Handbook of Theo-
retical Computer Science, J. van Leeuwen, Ed., vol. B. Elsevier, 1990, ch. 6, pp. 243{320.

[27] Dershowitz, N., and Manna, Z. Proving termination with multiset orderings.
Communications ACM 22, 8 (1979), 465{476.

[28] Dershowitz, N., Okada, M., and Sivakumar, G. Canonical conditional rewrite
systems. In Proceedings of the 9th Conference on Automated Deduction (Argonne,
1988), vol. 310 of Lecture Notes in Computer Science, Springer, pp. 538{549.

[29] Dick, J., Kalmus, J., and Martin, U. Automating the Knuth Bendix ordering.
Acta Informatica 28 (1990), 95{119.

[30] Dijkstra, E. W. A Discipline of Programming. Prentice Hall, Englewood Cli�s, 1976.

[31] Fay, M. First-order uni�cation in Equational Theories. In Proceedings of the 4th
Conference on Automated Deduction (Austin, 1979), pp. 161{167.

[32] Ferreira, M. C. F., and Zantema, H. Total termination of term rewriting. In
Proceedings of the 5th Conference on Rewriting Techniques and Applications (1993),
C. Kirchner, Ed., vol. 690 of Lecture Notes in Computer Science, Springer, pp. 213{
227. Full version to appear in Applicable Algebra in Engineering, Communication and
Computing.

[33] Ferreira, M. C. F., and Zantema, H. Syntactical analysis of total termination.
In Proceedings of the 4th International Conference on Algebraic and Logic Programming
(1994), G. Levi and M. Rodr�iguez Artalejo, Eds., vol. 850 of Lecture Notes in Computer
Science, Springer, pp. 204{222.

[34] Ferreira, M. C. F., and Zantema, H. Well-foundedness of term orderings. Pre-
sented at CTRS 94 (Workshop on Conditional and Typed Term Rewriting Systems). To
appear in LNCS.

[35] Ferreira, M. C. F., and Zantema, H. Dummy elimination: making termination
easier. In Fundamentals of Computation Theory, 10th International Conference FCT'95
(1995), H. Reichel, Ed., vol. 965 of Lecture Notes in Computer Science, Springer, pp. 243{
252. Appeared also as technical report UU-CS-1994-47, University of Utrecht, October
1994.

206 Bibliography

[36] Fokkink, W. J., and Zantema, H. Pre�x iteration in basic process algebra: ap-
plying termination techniques. In Proceedings of the second workshop on Algebra of
Communicating Processes, ACP 95 (1995), C. V. A. Ponse and S. F. M. van Vlijmen,
Eds., vol. 95-14 of Computing Science Reports, Department of Mathematics and Com-
puting Science, Eindhoven University of Technology, pp. 139{156.

[37] Fra��ss�e, R. Theory of Relations, vol. 118 of Studies in Logic and the Foundations of
Mathematics. North-Holland, 1986.

[38] Gallier, J. H. What's so special about Kruskal's theorem and the ordinal �0? A
survey of some results in proof theory. Annals of Pure and Applied Logic 53 (1991),
199{260.

[39] Geerling, M. Termination of term rewriting systems. Master's thesis, Utrecht Uni-
versity, 1991.

[40] Geser, A. Relative termination. PhD thesis, Universit�at Passau, 1990. Also available
as: Report 91-03, Ulmer Informatik-Berichte, Universit�at Ulm, 1991.

[41] Geser, A. An improved general path order. Tech. Rep. MIP-9407, University of Passau,
1994.

[42] Geser, A. On a monotonic semantic path ordering. Tech. Rep. 92{13, Universit�at
Ulm, November 1992.

[43] Goguen, J. A., Jouannaud, J.-P., and Meseguer, J. Operational Semantics of
Order-Sorted Algebra. In Proceedings of the 12th International Colloquium on Automata,
Languages and Programming (1985), vol. 194 of Lecture Notes in Computer Science,
Springer, pp. 221{231.

[44] Goguen, J. A., and Meseguer, J. Completeness of many sorted equational de-
duction. Houston J. Math. 11, 3 (1985), 307{334.

[45] Higman, G. Ordering by divisibility in abstract algebras. Proc. London Mathematical
Society 2, 7 (1952), 326{336.

[46] Hofbauer, D. Termination proofs by multiset path orderings imply primitive recursive
derivation lengths. Theoretical Computer Science 105, 1 (1992), 129{140.

[47] Huet, G., and Lankford, D. S. On the uniform halting problem for term rewriting
systems. Rapport Laboria 283, INRIA, 1978.

[48] Huet, G., and Oppen, D. C. Equations and rewrite rules: a survey. In Formal
Languages Theory: Perspectives and Open Problems, R. Book, Ed. Academic Press,
New York, 1980, pp. 349{405.

Bibliography 207

[49] Jantzen, M. Conuent String Rewriting and Congruences, vol. 14 of European Associ-
ation for Theoretical Computer Science. Monographs on Theoretical Computer Science.
Springer Verlag, Berlin, 1988.

[50] Jouannaud, J.-P., and Kirchner, H. Completion of a set of rules modulo a set
of equations. SIAM Journal of Computing 15 (1986), 1155{1194.

[51] Jouannaud, J.-P., and Lescanne, P. On Multiset Orderings. Information Pro-
cessing Letters 15, 2 (1982), 57{63.

[52] Jouannaud, J.-P., Lescanne, P., and Reinig, F. Recursive decomposition or-
dering. In Working Conference on Formal Description of Programming Concepts II (IFIP)
(1982), D. Bj�rner, Ed., North-Holland Publising Company, pp. 331 { 353.

[53] Jouannaud, J.-P., and Mu~noz, M. Termination of a set of rules modulo a set of
equations. In Proceedings of the seventh International Conference onAutomated Deduc-
tion (Napa, CA, 1984), vol. 170 of Lecture Notes in Computer Science, Springer, pp. 175
{ 193.

[54] Kamin, S., and L�evy, J. J. Attempts for generalizing the recursive path orderings.
University of Illinois, 1980.

[55] Kamin, S., and L�evy, J. J. Two generalizations of the recursive path ordering.
University of Illinois, 1980.

[56] Kapur, D., Narendran, P., and Sivakumar, G. A path ordering for proving
termination of term rewriting systems. In Proceedings of the 10th Colloquium on trees
in algebra and programming (CAAP) (1985), H. Ehrig, Ed., vol. 185 of Lecture Notes in
Computer Science, Springer, pp. 173 { 187.

[57] Kapur, D., Sivakumar, G., and Zhang, H. A new method for proving termination
of ac-rewrite systems. In Proceedings of the 10th Conference on Foundations of Software
Technology and Theoretical Computer Science (1990), vol. 472 of Lecture Notes in
Computer Science, Springer, pp. 133 { 148.

[58] Kennaway, J. R., Klop, J. W., Sleep, M. R., and de Vries, F. J. Trans�nite
Reductions in Orthogonal Term Rewriting Systems. Information and Computation 119,
1 (1995), 18{38. Also appeared as technical report CS-R9041, CWI, Amsterdam.

[59] Kirby, L., and Paris, J. Accessible independence results for Peano arithmetic. Bull.
London Mathematical Society 14 (1982), 285{293.

[60] Klop, J. W. Combinatory Reduction Systems, vol. 127 of Mathematical Centre Tracts.
CWI - Centrum voor Wiskunde en Informatica, Amsterdam, 1980. PhD Thesis.

208 Bibliography

[61] Klop, J. W. Term rewriting systems. In Handbook of Logic in Computer Science,
S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds., vol. II. Oxford University
Press, 1992, pp. 1{116.

[62] Knuth, D. E. The Art of Computer Programming - Sorting and Searching, vol. 3
of Computer Science and Information Processing. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1975.

[63] Knuth, D. E., and Bendix, P. Simple words problems in Universal Algebras. In
Computational Problems in Abstract Algebras, J. Leech, Ed. Pergamon Press, 1970,
pp. 263{297.

[64] Kruskal, J. Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture. Trans.
American Mathematical Society 95 (1960), 210{225.

[65] Kuratowski, K., and Mostowski, A. Set Theory. North-Holland Publishing
Company, 1968.

[66] Kurihara, M., and Ohuchi, A. Modularity of simple termination of term rewriting
systems. Journal of IPS Japan 31, 5 (1990), 633{642.

[67] Lankford, D. S. Canonical algebraic simpli�cation in computational logic. Tech. Rep.
Memo ATP-25, Automatic Theorem Proving Project, University of Texas, Austin, 1975.

[68] Lankford, D. S. On proving term rewriting systems are noetherian. Tech. Rep.
MTP{3, Louisiana Technical University, Ruston, 1979.

[69] Lescanne, P. Uniform termination of term rewrite systems: Recursive decomposition
ordering with status. In Proceedings of the Ninth Colloquium on Trees in Algebra and
Programming - CAAP (1984), Cambridge University Press, Cambridge, pp. 181 { 194.

[70] Lescanne, P. On the recursive decomposition ordering with lexicographical status and
other related orderings. Journal of Automated Reasoning 6 (1990), 39{49.

[71] Lescanne, P. Termination of rewrite systems by elementary interpretations. In Alge-
braic and Logic Programming (1992), H. Kirchner and G. Levi, Eds., vol. 632 of Lecture
Notes in Computer Science, Springer, pp. 21 { 36.

[72] Lescanne, P. On termination of one rule rewrite systems. Journal of Theoretical
Computer Science 132 (1994), 395{401.

[73] Lescanne, P. Computer experiments with the REVE term rewriting system genera-
tor. In Proc. Tenth ACM Symposium on Principles of Programming Languages (Austin,
Texas, 1983), pp. 99 { 108.

[74] Manna, Z., and Ness, S. On the termination of Markov algorithms. In Proceedings of
the Third Hawaii International Conference on System Science (Honolulu, 1970), pp. 789{
792.

Bibliography 209

[75] Martin, U., and Scott, E. The order types of termination orderings on terms,
strings and multisets. In Proceedings of the 8th Annual IEEE Symposium on Logic in
Computer Science (1993), IEEE, pp. 356{363.

[76] Middeldorp, A. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije
Universiteit Amsterdam, 1990.

[77] Middeldorp, A., and Gramlich, B. Simple termination is di�cult. Applicable
Algebra in Engineering, Communication and Computing 6 (1995), 115{128. Appeared
also in Proceedings of the 5th Conference on Rewriting Techniques and Applications
(1993), vol. 690 of Lecture Notes in Computer Science, Springer, pp. 228{242.

[78] Middeldorp, A., and Zantema, H. Simple termination revisited. In Proceedings of
the 12th International Conference on Automated Deduction (CADE12) (1994), A. Bundy,
Ed., vol. 814 of Lecture Notes in Computer Science, Springer, pp. 451{465. Appeared
as report RUU-CS-93-41, Utrecht University.

[79] Middeldorp, A., and Zantema, H. Simple termination of rewrite systems. Bulletin
of the Section of Logic, University of L�od�z 24, 1 (1995), 31{36.

[80] Musser, D. R. On proving inductive properties of abstract data types. In Proceedings
of the 7th ACM Symposium on Principles of Programming Languages (Las Vegas, 1980),
pp. 154{162.

[81] Narendran, P., and Rusinowitch, M. Any ground associative-commutative the-
ory has a �nite canonical system. In Proceedings of the 4th Conference on Rewriting
Techniques and Applications (1991), R. V. Book, Ed., vol. 488 of Lecture Notes in
Computer Science, Springer, pp. 423{434.

[82] Nash-Williams, C. S. J. A. On well-quasi ordering �nite trees. Proc. Cambridge
Phil. Soc. 59 (1963), 833{835.

[83] Nipkow, T. Higher-Order critical pairs. In Proceedings of the 6th Annual IEEE Sympo-
sium on Logic in Computer Science (1991), IEEE Computer Society Press, pp. 342{349.

[84] O'Donnell, M. J. Equational Logic as a programming language. Foundations of
computing. MIT Press, Cambridge, Massachussets, 1985.

[85] Ohlebusch, E. A note on simple termination of in�nite term rewriting systems. Tech.
Rep. 7, Universit�at Bielefeld, 1992.

[86] Peterson, G., and Stickel, M. Complete sets of reductions for some equational
theories. Journal of the ACM 28 (1981), 233{264.

[87] Plaisted, D. A. A recursively de�ned ordering for proving termination of term rewriting
systems. Tech. Rep. UIUCDCS-R-78-943, Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana (Illinois), 1978.

210 Bibliography

[88] Plaisted, D. A. Well-founded orderings for proving termination of systems of rewrite
rules. Tech. Rep. UIUCDCS-R-78-932, Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana (Illinois), 1978.

[89] Plaisted, D. A. Equational reasoning and term rewriting systems. In Handbook
of Logic in Arti�cial Intelligence and Logic Programming, D. Gabbay, C. J. Hogger, and
J. A. Robinson, Eds., vol. 1 - Logical Foundations. Oxford Science Publications, Clarendon
Press - Oxford, 1993, pp. 273{364.

[90] Plaisted, D. A. An associative path ordering. In NSF Workshop on the Rewrite
Rule Laboratory (September, 1983), General Electric Research and Development Center,
Schenectady, New York, pp. 123{136. Appeared as General Electric Corporate Research
and Development Report No. 84GEN008.

[91] Post, E. Recursive unsolvability of a problem by Thue. Journal of Symbolic Logic 12,
1 (1947), 1{11.

[92] Puel, L. Using unavoidable sets of trees to generalize Kruskal's theorem. Journal of
Symbolic Computation 8 (1989), 335{382.

[93] Rozenberg, G., and Salomaa, A. Cornerstones of undecidability. International
Series in Computer Science. Prentice Hall, 1994.

[94] Rubio, A. Extension orderings. In Automata, Languages and Programming, 22nd
International Colloquium ICALP 95, Proceedings (1995), Z. F�ul�op and F. G�ecseg, Eds.,
vol. 944 of Lecture Notes in Computer Science, Springer, pp. 511{522.

[95] Rubio, A., and Nieuwenhuis, R. A precedence-based total AC-compatible ordering.
In Proceedings of the 5th Conference on Rewriting Techniques and Applications (1993),
C. Kirchner, Ed., vol. 690 of Lecture Notes in Computer Science, Springer, pp. 374{388.

[96] Rusinowitch, M. On termination of the direct sum of term rewriting systems. Infor-
mation Processing Letters 26 (1987), 65{70.

[97] Rusinowitch, M. Path of subterms ordering and recursive decomposition ordering
revisited. Journal of Symbolic Computation 3 (1987), 117{131.

[98] Sch�onfinkel, M. �Uber die Bausteine der mathematischen Logik. Mathematische
Annalen 92 (1924), 305{316. English translation in [102].

[99] Steinbach, J. Extensions and comparison of simpli�cation orderings. In Proceedings
of the 3rd Conference on Rewriting Techniques an Applications (1989), N. Dershowitz,
Ed., vol. 355 of Lecture Notes in Computer Science, Springer, pp. 434{448.

[100] Steinbach, J. Termination of Rewriting - Extension, Comparison and Automatic Gen-
eration of Simpli�cation Orderings. PhD thesis, University of Kaiserslautern, 1994.

Bibliography 211

[101] Steinbach, J. Simpli�cation Orderings: History of results. Fundamenta Informaticae
24 (1995), 47{87.

[102] van Heijenoort, J., Ed. From Frege to G�odel, A source book in mathematical
logic, 1879-1931. Source books in the History of the Sciences. Harvard University Press,
Cambridge, Massachussets, 1967.

[103] van Oostrom, V. Conuence for Abstract and Higher-Order Rewriting. PhD thesis,
Vrije Universiteit Amsterdam, 1994.

[104] Wechler, W. Universal Algebra for Computer Scientists, vol. 25 of EATCS Mono-
graphs on on Theoretical Computer Science. Springer, Berlin, Heidelberg, 1992.

[105] Wolfram, D. A. The Clausal Theory of Types, vol. 21 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1993.

[106] Zantema, H. Termination of term rewriting: from many-sorted to one-sorted. In
Computing Science in the Netherlands (November 1991), J. van Leeuwen, Ed., vol. 2,
pp. 617 { 629. Also appeared as report RUU-CS-91-18, Utrecht University.

[107] Zantema, H. Termination of term rewriting by interpretation. Tech. Rep. RUU-CS-
92-14, Utrecht University, 1992.

[108] Zantema, H. Termination of term rewriting by interpretation. In Conditional Term
Rewriting Systems, Proceedings Third International Workshop CTRS-92 (1993), M. Rusi-
nowitch and J. R�emy, Eds., vol. 656 of Lecture Notes in Computer Science, Springer,
pp. 155{167. Full version appeared as report RUU-CS-92-14, Utrecht University.

[109] Zantema, H. Termination of term rewriting: interpretation and type elimination.
Journal of Symbolic Computation 17 (1994), 23{50.

[110] Zantema, H. Total termination of term rewriting is undecidable. Tech. Rep. UU-CS-
1994-55, University of Utrecht, 1994. To appear in Journal of Symbolic Computation.

[111] Zantema, H. Termination of term rewriting by semantic labelling. Fundamenta Infor-
maticae 24 (1995), 89{105. Appeared also as technical report RUU-CS-93-24, Utrecht
University, July 1993.

[112] Zantema, H., and Geser, A. A complete characterization of termination of 0p1q !
1r0s. In Proceedings of the 6th Conference on Rewriting Techniques and Applications
(1995), J. Hsiang, Ed., vol. 914 of Lecture Notes in Computer Science, Springer, pp. 41{
55. Appeared as report UU-CS-1994-44, Utrecht University.

212 Bibliography

Index

(QOS;=), 75
(QOT (F ;X);=), 76
E-termination, 24
E(t), 145
Ei(t), 145
Lim, 103
Ord, 102
U(R), 108
#c(t), 16
E(R)=EQ, 147
E(R), 147
capi(�), 143
capi(t), 143
G, 67
H, 76
PT , 67
QOS, 75
dec(t), 146
�-ordinal, 114
�0, 114
eq(�), 7
�-Calculus, 3
!-termination, 34
ord(�), 7
root(t), 17
�-equivalence class, see equivalence class
tree(t), 149
mvar(t), 16
uR, 108
var(t), 16
O(F), 116

AC-theory, 21
alphabet, 15
arguments, 17
arity, 15

associative operation, 5, 6

bijection, 6
bottom, 66

Cantor normal form, 105
cap of a term, 143

capi(t), 143
cartesian product, 5
Church-Rosser property, 2
closed

under contexts, 18
under substitutions, 18

closure
reexive, 6
transitive, 6
transitive-reexive, 6

codomain, 6
Combinatory Logic, 3
compatible

order, precedence, 53
status, precedence, 53

complete partial order, see CPO
composition

of functions, 6
of relations, 5

conuent, 2
congruence, 18
context, 16

linear, 16
continuous function, 66
CPO, 66

decomposable, 48
decomposition of a term, 146

dec(t), 146

213

214 Index

depth of a tree, 135
directed set, 66
distribution elimination, 143
distribution rule, 180
domain, 6
dummy elimination, 143
Dutch National Flag, 1

e-status, 143
equation, 19

length-preserving, 20
linear, 20
permutative, 20
variable-preserving, 20

equational rewrite system, 21
equational rewriting, 21
equational system, 19

�nitely presented, 19
equational theory, 3, 20

length-limited, 142
equivalence, 6
equivalence class, 6
extension

of a partial order, 8
of a quasi-order, 8

�nite multiset, see multiset
�rst-order rewriting, see rewriting
�rst-order term rewriting, see rewriting
�xed-arity, 15
function, 6

bijective, 6
injective, 6
surjective, 6

general path order, see gpo
gpo, 62
graph-rewriting, 3
greatest element, see top

higher-order rewriting, 3
homeomorphic embedding, 22

identity relation, 5

indexes, 8
indexing, 8

function, 8
in�nite rewriting, 3
initial segment, 101
injectivity, 6
interpretation, 28
interpretation function, 28

kbo, 27, 92
Knuth-Bendix completion, 3
Knuth-Bendix order, see kbo
Kruskal's Tree Theorem, 23

least element, see bottom
lefthand-side, 2, see lhs
lexicographic extension

of a binary relation, 13
of a partial order, 12
of a quasi-order, 14

lexicographic product, 13
lhs, 17
lifting, 46, 71, 79

term, 57
lower bound, 66

greatest, 66

many-sorted rewriting, 40
minimum, 66
model, 30
modularity, 37

of total termination, 110
modulo, 6
monotone, 8

strictly, 8
weakly, see order-preserving

monotone algebra, 27
total, 27
well-founded, 3{4, 27

multiset, 9
indexing over, 10
operations, 9

multiset extension
of a binary relation, 11

Index 215

of a partial order, 11
of a quasi-order, 14

natural addition, 105
natural multiplication, 105
noetherian

seeterminating
TRS, 23

normal form, 2, 18

one-to-one correspondence, 6, 11
order, 7
order type, 101
order-isomorphism, 8
order-preserving, 8
order-sorted rewriting, 3
ordinal, 101

addition, 103
additive principal, 104
exponentiation, 103
limit, 103
multiplication, 103
multiplicative principal, 104
normal form, 105
subtraction, 104
successor, 103

ordinal number, see ordinal

partial order, 5, 7
partial well-order, see pwo
PCP, 39
polynomial termination, 34
poset, 7
position, 16
Post correspondence problem, see PCP
powerset, 5
pre-order, see quasi-order
precedence, 25
Principle of Trans�nite Induction, see PTI
projection, 6
PTI, 102
pwo, 14

quasi-model

monotone, 30
quasi-order, 7
quotient, 6

recursive path order, see rpo
reduction, 17

one-step, 2
order, 22
quasi-order, 22
sequence, 2

relation
n-ary, 5
anti-symmetric, 6
binary, 5, 6
equivalence, see equivalence
inverse of a, 6
irreexive, 6
reexive, 6
reexive closure, see closure
symmetric, 6
transitive, 6
transitive closure, see closure
transitive-reexive closure, see closure

renaming, 17
residue, see E(t)

of order i, see Ei(t)
rewrite

order, 21
quasi-order, 21
rule, 2
system, see TRS

rewrite sequence, 18
rewriting, 1

conditional, 3
modulo a set of equations, see equa-

tional rewriting
modulo equational theories, see equa-

tional rewriting
modulo equations, see equational rewrit-

ing
rewriting modulo a set of equations, 21
rhs, 17
righthand-side, 2, see rhs

216 Index

root, 17
rpo, 3, 26, 50, 84, 138
rule

collapsing, 18
duplicating, 18
embedding, 18
ground, 18
left-linear, 18
length-preserving, 18
linear, 18
non-erasing, 18
right-linear, 18

semantic path order, see spo
sequence, 8

bad, 15
good, 15

sequences, 11
set of parts, see powerset
signature, 15
similar, 101
simpli�cation order, 22
simpli�cation ordering

with respect to a pwo, 23
spo, 60
SRS, 19
status, 25, 47, 67, 75, 83
status function, 47
strictly increasing, see monotone
string rewriting system, see SRS
strongly normalizing

seeterminating
TRS, 23

sub-sequence, 8
substitution, 17

ground, 17
subterm, 17

principal, see arguments
subterm ordering, 22
subterm property, 22
superterm, 17
supremum, 65
surjectivity, 6

term
linear, 16

term rewriting system, see TRS
term rewriting with priorities, 3
terminating

simply, 32
totally, 3, 34
TRS, 23

terminating relation, see well-founded
termination, 2

simple, 32
total, 4, 34
undecidability of, 4

terms, 15
top, 66
total

partial order, 9
quasi-order, 9

tree lifting, 136, 137
tree of a term, see tree(t)
trees, 135
TRS, 17

disjoint union, 19
Turing Machine, 191
type, see order type

undecidable, 42
uni�cation, 3
upper bound, 65

least, 65

varyadic, 15

well quasi-order, see wqo
well-founded, 8

binary relation, 9
element, 8
partial order, 8
quasi-order, 8

well-foundedness, see well-founded
well-order, 100
wqo, 14

Zorn's Lemma, 185

Samenvatting

Dit proefschrift gaat over eigenschappen van terminatie van herschrijfsystemen. We zullen eerst
aan de hand van een voorbeeld dat gaat over optellen van de getallen de belangrijkste concepten
proberen uit te leggen. Vervolgens vatten we de inhoud van het proefschrift kort samen.

Een bekende eigenschap van optellen (\add") is dat optellen met het getal nul een neutrale
bewerking is. We kunnen dit in een vergelijking als volgt formuleren:

add(0; x) = x; add(x; 0) = x

waarbij x een variabele is die een willekeurig natuurlijke getal voorstelt.
Een andere optelwet gaat over de volgorde van berekeningen: add(x; add(y; 1)) kan ook

worden verkregen door eerst add(x; y) te berekenen en dan bij dit resultaat 1 op te tellen.
Stellen we de natuurlijke getallen voor door 0, s(0), s(s(0)), etc. (s betekent \successor") dan
luidt deze wet in formulevorm:

add(x; s(y)) = s(add(x; y))

Op analoge wijze vinden we ook de vergelijking:

add(s(x); y) = s(add(x; y))

Nu zijn we in staat om 1 + 2 op formele wijze te berekenen. Daartoe schrijven we eerst
1 + 2 als add(s(0); s(s(0))) en proberen we vervolgens de laatste formule te vereenvoudigen
door optelwetten toe te passen. Een mogelijke manier om dit te doen is als volgt:

add(s(0); s(s(0))) = s(add(s(0); s(0)))
= s(s(add(s(0); 0)))
= s(s(s(0)))

In dit voorbeeld zien we duidelijk dat de vergelijkingen voor add in een bepaalde richting
werden gebruikt. Dit \gericht" gebruik van vergelijkingen heet herschrijven.

In het algemeen herschrijven we termen uit een zg. termalgebra. Een termalgebra wordt
verkregen uit een gegeven verzameling van variabelen, zeg X , en een verzameling van func-
tiesymbolen, zeg F . Bij elk functiesymbool hoort een natuurlijke getal, de ariteit, die het aantal
argumenten van het functiesymbool aangeeft. Variabelen hebben ariteit nul.

Termen worden inductief opgebouwd door functiesymbolen toe te passen op andere termen.
Uiteraard dient hierbij de ariteit te worden gerespecteerd. De verzameling van termen wordt

217

218 Samenvatting

genoteerd door T (F ;X). In het optelvoorbeeld geldt: \s" heeft ariteit 1, \add" heeft ariteit 2
en \0" heeft ariteit 0, en add(x; s(y)) is een term van de termalgebra T (fadd; s; 0; g; fx; yg).

Nu we weten wat de objecten zijn waarmee we herschrijven kunnen we afspreken hoe we
gaan herschrijven. We gaan ervan uit dat we een aantal vergelijkingen hebben waarin we
een linker- en een rechterdeel onderscheiden bestaande uit termen van een termalgebra. Een
vergelijking l = r leidt tot de herschrijfregel l ! r, waarbij de pijl de richting van het gebruik
van de vergelijking aangeeft. Zo'n verzameling regels heet een termherschrijfsysteem (afgekort
tot TRS). Bijvoorbeeld:

add(0; x) ! x (1)

add(x; 0) ! x (2)

add(x; s(y)) ! s(add(x; y)) (3)

add(s(x); y) ! s(add(x; y)) (4)

is een TRS.
Een TRS induceert een herschrijfrelatie !R (of !) in de verzamelingen van termen. Een

term s herschrijft tot een term t (notatie s !R t) indien we in s een deel g herkennen dat
correspondeert met een linkerdeel van een regel in R �en t wordt uit s verkregen door g te
vervangen door het overeenkomstige rechterdeel van de gevonden regel.

Veronderstel dat we de term add(s(0); s(0)) willen herschrijven. We kunnen bovenstaande
regels (3) en (4) gebruiken. Natuurlijke leidt dit tot de vraag: \wanneer verschillende regels
toegestaan zijn, is het uiteindelijke resultaat onafhankelijk van de gekozen regel?". Systemen
waarvoor het antwoord \ja" is voldoen aan de Church-Rosser eigenschap; ze worden ook wel
conuent genoemd. Niet elk TRS is echter conuent.

Een andere belangrijk vraag is: \als we een willekeurige term herschrijven, kunnen we dan
garanderen dat we na een eindig aantal herschrijvingen tot een term komen waarop geen regel
toepasbaar is (normaal vorm)?". In het algemeen is hierop geen bevestigend antwoord te
geven. Systemen die gegarandeerd leiden tot een normaalvorm heten terminerend . Terminatie
is onbeslisbaar, d.w.z. er is geen procedure die uitsluitsel geeft over terminatie van een TRS.
Desalniettemin bestaan er vele bruikbare methoden die behulpzaam zijn bij het geven van
een bewijs van terminatie. Ruwweg kunnen we twee soorten methoden onderscheiden (beiden
worden in dit proefschrift behandeld):

� syntactische methoden,

� semantische methoden.

De syntactische methoden maken alleen gebruik van de syntactische structuur van termen om
tot een terminatie uitspraak te komen. Voorbeeld van deze methoden zijn de zogenaamde pad
ordeningen. In de semantische methoden worden termen compositioneel ge��nterpreteerd in een
algebra om zo terminatie te bewijzen; dit betekent dat we een verzamelingen A, een parti�ele
ordening >, en operaties fA voor elke functiesymbool f in F , moeten de�ni�eren. Elke term
in A kan worden ge��nterpreteerd door een toekenning van waardes van A aan variabelen, De
ordening > mits welgefundeerd kan worden gebruikt om terminatie van het systeem te bewijzen.

Samenvatting 219

Beiden soorten van methoden gebruiken in essentie het concept \welgefundeerde ordening".
Een ordening is een binaire relatie > (lees groter dan) met de eigenschappen irreexibiliteit
(s 6> s voor elke s, d.w.z. geen element is groter dan zichzelf) en transitiviteit (als s > t en t > u
dan ook s > u). Een welgefundeerde ordening is een ordening > waarin geen oneindige rijen
van de vorm s0 > s1 > s2 > : : : , bestaan. Als voor een TRS R een welgefundeerde ordening
> bestaat zodanig dat uit s !R t volgt s > t dan termineert R. Dus welgefundeerdheid van
ordeningen is een zeer belangrijk en relevant onderwerp in de studie van terminatie.

Zoals reeds eerder gezegd gaat dit proefschrift over terminatie van herschrijfsystemen.
In hoofdstuk 1 beschrijven we in het kort de concepten TRS en terminatie van TRS.
Hoofdstuk 2 bevat een uitvoerige samenvatting van de�nities, notaties and resultaten opdat

het proefschrift op zichzelf staande is.
In hoofdstuk 3 bestuderen we welgefundeerdheid van ordeningen gede�nieerd op de verza-

meling van termen. Welgefundeerdheid van ordeningen is in het algemeen moeilijk te bewijzen,
het is daarom gewenst om eenvoudige criteria te hebben die de welgefundeerdheidseigenschap
kunnen controleren. Zulke criteria worden in dit hoofdstuk gegeven, waardoor welgefundeerheid
van bekende ordeningen zoals rpo geconcludeerd kan worden. Een belangrijk voordeel van deze
criteria is dat ze gelden voor alle terminerende TRSen in tegenstelling tot bv. de stelling van
Kruskal.

Hoofdstuk 4 is verdeeld in twee delen. In het eerste deel bestuderen we het algemene pro-
bleem van het de�ni�eren van recursieve pad ordeningen op termen. In het tweede deel kijken we
naar een andere belangrijke eigenschap van ordeningen nl. totaliteit. Totale ordeningen hebben
de eigenschap dat elk tweetal (verschillende) elementen uit de verzameling waarover de ordening
is gede�nieerd vergelijkbaar is. We tonen aan dat bekende ordeningen zoals rpo of kbo in
essentie totaal zijn. Dit betekent dat TRSen waarvan we terminatie met deze ordeningen kunnen
bewijzen ook ge��nterpreteerd kunnen worden in totale welgefundeerde monotone algebra's. Dit
type terminatie noemen we totale terminatie.

In hoofdstuk 5 gaan we verder in op totale terminatie. We kijken naar eigenschappen van
algebra's die in bewijzen voor totale terminatie gebruikt kunnen worden. Het blijkt dat de inte-
ressante algebra's precies gekarakteriseerd kunnen worden, nl. ze zijn algebra's die overeenkomen
met multiverzamelingen over een verzameling. We gebruiken in dit hoofdstuk eigenschappen
van de ordinalen en we zijn in staat om enige interessante resultaten over TRSen af te leiden.

In het laatste hoofdstuk introduceren we enige transformaties gede�nieerd op termen (en
dus ook op TRSen) die de taak om terminatie te bewijzen vergemakkelijken. Een gegeven
TRS kan worden getransformeerd tot een nieuwe TRS met in het algemeen meer regels maar
met een eenvoudigere syntactische structuur. We bewijzen de opmerkelijke eigenschap dat
terminatie van de oorspronkelijke TRS volgt uit terminatie van de getransformeerde TRS. Dit
geeft een techniek die eenvoudig aan bestaande automatische terminatiebewijssystemen kan
worden toegevoegd die daarmee terminatie van meer TRSen kunnen bewijzen. Deze techniek
blijft van toepassing voor herschrijven modulo vergelijkingen.

In de appendix geven we bewijzen van bekende resultaten. Deze bewijzen zijn of nieuw of
bestaand maar dan moeilijk te vinden in de literatuur. Daardoor is dit proefschrift meer op
zichzelf staand.

220 Samenvatting

Curriculum Vitae

Maria da Concei�c~ao Fern�andez Ferreira

23 March 1962 Born in Lisbon

1980 - 1983 Bachelor's degree in Mathematics,
Universidade de Lisboa

1983 - 1985 Master's degree in Computer Science,
Universidade Nova de Lisboa

Nov. 1985 - March 1986 Teaching assistent,
Instituto Superior de Engenharia de Lisboa

March 1986 - Jan. 1990 Teaching assistent,
Universidade Nova de Lisboa

Jan. 1990 - Oct. 1991 Junior researcher,
Katholieke Universiteit Nijmegen

Nov. 1991 - March 1992 Assistent in Opleiding ,
Universiteit Utrecht

Apr. 1992 Onderzoeker in Opleiding ,
Stichting Informatica Onderzoek Nederland (SION),
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO),
attached to the Computer Science Department, Utrecht University
(vakgroep Informatica, Universiteit Utrecht)

221

